JACK POLYNOMIALS FOR THE BC_n ROOT SYSTEM AND GENERALIZED SPHERICAL FUNCTIONS

A. OBLOMKOV

INTRODUCTION

Functions on a homogeneous space G/K invariant with respect to the left action of K are called spherical functions (or sometimes K-spherical). One can also study functions on G/K with values in a representation V of G which are equivariant with respect to the left action of K. This more general class of functions may be called vector valued spherical functions. The theory of such functions was developed by Harish-Chandra, Helgason and other authors [1],[2],[3].

In the case when $G = K \times K$ and $K \subset G$ is the diagonal subgroup, the study of vector valued spherical functions is equivalent to the study of functions on K, equivariant with respect to conjugation. When K is reductive over \mathbb{C}, the Peter-Weyl theorem gives a description of the space of conjugacy equivariant functions as the space spanned by the vector valued characters of K. The article [4] deals with such kind of spherical functions in the case when $K = SL(n, \mathbb{C})$. Namely, the Laplace operator on K restricted to the space of spherical functions can be written in terms of coordinates along the maximal torus. If the vector valued equivariant functions take values in $V = S^\chi \mathbb{C}^n$, then the resulting operator (the so called radial part of the Laplacian) coincides, up to an obvious conjugation, with the Sutherland differential operator, which is the Hamiltonian of the Calogero-Moser quantum mechanical system for the root system A_{n-1} [10], [12], [11]. Differential operators on K corresponding to the higher Casimir operators can also be written in terms of coordinates along the maximal torus. These operators are quantum integrals of the Calogero-Moser system. Moreover, Weyl group invariant eigenfunctions of the Sutherland operator can be expressed as vector valued traces of some intertwining operators between some particular representations of K. By the results from [8] these eigenfunctions are essentially Jack polynomials for the root system A_{n-1} (up to a Weyl-determinantlike factor).

The main result of this paper is a representation theoretic interpretation (in the spirit of the work [4]) of the three parameter family of BC_n Jack polynomials. More precisely, we consider the case of the pair $G = GL(m + n, \mathbb{C})$ ($m \geq n$), $K = GL(m, \mathbb{C}) \times GL(n, \mathbb{C})$, slightly modify the definition of spherical functions and as result we get a similar to [4] theory for the root system BC_n. Namely, in this case the Laplace operator on G, written in
terms of coordinates of some torus inside G, yields the Sutherland operator for the root system BC_n, and the higher Casimir operators give quantum integrals of the corresponding quantum mechanical system.

Furthermore, the restriction to the torus of some special matrix elements of irreducible finite dimensional representations L_λ of G, where λ ranges over the set isomorphic to the cone of dominant integral weights of the root system C_n, yields W-invariant eigenfunctions of the Sutherland differential operator. The Sutherland differential operator after a suitable gauge transformation becomes operator from the paper [5]. By [5] BC_n Jack polynomials are Weyl group invariant eigenfunctions of this operator. Thus we obtain a representation theoretic interpretation of Jack polynomials.

In [6] (see also [7] for compact exposition of the result and for its q-analog) a one parameter family of the BC_n Jack polynomials was constructed by means of spherical functions on G. This family is a subfamily of the three parameter family of BC_n Jack polynomials from theorem 2 below. We also mention that in the one dimensional case our construction reduces to the result of the paper [8].

The structure of the paper is as follows. In Section 1, we give an interpretation of the results on vector valued characters from [4] using the point of view of the theory of symmetric spaces. Section 2 contains the main result: the construction of Jack polynomials through vector valued twisted spherical functions on the symmetric space G/K. The proofs of the claims from Section 2 are given in Section 3. All constructions are easier for the special case $m = n, \alpha_{(1)} + \alpha_{(2)} = 0$ and to gain a better understanding, the reader is advised to consider this special case separately.

The results of this paper can be generalized to the case of quantum symmetric spaces [9]. The quantum version of the construction yields the five parameter family of Macdonald-Koornwinder polynomials, which are q analog of Jack polynomials.

Acknowledgments. I would like to thank my adviser Pavel Etingof for suggesting the problem and helpful explanations, discussions and help with writing of the text. I am grateful to Victor Ostrik and David Vogan for helpful discussions. I also would like to thank Jasper Stokman who read carefully the preliminary version of the text, corrected some statements, gave me many useful references and helped me make the text much more readable. It was Jasper’s suggestion to consider the general case $m \neq n$ (the first version of the text contained only the case $m = n$).

1. Jack polynomials for the A_{n-1} root system

In this section we explain how to interpret the results of the paper [4] from the point of view of the theory of symmetric spaces. This section does not contain any proofs. It just outlines the results from [4].

1.1. The space of spherical functions. Let K be the group $SL(n, \mathbb{C}) = SL(n)$ and $G = K \times K$. The diagonal embedding $K \hookrightarrow K \times K$ gives rise to
the left and right action of K on G. Let $V(\kappa)$ be the representation $S^{\kappa}\mathbb{C}^n$ of K, $\kappa \in \mathbb{Z}_+$. The space of K-spherical functions F_κ is defined by the formula

$$F_\kappa = \{ f \in F(G, V(\kappa)) \mid f(kgk') = kf(g), \forall k, k' \in K, g \in G \},$$

where $F(G, V(\kappa))$ is the space of $V(\kappa)$ valued polynomial functions on G. The quotient space G/K can be identified with the group K: $(x, y) \rightarrow xy^{-1}$. Under this identification the right action of group K becomes the conjugation action and

$$F_\kappa = \{ f \in F(K, V(\kappa)) \mid f(kk'k^{-1}) = kf(k'), \forall k, k' \in K \}.$$

1.2. The restriction of spherical functions to a maximal torus and differential operators. Obviously the restriction of a function from F_κ to the maximal torus $H = \{ e^h(x) \mid h(x) = \text{diag}(x_1, \ldots, x_n), \text{tr}(h(x)) = 0 \}$ takes values in the one-dimensional space $V(\kappa)[0]$, that is it can be regarded as a scalar function.

Furthermore, functions from F_κ are uniquely determined by their restriction to the maximal torus (because the generic element of K is conjugate to an element of H). The Laplace operator on K being restricted to F_κ takes the form:

$$\bar{L}_\kappa = \delta^{-1} \left(\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} - \kappa(\kappa + 1) \sum_{i<j} \frac{1}{2 \sinh^2((x_i - x_j)/2)} - \frac{n^3 - n}{12} \right) \delta,$$

where $\delta = \prod_{i<j} \sinh((x_i - x_j)/2)$ and x_i ($i = 1, \ldots, n$) are the natural coordinates on H. The operator $\delta \bar{L}_\kappa \delta^{-1}$ coincides, up to an additive constant, with the Sutherland operator – the Hamiltonian of the quantum n-body system on the line with interaction potential $\kappa(\kappa + 1) \sinh^{-2}(y/2)$.

If C_1, \ldots, C_n are generators of the center $\mathfrak{z}(\mathfrak{k})$ of the universal enveloping algebra $U(\mathfrak{k})$ of the Lie algebra \mathfrak{k} of the group K, then the corresponding differential operators on K map the space F_κ into itself. Hence the restriction of such operator to the space F_κ is a uniquely determined differential operator and it is possible to express it in terms of coordinates along the maximal torus. Let us denote such differential operator on the torus by R_{C_i}.

1.3. The connection with quantum integrable systems. Recall that an operator commuting with the Hamiltonian of a quantum physical system is called a quantum integral of this system. Let L be a differential operator in n variables. One says that L defines a completely integrable quantum Hamiltonian system if there exists a set of n algebraically independent quantum integrals L_1, \ldots, L_n which are differential operators and commute with each other. The collection of operators L_1, \ldots, L_n is called a complete system of quantum integrals for L.

It is clear from the above that we have following proposition
Proposition 1. (1) The Sutherland differential operator defines a completely integrable system; moreover
\[(2) \] The operators \(\delta R_C \delta^{-1} \), \(i = 1, \ldots, n \) form a complete system of quantum integrals for this system.

1.4. Jack polynomials. Below we give a definition of Jack polynomials following the work [5]. The action of the operator \(\tilde{L}_\kappa = \delta^{-s} L_\kappa \delta^s \) on the space \(\mathbb{C}[P]^W \) of Weyl invariant Laurent polynomials on \(H \) is diagonalizable, and the eigenfunctions have the form \(J^s_\lambda = m_\lambda + \sum_{\nu < \lambda} s_{\lambda \nu} m_\nu \), where \(m_\lambda(x) = \sum_{\nu \in W \lambda} e^{(\nu,x)} \), \(\lambda \in P_+(SL(n)) = \{ \lambda \in \mathbb{Z}^n | \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \} \) is an integral dominant weight, defined up to shift, and \(< \) is the standard partial order on weights. Polynomials \(J^s_\lambda \) are called Jack polynomials for the root system \(A_{n-1} \).

1.5. The formula for the spherical eigenfunction. Let \(L_\lambda \) be the finite dimensional representation of \(K \) with highest weight \(\lambda \in P_+(SL(n)) \) and \(L_\lambda^* \) is its dual. Then the restriction of the finite dimensional representation \(L_\lambda \otimes L_\lambda^* \) of \(G = K \times K \) to the diagonally embedded subgroup \(K \) yields the representation \(L_\lambda \otimes L_\lambda^* \) of \(K \). The tensor product \(L_\lambda \otimes L_\lambda^* \) contains the vector \(w_0 = \sum u_i \otimes u_i^* \) (where \(\{u_i\} \) is a basis of \(L_\lambda \) and \(\{u_i^*\} \) is the corresponding dual basis of \(L_\lambda^* \), which is stable with respect to the (diagonal) action of \(K \). If \(\lambda = \mu + \kappa \rho \), \(\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha \), \(\mu \in P_+(SL(n)) \), then \(L_\lambda \otimes L_\lambda^* \) also contains a unique copy of the irreducible representation \(V(\kappa) \).

Thus for the tensor product one can write a decomposition
\[L_\lambda \otimes L_\lambda^* = V(\kappa) \oplus \oplus_{\mu \in C_\lambda} L_\mu, \]
where \(C_\lambda \subset P_+(SL(n)), V(k) \neq L_\mu \) for all \(\mu \in C_\lambda \). Hence a vector \(u \in L_\lambda \otimes L_\lambda^* \) can be uniquely presented in the form \(u = \tilde{u} + \sum_{\mu \in C_\lambda} u_\mu \), where \(\tilde{u} \in V(\kappa) \), \(u_\mu \in L_\mu \). This decomposition gives an embedding \(s \) \(V_\mu(\kappa) \rightarrow L_\lambda \otimes L_\lambda^* \), \(s(x)(u) = x(\tilde{u}) \).

Let \(v_1, \ldots, v_N \) be a basis of representation \(V(\kappa) \). Then one can construct the function
\[\Psi_\mu(g) = \sum v_i(s(v_i^*), gw_0) \]
(\(v_i^* \), \(i = 1, \ldots, N \) is a basis dual to the basis \(v_i \), \(i = 1, \ldots, N \)). This function belongs to the space \(F_\kappa \). The maximal torus of \(K \) is embedded in \(G \) by map \(e^{h(x)} \mapsto (e^{h(x)}, 1) \), and the restriction of \(\Psi_\mu \) to this torus has the form
\[\Psi_\mu(x) = w_\kappa(s(w_\kappa^*), e^{h(x)}w_0), \]
where \(w_\kappa^* \) and \(w_\kappa \) are the vectors such that \(V(\kappa)^*0 = \text{span}\{w_\kappa^*\}, V(\kappa)0 = \text{span}\{w_\kappa\} \) and \(\langle w_\kappa, w_\kappa^* \rangle = 1 \). Let us identify \(V(\kappa)0 \) with \(\mathbb{C} \) via \(w_\kappa \mapsto \langle w_\kappa, v_\lambda^* \otimes v_\lambda \rangle \), where \(v_\lambda \) and \(v_\lambda^* \) are the highest and lowest weight vectors for the representations \(L_\lambda \) and \(L_\lambda^* \), respectively.
1.6. **The main theorem.** An element of the center of the universal enveloping algebra $U(\mathfrak{q} \oplus \mathfrak{q})$ acts on the space $L_\lambda \otimes L_\lambda^*$ by a constant. In particular, the element $C_i \in U(\mathfrak{q})$, embedded into $U(\mathfrak{q} \oplus \mathfrak{q})$ via $x \mapsto (x,0)$ ($x \in \mathfrak{q}$), does. Hence $\Psi_\mu(x)$ is an eigenfunction of R_{C_i}. Obviously, $\Psi_\mu(x)$ is W-invariant when κ is even and W anti-invariant when κ is odd. Moreover, the following theorem holds:

Theorem. \(^4\) Under the above identification of $V(\kappa)[0]$ with \mathbb{C}:

1. $\Psi_0(x) = \delta(x)^\kappa$.
2. $\Psi_\mu(x)$ is divisible by $\Psi_0(x)$ in algebra $\mathbb{C}[P]$ for all $\mu \in P_+(SL(n))$.
3. $\Psi_\mu(x)/\Psi_0(x) = J^n_\mu(x)$.

2. **Jack polynomials for the BC_n root system**

In this section we explain a representation theoretic construction of the three parameter family of Jack polynomials for the root system BC_n. We postpone all proofs (which are mostly lengthy calculations) for the next section.

2.1. **The symmetric pair (G, K) and restricted root system.** In this section we introduce notations for representation theoretic objects which are necessary for a further exposition.

Let G be the group $GL(m + n, \mathbb{C}) = GL(m + m)$ and \mathfrak{g} its Lie algebra, where $m \geq n$. The conjugation by the diagonal matrix $J \in G$, $J_{ii} = 1, i = 1, \ldots, m, J_{jj} = -1, j = m + 1, \ldots, m + n$ defines an involution Θ: $\Theta(g) = JgJ^{-1}$. Θ-invariant elements of G form a subgroup $K = K(1) \times K(2) = GL(m) \times GL(n) \subset G$. The differential of this involution at the unit acts on the Lie algebra \mathfrak{g} and induces the decomposition $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p}$, $\mathfrak{t} = \{x \in \mathfrak{g} | d\Theta(x) = x\}$, $\mathfrak{p} = \{x \in \mathfrak{g} | d\Theta(x) = -x\}$ (\mathfrak{t} is exactly the Lie algebra of the group K). The subspace $\mathfrak{p} \subset \mathfrak{g}$ is not a subalgebra of \mathfrak{g} but nevertheless one can fix a maximal abelian subalgebra \mathfrak{a} inside \mathfrak{p}. We use notation A for the corresponding abelian subgroup. Below we fix some particular subgroup A which we will work with.

Before fixing the choice of A we introduce the Cartan subgroup H of the group G. The subgroup H is conjugated to the subgroup of the diagonal matrices by matrix \tilde{J}. Matrix \tilde{J} consists of the diagonal blocks: $\tilde{J}_{ii} = \tilde{J}_{m+i, i} = \tilde{J}_{i+m, i+m} = -\tilde{J}_{i, i+m} = \frac{1}{\sqrt{2}}, i = 1, \ldots, n, \tilde{J}_{j+n, j+n} = 1, j = 1, \ldots, m - n$ and all other entries are zero:

$$\tilde{J} = \begin{pmatrix} I_n & 0 & -I_n \\ 0 & I_{m-n} & 0 \\ I_n & 0 & I_n \end{pmatrix}.$$

We denote by the symbol $h(x,y,z)$ an element of H of the form $\tilde{J}e^{diag(x,y,z)}\tilde{J}^{-1}$, $x, z \in \mathbb{C}^n, y \in \mathbb{C}^{m-n}$. Let \mathfrak{h} be a Lie algebra of H.

We put A to be equal to $exp(\mathfrak{p}) \cap H$ or $A = \{h(x,0,-x), x \in \mathbb{C}^n\}$. We use notation $e^{a(x)} = h(x,0,-x), x \in \mathbb{C}^n$ for the elements of A, where
\[a(x) = \sum_{i=1}^{n} x_i (E_{i+m,i} - E_{i,i+m}) \in \mathfrak{g}, \]
\[E_{ij} \] is the notation for the \(ij \)-th matrix unit (basis in \(\mathfrak{g} \)).

The inclusion \(a: \mathfrak{a} \to \mathfrak{h} \) induces the projection \(\mathfrak{h}^* \to \mathfrak{a}^* \). The root system \(R \subset \mathfrak{h}^* \) is mapped under this projection onto the restricted root system. The restricted root system is isomorphic to the root system \(C_n \), in the case \(n = m \), and to the root system \(BC_n \), in the case \(m > n \). We use the notation \(\Sigma \) for the root system \(BC_n \). The short, medium and long positive roots of \(\Sigma \) are the vectors:

\[(1) \quad \varepsilon_i \quad (1 \leq i \leq n), \quad \varepsilon_i \pm \varepsilon_j \quad (1 \leq i < j \leq n), \quad 2\varepsilon_i \quad (1 \leq i \leq n), \]

where \(\varepsilon_i(a(x)) = x_i \). The root multiplicities for the short, medium and long roots of \(\Sigma \) are \(t_1 = 2(m - n), \ t_2 = 2, \ t_3 = 1 \). Below we use the half multiplicities \(s_i = t_i/2, \ i = 1, 2, 3 \). The bilinear form \((\cdot, \cdot) \) on \(\mathfrak{a}^* \) is the standard one: \((\varepsilon_i, \varepsilon_j) = \delta_{ij} \).

Let us also introduce notations for a generalization of the Weyl denominator:

\[\delta_{p_1, p_2, p_3}(x) = \prod_{\alpha \in \Sigma_+} \sinh^{p_\alpha}(\alpha(a(x))), \]

and for the vector:

\[\rho_{p_1, p_2, p_3} = \frac{1}{2} \sum_{\alpha \in \Sigma_+} p_\alpha \alpha, \]

where \(p_{\pm \varepsilon_i} = p_1, \ p_{\pm \varepsilon_i \pm \varepsilon_j} = p_2 \quad (1 \leq i < j \leq n), \ p_{\pm 2 \varepsilon_i} = p_3 \quad (1 \leq i < j \leq n) \).

Below we always use the convention that for the given vector \(\vec{p} \in \mathbb{C}^3 \), \(p_\alpha \) means the same thing as in the previous formula if \(\alpha \in \Sigma \) and \(p_\alpha = 0 \) if \(\alpha \notin \Sigma \).

2.2. **Vector valued spherical functions.** In this subsection we define the space of \(K \)-equivariant twisted vector valued functions on \(G \). Functions from this space take values in the space of the particular representation of \(K \). In principle one has a lot of freedom in the choice of this representation and it is not clear why the chosen representation is better than any others. We will explain it in the next subsection.

First we define the space of "twisted" scalar valued functions on \(G/K \):

\[\hat{F} = \{ f \in F | f(gk) = f(g) \det^{\kappa(1)}(k_{(1)}) \det^{\kappa(2)}(k_{(2)}), \ \forall k \in K, g \in G \}, \]

where \(F \) is the space of polynomial functions on \(G \) and \(k = k_{(1)}k_{(2)} \), \(k_{(i)} \in K_{(i)} \). The desired space of spherical vector valued \(K \)-spherical functions is a subspace of the tensor product \(\hat{F} \otimes U_\mathbb{Z} \) where \(U_\mathbb{Z} \) is a representation of \(K \) which we define below.

Let us fix notations for finite dimensional representations of \(GL(r) \). A finite dimensional irreducible representation of \(GL(r) \) is encoded by its highest weight \(\lambda \in \mathbb{Z}^r \), \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \), which is dominant and integral. We denote the corresponding representation by \(L_\lambda \) and the set of highest weights by \(P_+(GL(r)) \). The determinant representation in our notations is \(L_1 \), \(1^r \) is the \(r \)-dimensional vector consisting of ones, \(1^r = (1, \ldots, 1) \).
The representation $U_\mathcal{Z}$ of the group $K = K_{(1)} \times K_{(2)} = GL(m) \times GL(n)$ is of the form $U_\mathcal{Z} = W_\mathcal{Z} \boxtimes V_\mathcal{Z}$ and element $k = k_{(1)} k_{(2)} \in K$ acts on $u = w \otimes v \in U_\mathcal{Z}$ by formula $k(u) = k_{(1)}(w) \otimes k_{(2)}(v)$.

The representation $W_\mathcal{Z}$ is the an irreducible representation L_μ, $(\tilde{\chi}_{(1)} - \chi_{(1)}) 1^n + \chi_{(1)} 1^m$ of the group $K_{(1)} = GL(m)$. Here $\tilde{\chi}_{(1)}, \chi_{(1)}$ are integers and $1^n \in P_+(GL(m))$ is a vector of the form $(1, \ldots, 1, 0, \ldots, 0)$ with ones at first n places and zeroes at other places. Why we choose such representation is clear from lemma [1].

The representation $V_\mathcal{Z}$ is an irreducible representation $L_\lambda \otimes \det^{\chi_{(2)} + \chi_{(1)} - \tilde{\chi}_{(1)}}$ of $K_{(2)} = GL(n)$, where $\lambda = (\chi_v(n-1), -\chi_v, \ldots, -\chi_v)$. More explicitly, the representation L_λ is the representation $S^{\chi_v n} \mathbb{C}^n$ (i.e. $\chi_v n$ symmetric power of the vector representation) of $PGL(n)$ pulled back to $GL(n)$ i.e. the center acts trivially. The main reason why we choose this representation is that zero weight space of L_λ is one-dimensional. Below we use notation $\tilde{\mathcal{Z}} = (\chi_{(1)}, \chi_{(2)}, \tilde{\chi}_{(1)}, \chi_v)$.

Remark 1. In the simplest case, when $m = n$, $W_\mathcal{Z} \simeq \det^{\tilde{\chi}_{(1)}}$ is one-dimensional. So $U_\mathcal{Z}$ becomes the representation $\det^{\tilde{\chi}_{(1)}} \boxtimes (\det^{-\tilde{\chi}_{(1)}} \otimes L_\lambda)$.

Combining all components we get a definition of the space of K-equivariant vector valued twisted spherical functions:

\[F_\mathcal{Z} = \{ f \in \tilde{F} \otimes U_\mathcal{Z} | f(kg) = kf(g), \forall k \in K, g \in G \}. \]

For brevity we call the functions from this space spherical functions.

Remark 2. In the case $\chi_v = 0$, $\chi_{(1)} = \tilde{\chi}_{(1)}$, this space was studied in the first part of the book [3].

2.3. Properties of the spherical functions. In this subsection we explain why the restriction of a spherical function on the torus A is a scalar function.

Elementary arguments from the linear algebra show that the generic element g of G can be presented in the form $g = ke^{a(x)}k'$, $k, k' \in K$, $x \in \mathbb{C}^n$ and this decomposition is unique up to the action of the Weyl group. Because of the bi-K-equivariance of the functions from $F_\mathcal{Z}$, any function $f \in F_\mathcal{Z}$ is uniquely determined by its restriction to A.

The element y of the group $M = Z_K(A) = GL(m-n)$ acts on a spherical function f following way:

\[yf(e^{a(x)}) = f(y e^{a(x)}) = f(e^{a(x)} y) = f(e^{a(x)}) \det(y)^{\chi_{(1)}}. \]

That is the restriction of a spherical function takes values in the subspace $\tilde{W}_\mathcal{Z} \boxtimes V_\mathcal{Z}$, where $\tilde{W}_\mathcal{Z}$ is a subspace on which M acts by the character $\det^{\chi_{(1)}}$.

Lemma 1. The subspace $\tilde{W}_\mathcal{Z}$ is one-dimensional. The subgroup $\tilde{K}_{(1)} = Z_{K_{(1)}}(M) = GL(n)$ acts on $\tilde{W}_\mathcal{Z}$ by the character $\det^{\tilde{\chi}_{(1)}}$.

The proof of the lemma is given at the section [3].
Remark 3. In the simplest case \(m = n \), the lemma is trivial, since then \(W_{\mathbb{Z}} \) reduces to the one-dimensional representation \(\det \tilde{\kappa}^{(1)} \) of \(K(1) = \tilde{K}(1) \).

Now let \(T \subset K \) be the subgroup \(T = K \cap H = \{ k \in K | k = h(x, z, x), x \in \mathbb{C}^n, z \in \mathbb{C}^{m-n} \} \). Observe that \(T \subset \tilde{K}(1) \times M \times \tilde{K}(2) \) and elements of \(T \) commute with \(A \). An element \(h_2 = e^{\text{diag}(0,0,z)}, z \in \mathbb{C}^n \) of the Cartan subgroup of \(\tilde{K}(2) \) can be presented in the form \(h_2 = th_1 \), where \(h_1 = e^{\text{diag}(-z,0,0)} \in \tilde{K}(1) \) and \(t \in T \). Hence using \(\det(h_1) \det(h_2) = 1 \) one gets for a spherical function \(f: \)

\[
h_2 f(e^{a(x)}) = f(h_1 te^{a(x)}) = h_1 f(e^{a(x)}) t = \det(h_2)^{\chi(n)} \tilde{\chi}(1) f(e^{a(x)}),
\]

That means that the restriction of \(f \) to \(A \) takes values in the one-dimensional space \(\tilde{W}_{\mathbb{Z}} \otimes \tilde{V}_{\mathbb{Z}} \), with \(\tilde{V}_{\mathbb{Z}} = V_{\mathbb{Z}} \{ \tilde{\chi}(1) + \chi(n) - \tilde{\chi}(1) \} \subset \mathbb{C} \). That is, the restriction of a spherical function \(f \) to \(A \) is a scalar valued function.

2.4. The center of \(U(\mathfrak{g}) \) and radial parts of biinvariant differential operators. In this subsection we explain the correspondence between elements of the center of the universal enveloping algebra and the Weyl group invariant differential operators on \(A \). This correspondence is given by the radial parts of the differential operators. Finally we calculate the radial part of the Casimir operator.

The universal enveloping algebra \(U(\mathfrak{g}) \) may be identified with the algebra of the left \(G \)-invariant differential operators on \(G \). Namely, the element \(x \in \mathfrak{g} \) gives the differential operator \(D_x f(g) = \frac{d}{dr} f(g e^{tx})|_{r=0} \) and this map can be extended to \(U(\mathfrak{g}) \): \(D_{xy} f = D_y D_x f \), for \(x, y \in U(\mathfrak{g}) \). A differential operator corresponding to an element of the center \(\mathfrak{Z}(\mathfrak{g}) \) of the universal enveloping algebra \(U(\mathfrak{g}) \) is bi-\(G \)-invariant, hence it preserves the space \(F_{\mathbb{Z}} \).

As any function from \(F_{\mathbb{Z}} \) is uniquely determined by its restriction to \(A \), the differential operator \(D_C \), \(C \in \mathfrak{Z}(\mathfrak{g}) \) can be written in terms of coordinates along \(A \), and the resulting operator is a differential operator with coefficients in \(\text{End}(\tilde{U}_{\mathbb{Z}}) = \mathbb{C} \). We call this expression the radial part of \(D_C \) on \(F_{\mathbb{Z}} \) and denote it \(R_C \).

Remark 4. In reality, not any function on the torus \(A \) is the restriction of a \(K \)-biequvariant function. Later we will show that the restriction of the functions from \(F_{\mathbb{Z}} \) span the space of Laurent polynomials of \(e^{2x_i} \) \((x_i, i = 1, \ldots, n) \), are the coordinates along the torus \(A \) satisfying vanishing conditions at zero locus locus of Weyl determinant (see lemma \([\ref{lemma}])\), on which \(W \) acts by the character \(\chi \) (see lemma \([\ref{lemma}])\). Here \(W \) is the Weyl group for the \(BC_n \) root system and \(\chi \) is the \(Z_2 \)-character of \(W \). But the standard reasoning (see for example \([\ref{remark}])\) page 16) shows that a differential operator is uniquely determined by its action on the space of \(\chi \)-\(W \) invariant Laurent polynomials, hence the radial part of \(D_C \) is uniquely defined.

The center \(\mathfrak{Z}(\mathfrak{g}) \subset U(\mathfrak{g}) \) contains the Casimir \(C_2 = \sum_{1 \leq i,j \leq n+m} E_{ij} E_{ji} \). The radial part \(R_{C_2} \) can be calculated explicitly. Below we use following
notations \(\bar{\kappa} = (\kappa_1, \kappa_2, \kappa_3) = (\kappa_{(2)} - \kappa_{(1)}, \kappa_{(2)}, \kappa_{(1)} + \kappa_{(2)}), \) \(\bar{\tau} = \bar{\kappa} + \bar{s}. \) We consider only the case when \(\bar{\kappa} \) satisfies the following condition:

\[
(2) \quad \kappa_3 \geq \kappa_1 + \kappa_3 \geq 0.
\]

Theorem 1. The second order differential operator \(R_{\bar{C}_+} \) has the form

\[
(3) \quad 2(R_{\bar{C}_+}\psi)(x) = \delta_{s}^{-1}(x) (\Delta_A - u_{\bar{\tau}}(x) + C_{\bar{\kappa}}) \delta_{s}(x) \psi(x),
\]

\[
C_{\bar{\kappa}} = \frac{m + n - (m + n)^3}{6} + \frac{(m - n)^3 - m + n}{6} + (\kappa_{(1)} + \kappa_{(2)})^2 n + 2(m - n)\kappa_{(2)}^2,
\]

\[
(4) \quad u_{x}(x) = \sum_{\alpha \in \Sigma_+} \frac{\tau_{\alpha}(\tau_{\alpha} + 2\tau_{2\alpha} - 1)(\alpha, \alpha)}{\sinh(\alpha(a(x)))^2},
\]

where \(\Delta_A = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} \) is the Laplace operator.

The operator \(L_{CM}^{\bar{\kappa}} = \Delta_A - u_{\bar{\tau}}(x) \) is called the Calogero-Moser operator for the root system \(BC_n \).

Remark 5. When \(\kappa_{(1)} + \kappa_{(2)} = 0, m = n \), the coefficient \(C_{\bar{\kappa}} \) is equal to \(-2(\rho, \rho) \) \((\rho \) is half sum of the positive roots of the root system \(A_{m+n-1} \)).

2.5. **The spherical representations of \(G \).** In this subsection we describe the finite dimensional representations of \(G \) containing the representation \(U_{\bar{\kappa}} \) of \(K \). Proofs of the statements use the Littlewood-Richardson rule and are given at the next section.

First we introduce some new definitions and notations. Let us denote by \(P_{\kappa_{(1)}, \kappa_{(2)}}^{e,2} \), \(\kappa_{(1)}, \kappa_{(2)} \in \mathbb{Z} \) \((\kappa_{(1)} \geq \kappa_{(2)} \) by \(\mathfrak{B} \) \) the subset of \(P_{+}(GL(n + m)) \) consisting of \(\lambda \in P_{+}(GL(n + m)) \) such that \(G \)-representation \(L_{\lambda}|_{K} \) contains a copy of \(\det^{\kappa_{(1)}} \otimes \det^{\kappa_{(2)}} \).

Lemma 2. \(\lambda \in P_{\kappa_{(1)}, \kappa_{(2)}} \) if and only if

\[
\lambda_j + \lambda_{m+n+1-j} = \kappa_{(1)} + \kappa_{(2)} \quad (j = 1, \ldots, n)
\]

\[
\lambda_{n+j} = \kappa_{(1)} \quad (j = 1, \ldots, m - n)
\]

\[
\lambda_{n} \geq \kappa_{(1)}.
\]

Moreover, if \(\lambda \in P_{\kappa_{(1)}, \kappa_{(2)}} \) then \(L_{\lambda}|_{K} \) contains a unique copy of the representation \(\det^{\kappa_{(1)}} \otimes \det^{\kappa_{(2)}} \).

Remark 6. In the case when all \(\kappa_{(i)} \) are zero the last lemma follows from the fact that \((G, K) \) is a symmetric pair (see Chapter V, Theorem 4.1).

We denote by the symbol \(P_{+}^{BC} \) the set of \(n \)-tuples of non-negative integers \(\mu \in \mathbb{Z}^{m+n} \) such that \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \geq 0 \). Now consider the map \(\tau: P_{+}^{BC} \rightarrow \mathbb{Z}^{m+n}, \) where

\[
\tau(\mu) = (\mu_1 + \hat{\kappa}, \ldots, \mu_n + \hat{\kappa}, \kappa_{(1)}, \ldots, \kappa_{(1)}, \hat{\kappa} - \mu_n, \ldots, \hat{\kappa} - \mu_1),
\]

9
Lemma 3. Let us denote by P_+ a set of weights λ such that L_λ is $\tilde{\mathbb{Z}}$-spherical.

Lemma 3. If $\mu \in P_+^{BC}$ then $\lambda = \tau(\mu + \rho_{\tilde{\mathbb{Z}}}) \in P_{\tilde{\mathbb{Z}}}$, and in this case $L_{\lambda|K}$ contains a unique copy of the representation $U_{\tilde{\mathbb{Z}}}$.

Also lemma 2 and (3) imply that $\tau(\mu + \rho_{\tilde{\mathbb{Z}}}) \in P_{\tilde{\mathbb{Z}}}$ for $\mu \in P_+^{BC}$.

Remark 7. The statement converse to the lemma 2 also holds. It follows from the statements that are stated below (see corollary 4). Let us also remark that in the simplest case ($n = m$, $\zeta_1 + \zeta_2 = 0$) the map τ does not depend on $\tilde{\mathbb{Z}}$.

2.6. Spherical functions through $\tilde{\mathbb{Z}}$-spherical representations. For $\lambda \in P_{\tilde{\mathbb{Z}}}$ we have a decomposition

$$L_{\lambda|K} = U_{\tilde{\mathbb{Z}}} \oplus_{(\mu, \mu') \in C_\lambda} L_\mu \boxtimes L_{\mu'},$$

$C_\lambda \subset P_+(GL(m)) \oplus P_+(GL(n))$. Hence a vector $v \in L_\lambda$ can be uniquely presented in the form $v = \tilde{v} + \sum_{(\mu, \mu') \in C_\lambda} v_{\mu, \mu'}$: $\tilde{v} \in U_{\tilde{\mathbb{Z}}}$, $v_{\mu, \mu'} \in L_\mu \boxtimes L_{\mu'}$. It allows us to define an embedding $s: U_{\tilde{\mathbb{Z}}}^* \rightarrow L_{\lambda|K}$, $s(x) = x(\tilde{v})$.

Let $u_{\zeta_1, \zeta_2}(\lambda) \in L_\lambda$, $\lambda \in P_{\tilde{\mathbb{Z}}}^{\zeta_1, \zeta_2}$ be a vector such that

$$\text{span}\{u_{\zeta_1, \zeta_2}(\lambda)\} = \det^{\zeta_1} \boxtimes \det^{\zeta_2}.$$

The vector $u_{\zeta_1, \zeta_2}(\lambda)$ is unique up to normalization. Now consider the function $\Psi_\mu: G \rightarrow U_{\tilde{\mathbb{Z}}}$, $\mu \in P_+^{BC}$, given by

$$\Psi_\mu(g) = \sum_i v_i(s(v_i^*) g u_{\zeta_1, \zeta_2}(\lambda)),$$

where $\lambda = \tau(\mu + \rho_{\tilde{\mathbb{Z}}})$ and v_i, $i = 1, \ldots, N$ is a basis of the representation $U_{\tilde{\mathbb{Z}}} \subset L_{\lambda|K}$ and v_i^*, $i = 1, \ldots, N$ is a dual basis. It is easy to see that $\Psi_\mu \in F_{\tilde{\mathbb{Z}}}$ and that its restriction to A is equal to $w_{\tilde{\mathbb{Z}}} s(w_{\tilde{\mathbb{Z}}}) e^{a(x)} u_{\zeta_1, \zeta_2}(\lambda)$, where span${\{w_{\tilde{\mathbb{Z}}}\}} = U_{\tilde{\mathbb{Z}}}$, span${\{w_{\tilde{\mathbb{Z}}}^*\}} = U_{\tilde{\mathbb{Z}}}^*$ and $\langle w_{\tilde{\mathbb{Z}}}, w_{\tilde{\mathbb{Z}}} \rangle = 1$. We identify $U_{\tilde{\mathbb{Z}}}$ with C via $w_{\tilde{\mathbb{Z}}} \rightarrow 1$ and to simplify notations we write

$$\Psi_\mu(x) = \langle w_{\tilde{\mathbb{Z}}}^*, e^{a(x)} u_{\zeta_1, \zeta_2}(\lambda) \rangle.$$

Remark 8. Such definition for Ψ_μ has a flaw. The vectors $w_{\tilde{\mathbb{Z}}}^*$, u_{ζ_1, ζ_2} are determined up to multiplication on a constant. Hence Ψ_μ is also defined up to multiplication by a constant. We fix this constant at the end of section 2.10.
2.7. Eigenvalues of the radial parts of biinvariant differential operators. The constructed function is an eigenfunction of some collection of operators. Indeed, the elements \(C_r = \sum_{1 \leq i_1, \ldots, i_r \leq m+n} E_{i_1} E_{i_2} \cdots E_{i_r} \) generate the center \(\mathfrak{z}(\mathfrak{g}) \) of \(U(\mathfrak{g}) \). By the Harish-Chandra theorem we have

\[
C_r \big|_{L_\lambda} = \sum_{j=1}^{n+m} (\lambda_j^r + \text{terms of lower degree on } \lambda) \text{Id}_{L_\lambda},
\]

\[
C_2 \big|_{L_\lambda} = (\lambda + 2\rho) \text{Id}_{L_\lambda},
\]

where \(\rho = \frac{1}{2}(m + n - 1, m + n - 3, \ldots, -m - n + 1) \).

Remark 9. Actually, by induction on \(r \) one can prove more precise formula:

\[
C_r \big|_{L_\lambda} = \sum_{j=1}^{n+m} ((\lambda_j + \rho_j)^r - \rho_j^r) \text{Id}_{L_\lambda},
\]

but for our purposes the weaker formula is sufficient.

Using formulas from lemma 2 and the previous formula, for any positive \(j \) one gets:

\[
R_{C_2} \Psi_\mu = (2(\mu + \rho_\tau, \mu + \rho_\tau) + \frac{C_2^2}{2}) \Psi_\mu
\]

(5)

\[
R_{C_2j} \Psi_\mu = 2\sum_{i=1}^{n} \mu_i^{2j} + \text{terms of lower degree} \Psi_\mu,
\]

(6)

\[
R_{C_{2j+1}} \Psi_\mu = ((2r + 1)(\zeta_1(1) + \zeta_2(2)) \sum_{i=1}^{n} \mu_i^{2j} + \text{terms of lower degree}) \Psi_\mu.
\]

(7)

Remark 10. At the simplest case, when \(n = m, \zeta_1(1) + \zeta_2(2) = 0 \), formulas (6) - (7) are simpler:

\[
R_{C_2j} \Psi_\mu = 2(\sum_{i=1}^{n} (\mu + \rho_\tau)^{2j} - (\rho_\tau)^{2j}) \Psi_\mu,
\]

\[
R_{C_{2j+1}} \Psi_\mu = 0,
\]

for any positive integer \(j \).

2.8. The Weyl group invariance and factorization of the spherical function. The Weyl group \(W \) of the \(BC_n \) root system naturally maps onto the group \(S_n \). We denote this map by \(q \). The group \(W \) has two independent \(\mathbb{Z}_2 \)-characters. Indeed if \(t : W \to GL(n, \mathbb{Z}) \) is the tautological representation of this group, then \(\chi_0(w) = \det(t(w)) \) and \(\chi_1(w) = (-1)^{q(w)} \) for a basis of \(\mathbb{Z}_2 \)-characters. For the character \(\chi = \chi_0^{\kappa_1 + \kappa_3} \chi_1^{\kappa_1 + \kappa_2 + \kappa_3} \) the following statement holds:
Lemma 4. A function \(f(e^{a(x)}) \in F_{\mathbb{R}} \) transforms under the action of \(W \) by the character \(\chi \). Besides, we have \(f(e^{a(x+\pi i)}) = (-1)^{\nu_1} f(e^{a(x)}) \) for \(j = 1, \ldots, n \).

The function \(\Psi_\mu(x) \) is a Laurent polynomial of \(e^{x_l} \) because \(L_\lambda \) is a polynomial representation. Let us denote the space of Laurent polynomials in \(e^{x_l}, l = 1, \ldots, n \) by \(\mathbb{C}[\mu] \).

Lemma 5. Any \(f(e^{a(x)}) \), \(f \in F_{\mathbb{R}} \) is divisible by \(\delta_\mu \) in the algebra \(\mathbb{C}[\mu] \).

Lemma \[5\] and lemma \[5\] imply that the function \(\Psi_\mu(x) / \delta_\mu(x) \) belongs to the space \(\mathbb{C}[\mu]_\mathbb{W} \) of \(W \)-invariant Laurent polynomials in \(e^{2x_l}, l = 1, \ldots, n \). Moreover, the following corollary holds

Corollary 1. (1) \(\Psi_\mu(x) / \delta_\mu(x) = \sum_{\nu \leq \mu} d_{\mu\nu} m_\nu(x) \), where \(m_\nu \) is the orbit-sum \(\nu \leq \mu \) and is the standard \(BC_n \) dominance order.

(2) If \(\lambda \in \mathbb{P} \) then \(\lambda = \tau(\mu + \rho_\mathbb{F}) \), where \(\mu \in \mathbb{P}^{BC} \).

2.9. The definition and properties of Jack polynomials. Consider the operator \(\tilde{L}_\varphi = \delta_\varphi^{-1} L^{CM}_\varphi \delta_{\varphi} \). For this operator the following proposition holds.

Proposition 2. \(\tilde{L}_\varphi \) maps the space \(\mathbb{C}[\mu]_\mathbb{W} \) of \(W \)-invariant Laurent polynomials into itself. Moreover, it is triangular with respect to the orbit-sums \(m_\lambda(x) = \sum_{\nu \in W\lambda} e^{2(\nu, x)} \).

\[\tilde{L}_\varphi m_\mu = 4(\mu + \rho_\mathbb{F}, \mu + \rho_\mathbb{F}) m_\mu + \sum_{\nu < \mu} \alpha_{\mu\nu} m_\nu. \]

This proposition implies that one can uniquely determine the Laurent polynomial \(J^\varphi_\mu = m_\mu + \sum_{\nu < \mu} s_{\mu\nu} m_\nu \) by the condition \(\tilde{L}_\varphi J^\varphi_\mu = 4(\mu + \rho_\mathbb{F}, \mu + \rho_\mathbb{F}) J^\varphi_\mu \). Indeed, \(\rho_\mathbb{F} \) is a dominant weight, hence \(\nu < \mu \) implies \((\nu + \rho, \nu + \rho) < (\mu + \rho, \mu + \rho) \). Thus the operator \(\tilde{L}_\varphi \) being restricted to the finite dimensional space \(\text{span} \{ m_\nu, \nu \geq \mu \} \) is diagonalizable with the distinct eigenvalues. Hence \(J^\varphi_\mu \) is uniquely determined. The polynomials \(J^\varphi_\mu \) are called Jack polynomials for the \(BC_n \) root system.

It is easy to see that the operator \(L^{CM}_\varphi \) is self-adjoint with respect to the standard inner product \((f, g) = \int_{A^*} f(x) g(x) dx \) (here the bar means complex conjugation and \(A^* = \{ e^{a(x)} | \text{Re} x = 0 \} \)). This fact implies that \(J^\varphi_\mu \) is orthogonal to \(J^\varphi_\nu \) if \((\mu + \rho_\mathbb{F}, \mu + \rho_\mathbb{F}) \neq (\nu + \rho_\mathbb{F}, \nu + \rho_\mathbb{F}) \). In fact, an even stronger statement holds.

Proposition 3. \(\tilde{L}_\varphi \) The Jack polynomials \(J^\varphi_\mu, \mu \in P_+(Sp(n)) \) form an orthogonal basis in the space \(\mathbb{C}[\mu]_\mathbb{W} \). That is,

\[(J^\varphi_\mu, J^\varphi_\nu) = \int_{A^*} \delta_\varphi(x) \overline{\delta_\varphi(x)} J^\varphi_\mu J^\varphi_\nu dx = 0, \]

if \(\mu \neq \nu \).
This proposition and theorem imply

Corollary 2. The coefficient \(d_{\mu \mu} \) at the expansion \(\Psi_{\mu}/\delta \vec{\kappa} = \sum_{\nu \leq \mu} d_{\mu \nu} m_{\nu} \) is not zero.

2.10. **The formulation of the main result.** The last corollary and lemma (see next section) imply \(\langle v_{\lambda}^*, u_{\kappa(1), \kappa(2)}(\lambda) \rangle \neq 0, \langle v_{\lambda}, w_{\vec{\kappa}} \rangle \neq 0 \). Let us renormalize the function \(\Psi_\mu \):

\[
\tilde{\Psi}_\mu = \frac{\langle s(w_{\vec{\kappa}}^*), e^{a(x)}(s(w_{\vec{\kappa}}), v_{\lambda}) \rangle}{\langle s(w_{\vec{\kappa}}^*), v_{\lambda} \rangle \langle v_{\lambda}^*, u_{\kappa(1), \kappa(2)}(\lambda) \rangle},
\]

where \(\lambda = \tau(\mu + \rho_{\vec{\kappa}}) \) and \(v_{\lambda}, v_{\lambda}^*, \langle v_{\lambda}, v_{\lambda}^* \rangle = 1 \) are the highest and lowest weight vectors for the \(G \)-representations \(L_{\lambda} \) and \(L_{\lambda}^* \), respectively. Now, the function \(\tilde{\Psi}_\mu \) does not depend on the choice either \(w_{\vec{\kappa}}^* \) or \(u_{\kappa(1), \kappa(2)}(\lambda) \) (see the discussion at the end of section 2.6).

The following theorem explains how to get Jack polynomials from the spherical functions. It also gives some details about the radial parts of \(C_r, r \in \mathbb{N} \).

Theorem 2.

1. \(\tilde{\Psi}_\mu/\delta \vec{\kappa} = J_{\mu}^r \).
2. The radial parts \(R_{C_{2i}}, i \in \mathbb{N} \) are pairwise commutative differential operators in \(n \) variables of the form

\[
R_{C_{2i}} = 2^{1-2i} \sum_{j=1}^{n} \frac{\partial^{2i}}{\partial x_j^{2i}} + \sum_{j, |J| < 2i} a_j(x) \frac{\partial^{|J|}}{\partial x^{|J|}}.
\]

Remark 11. In the case \(m = n, \kappa(1) + \kappa(2) = 0 \), the radial parts \(R_{C_{2i+1}}, i \in \mathbb{N} \) are zero. In the general case, the radial parts \(R_{C_{2i+1}}, i \in \mathbb{N} \) can be expressed through \(R_{C_{2j}} \).

The second item of the theorem implies the complete integrability (see previous section for the definition) of the quantum Hamiltonian system defined by the Calogero-Moser operator \(L^C_{\rho_{\vec{\kappa}}} \). The first proof of the complete integrability of this system was given by Olshanetsky and Perelomov. The quantum integrals \(R_{C_{2i}} \) from the second part the theorem coincide with the integrals from the paper, because after conjugation by \(\delta \vec{\kappa} \) they are diagonal in the basis of Jack polynomials, with the same eigenvalues as operators from \(L_{\rho_{\vec{\kappa}}} \).

3. **Proofs**

We consider an element \(g \in G \) as a \(3 \times 3 \) block matrix:

\[
g = \begin{pmatrix}
g^{11} & g^{12} & g^{13} \\
g^{21} & g^{22} & g^{23} \\
g^{31} & g^{32} & g^{33}
\end{pmatrix},
\]

in which the 11-th, 13-th, 31-th and 33-th blocks are \(n \times n \) matrices, 12-th and 21-th block are \(n \times (m - n) \) and \((m - n) \times n \) matrices, respectively.
and 22-th block is a \((m - n) \times (m - n)\) matrix. We denote these blocks by \(g^{ij}, i, j = 1, 2, 3\), and the matrix elements of \(g\) by \(g_{st}^{ij}, i, j = 1, 2, 3, s = 1, \ldots, n - (1 + (-1)^{i+j})\frac{m}{2}\), \(t = 1, \ldots, n - (1 + (-1)^{i+j})\frac{m}{2}\).

3.1. Calculation of the radial part for the Casimir element.

Proof of theorem. Using the formulas \(E_{ij}^{kl}E_{ij}^{kl} = 0\), \(e^{sE_{ij}^{kl}} = 1 + sE_{ij}^{kl}\) for \(i \neq j\) one gets:

\[
e^{t(\sinh x_{ij} \cosh x_{ij}E_{ij}^{11} + \sinh x_{ij} \cosh x_{ij}E_{ij}^{13})} e^{a(x)} e^{sE_{ij}^{31}} e^{st \sinh(x_{ij} + x_{ij})(E_{ij}^{33} - E_{ij}^{11})} \times e^{st(\sinh x_{ij} \cosh x_{ij}E_{ij}^{31} - \sinh x_{ij} \cosh x_{ij}E_{ij}^{11})} = e^{a(x)} e^{sE_{ij}^{31}} e^{t \sinh(x_{ij} - x_{ij}) \sinh(x_{ij} + x_{ij})E_{ij}^{13}} \times e^{t(\sinh x_{ij} \cosh x_{ij}E_{ij}^{11} + \sinh x_{ij} \cosh x_{ij}E_{ij}^{33})} + O(t^2) + O(s^2).
\]

Substituting RHS and LHS of the last equation into the argument of a function \(f \in F_\mathbb{R}\) and taking the derivative \(\frac{df}{dt}\) at the point \(t = 0\), one gets

\[
(8) \quad (\sinh x_{ij} \cosh x_{ij}E_{ij}^{11} + \sinh x_{ij} \cosh x_{ij}E_{ij}^{33}) f(e^{a(x)} e^{sE_{ij}^{31}}) + s f(e^{a(x)} e^{sE_{ij}^{31}})
\]

\[
\times \sinh(x_{ij} - x_{ij}) \sinh(x_{ij} + x_{ij})(E_{ij}^{33} - E_{ij}^{11}) + s(\sinh x_{ij} \cosh x_{ij} D_{ij}E_{ij}^{31} f(e^{a(x)} e^{sE_{ij}^{31}})
\]

\[
= \sinh(x_{ij} - x_{ij}) \sinh(x_{ij} + x_{ij}) D_{ij}E_{ij}^{31} f(e^{a(x)}).
\]

Substituting \(s = 0\) to (8) and changing \(i\) and \(j\), we have

\[
(9) \quad (\cosh x_{ij} \sinh x_{ij}E_{ij}^{33} + \sinh x_{ij} \cosh x_{ij}E_{ij}^{11}) f(e^{a(x)})
\]

\[
= \sinh(x_{ij} - x_{ij}) \sinh(x_{ij} + x_{ij}) D_{ij}E_{ij}^{31} f(e^{a(x)}).
\]

Taking the derivative \(\frac{df}{ds}\) of formula (8) at the point \(s = 0\) and using (9) yields

\[
(10) \quad D_{ij}E_{ij}^{31} f(e^{a(x)}) = f(e^{a(x)})(E_{ij}^{33} - E_{ij}^{11}) - (\sinh x_{ij} \cosh x_{ij}E_{ij}^{11} + \sinh x_{ij})
\]

\[
\times \cosh x_{ij}E_{ij}^{33} \left(\frac{\cosh x_{ij} \sinh x_{ij}E_{ij}^{33} + \sinh x_{ij} \cosh x_{ij}E_{ij}^{11}}{\sinh^2(x_{ij} + x_{ij})} \right) f(e^{a(x)})
\]

\[
+ \frac{\sinh x_{ij} \cosh x_{ij} D_{ij}E_{ij}^{31} - \sinh x_{ij} \cosh x_{ij} D_{ij}E_{ij}^{31}}{\sinh(x_{ij} - x_{ij}) \sinh(x_{ij} - x_{ij})} f(e^{a(x)}).
\]

The elements \(e^{a(x)} \in G, x \in \mathbb{C}^n\) form a commutative subgroup isomorphic to an \(n\)-dimensional torus \((e^{a(x+y)} = e^{a(x)} e^{a(y)})\), hence

\[
(11) \quad \frac{\partial f}{\partial E_{ij}^{31}}(e^{a(x)}) = (D_{ij}E_{ij}^{31} - D_{ij}E_{ij}^{13}) f(e^{a(x)}).
\]

Substituting the formulas for the right action of \(\mathfrak{k}\) on the space \(\tilde{W}_\mathbb{R} \bigotimes \tilde{V}_\mathbb{R}\): \(E_{ij}^{33} E_{ji}^{33} = \kappa_v(\kappa_v + 1), E_{ij}^{11} = 0, E_{ii}^{33} = \kappa_{(1)} + \kappa_{(2)} - \kappa_{(1)} - \kappa_{(1)} E_{ii}^{11} = \kappa_{(1)}\), \(i \neq j\)
and for the left action \(E_{ii}^{11} = \kappa(1) \), \(E_{ii}^{33} = \kappa(2) \), \(E_{ij}^{11} = E_{ij}^{33} = 0 \), \(i \neq j \) to the formula (10) and using (11) one gets:

\[
D E_{ij}^{13} E_{ji}^{13} + D E_{ji}^{31} E_{ij}^{31} + D E_{ij}^{13} E_{ji}^{31} + D E_{ji}^{13} E_{ij}^{31}
= -\kappa_v(\kappa_v + 1) \left(\frac{1}{\sinh^2(x_i + x_j)} + \frac{1}{\sinh(x_i - x_j)} \right) + \frac{1}{\sinh(x_i - x_j)\sinh(x_i + x_j)} \left(\sinh 2x_i \frac{\partial}{\partial x_i} - \sinh 2x_j \frac{\partial}{\partial x_j} \right).
\]

The calculation of \(D E_{ii}^{13} E_{ii}^{13} \) for \(m \geq n > 1 \) is absolutely the same as in the case \(m = n = 1 \). We make this calculation for \(n = 1 \).

For \(f \in F_\mathfrak{k} \) the following equation holds

\[
f(z) = \left(z^{13} \right)^{-\kappa(1)/2} \left(z^{11} \right)^{\kappa(1) + \kappa(2)/2} \det(z)^{\kappa(1) + \kappa(2)/2} f(e^{a(x)}),
\]

where \(x = \arcsinh \left(\sqrt{\frac{z^{13} z^{31}}{\det(z)}} \right) \). Hence we have

\[
f(e^{a(x)} e^{sE_{ii}^{31}} e^{tE_{ii}^{13}}) = \left(\frac{\sinh x + t \cosh x + st \sinh x}{\sinh x + s \cosh x} \right)^{\kappa(1) - \kappa(2)} \\times \left(\frac{\cosh x + s \sinh x}{\cosh x + t \sinh x + st \cosh x} \right)^{\kappa(1) + \kappa(2)/2} f(e^{a(y)}),
\]

where \(y = \arcsinh(\sinh(x) \sqrt{(1 + s \cosh x)((1 + st) + t \cosh x)}) \). Taking the derivative \(\frac{\partial^2}{\partial s \partial t} \) of (13) at the point \(s = t = 0 \) one gets (for any \(n \))

\[
D E_{ii}^{13} E_{ii}^{13} = \frac{1}{4} \frac{\partial^2}{\partial x_i^2} f(e^{a(x)}) + \frac{\cosh 2x_i}{2 \sinh 2x_i} \frac{\partial}{\partial x_i} f(e^{a(x)}) + \left(\frac{\kappa(2) - \kappa(1)}{2} \right)^2 - \left(\frac{\kappa(1) - \kappa(1)}{2} \right)^2 - \left(\frac{\kappa(1) - \kappa(2)}{2} \right)(1 + \left(\frac{\kappa(1) - \kappa(2)}{2} \right))
\]

In the algebra \(\mathfrak{k} \) there is an identity \(E_{ii}^{13} E_{ii}^{31} = E_{ii}^{11} - E_{ii}^{33} \). Hence we have \(D E_{ii}^{13} E_{ii}^{31} = D E_{ii}^{11} E_{ii}^{33} + \kappa(1) - \kappa(2) \).

The calculation of \(D E_{ij}^{31} D E_{ji}^{13} f(e^{a(x)}) \) in the general case is absolutely the same as in the case \(n = 1, m = 2 \). For brevity we make this simplest calculation (in the general case we only have to write indices \(ij \) everywhere).

We need to translate the matrix

\[
e^{a(x)} e^{sE_{ii}^{23}} e^{tE_{ii}^{32}} = \begin{pmatrix}
\cosh x & t \sinh x & \sinh x \\
0 & 1 + st & s \\
\sinh x & t \cosh x & \cosh x
\end{pmatrix},
\]

by the left and right action of \(K \) into the form \(e^{a(y)} \), for some \(y \in \mathbb{C} \). That is we must find a representation of \(e^{a(x)} e^{sE_{ii}^{23}} e^{tE_{ii}^{32}} \) in the form \(e^{a(x)} e^{sE_{ii}^{23}} e^{tE_{ii}^{32}} = e^{a(y)} \).
Applying a function \(f \in F_{\mathfrak{r}} \) to both sides of this equation yields

\[
(15) \quad f(e^a(x)e^sE^{23}e^{tE^{12}}) = \left(\begin{array}{ccc}
\frac{u^2}{\Delta \cosh x} & -\frac{t \tanh x}{\cosh x(1+st)\Delta^2} & 0 \\
0 & u^{-1} & 0 \\
0 & 0 & 1
\end{array} \right) f(e^a(y)) \times u^{\frac{\kappa(1)}{2}(1+st)\kappa(1)} \left(\begin{array}{c}
\cosh x \\
\cosh y
\end{array} \right)^{\kappa(1)+\kappa(2)},
\]

where \(u = 1 + \frac{st}{(1+st)\sinh^2 x} \), \(\Delta = \sqrt{\tanh^2 x + \frac{st}{(1+st)\cosh^2 x}} \), \(y = \text{arctanh} \Delta \).

Taking the derivative \(\frac{\partial^2}{\partial x \partial y} \) of (15) at the point \(s = t = 0 \) and using the formulas for the right action of elements \(E^{11} = \tilde{\kappa}_1, E^{22} = \kappa(1) \) one gets the formula (already in the general case)

\[
(16) \quad D_{E^{12}E^{23}}f(e^{a(x)}) = \frac{\cosh x}{2 \sinh x} \frac{\partial}{\partial x_i} f(e^{a(x)}) + \left(\frac{\kappa(1) - \kappa(2)}{2} \frac{\tilde{\kappa}_1(1) - \kappa(2)}{\sinh^2 x_i} \right) f(e^{a(x)}).
\]

Again we can calculate \(D_{E^{12}E^{23}}D_{E^{12}} \) through \(D_{E^{ij}}D_{E^{j1}} \) by using the identity inside \(\mathfrak{r} \).

Using the equations \(D_{E^{11}}f = \kappa(2)f, D_{E^{21}}f = \kappa(1)f, D_{E^{33}}f = D_{E^{11}}f = 0 \) for \(i \neq j, f \in F_{\mathfrak{r}} \) and (12), (14), (16) results into the formula

\[
2R_C = \Delta A + \sum_{i=1}^n \left(\frac{2(m-n) \cosh x_i}{\sinh x_i} + \frac{2 \cosh 2x_i}{\sinh 2x_i} \right) \frac{\partial}{\partial x_i}
+ 2 \sum_{i=1}^n \sum_{j \neq i} \left(\frac{\cosh(x_i - x_j)}{\sinh(x_i - x_j)} + \frac{\cosh(x_i + x_j)}{\sinh(x_i + x_j)} \right) \frac{\partial}{\partial x_i}
- 2\kappa_v(\kappa_v + 1) \sum_{i<j} \left(\frac{1}{\sinh^2(x_i + x_j)} + \frac{1}{\sinh^2(x_i - x_j)} \right)
+ \sum_{i=1}^n \frac{(\kappa(2) - \tilde{\kappa}_1)^2}{\sinh^2 x_i} - \frac{(\kappa(1) - \tilde{\kappa}_1)(\tilde{\kappa}_1 - \kappa_1 + 2(m-n))}{\sinh^2 x_i}
+ (\kappa(1) + \kappa(2))^2 n + 2(m-n)\kappa_v^2.
\]

Conjugating \(R_C \) with \(\delta_f(x) \) and using a consequence of the Weyl determinant formula for the \(D_n \) root system:

\[
2 \sum_{i<j} \left(\frac{1}{\sinh^2(x_i - x_j)} + \frac{1}{\sinh^2(x_i + x_j)} \right)
= \sum_{i=1}^n \left(\sum_{j \neq i} \frac{\cosh(x_i - x_j)}{\sinh(x_i - x_j)} + \frac{\cosh(x_i + x_j)}{\sinh(x_i + x_j)} \right)^2 - (\rho_{0,1,0}, \rho_{0,1,0}),
\]

one gets the formula (3).
3.2. The branching rules. Let us recall the branching rules for the inclusion \(K \subset G \) (see [15]). The construction is based on the Littlewood-Richardson rule [16, 17] which deals with partitions (and their diagrams).

A partition is a sequence of positive integer numbers \(\lambda \in \mathbb{Z}_r^+ \) such that \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq 0, \) \(r \) is called the length of the partition. Set \(|\lambda| = \sum_{i=1}^{r} \lambda_i. \) The diagram of the partition is the set of points \((i,j) \in \mathbb{Z}_n^+\) such that \(1 \leq j \leq \lambda_i. \) It is more convenient to replace the points by squares (or boxes). We write \(\mu \subset \lambda \) for the partitions if and only if \(\mu_i \leq \lambda_i \) for all \(i. \)

For a partition \(\lambda \) of the length less or equal \(r \) let \(L_\lambda \) be the corresponding finite dimensional irreducible \(GL(r) \) representation of the highest weight \(\lambda. \)

In these notations the branching rule has the form:

\[
L_{\lambda}|_K = \sum_{\zeta} L_\zeta \otimes \sum_{\tau} c^\lambda_{\zeta\tau} L_\tau,
\]

where \(\lambda, \tau, \zeta \) are partitions, and \(c^\lambda_{\zeta\tau} \) is a non-negative integer coefficient given by the Littlewood-Richardson rule. This coefficient is called the Littlewood-Richardson number.

Let us recall the Littlewood-Richardson rule. For this purpose I need some basic combinatorial definitions. The set theoretic difference \(\theta = \lambda \setminus \mu, \mu \subset \lambda \) is called a skew diagram, and \(|\theta| = |\lambda| - |\mu|. \) A skew diagram is a horizontal strip if and only if it has at most one square in each column. A tableau \(T \) is the sequence of partitions (diagrams) \(\mu = \lambda^{(0)} \subset \lambda^{(1)} \subset \cdots \subset \lambda^{(r)} = \lambda \) such that each of the skew diagrams \(\theta^{(i)} = \lambda^{(i)} - \lambda^{(i-1)} \) \((1 \leq i \leq r) \) is a horizontal strip. Graphically, \(T \) may be described by the numbering each square of the skew diagram \(\theta^{(i)} \) with the number \(i. \) The numbers inserted in \(\lambda - \mu \) must increase strictly down each column and weakly from left to right along each row. The skew diagram \(\lambda - \mu \) is called the shape of tableau \(T, \) and the sequence \((|\theta^{(1)}|, \ldots, |\theta^{(r)}|)\) is called the weight of \(T. \)

Let \(T \) be a tableau. From \(T \) one can derive a word \(w(T) \) by reading the symbols in \(T \) from right to left in successive rows, starting with the top row. A word \(w = a_1 a_2 \ldots a_N \) in the symbols \(1, 2, \ldots, n \) is said to be a lattice permutation if for \(1 \leq r \leq N \) and \(1 \leq i \leq n - 1, \) the number of occurrences of \(i \) in \(a_1 a_2 \ldots a_r \) is not less than the number of occurrences of \(i + 1. \)

For example the word \(w(T) \) for the tableau from the picture is \(112132. \) It is an example of the lattice permutation.

Littlewood-Richardson rule. Let \(\lambda, \mu, \nu \) be partitions. Then \(c^\lambda_{\mu\nu} \) is zero unless \(\mu \subset \lambda, \nu \subset \lambda, \) \(|\mu| + |\nu| = |\lambda| \) and for \(\mu, \nu \subset \lambda, \) \(|\mu| + |\nu| = |\lambda| \) it is equal to the number of tableaux \(T \) of the shape \(\lambda - \mu \) and weight \(\nu \) such that \(w(T) \) is a lattice permutation.

The genuine definition of the Littlewood-Richardson number through Schur functions [17] implies that \(c^\lambda_{\mu\nu} = c^\lambda_{\nu\mu}. \)
Let l be such a big integer that $\kappa_i + l > 0$, $\tilde{\kappa}(1) + l > 0$ and the shifted highest weights $\lambda' = \lambda + ll^r$ form a partition. Below we use the superscript prime for the shifted objects.

Remark 12. $c^\lambda_{\nu \mu} = c^\lambda_{\nu' \mu'}$

The last remark allows us to define the coefficient $c^\lambda_{\nu \mu}$, when one of the λ, ν, μ is not a partition, by the formula from the remark. Below we suppose that all weight are shifted and the superscript prime is suppressed.

3.3. Combinatorial proofs

Now we use the Littlewood-Richardson rule to prove lemmas 1, 2, 3.

Proof of lemma 1. Every irreducible representation L_μ of $GL(m-1)$, where $\mu \in P_+(GL(m-1))$ such that $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \lambda_3 \geq \cdots \geq \mu_{m-1} \geq \lambda_m$ is contained at the restriction $L_\lambda|_{GL(m-1)}$ exactly once (see e.g. [18] page 186). Applying this statement $m-n$ times to $\lambda = (\tilde{\kappa}(1) - \kappa(1))_1^n + \kappa(1)_1^n$ we get the first part of the lemma (e.g. dim $\tilde{W}_\kappa = 1$).

Now let us use the Littlewood-Richardson rule for the restriction from the group $K(1) = GL(m)$ to the group $K(1) \times M = GL(n) \times GL(m-n)$. To prove the second part of the lemma one must find all partitions ν of length less or equal n such that $c^\lambda_{\nu, \kappa(1)_1^n} \neq 0$. That is one must find all fillings of $\lambda \setminus \kappa(1)_1^{m-n}$ by $1, \ldots, n$ such that the result is the tableau satisfying the lattice permutation condition. The first part of the lemma says that if such filling exists then it is unique.

Let us construct this filling. Let us fill the last $\tilde{\kappa}(1) - \kappa(1)$ squares of the i-th row ($i = 1, \ldots, n$) by i and the first $\kappa(1)$ squares of the $(m - n + i)$-th row ($i = 1, \ldots, n$) by i. One can check that the resulting tableau satisfies the lattice permutation condition and has the weight $\nu = \tilde{\kappa}(1)_1^n$.

For example on the picture we drew the filling corresponding to the case $m = 3$, $n = 2$, $\tilde{\kappa}(1) = 3$, $\kappa(2) = 1$.

To prove lemma 2 we must calculate $c^\lambda_{\kappa(1)_1^{m}, \kappa(2)_1^n}$. Let $T = \{\kappa(1)_1^m = \lambda(0) \subset \cdots \subset \lambda(n) = \lambda\}$ be a tableau contributing to the Littlewood-Richardson number $c^\lambda_{\kappa(1)_1^{m}, \kappa(2)_1^n}$. Then all the squares in the i-th row are labeled by i, and the $(m + i)$-th row may contain only the symbols i, \ldots, n ($1 \leq i \leq n$). Also the horizontal strip condition implies that T cannot contain any label at the $(n + j)$-th row ($j = 1, \ldots, m - n$). Hence it implies $\lambda_{n+j} = \kappa(1)$. We use following notations for the labeling of the last n rows: the number of occurrences of the symbol i at the $(m + j)$-th row is equal to μ^i_j.

\[\begin{array}{cccc}
1 & 2 & 2 & 2 \\
1 & 1 & 2 & 2 \\
\end{array} \]

To the case $m = 3$, $n = 2$, $\tilde{\kappa}(1) = 3$, $\kappa(2) = 1$.

\[\begin{array}{cccc}
1 & 2 & 2 & 2 \\
1 & 1 & 2 & 2 \\
\end{array} \]
The drawn tableau T corresponds to the case $n = 4$, $m = 4$, $\kappa(1) = 4$, $\kappa(2) = 1$. The diagram λ has the shape: $\lambda = (8, 7, 5, 5, 4, 4, 2, 1)$. The labeling of the last n rows encoded by μ: $\mu_1 = 1$, $\mu_2 = 1$, $\mu_3 = 2$, $\mu_4 = 0$; $\mu_2 = 1$, $\mu_3 = 1$, $\mu_4 = 2$; $\mu_3 = 1$, $\mu_4 = 1$; $\mu_4 = 1$. The word $w(T)$ is a lattice permutation.

Lemma 6. If $c_{\kappa(1)1^m, \kappa(2)1^n}^\lambda \neq 0$ then

(17) \[\lambda_j + \lambda_{m+n+1-j} = \kappa(1) + \kappa(2), \quad (j = 1, \ldots, n) \]

(18) \[\lambda_{n+i} = \kappa(1), \quad (j = 1, \ldots, m-n) \]

(19) \[\lambda_n \geq \kappa(1). \]

In this case $c_{\kappa(1)1^m, \kappa(2)1^n}^\lambda = 1$ and the labeling of the corresponding tableau is given by formula:

(20) \[\mu_i^j = \lambda_{i-j} - \lambda_{i-j+1}, \]

where $i \geq j$ and $\lambda_0 = \kappa(1) + \kappa(2)$.

Proof. Let us remark that the reasoning before the lemma proves formula (18). Hence the $n+j$-th row ($j = 1, \ldots, m-n$) plays no role and we consider only the case $n = m$ in the proof.

We prove the claim by the induction in n.

For $n = 1$ the claim is obvious.

Let $T = \{ \lambda^{(0)} \subset \cdots \subset \lambda^{(s+1)} \}$ be a tableau contributing to $c_{\kappa(1)1^{s+1}, \kappa(2)1^{s+1}}^\lambda$ and \tilde{T} is the tableau obtained from T by deleting the boxes with $s + 1$. Tableau \tilde{T} contains only the symbols $1, \ldots, s$ and is of the shape $\tilde{\lambda} \setminus \kappa(1)1^s$ for partition $\tilde{\lambda}$, and $\tilde{\lambda}_i = \lambda_i$ ($i = 1, \ldots, s$). Furthermore, \tilde{T} contributes to the Littlewood-Richardson number $c_{\kappa(1)1^s, \kappa(2)1^s}^\lambda$. Hence for \tilde{T} (17)-(20) hold by the induction hypothesis. That is, the numbers μ_i^j, $s \geq i \geq j$, for given λ are uniquely determined by (20) and we only need to find μ_j^{s+1}, $j = 1, \ldots, s+1$.

The horizontal strip condition and the induction hypothesis imply

\[\sum_{i=1}^{s+1} \mu_j^i \leq \sum_{i=1}^{s} \mu_{j-1}^i = \lambda_0 - \lambda_{s+2-j}, \]
for \(j = 2, \ldots, s + 1 \). The induction hypothesis for \(j = 1, \ldots, s + 1 \), implies

\[
\sum_{i=1}^{s+1} \mu_j^i = \tilde{\lambda}_{s+j} + \mu_{j+1}^{s+1} = \kappa(1) + \kappa(2) - \tilde{\lambda}_{s+1-j} + \mu_{j}^{s+1} = \kappa(1) + \kappa(2) - \lambda_{s+1-j} + \mu_{j}^{s+1},
\]

where \(\tilde{\lambda}_2 = 0 \). Hence for \(j = 2, \ldots, s + 1 \) we have

(21) \[\lambda_{s+2-j} \leq \lambda_{s+1-j} - \mu_{j}^{s+1}. \]

The lattice permutation condition for \(T \) implies

(22) \[\lambda_{s+1} + \mu_{1}^{s+1} \geq \lambda_{s}. \]

Adding these \(s + 1 \) inequalities, one gets

\[
\sum_{j=1}^{s+1} \lambda_j + \sum_{j=1}^{s+1} \mu_{j}^{s+1} \leq \sum_{j=0}^{s} \lambda_j,
\]

but the weight condition for \(T \) implies that the last inequality is an equality. Hence (21), (22) are also equalities and they imply (20). Thus we proved that \(c^\lambda_{\kappa(1)1^{s+1},\kappa(2)1^{s+1}} \neq 0 \) implies (20) for \(n = s + 1 \). One can easily check that \(T \) defined by (21) contributes to the Littlewood-Richardson number \(c^\lambda_{\kappa(1)1^{s+1},\kappa(2)1^{s+1}} \).

Lemma 6 is equivalent to lemma 3.

Let us denote by the symbols \(v \) and \(w \) the partitions

\[
v = (\kappa(1) + \kappa(2) - \tilde{\kappa}(1))1^n + \kappa v ne_1, \text{ where } e_1 = (1, 0, \ldots, 0), \text{ and } w = \tilde{\kappa}(1)^m + \kappa(1)1^n.
\]

Lemma 7. If \(\lambda \) is a partition of the length less or equal \(n + m \) such that equalities (17) and inequalities (23)

\[
\lambda_i - \lambda_{i+1} \geq \kappa v,
\]

where \(i = 1, \ldots, n - 1 \), hold. Then \(c^\lambda_{\kappa v, \nu} = 1 \) and the labeling of the corresponding tableau is given by the formulas:

(25) \[\mu_j^i = \lambda_{i-j} - \lambda_{i-j+1}, \text{ for } i \geq j > 1, \]

(26) \[\mu_1^i = \lambda_{i-1} - \lambda_i - \kappa v, \text{ for } i > 1, \]

(27) \[\mu_0^1 = (n - 1)\kappa v + \kappa(1) - \lambda_1, \]

where \(\lambda_0 = \kappa(1) + \kappa(2) \) and \(\mu_j^i = 0 \) for \(i < j \).

Proof. Let \(\lambda \) be a partition of the length less or equal \(m + n \), satisfying (24), (26). Let \(T \) be a tableau of the shape \(\lambda \setminus w \) such that the \(i \)-th row is filled by the symbol \(i \) \((i = 1, \ldots, n)\) and the \((m + j)\)-th string contains \(\mu_j^i \) symbols \(i \), where \(\mu_j^i \) are given by formulas (25)-(27). One can check that this tableau contributes to \(c^\lambda_{\nu,\kappa v} \).
Now we will prove that if \(\lambda \) satisfies the conditions from the lemma then \(c_{w,v}^\lambda = 1 \), and equations (23)-(24) hold. We will do it by the induction. There is no difference in reasonings in the case \(m=n \) and in the case \(m>n \), and we consider only the first case. In this case \(w=\tilde{z}(1)^n \).

For \(n=2 \) the claim is obvious.

Now let \(T = \{ \lambda(0) \subseteq \cdots \subseteq \lambda(s+1) = \lambda \} \) be a skew tableau satisfying inequalities (23)-(24) for \(n=s+1 \) which contributes to \(c_{(\tilde{z}(1))1^{s+1},v''}^\lambda \), where \(v' = s\zeta_0 e_1 + (\zeta_1 + \zeta_2 - \tilde{z}(1))1^{s+1} \). Let us remove \(\zeta_u \) symbols 1 from the \((s+2)\)-th row of \(T \), delete the \((s+1)\)-th and \(2(s+1)\)-th rows and all boxes with \(s+1 \) from \(T \). Then one gets a tableau \(\tilde{T} \) of some skew shape \(\lambda \setminus (\tilde{z}(1))1^s \), which contributes to the Littlewood-Richardson number \(c_{(\tilde{z}(1))1^s,v''}^\lambda \), \(v'' = \zeta_0 (s-1) e_1 + (\zeta_1 + \zeta_2 - \tilde{z}(1))1^s \). Moreover, for \(\tilde{T} \) the inequalities (23)-(24) hold, hence by the induction hypothesis equations (23)-(24) hold for \(\tilde{T} \). Thus we found \(\mu_j^\ell, i \leq s \) for \(T \), and we only need to find \(\mu_j^{s+1} \). But we know \(\lambda_j, i = 1, \ldots, 2(s+1) \) and \(\mu_j^i, i \leq s \), hence we can calculate \(\mu_j^{s+1} \).

\[\square \]

Remark 12 and lemma 7 imply lemma 3.

3.4. Proof of lemma 4 and the asymptotic estimate.

Proof of lemma 4. Let \(w \in W \) to be an element of the Weyl group and \(\theta_w \in \tilde{K}(1) \times K(2) \) such that \(\theta_{w11}^w = \tilde{t}(w), \theta_{w33}^w = \tilde{t}(q(w)) \), here \(\tilde{t} \) is the standard embedding \(S_n \hookrightarrow GL(n,\mathbb{Z}) \). Then for \(f \in F_\tilde{\mathbb{R}} \):

\[
\begin{align*}
 f(e^{a(x)}) &= f(\theta_w e^{a(x)} \theta_w^{-1}) = \theta_w f(e^{a(x)}) \chi_0^{\zeta_0(1)} \chi_1^{\zeta_2(1)} (w) \\
 &= \chi_0^{\zeta_0(1)} \chi_1^{\zeta_2(1)+\zeta_1+\zeta_3} (w) f(e^{a(x)}) \chi_0^{\zeta_0(1)} \chi_1^{\zeta_2(1)} (w) \\
 &= \chi_0^{\zeta_0+\zeta_3} \chi_1^{\zeta_1+\zeta_2+\zeta_3} (w) f(e^{a(x)}),
\end{align*}
\]

here the third equality follows from lemma 11 and the fact that \(q(w) \) acts on \(\tilde{V}_\mathbb{R} \) by \(\det(\tilde{t}(q(w)))^{\zeta_2(1)+\zeta_1-\zeta_3} \).

The element \(e^{a(\pi ie_3)} \) belongs to the subgroup \(K \), hence \(f(e^{a(x+\pi ie_3)}) = f(e^{a(x)}) \chi_0^{\zeta_0(1)+\zeta_2(1)} f(e^{a(x)}) = (-1)^{\zeta_1} f(e^{a(x)}) \).

We can estimate the asymptotic behavior at the infinity of a matrix element of the representation \(L_\lambda \). One says that an asymptotic estimate \(f(x) \lesssim g(x) \) holds in the sector, \(x_1 > x_2 > \cdots > x_n \) if for any \(y \) from the sector the limit \(\lim_{x \to \infty} \frac{f(y)}{g(y)} \) is finite.

Lemma 8. Let \(v \in L_\lambda, u \in L_\lambda^* \), then at the sector \(x_1 > x_2 > \cdots > x_n \) we have an asymptotic estimate

\[
\langle u, e^{h(x)} v \rangle \lesssim \prod_{i=1}^{21} e^{x_i(\lambda_m+\lambda_{m+1}-1)}.
\]
Moreover

\begin{equation}
\lim_{t \to +\infty} \langle u, e^{a(x)} v \rangle \prod_{i=1} e^{-x_i (\lambda_i - \lambda_{m+n+1-i})} = \langle u, v \rangle \langle v, v^* \rangle,
\end{equation}

where \(v_\lambda \) and \(v^*_\lambda \) are the highest and lowest weight vectors of \(L_\lambda \) and \(L^*_\lambda \), respectively, and \(\langle v_\lambda, v^*_\lambda \rangle = 1 \).

Proof. We use notations from the subsection 2.1. There is a Cartan subgroup \(H \subset G \), \(A = \exp(p) \cap H \) and \(e^{a(x)} = h(x, 0, -x) \). The highest weight of \(L_\lambda \) with respect to \(H \) is equal to \(\lambda \), and all other extremal weights are of the form \(w(\lambda), w \in W \). Obviously, for proving the claim it is enough to prove the estimate for the case when \(u, v \) are extremal weight vectors. If \(u, v \) are the extremal weight vectors then \(\langle u, e^{a(x)} v \rangle \sim \prod_{i=1} e^{w(\lambda_i) - w(\lambda_{m+n+1-i})x_i} \), for \(x \to \infty \), and obviously in the sector \(x_1 > \ldots > x_n \) the asymptotic estimate \([28]\) holds.

3.5. **Proof of lemma 9.** For \(f \in F_\lambda \) the equality \(f(e^{a(x)}) = f(s(x)) \) holds, where \(s(x) \in G \) such that \(s(x)^{11} = s(x)^{33} = 1, s(x)^{13} = s(x)^{31} = diag(z_1, \ldots, z_n), s(x)^{22} = 1, s(x)^{23} = s(x)^{32} = s(x)^{21} = s(x)^{12} = 0, z_i = \tanh x_i, i = 1, \ldots, n. \)

Lemma 9. For any \(1 \leq i < j \leq n \) the function \((E_{ij}^{11} \pm E_{ij}^{22})^m f(s(x)) \) is regular at the generic point \(x \) such that \(\sinh(x_i \pm x_j) = 0. \)

Proof. For \(f \in F_\lambda \) the following equation holds

\[e^{y(E_{ij}^{11} + E_{ij}^{33})} f(s(x)) = f(e^{y(E_{ij}^{11} + E_{ij}^{31})}) e^{y(E_{ij}^{11} + E_{ij}^{33})} e^{-y(E_{ij}^{31})} = f(m(x, y)), \]

where \(m^{11}(x, y) = m^{33}(x, y) = 1, y \in \mathbb{C} \) and

\[m^{13} = m^{31} = e^{yE_{ij}} ze^{-yE_{ij}} = (1 + yE_{ij}) z(1 - yE_{ij}) = z + y[E_{ij}, z] = z + y(z_i - z_j) E_{ij}, \]

where \(z = diag(z_1, \ldots, z_n) \). Hence the function \(e^{y(E_{ij}^{11} + E_{ij}^{33})} f(s(x)) \) is regular at the generic point \(z_i = z_j \). By taking the derivative \(\frac{d}{dt} \) at the point \(t = 0 \) one gets the claim for \(m = 1 \). Iterating this procedure we obtain the proof in the case of the minus sign. In case of the plus sign one can proceed analogously by considering \(e^{y(E_{ij}^{11} - E_{ij}^{33})} f(s(x)) = f(e^{y(E_{ij}^{11} - E_{ij}^{33})} s(x) e^{-y(E_{ij}^{11} - E_{ij}^{33})}). \)

Proof of lemma 3. It is easy to see that all the weight subspaces (with respect to action of \(T \)) of \(V_\lambda \otimes V_\lambda \) are one-dimensional. Hence for \(v \in V_\lambda \otimes V_\lambda \), we have \((E_{ij}^{11} \pm E_{ij}^{33}) v = (\pm E_{ij}^{33}) v \neq 0 \), for \(i \leq k_2, i \neq j \) and zero otherwise. Using the last remark and the simple trigonometric identity \(z_i \pm z_j = \frac{\sinh(x_i \pm x_j)}{\cosh x_i \cosh x_j} \), one derives from lemma 3, the divisibility of \(f(e^{a(x)}) \) by \(\delta_{0, k_2, 0}. \)
In the rest part of the proof we consider only the case \(m = n \) because the case \(m > n \) is absolutely analogous. For \(f \in F \) following equation holds
\[
\delta^{-1}_{n1,0,\kappa_3}(x)f(e^{a(x)}) = \begin{pmatrix} \cosh^{-1} x & 0 \\ 0 & \sinh x \end{pmatrix} f(e^{a(x)}) \begin{pmatrix} 1 & 0 \\ 0 & \tanh^{-1} x \end{pmatrix}
\]
\[= f \begin{pmatrix} \cosh^{-1} x & 0 \\ 0 & \sinh x \end{pmatrix} e^{a(x)} \begin{pmatrix} 1 & 0 \\ 0 & \tanh^{-1} x \end{pmatrix} = f \begin{pmatrix} 1 & 0 \\ \sinh^2 x & \cosh^2 x \end{pmatrix}
\]
The right hand side of the last equation is regular at the generic point \(x \) such that \(\delta_{0,0,\kappa_3}(x) = 0 \), hence the left hand side is also regular. Thus \(f(e^{a(x)}) \) is divisible by \(\delta_{\kappa_1,0,\kappa_3} \).

3.6. **Proofs of the corollaries.**

Proof of corollary 1. If \(\lambda = \tau(\mu + \rho_\kappa) \) then \(\lambda_i - \lambda_{m+n+1-i} = 2(\mu + \rho_\kappa)_i \). In the sector \(x_1 > \cdots > x_n \delta_\kappa \), has an asymptotic behavior
\[
\delta_\kappa(x) \sim e^{2(\mu,\rho_\kappa)}.
\]
Hence in this sector the asymptotic estimate \(\Psi_{\mu}(x)/\delta_\kappa(x) \lesssim e^{2(\mu,\rho_\kappa)} \) holds. Together with lemma \(\ref{lemma} \) it gives the proof of the first item of the corollary.

The second item immediately follows from the first one. Indeed, if for some \(\mu \in \mathbb{Z}^n, \mu_1 \leq \mu_2 \leq \cdots \leq \mu_n, \lambda = \tau(\mu + \rho_\kappa) \) belongs to \(P_\kappa \) then \(\Psi_\mu \neq 0 \). Hence, by the previous item \(\mu \geq 0 \).

Proof of corollary 2. Suppose that \(d_{\mu\mu} = 0 \). Then there is an expansion
\[
\Psi_{\mu}/\delta_\kappa = \sum_{\nu < \mu} c_{\mu\nu} J_\nu^\kappa.
\]
By the definition of the Jack polynomials
\[
(\Psi_{\mu}/\delta_\kappa, \tilde{L}_\nu \Psi_{\mu}/\delta_\kappa)_\nu = \left(\sum_{\nu < \mu} c_{\mu\nu} J_\nu^\kappa, \sum_{\nu < \mu} (\nu + \rho_\kappa, \nu + \rho_\kappa) c_{\mu\nu} J_\nu^\kappa \right)_\nu
\]
\[= \sum_{\nu < \mu} (\nu + \rho_\kappa, \nu + \rho_\kappa) c_{\mu\nu}^2 (J_\nu^\kappa, J_\nu^\kappa) \lesssim (\mu + \rho_\kappa, \mu + \rho_\kappa) (\Psi_{\mu}/\delta_\kappa, \Psi_{\mu}/\delta_\kappa).
\]
Theorem \(\ref{theorem} \) and formula \(\ref{formula} \) yields \(\tilde{L}_\nu \Psi_{\mu}/\delta_\kappa = (\mu + \rho_\kappa, \mu + \rho_\kappa) \Psi_{\mu}/\delta_\kappa \).

3.7. **Proof of the main theorem.**

Proof of theorem 3. Corollary \(\ref{corollary} \) theorem \(\ref{theorem} \) and formula \(\ref{formula} \) imply the first item of the theorem.

The last items follow from the fact that a \(W \)-invariant differential operator is uniquely determined by its action on the space \(\mathbb{C}[P]^W \) of \(W \)-invariant polynomials (see for example page 16 of \(\ref{6} \)). Indeed, formula \(\ref{formula} \) implies that the highest term of \(R_{C_{2r}} \) has the form described at the theorem. As \(C_{2r} \) are pairwise commutative, hence \(R_{C_{2r}} \) are also pairwise commutative.

References

[1] Harish-Chandra, Collected Papers, Springer, 1984.
[2] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[3] G. Warner, Harmonic Analysis on Semi-simple Lie Groups, Springer-Verlag, Berlin, 1972.
[4] P.I.Etingof, I.B.Frenkel, A.A.Kirillov, Jr., Spherical functions on affine Lie group, Duke Math. Jour., 80, no.1 (1995), 59-90.
[5] G.J.Heckman and E.M.Opdam, Root systems and hypergeometric functions II, Compositio Math. 64 (1987), 353-373.
[6] G.Heckman and H.Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Space, Perspectives in mathematics v.16, Academic press, 1994.
[7] M.S.Dijkhuizen, J.V.Stokman, Some limit transitions between BC type orthogonal polynomials interpreted on the quantum complex Grassmanian, Publ. Res. Inst. Math Sci., 35, no.3, (1999), 451–500.
[8] H.T.Koelink Askey-Wilson polynomials and the quantum SU(2) group: survey and applications, Acta Appl. Math. 44, no.3, (1996), 295-352.
[9] A.A.Oblomkov, J.V.Stokman, Vector valued spherical functions and Macdonald-Koornwinder polynomials, preprint.
[10] F.Calogero, Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419-436.
[11] B.Sutherland, Exact result for a quantum many-body problem in one dimension, Phys. Rev A 5 (1972), 1372-1376.
[12] M.A.Olshanetsky and A.M.Perelomov, Quantum integrable systems related to Lie algebras, Phys Rep. 94 (1983), 313-404.
[13] S.Helgason, Groups and Geometric Analysis, academic Press, New York, 1984.
[14] P.I.Etingof, Quantum integrable systems and representations of Lie algebras, J. Math. Phys. 36 (1995), 2636-2651.
[15] R.C. King, Branching rules for classical Lie groups using tensor and spinor methods, J. Phys A 8 (975), 429-449.
[16] D.E.Littlewood and A.R.Richardson (1934) Group characters and algebra, Philos. Trans. R. Soc. A. 233 99-141
[17] I.G.Macdonald, Symmetric Functions and Hall Polynomials, Second edition, Clarendon Press, Oxford, 1995.
[18] D.P.Zhelobenko, Compact Lie Groups and Their Representations, AMS, 1991.

DEPARTMENT OF MATHEMATICS, MIT, 77, MASSACHUSETTS AVE., CAMBRIDGE, MA 02139, USA.

E-mail address: oblomkov@math.mit.edu