Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mini-symposium: COVID 19: The second year

Vaccines and variants: modelling insights into emerging issues in COVID-19 epidemiology

Jamie M. Caldwella, Xuan Le, Lorin McIntosh, Michael T. Meehan, Samson Ogunlade, Romain Ragonnet, Genevieve K. O'Neill, James Trauer, Emma McBryde

PII: S1526-0542(21)00066-X
DOI: https://doi.org/10.1016/j.prrv.2021.07.002
Reference: YPRRV 1468

To appear in: Paediatric Respiratory Reviews

Received Date: 13 July 2021
Accepted Date: 13 July 2021

Please cite this article as: J.M. Caldwella, X. Le, L. McIntosh, M.T. Meehan, S. Ogunlade, R. Ragonnet, G.K. O'Neill, J. Trauer, E. McBryde, Vaccines and variants: modelling insights into emerging issues in COVID-19 epidemiology, Paediatric Respiratory Reviews (2021), doi: https://doi.org/10.1016/j.prrv.2021.07.002

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.
Mini-symposium: Covid-19 the second year

Vaccines and variants: modelling insights into emerging issues in COVID-19 epidemiology

Jamie M. Caldwell¹, Xuan Le², Lorin McIntosh², Michael T. Meehan³, Samson Ogunlade, Romain Ragonnet², Genevieve K. O'Neill², James Trauer²*, and Emma McBryde³*

1. Department of Biology, University of Hawaii at Manoa, USA; jamie.sziklay@gmail.com
2. Epidemiological Modelling Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
3. Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia

*Co-senior authors

Corresponding author:
Emma McBryde
Australian Institute of Tropical Health and Medicine,
James Cook University,
Townsville, QLD, Australia
Email: emma.mcbryde@jcu.edu.au

Key words
COVID-19
Mathematical modelling
Herd immunity threshold
Variants of concern
Vaccine allocation

Conflicts of interest:
None of the authors have any conflicts of interest to declare
Educational Aims

The reader will come to appreciate that modellers have:

- Been central in the understanding evolving COVID-19 epidemiology and guiding public health responses.
- Captured social interactions to project the consequences of reopening schools.
- Incorporated vaccine efficacy data with different vaccination strategies to predict the population level effectiveness.
- Used compartment models to estimate changes in transmissibility and lethality of COVID-19 variants of concern [VoC].

Future directions for research

- What population-level impact will vaccination have: elimination, regular strain replacement, age-shift in infection, or different outcomes in different regions?
- The extent to which VoC are more transmissible and lethal compared with previously circulating strains.
- How we can anticipate future stages of COVID-19 through forecasts and scenario projections?

Text: 4578 words Abstract: 157 words Figures/ Tables: 4 References: 49
Abstract
Mathematical modelling has played a pivotal role in understanding the epidemiology of and guiding public health responses to the ongoing coronavirus disease of 2019 (COVID-19) pandemic. Here, we review the role of epidemiological models in understanding evolving epidemic characteristics, including the effects of vaccination and Variants of Concern (VoC). We highlight ways in which models continue to provide important insights, including 1) calculating the herd immunity threshold and evaluating its limitations; 2) verifying that nascent vaccines can prevent severe disease, infection, and transmission but may be less efficacious against VoC; 3) determining optimal vaccine allocation strategies under efficacy and supply constraints; and 4) determining that VoC are more transmissible and lethal than previously circulating strains, and that immune escape may jeopardize vaccine-induced herd immunity. Finally, we explore how models can help us anticipate and prepare for future stages of COVID-19 epidemiology (and that of other diseases) through forecasts and scenario projections, given current uncertainties and data limitations.
Introduction

In the continually changing epidemic landscape of COVID-19 (the disease caused by severe acute respiratory syndrome coronavirus-2; SARS-CoV-2), modelling has been central to understanding evolving COVID-19 epidemiology and guiding public health responses, particularly with respect to vaccines and Variants of Concern (VoC; viral strains hosting mutations that increase transmissibility, change immune response, or affect disease severity). In the eighteen months since COVID-19 emerged, multiple efficacious vaccines have become available, yet outbreaks continue, in part because of limited access to vaccines and emerging VoC. From early in the pandemic, modelling has characterised key epidemiological characteristics (1,2) and helped identify when and what type of restrictions should be used to gain epidemic control (3). For example, models have explicitly captured social interactions to project the consequences of reopening schools (4–7), increasing the proportion of onsite workers (5,8), and reinstating international travel (9,10). Analyses are now shifting to focus on understanding characteristics of mutating viruses (11) and optimising vaccine distribution (12–14). Here, we update previous insights on the role of models in understanding COVID-19 epidemiology (15) with respect to vaccination and VoC.

Incorporating vaccines and variants into simple disease models

We can estimate important epidemiological characteristics and project meaningful future epidemic scenarios using disease transmission models, such as compartmental models. For infectious diseases with an incubation period (like COVID-19), compartmental models typically split the population into four compartments based on clinical status, SEIR: susceptible, exposed, infectious, recovered (Fig. 1; more detail described in 15). From these dynamic models, we can estimate epidemiological characteristics such as the basic (or effective) reproduction number (R_0; the average number of secondary infections from each infectious individual in a fully [or partially] susceptible population) and predict epidemic outcomes, such as disease spread, epidemic duration, and attack rate. We can incorporate vaccination and VoC by adjusting infection, incubation, or mortality rates within the model (Fig. 1). For COVID-19 vaccine analyses, modellers have incorporated vaccine efficacy data from clinical trials given different vaccination strategies to predict the population level effectiveness (14,16). For VoC analyses, modellers have fit SEIR models to data to estimate changes in transmissibility and lethality (11).
Fig. 1. Vaccination and VoC can be incorporated into mechanistic disease transmission models by modifying transition rates between states associated with infection, viral incubation, recovery, and mortality. In this conceptual figure, populations are split into susceptible, exposed, infected (split by clinical status), and recovered compartments and transition along the arrows at different rates corresponding to COVID-19 epidemiology. Vaccination (blue) and VoC (brown) can be modelled by adjusting different rates depending on how they function.

Herd protection

An important theoretical concept for determining how to control an epidemic is herd protection: the indirect disease protection that occurs when a population is immune (from vaccination, prior infection, or both), slowing transmission as a pathogen encounters fewer susceptible individuals. As immunity builds in the population, some degree of herd protection can be expected (17). To quantify the level of population immunity (e.g., vaccine coverage) needed to achieve herd protection, modellers calculate the herd immunity threshold (HIT; Fig. 2). The HIT is a useful modelling tool to guide vaccination campaigns, but in reality, there is unlikely to be a dichotomous threshold, beyond which transmission abruptly stops. The simplest calculation of HIT assumes homogeneous mixing (i.e., contact rates among all individuals in the population are uniform) and uses the following formula:

\[HIT = 1 - \frac{1}{R_0} \]

In practice, HIT varies by context because contact and infection rates are not homogenous within populations: HIT is modified by factors like biological characteristics (e.g., age), behaviors (e.g., occupation), connectedness (e.g., contact patterns), mitigation efforts (e.g., physical distancing), vaccine coverage, and natural immunity. Therefore, for COVID-19 there should be less emphasis on reaching one specific HIT.
and more focus on achieving substantial levels of herd protection to slow spread. Early COVID-19 studies estimated a HIT of ~60-70% based on initial R_0 estimates of ~2.5-3.5 (Fig. 2; 18–20). However, heterogeneous mixing and changing epidemiology make HIT a moving target. For example, the U.K. variant (B.1.1.7) has been estimated to be ~60% more transmissible than the wild-type SARS-CoV-2 strain (21), implying a HIT of ≥80%.

If significant levels of herd protection are achieved, the focus can shift to keeping $R_{\text{effective}}$ below one, allowing low levels of sustained transmission without causing large epidemics.

Fig. 2. The herd immunity threshold (HIT) is higher for diseases with higher transmissibility (basic reproduction numbers).

Impact of vaccination on COVID-19 infection and transmission

A major challenge for using models to predict the impacts of vaccination (and thus guide vaccination strategies) is the mismatch between some model parameters (e.g., infection rates) and data generated from vaccination studies. Vaccines can help alleviate disease burden through multiple pathways, by: 1) preventing infection, 2) rendering infected persons less infectious, or 3) preventing severe outcomes in those infected (Fig. 1), which consequently reduces the total number of infected individuals and/or the proportion of symptomatic infections. Typical clinical trial endpoints relate only to symptomatic disease and certain specified adverse clinical outcomes (e.g., hospitalisation and death) (22), and so do not distinguish whether these outcomes are
attributable to reduced transmission or reduced disease given transmission (Fig. 3). If vaccines do not markedly reduce transmission, exponential growth may still occur, with the potential to overwhelm health services (23). Therefore, incorporating realistic estimates for key model parameters is extremely important.

Fig. 3: Multiple observed and unobserved mechanisms may influence the effect of vaccination on the COVID-19 epidemic. Comparing cases in an unvaccinated population (left) with cases in a vaccinated population (right) with two infected categories, vaccination could 1) reduce the infectiousness of asymptomatic and/or symptomatic cases, 2) reduce the number of symptomatic cases arising in the population, and/or 3) reduce the number of asymptomatic cases arising. Note that pathway 2) is often the primary outcome reported by clinical trials, whereas pathways 1) and 3) are often not observed.

To better predict the real-world impact of vaccines on the COVID-19 epidemic, we present early evidence for key epidemiological characteristics that are important for disease modelling (Table 1), although this evidence base has already advanced considerably since the search was performed. Recent studies indicate that many currently available vaccines (BioNTech-Pfizer, Moderna, Sputnik V, Oxford-AstraZeneca, Janssen, Novavax, Sinovac, and Sinopharm) are 51-95% effective at reducing clinical COVID-19 and 85-100% effective at preventing severe disease based on clinical trial data (24). To estimate other important model parameters from clinical trial data, we undertook a systematic review and determined that several COVID-19 vaccines are effective at preventing infection and onward transmission (Table 1; see Supplementary Material for methods and full results). Some vaccines show evidence of
preventing infection based on the comparison of the proportion of asymptomatic infected individuals in vaccine and placebo groups (25). Some vaccines show evidence of reduced infectiousness of COVID-19 cases, based on proxies of infectiousness (such as estimating the viral load through PCR cycle thresholds, or Ct) that appear lower in vaccinated patients (26).

Table 1: Brief overview of vaccine efficacy studies against different SARS-CoV-2 strains, focusing on clinical outcomes (i.e., reduction in symptomatic disease) and reduction in asymptomatic covid or changes to infectiousness of breakthrough infections deduced from viral load (inferred from cycle threshold, Ct).

[Table 1 attached, summarising data from the following studies: (26,27,36,28–35)]

Optimising vaccine distribution

Mathematical modelling is an ideal tool to determine optimal vaccine allocation policies that balance individual and population benefits. The primary way models can help guide vaccine distribution strategies is by generating multiple plausible future scenarios (i.e., simulating disease spread given different conditions). For example, for vaccines with limited supply, models can compare different distribution approaches (e.g., targeting those most vulnerable, targeting superspreaders) to determine their effect on various optimisation targets (e.g., reducing mortality, outbreak duration) to help answer the critical question of who should receive vaccines first. Similarly, models can project possible outcomes for a suite of decisions associated with vaccine distribution, such as identifying the optimal timing of distribution to whether fractional doses could better curtail an epidemic.

For COVID-19, modelling studies have focused on how to optimally allocate vaccines given limited supply, showing that optimal strategies vary depending on total supply, program goals, and context. Given low vaccine efficacy, low coverage, or sustained transmission, prioritizing individuals >60 years of age should lead to the greatest reductions in hospitalisations and mortality (37), while targeting younger individuals should lead to the greatest reduction in incidence (14). However, clear thresholds for vaccine efficacy and population-level coverage were identified, beyond which (e.g., when vaccine supply increases) a suppression strategy that targets middle-aged (30 – 59) transmitters becomes optimal across all optimisation targets (e.g., incidence, hospitalisations, and deaths) (13,38). Because human contact patterns are heterogeneous but broadly understood, targeted strategies are likely to be far more effective at reducing disease burden than indiscriminate vaccination campaigns, whether targeting is directed according to age (14), occupation (e.g. essential-workers; 29), or those with higher degrees of social connectivity (40). Similarly, at the global level, several modelling studies have found that allocating available doses in proportion
to each country’s population size (compared to the current practices favouring high-income countries) is close to the optimal strategy (13) and could double the global number of deaths averted (41). Further, initially distributing single doses (for two dose vaccines) should avert more deaths than providing fewer people with two doses, provided that protection conferred by a single dose is sufficiently high (12,42). Given sustained transmission, rapidly gaining population immunity is paramount.

Variants of Concern (VoC): epidemiology and interaction with vaccines

Mathematical models can help us understand how viral evolution is shaped by selective pressure and competition among strains over limited resources (i.e., susceptible hosts), and how this affects epidemic trajectories. As viruses replicate and spread, genetic mutations accrue. Viruses become more transmissible and less pathogenic over time, often evolving into endemic diseases (43,44) and similar mutations can arise in different regions given exposure to similar selective pressures. This process can lead to multiple co-circulating strains with varying transmissibility, severity, and susceptibility to interventions. When co-circulating strains provide cross-immunity (i.e., infection from either strain confers high levels of immunity to both strains), disease models show that competition favours variants with higher R_0, leading to strain replacement (45); when strains have similar R_0 values, epidemic cycles can emerge, which may mimic seasonal epidemics (45–47). Fitting models with time series of incidence data can allow for the estimation of strain-specific growth rates, R_0, and the extent of cross-immunity conferred to other strains (21). Infectious disease models can further capture the impact of variants and provide practical assistance for vaccine distribution given new strains, provided there is robust evidence regarding the impact of mutations on transmissibility, degree of immune escape to specific vaccines, and waning immunity.

SARS-CoV-2 is likely to continue evolving and circulating around the globe as an endemic disease, possibly with epidemic cycles. Through natural evolution, SARS-CoV-2 would likely continue spreading and shift to primary infection in younger age groups (44), and VoC make global eradication even more unlikely. Several mutated SARS-CoV-2 viruses have emerged independently and are considered VoC based on increased transmissibility, change in clinical severity, reduced immunity following infection/vaccination, or a combination of these (Table 1). Although these VoC arose separately, they have commonalities (e.g., changes in specific sites of the spike protein), likely because of similar selective pressures (e.g., increasing immunity). Early evidence suggests that natural and vaccine immunity are not complete or robust to new variants (e.g., Table 1). For instance, a simulation study from Manaus (Brazil) indicated that prior natural infection from the previously circulating strain generated only 54-79% protection against the Brazilian variant (11). Using a simple disease model that assumes long-term immunity and homogeneous mixing, we show that vaccination
coverage can become unattainable with VoC with increased transmissibility and/or immune evasion (Fig. 4). For instance, a vaccine that is 90% effective at reducing transmission (e.g., Moderna against the wild-type strain) would require at least 62% coverage to achieve herd immunity, but if vaccine escape mutants lead to vaccine efficacy less than 60% (some evidence shown in Table 1), herd immunity cannot be achieved through vaccination alone (Fig. 4).

![Graph showing vaccine coverage vs vaccine efficacy for different transmissibility levels](image)

Fig. 4. Low vaccine efficacy and/or high transmissibility indicate herd immunity cannot be achieved through vaccination alone, based on a simple disease model. The plot shows vaccine coverage (vertical axis) versus vaccine efficacy (horizontal axis) for diseases with differing levels of transmissibility (colored solid lines). The solid lines show the herd immunity threshold for these differing parameters. The red, green and black dots demonstrate plausible ranges of values for R_0 and vaccine efficacy for three different vaccine-variant pairings. Values are drawn from these ranges using Monte-Carlo sampling for the R_0 and the vaccine efficacy was performed and the required coverage to achieve herd immunity was calculated as $HIT = (1-1/R_0)/VE$ which was plotted as a dot for each of 1,000 draws from each vaccine/variant pairing.

Looking into the future

Modelling can provide unique insights into COVID-19 in the future. The ability of some variants to escape pre-existing immunity (infection- or vaccine-induced; e.g., 11) guarantees that the world has many more years of COVID-19 decision making ahead. As more evidence arises regarding the extent, duration, and nature of post-infection immunity (48,49), models could predict the size and severity of future COVID-19 epidemics in places with a history of prior infection. Further, modelling will continue to
play a critical role in guiding pandemic responses, whether it is used to identify key characteristics of emerging variants or to project disease spread under various scenarios in the short-, medium-, or long-term. Model uncertainty, which arises due to simplifying model assumptions and observation error in data inputs, will dissipate as evidence emerges, and does not preclude scenario comparisons with appropriate communication of uncertainty. These types of models provide invaluable knowledge that can be used to design future epidemic control planning, including for pathogens other than SARS-CoV-2.

While we know that COVID-19 control will rely significantly on vaccination, it remains unclear what population-level impact it will have: elimination, regular strain replacement, age-shift in infection, or different outcomes in different regions. We can use models to estimate the population-level impact of vaccination using trial-based vaccine efficacy estimates to consider different coverage levels and roll-out strategies. Using the ever-increasing knowledge of waning vaccine immunity profiles, modelling will also help determine whether vaccination will need to be repeated at regular intervals and how this should be targeted. Based on early evidence, the main barrier to effective control through vaccination could be the emergence of new viral variants escaping vaccine immunity (11). As vaccination coverage increases, reduced transmission will reduce opportunities for emergence and population immunity will act as a selective pressure, increasing the rate of vaccine escape mutants; however, it is unclear which process will predominate. Two causes for optimism are that 1) to date, VoC have few genotypic changes with convergent phenotypic mutations, and 2) new vaccine technologies are rapidly emerging. Thus, the world’s ability to control future outbreaks will likely depend on how the virus evolves and the capacity to rapidly access and distribute adapted vaccines.

Conclusion
As the COVID-19 pandemic continues to unfold, models can help us understand emerging issues with COVID-19 epidemiology, vaccination, and VoC. In this review, we discuss the role of models in understanding: herd protection and its limitations; the role of vaccines in preventing severe disease, infection, and transmission and their lowered efficaciousness against VoC; how optimal vaccine allocation strategies vary depending on vaccine supply and efficacy; the extent to which VoC are more transmissible and lethal compared with previously circulating strains; immune escape may undermine vaccine efforts to reach herd immunity; and how we can anticipate future stages of COVID-19 (and other emerging infectious diseases) through forecasts and scenario projections.
References:

1. Grewelle R, De Leo G. Estimating the Global Infection Fatality Rate of COVID-19. medRxiv. 2020;2020.05.11.20098780. Available from: https://doi.org/10.1101/2020.05.11.20098780

2. Yang S, Cao P, Du P, Wu Z, Zhuang Z, Yang L, et al. Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Ann Transl Med. 2020;8(4):128–128. Available from: /pmc/articles/PMC7049028/

3. Chowdhury R, Heng K, Shawon MSR, Goh G, Okonofua D, Ochoa-Rosales C, et al. Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling study comparing 16 worldwide countries. Eur J Epidemiol. 2020;35(5):389–99. Available from: https://doi.org/10.1007/s10654-020-00649-w

4. McBryde ES, Trauer JM, Adekunle A, Ragonnet R, Meehan MT. Stepping out of lockdown should start with school re-openings while maintaining distancing measures. Insights from mixing matrices and mathematical models. medRxiv. 2020;2020.05.12.20099036.

5. Karatayev VA, Anand M, Bauch CT. Local lockdowns outperform global lockdown on the far side of the COVID-19 epidemic curve. Proc Natl Acad Sci U S A. 2020;117(39):24575–80. Available from: www.pnas.org/cgi/doi/10.1073/pnas.2014385117

6. Brooks-Pollock E, Christensen H, Trickey A, Hemani G, Nixon E, Thomas A, et al. High COVID-19 transmission potential associated with re-opening universities can be mitigated with layered interventions. medRxiv. 2020;2020.09.10.20189696. Available from: https://doi.org/10.1101/2020.09.10.20189696

7. Head JR, Andrejko K, Cheng Q, Collender PA, Phillips S, Boser A, et al. The effect of school closures and reopening strategies on COVID-19 infection dynamics in the San Francisco Bay Area: a cross-sectional survey and modeling analysis. medRxiv Prepr Serv Heal Sci. 2020;2020.08.06.20169797. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32793934

8. Caldwell JM, de Lara-Tuprio E, Robin Teng T, Regina Justina ME, Francis Sarmiento RR, Abayawardana M, et al. Understanding COVID-19 dynamics and the effects of interventions in the Philippines: A mathematical modelling study. medRxiv. 2021;2021.01.14.21249848. Available from: https://doi.org/10.1101/2021.01.14.21249848

9. Zhu Z, Weber E, Strohsal T, Serhan D. Sustainable border control policy in the COVID-19 pandemic: A math modeling study. Travel Med Infect Dis. 2021;41:102044. Available from: https://pubmed.ncbi.nlm.nih.gov/33838318/

10. Daon Y, Thompson RN, Obolski U. Estimating COVID-19 outbreak risk through air travel. J Travel Med. 2020;27(5):1–8. Available from: https://academic.oup.com/jtm/article/27/5/taaa093/5851816

11. Faria NR, Mellan TA, Whittaker C, Claro IM, da Candido DS, Mishra S, et al. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv. 2021;2021.02.26.21252554. Available from: https://doi.org/10.1101/2021.02.26.21252554

12. Matrajt L, Eaton J, Leung T, Dimitrov D, Schiffer JT, Swan DA, et al. Optimizing vaccine allocation for COVID-19 vaccines: critical role of single-dose vaccination.
13. Hogan AB, Winskill P, Watson OJ, Walker PGT, Whittaker C, Baguelin M, et al. Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: A mathematical modelling analysis. Vaccine. 2021;39(22):2995–3006.

14. Meehan MT, Cocks DG, Caldwell JM, Trauer JM, Adekunle I, Ragonnet RR, et al. Age-targeted dose allocation can halve COVID-19 vaccine requirements. medRxiv. 2020;2020.10.08.20208108. Available from: https://doi.org/10.1101/2020.10.08.20208108

15. Meehan MT, Rojas DP, Adekunle AI, Adegboye OA, Caldwell JM, Turek E, et al. Modelling insights into the COVID-19 pandemic. Paediatric Respiratory Reviews. W.B. Saunders; 2020. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1526054220300993

16. Moghadas SM, Vilches TN, Zhang K, Nourbakhsh S, Sah P, Fitzpatrick MC, et al. Evaluation of COVID-19 vaccination strategies with a delayed second dose. PLoS Biol. 2021;19(4):e3001211. Available from: https://doi.org/10.1371/journal.pbio.3001211

17. Fine P, Eames K, Heymann DL. “Herd Immunity”: A Rough Guide. Clin Infect Dis. 2011 Apr 1;52(7).

18. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–97.

19. Musa SS, Zhao S, Wang MH, Habib AG, Mustapha UT, He D. Estimation of exponential growth rate and basic reproduction number of the coronavirus disease 2019 (COVID-19) in Africa. Infect Dis Poverty. 2020;9(1):1–6. Available from: https://doi.org/10.1186/s40249-020-00718-y

20. Alimohamadi Y, Taghdir M, Sepandi M. Estimate of the basic reproduction number for COVID-19: A systematic review and meta-Analysis. Vol. 53, Journal of Preventive Medicine and Public Health. Korean Society for Preventive Medicine; 2020. p. 151–7. Available from: /pmc/articles/PMC7280807/

21. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science (80-.). 2021;372(6538):eabg3055. Available from: http://science.sciencemag.org/content/372/6538/eabg3055.abstract

22. Hodgson J. The pandemic pipeline. Nat Biotechnol. 2020; Available from: http://www.nature.com/articles/d41587-020-00055-z

23. Moore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ. Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infect Dis. 2021; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33743847

24. Abdool Karim SS, de Oliveira T. New SARS-CoV-2 Variants — Clinical, Public Health, and Vaccine Implications. N Engl J Med. 2021;384(19):1866–8. Available from: https://www.nejm.org.stanford.idm.oclc.org/doi/full/10.1056/NEJMc2100362

25. Haas EJ, Angulo FJ, McLaughlin JM, Anis E, Singer SR, Khan F, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections
and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33964222

26. Levine-Tiefenbrun M, Yelin I, Katz R, Herzel E, Golan Z, Schreiber L, et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat Med. 2021;27(5):790–2. Available from: https://doi.org/10.1038/s41591-021-01316-7

27. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603–15. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2034577

28. Petter E, Mor O, Zuckerman N, Oz-Levi D, Younger A, Aran D, et al. Initial real world evidence for lower viral load of individuals who have been vaccinated by BNT162b2. medRxiv. 2021;2021.02.08.21251329.

29. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269).

30. Lumley SF, Rodger G, Constantinides B, Sanderson N, Chau KK, Street TL, et al. An observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination status. medRxiv. 2021;2021.03.09.21253218. Available from: http://medrxiv.org/content/early/2021/03/12/2021.03.09.21253218.abstract

31. Bernal JL, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of COVID-19 vaccines against the B. 1.617. 2 variant. medRxiv. 2021;

32. Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021. 2021;384(20):1885–98. Available from: https://www.ncbi.nlm.nih/pubmed/33725432

33. Sadoff J, Gray G, Vandeboesch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021; Available from: https://doi.org/10.1056/NEJMoa2101544

34. Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, et al. Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers. N Engl J Med. 2020;384(6):533–40. Available from: https://doi.org/10.1056/NEJMoa2034545

35. Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021;384(20):1899–909. Available from: https://doi.org/10.1056/NEJMoa2103055

36. Janssen Biotech, Inc. Vaccines and Related Biological Products Advisory Committee Meeting. Federal Drug Association. 2021. Available from: https://www.fda.gov/media/146217/download

37. Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus.
38. Matrajt L, Eaton J, Leung T, Brown ER. Vaccine optimization for COVID-19: Who to vaccinate first? Sci Adv. 2020;7(6):eabf1374. Available from: http://advances.sciencemag.org/content/7/6/eabf1374.abstract

39. Buckner JH, Chowell G, Springborn MR. Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers. Proc Natl Acad Sci. 2021;118(16):e2025786118. Available from: http://www.pnas.org/content/118/16/e2025786118.abstract

40. Chen J, Hoops S, Marathe A, Mortveit H, Lewis B, Venkatramanan S, et al. Prioritizing allocation of COVID-19 vaccines based on social contacts increases vaccination effectiveness. medRxiv. 2021;2021.02.04.21251012. Available from: http://medrxiv.org/content/early/2021/02/16/2021.02.04.21251012.abstract

41. Chinazzi M, Davis JT, Dean NE, Mu K, Pastore y Piontti A, Xiong X, et al. Estimating the effect of cooperative versus uncooperative strategies of COVID-19 vaccine allocation: a modeling study. 2020. Available from: https://www.networkscienceinstitute.org/publications/estimating-the-effect-of-cooperative-versus-uncooperative-strategies-of-covid-19-vaccine-allocation-a-modeling-study

42. Hill EM, Keeling MJ. Comparison between one and two dose SARS-CoV-2 vaccine prioritisation for a fixed number of vaccine doses. medRxiv. 2021;2021.03.15.21253542. Available from: http://medrxiv.org/content/early/2021/03/24/2021.03.15.21253542.abstract

43. Berngruber TW, Froissart R, Choisy M, Gandon S. Evolution of Virulence in Emerging Epidemics. PLoS Pathog. 2013;9(3):1003209. Available from: www.plospathogens.org

44. Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science (80-). 2021;371(6530):741 LP – 745. Available from: http://science.sciencemag.org/content/371/6530/741.abstract

45. Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals . Princeton University Press; 2008. Available from: http://www.jstor.org/stable/j.ctvcm4gk0

46. Gupta S, Ferguson N, Anderson R. Chaos, Persistence, and Evolution of Strain Structure in Antigenically Diverse Infectious Agents. Science (80). 1998;280(5365):912 LP – 915. Available from: http://science.sciencemag.org/content/280/5365/912.abstract

47. Gomes MGM, Medley GF, Nokes DJ. On the determinants of population structure in antigenically diverse pathogens. Proc R Soc B Biol Sci . 2002;269(1488):227–33. Available from: https://royalsocietypublishing.org/

48. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med . 0(0):null. Available from: https://doi.org/10.1056/NEJMoa2026116

49. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet . 2021;397(10283):1459–69. Available from: https://doi.org/10.1016/
