A PTAS for Three-Edge Connectivity in Planar Graphs

Glencora Borradaile and Baigong Zheng
Oregon State University
{glencora, zhengb}@eecs.oregonstate.edu

Abstract

We consider the problem of finding the minimum-weight subgraph that satisfies given connectivity requirements. Specifically, given a requirement $r \in \{0, 1, 2, 3\}$ for every vertex, we seek the minimum-weight subgraph that contains, for every pair of vertices u and v, at least $\min\{r(v), r(u)\}$ edge-disjoint u-to-v paths. We give a polynomial-time approximation scheme (PTAS) for this problem when the input graph is planar and the subgraph may use multiple copies of any given edge. This generalizes an earlier result for $r \in \{0, 1, 2\}$. In order to achieve this PTAS, we prove some properties of triconnected planar graphs that may be of independent interest.

This material is based upon work supported by the National Science Foundation under Grant No. CCF-1252833.
1 Introduction

The survivable network design problem aims to find a low-weight subgraph that connects a subset of vertices and will remain connected despite edge failures, an important requirement in the field of telecommunications network design. This problem can be formalized as the \(I\)-edge connectivity problem for an integer set \(I\) as follows: for an edge-weighted graph \(G\) with a requirement function on its vertices \(r: V(G) \to I\), we say a subgraph \(H\) is a feasible solution if for any pair of vertices \(u, v \in V(G)\), \(H\) contains \(\min\{r(u), r(v)\}\) edge-disjoint \(u\)-to-\(v\) paths; the goal is to find the cheapest such subgraph. In the relaxed version of the problem, \(H\) may contain multiple (up to \(\max I\)) copies of \(G\)’s edges (\(H\) is a multi-subgraph) in order to achieve the desired connectivity, paying for the copies according to their multiplicity; otherwise we refer to the problem as the strict version. Thus \(I = \{1\}\) corresponds to the minimum spanning tree problem and \(I = \{0, 1\}\) corresponds to the minimum Steiner tree problem. Here our focus is when \(\max I \geq 2\).

This problem and variants have a long history. The \(I\)-edge connectivity problem, except when \(I = \{1\}\), is MAX-SNP-hard [12]. There are constant-factor approximation algorithms for the strict \(\{2\}\)-edge-connectivity problem, with the best factor being \(5/4\) due to Jothi, Raghavachari and Varadarajan [15, 18, 19]. Ravi [24] gave a 3-approximation for the strict \(\{0, 2\}\)-edge-connectivity problem and Klein and Ravi [23] gave a 2-approximation for the strict \(\{0, 1, 2\}\)-edge-connectivity problem. For general requirement, Jain [17] gave a 2-approximation for both the strict version and the relaxed version of the problem.

We study this problem in planar graphs. In planar graphs, the \(I\)-edge connectivity problem, except when \(I = \{1\}\), is NP-hard (by a reduction from Hamiltonian cycle). Berger, Czumaj, Grigni, and Zhao [4] gave a polynomial-time approximation scheme (PTAS) for the relaxed \(\{1, 2\}\)-edge-connectivity problem, and Berger and Grigni [5] gave a PTAS for the strict \(\{2\}\)-edge-connectivity problem. Borradaile and Klein [8] gave an efficient PTAS (EPTAS) for the relaxed \(\{0, 1, 2\}\)-edge-connectivity problem [3]. The only planar-specific algorithm for non-spanning, strict edge-connectivity is a PTAS for the following problem: given a subset \(R\) of edges, find a minimum weight subset \(S\) of edges, such that for every edge in \(R\), its endpoints are two-edge-connected in \(R \cup S\) [22]; otherwise, the best known results for the strict versions of the edge-connectivity problem when \(I\) contains 0 and 2 are the constant-factor approximations known for general graphs.

In this paper, we give an EPTAS for the relaxed \(\{0, 1, 2, 3\}\)-edge-connectivity problem in planar graphs. This is the first PTAS for connectivity beyond 2-connectivity in planar graphs:

\textbf{Theorem 1.} For any \(\epsilon > 0\) and any planar graph instance of the relaxed \(\{0, 1, 2, 3\}\)-edge connectivity problem, there is an \(O(n \log n)\)-time algorithm that finds a solution whose weight is at most \(1 + \epsilon\) times the weight of an optimal solution.

In order to give this EPTAS, we must prove some properties of triconnected (three-vertex connected) planar graphs that may be of independent interest. One simple-to-state corollary of the sequel is:

\footnote{A polynomial-time approximation scheme for an minimization problem is an algorithm that, given a fixed constant \(\epsilon > 0\), runs in polynomial time and returns a solution within \(1 + \epsilon\) of optimal. The algorithm’s running time need not be polynomial in \(\epsilon\).}

\footnote{A PTAS is efficient if the running time is bounded by a polynomial whose degree is independent of \(\epsilon\).}

\footnote{Note that in Borradaile and Klein [8] claimed their PTAS would generalize to relaxed \(\{0, 1, \ldots, k\}\)-edge-connectivity, but this did not come to fruition.}
Theorem 2. In a planar graph that minimally pairwise triconnects a set of terminal vertices, every cycle contains at least two terminals.

In the remainder of this introduction we overview the PTAS for network design problems in planar graphs [8] that we use for the relaxed \(\{0, 1, 2, 3\} \)-edge connectivity problem. In this overview we highlight the technical challenges that arise from handling 3-edge connectivity. We then overview why we use properties of vertex connectivity to address an edge connectivity problem and state our specific observations about triconnected planar graphs that we require for the PTAS framework to apply. In the remainder, 2-ECP refers to “the relaxed \(\{0, 1, 2\} \)-edge-connectivity problem” and 3-ECP refers to “the relaxed \(\{0, 1, 2, 3\} \)-edge-connectivity problem”.

1.1 Overview of PTAS for 2-ECP

The planar PTAS framework grew out of a PTAS for travelling salesperson problem [21] and has been used to give PTASes for Steiner tree [7, 10], Steiner forest [3] and 2-EC [8] problems. For simplicity of presentation, we follow the PTAS whose running time is doubly exponential in \(1/\epsilon \) [7]; this can be improved to singly exponential as for Steiner tree [10]. Note that for all these problems (except Steiner forest, which requires a preprocessing step to the framework), the optimal value of the solution is within a constant factor of the optimal value of a Steiner tree on the same terminal set where we refer to vertices with non-zero requirement as terminals. Let OPT be the weight of an optimal solution to the given problem.

The PTAS for 2-ECP relies on an algorithm to find the mortar graph \(MG \) of the input graph \(G \). The mortar graph is a grid-like subgraph of \(G \) that spans all the terminals and has total weight bounded by \(f(\epsilon) \) times the minimum weight of a Steiner tree spanning all the terminals. To construct the mortar graph, we can first find an approximate Steiner tree for all terminals and then recursively augment it with some short paths. For each face of the mortar graph, the subgraph of \(G \) that is enclosed by that face (including the boundary of the face) is called a brick. It is shown that there is a nearly optimal solution for 2-ECP whose intersection with each brick is a set of non-crossing trees [8]. Further, it is proved that each such tree has only \(g(\epsilon) \) leaves and its leaves are a subset of a designated vertex set, called portals, on the boundary, allowing these trees to be computed efficiently [13].

In the following, \(O \)-notation hides factors depending on \(\epsilon \) that only affect the running time. The PTAS for 2-ECP consists of the following steps:

Step 1: Find a subgraph that satisfies two properties: its weight is at most \(O(\text{OPT}) \) and it contains a \((1 + \epsilon)\)-approximate solution. Such a subgraph is often referred to as a spanner in the literature. It is sufficient to solve the problem in the spanner.

(1) Find the mortar graph \(MG \).

(2) For each brick of \(MG \), designate as portals a constant number (depending on \(\epsilon \)) of vertices on the boundary of each brick.

(3) Find Steiner trees for each subset of portals in each brick by the algorithm of Erickson et al. [13]. All the Steiner trees of each brick together with mortar graph \(MG \) form the spanner.

Step 2: Decompose the spanner into a set of subgraphs, called slices, that satisfy the following properties.
Each slice has bounded \textit{branchwidth}.

Any two slices share at most one simple cycle.

Each edge can belong to at most two slices; such edges form the boundaries of slices.

The weight of all edges that belong to two slices is at most ϵOPT.

Step 3: Select a set of “artificial” terminals with connectivity requirements on the boundaries of slices from the previous step to achieve the following:

- For each slice, there is a feasible solution with respect to original and artificial terminals whose weight is bounded by the weight of the slice’s boundary plus the weight of the intersection of an optimal solution with the slice.
- The union over all slices of such feasible solutions is a feasible solution for the original graph.

Step 4: Solve the 2-ECP with respect to original and artificial terminals in each slice by dynamic programming.

Step 5: Convert the optimal solutions from the previous step to a solution for the spanner.

We can construct the spanner in $O(n \log n)$ time [10]. We can identify the boundary edges in Step 2 by doing breadth-first search in the planar dual and then applying the shifting technique of Baker [2], which can be done in linear time. With these edges we can decompose the spanner into slices in linear time. Step 3 can be done in linear time since the slices form a tree structure and we only need to choose as a new terminal any vertex on the boundary cycle if the cycle separates any two original terminals. If a boundary cycle separates two terminals requiring two-edge connectivity, the connectivity requirement of the new terminal on that cycle is 2, otherwise 1. By standard dynamic programming techniques we can solve the 2-ECP in the graph with bounded branchwidth in linear time. Step 5 can be done in linear time. So the total running time of the PTAS for 2-ECP is $O(n \log n)$.

We will generalize this PTAS to 3-ECP. The differences for 3-ECP are Step 3 and Step 4. For Step 3, we set the connectivity requirement of the new terminal to 3 if its corresponding boundary cycle separates two terminals requiring three-edge connectivity. For Step 4, we use the dynamic programming for k-ECP on graphs with bounded branchwidth given in Section 5, which is inspired by that for the k-vertex-connectivity spanning subgraph problem in Euclidean space given by Czumaj and Lingas in [11, 12].

To prove this PTAS is correct, we need to show the subgraph obtained from Step 1 is a spanner for 3-ECP, which is the challenge of this work (as with most applications of the PTAS framework). For any fixed $0 < \epsilon < 1$ and input graph G, a subgraph H of G is a spanner for 3-ECP, if it has the following two properties.

1. The weight of H is at most $O(\text{OPT})$.
2. There is a $(1 + \epsilon)$-approximate solution using only the edges of H.

The weight of the spanner found in Step 1 is at most $f(\epsilon)$ times the minimum weight of a Steiner tree spanning all the terminals. Since OPT is more than the minimum weight of a Steiner tree, the weight of our spanner is at most $O(\text{OPT})$. The second property will be guaranteed by the following Structure Theorem, which is the main focus of this paper.
Theorem 3 (Structure Theorem). For any $\epsilon > 0$ and any planar graph instance (G,w,r) of 3-ECP, there exists a feasible solution S in our spanner such that

- the weight of S is at most $(1 + c\epsilon)OPT$ where c is an absolute constant, and
- the intersection of S with the interior of any brick is a set of trees whose leaves are on the boundary of the brick and each tree has a number of leaves depending only on ϵ.

The interior of a brick is all the edges of a brick that are not on the boundary. We denote the interior of a brick B by $\text{int}(B)$. Consider a brick B of G whose boundary is a face of MG and consider the intersection of OPT with the interior of this brick, $OPT \cap \text{int}(B)$. To prove the Structure Theorem, we will show that:

P1: $OPT \cap \text{int}(B)$ can be partitioned into a set of trees T whose leaves are on the boundary of B.

P2: If we replace any tree in T with another tree spanning the same leaves, the result is a feasible solution.

P3: There is another set of $O(1)$ trees T' that costs at most a $1 + \epsilon$ factor more than T, such that each tree of T' has $O(1)$ leaves and $(OPT \setminus T) \cup T'$ is a feasible solution.

Property P1 implies that we can decompose an optimal solution into a set of trees inside of bricks. Property P2 shows that we can treat these trees independently with regard to connectivity, and this gives us hope that we can replace $OPT \cap \text{int}(B)$ with some Steiner trees with terminals on the boundary which we can efficiently compute in planar graphs [13]. Property P3 shows that we can compute an approximation to $OPT \cap \text{int}(B)$ by guessing $O(1)$ leaves. Those approximations can be combined efficiently in the remaining steps of the PTAS.

For the Steiner tree problem, P1 and P2 are nearly trivial to argue; the bulk of the work is in showing P3 [7].

For 2-ECP, P1 depends on first converting G and OPT into G' and OPT' such that OPT' biconnects the terminals requiring two-edge connectivity and using the relatively easy-to-argue fact that every cycle of OPT' contains at least one terminal. By this fact, a cycle in OPT' must contain a vertex of the brick’s boundary (since MG spans the terminals), allowing the partition of $OPT' \cap \text{int}(B)$ into trees. P2 and P3 then require that two-connectivity across the brick is maintained.

For 3-ECP, P1 is quite involved to show, but further to that, showing Property P2 is also involved; the issues are illustrated in Figure 1 and are the focus of Sections 2 and 3. As with 2-ECP, we convert OPT into a vertex connected graph to simplify the arguments. Given Properties P1 and P2, we illustrate Property P3 by following a similar argument as for 2-ECP; since this requires reviewing more details of the PTAS framework, we cover this in Section 4.

Non-planar graphs We point out that, while previously-studied problems that admit PTASes in planar graphs (e.g. independent set and vertex cover [2], TSP [1, 20, 21], Steiner tree [10] and forest [3], 2-ECP [8]) generalize to surfaces of bounded genus [6], the method presented in this paper 3-ECP cannot be generalized to higher genus surfaces. In the generalization to bounded genus surfaces, the graph is preprocessed (by removing some provably unnecessary edges) so that

\[\text{strictly, we also add multiple copies of edges from the boundary of } B \text{ to guarantee feasibility of } (OPT \setminus T) \cup T'. \]

\[\text{the issues also appear in 2-ECP, but we explain why it is easy to handle in 2-ECP in the next subsection.} \]
one can compute a mortar graph whose faces bound disks. This guarantees that even though the input graph is not planar, the bricks are; this is sufficient for proving above-numbered properties in the case of TSP, Steiner tree and forest and 2-ECP. However, for 3-ECP, in order to prove P2, we require global planarity, not just planarity of the brick. To the authors’ knowledge, this is the only problem that we know to admit a PTAS in planar graphs that does not naturally generalize to toroidal graphs.

1.2 Reduction to vertex connectivity

Here we give an overview of how we use vertex connectivity to argue about the structural properties of edge-connectivity required for the spanner properties. First some definitions. Vertices \(x \) and \(y \) are \(k \)-vertex-connected in a graph \(G \) if \(G \) contains \(k \) pairwise vertex disjoint \(x \)-to-\(y \) paths. If \(k = 3 \) (\(k = 2 \)), then \(x \) and \(y \) are also called triconnected (biconnected). For a subset \(Q \) of vertices in \(G \) and a requirement function \(r: Q \to \{2, 3\} \), subgraph \(H \) is said to be \((Q, r)\)-vertex-connected if every pair of \(x \) and \(y \) in \(Q \) is \(k \)-vertex-connected for \(k = \min\{r(x), r(y)\} \). We call vertices of \(Q \) terminals. If \(r(x) = 3 \) (\(r(x) = 2 \)) for all \(x \in Q \), we say \(H \) is \(Q \)-triconnected (\(Q \)-biconnected). We say a \((Q, r)\)-vertex-connected graph is minimal, if deleting its any edge or vertex violates the connectivity requirement.

![Figure 1: If the bold red tree (left) is OPT \(\cap \text{int}(B) \) (where \(B \) is denoted by the rectangle), replacing the tree with another tree spanning the same leaves (right) could destroy 3-connectivity between \(t_1 \) and \(t_2 \). We will show that such a tree cannot exist in a minimally connected graph.](image)

![Figure 2: Vertex \(v \) is cleaved into vertices \(v_1 \) and \(v_2 \). The edges incident to \(v \) are partitioned into two sets \(A \) and \(B \) to become incident to distinct copies.](image)

We cleave vertices to create a subgraph \(\text{OPT}' \) of graph \(G' \) that is a vertex-connected version of the \(\{0, 1, 2, 3\} \)-edge-connected multisubgraph \(\text{OPT} \) of \(G \). Informally, cleaving a vertex means splitting the vertex into two copies and adding a zero-weight edge between the copies; incident edges choose between the copies in a planarity-preserving way (Figure 2). We show in Section 4.2.2 how to cleave the vertices of \(\text{OPT} \) so that if two terminals are \(k \)-edge-connected in \(\text{OPT} \), there are corresponding terminals in \(\text{OPT}' \) that are \(k \)-vertex-connected. We will argue that \(\text{OPT}' \) satisfies
Properties P1 and P2 and these two properties also hold for OPT, since OPT′ is obtained from OPT by cleavings.

To prove that OPT′ satisfies Property P1, we show that every cycle in OPT′ contains at least one terminal (Section 2). To prove that OPT′ satisfies Property P2, we define the notion of a terminal-bounded component: a connected subgraph is a terminal-bounded component if it is an edge between two terminals or obtained from a maximal terminal-free subgraph S (a subgraph containing no terminals), by adding edges from S to its neighbors (which are all terminals by maximality of S). We prove that in a minimal Q-triconnected graph any terminal-bounded component is a tree whose leaves are terminals and the following Connectivity Separation Theorem in Section 3:

Theorem 4 (Connectivity Separation Theorem). Given a minimal (Q, r)-vertex-connected planar graph, for any pair of terminals x and y that require triconnectivity (biconnectivity), there are three (two) vertex disjoint paths from x to y in G such that any two of them do not contain edges of the same terminal-bounded tree.

Corollary 5. Given a minimal (Q, r)-vertex-connected planar graph, for any pair of terminals x and y that require triconnectivity (biconnectivity), there exist three (two) vertex disjoint x-to-y paths such that any path that connects any two of those x-to-y paths contains a terminal.

This can be viewed as a generalization of the following by Borradaile and Klein for 2-ECP [9]:

Theorem 6. (Theorem 2.8 [9]). Given a graph that minimally biconnects a set of terminals, for any pair of terminals x and y and for any two vertex disjoint x-to-y paths, any path that connects these paths must contain a terminal.

Note that Theorem 6 holds for general graphs while Corollary 5 only holds for planar graphs. This again underscores why our PTAS does not generalize to higher-genus graphs. Further, Theorem 6 implies that for biconnectivity any pair of disjoint x-to-y paths has the stated property, while for triconnectivity there can be a pair of x-to-y paths that does not have the property (See Figure 3). So Corollary 5 is the best that we can hope, since it shows there exists a set of disjoint paths that has the stated property; higher connectivity comes at a price.

![Figure 3: A minimal Q-triconnected graph. The bold vertices are terminals. The dashed path connects two x-to-y paths but it does not contain any terminal.](image)

For OPT′, Corollary 5 implies Property P2. Consider the set of disjoint paths guaranteed by Corollary 5. If any tree replacement in a brick merges any two disjoint paths, say P1 and P2, in the set (the replacement in Figure 1 merges three paths), then the replaced tree must contain at least one vertex of P1 and one vertex of P2. This implies the replaced tree contains a P1-to-P2 path P such that each vertex in P has degree at least two in the replaced tree. Further, P
contains a terminal by Corollary 5. However, all the terminals are in mortar graph, which forms the boundaries of the bricks. So P must have a common vertex with the boundary of the brick. By Property P1, the replaced tree, which is in the intersection of OPT' with the interior of the brick, can only contain leaves on the boundary of the brick. Therefore, the replaced tree can not contain such a P_1-to-P_2 path, otherwise there is a vertex in P that has degree one in the tree. We give the complete proof in Section 4.

2 Vertex-connectivity basics

In this section, we consider minimal (Q, r)-vertex-connected graphs for a subset Q of vertices and a requirement function $r : Q \to \{2, 3\}$. A subgraph induced by $S \subseteq V(G)$ or $S \subseteq E(G)$ in G is denoted by $G[S]$. The degree of vertex v in G is denoted by $d_G(v)$. By $P[a, b]$ or $T[a, b]$ we denote the a-to-b subpath of path P or tree T.

Lemma 7. A minimal (Q, r)-vertex-connected graph is biconnected.

Proof. For a contradiction, assume that a minimal (Q, r)-vertex-connected graph H has a cut-vertex u and let the subgraphs be H_i for $0 < i \leq k$ and $k \geq 2$ after removing u. Then for any vertex $x \in H_i$ and $y \in H_j$ ($i \neq j$), every x-to-y path must contain u. If H_i and H_j ($i \neq j$) both have terminals, then terminals in those different subgraphs do not achieve the required vertex-connectivity. It follows that there exists one subgraph $H_i \cup \{u\}$ that contains all the terminals. For any two terminals $x, y \in H_i \cup \{u\}$, the paths witnessing their connectivity are simple and so can only visit u once. Therefore, $H_i \cup \{u\}$ is a smaller subgraph that is (Q, r)-vertex-connected, contradicting the minimality. □

2.1 Ear decompositions

An ear decomposition of a graph is a partition of its edges into a sequences of cycles and paths (the ears of the decomposition) such that the endpoints of each ear belong to union of earlier ears in the decomposition. An ear is open if its two endpoints are distinct from each other. An ear decomposition is open if all ears but the first are open. A graph containing more than one vertex is biconnected if and only if it has an open ear decomposition [25]. Ear decompositions can be found greedily starting with any cycle as the first ear. It is easy to see that a more general ear decomposition can start with any biconnected subgraph:

Observation 1. For any biconnected subgraph H of a biconnected graph G, there exists an open ear decomposition E_1, E_2, \ldots, E_k of G such that $H = \bigcup_{i \leq j} E_i$ for some $j \leq k$.

Let G be a minimal (Q, r)-vertex-connected graph, and let H be a minimal Q_3-triconnected subgraph of G where $Q_3 = r^{-1}(3)$. Then more strongly, we can assume that each ear of G that are within the parts of $G \setminus H$ contains a terminal. (G is biconnected by Lemma 7) We do so by starting with an open ear decomposition of H and then for each terminal that is not yet spanned in turn, we add an ear through it; such an ear exists because these terminals require biconnectivity and must have two disjoint paths to the partially constructed ear decomposition. Any remaining edges after the terminals have been spanned would contradict the minimality of G. Formally and more specifically:
Observation 2. For G and H, there is an open ear decomposition E_1, E_2, \ldots, E_k of G such that for any component χ of $G \setminus H$, $\chi = \bigcup_{i=a}^{b} E_i$ for some $a \leq b \leq k$ and E_i contains a terminal for $i = a, \ldots, b$.

Lemma 8. For G and H, there is an open ear decomposition E_1, E_2, \ldots, E_k of G such that for any component $\chi = \bigcup_{i=a}^{b} E_i$ of $G \setminus H$, any path in χ (or $\chi \setminus E_a$) with both endpoints in H (or $H \cup E_a$) strictly contains a vertex of Q.

Proof. We prove the lemma for the path in χ with endpoints in H; the other case can be proved similarly. We prove this by induction on the index of the ear decomposition guaranteed by Observation 2. A path P in $G \setminus H$ with both endpoints in H belongs to a component χ of $G \setminus H$. Suppose that the lemma is true for every H-to-H path in $\bigcup_{i=a}^{c} E_i$; we prove the lemma true for such a path in $\bigcup_{i=a}^{c+1} E_i$. Since E_{c+1} is an open ear, any path with two endpoints in H that uses an edge of E_{c+1} would have to contain the entirety of E_{c+1}, which contains a terminal. \qed

2.2 Removable edges

Holton, Jackson, Saito and Wormald study the removability of edges in triconnected graphs [16]. For an edge uv of a simple, triconnected graph G, removing e consists of:

- Deleting uv from G.
- If u or v now have degree 2, contract incident edges.
- If there are now parallel edges, replace them with a single edge.

The resulting graph is denoted by $G \ominus e$. If $G \ominus e$ is triconnected, then e is said to be removable. We use the following theorems of Holton et al. [16].

Theorem 9 (Theorem 1 [16]). Let G be a triconnected graph of order at least six and $e \in E(G)$. Then e is nonremovable if and only if there exists a set S containing exactly two vertices such that $G \setminus \{e, S\}$ has exactly two components A, B with $|A| \geq 2$ and $|B| \geq 2$.

In the above theorem, we call (e, S) a separating pair. For a separating pair (e, S) of G, we say S is the separating set for e.

Theorem 10 (Theorem 2 [16]). Let G be a triconnected graph of order at least six, and let (e, S) be a separating pair of G. Let $e = xy$, and let A and B be the two components of $G \setminus \{e, S\}$, $x \in A$, and $y \in B$. Then every edge joining S and $\{x, y\}$ is removable.

Theorem 11 (Theorem 6 part (a) [16]). Let G be a triconnected graph of order at least six and C be a cycle of G. Suppose that no edges of C are removable. Then there is an edge yz in C and a vertex x of G such that xy and xz are removable edges of G, $d_G(y) = d_G(z) = 3$ and $d_G(x) \geq 4$.

2.3 Properties of minimal (Q, r)-vertex-connected graphs

For a Q-triconnected graph H, we can obtain another graph H' by contracting all the edges incident to the vertices of degree two in H. We say H' is contracted version of H and, alternatively, is contracted Q-triconnected.

Lemma 12. A contracted minimal Q-triconnected graph is triconnected.
Proof. For a contradiction, we assume that a contracted minimal Q-triconnected graph H has a pair of cut-vertices $\{u, v\}$ and let the subgraphs be H_i for $0 < i \leq k$ and $k \geq 2$ after removing $\{u, v\}$. Then for any vertices $x \in H_i$ and $y \in H_j$ ($i \neq j$), every x-to-y path must use either u or v. If H_i and H_j ($i \neq j$) both contain terminals, then terminals in those different subgraphs do not satisfy the triconnectivity. It follows there exists one strict subgraph $H_i \cup \{u, v\}$ containing all the terminals. For any two terminals $x, y \in H_i \cup \{u, v\}$, the paths witnessing their connectivity are simple and can only visit u and v once. So $H_i \cup \{u, v\}$ is a smaller subgraph that is Q-triconnected, which contradicts the minimality.

Lemma 13. If H is a minimal Q-triconnected graph, then the contracted version of H is also a minimal Q-triconnected graph.

Proof. Let H' be the contracted Q-triconnected graph obtained from H. For a contradiction, assume H' is not minimal Q-triconnected. Then we can delete at least one edge, say e, in H' while maintaining Q-triconnectivity. Then e corresponds to a path in H, deleting which will not affect the Q-triconnectivity. This contradicts the minimality of H.

Lemma 14. For $|Q| = 3$, a contracted minimal Q-triconnected graph is simple or a triangle with three pairs of parallel edges. For $|Q| > 3$, a contracted minimal Q-triconnected graph is simple.

Proof. Let H be a minimal Q-triconnected graph, and H' the contracted graph. We have the following observation.

Observation 3. If there are parallel edges between any pair of vertices in H', the paths witnessing the vertex-connectivity between any other pair of terminals can only use one of the parallel edges.

By the above observation, the parallel edges can only be between terminals in H'.

Claim 15. For $|Q| > 2$, there can not exist three parallel edges between any two terminals in H'.

Proof. Let t_1, t_2 and t_3 be three terminals and assume there are three parallel edges, say e_1, e_2 and e_3, between t_1 and t_2. Let P_1 be the path in H corresponding to e_1. We will argue that $H \setminus P_1$ is Q-triconnected by showing that $H' - e_1$ is Q-triconnected. There must be a path in H' from t_1 to t_3 that does not use e_1, e_2 and e_3 by Observation 3 and a path in H' from t_2 to t_3 that does not use e_1, e_2 and e_3. These paths witness a t_1 to t_2 path R in H' that does not use e_1, e_2 and e_3. So after deleting e_1, t_1 and t_2 are still triconnected by e_2, e_3 and R. By Observation 3 deleting e_1 does not affect the triconnectivity of other pairs of terminals.

We first prove the first statement of Lemma 14. Let t_1, t_2 and t_3 be the three terminals, and suppose H' is not simple; let e_1 and e_2 be parallel edges w.l.o.g. between t_1 and t_2. By Observation 3 there must be two disjoint paths in H' from t_1 to t_3 that do not use e_1 and e_2. Therefore, there is a simple cycle, called C_{13}, through t_1 and t_3. Similarly, there is another cycle, called C_{23}, through t_2 and t_3. If C_{13} and C_{23} have only one common vertex t_3, then $C_{13} \cup C_{23} \cup \{e_1, e_2\}$ is a subgraph of H' that is Q-triconnected, and must be a triangle with three pairs of parallel edges by the minimality of H' and Lemma 13. If C_{13} and C_{23} have more than one common vertex, then $C_{13} \cup C_{23}$ contains a simple cycle through t_1 and t_2. So $H' - e_1$ will be a smaller Q-triconnected graph, contradicting the minimality of H'.

Now we prove the second statement. For any four terminals $t_1, t_2, t_3, t_4 \in Q$, without loss of generality, assume there are two parallel edges e_1 and e_2 between t_1 and t_2 in H' by Claim 15. We
will prove that $H' - e_1$ is also Q-triconnected, contradicting the minimality of H. To prove this, we argue that t_1 and t_2 are four-vertex-connected in H' and biconnected in $H' \setminus \{e_1, e_2\}$.

For a contradiction, we assume t_1 and t_2 are simply connected but not biconnected in $H' \setminus \{e_1, e_2\}$. By Claim 15, every other pair of terminals is at least biconnected in $H' \setminus \{e_1, e_2\}$. Consider the block-cut tree of $H' - e_1$, the tree whose vertices represent maximal biconnected components and whose edges represent shared vertices between those components 14.

The biconnectivity of t_1 and t_3 implies t_1 and t_3 are in a common block B_{13} in the block-cut tree. Likewise, t_2 and t_3 are in a common block B_{23}. If $t_2 \in B_{13}$ then t_1 and t_2 are biconnected, a contradiction. Now we have $B_{13} \cap B_{23} = \{t_3\}$. The biconnectivity of t_1 and t_4 implies that t_1 and t_4 are in the same block. Since t_3 is a cut for t_1 and t_2, t_3 is also a cut for t_4 and t_2, which contradicts the biconnectivity of t_2 and t_4. So t_1 and t_2 are biconnected in $H' \setminus \{e_1, e_2\}$. \qed

Lemma 16. Let H be a contracted minimal Q-triconnected simple graph. Then for any $e \in E(H)$, if neither of the two endpoints of e are terminals, e is nonremovable.

Proof. By Lemma 12, H is triconnected. Let $e \in H$ be an edge, neither of whose endpoints are terminals. For a contradiction, suppose e is removable, then $H \ominus e$ is triconnected. Since neither of the two endpoints of e are terminals, $Q \subseteq V(H \ominus e)$. So $H \ominus e$ is a smaller Q-triconnected graph than H, contradicting minimality of H. \qed

2.4 Cycles must contain terminals

Borradaile and Klein proved that in a minimal Q-biconnected graph, every cycle contains a terminal (Theorem 2.5 9). We prove similar properties here.

Lemma 17. Let H be a contracted minimal Q-triconnected graph. Then every cycle in H contains a vertex of Q.

Proof. H is triconnected by Lemma 12. If H is not simple, then either $|Q| = 2$ or $|Q| = 3$. If $|Q| = 2$, then by the minimality of H, H consists of three parallel edges. If $|Q| = 3$, then by Lemma 14, H is a triangle with three pairs of parallel edges.

Now we assume H is a simple graph and by Lemma 14, $|Q| \geq 3$. For a contradiction, assume there is a cycle C in H on which there is no terminal. Since H is simple, by Lemma 16, every edge on C will be nonremovable. Since $|C| \geq 3$ and $|Q| \geq 3$, $|V(H)| \geq 6$. By Theorem 11, if there is no removable edges on C, then there exists an edge yz on C and another vertex x of H such that xy and xz are removable, $d_H(y) = d_H(z) = 3$ and $d_H(x) \geq 4$. In $H - xy$, y is the only possible degree 2 vertex, and contracting yz does not introduce any parallel edges, so $H \ominus xy$ contains Q and is Q-triconnected, which contradicts the minimality of H. \qed

Theorem 18. For a requirement function $r : Q \rightarrow \{2, 3\}$, let G be a minimal (Q, r)-vertex-connected graph. Then every cycle in G contains a vertex of Q.

Proof. Let G' be a minimal Q-triconnected graph that is a supergraph of G. Let G'' be the contracted minimal Q-triconnected graph obtained from G'. Then by Lemma 17, every cycle in G'' contains a vertex of Q; G' also has this property since G' is a subdivision of G'' and clearly, G as a subgraph of G', also has this property. \qed

Lemma 19. Let H be a contracted minimal Q-triconnected graph. If a cycle in H only contains one vertex v of Q, then one edge of that cycle incident to v is removable.
Proof. For a contradiction, assume both edges in the cycle incident to \(v \) are nonremovable. By Lemma 16 all the other edges in the cycle are also nonremovable, so all the edges in the cycle are nonremovable. By Theorem 11 there is an edge \(yz \) in the cycle and a vertex \(x \) in \(H \) such that \(xy \) and \(xz \) are removable, \(d_H(y) = d_H(z) = 3 \) and \(d_H(x) \geq 4 \). Then one of \(y \) and \(z \) can not be in \(Q \). W.l.o.g. assume \(y \) is not in \(Q \). In \(H - xy \), \(y \) is the only possible degree 2 vertex, and contracting \(yz \) does not introduce any parallel edges, so \(H \ominus xy \) contains \(Q \) and is \(Q \)-triconnected, which contradicts the minimality of \(H \).

3 Connectivity Separation

In this section we continue to focus on vertex connectivity and prove the Connectivity Separation Theorem. The Connectivity Separation Theorem for biconnectivity follows easily from Theorem 6. To see why, consider two paths \(P_1 \) and \(P_2 \) that witness the biconnectivity of two terminals \(x \) and \(y \). For an edge of \(P_1 \) to be in the same terminal-bounded component as an edge of \(P_2 \), there would need to be a \(P_1 \)-to-\(P_2 \) path that is terminal-free. However, such a path must contain a terminal by Theorem 6. Herein we mainly focus on triconnectivity.

For a requirement function \(r : Q \to \{2, 3\} \), let \(G \) be a minimal \((Q, r)\)-vertex-connected planar graph. We say a subgraph is terminal-free if it is connected and does not contain any terminals. It follows from Theorem 18 that any terminal-free subgraph of \(G \) is a tree. We partition the edges of \(G \) into terminal-bounded components as follows: a terminal-bounded component is either an edge connecting two terminals or is obtained from a maximal terminal-free tree \(T \) by adding the edges from \(T \) to its neighbors, all of which are terminals. Theorem 20 will also show that any terminal-bounded subgraph is also a tree.

For a connected subgraph \(\chi \) and an embedding with outer face containing no edge of \(\chi \), let \(C(\chi) \) be the simple cycle that strictly encloses the fewest faces and all edges of \(\chi \), if such a cycle exists. (Note that \(C(\chi) \) does not exist if there is no such choice for an outer face.) In order to prove the Connectivity Separation Theorem for bi- and triconnectivity, we start with the following theorem:

Theorem 20 (Tree Cycle Theorem). Let \(T \) be a terminal-bounded component in a minimal \(Q \)-triconnected planar graph \(H \). Then \(T \) is a tree and \(C(T) \) exists with the following properties

\[\text{(a) The internal vertices of } T \text{ are strictly inside of } C(T). \]
\[\text{(b) All vertices strictly inside of } C(T) \text{ are on } T. \]
\[\text{(c) All leaves of } T \text{ are in } C(T). \]
\[\text{(d) Any pair of distinct maximal terminal-free subpaths of } C(T) \text{ does not contain vertices of the same terminal-bounded tree.} \]

Theorem 2 follows from the Tree Cycle Theorem.

Proof of Theorem 2. For a contradiction, assume there is a cycle in \(H \) that only containing one terminal, then there is a terminal-bounded component containing that cycle, which can not be a tree, contradicting Tree Cycle Theorem.

We give an overview of the proof the Tree Cycle Theorem in Subsection 3.2. First, let us see how the Tree Cycle Theorem implies the Connectivity Separation Theorem.
3.1 The Tree Cycle Theorem implies the Connectivity Separation Theorem

For a requirement function \(r : Q \rightarrow \{2,3\} \), let \(G \) be a minimal \((Q,r)\)-vertex-connected planar graph. Let \(Q_3 \) be the set of terminals requiring triconnectivity, and let \(H \) be a minimal \(Q_3 \)-triconnected subgraph of \(G \). Let \(Q_2 = Q \setminus Q_3 \). We will prove the theorem for different types of pairs of terminals, based on their connectivity requirement. Lemma 8 allows us to focus on \(H \) when considering terminals in \(Q \) (note that terminals of \(Q_2 \) may be in \(H \)), for a simple corollary of Lemma 8 is that if two trees are terminal-bounded in \(H \), then they cannot be subtrees of the same terminal-bounded tree in \(G \). Note that if we consider a subset of the terminals in defining freeness of terminals, the same properties will hold for \(Q \), as adding terminals only further partitions terminal-bounded trees.

3.1.1 Connectivity Separation for \(x, y \in Q_3 \)

For now, we consider only \(Q_3 \) to be terminals. We say connected components share a terminal-bounded tree if they contain edges (and so internal vertices) of that tree. We prove the following lemma which can be seen as a generalization of Connectivity Separation for contracted triconnected graphs. We use this generalization to prove Connectivity Separation for terminals both of which may not be in \(Q_3 \). Connectivity Separation for terminals in \(Q_3 \) follows from this lemma by considering three vertex disjoint paths paths matching \(A \) to \(B \) where \(A = \{x,x,x\} \) and \(B = \{y,y,y\} \). Note that the lemma may swap endpoints of paths; in particular, for vertex disjoint \(a \)-to-\(b \) and \(c \)-to-\(d \) paths, the lemma may only guarantee \(a \)-to-\(d \) and \(c \)-to-\(b \) paths that do not share terminal-bounded trees.

Lemma 21. If two multisets of vertices \(A \) and \(B \) (where \(|A| = |B| = 2 \), resp. \(3 \)) satisfy the following conditions, then there are two (resp. three) internally vertex-disjoint paths from \(A \) to \(B \) such that no two of them share the same terminal-bounded tree.

1. Distinct vertices in \(A \) are in distinct terminal-bounded trees and distinct vertices in \(B \) are in distinct terminal-bounded trees.
2. There are two (resp. three) vertex-disjoint paths from \(A \) to \(B \).

Proof. We prove the lemma for three paths as the two-paths version is proved by the first case of three-paths version. Let \(P_1, P_2 \) and \(P_3 \) be the three vertex disjoint paths whose endpoints are in different terminal-bounded trees. For \(i = 1, 2, 3 \), let \(a_i \) and \(b_i \) be the endpoints of \(P_i \). Let \(\mathcal{T} \) be the collection of terminal-bounded trees shared by two or more of \(P_1, P_2 \) and \(P_3 \). We prove, by induction on the size of \(\mathcal{T} \), that we can modify the paths to satisfy Connectivity Separation. We pick a tree \(T \in \mathcal{T} \) shared by (w.l.o.g.) \(P_1 \) and modify the paths so that \(T \) is not shared by the new paths; further, we show that the terminal-bounded trees shared by the new paths are a subset of \(\mathcal{T} \setminus \{T\} \).

We order the vertices of \(P_i \) from \(a_i \) to \(b_i \) for \(i = 1, 2, 3 \). Among all the trees in \(\mathcal{T} \) shared by \(P_1 \), let \(T \) be the tree sharing the first vertex from \(a_1 \) to \(b_1 \) along \(P_1 \). Without loss of generality, assume that \(T \) is shared by \(P_2 \). (\(P_3 \) may also share \(T \).) Let \(C \) be the cycle guaranteed by the Tree Cycle Theorem for \(T \) in \(H \). Since \(x \) and \(y \) are terminals, they are not strictly enclosed by \(C \) (property (b)). Further, \(P_1 \) and \(P_2 \) must both contain vertices of \(C \) because \(P_1 \) and \(P_2 \) both contain internal vertices of \(T \) and the internal vertices of \(T \) are strictly enclosed by \(C \) (property (a)).
Augmenting the paths First we augment each path to simplify the construction, but may make the paths non-simple. If there is a terminal-bounded tree shared by only P_i and C (and not P_j, $j \neq i$), then there is a terminal-free path from P_i to C; add two copies of this path to P_i (P_i travels back and forth along this path). We repeat this for every possible shared tree and $i = 1, 2, 3$. We let P_1, P_2, P_3 be the resulting paths. Note that adding such paths does not introduce any new shared terminal-bounded trees between P_1, P_2, P_3 and P_1, P_2, P_3 are still vertex-disjoint.

Let u_i and v_i be the first and last vertex of P_i that is in C. There are two cases:

Case 1: P_3 is disjoint from C. In this case there were no applicable augmentations to P_3 as described above (and u_3 and v_3 are undefined). Since T is the first tree in T along P_1, u_1 and u_2 cannot be internal vertices of the same terminal-bounded tree. Further, by planarity and disjointness of the three paths, $\{u_1, v_1\}$ and $\{u_2, v_2\}$ do not interleave around C. Let C_i be the u_i-to-v_i subpath of C disjoint from $\{u_{3-i}, v_{3-i}\}$ for $i = 1, 2$: C_1 and C_2 are disjoint. By construction, $P_1 \cup P_2 \cup C_1 \cup C_2 \setminus \{P_1[u_1, v_1], P_2[u_2, v_2]\}$ contains two disjoint A-to-B paths; these paths replace P_1 and P_2. By the definition of u_i and v_i for $i = 1, 2$ and the above-described path augmentation, if C_i shares a terminal-bounded tree with another path, then that tree was already in T. Therefore we have reduced the number of shared terminal-bounded trees (since T is no longer shared) without introducing any new shared terminal-bounded trees.

Case 2: P_3 and C have at least one common vertex. In this case, P_3 may or may not contain internal vertices of T. By planarity and disjointness of the paths, the sets $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$ do not interleave around C. Let C_u and C_v be the minimal subpaths of C that span $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$, respectively. Let C_1 and C_2 be the components of $C \setminus \{C_u, C_v\}$. Then C_1 and C_2 are disjoint paths that connect two vertices of $\{u_1, u_2, u_3\}$ to two vertices of $\{v_1, v_2, v_3\}$.

By planarity and disjointness of the paths, there must be a leaf of T that is an internal vertex of C_u in order for paths to reach T from that leaf of T; the same property holds for C_v. Let C_3 be the simple path from the middle vertex of $\{u_1, u_2, u_3\}$ to the middle vertex of $\{v_1, v_2, v_3\}$ in $C_u \cup C_v \cup T$. Then the to-C prefaces of P_1, C_i and the from-C suffices of P_i (for $i = 1, 2, 3$) together form three vertex-disjoint paths between the same endpoints.

The resulting path that contains C_3 is the only of the three resulting paths that contains internal vertices of T since C_1 and C_2 do not share the same terminal-bounded tree because the endpoints of $C_3 \cap T$ are terminals (property (d) of the Tree Cycle Theorem).

By the definition of u_i and v_i and the above-described path augmentation, if C_i shares a terminal-bounded tree with another path, then that tree was already in T. Therefore we have reduced the number of shared terminal-bounded trees (since T is no longer shared) without introducing any new shared terminal-bounded trees.

3.1.2 Connectivity Separation for $x, y \in H \cap Q$

Note that H may span vertices of Q_2. Let P_1 and P_2 be vertex-disjoint x-to-y paths. The first and last edges of P_1 and P_2 are in different terminal-bounded trees, since x and y are terminals. If either P_1 or P_2 is an edge, then we could obtain Connectivity Separation for x and y. Otherwise, let x_1 and x_2 be x’s neighbors on P_1 and P_2 respectively; similarly define y_1 and y_2. Let P_1' and P_2' be the paths guaranteed by Lemma 21 when applied to $P_1[x_1, y_1]$ and $P_2[x_2, y_2]$. Then $P_1' \cup P_2' \cup \{xx_1, xx_2, yy_1, yy_2\}$ contain vertex disjoint x-to-y paths that satisfy the requirements of Connectivity Separation Theorem.
3.1.3 Connectivity Separation for \(x \in Q_2 \setminus H, y \in Q \)

Since \(x \) and \(y \) only require biconnectivity, we will prove that there exists a simple cycle \(C \) containing \(x \) and \(y \), such that every \(C \)-to-\(C \) path strictly contains a terminal, from which Connectivity Separation follows as argued in the beginning of Section 3. The following claim gives a sufficient condition for such cycle \(C \).

Claim 22. If every terminal-bounded tree of \(H \) and every component of \(G \setminus E(H) \) contain at most one strict subpath of \(C \), then every \(C \)-to-\(C \) path contains a terminal.

Proof. Let \(P \) be a \(C \)-to-\(C \) path and let \(C_\chi \) be the subpath of \(C \) in the component \(\chi \) of \(G \setminus H \). Then \(C_\chi \) has two endpoints in \(H \) and it must contain a terminal by Lemma 21. Every subpath of \(P \) in \(\chi \) has endpoints in \(H \cup C_\chi \). We can take \(C_\chi \) as the first ear for \(\chi \), and then every subpath of \(P \) in \(\chi \) contains a terminal by Lemma 21. So if \(P \) contains an edge of \(\chi \), we have the claim.

If \(P \) does not contain an edge in \(G \setminus H \), then \(P \subseteq H \). Further, if \(P \) does not contain any terminal, then it must be in some terminal-free tree \(T \) by condition of the claim \(T \) contains only one subpath \(C_T \) of \(C \). Since \(P \) is a \(C \)-to-\(C \) path, \(C_T \) and \(P \) form a cycle in \(T \), which contradicts \(T \) is a tree. So \(P \) must contain a terminal. \(\square \)

The following claim will allow us to use Lemma 21 on parts of the \(x \)-to-\(y \) paths.

Claim 23. Each connected component of \(G \setminus H \) has at most one non-terminal vertex in common with any terminal-bounded tree of \(H \).

Proof. For a contradiction, suppose \(a \) and \(b \) are two non-terminal vertices of component \(\chi \) of \(G \setminus H \) that are both in some terminal-bounded tree \(T \) of \(H \). Let \(P \) be an \(a \)-to-\(b \) path in \(\chi \) and let \(R \) be a maximal suffix of \(T[a, b] \) every internal vertex of which has degree 2 in \(G \). We show that deleting \(R \) maintains the required connectivity of \(G \) and this contradicts minimality of \(G \).

Let \(H' = (H \setminus R) \cup P \). First we show that \(H' \) is \(Q_3 \)-triconnected. Since \(a \) and \(b \) are not terminals, they are not leaves of \(T \). Then \((T \setminus R) \cup P \) is a tree that contains all the terminals of \(T \) as leaves. Since \(H \) satisfies Connectivity Separation, as argued (Section 3.1.1 and 3.1.2), any two terminals have three vertex disjoint paths, no two of which contain edges from the same terminal-bounded tree. Therefore replacing \(T \) with \((T \setminus R) \cup P \) will preserve the connectivity.

To prove \(G \setminus R \) is biconnected, we construct an open ear decomposition. Let \(R' \) be the maximal superpath of \(R \) in \(H \) every internal vertex of which has degree 2 in \(H \). (Note that the endpoints of \(R \) need not have degree \(> 2 \) in \(H \).) Since the contracted version of \(H \) is triconnected, the endpoints of \(R' \) are triconnected in \(H \) and \(R' \) becomes an edge in the contracted version of \(H \). Therefore \(H \setminus R' \) is biconnected. Consider an ear decomposition of \(G \) that starts with an ear decomposition of \(H \setminus R' \) as guaranteed by Observation 1. Since every internal vertex of \(R \) has degree 2 in \(G \) and since the endpoints of \(R \) have degree \(> 2 \) in \(G \), we can greedily select ears of \((G \setminus H) \cup (R' \setminus R) \) to span the resting vertices. \(\square \)

Let \(\chi \) be the component of \(G \setminus H \) that contains \(x \), and let \(a \) and \(b \) be two vertices of \(\chi \cap H \). Then \(a \) and \(b \) are in distinct terminal-bounded trees of \(H \): if either of \(a \) and \(b \) is terminal, then it could be in at least two terminal-bounded trees; otherwise by Claim 22 they cannot be in the same terminal-bounded tree. We consider an ear decomposition of \(G \) that is guaranteed by Lemma 21 starting with an ear decomposition of \(H \) with consecutive ears composing \(\chi \). There are two cases.

Case 1: \(y \in H \) In this case we construct a simple cycle \(C \) to satisfy Claim 22 containing \(x \) and \(y \) as follows. We first find an \(a \)-to-\(b \) path \(P_1 \) of \(H \) that contains \(y \); add another new vertex \(t \) and two
new edges \(ta\) and \(tb\) into \(H\), then \(H \cup \{ta, tb\}\) is biconnected and there exist two vertex disjoint paths from \(t\) to \(y\) through \(a\) and \(b\) respectively. So there exist two disjoint paths \(P_a\) and \(P_b\) from \(A = \{y, y\}\) and \(B = \{a, b\}\), and let \(P_1 = P_a \cup P_b\). Let \(P_2\) be the \(a\)-to-\(b\) path that is taken as the first ear of \(\chi\). If \(P_a\) and \(P_b\) share any terminal-bounded trees, we could modify the two paths by Lemma \[21\] for \(A = \{y, y\}\) and \(B = \{a, b\}\) such that the new paths \(P'_a\) and \(P'_b\) from \(A\) to \(B\) are vertex disjoint and do not share any terminal-bounded tree. Further, we shortcut \(P'_a\) and \(P'_b\) such that they have at most one subpath in each terminal-bounded tree. Since \(y\) is a terminal, \(C = P'_a \cup P'_b \cup P_2\) satisfies the conditions of Claim \[22\] giving the Connectivity Separation.

Case 2: \(y \in G \setminus H\) In this case \(x\) and \(y\) may or may not be in the same component of \(G \setminus H\).

Suppose \(x\) and \(y\) are in the same component \(\chi\) of \(G \setminus H\).

If there is an \(a\)-to-\(b\) path \(P_1\) in \(\chi\) that contains both of \(x\) and \(y\), we take \(P_1\) as the first ear of \(\chi\). Let \(P_2\) be an \(a\)-to-\(b\) path in \(H\). We shortcut \(P_2\) in each terminal-bounded tree such that each terminal-bounded tree contains at most one subpath of \(P_2\). Let the cycle \(C\) be composed by \(P_1\) and \(P_2\). Then by Claim \[22\] every \(C\)-to-\(C\) path contains a terminal, giving the Connectivity Separation.

If there is no such \(P_1\), we take as the first ear of \(\chi\) an \(a\)-to-\(b\) path that contains \(x\), and take the second ear containing \(y\). Then there is a cycle \(C\) containing \(x\) and \(y\) in the first two ears. Let \(P\) be any \(C\)-to-\(C\) path. Since any pair of vertices in \(\chi \cap H\) are not in the same terminal-bounded tree (as argued for \(a\) and \(b\)), \(P\) will contain a terminal if it contains an edge in \(H\). If \(P\) does not contain an edge of \(H\), then \(P\) will contain a terminal by a similar proof of Lemma \[8\]. So \(P\) always contains a terminal, giving the Connectivity Separation.

Suppose \(x\) and \(y\) are not in the same component. Let \(\chi'\) be the component of \(G \setminus H\) that contains \(y\) and let \(a'\) and \(b'\) be two common vertices of \(\chi'\) and \(H\). Then \(a'\) and \(b'\) are not in the same terminal-bounded tree of \(H\) as previously argued. We argue there exist two disjoint paths from \(A = \{a, b\}\) to \(B = \{a', b'\}\) in \(H\): add two new vertices \(s\) and \(t\), and four new edges \(sa, sb, ta'\) and \(tb\) into \(H\), then \(H \cup \{sa, sb, ta', tb\}\) is biconnected and there are two vertex disjoint paths from \(s\) to \(t\) that contains two paths \(P_a\) and \(P_b\) from \(A\) to \(B\). Let \(P_1\) (or \(P_2\)) be the \(a\)-to-\(b\) (or \(a'\)-to-\(b'\)) path that is taken as the first ear of \(\chi\) (or \(\chi'\)). If \(P_a\) and \(P_b\) share any terminal-bounded trees, we can modify them by Lemma \[21\] for \(A\) and \(B\) such that the new paths \(P'_a\) and \(P'_b\) from \(A\) to \(B\) are vertex disjoint and share no terminal-bounded tree. Further, we can shortcut \(P'_a\) and \(P'_b\) such that each terminal-bounded tree contains at most one subpath of \(P'_a\) and \(P'_b\). Let the cycle \(C\) be composed by \(P'_a\), \(P'_b\), \(P_1\) and \(P_2\). Then every terminal-bounded tree of \(H\) and every component of \(G \setminus H\) contain at most one strict subpath of \(C\). By Claim \[22\] every \(C\)-to-\(C\) path contains a terminal, giving the Connectivity Separation.

This completes the proof of the Connectivity Separation Theorem.

3.2 Proof of Tree Cycle Theorem

Let \(G\) be a minimal \(Q_3\)-triconnected planar graph. We prove the Tree Cycle Theorem for the contracted \(Q_3\)-triconnected graph \(H\) obtained from \(G\). If the theorem is true for \(H\), then it is true for \(G\) since subdivision will maintain the properties of the theorem. By Lemmas \[13\] and \[14\] if there are parallel edges in \(H\), then either \(|Q_3| = 2\) and \(H\) consists of three parallel edges or \(|Q_3| = 3\) and \(H\) is a triangle with three pairs of parallel edges. The Tree Cycle Theorem is trivial for these two cases.

Proof Overview We focus on a maximal terminal-free tree \(T^*\), rooted arbitrarily, of \(H\) and the corresponding terminal-bounded component \(T\) (that is, \(T^* \subset T\)). We view \(T^*\) as a set \(P\) of root-to-
Lemma 25. For any terminal-free path \(P \) that strictly encloses all the vertices of \(T \), there is a face of \(H \) that strictly encloses only vertices of \(T \). Property (a) directly follows from the construction. Property (b) is proved by induction on the number of root-to-leaf paths of \(T \): when we add a new cycle for a path from \(P \), the new outer cycle will only strictly enclose vertices of the root-to-leaf paths so far considered. After that, we show any two terminals are triconnected when \(T \) is a tree: by modifying the three paths between terminals in a similar way to Lemma 25, only one path will require edges in \(T \). Since \(T \) is connected, this proves \(T \) is a tree by minimality of \(H \). Combining the above properties and triconnectivity of \(H \), we can obtain property (c). Property (d) is proved by contradiction: if there is another terminal-bounded tree \(T' \) that shares two terminal-free paths of \(C(T) \), then there is a terminal-free path in \(T' \). We can show there is a removable edge in this path of \(T' \), contradicting Lemma 16.

Property (a) To prove that \(C(T) \) exists, we will prove the following after proving some lemmas regarding terminal-free paths (Section 3.2.1), which guarantees that there is a drawing of \(H \) such that \(T^* \) is enclosed by some cycle:

Lemma 24. There is a face of \(H \) that does not touch any internal vertex of \(T^* \).

We will also prove the following two lemmas in Section 3.2.1.

Lemma 25. For any terminal-free path \(P \), there is a drawing of \(H \) in which there is a simple cycle that strictly encloses all the vertices of \(P \) and only the vertices of \(P \).

Lemma 26. Let \(C_1 \) and \(C_2 \) be two nested simple cycles of \(H \) such that the edges of \(C_1 \) are enclosed by \(C_2 \), and \(C_1 \) and \(C_2 \) share at most one subpath. Let \(xy \) be an edge strictly enclosed by \(C_2 \) and not enclosed by (or on) \(C_1 \). If \(H \) satisfies the following conditions, then \(xy \) is removable:

1. \(C(xy) \) is vertex-disjoint with the common subpath of \(C_1 \) and \(C_2 \), and consists of two vertex-disjoint \(1 \)-to-\(2 \) paths, a subpath of \(C_1 \) and a subpath of \(C_2 \) respectively.

2. For every neighbor \(z \) of \(xy \) in \(C(xy) \setminus \{C_1, C_2\} \), there is a \(z \)-to-\(C_i \) path that shares only \(z \) with \(C(xy) \) (for \(i = 1 \) or \(i = 2 \)).

Taking the face of \(H \) guaranteed by Lemma 24 as the infinite face, for any path of \(T^* \) this drawing guarantees a cycle as given by Lemma 25. Arbitrarily root \(T^* \) and let \(P \) be a collection of root-to-leaf paths that minimally contains all the edges of \(T^* \). For path \(P \in P \), let \(C_P \) be the cycle that is guaranteed by Lemma 25 which encloses the fewest faces. By the maximality of \(T^* \), the neighbors of \(P \)'s endpoints in \(C_P \) are terminals. Since \(P \) is a path of \(T^* \) and \(T^* \) is a maximal terminal-free tree and since, by Lemma 25, \(C_P \) strictly encloses only the vertices of \(P \), the neighbors of \(P \) on \(C_P \) are either terminals or vertices of \(T^* \).

We construct \(C(T) \) from \(\bigcup_{P \in P} C_P \). Consider any order \(P_1, P_2, \ldots, P_{|P|} \) of the paths in \(P \). Let \(C^1 = C_{P_1} \) and let \(C^i \) be the cycle bounding the outer face of \(C^{i-1} \cup C_{P_i} \) for \(i = 2, \ldots, |P| \). Inductively, \(C^{i-1} \) bounds a disk, and strictly encloses \(P_1, \ldots, P_{i-1} \). Also, \(C_{P_i} \) bounds a disk that overlaps \(C^{i-1} \)'s disk. We define \(C(T) = C^{(|P|)} \). It follows that \(C(T) \) strictly encloses \(T^* \) (giving property (a)). That \(C(T) \) encloses the fewest faces will follow from properties (b) and (c). An example is given in Figure 4.
Figure 4: Illustration of $C(T)$. The dashed cycle is C_P for P from l_0 to l_1 and the dotted cycle is $C_{P'}$ for P' from l_0 to l_2. The outer boundary forms $C(T)$.

Property (b) We prove the following lemma and Property (b) follows from $C(T) = C^{[P]}$.

Lemma 27. C^i strictly encloses only the vertices of $\bigcup_{j \leq i} P_j$ and encloses fewest faces.

Proof. We prove this lemma by induction by assuming the lemma is true for C^{i-1}. The base case (C^1) follows from Lemma 25. Refer to Figure 5 (a). Since all the paths in P share the root r of T^* as one endpoint, C^{i-1} and C_{P_i} both strictly enclose r and so must enclose a disk enclosing r. This disk is bounded by a cycle C consisting of four subpaths: two vertex-disjoint subpaths R_1 and R_2 of $C^{i-1} \cap C_{P_i}$ and subpaths $R_3 \subseteq C^{i-1}$ and $R_4 \subseteq C_{P_i}$ each connecting R_1 and R_2.

Figure 5: Examples for Lemma 27 (a) The dotted cycle is C_{P_i} and the dashed cycle is C^{i-1}. The two red paths are R_3 and R_4. R_1 is trivial. The shaded region represents the common faces enclosed by C^{i-1} and C_{P_i}. (b) The bold path is P^* and y is strictly inside of C. (c) If R_1 is a vertex, then the bold cycle only contains one terminal: R_1, which has two neighbors in $\bigcup_{j \leq i} P_j$. (d) The dotted paths represent possible y-to-R_3 paths inside of C that is different from P_i.

Notice that R_3 must be enclosed by C_{P_i} and contains a vertex of T^*, since C^{i-1} strictly encloses only $\bigcup_{j < i} P_j$ and so is crossed by P_i at some vertex in R_3. Similarly, R_4 must be enclosed by C^{i-1} and contains a vertex in T^*. So there is an R_4-to-R_3 path P^* in $\bigcup_{j < i} P_j$ enclosed by C. Let xy be the first edge in P^* with $x \in R_4$ (Figure 5 (b)). Then we have the following observations about xy:

Observation 4. Edge xy is nonremovable (since neither x nor y are terminals, Lemma 16).

Observation 5. Vertex y is strictly enclosed by C.

Proof. Let s be the endpoint of P^* in R_3. Then $s \in P_i$ since s is an internal vertex of R_3 and strictly enclosed by C_{P_i}. The r-to-s path Ψ_1 of T^* is strictly enclosed by C_{P_i}, so Ψ_1 is a subpath
of P_i. The r-to-x path Ψ_2 of T^* is strictly enclosed by C^{i-1}, so Ψ_2 is a subpath of $\bigcup_{j<i} P_j$. Note the lowest common ancestor $\text{LCA}_{T^*}(x, s)$ of x and s in T^* is in $\Psi_1 \cap \Psi_2$. So $\text{LCA}_{T^*}(x, s) \neq x$ since $\text{LCA}_{T^*}(x, s) \in \Psi_1 \subseteq P_i$ and $\text{LCA}_{T^*}(x, s) \neq s$ since $\text{LCA}_{T^*}(x, s) \in \Psi_2 \subseteq \bigcup_{j<i} P_j$. See Figure 5 (b). It follows $\text{LCA}_{T^*}(x, s)$ is strictly enclosed by C. Since y is between x and $\text{LCA}_{T^*}(x, s)$ in P^*, we know $y \notin R_3$ and the claim follows.

We argue that R_1 and R_2 must each contain at least one edge and so it will follow that R_3 and R_4 are vertex-disjoint. For a contradiction, assume R_1 is a vertex. Refer to Figure 5 (c). Consider the cycle C^* formed by $\bigcup_{j<i} P_j$, a subpath of R_3, R_1 and a subpath of R_4. By Theorem 18, C^* must contain a terminal. By construction, any terminal in C^* must be in R_1. So R_1 is a terminal t. Since t is the crossing of C^{i-1} and C_{P_i}, t’s degree is at least four. By Lemma 19, there is an edge in C incident to t that is removable, which contradicts the minimality of H. The same argument holds for R_2. By the same reasoning, we have the following observation.

Observation 6. Any vertex in $(C^{i-1} \cup C_{P_i}) \setminus \bigcup_{j<i} P_j$ has at most one neighbor in $\bigcup_{j<i} P_j$.

Next, we will prove by contradiction that the subpath $S = C_{P_i} \setminus E(\bigcup_j R_j)$ only shares endpoints with C^{i-1}. This will imply that C^i strictly encloses only vertices of P_i and vertices strictly inside of C^{i-1}. Further, this will also imply that C^i encloses fewest faces. If there is another cycle C^j that strictly encloses all vertices of $\bigcup_{j<i} P_j$ and fewer faces than C^i, then there is some face that is enclosed by C^i but not enclosed by C^j. If that face is inside of C^{i-1}, then C^{i-1} is not the cycle that encloses $\bigcup_{j<i} P_j$ and fewest faces, contradicting our inductive hypothesis; if that face is inside of C_{P_i}, then C_{P_i} is not the cycle that encloses P_i and fewest face, contradicting our choice of C_{P_i}. So there can not be such cycle C^j, giving the lemma.

To prove that S only shares endpoints with C^{i-1}, we first have some claims.

Claim 28. The y-to-R_3 subpath of P_i is the only one y-to-R_3 path whose edges are strictly enclosed by C.

*Proof.** By Observation 5, y is strictly enclosed by C. For a contradiction, assume there is another y-to-R_3 path Ψ enclosed by C that is not a subpath of P_i. Notice that the endpoint of Ψ in R_3 can not be an endpoint of R_3, for otherwise this endpoint of R_3 has two neighbors in $\bigcup_{j<i} P_j$, contradicting Observation 6. Then we know $\Psi \subseteq T^*$, and we have two y-to-R_3 paths in T^*, which together with R_3 form a cycle without any terminals, contradicting Theorem 18. See Figure 5 (d).

Claim 29. $C(xy)$ consists of two vertex-disjoint R_1-to-R_2 paths, a subpath of R_1 and a subpath of R_2.

*Proof.** We show the two x-to-y subpaths of $C(xy)$ share at least an edge with R_1 and R_2 respectively, that implies $C(xy)$ must contain two disjoint R_1-to-R_2 paths: one through x and the other through y.

We first argue that the two x-to-y paths in $C(xy)$ must each contain at least one terminal in $R_1 \cup R_2$. $C(xy) \cup xy$ contains two cycles whose intersection is xy. By Theorem 18 each of these cycles must contain a terminal. Since neither x nor y are terminals, each of the x-to-y paths in $C(xy)$ must contain a terminal. Note that $C(xy)$ is enclosed by C and there is no terminal strictly enclosed by C. Further, since R_3 is enclosed by C_{P_i}, all its internal vertices are not terminals.
Similarly, all internal vertices of \(R_1 \) are not terminals. So all the terminals in \(C \) are either in \(R_1 \) or \(R_2 \), and each \(x \)-to-\(y \) path in \(C(xy) \) contains at least one terminal in \(R_1 \cup R_2 \).

Next, we show the two terminals can not be both in \(R_1 \) or \(R_2 \), which implies the two paths must share vertices with \(R_1 \) and \(R_2 \) respectively. Notice that \(P^s \) divides the region inside of \(C \) into two parts, each of which has \(R_1 \) and \(R_2 \) in the bounding cycle respectively. If \(C(xy) \) only contains vertices in \(R_1 \) or \(R_2 \), then \(C(xy) \) must cross \(P^s \) and there is another cycle that encloses \(xy \) and fewer faces than \(C(xy) \), contradicting the definition of \(C(xy) \). Then \(C(xy) \) must contain two \(R_1\)-to-\(R_2 \) paths: one through \(x \) and the other through \(y \).

Both of \(C(xy) \cap R_1 \) and \(C(xy) \cap R_2 \) can not be a vertex, for otherwise the vertex has two neighbors in \(\bigcup_{j \leq i} P_j \), contradicting Observation 6. So the two \(R_1\)-to-\(R_2 \) paths are vertex disjoint.

We then argue that \(C(xy) \) could only share one subpath with \(R_1 \), and the same argument holds for \(R_2 \). For a contradiction, assume there are more than one subpath of \(C(xy) \) in \(R_1 \). Then let \(\Phi_1 \) and \(\Phi_2 \) be two such subpaths that are connected by a subpath \(\Phi_3 \) of \(C(xy) \) that is not in \(R_1 \). Refer to Figure 6 (a). Notice that \(\Phi_3 \) is enclosed by a cycle \(C' \) consisting of \(R_1 \), an \(x \)-to-\(R_1 \) subpath of \(C(xy) \), an \(y \)-to-\(R_1 \) subpath of \(C(xy) \) and edge \(xy \). Let \(\Phi'_3 \) be the subpath of \(R_1 \) that has the same endpoints as \(\Phi_3 \). If \(\Phi_3 \) is an edge, then \((C'^{-1} \cup \Phi_3) \setminus \Phi_3 \) is a cycle that strictly encloses \(\bigcup_{j \leq i} P_j \) and fewer faces than \(C'^{-1} \), contradicting our inductive hypothesis. If \(\Phi_3 \) contains an internal vertex \(s \), then \(s \in \bigcup_{j \leq i} P_j \) since it is strictly enclosed by \(C'^{-1} \). So there is an \(s \)-to-\(x \) path in \(\bigcup_{j \leq i} P_j \) whose edges must be enclosed by \(C' \). And then by replacing the \(x \)-to-\(R_1 \) subpath of \(C(xy) \) with the \(s \)-to-\(x \) path, we obtain a cycle that encloses \(xy \) and fewer faces than \(C(xy) \), contradicting the definition of \(C(xy) \).

Claim 30. For every neighbor \(z \) of \(xy \) in \(C(xy) \setminus \{R_1,R_2\} \), there is a \(z \)-to-\((C' \cup R_1) \) path that shares only \(z \) with \(C(xy) \).

Proof. If any neighbor \(z \) of \(xy \) in \(C(xy) \) is not in \(R_1 \cup R_2 \), then \(z \) must be on an \(R_1 \)-to-\(R_2 \) subpath of \(C(xy) \), whose internal vertices are in \(\bigcup_{j \leq i} P_j \). We construct a \(z \)-to-\((C' \cup R_1) \) path \(\Phi \) as follows: first find a \(z \)-to-\(C'^{-1} \) subpath \(\Phi_1 \) through \(\bigcup_{j \leq i} P_j \), and then find a subpath \(\Phi_2 \) of \(C'^{-1} \) that connects \(\Phi_1 \) with \(C' \cup R_1 \) and is disjoint with \(C(xy) \). Let \(t \) be the endpoint of \(\Phi_1 \) in \(C'^{-1} \). If \(z \in C'^{-1} \), then \(\Phi_1 \) is empty and \(t = z \). If \(t \in C' \cup R_1 \), then \(\Phi_2 \) is empty. We define \(\Phi = \Phi_1 \cup \Phi_2 \). In the following, we first argue that if \(\Phi_1 \) is not empty then it only shares \(z \) with \(C(xy) \), and then show that if \(\Phi_2 \) is not empty, then \(\Phi \) only shares \(z \) with \(C(xy) \).
Assume Φ_1 is not empty. Since H is triconnected and $C(xy)$ encloses fewest faces, there exists a path Φ_1 from z to C^{i-1} that is outside of $C(xy)$. Since $(\Phi_1 \setminus \{t\}) \subseteq \bigcup_{j<i} P_j$, Φ_1 can not share any internal vertex with $C(xy)$. Further, Φ_1 and $C(xy)$ can not share t, for otherwise t will be an endpoint of $C(xy) \cap R_1$ or $C(xy) \cap R_2$ and it has two neighbors in $\bigcup_{j \leq i} P_j$: one via Φ_1 and the other via $C(xy)$, contradicting Observation 6. So Φ_1 only shares z with $C(xy)$.

Consider the possible position of t in C^{i-1}. If it is in $C^i \cup R_1$, then Φ_2 is empty. If not, then it will be strictly enclosed by C^i. Refer to Figure 6 (b). There are two cases.

Case 1. If t is in R_3, then we choose as Φ_2 a subpath of R_3.

Note that in this case z could only be y’s neighbor by planarity and Claim 29. Consider the position of z.

If $z \notin R_3$, we argue R_3 and $C(xy)$ are vertex-disjoint, which will imply that there always exists a t-to-C^i subpath of R_3. For a contradiction, assume R_3 and $C(xy)$ are not disjoint. Then $C(xy)$ must contains a y-to-R_3 subpath by planarity. Further, $\{yz\} \cup \Phi_1$ witnesses another y-to-R_3 path whose edges are strictly enclosed by C, contradicting Claim 29. So R_3 and $C(xy)$ are vertex-disjoint.

If $z \in R_3$, we argue R_3 contains a z-to-($C^i \cup R_1$) subpath, which shares only z with $C(xy)$. By Claim 29, $C(xy)$ contains two R_1-to-R_2 paths, one of which contains y. Then there are two y-to-C subpaths of $C(xy)$: an y-to-R_1 subpath and an y-to-R_2 subpath, which are in distinct regions divided by P^* and enclosed by C. By Claim 28, there is only one y-to-R_3 path whose edges are strictly enclosed by C. So only one of the y-to-C subpath of $C(xy)$ shares vertices with R_3, and the other one is vertex-disjoint with R_3. If the y-to-R_i subpath is disjoint with R_3 for $i = 1$ or $i = 2$, then there is a z-to-R_i subpath of R_3 that shares only z with $C(xy)$. Since $R_2 \subseteq C^i$, we have the z-to-($C^i \cup R_1$) subpath of R_3 that shares only z with $C(xy)$.

Case 2. If t is not in R_3, then we choose as Φ_2 the t-to-C^i subpath of C^{i-1} that is enclosed in C^i.

This subpath always exists and is disjoint with $C(xy)$.

Now we prove that S only shares endpoints with C^{i-1}. For a contradiction, assume S has an internal vertex that is in C^{i-1}. Then by construction C^i would enclose either R_1 or R_2; w.l.o.g. assume R_1 is enclosed by C^i. Let Π be the minimal subpath of C^{i-1} that is enclosed by C^i and connects an internal vertex u of S with the common endpoint v of R_1 and S. Let w be the other endpoint of R_1. There is a simple cycle C' consisting of two u-to-v subpaths: one is Π and the other is a subpath of S. See Figure 6 (c). Further, Π, and also C', contains R_1, for otherwise R_3 and R_4 share w as an endpoint and w has two neighbors in $\bigcup_{j \leq i} P_j$: one via R_3 and the other via R_4, contradicting Observation 6. See Figure 6 (d). It follows that R_3 and R_4 are vertex disjoint C'-to-C^i paths.

We argue H and xy satisfy the conditions of Lemma 26 with $C_1 = C'$ and $C_2 = C^i$, which shows xy is removable, giving a contradiction to Observation 1.

Condition 1. Note that C_1 and C_2 could only share at most one vertex which is u and shown in Figure 6 (d). Since C_P is simple, $u \neq w$, so $u \notin C$. Since $C(xy)$ is enclosed by C, $u \notin C(xy)$. So $C(xy)$ does not contain the common vertex of C_1 and C_2. Then the first condition in Lemma 26 follows from Claim 29.
Condition 2. Since $R_i \subseteq C_1$, the second condition follows from Claim 30. Note that the z-to-C^i path Φ constructed in Claim 30 may contain a z-to-C_1 subpath, which shares only z with $C(xy)$.

\begin{itemize}
 \item [T is a tree] To prove this, we show that when T is a tree, H is Q_3-triconnected. That is, for any pair of terminals x and y, there are three x-to-y internally vertex-disjoint paths only one of which contains internal vertices of T when T is a tree. Since T is connected, this implies T cannot contain any cycle, for otherwise H is not minimal. The proof is similar to that of Lemma 21 but simpler: we modify the paths between x and y such that only one of them contains internal vertices of T while maintaining them internally vertex-disjoint.

 Let R_1, R_2 and R_3 be three x-to-y disjoint paths. If there is only one path containing internal vertices of T, then it is sufficient for T to be simply connected for triconnectivity between x and y. So we assume there are at least two paths containing internal vertices of T. By Lemma 27, $C(T)$ strictly encloses all internal vertices of T, so any path that contains an internal vertex of T must touch $C(T)$. We order the vertices of the three paths from x to y. Let u_i and v_i be the first and last vertex of R_i that is in $C(T)$ for $i = 1, 2, 3$. If R_i is disjoint from $C(T)$, we say u_i and v_i is undefined. Let C_1 and C_2 be the disjoint minimum paths of $C(T)$ that connect $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$. If there are only two paths, say R_1 and R_2, containing vertices of $C(T)$, we can replace $R_1[u_1, v_1]\cup R_2[u_2, v_2]$ with $C_1\cup C_2$. Then the new paths are disjoint and do not contain any internal vertex of T. If all the three paths contain vertices of $C(T)$, then let C_3 be the simple path from the middle vertex of $\{u_1, u_2, u_3\}$ to the middle vertex of $\{v_1, v_2, v_3\}$ in $(C(T)\cup T)\setminus (C_1\cup C_2)$. Now the to-$C(T)$ prefixes of R_i, C_i and the from-$C(T)$ suffixes of R_i (for $i = 1, 2, 3$) together form three vertex-disjoint paths between x and y. Further, among the three resulting paths, only the path containing C_3 contains internal vertices of T. Therefore, it is sufficient for T to be simply connected for H to be Q_3-triconnected.

\begin{itemize}
 \item Property (c) By triconnectivity, every leaf of T^* has at least two neighbors on T that are terminals. So each leaf of T^* can not be a leaf of T and then all leaves of T are terminals. By Lemma 27, $C(T)$ only strictly encloses all vertices of T^*. So all its neighbors, which are terminals in T by the maximality of T^*, are on $C(T)$, giving property (c).

 Since each terminal-bounded component is a tree, any terminal on T must be a leaf by the construction of terminal-bounded component. Therefore, we have the following lemma.
\end{itemize}

\begin{itemize}
 \item Lemma 31. A vertex of a terminal-bounded tree T is a terminal if and only if it is a leaf of T.
\end{itemize}

\begin{itemize}
 \item Property (d) Let T_1 be any terminal-bounded tree. For a contradiction, assume there is a terminal-bounded tree T_2 whose vertices are in distinct maximal terminal-free paths of $C(T_1)$. By Lemma 31, the leaves of T_2 are terminals. So each component of $C(T_1)\cap T_2$ is a terminal-to-terminal path and contains at most one maximal terminal-free path. Then by the assumption for the contradiction, there are two vertex-disjoint non-trivial components (paths) Π_1 and Π_2 of $C(T_1)\cap T_2$.

 Since $C(T_2)$ strictly encloses only internal vertices of T_2, the interiors of $C(T_2)$ and $C(T_1)$ overlap, and so $C(T_2)\cap T_1 \neq \emptyset$. Then $C(T_2)\cap T_1$ contains only paths whose endpoints are terminals
\end{itemize}
on $C(T_1)$. Let \mathcal{R} be the set consisting of all maximal paths of $C(T_2) \cap T_1$. Refer to Figure 7 (a) and (b). Since $C(T_2)$ is simple, and since the endpoints of paths in \mathcal{R} are leaves of T_1, we have

Observation 7. Any two paths in \mathcal{R} are vertex disjoint.

Note that if T_1 is an edge or a star, $|\mathcal{R}| \leq 1$ and so we would already have our contradiction.

For any path $R_i \in \mathcal{R}$ with endpoints u_i and v_i, there is an u_i-to-v_i subpath R'_i of $C(T_1)$ such that R_i and R'_i form a cycle enclosing a region that is enclosed by both of $C(T_1)$ and $C(T_2)$. Since $C(T_1)$ and $C(T_2)$ only strictly enclose edges of T_1 and T_2 respectively, and since $T_1 \neq T_2$, this region must be a face. Notice that any path of $C(T_1) \cap T_2$ could only be subpath of R'_i for some $R_i \in \mathcal{R}$ for $C(T_2)$ encloses T_2. By the following observation, there exist R_1 and R_2 such that $\Pi_1 \subseteq R'_1$ and $\Pi_2 \subseteq R'_2$.

Observation 8. Every R'_i contains at most one maximal path of T_2.

Proof. For a contradiction, assume there is a path R'_i that contains more than one maximal path of T_2. Let Π_a and Π_b be two successive such paths. By the concept of terminal-bounded tree, there

Figure 7: (a) The dashed tree is T_2 and there are two paths Π_1 and Π_2 of T_2 on $C(T_1)$. The blue vertices are terminals. (b) The two shaded cycles are (T_1) and $C(T_2)$, which shares two regions enclosed by R_i and R'_i for $i = 1, 2$. (c) The dashed subtree is in T_2. R'_i contains two subpaths of T_2 and two terminals t_a and t_b are enclosed. (d) The dotted cycle is $C(T_2)$. The bold cycles C_1 and C_2 share P_1. (e) An example for Simplified C_1 and C_2 in (d). The dotted cycle is $C(T_2)$ and the outer cycle is C_2. C_1 and C_2 share P_1.

is a terminal-free path Φ of T_2 connecting Π_a with Π_b that only share endpoints with $C(T_1)$. Refer to Figure 7 (c). So Φ, R_i and R_i' (which contains two R_i-to-Φ paths) witness a cycle C that strictly encloses an endpoint t_a of Π_a and an endpoint t_b of Π_b. Since the endpoints of Π_a and Π_b are leaves of T_2, t_a and t_b should be in $C(T_2)$ by Property (c). So there is a subpath P of $C(T_2)$ that is enclosed by C such that $t_a \in P$. Since the region enclosed by C is divided into two parts by a subpath Φ' of R_i' (which have the same endpoints as Φ), and since one of the two parts is the face enclosed by R_i and R_i', we know P could only be in the region bounded by Φ' and Φ. However, P can not cross Φ by Property (a) since Φ is terminal-free and every vertex of Φ is an internal vertex of T_2; and P can not cross any internal vertex of Φ' for otherwise P will enter the face enclosed by R_i and R_i'. Therefore, P and R_i can not be connected, contradicting P is a subpath of $C(T_2)$. □

Next, we construct two cycles C_1 and C_2 that share a subpath. Refer to Figure 7 (d). Since T_1 is a tree and R_1 and R_2 are vertex disjoint by Observation 7, there is an R_1-to-R_2 subpath P_i in T_1. Since $C(T_2)$ is simple and contains R_1 and R_2, $C(T_1) \cup P_i$ contains two simple cycles C_1 and C_2 whose intersection is P_i. W.l.o.g. assume C_1 is enclosed by C_2.

Since T_2 is a tree and Π_1 and Π_2 are vertex disjoint, there is a Π_1-to-Π_2 path P_2 in T_2. Note that P_2 is terminal-free, since P_2 does not contain any leaf of T_2 and terminals in T_2 are leaves by Lemma 31. Let xy be an edge of P_2. Then by Lemma 16, xy is nonremovable. However, H and xy also satisfy Lemma 26 with C_1 and C_2, which shows xy is removable, giving a contradiction.

Condition 1. Note that $C(xy)$ is enclosed by the cycle C consisting of Π_1, Π_2, and two Π_1-to-Π_2 subpaths of $C(T_2)$: one is of C_1 and the other is of C_2. Refer to Figure 7 (d) and (e). Since C is disjoint with the common subpath P_i of C_1 and C_2, $C(xy)$ is also disjoint with P_i.

Showing the remainder of the first condition of Lemma 26 is similar to that of Claim 29 if we replace R_1 and R_2 with the two Π_1-to-Π_2 subpaths of C_1 and C_2. Note that we have a stronger version of Observation 6 here, since T_2 is a tree.

Condition 2. If any neighbor z of xy in $C(xy)$ is not in $C_1 \cup C_2$, it will be a non-leaf vertex in T_2, since all leaves of T_2 are in $C(T_2) \subseteq C_1 \cup C_2$. Then z is not a terminal by Lemma 31. We find a subpath Φ in T_2 from z to $C(T_2) \subseteq C_1 \cup C_2$ such that Φ only shares z with $C(xy)$. By triconnectivity, there are at least three disjoint paths from z to $C(T_2)$. Since $C(xy)$ contains two such paths and encloses the fewest faces, there is a path Φ from z to $C(T_2)$ outside of $C(xy)$. If Φ shares any vertex with $C(xy)$ other than z, then Φ and the C_1-to-C_2 path that contains z witness a cycle in T_2, a contradiction.

This proves the Tree Cycle Theorem.

3.2.1 Terminal-free paths

Let P be a terminal-free a-to-b path of H such that there exists a cycle that strictly encloses the internal vertices of P. Then $a, b \in C(P)$, since H is triconnected by Lemma 12. Let $P_1(P)$ and $P_2(P)$ be the two a-to-b subpaths of $C(P)$.

Lemma 32. If for every edge $e \in P$ there is a separating set $S_e \subseteq C(P)$, then all the vertices inside of $C(P)$ are in P.

Proof. For a contradiction, assume there is a vertex u strictly inside of $C(P)$ that is not on P. There can not be more than one path from u to $C(P)$ disjoint from P, otherwise there will be another
cycle which encloses fewer faces than \(C(P) \) (Figure 8 (a)). By Lemma 12, \(H \) is triconnected, so there are at least two disjoint paths \(R_1 \) and \(R_2 \) from \(u \) to \(v_1 \) and \(v_2 \) on \(P \) disjoint from \(C(P) \) (Figure 8 (b)). For an edge \(e \) on \(P \) between \(v_1 \) and \(v_2 \), every separating set for \(e \) must include a vertex on the path \(R_1 \cup R_2 \), however, this contradicts the assumption that there is a separating set for \(e \) in \(C(P) \).

Figure 8: (a) If vertex \(u \) has two paths to \(v_1 \) and \(v_2 \) on \(C(P) \) that are disjoint from \(P \), then there is a smaller cycle (dotted) through \(v_1 \), \(u \), \(v_2 \) that encloses \(P \). (b) The separating set for an edge \(e \) on \(P \) between \(v_1 \) and \(v_2 \) must include a vertex of the path (dotted) strictly enclosed by \(C(P) \), contradicting there is a separating set for \(e \) in \(C(P) \).

Lemma 33. No pair of adjacent vertices in \(P \) has a common neighbor in \(C(P) \).

Proof. For a contradiction, assume there are adjacent vertices \(u \) and \(v \) with a common neighbor \(z \) in \(C(P) \). Since \(u, v, z \) forms a cycle, \(S_{uv} \) must contain \(z \). Therefore, by Theorem 10, \(uz \) is removable. Further, both components of \(H \setminus \{uv, S_{uv}\} \) must contain a vertex distinct from \(u \) and \(v \) and each of those vertices must have vertex disjoint paths to \(S_{uv} \) and \(uv \); therefore the degree of \(z \) is at least 4. Therefore, removing \(uz \) will not result in contracting any edges incident to \(z \) and so will preserve triconnectivity of the terminals, contradicting the minimality of \(H \). □

For a separating pair \((e, S_e)\), let \(\Sigma(e, S_e) \) be a closed curve that only intersects the drawing of \(H \) in an interior point of \(e \) and two vertices of \(S_e \) and partitions the plane according to the components of \(H \setminus \{e\} \cup S_e \). Each portion of \(\Sigma(e, S_e) \) \(\setminus H \) is contained in a face of \(H \). Since this is true for any \(\Sigma(e, S_e) \), for two separating pairs \((e_1, S_{e_1})\) and \((e_2, S_{e_2}) \) we may assume that the curves \(\Sigma(e_1, S_{e_1}) \) and \(\Sigma(e_2, S_{e_2}) \) are drawn so they cross each other at most 3 times. \(\Sigma(e_1, S_{e_1}) \) and \(\Sigma(e_2, S_{e_2}) \) cross either at a point that is interior to a face of \(H \) or at one vertex of \(S_{e_1} \cup S_{e_2} \). Since they are simple closed curves, they cross each other twice or not at all.

Lemma 34. For every edge \(e \) in \(P \), there exists a separating set for \(e \) in \(C(P) \).

Proof. We prove by induction on the subpaths of \(P \): we assume the lemma is true for every strict subpath of \(P \). The base case is when \(P \) is one edge \(xy \): \(S_{xy} \) must include one vertex of \(P_1(xy) \) and one vertex of \(P_2(xy) \) but does not include \(x \) or \(y \), giving the lemma.

Let \(xy \) be any edge of \(P \). Without loss of generality, we assume \(x \neq a \) and \(y \notin P[a,x] \). By the inductive hypothesis, there exists a separating set \(S_{xy} = \{s_1, s_2\} \in C(P[x,b]) \). The following claim simplifies our proof, which we prove after using this claim to prove that \(S_{xy} \in C(P) \).

Claim 35. \(S_{xy} \) does not contain an internal vertex of \(P \).

There are two cases:
1. If \(b \in S_{xy} \), w.l.o.g. assume \(b = s_1 \). Then we only need to show \(s_2 \) is in \(C(P) \). By the induction hypothesis, \(s_2 \in C(P[a, b]) \). By Claim \ref{claim:35}, \(s_2 \) can not be internal vertex of \(P[a, y] \), so \(a \) and \(x \) must be in the same component of \(H \setminus \{ xy, S_{xy} \} \). Then \(C(P[a, y]) \) must contain \(s_2 \) since \(C(P[a, y]) \) must intersect \(\Sigma(xy, S_{xy}) \) in vertices of \(S_{xy} \). Therefore, \(s_2 \) is in both of \(C(P[a, y]) \) and \(C(P[x, b]) \). By planarity, it must be in \(C(P) \), for otherwise there will be other cycles which enclose fewer faces than \(C(P[a, y]) \) and \(C(P[x, b]) \) and do not contain \(s_2 \).

2. If \(b \notin S_{xy} \), by Claim \ref{claim:35}, \(S_{xy} \) is not in \(P \), so \(a \) and \(b \) are in the distinct components of \(H \setminus \{ xy, S_{xy} \} \) since they are connected to \(x \) and \(y \) by \(P[a, x] \) and \(P[y, b] \) respectively. That is, \(b \) is strictly inside of \(\Sigma(xy, S_{xy}) \) and \(a \) is outside of \(\Sigma(xy, S_{xy}) \). Then \(C(P) \) must intersect \(\Sigma(xy, S_{xy}) \) twice in vertices of \(S_{xy} \). Because \(C(P) \) is simple, it can not intersect \(\Sigma(xy, S_{xy}) \) in the same vertex of \(S_{xy} \). Therefore, both vertices of \(S_{xy} \) are in \(C(P) \).

This completes the proof of Lemma \ref{lemma:34}.

\begin{proof}[Proof of Claim \ref{claim:35}] For a contradiction, assume \(s_1 \) is an internal vertex of \(P \). Then it must in \(P[a, x] \) since \(S_{xy} \) is in \(C(P[a, x]) \). Further, \(s_2 \) can not be also in \(P[a, x] \) since \(x \) and \(y \) are triconnected to \(C(P) \), and then \(C(P) \) and the paths from \(x \) and \(y \) to \(C(P) \) contains a path from \(x \) to \(y \) disjoint from \(P[a, x] \).

Since \(a \) and \(x \) are on different sides of \(\Sigma(xy, S_{xy}) \), \(C(P[a, x]) \) must cross \(\Sigma(xy, S_{xy}) \) twice. \(\Sigma(xy, S_{xy}) \) could only intersect \(H \) at \(xy \) and \(S_{xy} \), so \(C(P[a, x]) \) must cross \(\Sigma(xy, S_{xy}) \) at \(xy \) and \(s_2 \), for \(s_1 \) is in \(P[a, x] \) and \(C(P[a, x]) \) is simple; w.l.o.g. assume \(P_1(P[a, x]) \) contains \(s_2 \).

In \(P[s_1, x] \), there must be a vertex between \(s_1 \) and \(x \), for otherwise by Theorem \ref{theorem:10} edge \(s_1x \) is removable, which contradicts Lemma \ref{lemma:16}. Let \(zx \) be an edge of \(P[s_1, x] \). Then there exists a separating set \(S_{zx} \) for \(zx \) in \(C(P[a, x]) \) by induction hypothesis. We claim \(\Sigma(zx, S_{zx}) \) must intersect \(P_1(P[a, x]) \) between \(s_2 \) and \(x \). If not, then it will intersect \(P_1(P[a, x]) \) outside of \(\Sigma(xy, S_{xy}) \). However, the \(z \)-to-\(s_2 \) path, together with the \(s_2 \)-to-\(x \) subpath of \(P_1(P[a, x]) \) and edge \(zx \) form a cycle inside of \(\Sigma(xy, S_{xy}) \). See Figure \ref{figure:9} (a). Since \(\Sigma(zx, S_{zx}) \) must cross the edge \(zx \), it must intersect the described cycle twice. Note that cycle is disjoint from \(P_2(P[a, x]) \). So \(\Sigma(zx, S_{zx}) \) will intersect the drawing of \(H \) four times: twice at the described cycle inside of \(\Sigma(xy, S_{xy}) \), once at \(P_1(P[a, x]) \) outside of \(\Sigma(xy, S_{xy}) \) and once at \(P_2(P[a, x]) \). This contradicts the definition of \(\Sigma(zx, S_{zx}) \). Let \(s \) be the vertex of \(S_{zx} \) in \(P_1(P[a, x]) \). By the above argument, \(s \) is between \(s_2 \) and \(x \). There are two cases.

1. If \(s = s_2 \), the only vertex of \(P_1(P[a, x]) \) inside both of \(\Sigma(zx, S_{zx}) \) and \(\Sigma(xy, S_{xy}) \) is \(s_2 \). Then there is a path between \(z \) and \(s_2 \) edge disjoint from \(C(P[a, x]) \) and \(P \). By Lemma \ref{lemma:32} all vertices inside of \(C(P[a, x]) \) are in \(P[a, x] \), so \(z \) and \(s_2 \) are adjacent and this edge is the only path between \(z \) and \(s_2 \) disjoint from \(P \) in \(\Sigma(xy, S_{xy}) \). Consider \(C(P[z, b]) \). It must intersect \(\Sigma(xy, S_{xy}) \) at \(s_1 \) and \(s_2 \). Then edge \(zs_2 \) must be in \(C(P[z, b]) \) since it is the only path between \(z \) and \(s_2 \) disjoint from \(P \) in \(\Sigma(xy, S_{xy}) \). By Lemma \ref{lemma:32} the \(x \)-to-\(s_2 \) path disjoint from \(P \) in \(\Sigma(xy, S_{xy}) \) is an edge. However, the two edges \(zs_2 \) and \(xs_2 \) contradict Lemma \ref{lemma:33}.

2. If \(s \neq s_2 \), \(S_{zx} \) must contain vertex \(a \), for otherwise \(\Sigma(zx, S_{zx}) \) will intersect \(P_1[a, x] \) between \(a \) and \(s_2 \), which is the second intersection for \(\Sigma(zx, S_{zx}) \) and \(P_1[a, x] \) and the fourth for \(\Sigma(zx, S_{zx}) \) and \(H \). Then \(s_1 \) and \(z \) are both connected to \(s \) by paths edge disjoint from \(C(P[a, x]) \) and \(P \) since they are inside of \(\Sigma(zx, S_{zx}) \). By Lemma \ref{lemma:32} they are both adjacent to \(s \). See Figure \ref{figure:9} (c). However, this contradicts Lemma \ref{lemma:33}.
\end{proof}
Figure 9: $\Sigma(xy, S_{xy})$ is the dashed cycle and $\Sigma(zx, S_{zx})$ is the dotted cycle. (a) The bold cycle must be intersected by $\Sigma(zx, S_{zx})$ twice. (b) $\Sigma(zx, S_{zx})$ intersects the drawing of H at s_2. (c) $\Sigma(zx, S_{zx})$ intersects the drawing of H at s and a.

Lemma 36. Let u_1 and u_2 be the neighbors of an endpoint of P on $C(P)$. Then there is a u_1-to-u_2 path whose internal vertices are strictly outside of $C(P)$.

Proof. Without loss of generality, let u_i be the neighbor of a on $P_i(P)$, $i = 1, 2$. Let $\{s_1, s_2\}$ be the separating set for $ac \in P$ such that $s_i \in P_i(P)$, $i = 1, 2$, as guaranteed by Lemma 34.

If $u_i = s_i$, $i = 1, 2$, then the component of $H \setminus \{ac, s_1, s_2\}$ that contains a must contain another vertex x and x must have three vertex-disjoint paths to a, s_1 and s_2. The latter two of these witness the u_1-to-u_2 path that gives the lemma.

If $u_1 \neq s_1$ and $u_2 = s_2$, then the component of $H \setminus \{ac, s_1, s_2\}$ that contains u_1 must have three vertex-disjoint paths to a, s_1 and s_2 and the latter of these paths witness the u_1-to-u_2 path that gives the lemma. The case $u_1 = s_1$ and $u_2 \neq s_2$ is symmetric.

Figure 10: The construction of paths for Lemma 36. $\Sigma(ac, \{s_1, s_2\})$ is the dashed cycle. The u_2 side of the cycle that separates u_2 and s_1 is shaded. The path witnessing the lemma is bold and is formed by the u_2-to-s_1 and u_1-to-s_2 paths that avoid edges u_1a and u_2a.

If $u_i \neq s_i$, $i = 1, 2$, then the component of $H \setminus \{ac, s_1, s_2\}$ that contains u_1 and u_2 must have three vertex-disjoint paths from u_i to a, s_1 and s_2 for $i = 1, 2$. The first of these, we may assume is the edge u_1a. Consider the u_1-to-s_2 path; together with the edges u_1a and ac and the s_2-to-ac portion of $\Sigma(ac, \{s_1, s_2\})$ that does not contain s_1, these form a closed curve in the plane that separates u_2 and s_1 (see Figure 10). The above-described u_2-to-s_1 path must therefore cross the u_1-to-s_2 path; these paths witness the u_1-to-u_2 path that gives the lemma.

Lemma 37. For any terminal-free path P, there is a drawing of H such that all internal vertices of P are strictly enclosed by a simple cycle.
Proof. For a contradiction, assume there is a terminal-free path P whose internal vertices is not strictly enclosed by any cycle for any choice of infinite face of H: that is, every face of H contains an internal vertex of P. Let P be a minimal such path, let a and b be P’s endpoints, and let c be a’s neighbor on P. Note that $b \neq c$, for otherwise P is an edge and H would have at most two faces (each containing P), but every triconnected graph has at least three faces.

First observe that there is a face f whose bounding cycle strictly encloses all internal vertices of $P[c,b]$. Let f_1 and f_2 be the two faces that contains edge ac: f is one of f_1 and f_2. One of f_1 and f_2 only contains one internal vertex, namely c, of P, for otherwise both faces would contain at least two internal vertices of P and every face of H would contain an internal vertex of $P[c,b]$, contradicting the minimality of P.

Take f, defined in the previous paragraph, to be the infinite face of H. Since f’s bounding cycle strictly encloses the internal vertices of $P[c,b]$, $C(P[c,b])$ exists. Let u and v be c’s neighbors in $C(P[c,b])$. Note that ac may or may not be in $C(P[c,b])$. By Lemma 36, there is a u-to-v path R whose internal vertices are strictly outside of $C(P[c,b])$, so there is a drawing of H so that $R \cup C(P[c,b]) \setminus \{cu,cv\}$ is a cycle that strictly encloses internal vertices of P, a contradiction. See Figure 11(a).

![Figure 11](image)

Figure 11: (a) The dashed paths show two possible u-to-v paths R outside of $C(P[c,b])$. The cycle $R \cup C(P[c,b]) \setminus \{cu,cv\}$ strictly encloses a face that does not contain any internal vertex of P for an appropriate choice of infinite face. (b) The dotted path is P' and dashed path is P''. Note that d may or may not be in P'. (c) The bold cycle is $C(P'')$ and it crosses P'.

Proof of Lemma 24. If T^* is an edge, then this claim is trivial. Suppose otherwise.

For a contradiction, assume every face of H contains an internal vertex of T^*. Let ac be a leaf edge of T^*, where a is a leaf of T^*. Recall that if a terminal-bounded component is not an edge, then it is obtained from a maximal terminal-free tree. By the maximality of T^*, the two neighbors, t_1 and t_2, of a on $C(ac)$ are terminals. By Lemma 36, there exists a t_1-to-t_2 path P' whose internal vertices are strictly outside of $C(ac)$. Choose P' such that $C' = P' \cup \{at_1,at_2\}$ encloses the fewest faces. Then C' does not strictly enclose any vertex since H is triconnected by Lemma 12. By the assumption for the contradiction and the choice of P', P' must contain an internal vertex b of T^*.

Let P'' be the a-to-d path of T^* containing vertex b. Note that d may or may not be in P' (see Figure 11(b)). By Lemma 37, $C(P'')$ exists and by Lemmas 32 and 34, $C(P'')$ strictly encloses only internal vertices of P''. Then C' and $C(P'')$ must cross each other and there exists a subpath of $C(P'')$ that is strictly enclosed by C', which contradicts that C' encloses fewest faces. See Figure 11(c).
Proof of Lemma \[25\] By Lemma \[37\] \(C(P)\) exists. Then \(P_1(P)\) and \(P_2(P)\) both contain a terminal, for otherwise there is a cycle composed by \(P\) and one of \(P_1(P)\) and \(P_2(P)\) that does not contain any terminal, contradicting Theorem \[18\]. We first prove that at least one of \(P_1(P)\) and \(P_2(P)\) contains more than one internal vertex, and then construct the cycle strictly enclosing \(P\). By Lemma \[32\] and \[34\] all vertices inside of \(C(P)\) are in \(P\). If \(P_1(P)\) and \(P_2(P)\) both only contain one internal vertex, then the endpoints of the first edge of \(P\) are both adjacent to the internal vertex of \(P_1(P)\) or \(P_2(P)\), which contradicts Lemma \[33\]. Let \(x_a\) and \(y_a\) (or \(x_b\) and \(y_b\)) be the neighbors of \(a\) (or \(b\)) in \(P_1(P)\) and \(P_2(P)\) respectively. Then at least one of \(\{x_a, x_b\}\) and \(\{y_a, y_b\}\) contains two distinct vertices.

By Lemma \[36\] there is an \(x_a\)-to-\(y_a\) path whose internal vertices are strictly outside of \(C(P)\). We choose such an \(x_a\)-to-\(y_a\) path \(R_a\) such that the cycle \(R_a \cup \{ax_a, ay_a\}\) encloses fewest faces. Then this cycle does not strictly enclose any vertex, for otherwise the vertex strictly inside of the cycle is triconnected to the cycle and we can find another cycle through that vertex which could enclose fewer faces, contradicting the choice of \(R_a\). Similarly, for \(x_b\) and \(y_b\), we can find an \(x_b\)-to-\(y_b\) path \(R_b\) such that \(R_b \cup \{bx_b, by_b\}\) does not strictly enclose any vertex. Since at least one of \(\{x_a, x_b\}\) and \(\{y_a, y_b\}\) contains two distinct vertices, \(R_1\) and \(R_2\) are distinct. So the cycle \((R_a \cup R_b \cup C(P)) \setminus \{ax_a, bx_b, ay_a, by_b\}\) strictly encloses all the vertices of \(P\) and only the vertices of \(P\).

\[\Box\]

Proof of Lemma \[26\] For a contradiction, assume edge \(xy\) is nonremovable and consider \(\Sigma(xy, S_{xy})\).

First note that \(\Sigma(xy, S_{xy})\) must be enclosed by \(C_2\) and not enclosed by \(C_1\) for otherwise, \(\Sigma(xy, S_{xy})\) would intersect \(C_1\) and \(C_2\) in more than one point, and since \(C_1\) and \(C_2\) share at most one common subpath that is vertex disjoint from \(C(xy)\) (by condition of the lemma), this would result in \(|S_{xy}| \geq 3\), a contradiction. Therefore \(S_{xy}\) contains, w.l.o.g., two vertices of the \(C_1\)-to-\(C_2\) path through \(C(xy)\); let \(a\) be the vertex of \(S_{xy}\) on the \(x\)-to-\(C_1\) path. Refer to Figure \[12\].

Next note that \(a\) must be a neighbor of \(x\). For otherwise the neighbor \(z\) of \(x\) must be on the \(x\) side of \(\Sigma(xy, S_{xy})\). By condition of the lemma, there is a path from \(z\) to \(C_1\) or \(C_2\) that is disjoint from \(C(xy)\), however, the only way to cross \(\Sigma(xy, S_{xy})\) is via a vertex of \(C(xy)\), a contradiction. Therefore \(a\) is a neighbor of \(x\).

Then \(a\) has degree 2 in the part of \(H\) on the \(x\) side of \(\Sigma(xy, S_{xy})\): one degree is given by the edge \(ax\) and the other is given by the existence of a vertex \(v \neq x\) on the \(x\) side of \(\Sigma(xy, S_{xy})\) which has vertex disjoint paths to \(x\) and each vertex in \(S_{xy}\). For the same reason, \(x\) has degree 4: degree 2 via the \(C_1\)-to-\(C_2\) path, degree 1 via \(y\) and degree 1 via the \(v\)-to-\(x\) path.

Further we will argue that \(a\) has degree 2 on the \(y\) side of \(\Sigma(xy, S_{xy})\) as well; \(a\) then has degree 4. By Theorem \[10\] \(xa\) is removable. Since \(x\) and \(a\) both have degree 4, removing \(xa\) will not result in any edge contractions; this maintains the triconnectivity of the terminals, and contradicts the minimality of \(H\).

To show that \(a\) has degree 2 on the \(y\) side of \(\Sigma(xy, S_{xy})\), we have two cases. If \(a \in C_1\), then this follows from the two edges of \(C_1\) incident to \(a\). If \(a \notin C_1\), then by condition of the lemma, there is a path from \(a\) to \(C_1\) or \(C_2\) that is disjoint from \(C(xy)\) and so must be on the \(y\) side of \(\Sigma(xy, S_{xy})\) and is notably disjoint from the 3 edges incident to \(a\) on the \(C_1\)-to-\(C_2\) path of \(C(xy)\) and on the \(v\)-to-\(a\) path.

\[\Box\]
4 Correctness of spanner

In this section, we prove the correctness of our spanner. Let OPT be the weight of an optimal solution for 3-ECP. Then the correctness requires two parts: (1) bounding its weight by $O(OPT)$ and (2) showing it contains a $(1 + \epsilon)$-approximation of the optimal solution. The weight of our spanner is bounded by the weight of mortar graph, which we briefly introduce in Subsection 4.1.

The following Structure Theorem guarantees that there is a nearly-optimal solution in our spanner and completes the correctness of our spanner:

Theorem 38 (Structure Theorem). For any $\epsilon > 0$ and any planar graph instance (G, w, r) of 3-ECP, there exists a feasible solution S in our spanner such that

- the weight of S is at most $(1 + \epsilon)OPT$ where c is an absolute constant, and
- the intersection of S with the interior of any brick is a set of trees whose leaves are on the boundary of the brick and each tree has a number of leaves depending only on ϵ.

We prove the Structure Theorem in Subsection 4.2. The idea is similar to that for 2-ECP, that is we transform an optimal solution to a feasible solution satisfying the theorem. Throughout we indicate where the transformation for 3-ECP departs from those of 2-ECP. In the following, we denote by Q the set of terminals, which are the vertices with positive requirement.

4.1 Mortar graph, bricks and portals

The Mortar graph is a grid-like subgraph of G that (1) spans Q and (2) has weight at most $9\epsilon^{-1}$ times the weight of a minimum Steiner tree that spans Q. Since the weight of minimum Steiner tree is no more than OPT, the weight of mortar graph is no more than $9\epsilon^{-1}$OPT. A brick B is the subgraph of G that is enclosed by a face of the mortar graph (including the boundary of the face); it has boundary ∂B and interior $\text{int}(B) = G[E(B) \setminus E(\partial B)]$. Further, bricks have the following property:

Lemma 39. (Lemma 6.10 [10]) The boundary of a brick B, in counterclockwise order, is the concatenation of four paths W_B, S_B, E_B and N_B (west, south, east and north) such that:

1. The set of edges $B \setminus \partial B$ is nonempty.
2. Every vertex of $Q \cap B$ is in N_B and S_B.

Figure 12: The bold cycle is $C(xy)$ and the dashed cycle is $\Sigma(xy, S_{xy})$.

3. N_B is ϵ-short and every proper subpath of S_B is ϵ-short.

4. There exists a number $t \leq \kappa(\epsilon)$ and vertices s_0, s_1, \ldots, s_t ordered from west to east along S_B such that for any vertex x of $S_B[s_i, s_{i+1}]$, the distance from x to s_i along S_B is less than ϵ times the distance from x to N_B in B.

For the above lemma, a path is ϵ-short if the distance between every pair of vertices on that path is at most $(1 + \epsilon)\times$ the distance between them in G and $\kappa(\epsilon) = 4\epsilon^{-2}(1 + \epsilon^{-1})$. The paths that forms eastern and western boundaries of bricks are called supercolumns, and further satisfy:

Lemma 40. (Lemma 6.6 [10]) The sum of the weight of all edges in supercolumns is at most ϵOPT.

To obtain the spanner, we add a set of Steiner trees in each brick B whose terminals are vertices of ∂B. The terminals are drawn from a subset of portal vertices evenly spaced on the boundary of each brick. We bound the number of portals per brick by $\theta(\epsilon) = O(\epsilon^{-2}\alpha(\epsilon))$ and $\alpha(\epsilon)$ in turn depends on the number of connections required to allow a nearly optimal solution, which is bounded by $o(\epsilon^{-5.5})$. The portals satisfy:

Lemma 41. (Lemma 7.1 [10]) For any vertex x on ∂B, there is a portal y such that the weight of x-to-y subpath of ∂B is at most $1/\theta(\epsilon)$ times the weight of ∂B.

Since the weight of each Steiner tree in a brick B can be bounded by the weight of the weight of ∂B, and since there are only constant number (that is $2^{\theta(\epsilon)}$) of such Steiner trees, the weight of all trees we add in B is at most $f(\epsilon)$ times the weight of ∂B. So the total weight of our spanner is bounded by $(2f(\epsilon) + 9\epsilon^{-1})$ times the weight of MG, which is $O(\text{OPT})$.

4.2 Proof of the Structure Theorem

We transform OPT for the instance (G, Q, r) so that it satisfies the following properties (repeated from the introduction):

P1: OPT \cap int(B) can be partitioned into a set of trees T whose leaves are on the boundary of B.

P2: If we replace any tree in T with another tree spanning the same leaves, the result is a feasible solution.

P3: There is another set of $O(1)$ trees T' that costs at most a $1 + \epsilon$ factor more than T, such that each tree of T' has $O(1)$ leaves and $(\text{OPT} \setminus T) \cup T'$ is a feasible solution.

To argue about the leaves of trees on the boundary of bricks, we use the following definition:

Definition 1. (Joining vertex [9]). Let H be a subgraph of G and P be a subpath of ∂G. A joining vertex of H with P is a vertex of P that is the endpoint of an edge of $H - P$.

The transformation consists of the following steps:

Augment We add four copies of each supercolumn; we take two copies each to be interior to the two adjacent bricks. After this, connectivity between the east and west boundaries of a brick will be transformed to that between the north and south boundaries. By Lemma 40 this only increases the weight by an small fraction of OPT.

30
Cleave By cleaving a vertex, we split it into multiple copies while keeping the connectivity as required by adding artificial edges of weight zero between two copies and maintaining a planar embedding. We call the resulting solution \(\text{OPT}_C \). In this step, we turn \(k \)-edge-connectivity into \(k \)-vertex-connectivity for \(k = 1, 2, 3 \). By Theorem 18, we can obtain Property P1: \(\text{OPT}_C \cap \text{int}(B) \) can be partitioned into a set \(T \) of trees whose leaves are in \(\partial B \). By Corollary 5, we can obtain Property P2: we can obtain another feasible solution by replacing any tree in \(T \) with another tree spanning the same leaves.

Flatten For each brick \(B \), we consider the connected components of \(\text{OPT}_C \cap \text{int}(B) \). If the component only spans vertices in the north or south boundary, we replace it with the minimum subpath of the boundary that spans the same vertices. This will not increase the weight much by the \(\epsilon \)-shortness of the north and south boundaries. Note that vertex-connectivity may bread as a result, but edge-connectivity is maintained. In the remainder, we only maintain edge-connectivity. We call the resulting solution \(\text{OPT}_F \).

Restructure For each brick \(B \), we consider the connected components of \(\text{OPT}_F \cap \text{int}(B) \). We replace each component with a subgraph through a mapping \(\phi \). The new subgraph may be a tree or a subgraph \(\hat{C} \) given by Lemma 43. The mapping \(\phi \) has the following properties:

1. For any component \(\chi \) of \(\text{OPT}_M \cap \text{int}(B) \), \(\phi(\chi) \) is connected and spans \(\chi \cap \partial B \).
2. For two components \(\chi_1 \) and \(\chi_2 \) of \(\text{OPT}_M \cap \text{int}(B) \), if \(\phi(\chi_i) \neq \hat{C} \) for at least one of \(i = 1, 2 \), then \(\phi(\chi_1) \) and \(\phi(\chi_2) \) are edge-disjoint, taking into account edge multiplicities.
3. The new subgraph \(\phi(\text{OPT}_M \cap \text{int}(B)) \) has \(\alpha(\epsilon) = o(\epsilon^{-5.5}) \) joining vertices with \(\partial B \).

We can prove that the total weight is increased by at most \(\epsilon \text{OPT}_F \), giving Property P3. We call the resulting solution \(\text{OPT}_R \).

Redirect We connect each joining vertex \(j \) of \(\text{OPT}_R \cap \text{int}(B) \) to the nearest portal \(p \) on \(\partial B \) by adding multiple copies of the short \(j \)-to-\(p \) subpath of \(\partial B \). We call the resulting solution \(\hat{\text{OPT}} \).

We give more details of these transformations in the following subsections and argue that the transformations guarantee the required connectivity as we do so. These details are very similar to that used for 2-ECP; we note the differences. The Restructure step which requires a different structural lemma than used for Borradaile and Klein’s PTAS for 2-ECP [8]; the difference between Lemma 43 and that used by Borradaile and Klein is that \(\hat{C} \) need only be a cycle for the 2-ECP, whereas to maintain 3-edge connectivity, a more complicated subgraph \(\hat{C} \) is required. We borrow the following lemma from [8] to prove Lemma 43.

Lemma 42. (Simplifying a tree with one root, Lemma 10.4 [10]). Let \(r \) be a vertex of \(T \). There is another tree \(\hat{T} \) that spans \(r \) and the vertices of \(T \cap P \) such that \(w(\hat{T}) \leq (1 + 4\epsilon)w(T) \) and \(\hat{T} \) has at most \(11\epsilon^{-1.45} \) joining vertices with \(P \).

Lemma 43. Let \(\mathcal{F} \) be a set of non-crossing trees whose leaves are joining vertices with \(\epsilon \)-short paths \(P_1 \) and \(P_2 \) on the boundary of the graph, and each tree in \(\mathcal{F} \) has leaves on both paths. Then there is a subgraph or empty set \(\hat{C} \), a set \(\hat{\mathcal{F}} \) of trees, and a mapping \(\phi : \mathcal{F} \rightarrow \hat{\mathcal{F}} \cup \hat{C} \) with the following properties

- For every tree \(T \) in \(\mathcal{F} \), \(\phi(T) \) spans \(T \)'s leaves.
• For two trees T_1 and T_2 in \mathcal{F}, if $\phi(T_i) \neq \hat{C}$ for at least one of $i = 1, 2$ then $\phi(T_1)$ and $\phi(T_2)$ are edge-disjoint (taking into account edge multiplicities).

• The subgraph $\bigcup \hat{\mathcal{F}} \cup \{\hat{C}\}$ has $o(\epsilon^{-2.5})$ joining vertices with $P_1 \cup P_2$.

• $w(\hat{C}) + w(\hat{\mathcal{F}}) \leq 6w(P_2) + (1 + d \cdot \epsilon)w(\mathcal{F})$, where d is an absolute constant.

• Any two vertices of $\hat{C} \cap (P_1 \cup P_2)$ are three-edge-connected.

• For any three pairs of vertices of $\hat{C} \cap (P_1 \cup P_2)$ (where vertices may be repeated), \hat{C} contains three edge-disjoint paths connecting them respectively.

Proof. Call P_1 the top path and P_2 the bottom path. Order the trees of \mathcal{F}: T_1, T_2, \ldots, T_k according to their leaves on P_2 from left-to-right; the trees are well ordered since they are non-crossing and have leaves on both paths. There are two cases:

$k > \epsilon^{-1}$: In this case we reduce the number of trees by incorporating a subgraph \hat{C}. Let a be the smallest index such that $w(T_a) \leq \epsilon w(\mathcal{F})$ and b the largest index such that $w(T_b) \leq \epsilon w(\mathcal{F})$. We replace trees $T_a, T_{a+1}, \ldots, T_b$ with a subgraph \hat{C}. Let P_i' be the minimal subpath of P_1 that spans all the leaves of tree T_i for $a \leq i \leq b$. P_i' is likewise the minimal subpath on P_2. Let u_i and v_i be P_i''s endpoints (with u_i the left end) for $i = 1, 2$. Let $P_a (P_b)$ be the u_1-to-u_2 (v_1-to-v_2) subpath in $T_a (T_b)$. Since P_1 is ϵ-short, we have

$$w(P_i') \leq (1 + \epsilon)w(P_a \cup P_b \cup P_2').$$

Let \hat{C} be the multisubgraph $\{P_a, P_a, P_b, P_1', P_2', P_1', P_2'\}$. We replace $\bigcup_{i=a}^b T_i$ with \hat{C} and set $\phi(T_i) = \hat{C}$ for $a \leq i \leq b$. $k \leq \epsilon^{-1}$: In this case, the number of trees is already bounded and we set $\hat{C} = \emptyset$.

In both cases, we transform the remaining trees T_i ($i \neq a, a + 1, \ldots, b$) as follows. Let T_i' be a minimal subtree of T_i that spans all leaves of T_i on P_1 and exactly one vertex r on P_2. Let R_i be the minimal subpath on P_2 that spans all leaves of T_i on P_2. By Lemma 12 there is another tree, say T_i'', for T_i' with root r and path P_1. We replace T_i with $\hat{T}_i = T_i'' \cup R_i$, and set $\phi(T_i) = \hat{T}_i$ for $i \neq a, b$. Then \hat{T}_i spans all leaves of T_i.

\hat{C} (if non-empty) has six joining vertices with $P_1 \cup P_2$. Each tree \hat{T}_i has one joining vertex with P_2 and by Lemma 12 $o(\epsilon^{-1.5})$ joining vertices with P_1. By the choice of a and b, there are at most ϵ^{-1} trees mapped to \hat{T}_i. So $\mathcal{F} \cup \{\hat{C}\}$ has totally at most $o(\epsilon^{-2.5})$ joining vertices with $P_1 \cup P_2$.

The total weight of \hat{C} is

$$w(\hat{C}) \leq 2w(P_1') + 2w(P_2') + w(P_a) + w(P_b) \leq 2(1 + \epsilon)(w(P_a) + w(P_b) + w(P_1') + w(P_2')) + w(P_2') + 2w(P_a) + w(P_b) \leq (4 + 4\epsilon)w(P_a) + w(P_2') + (3 + 2\epsilon)w(P_b) + (4 + 2\epsilon)w(P_2').$$

And the total weight of \hat{T}_i is

$$\sum_{i=1,\ldots,a-1,b+1,\ldots,k} w(\hat{T}_i) \leq \sum_{i=1,\ldots,a-1,b+1,\ldots,k} (w(R_i) + (1 + 4\epsilon)w(T_i)).$$
Since all the trees in \(\mathcal{F} \) are non-crossing, \(R_i \) and \(P'_2 \) are disjoint. The total weight of our replacement is at most \(6w(P_2) + (1 + O(\epsilon))w(\mathcal{F}) \).

Now we prove the connectivity properties for \(\hat{C} \). By its construction, \(\hat{C} \) spans all the leaves of tree \(T_i \) for \(a \leq i \leq b \) and vertices of \(\hat{C} \cap (P_1 \cup P_2) \) are three-edge-connected. So we only need to prove \(\hat{C} \) contains three edge-disjoint paths connecting any three pair of vertices of \(\hat{C} \cap (P_1 \cup P_2) \) respectively. This can be seen by case analysis, as described and illustrated below. Let \(P^* = P_a \cup P'_1 \cup P'_2 \), then every edge of \(P^* \) has multiplicity of two in \(\hat{C} \) by construction.

We first consider the case that any two pairs do not contain identical vertex. For \(i = 1, 2 \) let \(x_i, y_i \) and \(z_i \) be the three pair of vertices. If there are two pairs of vertices are not interleaving in \(P^* \), then we could connect these two pairs by \(P^* \cup P_b \), which is a cycle. And the other pair could be connected by a subpath of \(P^* \) which is edge-disjoint from the other two paths in \(\hat{C} \). Otherwise, we have the two sets, \(\{x_i, y_j, z_l\} \) and \(\{x_{3-i}, y_{3-j}, z_{3-l}\} \), which do not interleave each other and appear in the same order in \(P^* \). See Figure 13: there are three edge-disjoint paths connecting the three pairs respectively.

![Figure 13](image)

Figure 13: If every two pairs of the three interleave, there are three edge-disjoint paths, shown in different colors, connecting them respectively in \(\hat{C} \).

If there are two pairs containing identical vertices, we could connect these two pairs by \(P^* \cup P_b \) and then connect the other pair by another subpath of \(P^* \). Since every edge in \(P^* \) is multiple in \(\hat{C} \), these paths are edge-disjoint.

4.2.1 Augment

For each supercolumn \(P \) common to two bricks \(B_1 \) and \(B_2 \), we do the following:

- Add four copies of \(P, P_1, P_2, P_3, P_4 \) to OPT. We consider \(P_1 \) and \(P_2 \) to be internal to \(B_1 \), and \(P_3 \) and \(P_4 \) to be internal to \(B_2 \). We also cut open the graph along \(P \), creating a new face between \(P_2 \) and \(P_3 \). Call the result \(OPT'_A \).

- Remove edges from \(OPT'_A \) until what remains a minimal subgraph satisfying the connectivity requirements. Similar to the argument illustrated in Figure 13 maintaining connectivity in the presence of this new face is achievable.

Let the resulting solution be \(OPT_A \). By this construction, \(OPT_A \) has no joining vertices with internal vertices of the supercolumns:

Lemma 44. For every brick \(B \), the joining vertices of \(OPT_A \cap B \) with \(\partial B \) belong to \(N_B \) and \(S_B \).

4.2.2 Cleave

In this part, we call the vertices with positive requirement terminals. Given a vertex \(v \) with a non-interleaving bipartition \(A \) and \(B \) of the edges incident to \(v \), we define **cleaving** \(v \) as the following:
split \(v \) into two copies \(v_1 \) and \(v_2 \), such that all the edges in \(A \) (or \(B \)) are incident to \(v_1 \) (or \(v_2 \)); and then we add one zero-weight edge between \(v_1 \) and \(v_2 \). See Figure 14. We have two types of cleavings:

Simplifying cleavings Let \(C \) be a non-self-crossing, non-simple cycle that visits vertex \(v \) twice. For \(1 \leq i \leq 4 \), let \(e_i \) be the edge of \(C \) incident to \(v \) such that \(e_1, e_2, e_3 \) and \(e_4 \) are embedded clockwise and \(e_1 \) and \(e_4 \) are in the same subcycle of \(C \). Define a bipartition \(A \), \(B \) of the edges incident to \(v \) as follows: given the clockwise embedding of those edges, let \(A \) contain \(e_1, e_2 \) and all the edges between them clockwise.

Lengthening cleavings Let \(C \) be a cycle and \(v \) a vertex on \(C \). Let \(e_1 \) and \(e_2 \) be the edges incident to \(v \) strictly inside of \(C \), and let \(e'_1 \) and \(e'_2 \) be the edges of \(C \) incident to \(v \). Define a bipartition \(A \) and \(B \) of the edges incident to \(v \) as follows: given the embedding of those edges with \(e_1, e_2, e'_1 \) and \(e'_2 \) in the clockwise order, \(A \) contains \(e_1, e'_1 \) and all the edges from \(e'_1 \) to \(e_1 \) clockwise.

![Figure 14: Cleaving examples. The bipartition of edges incident to \(v \) is illustrated by solid edges \(A \) and dashed edges \(B \), and the added artificial edge is illustrated by the dotted edge. (a) and (b) give an example before and after a cleaving. (c) and (d) illustrate a simplifying cleaving. (e) and (f) show a lengthening cleaving.](image)

We perform simplifying cleavings for all the non-simple cycles of \(\text{OPT}_A \) until every cycle is simple and call the resulting solution \(\text{OPT}'_S \) and the resulting graph \(G_S \). Note that after simplifying cleaving a terminal, we take only one copy that is in the mortar graph as the terminal. These cleavings will reduce edge-connectivity to vertex-connectivity by the following lemmas.

Lemma 45. For the cleaved vertex \(v \), the copies of \(v \) are three-edge-connected in \(\text{OPT}'_S \).

Proof. The original cycle will give two edge-disjoint paths between the two copies. And the artificial edge will be the third path.

Lemma 46. Let \(\tilde{H} \) be the graph obtained from \(H \) by a simplifying cleaving a vertex \(v \). Then for \(k = 1, 2, 3 \), if a vertex \(u \) and \(v \) are \(k \)-edge-connected in \(H \), then \(u \) and any copy of \(v \) are \(k \)-edge-connected in \(\tilde{H} \).

Proof. If \(u \) and \(v \) are \(k \)-edge-connected, then there are \(k \) edge-disjoint paths from \(u \) to \(\{v_1, v_2\} \). Since \(k \) is no more than three, and \(v_1 \) and \(v_2 \) are three-edge-connected by Lemma 45, \(u \) and \(v_1 \) are \(k \)-edge-connected. Similarly, \(u \) and \(v_2 \) are \(k \)-edge-connected.

Corollary 47. For \(k = 1, 2, 3 \), if two vertices are \(k \)-edge-connected in \(\text{OPT}_A \), then any of their copies are \(k \)-edge-connected in \(\text{OPT}'_S \).
We then remove edges from OPT′ until the rest is a minimal subgraph satisfying the connectivity requirement. We call the resulting solution OPTS. Since every cycle in OPTS is simple, we have the following lemma:

Lemma 48. For $k = 1, 2, 3$, if two terminals are k-edge-connected in OPTA, then they are k-vertex-connected OPTS.

Let Q_{23} be set of terminals whose requirement is at least two and H be the minimal (Q_{23}, r)-vertex-connected subgraph in OPTS. Since every cycle in OPTS is simple, we know that H also has this property. It follows that the degree of any vertex v of H is no more than three, since H is biconnected by Lemma 7: for otherwise, let the first ear (a cycle) contain v and let the second and third ear start with the next two edges incident to v – from these ears it is easy to construct two cycles that only meet at v, witnessing a non-simple cycle.

We perform lengthening cleavings w.r.t. the boundary of each brick and the edges of OPTS that are incident to a boundary vertex in that brick until the vertices of the brick boundaries have at most one edge in the solution in the interior of each incident brick. We add the introduced zero-length edges to the solution. Call the new solution OPTC and the new graph and mortar graph G_C and MG_C, respectively.

For each cleaved terminal, we assign only one copy to be the terminal: we pick the copy of highest degree in OPTC to be the terminal; note that terminals are still in the mortar graph. Although the flatten, restructure and redirect steps may break the vertex connectivity guaranteed by Lemma 45, the following lemmas will guarantee that edge-connectivity will not be preserved.

Lemma 49. For $k = 1, 2, 3$, if terminals are k-vertex-connected in OPTS, then they are k-vertex-connected OPTC. Further, OPTC is minimal.

Proof. Borradaile and Klein prove (Lemma 5.9 [9]) that lengthening cleavings maintain biconnectivity, so we need only argue that terminals a and b that are triconnected in OPTS have terminal copies a' and b' that are triconnected in OPTC.

Consider three, vertex-disjoint a-to-b paths P_1, P_2, P_3 in OPTS. As argued earlier, the degrees of a and b in OPTS are three. The terminal copy a' of a likewise has degree 3 in OPTC: if a is lengthening cleaved, then there is a copy of a that has degree 3.

The paths P_1, P_2, P_3 map to paths P'_1, P'_2, P'_3 between copies of a and b in OPTC: if an internal vertex of P_i is lengthening cleaved, then include the introduced edge in the path. The endpoints of P'_i that map to copies of, w.l.o.g., a are likewise connected by introduced edges (if a is subject to a lengthening cleaving). Let a' be the terminal copy of a; we augment the paths P'_i to connect to a' via an introduced, zero-weight edge. Doing so for b' as well gives three vertex disjoint a'-to-b' paths in OPTC.

That OPTC is minimal follows directly from the fact that OPTS is minimal. \qed

The following lemma was proved by Borradaile and Klein for 2-ECP (Lemma 5.10 [9]); their proof only relied on the fact that every cycle contains a terminal. Since this is true for the 3-ECP too (Theorem 18), we get the same lemma:

Lemma 50. Let B be a brick in G_C with respect to MG_C. The intersection $OPT_C \cap \text{int}(B)$ is a forest whose joining vertices with ∂B are all the leaves of the forest.
Lemma 51. Let x and y be two terminals in OPT_C such that $k = \min\{r(x), r(y)\} \geq 2$ and let B be a brick. There exist k vertex-disjoint paths from x to y such that for any two such paths P_1 and P_2, any connected component of $P_1 \cap \text{int}(B)$ and any connected component of $P_2 \cap \text{int}(B)$ belong to distinct components of $OPT_C \cap \text{int}(B)$.

Proof. Let H_C be the minimal (Q_{23}, r)-vertex-connected subgraph in OPT_C. Then each connected component of $OPT_C \setminus H_C$ is a tree and is connected to H_C by one edge. By Corollary 5, there are $\min\{r(x), r(y)\}$ vertex-disjoint paths from x to y in H_C (and then in OPT_C) such that any path connecting any two of those x-to-y paths contains a terminal. Let P_1 and P_2 be any two such x-to-y paths. Since all terminals are on the boundaries of bricks, any P_1-to-P_2 path in $\text{int}(B)$ will be divided into two subpaths by some lengthening cleaving. So any connected component of $OPT_C \cap \text{int}(B)$ can not contain the components of both $P_1 \cap \text{int}(B)$ and $P_2 \cap \text{int}(B)$. □

4.2.3 Flatten

This step is the same as described by Borradaile and Klein for 2-ECP [9]. For each brick B, consider the edges of $OPT_C \cap \text{int}(B)$. By Lemma 50, the connected components of $OPT_C \cap \text{int}(B)$ are trees. By Lemma 44, every leaf is either on N_B or S_B. For every tree whose leaves are all on N_B (S_B), we replace the tree with the minimal subpath of N_B (S_B) that contains all its leaves. Let the resulting solution be OPT_F. By Lemma 51, this guarantees 2- and 3-edge-connectivity between terminals as required; trees may be flattened against a common ϵ-short path that is the northern boundary of one brick and the southern boundary of another, so vertex-connectivity gets broken at this stage.

4.2.4 Restructure

This step is the same as described by Borradaile and Klein for 2-ECP [9], except we apply our 3-ECP specific lemma (Lemma 43). Restructuring replaces $OPT_F \cap \text{int}(B)$, which is a set of non-crossing trees (Lemma 50) with leaves on the ϵ-short north and south brick boundaries (Lemma 44), with subgraphs guaranteed by Lemma 43. The resulting solution is OPT_R.

Let P_{xy} be a set of 2 (3) vertex disjoint paths in OPT_F for terminals x, y requiring bi- (tri-) connectivity. Each path in P_{xy} is broken into a sequence of small paths, each of which is either entirely in the interior of a brick or entirely in the mortar graph. Let P_{xy}' be the set of these path sequences.

We define a map $\hat{\phi}$ for the paths in P_{xy}'. For a path P of P_{xy}', if P is on mortar graph, we define $\hat{\phi}(P) = P$; otherwise we define $\hat{\phi}(P) = \phi(T)$ where T is the tree in OPT_M containing P. Since $\phi(T)$ spans all leaves of T, $\hat{\phi}(P)$ also spans leaves of T and connects endpoints of P.

Let P_1 and P_2 be any two paths from distinct path-sequences inside of the same brick B. By Lemma 51, P_1 and P_2 can not belong to the same component of $OPT_M \cap \text{int}(B)$. So if $\hat{\phi}(P_1) \neq \hat{\phi}(P_2)$, then $\hat{\phi}(P_1)$ and $\hat{\phi}(P_2)$ are edge disjoint by the constructions of ϕ and $\hat{\phi}$. Otherwise, we know the image is a subgraph \hat{C} which guarantees triconnectivity for all vertices of $\hat{C} \cap \partial B$ by Lemma 43. However, there may be more than one paths from any path-sequence whose image is \hat{C}, and the new x-to-y paths may not be edge-disjoint in \hat{C}. For this situation, we could shortcut the paths in \hat{C} such that each new x-to-y path only contain one subpath in \hat{C}. Since there are at most three such subpaths and there endpoints are in ∂B, \hat{C} contains edge-disjoint paths connecting the endpoints of those subpaths by the last property of Lemma 43.

Therefore, the restructure step maintains that if terminals were 1-, 2- or 3-edge connected in OPT_F, then they still are in OPT_R. We also see that, by construction of Lemma 43, the intersection
OPT with the interior of a brick B is a set of trees with leaves on ∂B. Since the Redirect step will only add edges of ∂B, this property does not change, proving one of the guarantees of the Structure Theorem.

Further, the number of joining vertices is guaranteed by Lemma 43 and the construction that is used for 2-ECP. The number of joining vertices is on the same order as for 2-ECP, which depends only on ϵ as required.

4.2.5 Redirect

For every joining vertex j of $\text{OPT}_R \cap B$ with ∂B for a brick B, we add the path from j to the nearest portal p on ∂B. This guarantees that the trees guaranteed by the Restructure step have leaves that are portals: this allows us to efficiently enumerate all possible Steiner trees in bricks whose terminals are portals to compute the spanner graph.

4.2.6 Analysis of weight increase

The analysis of the weight increase is exactly the same as for 2-ECP by Borradaile and Klein; the only difference are the weight in Lemma 43 which is on the order of the weight in the equivalent Lemma used in 2-ECP.

This completes the proof of the Structure Theorem.

5 Dynamic programming for k-ECP on graphs with bounded branchwidth

In this section, we give a dynamic program to compute the optimal solution of k-ECP problem on graphs with bounded branchwidth. This is inspired by the work of Czumaj and Lingas [11, 12]. Note that such graphs need not be planar. This can be used in our PTAS after the contraction step of the framework.

A branch decomposition of a graph $G = (V(G), E(G))$ is a hierarchical clustering of $E(G)$. It can be represented by a binary tree, called the decomposition tree, the leaves of which are in bijection with the edges of G. After deleting an edge e of this decomposition tree, $E(G)$ is partitioned into two parts E_1 and E_2 according to the edges mapped to the leaves of the two subtrees. All the vertices common to E_1 and E_2 comprise the separator corresponding to e in the decomposition. The width of the decomposition is the maximum size of the separator in that decomposition. The branchwidth of G is the minimum width of any branch decomposition of G.

Let $G = (V(G), E(G), r)$ be an instance of k-ECP. Then $r \in \{0, 1, \ldots, k\}$. We call a vertex a terminal if its requirement is positive. We first augment G such that each edge becomes k parallel edges. Our dynamic programming will work on this new graph G. Given a branch decomposition of G, root the decomposition tree T at an arbitrary leaf. For any node q in T, let L be the separator corresponding to its parent edge, and E_1 be the subset of $E(G)$ mapped to the leaves in the subtree rooted at q. Let H be a subgraph of $G[E_1]$ such that it contains all terminals in $G[E_1]$. An separator completion of L is a multiset of edges between vertices of L, each of which may appear up to k times. A configuration of a terminal v of H in L is a tuple $(A, B, r(v))$, where A is a tuple $(a_1, a_2, \ldots, a_{|L|})$, representing that there are a_i edge-disjoint paths from v to the ith vertex of L in H, and B is a set of tuples (x_i, y_i, b_i), representing that there are b_i edge-disjoint
paths between the vertices x_i and y_i of L in H. All the $\sum_{i=1}^{L} a_i + \sum_i b_i$ paths in a configuration are mutually edge-disjoint in H. We adapt a definition of Czumaj and Lingas [11, 12]:

Definition 2. For any pair of terminals u and v in H, let $Com_H(u,v)$ be the set of separator completions of H each of which augments H to a graph where u and v satisfy the edge-connectivity requirement. For each terminal v in H, let $Path_H(v)$ be a set of configurations of v on L. Let $Path_H$ be the set of all the non-empty B in which all tuples can be satisfied in H. Let C_H be the set consisting of one value in each $Com_H(u,v)$ for all pairs of terminals u and v in H, and P_H be the set consisting of one value in each $Path_H(v)$ for all terminal v in H. We call the tuple $(C_H, P_H, Path_H)$ the connectivity characteristic of H, and denote it by Char(H).

Let w be the width of the decomposition. Then $|L| \leq w$. Note that H may correspond to multiple C_H and P_H, so H may have multiple connectivity characteristics. Further, each value in P_H represents at least one terminal. For any L, there are at most $k^{O(w^2)}$ distinct separator completions ($O(w^2)$ pairs of vertices, each of which can be connected by at most k parallel edges) and at most $2^{k^{O(w^2)}}$ distinct sets C_H of separator completions. For any L, there are at most $k^{O(w^2)}$ different configurations for any terminal in H since the number of different sets A is at most k^w, the number of different sets B is at most $k^{O(w)}$ (the same as the number of separator completions) and k different choices for $r(v)$. So there are at most $2^{k^{O(w^2)}}$ different sets of configurations P_H, and at most $2^{k^{O(w^2)}}$ different sets B. Therefore, there are at most $2^{k^{O(w^2)}}$ distinct connectivity characteristics for a fixed L.

Definition 3. A configuration of v on L is connecting if for any terminal u in $V(G) \setminus V(H)$ the inequality $\sum_{i=1}^{L} a_i \geq \min\{r(v), r(u)\}$ holds where a_i is the ith coordinate in A. That is, there are enough edge-disjoint paths from v to the separator which can connect u and v. Char(H) is connecting if all configurations in its P_H set are connecting. H is connecting if at least one of Char(H) is connecting. In the following, we only consider connecting connectivity characteristics and subgraphs.

In the following, we need as a subroutine an algorithm to solve the following problem: when given a set of demands (x_i, y_i, b_i) and a multigraph, we want to decide if there exist b_i edge-disjoint paths between vertices x_i and y_i in the graph and all the $\sum_i b_i$ paths are mutually edge-disjoint. Although we do not have a polynomial time algorithm for this problem, we only need to solve this on graphs with $O(w)$ vertices, $O(kw^2)$ edges and $O(w^2)$ demands. So even an exponential time algorithm is acceptable for our purpose here. Let ALG be an algorithm for this problem, whose running time is bounded by a function $f(k, w)$, which may be exponential in both k and w.

For a node p of degree three in the decomposition tree T, let q_1 and q_2 be its two children and q be its parent. Let T_i be the subtree of T rooted at q_i, let E_i be the subset of $E(G)$ corresponding to T_i and let L_i be the separator corresponding to the edge pq_i for $i = 1, 2$. Let L be the separator corresponding to pq. For $i = 1, 2$, let H_i be a subgraph of $G[E_i]$ that contains all the terminals. Let $H = H_1 \cup H_2$. Then we have the following lemma.

Lemma 52. For any pair of Char(H_1) and Char(H_2), all the possible Char(H) that could be obtained from Char(H_1) and Char(H_2) can be computed in $O(kw^2 f(k, w) + k^{w^2k^w})$ time.

Proof. We compute all the possible sets for the three components of Char(H).
Compute all possible C_H C_H contains two parts: the first part covers all pairs of terminals in the same H_i for $i = 1, 2$ and the second part covers all pairs of terminals from distinct subgraphs.

For the first part, we generalize each value $C \in C_{H_i}$ for $i = 1, 2$ into a possible set X_C. Notice that each separator completion can be represented by a set of demands (x, y, b). For a candidate separator completion C' on L, we combine C' with each $B \in Path_{H_{3-i}}$ to construct a graph H' and define the demand set the same as C. By running ALG on this instance, we can check if C' is a legal generalization for C. This may be computed in $k^{O(w^2)}w^2 + k^{O(w^2)}f(k, w)$ time for each C. All the legal generalizations for C form X_C.

Now we compute the second part. For any pair of configurations $(A^1, B^1, r(u)) \in P_{H_1}$ and $(A^2, B^2, r(v)) \in P_{H_2}$ for $u \in H_1$ and $v \in H_2$, we compute possible $Com_{H}(u, v)$. Let $L' = L_1 \cap L_2$. We first count how many edge-disjoint paths between u and v could go through L' by checking A^1 and A^2, and then check if a candidate separator completion C' on L can provide the remaining paths. All those C' that are capable of providing enough paths form $Com_{H}(u, v)$. This can be computed in $w^2k^{O(w^2)}$ time for each pair of values.

A possible C_H consists of each value in X_C for every $C \in C_{H_i}$ for $i = 1, 2$ and each value in $Com_{H}(u, v)$ for all pairs of configurations of P_{H_1} and P_{H_2}. To compute all the sets, we need at most $k^{O(w^2)}w^2 + k^{O(w^2)}f(k, w)$ time. There are at most $k^{O(w^2)}$ sets and each may contain at most $k^{O(w^2)}$ values. Therefore, to generate all the possible C_H from those sets, we need at most $k^{w^2k^{O(w^2)}}$ time.

Compute all possible P_H We generalize each configuration $(A, B, r(v))$ of v in P_{H_1} into a possible set Y_v. For each set B' in $Path_{H_{3-i}}$, we construct a graph H' by A, B and B' on vertex set $L_1 \cup L_2 \cup \{v\}$: if there are b disjoint paths between a pair of vertices represented in A, B or B', we add b parallel edges between the same pair of vertices in H', taking $O(w^2)$ time. For a candidate value $(A^*, B^*, r(v))$ corresponding to L, we define a set of demands according to A^* and B^* and run ALG on all the possible H' we construct for sets in $Path_{H_{3-i}}$. If there exists one such graph that satisfies all the demands, then we add this candidate value into Y_v. We can therefore compute each set Y_v in $k^{O(w^2)}w^2 + k^{O(w^2)}f(k, w)$ time. A possible P_H consists of each value in Y_v. There are at most $k^{O(w^2)}$ such sets and each may contain at most $k^{O(w^2)}$ values. So we can generate all possible P_H from those sets in $k^{w^2k^{O(w^2)}}$ time.

Compute $Path_H$ For each pair of $B^1 \in Path_{H_1}$ and $B^2 \in Path_{H_2}$, we construct a graph H' on vertex set $L_1 \cup L_2$: if two vertices are connected by b disjoint paths, we add b parallel edges between those vertices in H'. Since each candidate B' on L can be represented by a set of demands, we only need to run ALG on all possible H' to check if B' can be satisfied. We add all satisfied candidates B' into $Path_H$. This can be computed in $k^{O(w^2)}w^2 + k^{O(w^2)}f(k, w)$ time.

Therefore, the total running time is $O(k^{w^2f(k, w)} + k^{w^2k^{O(w^2)}})$. For each component we enumerate all possible cases, and the correctness follows.

Our dynamic programming is guided by the decomposition tree T from leaves to root. For any node q in T, let T_q be the subtree of T rooted at q and L_q be the separator corresponding to q’s parent edge. Let E_q be the subset of $E(G)$ corresponding to T_q. For each node q, our dynamic programming table is indexed by all the possible connectivity characteristics on the corresponding separator L_q. Each entry indexed by the connectivity characteristic $Char$ in the table is the weight of the minimum-weight subgraph of $G[E_q]$ that contains all the terminals in $G[E_q]$ and has $Char$ as its connectivity characteristic.
Base case For each leaf of T, the only subgraph H is the edge uv contained in the leaf and the separator only contains its endpoints u and v. There are three cases.

1. Both u and v are not terminals. $\text{Com}_H(u,v)$ contains all subsets of the multiset of edge uv (up to k times), including the empty set. Path_H is empty since there is no terminal. Path_H contains one set: $\{(u,v,1)\}$.

2. Only one of u and v is a terminal. W.l.o.g. assume u is the terminal. $\text{Com}_H(u,v)$ contains all subsets of the multiset of edge uv (up to k times), including the empty set. $\text{Path}_H(u)$ contains two configurations: $((k,0),\{(u,v,1)\},r(u))$ and $((k,1),\emptyset,r(u))$. Path_H contains one set: $\{(u,v,1)\}$.

3. Both u and v are terminals. $\text{Com}_H(u,v)$ contains the multisets of edge uv that appears at least $\min\{r(u),r(v)\} - 1$ times. $\text{Path}_H(u)$ contains two configurations: $((k,0),\{(u,v,1)\},r(u))$ and $((k,1),\emptyset,r(u))$, and $\text{Path}_H(v)$ contains two configurations: $((0,k),\{(u,v,1)\},r(v))$ and $((1,k),\emptyset,r(v))$. Path_H contains one set: $\{(u,v,1)\}$.

For each non-leaf node q in T, we combine every pair of connectivity characteristics from its two children to fill in the dynamic programming table for q. The root can be seen as a base case, and we can combine it with the computed results. The final result will be the entry indexed by $(\emptyset,\emptyset,\emptyset)$ in the table of the root. If $E(G) = km$, then the size of the decomposition tree T is $O(km)$. By Lemma 52, we need $O(k^2f(k,w) + k^2w^2k^2m)$ time to combine each pair of connectivity characteristics. Since there are at most $2^{O(w^2)}$ connectivity characteristics for each node, the total time will be $O(2k^2w^2f(k,w)m + 2k^2w^2k^2w^2m)$.

Correctness The separator completions guarantee the connectivity for the terminals in H, and the connecting configurations enumerate all the possible ways to connect terminals in H and terminals of $V(G) \setminus V(H)$. So the connectivity requirement is satisfied. The correctness of the procedure follows from Lemma 52.

Acknowledgements We thank Hung Le, Amir Nayyeri and David Pritchard for helpful discussions.
References

[1] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-time approximation scheme for weighted planar graph TSP. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 33–41, 1998.

[2] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM, 41(1):153–180, 1994.

[3] M. Bateni, M. Hajiaghayi, and D. Marx. Approximation schemes for Steiner forest on planar graphs and graphs of bounded treewidth. J. ACM, 58(5):21, 2011.

[4] A. Berger, A. Czumaj, M. Grigni, and H. Zhao. Approximation schemes for minimum 2-connected spanning subgraphs in weighted planar graphs. In Proceedings of the 13th European Symposium on Algorithms, volume 3669 of Lecture Notes in Computer Science, pages 472–483, 2005.

[5] A. Berger and M. Grigni. Minimum weight 2-edge-connected spanning subgraphs in planar graphs. In Proceedings of the 34th International Colloquium on Automata, Languages and Programming, volume 4596 of Lecture Notes in Computer Science, pages 90–101, 2007.

[6] G. Borradaile, E. Demaine, and S. Tazari. Polynomial-time approximation schemes for subset-connectivity problems in bounded-genus graphs. Algorithmica, 2012. Online.

[7] G. Borradaile, C. Kenyon-Mathieu, and P. Klein. A polynomial-time approximation scheme for Steiner tree in planar graphs. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, volume 7, pages 1285–1294, 2007.

[8] G. Borradaile and P. Klein. The two-edge connectivity survivable network problem in planar graphs. In Proceedings of the 35th International Colloquium on Automata, Languages and Programming, pages 485–501, 2008.

[9] G. Borradaile and P. Klein. The two-edge connectivity survivable-network design problem in planar graphs. ACM Transactions on Algorithms, 12(3):30, 2016. To appear.

[10] G. Borradaile, P. Klein, and C. Mathieu. An $O(n \log n)$ approximation scheme for Steiner tree in planar graphs. ACM Transactions on Algorithms, 5(3):1–31, 2009.

[11] A. Czumaj and A. Lingas. A polynomial time approximation scheme for euclidean minimum cost k-connectivity. In Automata, Languages and Programming, pages 682–694. Springer, 1998.

[12] A. Czumaj and A. Lingas. On approximability of the minimum cost k-connected spanning subgraph problem. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 281–290, 1999.

[13] R. Erickson, C. Monma, and A. Veinott. Send-and-split method for minimum-concave-cost network flows. Mathematics of Operations Research, 12:634–664, 1987.

[14] K. Eswaran and R. Tarjan. Augmentation problems. SIAM Journal on Computing, 5(4):653–665, 1976.

41
[15] G. Frederickson and J. Jájá. Approximation algorithms for several graph augmentation problems. *SIAM Journal on Computing*, 10(2):270–283, 1981.

[16] D. A. Holton, B. Jackson, A. Saito, and N. C. Wormald. Removable edges in 3-connected graphs. *J. Graph Theory*, 14:465–475, 1990.

[17] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. *Combinatorica*, 2001(1):39–60, 21.

[18] R. Jothi, B. Raghavachari, and S. Varadarajan. A 5/4-approximation algorithm for minimum 2-edge-connectivity. In *Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 725–734, 2003.

[19] S. Khuller and U. Vishkin. Biconnectivity approximations and graph carvings. *Journal of the ACM*, 41(2):214–235, 1994.

[20] P. Klein. A subset spanner for planar graphs, with application to subset TSP. In *Proceedings of the 38th Annual ACM Symposium on Theory of Computing*, pages 749–756, 2006.

[21] P. Klein. A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. *SIAM Journal on Computing*, 37(6):1926–1952, 2008.

[22] P. Klein, C. Mathieu, and H. Zhou. Correlation clustering and two-edge-connected augmentation for planar graphs. In Ernst W. Mayr and Nicolas Ollinger, editors, *32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)*, volume 30 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 554–567. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

[23] P. Klein and R. Ravi. When cycles collapse: A general approximation technique for constrained two-connectivity problems. In *Proceedings of the 3rd International Conference on Integer Programming and Combinatorial Optimization*, pages 39–55, 1993.

[24] R. Ravi. Approximation algorithms for Steiner augmentations for two-connectivity. Technical Report TR-CS-92-21, Brown University, 1992.

[25] H. Whitney. Non-separable and planar graphs. *Trans. Amer. Math. Soc.*, 34:339–362, 1932.