Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics

2019 Lewis K. Dahl Memorial Lecture

John D. Imig©, Wojciech K. Jankiewicz©, Abdul H. Khan©

Abstract—Epoxyeicosatrienoic acids (EETs) are epoxy fatty acids that have biological actions that are essential for maintaining water and electrolyte homeostasis. An inability to increase EETs in response to a high-salt diet results in salt-sensitive hypertension. Vasodilation, inhibition of epithelial sodium channel, and inhibition of inflammation are the major EET actions that are beneficial to the heart, resistance arteries, and kidneys. Genetic and pharmacological means to elevate EETs demonstrated antihypertensive, anti-inflammatory, and organ protective actions. Therapeutic approaches to increase EETs were then developed for cardiovascular diseases. sEH (soluble epoxide hydrolase) inhibitors were developed and progressed to clinical trials for hypertension, diabetes mellitus, and other diseases. EET analogs were another therapeutic approach taken and these drugs are entering the early phases of clinical development. Even with the promise for these therapeutic approaches, there are still several challenges, unexplored areas, and opportunities for epoxy fatty acids.

Kidney and cardiovascular diseases are inextricably linked: the kidney is essential for renin secretion, as well as water and electrolyte homeostasis. Human and animal studies conducted by Dr Lewis K. Dahl demonstrated that excessive salt intake contributed to hypertension.1,2 Over a half century since these key findings by Dr Dahl and other investigators connecting salt, kidney, and hypertension, there has been strides in the treatment of cardiovascular and kidney diseases. Salt restriction and diuretics represented successful approaches to treating hypertension and preventing cardiovascular events.3,4 Nevertheless, the cardiovascular disease hypertension still afflicts one in every 4 people and remains the leading cause of death worldwide.5,6 Chronic hypertension is a leading contributor to cardiovascular, renal, and cerebral disease morbidity, and mortality, and prevalence and multiple medical and socio-economic consequences make it a major health challenge. While it is widely accepted that early clinical intervention minimizes the devastating consequences of hypertension, a lack of obvious symptoms complicates its timely diagnosis and the prevalence of uncontrolled hypertension is ≈50%.7,8 A significant portion of patients with hypertension develop chronic kidney disease and progress to end-stage renal disease.9,10 Kidney diseases such as chronic kidney disease affect one out of every ten Americans and continue to lack proper treatments.9 Accordingly, there continues to be a significant need for finding new approaches to treat cardiovascular and kidney diseases.

Common dysfunctional mechanisms that contribute to cardiovascular and kidney diseases include water and electrolyte regulation, inflammation, and endothelial function. Humans over recent centuries have adapted to a dramatic increase in sodium intake and a reduction in potassium intake.9,10 The kidney’s relative inability to adapt to this change in dietary salt has led to a substantial increase in salt-sensitive hypertension.10 Evidence from genetic polymorphisms and monogenic hypertension has led to the postulate that hypertension is the consequence of multiple genetic polymorphisms that in aggregate result in defective kidney sodium excretion.13,15 Direct evidence that impaired kidney function contributes to hypertension has been demonstrated in kidney transplantation studies both in rats and humans.16,17 Inflammation—in particular kidney inflammation—has been demonstrated to contribute to hypertension and kidney diseases.18,20 Likewise, endothelial dysfunction contributes to salt-sensitive hypertension and is a strong indicator of poor kidney and cardiovascular health.21,22 These dysfunctional mechanisms are likely interrelated and act in concert to cause and contribute to the progression of cardiovascular and kidney diseases.

Epoxy fatty acids provide a pathway that can improve water and electrolyte regulation, decrease inflammation, and improve endothelial function in salt-sensitive hypertension and chronic kidney disease.23,24 Likewise, genetic manipulation decreasing epoxy fatty acids and decreasing kidney epoxy fatty acids have been associated with salt-sensitive hypertension.24,25 Experimental evidence in animal models and humans revealed that genetic or pharmacological manipulation increasing bioavailability
of epoxy fatty acids, epoxyeicosatrienoic acids (EETs), improves cardiovascular and renal function.25–27 The focus of this review is to present how evaluating EET actions in salt regulation evolved into the development of therapeutics that demonstrate great promise for treating kidney and cardiovascular diseases.

Epoxy Fatty Acids—Biological Actions

CYP (cytochrome P450) epoxygenase enzymes form epoxides by acting on carbon double bonds of fatty acids. Arachidonic acid is the most abundant fatty acid in mammals and is acted upon by CYP epoxygenase enzymes to form 4 regioisomeric EETs (Table).104 The major CYP epoxygenase enzymes are the CYP2C and CYP2J; CYP2C is the main epoxygenase enzyme responsible for kidney and endothelial EET generation.105,106 Of the 4 EET regioisomers, 11,12-EET and 14,15-EET are the major products of the human CYP2C8 and CYP2C9, the mouse Cyp2C44 and the rat CYP2C23.105–107 Following generation, EETs can then be acted upon by sEH (soluble epoxide hydrolase), which adds water across the epoxide bond forming a diol (dihydroxyeicosatrienoic acids [DHET]). The rank order affinity for EETs for sEH is: 14,15-EET > 11,12-EET > 8,9-EET > 5,6-EET.23 In general, EETs are biologically active, whereas DHETs are less active or inactive in terms of vascular, renal, and inflammatory actions.22,23

The finding that EETs are EDHFs (endothelium-derived hyperpolarizing factors) resulted in extensive evaluation in several organ vasculatures.108,109 Early studies demonstrated that EETs—in particular 11,12-EET and 14,15-EET—vasodilate renal, coronary, cerebral, and mesenteric arterioles (Figure 1).23 Renal afferent arterioles dilated to 11,12-EET and 14,15-EET but failed to respond to their corresponding DHETs.28 Finding that DHETs were inactive provided initial evidence that inhibiting sEH could increase the EET-mediated vasodilation. Although 8,9-EET and 5,6-EET have been demonstrated to be vasodilatory in some vasculatures, it was found that in renal afferent arterioles 8,9-EET was inactive and 5,6-EET caused COX (cyclooxygenase)-dependent constriction of renal afferent arterioles.26–31 As for the cellular site of action, dilation in renal arterioles and other arterioles by EETs was determined to be due to a direct action on vascular smooth muscle cells.23,28,108,109 Cell signaling mechanisms responsible for EET EDHF dilatation include vascular smooth muscle cell PKA (protein kinase A) activating large-conductance K+ (BKCa) channels to cause hyperpolarization.32,33 Another important aspect of EET vascular action is interactions with hormonal and paracrine vasodilators and vasoconstrictors. Vasodilation by bradykinin depends on endothelial EET release.109,110 Importantly, an EET contribution to bradykinin vasodilation has been verified in humans.111,112 EETs also contribute to the bradykinin-dependent

Classes of Eicosanoid Molecules	Molecules	Structure Activity Relationship	References
Regioisomeric EETs	5,6-EET	EETs have an epoxide bond (11,12-EET, green) and require at least one carbon double bond (blue).	28–33, 34, 35–47, 48, 49
	8,9-EET		
	11,12-EET		
	14,15-EET		
DHETs	5,6-DHET	DHETs are sEH products of epoxide bond converted to diol (11,12-DHET, green).	
	8,9-DHET		
	11,12-DHET		
	14,15-DHET		
sEH inhibitors	AUDA	AUDA is a urea-based sEH inhibitor (green). sEH inhibitors include amide, piperidyl, and aminoheteroaryl inhibitors.	50–59, 60–62, 63–66, 67–73, 74–79, 80, 81
	AR9281		
	GSK2256294		
	EC5026		
EET analogs	NUDSA	EET-A is 14,15-EET analog with a urea (green) that mimics the epoxide and resist sEH activity and a double bond at the 8,9 position (blue).	82–96, 97, 98
	EET-A		
	EET-B		
Dual modulator sEH inhibitors	PTUPB	PTUPB is a dual sEH inhibitor (green) and COX-2 inhibitor (blue) with a linker.	99, 100, 101, 102, 103
	RB394		
	DMS09		

AUDA indicates 12-(3-adamantan-1-yl-ureido)-dodecanoic acid; COX-2, cyclooxygenase-2; DHET, dihydroxyeicosatrienoic acids; EET, epoxyeicosatrienoic acids; and NUDSA, (S)-2-(11-(nonyloxy)undec-8(Z)-enamido)succinic acid; PTUPB, [4-(5-phenyl-3-[[3-(4 trifluoromethylphenyl]-ureido]-propyl)-pyrazol-1-yl]-benzenesulfonamide]; sEH, soluble epoxide hydrolase.
vascular actions under conditions of ACE (angiotensin-converting enzyme) inhibition.113,114 EETs also oppose the vasoconstrictor actions of endothelin and angiotensin II.34,115 The findings that EETs act as EDHFs and oppose vasoconstrictors involved in renal and cardiovascular diseases provided impetus for testing if increasing EETs could provide beneficial actions in these disease states.

Renal epithelial EET actions promote natriuresis to maintain water and electrolyte homeostasis (Figure 1). EETs have been demonstrated to have epithelial actions on proximal and distal tubules.24,116 EETs have been demonstrated to have epithelial actions on proximal and distal tubules.35–37,117 Initial studies found that EETs inhibit the proximal tubule Na+-K+ ATPase.35,38 EETs were also demonstrated to mediate the angiotensin II decrease Na+/H+ exchange in proximal tubule cells.35 Early studies on distal nephron segments demonstrated that 5,6-EET inhibited apical sodium transport in collecting duct cells.39 These 5,6-EET epithelial actions were COX-dependent similarly to 5,6-EET’s vascular actions.39 More recently, experimental studies have focused on the significant collecting duct epithelial actions of 11,12-EET.36,37,40 11,12-EET induces natriuresis through ERK1/2 (extracellular signal-regulated kinase)-dependent effects on the collecting duct ENaC (epithelial sodium channel).39 Although 11,12-EET has been consistently demonstrated to inhibit ENaC using electrophysiological approaches, 14,15-EET was inactive when evaluated in isolated rat collecting ducts but 14,15-EET inhibited ENaC when evaluated in immortalized mpk-CCDc14 collecting duct cells.37,117 Epithelial basolateral inward rectifying K+ channels located along the convoluted tubule and collecting duct are inhibited by EETs.41,42,116 11,12-EET inhibits the basolateral K+ channels resulting in cell membrane depolarization and reduction in the driving force for apical Na+ reabsorption.41 11,12-EET could contribute to renal K+ secretion by stimulating epithelial collecting duct principal cell BKCa channels.36 Consequently, EETs renal epithelial actions are important in the regulation of plasma Na+ and K+ levels to maintain fluid homeostasis and blood pressure.

Anti-inflammatory EET actions are critical in combating hypertension and progressive kidney diseases (Figure 1). Initial studies described the ability for 11,12-EET to decrease adherent mononuclear cells in mice carotid arteries after TNF\textalpha (tumor necrosis factor alpha) administration.43 Comparison between 11,12-EET to 14,15-EET and VCAM-1 blocking antibody demonstrated that 11,12-EET was superior to 14,15-EET and was as effective as VCAM-1 (vascular cell adhesion molecule 1) blocking antibody in decreasing adherent inflammatory cells.43 11,12-EET was also found to decrease endothelial cell VCAM-1 expression and NF\kappa B promoter activity.44 In rat pulmonary artery endothelial cell 11,12-EET and 14,15-EET suppressed oxidized-LDL (low-density lipoprotein) leukotriene B4 production and activity through inhibiting p38 MAPK (mitogen-activated protein kinase) phosphorylation NF\kappa B (nuclear factor kappa B) activation and inhibiting 5-LO (5-lipoxygenase).44 11,12-EET also opposes lipopolysaccharide-induced M1 macrophage polarization and proinflammatory cytokines at the transcriptional and post-transcriptional level.44 Lung inflammation during ischemia-reperfusion injury or induced by cigarette smoke is decreased by 11,12-EET or 14,15-EET.46,47 EETs act by decreasing cytokines via inhibiting NF\kappa B activation and increasing anti-inflammatory proteins Nrf2 (nuclear factor erythroid 2–related factor 2) and HO-1 (heme oxygenase-1).47 These anti-inflammatory actions support the notion that increasing EET levels could combat those cardiovascular and renal diseases which have a significant inflammatory contribution.

The vascular, renal epithelial, and inflammatory biological actions supported the overarching idea that decreased
EETs could contribute significantly to hypertension, vascular inflammatory diseases, and acute and progressive kidney diseases (Figure 2). There have been several studies that link vascular dysfunction, inflammation, and impaired natriuresis to salt-sensitive hypertension.15,24,116 For example, the vasoconstrictor agents can induce renal microvascular and interstitial inflammation to impair epithelial transport and sodium excretion.15,24 Angiotensin II hypertension is salt-sensitive. Remarkably, anti-inflammatory agents improve renal microvascular function, prevent the renal interstitial inflammatory response, and eliminate salt-sensitive hypertension.18,19 Interestingly, EET generation and regulation by sEH at the endothelial cell, epithelial cell, and inflammatory cell level could influence renal and cardiovascular function and blood pressure regulation.23,25 Interactions between inflammation, vascular function, and epithelial sodium transport can be regulated by EETs.23,25 In IgA nephropathy the level of renal epithelial cell sEH expression positively correlates with proteinuria and macrophage infiltration.118 Likewise, decreased endothelial cell EET production causes dysfunction and contributes to infiltration of inflammatory cells into the vascular smooth muscle cells.25,119 Macrophages also have the ability to generate EETs and reduced macrophage EET generation results in a profibrotic macrophage transcriptome.120 Several studies in animal disease models and humans have consistently found that decreased EETs or increased sEH activity contribute to hypertension and the progression of cardiovascular and renal diseases.23,24 Therefore, decreases in EET generation or increases in sEH activity can impact vascular and kidney function as well as the inflammatory state in a manner linked to water and electrolyte homeostasis and blood pressure control.

Soluble Epoxide Hydrolase Inhibition

The concept that increased sEH activity converting EETs to DHETs could contribute to hypertension and salt-sensitivity accelerated the therapeutic development of sEH inhibitors (Figure 2). Human studies revealed that genetic variants in the gene that encodes for sEH (EPHX2) can influence endothelial function.121–124 The EPHX2 Arg55 genetic variant results in increased sEH activity and reduces human forearm blood flow responses to bradykinin.124 In addition, this EPHX2 Arg55 polymorphism is associated with greater risks for coronary artery disease.123 Acute kidney disease following cardiac surgery is associated with the EPHX2 Arg 55 polymorphism and a decreased plasma epoxide to diol ratio.125 Endothelial dysfunction in humans has been found in instances where capacity for inducing EET release is impaired.122 These findings in humans showed that increased sEH activity (and decreased EETs) contribute to endothelial dysfunction which is a precursor of salt-sensitive hypertension.

Evidence for epoxygenase CYP2C and CYP2J genetic variants that decrease EET and hypertension are inconclusive.122,126–128 Several CYP2C and CYP2J2 gene variants demonstrate reduced epoxygenase activity.122,126–128 As an example, CYPJ2 gene G-50 single nucleotide polymorphism is associated with increased coronary artery disease risk and decreased plasma EET levels.126 Analyses of ethnic cohorts have demonstrated no association with hypertension or an increased risk for essential hypertension.127–130 On the contrary, animal studies on salt regulation and blood pressure control have consistently demonstrated that an impaired ability to increase CYP2C generation of EETs in response to dietary NaCl contributes to salt-sensitive hypertension.23,40,116 Decreased renal epoxygenase activity and EETs have been associated with hypertension in angiotensin hypertension and Lyon hypertensive

Figure 2. Pathophysiology caused by decreased epoxyeicosatrienoic acids (EETs) and therapeutic consequences for increasing EETs. **Left,** Decreased CYP epoxygenase activity or increased sEH (soluble epoxide hydrolase) activity results in decreased epoxyeicosatrienoic acids (EETs) resulting in vascular dysfunction, inflammation, impaired pressure natriuresis, organ fibrosis, and hypertension mediated renal and cardiovascular (CV) complications. **Right,** EET analogs and sEH improve vascular function, decrease inflammation, increase natriuresis, combat CV diseases, lower blood pressure, combat kidney diseases.
tension. These studies discovered that angiotensin and sEH regulation were conducted in angiotensin II hyper-salt-sensitive hypertension and cardiovascular diseases. Initial studies determining kidney CYP2C epoxygenase and sEH regulation were conducted in angiotensin II hypertension. These studies discovered that angiotensin II hypertension was associated with an increased kidney sEH expression that resulted in a decrease in the EET to DHET ratio. In contrast, rat angiotensin II salt-sensitive hypertension improved endothelial-dependent dilation, decreased renal inflammation, and slowed progressive kidney damage. Thus, the evaluation of sEH inhibitors supported the notion that increasing kidney EET levels had therapeutic potential in hypertension.

The development of sEH inhibitors progressed rapidly due to extensive knowledge concerning the enzymatic binding and activity, the ability to synthesize carbamate urea sEH inhibitors in large quantities, and development of the first orally active sEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) (Table). Current orally active sEH inhibitor structures include urea-based sEH inhibitors, piperidyl urea sEH inhibitors, an amide series of sEH inhibitors and animoheteroaryl sEH inhibitors. Experimental studies with sEH inhibitors determined antihypertensive actions in a number of models: spontaneously hypertensive rats, angiotensin II hypertension, DOCA (deoxycorticosterone acetate)-salt hypertension, Lyon hypertensive rats, and Ren-2 transgenic hypertension. These studies included sEH inhibitors administered in preventive and clinically relevant interventional manner to rat and mice hypertension models. A consistent finding was that sEH inhibitors lowered blood pressure in these hypertension animals (Figure 2). EPHX2 gene deletion resulted in decreased blood pressure in DOCA-salt hypertension and sEH inhibitors did not have additional actions in EPHX2 gene deleted mice. The decrease in blood pressure in response to sEH inhibitors or genetic EPHX2 deletion was associated with an increase in the EET to DHET ratio, natriuresis, improved renal microvascular function, and decreased renal inflammation. Interestingly, in several instances, the decrease in kidney damage after chronic sEH inhibition was greater than what would be expected based on the degree of blood pressure lowering. Subsequent studies found that sEH inhibitors could decrease progressive kidney disease independent of blood pressure-lowering actions. Findings in these hypertension animal models resulted in extensive investigation of sEH inhibitors to treat renal and cardiovascular diseases.

Kidney-protective actions of sEH inhibitors have been demonstrated to be independent of the antihypertensive actions. Diabetic and hypertensive kidney injury has been clearly demonstrated to be decreased by the sEH inhibitor AUDA in the Goto-Kakizaki diabetic rat. The decrease in renal inflammation, glomerular injury, and tubular damage in the Goto-Kakizaki rats treated with an sEH inhibitor was not associated with a lowering of blood pressure, blood glucose, cholesterol, or triglyceride levels. Kidney-protective actions of sEH inhibitors or EPHX2 genetic deletion have also been demonstrated in unilateral ureter obstruction induced kidney fibrosis. Administration of sEH inhibitors or EPHX2 genetic deletion decreased kidney inflammation by decreasing neutrophil infiltration and decreasing cytokine TNFα and ICAM-1 (intracellular adhesion molecule-1) levels. The anti-inflammatory sEH inhibitor cell signalling mechanisms of actions in unilateral ureter obstruction were determined to be via NFκB downregulation and decreased TGF-β1 (transforming growth factor-β1)/Smad 3 mediated inflammation. Additional evaluation revealed that sEH inhibition antifibrotic actions were due to suppressing the epithelial to mesenchymal transition. Renal epithelial cell culture studies determined that sEH inhibition increases E-cadherin resulting in decreased α-smooth muscle actin to prevent transition from an epithelial cell to myofibroblast cell phenotype. Similar results were obtained in drug-induced nephrotoxicity studies. Administration of sEH inhibitors decreased NFκB activation and TNFα inflammation to reduce cisplatin-induced acute kidney injury. Taken together, these studies demonstrated that sEH inhibitors decrease progressive renal disease through anti-inflammatory and antifibrotic mechanisms (Figure 2).

Cardiovascular diseases represent another area for which sEH inhibitors hold an exciting promise. Left ventricular cardiac hypertrophy and cardiac ischemia-reperfusion injury are 2 animal disease models where sEH inhibitors have been extensively tested. Decreased EET generation and increased sEH activity is evident in several rodent cardiac hypertrophy models. Administration of sEH inhibitors prevents and reverses pressure overload left ventricular hypertrophy. Angiotensin II hypertension mediated cardiac hypertrophy is attenuated by sEH inhibition, and the decrease in hypertrophy is partially independent of blood pressure lowering. Decreased cardiac hypertrophy in response to sEH inhibition is mediated by anti-inflammatory and antifibrotic actions. Like left ventricular hypertrophy, myocardial infarction is also improved by sEH inhibitors. Several dog, rat, and mice studies have demonstrated positive short-term and long-term outcomes for sEH inhibitors to treat cardiac ischemia-reperfusion injury. The short-term positive effects on cardiac ischemia-reperfusion injury are mediated through K_+ channel activation, PI3 kinase signalling, and delays mPTP (mitochondrial permeability transition pore) opening to oppose cardiac cell apoptosis and necrosis. The long-term cardiac fibrotic and hypertrophy following myocardial infarction is also reduced by sEH inhibitors. Atrial fibrillation and
cardiac arrhythmias in ischemia reperfusion and cardiac hypertrophy animal models are attenuated by sEH inhibitors.64,70,71 These long-term cardiac protective actions for sEH inhibitors have significant anti-inflammatory actions.64 Treatment with sEH inhibitors decreases circulating inflammatory cytokines and inhibits cardiac NaKxB activation.62,72 Likewise, chronic sEH inhibitor administration decreases cardiac fibrosis and hypertrophy by decreasing MAPK and endoplasmic reticulum stress activation.64,73 The sEH inhibition cerebral protective effects from stroke also involve reduction in MAPK and PI3 kinase signaling to prevent neuronal cell apoptosis.74,75,142 Intriguingly, sEH inhibitor anti-inflammatory actions are a major mechanism for protective actions in vascular diseases.25

The increase in cytokines, chemokines, and adhesion molecules that occurs in atherosclerotic and vascular remodeling animal models is greatly reduced by sEH inhibition.75–78 More recently, sEH inhibition demonstrated anti-inflammatory actions where decreased EET levels are due to decreased CYP2C9 metabolism in animals.79–81 The sEH inhibition cerebral protective effects from stroke also involve reduction in MAPK and endoplasmic reticulum stress activation.64,73

The overwhelming body of evidence from preclinical animal models for sEH inhibition having therapeutic value in hypertension, renal diseases, and cardiovascular diseases has allowed for rapid advancement of sEH inhibitors to clinical trials. Two sEH inhibitors, AR9281 and GSK2256294, have advanced to human clinical trials.25,77,108 Another sEH inhibitor, ECS026, is advancing to a phase 1 clinical trial for chronic pain management. Phase I clinical trials for AR9281 and GSK2256294 were positive for safety and pharmacokinetics.80,143 AR9281 entered into a phase IIa clinical trial for hypertension and type 2 diabetes mellitus but did not provide sufficient efficacy.137 Although GSK2256294 has not advanced to phase II clinical trials, there were positive cardiovascular findings. Endothelial function assessed by forearm blood flow responses to bradykinin was improved in male obese smokers.77 This human study confirms the sEH inhibitor cardiovascular beneficial actions observed in copious animal studies. There are 2 human clinical trials that are in the recruiting and beginning stages for evaluating the sEH inhibitor GSK2256294 for treatment of insulin resistance and subarachnoid hemorrhage. There appears to be a bright and exciting future for sEH inhibitors to one day be approved for treating human disease.

EET Analogs

Given the successful development of the sEH inhibitors to clinical trials, one might ask what the benefit would be for developing EET analogs to target the epoxygenase pathway. There are 3 primary reasons to develop EET analogs. The first reason is that sEH inhibitors could be less effective in situations where decreased EET levels are due to decreased CYP2C epoxygenase EET generation. As previously mentioned, decreased CYP2C generation has been found in animals with salt-sensitive hypertension.132 Administration of sEH inhibitors to these salt-sensitive hypertension animals are not always as effective in lowering blood pressure.56,131 A second reason for developing EET analogs is that sEH inhibition will increase epoxy fatty acids in general rather than specific EETs.23,137 The contribution of epoxy fatty acids such as linoleic epoxy fatty acids to the beneficial effects for sEH inhibitors has not been extensively evaluated. EET analogs represent a direct method to mimic arachidonic acid epoxy fatty acids (EETs).23,26 The third reason is the possibility of developing EET analogs that resist metabolism by sEH and other pathways.25,26 Several biosteres that mimic epoxide bonds, replace the carboxylic acid and mimic double bonds present in 11,12-EET and 14,15-EET result in EET analogs that retain biological activity and resist metabolism (Table).25,26 The last reason for developing EET analogs is that regiospecific 11,12-EET and 14,15-EET mimics can be developed. There are 4 regiosomeric EETs, and in several circumstances, these EETs have variable biological actions.23,105,116 In addition, the sEH preferred regiosomeric EET substrate is 14,15-EET with lesser preference for 11,12-EET and 8,9-EET and 5,6-EET as a poor substrate for sEH.23,137 Kidney glomerular permeability studies provides evidence where the EET regiosomeric analog action is important. Focal segmental glomerular sclerosis circulating factor or angiotensin II induced increases in glomerular permeability are blocked by 8,9-EET and 8,9-EET analogs.82,83 In contrast, by 5,6-EET, 11,12-EET, 14,15-EET, 11,12-EET analogs and 14,15-EET analogs are ineffective in blocking the increase in glomerular permeability.82 Consequently, EET regiosomeric analogs have been developed and evaluated in preclinical animal models for renal and cardiovascular diseases.

Like sEH inhibitors, EET analogs were developed and initially tested in hypertension and salt-sensitive hypertension.82,85 Genetic manipulation to increase EET levels was evaluated before testing EET analogs in salt-sensitive hypertension. Mice with endothelial-specific overexpression of the human CYP2J2 (Tie2-CYP2J2) and CYP2C8 (Tie2-CYP2C8) epoxygenases showed attenuated afferent arteriole constrictor responses to endothelin-1 and enhanced dilator responses to acetylcholine.115 Angiotensin II salt-sensitive hypertension and renal injury was significantly attenuated in Tie2-CYP2J2 and Tie2-CYP2C8 mice.115 Importantly, we found that primary renal endothelial cells isolated from Tie2-CYP2J2 and Tie2-CYP2C8 mice produced significantly higher concentrations of 11,12-EET and 14,15-EET compared with renal endothelial cells isolated from wild-type controls.115 The subsequent development of orally bioavailable EET analogs allowed for testing in rodent hypertension. EET analogs for 11,12-EET and 14,15-EET lowered blood pressure in spontaneously hypertensive rat, angiotensin hypertension, and salt-sensitive hypertension.44,85 The 11,12-EET analog, (S)-2-(11-(nonloxy)-undec-8(Z)-enamido)succinic acid (NUDSA), was also demonstrated to decrease blood pressure and improve endothelial function in mice with metabolic syndrome.86 Likewise, 14,15-EET analogs, EET-A and EET-B, decreased blood pressure in angiotensin hypertension.84,85 Additional studies in angiotensin hypertension revealed that EET-A improved mesenteric resistance artery endothelial function and inhibited ENaC to promote sodium excretion.85 Malignant angiotensin hypertension in Cyp1a1-Ren transgenic rats was also prevented by chronic EET-A administration.87 EET analogs also decreased renal inflammation and macrophage infiltration in hypertension.85 EET analogs are antihypertensive and improve renal hypertension.
function through HO-1 signalling and inhibition of the sodium-chloride transporter. Hypertension resulting from cyclosporine administration to rats for one month was prevented by EET analog treatment. EET-B treatment decreased renal inflammation, apoptosis, and fibrosis associated with cyclosporine. Cyp2c44−/− mice have been extensively studied because Cyp2c44 is the major kidney epoxygenase and Cyp2c44 expression is increased in response to a high K+ or high Na+ salt diet to generate EETs in the cortical collecting duct. More importantly, mice with Cyp2c44 epoxygenase genetic deficiency and decreased EET levels develop salt-sensitive hypertension. Hyperactive ENaC and a reduction in ERK1/2 ENaC subunit phosphorylation contribute to the salt-sensitive hypertension in Cyp2c44−/− mice. EET-A prevented salt-sensitive hypertension and decreased renal injury in Cyp2c44−/− mice. The antihypertensive actions of EET-A in Cyp2c44−/− mice were likely a result of the ability for EET-A to inhibit ENaC in cortical collecting duct cells. These findings support the notion that EET analogs lower blood pressure in hypertension through the known EET vascular, epithelial transport, and anti-inflammatory actions (Figure 2).

Renal protective actions have been demonstrated for EET analogs that are independent of systemic actions. Acute and chronic renal disease animal models provide evidence that EET analogs anti-inflammatory, antifibrotic, and antiapoptotic actions decrease renal disease progression. EET analogs administered in a preventive or interventional mode can decrease renal vascular, glomerular, and tubular injury. Initial studies evaluated EET analogs in drug-induced nephrotoxicity. Treatment with EET analogs decreased the tubular injury in response to the chemotherapeutic agent cisplatin. Cisplatin-induced nephrotoxicity renal inflammation and apoptosis was reduced by EET analog treatment. Renal ischemia-reperfusion injury is decreased by EET analog treatment. EET analog treatment improved renal oxygenation, decreased inflammatory cell infiltration, and acted via PI3 kinase Akt (protein kinase B), GSK-3β (glycogen synthase kinase 3 beta) signalling to reduce epithelial cell apoptosis. EET analogs also protect from long-term progressive renal injury. Kidney fibrosis in unilateral ureter obstruction mice is prevented by EET-A through actions on epithelial to mesenchymal transition. EET-A treatment to unilateral ureter obstruction mice resulted in a decrease in epithelial to mesenchymal transducers and myofibroblast markers resulting in decreased renal α-smooth muscle actin and collagen levels. Progressive renal injury due to radiation exposure is also prevented by EET analogs. EET-A given 2 days following radiation exposure to rats mitigated the progressive renal microvascular and tubular damage. The decrease in radiation-induced renal damage by EET-A was associated with reductions in the p53/Fas/FasL apoptotic pathway. Likewise, renal injury associated with lupus nephritis is decreased by EET analog treatment. Systemic lupus nephritis mice treated with EET-A had markedly diminished CXC (chemokine C-X-C motif) chemokines and receptors, reduced renal TNF-α, IL-6 (interleukin 6), and IL-1β levels, and reduced renal immune cell infiltration resulting in decreased renal damage. As a whole, EET analogs have been consistently demonstrated to decrease acute and chronic kidney disease progression through antiapoptotic, anti-inflammatory, and antifibrotic mechanisms (Figure 2).

EET analogs cardiovascular protective actions have been evaluated in several cardiac disease animal models. Initial studies were conducted with EET analogs in cardiac ischemia-reperfusion injury. These studies revealed that NUDSA administered after myocardial infarction resulted in improved cardiac contractile function. Likewise, left ventricular function 1 month after left anterior descending coronary artery ligation in mice was improved by EET analog treatment started 5 days after ligation. EET-B treatment for 2 months improved cardiac function in spontaneously hypertensive rat subjected to 30 minutes of left coronary artery occlusion to induce myocardial infarction. The improved cardiac function in spontaneously hypertensive rat was linked to increased HO-1 cardiomyocyte levels and decreased inflammation and fibrosis. Obesity-induced diabetic cardiomyopathy in mice was reduced by EET analog treatment. EET analog administration resulted in PGC-1α (peroxisome proliferator-activated receptor coactivator) induction to control mitochondrial function, induce HO-1, and reduce inflammation in the heart of obese diabetic mice. A contribution of EET activation in heart vascular endothelial cells to cardiac protection has been demonstrated in endothelial-specific CYP2J2 overexpressing mice. Myocardial perfusion following myocardial infarction in mice was increased by increased endothelial cell EET levels. Endothelial cell EETs increased angiogenesis via Jagged1/Notch 1 signalling in mice following cardiac ischemia. Cardiac hypertrophy was also decreased in hypertensive rats treated with EET-A for 2 weeks. Ischemia reperfusion-induced ventricular fibrillation in hypertension was also greatly diminished by EET analogs. The primary signalling mechanisms that appear to mediate EET analog cardiac protective actions include opposing apoptosis and improving mitochondrial function.

In line with EET biological actions, EET analogs activate cardiac myocyte mitochondrial KATP channels resulting in an increase in mitochondrial cristae density. Antiapoptotic EET analog actions are mediated through MAP kinase signalling in the heart to prevent ischemia-reperfusion injury. These findings support the notion that EET analogs are a potential therapeutic strategy for cardiac diseases (Figure 2).

Future for Epoxy Fatty Acid Therapeutics

We have made significant strides on the journey to developing EET-based therapeutics for treating renal and cardiovascular diseases. We have gone from the initial description of EETs as regulators of renal hemodynamics and epithelial transport to the development of sEH inhibitors and EET analogs. Less than a decade sEH inhibitors were in clinical trials for hypertension and diabetes mellitus. On the contrary, EET analogs developed at a slower pace due to the lack of a protein target and ability to obtain orally bioavailable EET analogs. EET analogs are now being advanced towards clinical trials for kidney diseases. The journey continues as the potential for an EET pathway drug being approved for treating renal or cardiovascular diseases appears likely.

Challenges and headwinds still exist for epoxy fatty acids to reach a point to benefit human health. As with every
hormonal and paracrine factor and cell signalling pathway, there is an upsold and downside to therapeutically targeting EETs and sEH. Although the positives appear to outweigh the negatives for sEH inhibitors and EET analogs, there has been concerns with their potential due to effects on angiogenesis and tumor growth and metastasis in certain cancers. In contrast, however, sEH inhibitors given alone or in combination with COX inhibitors can have anticancer actions. EET angiogenesis could be a detrimental action for tumors but be very useful when increased vascularization of ischemic tissue is required. In addition, the action on the pulmonary vasculature is vasoconstriction. This opposite pulmonary vascular EET actions is like that found for prostaglandins. Even with these potential challenges, sEH inhibitors have demonstrated beneficial cardiovascular effects in human clinical trials to combat chronic diseases. Opportunities for therapeutically targeting epoxy fatty acids remain abundant.

Dietary factors like diets enriched with ω-3 fatty acids can influence ω-3 epoxy fatty acid levels and consumption of specific plants can influence sEH activity. There has been considerable investigation into the actions for EPA (ω-3 eicosapentaenoic acid) and DHA (docosahexaenoic acid) fatty acids. Increases in dietary ω-3 EPA and DHA have been found to have cardiovascular beneficial actions. Intriguingly, epoxygenase enzymes generated EPA EEqS (epoxyeicosatetraenoic acids) and DHA EDPs (epoxydocosapentaenoic acids) metabolites that have also been found to have kidney and cardiovascular actions. Interestingly, 17,18-EEQ analogs have been developed, tested, and reached phase 1 clinical trials for treating atrial fibrillation and cardiac arrhythmias. Other dietary means can elevate epoxy fatty acids. Plants from the order Brassicales and Cimicifuga dahurica roots have been found to have decrease sEH activity. Eating flaxseed has been demonstrated to inhibit sEH and lower blood pressure in humans with hypertension. There is great potential and much to be explored for the kidney and cardiovascular dietary ω-3 epoxy fatty acids and plants with sEH inhibitory activity.

Another major area open for opportunities are to better define the contribution for EET regioisomers. 11,12-EET and 14,15-EET have been the most extensively studied EET regioisomers; however, 5,6-EET and 8,9-EET have been demonstrated to have vascular and kidney actions. Vascular endothelial cell actions have been described for 5,6-EET to activate TRPV4 (transient receptor potential vanilloid receptor 4) channels. An EET-binding pocket mediates 5,6-EET TRPV4 activation and can control hypotonic cell swelling. Likewise, 8,9-EET and 8,9-EET analogs have selective actions on glomerular permeability induced by a circulating permeability factor. Regioisomeric actions on flow-induced arteriolar dilation have been determined for with 11,12-EET and 14,15-EET selective antagonists. These studies revealed that 14,15-EET but not 11,12-EET contributed to mesenteric resistance artery flow-induced dilation. Interestingly, decreased 14,15-EET levels are significantly associated with abdominal aortic calcification in patients with primary aldosteronism. Another interesting aspect for EETs is that there is significant evidence for the existence of EET receptors. Given the difference in EET regioisomeric renal and cardiovascular actions and the potential for EET receptors, there are still significant gaps in knowledge pertaining to EETs that require experimental investigation.

Bifunctional molecules that alter epoxy fatty acids is another emerging area for further development and exploration. The development of bifunctional molecules has revolved around having sEH inhibition as a focal activity for the molecules (Table). EET analogs capable of inhibiting sEH are an example of fused pharmacochem dual modulators. Although these have been described based on in vitro effects on vascular function, there has been no significant evaluation of these bifunctional molecules in animal disease models. One of the first dual modulators was a linked pharmacophore with combined sEH and COX-2 inhibition. The dual sEH and COX-2 inhibitor, [4-(5-phenyl-3-[3-(4-trifluoromethylphenyl)-ureido]-propyl]-pyrazol-1-yl)-benzenesulfonyamide] (PTUPB) combats diabetic kidney injury in Zucker Diabetic Fats. In addition, PTUPB has been demonstrated to have antitumor and antimitastatic actions in mice. Finally, merged pharmacophore sEH inhibitors with nuclear receptor agonism have demonstrated great potential. RB394 is a dual sEH inhibitor and PPARγ (peroxisome proliferator-activated receptor gamma) agonist that has been demonstrated to combat diabetes mellitus and associated liver and kidney injury. Another merged pharmacophore combines sEH inhibition with FXR agonism. The dual-acting sEH inhibitor and FXR agonist, DM509 has been demonstrated to combat nonalcoholic liver disease to a greater extent than an FXR (farnesoid X receptor) agonist given alone. These findings demonstrate that bifunctional molecules with sEH inhibitor activity could be used to treat heart, kidney, liver, and metabolic diseases.

Conclusions

Epoxy fatty acids contribution to renal, vascular, and heart function led to the notion that increasing EETs could combat disease. EETs were initially found to be vasodilatory and natriuretic; their importance in salt-sensitive hypertension was clearly established. The combination of pharmacological and genetic tools determined the importance for the EETs and sEH in hypertension, diabetes mellitus, ischemic kidney and heart diseases, stroke, and others. Human studies provided additional support to the importance of the epoxygenase pathway in these diseases. Development of sEH inhibitors and EET analogs has progressed to a point where their exciting therapeutic potential to treat kidney and cardiovascular diseases is being actively investigated.

Sources of Funding

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases DK103616 and Dr Ralph and Marian Falk Medical Research Trust Bank of America, N.A., Trustee.

Acknowledgments

Servier Medical Art was used to generate Figures and is licensed by Servier under a Creative Commons Attribution 3.0 Unported License. ChemDraw was used for drawing the chemical structures.

Disclosures

J.D. Imig has patents that cover the composition of matter for epoxyeicosatrienoic acids analogs, sEH (soluble epoxide hydrolase)
inhibitors, bifunctional sEH inhibitors. The other authors report no conflicts.

References

1. Knudsen KD, Dahl LK, Thompson K, Iwai J, Heine M, Leitl G. Effects of chronic excess salt ingestion. Inheritance of hypertension in the rat. J Exp Med. 1970;132:976–1000. doi: 10.1084/jem.132.5.976

2. Dahl LK. Salt and hypertension. Am J Clin Nutr. 1972;25:231–244. doi: 10.1093/ajcn/25.2.231

3. Fukuda M, Kirgan G. Pathophysiology of antihypertensive therapy with diuretics. Hypertens Res. 2006;29:645–653. doi: 10.1210/hyp.29.645

4. Bibbins-Domingo K, Chertow GM, Coxson PG, Moran A, Lightwood JM, Fletcher MJ, Goldman L. Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med. 2010;362:590–599. doi: 10.1056/NEJMoa097355

5. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study: a paradigm shift from kidney malfunction to vascular endothelial dysfunction. Electrolyte Blood Press. 2015;13:7–16. doi: 10.5074/EBP.2015.13.7

6. Choi HY, Park HC, Ha SK. Salt sensitivity and hypertension: a paradigm shift from kidney malfunction to vascular endothelial dysfunction. Electrolyte Blood Press. 2015;13:7–16. doi: 10.5074/EBP.2015.13.7

7. Aaron KJ, Sanders PW. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc. 2013;88:978–995. doi: 10.1016/j.mayocp.2013.06.005

8. Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 2012;92:101–130. doi: 10.1152/physrev.00021.2011

9. Imig JD. Epoxysesricosatrienoic acids, hypertension, and kidney injury. Hypertension. 2015;65:476–482. doi: 10.1161/HYPERTENSIONAHA. 114.03585

10. Imig JD. Prospective for cytochrome P450 epoxygenase cardiovascular and renal therapeutics. Pharmacol Ther. 2018;192:1–19. doi: 10.1016/j.pharmthera.2018.06.015

11. Campbell WB, Imig JD, Schnitz MJ, Falck JR. Orally Active Epoxysesricosatrienoic Acid Analogos. J Cardiovasc Pharmacol. 2017;70:211–224. doi: 10.1097/FJC.0000000000000523

12. Yang L, Cherian J, Gutterman DD, Mayer RJ, Ament Z, Griffin JL, Laaraz AL, Newby DE, Tal-Singer R, Wilkison IB. Mechanisms of vascular dysfunction in COPD and effects of a novel soluble epoxide hydrolase inhibitor in smokers. Chest. 2017;151:555–563. doi: 10.1016/j.chest.2016.10.058

13. Imig JD, Navar LG, Roman RJ, Reddy KK, Falck JR. Actions of epoxyenase metabolites on the preganglionic vasculature. J Am Soc Nephrol. 2007;18:2364–2370.

14. Cazade M, Bidaud I, Hansen PB, Lory P, Chemin J. 5,6-EET potently inhibits T-type calcium channels: implication in the regulation of the vascular tone. Pflegers Arch. 2014;466:1759–1768. doi: 10.1007/s00414-014-1411-0

15. Carroll MA, Garcia MP, Falck JR, McGiff JC. 5,6-epoxyeicosatrienoic acid, a novel arachidonic metabolite, Mechanism of vasoactivity in the rabbit. Circ Res. 1990;67:1082–1088. doi: 10.1161/01.res.67.5.1082

16. Sacerdotti D, Bolognesi M, Di Pascoli M, Gatta A, McGiff JC, Schwartzman ML, Abraham NG. Rat mesenteric arterial dilator response to 11,12-epoxyeicosatrienoic acid is mediated by activating hemi oxygen. Am J Physiol Heart Circ Physiol. 2006;292:H1999–H2002. doi: 10.1152/ajpheart.00082.2006

17. Imig JD, Dinmitropoulos CR, Reddy DS, White RE, Falck JR. Afferent arteriolar dilatation to 11,12-EET analogs involves EP2 and EP4 + activated K+ Channels. Microcirculation. 2008;15:137–150. doi: 10.1076/mirc0780145690

18. Imig JD, Insoo EW, Deichmann PC, Reddy KM, Falck JR. Afferent arteriolar vasodilation to the sulfonamide analog of 11,12-epoxyeicosatrienoic acid involves protein kinase A. Hypertension. 1999;33(1 Pt 2):408–413. doi: 10.1161/01.hyp.33.1.408

19. Imig JD, Zhao X, Falck JR, Wei S, Capdevila JH. Enhanced renal microvascular reactivity to angiotensin II in hypertension is ameliorated by the sulfonamide analog of 11,12-epoxyeicosatrienoic acid that involves protein kinase A. Hypertension. 2001;9:1983–992. doi: 10.1161/01.hyp.370505000.00020

20. Romero MF, Madhun ZT, Hopfer U, Douglas JG. An epoxysesoxyeicosatrienoic acid metabolite of arachidonic acid 5,6-epoxyeicosatrienoic acid mediates angiotensin-mediated vasoconstriction in primary tubular epithelium. Adv Prostaglandin Thromboxane Leukot Res. 1991;21A:205–208.

21. Sun P, Liu W, Lin DH, Yue P, Kemp R, Satlin LM, Wang WH. Epoxysesrosanoxidase activates BK channels in the cortical collecting duct. Am J Physiol Renal Physiol. 2002;283:F1384–F1387. doi: 10.1152/ajprenal.00597.2010

22. Madhun ZT, Goldthwait DA, McKay D, Hopfer U, Douglas JG. An epoxyenase metabolite of arachidonic acid mediates angiotensin II in hypotension is ameliorated by the sulfonamide analog of 11,12-epoxyeicosatrienoic acid that involves protein kinase A. Hypertension. 1999;33(1 Pt 2):408–413. doi: 10.1161/01.hyp.33.1.408

23. Nagesh J, Wang Z, Wei Y, Falck JR, Atch AY, Wang WH. Arachidonic acid inhibits basal tubular K channels in the cortical collecting duct by vasoconstriction. P-450-epoxide-dependent metabolic pathways. Am J Physiol Renal Physiol. 2008;294:F1441–F1447. doi: 10.1152/ajprenal.00388.2008

24. Wang MX, Wang LJ, Xiao Y, Zhang DD, Duan XP, Wang WH. Epoxysesoxyeicosatrienoic acid metabolites inhibit Kir4.1/Kir5.1 in the distal convoluted tubule. Am J Physiol Renal Physiol. 2020;318:F1369–F1376. doi: 10.1152/ajprenal.00018.2020
43. Node K, Hoo Y, Ruan X, Yang B, Speicher M, Ley K, Zeldin DC, Liao JK. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999;285:1276–1279. doi: 10.1126/science.285.5431.1276.

44. Jiang JX, Zhang SJ, Xiong YK, Jia YL, Chen CC, Lin XX. Attenuation of OLE-4L-induced LTβR production and activity by inhibiting p38 MAPK phosphorylation and 5-LO/5/1TL1 receptor expression in rat pulmonary arterial endothelial cells. PLos One. 2015;10:e0128278. doi: 10.1371/journal.pone.0128278.

45. Dai M, Wu L, He Z, Zhang S, Chen C, Xu X, Wang P, Grzudev A, Zeldin DC, Wang DW. Epoxyeicosatrienoic acids regulate macrophage polarization and prevent LPS-induced cardiac dysfunction. J Cell Physiol. 2015;230:2108–2119. doi: 10.1002/jcp.24939.

46. Chen W, Yang S, Ping W, Fu X, Xu Q, Wang J. CYP2J2 and EETs protect against lung ischemia/reperfusion injury via anti-inflammatory effects in vivo and in vitro. Cell Physiol Biochem. 2015;35:2043–2054. doi: 10.1159/000374011.

47. Li Y, Yu G, Yuan S, Tan C, Xie J, Ding Y, Lian P, Hou Q, Xu B, et al. 14,15-Epoxyeicosatrienoic acid suppresses cigarette smoke condensate-induced inflammation in lung epithelial cells by inhibiting autophagy. Am J Physiol Lung Cell Mol Physiol. 2016;311:L970–L980. doi: 10.1152/ajplung.00161.2016.

48. Chen D, Whitcomb R, MacIntyre E, Tran V, Do ZN, Sabry J, Patel DV, et al. 14,15-Epoxyeicosatrienoic acid inhibits nuclear factor κB signaling. J Pharmacol Exp Ther. 2012;341:725–734. doi: 10.1124/jpet.111.191247.

49. Ai D, Zhu Y. Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth muscle cell proliferation exerts beneficial anti-remodeling actions post-myocardial infarction. J Mol Cell Cardiol. 2012;54:199–208. doi: 10.1016/j.yjmcc.2012.08.017.

50. Islam O, Patil P, Goswami SK, et al. Inhibitors of soluble epoxide hydrolase minimize ischemia-reperfusion-induced cardiac damage in normal, hypertensive, and diabetic rats. Cardiovasc Ther. 2017;35:10.1111/1755-5922.12259. doi: 10.1177/1050162817712421.

51. Zhang W, Iliff JI, Campbell CJ, Wang RK, Hurn PD, Alkayed NJ. Role of soluble epoxide hydrolase in the specific vascular response to cerebral ischemia. J Cereb Blood Flow Metab. 2009;29:1475–1481. doi: 10.1038/jcbfm.2009.65.

52. Zhou C, Huang J, Li Q, Nie J, Xu X, Wang DW. Soluble epoxide hydrolase inhibition protected against angiotensin II-induced advenitial remodeling. Sci Rep. 2017;7:49626. doi: 10.1038/s41598-017-07512-1.

53. Wang Q, Hoo L, He J, Ding W, Su H, Tian D, Welch C, Hammock BD, Ai D, Zhu Y. Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth metabotropes play a crucial role in the initiation of cardiac hypertrophy induced by isoproterenol. Drug Metab Dispos. 2015;43:1254–1266. doi: 10.1124/dmd.115.067376.
Simpkins AN, Rudic RD, Roy S, Tsai HJ, Hammock BD, Imig JD. Soluble epoxide hydrolase inhibition modulates vascular remodeling. Am J Physiol Heart Circ Physiol. 2010;298:H795–H806. doi: 10.1152/ajpheart.00543.2009

Dai N, Zhao C, Kong Q, Li D, Cai Z, Wang M. Vascular repair and anti-inflammatory effects of soluble epoxide hydrolase inhibitor. Exp Ther Med. 2019;17:3580–3588. doi: 10.3892/etm.2019.7396

Panigrathy D, Greene ER, Pozzi A, Wang DW, Zeldin DC. EET signaling in cancer. Cancer Metastasis Rev. 2011;30:525–540. doi: 10.1007/s10555-011-9315-y

Li J, Zhou Y, Wang H, Gao Y, Li L, Hwang SH, Ji X, Hammock BD. COX-2/sEH dual inhibition in DBP suppresses glioblastoma growth by targeting epidermal growth factor receptor and hyaluronan mediated motility receptor. Oncotarget. 2017;8:87353–87363. doi: 10.18632/oncotarget.20928

Sharma M, McCarthy ET, Reddy DS, Patel PK, Savin VJ, Medhora M, Falck JR. 8,9-Epoxyeicosatrienoic acid protects the glomerular filtration barrier. Prostaglandins Other Lipid Mediat. 2009;89:43–51. doi: 10.1016/j.prostaglandins.2009.04.004

McCarthy ET, Sharma M. Indomethacin protects permeability barrier from focal segmental glomerulosclerosis serum. Kidney Int. 2001;61:534–541. doi: 10.1046/j.1523-1755.2001.00172.x

Sodhi K, Puri N, Inoue K, Falck JR, Schwartzman ML, Abraham NG. EET agonist prevents adiposity and vascular dysfunction in rats fed a high fat diet via a decrease in Bach 1 and an increase in HO-1 levels. Prostaglandins Other Lipid Mediat. 2012;98:133–142. doi: 10.1016/j.prostaglandins.2011.12.004

Jichová Š, Kopkan L, Husková Z, Doleželová Š, Neckářová I, Kujal P. Cytochrome P450 2C is an EDHF synthase in coronary arteries. J Vasc Res. 1999;36:493–497. doi: 10.1038/46816

Yeboah MM, Hye Khan MA, Chenisk MA, Sharma A, Paudyal MP, Falck JR. Epoxyeicosatrienoic acid analog induces cyclosporine-induced hypertension and renal injury in rats. Am J Physiol Renal Physiol. 2016;311:F576–F585. doi: 10.1152/ajprenal.00288.2016

Khan MA, Liu J, Kumar G, Skapek SX, Falck JR, Imig JD. The epoxyeicosatrienoic acid analog PVPA ameliorates kidney injury in a rat model of radiation nephropathy. Clin Sci (Lond). 2016;130:587–599. doi: 10.1042/CS20150778

Hye Khan MA, Stavniuchik A, Sattar MA, Falck JR, Imig JD. Epoxyeicosatrienoic acid analog mitigates kidney injury in a rat model of radiation nephropathy. Clin Sci (Lond). 2019;136:406. doi: 10.1042/CS20190046

Hye Khan MA, Fish B, Wahl G, Sharma A, Falck JR, Paudyal MP, Moulder JE, Imig JD, Cohen EP. Epoxyeicosatrienoic acid analog mitigates kidney injury in a rat model of radiation nephropathy. Clin Sci (Lond). 2019;137:858–859. doi: 10.1042/CS20190046

Hye Khan MA, Stavniuchik A, Sattar MA, Falck JR, Imig JD. Epoxyeicosatrienoic acid analog mitigates kidney injury in a rat model of radiation nephropathy. Clin Sci (Lond). 2019;137:858–859. doi: 10.1042/CS20190046

Batenburg WW, Garrels IM, van Kats JP, Saxena PR, Danser AH. Mediators of bradykinin-induced vasorelaxation in human coronary microvessels. Hypertension. 2004;43:488–492. doi: 10.1161/01.HY.0000110904.95711.26

Gauthier KM, Ceperu CJ, Campbell WB, ACE inhibition enhances bradykinin relaxations through nitric oxide and B1 receptor activation in bovine coronary arteries. Biol Chem. 2013;394:1205–1212. doi: 10.1515/bch-2013-0348

Ito O, Omata K, Ito S, Hasugam K, Roman RJ. Effects of converting enzyme inhibitors on renal P-450 metabolism of arachidonic acid. Am J Physiol Renal Int Physiol. 2001;280:F882–F8830. doi: 10.1152/ajpregu.2001.280.3.R882

Imig et al EETs and sEH in Cardiovascular Diseases 13
116. Capdevila J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. *Curr Opin Nephrol Hypertens*. 2013;22:163–169. doi: 10.1097/MNH.0b013e32835d911e

117. Wang WH, Zhang C, Lin DH, Wang L, Graves JP, Zeldin DC, Capdevila JH. Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect. *Am J Physiol Renal Physiol*. 2014:307:F453–F460. doi: 10.1152/ajprenal.00123.2014

118. Wang Q, Liang Y, Qiao Y, Zhao X, Yang Y, Yang S, Li B, Zhao Q, Dong L, Quan S, et al. Expression of soluble epoxide hydrolase in renal tubular epithelial cells regulates macrophage infiltration and polarization in IgA nephropathy. *Am J Physiol Renal Physiol*. 2018;315:F915–F926. doi: 10.1152/ajprenal.00534.2017

119. Fleming I. Vascular cytochrome p450 enzymes: physiology and pathophysiology. *Trends Cardiovasc Med*. 2008;18:20–25. doi: 10.1016/j.tcm.2007.11.002

120. Behmoaras J, Diaz AG, Venda L, Ko JH, Srivastava P, Montoya A, Faull P, Dreisbach AW, Japa S, Sigel A, Parenti MB, Hess AE, King LM, Gainer JV, David GL, Dai D, Goldstein JA, Brown NJ. Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The SEARCH Study. *Hum Mol Genet*. 2006;15:1640–1649. doi: 10.1093/hmg/ddl085

121. Ai D, Pang W, Li N, Xiao R, Zhou PD, Yang J, Zhang Y, Chiamvimonvat N, Shyy JY, Hammock BD, et al. Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy. *Proc Natl Acad Sci U S A*. 2009;106:564–569. doi: 10.1073/pnas.0811221016

122. Capdevila JH. Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect. *Hypertension*. 2012;59:1266–1275. doi: 10.1161/HYPERTENSIONAHA.110.161695

123. Shuey MM, Billings FT 4th, Wei S, Milne GL, Nian H, Yu C, Brown NJ. Association of gain-of-function EPHX2 polymorphism Lys55Arg with acute kidney injury following cardiac surgery. *PLoS One*. 2015;10:e0117529. doi: 10.1371/journal.pone.0117529

124. Spiecker M, Droulx H, Hannel T, Soufi M, Sattler AM, Schaefer JR, Noké K, Börgel A, Müllner K, et al. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. *Circulation*. 2004;110:1266–1275. doi: 10.1161/01.CIR.0000117608.60014.D1

125. Dreisbach AW, Japa S, Clark J, Myers P, et al. Endothelial expression of human cytochrome P-450 arachidonate metabolite inhibition improves renal function in Lyon hypertensive rats. *Am J Hypertens*. 1999;12:Pt 1:399–404. doi: 10.1016/S0895-7071(98)00256-8

126. Nakagawa K, Holla VR, Wei Y, Wang WH, Gatica A, Wei S, Mei S, Miller CM, Cha DR, Price E Jr, et al. Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. *J Clin Invest*. 2006;116:1196–1702. doi: 10.1172/JCI27546

127. Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD, Stewart J, Pollock JS, Pollock DM, Imig JD. Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. *J Am Soc Nephrol*. 2004;15:1244–1253

128. Jung O, Brandes RP, Kim IH, Schweda F, Schmidt R, Hammock BD, Busse R, Fleming I. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. *Hypertension*. 2005;45:759–765. doi: 10.1161/HYPERTENSIONAHA.110.161357

129. El-Sikhry HE, Alsalaheh N, Dakarapu R, Falck JR, Seubert JM. Novel roles of epoxyeicosatrienoic acids in regulating cardiac mitochondria. *PLoS One*. 2016;11:e0160380. doi: 10.1371/journal.pone.0160380

130. Parrish AR, Chen G, Burghardt RC, Watanabe T, Morisseau C, Hammock BD. Attenuation of cisplatin nephrotoxicity by inhibition of soluble epoxide hydrolase. *Cell Biol Toxicol*. 2009;25:217–225. doi: 10.1007/s10565-009-9071-o

131. Shyy JY, Hammock BD, et al. Soluble epoxide hydrolase inhibition improves renal tubular epithelial cells regulates macrophage infiltration and polarization in IgA nephropathy. *Am J Physiol Renal Physiol*. 2018;315:F915–F926. doi: 10.1152/ajprenal.00534.2017

132. Zhao X, Pollock DM, Insho EW, Zeldin DC, Imig JD. Decreased renal cytochrome P450 2C enzymes and impaired vasodilation are associated with angiotensin salt-sensitive hypertension. *Hypertension*. 2003;41(3 Pt 2):709–714. doi: 10.1161/01.HYP.0000047877.36743.FA

133. Messer-Létiene I, Bernard N, Roman RJ, Sassard J, Benzioni D. Cytochrome P-450 arachidonate metabolite inhibition improves renal function in Lyon hypertensive rats. *Am J Hypertens*. 1999;12:Pt 1:399–404. doi: 10.1016/S0895-7071(98)00256-8

134. Nakagawa K, Holla VR, Wei Y, Wang WH, Gatica A, Wei S, Mei S, Miller CM, Cha DR, Price E Jr, et al. Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. *J Clin Invest*. 2006;116:1196–1702. doi: 10.1172/JCI27546

135. Zhao X, Yamamoto T, Newman JW, Kim IH, Watanabe T, Hammock BD, Stewart J, Pollock JS, Pollock DM, Imig JD. Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. *J Am Soc Nephrol*. 2004;15:1244–1253

136. Jung O, Brandes RP, Kim IH, Schweda F, Schmidt R, Hammock BD, Busse R, Fleming I. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. *Hypertension*. 2005;45:759–765. doi: 10.1161/HYPERTENSIONAHA.110.161357

137. El-Sikhry HE, Alsalaheh N, Dakarapu R, Falck JR, Seubert JM. Novel roles of epoxyeicosatrienoic acids in regulating cardiac mitochondria. *PLoS One*. 2016;11:e0160380. doi: 10.1371/journal.pone.0160380
150. Fleming I. The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev. 2011;30:541–555. doi: 10.1007/s10555-011-9302-3

151. Zhang G, Panigrahy D, Wang SH, Yang J, Mahakan LM, Wettersten HI, Liu JY, Wang Y, Ingham ES, Tam S, et al. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proc Natl Acad Sci USA. 2014;111:11127–11132. doi: 10.1073/pnas.140432111

152. Sander AL, Sommer K, Neumayer T, Fleming I, Marzi I, Barker JH, Frank J, Jakob H. Soluble epoxide hydrolase disruption as therapeutic target for wound healing. J Surg Res. 2013;182:362–367. doi: 10.1016/j.jss.2012.10.034

153. Kandhi S, Zhang B, Froogh G, Qin J, Alruwaili N, Le Y, Yang YM, Hwang SH, Hammock BD, Wolin MS, et al. EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. Am J Physiol Lung Cell Mol Physiol. 2017;313:L350–L359. doi: 10.1152/ajplung.00038.2017

154. Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012;3:1–7. doi: 10.3945/an.111.000893

155. Schunck WH, Konkel A, Fischer R, Weylandt KH. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther. 2018;183:177–204. doi: 10.1016/j.pharmthera.2017.10.016

156. Schunck WH, EPA and/or DHA? A test question on the principles and opportunities in utilizing the therapeutic potential of omega-3 fatty acids. J Lipid Res. 2016;57:1608–1611. doi: 10.1194/jlr.C071084

157. Adebesin AM, Wesser T, Vijaykumar J, Konkel A, Paudyal MP, Lossie J, Zhu C, Westphal C, Puli N, Fischer R, et al. Development of robust 17',18(S)-epoxyeicosatrienoic acid (17,18-EEQ) analogues as potential clinical antiarrhythmic agents. J Med Chem. 2019;62:10124–10143. doi: 10.1021/acs.jmedchem.9b00952

158. Sharma A, Hye Khan MA, Levick SP, Lee KS, Hammock BD, Imig JD. Novel omega-3 fatty acid epoxygenase metabolite reduces kidney fibrosis. Int J Mol Sci. 2016;17:751.

159. Arnold C, Markovic M, Blossey K, Wallukat G, Fischer R, Dechend R, Konkel A, von Schacky C, Luft FC, Muller DN, et al. Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of (omega)-3 fatty acids. J Biol Chem. 2010;285:32720–32733. doi: 10.1074/jbc.M110.118406

160. Kitamura S, Morisseau C, Harris TR, Inceoglou B, Hammock BD. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales. PLoS One. 2017;12:e0176571. doi: 10.1371/journal.pone.0176571

161. Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf). 2017;219:728–756. doi: 10.1111/apha.12749

162. Bemaa-Erra A, Izierkued-Serra M, Sepúdea RV, Rubio-Moscardo F, Dotiante-MaciánP, SerraSA, Carrillo-GarciaJ, Perálvarez-MarínA, González-Nilo F, Fernández-Fernández JM, et al. Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep. 2017;7:10522. doi: 10.1038/s41598-017-11274-1

163. Berna-erro A, Izquierdo-Serra M, Sepúlveda RV, Rubio-Moscardo F, Dottate-MaciánP, SerraSA, Carrillo-GarciaJ, Perálvarez-MarínA, González-Nilo F, Fernández-Fernández JM, et al. Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep. 2017;7:10522. doi: 10.1038/s41598-017-11274-1

164. Liu X, Qian ZY, Xie F, Fan W, Nelson JW, Xiao X, Kaul S, Barnes AP, Alkayed NJ. Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep. 2017;7:10522. doi: 10.1038/s41598-017-11274-1

165. Liu P, Zhang S, Gao J, Lin Y, Shi G, He W, Touyz RM, Lan Y, Huang H. Downregulated serum 14, 15-epoxyeicosatrienoic acid is associated with abdominal aortic calcification in patients with primary aldosteronism. Hypertension. 2018;71:592–598. doi: 10.1161/HYPERTENSIONAHA.117.10644

166. Liu X, Qian ZY, Xie F, Fan W, Nelson JW, Xiao X, Kaul S, Barnes AP, Alkayed NJ. Structural determinants of 5',6'-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep. 2017;7:10522. doi: 10.1038/s41598-017-11274-1

167. Liu P, Zhang S, Gao J, Lin Y, Shi G, He W, Touyz RM, Lan Y, Huang H. Downregulated serum 14, 15-epoxyeicosatrienoic acid is associated with abdominal aortic calcification in patients with primary aldosteronism. Hypertension. 2018;71:592–598. doi: 10.1161/HYPERTENSIONAHA.117.10644

168. Park SK, Herreireiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem. 2018;293:10675–10691. doi: 10.1074/jbc.RA117.001297

169. Liu X, Qian ZY, Xie F, Fan W, Nelson JW, Xiao X, Kaul S, Barnes AP, Alkayed NJ. Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat. 2017;132:31–40. doi: 10.1016/j.prostaglandins.2016.09.002

170. Liu X, Qian ZY, Xie F, Fan W, Nelson JW, Xiao X, Kaul S, Barnes AP, Alkayed NJ. Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat. 2017;132:31–40. doi: 10.1016/j.prostaglandins.2016.09.002

171. Hye Khan MA, Kohl L, Skibba M, Hartmann M, Blöcher R, Proschak E, Imig JD. A novel dual PPAR-γ agonist/sEH inhibitor treats diabetic complications in a rat model of type 2 diabetes. Diabetologia. 2018;61:2235–2246. doi: 10.1007/s00125-018-4685-0

172. Hye Khan MA, Schmidt J, Stavniichak A, Imig JD, Merk D. A dual farnesoid X receptor/soluble epoxide hydrolase modulator treats non-alcoholic steatohepatitis in mice. Biochem Pharmacol. 2019;166:212–221. doi: 10.1016/j.bcp.2019.05.023