Quantum music

Volkmar Putz1 · Karl Svozil2

Published online: 14 August 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract We consider ways of conceptualizing, rendering and perceiving quantum music and quantum art in general. Thereby, we give particular emphasis to its non-classical aspects, such as coherent superposition and entanglement.

Keywords Music · Quantum theory · Field theory · Piano

1 Introduction

As a caveat we would like to state upfront that we shall primarily deal with artistic expressibility rather than with aesthetics—we take it for granted that the human perception of art is invariably bound by the human neurophysiology and hence is subject to a rather narrow bracket or “aesthetic bandwidth” in between monotony and chaos (Svozil 2008). One may speculate that art in the past centuries until today, from the Belle Époque onward, is increasingly dominated by scarcity and the cost of creation and rendition. Those forms of artistic expressions, such as architecture, for which an increase of complexity, in particular ornamentation, are costly, tend to become more monotonous, whereas in other artistic domains such as music the tendency to increase complexity by sacrificing harmony has encouraged compositions which are notoriously difficult to perceive.

Moreover, human neurophysiology suggests that artistic beauty cannot easily be disentangled from sexual attraction. It is, for instance, very difficult to appreciate Sandro Botticelli’s Primavera, the arguably “most beautiful painting ever painted,” when a beautiful woman or man is standing in front of that picture. Indeed so strong may be the distraction, and so deep the emotional impact, that it might not be unreasonable to speculate whether aesthetics, in particular beauty and harmony in art, could be best understood in terms of surrogates for natural beauty. This might be achieved through the process of artistic creation, idealization and “condensation.” In this line of thought, in Hegelian terms, artistic beauty is the sublimation, idealization, completion, condensation and augmentation of natural beauty.

Very different from Hegel who asserts that artistic beauty is “born of the spirit and born again, and the higher the spirit and its productions are above nature and its phenomena, the higher, too, is artistic beauty above the beauty of nature (Hegel 1835–1838, Part I, Introduction)” we believe that human neurophysiology can hardly be disregarded in the human creation and perception of art, and, in particular, of beauty in art. Stated differently, we are inclined to believe that humans are so invariably determined by (or at least intertwined with) their natural basis that any neglect of it results in a humbling experience of irritation or even outright ugliness, no matter what social pressure groups or secret services (Wilford 2008) may want to promote.

Thus, when it comes to the intensity of the experience, the human perception of artistic beauty, as sublime and refined as it may be, can hardly transcend natural beauty in its full exposure. For example, it is not unreasonable to suspect that the Taj Mahal could never compensate its commissioner Mughal

Communicated by M. L. Dalla Chiara, R. Giuntini, E. Negri and S. Smets.

1 Pädagogische Hochschule Wien, Grenzackerstraße 18, 1100 Vienna, Austria
2 Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
emperor Shah Jahan for the loss of his beloved third wife Mumtaz Mahal. In that way, art represents both the capacity as well as the humbling ineptitude of its creators and audiences.

Let us leave these idealistic realms and come back to the quantization of musical systems. The universe of music consists of an infinity—indeed a continuum—of tones and ways to compose, correlate and arrange them. It is not evident how to quantize sounds, and in particular music, in general. One way to proceed would be a microphysical one: to start with frequencies of sound waves in air and quantize the spectral modes of these (longitudinal) vibrations very similar to phonons in solid state physics (Fetter and Walecka 1971).

For the sake of relating to music, however, we shall pursue a different approach that is not dissimilar to the Deutsch–Turing approach to universal (quantum) computation (Mermin 2007), or Moore’s automata analogues to Deutsch–Turing approach to universal (quantum) computation even further, we shall only be concerned with an octave, in particular, a piano. To restrict our considerations even further, we shall quantize a musical instrument, in particular, a piano. Thereby we have to make formal choices which are not unique. We shall mention alternatives as we proceed.

In what follows, we shall quantize musical instruments, in particular, a piano. Thereby we have to make formal choices which are not unique. We shall mention alternatives as we proceed. For the sake of relating to music, however, we shall only consider the seven-dimensional case \mathbb{C}^7. The seven tones forming one octave can then be represented as a basis \mathfrak{B} of \mathbb{C}^7 by forming the set theoretical union of the orthogonal unit basis vectors; that is, $\mathfrak{B} = \{ |\psi_c\rangle, |\psi_d\rangle, \ldots, |\psi_b\rangle \}$, where the basis elements are the Cartesian basis tuples $|\psi_c\rangle = (0, 0, 0, 0, 0, 0, 1)$, $|\psi_d\rangle = (0, 1, 0, 0, 0, 0, 0)$, $|\psi_b\rangle = (0, 0, 0, 0, 0, 0, 0)$ of \mathbb{C}^7. Figure 1 depicts the basis \mathfrak{B} by its elements, drawn in different colors.

Then, pure quantum musical states could be represented as unit vectors $|\psi\rangle \in \mathbb{C}^7$ which are linear combinations of the basis \mathfrak{B}; that is,

$$|\psi\rangle = \alpha_c|\psi_c\rangle + \alpha_d|\psi_d\rangle + \cdots + \alpha_b|\psi_b\rangle,$$

with coefficients α_i satisfying $|\alpha_c|^2 + |\alpha_d|^2 + \cdots + |\alpha_b|^2 = 1$. Equivalent representations of $|\psi\rangle$ are in terms of the one-dimensional subspace $\{ |\phi\rangle \mid |\phi\rangle = \alpha |\psi\rangle, \alpha \in \mathbb{C} \}$ spanned by $|\psi\rangle$, or by the projector $E_\psi = |\psi\rangle \langle \psi|$. In most general terms (at least for this octave), a musical composition—the succession of quantized tones as time goes by and the system evolves—such as a melody, would be obtained by the unitary permutation of the state $|\psi\rangle$. The realm of such compositions would be spanned by the succession of all unitary transformations $U : \mathfrak{B} \mapsto \mathfrak{B}'$ mapping some orthonormal basis \mathfrak{B} into another orthonormal basis \mathfrak{B}'; that is, (Schwinger 1960), $U = \sum_i |\psi'_i\rangle \langle \psi_i|$.

2.2 Quantum musical parallelism

If a classical auditorium listens to the quantum musical state $|\psi\rangle$ in Eq. 1, then the individual listeners may perceive $|\psi\rangle$ very differently; that is, they will hear only a single one of the different tones with probabilities $|\alpha_c|^2$, $|\alpha_d|^2$, \ldots, and $|\alpha_b|^2$, respectively.

Pointedly stated, a truly quantum music never renders a unique listening experience—it might not be uncommon for part of the audience to hear different manifestations of the
quantum musical composition made up of all varieties of successions of tones. For instance, one listener may hear Mozart’s _A Little Night Music, K. 525_, whereas another listener Prokoviev’s _Le pas d’acier, Op 41_, and a third one would enjoy a theme from Marx’s _Autumn Symphony (1921)_. We could perceive this as quantum parallel musical rendition—a classical audience may perceive one and the same quantum musical composition very differently.

For the sake of a demonstration, let us try a two-note quantum composition. We start with a pure quantum mechanical state in the two-dimensional subspace spanned by |ψ_c⟩ and |ψ_g⟩, specified by

\[
|ψ_1⟩ = \frac{4}{5}|ψ_c⟩ + \frac{3}{5}|ψ_g⟩ = \frac{1}{5} \left(\begin{array}{c} 4 \\ 3 \end{array}\right),
\]

|ψ_1⟩ would be detected by the listener as c in 64% of all measurements (listenings), and as g in 36% of all listenings. Using the unitary transformation \(X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\), the next quantum tone would be

\[
|ψ_2⟩ = X|ψ_1⟩ = \frac{3}{5}|ψ_c⟩ + \frac{4}{5}|ψ_g⟩ = \frac{1}{5} \left(\begin{array}{c} 3 \\ 4 \end{array}\right).
\]

This means for the quantum melody of both quantum tones |ψ_1⟩ and |ψ_2⟩ in succession—for score, see Fig. 2—that in repeated measurements, in 0.64^2 = 40.96% of all cases c - g is heard, in 0.36^2 = 12.96% of all cases g - c, in 0.64 - 0.36 = 23.04% of all cases c - c or g - g, respectively. Thereby, one single quantum composition can manifest itself during listening in very different ways.

This offers possibilities of aleatorics in music far beyond the classical aleatoric methods of John Cage and his allies.

2.3 Bose and Fermi model of tones

An alternative quantization of music to the one discussed above is in analogy to some fermionic or bosonic—such as the electromagnetic—field. Just as the latter one in quantum optics (Glauber 1970, 2007) and quantum field theory (Weinberg 1977) is quantized by interpreting every single mode (determined, for the electromagnetic field for instance by a particular frequency and polarization) as a sort of “container”—that is, by allowing the occupancy of that mode to be either empty or any positive integer (and a coherent superposition thereof)—we obtain a vast realm of new musical expressions which cannot be understood in classical terms.

In what follows we shall restrict ourselves to a sort of “fermionic field model” of music which is characterized by a binary, dichotomic situation, in which every tone has either null or one occupancy, represented by |0⟩ = (0, 1) or |1⟩ = (1, 0), respectively. Thus, every state of such a tone can be formally represented by entities of a two-dimensional Hilbert space \(\mathbb{C}^2\), with the Cartesian standard basis \(\mathfrak{B} = \{ |0⟩, |1⟩ \}\).

Any note |ψ_i⟩ of the octave consisting of |ψ_c⟩, |ψ_d⟩, ..., |ψ_g⟩, |ψ_c⟩ in the C major scale can be represented by the coherent superposition of its null and one occupancies; that is,

\[
|ψ_i⟩ = α_i|0⟩ + β_i|1⟩,
\]

with |α_i|^2 + |β_i|^2 = 1, \(α_i, β_i \in \mathbb{C}\).

At this stage, the most important feature to notice is that every tone is characterized by the two coefficients \(α\) and \(β\), which in turn can be represented (like all quantized two-dimensional systems) by a Bloch sphere, with two angular parameters. If we restrict our attention (somewhat superficially) to real Hilbert space \(\mathbb{R}^2\), then the unit circle, and thus a single angle \(φ\), suffices for a characterization of the coefficients \(α\) and \(β\). Furthermore, we may very compactly notate the mean occupancy of the notes by gray levels. Figure 3 depicts a sequence of tones in an octave in the C major scale with decreasing occupancy, indicated as gray levels.

In this case, any non-monotonous unitary quantum musical evolution would have to involve the interaction of different tones, that is, in the piano setting, across several keys of the keyboard. We shall come back to this later.

3 Quantum musical coherent superposition

One of the mind-boggling quantum features is the possibility of the simultaneous formal “existence” of classically excluding musical states, such as a 50:50 quantum state in the C major scale obtained by sending |0_g⟩ through the Hadamard
Quantum entanglement (Schrödinger 1935) is the property of multipartite quantum systems to code information “across quanta” in such a way that the state of any individual quantum is irreducibly indeterminate; that is, not determined by the entangled multipartite state (Zeilinger et al. 1999; Brukner et al. 2002). In other words, the entangled whole cannot be composed of its parts; more formally, the composite state cannot be expressed as a product of states of the individual quanta.

A typical example of an entangled state is the Bell state, $|\Psi^-\rangle$ or, more generally, states in the Bell basis spanned by the quantized notes e and a; that is

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

gate $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, resulting in $\frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle)$, and depicted in Fig. 4 by a 50 white 50 black, that is, gray, tone (though without the relative “−” phase).

In music, such experience of “floating in as well as out of” a tone—faintly resembling the memory of having heard or not heard a particular tone or melody—may not be totally foreign to audiences. This new form of musical expression might contribute to novel musical experiences; in particular, if any such coherent superposition can be perceived by the audience. Note, however, that any attempt to “amplify” a coherent signal may be in vain due to the inevitable introduction of noise (Glauber 1986, 2007).

Schrödinger, in particular, was concerned about any such quantum coherence. When it is extended into macroscopic situations, it yields his cat paradox (Schrödinger 1935); or his polemic regarding the “jellification” of the universe without measurement (Schrödinger 1995). The puzzling basis of such alleged paradoxes is the seemingly impossibility of any conscious macroscopic individual entity to simultaneously pass through the two slits of a double slit experiment, a property well verified for individual quanta (Zeilinger et al. 1988). From a purely formal point of view, any mixture of the two musical states amounts merely to a basis transformation in a two-dimensional musical Hilbert space—in this sense, the piano “tuned to” produce $|0_e\rangle$ and $|1_e\rangle$ needs to be “retuned” to $|0'\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle + |1_e\rangle)$ and $|1'\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle)$, respectively.

4 Quantum musical entanglement

Quantum entanglement (Schrödinger 1935) is the property of multipartite quantum systems to code information “across quanta” in such a way that the state of any individual quantum is irreducibly indeterminate; that is, not determined by the entangled multipartite state (Zeilinger 1999; Brukner et al. 2002). In other words, the entangled whole cannot be composed of its parts; more formally, the composite state cannot be expressed as a product of states of the individual quanta.

A typical example of an entangled state is the Bell state, $|\Psi^-
angle$ or, more generally, states in the Bell basis spanned by the quantized notes e and a; that is

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

$$|\Phi_g\rangle = \frac{1}{\sqrt{2}} (|0_e\rangle - |1_e\rangle) \mathrm{gray} (\text{without indicating phase factors})$$

Indeed, a short calculation (Mermin 2007, Sec. 1.5) demonstrates that a necessary and sufficient condition for entanglement among the quantized notes e and a is that the coefficients α_1, α_2, α_3, α_4 of their general composite state $|\psi_{ea}\rangle = \alpha_1 |0_e\rangle |0_a\rangle + \alpha_2 |0_e\rangle |1_a\rangle + \alpha_3 |1_e\rangle |0_a\rangle + \alpha_4 |1_e\rangle |1_a\rangle$ obey $\alpha_1 \alpha_4 \neq \alpha_2 \alpha_3$. This is clearly satisfied by Eq. (5).

Figure 5 depicts the entangled music bell states.

We only remark that a very similar argument yields entanglement between different octaves. Figure 6 depicts this configuration for an entanglement between e and a'.

5 Quantum musical complementarity

Although complementarity (Pauli 1933) is mainly discussed in the context of observables, we can present it in the state formalism by observing that, as mentioned earlier, any pure state $|\psi\rangle$ corresponds—that is, is in one-to-one correspondence (up to phase a factor)—to the projector $E_{\psi} = |\psi\rangle\langle\psi|$.
In this way, any two non-vanishing non-orthogonal and non-collinear states $|\psi\rangle$ and $|\phi\rangle$ with $0 < \langle \phi | \psi \rangle < 1$ are complementary. For the dichotomic field approach, Fig. 7 represents a configuration of mutually complementary quantum tones for the note a in the C major scale.

6 Summary

We have proposed the basic ideas for a new kind of (quantum) music by presenting a straightforward quantization of music, obtained by quantizing the “white” notes of a piano octave. In this approach, generalizations to more than one octave, to the chromatic scale, as well as to other musical instruments, appears to be straightforward.

We have also studied some non-classical features available to quantum music, such as coherent superposition of classically distinct tones, tonal entanglement and complementarity.

We have pursued a strictly non-artistic, non-aesthetic approach. In doing so, we have merely attempted to extend music to the quantum realm. No claims have been made that this realm is useful or necessary for aesthetics, or for musical expression.

One way to make use of this formalism is to get inspired by its freedom and new capacities, even for quasi-classical analogues.

Acknowledgements This research has been partly supported by FP7-PEOPLE-2010-IRSES-269151-RANPHYS.

References

Brukner C, Zukowski M, Zeilinger A (2002) The essence of entanglement (translated to Chinese by Qiang Zhang and Yond-de Zhang) New Advances in Physics (J Chin Phys Soc). arXiv:quant-ph/0106119

Fetter AL, Walecka JD (1971) Quantum theory of many particle systems. McGraw-Hill, New York

Glauber RJ (1970) Quantum theory of coherence. In: Kay SM, Maitland A(eds) Quantum optics: proceedings of the Scottish Universities’ Summer School in Physics 1969. Academic Press, London

Glauber RJ (2007) Amplifiers, attenuators and Schrödinger’s cat. In: Quantum theory of optical coherence. Wiley-VCH Verlag GmbH & Co. KGaA, pp 537–576

Glauber RJ (1986) Amplifiers, attenuators and the quantum theory of measurement. In: Pikes ER, Sarkar S (eds) Frontiers in quantum optics. Adam Hilger, Bristol

Hegel GWF (1835–1838) Vorlesungen über die Ästhetik

Mermin ND (2007) Quantum computer science. Cambridge University Press, Cambridge

Moore EF (1956) Gedanken-experiments on sequential machines. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 129–153

Pauli W (1933) Die allgemeinen Prinzipien der Wellenmechanik. In: Geiger H, Scheel K (eds) Handbuch der Physik, vol 24. Springer, Berlin

Schrödinger E (1935) Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23:807–812, 823–828, 844–849

Schrödinger E (1995) The interpretation of quantum mechanics. Dublin seminars (1949–1955) and other unpublished essays. Ox Bow Press, Woodbridge

Schwinger J (1960) Unitary operators bases. Proc Natl Acad Sci (PNAS) 46:570–579

Svozil K (2008) Aesthetic complexity. arXiv:1406.4289

Weinberg S (1977) The search for unity: notes for a history of quantum field theory. Daedalus 106:17–35

Wilford H (2008) The mighty Wurlitzer: how the CIA played America. Harvard University Press, Cambridge

Zeilinger A, Gähler R, Shull CG, Treimer W, Mampe W (1988) Single- and double-slit diffraction of neutrons. Rev Mod Phys 60:1067–1073

Zeilinger A (1999) A foundational principle for quantum mechanics. Found Phys 29:631–643