Incidence of fracture in adjacent levels in patients treated with balloon kyphoplasty: a review of the literature

Peter G. Campbell · James S. Harrop

Abstract The available evidence suggests that the treatment of painful vertebral compression fractures (VCFs) secondary to osteoporosis or multiple myeloma, by cement augmentation with balloon kyphoplasty (BK), is both safe and effective. However, there is uncertainty in the literature concerning the potential of the procedure to influence the risk for adjacent segment fracture. The aim of this article is to review the available peer-reviewed literature, regarding adjacent vertebral body fractures after kyphoplasty augmentation.

Keywords Kyphoplasty · Adjacent fracture · Vertebral body fracture · Vertebral compression fracture

Introduction

Vertebral compression fractures result from failure of the anterior column under loads either secondary to flexion or axial forces. They are not typically associated with neurological deficit, since the fractures do not extend into the spinal canal nor compress the neural elements. The majority of these fractures are associated with a limited period of pain. Most patients unknowingly sustain a fracture and thus never seek medical attention. In cases with persistent pain, medical management has been the mainstay of treatment for these fractures, which includes bed rest, analgesics, braces, and physical therapy. Generally, acute pain resolves in 4 weeks to 8 months, at times a spinal deformity may occur. These fractures might result from osteoporosis and relatively minor trauma or involvement of the vertebral body by an infiltrative tumor. Many of these fractures are not painful, but they seem to be associated with an impaired quality of life, an increase in mortality, and significant morbidity. Surgical treatment for symptomatic vertebral compression fractures had consisted in the past of reduction and internal fixation using an open anterior or posterior approach [1]. Results have often been compromised due to the extensive nature of the intervention and the poor bone quality secondary to osteoporosis, resulting in poor implant fixation and subsequent patient outcomes.

As minimal invasive spinal surgery techniques evolved, acute painful vertebral compression fractures were targeted for treatment through percutaneous procedures termed vertebroplasty or kyphoplasty. These procedures entail placing large spinal needles into the fractured vertebral body through a channel made in the pedicle and injecting bone cement into the fractured bone (Fig. 1). The term “kyphoplasty” was introduced by Kyphon Inc. to describe balloon-assisted vertebroplasty. Unlike vertebroplasty, kyphoplasty aims not only to secure fracture fixation and stabilization, but also to reconstruct the vertebral anatomy and correct the kyphotic spinal deformity. A deflated balloon is inserted into the vertebral body through the pedicle and inflated to restore the height of a collapsed vertebral body and create a cavity inside. The balloon is then deflated and withdrawn. The remaining cavity is filled under low pressure with methylmethacrylate or bone substitute cement. This process is meant to stabilize the vertebrae, internally, which prevents the continuation of microfractures, and then facilitate pain relief while restoring the functional capacity. Restoring vertebral height and spinal alignment is believed to be important in the treatment of long-term increased morbidity and mortality that arises from vertebral compression fractures and spinal deformity.
Early clinical results have illustrated significant pain relief and reduction of morbidity, but additional prospective studies are needed to refine the indications for the procedure. Potential complications of the procedure include: extrusion of the cement the spinal canal and subsequent spinal cord injury, infection, hematoma formation, pulmonary embolus, failure to relieve pain, and fracture of adjacent vertebral bodies. A kyphotic deformity increases the anterior stresses in adjacent levels by changing biomechanical loads as they are transferred through the spine. Therefore, a vertebral fracture is a potential increased risk for subsequent fractures in adjacent vertebrae [2]. For this reason, balloon kyphoplasty was introduced as a potentially more effective treatment option than vertebroplasty as it enabled the ability to restore the anterior part of the vertebral body and the biomechanical balance of the spine. As such, it has been presumed that treatment of compression fractures with kyphoplasty may reduce the rate of adjacent fracture. This article will attempt to review the current literature available regarding adjacent level fracture risk after kyphoplasty.

Methods

A review of the literature provided few studies to evaluate vertebral compression fractures in adjacent levels with kyphoplasty. A number of bibliographic databases were searched, including MEDLINE (Ovid), MEDLINE (R) Inprocess citations, and the Cochrane Library utilizing the keywords: vertebral body, adjacent fracture, vertebroplasty and kyphoplasty. Only one article specifically addressed the issue of adjacent level fracture after kyphoplasty. Several other articles reported adjacent fractures as a portion of their report on recurrent fracture after the procedures.

Results

Several studies were identified which focused on and directed conclusions about the association of adjacent fractures after a kyphoplasty procedure. In particular, Pflugmacher et al. [3] reviewed 42 patients with 67...
vertebral body fractures and focused their article on this issue. In their 2-year follow-up after kyphoplasty, an adjacent fracture occurred in 8 (21.6%) patients with a total of 11 (18.3%) new adjacent vertebral body fractures. However, one limitation of this study was it did not divide the patient’s fractures into groups based on the primary mechanism of fracture.

Several other retrospective reviews extrapolate the risk of adjacent disease in their manuscripts on the complications after kyphoplasty. Uppin et al. [4] reviewed 177 osteoporotic patients treated with vertebroplasty specifically analyzing with subsequent fractures. With this method, 22 (12.4%) patients developed 36 new fractures, and 24 (66%) fractures occurred adjacent to the treated body. Fribourg et al. [5] treated 38 patients at 47 levels with balloon kyphoplasty. In the follow-up of 8 months, 10 patients had 17 subsequent fractures: nine at above-adjacent levels, four at below-adjacent levels, and four at remote levels. Harrop et al. [6] treated 225 vertebrae in 115 patients with balloon kyphoplasty. A total of 26 patients developed 34 subsequent fractures at an average follow-up of 1 month. In this study, the incidence of subsequent fractures was 11.25% in patients with primary osteoporosis, while it was 48.6% in patients with secondary osteoporosis due to steroid therapy. This review covered 80 patients with primary osteoporosis and 35 patients with secondary steroid induced osteoporosis. Hulme et al. [7] reported of the 12 reviewed studies on BK that presented data on fractures 766 patients had 115 new fractures and 66% were located at an adjacent level.

Kyphoplasty was developed after the use of vertebroplasty in an attempt to restore vertebral body height in addition to strengthening the body from its previous state. Height restoration has the potential benefit of reducing postfracture kyphosis, decreased pulmonary related mortality and possibly decreasing the incidence of adjacent level fractures [9]. In early biomechanical studies, both kyphoplasty and vertebroplasty restored body strength; however, kyphoplasty produced a statistically significant improvement in post-treatment vertebral body height [9]. In a systematic review of the two treatments, kyphoplasty produced a significant increase \((P = 0.01) \) in vertebral height, with a mean value of \(4.5 \pm 3.6 \) mm. One can infer a \(42 \pm 21\% \) restoration of the height lost [10]. Pradhan et al. [11] reported a greater improvement in vertebral body height and decreased drop off in angular correction at 2 and 3 levels above and below the treated segments, thus implying greater correction in sagittal alignment (Fig. 2).

A statistically significant decrease in adjacent level fracture has yet to be consistently reported in clinical studies.

There are several explanations for adjacent fractures after augmentation of the vertebral body. Rigid cement fixation could theoretically induce degenerative changes in adjacent bone, and the augmented vertebra is likely much stiffer than the adjacent vertebra [3]. Baroud et al. [12] developed biomechanical models to examine cement augmentation on the loading in adjacent vertebrae. In depth...
analysis of the model demonstrated that the cement in the
treated vertebra acts as a pillar, reducing the physiologic
inward bulge of the endplates. As a result of this effect, the
pressure in the adjacent intervertebral disc increases by up
to 19%. The authors theorized that this shift in adjacent
loading is one of the reasons for adjacent fractures. A
statistically significant difference in adjacent fracture in
kyphoplasty and vertebroplasty has yet to be consistently
reported in clinical studies.

The amount of injected cement and also the restoration
of vertebral height by kyphoplasty could have an influence
the long-term outcomes of the procedure. However, these
associations have not been demonstrated clinically [4].

In conclusion, balloon kyphoplasty is an effective,
minimally invasive procedure for the stabilization of
osteoporotic vertebral fractures leading to a statistically
significant reduction of pain and functional status. Balloon
kyphoplasty can stabilize and partially restore vertebral
body height and is able to avoid further kyphotic defor-
mities at the treated level. Starting antosteoporosis therapy
is essential and is the most effective measure in reducing
the occurrence of further fractures [13]. There is insuffi-
cient evidence to conclude that kyphoplasty can reduce the
incidence of adjacent fractures.

References

1. Terry Canale S. Campbell’s Operative Orthopaedics. 10th ed.
Chapter 35 CD-ROM. Mosby; 2002.
2. Yuan HA, Brown CW, Phillips FM. Osteoporotic vertebral
deformity: a biomechanical rationale for the clinical conse-
quences and treatment of vertebral body compression fractures.
J Spinal Disord Techn 2004;17:236–42.
3. Pflugmacher R, Schroeder RJ, Klostermann CK. Incidence of
adjacent vertebral fractures in patients treated with balloon kyp-
hoplasty: two years’ prospective follow-up. Acta Radiol
2006;47(8):830–40.
4. Uppin AA, Hirsch JA, Centenera LV, et al. Occurrence of new
vertebral body fracture after percutaneous vertebroplasty in
patients with osteoporosis. Radiology 2003;226:119–24.
5. Friberg D, Tang C, Sra P, Delamarter R, Bae H. Incidence of
subsequent vertebral fracture after kyphoplasty. Spine
2004;29:2270–6.
6. Harrop JS, Prpa B, Reinhardt MK, Lieberman I. Primary and
secondary osteoporosis’ incidence of subsequent vertebral com-
pression fractures after kyphoplasty. Spine 2004;29:2120–5.
7. Hulme PA, Krebs J, Ferguson SJ, Berlemann U. Vertebroplasty
and kyphoplasty: a systematic review of 69 clinical studies. Spine
2006;31(17):1983–2001.
8. Garfin SR, Buckley RA, Ledlie J. Balloon Kyphoplasty Out-
comes Group. Balloon kyphoplasty for symptomatic vertebral
body compression fractures results in rapid, significant, and
sustained improvements in back pain, function, and quality of life
for elderly patients. Spine 2006;31(19):2213–20.
9. Belkoff SM, Mathis JM, Fenton DC, Scribner RM, Reiley ME,
Talmadge K. An ex vivo biomechanical evaluation of an inflat-
able bone tamp used in the treatment of compression fracture.
Spine 2001;26(2):151–6.
10. Bouza C, Lopez T, Magro A, Navalpotro L, Amate JM. Efficacy
and safety of balloon kyphoplasty in the treatment of vertebral
compression fractures: a systematic review. Eur Spine J
2006;15(7):1050–67. Epub 2006 Jan 21. Review.
11. Pradhan BB, Bae HW, Kropf MA, Patel VV, Delamarter RB.
Kyphoplasty reduction of osteoporotic vertebral compression
fractures: correction of local kyphosis versus overall sagittal
alignment. Spine 2006;31(4):435–41.
12. Baroud G, Nemes J, Heini P, Steffen T. Load shift of the inter-
vertebral disc after a vertebroplasty: a finite-element study. Eur
Spine J 2003;12:421–6.
13. Sorensen OH, Crawford GM, Mulder H, Hosking DJ, Gennari C,
Mellstrom D, et al. Long term efficacy of risedronate: a 5-year
placebo-controlled clinical experience. Bone 2003;32:120–6.