Observation of $B^{0}_{s} \rightarrow J/\psi f_{0}(980)$ and Evidence for $B^{0}_{s} \rightarrow J/\psi f_{0}(1370)$

J. Li,42 H. Aihara,49 K. Arinstein,1,35 V. Aulchenko,1,35 T. Auzhev,21,14 T. Aziz,45 A. M. Bakich,44 V. Balagura,14 E. Barberio,25 K. Belous,13 V. Bhardwaj,37 B. Bhuyan,11 A. Bozek,31 M. Bračko,23,15 T. E. Browder,8 P. Chang,30 A. Chen,28 P. Chen,30 B. G. Cheon,7 C.-C. Chiang,30 R. Chistov,14 I.-S. Cho,55 K. Cho,18 S.-K. Choi,6 Y. Choi,43 J. Dalseno,24,46 Z. Doležal,2 A. Drutskoy,3 S. Eidelman,1,35 S. En,3 M. Feindt,17 V. Gaur,45 N. Gabyshov,1,35 A. Garmash,1,35 B. Golob,22,15 H. Ha,19 J. Haba,9 T. Hara,9 H. Hayashii,27 Y. Horii,48 Y. Hoshi,47 W.-S. Hou,30 Y. B. Hsiung,30 H. J. Hyun,20 T. Iijima,26 A. Ishikawa,40 R. Itoh,9 Y. Iwasaki,9 T. Iwashita,27 T. Julius,25 J. H. Kang,55 P. Kapusta,31 N. Katayama,9 T. Kawasaki,33 H. Kichimi,9 C. Kiesling,24 H. J. Kim,20 H. O. Kim,20 M. J. Kim,20 S. K. Kim,42 Y. J. Kim,38 K. Kinoshita,9 B. R. Ko,13 N. Kobayashi,38,50 S. Korpar,23,15 P. Krizan,23,15 T. Kuhr,17 R. Kumar,37 T. Kumita,51 A. Kuzmin,1,35 Y.-J. Kwon,55 J. S. Lange,4 M. J. Lee,42 S.-H. Lee,19 C.-L. Lim,55 C. Liu,41 D. Liventsev,14 R. Louvot,21 J. MacNaughton,9 A. Matyja,31 S. McOnie,44 K. Miyabayashi,27 H. Miyata,33 Y. Miyazaki,26 G. B. Mohanty,45 A. Moll,24,46 E. Nakano,36 M. Nakao,9 H. Nakazawa,28 Z. Natkaniec,31 S. Neubauer,17 S. Nishida,9 K. Nishimura,8 O. Nitoh,52 T. Nozaki,9 T. Ohshima,26 S. Okuno,16 S. L. Olsen,42,8 P. Pakhlov,14 G. Pakhlova,14 C. W. Park,43 H. Park,20 H. K. Park,20 R. Pestotnik,15 M. Petrič,15 L. E. Piilonen,53 A. Pukhov,1,35 M. Prim,17 K. Prothmann,24,46 M. Röhrlken,17 M. Rozanska,31 S. Ryu,42 H. Sahoo,8 Y. Sakai,9 O. Schneider,21 C. Schwanda,12 A. J. Schwartz,3 R. Seidl,39 K. Senyo,26 M. E. Sevior,25 M. Shapkin,13 V. Shebalin,1,35 C. P. Shen,8 J.-G. Shiu,30 B. Shwartz,1,35 F. Simon,24,46 J. B. Singh,37 P. Smerkol,15 Y.-S. Soln,55 A. Sokolov,13 E. Solovieva,14 S. Stanič,34 M. Starič,15 J. Styypula,31 M. Sumihama,38,5 T. Sumiyoshi,31 S. Suzuki,40 S. Tanaka,9 Y. Teramoto,36 K. Trabelsi,3 M. Uchida,38,50 S. Uehara,9 Y. Uno,7 S. Uno,9 Y. Ushiroda,9 Y. Uslov,1,35 S. E. Vahsen,8 G. Varner,8 A. Vinokurova,1,35 A. Vossen,10 C. H. Wang,29 M.-Z. Wang,30 M. Watanabe,33 Y. Watanabe,16 J. Wicht,9 K. M. Williams,53 E. Won,19 B. D. Yabsley,44 Y. Yamashita,32 D. Zander,17 C. C. Zhang,56 Z. P. Zhang,41 V. Zhilich,1,35 P. Zhou,54 V. Zhulanov,1,35 and A. Zupan17

(1) Belle Collaboration
1Budker Institute of Nuclear Physics, Novosibirsk
2Faculty of Mathematics and Physics, Charles University, Prague
3University of Cincinnati, Cincinnati, Ohio 45221
4Justus-Liebig-Universität Gießen, Gießen
5Gifu University, Gifu
6Gyeongsang National University, Chinju
7Hanyang University, Seoul
8University of Hawaii, Honolulu, Hawaii 96822
9High Energy Accelerator Research Organization (KEK), Tsukuba
10University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
11Indian Institute of Technology Guwahati, Guwahati
12Institute of High Energy Physics, Vienna
13Institute of High Energy Physics, Protvino
14Institute for Theoretical and Experimental Physics, Moscow
15J. Stefan Institute, Ljubljana
16Keio University, Yokohama
17Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, Karlsruhe
18Korea Institute of Science and Technology Information, Daejeon
19Korea University, Seoul
20Kyungpook National University, Taegu
21École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
22Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
23University of Maribor, Maribor
24Max-Planck-Institut für Physik, München
25University of Melbourne, School of Physics, Victoria 3010
26Nagoya University, Nagoya
27Nara Women’s University, Nara
28National Central University, Chung-Li
29National United University, Miao Li
30Department of Physics, National Taiwan University, Taipei
31H. Niewodniczanski Institute of Nuclear Physics, Krakow
32Nippon Dental University, Niigata
33Niigata University, Niigata
34University of Nova Gorica, Nova Gorica
We report the first observation of \(B_s^0 \to J/\psi f_0(980) \) and first evidence for \(B_s^0 \to J/\psi f_0(1370) \), which are CP eigenstate decay modes. These results are obtained from 121.4 fb\(^{-1}\) of data collected at the \(\Upsilon(5S) \) resonance with the Belle detector at the KEKB \(e^+e^- \) collider. We measure the branching fractions \[B(B_s^0 \to J/\psi f_0(980); f_0(980) \to \pi^+\pi^-) = (1.16^{+0.31}_{-0.14}\text{(stat.)}^{+0.15}_{-0.17}\text{(syst.)}^{+0.26}_{-0.18}(N_{B_s^0}^\text{tag}) \times 10^{-4} \] with a significance of 8.4\(\sigma \), and \[B(B_s^0 \to J/\psi f_0(1370); f_0(1370) \to \pi^+\pi^-) = (0.34^{+0.11}_{-0.14}\text{(stat.)}^{+0.03}_{-0.02}\text{(syst.)}^{+0.08}_{-0.05}(N_{B_s^0}^\text{tag}) \times 10^{-4} \] with a significance of 4.2\(\sigma \). The last error listed is due to uncertainty in the number of produced \(B_s^0(B_s^0) \) pairs.

PACS numbers: 13.25.Hw

The \(b \to c\bar{c}s \) process \(B_s^0 \to J/\psi f_0(980) \), which has a relatively large branching fraction, has been used to extract the \(B_s^0 \) decay width difference \(\Delta\Gamma \) and CP-violating phase \(\beta_s \) from time-dependent analyses \[1\]. The parameter \(\beta_s \) is expected to be small in the Standard Model and can be sensitive to New Physics. The same \(b \to c\bar{c}s \) process can also produce the decay \(B_s^0 \to J/\psi f_0(980) \), which is another promising channel for accessing the mixing parameters, with the clear advantage that no angular analysis is required because of the \(J^P = 0^+ \) quantum numbers of the \(f_0(980) \).

Leading-order light-cone QCD predicts that the branching fraction \[B(B_s^0 \to J/\psi f_0(980)) = (3.1 \pm 2.4) \times 10^{-4} \] \[2\]. The ratio \(R_{f_0/\phi} = \frac{\Gamma(B_s^0 \to J/\psi f_0(980); f_0(980) \to \pi^+\pi^-) \times 10^{-4}}{\Gamma(B_s^0 \to J/\psi \phi; \phi \to K^+K^-)} \) is expected to lie in the range \(0.2 \lesssim R_{f_0/\phi} \lesssim 0.5 \), based on scaling from the measurements of \(D \) decays to \(f_0 \) and \(\phi \) mesons \[3\]. Using the world-average value \[B(B_s^0 \to J/\psi f_0) = (1.3 \pm 0.4 \pm 0.2) \times 10^{-3} \] \[4\], we obtain \(1.3 \times 10^{-4} \lesssim B(B_s^0 \to J/\psi f_0(980); f_0(980) \to \pi^+\pi^-) \lesssim 3.2 \times 10^{-4} \). A recent study \[5\] also shows that \(R_{f_0/\phi} \) can be used to estimate the S-wave pollution in the \(B_s^0 \to J/\psi \phi \) analysis of \(\beta_s \).

We study \(B_s^0 \to J/\psi f_0(980) \) in fully reconstructed \(B_s^0 \to J/\psi \pi^+\pi^- \) final states using a 121.4 fb\(^{-1}\) data sample collected at the \(\Upsilon(5S) \) resonance with the Belle detector at the KEKB collider \[6\]. \(B_s^0 \) mesons can be produced in three \(\Upsilon(5S) \) decays: \(\Upsilon(5S) \to B_s^+B_s^-; B_s^+B_s^0 \) and \(B_s^+B_s^0 \) where the \(B_s^+ \) mesons decay to \(B_s^0 \gamma \). The number of \(B_s^{(*)}\B_s^{(*)} \) pairs in the sample is measured to be \[N_{B_s^{(*)}\B_s^{(*)}} = (7.1 \pm 1.3) \times 10^6 \] using methods described in \[6\]. Production fractions are measured with fully reconstructed \(B_s^0 \to D_s^+\pi^- \) decays as described in \[9\]. We determine the fraction of \(B_s^+B_s^- \) pairs among all \(B_s^{(*)}\B_s^{(*)} \) events to be \[f_{B_s^+B_s^-} = (87.0 \pm 1.7)\% \] in our full data sample. The number of \(B_s^0 \) mesons in the dominant \(B_s^+B_s^- \) production mode is thus \[N_{B_s^0} = 2N_{B_s^{(*)}\B_s^{(*)}}f_{B_s^+B_s^-} = (1.24 \pm 0.23) \times 10^7 \].

The Belle detector \[10\] is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (TOF), and an electromagnetic calorimeter (ECL) comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-return located outside the coil is instrumented to detect \(K_L^0 \) mesons and identify muons (KLM).
Charged tracks are required to originate within 0.5 cm in the radial direction and within 5 cm along the beam direction, with respect to the interaction point. Electron candidates are identified by combining information from the ECL, the CDC (dE/dx), and the ACC. Muon candidates are identified through the track penetration depth and hit patterns in the KLM system. For both electrons and muons, the identification efficiency is nearly 100%. Identification of charged pions is based on the information from the CDC (dE/dx), the TOF and the ACC. For a pion from $B^0 \to J/\psi B_{s0}(890)$, the momentum-averaged identification efficiency is about 96% with a 22% kaon misidentification probability.

Two oppositely charged leptons l^+l^- ($l = e$ or μ) and any bremsstrahlung photons lying within 50 mrad of the e^+ or $e^−$ tracks are combined to form a J/ψ candidate. The invariant mass is required to lie in the ranges $-0.150 \text{ GeV}/c^2 < M_{e\bar{e}}(γ) - m_{J/\psi} < 0.036 \text{ GeV}/c^2$ or $-0.060 \text{ GeV}/c^2 < M_{\mu\bar{\mu}} - m_{J/\psi} < 0.036 \text{ GeV}/c^2$, where $m_{J/\psi}$ denotes the J/ψ mass, and $M_{e\bar{e}}(γ)$ and $M_{\mu\bar{\mu}}$ are the reconstructed invariant masses for $e^+e^−(γ)$ and $\mu^+\mu^−$, respectively. We combine the J/ψ candidate and a $π^+π^−$ pair to form a B^0_s meson. The $π^+π^−$ and J/ψ vertex positions are required to be consistent.

Two kinematic variables are computed in the $e^+e^−$-collision rest frame: the energy difference $\Delta E = E_B - E_{beam}$ and the beam-energy constrained mass $M_{bc} = \sqrt{(E_{beam})^2 - (p_B)^2}$, where E_B and p_B are the energy and momentum of the reconstructed B^0_s candidates and E_{beam} is the beam energy. To improve the ΔE and M_{bc} resolutions, mass-constrained kinematic fits are applied to J/ψ candidates. As $B^0_s\bar{B}^0_s$ pairs are dominant in all $B^0_s\bar{B}^0_s$ events, we focus on the analysis of the $T(5S) \to B^0_s\bar{B}^0_s$ channel. After an initial loose selection, 66% of events have multiple candidates. From these we choose the candidate with an M_{bc} value closest to the nominal B^0_s mass. This requirement has an efficiency of 90% for the correctly reconstructed signal, according to Monte Carlo (MC) simulations. We then select events that lie inside a $3σ$ M_{bc} signal region for $B^0_s\bar{B}^0_s$ with the criterion 5.4041 GeV/c$^2 < M_{bc} < 5.4275$ GeV/c2, which rejects $Y(5S) \to B^0_s\bar{B}^0_s$ events. We use ΔE and the $π^+π^−$ invariant mass $M_{ππ}$ to extract the signal.

To suppress two-jet-like continuum background arising from $e^+e^− \to q\bar{q}$ ($q = u, d, s, c$), we require the ratio of the second to zeroth Fox-Wolfram moments [11] to be less than 0.4. This requirement is optimized by maximizing the figure-of-merit $N_S/\sqrt{N_S + N_B}$, where N_S is the expected number of signal events and N_B is the expected number of background events in the $(\Delta E, M_{ππ})$ signal box. Other major background sources are from BB ($B \equiv B^0_0, B^0_0, B^0_0$, events with one B meson decaying to a final state with a J/ψ (denoted $J/\psi X$). We use a sample of simulated $T(5S)$ decay, with the most recent B meson pair production rates [12] and all known $B \to J/\psi X$ processes, to estimate this background. The fit region is chosen to be $-0.1 \text{ GeV} < \Delta E < 0.2 \text{ GeV}$ and $M_{ππ} < 2.0 \text{ GeV}/c^2$. Background from $B^{*0} \to J/\psi π^+π^−$ peaks near $\Delta E = -0.14 \text{ GeV}$ and is outside the fit region.

A study of the $J/\psi X$ MC simulation is used to categorize these background components according to their origins and shapes. The expected yields in the fit region from each source are: (a) $B^{*0} \to J/\psi l^+l^-$, 2.6 events, with $η' \to 0^0γ$ in which the photon is lost; (b) $B^+ \to J/\psi(K^+, π^+)$, 45.3 events, which enter the fit region after combining with a random pion; and (c) other $J/\psi X$ sources, 240.4 events, that do not peak in ΔE and $M_{ππ}$.

There are negligible correlations between ΔE and $M_{ππ}$ for (b) and (c), which are parameterized by the product of a smooth ΔE function with a threshold $M_{ππ}$ function for the two-dimensional probability density function (PDF). The $B^+ \to J/\psi K^+$ and $B^+ \to J/\psi π^+$ background shapes are treated separately. For (a), the shape and yield are obtained from a dedicated MC simulation and the measured branching fraction [13], where a MC-generated two-dimensional PDF is used, since there are correlations between ΔE and $M_{ππ}$ that are difficult to parameterize analytically. The non-J/ψ background is studied with data from a J/ψ mass ($M_{J/\psi}$) sideband defined as $2.5 \text{ GeV}/c^2 < M_{J/\psi} < 3.4 \text{ GeV}/c^2$, with the regions $-0.200 (-0.800) \text{ GeV}/c^2 < M_{J/\psi} - m_{J/\psi} < 0.048 \text{ GeV}/c^2$ for $J/\psi \to e^+e^- (\mu^+\mu^-)$ excluded. The shape and yield of the non-J/ψ background is obtained by fitting and counting the J/ψ sideband data. In this procedure, the lepton identification requirements are relaxed in the fitting to enhance the statistics. A scale factor is used in the counting; this factor is the MC-determined ratio of the non-J/ψ yield in J/ψ selection window to the yield in the J/ψ sideband region.

Figure 1 shows the data together with the fitting functions described below. We find two peaks in the $M_{ππ}$ spectrum of the events in the ΔE signal region: one for $f_0(980)$ and another around 1.4 GeV/c2. We model the signal $M_{ππ}$ PDF as a coherenst sum of a Flatté function [14] for the $f_0(980)$ resonance and a relativistic Breit-Wigner function for a second f_X resonance with mass $m_0(f_X)$ and width $Γ_0(f_X)$:

$$P(M_{ππ}) = \frac{\rho_{J/ψ} \sqrt{M_{ππ} - M_{ππ}^0}}{m_0(f_X) - i(m_0(f_X) + 2\rho_2^0 - \frac{\rho_1^0}{\rho_2^0}} + ae^{iθ} \frac{\rho_{J/ψ} \sqrt{M_{ππ} - M_{ππ}^0}}{m_0(f_X)} \frac{Γ(f_X)}{m_0(f_X)^2 - M_{ππ}^0 - i(m_0(f_X) + 2\rho_2^0)}^2,$$

where the phase-space factors are $ρ_1 = 2q/M_{ππ}$, $ρ_2 = 2qK/M_{ππ}$, and the mass-dependent widths are $Γ_1 = g_1ρ_1/m_0$ and $Γ_1 = g_2ρ_1/m_0$, $Γ(f_X) = Γ_0(f_X)/q_0(m_0(f_X)/M_{ππ})$. Here q (or q_0) is the pion momentum in the di-pion rest frame where the di-pion mass is $M_{ππ}(m_0)$, while qK is the momentum a kaon would have if the resonance decayed to a kaon pair. The J/ψ momentum in the B^0_s rest
frame, \(p_{J/\psi} \), is a phase-space factor outside the modulus, and a spin factor inside the modulus for \(L = 1 \). The Flatté function follows the BES parameterization \([13]\), with the parameters \(m_0(f_0) = 965 \pm 10 \) MeV/\(c^2 \), \(g_1 = 0.165 \pm 0.018 \) GeV/\(c^4 \), and \(g_2/g_1 = 4.21 \pm 0.33 \). The \(\Delta E \) PDF for signal is parameterized as a sum of two Gaussians with width calibrated using a control sample of \(\Upsilon(5S) \to B_s^0\bar{B}_d^0, B_d^0 \to J/\psi K^{*0}(K^+\pi^-) \) in data.

Contributions from the self-cross-feed (SCF) events in which one or two pion tracks from the signal are mis-reconstructed as well as non-resonant \(B_s^0 \to J/\psi\pi^+\pi^- \) events are also considered. The SCF component is fixed to the MC value of 6.0% of the total signal yield in the fit region; the PDF shape is modeled with a non-parametric histogram. For the non-resonant background, the \(M_{\pi\pi} \) shape is obtained from a phase-space model and the \(\Delta E \) shape is the same as that of the \(J/\psi f_0 \) signal.

An unbinned extended maximum likelihood fit to the data is performed using the sum of all component PDFs. The parameters allowed to vary in the fit are the total resonant signal yield, which includes the SCF contribution, parameters \(a, \theta, m_0(f_X), \Gamma_0(f_X) \), the yield of the non-resonant background, and the yield of other \(J/\psi X \) background. The yield of the \(J/\psi(K, \pi) \) background is fixed to the MC expectation.

We obtain \(98 \pm 15 \) resonant events corresponding to Eq.\([1]\), where 63\(^{+16}_{-10} \) are from \(B_s^0 \to J/\psi f_0(980) \) and 19\(^{+6}_{-1} \) are from \(B_s^0 \to J/\psi f_X \), and the rest are from the interference. The yield for each signal component is calculated using the amplitude squared of that component divided by the coherent sum of all amplitudes, with statistical errors obtained from error propagation using the covariant matrix of relevant parameters. The amplitude and phase parameters are determined to be \(a = 0.47 \pm 0.10 \) and \(\theta = 1.63 \pm 0.98 \) rad. The fitted mass and width for the \(f_X \) component are \(m_0 = 1.405 \pm 0.015^{+0.001}_{-0.007} \) GeV/\(c^2 \) and \(\Gamma_0 = 0.054 \pm 0.033^{+0.014}_{-0.003} \) GeV, where the first error is statistical and the second is systematic. These results are consistent with the \(f_0(1370) \) parameters listed in the PDG \([4]\). Henceforth, we refer to this contribution as \(B_s^0 \to J/\psi f_0(1370) \); however, the possibility of other scalar resonance contributions in this region cannot be excluded with the present statistics. The obtained non-resonant yield is \(4 \pm 12 \), consistent with zero. The yield of other \(J/\psi \) background 262 \(\pm 23 \) is consistent with the MC estimate of 249 events. The \(J/\psi \) helicity distributions, shown in Fig.\([2]\) are consistent with a longitudinally polarized \(J/\psi \) in both \(f_0(980) \) and \(f_0(1370) \) signal regions, as expected for scalar \(\pi\pi \) resonances.

The signal yields, branching fractions, and significances including systematic uncertainties are listed in Table\([\ref{tab:results}]\). The significance is calculated from the log likelihood difference for two parameters in the \(f_0(980) \) case and four parameters in the \(f_0(1370) \) case, when the corresponding signal amplitude is set to zero.

Contributions to the systematic error are obtained by

Table I. The significance is calculated from the log likelihoods including systematic uncertainties are listed in Table\([\ref{tab:results}]\). The significance is calculated from the log likelihood difference for two parameters in the \(f_0(980) \) case and four parameters in the \(f_0(1370) \) case, when the corresponding signal amplitude is set to zero.

Fig. 1: Data fit projections to \(M_{\pi\pi} \) for (a) \(-79.7 \) MeV < \(\Delta E < -19.7 \) MeV, and to \(\Delta E \) for (b) \(0.8 \) GeV/\(c^2 < M_{\pi\pi} < 1.16 \) GeV/\(c^2 \) and (c) \(1.3 \) GeV/\(c^2 < M_{\pi\pi} < 1.5 \) GeV/\(c^2 \). The total PDF is shown with a solid line. The dash-dotted curves represent the total background, the dashed curves show other \(J/\psi \) background, and the dotted curves are the non-resonant component.

Fig. 2: The cosine of the angle \(\theta_{hel} \) between \(t^+ \) and the direction opposite to that of the \(B_s^0 \) in the \(J/\psi \) rest frame. \(\cos(\theta_{hel}) \) is projected in the \(\Delta E \) signal region and \(f_0(980) \) and \(f_0(1370) \) signal regions as \(0.8 \) GeV/\(c^2 < M_{\pi\pi} < 1.16 \) GeV/\(c^2 \) (left) and \(1.3 \) GeV/\(c^2 < M_{\pi\pi} < 1.5 \) GeV/\(c^2 \) (right). The expected distributions from the fit assuming a longitudinally polarized \(J/\psi \), which would result from a \(B_s^0 \to J/\psi + \) scalar decay, are superimposed. The curves follow the convention in Fig.\([1]\).
We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and SINET3 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); MEST, NRF, NSDC of KISTI, and WCU (Korea); MNI Sw (Poland); MES and RFAEE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

varying each fixed parameter by its error and are summarized in Table 11. Apart from the $N_{B_s B_s}$ normalization, the largest systematic effect arises from the uncertainties of the Flatté parameters for the $f_0(980)$ lineshape, where the parameters are varied according to errors in [15]. For the signal ΔE shape, the error on the mean value is determined from the beam energy calibrated with $\Upsilon(5S) \rightarrow \Upsilon(1S) \pi \pi$ and $B_s \rightarrow D_s \pi$, and the error on the width is determined from the control sample. The yields of the $B_s \rightarrow J/\psi \eta'$ and $B^+ \rightarrow J/\psi(K^+, \pi^+)$ components are varied according to the experimental errors on their branching fractions. Finally, the non-J/ψ background parameters are varied according to the results of the J/ψ sideband study. Other background shape uncertainties are negligible.

In summary, we report the first observation of $B_s^0 \rightarrow J/\psi f_0(980)$ and the first evidence for $B_s \rightarrow J/\psi f_0(1370)$. The measured $B_s^0 \rightarrow J/\psi f_0(980)$ branching fraction is in agreement with the estimate $1.3 \times 10^{-4} \lesssim B(B_s^0 \rightarrow J/\psi f_0(980); f_0(980) \rightarrow \pi^+ \pi^-) \lesssim 3.2 \times 10^{-4}$. The signal for $B_s^0 \rightarrow J/\psi f_0(1370)$ has a significance of 4.2σ. This mode represents a new CP channel that can be used to study B_s^0 mixing properties.

Note added: While preparing the final version of this manuscript, we became aware of [arXiv:1102.026], which reports similar results for $B_s^0 \rightarrow J/\psi f_0(980)$.

TABLE I: Summary of signal yields, significances, and product branching fractions $\mathcal{B}(B^0_s \rightarrow J/\psi F; F \rightarrow \pi^+ \pi^-)$, where $F = f_0(980)$ or $f_0(1370)$.

Mode	Yield	Significance
$B^+_s \rightarrow J/\psi f_0(980)$	63^{+15}_{-10}	8.4σ
$B^0_s \rightarrow J/\psi f_0(1370)$	19^{+6}_{-4}	4.2σ

$\mathcal{B}(B^0_s \rightarrow J/\psi F; F \rightarrow \pi^+ \pi^-)$

(1.16\pm0.31(stat.)\pm0.26(syst.)\pm0.18(N_{B_s} B_{\pi}^{(*)}))(\times10^{-4})

(0.34\pm0.14(stat.)\pm0.03(syst.)\pm0.08(N_{B_s} B_{\pi}^{(*)}))(\times10^{-4})

TABLE II: Relative systematic errors (in %) for $\mathcal{B}(B^0_s \rightarrow J/\psi F; F \rightarrow \pi^+ \pi^-)$.

Source	$\mathcal{B}(F = f_0(980))$	$\mathcal{B}(F = f_0(1370))$
ΔE shape	1.0	+0.8, −0.6
$f_0(980)$ shape	+12.4, −13.6	+8.9, −5.3
Background parameters	+1.9, −1.7	+1.0, −0.4
Track reconstruction	1.3	
Lepton identification	2.6	
Pion identification	1.6	
$\mathcal{B}(J/\psi \rightarrow l\bar{l})$	0.7	
$f_{B_s B_s}$	2.0	
$N_{B_s B_s}^{(*)}$	+22.4, −15.5	
Total	+26.0, −21.1	+24.5, −16.8

[1] T. Aaltonen et al. [CDF Collaboration], Phys. Rev. Lett. 100, 161802 (2008). V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 101, 241801 (2008).
[2] P. Colangelo, F. De Fazio and W. Wang, Phys. Rev. D 81, 074001 (2010).
[3] S. Stone and L. Zhang, Phys. Rev. D 79, 074024 (2009). K. M. Ecklund et al. [CLEO Collaboration], Phys. Rev. D 80, 052009 (2009).
[4] K. Nakamura et al. [Particle Data Group], J. Phys. G 37, 075021 (2010).
[5] O. Leitner, J. P. Dedonder, B. Loiseau, and B. El-Bennich, Phys. Rev. D 82, 076006 (2010).
[6] S. Kurokawa and E. Kikutani, Nucl. Instr. and. Meth. A 499, 1 (2003), and other papers included in this volume.
[7] M. Artuso et al. [CLEO Collaboration], Phys. Rev. Lett. 95, 261801 (2005).
[8] U. Drutskoy et al. [Belle Collaboration], Phys. Rev. Lett. 98, 052001 (2007).
[9] R. Louvot et al. [Belle Collaboration], Phys. Rev. Lett. 102, 021801 (2009).
[10] A. Abashian et al. [Belle Collaboration], Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002).
[11] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[12] U. Drutskoy et al. [Belle Collaboration], Phys. Rev. D 81, 112003 (2010).
[13] I. Adachi et al. [Belle Collaboration], arXiv:0912.1434 [hep-ex].
[14] S. M. Flatte, Phys. Lett. B 63, 224 (1976).
[15] M. Ablikim et al. [BES Collaboration], Phys. Lett. B 607, 243 (2005).