Quantum lower bound for the collision problem

Samuel Kutin*

November 5, 2018

Abstract

We extend Shi’s 2002 quantum lower bound for collision in \(r \)-to-one functions with \(n \) inputs. Shi’s bound of \(\Omega((n/r)^{1/3}) \) is tight, but his proof applies only in the case where the range has size at least \(3n/2 \). We give a modified version of Shi’s argument which removes this restriction.

1 Introduction

How many quantum queries does it take to find a collision? Many cryptographic systems depend on the difficulty of finding collisions, so it is important to understand how difficult this problem may prove for a quantum computer.

Obviously, it may be easier to find collisions in some functions then others. We are interested in a black-box argument: our only access to the function is as a quantum oracle. We are promised that the function is \(r \)-to-one. (We require that \(r \) be a divisor of \(n \), the size of the input space.) Brassard, Høyer, and Tapp \cite{BHT} gave a quantum algorithm which requires \(O((n/r)^{1/3}) \) quantum queries, an improvement over the \(\Theta((n/r)^{1/2}) \) classical queries needed. In this note, we are concerned with the matching lower bound.

For a lower bound, it is easier to consider a decision problem: the input function is guaranteed to be either one-to-one or \(r \)-to-one, and our task is to determine which case holds. Aaronson \cite{Aar} proved the first significant lower bound: \(\Omega((n/r)^{1/5}) \) queries.

More recently, Shi \cite{Shi} proved a lower bound of \(\Omega((n/r)^{1/3}) \), given the additional condition that the size of the range of the function is at least \(3n/2 \). (In the case where the range is only \(n \), Shi provides a lower bound of \(\Omega((n/r)^{1/4}) \)). Shi’s proof is a novel application of the methods of Nisan and Szegedy \cite{NS} to the case where one cannot fully symmetrize the multivariate polynomials.

Our main result is a new version of Shi’s theorem, but without the additional constraint on the size of the range:

Theorem 1 Let \(n > 0 \) and \(r \geq 2 \) be integers with \(r \mid n \), and let a function from \([n]\) to \([n]\) be given as an oracle with the promise that it is either one-to-one or

*Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540. Email: kutin@idaccr.org.
r-to-one. Then any quantum algorithm for distinguishing these two cases must evaluate the function \(\Omega((n/r)^{1/3}) \) times.

The argument is very similar to that of Shi. As stated above, we remove the requirement that the range be at least \(3n/2 \). Our proof is conceptually simpler for other reasons:

1. The natural automorphism group on the set of functions from \([n]\) to \([N]\) is \(S_n \times S_N \). Our argument symmetrizes with respect to the entire group.

2. We avoid the explicit introduction of the problem Half-r-to-one.

\section{Preliminaries}

\subsection{Functions as quantum oracles.}

Let \(n, N > 0 \) be integers. Let \(\mathcal{F}(n, N) \) be the set of functions from \([n]\) to \([N]\).

Our functions are given to us as a quantum oracle. We can perform a transformation \(O_f \), which applies \(f \) to the contents of some of the quantum state:

\[O_f |i, j, z\rangle = |i, f(i) + j \pmod{N}, z\rangle. \]

Here \(z \) is a placeholder for the unaffected portion of the quantum state.

The query complexity of a quantum algorithm is the number of times it calls \(O_f \). We think of our algorithm as alternating between \(T + 1 \) unitary operators and \(T \) applications of \(O_f \).

Let \(\delta_{i,j}(f) \) be 1 when \(f(i) = j \). Then, after \(T \) queries, the amplitude of each quantum base state is a degree-\(T \) polynomial in these \(\delta_{i,j}(f) \). Hence, the acceptance probability \(P(f) \) is a polynomial over \(\delta_{i,j} \) of degree at most \(2T \). This connection between quantum complexity and polynomial degree is due to Beals, et al. \cite{beals1998three}.

Note that this polynomial \(P(f) \) is constrained to be in the interval \([0, 1]\) whenever the \(\delta_{i,j} \) correspond to a valid input; i.e.,

\[\forall i, j, \quad \delta_{i,j} \in \{0, 1\} \]

\[\forall i, \quad \sum_j \delta_{i,j} = 1 \quad (1) \]

The connection between polynomial degree and query complexity was first made by Nisan and Szegedy \cite{nisan1994rl}. In their applications, they symmetrized over all permutations of the variables, reducing the multivariate polynomial to a univariate polynomial. They then apply results from approximation theory to prove a lower bound on the degree of the polynomial. Beals, et al. \cite{beals1998three} followed the same approach.

A nice, general version of the approximation theory results was shown by Paturi \cite{paturi1992circuit}. Following Shi \cite{shi2002communication}, we use a slight modification of Paturi’s theorem:
Theorem 2 (Paturi) Let \(q(\alpha) \in \mathbb{R}[\alpha] \) be a polynomial of degree \(d \). Let \(a \) and \(b \) be integers, \(a < b \), and let \(\xi \in [a, b] \) be a real number. If

1. \(|q(i)| \leq c_1 \) for all integers \(i \in [a, b] \), and
2. \(|q([\xi]) - q(\xi)| \geq c_2 \) for some constant \(c > 0 \),

then

\[
d = \Omega(\sqrt{(\xi - a + 1)(b - \xi + 1)}),
\]

where the hidden constant depends on \(c_1 \) and \(c_2 \).

Note that, if the conditions of the theorem are met for any \(\xi \), we have \(d = \Omega(\sqrt{b-a}) \). If they are met for some \(\xi \approx (a+b)/2 \), then \(d = \Omega(b-a) \).

In our setting, the automorphism group for the variables \(\delta_{i,j} \) is \(S_n \times S_N \).

If we symmetrize with respect to this group, we do not immediately obtain a univariate polynomial. Hence, we will have to work harder to apply Theorem 2.

For \(\sigma \in S_n \), \(\tau \in S_N \), we define \(\Gamma^\sigma_\tau : \mathcal{F}(n, N) \to \mathcal{F}(n, N) \) by

\[
\Gamma^\sigma_\tau(f) = \tau \circ f \circ \sigma.
\]

Let \(P(f) \) be an acceptance polynomial as above. We can write \(P \) as a sum \(\sum_S C_S I_S(f) \), where \(S \) ranges over subsets of \([n] \times [N]\), and

\[
I_S = \prod_{(i,j) \in I_S} \delta_{i,j}.
\]

By (1), we may assume that each pair \((i, j) \in S\) has a distinct value of \(i \); we thus write

\[
I_S = \prod_{k=1}^{l} \prod_{i \in S_k} \delta_{i,k}, \tag{2}
\]

where the sets \(S_k \) are disjoint, and \(\sum_k |S_k| \) is the degree of the monomial.

2.2 Some special functions

We now define a collection of functions which are \(a \)-to-one on part of the domain, and \(b \)-to-one on the rest of the domain. (These will enable us to interpolate between one-to-one and \(r \)-to-one functions.)

Fix \(N \geq n > 0 \). We say that a triple \((m, a, b)\) of integers is valid if \(0 \leq m \leq n \), \(a \mid m \), and \(b \mid (n - m) \). For any such valid triple, we have a function \(f_{m,a,b} \in \mathcal{F}(n, N) \), given by

\[
f_{m,a,b} = \begin{cases}
\lfloor i/a \rfloor & 1 \leq i \leq m, \\
N - \lfloor (n-i)/b \rfloor & m < i \leq n.
\end{cases}
\]

So \(f_{m,a,b} \) is \(a \)-to-one on \(m \) points, and \(b \)-to-one on the remaining \(n - m \) points. (Since \(N \geq n \), the two parts of the range do not overlap.)

Note that our \(f_{m,a,b} \) plays the same role as Shi’s \(f_{m,g} \), with \(a = g \) and \(b = 2 \).

We now examine the behavior of \(f_{m,a,b} \) after we symmetrize by all of \(S_n \times S_N \).
Lemma 3 Let $P(f)$ be a degree-d polynomial in $\delta_{i,j}$. For a valid triple (m, a, b), define $Q(m, a, b)$ by

$$Q(m, a, b) = E_{\sigma, \tau} [P(\Gamma_{\tau}^\sigma(f_{m,a,b}))].$$

Then Q is a degree-d polynomial in m, a, b.

Definition 4 For integers k, ℓ, let ℓ^k denote the falling power $\ell(\ell - 1) \cdots (\ell - k + 1)$.

Proof of Lemma 3 It suffices to prove the lemma in the case where P is a monomial I_S. We write I_S in the form (2), then $d = |S|$. We write $s_k = |S_k|$.

For each subset $U \subseteq [t]$, let A_U be the following event: for each $k \in U$, $\sigma^{-1}(j_k) \leq m/a$; for each $k \notin U$, $\sigma^{-1}(j_k) \geq N - (n - m)/b + 1$.

Clearly the events A_U are disjoint. If $I_S(\Gamma_{\tau}^\sigma(f_{m,a,b}))$ is nonzero, then every $\sigma^{-1}(j_k)$ must lie in the range of $f_{m,a,b}$, so some event A_U must occur. Hence, we write

$$Q(m, a, b) = \sum_{U \subseteq [t]} \Pr(A_U)Q_U(m, a, b),$$

where

$$Q_U(m, a, b) = E_{\sigma, \tau} [I_S(\Gamma_{\tau}^\sigma(f_{m,a,b})) | A_U].$$

Choose some U, and let $u = |U|$. Then $\Pr(A_U)$ is given by

$$\Pr(A_U) = \left(\frac{m}{a}\right)^u \left(\frac{n-m}{b}\right)^{t-u} \frac{1}{N^t},$$

which is a rational function in m, a, b. The numerator has degree t, and the denominator is $a^u b^{t-u}$.

Also,

$$Q_U(m, a, b) = \frac{1}{n^r} \prod_{k \in U} a^{\tau_k} \prod_{k \notin U} b^{\tau_k}.$$

This is a polynomial in a, b of degree d; furthermore Q_U is divisible by $a^u b^{t-u}$.

Hence, for each U, $\Pr(A_U)Q_U$ is a degree-d polynomial in m, a, b. Therefore $Q(m, a, b)$ is itself a degree-d polynomial. This concludes the lemma.

3 Main Proof

We are now ready to prove Theorem 1.

Proof of Theorem 1 Let A be an algorithm which distinguishes one-to-one from r-to-one in T queries, and let $P(f)$ be the corresponding acceptance
probability. $P(f)$ is a polynomial in $\delta_{i,j}$ of degree at most $2T$. Let $Q(m, a, b)$ be formed from P as in Lemma 3 and let $d = \deg Q$; we have $d \leq 2T$.

For any σ, τ, we know that $\Gamma^2(f_{m,a,b})$ is a valid function. If $a = b$, this function is a-to-one. We conclude the following:

1. $0 \leq Q(m, a, b) \leq 1$ whenever (m, a, b) is a valid triple.
2. $0 \leq Q(m, 1, 1) \leq 1/3$ for any m.
3. $2/3 \leq Q(m, r, r) \leq 1$ for any m where $r \mid m$.

The remainder of the proof consists of proving that $\deg Q = \Omega(n/r)^{1/3}$. For simplicity of exposition, we begin with the case $r = 2$.

Let $M = 2[n/4]$. We ask: is $Q(M, 1, 2) \geq 1/2$? In other words: does our algorithm accept (at least half the time) an input which is one-to-one on half the domain, and two-to-one on the other half?

Case I: $Q(M, 1, 2) \geq 1/2$. Let c be the least integer for which $|Q(M, 1, c)| \geq 2$. Then we have $Q(M, 1, x)$ between -2 and 2 for all positive integers $x < c$, and $|Q(M, 1, 1) - Q(M, 1, 2)| \geq 1/6$. By Theorem 2 we have $d = \Omega(\sqrt{c})$.

Now, we consider the polynomial $h(i) = Q(ci, 1, c)$. For any integer i in the range $0 \leq i \leq [n/c]$, we have $0 \leq h(i) \leq 1$. But $|h(M/c)| \geq 2$. We conclude, by Theorem 2 that $d = \Omega(n/c)$.

Case II: $Q(M, 1, 2) < 1/2$. Now, let c be the least even integer for which $|Q(M, c, 2)| \geq 2$. As in Case I, we first get $d = \Omega(\sqrt{c})$. Then, by considering $h(i) = Q(ci, c, 2)$, we obtain $d = \Omega(n/c)$.

In either case, by combining $d = \Omega(\sqrt{c})$ and $d = \Omega(n/c)$, we get $d^3 = \Omega(n)$, or $d = \Omega(n^{1/3})$.

For general r, the setup is almost identical: we now split into cases based on whether $Q(m, 1, r) \geq 1/2$? (Note that, in Case II, we let c be the least multiple of r for which $Q(M, c, r) \geq 2$.) We first get $d = \Omega(\sqrt{c/r})$, and then $d = \Omega(n/c)$, yielding $d = \Omega((n/r)^{1/3})$. ■

References

[1] Scott Aaronson. Quantum lower bound for the collision problem. In Proc. of the 34th ACM STOC, pages 635–642, 2002.

[2] Bob Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower bounds by polynomials. In Proc. of the 39th IEEE FOCS, pages 352–361, 1998.

[3] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision problem, volume 1380 of Lecture Notes in CS, pages 163–169. Springer-Verlag, 1998.

[4] Noam Nisan and Máté Szegedy. On the degree of boolean functions as real polynomials. Computational Complexity, 4:301–313, 1994.
[5] Ramamohan Paturi. On the degree of polynomials that approximate symmetric boolean functions. In *Proc. of the 24th ACM STOC*, pages 468–474, 1992.

[6] Yaoyun Shi. Quantum lower bounds for the collision and the element distinctness problems. quantu-ph/0112086.