Ganoderma ovisporum sp. nov. (Polyporales, Polyporaceae) from Southwest China

Hong-De Yang‡,§,∥, Yong Ding‡, Ting-Chi Wen∥§,♣, Kalani Kanchana Hapuarachchi∥§,∥,♣, De-Ping Wei∥§,∥,♣,∥

‡ Key Laboratory of Forest Biotechnology in Yunnan, Southwest Forestry University, Kunming, China
§ The Engineering Research Center of Southwest Bio–Pharmaceutical Resources Ministry of Education, Guizhou University, Guiyang, China
∥ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
♣ State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, China

Abstract

Background

Ganoderma is a white-rot fungus with a cosmopolitan distribution and includes several economically important species. This genus has been extensively researched due to its beneficial medicinal properties and chemical constituents with potential nutritional and therapeutic values. Traditionally, species of Ganoderma were identified solely based on morphology; however, recent molecular studies revealed that many morphology-based species are conspecific. Furthermore, some type species are in poor condition, which hinders us from re-examining their taxonomic characteristics and obtaining their molecular data. Therefore, new species and fresh collections with multigene sequences are needed to fill the loopholes and to understand the biological classification system of Ganoderma.
New information

In a survey of *Ganoderma* in Guizhou Province, southwest China, we found a new species growing on soil and, herein, it was identified by both morphology and phylogenetic evidence. Hence, we propose a new species, *Ganoderma ovisporum* sp. nov. This species is characterised by an annual, stipitate, laccate basidiome, with a red–brown to brownish-black pileus surface and pale white pores, duplex context, clavate pileipellis terminal cells, trimitic hyphal system, ellipsoid basidiospores with dark brown eusporium bearing coarse echinulae and an obtuse turgid appendix. Phylogenetic analyses confirmed that the novel species sisters to *G. sandunense* with high bootstrap support. Furthermore, the RPB2 sequence of *G. sandunense* is supplied for the first time. Notably, we re-examined the type specimen of *G. sandunense* and provide a more precise description of the duplex context, pileipellis terminal cells and basidia. All species collected are described and illustrated with coloured photographs. Moreover, we present an updated phylogeny for *Ganoderma*, based on nLSU, ITS, RPB2 and TEF1-α DNA sequence data and species relationships and classification are discussed.

Keywords

one new species, *Ganoderma*, morphology, phylogeny, taxonomy

Introduction

Ganodermataceae Donk is a large family of Polyporales and *Ganoderma* P. Karst is the most speciose genus in the family (Hapuarachchi et al. 2016a, Hapuarachchi et al. 2017, He et al. 2019). Before the molecular era, Polyporales with double-walled basidiospores with a pigmented endosporium ornamented with columns or ridges and a smooth hyaline exosporium were usually placed in Ganodermataceae (Moncalvo and Ryvarden 1997). This family is comprised of ten genera: *Amauroderma* Murrill, *Amaurodermellus* Costa-Rezende, Drechsler-Santos & Góes-Neto, *Foraminispora* Robledo, Costa-Rezende & Drechsler-Santos, *Furtadomyces* Leonardo-Silva, Cotrim & Xavier-Santos, *Ganoderma* P. Karst, *Haddowia* Steyaert, *Humphreyea* Steyaert, *Sanguinoderma* Y.F. Sun, D.H. Costa & B.K. Cu, *Tomophagus* Murrill and *Trachyderma* Imazeki (Richter et al. 2014, Costa-Rezende et al. 2017, Costa-Rezende et al. 2020, Sun et al. 2020, Leonardo-Silva et al. 2022). However, Ganodermataceae has been treated as a synonym of Polyporaceae (Justo et al. 2017). There have been several discrepancies regarding the treatment of *Ganoderma* (2017); in particular, the studied collection of Ganodermatoid specimens was insufficient to establish a stable taxonomic and systematic placement in a phylogenetic context because some herbarium materials have been destroyed or cannot be found, lacking molecular and morphological data and the characterised double-walled basidiospores in Ganodermataceae are quite different from those in Polyporaceae (Cui et al. 2019, Costa-Rezende et al. 2020). In this study, we subsequently followed Justo et al.
(2017) since the phylogenetic analyses are more convincing and objective than morphological results.

Ganoderma was introduced by Karsten (1881) and typified by _G. lucidum_ (Curtis) P. Karst. (syn. _Polyporus lucidus_; bas. _Boletus lucidus_ Curtis), a species with stipitate and laccate white-rot Polypore fungi (Karsten 1881, Pegler and Young 1973, Moncalvo and Ryvarden 1997, Keypour et al. 2020). The membership of _Ganoderma_ has been subsequently extended, including species with sessile, non-laccate basidiocarps and pigmented, ellipsoid to ovoid, ornamented, double-walled basidiospores (Murrill 1902, Pegler and Young 1973, Steyaert 1980, Cao and Yuan 2013, Papp 2016). Moncalvo and Ryvarden (1997) accepted 148 _Ganoderma_ species before the molecular era, of which 65% are recognised as only one or some species, but represented different morphology-based species (Ryvarden 2000, Smith and Sivasithamparam 2003, Torres-Torres and Guzmán-Dávalos 2012). Recently, 180 species of _Ganoderma_ were accepted, whereas nearly 500 species are estimated worldwide, of which 60% are awaiting discovery (He et al. 2019, He et al. 2022).

Despite their economic importance, the taxonomy of _Ganoderma_ remains uncertain due to a slew of confusion and misconceptions. During the past several decades, many species of _Ganoderma_ have been delimited, based on the presence of stipe, laccate or non-laccate, the context of pileus and the microscopic characteristics of basidiospores (Chang and Chen 1984, Seo and Kitamoto 1998, Wu et al. 2004, Torres-Torres and Guzmán-Dávalos 2012, Zhou et al. 2016, Tchotet-Tchoumi et al. 2019). In general, it is difficult and subjective to identify _Ganoderma_ species solely based on morphological evidence, as their phenotypic traits are sensitive to extrinsic factors, such as illumination, ventilation and humidity (Szedlay et al. 1999, Demoulin 2010, Yang and Feng 2013, Hapuarachchi et al. 2019a). Therefore, morphology-based identification brought _Ganoderma_ into a state of taxonomic chaos (Smith and Sivasithamparam 2003, Coetzee et al. 2015, López-Peña et al. 2019, Náplavová et al. 2020). Compared to morphology, molecular methods have turned out to be more effective in resolving intraspecific relationships with _Ganoderma_ (Yamashita and Hirose 2016, Fryssouli et al. 2020, Gunnels et al. 2020, Jiang et al. 2021, Shen et al. 2021). Phylogenetic markers, such as IGS, nrSSU, ITS, nrLSU, mtSSU, β-TUB, RPB1, RPB2 and TEF1-α sequences, were independently or conjointly used to infer intraspecific relationships within _Ganoderma_ (Cao et al. 2012, Zhou et al. 2015, Xing et al. 2018, Hapuarachchi et al. 2019a, Liu et al. 2019, Ye et al. 2019). In particular, the multilocus phylogeny incorporating sequences from ITS, nrLSU, TEF1-α and RPB2 was applied to give a phylogenetic framework for species delimitation in this genus (Xing et al. 2018, Ye et al. 2019, Tchotet-Tchoumi et al. 2019, Wu et al. 2020, He et al. 2021, Cao et al. 2021). Furthermore, some researchers steered using a combination of morphological, chemotaxonomic and molecular strategies to elevate a steady taxonomy for _Ganoderma_ and resolve taxonomic ambiguities (Richter et al. 2014, Welti et al. 2015).

Ganoderma has a cosmopolitan distribution and most of the species are known from tropical and sub-tropical regions (He et al. 2019). This fungus grows as saprobes or parasites on deciduous and coniferous trees and some of them are considered as plant pathogens that cause basal stem butt rot and root rot (Pinruan et al. 2010, Ding et al. 2020,
Species of *Ganoderma* play an important role in the nutrient mobilisation process of woody plants. They possess lignocellulose-decomposing enzymes with effective mechanisms for bioenergy production and bioremediation (Coetzee et al. 2015, Kües et al. 2015). In the natural environment, a basidiome has the ability to produce innumerable basidiospores that can be spread by air- or rain-driven and insect vectors (Tuno 1999, Kadowaki et al. 2011, Almaguer et al. 2014, Sadyś et al. 2014). The infection of a plant host by pathogenic *Ganoderma* species starts with the landing of the basidiospore on the wound trunk or root, followed by germination and colonisation (Rees et al. 2009, Rees et al. 2012, Hushirarian et al. 2013, Ayin et al. 2019). Basal stem rot caused by *G. boninense* is the main disease that leads to yield losses and death of oil palm, which account for 50% of substantial economic losses to Southeast Asia’s palm oil industry (Hushirarian et al. 2013, Lee and Chang 2016, Midot et al. 2019). Red roots caused by *G. philippii* are a serious disease of commercial *Acacia mangium* in Malaysia and India (Glen et al. 2014). Since different *Ganoderma* species produce different characteristics and pathogenicity, species identification is difficult, which in turn, leads to significant difficulty in disease control (Wong et al. 2012).

Ganoderma was first reported from China by Teng (1934), with four species including *G. lucidum* and one variety. More than 80 species have been introduced so far and several extensive studies have been carried out to investigate *Ganoderma* diversity in China, with new species being introduced (Zhao and Zhang 2000, Wu et al. 2004, Dai et al. 2009, Cao et al. 2012, Hapuarachchi et al. 2015, Hapuarachchi et al. 2018c, Wu et al. 2019, Liu et al. 2019). However, the majority of *Ganoderma* species reported from China have not been subjected to systematic studies (Wang 2012, Hapuarachchi et al. 2016b, Hapuarachchi et al. 2018a, Wang et al. 2019). The objective of the present study is to introduce a novel *Ganoderma* species, from Guizhou Province, southwest China, with descriptions, colour photographs, illustrations and a multigene phylogeny.

Materials and methods

Ganoderma samples were collected from Sandong Township, Sandu Shuizu Autonomous County, Guizhou Province, China, during the rainy season of July 2020. They were dried and preserved as outlined in Hapuarachchi et al. (2019b). The materials used in this study were deposited at Guizhou University (GACP) and the Herbarium of Kunming Institute of Botany Academia Sinica (HKAS).

Morphological study

Macro-morphological characteristics were described, based on dried material and the photographs provided here. Colour codes (e.g. 8E8) are from Kornerup and Wanscher (1978). Pileus was sectioned with a razor blade and mounted in 5% potassium hydroxide (KOH) solution. Pileipellis, hyphal systems of pileus, basidia and basidiospores were observed and captured using a compound microscope (Leica DM2500) equipped with a camera. Images were measured with Leica Application Suite X (LAS X). In the description section, the number, length, width and length/width ratio of the measured basidiospores
are denoted with symbols n, L, W and Q, respectively. The Faces of Fungi number was registered by following Jayasiri et al. (2015).

DNA Extraction, PCR and Sequencing

Genomic DNA was extracted from dried specimens using an HP Fungal DNA Kit (OMEGA, USA) following the protocol of the manufacturer. PCR amplification was performed in a final volume of 50 µl reaction mixture that contained 25 µl 2x BenchTopTM Taq Master Mix (Biomigas), 19 µl distilled water, 2 µl (10 µM) of each primer and 2 µl template DNA. The large subunit ribosomal RNA (LSU), the internal transcribed spacer (ITS), the translation elongation factor (TEF1-α) and the RNA polymerase II second largest subunit (RPB2) were amplified with primer pairs LROR/LR5 (Vilgalys and Hester 1990), ITS5/ITS4 (White et al. 1990), EF1-983F/EF1-1567R (Rehner and Buckley 2017) and RPB2-5f/RPB2-7cR (Liu et al. 1999). PCR amplification reactions were performed with a T100 Thermal Cycler (T100™, Bio-Rad, USA). The procedures used for amplification of ITS were as follows: initial denaturation at 95°C for 3 min, followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 58°C for 30 s, elongation at 72°C for 1 min and a final extension at 72°C for 5 min. The cycling conditions of LSU, TEF1-α and RPB2 consisted of initial denaturation at 95°C for 3 min, followed by 35 cycles of denaturation at 95°C for 30 s, annealing at 56°C for 30 s, elongation at 72°C for 1.3 min and a final extension at 72°C for 10 min. PCR products were verified by 1% agarose gel electrophoresis and sent to Sangon Biotech (Shanghai, China) for purification and sequencing.

Sequence Alignment and Phylogenetic Analysis

The raw sequences generated in this study were assembled with ChromasPro (2.1.8). Megablast analysis was conducted using the assembled ITS and RPB2 sequences as the query to check the closely-related taxa. The taxa used in our phylogenetic analysis were selected, based on megablast results and related publications (Table 1). Alignments were performed using MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html, Katoh and Standley 2013). The resulting alignments were improved manually when necessary, using BioEdit v. 7.0.5.2 (Hall 1999). The introns in TEF and RPB2 were removed, based on the published CDS sequence in GenBank. The aligned ITS1, 5.8S, ITS2, LSU, TEF1-α and RPB2 sequences were concatenated with SequenceMatrix v.1.7.8 (Vaidya et al. 2011).

Maximum Likelihood (ML) analysis was performed using RAxMLHPC2 (Stamatakis 2014) on the CIPRES Science Gateway v. 3.3 (Miller et al. 2010). The phylogenetic tree was inferred from four gene-partition analyses, using the GTRCAT model with 25 categories, with settings that the number of bootstrap replicates to 1,000. PartitionFinder v.2 (Lanfear et al. 2017) was used to estimate the best-fit model of nucleotide evolution, with the dataset subdivided into 10 data partitions (TEF 1st codon positions, TEF 2nd codon positions and TEF 3rd codon positions; RPB2 1st codon positions, RPB2 2nd codon positions and RPB2 3rd codon positions; ITS1; 5.8S; ITS2; LSU) and the following settings: branch lengths = unlinked, models = all, model_selection = AICc and search = greedy.

Bayesian Inference (BI) analysis was performed in the CIPRES Science Gateway using MrBayes on XSEDE v. 3.2.7a. The GTR+F+I+G4 (TEF 1st codon positions, TEF 2nd codon
positions, RPB2 1st codon positions, RPB2 2nd codon positions, LSU and 5.8S), GTR+F+G4 (TEF 3rd codon positions), GTR+F+G4 (RPB2 2nd codon positions), SYM+G4 (ITS1 and ITS2) were selected as the best model. Two runs of four chains were run until the average standard deviation of split frequencies dropped below 0.01, which occurred after 2,360,000 generations. Tree was sampled every 1000th generation and the chain temperature was decreased to 0.05 to improve convergence. The convergence of the runs was checked using TRACER v.1.6 (Rambaut et al. 2013). The first 25% of the resulting samples were discarded as burn-in and posterior probabilities were calculated from the remaining sampled trees (Larget and Simon 1999). In both ML and BY analyses, Foraminispora concentrica (Cui 12644) and Foraminispora yinggelingensis (Cui 13618) were selected as the outgroup (Sun et al. 2020). ML bootstrap values and BY posterior probabilities greater than or equal to 70% and 0.95, respectively, were considered significant support. The phylogenetic tree was visualised with FigTree version 1.4.0 available at http://tree.bio.ed.ac.uk/software/figtree/ (Rambaut 2012).

Table 1.
The species, specimens and GenBank accession numbers of sequences used in this study

Species	Voucher	Geographic origin	GenBank accession numbers	References			
			ITS	LSU	EF-1	RPB2	
G. adspersum	SFC20141001-16	Korea	KY364251	–	KY393284	KY393270	Jargalmaa et al. (2017)
G. adspersum	SFC20160115-20	Korea	KY364254	–	KY393286	KY393272	Jargalmaa et al. (2017)
G. angustisporum	Cui 14578	China	MG279171	–	MG367564	–	Xing et al. (2018)
G. angustisporum	Cui 13817 (T)	China	MG279170	–	MG367563	MG367507	Xing et al. (2018)
G. applanatum	SFC20150930-02	Korea	KY364258	–	KY393288	KY393274	Jargalmaa et al. (2017)
G. applanatum	Wei 5787a	China	KF495001	–	KF494978	–	GenBank
G. aridicola	Dai 12588 (T)	Africa	KU572491	–	KU572502	–	Xing et al. (2016)
G. australiae	DHCR417 (HUEFS)	Australia	MF436676	MF436673	MF436678	–	Costa-Rezende et al. (2017)
G. austrole	ZRL120151500	China	LT716076	KY419890	KY419088	–	Zhao et al. (2017)
G. boninense	WD 2085	Japan	KJ143906	–	KJ143925	KJ143965	Zhou et al. (2015)
G. boninense	WD 2028	Japan	KJ143905	KU220015	KJ143924	–	Zhou et al. (2015)
Species	Voucher	Geographic origin	GenBank accession numbers	References			
-----------------	--------------	-------------------	---------------------------	---			
			ITS	LSU	EF-1	RPB2	
G. carnosum	MUCL 49464	France	MG706220 MG706168 MG837838 MG837793	GenBank			
G. carnosum	GC011ND	Slovakia	MK415266 MK995647				
G. carocalcareum	DMC 322 (T)	Cameroon	EU089969 – – –	Náplavová et al. (2020)			
G. carocalcareum	Dai 16339	China	MG279176 – MG367568 MG367511	Xing et al. (2018)			
G. carocalcareum	Dai 16336 (T)	China	MG279173 – MG367565 MG367508	Xing et al. (2018)			
G. chaiceum	URM80457	Brazil	JX310812 JX310826 – –	GenBank			
G. concinnum	Robledo 3235	–	MN077523 MN077557 – –	Costa-Rezende et al. (2020)			
G. concinnum	Robledo 3192	–	MN077522 MN077556 – –	Costa-Rezende et al. (2020)			
G. curtisii	CBS 100131	USA	JQ781848 – KJ143926 KJ143966	Zhou et al. (2015)			
G. curtisii	CBS 100132	USA	JQ520164 – KJ143927 KJ143967	Zhou et al. (2015)			
G. destructans	CBS 139793 (T)	South Africa	NR_132919 NG_058157 – –	Coetzee et al. (2015)			
G. destructans	Dai 16431	South Africa	MG279177 – MG367569 MG367512	Xing et al. (2018)			
G. dianzhongense	L4331(T)	China	MW750237 – – MZ467043	He et al. (2021)			
G. dianzhongense	L4737	China	MW750238 – – MW839000	He et al. (2021)			
G. ecuadorense	URM 89449	Brazil	MK119828 MK119908 MK121577 MK121536	Sun et al. (2020)			
G. ecuadorense	URM 89441	Brazil	MK119827 MK119907 MK121576 MK121534	Sun et al. (2020)			
G. eickeri	CMW50325	Africa	MH571689 – MH567290 –	Tchotet-Tchoumi et al. (2019)			
G. eickeri	CMW 49692 (T)	Africa	NR_165524 – – –	Tchotet-Tchoumi et al. (2019)			
G. ellipsoideum	MFLU 19-2221	China	MN398339 MN428664 MN423157	GenBank			
G. ellipsoideum	GACP 14080966 (T)	China	NR_160617 – – –	Hapuarachchi et al. (2018c)			
Species	Voucher	Geographic origin	GenBank accession numbers	References			
--------------------	---------------	-------------------	---------------------------	--------------------------			
			ITS	LSU	EF-1	RPB2	
G. enigmaticum	Dai 15971	South Africa	KU572487	–	KU572497	MG367514	Xing et al. (2016)
	Dai 15970	South Africa	KU572486	–	KU572496	MG367513	Xing et al. (2016)
G. esculentum	L4935 (T)	China	MW750242	–	–	MW839004	He et al. (2021)
	L4946	China	MW750243	–	–	–	He et al. (2021)
G. flexipes	VT17102301	Viet Nam	MK345430	MK346830	–	–	Hapuarachchi et al. (2019b)
G. flexipes	Wei5491	China	JQ781850	–	–	KJ143968	Cao et al. (2012)
G. gibbosum	SFC20150918-08	Korea	KY364271	–	KY393291	KY393278	Jargalmaa et al. (2017)
	SFC20150918-03	Korea	KY364270	–	KY393290	KY393277	Jargalmaa et al. (2017)
G. hoehnelianum	Dai 11995	China	KU219988	KU220016	MG367550	MG367497	Xing et al. (2018)
	Cui 13982	China	MG279178	–	MG367570	MG367515	Xing et al. (2018)
G. knysnamense	CMW 47755	South Africa	NR_165523	–	MH567261	–	Tchotet-Tchoumi et al. (2019)
	CMW49688	Africa	MH571683	–	MH567266	–	Tchotet-Tchoumi et al. (2019)
G. leucocontextum	Dai 15601	China	KU572485	–	KU572495	MG367516	Xing et al. (2016)
G. leucocontextum	GDGM 40200 (T)	China	KM396272	–	–	–	Li et al. (2015)
G. lingzhi	Dai12574 (IFP)	China	KJ143908	–	JX029977	JX029981	Zhou et al. (2015)
G. lingzhi	Cui9166	China	KJ143907	–	JX029974	JX029978	Cao et al. (2012)
G. lobatum	JV 1008/31	USA	KF605671	–	MG367553	MG367499	Xing et al. (2018)
G. lobatum	JV 1008/32	USA	KF605670	–	MG367554	MG367500	Xing et al. (2018)
G. lucidum	BR 4195	France	KJ143909	–	–	KJ143969	Zhou et al. (2015)
G. lucidum	K 175217	Italy	KJ143911	–	KJ143929	KJ143971	Zhou et al. (2015)
G. lucidum	Cui 14405	China	MG279182	–	MG367574	MG367520	Xing et al. (2018)
G. lucidum	CCBAS 707	Europe	MG706231	MG706177	MG837846	MG837805	GenBank
Species	Voucher	Geographic origin	GenBank accession numbers	References			
-------------------	----------	-------------------	---------------------------	------------------------------			
G. martinicense	UMNTN1	USA	MG654178	Loyd et al. (2018)			
	He 2240	USA	MG279163	Xing et al. (2018)			
G. mbrekobenum	UMN7-4 GHA	Ghana	KX000898, KX000899	Crous et al. (2016)			
	UMN7-3 GHA	Ghana	KX000896, KX000897	Crous et al. (2016)			
G. meredithiae	UMNFL50	USA	MG654103, MG754735, MG754862	Loyd et al. (2018)			
	CBS 271.88 (T)	USA	NR_164435, NG_067432	Vu et al. (2019)			
G. mexicanum	MUCL: 55832	Martinique	MK531815	Cabarroi-Hernández et al. (2019)			
	MUCL: 49453	Martinique	MK531811	Cabarroi-Hernández et al. (2019)			
G. mizoramense	UMN-MZ5	India	KY643751	Crous et al. (2017)			
	UMN-MZ4 (T)	India	KY643750	Crous et al. (2017)			
G. multipileum	Cui 14373	China	MG279184, MG367575, MG367521	Xing et al. (2018)			
	Dai 9447	China	KJ143914, KJ143932, KJ143973	Zhou et al. (2015)			
G. multiplicatum	Dai 12320	China	KU572490, KU572500, KU572499	Xing et al. (2016)			
	Dai 13710	China	KU572489, KU572499	Xing et al. (2016)			
G. mutabile	Yuan2289	China	JN383977	Cao and Yuan (2013)			
	CLZhao 982	China	MG231527	Cao and Yuan (2013)			
G. nasalaense	LPDR17060212	Laos	MK345442, MK346832	Hapuarachchi et al. (2019b)			
Species	Voucher	Geographic origin	GenBank accession numbers	References			
------------------	---------------	-------------------	---------------------------	-----------------------------			
			ITS	LSU	EF-1	RPB2	
G. nasalaense	GACP 17060211	Laos	NR_164048	NG_066439	–	–	Hapuarachchi et al. (2019b)
	(T)		MG279187	–	MG367577	MG367523	Xing et al. (2018)
G. orbiforme	Cui 13880	China	MG279186	–	MG367576	MG367522	Xing et al. (2018)
G. orbiforme	Cui 13918	China	MG279186	–	MG367576	MG367522	Xing et al. (2018)
G. oregonense	JV 0108/93	USA	KF605620	–	MG367558	MG367504	Xing et al. (2018)
G. oregonense	CBS 265.88	USA	JQ781875	–	KJ143933	KJ143974	Zhou et al. (2015)
G. ovisporum	HKAS123193 (T)	China	MZ519547	MZ519545	–	MZ547661	This study
G. ovisporum	GACP20071602	China	MZ519548	MZ519546	–	MZ547662	This study
G. perzonatum	URM 89437	Brazil	MK119630	–	MK121579	–	Sun et al. (2020)
G. perzonatum	SP445990	Brazil	KJ792750	–	–	–	GenBank
G. pfeifferi	LGAM 336-ACAM	Greece	MG706232	MG706178	MG837847	MG837806	GenBank
G. pfeifferi	Dai 12683	Greece	MG279165	–	MG367560	–	Xing et al. (2018)
G. philippii	Cui 14444	China	MG279189	–	MG367579	MG367526	Xing et al. (2018)
G. philippii	MFLU 19-2223	Thailand	MN401411	MN398327	MN423175	–	GenBank
G. podocarpense	QCAM6422	Ecuador	MF796661	MF796660	–	–	GenBank
G. polychromum	330OR	USA	MG654196	–	MG754742	–	Loyd et al. (2018)
G. polychromum	UMNOR3	USA	MG654204	–	MG754744	–	Loyd et al. (2018)
G. ravenelii	MS187FL	USA	MG654211	–	MG754745	MG754865	Loyd et al. (2018)
G. ravenelii	150FL	USA	MG654207	–	–	–	Loyd et al. (2018)
G. resinaceum	MUCL: 38956	Netherlands	MK554772	–	MK554723	MK554747	Cabarroli-Hernández et al. (2019)
G. resinaceum	MUCL: 52253	France	MK554786	–	MK554737	MK554764	Cabarroli-Hernández et al. (2019)
G. ryvardenii	GanoTK41	Cameroon	JN105699	–	–	–	King et al. (2012)
Species	Voucher	Geographic origin	GenBank accession numbers	References			
------------------	--------------------	-------------------	---------------------------	-----------------------------------			
G. ryvardenii	GanoTK43	Cameroon	JN105695 – – –	Kinge et al. (2012)			
G. sandunense	GACP18012502	China	MK345451 – – – MZ547664	Hapuarachchi et al. (2019b)			
G. sandunense	GACP18012501	China	NR_164049 – – – MZ547663	Hapuarachchi et al. (2019b)			
G. sessile	228DC	USA	MG654319 – – – MG754750 MG754869	Loyd et al. (2018)			
G. sessile	JV 1209/27	USA	KF605630 – – – KJ143937 KJ143976	Zhou et al. (2015)			
G. shandongense	Dai 15791	China	MG279192 – – – MG367582 MG367528	Xing et al. (2018)			
G. shandongense	Dai 15787	China	MG279191 – – – MG367581 MG367527	Xing et al. (2018)			
G. shanxiense	HSA 539	China	MK764269 – – – MK789681	Liu et al. (2019)			
G. shanxiense	BJTC FM423 (T)	China	MK764268 – – – MK783937 MK783940	Liu et al. (2019)			
G. sichuanense	CGMCC 5.2175 (T)	China	NR_152892 – – – KC662404	Yao et al. (2013)			
G. sinense	Cui 13835	China	MG279193 – – – MG367583 MG367530	Xing et al. (2018)			
G. sinense	Wei 5327	China	KF494998 KF495008 KF494976 MK367529	Xing et al. (2018)			
G. steyaertanum	6-WN-16(M)-A	Indonesia	KJ654461 – – –	Glen et al. (2014)			
G. steyaertanum	V-64-3	Indonesia	KJ654433 – – –	Glen et al. (2014)			
G. stipitatum	MUCL: 52655	French Guiana	MK554770 – – – MK554717 MK554755	Cabarro-Hernández et al. (2019)			
G. stipitatum	MUCL: 43863	Cuba	MK554769 – – – MK554739 MK554745	Cabarro-Hernández et al. (2019)			
G. subamboinense	UMNFL100	USA	MG654373 – – – MG754762	Loyd et al. (2018)			
G. subamboinense	SPC1	Brazil	KU569546 KU570945 – – –	Bolaños et al. (2016)			
G. tenue	GTEN24-1	China	DQ424977 – – –	GenBank			
G. tenue	GTEN24-2	China	DQ424978 – – –	GenBank			
Species	Voucher	Geographic origin	GenBank accession numbers	References			
------------------	---------------	-------------------	---------------------------	-----------------------------			
G. thailandicum	HKAS 104641a	Thailand	MK848682, MK849880, MK875830, MK875832	Luangham et al. (2019a)			
	HKAS 104640a (T)	Thailand	MK848681, MK849879, MK875829, MK875831	Luangham et al. (2019a)			
G. tropicum	Dai 16434	China	MG279194, –, MG367585, MG367532	Xing et al. (2018)			
	KUMCC 18–0046a	Thailand	MH823539, –, –, MH883621	Luangham et al. (2019b)			
G. tsugae	Cui 14112	China	MG279196, –, MG367587, MG367534	Xing et al. (2018)			
	Dai 12760	USA	KJ143920, –, KJ143940, KJ143978	Zhou et al. (2015)			
G. tsugae	UMNFL117	USA	MG654359, –, MG754771, –	Loyd et al. (2018)			
	233FL	USA	MG654367, –, –, MG754873	Loyd et al. (2018)			
G. weberianum	CBS 219.36	Philippines	MH855780, MH867289, MK611974, MK611972	Cabarrooi-Hernández et al. (2019)			
	CBS 128581	Taiwan	MH864975, MH867427, MK636693, MK611971	Cabarrooi-Hernández et al. (2019)			
G. weixiensis	HKAS 100649 (T)	China	NR_166271, NG_067863, MK302442, –	Ye et al. (2019)			
	HKAS 100650	China	MK302445, MK302447, MK302443, –	Ye et al. (2019)			
G. wiroense	UMN-21-GHA	Ghana	KT952363, KT952364, –, –	Crous et al. (2015)			
	MIN 938704 (T)	Ghana	NR_158480, NG_064392, –, –	Crous et al. (2015)			
G. williamsianum	Dai 16809	Thailand	MG279183, –, MG367588, MG367535	Xing et al. (2018)			
	Wei 5032	China	KU219994, KU22024, –, –	Song et al. (2016)			
G. zonatum	FL-03	USA	KJ143922, –, KJ143942, KJ143980	Zhou et al. (2015)			
	FL-02	USA	KJ143921, –, KJ143941, KJ143979	Zhou et al. (2015)			
Taxon treatments

Ganoderma ovisporum H.D. Yang, T.C. Wen, sp. nov.

- IndexFungorum [IF558589](#)
- Faces of fungi number [FoF 10099](#)

Material

Holotype:

a. scientificName: *Ganoderma ovisporum*; kingdom: Fungi; phylum: Basidiomycota; class: Agaricomycetes; order: Polyporales; family: Polyporaceae; genus: *Ganoderma*; country: China; countryCode: CN; stateProvince: Guizhou; county: Sandu Shuizu Autonomous County; locality: Sandong Township; verbatimElevation: 612 m; verbatimLatitude: 25°70′ N; verbatimLongitude: 107°96′ E; year: 2020; month: July; day: 16; habitat: Terrestrial; fieldNotes: Rotten wood, in dry dipterocarp forest and in upper mixed deciduous forest and growing up from soil; recordedBy: Hongde Yang; identifiedBy: Hongde Yang; type: HKAS123193; collectionID: SD2020071601; occurrenceID: HKAS123193

Description

Basidiome annual, stipitate, corky, strongly laccate, becoming lighter when dry. Pileus 3 × 5 cm, up to 0.9 cm thick at the base, applanate, subreniform, upper surface red-brown (8E8) when fresh, becoming brownish-black (6C8) when dry, with slightly concentrically sulcate, radially rugose, irregularly tuberculate bumps and ridges overlying the context. Margin is slightly obtuse, yellow-brown (5D8) or concolorous with the pileus. Pore surface pale white (4A2). Pores nearly round to round, 3–4 per mm, dissepiments thin to slightly thick. Context up to 0.3 cm thick, corky, homogeneous at the periphery, becoming three-layered towards the centre, upper layer creamy-white (6E4), middle layer pale brown (6E4), lower layer brown (6D1), without concentric growth zone, black melanoid band absent. There is a line of independent or confluent, laterally arranged tubes inserted between the upper and middle layers of the context. Tubes up to 0.6 cm long, brownish (6E7). Stipe slightly darker than pileus, lateral, subcylindrical, 4–7 cm long, up to 1 cm in diam. Basidia not observed. Basidiospores (12.5–)13.0–13.5–15.0(–15.5) × (9.0–)9.5–10.0–10.5(–11.5) μm (Qₘ = 1.3, Q = 1.0–1.7, n = 30, with myxosporium), ellipsoid to broadly ellipsoid, ovoid, brown, double-walled, with a dark brown eusporium bearing coarse echinulae and an obtuse turgid appendix, overlaid by a hyaline, smooth myxosporium. Pilepellis hymeniodermiformic, yellowish-brown, terminal cells clavate, entire, brown (5D6), thick-walled, hollow, 18–29
× 6–11 µm. Hyphal system trimitic, generative hyphae 3.5–6 µm in diam., hyaline, colourless, thin-walled with clamp connections; skeletal hyphae 3–6 µm in diam., thick-walled to nearly solid, sometimes branched; binding hyphae 1.5–3 µm in diam., thick-walled, nearly solid, colourless (Fig. 1).

Etymology

Referring to the ovoid basidiospores.

Notes

Ganoderma ovisporum clusters with *G. sandunense* in the multigene phylogenetic tree (Fig. 3), the former is similar to the latter by having 98% and 97% homology in ITS and
RPB2 sequence data, respectively. These two species are similar in having wide ovoid basidiospores and inhabiting deciduous coniferous mixed forests. However, *G. ovisporum* differs from *G. sandunense* in having inconspicuously concentric rings near the pileus margin, lateral stipe and shorter pileipellis terminal cells (18–29 × 6–11 μm), while conspicuously concentric zones and vertically-arranged ridges or grooves, central stipe and longer pileipellis terminal cells (50–95 × 8–13.5 μm) have been observed in the latter. By considering both phylogenetic evidence and morphological observations, we conclude our collection is a new species in *Ganoderma*.

Ganoderma sandunense Hapuar., T.C. Wen & K.D. Hyde

- IndexFungorum [IF555784](#)
- Faces of fungi number [FoF05659](#)

Material

Holotype:

- scientificName: *Ganoderma sandunense*; kingdom: Fungi; phylum: Basidiomycota; class: Agaricomycetes; order: Polyporales; family: Polyporaceae; genus: *Ganoderma*; country: China; countryCode: CN; stateProvince: Guizhou; county: Sandu Shuizu Autonomous County; verbatimElevation: 590 m; verbatimLatitude: 24°54′ N; verbatimLongitude: 107°53′ E; year: 2018; month: January; day: 25; habitat: Terrestrial; fieldNotes: Rotten wood, growing up from the soil; recordedBy: Ting-Chi Wen; identifiedBy: Kalani Hapuarachchi; type: GACP18012501; collectionID: GACP18012501; occurrenceID: GACP18012501

Description

Basidiome annual, stipitate, corky, strongly laccate. Pileus hemispherical, projecting 8 cm, up to 4 cm wide and 1.5 cm thick. Pileal surface reddish-black (8E8) to brownish-black (6C8), with distinctly concentrically sulcate, vertically-arranged ridges or grooves. Margin obtuse, concolorous with the pileus. Pore surface whitish-yellow (4A2) to light brown (6D4). Pores nearly circular, 3–5 per mm, dissepiments thin. Context up to 0.5 cm thick, inconspicuous triplex, fawn (5C5) to creamy-white (5A1) to dark brown (5E6), without concentric growth zone, black melanoid band absent. There is a line of independent or confluent, laterally-arranged tubes inserted between the upper and middle layer of the context. Tubes up to 1.2 cm long, dark brown (7F8). Stipe slightly darker than pileus, central, subcylindrical, up to 8 cm, 0.5 cm in diam. Basidia broadly ellipsoid, 21–25.5 × 13.5–17.5 μm, with four sterigmata. Basidiospores (12.3–)13.2–13.7–14.2(–15.7) × (9.0–)10–10.3–10.6(–12.5) μm (Qm = 1.3, Q = 1.0–1.7, n = 30, with myxosporium), ellipsoid to broadly ellipsoid, brown (7E5). Pileipellis cells clavate like, entire, brownish-orange (5C5), 50–95 × 8–13.5 μm. Hyphal system trimitic, generative hyphae 4-6 μm in diam., hyaline, colourless, thin-walled with clamp connections; skeletal hyphae 3.5–6 μm in diam., thick-walled to nearly solid, sometimes branched; binding hyphae 1-2 μm in diam., thick-walled, nearly solid, colourless (Fig. 2).
Ganoderma sandunense was introduced by Hapuarachchi et al. (2019b) with ITS sequence. In addition, the description of its basidia is absent in their publication. In this study, the holotype of *G. sandunense* was loaned from Herbarium (GACP) and re-examined. We have refined this species with a more detailed illustration. Furthermore, we provided RPB2 sequence data of this species, which is an important phylogenetic marker used for intraspecific delimitation within *Ganoderma*.

Figure 2. *Ganoderma sandunense* (GACP18012501, holotype). **a** Basidiome; **b** Pore surface; **c** Sections of pileus; **d–e** Pileipellis terminal cell; **f** Basidia; **g–j** Basidiospores; **k** Skeletal hyphae and binding hyphae; **l** Generative hyphae; **m** Binding hyphae. Scale bars: **d–e** = 50 μm; **f–h** = 20 μm; **i–j** = 10 μm; **k** = 100 μm; **l–m** = 50 μm.

Notes

Ganoderma sandunense was introduced by Hapuarachchi et al. (2019b) with ITS sequence. In addition, the description of its basidia is absent in their publication. In this study, the holotype of *G. sandunense* was loaned from Herbarium (GACP) and re-examined. We have refined this species with a more detailed illustration. Furthermore, we provided RPB2 sequence data of this species, which is an important phylogenetic marker used for intraspecific delimitation within *Ganoderma*.
Identification keys

Keys to 22 species of laccate *Ganoderma* species in China

1	Distributed in China with gymnosperms as substrates	G. tsugae
–	Distributed in China with angiosperms as substrates	2
2	Basidiome sessile	3
–	Basidiome stipitate to substipitate	5
3	Pileipellis terminal cells regular, clavate, occasionally with blunt outgrowth and protuberance, context present melanoid bands, basidiospores 8–12 × 3.8–5.2 μm	G. angustisporum
–	Pileipellis terminal cells are irregular, mainly composed of clavate cells or branched cells with blunt outgrowths in the lateral part or protuberances in the apical part	4
4	Melanoid bands absent in the context, concentric growth zones present in the context, basidiospores 9.2–12 × 6.8–8.4 μm	G. mutabile
–	Melanoid bands present in the context, concentric growth zones absent in the context, basidiospores 8–13.5 × 4.2–6.3 μm	G. boninense
5	Distributed in tropical regions	6
–	Distributed mainly in temperate regions	8
6	Basidiome notably with a long, lateral stipe, pileus smaller, basidiospores with coarsely echinulate, 8.5–11 × 5–7 μm	G. flexipes
–	Basidiome stipitate to substipitate, pileus dimidiate, mostly large	7
7	Pileus single or occasionally composed of many small pilei, concentric growth zones present in the context, basidiospores with fine and long echinulate, 8–11.3 × 5–12.8 μm	G. multipileum
–	Pileus is mostly single, concentric growth zones absent in the context, basidiospores with coarse and short echinulae, 8.5–12.5 × 5.5–7.5 μm	G. orbiforme
8	Context nearly homogeneous to homogeneous	9
–	Context duplex to triplex	12
9	Pileus context white, pore surface white to cream, basidiospores 9.5–12.5 × 7–9 μm	G. leucocontextum
Pileus context brownish to brown or darker

Pileipellis terminal cells are mostly irregular, context present melanoid bands and concentric growth zones, basidiospores $10.8–13.1 \times 8.3–11 \mu m$

G. tropicum

Pileipellis terminal cells regular, cylindrical to clavate, context absent melanoid bands

Inhabiting deciduous forests, basidiospores ellipsoid, normally with an orderly arranged echinulae, basidiospores $10.7–12.8 \times 7.0–9.0 \mu m$

G. sinense

Inhabiting bamboo forests

Pileipellis terminal cells $35–65 \times 8–16 \mu m$, basidiospores $11–12.5 \times 6.5–7.5 \mu m$

G. bambusicola

Pileipellis terminal cells $20–55 \times 10–15 \mu m$, basidiospores $8.0–12.5 \times 5.0–8.0 \mu m$

G. esculentum

Chlamydospores present in the context, basidiospores $7.8–10.4 \times 5.2–6.4 \mu m$

G. weberianum

Chlamydospores absent in context

Basidiospores < 8 \mu m in width and < 12 \mu m in length

Basidiospores > 8 \mu m in width and > 9 \mu m in length

Basidiome corky, context soft, pores 2–4 per mm, pileipellis terminal cells regular, clavate, $20–35 \times 10–12 \mu m$, basidiospores $5.7–8.3 \times 2.6–4.6 \mu m$

G. weixiensis

Basidiome corky to woody, context firm, pores 4–6 per mm, pileipellis terminal cells occasional with outgrowths

Growing on living trees of Casuarina equisetifolia, pileipellis terminal cells $40–70 \times 5–13 \mu m$, basidiospores $8.3–11.5 \times 4.5–7 \mu m$

G. casuarinicola

Growing on deciduous trees, pileipellis terminal cells $20–40 \times 7–15 \mu m$, basidiospores $7–9.3 \times 4.6–6.8 \mu m$

G. lingzhi

Basidiospores ellipsoid, with sinuous ridge-like echinulae, $12.3–13.8 \times 8.5–9.8 \mu m$

G. lucidum

Basidiospores broadly ellipsoid, with coarse echinulae and an obtuse turgid appendix

Context brown to dark brown

Context greyish-white to fawn brown
Ganoderma ovisporum sp. nov. (Polyporales, Polyporaceae) from Southwest ...

19	Pores 4–5 per mm, pileipellis terminal cells 25–30 × 7.5–8.5 μm, basidiospores 11.0–13.0 × 8.0–9.5 μm	G. shanxiense
20	Distributed in Shandong Province, pileipellis terminal cells 17–25 × 4.5–7.5 μm, basidiospores 9–13 × 6–9 μm	G. dianzhongense
21	Basidiome with a central stipe, pileipellis terminal cells 50–95 × 8–13.5 μm, basidiospores 12.3–15.7 × 9.1–12.0 μm	G. sandunense
21	Basidiome with a lateral stipe, pileipellis terminal cells 18–29 × 6–11 μm, basidiospores 12.5–15.5 × 9.0–11.5 μm	G. ovisporum

Analysis

Phylogenetic analyses

Eight sequences of ITS, LSU and RPB2 were successfully amplified, but we failed to obtain the TEF1-α sequence from the two specimens HKAS123193 and GACP20071602. The newly-generated sequences and sequences from GenBank represented 132 specimens from 66 species, of which 21 were the type. The combined alignment of sequences comprised 3028 characters of 606, 1020, 809, 593 belonging to TEF1-α, RPB2, ITS and LSU, respectively. The final ML optimisation log-likelihood was -17354.28. The Bayesian Inference stopped at 2915000 generations when the average standard deviation of split frequencies reached 0.009904. The tree topologies derived from ML and BY were identical. Therefore, only the ML tree is shown (Fig. 3). The new species G. ovisporum and G. sandunense formed an individual clade in the phylogenetic tree (Fig. 3).

Discussion

In this study, both phylogeny and morphology support G. ovisporum as a new species. Morphologically, it resembles other dark-coloured, laccate, stipitate Ganoderma species. However, it can be distinguished by having larger (12.5–15.5 × 9.0–11.5 μm), wide ovoid, dark brown-pigmented basidiospores. It is mostly similar to G. sandunense in having brownish-black pileus and similarly-sized basidiospores, as well distribution in Guizhou Province (Hapuarachchi et al. 2019b). The former species is distinct from the latter by having a lateral stipe and shorter pileipellis terminal cells (18–29 × 6–11 μm). Phylogenetically, G. ovisporum and G. sandunense are closely related, forming a distinct clade with basal position with strong support.
Ganoderma was extensively researched by the Chinese because it applied to medicine and food, together with the symbolic happiness and immortality culture, those being recognised as long as 2,000 years ago (Hapuarachchi et al. 2016b, Hapuarachchi et al. 2018b, Li et al. 2018, Cui et al. 2019, Du et al. 2021). Chinese taxonomists emphasised

Figure 3. doi
Phylogram for Ganoderma generated from Maximum Likelihood analysis of ITS, LSU, TEF1-α and RPB2 sequence data. Bootstrap support values for Maximum Likelihood and maximum parsimony greater than 70% and posterior probabilities of Bayesian Inference ≥ 0.95 are given above branches. Type specimens are marked with letter (T) and new species in this study are indicated in red.

Ganoderma was extensively researched by the Chinese because it applied to medicine and food, together with the symbolic happiness and immortality culture, those being recognised as long as 2,000 years ago (Hapuarachchi et al. 2016b, Hapuarachchi et al. 2018b, Li et al. 2018, Cui et al. 2019, Du et al. 2021). Chinese taxonomists emphasised
the morphological characteristics, such as stipe, pileus, pores, context, pileipellis terminal cells and basidiospores as keys to identity (Zhao 1989, He and Yu 1989, Zhang 1997). Keeping this method, Zhao and Zhang (2000) recorded 76 Ganoderma species from China, providing detailed illustrations. Wu and Dai (2005) identified 77 Ganoderma species with full description and colour photographs. Studies have been implemented to revise the taxonomy of Ganoderma in China by using molecular and morphology methods in the recent decade. The results indicated at least 23 species names are synonyms and confirmed that 24 species are distributed in China, 16 of which possess laccate basidiomes (Wang 2012, Chao 2013, Xing 2019). Since then, six species with laccate basidiomes have been described from China: G. bambusicola, G. dianzhongense, G. esculentum, G. sandunense, G. shanxiense and G. weixinense (Hapuarachchi et al. 2019b, Liu et al. 2019, Ye et al. 2019, Wu et al. 2020, He et al. 2021). Ganoderma taxonomy has undergone tremendous changes since both phenotypic features and phylogeny were used to delineate species (Gottlieb et al. 2000, Hapuarachchi et al. 2018c, Hapuarachchi et al. 2018a, Lin and Yang 2019, Tchotet-Tchoumi et al. 2019, He et al. 2022). Based on the aforementioned characteristics, we have provided a dichotomous key to 22 laccate species, including our new species from China.

Ganoderma could originate from Southeast Asia and later dispersal to the Northern Hemispheres, the Southern Hemispheres and the neotropics before 30 Mya years, during which species radiation and diversification events happened (Moncalvo and Buchanan 2008). Overviewing Ganoderma species worldwide, Imazeki (1939) concluded using subgenera Euganoderma and Elfvingia to accommodate species with laccate and non-laccate characters, respectively. In this study, a phylogenetic analysis was carried out using combined LSU, ITS, TEF1-α and RPB2 sequences from 66 species that included species previously placed in the above two subgenera. The topology of our phylogenetic tree is consistent with the morphology that the laccate species and non-laccate species tend to form groups. It is worth mentioning that the new species G. ovisporum group with the laccate species of G. carnosum, G. dianzhongense, G. leucocontextum, G. lucidum, G. oregonense, G. sandunense, G. shandongense, G. shanxiense, G. tsugae and G. weixiensis had strong support in both ML and Bayesian analyses. Those species were found in only or few ecological niches, except the widely cultivated G. leucocontextum, G. lucidum and G. tsugae (Gottlieb et al. 2000, Moncalvo and Buchanan 2008, Hapuarachchi et al. 2018b, Lin and Yang 2019). Therefore, many Ganoderma species are geographically restricted (He et al. 2022). However, the phylogenetic tree in the case of the laccate species G. pfeifferi and G. mutabile grouped with the non-laccate species G. adspersum, G. australie, G. eickeri, G. ellipsoideum, G. gibbosum, G. knysnamense, G. lobatum, G. podocarpense and G. williamsianum, indicating Euganoderma and Elfvingia are polyphyletic (Gottlieb et al. 2000). However, in fact, they are similar in having a substipitate to sessile basidiome and living as saprobes or parasites (Hapuarachchi et al. 2018c, Tchotet-Tchoumi et al. 2019). Consequently, biogeographic patterns and convergent evolution could explain the population structure and evolution of Ganoderma. Thus, a phylogeography study would help better understand the evolution of Ganoderma.
Acknowledgements

This work was financed by the Science and Technology Foundation of Guizhou Province (KY [2018]039 and No. [2019]2451-3) and by the Open Fund Project of Key Laboratory of Forest Biotechnology in Yunnan, Southwest Forestry University, China (51700201). The authors are very grateful to Professor Xing-Liang Wu for his valuable comments and suggestions.

References

• Almaguer M, Rojas-Flores TI, Rodríguez-Rajo FJ, Aira MJ (2014) Airborne basidiospores of Coprinus and Ganoderma in a Caribbean region. Aerobiologia 30(2): 197-204. https://doi.org/10.1007/s10453-013-9318-y

• Ayin CM, Alvarez AM, Awana C, Schleinzer FM, Marx BC, Schlub RL (2019) Ralstonia solanacearum, Ganoderma australe, and bacterial wetwood as predictors of ironwood tree (Casuarina equisetifolia) decline in Guam. Australasian Plant Pathology 48(6): 625-636. https://doi.org/10.1007/s13313-019-00666-8

• Bolaños AC, Bononi VLR, Gugliotta ADM (2016) New records of Ganoderma multiplicatum (Mont.) Pat. (Polyporales, Basidiomycota) from Colombia and its geographic distribution in South America. Check List 12 (4): 1-7. https://doi.org/10.15560/12.4.1948

• Cabarroi-Hernández M, Villalobos-Arámbula AR, Torres-Torres MG, Decock C, Guzmán-Dávalos L (2019) The Ganoderma weberianum-resinaceum lineage: multilocus phylogenetic analysis and morphology confirm G. mexicanum and G. parvulum in the Neotropics. MycoKeys 59: 95-131. https://doi.org/10.3897/mycokeys.59.33182

• Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini A, Gorjón S, Gunde-Cimerman N, Hyde K, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón J, Verbeken A, Vizzini A, Yurkov A, Zamora JC, Zhao RL (2021) Delimiting species in Basidiomycota: a review. Fungal Diversity 109 (1): 181-237. https://doi.org/10.1007/s13225-021-00479-5

• Cao Y, Wu SH, Dai YC (2012) Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Diversity 56 (1): 49-62. https://doi.org/10.1007/s13225-012-0178-5

• Cao Y, Yuan HS (2013) Ganoderma mutabile sp. nov. from southwestern China based on morphological and molecular data. Mycological Progress 12(1): 121-126. https://doi.org/10.1007/s11557-012-0819-9

• Chang TT, Chen T (1984) Ganoderma formosanum sp. nov. on formosan sweet gum in Taiwan. Transactions of the British Mycological Society 82 (4): 731-73. https://doi.org/10.1016/S0007-1536(84)80119-9

• Chao Y (2013) Taxonomy and Phylogeny of Ganoderma in China. University of Chinese Academy of Sciences, Shenyang, 152 pp. [In Chinese].

• Coetzee MP, Marinowitz S, Muthelo VG, Wingfield MJ (2015) Ganoderma species, including new taxa associated with root rot of the iconic Jacaranda mimosifolia in
Pretoria, South Africa. IMA Fungus 6 (1): 249-256. https://doi.org/10.5598/imafungus.2015.06.01.16

- Costa-Rezende DH, Robledo GL, Góes-Neto A, Reck MA, Crespo E, Drechsler-Santos ER (2017) Morphological reassessment and molecular phylogenetic analyses of Amauroderma s.lat. raised new perspectives in the generic classification of the Ganodermataceae family. Persoonia 39 (1): 254-269. https://doi.org/10.3767/persoonia.2017.39.10

- Costa-Rezende DH, Robledo GL, Drechsler-Santos ER, Glen M, Gates G, Bonz BR, Popof OF, Crespo E, Góes-Neto A (2020) Taxonomy and phylogeny of polypores with ganodermatoid basidiospores (Ganodermataceae). Mycological Progress 19(8): 725-741. https://doi.org/10.1007/s11557-020-01589-1

- Crous PW, Wingfield MJ, Roux JL, Richardson DM, Strasberg D, Shivas RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Altés A, Barasubiye T, Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, Yáñez-Morales MdJ, Duong TA, Fernández-Vicente J, Geering AD, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khammuk W, Kolafik M, Kurli R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Paguigan ND, Pascoe IG, Pérez-Butrón JL, Perrone G, Rahi P, Raja HA, Rintoul T, Sanhueza RM, Scarlett K, Shouche YS, Shuttleworth LA, Taylor PW, Thorn RG, Vawdrey LL, Solano-Vidal R, Voitk A, Wong PT, Wood AR, Zamora JC, Groenewald JZ (2015) Fungal planet description sheets: 371–399. Persoonia 35 (1): 264-327. https://doi.org/10.3767/003158515x690269

- Crous PW, Wingfield MJ, Roux JL, Richardson DM, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PW, Heykoop M, Martin MP, Moreno G, Souto DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarinaccia V, Guarro J, Hernández-Restrepo M, Kolafik M, Manjón JL, Pascoe IG, Popof ES, Sandoval-Denis M, Woudenberg JH, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MY, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GE, Held BW, Jurjevič Ž, Kaewgrajang T, Latha KP, Lombard L, Luangsa-ard JJ, Lyšková P, Mallavásová N, Manimohan P, Miller AN, Mirabolafathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phości R, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H., Silva BD, Silva GA, Smith MT, Souza-Motta CM, Stchigel AM, Stolova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling D, Groenewald JZ (2016) Fungal planet description sheets: 400–468. Persoonia 36 (1): 316-458. https://doi.org/10.3767/003158516x692185

- Crous PW, Wingfield MJ, Burgess TI, Hardy GE, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, Van der spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez M, Hubka V, Kolafik M, Lira CR, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stchigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Aloi F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chandler J, Cheewangkoon R, Cruz RH, Da silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Horta jung M, Hosaka K, Jung T, Jurjevič Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozaneck M, Kubátová A,
Lafourcade M, La spada F, Latha KP, Madrid H, Malysheva EF, Manimohan P, Manjón JL, Martin MP, Mata M, Merényi Z, Morte A, Nagy I, Normand A-, Paloi S, Pattison N, Pawlowska J, Pereira OL, Petterson ME, Picillo B, Raj KN (2017) Fungal planet description sheets: 558–624. Persoonia 38 (1): 240-384. [https://doi.org/10.3767/003158517x698941]

- Cui BK, Li HJ, Zhou JL, Song J, Si J, Yang ZL, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97(1): 137-392. [https://doi.org/10.1007/s13225-019-00427-4]
- Dai YC, Yang ZL, Cui BK, Yu CJ, Zhou LW (2009) Species diversity and utilization of medicinal mushrooms and fungi in China (Review). International Journal of Medicinal Mushrooms 11 (3): 287-302. [https://doi.org/10.1016/j.intmedmushr.2011.03.010]
- Demoulin V (2010) Why conservation of the name Boletus applanatus should be rejected. Taxon 59 (1): 283-286. [https://doi.org/10.1002/tax.591026]
- Ding SP, Hu HL, Gu JD (2020) Diversity, abundance, and distribution of wood-decay fungi in major parks of Hong Kong. Forests 11 (10): 1-16. [https://doi.org/10.3390/f11101030]
- Douanla-Meli C, Langer E (2009) Ganoderma carocalcareus sp. nov., with crumbly-friable context parasite to saprobe on Anthocleista nobilis and its phylogenetic relationship in G. resinaceum group. Mycological Progress 8 (2): 145-155. [https://doi.org/10.1007/s11557-009-0586-4]
- Du Q, Cao Y, Liu C (2021) Lingzhi, An Overview. In: Du Q (Ed.) The Lingzhi Mushroom Genome, Compendium of Plant Genomes. 1st. Springer, Cham, Beijing, 1-25 pp. [https://doi.org/10.1007/978-3-030-75710-6_1]
- Fryssouli V, Zervakis G, Polemis E, Typas M (2020) A global meta-analysis of ITS rDNA sequences from material belonging to the genus Ganoderma (Basidiomycota, Polyporales) including new data from selected taxa. MycoKeys 75: 71-143. [https://doi.org/10.3897/mycokeys.75.59872]
- Glen M, Yuskianti V, Puspitasari D, Francis A, Agustini L, Rimbawanto A, Indrayadi H, Gafur A, Mohammed CL (2014) Identification of Basidiomycete fungi in Indonesian hardwood plantations by DNA barcoding. Forest Pathology 44 (6): 496-508. [https://doi.org/10.1111/efp.12146]
- Gottlieb A, Ferrer E, Wright J (2000) rDNA analyses as an aid to the taxonomy of species of Ganoderma. Mycological Research 104 (9): 1033-1045. [https://doi.org/10.1017/s095375620000304x]
- Gunnels T, Creswell M, McFerrin J, Whittall J (2020) The ITS region provides a reliable DNA barcode for identifying reishi/lingzhi (Ganoderma) from herbal supplements. PLoS One 15 (11): e0236774. [https://doi.org/10.1371/journal.pone.0236774]
- Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
- Hapuarachchi KK, Wen TC, Deng CY, Kang JC, Hyde KD (2015) Mycosphere essays 1: Taxonomic confusion in the Ganoderma lucidum species complex. Mycosphere 6 (5): 542-559. [https://doi.org/10.5943/mycosphere/6/5/4]
- Hapuarachchi KK, Wen TC, Jeewon R, Wu XL, Kang JC (2016a) Mycosphere essays 15: Ganoderma lucidum - are the beneficial medical properties substantiated? Mycosphere 7: 687-715. [https://doi.org/10.5943/mycosphere/7/6/1]
• Hapuarachchi KK, Wen TC, Jeewon R, Wu XL, Kang JC, Hyde KD (2016b) Mycosphere essays 7. *Ganoderma lucidum* - are the beneficial anti-cancer properties substantiated? Mycosphere 7 (3): 305-332. https://doi.org/10.5943/mycosphere/7/3/6

• Hapuarachchi KK, Cheng CR, Wen TC, Jeewon R, Kakumyan P (2017) Mycosphere essays 20: Therapeutic potential of *Ganoderma* species: Insights into its use as traditional medicine. Mycosphere 8 (10): 1653-1694. https://doi.org/10.5943/mycosphere/8/10/5

• Hapuarachchi KK, Karunarathna SC, Phengsinkham P, Kakumyan P, Hyde KD, Wen TC (2018a) *Amauroderma* (Ganodermataceae, Polyporales) - bioactive compounds, beneficial properties and two new records from Laos. Asian Journal of Mycology 1 (1): 121-136. https://doi.org/10.5943/ajom/1/1/10

• Hapuarachchi KK, Elkhateeb WA, Karunarathna SC, Cheng CR, Bandara AR, Kakumyan P, Hyde KD, Daba GM, Wen TC (2018b) Current status of global *Ganoderma* cultivation, products, industry and market. Mycosphere 9 (5): 1025-1052. https://doi.org/10.5943/mycosphere/9/5/6

• Hapuarachchi KK, Karunarathna SC, Raspé O, De Silva KH, Thawthong A, Wu XL, Kakumyan P, Hyde KD, Wen TC (2018c) High diversity of *Ganoderma* and *Amauroderma* (Ganodermataceae, Polyporales) in Hainan Island, China. Mycosphere 9 (5): 931-982. https://doi.org/10.5943/mycosphere/9/5/1

• Hapuarachchi KK, Karunarathna SC, McKenzie EH, Wu XL, Kakumyan P, Hyde KD, Wen TC (2019a) High phenotypic plasticity of *Ganoderma sinense* (Ganodermataceae, Polyporales) in China. Asian Journal of Mycology 2 (1): 1-47. https://doi.org/10.5943/ajom/2/1/1

• Hapuarachchi KK, Karunarathna SC, Phengsinkham P, Yang HD, Kakumyan P, Hyde KD, Wen TC (2019b) Ganodermataceae (Polyporales): Diversity in Greater Mekong Subregion countries (China, Laos, Myanmar, Thailand and Vietnam). Mycosphere 10 (1): 221-309. https://doi.org/10.5943/mycosphere/10/1/6

• He J, Luo Z, Tang S, Li Y, Li S, Su H (2021) Phylogenetic analyses and morphological characters reveal two new species of *Ganoderma* from Yunnan province, China. MycoKeys 84: 141-162. https://doi.org/10.3897/mycokeys.84.69449

• He MQ, Zhao RL, Hyde KD, Begerow D, Kemler M, Yurkov A, McKenzie EHC, Raspé O, Kakishima M, Sánchez-Ramírez S, Vellinga EC, Halling R, Papp V, Zmitrovich IV, Buyck B, Ertz D, Wijayawardene NN, Cui BK, Schoutetten N, Liu XZ, Li TH, Yao YJ, Zhu XY, Liu AQ, Li GJ, Zheng ZY, Cao B, Antonin V, Boekhout T, da Silva BDB, Decock C, Dima B, Dutta AK, Fell JW, Gemi J, Ghobad-Nejhad M, Giachini AJ, Gibertoni TB, Gorjón SP, Haelewaters D, He SH, Hodkinson BP, Horak E, Hoshino T, Justo A, Lim YW, Menolli N, Mešić A, Moncalvo JM, Mueller GM, Nagy LG, Nilsson RH, Noordeloos M, Nuytinck J, Orihara T, Ratchadawan C, Rajchenberg M, Silva-Filho AGS, Sulzbacher MA, Tkalčec Z, Valenzuela R, Verbeke A, Vizzini A, Wartchow F, Wei TZ, Weiß M, Zhao CL, Kirk PM (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99 (1): 105-367. https://doi.org/10.1007/s13225-019-00435-4

• He MQ, Zhao RL, Liu DM, Denchev T, Begerow D, Yurkov A, Kemler M, Millanes A, Wedin M, McTaggart AR, Shivas R, Buyck B, Chen J, Vizzini A, Papp V, Zmitrovich I, Davoodian N, Hyde K (2022) Species diversity of Basidiomycota. Fungal Diversity https://doi.org/10.1007/s13225-021-00497-3
• He SC, Yu HF (1989) The Family Ganodermataecae from Guizhou province of China. Acta Mycologica Sinca 8 (4): 282-288.
• Hushiarian R, Yusof NA, Dutse SW (2013) Detection and control of *Ganoderma boninense*: strategies and perspectives. Springer Plus 2 (1): 1-12. https://doi.org/10.1186/2193-1801-2-555
• Imazeki R (1939) Studies on *Ganoderma* of Nippon. Bulletin of the Tokyo Science Museum 1: 29-52.
• Jargalmaa S, Eimes JA, Park MS, Park JY, Oh SY, Lim YW (2017) Taxonomic evaluation of selected *Ganoderma* species and database sequence validation. PeerJ 5: e3596. https://doi.org/10.7717/peerj.3596
• Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Ghobad-Nejad M, Nilsson H, Pang KL, Pereira OL, Phillips AL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suétrong S, Taylor JE, Tsui CM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promputtha I (2015) The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74 (1): 3-18. https://doi.org/10.1007/s13225-015-0351-8
• Jiang N, Hu S, Peng B, Li ZH, Yuan XH, Xiao SJ, Fu YP (2021) Genome of *Ganoderma* species provides insights into the evolution, conifers substrate utilization, and terpene synthesis for *Ganoderma tsugae*. Frontiers in Microbiology 12: 1-13. https://doi.org/10.3389/fmicb.2021.724451
• Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjökvist E, Lindner D, Nakasone K, Niemelä T, Larsson KH, Ryvarden L, Hibbett DS (2017) A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121 (9): 798-824. https://doi.org/10.1016/j.funbio.2017.05.010
• Kadowaki K, Leschen RA, Beggs JR (2011) No evidence for a *Ganoderma* spore dispersal mutualism in an obligate spore-feeding beetle *Zearagytodes maculifer*. Fungal Biology 115 (8): 768-774. https://doi.org/10.1016/j.funbio.2011.06.001
• Karsten PA (1881) Enumeralio boletinearum et polyporearum fennicarum, systemate novo dispositarum. Revue de Mycologie 3: 16-19.
• Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772-780. https://doi.org/10.1093/molbev/mst010
• Keypour S, Riahi H, Asef MR, Abdollahzadeh J, borhani A, Safaie N (2020) The true nature of *Ganoderma* in Iran: Taxonomy based on ITS and mtSSU rDNA. Forest Pathology 50 (4): e12605. https://doi.org/10.1111/efp.12605
• Kinge TR, Mih AM, Coetzee MP (2012) Phylogenetic relationships among species of *Ganoderma* (Ganodermataceae, Basidiomycota) from Cameroon. Australian Journal of Botany 60 (6): 526-538. https://doi.org/10.1071/BT12011
• Kornerup A, Wanscher JH (1978) Methuen Handbook of Colour. 3rd. Methuen, London. [ISBN 0413334007]
• Kües U, Nelson D, Liu C, Yu GJ, Zhang JH, Li JQ, Wang XC, Sun H (2015) Genome analysis of medicinal *Ganoderma* spp. with plant-pathogenic and saprotrophic lifestyles. Phytochemistry 114: 18-37. https://doi.org/10.1016/j.phytochem.2014.11.019

• Lanfear R, Frandsen PB, Wright AM (2017) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772-773.

• Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16 (6): 750-759. https://doi.org/10.1093/oxfordjournals.molbev.a026160

• Lee SS, Chang YS (2016) *Ganoderma* - Jekyll and Hyde mushrooms. Agriculture Science Journal 2: 21-31.

• Leonardo-Silva L, Cotrim CFC, Xavier-Santos S (2022) *Furtadomyces* nom. nov. (Ganodermataceae, Basidiomycota) with description of *F. sumptuosus*, a new species of ganodermatoid fungi from Brazil. Mycological Progress 21 (3). https://doi.org/10.1007/s11557-022-01794-0

• Li LF, Liu HB, Zhang QW, Li ZP, Wong TL, Fung HY, Zhang JX, Bai SP, Lu AP, Han QB (2018) Comprehensive comparison of polysaccharides from *Ganoderma lucidum* and *G. sinense*: chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Scientific Reports 8 (1): 1-12. https://doi.org/10.1038/s41598-018-22885-7

• Lin ZB, Yang BX (2019) *Ganoderma* and health: Biology, chemistry and industry. Volume 1181. Springer Nature Singapore, Beijing. https://doi.org/10.1007/978-981-13-9867-4

• Li TH, Hu HP, Deng WQ, Wu SH, Wang DM, Tsering T (2015) *Ganoderma leucocontextum*, a new member of the *G. lucidum* complex from southwestern China. Mycoscience 56 (1): 81-85. https://doi.org/10.1016/j.myc.2014.03.005

• Liu H, Guo LJ, Li SL, Fan L (2019) *Ganoderma shanxiense*, a new species from northern China based on morphological and molecular evidence. Phytotaxa 406 (2): 129-136. https://doi.org/10.11646/phytotaxa.406.2.4

• Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16 (12): 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

• López-Peña D, Samaniego-Rubiano C, Morales-Estrada I, Gutiérrez A, Gaitán-Hernández R, Esqueda M (2019) Morphological characteristics of wild and cultivated *Ganoderma subincrustatum* from Sonora, Mexico. Scientia Fungorum 49: e1213. https://doi.org/10.33885/sf.2019.49.1213

• Loyd AL, Barnes CW, Held BW, Schink MJ, Smith ME, Smith JA, Blanchette RA (2018) Elucidating "lucidum": Distinguishing the diverse laccate *Ganoderma* species of the United States. PLOS One 13 (7): 1-16. https://doi.org/10.1371/journal.pone.0199738

• Luangham T, Karunarathna SC, Mortimer PE, Hyde KD, Xu JC (2019a) Additions to the knowledge of *Ganoderma* in Thailand: *Ganoderma casuarinicola*, a new record; and *Ganoderma thailandicum* sp. nov. MycoKeys 59: 47-65. https://doi.org/10.3897/mycokeys.59.36823

• Luangham T, Karunarathna SC, Mortimer PE, Hyde KD, Thongklang N, Xu JC (2019b) A new record of *Ganoderma tropicum* (Basidiomycota, Polyporales) for Thailand and first assessment of optimum conditions for mycelia production. MycoKeys 51: 65-83. https://doi.org/10.3897/mycokeys.51.33513
• Mafia MI, Aminuzzaman FM, Chowdhury MSM, Tanni JF (2020) Occurrence, diversity and morphology of poroid wood decay by Ganoderma spp. from tropical moist deciduous forest region of Bangladesh. Journal of Agriculture and Natural Resources 3 (2): 160-174. https://doi.org/10.3126/janr.v3i2.32498

• Midot F, Lau SYL, Wong WC, Tung HJ, Yap ML, Lo ML, Jee MS, Dom SP, Melling L (2019) Genetic diversity and demographic history of Ganoderma boninense in oil palm plantations of Sarawak, Malaysia inferred from ITS regions. Microorganisms 7 (10): 1-17. https://doi.org/10.3390/microorganisms7100464

• Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop 2010 (GCE), New Orleans, Louisiana, November. 1-8 pp. https://doi.org/10.1109/GCE.2010.5676129

• Mohd SI, Izzuddin MA, Mohd HR, Idris AS (2020) Geostatistics of oil palm trees affected by Ganoderma disease in low and high planting density. IOP Conference Series: Earth and Environmental Science 540 (1): 1-9. https://doi.org/10.1088/1755-1315/540/1/012065

• Moncalvo J, Buchanan P (2008) Molecular evidence for long distance dispersal across the Southern Hemisphere in the Ganoderma applanatum-austrole species complex (Basidiomycota). Mycological Research 112 (4): 425-436. https://doi.org/10.1016/j.mycres.2007.12.001

• Moncalvo JM, Ryvarden L (1997) A nomenclatural study of the Ganodermataceae Donk. Synopsis Fungorum 11: 1-114.

• Murrill WA (1902) The Polyporaceae of North America. I. The genus Ganoderma. Bulletin of the Torrey Botanical Club 29 (10): 599-608. https://doi.org/10.2307/2478682

• Náplavová K, Beck T, Pristaš P, Gáperová S, Šebesta M, Piknová M, Gáper J (2020) Molecular data reveal unrecognized diversity in the European Ganoderma resinaceum. Forests 11 (8): 850. https://doi.org/10.3390/f11080850

• Papp V (2016) The first validly published laccate Ganoderma species from East Asia: G. dimidiatum comb. nov., the correct name for G. japonicum. Studia Botanica Hungarica 47 (2): 263-268. https://doi.org/10.17110/studbot.2016.47.2.263

• Pegler DN, Young TW (1973) Basidiospore form in the British species of Ganoderma Karst. Kew Bulletin 28 (3): 351-364. https://doi.org/10.2307/4108879

• Pinruan U, Rungjindamai N, Choeyklin R, Lumyong S, Hyde KD, Jones EBG (2010) Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Diversity 41 (1): 71-88. https://doi.org/10.1007/s13225-010-0029-1

• Rambaut A (2012) FigTree version 1.4.0. URL: http://tree.bio.ed.ac.uk/software/fgtree/

• Rambaut A, Suchard MA, Xie D, Drummond AJ (2013) Tracer v 1.6. University of Edinburgh. URL: http://tree.bio.ed.ac.uk/software/tracer/

• Rees RW, Flood J, Hasan Y, Potter U, Cooper RM (2009) Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathology 58 (5): 982-989. https://doi.org/10.1111/j.1365-3059.2009.02100.x

• Rees RW, Flood J, Hasan Y, Wills MA, Cooper RM (2012) Ganoderma boninense basidiospores in oil palm plantations: evaluation of their possible role in stem rots of Elaeis guineensis. Plant Pathology 61 (3): 567-578. https://doi.org/10.1111/j.1365-3059.2011.02533.x
• Rehner S, Buckley E (2017) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97 (1): 84-98. https://doi.org/10.1080/15572536.2006.11832842
• Richter C, Wittstein K, Kirk PM, Stadler M (2014) An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Diversity 71 (1): 1-15. https://doi.org/10.1007/s13225-014-0313-6
• Ryvarden L (2000) Studies in Neotropical Polypores 2: A Preliminary Key to Neotropical Species of Ganoderma with a Laccate Pileus. Mycologia 92 (1): 180-191. https://doi.org/10.2307/3761462
• Sadyś M, Skjøth CA, Kennedy R (2014) Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmospheric Environment 84: 88-99. https://doi.org/10.1016/j.atmosenv.2013.11.015
• Seo GS, Kitamot Y (1998) Morphological features and morphogenesis in the Ganoderma lucidum complex. Japanese Society of Mushroom Science and Biotechnology 6: 43-54.
• Shen S, Liu SL, Jiang JH, Zhou LW (2021) Addressing widespread misidentifications of traditional medicinal mushrooms in Sanghuangporus (Basidiomycota) through ITS barcoding and designation of reference sequences. IMA fungus 12 (10): 1-20. https://doi.org/10.1186/s43008-021-00059-x
• Smith BJ, Sivasithamparam K (2003) Morphological studies of Ganoderma (Ganodermataceae) from the Australasian and Pacific regions. Australian Systematic Botany 16 (4): 487-503. https://doi.org/10.1071/sb02001
• Song J, Xing JH, Decock C, He XL, Cui BK (2016) Molecular phylogeny and morphology reveal a new species of Amauroderma (Basidiomycota) from China. Phytotaxa 260 (1): 47-56. https://doi.org/10.11646/phytotaxa.260.1.5
• Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
• Steyaert RL (1980) Study of some Ganoderma species. Bulletin du Jardin Botanique National de Belgique 50: 135-186. https://doi.org/10.2307/3667780
• Sun YF, Costa-Rezende DH, Xing JH, Zhou JL, Zhang B, Gibertoni TB, Gates G, Glen M, Dai YC, Cui BK (2020) Multi-gene phylogeny and taxonomy of Amauroderma s. lat. (Ganodermataceae). Persoonia 44: 206-239. https://doi.org/10.3767/persoonia.2020.44.08
• Szedlay Z, Jakucs E, Boldizsar I, Boka A (1999) Basidiocarp and mycelium morphology of Ganoderma lucidum Karst. strains isolated in hungary. Acta Microbiologica et Immunologica Hungarica 46 (1): 41-52. https://doi.org/10.1556/amicr.46.1999.1.5
• Tchotet-Tchoumi JM, Coetzee MPA, Rajchenberg M, Roux J (2019) Taxonomy and species diversity of Ganoderma species in the Garden Route National Park of South Africa inferred from morphology and multilocus phylogenies. Mycologia 111 (5): 730-747. https://doi.org/10.1080/00275514.2019.1635387
• Torres-Torres MG, Guzmán-Dávalos L (2012) The morphology of Ganoderma species with a laccate surface. Mycotaxon 119 (1): 201-216. https://doi.org/10.5248/119.201
• Tuno N (1999) Insect feeding on spores of a bracket fungus, Elfvingia plananata (Pers.) Karst. (Ganodermataceae, Aphyllorhales). Ecological Research 14 (2): 97-103. https://doi.org/10.1046/j.1440-1703.1999.00290.x
• Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27 (2): 171-180. [https://doi.org/10.1111/j.1096-0031.2010.00329.x]

• Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238-4246. [https://doi.org/10.1128/jb.172.8.4238-4246.1990]

• Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, Al-Hatmi A, Groenewald JZ, Cardinalli G, Houbraken J, Boekhout T, Crous PW, Robert V, Verkley GJ (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92: 135-154. [https://doi.org/10.1016/j.simyco.2018.05.001]

• Wang GY, Xu LL, Yu H, Gao J, Guo LZ (2019) Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum. BMC Genomics 20 (1): 1-12. [https://doi.org/10.1186/s12864-019-5962-0]

• Wang XC (2012) Phylogenetic Study on Ganodermataceae Donk. University of Chinese Academy of Sciences, Beijing, 291 pp. [In Chinese].

• Welti S, Moreau PA, Decock C, Danel C, Duhal N, Favel A, Courtecuisse R (2015) Oxygenated lanostane-type triterpenes profiling in laccate Ganoderma chemotaxonomy. Mycological Progress 14 (7): 1-15. [https://doi.org/10.1007/s11557-015-1066-7]

• Xing JH, Song J, Decock C, Cui BK (2016) Morphological characters and phylogenetic analysis reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa 266 (2): 115-124. [https://doi.org/10.11646/phytotaxa.266.2.5]

• Xing JH, Sun YF, Han YL, Cui BK, Dai YC (2018) Morphological and molecular identification of two new Ganoderma species on Casuarina equisetifolia from China. MycoKeys 34: 93-108. [https://doi.org/10.3897/mycokeys.34.22593]

• Xing JH (2019) Species diversity, taxonomy and phylogeny of Ganoderma. Beijing Forestry University, Beijing, 1-160 pp. [In Chinese]. [https://doi.org/10.26949/d.cnki.gblyu.2019.000021]
• Yamashita S, Hirose D (2016) Phylogenetic analysis of *Ganoderma australe* complex in a Bornean tropical rainforest and implications for mechanism of coexistence of various phylogenetic types. Fungal Ecology 24: 1-6. https://doi.org/10.1016/j.funeco.2016.04.006

• Yang ZL, Feng B (2013) What is the Chinese “Lingzhi” - a taxonomic mini-review. Mycology 4 (1): 1-4. https://doi.org/10.1080/21501203.2013.774299

• Yao YJ, Wang XC, Wang B (2013) Epitypification of *Ganoderma sichuanense* J.D. Zhao & X.Q. Zhang (Ganodermataceae). Taxon 62 (5): 1025-1031. https://doi.org/10.12705/625.10

• Ye L, Karunarathna SC, Mortimer PE, Li H, Qiu MH, Peng XR, Luangharn T, Li YJ, I P, Hyde KD, Xu JC (2019) *Ganoderma weixiensis* (Polyporaceae, Basidiomycota), a new member of the *G. lucidum* complex from Yunnan Province, China. Phytotaxa 423 (2): 75-86. https://doi.org/10.11646/phytotaxa.423.2.3

• Zhang XQ (1997) Four new records of Ganodermataceae from China. Mycosystema 16 (4): 259-26.

• Zhao JD (1989) The Ganodermataceae in China. Bibliotheca Mycologica 132: 1-176.

• Zhao JD, Zhang XQ (2000) Flora fungorum cinicorum. 1st, Volume 18, Ganodermataceae. Science Press, Beijing, 1-204 pp. [In Chinese]. [ISBN 7-03-008293-1/Q. 945]

• Zhao RL, Li GJ, Sánchez-Ramírez S, Stata M, Yang ZL, Wu G, Dai YC, He SH, Cui BK, Zhou JL, Wu F, He MQ, Moncalvo JM, Hyde KD (2017) A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Diversity 84 (1): 43-74. https://doi.org/10.1007/s13225-017-0381-5

• Zhou LW, Cao Y, Wu SH, Vlasák J, Li DW, Li MJ, Dai YC (2015) Global diversity of the *Ganoderma lucidum* complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 114: 7-15. https://doi.org/10.1016/j.phytochem.2014.09.023

• Zhou XW, Liu Y, Guo MY, Su KQ, Zhang YM (2016) Species clarification of the widely cultivated *Ganoderma* in China based on rDNA and FIP gene sequence analysis. International Journal of Agriculture and Biology 18 (5): 932-938. https://doi.org/10.17957/ijab/15.0189