Adenovirus Infection Inhibits the Phosphorylation of Major Histocompatibility Complex Class I Proteins
By Roger Lippé, Edmond Luke, Young T. Kuah, Cyprien Lomas, and Wilfred A. Jefferies

From the Biotechnology Laboratory and the Departments of Microbiology, Zoology, and Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

Summary
Major histocompatibility complex (MHC) class I molecules act as peptide receptors to direct the recognition of foreign antigens by cytolytic T cells. The cell surface expression and trafficking of these peptide receptors is thought to be controlled by the conformation of the MHC molecule and possibly by the phosphorylation of the cytoplasmic portion of the heavy chain protein. It is of some interest that adenoviruses (Ads) have evolved proteins that interfere with the expression of MHC molecules. One of these proteins, called E3/19k, binds to newly synthesized MHC molecules in the rough endoplasmic reticulum (RER) and inhibits their trafficking to the cell surface. Here we show that during the infection of a human cell line with Ad2, the phosphorylation of the endogenous MHC molecules is inhibited. We also observe that the phosphorylation of the endogenous HLA molecules is grossly impaired in a human cell line transfected with the Ad2 EcoRI D fragment containing the E3/19k gene. We conclude that the E3/19k protein inhibits the phosphorylation of the MHC heavy chains and that this may be one of the important functions of this protein in infected cells. In addition, we show that a mutant of the E3/19k protein, which lacks an RER retention signal but which retains its ability to bind to HLA molecules, does not inhibit the phosphorylation of HLA molecules and that phosphorylated molecules are not Endo H sensitive. This suggests that HLA molecules are phosphorylated after leaving the medial-Golgi compartment, thus providing the most compelling evidence yet that HLA molecules are phosphorylated at or near the cell surface. Finally, to our knowledge, this is the first study under which the phosphorylation of MHC molecules is shown to be altered and may have some relevance for other pathogenic conditions.
Stimulation between MHC class I molecules, other mechanisms exist that increase their structural complexity. Alternative processing of MHC class I mRNA can result in modified transcripts thereby encoding several different proteins from a single gene (18, 19). For example, exon VII, which encodes part of the intracytoplasmic region of MHC class I heavy chains (11), is a site of alternative splicing at the mRNA level (14, 18, 19). Splicing of the VII exon can result in the omission of 13 amino acids in the MHC heavy chain protein (14). The I2 domain contains one site of serine phosphorylation at position 335 and possibly an additional site at position 332 (12-14). Thus, alternative splicing of the immature mRNA may result in the removal of a peptide structure containing a phosphorylation site(s). It is tempting to speculate that this mechanism has some functional significance, and that coordinate expression of alternatively spliced forms results in functional modification of MHC molecules, but at present, the data are incomplete. However, the phosphorylation of MHC class I molecules has been implicated in determining endocytic uptake from the cell surface and may function in down-regulating surface expression of MHC class I molecules (10, 11). The functional ramifications of this mechanism of down-regulation are not clear.

The E3/19k protein of adenovirus 2 (Ad2) is a rough endoplasmic reticulum (RER) protein that spans the RER membrane (20, 21). It is thought to be a prime mediator of viral persistence (22). It binds to MHC class I proteins in the RER, inhibiting their passage to the cell surface (20, 21), and thereby reducing the recognition of infected cells by virus-specific T cells (23-26). This mechanism is thought to allow the virus to evade the host immune response (22). We originally designed experiments to test whether the E3/19k protein is phosphorylated. This approach was chosen because we wanted to test whether ADP-ribosylation is a common signal for RER retention shared between luminal RER proteins such as BIP (27) and integral RER membrane proteins like E3/19k. We found that the E3/19k is not phosphorylated. Conversely, MHC molecules that are normally constitutively phosphorylated are nonphosphorylated in cells expressing the E3/19k protein.

Materials and Methods

Cell Culture, Cell Labeling, Immunoprecipitation, and SDS-PAGE.
Cell lines were derived and propagated as previously described (28, 29). Cells were maintained in DMEM or αMEM containing 10% FCS. The 621.13 cell line was the kind gift of Dr. Svne Kvist (Ludwig Institute, Stockholm, Sweden).

Metabolic labeling experiments were carried out essentially as described previously (28, 29) with the following modifications. Cells to be metabolically labeled were washed twice in methionine-free or phosphate-free media and incubated in the same media for 1 h at 37°C before being incubated at 37°C with [35S]methionine (1,200 Ci/mmol, Amersham Corp., England) at a concentration of 100 μCi/ml for 15 min or 250 μCi/ml of 32P-orthophosphate (9,000 Ci/mmol, Amersham Corp.) for 2 h. The cells were washed twice in cold complete medium. At this point, the cells were lysed on the plate (20 mM Tris, pH 7.6, 120 mM NaCl, 4 mM MgCl₂, 1% NP-40, and 20 μg/ml PMSF). To clear the lysates from the cellular debris, the lysates were spun at 38,000 g for 30 min. The supernatants were incubated with 3 μl of normal rabbit serum on ice for 15 min. Protein A-Sepharose (100 μl of a 1:1 buffer/sepharose slurry) was then added, and the mixtures were incubated for an additional 60 min before being spun at 14,000 g for 5 min. Immunoprecipitations from the precleared lysates were carried out by incubating with 25 μl of the rabbit antiserum fluid or 100 μl of mAb supernatant for 45 min, followed by 45 μl of protein A-Sepharose for 60 min. The beads were washed and the proteins were analyzed by 10-15% SDS-PAGE and autoradiographed as described previously (28, 29). When required, the beads were incubated for 30 h with Endo H buffer (70 mM NaCitrate, pH 5.5) with or without 2.5 mU of Endo H before analysis by SDS-PAGE.

Virus Propagation and Infection. Ad2 was propagated and titrated on 293 cells as described previously (30). To assess the effect of Ad2 on the phosphorylation of MHC molecules, 293 cells were infected with Ad2 at an MOI of 50 or mock infected using PBS. After 40 min of adsorption at 37°C, cells were incubated in DMEM containing calf serum and further incubated until metabolically labeled. HSV and CMV infection were carried out as described above for Ad2 except that infections were carried out with a MOI of 10. In the 0-2 h post-infection (hpi) time points, infection and phosphate starvation were done simultaneously and labeling media was added immediately after adsorption.

Antibodies. Rabbit antiserum reacting with the E3/19k protein from Ad2 was a kind gift from Dr. William Wold (St. Louis University, St. Louis, MO). W6/32 (anti-HLA-A, -B, -C) (31) was prepared from hybridoma supernatant. Goat anti-mouse IgG FITC was obtained from Southern Biotechnology.

FACS®. To verify cell surface expression of the HLA antigen, FACS® analysis was carried out (Becton Dickinson & Corp., Mountain View, CA). Mock or virus-infected 293 cells or transfected 293.12 and 621.13 cells were harvested from petri dishes by washing the cells twice with PBS and then incubating with versene. A single cell suspension was prepared and the cells were then washed twice in PBS containing 0.5% (wt/vol) BSA, 20 mM Na3citrate, and 20 mM Hepes. The cells were incubated with mAbs as previously described (28, 29), except that FITC-conjugated goat anti-mouse IgG was used as the second-step reagent. After labeling, the cells were fixed in 1.5% (vol/vol) p-formaldehyde. The fluorescent profiles were obtained by analyzing 5,000 cells in a semi-logarithmic plot using a FACS® program. Conversion of log scale to linear scale mean fluorescence values was carried out using the equation: linear mean fluorescence = 10(log mean fluorescence/256 channels).

Other Reagents. Protein A-Sepharose was from Pharmacia Fine Chemicals (Uppsala, Sweden).

Results

The FACS® analysis shown in Fig. 1 reveals that human 293 cells infected with Ad2 and then stained 20 h after infection with a mAb (W6/32), which binds to MHC class I heavy chains complexed to β2-microglobulin (31), have a much reduced level of HLA at their cell surface in comparison to mock-infected 293 cells. The mean average linear fluorescence is 33 arbitrary fluorescence units (AFU) for Ad2-infected (MOI 50) 293 cells. The mean average fluorescence
cells is 271 AFU, as determined by the W6/32 antibody (sub-
cells is 41 AFU with the W6/32 antibody and 4 AFU with
mean linear fluorescence of MHC class I molecules on 293
of MHC molecules at the cell surface (Fig. 2). The average
for mock-treated cell is 93 AFU. The no first antibody con-
trol is the same for both cell treatments (2 AFU). Thus, the
inhibition of MHC surface expression after Ad2 infection in
the experiment shown was 66%. In six independent experi-
ments, the inhibition was on average 61% ± 4. Similarly,
293 cells stably transfected with an EcoRI D fragment con-
taining the E3/19k gene (20) also have reduced expression
of MHC molecules at the cell surface (Fig. 2). The average
mean linear fluorescence of MHC class I molecules on 293
cells is 271 AFU, as determined by the W6/32 antibody (sub-
tracting the background fluorescence of 15 AFU). The aver-
age mean fluorescence of the HLA-A2 molecule expressed
on 293 cells and analyzed with the PA2.1 antibody is 72 AFU.
After subtraction of the background fluorescence of 9 AFU,
the mean fluorescence of MHC class I molecules on 293.12
cells is 41 AFU with the W6/32 antibody and 4 AFU with
the PA2.1 antibody. Thus, the overall MHC class I inhibi-
tion was 85% with the W6/32 antibody and 94% with the
antibody PA2.1. In two separate experiments, the inhibition
of the W6/32 binding to 293.12 as compared to 293 cells
was 84% ± 2. The inhibition of binding with the PA2.1
antibody was 94% ± 1. These data show that Ad2 reduces
the expression of HLA molecules at the cell surface of 293
cells. Furthermore, the EcoRI D fragment appears to con-
tain the gene or genes that are sufficient to mediate this pro-
cess. In addition, Fig. 2 shows that the level of inhibition
of HLA expression on 293.12 cells in comparison with 293
cells as detected with an antibody that recognizes the HLA-
A2 molecule (PA2.1) is similar to that seen with the W6/32
antibody that recognizes a common determinant on all HLA
molecules so far tested. Thus, the inhibition of HLA ex-
pression in 293.12 cells is not likely to be a result of the masking
of the W6/32 epitope by the binding of the E3/19k protein.
Finally, we analyzed the cell surface expression of HLA mol-
elcules in 293 cells that have been transfected with a gene en-
coding a mutant of the E3/19k protein (32), which lacks a
RER retention signal (amino acids 134–142). This protein,
designated 621, retains its ability to bind HLA molecules,
but the complex is transported through the cell (32). In 293
cells stably transfected with the EcoRI D fragment contain-
ing the 621 gene, the cell surface expression of HLA molecules
is lower than in untransfected 293 cells (W6/32 = 22% in-
hibition; PA2.1 = 43%) with a mean in two experiments
of 26% ± 4 with the W6/32 antibody and 45% ± 4 with the
PA2.1 antibody. Thus, the cell surface expression of HLA
molecules is intermediate in 621 expressing 293 cells com-
pared to untransfected and wild-type E3/19k-transfected 293
cells. It is likely that HLA molecules form a complex with
the 621 molecule at the cell surface (32). Extrapolating
from this and previous results (20–22), it is reasonable to
conclude that the E3/19k protein is mediating the cell surface
inhibition of HLA molecules in 293.12 and infected 293 cells and

![Figure 1. Inhibition of MHC class I surface expression by Ad2.
293 cells were mock treated (b) or infected with Ad2 at a MOI of 50
(c). At 20 hpi, cells were trypsinized and incubated with
W6/32 (anti-HLA-A, -B, -C) and labeled with goat anti-mouse
IgG-FITC. The samples were then
analyzed by flow cytometry. The negative control (c; no first anti-
body [NFA]) was mock-treated
cells incubated with the secondary antibody only. The log values con-
verted to linear values are: (a) NFA = 2 AFU; (b) mock = 93 AFU;
and (c) Ad2-infected cells = 33
AFU. The inhibition of MHC
surface expression was 66% in this
particular experiment and 61% +
on average (six independent experi-
ments).

![Figure 2. Inhibition of MHC class I surface expression by transfected
cells expressing E3/19k. 293, 293.12 cells expressing the E3/19k protein,
and 621.13 cells expressing the truncated E3/19k protein called 621 were
tryptinized, washed, and analyzed for the surface-expression of MHC using
W6/32 (anti-HLA-A, -B, -C; d–f) or PA2.1 (anti-HLA-A2; g–i) as the
primary antibody and goat anti-mouse IgG-FITC as the secondary anti-
body. Cells were analyzed by flow cytometry. Controls included NFA (in-
cubated with the secondary antibody only; a–c) and OKT9, which binds
to the human transferrin receptor (j–l). Converted linear values are: (a)
NFA = 15 AFU; (b) W6/32 = 286 AFU; (g) PA2.1 = 87 AFU; and
(j) OKT9 = 60 AFU for 293 cells; (b) NFA = 9 AFU; (e) W6/32 =
50 AFU; (h) PA2.1 = 13 AFU; and (k) OKT9 = 55 AFU for 293.12
cells; and (c) NFA = 16 AFU; (f) W6/32 = 228 AFU; (i) PA2.1 = 57
AFU; and (l) OKT9 = 55 for 621.13 cells. In this experiment, inhibition
of HLA-A, -B, -C surface expression in 293.12 cells was 85% as assessed
with W6/32. HLA-A2 inhibition was 94% as analyzed with PA2.1. In
two separate experiments, the inhibition was on average 84% ± 2
and 94% ± 1, respectively. Similarly, inhibition of MHC surface expression
in 621.13 cells was 22% (26% ± 4) with the W6/32 antibody and 43% (45%
± 4) with the PA2.1 antibody.}
that this inhibition is mediated by the presence of a functional RER retention sequence in the E3/19k protein.

To analyze the state of phosphorylation of HLA molecules in 293 cells infected with Ad2, cells were infected with Ad2 and then metabolically labeled with 32P-orthophosphate from 20–22 hpi. The cells were lysed in NP-40 containing lysis buffer, and the cellular debris was removed by ultracentrifugation at 38,000 g for 30 min. Antibodies against HLA molecules were used to specifically immunoprecipitate these proteins from equal numbers of TCA-precipitable counts, as assessed by scintillation counting. The immunoprecipitates were analyzed on a 10–15% gradient SDS-PAGE followed by autoradiography. In mock-infected 293 cells labeled with 32P-orthophosphate (Fig. 3 A), MHC proteins are clearly phosphorylated. In cells infected with Ad2, which encodes a functional E3/19k protein, the phosphorylated form of MHC proteins is substantially inhibited. This inhibition of phosphorylation mirrors the maximum inhibition of HLA surface expression, which takes place 16–24 hpi (Fig. 1). Densitometry traces indicate that the phosphorylation of MHC class I molecules is reduced by >60% in Ad2-infected cells compared to mock-treated 293 cells. In five independent experiments, the decrease of phosphorylation was 66% ± 4.

In an attempt to generalize these findings to other viral systems, the phosphorylation of MHC molecules expressed in HSV- and CMV-infected cells was examined. Vero cells, which are permissive for HSV-1 infections, were infected with HSV-1 and then metabolically labeled with 32P-orthophosphate 22–24 hpi. The cell lysates were prepared as before and immunoprecipitations were carried out from equal numbers of TCA precipitable counts with the W6/32 antibody. Similarly, CMV was used to infect MRC5 cells, and the phosphorylation of MHC molecules was compared between virus-infected and noninfected cells. Fig. 3, B and C shows that there is little difference between the virus-infected and the mock-treated cells up to 22 hpi nor at times before this time (data not shown). Thus, we conclude that two members of the herpes virus group, CMV and HSV-1, do not inhibit the phosphorylation levels of MHC molecules up to 22 hpi.
gene, called 293.12 cells (20), with the EcoRI D fragment containing the 621 gene (32), or untransfected 293 cells, were metabolically labeled with either 35S-methionine or with 32P-orthophosphate and immunoprecipitations were carried out as described above. In 35S-methionine-labeled 293.12 cells, the antibody against MHC proteins clearly immunoprecipitates the MHC molecule with the E3/19k bound to it, whereas in the untransfected 293 cells HLA, but not the E3/19k protein, was detected (Fig. 4). In addition, the 621 protein can be detected by coimmunoprecipitation with HLA molecules in 621-transfected cells. The 621 runs at a slightly lower molecular weight than the E3/19k protein in coimmunoprecipitation with HLA molecules (Fig. 4). Unfortunately, the rabbit antisera we are using was raised against a synthetic peptide (33) that corresponds to the RER retention signal absent in the 621 protein (32). Thus, we can not analyze this protein directly.

In the 293 cells metabolically labeled with 32P-orthophosphate, HLA class I molecules are phosphorylated. However, in the E3/19k transfectant the phosphorylation of the MHC is dramatically inhibited. The weak signal that does appear represents 24% of the HLA phosphorylation level in 293 cells (mean of 19% ± 4 in five independent experiments). The immunoprecipitations were carried out from equal numbers of TCA-precipitable counts. Normalization of the 32P labeling with the 35S-methionine labeling reveals an even greater level of inhibition of HLA phosphorylation. The small amount of phosphorylated HLA in 293.12 cells may be molecules that avoid binding to the E3/19k protein or they may represent a form of the HLA molecules that are phosphorylated at an alternative site other then serine 335, which is not affected by the E3/19k protein. The identity of this molecular form of phosphorylated HLA molecules is under investigation. We conclude that the EcoRI D fragment of Ad2 contains the information necessary to transfer the inhibition of phosphorylation of HLA molecules. In addition, we conclude that the E3/19k protein is not itself phosphorylated (Fig. 4).

We next wanted to determine whether the retention of HLA molecules in the RER was responsible for the inhibition of HLA phosphorylation or whether it was a result of an additional activity associated with the E3/19k protein. We therefore analyzed the phosphorylation of HLA molecules in the presence of the 621 protein. We find that the phosphorylation of HLA molecules is not effected in these cells (Fig. 4). The apparent increase in the level of phosphorylation of the MHC molecules shown in this particular experiment (239% compared to 293 cells) is not reproducible (143% ± 37 in four experiments). We infer from this data that the inhibition of phosphorylation is a consequence of inhibiting HLA transport through the cell. Alternatively, the COOH-terminal RER retention signal absent in the 621 protein contains an activity that directly mediates the hypophosphorylation of HLA molecules.

Finally, the glycosylation of the phosphorylated forms of HLA molecules in 293 and 293.12 cells was analyzed. HLA molecules from 32P-labeled 293 and 293.12 cells were immunoprecipitated in duplicate. One of each of the samples was digested overnight in buffer containing Endo H. The duplicates of these samples were incubated in buffer alone. Endo H resistance is a marker of glycoproteins that have left the cis/medial Golgi compartment. At the end of the incubation SDS-PAGE loading buffer was added, and the samples were separated by SDS-PAGE. The gel was dried and autoradiography was performed. Fig. 5 shows that the vast majority of phosphorylated HLA molecules in 293 or 293.12 cells are not Endo H sensitive. This experiment suggests that HLA molecules become phosphorylated after they leave the cis/medial Golgi compartment. It also suggests that the majority of the phosphorylated form of the HLA molecules seen in the 293.12 cells are molecules that have escaped E3/19k-mediated retention in the RER.

Discussion
Ads have developed several mechanisms for evading the host immune system (17, 20, 21, 34). In fact, the E3 region of Ad, which is dispensable for viral replication in tissue culture (34), may act as a specific expression cassette for down-regulating the host immune response. The E3/19k protein is likely to be the most abundant protein encoded by the E3 region (34). It binds to MHC class I molecules in the RER, thereby inhibiting their transport to the cell surface (20, 21). It appears that the E3/19k protein is arranged in functional
Protein domains including an intraluminal domain that interacts with a region of the \(\alpha_1 \) and \(\alpha_2 \) domains of MHC class I molecules (28). This region of class I MHC molecules also controls their rate of transport to the cell surface. A second domain acts jointly as a stop transfer sequence and a transmembrane region. Finally, the cytoplasmic tail of the molecule appears to contain the information for confining the E3/19k molecule, and the MHC protein to which it is bound, to the RER (35).

Protein phosphorylation is thought to regulate several cellular processes including signal transduction, mitosis, cell proliferation, cell motility, cell shape, and gene regulation (36). Its role in the trafficking of proteins through the exocytic pathway is only now being assessed. The study of MHC class I molecules provides an opportunity for determining the rules for phosphorylational control of protein transport. A great deal is known about how MHC class I assembly and conformation control their passage through the cell. For example, it is known that the variation between the MHC heavy chain alleles controls their rate of transport through the cell (28), binding to peptides (3), and the binding of the E3/19k protein (28). We also know that peptides bind during the assembly of class I heavy chains with \(\beta_2 \)-microglobulin (37). Furthermore, site-specific phosphorylation including and in addition to the major site of phosphorylation at serine 335 may modulate distinct routing of MHC class I molecules through the cell (10, 11). Finally, alternative splicing of exon VII, which contains the major sites of phosphorylation in MHC class I molecules, may yet prove to have a profound effect on the antigen-presenting function of class I molecules (10, 11, 14).

Unfortunately, we are still lacking a direct demonstration that HLA class I molecules become phosphorylated exclusively at the plasma membrane. The only real support for this is that PMA, a potent activator of plasma membrane-associated protein kinase C, causes hyperphosphorylation of HLA molecules (10) and that deletion of exon VII containing two phosphorylation sites alters the rate of endocytosis of HLA molecules (10, 11). In the present study, we sought to approach this issue.

During infection with Ad2, we find that the cell surface expression of MHC molecules decreases (Fig. 1). This effect is maximized 16–20 hpi. The level of phosphorylation of the MHC molecules was measured at the peak of the inhibition of MHC surface expression. To show that the inhibition of phosphorylation is not merely a result of the lowered expression of MHC molecules after infection with Ad2, we examined a cell line that constitutively expresses the E3/19k protein. We found that we could detect the binding of the E3/19k protein to MHC molecules. Furthermore, the phosphorylation of MHC molecules is dramatically reduced in the cells that express the E3/19k protein. We conclude from these studies that the E3/19k protein can inhibit the phosphorylation of MHC class I proteins. Recently, it was shown that the EcoRI D fragment of Ad2 encodes another protein, 6.7k (38). The role of this protein in the formation of the E3/19k-MHC class I complex is unknown but is under investigation.

The mechanism by which the E3/19k protein reduces the level of MHC class I heavy chain phosphorylation is still unclear. We decided to examine if the E3/19k protein inhibits the phosphorylation of MHC molecules by inhibiting their transport out of the RER, if it acts directly on the MHC proteins to inhibit phosphorylation, or if it actively dephosphorylates MHC molecules. For example, does phosphorylation of MHC molecules control their egress or transport to the cell surface. We therefore examined HLA phosphorylation in 293 cells expressing a form of the E3/19k protein called 621, which lacks a peptide from the COOH terminus, which confers RER retention to the HLA–E3/19k complex (35). The 621 protein retains its ability to bind to HLA class I proteins. We found that phosphorylation is not inhibited in cells expressing the 621 protein. Therefore, either the RER retention signal actively participates in dephosphorylating or inhibiting the phosphorylation of HLA molecules, or retention in the RER does not allow HLA molecules to gain access to enzymes that phosphorylate them. We favor the latter scenario, as it would suggest that HLA molecules must leave the RER/cis-Golgi compartments in order to become fully phosphorylated. In further support of this hypothesis is the demonstration that the vast majority of phosphorylated HLA molecules expressed in 293 and 293.12 cells are not Endo H sensitive (Fig. 5). This suggests that the HLA molecules must leave the cis/medial Golgi in order to become phosphorylated and that most of the residually phosphorylated HLA molecules expressed in 293.12 cells are molecules that have escaped E3/19k-mediated retention in the RER. In this regard, this is the best data yet presented that HLA molecules are indeed phosphorylated in a cellular compartment beyond the medial Golgi compartment, and it supports the notion that HLA molecules may become phosphorylated at the cell surface.

In the future, our ability to modify MHC molecules and to express them in cell lines (28) and transgenic animals (29) should allow us to determine the exact role of MHC class I protein phosphorylation. In addition, the E3/19k protein may be useful as a tool to alter the phosphorylation of MHC class I molecules. Regardless of the outcome of these experiments, the results reported here add another level of complexity to the molecular pathogenesis of Ads.
References

1. Zinkernagel, R.M., and P.C. Doherty. 1979. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction specificity, function, and responsiveness. *Adv Immunol.* 27:51.

2. Townsend, A., J. Rothbard, F.M. Gotch, G. Bahadur, D. Wraith, and A.J. McMichael. 1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. *Cell.* 44:4959.

3. van Bleek, G.M., and S.G. Nathenson. 1990. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2Kb molecule. *Nature (Lond.)* 348:213.

4. Falk, K., O. Rotzschke, and H.G. Rammensee. 1990. Cellular peptide composition governed by major histocompatibility complex class I molecules. *Nature (Lond.)* 348:248.

5. Rotzschke, O., K. Falk, K. Deres, H. Schild, M. Norda, J. Metzger, G. Jung, and H.G. Rammensee. 1990. Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. *Nature (Lond.)* 348:252.

6. Ploegh, H.L., H.T. Orr, and J.L. Strominger. 1981. Major histocompatibility antigens: the human (HLA-A, -B, -C) and murine (H-2K, H-2D) class I molecules. *Cell.* 24:287.

7. Maloy, W.L., and J.E. Coligan. 1982. Primary structure of the H-2Dd alloantigen. II. Additional amino acid sequence information, localization of a third site of glycosylation and evidence for K and D region specific sequences. *Immunogenetics.* 16:31.

8. Reyes, A.A., M. Schold, and R.B. Wallace. 1982. The complete amino acid sequence of the murine transplantation antigen H-2Dd as deduced by molecular cloning. *Immunogenetics.* 16:1.

9. Steinmetz, M., and L. Hood. 1983. Genes of the major histocompatibility complex in mouse and man. *Science (Wash. DC).* 222:777.

10. Capps, G.G., M. van Kampen, C.L. Ward, and M.C. Zuniga. 1989. Endocytosis of the class I major histocompatibility antigen via a phorbol myristate acetate-binding pathway is a cell-specific phenomenon and requires the cytoplasmic domain. *J. Cell Biol.* 108:1317.

11. Vega, M.A., and J.L. Strominger. 1989. Constitutive endocytosis of HLA class I antigens requires a specific portion of the intracytoplasmic tail that shares structural features with other endocytosed molecules. *Proc. Natl. Acad. Sci. USA.* 86:2688.

12. Pober, J.S., B.C. Guild, and J.L. Strominger. 1978. Phosphorylation in vivo and in vitro of human histocompatibility antigens (HLA-A and HLA-B) in the carboxyl-terminal intracellular domain. *Proc. Natl. Acad. Sci. USA.* 75:6002.

13. Guild, B.C., and J.L. Strominger. 1984. Human and murine class I MHC antigens share conserved serum 335, the site of HLA phosphorylation in vivo. *J. Biol. Chem.* 259:9235.

14. McCluskey, J., L.F. Boyd, W.L. Maloy, J.E. Coligan, and D.H. Margulies. 1986. Alternative processing of H-2Db pre-mRNAs results in membrane expression of differentially phosphorylated protein products. *EMBO (Eur. Mol. Biol. Organ.) J.* 5:2477.

15. Bjorkman, P.J., M.A. Saper, B. Samraoui, W.S. Bennett, J.L. Strominger, and D.C. Wiley. 1987. Structure of the human class I histocompatibility antigen, HLA-A2. *Nature (Lond.)* 329:506.

16. Bjorkman, P.J., M.A. Saper, B. Samraoui, W.S. Bennett, J.L. Strominger, and D.C. Wiley. 1987. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. *Nature (Lond.)* 329:512.

17. Garrett, T.P.J., M.A. Saper, P.J. Bjorkman, J.L. Strominger, and D.C. Wiley. 1989. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. *Nature (Lond.)* 342:692.

18. Archibald, A.L., N.A. Thompson, and S. Kvist. 1986. A single nucleotide difference at the 5' end of an intron causes differential splicing of two histocompatibility genes. *EMBO (Eur. Mol. Biol. Organ.) J.* 5:957.

19. Lew, A.M., J. McCluskey, W.L. Maloy, D.H. Margulies, and J.E. Coligan. 1987. Multiple class I molecules generated from single genes by alternative splicing of pre-mRNAs. *Immunol. Res.* 6:117.

20. Burgert, H.G., and S. Kvist. 1985. An Adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. *Cell.* 41:987.

21. Andersson, M., S. Paabo, T. Nilsson, and P.A. Peterson. 1985. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. *Cell.* 43:215.

22. Ginsberg, H.S., U. Lundholm-Beauchamp, R.L. Horswood, B. Pernis, W.S.M. Weld, R.M. Chanock, and G.A. Prince. 1989. Role of early region 3 (E3) in pathogenesis of adenovirus disease. *Proc. Natl. Acad. Sci. USA.* 86:3823.

23. Burgert, H.G., J.L. Maryanski, and S. Kvist. 1987. "E3/19k" protein of adenovirus type 2 inhibits lysis of cytotoxic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens. *Proc. Natl. Acad. Sci. USA.* 84:1356.

24. Andersson, M., A. McMichael, and P.A. Peterson. 1987. Reduced allorecognition of adenovirus-2 infected cells. *J. Immunol.* 138:3960.

25. Tanaka, Y., and S.S. Tewfik. 1988. Differential effect of adenovirus E2E3/19k glycoprotein on the expression of H-2Kb and H-2Dd class I antigens and H-2Kb and H-2Dd restricted SV40-specific CTL-mediated lysis. *Virology.* 165:357.

26. Rawle, F.C., A.E. Tollefson, W.S.M. Weld, and L.R. Gooding.

Address correspondence to Wilfred A. Jefferies, Room 237, Wesbrook Building, 6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3.

Received for publication 29 May 1991.
1989. Mouse anti-adenovirus cytotoxic T lymphocytes. Inhibi-
tion of lysis by E3 gp19k but not E3 14.7k. J. Immunol.
143:2031.
27. Munro, S., and H.R. Pelham. 1987. A C-terminal signal pre-
vents secretion of luminal ER proteins. Cell. 48:899.
28. Jefferies, W.A., and H.G. Burgert. 1990. E3/19k from
Adenovirus 2 is an immunosubversive protein that binds to
a structural motif regulating the intracellular transport of major
histocompatibility complex class I proteins. J. Exp. Med.
172:1653.
29. Jefferies, W.A., U. Ruther, E.F. Wagner, and S. Kvist. 1988.
Cytotoxic T cells recognize a chimeric MHC class I antigen
expressed in influenza A infected transgenic mice. EMBO (Eur.
Mol. Biol. Organ.) J. 7:3423.
30. Harrison, T., F.L. Graham, and J. Williams. 1977. Host-range
mutants of Adenovirus type 5 defective for growth in HeLa
cells. Virology. 77:319.
31. Barnstable, C.J., W.F. Bodmer, G. Brown, G. Galfre, C. Mil-
stein, A.F. Williams, and A. Ziegler. 1978. Production of mono-
clonal antibodies to group A erythrocytes, HLA and other
human cell surface antigens-new tools for genetic analysis. Cell.
14:9.
32. Gabathuler, R., F. Levy, and S. Kvist. 1990. Requirements for
the association of adenovirus type 2 E3/19k wild-type and mu-
tant proteins with HLA antigens. J. Virol. 64:3679.
33. Wold, W.S.M., C. Cladaras, S.L. Deutscher, and Q.S. Kapoor.
1985. The 19-kDa glycoprotein coded by region E3 of adeno-
virus: Purification, characterization, and structural analysis. J.
Biol. Chem. 260:2424.
34. Gooding, L.R., and W.S.M. Wold. 1990. Molecular mechani-
sms by which Adenoviruses counteract antiviral immune
defenses. Crit. Rev. Immunol. 10:53.
35. Jackson, M.R., T. Nilsson, and P.A. Peterson. 1990. Identifi-
cation of a consensus motif for retention of transmembrane
proteins in the endoplasmic reticulum. EMBO (Eur. Mol. Biol.
Organ.) J. 9:3153.
36. Capps, G.G., and M.C. Zuniga. 1990. A double-labelling
method for measuring induction of protein phosphorylation.
Biotechniques. 8:62.
37. Ljunggren, H.G., N.J. Stam, C. Ohlen, J.J. Neefjes, P.
Hoglund, M.T. Heemels, J. Bastin, T.N.M. Schumacher, A.
Townsend, K. Karre, and H.L. Ploegh. 1990. Empty MHC
class I molecules come out in the cold. Nature (Lond.). 346:476.
38. Wilson-Rawls, J., S.K. Saha, P. Krajsci, A.E. Tollefson, L.R.
Gooding, and W.S.M. Wold. 1990. A 6700 MW membrane
protein is encoded by region E3 of Adenovirus type 2. Virology.
178:204.

1166 Adenovirus Inhibits Major Histocompatibility Complex Phosphorylation