Isolated photon-hadron production in high energy pp and pA collisions

Sanjin Benić (University of Zagreb)

SB, Garcia-Montero, Perkov, 2203.01685

DIS2022, Spain, May 4, 2022
Motivations

- γh angular correlations as a probe of high energy nuclear wavefunction
- Imbalance momentum
 \[k_\perp \equiv k_{\gamma \perp} + \frac{P_{h \perp}}{Z_h} \]
 \[k_\perp^2 \sim Q_S^2 \sim A^{1/3} \]
- Complements hh productions
 \rightarrow see previous talk by Cyrille Marquet
Motivations

- recent data on isolated γh^{\pm} from PHENIX and ALICE at mid-rapidity

PHENIX (pp)

- $\sqrt{s} = 200, 510$ GeV
- $k_{\gamma\perp} = 5 - 15$ GeV
- $P_{h\perp} = 0.5 - 10$ GeV

ALICE (pp & pPb)

- $\sqrt{s} = 5.02$ TeV
- $k_{\gamma\perp} = 12 - 40$ GeV
- $P_{h\perp} = 0.5 - 10$ GeV

PHENIX, PRD 95, no. 7, 072002 (2017)
PHENIX, PRD 98, no. 7, 072004 (2018)
ALICE, PRC 102, 044908 (2020)

Benić - Isolated photon-hadron - DIS 2022 - 2022/05/04
Motivations

• $x_{\text{RHIC}} \sim 10^{-2}$, $x_{\text{LHC}} \sim 10^{-3}$
 \rightarrow small-x effects \rightarrow CGC

• imbalance momentum: $k_{\perp} \equiv k_{\gamma\perp} + \frac{P_{h\perp}}{z_h}$

• hard scale: $Q \sim k_{\text{trig}\perp}$

• for kinematics when $Q \gg k_{\perp}$
 \rightarrow Sudakov (double) logs $\alpha_s \log^2(\frac{Q^2}{k_{\perp}^2})$
 important

• try to interpret the PHENIX and ALICE data in the context of CGC + Sudakov
Generic considerations

- \(qg \rightarrow q\gamma \) in collinear pQCD

\[
\frac{d\sigma}{d^2k_{\gamma\perp}d\eta_{\gamma}d^2P_{h\perp}d\eta_h} = \sum_q e_q^2 \int \frac{dz_h}{z_h^2} D_q(z_h, \mu^2) x_p f_q(x_p, \mu^2) x_A f_g(x_A, \mu^2) \alpha_s \hat{\sigma} \delta^{(2)}(k_{\perp})
\]

\(\gamma h \) emerge back-to-back
Generic considerations

• $q g \rightarrow q \gamma$ in CGC

\[d\sigma \over d^2 k_{\gamma \perp} d\eta_{\gamma} d^2 P_{h \perp} d\eta_h \]

\[= (\pi R_A^2) \sum_q \int_0^1 \frac{dz_h}{z_h^2} D_q(z_h, \mu^2) \frac{e_q^2 N_c}{8\pi^4} x_p f_q(x_p, \mu^2) k_{\perp}^2 \tilde{N}_{A, Y_A}(k_{\perp}) \hat{\sigma} \]

\[\tilde{N}_{A, Y_A}(k_{\perp}) \equiv \int d^2 b_{\perp} e^{ik_{\perp} \cdot b_{\perp}} \text{tr} \left\langle \bar{U}(b_{\perp}) \bar{U}^\dagger(0) \right\rangle_{Y_A} / N_c \]

→ broadening of the away side peak

Kopeliovich, Tarasov, Schafer, PRC 59, 1609-1619 (1999)
Gelis, Jalilian-Marian, PRD 66 014021 (2002)
Baier, Mueller, Schiff, NPA 741 358-380 (2004)
Previous phenomenological works

- a generic feature: dip at $\Delta \phi = \pi$
- due to dipole UGD

$$\varphi_{DP}(k_\perp) \sim k_\perp^2 \tilde{N}(k_\perp) \sim k_\perp^2 / Q_S^2$$

- in contrast to hh correlations that probe the WW UGD

$$\varphi_{WW}(k_\perp) \sim \log(Q_S^2 / k_\perp^2)$$

Jalilian-Marian, Rezaeian, PRD 86 034016 (2012)
Stasto, Xiao, Zaslavsky, PRD 86 014009 (2012)
Rezaeian, PRD 86 094016 (2012)
Goncalves, Lima, Pasechnik, Sumbera, PRD 101 no. 9 094019 (2020)
Lesson from hh correlations

- Giacalone et al: *away side peak is too narrow in comparison to the data*

- see also previous talk by Cyrille Marquet

Albacete, Giacalone, Marquet, Matas, PRD 99 014002 (2019)
Lesson from hh correlations

- Wei et al: Sudakov resummation broadens the away side peak \rightarrow agrees with the data!
- see also previous talk by Cyrille Marquet
Sudakov resummation

- two particle production: two scale problem
 \[\rightarrow \text{imbalance } k_\perp \text{ and a hard scale } \equiv Q \]

\[Q^2 \equiv x_p x_A s \sim k_{\text{trig}_\perp}^2 \]

- account for soft gluon radiations

\[\frac{d\sigma^{(0)}}{d^2 k_\perp} \propto \delta^{(2)}(k_\perp) \]
Sudakov resummation

- two particle production \rightarrow two scale problem
 \rightarrow imbalance k_{\perp} and a hard scale $\equiv Q$

$$Q^2 \equiv x_p x_A s \sim k_{\text{trig}}^2$$

- account for soft gluon radiations

$$\frac{d\sigma^{(1)}}{d^2 k_{\perp}} \propto \int_{k_{g\perp}} \frac{\alpha_s}{k_{g\perp}^2} \log \frac{Q^2}{k_{g\perp}^2} \times \delta^{(2)}(k_{g\perp} + k_{\perp})$$

- enhanced when $Q^2 \gg k_{\perp}^2$

\rightarrow Sudakov resummation

Collins, Soper, Sterman, NPB 250 199-224 (1985)

Benić - Isolated photon-hadron - DIS 2022 - 2022/05/04
Sudakov resummation

- Sudakov effect on top of CGC
 - Mueller, Xiao, Yuan, PRL 110 082301 (2013)
 - Stasto, Wei, Xiao, Yuan, PLB 784 301-306 (2018)
 - Marquet, Wei, Xiao, PLB 802 135253 (2020)
 - Zhao, Xu, Chen, Zhang, Wu, PRD 104, no, 114032 (2021)
 - van Hameren, Kotko, Kutak, Sapeta, PLB 814 136078 (2021)

- employed in b_{\perp}-space

\[k_{\perp}^2 \tilde{N}_{A,Y_A}(k_{\perp}) D_q(z_h, \mu^2) f_q(x_p, \mu^2) \]

\[\rightarrow \int d^2 b_{\perp} e^{i k_{\perp} \cdot b_{\perp}} \partial^2_{b_{\perp}} \tilde{N}_{A,Y_A}(b_{\perp}) D_q(z_h, \mu_b^2) f_q(x_p, \mu_b^2) e^{-S_{Sud}(b_{\perp}, Q)} \]

- Sudakov factor

\[S_{Sud}(b_{\perp}, Q) = \int_{\mu_b^2}^{Q^2} \frac{d\bar{\mu}^2}{\mu^2} \left[A \log \left(\frac{Q^2}{\bar{\mu}^2} \right) + B \right] \]

- A and $B \rightarrow$ channel dependent coefficients
- for $qg \rightarrow q\gamma$

\[A = \frac{\alpha_S(\bar{\mu}^2)}{\pi} \left(C_F + \frac{C_A}{2} \right) \quad B = -\frac{\alpha_S(\bar{\mu}^2)}{\pi} \frac{3}{2} C_F \]
Computation setup

- $D_q(z_h, \mu^2) \rightarrow \text{DSS}$
 de Florian, Sassot, Stratmann, PRD 75, 114010 (2007)

- $x_p f_q(x_p, \mu^2) \rightarrow \text{CTEQ6M}$
 Pumplin, Stump, Huston, Lai, Nadolsky, Tung, JHEP 07, 012 (2002)

- $\tilde{N}_A, \gamma_A(k_{\perp}) \rightarrow \text{AAMQS}$
 Albacete, Armesto, Milhano, Quiroga-Arias, Salgado, EPJC 71, 1705 (2011)

- b^* prescription $\mu_b > 2 e^{-\gamma_E} / b_{\text{max}}$

 $S_{\text{Sud}}(b_{\perp}, Q) \rightarrow S_{\text{Sud}}(b_{\perp}, Q) + S_{\text{non-pert}}(b_{\perp}, Q)$

- $S_{\text{non-pert}}(b_{\perp}, Q) \rightarrow \text{SIYY}$
 Sun, Isaacson, Yuan, IJMPA 33 no. 11, 1841006 (2018)
Angular corr’s: CGC vs CGC+Sud

self-normalized cross section

\[\frac{1}{\sigma} \frac{d\sigma}{d\Delta \phi} \]

\[p + p \]
\[\sqrt{s} = 200 \text{ GeV} \]
\[|\eta| < 0.35 \]
\[5 < k_{\perp} < 7 \text{ GeV} \]
\[2 < P_{h\perp} < 5 \text{ GeV} \]

- dip at \(\Delta \phi = \pi \)
\[\varphi_{DP}(k_{\perp}) \sim k_{\perp}^2/Q_S^2 \]

SB, Garcia-Montero, Perkov, 2203.01685

Benić - Isolated photon-hadron - DIS 2022 - 2022/05/04
Angular corr’s: CGC vs CGC + Sud

- washed away by Sudakov!!

SB, Garcia-Montero, Perkov, 2203.01685

Benič - Isolated photon-hadron - DIS 2022 - 2022/05/04
Angular corr’s: PHENIX pp 200 GeV

- self-normalized results in $k_{\gamma \perp} \times P_{h \perp}$ bins

mostly sensitive to CGC+Snon-pert

mostly sensitive to SSud
PHENIX predictions

- \(pp \) vs \(pA @ PHENIX: \)
 - lowest (5 – 7 GeV) & highest (12 – 15 GeV) \(k_{\gamma \perp} \) bins

- \(Q_{S0, A}^2 = 3 Q_{S0, p}^2 \)

- nuclear effect at most \(\sim 10\% \)

SB, Garcia-Montero, Perkov, 2203.01685
Benić - Isolated photon-hadron - DIS 2022 - 2022/05/04
ALICE pp and pA 5.02 TeV

- $k_{\gamma\perp} = 12 - 40$ GeV
 - \rightarrow nuclear effect barely visible for ALICE kinematics

ALICE, PRC 102, 044908 (2020)
SB, Garcia-Montero, Perkov, 2203.01685

Benić - *Isolated photon-hadron* - DIS 2022 - 2022/05/04
ALICE - predictions

- *pp vs pA @ ALICE*

 lower $k_{\gamma \perp}$ → more symmetric kinematics

 \[\text{decrease } k_{\gamma \perp} \]

- nuclear effect at most $\sim 10\%$

SB, Garcia-Montero, Perkov, 2203.01685
\(p_{\text{out}} \)-distributions: PHENIX

\[
p_{\text{out}} \equiv P_{h\perp} \sin(\Delta \phi) \quad x_E \equiv -\frac{P_{h\perp}}{k_{\gamma\perp}} \cos(\Delta \phi)
\]

- close to the away side peak (\(\Delta \phi \simeq \pi \)):

\[
p_{\text{out}} \sim z_h k_{\perp} \quad x_E \sim z_h
\]

\(\rightarrow \) proxy for intrinsic \(k_{\perp} \)
p_{out}-distributions: widths

- extracted by fitting to a Gaussian in the range $|p_{\text{out}}| < 1.1 \pm 0.2$ GeV

- best description with CGC+Sud

PHENIX, PRD 98, no. 7, 072004 (2018)
SB, Garcia-Montero, Perkov, 2203.01685
Conclusions

- γh production in a CGC+Sud framework → a reasonable description of the data
- caveat: this may not be the only way to interpret the data
- modest nuclear effect $\sim 10\%$
- future works: Drell-Yan, NLO corrections, systematic errors etc..
Widths: pA vs. pp

- Up to 0.15 GeV2 broader widths in pA vs pp for $x_E < 0.4$

SB, Garcia-Montero, Perkov, 2203.01685