Relationship Between the Hosoya Polynomial and the Edge-Hosoya Polynomial of Trees

Niko Tratnika, Petra Žigert Pleteršeka,b

aFaculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
bFaculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia

Abstract

We prove the relationship between the Hosoya polynomial and the edge-Hosoya polynomial of trees. The connection between the edge-hyper-Wiener index and the edge-Hosoya polynomial is established. With these results we also prove formulas for the computation of the edge-Wiener index and the edge-hyper-Wiener index of trees using the Wiener index and the hyper-Wiener index. Moreover, the closed formulas are derived for a family of chemical trees called regular dendrimers.

Keywords: Hosoya polynomial, edge-Hosoya polynomial, tree, dendrimer, edge-hyper-Wiener index

2010 MSC: 92E10, 05C31, 05C05, 05C12

1. Introduction

The first distance-based topological index was the Wiener index introduced in 1947 by H. Wiener \cite{1}. Later, in 1988 H. Hosoya \cite{2} introduced some counting polynomials in chemistry, among them the Wiener polynomial, which is strongly connected to the Wiener index. Nowadays, it is known as the Hosoya polynomial. Another distance-based topological index, the hyper-Wiener index, was introduced in 1993 by M. Randić \cite{3}. All these concepts found many applications in different fields, such as chemistry, biology, networks.

The Hosoya polynomial, the Wiener index, and the hyper-Wiener index are based on the distances between pairs of vertices in a graph, and similar concepts have been introduced for distances between pairs of edges under the names the edge-Hosoya polynomial \cite{4}, the edge-Wiener index \cite{5}, and the edge-hyper-Wiener index \cite{6}. In this paper we study the relationships between the vertex-versions and the edge-versions of the Hosoya polynomial, the Wiener index, and the edge-Wiener index of trees.

2. Preliminaries

Unless stated otherwise, the graphs considered in this paper are connected. We define \(d(x, y)\) to be the distance between vertices \(u, v \in V(G)\). The distance \(d(e, f)\) between edges \(e\) and \(f\) of graph \(G\) is defined as the distance between vertices \(e\) and \(f\) in the line graph \(L(G)\).
If G is a connected graph with n vertices, and if $d(G, k)$ is the number of (unordered) pairs of its vertices that are at distance k, then the Hosoya polynomial of G is defined as

$$H(G, x) = \sum_{k \geq 0} d(G, k) x^k.$$

Note that $d(G, 0) = n$. Similarly, if $d_e(G, k)$ is the number of (unordered) pairs of edges that are at distance k, then the edge-Hosoya polynomial of G is defined as

$$H_e(G, x) = \sum_{k \geq 0} d_e(G, k) x^k.$$

Obviously, for any connected graph G it holds $H_e(G, x) = H(L(G), x)$.

The Wiener index and the edge-Wiener index of a connected graph G are defined in the following way:

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u, v), \quad W_e(G) = \sum_{\{e,f\} \subseteq E(G)} d(e, f).$$

It is easy to see that $W_e(G) = W(L(G))$. The main property of the Hosoya polynomial and the edge-Hosoya polynomial, that makes them interesting in chemistry, follows directly from the definitions (see also [7]):

$$W(G) = H'(G, 1), \quad W_e(G) = H'_e(G, 1). \tag{1}$$

The hyper-Wiener index and the edge-hyper-Wiener index of a connected graph G are defined as:

$$WW(G) = \frac{1}{2} \sum_{\{u,v\} \subseteq V(G)} d(u, v) + \frac{1}{2} \sum_{\{u,v\} \subseteq V(G)} d^2(u, v),$$

$$WW_e(G) = \frac{1}{2} \sum_{\{e,f\} \subseteq E(G)} d(e, f) + \frac{1}{2} \sum_{\{e,f\} \subseteq E(G)} d^2(e, f).$$

Again, it holds $WW_e(G) = WW(L(G))$. Moreover, the following relationship was proved in [8] for any connected graph G:

$$WW(G) = H'(G, 1) + \frac{1}{2} H''(G, 1). \tag{2}$$

3. The edge-Hosoya polynomial of trees

In this section we first show how the edge-hyper-Wiener index of an arbitrary connected graph can be calculated from the edge-Hosoya polynomial.

Theorem 3.1. Let G be a connected graph. Then

$$WW_e(G) = H'_e(G, 1) + \frac{1}{2} H''_e(G, 1).$$

Proof. Using Equation 2, we obtain

$$WW_e(G) = WW(L(G)) = H'(L(G), 1) + \frac{1}{2} H''(L(G), 1) = H'_e(G, 1) + \frac{1}{2} H''_e(G, 1)$$

and the proof is complete. \[\square\]

The following theorem is the main result of this paper.
Theorem 3.2. Let T be a tree. Then

$$H_e(T, x) = \frac{1}{x} H(T, x) - \frac{|V(T)|}{x}. \tag{3}$$

\textbf{Proof.} It suffices to prove that

$$H(T, x) = xH_e(T, x) + |V(T)|.$$

Let V_k be the set of all (unordered) pairs of vertices of T that are at distance k and let E_k be the set of all (unordered) pairs of edges of T that are at distance k, where $k \geq 0$. That means

$$V_k = \{ \{x, y\} \mid x, y \in V(T), \; d(x, y) = k \},$$

$$E_k = \{ \{e, f\} \mid e, f \in E(T), \; d(e, f) = k \}.$$

We first show that for any $k \geq 1$ there exists a bijective function $F : V_k \rightarrow E_{k-1}$. To define F, let $k \geq 1$ and let $x, y \in V(T)$ such that $d(x, y) = k$. Furthermore, let P be the unique path in T connecting x and y. Obviously, $d(x, y) = |E(P)| = k$. We define e_x to be the edge of P which has x for one end-vertex. Similarly, e_y is the edge of P which has y for one end-vertex. It is easy to see that $d(e_x, e_y) = k - 1$. With this notation we can define

$$F(\{x, y\}) = \{e_x, e_y\}$$

for every $\{x, y\} \in V_k$. Obviously, F is a well-defined function.

To show that F is injective, let $\{x, y\}, \{a, b\} \in V_k, \; k \geq 1$, and suppose $F(\{x, y\}) = F(\{a, b\})$. It follows that $\{e_x, e_y\} = \{e_a, e_b\}$ and without loss of generality we can assume $e_x = e_a$ and $e_y = e_b$. If $x = a$, we also get $y = b$, since otherwise $e_y \neq e_b$. Therefore, $\{x, y\} = \{a, b\}$. If $x \neq a$, it follows that $x = b$ and $y = a$. Again, $\{x, y\} = \{a, b\}$ and we are done.

To show that F is surjective, we take $\{e, f\} \in E_{k-1}$. Let x be the end-vertex of e and y the end-vertex of f such that $d(x, y) = d(e, f) + 1 = k$. Obviously, x and y are uniquely defined. It is easy to see that

$$F(\{x, y\}) = \{e, f\}.$$

We have shown that for every $k \geq 1$ it holds $d(T, k) = |V_k| = |E_{k-1}| = d_e(T, k-1)$. It is also obvious that $d(T, 0) = |V(T)|$. Hence, polynomials $H(T, x)$ and $xH_e(T, x) + |V(T)|$ have the same coefficients. Therefore, Equation (3) is true and the proof is complete. \hfill \square

As a corollary we can now express the edge-Wiener index and the edge-hyper-Wiener index of trees with the Wiener index and the hyper-Wiener index.

\textbf{Corollary 3.3.} Let T be a tree. Then

$$W_e(T) = W(T) - \left(\frac{|V(T)|}{2}\right)$$

and

$$WW_e(T) = WW(T) - W(T).$$
Proof. First we notice that if G is a graph, then

$$H(G, 1) = \sum_{k \geq 0} d(G, k) = \left(\frac{|V(G)|}{2}\right) + |V(G)|. \quad (4)$$

After differentiating Equation 3 we obtain

$$H'_e(T, x) = H'(T, x) - H(T, 1) + |V(T)|$$

and

$$H''_e(T, x) = \frac{H''(T, x)x^3 - 2H'(T, x)x^2 + 2H(T, x)x - 2x|V(T)|}{x^4}. \quad (6)$$

Using Equation 5 and Equation 4 it follows,

$$W_e(T) = H'_e(T, 1)$$

$$= H'(T, 1) - H(T, 1) + |V(T)|$$

$$= W(T) - \left(\frac{|V(T)|}{2}\right).$$

Finally, Theorem 3.1, Equation 5, Equation 6 and Equation 2 imply

$$WW_e(T) = H'_e(T, 1) + \frac{1}{2}H''_e(T, 1)$$

$$= H'(T, 1) - H(T, 1) + |V(T)|$$

$$+ \frac{1}{2}H''(T, 1) - H'(T, 1) + H(T, 1) - |V(T)|$$

$$= WW(T) - W(T).$$

\[\square\]

4. The edge-Hosoya polynomial of dendrimers

Dendrimers are highly regular trees, which are of interest to chemists, since they represent repetitively branched molecules. In this section we compute the edge-Hosoya polynomial, the edge-Wiener index and the edge-hyper-Wiener index of regular dendrimers.

In particular, $T_{k, d}$ stands for the k-th regular dendrimer of degree d. For any $d \geq 3$, $T_{0, d}$ is the one-vertex graph and $T_{1, d}$ is the star with $d + 1$ vertices. Then for any $k \geq 2$ and $d \geq 3$, the tree $T_{k, d}$ is obtained by attaching $d - 1$ new vertices of degree one to the vertices of degree one of $T_{k-1, d}$. For an example see Figure 1. The parameter k corresponds to what in dendrimer chemistry is called “number of generations” [9].

In [10] the Wiener polynomial $W(G, x)$ of a graph G was considered and the definition of this polynomial is slightly different from the definition of the Hosoya polynomial, such that $H(G, x) = W(G, x) + |V(G)|$. Hence, from Equation 3 it follows

$$H_e(G, x) = \frac{1}{x}W(G, x).$$
Therefore, to compute the edge-Hosoya polynomial we can use this formula and the result regarding the Wiener polynomial of a regular dendrimer in [10]. After changing some labels we obtain

$$H_e(T_{k,d}, x) = \sum_{i=0}^{k-1} \frac{(d-1)^{2i} d^i}{d-2} \left(\frac{d}{2} \right)^i \left(\frac{(d-1)^{k-1} - 1}{d-2} + 1 \right) x^{2i+1}.$$

It follows from Equation 1 and Theorem 3.1 that the edge-Wiener index and the edge-hyper-Wiener index can be easily computed from the derivatives of the edge-Hosoya polynomial. Therefore, we obtain

$$W_e(T_{k,d}) = \frac{d \left(2 - 2d + (d-1)^k (d^2 + 4d - 4) + (d-1)^{2k} (2 - d(d+2) + 2(d-2)dk) \right)}{2(d-2)^3}$$

and

$$WW_e(T_{k,d}) = \frac{d^2 (d-1) + (d-1)^k (4 - 5d^2)}{2(d-2)^4} + \frac{(d-1)^{2k} \left(-2 - 8k + d \left(-2 + 5d + 16k - d(d+4)k + 2(d-2)^2 k^2 \right) \right)}{2(d-2)^4}.$$

Since the Wiener index and the hyper-Wiener index of regular dendrimers are already known (see [9, 10, 11]), the edge-Wiener index and the edge-hyper-Wiener index could also be computed in terms of Corollary 3.3.

Acknowledgment

Supported in part by the Ministry of Science of Slovenia under grant P1 – 0297.

References

[1] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17–20.
[2] H. Hosoya, On some counting polynomials in chemistry, Discrete Appl. Math. 19 (1988) 239–257.
[3] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478–483.
[4] A. Behmaram, H. Yousefi-Azari, A. R. Ashrafi, Some new results on distance-based polynomials, MATCH Commun. Math. Comput. Chem. 65 (2011) 39–50.

[5] A. Iranmanesh, I. Gutman, O. Khormali, A. Mahmiani, The edge versions of Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009) 663–672.

[6] A. Iranmanesh, A. S. Kafrani, O. Khormali, A new version of hyper-Wiener index, MATCH Commun. Math. Comput. Chem. 65 (2011) 113–122.

[7] M. Petkovšek, N. Tratnik, P. Žigert Pleteršek, The edge-Hosoya polynomial of benzenoid chains, preprint.

[8] G. G. Cash, Relationship between the hosoya polynomial and the hyper-wiener index, Appl. Math. Lett. 15 (2002) 893–895.

[9] I. Gutman, Y.-N. Yeh, S.-L. Lee, J.-C. Chen, Wiener numbers of dendrimers, MATCH Commun. Math. Comput. Chem. 30 (1994) 103–115.

[10] B. E. Sagan, Y.-N. Yeh, P. Zhang, The Wiener polynomial of a graph, Int. J. Quantum Chem. 60 (1996) 959–969.

[11] M. V. Diudea, B. Parv, Molecular topology. 25. Hyper-Wiener index of dendrimers, J. Chem. Inf. Comput. Sci. 35 (1995) 1015–1018.