The Effect of Partial Replacement of Micro Silica in Asphalt Mix

Neduri Prabhanjan1,2, Swamy Yadav Golla1, G. Sahithi1, B. Chandu1, Roshan Singh Rathore1, M. Guruprasad1 and M Swetha3

1Department of Civil Engineering, SR University, Warangal, Telangana, INDIA
2Centre for Design, SR Engineering College, Warangal, Telangana, INDIA
3Sumathi Reddy Institute of Technology for Women, Warangal, Telangana.

Email: prabhanjan.neduri@gmail.com

Abstract. Roadways are also taking part in the nation’s progression. These Roadways are laying with two sorts of critical Binding materials like Bitumen and Concrete. Strong black-tops like solid concrete roads may provoke a high early on cost; be that as it may, maintenance will be less. As it would have been, for the bituminous black-tops beginning cost will be less However, upkeep will be more. The need to change standard black-top climbs as a result of the high help cost of the interstate structure. As of late World delivering with diligently extended use, a huge number of waste glass materials are created yearly on the planet. This paper addresses an effort taken to make modified bituminous mixing, in which replacement of Micro Silica power was displaced in halfway aggregate. Different moulds were set up with different mixes and differentiated and normal bitumen mixes by driving marshal stability tests to check its quality, the stream regards. The perfect degree of Micro Silica was found at 10%. Most vital steadfastness is practised with 15% of Micro Silica, satisfying the results appeared differently concerning common bitumen was explored dependent on IS code.

1. Introduction

In India, the roadways are laying with two types of binding materials like bitumen and concrete. According to the economical view and construction view and according to availability people are laying bituminous roads(Anon 2020a, Anon 2020b; Anon n.d.)[2]. According to environmental factors in some highways are laying with cement concrete surface based on some maintenance purpose also. Some Concrete highways are mixed with some additive materials like fly ash, GGBS, Some additive materials. According to the availability of materials, the highways are preferred with bituminous roads only. Bitumen total mix is bound with bitumen are expectedly used wherever all through the world being developed and upkeep of the surface course of a versatile black-top.

The surface course normally contains bituminous mixes including coarse aggregate, fine aggregate and filler warmed to sensible temperature, mixed totally with warmed bitumen at required consistency and a while later compacted(Prabhanjan et al. 2020[17]; Swamy Yadav et al. 2020)[19]. The bituminous mix may be thick checked on, entire assessed or reliably assessed. Bituminous concrete (BC) is an inside and out investigated mix containing coarse aggregate (50-60%), fine aggregate (40-half), filler (6-10%), bitumen (5-7%) of the complete mass of mix. One of the noteworthy stresses of mix structure of bituminous mix is the sort and proportion of filler used which may impact the show of the mix. Various assessments have been coordinated to mull over the properties of mineral filler; all things considered, the material passing 0.075mm IS sifter, to survey its
effect on the execution of dark top clearing mix the extent that consistency, void filling, Marshall Stability and mix quality (Aljassar, Metwali, and Ali 2004[1]; Arabani, Babamohammadi, and Azarhoosh 2015[5]; Mohi et al. 2007)[16]. The filler is portrayed as that bit of an inert mineral passing 75-micron strainer in a bituminous mix which can play out a couple of limits. The essential limit is that of filling voids in coarse aggregates, which accelerations the thickness, quality and strength of a traditional bituminous clearing blend. Another is the course of action of a filler-dark top mastic in which the particles of build-up either may be solely secured with the dark top are interwoven into the bitumen in absolutely and colloidal suspension(Chen et al. 2008[8]; Dhiman and Duggal 2017)[10]. Plenitude proportion of fillers prompts an increase in quality, delicacy and tendency to break. Deficiency of filler prompts increase void substance, lower robustness and placate the blend. Bituminous lanes are portrayed as the boulevards in the improvement of which bitumen is used as the latch. It includes a comfortable mix of sums, mineral filler and bitumen. The quality and strength of bituminous road are influenced by the sort and proportion of filler material is utilized. The filler will, as a rule, solidify the asphaltic cement by getting finely dispersed in it. Various materials, for instance, solid, lime, rock powder, stone build-up and fine sand are consistently used as filler in bituminous mixes. Solid, lime and stone powder are expensive and used for various purposes even more viably(KathemTaehAlnealy 2015[11]; Lin and Weng n.d.[13]; Varma and Lakshmayya 2018)[20]. Fine sand, flotsam and jetsam, waste strong build-up and square residue well than 0.075 mm strainer size have all the reserves of being sensible as filler material.

The usage of waste powder as filler in the dark top mix has been the point of convergence of a couple of research tries over ongoing years. If the filler is mixed in with less bitumen than it is required to fill its voids, a firm dry thing is obtained which is in every practical sense not useful. Pressing with bitumen, startlingly, presents a fluid character to the mix. The filler can manufacture the restriction of an atom to move inside the mixing matrix just as capacities as a working material when it helps out the dark top cement to change the properties of the mastic. Flexible modulus of the dark top strong mix can augment by the development of mineral filler. In any case, an absurd proportion of filler may weaken the mix by growing the proportion of dark top expected to cover the sums(Arabani, Tahami, and Taghipoor 2017[6]; Bhat and Mittal n.d.;[7] Liao, Airey, and Chen 2013[12]; Vouk et al. 2017)[21]. The effects of these fillers are also dependent on degrees. Two things are of huge thoughts right currently black-top structure and the mix plan. Our assessment focused on the mix plan contemplations. A not too bad structure of bituminous mix is required to realize a mix which enough strong, extreme and resistive to weariness, is enduring distorting and at the same time condition welcoming and prudent. A mix engineer endeavours to meet these requirements through different tests on the mix in with contrasting degrees of material blends and settle the best one. This a great part of the time incorporates robustness between normally conflicting parameters. The Marshall properties of bituminous mixes are generally impacted by filler rate and its sort(Choudhary, Kumar, and Gupta 2018[9]; Liao et al. 2013[12]; Lin et al. 2018[14]; Recasens et al. 1901)[18]. In like manner, the use of single ordinary filler in the bituminous mixes can't give us economy during advancement. So, the united usage of standard and non-customary fillers in the bituminous mixes were concentrated to construct the Marshall properties for changing bitumen content. The chance of these filler composites in the bituminous mixes was checked for its suitable execution in the real practices(Anon n.d.; Mistry, Karmakar, and Kumar Roy 2019)[4].

2. Methodology
As demonstrated by the methodology Micro Silica is using as a filler material. The basic tests are also conducted which conducted same for the Fine Aggregate. In this work of procedure Bitumen Content as consistent for the outright model. In this project, used Micro silica In a degree of the hard and fast weight of the Bitumen test i.e 1200 grams. We made the number of tests by changing the degree of
filler material in bitumen tests with Micro Silica and similarly Normal models without changing of materials content. After this work, differentiated both the models and without changing of filler material After Prepared bitumen tests. This work proposition that, got the best results by using the Micro Silica in a degree of filler.

![Figure 1. Methodology chart of experiment](image)

3. Materials

3.1. Bitumen

Bitumen is the by-product of the petroleum, which is the Distillation of Petrol. Bitumen is using as a important and major binding material in Black topped roads. In this Study, **VG30 Grade** is used. The basic experimental results were shown in **Table1**. The grading and limitations of the Bitumen are selected based on **IS Code**.
3.2. Aggregate

Aggregate are the important material in the Bituminous concrete. This materials are giving the strength to the Asphalt Mix. The entire load which comes from the top will take by the aggregates. In this Study soft edged and crushed stone are used. The basic experimental results were shown in Table 1. The oven dried aggregates are tested as per the code. The grading and limitations of the aggregates are selected based on IS 2386-1964.

3.3. Micro Silica (MS)

Micro silica, otherwise called silica smoulder or consolidated silica seethe, is a mineral admixture made out of extremely fine strong shiny circles of silicon dioxide. It is typically found as a side-effect in the modern assembling of ferrosilicon and metallic silicon in high-temperature electric curve heaters. Common tests were conducted on Micro Silica which are conducting to the fine aggregate. The grading and limitations of the Bitumen are selected based on IS Code.

Table 1: Aggregate test result values for different tests.

S.NO	Name of Experiment	Results	Code	Limitations (as per CODE)
1	Specific gravity	2.37	IS 2386 (Part III) 1963	2.5-3.0
2	Aggregate impact value test	24.137%	IS 2386 (Part IV) 1963	30% for bitumen course
3	Aggregate crushing test	30.6%	IS 2386 (Part IV) 1963	30%-45% for construction
4	Aggregate abrasion test	38%	IS 2386 (Part IV) 1963	30%-40% for bitumen surface

Table 1: Aggregate test result values for different tests. These are the results of the aggregate sample for Bitumen mixes. The above-mentioned tests are conducted according to IS Code. Even Results also came more satisfactory for Bitumen Mix.

Tests on Bitumen:

Table 2: Bitumen test result values for different tests.

S.NO	Name of Experiment	Results	Code	Limitations (as per CODE)
1	Ductility test	62.6 cm	IS: 1208-1978	50cm -75cm for bituminous construction
2	Flash and fire point test	280°C& 292°C	IS: 1209-1978	Minimum 220° for paving mix
3	Penetration test	55mm	IS: 1203-1978	60/70 penetration
4	Softening point test	6.5 minutes	IS: 1205-1978	45°-48° penetration
Table 2: Bitumen test result values for different tests. These are the results of the Bitumen sample for Bitumen mixes. The above-mentioned tests are conducted according to IS Code. Even Results also came more satisfactory for Bitumen Mix.

4. Results and Discussion

Flow Values: The stream esteem compute to the vertical miss happening when the most extreme burden is reached. Marshall Stability is related to the hindrance of bituminous materials to distortion, expulsion, rutting and shearing stresses. The security is gotten generally from inside contact and connection. It is seen that with increment in the level of added substances not many materials give more and not many of them show low in any case, each material shows an ideal incentive at a rate which appeared in the reference diagram.

Table 3: Flow values for different percentage of additive in the total weight of the filler with total bitumen mix.

Materials used	0%	5%	10%	15%	20%
Micro Silica	2.9	2.22	2.26	1.4	1.64

Figure 2. Flow values for different percentage of additive in the total weight of the filler with total bitumen mix.
Figure 3. Volume of Bitumen Percentage for different percentage of additive in the total weight of the filler with total bitumen mix.

Figure 4. Theoretical Specific Gravity for different percentage of additive in the total weight of the filler with total bitumen mix.
Figure 5. Volume filled With Bitumen for different percentage of additive in the total weight of the filler with total bitumen mix.

Figure 6. Voids in mineral Aggregate for different percentage of additive in the total weight of the filler with total bitumen mix.

4.1 Stability
The strength of the blend is characterized as the most extreme burden conveyed by a compacted example at a standard test temperature of 60°C. The stream is estimated as the twisting in units of 0.25 mm between no heap and most extreme burden conveyed by the example during the soundness test. It is seen that with increment in the level of added substances each material shows ideal incentive at a rate in the chart.
Table 4. Stability values for different percentage of Micro Silica in the total weight of the filler in total bitumen mix.

Materials used	0%	5%	10%	15%	20%
Micro Silica	845	930	880	1380	905

Figure 7. Stability values with changing of additives in a percentage Filler with respect to weight of Bitumen mix.

5. Conclusions

Bitumen roads are more flexible to carry the loads with some elastic nature. This pavement will deform when the traffic loads are appear, and regain its original position after load gone. The entire load will take by the top bitumen layer and transforms to the bottom layers. The total load will be distributing to every particle. Specially in bituminous roads load will distributegrain to grain. Entire load will goes to the soil lastly. In the total pavement the load will distribute to the bottom layers, in middle of the layers Filler is acting major role to carry and spread to the other below layers.

Lot of experimental works are done to increase the strength and life of bitumen. On replacement of additive material like sand, stone dust etc.,

In this paper used Micro Silica as a filler material in partial replacement of Filler. Here used 15% in the total weight of bitumen mould. Here tried basic amount of percentage is used but, got the proper mixing at optimum is at 15%.

Considering all the above values and tests can concluded that the materials which have chosen i.e., micro silica have shown positive values when compared to standard values of the bitumen mix without any additive.

As all know that filler is added just to fill the voids in the bituminous mix without giving any strength to mix, in this work selected to replace that with other materials. So that it will show more strength to the mix comparing the values, additives i.e., micro silica have shown max stability values at an optimum percentage of replacement of material in the place of filler.

Micro Silica has shown optimum value at 15% with stability values increased to 1380kg And flow value decreased to 3.5 mm when compared to standard stability and flow values 4 and 5.5mm respectively.
6. References

[1] Aljassar, Ahmad H., Saved Metwali, and Mohammed A. Ali. 2004. “Effect of Filler Types on Marshall Stability and Retained Strength of Asphalt Concrete.” International Journal of Pavement Engineering 5(1):47–51.

[2] Anon. 2020a. “Appraisal of Busy Traffic Intersections and Design of Coordinated Signal System.” International Journal of Recent Technology and Engineering 8(5):1105–9.

[3] Anon. 2020b. “Strengthening Properties of Concrete with Partial Replacement of Sand by GBFS.” International Journal of Innovative Technology and Exploring Engineering 9(4):1746–51.

[4] Anon. n.d. Comparison of Transition Curves In Terms Of Lateral Acceleration and Lateral Jerk. Anon. n.d. “Rigden1947.”

[5] Arabani, M., S. Babamohammadi, and A. R. Azarhoosh. 2015. “Experimental Investigation of Seashells Used as Filler in Hot Mix Asphalt.” International Journal of Pavement Engineering 16(6):502–9.

[6] Arabani, Mahyar, Seyed Amid Tahami, and Mohammad Taghipoor. 2017. “Laboratory Investigation of Hot Mix Asphalt Containing Waste Materials.” Road Materials and Pavement Design 18(3):713–29.

[7] Bhat, Mohammad Altaf, and Li O. P. Mittal. n.d. “Review Paper on Effect of Various Fillers on Bituminous Mixes I.” International Journal of Advanced Research in Education & Technology (IJARET) 213.

[8] Chen, Jian Shihu, Po Hong Kuo, Ping Sien Lin, Chien Chung Huang, and Kui Yi Lin. 2008. “Experimental and Theoretical Characterization of the Engineering Behavior of Bitumen Mixed with Mineral Filler.” Materials and Structures/Materiaux et Constructions 41(6):1015–24.

[9] Choudhary, Jayvant, Brind Kumar, and Ankit Gupta. 2018. “Effect of Filler on the Bitumen-Aggregate Adhesion in Asphalt Mix.” International Journal of Pavement Engineering.

[10] Dhiman, Ankita, and Ajay Kumar Duggal. 2017. Role of Filler in the Enhancement of Properties of Bituminous Mixes: A Review. Vol. 887.

[11] KathemTaehAlneyal, DipuSutradhar. 2015. “Effect of Using Waste Material as Filler in Bituminous Mix Design.” American Journal of Civil Engineering 3(3):88.

[12] Liao, Min Chih, Gordon Airey, and Jian Shiuh Chen. 2013. “Mechanical Properties of Filler-Asphalt Mastics.” International Journal of Pavement Research and Technology 6(5):576–81.

[13] Lin, Deng-Fong, and Chih-Huang Weng. n.d. USE OF SEWAGE SLUDGE ASH AS BRICK MATERIAL.

[14] Lin, Wenlin Yvonne, Wei Cheng Ng, Belinda Shu Ee Wong, Serena Lay Ming Teo, Gayathiri d/o Sivananthan, Gyeong Hun Baeg, Yong Sik Ok, and Chi Hwa Wang. 2018. “Evaluation of Sewage Sludge Incineration Ash as a Potential Land Reclamation Material.” Journal of Hazardous Materials 357:63–72.

[15] Mistry, Raja, Sandip Karmakar, and Tapas Kumar Roy. 2019. “Experimental Evaluation of Rice Husk Ash and Fly Ash as Alternative Fillers in Hot-Mix Asphalt.” Road Materials and Pavement Design 20(4):979–90.

[16] Mohi, Ishfaq, Ud Din, SupriyaMarik, and P. G. Student. 2007. “Influence of Fillers on Paving Grade Bitumen.” International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297).

[17] Prabhanjan, N., G. Sahithi, G. Swamy Yadav, Dara Swetha, and M. Guru Prasad. 2020. “Efficient And Economical Movement For Road Users By Design Of At-Grade Signalized Intersection At Alugunur.” INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH 9:2.

[18] Recasens, Rodrigo Miró, Adriana Martínez, Felix Pérez Jiménez, Hugo Bianchette, R Miró Recasens, A Martínez, and F Pérez Jiménez. 1901. Effect of Filler on the Aging Potential of Asphalt Mixtures.

[19] Swamy Yadav, G., N. Prabhanjan, G. Sahithi, G. Sangeetha, A. Srinivas, and A. Siva Krishna.
2020. “Strength Investigation of Fly Ash Based Concrete Waste Steel Fibre and Polypropylene Fibre as Reinforcing Materials.” Pp. 155–61 in.

[20] Varma, V. Ashok, and M. T. S. Lakshmayya. 2018. “A Review on Different Types of Wastes Used as Fillers in Bituminous Mix.” International Journal of Civil Engineering and Technology (IJCIET 9(9):289–300.

[21] Vouk, D., D. Nakic, N. Stirmer, and C. R. Cheeseman. 2017. USE OF SEWAGE SLUDGE ASH IN CEMENTITIOUS MATERIALS. Vol. 49.