1. Introduction

The latest report of the Intergovernmental Panel on Climate Change (IPCC) has provided unequivocal evidence that human influence has warmed the atmosphere, ocean, and land, and demands further reduction of CO2 emissions. Therefore, innovative new technologies, including separation, storage, and utilization of CO2, are indispensable. Chemical looping technology may provide effective solutions and promising energy conversion systems for power plants and industrial applications with inherent CO2 capture, avoiding energy penalties. Combined with appropriate CO2 storage and utilization options, chemical looping can achieve net-zero emissions. The challenges, benefits, and prospects of chemical looping systems with various oxygen carriers and reactor configurations are discussed in this review to provide insights into the development of innovative systems in terms of solid looping materials, reactions, systems, and economics.

Keywords
Chemical looping, Circulating fluidized bed reactor, CCS, CCUS, Hydrogen production, Zero emission

Various CL systems are shown in Fig. 1. In a typical CL system, the OCs circulate between the fuel reactor (FR) and the air reactor (AR), i.e., the OCs are reduced (Eq. (1)) and reoxidized (Eq. (2)) repeatedly. During these reactions, carbonaceous fuels (CmHn) are converted to CO2 in the FR and generate high-grade heat in the AR to produce electricity using a steam turbine, as shown in Fig. 1(a). A CL hydrogen production system with CO2 separation using three reactors was proposed for partially oxidizing OCs with steam to form H2 (Eq. (3)), as shown in Fig. 1(b). In addition, an advanced CL system involving energy conversion and storage with a reversible solid oxide fuel cell/solid oxide electrolytic cell (SOFC/SOEC) system, the CL-type air battery, has been proposed, as shown in Fig. 1(c). The H2-H2O system acts as a redox mediator (Eq. (3))

\[(2n + m)\text{MO} + \text{C}_m\text{H}_{2n+2m} \rightarrow (2n + m)\text{M} + n\text{CO}_2 + m\text{H}_2\text{O} \tag{1}\]
\[\text{M} + \frac{1}{2}\text{O}_2 \rightarrow \text{MO} \tag{2}\]
\[\text{M} + \text{H}_2\text{O} \rightarrow \text{MO} + \text{H}_2 \tag{3}\]
(M: Fe, Ni, Cu, Mn etc.)

This review discusses the various CL and related technologies considering the material design of OCs and system design for CL combustion, hydrogen production, and energy storage systems investigated by our research. In addition, a techno-economic analysis of
CL systems is discussed to promote future use of CL technologies. This review article consists of three sections: (1) material design of OCs and their redox kinetics, (2) diversity of CL systems design, and (3) techno-economic analysis of CL systems.

2. Materials Design of Oxygen Carriers and Redox Kinetics for CL Systems

2.1. Redox Kinetics Promotion by Ionic and Electronic Transport

Efficient OCs are critical for improving and diversifying the functions of CL systems. The characteristics required for functional OCs are rapid redox kinetics, durability for redox cycles, low cost, easy treatment of used material, environmentally friendly material, and rich natural resources with a large Clarke number. Therefore, natural ores are preferred, but artificial OCs are being developed incorporating fast redox kinetics, resulting in reduced reactor size. Therefore, developing multifunctional OCs is crucial. Redox reactions involving various metal oxides such as Fe$_2$O$_3$, NiO, MnO, and CuO have been investigated$^{10-16}$. Support materials can influence the physicochemical characteristics such as dispersability, durability, conversion, and selectivity. Thus, a variety of support materials such as Al$_2$O$_3$, ZrO$_2$, SiO$_2$, TiO$_2$, spinel (MgAl$_2$O$_4$, NiAl$_2$O$_4$), and perovskite (e.g., La$_x$Sr$_{1-x}$Fe$_y$Co$_{1-y}$O$_{3-δ}$) have been investigated$^{17-23}$. More information about previous studies on OC materials is collected elsewhere5,24.

Our concept to improve the redox kinetics of OCs is based on incorporating ionic and electronic conduction into the surface and interfacial redox reactivity of OCs by utilizing oxide ion conductors (OICs) and mixed ionic-electronic conductors (MIECs) as support materials as illustrated in Fig. 2. This concept is simple but very effective as shown below. Oxide ions can diffuse through the oxygen vacancies (V$_{O••}$) in oxide ion conductors and promote the redox kinetics of metal oxides at the interface between the oxide ion conductor and the metal oxide25. Electrons can diffuse together with the oxide ions in MIECs, so the transport properties of MIECs can promote the redox kinetics of metal oxides. Table 1 lists the OCs developed in our previous studies.

![Fig. 1 Schematic Diagrams of CL Energy Conversion Systems: (a) two reactor system, (b) three reactor system for hydrogen production, (c) CL air battery with SOFC/SOEC system](image)

Fig. 1 Schematic Diagrams of CL Energy Conversion Systems: (a) two reactor system, (b) three reactor system for hydrogen production, (c) CL air battery with SOFC/SOEC system

![Fig. 2 Concept of Improving Redox Kinetics of OCs with Oxide Ion Conductor or MIEC as a Support](image)

Fig. 2 Concept of Improving Redox Kinetics of OCs with Oxide Ion Conductor or MIEC as a Support. The figure was partially modified25. Reprinted/adapted from ref. 25 with permission from Elsevier.
Electrons and holes also diffuse together with the oxide ions in CTFO. These transport properties will improve the reduction kinetics26,28,30,33,35. We also observed remarkable promotion of oxidation reaction, i.e., hydrogen formation reaction with steam by CTFO supports as shown in Fig. 3(b)28,30. Promotion of oxidation kinetics as well as improvement of reduction kinetics were also observed using other MIECs such as gadolinium-doped ceria Ce\textsubscript{0.9}Gd\textsubscript{0.1}O\textsubscript{2–δ} (GDC)25,30.

Figure 4 shows the relationship between the oxide ion conductivity of these carrier materials and the oxidation reaction rate constant of iron oxide, calculated using the Avrami-Erofeev equation. The oxide ion conductivity of the support materials showed a remarkable correlation with the reaction rate. This indicates that oxide ion transport via the carrier contributed to the reaction promotion30.

MIEC: oxide ionic and electronic conductor, OIC: oxide ion conductor, PC: proton conductor, NP: exsolution of nanoparticle.

Table 1: List of OCs Developed in Our Previous Studies

Oxygen carrier	Support	Support property	Ref.
Fe\textsubscript{2}O\textsubscript{3}	Al\textsubscript{2}O\textsubscript{3}	Insulator	26, 27, 28, 29
NiO	ZrO\textsubscript{2}	Insulator	25, 30
NiO, Fe\textsubscript{2}O\textsubscript{3}	(ZrO\textsubscript{2})\textsubscript{0.9}(Y\textsubscript{2}O\textsubscript{3})\textsubscript{0.1}	OIC	28, 30, 31
NiO, Fe\textsubscript{2}O\textsubscript{3}	Ce\textsubscript{0.9}Gd\textsubscript{0.1}O\textsubscript{2–δ} (GDC)	MIEC	25, 30
Fe\textsubscript{2}O\textsubscript{3}	CaTi\textsubscript{0.8}Fe\textsubscript{0.2}O\textsubscript{3–δ} (CTFO)	MIEC	26, 28
NiO	La\textsubscript{0.9}Sr\textsubscript{0.1}AlO\textsubscript{3–δ} (LSA)	OIC, NP	25
Fe\textsubscript{2}O\textsubscript{3}	BaZr\textsubscript{0.9}Y\textsubscript{0.1}O\textsubscript{3–δ} (BZY)	PC, NP	32, 33
Ilmenite (Fe\textsubscript{2}TiO\textsubscript{3})	-	Insulator	34, 35
Ca-modified ilmenite (Fe\textsubscript{2}TiO\textsubscript{3} + CaTi\textsubscript{0.8}Fe\textsubscript{0.2}O\textsubscript{3–δ} (CTFO))	-	MIEC	34, 35

Fig. 3 Redox Kinetics of Fe with Various Supports for (a) Reduction Rate (oxygen release rate per unit OC mass) with 5% Methane at 1173 K28,29,30,31,33 and (b) Oxidation Rate (hydrogen formation rate per unit OC mass) at 873 K30.

Fig. 4 Oxidation (hydrogen production) Rate Constant as a Function of Oxide Ion Conductivity for the Different Supports30 Reprinted from ref. 30) with permission from Elsevier.

tal lattice. Electrons and holes also diffuse together with the oxide ions in CTFO. These transport properties will improve the reduction kinetics26,28,30,31,33,35. We also observed remarkable promotion of oxidation reaction, i.e., hydrogen formation reaction with steam by CTFO supports as shown in Fig. 3(b)28,30. Promotion of oxidation kinetics as well as improvement of reduction kinetics were also observed using other MIECs such as gadolinium-doped ceria Ce\textsubscript{0.9}Gd\textsubscript{0.1}O\textsubscript{2–δ} (GDC)25,30.

Figure 4 shows the relationship between the oxide ion conductivity of these carrier materials and the oxidation reaction rate constant of iron oxide, calculated using the Avrami-Erofeev equation. The oxide ion conductivity of the support materials showed a remarkable correlation with the reaction rate. This indicates that oxide ion transport via the carrier contributed to the reaction promotion30.

Additionally, the correlation between the redox kinetics and the OC microstructure was investigated with backscattered electron imaging (BEI) to investigate the microstructures of Fe\textsubscript{2}O\textsubscript{3}/GDC. **Figure 5** shows the cross-sectional BEI of the Fe\textsubscript{2}O\textsubscript{3}/GDC composite parti-

Spg: spray granulation method; **Imp**: impregnation method.

J. Jpn. Petrol. Inst., Vol. 65, No. 1, 2022
The apparent phase boundary lengths between Fe$_2$O$_3$ and GDC were evaluated by image processing of the BEI. The reduction kinetics were correlated with the apparent phase boundary lengths. The apparent activation energy for the reduction of Fe$_2$O$_3$/GDC monotonously decreased with greater apparent phase boundary length as shown in Fig. 6, indicating that promotion of Fe$_2$O$_3$ reduction may occur at the two-phase and three-phase boundaries in Fe$_2$O$_3$/GDC. Additionally, oxygen desertion at the phase boundary between Fe$_2$O$_3$ and GDC may occur, which also promotes the reduction kinetics.

2.2 Model Description of Redox Kinetics Promotion with Oxide Ion Transport at the Metal Oxide and Ion Conductor Interface

To further evaluate the promotion of the redox kinetics of OCs discussed above, the involvement of oxide ion transport was investigated based on the oxygen potential distribution in the particles (Eq. (4)). This mechanism may explain the process of redox kinetics promotion and provide guidelines for further improving these redox reactions.

$$J_o = - \frac{\sigma_i t_{i+} t_{i-}}{z_o^2 F^2} \nabla \mu_o$$

where oxygen flux J_o is determined by transport properties such as conductivity σ, transport number t_i for species i (o: oxide ion, e: electron, and h: hole), and gradient of oxygen chemical potential μ_o. z_o and F are the charge number of oxygen and the Faraday constant, respectively.

The model was based on the reduction reaction kinetics on the particle surface and oxide ions diffusion due to the gradient of the oxygen chemical potential in OC particles (Eq. (4)). The spatial distribution of the reaction promotion near the support and iron oxide interface was evaluated (Fig. 7). The model calculation indicated that the reduction rate improved with higher oxide ionic conductivity in the support, whereas a smaller increase in the reduction rate was obtained with higher electronic conductivity. The results demonstrate that the effect of oxide ionic conductivity is predominant, but electronic conductivity also contributes to improving the reduction kinetics. Thus, the kinetic improvements by YSZ and CTFO are largely comparable, despite the high electronic conductivity of CTFO. Conversely, the experimental results for oxidation (H$_2$ evolution) with CTFO suggest that the oxidation kinetics are strongly influenced by both the oxide ionic and electronic conductivity, indicating that CTFO has
well-balanced properties for redox kinetics. Therefore, the transport properties of CTFO were applied to Ca-modified ilmenite as a novel OC.

2.3. Structural Stability in OCs during Redox Cycles due to Ionic and Electronic Transport Properties

Oxide ion transport may also contribute to the structural stability of OCs during redox cycles and promote redox kinetics. Microstructural changes in Fe$_2$O$_3$/Al$_2$O$_3$, a standard artificial OC, were investigated during redox cycles using an image analysis method of cross-sectional backscattered electron images\(^29\). Coarsening of Fe particles inside the Fe$_2$O$_3$/Al$_2$O$_3$ particles was observed for 25 wt% Fe$_2$O$_3$/Al$_2$O$_3$, whereas Fe segregation at the surface and coarsening of Fe particles inside the Fe$_2$O$_3$/Al$_2$O$_3$ particles were observed for 50 wt% Fe$_2$O$_3$/Al$_2$O$_3$ as shown in Fig. 8. The redox kinetics slowed due to the reduction in the specific surface area of Fe associated with the coarsening of Fe particles.

Ilmenite (IL: FeTiO$_3$) was introduced to improve the redox kinetics and suppress the morphological changes during redox cycles. IL is a natural ore and a typical OC used in actual CL systems. IL was modified through the impregnation method with a calcium additive to form CTFO on the ilmenite surface and interior (Ca-modified ilmenite: Ca-IL). Consequently, a structure with an ilmenite core and CTFO shell was formed\(^34\). The production process of Ca-IL was also investigated using the melt-infiltration method to deeply penetrate Ca in Ca-IL\(^35\). Cross-sectional scanning electron microscope (SEM) images of the modified and unmodified ILs are shown in Fig. 9. In unmodified IL, Fe migrates toward the surface and forms an Fe-rich layer after redox cycling. This tendency induces decomposition to form powdered microparticles and particle aggregation. The ilmenite particles will experience reduced lifetime in redox cycles. Conversely, Ca-IL prepared by the impregnation method indicated Ca modification around the particle surfaces, forming grains rich in Ca and Ti close to the surface; i.e. a CTFO surface layer was formed. In addition, Ca-IL prepared by the melt-infiltration method exhibited improved penetration of Ca into the particles. After redox cycling, Fe segregation on the surface did not occur in the Ca-ILs, and the structure of Ca-and Ti-rich grains throughout the particles was maintained for Ca-IL prepared by the melt-infiltration method, in contrast to the Ca-rich surface layer formation for Ca-IL prepared by the impregnation method. Furthermore, the use of modified ilmenites improved the reduction kinetics in dry H$_2$ and wet CH$_4$ (i.e., humidified condition: steam to carbon ratio \(\prime \)). The kinetic improvement was due to the formation of CTFO in Ca-IL. Therefore, the interface of the CTFO grains may promote redox kinetics together with Fe$_2$O$_3$/CTFO.

Figure 10 shows the mechanism of cation diffusion in Ca-IL\(^34\). Significant Fe surface segregation and formation of a porous structure in unmodified IL were observed during redox cycling, which will shorten the lifetime of the OCs. The diffusivity of the oxide ion is lower than that of the reduced iron cation in unmodified IL. In addition, the oxygen potential gradient along the surface to the center of the particle is relatively large during the oxidation process, because of the low diffusivity of the oxide ion. Therefore, the reduced iron cation diffuses toward the IL particle exterior according to the oxygen potential gradient, before iron oxidation occurs at the surface. The iron cation is then easily transported toward the particle exterior, and Fe segregation occurs at the surface of the unmodified IL particle (Fig. 10(a)). In contrast, fast oxide ion transport into...
ilmenite is the dominant oxidation step in Ca-IL, i.e., fast oxide ion diffusion toward the IL particle interior occurs according to the oxygen potential gradient, and this phenomenon can suppress the outward diffusion of iron ions (Fig. 10(b)). Ilmenite modification with CTFO can provide high redox reactivity and suppress the outward diffusion of iron cations and resultant morphological changes, extending the lifetime of OCs during redox cycles.

3. CL Systems Design for a Variety of Carbonaceous Fuels and CO₂ Utilization

3.1. CL Systems Design

CL technology flexibly facilitates a variety of reactions using a combination of redox reactors. The following CL systems were investigated: (a) Conventional redox system with fuel and air reactors (Fig. 1(a)), (b) hydrogen production system using steam reforming (i.e., using FR and AR in Fig. 1(a))5,10,37; (c) hydrogen production system using steam-iron reaction with fuel, steam, and air reactors (Fig. 1(b)), and other applications such as (d) air battery system with a steam reactor and SOFC/SOEC (Fig. 1(e)); and (e) CO₂ utilization systems for CO and syngas production with two or three reactors32,33,34. Various carbonaceous fuels have been investigated for CL systems such as coal, petroleum, natural gas, and woody biomass33,37. Additionally, solar-thermochemical water splitting with metal oxides has been investigated in combination with reversible energy40,41. A brief list of CL systems is provided in Table 2.

3.2. Demonstration of 100 kW CLC Pilot Plant

To scale up CL systems, national projects supported by the New Energy and Industrial Technology Development Organization (NEDO) in Japan have demonstrated a 100 kW-class CLC pilot plant operation42,43. A 100-kW circulating fluidized bed system with three reactors was built, and CLC operations were carried out using solid fuel. The CLC system consisted of (1) riser: air reactor (AR), (2) carbon (coal) reactor (CR): 1st stage fuel reactor, and (3) volatile reactor (VR): 2nd stage fuel reactor, as shown in Fig. 11. This project evaluated coal combustion using the CLC system with natural ilmenite as OC.

The demonstration project achieved stable operation during continuous coal feeding. Overall, the CO₂ capture rate from the VR was 74 %, 9 % of CO₂ was released from the AR, and 13 % of the residue was soot from the VR42. Thus, the CO₂ capture rate (74 % in the VR) can be improved by reducing the amounts of soot and char in the CR and prevention of transfer to the AR by adjusting the operating conditions. We restarted a follow-up project of polygeneration of H₂, CO₂, and N₂ based on woody biomass fuel, using a CL steam-ion reaction supported by NEDO in 202044. Because the system developed in this project includes a

Table 2 List of Various CL Systems

System	Reactor configuration	Fuel	Ref.
Combustion, power plant with CCS	AR, FR	coal, LNG, petroleum, biomass	5, 37, 38
Syngas, hydrogen production with CCS	AR, FR	coal, LNG, petroleum, biomass	5, 10
CL steam-iron reaction	AR, FR, SR	coal, LNG, biomass	5, 24, 28
Advanced energy storage	SR, fuel cell	H₂, H₂O	8, 9, 28
CO₂ utilization for CCUS	FR	coal, LNG, biomass with CO₂	39
CL CO production	cracker, regenerator	LNG with CO₂	34, 35
CL methane cracking	carbonator, methanator	coal, LNG, biomass with CO₂	32, 33
Solar thermochemical splitting of H₂ and CO₂ for CCUS	solar collector, cavity receiver	coal, LNG, biomass with CO₂	40, 41

AR: air reactor, FR: fuel reactor, SR: steam reactor, DAC: direct air capture, MO: metal oxide.
hydrogen production process, OCs with fast redox kinetics and long-term durability in redox cycles are required to reduce reactor size and operation costs. Additionally, our studies on OCs will contribute to the development of new CLC systems.

3.3. CCUS Systems Design with CL Technology

CL technologies are suitable for carbon dioxide capture, utilization, and storage (CCUS) based on the CO$_2$ circular economy. The following reactions are available to activate CO$_2$ and its effective use:

$$\text{CO}_2 + 4\text{H}_2 \rightarrow \text{CH}_4 + 2\text{H}_2\text{O} \quad (5)$$

$$\text{CO}_2 + \text{M} \rightarrow \text{CO} + \text{MO} \quad (6)$$

$$\text{CO}_2 + \text{C} \rightarrow 2\text{CO} \quad (7)$$

In Eq. (5), CO$_2$ methanation, the famous Sabatier reaction, is crucial because the power-to-gas concept provides the perspective of large-scale circulation of CO$_2$ emissions combined with the use of renewable energy to form methane45. CL can be combined with CO$_2$ capture and methanation processes (Fig. 12(a)). CO$_2$ capture with CL has been investigated using a carbonation/decarbonation cycle of calcium looping with CaO and CaCO$_3$46. By combining the CO$_2$ capture process (Eq. (8)) with methanation (Eq. (9)), a combined system of CO$_2$ separation and methanation can be designed, as shown in Fig. 12(a). CO$_2$ is separated from flue gas or air; i.e., direct air capture (DAC), in a carbonator. Methane then forms due to CaCO$_3$ reacting with hydrogen during methanation47.

$$\text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \quad \text{(carbonation)} \quad (8)$$

$$\text{CaCO}_3 + 2\text{H}_2 \rightarrow \text{CaO} + \text{CH}_4 \quad \text{(methanation)} \quad (9)$$

Ru and Ni catalysts can be used for CL methanation48,49. We also established that Ni catalyst support-based proton conductors such as yttrium-doped barium zirconate (BZY) is highly active in the cyclic process50. We also proposed CO$_2$ activation with hydrogen produced by renewable energy (RE) such as solar cells and methane cracking to produce CO from CO$_2$, as shown in Fig. 12(b)59. The OC is reduced by hydrogen produced by RE via water electrolysis, and CO$_2$ reacts with the reduced OC to form CO. In this process, the CO concentration and energy conversion efficiency have a trade-off relationship. We discussed the appropriate OC materials based on thermodynamics to determine the best choice for each combination of CO concentration and efficiency, i.e., the Pareto front of CO concentration and efficiency was discussed59. In another process, we proposed CO$_2$ activation combined with methane cracking to produce H$_2$ and CO, as shown in Fig. 12(c)32,33. A proton conductor (Fe-doped BZY: BZFY) was used as the OC in this reaction. The kinetic analysis indicated high activity for carbon deposition via methane cracking and the resultant promotion of tubular carbon growth on BZFY33. In the reduction step, an exsolution of Fe nanoparticles occurred on the BZFY surface (see Fig. 13(a), 13(b)). The rapid growth of carbon tubes proceeded with the base-growth mechanism, i.e., carbon tubes grew on the Fe particles anchored on BZFY (see Fig. 13(c), 13(d)), which is advantageous for stable redox cyclic reactions. Addi-
tionally, the carbon removal reaction with carbon dioxide (Eq. (7)) proceeded quickly. Based on these findings, a new chemical looping system was proposed in combination with an SOFC system (Fig. 14). Assuming that the waste heat of the SOFC system and the heat of \(\text{CH}_4 \) off-gas combustion from the cracker are used for the endothermic reactions of methane cracking and carbon removal, a self-sustained operation is possible. Therefore, the proposed system provides an effective system design for carbon dioxide-free hydrogen generation.

3.4. Techno-economic Analysis of CL Systems

To investigate the potential widespread uses of CL technologies, integrated approaches combining technological and economic assessments were conducted.

Japanese woody biomass energy (BE) for negative emissions via thermal power plants and subsequent carbon dioxide capture and storage (BECCS) has been investigated\(^{51,52}\). In this study, a novel unmixed combustion technology, CLC with woody biomass (BE-CLC) was benchmarked in comparison with a conventional BE process with post-combustion \(\text{CO}_2 \) capture; i.e., the conventional circulating fluidized bed combustion (CFBC) process using woody biomass fuel in combination with post-combustion amine scrubbing (CFBC-CCS). The analysis was conducted based on the detailed modeling of fluidized-bed CLC reactors with different fuel input scales. The use of CLC saved up to 17\% of the total BECCS cost per tonne of \(\text{CO}_2 \) captured. The analysis also suggested that the cost-optimal plant size was 5 MWth in Japan\(^{52}\). However, the \(\text{CO}_2 \) capture cost remained over US$160/t-\(\text{CO}_2 \) because of high fuel costs. This cost can be reduced to US$130/t-\(\text{CO}_2 \) with reduction in the fuel cost from US$200/dry tonne to US$100/dry tonne\(^{51}\). Despite the high fuel cost of Japanese woody biomass, CLC-CCS may be the cheapest \(\text{CO}_2 \) abatement option compared to coal combustion with CCS, CFBC-CCS, solar cells, and wind farms, if the average \(\text{CO}_2 \) intensity of the replaced generation capacity is below 0.35 kg\(\text{CO}_2 \)/kWh (cf. the average value of the current Japanese grid is approximately 0.53 kg\(\text{CO}_2 \)/kWh) (Fig. 15). Therefore, CLC is an effective option for reducing \(\text{CO}_2 \) emissions. If economic incentives such as carbon pricing are introduced to encourage the reduction of \(\text{CO}_2 \) emissions, CL technology can demonstrate its technological advantages for separating and utilizing \(\text{CO}_2 \).

4. Conclusion

Various CL systems will emerge from the development of reactor configurations and solid looping materi-
als and provide innovation pathways for novel energy conversion systems to achieve zero CO₂ emissions over the coming decades. CL can achieve net-zero emissions of CO₂ combined with CCS and CCUS. The OCs in CL systems are the key materials for determining the system performance, effective energy conversion, and CO₂ separation. The transport properties of OCs controlled using a range of MIECs achieve fast redox kinetics. Oxide ion and proton conductors performed well in terms of redox kinetics and methane cracking. MIECs improve both the redox kinetics and the durability during redox cycles. Calcium-modified ilmenite showed good morphological stability as well as fast redox kinetics, which were caused by the formation of MIEC domains in the particles. Thus, OC material design based on MIECs is promising.

System design and scale-up of CL plants have also advanced. A 100 kW CLC operation with coal combustion was built as a CLC demonstration of a pilot plant with three reactors (VR, CR, and AR), and operated using a natural ilmenite for the solid looping material in a national project. The demonstration proved stable operation with continuous feeding of coal. This technology has been installed in a subsequent project with poly-generation of H₂, CO₂, and N₂ with the CL steam-ion reaction using woody biomass solid fuels. To apply CL to CCUS, the CO₂ activation process was also investigated. CO production and methanation using DAC systems have been proposed. These systems possess the potential for net zero and net negative emissions of CO₂.

Techno-economic analysis of BECCS was conducted, considering net negative emissions. CLC-CCS has the potential to be the cheapest CO₂ abatement option, compared with other options such as conventional BECCS and renewable energies if the average CO₂ intensity of the generation capacity is below 0.35 kgCO₂/kWh. Thus, CL technologies will demonstrate their advantages for the separation and utilization of CO₂ in the near future.

Acknowledgment

I would like to thank all co-authors and co-researchers for advancing the relevant CL technologies in this study. This work was supported by the New Energy and Industrial Technology Development Organization (NEDO, Japan) for the project on technological development for zero-emission coal-fired power generation (P10016) and CO₂ separation/recovery type poly-generation system (P16002), Grant-in-Aid for Scientific Research (B) (25281061) and (A) (17H00801) from the Japan Society for the Promotion of Science (JSPS, Japan), and the Center of Innovation Program (COI) Grant Number JPMJCE1318 of Japan Science and Technology Agency, Japan (JST, Japan).

References

1) IPCC, Climate Change 2021: The Physical Science Basis, 9th August, 2021, https://www.ipcc.ch/report/ar6/wg1/681PM.
2) Lewis, W. K., Gilliland, E. R., Sweeney, W. P., Chem. Eng. Prog., 47, 251 (1951).
3) Lewis, W. K., Gilliland, E. R., Production of pure carbon dioxide, Pat. 2665972 (1954).
4) Ishida, M., Zheng, D., Akohata, T., Energy, 12, (2), 147 (1987).
5) Adané, J., Abad, A., García-Labiano, F., Gayan, P., de Diego, L. F., Progress in Energy and Combustion Science, 38, 215 (2012).
6) Hossain, M. M., de Lasa, H. I., Chem. Eng. Sci., 63, 4433 (2008).
7) Kosaka, F., Isogai, S., Hatano, H., Oshima, Y., Otomo, J., J. Chem. Eng. Jpn., 49, (3), 243 (2016).
8) Xu, N., Li, X., Zhao, X., Goodenough, J. B., Huang, K., Energy & Environ. Sci., 4, 4942 (2011).
9) Inoishi, A., Ida, S., Uratani, S., Okano, T., Ishihara, T., PCCP, 14, 12818 (2012).
10) Zafar, Q., Mattisson, T., Gevert, B., Ind. Eng. Chem. Res., 44, 3485 (2005).
11) Abad, A., Adané, J., Garcia-Labiano, F., de Diego, L. F., Gayán, P., Celaya, J., Chem. Eng. Sci., 62, 533 (2007).
12) Gayán, P., de Diego, L. F., Garcia-Labiano, F., Adané, J., Abad, A., Dueso, C., Fuel, 87, 2641 (2008).
13) Duexo, C., Ortiz, M., Abad, A., García-Labiano, F., de Diego, L. F., Gayán, P., Adané, J., Chem. Eng. J., 188, 142 (2012).
14) Mattisson, T., Johansson, M., Lyngfeld, A., Fuel, 85, 736 (2006).
15) Mattisson, T., Lyngfeld, A., Cho, P., Fuel, 80, 1953 (2001).
16) Mei, D., Mendiaura, T., Abad, A., de Diego, L. F., Garcia-Labiano, F., Gayan, P., Adanze, J., Zhao, H., Energy & Fuels, 29, 6605 (2015).
17) Hatano, H., Chem. Eng. Sci., 65, 47 (2010).
18) Ishida, M., Jin, H., Okamoto, T., Energy & Fuels, 12, 223 (1998).
19) Zafar, Q., Abad, A., Mattisson, T., Gevert, B., Energy & Fuels, 21, 610 (2007).
20) Jerndal, E., Mattisson, T., Thuijs, I., Snijkers, F., Lyngfelt, A., Int. J. Greenhouse Gas Control, 4, 23 (2010).
21) Ryden, M., Lyngfelt, A., Mattisson, T., Chen, D., Holmen, A., Bjergum, E., Int. J. Greenhouse Gas Control, 2, 21 (2008).
22) Chen, L., Bao, J., Kong, L., Combs, M., Nikolaic, H. S., Fan, Z., Liu, K., Appl. Energy, 184, 9 (2016).
23) Qin, L., Cheng, Z., Fan, J. A., Kopechek, D., Xu, D., Deshpande, N., Fan, L. S., J. Mater. Chem. A, 3, 11302 (2015).
24) Voitc, G., Hacker, V., RSC Adv., 6, 98267 (2016).
25) Otomo, J., Furumoto, Y., Hatano, H., Hatanaka, T., Oshima, Y., Fuel, 104, 691 (2013).
26) Isogai, S., Kosaka, F., Takimoto, I., Hatano, H., Oshima, Y., Otomo, J., Chem. Lett., 42, 1438 (2013).
27) Hatano, H., Otomo, J., J. Soc. Powder Technol. Jpn., 50, (3), 190 (2013).
28) Kosaka, F., Isogai, S., Hatano, H., Oshima, Y., Otomo, J., J. Chem. Eng. Jpn., 49, (3), 243 (2016).
29) Saito, Y., Kosaka, F., Kikuchi, N., Hatano, H., Otomo, J., Ind. Eng. Chem. Res., 57, (15), 5529 (2018).
30) Kosaka, F., Hatano, H., Oshima, Y., Otomo, J., Chem. Eng. Sci., 123, 380 (2015).
31) Azadi, P., Otomo, J., Hatano, H., Oshima, Y., Farnood, R., Chem. Eng. Sci., 66, 4196 (2011).
32) Keller, M., Matsuzaki, Y., Otomo, J., Chem. Eng. J., 349, 249 (2018).
33) Hikima, S., Keller, M., Matsuo, H., Matsuzyki, Y., Otomo, J., Carbon Resouces Conversion, 2 (1), 51 (2019).

34) Miya, K., Otomo, J., Chem. Eng. J., 417, 128012 (2021).

35) Keller, M., Oka, H., Otomo, J., International Symposium on Innovative Materials for Processes in Energy Systems 2013 (IMPRES 2013), 3, 582 (2013).

36) Kosaka, F., Kiikuchi, N., Hatano, H., Oshima, Y., Otomo, J., Carbon Resources Conversion, 2, (1), 51 (2019).

37) Kosaka, F., Kikuchi, N., Hatano, H., Oshima, Y., Otomo, J., International Symposium on Innovative Materials for Processes in Energy Systems 2013 (IMPRES 2013), 3, 582 (2013).

38) Song, T., Shen, L., Int. J. Greenhouse Gas Control, 76, 92 (2018).

39) Keller, M., Otomo, J., J. CO2 Util., 40, 101191 (2020).

40) Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., Steinfeld, A., Science, 330, (6012), 1797 (2010).

41) Marxer, D., Furler, P., Takacs, M., Steinfeld, A., Energy Environ. Sci., 10, 1142 (2017).

42) Lin, S.-Y., Saito, T., Sharma, A., Matsumura, A., Hatanaka, T., 27th Annual Meeting of Japan Institute of Energy, Abstract No. 1-2-2, 8th, Aug., 2018, https://doi.org/10.20550/jietakiyoushi.27.0_10.

43) NEDO report, Zero emission coal-fired power generation: Project No. P10016, https://www.nedo.go.jp/library/seika/shosai_201807/20180000000518.html.

44) NEDO project: CO2 separation/recovery type poly generation system, https://www.nedo.go.jp/news/press/AA5_101381.html.

45) Vogt, C., Monai, M., Kramer, G. J., Weckhuysen, B. M., Nature Catalysis, 2, 888 (2019).

46) Dean, C. C., Blamey, J., Florin, N. H., Al-Jeboori, M. J., Fennell, P. S., Chem. Eng. Res. Design, 89, 836 (2011).

47) Duyar, M. S., Treviño, M. A. A., Farrauto, R. J., Appl. Catal. B: Environ., 168-169, 370 (2015).

48) Hu, L., Urakawa, A., J. CO2 Util., 25, 323 (2018).

49) Kosaka, F., Liu, Y., Chen, S.-Y., Mochizuki, T., Takagi, H., Urakawa, A., Kuramoto, K., ACS Sustain. Chem. Eng., 9, 3452 (2021).

50) Matsuzaki, Y., Baba, Y., Sato, K., Inuma, H., Otomo, J., Methane production apparatus, methane production method, carbon dioxide recovery apparatus, and carbon dioxide recovery method, Jpn. Pat. Application, 2019-133591 (2019).

51) Keller, M., Kaibe, K., Hatano, H., Otomo, J., Int. J. Greenhouse Gas Control, 83, 69 (2019).

52) Kaibe, K., Keller, M., Inoue, M., Yamada, K., Otomo, J., J. Jpn. Inst. Energy, 97, 284 (2018).

要 旨

ケミカルループ法に基づく二酸化炭素分離・利用型エネルギー変換技術の材料およびシステム設計

大友 順一郎

東京工業大学環境・社会理工学院融合理工学科, 152-8550 東京都目黒区大岡山2-12-1（N1-20）

今後数十年で二酸化炭素の正味の排出量ゼロ（ゼロ・エミッション）を達成するには、二酸化炭素の分離、貯蔵、利用などの革新的な新技術の開発が必要不可欠である。ケミカルループ法は、追加のエネルギー投入を必要としない二酸化炭素分離型の発電技術で、二酸化炭素を化学原料に変換する効率的なエネルギー変換システムや産業応用を提供する技術である。適切な二酸化炭素の貯留と利用技術を組み合わせることで、ケミカルループ法を用いたゼロ・エミッションが達成可能である。本総合論文では、ケミカルループシステムの循環媒体である酸素キャリア粒子の材料開発や複数の反応器から構成されるシステム設計について、著者らの研究を中心に、開発の課題、利点、および今後の展望について述べ、材料、反応、システム、および経済性の観点からケミカルループシステムの最適の動向について解説する。