A multi-parameter Hardy type inequality

Eskil Rydhe*

December 18, 2019

Abstract

This note contains two simple observations. First, by the weak factorization of product H^1 (Ferguson–Lacey, Lacey–Terwilleger), we obtain a multi-parameter analogue of Hardy’s inequality. Second, as a dual statement, the Fourier transform of an essentially bounded function belongs to a certain product BMO-Sobolev space.

We let $H^p_A(\mathbb{C}_+)$ denote the standard Hardy space of analytic functions on the complex upper half-plane \mathbb{C}_+. Following the work of Hardy and Littlewood [6], Hille and Tamarkin [7] proved the following: There exists $C > 0$ such that, whenever $f \in H^1_A(\mathbb{C}_+)$,

$$\int_0^{\infty} \frac{|\hat{f}(\xi)|}{\xi} d\xi \leq C \|f\|_{H^1_A(\mathbb{C}_+)}.$$ (1)

We henceforth follow the standard convention that C denotes a finite positive constant which is independent of f, but whose value may change from one occurrence to the next.

The proof of (1) relies on the factorization $H^1_A(\mathbb{C}_+) = H^2_A(\mathbb{C}_+) \cdot H^2_A(\mathbb{C}_+)$, essentially due to F. Riesz [10], which transforms (1) into an inequality for convolutions of functions supported on a half-line.

For the argument indicated above to work, it would have been sufficient to have the weak factorization $H^1_A(\mathbb{C}_+) = H^2_A(\mathbb{C}_+) \hat{\otimes} H^2_A(\mathbb{C}_+)$. In general, if X is a space of analytic functions, consider the linear space

$$\left\{ \sum_{k=1}^N f_k g_k \mid f_k, g_k \in X \right\},$$
equipped with the norm

$$\|F\|_{X \hat{\otimes} X} = \inf \left\{ \sum_{k=1}^N \|f_k\|_X \|g_k\|_X \mid f_k, g_k \in X, F = \sum_{k=1}^N f_k g_k \right\}.$$*eskil.rydhe@math.lu.se, Centre for Mathematical Sciences, Lund University, Sweden. This work was supported by the Knut and Alice Wallenberg foundation, scholarship KAW 2016.0442.
The metric completion of this space is denoted \(X \hat{\otimes} X \).

Throughout this note, we consider a fixed positive integer \(d \). We denote by \(H^p_A \) the space of analytic functions \(f : (\mathbb{C}^+)^d \to \mathbb{C} \) such that

\[
\|f\|_{H^p_A} := \sup_{y > 0} \left(\int_{x \in \mathbb{R}^d} |f(x + iy)|^p \, dx \right)^{1/p} < \infty.
\]

The notation \(y > 0 \), where \(y \in \mathbb{R}^d \), means that \(y_j > 0 \) for each \(j \in \{1, \ldots, d\} \).

By means of non-tangential boundary values, \(H^p_A \) can be isometrically identified with a closed subspace of \(L^p = L^p(\mathbb{R}^d) \). This is used without further mention below.

Given a function \(\sigma : \{1, \ldots, d\} \to \{\pm 1\} \), we define the unitary transformation \(R_\sigma : (x_j) \mapsto (\sigma_j x_j) \) on \(\mathbb{R}^d \), and the partial reflection operator \(R_\sigma : f \mapsto f \circ R_\sigma \), where \(f : \mathbb{R}^d \to \mathbb{C} \) is a function. For each \(R_\sigma \) we define \(H^p_\sigma = R_\sigma H^p_A \). The multi-harmonic Hardy space \(H^p \) is the direct sum of all distinct \(H^p_\sigma \), c.f. Gundy and Stein [5]. The reader is cautioned not to confuse the multi-harmonic Hardy space \(H^p \) with the (mono-)harmonic Hardy space \(H^p(\mathbb{R}^d \times \mathbb{R}^+) \), e.g. C. Fefferman and Stein [2].

A function \(f \in L^2 \) belongs to \(H^1_A \) precisely when \(\hat{f} \) has support on \((0, \infty)^d \). Therefore \(H^2 = L^2 \). The orthogonal projection \(P_\sigma \) from \(H^2 \) onto \(H^2_\sigma \) is the Fourier multiplier induced by the indicator function of the orthant \(R_\sigma^d := R_\sigma(0, \infty)^d \). These Fourier multipliers can be used to characterize \(H^1 \) as

\[
H^1 = \{ f \in L^1 \mid P_\sigma f \in L^1 \text{ for each } \sigma \}.
\]

While the inclusion \(H^1_A \hookrightarrow L^1 \) is isometric, the inclusion \(H^1 \hookrightarrow L^1 \) is not even bounded below.

Relatively recently, Lacey and Terwilleger [8] identified the weak product \(H^2_\sigma \hat{\otimes} H^2_A \) as \(H^1_A \). We mention also the significant contributions by Ferguson and Sadosky [4], and Ferguson and Lacey [3]. The Lacey–Terwilleger result allows us to extend (1) to the multi-harmonic setting.

Theorem 1. There exists a constant \(C = C_d \) such that

\[
\int_{\xi \in \mathbb{R}^d} \frac{|\hat{f}(\xi)|}{\prod_{j=1}^d |\xi_j|} \, d\xi \leq C \|f\|_{H^2}
\]

whenever \(f \in H^1 \).

Proof. Since the partial reflections \(R_\sigma \) commute with the Fourier transform, it suffices to consider \(f \in H^2_A \). The Lacey–Terwilleger factorization further reduces the proof to the case \(f = gh \), where \(g, h \in H^2_A \), and \(\|g\|_{L^2} \|h\|_{L^2} \leq C \|f\|_{H^1} \). In this situation,

\[
\hat{f}(\xi) = \int_{\eta \in Q_\xi} \hat{g}(\xi - \eta) \hat{h}(\eta) \, d\eta,
\]

where \(Q_\xi \) denotes the rectangle \(\{ \eta \in \mathbb{R}^d ; 0 < \eta < \xi \} \).
For $\xi \in \mathbb{R}^d$, let $\prod_{\xi} = \prod_{j=1}^{d} \xi_j$. By the triangle inequality, and an obvious change of variables,

$$\int_{\xi > 0} \frac{|\hat{f}(\xi)|}{\prod_{\xi}} \, d\xi \leq \int_{\xi, \eta > 0} \frac{|\hat{g}(\xi)| |\hat{h}(\eta)|}{\prod_{\xi+\eta}} \, d\eta \, d\xi.$$

By the factorization $|\hat{g}(\xi)||\hat{h}(\eta)| = (\prod_{\xi} / \prod_{\eta})^{1/4} |\hat{g}(\xi)| \cdot (\prod_{\eta} / \prod_{\xi})^{1/4} |\hat{h}(\eta)|$, and the Cauchy–Schwarz inequality, the above right-hand side is less than

$$\left(\int_{\eta, \xi > 0} \frac{\prod_{\xi}^{1/2} |\hat{g}(\xi)|^2}{\prod_{\eta}^{1/2} \prod_{\xi+\eta}} \, d\eta \, d\xi \right)^{1/2} \left(\int_{\eta, \xi > 0} \frac{\prod_{\eta}^{1/2} |\hat{h}(\eta)|^2}{\prod_{\xi}^{1/2} \prod_{\xi+\eta}} \, d\eta \, d\xi \right)^{1/2}.$$

Since the numerical value of the expression

$$\int_{\eta > 0} \frac{\prod_{\xi}^{1/2}}{\prod_{\eta}^{1/2} \prod_{\xi+\eta}} \, d\eta$$

does not depend on ξ, we obtain that

$$\int_{\xi > 0} \frac{|\hat{f}(\xi)|}{\prod_{\xi}} \, d\xi \leq C \|\hat{g}\|_{L^2} \|\hat{h}\|_{L^2} = C \|g\|_{L^2} \|h\|_{L^2} \leq C \|f\|_{H^1},$$

which completes the proof.

Consider the Schwartz class $S = S(\mathbb{R}^d)$, and the subclass S_0 consisting of $f \in S$ for which the Fourier transform vanishes on each coordinate face of co-dimension 1, i.e. $\hat{f}|_{P_k} \equiv 0$ for each $P_k = \{(\xi_j) \in \mathbb{R}^d \mid \xi_k = 0\}, 1 \leq k \leq d$. In the next lemma, we interpret this condition on \hat{f} as a cancellation condition.

Lemma 2. Let $f \in S_0$, and define the function

$$F(x) = \int_{y < x} f(y) \, dy.$$

Then $F \in S$.

Proof. The main part of proving this statement is to show that $\lim_{|x| \to \infty} F(x) = 0$. Once we have this, since f is Schwartz function, it is clear that the decay of F and it’s derivatives is sufficiently fast.

Decompose $x \in \mathbb{R}^d$ as $(x', x_d) \in \mathbb{R}^{d-1} \times \mathbb{R}$. We will prove that

$$\lim_{|x_d| \to \infty} F(x', x_d) = 0,$$

where the convergence is uniform with respect to x'. By a mere change of notation, we obtain similar statements whenever x_d is replaced with another variable x_j. This implies the conclusion of the lemma.
Let $\varepsilon > 0$, and choose R such that $\int_{|x_d| > R} |f(x)| \, dx < \varepsilon$. Clearly, $x_d < -R \implies |F(x)| < \varepsilon$.

Moreover, consider the function $g: x' \mapsto \int_{x_d \in \mathbb{R}} f(x', x_d) \, dx_d$.

It is clear that $\hat{g} (\xi') = \hat{f} (\xi', 0) = 0$, and so $g \equiv 0$. It follows that $\lim_{x_d \to \infty} F(x', x_d) = \int_{y' < x'} \int_{x_d \in \mathbb{R}} f(y', x_d) \, dx_d \, dy' = 0$.

It remains to prove that this convergence is uniform with respect to x'.

Partition \mathbb{R} into finitely many intervals $\{ I^{(k_1)} \}$, in such a way that for each k_1

$$\int_{I^{(k_1)} \times \mathbb{R} \times [-R,R]} |f(x)| \, dx < \varepsilon.$$

Then proceed inductively to construct partitions $\{ I^{(k_2)} \}, \{ I^{(k_3)} \}, \ldots, \{ I^{(k_d-1)} \}$ of \mathbb{R} into finitely many intervals, with the property that if $l \in \{1, 2, \ldots, d-1\}$, and N_l denotes the number of intervals in the partition $\{ I^{(k_l)} \}$, then for each (k_1, \ldots, k_l)

$$\int_{I^{(k_1)} \times I^{(k_2)} \times \ldots \times I^{(k_l)} \times \mathbb{R} \times [-R,R]} |f(x)| \, dx < \frac{\varepsilon}{N_1 \cdots N_{l-1}}.$$

In each rectangle $Q^{(k_1, \ldots, k_{d-1})} := I^{(k_1)} \times \ldots \times I^{(k_{d-1})}$ choose a point $x^{(k_1, \ldots, k_{d-1})}$. By what we proved in the previous paragraph, we may choose $R^{(k_1, \ldots, k_{d-1})} \geq R$ such that $x_d > R^{(k_1, \ldots, k_{d-1})} \implies |F(x^{(k_1, \ldots, k_{d-1})}, x_d)| < \varepsilon$.

By our construction of $Q^{(k_1, \ldots, k_{d-1})}$, it holds that $x' \in Q^{(k_1, \ldots, k_{d-1})}$, $x_d > R^{(k_1, \ldots, k_{d-1})} \implies |F(x', x_d)| < (d+2)\varepsilon$.

Let $\tilde{R} = \max R^{(k_1, \ldots, k_{d-1})}$. It follows that $|x_d| > \tilde{R} \implies |F(x', x_d)| < (d+2)\varepsilon$.

Hence, $F(x', x_d) \to 0$, uniformly in x', as $|x_d| \to \infty$. \hfill \Box

Lemma 3. The space $S_A = \{ f \in S \mid \text{spt} \hat{f} \subset (0, \infty)^d \}$ is dense in H^1_A.

Proof. Given \(f \in H^1_A \), since \(H^1_A \) is isometrically embedded into \(L^1 \), it suffices to find a sequence of \(f_n \in S_A \) such that \(f_n \to f \) in \(L^1 \).

Choose an even function \(\varphi \in S \), where \(\hat{\varphi} \) has compact support, and \(\hat{\varphi}(0) = 1 \). Furthermore, consider its \(L^1 \)-normalized dilations, given by \(\varphi_\varepsilon(x) = \frac{1}{\varepsilon^d} \varphi \left(\frac{x}{\varepsilon} \right) \).

Since \(\varphi_\varepsilon \ast f \to f \) as \(\varepsilon \to 0 \), and \((\varphi_\varepsilon \ast f) \) has compact support, it suffices to consider the case where \(\hat{f} \) has compact support.

Recall that \(\hat{\varphi}_\varepsilon \) vanishes outside \((0, \infty)^d\). Given \(\nu \in (0, \infty)^d \), we consider the modulation \(f_h(x) = e^{2\pi i h \cdot \nu} f(x) \). Since \(f_h \to f \) as \(h \to 0 \), we may assume that \(\text{spt} \hat{f} \subset (0, \infty)^d \).

Finally, let \(f_\varepsilon = \hat{\varphi}_\varepsilon f \). Since \(\hat{f}_\varepsilon = \varphi_\varepsilon \ast \hat{f} \) has support in \((0, \infty)^d\), provided that \(\varepsilon \) is sufficiently small, and \(\hat{\varphi}_\varepsilon \to 1 \) as \(\varepsilon \to 0 \), it follows that \(f_\varepsilon \to f \) as \(\varepsilon \to 0 \).

Let \(C_0 = C_0(\mathbb{R}^d) \) denote the space of continuous functions vanishing at infinity. Elements of \(H^1 \) satisfy a rather strong cancellation property, which we express in the next lemma.

Lemma 4. Let \(f \in H^1 \), and define the function

\[
F(x) = \int_{y < x} f(y) \, dy.
\]

Then \(F \in C_0 \).

Remark 5. The function \(F \) defined in Lemma 4 is of course smoother than just continuous. Our main interest lies in the fact that \(F \) vanishes at infinity.

Proof. By symmetry, it is enough to consider \(f \in H^1_A \). Also, if \(f_1, f_2 \in H^1 \), then \(\|F_1 - F_2\|_{L^\infty} \leq \|f_1 - f_2\|_{H^1} \). By Lemma 3 we may restrict attention to \(f \in S_A \). The result is now immediate from Lemma 2.

The map \(H^1 \ni f \mapsto F \in C_0 \) indicated by Lemma 4 is injective, and its left inverse is given by \(D = \prod_{j=1}^d \partial/\partial x_j \). This leads us to define the multi-harmonic Hardy–Sobolev space

\[
H^1_1 := \{ f \in C_0(\mathbb{R}^d) \mid Df \in H^1 \}.
\]

We equip \(H^1_1 \) with the norm

\[
\|f\|_{H^1_1} := \|Df\|_{H^1}.
\]

By the standard relation between derivatives and Fourier multipliers, we immediately obtain a corollary to Theorem 1.

Corollary 6. There exists a constant \(C = C_d \) such that

\[
\int_{\xi \in \mathbb{R}^d} |\hat{f}(\xi)| \, d\xi \leq C\|f\|_{H^1_1}
\]

whenever \(f \in H^1_1 \).
An alternative phrasing of the above result is that the Fourier transform \(F: H^1 \to L^1 \) bounded. Since \(F \) is self-adjoint with respect to the standard distributional pairing, \(F: L^\infty \to (H^1)^* \) also is bounded.

Since \(D: H^1 \to H^1 \) is a bijection, the same is true for \(D: (H^1)^* \to (H^1)^* \).

The space \((H^1)^* \) is called multi-harmonic BMO, and has been characterized by Chang and R. Fefferman [1]: Consider the set \(D(R) \) of dyadic intervals \([k2^{-l},(k+1)2^{-l}]\), \(k, l \in \mathbb{Z} \), and the set \(D(R^d) \) of dyadic rectangles \(\prod_{j=1}^d I_j \), \(I_j \in D(R) \). Furthermore, let \(v \) be a Schwartz function with \(\text{spt} \hat{v} \subset \{ \xi \in \mathbb{R} | \tfrac{2}{3} \leq |\xi| \leq \tfrac{8}{3} \} \), and \(v_I(x) = \frac{1}{|I|^{1/2}} v \left(\frac{x-c_I}{|I|} \right) \), whenever \(I \) is a dyadic interval with centre \(c_I \). It is a celebrated result by Y. Meyer that \(v \) can be chosen in such a way that \(\{ v_I \}_{I \in D(R)} \) becomes an orthonormal basis for \(L^2(R) \), e.g. [9, p. 75 et seq.]. For one such \(v \), we define the multi-parameter wavelet \(\{ w_R \}_{R \in D(R^d)} \), where, for \(R = \prod_{j=1}^d I_j \), \(w_R(x) = \prod_{j=1}^d v_{I_j}(x_j) \). A tempered distribution \(f \) belongs to \((H^1)^* \) if and only if there exists \(C > 0 \) such that

\[
\sum_{R \in D(R^d), R \subset \Omega} |\langle f, w_R \rangle|^2 \leq C^2 |\Omega|
\]

for all open sets \(\Omega \subset \mathbb{R}^d \). The smallest such \(C \) is called \(\| f \|_{\text{BMO}} \), and is comparable to \(\| f \|_{(H^1)^*} \).

The foregoing discussion motivates the definition of the multi-harmonic BMO–Sobolev space

\[
\text{BMO}_{-1} := \{ Df; f \in \text{BMO} \},
\]

with norm

\[
\| Df \|_{\text{BMO}_{-1}} := \| f \|_{\text{BMO}}.
\]

Corollary 7. The operator

\[
F: L^\infty \to \text{BMO}_{-1}
\]

is bounded.

Corollary 7 provides a natural end point analogue of the embedding \(F: L^p \to D^{1-\frac{2}{p}} L^p, \quad p > 2 \), considered by the author in [11].

Acknowledgements

The majority of the present work was done while I was a postdoc at University of Leeds. An important catalyst to the above results was a conversation with Karl-Mikael Perfekt during the workshop “Harmonic Analysis in non-homogeneous setting and applications” arranged by Maria Reguera at University of Birmingham. I have also enjoyed interesting conversations with Jonathan Partington, Florian Hanisch, Benjamin Sharp, Alexander Strohmaier, Amol Sasane, Sandra Pott, and Alexandru Aleman.
References

[1] Chang, S.-Y. A. & Fefferman, R. Some recent developments in fourier analysis and h^p-theory on product domains. Bull. Amer. Math. Soc. (N.S.), 12 (1) (1985), 1–43.

[2] Fefferman, C. & Stein, E. M. H^p spaces of several variables. Acta Math., 129 (3-4) (1972), 137–193.

[3] Ferguson, S. H. & Lacey, M. T. A characterization of product BMO by commutators. Acta Math., 189 (2) (2002), 143–160.

[4] Ferguson, S. H. & Sadosky, C. Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures. J. Anal. Math., 81 (2000), 239–267.

[5] Gundy, R. F. & Stein, E. M. H^p theory for the poly-disc. Proc. Nat. Acad. Sci. U.S.A., 76 (3) (1979), 1026–1029.

[6] Hardy, G. H. & Littlewood, J. E. Some new properties of Fourier constants. Math. Ann., 97 (1) (1927), 159–209.

[7] Hille, E. & Tamarkin, J. On the absolute integrability of Fourier transforms. Fundamenta Mathematicae, 25 (1) (1935), 329–352.

[8] Lacey, M. & Terwilleger, E. Hankel operators in several complex variables and product BMO. Houston J. Math., 35 (1) (2009), 159–183.

[9] Meyer, Y. Wavelets and operators, volume 37 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger.

[10] Riesz, F. Über die Randwerte einer analytischen Funktion. Math. Z., 18 (1) (1923), 87–95.

[11] Rydhe, E. On Laplace–Carleson embeddings, and L^p-mapping properties of the Fourier transform. arXiv:1907.11583.