BMP4 and Neuregulin regulate the direction of mouse neural crest cell differentiation

SHUNQIN ZHU¹,², WANHONG LIU³, HAN-FEI DING⁴, HONGJUAN CUI² and LIQUN YANG²

¹School of Life Sciences and ²State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715; ³School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China; ⁴Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA

Received May 15, 2018; Accepted November 9, 2018

DOI: 10.3892/etm.2019.7439

Abstract. The neural crest is a transient embryonic tissue that initially generates neural crest stem cells, which then migrate throughout the body to give rise to a variety of mature tissues. It was proposed that the fate of neural crest cells is gradually determined via environmental cues from the surrounding tissues. In the present study, neural crest cells were isolated and identified from mouse embryos. Bone morphogenetic protein 4 (BMP4) and Neuregulin (NRG) were employed to induce the differentiation of neural crest cells. Treatment with BMP4 revealed neuron-associated differentiation; cells treated with NRG exhibited differentiation into the Schwann cell lineage, a type of glia. Soft agar clonogenic and neurosphere formation assays were conducted to investigate the effects of N-Myc (MYCN) overexpression in neural crest cells; the number of colonies and neurospheres notably increased after 14 days. These findings demonstrated that the direction of cell differentiation may be affected by altering the factors present in the surrounding environment. In addition, MYCN may serve a key role in regulating neural crest cell differentiation.

Introduction

Neural crest cells originate from the dorsal margin of the neural plate, and can differentiate into various types of cells and tissues (1,2). Numerous neural crest cells have been isolated and characterized from different organs and tissues (3-7). During embryonic development, neural crest cells arise from the trunk region of the neural crest, migrate ventrally and aggregate adjacently to the dorsal aorta to form the primary sympathetic chain (8). The determination of neural crest cell fate is regulated by environmental factors from the extracellular surroundings (9). In addition, neural crest cells differentiate into various cell lineages according to their position in the embryo, inducing the formation of different cell types, including neurons, melanocytes, glial cells of the peripheral nervous system, endoneurial fibroblasts and endocrine cells (10-12).

Environmental factors may determine the differentiation fate of neural crest cells in vitro; neural crest cells were reported to be induced by a combination of secreted signals (11,12). Bone morphogenetic proteins (BMPs) are a unique group of proteins encoded by the transforming growth factor-β superfamily of genes, and have been reported as key regulators of embryogenesis (13). In addition, BMPs were observed to regulate the establishment of the embryonic body plan, dorsal-ventral patterning and the differentiation of neural cells (14-17). Additionally, BMP signaling has been demonstrated to affect the development of dorsal neural tube cells and formation of neural crest cells during a critical period prior to neural tube closure (18). Neuregulins (NRGs) are members of the epidermal growth factor protein family; it has been reported that NRGs are primarily expressed and secreted by neurons, and act on the surrounding glial cells (19). NRGs were demonstrated to induce the growth and differentiation of glial, epithelial and muscle cells in vitro (20-22). It has been reported that NRG⁺⁺ embryos died during embryogenesis and displayed heart malformations (23). NRGs may affect the survival, proliferation, migration, differentiation and myelination potential of Schwann cells (24-29); developing Schwann cells originate from neural crest cells that migrated along developing nerve fibers (10,30-32). Collectively, these findings suggest that environmental factors serve a critical role in neural crest cell differentiation. The present study aimed to determine the mechanism underlying neural crest cell differentiation in response to treatment with BMP4 and NRGs.

Myc activity has been reported to be a critical factor for the development and maintenance of stem cell properties; Myc has been demonstrated to control stem cell functions, including proliferation, differentiation and survival (33). Neural crest cells are generated from neural crest stem cells; as a migratory and multipotent cell population, neural crest cells can give rise to a variety of cell lineages during vertebrate development (34). N-Myc (MYCN) expression was observed in ~25% of neuroblastoma cases (35). A neuroblastoma is a tumor...
of the peripheral sympathetic nervous system and MYCN overexpression has been proposed as a tumorigenic event in the development of this disease (36,37). Furthermore, MYCN expression may be associated with the self-renewal ability and tumorigenic potential of neuroblastoma cells (36,38). Therefore, another aim of the present study was to determine whether MYCN could regulate the self-renewal ability of neural crest cells, and how the interaction between BMP4 or NGR and MYCN affects the fate of neural crest differentiation. 

Materials and methods

Experimental animals. In the present study, 3 male and 9 female C57BL/6J mice (weight, ~22 g; age, ~9 weeks) were employed. All mice were housed under specific pathogen-free conditions as previously described (39). The animal experiments were approved by the Institutional Animal Care and Use Committee of Southwest University.

Cell culture and in vitro differentiation assays. Pregnant female mice (8.5–9 days gestation) were sacrificed via exposure to CO₂. The embryos were removed and washed in PBS. A total of 10–12 neural tube sections were excised with a scalpel and planted in 6-well cell culture plates containing Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 medium (DMEM/F12; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) medium as previously described (32), and photographed at 2, 24 and 48 h with a Nikon TS100 inverted microscope (Nikon Corporation, Tokyo, Japan) at a magnification of x40 or x100. Image-Pro Plus 6.0 software (Media Cybernetics, Inc., Rockville, MD, USA) was used for analysis. All experiments were conducted using neural crest cells and their descendants that had not been cultured for >12 passages. For agent-induced differentiation assays, neural crest cells were cultured with 50 ng/ml BMP4 or 130 ng/ml NRG (both R&D Systems, Inc., Minneapolis, MN, USA) for 10 days at 37°C. Neural crest cells treated with 1 µl/ml DMSO (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) served as the negative control.

Immunofluorescence. The tenth passage neural crest cells treated with BMP4, NRG or DMSO were fixed in 4% paraformaldehyde at room temperature for 15 min, permeated with PBS with Tween-20 (0.3% Triton X-100) at room temperature for 5 min and blocked with 10% goat serum (Beyotime Institute of Biotechnology). After washing with PBS, cells were incubated with secondary antibodies at room temperature for 2 h. All secondary antibodies were purchased from Invitrogen (Thermo Fisher Scientific, Inc.) and used at 1:1,000 dilution. The secondary antibodies were as follows: Alexa Fluor® 488-conjugated goat anti-mouse (cat. no. A-11001), anti-rabbit (cat. no. A-11008) and anti-chicken (cat. no. A-11039), and Alexa Fluor 594-conjugated goat anti-rabbit (cat. no. A-11012) immunoglobulin G. Then, all cells were washed with PBS and counterstained with DAPI (Beyotime Institute of Biotechnology) at room temperature for 20 min to detect nuclei, and images were captured with a Nikon Eclipse TE2000-E fluorescence microscope (Nikon Corporation) at a magnification of x100 or x200. Image-Pro Plus 6.0 software was used for analysis.

Retroviral production and transfection. The pBabe-puro/MYCN plasmid (Youbio, Hunan, China) was used to overexpress mouse MYCN in neural crest cells (MYCN-overexpressing neural crest cells), as previously reported (40), and the empty pBabe-puro plasmid as the control. Retroviral production and transfection were conducted as described previously (41). One day after retroviral transfection, the cells were cultured at 37°C in the presence of 2 µg/ml puromycin for 3 days for resistance-based selection.

Soft agar clonogenic and sphere formation assays. For soft agar colony assay, a total of 1,500 pBabe-puro/MYCN or empty pBabe-puro neural crest cells in suspension were mixed with 0.3% low melting point agar containing DMEM supplemented with 10% fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.) Cells were plated onto 6-well plates (1,500 cells/well) with a solidified bottom layer (0.6% low melting point agar in the same growth medium) for 14 days at 37°C. For sphere formation assay, the medium in the aforementioned wells was replaced with DMEM supplemented with 20 ng/ml epidermal growth factor and 10 ng/ml basic fibroblast growth factor (both Gibco; Thermo Fisher Scientific, Inc.). After the 14-day culture, the colonies or the spheres were examined and photographed using a Nikon TS100 inverted microscope at a magnification of x100.

Western blot analysis. MYCN-overexpressing neural crest cells treated with BMP4, NRG or DMSO were suspended in RIPA lysis buffer and the total protein concentration determined using the Enhanced BCA protein assay kit (both Beyotime Institute of Biotechnology). Following this, 50 µg/lane of protein were separated by SDS-PAGE on 10% gel, transferred to polyvinylidene difluoride membranes. Membranes were then blocked with 5% no fat milk at room temperature for 1 h and then incubated with anti-MYCN (cat. no. ab24193; 1:1,000; Abcam) or anti-α-tubulin (cat. no. SAB4500087; 1:1,000; Sigma-Aldrich; Merck KGaA), Horseradish peroxidase-conjugated goat anti-mouse (cat. no. 5220-0341) or anti-rabbit (cat. no. 5220-0336) secondary antibodies (both 1:20,000; Kirkegaard & Perry Laboratories; SeraCare Life Sciences, Inc., Milford, MA, USA) were used as secondary antibodies. Proteins were visualized with BeyoECL Plus (Beyotime Institute of Biotechnology).

Results

Cells migrating from the neural tube are neural crest cells, which are characterized by Sox10 and Nestin expression. Explant culture has been successfully used to identify the properties of neural crest cells originating from the stem cell population.
Therefore, explant culture was selected in the present study to determine whether any cells migrated from the neural tube of mice embryos. After a 2-h explant culture, the neural tube was clearly observed; after 24 h, neural crest cells were detected at the edges of the tissue blocks and some cells had migrated from the neural tube explants into the culture medium (Fig. 1A). The number of cells in the culture increased in what appeared to be a time-dependent manner, suggesting that the cells continued to migrate from the neural tube; after 2 days, more cells floated freely in the medium.

Sox10 is a unique HMG-box transcription factor expressed throughout the neural crest and in oligodendrocyte progenitor cells of the central nervous system (9,44,45). In the present study, cells were characterized via immunofluorescence to determine whether cells migrating from the neural tube expressed neural stem cell-associated markers. Compared with the phase image, immunofluorescent analysis revealed that all cells expressed Sox10 (Fig. 1B). Therefore, suggesting that cells migrating from the mouse embryo neural tube, which express Sox10, may be characterized as neural crest cells.

Neural crest cells maintain the potential of multilineage differentiation. The present study investigated the differentiation potential of neural crest cells in response to a variety of agents. A cell suspension was prepared from individual secondary colonies and plated onto glass coverslips. The results of the immunofluorescence analysis demonstrated that cells expressed the stem cell markers, Nestin and Sox10. In addition, neural crest cells were treated with BMP4 or NRG for 10 days. The majority of DMSO-treated cells exhibited a round and prominent nucleus, and abundant cytoplasm (Fig. 2). Cells treated with BMP4 exhibited neuronal cell morphology (49), with numerous long neuritic processes and small cell bodies that frequently formed aggregates (Fig. 2); however, cells treated with NRG exhibited Schwann-like cell morphology (50,51), with ovoid cell bodies, a prominent nucleus and natural bipolar extensions (Fig. 2). Therefore, these data suggested that BMP4 and NRG treatment may induce neural crest cell differentiation into neurons and Schwann cells.

To confirm the cell phenotype following treatment with BMP4 or NRG, immunofluorescence was conducted using anti-Nestin and anti-Sox10 antibodies. Compared with the untreated cell group, treatment with BMP4 or NRG resulted in a marked reduction in the number of cells expressing stem cell markers (Fig. 2), accompanied by a marked increase.
in the number of cells expressing differentiation markers (Fig. 3). BMP4-treated cells expressed the neuronal marker, TuJ1 (52), whereas NRG-treated cells expressed GFAP, which is a common marker of Schwann and glial cells (53), upon induction of differentiation. On the contrary, untreated cells expressed differentiation markers at markedly lower levels (Fig. 3). These differentiation analyses suggested that neural crest cells may possess the potential for multilineage differentiation and that environmental factors may control their fate.

Clonal sphere formation assay of MYCN-overexpressing neural crest cells suggests clonogenic self-renewal potential in vitro. MYCN upregulation was validated by western blotting (Fig. 4A). To investigate the function of MYCN in neural crest cells, the self-renewal and clonogenic abilities of MYCN-overexpressing neural crest cells were analyzed via soft agar and sphere formation assays. The result demonstrated that MYCN-overexpressing neural crest cells exhibited a higher number of colonies and larger colony sizes compared with the control group of neural crest cells (Fig. 4B). Similarly, the neurosphere formation ability of MYCN-overexpressing neural crest cells appeared to be enhanced compared with the neural crest cell control group under the same culture conditions. These results demonstrated that MYCN may promote the self-renewal ability of neural crest cells. The authors further investigated the effects of BMP4 and NRG on MYCN expression in MYCN-overexpressing neural crest cells; the protein expression levels of MYCN were markedly decreased in cells treated with BMP4 or NRG compared with the control cells (Fig. 4C).

Discussion

Neural crest cells have stem cell characteristics and have the ability to generate various types of cells and tissues during vertebrate development (54). In the present study, neural crest cells were isolated from mouse embryos and characterized by specific stem cell markers, including Sox10 and Nestin. Factors of the extracellular environment may affect the direction of neural crest cell differentiation. It has been reported that partitioning defective 3 homolog regulates the contact between neural crest cells and the timing of Schwann cell differentiation (55). In human neural crest stem cells, aligned electrospun fibers were revealed to promote differentiation towards the Schwann cell lineage (56). A recent study suggested that, during the neural differentiation of embryonic stem cells, miR-29b promoted the differentiation of embryonic stem cells into neural tube epithelial cells and inhibited their differentiation into neural crest cells (57).

It was previously reported that embryonic stem cells cultured with BMP4 differentiated into germ cells (58,59). BMP4 also regulated the proliferation and differentiation in epithelial and mesenchymal tissue compartments of the developing mouse ureter (60). In addition, BMP4 was reported to serve a key role in the differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells (61). NRG is a type of polypeptide growth factor that serves a key role in
the development and differentiation of the heart and nervous system (23,62). Generally, neural crest cells differentiate into glia, neurons and melanocytes in the mouse embryo (9,63). In the present study, the induction of differentiation via specific agents, BMP4 or NRG, revealed that neural crest cells may differentiate into neurons or Schwann cells, respectively, indicating that neural crest cells may alter their direction of differentiation according to their environments. Therefore,

Figure 3. BMP4-treated and NRG-treated neural crest cells express differentiation markers. Immunofluorescence analysis of neural crest cells treated with BMP4 or NRG. The nuclei were visualized with DAPI staining. Scale bar=50 µm. BMP4, bone morphogenetic protein 4; NRG, Neuregulin; Tuj1, neuronal-specific class III β-tubulin; GFAP, glial fibrillary acidic protein.
BMP4 and NRG could be considered as key factors in neural crest cell differentiation.

Self-renewal ability is an essential characteristic of stem cells, and enables the generation of daughter cells with the same developmental potential as their parental cells (64,65). Colony and sphere formation assays have been widely used to evaluate the self-renewal ability of individual stem cells (66-68). MYCN was reported as a key factor in the maintenance of embryonic stem cell-derived neural crest stem cells (69). The soft agar colony and sphere formation assays revealed that MYCN-overexpressing neural crest cells were able to self-renew and generate progeny cells with the same self-renewal ability, MYCN-overexpressing neural crest cells developed more colonies compared with the neural crest cells transfected with empty vectors. Neuroblastoma is a cancer of neural crest stem cell lineage, many reports demonstrated that MYCN acted as an oncogene in neuroblastoma (35,36,70). MYCN served important roles in balancing proliferation, differentiation and cell death in neuroblastoma and normal neural crest cells (71,72). Therefore, it was hypothesized that MYCN-overexpressing neural crest cells acquire tumorigenic potential and that MYCN may regulate the development of neuroblastoma that originate from neural crest cells.

Of note, BMP4 could reduce MYCN expression and promote differentiation in neuroblastoma cells (73), and NRG was involved in neuroblastoma cell differentiation (74). These reports suggested BMP4 and NRG regulated neuroblastoma development. In the present study, BMP4 and NRG were shown to suppress MYCN expression in MYCN-overexpressing neural crest cells, which indicated that BMP4 and NRG may inhibit the maintenance of MYCN-induced stemness, suggesting there was cross-talk between MYCN and the BMP4 or NRG signaling pathway. Collectively, the findings of the current study indicated a molecular mechanism through which MYCN may promote the stemness of neural crest cells. Specific agents, including BMP4 and NRG, may decrease MYCN expression and induce neural crest cell differentiation. Therefore, the present study revealed that the direction of cell differentiation would be altered through modifying environmental factors. MYCN could serve a key role in regulating neural crest cell differentiation, and BMP4 and NRG may be regarded as novel inhibitors of MYCN amplification in neuroblastoma.

Acknowledgements

Not applicable.

Funding

The present study was supported by the National Natural Science Foundation of China (grant no. 31501100), the Chongqing Science and Technology Commission (grant no. cstc2016shmszx80101), the Ph.D. Start-up Foundation of Southwest University (grant no. SWU 2015021) and the Chongqing Research Program of Basic Research and Frontier Technology (grant no. cstc2015jcyjA10120), the China Postdoctoral Science Foundation (grant no. 2016M592624) and the Chongqing Postdoctoral Science Special Foundation (grant no. Xm2016087). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.
We refer to the original document for the natural text representation. If you need a specific section or content from the document, please provide more details.
38. Brodeur GM: Neuroblastoma: Biological insights into a clinical enigma. Nat Rev Cancer 3: 203-216, 2003.
39. Martinekiewski A, Correia CS, de Souza NL and Merusse JL: Mouse housing system using pressurized cages intraventricularly with direct-current microfans. J Am Assoc Lab Anim Sci 51: 177-180, 2012.
40. Itahana K, Zou Y, Itahana Y, Martinez JL, Beaujeour C, Jacobs JJ, Van Lohuizen M, Band V, Campisi J and Dimri GP: Control of the replicative life span of human fibroblasts by p16 and the polycamb protein Bmi-1. Mol Cell Biol 23: 389-401, 2003.
41. Cui H, Schroeber A and Ding HF: p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells. Mol Cancer Ther 1: 679-686, 2002.
42. Lo L, Dormand E, Greenwood A and Anderson DF: Comparison of the generic neuronal differentiation and neuron subtype specification functions of mammalian achaete-scute and atonal homologs in cultured neural progenitor cells. Development 129: 1553-1567, 2002.
43. Greenwood AL, Turner EE and Anderson DF: Identification of dividing, determined sensory neuron precursors in the mammalian neural crest. Development 126: 3545-3559, 1999.
44. Kelsh RN: Sorting out Sox10 functions in neural crest development. Bioessays 28: 788-789, 2006.
45. Kawaguchi J, Nichols J, Gierli MS, Faial T and Smith A: Isolation and propagation of enteric neural crest progenitor cells from mouse embryonic stem cells and embryos. Development 137: 693-704, 2010.
46. Sandler L and Edlund H: Nestin is expressed in mesenchymal and not epithelial cells of the developing mouse pancreas. Mech Dev 113: 189-212, 2002.
47. Lendahl U, Zimmerman LB and McKay RD: CNS stem cells express a new class of intermediate filament protein. Cell 60: 585-595, 1990.
48. Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH, Chang J, Sung YC, Choi KY and Han KH: Local structural elements in the mostly unrestructured transcriptional activation domain of human p53. J Biol Chem 275: 29426-29432, 2000.
49. Trainor PA: Specification of neural crest cell formation and migration in mouse embryos. Semin Cell Dev Biol 16: 683-693, 2005.
50. Sugimoto T, Kato T, Sawada T, Horii Y, Kemshead JT, Hino T, Rothbauer S, Debatin KM and Beltinger C: CD57(high) neuroblastoma cells have aggressive attributes ex situ and an undifferentiated phenotype in patients. PLoS One 7: e42025, 2012.
51. Brüderlein S, Debatin KM and Beltinger C: Alternative NHEJ pathway proteins as components of MYCN oncogenic activity in human neural crest stem cell lines. Oncol Rep 8: 3208, 2017.
52. Althoff K, Beckers A, Bell E, Nortmeyer M, Thor T, Spriessl A, Lindner S, De Preter K, Florin A, Heukamp LC et al: A Cre conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 34: 3357-3368, 2015.
53. Lo L, Dormand E, Greenwood A and Anderson DF: Comparison of Sox2 homologs in cultured neural progenitor cells. Development 129: 2002.
54. Reynolds BA and Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707-1710, 1992.
55. Zhang JT, Weng ZH, Tsang KS, Tsang LL, Chan HC and Jiang XH: MyCN is critical for the maintenance of human embryonic stem cell-derived neural crest stem cells. PLoS One 11: e0148062, 2016.
56. Ke XX, Zhang D, Zhao H, Hu R, Dong Z, Yang R, Zhu S, Xia Q, Ding HF and Cui H: Phox2B correlates with MYCN and is a prognostic marker for neuroblastoma development. Oncol Lett 9: 2507-2514, 2015.
57. Newman EA, Chukkapalli S, Bashlari D, Thomas TT, Van Noord RA, Lawlor ER, Hoenherhoff MJ, Opipari AW and Opipari VP: Alternative NHEJ pathway proteins as components of MYCN oncogenic activity in human neural crest stem cell differentiation: Implications for neuroblastoma initiation. Cell Death Dis 8: 3208, 2017.
58. Makoolati Z, Movahedin M and Forouzandeh-Moghadam H: In vitro germ cell differentiation from embryonic stem cells of mice: Induction control by BMP4 signaling. Biosci Rep 36: 96107, 2016.
59. Yang S, Yuan Q, Niu M, Hou J, Zhu Z, Sun M, Li Z and He Z: BMP4 promotes mouse iPSC cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2. Reproduction 153: 211-220, 2017.
60. Magro TM, Wittem AB, Kleppa MJ, Bohnenpohl T, Weiss AC and Kispert A: BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse urogenital system. Hum Mol Genet 26: 3553-3563, 2017.
61. Peng T, Zhu G, Dong Y, Zeng J, Li W, Guo W, Chen Y, Duan M, Hocher B and Xie D: BMP4: A possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells. Clin Lab 61: 1171-1178, 2015.
62. Brits S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C and Riemmacher D: The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12: 1825-1836, 1998.
63. Milet C and Monsoro-Burq AH: Neural crest induction at the neural plate border in vertebrates. Dev Biol 366: 22-33, 2012.
64. Börowicz S, Van Scoy M, Avasarala S, Karuppasamy Rathnam MK, Täuler B, Bikkavilli RK and Winn RA: The soft agar colony formation assay. J Vis Exp 92: e51998, 2014.
65. Franken NA, Rodermond HM, Stap J, Haveman J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc 1: 2315-2319, 2006.
66. Hamburger AW and Salmon SE: Primary bioassay of human tumor stem cells. Science 197: 461-463, 1977.
67. Cui H, Ma J, Ding J, Li T, Alam G and Ding HF: Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281: 34969-349704, 2006.
68. Reynolds BA and Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707-1710, 1992.
69. Yang S, Yuan Q, Zou M, Luo M, Hui R, Hu R, Deng Z, Zhang D, Cheng X, Xie D and Ding HF: BMP4 promotes mouse iPSC cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2. Reproduction 153: 211-220, 2017.
70. Magro TM, Wittem AB, Kleppa MJ, Bohnenpohl T, Weiss AC and Kispert A: BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse urogenital system. Hum Mol Genet 26: 3553-3563, 2017.
71. Peng T, Zhu G, Dong Y, Zeng J, Li W, Guo W, Chen Y, Duan M, Hocher B and Xie D: BMP4: A possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells. Clin Lab 61: 1171-1178, 2015.
72. Brits S, Li L, Kirchhoff S, Theuring F, Brinkmann V, Birchmeier C and Riemmacher D: The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev 12: 1825-1836, 1998.
73. Milet C and Monsoro-Burq AH: Neural crest induction at the neural plate border in vertebrates. Dev Biol 366: 22-33, 2012.