The Janus-Face of Bacteriophages across Human Body Habitats

Adam Wahida, Klaus Ritter, Hans-Peter Horz*
Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen, Germany
*hhorz@ukaachen.de

Introduction

One hundred years after their discovery [1,2], the interest towards the therapeutic use of bacteriophages (briefly: phages) has resurged due to the escalating rise of multi-drug-resistant bacteria [3,4]. However, besides regulatory hurdles, realization of this treatment concept is hampered by efficiency and safety concerns [5]. Conversely, metagenome studies have shown that phages are consistent and dominant members of the human microbiome, suggesting an unknown role of phages in human health and disease [6]. Therefore, the recognition and understanding of phages as common members of the human microbiome may provide the required confidence and pave the way for their targeted medical application, which will go beyond the classical form of phage therapy. Here we provide a holistic perspective regarding the impact of human-associated phages and possible consequences for our well-being.

The influence of phages is rather complex, because the consequence of infection is not restricted to the immediate host. Any drop-out or altered physiology of the bacterial host can have profound effects on other members within the microbiome as well. Phages are best known for their ability to "arm" bacteria with virulence genes, which converts a benign bacterial strain into a highly pathogenic strain, causing an acute and severe infection [7,8]. Hence, phages are broadly regarded as notorious "providers" of virulence genes, which has conferred upon them a largely negative reputation. However, considering that phages are our permanent companions along with bacteria, the emergence of novel pathogenic bacterial strains is actually a comparably rare event. We believe that from a global perspective, the impacts of phages are rather subtle and mostly in a regulatory and positive way. A stable, healthy microbiome can probably only evolve and be maintained through phage activity. Nonetheless, metagenomic studies have also indicated altered phages populations in dysbiosis. This means that human diseases, characterized by distorted bacterial communities, may ultimately also have phage-driven origins. From this it follows that phages are critical mediators of human health but also of disease, lending them somewhat the character of a “Janus-Face” (Fig 1). It will be one of the greatest challenges of future research to disentangle the dynamic and complex interplays between phages and bacteria. This endeavor is worthwhile, because understanding phage activity in humans (good or bad) can be considered a golden chance for developing strategies that aim at the directed use of phages in favor of human health [9].

The human microbiome is biogeographically structured across the four major habitats: the oral cavity, the gastrointestinal tract, the vagina, and the skin [10,11]. Each habitat is characterized by numerous sub-niches and surfaces harboring a myriad of bacteria, archaea, eukaryotes, and viruses, most of which are phages [9,12–14]. Given the distinctiveness of each body site, phage–bacterial interactions may be quite distinctive as well. However, some general principles
may apply, such as the “kill the winner” hypothesis, which argues that the chances of superior (thus growing) bacterial populations encountering phages increases with increasing cell density [15]. This, in turn, initiates the decline of the “winner.” As a consequence, phages aid in sustaining bacterial diversity as they prevent overgrowth of certain bacterial species or strains over others. Clearly, more complex interactions may exist, and a number of models of how bacteria and phages may influence each other have been described recently [6].

Phages in the Oral Microbiome

The human oral cavity is the prime entry point for viruses and bacteria to access the human body and harbors a highly diverse mixture of transient and resident microbes [11,16]. While earlier studies have suggested that phages do not play an important role in oral microbial ecology [17,18], a different conclusion has been drawn more recently based on metagenomic analyses and on epifluorescence microscopy [19,20]. Virus-like particles have been estimated to make up to 10^8 particles per milliliter in saliva, of which phages constitute the overwhelming majority. Phage communities remained remarkably stable over months [19,21], but they were found to be quite individual-specific and distinct from those of the gut and other body habitats, which mirrors the distinctiveness of the bacterial communities. A comparably high number of genes encoding for virulence factors were identified, suggesting that phages in the oral cavity may be an important source for pathogenic conditions [19]. For instance, phage-encoded platelet-binding factors in Streptococcus mitis-phages, suggest a link of some oral phages with endocarditis [20,22]. A role of phages in periodontal disease has also recently been demonstrated [23,24]. Since periodontal disease is associated with dysbiosis, it may prove to function as a tractable model system to study the involvement of phage populations in mixed infectious diseases [25,26]. We speculate that this research line will ultimately lead to strategies that utilize natural or designed phages for counteracting or preventing periodontal disease.

Phages in the Gut Microbiome

The human intestinal tract system is undoubtedly the most intensively studied habitat of human-associated microorganisms [27,28], and it is generally recognized that the metabolic activity of a normal endogenous microbiota is vital for human health. Disturbances in microbial community compositions and the subsequently altered microbial physiology have been linked with very diverse and far-reaching disorders, including gastrointestinal diseases, obesity, non-alcoholic fatty liver disease, cancer, brain development, and behavior [29–32]. The tantalizing question here is what role do the endogenous phage populations play? Are they mainly...
involved in the establishment and maintenance of a beneficial bacterial community? This assumption is warranted, given that phages are ubiquitous in the human gut of healthy individuals [33]. An intriguing argument for the beneficial effects of phages is their presumptive cooperation with the human’s innate immune system, in that harmful bacteria are lysed at the gut/mucosa interface. First evidence has been provided that phages are stably attached to mucosal walls in the gut of animals and humans, and, as such, they may constitute an additional “natural barrier” against potential harmful bacteria [34,35]. The initial establishment of a healthy gut microbiota in newborns may, in part, be due to the activity of protecting phages [36].

Nonetheless, phages may also cause pathological shifts in gut bacterial communities, which may contribute to some (if not all) of the above listed disorders. Inflammatory bowel disease (IBD) is one prominent example in which phage activity and shifts in phage populations have been described [37–39]. Disease-specific shifts in phage populations have been observed for both major forms: Crohn’s disease (CD) and ulcerative colitis (UC) [40]. While phage types differed notably between CD and UC patients, a common feature was the drastic decrease in bacterial richness along with a significant increase of phage populations, compared to healthy individuals. Whether this inversely relationship is the result of induced prophages or strictly lytic phages (domestic or foreign) remains unresolved so far [40].

In any case, the increase of phage population has implications for IBD management. For instance, failure to restore an intact gut microbiome through fecal transplantation from a healthy donor, the concept of which proved successful with *Clostridium difficile* infections, [41] might be due to phage populations interacting with the donor microbes. The consideration of phages as an important component of enigmatic diseases, such as IBD, hails the beginning of future research reinvestigating various gut-related diseases (like obesity, cancer, etc.). Phages may ultimately be used as “prebiotics” to shape microbial communities beneficial to the human gut system [42].

The role of phages in favor of a healthy gut microbiome could also include means of countering environmental stressors that cause disturbance, e.g., antibiotics. In fact, metagenomic analysis before and after application of antibiotics in mice indicated a significant increase of antibiotic resistance genes within phage genomes [43]. Furthermore, the number of genes encoding enzymes involved in vitamin, sugar, and lipid metabolism, was also elevated. In addition, processed stool samples with phages from an intestinal flora that had been exposed to an antibiotic substance could confer this resistance to the gut flora of mice that had not been treated with antibiotics [43]. These findings indicate the importance of phages (either lytic or as activated prophages) for sustaining the metabolic and compositional stability of the intestinal flora when exposed to deleterious antibiotics. Phages seem to prevent the most severe consequences of the “pervasive effects” of antibiotics on the human gut microbiota [44]. As a trade-off, however, this mechanism also occasionally fosters the emergence of multi-drug resistant pathogens.

Phages in the Vaginal Microbiome

It is well known that lactobacilli (especially *Lactobacillus crispatus* and *Lactobacillus jensenii*), referred to as “Döderlein flora” [45], play crucial roles in maintaining a healthy vaginal flora [46]. Bacterial vaginosis (BV) is a microbially driven disorder characterized by the overgrowth of anaerobes, specifically *Gardnerella vaginalis*, following the depletion of the natural lactobacilli population [47]. Among other substances, lactobacilli produce lactic acid through fermentation of dextrose, thereby creating an acidic environment, hostile to many harmful bacteria such as *Neisseria gonorrhoeae* and *G. vaginalis* [48,49]. For as yet unknown reasons, lysogenic phages within lactobacilli become activated, lyse their host, and enable pathogenic bacteria
such as *G. vaginalis* to flourish [50,51]. Since BV occurs more frequently in smokers, substances present in cigarette smoke were suspected to induce the lysogenic phage [52]. In fact, increased concentration of benzo[a]pyrene have been found in the cervix mucosa of smokers [53], and this substance has been identified as a potent inducer of vaginal *Lactobacillus* phages [54]. Increased knowledge of the implication of lactobacilli phages in the pathogenesis of BV might enable, in turn, phage-based strategies for prevention or countermeasures. This would be worthwhile, given that the treatment with metronidazol or clindamycin is the only available therapy with a relatively high recurrence rate [47].

Phages in the Skin Microbiome

The skin is yet another environment populated with a myriad of different microbial species [55–59]. Prominent members are *Staphylococcus* species and *Propionibacterium acnes*, the latter of which dominates within hair follicles and sebaceous glands and is generally linked with the condition of acne. Consequently, staphylococcal phages and phages against *P. acnes* have also been found to be prevalent members of the skin microbiome [60,61]. Unlike most other phages, *P. acnes* phages are characterized by a conspicuous lack of genetic diversity [62]. Because of their genome stability along with their relatively broad host range, the suitability of *P. acnes* phages for anti-acne treatment has been proposed [62,63]. Given the reduced concerns about phages as topical applications, phage therapy will likely be first realized in the Western world for microbial-driven skin disorders [61].

Final Remarks

Phages are powerful forces that control bacterial communities, and, as such, they direct the complex relationship between humans and their bacterial companions. Phage activity assists in the constitution of a healthy human microbiome. However, better known, because easier to prove, are their occasional transfer of virulence or antibiotic-resistance genes to bacteria. Differences in diversity or type of phages between healthy and diseased individuals are currently being discerned, but cause and effect have remained largely obscure so far. The analysis of the human virome will therefore continue to be a hot topic of current metagenome research.

In the meantime, on another scientific stage, researchers are desperately looking for alternatives against deadly multi-drug–resistant bacteria. Besides predatory bacteria, such as *Bdellovibrio bacteriovorus* [64] or antimicrobial peptides, [65] phage therapy is one promising alternative. And although conventional phage therapy has proven itself in some Eastern European countries for decades, its breakthrough in the West has yet to come [66]. This is because of a number of technical obstacles that have to be overcome [67–70]. However, development is also slow because of prevailing skepticism. The association of phages with disease rather than with health is more broadly recognized. This is a cognitive bias, which explains the reluctance towards phage therapy and is driven by the counterintuitive character of the concept of phage therapy, namely, to use alien viruses as therapeutics.

What aids in gaining more confidence is the recognition of the natural occurrence of phages in humans, which signifies novel avenues in medicine. Pathological processes will be reinterpreted, attributing phages a potential role in the genesis or prevention of diseases. This knowledge then opens new opportunities to develop targeted therapies, in which phages can be conceived to destroy deleterious bacterial communities or reconstruct the natural bacterial balance. We postulate that from a holistic point of view, phages and humans are friends rather than foes. One hundred years after his discovery of phages, d’Hérelle’s dream of an effective and wide use of phage therapy may, in fact, become a reality but in a much more multifaceted way than could be anticipated at the early days of microbiology.
Acknowledgments

The authors thank Karsten Henne for designing the figure and two anonymous reviewers for their comments on the manuscript.

References

1. Twort FW. An investigation on the nature of ultra-microscopic viruses. The Lancet. 1915; 186: 1241–1243.
2. d’Herelle F. An invisible microbe that is antagonistic to the dysentery bacillus. Comptes Rendus Acad Sci Paris. 1917; 165: 373–375.
3. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother. 2005; 11: 211–219. doi: 10.1007/s10156-005-0408-9 PMID: 16258815
4. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin Infect Dis. 2009; 48: 1–12. doi: 10.1086/595011 PMID: 19035777
5. Viertel TM, Ritter K, Horz H-P. Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. 2014; 69: 2326–2336. doi:10.1093/jac/dku173 PMID: 24872344
6. De Paepe M, Leclerc M, Tinsley CR, Petit M-A. Bacteriophages: an underestimated role in human and animal health? Front Cell Infect Microbiol. 2014; 4. doi:10.3389/fcimb.2014.00039
7. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, et al. Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med. 2011; 365: 709–717. doi: 10.1056/NEJMoa1106920 PMID: 21793740
8. Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015; 23: 171–178. doi: 10.1016/j.mib.2014.11.019 PMID: 25528295
9. Dalmasso M, Hill C, Ross RP. Exploiting gut bacteriophages for human health. Trends Microbiol. 2014; 22: 399–405. doi: 10.1016/j.tim.2014.02.010 PMID: 24656964
10. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486: 207–214. doi: 10.1038/nature11234 PMID: 22699609
11. Li K, Bihan M, Yooseph S, Methe BA. Analyses of the microbial diversity across the human microbiome. PLoS ONE. 2012; 7: e32118. doi: 10.1371/journal.pone.0032118 PMID: 22719823
12. Virgin HW. The Virome in Mammalian Physiology and Disease. Cell. 2014; 157: 142–150. doi: 10.1016/j.cell.2014.02.032 PMID: 24679532
13. Wylie KM, Weinstock GM, Storch GA. Emerging view of the human virome. Transl Res. 2012; 160: 283–290. doi: 10.1016/j.trsl.2012.03.006 PMID: 22683423
14. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol. 2012; 10: 607–617. doi: 10.1038/nrmicro2853 PMID: 22864264
15. Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Paśiś L, Thingstad TF, Rohwer F, et al. Explaining microbial population genomics through phage predation. Nat Rev Microbiol. 2009; 7: 828–836. doi:10.1038/nrmicro2135 PMID: 19834481
16. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010; 4: 962–974. doi: 10.1038/ismej.2010.30 PMID: 20336157
17. Bachrach G, Leizerovici-Zigmond M, Zlotkin A, Naor R, Steinberg D. Bacteriophage isolation from human saliva. Lett Appl Microbiol. 2003; 36: 50–53. PMID: 12485342
18. Hitch G, Pratten J, Taylor PW. Isolation of bacteriophages from the oral cavity. Lett Appl Microbiol. 2004; 39: 215–219. doi: 10.1111/j.1472-765X.2004.01565.x PMID: 15242644
19. Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White RA, et al. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J. 2012; 6: 915–926. doi: 10.1038/ismej.2011.169 PMID: 22158393
20. Wilkner D, Furlan M, Schmieder R, Grasis JA, Pride DT, Relman DA, et al. Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity. Proc Natl Acad Sci. 2011; 108: 4547–4553. doi: 10.1073/pnas.1000089107 PMID: 20547834
21. Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, Boehm TK, et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 2014; 8: 1753–1767. doi: 10.1038/ismej.2014.31 PMID: 24646696

22. Abeles SR, Pride DT. Molecular Bases and Role of Viruses in the Human Microbiome. J Mol Biol. 2014; 426: 3892–3906. doi: 10.1016/j.jmb.2014.07.002 PMID: 25020228

23. Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, et al. Altered Oral Viral Ecology in Association with Periodontal Disease. mBio. 2014; 5: e01133–14. doi: 10.1128/mBio.01133-14 PMID: 24843832

24. Santiago-Rodriguez TM, Naidu M, Abeles SR, Boehm TK, Ly M, Pride DT. Transcriptome analysis of bacteriophage communities in periodontal health and disease. BMC Genomics. 2015; 16. doi: 10.1186/s12864-015-1781-0

25. Lepage P, Leclerc MC, Joossens M, Mondot S, Blottiere HM, Raes J, et al. A metagenomic insight into our gut’s microbiome. Gut. 2013; 62: 146–158. doi: 10.1038/gutjnl-2011-301805 PMID: 22525886

26. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modifies brain development and behavior. Proc Natl Acad Sci. 2011; 108: 3047–3052. doi: 10.1073/pnas.1010529108 PMID: 2182636

27. Hur KY, Lee M-S. Gut Microbiota and Metabolic Disorders. Diabetes Metab J. 2015; 39: 198. doi: 10.4093/dmj.2015.39.3.198 PMID: 26124989

28. Kirpich IA, Marsano LS, McClain CJ. Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem. 2015; doi: 10.1016/j.clinbiochem.2015.06.023

29. Barr JJ, Youle M, Rohwer F. Innate and acquired bacteriophage-mediated immunity. Bacteriophage. 2013; 3: e25857. doi: 10.4161/bact.25857 PMID: 24228227

30. Baker PI, Love DR, Ferguson LR. Role of gut microbiota in Crohn’s disease. Expert Rev Gastroenterol Hepatol. 2009; 3: 535–546. doi: 10.1586/erg.09.47 PMID: 19817674

31. Pérez-Brocal V, García-López R, Vázquez-Castellanos JF, Nos P, Beltrán B, Latorre A, et al. Study of the Viral and Microbial Communities Associated With Crohn’s Disease: A Metagenomic Approach. Clin Transl Gastroenterol. 2013; 4: e36. doi: 10.1038/clg.2013.9 PMID: 23760301

32. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. N Engl J Med. 2013; 368: 407–415. doi: 10.1056/NEJMoa1205037 PMID: 23323867

33. Ventura M, Sozzi T, Turroni F, Matteuzzi D, van Sinderen D. The impact of bacteriophages on probiotic bacteria and gut microbiota diversity. Genes Nutr. 2011; 6: 205–207. doi: 10.1007/s12263-010-0188-4 PMID: 21484155
43. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013; 499: 219–222. doi: 10.1038/nature12212 PMID: 23748443

44. Dethlefsen L, Huse S, Sogin ML, Relman DA. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. Eisen JA, editor. PLoS Biol. 2008; 6: e280. doi:10.1371/journal.pbio.0060280 PMID: 19018661

45. Butler BC, Beakley JW. Bacterial flora in vaginitis: a study before and after treatment with pure cultures of Doederlein bacillus. Am J Obstet Gynecol. 1960; 79: 432–440. PMID: 13806471

46. Srinivasan S, Fredricks DN. The Human Vaginal Bacterial Biota and Bacterial Vaginosis. Interdiscip Perspect Infect Dis. 2008; 2008: 1–22. doi:10.1155/2008/750479

47. Eckert LO. Acute vulvovaginitis. N Engl J Med. 2006; 355: 1244–1252. PMID: 16990387

48. Graver MA, Wade JJ. The role of acidification in the inhibition of Neisseria gonorrhoeae by vaginal lactobacilli during anaerobic growth. Ann Clin Microbiol Antimicrob. 2011; 10: 8. PMID: 21329492

49. Witkin SS, Linhares IM, Giraldo P. Bacterial flora of the female genital tract: function and immune regulation. Best Pract Res Clin Obstet Gynaecol. 2007; 21: 347–354. doi:10.1016/j.bpobgyn.2006.12.004 PMID: 17215167

50. Millikan AA, Sun P, Prokopczyk B, El-Bayoumy K, Hoffmann D, Wang X, et al. Identification of benzo[a]pyrene metabolites in cervical mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett. 1999; 146: 127–134. PMID: 10056617

51. Pavlova SI, Tao L. Phage infection in vaginal lactobacilli: an in vitro study. Infect Dis Obstet Gynecol. 1997; 5: 36–44. PMID: 18476132

52. Melikian AA, Sun P, Prokopczyk B, El-Bayoumy K, Hoffmann D, Wang X, et al. Identification of benzo[a]pyrene metabolites in cervical mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett. 1999; 146: 127–134. PMID: 10056617

53. Pavlova SI, Tao L. Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[a]pyrene diol epoxide. Mutat Res Toxicol Environ Mutagen. 2000; 466: 57–62.

54. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and Temporal Diversity of the Human Skin Microbiome. Science. 2009; 324: 1190–1192. doi:10.1126/science.1171700 PMID: 19478181

55. Naka T, Chiang H-I, Jiang SB, Nagarajan H, Zengler K, Gallo RL. The microbiome extends to sub-epidermal compartments of normal skin. Nat Commun. 2013; 4: 1431. doi:10.1038/ncomms2441 PMID: 23385576

56. Probst AJ, Auerbach AK, Moissl-Eichinger C. Archaea on Human Skin. Neufeld J, editor. PLoS ONE. 2013; 8: e65388. doi: 10.1371/journal.pone.0065388 PMID: 23776475

57. Liu J, Yan R, Zhong Q, Ngo S, Bangayan NJ, Nguyen L, et al. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin. ISME J. 2015; 9: 1190–1192. doi: 10.1038/ismej.2015.47a

58. Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus: Predation by M. aeruginosavorus and B. bacteriovorus. J Appl Microbiol. 2011; 110: 431–444. doi: 10.1111/j.1365-2672.2010.04900.x PMID: 21114596
65. Mojsoska B, Jenssen H. Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals. 2015; 8: 366–415. doi: 10.3390/ph8030366 PMID: 26184232

66. Nobrega FL, Costa AR, Kluskens LD, Azeredo J. Revisiting phage therapy: new applications for old resources. Trends Microbiol. 2015; 23: 185–191. doi: 10.1016/j.tim.2015.01.006 PMID: 25708933

67. Brüssow H. What is needed for phage therapy to become a reality in Western medicine? Virology. 2012; 434: 138–142. doi: 10.1016/j.virol.2012.09.015 PMID: 23059181

68. Pirnay J-P, Blasdel BG, Bretaudeau L, Buckling A, Chanishvili N, Clark JR, et al. Quality and Safety Requirements for Sustainable Phage Therapy Products. Pharm Res. 2015; 32: 2173–2179. doi: 10.1007/s11095-014-1617-7 PMID: 25585954

69. Pirnay J-P, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, et al. The Phage Therapy Paradigm: Prêt-à-Porter or Sur-mesure? Pharm Res. 2011; 28: 934–937. doi: 10.1007/s11095-010-0313-5 PMID: 21063753

70. Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay J-P. European regulatory conundrum of phage therapy. Future Microbiol. 2007; 2: 485–491. doi: 10.2217/17460913.2.5.485 PMID: 17927471