Variation of Single-Particle Energies: Scaling Behavior for the Spectrum of 48Cr

Praveen C. Srivastava1 and Larry Zamick2

1Department of Physics, Indian Institute of Technology
Roorkee, Roorkee 247667, India and
2Department of Physics and Astronomy, Rutgers University,
Piscataway, New Jersey 08854, USA

June 24, 2020

Abstract

We perform shell model calculations for 48Cr using GXPF1A and FPD6 interactions by varying single particle energies. We find a scaling behavior which leads to the finding that many different sets of interactions with vastly different single particle energies can give almost identical results for the yrast spectrum of 48Cr.

1 Introduction

In this work we examine the effects of varying single particle energies in a shell model calculation. We will focus on the yrast spectrum of 48Cr $J=0,2,4...16$. We will consider 2 interactions GXPF1A [1] and FPD6 [2]. There have been many publications using these interactions in the PF shell with the shell model program ANTOINE [3], notably the works of E. Caurier et al. [4,5] and more recently of V. Kumar et al. [6]. Other works related to 48Cr include those of K. Hara et al. [7], F.Brandolini et al. [8], E.Caurier et al.[9], Z.C.Gao et al.[10] and R.A. Herrera et al.[11].

The original single particle energies are given in Table 1. The orbits are $0f_{7/2}$, $1p_{3/2}$, $0f_{5/2}$ and $1p_{1/2}$. We will then alter the single particle energies as indicated in Tables 2-9. In Table 2 we use the GXPF1A interaction and in Tables 6-9 the FPD6 interaction. In Table 2 we move the orbits $0f_{5/2}$ and $1p_{1/2}$ by a amount Δ which is taken to be positive; in Table 3 negative. In Tables 4 and 5 we move the orbits $1p_{3/2}$ and $1p_{1/2}$ by an amount Δ; in Table 4 positive and in Table 5 negative. Basically in Tables 2 and 3 we are moving the spin-orbit partners with $j = l - 1/2$ away from the orbits with $j = l + 1/2$. In Tables 4 and 5 we are moving the $1p$ shell orbits away from the $0f$ shell orbits. That is to say we add a constant Δ to the orbits $1p_{3/2}$ and $1p_{1/2}$. We show corresponding results for the FPD6 interaction in Tables 6-9.
Before embarking on these detailed calculations let us comment on the overall properties of the yrast band in 48Cr. Clearly there is a lot of collectivity in the spectrum but it cannot be easily classified as rotational or vibrational. In the rotational case the ratio $E(4)/E(2)$ is $20/6=3.3333$ while in the vibrational model it is 2. The calculated value in Table 2 is 2.179. Thus the ratio is closer to vibrational. Concerning electromagnetic properties it was noted by Y.Y. Sharon et al. [12] that in the simplest version of the rotational model the ratio $\frac{Q(2^+)}{\sqrt{B(E2;0^+\rightarrow 2^+)}$ is equal to one. In the vibrational model this quantity is equal to zero. Using the calculated results of Table 2 for GXPF1A this ratio is 0.938, whilst with FPD6 in Table 6 it is 0.975. This is closer to rotational. We could ask if varying single particle energies will take us closer to the vibrational limit or to the rotational limit. This will be discussed near the end.

Table 1: Single particle energies (MeV) of GXPF1A and FPD6.

Orbit	GXPF1A	FPD6
0f$_{7/2}$	-8.6240	-8.3876
1p$_{3/2}$	2.9447	1.8942
0f$_{5/2}$	7.2411	6.4910
1p$_{1/2}$	4.4870	3.9093

2 GXPF1A and FPD6 with Positive Delta

In Table 10 we show the ratio $E(J)_{\Delta}/E(J)$ for $\Delta=1,10$ and 20. We show this for the GXPF1A interaction but results for FPD6 are similar.

Note that although there are some fluctuations the ratios are similar. If the ratios for a given Δ were all the same we would have perfect scaling. In that idealized situation we would get identical spectra for any finite Δ with that of $\Delta=0$ by multiplying the entire matrix for that Δ by that by a constant. Thus, is a phenomenological approach.

If we limited ourselves to fitting the spectra of the 16 yrast states of 48Cr, we would have an infinite number of choices of combinations of 2 body matrix elements and single particle energies which would yield the same results. In truth as seen in table 10 the ratios are not exactly the same but they are close enough to the idealized situation so that a large range of choices would lead to equally good results for these spectra. Of course if we expanded the data i.e. included other states. the result would be different.

In Table 11 we compare the original spectrum of GXPF1A with that for $\Delta=20$ multiplied by a renormalization factor 1.2. This renormalization factor multiplies the entire matrix including the $\Delta=20$ single particle energies. We see that the spectra are reasonably close- it would be hard to prefer one to the other. However the single particle energies are vastly different. Originally the 0f$_{5/2}$ and 1p$_{1/2}$ are 7.241 and 4.487 MeV above 0f$_{7/2}$. Now they are 27.241 and 24.487 MeV above the 0f$_{7/2}$ orbit.

Note that the GXPF1A and FPD6 single particle energies are also significantly different. This may well be as shown above that one runs into the problem that many different combinations of single particle energies and 2 body matrix
elements can give almost the same results.

In Tables 4 and 5 we move the 1p orbits away from the 0f orbits. The behavior is not as simple as for the case when we move the spin orbit partners. With increasing Δ the energies of the 2^+ states go up but the energies of the 16^+ states go down. There is no scaling.

When one makes truncation in the PF shell by dropping orbits it is more natural to drop the spin orbit partners $0f_5/2$ and $1p_{1/2}$ than it is to drop the $2p$ shell orbits. This was done by Zamick et al. [13] in the context of quadrupole moments and $B(E2)$’s. They studied the effects of dropping spin-orbit partners $0f_5/2$ and $1p_{1/2}$ on these electromagnetic properties. In the present context this is equivalent to setting Δ to infinity. To a large extent the results of the truncated calculations could be put into line with the full calculations by enlarging the effective charges in the former when the FPD6 interaction is used. The ratio full to truncated for $Q(2^+)^2$, $Q(4^+)^2$, $B(E2, 2^+ \rightarrow 0^+)$ and $B(E2, 4^+ \rightarrow 2^+)$ were all very close to 1.4.

3 GXPF1A and FPD6 with Negative Delta

When we make Δ negative there will be single particle level crossings. Since the $0f_5/2$ single particle energy is 7.2411 MeV when we take Δ to be -8 MeV or lower the $0f_5/2$ and $1p_{3/2}$ orbits will be below $0f_7/2$ and certainly $1p_{1/2}$. What is surprising is even a Δ=-8 MeV there is no catastrophy in the spectrum. With an eyeball look it appears not to be too different from that of Δ=0 MeV i.e. the original spectrum. The 2^+ state excitation energy moves from 0.788 to 0.857 MeV whilst the 16^+ goes from 12.805 to 12.965 MeV.

When Δ is lowered to -10 MeV the spectrum stays more or less intact except that the J=6 to J=4 splitting becomes very small.

In the original case (Δ = 0) it is 1.512 MeV, for Δ = -8 it is 1.520 MeV but for Δ = -10 it is only 0.154 MeV. This suggests a drastic change is soon to come.

Such a change can best be seen by the evolutions of the quadrupole moments of the 2^+ states. From Δ =0 to -10 they are respectively, -0.30, -0.32, -0.32, -0.31, -0.29, -0.27, -0.26, -0.26, -0.26 and -0.18 eb. At Δ = -20 however there is a change of sign $Q(2^+) = +0.24$ eb.

Although, the energy levels for Δ = -20 track fairly well with those at Δ=0 from J=0 to J=10 there is a huge difference from J=12, 14 and J=16. For Δ = 0 the latter values are 7.722, 9.701 and 12.805 MeV whilst for Δ = -20 they are 15.588, 26.249 and 28.411 MeV respectively. This can be understood by the fact that the high spin states require $0f_7/2$ contributions and these are now at a higher energy than $0f_5/2$ and $1p_{1/2}$.
Table 2 Energy spectra of 48Cr using GXPF1A interaction. Here we have keep the single-particle energies of $0f_{7/2}$ and $1p_{3/2}$ as the original one, and changed the single-particle energies of $0f_{5/2}$ and $1p_{1/2}$ moved up by original plus Δ.

Energy	GXPF1A	$\Delta = 1$	2	3	4	5	6	7	8	9	10	20	40	60	80	100
0^+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2^+	0.788	0.767	0.750	0.737	0.727	0.718	0.711	0.705	0.700	0.699	0.692	0.689	0.684	0.664	0.646	0.642
4^+	1.717	1.687	1.664	1.646	1.632	1.620	1.610	1.601	1.594	1.588	1.582	1.576	1.569	1.564	1.564	1.498
6^+	3.229	3.152	3.090	3.039	2.998	2.963	2.934	2.908	2.886	2.867	2.849	2.747	2.671	2.639	2.622	2.610
8^+	4.753	4.649	4.532	4.478	4.415	4.361	4.314	4.274	4.239	4.208	4.179	4.000	3.881	3.827	3.796	3.778
10^+	6.429	6.238	6.080	5.952	5.846	5.758	5.684	5.621	5.565	5.517	5.474	5.219	5.033	4.957	4.915	4.889
12^+	7.722	7.479	7.296	7.155	7.037	6.941	6.860	6.791	6.731	6.679	6.632	6.568	6.513	6.513	6.524	6.296
14^+	9.701	9.432	9.227	9.063	8.929	8.818	8.724	8.683	8.572	8.511	8.456	8.129	7.887	7.788	7.733	7.699
16^+	12.805	12.411	12.115	11.845	11.699	11.546	11.417	11.308	11.213	11.130	11.057	10.623	10.305	10.156	10.105	10.061

$B(E2; \ J \rightarrow J-2 \) (e^2 fm^4)$

4^+	336	321	310	302	296	291	287	283	280	278	276	262	252	248	245	244
6^+	336	317	304	296	290	285	280	277	274	271	270	256	247	244	241	240
8^+	306	288	276	268	262	257	253	250	248	245	244	232	223	222	221	217
10^+	212	195	192	186	186	185	185	184	184	184	183	181	180	179	179	178
12^+	162	163	162	162	162	161	161	160	160	160	159	157	156	155	154	154
14^+	126	125	124	123	123	123	123	122	122	121	121	120	118	118	118	117
16^+	62	65	66	67	68	68	68	68	68	68	68	68	67	67	67	67

$Q(\epsilon)$

2^+	-0.30	-0.29	-0.29	-0.28	-0.27	-0.27	-0.27	-0.26	-0.26	-0.25	-0.24	-0.23	-0.23	-0.23	-0.25	-0.25	
4^+	-0.40	-0.39	-0.38	-0.38	-0.36	-0.36	-0.36	-0.35	-0.35	-0.34	-0.34	-0.33	-0.31	-0.31	-0.30	-0.29	
6^+	-0.40	-0.38	-0.37	-0.36	-0.35	-0.34	-0.33	-0.33	-0.32	-0.32	-0.31	-0.30	-0.29	-0.28	-0.26	-0.23	-0.22
8^+	-0.41	-0.38	-0.36	-0.34	-0.33	-0.32	-0.31	-0.30	-0.29	-0.28	-0.28	-0.26	-0.22	-0.21	-0.21	-0.22	
10^+	-0.21	-0.17	-0.16	-0.15	-0.13	-0.13	-0.12	-0.12	-0.12	-0.11	-0.11	-0.10	-0.09	-0.09	-0.09	-0.09	
12^+	-0.03	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	-0.01	-0.01	-0.01	-0.01	
14^+	-0.05	-0.04	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.02	-0.02	-0.02	-0.02	-0.01	-0.01	-0.01	-0.01	
16^+	-0.09	-0.08	-0.07	-0.07	-0.06	-0.06	-0.06	-0.06	-0.05	-0.05	-0.05	-0.04	-0.04	-0.04	-0.04	-0.04	
Table 3 Energy spectra of 48Cr using GXPF1A interaction. Here we have kept the single-particle energies of $0f_{7/2}$ and $1p_{3/2}$ as the original one, and changed the single-particle energies of $0f_{5/2}$ and $1p_{1/2}$ moved up by original minus Δ.

Energy	$\Delta = -1$	-2	-3	-4	-5	-6	-7	-8	-9	-10	-20	-40	-60	-80	-100
0^+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2^+	0.816	0.845	0.865	0.872	0.878	0.882	0.876	0.857	0.842	0.910	0.490	0.385	0.359	0.349	0.340
4^+	1.751	1.808	1.861	1.915	1.968	1.995	1.973	1.890	1.760	1.710	1.424	1.134	1.061	1.025	1.007
6^+	3.316	3.376	3.352	3.359	3.433	3.496	3.494	3.410	3.234	1.864	2.650	2.153	2.036	1.9165	1.931
8^+	4.877	4.970	4.987	5.056	5.177	5.261	5.260	5.147	4.026	4.058	2.966	2.433	2.297	2.237	2.202
10^+	6.621	6.663	6.633	6.700	6.965	7.102	7.114	6.998	6.439	5.770	7.675	6.865	6.651	6.552	6.495
12^+	8.060	8.539	9.009	9.397	9.469	9.449	9.373	9.131	8.195	7.887	15.588	35.059	54.929	74.871	94.838
14^+	10.000	10.547	11.133	11.585	11.648	11.589	11.512	11.397	10.959	10.434	26.249	65.601	105.436	145.363	185.319
16^+	13.361	14.034	14.169	13.720	13.424	13.263	13.134	12.965	12.778	12.854	28.411	67.637	107.439	147.349	187.297

$B(E2: J \rightarrow J-2)$	(e²fm⁴)													
4^+	400	449	484	499	501	492	457	388	242	182	165	161	158	156
6^+	421	448	466	491	511	516	501	429	172	151	137	114	135	130
8^+	418	487	523	552	568	571	540	205	199	8	8	21	6	7
10^+	476	511	517	500	223	191	0.12	0.06	0.05	0.05	0.05	0.05	0.05	
12^+	412	440	446	15	198	173	0.008	0.009	0.009	0.009	0.009	0.009	0.009	
14^+	390	403	389	0.45	6	2	0.028	0.02	0.02	0.02	0.02	0.02	0.02	
16^+	209	245	255	248	75	46	0.23	0.73	0.96	0.94	1.00	1.00	1.00	

$Q(eb)$
2^+
4^+
6^+
8^+
10^+
12^+
14^+
16^+
Table 4 Energy spectra of 48Cr using GXPF1A interaction. Here we have kept the single-particle energies of $0f_{7/2}$ and $0f_{5/2}$ as the original one, and changed the single-particle energies of $1p_{3/2}$ and $1p_{1/2}$ moved up by original plus Δ.

Energy	$\Delta = 1$	2	3	4	5	6	7	8	9	10	20	40	60	80	100
0$^+$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2$^+$	0.918	1.008	1.008	1.007	1.133	1.152	1.165	1.175	1.182	1.187	1.205	1.207	1.206	1.206	1.205
4$^+$	1.803	1.864	1.907	1.937	1.960	1.976	1.989	1.999	2.007	2.014	2.041	2.051	2.053	2.054	2.054
6$^+$	3.293	3.312	3.311	3.303	3.293	3.283	3.274	3.265	3.257	3.250	3.205	3.171	3.157	3.150	3.145
8$^+$	4.729	4.699	4.671	4.647	4.625	4.607	4.591	4.578	4.565	4.555	4.491	4.444	4.425	4.416	4.409
10$^+$	6.198	6.040	5.940	5.864	5.807	5.762	5.725	5.696	5.670	5.649	6.352	5.455	5.425	5.409	5.399
12$^+$	7.296	7.108	6.948	6.833	6.747	6.680	6.626	6.582	6.544	6.513	6.346	6.241	6.201	6.179	6.167
14$^+$	9.244	8.954	8.757	8.614	8.507	8.423	8.355	8.300	8.253	8.213	8.002	7.889	7.819	7.792	7.776
16$^+$	12.280	11.939	11.702	11.529	11.396	11.292	11.207	11.137	11.078	11.027	10.754	10.578	10.511	10.475	10.453

B(E2: J → J-2) (e^2fm4) |

Energy	4$^+$	127	234	265	186	171	161	153	148	143	139	122	114	110	109	109
6$^+$	268	224	196	178	166	156	150	145	140	137	122	115	111	111	111	111
8$^+$	255	223	203	190	180	173	168	164	160	157	143	135	132	131	131	131
10$^+$	184	170	161	155	150	147	143	140	138	135	127	121	119	118	118	117
12$^+$	133	145	139	134	131	127	125	123	121	119	112	107	105	103	103	103
14$^+$	120	114	110	107	104	102	100	99	98	97	90	87	85	85	84	84
16$^+$	60	59	57	56	56	55	54	54	53	53	50	48	48	47	47	47

Q(ceb) |

Energy	2$^+$	-0.26	-0.22	-0.18	-0.16	-0.13	-0.12	-0.10	-0.09	-0.08	-0.04	-0.01	-0.0091	-0.0091	-0.0091
4$^+$	-0.36	-0.34	-0.32	-0.30	-0.28	-0.27	-0.27	-0.26	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25
6$^+$	-0.32	-0.26	-0.22	-0.19	-0.17	-0.15	-0.14	-0.13	-0.12	-0.12	-0.12	-0.12	-0.12	-0.12	-0.12
8$^+$	-0.33	-0.27	-0.23	-0.20	-0.18	-0.17	-0.15	-0.15	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13
10$^+$	-0.15	-0.12	-0.10	-0.09	-0.08	-0.08	-0.07	-0.07	-0.06	-0.06	-0.06	-0.06	-0.06	-0.06	-0.06
12$^+$	-0.02	-0.02	-0.02	-0.02	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
14$^+$	-0.04	-0.04	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03
16$^+$	-0.06	-0.05	-0.04	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03
Table 5 Energy spectra of 48Cr using GXPF1A interaction. Here we have keep the single-particle energies of $0f_{7/2}$ and $0f_{5/2}$ as the original one, and changed the single-particle energies of $0p_{3/2}$ and $1p_{1/2}$ moved up by original minus Δ.

| Energy | $\Delta = -1$ | -2 | -3 | -4 | -5 | -6 | -7 | -8 | -9 | -10 | -20 | -40 | -60 | -80 | -100 |
|--------|---------------|----|----|----|----|----|----|----|----|-----|------|------|------|------|------|-------|
| 0° | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 2° | 0.638 | 0.532 | 0.540 | 0.795 | 1.232 | 1.294 | 1.317 | 1.333 | 1.344 | 1.352 | 1.367 | 1.361 | 1.358 | 1.355 | 1.353 |
| 4° | 1.612 | 1.539 | 1.584 | 1.881 | 2.738 | 3.838 | 4.334 | 4.446 | 4.501 | 4.529 | 4.552 | 4.520 | 4.505 | 4.497 | 4.491 |
| 6° | 3.103 | 2.991 | 3.061 | 3.577 | 5.074 | 7.084 | 8.712 | 9.843 | 10.860 | 21.830 | 41.799 | 61.787 | 81.781 | 101.778 |
| 8° | 4.753 | 4.745 | 4.863 | 5.389 | 6.785 | 8.699 | 10.701 | 12.712 | 14.683 | 15.949 | 22.968 | 24.139 | 24.139 | 24.139 | 24.139 |
| 10° | 6.728 | 6.848 | 6.935 | 7.594 | 9.491 | 11.692 | 13.547 | 17.414 | 19.376 | 21.327 | 29.219 | 39.219 | 49.219 | 59.219 | 69.219 |
| 12° | 8.341 | 8.942 | 9.884 | 9.706 | 11.763 | 14.550 | 17.441 | 21.075 | 22.152 | 24.139 | 32.127 | 32.127 | 32.127 | 32.127 | 32.127 |
| 14° | 10.459 | 11.392 | 11.312 | 12.011 | 13.547 | 15.467 | 17.414 | 19.376 | 21.327 | 29.219 | 39.219 | 49.219 | 59.219 | 69.219 | 79.219 |
| 16° | 13.655 | 14.610 | 14.605 | 15.296 | 17.590 | 20.955 | 24.656 | 28.478 | 32.358 | 36.270 | 43.927 | 48.927 | 53.927 | 58.927 | 63.927 |

\[
\begin{align*}
\text{B(E2: } J \rightarrow J-2 \text{) (e}^2\text{fm}^4) \\
\text{Q(eb)}
\end{align*}
\]

Energy	2°	4°	6°	8°	10°	12°	14°	16°
0°	-0.35	-0.39	-0.40	-0.35	+0.13	+0.25	+0.26	+0.25
2°	-0.45	-0.50	-0.53	-0.55	-0.53	-0.50	+0.29	+0.32
4°	-0.49	-0.56	-0.61	-0.63	-0.61	-0.49	-0.14	+0.01
6°	-0.51	-0.60	-0.67	-0.69	-0.67	-0.63	-0.34	-0.32
8°	-0.38	-0.51	-0.60	-0.69	-0.66	-0.35	-0.32	-0.29
10°	-0.08	-0.29	-0.60	-0.69	-0.67	-0.35	-0.32	-0.29
12°	-0.08	-0.57	-0.70	-0.68	-0.66	-0.58	-0.48	-0.46
14°	-0.14	-0.59	-0.71	-0.70	-0.68	-0.66	-0.54	-0.42
16°	-0.14	-0.59	-0.71	-0.70	-0.68	-0.66	-0.63	-0.59
Table 6 Energy spectra of 48Cr using FPD6 interaction. Here we have kept the single-particle energies of $0f_{7/2}$ and $1p_{3/2}$ as the original one, and changed the single-particle energies of $0f_{5/2}$ and $1p_{1/2}$ moved up by original plus Δ.

Energy	FPD6	$\Delta = +1$	+2	+3	+4	+5	+6	+7	+8	+9	+10	+20	+40	+60	+80	+100
0$^+$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2$^+$	0.788	0.768	0.747	0.728	0.711	0.696	0.682	0.674	0.661	0.662	0.644	0.659	0.671	0.662	0.659	0.662
4$^+$	1.940	1.889	1.841	1.796	1.757	1.724	1.694	1.669	1.647	1.628	1.611	1.510	1.440	1.397	1.384	1.372
6$^+$	3.657	3.550	3.443	3.346	3.262	3.191	3.129	3.078	3.032	2.992	2.958	2.757	2.619	2.565	2.536	2.519
8$^+$	5.568	5.393	5.218	5.064	4.931	4.818	4.722	4.640	4.569	4.506	4.452	4.138	3.919	3.834	3.788	3.761
10$^+$	7.664	7.362	7.076	6.833	6.631	6.462	6.320	6.194	6.095	6.005	5.927	5.476	5.167	5.046	4.983	4.942
12$^+$	9.218	8.340	8.063	8.063	7.825	7.629	7.465	7.328	7.210	7.109	7.020	6.163	6.025	5.952	5.906	5.870
14$^+$	11.360	10.809	10.372	10.024	9.741	9.508	9.314	9.149	9.008	8.885	8.778	8.161	7.732	7.563	7.473	7.417
16$^+$	14.620	13.868	13.286	12.826	12.457	12.155	11.904	11.691	11.509	11.352	11.214	10.423	9.873	9.656	9.540	9.468

$B(E2; J \rightarrow J-2)$ (e^2fm^4)

Energy	$B(E2)$	4$^+$	6$^+$	8$^+$	10$^+$	12$^+$	14$^+$	16$^+$
4$^+$	437	412	395	380	370	361	354	349
6$^+$	453	420	397	382	369	360	353	347
8$^+$	428	388	363	346	335	326	319	313
10$^+$	342	294	267	251	244	236	232	227
12$^+$	131	149	150	150	150	150	150	150
14$^+$	138	32	130	128	127	127	126	126
16$^+$	69	70	72	72	73	73	73	73

$Q(\sigma b)$

Energy	$Q(\sigma b)$
2$^+$	-0.35
4$^+$	-0.45
6$^+$	-0.47
8$^+$	-0.49
10$^+$	-0.42
12$^+$	-0.08
14$^+$	-0.10
16$^+$	-0.09
Table 7 Energy spectra of 48Cr using FPD6 interaction. Here we have kept the single-particle energies of $0f_{7/2}$ and $0p_{3/2}$ as the original one, and changed the single-particle energies of $0f_{5/2}$ and $1p_{1/2}$ moved up by original plus Δ.

Energy	$\Delta = 1$	-2	-3	-4	-5	-6	-7	-8	-9	-10	-20	-60	-80	-100
0°	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2°	0.807	0.817	0.820	0.819	0.816	0.815	0.823	0.866	1.011	1.278	0.984	0.884	0.856	0.843
4°	1.982	2.007	2.013	2.008	1.999	1.984	1.965	1.967	2.084	2.540	2.544	2.283	2.150	2.111
6°	3.731	3.733	3.681	3.632	3.602	3.583	3.570	3.587	3.673	3.768	3.451	3.750	3.597	3.527
8°	5.685	5.686	5.623	5.571	5.558	5.514	5.497	5.514	5.555	5.710	4.779	4.089	3.914	3.835
10°	7.880	7.913	7.866	7.819	7.781	7.746	7.717	7.726	7.875	7.962	10.625	9.726	9.489	9.316
12°	9.810	10.420	10.704	10.692	10.607	10.535	10.508	10.573	10.198	10.150	18.194	37.492	57.318	97.193
14°	12.041	12.808	13.371	13.447	13.328	13.211	13.185	13.277	13.583	13.724	29.644	68.812	108.603	188.453
16°	15.590	16.358	16.591	16.387	16.142	15.960	15.856	15.862	15.114	15.126	32.136	71.170	110.926	190.750

$\text{B(E2: } J \rightarrow J-2 \text{)} (\text{e2 fm}^4)$

Energy	4°	6°	8°	10°	12°	14°	16°
4°	465	495	518	533	540	541	532
6°	492	525	541	552	559	559	549
8°	484	482	518	543	558	561	549
10°	419	482	518	543	558	561	549
12°	102	272	435	483	498	499	461
14°	152	210	352	433	447	447	407
16°	68	90	247	288	298	297	283

Q(eb)

Energy	2°	4°	6°	8°	10°	12°	14°	16°
2°	-0.35	-0.36	-0.36	-0.36	-0.36	-0.36	-0.34	-0.30
4°	-0.46	-0.45	-0.43	-0.42	-0.41	-0.42	-0.43	-0.45
6°	-0.47	-0.44	-0.40	-0.38	-0.37	-0.37	-0.38	-0.41
8°	-0.48	-0.43	-0.42	-0.40	-0.40	-0.40	-0.41	-0.43
10°	-0.45	-0.44	-0.43	-0.43	-0.42	-0.42	-0.42	-0.42
12°	-0.13	-0.32	-0.45	-0.44	-0.43	-0.43	-0.42	-0.41
14°	-0.14	-0.27	-0.44	-0.44	-0.44	-0.43	-0.42	-0.42
16°	-0.11	-0.41	-0.46	-0.44	-0.44	-0.43	-0.42	-0.42
Table 8 Energy spectra of 48Cr using FPD6 interaction. Here we have keep the single-particle energies of $0f_{7/2}$ and $0f_{5/2}$ as the original one, and changed the single-particle energies of $1p_{3/2}$ and $1p_{1/2}$ moved up by original plus Δ.

Energy	$\Delta = 1$	2	3	4	5	6	7	8	9	10	20	40	60	80	100
0^+	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2^+	0.942	1.088	1.208	1.299	1.367	1.417	1.453	1.480	1.501	1.516	1.569	1.577	1.576	1.574	1.573
4^+	2.071	2.189	2.283	2.354	2.405	2.444	2.473	2.496	2.513	2.527	2.581	2.598	2.601	2.602	2.602
6^+	3.795	3.885	3.923	3.927	3.914	3.895	3.875	3.854	3.835	3.818	3.713	3.639	3.611	3.597	3.587
8^+	5.508	5.597	5.557	5.515	5.473	5.433	5.400	5.370	5.344	5.320	5.185	5.093	5.058	5.039	5.028
10^+	7.450	7.235	7.057	6.918	6.809	6.722	6.653	6.595	6.547	6.506	6.292	6.160	6.111	6.085	6.069
12^+	8.500	8.138	7.815	7.579	7.401	7.263	7.153	7.064	6.990	6.928	6.610	6.424	6.356	6.322	6.300
14^+	10.596	10.055	9.669	9.384	9.116	9.000	8.866	8.756	8.665	8.588	8.191	7.954	7.808	7.824	7.796
16^+	13.733	13.105	12.653	12.318	12.062	11.860	11.698	11.565	11.453	11.359	10.864	10.560	10.448	10.390	10.354

B(E2: J = J-2) (e^2fm^6)

4^+	376	321	277	242	215	196	181	169	160	152	133	97	91	89	87	
6^+	380	312	256	215	186	166	153	142	134	128	98	85	81	80	78	
8^+	357	298	256	227	206	191	180	172	166	161	137	125	122	119	116	
10^+	264	215	188	170	159	149	143	137	133	130	113	105	101	100	99	
12^+	145	142	139	135	131	128	125	123	121	119	110	104	102	100	98	
14^+	127	120	115	111	108	105	103	102	100	99	91	86	85	84	83	81
16^+	65	63	61	60	59	58	57	56	56	55	52	50	49	48	48	47

Q(ibs)

2^+	-0.32	-0.28	-0.25	-0.22	-0.19	-0.17	-0.15	-0.13	-0.12	-0.10	-0.04	-0.0331	+0.008	+0.01	+0.01	
4^+	-0.42	-0.39	-0.37	-0.35	-0.33	-0.32	-0.30	-0.29	-0.28	-0.28	-0.25	-0.23	-0.22	-0.22	-0.22	
6^+	-0.42	-0.35	-0.29	-0.24	-0.20	-0.18	-0.16	-0.14	-0.13	-0.12	-0.08	-0.05	-0.05	-0.05	-0.04	
8^+	-0.42	-0.36	-0.31	-0.27	-0.24	-0.21	-0.19	-0.18	-0.16	-0.16	-0.10	-0.07	-0.07	-0.06	-0.06	
10^+	-0.30	-0.22	-0.18	-0.15	-0.14	-0.12	-0.11	-0.10	-0.09	-0.07	-0.05	-0.05	-0.05	-0.04	-0.04	
12^+	-0.03	-0.03	-0.02	-0.02	-0.02	-0.01	-0.02	-0.02	-0.02	-0.02	-0.01	-0.01	-0.01	-0.01	-0.02	
14^+	-0.07	-0.06	-0.05	-0.04	-0.04	-0.04	-0.04	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.02	
16^+	-0.06	-0.04	-0.04	-0.03	-0.03	-0.03	-0.03	-0.02	-0.02	-0.02	-0.02	-0.01	-0.009	-0.008	-0.008	-0.008
Table 9 Energy spectra of 48Cr using FPD6 interaction. Here we have keep the single-particle energies of $0f_{7/2}$ and $0f_{5/2}$ as the original one, and changed the single-particle energies of $1p_{3/2}$ and $1p_{1/2}$ moved up by original plus Δ.

Energy	$\Delta = 1$	-2	-3	-4	-5	-6	-7	-8	-9	-10	-20	-40	-60	-80	-100
0°	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2°	0.612	0.593	0.594	0.702	1.048	1.328	1.358	1.362	1.364	1.364	1.346	1.339	1.336	1.334	
4°	1.827	1.779	1.810	1.978	2.415	3.216	4.176	4.372	4.376	4.362	4.237	4.160	4.133	4.120	4.112
6°	3.525	3.473	3.561	3.872	4.651	6.101	7.802	9.109	10.165	11.170	21.085	41.027	61.007	80.998	100.992
8°	5.531	5.537	5.714	6.057	6.757	7.990	9.675	11.541	13.477	15.319	25.025	44.861	64.808	84.783	104.767
10°	7.816	7.945	8.161	8.608	9.635	11.769	13.239	14.974	16.816	18.710	38.370	78.247	118.211	158.193	198.183
12°	9.980	10.403	10.616	10.975	12.157	14.089	16.581	19.253	21.346	23.240	42.748	82.532	122.464	162.431	202.411
14°	12.578	13.108	13.257	13.697	14.992	17.412	20.497	23.529	26.885	29.244	58.683	118.458	178.389	238.546	298.836
16°	15.826	16.660	16.762	17.121	18.344	20.729	23.898	27.429	31.129	34.921	74.209	153.942	233.862	313.824	393.801

$B(E2; J \rightarrow J-2) \ (e^2 fm^4)$

Energy	4°	6°	8°	10°	12°	14°	16°
	497	517	491	423	235	172	83
	547	567	532	463	368	275	165
	570	582	529	454	375	225	170
	534	542	466	393	345	275	164
	377	434	317	275	246	225	164
	76	233	191	191	191	191	160
	92	20	76	10	2	1	2
	202	20	10	1	0.06	1	0.5
	171	4	2	0.5	0.02	0.5	0.4
	154	1	1	0.5	0.01	1	0.4
	111	0.5	1	0.5	0.01	1	0.4
	99	5	1	0.5	0.01	1	0.4
	95	2	0.5	0.5	0.01	1	0.4
	94	1	0.5	0.5	0.01	1	0.4
	93	0.5	0.5	0.5	0.01	1	0.4

$Q(eb)$

Energy	2°	4°	6°	8°	10°	12°	14°	16°
	-0.38	-0.48	-0.52	-0.34	-0.53	-0.28	-0.20	-0.20
	-0.40	-0.51	-0.56	-0.39	-0.61	-0.62	-0.63	-0.63
	-0.41	-0.53	-0.59	-0.63	-0.71	-0.72	-0.72	-0.72
	-0.40	-0.54	-0.62	-0.70	-0.71	-0.72	-0.72	-0.72
	-0.29	-0.53	-0.39	-0.69	-0.71	-0.72	-0.72	-0.72
	-0.24	-0.36	-0.39	-0.67	-0.67	-0.67	-0.67	-0.67
	+0.25	+0.30	+0.30	+0.32	+0.32	+0.29	+0.28	+0.28
	+0.24	+0.32	+0.32	+0.27	+0.27	+0.26	+0.26	+0.26
	+0.21	+0.29	+0.29	+0.25	+0.25	+0.24	+0.24	+0.24
	+0.21	+0.27	+0.27	+0.24	+0.24	+0.23	+0.23	+0.23
	+0.21	+0.26	+0.26	+0.24	+0.24	+0.23	+0.23	+0.23
	+0.21	+0.25	+0.25	+0.24	+0.24	+0.24	+0.24	+0.24
	+0.21	+0.24	+0.24	+0.23	+0.23	+0.23	+0.23	+0.23

Table 10 Ratio $E(J)_{\Delta}/E(J)$ with GXPF1A for $\Delta=1,10$ and 20.

J/Δ	1	10	20
2	.973	.878	.849
4	.983	.921	.901
6	.976	.882	.851
8	.978	.879	.842
10	.977	.851	.812
12	.968	.859	.823
14	.972	.872	.838
16	.969	.863	.829
$Q(2^+)$.967	.867	.867
$\sqrt{B(E2)}$.975	.896	.876

Table 11 Comparison of original energies with normalized ones for $\Delta=20$ using GXPF1A. Renormalization factor =1.2.

J	Original Spectrum	$\Delta=20$ Renormalized
0	0.000	0.000
2	0.788	0.802
4	1.717	1.854
6	3.279	3.294?
8	4.752	4.801
10	6.420	6.268?
12	7.722	7.627
14	9.701	9.755
16	12.805	12.748

4 Closing Remarks

In the introduction we noted that one tries to associate configuration mixing with collective behavior. For 48Cr there is a mixed bag. The spectrum is not rotational but the value of $1.103Q(2^+)/\sqrt{B(E2,0^+ \rightarrow 2^+}$ is very close to the rotational limit of one, and far away from the vibrational limit of zero. One of our motivations was to see what light would be shed by varying the single particle energies. Would one choice of Δ take us closer to the rotational limit and another to the vibrational limit? But then we found that there was very little change in the spectra for positive Δ. For example the ratio $E(4)/E(2)$ in Table 2 is 2.179 for $\Delta=0$ and 2.365 for $\Delta=20$. Our first reaction was “the results are dull because not much is happening” but then it changed to “the results are exciting because not much is happening”. We found this scaling behavior leading the fact that we can find whole sets of interactions which will give almost the same results for the yrast spectrum of 48Cr, and some have drastically different single particle energies than others. We are of course looking at limited data but it is data that is mostly focused on when phenomenological interactions are being constructed. And for negative Δ we have the intriguing results that even
when spin orbit partners are inverted one can or a while at least get results very similar to those for the normally ordered spectrum. Clearly these observations deserve further study.

ACKNOWLEDGEMENTS

P C Srivastava acknowledges a research grant from SERB (India), CRG/2019/000556 and Kalam cluster at Physics Department, IIT-Roorkee.

References

[1] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 65, 061301 (R), (2002); Phys. Rev. C 69, 034335 (2004).

[2] W.A. Richter, M.G. Van Der Merwe, R.E. Julius and B.A. Brown, Nucl. Phys. A 523, 325 (1991).

[3] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, Rev. Mod. Phys. 77, 427 (2005).

[4] E. Caurier, A.P. Zuker, A. Poves and C. Martinez-Pinero, Phys. Rev. C50, 225 (1994).

[5] E. Caurier, F. Nowacki, A. P. Zuker, G. Martinez-Pinedo, A. Poves, and J. Retamosa, Nuclear Physics A 654, 747 (1999).

[6] V. Kumar, P. C. Srivastava and A. Kumar, Acta Physica Polonica B 51, 961 (2020).

[7] Kenji Hara, Yang Sun, and Takahiro Mizusaki, Phys. Rev. Lett. 83, 1922 (1999).

[8] F. Brandolini and C. A. Ur, Phys. Rev. C 71, 054316 (2005).

[9] E. Caurier, J. L. Egido, G. Martinez-Pinedo, A. Poves, J. Retamosa, L. M. Robledo, and A. P. Zuker Phys. Rev. Lett. 75, 2466 (1995).

[10] Zao-Chun Gao, Mihai Horoi, Y. S. Chen, Y. J. Chen, and Tuya, Phys. Rev. C 83, 057303 (2011).

[11] R. A. Herrera and C. W. Johnson, Phys. Rev. C 95, 024303 (2017).

[12] Y.Y. Sharon, N. Benczer-Koller, G. J. Kumbartzki, L. Zamick, R. F. Casten, Nuclear Physics A 980, 131 (2018).

[13] L. Zamick, Y.Y.Sharon, S.J.Q. Robinson and M. Harper, Phys. Rev. C 91, 064321 (2015).