Supporting Information

Authors: Kevin M. Anderson1, Tian Ge2,3,11, Ru Kong4,8, Lauren M. Patrick1, R. Nathan Spreng5, Mert R. Sabuncu6,7, B.T. Thomas Yeo4,7,8,9, Avram J. Holmes1,10,11

1Department of Psychology, Yale University, New Haven, CT, USA
2Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
3Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
4Department of Electrical and Computer Engineering, Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, National University of Singapore, Singapore
5Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada & McConnell Brain Imaging Centre, McGill University, Montreal, Canada
6School of Electrical and Computer Engineering, and Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
7Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
8N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
9NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
10Department of Psychiatry, Yale University, New Haven, Connecticut 06520, USA
11Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

*Correspondence: kevin.anderson@yale.edu
Fig. S1. Density of individualized network topography across the cortical sheet. At each vertex, we plot the proportion of individuals that are assigned to a given network (n=1,023). Warm red indicates that a vertex is assigned to a given network in a large percentage of participants. Darker purple/black identifies cortical territories with more variable network assignment across participants. Black borders outline territories where a given network is most common (i.e. highest modal network assignment at a given vertex).
Fig. S2. Heritability of individualized network size after allometric scaling adjustment. (A) Individualized parcellations are composed of 17 canonical functional networks present in all HCP individuals, as defined by Kong and colleagues. (B) Scaling coefficient from log-log regression relating individualized network size and total surface area. Coefficients greater than one indicate a positive allometric scaling of network size give total surface area, while coefficients less than one indicate the opposite. (C) Heritability of allometrically adjusted network size were nominally greater in heteromodal relative to unimodal cortex, although the difference did not meet criteria for statistical significance ($F(1,32)=1.88, p=0.069$). (D) Heritability of individualized network sizes were highly consistent between analyses that made allometric adjustments for total surface area, relative to linear covariation for total surface area (Spearman's rho=0.95, p<2.2e-16).
References

1. Kong, R. et al. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. *Cereb. Cortex* **29**, 2533–2551 (2019).