RESEARCH PAPER

Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits

Elise Albert¹, Vincent Segura², Justine Gricourt¹, Julien Bonnefoi³, Laurent Derivot³ and Mathilde Causse¹,*

¹ INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, Montfavet, 84143, France
² INRA, UR0588, Amélioration, Génétique et Physiologie Forestières, 2163 Avenue de la Pomme de Pin, Centre de Recherche Val de Loire, CS 40001, Orléans, 45075, France
³ GAUTIER Semences, route d’Avignon, Eyragues, 13630, France

* Correspondence: Mathilde.Causse@paca.inra.fr

Received 16 August 2016; Editorial decision 13 October 2016; Accepted 13 October 2016

Abstract

Water scarcity constitutes a crucial constraint for agriculture productivity. High-throughput approaches in model plant species identified hundreds of genes potentially involved in survival under drought, but few having beneficial effects on quality and yield. Nonetheless, controlled water deficit may improve fruit quality through higher concentration of flavor compounds. The underlying genetic determinants are still poorly known. In this study, we phenotyped 141 highly diverse small fruit tomato accessions for 27 traits under two contrasting watering conditions. A subset of 55 accessions exhibited increased metabolite contents and maintained yield under water deficit. Using 6100 single nucleotide polymorphisms (SNPs), association mapping revealed 31, 41, and 44 quantitative trait loci (QTLs) under drought, control, and both conditions, respectively. Twenty-five additional QTLs were interactive between conditions, emphasizing the interest in accounting for QTLs by watering regime interactions in fruit quality improvement. Combining our results with the loci previously identified in a biparental progeny resulted in 11 common QTLs and contributed to a first detailed characterization of the genetic determinants of response to water deficit in tomato. Major QTLs for fruit quality traits were dissected and candidate genes were proposed using expression and polymorphism data. The outcomes provide a basis for fruit quality improvement under deficit irrigation while limiting yield losses.

Key words: Acid and vitamin C content, candidate genes, drought, fleshy fruit quality, genotype by environment interaction, GWA, QTL, Solanum lycopersicum, sugar.

Introduction

Global water scarcity will constitute a crucial challenge in the coming years (Jury and Vaux, 2005). Agriculture, which is consuming up to 80% of the worldwide water resources through irrigation, has to move towards a more sustainable use of water (Rost et al., 2008). Utilization of advanced irrigation strategies and development of drought-adapted crops are among the solutions to solve this dilemma (Fereres and Soriano, 2006; Costa et al., 2007).

Beyond these concerns, deficit irrigation practices constitute a way to manage fruit flavor by exploiting the morphological,
physiological, and molecular changes (referred to as ‘phenotypic plasticity’) occurring in water-stressed plants (Ripoll et al., 2014). Under water deficit, plants close their stomata to limit transpiration, impacting resource availability from photosynthetic sources, which may result in a decrease in number and/or size of the fruits. On the other hand, a mild water deficit tends to shift photo-assimilate partitioning towards synthesis of antioxidant compounds (in particular vitamin C) involved in defense against stress-induced reactive oxygen species and compatible solutes (including sugars and acids) involved in osmotic adjustment (Lemoine et al., 2013; Albacete et al., 2014; Osorio et al., 2014). Evidence for the efficiency of deficit irrigation to concentrate the major flavor and nutritional components in fleshy fruits (mainly sugars, acids, and antioxidants), either by a concentration or an accumulation effect, was obtained in many species such as tomato (Kirda et al., 2004; Zheng et al., 2013), grapevine (Chaves et al., 2007), apple (Leib et al., 2006), and mango (Durán Zuazo et al., 2011). However, these studies focused on a small number of genotypes, while responses to deficit irrigation seem to be highly genotype dependent (Ripoll et al., 2016a, b).

Gene expression studies have revealed hundreds of genes involved in plant survival under severe water limitation, but usually associated with detrimental effects on yield under a realistic drought scenario (Tardieu, 2012; Bac-Molenaar et al., 2016). These studies focused on model species, mainly Arabidopsis thaliana (Seki et al., 2002; Des Marais et al., 2012) and cereals (Langridge, 2006; Barnabas et al., 2007). Up to now, the identification of the genetic determinants of drought response from the natural diversity of fleshy fruit crops remains limited. Quantitative trait locus (QTL) mapping might be particularly valuable to address this question (Des Marais et al., 2013).

Two complementary approaches are commonly applied to dissect genotype by environment interactions into their underlying QTLs (QTL by environment interactions). The first one consists of computing the effects of a given QTL across the environmental conditions using multivariate QTL mapping models (van Eeuwijk et al., 2010; El-Soda et al., 2014b). The second one uses the construction of composite variables measuring phenotypic plasticity and univariate mapping models (El-Soda et al., 2014a). With both approaches, QTLs can be classified according to the prevalence of their effect under the different conditions. A QTL is considered ‘constitutive’ when its effect is conserved whatever the environment. QTLs whose effect is not significant in every environment are called ‘specific’, while the effect of ‘interactive’ QTLs changes direction (‘antagonist’) or intensity (‘differential’) according to the environment. With the availability of a high-throughput genotyping assay, this classification can be considered in crop species via conventional linkage mapping (Maloisetti et al., 2007; Verbyla et al., 2014) as well as genome-wide association studies (GWASs) (Korte et al., 2012; Saïdou et al., 2014). A GWAS has the advantage over linkage mapping that it allows exploration of the genetic diversity and the numerous recombination events present in germplasm collections and may lead to higher resolution mapping if the LD (linkage disequilibrium) is low enough in the population (Brachi et al., 2010; Korte and Farlow, 2013; El-Soda et al., 2015; Pascual et al., 2016).

In tomato (Solanum lycopersicum L.), QTLs were mapped for fruit quality traits measured under optimal watering conditions using linkage (Causse et al., 2001; Saliba-Colombani et al., 2001; Tieman et al., 2006; Zanor et al., 2009b; Capel et al., 2015) and association mapping (Xu et al., 2013; Ruggieri et al., 2014; Sauvage et al., 2014; Sacco et al., 2015). The studies of QTLs by water regime interactions focused on introgression lines between the cultivated tomato and its wild relatives (mainly S. habrochaites and S. pennellii), leading to low mapping resolution (Semel et al., 2007; Gur et al., 2011; Arms et al., 2015). Recently, we analyzed QTLs by watering regime interaction in a segregating population derived from a cross between a small- and a large-fruited S. lycopersicum accession (Albert et al., 2016). A total of 56 QTLs were identified for 19 traits, among which 20% were interactive between the control and deficit watering regimes. Nevertheless, these QTLs were limited to the allelic diversity present in the two parental accessions, and the confidence intervals were broad.

The aims of the present study were (i) to explore the pattern of genotype by watering regime interaction in a GWAS panel with a broad genetic basis (including S. pimpinellifolium, S. lycopersicum var. cerasiforme, and admixture genotypes) grown under two different watering regimes in two locations and phenotyped for 27 traits; (ii) to identify with a high resolution QTLs and QTL by watering regime interactions in this collection; (iii) to combine the results with those obtained in the bi-parental progeny to draw an accurate picture of the genetic variability and the genetic determinants of tomato response to water deficit; and (iv) to identify candidate genes related to the variation of major fruit quality traits under water deficit by dissecting some of the QTLs.

Materials and methods

Plant material

The population consisted of 141 accessions (2–46 g FW) encompassing the genetic diversity of the cultivated small fruit tomato. Among these, 105 accessions were previously investigated in Blanca et al. (2015). Preliminary genetic analysis of our collection confirmed the genetic structure described by these authors, with clusters reflecting the species and the geographic origin of the accessions (see Supplementary Fig. S1A–D at JXB online). Ten accessions were S. pimpinellifolium (SP; closest wild ancestor of the tomato) originating from Peru and Ecuador. A total of 110 accessions were S. lycopersicum var. cerasiforme (SLC) originating mainly from South America. Finally, 21 accessions belonged to a mixed genetic group mainly including commercial cherry tomatoes and admixed genotypes between SP, SLC, and S. lycopersicum var. lycopersicum. A description of the accessions and their origin is available in Supplementary Table S1. The genetic groups (SLC, SP, and mixture) are used below in the statistical analysis.

Experimental design

The plants were cultivated with the same experimental design as in Albert et al. (2016). Plants were grown in a heated glasshouse in INRA Avignon (Avi, France) from March to July 2014 and in an unheated plastic greenhouse on the experimental site of the seed
company GAUTIER Semences in Agadir (Aga, Morocco) from December 2013 to March 2014. Two watering regimes were applied to the plants: control (C) and drought (D). The control treatment was set according to ET (evapotranspiration) and the cultural coefficient for tomato under greenhouse conditions (FAO Water, 2015). A maximal drainage of 25% and a relative humidity of the substrate of 65% were established in the control pots. Drought treatment was applied progressively after flowering of the second truss of the earliest accession. Watering was first reduced by 25% compared with the control for 1 week and then reduced by 60% until the end of the experiments. Relative humidity of the peat substrate was controlled with GRODAN® moisture probes and monitored between 25% and 30% in drought pots. In both experiments, two plants per watering regime per accession were randomized in the greenhouse.

Plant and fruit phenotyping

A total of 27 traits were assessed in the GWA population as described in Albert et al. (2016). Flowering date (Fw, days after sowing), stem diameter (Diam, mm), leaf length (Leaf, cm), and truss implantation height (Ht, cm) were measured on each plant both in Avignon (sixth truss) and in Agadir (fifth truss). Plant fruit number (NBfruits, all fruits from the third to sixth truss) was measured only in Avignon.

Fruit quality measurements were carried out on a minimum of 20 mature fruits per accession per watering regime harvested daily on the third to the sixth truss. All the fruits were weighed (FW, g) and their firmness was measured with a Durofel device (FIR). Only in Avignon, fruits were pooled in three groups in each watering regime. Half of the fruits of each pool were used to assess dry matter weight (DMW, %), pH, and soluble solid content (SSC, °Brix). From the second half of the fruit replicates, pericarps were crushed in liquid nitrogen and assayed for total vitamin C content (VitCFM) according to the enzymatic method described in Stevens et al. (2006), for sugar content (glucose and fructose) according to the enzymatic method described in Gomez et al. (2007), and for organic acid content (malic and citric) according to the HPLC method reported in Wu et al. (2002). The different metabolite concentrations were expressed relative to fresh matter (g 100 g−1 of FM) and relative to dry matter (g 100 g−1 of DM). Yield (g per plant) was computed by multiplying average fruit FW by average fruit number per plant.

Plant genotyping and SNP filtering

The GWA population was genotyped using the Tomato Infinium Array developed within the SolCap project (http://solcap.msu.edu/) (Hamilton et al., 2012; Sim et al., 2012). The maximum rates of missing data were fixed at 25% per accession and 10% per SNP. A minor allele frequency threshold of 0.04 was applied to discard markers with very rare alleles according to Aulchenko et al. (2007). After filtering, the set of markers was constituted of 6100 SNPs. Prior to any genetic analysis, the remaining missing genotypes were replaced by the allele frequency of the major allele. The SNPs were renamed according to their positions on the tomato genome (SL2.50), as S01_58000083 at base pair 58 000 085 on chromosome 1 (Supplementary Table S2).

Statistical analysis of the phenotypic data

All statistical analyses were performed using R (R Development Core Team, 2012). Because fewer and different traits were measured in Agadir experiments, data from both locations were analysed separately (Pearson correlations for the common trait means available in Supplementary Table S4—all significant). Prior to the ANOVAs and when distributions were skewed, phenotypic data were normalized using Box and Cox transformations. The ANOVAs were performed according to the following model:

\[Y_{ijkl} = \mu + G_r + G_r(G_j) + W_k + G_r \times W_k + G_r(G_j) \times W_k + e_{ijkl} \]

\[Y_{ijkl} \] was the phenotypic value of accession \(j \) from genetic group \(i \) in watering regime \(k \), \(\mu \) the overall mean, \(G_r \) the fixed effect of genetic group \(i \), \(G_r(G_j) \) the fixed effect of accession \(j \) nested in genetic group \(i \), \(W_k \) the fixed effect of watering regime \(k \), and \(e_{ijkl} \) the residual error effect. No significant microenvironment pattern was identified and we chose not to include any spatial effect in the model. When the interaction \(G \times W \) was significant, we computed a Tukey’s post-hoc test to compare the means.

Then, in both watering regimes, restricted maximum likelihood estimates of the genetic and residual variances (\(\sigma^2_{Gr} \) and \(\sigma^2_e \)) were computed with a second linear model: \[Y_{ijkl} = \mu + G_r + G_r(G_j) + e_{ijkl} \] \(G_r \) fixed, \(G_j \) and \(e_{ijkl} \) random. Broad-sense heritabilities (\(H^2 \)) were calculated under both watering regimes as the ratio between the genetic variance and the total phenotypic variance: \[H^2 = \frac{\sigma^2_{Gr}}{\sigma^2_{Gr} + \sigma^2_e} \] with \(\sigma^2_{Total} = \sigma^2_{Gr} + 1/n \times \sigma^2_e \) (with \(n \) the number of replicates per accession). Spearman coefficients estimated the correlations between \(H^2 \) and \(\sigma^2_G \) under drought and control conditions for the same trait.

Average values per accession in each watering regime and location were used for subsequent analyses. Plasticity was computed on the accession means as: \[\Delta k i = (D_k - C_k)/C_k, \] with \(\Delta k i \) the plasticity value for trait \(k \) and accession \(i \), \(D_k \) the mean of trait \(k \) under drought condition for accession \(i \), and \(C_k \) the mean of trait \(k \) under control condition for accession \(i \).

Construction of kinship and structure matrices

We performed a principal co-ordinate analysis (PCoA) on the genotypic matrix. The co-ordinates of the accessions on the first three components are available in Supplementary Table S3 and displayed graphically in Supplementary Fig. S1. A kinship matrix (K) based on identity by state among the 6100 SNPs was estimated.

GWA mapping

Average values for each trait following the transformation giving the least skewed distribution were used in the mapping models. GWASs were performed using correction for population structure (PCoA) and modeling genetic variance with the kinship matrix (K). Two mixed models were implemented.

First, the bivariate multitrait mixed model (MTMM) developed by Korte et al. (2012) to take into account the correlation structure of multi-environment data sets and increase the detection power was implemented. The MTMM approach includes two different tests: (i) the ‘global test’ compared a model including only the genotype effect with a null model to identify markers with common effect between watering regimes (‘constitutive QTLs’); and (ii) the ‘G×W test’ compared a full model with a model including only the genotype effect to identify markers with an interactive effect between the watering conditions (‘interactive QTLs’). SNPs with a P-value <10−4 were considered as significant. From each test, the percentage of variation explained by the marker (individual PVE for each significant marker) was computed.

Secondly, the univariate multilocus mixed model (MLMM) developed by Segura et al. (2012) to increase the detection power for polygenic characters was used to identify associations for each trait under each watering regime (specific QTLs) and for the ∆ values (‘interactive QTLs’). We implemented a new model selection criterion in the MLMM framework to allow for a more permissive detection threshold to compromise between type I (false-positive) and type II (false-negative) errors, while limiting the number of cofactors selected to avoid overestimation of the P-values due to the relatively small size of the population. Models with a maximum of five cofactors all having a raw P-value <10−4 were retained. From the optimal model selected, the percentage variation explained by the selected markers (global PVE for all the significant markers) was computed for each trait.

For all the QTLs identified, we computed phenotypic effects under both watering conditions as: (Minor allele mean–Major allele mean)/2. Among the interactive QTLs, we distinguished between
‘antagonist QTLs’ (effect changing direction according to the watering regime) and ‘differential QTLs’ (effect changing intensity according to the watering regime).

Linkage disequilibrium estimation and confidence interval definition

To define intervals around QTLs, we used a strategy based on LD between pairs of markers inspired from Cormier et al. (2014). We used the \(r^2 \) estimator implemented in the package ‘genetics’ (Warnes and Leisch, 2012) to assess LD between marker pairs. First, we performed LD calculation between 100 000 randomly chosen pairs of unlinked loci (on different chromosomes). The 95th percentile of the unlinked-\(r^2 \) distribution equal to 0.28 was considered as the critical LD threshold. Then, for each significant marker, we computed LD with all the markers upstream and downstream on the same chromosome. We defined the lower (upper) boundary of the interval as the last marker downstream (upstream) on the chromosome that presented an LD with the significant marker above the ‘critical LD’ threshold. For the QTLs detected with the MTMM procedure, when two markers presented a LD higher than the LD threshold, we considered them as a unique QTL. The number of genes within each interval was identified from the tomato genome (ITAG2.4).

Comparison between linkage and association QTLs and identification of candidate genes

For the comparison with the QTLs detected in the recombinant inbred lines (RILs) grown under the same conditions and phenotyped for the same traits (Albert et al., 2016), we projected the QTLs detected in both populations onto the tomato genome (SL2.50). In the comparison, we considered related traits as a single trait: pH, malic acid, and citric acid contents were grouped as ‘acids’, and SSC, glucose, and fructose contents as ‘sugars’. Besides, whatever the QTL type (‘interactive’, ‘constitutive’, or ‘specific’) and the location of the trial, we considered that a single QTL was present when the intervals overlapped between RIL and GWA QTLs.

We then focused on the QTLs for vitamin C, sugar, and acid content including <100 genes to identify putative candidate genes with a reasonable confidence. Under those QTLs, we refined the set of candidates by selecting the genes expressed in tomato fruits according to gene expression data published by the Tomato Genome Consortium (2012). Then, we examined their functional annotations and focused on genes with annotations corresponding to related functions. Finally, we screened the polymorphism data obtained through the whole-genome resequencing of four accessions of our GWA population chosen to represent a large range of the molecular variability present in small fruit tomato (Causse et al., 2013): Cervil (13.3× sequence depth), Criollo (8.1×), LA1420 (12.5×), and Plovdiv (12.2×). First, we considered the nucleotide variants with moderate (non-synonymous polymorphisms in coding regions) to high (modification of splice sites or start/stop codons) effect on the protein sequence (detected using SnpEff; Cingolani et al., 2012). Then, the predicted impacts of the variants on the protein function were assessed using the web interfaces of PROVEAN (http://provean.jcvi.org/seq_submit.php) (Choi and Chan, 2015).

Results

Dissection of the phenotypic variations in the GWA population

In the variance analysis, the part of the total variation attributed to the genotype effect was predominant (35–80%, all \(P \)-values <0.001) compared with the one attributed to the genetic group (0–15%, all \(P \)-values <0.05) and the watering regime (0–28%, significant for 17 traits), except for leaf length in Agadir and stem diameter in Avignon and Agadir (Fig. 1; Supplementary Table S5). For those vigour traits, the watering regime represented 48–61% of the total variation.

The genetic group by watering regime interactions represented <2% of the total sum of squares for all traits and was non-significant for 12 traits. The eight significant traits were Diam.Aga, Leaf.Avi, Leaf.Aga, Ht.Avi, FW.Avi, FW.Aga, FIR.Aga, and VitCFM.Avi. Tukey’s post-hoc test indicated that these interactions were mainly driven by a singular behavior of the SP group in response to water deficit (Supplementary Fig. S2). In contrast, the genotype by watering regime interaction represented 1–19% of the total variation and was significant for all traits, except Flw.Avi, DMW.Avi, pH.Avi, and MalicFM.Avi. Interaction partitioning according to method 1 from Muir et al. (1992) indicated that the genotype by watering regime interactions were mainly due to accessions re-ranking across watering regimes (80–100%) and in a minor way to scale changes (0–20%, data not shown). The broad-sense heritabilities ranged from 30% for FructoseFM.Avi.D to 92% for FW.Avi.C. These values were correlated across watering regimes (\(r^2 =0.80 \)), as well as with the genetic variances (\(r^2 =0.99 \)), confirming genotype re-ranking across watering regimes (Fig. 1; Supplementary Table S5).

Impact of the water deficit on fruit quality and yield components

The RIL and GWA populations were grown in Avignon and Agadir in separate greenhouse trials over the years 2013 and 2014, while ensuring similar watering conditions (control and drought) (see Albert et al., 2016 for details concerning the RILs). On average, in both locations, water deficit impacted plant and fruit traits in the same direction in the GWA and RIL populations, with a decline in plant vigor, a decrease in yield, and a higher concentration of the metabolites in fruits (as a percentage of FM) (Table 1). However, when applying the drought treatment, FW.Avi was decreased 2-fold and Nbfruits.Avi 9-fold in the RILs (FW.Avi, –37.7%; Nbfruits, –21.7%) compared with the GWA accessions (FW.Avi, –19.0%; Nbfruits, –2.5%). It resulted in a yield decrease reaching the level of –50% in the RILs against –20% in the GWA accessions. On the other hand, SSC, DMW, and VitCFM were more strongly enhanced in the RILs (SSC, +26.3%; DMW, +30.7%; and VitCFM, +26.3%) than in the GWA accessions (SSC, +12.6%; DMW, +11.4%; and VitCFM, +12.7%).

The correlation between fruit FW in control conditions (indicator of fruit size) and \(\Delta FW \) was strongly negative in the GWA accessions (Avi, \(r =–0.55 \), \(P=2.70 \times 10^{-12} \); Aga, \(r =–0.52 \), \(P=2.65 \times 10^{-10} \)), as was previously noted in the RILs. This indicated greater FW loss in larger fruited accessions under drought and increased metabolite contents resulting mainly from the reduced amount of water in the fruits. Thus, the differences observed between the populations may mostly reflect differences in fruit size, with larger fruits among the RILs (8–61 g, mean=20 g, SD=9 g) compared with the GWA accessions (2–46 g, mean=13 g, SD=10 g). Nevertheless, a larger range of variation was observed among the GWA accessions for \(\Delta Yield \).Avi and \(\Delta Nbfruits \).Avi compared with
the RILs (Fig. 2; Supplementary Figs S3, S4). In particular, 55 accessions exhibited an increased yield under drought in the GWA population against only two among the RILs. Noticeable geographic origin or genetic group was obvious among these 55 accessions of the GWA population (10 mixture, 43 SLC, and 2 SP).

When plotting ∆Nbfruits against ∆SSC in regard to fruit size and ∆FW.Avi, the RIL and GWA plants presented different patterns (Fig. 2). Among the RILs, only 18 accessions were present in the top right quarter of the plot corresponding to accessions with increased SSC and Nbfruits under water deficit. Besides, all the top right quarter RILs had a negative ∆FW.Avi (blue and purple color) meaning a decreased FW under drought compared with the control condition for these accessions. On the other hand, 40% of the GWA accessions were present in the top right quarter of the plot and six of them had a positive ∆FW.Avi (magenta and red color) and small to medium fruit size (FW in control from 2 g to 28 g). Similar figures were obtained when considering fruit ascorbate (Supplementary Fig. S5), malic acid, and citric acid contents (Supplementary Fig. S6).

QTL and QTL by watering regime interactions identified by association mapping

The MTMM mapping approach detected 53 unique associations for 15 out of 27 phenotyped traits in the GWA population with P-values $<10^{-4}$ and percentages of variation explained varying from 5.45% to 18.22% (individual PVE per marker) (Supplementary Table S6). A total of 49 associations were ‘constitutive’ irrespective of the watering regime. Among these associations, the most significant were observed for malic acid content, with P-values comprised between 2.40×10^{-6} and 1.33×10^{-13} in the global test (chromosomes 6 and 7) (Supplementary Fig. S7). Four associations were declared ‘interactive’ between the watering regimes, two for Flw.Avi (chromosomes 9 and 11) and two for GlucoseDM. Avi (chromosomes 4 and 5), with P-values ranging from 1.48×10^{-5} to 7.04×10^{-3} (Fig. 3).
Albert et al.

Table 1. Average relative difference between control and drought conditions for the fruit and plant traits measured in the GWA and RIL populations (%)

The average relative differences were computed as: (Mean_{Drought}− Mean_{Control})/Mean_{Control}.

Plant traits	GWA	RIL a
Flw.Avi	0.0	−0.2
Flw.Aga	−0.6	+0.6
Diam.Avi	−37.6	−26.7
Diam.Aga	−37.4	−33.9
Leaf.Avi	−19.7	−13.4
Leaf.Aga	−21.9	−25.8
Ht.Avi	−5.1	−5.6
Ht.Aga	−4.2	+2.4
Nbfruits_Avi	−2.5	−21.7

Fruit traits	GWA	RIL a
Flw.Avi	−19.0	−37.7
Flw.Aga	−10.6	−29.4
FFR.Avi	−1.0	+3.4
FFR.Aga	−3.5	+0.8
VitCFM.Avi	−12.7	+26.3
VitCFM.Avi	+0.6	−8.9
DMW.Avi	+11.4	+30.7
SSC.Avi	+12.6	+26.3
GlucoseFM.Avi	+13.8	NA
FructoseFM.Avi	+17.7	NA
GlucoseDM.Avi	+0.5	NA
FructoseDM.Avi	+4.3	NA
pH.Avi	−1.3	−3.2
CitricFM.Avi	−10.7	NA
MalicFM.Avi	−3.6	NA
CitricDM.Avi	−1.2	NA
MalicDM.Avi	−14.8	NA
Yield.Avi	−18.8	−29.5

aData for the RIL population were reported in Albert et al. (2016). DM, metabolite concentrations expressed relative to dry matter; FM, metabolite concentrations expressed relative to fresh matter; NA, traits not measured in the RIL population.

Color scale: < −25, −25 to −5, −5 to 5, 5 to 25, >25.

The MLMM approach identified a total of 124 associations (P < 1 × 10−4) for the 27 studied phenotypic traits. Among them, 94 associations were ‘specific’ (39 and 55 to drought and control conditions, respectively), 23 ‘interactive’ (detected on Δ values) and seven ‘constitutive’ (detected under both conditions; Supplementary Tables S7, S8). The explained percentages of phenotypic variation ranged from 8.16% (one SNP for Leaf.Aga.C) to 63.85% (six SNPs for SSC.Avi.D) (global PVE for all the significant markers for a trait). Constitutive and/or specific associations were observed for all the traits. The most significant P-values were associated with MalicFM.Avi.D (S06_44955568: 1.88 × 10−19), MalicDM.Avi.D (S06_44955568: 1.27 × 10−17), pH.Avi (S04_66307772: 9.95 × 10−11, Fig. 3), and SSC.Avi.C (S10_64149793: 5.96 × 10−10). The 23 interactive SNPs were associated with 11 out of 27 traits. Their P-values ranged from 7.59 × 10−5 (ΔFlw.Avi: S06_36868039) to 2.75 × 10−11 (ΔFW.Aga: S11_50391249, Supplementary Fig. S8).

When gathering the associations obtained with MLMM and MTMM, 20 associations were detected in common (same trait and same QTL type), resulting in a total of 157 associations for the 27 traits (Supplementary Tables S6–S8). Sixteen associations were detected between twice and three times with related traits (‘acid’ and ‘sugar’ traits) and/or for the same trait in the two locations. Thus, a total of 141 different associations were identified, spread unevenly over the genome (Table 2). Chromosomes carried out six (chromosomes 7 and 8) to 23 associations (chromosome 2; Supplementary Fig. S7). Thirty percent of the associations were ‘constitutive’ (44/141), 30% were ‘control specific’ (41/141), 22% were ‘drought specific’ (31/141), and 17% were ‘interactive’ (25/141). Among the interactive associations, 16 showed ‘differential’ effects (effect intensity changing according to watering regime) whereas nine presented ‘antagonist’ effects (effect direction changing according to watering regime). Up to 14, 24, and 28 different associations were mapped for vitamin C, ‘acid’, and ‘sugar’ content in fruit, respectively.

Confidence intervals and candidate gene selection under QTLs for fruit quality traits

We observed large differences in size and number of underlying genes when drawing confidence intervals around the association peaks. Eighteen QTLs mapped around the weakly recombinant centromeres covered >10 Mbp and included between 410 and 2573 genes, whereas 84 QTLs covered <5.5 Mbp and encompassed between one and 97 genes (Supplementary Fig. S9). In the RILs grown in the same conditions (Albert et al., 2016), only four QTLs covered <100 genes on a total of 56 QTLs. The comparison of the QTL positions between the RIL and GWA populations resulted in a total of 11 QTLs common to both populations (Table 2), whereas 45 were specific to the RILs and 130 to the GWA population (Supplementary Fig. S10).

To propose putative candidate genes, we focused on QTLs for vitamin C, sugar, and acid contents in fruit including <100 genes (42 among 66 QTLs) and selected in their intervals genes showing expression in the fruits according to the data from the Tomato Genome Consortium (2012). This reduced the gene list to screen for between one and 87 genes depending on the QTL intervals. Annotations were analyzed to identify genes with functions related to vitamin C, sugar, or acid metabolism under ‘constitutive’ QTLs and functions related to primary metabolism and/or defense against abiotic stress under ‘specific’ and ‘interactive’ QTLs. A total of 41 putative candidates were proposed for three ‘constitutive’ QTLs (Table 3) and 15 ‘interactive’ or ‘specific’ QTLs (Table 4). Of those genes, 22 were reported to have DNA polymorphisms in the four accessions of our GWA population which were re-sequenced by Causse et al. (2013). The polymorphisms in four of those genes were predicted to change the amino acids, affecting biological function of a protein.

From the 18 dissected QTLs, ‘SSC.Avi_9.1’ (control specific) probably corresponded to the cloned QTL ‘Brix9.2.5’ controlling SSC in fruit and associated with a polymorphism in a cell
Association mapping of tomato response to water deficit

Fig. 2. Impact of water deficit on yield, fruit number, fruit FW, and soluble solid content (SSC) in fruit. (A) and (B) Histograms of yield plasticity (∆Yield) in the GWA and RIL populations, respectively. (C) and (D) Relationship between plasticity of fruit number (∆Nbfruits) and plasticity of SSC (∆SSC), in view of FW plasticity (∆FW), in the GWA and RIL populations, respectively. In the bottom figures, the color scale indicates the variation in FW plasticity: blue for values below –0.5, purple for values between –0.25 and 0, magenta for values between 0 and 0.25, and red for values >0.5. The size of the points is proportional to the FW in control watering conditions.

dogenes (Solyc01g105340, Solyc04g009770, and Solyc10g078560; Table 4). Five more genes coding for ‘heat/cold shock proteins’ (Solyc01g111280, Solyc01g111300, Solyc01g111750, Solyc04g011440, and Solyc04g011450) were identified under antagonistic and drought-specific QTLs for fructose and malic acid content (‘FructoseDM.Avii.1.’ and ‘MalicDM.Avii.4.’; Table 4).

Three constitutive QTLs, the first two on chromosome 7 controlling glucose and malic acid content and the third on chromosome 10 controlling fructose content, seemed particularly promising. The first two (‘GlucoseDM.Avii.7.’ and ‘MalicAvii.7.’ in Table 3) shared a common interval including a gene coding for a ‘phosphoenolpyruvate carboxylase’ (Solyc07g062530; PEPC) and a gene coding for a ‘malate dehydrogenase’ (Solyc07g062650). The PEPC gene presented a non-synonymous polymorphism with a predicted impact on the protein function when comparing the four re-sequenced accessions. The third one (‘FructoseDM.Avii.10.’ in Table 3) contained two genes coding for ‘cell wall invertases’, Lin6 (Solyc10g083290) and Lin8 (Solyc10g083300), presenting three non-synonymous polymorphisms between the re-sequenced accessions.

Discussion

To assess the extent of natural variation in tomato responses to water deficit, we phenotyped a collection of 141 small...
Fig. 3. Focus on QTLs detected for fruit quality traits at the bottom of chromosome 4. (A) Manhattan plot displaying the –log10(P-values) (y-axis) over genomic positions (x-axis) in a window of 1.46 Mbp corresponding to the common confidence interval of QTLs detected for VitCDM.Avi (MLMM control condition, blue), GlucoseDM.Avi (MTMM GxW test, purple), GlucoseFM.Avi (MLMM Δ, red), and pH.Avi (MLMM control, green) on chromosome 4 in the GWA population. P-values <10^{-4} were considered as significant (4 in logit values). The pairwise LD heatmap was drawn using the R package ‘snp.plotter’ (Luna and Nicodemus, 2007). (B) Box-plot of the allelic effects for the four associated markers: S04_65828262 (VitCDM, ‘control specific’), S04_65907012 (GlucoseFM, ‘antagonist’), S04_65908608 (GlucoseDM, ‘antagonist’), and S04_66307772 (pH, ‘control specific’). Blue: allelic effects under control conditions. Red: allelic effects under drought conditions.
Table 2. Description of QTLs detected for plant and fruit traits in the GWA population through association mapping and comparison with those detected in the RIL population through linkage analysis

QTLs detected in the GWA population were classified according to their type. QTLs significant under both watering regimes are referred to as ‘constitutive’. QTLs significant under one watering regime only (‘control’ or ‘drought’) are designated as ‘specific’. QTLs detected with the plasticity data and/or with the interaction test are designated as ‘interactive’. For each phenotypic trait and each QTL type, the number of QTLs, minimum and maximum confidence interval (CI in Mbp on genome assembly v2.5) and minimum and maximum number of genes in the interval are displayed. We considered related traits as a single trait: pH, acid malic (DM and FM), and acid citric (DM and FM) were grouped in ‘acids’, as well as SSC, glucose (DM and FM), and fructose (DM and FM) in ‘sugars’. We gathered QTLs detected in both trial locations (Agadir and Avignon) for the same trait. For the comparison with the RIL population (results described in Albert et al., 2016), whatever the QTL type, we considered that a single QTL was present when the CI overlapped between RIL and GWA QTLs.

Trait	Constitutive QTL	Specific QTL	Interactive QTL	
	Nb QTL total	Description	Com. RIL	
	Nb Ch.	Min-Max CI (Mbp)	Min-Max no. of genes	Com. RIL
Plant traits				
Flw	10	1; 12	0.08-0.94	17-117
	2		1	1.3
			0.33	30
			0.00-0.99	1-1633
			4	0.08-0.93
Diam	14	10	2.56	336
	4	2; 5; 6; 11	0.14-3.64	16-500
	4	2; 4; 9; 12	0.02-36.64	2-600
Leaf	12	6; 1; 2; 3; 11	0.03-45.30	1-1147
	2	2; 4	3.50-4.86	232-463
		3	0.08-9.03	6-284
Ht	8	3; 1; 2; 3	0.22-32.22	10-720
		4	2; 3; 7; 9	0.10-5.34
		1	1	0.63
		0	3	2
Nbfruits	7	0	0.22-32.22	10-720
		4	4; 7; 112	0.34-30.43
		3	0.28-34.50	40-714
		1	0.12	5
		0	0	0
Fruit traits				
FW	6	2; 3	0.07-1.87	6-250
		1	0	0.77-1.87
		0	0	0
		0	3.13	677
		1	1	31
		0	0	0
		0	0	0
FIR	15	6; 1; 2; 5; 6; 11	0.02-32.56	2-886
	7	1; 2; 3; 5; 9; 12	0.04-48.91	5-928
	0	2; 4; 0.04-65.29	2-573	
		1	0	0
		0	0	0
		0	0	0
WaC	14	4; 8; 9; 10; 11	0.15-8.50	18-899
	5	4; 7; 9; 12	0.27-41.12	18-796
	0	4; 1; 2; 4; 11	0.08-4.30	7-494
		1	0	0.26
		0	0	0
DMW	2	0	0.15-8.50	18-899
		2	4	2-137
		0	0	0
		0	0	0
Sugars	28	4; 5; 7; 8; 9; 10; 11	0.07-59.37	18-1602
	5	3; 9; 11	0.01-3.34	2-417
	1	1; 4; 6; 10; 11	0.03-2.62	5-327
		3	1	0
		1	0	0
Acids	24	11; 5; 6; 7; 8; 9; 10; 11	0.00-2.09	1-289
	6	2; 3; 4; 6; 11	0.00-0.93	1-137
	0	0	0.04-0.47	6-31
		0	3	1
		0	0	0
Total	141	44		
Com. RIL	11			

a Indication of interactive QTLs confirmed with both plasticity data and interaction test.

b Indication of QTLs confirmed in both locations, Agadir and Avignon (with the same type: ‘constitutive’, ‘specific’, or ‘interactive’).

c Indication of QTLs for acids and sugars confirmed with several measurement methods (pH and acid content, SSC and sugar content).
Table 3. Putative candidate genes in the confidence interval around constitutive GWA QTLs for vitamin C, sugar, and acid content in fruit.

We focused on QTLs encompassing <100 genes. Comparisons with the QTLs detected in Albert et al. (2016) (RIL under control and drought conditions) and Pascual et al. (2016) (MAGIC, RIL, and GWA populations under control conditions) for related traits are indicated. For each QTL, significant marker(s), confidence interval (CI), number of genes in the interval, and among them the number of genes which are expressed in the tomato fruits according to gene expression data published by the Tomato Genome Consortium (2012) are indicated. Putative candidate genes are proposed on the basis of their expression in the fruit, their functional annotation, and the scientific literature. ‘Variants’ displays the number of moderate (non-synonymous polymorphisms in coding regions) to high (modification of splice sites or start/stop codons) effect polymorphisms identified from the resequencing of four accessions of the GWA population (Causse et al., 2013). Variants which have a deleterious impact on the protein structure according to PROVEAN are indicated by ‘#’.

QTL(s)	QTL type	Co-loc. Albert et al. (2016) and Pascual et al. (2016)	Marker(s)	CI (Mbp)	No. of genes	No. of genes expressed in fruit	Putative candidate genes and annotations	Related functions	Non-syn. variants
MalicDM Avi 6.3; MalicFM Avi 6.3	C and D	MAGIC+GWA	S06_44955568	44.92–44.96	8	5	Solyc06g072910: aluminum-activated malate transporter-like^b	Carbon metabolism and malate compartmentation (Martinoia and Rentsch, 1995; Sauvage et al., 2014)	1
							Solyc06g072920: aluminum-activated malate transporter-like^b		
GlucoseDM Avi 7.1; MalicDM Avi 7.2; MalicFM Avi 7.2	C and D	MAGIC+GWA	S07_64878195; S07_65079667	64.86–65.60	97	87	Solyc07g062530: Phosphoenolpyruvate carboxylase 2	Malic and citric acid accumulation (Guillet et al., 2002)	1[#]
							Solyc07g062650: malate dehydrogenase		
FructoseDM Avi 10.2	C and D	NO	S10_63163119	63.10–63.24	18	16	Solyc10g083290: beta-fructofuranosidase insoluble isoenzyme 2 (Lin6)	Sugar metabolism (Fridman et al., 2004; Proels and Roitsch, 2009; Ruan et al., 2010; Li et al., 2012)	1
							Solyc10g083300: beta-fructofuranosidase insoluble isoenzyme 2 (Lin8)		

^a QTL names make reference to the map representation in Supplementary Fig. S7. They are in underlined when they were identified with P-values <10⁻⁵.
^b Genes poorly expressed in the fruit.
Table 4. Putative candidate genes in the confidence interval around specific and interactive GWA QTLs for vitamin C, sugar and acid content in fruit

We focused on QTLs encompassing <100 genes. Comparisons with the QTLs detected in Albert et al. (2016) (RIL under control and drought conditions) and Pascual et al. (2016) (MAGIC, RIL, and GWA populations under control conditions) for related traits are indicated. For each QTL, significant marker(s), confidence interval (CI), number of genes in the interval, and among them number of genes which are expressed in the tomato fruits according to gene expression data published by the Tomato Genome Consortium (2012) are indicated. Putative candidate genes are proposed on the basis of their expression in the fruits, their functional annotation, and the scientific literature. ‘Variants’ displays the number of moderate (non-synonymous polymorphisms in coding regions) to high (modification of splice sites or start/stop codons) effect polymorphisms identified from the resequencing of four accessions of the GWA population (Causse et al., 2013). Variants which have a deleterious impact on the protein structure according to PROVEAN are indicated by ‘#’.

QTL(s)*	QTL type	Co-loc. Albert et al. (2016) and Pascual et al. (2016)	Marker(s)	CI (Mbp)	No. of genes	No. of genes expressed in fruit	Putative candidate genes and annotations	Related functions	Non-syn. variants
CitricDM.Avi_1.1	D	RIL	S01_86174739	86.15–86.20	6	6	Solyc01g094730: vesicular glutamate transporter	Nitrogen transporter (Rentsch et al., 2007)	1
CitricDM.Avi_1.1	D	NO	S01_93702068	93.47–93.76	42	36	Solyc01g105340: chaperone protein dnaJ	Protein protection (Wang et al., 2014)	0
							Solyc01g105540: 2-oxoglutarate/malate translocator	Carbon metabolism and malate compartmentation (Martinoia and Rentsch, 1995)	0
							Solyc01g105630: calmodulin	Osmotic adjustment and stress signaling in interaction with cellular calcium (Perruc et al., 2004; Reddy et al., 2011)	1
FructoseDM.Avi_1.1	ant.	MAGIC	S01_96226845	96.22–96.25	7	5	Solyc01g109220: mitochondrial import receptor	Oxidative stress (Frank et al., 2007)	1#
							Solyc01g111280: cold shock protein-1	Protein protection under salt and drought stress (Kim et al., 2013)	2
							Solyc01g111300: cold shock protein-1		0
							Solyc01g111320: thaumatin-like protein	Sweet-tasting protein, sugar accumulation and plant defense (Kim et al., 2002; Petre et al., 2011)	0
							Solyc01g111330: thaumatin-like protein		0
							Solyc01g111510: Ascorbate peroxidase		0
							Solyc01g111510: Ascorbate peroxidase		0
							Solyc01g111510: ascorbate peroxidase		0
							Solyc01g111630: glyoxylate/hydroxybutyrate reductase B	Recycling fatty acids into glucose (Cornah et al., 2004)	0
QTL(s)*	QTL type	Co-loc. Albert et al. (2016) and Pascual et al. (2016)	Marker(s)	CI (Mbp)	No. of genes expressed in fruit	Putative candidate genes and annotations	Related functions	Non-syn. variants	
---	---	---	---	---	---	---	---	---	
SSC.Avi_2.2	dif.	MAGIC+RIL+GWA	S02_40059311	40.02–40.11	8	7	Solyc01g111680: ubiquitin-conjugating enzyme 22	Osmotic adjustment and oxidative stress response (Zhou et al., 2010)	5
						Solyc01g111660: aquaporin-like protein	Water and solute transport, osmotic adjustment (Reuscher et al., 2013; Ricardi et al., 2014)	0	
					Solyc01g111750: heat shock protein dnaJ	Oxidative stress, fruit maturation (Banzet et al., 1998; Neta-Sharir et al., 2005)	0		
pH.Avi_2.3	dif.	MAGIC+RIL+GWA	S02_49491595	49.40–49.50	10	9	Solyc02g086820: carbonic anhydrase	Enhanced photosynthesis under drought (Gu et al., 2013)	0
FructoseDM.Avi_4.1	D	NO	S04_03214865	3.05–3.22	20	18	Solyc04g009770: DNAJ chaperone	Protein protection (Wang et al., 2014)	1
					Solyc04g009830: stress responsive gene	Gene regulation under abiotic stress (Chen et al., 2011)	0		
MalicDM.Avi_4.1	D	NO	S04_03214865	3.05–3.22	20	18	Solyc04g009770: DNAJ chaperone	Protein protection (Wang et al., 2014)	1
GlucoseFM.Avi_6.1	D	NO	S06_38712034	38.34–38.73	36	29	Solyc06g063600: universal stress protein	Gene regulation under abiotic stress (Chen et al., 2011)	2
						Solyc06g063370: organic anion transporter	Metabolism	0	
					Solyc06g063260: nitrate transporter	Nitrogen transport (Rentsch et al., 2007)	1		
QTL(s)*	QTL type	Co-loc. Albert et al. (2016) and Pascual et al. (2016)	Marker(s)	CI (Mbp)	No. of genes	No. of genes expressed in fruit	Putative candidate genes and annotations	Related functions	Non-syn. variants
---------	----------	--	----------	----------	-------------	-------------------------------	---	------------------	------------------
FructoseFM.Avi 6.1	D	NO	S06_42161946	42.00–42.20	28	19	Solyc06g066820: gibberellin 3-beta-hydroxylase	Water status and reduced transpiration (Nir et al., 2014)	2
VitCFM.Avi_7.1	C	NO	S07_02439123	2.29–2.56	25	24	Solyc07g007790: sucrose phosphate synthase	Sugar compartmentation, sink strength (Nguyen-Quoc and Foyer, 2001)	1
SSC.Avi_9.1	C	MAGIC+RIL+GWA	S09_03477979	0.34–0.35	2	2	Solyc09g010080: beta-fructofuranosidase, insoluble isoenzyme 1 (Lin5)	Sugar metabolism, heat and drought tolerance (Fridman et al., 2004; Zanor et al., 2009a; Ruan et al., 2010; Li et al., 2012)	1
VitCFM.Avi_10.1	df.	NO	S10_00934508	0.08–0.11	39	38	Solyc10g06130: ethylene responsive TrF	Abiotic stress signaling (Pan et al., 2012)	1
FructoseDM.Avi 10.1	D	NO	S10_60291460	60.12–60.37	31	30	Solyc10g078370: auxin efflux carrier	Abiotic stress signaling (Bianchi et al., 2002; Gong et al., 2010)	0
FructoseFM.Avi 11.3	D	MAGIC	S11_52838456	52.80–52.84	5	5	Solyc10g078490: aquaporin	Water and solute transport, osmotic adjustment (Reuscher et al., 2013; Ricardi et al., 2014)	0
							Solyc10g078560: chaperone protein dnaJ	Protein protection (Wang et al., 2014)	1*

* QTL names make reference to the map representation in Supplementary Fig. S7. They are in underlined when they were identified with P-values <10⁻⁵.
fruit accessions for plant and fruit traits, under control and drought conditions. Using 6100 SNPs genotyped over the genome, we achieved association mapping using univariate and bivariate mixed models. QTLs, QTL by watering regime interactions, and putative candidate genes were identified. This study, in combination with the results reported in RILs grown under the same watering conditions, contributed to a first detailed characterization of the genetic variations and genomic determinants of response to water deficit in tomato.

Improving fruit quality while maintaining yield in tomato under water limitation

Deficit irrigation strategies aiming to reduce non-beneficial water consumption while maximizing fruit quality and minimizing yield losses are studied in horticultural production to address environmental issues and market expectations simultaneously. It seems particularly relevant for tomato since consumers complain about lack of taste in the new varieties (Bruhn et al., 1991; Causse et al., 2010). In our trials, after a decrease in 60% of the water supply throughout plant growth, we observed on average reduced plant vigor and yield, while fruit quality was improved or stable depending on whether metabolite concentrations were expressed relative to FM or DM. This antagonistic relationship between quality and yield performances confirmed the results obtained in RILs (Albert et al., 2016) and the tendencies reported by other authors in tomato (Guichard et al., 2001; Kirda et al., 2004; Zheng et al., 2013), peach (Mirás-Avalos et al., 2013), or grapevine (Santesteban and Royo, 2006).

Nevertheless, 50 accessions (with small to medium fruit size) had both improved fruit quality and maintained yield (or even improved) under water deficit compared with the control watering regime, although their vigor (measured through leaf length and stem diameter) was decreased. These accessions emphasized the opportunity to increase metabolite content in tomato fruits using deficit irrigation without achieving parallel limitation of the yield. In contrast, no RIL presented such a response to the water deficit treatment, and the increased sugar and acid contents observed reflected mainly concentration effects due to a decreased amount of water in fruit (Albert et al., 2016).

The large phenotypic variations observed mainly resulted from genotype effects (35–80%) and less from genotype by watering regime interactions (1–19%). The watering regime effect represented a significant part of the total phenotypic variability (up to 40%) only for stem diameter and leaf length. This suggests that tomato plants buffer the negative effect of water limitation by limiting their vegetative growth and reallocating the photo-assimilates to the fruits (Lemoine et al., 2013; Osorio et al., 2014).

Benefits and limits of GWA to dissect the genetic architecture of response to water deficit in tomato

Association studies aiming to identify alleles whose effects are modulated by environmental conditions are still few in plants. To date, such studies were only reported in Arabidopsis thaliana (Li et al., 2010; Morrison and Linder, 2014; El-Soda et al., 2015; Sasaki et al., 2015), and maize (Saïdou et al., 2014). Explicitly accounting for ‘QTL by environment interactions’ in QTL studies can help to discover novel genes that act synergistically with the environment, potentially leading to the identification of superior genotypes according to the environments (Des Marais et al., 2013).

We identified a total of 141 QTLs with low to medium effects. The phenotyped traits were strongly polygenic and justified the use of a multilocus GWA mapping model (MLMM: Segura et al., 2012). In particular, up to 14, 24, and 28 different QTLs were identified for vitamin C, acid, and sugar content, respectively. Among the loci identified, 51% were specific to one watering condition, 31% were constitutive and detected whatever the condition, and 18% were interactive between the watering conditions. These proportions of QTL types are relatively similar to those reported in the RILs grown in the same conditions (Albert et al., 2016) and in the study of Gur et al. (2011) on tomato introgression lines. However, while most of the interactive QTLs identified in the RILs presented antagonist effects, a majority of differential effects was observed in the GWA study. These discrepancies between both populations may reflect their different genetic basis: the RILs segregate between a small- and a large-fruited accession, whereas the GWA collection focuses on the polymorphisms between several diverse small-fruited accessions.

Because of the large number of markers to be used in GWA analysis, it is not straightforward to choose an appropriate significance threshold controlling for false positives while maintaining the statistical power. We thus opted for a lowered threshold of 10^{-4}. If we used Bonferroni correction usually applied to exclude false positives, we should have used a significance threshold of 10^{-5}. This would reduce the number of associations detected to 69 (nine ‘interactive’, 44 ‘specific’, and 16 ‘constitutive’). With this stringent threshold, we would not have recovered some well-described tomato QTLs, such as, for example, FW11.2 and FW11.3 on chromosome 11 (fruit FW QTLs: Huang and van der Knaap, 2011; Ilia-Berenguer et al., 2015). The need for more permissive thresholds in GWASs is often claimed. Strategies based on enrichment tests using known candidate genes from the literature to evaluate the false-positive rate and choose the appropriate threshold values are proposed (Atwell et al., 2010; Sasaki et al., 2015). However, these approaches are limited to well-annotated model genomes and simple traits with already well-described genetic architecture. Another solution to solve the multiple testing issues could be to use haplotypes instead of individual markers to minimize the number of tests, especially in species where the LD spans large genomic regions (Bader, 2001; McClurg et al., 2006). This has already been successfully applied in crops (Gawenda et al., 2015) and would be worth testing in tomato, but may need more markers to identify haplotypes correctly.

The projection of the QTL intervals onto the physical map of tomato allowed the comparison of QTL positions between the RIL and GWA population even though they were genotyped with different markers. This projection resulted in a total of 11 QTLs conserved between both populations. On the other hand, 45 were specific to the RIL population and 130 to the GWA population. This may seem like a relatively
small number of common QTLs between the populations,
but the RIL parental accessions reflected only a limited frac-
tion of the genetic variation present in the GWA population.

Searching for candidate genes under QTLs for fruit
quality traits

Our approach, combining linkage and association mapping,
was powerful in recovering previously identified loci associ-
ated with fruit quality. As an example, we mapped a QTL
associated with fruit fructose content on chromosome 9
which included in its interval the gene Lin5 (Soly09g010080)
known to encode a cell wall invertase affecting tomato fruit
sugar content (Fridman et al., 2000). Apart from recovering
previously described genes, we identified QTLs in genomic
regions where QTLs associated with related traits were previ-
ously identified in other populations but for which no can-
didate gene was proposed until now (probably because of too
large confidence intervals) or in genomic regions where, to
the best of our knowledge, no QTL was reported for related
traits thus far. The confidence intervals around the associ-
ations obtained using an LD-based approach were mostly shorter (1–97 genes for 84 intervals) compared with the intervals obtained using the RILs or introgression lines
(Semel et al., 2007; Gur et al., 2011; Arms et al., 2015).

Combining publicly available expression data (Tomato
Genome Consortium, 2012), exonic variants gained from re-
sequencing of four accessions of the GWA collection (Causse
et al., 2013) and functional analysis of the gene annotations
in the confidence intervals, we proposed 41 putative candidate
genes under three constitutive QTLs and 15 interactive or
specific QTLs. Under the interactive and specific QTLs, genes
related to protein protection (chaperone and heat/cold shock
proteins), water and solute transport (aquaporins and others
transporters), sugar metabolism (sucrose phosphate synthase
and invertases), and hormonal signaling (auxin, gibberellin,
and ethylene) were identified and may play a crucial role in
responses to water deficit (Wang et al., 2003; Shinozaki and
Yamaguchi-Shinozaki, 2007). Some of them presented poly-
morphisms with predicted impacts on the protein function
when comparing the re-sequenced accessions and constitute
promising targets for future functional validations.

On the bottom of chromosome 7, two QTLs, controlling
glucose and malic acid content, shared a common interval
including a gene coding for a ‘phosphoenolpyruvate carboxy-
lase’ (PEPC) and a gene coding for a ‘malate dehydrogenase’.
The PEPC gene presented a non-synonymous polymorphism
with a predicted impact on the protein function in the four
re-sequenced accessions. As the PEPC is catalyzing the carbox-
ylation of the phosphoenolpyruvate arising from glycolysis
into oxaloacetate which is then converted into malate by the
malate dehydrogenase or enters the Krebs cycle (Guillet et al.,
2002), this gene constitutes a likely candidate. Nevertheless,
although if the ‘malate dehydrogenase’ gene did not pre-
sent any exonic SNPs in our data, it remains an interesting
candidate as our four re-sequenced accessions probably did
not represent the full genetic diversity present in the GWA
population, and the phenotypic variations observed may
result from regulation change more than modifications of the
protein. On the bottom of chromosome 10, a QTL interval
controlling fructose content contained two genes coding for
‘cell wall invertases’ (Lin6 and Lin8). Both genes presented
non-synonymous polymorphisms between the re-sequenced
accessions. In contrast to Lin5 on chromosome 9, Lin6 and
Lin8 have not yet been associated with variation in sugar con-
tent in fruit. Cell wall invertases are extracellular hydrolases
which cleave sucrose to glucose and fructose, which are then
transported into the cell. They play a central role in regulat-
ing, amplifying, and integrating different signals that lead to
the source–sink transition in plants.

Subsequent analyses based on either fine mapping around
the candidate genes using target re-sequencing approach or
fenomenal validation, for example by genome editing, could
clarify the involvement of these genes in the phenotypic vari-
ations observed.

Supplementary data

Supplementary data are available at JXB online

Fig. S1. Structuration observed in the GWA population
based on principal co-ordinate analysis (PCoA) on data of
6100 SNPs.

Fig. S2. Box-plot of the mean distribution for the nine
traits that showed a significant genetic group by watering
regime interaction in the ANOVAs.

Fig. S3. Distribution of the accession means for plant traits
in the GWA population grown under two watering regimes.

Fig. S4. Distribution of the accession means for fruit traits
in the GWA population grown under two watering regimes.

Fig. S5. Relationship between plasticity of fruit number
and plasticity of vitamin C content in fruit, in view of the fruit
FW plasticity, in the GWA and RIL populations, respectively.

Fig. S6. Relationship between plasticity of fruit number
and plasticity of citric and malic acid content in fruit (rela-
tive to FW), in view of the fruit FW plasticity, in the GWA
population.

Fig. S7. Physical map of the QTLs detected in the GWA
and RIL populations.

Fig. S8. Example of co-localizations between GWA and
RIL QTLs for soluble solid content and fruit FW on the bot-
tom of chromosome 11.

Fig. S9. Confidence interval (CI) sizes and numbers of
genes underlying the QTLs in the GWA and RIL populations.

Fig. S10. Venn diagram representing common QTLs
between the RIL population (linkage mapping) and the GWA
population (association mapping).

Table S1. Genetic and phenotypic description of the acces-
sions in the GWA population.

Table S2. Genotypic data in the GWA population.

Table S3. Principal co-ordinates analysis in the GWA
population.

Table S4. Correlations between Avignon and Agadir trials.

Table S5. Effect of watering regime (W), genetic group
(Gr), genotype nested in genetic group [Gr(G)] and the inter-
actions [Gr×W and Gr(G)×W] on the plant and fruit traits
measured in the GWA population.
Table S6. QTLs identified under both watering regimes (‘Control’ and ‘Drought’) using the bivariate multiltrait mixed model (MTMM) genome-wide association mapping approach.

Table S7. QTLs identified under each watering regime (‘Control’ and ‘Drought’) using the univariate multilocus mixed model (MLMM) genome-wide association mapping approach.

Table S8. QTLs identified for plasticity data each [(Drought–Control)/Control] using the univariate multilocus mixed model (MLMM) genome-wide association mapping approach.

Acknowledgements

We acknowledge the experimental teams of UR-GAFIL and Gautier SEMENCES for their collaboration in implementing the experiments. We particularly thank Yolande Carretero, Esther Pelpoir, Romain Novaret, Doriane Bancel, and the employees of ‘Domaine Margau’ (Agadir) for their help in phenotyping. Thanks to Christopher Sauvage for proofreading and script sharing. The CTPS project TOMSEC supported this work. EA was supported by an INRA PhD fellowship. EA conducted experiments in France, analyzed data, and wrote the manuscript. VS developed scripts for the GWA mapping. JG sampled and collected phenotypic data in France. JB and LD supervised sample collection and phenotypic measurements in Morocco. MC supervised the project, built the experimental design, and revised the manuscript. All authors discussed the results and commented on the manuscript. The authors declare no conflict of interest in the authorship and publication of this document.

References

Albacete A, Martínez-Andújar C, Pérez-Alfocea F. 2014. Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. Biotechnology Advances 32, 12–30.

Albert E, Gricourt J, Bertin N, Bonnefoi J, Pateyron S, Tamby J-P, Bitton F, Causse M. 2016. Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression. Theoretical and Applied Genetics 129, 395–415.

Arms EM, Bloom AJ, St Clair DA. 2015. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling. Theoretical and Applied Genetics 128, 1713–1724.

Atwell S, Huang YS, Vilhjálmsson BJ, et al. 2010. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines. Nature 465, 627–631.

Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. 2007. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296.

Bac-Molenaar JA, Granier C, Keurentjes JJB, Vreugdenhil D. 2016. Genome-wide association mapping of time-dependent growth responses to moderate drought stress in Arabidopsis. Plant, Cell and Environment 39, 88–102.

Bader JS. 2001. The relative power of SNPs and haplotype as genetic markers for association tests. Pharmacogenomics 2, 11–24.

Banzet N, Richard C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylides C. 1995. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. The Plant Journal 13, 519–527.

Barnabas B, Jager K, Feher A. 2007. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment 31, 11–38.

Bianchi MW, Damerval C, Vartanian N. 2002. Identification of proteins regulated by cross-talk between drought and hormone pathways in Arabidopsis wild-type and auxin-insensitive mutants, axr1 and axr2. Functional Plant Biology 29, 55.

Bianca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Diez MJ, Francis D, Causse M, van der Knaap E, Carlizes J. 2015. Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16, 257.

Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F. 2010. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genetics 6, e1000940.

Bruhn CM, Feldman N, Garlitz C, Harwood J, Evans E, Marshall M, Riley A, Thruber D, Williamson E. 1991. Consumer perceptions of quality: apricots, cantaloupes, peaches, pears, strawberries and tomatoes. Journal of Food Quality 14, 187–195.

Capel C, Fernández del Carmen A, Alba JM, et al. 2015. Wide-genome QTL mapping of fruit quality traits in a tomato F1L population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics 128, 2019–2035.

Causse M, Desplat N, Pascual L, et al. 2013. Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14, 791.

Causse M, Friguet C, Coiret C, LePicer M, Navez B, Lee M, Holthuysen N, Sinesio F, Moneta E, Grandillo S. 2010. Consumer preferences for fresh tomato at the European scale: a common segmentation on taste and firmness. Journal of Food Science 75, SS31–SS54.

Causse M, Saliba-Colombani V, Lesschaeve I, Buret M. 2001. Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theoretical and Applied Genetics 102, 273–283.

Chaves MM, Santos TP, Souza CR, Ortuño MF, Rodrigues ML, Lopes CM, Maroco JP, Pereira JS. 2007. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology 150, 237–252.

Chen H, Zhang B, Hicks LM, Xiong L. 2011. A nucleotide metabolite effects controls stress-responsive gene expression and plant development. PLoS One 6, e26661.

Choi Y, Chan AP. 2015. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2746–2747.

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118; iso-2; iso-3. Fly 6, 80–92.

Cormier F, Le Gouis J, Dubreuil P, Lafarge S, Praud S. 2014. A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 127, 2679–2693.

Cournah JE, Germain V, Ward JL, Beale MH, Smith SM. 2004. Lipid utilization, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylic cycle enzyme malate synthase. Journal of Biological Chemistry 279, 42916–42923.

Costa JM, Ortuño MF, Chaves MM. 2007. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture. Journal of Integrative Plant Biology 49, 1421–1434.

Des Marais DL, Hernandez KM, Juenger TE. 2013. Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution, and Systematics 44, 5–29.

Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE. 2012. Physiological genomics of response to soil drying in diverse Arabidopsis accessions. The Plant Cell 24, 893–914.

Durán Zuazo VH, Pliegoquezuelo CRR, Tarifa DF. 2011. Impact of sustained-deficit irrigation on tree growth, mineral nutrition, fruit yield and quality of mango in Spain. Fruits 66, 257–268.

El-Soda M, Boer MP, Bagheri H, Hanhart CJ, Koornneef M, Aarts M. 2014a. Genotype–environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes. Journal of Experimental Botany 65, 697–708.

El-Soda M, Kruijer W, Malosetti M, Koornneef M, Aarts M. 2015. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of Arabidopsis thaliana to drought. Plant, Cell and Environment 38, 585–599.
Association mapping of tomato response to water deficit | 6429

El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM. 2014b. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science 19, 390–398.

FAO Water. 2015. Crop WATER INFORMATION: SOybean. http://www.fao.org/nr/water/cropinfo_tomato.html.

Fereres E, Soriano MA. 2006. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58, 147–159.

Frank W, Baar KM, Qudeimat E, Woriend M, Alawady A, Ratnadewi D, Gremillon L, Grimm B, Reski R. 2007. A mitochondrial protein homologous to the mammalian peripheral-type benzodiazepine receptor is essential for stress adaptation in plants. The Plant Journal 51, 1004–1018.

Fridman E, Carrari F, Liu Y-S, Fernie AR, Zamir D. 2004. Zooming in on a quantitative trait locus for tomato yield using interspecific introgressions. Science 305, 1786–1789.

Fridman E, Pleban T, Zamir D. 2000. A recombination hotspot delimits a wild-species quantitative trait locus for tomato salt content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, USA 97, 4718–4723.

Gawenda I, Thorwarth P, Quintero T, Ordon F, Schmid KJ. 2015. Genome-wide association studies in elite varieties of German winter barley using single-marker and haplotype-based methods. Plant Breeding 134, 28–39.

Gomez L, Bancel D, Rubio E, Vercambre G. 2007. The microplate reader: an efficient tool for the separate enzymatic analysis of sugars in plant tissues—validation of a micro-method. Journal of the Science of Food and Agriculture 87, 1893–1905.

Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X. 2010. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany 61, 3563–3575.

Gau J-F, Giu M, Yang J-C. 2013. Enhanced tolerance to drought in transgenic rice plants overexpressing C4 photosynthesis enzymes. Crop Journal 1, 105–114.

Guichard S, Bertin N, Leonardi C, Gary C. 2001. Tomato fruit quality in relation to water and carbon fluxes. Agronomie 21, 385–392.

Guillet C, Just D, Bernard N, Destrac-Irvine A, Baldet P, Hernould M, Causse M, Raymond P, Rothan C. 2002. A fruit-specific phosphoenoxypruvate carboxylase is related to rapid growth of tomato plant. Plantae 214, 717–726.

Gur A, Semel Y, Osorio S, et al. 2011. Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theoretical and Applied Genetics 122, 405–420.

Hamilton JP, Sim S-C, Stoffel K, Van Deynze A, Buell CR, Francis DM. 2012. Single nucleotide polymorphism discovery in cultivated tomato via sequencing by synthesis. Plant Genome Journal 5, 17.

Huang Z, van der Knaap E. 2015. Fruit-specific DMETHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant, Cell and Environment 37, 113–123.

Ileri S, Cetin M, Dasgan Y, Kaman H, Ekici B, Derici MR, Ozgunven AL. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69, 191–201.

Korte A, Farlow A. 2013. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29.

Korte A, Viljähmsson BJ, Segura V, Platt A, Long Q, Nordborg M. 2012. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics 44, 1066–1071.

Langridge P. 2006. Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics and Proteomics 4, 343–354.

Leib BG, Caspari HW, Redulla CA, Andrews PK, Jabro JJ. 2006. Partial rootzone drying and deficit irrigation of ‘Fuji’ apples in a semi-arid climate. Irrigation Science 24, 85–99.

Lemoine R, Camera S La, Atanasssova R, et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4, 272.

Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO. 2010. Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 107, 21199–21204.

Li Z, Palmer WM, Martin AP, Wang R, Rainsford F, Jin Y, Patrick JW, Yang Y, Ruan YL. 2012. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. Journal of Experimental Botany 63, 1155–1166.

Luna A, Nicodemus KK. 2007. snp.plotter: an R-based haplotype association and linkage disequilibrium plotting package. Bioinformatics 23, 774–776.

Malosetti M, Ribaut JM, Vargas M, Cossa J, van Eeuwijk FA. 2007. A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161, 241–257.

Martinoa E, Rentsch D. 1995. Malate compartmentation—responses to a complex metabolism. Annual Review of Plant Biology 46, 47–467.

McCulplg P, Pletcher MT, Wiltshire T, Su AL. 2006. Comparative analysis of haplotype association mapping algorithms. BMC Bioinformatics 7, 61.

Mirás-Avalos JM, Alcobendas R, Alacón JJ, Valsepia P, Genard M, Nicolás E. 2013. Assessment of the water stress effects on peach fruit quality and size using a fruit tree model, QualTree. Agricultural Water Management 128, 1–12.

Morrison GD, Linder CR. 2014. Association mapping of germination traits in Arabidopsis thaliana under light and nutrient treatments: searching for G×E effects. G3 (Bethesda, Md.), 4, 1465–1478.

Muir W, Nyquist WE, Xu S. 1992. Alternative partitioning of the genotype-by-environment interaction. Theoretical and Applied Genetics 84, 193–200.

Neta-Sharri I, Isaacson T, Lurie S, Weiss D. 2005. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. The Plant Cell 17, 1829–1833.

Nguyen-Quoc B, Foyer CH. 2001. A role for ‘futile cycles’ involving inverase and sucrose synthase in sucrose metabolism of tomato fruit. Journal of Experimental Botany 52, 881–889.

Nie R, Moshelion M, Weiss D. 2014. The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant, Cell and Environment 37, 113–123.

Osorio S, Ruan Y-L, Fernie AR. 2014. An update on source-to-sink carbon partitioning in tomato. Frontiers in Plant Science 5, 516.

Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports 31, 349–360.

Pascual L, Albert E, Sauvage C, et al. 2016. Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Science 120, 120–130.

Peruc E, Charpentau M, Ramirez BC, Jauneau A, Galaud J-P, Ranjeva R, Ranty B. 2004. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. The Plant Journal 38, 410–420.

Petre B, Major I, Rouhier N, Duplessis S. 2011. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar. BMC Plant Biology 11, 33.

Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensio A, Taybi T, Barnes J, Foyer CH. 2006. Ascorbate oxidase-dependent changes in the redox state of the apoplastic modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiology 141, 423–435.
Seki M, Narusaka M, Ishida J, et al. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal 31, 279–292.

Semel Y, Schauer N, Roessner U, Zamir D, Fernie AR. 2007. Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics 3, 289–295.

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58, 221–227.

Sim S-C, Durstewitz G, Plieske J, et al. 2012. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7, e40563.

Stevens R, Buret M, Garchery C, Carretero Y, Causse M. 2006. Technique for rapid, small-scale analysis of vitamin C levels in fruit and application to a tomato mutant collection. Journal of Agricultural and Food Chemistry 54, 6159–6165.

Tardieu F. 2012. Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of Experimental Botany 63, 25–31.

Tiemann DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ. 2006. Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany 57, 887–896.

Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641.

van Eeuwijk FA, Bink MC, Chenu K, Chapman SC. 2010. Detection and use of QTL for complex traits in multiple environments. Current Opinion in Plant Biology 13, 193–205.

Verbly AP, Cavanagh CR, Verbly KL. 2014. Whole-genome analysis of multilocus or multitrait QTL in MAGIC. G3 Genes|Genomes|Genetics 4, 1569–1584.

Wang G, Cai G, Kong F, Deng Y, Ma N, Meng Q. 2014. Overexpression of tomato chloroplast-targeted DnaJ protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco. Plant Physiology and Biochemistry 72, 95–104.

Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.

Warnes G, Leisch F. 2012. Package ‘genetics’ http://CRAN.R-project.org/package=genetics.

Wu B-H, Genard F, Lescommet F, Gomez L, Li S-H. 2002. Influence of assilate and water supply on seasonal variation of acids in peach (cv Suncrest). Journal of the Science of Food and Agriculture 82, 1829–1836.

Xu J, Ranc N, Muñios S, Rolland S, Bouchet JP, Desplat N, Le Paslier MC, Liang Y, Brunei D, Causse M. 2013. Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theoretical and Applied Genetics 126, 567–581.

Zanor MI, Osorio S, Nunes-Nesi A, et al. 2009a. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cavelage for normal fruit development and fertility. Plant Physiology 150, 1204–1218.

Zanor MI, Rambla JL, Chaib J, Steppa A, Medina A, Granell A, Fernie AR, Causse M. 2009b. Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany 60, 2139–2154.

Zheng J, Huang G, Jia D, Wang J, Moto M, Pereira LS, Huang Q, Xu X, Liu H. 2013. Responses of drip irrigated tomato (Solanum lycopersicum L.) yield, quality and water productivity to various soil matric potential thresholds in an arid region of Northwest China. Agricultural Water Management 129, 181–193.

Zhou GA, Chang RZ, Qiu LJ. 2010. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Molecular Biology 72, 357–367.