Overexpression of c-fos in Helicobacter pylori-induced gastric precancerosis of Mongolian gerbil

Yong-Li Yang, Bo Xu, Yu-Gang Song, Wan-Dai Zhang

Yong-Li Yang, Yu-Gang Song, Wan-Dai Zhang, Institute of Gastrointestinal Diseases, Nanfang Hospital, First Military Medical University, Guangzhou 510515, Guangdong Province, China
Bo Xu, Department of Orthopedics, Nanfang Hospital, First Military Medical University, Guangzhou 510515, Guangdong Province, China
Correspondence to: Dr. Yong-Li Yao, Institute of Gastrointestinal Diseases, Nanfang Hospital, First Military Medical University, Guangzhou 510515, Guangdong Province, China. xbyyl@fimmu.edu.cn
Telephone: +86-20-85141547 Fax: +86-20-87208770
Received: 2001-09-26 Accepted: 2001-11-06

Abstract
AIM: To explore dysregulation of c-fos in several human malignancies, and to further investigate the role of c-fos in Helicobacter pylori (H. pylori)-induced gastric precancerosis.

METHODS: Four-week-old male Mongolian gerbils were employed in the study. 0.5 mL 1x10⁶ cfu L⁻¹ suspension of H. pylori NCTC 11 637 in Brucella broth were inoculated orally into 20 Mongolian gerbils. Another 20 gerbils were inoculated with Brucella broth as controls. 10 of the infected gerbils and 10 of the non-infected control gerbils were sacrificed at 25 and 45 weeks after infection. The stomach of each gerbil was removed and opened for macroscopic observation. The expression of c-fos was analyzed by RT-PCR and immunohistochemistry in the stomach samples of infected and control-animals. The level of c-fos was analyzed by RT-PCR and immunohistochemistry in the stomach samples of infected and control-animals. The level of c-fos was significantly higher in infected animals (6/10) than those in control-animals (0.74±0.22, P<0.01). C-fos mRNA levels were increased 2.5-fold by 25th week (P<0.01) and 2.1-fold by 45th week (P<0.01) in precancerosis induced by H. pylori, when compared with normal gastric epithelium of Mongolian gerbil. Immunohistochemical staining revealed exclusive nuclear staining of c-fos. Furthermore, there was a sequential increase in c-fos positive cells from normal epithelium to precancerosis.

RESULTS: The study suggested that overexpression of c-fos occurs relatively early in gastric tumorigenesis in this precancerosis model induced by H. pylori.

CONCLUSION: The study suggested that overexpression of c-fos occurs relatively early in gastric tumorigenesis in this precancerosis model induced by H. pylori.

Yang YL, Xu B, Song YG, Zhang WD. Overexpression of c-fos in Helicobacter pylori-induced gastric precancerosis of Mongolian gerbil. World J Gastroenterol 2003; 9(3): 521-524
http://www.wjgnet.com/1007-9327/9/521.htm

INTRODUCTION
H. pylori, a gram-negative spiral bacterium first isolated in 1982 from a patient with chronic active gastritis, is responsible for a large portion of chronic gastritis and nearly all duodenal ulcers, most gastric ulcers, and probably an increased risk of gastric adenocarcinoma[1-9]. More than 50 % of the adult population are infected with H. pylori in developing countries as well as in developed countries. Gastric cancer is a major health problem[10] and remains the second most common cancer in the world[11]. Although epidemiological studies have indicated that H. pylori infection plays a crucial role in human gastric carcinogenesis[12-25], there is no direct proof that H. pylori is actually associated with gastric carcinogenesis[26]. The purpose of this study was to elucidate the relationship between H. pylori infection and gastric carcinogenesis by using an animal model of long-term H. pylori infection, and to explore the role played by c-fos in gastric tumorigenesis.

MATERIALS AND METHODS

Animals treatment
Four-week-old specific pathogen-free male Mongolian gerbils weighing 20±5 g were employed in this study. They were housed in individual metabolic cages in a temperature conditioned room 23±2 °C with a 12 h light-dark cycle, allowed to access to standard rat chow (provided by Experimental Animal Center, First Military Medical University) and water ad libitum, and acclimated to the surrounding for 7 days prior to the experiments. H. pylori (NCTC 11 637) was obtained from American Type Culture Collection and cultured on Brucella agar plates containing 70 mL L⁻¹ goat blood in a microaerobic condition (volume fraction, N₂: 85 %, O₂: 5 %, CO₂: 10 %, in aerobic globe box) at 37 °C for 3 days. The strain was identified by morphology, Gram’s stain, urease production and so on.

Experimental protocol
0.5 mL 1x10⁶ cfu L⁻¹ suspension of H. pylori NCTC 11 637 in Brucella broth were inoculated orally into 20 Mongolian gerbils for 14 days continuously which had been fasted overnight. Another 20 gerbils were inoculated with Brucella broth as controls. 10 of the infected gerbils and 10 of the non-infected control gerbils were sacrificed after infection for 25 and 45 weeks, respectively. The stomach of each animal was removed and opened for macroscopic observation. Half of each gastric antrum mucosa were dissected for RNA isolation. The rest of the stomach samples were used for histological examination,
which were fixed with neutral-buffered 100 mL 1L-1 formalin and processed by standard methods that embedded in paraffin, sectioned and attained with haematoxylin for analyzing histological changes. Giemsa stain for detecting for 	extit{H. pylori} and Alcian blue (AB)/PAS stain for examining intestinal metaplasia.

RNA isolation and RT-PCR analysis

Using Tripure isolation reagent (Boehringer Mannheim, Germany), total cellular RNA was isolated from previously frozen tissues according to the manufacturer’s instruction. All RNA samples were analyzed for integrity of 18s and 28s rRNA by ethidium bromide staining of 0.5 µg RNA resolved by electrophoresis on 12 g -1 agarose-formaldehyde gels. RT-PCR analysis was performed as follows. RNA was incubated at 60 °C for 10 min and chilled to 4 °C immediately before being reverse transcribed. 1 µg of total RNA was reversely transcribed using antisense primers in a volume of 20 µl for 40 min at 50 °C, containing 200 U MMLV reverse transcriptase, 1xbuffer RT, 1 MU L-1 Rnasin, 0.5 mmol -1 L-1 dNTPs of dATP, dGTP, dCTP and dTTP and each antisense primers including 	extit{c-fos} and β-actin at 0.2 µmol -1 L-1. The samples were heated to 99 °C for 5 min to terminate the reverse transcription reaction. By using a Perkin-Elmer DNA Thermocycler 4 800 (Perkin-Elmer, Norwalk, CT), 5 µl cDNA mixture obtained from the reverse transcription reaction was then amplified for 	extit{c-fos} and β-actin. β-actin was used as the housekeeping gene and amplified with 	extit{c-fos} as control. The amplification reaction mixture consisted of 10xbuffer 5 µl, 0.2 mmol -1 L-1 dNTPs of dATP, dGTP, dCTP and dTTP, 2.5 U Taq DNA polymerase, and sense and antisense primers at 0.2 µmol -1 L-1 in a final volume of 50 µl. The reaction mixture was first heated at 94 °C for 2 min and amplification was carried out for 29 cycles at 94 °C for 0.5 min, 58 °C for 1 min, 70 °C for 1.5 min, followed by an incubation for 7 min at 70 °C. The amplification cycles was previously determined to keep amplification in the linear range to avoid the “plateau effect” associated with increased PCR cycles. The PCR primers were as following: c-fos, sense 5’-CAC GAC CAT GAT GTT CTC GG-3’ and antisense 5’-AGT AGA TTG GCA ATC TCG GT-3’; β-actin, sense 5’-CCA AGG CCA ACC GCC AGA AGA TGA C-3’ and antisense 5’-AGG GTA CAT GTG GGT GCC GCC AGA C-3’. PCR products of 	extit{c-fos} and β-actin had 348 bp and 587 bp, respectively. PCR products were run on a 15 g -1 agarose gel in 0.5×TBE buffer and then analyzed by gel image analysis system. The level of 	extit{c-fos} was reflected with the ratio of c-fos/β-actin.

Immunohistochemical staining

Four micrometers paraffin-embedded tissue sections were deparaffinized and rehydrated. Endogenous peroxidase activity was ablated with 10 mL 1L-1 hydrogen peroxide in methanol. The immunostaining for 	extit{c-fos} was conducted using the StreptAvidin-Biotin-enzyme Complex kit (Boster, Wuhan). Immunostaining by replacing primary antibody with PBS was also conducted as a negative control. The staining was evaluated semiquantitatively on the basis of the percentage of positive cells, and classified as follows[27]: diffusely positive (+++) when positive cells accounted for more than 70 % of the total cells, partially positive (++) when positive cells were 35-70 %, partially positive (+) when positive cells accounted for 5-35 %, and negative (-) when positive cells accounted for less than 5 %.

Statistical analysis

Experimental results were analyzed with Chi-square Tests and K-Related Samples Test by SPSS software. Statistical significance was determined at \textit{P}<0.05.

RESULTS

Histopathological findings

	extit{H. pylori} was detected in gastric antrum and gastric body of all infected animals in this study, and more in gastric antrum than that in gastric body. After infection of 	extit{H. pylori} for 25 weeks, ulcers were observed in the gastric antrum and gastric body in 60 % infected animals (6/10). Histological examination showed that all infected animals developed severe inflammation, especially in the area close to ulcers; multifocal lymphoid follicles appeared in the lamina propria and submucosa; and there were mild atrophic gastritis in all infected animals. After infection of 	extit{H. pylori} for 45 weeks, severe atrophic gastritis in all infected animals, intestinal metaplasia in 80 % infected animals (8/10) and dysplasia in 60 % infected animals (6/10) could be observed. Those metaplastic glands appeared more atypical than the surrounding nonmetaplastic and hyperplastic glands. Severe atrophic gastritis, intestinal metaplasia and dysplasia were gastric precancerosis. In the uninfected animals, there were no significant changes throughout the study.

Analysis of c-fos mRNA expression

There was c-fos mRNA expression in gastric antrum mucosa of control-animals. C-fos mRNA levels were significantly higher after infection of 	extit{H. pylori} for 25 weeks (1.84±0.79), and for 45 weeks (1.59±0.37) than that in control-animals (0.74±0.22, \textit{P}<0.01); C-fos mRNA levels were increased 2.5-fold in 25 weeks (\textit{P}<0.01) and 2.1-fold in 45 weeks (\textit{P}<0.01) in precancerosis induced by 	extit{H. pylori}, when compared with control gastric epithelium of Mongolian gerbil (Figure 1-4).

Figure 1 RT-PCR products. Lane 1 PCR marker; Lane 2 c-fos; Lane 3 β-actin.

Figure 2 RT-PCR analysis of c-fos mRNA levels using β-actin as internal control. Total RNA was first reverse transcribed into cDNA and then amplified by PCR in control.

Figure 3 RT-PCR analysis of c-fos mRNA levels using β-actin as internal control after \textit{H. pylori} infection for 25 weeks.
of the models studied mimics human *H. pylori* infection and subsequent pathology. Recently, two expreriments were conducted in Japan that demonstrated that chronic *H. pylori*-infection models of Mongolian gerbils would develop gastric carcinoma. These results will be extremely helpful to elucidate the mechanism of gastric carcinogenesis due to *H. pylori* infection\(^{27-28}\). Apoptosis, a programmed cell death, was ignored, just like *H. pylori*, only to reappear recently. However, the number of current publications dealing with apoptosis of *H. pylori* has increased exponentially. Although gastric epithelial apoptosis is a programmed physiological event in the superficial aspect of the mucosa and is important for healthy cell turnover, *H. pylori* infection reportedly promotes such a cell death sequence\(^{27-28}\). Because apoptosis regulates the cycle of cell turnover in balance with proliferation, dysregulation of apoptosis or proliferation evoked by *H. pylori* colonization would be linked to the gastric carcinogenesis\(^{29-31}\).

C-fos is an immediate early response gene, and *c-fos* protein is an important transcription-factor of nucleus\(^{32-38}\). Oncogene *c-fos* is also a kind of effect protein of the karyomitosis signal, which can trigger and regulate the transcription of the genes related with proliferation. Besides, *c-fos* can also regulate its own gene expression with a positive feedback and promote the mitosis and proliferation of the cells. Because *c-fos* can regulate cell proliferation and cell apoptosis, its abnormal expression might induce cell turnover and carcinogenesis\(^{39-46}\). Previous studies have showed that the expression of oncogene *c-fos* is closely related to cellular multiplication and differentiation. The amplification and over-expression of *c-fos* gene are associated with malignancy and tumorigeneity of cells. Recently, some studies suggested that oncogene *c-fos* was amplified in the primary tumor DNA\(^{47-49}\). Shirin et al tested the hypothess that *H. pylori* might inhibit cell growth and cell cycle progression by inhibiting signaling pathways that mediate the transactivation of the serum-response element in the *c-fos* promoter\(^{57}\).

In this study, mRNA level of *c-fos* was measured by quantitative RT-PCR analysis in Mongolian gerbil gastric antrum mucosa to explore dysregulation of *c-fos* in malignancies and to further investigate the role of *c-fos* in *H. pylori*-induced gastric precancerosis. In addition, the expression and localization of its protein product was analyzed by immunohistochemical staining. *C-fos* mRNA levels were significantly increased in precancerosis induced by *H. pylori*, when compared with normal gastric epithelium of Mongolian gerbil. Immunohistochemical staining revealed exclusive nuclear staining of *c-fos*. Furthermore, there was a sequential increase in *c-fos* positive cells from normal epithelium to precancerosis. This study indicates that the expression of *c-fos* mRNA and protein is increased from normal epithelium to precancerosis. The dysregulation of *c-fos* expression occurre relatively early in gastric tumorigenesis in this model and may participate in tumor progression. These findings suggeste that *H. pylori*- induced gastric precancerosis is associated with dysregulation of gastric epithelial cell cycle. Further studies are needed to delineate the mechanism of those alterations.

REFERENCES

1. **Tabata H**, Fuchigami T, Kobayashi H, Sakai Y, Nakashima M, Tomioka K, Nakamura S, Fujishima M, *Helicobacter pylori* and mucosal atrophy in patients with gastric cancer: a special study regarding the methods for detecting *Helicobacter pylori*. Dig Dis Sci 1999; 44: 2027-2034

2. **Meining AG**, Bayerdorffer E, Stolte M, *Helicobacter pylori* gastritis of the gastric cancer phenotype in relatives of gastric carcinoma patients. Eur J Gastroenterol Hepatol 1999; 11: 717-720

3. **Yamaoka Y**, Kodama T, Kashima K, Graham DY. Antibody against *Helicobacter pylori* Cag A and Vac A and the risk for gas-
Danesh J, Helicobacter pylori infection and gastric cancer: systematic review of the epidemiological studies. Alliment Pharmacol Ther 1999; 13: 851-885

Harris RA, Wyns DK, Witherd H, Parsons G. Helicobacter pylori and gastric cancer: what are the benefits of screening only for the Cag A phenotype of H. pylori? Helicobacter 1999; 4: 69-76

Hansson S, Melby KK, Aaes S, Jellum E, Vollset SE. Helicobacter pylori infection and risk of cardiac cancer and non-cardia gastric cancer. A nested case-control study. Scand J Gastroenterol 1999; 34: 353-360

Scheiman JM, Cutler AF. Helicobacter pylori and gastric cancer. Am J Med 1999; 106: 222-226

Kuipers EJ. Review article exploring the link between Helicobacter pylori pylori and gastric cancer. Aliment Pharmacol Ther 1999; 13: 3-11

Alexander GA, Arrn MC. Association of Helicobacter pylori infection with gastric cancer. Mil Med 2000; 165: 21-27

Zhang XQ, Lin SR. Study on the relationship between Helicobacter pylori and gastric cancer. Shijie Huanren Xiaohua Zazhi 2000; 9: 206-207

Vandenplas Y. Helicobacter pylori infection. World J Gastroenterol 2000; 6: 20-31

Pan KF, Liu WD, Ma JL, Zhou T, Zhang L, Chang YS, You WC. Infection of Helicobacter pylori in children and mode of transmission in a high-risk area of gastric cancer. Shijie Huanren Xiaohua Zazhi 1998; 6: 42-44

Zhang L, Jiang J, Pan KF, Liu WD, Ma JL, Zhou T, Perez GT, Blaser MJ, Chang YS. You WC. Infection of Helicobacter pylori with cag A strain in a high-risk area of gastric cancer. Shijie Huanren Xiaohua Zazhi 1998; 6: 40-41

Zhang XQ, Lin SR. Study on Helicobacter pylori infection in gastric cancer and precancerosis. Shijie Huanren Xiaohua Zazhi 2000; 9: 710-711

Hu PJ. Helicobacter pylori and gastric cancer. Shijie Huanren Xiaohua Zazhi 1999; 7: 1-2

Huang XQ. Helicobacter pylori infection and gastrointestinal hormones: a review. World J Gastroenterol 2000; 6: 783-788

Shang SH, Zheng JW. Treatment on Helicobacter pylori-induced diseases. Shijie Huanren Xiaohua Zazhi 2000; 8: 556-557

Wang XH, Zhang WD, Zhang YL, Zeng JZ, Sun Y. Relationship between Hp infection and oncogene and tumor suppressor gene expression in gastric cancer and precancerosis. Shijie Huanren Xiaohua Zazhi 1998; 6: 516-518

Ye GA, Zhang WD, Liu LM, Shi L, Xu ZM, Chen Y, Zhou DY. Hp vac A gene and chronic gastritis. Shijie Huanren Xiaohua Zazhi 2001; 9: 593-594

Quan J, Fan XG. Experimental studies on Helicobacter pylori pylori and gastric cancer. Shijie Huanren Xiaohua Zazhi 1999; 7: 1068-1069

Lu SY, Pan XZ, Peng XW, Shi ZL, Lin L, Chen MH. Effect of HPV infection on Helicobacter pylori epithelial cell kinetics in stomach diseases. Shijie Huanren Xiaohua Zazhi 2000; 8: 386-388

Xiao SD. Helicobacter pylori and gastric cancer. Shijie Huanren Xiaohua Zazhi 1998; 6: 4

Harry AX. Association between Helicobacter pylori pylori and gastric cancer: current knowledge and future research. World J Gastroenterol 1998; 4: 93-96

Zu Y, Shui J, Yang CM, Zhong ZF, Dai HY, Wang X, Qin GM. Study on Helicobacter pylori infection and risk of gastric cancer. Shijie Huanren Xiaohua Zazhi 1998; 6: 367-368

Cai L, Yu SZ, Zhang ZF. Helicobacter pylori infection and risk of gastric cancer in Changhong County, Fujian Province, China. World J Gastroenterol 2000; 6: 374-376

Shimizu M, Nikiato T, Toki T, Shizawa T, Fujii S. Clear cellular carcinoma has an expression pattern of cell cycle regulatory molecules that is unique among ovarian adenocarcinomas. Cancer 1999; 85: 496-500

Shirin H, Sordillo EM, Oh SH, Yamamoto H, Delohery T, Weinstein B, Moss SF. Helicobacter pylori inhibits the G1 to S transition in AGS gastric epithelial cell. Cancer Res 1999; 59: 2277-2281

Gao H, Wang JY, Shen ZX, Liu JJ. Effect of Helicobacter pylori infection on gastric epithelial cell proliferation. World J Gastroenterol 2000; 6: 442-444

Hidekazu SU. Hiromasa IS. Role of apoptosis in Helicobacter pylori-associated gastric mucosal injury. J Gastroenterol Hepatol 2000; 15: D46-D54

Zhang XQ, Lin SR. Research of Helicobacter pylori pylori infection in precancerous gastric lesions. World J Gastroenterol 2000; 6: 428-429

Gu JZ, Hou TW, Wang XX. Study on precancerous gastric lesions induced by Helicobacter pylori. Shijie Huanren Xiaohua Zazhi 2001; 9: 111

Tischmeyer W, Grimm R. Activation of immediate early genes and memory formation. Cell Mol Life Sci 1999; 55: 564-574

Lennartsson J, Blumenfeld PS, Hermanson M, Ponten E, Carlberg M, Ronnstrand L. Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/ MAP kinase pathway and cfos induction. Oncogene 1999; 18: 5546-5553

Trauth JA, Seidler FJ, McCook EC, Sotkin TA. Persistent c-fos induction by nicotine in developing rat brain regions: interaction with hypoxia. Pediatr Res 1999; 45: 38-45

Duan R, Porter W, Sanudico I, Vyhidal C, Kladde M, Safe S. Transcriptional activation of c-fos protooncogene by 17beta-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol Endocrinol 1999; 13: 1511-1521

Morrissey JJ, Raney S, Hasseley E, Rathinavelu P, Dauphine M, Fallon JH. IRIDIUM exposure increase c-fos expression in the mouse brain only at levels which likely result in tissue heating. Neuroscience 1999; 92: 1539-1546

Hasebe T, Imoto S, Sasaki S, Tsutobono Y, Muka K. Proliferative activity and tumor angiogenesis is closely correlated to stromal cellularity of fibroadenoma: proposal fibroadenoma, cellular variant. Pathol Int 1999; 49: 435-443

Whong WZ, Gao HG, Zhou G, Ong T. Genetic alterations of cancer-related genes in glass fiber-induced transformed cells. J Toxicol Environ Health 1999; 56: 397-404

Chen W, Dong Z, Valic S, Timmermann B, Bowden GT. Inhibition of ultraviolet B-induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (-)-epigallocatechin gallate in a human keratinocyte cell line. Mol Carcinog 1999; 24: 79-84

Aigner A, Juhl H, Malerczyk C, Thybusch A, Benz CC, Czubayko F. Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumor cell proliferation. Oncogene 2001; 20: 2301-2111

Mitsuno Y, Yoshida H, Meada S, Ogura K, Hirata Y, Kawabe T, Shiratori Y, Omata M. Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signaling pathway in gastric cancer cells. Tumour Biol 2001; 22: D46-D54

Chai Y, BRCA1 splice variants BRAC1a/1b and enhances BRCA1a/1b-associated gastric mucosal injury. Mol Biol Rep 2001; 28: 299-301

Jiang LX, Fu XB, Sun TZ, Yang YH, Gu XM. Relationship between CCK on activation and c-jun expression and estrogen and progesterone receptors is lost in human endometrial cancer. Tumour Biol 1999; 20: 202-211

Edited by Xu XQ