Pediatric-inspired chemotherapy incorporating pegaspargase is safe and results in high rates of minimal residual disease negativity in adults up to the age of 60 years with Philadelphia chromosome-negative acute lymphoblastic leukemia

Mark B. Geyer,¹,² Ellen K. Ritchie,³ Arati V. Rao,⁴ Shreya Vemuri,⁵ Jessica Flynn,⁶ Meier Hsu,⁶ Sean M. Devlin,⁶ Mikhail Roshal,⁷ Qi Gao,⁷ Madhulika Shukla,¹ Jose M. Salcedo,¹ Peter Maslak,¹ Martin S. Tallman,¹ Dan Douer¹ and Jae H. Park¹,²

¹Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ²Center for Cell Engineering, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; ³Weill Cornell Medical College, Hematology and Medical Oncology, Joan and Sanford I. Weill Department of Medicine, New York, NY; ⁴Kite-A Gilead Company, Foster City, CA; ⁵Sloan Kettering Institute, New York, NY; ⁶Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY and ⁷Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.251686

Received: March 23 2020.
Accepted: September 25, 2020.
Pre-published: October 13, 2020.
Correspondence: JAЕ H. PARK - parkj6@mskcc.org
Supplementary methods:

Eligibility criteria:

Subject inclusion criteria:

1. Previously untreated Philadelphia chromosome (Ph) negative precursor B-cell or T-cell acute lymphoblastic leukemia (ALL) confirmed by conventional flow cytometry or immunohistochemical stain. Patients who have untreated B-cell or T-cell ALL confirmed by conventional flow cytometry or immunohistochemical stain, but Ph status is unknown, may also enroll.

2. Patients with T-cell or B cell lymphoblastic lymphoma (LBL) confirmed by conventional immature T–or pre-B cell markers even if the bone marrow is not involved are also eligible

3. Age 18 - 60 years

4. ECOG performance status of 0-2

5. Adequate renal function as demonstrated by a serum creatinine ≤ 2.0 mg/dl or a calculated creatinine clearance of > 60 ml/min.

6. Adequate hepatic function as demonstrated by a total bilirubin < 2.0 mg/dl (unless attributable to Gilbert’s disease) and an alkaline phosphatase, AST, and ALT ≤ 4 times the upper limit of normal (unless clinically considered to be related to liver involvement with leukemia)

7. Normal cardiac function as demonstrated by a left ventricular ejection fraction ≥ 50% on echocardiogram or MUGA scan

8. Negative serum pregnancy test in women of childbearing potential

9. Men and women of childbearing potential must be willing to practice an effective method of birth control during treatment and at least 4 months after treatment is finished.
10. Patients with central nervous system involvement by ALL are eligible and may receive concomitant treatment with radiation therapy and/or intrathecal chemotherapy in accordance with standard medical practice. For patients with central nervous system (CNS) disease, dexamethasone may be temporarily administered instead of prednisone to reduce CNS pressure, at the discretion of the treating physician and after discussion with the MSK PI. Once dexamethasone is no longer needed, prednisone should be given as per protocol for 28 days.

Subject exclusion criteria:

1. Previous treatment for ALL, except for prior steroids and/or hydroxyurea
2. Patients known to have Ph+ ALL are not eligible. Leukemia cell samples will be obtained from all patients enrolled before starting protocol treatment and submitted for Philadelphia chromosome testing by either karyotyping, or for bcr/abl1 translocation by FISH or by PCR. Patients who are later found to have Ph+ ALL should have treatment on this trial discontinued and will not be considered in the evaluation.
3. Lymphoid blast crisis of chronic myelogenous leukemia
4. Mature B-cell (Burkitt-type) ALL
5. Active serious infections not controlled by antibiotics
6. Pregnant women or women who are breast-feeding
7. Concurrent active malignancy requiring immediate therapy
8. Clinically significant cardiac disease (NY Heart Association Class III or IV), including chronic arrhythmias, or pulmonary disease
9. Known HIV positive status
10. Other serious or life-threatening conditions deemed unacceptable by the principal investigator

**Pegasparagase toxicity management, enzyme activity monitoring, and immunogenicity:**

Liver biochemical tests, pancreatic enzymes, coagulation studies, and fibrinogen were followed at least twice weekly for two weeks following each dose of pegasparagase. Pegasparagase was permanently discontinued after clinical pancreatitis or anaphylaxis and in the event of the latter, substitution with 6 doses of Erwinia asparaginase 25,000 units/m² given every other day was permitted. Severe hyperglycemia was treated with insulin and serum hypertriglyceridemia (>1,000 mg/dL) was treated with gemfibrozil. Thrombosis was treated with low molecular weight heparin, with doses lowered or held during periods of severe thrombocytopenia; continuation of pegasparagase was permitted for non-CNS thrombosis. Cryoprecipitate was recommended for fibrinogen levels <50 mg/dL. For all other toxicities, including hepatotoxicity, subsequent doses were not reduced. Measurement of antithrombin III after pegasparagase was not required. See **Supplementary Table 1** for further details.

Asparaginase enzymatic activity was assessed in a subgroup of patients 7 days following the dose of pegasparagase (Next Molecular Analytics, Chester, VA). Anti-drug antibodies were assessed at similar timepoints using as multi-step process (BioAgilytix, Durham, NC).(1, 2) Samples were evaluated for the presence of antibodies specific to Oncaspar, including specific confirmation to 5 kDa polyethylene glycol (PEG). Each sample was evaluated at the minimum required dilution (25-fold) and run in duplicate. Following a screening assay, initial confirmatory assays were performed on samples and controls using 50 μg/mL Oncaspar® confirmatory buffer; samples that screened positive for Oncaspar® were then subject to pegasparagase specificity
confirmation. Samples and controls were tested in the presence and absence of 200 μg/mL 5 kDa pegaspargase confirmatory buffer. Samples that confirmed positive were subjected to up to 12 serial dilutions in negative control run on the same plate, until the signal fell below the normalized value plate specific dynamic titration cut point. The dilution factor above where the signal falls below the cut point for the first time (titer defining sample) was multiplied by the minimum required dilution to determine the titer.

**Minimal (measurable) residual disease analysis (MRD):**

Central MRD analysis was performed in one of two Children’s Oncology Group (COG) accredited MRD reference laboratories (Johns Hopkins University [JHU] and Memorial Sloan Kettering Cancer Center [MSK]) as previously described for MSK evaluation,(3) for JHU methodology for B-ALL,(4) and for T-ALL.(5) Both laboratories used validated sensitivity of 0.01% abnormal cells among total white blood cells for T-cell and B-cell ALL and have established method concordance for B-cell ALL using 60 shared samples (23 positives, 37 negative) with perfect qualitative concordance (also see Supplementary Figure 1A for quantitative concordance). T-cell ALL methodology and approach were highly similar between institutions and concordance was confirmed using 10 split samples (8 positives, 2 negative) using either MSKCC or COG methodology with perfect qualitative concordance (see Supplementary Figure 1B). Furthermore, a subset of samples from the current trial (10 for B-ALL and 4 for T-ALL) was also analyzed in both laboratories with perfect qualitative concordance and high quantitative concordance for both B- and T-ALL. Specific panels used are listed in Supplementary Table 7. Both laboratories aimed to acquire at least 500,000 cells for analysis.
Of note, sensitivity of MRD analysis was reduced in selected samples due to paucicellular specimens (for example, day 15 of induction 1). In such instances, MRD analysis was performed using the same methods but reported with this limitation.

**Early T-precursor ALL/LBL definition:**

ETP-ALL/LBL immunophenotype was defined as follows: absent CD1a and CD8 expression; absent or dim CD5 expression; and expression of at least one myeloid (CD11b, CD13, CD33, CD117) or stem cell (CD34, HLA-DR) marker by flow cytometry.(6, 7)

**Delays in treatment:**

Delay in initiating a block of therapy was defined as initiation of protocol-specified therapy beyond the time frame advised by protocol (transition from induction I to induction II later than day 40 of induction I, or transition from intensification I/II to reinduction I/II later than day 35 of intensification I/II) or 4 weeks or more from the last date of protocol-specified chemotherapy in one cycle to the next (for transition from induction II to intensification I, or from reinduction I to intensification II). Delays were categorized as related to pegaspargase therapy if abnormal laboratory values or other sequelae attributed to pegaspargase precluded timely start of next protocol treatment based on protocol-specified parameters. Other delays were categorized as related to pegaspargase in part if the delay would not have been mandated by protocol, but the physician chose to delay treatment in part to allow further improvement in pegaspargase-related toxicity (for example, nausea). Delays related to myelosuppression or other factors independent of pegaspargase were categorized accordingly.
Molecular profiling:

Evaluation for Philadelphia chromosome-like ("Ph-like") ALL was performed when possible for patients with B-cell ALL/LBL using targeted RNA sequencing (FusionPlex, Archer, Boulder, CO) and fluorescence *in situ* hybridization. In selected patients, the FoundationOne Heme platform (Foundation Medicine, Cambridge, MA) was used for DNA and targeted RNA sequencing.

For selected patients treated at Memorial Sloan Kettering Cancer Center (MSK), MSK IMPACT-Heme was performed at diagnosis; the IMPACT-Heme (HemePACT) targeted deep sequencing assay has been described elsewhere (8-10). Specific mutations are detected by hybridization capture of DNA followed by massively parallel sequencing on an Illumina HiSeq2500 instrument. This assay is designed to detect single nucleotide variants and insertions and deletions (< 2,000bp) in protein-coding exons of the 400 gene panel. Mutations are called based on paired analysis using the submitted patient control sample and a pooled unmatched normal. This assay reports variants confirmed to be absent in the pooled unmatched normal and also confirmed to be somatic based on comparison of variant allele frequencies in the tumor sample and the matched blood or saliva or nail sample. This assay is at risk of false negatives when sequence coverage for an exon is below 100X.

Response definitions:

Complete response (CR) was defined as achievement of <5% blasts with approximately normal cellularity and trilineage hematopoiesis by BM aspirate and biopsy, resolution of CNS or other extramedullary disease, and recovery of peripheral blood counts (absolute neutrophil count [ANC] ≥1000/µL without growth factor support and platelets ≥100k/µL without transfusion); CR
with incomplete hematologic recovery (CRi) was defined as meeting criteria for CR, with the exception of achieving the above thresholds for ANC and/or platelet recovery. In patients with non-CNS extramedullary disease, CR for those sites was defined by Lugano criteria.\(^{(11)}\)

MRD was assessed by multiparameter flow cytometry as outlined in the main Methods section of the manuscript and as noted previously in the Supplementary Methods. Key time points for MRD analysis included day 15 of Induction I and on recovery from Induction I and Induction II. Immunophenotyping was additionally performed on bone marrow aspirate specimens at hematopoietic recovery following reinduction I and reinduction II, every 3 months during years 1-2 of maintenance, and every 6 months during year 3 of maintenance.

**Study design:**

We conducted a multicenter open-label phase II trial to study the efficacy of the novel pediatric-inspired regimen described herein in the treatment of adults up to age 60 years with newly diagnosed Ph-negative ALL/LBL. We utilized a Simon’s Minimax two-stage design in which a 50% rate of molecular remission (minimal residual disease [MRD] negativity by local multiparameter flow cytometry [FACS] as described in Methods) was considered not promising, a 70% rate of molecular remission was considered promising, and the probabilities of a type I error and type II error were set at 0.10 and 0.10, respectively. The maximum trial size was set as 39 patients. The two-stage design was set such that in the first stage, 23 patients would be accrued. If at least 12 of these 23 patients with ALL or LBL achieved molecular remission (MRD negativity by local FACS) after Induction Phase I, then an additional 16 patients would be accrued to the second stage. At the end of the trial, if 24 or more molecular remissions were seen after Induction Phase I, the study would be considered promising for further investigation. The
study proceeded from the first to the second stage of enrollment after confirmation of molecular remission following Induction Phase I in 12 of the first 23 patients enrolled.

**Consideration of allogeneic hematopoietic cell transplantation (alloHCT):**

Patients achieving complete response (CR) post-induction were permitted to proceed to alloHCT at any point, if recommended by the treating physicians. There were not homogeneous criteria for alloHCT. Broadly, patients with t(4;11), Ph-like ALL, or persistent MRD beyond induction phase II were offered allogeneic transplant in CR1. Other patients underwent alloHCT in first CR based on donor availability and shared decision-making between the patient and involved physicians. Patients relapsing and therefore discontinuing study treatments were generally offered alloHCT in subsequent CR if attained.
Supplementary results:

**Delays between courses of therapy:**

In the absence of toxicity or complications, it was recommended patients proceed to Induction Phase II on day 32-40 of Induction Phase I, to Intensification I after hematopoietic recovery (ANC ≥ 1,000/mcL and platelets ≥75,000/mcL) following confirmation of CR post-Induction Phase II, to Reinduction I on day 28-35 of Intensification I, to Intensification II after hematopoietic recovery (ANC ≥ 1,000/mcL and platelets ≥75,000/mcL) following confirmation of CR post-Reinduction I, to Reinduction II on day 28-35 of Intensification II, and to Maintenance after hematopoietic recovery (ANC ≥ 1,000/mcL and platelets ≥75,000/mcL) following confirmation of CR post-Reinduction II.

Median time from initiation of one cycle to initiation of the next was 39 days from Induction Phase I to Induction Phase II, 71.5 days from Induction Phase II to Intensification I, 35 days from Intensification I to Reinduction I, 71 days from Reinduction I to Intensification II, 33 days from Intensification II to Reinduction II, and 82 days from Reinduction II to Maintenance.

Among the 24 patients who began Induction Phase II >40 days from initiation of Induction Phase I, the delay was directly attributed to pegaspargase in 7. Pegaspargase toxicity was cited by the treating physician as contributing in part to the delay in 3 patients, regardless of whether the patient otherwise met laboratory parameters to begin Induction Phase II chemotherapy. Time between Induction Phase I and Induction Phase II was not associated with inferior EFS or OS. Of the 13 patients who began Intensification I ≥71 days from start of Induction II, no delays were attributed to pegaspargase. Of the 11 patients who began Reinduction I >35 days from start of Intensification I, toxicities of pegaspargase were noted as a contributing factor in 2 patients. Of the 9 patients who began Intensification II ≥71 days from
start of Reinduction I, no delays were attributed to pegasparagase. Of the 6 patients who began
Reinduction II >35 days from start of Intensification II, toxicities of pegasparagase were
considered a contributing factor in one case. Of the 7 patients who began Maintenance ≥71 days
from start of Reinduction II, none had delays attributed to pegasparagase.

**Local MRD assessment:**

Local evaluation for MRD in BM was performed in 27 of 31 patients with ALL (i.e. not
LBL) on day 15 of Induction I; at that time, 9 of 27 (33%) of patients had achieved MRD
negativity. The proportion of patients with ALL exhibiting BM MRD negativity on local review
increased following Induction I (13 of 30, 43%) and Induction II (21 of 25, 84%).
Supplementary figures:

Figure S1

Legend: Bone marrow aspirates from patient follow up samples for either B-cell ALL (A) or T-cell ALL (b) were collected at Memorial Sloan Kettering Cancer Center (MSK) in EDTA tubes and split equally between MSK and Johns Hopkins University (JHU), (a) or MSK and Children’s Oncology Group reference laboratory (University of Washington, utilizing identical methodology to JHU), (B). Slope and intercept were calculated using Deming regression). 95% confidence intervals for slope and intercept included 1 and 0 respectively (not shown).
Supplementary tables:

**Table S1: Pegasparagase toxicity monitoring, prevention, and management, based on reference (12)**

| Toxicity          | Prevention                                                                 | Early detection                                      | Treatment                                                                 | Asparaginase resumption                                                                 |
|-------------------|-----------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Hypersensitivity  | -Steroids per protocol                                                      | -Follow pancreatic enzymes at least twice weekly as above | -Anti-histamine, Hydrocortisone or other corticosteroids, Epinephrine      | -No E. coli asparaginase or pegasparagase after anaphylaxis                             |
|                   | -Hydrocortisone premedication                                               | -Patient instructed to report abdominal pain/nausea/vomiting promptly | -Immediate admission for clinical pancreatitis                           | -If Erwinia asparaginase available, replace each pegasparagase dose with 6 doses of Erwinia asparaginase 25,000 units/m² every other day including weekend days |
|                   | -Anaphylaxis kit at chairside/bedside during infusion                      | -Serial labs for chemical-only pancreatitis         | -NPO, IV hydration, Antibiotics as indicated                             |                                                                                         |
| Pancreatitis      | -No EtOH                                                                    | -Follow pancreatic enzymes at least twice weekly as above | -CT abdomen                                                               | -Immediate admission for clinical pancreatitis                                        |
|                   | -Avoid heavy meals                                                          | -Follow abdominal pain/nausea/vomiting promptly       | -IV hydration                                                             | -NPO, IV hydration, Antibiotics as indicated                                             |
|                   |                                                                             | -Serial labs for chemical-only pancreatitis         | -Antibiotics as indicated                                                 | -Immediate admission for clinical pancreatitis                                        |
|                   |                                                                             |                                                     | -Continuation of pegasparagase for elevations of lipase/amylase without any symptoms |                                                                                         |
| Thombosis         | -Most patients have a decrease in ATIII. However, for history of recurrent past thrombosis, assess for thrombophilia. | -ATIII levels NOT followed routinely                 | Central line-associated or DVT                                           | -Continue pegasparagase                                                                |
|                   |                                                                             | -Ultrasound if suspicion for VTE                    | -Change line, LMWH                                                       | -LMWH (except when platelets <25-50k/mcL)                                               |
|                   |                                                                             |                                                     | -Consider ATIII                                                          | -Anticoagulation as indicated                                                           |
|                   |                                                                             |                                                     | -Avoid plasma (repletes asparagine)                                      | -No E. coli asparaginase or pegasparagase                                               |
|                   |                                                                             |                                                     |                                                                           |                                                                                         |
| Bleeding          | -No prophylactic cryoprecipitate unless fibrinogen <50 mg/dL                | -Fibrinogen monitoring as above                      | -Cryoprecipitate, Platelet transfusions if indicated                      | -Continue pegasparagase                                                                |
|                   |                                                                             |                                                     | -Avoid plasma (repletes asparagine)                                      | -Anticoagulation as indicated                                                           |
|                   |                                                                             |                                                     |                                                                           | -No E. coli asparaginase or pegasparagase                                               |
| Hyperglycemia     | -Follow serum glucose at least twice weekly as above                        | -Insulin if needed                                   |                                                                           | -Continue pegasparagase and corticosteroids                                             |
| Condition          | Action 1                                      | Action 2                                      | Action 3                                      |
|--------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Hepatotoxicity     | Avoid EtOH                                    | Follow liver biochemical tests at least twice weekly as above | Wait for bilirubin to drop before next cycle (treatment parameters per protocol) |
| Hypertriglyceridemia | Avoid fatty meals                             | Follow triglycerides at least twice weekly as above | Start gemfibrozil 600 mg PO BID for triglycerides >1000 mg/dL | Continue pegaspargase |

Legend: EtOH=alcohol, NPO=nothing by mouth, ATIII=antithrombin III, VTE=venous thromboembolism, DVT=deep vein thrombus, CNS=central nervous system, LMWH=low molecular weight heparin, DKA=diabetic ketoacidosis, HHNK=hyperosmolar hyperglycemic non-ketotic state
Table S2: Details of antibody panels used for flow cytometric assessment of minimal residual disease.

| Antibody | Fluorochrome | Manufacturer |
|----------|--------------|--------------|
| CD20     | FITC         | BD           |
| CD34     | PE           | BC           |
| CD10     | PC5.5        | BC           |
| CD33     | PC7          | BC           |
| CD38     | APC          | BC           |
| CD45     | APC-H7       | BD           |
| CD19     | BV421        | BD Horizon   |
| CD38     | BV510        | BD Horizon   |

**JHU B-cell ALL**

| Antibody | Fluorochrome | Manufacturer |
|----------|--------------|--------------|
| CD20     | FITC         | BD           |
| CD10     | PE           | BD           |
| CD38     | PerCP-Cy5.5  | BD Pharm.    |
| CD19     | PC7          | BC           |
| CD21     | APC          | BC           |
| CD45     | APC-H7       | BD           |

**MSK T-cell ALL**

| Antibody | Fluorochrome | Manufacturer |
|----------|--------------|--------------|
| CD7      | BB515        | BD           |
| CD16     | PE           | BC           |
| CD36     | PE           | BC           |
| CD34     | PerCP-Cy5.5  | BD           |
| CD3      | PC7          | BC           |
| CD5      | APC          | BD           |
| CD4      | APC A700     | BC           |
| CD8      | APC-H7       | BD           |
| CD2      | BV421        | BD Pharm.    |
| CD45     | V500C        | BD Horizon   |

**JHU T-cell ALL**

| Antibody | Fluorochrome | Manufacturer |
|----------|--------------|--------------|
| sCD3     | BV421        | BD Horizon   |
| CD48     | FITC         | BD           |
| CD1      | PE           | BD           |
| CD16+56  | PerCP-Cy5.5  | BD           |
| CD2      | PE-Cy7       | BD           |
| cyCD4    | APC          | BD           |
| CD45     | APC-H7       | BD           |

**Legend:**
- BD = Becton Dickinson
- BC = Beckman Coulter
- cy's = prior to marker = cytoplasmic/surface
Table S3: Cytogenetic classification system.

| Classification(13) | Cytogenetic Findings                                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Unfavorable        | t(4;11)(q21;q23) or any other balanced translocation involving band 11q23; Monosomy of chromosome 7 (−7); Trisomy of chromosome 8 (+8); Hypodiploid karyotype (≤43 with or without a near-triploid (i.e., with near 69 chromosomes) clone (or had a near triploid clone without a hypodiploid one) |
| Intermediate       | Normal karyotype; structural abnormalities involving the short arm of chromosome 9 (9p); t(1;19)(q23;p13.3) or a derivative of chromosome 19 resulting from this reciprocal translocation [der(19)t(1;19)(q23;p13.3)]; deletions of the long arm of chromosome 6 [del(6q)] and the long arm of chromosome 13 [del(13q)]; trisomy of chromosome 21 (+21); high hyperdiploidy defined as chromosome number ≥50 (excluding near-triploidy and near-tetraploidy) |
| Favorable          | Abnormalities involving bands 14q11, 7p14~15 or 7q34~36, and deletions and translocations involving the short arm of chromosome 12 (12p)             |
| Not prognostically classified | Adequate karyotype but not one above                                                                                                                  |
| Not evaluable      | Not adequate karyotype                                                                                                                                   |
Table S4: Reasons for pegasparagase discontinuation prior to completion of all 6 planned doses.

| Rationale                                                                 | N  |
|--------------------------------------------------------------------------|----|
| AlloHCT in CR1                                                            | 10 |
| Changed to Erwinia asparaginase for hypersensitivity to pegasparagase    | 4  |
| Death in CR1                                                              | 2  |
| Discretion of investigator                                                | 2  |
| Early truncation of second reinduction course due to complications of    | 1  |
| pancytopenia                                                             |    |
| Hyperbilirubinemia attributed to pegasparagase                            | 1  |
| Morphologic relapse                                                       | 1  |
| Pancreatitis attributed to pegasparagase                                  | 1  |
| Patient withdrawal of consent                                             | 1  |
| Persistent MRD with change of therapy to blinatumomab                     | 1  |
| Removed from study for refractory disease                                | 1  |
| Transaminitis attributed to pegasparagase                                 | 1  |
| Transaminitis attributed to HD-MTX leading to omission of planned dose of | 1  |
| pegasparagase                                                             |    |
Table S5: Serum asparaginase enzymatic activity post-PEG for patients age 40-60.

| Time Point in Treatment | Samples (N) | Serum Asparaginase Enzymatic Activity 7 Days Post-PEG (IU/mL) |
|-------------------------|-------------|------------------------------------------------------------|
|                         |             | Mean | SD |
| Induction I             | 6           | 0.813 | 0.306 |
| Induction Phase II      | 5           | 0.885 | 0.248 |
| Intensification I       | 3           | 0.968 | 0.185 |
| Reinduction I           | 4           | 1.118 | 0.286 |
| Intensification II      | 3           | 0.688 | 0.289 |
| Reinduction II          | 2           | 1.079 | 0.067 |
| All Phases              | 23          | 0.909 | 0.274 |
Table S6: Summary of immunogenicity testing results in patients with positive confirmatory results at any point during treatment, as well as asparaginase activity at the corresponding time point.

| Pt ID | Visit                                      | Screening Result | Oncaspar® Confirmatory Result | 5 kDa PEG Confirmatory Result | Titration Result | Asparaginase Activity Level (IU/mL) | Comments                                                                 |
|-------|--------------------------------------------|------------------|--------------------------------|-------------------------------|------------------|-------------------------------------|--------------------------------------------------------------------------|
| 12    | Pre-treatment                              | Negative         | N/A                            | N/A                           | N/A              | <0.013                              | Pre-treatment; had not received any pegaspargase                         |
|       | Induction I, 7 days post-pegaspargase      | Negative         | N/A                            | N/A                           | N/A              | 0.667                               |                                                                           |
|       | Induction II, immediate post-pegaspargase  | Positive         | Positive                        | Positive                      | 100              | 0.106                               | Allergic reaction; pegaspargase stopped 5 minutes into infusion.         |
|       | Induction II, 7 days post-pegaspargase     | Positive         | Positive                        | Positive                      | 200              | <0.013                              | Had only received 5 minutes of pegaspargase infusion as above.           |
| 18    | Pre-treatment                              | Positive         | Positive                        | Positive                      | 100              | <0.013                              | Pre-treatment; had not received any pegaspargase                         |
|       | Induction I, 7 days post-pegaspargase      | Negative         | N/A                            | N/A                           | N/A              | 0.904                               |                                                                           |
|       | Induction II, 7 days post-pegaspargase     | Positive         | Positive                        | Positive                      | 50               | 0.807                               |                                                                           |
|       | Re-induction I, 7 days post-pegaspargase   | Positive         | Positive                        | Negative                      | 25               | 0.942                               |                                                                           |
|       | Re-induction II, 7 days post-pegaspargase  | Negative         | N/A                            | N/A                           | N/A              | 1.131                               |                                                                           |
| 22    | Pre-treatment                              | Positive         | Positive                        | Negative                      | 50               | <0.013                              | Pre-treatment; had not received any pegaspargase                         |
|       | Induction II, 7 days post-pegaspargase     | Positive         | Positive                        | Negative                      | 25               | 0.340                               |                                                                           |
| 34    | Induction I, 7 days post-pegaspargase      | Positive         | Negative                        | Negative                      | N/A              | 0.691                               |                                                                           |
|       | Induction II, 7 days post-pegaspargase     | Positive         | Positive                        | Positive                      | 100              | 0.694                               |                                                                           |
|       | Intensification I, 7 days post-pegaspargase| Positive         | Positive                        | Positive                      | 50               | 1.139                               |                                                                           |
|       | Re-induction I, 7 days post-pegaspargase   | Positive         | Positive                        | Negative                      | 200              | 0.954                               |                                                                           |

Legend: Pt ID=patient identification number; kDa=kilodaltons; PEG=polyethylene glycol
Table S7: Numbers of patients with non-hematologic adverse events definitely, probably, or possibly related to protocol therapy as assessed by CTCAE v4.03. Maximal grade of each adverse effect is documented for each individual patient.

| Toxicity                          | Maximal Grade |
|-----------------------------------|---------------|
|                                   | 1  | 2  | 3  | 4  | 3 + 4 |
| Fibrinogen decreased              | 1  | 3  | 6  | 15 | 21   |
| Hypertriglyceridemia              | 3  | 8  | 6  | 15 | 11   |
| ALT increased                     | 3  | 8  | 10 | 26 | 15   |
| Hyperglycemia                     | 3  | 8  | 11 | 28 | 12   |
| AST increased                     | 10 | 26 | 15 | 10 | 26   |
| Blood bilirubin increased         | 1  | 3  | 7  | 18 | 5    |
| Febrile neutropenia               | 0  | 0  | 0  | 0  | 10   |
| Alkaline phosphatase increased    | 4  | 10 | 2  | 5  | 4    |
| Hypoalbuminemia                   | 0  | 0  | 6  | 15 | 4    |
| Fatigue                           | 13 | 33 | 6  | 15 | 3    |
| Peripheral sensory neuropathy     | 9  | 23 | 3  | 8  | 3    |
| aPTT prolonged                    | 14 | 36 | 4  | 10 | 2    |
| Epistaxis                         | 1  | 3  | 1  | 3  | 2    |
| Hyponatremia                      | 4  | 10 | 0  | 0  | 2    |
| Nausea                            | 13 | 33 | 12 | 31 | 2    |
| Abdominal pain                    | 3  | 8  | 3  | 8  | 1    |
| Allergic reaction                 | 0  | 0  | 2  | 5  | 1    |
| Anaphylaxis                       | 0  | 0  | 0  | 0  | 1    |
| Anorectal infection               | 0  | 0  | 0  | 0  | 1    |
| Anorexia                          | 4  | 10 | 2  | 5  | 1    |
| Arthralgia                        | 0  | 0  | 0  | 0  | 1    |
| Headache                          | 4  | 10 | 3  | 8  | 1    |
| Hepatic failure                   | 0  | 0  | 0  | 0  | 1    |
| Hepatic infection                 | 0  | 0  | 0  | 0  | 1    |
| Hyperkalemia                      | 1  | 3  | 1  | 3  | 1    |
| Hypokalemia                       | 0  | 0  | 0  | 0  | 1    |
| Hypophosphatemia                  | 0  | 0  | 0  | 0  | 1    |
| Hypotension                       | 0  | 0  | 0  | 0  | 1    |
| INR increased                     | 15 | 38 | 2  | 5  | 1    |
| Lipase increased                  | 4  | 10 | 1  | 3  | 0    |
| Muscle weakness lower limb        | 0  | 0  | 1  | 3  | 1    |
| Pancreatitis                      | 0  | 0  | 0  | 0  | 1    |
| Pain in extremity                 | 4  | 10 | 1  | 3  | 1    |
| Sepsis                            | 0  | 0  | 0  | 0  | 1    |
| Thromboembolic event              | 0  | 0  | 0  | 0  | 1    |
| Syncope                           | 0  | 0  | 0  | 0  | 1    |
| Vomiting                          | 7  | 18 | 4  | 10 | 1    |
| Alopecia                          | 3  | 8  | 3  | 8  | 0    |

Numbers of patients with non-hematologic adverse events definitely, probably, or possibly related to protocol therapy as assessed by CTCAE v4.03. Maximal grade of each adverse effect is documented for each individual patient.
| Condition                              | Count |
|----------------------------------------|-------|
| Anxiety                                | 1     |
| Avascular necrosis                     | 0     |
| Back Pain                              | 1     |
| Bloating                               | 3     |
| Blurred vision                         | 1     |
| Bone Pain                              | 1     |
| Breast pain                            | 0     |
| Chills                                 | 2     |
| Constipation                           | 11    |
| Creatinine increased                   | 2     |
| Diarrhea                               | 3     |
| Dizziness                              | 2     |
| Dry mouth                              | 1     |
| Dry skin                               | 3     |
| Dysgeusia                              | 4     |
| Dyspepsia                              | 2     |
| Dyspnea                                | 4     |
| Depression                             | 2     |
| Edema limbs                            | 3     |
| Esophagitis                            | 0     |
| Fever                                  | 1     |
| Flatulence                             | 3     |
| Gastroesophageal reflux disease        | 2     |
| Gastrointestinal orders, other         | 2     |
| Generalized muscle weakness            | 3     |
| Gingival pain                          | 2     |
| Hearing impaired                       | 2     |
| Hemorrhoids                            | 0     |
| Hepatobiliary disorders, other         | 2     |
| Hypercalcemia                          | 1     |
| Hypertension                           | 1     |
| Hypocalcemia                           | 4     |
| Hypomagnesemia                         | 1     |
| Hypoglycemia                           | 2     |
| Infusion related reaction              | 0     |
| Insomnia                               | 5     |
| Malaise                                | 3     |
| Mucositis oral                         | 3     |
| Muscle weakness upper limb             | 1     |
| Myalgia                                | 1     |
| Myositis                               | 0     |
| Nasal congestion                       | 1     |
| Neck pain                              | 1     |
| Neuralgia                              | 1     |
| Oral pain                              | 1     |
| Condition                                      | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|-----------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|
| Pain                                          | 1  | 3  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Palpitations                                  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Paresthesia                                   | 6  | 15 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Photophobia                                   | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Peripheral motor neuropathy                   | 2  | 5  | 3  | 8  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Portal vein thrombosis                        | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Postnasal drip                                | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Pruritus                                      | 2  | 5  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Rash acneiform                                | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Rash maculo-papular                           | 2  | 5  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Renal and urinary disorders, other: Urinary discoloration | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Renal and urinary disorders, other: Burning sensation on urination | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Serum amylase increased                       | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Sinus tachycardia                             | 1  | 3  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Skin & subcutaneous tissue disorders, other   | 0  | 0  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Skin & subcutaneous tissue disorders, other: Irritation and tenderness near PICC line | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Skin & subcutaneous tissue disorders, other: Rash not otherwise specified | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Skin ulceration                               | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Sore throat                                   | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Spasticity                                    | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Tinnitus                                      | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Upper respiratory infection                   | 0  | 0  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Urinary tract infection                       | 0  | 0  | 1  | 3  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
### Table S8: Management and clinical course of patients with persistent MRD following Induction Phase II

| Pt ID | Age at Start of Treatment (years) | Disease Linage | Subsequent Therapies | Response to Next Therapies | AlloHCT | Current Status |
|-------|----------------------------------|----------------|----------------------|----------------------------|---------|----------------|
| 1     | 44.9                             | B-cell         | Continued on study protocol and received Intensification I | Reduction in MRD levels but persistent MRD positivity by FACS | Double umbilical cord blood + haploidentical HCT | Alive in ongoing MRD-negative CR |
| 3     | 56.4                             | B-cell         | Removed from study; received HDMTX + HiDAC | Achieved MRD negativity by FACS | Double umbilical cord blood + haploidentical HCT | Alive in ongoing MRD-negative CR |
| 11    | 35.8                             | B-cell         | Removed from study; received several lines of therapy. (1) Blinatumomab (2) IT cytarabine/MTX and HDMTX (3) HiDAC + mitoxantrone (4) Autologous CD19-targeted CAR T-cells | Responses to subsequent therapy as below: (1) Morphologic marrow and CNS relapse (2) Cleared CNS disease; persistent marrow-based disease (3) Transient cytoreduction to 7% blasts followed by further progression; no CNS involvement (4) CR2, MRD negative | Double umbilical cord blood HCT (following CAR T-cell therapy) | Died following relapse post-HCT |
| 22    | 24.0                             | T-cell         | Continued on study protocol and received Intensification I | Reduction in MRD levels but persistent MRD positivity by FACS | Double umbilical cord blood + haploidentical HCT | Alive in ongoing MRD-negative CR |

Legend: Pt ID=patient identification number; BM=bone marrow; MRD=minimal residual disease; MNC=mononuclear cells; HDMTX=high-dose methotrexate; HiDAC=high-dose cytarabine; IT=intrathecal; CAR=chimeric antigen receptor-modified; FACS=fluorescence-activated cell sorting; alloHCT=allogeneic hematopoietic cell transplantation
Supplementary References:

1. Validation of an Immunoassay for the Detection of Antibodies to Oncaspar in Human Plasma, BAL-17-184-160-REP.
2. Validation of an Immunoassay for the Detection of Antibodies to Oncaspar in Human Plasma, BAL-17-184-160.01-REP. EDTA plasma comparison report addendum.
3. Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N Engl J Med. 2018 Feb 1;378(5):449-59.
4. Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA, Salzer WL, et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood. 2015 Aug 20;126(8):964-71.
5. Roshal M, Fromm JR, Winter S, Dunsmore K, Wood BL. Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometry B Clin Cytom. 2010 May;78(3):139-46.
6. Jain N, Lamb AV, O’Brien S, Ravandi F, Konopleva M, Jabbour E, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood. 2016 Apr 14;127(15):1863-9.
7. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009 Feb;10(2):147-56.
8. Kucine N, Viny AD, Rampal R, Berger M, Socci N, Viale A, et al. Genetic analysis of five children with essential thrombocytosis identified mutations in cancer-associated genes with roles in transcriptional regulation. Haematologica. 2016 Jun;101(6):e237-9.
9. Durham BH, Getta B, Dietrich S, Taylor J, Won H, Bogenberger JM, et al. Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations. Blood. 2017 Oct 5;130(14):1644-8.
10. Cheng DT, Mitchell TN, Zehir A, Shah RH, Benayed R, Syed A, et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J Mol Diagn. 2015 May;17(3):251-64.
11. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014 Sep 20;32(27):3059-68.
12. Stock W, Douer D, DeAngelo DJ, Arellano M, Advani A, Damon L, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma. 2011 Dec;52(12):2237-53.
13. Stock W, Johnson JL, Stone RM, Kolitz JE, Powell BL, Wetzler M, et al. Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia: results of Cancer and Leukemia Group B Study 19802. Cancer. 2013 Jan 1;119(1):90-8.