A Divide-and-Conquer Strategy for Parsing

Peh Li Shiuan
Defence Science Organization
20 Science Park Drive
Singapore 118230
Republic of Singapore
plishiua@trantor.dso.gov.sg

Christopher Ting Hian Ann
Computational Science Programme
National University of Singapore
10 Kent Ridge Crescent
Singapore 119260
Republic of Singapore
cting@galaxy.cz3.nus.sg

Abstract

In this paper, we propose a novel strategy which is designed to enhance the accuracy of the parser by simplifying complex sentences before parsing. This approach involves the separate parsing of the constituent sub-sentences within a complex sentence. To achieve that, the divide-and-conquer strategy first disambiguates the roles of the link words in the sentence and segments the sentence based on these roles. The separate parse trees of the segmented sub-sentences and the noun phrases within them are then synthesized to form the final parse. To evaluate the effects of this strategy on parsing, we compare the original performance of a dependency parser with the performance when it is enhanced with the divide-and-conquer strategy. When tested on 600 sentences of the IPSM’95 data sets, the enhanced parser saw a considerable error reduction of 21.2% in its accuracy.

1 Introduction

In Black’s survey of the state of the art in parsing, she picked several features which she considered as relevant in categorizing the type of data used in the evaluation of parsers’ performance (Black, 1993). One of these, notably, is the length of the test sentences. The reason behind sentence length being a discriminating factor is the typical performance degradation of parsers as test sentences increase in length and complexity.

Most parsers circumvent this performance degradation by catering for complex sentence constructs specifically within the parsing mechanism. However, whilst the complexity of the parser is greatly increased, the resulting parsing accuracy still leaves much to be desired.

In this paper, we propose a novel approach to enhance the parsing of long, complex sentences. Instead of devising ways to improve the parser itself, our divide-and-conquer strategy attempts to enhance parsing through the simplification of the inputs to the parser.

In brief, the divide-and-conquer strategy involves the separate parsing of the constituent sub-sentences within a complex sentence. To achieve that, the divide-and-conquer strategy first examines the link words of a sentence and disambiguates their specific roles in the sentence. Based on these roles, it is determined if the link words form segmentation points of the sentence. The segmented sub-sentences and the extracted noun phrases are then parsed separately. Finally, the separate parse trees are fused together to form a complete parse. Figure 1 illustrates the flow-of-processing of the divide-and-conquer strategy with a test sentence.

The parser used in this work is a dependency structure parser. However, the divide-and-conquer strategy can similarly be adapted to a constituency parser. This is because both syntactic structures exhibit a property which endear them to the divide-and-conquer approach. For both, the parse structure of a sentence is actually made up of sub-structures which are themselves legal parse structures of the constituent sub-sentences. Figures 2 and 3 highlight this property of dependency and constituency structures respectively. Mel’čuk discusses these two prongs of syntactic representation in more detail (Mel’čuk, 1988).

To investigate the effects of this strategy on parsing, we compare the original performance of our dependency parser (Ting and How, 1995) with the performance when it is enhanced with the divide-and-conquer strategy. As we are unaware of comparable approaches in literature, we are unable to provide comparisons of the resultant improvement in performance. However, the 21.2% error reduction in parsing accuracy, in our opinion, is encouraging.

1 Link words refer to punctuations, conjunctions and prepositions.
2 Only the synthesis engine needs to be modified to cater for constituency structures.
Figure 1. An overview of the flow of processing of the divide-and-conquer parser. After tokenization and part-of-speech tagging, the link words in the sentence are disambiguated. During the segmentation phase, the sentence is segmented at the clausal conjunction “but”. Thereafter, noun phrase bracketing is done, and all the noun phrases (“He”, “chocolates”, “candies”, “cakes”, “she”, “sour prunes”) are parsed separately. To simplify the segments further, noun phrases and noun phrase groups are extracted from the segments and replaced with a single noun. Finally, the separate parse trees of the noun phrases are glued onto the segments’ parse trees and the segments’ parse trees are synthesized to form the final parse tree of the sentence.
He likes chocolates, candies and cakes but she likes sour prunes."

As is evident, the dependency structure is actually composed of two sub-trees linked via the conjunction "but". One sub-tree is the dependency structure for "He likes chocolates, candies and cakes." whilst the other is the parse tree of "She likes sour prunes.".

\[\text{Figure 2. The dependency structure of "He likes chocolates, candies and cakes but she likes sour prunes.".} \]

Here, the constituency parse tree is clearly made up of the two parse trees of the sub-sentences and the coordinating conjunction "but". (The structure notations used here adhere to those in \cite{Mel'čuk, 1988}.)

\[\text{Figure 3. The constituency structure of "He likes chocolates, candies and cakes but she likes sour prunes.".} \]
Following, Section 2 illustrates the shortcoming faced by the original parser. Section 3 then describes each phase of the divide-and-conquer strategy in detail and past related efforts are chronicled in Section 4. Section 5 presents the performance evaluation results and Section 6 concludes the paper.

2 Motivation

The original dependency parser, our baseline for comparison in this paper, uses an enhanced Hidden Markov Model \cite{Ting and How, 1995}. In this statistical approach, each word can depend on every other word in the sentence. The task of the enhanced Hidden Markov Model is to choose the most likely governor for each word. As the length of a sentence increases, the number of possible governors of each word increases too. Parsing accuracy thus deteriorates.

This shortcoming of the parser was the prime motivation behind the divide-and-conquer strategy. By reducing the length of the input sentence, the statistical perplexity of the parsing problem greatly reduces. One would expect improvement in the parsing accuracy.

For instance, if the sentence "He likes oranges but she prefers apples." is parsed by the original parser, the word "oranges" can potentially be a dependent of any other word in the sentence – "He", "likes", "she", "prefers", "apples". However, with the divide-and-conquer strategy, once the sentence is segmented into "He likes oranges." and "She prefers apples.", the word "oranges" has only two potential governors, "He" and "likes". It is hence evident that the statistical perplexity is lower with shorter sentences.

3 Description

3.1 Disambiguation of link words

The disambiguation phase is responsible for identifying the specific roles of link words in a sentence. These roles offer strong clues as to the boundaries of the sub-sentences.

However, due to the wide variety of ways in which link words are used in the English language, linguistic experts have, in the past, been able to identify ten to twenty uses of commas alone \cite{Nunberg, 1990}. To enhance the effectiveness of the disambiguation, we sieved out just two roles of commas - prosodic and conjunctive and two roles of conjunctions - logical and clausal. (Prepositions are disambiguated using only the wordform of the preposition. For instance, prepositions such as “although”, “if” and “while” are classified as subordinating prepositions.)

Simply put, a prosodic comma is one which marks a pause in the sentence whilst a conjunctive comma links parts of a sentence together. An example will clarify their differences. In “When Jane goes to school, she takes a bus, walks 5 minutes and continues the journey on the rail.”, the first comma is a prosodic one since it indicates a prosodic break. The second comma, however, is conjunctive and can be easily substituted with a conjunction. Naturally, a conjunctive comma takes on the roles of conjunctions too.

A logical conjunction is one which links similar components or items such as nouns, adjectives, adverbs and so on. A clausal conjunction, on the other hand, joins sub-sentences together. The examples given below will reveal the subtle difference between these two roles. An example of a logical conjunction is in "I like ice-cream, hot-dogs but not pies.". The same conjunction “but”, however, is clausal in “I like ice-cream, crave for hot-dogs but detest pies.”. The distinct difference between these two roles is that a clausal conjunction links verbs instead of nouns, adjectives, adverbs etc..

The disambiguation mechanism employed is a neural network\footnote{The link in this context refers to the dependency links between words in a sentence. Hence, if a conjunction links nouns, it means that it depends on a noun and another noun depends on the conjunction itself.}. Figure 4 shows the neural network model used. The inputs to the network are the neighbouring parts of speech of the sentence, since the roles of commas and conjunctions depend greatly on the sentence context they are in. The output of the network is simply a classified role of the comma or conjunction.

3.2 Segmentation of sentence

The segmentation phase uses the properties of the roles of link words to pin-point the exact segmentation points in the sentence. A sentence is segmented at the link word if the link word is a prosodic or clausal conjunctive comma, a clausal conjunction or a subordinating preposition.

\footnote{We explored the nearest neighbour algorithm as an alternative disambiguation mechanism. Both algorithms achieve similar accuracy performance. Neural networks were chosen mainly because testing time is on the critical path of the parsing process.}
Figure 4. Modelling of disambiguation process using neural network. The same test sentence as Figure 4 - “He likes chocolates, candies and cakes ...” is used. If the window size is two, i.e. we only use the two words before and after the comma as our inputs in comma disambiguation (“chocolates” and “candies”), the neural network used will be as above. It has two sets of input nodes for the two words, and only the input node which corresponds to the part of speech of the word is set to 1. The rest of the input nodes are set to 0. The network will then determine the classification of the comma and output 1 or 0 accordingly.

3.3 Noun phrase bracketing

We developed a noun phrase parser (Ting, 1995) for our noun phrase bracketing module. It is based on an enhanced HMM model and is reported to achieve 96.3% accuracy (exact match of pairs of bracketings) on the WSJ Corpus.

3.4 Dependency parsing of noun phrases

In the parsing of noun phrases, the original statistical parser, which is also based on an enhanced HMM model, is trained on noun phrases instead of whole sentences. This is a simplification of the statistical parser, analogous to retaining only those rules in a rule-based parser which are relevant to noun phrases.

3.5 Noun phrase extraction

Each segment can be further compressed by replacing its noun phrases and noun phrase groups with a single node. Noun phrase groups refer to a string of noun phrases delimited by logical conjunctive commas, logical conjunctions or prepositions such as “of”. Hence, after the noun phrase extraction phase, the sentences “He likes chocolates, candies and cakes.”, “The cat likes fish,” and “The President of the United States of America meets the Queen of England.” will all yield “NN VBZ NN.” (see (Marcus et al., 1993) for an explanation of the notation symbols of parts of speech used in this paper.)

3.6 Dependency parsing of segments

For parsing of segments, we simplified the parser by training it on sub-sentences instead of whole sentences. This is again analogous to removing those rules in a rule-based parser which cater for noun phrase groups and complex constructs, thus reducing the complexity of the parser and the number of possible parses generated.

3.7 Synthesis of parsed noun phrases

To attach the separate parse trees of each noun phrase back onto the parse tree of the segment, each noun phrase is made dependent on the governor of the single node which represented it. For noun phrase groups, the noun phrases in the group are chained one after another, with the first noun phrase being the head of the entire noun phrase group.
3.8 Synthesis of parsed segments

The welding of the parse trees of segments is performed using a rule-based synthesis engine\[5\]. This synthesis engine first connects the link words, i.e., the prosodic commas, the clausal conjunctions and the subordinating prepositions, to the correct words in the segment parse trees. It then establishes the dependencies between the segments and completes the final parse tree.

The synthesis of prosodic commas is trivial due to the convention adopted by the original parser, whereby all prosodic commas are leaf nodes which depend on the word just before it.

Rules:

Let a sentence be represented as \{ (segment_i) linkword_i (segment_i+1) linkword_i+1 ... (segment_n) linkword_n \}

- If `linkword_i` is a prosodic comma then
 - `linkword_i.governor` = last word in `segment_i`
 - `linkword_i.dependent` = NULL

As mentioned in Section 3.1, clausal conjunctions link verbs. Hence, during the synthesis of clausal conjunctions, the task of the synthesis engine is to find their respective governor and dependent verbs. The key feature of clausal conjunctions is that they link segments which are similar. Our synthesis engine thus exploits three syntactic clues to determine the similarity between potential verbs – the tense of the verb, the morphological form of the verb and the word position of the verb.

Rules:

- If `linkword_i` is a clausal conjunctive comma or a clausal conjunction then
 - If number of words in `segment_i` is zero then
 - `linkword_i.governor` = leftmost verb in `segment_i+1`
 - `linkword_i.dependent` = NULL
 - Else
 - `linkword_i.dependent` = head verb of nearest segment to the right of `segment_i`
 - For \(j \) from 0 to \(i-1 \)
 - If morphological form of head verb of `segment_j` = morphological form of `linkword_i.dependent` or tense of head verb of `segment_j` = tense of `linkword_i.dependent` then
 - `linkword_i.governor` = head verb of `segment_j`
 - Else
 - `linkword_i.governor` = rightmost verb in `segment_i`

As for subordinating prepositions, more specific rules which cater for the different prepositions are derived. For instance, the synthesis of the preposition “that” is rather similar to that of clausal conjunctions, as in this sentence “I know that he is angry.”, where “that” depends on the verb “know” and “is” depends on “that”. However, “that” can also depend on adjectives, such as in “I am glad that I have gained weight.”, where “that” depends on the adjective “glad”. After all these link words have been connected by the synthesis engine, it has to tie up the remaining loose ends. Firstly, the engine needs to identify the head segment, i.e., the segment which depends on no other segments.

Rules:

- For \(j \) from 0 to \(n \)
 - If head verb of `segment_j` do not have a governor and head verb of `segment_j` is not a continuous verb and first word of `segment_j` is not “when”, “while”, “also”, “until”, “to”, then
 - governor of head verb of `segment_j` = `linkword_n`

Then, for segments which are not yet linked, they are chained to the head segment in order.

4 Related Work

Several works in literature specifically target complex sentences linked via link words in their attempt to improve parsing. All differ from the divide-and-conquer strategy in that they involve enhancements to the parsing mechanism itself.

5\footnote{Rules were designed based on the Brown Corpus.}
Magerman discussed the poor performance of his parser SPATTER on sentences with conjunctions (Magerman, 1994). As a result, he augmented SPATTER’s probabilistic model with an additional conjunction feature. However, he reported that though SPATTER’s performance on conjoined sentences improves with the conjunction feature, a significant percentage is still misanalyzed, as the simple conjunction feature model finds it difficult to capture long distance dependencies.

Kurohashi and Nagao developed a method which was geared towards conjoined sentences too (Kurohashi and Nagao, 1994). Their approach involves the use of a language-dependent conjunction scoping method to detect conjunctive structures in Japanese sentences. They then modify a rule-based dependency parser to cater for this additional information on conjunctive structures.

Jones explored another type of link words, the punctuations (Jones, 1994). He showed successfully that for longer sentences, a grammar which makes use of punctuation massively outperforms one which does not. Besides improving parsing accuracy, the use of punctuations also significantly reduces the number of possible parses generated. However, as theoretical forays into the syntactic roles of punctuation are limited, the grammar he designed can only cover a subset of all punctuation phenomena. Unexpected constructs thus cause the grammar to fail completely.

The importance of punctuation in reducing syntactic ambiguity is further attested to by Briscoe and Carroll (1995). They conducted parsing experiments on identical texts with and without punctuation marks and showed the clear improvement in parsing performance. However, they highlighted commas as a major source of ambiguity in their analysis and indicated that syntactic context may be necessary for the effective disambiguation of comma.

All these approaches illustrate that parsing accuracy do improve with additional information on link words. However, all were faced with the non-trivial task of incorporating this information directly into their respective parsing mechanisms.

5 Performance Evaluation

We conducted experiments on 3 sets of data used in the IPSM’95 Workshop (Ting and Peh, 1995), Dynix, Lotus and Trados. These data sets were collected from software manuals and each comprises 200 sentences. The length of the sentences in the data sets ranges from 2 to 59 words and the average length is 17.4 words. The tagger is trained on the PennTree Bank’s Brown Corpus, the Wall Street Journal Corpus and the IPSM’95 Corpus. The training arrangement for both the original parser and the divide-and-conquer parser is as follows. When the test data set is, say, Dynix, the parser is trained on the other two data sets, Lotus and Trados, and an additional 1421 sentences obtained from other software manuals and a subset of the Brown Corpus. The noun phrase parser is trained with the same arrangement as the parser. The disambiguation mechanism, the neural network, is trained on a small subset of the Brown Corpus. The window size used is 8 words.

The performance results of all 3 data sets are summarized in Table 1. Accuracy figures for part-of-speech tagging and parsing refer to word-level performance, i.e. the number of words which are assigned with the correct part of speech and the number of words which are linked to the right governor respectively. The performance of the noun phrase parser refers to the exact match of pairs of bracketings.

Divide-&-Conquer Components	Dynix	Lotus	Trados	Average
Part-of-Speech Tagging	96.3%	94.8%	97.3%	96.1%
Comma Disambiguation	97.2%	96.4%	86.3%	93.3%
Conjunction Disambiguation	96.8%	92.7%	91.7%	93.7%
Noun Phrase Parsing	98.0%	94.0%	99.0%	97.0%

Original Parser	Dynix	Lotus	Trados	Average
Dynix	82.5%	80.9%	79.9%	81.1%
Lotus	86.4%	85.4%	83.6%	85.1%

Table 1. Performance results

6 We manually annotated the parse trees of the entire data set and compared the results with this corpus. Hence, even though certain sentences may have a number of acceptable parses, only the one which matches the corpus exactly is considered correct.
The divide-and-conquer strategy turns in encouraging results. It improves average word level parsing accuracy from 81.1% to 85.1% (an error reduction of 21.2%). It is also worth mentioning that this is achieved despite the small training corpus (1812 sentences) involved.

Figures 5 and 6 contrasts the resultant parse trees of the original and enhanced parsers on a test sentence. Figure 7 shows an example where errors in the disambiguation process propagated and resulted in errors in the final parse tree. The attachment of link words, as shown in Figure 7, is affected by the performance of the disambiguation phase, which in turn is affected by the tagger.

6 Concluding Remarks

In this paper, we have shown that the accuracy of the parser can be considerably improved when presented with simple sub-sentences instead of long, complex sentences. The methodology proposed does not require enhancements to the parsing mechanism itself, and hence is generic enough to be applicable to any dependency or constituency structure parsers.

The divide-and-conquer strategy may be further improved. The disambiguation phase may rely less on the performance of the tagger if more discriminating features, in addition to the parts of speech, are used. Other punctuations such as colons and semi-colons can also be incorporated. As for the synthesis engine, the rule-based approach may be replaced with a more portable statistical approach.

It should also be noted that the divide-and-conquer strategy need not be constrained to the enhancement of parsing. Its disambiguation and segmentation phases may actually be adapted to other areas of NLP, such as generation.

References

[Black1993] Ezra Black. 1993. Parsing English By Computer: The State Of The Art. *Internal report*, ATR Interpreting Telecommunications Research Laboratories.

[Briscoe and Carroll1995] Ted Briscoe and John Carroll. 1995. Developing and Evaluating A Probabilistic LR Parser of Part-of-Speech and Punctuation Labels. In *Proceedings of the ACL/SIGPARSE 4th International Workshop on Parsing Technologies*, Prague / Karlovy Vary, Czech Republic, pages 48–58.

[Jones1994] Bernard E. M. Jones. 1994. Exploring the Role of Punctuation in Parsing Natural Text. In *Proceedings of COLING-94*, pages 421–425.
Figure 6. The parse tree produced by the parser enhanced with the divide-and-conquer strategy on the same sentence in Figure 5. Here, the disambiguation phase manages to disambiguate all the link words accurately. “if” is correctly identified as a subordinating preposition, the comma as a prosodic comma and “and” as a clausal conjunction. As a result, the segmentation phase correctly segments the sentence into “The Workbench cannot find any fuzzy match.”, “It will display a corresponding message (“No match”) in the lower right corner of its status bar.” and “You will be presented with an empty yellow target field.”. The synthesis engine then attaches the link words correctly and is able to identify “display” as the head verb.

Figure 7. The parse tree produced by the parser enhanced with the divide-and-conquer strategy on this sentence in the Lotus data set – “Ami Pro deletes selected text if you type new text or press BACKSPACE, DEL, or ENTER while the text appears highlighted.”. The disambiguation phase wrongly classifies the “or” before “press” as a logical conjunction. It also wrongly classifies the “or” before “ENTER” as a clausal conjunction. The reason behind this error in disambiguation is the erroneous parts of speech assigned to “press” and “ENTER” by the tagger – “press” is tagged as a proper noun whilst “ENTER” is tagged as a verb. These disambiguation errors result in an error in the segmentation of the sentence into “Ami Pro deletes selected text.”, “You type new text or press BACKSPACE, DEL.”, “ENTER while the text appears highlighted.” and propagated down to the synthesis phase too. The cyclic part of the parse tree which was present in the original parser’s output was not eradicated here.
[Kurohashi and Nagao1994] Sadao Kurohashi and Makoto Nagao. 1994. A Syntactic Analysis Method of Long Japanese Sentences Based on the Detection of Conjunctive Structures. *Computational Linguistics*, 20(4):507–534.

[Magerman1994] David M. Magerman. 1994. Natural Language Parsing as Statistical Pattern Recognition. *PhD thesis*, Stanford University.

[Mel’čuk1988] Igor A. Mel’čuk. 1988. Dependency Syntax: Theory and Practice. *State University of New York Press*.

[Marcus et al.1993] Mitchell P. Marcus, Beatrice Santorini, Mary A. Marcinkiewicz. 1993. Building a Large Annotated Corpus of English: The Penn Treebank. *Computational Linguistics*, 19(2):313–330.

[Nunberg1990] Geoffrey Nunberg. 1990. The Linguistics of Punctuation. *CSLI Lecture Notes*, 18.

[Ting1995] Christopher H. A. Ting. 1995. Parsing of Noun Phrases with HMM. In *Proceedings of Inter-Faculty Seminar on Natural Language Processing*, National University of Singapore.

[Ting and How1995] Christopher H. A. Ting and K. Y. How. 1995. Parsing Dependency Structures Without Using Any Grammar Formalism. In *Proceedings of the International Parser Systems Workshop’95*, University of Limerick, Ireland.

[Ting and Peh1995] Christopher H. A. Ting and L. S. Peh. 1995. DESPAR, A Dependency Structure Parser Without Using Any Grammar Formalism. In Richard F. E. Sutcliffe and Heinz-Detlev Koch, editors, *Industrial Parsing of Software Manuals*. Editions Rodopi B. V., Amsterdam. To appear.