TPACK: Technological, Pedagogical and Content Model Necessary to Improve the Educational Process on Mathematics through a Web Application?

Ricardo-Adán Salas-Rueda 1*

1 Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, MEXICO

* CORRESPONDENCE: ricardoadansalasrueda@hotmail.com

ABSTRACT
This quantitative research aims to analyze the design and implementation of the Web Application on the educational process of the Linear Function (WALF) considering the TPACK (Technological Pedagogical and Content Knowledge) model and data science. The sample consists of 45 students who studied the Basic Math course at a Mexican university during the 2015 school year. The TPACK model allows the planning and organization of WALF through technological knowledge (HTML and PHP languages), content knowledge (formulas on the linear function and slope) and pedagogical knowledge (data simulation). The results of machine learning (linear regression) with 50%, 60% and 70% of training indicate that the contents of WALF influence the assimilation of knowledge about the identification and evaluation of the linear function. Data science identifies 2 predictive models on the use of WALF in the field of mathematics by means of the decision tree technique. Finally, the TPACK model facilitates the implementation of technological tools and construction of educational virtual spaces through technological, content and pedagogical knowledge.

Keywords: learning, educational technology, TPACK model, data science, higher education

INTRODUCTION
Universities are incorporating digital tools, technological applications and web platforms in school activities with the purpose of improving teaching-learning conditions (Cabero-Almenara, Arancibia, & Prete, 2019; Han, Wang, & Jiang, 2019). In fact, the use of technology inside and outside the classroom is causing the emergence of new methodologies and educational models (Agreda-Montoro, Ortiz-Colón, Rodríguez-Moreno, & Steffens, 2019; Salas-Rueda, Salas-Rueda, & Salas-Rueda, 2019).

Today, teachers are transforming the educational process through the selection, organization and construction of virtual spaces for learning and teaching (Cejas-León, Navío-Gámez, & Barroso-Osuna, 2016; Fathelrahman, 2019; Zhang, Lou, Zhang, & Zhang, 2019). In fact, Information and Communication Technologies (ICT) are transforming the planning and implementation of school activities (Kwon, Park, Shin, & Chang, 2019; Shah & Cheng, 2019; Zhu, Herring, & Bonk, 2019). For example, the ERPAG application facilitates the assimilation of knowledge and development of skills in computer courses (Salas-Rueda & Vázquez-Estupiñán, 2017).

Teachers need to develop the technological and pedagogical competences to achieve a successful incorporation of digital tools in the teaching-learning process (Cejas-León, Navío-Gámez, & Barroso-Osuna, 2016). For example, the TPACK model facilitates the integration of digital tools and media in the teaching-
learning process considering the pedagogical, content and technological aspects (Chen & Jang, 2014; Chua & Jamil, 2014; Vaerenewyck, Shinas, & Steckel, 2017).

In particular, this quantitative research uses the TPACK model to organize and implement WALF in the field of mathematics through technological knowledge (HTML and PHP languages), content knowledge (formulas on the linear function and slope) and pedagogical knowledge (data simulation).

The research questions are:
- What is the impact of WALF on the assimilation of knowledge about the identification and evaluation of the linear function?
- What are the predictive models of the use of WALF in the field of mathematics education?

TPACK MODEL

TPACK is a model that proposes the use of technological, pedagogical and content knowledge to achieve an adequate integration of ICT in the teaching-learning process (Cejas-León, Navío-Gámez, & Barroso-Osuna, 2016; Chen & Jang, 2014; Gómez, 2015). Nowadays, this pedagogical and technological model is transforming school activities inside and outside the classroom (Bueno-Alastuey, Villarreal, & García-Esteban, 2018; Turgut, 2017). For example, the TPACK model facilitated the updating of activities for the educational process of mathematics through the use of Raptor software, YouTube videos and Facebook (Salas-Rueda, 2018).

The TPACK model is a framework of reference that allows the creation of active strategies for teaching and learning through the use of ICT (Chua & Jamil, 2014; Ozudogru & Ozudogru, 2019; Urban, Navarro, & Borron, 2018). Even the use of technological, content and pedagogical knowledge allows the creation of new virtual educational spaces (Brantley-Dias, & Ertmer, 2013; Oster-Levinz, & Klieger, 2010; Phillips, 2016).

The origins of the TPACK model come from the ideas about the use of pedagogical and content knowledge in the educational field proposed by Shulman (Leiva-Núñez, Ugalde-Meza, & Llorrente-Cejudo, 2018). Subsequently, Mishra and Koehler created the TPACK model by integrating technological knowledge with content and pedagogical knowledge (Chua & Jamil, 2014).

Content Knowledge (CK) refers to the topics taught in the classes, Pedagogical Knowledge (PK) refers to teaching methods and Technological Knowledge (TK) refers to the use of ICT in the educational field (Brantley-Dias, & Ertmer, 2013; Cabero-Almenara, Roig-Vila, & Mengual-Andrés, 2017).

Also Pedagogical Content Knowledge (PCK) refers to what is used to teach the contents of the course, Technological Content Knowledge (TCK) refers to use of technology to transmit the contents of the course and Technological Pedagogical Knowledge (TPK) refers to use of technology in the educational context (Cabero-Almenara, Roig-Vila, & Mengual-Andrés, 2017; Gómez, 2015).

The TPACK model has been implemented in the courses on history (Vaerenewyck, Shinas, & Steckel, 2017), languages (Sancar-Tokmak & Yanpar-Yelken, 2015) and mathematics (Kartal & Cinar, 2018).

Kartal and Cinar (2018) used the TPACK model to analyze the impact of digital tools and technological applications (e.g., GeoGebra and Mathematica) in the teaching-learning process on mathematics. Even this pedagogical and technological model has improved academic performance through the creation of digital stories in language courses (Sancar-Tokmak & Yanpar-Yelken, 2015).

Finally, the TPACK model allows evaluating the use of digital tools and technological applications in the teaching-learning process and identifying the impact of ICT in school activities (Cabero-Almenara, Roig-Vila, & Mengual-Andrés, 2017; Cheng & Xie, 2018; Phillips, 2016).

METHOD

This quantitative research aims to analyze the design and implementation of WALF considering the TPACK model and data science.

Participants

The participants are 45 students, 19 men (42.22%) and 26 women (57.78%), who attended the Basic Math course (101 and 102 groups) in a Mexican university during the 2015 school year. These students attended the first semester of the Degrees in Administration (n=19, 42.22%), Commerce (n=13, 28.89%), Accounting (n=7, 15.56%) and Marketing (n=6, 13.33%).
The procedure of this quantitative research began with the use of the TPACK model in the educational process on the linear function (See Table 1).

Table 2 describes the functions of WALF by means of the Use Cases Scenario.

WALF requests the information of the coordinates to start the simulation of data on the linear function (See Figure 1). This web application is available at the following web address: http://sistemasusables.com/mat/ap1/inicio.html

Procedure

The procedure of this quantitative research began with the use of the TPACK model in the educational process on the linear function (See Table 1).

Table 2 describes the functions of WALF by means of the Use Cases Scenario.

WALF requests the information of the coordinates to start the simulation of data on the linear function (See Figure 1). This web application is available at the following web address: http://sistemasusables.com/mat/ap1/inicio.html
The research hypotheses about the use of WALF in the learning process are:

- **Hypothesis 1 (H1):** The contents of WALF positively influence the assimilation of knowledge on the identification of the linear function

- **Hypothesis 2 (H2):** The contents of WALF positively influence the assimilation of knowledge on the evaluation of the linear function

The predictive models on the use of WALF in the teaching-learning process of mathematics are:

- **Predictive model 1:** Contents of WALF and assimilation of knowledge on the identification of the linear function

- **Predictive model 2:** Contents of WALF and assimilation of knowledge on the evaluation of the linear function

Data Analysis

This quantitative research uses the Rapidminer tool to evaluate the hypotheses about the use of WALF in the educational field by means of machine learning (linear regression) with 50%, 60% and 70% of training (See **Figure 2**).

In addition, the Rapidminer tool allows the construction of predictive models on WALF and assimilation of knowledge through the decision tree technique (See **Figure 3**).
Data Collection

Data collection was done in a Mexican university at the end of the Functions unit during the 2015 school year. Table 3 shows the measurement instrument (questionnaire).

RESULTS

Below are the results on the web interface and impact of WALF in the teaching-learning process on mathematics.

Web Interface

WALF is composed of 4 web pages:
- Web page 1: Request for information
- Web page 2: Calculation of the slope
- Web page 3: Calculation of the ordinate at the origin
- Web page 4: Identification and evaluation of the linear function (y = mx + b)

WALF requests the information on coordinates to start the data simulation on the linear function (See Figure 4).

Table 3. Questionnaire

Variable	Dimension	Question	Answer	n	%
Student	Career	1. What is your career?	Administration	19	42.22%
			Commerce	13	28.89%
			Accountancy	7	15.56%
			Marketing	6	13.33%
	Sex	2. Indicate your sex	Man	19	42.22%
			Woman	26	57.78%
	Age	3. What is your age?	18 years	21	46.67%
			19 years	20	44.44%
	Web Application	4. The contents of WALF facilitate the process of learning about mathematics	Too much (1)	31	68.89%
			Some (2)	13	28.89%
			Little (3)	1	2.22%
Educational process	Assimilation of knowledge	5. The use of technology in school activities facilitates the assimilation of knowledge on the identification of the linear function	Too much (1)	30	66.67%
			Some (2)	12	26.67%
			Little (3)	3	6.67%
		6. The use of technology in school activities facilitates the assimilation of knowledge on the evaluation of linear function	Too much (1)	25	55.56%
			Some (2)	17	37.78%
			Little (3)	3	6.67%

Figure 3. Construction of predictive models

Figure 4.
WALF presenta la fórmula y cálculo de la pendiente (Vea la Figura 5).

WALF presenta la fórmula y cálculo de la ordenada en el origen (Vea la Figura 6).

Figura 4. Interfaz Web de WALF

Figura 5. Cálculo de la pendiente

WALF presenta la fórmula y cálculo de la pendiente (Vea la Figura 5).

WALF presenta la fórmula y cálculo de la ordenada en el origen (Vea la Figura 6).
Finally, WALF presents and evaluates the linear function (See Figure 7).

Impact of WALF

Table 2 shows that the contents of WALF facilitate too much (n = 31, 68.89%), some (n = 13, 28.89%) and little (n = 1, 2.22%) the process of learning about mathematics. The use of technology in school activities facilitates too much (n = 30, 66.67%), some (n = 12, 26.67%) and little (n = 3, 6.67%) the assimilation of knowledge on the identification of the linear function. In the same way, the use of technology in school

Función lineal

Coordenada 1

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{140 - 30}{8 - 6} = 55 \]

Ordenada

\[y = mx + b \]

\[y - mx = b \]

\[b = y - mx = 30 \cdot (55 \cdot 6) = 300 \]

Figure 6. Calculation of the ordinate at the origin

Función lineal

Coordenada 1

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{140 - 30}{8 - 6} = 55 \]

Ordenada

\[y = mx + b \]

\[y - mx = b \]

\[b = y - mx = 30 \cdot (55 \cdot 6) = 300 \]

Figure 7. Identification and evaluation of the linear function

Finally, WALF presents and evaluates the linear function (See Figure 7).
activities facilitates too much (n = 25, 55.56%), some (n = 17, 37.78%) and little (n = 3, 6.67%) the assimilation of knowledge on evaluation of the linear function.

The results of machine learning with 50%, 60% and 70% of training indicate that the contents of WALF positively influence the assimilation of knowledge on the identification and evaluation of the linear function (See Table 4).

Table 4. Results of machine learning

Hypothesis	Training	Linear regression	Conclusion	Error squared
H1: WALF → identification of the linear function	50%	$y = 0.705x + 0.588$	Accepted: 0.705	0.433
	60%	$y = 0.749x + 0.500$	Accepted: 0.749	0.514
	70%	$y = 0.661x + 0.565$	Accepted: 0.661	0.533
H2: WALF → evaluation of the linear function	50%	$y = 0.656x + 0.519$	Accepted: 0.656	0.427
	60%	$y = 0.657x + 0.542$	Accepted: 0.657	0.468
	70%	$y = 0.578x + 0.661$	Accepted: 0.578	0.668

Figure 8. Predictive model 1 on the use of WALF

No.	WALF → learning process	Career	Sex	Age	Use of technology → assimilation of knowledge
1	Too much	Admin	-	-	Too much
2	Too much	Comm	-	-	Too much
3	Too much	Acc	-	> 19.5 years	Some
4	Too much	Acc	-	≤ 19.5 years	Too much
5	Too much	Mark	Man	-	Some
6	Too much	Mar	Woman	-	Too much
7	Some	Admin	-	-	Some
8	Some	Comm	-	-	Too much
9	Some	Acc	-	> 18.5 years	Some
10	Some	Acc	-	≤ 18.5 years	Too much
11	Some	Mark	-	-	Some
12	Little	-	-	-	Little

The results of machine learning with 50%, 60% and 70% of training indicate that the contents of WALF positively influence the assimilation of knowledge on the identification and evaluation of the linear function (See Table 4).

Identification of the Linear Function

The results of machine learning with 50% (0.705), 60% (0.749) and 70% (0.661) of training indicate that hypothesis 1 is accepted (See Table 4). Therefore, the contents of WALF positively influence the assimilation of knowledge on the identification of the linear function.

Figure 8 shows the predictive model 1 on the use of WALF. For example, if the student thinks that the contents of WALF facilitate too much the process of learning about mathematics, attends the career of Marketing and is Man then the use of technology in school activities facilitates some the assimilation of knowledge on the identification of the linear function.

Table 5 shows the 12 conditions of the predictive model 1 (accuracy of 80.00%). For example, if the student thinks that the contents of WALF facilitate some the process of learning about mathematics, attends the career
of Accounting and has an age > 18.5 years then the use of technology in school activities facilitates some the assimilation of knowledge on the identification of the linear function.

Table 5 presents 6 conditions where the use of technology in school activities facilitates too much the assimilation of knowledge on the identification of the linear function. For example, if the student thinks that the contents of WALF facilitate too much the process of learning about mathematics, attends the career of Marketing and is Woman then the use of technology in school activities facilitates too much the assimilation of knowledge on the identification of the linear function.

Likewise, the predictive model 1 has 5 conditions where the use of technology in school activities facilitates some the assimilation of knowledge on the identification of the linear function (See Table 5). For example, if the student thinks that the contents of WALF facilitate some the process of learning about mathematics and attends the career of Administration then the use of technology in school activities facilitates some the assimilation of knowledge on the identification of the linear function.

Finally, Table 5 indicates 1 condition where the use of technology in school activities facilitates little the assimilation of knowledge on the identification of the linear function. For example, if the student thinks that the contents of WALF facilitate little the process of learning about mathematics then the use of technology in school activities facilitates little the assimilation of knowledge on the identification of the linear function.

Evaluation of Linear Function

The results of machine learning with 50% (0.656), 60% (0.657) and 70% (0.578) of training indicate that hypothesis 2 is accepted (See Table 4). Therefore, the contents of WALF positively influence the assimilation of knowledge on the evaluation of the linear function.

Figure 9 shows the predictive model 2 on the use of WALF. For example, if the student thinks that the contents of WALF facilitate too much the process of learning about mathematics, attends the career of Administration and is Man then the use of technology in school activities facilitates too much the assimilation of knowledge on the evaluation of linear function.

Table 6 shows 12 conditions of the predictive model 2 (accuracy of 75.56%). For example, if the student thinks that the contents of WALF facilitate some the process of learning about mathematics, attends the career of Commerce and is Woman then the use of technology in school activities facilitates too much the assimilation of knowledge on the evaluation of linear function.
Table 6 presents 5 conditions where the use of technology in school activities facilitates too much the assimilation of knowledge on the evaluation of linear function. For example, if the student thinks that the contents of WALF facilitate too much the process of learning about mathematics, attends the career of Administration and is Man then the use of technology in school activities facilitates too much the assimilation of knowledge on the evaluation of linear function.

Likewise, the predictive model 2 has 6 conditions where the use of technology in school activities facilitates some the assimilation of knowledge on the evaluation of linear function (See Table 6). For example, if the student thinks that the contents of WALF facilitate too much the process of learning about mathematics and attends the career of Marketing then the use of technology in school activities facilitates too much the assimilation of knowledge on the evaluation of linear function.

Finally, Table 6 shows 1 condition where the use of technology in school activities facilitates little the assimilation of knowledge on the evaluation of linear function. For example, if the student thinks that the contents of WALF facilitate little the process of learning about mathematics then the use of technology in school activities facilitates little the assimilation of knowledge on the evaluation of linear function.

DISCUSSION

ICTs are causing teachers to design and carry out new school activities inside and outside the classroom (Cardellino, Araneda, & García, 2017; Earle & Fraser, 2017; Magen & Steinberger, 2017). In particular, this quantitative research analyzes the design and implementation of WALF considering the TPACK model and data science.

The TPACK model facilitated the construction of WALF through technological knowledge (HTML and PHP languages), content knowledge (formulas on the linear function and slope) and pedagogical knowledge (data simulation). The results of machine learning with 50%, 60% and 70% of training indicate that the contents of WALF positively influence the assimilation of knowledge about the identification and evaluation of the linear function.

This quantitative research shares the ideas of various authors (e.g., Martin, Ritzhaupt, Kumar, & Budhrani, 2019) about the use of technological tools in the educational field to develop competences in students.

Also, the decision tree technique (data science) identifies 2 predictive models on the use of WALF in the educational field and assimilation of knowledge with the accuracy greater than 75.50%. In the predictive model 1, if the student thinks that the contents of WALF facilitate too much the process of learning about mathematics, attends the career of Marketing and is Man then the use of technology in school activities facilitates some the assimilation of knowledge on the identification of the linear function. In the predictive model 2, if the student thinks that the contents of WALF facilitate too much the process of learning about mathematics, attends the career of Administration and is Man then the use of technology in school activities facilitates too much the assimilation of knowledge on the evaluation of linear function.

The TPACK model allows the transformation of teaching-learning conditions through technological, content and pedagogical knowledge (Bueno-Alastuey, Villarreal, & García-Esteban, 2018; Cheng & Xie, 2018, Table 6. Conditions in the predictive model 2

No.	WALF → learning process	Career	Sex	Age	Use of technology → assimilation of knowledge
1	Too much	Administration	Man	-	Too much
2	Too much	Commerce	Man	-	Some
3	Too much	Accountancy	Man	-	Some
4	Too much	Marketing	Man	-	Too much
5	Too much	-	Woman	-	Too much
6	Some	Administration	Man	-	Some
7	Some	Administration	Woman	-	Too much
8	Some	Accountancy	-	-	Some
9	Some	Commerce	Man	-	Some
10	Some	Commerce	Woman	-	Too much
11	Some	Marketing	-	-	Some
12	Little	-	-	-	Little
Urban, Navarro, & Borron, 2018). In particular, WALF and the TPACK model allow improving the learning process on mathematics through data simulation.

CONCLUSION

The TPACK model allows modifying the teaching-learning process through the incorporation of ICT in school activities. In particular, this research proposes the use of technological knowledge (HTML and PHP languages), content knowledge (formulas on the linear function and slope) and pedagogical knowledge (data simulation) for the construction of WALF.

The results of machine learning indicate that the contents of WALF positively influence the assimilation of knowledge about the identification and evaluation of the linear function. Also, data science identifies 2 predictive models on the use of WALF in the field of mathematics. WALF presents the procedure and calculation of the slope and the ordinate at the origin to facilitate the assimilation of knowledge on the identification and evaluation of the linear function.

The limitations of this quantitative research are related to the construction of WALF to present the simulation of the linear function and use of the Spanish language in the contents. Therefore, future investigations can create web applications for the educational process on the quadratic, exponential, rational and logarithmic functions by means of the TPACK model. Also, the contents can be designed considering the English language.

The implications of this research drive the use of the TPACK model in the educational field in order to improve teaching-learning conditions. Likewise, the design and construction of web applications allow innovating and updating school activities.

This research recommends the use of the TPACK model in the educational field in order to plan, organize and carry out school activities centered on students and create new virtual teaching-learning spaces. Likewise, the Rapidminer tool allows the calculation of machine learning and construction of predictive models. Finally, the TPACK model modifies the behavior and functions of students during the learning process through technological, content and pedagogical knowledge.

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Ricardo-Adán Salas-Rueda – Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, México.

REFERENCES

Agreda-Montoro, M., Ortiz-Colón, A. M., Rodríguez-Moreno, J., & Steffens, K. (2019). Emerging technologies: Analysis and current perspectives. *Digital Education Review, 35*, 186-210.

Brantley-Dias, L., & Ertmer, P. A. (2013). Goldilocks and TPACK: Is the Construct ‘Just Right?’ *Journal of Research on Technology in Education, 46*(2), 103-128. https://doi.org/10.1080/15391523.2013.10782615

Bueno-Alastuey, M. C., Villarreal, I., & García-Esteban, S. (2018). Can telecollaboration contribute to the TPACK development of pre-service teachers? *Technology, Pedagogy and Education, 27*(3), 367-380. https://doi.org/10.1080/1475939X.2018.1471000

Cabero-Almenara, J., Arancibia, M. L., & Prete, A. (2019). Technical and Didactic Knowledge of the Moodle LMS in Higher Education. Beyond Functional Use. *Journal of New Approaches in Educational Research, 8*(1), 25-33. https://doi.org/10.7821/naer.2019.1.327

Cabero-Almenara, J., Roig-Vila, R., & Mengual-Andrés, S. (2017). Technological, Pedagogical, and Content Knowledge of Future Teachers according to the TPACK model. *Digital Education Review, 32*, 73-84.

Cardellino, P., Araneda, C., & García, R. (2017). Classroom environments: an experiential analysis of the pupil–teacher visual interaction in Uruguay. *Learning Environments Research, 20*(3), 417-431. https://doi.org/10.1007/s10984-017-9236-y
Cejas-León, R., Navío-Gámez, A., & Barroso-Osuna, J. (2016). The university teacher’s abilities from the TPACK model (technological and pedagogical content knowledge). *Pixel-Bit: Revista de Medios y Educación, 49*, 105-119. https://doi.org/10.12795/pixelbit.2016.i49.07

Chen, Y. H., & Jang, S. J. (2014). Interrelationship between Stages of Concern and Technological, Pedagogical, and Content Knowledge: A study on Taiwanese senior high school in-service teachers. *Computers in Human Behavior, 32*, 79-91. https://doi.org/10.1016/j.chb.2013.11.011

Cheng, S. L., & Xie, K. (2018). The relations among teacher value beliefs, personal characteristics, and TPACK in intervention and non-intervention settings. *Teaching and Teacher Education, 74*, 98-113. https://doi.org/10.1016/j.tate.2018.04.014

Chua, J. H., & Jamil, H. (2014). The Effect of Field Specialization Variation on Technological Pedagogical Content Knowledge (TPACK) Among Malaysian TVET Instructors. *The Malaysian Online Journal of Educational Technology, 2*(1), 36-44.

Earle, J. E., & Fraser, B. J. (2017). Evaluating online resources in terms of learning environment and student attitudes in middle-grade mathematics classes. *Learning Environments Research, 20*(3), 339-364. https://doi.org/10.1007/s10720-016-9221-x

Fathelrahman, A. (2019). Using reflection to improve distance learning course delivery: a case study of teaching a management information systems course. *Open Learning: The Journal of Open, Distance and e-Learning, 34*(2), 176-186. https://doi.org/10.1080/02680513.2018.1508338

Gómez, M. (2015). When Circles Collide: Unpacking TPACK Instruction in an Eighth-Grade Social Studies Classroom. *Computers in the Schools, 32*(3), 278-299. https://doi.org/10.1080/07380569.2015.1092473

Han, X., Wang, Y., & Jiang, L. (2019). Towards a framework for an institution-wide quantitative assessment of teachers’ online participation in blended learning implementation. *The Internet and Higher Education, 42*, 1-12. https://doi.org/10.1016/j.iheduc.2019.03.003

Kartal, B. & Cinar, C. (2018). Examining Pre-Service Mathematics Teachers’ Beliefs of TPACK during a Method Course and Field Experience. *Malaysian Online Journal of Educational Technology, 6*(3), 11-37. https://doi.org/10.17220/mojet.2018.03.002

Kwon, K., Park, S. J., Shin, S., & Chang, C. Y. (2019). Effects of different types of instructor comments in online discussions. *Distance Education, 40*(2), 226-242. https://doi.org/10.1080/01587919.2019.1602469

Leiva-Núñez, J. P., Ugalde-Meza, L., & Llorente-Cejudo. C. (2018). The TPACK model in initial teacher training: model university of playa ancha (upla), Chile. *Pixel-Bit: Revista de Medios y Educación, 53*, 165-177. https://doi.org/10.12795/pixelbit.2018.i53.11

Magen, N., & Steinberger, P. (2017). Characteristics of an innovative learning environment according to students’ perceptions: actual versus preferred. *Learning Environments Research, 20*(3), 307-323. https://doi.org/10.1007/s10720-017-9232-2

Martin, F., Ritzhaupt, A., Kumar, S., & Budhrani, K. (2019). Award-winning faculty online teaching practices: Course design, assessment and evaluation, and facilitation. *The Internet and Higher Education, 42*, 34-43. https://doi.org/10.1016/j.iheduc.2019.04.001

Oster-Levinz, A., & Klieger, A. (2010). Indicator for technological pedagogical content knowledge (tpack) evaluation of online tasks. *Turkish Online Journal of Distance Education, 11*(4), 47-71.

Ozudogru, M., & Ozudogru, F. (2019). Technological Pedagogical Content Knowledge of Mathematics Teachers and the Effect of Demographic Variables. *Contemporary educational technology, 10*(1), 1-24. https://doi.org/10.30935/cet.512515

Phillips, M. (2016). Re-contextualising TPACK: exploring teachers’ (non-)use of digital technologies. *Technology, Pedagogy and Education, 25*(5), 555-571. https://doi.org/10.1080/1475939X.2015.1124803

Salas-Rueda, R. A. (2018). Use of the TPACK model as an innovation tool for the teaching-learning process on mathematics. *Perspectiva educacional, 57*(2), 3-26.

Salas-Rueda, R. A., & Vázquez-Estupiñán, J. J. (2017). Innovation in the higher educational process through erpag cloud service. *Revista electrónica calidad en la educación superior, 8*(2), 62-86. https://doi.org/10.22458/caes.v8i2.1917

Salas-Rueda, R. A., Salas-Rueda, E. P., & Salas-Rueda, R. D. (2019). Design and use of a web application for the field of statistics considering the assure model and data science. *Texto Livre: Linguagem e Tecnologia, 12*(1), 1-24.
Sancar-Tokmak, H., & Yanpar-Yelken, T. (2015). Effects of creating digital stories on foreign language education pre-service teachers' TPACK self-confidence. *Educational Studies, 41*(4), 444-461. https://doi.org/10.1080/03055698.2015.1043978

Shah, M., & Cheng, M. (2019). Exploring factors impacting student engagement in open access courses. *Open Learning: The Journal of Open, Distance and e-Learning, 34*(2), 187-202. https://doi.org/10.1080/02680513.2018.1508337

Turgut, Y. (2017). Tracing preservice English language teachers’ perceived TPACK in sophomore, junior, and senior levels. *Cogent Education, 4*(1), 1-20. https://doi.org/10.1080/2331186X.2017.1368612

Urban, E. R., Navarro, M., & Borron, A. (2018). TPACK to GPACK? The examination of the technological pedagogical content knowledge framework as a model for global integration into college of agriculture classrooms. *Teaching and Teacher Education, 73*, 81-89. https://doi.org/10.1016/j.tate.2018.03.013

Vaerenewyck, L. M., Shinas, V. H., & Steckel, B. (2017). Sarah’s Story: One Teacher’s Enactment of TPACK+ in a History Classroom. *Literacy Research and Instruction, 56*(2), 158-175. https://doi.org/10.1080/19388071.2016.1269267

Zhang, J., Lou, X., Zhang, H., & Zhang, J. (2019). Modeling collective attention in online and flexible learning environments. *Distance Education, 40*(2), 278-301. https://doi.org/10.1080/01587919.2019.1600368

Zhu, M., Herring, S., & Bonk, C. J. (2019). Exploring presence in online learning through three forms of computer-mediated discourse analysis. *Distance Education, 40*(2), 205-225. https://doi.org/10.1080/01587919.2019.1600365

http://www.iejme.com