ON GERBE DUALITY
AND RELATIVE GROMOV-WITTEN THEORY

XIANG TANG AND HSIAN-HUA TSENG

ABSTRACT. We formulate and study an extension of gerbe duality to relative Gromov-Witten theory.

1. Introduction

In this short note, we propose a conjecture about relative Gromov-Witten theory on a general noneffective Deligne-Mumford stack.

Throughout this note, we work over \(\mathbb{C} \). Let \(G \) be a finite group, \(B \) a smooth (proper) Deligne-Mumford stack, and
\[
\pi : \mathcal{Y} \to B
\]
a \(G \)-gerbe. In [10], the dual of \(\pi : \mathcal{Y} \to B \) is a pair \((\hat{\mathcal{Y}}, c)\) where \(\hat{\mathcal{Y}} \) is a disconnected stack with an étale map
\[
\hat{\pi} : \hat{\mathcal{Y}} = \coprod_i \hat{\mathcal{Y}}_i \to B
\]
and \(c \) is a \(\mathbb{C}^* \)-valued 2-cocycle on \(\hat{\mathcal{Y}} \).

We briefly recall the construction of \(\hat{\mathcal{Y}} \) and \(c \), and refer the readers to [14] for the detail. We focus on describing \(\mathcal{Y} \) locally. A chart of \(B \) looks like a quotient of \(\mathbb{C}^n \) by a finite group \(Q \) acting linearly on \(\mathbb{C}^n \). And a \(G \)-gerbe over \([\mathbb{C}^n/Q]\) can be described as follows. There is a group extension
\[
1 \to G \to H \to Q \to 1.
\]
The group \(H \) acts on \(\mathbb{C}^n \) via its homomorphism to \(Q \). Locally a chart of \(\mathcal{Y} \) over \(B \) looks like \([\mathbb{C}^n/H] \to [\mathbb{C}^n/Q]\).

To construct the dual \(\hat{\mathcal{Y}} \), we consider the space \(\hat{G} \), the (finite) set of isomorphism classes of irreducible \(G \)-representations. As \(G \) is a normal subgroup of \(H \), \(H \) acts on \(G \) by conjugation, which naturally gives an \(H \) action on \(\hat{G} \). Furthermore, as \(G \) acts its by conjugation, the \(G \) action on \(\hat{G} \) is trivial. Therefore, the quotient group \(Q \) acts on \(\hat{G} \). The dual space \(\hat{\mathcal{Y}} \) locally looks like \([\hat{G} \times \mathbb{C}^n]/Q\). We notice that the dual \(\hat{\mathcal{Y}} \) has a canonical map to the quotient \(\hat{G}/Q \), and therefore is a disjoint union of stacks over \(\hat{G}/Q \).

The construction of \(c \) is from the Clifford theory of induced representations [7]. Given an irreducible \(G \)-representation \(\rho \) on \(V_\rho \), we want to introduce an \(H \) representation. Let \([\rho]\) be the corresponding point in \(\hat{G} \). Recall that the finite group \(Q \) acts on \(\hat{G} \). We denote \(Q_{[\rho]} \) to
be the stabilizer group of Q action on $[\hat{G}]$ at the point $[\rho]$. For any $q \in Q_{[\rho]}$, define $q(\rho)$, a representation of G on V^ρ, by
\[q(\rho)(g) = \rho(q^{-1}(g)). \]
As q fixes $[\rho]$ in \hat{G}, $q(\rho)$, as a G-representation, is equivalent to ρ. Therefore, there is an intertwining operator T^ρ_q on V^ρ such that
\[T^\rho_q \rho = q(\rho) T^\rho_q. \]
In general, the operators $\{T^\rho_q\}_{q \in Q_{[\rho]}}$ fail to satisfy
\[T^\rho_q \circ T^\rho_{q'} = T^\rho_{qq'}. \]
By Schur’s lemma, we can check that there is a number $c^{[\rho]}(q, q') \in \mathbb{C}^*$, such that
\[T^\rho_q \circ T^\rho_{q'} = c^{[\rho]}(q, q') T^\rho_{qq'}. \]
In \cite{14}, we explained that this function $c^{[\rho]}(q, q')$ glues to a globally defined \mathbb{C}^*-gerbe over the dual $\hat{\mathcal{Y}}$.

The authors of \cite{10} propose a gerbe duality principle which suggests that there is an equivalence between the geometry of \mathcal{Y} and that of the pair $(\hat{\mathcal{Y}}, c)$. Several aspects of such an equivalence have been proven in \cite{14}. In \cite{14} Conjecture 1.8, the following conjecture is also explicitly formulated:

Conjecture 1.1. As generating functions, the genus g Gromov-Witten theory of \mathcal{Y} is equal to the genus g Gromov-Witten theory\footnote{It is also called c-twisted Gromov-Witten theory of $\hat{\mathcal{Y}}$.} of $(\hat{\mathcal{Y}}, c)$,
\[GW_g(\mathcal{Y}) = GW_g(\hat{\mathcal{Y}}, c). \]

Conjecture 1.1 has been proven in increasing generalities, see \cite{3}, \cite{4}, \cite{5}, and \cite{15}. In particular, we have obtained the following theorem.

Theorem 1.2. (\cite{15} Theorem 1.1) When \mathcal{Y} is a banded G-gerbe over \mathcal{B}, Conjecture 1.1 holds true.

A toric Deligne-Mumford stack \mathcal{Y} is a banded gerbe over an effective DM stack \mathcal{B}, see e.g. \cite{9}. As a corollary to Theorem 1.2, we can compute the Gromov-Witten theory of \mathcal{Y} in terms of the (twisted) Gromov-Witten theory of the dual toric DM stack $\hat{\mathcal{Y}}$.

From the perspective of Gromov-Witten theory, Gromov-Witten theory relative to a divisor is important. Therefore it is natural to consider an extension of Conjecture 1.1 to the relative setting. Let
\[D \subset \mathcal{B} \]
be a smooth (irreducible) divisor. The inverse images
\[\mathcal{D} := \pi^{-1}(D) \subset \mathcal{Y}, \quad \hat{\mathcal{D}} := \hat{\pi}^{-1}(D) \subset \hat{\mathcal{Y}} \]
are smooth divisors. The c-twisted Gromov-Witten theory of the relative pair $(\hat{\mathcal{Y}}, \hat{\mathcal{D}})$ can be defined using the construction of \cite{2}, \cite{11}, \cite{12}, and \cite{13}. A natural extension of Conjecture 1.1 is the following.
Conjecture 1.3. As generating functions, the genus g Gromov-Witten theory of $(\mathcal{Y}, \mathcal{D})$ is equal to the genus g Gromov-Witten theory of $((\hat{\mathcal{Y}}, \hat{\mathcal{D}}), c)$. Symbolically,

$$GW_g(\mathcal{Y}, \mathcal{D}) = GW_g((\hat{\mathcal{Y}}, \hat{\mathcal{D}}), c).$$

The purpose of this note is to present some evidence to Conjecture 1.3.

2. Evidence to Conjecture 1.3

By taking the divisor D to be empty, we see that Conjecture 1.3 implies Conjecture 1.1.

Next, we explain how to derive Conjecture 1.3 from the full strength of Conjecture 1.1.

Let $r \geq 1$. We consider the stack of r-th roots of Y along \mathcal{D}, denoted by $Y_{D,r}$.

Consider also the stack of r-th roots of B along \mathcal{D}, denoted by $B_{D,r}$.

Let $\rho : B_{D,r} \to B$ be the natural map. Consider the Cartesian diagram:

$$
\begin{array}{ccc}
\rho^*Y & \longrightarrow & Y \\
\downarrow & & \downarrow \pi \\
B_{D,r} & \rho & B.
\end{array}
$$

The pull-back $\rho^*Y \to B_{D,r}$ is a G-gerbe. By functoriality property of root constructions, there is a natural map $Y_{D,r} \to \rho^*Y$, which is an isomorphism. Therefore we have

(2.1)

$$GW_g(Y_{D,r}) = GW_g(\rho^*Y).$$

Since $\rho^*Y \to B_{D,r}$ is a G-gerbe, applying Conjecture 1.1, we have

(2.2)

$$GW_g(\rho^*Y) = GW_g(\hat{\rho}^*\hat{Y}, c'),$$

where $(\hat{\rho}^*\hat{Y}, c')$ is the dual pair of the gerbe ρ^*Y. By construction of the dual pair, we have $\hat{\rho}^*\hat{Y} = \rho^*\hat{Y}$ and $c' = \rho^*c$. Here $\rho^*\hat{Y}$ fits in the Cartesian diagram:

$$
\begin{array}{ccc}
\rho^*\hat{Y} & \longrightarrow & \hat{Y} \\
\downarrow & & \downarrow \# \\
B_{D,r} & \rho & B.
\end{array}
$$

By functoriality property of root constructions, we have $\rho^*\hat{Y} \simeq \hat{Y}_{D,r}$. Therefore

(2.3)

$$GW_g(\rho^*\hat{Y}, c') = GW_g(\hat{Y}_{D,r}, \rho^*c).$$
Combining (2.1)–(2.3), we have

\[(2.4) \quad GW_g(Y_{D,r}) = GW_g(\hat{Y}_{\hat{D},r}, \rho^*c).\]

The left hand side of (2.4), \(GW_g(Y_{D,r})\), is a polynomial in \(r\) for \(r\) large. Furthermore, taking the \(r^0\)-coefficient, we obtain the relative Gromov-Witten invariants:

\[(2.5) \quad \text{Coeff}_{r^0}GW_g(Y_{D,r}) = GW_g(Y, D).\]

This follows from the arguments of [16], suitably extended to the setting of Deligne-Mumford stacks, see [17], [6].

The right hand side of (2.4), \(GW_g(\hat{Y}_{\hat{D},r}, \rho^*c)\), is also a polynomial in \(r\) for \(r\) large. Taking the \(r^0\)-coefficient, we obtain the relative Gromov-Witten invariants:

\[(2.6) \quad \text{Coeff}_{r^0}GW_g(\hat{Y}_{\hat{D},r}, \rho^*c) = GW_g((\hat{Y}, \hat{D}), c).\]

This again follows from a suitable extension of [16] as in [17], [6]. Note that the \(\rho^*c\)-twist plays no role in applying the arguments of [16], as they are essentially done at the level of virtual cycles (see [8]), while \(\rho^*c\)-twist takes place at insertions.

Combining (2.5) and (2.6), we arrive at Conjecture 1.3.

Remark 2.1. In genus 0, the argument about polynomiality in \(r\) can be replaced by (a suitable extension of) the arguments of [1].

The following result follows directly from Theorem 1.2 and the above discussion.

Theorem 2.1. When \(\mathcal{Y}\) is a banded \(G\)-gerbe over \(\mathcal{B}\), as generating functions, the genus \(g\) Gromov-Witten theory of \((\mathcal{Y}, D)\) is equal to the genus \(g\) Gromov-Witten theory of \((\hat{\mathcal{Y}}, \hat{D}), c)\).

Symbolically,

\[GW_g(\mathcal{Y}, D) = GW_g((\hat{\mathcal{Y}}, \hat{D}), c).\]

3. Acknowledgment

X. Tang is supported in part by NSF Grant. H.-H. Tseng is supported in part by Simons Foundation Collaboration Grant.

References

[1] D. Abramovich, C. Cadman, J. Wise, *Relative and orbifold Gromov-Witten invariants*, Algebr. Geom. 4 (2017), no. 4, 472–500.
[2] D. Abramovich, B. Fantechi, *Orbifold techniques in degeneration formulas*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 2, 519–579.
[3] E. Andreini, Y. Jiang, H.-H. Tseng, *Gromov-Witten theory of root gerbes I: structure of genus 0 moduli spaces*, J. Differential Geom. Vol. 99, no. 1 (2015), 1–45.
[4] E. Andreini, Y. Jiang, H.-H. Tseng, *Gromov-Witten theory of product stacks*, Comm. Anal. Geom., Vol. 24 (2016), no. 2, 223–277.
[5] E. Andreini, Y. Jiang, H.-H. Tseng, *Gromov-Witten theory of banded gerbes over schemes*, arXiv:1101.5996.
[6] B. Chen, C.-Y. Du, R. Wang, *Double ramification cycles with orbifold targets*, arXiv:2008.06484.
[7] A. Clifford, *Representations induced in an invariant subgroup*, Ann. of Math. (2) 38 (1937), no. 3, 533–550.
[8] H. Fan, L. Wu, F. You, *Higher genus relative Gromov–Witten theory and DR-cycles*, J. London Math. Soc. 103 (2021), Issue 4, 1547–1576, arXiv:1907.07133.

[9] B. Fantechi, E. Mann, F. Nironi, *Smooth toric Deligne-Mumford stacks*, J. Reine Angew. Math. 648 (2010), 201–244.

[10] S. Hellerman, A. Henriques, T. Pantev, E. Sharpe, *Cluster decomposition, T-duality, and gerby CFTs*, Adv. Theor. Math. Phys., 11 (5) (2007), 751–818.

[11] J. Li, *Stable morphisms to singular schemes and relative stable morphisms*, J. Differential Geom. 57 (2001), 509–578.

[12] J. Li, *A degeneration formula of GW-invariants*, J. Differential Geom. 60 (2002), no. 2, 199–293.

[13] J. Pan, Y. Ruan, X. Yin, *Gerbes and twisted orbifold quantum cohomology*, Sci. China Ser. A, 51 (6) (2008), 995–1016.

[14] X. Tang, H. -H. Tseng, *Duality theorems for étale gerbes on orbifolds*, Adv. Math. 250 (2014), 496–569.

[15] X. Tang, H. -H. Tseng, *A quantum Leray-Hirsch theorem for banded gerbes*, J. Differential Geom. 119 (3), 459–511, 2021, arXiv:1602.03564.

[16] H.-H. Tseng, F. You, *Higher genus relative and orbifold Gromov-Witten invariants*, Geom. Topol. 24 (2020) 2749–2779, arXiv:1806.11082.

[17] H.-H. Tseng, F. You, *A Gromov-Witten theory for simple normal-crossing pairs without log geometry*, arXiv:2008.04844.

Department of Mathematics, Washington University, St. Louis, MO 63130, USA

Email address: xtang@math.wustl.edu

Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Ave., Columbus, OH 43210, USA

Email address: hhtseng@math.ohio-state.edu