MODULUS OF SUPPORTING CONVEXITY AND SUPPORTING SMOOTHNESS

G.M. IVANOV

ABSTRACT. We introduce the moduli of the supporting convexity and the supporting smoothness of a Banach space, which characterize the deviation of the unit sphere from an arbitrary supporting hyperplane. We show that the modulus of supporting smoothness, the Banas modulus, and the modulus of smoothness are all equivalent at zero, the modulus of supporting convexity is equivalent at zero to the modulus of convexity. We prove a Day–Nordlander type result for these moduli.

1. INTRODUCTION

The properties of a Banach space are completely determined by its unit ball. The geometry of the unit ball of a Banach space X may be described, for instance, using the properties of some moduli attached to X. (For example, the moduli of convexity, of smoothness, Milman’s moduli, etc.) The aim of this paper is to introduce and explore some new type of moduli, which characterize the deviation of the unit sphere from an arbitrary supporting hyperplane.

In the sequel we shall need some additional notation. Let X be a real Banach space. For a set $A \subset X$ by ∂A, $\text{int} A$ we denote the boundary and the interior of A. We use $\langle p, x \rangle$ to denote the value of a functional $p \in X^*$ at a vector $x \in X$. For $R > 0$ and $c \in X$ we denote by $B_R(c)$ the closed ball with center c and radius R, by $B^*_R(c)$ we denote the ball in the conjugate space. By definition, put $J_1(x) = \{ p \in \partial B^*_1(o) : \langle p, x \rangle = \|x\| \}$. For convenience, the length of segment ab is denoted by $\|ab\|$, i.e., $\|ab\| = \|a - b\|$.

We say that y is quasiorthogonal to the vector $x \in X \setminus \{o\}$ and write $y \dashv x$ if there exists a functional $p \in J_1(x)$ such that $\langle p, y \rangle = 0$. Note that the following conditions are equivalent:

1. y is quasiorthogonal to x.
2. for any $\lambda \in \mathbb{R}$ the vector $x + \lambda y$ lies in the supporting hyperplane to the ball $B_{\|x\|}(o)$ at x;
3. for any $\lambda \in \mathbb{R}$ the following inequality holds $\|x + \lambda y\| \geq \|x\|;
4. x is orthogonal to y in the sense of Birkhoff–James ([6], Ch. 2, §1).

Let

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : x, y \in B_1(0), \|x - y\| \geq \varepsilon \right\}$$

and

$$\rho_X(\tau) = \sup \left\{ \frac{\|x + y\|}{2} + \frac{\|x - y\|}{2} - 1 : \|x\| = 1, \|y\| = \tau \right\}.$$

The functions $\delta_X(\cdot) : [0, 2] \rightarrow [0, 1]$ and $\rho_X(\cdot) : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ are referred to as the moduli of convexity and smoothness of X respectively.

*Supported by the Russian Foundation for Basic Research, grant 13-01-00295.
Let f and g be two non-negative functions, each one defined on a segment $[0, \varepsilon]$. We shall consider f and g as equivalent at zero, denoted by $f(t) \asymp g(t)$ as $t \to 0$, if there exist positive constants a, b, c, d, e such that $af(bt) \leq g(t) \leq cf(dt)$ for $t \in [0, \varepsilon]$.

The rest of this paper is organized as follows. In Section 2 we prove several simple technical lemmas, in Section 3 we introduce the definitions of the modulus of supporting convexity and the modulus of supporting smoothness and consider their basic properties, in Section 4 we show these modulus are equivalent to the modulus of convexity and smoothness respectively, in Section 5 we prove that the moduli of smoothness, of supporting smoothness and the modulus of Banaś are all equivalent at zero, and, finally, in Section 6 we prove some estimates for these moduli concerning the maximal value of the Lipschitz constant for the metric projection operator onto a hyperplane.

The author is grateful to professor G.E. Ivanov for constant attention to this work.

2. Technical results

In this section we prove several simple technical results.

The proof of the next lemma is trivial (see [7]).

Lemma 1. Suppose the set $\mathfrak{B}_1(o) \setminus \text{int } \mathfrak{B}_r(o_1)$ is nonempty. Then it is arcwise connected.

Lemma 2. Let X_2 be a two-dimensional Banach space. Suppose $a, b, c, d \in \partial \mathfrak{B}_1(o)$ and the segments ab, cd intersect in point x. Then the following inequality holds

$$\min\{\|cx\|, \|xd\|\} \leq \max\{\|ax\|, \|xb\|\}.$$

Proof.

Assume the converse. Then for some $\varepsilon > 0$ we get $\min\{\|cx\|, \|xd\|\} > \max\{\|ax\|, \|xb\|\} + \varepsilon = r$. Since the segment ab belongs to $\text{int } \mathfrak{B}_r(x)$ and separates it into two parts, then we cannot connect points c, d in $\mathfrak{B}_1(o) \setminus \text{int } \mathfrak{B}_r(x)$. This contradicts Lemma 1. The lemma is proved. □

Lemma 3. Let $x, y \in X$, $x \neq o$, $p \in \partial \mathfrak{B}_1(o)$ such that $\langle p, x \rangle = \|x\|$. Then

$$\|x + y\| \leq \|x\| + \langle p, y \rangle + 2\|x\| \rho_X\left(\frac{\|y\|}{\|x\|}\right).$$

Proof.

By definition of the modulus of smoothness, we get

$$\frac{1}{2} \left(\frac{\|x + y\|}{\|x\|} + \frac{\|x - y\|}{\|x\|}\right) - 1 \leq \rho_X\left(\frac{\|y\|}{\|x\|}\right).$$

Multiplying both sides by $2\|x\|$, after some transformations we obtain:

$$\|x + y\| \leq 2\|x\| - \|x - y\| + 2\|x\| \rho_X\left(\frac{\|y\|}{\|x\|}\right) \leq$$

$$2\|x\| + \langle p, y - x \rangle + 2\|x\| \rho_X\left(\frac{\|y\|}{\|x\|}\right) = \|x\| + \langle p, y \rangle + 2\|x\| \rho_X\left(\frac{\|y\|}{\|x\|}\right).$$

□
Lemma 4. For any vectors \(x, y \in X \setminus \{o\}\) the following inequality is true
\[
\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| \leq \frac{2 \|x - y\|}{\|x\|}.
\]

Proof. Using the triangle inequality, we get
\[
\left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\| = \left\| \left(\frac{x}{\|x\|} - \frac{y}{\|x\|} \right) + \left(\frac{y}{\|y\|} - \frac{y}{\|y\|} \right) \right\| \leq \left\| \left(\frac{x}{\|x\|} - \frac{y}{\|x\|} \right) \right\| + \left\| \left(\frac{y}{\|y\|} - \frac{y}{\|y\|} \right) \right\| \leq \frac{1}{\|x\|} \|x - y\| + \frac{1}{\|y\|} \|y\| - \frac{1}{\|y\|} \leq \frac{2 \|x - y\|}{\|x\|}.
\]

\(\square\)

3. Definitions and Basic Properties

Let \(x, y \in \partial B_1(o)\) be such that \(y \gamma x\). By definition, put
\[
\lambda_X(x, y, r) = \min \{ \lambda \in \mathbb{R} : \|x + ry - \lambda x\| = 1 \}
\]
for any \(r \in [0, 1]\). Denote
\[
\lambda_X^-(x, y, r) = \min \{ \lambda_X(x, y, r), \lambda_X(x, -y, r) \}; \quad \lambda_X^+(x, y, r) = \max \{ \lambda_X(x, y, r), \lambda_X(x, -y, r) \}.
\]

Definition 1. For any \(r \in [0, 1]\) and \(x \in \partial B_1(o)\) we define the modulus of local supporting convexity as
\[
\lambda_X^-(x, r) = \inf \lambda_X^-(x, y, t),
\]
and respectively, the modulus of local supporting smoothness as
\[
\lambda_X^+(x, r) = \sup \lambda_X^+(x, y, t),
\]
where we choose \((y, t)\) such that \(\|y\| = 1, y \gamma x, 0 \leq t \leq r\) to minimize (maximize) \(\lambda_X^-(x, r)\) (\(\lambda_X^+(x, r)\)).

It is clear that \(\lambda_X^-(x, r) \leq \lambda_X^+(x, r) \leq 1\).

Definition 2. For any \(r \in [0, 1]\) we define the modulus of supporting convexity as
\[
\lambda_X^-(r) = \inf \lambda_X^-(x, t),
\]
and respectively, the modulus of supporting smoothness as
\[
\lambda_X^+(r) = \sup \lambda_X^+(x, t),
\]
where we choose \((x, t)\) such that \(x \in B_1(o), 0 \leq t \leq r\) to minimize (maximize) \(\lambda_X^-(r)\) (\(\lambda_X^+(r)\)).

Let us explain the geometrical meaning of the moduli of supporting convexity and of supporting smoothness. Fix \(y, x \in \partial B_1(o)\) such that \(y \gamma x\). Consider the plane \(L = \text{Lin}\{y, x\}\). We use \((a_1, a_2)\) to denote the vector \(a = a_1y + a_2x\) in this plane. The coordinate line \(\ell = \{(a_1, a_2) | a_1 \in \mathbb{R}, a_2 = 0\}\) is a tangent to the unit "circle" \(S = L \cap \partial B_1(x)\). By the convexity of the ball, there is a convex function \(f : [-1, 1] \to \mathbb{R}\) such that for \(a_1 \in [-1, 1]\) the point \((a_1, f(a_1))\) belongs to the lower semicircle of \(S\) (see Fig. 1). Hence for \(a_1 \in [-1, 1]\) the functions \(\lambda_X^-(|a_1|)\) and \(\lambda_X^+(|a_1|)\) are the lower and upper bounds to the \(f(a_1)\) respectively, i.e. the following inequalities hold \(\lambda_X^-(|a_1|) \leq f(a_1) \leq \lambda_X^+(|a_1|)\).
Lemma 5. Let \(X \) be an arbitrary Banach space, then:

(i) \(\lambda_X^+(0) = \lambda_X^-(0) = 0 \);

(ii) for any \(r \in [0,1] \) the following inequality holds: \(0 \leq \lambda_X^-(r) \leq \lambda_X^+(r) \leq r \);

(iii) for any \(0 < r_1 < r_2 < 1 \) we have

\[
\frac{r_2}{r_1} \lambda_X^-(r_1) \leq \lambda_X^+(r_2),
\]

\[
\lambda_X^-(r_2) - \lambda_X^-(r_1) \leq \frac{r_2 - r_1}{1 - r_1};
\]

(iv) the modulus of supporting convexity is an increasing, continuous function on \([0,1]\) and moreover it is a strictly increasing function on the set \(\{ r \in [0,1] : \lambda_X^-(r) > 0 \} \);

(v) the modulus of supporting smoothness is a strictly increasing, convex and continuous function on \([0,1]\) and furthermore \(\lambda_X^+(1) = 1 \).

Proof.

Let us introduce some notation. Fix \(x, y \in \partial B_1(o) \) such that \(y \perp x \), and real numbers \(r_1, r_2 \) such that \(0 < r_1 < r_2 < 1 \). Let \(z = x + y \), \(z_i = x + r_iy \) where \(i = 1, 2 \). Let \(y_1, y_2 \in \partial B_1(o) \) such that \(y_i z_i \parallel ox \) and the intersection of the segment \(y_i z_i \) and the ball \(B_1(o) \) is the point \(y_i \) where \(i = 1, 2 \). (see Fig. 2). By construction \(\|y_i z_i\| = \lambda_X(x, y, r_i) \) where \(i = 1, 2 \). The reader will
have no difficulty in showing that it is enough to prove all the assertions of this Lemma for $\lambda_X(x, y, r)$. Now, let us prove the Lemma.

1. By the definitions, we have $\lambda^+_X(0) = \lambda^-_X(0) = 0$.
2. The first two inequalities of assertion (ii) are trivial. By similarity, we have $\lambda_X(x, y, r) \leq r$. Indeed, $y_1z_1 \parallel zy$ and $y_1z_1 \subset \triangle xyz$. Taking the supremum we get assertion (ii).
3. Taking into account that $\mathcal{B}_1(o)$ is convex, we get $y_1z_1 \subset xy_2z_2$. By construction we have that $y_1z_1 \parallel z_2y_2$. By the similarity, we get $\|y_2z_2\| \geq \frac{r_2}{r_1} \|y_1z_1\|$, i.e. $\frac{r_2}{r_1} \lambda_X(x, y, r_1) \leq \lambda_X(x, y, r_2)$. Taking the infimum in $\lambda_X(x, y, r_2)$, we complete the proof of inequality (2).

By the convexity of the unit ball, we obtain that segment y_2z_2 lies in trapezoid y_1z_1yz. By construction $y_2z_2 \parallel y_1z_1 \parallel yz$. By similarity, we get

$$\|y_2z_2\| - \|y_1z_1\| \leq (1 - \|y_1z_1\|) \frac{r_2 - r_1}{1 - r_1} \leq \frac{r_2 - r_1}{1 - r_1}.$$

Taking the infimum in $\|y_1z_1\| \to \lambda^-_X(r_1)$, we have $\|y_2z_2\| - \lambda^-_X(r_1) \leq \frac{r_2 - r_1}{1 - r_1}$. This yields (3).

4. Assertion (iv) is the direct consequence of assertion (iii).

5. The function $\lambda^+_X(\cdot)$ is the supremum of the convex functions, therefore it’s convex. Since $\lambda^+_X(\cdot)$ is a convex bounded function and $\lambda_X(x, y, r)$ is continuous in r, we obtain that $\lambda^+_X(\cdot)$ is continuous on $[0, 1]$. We will prove that $\lambda^+_X(r) > 0$ on $(0, 1]$ in Lemma 7 below. By this and the equality $\lambda^+_X(0) = 0$ and convexity of the modulus of supporting smoothness, we get that it is a strictly increasing function. The inequality $\lambda^+_X(r) \leq r$ was proved in assertion (ii). The equality $\lambda^+_X(1) = 1$ is the consequence of inequality (11) at $r = 1$, which will be proved below.

\[\square\]

From Lemma 5 we have that in the definitions of the moduli of the supporting smoothness and supporting convexity one may choose $t = r$.

Remark 1. Since any two plane central sections of the unit ball in a Hilbert space H are equal, we have

$$\lambda^+_H(r) = \lambda^-_H(r) = \delta_H(2r) = 1 - \sqrt{1 - r^2}.$$

4. **Comparison of supporting moduli with the moduli of convexity and smoothness**

Theorem 1. Let X be an arbitrary Banach space. Then $\lambda^+_X(\varepsilon) \asymp \delta_X(\varepsilon)$ as $\varepsilon \to 0$ and for any $r \in [0, 1]$:

$$\delta_X(r) \leq \lambda^+_X(r) \leq \delta_X(2r).$$

Proof.

1) By the definition of the modulus of supporting convexity for any $\varepsilon > 0$ there exists a parallelogram $xyzd$ such that $x, z \in \partial \mathcal{B}_1(o)$, the point d lies in the segment xo and $\|xy\| = r$, $xy^\varepsilon ox$, $\|yz\| \leq \lambda^-_X(r) + \varepsilon$. Therefore $\|od\| = 1 - \|yz\|$, consequently
\[\delta_X(r) = \delta_X(\|zd\|) \leq \|yz\| \leq \lambda_X(r) + \varepsilon. \]

Passing to the limit as \(\varepsilon \to 0 \), we obtain the left-hand side of chain (1).

2) Let us prove the right-hand side of chain (4).

Fix \(r \in (0,1) \) (if \(r = 0 \) or \(r = 1 \) the inequality is trivial). By the definition of the modulus of supporting convexity for any \(\varepsilon > 0 \) there exist points \(a, b \) on the unit sphere such that \(\|a_c b_c\| \geq 2r \) and for the point \(c = \frac{a + b}{2} \) the following inequality holds:

\[(5) \quad 1 - \|oc\| \leq \delta_X(2r) + \varepsilon. \]

Let the ray \(oc \) intersect the unit sphere in a point \(x \). Denote by \(l_1 \) the supporting line to the unit sphere such that \(l_1 \) lies in the plane \(\{a, b, x\} \) and \(x \in l_1 \). Let \(l_2 \) be a line such that \(l_1 \parallel l_2 \) and \(c \in l_2 \). Denote by \(f, g \) the points of intersections of \(\partial B_1(o) \) and the line \(l_2 \). From Lemma 2 it follows that \(\|f - c\| \geq r \) or \(\|g - c\| \geq r \). Without loss of generality, put \(\|g - c\| \geq r \). Let \(l_3 \) be a line such that \(l_3 \parallel oc \) and \(g \in l_3 \). By definition, we put \(y = l_3 \cap l_1 \) (see Fig. 3).

\[\text{Figure 3. Illustration for Lemma 1} \]

\[\delta_X(2r) + \varepsilon \geq \|c_{l_3}\| \geq \lambda_X \left(x, \frac{y - x}{\|y - x\|}, \|y - x\| \right) \geq \lambda_X \left(x, \frac{y - x}{\|y - x\|}, r \right) \geq \lambda_X(r), \]

i.e., \(\delta_X(2r) + \varepsilon \geq \lambda_X(r) \). Passing to the limit as \(\varepsilon \to 0 \), we complete the proof.

\[\square \]

Lemma 6. Let \(r \in [0, \frac{1}{2}] \). Then

\[(6) \quad \lambda_X^+(r) \leq \rho_X(2r). \]

Proof.

Denote \(\lambda = \lambda_X^+(r) \). Since \(\lambda_X(r) \leq r \) for any \(r \in [0,1] \), then \(\lambda \leq \frac{1}{2} \). Let \(\mu \in (0, \lambda) \). By the Definitions 1 and 2 there exist \(x, y \in \partial B_1(0) \) such that \(y^\top x \) and \(\lambda_X(x, y, r) = \mu' \in (\mu, \lambda) \), and consequently \(\|x + ry - \mu' x\| = 1 \). Since \(y^\top x \) there exists \(p \in J_1(x) = J_1(x - \mu' x) \) such that \(\langle p, y \rangle = 0 \).

Using Lemma 3 we get

\[1 = \|x + ry - \mu' x\| \leq \|x - \mu' x\| + \langle p, ry \rangle + 2(1 - \mu')\rho_X \left(\frac{r}{1 - \mu'} \right) = \]

\[= 1 - \mu' + 2(1 - \mu')\rho_X \left(\frac{r}{1 - \mu'} \right). \]
To complete the proof, it suffices to note that $\mu' < \frac{1}{2}$, $\rho_X(0) = 0$ and the modulus of smoothness is a convex function.

\[\square \]

Lemma 7. Let $r \in [0, 1]$. Then
\[\rho_X \left(\frac{r}{2} \right) \leq \lambda_X^+(r). \]

Proof.
Taking into account the definition of the modulus of smoothness, it follows that for any $\tau \in [0, \frac{1}{2}]$ and $\varepsilon \in [0, \rho_X(\tau))$ there exist x and y such that the following inequality is true
\[\|x + \tau y\| + \|x - \tau y\| - 2 \geq 2(\rho_X(\tau) - \varepsilon). \]
Without loss of generality, we can assume that $\|x + \tau y\| \geq \|x - \tau y\|$. Denote $u = \frac{x + \tau y}{\|x + \tau y\|}$, $v = \frac{x - \tau y}{\|x - \tau y\|}$.

By Lemma 4, we obtain
\[\|u - v\| \leq \frac{4\tau}{\|x + \tau y\|}; \]
\[\|u + v\| \leq \frac{2\|x\|}{\|x + \tau y\|}. \]

Let us consider the plane ouv. By ω denote a point lying on the smallest arc uv of the unit circle such that the supporting line to the unit ball at ω is parallel to uv. Obviously, either $\lambda_X\left(\omega, \frac{\|u-v\|}{\|u-v\|}, \frac{\|u-v\|}{2}\right) \geq 1 - \frac{\|u+v\|}{\|u+v\|}$ or $\lambda_X\left(\omega, -\frac{\|u-v\|}{\|u-v\|}, \frac{\|u-v\|}{2}\right) \geq 1 - \frac{\|u+v\|}{\|u+v\|}$, i.e.
\[\lambda_X^+\left(\frac{\|u-v\|}{2}\right) \geq 1 - \frac{\|u+v\|}{2}. \]
Combining this with inequalities (8), (10), we get
\[\frac{2(\rho_X(\tau) - \varepsilon)}{\|x + \tau y\|} \leq 2 - \frac{2\|x\|}{\|x + \tau y\|} \leq 2\lambda_X^+\left(\frac{\|u - v\|}{2}\right). \]

Now, by inequality (9), we obtain
\[\frac{2}{\|x + \tau y\|}(\rho_X(\tau) - \varepsilon) \leq 2\lambda_X^+\left(\frac{2\tau}{\|x + \tau y\|}\right) \leq \frac{2}{\|x + \tau y\|}\lambda_X^+(2\tau). \]
Multiplying both sides by $\frac{\|x + \tau y\|}{2}$ and passing to the limit as $\varepsilon \to 0$, we obtain (7).

\[\square \]

Remark 2. By Lemma 7 and the properties of the modulus of smoothness, it follows that $\lambda_X^+(r) > 0$ for all $r > 0$.

By Lemmas 6, 7 and the properties of the modulus of smoothness we have the following result.

Theorem 2. Let X be an arbitrary Banach space. Then $\lambda_X^+(\tau) \asymp \rho_X(\tau)$ as $\tau \to 0$ and for any $r \in [0, \frac{1}{2}]$:
\[\rho_X \left(\frac{r}{2} \right) \leq \lambda_X^+(r) \leq \rho_X(2r). \]
5. Comparison with the Banaš modulus

In the paper [1] J. Banaš defined and studied some new modulus of smoothness. Namely, he defined
\[\delta^+_X(\varepsilon) = \sup \left\{ 1 - \frac{\|x + y\|}{2} : x, y \in B_1(o), \|x - y\| \leq \varepsilon \right\}, \quad \varepsilon \in [0, 2]. \]
The function \(\delta^+_X(\cdot) \) is called the Banaš modulus. In the papers [1, 2, 3, 4] several interesting results concerning this modulus were obtained. Particulariy, in [1], J. Banaš proved that a space is uniformly smooth iff \(\delta^+_X(\varepsilon) \to 0 \) as \(\varepsilon \to 0 \). However, from the definition a space is uniformly smooth if and only if \(\delta^+_X(\varepsilon) \to 0 \) as \(\varepsilon \to 0 \). This leads to the question: are the modulus of smoothness and the modulus of Banaš equivalent at zero? It is easy to check that there exist positive constant a, b such that \(\delta^+_X(t) \leq a\rho_X(bt) \), but the lower estimate of the modulus of Banaš in terms of the modulus of smoothness is unknown. In the next theorem we prove that the modulus of Banaš and the modulus of supporting smoothness are equivalent at zero, so Theorem 2 answers the above question.

Theorem 3. Let \(X \) be an arbitrary Banach space. Then \(\delta^+_X(\varepsilon) \asymp \delta_X(\varepsilon) \) as \(\varepsilon \to 0 \) and the following inequalities hold:

\[
\begin{align*}
\delta^+_X(2r) &\leq \lambda^+_X(r) & \forall r \in [0, 1]; \\
\lambda^+_X(r) &\leq 2\delta^+_X(3r) & \forall r \in \left[0, \frac{2}{3}\right].
\end{align*}
\]

Proof.
1) First we shall prove inequality (11) for \(r \in [0, 1] \).
Let \(a, b \) be points of the unit sphere such that \(\|a - b\| \leq 2r \). By \(X_2 \) denote the plane \(aob \).

There exists a point \(y_2 \) of the unit sphere of the plane \(X_2 \) such that the supporting line \(l_2 \) to the unit ball at this point is parallel to \(ab \). By definition, put \(y_1 = oy_2 \cap ab \). There exists a point \(a_2 \) in the projection of the point \(a \) on \(l_2 \) such that the segments \(y_1y_2, aa_2 \) are equal in length and parallel. The point \(b_2 \) is defined in the same way, such that \(y_1y_2 \) and \(bb_2 \) are parallel (see Fig. 2). Without loss of generality we assume that \(\|y_2a_2\| \leq r < 1 \). Since the modulus of supporting smoothness is an increasing function, we have \(\|y_1y_2\| = \|aa_2\| \leq \lambda^+_X(y_2, \|y_2a_2\|) \leq \lambda^+_X(y_2, r) \).

Taking the supremum, we obtain inequality (11).

Taking into account that the modulus of Banaš is a continuous and increasing function, we obtain inequality (11) for \(r = 1 \).

2) Let us prove inequality (12).
By the definition of modulus of supporting smoothness for any \(\varepsilon \in (0, \lambda^+_X(r)) \) there exist
- a point \(x \in \partial B_1(o) \);
- a line \(\ell_1 \) supporting to the unit ball at point \(x \);
- a point \(y \) on \(\ell_1 \) and a point \(z \in \partial B_1(o) \) such that
\[
\|xy\| = r, \|yz\| > 0, zy \parallel ox \quad \text{and} \quad \lambda^+(x, \frac{xy}{\|xy\|}, r) = \|yz\| > \lambda^+_X(r) - \varepsilon > 0.
\]

Let \(\ell_2 \) be a line parallel to \(\ell_1 \) such that \(z \in \ell_2 \). Let \(z, z_1 \) be points of the intersection of line \(\ell_2 \) and \(\partial B_1(o) \). By \(y_1 \) denote the projections of \(z_1 \) on \(\ell_1 \) such that \(z_1y_1 \parallel ox \) (see Fig. 3).

We shall prove that \(\|zz_1\| \geq 2r \). In the converse case, \(\|xy_1\| < r \). Note that if we fix \(x, y \in \partial B_1(o) \) such that \(y^*x \), then the function \(\lambda^+(x, y, \cdot) \) is strictly increasing on the set of its
positive values. Since xy_1 and xy lie on the same line and by to the definition of λ^+, we obtain
\[
\lambda^+(x, \frac{xy}{\|xy\|}, r) = \|yz\| = \|y_1z_1\| \leq \lambda^+(x, \frac{xy_1}{\|xy_1\|}, \|xy_1\|) < \lambda^+(x, \frac{xy}{\|xy\|}, r) = \lambda^+(x, \frac{xy}{\|xy\|}, r).
\]
Contradiction. Consequently $\|zz_1\| \geq 2r$.

By definition, put $e = ox \cap zz_1$. By the continuity reasons there exists a point d on the arc z_1x of the unit sphere such that for the point $f = zd \cap ox$ the following equality holds $\|d - f\| = \|f - z\|$. Since ℓ_1 is a supporting line to the unit sphere, we have $\|xf\| \geq \frac{\|yz\|}{2}$. Note that $\|dz\| \leq 2(\|ze\| + \|ef\|) \leq 3r$. Combining the last two inequalities, we get
\[
\delta^+_X(3r) \geq \|xf\| \geq \frac{\lambda^+_X(r) - \varepsilon}{2}.
\]
Passing to the limit as $\varepsilon \to 0$, we obtain inequality (12).

\[\square\]

From Theorems 2 and 3 we have the following corollary.

Corollary 1. Let X be an arbitrary Banach space, then $\delta^+_X(\varepsilon) \asymp \rho_X(\varepsilon)$ as $\varepsilon \to 0$ and the following inequalities hold:
\[
\frac{1}{2}\rho_X\left(\frac{r}{6}\right) \leq \delta^+_X(r) \leq \rho_X(r), \quad r \in \left[0, \frac{1}{2}\right].
\]

The Day-Nordlander theorem (see [8]) asserts that $\delta_X(\varepsilon) \leq \delta_H(\varepsilon)$ for $\varepsilon \in [0, 2]$, where H denotes an arbitrary Hilbert space. On the other hand, repeating the arguments from the paper [8] we can show that for any Banach space the following estimate is true $\delta^+_H(\varepsilon) \leq \delta^+_X(r)$ for $\varepsilon \in [0, 2]$. From this and Theorems 2, 3 we obtain a Day–Nordlander type result for the moduli of supporting convexity and supporting smoothness:

Corollary 2. Let X be an arbitrary Banach space. Then
\[
\lambda^{-}_X(r) \leq \lambda^{-}_H(r) = 1 - \sqrt{1 - r^2} = \lambda^+_H(r) \leq \lambda^+_X(r) \quad \forall r \in [0, 1].
\]
If at least one of these inequalities turns into equality, then X is a Hilbert space.
6. Estimates for Lipschitz constant for the metric projection onto a hyperplane

Let us introduce the following characteristic of a space:

$$
\xi_X = \sup_{\|x\|=1} \sup_{p \in J_1(x)} \| x - \langle p, x \rangle y \|
$$

Note that if \(y \in \partial B_1(0), \ p \in J_1(y) \), then the vector \(x - \langle p, x \rangle y \) is a metric projection of \(x \) onto the hyperplane \(H_p = \{ x \in X : \langle p, x \rangle = 0 \} \). So, \(\xi_X = \sup_{y \in B_1(0)} \sup_{p \in J_1(x)} \xi_p \), where \(\xi_p \) is half of diameter of a unit ball’s projection onto the hyperplane \(H_p \). Therefore, \(\xi_X \) is the maximal value of the Lipschitz constant for the metric projection operator onto a hyperplane. Obviously, \(\xi_X \leq 2 \) and \(\xi_H = 1 \) for a Hilbert space \(H \).

Theorem 4. For any Banach space \(X \) the following inequality is true:

$$
\frac{1}{1 - \lambda_X^-(\frac{1-\lambda_X^-(1)}{2})} \leq \xi_X \leq \frac{1}{1 - \lambda_X^+(\frac{1-\lambda_X^+(1)}{2})}.
$$

Proof.

First let us introduce some notation. Let \(x_0 \) be an arbitrary point on the unit sphere. Let \(l \) be a supporting line to the unit ball at the point \(x_0 \). Define \(l_2 \) as the line such that the following conditions hold:

a) \(l_2 \parallel ox_0 \);

b) \(l_2 \cap l \neq \emptyset \), by definition, put \(x_2 = l_2 \cap l \);

c) \(l \) a is supporting line to the unit ball at some point \(y_2 \);

d) \(\| y_2x_2 \| \leq 1 \).

Let \(x_1 \) be a point on segment \(x_0x_2 \) such that \(\| x_0x_1 \| = 1 \), let \(l_1 \) be a line such that \(x_1 \in l_1 \) and \(l_1 \parallel ox_0 \). By definition, put \(y_1 \) as the intersection point of line \(l_1 \) and the segment \(oy_2 \). Let \(b \) be a point on \(\partial B_1(0) \) such that the segment \(ob \) is parallel to \(x_0x_1 \). By construction, we have that \(x_0x_1bo \) is a parallelogram, therefore \(b \in l_1 \) and \(y_1 \in x_1b \). Let \(a \) be the intersection point of the line \(l_1 \) and the unit sphere such that \(a \in x_1y_1 \).

From the intercept theorem, we have \(\| x_0x_2 \| = \| x_0x_1 \| \| oy_2 \| \| oy_1 \| = 1 \). Therefore

$$
\| x_0x_2 \| = \frac{1}{\| oy_1 \|} = \frac{1}{1 - \| y_1y_2 \|}.
$$

Since \(x_0x_1bo \) is a parallelogram, we get \(\| x_1b \| = \| ox_0 \| = 1 \). By construction we have that \(\| x_0x_1 \| = 1 \). Therefore,

$$
\| ab \| \leq 1 - \lambda_X^-(1). \tag{15}
$$

Define \(a_2 \) as the projection of the point \(a \) on \(l_2 \) such that \(a_2 \parallel oy_2 \). In the same way we define the point \(b_2 \). Then the segments \(y_1y_2, aa_2 \parallel bb_2 \) are parallel and equal in length (as parallel segments between two parallel lines). By the definition of the modulus of supporting convexity and by inequality \(\Lambda_2 \), we obtain

$$
\| y_1y_2 \| \leq \lambda_X^+(\min\{\| a_2y_2 \|, \| y_2b_2 \|\}) \leq \lambda_X^+(\frac{\| ab \|}{2}) \leq \lambda_X^+(\frac{1 - \lambda_X^-(1)}{2}) \tag{16}.
$$

Combining this and equality \(\Lambda_4 \), we finally prove the right-hand side of inequality \(\Lambda_3 \).
Let ε be an arbitrary positive real number. Note that we could choose a point x_0 such that $\|x_1a\| \leq \lambda_X(1) + \varepsilon$, i.e. $\|ab\| \geq 1 - \lambda_X(1) - \varepsilon$. Like in (16), we obtain

$$\|y_1y_2\| \geq \lambda_X\left(\max\{\|a_2y_2\|, \|y_2b_2\|\}\right) \geq \lambda_X\left(\frac{\|ab\|}{2}\right) \geq \lambda_X\left(\frac{1 - \lambda_X(1) - \varepsilon}{2}\right).$$

Passing to limit as $\varepsilon \to 0$ and using inequality (14), we prove the left-hand side of inequality (13).

\square

Remark 3. The estimate (13) is reached in case of a Hilbert space. The right-hand side of inequality (13) does not exceed 2, i.e. this estimate is not trivial.

Conjecture 1. The right-hand side of inequality (13) becomes an equality in case of L_p, $p \in (1; +\infty)$.

![Figure 5. Illustration for Theorem 4](image)

In the following lemma we obtain a lower estimate of the modulus of supporting smoothness by the inverse function to the modulus of convexity.

Lemma 8. For any $r \in [0, 1]$ the following inequalities hold:

$$1 - \frac{1}{2} \delta_X^{-1}\left(1 - \frac{r}{2}\right) \leq 1 - \frac{1}{2} \delta_X^{-1}\left(1 - \frac{r}{\xi_X}\right) \leq \lambda_X^+(r).$$

Proof.

The left-hand side of inequality (17) is a straightforward consequence of the inequality $\xi_X \leq 2$. Let us prove the right-hand side of inequality (17). In case of $r = 0$ it is trivial. Let x_0 be an arbitrary point on the unit sphere. Define H_x as a supporting hyperplane to the unit ball at the point x_0. Let x_1 be a point of the supporting hyperplane H_x such that $\|x_0x_1\| = r$. Denote the ray $\{ox_0 + \alpha x_0x_1 : \alpha \geq 0\}$ as ℓ. Let l_1, l_2 be the lines parallel to ox_0 such that

a) l_2 is a supporting line to the unit ball at the point y_2 and $l_2 \cap \ell = x_2$;
b) l_1 intersects the ray ℓ at x_1 and intersects the unit sphere at points a,b.
Let $y_1 = oy_2 \cap ab$ (see Fig. 6). By the definition of $\lambda_X^+(r)$ and since the unit ball is centrally symmetric, we get $\|ab\| \geq 2(1 - \lambda_X^+(r))$. Obviously, $\|y_1y_2\| \geq \delta_X(\|ab\|)$. Consequently, we have

$$\delta_X(2(1 - \lambda_X^+(r))) \leq \delta_X(\|ab\|) \leq \|y_1y_2\|.$$

Using the intercept theorem, we obtain

$$\|y_1y_2\| = \frac{\|y_1y_2\|}{\|oy_2\|} \frac{\|x_1x_2\|}{\|x_0x_2\|} = \frac{\|x_0x_2\| - \|x_0x_1\|}{\|x_0x_2\|} = 1 - \frac{r}{\|x_0x_2\|} \leq 1 - \frac{r}{\xi_X}.$$

By inequalities (18) and (19), we have

$$\delta_X(2(1 - \lambda_X^+(r))) \leq 1 - \frac{r}{\xi_X}.$$

\[\Box\]

It is easy to check that in a Hilbert space H the following equality holds

$$\delta_H^{-1}(\tau) = 2\sqrt{1 - (1 - \tau)^2}.$$

Substituting this in inequality (17) and since $\xi_H = 1$, we obtain

$$\delta_H(2r) = 1 - \frac{1}{2}\delta_H^{-1}(1 - r) \leq \lambda_H^+(r).$$

According to (1), we have that if X is a Hilbert space, then the right hand estimate in inequality (17) is reached.

References

[1] Banaś J. On moduli of smoothness of Banach spaces // Bull. Pol. Acad. Sci., Math. 1986. Vol. 34. P. 287–293.
[2] Banaś J., Frączek K. Deformation of Banach spaces // Comment. Math. Univ. Carolinae. 1993. Vol. 34. P. 47–53.
[3] Banaś J., Hajnosz A., Wędrychowicz S. On convexity and smoothness of Banach space // Commentationes Mathematicae Universitatis Carolinae. 1990. Vol. 31, no. 3. P. 445–452.
[4] Banaś J., Rzepka B. Functions related to convexity and smoothness of normed spaces // Rendiconti del Circolo Matematico di Palermo. 1997. Vol. 46, no. 3. P. 395–424.
[5] Baronti M., Papini P. Convexity, smoothness and moduli // Nonlinear Analysis: Theory, Methods & Applications. 2009. Vol. 70, no. 6. P. 2457–2465.
[6] Diestel J. Geometry of Banach Spaces - Selected Topics. Springer-Verlag Berlin Heidelberg, 1975. Vol. 485.
[7] Ivanov G. M. Convex hull deviation and contractibility // Israel Journal of Mathematics. (to appear).
[8] Nordlander G. The modulus of convexity in normed linear spaces // Arkiv für Matematik. 1960. Vol. 4, no 1. P. 15–17.

Department of Higher Mathematics, Moscow Institute of Physics and Technology, Institutskii pereulok 9, Dolgoprudny, Moscow region, 141700, Russia

National Research University Higher School of Economics, School of Applied Mathematics and Information Science, Bolshoi Trekhsvyatitelskiy 3, Moscow, 109028, Russia

E-mail address: grimivanov@gmail.com