Byzantine Agreement with Faulty Majority using Bounded Broadcast

Jeffrey Considine, Leonid A. Levin*, David Metcalf
Boston University†

Abstract

Byzantine Agreement introduced in [Pease, Shostak, Lamport, 80] is a widely used building block of reliable distributed protocols. It simulates broadcast despite the presence of faulty parties within the network, traditionally using only private unicast links. Under such conditions, Byzantine Agreement requires more than 2/3 of the parties to be compliant. [Fitzi, Maurer, 00], constructed a Byzantine Agreement protocol for any compliant majority based on an additional primitive allowing transmission to any two parties simultaneously. They proposed a problem of generalizing these results to wider channels and fewer compliant parties. We prove that $2f < kh$ condition is necessary and sufficient for implementing broadcast with h compliant and f faulty parties using k-cast channels.

1 Introduction

Broadcast primitives play a special role in multiplayer game theory as an integral component in the fault-tolerant implementation of game protocols. Given a compliant majority, broadcast and private channels are sufficient to simulate any multi-party computation [Rabin, Ben-Or, 89], based on [Goldreich, Micali, Wigderson, 87], and [Ben-Or, Goldwasser, Wigderson, 88]. With additional primitives, such as private and oblivious transfer channels, even a majority of faulty parties can be tolerated [Beaver, Goldwasser, 89], [Goldwasser, Levin, 90].

Since reliable hardware solution is a strong assumption, Byzantine Agreement protocols simulate broadcast on networks with faulty parties. Given only private channels, Byzantine Agreement is possible if and only if faulty parties are in a $< 1/3$ minority ([Pease, Shostak, Lamport, 80]). For this reason, protocols tolerant to more faults generally assume broadcast as a primitive.

Various hardware assumptions and communication goals were studied in the literature. For instance, [Angluin 80], [Goldreich, Goldwasser, Linial 91], [Franklin, Yung 95] and other papers studied problems of private communication on an incomplete broadcast network. [Franklin, Wright 98] showed that such a network with p disjoint paths from sender to receiver could tolerate $< p/2$ faulty parties. [Wang, Desmedt 01] showed that $< p$ faulty parties could be handled with probabilistic reliability.

The broadcast primitive is rather special in that, unlike other common primitives, it involves an unlimited number of parties. This suggests exploring the power of a limited version of broadcast, with a constant number of recipients. Assuming any compliant majority, [Fitzi, Maurer, 00] used a 3-party broadcast primitive to simulate full broadcast. They asked what fraction of compliant parties would be required given wider broadcast primitives. This is especially interesting in view of results (e.g. [2, 11]) that convert arbitrary protocols into equivalent ones with added tolerance to any faulty majorities, assuming the availability of broadcasts and two-party primitives, such as oblivious transfer and private channels. We show that broadcast with h compliant and f faulty parties can be implemented using k-cast channels if and only if $2f < kh$.

*Supported by NSF grants CCR 9820934, 0311411
†Leonid A. Levin (Lnd at bu.edu), Computer Sci. dept., 111 Cummington St., Boston, MA 02215.
2 Definitions and Results

Definition 1 A k-cast channel is a primitive for authenticated reliable communication to k parties. To use it, one party, the sender, selects k recipients, and a message m. Each recipient gets m, as well as the identities of the sender and the other recipients.

Definition 2 A protocol is an algorithm used in rounds by several communicating parties. Each party starts with an input appended with its and other parties’ identities. At each round, parties can k-cast messages to be used by the recipients as inputs for the next round. Besides the algorithm, the interaction is affected by the Adversary who selects the initial inputs of all parties and assigns, possibly with restrictions, their loyalties, i.e., chooses a subset of faulty parties and replaces their communications (inputs, messages, and outputs) by data of its choice.

Definition 3 Byzantine agreement is a broadcast simulating protocol. The party’s value is its output for a recipient or input for the sender. The protocol succeeds if the values of non-faulty (compliant) parties are all identical.

Theorem 1 Byzantine agreement protocols for h compliant and f faulty parties using k-cast channels exist if and only if $2f < kh$.

2.1 Broadcast and Consensus

In a traditional consensus model, each party starts with an input value. After running a consensus protocol, all compliant parties output values consistent with each other and with an input of at least one compliant party. With a compliant majority, consensus is easily shown to be equivalent to broadcast. To achieve consensus, each party broadcasts its value to the others who then output the majority value. To broadcast, the sender sends its input to all parties, who then run a consensus protocol on the values received.

This equivalence fails when the majority is faulty. The Adversary gives inputs 0 and 1 to an equal number of parties. They all run the protocol faithfully. The Adversary defeats the consensus by keeping compliant some parties with different outputs or declaring faulty all parties whose inputs match the uniform output.

One can generalize the consensus model, by assuming each party to have not just one input or output value but rather a distribution, i.e., a value for each k-node set he belongs to. All compliant members of the set get the same input value for it. All output values of compliant parties must agree with each other and with at least one input of a compliant party. This model can simulate broadcast after the sender distributes his input, i.e., k-casts it to all k-node sets.

3 Proof of the Lower Bound

3.1 Big Rings and Chains

The Adversary’s ability to defy the agreement will depend on having enough parties to build a big ring. A (k, h)-ring is a set of $k + 2$ or more clusters of parties where the clusters are arranged in a cycle, with at least h parties in any two adjacent clusters. These bounds assure that no message can be sent to all clusters, and all compliant parties can fit in any two adjacent clusters. Adding up parties in all pairs of consecutive clusters, we get $(k+2)h$ or more, counting each party twice. So, to build the ring, the Adversary needs $f + h \geq (k+2)h/2$ parties, which means $2f \geq kh$. A (k, h)-ring could be opened into a (k, h)-chain by duplicating all nodes in the sender’s cluster S, creating two clusters, S_0 and S_1.

3.2 The Adversary Strategy

The Adversary defeats any protocol P if $2f \geq kh$. It arranges the parties into a (k, h)-chain, duplicating the sender’s cluster S as in section 3.1 One copy of S will end up being sim-
ulated by the adversary. Both copies play the
same part in protocol P, receiving duplicate mes-
sages from other clusters. The two copies of the
sender get opposite inputs. The messages from
S are generated by both copies, but one copy is
intercepted by the Adversary as follows.

Each transmission from S misses all parties in
at least one other cluster. Discounting the left-
most such cluster splits the chain into two sub-
chains: C_0 and C_1. The Adversary will keep
compliant two adjacent clusters, so either C_0 or
C_1 will have no compliant parties. Thus the Ad-
versary can and does intercept the messages from
S to C_{1−m}.

With these restrictions on the Adversary, no
messages or outputs depend on its choice of com-
pliant parties. Since the values of the S_0 and S_1
copies of the sender differ, there must be parties
in adjacent clusters that disagree on their value.
The Adversary defeats the protocol by choosing
the conflicting clusters as compliant, corrupting
all others.

4 Proof of the Upper Bound

We describe a Byzantine protocol P_h for h
compliant and f = [kh/2] − 1 faulty parties. It
can also run with fewer, n < h + f, parties,
and is still guaranteed to succeed, provided all
d = h + f − n missing parties are counted as faulty
if the sender s (who will represent the missing
parties) is faulty. P starts with s distributing
its input, and uses the following concept of trust
graphs.

4.1 Trust Graphs

A trust graph is formed by each party and links
pairs of parties that report consistently inputs
received from s by both. “Sender clusters” S_m
are added to the graph, each S_m being a clique of
1+d nodes connected to all recipients who report
uniform inputs m.

A pruning is then conducted as follows. Be-
cause the h compliant parties must form a clique,
edges not in cliques can be removed. Since
cliques are hard to detect, we remove instead
(until none left) edges (a,b) that do not belong to
any bi-star i.e., an h-node star with two centers
a,b (adjacent to all its nodes).

We use trust graphs to choose agreement val-
ues. All compliant parties must be adjacent in
the graph. If, in their respective graphs, com-
pliant recipients have paths to a unique sender
cluster, they may immediately output its value.

Consider a path connecting nodes in S_m with
different m, say, S_0 and S_1. It must have more
than k recipients. Otherwise there would be one
k-cast received by them all; since parties con-
nected to S_m claim this k-cast was m, there must
be some disagreement along this path.

One can break S_0, S_1 and the recipients into
clusters according to the distance from S_0, dropping
nodes more distant than S_1. They form a
(k,h)-chain, since every two consecutive clusters
include an h-node bi-star. So, by section 3.1, a
trust graph with a path between S_0 and S_1 im-
plies 2f ≥ kh.

4.2 The Protocol

Each party i distributes all messages M_i it re-
ceived from s. Then all parties except s run P_h
recursively to agree on M_i and form trust graphs
based on the agreed M_i’s. Let n be the minimal
number of parties for which the guarantee for
P_h can fail. Then the agreement on M_i succeeds
unless s is compliant and i faulty.

Thus, the compliant parties always form a
clique, and if s is not among them, the graphs
are identical. Then each party with a path to
S_m outputs m, or 0, if no such paths exist. The
agreement can fail only if a path connects both
S_m. As per Section 4.1 this contradicts 2f < kh.
References

[STOC] Proceedings of the Annual ACM Symposium on Theory of Computing.

[1] D. Angluin. Local and Global Properties in Networks of Processors. [STOC], 1980, pp. 82-93.

[2] D. Beaver, S. Goldwasser. Multi Party Fault Tolerant Computation with Faulty Majority Based on Oblivious Transfer. Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, 1989, pp. 468-473.

[3] M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness Theorems for Non-cryptographic Fault-tolerant Distributed Computation. [STOC], 1988, pp. 1-10.

[4] Jeffrey Considine, Leonid A. Levin, David Metcalf. Byzantine Agreement with Bounded Broadcast. Preprint at http://arXiv.org/abs/cs.DC/0012024, 2000.

[5] M. Fischer, N. Lynch, M. Merritt. Easy Impossibility Proofs for Distributed Consensus Problems. ACM Symposium on Distributed Computing, 1985, pp. 59-70.

[6] Matthias Fitzi, Ueli Maurer. From Partial Consistency to Global Broadcast. [STOC], 2000, pp. 494-503.

[7] M. Franklin, R. Wright. Secure Communication in Minimal Connectivity Models. Advances in Cryptology (Eurocrypt), 1998, pp. 346-360.

[8] M. Franklin, M. Yung. Secure Hypographs: Privacy from Partial Broadcast. [STOC], 1995, pp. 36-44.

[9] O. Goldreich, S. Goldwasser, N. Linial. Fault-tolerant Computation in the Full Information Model. SIAM J. Computing, 27(2), 1998, pp. 506-544.

[10] O. Goldreich, S. Micali, A. Wigderson. How to Play Any Mental Game, or A Completeness Theorem for Protocols with Honest Majority. [STOC], 1987, pp. 218-229.

[11] Shafi Goldwasser, Leonid A. Levin. Fair Computation of General Functions in Presence of Immoral Majority. Annual CRYPTO Conference (IEEE/LACR), Santa Barbara, August 1990 (Proceedings 1991).

[12] Danny Dolev, Michael J. Fischer, Rob Fowler, Nancy A. Lynch, and H. Raymond Strong. An efficient algorithm for Byzantine agreement without authentication. Information and Control, 52(3):257-274, 1982.

[13] M. Pease, R. Shostak, L. Lamport. Reaching agreement in the presence of faults. J. Comput. Mach. 27;121-169, 1980.

[14] T. Rabin, M. Ben-Or. Verifiable Secret Sharing and Multi-party Protocols with Honest Majority. [STOC], 1989, pp. 73-85.

[15] Y. Wang, Y. Desmedt. Secure Communication in Multicast Channels: The Answer to Franklin and Wright’s Question. Advances in Cryptology (Eurocrypt), 1999, pp. 446-458.