Vere-Jones’ Self-Similar Branching Model

A. Saichev1,2 and D. Sornette3,4

1Mathematical Department, Nizhny Novgorod State University, Gagarin prosp. 23, Nizhny Novgorod, 603950, Russia
2Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095
3Institute of Geophysics and Planetary Physics and Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095
4Laboratoire de Physique de la Matière Condensée, CNRS UMR 6622 and Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France

(Dated: March 23, 2022)

Motivated by its potential application to earthquake statistics, we study the exactly self-similar branching process introduced recently by Vere-Jones, which extends the ETAS class of conditional branching point-processes of triggered seismicity. One of the main ingredients of Vere-Jones’ model is that the power law distribution of magnitudes \(m' \) of daughters of first-generation of a mother of magnitude \(m \) has two branches \(m' < m \) with exponent \(\beta - d \) and \(m' > m \) with exponent \(\beta + d \), where \(\beta \) and \(d \) are two positive parameters. We investigate the condition and nature of the sub-critical, critical and super-critical regime in this and an extended version interpolating smoothly between several models. We predict that the distribution of magnitudes of events triggered by a mother of magnitude \(m \) over all generations has also two branches \(m' < m \) with exponent \(\beta - h \) and \(m' > m \) with exponent \(\beta + h \), with \(h = d\sqrt{1 - s} \), where \(s \) is the fraction of triggered events. This corresponds to a renormalization of the exponent \(d \) into \(h \) by the hierarchy of successive generations of triggered events. The empirical absence of such two-branched distributions implies, if this model is seriously considered, that the earth is close to criticality \(s \approx 1 \) so that \(\beta - h \approx \beta + h \approx \beta \). We also find that, for a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources and is blind to the exponents \(\beta, d \) of the distribution of triggered events. In summary, the exactly self-similar Vere-Jones model provides an attractive new approach to model triggered seismicity, which alleviates delicate questions on the role of magnitude cut-offs in other non-self-similar models and provides interesting predictions which could be tested with stochastic reconstruction methods of earthquake sequences.

PACS numbers: 64.60.Ak; 02.50.Ey; 91.30.Dk

I. INTRODUCTION

Stochastic branching processes describe well a multitude of phenomena1,2 from chain reactions in nuclear and particle physics, material rupture, fragmentation and earthquake processes, to population and biological dynamics, epidemics, economic and social cascades and so on. Branching processes are also of particular interest because deep connections have been established with critical phenomena. In branching processes, various quantities exhibit power law distributions at criticality. This includes the distributions of cluster sizes, of the number of generations before extinction and of durations.

Branching processes become critical when the average death rate is exactly compensated by the average growth rate. At criticality, branching processes become asymptotically self-similar, which translates for instance into an asymptotic power law tail for the distribution of cluster sizes. Such scale-invariance is a general characteristic of systems at the critical point of a phase transition or of a bifurcation. But self-similarity in general holds only (i) at criticality and (ii) asymptotically, i.e., at scales much larger than the microscopic mesh or elementary branch scale.

Vere-Jones has recently introduced a class of self-similar branching processes which is exactly self-similar for a broad range of parameters (of non-zero measure), that is, far from criticality and for all scales3. Vere-Jones self-similar branching process is derived from a class of exactly self-similar random measures which generalize the class of stable purely atomic completely random measures. The underlying idea is that a change of scale is balanced by a change in mass, making the measure, and the branching process, self-similar at all scales and off-criticality. This is possible only for branching processes with continuous masses or “marks.” Then, the model has a natural application to describe earthquake triggering, which is the example we adopt in the

*Electronic address: sornette@moho.ess.ucla.edu
The concrete example proposed by Vere-Jones is the “self-similar ETAS” (epidemic-type aftershock sequence) model, which is a self-similar extension of the initial non-self-similar standard ETAS model \[\lambda(\vec{r}, t, m) \]. The main statistical properties of the standard ETAS model are reviewed in \[\lambda(\vec{r}, t, m) \]. The ETAS model describes the rate \(\lambda(\vec{r}, t, m) \) of events (earthquakes for instance) at position \(\vec{r} \) at time \(t \) and of mass or mark (magnitude) \(m \) resulting from spontaneous sources (“immigrants”) and from all past events. The model is defined in terms of the conditional Poisson intensity and from all past events. The model is defined in terms of generating probability functions (GPF) which predicts in particular the exact form of the magnitude distributions. Section 4 explores the phase diagram of the model by identifying the conditions for sub-criticality, criticality and super-criticality. Section 5 derives the distributions of earthquake magnitudes for Vere-Jone’s self-similar model. Section 6 presents a summary of our predictions, a discussion of their consequences and their possible empirical tests.

II. VERE-JONES SELF-SIMILAR ETAS MODEL

A. Definition of the “generalized Vere-Jones ETAS model”

Here, we integrate over space and time to focus on global properties, such as the total number of events triggered by a given event. Let us consider first a model more general than the Vere-Jones “self-similar ETAS” model, which we call the “generalized Vere-Jones ETAS model.” In this model, an event of magnitude \(m \) may trigger another event of magnitude \(m' \) according to the Poisson rate \(\lambda(m, m') \), so that the total rate of production of events of magnitude \(m' \) is

\[
\lambda(m') = \sum_m \lambda(m, m')
\]

(1)

where

\[
\lambda(m, m') = \kappa e^{\alpha m' - \beta |m - m'|},
\]

(2)

gives the number of events of magnitude \(m' \) triggered directly (on first generation) by an event of magnitude \(m \). The space and time dependence of the mother (or triggering event) of magnitude \(m \) and daughter (or triggered event) of magnitude \(m' \) have disappeared from the expression of \(\lambda(m, m') \) due to the integration over space and time, so that we are concerned only here with total numbers in a fixed space-time window. The exponential in \(\kappa \) contains three contributions:
1. e^{am} describes the exponentially growing productivity of a source as a function of its magnitude m [18, 19] (in other words, e^{am} is proportional to the average number of first-generation progenies of the source m).

2. $e^{-\beta m'}$ is the so-called Gutenberg-Richter distribution of the magnitudes of the first-generation triggered events, usually improperly referred to in the seismological literature as “aftershocks” and which is now progressively replaced by the concept of triggered earthquakes. With this caveat in mind, we shall sometimes use the term “aftershocks” in a broader sense than used in the standard literature to refer to triggered events of arbitrary magnitudes without the condition that the aftershock magnitudes have to be smaller than the source magnitude.

3. The new term $e^{-d|m-m'|}$, compared with previous models of the ETAS class, describes a binding or localization of the magnitude m' of triggered events in the neighborhood of the ancestor’s magnitude m. In other words, this term means that daughters’ magnitudes keep a memory of the size of their mothers: large (small) daughters come more probably from large (small) mothers for $d > 0$. This could be associated with the fact that triggered events occur on patches of the mother’s fault rupture with large residual stresses (for the $e^{-d(m-m')}$ branch with $m' < m$) and on faults branching from the mother’s rupture (for the branch $e^d(m-m')$ with $m' > m$).

The branching model is such that any event can trigger other events according to the rate $\lambda(m,m')$ given by (2). Thus, a given event may give daughters of first-generation, which can themselves trigger other events and so on, giving rise to a triggering cascade. The model also considers the existence of spontaneous sources (immigrants), seeding the branching cascades.

B. The ETAS model: $d = 0$

For $d = 0$, i.e., when the size of daughters is independent (has no memory) of the size of the mother, model (2) recovers the standard ETAS model [4, 6, 20]:

$$\lambda(m, m') = \kappa' e^{(a-\beta)m_0} \times \beta e^{-\beta(m'-m_0)} ,$$

(3) where the first factor in the r.h.s is the so-called exponential productivity law and the second one is the Gutenberg-Richter law of first generation events magnitudes which is normalized ($\int_{m_0}^\infty \kappa' e^{(a-\beta)m_0} \times \beta e^{-\beta(m'-m_0)} = 1$).

A minimum event size m_0 is necessary to make the ETAS model well-defined [21, 22]. Indeed, it is not possible to make the model convergent for $m_0 \to -\infty$ (a $-\infty$ magnitude corresponds to a vanishing energy, since the magnitude is proportional to the logarithm of the energy), and an ultra-violet cut-off is necessary [21, 22].

The constant factor κ' is derived from the coefficient κ of the generalized Vere-Jones ETAS model (2) as

$$\kappa' = \frac{\kappa}{\beta - a} .$$

(4)

The ETAS model is critical when its average branching ratio (equal to the number of progenies averaged over all mothers’ magnitudes)

$$n \equiv \int_{m_0}^\infty dm' \kappa' e^{(a-\beta)m_0} \times \beta e^{-\beta(m'-m_0)} = \frac{\kappa' \beta}{\beta - a}$$

(5)

is unity. The case $n < 1$ (respectively $n > 1$) corresponds to the sub-critical (respectively super-critical) regime. The condition $a < \beta$ is needed to make the model convergent, as both the borderline $a = \beta$ and the regime $a > \beta$ leads to finite-time singularities with stochastic times [23]. Alternatively, convergence and stationary is obtained by adding an upper magnitude cut-off m_{max}, associated with the empirical bending down of the Gutenberg-Richter law for magnitudes larger than about 8, suggesting that $m_{\text{max}} \approx 8 - 9$ [24, 25, 26]. We shall not consider the influence of this upper cut-off whose impact is rarely felt only at time scales and for earthquake numbers so large to ensure that the largest earthquakes are sampled.

The ETAS model, unlike Vere-Jones model, lacks self-similarity due to both the non-generic condition $n = 1$ for criticality and the existence of a minimum event magnitude m_0 which introduces a characteristic magnitude scale.

C. The self-similar Vere-Jones model: $d > 0$ and $a = \beta$

Vere-Jones self-similar ETAS model corresponds to $a = \beta$ and $d > 0$ in (2):

$$\lambda(m, m') = \lambda(m - m') , \quad \lambda(m) = \kappa e^{\beta m - d|m|} .$$

(6)

The condition $a = \beta$ expresses a balance between the exponential small probability of finding a large mother and its exponentially large productivity. When $a = \beta$ (and in absence of the effect of d), each event magnitude range $[m, m + dm]$ contributes equally to other event triggering, and, in particular, small events are as important to event triggering as are larger ones, a property which seems to be approximately true for earthquakes [18, 19].

In the standard ETAS model, the case $a = \beta$ is not possible without the introduction of both an ultra-violet
cut-off \(m_0\) and an additional infra-red cut-off \(m_{\text{max}}\), truncating the Gutenberg-Richter distribution \(24, 25, 26\), which are necessary in order to obtain non-diverging sequences. In Vere-Jones self-similar ETAS model, the condition \(a = \beta\) is made possible without cut-offs by the introduction of the parameter \(d > 0\). Physically, expression \(\Theta(z; m, p)\) (together with the standard Gutenberg-Richter law) can be interpreted by the existence of two branches for the Gutenberg-Richter distribution of the \(\sim e^{\beta m}\) events triggered by a given mother of magnitude \(m\):

1. daughters with magnitude \(m' < m\) have their magnitudes \(m'\) distributed according to \(\sim e^{-(\beta-d)m'}\) while

2. daughters with magnitude \(m' > m\) have their magnitudes \(m'\) distributed according to \(\sim e^{-(\beta+d)m'}\).

The former (respectively latter) distribution branch of daughter magnitudes ensures that there are less small (respectively large) daughters than with \(d = 0\). This is the origin, as we will make clear below quantitatively, of the possibility to avoid any cut-off \(m_0\) or \(m_{\text{max}}\) and still obtain a convergent model. This is a first reason why Vere-Jones’ model \(\Theta(z; m, p)\) is self-similar. As we shall see below, the other reason is that there is a finite range of parameters for which Vere-Jones is effectively critical.

III. GENERAL THEORETICAL FORMULATION

A. From Bernoulli to Poisson Statistics

One of the main ingredients of both the standard ETAS and Vere-Jones’ models of aftershocks triggering is the Poissonian statistics governing the number of first generation aftershocks triggered by some spontaneous source of given magnitude \(m\). In order to obtain a deeper insight into the origin of the underlying Poissonian law, we start with the more general Bernoulli approach to the description of aftershocks triggering statistics.

Consider the Bernoulli version of a generalized model in which each spontaneous source of magnitude \(m\) has \(p\) independent “possibilities” to trigger some aftershock. The probability that an aftershock of magnitude in the interval \([m', m' + dm']\) is actually triggered along one of these \(p\) paths is denoted \(D(m, m', p) dm'\). Keeping the approach general, we allow \(D(m, m', p)\) to depend on the source magnitude \(m\), the number of channels \(p\) and the triggered magnitude \(m'\) in an arbitrary way, in all what follows in this section. The next section will then apply our formalism to the specifications \(2\) and \(6\), using the standard ETAS version \(3\) as a reference and point of comparison.

The generating probability function (GPF) of the random number of first generation aftershocks, obeying to the above Bernoulli statistics, is given by

\[
\Theta_1(z; m, p) = \left[1 + \int_{m_0}^{\infty} dm' D(m, m', p)(z - 1)^p\right]^p.
\]

(7)

Here, \(m_0\) is the smallest magnitude of possible triggered aftershocks, which will be pushed to \(-\infty\) in the self-similar Vere-Jones version.

An essential assumption of the models studied here is that triggered events of first generation act themselves as sources which trigger their own aftershocks according to the same laws. Let us call \(\Theta(z; m', p)\) the GPF of the random number of events of all generations triggered by a first-generation daughter with magnitude \(m'\). Then, the GPF of the number of aftershocks triggered over all generations by a given mainshock of magnitude \(m\) is solution of

\[
\Theta(z; m, p) = \left[1 + \int_{m_0}^{\infty} dm' D(m, m', p)(z \Theta(z; m', p) - 1)^p\right]^p,
\]

(8)

obtained from (7) by replacing \(z\) by \(z \Theta(z; m', p)\) to express that each branch has the same statistical cascade properties.

Consider the limiting intensity of aftershocks triggering

\[
\lim_{p \to \infty} pD(m, m', p) = \lambda(m, m'),
\]

(9)

and its associated Poissonian GPF limit

\[
\Theta(z; m) = \lim_{p \to \infty} \Theta(z; m, p).
\]

(10)

Expression (9) leads to the nonlinear integral equation

\[
\Theta(z; m) = \exp \left[\int_{m_0}^{\infty} dm' \lambda(m, m')(z \Theta(z; m', p) - 1)^p\right].
\]

(11)

It will be useful in the sequel to study the statistics of those triggered events with magnitude larger than some threshold \(\mu\), whose corresponding GPF for their numbers is denoted \(\Theta(z; m, \mu)\). The equation for \(\Theta(z; m, \mu)\) is obtained from (11) by replacing \(\Theta(z; m, p)\) by \(\Theta(z; m, \mu)\) in both the l.h.s. and r.h.s. and by replacing \(z\) in the r.h.s. by

\[
H(\mu - m') + z H(m' - \mu) = \begin{cases}
1 & \text{if } m' < \mu \\
0 & \text{if } m' > \mu
\end{cases}
\]

(12)

where \(H(x)\) is unit step function, equal to 1 if \(x > 0\) and 0 otherwise. Replacing \(z\) by (12) just means that
only those first generation aftershocks, whose magnitudes are larger than \(\mu \), are counted. Their subsequent cascade above the magnitude level \(\mu \) is accounted for by replacing \(\Theta(z;m') \) by \(\Theta(z;m',\mu) \). This leads to

\[
\Theta(z;m,\mu) = \exp \left[\int_{m_0}^{\infty} dm' \lambda(m,m') (\Theta(z;m',\mu) - 1) + (z-1) \int_{\mu}^{\infty} dm' \lambda(m,m') \Theta(z;m',\mu) \right].
\]

(13)

B. Distribution of events magnitudes

One of the simplest and most informative statistical characteristics of branching processes is the average number \(\langle R \rangle (m,\mu) \) of events of magnitude above \(\mu \) triggered by some spontaneous source of magnitude \(m \):

\[
\langle R \rangle (m,\mu) = \left. \frac{d\Theta(z;m,\mu)}{dz} \right|_{z=1} .
\]

(14)

Using expression (13) in (14), we find that \(\langle R \rangle (m,\mu) \) satisfies to linear integral equation

\[
\langle R \rangle (m,\mu) = \int_{m_0}^{\infty} \lambda(m,m') \langle R \rangle (m',\mu) dm' + \langle R_1 \rangle (m,\mu) ,
\]

(15)

where

\[
\langle R_1 \rangle (m,\mu) = \int_{\mu}^{\infty} \lambda(m,m') dm'.
\]

(16)

is the average number of first generation aftershocks with magnitudes larger than \(\mu \).

We assume that the spontaneous sources constitute a stationary point process with Poisson statistics, with an average number of spontaneous sources during a time interval \(\tau \) equal to \(\omega \tau \). Let us furthermore denote \(p(m) \) the probability density function (PDF) of the magnitude of the random sources. Then, the total average number of events (including the spontaneous sources and all their offsprings over all generations) during the time interval \(\tau \) with magnitudes larger than \(\mu \) is equal to

\[
\omega \tau [\langle R \rangle (\mu) + Q(\mu)] ,
\]

(17)

where

\[
\langle R \rangle (\mu) = \int_{m_0}^{\infty} (R)(m,\mu)p(m) dm
\]

(18)

is the average number of events of all generations with magnitudes larger than or equal to \(\mu \) which are triggered by the spontaneous sources of all possible magnitudes above some lower threshold \(m_* \) defined as the smallest magnitude of spontaneous events. In what follows, we assume that the spontaneous sources have their magnitudes distributed according to a GR law

\[
p(m) = \chi e^{-\chi (m-m_*)} H(m-m_*) ,
\]

(19)

with an exponent \(\chi \) possibly distinct from those of triggered events. The complementary cumulative distribution function (CDF) of spontaneous sources magnitudes then reads

\[
Q(\mu) = \int_\mu^{\infty} p(m) dm = e^{-\chi (\mu-m_*)} , \quad \mu > m_* .
\]

(20)

It is natural to introduce a magnitude threshold \(m_d \) of catalog completeness, i.e., only events with \(m > m_d \) are observed. Then, the total fraction of events above magnitude \(\mu \) among all observable events in the time window \(\tau \) is given by the following normalization of (17)

\[
F(\mu, m_d) = \frac{\langle R \rangle (\mu) + Q(\mu)}{\langle R \rangle (m_d) + Q(m_d)} .
\]

(21)

\(F(\mu, m_d) \) can be interpreted as the complementary CDF of magnitudes of observable events. The corresponding PDF of observable events is then

\[
f(\mu, m_d) = \frac{g(\mu) + p(\mu)}{\langle R \rangle (m_d) + Q(m_d)} , \quad g(\mu) = \frac{d\langle R \rangle (\mu)}{d\mu} .
\]

(22)

Expression (17) also allows us to obtain the fraction of triggered events

\[
n(\mu) = \frac{\langle R \rangle (\mu)}{\langle R \rangle (\mu) + Q(\mu)} ,
\]

(23)

which is nothing but the average branching ratio \(\chi \).

In the sequel, we apply relations (22) and (23) to the standard ETAS model (6) and to the self-similar Vere-Jones model (4).

IV. CRITICALITY CONDITION AND PHASE DIAGRAM

A. General maximum eigenvalue condition

Before going further, it is important to derive the conditions under which the branching process is not explosive, i.e., for which the stationary spontaneous sources point process generates a stationary sequence of triggered events. The condition derives in general from an eigenvalue problem (see [28] and references therein). In the present case, it is known that equation (15) gives bounded stationary solutions if the largest eigenvalue \(\rho \) of the corresponding homogeneous equation

\[
\rho R(m) = \int_{m_0}^{\infty} \lambda(m,m') R(m') dm'
\]

(24)
is smaller than 1 ($\rho < 1$). This corresponds to the subcritical regime. The condition $\rho = 1$ defines the critical regime and $\rho > 1$ gives the explosive super-critical regime. In our analysis of the eigenvalue problem of equation (24), we shall restrict to physically meaningful eigenfunctions $R(m)$ which are monotonically increasing functions growing no faster than the productivity law $\sim e^{\alpha m}$:

$$\lim_{m \to \infty} R(m)e^{-\alpha m} < \infty .$$ (25)

An important point should be noted in relation with Vere-Jones’s model. While in the standard ETAS model defined in section II B, the total number of triggered events above any arbitrary magnitude m_d diverges at criticality, we will see that the average total number $\langle R \rangle(m_d)$ of observable events is finite in the critical regime of Vere-Jones’ model, while the average total number $\langle R \rangle(m_d \to -\infty)$ is itself infinite. Thus, while the process is critical when considering all events of any magnitude, it becomes subcritical for events above a finite threshold m_d. The hallmark of such subcritical regime is that the fraction of observable events is smaller than 1, i.e. $n(\mu) < 1$ for all $\mu > m_d$.

B. Criticality condition for the standard ETAS model

For the standard ETAS model defined in section II B, equation (24) reduces to

$$\rho R(m) = \kappa' e^{\alpha(m-m_0)} \int_{m_0}^{\infty} e^{-\beta(m'-m_0)} R(m') dm' .$$ (26)

Let us look for a solution of this equation in the form

$$R(m) = C e^{\delta m} .$$ (27)

Substituting (27) in (26) shows that $C \neq 0$ if and only if $\delta = \alpha$ while the corresponding eigenvalue is

$$\rho = \kappa \int_{m_0}^{\infty} e^{(\alpha-\beta)m} dm = \frac{\kappa' \beta}{\beta - \alpha} ,$$ (28)

which is nothing but the average branching ratio ρ defined in (5). This recovers the known fact [4] that the condition $\rho = n < 1$ corresponds to the sub-critical regime associated with the solution

$$\langle R \rangle(m, \mu) = \frac{\kappa'}{1 - \rho} e^{\alpha(m-m_0)-\beta(\mu-m_0)} ,$$ (29)

of the non-homogeneous equation (15).

Substituting (29) and (19) into (18) and (22), and assuming for simplicity that $m_s = m_0$, we obtain the distribution of the PDF of the magnitudes μ of observable events

$$f(\mu, m_d) = \frac{\langle R \rangle \beta e^{-\beta(\mu-m_0)} + \chi e^{-\chi(\mu-m_0)}}{(R)e^{-\beta(m_d-m_0)} + e^{-\chi(m_d-m_0)}} H(\mu - m_d) ,$$ (30)

where

$$\langle R \rangle = \langle R \rangle(m_0) = \frac{\rho'}{1 - \rho} , \quad \rho' = \frac{\kappa' \chi}{\chi - a}$$ (31)

is the average of the total number of aftershocks triggered by one spontaneous source of arbitrary magnitude. In the particular case where the GR laws for the magnitudes of the spontaneous sources and of the first generation aftershocks are the same, i.e. if $\chi = \beta$, then the PDF of the magnitudes of observable events given by (30) reduces to the pure GR law $f(\mu, m_d) = \beta e^{-\beta(m-m_d)} H(\mu - m_d)$.

Substituting

$$\langle R \rangle(\mu) = \frac{\rho'}{1 - \rho} e^{-\beta(\mu-m_0)} , \quad Q(\mu) = e^{-\chi(\mu-m_0)}$$ (32)

into expression (28) yields

$$n(\mu) = \frac{\rho'}{\rho' + (1 - \rho) e^{(\beta - \chi)(\mu-m_0)}} .$$ (33)

If, as before, $\chi = \beta (\rho' = \rho)$, then $n(\mu)$ does not depend on μ and is equal to the average branching ratio $n = \rho$.

C. Criticality condition for the self-similar Vere-Jones model

For the self-similar Vere-Jones model defined in section II C, the homogeneous equation (24) reduces to

$$\rho R(m) = \int_{-\infty}^{\infty} \lambda(m - m') R(m') dm' ,$$ (34)

where $\lambda(m)$ is given by expression (31). We search again a solution for $R(m)$ of the form (27), which yields the following eigenvalue $\rho(\delta)$ as a function of δ (shown in figure 1):

$$\rho(\delta) = \int_{-\infty}^{\infty} \lambda(m) e^{-\delta m} dm = \frac{2\kappa d}{\kappa^2 d^2 - (\delta - \beta)^2}$$ (35)

where

$$s = \frac{2\kappa}{d}$$ (36)

is going to play an important and physically intuitive role in the sequel. Note the major novelty compared...
with the standard ETAS model: here, we obtain a continuous spectrum of eigenvalues $\rho(\delta)$ rather that the unique one \[\rho(\delta) = 1\] associated with $\delta = a$ for the ETAS model.

In expression \[\rho(\delta) = 1 - (\delta - \beta)^2/d^2 \leq 1,\] there is a solution with $\rho(\delta) \leq 1$ associated with the sub-critical and critical regimes only for $s \leq 1$. For $s > 1$, all eigenvalues $\rho(\delta)$ are larger than 1, which corresponds to the explosive super-critical regime. We show below that the parameter s plays the role of an average branching ratio.

For $s \leq 1$, the continuous spectrum of eigenvalues is indexed by δ spanning the interval $[\beta - h, \beta]$, for which $\rho(\delta) \leq 1$ characterizes the sub-critical and critical regimes. The exponent h is determined by the condition $\rho(\beta - h) = 1$, whose geometrical determination is represented in figure 1. We rule out the possibility $\delta > \beta$, which leads to unphysical solutions as shown below. Given this spectrum of eigenvalues, the growth of $R(m)$ given by \[R(m) = e^{(\beta - h)m}, \quad h = d\sqrt{1 - s}. \tag{37}\]

We can now describe the phase diagram of the self-similar Vere-Jones model, shown in figure 2.

- For $s > 1$, all eigenvalues $\rho(\delta)$ are larger than 1, corresponding to the explosive super-critical regime.

- For $s < 1$ and $d < \beta$, we accept \[\rho(\delta) \] as a physically appropriate eigenfunction only if it is monotonically increasing with respect to m, that is, if $0 \leq h \leq \beta$. This leads to the condition

\[\frac{1}{2} \left(d - \beta^2 \right) < \kappa < \frac{d}{2}. \tag{38}\]

In the range \[\kappa \] of parameters, there is always a solution, whatever the value $0 \leq s \leq 1$ of the form \[\rho(\delta) \] associated with the unit eigenvalue. This is the critical regime, which is associated with a finite range of parameters $0 \leq s \leq 1$ and $0 \leq h \leq \beta$ corresponding to the domain \[\rho(\delta) \], indicated in figure 2.

- For

\[0 < \kappa < \frac{1}{2} \left(d - \beta^2 \right), \tag{39}\]

which is only possible if $d > \beta$, we obtain $h > \beta$, that is, $\delta < 0$, which corresponds to a seismic activity which is a decreasing function of the mother magnitude. This is the hallmark of the subcritical regime. We will see below that the average of the total number of offsprings is finite in this sub-critical regime.

Figure 2 summarizes this phase diagram and delineates the domains of existence of the sub-critical, critical and super-critical regimes in the plane of parameters (κ, d) for a given β.

The physical meaning of this classification is obtained by examining the equation for the average number $\langle R \rangle(m, \mu)$ of aftershocks which are triggered by some mainshock with magnitude m. This equation is expression \[\langle R \rangle(m, \mu) \] written for the self-similar Vere-Jones model:

\[\langle R \rangle(m, \mu) = \int_{-\infty}^{\infty} \lambda(m - m')\langle R \rangle(m', \mu)dm' + \langle R \rangle_1(m, \mu), \tag{40}\]

where

\[\langle R \rangle_1(m, \mu) = \int_{-\infty}^{\infty} \lambda(m - m')dm' \tag{41}\]

is the average of the number of corresponding first-generation aftershocks. Let us introduce the auxiliary function

\[S(m, \mu) = -\frac{\partial \langle R \rangle(m, \mu)}{\partial \mu}. \tag{42}\]

Using \[\langle R \rangle(m, \mu) \] is solution of

\[S(m, \mu) = \int_{-\infty}^{\infty} \lambda(m - m')S(m', \mu)dm' + \lambda(m - \mu). \tag{43}\]

For its structure, it is clear that the solution of this equation depends only on the difference between m and μ, so that we write

\[S(m, \mu) = S(m - \mu). \tag{44}\]

The value of $\langle R \rangle(m, \mu)$ is obtained from $S(m, \mu)$ by using

\[\langle R \rangle(m, \mu) = \int_{-\infty}^{\infty} S(m, \mu')dm' = \int_{-\infty}^{m-\mu} S(x)dx. \tag{45}\]

Let us solve the equation

\[S(m) = \int_{-\infty}^{\infty} \lambda(m - m')S(m')dm' + \lambda(m). \tag{46}\]

for the auxiliary function $S(m)$. Applying the two-sided Laplace transform to this equation yields an equation for the Laplace transform

\[\hat{S}(u) = \int_{-\infty}^{\infty} S(m)e^{-um}dm \tag{47}\]

which takes the following form:

\[\hat{S}(u) = \frac{\hat{\lambda}(u)}{1 - \lambda(u)}. \tag{48}\]
The Laplace transform $\hat{\lambda}(u)$ of the kernel $\lambda(m)$ given by \([40]\) can be explicitly calculated as
\[
\hat{\lambda}(u) = \frac{2\kappa d}{d^2 - (u - \beta)^2}.
\] (49)
Substituting expression [49] into [48] yields
\[
\hat{S}(u) = \frac{2\kappa d}{h^2 - (u - \beta)^2}, \quad h^2 = d^2 - 2\kappa d.
\] (50)
Its inverse Laplace transform
\[
S(m) = \frac{1}{2\pi i} \int_{\beta-i\infty}^{\beta+i\infty} \hat{S}(u)e^{um} du
\] (51)
gives finally
\[
S(m) = \frac{\kappa d}{h} e^{\beta m - h|m|}.
\] (52)

We can now use [62] in [145] to characterize the average of the number of aftershocks in the sub-critical [39], critical [38] and super-critical ($s > 1$) regimes.

- In the subcritical case $h > \beta$, we can take $\mu \to -\infty$ and still obtain a finite limit
\[
\langle R \rangle = \lim_{\mu \to -\infty} \langle R \rangle(m, \mu) = \int_{-\infty}^{\infty} S(x) dx = \frac{2\kappa d}{h^2 - \beta^2} < \infty
\] (53)
for the average of the total number of aftershocks of all generations triggered by an arbitrary spontaneous source. Thus, in the subcritical regime, the averages of total number of both observable and unobservable events are finite.

- In the critical regime [38], we find that the average $\langle R \rangle(m, \mu)$ of the total number of events above any finite magnitude threshold μ is finite. In contrast, the average of the total number of aftershocks (including the unobservable tiny events of magnitudes $m' \to -\infty$) becomes infinite: $\langle R \rangle = \infty$. It is remarkable that we have at the same time $\langle R \rangle(m, \mu)$ finite for any $\mu > -\infty$ and $\langle R \rangle = \infty$ in real data, we only observe $\langle R \rangle(m, \mu)$. The underlying criticality is thus observable: due to the special cancellations in the self-similar Vere-Jones model, the infinite swarm of tiny events form an unobservable sea of activity, whose observable consequences lie in the finite activity at finite magnitudes. Thus, in a sense, this critical regime [38] can actually be decomposed into an effective sub-critical regime for $s < 1$ and a critical point reached at $s = 1$ for observable events. Indeed, as $s \to 1$ (i.e. if $h \to 0$), expressions [49] and [52] for the average number of observable aftershocks triggered by an arbitrary spontaneous source tends to infinity. This shows that the critical regime for observable events corresponds to $s = 1$ and confirms the interpretation of s as the effective branching ratio for observable events.

- As $s \to 1$ ($h \to 0$), $\langle R \rangle(m, \mu)$ tends to infinity for any m and μ, confirming that the super-critical regime corresponds to $s > 1$.

D. Criticality condition for the generalized Vere-Jones ETAS model

We now analyze the critical conditions for the generalized Vere-Jones ETAS model defined by expression (2) in section II A. It is convenient for the analysis to represent the intensity $\lambda(m, m')$ in (2) by
\[
\lambda(m, m') = e^{a(m-m')} \nu(m, m'),
\] (54)
where
\[
\nu(m, m') = \kappa e^{(a-\beta)m-d|m-m'|}.
\] (55)
Let us introduce the auxiliary function
\[
\mathcal{U}(m) = \mathcal{R}(m)e^{-am},
\] (56)
and rewrite the homogeneous equation (24) in the form
\[
\rho \mathcal{U}(m) = \int_{m_0}^{\infty} \mathcal{U}(m')\nu(m, m')dm'.
\] (57)
From the definition of $\nu(m, m')$ in (53), we see that the following equality holds:
\[
\frac{d^2 \nu(m, m')}{dm^2} = d^2 \nu(m, m') - 2\kappa d e^{(a-\beta)m} \delta(m' - m),
\] (58)
where $\delta(x)$ is the Dirac-delta function. By differentiating equation (57) twice with respect to m, the identity (58) leads to the condition that, if $\mathcal{U}(m)$ is a solution of Eq. (57), then it should also satisfy the differential equation
\[
\rho d^2 \mathcal{U}(m) = \rho d^2 \nu(m, m') \mathcal{U}(m), \quad m > m_0.
\] (59)
Thus, to determine the eigenvalue of equation (57), our strategy is to search for a solution of equation (55), which at the same time satisfies the integral condition
\[
\rho \mathcal{U}(m_0) = \kappa \int_{m_0}^{\infty} \mathcal{U}(m)e^{(a-\beta)m-d|m-m_0}dm.
\] (60)
which is derived from (57). It is straightforward to check that this strategy leads to solving (55). In addition, we
need to impose that the eigenfunction $R(m)$ is monotonically increasing as a function of m such that the condition (20) is satisfied. In terms of the auxiliary function $U(m)$, this implies that

$$\lim_{m \to \infty} U(m) < \infty.$$ \hspace{1cm} (61)

Thus, our problem is to find a solution of (59) with the two conditions (60) and (61).

Before using this formalism for the generalized Vere-Jones ETAS model, it is instructive to see how it performs on the standard ETAS model (corresponding to $d = 0$). For $d = 0$, equation (59) reduces to

$$\rho \frac{d^2 U(m)}{dm^2} = 0.$$ \hspace{1cm} (62)

Its solution satisfying condition (61) is $U = C = \text{const}$. Substituting it into the integral relation (60) recovers the known expression for the unique eigenvalue equal to the average branching ratio:

$$\rho = \frac{\kappa e^{(a-\beta)m_0}}{\beta - a} = \frac{\kappa}{\gamma - 1} \kappa', \quad \gamma = \frac{\beta}{a}. \hspace{1cm} (63)$$

The critical regime corresponds to the set of parameters obeying

$$\kappa' = \mathcal{K}(a, \beta) = 1 - \frac{a}{\beta}, \hspace{1cm} (64)$$

while the domain of subcritical regime corresponds to $\kappa < \mathcal{K}(a, \beta)$. Similarly, to explore the condition for criticality in the generalized Vere-Jones ETAS model, we just need to put $\rho = 1$ in (59) and search for the function

$$\kappa = \mathcal{K}(a, \beta, d) \hspace{1cm} (65)$$

such that the homogeneous equation

$$\frac{d^2 U(m)}{dm^2} = \left[d^2 - 2\kappa d e^{(a-\beta)m} \right] U(m), \quad m > m_0, \hspace{1cm} (66)$$

has a nontrivial solution increasing with m, which satisfies the integral equality (60) expressed for $\rho = 1$. The sub-critical regime then corresponds to the set of parameters such that $\kappa < \mathcal{K}(a, \beta, d)$.

In order to solve (66) for the critical case $\rho = 1$, we introduce the new function $v(y)$ such that

$$U(m) = v(y), \hspace{1cm} (67)$$

with

$$y = \rho e^{-(m-m_0)d/\epsilon}, \quad \varrho = \frac{\sqrt{8\kappa' d \beta}}{\beta - a}, \quad \epsilon = \frac{2d}{\beta - a}. \hspace{1cm} (68)$$

Note that the parameter ϵ quantifies the transition from the ETAS model (obtained for $\epsilon = 0$) to the self-similar Vere-Jones model (obtained for $\epsilon \to +\infty$). For small (resp. large) ϵ, the generalized Vere-Jones ETAS model is close to the standard ETAS (resp. self-similar Vere-Jones) model. Equation (66) for $U(m)$ translates into the following Bessel equation for $v(y)$:

$$\varrho^2 \frac{d^2 v(y)}{dy^2} + y \frac{dv(y)}{dy} + \left(y^2 - \epsilon^2 \right) v(y) = 0. \hspace{1cm} (69)$$

It follows from (61) and from the definition (68) of y that the solution of (66) has to satisfy

$$\lim_{y \to +0} v(y) < \infty. \hspace{1cm} (70)$$

The integral condition (60) imposes in addition that

$$v(\varrho) = \frac{1}{2} \epsilon^{-1} \varrho^{-\epsilon} \int_0^\varrho v(y) y^{\epsilon+1} dy. \hspace{1cm} (71)$$

The solution of Eq. (66) has the form of a Bessel function

$$v(y) = A J_{\epsilon}(y), \hspace{1cm} (72)$$

where A is a constant. Substituting (72) into (71) and using the known recursion relation

$$\int y^{\epsilon+1} J_{\epsilon}(y) \, dy = y^{\epsilon+1} J_{\epsilon+1}(y) \hspace{1cm} (73)$$

between Bessel functions, we obtain the implicit equation for the variable ϱ

$$J_{\epsilon}(\varrho) = \frac{\varrho}{2\epsilon} J_{\epsilon+1}(\varrho), \hspace{1cm} (74)$$

which determines the set of parameters corresponding to criticality ($\rho = 1$).

Further insight can be obtained by determining the leading behavior of ϱ for small ϵ (quasi-ETAS model) and large ϵ (quasi-self-similar Vere-Jones model). For this, we introduce the new auxiliary parameter

$$\psi = \frac{\varrho}{\epsilon} = \sqrt{\frac{2\kappa' d}{\beta}} \hspace{1cm} (75)$$

and rewrite equation (74) in the form

$$\psi = \frac{2J_{\epsilon}(\epsilon\psi)}{J_{\epsilon+1}(\epsilon\psi)}. \hspace{1cm} (76)$$

For $\epsilon \ll 1$, we use the expansion

$$\frac{2J_{\epsilon}(x)}{J_{\epsilon+1}(x)} \approx \frac{4}{x(1+\epsilon)} - \frac{x}{2 + \epsilon} \hspace{1cm} (x \ll 1) \hspace{1cm} (77)$$
which gives the solution
\[
\psi \simeq \sqrt{\frac{2}{\epsilon}} (2 + \epsilon) \quad (\epsilon \ll 1). \tag{78}
\]
In term of the original parameters \(\kappa, a\) and \(d\), this gives
\[
\kappa' \simeq 1 - \frac{a}{\beta} + \frac{d}{\beta} \tag{79}
\]
as the relation expression the critical regime \(\rho = 1\) of the generalized Vere-Jones ETAS model. Expression \(79\) differs from its counterpart \([24]\) obtained for the standard ETAS model by the correction term \(d/\beta\), which describes a kind of broadening of the subcritical regime due to the magnitude localization effect \((d > 0)\).

In the other limit \(\epsilon \gg 1\) corresponding to the quasi-Vere-Jones model, the solution of the criticality condition \([27]\) can also be obtained asymptotically by expanding the Bessel functions in the neighborhood of their first zero, i.e., by searching for \(\epsilon \rho\) close to \(\nu = \nu(\epsilon)\) defined by \(J_\nu(\nu(\epsilon)) = 0\). The corresponding expansions in Taylor series of the Bessel functions are
\[
J_\nu(x) \simeq J'_\nu(\nu-x) , \quad J_{\nu+1}(x) \simeq J_{\nu+1}(\nu) + J'_{\nu+1}(\nu)(x-\nu) . \tag{80}
\]
It is well-known from the theory of Bessel functions that
\[
\psi \simeq \frac{2\nu(\nu - \epsilon\psi)}{\nu + (\epsilon + 1)(\nu - \epsilon\psi)} . \tag{82}
\]
Solving this equation in \(\psi\) yields
\[
\psi \simeq \frac{\nu(\epsilon)}{1 + \epsilon} \quad (\epsilon \gg 1) . \tag{83}
\]
Using the known asymptotic relation
\[
\nu(\epsilon) \simeq \epsilon + 1.856 \epsilon^{1/3} + 1.033\epsilon^{-1/3} \tag{84}
\]
for the first-zero of the Bessel function of order \(\epsilon\), the criticality condition formulated in terms of the original parameters \(\kappa, a, d\) then reads
\[
\kappa' \simeq \frac{d}{2\beta} + \frac{0.58}{\beta} d^{1/3} (\beta - a)^{2/3} . \tag{85}
\]
The first leading term \(\kappa' \approx \frac{d}{2\beta}\) recovers the critical condition \(s = 2\kappa/d = 1\) for the self-similar Vere-Jones model. The last term in the r.h.s. of \(85\) thus provides the first correction to the exactly self-similar Vere-Jones model when \(a \neq \beta\). Figure 3 plots the numerical solution of equation \(78\) as a function of \(\epsilon\) together with its two asymptotics regimes \([78]\) and \([83]\) with \([84]\).

V. DISTRIBUTION OF EARTHQUAKE MAGNITUDES FOR VERE-JONES’S SELF-SIMILAR MODEL

The Gutenberg-Richter distribution of earthquake magnitudes is perhaps the most ubiquitous and documented statistical property of earthquake catalogs. It is thus of great interest to investigate the prediction of Vere-Jones self-similar model of this quantity. We analyze in turn two versions of this statistics. first when the magnitude of the mainshock is known and second when summing over all possible magnitudes as in a large catalog. Both forms of the distributions have been investigated in the empirical literature.

A. Distribution of the magnitude of aftershocks triggered by a mainshock of given magnitude \(m\)

Reasoning as in section \([12,13]\) shows that the PDF’s of the magnitudes \(\mu\) of first-generation aftershocks and of all aftershocks of all generations of a mainshock of magnitude \(m\) are proportional respectively to \(S_1(m, \mu)\) and \(S(m, \mu)\) given by
\[
S_1(m, \mu) = -\partial(R_1(m, \mu)) / \partial \mu , \quad S(m, \mu) = -\partial(R(m, \mu)) / \partial \mu . \tag{86}
\]
Their expressions are
\[
S_1(m, \mu) = \kappa e^{-\beta(\mu-m) - d|\mu-m|} , \tag{87}
\]
\[
S(m, \mu) = \frac{\kappa d}{h} e^{-\beta(\mu-m) - h|\mu-m|} . \tag{88}
\]
Thus, the two branches \(\mu < m\) with exponent \(\beta - d\) and \(\mu > m\) with exponent \(\beta + d\) of the PDF \(S_1(m, \mu)\) of first-generation aftershocks are renormalized in two other branches of the same form, with \(d\) renormalized into \(h = d\sqrt{1-s}\). The main point is that only \(S(m, \mu)\) is observed in real catalogs since one does not have the luxury of being able to distinguish between the different generations of triggered aftershocks. Expression \(88\) shows that the PDF \(S(m, \mu)\) may be quite close to a single power law, even if the difference between the two branches of \(S_1(m, \mu)\) is significant, as long as the critical parameter \(s\) is close to 1 (for \(s \rightarrow 1\), \(S(m, \mu) \sim e^{-\beta\mu}\) and is a pure power law). In other words, an observable PDF of aftershock magnitudes close to a single power law is compatible with strong deviations from a pure power law for first-generation events, due to the renormalization effect over all the generations which effectively mixes up the two branches sufficiently close to criticality \(s \rightarrow 1\). Thus, as in previous studies of the standard ETAS model \([10,11]\), comparison between the data and these predictions suggests that the earth is operating close to a critical point.
B. Distribution of earthquake magnitudes over all events

The Gutenberg-Richter law for the distribution of the magnitudes of earthquakes is generally a statistical property established for a large space-time-magnitude domain, without restrictions. It is thus interesting to ask what Vere-Jones’ self-similar model predicts for the distribution of magnitude of a large stationary sequence of events triggered by a steady-state influx of spontaneous sources. The answer is given by expression (90) for $f(\mu, m_d)$. We thus need to make explicit the dependence of $f(\mu, m_d)$ on the parameters of the model. This problem depends on four key parameters: χ is the exponent for spontaneous sources defined in (19); β is a crucial parameter in the definition of the PDF of magnitudes of first-generation aftershocks; h and s appear in the condition for criticality.

Let us first investigate the contribution $g(\mu)$ of the events triggered by the spontaneous source. For Vere-Jones’ self-similar model, we have

$$g(\mu) = \int_{m_s}^{\infty} S(m - \mu)p(m)dm . \quad (89)$$

Substituting (19) and (52) in (89) yields

$$g(\mu) = p(\mu)K(m_s - \mu, \beta - \chi) , \quad (90)$$

where $K(m_s - \mu, \beta - \chi)$ describes the deviation of the PDF of the magnitudes of triggered events from the PDF of the magnitudes of the spontaneous sources. This function is given by

$$K(y, z) = \frac{\kappa d}{h} \int_{-\infty}^{\infty} e^{x-h|z|}dx . \quad (91)$$

Its explicit expression is

$$K(y, z) = \frac{2\kappa d}{h^2 - z^2} - \frac{\kappa d}{h(h + z)} e^{(z+h)y} . \quad (92)$$

The corresponding complementary cumulative distribution, i.e., the total number of triggered events with magnitude larger than μ, is equal to

$$\langle R \rangle(\mu) = \int_{\mu}^{\infty} g(m)dm = \int_{\mu}^{\infty} p(m)K(m_s - m, \beta - \chi)dm . \quad (93)$$

We need to distinguish three cases as $g(\mu)$ given by (90) is qualitatively different for different values χ, β and h.

- For $\chi < \beta - h$, $g(\mu) = \infty$ for any μ. This results from the fact that the spontaneous sources with large magnitudes dominate the production of triggered events in this case. This super-critical regime can be tamed with the introduction of an upper magnitude cut-off m_{max} but is not investigated further here. The limiting case $\chi = \beta - h$ gives a criticality condition for the observable events in the framework of the self-similar Vere-Jones model.

 - Consider the regime

$$\beta - h < \chi < \beta + h , \quad (94)$$

and the limit $m_s \to -\infty$ corresponding to $y \to -\infty$, for which $K(y, z)$ has the following asymptotic dependence

$$K(y, z) \simeq \frac{2\kappa d}{h^2 - z^2} , \quad y \to -\infty . \quad (95)$$

The corresponding asymptotic expressions for the PDF $g(\mu)$ given by (90) and the complementary cumulative distribution given by (93) are

$$g(\mu) \simeq \frac{2\kappa d}{h^2 - z^2}p(\mu) , \quad \langle R \rangle(\mu) \simeq \frac{2\kappa d}{h^2 - z^2}Q(\mu) . \quad (96)$$

Substituting (90), (19) and (20) into (22) yields the distribution of the magnitudes of all observable events (in the limit $m_s \to -\infty$)

$$f(\mu, m_d) = \chi e^{-\chi(m - m_d)} \quad (\mu > m_d) . \quad (97)$$

Remarkably, in this regime (22), the observed Gutenberg-Richter distribution is predicted to reveal only the exponent of the distribution of the spontaneous sources and to be blind to the exponents β, d of the distribution of triggered events. In other words, the PDF of the magnitudes of all observed events reproduces that of the spontaneous sources given by (19).

Substituting (20) into (22) yields the fraction of triggered events whose magnitudes are larger than μ, among all analogous events,

$$n(\mu) = n = \frac{2\kappa d}{d^2 - (\beta - \chi)^2} , \quad (98)$$

which is found independent of μ. If the same distribution of magnitudes describes the spontaneous sources and the triggered events ($\beta = \chi$), then $n = s$. Thus, the critical regime corresponds to $s = 1$, confirming the interpretation of s as equivalent to the critical branching ratio of Vere-Jones’ self-similar model. However, if $\beta \neq \chi$ and $|\beta - \chi| \to h$, then we obtain $n \to 1$ even for $s < 1$ ($h > 0$): essentially all the events are triggered.

- Consider the regime

$$\chi > \beta + h . \quad (99)$$
In this case, the function K is closely approximated by its asymptotic behavior

$$K(y, z) \simeq -\frac{\kappa d}{h(h + z)} e^{(z + h)y} .$$

(100)

The corresponding asymptotic behaviors of $g(\mu)$ given by [50] and $(R)(\mu)$ given by [53] for large $\mu - m_s$ are

$$g(\mu) \simeq \frac{\kappa d\chi}{h(\chi - \beta - h)} e^{-(\beta + h)(\mu - m_s)}$$

(101)

and

$$(R)(\mu) \simeq \frac{\kappa d\chi}{h(\chi - \beta - h)(\beta + h)} e^{-(\beta + h)(\mu - m_s)} .$$

(102)

Substituting these two expression into [22] and [28] yields

$$f(\mu, m_d) \simeq (\beta + h)e^{-(\beta + h)(\mu - m_d)} , \quad n \simeq 1 ,$$

(103)

asymptotically for $\mu - m_s \to +\infty$.

VI. SUMMARY AND DISCUSSION

Our results can be summarized as follow.

• We have clarified and quantified the conditions under which the self-similar Vere-Jones model as well as a more general version (which contains both the standard ETAS and Vere-Jones version as special cases) are critical, subcritical and supercritical. Only the subcritical and critical regimes give a stationary process in the presence of a non-zero flux of immigrants.

• We have shown that the concept of an average branching ratio s, defined as the average number of daughters of first generation per mother of magnitudes above a finite magnitude threshold) holds for Vere-Jones model in a broad domain of parameters. Remarkably, s is found independent of the magnitude threshold used. However, the average branching ratio loses its meaning when the magnitude threshold is pushed to $-\infty$ (in other words, when it is removed), as the existence of arbitrary small events allowed in this model dominates and makes the average divergent. Since empirical catalogs are always characterized by a minimum magnitude m_d of completeness, our results apply directly and show that it is possible to have an infinite number of unobservable but still important for the cascade of triggering – events per mother together with a finite average branching ratio for observable events.

• Vere-Jones’ model is defined by the Gutenberg-Richter (GR) magnitude distribution for first-generation events triggered by a source of magnitude m having two branches: for aftershocks magnitudes $m' < m$, the GR exponent is $\beta - d$, while it is $\beta + d$ for $m' > m$. We have shown that, accounting for the contributions of all generations of triggered events, this GR distribution is renormalized into another two-branches law: for aftershocks magnitudes $m' < m$, the renormalized GR exponent is $\beta - h$, while it is $\beta + h$ for $m' > m$, where $0 \leq h = d\sqrt{1 - s} \leq d$ for $0 \leq s \leq 1$.

• Since only the renormalized GR is observable in the analysis of empirical catalogs, the fact that the literature reports a single exponent β for the GR distribution implies that, assuming that Vere-Jones model is a correct description, h is small so that the difference between the exponents $\beta - h$ and $\beta + h$ is within the empirical uncertainties and variations from catalog to catalog. This implies that either d is small or s is close to 1 (condition describing the boundary between the subcritical to supercritical regimes of the Vere-Jones model) or both. We note that the prediction that two distinct exponents h and d characterize respectively the GR law over all generations and the GR law over the first generation of triggered events could be in principle tested empirically using an adaptation of the statistical declustering method developed by Zhuang et al. [16, 17] to Vere-Jones’s model. In this respect, Zhuang et al. [16, 17] have already found that the magnitude distribution of the triggered event depends on the magnitude of its direct ancestor, with an exponent smaller for large events (in contradiction with other less sophisticated studies using more arbitrary space-time windows [18, 19]): this is roughly consistent with our prediction with Vere-Jones’ model. In this respect, Zhuang et al. [16, 17] have already found that the magnitude distribution of the GR distribution is renormalized into another two-branches law: for aftershocks magnitudes $m' < m$, the renormalized GR exponent is $\beta - h$, while it is $\beta + h$ for $m' > m$, where $0 \leq h = d\sqrt{1 - s} \leq d$ for $0 \leq s \leq 1$.

• The distribution of magnitudes over a stationary catalog (obtained by summing over an average steady flow of spontaneous sources) is found universal (independent of β, d and the other parameters) and a pure GR with exponent equal to the exponent χ of the spontaneous sources (which in full generality is allowed to be different from the exponent β involved in the distribution of triggered events) in a large domain of the parameter space. This implies that, if the exponent of the spontaneous sources is different from the exponent of triggered events, the physics of cascades of triggering in the self-similar Vere-Jones model implies that only the former exponent is observable in global catalogs. Again, the statistical declustering method of Zhuang et al. [16, 17] should be able to test this prediction. In this respect, we note that Zhuang et al. find that the background events have a larger exponent than the triggered events: $\chi > \beta$.

Acknowledgments: This work is partially supported by NSF-EAR02-30429, and by the Southern California Earthquake Center (SCEC) SCEC is funded by
NSF Cooperative Agreement EAR-0106924 and USGS Cooperative Agreement 02HQAG0008. The SCEC contribution number for this paper is xxx.

[1] Athreya, K.B. and P. Jagers, eds., Classical and modern branching processes (Springer, New York, 1997).
[2] Sankaranarayanan, G., Branching processes and its estimation theory (Wiley, New York, 1989).
[3] D. Vere-Jone, A class of self-similar random measures, preprint
[4] Helmstetter, A. and D. Sornette, J. Geophys. Res., 107 (B10) 2237, doi:10.1029/2001JB001580 (2002).
[5] Saichev, A., A. Helmstetter and D. Sornette, Pure and Applied Geophysics 162, 1115-1134 (2005).
[6] Ogata, Y., J. Am. Stat. Assoc., 83, 9-27, 1988.
[7] A. Helmstetter, D. Sornette and J.-R. Grasso, J. Geophys. Res., 108 (B10), 2046, doi:10.1029/2002JB001991 (2003).
[8] Helmstetter, A. and D. Sornette, J. Geophys. Res., 108 (B10), 2457 10.1029/2003JB002409 01, 2003.
[9] A. Helmstetter and D. Sornette, Geophys. Res. Lett., 30, 2069, 10.1029/2003GL018186 (2003)
[10] A. Saichev and D. Sornette, in press in Phys. Rev. E [http://arxiv.org/abs/physics/0501102]
[11] Saichev, A. and D. Sornette. Power law distribution of seismic rates: theory and data, in press in Phys. Rev. E [http://arxiv.org/abs/physics/0412043]
[12] Y. Ogata and J. Zhuang, Space-time ETAS models and an improved extension, in press in Tectonophysics (e-print available at [http://bemlar.ism.ac.jp/zhuang/publication.htm].
[13] Y. Ogata, K. Katsura and M. Tanemura, Appl. Statist. 52 (4), 499-509 (2003).
[14] D. Sornette and G. Ouillon, Phys. Rev. Lett. 94, 038501 (2005).
[15] G. Ouillon and D. Sornette, J. Geophys. Res., 110, B04306, doi:10.1029/2004JB003311 (2005).
[16] Zhuang J., Ogata Y. and Vere-Jones D., Journal of the American Statistical Association, 97, 369-380 (2002).
[17] Zhuang J., Ogata Y., Vere-Jones D., Journal of Geophysical Research, 109, No. B5, B05301, doi:10.1029/2003JB002879 (2004).
[18] Helmstetter, A., Phys. Rev. Lett. 91, 10.1103/PhysRevLett.91.058501 (2003).
[19] Helmstetter, A., Y.Y. Kagan and D.D. Jackson, J. Geophys. Res., 110, B05S08, 10.1029/2004JB003286 (2005).
[20] Kagan, Y.Y. and L. Knopoff, J. Geophys. Res., 86, 2853 (1981).
[21] Sornette, D. and M.J. Werner, Constraints on the size of the smallest triggering earthquake from the ETAS Model, Báth’s law, and observed aftershock sequences, in press in J. Geophys. Res. (2005) [http://arxiv.org/abs/physics/0411114].
[22] Sornette, D. and M.J. Werner, Apparent Background Earthquakes Biased by Undetected Seismicity, in press in Geophys. Res. Lett. (2005) [http://arxiv.org/abs/physics/0501049].
[23] D. Sornette and A. Helmstetter, Phys. Rev. Lett. 89 (15) 158501 (2002).
[24] Y.Y. Kagan, Geophys. J. Int. 148, 520541 (2002)/
[25] V.F. Pisarenko and D. Sornette, Pure and Applied Geophysics 161 (4), 839-864 (2004).
[26] V.F. Pisarenko, D. Sornette, and M. Rodkin, Computational Seismology 35, 138-159 (2004).
[27] A. Helmstetter and D. Sornette, Geophys. Res. Lett. 30 (11) doi:10.1029/2003GL017670 (2003).
[28] J. Zhuang, Some applications of point processes in seismicity modelling and prediction, PhD thesis (2002) (e-print available at [http://bemlar.ism.ac.jp/zhuang/publication.htm].
Fig. 1: Dependence of the eigenvalue ρ given by β associated with the eigenfunction $\mathcal{R}(m)$ as a function of δ for the self-similar Vere-Jones model.
Fig. 2: Phase diagram in the plane of parameters (κ, d) at fixed β, for the self-similar Vere-Jones model, showing the domains of existence of the sub-critical \((39)\), critical \((38)\) and super-critical \((s > 1)\) regimes.
Fig. 3: Numerical solution of equation (74) as a function of ϵ defined in (68) compared with its two asymptotics regimes (78) and (83) with (84), giving the condition for criticality $\rho = 1$ for the generalized Vere-Jones ETAS model.