Overview and analysis of internal radiation dose estimates in experimental animals in a framework of international studies of the sprayed neutron-induced 56Mn radioactive microparticles effects

Valeriy Stepanenko1,*, Andrey Kaprin2, Sergey Ivanov1, Peter Shegay2, Viktoria Bogacheva1 and Masaharu Hoshi3

1A. Tsyb Medical Radiological Research Center – Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str., 4, Obninsk, Kaluga Region 2490036, Russian Federation

2National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str., 4, Obninsk, Kaluga Region 2490036, Russian Federation

3The Center for Peace, Hiroshima University, Higashi-senda-machi, Naka-ku, Hiroshima 730-0053, Japan

*Corresponding author. A. Tsyb Medical Radiological Research Center – Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str., 4, Obninsk, Kaluga Region 2490036, Russian Federation. Tel.: +7 (8439) 97002; E-mail: valerifs@yahoo.com

(Received 13 May 2022; editorial decision 10 June 2022)

ABSTRACT

The aim of overview is to present the pooled data of published internal dose estimates and the results of corresponding analysis of internal irradiation features of experimental mice and rats after exposure to sprayed neutron activated radioactive 56MnO$_2$. These dose estimates were conducted in a framework of multicenter international study to investigate biological effects as a result of exposure to sprayed radioactive 56MnO$_2$ microparticles. Radionuclide 56Mn ($T_{1/2} = 2.58$ h) is one of the main gamma-beta emitters during the first hours after neutron activation of soil following nuclear explosion. It was concluded that there are three groups of organs of mice and rats, the radiation doses of which differ by approximately an order of magnitude: the group with the highest radiation doses (large and small intestine, stomach, skin and lungs), the group with lowered radiation doses (eyes, esophagus, trachea), the group with the lowest radiation doses (liver, heart, kidneys). The radiation doses to organs are proportional to the activity of the sprayed radioactive powder. The distribution of internal radiation doses among organs of experimental mice of different strains but of the same age was practically the same in case of exposure to the same activity of sprayed 56MnO$_2$ powder. Doses of internal irradiation of experimental mice substantially exceed the doses of internal irradiation of experimental rats exposed to the same activities of the sprayed 56MnO$_2$ powder. The data presented in the overview can be helpful for further investigation and for interpretation of the biological effects of this type of irradiation.

Keywords: dosimetry of internal beta- and gamma-irradiation; neutron activation; 56Mn; spayed radioactive microparticles; laboratory animals

INTRODUCTION

Radiation effects from residual radioactivity resulting from nuclear explosions in Hiroshima and Nagasaki are the subject of discussions and research of the consequences of such kind of uncontrolled irradiation of population [1–4]. Radionuclide 56Mn ($T_{1/2} = 2.58$ h) is one of the main beta-gamma emitters during the first hours after neutron activation of soil at the time of a nuclear explosion [5–7]. The aim of this overview is to present the pooled data of published internal dose estimates [8–11] and the results of corresponding analysis of internal irradiation features of experimental animals after exposure to sprayed neutron activated radioactive 56MnO$_2$. Overview is based on the data obtained in a framework of international...
Internal radiation dose in mice and rats exposed to sprayed 56Mn microparticles

multicenter studies conducted at a nuclear reactor [8,12]. The data presented in overview can be helpful for further investigation and for interpretation of the biological effects of this type of irradiation.

GENERAL DESCRIPTION OF EXPERIMENTAL STUDIES

General description of the method for exposure of laboratory animals to sprayed neutron activated 56MnO$_2$ powder

Neutron activation of manganese dioxide powder was conducted at the IVG.1 M research reactor (Kazakhstan). The IVG.1 M reactor is a research water-moderated heterogeneous thermal neutron reactor [8–12] with a beryllium reflector designed for radiation studies of samples of various materials used in reactor construction, nuclear power engineering and for performing experiments with irradiation of biological objects.

Manganese dioxide is a finely dispersed powder weighing 100 mg with a particles size of about 3 microns [9–11,13]. A special construction for exposure of laboratory animals to sprayed powder 56MnO$_2$ has been developed.

The neutron activated manganese dioxide powder was sprayed into a cage with laboratory animals (mice and rats) [9–11]. Figure 1 shows a photo with laboratory rats placed in experimental cage [8].

Fig. 1. Cage with laboratory rats placed in it [8]. The pneumatic hose is connected to the cage with biological objects for supplying the radioactive powder from the shielded lead container with 56MnO$_2$ powder. The experimental cages with laboratory animals placed in it is equipped with forced ventilation system and air filters.

To exclude the possibility of 56MnO$_2$ powder particles to enter the working room, the cage with experimental animals (mice and rats) was placed in an external box [9]. Figure 2 shows a photo with general view of the external box and experimental cage for laboratory animals placed in it [8] at the moment of external dose rate measurements in order to control the safe level after exposure of animals to sprayed 56MnO$_2$ powder.

Fig. 2. General view of the external box and cage for experimental animals at the moment of external dose rate measurements in order to control the safe level after exposure of animals to sprayed 56MnO$_2$ powder [8].

Experimental animals and conditions of exposure

There were several experiments carried out. Experimental animals and conditions of exposure are described in detail in [9–11]. Briefly, experiments were performed with 11 week old male Wistar rats and with 10 week old CD-1, C57BL, BALB/C mice. The reason for usage of different strains and types of experimental animals was determined by the aims of corresponding biological investigations [13–21]. Experimental animals were exposed to 100 mg portion of sprayed radioactive manganese dioxide powder with various initial activities of 56Mn – in the range from 8.0×10^7 Bq to 8.0×10^8 Bq – as it was planned in biological experiments [13–21]. There were six to nine experimental animals placed in each cage in dependence on biological experiments' plans [13–21].

General description of methods used for internal dose estimation

Methods used for internal dose estimation are described in detail in publications [9–11]. In brief, after animal’s exposure, they were euthanized by injection of an excessive dose of pentobarbital according to Approval by the Ethical Committee of Semey State Medical University (Kazakhstan), and according to Directive 2010/63/EU of the European Parliament and the Council of the Office on the protection of animals used for scientific purposes [22]. The 56Mn activity in pieces of each extracted organ was measured by AMPTEC, Inc., Gamma-Rad5 spectrometer with the 76 mm \times 76 mm NaI(Tl) scintillation detector. Volumes of extracted biological samples were small enough (< 1 ml) to consider these samples as point sources of irradiation (in comparison with the size of the detector and 50 mm distance from the sample to the detector).

Calibration of AMPTEC, Inc., Gamma-Rad5 spectrometer was performed by using a standard source with a neutron-activated 56Mn point source [10]. Shortly calibration procedure was as follows.

To produce this source, 0.1 mg MnO$_2$ powder was activated using thermal neutrons of the research reactor. The obtained initial activity of the 56Mn source was equal to $(0.36 \pm 0.021) \times 10^8$ Bq. The calibration procedure was performed two hours after end of activation using the
same geometry as the geometry used to measure the 56Mn activity in tissue and organ samples. At the moment of calibration the activity of the 56Mn source was equal to $(0.205 \pm 0.012) \times 10^7$ Bq. Results of the calibration procedure were as follows: (2000 ± 240) counts/min per kBq for the AMPTEK, Inc. Gamma-Rad5 spectrometer. All indicated numbers are related to the 846.8 keV gamma peak (98.9%) of 56Mn with a region of interest from 817 to 876 keV. The background spectrum was subtracted from the spectrum obtained with the 56Mn source.

The calculations of internal doses [9–11] were performed using MIRD methodology [23] and mathematical phantoms of rats and mice [25] with accounting for beta- and gamma- spectra irradiations of 56Mn [26,27]. In accordance with MIRD methodology, in order to assess internal radiation doses, in addition to the estimated accumulated activity of radionuclide in the organs and tissues of experimental animals, it is necessary to know the values of the absorbed energy in the ‘target’ organs expressed as ratio to the total energy irradiated by the ‘source’ organs – it is so called ‘absorbed fractions’ (AF). As a rule, the Monte-Carlo code and mathematical phantoms of experimental animals are used for calculation of the AFs or specific absorbed fractions (SAF). The term ‘specific absorbed fraction’ (SAF) means AF per ‘target’ organ’s mass. For calculations of SAF, it is also necessary to know the spectra of quantum and corpuscular ionizing radiations of the considered radionuclide [26,27]. Figures 3–6 show examples of calculated SAF values in various organs of experimental mice and rats when they are irradiated to gamma quanta and electrons of various energies [25]. These figures show examples with SAF values for cases where the source organ and the target organ are the same (‘specific self absorbed fraction’).

The calculations of SAFs were performed using the MCNP Monte-Carlo N–particle transport code (version C) [24] and mathematical phantoms of rats and mice [25]. In brief, the mathematical phantoms of experimental animals were constructed as follows [25]: the positions of organs of three-dimensional mathematical phantoms of laboratory mice and rats were considered relative to a rectangular coordinate system (with the center on the base of the body—point ’0’) and were set in the form of three-dimensional geometric figures; the vertical axis...
of the animals’ phantoms (axis Z) is directed towards the head of the animal; the X axis is directed from the center of coordinate system to the right, the Y axis is directed from the center of coordinate system to the back of the phantom. The shapes and sizes of animals’ organs were approximated by systems of mathematical equations in the rectangular coordinate system.

Comparison of the data presented in Figs 3–4 with the data presented in Figs 5–6 shows that the values of the SAFs for mice’ organs significantly exceed those for the organs of rats. This is explained by the fact that the masses of the organs of mice are much less than the masses of the organs of rats [28]. This leads to the fact that, for the same accumulated activities of radionuclides in the organs of mice and rats, the absorbed doses of internal irradiation in experimental mice will exceed those for rats.

ANALYSIS OF THE RESULTS OF INTERNAL DOSE ESTIMATES IN EXPERIMENTAL ANIMALS EXPOSED TO SPRAYED 56Mn RADIOACTIVE MICROPARTICLES

Internal radiation doses among organs of Wistar rats after exposure to different activities of sprayed neutron-activated 56Mn dioxide powder

Figures 7–9 show in graphical form the pooled values of internal radiation dose for various groups of organs versus sprayed neutron-activated 56Mn dioxide powder activity (based on the data published in [9–11]).

Figures 7–9 show that there are three groups of organs, the radiation dose of which differ by approximately an order of magnitude: the group with the highest radiation dose (large and small intestine, stomach, skin, lungs), the group with lowered radiation dose (eyes, esophagus, trachea), the group with the lowest radiation dose (heart, liver, kidneys).

The values of the radiation doses to organs are proportional to the activity of the dispersed radioactive powder.

Doses of internal irradiation among organs of mice from different strains after exposure to the sprayed neutron-activated 56Mn dioxide powder with various levels of activity

Tables 1 and 2 presents the pooled information regarding values of internal irradiation among organs of mice from different strains after exposure to the sprayed neutron-activated 56Mn dioxide powder with various levels of activity (based on the data published in [11]).

As it follows from the Table 1, the doses of internal irradiation in organs and tissues resulted from exposure to sprayed 2.74×10^8 Bq
Table 1. Doses of internal irradiation and corresponding standard deviations (D ± SD), Gy, in organs resulted from exposure to 2.74×10^8 Bq activity of sprayed neutron activated 56MnO$_2$ powder among different strains of 10 week old mice

Activity of 56Mn, Bq, and strains	Dose (D ± SD), Gy, in investigated organs												
	Lungs	Small intestine	Large intestine	Stomach	Whole body	Skin	Esophagus	Trachea	Eyes	Liver	Heart	Spleen	Kidney
	D SD												
2.74×10^8 C57Bl	0.096 0.013	0.91 0.15	4.2 0.5	0.98 0.16	0.38 0.07	0.29 0.05	0.087 0.013	0.039 0.003	0.14 0.05	0.0066 0.0011	0.026 0.0025	0.0070 0.0005	
2.74×10^8 C57Bl	0.14 0.02	1.1 0.2	4.5 0.5	1.2 0.2	0.33 0.07	0.34 0.06	0.079 0.013	0.047 0.008	0.13 0.02	0.0086 0.0014	0.07 0.01	0.0028 0.0006	0.0021 0.0006
2.74×10^8 BALB/C	0.11 0.03	0.86 0.21	3.8 0.6	0.91 0.22	0.41 0.09	0.31 0.07	0.093 0.016	0.05 0.1	0.01 0.16	0.0376 0.0012	0.061 0.014	0.0032 0.0008	0.0026 0.0004
2.74×10^8 CD-1	0.12 0.02	1.4 0.3	3.4 0.5	0.81 0.12	0.39 0.07	0.42 0.09	0.052 0.011	0.041 0.009	0.12 0.03	0.0081 0.0016	0.089 0.017	0.0036 0.0007	0.0023 0.0006

Table 2. Doses of internal irradiation and corresponding standard deviations (D ± SD), Gy, in organs resulted from exposure to 8×10^8 Bq activity of sprayed neutron activated 56MnO$_2$ powder among different strains of 10 week old mice

Activity of 56Mn, Bq, and strains	Dose (D ± SD), Gy, in investigated organs												
	Lungs	Small intestine	Large intestine	Stomach	Whole body	Skin	Esophagus	Trachea	Eyes	Liver	Heart	Spleen	Kidney
	D SD												
8.0×10^8 C57Bl	0.25 0.05	2.3 0.2	10.1 1.4	2.4 0.5	0.97 0.22	0.96 0.21	0.29 0.05	0.14 0.06	0.39 0.08	0.023 0.002	0.12 0.02	0.006 0.001	0.007 0.002
8.0×10^8 C57Bl	0.34 0.07	2.8 0.4	11 2.1	2.2 0.3	1.01 0.21	0.16 0.17	0.24 0.04	0.16 0.04	0.32 0.07	0.022 0.004	0.18 0.04	0.008 0.002	0.006 0.002
8.0×10^8 BALB/C	0.38 0.07	2.4 0.4	9.5 2.1	3.2 0.5	1.02 0.3	0.23 0.04	0.13 0.03	0.34 0.07	0.024 0.005	0.15 0.04	0.007 0.002	0.007 0.002	
activity of 56Mn dioxide powder are not statistically different in different strains of mice. A similar picture takes place under irradiation to 8×10^8 Bq activity (Table 2). This means that the distribution of the radioactive powder in the body of mice of different strains but of the same age was practically the same in case of exposure to the same activity of 56MnO$_2$ powder.

Figures 10–12 show the values of internal radiation dose in various groups of mice’s organs, versus the initial activity of sprayed neutron-activated 56Mn dioxide powder activity.

Figures 10–12 show, that similar to rats, there are three groups of organs of mice, the radiation dose of which differ by approximately an order of magnitude: the group with the highest radiation dose (large intestine, small intestine, stomach, skin, lungs), the group with lowered radiation dose (eyes, esophagus, trachea), group with the lowest radiation dose (heart, liver, kidneys). As in the case of rats, the values of the radiation dose to organs of mice are proportional to the activity of the dispersed radioactive powder.

DISCUSSION

Elevated doses of radiation to the lungs and trachea in both types of experimental animals (rats and mice) are fairly obvious. This can be explained by inhalation of a finely dispersed radioactive 56Mn dioxide powder. High levels of irradiation of the large and small intestines, stomach, and elevated irradiation of esophagus are associated with the characteristics of animal behavior: experimental animals (rats and mice) are swallowing radioactive powder in the process of their typical behavior, which consists in the cleaning of hair, which leads to increased irradiation of gastrointestinal tract. Elevated irradiation of skin is most likely due to the deposition of powder on animal’s hair.

Comparison of the data presented in Figs 7–9 and Figs 10–12 show that with the exposure to the same initial activity of sprayed 56MnO$_2$ powder, doses of internal irradiation of experimental mice substantially exceed the doses of internal irradiation of experimental rats. This is explained by the fact that for the beta-gamma radiation spectra of 56Mn, the values of the SAFs for the organs of mice (Figs 10–12) substantially exceed those for the organs of rats (Figs 7–9).

CONCLUSION

There are three groups of organs of mice and rats, the radiation doses of which differ by approximately an order of magnitude: the group with the highest radiation doses (large intestine, small intestine, stomach, skin, lungs), the group with lowered radiation doses (eyes, esophagus, trachea) and the group with the lowest radiation doses (heart, liver, kidneys). The radiation doses to organs are proportional to the activity
of the sprayed radioactive powder. The distribution of internal irradiation doses among organs of experimental animals of different strains but of the same age was practically the same in case of exposure to the same activity of 56MnO2 powder. Doses of internal irradiation of experimental mice substantially exceed the doses of internal irradiation of experimental rats exposed to the same activities of sprayed 56MnO2 powder.

Data related to the features of internal irradiation of organs and tissues of experimental animals after exposure to sprayed radioactive microparticles are useful for further studies and interpretation of the biological effects of this type of irradiation [13–16,18–21]. One of the important matters of further studies is investigation of the features of internal irradiation at the microstructures of organs and tissues of experimental animals exposed to radioactive microparticles. This is a separate matter, which is discussed in the publications [17,29].

ACKNOWLEDGMENT
This work was conducted due to bilateral scientific cooperation between A. Tsyb Medical Radiological Research Center - branch of the National Medical Research Center of Radiology of the Ministry of Health of the Russian Federation and Hiroshima University.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of interest.

FUNDING
This work was supported by Grants-in-Aid for Scientific Research No. 26257501 and 19H01149, KAKENHI to M. Hoshi, Japan.

SUPPLEMENT FUNDING
This work was supported by JSPS KAKENHI Grant Number JP19H01149.

REFERENCES
1. Kerr GD, Egbert SD, Al-Nabulsi I et al. Workshop report on atomic bomb dosimetry—residual radiation exposure: recent research and suggestions for future studies. Health Phys, 2013;105:140–9. http://energy.gov/ehss/downloads/workshop-report-health-physics-journal (5 May 2022, date last accessed).
2. Kerr GD, Egbert SD, Al-Nabulsi I et al. Workshop report on atomic bomb dosimetry – review of dose related factors for the evaluation of exposure to residual radiation at Hiroshima and Nagasaki. Health Phys, 2015;109:582–600. https://www.energy.gov/sites/prod/files/2015/12/f27/Workshop%20Reportron %20Atomic%20Bomb%20Dosimetry.pdf (5 May 2022, date last accessed).
3. Hoshi M. A long history exploring radiation exposure. Impact, 2020:70–2. https://www.ingentaconnect.com/content/sil/impact/2020/00000200/00000003/art00026?crawler=true&mime type=application/pdf (5 June 2022, date last accessed).
4. Hoshi M. The overview of the effects for experimental animals using neutron-induced 56Mn radioactive microparticles and related studies. J Radiat Res 2022; this issue.
5. Tanaka K, Endo S, Imanaka T et al. Skin dose from neutron-activated soil for early entrants following the A-bomb detonation in Hiroshima: contribution from beta and gamma rays. Radiat Environ Biophys, 2008;47:323–30. https://pubmed.ncbi.nlm.nih.gov/18496704/ (5 May 2022, date last accessed).
6. Weitz R. Reconstruction of beta-particle and gamma-ray doses from neutron activated soil at Hiroshima and Nagasaki. Health Phys 2014;107:43.
7. Orlov M, Stepanenko VF, Belukha IG et al. Calculation of contact beta-particle exposure of biological tissue from the residual radionuclides in Hiroshima. Health Phys 2014;107:44.
8. Rakhipbekov TK, Hoshi M, Stepanenko VF et al. Radiation-biological experiments at the complex of research reactors "Baikal-1". HumanEnergyAtom NNCR RK 2015;2:43–5 (in Russian).
9. Stepanenko V, Rakhipbekov T, Otani K et al. Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats—part 1: dosimetry. Radiat Environ Biophys, 2017;56:47–54. https://www.ncbi.nlm.nih.gov/pubmed/28188481 (5 May 2022, date last accessed).
10. Stepanenko VF, Rakhipbekov TK, Kaprin AD et al. Irradiation of laboratory animals by neutron activated dust: development and application of the method – first results of international multicenter study. Radiation and Risk, 2016;25:111–25. http://radiation-and-risk.com/en/year2016-en/issue4/1066-9 (5 May 2022, date last accessed).
11. Stepanenko V, Kaprin A, Ivanov S et al. Internal doses in experimental mice and rats following exposure to neutron-activated 56MnO2 powder: results of an international, multicenter study. Radiat Environ Biophys 2020;59:683–92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7544755/ (5 May 2022, date last accessed).
12. Lanin A. Nuclear rocket engine reactor. Berlin/Heidelberg: Springer 2013. https://www.springer.com/gp/book/9783642324291 (5 May 2022, date last accessed).
13. Hoshi M. radioactive microparticle effects found in animal experiments. Innovation News Network The Innovation Platform ISSUE 5 2021;274:186–8. https://www.innovationnewsnetwork.com/effects-of-radioactive-microparticles-found-in-animal-experiments/9639/ (5 May 2022, date last accessed).
14. Otani K, Ohtaki M, Fujimoto N, Hoshi M. Effects of internal exposure of neutron activated 56MnO2 powder on locomotor activity in rats. J Radiat Res 2022; this issue.
15. Shichijo K, Fujimoto N, Uzbekov D et al. Internal exposure to neutron-activated 56Mn dioxide powder in Wistar rats-part 2: pathological effects. Radiat Environ Biophys 2017;56:55–61.
16. Shichijo K, Takatsuji T, Abishev Z et al. Impact of local high doses of radiation by neutron activated Mn dioxide powder in rat lungs: protracted pathologic damage initiated by internal exposure. Biomedicine 2020;8:1–19. https://www.mdpi.com/2227-9059/8/6/171.
17. Shichijo K, Takatsuji T. Concentric circles of cell death by localized ultrahigh doses internal exposure: animal experiments with radioactive particles. J Radiat Res 2022; this issue.
18. Fujimoto N, Ruslanova B, Abishev Z et al. Biological impacts on the lungs in rats internally exposed to radioactive \(^{56}\)MnO\(_2\) particle. Sci Rep 2021;11:11055.

19. Fujimoto N, Amantayeva G, Chaizhunussova N et al. Low-dose radiation exposure with \(^{56}\)MnO\(_2\) powder changes gene expressions in the testes and the prostate in rats. Int J Mol Sci 2020;21:4989. https://www.mdpi.com/1422-0067/21/14/4989.

20. Fujimoto N, Baurzhan A, Chaizhunussova N et al. Effects of internal exposure to \(^{56}\)MnO\(_2\) powder on blood parameters in rats. Eurasian J Med 2020;52:52–6.

21. Ruslanova B, Zn A, Chaizhunussova N et al. Hepatic gene expression changes in rats internally exposed to radioactive \(^{56}\)MnO\(_2\) particles at low doses. Curr Issues Mol Biol 2021;43:758–66.

22. Directive 2010/63/EU of the European Parliament and the Council of the Office on the protection of animals used for scientific purposes of 22 September 2010. Off J Eur Union 2010;L276:33–79. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:EN:PDF (5 May 2022, date last accessed).

23. Bolch WE, Eckerman KF, Sgouros G, Thomas R. MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med 2009;50:477–84. http://www.hopkinsmedicine.org/RTD_lab/pdf/2009_JNM_MIRD_P21_schema.pdf (5 May 2022, date last accessed).

24. Briemeister JF. MCNP – A General Monte-Carlo N–Particle Transport Code. Version 4C. Los Alamos: Los Alamos National Laboratory, 2000.

25. Yaskova EK, Stepanenko VF, Petriev VM et al. Estimation of absorbed internal doses in laboratory animals after injection of radiopharmaceuticals. Rad and Risk 2010;19:50–7.

26. Be M-M, Chiste V, Dulieu C et al. Table of Radionuclides (Vol. 1- \(a = 1\) to 150). France: Bureau International des Poids et Mesures. Pavillon de Breteuil, F-92310 Servees, 2004. https://www.bipm.org/utils/common/pdf/monographieRI/Monographie_BI_PM-5_Tables_Vol1.pdf (5 May 2022, date last accessed).

27. RADAR. Beta Spectrum File. Electronic Resource. https://www.doseinfo-radar.com/RADARDecay.html (5 May 2022, date last accessed).

28. Besyadovsky RA, Ivanov KV, Kozyura AK. Handbook for the Radiobiologists. Moscow: Atomizdat 1978 (in Russian). https://www.ozon.ru/context/detail/id/17918088.

29. Stepanenko V, Kaprin A, Ivanov S et al. Microdistribution of internal dose in biological tissue exposed by \(^{56}\)Mn dioxide microparticles. J Radiat Res 2022; this issue.