T2*-weighted MRI technique for visualization of RF ablation lesions

Eugene Kholmovski1,2*, Ravi Ranjan2, Nathan Angel2, Nassir F Marrouche2

From 19th Annual SCMR Scientific Sessions
Los Angeles, CA, USA. 27-30 January 2016

Background
LGE-MRI is widely used to assess cardiac RF ablation lesions. However, LGE-MRI requires contrast injection and the appearance, dimensions and visibility of lesions in LGE-MRI noticeably change with time after ablation and time after contrast injection. Recently proposed non-contrast T1-weighted (T1w) technique is only applicable to visualize acute (< 3 days) RF lesions. The main goal of this study was to develop and validate a non-contrast MRI technique for assessment of sub-acute (> 3 days) RF ablations.

Methods
Non-contrast T2*-weighted (T2*w) MRI technique for RF lesion visualization has been implemented. This technique exploits the difference in T2* relaxation between normal and ablated myocardium. Reduction in T2* relaxation time of ablated myocardial tissues is caused by the transformation of hemoglobin into hemosiderin from ruptured and obstructed blood vessels as a result of RF ablation. To validate this technique, RF ablations were performed in 6 canines using ThermoCool catheter (Biosense Webster) at 30 Watts for 30 seconds. Imaging studies were performed on a 3T scanner (Verio, Siemens HealthCare) at 0, 1, 4, and 8 weeks post-ablation. Study protocol included T1w, T2*w, and LGE scans with a resolution of 1.25 × 1.25 × 2.5 mm and T1, T2 and T2* mapping.

Results
Dependence of T2* relaxation time of ablated and normal myocardium on time after ablation is shown in Fig. 1. T2* of normal myocardium was similar for all post-ablation studies (p = N.S.). For acute (0 week) studies, T2* relaxation time of ablated regions (42.0 ± 8.8 ms) was significantly higher (p < 0.001) than T2* for normal myocardium (27.4 ± 3.7 ms). This observation may be explained by the presence of severe edema at the ablated regions. T2* time of RF ablations significantly reduced with time after ablation (p < 0.05) and it was significantly lower than T2* of normal myocardium at 1, 4, and 8 weeks after ablation (p < 0.001).

Representative T1w, T2*w, and LGE images are shown in Fig. 2, top panel. All RF lesions (n = 28) were detectable on non-contrast T1w images acquired acutely. Lesion visibility in non-contrast T1w MRI was considerably reduced 1 week post-ablation. Visibility of lesions in T2*w images improves with time after ablation. Lesions have hypointense boundaries in T2*w images acquired 1 and 4 weeks post-ablation. Whole lesions are hypointense in T2*w images acquired 8 weeks post-ablation.

1UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, USA
Full list of author information is available at the end of the article

© 2016 Kholmovski et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Strong correlation ($R^2 = 0.908$) between lesion volumes estimated from LGE and T2*w images acquired 8 weeks post-ablation was found (Fig. 2, bottom panel). Lesion volume from T2*w scans was about 27% smaller than lesion volume from LGE scans.

Conclusions

T2* relaxation time of cardiac RF ablation lesions significantly reduces with time after ablation. Non-contrast T2*w technique can be used to visualize sub-acute RF ablations as early as a week post-ablation. Visibility of
the lesions in T2*w image considerably improves with time after ablation as T2* relaxation time of the lesions becomes shorter.

Authors' details
1UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, USA.
2CARMA Center, University of Utah, Salt Lake City, UT, USA.

Published: 27 January 2016