Exploring the mechanism of Danggui Buxue Decoction in regulating atherosclerotic disease network based on integrated pharmacological methods

Hao Xu1,5,*, Tianqing Zhang2,3,5, Ling He3,5, Mengxia Yuan4, You Yuan1, Shanshan Wang1,5,*

1 Address: Hunan University of Chinese Medicine, Changsha, Hunan Province, China
2 Address: Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China.
3 Address: University of South China, Hengyang City, Hunan Province, China.
4 Address: Shantou University Medical College, Shantou, Guangdong Province, China.
5 Hao Xu, Tianqing Zhang, Ling He, Mengxia Yuan, You Yuan should be considered joint first author.

* Correspondence should be addressed to Shanshan Wang: 004582@hnucm.edu.cn and Hao Xu: 973624161@qq.com

Running Title: Mechanism of DGBXD on Atherosclerosis

Abstract:

Objective: To explore the mechanism of Danggui Buxue Decoction (DGBXD) in regulating Atherosclerosis (AS) network based on integrated pharmacological methods.

Methods: The active ingredients and targets of DGBXD are obtained from TCMSP database and ETCM. AS-related targets were collected from the Genecards and OMIM databases. The drug-disease protein interaction (PPI) networks were constructed by Cytoscape. Meanwhile, it was used to screen out densely interacting regions, namely clusters. Finally, Gene Ontology (GO) annotations are performed on the targets and genes in the cluster to obtain biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations are performed on the targets of the PPI network to obtain signaling pathways.

Results: A total of 212 known targets, 265 potential targets and 229 AS genes were obtained. The “DGBXD known-AS PPI network” and “DGBXD-AS PPI Network” were constructed and analyzed. DGBXD can regulate inflammation, platelet activation, endothelial cell apoptosis, oxidative stress, lipid metabolism, vascular smooth muscle proliferation,
angiogenesis, TNF, HIF-1, FoxO signaling pathway, etc. The experimental data showed that compared with the model group, the expressions of ICAM-1, VCAM-1 and IL-1β protein and mRNA in the DGBXD group decreased (P<0.05). However, plasma IL-1β, TNF-α and MCP-1 in the DGBXD group were not significantly different from the model group (P>0.05).

Conclusion: The mechanism of DGBXD in the treatment of AS may be related to the improvement of extracellular matrix deposition in the blood vessel wall and the anti-vascular local inflammatory response, which may provide a reference for the study of the mechanism of DGBXD.

Key Words: Danggui Buxue Decoction; Atherosclerosis; Integrated pharmacological; Bioinformatics; Chinese Medicine; Herb Medicine

1 Introduction

Atherosclerosis (AS) is a common disease that seriously harms human health, and is the most common and important type of arteriosclerosis [1-2]. There are lipid deposits in the arterial intima, accompanied by the proliferation of smooth muscle cells (SMC) and connective tissue, which results in the formation of fibrous plaques on the intima, causing the vessel wall to thicken, harden, and narrow the lumen. Then, the connective tissue that deposits a large amount of lipids in the plaque undergoes necrosis to form atheroma [2-3]. AS mainly involves large and medium-sized arteries, namely the aorta and its main branches (brain, kidney, arteries of the limbs, and coronary arteries, etc.) [3]. The etiology and pathogenesis of AS have not yet been fully understood, but it is unanimously recognized that hyperlipidemia, smoking, and hypertension are the main risk factors for the disease [4-5].

The current treatment measures are mainly lipid-lowering, anticoagulant and thrombolytic drugs, but the treatment effect is not ideal due to poor compliance and drug side effects [6-7]. Danggui Buxue Decoction (DGBXD) is composed of *Angelicae Sinensis Radix* (Danggui) and *Hedysarum Multijugum Maxim.* (Huangqi) [8]. Modern pharmacological research shows that DGBXD has pharmacological effects such as improving blood rheology and hemodynamics, regulating blood lipids, improving vascular endothelial function, and regulating inflammation; It has a significant effect on the treatment of hyperlipidemia,
In recent years, clinical and experimental studies have shown that DGBXD can improve AS by inhibiting inflammation, protecting endothelial cell function, and improving hemodynamics [9-12]. However, the therapeutic effect and mechanism of DGBXD on AS are still unclear. In view of the multi-component, multi-effect, multi-target and overall regulatory effects of traditional Chinese medicine (TCM), this study uses TCM to integrate pharmacological strategies to explore the key targets and signal pathways of DGBXD intervention in AS, to explore its molecular mechanism, in order to provide a basis for the development and development of DGBXD drugs [13].

Integrated pharmacology is a new model of modern TCM research [14]. The law of interaction between the substance entity of TCM prescriptions and the body is one of the key scientific issues in the study of integrated pharmacology. It is an interdisciplinary integration of TCM chemistry, pharmacokinetics, pharmacology, systems biology, and computational science [15]. Our previous research has applied integrated pharmacology to the herbal formulae to intervene in cardiovascular, tumor and endocrine diseases by developing new methodology [16-18]. Therefore, this study will explore the mechanism of DGBXD on AS through integrated pharmacological strategies. The idea and process of this research was shown in Figure 1.
Figure 1 The idea and process of this research
2 Materials and Methods

2.1 Known and Potential Targets Collection

The components and known targets of DGBXD were collected from TCMSP database (http://tcmspw.com/index.php) [19] with their oral bioavailability (OB) ≥ 30%, Caco-2 permeability > -0.4 and drug-likeness (DL) ≥ 0.18 (Table 1). The potential targets were collected from ETCM (http://www.tcmip.cn/ETCM/index.php) [20], which is a database including comprehensive and standardized information for the commonly used herbs and formulas of TCM, as well as their ingredients. (Table S1 and S2).

Table 1 The Potential components

Molecule Name	MW	OB (%)	Ca	DL
(3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol (64474-51-7)	302.35	67.67	0.9	0.26
(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol (64997-52-0)	428.82	36.23	1.4	0.78
(6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofuro[3,2-c]chroman-3-ol (73340-41-7)	300.33	64.26	0.9	0.42
1,7-Dihydroxy-3,9-dimethoxy pterocarpene	314.31	39.05	0.8	0.48
3,9-di-O-methylnissolin	314.36	53.74	1.1	0.48
7-O-methylisomucronulatol	316.38	74.69	1.0	0.3
beta-sitosterol	414.79	36.91	1.3	0.75
Bifendate	418.38	31.1	0.1	0.67
Compound	MW	Molecular Weight	I	Neutral Loss
----------------	--------	------------------	----	--------------
Calycosin	284.28	47.75	0.5	0.24
formononetin	268.28	69.67	0.7	0.21
hederagenin	414.79	36.91	1.3	0.75
isoflavanone	316.33	109.99	0.5	0.3
isorhamnetin	316.28	49.6	0.3	0.31
Jaranol	314.31	50.83	0.6	0.29
kaempferol	286.25	41.88	0.2	0.24
Mairin	456.78	55.38	0.7	0.78
quercetin	302.25	46.43	0.0	0.28
Stigmasterol	412.77	43.83	1.4	0.76
Ferulic acid	194.2	39.56	0.4	0.06
Butylenephthalide	188.24	42.44	1.3	0.07
Senkyunolide I	204.24	46.8	0.8	0.08

2.2 AS Gene Collection

The AS-related gene were collected from Genecards (http://www.genecards.org) [21] and
Online Mendelian Inheritance in Man (OMIM) (http://omim.org/) databases [22] with keywords “Atherosclerosis”. The genes with relevance score ≥ 6.0 were selected for sequence research. (Table S3)

2.3 Network Construction and Analysis Methods

The protein-protein interaction (PPI) data of DGBXD targets and AS genes were collected from String 11.0 (https://string-db.org) [23]. According to DGBXD target and AS gene information, Cytoscape 3.7.0 software is used to construct a drug target-disease gene network (ie DGBXD Known Target-AS PPI network and DGBXD-AS PPI network) [24]. Then, the DGBXD-AS PPI network were analyzed by the “Network Analyzer” and “MCODE” to collect the degree and betweenness of nodes and the cluster of this PPI network [24]. The DAVID ver 6.8 (https://david.ncifcrf.gov/) was utilized to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology (GO) enrichment analysis [25].

2.4 Molecular docking analysis

The molecular structure of DGBXD components were collected from TCMSP. The PDB database (https://www.rcsb.org/) was used to retrieve the 3D structure of PIK3R1 (PDB ID: 1H9O) and AKT1 (PDB ID: 1H10), and download the file in the "pdb" format [26]. Discovery Studio Client Ver. 4.5 was used to hydrogenate, remove water, and remove ligand molecules from receptor molecules. Auto Dock ver. 4.2 software was used for molecular docking, supplemented by SwissDock [27]. If the binding energy of the receptor and the ligand is ≤ -5.0 kCal/mol, it is considered that the ligand can bind to the receptor stably [28-29].

2.5 Experimental Materials

2.5.1 Experimental Animals

Forty (40) specific pathogen free (SPF) Sprague-Dawley (SD) male rats, weighing 220~250g, were purchased from Hunan Slack Jingda Experimental Animal Co., Ltd. [Quality Certificate Number: SCXK (Xiang) 2013-0004]. The rats were bred adaptively for 1 week before the experiment with a humidity of 45%-65% and a room temperature of 25°C. All animal experiments took place at the Experimental Animal Center of Hunan University of
Chinese Medicine, License number: SCXK (Xiang) 2013-0005. Animal experiments were approved by the Animal Ethics Committee of Hunan University of Chinese Medicine (Ethical approval number: HUCM-15021) and were in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals.

2.5.2 Experimental Drugs

Angelicae Sinensis Radix is produced in Gansu Province (batch number: 20170501); Hedysarum Multijugum Maxim. is produced in Neimenggu Province (batch number: 20171607). Herbs was purchased by the Department of Pharmacy of the First Affiliated Hospital of Hunan University of Chinese Medicine and appraised by Professor Zuo Yajie of the Department of Pharmacy of the First Affiliated Hospital of Hunan University of Chinese Medicine. Atorvastatin calcium is produced by Zhejiang Xindonggang Pharmaceutical Co., Ltd. (batch number: 20160803, specification: 10mg/tablet).

2.5.3 Reagents and Instruments

Mouse anti-rat intercellular cell adhesion molecule-1 (ICAM-1) monoclonal antibody, rabbit anti-rat vascular cell adhesion molecule-1 (VCAM-1) monoclonal antibody, rabbit anti-rat interleukin-1β (IL-1β) polyclonal antibodies were purchased from Abcam company. DAB color reagent kit (batch number: SP-900D) and immunohistochemical staining kit (batch number: SP-9001) were purchased from Beijing Zhongshan Jinqiao Biological Co., Ltd. Rat tumor necrosis factor-α (TNF-α) ELISA assay kit (lot number: E-EL-R0019c), rat monocyte chemotactic protein-1 (MCP-1) ELISA assay kit (lot number: E-ELR0633c), rat IL-1β ELISA assay kit (batch number: E-EL-R0012c) were purchased from Elite Biotech Co., Ltd. Ferulic acid reference substance (batch number 0773-9910, for content determination) was purchased from China Institute for the Control of Pharmaceutical and Biological Products.

The 2.0mm×15mm Runjin medical balloon catheter, Runthrough guide wire were purchased from Japan Terumo Co., Ltd., and the medical balloon dilatation pressure pump was purchased from the Department of Apparatus, Jiangxi Provincial Hospital of Traditional Chinese Medicine. 1260 type High Performance Liquid Chromatograph (HPLC) (Aglient Company), Waters 2996 Diode Array Detector (PDA); Model 98-1-B Heating Mantle (Tianjin
Test Instrument Co., Ltd.); Model N-1000 Rotary Evaporator (RIKAKIKAI Company)

2.6 Experimental Methods

2.6.1 Preparation of Drugs

The herbs were accurately weighed and extracted 3 times by hydrothermal reflux method (the first time was extracted with 8 times the amount of water for 1 hour; the second and third times were extracted with 6 times the amount of water for 1 hour). The extracts of three times were combined and filtered. Then, the extracts was evaporated and concentrated under vacuum at 60°C to make the DGBXD extracts, and the DGBXD extracts were taken out to a constant volume with distilled water 0.39g of crude drug/mL. 0.1% sodium benzoate is added to the medicinal solution and stored in a refrigerator at -4°C for later use.

2.6.2 Animal Modeling, Grouping and Intervention

The current balloon injury model is a hyperplasia/neointima model, and it is also a mainstream model in the early stage of AS [30]: After the rats were anesthetized with 4% sodium pentobarbital (50 mg/kg), the left common carotid artery was surgically exposed. The distal end of the left common carotid artery was ligated, the proximal end was clamped by an arterial clip, and then a "V"-shaped incision was made at the distal end. The balloon tube was then inserted through the incision, crossing the aortic arch to a depth of about 6-7 cm. The balloon was pressurized with a medical balloon expansion pressure pump to maintain the pressure at 8 bar, and the balloon catheter is repeatedly pulled back and forth to the aortic arch 4 times. Then rotate the balloon catheter 180° and perform the same operation 4 times. After the completion of the balloon expansion pressure pump back to the negative pressure state, the catheter was withdrawn.

The rats were randomly divided into 4 groups: sham operation group, model group, DGBXD group and atorvastatin group. According to the pre-experimental modeling situation, each group contains 8-10 rats. Sham operation group: only the left common carotid artery was separated and exposed and then sutured without balloon injury; the same amount of distilled water was given after the operation. Model group: Balloon injury of the thoracic and abdominal aorta was performed without drug intervention after operation; the same amount of distilled water was given after operation. Atorvastatin group: After thoracic and abdominal
aortic balloon injury, atorvastatin was administered. DGBXD group: After thoracic and abdominal aortic balloon injury, the DGBXD 3.9 of crude drug g/kg was administered.

2.6.3 Specimen collection

After 14 days of intragastric administration (the day after the last administration), blood was collected from the abdominal aorta under anesthesia with 4% sodium pentobarbital (50 mg/kg), and then the thoracic and abdominal aortic vessels were intercepted. After that, the rats were sacrificed by cervical dislocation. After the blood is centrifuged at low temperature (4°C, 2000rpm/min for 15 min), the plasma is collected and stored in a refrigerator at -80°C for ELISA testing. The blood vessels used for immunohistochemical detection were fixed with 4% paraformaldehyde and stored in a refrigerator at 4°C.

2.6.4 Vascular intimal hyperplasia index Measurement

After the thoracic-abdominal aorta was taken out, it was rinsed with normal saline to remove the connective tissue outside the blood vessel, and fixed in 4% paraformaldehyde for 24 hours. Then, the ethanol gradient dehydration was carried out, and the paraffin was embedded vertically, and 8 slices of each segment of blood vessel were cut uniformly for Masson staining. After staining, observe under a light microscope, and the MIAS medical image analysis system was used to take pictures. Image-pro plus6.0 image analysis software is used to measure the media area (MA), the perimeter of the midline of the media, the intimal area (IA), and the perimeter of the midline of the intima. Media thickness (MT) = Media area/Median midline circumference. Intimal thickness (IT)=intimal area/intimal midline circumference. Hyperplasia ratio of intimal area (HRIA) and hyperplasia ratio of intimal thickness (HRIT) were also calculated.

2.6.5 Detection of ICAM-1, VCAM-1, IL-1β mRNA expression in the intima of hyperplastic vessels

The total RNA of the aortic tissues of each group was extracted by Trizol method. Then reverse transcription of RNA into cDNA according to the operating instructions of the kit. The RT-PCR reaction was performed using the two-step chimeric fluorescence quantitative RT-PCR kit (TaKaRa Company, SYBR Green chimeric fluorescence method). RT-PCR conditions: perform reverse transcription reaction in a constant temperature water bath at 37°C.
for 15 min; then place it in 85 °C water for 5 s to inactivate the reverse transcriptase; Rotor-Gene 3000 Real-Time PCR amplification analysis system is used for RT-PCR. Reaction conditions (40 cycles in total): pre-denaturation 95 °C 30s, denaturation 95 °C 10 s, annealing 60 °C 30 s, extension 72 °C 30 s, extension 72 °C 5 min. The primers were synthesized by Shanghai Bioengineering Company and passed quality inspection (Table 2). The relative expression of target gene mRNA was calculated by 2-△△Ct.

Gene	Sequence	Length/bp
IL-1β	F:5′-CCTGTGGCCTTGGGCCTCAA -3′	204
	R:5′-GGTGCTGATGTACCAGTTGGG-3′	
ICAM-1	F:5′-GCCGGCTTGGAGGTGGAT-3′	485
	R:5′-GGAGGCCGGGGCTTGTACC-3′	
VCAM-1	F:5′-CCTGTCCCAGAGGAGGGC-3′	500
	R:5 -CAACTGCGAGCGACTTCG -3′	
β -actin	F:5 -AGCTGAGAGGGAATCGTGCG -3	204
	R:5 -GTGCCACCAGACAGCAGCTTG -3	

2.6.6 Detection of ICAM-1, VCAM-1, IL-1β protein expression in the intima of hyperplastic vessels

The expression of ICAM-1, VCAM-1, IL-1β in the blood vessels with intimal hyperplasia was determined by immunohistochemistry (primary antibody dilution ratio: ICAM-1 1:100, VCAM-1 1:500, IL-1β 1:100, FN 1:100, Col-I 1:100); The operation is carried out according to the instructions of the kit. Under the light microscope, it can be seen that brown-yellow spot or fibrous staining is concentrated in the cell membrane, cytoplasm or between cells, which is positive expression, and negative is no brown-yellow staining. The slices were photographed with MIAS medical image analysis system, and then analyzed with Image-pro plus 6.0: Under a 400-fold light microscope, three different fields of view were selected for each slice, and the integrated optical density (IOD) of positive staining per unit area was measured, and then the average was taken for statistical analysis.
2.6.7 Detection of plasma inflammatory response related factors

The plasma levels of IL-1β, TNF-α, and MCP-1 were measured by ELISA to reflect the state of systemic inflammatory response. The specific operation is carried out according to the instructions of the kit.

2.7 HPLC Methods

2.7.1 Sample Preparation

DGBXD sample: 1 g of the extract was dissolved in 30 ml of distilled water, ethanol was added to 80%, precipitated, filtered, the filtrate was evaporated to dryness and the volume was adjusted to 100 ml with 70% methanol. Finally, the extract was filtered through a 0.45 μm membrane.

Ferulic acid reference sample: 1.05 mg of ferulic acid was adjusted to 5 ml with 70% methanol, and then 3 ml was accurately measured, and the volume was adjusted to 50 ml with 70% methanol, and the concentration was 0.0126 mg/ml. Finally, it was filtered with a 0.45 μm filter membrane.

2.7.2 HPLC Condition

Column: Agilent ZORBAX Eclipse XDB-C18 column (250mm × 4.6mm, 5μm); mobile phase A: 0.2% formic acid solution, mobile phase B: 0.2% formic acid acetonitrile solution, flow rate: 10 ml/min; Column temperature: 30 ℃; Injection volume: 10 μl. The chromatogram is shown in Figure 2. After determination, the content of ferulic acid in DGBXD is 0.590 0 mg/g.

Figure 2 The results of HPLC (A: Ferulic acid reference sample; B: DGBXD sample)
2.8 Statistical Analysis

SPSS 17.0 statistical software was used for analysis, and the experimental data were expressed as mean ± SD. One-way ANOVA was used to compare the means among multiple groups. For pairwise comparisons between two group, if the variances are uniform, the LSD test is used, and if the variances are not uniform, Dunnett’s T3 test is used. P<0.05 was considered statistically significant.

3 Results and Discussion

3.1 The Known Targets and Potential Targets of DGBXD and AS Genes

A total of 212 known targets, 265 potential targets and 229 AS genes were obtained. There is overlap between the target of each target set (Figure 3a). The compounds and known targets were input into Cytoscape to construct compound-known target network, which consists of 18 compound nodes, 212 known target nodes and 537 edges (Figure 3b). In this network, some targets can be regulated by a lot of compounds (for example, PTGS1 can be regulated by Quercetin, Kaempferol, 7-O-methylisomucronulatol, Formononetin, Isorhamnetin, Stigmasterol, 3,9-di-O-methylnissolin, 73340-41-7, Butylidenephthalide, Calycosin, Hederagenin, Ferulic acid, Jaranol, Senkyunolide I, Bifendate), while other targets were regulated by only one compound (for example, CASP9 is regulated by Quercetin.).

Figure 3 The Known Targets and Potential Targets of DGBXD and AS Genes (a: Venn diagram of Known Targets and Potential Targets of DGBXD and AS Genes; b: Compound-Known target network. Pink
hexagon stand for known targets; Red and orange circle stands for *Hedysarum Multijugum Maxim.* and *Angelicae Sinensis Radix* components, respectively.)

3.2 DGBXD Known Target-AS PPI Network Analysis

3.2.1 DGBXD Known Target-AS PPI Network Construction
The DGBXD Known Target-AS PPI network was composed of 165 DGBXD known target nodes, 162 AS gene nodes, 46 DGBXD known-AS targets and 9094 edges (Figure 4a). The targets are arranged in descending order according to their degree, the top 20 can be divided into 3 category: (1) DGBXD known target: CASP3 (147 edges), EGF (145 edges), CXCL8 (144 edges), EGFR (143 edges), MAPK8 (135 edges), JUN (133 edges); (2) AS genes: INS (234 edges), ALB (217 edges), MMP9 (147 edges), APOE (134 edges), APP (133 edges), TLR4 (129 edges); (3) DGBXD known-AS target: IL6 (207 edges), AKT1 (195 edges), TNF (178 edges), VEGFA (175 edges), TP53 (161 edges), CCL2 (137 edges), MAPK1 (136 edges), IL1B (131 edges). The topological property of this network was assessed by network analyzer tool, and the result demonstrates that DGBXD Known Target-AS PPI network meets the power-law distribution ($R^2=0.377, y = 13.382x^{-0.459}$) (Figure 4b).

3.2.2 Biological Processes of DGBXD Known Target-AS PPI Network
were obtained (Figure 5 and Table 3). The targets and genes of each cluster were input into DAVID to perform GO enrichment analysis so as to obtain the biological processes of each cluster.

Table 3 Clusters of DGBXD Known Target-AS PPI Network

Cluster	Score	Nodes	Edges	Targets and Genes
1	54.344	65	1739	PTEN, IL1B, AGT, MPO, CXCL10, HMOX1, SPP1, PTGS2, SMAD3, MMP1, MAPK14, TIMP1, TGFB1, APOE, JUN, IL4, PPARG, CCL2, CRP, SELE, PLG, ESR1, TP53, NOS3, AKT1, IL6, INS, CASP3, TNF, MAPK8, ADIPOQ, ACE, KDR, VCAM1, VEGFA, SERPINE1, MMP9, ICAM1, NOTCH1, TLR4, EDN1, IFNG, CDKN2A, ALB, EGFR, CCND1, MAPK1, BCL2L1, FOS, LEP, EGF, CXCL12, ELN, VWF, CASP8, PECAM1, LOX, MMP2, MYC, CXCL8, MMP3, CCL5, CAT, IL10, IL2
2	13.707	42	281	HMGCR, APOC2, ABCG2, APOC3, PON1, CHEK2, CST3, E2F1, SREBF2, NAMPT, APOA5, CTSD, NR1H4, SLC2A4, PPBP, ITIH4, ITGB3, NR1H3, PLTP, TOP2A, CDKN2B, ABCG1, NPC1L1, COG2, TOP1, LDLR, SERPIND1, APOA1, CETP, LPL, FGA, ABCG8, LIPC, SERPINC1, ABCG5, OLR1, F13A1, BIRC5, PCSK9, LCAT, ANGPTL3, LPA
3	10.111	37	182	AGTR1, RELA, IL1A, HSP90AA1, PGR, STAT1, AR, RUNX2, CAV1, IGFBP3, GPT, IRF1, NOS2, NFE2L2, SELP, NFKB1, CCNA2, CDKN1A, MET, CASP9, NFKB1A, CD40LG, APOB, F2, PLAU, KNG1, HIF1A, ENG, SIRT1, ERBB2, APP, GJA1, RETN, HSPB1, REN, F3, CCNB1
4	9	9	36	HTR2A, ADRA1A, ADRA1B, ADRA1D, UTS2, CHRM3, CHRM1, SAA1, CHRM5
5	6.692	53	174	NQO1, PARP1, OPRM1, CXCL11, CXCL2, CHRM4, OPRD1, CHRM2, IGF2, APOA4, ERBB3, DPP4, CYBA, GSK3B, CDK2, CHEK1, NPY, ADRA2A, HP, ADRA2B, APOH, TGFB2, CDH5
Cluster 1 is related to inflammation, platelet activation, endothelial cell apoptosis, oxidative stress, lipid metabolism, vascular smooth muscle proliferation, angiogenesis, NFkB signaling pathway, leukocyte migration and rolling. Cluster 2 is related to lipid metabolism such as cholesterol and triglycerides, foam cell differentiation, and platelet degranulation. Cluster 3 is related to angiogenesis, endothelial cell proliferation, active oxygen metabolism, foam cell differentiation, oxidative stress, hypoxia, and cholesterol metabolism. Cluster 4 is related to vascular smooth muscle contraction. Cluster 5 is related to inflammatory chemotaxis, blood coagulation, oxidative stress, and cholesterol metabolism. Cluster 7 is related to steroid metabolism and redox. Cluster 10 is related to endoplasmic reticulum stress, cholesterol efflux, coagulation, and hypoxia. Cluster 6, 8 and 9 failed to return any AS-related biological processes (Table S4). The P-value, fold enrichment and count of biological processes in cluster 1 were shown in figure 6b as an example.
3.2.3 Pathway of DGBXD Known Target-AS PPI Network

The pathway enrichment analysis showed that DGBXD can regulate a lot of AS-related signaling pathways, such as TNF signaling pathway, HIF-1 signaling pathway, FoxO signaling pathway, Toll-like receptor signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway, NF-kappa B signaling pathway, Complement and coagulation cascades, Adipocytokine signaling pathway, MAPK signaling pathway (Figure 6a and Table S5). The P-value, fold enrichment and count of each signaling pathways were shown in figure 6c. The PI3K-Akt signaling pathway was shown in figure 6d. The DGBXD potential targets were marked in red; the AS genes were marked in blue; the DGBXD-AS targets were marked in purple.

3.3 DGBXD-AS PPI Network Analysis

3.3.1 DGBXD-AS PPI Network Construction
The DGBXD-AS PPI network was composed of 225 DGBXD target nodes, 188 AS gene nodes, 20 DGBXD-AS targets and 7081 edges (Figure 7a). The targets are arranged in descending order according to their degree, the top 21 can be divided into 3 category: (1) DGBXD target: CASP3 (102 edges); (2) AS genes: IL6 (173 edges), AKT1 (153 edges), VEGFA (134 edges), APOE (130 edges), APP (118 edges), MAPK1 (115 edges), CCL2 (115 edges), TP53 (114 edges), IL1B (112 edges), APOB (112 edges), MMP9 (109 edges), IL10 (105 edges), CRP (103 edges), NOS3 (102 edges), LEP (100 edges), SERPINE1 (100 edges); (3) DGBXD-AS target: INS (196 edges), ALB (189 edges), TNF (142 edges), TLR4 (106 edges).

The topological property of this network was assessed by network analyzer tool, and the result demonstrates that DGBXD-AS PPI network meets the power-law distribution ($R^2=0.611, y = 38.943x^{-0.694}$) (Figure 7b)

3.3.2 Biological Processes of DGBXD-AS PPI Network

The DGBXD-AS PPI network was analyzed by MCODE and 18 clusters were obtained (Figure 8 and Table 4). The targets and genes of top 10 clusters were input into DAVID to perform GO enrichment analysis so as to obtain the biological processes of each cluster.

Cluster Score	Nodes	Edges	Targets and Genes

- **Table 4 Clusters of DGBXD-AS PPI Network**

![Figure 8 Clusters of DGBXD-AS PPI Network (Pink circles stand for DGBXD target, Blue circles stand for AS genes, purple circles stand for DGBXD-AS target.)](image)
	Score	Rank	Gene(s)
1	45.373	52	TP53, AKT1, CCL2, CRP, SELE, KDR, NOS3, NOTCH1, IL6, ADIPOQ, ACE, IFNG, VEGFA, SERPINE1, MMP9, ICAM1, MAPK1, EDN1, CXCL12, SELP, LEP, ELN, VWF, CASP3, PPARG, PECAM1, MMP2, CCL5, RETN, MMP3, CAT, IL10, F3, TNF, IL1B, AGT, MPO, HMOX1, SPP1, PTGS2, MMP1, TIMP1, TGFB1, INS, ESRI, TLR4, KNG1, ALB, APOE, PLG, REN
2	12.231	27	CETP, ABCG8, LIPC, PTX3, CYP7A1, PCSK9, LCAT, APOA2, SOD1, APOC2, APOC3, LPL, SREBF1, MMP8, NFE2L2, APOA5, SCARB1, PLTP, NR1H4, ABCG1, NR3C1, HPGDS, NFKB1, GGT1, NOX1, APOB, APOA1
3	9.657	36	SOAT2, GABRQ, FGB, ATIC, F5, CST3, GABRB1, CYP27A1, GABRA1, GABRB2, GABRA2, GABRB3, GABRA3, MTHFR, GABRA4, GABRA5, HNF4A, GABRD, GABRE, GABRA6, SDHC, TGFB1, ITGB3, SERPIND1, TGFB2, GLRA3, GABRG1, NQO1, HSPD1, GABRG2, F13A1, COL3A1, GABRG3, F7, VDR, GABRP
4	8.242	34	SCN1A, FOLR3, SCN1B, MTHFD1, MTRR, HBB, MTHFD2, HBA1, OGDH, ACO2, SCN2B, SCN3A, TCN1, SCN3B, SCN4A, SCN10A, MTFMT, SCN4B, SUCLG1, ALDH1L1, SUCLG2, SCN5A, SDHA, SDHB, AMT, SDHD, LTF, TYMS, MTR, SUCLA2, SHMT1, SCN8A, SHMT2, SCN9A
5	6.833	25	ABCA1, ANGPTL3, CD163, OLR1, CX3CR1, LPA, HMGCR, HCAR2, PON1, P2RY12, HCAR3, CDKN2A, SUCNR1, CASR, PPBP, PPARA, NR1H3, FBN1, AR, FGA, PF4, SERPINC1, PGR, LDLR, Cnr2
6	5.926	28	ABCG5, AGTR1, MSR1, SAA1, MTTP, SREBF2, GPT, CAV1, SMAD3, NOS2, APOA4, THBD, PLAT, HP, AGER, NPC1L1, PLA2G7, CD40LG, APOH, DCN, APP, CDH5, SEL1, F2, LOX
Cluster 1 is related to apoptosis, inflammatory chemokines and their mediated severe inflammatory response, smooth muscle proliferation, hypoxia, endothelial cell proliferation and apoptosis, vasodilation, and oxidative stress. Cluster 2 is related to cholesterol and other lipid anabolism and inflammation. Cluster 3 is related to coagulation reaction and hypoxia reaction. Cluster 5 is related to cholesterol metabolism, macrophage foam cell transformation, inflammatory chemotaxis, and blood coagulation. Cluster 6 is related to hypoxia, cholesterol metabolism and blood coagulation. Cluster 7 is related to calcium ion transport across membranes. Cluster 9 is related to calcium ions. Cluster 4, 8 and 10 failed to return any AS-related biological processes (Table S6). The P-value, fold enrichment and count of biological processes in cluster 1 were shown in figure 9b as an example.
Figure 9 Enrichment Analysis results (a: Pathways of DGBXD-AS PPI Network; Red diamonds stand for signaling pathways. Pink circles stand for DGBXD target, Blue circles stand for AS genes, purple circles stand for DGBXD-AS target. b: Bubble chart of biological processes in cluster 1; c: Bubble chart of signaling pathway. X-axis stand for fold enrichment)

3.3.3 Pathway of DGBXD-AS PPI Network

The pathway enrichment analysis showed that DGBXD can regulate a lot of AS-related signaling pathways, such as PPAR signaling pathway, One carbon pool by folate, Fat digestion and absorption, Complement and coagulation cascades, Metabolic pathways, cAMP signaling pathway, TNF signaling pathway, Adipocytokine signaling pathway, HIF-1 signaling pathway, NF-kappa B signaling pathway (Figure 9a and Table S7). The P-value, fold enrichment and count of each signaling pathways were shown in figure 9c.

The results of network pharmacology suggest that DGBXD may have anti-AS effects. Astragaloside IV is the main medicinal substance of *Hedysarum Multijugum Maxim.*, which has cardiovascular protective effects such as strengthening the heart, protecting myocardial cells, protecting vascular endothelial cells, inhibiting the proliferation of vascular smooth muscle cells, and regulating blood pressure; its mechanism is related to anti-oxidation, scavenging free radicals, anti-inflammatory, anti-apoptosis, etc. [31-32]. Current studies also show that stigmasterol can regulate fatty acid synthesis and cholesterol metabolism, lipid metabolism, inhibit inflammation, and thus play a cardiovascular protective effect [33]. Current research shows that Butylidenephthalide has its anti-platelet activity [34], as well as anti-tumor [35] and anti-inflammatory properties [36]. 3,9-di-O-methylnissolin belongs to isoflavones. Current research shows that isoflavones have good antioxidant and anti-inflammatory functions [37]. Studies have also shown that Calycosin can inhibit inflammation through NF-KB signaling pathway and MAPK signaling pathway [38-39]. Ferulic acid has many physiological functions (anti-inflammatory, anti-oxidant, anti-diabetic effect and free radical scavenger, scavenging lipids) [40-42]. The current research progress shows its anti-fatty liver effect. Formononetin has anti-inflammatory properties [43]. In the process of protecting endothelial damage, Formononetin improves the endothelial dysfunction induced by high glucose by inhibiting the JAK/STAT signaling pathway [44]. In terms of
oxidative stress, Hederagenin prevents atherosclerosis by inhibiting the Nrf2-ARE antioxidant pathway [45-46]. Current research shows that Isorhamnetin has a wide range of pharmacological activities, such as protecting cardiovascular and cerebrovascular, anti-tumor, anti-inflammatory, antioxidant, organ protection, and preventing obesity. The mechanism involves PI3K/AKT/PKB pathway, NF-κB pathway, MAPK pathway and other signal pathways, as well as the expression of related cytokines and kinases [47-49]. A large number of pre-clinical studies have shown that Kaempferol has anti-oxidant, anti-inflammatory, anti-microbial, anti-tumor, cardioprotective, neuroprotective, anti-diabetic, anti-osteoporotic, and estrogen/anti-estrogen effects [50-51]. As a flavonoid, quercetin has been shown to have significant heart-related benefits, such as inhibiting LDL oxidation, non-endothelial-dependent vasodilation, reducing adhesion molecules and other inflammatory markers, and protecting endothelial function [52-53]. Senkyunolide I is one of the biologically active ingredients. Current studies have shown that it has anti-inflammatory, anti-oxidative damage [54], anti-platelet, anti-coagulation [55] and alleviates cerebral ischemia reperfusion injury [56]. Therefore, it is speculated that the above active ingredients may be the key ingredients of DGBXD anti-AS.

The results of GO and pathway enrichment analysis showed that DGBXD can mainly regulate inflammatory chemokines and their mediated signal transduction, blood coagulation, smooth muscle proliferation, endothelial cell proliferation, angiogenesis, leukocyte adhesion, migration and activation, oxidative stress and other biological modules. The signaling pathways that DGBXD can regulate mainly include PI3K/Akt signal pathway, TNF signal pathway, NF-κB signal pathway, HIF-1 signal pathway, FoxO signal pathway / PPAR signal pathway, etc. Current research shows that AS is a chronic inflammatory disease of the blood vessel wall, and the inflammatory response plays an important role in different stages of AS [57-58]. Cytokines, which are important mediators of inflammation, can be secreted by a variety of activated cells in AS. At the same time, these cytokines can activate different types of cells and play a key role in atherosclerosis [59]. Cytokines realize biological activity through their related signal pathways. These pathways include PI3K/AKT signaling pathway, nuclear factor-κB pathway, TGF-beta/Smad signaling pathway, JAK/STAT signaling
pathway, HIF signaling pathway and Toll signaling pathway, MAPK signaling pathway, etc. [60-63]. The above results suggest that DGBXD can act on multiple signal pathways to play an anti-AS effect through a variety of biological processes. There is a complex interaction relationship between these pathways, which reflects the characteristics of multi-component, multi-target, and multi-path cooperative treatment of diseases in traditional Chinese medicine. Next, we would further verify the prediction results of network pharmacology through animal experiments.

3.4 Effect of DGBXD on the pathological morphology of rat vascular intima

In the sham operation group, the elastic membrane in the vascular intima was intact, in a single layer, and there was no hyperplasia. In the model group, the angiogenesis intima showed uniform or uneven thickening, a large number of proliferated vascular smooth muscle cells (VSMC) existed, the arrangement was disordered, the lumen showed centripetal or eccentric stenosis, and the intimal hyperplasia was obvious. In the DGBXD group and the atorvastatin group, the vascular intima showed proliferative changes, but the degree of proliferation was less than that of the model group.(Figure 10a).
Figure 10 Effect of DGBXD on the pathological morphology of rat vascular intima (a: pathological morphology; Masson staining, ×100. The black arrow points to the hyperplasia. b: Comparison of vascular intimal hyperplasia; compared with sham operation group, ** P<0.01; compared with model group,▲▲P<0.01)

The vascular morphometric analysis showed that compared with the sham operation group, the vascular IA, IT, HRIA and HRIT of the model group increased significantly (P<0.01), indicating that the model was successful. The rat thoracoabdominal aorta showed obvious intimal hyperplasia after balloon injury. Compared with the model group, the vascular tissue IA, IT, HRIA and HRIT of the DGBXD group and the atorvastatin group were significantly reduced (P<0.01) (Figure 10b).

3.5 Expression of ICAM-1, VCAM-1 and IL-1β protein in blood vessels

Compared with the sham operation group, the expression of ICAM-1, VCAM-1 and IL-1β in the local blood vessels of the model group was significantly increased (P<0.01).
Compared with the model group, the vascular ICAM-1, VCAM-1 and IL-1β expression intensity in the atorvastatin group and DGBXD group were significantly lower than those in the model group (P<0.01, P<0.05). There was no statistical difference of ICAM-1, VCAM-1 and IL-1β between the DGBXD group and the atorvastatin group (P>0.05). (Figure 11).

Figure 11 Expression of ICAM-1, VCAM-1 and IL-1β in blood vessels (A: sham operation group; B: model group; C: atorvastatin group; D: DGBXD group. Immunohistochemistry, ×400)
Figure 12 Inflammatory factor expression (a: Expression of ICAM-1, VCAM-1 and IL-1β mRNA; b: plasma inflammatory factors IL-1β, TNF-α, MCP-1 content. compared with sham operation group, ** P<0.01; compared with model group, ▲ P<0.05, ▲▲ P<0.01)

3.6 Expression of ICAM-1, VCAM-1 and IL-1β mRNA in blood vessels

Compared with the sham operation group, the expression of ICAM-1, VCAM-1 and IL-1β mRNA in the blood vessels of the model group was significantly increased (P<0.01). Compared with the model group, the vascular ICAM-1, VCAM-1 and IL-1β mRNA expression intensity in the atorvastatin group and DGBXD group were significantly lower than those in the model group (P<0.01, P<0.05). There was no statistical difference of ICAM-1, VCAM-1 and IL-1β mRNA between the DGBXD group and the atorvastatin group (P>0.05). (Figure 12a).

3.7 Detection of plasma inflammatory factors IL-1β, TNF-α, MCP-1 content

Compared with the sham operation group, the plasma levels of IL1β, TNF-α and MCP-1 in the model group were significantly increased (P<0.01). Compared with the model group, the plasma levels of IL-1β, TNF-α, and MCP-1 in the atorvastatin group were significantly reduced (P<0.01). Compared with the atorvastatin group, the plasma levels of IL-1β, TNF-α,
and MCP-1 in the DGBXD group were significantly increased (P<0.01) (Figure 12b).

3.8 Molecular docking results of DGBXD components and PIK3R1 and AKT1

The top 10 DGBXD components in compound-known target network were selected for molecular docking. The results show that the top 10 components may be stably combined with PIK3R1 and AKT1 (Figure 13). This suggests that DGBXD may act on PIK3R1 and Akt through these active components, thereby regulating the PI3K-Akt signaling pathway.

Current research shows that the main biological process of AS is the inflammatory response of the vascular intima. After vascular intima injury, the inflammatory cells are activated and the blood vessels are mechanically expanded, which increases the release of inflammatory factors and chemotactic factors, and exposes the subintimal tissues, induces platelet adhesion and aggregation at the damaged intima, forming a platelet covering layer [64-66]. The activated platelets adhere to circulating white blood cells through platelet receptors, and mediate white blood cells to roll along the damaged endothelial surface. Damaged endothelial cells, VSMCs, and activated inflammatory cells secrete inflammatory chemokines and inflammatory mediators through the adherent platelet-fibrin layer and
exudate to the intima, causing an inflammatory reaction in the blood vessel wall [67-68]. Cytokines and inflammatory response mediators can also induce monocytes, lymphocytes and other inflammatory cells to chemotaxis to the injury site, resulting in the adsorption of a large number of monocytes and leukocytes on the surface of blood vessels, which induces an early inflammatory response [69-70]. In the following days to weeks, macrophages infiltrate the vascular intima and cluster around the scaffold. Platelets, macrophages, and histiocytes gathered at the injured site secrete a large number of chemokines and growth factors to induce VSMCs to migrate from the media into the inner membrane, and the VSMC changes from the contractile type to the synthetic type. VSMC proliferates in large quantities, synthesizes a large amount of extracellular matrix (ECM) components and deposits on the vascular wall, forming a neointima [71-72]. VSMC can maintain its activation state in the inflammatory environment of the intima, continuously synthesize cytokines, growth factors and ECM [73-74]. In addition, under the influence of various factors such as leukocyte, platelet aggregation and vascular intima injury, it can cause the increase of the expression of various inflammatory response factor ligands such as macrophage surface antigen-1 and L-selectin receptor on the surface of leukocytes [72-73]. Mediated by pro-inflammatory response mediators such as interleukin-6 (IL-6), IL-1, MCP-1, TNF-α, ICAM-1 and VCAM-1, local inflammatory reactions can develop. It is a systemic inflammatory reaction [74-75]. Therefore, when the vascular intima is injured, the inflammatory reaction can also aggravate the vascular intimal hyperplasia.

In the occurrence of AS, local inflammatory reaction is the cause, and vascular intimal hyperplasia is the result, which constitutes a causal relationship. Current studies have found that some natural active ingredients can inhibit the cascade of inflammatory reactions, inhibit inflammatory stress and counter-inflammatory adverse events. For example, ligustrazine can inhibit endothelial cell inflammation and leukocyte adhesion response induced by oxidized low density lipoprotein (ox-LDL), and inhibit the activation of mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling pathways, which can inhibit the inflammatory response in the initial stage of inflammatory response [76-78]. Quercetin [79], emodin [80], triptolide [81], icariin [82], and total ginsenosides [83] also have similar effects.
Lin [84] et al. showed that DGBXD may improve inflammation in AS mice by affecting the activity of NF-kB. Ma et al. [85] and Huang et al. [86] used immunoblotting to detect the effect of DGBXD on the expression of p38 MAPK in RAW264.7 cells activated by ox-LDL. They speculated that the mechanism of DGBXD’s prevention and treatment of AS and related diseases may be to down-regulate the activity of p38 MAPK, thereby blocking the cascade of this pathway to reduce the AS inflammatory response. This prevents ox-LDL from inducing monocytes to accumulate to the vascular endothelium, which not only blocks the early stage of development of AS lesions, but also alleviates the progression of the disease.

This study found that after balloon catheter injury, the expression of inflammatory response factors ICAM-1, VCAM-1, and IL-1β in the locally hyperplastic intima was significantly increased. It shows that the vascular intima is injured and produces a local inflammatory response of the blood vessel, which can promote the proliferation and migration of VSMC and cause intimal hyperplasia. Atorvastatin and DGBXD can inhibit the expression of ICAM-1, VCAM-1 and IL-1β in the vascular intima, indicating that atorvastatin and DGBXD can reduce the local inflammatory response of blood vessels by inhibiting the expression of local inflammatory response factors in blood vessels. Studies have also found that the local inflammatory response after vascular injury can induce systemic chronic inflammatory response, which in turn promotes the migration and proliferation of VSMCs and causes intimal hyperplasia [87-88]. In addition, atorvastatin can inhibit the increase of plasma IL-1β, TNF-α, and MCP-1 levels, indicating that atorvastatin can inhibit the systemic chronic inflammatory response after vascular intimal injury, while DGBXD does not seem to inhibit systemic inflammation.

4 Conclusion

The mechanism of DGBXD in the treatment of AS may be related to the improvement of extracellular matrix deposition in the blood vessel wall and the anti-vascular local inflammatory response. This may provide a reference for the study of the mechanism of DGBXD.

Data Availability Statements

All datasets for this study are included in the manuscript and the supplementary files.
Declare

The work described has not been submitted elsewhere for publication, in whole or in part, and all the authors listed have approved the manuscript that is enclosed.

Competing Interests

All authors have no financial or scientific conflict of interest with regard to the research described in this manuscript.

Author contributions

Hao Xu, Tianqing Zhang, Ling He, Mengxia Yuan, You Yuan, Shanshan Wang participant in the concept and design. Hao Xu, Tianqing Zhang, Ling He, Mengxia Yuan, You Yuan, Shanshan Wang are responsible for data analysis and interpretation in the chemical informatics section; Hao Xu, You Yuan, Shanshan Wang are responsible for data analysis and interpretation in experiments; Hao Xu, Tianqing Zhang, Ling He, Mengxia Yuan drafted the paper; Shanshan Wang supervised the study; all authors participated in the analysis and interpretation of data and approved the final paper. Hao Xu, Tianqing Zhang, Ling He, Mengxia Yuan, You Yuan should be considered joint first author.

Fundings

the National Natural Science Foundation of China (No. 81874406).

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 81874406).

Reference

1. Schaftenaar F, Frodermann V, Kuiper J, Lutgens E. (2016). Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol. 27(3):209-215. doi:10.1097/MOL.0000000000000302
2. Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. (2015). Nutrition and Atherosclerosis. Arch Med Res. 46(5):408-426. doi:10.1016/j.arcmed.2015.05.010
3. Emini Veseli B, Perrotta P, De Meyer GRA. (2017). Animal models of atherosclerosis. Eur J Pharmacol. 816:3-13. doi:10.1016/j.ejphar.2017.05.010
4. Yao BC, Meng LB, Hao ML, Zhang YM, Gong T, Guo ZG. (2019). Chronic stress: a
critical risk factor for atherosclerosis. J Int Med Res. 47(4):1429-1440. doi:10.1177/0300060519826820

5. Libby P, Buring JE, Badimon L.(2019). Atherosclerosis. Nat Rev Dis Primers. 5(1):56. doi:10.1038/s41572-019-0106-z

6. Gottsäter A.(2017). Pharmacological secondary prevention in patients with mesenterial artery atherosclerosis and arterial embolism. Best Pract Res Clin Gastroenterol. 31(1):105-109. doi:10.1016/j.bpg.2016.07.004

7. Bultas J. Antikoagulační léčba v sekundární prevenci koronárních příhod (2014). [Anticoagulant therapy in secondary prevention of coronary events]. Vnitr Lek. 60(12):1023-1032.

8. Lin HQ, Gong AG, Wang HY.(2017). Danggui Buxue Tang (Astragali Radix and Angelicae Sinensis Radix) for menopausal symptoms: A review. J Ethnopharmacol. 199:205-210. doi:10.1016/j.jep.2017.01.044

9. Bo H, He J, Wang X.(2019). Danggui Buxue Tang promotes the adhesion and migration of bone marrow stromal cells via the focal adhesion pathway in vitro. J Ethnopharmacol. 231:90-97. doi:10.1016/j.jep.2018.11.018

10. Hu G, Yang P, Zeng Y, Zhang S, Song J. (2018). Danggui Buxue decoction promotes angiogenesis by up-regulation of VEGFR1/2 expressions and down-regulation of sVEGFR1/2 expression in myocardial infarction rat. J Chin Med Assoc. 81(1):37-46. doi:10.1016/j.jcma.2017.06.015

11. Kwan KKL, Huang Y, Leung KW, Dong TTX, Tsim KWK. (2019). Danggui Buxue Tang, a Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Modulates Mitochondrial Bioenergetics in Cultured Cardiomyoblasts. Front Pharmacol. 10:614. doi:10.3389/fphar.2019.00614

12. Gong AG, Lau KM, Zhang LM, Lin HQ, Dong TT, Tsim KW. (2016). Danggui Buxue Tang, Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, Induces Production of Nitric Oxide in Endothelial Cells: Signaling Mediated by Phosphorylation of Endothelial Nitric Oxide Synthase. Planta Med. 82(5):418-423. doi:10.1055/s-0035-1558332
13. Zeng L, Yang K, Ge A, Chen Z, Huang L, Ge J. (2019). Investigating the Regulation Mechanism of Baicalin on Triple Negative Breast Cancer’s Biological Network by A Systematic Biological Strategy. Biomedicine & Pharmacotherapy 118, 109253.

14. Yang K, Zeng L, Bao T, Long Z, Jin B. (2019). Exploring the Pharmacological Mechanism of Quercetin-Resveratrol Combination for Polycystic Ovary Syndrome: A Systematic Pharmacological Strategy-Based Research. Sci Rep. 9(1): 18420.

15. Zeng L, Yang K. (2017). Exploring the Pharmacological Mechanism of Yanghe Decoction on HER2-positive Breast Cancer by a Network Pharmacology Approach. Journal of Ethnopharmacology, 199, 68-85.

16. Zeng L, Yang K, Ge J. (2017). Uncovering the Pharmacological Mechanism of Astragalus Salvia Compound on Pregnancy-Induced Hypertension Syndrome by a Network Pharmacology Approach. Sci Rep. 4(7): 16849.

17. Yang K, Zeng L, Ge J. (2018). Exploring the Pharmacological Mechanism of Danzhi Xiaoyao Powder on ER-Positive Breast Cancer by a Network Pharmacology Approach. Evid Based Complement Alternat Med. 2018:5059743.14

18. Zeng LT, Yang KL, Liu LT, et al. (2020). Systematic biological and proteomics strategies to explore the regulation mechanism of Shoutai Wan on recurrent spontaneous Abortion's biological network. Journal of Ethnopharmacology. 2020, 263, 113156

19. Ru J, Li P, Wang J, Zhou W, Li B, Huang C. (2014). TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6:13.

20. Xu HY, Zhang YQ, Liu ZM, Chen T, Lv CY, Tang SH, Zhang XB, Zhang W, Li ZY, Zhou RR, Yang HJ, Wang XJ, Huang LQ. (2018). ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. doi: 10.1093/nar/gky987.

21. Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Iny Stein T, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan - Golan Y, Kohn A, Rappaport N, Safran M, and Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analysis, Current Protocols in Bioinformatics, 54(2016):1301-1303. doi: 10.1002 / cpbi.5.
22. Hamosh, A, Scott, AF, Amberger, J.S, Bocchini, C.A. McKusick, V.A., (2005).Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514-7.

23. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J.(2015). STRING v10:protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452.

24. Bader, G.D., Hogue, C.W.(2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2.

25. Huang, DW, Sherman, BT, Lempicki, RA.(2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc, 4, 44–57.

26. Burley S K, Berman H M, Kleywegt G J, et al. (2017) Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods Mol Biol, 1607: 627-641

27. Grosdidier A, Zoete V, Michielin O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 39(Web Server issue):W270-7. doi: 10.1093/nar/gkr366. Epub 2011 May 29. PMID: 21624888; PMCID: PMC3125772.

28. YAO C G, XI C L, ZHU X, et al. (2017) Expression, purification, evaluation of activity, and analysis of inhibitor docking of enterovirus 71 3C protease. J Pathog Biol, 12(8): 722-726.

29. LIU F H, CHEN S J, NI W J. (2017) Study on the computer virtual screening of antithrombotic active ingredients in Chuanxiong Rhizoma. J China Pharm, 28(16): 2182-2186.

30. Mao Y, Liu XQ, Song Y, Zhai CG, Xu XL, Zhang L, Zhang Y. (2020) Fibroblast growth factor-2/platelet-derived growth factor enhances atherosclerotic plaque stability. J Cell Mol Med. 24(1):1128-1140. doi: 10.1111/jcmm.14850. Epub 2019 Nov 21. PMID: 31755222; PMCID: PMC6933359.

31. Zhang J, Wu C, Gao L, Du G, Qin X.(2020). Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects. Adv Pharmacol. 87:89-112. doi:10.1016.apha.2019.08.002
32. Li Y, Liu Y, Yan X, Liu Q, Zhao YH, Wang DW. (2018). Pharmacological Effects and Mechanisms of Chinese Medicines Modulating NLRP3 Inflammasomes in Ischemic Cardio/Cerebral Vascular Disease. Am J Chin Med. 46(8):1727-1741. doi:10.1142/S0192415X18500878

33. Le Goff M, Le Ferrec E, Mayer C. (2019). Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie. 167:106-118. doi:10.1016/j.biochi.2019.09.012

34. Teng CM, Chen WY, Ko WC, Ouyang CH. (1987). Antiplatelet effect of butylidenephthalide. Biochim Biophys Acta. 924(3):375-382. doi:10.1016/0304-4165(87)90151-6

35. Yen SY, Chuang HM, Huang MH, Lin SZ, Chiou TW, Harn HJ. (2017). n-Butylidenephthalide Regulated Tumor Stem Cell Genes EZH2/AXL and Reduced Its Migration and Invasion in Glioblastoma. Int J Mol Sci. 18(2):372. doi:10.3390/ijms18020372

36. Fu RH, Harn HJ, Liu SP. (2014). n-butylidenephthalide protects against dopaminergic neuron degeneration and α-synuclein accumulation in Caenorhabditis elegans models of Parkinson's disease. PLoS One. 9(1):e85305. Published 2014 Jan 8. doi:10.1371/journal.pone.0085305

37. de Camargo AC, Favero BT, Morzelle MC. (2019). Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci. 20(11):2644. Published 2019 May 29. doi:10.3390/ijms20112644

38. Yang J, Jia M, Zhang X, Wang P. (2019). Calycosin attenuates MPTP-induced Parkinson's disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytother Res. 33(2):309-318. doi:10.1002/ptr.6221

39. Zhang YY, Tan RZ, Zhang XQ, Yu Y, Yu C. (2019). Calycosin Ameliorates Diabetes-Induced Renal Inflammation via the NF-κB Pathway In Vitro and In Vivo. Med Sci Monit. 25:1671-1678. Published 2019 Mar 4. doi:10.12659/MSM.915242.

40. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. (2018). Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol Physiol. 31(6):332-336.
41. Chaudhary A, Jaswal VS, Choudhary S. (2019). Ferulic Acid: A Promising Therapeutic Phytochemical and Recent Patents Advances. Recent Pat Inflamm Allergy Drug Discov. 13(2):115-123. doi:10.2174/1872213X13666190621125048

42. Wang Y, Zhao H, Li X. (2019). Formononetin alleviates hepatic steatosis by facilitating TFEB-mediated lysosome biogenesis and lipophagy. J Nutr Biochem. 73:108214. doi:10.1016/j.jnutbio.2019.07.005

43. Wu D, Wu K, Zhu Q. (2018). Formononetin Administration Ameliorates Dextran Sulfate Sodium-Induced Acute Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway [published correction appears in Mediators Inflamm. Mediators Inflamm. 2018;2018:3048532.

44. Zhou Z, Zhou X, Dong Y, Li M, Xu Y. (2019). Formononetin ameliorates high glucose induced endothelial dysfunction by inhibiting the JAK/STAT signaling pathway. Mol Med Rep. 20(3):2893-2901. doi:10.3892/r.2019.10512

45. Kim EH, Baek S, Shin D, Lee J, Roh JL. (2017). Hederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway. Oxid Med Cell Longev. 2017:5498908. doi:10.1155/2017/5498908

46. Lu SH, Guan JH, Huang YL. (2015). Experimental Study of Antiatherosclerosis Effects with Hederagenin in Rats. Evid Based Complement Alternat Med. 2015:2015:456354. doi:10.1155/2015/456354

47. Gong G, Guan YY, Zhang Z. (2020). Isorhamnetin: A review of pharmacological effects. Biomed Pharmacother. 128:110301. doi:10.1016/j.biopha.2020.110301

48. Gao L, Yao R, Liu Y. (2017). Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway. Mol Cell Biochem. 429(1-2):167-177. doi:10.1007/s11010-017-2944-x

49. Li Y, Chi G, Shen B, Tian Y, Feng H. (2016). Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling. Inflammation. 39(4):1291-1301. doi:10.1007/s10753-016-0361-z

50. Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. (2011). A
51. Dabeek WM, Marra MV. (2019). Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients. 11(10):2288. doi:10.3390/nu11102288

52. Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. (2018). Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem. 155:889-904. doi:10.1016/j.ejmech.2018.06.053

53. Majewska-Wierzbicka M, Czeczot H. (2012). Flavonoidy w prewencji i leczeniu chorób układu sercowo-naczyniowego [Flavonoids in the prevention and treatment of cardiovascular diseases]. Pol Merkur Lekarski. 2012;32(187):50-54.

54. Hu YY, Wang Y, Liang S, et al. Senkyunolide I attenuates oxygen-glucose deprivation/reoxygenation-induced inflammation in microglial cells. Brain Res. 2016;1649(Pt A):123-131. doi:10.1016/j.brainres.2016.08.012

55. Zhu M, Tang Y, Duan JA. (2010). Roles of paeoniflorin and senkyunolide I in SiWu decoction on antiplatelet and anticoagulation activities. J Sep Sci. 33(21):3335-3340. doi:10.1002/jssc.201000340

56. Hu Y, Duan M, Liang S, Wang Y, Feng Y. (2015). Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3. Brain Res. 1605:39-48. doi:10.1016/j.brainres.2015.02.015

57. Gimbrone MA Jr, Garcia-Cardeña G. (2016). Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 118(4):620-636. doi:10.1161/CIRCRESAHA.115.306301

58. Moore KJ, Sheedy FJ, Fisher EA. (2013). Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 13(10):709-721. doi:10.1038/nri3520

59. Martinez GJ, Celermajer DS, Patel S. (2018). The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation [published correction appears in Atherosclerosis. 2018 Jun;273:157]. Atherosclerosis. 269:262-271. doi:10.1016/j.atherosclerosis.2017.12.027
60. Gimbrone MA Jr, García-Cardeña G. (2016). Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 118(4):620-636. doi:10.1161/CIRCRESAHA.115.306301

61. Moore KJ, Sheedy FJ, Fisher EA. (2013). Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol.; 13(10):709-721. doi:10.1038/nri3520

62. Zhu Y, Xian X, Wang Z, et al. (2018). Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules.; 8(3):80. Published 2018 Aug 23. doi:10.3390/biom8030080

63. Rahman MS, Woollard K. (2017). Atherosclerosis. Adv Exp Med Biol. 2017;1003:121-144. doi:10.1007/978-3-319-57613-8_7

64. Cai J, Zhong H, Wu J. (2017). Cathepsin L promotes Vascular Intimal Hyperplasia after Arterial Injury. Mol Med. 23:92-100. doi:10.2119/molmed.2016.00222

65. Liu L, Lalani A, Dai E. (2000). The viral anti-inflammatory chemokine-binding protein M-T7 reduces intimal hyperplasia after vascular injury. J Clin Invest. 105(11):1613-1621. doi:10.1172/JCI8934

66. Zago AC, Simon DI, Wang Y. (2008). The importance of the interaction between leukocyte integrin Mac-1 and platelet glycoprotein Ib-a for leukocyte recruitment by platelets and for the inflammatory response to vascular injury. Arq Bras Cardiol. 90(1):54-63. doi:10.1590/s0066-782x2008000100009

67. Chimen M, Evryviadou A, Box C. (2020). Appropriation of GPIba from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation. Haematologica. 105(5):1248-1261. doi:10.3324/haematol.2018.215145

68. de Juan A, Ince LM, Pick R. (2019). Artery-Associated Sympathetic Innervation Drives Rhythmic Vascular Inflammation of Arteries and Veins. Circulation. 140(13):1100-1114. doi:10.1161/CIRCULATIONAHA.119.040232

69. Tschoepe D. (1996). Adhesion molecules influencing atherosclerosis. Diabetes Res Clin Pract. 30 Suppl:19-24. doi:10.1016/s0168-8227(96)80034-9

70. Seta N, Okazaki Y, Miyazaki H, Kato T, Kuwana M. (2013). Platelet-derived stromal cell-derived factor-1 is required for the transformation of circulating monocytes into
multipotential cells. PLoS One. 8(9):e74246. doi:10.1371/journal.pone.0074246

71. Aryal B, Suárez Y. (2019). Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vascul Pharmacol. 114:64-75. doi:10.1016/j.vph.2018.03.001

72. Lacolley P, Regnault V, Segers P, Laurent S. (2017). Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev. 97(4):1555-1617. doi:10.1152/physrev.00003.2017

73. Murgai M, Ju W, Eason M. (2017). KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat Med. 23(10):1176-1190. doi:10.1038/nm.4400

74. Rudijanto A. (2007). The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones. 39(2):86-93.

75. Michel JB, Jondeau G, Milewicz DM. (2017). From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovasc Res. 114(4):578-589. doi:10.1093/cvr/cvy006

76. Chen J, Wang H, Gao C. (2019). Tetramethylpyrazine alleviates LPS-induced inflammatory injury in HUVECs by inhibiting Rho/ROCK pathway. Biochem Biophys Res Commun. 514(1):329-335. doi:10.1016/j.bbrc.2019.04.135

77. Song X, Dai J, Li H. (2019). Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Biosci Rep. 39(6):BSR20190761. doi:10.1042/BSR20190761

78. Chen J, Chen J, Wang X. (2016). Ligustrazine alleviates acute pancreatitis by accelerating acinar cell apoptosis at early phase via the suppression of p38 and Erk MAPK pathways. Biomed Pharmacother. 82:1-7. doi:10.1016/j.biopha.2016.04.048

79. Lu N, Sui Y, Tian R, Peng YY. (2018). Inhibitive Effects of Quercetin on Myeloperoxidase-Dependent Hypochlorous Acid Formation and Vascular Endothelial Injury. J Agric Food Chem. 66(19):4933-4940. doi:10.1021/acs.jafc.8b01537

80. Shrimali D, Shanmugam MK, Kumar AP, et al. (2013). Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and
81. Song C, Wang Y, Cui L, Yan F, Shen S. (2019). Triptolide attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: involvement of NF-κB pathway. BMC Complement Altern Med. 19(1):198. doi:10.1186/s12906-019-2616-3

82. Hu L, Li L, Zhang H. (2019). Inhibition of airway remodeling and inflammatory response by Icariin in asthma. BMC Complement Altern Med. 19(1):316. doi:10.1186/s12906-019-2743-x

83. Zhou P, Lu S, Luo Y. (2017). Attenuation of TNF-α-Induced Inflammatory Injury in Endothelial Cells by Ginsenoside Rb1 via Inhibiting NF-κB, JNK and p38 Signaling Pathways. Front Pharmacol. 8:464. doi:10.3389/fphar.2017.00464

84. Lin ZW. Effects of Angelica tonic blood soup to modulate NF--kB activity on atherosclerotic inflammation[D]. (Guizhou:Guiyang College of Traditional Chinese Medicine, 2014. DOI:10.7666/d.Y2662077.)

85. Ma WJ, Sun L, Sun JJ, et al. Study on P38MAPK signal transduction pathway by Angelica sinensis blood tonic soup and Angelica astragali extract parts combination. Journal of Integrative Medicine and Cardiovascular Diseases, 2009, 7(7):807-808. doi:10.3969/j.issn.1672-1349.2009.07.030.

86. Huang SQg, Shen XY, Han L, Wang B, Wang J, Li J. The effect of blood-containing serum of angelica tonic soup on ox-LDL-activated monocyte p38 MAPK. New Drugs in Chinese Medicine and Clinical Pharmacology, 2010, 21(05):458-461. doi:10.19378/j.issn.1003-9783.2010.05.003

87. Zhao Y, Liu Y, Jing Z. (2018). N-oleoylethanolamide suppresses intimal hyperplasia after balloon injury in rats through AMPK/PPARα pathway. Biochem Biophys Res Commun. 496(2):415-421. doi:10.1016/j.bbrc.2018.01.015

88. Lv L, Zhang J, Wang P, Meng Q, Liang W, Zhang L. (2014). Zinc finger protein 191 deficiency attenuates vascular smooth muscle cell proliferation, migration, and intimal hyperplasia after endovascular arterial injury. J Vasc Surg. 59(2):500-509. doi:10.1016/j.jvs.2013.03.049
Danggui Buxue Decoction

DGBXD Targets Collection

DGBXD targets and AS genes

DGBXD known-AS PPI Network Analysis

Enrichment Analysis

DGBXD-AS PPI Network

Enrichment Analysis

In vivo experimental and molecular docking verification
Compounds	Targets
3,9-di-O-methylnissol	NOS2
	PTGS1
	CHRM3
	F2
	CHRM1
	ESR1
	ADRB1
	SCN5A
	PTGS2
	NOS3
	HTR3A
	ADRA2C
	RXRA
	ACHE
	PDE3A
	ADRA1B
	ADRB2
	ADRA1D
	OPRM1
	GABRA1
	PRSS1
	NCOA2
	CALM1/CALM2/CALM3
64997-52-0	PGR
7-O-methylisomucron	NOS2
	PTGS1
	DRD1
	CHRM3
	F2
	KCNH2
	CHRM1
	ESR1
	AR
	ADRB1
	SCN5A
	PPARG
	F10
	CHRM5
	PTGS2
	NOS3
	ADRA2C
	CHRM4
	RXRA
	OPRD1
	PDE3A
	HTR2A
	ADRA1A
	CHRM2
Gene Abbreviation	Gene Symbol
------------------	-------------
ADRA1B	SLC6A3
ADRA1D	SLC6A4
ADRA1D	ESR2
ADRA2B	DPPIV
MAPK14	CHEK1
RXRB	PRSS1
PIM1	CCNA2
CDK2	NCOA2
GSK3B	TXK
CHEK1	CHEK1
RXRB	RXRB
PIM1	PIM1
PRSS1	PRSS1
CCNA2	CCNA2
NCOA2	NCOA2
TXK	TXK
CHEK1	CHEK1
RXRB	RXRB
PIM1	PIM1
PRSS1	PRSS1
CCNA2	CCNA2
NCOA2	NCOA2
TXK	TXK

Chemicals

- **Beta-sitosterol**
- **Bifendate**
- **Butylenephthalide**

Chemical IDs

- 73340-41-7 NOS2
- PTGS1
- CHRM3
- PTGS2
- PTGS1
- CALM2/CALM3

Additional Chemicals

- PGR
- NCOA2
- NF2
- PTGS1
- TOP2A
- NCOA1
- PTGS1
CHRM3
CHRM1
ADRB1
SCN5A
PTGS2
ADRA2A
ADRA2C
PDE3A
HTR2A
SLC6A2
ADRA1A
CHRM2
ADRA2B
ADRA1B
SLC6A3
ADRB2
SLC6A4
GABRA1
MAOB
MAOA
RXRA
PKIA
Calycosin
NOS2
PTGS1
ESR1
AR
PPARG
PTGS2
RXRA
PDE3A
ESR2
DPP4
MAPK14
GSK3B
CDK2
CHEK1
PRSS1
PIM1
CCNA2
NCOA2
CALM1/CALM2/CALM3
ADRB2
Ferulic acid
PTGS1
PTGS2
NOS3
ADRA2A
SLC6A2
ADRA1A
SLC6A3
ADRB2
LTA4H
MAOB
MAOA
CTRB1
ADRA2B
PLAU
Formononetin
NOS2
PTGS1
CHRM1
ESR1
AR
PPARG
PTGS2
RXRA
PDE3A
ADRA1A
SLC6A3
ADRB2
SLC6A4
ESR2
DPP4
MAPK14
GSK3B
HSP90AB1
CDK2
MAOB
CHEK1
PRSS1
PIM1
CCNA2
CALM1/CALM2/CALM3
CALM1/CALM2/CALM3
CALM1/CALM2/CALM3
PKIA
F2
NOS3
ACHE
JUN
PPARG
IL4
SIRT1
ATP5B
MT-ND6
HSD3B2
HSD3B1
Hederagenin
PGR
NCOA2
CHRM3
CHRM1
GABRA2
| Gene | Isorhamnetin | Jaranol |
|------------|--------------|---------|
| GABRA3 | | |
| CHRM2 | | |
| ADRA1B | | |
| GABRA1 | | |
| GRIA2 | | |
| GABRA6 | | |
| GABRA5 | | |
| IGHG1 | | |
| ADH1B | | |
| ADH1C | | |
| PTGS1 | | |
| SCN5A | | |
| PTGS2 | | |
| RXRA | | |
| PDE3A | | |
| SLC6A2 | | |
| NOS2 | | |
| PTGS1 | | |
| ESR1 | | |
| AR | | |
| PPAR1 | | |
| PTGS2 | | |
| ESR2 | | |
| DPP4 | | |
| MAPK14 | | |
| GSK3B | | |
| CDK2 | | |
| PIK3CG | | |
| PRSS1 | | |
| PIM1 | | |
| CCNA2 | | |
| NCOA2 | | |
| CALM1/CALM2/CALM3 | | |
| PYGM | | |
| PPAR1 | | |
| CHEK1 | | |
| AKR1B1 | | |
| NCOA1 | | |
| F7 | | |
| F2 | | |
| NOS3 | | |
| ACHE | | |
| GABRA1 | | |
| MAOB | | |
| GRIA2 | | |
| RELA | | |
| XDH | | |
| NCF1 | | |
| OLR1 | | |
| NOS2 | | |
PTGS1
AR
SCN5A
PTGS2
ESR2
DPP4
CDK2
CHEK1
PRSS1
NCOA2
CALM1/CALM2/CALM3

Kaempferol
NOS2
PTGS1
AR
PPARG
PTGS2
HSP90AA1
PIK3CG
NCOA2
DPP4
PRSS1
PGR
F2
CHRM1
NOS3
GABRA2
ACHE
SLC6A2
CHRM2
ADRA1B
GABRA1
TOP2A
TOP2A
F7
CALM1/CALM2/CALM3
CALM1/CALM2/CALM3
CALM1/CALM2/CALM3
RELA
IKBKB
AKT1
BCL2
BAX
TNF
JUN
AHSA1
CASP3
MAPK8
XDH
MMP1
STAT1
CDK1
PPARG
HMOX1
CYP3A4
CYP1A2
CYP1A1
ICAM1
SELE
VCAM1
NR1I2
CYP1B1
ALOX5
HAS2
GSTP1
AHR
PSMD3
SLC2A4
NR1I3
INSR
DIO1
PPP3CA
GSTM1
GSTM2
AKR1C3
SLPI
PGR
PTGS1
AR
PPARG
PTGS2
HSP90AA1
PIK3CG
NCOA2
DPP4
AKR1B1
PRSS1
TOP2A
F2
KCNH2
SCN5A
F10
ADRB2
MMP3
F7
NOS3
RXRA
ACHE
GABRA1
MAOB
RELA

Mairin
Quercetin
EGFR
AKT1
VEGFA
CCND1
BCL2
BCL2L1
FOS
CDKN1A
EIF6
BAX
CASP9
PLAU
MMP2
MMP2
MAPK1
IL10
EGF
RB1
TNF
JUN
IL6
AHSA1
CASP3
TP53
ELK1
NFKBIA
POR
ODC1
XDH
CASP8
TOP1
RAF1
SOD1
PRKCA
MMP1
HIF1A
STAT1
RUNX1T1
CDK1
HSPA5
ERBB2
PPARG
ACACA
HMOX1
CYP3A4
CYP1A2
CAV1
MYC
F3
GJA1
CYP1A1
ICAM1
IL1B
CCL2
SELE
VCAM1
PTGER3
CXCL8
PRKCB
BIRC5
DUOX2
NOS3
HSPB1
TGFB1
SULT1E1
MGAM
IL2
NR1I2
CYP1B1
CCNB1
PLAT
THBD
SERPINE1
COL1A1
IFNG
ALOX5
PTEN
IL1A
MPO
TOP2A
NCF1
ABCG2
HAS2
GSTP1
NFE2L2
NQO1
PARP1
AHR
PSMD3
SLC2A4
COL3A1
CXCL11
CXCL2
DCAF5
NR1I3
CHEK2
INSR
CLDN4
PPARA
PPARD
LTA4H
MAOB
MAOA
CTRB1
CHRM3
CHRM1
ADRB1
SCN5A
HTR2A
ADRA1A
GABRA3
CHRM2
ADRA1B
GABRA1
CHRNA7
Table S2 Potential Targets from ETCM

Gene
HSD17B1
PLA2G2D
CALM1
SCN2A
PLA2G2E
SCN2B
BCHE
ASPH
MIF
P4HA1
HSD17B6
CYTH2
P4HA2
PLD1
PLD2
SCN4A
MMACHC
CTRB1
SCN4B
PLOD1
SUCNR1
GABRD
TMLHE
GABRE
ECI2
PPARA
SLC13A1
SDHA
PLOD3
SDHB
SLC13A2
RDH5
SDHC
TYR
SLC13A3
PPARD
SDHD
MMAA
AKR1D1
RDH8
SULT2B1
ATP2A1
MMAB
GLRA3
CLEC4E
CASP3
PPARG
SRD5A2
NQO1
ESR1
SLCO1B3
CYP2C8
ESR2
PPT1
HAO1
ARF6
ALDH5A1
PAEP
TYMS
PPP1CC
PNP
ANXA1
UL30
NR3C1
GABRG1
NR3C2
GABRG2
ABAT
PLA2G1B
GABRG3
CNR1
SOAT1
MUT
VDR
ACADS
CNR2
SOAT2
SCN1A
HA
SCN1B
MTHFD1
QPT
MTHFD2
FAAH
ACSL3
GUCA1A
ATIC
ALDH1A1
ACSL4
ALDH1A2
TRAPPC3
ALDH1A3
E
SCN3A
HDAC2
ALAD
SCN3B
LPL
HCAR2
Gene

SREBF1
PRKACA
FADS2
TM1468
SIGMAR1
MTRR
HSD3B1
PCYT1A
BLLF1
RDH11
PCYT1B
RDH12
GLTP
RDH13
ACO2
CUBN
RDH14
APOD
MTTP
TCN1
GABRB1
GRIN2A
GABRB2
SCN11A
GRIN2B
GABRB3
MTFMT
GRIN2C
XDH
PPP3CA
SUCLG1
GRIN2D
THYA
SUCLG2
RBP1
SHBG
RLBP1
C8G
RBP3
RXRA
RXRB
INS
RORA
TTHA0718
YWHAE
TK
IGHG1
ATP1A1
ATP1A2
FFAR1
ATP1A3
RXRG
TLR4
FKBP1A
MTR
AR
CPA1
ALB
ACOX1
SLC25A10
GM2A
VLDLR
SHMT1
SHMT2
PLA2G2A
LTB4R2
ABL1
Table S3 AS Genes

APOE
APOB
LDLR
APOA1
ABCA1
CETP
LPL
PPARG
LMNA
ABCG8
LIPC
ABCG5
OLR1
CCL2
CYP7A1
CRP
SELE
PCSK9
LCAT
ESR1
APOA2
LPA
HMGCR
NOS3
APOC2
APOC3
CYP27A1
PON1
ATHS
LDLRAP1
IL6
INS
TNF
ADIPOQ
ACE
WRN
VCAM1
VEGFA
SERPINE1
MMP9
ICAM1
APOA5
PPARA
THBD
TLR4
PLAT
SCARB1
EDN1
LIPA
CST3
HMOX1
SPP1
PTGS2
SOAT2
KCNJ5
CAV1
MIR145
NAMPT
NR1H4
MIR21
SMAD3
APOA4
TNXB
CYBA
MMP1
PPBP
NPPB
NFE2L2
MIR155
ITIH4
TIMP1
H19
NPC1
TGFBI
CBS
LTA
NPY
PPARD
NR1H3
CEP19
TGFBR1
TUG1
TP53COR1
HP
GHR
NPC1L1
TGFBR2
CD40LG
APOH
TGFBI2
ZNF687
CD14
KNG1
CES1
CDH5
FGA
HULC
MGP
HSPD1
MAPK1
GCLC
PON3
ADRB2
ACAT1
SLC10A2
CXCL12
CDKN2B
BGN
UTS2
PSEN1
PSMA6
LGALS2
MIAT
SERPIND1
ANTXR1
AGXT
TGFBR3
HGD
ANGPTL6
DCN
APP
LRP8
MIR210
DYNC2LI1
SELL
GP1BA
NPPA
CCL5
SHBG
Cluster Term
--
GO:0045429 positive regulation of nitric oxide biosynthesis
GO:0006954 inflammatory response
GO:0008217 regulation of blood pressure
GO:0002576 platelet degranulation
GO:0001666 response to hypoxia
GO:0048661 positive regulation of smooth muscle c
GO:0032496 response to lipopolysaccharide
GO:0022617 extracellular matrix disassembly
GO:0051092 positive regulation of NF-kappaB trans
GO:0043066 negative regulation of apoptotic process
GO:0001525 angiogenesis
GO:0014068 positive regulation of phosphatidylinos
GO:0032496 response to lipopolysaccharide
GO:0050901 leukocyte tethering or rolling
GO:0030198 extracellular matrix organization
GO:0071456 cellular response to hypoxia
GO:0045427 positive regulation of JAK-STAT cascade
GO:0035924 cellular response to vascular endothelium
GO:0007159 leukocyte cell-cell adhesion
GO:0045766 positive regulation of angiogenesis
GO:0010888 negative regulation of lipid storage
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0030195 negative regulation of blood coagulatic
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0030195 negative regulation of blood coagulatic
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0030195 negative regulation of blood coagulatic
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0030195 negative regulation of blood coagulatic
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0030195 negative regulation of blood coagulatic
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0030195 negative regulation of blood coagulatic
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0030195 negative regulation of blood coagulatic
GO:0001938 positive regulation of endothelial cell f
GO:0045080 positive regulation of chemokine biosynthesis
GO:0032700 negative regulation of interleukin-17 3 5.769231 4.89E-04
GO:0002003 angiotensin maturation 3 5.769231 4.89E-04
GO:0050927 positive regulation of positive chemotaxis 3 5.769231 4.89E-04
GO:0010745 negative regulation of macrophage differentiation 3 5.769231 6.90E-04
GO:0051926 negative regulation of calcium ion transport 3 5.769231 6.90E-04
GO:0043627 response to estrogen 4 7.692308 0.00101
GO:0050995 negative regulation of lipid catabolic process 3 5.769231 0.001056
GO:0032722 positive regulation of chemokine production 3 5.769231 0.001195
GO:0050927 positive regulation of positive chemotaxis 3 5.769231 0.002392
GO:0010575 positive regulation of vascular endothelial growth factor 3 5.769231 0.003024
GO:0032715 negative regulation of interleukin-6 production 3 5.769231 0.00325
GO:0030168 platelet activation 4 7.692308 0.005131
GO:0032943 mononuclear cell proliferation 2 3.846154 0.006065
GO:0002548 monocyte chemotaxis 3 5.769231 0.007206
GO:0001781 neutrophil apoptotic process 2 3.846154 0.009084
GO:0010572 positive regulation of platelet activation 2 3.846154 0.009084

GO:0042632 cholesterol homeostasis 15 35.71429 9.62E-25
GO:0042157 lipoprotein metabolic process 11 26.19048 1.03E-18
GO:0070328 triglyceride homeostasis 9 21.42857 9.20E-16
GO:0043691 reverse cholesterol transport 8 19.04762 9.38E-15
GO:0008203 cholesterol metabolic process 10 23.80952 5.34E-14
GO:0033475 high-density lipoprotein particle remodeling 7 16.66667 7.12E-13
GO:0033444 cholesterol efflux 7 16.66667 2.47E-11
GO:0033472 very-low-density lipoprotein particle remodeling 5 11.90476 1.06E-09
GO:0006869 lipid transport 7 16.66667 2.79E-08
GO:0033700 phospholipid efflux 5 11.90476 3.01E-08
GO:0030301 cholesterol transport 5 11.90476 5.45E-08
GO:0006629 lipid metabolic process 8 19.04762 9.40E-08
GO:0019433 triglyceride catabolic process 5 11.90476 3.73E-07
GO:0055091 phospholipid homeostasis 4 9.52381 1.12E-06
GO:0030299 intestinal cholesterol absorption 4 9.52381 1.12E-06
GO:0001937 negative regulation of endothelial cell proliferation 4 10.81081 3.18E-05
GO:2000379 positive regulation of reactive oxygen species 4 10.81081 3.53E-05
GO:0042127 regulation of cell proliferation 6 16.21622 4.39E-05
GO:0071456 cellular response to hypoxia 5 13.51351 5.14E-05
GO:0006954 inflammatory response 7 18.91892 1.40E-04
GO	Description	Value	p-value	
GO:0006915	apoptotic process	8	21.62162	
GO:0051092	positive regulation of NF-kappaB trans	5	13.51351	
GO:0043066	negative regulation of apoptotic process	7	18.91892	
GO:1902176	negative regulation of oxidative stress	3	8.108108	
GO:0071260	cellular response to mechanical stimulus	4	10.81081	
GO:0001666	response to hypoxia	5	13.51351	
GO:0035994	response to muscle stretch	3	8.108108	
	positive regulation of macrophage derivative		5.26E-04	
GO:0071356	cellular response to tumor necrosis factor	4	10.81081	
GO:0050900	leukocyte migration	4	10.81081	
GO:0032481	positive regulation of type I interferon	3	8.108108	
GO:0042632	cholesterol homeostasis	3	8.108108	
GO:0030512	negative regulation of transforming growth	3	8.108108	
GO:0014068	positive regulation of macrophage derivative	3	8.108108	
GO:0006642	triglyceride mobilization	2	5.405405	
GO:2001028	positive regulation of endothelial cell c	2	5.405405	
GO:0045084	positive regulation of interleukin-12 binding	2	5.405405	
GO:0002576	platelet degranulation	3	8.108108	
GO:0001649	osteoblast differentiation	3	8.108108	
GO:0010884	positive regulation of lipid storage	2	5.405405	
GO:0010875	positive regulation of cholesterol efflux	2	5.405405	
GO:0030194	positive regulation of blood coagulation	2	5.405405	
GO:0071354	cellular response to interleukin-6	2	5.405405	
GO:0045987	positive regulation of smooth muscle c	4	44.44444	
GO:0007204	positive regulation of cytosolic calcium	5	55.55556	
GO:0045907	positive regulation of vasoconstriction	4	44.44444	
GO:0007197	adenylate cyclase-inhibiting G-protein	3	33.33333	
GO:0007207	phospholipase C-activating G-protein c	3	33.33333	
GO:0008283	cell proliferation	5	55.55556	
GO:003056	regulation of vascular smooth muscle c	2	22.22222	
GO:0042554	superoxide anion generation	4	7.54717	
GO:0032496	response to lipopolysaccharide	7	13.20755	
GO:0006940	regulation of smooth muscle contract	4	7.54717	
GO:0006954	inflammatory response	9	16.98113	
GO:0030168	platelet activation	6	11.32075	
GO:0006801	superoxide metabolic process	4	7.54717	
GO:0042127	regulation of cell proliferation	6	11.32075	
GO:0002576	platelet degranulation	5	9.433962	
GO:0019430	removal of superoxide radicals	3	5.660377	
GO:0045730	respiratory burst	3	5.660377	
GO:0042632	cholesterol homeostasis	4	7.54717	
GO:0055114	oxidation-reduction process	7	13.20755	
GO:0042542	response to hydrogen peroxide	3	5.660377	
GO:1902177	positive regulation of oxidative stress-i	2	3.773585	
GO:0034197	triglyceride transport	2	3.773585	
GO:0016525	negative regulation of angiogenesis	3	5.660377	
GO:0070098	chemokine-mediated signaling pathway	3	5.660377	
GO:0010886	positive regulation of cholesterol storage	2	3.773585	
GO:0032930	positive regulation of superoxide anion	2	3.773585	0.027534
-------------	--	---	-----------	-----------
GO:0006707	cholesterol catabolic process	2	3.773585	0.033551
-------------	--	---	-----------	-----------
GO:0008202	steroid metabolic process	4	3.33333	2.54E-06
GO:0051583	dopamine uptake involved in synaptic	2	16.666667	0.003271
GO:0042420	dopamine catabolic process	2	16.666667	0.003271
-------------	--	---	-----------	-----------
GO:0055114	oxidation-reduction process	4	3.33333	0.00582
GO:0008210	estrogen metabolic process	2	16.666667	0.007184
GO:0042136	neurotransmitter biosynthetic process	2	16.666667	0.007835
-------------	--	---	-----------	-----------
GO:0032469	endoplasmic reticulum calcium ion homeo	3	17.64706	8.87E-05
GO:2001234	negative regulation of apoptotic signali	3	17.64706	1.01E-04
GO:0033344	cholesterol efflux	3	17.64706	2.52E-04
GO:0043200	response to amino acid	3	17.64706	3.89E-04
GO:0031100	organ regeneration	3	17.64706	8.97E-04
GO:0042632	cholesterol homeostasis	3	17.64706	0.001658
GO:0051384	response to glucocorticoid	3	17.64706	0.00171
GO:0043627	response to estrogen	3	17.64706	0.00171
-------------	--	---	-----------	-----------
GO:0008203	cholesterol metabolic process	3	17.64706	0.001869
GO:0006808	regulation of nitrogen utilization	2	11.76471	0.001905
GO:0043085	positive regulation of catalytic activity	3	17.64706	0.002639
GO:0007598	blood coagulation, extrinsic pathway	2	11.76471	0.004756
-------------	--	---	-----------	-----------
GO:0009651	response to salt stress	2	11.76471	0.008545
-------------	--	---	-----------	-----------
GO:0006888	ER to Golgi vesicle-mediated transport	3	17.64706	0.009918
GO:0017187	peptidyl-glutamic acid carboxylation	2	11.76471	0.010434
GO:0001666	response to hypoxia	3	17.64706	0.011391
GO:0033700	phospholipid efflux	2	11.76471	0.013262
GO:0043691	reverse cholesterol transport	2	11.76471	0.017021
GO:0001782	B cell homeostasis	2	11.76471	0.017021
GO:0008637	apoptotic mitochondrial changes	2	11.76471	0.017959
GO:0001836	release of cytochrome c from mitochon	2	11.76471	0.021701
GO:0070059	intrinsic apoptotic signaling pathway ii	2	11.76471	0.030998
GO:2001244	positive regulation of intrinsic apoptoti	2	11.76471	0.030998
GO:0002931	response to ischemia	2	11.76471	0.030998
GO:008015	blood circulation	2	11.76471	0.042045
GO:0008630	intrinsic apoptotic signaling pathway ii	2	11.76471	0.043874
GO:0042542	response to hydrogen peroxide	2	11.76471	0.047524
Genes	Fold Enrichment	Bonferroni		
---	-----------------	------------		
AKT1, ICAM1, IL6, TNF, PTGS2, INS, AGT, EDN1, IFNG, E	90.11806798	5.20E-16		
KNG1, SELP, IL6, TNF, CCL2, PTGS2, CRP, TLR4, CCL5, C	13.63263649	3.56E-10		
LEP, ACE, PTGS2, REN, AGT, HMOX1, EDN1, PPARG, NO	44.71242604	2.76E-08		
KNG1, SELP, VWF, ALB, PECAM1, VEGFA, SERPINE1, T	31.35175504	3.24E-08		
LEP, VCAM1, CASP3, CCL2, HMOX1, VEGFA, CAT, CXC1	20.62501572	1.33E-07		
AKT1, RETN, IL6, TNF, PTGS2, HMOX1, EDN1, CCL5	43.05641026	8.13E-07		
VCM1, SELP, NOTCH1, CASP3, PTGS2, REN, EDN1, MP6	19.69043152	2.13E-06		
MMP9, ELN, MMP3, MMP2, PLG, MMP1, SPP1, TIMP1	33.99109283	4.44E-06		
ICAM1, IL6, TNF, INS, AGT, IL1B, TLR4, CAT, TGFB1	21.85193754	9.18E-06		
LEP, AKT1, CASP3, IL6, ALB, MMP9, VEGFA, TP53, MPO	9.22637364	1.26E-05		
LEP, CCL2, PTGS2, HMOX1, PECAM1, VEGFA, SERPINE1	14.48085547	3.14E-05		
LEP, SELP, INS, AGT, CAT, CCL5, KDR	34.77631366	6.40E-05		
ICAM1, IL6, TNF, CCL2, SERPINE1, IFNG, TLR4, IL10	22.86180768	7.20E-05		
AKT1, TNF, CCL2, IL1B, CCL5, TGFB1	58.71328671	7.21E-05		
ICAM1, IL6, TNF, CCL2, VEGFA, TLR4, CCL5, TGFB1, KD	16.60747253	7.89E-05		
LEP, VCAM1, SELP, TNF, SELE	124.21018343	8.10E-05		
VCM1, ICAM1, VWF, TNF, PECAM1, ELN, SERPINE1, SI	14.82810047	1.90E-04		
AKT1, ICAM1, PTGS2, HMOX1, EDN1, VEGFA, TP53	23.54674034	6.68E-04		
LEP, NOTCH1, IL6, CCL5, IL10	73.39160839	8.12E-04		
VCM1, AKT1, NOTCH1, VEGFA, KDR	70.20066891	9.81E-04		
VCMC1, ICAM1, SELP, CCL5, SELE	64.58415385	0.001394213		
F3, HMOX1, VEGFA, SERPINE1, IL1B, NOS3, KDR	19.65861279	0.001940028		
LEP, IL6, TNF, CRP	161.4631583	0.002237727		
AKT1, CCL2, F3, VEGFA, CXCL12, KDR	28.08026756	0.003137587		
TNF, HMOX1, IFNG, IL1B	129.1692308	0.004768545		
KNG1, APOE, EDN1, SERPINE1	107.6410256	0.008687782		
LEP, CASP3, PTGS2, ESR1, CAT, TGFB1	21.29163145	0.012290391		
AGT, MMP9, MMP2, IL10	86.11282051	0.017770944		
ICAM1, SELP, MMP9, PECAM1, SELE, MMP1	15.88146282	0.050061282		
TNF, PTGS2, IL1B, TLR4	61.50915751	0.050427816		
AKT1, APOE, INS, ESR1	58.71328671	0.058036324		
CCL2, EDN1, IFNG, IL1B, CCL5	24.46369646	0.069945392		
LEP, RETN, IL6, CAT, IL10	24.09873708	0.074076161		
LEP, TNF, IFNG, IL1B, CCL5	24.09873708	0.074076161		
LEP, AKT1, TNF, INS, ADIPOQ	24.09873708	0.074076161		
CASP3, PTGS2, ADIPOQ, SELE	51.66769231	0.084974274		
ICAM1, IL6, CCL2, EDN1, CCL5	22.74106176	0.092156864		
LEP, AKT1, IL1B, NOS3	49.68047337	0.095232211		
VCM1, ICAM1, SELP, VWF, CCL2, PECAM1, CXCL12, SI	6.331825038	0.096875958		
CCL2, AGT, SERPINE1, TLR4, CCL5	22.11801897	0.102213324		
ICAM1, SERPINE1, IL10, KDR	46.13186813	0.117963151		
MAPK1, TNF, CCL2, INS, IL1B, CCL5, TGFB1	8.627715979	0.188357184		
TNF, VEGFA, CCL5, CXCL12	30.03959999	0.367516979		
AGT, CRP, TGFB1	107.6410256	0.388673926		
IL6, TNF, IL1B, TLR4	28.7042735	0.408149055		
AKT1, PTGS2, APOE, HMOX1, MPO	14.76832168	0.409405386		
AGT, EDN1, VEGFA, KDR	28.03826756	0.428734833		
LEP, CCL2, IFNG, TLR4	27.48281506	0.449433235		
Gene Symbols	p-Value	Log2 Fold Change		
--------------	---------	-----------------		
IFNG, TLR4, TGFB1	8.806993007	0.527161643		
ACE, REN, AGT	8.806993007	0.527161643		
F3, VEGFA, KDR	8.806993007	0.527161643		
CRP, PPARg, ADIPOQ	7.452071006	0.652922048		
ICAM1, PTGS2, NOS3	7.452071006	0.652922048		
MAPK1, HMOX1, PPARg, ESR1	1.987218935	0.787228306		
TNF, INS, IL1B	6.054807692	0.801872394		
IL6, TNF, TLR4	5.968642534	0.839787975		
AKT1, AGT, MMP9	4.36538462	0.974483599		
PTGS2, IL1B, TGFB1	3.88034188	0.990339486		
TNF, TLR4, IL10	3.5989011	0.993177316		
AKT1, MAPK1, VWF, IL6	1.123210702	0.999622113		
ACE, TGFB1	3.229230769	0.999910413		
IL6, CCL2, CCL5	2.06534047	0.999984564		
IL6, IFNG	2.215820513	0.999999152		
SELP, TLR4	2.215820513	0.999999152		

Gene Symbols	p-Value	Log2 Fold Change
LPL, LDLR, APOC2, ABCG1, ABCG8, APOA1, ABCG5, LC	9.70353714	4.77E-22
LPL, APOA1, LPA, LCAT, APOC3, APOA5, APOC2, NPC1L1	1.15734358	5.09E-16
LPL, APOA1, APOC3, APOA5, APOC2, CETP, ANGPTL3, L	1.389566044	4.41E-13
APOA1, LCAT, APOC3, APOA5, APOC2, CETP, LIPC, ABC	1.776931217	4.63E-12
APOA1, LCAT, LCAT, PON1, PCSK9, CETP, ANGPTL3, LII	5.79551821	2.65E-11
APOA1, LCAT, APOC3, CETP, LIPC, PLTP, ABCG1	1.86577777	3.53E-10
ABCG8, APOA1, ABCG5, APOC3, APOA5, APOC2, ABCG1	1.119466667	1.23E-08
LPL, LCAT, APOC2, CETP, LIPC	2.285782313	5.28E-07
APOA1, LPA, APOC3, APOA5, APOC2, CETP, PLTP	3.68245614	1.38E-05
APOA1, APOC3, APOA5, APOC2, ABCG1	1.427891156	1.49E-05
APOA1, LDLR, LCAT, NPC1L1, CETP	1.249404762	2.70E-05
LPL, LPA, LDLR, LCAT, APOC2, LIPC, PLTP, SREBF2	2.037245981	4.66E-05
LPL, APOA1, APOC3, APOA5, LIPC	7.96190476	1.85E-04
APOA1, CETP, ANGPTL3, ABCG1	1.776931217	5.57E-04
ABCG8, ABCG5, LDLR, NPC1L1	1.776931217	5.57E-04
LDLR, NR1H4, NR1H3, SREBF2	1.776931217	5.57E-04
LPL, APOC3, APOA5, PCSK9, CETP	5.711564626	7.52E-04
APOA1, APOA5, APOC2, NR1H3	1.599238095	7.94E-04
LCAT, APOA5, PON1, CETP	1.599238095	7.94E-04
APOA1, APOA5, APOC2, NR1H3	1.599238095	7.94E-04
CETP, ITGB3, ABCG1, NR1H3	1.23018315	0.00188253
PON1, PLTP, ABCG1, NR1H3	1.142312925	0.002391274
APOA1, FGA, PPBP, F13A1, ITIH4, ITGB3	2.328978517	0.002452888
ABCG8, TOP1, LPL, APOA1, ABCG5, CST3, NPC1L1, ABC	1.052130362	0.003904569
LPL, APOA1, LCAT, PCSK9, ANGPTL3	3.701490035	0.004382303
ABCG8, APOA1, ABCG5, HMGCR, SERPINC1	2.701415701	0.015307783

Gene Symbols	p-Value	Log2 Fold Change			
HIF1A, F3, HSPB1, NFE2L2, ENG, SIRT1, IL1A	2.762491187	1.37E-04			
CAV1, GJA1, STAT1, ENG	6.259832246	0.028791354			
AGTR1, CDKN1A, F2, NFE2L2	6.051171171	0.031892573			
AGTR1, NFKBIA, NOS2, ENG, SIRT1, PLAU	1.471906501	0.039501011			
CCNB1, HIF1A, NFE2L2, CCNA2, SIRT1	2.367387391	0.046049807			
KNG1, SELP, CD40LG, RELA, NFKB1, NFE2L2, IL1A	8.382229195	0.120235506			
Gene 1	Gene 2	p-value 1	p-value 2		
----------------	----------------	-------------	-------------		
CASP9, IRF1, NFKBIA, GJA1, NFKB1, STAT1, IGFBP3, IL6	6.403355737	0.145773429			
AR, CD40LG, RELA, NFKBIA, NFKB1	17.06157285	0.153895353			
CDKN1A, CD40LG, RELA, NFKBIA, HSPB1, NFKB1, SIRT1	6.982120582	0.290629749			
HSPB1, NFE2L2, SIRT1	97.25096525	0.349270728			
IRF1, GJA1, NFKB1, ENG	25.56832889	0.39270728			
RELA, HIF1A, NOS2, ENG, PLA2	13.1929604	0.359273718			
RELA, NFKBIA, NFKB1	85.09459459	0.383190626			
AGTR1, APOB, NFKB1	85.09459459	0.383190626			
APOB, RELA, NFE2L2, SIRT1	16.5031941	0.784121252			
SELP, CAV1, APOB, F2	14.87992911	0.872698492			
RELA, IRF1, NFKB1	26.6963434	0.992642363			
CAV1, APOB, SIRT1	21.27364865	0.999519187			
CAV1, ENG, SIRT1	21.27364865	0.999519187			
SELP, F2, SIRT1	20.94636175	0.999611915			
APOB, SIRT1	226.9189189	0.999623235			
MET, HSPB1	181.5351351	0.99947365			
RELA, IRF1	151.2792793	0.999992665			
KNG1, SELP, APP	13.2185778	0.999999994			
GJA1, RUNX2, IGFBP3	13.09147609	0.999999996			
APOB, NFKB1	90.76756757	0.999999997			
NFKBIA, SIRT1	64.8397683	1.0			
F2, NFE2L2	64.8397683	1.0			
RELA, NFKB1	64.8397683	1.0			
CHRM3, ADRA1B, ADRA1A, ADRA1D	355.3862434	1.18E-05			
UTS2, SAA1, ADRA1B, ADRA1A, ADRA1D	69.6185738	3.31E-05			
ADRA1B, ADRA1A, ADRA1D, HTR2A	233.2222222	4.37E-05			
CHRM5, CHRM3, CHRM1	799.6190476	5.21E-04			
CHRM5, CHRM3, CHRM1	699.6666667	6.94E-04			
CHRM5, CHRM3, CHRM1, ADRA1B, ADRA1D	25.48876746	0.001811122			
CHRM3, CHRM1	932.8888889	0.21203273			
CYBA, NCF1, NOX1, SOD1	0.004310286	0.015440401			
OPRM1, TNFRSF11B, THBD, CXCL2, PF4, DCN, CXCL11	0.00321163	0.017247493			
CHRM2, ADRA2A, ADRA2C, ADRA2B	0.00302799	0.023649793			
CYBA, TNFRSF11B, PTGER3, CXCL2, NOX1, PF4, CXCL1	0.003424417	0.030651592			
ADRA2A, RAF1, PF4, ADRA2C, ADRA2B, COL1A1	0.004006697	0.043046129			
CYBA, NCF1, NOX1, SOD1	0.003807616	0.047719294			
TNFRSF11B, ERBB3, CXCL2, CHEK1, PF4, CXCL11	0.020517582	0.406767558			
APOH, IGF2, PF4, SOD1, TGFB2	0.020638955	0.446301428			
APOA4, SOD1, NQO1	0.037093879	0.94061921			
CYBA, NCF1, NOX1	0.040700327	1.107853271			
APOA4, CYP7A1, SCARB1, MTTP	0.053907207	1.572965689			
CYBA, NCF1, CYP7A1, NOX1, ALOX5, SOD1, NQO1	0.276002231	13.93688959			
HP, COL1A1, SOD1	0.296612643	15.61660755			
NOX1, SOD1	0.319292498	17.50985147			
APOH, MTTP	0.361567755	21.8909506			
APOH, PF4, DCN	0.35974724	28.60125842			
CXCL2, PF4, CXCL11	0.375468255	27.36611544			
MSR1, SCARB1	0.383247209	28.60125842			
Gene Combination	p-value	Log10(p-value)			
------------------	---------	---------------			
CYBA, SOD1	0.416407276	35.15497902			
CYP7A1, SCARB1	0.447024993	41.10780763			
AKR1C3, CYP3A4, CYP1B1, SULT1E1	130.1705426	5.39E-04			
SLC6A2, SLC6A3	0.500770107	559.7333333			
SLC6A3, MAOB	0.500770107	559.7333333			
AKR1C3, CYP3A4, CYP1B1, MAOB	0.709904457	9.454954955			
CYP1B1, SULT1E1	0.783158398	254.4242424			
ACHE, SLC6A3	0.811300673	233.2222222			
PSEN1, BAX, BCL2	0.042888897	197.5529412			
PSEN1, BAX, BCL2	0.048837666	185.2058824			
SOAT2, APOA2, ABCA1	0.117115719	118.5317647			
MTHFR, GSTP1, CHUK	0.175056468	95.59013283			
APOA2, F7, GSTP1	0.3582304	63.04881101			
SOAT2, APOA2, ABCA1	0.559431606	46.30147059			
APOA2, BCL2, HSPD1	0.57056016	45.58914027			
APOA2, F7, HSPD1	0.57056016	45.58914027			
SOAT2, APOA2, ABCA1	0.603175056	43.57785467			
BAX, BCL2	0.610104885	987.7647059			
APOA2, PSEN1, BCL2	0.728997745	36.5838788			
F10, F7	0.905097408	395.1058824			
HSP90AB1, BAX	0.98582795	219.503268			
F10, F5, F7	0.992731132	18.52058824			
F10, F7	0.994381642	179.5935829			
MTHFR, F7, HSPD1	0.996515669	17.22845417			
APOA2, ABCA1	0.998633498	141.1092437			
APOA2, ABCA1	0.999792617	109.751634			
BAX, BCL2	0.999792617	109.751634			
BAX, HSPD1	0.99987057	103.9752322			
BAX, BCL2	0.99990368	85.89258312			
BAX, BCL2	0.999999824	59.86452763			
BAX, BCL2	0.999999824	59.86452763			
BCL2, HSPD1	0.999999999	43.90065359			
MTHFR, F5	1	42.03254068			
BAX, BCL2	1	38.73587082			
BCL2, HSPD1	1	38.73587082			
Term	Pathway	Count	%	Pvalue	
------------	---	-------	------	----------	
hsa04668	TNF signaling pathway	29	0.052112	1.30E-14	
hsa04066	HIF-1 signaling pathway	27	0.048518	4.89E-14	
hsa04068	FoxO signaling pathway	28	0.050315	3.25E-11	
hsa04620	Toll-like receptor signaling pathway	24	0.043127	2.08E-10	
hsa04151	PI3K-Akt signaling pathway	43	0.07727	2.61E-09	
hsa03320	PPAR signaling pathway	18	0.032346	4.04E-09	
hsa04641	NF-kappa B signaling pathway	19	0.034143	4.51E-08	
hsa04610	Complement and coagulation cascades	17	0.030549	4.70E-08	
hsa04920	Adipocytokine signaling pathway	16	0.028752	3.78E-07	
hsa04010	MAPK signaling pathway	31	0.055706	1.05E-06	
hsa04370	VEGF signaling pathway	14	0.025158	2.45E-06	
hsa04060	Cytokine-cytokine receptor interaction	29	0.052112	4.31E-06	
hsa04975	Fat digestion and absorption	11	0.019767	6.27E-06	
hsa04062	Chemokine signaling pathway	22	0.039534	9.45E-05	
hsa04923	Regulation of lipolysis in adipocytes	11	0.019767	1.77E-04	
hsa04270	Vascular smooth muscle contraction	15	0.026955	7.79E-04	
hsa04152	AMPK signaling pathway	15	0.026955	0.001279	
hsa04350	TGF-beta signaling pathway	12	0.021564	0.001342	
hsa04670	Leukocyte transendothelial migration	14	0.025158	0.002011	
hsa04611	Platelet activation	15	0.026955	0.002178	
hsa04150	mTOR signaling pathway	9	0.016173	0.004331	
hsa04630	Jak-STAT signaling pathway	14	0.025158	0.014145	
hsa00480	Glutathione metabolism	7	0.012579	0.026821	
Genes	Fold Enrichment	Bonferroni			
-------------------------------	-----------------	------------			
TNF, CCL2, PTGS2, MMP9, EDN1, CXCL2, NFKBIA, NFKE	5.95655493	3.14E-12			
ERBB2, EDN1, HK2, NFKB1, TLR4, TIMP1, AKT1, INS, HM	6.181210064	1.18E-11			
PTEN, IL10, TGFB1, TGFB2, AKT1, CDKN2B, SLC2A4, IN	4.592341805	7.86E-09			
PIK3CG, IL6, TNF, RELA, CXCL8, NFKBIA, NFKB1, TLR4	4.976068479	5.03E-08			
HSP90AB1, COL3A1, NFKB1, TLR4, BCL2L1, ITGB3, PTE	2.739241561	6.32E-07			
PPARA, LPL, PPARD, OLR1, RXRB, RXRA, PPARG, ADIP	5.904439464	9.78E-07			
ICAM1, TNF, PTGS2, RELA, CXCL8, NFKBIA, NFKB1, TL	4.799713562	1.09E-05			
KNG1, PLAT, F10, F13A1, F7, PLG, VWF, THBD, F5, FGA	5.14779831	1.14E-05			
PPARA, TNF, RXRB, RXRA, RELA, NFKBIA, NFKB1, ADI	5.023459607	9.16E-05			
TNF, ELK1, NFKB1, TGFB1, TGFB2, AKT1, FOS, CASP3, PIK3CG, PRKCA, PTGS2, RA	2.692911894	2.53E-04			
NFKB1, TL	5.044047557	5.94E-04			
KL, CCL2, TNF, CXCL2, BMPR2, CXCL8, PF4, CXCL11, CCL5, APOA4, ABCG8, APOB, APOAI, CD36, ABCG5, NPC1L1, S	2.622845423	0.001041535			
PIK3CG, CCL2, NCF1, RELA, CXCL2, CXCL8, RAF1, NF	6.198820349	0.00151573			
KI PIK3CG, AKT1, ADRB2, PTGER3, ADRB1, NPY, PTGS2, IN	2.599505308	0.022614095			
KCNMA1, PRKCA, ACTA2, RAF1, PRKG1, PRKCB, MAPK	4.3170356	0.041858195			
PIK3CG, HMGCR, PPARG, ACACA, SIRT1, ADIPOQ, LEP, MAPK1, TNF, CDKN2B, TGFB1, TGFB2, IFNG, BMPR2, PIK3	2.817645613	0.171828968			
PIK3CG, PRKCA, ICAM1, CLDN4, NCF1, MMP9, CXCL12	2.680199486	0.266361594			
PIK3CG, PRKCA, IPI, PTGS1, ITGB3, PRKG1, AKT1, MAPK1	1.39662255	0.277479665			
PIK3CG, PRKCA, AKT1, MAPK1, TNF, INS, IKBKB, PTEN IL4, PIK3CG, IL6, PIM1, BCL2L1, STAT1, IL10, AKT1, LEP	2.675538269	0.385686932			
PIK3CG, COL3A1, PTGS1, ITGB3, PRKG1, AKT1, MAPK1, PRKCA, PIK3CG, AKT1, MAPK1, TNF, INS, IKBKB, PTEN	2.535881052	0.410050764			
IL4, PIK3CG, IL6, PIM1, BCL2L1, STAT1, IL10, AKT1, LEP	3.410322794	0.650157826			
PIK3CG, COL3A1, PTGS1, ITGB3, PRKG1, AKT1, MAPK1, PRKCA, PIK3CG, AKT1, MAPK1, TNF, INS, IKBKB, PTEN	2.121978627	0.968175299			
GSTM1, GSTM2, ODC1, GCLC, GGT1, GCLM, GSTP1	3.016538245	0.998611344			
Cluster	Term	Biological Processes	Count	%	Pvalue
---------------	--	-------------------------------------	-------	---------	----------
GO:0045429	positive regulation of nitric oxide biosynthesis	14	21.53846	3.25E-22	
GO:0043066	negative regulation of apoptotic process	21	32.30769	1.86E-16	
GO:0001525	angiogenesis	15	23.07692	9.39E-14	
GO:0006954	inflammatory response	17	26.15385	6.03E-13	
GO:0008284	positive regulation of cell proliferation	18	27.69231	1.07E-12	
GO:0007568	aging	13	20	1.14E-12	
GO:0048661	positive regulation of smooth muscle cell	10	15.38462	4.39E-11	
GO:0001666	response to hypoxia	12	18.46154	5.29E-11	
GO:0070374	positive regulation of ERK1 and ERK2	12	18.46154	4.78E-10	
GO:0006955	immune response	15	20.15385	2.76E-12	
GO:0008217	regulation of blood pressure	8	12.30769	4.88E-09	
GO:0002576	platelet degranulation	9	13.84615	5.07E-09	
GO:0022617	extracellular matrix disassembly	8	12.30769	1.48E-08	
GO:0042060	wound healing	8	12.30769	2.13E-08	
GO:0035924	cellular response to vascular endothelia	6	13.84615	3.82E-08	
GO:0051092	positive regulation of NF-kappaB trans	10	15.38462	5.30E-08	
GO:0030198	extracellular matrix organization	10	15.38462	7.59E-08	
GO:0071456	cellular response to hypoxia	8	12.30769	7.62E-08	
GO:0071347	cellular response to interleukin-1	7	10.76923	2.85E-07	
GO:0050729	positive regulation of inflammatory response	7	10.76923	3.36E-07	
GO:0090026	positive regulation of monocyte chemotaxis	5	7.692308	3.37E-07	
GO:0006935	chemotaxis	8	12.30769	3.96E-07	
GO:0046427	positive regulation of JAK-STAT cascade	5	7.692308	1.33E-06	
GO:0048146	positive regulation of fibroblast proliferation	6	9.230769	1.88E-06	
GO:0034612	response to tumor necrosis factor	5	7.692308	2.29E-06	
GO:0032757	positive regulation of interleukin-8 protein	5	7.692308	2.69E-06	
GO:2000352	negative regulation of endothelial cell ;	5	7.692308	3.67E-06	
GO:0045909	positive regulation of vasodilation	5	7.692308	4.24E-06	
GO:0045766	positive regulation of angiogenesis	7	10.76923	4.91E-06	
GO:0030593	neutrophil chemotaxis	6	9.230769	5.13E-06	
GO:0001938	positive regulation of endothelial cell ;	6	9.230769	6.39E-06	
GO:0050901	leukocyte tethering or rolling	4	6.153846	1.47E-05	
GO:0043536	positive regulation of blood vessel end	4	6.153846	4.90E-05	
GO:0006979	response to oxidative stress	6	9.230769	6.17E-05	
GO:0042346	positive regulation of NF-kappaB imp	4	6.153846	6.69E-05	
GO:0007159	leukocyte cell-cell adhesion	4	6.153846	1.14E-04	
GO:0042632	cholesterol homeostasis	15	55.55556	2.76E-28	
GO:0042157	lipoprotein metabolic process	12	44.44444	1.21E-23	
GO:0043691	reverse cholesterol transport	10	37.03704	5.16E-22	
GO:0034375	high-density lipoprotein particle remod	9	33.33333	6.37E-20	
GO:0033344	cholesterol efflux	9	33.33333	1.06E-17	
GO:0070328	triglyceride homeostasis	8	29.62963	5.68E-15	
GO:0008203	cholesterol metabolic process	9	33.33333	6.97E-14	
GO:0033700	phospholipid efflux	6	22.22222	1.17E-11	
GO:0034372	very-low-density lipoprotein particle r	5	18.51852	1.58E-10	
GO:0019433	triglyceride catabolic process	6	22.22222	3.08E-10	
GO ID	Description	Count	Log2 Fold Change	p Value	
-----------------------	---	-------	------------------	------------------	
GO:0034374	low-density lipoprotein particle remodeling	5	18.51852	1.48E-09	
GO:0006869	lipid transport	7	25.92593	1.51E-09	
GO:0006641	triglyceride metabolic process	6	22.22222	1.86E-09	
GO:0001523	retinoid metabolic process	6	22.22222	3.32E-08	
GO:0034384	high-density lipoprotein particle clearance	4	14.81481	6.57E-08	
GO:0042158	lipoprotein biosynthetic process	4	14.81481	2.75E-07	
GO:0030301	cholesterol transport	4	14.81481	1.82E-06	
GO:0006629	lipid metabolic process	6	22.22222	3.76E-06	
GO:0034370	triglyceride-rich lipoprotein particle remodeling	3	11.11111	6.91E-06	
GO:0030300	regulation of intestinal cholesterol absorption	3	11.11111	2.30E-05	
GO:0034382	chylomicron remnant clearance	3	11.11111	3.44E-05	
GO:0010886	positive regulation of cholesterol storage	3	11.11111	4.82E-05	
GO:0034380	high-density lipoprotein particle assembly	3	11.11111	6.42E-05	
GO:0048261	negative regulation of receptor-mediated	3	11.11111	6.42E-05	
GO:0010898	positive regulation of triglyceride catalysis	3	11.11111	6.42E-05	
GO:0006644	phospholipid metabolic process	4	14.81481	7.76E-05	
GO:0055091	phospholipid homeostasis	3	11.11111	8.24E-05	
GO:0010873	positive regulation of cholesterol ester	3	11.11111	8.24E-05	
GO:0042493	response to drug	6	22.22222	9.06E-05	
GO:0046470	phosphatidylcholine metabolic process	3	11.11111	1.03E-04	
GO:0051006	positive regulation of lipoprotein lipase	3	11.11111	1.03E-04	
GO:0045723	positive regulation of fatty acid biosynthesis	3	11.11111	1.03E-04	
GO:0010744	positive regulation of macrophage derivation	3	11.11111	2.73E-04	
GO:0006656	phosphatidylcholine biosynthetic process	3	11.11111	6.77E-04	
GO:0015914	phospholipid transport	3	11.11111	6.77E-04	
GO:0006954	inflammatory response	5	18.51852	0.002577	
GO:0071420	cellular response to histamine	5	13.88889	1.10E-09	
GO:0007596	blood coagulation	7	19.44444	1.99E-06	
GO:0002576	platelet degranulation	5	13.88889	6.04E-05	
GO:0051932	synaptic transmission, GABAergic	3	8.333333	8.81E-05	
GO:0001666	response to hypoxia	5	13.88889	4.34E-04	
GO:0042060	wound healing	4	11.11111	6.11E-04	
GO:0060384	innervation	3	8.333333	6.32E-04	
GO:0030168	platelet activation	4	11.11111	0.001746	
GO:0007179	transforming growth factor beta receptor	3	8.333333	0.015711	
GO:0007186	G-protein coupled receptor signaling p	9	36	2.23E-05	
GO:0010887	negative regulation of cholesterol stora	3	12	2.93E-05	
GO:0042632	cholesterol homeostasis	4	16	1.01E-04	
GO:0008203	cholesterol metabolic process	4	16	1.21E-04	
GO:0010745	negative regulation of macrophage der	3	12	1.51E-04	
GO:0010875	positive regulation of cholesterol efflux	3	12	1.76E-04	
GO:0006367	transcription initiation from RNA poly	4	16	0.00128	
GO:0042157	lipoprotein metabolic process	3	12	0.001334	
GO:0030522	intracellular receptor signaling pathway	3	12	0.001334	
GO:0043401	steroid hormone mediated signaling pathwa	3	12	0.002978	
GO:0070098	chemokine-mediated signaling pathwa	3	12	0.004581	
GO ID	Description	Count	P Value		
-------	--	-------	--------------------		
GO:0007584	response to nutrient	3	0.004966		
GO:0050728	negative regulation of inflammatory response	3	0.00564		
GO:0002576	platelet degranulation	3	0.009418		
GO:0071222	cellular response to lipopolysaccharide	3	0.011247		
GO:0045944	positive regulation of transcription from 6 to 24	6	0.011296		
GO:0055091	phospholipid homeostasis	2	0.012793		
GO:2000188	regulation of cholesterol homeostasis	2	0.012793		
GO:0010867	positive regulation of triglyceride biosynthesis	2	0.015615		
GO:0006954	inflammatory response	4	0.016245		
GO:0030595	leukocyte chemotaxis	2	0.017022		
GO:0006629	lipid metabolic process	3	0.020952		
GO:0032496	response to lipopolysaccharide	3	0.02273		
GO:0002690	positive regulation of leukocyte chemotaxis	2	0.025429		
GO:007596	blood coagulation	3	0.028141		
GO:0001666	response to hypoxia	6	2.142857 7.15E-06		
GO:0051918	negative regulation of fibrinolysis	3	10.71429 1.11E-04		
GO:0042632	cholesterol homeostasis	4	14.28571 1.45E-04		
GO:0008203	cholesterol metabolic process	4	14.28571 1.73E-04		
GO:0042060	wound healing	4	14.28571 2.80E-04		
GO:0030301	cholesterol transport	3	10.71429 2.95E-04		
GO:0002227	innate immune response in mucosa	3	10.71429 7.30E-04		
GO:0044267	cellular protein metabolic process	4	14.28571 8.75E-04		
GO:0050900	leukocyte migration	4	14.28571 9.64E-04		
GO:0001937	negative regulation of endothelial cell	3	10.71429 9.84E-04		
GO:0006641	triglyceride metabolic process	3	10.71429 0.001434		
GO:0006953	acute-phase response	3	10.71429 0.001778		
GO:0044240	multicellular organism lipid catabolic pathway	2	7.142857 0.003213		
GO:0006898	receptor-mediated endocytosis	4	14.28571 0.003216		
GO:0030512	negative regulation of transforming growth factor	3	10.71429 0.00472		
GO:0015918	sterol transport	2	7.142857 0.008015		
GO:0034197	triglyceride transport	2	7.142857 0.008015		
GO:0007179	transforming growth factor beta receptor	3	10.71429 0.009534		
GO:0010886	positive regulation of cholesterol storage	2	7.142857 0.011203		
GO:0051001	negative regulation of nitric-oxide synth	2	7.142857 0.012794		
GO:0010544	negative regulation of platelet activator	2	7.142857 0.012794		
GO:0035235	ionotropic glutamate receptor signaling	4	80 1.03E-08		
GO:0070588	calcium ion transmembrane transport	2	40 0.028049		
GO:0007268	chemical synaptic transmission	2	40 0.055961		
GO:0000165	MAPK cascade	2	40 0.06097		
GO:0070588	calcium ion transmembrane transport	3	60 2.96E-04		
GO:0043065	positive regulation of apoptotic process	3	60 0.001864		
Genes	Fold Enrichment	Bonferroni			
--------------------------------------	-----------------	------------			
AKT1, EGFR, ICAM1, IL6, TNF, PTGS2, INS, AGT, EDN1, IL1	84.11091678	5.98E-19			
IL4, EGFR, IL6, MMP9, TP53, SMAD3, BCL2L1, PDE4D, IL1	11.92331361	4.09E-13			
CCL2, PTGS2, CXL8, PDE4D, MMP2, KDR, LEP, HMOX1, IL1	17.37702656	1.73E-10			
IL6, TNF, CCL2, PTGS2, CRP, CXL8, TLR4, CCL5, CXCL5	11.58774102	1.11E-09			
EGFR, IL6, EDN1, BCL2L1, PDE4D, KDR, CXL8, TLR4, IL1	9.978738858	1.97E-09			
AKT1, EGFR, IL6, TNF, PTGS2, JUN, HMOX1, EDN1, CCL5	20.35393939	2.10E-09			
LEF, VEGFA, SMAD3, CCL2, BCL2L1, PTEN, IL1	43.05641026	2.21E-09			
IL6, TNF, CCL2, PTGS2, CRP, CXL8, TLR4, CCL5, CXCL5	17.71463736	9.74E-08			
EGFR, ICAM1, IL6, TNF, CCL2, JUN, VEGFA, TLR4, CCL5	9.20445825	8.80E-07			
CCL2, PTGS2, CXCL8, SMAD3, TLR4, CCL5, CXCL5	31.79550296	9.89E-06			
IL4, IL6, TNF, CCL2, EDN1, CXCL8, TLR4, CCL5, CXCL5	22.57326363	9.33E-06			
ICAM1, IL6, TNF, INS, AGT, IL1B, TLR4, CAT, TGFBI	58.71328671	0.002451057			
VCAM1, ICAM1, VWF, TNF, PECAM1, ELN, SERPINE1, IL1	27.19352227	2.73E-05			
EGFR, CCND1, HMOX1, MYC, TGFBI, IL10	53.44936387	1.40E-04			
AKT1, ICAM1, PTGS2, HMOX1, EDN1, VEGFA, TP53, PTE	21.52803513	1.40E-04			
ICAM1, IL6, CCL2, EDN1, CXCL8, CCL5, MYC	25.46998917	5.24E-04			
EGFR, CCL2, AGT, SERPINE1, TLR4, CCL5, IL2	13.18053575	9.75E-05			
CCL2, SERPINE1, CCL5, CXCL12, CXCL10, IL2	24.77218124	6.19E-04			
IL4, MAPK1, CCL2, MAPK14, CXCL8, CCL5, CXCL12, C5X	80.73076923	6.21E-04			
LEP, NOTCH1, IL6, CCL5, IL10	58.71328671	0.002451057			
EGFR, AGT, JUN, ESR1, MYC, TGFBI	28.70427350	0.003452291			
CASP3, PTGS2, CASP8, ADIPOQ, SELE	51.66769231	0.004198768			
TNF, SERPINE1, IL1B, TLR4, ADIPOQ	49.68047337	0.004961818			
IL4, ICAM1, SERPINE1, IL10, KDR	46.13186813	0.006794686			
EGFR, INS, AGT, HMOX1, NOS3	44.51114063	0.007779792			
HMOX1, VEGFA, SERPINE1, CXL8, IL1B, NOS3, KDR	15.72494983	0.00899528			
CCL2, EDN1, IFNG, CXL8, IL1B, CCL5	23.48531469	0.009390795			
AKT1, CCL2, JUN, VEGFA, CXCL12, KDR	22.4621405	0.01169268			
LEP, VCAM1, TNF, SELE	79.8857745	0.026693173			
AKT1, MAPK14, VEGFA, TGFBI	54.38704435	0.086236853			
AKT1, EGFR, PTGS2, APOE, VEGFA, HMOX1, MPO	14.09118881	0.107410642			
TNF, PTGS2, IL1B, TLR4	49.20732601	0.115834231			
VCAM1, ICAM1, CCL5, SELE	41.33415385	0.189900508			

LPL, APOC2, ABCG1, ABCG8, APOB, APOA2, APOA1, LC | 145.7638889 | 1.20E-25 |
LPL, APOA2, APOB, APOA1, LCAT, APOC3, APOA5, APO | 196.3976608 | 5.27E-21 |
APO2, APOA1, LCAT, APOC3, APOC5, SCARB1 | 345.514033 | 2.24E-19 |
APO2, APOA1, LCAT, APOC3, SCARB1, CETP, LIPC, PL | 373.1555555 | 2.77E-17 |
ABCG8, APO2, APOB, APOA1, APOC3, APOA5, APOC2, LPL, APOA1, APOC3, APOA5, APOC2, SCARB1 | 223.8933333 | 4.60E-15 |
LPL, APOA1, APOC3, APOC5, SCARB1, CETP, LIPC, PL | 373.1555555 | 2.77E-17 |
SREBF1, APO2, APOB, APOA1, LCAT, PCSK9, CETP, LIPC, PL | 82.31372549 | 3.03E-11 |
APO2, APOA1, APOC3, APOC5, APOC2, ABCG1 | 266.536825 | 5.09E-09 |
LPL, LCAT, APOC2, CETP, LIPC | 444.2320842 | 6.84E-08 |
LPL, APOB, APOA1, APOC3, APOC5, LIPC | 149.2622222 | 1.34E-07 |
Protein Combinations	p-value	Adjusted p-value
APOA2, APOB, CETP, LIPC, ABCG1	282.6936027	6.42E-07
APOA2, APOA1, APOC3, APOA5, APOC2, CETP, PLTP	57.28265107	6.54E-07
LPL, APOA2, APOC3, APOA5, PCSK9, CETP	106.615873	8.08E-07
LPL, APOA2, APOB, APOA1, APOC3, APOC2	61.17304189	1.44E-05
APOA2, APOA1, APOC2, SCARB1	414.617284	2.85E-05
APOA2, APOB, APOA1, LCAT	276.4115226	1.19E-04
APOB, APOA1, LCAT, CETP	155.4814815	7.90E-04
SREBF1, LPL, LCAT, APOC2, LIPC, PLTP	466.4444444	0.005973788
APOA2, APOA5, APOC2	621.9259259	0.002994207
APOA2, APOA1, APOA5	373.1555556	0.0099271
APOC3, APOC2, LIPC	310.962963	0.014839672
LPL, APOB, SCARB1	266.5396825	0.020694309
APOA2, APOA1, APOA5	233.2222222	0.02747119
APOA2, APOA1, APOA5	207.308642	0.035147972
GABRG2, GABRA1, GABRB2	291.5277778	4.74E-07
F5, HNF4A, FGB, F13A1, F7, SERPIND1, ITGB3	17.74516908	8.57E-04
F5, FGB, F13A1, ITGB3, TGFB2	22.6429342	0.025694099
GABRG2, GABRA1, GABRB2	199.9047619	0.03724106
MTHFR, CST3, F7, HSPD1, TGFB2	13.59943152	0.170769717
TGFB1, COL3A1, ITGB3, TGFB2	23.32222222	0.23443018
GABRB3, GABRB2, GABRA5	77.74074074	0.238624443
F5, FGB, COL3A1, ITGB3	16.22415459	0.529074577
TGFB1, COL3A1, TGFB2	15.21014493	0.9989138

P-values and adjusted p-values for the association of different protein combinations with a specific condition or phenotype are provided. The table lists the combinations along with their respective p-values and adjusted p-values. The adjusted p-values are used to correct for multiple comparisons, reducing the likelihood of false positives.
Genes	Score 1	Score 2
HMGCR, SERPINC1, ABCA1	27.230	0.839923513
PPARA, CNR2, NR1H3	25.506	0.875256643
FGA, PPBP, PF4	19.563	0.969262223
CX3CR1, ABCA1, NR1H3	17.832	0.984431171
PGR, PPARA, AR, CDKN2A, PF4, NR1H3	4.108134557	0.984710568
ABCA1, ANGPTL3	149.262	0.991245596
LDLR, NR1H3	149.262	0.991245596
LDLR, NR1H3	122.123	0.99694653
OLR1, PPBP, CNR2, PF4	7.089	0.97587499
CNR2, PF4	111.946	0.998196747
PPARA, LPA, LDLR	12.834	0.999587097
PPBP, CNR2, PF4	12.286	0.999788506
PPBP, PF4	74.631	0.999923555
P2RY12, FGA, SERPINC1	10.951	0.99972586

Genes	Score 1	Score 2
PLAT, CAV1, SMAD3, NOS2, AGER, ENG	20.92026578	0.003741898
THBD, F2, APOH	179.914	0.056583474
APOA4, CAV1, ABCG5, MTTP	37.48214286	0.073015356
APOA4, APP, VLDLR, SREBF2	35.27731092	0.08689049
SMAD3, LOX, DCN, ENG	29.98571429	0.136689763
CAV1, MSR1, NPC1L1	112.446286	0.14308667
APOA4, PLA2G1B, NOS2	71.96751429	0.31792036
APOA4, APP, SAA1, F2	20.32929782	0.367839106
CAV1, THBD, SELL, F2	19.66276347	0.396575386
CAV1, APOH, ENG	62.03940887	0.40358343
CAV1, APOH, MTTP	51.40408163	0.52843815
SAA1, F2, HP	46.13186813	0.606523969
APOA4, PLA2G1B	599.7142857	0.814832523
MSR1, SAA1, HP, VLDLR	12.89708141	0.815112675
CAV1, SMAD3, ENG	28.11160714	0.916199011
ABCG5, NPC1L1	239.8857143	0.985251494
APOH, MTTP	239.8857143	0.985251494
SMAD3, ENG, CDH5	19.55590062	0.993394306
MSR1, SREBF2	171.3469388	0.997270429
CAV1, ENG	149.9285714	0.99882582
THBD, F2	149.9285714	0.99882582

Genes	Score 1	Score 2
GRIN2C, GRIN2D, GRIN3B, GRIN3A	559.7333333	3.48549E-07
GRIN3B, GRIN3A	56.44369748	0.619895962
GRIN2C, GRIN2D	27.98666667	0.858857251
GRIN2C, GRIN2D	25.63664122	0.882213757

Genes	Score 1	Score 2		
PSEN1, GRIN1, GRIN2A	84.66554622	0.042307922		
PSEN1, GRIN1, GRIN2A	33.584	0.238442902		
Term	Pathway	Count	%	Pvalue
--------	--	-------	-------	----------
hsa03320	PPAR signaling pathway	23	0.035099	6.82E-13
hsa00670	One carbon pool by folate	12	0.018313	5.99E-10
hsa04975	Fat digestion and absorption	15	0.022891	3.07E-09
hsa04610	Complement and coagulation cascades	16	0.024417	1.45E-06
hsa01100	Metabolic pathways	95	0.144974	1.08E-05
hsa04024	cAMP signaling pathway	26	0.039677	2.29E-05
hsa04668	TNF signaling pathway	17	0.025943	9.54E-05
hsa04920	Adipocytokine signaling pathway	13	0.019839	1.93E-04
hsa04066	HIF-1 signaling pathway	15	0.022891	3.39E-04
hsa04064	NF-kappa B signaling pathway	13	0.019839	0.001468
hsa04611	Platelet activation	16	0.024417	0.002507
hsa04146	Peroxisome	12	0.018313	0.003157
hsa04350	TGF-beta signaling pathway	11	0.016786	0.010197
hsa04060	Cytokine-cytokine receptor interaction	22	0.033573	0.012527
hsa04270	Vascular smooth muscle contraction	13	0.019839	0.016115
hsa04923	Regulation of lipolysis in adipocytes	8	0.012208	0.023139
hsa04370	VEGF signaling pathway	8	0.012208	0.03509
hsa04620	Toll-like receptor signaling pathway	11	0.016786	0.04404
hsa04931	Insulin resistance	11	0.016786	0.048998
hsa04068	FoxO signaling pathway	12	0.018313	0.081132
Genes	Fold Enrichment	Bonferroni		
--	-----------------	------------		
LPL, ACOX1, PPARA, PPARD, ORL1, RXRB, RXRA, PPAR	6.689653714	1.71E-10		
MTHFD1, MTHFD2, TYMS, SHMT1, SHMT2, MTHFR, ALI	11.69235127	1.50E-07		
ABCA1, MTTP, ABCG8, APOA4, APOB, APOA1, ABCG5, C	7.495096971	7.70E-07		
KNG1, PLAT, F13A1, F7, PLG, C8G, VWF, THBD, F5, FGA, NAMPT, ACOX1, ALAD, PTGS2, HMGCR, AMT, PTGS1, L PPARA, ACOX1, GRIN3B, NFKB1, GRIN3A, AKT1, GRIN2 ICAM1, IL6, TNF, CCL2, PTGS2, MMP9, EDN1, NFKB1, MI PPARA, TNF, RXRB, RXRA, RXRG, NFKB1, ADIPOQ, AK’ IL6, EDN1, NFKB1, TLR4, TIMP1, AKT1, MAPK1, INS, HM VCAM1, ICAM1, TNF, PTGS2, CD40LG, LY96, IL1B, NFKI COL3A1, PTGS1, ITGB3, PPP1CC, PRKG1, P2RY12, AKT1, HAO1, XDH, EC12, ACOX1, DHRS4, EPHX2, CAT, NOS2, MAPK1, TNF, CDKN2B, TGFBR1, TGFBR2, IFNG, BMPR2, IL6, TNF, CCL2, TNFSF4, TGFBR1, TGFBR2, BMPR2, PF4, AGTR1, MAPK1, PTGIR, ACTA2, PLA2G2A, PLA2G1B, PR AKT1, ADRB2, NPY, PTGS2, INS, PTGS1, PRKACA, PRKG AKT1, MAPK1, PTGS2, VEGFA, PPP3R1, NOS3, PPP3CA, AKT1, MAPK1, IL6, TNF, LY96, IL1B, NFKB1, TLR4, CCL1, AKT1, SREBF1, PPARA, IL6, TNF, CD36, INS, NFKB1, NO’ AKT1, MAPK1, IL6, CDKN2B, INS, TGFBR1, TGFBR2, SM	4.518783101	3.64E-04		
1.518694792	0.002703389			
2.558932097	0.005741483			
3.096105478	0.023666114			
3.619061109	0.047241037			
3.044831444	0.08156863			
2.911888249	0.308468462			
3.298431031	0.467453977			
2.817434042	0.547859408			
2.551902064	0.923661933			
1.76427797	0.957747264			
2.165250236	0.983057549			
2.783893161	0.997194458			
2.555705197	0.999872294			
2.022262013	0.999987688			
1.984812716	0.999996662			
1.745127056	0.999999999			