The Fanconi road to cancer

Alan D. D’Andrea

Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA

Study of rare human genetic diseases often leads to significant advances in the understanding of cancer biology in general. Such is the case for Fanconi Anemia (FA), a rare cancer susceptibility syndrome with an incidence of only 1 in 300,000 live births. FA is an autosomal recessive disease characterized by chromosome instability, cellular hypersensitivity to DNA cross-linking agents such as Mitomycin C [MMC] and Cisplatin, and increased predisposition to cancers, mainly leukemias and squamous cell carcinomas of the head and neck or gynecologic system [Alter et al. 2003; Bagby 2003]. Although the function of the seven cloned FA genes [A, C, D1, D2, E, F, and G] is largely unknown, the genes cooperate in a common cellular pathway, known as the FA/BRCA pathway [D’Andrea and Grompe 2003]. The recent identification of the breast and ovarian cancer susceptibility gene, BRCA2, as the FANCD1 gene [Howlett et al. 2002] implicates the FA/BRCA pathway in homology-directed DNA repair (HDR), and suggests that disruption of the pathway may promote breast and ovarian cancer. In the current issue of Genes and Development, Houghtaling et al. (2003) analyze mice with a targeted deletion of one of the downstream FA genes—namely, Fancd2. Their analysis defines a role for the FA pathway in HDR and [at last] provides a molecular link between the FA pathway and epithelial cancers. Several recent studies have defined molecular interactions among the FA proteins in the pathway [Fig. 1; for review, see D’Andrea and Grompe 2003]. Five of the FA proteins [A, C, E, F, and G] form a nuclear complex [Garcia-Higuera et al. 1999; Medhurst et al. 2001] required for the activation [monoubiquitination] of the downstream FANCD2 protein [Garcia-Higuera et al. 2001]. This FA protein complex either has intrinsic monoubiquitin ligase activity or it regulates a monoubiquitin ligase. Following DNA damage by cross-linking agents, FANCD2 is monoubiquitinated and targeted to chromatin-associated foci, where it interacts with the breast cancer protein, BRCA1 [Garcia-Higuera et al. 2001] and the MRE11/RAD50/NBS1 [M/R/N] complex [Nakanishi et al. 2002]. Moreover, the BRCA1/BARD1 heterodimeric ubiquitin ligase complex [Brzovic et al. 2001] is required for the efficient assembly of these foci [A. D’Andrea, unpublished]. Disruption of the FA/BRCA pathway results in chromosome instability, DNA cross-linker hypersensitivity, and the common clinical features of FA.

FA-D1 patients have biallelic mutations in FANCD1/BRCA2 [Howlett et al. 2002, Stewart and Elledge 2002]. BRCA2 functions further downstream in the FA/BRCA pathway, and, unlike other FA proteins, appears to play a more direct role in DNA repair. BRCA2 binds to single- and double-strand DNA [Yang et al. 2002] and binds to RAD51 through its BRC regions [Marmorstein et al. 1998]. Moreover BRCA2 regulates the activity of RAD51, by controlling nucleoprotein filament formation [Davies et al. 2001]. Loading of RAD51 on single-strand DNA by BRCA2 is required for the early events in homologous recombination repair, such as strand invasion. Biallelic inactivation of BRCA2 results in a cellular defect in HDR [Moyahan et al. 2001]. Perhaps not surprisingly, biallelic null mutations in BRCA2 in humans or Brc2 in mice result in embryonic lethality. Cells derived from FA-D1 patients, however, have hypomorphic alleles of FANCD1/BRCA2, expressing truncated BRCA2 polypeptides with partial activity [Howlett et al. 2002]. These FA-D1 individuals survive gestation but die in early childhood.

Murine knockout models for FA genes

to date, murine knockout models of several Fanca genes, including Fancc [Chen et al. 1996; Whitney et al. 1996], Fanca [Rio et al. 2002], and Fancg [Yang et al. 2001] have been generated. Although these FA mice exhibit some phenotype features of human FA patients [i.e., chromosome instability, defective germ cell development], they do not spontaneously develop anemia or cancer. The phenotypes of these knockout mice are essentially indistinguishable [Noll et al. 2002], consistent with a model [Fig. 1] in which the FA protein complex components cooperate to perform a common function. Because of the more downstream role of Fancd2 in the FA pathway, Houghtaling et al. (2003) postulated a more critical role of Fancd2 in murine development and carcinogenesis. As predicted, the Fancd2−/− mice do indeed exhibit a more severe phenotype.

Specifically, the Fancd2−/− mice exhibit microphthalmia [small eyes], perinatal lethality, and more severe hypogonadism than the Fanco−, Fancg−, or Fancc-deficient mice. Strikingly, the Fancd2-deficient mice have an increased incidence of epithelial cancers [i.e., breast, ovarian, and liver cancers], similar to the tumor spectrum...
observed in Brca2 hypomorphic mice [Tutt et al. 2001; McAllister et al. 2002]. Taken together, the phenotype of the Fancd2-deficient mice provides an important experimental verification of the sequence of molecular events in the FA pathway (Fig. 1), with Fancd2 and Brca2/Brca1 playing a more critical downstream role.

Role of the FA/BRCA pathway in homologous recombination repair

Increasing evidence supports a role for the FA/BRCA pathway in HDR. First, FA cells are hypersensitive to DNA cross-linking agents, similar to the cellular phenotype observed in HDR-defective CHO cells containing mutations in the DNA recombination genes XRCC3 [Pierce et al. 1999] or BRCA2 [Kraakman-vanderZwet et al. 2002]. Second, activated [monoubiquitinated] FANCID2 forms nuclear foci with BRCA1 and RAD51, and these proteins are required for homology-directed DNA repair (HDR). Disruption of genes in this pathway results in chromosome instability, cellular hypersensitivity to DNA cross-linking agents, and a propensity to cancer progression.

Figure 1. Cooperative interaction of the FA proteins and BRCA proteins in a common pathway. The FA proteins (A, C, E, F, G) are assembled in a nuclear protein complex. Recent studies have indicated that the Bloom’s helicase, BLM, is also a subunit of the complex. The FA complex is required for the monoubiquitination of the downstream FANCID2 protein. The FA monoubiquitination ligase activity of the FA complex is activated by DNA damage, perhaps through the activity of an upstream “sensor” kinase. Monoubiquitinated FANCID2 is targeted to chromatin-associated nuclear foci where it assembles with the breast cancer susceptibility proteins, BRCA1 and BRCA2. These nuclear foci also contain the RAD51 protein and the MER1/RAD50/NBS1 [M/R/N] complex. The ubiquitin ligase (BRCA1/BARD1) heterodimer is required for the efficient assembly of these chromatin foci; accordingly, BRCA1−/− mice have decreased FANCID2 nuclear foci. BRCA2 interacts with RAD51, and these proteins are required for homology-directed DNA repair (HDR). Disruption of genes in this pathway results in chromosome instability, cellular hypersensitivity to DNA cross-linking agents, and a propensity to cancer progression.
FANCD2 monoubiquitination and a subsequent repair process (Fig. 1). On the other hand, the FA pathway may function further downstream to process the DNA damage. The monoubiquitinated FANCD2 protein may cooperate with BRCA2 and RAD51 to repair DNA containing cross-links. Despite the rapid progress in the FA/BRCA field, including gene cloning, the elucidation of biochemical events in the pathway, and successful mouse modeling, no consistent explanation has yet emerged for the selective cross-linker hypersensitivity of FA cells.

Disruption of the FA/BRCA pathway during epithelial cancer progression

The most important finding of Houghtaling et al. (2003) is the predisposition of Fancd2-deficient mice to epithelial cancers—mainly breast, ovarian, and liver cancers. Human cancers are usually epithelial in origin, and develop with advancing age. Human tumors often display complex cytogenetic profiles, including aneuploidy and chromosome structural abnormalities. As most genetic murine models described to date develop soft tissue sarcomas and lymphomas, these models bear little relevance to the common epithelial cancers of humans.

The new Fancd2-deficient murine model, along with the Brca2-deficient model (McAllister et al. 2002) and the telomerase-deficient model (Artandi et al. 2000) which also develop epithelial cancers, may therefore be more relevant to the study of many human cancers.

The development of epithelial cancers in the Fancd2-deficient mice has several important implications. First, the findings strongly support a genetic interaction between Fancd2 and Brca2, consistent with the pathway described in Figure 1. Biochemical evidence further supports this genetic interaction, as the activated (monoubiquitinated) form of FANCD2 colocalizes with BRCA2 in chromatin, and a biochemical complex containing these proteins has been partially purified (A. D’Andrea, unpubl.).

Second, the findings suggest a possible interaction between the FA/BRCA pathway and telomere length maintenance. Consistent with this notion, FA cells have accelerated telomere shortening (Callen et al. 2002). Future studies, such as the crossing of Fanc-deficient and telomerase-deficient mice, are needed to determine whether activated FANCD2 functions to maintain telomere length, perhaps via HDR. Loss of telomerase activity or loss of activated FANCD2 protein may contribute to telomere attrition, end-to-end chromosomal fusion, and epithelial carcinogenesis.

Third, the gradual progression of epithelial cancers in the Fancd2-deficient mice will allow the systematic assessment of relevant chromosome breaks, deletions, and insertions in the tumors. In this way, the development of the murine epithelial cancers may mimic epithelial cancer progression in humans. Tumor cell lines derived from the Fancd2-deficient mice should be examined by spectral karyotype analysis (SKY), in order to determine the frequency of site-specific chromosome translocations and amplifications. Tumor-derived genomic DNA should be analyzed by array comparative genomic hybridization (O’Hagan et al. 2002), to detect amplifications and deletions of cancer-relevant loci, specifically in regions syntenic to human epithelial cancer hotspots.

The Fancd2-deficient mice may elucidate other aspects of epithelial cancer development. The generation of Fancd2−/−, p53−/− double-knockout mice will allow the assessment of a genetic interaction between the FA/BRCA pathway and p53. Perhaps the double-knockout mice will have enhanced tumorigenesis, with shortened tumor latency and a different tumor spectrum. Similarly, it will be important to determine whether restoration of the FA pathway, perhaps by compensatory mutations, results during the progression of epithelial cancer in these animals. Recent studies indicate that tumors from FA patients may result, at least in part, from somatic reversion, restoration of the FA pathway, and restoration of genomic stability and drug resistance (Ikeda et al. 2003).

In addition to Houghtaling et al. (2003), other recent studies support a pivotal role of the FA/BRCA pathway in epithelial cancer progression. Taniguchi et al. (2003) demonstrated that at least 18% of primary ovarian epithelial cancers have a disruption of the FA/BRCA pathway, perhaps accounting for the well known chromosome instability and cisplatin hypersensitivity of these tumors. Disruption of the pathway results from the methylation and silencing of one of the upstream FA genes, FANCF. Also, Van Der Heijden et al. (2003) recently suggested that germline FANCG or FANCC mutations may account for the chromosome instability and cross-linker sensitivity of tumors from some patients with inherited pancreatic cancer. Tumors from such patients are hemizygous for FANCG; they contain an inherited (mutant) FANCG allele, whereas the wild-type allele has been deleted.

These studies indicate that disruption of the FA/BRCA pathway, by germline mutations, somatic mutations, or epigenetic silencing of FANC genes, may contribute to epithelial cancer progression. Transient inactivation of the FA/BRCA pathway may result in chromosome instability, the activation of new oncogenes, and the inactivation of tumor suppressors, thus enhancing the malignant phenotype. Restoration of the FA/BRCA pathway, by compensatory mutations later in the evolution of the cancer, may restore genomic stability, may provide an alternative mechanism for telomere length maintenance (ALT), and may promote chemotherapy resistance. The new finding of epithelial cancers in Fancd2-deficient mice will no doubt fuel new efforts to examine the integrality of the FA/BRCA pathway in other human cancers, especially those cancers with chromosome breakage and DNA cross-linker hypersensitivity.

References

Alter, B.P., Greene, M.H., Velazquez, I., and Rosenberg, P.S. 2003. Cancer in Fanconi anemia. Blood 101: 2072.

Artandi, S.E., Chang, S., Lee, S.L., Alson, S., Gottlieb, G.J., Chin, L., and DePinho, R.A. 2000. Telomere dysfunction promotes nonreciprocal translocations and epithelial cancers in mice. Nature 406: 641–645.
Bagby Jr., G.C. 2003. Genetic basis of Fanconi anemia. Curr. Opin. Hematol. 10: 68–76.

Brzovic, P.S., Rajagopal, P., Hoyt, D.W., King, M.C., and Klevit, R.E. 2001. Structure of a BRCA1–BAR1 heterodimeric RING–RING complex. Nat. Struct. Biol. 8: 833–837.

Callen, E., Samper, E., Ramirez, M.J., Creus, A., Marcos, R., Ortega, J.J., Olive, T., Badell, I., Blasco, M.A., and Surtalles, J. 2002. Breaks at telomeres and TRF2-independent end fusions in Fanconi anemia. Hum. Mol. Genet. 11: 439–444.

Chen, M., Tomkins, D.J., Auerbach, W., McKerlie, C., Yousseffian, H., Liu, L., Gan, O., Carreau, M., Auerbach, A., Groves, T., et al. 1996. Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat. Genet. 12: 448–451.

D’Andrea, A.D. and Grompe, M. 2003. The Fanconi anemia/BRCA pathway. Nat. Rev. Cancer 3: 23–34.

Davies, A.A., Masson, J.Y., Mcllwraith, M.J., Stasiak, A.Z., Staik, A., Venkitaraman, A.R., and West, S.C. 2001. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell. 7: 273–282.

Garcia-Higuera, I., Kuang, Y., Naf, D., Wasik, J., and D’Andrea, A.D. 1999. Fanconi anemia proteins FANCA, FANCC, and FANCG/XRCC9 interact in a functional nuclear complex. Mol. Cell. Biol. 19: 4866–4873.

Garcia-Higuera, I., Taniguchi, T., Ganesan, S., Meyn, M.S., Timmers, C., Hejna, J., Grompe, M., and D’Andrea, A.D. 2001. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell. 7: 249–262.

Houghtaling, S., Timmers, C., Noll, M., Finegold, M.J., Jones, S.N., Meyn, M.S., and Grompe, M. 2003. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes & Dev. [this issue].

Howlett, N.G., Taniguchi, T., Olson, S., Cox, B., Waisfisz, Q., De Die-Smulders, C., Persky, N., Grompe, M., Joenje, H., Pals, G., et al. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia patients. Science 297: 606–609.

Ikeda, H., Matsushita, M., Waisfisz, Q., Kinoshita, A., Oostra, A.B., Nieuwint, A.W., De Winter, J.P., Hoatlin, M.E., Kawai, Y., Sasaki, M.S., et al. 2003. Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2. Cancer Res. 63: 2688–2694.

Kraakman-van der Zvet, M., Overkamp, W.J., van Lange, R.E., Essers, J., van Duijn-Goedhart, A., Wiggers, I., Swaminathan, S., van Buul, P.P., Errami, A., Tan, R.T., et al. 2002. Brc2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol. Cell. Biol. 22: 669–679.

Marmorstein, L.Y., Ouchi, T., and Aaronson, S.A. 1998. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc. Natl. Acad. Sci. 95: 13869–13874.

McAllister, K.A., Bennett, L.M., Houle, C.D., Ward, T., Malphurs, J., Collins, N.K., Cachaleiro, C., Haseman, J., Goulding, E.H., Bunch, D., et al. 2002. Cancer susceptibility of mice with a homozygous deletion in the COOH-terminal domain of the Brc2 gene. Cancer Res. 62: 990–994.

Medhurst, A.L., Huber, P.A., Waisfisz, Q., de Winter, J.P., and Mathew, C.G. 2001. Direct interactions of the five known Fanconi anemia proteins suggest a common functional pathway. Hum. Mol. Genet. 10: 423–429.

Meetei, A.R., Sechi, S., Wallisch, M., Yang, D., Young, M.K., Joenje, H., Hoatlin, M.E., and Wang, W. 2003. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell Biol. 23: 3417–3426.

Moynahan, M.E., Chiu, J.W., Koller, B.H., and Jasin, M. 1999. Brc1 controls homology-directed DNA repair. Mol. Cell 4: 511–518.

Moynahan, M.E., Pierce, A.J., and Jasin, M. 2001. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7: 263–272.

Nakanishi, K., Taniguchi, T., Ranganathan, V., New, H.V., Moreau, L.A., Stotsky, M., Mathew, C.G., Kastan, M.B., Weaver, D.T., and D’Andrea, A.D. 2002. Interaction of FANCID2 and NBS1 in the DNA damage response. Nat. Cell Biol. 4: 913–920.

Noll, M., Batatla, K.P., Bateman, R., Lax, T.F., Rathbun, K., Reifsteck, C., Bagby, G., Finegold, M., Olson, S., and Grompe, M. 2002. Fanconi anemia group A and C double-mutant mice. Functional evidence for a multi-protein Fanconi anemia complex. Exp. Hematol. 30: 679–688.

O’Hagan, R.C., Chang, S., Maser, R.S., Mohan, R., Artandi, S.E., Chin, L., and DePinho, R.A. 2002. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2: 149–155.

Papadopoulos, D., Guillouf, C., Mohrenweiser, H., and Moustacchi, E. 1990. Hypomutability in Fanconi anemia cells is associated with increased deletion frequency at the HPRT locus. Proc. Natl. Acad. Sci. 87: 8383–8387.

Pierce, A.J., Johnson, R.D., Thompson, L.H., and Jasin, M. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes & Dev 13: 2633–2638.

Rio, P., Segovia, J.C., Hanenberg, H., Casado, J.A., Martinez, J., Gottsche, K., Cheng, N.C., Van De Vrugt, H.J., Arwert, F., Joenje, H., et al. 2002. In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group A knockout mice. Blood 100: 2032–2039.

Stavropoulos, D.J., Bradshaw, P.S., Li, X., Pasic, I., Truong, K., Ikura, M., Ungrin, M., and Meyn, M.S. 2002. The Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis. Hum. Mol. Genet. 11: 3135–3144.

Stewart, G. and Elledge, S.J. 2002. The two faces of BRCA2, a FANCtastic discovery. Mol. Cell 10: 2–4.

Taniguchi, T., Garcia-Higuera, I., Andreassen, P.R., Gregory, R.C., Grompe, M., and D’Andrea, A.D. 2002. S-phase-specific interaction of the Fanconi anemia protein, FANCID2, with BRCA1 and RAD51. Blood 100: 2414–2420.

Taniguchi, T., Tischkowitz, M., Ameziane, N., Hodgson, S.V., Mathew, C.G., Joenje, H., Mok, S.C., and D’Andrea, A.D. 2003. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat. Med. 9: 568–574.

Tutt, A., Bertrwistle, D., Valentine, J., Gabriel, A., Swift, S., Ross, G., Griffin, C., Thacker, J., and Ashworth, A. 2001. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 20: 4704–4716.

Van Der Heijden, M.S., Yoo, CJ., Hruban, R.H., and Kern, S.E. 2003. Fanconi anemia gene mutations in Young-onset pancreatic cancer. Cancer Res. 63: 2585–2588.

Whitney, M.A., Royle, G., Low, M.J., Kelly, M.A., Axthelm, M.K., Reifsteck, C., Olson, S., Braun, R.E., Heinrich, M.C., Rathbun, R.K., et al. 1996. Germ cell defects and hematopoietic hypersensitivity to γ-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 88: 49–58.

Yang, H., Jeffrey, P.D., Miller, J., Kinnucan, E., Sun, Y., Thoma, N.H., Zheng, N., Chen, P.L., Lee, W.H., and Pavletich, N.P. 2002. BRCA2 function in DNA binding and recombination from a BRCA2-DS1-ssDNA structure. Science 297: 1837–1848.

Yang, Y., Kuan, Y., De Oca, R.M., Hays, T., Moreau, L., Lu, N., Seed, B., and D’Andrea, A.D. 2001. Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrc9. Blood 98: 3435–3440.
The Fanconi road to cancer

Alan D. D'Andrea

Genes Dev. 2003. 17:
Access the most recent version at doi:10.1101/gad.1128303

References	This article cites 34 articles, 17 of which can be accessed free at: http://genesdev.cshlp.org/content/17/16/1933.full.html#ref-list-1
License	
Email Alerting Service	Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.