Hydrogen Peroxide Elimination from C4a-hydroperoxyflavin in a Flavoprotein Oxidase Occurs through a Single Proton Transfer from Flavin N5 to a Peroxide Leaving Group*

Jeerus Sucharitakul†, Thanyaporn Wongnate‡, and Pimchai Chaiyen§

From the †Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Patumwan, Bangkok 10300, Thailand and the ‡Department of Biochemistry and Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand

C4a-hydroperoxyflavin is found commonly in the reactions of flavin-dependent monooxygenases, in which it plays a key role as an intermediate that incorporates an oxygen atom into substrates. Only recently has evidence for its involvement in the reactions of flavoprotein oxidases been reported. Previous studies of pyranose 2-oxidase (P2O), an enzyme catalyzing the oxidation of pyranoses using oxygen as an electron acceptor to generate oxidized sugars and hydrogen peroxide (H2O2), have shown that C4a-hydroperoxyflavin forms in P2O reactions before it eliminates H2O2 as a product (Sucharitakul, J., Prongjit, M., Haltrich, D., and Chaiyen, P. (2008) Biochemistry 47, 8485–8490). In this report, the solvent kinetic isotope effects (SKIE) on the reaction of reduced P2O with oxygen were investigated using transient kinetics. Our results showed that D2O has a negligible effect on the formation of C4a-hydroperoxyflavin. The ensuing step of H2O2 elimination from C4a-hydroperoxyflavin was shown to be modulated by an SKIE of 2.8 ± 0.2, and a proton inventory analysis of this step indicates a linear plot. These data suggest that a single-proton transfer process causes SKIE at the H2O2 elimination step. Double and single mixing stopped-flow experiments performed in H2O buffer revealed that reduced flavin specifically labeled with deuterium at the flavin N5 position generated kinetic isotope effects similar to those found with experiments performed with the enzyme pre-equilibrated in D2O buffer. This suggests that the proton at the flavin N5 position is responsible for the SKIE and is the proton-in-flight that is transferred during the transition state. The mechanism of H2O2 elimination from C4a-hydroperoxyflavin is consistent with a single proton transfer from the flavin N5 to the peroxide leaving group, possibly via the formation of an intramolecular hydrogen bridge.

Hydrogen peroxide (H2O2), a molecule known to induce cellular oxidative stress, can be generated from reactions of flavin-dependent oxidases or monooxygenases (1, 2). Flavoprotein oxidases catalyze two-electron transfer from organic substrates to oxygen, generating oxidized substrates and H2O2 as products (3). A flavin cofactor (flavin mononucleotide or FAD) plays a central role in this redox process by receiving the two electrons from organic substrates during the first (reductive) half-reaction and transferring them to oxygen during the second (oxidative) half-reaction. H2O2 can also be generated by flavin-dependent monooxygenases, which catalyze the monoxygenation of organic compounds using reactive C4a-hydroperoxyflavin intermediates as monoxygenating reagents (1, 2, 4, 5). In the absence of organic substrates, the C4a-hydroperoxyflavin intermediate eliminates H2O2 instead of performing monoxygenation (4–11). However, the mechanism by which H2O2 is eliminated from free or enzyme-bound C4a-hydroperoxyflavin remains unknown.

Although the formation of C4a-hydroperoxyflavin commonly occurs in flavin-dependent monoxygenase reactions, its existence in flavoprotein oxidases reactions under natural turnover conditions has only been observed with pyranose 2-oxidase from wood-rotting fungi Trametes multicolor (12–14). Based on investigations by Bruice and co-workers (15–17), the initial step in the reaction of reduced flavin and oxygen occurs through the formation of a radical pair of flavin semiquinone and superoxide (see Fig. 1) via a single electron transfer. For monoxygenases and pyranose oxidase, it is clear that this radical pair collapses to form C4a-hydroperoxyflavin prior to monoxygenation or oxygen activation, and the enzymes used in these studies do not stabilize C4a-hydroperoxyflavin as an intermediate. There-
Mechanism of \(H_2O_2 \) Elimination in Pyranose 2-oxidase

Eliminates \(H_2O_2 \) (path 1 in Fig. 1) (12–14). The formation of C4a-hydroperoxy-FAD in P2O is known to require optimized interactions, especially around the FAD N5/C4a locus because mutations of Thr\(^{169}\) to Ser/Ala/Asn/Gly resulted in the abolishment of the intermediate formation (31).

In this report, we elucidated the mechanism underlying the elimination of \(H_2O_2 \) from C4a-hydroperoxy-FAD in P2O using the results of kinetic isotope effects and transient kinetics. The data clearly show that the transfer of the flavin N5 proton to the peroxide leaving group is the key step controlling the process of \(H_2O_2 \) elimination from C4a-hydroperoxyflavin.

EXPERIMENTAL PROCEDURES

Reagents—\(\alpha \)-glucose (99.5% purity) and horseradish peroxidase were purchased from Sigma-Aldrich Chemie GMG. Deuterated glucose (2-\(\alpha \)-d-glucose), sodium deuteroxide (99% purity), and deuterium oxide (99.9% purity) were purchased from the Cambridge Isotope Laboratory. ABTS was purchased from Sigma-Aldrich. Wild-type P2O was cloned and expressed without a His\(_6\) tag, to avoid the interfering properties of the tag, and prepared as described previously (12). Concentrations of the following compounds were determined using the known absorption coefficients at pH 7.0: \(\epsilon_{403} = 1 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1} \) for peroxidase and \(\epsilon_{458} = 1.13 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1} \) for the wild-type enzyme (12). The flavin absorption coefficient assumes one FAD bound per subunit.

Spectroscopic Studies—UV-visible absorbance spectra were recorded using a Hewlett-Packard diode array spectrophotometer (HP8453), a Shimadzu 2501PC spectrophotometer or a Cary 300Bio double-beam spectrophotometer. All spectrophotometers were equipped with temperature-controlled cell compartments. Enzyme activities were determined by continuous assays using coupled reactions of horseradish peroxidase and its substrate, ABTS, as described previously (33). Initial rates were calculated from the increase of absorbance at 420 nm resulting from the oxidation of ABTS by \(H_2O_2 \), using the molar absorption coefficient of 4.2 \(\times 10^4 \text{ M}^{-1} \text{ cm}^{-1} \) (per one molar of \(\alpha \)-glucose consumed).

Rapid Reaction Experiments—Reactions were conducted in 100 mM sodium phosphate buffer (pH 7.0) at 4 °C, unless otherwise specified. Measurements were obtained using a TgK Scientific Model SF-61DX stopped-flow spectrophotometer in either single-mixing or double-mixing mode, as described previously (14). The optical path length of the observation cell was 1 cm. The stopped-flow apparatus was made anaerobic by flushing the flow system with an anaerobic buffer solution containing 10 mM sodium dithionite in 50 mM sodium phosphate buffer, pH 7.0. The buffer for the sodium dithionite solution was made anaerobic by flushing the flow system overnight. The flow unit was then rinsed with the anaerobic buffer solution containing 1 mM sodium dithionite in 50 mM sodium phosphate buffer, pH 7.0.

The abbreviations used are: P2O, pyranose 2-oxidase; FMN, flavin mononucleotide; KIE, kinetic isotope effect; SKIE, solvent kinetic isotope effect(s); ABTS, 2,2’-azino-bis(3)-ethylenbenzothiazoline-6-sulfonic acid diammonium salt; D/H, D\(_2\)/H\(_2\)O; N5-D, the deuterium incorporated flavin N5; N5-H, the protium incorporated flavin N5.

\(^2\)The abbreviations used are: P2O, pyranose 2-oxidase; FMN, flavin mononucleotide; KIE, kinetic isotope effect; SKIE, solvent kinetic isotope effect(s); ABTS, 2,2’-azino-bis(3)-ethylenbenzothiazoline-6-sulfonic acid diammonium salt; D/H, D\(_2\)/H\(_2\)O; N5-D, the deuterium incorporated flavin N5; N5-H, the protium incorporated flavin N5.

\(^3\) Program A was written at the University of Michigan by Rong Chang, Jung-yen Chiu, Joel Dinverno, and David Penfield Ballou.
Mechanism of H$_2$O$_2$ Elimination in Pyranose 2-oxidase

To study the reactions of the reduced enzyme with oxygen in H$_2$O buffer, an anaerobic enzyme solution was equilibrated in an anaerobic glove box (Belle Technology, Weymouth, UK) to maintain the concentration of oxygen at levels below 3 ppm, and the enzyme was then reduced with a solution of 10 mM d-glucose in 100 mM sodium phosphate buffer, pH 7.0. While adding the solution of d-glucose, enzyme spectra were recorded using a spectrophotometer inside the glove box to ensure complete reduction. The reduced enzyme solution was placed in a glass tonometer and loaded onto the stopped-flow spectrophotometer.

To study solvent kinetic isotope effects on flavin oxidation, all solutions were exchanged with sodium phosphate buffer made with deuterium oxide as described previously (13). In brief, solid sodium phosphate powder of 1.38 g was dissolved in ~30 ml of 99.9% purity deuterium oxide, and the resulting solution was equilibrated for 13–15 h (overnight) inside the anaerobic glove box. The equilibrated solution was then evaporated at 60°C for 3 h using a rotary evaporator to obtain H$_2$O-free sodium phosphate powder. The resulting powder was added to deuterium oxide, and the same process was repeated to ensure that the buffer contained at least 99.9% deuterium oxide (v/v). The dried powder was then redissolved in ~95 ml of 99.9% purity deuterium oxide. The buffer pH was adjusted by adding sodium deuterioxide solution into the solution while monitoring pH using a pH meter (pD = pH measured + 0.4) (34). The volume of the resulting buffer was adjusted to 100 ml with D$_2$O. D-glucose (0.018 g) was dissolved in ~30 ml of 99.9% purity deuterium oxide, and the solutions were dried twice as described above. To prepare a 10 mM d-glucose stock solution, deuterium oxide, and the solutions were dried twice as described in the previous section. Reduced enzyme solutions in various mixtures of H$_2$O and D$_2$O buffers were placed inside tonometers under anaerobic conditions. The atom fractions of D/H (n) were prepared and calculated based on the volume ratios of D$_2$O and H$_2$O in a total volume of 3 ml according to methods described previously: n = 0 (100% (v/v) H$_2$O), n = 0.25 (2.25 ml of H$_2$O + 0.75 ml of D$_2$O), n = 0.50 (1.5 ml of H$_2$O + 1.5 ml of D$_2$O), n = 0.74 (0.75 ml of H$_2$O + 2.25 ml of D$_2$O), n = 1 (100% (v/v) D$_2$O) (34).

All tonometers containing different mole fractions of deuterium were left overnight (~18 h) at 4°C to ensure complete equilibration between the enzyme and deuterioxide buffer. Buffers used in substrate syringes (total volume of 5 ml) were prepared with the same volume ratios of D$_2$O and H$_2$O as in the enzyme tonometers to ensure that the atom fractions of D/H were equivalent in both sides of the stopped-flow syringes. The resulting buffers were bubbled with certified oxygen/nitrogen gas mixtures to achieve the desired oxygen concentrations and left overnight (~18 h) in tightly closed screw cap tubes inside an anaerobic glove box.

RESULTS

Reaction of Reduced P2O with Oxygen in D$_2$O—The reactions of reduced P2O with oxygen in this report were conducted in 100 mM sodium phosphate, pH(D) 7.0, rather than 50 mM as in previous reports (12, 14) because increased ionic strength improves the solubility of reduced enzymes in both H$_2$O and D$_2$O buffers (13).

The oxidation of the reduced enzyme (26 μM) by 0.96 mM oxygen (the concentrations after mixing) in H$_2$O (filled circle traces in Fig. 2A) and D$_2$O (solid traces in Fig. 2A) were monitored at 395 and 458 nm. The kinetic traces in Fig. 2 show that the reactions were biphasic in both D$_2$O and H$_2$O buffers. The first phase (0.002–0.04 s) was characterized by an increase of...
absorbance at 395 nm due to the formation of a C4a-hydroperoxyflavin intermediate (Fig. 2A) (12). The second phase (0.04–0.86 s) consisted of an absorbance decrease at 395 nm and an absorbance increase at 458 nm because of the elimination of H₂O₂ to form the oxidized enzyme (Figs. 2A and 3). The observed rate constants (k_{obs}) for the first phase of the reactions in H₂O buffer were dependent on the oxygen concentration and exhibit a slope of 5.6 ± 0.2 × 10⁸ M⁻¹ s⁻¹ (k_{obs}^{1}) in Table 1) and an intercept of 23 ± 1 s⁻¹ (× symbols in Fig. 4A), similar to the values reported previously (12). A plot of the observed rate constants of the second phase versus the oxygen concentrations shows the apparent rate constant of the H₂O₂ elimination from C4a-hydroperoxyflavin (k_{obs}^{2}) of 24 ± 2 s⁻¹ (× symbols in Fig. 4B, Table 1). The plots of the first and second observed phases in H₂O buffer (Fig. 4, A and B) were analyzed according to Equations 1 and 2, respectively (12). The derivations of Equations 1 and 2 have been demonstrated in Ref. 12.

\[
k_{\text{obs}1} = k_i [O_2] + k_{-1} + k_2 - \frac{k_i k_j [O_2]}{k_{-1} + k_2} \quad \text{(Eq. 1)}
\]

\[
k_{\text{obs}2} = \frac{k_i k_j [O_2]}{k_{-1} + k_2} \quad \text{(Eq. 2)}
\]

According to Equation 1, the intercept of the plot in Fig. 4A (× symbols) is equal to k_{-1} + k_2. Therefore, kinetic simulations using a two-step consecutive model (Fig. 3), as described previously (12), were used to estimate the k_{-1} and k_2 values and to confirm the validity of the kinetic constants calculated from the graphic method described. Simulations using the parameters listed in Table 1 yielded kinetic traces that agree well with the experimental data (Table 1, data not shown). The analysis based on the kinetic simulations indicates a bimolecular rate constant for the formation of C4a-hydroperoxyflavin (k_{1}^{\text{sim}}) of 6.5 ± 0.3 × 10⁸ M⁻¹ s⁻¹, a reverse rate constant (k_{-1}^{\text{sim}}) of 2.0 ± 0.1 s⁻¹, and a rate constant for H₂O₂ elimination from the intermediate (k_{2}^{\text{sim}}) of 18 ± 1 s⁻¹ in H₂O (Table 1 and Fig. 3).

For the reactions in D₂O buffer, the enzyme oxidation observed using various oxygen concentrations (0.13, 0.31, 0.61, and 0.96 mM from the lower to upper traces in Fig. 2B) yielded k_{obs} for the formation of C4a-hydroperoxyflavin as shown in Fig. 4A (open circles). A plot of the k_{obs} versus the oxygen concentration shows a slope of 5.9 ± 0.3 × 10⁴ M⁻¹ s⁻¹ and an intercept of ~8.5 s⁻¹ (open circles in Fig. 4A and Table 1). A plot of the observed rate constants of the second phase versus the oxygen concentration yielded an apparent rate constant for the H₂O₂ elimination from C4a-hydroperoxyflavin (k_{obs}^{2}) of 6.9 ± 0.5 s⁻¹.

Equations 1 and 2 and kinetic simulations using the model in Fig. 3, similar to those used for the analysis of the H₂O reaction described above, were used for the analysis of the data of the D₂O reaction. The analysis yielded a bimolecular rate constant (k_{1}^{\text{sim}}) for the formation of C4a-hydroperoxyflavin of 6.5 ± 0.3 × 10⁸ M⁻¹ s⁻¹ and a reversible rate constant of 2 ± 0.1 s⁻¹ (k_{-1}^{\text{sim}}), which are similar to the rate constants of the reaction in H₂O buffer (Table 1). The rate constant for H₂O₂ elimination from C4a-hydroperoxyflavin (k_{2}^{\text{sim}}) in D₂O was 6.4 ± 0.3 s⁻¹ (Table 1), showing an SKIE of 2.8 (18 s⁻¹ versus 6.4 s⁻¹). Kinetic traces obtained from the simulations using these kinetic parameters agree well with the experimental data (dotted-line traces versus solid line traces, Fig. 2B).

The results above indicate that there is a negligible SKIE on k_{1} (formation of the C4a-hydroperoxyflavin intermediate)
Mechanism of H$_2$O$_2$ Elimination in Pyranose 2-oxidase

TABLE 1
The effects of the solvent isotope on the kinetics of the P2O oxidative half-reaction

Parameters	H$_2$O buffer	D$_2$O buffer
$k^{ ext{app}}_{1}$ (10$^{-4}$ M$^{-1}$ s$^{-1}$)	5.6 ± 0.2 x 10$^{-4}$	5.9 ± 0.3 x 10$^{-4}$
$k^{ ext{app}}_{2}$ (10$^{-4}$ M$^{-1}$ s$^{-1}$)	6.5 ± 0.3 x 10$^{-4}$	6.5 ± 0.3 x 10$^{-4}$
$k_{1}^{ ext{obs}}$ (s$^{-1}$)	2 ± 0.1	2 ± 0.1
$k_{2}^{ ext{obs}}$ (s$^{-1}$)	24 ± 2	6.9 ± 0.5
$k_{2}^{ ext{im}}$ (s$^{-1}$)	18 ± 1	6.4 ± 0.3

FIGURE 4. The kinetic analysis of the reactions of reduced P2O with oxygen in D$_2$O and H$_2$O buffers. The observed rate constants from the kinetic traces in Fig. 2 versus the oxygen concentrations (0.13, 0.31, 0.61, and 0.96 mM) are shown. A: A plot of the observed rate constants for the first phase ($k_{1}^{	ext{obs}}$) in H$_2$O ($\times$ symbols) and in D$_2$O (open circles). The $k_{1}^{	ext{obs}}$ values from the low to high oxygen concentrations are 25.9 ± 0.9 s$^{-1}$, 29.5 ± 0.3 s$^{-1}$, 44.8 ± 0.1 s$^{-1}$, and 62.2 ± 0.7 s$^{-1}$, respectively, whereas the $k_{1}^{	ext{obs}}$ values are 10.6 ± 0.04 s$^{-1}$, 19.2 ± 0.24 s$^{-1}$, 35.5 ± 0.16 s$^{-1}$, and 63.4 ± 0.48 s$^{-1}$, respectively. B: A plot of the observed rate constants of the second phase ($k_{2}^{	ext{obs}}$) from the reaction in H$_2$O ($\times$ symbols) and D$_2$O (open circles). The $k_{2}^{	ext{obs}}$ values according to the low to high oxygen concentrations are 5.99 ± 0.02 s$^{-1}$, 12.0 ± 0.07 s$^{-1}$, 15.9 ± 0.03 s$^{-1}$, and 17.1 ± 0.09 s$^{-1}$, respectively, whereas the $k_{2}^{	ext{obs}}$ values are 4.81 ± 0.02 s$^{-1}$, 6.43 ± 0.08 s$^{-1}$, 6.63 ± 0.03 s$^{-1}$, and 6.08 ± 0.05 s$^{-1}$, respectively. A vertical line at each data point indicates the S.D. of the measurement.

FIGURE 5. The proton inventory analysis for the observed constants of the H$_2$O$_2$ elimination from C4a-hydroperoxyflavin. Solutions of the reduced enzyme (26 mM) were mixed with buffer solutions containing 0.96 mM oxygen in a stopped-flow spectrophotometer at 4 °C. Both solutions of the reduced enzyme and the oxygenated buffers were prepared in various atom fractions of D/H, and the solutions with the same mole fractions were mixed under the stopped-flow experiments (see "Experimental Procedures"). A: The reactions were monitored at 395 nm for measuring the kinetics of the formation and H$_2$O$_2$ elimination of the C4a-hydroperoxyflavin intermediate at various atom fractions of D/H (n). Mixtures of 100 mM sodium phosphate, pH 7.0, in H$_2$O and 100 mM sodium phosphate, pH 7.0, in D$_2$O were employed to attain n = 0.25, 0.50, 0.74, and 1.00, and their results are shown according to the lower to upper traces. All of the concentrations described are after mixing. B: A plot of the observed rate constants (k_{p}) for the H$_2$O$_2$ elimination from C4a-hydroperoxyflavin is shown; the second phase with a decrease in absorbance at 395 nm in A versus the atom fractions of D/H (n) shows a linear relationship. The observed rate constants (k_{p}) according to the low to high values of D/H (n) are 17.1 ± 0.09 s$^{-1}$, 14.0 ± 0.17 s$^{-1}$, 11.2 ± 0.23 s$^{-1}$, 8.21 ± 0.04 s$^{-1}$, and 6.12 ± 0.04 s$^{-1}$, respectively. The data are consistent with a model involving one proton-in-flight during the transition state. A vertical line at each data point indicates the S.D. of the measurement.

because 18O$_{2}^{\text{im}}/^{16}$O$_{2}^{\text{im}} = 1$ (6.5 s$^{-1}$/6.5 s$^{-1}$) (Table 1), whereas D$_2$O significantly diminishes the value of k_{2} (Fig. 4B and Table 1). We determined that the SKIE of 18O$_{2}^{\text{im}}/^{16}$O$_{2}^{\text{im}}$ was 2.8 (18 s$^{-1}$/6.4 s$^{-1}$) (Table 1). This SKIE value is not an artifact of the ~0.49 unit increase of the k_{2} associated with a reaction when a pH-dependent reaction is performed in D$_2$O (34) because the observed rate constants for H$_2$O$_2$ elimination from C4a-hydroperoxyflavin in the pH range of 6.5–7.5 are pH-independent and deviate within ±0.5 s$^{-1}$ (data not shown).

Proton Inventory Analysis—Reactions of reduced P2O with oxygen at various atom fractions of D/H were carried out to analyze the number of proton sites involved in the elimination of H$_2$O$_2$ from the C4a-hydroperoxyflavin. The proton inventory was analyzed according to the Gross-Butler Equation (34, 35) (Equation 3),

$$k_{p} = k_{0} \frac{\Pi(1 - n + n\phi^R)}{\Pi(1 - n + n\phi^P)}$$

(Eq. 3)

where n is the atom fraction of D$_2$O in the solvent mixture, k_{0} is the observed rate constant in a D$_2$O/H$_2$O mixture, k_{p} is the observed rate constant in H$_2$O$_2$, and ϕ^R and ϕ^P are fractionation factors for proton sites at the transition state and the initial state, respectively.

Solutions of the reduced enzyme in buffers with various atom fractions of D/H were mixed with the same buffers containing 0.96 mM oxygen (the concentration after mixing). Kinetic traces monitored at 395 nm are shown in Fig. 5A, in which the traces from the lowest to the highest correspond to the n values of 0, 0.25, 0.50, 0.74, and 1.00, respectively. The reactions in the medium with n = 0 (100% v/v H$_2$O, the bottom trace) and n = 1 (100% v/v D$_2$O, the top trace), and in the mixtures of D$_2$O/
Mechanism of H$_2$O$_2$ Elimination in Pyranose 2-oxidase

H$_2$O mixtures, each showed biphasic kinetics; the first phase corresponded to the formation of the C4α-hydroperoxyflavin intermediate, and the second phase corresponded to the H$_2$O$_2$ elimination from the C4α-hydroperoxyflavin, which was similar to the results in Fig. 2 and Table 1. For example, the reaction with $n = 0.74$ (the second kinetic trace from the top, Fig. 5A) showed that the first phase (0.002–0.04 s) was the intermediate formation with an observed rate constant of 70 s$^{-1}$, and the second phase (0.04–0.5 s) was the H$_2$O$_2$ elimination from C4α-hydroperoxyflavin with an observed rate constant of 8.2 s$^{-1}$. A slow third phase (~2.4 s$^{-1}$), which accounted for ~10% of the total absorbance change at 458 and 395 nm, was observed in the reaction with $n = 0.25$. This phase was a small decrease in the absorbance at 395 nm and a small increase in the absorbance at 458 nm. The origin of this slow phase is unknown, though it might be due to the slow equilibration of the newly generated oxidized enzyme, which resulted from the H$_2$O$_2$ elimination, with the outside solvent of a D$_2$O/H$_2$O mixture.

Although this small additional kinetic phase may suggest some hidden complexity of the reaction in the D$_2$O/H$_2$O mixture, it did not affect the rate constants of the preceding two major phases used for the evaluation of SKIE and does not disagree with the kinetic model in Fig. 3.

The observed rate constants of the second phase (k_{obs2}) were used for proton inventory analysis to identify the number of protons associated with the elimination of H$_2$O$_2$ from C4α-hydroperoxyflavin. Plotting the k_{obs2} versus the atom fraction of D (n) (Fig. 5B) reveals a linear relationship, suggesting that only a single proton site contributes to the SKIE on k_2. Therefore, the plot was analyzed according to Equation 4, a simplified form of the kinetic model in Fig. 3 in which only one proton bridge is involved during the transition state.

$$k_n = k_d(1 - n + n\phi^2)$$

(Eq. 4)

The analysis yielded a fractionation factor ϕ^2 of 0.34 ± 0.02 and an SKIE ($^{12}O/k_{obs2}$) of 2.9. Because the rate constant for the H$_2$O$_2$ elimination in H$_2$O is dependent on the oxygen concentration (12), the proton inventory was also performed at a lower oxygen concentration (0.61 mM after mixing) to verify whether the same result is observed at lower oxygen concentrations. The results obtained using an oxygen concentration of 0.61 mM ($\phi^2 = 0.32 ± 0.03$ and SKIE ($^{12}O/k_{obs2}$) = 3.1) were quite similar to those observed using 0.96 mM oxygen. These results confirm that both the fractionation factor and SKIE are independent of the oxygen concentration and are derived from intrinsic properties associated with H$_2$O$_2$ elimination from C4α-hydroperoxyflavin. Although the plot in Fig. 5B is linear and fits with a one-proton transfer model, another independent piece of evidence was sought to confirm this conclusion. Therefore, experiments (presented in Figs. 6 and 7) were carried out to identify the nature and the identity of the proton involved with the H$_2$O$_2$ elimination process.

Nature of Proton Site Causing SKIE—The results from the previous section suggest that only one proton site is likely to be responsible for the SKIE on the H$_2$O$_2$ elimination step. The experiments in this section were carried out to determine whether the proton-in-flight can be rapidly exchanged with the outside solvent. A reduced enzyme solution (~26 μM in H$_2$O) was mixed with 100 mM sodium phosphate buffer (in either D$_2$O or H$_2$O) deuterated with an oxygen concentration of 0.96 mM (after mixing). The reactions were monitored at 395 nm to detect the formation and decay of the intermediate. The **dotted-line trace** (Fig. 6) represents the reaction of reduced enzyme prepared in H$_2$O buffer that was mixed with the oxygenated D$_2$O buffer. This kinetic trace is similar to that of the control reaction, which was mixed with the oxygenated H$_2$O buffer (solid trace in Fig. 6). For a reference, the trace of the reaction carried out in D$_2$O (from Fig. 2B) is shown as the **open circle trace**. The open circle trace was multiplied by a factor of 0.85 to bring the absorbance signal to a similar range as the other traces.

In another experiment, the exchange rate of the proton responsible for the SKIE on the H$_2$O$_2$ elimination step was investigated using double-mixing spectrophotometry. A solution of the reduced enzyme (78 μM before mixing) in 100 mM sodium phosphate in D$_2$O, pD = 7.0, was mixed with the same buffer in H$_2$O under anaerobic conditions during the first mixing step of the double-mixing stopped-flow experiments. The second mixing step added an aerobic buffer (100 mM sodium phosphate, pH 7.0 equilibrated with 0.96 mM O$_2$) to the solution resulting from the first mixing step. The effects of various age times between the first and second mixings (0.01 s, 0.1, 1, 100, 200, and 300 s) were also examined. A longer age time should allow the exchange process to be more complete, that is, more of the deuterium in the reduced P2O should be replaced by protium. Reactions were monitored at 395 nm to measure the kinetics of C4α-hydroperoxyflavin formation and H$_2$O$_2$ elimination, and at 458 nm to detect flavin oxidation.
Mechanism of \(\text{H}_2\text{O}_2 \) Elimination in Pyranose 2-oxidase

Origin of Proton-in-flight Causing SKIE on \(\text{H}_2\text{O}_2 \) Elimination from 4a-hydroperoxyflavin—To identify the location of the proton-in-flight that controls the process of \(\text{H}_2\text{O}_2 \) elimination from 4a-hydroperoxyflavin, a reduced enzyme in \(\text{H}_2\text{O} \) buffer that was specifically labeled with deuterium at the flavin N5 was prepared using two stopped-flow mixing methods and tested to determine whether the labeled enzyme generated a similar KIE as the reaction in \(\text{D}_2\text{O} \) (Fig. 2). The first method used double-mixing stopped-flow spectrophotometry. A solution of oxidized P2O in \(\text{H}_2\text{O} \) buffer (78 \(\mu\text{M} \) before mixing) was mixed with an equal volume of a solution of 100 \(\mu\text{M} \) 2-\(\text{d}-\text{d}-\text{d}-\text{glucose} \) in \(\text{H}_2\text{O} \) buffer (before mixing) under anaerobic conditions. The reaction was monitored at 395 nm to determine the rate constant for the \(\text{H}_2\text{O}_2 \) elimination from 4a-hydroperoxyflavin in \(\text{D}_2\text{O} \) buffer. The results show that the kinetics of the reduced enzyme labeled with N5-D in \(\text{H}_2\text{O} \) buffer eliminated \(\text{H}_2\text{O}_2 \) at a rate constant of 7.6 \(\text{s}^{-1} \) which is similar to the rate constant of 6.08 \(\text{s}^{-1} \) for the reaction carried out in \(\text{D}_2\text{O} \) (Fig. 2). Therefore, under these conditions, any kinetic isotope effect detected should be due to the N5-D of the reduced P2O.

Kinetic traces detected at 395 nm showed that the kinetic isotope effect resulting from the N5-D of the reduced P2O (filled circle trace, Fig. 7A) was similar to the effect detected when the reaction was carried out in all \(\text{D}_2\text{O} \) buffers at the same oxygen concentration (0.96 \(\text{mm} \); Fig. 2A) because both traces yielded a similar \(k_{\text{obs}} \) for the \(\text{H}_2\text{O}_2 \) elimination step. C4a-hydroperoxyflavin resulting from the reaction of reduced P2O labeled with N5-D in \(\text{H}_2\text{O} \) buffer eliminated \(\text{H}_2\text{O}_2 \) at a rate constant of 7.6 \(\text{s}^{-1} \) (Fig. 7A). This is similar to the rate constant of 6.08 \(\text{s}^{-1} \) observed for the reaction in \(\text{D}_2\text{O} \) buffer (data in Figs. 2 and 4). A control experiment in which the oxidized enzyme was reduced by a solution of 100 \(\mu\text{M} \) \(\text{d}-\text{d}-\text{d}-\text{glucose} \) (before mixing) using the same double-mixing stopped-flow spectrophotometry setup resulted in an observed rate constant of 19 \(\text{s}^{-1} \) (solid line trace in Fig. 7A), which is similar to the rate constant observed using \(\text{H}_2\text{O} \) buffer (17.1 \(\pm \) 0.9 \(\text{s}^{-1} \), data from Fig. 4) for a reference as the dotted line trace. The slight difference between the observed rate constant of 7.6 \(\text{s}^{-1} \) for the \(\text{H}_2\text{O}_2 \) elimination of N5-D 4a-hydroperoxyflavin (filled circle trace in Fig. 7A) versus the value of 6.08 \(\pm \) 0.05 \(\text{s}^{-1} \) observed when the reaction was pre-equilibrated and carried out in all \(\text{D}_2\text{O} \) buffers may be due to the small loss of N5-D caused by an exchange with the outside \(\text{H}_2\text{O} \) buffer. The results in Fig. 7A clearly suggest that the bond breakage of N5-D during the transition state gives rise to the observed KIE of 2.5 (19 \(\text{s}^{-1} /7.6 \text{ } \text{s}^{-1} \)) and that this step

Observed rate constants for the \(\text{H}_2\text{O}_2 \) elimination from 4a-hydroperoxyflavin at 0.96 mm \(\text{O}_2 \) after mixing (\(\sim 6.1 \text{ } \text{s}^{-1} \) in \(\text{D}_2\text{O} \) versus \(\sim 17 \text{ } \text{s}^{-1} \) in \(\text{H}_2\text{O} \), Fig. 4) were used to indicate whether the proton-in-flight causing the SKIE was exchangeable within the age times examined. The results indicated that the rate constant for the \(\text{H}_2\text{O}_2 \) elimination did not exceed 6.1 \(\text{s}^{-1} \) (data not shown) for any time point examined. This result suggests that the 1/2 of the exchange rate was \(>300 \text{ s}^{-1} \) or the rate constant of the exchange was equivalent to or \(<2.3 \times 10^{-3} \text{ s}^{-1} \). These data also indicate that the exchange of the dissociable proton causing the SKIE on the \(\text{H}_2\text{O}_2 \) elimination step was negligible within a period of 300 s.

Origin of Proton-in-flight Causing SKIE on \(\text{H}_2\text{O}_2 \) Elimination from 4a-hydroperoxyflavin—To identify the location of the proton-in-flight that controls the process of \(\text{H}_2\text{O}_2 \) elimination from 4a-hydroperoxyflavin, a reduced enzyme in \(\text{H}_2\text{O} \) buffer that was specifically labeled with deuterium at the flavin N5 was prepared using two stopped-flow mixing methods and tested to determine whether the labeled enzyme generated a similar KIE as the reaction in \(\text{D}_2\text{O} \) (Fig. 2). The first method used double-mixing stopped-flow spectrophotometry. A solution of oxidized P2O in \(\text{H}_2\text{O} \) buffer (78 \(\mu\text{M} \) before mixing) was mixed with an equal volume of a solution of 100 \(\mu\text{M} \) 2-\(\text{d}-\text{d}-\text{d}-\text{glucose} \) in \(\text{H}_2\text{O} \) buffer (before mixing) under anaerobic conditions. The reaction was monitored at 395 nm to determine the rate constant for the \(\text{H}_2\text{O}_2 \) elimination from 4a-hydroperoxyflavin in \(\text{D}_2\text{O} \) buffer. The results show that the kinetics of the reduced enzyme labeled with N5-D in \(\text{H}_2\text{O} \) buffer eliminated \(\text{H}_2\text{O}_2 \) at a rate constant of 7.6 \(\text{s}^{-1} \) (Fig. 7A). This is similar to the rate constant of 6.08 \(\text{s}^{-1} \) observed for the reaction in \(\text{D}_2\text{O} \) buffer (data in Figs. 2 and 4). A control experiment in which the oxidized enzyme was reduced by a solution of 100 \(\mu\text{M} \) \(\text{d}-\text{d}-\text{d}-\text{glucose} \) (before mixing) using the same double-mixing stopped-flow spectrophotometry setup resulted in an observed rate constant of 19 \(\text{s}^{-1} \) (solid line trace in Fig. 7A), which is similar to the rate constant observed using \(\text{H}_2\text{O} \) buffer (17.1 \(\pm \) 0.9 \(\text{s}^{-1} \), data from Fig. 4) for a reference as the dotted line trace. The slight difference between the observed rate constant of 7.6 \(\text{s}^{-1} \) for the \(\text{H}_2\text{O}_2 \) elimination of N5-D 4a-hydroperoxyflavin (filled circle trace in Fig. 7A) versus the value of 6.08 \(\pm \) 0.05 \(\text{s}^{-1} \) observed when the reaction was pre-equilibrated and carried out in all \(\text{D}_2\text{O} \) buffers may be due to the small loss of N5-D caused by an exchange with the outside \(\text{H}_2\text{O} \) buffer. The results in Fig. 7A clearly suggest that the bond breakage of N5-D during the transition state gives rise to the observed KIE of 2.5 (19 \(\text{s}^{-1} /7.6 \text{ } \text{s}^{-1} \)) and that this step
is the rate-limiting factor for the H₂O₂ elimination from C4a-hydroperoxyflavin.

In another experiment, the KIE resulting from the N5-D of the reduced P2O was measured using the stopped-flow single-mixing mode. We used the internal flow paths of the stopped-flow machine to generate the N5-D-labeled reduced P2O under anaerobic conditions. A solution of oxidized P2O (88 μM, before mixing) in H₂O buffer was loaded into syringe A of the stopped-flow machine (TgK Scientific) and then was mixed with an equal volume of a solution of 100 μM 2-d-D-glucose in H₂O buffer, which was loaded into syringe B. Both solutions were manually mixed under anaerobic conditions by pushing the solutions of syringes A and B into syringe D to produce the reduced P2O specifically labeled with deuterium at the flavin N5 (13, 14). This process was allowed to proceed for 80–100 s to achieve complete reduction before the solution in syringe D was mixed with aerobic buffer in syringe C using the single-mixing mode of the stopped-flow machine and monitored at 395 and 458 nm. After mixing and under the stopped-flow measurement, the reaction contained 22 μM of the reduced P2O labeled with N5-D and 0.96 mM O₂ in 100 mM sodium phosphate buffer, pH 7.0. The kinetics of the reaction is shown as the open circle trace in Fig. 7B, which indicates a rate constant for H₂O₂ elimination from the intermediate of 7.2 s⁻¹. The kinetic trace of the reduced P2O that was prepared by reduction with 2-d-D-glucose in H₂O buffer (open circle trace) is similar to the reaction in D₂O buffer (Fig. 2, overlaid dotted line trace in Fig. 7B). When the control reaction for which the same mixing setup was carried out as in the open circle trace in Fig. 7B, but with d-glucose as a reductant, the observed rate constant of the H₂O₂ elimination was 17.1 s⁻¹ (solid line in Fig. 7B). The results in Fig. 7B indicate that the reduced P2O labeled with N5-D shows a KIE of 2.4 (17.1 s⁻¹/7.2 s⁻¹) for the H₂O₂ elimination step, which is similar to the observed KIE of 2.5 from the result in Fig. 7A. The two different mixing setup experiments confirm that the reaction of reduced P2O specifically labeled at N5-D with oxygen in H₂O buffer gives rise to an observed KIE that is similar to the observed SKIE of the reduced P2O pre-equilibrated in D₂O buffer reacting with 0.96 mM oxygen (SKIE of 2.8 from 17.1 s⁻¹/6.08 s⁻¹ (data from Fig. 4)). These results suggest that the observed SKIE is mainly a result of the flavin N5-H(D) breakage and that this step mainly controls the H₂O₂ elimination from C4a-hydroperoxyflavin.

DISCUSSION

This work has provided the first evidence of SKIE on H₂O₂ elimination from C4a-hydroperoxyflavin. The results indicated that for P2O from *T. multicolor*, an SKIE (D²/D) of 2.8 ± 0.2 was found for the H₂O₂ elimination step and that the N5 proton of reduced flavin is the proton-in-flight that causes this SKIE. Another group has examined SKIE using bacterial luciferase reactions but did not detect SKIE for the formation and decay of C4a-hydroperoxyflavin mononucleotide (36).

Our results (Figs. 2 and 4 and Table 1) show that D₂O had a negligible effect on the bimolecular rate constant for C4a-hydroperoxyflavin formation (kₗ in Fig. 3) and the intermediate decay (k₋). The currently accepted mechanism of the reaction between reduced flavin and oxygen (Fig. 1) predicts that the first step of the reaction involves a one-electron transfer to form a radical pair of flavin semiquinone and superoxide radical, which rapidly collapses to form C4a-hydroperoxyflavin (1, 2, 15–18). Although a net transfer of one proton is required for the formation of C4a-hydroperoxyflavin, these results do not identify any solvent kinetic isotope effect on this step. These data indicate that the protonation process to form C4a-hydroperoxyflavin is rapid and is not the rate-limiting step in the formation of the intermediate. We propose that the residue His⁵⁴⁸, which is located near the flavin ring, may donate a proton for this rapid protonation (29, 30). Because this residue is proposed to be a catalytic base that deprotonates a proton from d-glucose C₂-OH during the reductive half-reaction (13), it may be possible for the resulting protonated His⁵⁴⁸ to donate a proton for the C4a-hydroperoxyflavin formation during the oxidative half-reaction.

The proton inventory analysis revealed that the plot of the rate constants for H₂O₂ elimination from C4a-hydroperoxyflavin at various D₂O fractions (kₗ) versus n is linear (Fig. 5B), suggesting that a one-proton transfer process is a major factor controlling the rate of this step (35). This result suggests that only one proton-in-flight was involved during the transition state. The proton inventory analysis also yielded an SKIE of 2.9 ± 0.2 and a fractionation factor for the transition state (δT) of 0.34 ± 0.02 (Fig. 5B), implying that deuterium binds to the exchangeable site less tightly than it binds average bulk water molecules (34). A value of δT in the range of 0.3–0.6 is typically found with proton transfers among oxygen, nitrogen, or sulfur atoms (34, 35, 37, 38). Our results in Fig. 7 have confirmed that a single proton bridge contributes to the SKIE.

The results in Figs. 5–7 clearly show that the proton bridge responsible for the SKIE in the H₂O₂ elimination step is the flavin N5 proton and that the environment surrounding this site is rather enclosed. The first mixing in the stopped-flow experiments (Fig. 7) specifically labeled the flavin N5 position with deuterium by transferring a hydride equivalent from 2-d-D-glucose. Although these experiments were performed in an H₂O medium, the kinetics of the reaction were similar to those observed in a D₂O medium, in which the enzyme was pre-equilibrated ~18 h in the D₂O buffer (Fig. 2). The observed KIE of the H₂O₂ elimination step (at 0.96 mM O₂) for the N5-D-labeled flavin performed in the H₂O buffer was 2.5 (19 s⁻¹/7.6 s⁻¹) from the experiment shown in Fig. 7A that used a double-mixing stopped-flow set up to generate the N5-D-labeled flavin, and 2.4 (17.1 s⁻¹/7.2 s⁻¹) from the experiment that manually mixed the oxidized enzyme with 2-d-glucose and used the single-mixing mode of the stopped-flow machine to follow the reaction (Fig. 7B); these results were similar to an observed SKIE of 2.8 (17.1 s⁻¹/6.08 s⁻¹) (data in Fig. 4) for the reaction performed in D₂O at 0.96 mM O₂. Therefore, the bond breaking of the flavin N5-H is the key step controlling the overall process of H₂O₂ elimination from C4a-hydroperoxyflavin. The exchange rate between deuterium and proton at the flavin N5 site was shown to be quite slow by the fact that the deuterium of the N5-D-labeled flavin remained intact in H₂O medium before the second stopped-flow mixing (~80–100 s, Fig. 7). Based on the stopped-flow double-mixing experiment with different buffers, the exchange rate constant at the flavin N5 position was
Mechanism of \(\text{H}_2\text{O}_2 \) Elimination in Pyranose 2-oxidase

![Diagram](image)

FIGURE 8. The proposed reaction mechanism for the \(\text{H}_2\text{O}_2 \) elimination from C4a-hydroperoxyflavin. Dotted lines represent hydrogen bonds that may form between the flavin N5 proton and the distal and proximal oxygen during the transition state.

FIGURE 9. The P2O active site structure. A, the active site of P2O in the closed conformation indicates that the O\(^\gamma\) of Thr\(^{169}\) can make an H-bond interaction with the flavin N5 (29, 30). B, the H-bonding interaction in the wild-type enzyme may divert the intramolecular H-bridge proton transfer, which assists in the \(\text{H}_2\text{O}_2 \) elimination from C4a-hydroperoxyflavin. Therefore, C4a-hydroperoxyflavin is observed in the wild-type enzyme but not in the Thr\(^{169}\) variants (31).

Estimated to be \(< 2.3 \times 10^{-3} \text{ s}^{-1}\) (data not shown). Previous work has shown that the exchange rate constant of the N5 proton of free reduced flavin mononucleotide at pH ~ 7 is \(~242 \text{ s}^{-1}\), which is equivalent to a \(t_{1/2} \) of \(~0.0029 \text{ s}\) at 25 °C (39). These results indicate that the active site environment surrounding the N5 proton in P2O must be enclosed to impede the exchange rate with the outside solvent. During the oxidative half-reaction of P2O, the substrate loop is thought to be in a closed conformation, which is thought to increase the hydrophobicity of the active site environment (12, 29, 30, 32).

Based on the current data, the reaction mechanism underlying the \(\text{H}_2\text{O}_2 \) elimination from C4a-hydroperoxyflavin is proposed to involve an intramolecular H-bridge that facilitates the \(\text{H}_2\text{O}_2 \) elimination (as shown in Fig. 8). The data reported here clearly show that the N5 proton is responsible for SKIE, and it is the proton-in-flight during the transition state. The mechanism of \(\text{H}_2\text{O}_2 \) elimination from C4a-hydroperoxyflavin is likely to involve a single proton bridge transfer from the flavin N5 position to a peroxide leaving group (Fig. 8). Although an x-ray structure of the C4a-hydroperoxyflavin transient intermediate of P2O is not available, a potential configuration at the C4a position of the intermediate can be postulated based on the structure of the C4a-flavin oxygen adduct of choline oxidase, a flavoprotein oxidase in the same superfamily (glucose-metha-

TABLE 1

Reaction	Rate Constant	Units
\(\text{H}_2\text{O}_2 \) elimination	\(~242 \text{ s}^{-1}\)	
N5 proton exchange	\(~0.0029 \text{ s}\)	

TABLE 2

Enzyme Variant	H-bonding Interaction
Wild-type	Diverts intramolecular H-bridge formation
Thr\(^{169}\) mutants	Promotes H-bonding interaction with flavin N5

TABLE 3

Flavin Adduct	Configuration	Interaction
C4a-flavin	sp\(^3\) configuration	H-bond with flavin N5

TABLE 4

Reaction	pK\(\alpha\)	Units
\(\text{H}_2\text{O}_2 \) elimination	\(~11.8 \text{ s}^{-1}\)	
N5-H protonation	\(~9.2 \text{ s}^{-1}\)	

The intramolecular H-bridge facilitating the \(\text{H}_2\text{O}_2 \) elimination mechanism proposed in Fig. 8 is also supported by our previous results showing that mutations of Thr\(^{169}\) (a residue with its side chain [O\(^\gamma\)] close enough to interact with the flavin N5) to Ser, Ala, or Gly, abolish the formation of the C4a-hydroperoxyflavin intermediate (Fig. 9A) (31). For the wild-type enzyme, the H-bond interaction between the flavin N5 and the O\(^\gamma\) of the Thr\(^{169}\) side chain may divert the interaction of the intramolecular H-bridge that facilitates \(\text{H}_2\text{O}_2 \) elimination (Fig. 9B). In Thr\(^{169}\) mutants, the optimum H-bonding interaction between the O\(^\gamma\) of Thr\(^{169}\) and the flavin N5 is removed, resulting in an environment with lower dielectric constants, which promotes the intra-molecular H-bridge formation and thus facilitates \(\text{H}_2\text{O}_2 \) elimination. Therefore, the abolishment of C4a-hydroperoxyflavin that is observed in Thr\(^{169}\) mutants may be due to an increased decay of the intermediate (31), that is, an increased rate constant of H\(_2\)O\(_2\) elimination. The model in Fig. 8 is also supported by the recent investigation of a flavin-containing monooxygenase showing that an N78S mutant, in which the site near the C4a/N5 locus is widened and in which the H-bonding interaction between the flavin N5 and NADP\(^+\) is altered, voids its ability to form a C4a-hydroperoxyflavin intermediate (41).

The intramolecular H-bridge proton transfer proposed in Fig. 8 would be supported if the pK\(\alpha\) values of the flavin N5-H and the peroxide leaving group were in the same range. The pK\(\alpha\) of \(\text{H}_2\text{O}_2 \) is known to be \(~11.8 \text{ s}^{-1}\) (42), whereas a hydroperoxide of a free flavin derivative is \(~9.2 \text{ s}^{-1}\) (16). When bound to the enzyme, the pK\(\alpha\) of flavin-C4a-hydroperoxide may be significantly varied. Indeed, it has been reported to be 8.4 for the reaction of cyclohexanone monooxygenase (43) or \(> 10.0\) for the oxyge-
nase component of p-hydroxyphenylacetate 3-hydroxylase (44). The pK_a of the N5-H of C4a-hydroperoxyflavin has not been measured experimentally but has been estimated to be <17 (45). According to NMR studies, the pK_a of the N5-H in free flavin mononucleotide is high (≥20) (42) because it is the second deprotonation of the flavin ring. Merenyi et al. (45) argued that the pK_a of the flavin N5-H in the presence of a C4a-hydroperoxyflavin substituent would likely be decreased to below ~17 because the flavin ring is neutral. In addition, the change of nitrogen hybridization from the amine (pK_a < 17) in the C4a-hydroperoxyflavin (a reactant) to the imine with sp^2 hybridization in the oxidized flavin (a product) should help lower the pK_a of the flavin N5-H to significantly <17. The pK_a of C4a = N5-H in the oxidized flavin was estimated to be about ~8.3 (16). Recently, we have shown that the pK_a associated with the H_2O_2 elimination from C4a-hydroperoxyflavin in the reaction of the oxygenase component of p-hydroxyphenylacetate hydroxylase is >9.4 (44). Taken together, our data suggest that the pK_a values of the flavin N5-H and the C4a-flavin hydroperoxide may not differ significantly and may permit proton transfer via an intra-molecular H-bridge as proposed in Fig. 8.

In conclusion, our results clearly show for the first time that the H_2O_2 elimination from C4a-hydroperoxyflavin in a flavo-protein oxidase reaction is controlled by a proton transfer from the flavin N5 to the peroxide leaving group. Our data indicate that the mechanism might involve the formation of an intramolecular H-bridge that facilitates the H_2O_2 elimination process. The findings in this report also provide a framework to explain the mechanism that might be involved in the elimination of H_2O_2 from the C4a-hydroperoxyflavin in other flavin-dependent oxidases and monooxygenases.

Acknowledgments—We are grateful to Bruce A. Palfe (University of Michigan, Ann Arbor) and Richard L. Schowen (University of Kansas) for useful discussions about the SKIE results. We thank Tienthong Thongpanchang (Mahidol University) for discussion regarding the enzyme component of 4-hydroxyphenylacetate 3-hydroxylase hydroxylase, and Richard L. Schowen (University of Kansas) and Methinee Prongjit for sharing unpublished data.

REFERENCES

1. Massay, V. (1994) J. Biol. Chem. 269, 22459–22462
2. Palfe, B. A., and Massay, V. (1998) Comprehensive Biological Catalysis: Flavin-dependent Enzymes, pp. 83–153, Academic Press, CA
3. Fitzpatrick, P. F. (2001) Acc. Chem. Res. 34, 299–307
4. Ballou, D. P., Entsch, B., and Cole, L. J. (2005) Biochem. Biophys. Res. Commun. 338, 590–598
5. van Berkel, W. J., Kamerbeek, N. M., and Fraaije, M. W. (2006) J. Biotechnol. 124, 670–689
6. Sucharitakul, J., Chaiyen, P., Entsch, B., and Ballou, D. P. (2006) J. Biol. Chem. 281, 17044–17053
7. Torres Pazmiño, D. E., Winkler, M., Glieder, A., and Fraaije, M. W. (2010) J. Biol. Chem. 285, 223–233
8. Palfe, B. A., Ballou, D. P., and Massay, V. (1995) Active Oxygen in Biochemistry: Oxygen Activation by Flavins and Pterins, pp. 37–83, Chapman & Hall, Glasgow, Scotland, UK
9. Palfe, B. A., and McDonald, C. A. (2010) Arch. Biochem. Biophys. 493, 26–36
10. Chaiyen, P. (2010) Arch. Biochem. Biophys. 493, 62–70
11. Entsch, B., Cole, L. J., and Ballou, D. P. (2005) Arch. Biochem. Biophys. 433, 297–311
12. Sucharitakul, J., Prongjit, M., Haltrich, D., and Chaiyen, P. (2008) Biochemistry 47, 8485–8490
13. Sucharitakul, J., Wongnate, T., and Chaiyen, P. (2010) Biochemistry 49, 3753–3765
14. Prongjit, M., Sucharitakul, J., Wongnate, T., Haltrich, D., and Chaiyen, P. (2009) Biochemistry 48, 4170–4180
15. Bruce, T. C. (1984) Isr. J. Chem. 24, 54–61
16. Eberlein, G., and Bruice, T. C. (1983) J. Am. Chem. Soc. 105, 6685–6697
17. Eberlein, G., and Bruice, T. C. (1982) J. Am. Chem. Soc. 104, 1449–1452
18. Mattevi, A. (2006) Trends Biochem. Sci. 31, 276–283
19. Sobrado, P., and Fitzpatrick, P. F. (2003) Biochemistry 42, 15208–15214
20. Pompon, D., Iwatsubo, M., and Lederer, F. (1980) Eur. J. Biochem. 104, 479–488
21. Gadda, G. (2008) Biochemistry 47, 13745–13753
22. Rungsririsuriyachai, K., and Gadda, G. (2010) Biochemistry 49, 2483–2490
23. Su, Q., and Klinman, J. P. (1999) Biochemistry 38, 8572–8581
24. Klinman, J. P. (2007) Acc. Chem. Res. 40, 325–333
25. Henderson Pozzi, M., and Fitzpatrick, P. F. (2010) Arch. Biochem. Biophys. 498, 83–88
26. Pennati, A., and Gadda, G. (2011) Biochemistry 50, 1–3
27. Leitner, C., Haltrich, D., Nidelzsky, B., Prillinger, H., and Kulbe, K. D. (1998) Appl. Biochem. Biotechnol. 70–72, 237–248
28. Tan, T. C., Pitsawong, W., Wongnate, T., Spadiut, O., Haltrich, D., Chaiyen, P., and Divne, C. (2010) J. Mol. Biol. 402, 578–594
29. Hallberg, B. M., Leitner, C., Haltrich, D., and Divne, C. (2004) J. Mol. Biol. 341, 781–796
30. Kujawa, M., Ebner, H., Leitner, C., Hallberg, B. M., Prongjit, M., Sucharitakul, J., Ludwig, R., Rudsander, U., Peterbauer, C., Chaiyen, P., Haltrich, D., and Divne, C. (2006) J. Biol. Chem. 281, 35104–35115
31. Pitsawong, W., Sucharitakul, J., Prongjit, M., Tan, T. C., Spadiut, O., Haltrich, D., Divne, C., and Chaiyen, P. (2010) J. Biol. Chem. 285, 9679–9705
32. Spadiut, O., Tan, T. C., Pisanelli, I., Haltrich, D., and Divne, C. (2010) FEMS J. 277, 2892–2909
33. Danneel, H. J., Rossner, E., Zeeck, A., and Giffhorn, F. (1993) Eur. J. Biochem. 214, 795–802
34. Schowen, K. B., and Schowen, R. L. (1982) Methods Enzymol. 87, 511–606
35. Venkatasubban, K. S., and Schowen, R. L. (1984) CRC Crit. Rev. Biochem. 17, 1–44
36. Francisco, W. A., Abu-Soud, H. M., DelMonte, A. J., Singleton, D. A., Baldwin, T. O., and Raushel, F. M. (1998) Biochemistry 37, 2596–2606
37. Cook, P. F. (1991) Enzyme Mechanism from Isotope Effects: Theoretical Basis and Mechanistic Utility of Solvent Isotope Effect, pp. 74–123, CRC Press, Boca Raton, FL
38. Schowen, K. B., Limbach, H. H., Denisov, G. S., and Schowen, R. L. (2000) Biochim. Biophys. Acta 1458, 43–62
39. Macheraux, P., Ghiaia, S., Sanner, C., Rüterjans, H., and Müller, F. (2005) BMC Biochem. 6, 26
40. Orru, R., Pazmiño, D. E., Fraaije, M. W., and Mattevi, A. (2010) J. Biol. Chem. 285, 35021–35028
41. Evans, M. G., and Uri, N. (1949) Trans. Faraday Soc. 45, 224–230
42. Sheng, D., Ballou, D. P., and Massey, V. (2001) Biochemistry 40, 11156–11167
43. Ruanchon, N., Tongsook, C., Sucharitakul, J., and Chaiyen, P. (2011) J. Biol. Chem. 286, 223–233
44. Merenyi, G., and Lind, J. (1991) J. Am. Chem. Soc. 113, 3146–3153

Mechanism of H_2O_2 Elimination in Pyranose 2-oxidase