Research Paper

Contribution of the central hydrophobic residue in the PXP motif of voltage-dependent K⁺ channels to S6 flexibility and gating properties

Paola Imbrici,1,† Alessandro Grottesi,2,† Maria Cristina D’Adamo,1 Roberta Mannucci,4 Stephen J. Tucker3 and Mauro Pessia1,∗

1Section of Human Physiology; Department of Internal Medicine; University of Perugia School of Medicine; Perugia, Italy; 2CASPUR; Inter-University Consortium for the Application of Super-Computing Universities and Research; Rome, Italy; 3Department of Physics; Clarendon Laboratory; University of Oxford; Oxford, United Kingdom; 4Section of Internal Medicine and Oncology; Department of Clinical and Experimental Medicine; University of Perugia School of Medicine; Perugia, Italy

Key words: Shaker, potassium channels, KV1.1, V404, S6 helix, gating

Shaker-like (KV1.1) channels contain a highly conserved Pro-Val-Pro (PVP) motif at the base of S6 that produces a kink in the S6 helices and provides a flexible element thought to be essential for channel gating. The role of proline-induced kinks in transmembrane helices is well known, but the contribution of the small hydrophobic valine between these two prolines is not known, and interestingly, Shab-like (KV2.1) channels possess an isoleucine at this position (PIP). Here we show that the exact nature of this central hydrophobic residue within the PXP motif confers unique functional properties to KV1 channels, including changes in activation and deactivation kinetics, voltage-dependent properties and open probabilities, but single-channel conductance and cell expression levels are not affected. In support of these functional changes, molecular dynamic simulations demonstrate that valine and isoleucine contribute differently to S6 flexibility within this motif. These results therefore indicate that the nature of the central hydrophobic residue in the PXP motif is an important functional determinant of KV channel gating by contributing, at least in part, to the relative flexibility of this motif.

Introduction

Voltage-gated K⁺ channels are composed of four subunits each of which contains six transmembrane domains (TM), S1 through S6. The S1–S4 segments comprise the voltage-sensing domain, which senses membrane potential and controls the gating of the pore domain (S5–S6). Although still controversial, it appears that upon membrane depolarization the voltage-sensing domain undergoes a movement within the membrane electric field that is mechanically transferred, via the S4–S5 linker, to the intracellular gate of the channel. The opening of the gate at the helix-bundle crossing is thought to involve pivoted bending of the inner pore-lining helices (S6) at a highly conserved glycine residue in the middle of S6. This bending motion is then proposed to splay the TMs outwards to widen the gate and allow K⁺ to flow through the channel. Although this model has now been investigated extensively by both site-directed mutagenesis and molecular dynamics (MD) simulations, the exact movements of the S6 helices have not been entirely elucidated.1-5 Several lines of evidence indicates that the C-terminal portion of the S6 segment also plays an important role in KV channel gating. A unique feature of this region of S6 is the PVP motif, consisting of two highly conserved prolines separated by a small hydrophobic residue. This motif is highly conserved amongst the voltage-gated K⁺ channels and is thought to act as a helix-breaking sequence inducing a bend within S6.

This PXP motif has also been shown to provide a flexible hinge or swivel element that regulate the gating machinery by allowing the lower half of the S6 to move.2,5-14 In particular, Yellen and colleagues proposed that the valine within the PVP motif of Shaker channels (V474), remains relatively stationary during channel gating and could act as a pivot point for S6 motions.14 Indeed, the crystal structure of Kv1.2, a Shaker-like K⁺ channel, confirmed that the PXP motif induces a bend that directs the S6 helix towards the S4–S5 linker, suggesting a electro-mechanical coupling between the voltage-sensing domain and the intracellular gates via the S4–S5 linker.15,16

Interestingly, a sequence alignment of KV channels reveals that KV2.1 possesses a PIP motif (Fig. 1). Valine and isoleucine side chains contain two non-hydrogen moieties attached to their beta carbon, which provides a greater bulkiness near to the protein backbone, and thus a greater restriction in the conformations that the main-chain can adopt. Because of these unique properties of valine and isoleucine and their location within the PXP motif, we hypothesized that they influence the gating of KV1.1 channel and the degree of S6 flexibility. We therefore used a combination of functional and computational approaches to compare the properties of human KV1.1 channels containing either the wild-type PVP or mutant PIP motifs. Our results indicate that the precise nature of the central hydrophobic residue, and consequently the relative flexibility of the PXP motif contribute directly to the functional diversity of the KV channel family.
Results

PVP and PIP motifs confer unique biophysical properties to KV channels. Sequence alignment of the S6 segments of different KV channels reveals that the highly conserved PVP motif of Shaker channels is replaced by PIP in members of the Shab subfamily (KV2.1 and KV2.2; Fig. 1). To investigate the contribution of these hydrophobic residues within the tandem proline motif, valine 404 (V-404) of the human KV1.1 channel was substituted with an isoleucine (I-404). Figure 2A shows representative activating and deactivating current traces for I-404 superimposed with V-404 channels for comparison. The time constants of activation and deactivation of both channel types were determined from fitting exponential functions to the relevant currents. This revealed that the activation and deactivation rates for I-404 channels are significantly slower than V-404 (Fig. 2A). In particular, the activation $\tau_{V1/2}$ for I-404 was -1.3-fold slower and the deactivation $\tau_{V1/2}$ -1.6-fold slower than for wild-type V-404 channels (Table 1). This indicates that the specific nature of the residue within the PXP motif contributes directly to the kinetics of channel opening and closing.

The voltage dependence of channel activation was then investigated by recording tail currents after prepulse commands to several voltages (Fig. 2B). The Boltzmann fit to current-voltage data points showed that the midpoint activation voltage ($V_{1/2}$) for I-404 channels was shifted by -20 mV to more positive potential with respect to V-404 (Fig. 2B, Table 1). This suggested that the open to closed state equilibrium might be affected. We therefore estimated the stability of the open state (in comparison with the closed state) by calculating the Gibbs free energy of channel opening for both channel types. The open-state stabilization free energy value for I-404 was -3-fold smaller than V-404 (Table 1) suggesting that the specific nature of the residue within the PVP motif confers a dramatic change in the open state.

To further investigate the hypothesis that this central hydrophobic residue may contribute to differences in the closed to open state equilibrium, and to investigate the role of this residue on single-channel properties, recordings of single channel activity were performed. Previous mutations within this region of S6 have shown dramatic changes in single-channel conductance, and so this parameter can be used as a test for open channel distortion.

Figure 2C shows representative current traces recorded from oocytes expressing V-404 and I-404 channels. The open dwell time for both channel types were analyzed and compared. However, the time constants of the open durations for both channel types were not significantly different (Table 1) and were essentially voltage-independent in the range between 0 and +60 mV (not shown). Also the single-channel slope conductances were not affected (Table 1). We then calculated the open probability for both channel types, plotted them as a function of the test potentials and, fitted the data points with a Boltzmann function (Fig. 2D). The $V_{1/2}$ values, calculated from the fits, were -53.0 ± 1.4 mV (k = 5.9 ± 1 mV) for V-404 channels and -38.4 ± 1.6 mV (k = 11.4 ± 1.9 mV) for I-404 channels. This analysis demonstrated the open duration and the single-channel conductance were not greatly affected, but that the presence of an isoleucine in the PXP motif shifts the $V_{1/2}$ of the channel -15 mV to more depolarized potentials and, produces a reduction in the open probability at all potentials tested (Fig. 2D). These results confirm that central residue in the PXP motif contributes to the probability of channel opening and the stability of the open state.

We also examined the C-type inactivation properties of both channel types by holding the membrane potential of oocytes at -80 mV and delivering depolarization steps to +20 mV for 3.5 min. The superimposition of these current traces did not reveal any main changes in the inactivation time course (not shown). Indeed, the fit of the decaying phase of the currents with exponential functions yielded time constants for V-404 and I-404 channels of 5.2 ± 1.3 s and 5.6 ± 1.1 s, respectively (n = 10).

We next investigated whether the valine to isoleucine substitution might cause any abnormal trafficking and/or processing of the channel to plasma membrane. We therefore analyzed the fluorescence intensity of oocytes expressing GFP-tagged variants, and measured their whole-cell current amplitudes. Our results showed that the biophysical properties of these GFP-tagged constructs were identical to the corresponding untagged channels and that both V-404 and I-404 channels generated similar whole-cell current amplitudes at...
Functional effects of Val and Ile in the PXP motif

Prior to further investigation, a structural check on all simulations was performed by calculating the root mean square deviation (RMSD) of the C\text{\textalpha} carbon position with respect to their initial position as a function of time (data not shown). The average RMSD from initial positions shows that the simulation trajectories are fully consistent with a conformational drift of a folded state and the secondary structure of the V-404 and I-404 channel was retained throughout the simulations. In order to understand the effect of these hydrophobic residues on the conformational dynamics of the backbone chain of the channel, we calculated the root mean square fluctuations of C\text{\textalpha} carbon atoms position of the S6 helix residues with respect to their average positions over the equilibrated portion of the MD trajectories (see Methods).

Figure 3 shows that S6 helix flexibility is higher with V-404 rather than with I-404 in the region spanning from before the putative hinge point (Gly-396 in KV1.1) to beyond the 404 position (Fig. 3A and B). Not all the monomers within the channel (labeled in different colors) behave in the same way, but this is likely due to limited sampling of MD simulations. The C-terminus of the helix is also quite flexible, but that depends on the intrinsic flexibility of the system.

The central residue in the PXP motif affects the flexibility of S6. Our data so far suggest that the central residue within the PXP motif contributes directly to the function of the S6 segments of Shaker-like channels. Thus, to test the effects of these different PXP motifs on the mobility of the S6 we used MD simulations of the isolated S6 domain. The KV1.2 channel has a PVP motif and its X-ray structure has been resolved at 2.9 Å. We therefore used this crystal structure to investigate the structural consequences of changes to this motif (see Methods for details). Unless otherwise stated, all analysis was carried out discarding the first 2 ns of simulation time in order to take into account the effect of the force field on the equilibrium properties of the system. Prior to further investigation, a structural check on all simulations was performed by calculating the root mean square deviation (RMSD) of the C\text{\textalpha} carbon position with respect to their initial position as a function of time (data not shown). The average RMSD from initial positions shows that the simulation trajectories are fully consistent with a conformational drift of a folded state and the secondary structure of the V-404 and I-404 channel was retained throughout the simulations. In order to understand the effect of these hydrophobic residues on the conformational dynamics of the backbone chain of the channel, we calculated the root mean square fluctuations of C\text{\textalpha} carbon atoms position of the S6 helix residues with respect to their average positions over the equilibrated portion of the MD trajectories (see Methods).

Figure 3 shows that S6 helix flexibility is higher with V-404 rather than with I-404 in the region spanning from before the putative hinge point (Gly-396 in KV1.1) to beyond the 404 position (Fig. 3A and B). Not all the monomers within the channel (labeled in different colors) behave in the same way, but this is likely due to limited sampling of MD simulations. The C-terminus of the helix is also quite flexible, but that depends on the intrinsic flexibility of
the distal termini, and these are rarely involved in hydrogen bonds or other non-bonding interactions.

To quantitatively address S6-helix flexibility in both wild-type and mutant channel types, we also performed a Principal Components Analysis (PCA) of the positional fluctuation covariance matrix of Cα atoms in the S6 helix bundle as described in Methods. PCA has proven to be useful in detecting large amplitude motions in protein dynamics by filtering out non-relevant, essentially random fluctuations from the simulation trajectories. In particular, it has been shown that the first 10 eigenvectors (e.g., the essential subspace) account for 70–80% of total protein internal motion. This approach therefore enables quantitative differences in the flexibility of proteins to be measured and can address the relative flexibility of the S6 segment in both channel types. Firstly, the eigenvalues of the fluctuation covariance matrix of the four S6 helices were plotted as a function of the eigenvector index (Fig. 4). Considering the first ten eigenvectors only, it is evident that the first eigenvalue (which accounts for 44.4% and 28.6% of the total fluctuations in V-404 and I-404, respectively) is higher for V-404 channel than for I-404. This result is consistent with our observation that the flexibility of V-404 is higher than I-404 (Fig. 3). The second eigenvalue for I-404 channel, however, is higher than V-404, although the difference is less pronounced as it was for the first eigenvalue. Analysis of the remaining eight eigenvalues does not suggest any remarkable difference between both channel types. Further analysis of the S6 helix flexibility was therefore restricted to the first two eigenvectors only. Figure 5 shows the analysis of the RMSF as filtered along the first eigenvector for V-404 and I-404 channels. Clearly, the RMSF pattern for V-404 channel, along the first principal component, is higher than I-404. In particular the region spanning from residues 392 to 410 of all V-404 S6 segments is more mobile with respect to the flanking residues, a pattern already detected in previous simulations studies. The presence of an isoleucine at position 404 therefore restricts the global dynamics of the S6 helix bundle, as evidenced by a substantial reduction of these fluctuations (Fig. 5B).

Discussion

Here we show that the presence of either valine or isoleucine in the PXP motif of S6 confers unique gating properties and contributes to the flexibility of the S6 segment. Our functional studies demonstrate that the presence of an isoleucine within the PXP motif results in channels with remarkably slower opening and closing kinetics, reduced sensitivity to membrane potential depolarization and a reduced open probability compared to wild-type V-404 channels. The Gibbs free energy of channel opening and single channel properties suggest that the presence of a valine within this motif promotes a shift of the gating equilibrium towards the open state, and vice versa, isoleucine promotes a stabilization of the closed state.

Furthermore, the effects of these residues on the voltage-dependent gating of this channel are important and indicate that the PVP motif also probably serves an important role in the electro-mechanical coupling mechanism between the gate at the helix-bundle crossing and the voltage-sensor domain. This is supported by the fact that substitution of the equivalent valine in Shaker channels (V-474) with alanine, also shifts the V1/2 of the channel ~17 mV to more negative potentials. Thus, it appears that a progressive reduction of the hydrophobicity and bulkiness of the residue between these tandem prolines produces a shift in the voltage-dependence of the channel through a range of almost 30 mV.

Our MD simulations also support this hypothesis that a PVP motif is more flexible than the corresponding PIP motif and therefore the opening motion at the helix bundle crossing might occur more easily with a valine at this hinge point than with an isoleucine. This is most likely due to the fact that isoleucine has a larger ethyl group attached to its C-beta carbon which would restrict the conformational flexibility of the backbone. The flexibility of S6 in Kv1.5 appears higher than that of Kv1.1, although, the biophysical properties of these channel types are similar. Sequence alignment of the S6 segments for both Kv1.1 and Kv1.5 channels reveals that they are identical, therefore, their flexibility should be comparable. A possible explanation for this apparent discrepancy could reside in the different experimental conditions, structures and simulations time: 20 ns vs. 10 ns used for our study and that of Labro et al., respectively. Likely, the conformational dynamics of the S6 domain are stabilized by the presence of S5 and P loop in the structure, resulting in smaller flexibility of the S6 compared to the same segment analyzed alone.

In conclusion, this study indicates that the nature of the central hydrophobic residue with the PXP motif of Kv1.1 affects channel gating by contributing to the relative flexibility of the primary gate at the helix-bundle crossing and the electro-mechanical coupling mechanism of the voltage-sensor domain.

| Table 1: Biophysical parameters for V-404 and I-404 channels |
|-----------------|-----------------|-----------------|
| Voltage-dependence of activation | V-404 | I-404 |
| Vh [mV] | -28.1 ± 2.9 | -28.6 ± 2.3** |
| k [mV] | 7.5 ± 1.1 | 8.4 ± 0.7 |
| Kinetics of activation | | |
| τ [ms] | 13.0 ± 0.2 | 17.4 ± 0.4** |
| k [mV] | 34.3 ± 0.7 | 34.6 ± 1.6 |
| Kinetics of deactivation | | |
| τ [ms] | 36.3 ± 0.6 | 57.8 ± 0.5** |
| k [mV] | 27.8 ± 0.6 | 59.7 ± 0.9 |
| C-type inactivation | | |
| τ [ms] | 0.16 ± 0.05 | 0.07 ± 0.05 |
| τ slow [s] | 5.2 ± 1.3 | 5.6 ± 1.1 |
| Free energy of channel opening at 0 mV, ΔG0, (Kcal/mol) | | |
| ΔG0 | -2.0 ± 0.6 | -0.7 ± 0.3** |
| Open-state stabilization energy, ΔAG0 (Kcal/mol) | | |
| ΔAG0 | 2.2 | 1.3 |
| Single-channel slope conductance (pS) | | |
| τ final/τpeak, (ms) | 10.6 ± 0.5 | 10.3 ± 1.6 |
| Mean open time at +20 mV (ms) | | |
| τ fast [s] | 0.184 ± 0.03 | 0.242 ± 0.05 |
| τ slow [s] | 5.4 ± 0.6 | 7.7 ± 2.5 |

The data are the mean ± SD of 5–7 cells. **p values < 0.001, Student’s t-test.
Materials and Methods

Oocytes preparation and channel expression. Procedures involving *Xenopus laevis* and their care were conducted according to institutional guidelines and in compliance with national (D.L. no. 116, G.U. Suppl. 40, 18 February 1992) and international laws and policies (EEC Council Directive 86/609, OJ L 358, 1, 12 December 1987; NIH Guide for the Care and Use of Laboratory Animals, NIH Publication N. 85-23, 1985 and Guidelines for the Use of Animals in Biomedical Research. The animals underwent no more than two sessions of surgery, with an interval of at least three weeks. *X. laevis* were anaesthetized with an aerated solution containing 3-aminobenzoic acid ethyl ester methansulphonate salt (5 mM) and sodium bicarbonate (60 mM), pH 7.3. The ovary was dissected and the oocytes digested in OR-2 solution that contained (mM): NaCl 82.5, KCl 2, MgCl₂ 1, HEPES 5, collagenase A 0.5 U ml⁻¹ (Sigma), pH 7.50–7.55. In vitro transcribed cRNAs were microinjected into the oocytes 24 h later by using a nanoliter injector-WPI and incubated for 48 h at 21°C. Channels with isoleucine residue in the *PXP* motif display a remarkable reduction in S6 flexibility.
at 16°C. Typically, every oocyte was injected with 50 nl of a solution containing the relevant cRNA. The amount of cRNAs was quantified using a spectrophotometer and by ethidium bromide staining.

Two-electrode voltage-clamp recordings. Recordings were performed from Xenopus oocytes at -22°C, 1–8 days after injection. A GeneClamp 500 amplifier (Axon Instruments) interfaced to a PC computer with an ITC-16 interface (Instrutech, N.Y., USA) was used. Microelectrodes were filled with 3 M KCl and had resistances of 0.1–0.5 MΩ. The recording solution contained (mM): NaCl 96, KCl 2, MgCl₂ 1, CaCl₂ 1.8, HEPES 5, pH 7.4. Currents were evoked by voltage commands from a holding potential of -80 mV as described in the figure legends. Data acquisition and analysis were performed by using: IGOR (Wavemetrics), Pulse + PulseFit (HEKA Elektronik, Germany) and KaleidaGraph (Synergy Software, USA).

Patch-clamp recordings. Inside-out patch recordings were performed at room temperature (-22°C) by using an Axopatch 200B amplifier (Axon Instruments). The pipette solution contained (mM): NaCl 120, KCl 2, CaCl₂ 0.1, HEPES 10 (pH 7.4), whereas the cytoplasmic solution contained (mM): KCl 120, CaCl₂ 1, EGTA 11, HEPES 10, pH 7.4. Recording electrodes were pulled from 7052 glass type (Garner Glass, Calif., USA), dipped in sticky wax (Kerr, Emoryville, Calif., USA) prior to polishing, and had resistances of 3–15 MΩ. Junction potentials between bath and pipette solutions were properly nullified. The recordings were filtered at 0.5–2 kHz with a 4-pole low-pass Bessel filter and acquired at 5–10 kHz with a Pulse + PulseFit program (HEKA Elektronik, Germany). The current traces were leak subtracted by using averaged sweeps with no opening, which were fitted with exponential functions. Channel activity was analyzed with a TAC-TACfit program (Bruxton, Wash., USA) by using the 50% threshold technique to determine the duration and event amplitude. Channel openings were visually inspected before being accepted (event-by-event mode). Open-duration histograms were fitted with an exponential probability density function using the maximum-likelihood method. Durations were corrected for the corner frequency of the low-pass filter used when acquiring and analysing the data. Missed events were not corrected.

Data analysis. The Gibbs free energy of channel opening at zero voltage was calculated according to Monks et al.19 as:

\[\Delta G_0 = Fz(V - V_{1/2}) \]

where \(z \) is the equivalent charge, \(F \) is the Faraday’s constant and \(V_{1/2} \) is the midpoint of channel activation values that were calculated from the Boltzmann fit to normalized tail currents:

\[\text{NI} = 1/[1 + \exp((V - V_{1/2})/k)] \]

where \(k \) is the slope factor. The open-state stabilization free energy (\(\Delta \Delta G_0 \)) was calculated as:

\[\Delta \Delta G_0 = \Delta G_{0 V-404} - \Delta G_{0 I-404} \]

Molecular biology. The V-404 and I-404 channels were generated by using the human Kv1.1 cDNA as template and the QuikChange Site-Directed Mutagenesis Kit (Stratagene) according to the manufacturer’s instructions. These constructs were also tagged with GFP at the C-terminus by removing the stop codon and fusing them in frame with GFP excised from the pEGFP-C1 vector (Clontech). The nucleotide sequences of all mutant channels were determined by automated sequencing. All cDNAs were subcloned into the oocyte expression vector pBF, which provides 5’ and 3’ untranslated regions from the Xenopus β-globin gene, flanking a polylinker containing multiple restriction sites. Capped cRNAs were synthesized in vitro, as previously described.26

Confocal microscopy. Confocal microscopy of Xenopus oocytes, injected with GFP-tagged constructs, was performed on a Zeiss LSM 510 laser scanning confocal microscope (Jena, DE) using a 10X objective. GFP fluorescence was excited with a 488-nm argon laser beam. Emissions were collected using a 515–565-nm bandpass filter. All images were acquired with the same experimental settings (laser power, pinhole diameter and PMT gain) and Image J was used for the quantification of fluorescence emission of the pixels corresponding to the oocyte membrane. Three-dimensional reconstruction of representative images was performed with the Surpass module of Imaris software (Bitplane, Zurich, CH).

Molecular dynamics simulations. Molecular dynamics simulations were performed starting from the open pore conformation of Kv1.2. The initial protein coordinates for simulation of V-404 and the I-404 channel were taken from the Protein Data Bank (www.rcsb.org), entry code: 2A79. The simulation system consisted of a 7.50 x 9.42 x 10.19 nm box with the Kv1.2 pore domain (namely, S5-S6) embedded in a 170 POPC lipid bilayer and 14368 SPC water molecules. The pore domain residues were defined as extending from residue 324 to 421 of Kv1.2. All polar residues were considered in their default ionization states at pH 7.0. Initial crystal water molecules present in the structure were retained during simulations. The configuration of the selectivity filter was chosen according to Morais-Cabral et al.27 Then, the system (i.e., protein plus membrane) was solvated with SPC water molecules. Counter-ions were added where needed to keep all systems electrically neutral. The I-404 protein was generated by replacing the Val-404 side-chain with the corresponding Ile on all S6 helices of Kv1.2. After replacement, a 1000 steepest descent minimization cycle was performed on the mutated residues while keeping all other protein atoms constrained.

System set-up. For the simulations the protein was positioned in a pre-equilibrated 1-palmitoyl-2-oleoyl-phosphatidyl choline (POPC) bilayer so as to maximize all possible interaction of the POPC head-groups and the ‘belts’ of amphipathic aromatic side chains on the protein surface. Once the protein was inserted in the bilayer, an equilibration was performed during which the system was warmed up in a stepwise manner: 4 short time scale unrestrained MD runs (typically 50 ps) were performed at 50, 100, 200 and 250 K. Then the productive run started at 300 K for 20 ns. The initial velocities were taken randomly from a Maxwellian distribution at the desired temperature. MD simulations were performed with GROMACS 3.3.2 (www.gromacs.org) with a modified version of the GROMOS96 force field.30 Lipid parameters were based on those by Berger et al.31 and Marrink et al.32 The lipid-protein interactions used GROMOS parameters. Parameters derived from those of Åqvist33 were used for the K⁺ ions. Simulations were carried out in the NPT ensemble, with periodic boundary conditions. The temperature and pressure were held constant by coupling to an external thermostat and barostat. Long range electrostatic interactions were calculated using the Particle Mesh Ewald summation methods.35 Lennard-Jones interactions were calculated using a cut-off of 0.9 nm.
The pair lists were updated every ten steps. The LINCS algorithm36 was used to constrain bond lengths. The timestep was 2 fs, and coordinates were saved every 0.5 ps.

Analysis. Root Mean Square Fluctuations (RMSF) of position of a selected C\textalpha atom with respect to its average position was calculated according to the following:

\[
\text{RMSF} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\mathbf{r}_i - \langle \mathbf{r} \rangle)^2}
\]

where \(N\) is the total number of time frames used to average and \(\mathbf{r}\) is the element position vector at time \(i\) and \(\langle \mathbf{r} \rangle\) is the average value.

Principal components analysis. A quantitative description of the dynamic properties of each system were analyzed by means of principal component analysis of the covariance matrix of the positional fluctuations of C\textalpha, as described elsewhere.37,38 Briefly, this matrix was built starting from coordinates collected on the equilibrated portion of the simulations according to the following definition:

\[
C_{ij} = \left(\langle x_i - \langle x \rangle \rangle \langle x_j - \langle x \rangle \rangle \right)
\]

where \(x_i\) and \(x_j\) run over the \(x, y, z\) coordinates of the considered atoms \(i\) and \(j\). Diagonalization of this matrix afforded the principal directions of the large-amplitude concerted motions (e.g., the principal components or eigenvectors). Those components characterize the essential subspace of protein's internal dynamics, and describe the main directions where atomic fluctuations take place. In particular, conformational changes potentially accessible by a given principal component were calculated using the protocol described in Xu et al.39 Molecular visualization and structural diagrams used VMD.40

Acknowledgements

The financial support of Telethon-Italy (Grant GGP030159), MIUR-COFIN 2007 and COMPAGNIA di San Paolo (Turin) is gratefully acknowledged. We thank Carlo Fini for critically reading the manuscript, Ildo Nicoletti for his contribution, Domenico Bambagioni and Ezio Mezzasoma for outstanding technical assistance.

Note

Supplementary materials can be found at: www.landesbioscience.com/supplement/ImbriciCHAN3-1-Sup.pdf

References

1. Liu Y, Holmgren M, Jurman ME, Yellen G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 1997; 19:175-84.
2. del Camino D, Yellen G. Tight steric closure at the intracellular activation gate of a voltage-gated K+ channel. Neuron 2001; 31:649-56.
3. Yellen G. The moving parts of voltage-gated ion channels. Q Rev Biophys 1998; 32:239-95.
4. Bright JN, Sansom MS. K\textalpha channel S6 helix as a molecular switch: simulation studies. IEEE Proc Nanobiotecnol 2004; 1:151-77.
5. Grottesi A, Domene C, Hall B, Sansom MS. Conformational dynamics of M2 helices in KirK channels: Helix flexibility in relation to gating via molecular dynamics simulations. Biochemistry 2005; 44:14586-94.
6. Tieleman DP, Shrivastava IH, Ullschneider MR, Sansom MS. Proline-induced hinged in transmembrane helices: Possible roles in ion channel gating. Proteins 2001; 44:63-72.
7. Bright JN, Shrivastava IH, Cordes FS, Sansom MS. Conformational dynamics of helix S6 from Shaker potassium channel: Simulation studies. Biopolymers 2002; 64:303-13.
8. Labro AJ, Raes AL, Bellens I, Otschyrtsch N, Snyders DJ. Gating of Shaker-type channels requires the flexibility of S6 caused by prolines. J Biol Chem 2003; 278:50724-31.