Efficient Accelerated Coordinate Descent Methods
and
Faster Algorithms for Solving Linear Systems

Yin Tat Lee
MIT
yintat@mit.edu

Aaron Sidford
MIT
sidford@mit.edu

Abstract

In this paper we show how to accelerate randomized coordinate descent methods and achieve faster
convergence rates without paying per-iteration costs in asymptotic running time. In particular, we show
how to generalize and efficiently implement a method proposed by Nesterov, giving faster asymptotic
running times for various algorithms that use standard coordinate descent as a black box. In addition
to providing a proof of convergence for this new general method, we show that it is numerically stable,
efficiently implementable, and in certain regimes, asymptotically optimal.

To highlight the computational power of this algorithm, we show how it can used to create faster
linear system solvers in several regimes:

• We show how this method achieves a faster asymptotic runtime than conjugate gradient for solving
 a broad class of symmetric positive definite systems of equations.

• We improve the best known asymptotic convergence guarantees for Kaczmarz methods, a popular
technique for image reconstruction and solving overdetermined systems of equations, by accelerating
 a randomized algorithm of Strohmer and Vershynin.

• We achieve the best known running time for solving Symmetric Diagonally Dominant (SDD) system
 of equations in the unit-cost RAM model, obtaining an $O(m \log^{3/2} n \sqrt{\log \log n \log \left(\frac{\log n}{\epsilon}\right)})$ asymptotic running time by accelerating a recent solver by Kelner et al.

Beyond the independent interest of these solvers, we believe they highlight the versatility of the
approach of this paper and we hope that they will open the door for further algorithmic improvements
in the future.
1 Introduction

In recent years iterative methods for convex optimization that make progress in sublinear time using only partial information about the function and its gradient have become of increased importance to both the theory and practice of computer science. From a practical perspective, the increasing volume and distributed nature of data are forcing efficient practical algorithms to be amenable to asynchronous and parallel settings where only a subset of the data is available to a single processor at any point in time. From a theoretical perspective, rapidly converging algorithms with sublinear time update steps create hope for new provable asymptotic running times for old problems and stronger guarantees for efficient algorithms in distributed and asynchronous settings.

The idea of using simple sublinear-time iterative steps to solve convex optimization problems is an old one \cite{11,30,2}. It is an algorithmic design principle that has seen great practical success \cite{20,10,2} but has been notoriously difficult to analyze. In the past few years great strides have been taken towards developing a theoretical understanding of randomized variants of these approaches. Of particular relevance to this paper, in 2006 Strohmer and Vershynin \cite{29} showed that a particular sublinear update algorithm for solving overconstrained linear systems called randomized Kaczmarz converges exponentially, in 2010 Nesterov \cite{24} analyzed randomized analog of gradient descent that updates only a single coordinate in each iteration, called coordinate gradient descent method, and provided a computationally inefficient but theoretically interesting accelerated variant, called accelerated coordinate gradient descent method (ACDM), and in 2013 Kelner et al. \cite{15} presented a simple combinatorial iterative algorithm with sublinear-time update steps that can be used to solve symmetric diagonally dominant (SDD) linear systems, a broad class of linear systems with numerous applications.

In this paper we provide a framework that both strengthens and unifies these results. We present a more general version of Nesterov's ACDM and show how to implement it so that each iteration has the same asymptotic runtime as its non-accelerated variants. We show that this method is numerically stable and optimal under certain assumptions. Then we show how to use this method to outperform conjugate gradient in solving a general class of symmetric positive definite systems of equations. Furthermore, we show how to cast both randomized Kaczmarz and the SDD solver of Kelner et al. in this framework and achieve faster running times through the use of ACDM.

Due to the success of the Kaczmarz method in practice \cite{20,10} and due to the wide array of theoretical problems for which the fastest running time is obtained through the use of a nearly linear time SDD solver \cite{13,8,26}, we hope that the ideas in this paper can be used to make advancements on both fronts.

1.1 Previous Work

Gradient descent is one of the oldest and most fundamental methods in convex optimization. Given a convex differentiable function the gradient descent method is a simple greedy iterative method that computes the gradient at the current point and uses that information to perform an update and make progress. This method is central to much of scientific computing and from a theoretical perspective the standard method is well understood \cite{22}. There are multiple more sophisticated variants of this method \cite{12}, but many of them have only estimates of local convergence rates which makes them difficult to be applied to theoretical problems and be compared in general.

In 1983, Nesterov \cite{21} proposed a way to accelerate the gradient descent method by iteratively developing an approximation to the function through what he calls an estimate sequence. This accelerated gradient descent method or fast gradient method has the same worst case running time as conjugate gradient method and it is applicable to general convex functions. Recently, this method has been used to improve the fastest known running time of some fundamental problems in computer science, such as compressive sensing \cite{3,4}, undirected maximum flow \cite{8,18,14}, linear programming \cite{23,5}.

The accelerated gradient descent method is known to achieve an optimal (up to constants) convergence rate
among all first order methods, that is algorithm that only have access to the function’s value and gradient [22]. Therefore, to further improve accelerated gradient descent one must either assume more information about the function or find a way to reduce the cost of each iteration. Using the idea of fast but crude iteration steps, Nesterov proposed a randomized coordinate descent method [24], which minimizes convex functions by updating one randomly chosen coordinate in each iteration.

Coordinate descent methods, which use gradient information about a single coordinate to update a single coordinate in each iteration, have been around for a long time [30]. Various schemes have been considered for picking the coordinate to update, such as cyclic coordinate update and the best coordinate update, however these schemes are either hard to estimate [19] or difficult to be implemented efficiently. Both the recent work of Strohmer and Vershynin [29] and Nesterov [24] overcome these obstacles by showing that by performing particular randomized updates one can produce methods with provable global convergence rate and small costs per iteration.

Applying the similar ideas of accelerated gradient descent, Nesterov also proposed an accelerated variant called the accelerated coordinate descent method (ACDM) that achieves a faster convergence rate while still only considering a single coordinate of the gradient at a time. However, in both Nesterov’s paper [24] and later work [25], this method was considered inefficient as the computational complexity of the naive implementation of each iteration of ACDM requires $\Theta(n^3)$ time to update every coordinate of the input, at which point the accelerated gradient descent method would seem preferable.

1.2 Our Contributions

In this paper, we generalize Nesterov’s ACDM and present a simple technique to implement each coordinate update step efficiently. Our contributions towards understanding ACDM include the following:

- **Generalization**: A generalization of ACDM to a broader class of sampling probabilities, overcoming technical challenges due to skewed sampling probabilities, so that any convergence rate achieved through Nesterov’s coordinate descent method can be improved by ACDM. This generalization was essential for applications considered later in the paper.

- **Probabilistic Estimate Sequences**: A self contained proof of correctness for ACDM motivated by a generalization of estimate sequences we simply call probabilistic estimate sequences.

- **Efficiency**: A proof that under mild assumptions about the oracle for querying function and gradient values, each iteration of ACDM can be implemented with the same asymptotic cost as an equivalent coordinate descent step.

- **Numerical Stability**: A proof that ACDM is numerically stable and can be implemented with finite precision arithmetic and no overhead in the standard unit cost RAM model.

- **Lower Bound**: A lower bound argument showing that ACDM achieves an optimal convergence rate among a certain class of coordinate descent algorithms.

In some sense, the principle difference between the asymptotic running time of ACDM and accelerated gradient descent (or conjugate gradient in the linear system case) is that as accelerated gradient descent depends on the maximum eigenvalue of the Hessian of the function being minimized, ACDM instead depends on the trace of the Hessian and has the possibility of each iteration costing a small fraction of the cost a single iteration of of accelerated gradient descent. As a result, any nontrivial bound on the trace of the Hessian and the computational complexity of performing a single coordinate update creates the opportunity for ACDM to yield improved running times. To emphasize this point, we focus on applications of our method to solving linear systems and we use three different cases to illustrate the flexibility and competitiveness of our method.
• **Symmetric Positive Definite Systems:** We show that under mild assumptions ACDM solves positive definite systems with a faster asymptotic running time than conjugate gradient (and an even milder set of assumptions for Chebyshev method), and it is an asymptotically optimal algorithm for solving general systems in certain regimes.

• **Overdetermined Systems:** For over-constrained systems of equations the randomized Kaczmarz method of Strohmer and Vershynin [29], which iteratively picks a random constraint and projects the current solution onto the plane corresponding to a random constraint, has been shown to have strong convergence guarantees and appealing practical performance. We show how to cast this method in the framework of coordinate descent and accelerate it using ACDM yielding improved asymptotic performance. Given the appeal of Kaczmarz methods for practical applications such as image reconstructions [10], there is hope that this could yield improved performance in practice.

• **Symmetric Diagonally Dominant (SDD) Systems:** Symmetric diagonally dominant systems of equations are a common class of systems with broad applications ranging from finite element simulations [6] to computer vision [17] and beyond. Furthermore, since a breakthrough result in 2004 by Spielman and Teng [27] showed that such systems can be solved in nearly-linear time, such systems have been used to create the fastest algorithm for a variety of problems ranging from max flow [14] to sampling random spanning trees [13] and much more. The fastest known solver for these systems in the standard unit-cost RAM model is due to Kelner et al. [15] is $\tilde{O}(m \log n \log \frac{1}{\epsilon})$ where m is the number of nonzero entries in the matrix, the matrix is $n \times n$, and we use \tilde{O} to hide $O(\text{poly}(\log \log n))$ terms. We show how direct application of ACDM to a simple algorithm in [15] yields a faster SDD solver with an asymptotic runtime of $\tilde{O}(m \log^{1.5} n \log \frac{1}{\epsilon})$ in the unit-cost RAM model, getting closer to the fastest known running time of $\tilde{O}(m \log n \log \frac{1}{\epsilon})$ by Koutis, Miller, and Peng [16] in a less restrictive computational model.

We remark that while our applications analysis focus on solving linear systems there is hope that our ACDM algorithm will have a broader impact in both theory and practice of efficient algorithms. Just as the accelerated gradient descent method has improved the theoretical and empirical running time of various, both linear and nonlinear, gradient descent algorithms [9, 3], we hope that ACDM will improve the running time of various algorithms for which coordinate descent based approaches have proven effective. Given the generality of our analysis and the previous difficulty in analyzing such methods, we hope that this is just the next towards a new class of provably efficient algorithms with good empirical performance.

1.3 Paper Organization

The rest of our paper is organized as follows. In Section 2, we introduce the problem and function properties that we will use for optimization. In Section 3, we briefly review the mathematics behind gradient descent, accelerated gradient descent, and coordinate descent. In Section 4, we present our general ACDM implementation, prove correctness, and show how to implement the update steps efficiently. In Section 5, we show how to apply ACDM to achieve faster runtimes for various linear system solving scenarios. In Section 6, we give lower bounds that show that ACDM is optimal in certain regimes, and in the appendix we provide missing details of the ACDM convergence and numerical stability proofs.

2 Preliminaries

In this paper, we consider the unconstrained minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

\[1\] Many of the results in this paper can be generalized to constrained minimization problems [24], problems where f is strongly convex with respect to different norms [24], and problems where each coordinate is a higher dimension variable (i.e. the block setting) [25]. However, for simplicity we focus on the basic coordinate unconstrained problem in the Euclidian norm.
where the objective function \(f : \mathbb{R}^n \to \mathbb{R} \) is continuously differentiable and convex, meaning that
\[
\forall \bar{x}, \bar{y} \in \mathbb{R}^n : f(\bar{y}) \geq f(\bar{x}) + \langle \nabla f(\bar{x}), \bar{y} - \bar{x} \rangle.
\]

We let \(f^* \overset{\text{def}}{=} \min_{x \in \mathbb{R}^n} f(\bar{x}) \) denote the minimum value of this optimization problem and we let \(\bar{x}^* \overset{\text{def}}{=} \arg \min_{x \in \mathbb{R}^n} f(\bar{x}) \) denote an arbitrary point that achieves this value.

To minimize \(f \), we restrict our attention to \textit{first-order} iterative methods, that is algorithms that generate a sequence of points \(\bar{x}_1, \ldots, \bar{x}_k \) such that \(\lim_{k \to \infty} f(\bar{x}_k) = f^* \), while only evaluating the objective function, \(f \), and its gradient \(\nabla f \), at points. In other words, other than the global function parameters related to \(f \) that we define in this section, we assume that the algorithms under consideration have no further knowledge regarding the structure of \(f \). To compare such algorithms, we say that an \textit{iterative method} has convergence rate \(r \) if \(f(\bar{x}_k) - f^* \leq O((1 - r)^k) \) for this method.

Now, we say that \(f \) has convexity parameter \(\sigma \) with respect to some norm \(\| \cdot \| \) if the following holds
\[
\forall \bar{x}, \bar{y} \in \mathbb{R}^n : f(\bar{y}) \geq f(\bar{x}) + \langle \nabla f(\bar{x}), \bar{y} - \bar{x} \rangle + \frac{\sigma}{2} \| \bar{y} - \bar{x} \|^2
\]
and we say \(f \) is \textit{strongly convex} if \(\sigma > 0 \). We refer to the right hand side of (1) as the \textit{upper envelope of} \(f \) at \(\bar{x} \) and for notational convenience when the norm \(\| \cdot \| \) is not specified explicitly we assume it to be the standard Euclidian norm \(\| x \| \overset{\text{def}}{=} \sqrt{\sum_i x_i^2} \).

Furthermore, we say \(f \) has \(L \)-Lipschitz gradient if
\[
\forall \bar{x}, \bar{y} \in \mathbb{R}^n : \| \nabla f(\bar{y}) - \nabla f(\bar{x}) \| \leq L \| \bar{y} - \bar{x} \|
\]
The definition is related to an upper bound on \(f \) as follows:

\textbf{Lemma 1.} \cite[Thm 2.1.5]{22} For continuously differentiable \(f : \mathbb{R}^n \to \mathbb{R} \) and \(L > 0 \), it has \(L \)-Lipschitz gradient if and only if
\[
\forall \bar{x}, \bar{y} \in \mathbb{R}^n : f(\bar{y}) \leq f(\bar{x}) + \langle \nabla f(\bar{x}), \bar{y} - \bar{x} \rangle + \frac{L}{2} \| \bar{y} - \bar{x} \|^2.
\]
We call the right hand side of (2) the \textit{upper envelope of} \(f \) at \(\bar{x} \).

The convexity parameter \(\mu \) and the Lipschitz constant of the gradient \(L \) provide lower and upper bounds on \(f \). They serve as the essential characterization of \(f \) for first-order methods and they are typically the only information about \(f \) provided to both gradient and accelerated gradient descent methods (besides the oracle access to \(f \) and \(\nabla f \)). For twice differentiable \(f \), these values can also be computed by properties of the Hessian of \(f \) by the following well known lemma:

\textbf{Lemma 2} \cite{24}. Twice differentiable \(f : \mathbb{R}^n \to \mathbb{R} \) has convexity parameter \(\mu \) and \(L \)-Lipschitz gradient with respect to norm \(\| \cdot \| \) if and only if \(\forall \bar{x} \in \mathbb{R}^n \) the Hessian of \(f \) at \(\bar{x} \), \(\nabla^2 f(\bar{x}) \in \mathbb{R}^{n \times n} \) satisfies
\[
\forall \bar{y} \in \mathbb{R}^n : \mu \| \bar{y} \|^2 \leq \bar{y}^T (\nabla^2 f(\bar{x})) \bar{y} \leq L \| \bar{y} \|^2
\]
To analyze coordinate-based iterative methods, that is iterative methods that only consider one component of the current point or current gradient in each iteration, we need to define several additional parameters characterizing \(f \). For all \(i \in [n] \), let \(\bar{e}_i \in \mathbb{R}^n \) denote the standard basis vector for coordinate \(i \), let \(f_i(\bar{x}) \in \mathbb{R}^n \) denote the partial derivative of \(f \) at \(\bar{x} \) along \(\bar{e}_i \), i.e. \(f_i(\bar{x}) \overset{\text{def}}{=} \bar{e}_i^T \nabla f(\bar{x}) \), and let \(\bar{f}_i(\bar{x}) \) denote the corresponding vector, i.e \(\bar{f}_i(\bar{x}) \overset{\text{def}}{=} f_i \cdot \bar{e}_i \). We say that \(f \) has \textit{component-wise Lipschitz continuous gradient with Lipschitz constants} \(\{ L_i \} \) if
\[
\forall \bar{x} \in \mathbb{R}^n, \forall t \in \mathbb{R}, \forall i \in [n] : f_i(\bar{x} + t \cdot \bar{e}_i) - f_i(\bar{x}) \leq L_i \cdot |t|
\]
and for all \(\alpha \geq 0 \) we let \(S_\alpha \overset{\text{def}}{=} \sum_{i=1}^n L_i^n \) denote the total component-wise Lipschitz constant of \(\nabla f \). Later we will see that \(S_\alpha \) has a similar role for coordinate descent as \(L \) has for gradient descent.
We give two examples for convex functions induced by linear systems and calculate their parameters. Note that even though one example can be deduced from the other, we provide both as the analysis allows us to introduce more notation.

Example 1. Let \(f(\bar{x}) \equiv \frac{1}{2} (A\bar{x}, \bar{x}) - \langle \bar{x}, \bar{b} \rangle \) for symmetric positive definite matrix \(A \in \mathbb{R}^{n \times n} \). Since \(A = A^T \) clearly \(\nabla f(\bar{x}) = A\bar{x} - \bar{b} \) and \(\nabla^2 f(\bar{x}) = A \). Therefore, by Lemma 2, \(L \) and \(\sigma \) satisfy

\[
\sigma \|\bar{x}\|^2 \leq \bar{x}^T A \bar{x} \leq L \|\bar{x}\|^2.
\]

Consequently, \(\sigma \) is the smallest eigenvalue \(\lambda_{\text{min}} \) of \(A \) and \(L \) is the largest eigenvalue \(\lambda_{\text{max}} \) of \(A \). Furthermore, \(\forall i \in [n] \), we see that \(f_i(\bar{x}) = e_i^T \left(A\bar{x} - \bar{b} \right) \) and therefore \(L_i \) satisfies

\[
\forall t \in \mathbb{R} : |t| \cdot |A_{ii}| = |e_i^T A(t e_i)| \leq L_i |t|.
\]

Since the positive definiteness of \(A \) implies that \(A \) is positive on diagonal, we have \(L_i = A_{ii} \), and consequently \(S_1 = \text{tr}(A) = \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} \lambda_i \) where \(\lambda_i \) are eigenvalues of \(A \).

Example 2. Let \(f(\bar{x}) = \frac{1}{2} \|A\bar{x} - \bar{b}\|^2 \) for any matrix \(A \). Then \(\nabla f(\bar{x}) = A^T \left(A\bar{x} - \bar{b} \right) \) and \(\nabla^2 f(\bar{x}) = A^T A \).

Hence, \(\sigma \) and \(L \) satisfy

\[
\sigma \|\bar{x}\|^2 \leq \bar{x}^T A^T A \bar{x} \leq L \|\bar{x}\|^2
\]

and we see that \(\sigma \) is the smallest eigenvalue \(\lambda_{\text{min}} \) of \(A^T A \) and \(L \) is the largest eigenvalue \(\lambda_{\text{max}} \) of \(A^T A \). As in the previous example, we therefore have \(L_i = \|a_i\|^2 \) where \(a_i \) is the \(i \)-th column of \(A \) and \(S_1 = \sum \|a_i\|^2 = \|A\|_F^2 \), the Frobenius norm of \(A \).

3 Review of Previous Iterative Methods

In this section, we briefly review several standard iterative first-order method for smooth convex minimization. This overview is by no means all-inclusive, our goal is simply to familiarize the reader with numerical techniques we will make heavy use of later and motivate our presentation of the accelerated coordinate descent method. For a more comprehensive review, there are multiple good references, e.g. [22], [7]. In Section 3.1, we briefly review the standard gradient descent method. In Section 3.2, we show how to improve gradient descent by motivating and reviewing Nesterov’s accelerated gradient descent method [21] through a more recent presentation of his via estimate sequences [22]. In Section 3.3, we review Nesterov’s coordinate gradient descent method [24]. In the next section we combine these concepts to present a general and efficient accelerated coordinate descent scheme.

3.1 Gradient Descent

Given an initial point \(\bar{x}_0 \in \mathbb{R}^n \) and step sizes \(h_k \in \mathbb{R} \), the gradient descent method applies the following simple iterative update rule:

\[
\forall k \geq 0 : \bar{x}_{k+1} := \bar{x}_k - h_k \nabla f(\bar{x}_k).
\]

For \(h_k = \frac{1}{L} \), this method simply chooses the minimum point of the upper envelope of \(f \) at \(\bar{x}_k \):

\[
\bar{x}_{k+1} = \arg \min_{\bar{y}} \left\{ f(\bar{x}_k) + \langle \nabla f(\bar{x}_k), \bar{y} - \bar{x}_k \rangle + \frac{L}{2} \|\bar{y} - \bar{x}_k\|^2 \right\}.
\]

Thus, we see that the gradient descent method is a greedy method that chooses the minimum point based on the worst case estimate of the function based on the value of \(f(x_k) \) and \(\nabla f(x_k) \). It is well known that it provides the following guarantee [22, Cor 2.1.2, Thm 2.1.15]

\[
f(\bar{x}_k) - f^* \leq \frac{L}{2} \cdot \min \left\{ \left(1 - \frac{\sigma}{L} \right)^k, \frac{4}{k+4} \right\} \|\bar{x}_0 - \bar{x}^*\|^2.
\]
3.2 Accelerated Gradient Descent

To speed up the greedy and memory-less gradient descent method, one could make better use of the history and pick the next step to be the smallest point in upper envelope of all points computed. Formally, one could try the following update rule

\[
\bar{x}_{k+1} := \arg \min_{\bar{y} \in \mathbb{R}^n} \sum_{k=1}^{\infty} t_k \left(f(\bar{x}_k) + \langle \nabla f(\bar{x}_k), \bar{z}_k - \bar{x}_k \rangle + \frac{L}{2} \|\bar{z}_k - \bar{x}_k\|^2 \right).
\]

However, this problem is difficult to solve efficiently and requires storing all previous points. To overcome this problem, Nesterov [21, 22] suggested to use a quadratic function to estimate the function. Formally, we define an estimate sequence as follows:

Definition 1 (Estimate Sequence). A triple of sequences \(\{\phi_k(x), \eta_k, \bar{x}_k\}_{k=0}^\infty \) is called an estimate sequence of \(f \) if \(\lim_{k \to \infty} \eta_k = 0 \) and for any \(\bar{x} \in \mathbb{R}^n \) and \(k \geq 0 \) we have

\[
\phi_k(\bar{x}) \leq (1 - \eta_k) f(\bar{x}) + \eta_k \phi_0(\bar{x}) \quad (4)
\]

and

\[
f(\bar{x}_k) \leq \min_{\bar{y} \in \mathbb{R}^n} \phi_k(\bar{y}).
\]

An estimate sequence of \(f \) is an approximate lower bound of \(f \) which is slightly above \(f^* \). This relaxed definition allows us to find a better computable approximation of \(f \) instead of relying on the worst case upper envelope at each step.

A good estimate sequence gives an efficient algorithm [22, Lem 2.2.1] by the following

\[
\lim_{k \to \infty} f(\bar{x}_k) - f^* \leq \lim_{k \to \infty} \eta_k (\phi_0(\bar{x}^*) - f^*) = 0.
\]

Since an estimate sequence is an approximate lower bound, a natural computable candidate is to use the convex combination of lower envelopes of \(f \) at some points.

Since it can be shown that any convex combinations of lower envelopes at evaluation points \(\{y_k\} \) satisfies (4) under some mild condition, additional points \(\{y_k\} \) other than \(\{x_k\} \) can be used to tune the algorithm. Nesterov’s accelerated gradient descent method can be obtained by tuning the free parameters \(\{y_k\} \) and \(\{\eta_k\} \) to satisfy (5). Among all first order methods, this method is optimal up to constants in terms of number of queries made to \(f \) and \(\nabla f \). The performance of the accelerated gradient descent method can be characterized as follows: [22]

\[
f(\bar{x}_k) - f^* \leq L \cdot \min \left\{ \left(1 - \sqrt{\frac{\sigma}{L}}\right)^k, \frac{4}{(k+2)^2} \right\} \|\bar{x}_0 - \bar{x}^*\|^2.
\]

(6)

3.3 Coordinate Descent

The coordinate descent method of Nesterov [24] is a variant of gradient descent in which only one coordinate of the current iterate is updated at a time. For a fixed \(\alpha \in \mathbb{R} \), each iteration \(k \) of coordinate descent consists of picking a random a random coordinate \(i_k \in [n] \) where

\[
\Pr[i_k = j] = P_\alpha(j) \quad \text{where} \quad P_\alpha(j) \overset{\text{def}}{=} \frac{L_{i_k}^\alpha}{S_\alpha^\alpha}
\]

\footnote{Note that our definition deviates slightly from Nesterov’s [22, Def 2.2.1] in that we include condition 5.}
and then performing a gradient descent step on that coordinate:

$$
\tilde{x}_{k+1} := \tilde{x}_k - \frac{1}{L_{ik}} \tilde{f}_k(\tilde{x}_k).
$$

To analyze this algorithm’s convergence rate, we define the norm $\| \cdot \|_{1-\alpha}$, its dual $\| \cdot \|_{1-\alpha}^*$, and the inner product $\langle \cdot, \cdot \rangle_{1-\alpha}$ which induces this norm as follows:

$$
\| \tilde{x} \|_{1-\alpha} \overset{\text{def}}{=} \left(\sum_{i=1}^{n} L_i^{1-\alpha} \tilde{x}_i^2 \right)^{1/2} \quad \text{and} \quad \| \tilde{x} \|_{1-\alpha}^* \overset{\text{def}}{=} \left(\sum_{i=1}^{n} L_i^{-(1-\alpha)} \tilde{x}_i^2 \right)^{1/2}
$$

and we let $\sigma_{1-\alpha}$ denote the convexity parameter of f with respect to $\| \cdot \|_{1-\alpha}$.

Using the definition of coordinate-wise Lipschitz constant, each step can be shown to have the following guarantee on expected improvement [24]

$$
f(\tilde{x}_k) - \mathbb{E}[f(\tilde{x}_{k+1})] \geq \frac{1}{2S_{\alpha}} (\| \nabla f(\tilde{x}_k) \|_{1-\alpha}^*)^2.
$$

and further analysis shows the following convergence guarantee coordinate descent [24]

$$
\mathbb{E}[f(\tilde{x}_k)] - f^* \leq \min \left\{ \frac{2S_{\alpha}}{k+4} \left(\max_{f(y) \leq f(x_0)} \| \tilde{y} - \tilde{x}^* \|_{1-\alpha}^2 \right), \left(1 - \frac{\sigma_{1-\alpha}}{S_{\alpha}} \right)^k (f(\tilde{x}_0) - f^*) \right\}.
$$

4 General Accelerated Coordinate Descent

In this section, we present our general and iteration-efficient accelerated coordinate descent method (ACDM). In particular, we show how to improve the asymptotic convergence rate of any coordinate descent based algorithm without paying asymptotic cost in the running time due to increased cost in querying and updating a coordinate. We remark that the bulk of the credit for conceiving of such a method belongs to Nesterov [24] who provided a different proof of convergence for such a method for the $\alpha = 0$ case, however we note that changes to the algorithm were necessary to deal with the $\alpha = 1$ case used in all of our applications.

The rest of this section is structured as follows. In Section 4.1, we introduce and prove the correctness of general ACDM through what we call (probabilistic) estimation sequences, in Section 4.2, we present the numerical stability results we achieve for this method, and in Section 4.3, we show how to implement this method efficiently. In Appendix B, we include some additional details for the correctness proof and in Appendix C, we provide the details of the numerical stability proof.

4.1 ACDM by Probabilistic Estimate Sequences

Following the spirit of the estimate sequence proof of accelerated gradient descent [22], here we present a proof of ACDM convergence through what we call a (probabilistic) estimation sequence.

Definition 2 ((Probabilistic) Estimate Sequence). A triple of sequences \(\{\phi_k(\tilde{x}), \eta_k, \tilde{x}_k\}_{k=0}^{\infty}\) where \(\phi_k : \mathbb{R}^n \to \mathbb{R}\) and \(\tilde{x}_k \in \mathbb{R}^n\) are chosen according to some probability distribution is called a (probabilistic) estimate sequence of \(f\) if \(\lim_{k \to 0} \eta_k = 0\) and for all \(k \geq 0\) we have

$$
\forall \tilde{x} \in \mathbb{R}^n : \mathbb{E}[\phi_k(\tilde{x})] \leq (1 - \eta_k)f(\tilde{x}) + \eta_k \mathbb{E}[\phi_0(\tilde{x})] \tag{7}
$$

and

$$
\mathbb{E}[f(\tilde{x}_k)] \leq \min_{\tilde{x} \in \mathbb{R}^n} \mathbb{E}[\phi_k(\tilde{x})] \tag{8}
$$
A probabilistic estimation sequence gives a randomized minimization method due to the following
\[
\lim_{k \to \infty} \mathbb{E} [f(\bar{x}_k)] - f^* \leq \lim_{k \to \infty} \eta_k (\mathbb{E} \phi_0(x^*) - f^*) = 0.
\]
Since a probabilistic estimation sequence can be constructed using random partial derivatives, rather than
a full gradient computations, there is hope that in certain cases probabilistic estimation sequences require
less information for fast convergence and therefore outperform their deterministic counterparts.

Similar to the accelerated gradient descent method, in the following lemma we first show how to combine a
sequence of lower envelopes to satisfy condition (7) and prove that it preserves a particular structure on the
current lower bound.

Lemma 3 (Probabilistic Estimate Sequence Construction). Let \(\phi_0(\bar{x}), \{\tilde{y}_k, \theta_k, i_k\}_{k=0}^\infty \) be such that

- \(\phi_0 : \mathbb{R}^n \to \mathbb{R} \) is an arbitrary function
- Each \(\tilde{y}_k \in \mathbb{R}^n \)
- Each \(\theta_k \in (0, 1) \) and \(\sum_{k=0}^\infty \theta_k = \infty \)
- Each \(i_k \in [n] \) is chosen randomly such that \(\forall i \in [n] \) we have \(\Pr[i_k = i] = \frac{L^2}{\sigma_i^2} \).

Then the pair of sequences \(\{\phi_k(\bar{x}), \eta_k\}_{k=0}^\infty \) defined by

- \(\eta_0 = 1 \) and \(\eta_{k+1} = (1 - \theta_k) \eta_k \)
- \(\phi_{k+1}(\bar{x}) = (1 - \theta_k) \phi_k(\bar{x}) + \theta_k \left[f(\tilde{y}_k) + \frac{S_k}{L_i} (f_i(\tilde{y}_k), \bar{x} - \tilde{y}_k)_{1-\alpha} + \frac{2\alpha}{1-\alpha} ||\bar{x} - \tilde{y}_k||_{2}^2 \right] \)

satisfies condition (7). Furthermore, if \(\phi_0(\bar{x}) = \phi_0^* + \frac{C_k}{2} ||\bar{x} - \tilde{v}_k||_{1-\alpha}^2 \), then this process produces a sequence
of quadratic functions of the form \(\phi_k(\bar{x}) = \phi_k^* + \frac{C_k}{2} ||\bar{x} - \tilde{v}_k||_{1-\alpha}^2 \) where

\[
\zeta_{k+1} = (1 - \theta_k) \zeta_k + \theta_k \sigma_{1-\alpha}
\]
\[
v_{k+1} = \frac{1}{\zeta_{k+1}} \left[(1 - \theta_k) \zeta_k \bar{v}_k + \theta_k \sigma_{1-\alpha} \tilde{y}_k - \frac{S_k \theta_k}{L_i} f_i(\tilde{y}_k) \right]
\]
\[
\phi_{k+1}^* = (1 - \theta_k) \phi_k^* + \theta_k f(\tilde{y}_k) - \frac{\theta_k^2 S_k^2}{2\zeta_{k+1}} \left(f_i(\tilde{y}_k) \right)^2 L_i^{1+\alpha}
\]
\[
+ \frac{\theta_k (1 - \theta_k)}{\zeta_{k+1}} \left(\frac{\sigma_{1-\alpha}}{2} ||\bar{x} - \tilde{v}_k||_{1-\alpha}^2 + \frac{S_k}{L_i} (f_i(\tilde{y}_k), \bar{v}_k - \tilde{y}_k)_{1-\alpha} \right).
\]

Proof: The proof follows from direct calculations however for completeness and for later use we provide a
proof of an even more general statement in Appendix A.

In the following theorem, we show how to choose \(\bar{x}, \tilde{y} \) and \(\theta \) to satisfy the condition (8) and thereby derive
a simple form of the general accelerated coordinate descent method. We also show that the number of
iterations required for ACDM is \(\tilde{O} \left(\sqrt{\frac{S_{\alpha}}{\sigma_{1-\alpha}}} \right) \) which is strictly better than the number of iterations required
for coordinate descent method, \(O \left(\frac{S_{\alpha}}{\sigma_{1-\alpha}} \right) \). Later in Theorem 12, we show that this is optimal up to constant
for the type of algorithm considered. Note that while several of the definitions specifications in the following
theorem statement may at first glance seem unnatural our proof will show that they are nearly forced in
order to achieve certain algorithm design goals.
Theorem 4 (Simple ACDM). For all $i \in [n]$ let $\bar{L}_i^\alpha \equiv \max(L_i^\alpha, S_{\alpha}/n)$ and let $\bar{S}_\alpha \equiv \sum_{i=1}^n \bar{L}_i^\alpha$. Furthermore, for any $\bar{x}_0 \in \mathbb{R}^n$ and for all $k \geq 0$, let

$$\bar{y}_0 = \bar{x}_0 \quad \phi_k^* = f(\bar{x}_0) \quad \phi_0(\bar{x}) = \phi_0^* + \frac{\sigma_{1-\alpha}}{2} \|\bar{x} - \bar{x}_0\|_1^{-\alpha} \quad \theta_k = \sqrt{\frac{\sigma_{1-\alpha}}{2\bar{S}_\alpha n}}$$

Then applying Lemma 3 with these parameters, \bar{L}_i, as the coordinate-wise gradient Lipshitz constants, and choosing \bar{y}_k and \bar{x}_k such that

$$\forall k \geq 1 : \frac{\theta_k \zeta_k}{\zeta_{k+1}}(\bar{y}_k - \bar{y}_{k-1}) + \bar{x}_k - \bar{y}_k = 0 \quad \text{and} \quad \bar{x}_k = \bar{y}_{k-1} - \frac{1}{\bar{L}_{ik}} \bar{f}_{ik}(\bar{y}_{k-1})$$

yields a probabilistic estimate sequence. This accelerated coordinate descent method satisfies

$$\forall k \geq 0 : \mathbb{E}[f(\bar{x}_k)] - f^* \leq \left(1 - \frac{1}{2} \sqrt{\frac{\sigma_{1-\alpha}}{\bar{S}_\alpha n}}\right)^k \left(f(\bar{x}_0) - f^* + \sigma_{1-\alpha} \|\bar{x}_0 - \bar{x}_0\|_1^{-\alpha}\right). \quad (11)$$

Proof. By construction we know that condition (7) of probabilistic estimation sequences holds. It remains to show that \bar{x}_k satisfies condition (8) and analyze the convergence rate. To prove (8), we proceed by induction to prove the following statement:

$$\forall k \geq 0 : \mathbb{E}_k[f(\bar{x}_k)] \leq \mathbb{E}_k\left[\min_{\bar{x} \in \mathbb{R}^n} \phi_k(\bar{x})\right] = \mathbb{E}_k[\phi_k^*].$$

where \mathbb{E}_k indicates the expectation up to iteration k. The base case $f(\bar{x}_0) \leq \phi_0(\bar{x}_0)$ is trivial and we proceed by induction assuming that $\mathbb{E}_k[f(\bar{x}_k)] \leq \mathbb{E}_k[\phi_k^*]$. By Lemma (3) and the inductive hypothesis we get

$$\mathbb{E}_k[\phi_{k+1}^*] \geq \mathbb{E}_k\left[(1 - \theta_k)f(\bar{x}_k) + \theta_k f(\bar{y}_k) - \frac{\theta_k^2 \bar{S}_\alpha^2}{2\zeta_{k+1}} \bar{f}_{ik}(\bar{y}_k)^2 \bar{L}_{ik}^{1+\alpha}\right] \geq \theta_k(1 - \frac{\theta_k}{\zeta_{k+1}}) \mathbb{E}_k\left[\frac{\sigma_{1-\alpha}}{2} \|\bar{y}_k - \bar{v}_k\|_1^{-\alpha} + \bar{y}_k \sum_{i=1}^n \bar{f}_{ik}(\bar{y}_k, \bar{v}_k - \bar{y}_k)\right]$$

where for notational convenience we drop the expectation in each of the variables. By convexity $f(\bar{x}_k) \geq f(\bar{y}_k) + \langle \nabla f(\bar{y}_k), \bar{x}_k - \bar{y}_k \rangle$ so applying this and the definitions of $\|\cdot\|_1^{-\alpha}$ and $\langle \cdot, \cdot \rangle_1^{-\alpha}$ we get

$$\phi_{k+1}^* \geq f(\bar{y}_k) - \frac{\theta_k^2 \bar{S}_\alpha^2}{2\zeta_{k+1}} \bar{f}_{ik}(\bar{y}_k)^2 \bar{L}_{ik}^{1+\alpha} + \theta_k(1 - \theta_k) \left(\frac{\bar{S}_\alpha}{\bar{L}_{ik}} \bar{f}_{ik}(\bar{y}_k, \frac{\theta_k \zeta_k}{\zeta_{k+1}} (\bar{v}_k - \bar{y}_k)) + \langle \nabla f(\bar{y}_k), \bar{x}_k - \bar{y}_k \rangle\right)$$

Using that $\forall i \in [n]$ we have $\Pr[i_k = i] = \frac{L_i^\alpha}{\bar{S}_\alpha}$ we get

$$\mathbb{E}_{k+1}[\phi_{k+1}^*] \geq \mathbb{E}_{k+1}\left[f(\bar{y}_k) - \frac{\theta_k^2 \bar{S}_\alpha^2}{2\zeta_{k+1}} \bar{f}_{ik}(\bar{y}_k)^2 \bar{L}_{ik}^{1+\alpha} + \theta_k(1 - \theta_k) \left(\sqrt{\bar{S}_\alpha} \frac{\theta_k \zeta_k}{\zeta_{k+1}} (\bar{v}_k - \bar{y}_k) + \bar{x}_k - \bar{y}_k\right)\right].$$

From this formula we see that \bar{y}_k was chosen specifically to cancel the second term so that

$$\mathbb{E}_{k+1}[\phi_{k+1}^*] \geq \mathbb{E}_{k+1}\left[f(\bar{y}_k) - \frac{\theta_k^2 \bar{S}_\alpha^2}{2\zeta_{k+1}} \bar{f}_{ik}(\bar{y}_k)^2 \bar{L}_{ik}^{1+\alpha}\right] = \sum_{i=1}^n \mathbb{E}_{k+1}\left[f(\bar{y}_k) - \frac{\theta_k^2 \bar{S}_\alpha^2}{2\zeta_{k+1}} \bar{f}_{ik}(\bar{y}_k)^2 \bar{L}_{i}^{1+\alpha}\right].$$

We introduce this to avoid small sampling probabilities as they cause an issue in achieving the optimal $\tilde{O}\left(\sqrt{\frac{S_{\alpha n}}{\sigma_{1-\alpha}}}\right)$ convergence rate. This modification can be avoided by choosing a different distribution over coordinate updates in compute x_{k+1} which makes the algorithm more complicated and potentially more expensive.
and it simply remains to choose \(\theta_k \) and \(\bar{x}_{k+1} \) so that \(\mathbb{E}_{k+1} [f(\bar{x}_{k+1})] \) is smaller than this quantity.

To meet condition (8), we simply need to choose \(\{\theta_k\}_{k=0}^{\infty} \) so that \(\frac{\bar{S}_a}{\bar{S}_{k+1}} = \frac{1}{2^k} \). Using \(\bar{L}_i^a \geq \frac{\bar{S}_a}{\bar{n}} \geq \frac{\bar{S}_a}{2a} \), we have

\[
\mathbb{E}_{k+1} \left[\phi^*_k \right] \geq \sum_{i=1}^{n} \left[f(\bar{y}_k) - \frac{1}{2S_1} f_i(\bar{y}_k)^2 \right]
\]

To compute \(\bar{x}_{k+1} \), we use the fact that applying Lemma 1 to the formula \(f(\bar{y}_k - t\bar{f}_i(\bar{y}_k)) \) yields

\[
f \left(\bar{y}_k - \frac{1}{L_i} \bar{f}_i(\bar{y}_k) \right) \leq \frac{f(\bar{x}) + \bar{f}_i(\bar{y}_k)}{L_i} + \frac{1}{2} \left(\frac{1}{L_i} \bar{f}_i(\bar{y}_k) \right)^2 \leq \frac{f(\bar{y}_k) - \frac{f_i(\bar{y}_k)^2}{2L_i}}{2}
\]

and therefore for \(\bar{x}_{k+1} \) as defined we have

\[
\mathbb{E}_{k+1} \left[f(\bar{x}_{k+1}) \right] \leq \sum_{i=1}^{n} \left[f(\bar{y}_k) - \frac{f_i(\bar{x})^2}{2S_1 \bar{L}_i^{1-\alpha}} \right] \leq \mathbb{E}_{k+1} \left[\phi^*_k \right].
\]

Recalling that \(\zeta_{k+1} = (1 - \theta_k)\zeta_k + \theta_k \sigma_{1-\alpha} \) we see that choosing \(\zeta_0 = \sigma_{1-\alpha} \) implies \(\zeta_k = \sigma_{1-\alpha} \) for all \(k \) and therefore choosing \(\theta_k = \sqrt{\frac{2^k \sigma_{1-\alpha}}{2S_1 n}} \) completes the proof that the chosen parameters produce a probabilistic estimate sequence. Furthermore, we see that this choice implies that \(\eta_k = \left(1 - \sqrt{\frac{\sigma_{1-\alpha}}{2S_1 n}}\right)^k \). Therefore, by the definition of a probabilistic estimate sequence and the fact that \(\bar{S}_a \geq 2S_1 \), equation (11) follows.

\[\square\]

4.2 Numerical Stability

In the previous section, we provided a simple proof how to achieve an ACDM with a convergence rate of \(\tilde{O}(\sqrt{\frac{S_1 n}{\sigma_{1-\alpha}}} \). While sufficient for many purposes, the algorithm does not achieve the ideal dependence on initial error for certain regimes. For consistency with [24] we perform the change of variables

\[\forall k \geq 0 : \quad \alpha_k \overset{\text{def}}{=} \frac{\theta_k \zeta_k}{\zeta_k + \theta_k \sigma_{1-\alpha}}, \quad \beta_k \overset{\text{def}}{=} \frac{(1 - \theta_k) \zeta_k}{\zeta_{k+1}}, \quad \gamma_k \overset{\text{def}}{=} \frac{\bar{S}_a \theta_k}{\zeta_{k+1}}\]

and by better tuning \(\theta_k \) we derive the following algorithm.

Accelerated Coordinate Descent Method

1. Define \(L_i = \max \{L_i, (S_1/n)^{1/\alpha} \} \) and \(S_a = \sum L_i^a \)
2. Define \(\bar{v}_0, a_0 = \frac{1}{2n}, b_0 = 2 \)
3. For \(k \geq 0 \) iterate:
 3a. Find \(\alpha_k, \beta_k, \gamma_k \geq \frac{1}{2n} \) such that
 \[
 \gamma_k^2 - \frac{\gamma_k}{2n} = \left(1 - \frac{\alpha_k \sigma_{1-\alpha}}{S_a} \right) \frac{\gamma_k}{2n} \Rightarrow \beta_k \frac{\alpha_k^2}{\gamma_k^2} = \frac{\alpha_k \sigma_{1-\alpha}}{2n} \frac{1 - \alpha_k}{\alpha_k}.
 \]
 3b. \(\bar{y}_k = \alpha_k \bar{v}_k + (1 - \alpha_k) \bar{x}_k \)
 3c. Choose \(\bar{v}_k \) according to \(P_i = \bar{L}_i^a / S_a \).
 3d. \(\bar{x}_{k+1} = \bar{y}_k - \frac{1}{L_i} \bar{f}_i(\bar{y}_k), v_{k+1} = \beta_k \bar{v}_k + (1 - \beta_k) \bar{y}_k - \frac{\gamma_k}{2n} \bar{f}_i(\bar{y}_k). \)
 3e. \(b_{k+1} = \frac{\gamma_k}{\sqrt{\alpha_k}} \) and \(a_{k+1} = \gamma_k b_{k+1} \).

In Appendix B and C, we give a proof of convergence of this method in the unit-cost RAM model by studying the following potential function [24] for suitable constants \(a_k, b_k \in \mathbb{R} \),

\[
a_k \left(\mathbb{E} [f(\bar{x}_k)] - f^* \right) + b_k \mathbb{E} \left[\|\bar{v}_k - x_k\|^{2-\alpha} \right].
\]

11
The following theorem states that error in vector updates does not grow too fast and Lemma 14 further states that errors in the coefficients α, β, and γ also does not grow too fast. Hence, $O(\log n)$ bits of precision is sufficient to implement ACDM with the following convergence guarantees. Below we state this result formally and we refer the reader to Appendix C for the proof.

Theorem 5 (Numerical Stability of ACDM). Suppose that in each iteration of ACDM step 3d has additive error ϵ, i.e. there exists $\tilde{c}_{1,k}, \tilde{c}_{2,k} \in \mathbb{R}^n$ with $\|\tilde{c}_{1,k}\|_{1-\alpha} \leq \epsilon$ and $\|\tilde{c}_{2,k}\|_{1-\alpha} \leq \epsilon$ such that step 3 is

$$\tilde{x}_{k+1} := \tilde{y}_k - \frac{1}{L_{ik}} \tilde{f}_i(\tilde{y}_k) + \tilde{c}_{1,k} \text{ and } \tilde{v}_{k+1} := \beta_k \tilde{v}_k + (1 - \beta_k)\tilde{y}_k - \frac{\gamma_k}{L_{ik}} \tilde{f}_i(\tilde{y}_k) + \tilde{c}_{2,k}.$$

If $\epsilon < \frac{\sigma^2}{8S^2 n}$ and $k \geq \sqrt{\frac{2S^2 n}{\sigma^2}}$, then we have the convergence guarantee

$$\sigma_{1-\alpha} E \left[\|\tilde{x}_{k+1} - \tilde{x}^*\|_{1-\alpha}\right] + \left(\varepsilon(\tilde{x}_{k+1}) - f^*\right) \leq \delta_k$$

where

$$\delta_k \overset{\text{def}}{=} 24kS\alpha^2 + 32\sigma_{1-\alpha} \left(1 - \frac{1}{5} \sqrt{\frac{\sigma_{1-\alpha}}{S\alpha n}}\right)^k \left(\|x_0 - x^*\|_{1-\alpha}^2 + \frac{1}{S\alpha} (f(x_0) - f^*)\right)$$

and the additional convergence guarantee that

$$\frac{1}{\epsilon} \sum_{j=k}^{2k} \|\nabla f(\tilde{y}_j)\|_{1-\alpha}^2 \leq 2000 \frac{S\alpha}{n} \delta_k.$$

This theorem provides useful estimates for the error $f(\tilde{x}_{k+1}) - f^*$, the residual $\|\tilde{v}_{k+1} - \tilde{x}^*\|_{1-\alpha}$, and the norm of gradient $\|\nabla f(\tilde{y}_j)\|_{1-\alpha}$. Note how the estimate depends on the initial error $f(x_0) - f^*$ mildly as compared to Theorem 4. We use this fact in creating an efficient SDD solver in Section 5.3.

4.3 Efficient Iteration

In both Nesterov’s paper [24] and later work [25] the original ACDM proposed by Nesterov was not recommend since a naive implementation takes $O(n)$ time to update the vector \tilde{v}_k, and therefore is likely slower than accelerated gradient descent. This implementation issue is a potential serious problem under the assumption that the oracle to compute gradient can only accept a single vector as input. However, if we make the mild assumption that we can compute $\nabla f(t\tilde{x} + s\tilde{y})$ for $s, t \in \mathbb{R}$ and $\tilde{y}, \tilde{y} \in \mathbb{R}^n$ in the same asymptotic runtime as it takes to compute $\nabla f(\tilde{x})$ (i.e. we do not need to compute the sum explicitly), then we can implement ACDM without additional asymptotic computational costs per iteration as compared to the cost of the coordinate descent method performing an update on the given coordinate. In the following lemma, we prove this fact and show that the technique can be executed in the unit-cost RAM model without additional asymptotic costs. Note that the method we propose does introduce potential numerical problems which we argue are minimal.

Lemma 6 (Efficient ACDM Iteration). For $S\alpha = O(poly(n))$ and $\sigma_{1-\alpha} = \Omega(poly(\frac{1}{\epsilon}))$ each iteration of ACDM can be implemented in $O(1)$ time plus the time to make one oracle call of the form $\tilde{f}_i(t\tilde{x} + s\tilde{y})$ for $s, t \in \mathbb{R}$ and $\tilde{x}, \tilde{y} \in \mathbb{R}^n$, using at most an additional $O(\log n)$ bits of precision so long as the number of iterations of ACDM is $O\left(\sqrt{\frac{S\alpha}{\sigma_{1-\alpha}}} \log(n)\right)$.

Proof. By the specification of the ACDM algorithm, we have

$$\tilde{y}_{k+1} = \alpha_{k+1} \tilde{v}_{k+1} + (1 - \alpha_{k+1})\tilde{x}_{k+1}
= \alpha_{k+1} \left(\beta_k \tilde{v}_k + (1 - \beta_k)\tilde{y}_k + \frac{\gamma_k}{L_{ik}} \tilde{f}_i(\tilde{y})\right) + (1 - \alpha_{k+1}) \left(\tilde{y}_k - \frac{1}{L_{ik}} \tilde{f}_i(\tilde{y}_k)\right)
= \alpha_{k+1} \beta_k \tilde{v}_k + (\alpha_{k+1}(1 - \beta_k) + (1 - \alpha_{k+1})) \tilde{y}_k - \frac{1 - \alpha_{k+1} - \alpha_{k+1} \gamma_k}{L_{ik}} \tilde{f}_i(\tilde{y})$$

12
we see that each update step of ACM can be rewritten as
\[
\begin{pmatrix}
\tilde{v}_k^{T} \\
\tilde{y}_k^{T}
\end{pmatrix} := A_k \begin{pmatrix}
\tilde{v}_k^{T} \\
\tilde{y}_k^{T}
\end{pmatrix} - \tilde{s}_k
\]
where
\[
A_k = \begin{pmatrix}
\beta_k & 1 - \beta_k \\
\alpha_{k+1} \beta_k & 1 - \alpha_{k+1} \beta_k
\end{pmatrix}
\quad \text{and} \quad
\tilde{s}_k = \begin{pmatrix}
\frac{2k}{\ell_{k+1}} \tilde{f}_{ik}(\tilde{y}_k)^T \\
\frac{1-\alpha_{k+1} - \alpha_{k+1} I_{2k}}{L_{ik}} \tilde{f}_{ik}(\tilde{y}_k)^T
\end{pmatrix}.
\]

Therefore to implement ACM in each iteration we can just maintain vectors \(\tilde{v}, \tilde{y} \in \mathbb{R}^n \) and matrix \(B_k \in \mathbb{R}^{2 \times 2} \) such that
\[
\begin{pmatrix}
\tilde{v}_k^{T} \\
\tilde{y}_k^{T}
\end{pmatrix} = B_k \begin{pmatrix}
\tilde{v}_k^{T} \\
\tilde{y}_k^{T}
\end{pmatrix}.
\]

With this representation each update step is
\[
B_{k+1} := A_k B_k \quad \text{and} \quad \begin{pmatrix}
\tilde{v}_k^{T} \\
\tilde{y}_k^{T}
\end{pmatrix} := \begin{pmatrix}
\tilde{v}_k^{T} \\
\tilde{y}_k^{T}
\end{pmatrix} - B_{k+1}^{-1} \tilde{s}_k
\]
in time \(O(1) \) plus the time needed for one oracle call.

To complete the lemma, we simply need to show that this scheme is numerically stable. Note that
\[
\det(A_k) = \beta_k (1 - \alpha_{k+1} \beta_k) - \alpha_{k+1} \beta_k (1 - \beta_k) = \beta_k (1 - \alpha_{k+1}).
\]

Now by Lemma 14, we know that \(\alpha_k \leq 32 \max \left\{ \frac{1}{k}, \sqrt{\frac{\sigma_{1,n}}{2S_n}} \right\} \) for \(k > 1 \) and we know that \(\beta_k \geq 1 - \frac{1}{2} \sqrt{\frac{\sigma_{1,n}}{2S_n}} \) for all \(k \). Therefore, letting \(\kappa \overset{\text{def}}{=} \sqrt{\frac{\sigma_{1,n}}{2S_n}} \) and recalling that we assumed that the total number of iterations is \(O(\kappa^{-1} \log n) \) we get
\[
\det(B_k) \geq (1 - \kappa)^{O(\kappa^{-1} \log n)} (1 - 32 \kappa)^{O(\kappa^{-1} \log n)} \prod_{k=2}^{k-1} (1 - \frac{32}{k}) \]
\[
= \Omega \left(\text{poly} \left(\frac{1}{n} \right) e^{-32 \log \kappa} \right) = \Omega \left(\text{poly} \left(\frac{1}{n} \right) \right).
\]

Hence, \(O(\log n) \) bits of precision suffice to implement this method. \(\square \)

5 Faster Linear System Solvers

In this section, we show how ACM can be used to achieve asymptotic runtime that outperform various state-of-the-art methods for solving linear systems in a variety of settings. In Section 5.1, we show how to use coordinate descent to outperform conjugate gradient under minor assumptions regarding the eigenvalues of the matrix under consideration, in Section 5.2, we show how to improve the convergence rate of randomized Kaczmars type methods, and in Section 5.3, we show how to use the ideas to achieve the current fastest known numerically stable solver for symmetric diagonally dominant (SDD) systems of equations.

5.1 Comparison to Conjugate Gradient Method

Here we compare the performance of ACM to conjugate gradient (CG) and show that under mild assumptions about the linear system being solved ACM achieves a better asymptotic running time.

For symmetric positive definite (SPD) matrix \(A \in \mathbb{R}^{n \times n} \) and vector \(\bar{b} \in \mathbb{R}^n \), we solve the linear system of equations \(A \bar{x} = \bar{b} \) via the following equivalence unconstrained quadratic minimization problem:
\[
\min_{\bar{x} \in \mathbb{R}^n} f(\bar{x}) = \frac{1}{2} \langle A \bar{x}, \bar{x} \rangle - \langle \bar{b}, \bar{x} \rangle.
\]
Let m denote the number of nonzero entries in A, let nnz_i denote the number of nonzero entries in the ith row of A. To make the analysis simpler, we assume that the nonzero entries is somewhat uniform, namely $\forall i \in [n]$ we have $\text{nnz}_i = O\left(\frac{m}{n}\right)$. This assumption is trivially met for dense matrices, finite difference matrices, etc. Letting $0 \leq \lambda_1 \leq \ldots \leq \lambda_n$ denote the eigenvalues of A, we get the following running time guarantee for ACDM.

Theorem 7 (ACDM on SPD Systems). Assume A is a SPD matrix with the property that $\text{nnz}_i = O\left(\frac{m}{n}\right)$ for all $i \in [n]$. Let the numerical rank $r(A) = \sum_{i=1}^{n} \lambda_i / \lambda_n$. ACDM applied to (13) with $\alpha = 1^4$ produces an approximate solution in $\tilde{O}\left(m \sqrt{\frac{\lambda_1}{n}} \sqrt{\frac{\sum_{i=1}^{n} \lambda_i}{\lambda_n}} \log \frac{1}{\epsilon}\right)$ time with ϵ error in A norm in expectation.

Proof. The running time of ACDM with $\alpha = 1$ depends on σ_0 and S_1. From Example 1, the total component-wise Lipschitz constant S_1 is the trace of A, which is $\sum \lambda_i$ and the convexity parameter σ_0 is λ_1, therefore by Theorem 5 the convergence rate of ACDM is $\sqrt{\frac{\lambda_1}{n} \sum_{i=1}^{n} \lambda_i}$ as desired. Furthermore, the running time of each step depends on the running time of the oracle, i.e. computing $f_i(x) = (Ax)_i$, which by our assumption on nnz_i takes time $O\left(\frac{m}{n}\right)$.

To compare with conjugate gradient, we know that one crude bound for the rate of convergence of conjugate gradient is $O\left(\sqrt{\frac{\lambda_n}{\lambda_1}}\right)$. Hence the total running time of CG to produce an epsilon approximate solution is $\tilde{O}\left(m \sqrt{\frac{\lambda_n}{\lambda_1}} \log \frac{1}{\epsilon}\right)$. Therefore, with this bound ACDM is always faster or matches the running time since the numerical rank of A is always less than or equals to n. Thus, we see that when the numerical rank of A is $o(n)$, ACDM will likely have a faster asymptotic running time.

To be more fair in our comparison to conjugate gradient, we note that in [28] tighter bound on the performance of CG was derived and they showed that in fact CG has a running time of $\tilde{O}\left(\sum_{i=1}^{n} \lambda_i \left(\sum_{i=1}^{n} \lambda_i\right)^{1/3}\right)$ implying that ACDM is faster than CG when $\sum_{i=1}^{n} \lambda_i \leq n^3 \lambda_1$ and it is usually satisfied. In the extreme cases that the condition is false, CG will need to run for $O(n)$ iterations at which point an exact answer could be computed.

5.2 Accelerating Randomized Kaczmarz

The Kaczmarz method [11] is an iterative algorithm to solve $A\vec{x} = \vec{b}$ for any full row rank matrix $A \in \mathbb{R}^{m \times n}$. Letting $\vec{a}_i \in \mathbb{R}^n$ denote the ith row of the matrix A, we know that the solution of $A\vec{x} = \vec{b}$ is the intersection of the hyperplanes $H_i \overset{\text{def}}{=} \{ x : \langle \vec{a}_i, \vec{x} \rangle = b_i \}$.

The Kaczmarz method simply iteratively picks one of these hyperplanes and projects onto it by the following formula:

$$x_{k+1} := \text{proj}_{H_i} (\vec{x}_k) \quad \text{where} \quad \text{proj}_{H_i} (\vec{x}_k) + \frac{\vec{b}_i - \langle \vec{a}_i, \vec{x}_k \rangle}{\|\vec{a}_i\|^2} \vec{a}_i.$$

There are many schemes that can be chosen to pick the hyperplane i_k, many of which are difficult to analyze and compare, but in a breakthrough result, Strohmer and Vershynin in 2008 analyzed the randomized schemes which sample the hyperplane with probability proportional to $\|\vec{a}_i\|^2$. They proved the following

Theorem 8 (Strohmer and Vershynin [29]). The Kaczmarz method samples row i with probability proportionally to $\|\vec{a}_i\|^2$ at each iteration and yields the following

$$\forall k \geq 0 : \mathbb{E} \left[\|\vec{x}_k - \vec{x}^*\|^2 \right] \leq (1 - \kappa(A)^{-2})^k \|\vec{x}_0 - \vec{x}^*\|^2$$

\(^4\)Here we only consider the $\alpha = 1$ case for easier comparison with conjugate gradient.

\(^5\)The running time of CG may be asymptotic faster when the eigenvalues form clusters.
where $\bar{x}^* \in \mathbb{R}^n$ is such that $A\bar{x}^* = \bar{b}$, $\kappa(A) \overset{\text{def}}{=} \|A^{-1}\|_F \cdot \|A\|_F$ is the relative condition number of A, A^{-1} is the left inverse of A, $\|A^{-1}\|_2$ is the smallest non-zero spectral value of A and $\|A\|_F^2 \overset{\text{def}}{=} \sum a_{ij}^2$ is the Frobenius norm of A

Here we show to cast this algorithm as an instance of coordinate descent and obtain an improved convergence rate by applying ACM. We remark that accelerated Kaczmarz will sample rows with a slightly different probability distribution. As long as this does not increase the expected computational cost of an iteration, it will yield an algorithm with a faster asymptotic running time.

Theorem 9 (Accelerated Kaczmarz). The ACM method samples row i with probability proportionally to $\max \left\{ \|a_i\|^2, \frac{\|A\|_F^2}{m} \right\}$ and performs extra $O(1)$ work at each iteration. It yields the following

$$\forall k \geq 0 : \quad \mathbb{E} \|\bar{x}_k - \bar{x}^*\|_2^2 \leq 3 \left(1 - \frac{\kappa(A)^{-1}}{2\sqrt{m}} \right)^k \|\bar{x}_0 - \bar{x}^*\|_2^2.$$

Proof. To cast Strohmer and Vershynin’s randomized Kaczmarz algorithm in the framework of coordinate descent, we consider minimizing the objective function of theorem theorem directly, i.e. $\min_{\bar{x} \in \mathbb{R}^m} \frac{1}{2} \|\bar{A}^T \bar{y} - \bar{x}\|_2^2$. Since A has full row rank, we write $\bar{x} = \bar{A}^T \bar{y}$ and consider the equivalent problem $\min_{\bar{y} \in \mathbb{R}^m} \frac{1}{2} \|\bar{A}^T \bar{y} - \bar{x}^*\|_2^2$.

Expanding the objective function and using $\bar{A} \bar{y} = \bar{b}$, we get

$$\|\bar{A}^T \bar{y} - \bar{x}^*\|_2^2 = \|\bar{A}^T \bar{y}\|_2^2 - 2\langle \bar{b}, \bar{y} \rangle + \|\bar{x}^*\|_2^2.$$

Therefore, we attempt solve the following equivalent problem using accelerated coordinate descent.

$$\min_{\bar{y} \in \mathbb{R}^m} f(\bar{y}) \quad \text{where} \quad f(\bar{y}) \overset{\text{def}}{=} \frac{1}{2} \|\bar{A}^T \bar{y}\|_2^2 - \langle \bar{b}, \bar{y} \rangle.$$

From Example 2, we know that the i-th direction component-wise Lipschitz constant is $L_i = \|a_i\|^2$ where a_i is the i-th row of A and we know that $\nabla f(\bar{y}) = \bar{A}^T \bar{y} - b$. Therefore, each step of the coordinate descent method consists of the following

$$\bar{y}_{k+1} := \bar{y}_k - \frac{1}{L_i} \bar{f}_i(\bar{y}_k) = \bar{y}_k - \frac{1}{\|a_i\|^2} \left(\bar{A}^T \bar{y}_k - \bar{b} \right)_{ik}.$$

Recalling that we had performed the transformation $\bar{x} = \bar{A}^T \bar{y}$ we see that the corresponding step in \bar{x} is

$$\bar{x}_{k+1} = \bar{x}_k - \frac{1}{\|a_i\|^2} \left(\bar{A} \bar{x}_k - \bar{b} \right)_{ik} = \bar{x}_k + \frac{\bar{b}_{ik} - \langle a_{ik}, \bar{x}_k \rangle}{\|a_{ik}\|^2} a_{ik}.$$

Therefore, the randomized coordinate descent method applied this way yields precisely the randomized Kaczmarz method of Strohmer and Vershynin.

However, to apply the ACM method and provide complete theoretical guarantees we need to address the problem that f as we have constructed it is not strongly convex. This is clear by the fact that the null space of \bar{A}^T may be non trivial.

To remedy this problem we let $Z \subseteq \mathbb{R}^m$ denote the null space of \bar{A}^T, i.e. $Z \overset{\text{def}}{=} \{ \bar{x} \in \mathbb{R}^m \mid \bar{A}^T \bar{x} = 0 \}$, and we define the semi-norm $\|\cdot\|_{Z^\perp}$ on \mathbb{R}^m by $\|\bar{y}\|_{Z^\perp} \overset{\text{def}}{=} \inf_{\bar{z} \in Z} \|\bar{y} + \bar{z}\|$. Now it is not hard to see that f is strongly convex under this semi-norm with convexity parameter $\sigma_{Z^\perp} = \|A^{-1}\|_2^{-2}$. Furthermore, one can prove similarly to the proof of Lemma 3 and Theorem 4 that the algorithm in this theorem achieves the desired convergence rate.

We ignore the thresholding here for illustration purpose.
To see this, we let \(P \in \mathbb{R}^{m \times m} \) denote the orthogonal projection onto the image of \(A \) we note that \(\|\tilde{y}\|_{Z^\perp} = \sqrt{\tilde{y}^T P \tilde{y}} \). Therefore we can apply the general form of Lemma 3 proved in Appendix A to derive a similar estimate sequence result for this norm. Unfortunately, the resulting estimate sequence requires working with \(P^1 f_{i_k}(\tilde{y}_k) \). However, the proof of Theorem 4 still works using the same algorithm because of the facts that \(P^1 \nabla f(\tilde{x}) = \nabla f(\tilde{x}) \),

\[
\forall \tilde{y} \in \mathbb{R}^n, \forall \tilde{z} \in Z : \quad f(\tilde{y} + \tilde{z}) = f(\tilde{y}) \quad \text{and} \quad \nabla f(\tilde{y} + \tilde{z}) = \nabla(\tilde{y}) ,
\]

and \(\|\tilde{z}\|_2^2 \geq \|\tilde{x}\|_Z^2 \). This gives the same convergence guarantee with \(\sigma_{1-\alpha} \) replaced with \(\|A^{-1}\|_2^{-2} \), \(S_{\alpha} = \|A\|_F^2 \) and \(\|\cdot\|_{1-\alpha} = \|\cdot\|_Z^2 \). The desired convergence rate follows from the strong convexity of \(f \).

To justify the cost of each iteration, note that although the iterations work on the \(\tilde{y} \) variable, we can apply \(A^T \) on all iterations and just do the operations on \(\tilde{x} \) variables which is more efficient.

\[\square\]

5.3 Faster SDD Solvers in the Unit-cost RAM Model

A matrix \(A \in \mathbb{R}^{n \times n} \) is called Symmetric Diagonally Dominant (SDD) if \(A^T = A \) and \(\forall i \neq j \in [n] \) we have \(A_{ii} \geq \sum_{j \neq i} |A_{ij}| \). Solving such systems has had numerous applications in both theoretical and applied computer science. For an overview of such systems of equations, their applications, and their solvers we refer the reader to [26].

The fastest running times in general for solving such systems are \(\tilde{O}(m \log n \log \frac{1}{\epsilon}) \) due to Koutis, Miller, and Peng (cite KMP). However, the numerical stability of this algorithm is difficult to bound and when analyzed in the standard unit-cost RAM model, the best known running time is \(\tilde{O}(m \log^2 n \log \frac{1}{\epsilon}) \) due to Kelner et al. [15].

Here we show how to cast the simplest solver presented [15] as an instance of coordinate descent, and by applying ACMN, we obtain a faster running time of \(\tilde{O}(m \log^{3/2} n \log \frac{1}{\epsilon}) \) in the unit-cost RAM model. Our presentation will make heavy use of several insights from [15] and we refer the reader to that paper for further background.

Following the reasoning in [15], solving SDD systems can be reduced to solving the Laplacian system \(\mathcal{L}\tilde{x} = \tilde{\chi} \) corresponding to a weighted connected graph \(G = (V, E, \omega) \) where we call \(\omega_e \) the weight of edge \(e \in E \) and \(r_e \defeq \frac{1}{\omega_e} \) the resistance. For notational convenience, we arbitrarily orient each edge in \(E \) and using this convention define a graph’s incidence matrix \(B \in \mathbb{R}^{E \times V} \), resistance matrix \(R \in \mathbb{R}^{E \times E} \), and Laplacian matrix, \(\mathcal{L} \in \mathbb{R}^{V \times V} \) as follows:

\[
\forall (a, b), c_1, c_2 \in E : \quad B_{a,b,c} \defeq I_{a=c} - I_{b=c}, \quad R_{c_1,c_2} \defeq r_{c_1} \cdot I_{c_1=c_2}, \quad \mathcal{L} \defeq B^T R^{-1} B .
\]

Letting \(\tilde{x}^* \) be the solution of \(\mathcal{L}\tilde{x} = \tilde{\chi} \), we will prove the following:

Theorem 10. By applying ACMN to a simple Laplacian system solver in [15], we can produce an \(\tilde{x} \in \mathbb{R}^n \) such that \(\|\tilde{x} - \tilde{x}^*\|_{\mathcal{L}} \leq \epsilon \|\tilde{x}^*\|_{\mathcal{L}} \) in time \(O(m \log^{3/2} n \sqrt{n \log \log n \log \frac{\log n}{\epsilon}}} \)).

Proof. By the method of Lagrange multipliers, the minimizer \(\tilde{z}^* \) of the problem

\[
\min_{\tilde{z}} \frac{1}{2} \|\tilde{z}\|_R^2 \quad \text{where} \quad \|\tilde{z}\|_R \defeq \sqrt{\sum_{e \in E} r_e \tilde{z}_e^2}
\]

\[\square\]

7 Where we use \(\tilde{O} \) to hide \(O(\log \log n) \) terms.

8 Although not the focus of this section, we remark that this procedure produces an \(\epsilon \)-approximate electric flow (that is a \(\tilde{y} \) such that \(B^{\perp} \tilde{y} = \tilde{\chi} \) and has an objective function value within a multiplicative \((1 + \epsilon)\) of the optimum) in time \(O(m \log^{3/2} n \sqrt{n \log \log n \log \frac{\log n}{\epsilon}}} \)) in the unit-cost RAM model. Furthermore, by the definition of ACMN, we see that the operators produced by this algorithm are linear.
is $R^{-1}BE^*$. Therefore, we can find x^* by minimizing $f(z) \overset{\text{def}}{=} \frac{1}{2} \|z\|_R^2$ and use a BFS to get \hat{x} from z.

Now, let z_0 be any vector such that $B^Tz_0 = \hat{x}$. With this, the problem can be simplified to

$$\min_{B^Ty = 0} \frac{1}{2} \|z_0 + y\|_R^2.$$

Now, the \{\$\|c\| = 0\}$ is simply the set of circulations of the graph, called cycle space, and therefore to turn this constrained problem into an unconstrained problem we simply require a good basis for cycle space. Such a basis can easily be found by a spanning tree. Given a spanning tree T of G, for any $(a, b) \in E \setminus T$ let $\tilde{c}_{(a,b)} \in \mathbb{R}^E$ be the circulation that corresponds to sending 1 unit on (a, b) and 1 unit on the unique path from b to a in T. Now, the set \{\$\|c\| = 0\}$ forms a basis for cycle space and with this insight we can simplify the problem further to

$$\min_{\tilde{y} \in \mathbb{R}^n} \frac{1}{2} \|\tilde{z}_0 + Cy\|_R^2 \quad \text{where} \quad C \overset{\text{def}}{=} [c_{e_1} c_{e_2} \cdots] \in \mathbb{R}^{E \times E \setminus T}.$$

Now, for every off-tree edge, i.e., $e \in E \setminus T$, there is only one cycle c_e that passes through it. So, if we let \(R_{E \setminus T}\) be the diagonal matrix for the resistances of the off tree edges we have that for any $\tilde{y} \in E \setminus T$

$$\tilde{y}^T C^T R C \tilde{y} \geq \tilde{y}^T C^T R_{E \setminus T} C \tilde{y} = \sum_{e \in E \setminus T} r_e \tilde{y}(e)^2 \geq \left(\min_{e \in E \setminus T} r_e \right) \|\tilde{y}\|_2^2.$$

Therefore, the convexity parameter of $\|\tilde{z}_0 + Cy\|_R^2$ is at least $\min_{e \in E \setminus T} r_e$. This could be wasteful if the resistances vary, so we compensate by rescaling the space, $\tilde{y} = R^{1/2} \hat{y}$, to get the following problem:

$$\min_{\tilde{y} \in \mathbb{R}^n} f(\tilde{y}) \quad \text{where} \quad f(\tilde{y}) = \frac{1}{2} \|\tilde{z}_0 + CR^{-1/2} \tilde{y}\|_R^2.$$

By the same reasoning as above, the convexity parameter of f with respect to the Euclidian norm is 1 and we bound the e-th direction component-wise Lipschitz constant L_e as follows

$$\forall e \in E \setminus T : \quad L_e = 1_{\mathbb{R}}^T R^{-1/2} C^T R C R^{-1/2} 1_{\mathbb{R}} \overset{\text{def}}{=} \frac{\tilde{c}_e^T R \tilde{c}_e}{r_e} = \text{st}(e) + 1.$$

where st(e) denotes the stretch of e by the tree T, i.e. the sum of the resistances of the edges on the path in T connecting the endpoints of e divided by the resistance of the edge e. Therefore, the total component-wise Lipschitz constant is given by

$$S_1 = \sum_{e \in E \setminus T} (\text{st}(e) + 1) = m - n + 1 - n + 1 + \sum_{e \in E} \text{st}(e) \leq m + \sum_{e \in E} \text{st}(e).$$

Now, as in [15], we can using the following result of Abraham and Neiman to ensure $S_1 = O(m \log n \log \log n)$

Theorem 11. [1] In $O(m \log n \log \log n)$ time, we can compute a spanning tree T such that

$$\sum_{e \in E} \text{st}(e) = O(m \log n \log \log n).$$

Now, applying the coordinate descent method to f and letting $c_k \in E \setminus T$ denote the off-tree edge i.e.,
coordinate, picked in iteration k, we get
\[
\tilde{y}_{k+1} := \tilde{y}_k - \frac{1}{L_{e_k}} \tilde{f}_{e_k}(\tilde{y}_k) \quad \text{(Definition of Update Step)}
\]
\[
= \tilde{y}_k - \frac{1}{L_{e_k}} \left(R^{-1/2} C^T R (\tilde{z}_0 + CR^{-1/2} \tilde{y}) \right)_{e_k} \cdot \mathbb{1}_{e_k}
\quad \text{(Computation of } \nabla f(\tilde{y})\text{)}
\]
\[
= \tilde{y}_k - \frac{1}{L_{e_k} r_{e_k}^{1/2}} \sum_e c_{e_k}(e) r_{e_k}(\tilde{z}_0 + CR^{-1/2} \tilde{y})(e) \cdot \mathbb{1}_{e_k}
\quad \text{(Definition of } C \text{ and } R\text{)}
\]
\[
= \tilde{y}_k - \frac{1}{L_{e_k} r_{e_k}^{1/2}} \sum_{e \in \mathcal{E}_{e_k}} r_e(\tilde{z}_0 + CR^{-1/2} \tilde{y})(e) \cdot \mathbb{1}_{e_k}
\quad \text{(Definition of } C_{e_k}\text{)}
\]
Recalling $\tilde{y} = R^{-1/2} \tilde{y}$ and the derivation of L_{e_k}, we can write this equivalently as
\[
\tilde{y}_{k+1} := \tilde{y}_k - \frac{1}{r_e(\text{st}(e_k) + 1)} \sum_{e \in \mathcal{E}_{e_k}} r_e(\tilde{z}_0 + C \tilde{y})(e) \cdot \mathbb{1}_{e_k}.
\]
Noting that the \tilde{z} with $B^T \tilde{z} = \tilde{\chi}$ corresponding to \tilde{y} is $\tilde{z} = \tilde{z}_0 + C \tilde{y}$, we write the update equivalently as
\[
\tilde{z}_{k+1} := \tilde{z}_k - \frac{1}{r_e(\text{st}(e_k) + 1)} \sum_{e \in \mathcal{E}_{e_k}} r_e \cdot \tilde{z}_k(e) \cdot c_{e_k}
\]
which is precisely the algorithm of the simple solver in [15]. In [15], they also prove that calls to \tilde{f}_{e_k} and updates to \tilde{y}_{e_k} can be implemented in $O(\log n)$. Therefore, by applying ACDM we can obtain a faster algorithm. Note that apply ACDM efficiently computations of \tilde{f}_{e_k} need to be performed on the sum of two vector without explicit summing them. However, since in this case ∇f is linear, we can just call the oracle on the two vectors separately and also use the data structure for updating coordinates in each vector separately.

While the above insight suffices to compute electric flows, i.e. \tilde{x}, in the desired runtime in order to actually solve the Laplacian system we need to be able to compute \tilde{x} such that the following holds.
\[
\| \tilde{x} - L^1 \tilde{x} \|_2 \leq \varepsilon \| L^1 \tilde{x} \|_2.
\]
(14)

However, by Lemma 6.2 of [15], it suffices to show that $\| \nabla f(\tilde{y}) \|_2 \leq \varepsilon f^*$. Note that
\[
\| \nabla f(\tilde{y}) \|_2^2 = \| R^{-1/2} C^T R (\tilde{z}_0 + CR^{-1/2} \tilde{y}) \|_2^2 = \sum_{e \in \mathcal{E}_{E \setminus T}} \frac{1}{r_e} \left(\sum_{e' \in \mathcal{E}_e} z(e') r_{e'} \right)^2
\]
Now, suppose we choose $\tilde{y}_0 = \tilde{0}$. Then, we see that $\| \tilde{y}_0 - \tilde{y}^* \|_2 = \| \tilde{y}^* \|_2 = \| R^{1/2} E_{E \setminus T} \tilde{y}^* \|_2 \leq 2f^*$, and using Lemma 6.1 of [15], we have that $\frac{1}{S_\mathcal{E}} (f(\tilde{y}_0) - f^*) \leq \frac{f^*}{S_\mathcal{E}} \leq f^*$. Furthermore, since by our choice of spanning tree $\hat{S}_k = O(\log n \log \log n)$, after $k = O(m \sqrt{\log n \log \log n \log \frac{\log n}{\varepsilon}})$ iterations of ACDM, by Theorem 5, we have that $\frac{1}{k} \sum_{j=1}^{2k-1} \| \nabla f(\tilde{y}_j) \|_2^2 \leq \varepsilon f^*$. Therefore, if we stop ACDM at random iteration between k and $2k - 1$, we have that $\mathbb{E} \| \nabla f(\tilde{y}_k) \|_2^2 \leq \varepsilon f^*$ as desired. Therefore, in $O(m \log^{3/2} n \sqrt{\log \log n \log \frac{\log n}{\varepsilon}})$ time, we can compute \tilde{x} satisfying (14).

Beyond obtaining a faster running time, we remark that this algorithm did not require recursive techniques that were necessary for Kelner et al. to achieve there fastest running time. The simple solver that was

[9] We ignore the thresholding here again for illustration purpose.
accelerated actually had a running time of $O(m \log^2 n \log \log n \log(n/\epsilon))$ time due to the potentially large initial error of $f(\tilde{y}_0)$. To achieve their fastest running time, they ran their solver several times to ultimately remove the n term in $\log(n/\epsilon)$. In our case, since ACDM measures initial error both in terms of $f(\tilde{y}_0) - f^*$ and $\|\tilde{y} - \tilde{y}^*\|^2$ and since $\|\tilde{y} - \tilde{y}^*\|^2$ is relatively small, ACDM avoids this issue entirely.

6 Towards the Optimality of Accelerated Coordinate Descent

In this section, we prove that the accelerated coordinate descent is optimal under the assumption that the iterative method generates a sequence of vectors \{x_k\} $\in \mathbb{R}^n$ such that

$$\bar{x}_{k+1} \in \bar{x}_0 + \text{span} \left\{ f'_{i_0}(\bar{x}_0), f'_{i_1}(\bar{x}_1), \cdots, f'_{i_k}(\bar{x}_k) \right\}.$$ \hspace{1cm} (15)

This assumption forbids the iterative method from starting at any other point other than the initial point and forbids the algorithm from randomly jumping to completely new points. We do not know if this assumption is necessary. However, if the iterative method can only access a function value $f(\bar{x})$ and a derivative $f'_i(\bar{x})$ in a random direction at each iteration, then at least $O(n^2)$ iterations are needed to obtain full local second order information, i.e. $\nabla^2 f$. Therefore maybe this assumption is not needed.

Theorem 12 (ACDM Lower Bound). Assume the iterative method satisfies the assumption (15) and further assume the method randomly picks each i_k uniformly at random.\(^\text{10}\) Then, for any $S_1 > 4n \sigma > 0$, $x_0 \in \mathbb{R}^n$ and $k \leq \frac{C}{\sigma^2}$, there exists a convex function f with strong convex parameter σ and total component-wise Lipschitz constant S_1 such that

$$\mathbb{E} [f(\bar{x}_k)] - f^* \geq \frac{\sigma}{2} \left(1 - 2\sqrt{\frac{2 \sigma}{nS_1}} \right)^k \| \bar{x}^* - \bar{x}_0 \|_2^2 - \sqrt{\frac{\sigma S_1}{n}} \left(1 - \frac{1}{2} \sqrt{\frac{n \sigma}{S_1}} \right)^{2n}$$

$$\sim \frac{\sigma}{2} \left(1 - 2\sqrt{\frac{2 \sigma}{nS_1}} \right)^k \| \bar{x}^* - \bar{x}_0 \|_2^2 .$$

Proof. We assume without loss of generality that $\bar{x}_0 = \bar{0}$ by shifting the domain and let

$$f(\bar{x}) \overset{\text{def}}{=} \frac{L - \sigma}{4} \left((1 - \bar{x}(1))^2 + \sum_{i=1}^{n-1} (\bar{x}(i) - \bar{x}(i + 1))^2 + (\bar{x}(n) - q^{n+1})^2 \right) + \frac{\sigma}{2} \sum_{i=1}^n \bar{x}^2(i)$$

where $L \overset{\text{def}}{=} S_1/n$ and q is a constant to be determined later. It is easy to check that f is σ strongly convex with respect to $\| \cdot \|_2$ and that the total component-wise Lipschitz constant is L. Taking the derivative of $\bar{x}(i)$ we see that the minimizer of f, denoted \bar{x}^* satisfies

$$\forall k : \frac{L - \sigma}{2} (\bar{x}^*(k) - \bar{x}^*(k - 1) + \bar{x}^*(k) - \bar{x}^*(k + 1)) + \sigma \bar{x}^*(k) = 0$$

where we define $\bar{x}^*(0) \overset{\text{def}}{=} 1$ and $\bar{x}^*(n + 1) \overset{\text{def}}{=} q^{n+1}$. From this we see that

$$\bar{x}^*(k + 1) - \frac{2L}{L - \sigma} \bar{x}^*(k) + \bar{x}^*(k - 1) = 0 .$$

and $\bar{x}^*(k) = C_1(q^+)^k + C_2(q^-)^k$ where $q^+ = \frac{L}{L - \sigma} \pm \sqrt{(\frac{L}{L - \sigma})^2 - 1}$ and C_1, C_2 are some constants that depend on the first and the last terms. To simply the term, we set $q = q^-$ and get

$$\bar{x}^*(k) = q^k .$$

\(^\text{10}\)We make this assumption to simplify analysis. However we remark that we could repeat our analysis by the coordinates randomly permuted. Then by Yao’s minimax principle one could quantify how much better an algorithm could do on this hard distribution of functions.
Now, we want to show that the \vec{x}_k produced by the iterative method is likely far away from optimal since \vec{x}_k likely has many zeros when k is small. We say $x \in R^j$ if only the first j coordinates of \vec{x} are nonzero. If $x \in R^j$ by the strong convexity of f we have

$$f(\vec{x}) - f(\vec{x}^*) \geq \frac{\sigma}{2} \left\| \vec{x} - \vec{x}^* \right\|_2^2 \geq \frac{\sigma}{2} \sum_{i=j+1}^{n} q^{2i} \geq \frac{\sigma}{2} q^2 \left\| \vec{x}^* \right\|_2^2 - \frac{\sigma}{2} q^{2n+2} \frac{1}{1-q^2}. \quad (16)$$

Note that $\vec{x}_0 \in R^0$ and if $x \in R^j$ then $f_k(\vec{x}) = 0$ for $k > j + 1$. Furthermore, by the assumption (15), the current point \vec{x} in an iteration goes from R^k to R^{k+1} only if the oracle gives the $(k+1)$-th partial derivative. Since by assumption this happens with probability $\frac{1}{n}$ by applying (16), we have

$$Ef(x_k) - f(x^*) \geq \sum_{i=0}^{k} \binom{k}{i} \left(\frac{1}{n} \right)^i \left(1 - \frac{1}{n} \right)^{k-i} \left(\frac{\sigma}{2} q^2 \left\| \vec{x}^* \right\|_2^2 - \frac{\sigma}{2} q^{2n+2} \right)$$

$$= \frac{\sigma}{2} \left(1 - \frac{1}{n} + \frac{q^2}{n} \right)^k \left\| \vec{x}^* \right\|_2^2 - \frac{\sigma}{2} q^{2n+2}.$$

where the last line comes from the fact that $E(t^X) = (1 - p + pt)^n$ if X is a Binomial distribution with probability p with n trial.

Next by taking the Taylor series at $L = \frac{L}{\sigma} = 1$ and use the assumption $S_1 > 4\sigma n$, we have

$$1 - \sqrt{\frac{2\sigma}{L}} \leq q \leq 1 - \frac{1}{2} \sqrt{\frac{\sigma}{L}}.$$

Therefore, we have

$$Ef(x_k) - f(x^*) \geq \frac{\sigma}{2} \left(1 - \frac{1}{n} + \frac{q^2}{n} \right)^k \left\| \vec{x}^* \right\|_2^2 - \frac{\sigma}{2} q^{2n+2} \frac{1}{1-q^2}.$$

$$\geq \frac{\sigma}{2} \left(1 - \frac{2}{n} \sqrt{\frac{\sigma}{L}} \right)^k \left\| \vec{x}^* \right\|_2^2 - \frac{\sigma}{2} q^{2n+2} \left(1 - \frac{1}{2} \sqrt{\frac{\sigma}{L}} \right)^2$$

$$\geq \frac{\sigma}{2} \left(1 - \frac{2}{n} \sqrt{\frac{\sigma}{L}} \right)^k \left\| \vec{x}^* \right\|_2^2 - \sqrt{\sigma L} \left(1 - \frac{1}{2} \sqrt{\frac{\sigma}{L}} \right)^{2n}.$$

7 Acknowledgements

We thank Yan Kit Chim, Andreea Gane, Jonathan Kelner, Lap Chi Lau, and Lorenzo Orecchia for helpful discussions. This work was partially supported by NSF awards 0843915 and 1111109 and a NSF Graduate Research Fellowship (grant no. 1122374).
References

[1] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning tree. In Proceedings of the 44th symposium on Theory of Computing - STOC ’12, page 395, New York, New York, USA, May 2012. ACM Press.

[2] Heinz H. Bauschke and Jonathan M. Borwein. On projection algorithms for solving convex feasibility problems. SIAM Rev., 38(3):367–426, September 1996.

[3] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2(1):183–202, January 2009.

[4] Stephen Becker, J Bobin, and EJ Candès. NESTA: a fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

[5] D. Bienstock and G. Iyengar. Solving fractional packing problems in oast(1/ε949;) iterations. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, STOC ’04, pages 146–155, New York, NY, USA, 2004. ACM.

[6] E.G. Boman, B. Hendrickson, and S. Vavasis. Solving elliptic finite element systems in near-linear time with support preconditioners. SIAM Journal on Numerical Analysis, 46(6):3264–3284, 2008.

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY, USA, 2004.

[8] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and Shang-Hua Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs. In Proceedings of the 43rd annual ACM symposium on Theory of computing, pages 273–282. ACM, 2011.

[9] T Goldstein, BRENDAN ODonoghue, and Simon Setzer. Fast alternating direction optimization methods. CAM report, pages 12–35, 2012.

[10] Gabor T Herman. Fundamentals of computerized tomography: image reconstruction from projections. Springer, 2009.

[11] Stefan Kaczmarz. Angenäherte auflösung von systemen linearer gleichungen. Bull. Internat. Acad. Polon.Sci. Lettres A, page 335357, 1937.

[12] Carl T Kelley. Iterative methods for optimization, volume 18. Society for Industrial and Applied Mathematics, 1987.

[13] Jonathan A. Kelner and Aleksander Madry. Faster generation of random spanning trees. In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09, pages 13–21, Washington, DC, USA, 2009. IEEE Computer Society.

[14] Jonathan A Kelner, Lorenzo Orecchia, Yin Tat Lee, and Aaron Sidford. An almost-linear-time algorithm for approximate max flow in undirected graphs, and its multicommodity generalizations. arXiv preprint arXiv:1304.2538, 2013.

[15] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A Simple, Combinatorial Algorithm for Solving SDD Systems in Nearly-Linear Time. January 2013.

[16] Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-n log n time solver for sdd linear systems. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages 590–598, oct. 2011.
A Proof of Probabilistic Estimate Sequence Form

Here we prove a stronger variant of Lemma 3 that is useful for Section 5.2. Throughout this section we let $A \in \mathbb{R}^{n \times n}$ denote a symmetric positive semidefinite matrix, we let $\| \cdot \|_A \overset{\text{def}}{=} \sqrt{x^T A x}$ be the induced norm, we let $\langle \vec{x}, \vec{y} \rangle_A \overset{\text{def}}{=} \vec{x}^T A \vec{y}$ be the inner product which induces this norm, and we let A^\dagger denote the Moore-penrose pseudoinverse of A. Taking A to be the diagonal matrix with $A_{ii} = L_1 - \alpha$ and applying the following lemma yields Lemma 3 as an immediate corollary.

Lemma 13 (General (Probabilistic) Estimate Sequence Construction). Let A be a positive semidefinite matrix such that f is strongly convex with respect to the norm $\| \cdot \|_A$ with convexity parameter σ_A. Furthermore let $\phi_0(\vec{x})$, $\{ \vec{y}_k, \theta_k, i_k \}_{k=0}^\infty$ be such that

\[
\]
Next, we prove the form of ϕ_i follows trivially from η_i. Consequently, ζ, satisfies condition (7). Furthermore, if $\phi_0(\vec{x}) = \phi_0 + \frac{\sigma}{2} \|\vec{x} - \vec{v}_0\|_A^2$, then this process produces a sequence of quadratic functions of the form $\phi_k(\vec{x}) = \phi_k^* + \frac{\sigma}{2} \|\vec{x} - \vec{v}_k\|_A^2$ where

$$
\zeta_{k+1} = (1 - \theta_k)\zeta_k + \theta_k \sigma, \\
\vec{v}_{k+1} = \frac{1}{\zeta_{k+1}} \left[(1 - \theta_k)\zeta_k\vec{v}_k + \theta_k \sigma\vec{y}_k - \theta_k \frac{2}{p_{ik}^2} \vec{f}_{ik}(\vec{y}_k) \right], \\
\phi_{k+1} = (1 - \theta_k)\phi_k + \theta_k f(\vec{y}_k) - \frac{\theta_k^2}{2\zeta_{k+1}^2} \vec{f}_{ik}(\vec{y}_k) = \left(\zeta_k - \vec{v}_k \right) + \frac{\sigma}{2} \|\vec{y}_k - \vec{v}_k\|_A^2
$$

Proof. First prove by induction on k that $E[\phi_k(\vec{x})] \leq (1 - \eta_k) f(\vec{x}) + \eta_k E[\phi_0(\vec{x})]$. The base case, $k = 0$, follows trivially from $\eta_0 = 1$. Assuming it holds for some k, we explicitly writing out the expectation over i_k yields that the following holds for all $\vec{x} \in \mathbb{R}^n$

$$
E[\phi_{k+1}(\vec{x})] = E \left[\sum_{p_{ik}} \left((1 - \theta_k)\phi_k(\vec{x}) + \theta_k \left[f(\vec{y}_k) + \frac{1}{p_{ik}^2} \vec{f}_{ik}(\vec{y}_k) + \frac{\sigma}{2} \|\vec{x} - \vec{y}_k\|_A^2 \right] \right) \right].
$$

Applying the inductive hypothesis, we get

$$
E[\phi_{k+1}(\vec{x})] = (1 - \theta_k) \left[(1 - \eta_k) f(\vec{x}) + \eta_k E[\phi_0(\vec{x})] \right] + \theta_k E \left[f(\vec{y}_k) + (\nabla f(\vec{y}_k), \vec{x} - \vec{y}_k) + \frac{\sigma}{2} \|\vec{x} - \vec{y}_k\|_A^2 \right].
$$

By strong convexity and the definition of η_{k+1}, we then have that

$$
E[\phi_{k+1}(\vec{x})] \leq (1 - \theta_k) (1 - \eta_k) f(\vec{x}) + \theta_k f(\vec{x}) + (1 - \theta_k) \eta_k E[\phi_0(\vec{x})] = (1 - \eta_{k+1}) f(\vec{x}) + \eta_{k+1} E[\phi_0(\vec{x})].
$$

Next, we prove the form of ϕ_k again by induction on k. Suppose that $\phi_k = \phi_k^* + \frac{\sigma}{2} \|\vec{x} - \vec{v}_k\|_A^2$. Now, we prove the form of ϕ_{k+1}. By the update rule and the inductive hypothesis, we see that

$$
\forall \vec{x} \in \mathbb{R}^n : \nabla^2 \phi_{k+1}(\vec{x}) = (1 - \theta_k) \nabla^2 \phi_k(\vec{x}) + \theta_k \sigma A = [(1 - \theta_k)\zeta_k + \theta_k \sigma A] A.
$$

Consequently, $\phi_{k+1}(\vec{x}) = \phi_{k+1}^* + \frac{\sigma}{2} \|\vec{x} - \vec{v}_{k+1}\|_A^2$ for ζ_{k+1} as desired and ϕ_{k+1}^* and \vec{v}_{k+1} yet to be determined.

To compute \vec{v}_{k+1}, we note that $\nabla \phi_k(\vec{x}) = \zeta_k A(\vec{x} - \vec{v}_k)$ and therefore by the update rule

$$
\nabla \phi_{k+1}(\vec{x}) = (1 - \theta_k)\zeta_k A(\vec{x} - \vec{v}_k) + \frac{\theta_k}{p_{ik}} \vec{f}_{ik} + \theta_k \sigma A(\vec{x} - \vec{y}_k)
$$

$$
= \zeta_{k+1} A \vec{x} - (1 - \theta_k)\zeta_k \vec{v}_k + \frac{\theta_k}{p_{ik}} \vec{f}_{ik} - \theta_k \sigma A \vec{y}_k
$$

\[11\] Note that our proof was heavily influenced by the proof in [22] for estimate sequences.
Therefore, we have that \vec{v}_{k+1} must satisfy
\[
\zeta_{k+1}A\vec{v} - \zeta_{k+1}A\vec{v}_{k+1} = \zeta_{k+1}A\vec{v} - (1 - \theta_k)\zeta_kA\vec{v}_k + \frac{\theta_k}{p_{ik}}f_{ik}(\vec{y}_k) - \theta \sigma_A A\vec{y}_k.
\]
So, applying A^\dagger to each side yields the desired formula for \vec{v}_{k+1}.

Finally, to compute ϕ_{k+1}^*, we note that, by the form of $\phi_{k+1}(\vec{x})$ and the update rule for creating $\phi_{k+1}(\vec{x})$, looking at $\phi_k(\vec{y}_k)$ yields
\[
\phi_{k+1}^* + \frac{\zeta_{k+1}}{2}\|\vec{y}_k - \vec{v}_{k+1}\|^2_A = (1 - \theta_k)\phi_k(\vec{y}_k) + \theta_k f(\vec{y}_k) = (1 - \theta_k)\left[\phi_k^* + \frac{\zeta_k}{2}\|\vec{y}_k - \vec{v}_k\|^2_A\right] + \theta_k f(\vec{y}_k).
\]
Now, by value of v_{k+1}, we see that
\[
\phi_{k+1}^* + \frac{\zeta_{k+1}}{2}\|\vec{y}_k - \vec{v}_{k+1}\|^2_A = \|\phi_k^* + \frac{\zeta_k}{2}\|\vec{y}_k - \vec{v}_k\|^2_A\| (1 - \theta_k)\zeta_k\vec{v}_k + (\theta_k \sigma - \zeta_{k+1})\vec{y}_k - \frac{\theta_k}{p_{ik}} A^\dagger f_{ik}(\vec{y}_k) \|_A \]
\[
= \|\phi_k^* + \frac{\zeta_k}{2}\|\vec{y}_k - \vec{v}_k\|^2_A (1 - \theta_k)^2\zeta_k^2\|\vec{v}_k - \vec{y}_k\|^2_A (1 - \theta_k)\zeta_k (1 - \theta_k)^2\zeta_k^2 \left[\frac{\zeta_{k+1} - (1 - \theta_k)\zeta_k}{2\zeta_{k+1}}\right] = \frac{\theta_k(1 - \theta_k)\zeta_k}{\zeta_{k+1}} \frac{\sigma_A}{2}.
\]
Combining these two formulas and noting that
\[
(1 - \theta_k)\frac{\zeta_k}{2} - \frac{\zeta_{k+1}}{2} - \frac{1}{\zeta_{k+1}} (1 - \theta_k)^2\zeta_k^2 = (1 - \theta_k)\zeta_k \left[\frac{\zeta_{k+1} - (1 - \theta_k)\zeta_k}{2\zeta_{k+1}}\right] = \frac{\theta_k(1 - \theta_k)\zeta_k}{\zeta_{k+1}} \frac{\sigma_A}{2}
\]
yields the desired form of ϕ_{k+1}^* and completes the proof. \hfill \Box

B Bounding ACDM Coefficients

In the following lemma we prove bounds on $\alpha_k, \beta_k, \gamma_k, a_k$ and b_k required for Theorem 5 and Lemma 6.

Lemma 14 (ACDM Coefficients). In ACDM γ_k is increasing to $\sqrt{\frac{S_\alpha}{2n\sigma_{1-\alpha}}}$ and β_k is decreasing to $1 - \sqrt{\frac{\sigma_{1-\alpha}}{2S_\alpha n}}$.

Furthermore, for all $k \geq 1$ we have $\alpha_k \leq 32 \max \left(1, \frac{1}{k}\sqrt{\frac{\sigma_{1-\alpha}}{2S_\alpha n}}\right)$ and for all $k \geq 0$ we have
\[
a_k \geq \left(1 + \frac{1}{2} \frac{\sigma_{1-\alpha}}{2S_\alpha n}\right) \left(\frac{\sigma_{1-\alpha}}{2S_\alpha n}\right)^k + \left(1 + \frac{1}{2} \frac{\sigma_{1-\alpha}}{2S_\alpha n}\right) \left(\frac{\sigma_{1-\alpha}}{2S_\alpha n}\right)^{k+1},
\]
\[
b_k \geq \left(1 + \frac{1}{2} \frac{\sigma_{1-\alpha}}{2S_\alpha n}\right) \left(\frac{\sigma_{1-\alpha}}{2S_\alpha n}\right)^{k+1}.
\]

Proof. We begin by estimating γ_k. Using that $\gamma_k = a_{k+1}/b_{k+1}$ and defining $\gamma_0 \overset{\text{def}}{=} \alpha_0/b_0 = 1/(4n)$ we know that $\frac{\gamma_{k+1}^2 - \gamma_{k+1}^2}{2n} = \left(1 - \frac{2\gamma_{k+1}^2}{S_\alpha}\right) \gamma_k^2$ and therefore $\frac{S_\alpha}{2n\sigma_{1-\alpha}} - \gamma_k^2 = \left(1 - \frac{2\gamma_{k+1}^2}{S_\alpha}\right) \left(\frac{S_\alpha}{2n\sigma_{1-\alpha}} - \gamma_k^2\right)$ for all $k \geq 0$. Consequently, γ_k is increasing to $\sqrt{\frac{S_\alpha}{2n\sigma_{1-\alpha}}}$ and since $\beta_k = 1 - \frac{2\gamma_{k+1}^2}{S_\alpha}$, we have that β_k is decreasing to $1 - \sqrt{\frac{\sigma_{1-\alpha}}{2S_\alpha n}}$. Furthermore since $2^n, n \geq \sigma_{1-\alpha}$ we have that all $\beta_k \in (0, 1)$, $b_k \leq b_{k+1}$, and $a_k \leq a_{k+1}$.

Using these insights we can now estimate the growth of coefficients a_k and b_k. As in [24] the growth can be estimated by a recursive relation between a_k and b_k. For b_k, our definitions imply
\[
b_k^2 = b_k b_{k+1} = \left(1 - \frac{\sigma_{1-\alpha}}{S_\alpha}\gamma_k\right) b_{k+1}^2 = \left(1 - \frac{\sigma_{1-\alpha}}{S_\alpha}\frac{a_{k+1}}{b_{k+1}}\right) b_{k+1}^2.
\]
Therefore since $b_k \leq b_{k+1}$ we have $\frac{\alpha_{k+1}}{S_{n_1}^k} a_{k+1} b_{k+1} \leq b_{k+1}^2 - b_k^2 \leq 2b_{k+1}(b_{k+1} - b_k)$ and consequently

$$b_{k+1} \geq b_k + \frac{\alpha_{k+1}}{2S_{n_1}^k} a_{k+1} . \quad (19)$$

To bound a_k, the definitions imply $\frac{\alpha_{k+1}}{S_{n_2}^k} - \frac{\alpha_{k+1}}{2S_{n_1}^k} = \gamma_k^2 - \frac{\alpha_k^2}{2n_2} = \beta_k \frac{\alpha_k^2}{2n_2}$. Therefore since $a_k \leq a_{k+1}$ we have $\frac{1}{2n_2} a_{k+1} b_{k+1} = a_k^2 - a_k^2 \leq 2a_{k+1}(a_{k+1} - a_k)$ and consequently

$$a_{k+1} \geq a_k + \frac{1}{4n} b_{k+1} \geq a_k + \frac{1}{4n} b_k . \quad (20)$$

Using (20) and (19), it is easy to prove the growth rates (17) and (18) by induction.

All the remains to prove the upper bound on a_k. Note that $\frac{1-\alpha_k}{\alpha_k} = 2n_1 \gamma_k -1$ and hence $\alpha_k \sim \frac{\beta_k}{2n_1 \gamma_k} \sim \frac{1}{2n_1 \gamma_k}$. Therefore, we wish to find a lower bound of γ_k, which in turn can be found by an upper bound of β_k. Recalling that $b_{k+1} = \frac{b_k}{\sqrt{\alpha_k}}$, we see that $b_k^2 = \beta_k \beta_{k-1} \leq \frac{b_0^2}{\beta_{k-1}}$. Therefore, by our lower bound on b_k and the fact that $b_0 = 2$, we see that when $k \leq 2\sqrt{\frac{S_{n_1}}{1-\alpha}}$, we have

$$\beta_k \leq 2^{2/k} \left(1 + \frac{1}{2} \sqrt{\frac{\alpha_{k+1}}{1-\alpha}} \right)^k \left(1 - \frac{1}{2} \sqrt{\frac{\alpha_{k+1}}{1-\alpha}} \right)^{-2/k} \leq 2^{2/k} \left(1 + \frac{1}{2} \sqrt{\frac{\alpha_{k+1}}{1-\alpha}} \right)^{k} \left(1 - \frac{1}{2} \sqrt{\frac{\alpha_{k+1}}{1-\alpha}} \right)^{-2/k}.$$

$$= \left(1 + \frac{\alpha_{k+1}}{16S_{n_2}^k} \frac{k(k-1)}{1-\alpha} \right)^{-2/k} \leq \exp \left(-\frac{\alpha_{k+1}}{16S_{n_2}^k} (k-1) \right) \leq 1 - \frac{\alpha_{k+1}}{16S_{n_2}^k} (k-1).$$

Using $\beta_k = 1 - \frac{\gamma_k \alpha_{k+1}}{S_{n_1}^k}$, we get $\gamma_k \geq 16 \min \left(\frac{k-1}{n_1}, \sqrt{\frac{2S_{n_1}}{1-\alpha}} \right)$. Therefore since $\frac{1}{\alpha_k} - 1 = \frac{1-\alpha_k}{\alpha_k} = \frac{n_1 \gamma_k -1}{\beta_k} \geq n \gamma_k -1$ for all k we have that $\alpha_k \leq \frac{1}{n \gamma_k} \leq 16 \max \left\{ \frac{k-1}{n_1}, \sqrt{\frac{2S_{n_1}}{1-\alpha}} \right\}$ and the result follows immediately.

C Proof of Numerically Stable ΛCDM

Proof of Theorem 5. Following the structure in [24] we begin by defining $T_i(\bar{x}) \overset{\text{def}}{=} \bar{x} - \frac{1}{L_{ik}} f_i(\bar{x})$ for all $\bar{x} \in \mathbb{R}^n$ and $r_k^2 \overset{\text{def}}{=} ||\bar{e}_k - \bar{x}\|^2_{1-\alpha}$ for all $k \geq 0$. Expanding \bar{e}_k yields

\[
r_{k+1}^2 = ||\bar{e}_{2,k} + \beta_k \bar{v}_k + (1 - \beta_k) \bar{y}_k - \frac{\gamma_k}{L_{ik}} f_{ik}(\bar{y}_k) - \bar{x}\|^2_{1-\alpha}
\]

\[
\leq \left(1 + \frac{1}{L_{ik}} \right) ||\bar{e}_{2,k}\|^2_{1-\alpha} + (1 + t)||\beta_k \bar{v}_k + (1 - \beta_k) \bar{y}_k - \frac{\gamma_k}{L_{ik}} f_{ik}(\bar{y}_k) - \bar{x}\|^2_{1-\alpha}
\]

\[
\leq \left(1 + \frac{1}{L_{ik}} \right) \bar{e}^2 + (1 + t)||\beta_k \bar{v}_k + (1 - \beta_k) \bar{y}_k - \bar{x}\|^2_{1-\alpha} + (1 + t) \frac{\gamma_k^2}{L_{ik}^2} f_{ik}(\bar{y}_k)^2
\]

\[
+ 2 \frac{\gamma_k}{L_{ik}} (1 + t) \left(f_{ik}(\bar{y}_k), \bar{x} - \beta_k \bar{v}_k - (1 - \beta_k) \bar{y}_k \right)
\]

\[
\leq \left(1 + \frac{1}{L_{ik}} \right) \bar{e}^2 + (1 + t)||\beta_k \bar{v}_k + (1 - \beta_k) \bar{y}_k - \bar{x}\|^2_{1-\alpha} + 2 \frac{\gamma_k^2}{L_{ik}^2} (1 + t) (f(\bar{y}_k) - f(T_{ik}(\bar{y}_k)))
\]

\[
+ 2 \frac{\gamma_k}{L_{ik}} (1 + t) \left(f_{ik}(\bar{y}_k), \bar{x} - \bar{y}_k + \beta_k (1 - \alpha_k) (\bar{x} - \bar{y}_k) \right), \quad (21)
\]

where t is yet to be determined.
Applying the convexity parameter and Lipschitz condition, we can bound the error induced by $\tilde{c}_{1,k}$:

\[f(T_i(\tilde{y}_k)) = f(\tilde{x}_{k+1} - \tilde{c}_{1,k}) \]

\[\geq f(\tilde{x}_{k+1}) - \langle \tilde{c}_{1,k}, \nabla f(\tilde{x}_{k+1}) \rangle \quad \text{(Assumption of Step 3d)} \]

\[= f(\tilde{x}_{k+1}) - \langle \tilde{c}_{1,k}, \nabla f(\tilde{x}_{k+1}) - \nabla f(\tilde{x}^*) \rangle \quad \text{(Optimality of \tilde{x}^* implies $\nabla f(\tilde{x}^*) = 0$)} \]

\[\geq f(\tilde{x}_{k+1}) - ||\tilde{c}_{1,k}||_{1-\alpha} ||\nabla f(\tilde{x}_{k+1}) - \nabla f(\tilde{x}^*)||_{1-\alpha}^2 \quad \text{(Cauchy Schwarz)} \]

\[\geq f(\tilde{x}_{k+1}) - \epsilon \tilde{S}_\alpha ||\tilde{x}_{k+1} - \tilde{x}^*||_{1-\alpha} \quad \text{(Lemma 2 of [24])} \]

\[\geq f(\tilde{x}_{k+1}) - \frac{\epsilon \tilde{S}_\alpha}{\sigma_{1-\alpha}} (f(\tilde{x}_{k+1}) - f^*) \quad \text{(22)} \]

Taking the expectation of both sides of (21) in i_k and using (22) and $\tilde{L}_k^\alpha \geq \frac{\tilde{S}_\alpha}{2n}$, we have

\[\mathbb{E}_{i_k} \left[(r_{k+1}^2) \right] \leq \left(1 + \frac{1}{t} \right) \epsilon^2 + (1 + t)\beta_k r_k^2 + (1 + t)(1 - \beta_k)||\tilde{y}_k - \tilde{x}^*||_{1-\alpha}^2 \]

\[+ 4 \frac{\gamma^2 n}{\tilde{S}_\alpha} (1 + t) \left(f(\tilde{y}_k) - \mathbb{E}_{i_k} f(\tilde{x}_{k+1}) \right) + \frac{\epsilon \tilde{S}_\alpha}{\sigma_{1-\alpha}} (\mathbb{E}_{i_k} f(\tilde{x}_{k+1}) - f^*) \]

\[+ 2(1 + t) \frac{\gamma_k}{\tilde{S}_\alpha} \left\langle \nabla f(\tilde{y}_k), \tilde{x}^* - \tilde{y}_k + \frac{\beta_k (1 - \alpha_k)}{\alpha_k} (\tilde{x}_k - \tilde{y}_k) \right\rangle \]

\[\leq \left(1 + \frac{1}{t} \right) \epsilon^2 + (1 + t)\beta_k r_k^2 + (1 + t)(1 - \beta_k)||\tilde{y}_k - \tilde{x}^*||_{1-\alpha}^2 \]

\[+ 4 \frac{\gamma^2 n}{\tilde{S}_\alpha} (1 + t) \left(f(\tilde{y}_k) - \mathbb{E}_{i_k} f(\tilde{x}_{k+1}) \right) + \frac{\epsilon \tilde{S}_\alpha}{\sigma_{1-\alpha}} (\mathbb{E}_{i_k} f(\tilde{x}_{k+1}) - f^*) \]

\[+ 2(1 + t) \frac{\gamma_k}{\tilde{S}_\alpha} \left(f^* - f(\tilde{y}_k) - \frac{1}{2} \sigma_{1-\alpha}||\tilde{y}_k - \tilde{x}^*||_{1-\alpha}^2 + \frac{\beta_k (1 - \alpha_k)}{2\alpha_k} (f(\tilde{x}_k) - f(\tilde{y}_k)) \right). \]

Now since we defined coefficients so the following hold

\[1 - \beta_k = \frac{\gamma_k}{\tilde{S}_\alpha} \sigma_{1-\alpha} \quad \text{and} \quad \gamma_k^2 - \gamma_k = \frac{\gamma_k \beta_k (1 - \alpha_k)}{2n\alpha_k}, \]

we see that the terms for $||\tilde{y}_k - \tilde{x}^*||_{1-\alpha}^2$ and $f(\tilde{y}_k)$ cancel and we obtain

\[\mathbb{E}_{i_k} \left[r_{k+1}^2 \right] \leq \left(1 + \frac{1}{t} \right) \epsilon^2 + (1 + t)\beta_k r_k^2 - 4(1 + t) \frac{\gamma^2 n}{\tilde{S}_\alpha} \left(\mathbb{E}_{k} f(\tilde{x}_{k+1}) - \frac{\epsilon \tilde{S}_\alpha}{\sigma_{1-\alpha}} (\mathbb{E}_{i_k} f(\tilde{x}_{k+1}) - f^*) \right) \]

\[+ 2(1 + t) \frac{\gamma_k}{\tilde{S}_\alpha} \left(f^* + \frac{\beta_k (1 - \alpha_k)}{\alpha_k} f(\tilde{x}_k) \right). \]

Multiplying both sides by $\frac{\tilde{S}_\alpha}{n} b_{k+1}^2$ and recalling the following

\[b_{k+1}^2 = \frac{1}{\beta_k} b_k^2, \quad \alpha_k^2 = \gamma_k^2 b_k^2, \quad \gamma_k^2 - \gamma_k = \frac{\beta_k a_k^2}{b_k^2} = \frac{\gamma_k \beta_k (1 - \alpha_k)}{2n\alpha_k}, \]

we get

\[\frac{\tilde{S}_\alpha}{n} b_{k+1}^2 \mathbb{E}_{i_k} (r_{k+1}^2) \leq \left(1 + \frac{1}{t} \right) \frac{\tilde{S}_\alpha}{n} b_{k+1}^2 \epsilon^2 + (1 + t) \frac{\tilde{S}_\alpha}{n} b_k^2 r_k^2 \]

\[+ (1 + t) \left(-4\alpha_k^2 \left(1 - \frac{\epsilon \tilde{S}_\alpha}{\sigma_{1-\alpha}} \right) (E_{i_k} f(\tilde{x}_{k+1}) - f^*) + 4\alpha_k^2 (f(\tilde{x}_k) - f^*) \right). \]
Dropping the expectation in each variable we have that in expectation up to iteration k

$$
\frac{\tilde{S}_n}{n} b_{k+1}^2 (r_{k+1}^2) + (1 + t) \left(1 - \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} \right) 4a_{k+1}^2 (f(\tilde{x}_{k+1}) - f^*) \\
\leq \left(1 + \frac{1}{t} \right) \frac{\tilde{S}_n}{n} b_{k+1}^2 \varepsilon^2 + (1 + t) \left(\frac{\tilde{S}_n}{n} b_{k+1}^2 r_{k+1}^2 + 4a_{k+1}^2 (f(\tilde{x}_k) - f^*) \right).
$$

Letting $t \equiv \frac{2\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}}$, and writing $\tilde{v}_{k+1}^2 = \frac{\tilde{S}_n}{n} E_{i_{k+1}[r_{k+1}^2]}$, $\phi_k = E_{i_k}[f(\tilde{x}_{k+1})] - f^*$, we have

$$
b_{k+1}^2 \tilde{v}_{k+1}^2 + 4a_{k+1}^2 \phi_{k+1} \leq \frac{\tilde{S}_n}{n} \left(1 + \frac{1}{t} \right) b_{k+1}^2 \varepsilon^2 + (1 + t) \left(\tilde{v}_{k+1}^2 r_{k+1}^2 + 4a_{k+1}^2 \phi_k \right)
\leq \frac{\tilde{S}_n}{n} \varepsilon^2 \left(1 + \frac{1}{t} \right) \sum_{j=1}^{k+1} (1 + t)^{k+1-j} \tilde{v}_{j}^2 + 4(1 + t)^{k+1} \left(\tilde{v}_0^2 + \frac{1}{2n\tilde{S}_n} \phi_0 \right). \quad (23)
$$

Now, we claim the following inequalities:

$$
\begin{align*}
&\left\{ \begin{array}{l}
(1 + t)^{k+1-j} \tilde{v}_{j}^2 \text{ is increasing} \quad (1) \\
\sqrt{\frac{\tilde{S}_n}{2n\sigma_{1-\alpha}}} \geq \gamma_k \geq \frac{1}{2n} \quad (2) \\
ak_k \geq \frac{r}{2} \sqrt{\frac{\tilde{S}_n}{2n\sigma_{1-\alpha}}} \left(1 + \frac{1}{2} \sqrt{\frac{\sigma_{1-\alpha}}{2\tilde{S}_n}} \right)^{k+1} \quad (3)
\end{array} \right.
\end{align*}
$$

Using the claims above and (23), we get

$$
E_{i_k} \left(\frac{2\sigma_{1-\alpha}||\tilde{v}_{k+1} - \tilde{x}^*||_{1-\alpha}^2}{\sigma_{1-\alpha}} + 4(f(\tilde{x}_{k+1}) - f^*) \right)
= \frac{2n\sigma_{1-\alpha}r_{k+1}^2}{\tilde{S}_n} + 4\phi_{k+1}
\leq \frac{b_{k+1}^2}{a_{k+1}^2} r_{k+1}^2 + 4\phi_{k+1}
\leq \frac{\tilde{S}_n}{n} \varepsilon^2 \left(1 + \frac{1}{t} \right) \left(k+1 \right) \frac{b_{k+1}^2}{a_{k+1}^2} + 4(1 + t)^{k+1} \left(\frac{\tilde{v}_0^2 + \frac{1}{2n\tilde{S}_n} \phi_0}{a_{k+1}^2} \right)
\leq 6\tilde{S}_n \varepsilon^2 (k+1) + 32\frac{n\sigma_{1-\alpha}}{\tilde{S}_n} \left(1 + \frac{2\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} \right)^{k+1} \left(1 + \frac{1}{2} \sqrt{\frac{\sigma_{1-\alpha}}{2\tilde{S}_n}} \right)^{k+1} \left(\tilde{v}_0^2 + \frac{1}{2n\tilde{S}_n} \phi_0 \right).
$$

By the assumption that $\frac{2\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} < \frac{1}{2} \sqrt{\frac{\sigma_{1-\alpha}}{2\tilde{S}_n}}$ inequality (12) follows from the following

$$
E_{i_k} \left(\frac{2\sigma_{1-\alpha}||\tilde{v}_{k+1} - \tilde{x}^*||_{1-\alpha}^2}{\sigma_{1-\alpha}} + 4(f(\tilde{x}_{k+1}) - f^*) \right)
\leq 12k\tilde{S}_n \varepsilon^2 + 32\sigma_{1-\alpha} \left(1 + \frac{1}{2} \sqrt{\frac{\sigma_{1-\alpha}}{2\tilde{S}_n}} \right)^{k} \left(\frac{1}{2} \tilde{S}_n \varepsilon \left(\tilde{x}_0 - \tilde{x}^* \right)_{1-\alpha}^2 + \frac{1}{2\tilde{S}_n} (f(x_0) - f^*) \right)
\leq 24k\tilde{S}_n \varepsilon^2 + 32\sigma_{1-\alpha} \left(1 - \frac{1}{5} \sqrt{\frac{\sigma_{1-\alpha}}{2\tilde{S}_n}} \right)^{k} \left(\frac{1}{2} \tilde{S}_n \varepsilon \left(\tilde{x}_0 - \tilde{x}^* \right)_{1-\alpha}^2 + \frac{1}{\tilde{S}_n} (f(x_0) - f^*) \right).
$$

Now, we prove the claims.

Claim (1): Since $a_{k+1} = \gamma_k b_{k+1} \geq \frac{1}{2n} b_{k+1}$ and (19), we have $b_{k+1} \geq (1 + \frac{2\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}}) b_k$. By the assumption $t = \frac{2\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} < \frac{\sigma_{1-\alpha}}{4\tilde{S}_n}$, we see that $(1 + t)^{k+1-j} \tilde{v}_{j}^2$ is increasing.

Claim (2): Follows from Lemma 14.
Claim (3): Using Lemma 14 and \(k \geq \sqrt{\frac{2\delta_k}{2n\tilde{S}_n}} \) we have

\[
\alpha_k \geq \sqrt{\frac{\tilde{S}_n}{2n\sigma_{1-\alpha}}} \left(\left(1 + \frac{1}{2} \sqrt{\frac{\sigma_{1-\alpha}}{2\tilde{S}_n n}} \right)^{k+1} - \left(1 - \frac{1}{2} \sqrt{\frac{\sigma_{1-\alpha}}{2\tilde{S}_n n}} \right)^{k+1} \right) \\
\geq \sqrt{\frac{\tilde{S}_n}{2n\sigma_{1-\alpha}}} \left(\left(1 + \frac{1}{2} \frac{\sigma_{1-\alpha}}{2\tilde{S}_n n} \right)^{k+1} - 1 \right) \\
\geq \frac{1}{2} \sqrt{\frac{\tilde{S}_n}{2n\sigma_{1-\alpha}}} \left(1 + \frac{1}{2} \frac{\sigma_{1-\alpha}}{2\tilde{S}_n n} \right)^{k+1}.
\]

To bound the norm of the gradient, we show that if \(\|\nabla f(\bar{y}_k)\|_{1-\alpha} \) is large for many steps then \(f(\bar{x}_k) \) decreases substantially. For notational simplicity we omit the expectation symbol and using (22), we have

\[
f(\bar{x}_{k+1}) \leq f(T_k(\bar{y}_k)) + \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} (f(\bar{x}_{k+1}) - f^*) \\
\leq f(\bar{y}_k) - \frac{1}{\tilde{S}_n} (\|\nabla f(\bar{y}_k)\|_{1-\alpha}^*)^2 + \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} (f(\bar{x}_{k+1}) - f^*) .
\]

To bound \(f(\bar{y}_k) \), we consider the lower envelopes at \(\bar{y}_k \) and obtain

\[
f(\bar{y}_k) \leq f(\bar{x}_k) - \langle \nabla f(\bar{y}_k), \alpha_k(\bar{x}_k - \bar{v}_k) \rangle \\
\leq f(\bar{x}_k) + \alpha_k \|\nabla f(\bar{y}_k)\|_{1-\alpha}^* \|\bar{x}_k - \bar{v}_k\|_{1-\alpha} \\
\leq f(\bar{x}_k) + \alpha_k \|\nabla f(\bar{y}_k)\|_{1-\alpha}^* (\|\bar{x}_k - \bar{x}^*\|_{1-\alpha} + \|\bar{v}_k - \bar{x}^*\|_{1-\alpha}) \\
\leq f(\bar{x}_k) + \alpha_k \|\nabla f(\bar{y}_k)\|_{1-\alpha}^* \left(\frac{1}{\sqrt{\sigma_{1-\alpha}}} \sqrt{f(\bar{x}_k) - f^*} + ||\bar{v}_k - \bar{x}^*||_{1-\alpha} \right) .
\]

Combining with Lemma 14, we have

\[
f(\bar{x}_{k+1}) \leq f(\bar{x}_k) - \frac{1}{\tilde{S}_n} (\|\nabla f(\bar{y}_k)\|_{1-\alpha}^*)^2 + \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} \delta_{k+1} + 3 \sqrt{\frac{\sigma_{1-\alpha}}{n\tilde{S}_n}} \|\nabla f(\bar{y}_k)\|_{1-\alpha}^* \sqrt{\frac{\delta_k}{\sigma_{1-\alpha}}} .
\]

Summing up \(k \) to \(2k \) then yields

\[
f(\bar{x}_{2k}) \leq f(\bar{x}_k) - \frac{1}{\tilde{S}_n} \sum_{j=k}^{2k-1} (\|\nabla f(\bar{y}_j)\|_{1-\alpha}^*)^2 + \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} \sum_{j=k+1}^{2k} \delta_j + 32 \sqrt{\frac{1}{n\tilde{S}_n}} \sum_{j=k}^{2k-1} \|\nabla f(\bar{y}_j)\|_{1-\alpha}^* \sqrt{\delta_j} .
\]

Since \(f(\bar{x}_k) - f(\bar{x}_{2k}) \leq f(\bar{x}_k) - f^* \leq \delta_k \), we have

\[
\frac{1}{\tilde{S}_n} \sum_{j=k}^{2k-1} (\|\nabla f(\bar{y}_j)\|_{1-\alpha}^*)^2 \leq \delta_k + \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} \sum_{j=k+1}^{2k} \delta_j + 32 \sqrt{\frac{1}{n\tilde{S}_n}} \sum_{j=k}^{2k-1} \|\nabla f(\bar{y}_j)\|_{1-\alpha}^* \sqrt{\delta_j} \\
\leq \delta_k \left(1 + \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} \right) + 32 \sqrt{\frac{1}{n\tilde{S}_n}} \sum_{j=k}^{2k-1} \|\nabla f(\bar{y}_j)\|_{1-\alpha}^* \sqrt{\delta_j} \\
\leq \delta_k \left(1 + \frac{\varepsilon \tilde{S}_n}{\sigma_{1-\alpha}} \right) + 32 \frac{k\delta_k}{n} \sqrt{\frac{1}{\tilde{S}_n} \sum_{j=k}^{2k-1} (\|\nabla f(\bar{y}_j)\|_{1-\alpha}^*)^2} .
\]

28
Solving this quadratic equation about \(\sqrt{\frac{1}{S_\alpha} \sum_{j=k}^{2k-1} (\|\nabla f(\tilde{y}_k)\|_{1-\alpha}^*)^2} \), we get

\[
\frac{1}{S_\alpha} \sum_{j=k}^{2k-1} (\|\nabla f(\tilde{y}_k)\|_{1-\alpha}^*)^2 \leq \frac{1}{2} \left[32 \frac{k \delta_k}{n} + \sqrt{\left(32 \frac{k \delta_k}{n} \right)^2 + 4 \delta_k \left(1 + \frac{\epsilon k \tilde{S}_\alpha}{\sigma_{1-\alpha}} \right)} \right].
\]

Since \(1 + \frac{\epsilon k \tilde{S}_\alpha}{\sigma_{1-\alpha}} \leq 2 \) and \(k \geq n \) by assumptions we have

\[
\frac{1}{S_\alpha} \sum_{j=k}^{2k-1} (\|\nabla f(\tilde{y}_k)\|_{1-\alpha}^*)^2 \leq 16 \frac{k \delta_k}{n} + \frac{1}{2} \sqrt{\left(32^2 + 8 \right) \frac{k \delta_k}{n}} \leq 33 \frac{k \delta_k}{n}.
\]

Therefore \(\frac{1}{S_\alpha} \sum_{j=k}^{2k-1} (\|\nabla f(\tilde{y}_k)\|_{1-\alpha}^*)^2 \leq 2000 \frac{k \delta_k}{n} \), as desired. \(\Box \)

Lemma 15 (Coefficient Stability in ACDM). Step 3a of ACDM can be computed by the following formulas

\[
\begin{align*}
\gamma_{k+1} &= \min \left\{ \frac{1}{2} \left[\left(1 - \frac{\gamma_k^2 \sigma_{1-\alpha}}{S_\alpha} \right) \sigma_{1-\alpha} + \sqrt{\left(1 - \frac{\gamma_k^2 \sigma_{1-\alpha}}{S_\alpha} \right)^2 + 4 \gamma_k^2} \right], \sqrt{\frac{S_\alpha}{2n \sigma_{1-\alpha}}} \right\}, \quad (24) \\
\beta_{k+1} &= 1 - \frac{\gamma_{k+1} \sigma_{1-\alpha}}{S_\alpha}, \\
\alpha_{k+1} &= \frac{\beta_{k+1}}{\beta_{k+1} + 2n \gamma_{k+1} - 1} = \frac{\frac{2n}{\sigma_{1-\alpha}} - \frac{\sigma_{1-\alpha}}{S_\alpha}}{1 - \frac{\sigma_{1-\alpha}}{2n S_\alpha}}.
\end{align*}
\]

and can be implemented using \(O(\log n) \) bits precision to obtain any \(\text{poly}(\frac{1}{\epsilon}) \) additive accuracy.

Proof. Since \(\gamma_k = \frac{\alpha_{k+1}}{b_{k+1}} \), we know that \(\gamma_{k+1}^2 - \frac{\gamma_{k+1}}{2n} = \left(1 - \frac{\gamma_{k+1} \sigma_{1-\alpha}}{S_\alpha} \right) \gamma_k^2 \), and by re-arranging terms we get that \(\gamma_{k+1}^2 - \left(\frac{1}{2n} - \frac{\gamma_k^2 \sigma_{1-\alpha}}{S_\alpha} \right) \gamma_{k+1} = 0 \). Applying the quadratic formula and Lemma 14 then yields (24) and the other formulas follow by direct computation.

Now, expanding (24) and using \(2 \tilde{S}_\alpha n \geq \sigma_{1-\alpha} \) implies that \(\gamma_k \geq \frac{1}{2n} \) and therefore the denominator of \(\alpha_{k+1} \) is larger than \(\beta_{k+1} \). Consequently the equations of \(\beta \) and \(\alpha \) depends continuously on \(\gamma \). Thus, it is suffices to show that \(O(\log n) \) bits precision suffice to compute \(\gamma_k \). To prove this, we define \(f : \mathbb{R}^n \to \mathbb{R} \) denote the quadratic formula so that with full precision \(\gamma_{k+1} = f(\gamma_k) \). Direct calculation yields

\[
f'(\gamma) = -\frac{\gamma \sigma_{1-\alpha}}{S_\alpha} + \frac{\gamma^2 \sigma_{1-\alpha} - \frac{1}{2n} \sigma_{1-\alpha}^2}{S_\alpha} + 2 \gamma \sqrt{\left(\frac{1}{2n} - \frac{\sigma_{1-\alpha}^2}{S_\alpha} \right)^2 + 4 \gamma^2}.
\]

Since \(0 \leq \gamma \leq \sqrt{\frac{S_\alpha}{2n \sigma_{1-\alpha}}} \) we have that \(0 \leq f'(\gamma) \leq 1 - \frac{\sigma_{1-\alpha}^2}{S_\alpha} < 1 \) and therefore, \(f \) is a contraction mapping. Consequently, if the calculation of \(\gamma \) has up to \(\epsilon \) additive error, \(k \) steps of calculation can accumulate up to \(k\epsilon/(1 - \max f'(\gamma)) \) additive error. Hence, \(O(\log n) \) bits of precision suffice. \(\Box \)