Topological invariants of symmetry-protected and symmetry-enriched topological phases of interacting bosons or fermions

Xiao-Gang Wen1,2,3

1Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada
2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Institute for Advanced Study, Tsinghua University, Beijing, 100084, P. R. China

Recently, it was realized that quantum states of matter can be classified as long-range entangled (LRE) states (i.e. the topologically ordered states) and short-range entangled (SRE) states. The SRE states with a symmetry \(SG\) [named as symmetry-protected topological (SPT) states] are shown to be classified by group cohomology class \(\mathcal{H}^d(SG, \mathbb{F}/\mathbb{Z})\) in \(d\)-dimensional space-time. The LRE states with a symmetry \(SG\) are named as symmetry-enriched topological (SET) states. One class of SET states are described by weak-coupling gauge theories with gauge group \(GG\) and quantized topological terms. Those SET states (i.e. the quantized topological terms) are classified \(\mathcal{H}^d(PSG, \mathbb{F}/\mathbb{Z})\) in \(d\) space-time dimensions, where the projective symmetry group \(PSG\) is an extension of \(SG\) by \(GG\): \(SG = PSG/GG\). In this paper, we study the physical properties of those SPT/SET states, such as the fractionalization of the quantum numbers of the global symmetry. Those physical properties are topological invariants of the SPT/SET states that allow us to experimentally or numerically detect those SPT/SET states, i.e. to measure the elements in \(\mathcal{H}^d(PSG, \mathbb{F}/\mathbb{Z})\) that label different SPT/SET states.

CONTENTS

I. Introduction 1

II. A duality relation between the SPT and the SET phases 3

A. A simple formal description 3
B. Exactly soluble gauge theory with a finite gauge group \(GG\) and a global symmetry group \(SG\) 3
 1. Discretize space-time 3
 2. Lattice gauge theory with a global symmetry 4

III. Physical properties and topological invariants of SPT states 5

A. A general discussion 5
B. Bosonic \(Z_2\) SPT phases 6
 1. Topological invariants in \((0+1)\)D 6
 2. Monodromy defect 6
 3. Topological invariant in \((2+1)\)D 6
C. Bosonic \(U(1)\) SPT phases 8
 1. Topological invariants in \((0+1)\)D 8
 2. Topological invariants in \((2+1)\)D 8
 3. Topological invariants in \((4+1)\)D 9
D. Fermionic \(U_f(1)\) SPT phases 9
 1. Symmetry in fermionic systems 9
 2. Topological invariant for fermionic \(U_f(1)\) SPT phases 9
E. Fermionic \(Z_2^f\) SPT phases 10

IV. Topological invariants of SPT states with symmetry \(G = GG \times SG\) 10

A. Bosonic \(U(1) \times \tilde{U}(1)\) SPT phases 10
B. Fermionic \(U(1) \times U_f(1)\) SPT phases 11
C. A general discussion for the case \(G = GG \times SG\) 11
D. An example with \(SG = U(1)\) and \(GG = U(1)\) 12
 1. Topological invariants in \((2+1)\)D 12
 2. Topological invariants in \((4+1)\)D 13
E. Bosonic \(Z_2^G \times Z_2^GG\) SPT states 13
 1. Topological invariants in \((2+1)\)D 13
 2. Topological invariants in \((3+1)\)D 14

3. Topological invariants in \((1+1)\)D 14
F. Bosonic \(U(1) \times Z_2\) SPT phases 14
G. Fermionic \(U(1) \times Z_2^f\) SPT phases 14
 1. Topological invariants in \((2+1)\)D 14
 2. Topological invariants in \((3+1)\)D 15
H. Fermionic \(Z_2 \times Z_2^f\) SPT states 15

V. Summary 16

A. Group cohomology theory 16
 1. Homogeneous group cocycle 16
 2. Nonhomogeneous group cocycle 17
 3. “Normalized” cocycles 17
B. The K"unneth formula 17
C. Lyndon-Hochschild-Serre spectral sequence 18

References 18

I. INTRODUCTION

For a long time, we thought that Landau symmetry breaking theory1–3 describes all phases and phase transitions. In 1989, through a theoretical study of high \(T_c\) superconducting model, we realized that there exists a new kind of orders – topological order – which cannot be described by Landau symmetry breaking theory.4–6 Recently, it was found that topological orders are related to long range entanglements.7,8 In fact, we can regard topological order as pattern of long range entanglements defined through local unitary (LU) transformations.9–12 The notion of topological orders and quantum entanglements leads to a more general and also more detailed picture of phases and phase transitions (see Fig. 1).9 For gapped quantum systems without any symmetry, their
quantum phases can be divided into two classes: short-range entangled (SRE) states and long-range entangled (LRE) states.

SRE states are states that can be transformed into direct product states via LU transformations. All SRE states can be transformed into each other via LU transformations. So all SRE states belong to the same phase (see Fig. 1a), i.e. all SRE states can continuously deform into each other without closing energy gap and without phase transition.

LRE states are states that cannot be transformed into direct product states via LU transformations. It turns out that, in general, different LRE states cannot be connected to each other through LU transformations. The LRE states that are not connected via LU transformations represent different quantum phases. Those different quantum phases are nothing but the topologically ordered phases. Chiral spin liquids, fractional quantum Hall states, torsional Hall states, etc are examples of topologically ordered phases.

The possible topological orders are very rich. The mathematical foundation of topological orders is closely related to tensor category theory9,10,24,25 and simple current algebra.20,26 Using this point of view, we have developed a systematic and quantitative framework for non-chiral topological orders in 2D interacting boson and fermion systems.9,10,25 Also for chiral 2D topological orders with only Abelian statistics, we find that we can use integer K-matrices to describe them.27–32

For gapped quantum systems with symmetry, the structure of phase diagram is even richer (see Fig. 1b). Even SRE states now can belong to different phases. One class of non-trivial SRE phases for Hamiltonians with symmetry is the Landau symmetry breaking phases.

![FIG. 1: (Color online) (a) The possible gapped phases for a class of Hamiltonians $H(g_1, g_2)$ without any symmetry. (b) The possible gapped phases for the class of Hamiltonians $H_{\text{symm}}(g_1, g_2)$ with a symmetry. The yellow regions in (a) and (b) represent the phases with long range entanglement. Each phase is labeled by its entanglement properties and symmetry breaking properties. SRE stands for short range entanglement, LRE for long range entanglement, SB for symmetry breaking, SY for no symmetry breaking. SB-SRE phases are the Landau symmetry breaking phases. The SY-SRE phases are the SPT phases. The SY-LRE phases are the SET phases.](image)

But even SRE states that do not break the symmetry of the Hamiltonians can belong to different phases. The 1D Haldane phase for spin-1 chain33–36 and topological insulators37–42 are non-trivial examples of phases with short range entanglements that do not break any symmetry. We will call this kind of phases symmetry-protected trivial (SPT) phases or symmetry-protected topological (SPT) phases.35,36 Note that the SPT phases have no long range entanglements and have trivial topological orders.

It turns out that there is no gapped bosonic LRE state in 1D.11 So all 1D gapped bosonic states are either symmetry breaking states or SPT states. This realization led to a complete classification of all 1D gapped bosonic quantum phases.43–45

In Ref. 46 and 47, the classification of 1D SPT phases is generalized to any dimensions: For gapped bosonic systems in d space-time dimensions with an on-site symmetry SG, the SPT phases that do not break the symmetry SG are classified by the elements in $\mathcal{H}^d[SG, \mathbb{R}/\mathbb{Z}]$ – the group cohomology class of the symmetry group SG. We see that we have a systematic understanding of SRE states with symmetry.48–50

For gapped LRE states with symmetry, the possible quantum phases should be much richer than SRE states. We may call those phases Symmetry Enriched Topological (SET) phases. Projective symmetry group (PSG) was introduced to study the SET phases.51–53 The PSG describes how the quantum numbers of the symmetry group SG get fractionalized on the gauge excitations.52 When the gauge group GG is Abelian, the PSG description of the SET phases can be expressed in terms of group cohomology: The different SET states with symmetry SG and gauge group GG can be (partially) described by $\mathcal{H}^d(SG, GG)$.54

One class of SET states in d space-time dimensions with global symmetry SG are described by weak-coupling gauge theories with gauge group GG and quantized topological terms (assuming the weak-coupling gauge theories are gapped, that can happen when the space-time dimension $d = 3$ or when $d > 3$ and the gauge group GG is finite). Those SET states (i.e. the quantized topological terms) are classified by the elements in $\mathcal{H}^d(PSG, \mathbb{R}/\mathbb{Z})$,55,56 where the group PSG is an extension of SG by GG: $SG = PSG/\mathbb{Z}$. Or in other words, we have a short exact sequence

$$1 \to GG \to PSG \to SG \to 1.$$ \hspace{1cm} (1)

We will denote PSG as $PSG = GG \times SG$. Many examples of the SET states can be found in Ref. 48, 51, 57–59.

Although we have a systematic understanding of SPT phases and some of the SET phases in term of $\mathcal{H}^d(SG, \mathbb{R}/\mathbb{Z})$ and $\mathcal{H}^d(PSG, \mathbb{R}/\mathbb{Z})$, however, those results do not tell us to how experimentally or numerically measure the elements in $\mathcal{H}^d(SG, \mathbb{R}/\mathbb{Z})$ or $\mathcal{H}^d(PSG, \mathbb{R}/\mathbb{Z})$ that label the different SPT or SET phases. We do not know, even given an exact ground state wave function, how to determine which SPT or SET phase the ground state
belongs to. In this paper, we will address this important question. We will find physical ways to detect different SPT/SET phases and to measure the elements in $\mathcal{H}^d(SG, \mathbb{R}/\mathbb{Z})$ or $\mathcal{H}^d(PSG, \mathbb{R}/\mathbb{Z})$. This is achieved by gauging the symmetry group SG by coupling the SG quantum numbers to a SG gauge potential A^{SG}. Note that A^{SG} is treated as a non-fluctuating probe field. By study the topological response of the system to various SG gauge configurations, we can measure the elements in $\mathcal{H}^d(SG, \mathbb{R}/\mathbb{Z})$ or $\mathcal{H}^d(PSG, \mathbb{R}/\mathbb{Z})$. Those topological response are the measurable topological invariants that characterize the SPT/SET phases.

II. A DUALITY RELATION BETWEEN THE SPT AND THE SET PHASES

There is a duality relation between the SPT and the SET phases described by weak-coupling gauge field.\cite{55,56,60} We first give a simple formal description of such a duality relation. Then we will give an exact description for finite gauge groups.

A. A simple formal description

To understand such the duality between the SPT and the SET phases, we note that a SPT state with symmetry G in d-dimensional space-time M can be described by a non-linear σ-model with G as the target space

$$S = \int_M d^d x \left[\frac{1}{\lambda_s} [\partial g(x^\mu)]^2 + iW_{\text{top}}(g) \right].$$

in large λ_s limit. Here we triangulate the d-dimensional space-time manifold M to make it a random lattice or a d-dimensional complex, and $g(x^\mu)$ live on the vertices of the complex: $g(x^\mu) = \{ g_i \}$ where i labels the vertices (the lattice sites). So $\int d^d x$ is in fact a sum over lattice sites and ∂ is the lattice difference operator. The above action S actually defines a lattice theory. $W_{\text{top}}[g(x^\mu)]$ is a lattice topological term which satisfy

$$\int_M d^d x \, W_{\text{top}}(\{ g_i \}) = 0 \text{ mod } 2\pi,$$

where $\{ g_i \}$ are the group cocycles. Thus the lattice topological term $W_{\text{top}}(\{ g_i \})$ is defined and classified by the elements (the cocycles) in $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$.\cite{47,61} This is why the bosonic SPT states are classified by $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$.

If G contains a normal subgroup $GG \subset G$, we can "gauge" GG to obtain a gauge theory in the bulk

$$S = \int d^d x \left[\frac{[\partial g(x^\mu)]^2}{\lambda_s} + \frac{\text{Tr}(F_{\mu\nu})^2}{\lambda} + iW_{\text{top}}^{\text{gauge}}(g, A) \right],$$

where A is the GG gauge potential. When λ is small the above theory is a weak-coupling gauge theory with a gauge group GG and a global symmetry group $SG = G/\langle GG \rangle$.

The topological term $W_{\text{top}}^{\text{gauge}}(g, A)$ in the gauge theory is a generalization of the Chern-Simons term,\cite{32,33,64} which is obtained by "gauging" the topological term $W_{\text{top}}(g)$ in the non-linear σ-model. The two topological terms $W_{\text{top}}^{\text{gauge}}(g, A)$ and $W_{\text{top}}(g)$ are directly related when A is a pure gauge:

$$W_{\text{top}}^{\text{gauge}}(g, A) = W_{\text{top}}[h(x)g(x)],$$

where $A = h^{-1}\partial h, \, h \in GG$.\cite{5} (A more detailed description of the two topological terms $W_{\text{top}}(g)$ and $W_{\text{top}}^{\text{gauge}}(g, A)$ on lattice can be found in Ref. 63 and 64. See also the next section.) So the topological term $W_{\text{top}}^{\text{gauge}}(g, A)$ in the gauge theory is also classified by same $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ that classifies $W_{\text{top}}(g)$. (We like to remark that although both topological terms $W_{\text{top}}(g)$ and $W_{\text{top}}^{\text{gauge}}(A)$ are classified by the same $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$, when $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z}) = \mathbb{Z}$, the correspondence can be tricky: for a topological term $W_{\text{top}}(g)$ that corresponds to an integer k in $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$, its corresponding topological term $W_{\text{top}}^{\text{gauge}}(g, A)$ may correspond to an integer nk in $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$. However, for finite group G, the correspondence is one-to-one.)

When the space-time dimensions $d = 3$ or when $d > 3$ and GG is a finite group, the theory (4) is gapped in $\lambda_s \to \infty$ and $\lambda \to 0$ limit, which describe a SET phase with symmetry group SG and gauge group GG. Such SET phase are classified by $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$.

B. Exactly soluble gauge theory with a finite gauge group GG and a global symmetry group SG

To understand the above formal results more rigorously, we would like to review the exactly soluble models of weak-coupling gauge theories with a finite gauge group GG and a global symmetry group SG. The exactly soluble models were introduced in Ref. 20, 56, 60, and 65. The exactly soluble models is defined on a space-time lattice, or more precisely, a triangulation of the space-time. So we will start by describing such a triangulation.

1. Discretize space-time

Let M_{tri} be a triangulation of the d-dimensional space-time. We will call the triangulation M_{tri} as a space-time complex, and a cell in the complex as a simplex.
In order to define a generic lattice theory on the space-time complex M_{tri}, it is important to give the vertices of each simplex a local order. A nice local scheme to order the vertices is given by a branching structure.37,61,66 A branching structure is a choice of orientation of each edge in the d-dimensional complex so that there is no oriented loop on any triangle (see Fig. 2).

The branching structure induces a local order of the vertices on each simplex. The first vertex of a simplex is the vertex with no incoming edges, and the second vertex is the vertex with only one incoming edge, etc. So the simplex in Fig. 2a has the following vertex ordering: 0, 1, 2, 3.

The branching structure also gives the simplex (and its sub simplexes) an orientation denoted by $s_{ij\ldots k} = \pm 1$. Fig. 2 illustrates two 3-simplexes with opposite orientations $s_{0123} = 1$ and $s_{0123} = \ast$. The red arrows indicate the orientations of the 2-simplexes which are the sub simplexes of the 3-simplexes. The black arrows on the edges indicate the orientations of the 1-simplexes.

2. Lattice gauge theory with a global symmetry

To define a lattice gauge theory with a gauge group GG and a global symmetry group SG, let G be an extension of SG by GG: $G = GG \times SG$. Here we will assume GG to be a finite group.

In our lattice gauge theory, the degrees of freedom on the vertices of the space-time complex, is described by $g_i \in G$ where i labels the vertices. The gauge degrees of freedom are on the edges ij which are described by $h_{ij} \in GG$.

The action amplitude e^{-S} for a d-cell $(ij\ldots k)$ is complex function of g_i and h_{ij}: $V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})$. The total action amplitude e^{-S} for configuration (or a path) is given by

$$e^{-S} = \prod_{(ij\ldots k)} [V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})]^{s_{ij\ldots k}}$$

(6)

where $\prod_{(ij\ldots k)}$ is the product over all the d-cells $(ij\ldots k)$. Note that the contribution from a d-cell $(ij\ldots k)$ is $V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})$ or $V_{ij\ldots k}^*(\{h_{ij}\}, \{g_i\})$ depending on the orientation $s_{ij\ldots k}$ of the cell. Our lattice theory is defined by following imaginary-time path integral (or partition function)

$$Z = \sum_{\{h_{ij}\}, \{g_i\}} \prod_{(ij\ldots k)} [V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})]^{s_{ij\ldots k}}$$

(7)

If the above action amplitude $\prod_{(ij\ldots k)} [V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})]^{s_{ij\ldots k}}$ on closed space-time complex $(\partial M_{\text{tri}} = \emptyset)$ is invariant under the gauge transformation

$$h_{ij} \rightarrow g^{-1}_{ij}h_{ij}g_{ij}, g_i \rightarrow g'_i = gg_i, g \in G,$$

then the action amplitude $V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})$ defines a gauge theory of gauge group GG. If the action amplitude is invariant under the global transformation

$$h_{ij} \rightarrow h'_{ij} = gh_{ij}g^{-1}, g_i \rightarrow g'_i = gg_i, g \in G,$$

then the action amplitude $V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})$ defines a GG lattice gauge theory with a global symmetry $SG = G/GG$. (We need to mod out GG since when $h \in GG$, it is a part of gauge transformation which does not change the physical states, instead of a global symmetry transformation which change a physical state to another one.)

Using a cocycle $\nu_d(g_0, g_1, \ldots, g_d) \in \mathcal{H}^d(G, \mathbb{R}/{\mathbb{Z}})$, $g_i \in G$ ($\nu_d(g_0, g_1, \ldots, g_d)$ is a real function over G^{d+1}), we can construct an action amplitude $V_{ij\ldots k}(\{h_{ij}\}, \{g_i\})$ that define a gauge theory with gauge group SG and global symmetry SG. The gauge theory action amplitude is obtained from $\nu_d(g_0, g_1, \ldots, g_d)$ as

$$V_{01\ldots d}(\{h_{ij}\}, \{g_i\}) = 0, \text{if } h_{ij}h_{jk} \neq h_{ik}$$

$$V_{01\ldots d}(\{h_{ij}\}, \{g_i\}) = e^{2\pi i \omega_d(g_0^{-1}h_{01}g_1^{-1}, \ldots, g_d^{-1}h_{d-1}g_d)}, \text{if } h_{ij}h_{jk} = h_{ik},$$

where h_i are given by

$$h_0 = 1, \ h_1 = h_0h_{01}, \ h_2 = h_1h_{12}, \ h_3 = h_2h_{23}, \cdots$$

and ω_d is the nonhomogenous cocycle that corresponds to ν_d

$$\omega_d(h_{01}, h_{12}, \cdots, h_{d-1}d) = \nu_d(h_0, h_1, \cdots, h_d).$$

To see the above action amplitude defines a GG lattice gauge theory with a global symmetry SG, we note that the cocycle satisfies the cocycle condition

$$\nu_d(g_0, g_1, \ldots, g_d) = \nu_d(g_0, g_g, \ldots, g_d) \mod 1, \ g \in G$$

$$\sum_i \nu_d(g_0, \ldots, \hat{g}_i, \ldots, g_{d+1}) = 0 \mod 1$$

(13)}
TOPOLOGICAL INVARIANTS OF SPT STATES

III. PHYSICAL PROPERTIES AND TOPOLOGICAL INVARIANTS OF SPT STATES

Because of the duality relation between the SPT states and the SET states described by weak-coupling gauge theories, in this paper, we will mainly discuss the physical properties and the topological invariants of the SPT state. The physical properties and the topological invariants of the SET states can be obtained from the physical properties and the topological invariants of corresponding SPT states via the duality relation.

A. A general discussion

Let us consider a system with symmetry group G in d space-time dimensions. The ground state of the system is a SPT state described by an element ν_d in $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$. But how to physically measure ν_d? Here we will propose to measure ν_d by “gauging” the symmetry G, i.e. by introducing a G gauge potential $A_\mu(x^\nu)$ to couple to the quantum numbers of G. The G gauge potential is a fixed probe field. So A_μ is not a dynamical field. It is like local coupling constants in the theory. We like to consider how the system responds to various G gauge configurations described by A_μ. We will show that the topological responses allow us to fully measure the cocycle ν_d that characterizes the SPT phase. Those topological responses are the topological invariants that we are looking for.

There are several topological responses that we can use to construct topological invariants:

1. If the G gauge configuration $A_\mu(x^\nu)$ is time independent and is invariant under a subgroup GG of G: $A_\mu(x^\nu) = h^{-1}A_\mu(x^\nu)h$, $h \in GG$, then we can study the conserved GG quantum number of the ground state under such gauge configuration. Some times, the ground states may be generate and may a higher dimensional representation of GG.

In particular, we can remove n identical regions $D(i)$, $i = 1, \cdots, n$, from the space M_{d-1} to get a $(d-1)$-dimensional manifold M'_{d-1} with n “holes”. Then we consider a flat G gauge configuration $A_\mu(x^\nu)$ on M'_{d-1} such that the gauge fields near the boundary of those holes, $\partial D(i)$, are identical. We then measure the conserved GG quantum number one the ground state for such G gauge configuration. We will see that the GG quantum number may not be multiples of n, indicating a non-trivial SPT phases.

2. We start with a G gauge configuration $A_\mu(x^\nu)$ in space, and then use an element $h \in GG \subset G$ to transform $A_\mu(x^\nu)$ to $A_\nu(x^\nu) = h^{-1}A_\mu(x^\nu)h$. Let $|h\rangle$ be the ground state of the system with the gauge configuration described by $A_\nu(x^\nu)$. Now, we allow h to be time dependent and derive the effective theory for h. The effective theory is obtained from the coherent state $|h\rangle$ using the coherent state path integral approach, where the phase-space Lagrangian is given by

$$L(h, \dot{h}) = i\langle h | \frac{d}{dt} |h\rangle - \langle h | H(A^b) |h\rangle$$

where $H(A^b)$ is the Hamiltonian with $A_\nu(x^\nu)$ gauge configuration. Note that $\langle h | H(A^b) |h\rangle$ is independent of h. This will allow us to determine the GG quantum number of the ground state. Again, we consider space with n identical holes and consider only flat G gauge configurations.

3. We may choose the space to have a form $M_k \times M_{d-k-1}$ where M_k is a closed k-dimensional manifold or a closed k-dimensional manifold with n identical holes. M_{d-k-1} is a closed $(d-k-1)$-dimensional manifold. We then put a G gauge configuration $A_\mu(x^\nu)$ on M_k, or a flat G gauge configuration on M_k if M_k has n holes. In the large M_{d-k-1} limit, our system can be viewed as a system in $(d-k-1)$-dimensional space with a symmetry GG, where $GG \subset G$ is formed by the symmetry transformations that leave the G gauge configuration invariant. The ground state of the system is a SPT state characterized by cocycles in $\mathcal{H}^{d-k}(GG, \mathbb{R}/\mathbb{Z})$.

4. The above topological responses can be easily measured in a Hamiltonian formulation of the system. In the imaginary-time path-integral formulation of the system where the space-time manifold M_d can...
have an arbitrary topology, we can use a most general construction of topological invariants. We simply put a nearly-flat G gauge configuration on a closed space-time manifold M_d and evaluate the path integral. We will obtain a partition function $Z(M_d, A_\mu)$ which is a function of the space-time topology M_d and the nearly-flat gauge configuration A_μ. In the limit of the large volume V of the space-time, $Z(M_d, A_\mu)$ has a form

$$Z(M_d, A_\mu) = e^{-\int_0^V Z_{\text{top}}(M_d, A_\mu)}, \quad (15)$$

where $Z_{\text{top}}(M_d, A_\mu)$ is independent of the volume V. $Z_{\text{top}}(M_d, A_\mu)$ is a topological invariant that allows us to fully measure the elements in $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ that classify the SPT phases.62-64 In fact, $Z_{\text{top}}(M_d, A_\mu)$ is the partition function for the pure topological term $W_{\text{top}}^\text{gauge}(g, A)$ in eqn. (4).

We like to point out an element in the free part of $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ gives rise to a Chern-Simons term in $Z_{\text{top}}(M_d, A_\mu)$. An element in the torsion part of $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ gives rise to a topological term in $Z_{\text{top}}(M_d, A_\mu)$ whose value is independent of small perturbations of A_μ.63

In the following, we will illustrate the above construction of topological invariants using some simple examples. We will show that the constructed topological invariants can fully characterize those SPT phases.

B. Bosonic Z_2 SPT phases

1. **Topological invariants in (0+1)D**

In 1-dimensional space-time, the bosonic SPT states with symmetry $Z_2 = \{1, -1\}$ are classified by the cocycles in $\mathcal{H}^1(Z_2, \mathbb{R}/\mathbb{Z}) = Z_2$. How to measure the cocycles in $\mathcal{H}^1(Z_2, \mathbb{R}/\mathbb{Z})$? What is the measurable topological invariant that allows us to characterize the Z_2 SPT states?

The non-trivial cocycle in $\mathcal{H}^1(Z_2, \mathbb{R}/\mathbb{Z})$ is given by

$$\omega_1(1) = 0, \quad \omega_1(-1) = 1/2. \quad (16)$$

Let us assume the space-time is a circle S_1 formed by a ring of vertices labeled by i. A flat Z_2 gauge configuration on S_1 is given by Z_2 group elements g_i, g_{i+1} on each link $(i, i+1)$. The topological part of the partition function for such a flat Z_2 gauge configuration is given by the cocycle ω_1

$$Z_{\text{top}}(S_1, A_\mu) = e^{i 2\pi \sum_i \omega_1(g_i, g_{i+1})}. \quad (17)$$

We note that the above $\omega_1(g_i, g_{i+1})$ is a torsion element in $\mathcal{H}^1(Z_2, \mathbb{R}/\mathbb{Z})$. So it gives rise to a quantized topological term $Z_{\text{top}}(S_1, A_\mu)$:

$$Z_{\text{top}}(S_1, A_\mu) = 1, \quad \text{if} \quad \prod_i g_i, g_{i+1} = 1,$$

$$Z_{\text{top}}(S_1, A_\mu) = -1, \quad \text{if} \quad \prod_i g_i, g_{i+1} = -1. \quad (18)$$

Such a partition function is a topological invariant. Its non-trivial dependence on the total Z_2 flux through the circle, $\prod_i g_i, g_{i+1}$, implies that the SPT state is non-trivial.

The above partition function also implies that the ground state of the system carries a non-trivial Z_2 quantum number. Thus the non-trivial Z_2 quantum number of the ground state also measure the non-trivial cocycle in $\mathcal{H}^1(Z_2, \mathbb{R}/\mathbb{Z})$.

In 3-dimensional space-time, the bosonic Z_2 SPT states are classified by the cocycles in $\mathcal{H}^3(Z_2, \mathbb{R}/\mathbb{Z}) = Z_2$. To find the topological invariants for such a case, let us introduce the notion of monodromy defect.60

2. **Monodromy defect**

Let us assume that the 2D lattice Hamiltonian for the Z_2 SPT state has a form (see Fig. 3)

$$H = \sum_{(ijk)} H_{ijk}, \quad (19)$$

where $\sum_{(ijk)}$ sums over all the triangles in Fig. 3 and H_{ijk} acts on the states on site-i, site-j, and site-k: (g_{i}, g_{j}, g_{k}). (Note that the states on site-i are labeled by $g_i \in Z_2$.) H and H_{ijk} are invariant under the global Z_2 transformations.

Let us perform a Z_2 transformation only in the shaded region in Fig. 3. Such a transformation will change H to H'. However, only the Hamiltonian terms on the triangles (ijk) across the boundary are changed from H_{ijk} to H'_{ijk}. Since the Z_2 transformation is an unitary transformation, H and H' have the same energy spectrum. In other words the boundary in Fig. 3 (described by H'_{ijk}’s) do not cost any energy.

Now let us consider a Hamiltonian on a lattice with a “cut” (see Fig. 4)

$$\tilde{H} = \sum_{(ijk)}' H_{ijk} + \sum_{(ijk)}^\text{cut} H_{ijk} \quad (20)$$

where $\sum_{(ijk)}'$ sums over the triangles not on the cut and $\sum_{(ijk)}^\text{cut}$ sums over the triangles that are divided into disconnected pieces by the cut. The triangles at the ends of the cut have no Hamiltonian terms. We note that the cut carries no energy. Only the ends of cut cost energies. Thus we say that the cut corresponds to two monodromy defects. The Hamiltonian \tilde{H} defines the two monodromy defects.

We also like to point that the above procedure to obtain \tilde{H} is actually the “gauging” of the Z_2 symmetry. \tilde{H} is a gauged Hamiltonian that contain two Z_2 vortices at the ends of the cut.

3. **Topological invariant in (2+1)D**

The topological invariant to detect the cocycle in $\mathcal{H}^3(Z_2, \mathbb{R}/\mathbb{Z})$ is the Z_2 quantum number of two identical
monodromy defects (see Fig. 4). Note that both monodromy defects or Z_2 vortices correspond to the same kind of \triangle triangles.

To calculate the Z_2 quantum number of two monodromy defects (or two Z_2 vortices), we need to compare the phases of the ground state wave function for configurations $\{g_i\}$ and $\{gg_i\}$. Such a phase difference is given by the evolution from $\{g_i\}$ to $\{gg_i\}$. In the gauged theory, such a evolution is given by a Z_2 gauge configuration on space-time where the Z_2 gauge fields $g_{ij} \in Z_2 = \{1, -1\}$ on the spatial links are the same on the two time slices: $g_{01} = g_{01'}$, $g_{12} = g_{12'}$, $g_{02} = g_{02'}$, and the Z_2 gauge fields in the time links are given by $g_{00'} = g_{11'} = g_{22'} = g$ (see Fig. 5). The Z_2 gauge field on the other links are determined by the zero-flux condition $g_{ij}g_{jk} = g_{ik}$.

The exactly soluble Z_2 SPT model is described by a path integral defined by a cocycle in $\mathcal{H}^3(G, \mathbb{R}/\mathbb{Z})$. The path integral amplitude on the space-time complex in Fig. 5 is given by the product of three nonhomogeneous cocycles on the three tetrahedrons that form the complex:

$$U(g; g_{01'}, g_{12'}, g_{02'}) = \frac{e^{i2\pi \omega_3(g_{01'}g_{12'}g_{22'})} e^{i2\pi \omega_3(g_{00'}g_{01'}g_{12'})} e^{i2\pi \omega_3(g_{11'}g_{12'}g_{22'})}}{e^{i2\pi \omega_3(g_{01}g_{12}g_{22})}}$$

(21)

The non-trivial element in $\mathcal{H}^4(G, \mathbb{R}/\mathbb{Z})$ can be described by a nonhomogeneous cocycle

$$\omega_3(-1, -1, -1) = 1/2, \quad \omega_3(g_{01}, g_{12}, g_{23}) = 0 \text{ otherwise.}$$

(22)

We find that (see Fig. 6)

$$U(1, g_{01}, g_{12}, g_{02}) = 1,$$
$$U(-1, -1, -1, g_{02}) = -1,$$
$$U(-1, g_{01}, g_{12}, g_{02}) = 1 \text{ otherwise.}$$

(23)

The total Z_2 representation is given by

$$U(g) = \prod_{(ijk)} U^{s_{ijk}}(g; g_{01}, g_{12}, g_{02}),$$

(24)

where s_{ijk} describes the orientation of the triangle (ijk), and $\prod_{(ijk)}$ is a product over all the triangles that are not monodromy defects ($i.e.$ contain no Z_2-flux).

This allows us to show that two identical Z_2 vortices \triangle and \triangle have a total Z_2-charge 1 (see Fig. 4).

While two non-identical Z_2 vortices \triangle and \triangle have a total Z_2-charge 0 (see Fig. 7). Thus, we can say that the Z_2 vortex \triangle has a Z_2-charge 1/2, while the Z_2 vortex \triangle has a Z_2-charge $-1/2$. The fractional Z_2-charge on the Z_2 vortices (i.e. the monodromy defects) is our
topological invariant. Such a topological invariant can be measured by detecting an odd total Z_2-charge on two identical Z_2 vortices (i.e. on two identical monodromy defects).

We can easily generalize the above construction to obtain the topological invariant for Z_n SPT states in 3-dimensional space-time. We simply need to consider n identical Z_n monodromy defects on a close 2D space and measure the Z_n-charge of the ground state.

We can also generalize the above construction to 5-dimensional space-time where Z_n SPT states are classified by $H^5(Z_n, \mathbb{R}/\mathbb{Z}) = Z_n$. We choose the 4D space to have a topology $M_2 \times M'_2$ where M_2 and M'_2 are two close 2D manifolds. We then create n identical Z_n monodromy defects on M'_2. In the small M'_2 limit, we may view our 4D Z_n SPT state on $M_2 \times M'_2$ as a 2D Z_n SPT state on M_2 which is classified by $H^3(Z_n, \mathbb{R}/\mathbb{Z})$. In the above we have just discussed how to detect the cocycles in $H^3(Z_n, \mathbb{R}/\mathbb{Z})$, by just creating n identical Z_n monodromy defects on M_2, and then measure the Z_n-charge of the ground state. So the cocycles in $H^3(Z_n, \mathbb{R}/\mathbb{Z})$ can be measured by creating n identical Z_n monodromy defects on M_2 and n identical Z_n monodromy defects on M'_2. Then we measure the Z_n-charge of the corresponding ground state.

The above construction of Z_n topological invariant is motivated by the following mathematical result. First $H^{2k+1}(Z_n, \mathbb{R}/\mathbb{Z}) \simeq H^{2k+2}(Z_n, \mathbb{Z})$. The generating cocycle c_{2k+2} in $H^{2k+2}(Z_n, \mathbb{Z})$ can be expressed as a wedge product $c_{2k+2} = c_2 \wedge c_2 \wedge \cdots \wedge c_2$ where c_2 is the generating cocycle in $H^2(Z_n, \mathbb{Z})$. Since $H^2(Z_n, \mathbb{Z}) \simeq H^1(Z_n, \mathbb{R}/\mathbb{Z})$, we can replace one of c_2 in $c_{2k+2} = c_2 \wedge c_2 \wedge \cdots \wedge c_2$ by θ_1 in $H^1(Z_n, \mathbb{R}/\mathbb{Z})$, and write $c_{2k+2} = \theta_1 \wedge c_2 \wedge \cdots \wedge c_2$. Note that $c_2 \wedge \cdots \wedge c_2$ describes the topological gauge configuration on $2k$ dimensional space, while θ_1 describes the 1D representation of Z_n. This motivates us to use a Z_n gauge configuration on $2k$ dimensional space to generate a non-trivial Z_n-charge in the ground state. In the next section, we use the similar idea to construct the topological invariant for bosonic $U(1)$ SPT states.

C. Bosonic $U(1)$ SPT phases

1. Topological invariants in (0+1)D

In 1-dimensional space-time, the bosonic SPT states with symmetry $U(1) = \{e^{i\theta}\}$ are classified by the cocycles in $H^1(U(1), \mathbb{R}/\mathbb{Z}) = Z$. Let us first study the topological invariant from the topological partition function.

A non-trivial cocycle in $H^1(Z_2, \mathbb{R}/\mathbb{Z}) = Z$ labeled integer k is given by

$$\omega_1(e^{i\theta}) = e^{ik\theta}. \quad (25)$$

Let us assume the space-time is a circle S_1 formed by a ring of vertices labeled by i. A flat $U(1)$ gauge configuration on S_1 is given the $U(1)$ group elements $e^{i\theta_{i,i+1}}$ on each link $(i, i+1)$. The topological part of the partition function for such a flat $U(1)$ gauge configuration is determined by the above cocycle ω_1

$$Z_{\text{top}}(S_1, A_\mu) = e^{i2\pi \sum_i \omega_1(\theta_{i,i+1})}. \quad (26)$$

We note that the above $\omega_1(\theta_{i,i+1})$ is a free element in $H^1(Z_2, \mathbb{R}/\mathbb{Z})$. So it gives rise to a Chern-Simons-type topological term $Z_{\text{top}}(S_1, A_\mu)$:

$$Z_{\text{top}}(S_1, A_\mu) = e^{i k \sum_i \theta_{i,i+1}} = e^{i k \oint dt A_0} \quad (27)$$

(Not that $\oint dt A_0$ is the $U(1)$ Chern-Simons term in 1D.) Such a partition function is a topological invariant. Its non-trivial dependence on the total $U(1)$ flux through the circle, $\sum_i \theta_{i,i+1} = \oint dt A_0$, implies that the SPT state is non-trivial.

The above partition function also implies that the ground state of the system carries a $U(1)$ quantum number k. Thus the non-trivial $U(1)$ quantum number k of the ground state also measure the non-trivial cocycle in $H^1(U(1), \mathbb{R}/\mathbb{Z})$.

2. Topological invariants in (2+1)D

In 3-dimensional space-time, the bosonic $U(1)$ SPT states are classified by the cocycles in $H^3(U(1), \mathbb{R}/\mathbb{Z}) = Z$. How to measure the cocycles in $H^3(U(1), \mathbb{R}/\mathbb{Z})$? One way is to “gauge” the $U(1)$ symmetry and put the “gauged” system on a 2D closed space M_2. We choose a $U(1)$ gauge configuration on M_2 such that there is a unit of $U(1)$-flux. We then measure the $U(1)$-charge k of the ground state on M_2. We will show that k is an even integer and $k/2 \in Z$ is the topological invariant that characterizes the $U(1)$ SPT states. In fact, such a topological invariant is actually the quantized Hall conductance, which is quantized as an even integer $\sigma_{xy} = \frac{k}{2\pi}$.\cite{8, 49, 67-69}

To show the above result, let us use the following $U(1) \times U(1)$ Chern-Simons theory to describe the $U(1)$ SPT state\cite{49, 69}

$$L = \frac{1}{4\pi} K_{IJ} a_{I\mu} \partial_\mu a_{J\lambda} e^{\mu \nu \lambda} + \frac{1}{2\pi} q_1 A_\mu \partial_\mu a_{I\lambda} e^{\mu \nu \lambda} + \cdots$$

(28)
with the K-matrix and the charge vector q:\cite{27,28,30}

$$K = \begin{pmatrix} 0 & 1 \\ 1 & 2 - k \end{pmatrix}, \quad q = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad k = \text{even.}$$ \tag{29}

The Hall conductance is given by

$$\sigma_{xy} = (2\pi)^{-1} q^T K^{-1} q = \frac{k}{2\pi}. \tag{30}$$

If we write the topological partition function as $Z_{\text{top}}(M_4, A_\mu) = \exp \int d^4x L_{\text{top}}$, the above Hall conductance implies that topological partition function is given by a 3D Chern-Simons term

$$L_{\text{top}} = \frac{k}{4\pi} A_\mu \partial_\mu A_\lambda \epsilon^{\mu\nu\lambda} \tag{31}$$

3. Topological invariants in (4+1)D

In 5-dimensional space-time, the bosonic $U(1)$ SPT states are also classified by $\mathcal{H}^3(U(1), \mathbb{R}/\mathbb{Z}) = \mathbb{Z}$. Again, one can “gauged” the $U(1)$ symmetry and put the “gauged” system on a 4D closed space M_4. We choose a $U(1)$ gauge configuration on M_4 such that

$$\int_{M_4} F^2 \frac{8\pi^2}{k} = 1, \tag{32}$$

where F is the two-form $U(1)$ gauge field strength. We then measure the $U(1)$-charge k of the ground state induced by the $U(1)$ gauge configuration. Again, we can show that k is even and $k/2$ is the topological invariant of the $U(1)$ SPT state in 5-dimensional space-time. $k/2$ measures the cocycles in $\mathcal{H}^2(U(1), \mathbb{R}/\mathbb{Z})$.

D. Fermionic $U^{f}(1)$ SPT phases

Although the topological invariant described above is motivated by the group cohomology theory that classifies the bosonic SPT states, however, the obtained topological invariant can be used to characterize/define/classify fermionic SPT phases. The general theory of interacting fermionic SPT phases is not as well developed as the bosonic SPT states. (A general theory of free fermion SPT phases were developed in Ref. 70–72, which include the noninteracting topological insulators\cite{37–42,73} and the noninteracting topological superconductors,\cite{74–78}). The first attempt was made in Ref. 79 where a group super-cohomology theory was developed. However, the group super-cohomology theory can only describe a subset of fermionic SPT phases. A more general theory is needed to describe all fermionic SPT phases. We hope the study of the topological invariants may help to develop this more general theory.

1. Symmetry in fermionic systems

A fermionic system always has a Z_2^f symmetry generated by $P_f \equiv (-)^{N_F}$ where N_F is the total fermion number. Let us use G_f to denote the full symmetry group of the fermion system. G_f always contain Z_2^f as a normal subgroup. Let $G_b \equiv G_f/Z_2^f$ which represents the “bosonic” symmetry. We see that G_f is an extension of G_b by Z_2^f, described by the short exact sequence:

$$1 \to Z_2^f \to G_f \to G_b \to 1. \tag{33}$$

People some times use G_b to describe the symmetry in fermionic systems and some times use G_f to describe the symmetry. Both G_b and G_f do not contain the full information about the symmetry properties of a fermion system. In this paper we will use the short exact sequence (33) to describe the symmetry of a fermion system. However, for simplicity, we will use G_f to refer the symmetry in fermionic systems. Note that when we say that a fermion system has a G_f symmetry, we imply that we also know how Z_2^f is embedded in G_f as a normal subgroup. We know that P_f always commute with any elements in G_f:

$$[P_f, g] = 0, \quad g \in G_f. \tag{34}$$

2. Topological invariant for fermionic $U^{f}(1)$ SPT phases

In this section, we are going to discuss the topological invariant for fermionic SPT states with a full symmetry group $G_f = U^{f}(1)$, which contains Z_2^f as a subgroup such that odd $U^{f}(1)$-charges are always fermions. We will use the topological invariant developed in the last section to study fermionic SPT states with a $U^{f}(1)$ symmetry in 3-dimensional space-time. To construct the topological invariance, we first “gauged” the $U^{f}(1)$ symmetry, and then put the fermion system on a 2D close space M_2 with a $U^{f}(1)$ gauge configuration that carries a unit of the gauge flux $\int_{M_2} F^2 = 1$. We then measure the $U^{f}(1)$-charge k of the ground state on M_2 induced by the $U^{f}(1)$ gauge configuration. Such a $U^{f}(1)$-charge is a topological invariant that can be used to characterize the fermionic $U^{f}(1)$ SPT phases.

Do we have other topological invariant? We may choose $M_2 = S_1 \times S_1$ (where S_d is a d-dimensional sphere). However, on $S_1 \times S_1$ we do not have additional discrete topological $U^{f}(1)$ gauge configurations except those described by the $U^{f}(1)$-flux $\int_{M_2} F^2$ discussed above. (We need discrete topological gauge configurations to induce discrete $U^{f}(1)$ charges.) This suggests that we do not have other topological invariant and the fermionic $U^{f}(1)$ SPT states are classified by integers Z. In fact, the integer k is nothing but the integral quantized Hall conductance $\sigma_{xy} = \frac{k}{2\pi}$.

The above just show that every fermionic $U^{f}(1)$ SPT state can be characterized by an integer k. But we do
not know if every integer \(k \) can be realized by a fermionic \(U^f(1) \) SPT state or not. To answer this question, we note that a fermionic \(U^f(1) \) SPT state is an Abelian state. So it can described by a \(U(1) \times \cdots \times U(1) \) Chern-Simons theory with a \(K \)-matrix and a charge vector \(q \).\(^{30}\) Let us first assume that the \(K \)-matrix is two dimensional. In this case, the fermionic \(U^f(1) \) SPT state must be described by a \(U(1) \times U(1) \) Chern-Simons theory in eqn. \((28)\) with the \(K \)-matrix and the charge vector \(q \) of the form\(^{30}\)

\[
K = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad q = \begin{pmatrix} 2m_1 + 1 \\ 2m_2 + 1 \end{pmatrix}, \quad m_{1,2} = \text{integers}.
\]

(35)

We require the elements of \(q \) to be odd integers since odd \(U^f(1) \)-charges are always fermions. The Hall conductance is given by

\[
\sigma_{xy} = (2\pi)^{-1} q^T K^{-1} q = \frac{4|m_1(m_1 + 1) - m_2(m_2 + 1)|}{2\pi}.
\]

(36)

We find that the Hall conductance for fermionic \(U^f(1) \) SPT states are always quantized as 8 times an integer. This result is valid even if we consider higher dimensional \(K \)-matrices.

It is interesting to see that the potential topological invariants for bosonic \(U(1) \) SPT states are integers (the integrally quantized Hall conductances). But the actual topological invariants are even integers. Similarly, the potential topological invariants for fermionic \(U^f(1) \) SPT states are also integers (the integrally quantized Hall conductances). However, the actual topological invariants are 8 times integers.

E. Fermionic \(Z^f_2 \) SPT phases

To understand the fermionic \(Z^f_2 \) SPT phases in 3-dimensional space-time, let us construct their topological invariants. We again create two identical \(Z^f_2 \) monodromy defects on a closed 2D space. We then measure the \(P_f \) quantum number for ground state with the two identical \(Z^f_2 \) monodromy defects. So the potential topological invariants \(k_2 \) are elements in \(Z_2 \). But what are the actual topological invariants?

We may view a fermion \(U^f(1) \) SPT phase discussed above as a \(Z^f_2 \) SPT phase by viewing the \(\pi U^f(1) \) rotation as \(P_f \). In this case the topological invariants \(k \) for the \(U^f(1) \) SPT phases become the topological invariants \(k_2 \) for \(Z^f_2 \) SPT phases: \(k_2 = k \mod 2 \). To see this result, we note that \(k \) in the induced \(U^f(1) \)-charge by a unit of \(U^f(1) \)-flux. A unit of \(U^f(1) \) flux can be viewed as two identical \(Z^f_2 \) vortex. So the induced \(Z^f_2 \) charge is \(k_2 = k \mod 2 \).

Since \(k = 0 \mod 8 \). Therefore fermion \(U^f(1) \) SPT phases always correspond to a trivial \(Z^f_2 \) SPT phase. We fail to get any non-trivial fermionic \(Z^f_2 \) SPT phases.

We like to point out that the induced \(P_f \) quantum numbers by two identical \(Z^f_2 \) monodromy defects are not the only type of topological invariants. There exist a new type of topological invariants: two identical \(Z^f_2 \) monodromy defects may induce topological degeneracy,\(^7\) with different degenerate states carrying different \(P_f \) quantum numbers. This new type of topological invariants is realized by a \(p + ip \) state where \(2N \) identical \(Z^f_2 \) monodromy defects induce \(2^N \) topologically degenerate ground states. Those topologically degenerate ground states are described by \(2N \) Majorana zero modes which correspond to \(N \) zero-energy orbitals for complex fermions.\(^{75,80}\) But the \(p + ip \) state have an intrinsic topological order which is not a fermionic SPT state.

To summarize, although the fermionic \(Z^f_2 \) SPT phases in 3-dimensional space-time have two types of potential topological invariants, so far we cannot find any fermionic SPT phases that give rise to non-trivial topological invariants. This suggests that there is no non-trivial fermionic \(Z^f_2 \) SPT phases in 3-dimensional space-time. Let us use \(fSPT^3_{Z^f_2} \) to denote the Abelian group that classifies the fermionic SPT phases with full symmetry group \(G_f \) in \(d \)-dimensional space-time. The above result can written as \(fSPT^3_{Z^f_2} = 0 \).

We also have \(fSPT^1_{Z^f_2} = \mathbb{Z}_2 \). The two fermionic SPT phases correspond to 0-dimensional ground state with non fermion and one fermion. One can also show that \(fSPT^2_{Z^f_2} = 0 \).\(^{79}\)

IV. TOPOLOGICAL INVARIANTS OF SPT STATES WITH SYMMETRY \(G = GG \times SG \)

A. Bosonic \(U(1) \times \tilde{U}(1) \) SPT phases

In this section, we are going to discuss the topological invariant for bosonic \(U(1) \times \tilde{U}(1) \) SPT states in 3-dimensional space-time. To construct the topological invariance, we first “gauge” the \(U(1) \times \tilde{U}(1) \) symmetry, and then put the boson system on a 2D close space \(M_2 \) with a \(U(1) \times \tilde{U}(1) \) gauge configuration \((A_\mu, \tilde{A}_\mu)\) that carries a unit of the \(U(1) \) gauge flux \(\int_{M_2} \tilde{F} = 1 \). We then measure the \(U(1) \)-charge \(c_{11} \) and the \(\tilde{U}(1) \)-charge \(c_{12} \) of the ground state. Next, we put another \(U(1) \times \tilde{U}(1) \) gauge configuration on \(M_2 \) with a unit of the \(\tilde{U}(1) \) gauge flux \(\int_{M_2} F \equiv 1 \), then measure the \(U(1) \)-charge \(c_{21} \) and the \(\tilde{U}(1) \)-charge \(c_{22} \). We can use \(c_{ij} \) to form a two by two integer matrix \(C \). So an integer matrix \(C \) is a potential topological invariant for fermionic \(U(1) \times \tilde{U}(1) \) SPT phases in 3-dimensional space-time.

But what are the actual topological invariants? To answer this question, let us consider the following \(U(1) \times U(1) \) Chern-Simons theory that describe the bosonic
$U(1) \times \tilde{U}(1)$ SPT state

$$
\mathcal{L} = \frac{1}{4\pi} K_{IJ} a_I a_J \partial_\mu a_{IJ} e^{\mu\lambda} + \frac{1}{2\pi} q_{1,I} A_\mu \partial_\mu a_{IJ} e^{\mu\lambda} + \frac{1}{2\pi} q_{2,I} \tilde{A}_\mu \partial_\mu a_{IJ} e^{\mu\lambda} + \cdots
$$

(37)

with the K-matrix and two charge vectors q_1, q_2:

$$
K = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad q_1 = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \quad q_2 = \begin{pmatrix} m_3 \\ m_4 \end{pmatrix},
$$

m_i = integers.

(38)

The topological invariant C is given by

$$
C = \left(q_i^T K^{-1} q_j \right).
$$

(39)

Since stacking two SPT states with topological invariants C_1 and C_2 gives us a SPT state with a topological invariant $C_1 + C_2$, so the actual topological invariants form a vector space. We find that the actual topological invariants form a three-dimensional vector space with basis vectors

$$
C_1 = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad C_2 = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}, \quad C_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
$$

(40)

So the bosonic $U(1) \times \tilde{U}(1)$ SPT phases in 3-dimensional space-time are classified by three integers Z^3.

B. Fermionic $U(1) \times U^f(1)$ SPT phases

Now let us discuss the topological invariant for fermionic SPT states in 3-dimensional space-time, which has a full symmetry group $G_f = U(1) \times U^f(1)$ (with Z_2^f as a subgroup where odd $U^f(1)$-charges are always fermions). To construct the topological invariance, we again “gauge” the $U(1) \times U^f(1)$ symmetry, and then put the fermion system on a 2D close space M_2 with a $U(1) \times U^f(1)$ gauge configuration that carries a unit of the $U(1)$ gauge flux $\int_{M_2} F = 1$. We then measure the $U(1)$-charge c_{11} and the $U^f(1)$-charge c_{12} of the ground state on M_2 induced by the $U(1)$ gauge flux. Next, we put another $U(1) \times U^f(1)$ gauge configuration on M_2 with a unit of the $U^f(1)$ gauge flux $\int_{M_2} \tilde{F} = 1$, then measure the $U(1)$ charge c_{21} and the $U^f(1)$-charge c_{22}. So an integer matrix C formed by c_{ij} is a potential topological invariant for fermionic $U(1) \times U^f(1)$ SPT phases in 3-dimensional space-time.

But what are the actual topological invariants? Let us consider the following $U(1) \times U(1)$ Chern-Simons theory that describe the fermionic $U(1) \times U^f(1)$ SPT state

$$
\mathcal{L} = \frac{1}{4\pi} K_{IJ} a_I a_J \partial_\mu a_{IJ} e^{\mu\lambda} + \frac{1}{2\pi} q_{1,I} A_\mu \partial_\mu a_{IJ} e^{\mu\lambda} + \frac{1}{2\pi} q_{2,I} \tilde{A}_\mu \partial_\mu a_{IJ} e^{\mu\lambda} + \cdots
$$

(41)

with the K-matrix and two charge vectors q_1, q_2:

$$
K = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad q_1 = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \quad q_2 = \begin{pmatrix} m_3 \\ m_4 \end{pmatrix},
$$

$m_{3,4} = \text{odd integers}.$

(42)

The requirement “$m_{3,4} = \text{odd integers}”$ comes from the fact that odd $U^f(1)$-charges are always fermions. The topological invariant C is given by

$$
C = \left(q_i^T K^{-1} q_j \right).
$$

(43)

We find that the actual topological invariants form a three-dimensional vector space with basis vectors

$$
C_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad C_2 = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}, \quad C_3 = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}.
$$

(44)

So the fermionic $U(1) \times U^f(1)$ SPT phases in 3-dimensional space-time are classified by three integers Z^3.

C. A general discussion for the case $G = GG \times SG$

In the appendix, we show that that (see eqn. (C6))

$$
\mathcal{H}^d(G, R/Z) = \oplus_{k=0}^d \mathcal{H}^k[SG, \mathcal{H}^d-k(GG, R/Z)].
$$

(45)

This means that we can use (y_{0}, \cdots, y_{d}) to label each element of $\mathcal{H}^d(G, R/Z)$ where $y_{k} \in \mathcal{H}^k[SG, \mathcal{H}^d-k(GG, R/Z)]$. Here we like to discuss how to physically measure each y_{k}.

First, we notice that $\mathcal{H}^d-k(GG, R/Z)$ classify the bosonic SPT phases in $(d-k)$-dimensional space-time. To stress this point, we rewrite $\mathcal{H}^d-k(GG, R/Z)$ as $bSPT_{GG}^{d-k}$, and rewrite above decomposition as

$$
\mathcal{H}^d(G, R/Z) = \oplus_{k=0}^d \mathcal{H}^k[SG, bSPT_{GG}^{d-k}].
$$

(46)

Since $bSPT_{GG}^{d-k}$ is a direct sum of Z’s and Z_n’s, $\mathcal{H}^k[SG, bSPT_{GG}^{d-k}]$ is direct sum of $\mathcal{H}^k[SG, Z]$’s and $\mathcal{H}^k[SG, Z_n]$’s. Such a structure motivates the following construction of topological invariants that allow us to measure y_{k}.

Following the idea in Ref. 60, we first gauge the group SG to obtain a gauge theory with gauge group SG. However, the gauge potential for SG are treated as fixed classical background without any fluctuations. In other words, the gauge field for SG is a non-fluctuating probe field that couples to the SG quantum numbers. We then, examine the properties of our model with such a non-fluctuating SG gauge field as a background.

We then choose the space-time manifold to have a form $M_k \times M_{d-k}$ where M_k has k dimensions and M_{d-k} has $d-k$ dimensions. We assume the SG gauge configuration to be constant on M_{d-k}. Such a SG gauge configuration can be viewed as a gauge configuration on M_k. Now we
assume that M_k is very small, and our system can be viewed as a system on M_{d-k} which has a GG symmetry. The ground state of such a GG symmetric system is GG SPT state on M_{d-k} which is labeled by an element in $h_{d-k}(GG, R/Z)$. This way, we obtain a function \tilde{y}_k that maps a SG gauge configuration on M_k to an element in $H^{d-k}(GG, R/Z)$. In the above, we have discussed how to measure such an element physically when $GG = U(1)$. We choose y_k (or \tilde{y}_k) is given by

$$\omega_k(s_{01}, s_{12}, \cdots, s_{k-1,k}) \in H^{d-k}(GG, R/Z),$$

where $s_{ij} \in SG$ live on the edges of the k-cell which describe a SG gauge configuration on the k-cell. If we sum over the contributions from all the k-cells in M_k, we will obtain the above \tilde{y}_k function that maps an SG gauge configuration on M_k to an element in $H^{d-k}(GG, R/Z)$.

The key issue that we need to show is whether the function \tilde{y}_k allows us to fully detect $y_k \in \mathcal{H}^k[SG, H^{d-k}(GG, R/Z)]$, i.e. whether different y_k always lead to different \tilde{y}_k. We can show that this is indeed the case using the classifying space. Let BSG be the classifying space of SG. We know that the group cocycles in $\mathcal{H}^k[SG, H^{d-k}(GG, R/Z)]$ can be one-to-one represented by the topological cocycles in $\mathcal{H}^k[BSG, H^{d-k}(GG, R/Z)]$. We know that a topological cocycle y_k^B in $\mathcal{H}^k[BSG, H^{d-k}(GG, R/Z)]$ gives rise to a function that maps all the k cycles in BSG to $\mathcal{H}^{d-k}(GG, R/Z)$. And such a function can fully detect the cocycle y_k^B (i.e. different cocycles always lead to different mappings). We also know that each k cycles in BSG can be viewed as an embedding map from a k-dimensional space-time M_k to BSG, and each embedding map define a SG gauge configuration on M_k. Thus the topological cocycle y_k^B is actually a function that maps a SG gauge configuration in space-time to $\mathcal{H}^{d-k}(GG, R/Z)$, and such a mapping can fully detect y_k^B. All the k cycles in BSG can be continuously deformed into a particular type of k cycles where all the vertices on the k-cycle occupy one point in BSG. The y_k^B that maps the k cycles to $\mathcal{H}^{d-k}(GG, R/Z)$ is a constant under such a deformation. y_k^B, when restricted on the k-cycles whose vertices all occupy one point, become the map \tilde{y}_k. This way, we show that the function \tilde{y}_k can fully detect the group cocycles y_k in $\mathcal{H}^k[SG, H^{d-k}(GG, R/Z)]$. This is how we can measure y_k.

In the above we see that each embedding map from k-dimensional space-time M_k to BSG define a SG gauge configuration on M_k. This relation tells us how to choose the SG gauge configurations on M_k so that we can fully measure y_k. We choose the SG gauge configurations on M_k that come from the embedding maps from M_k to BSG such that the images are the non-trivial k-cycles in BSG.

D. An example with $SG = U(1)$ and $GG = U(1)$

1. Topological invariants in $(2+1)D$

Let us reconsider the bosonic SPT states with symmetry $G = U^S(1) \times U^G(1)$ (i.e. $SG = U(1)$ and $GG = U(1)$) in 3 space-time dimensions. Such SPT states are classified by $H^3(G, R/Z)$.

$$H^3(G, R/Z) = \{0\}$$

Let us consider the bosonic SPT states with symmetry $G = U^S(1) \times U^G(1)$.

$$H^3(G, R/Z) = \{0\}$$

So the topological partition function $Z_{top}(M_d, \Lambda_d) = e^{i \int d^4x L_{top}}$ is given by

$$L_{top} = -\frac{\delta A_{GG}}{2\pi} \bar{F}_{GG} + O(\delta A_{GG}^2) + \cdots$$

If we turn on one unit of $U^G(1)$ flux on S_2 described by a background field Λ_{GG}, the above topological terms become (with $A_{GG} = \delta A_{GG} + \Lambda_{GG}$):

$$L_{top} = -\frac{2\delta A_{GG}}{2\pi} \bar{F}_{GG} + O(\delta A_{GG}^2) + \cdots$$

where A_{SG} is the gauge field on S_2.

Thus we can fully measure y_{top} through the topological terms in L_{top}.
which implies that one unit of $U^{GG}(1)$-flux on S_2 will induce 2y_0 unit of $U^{GG}(1)$-charge. The factor 2 agrees with the result of even-integer-quantized Hall conductance obtained before.

2. Topological invariants in (4+1)D

Next, we consider bosonic $U^{SG}(1) \times U^{GG}(1)$ SPT states in (4+1)D. The SPT states are classified by

$$\mathcal{H}^3(G, \mathbb{R}/\mathbb{Z}) = \oplus_{k=0}^{\infty} \mathcal{H}^3[U(1)^{SG}, H^{d-k}(U(1)^{GG}, \mathbb{R}/\mathbb{Z})]$$

with

$$\mathcal{H}^3(U^{GG}(1), \mathbb{R}/\mathbb{Z}) = Z = \{y_0\},$$
$$\mathcal{H}^2[U^{SG}(1), H^{3}(U^{GG}(1), \mathbb{R}/\mathbb{Z})] = Z = \{y_2\},$$
$$\mathcal{H}^4[U^{SG}(1), H^{1}(U^{GG}(1), \mathbb{R}/\mathbb{Z})] = Z = \{y_4\},$$
$$\mathcal{H}^5(U^{SG}(1), \mathbb{R}/\mathbb{Z}) = Z = \{y_5\}.$$ (55)

The topological terms labeled by y_k are the Chern-Simons terms:

$$\mathcal{L}_{\text{top}} = \frac{y_0}{(2\pi)^2} A_{GG} F_{GG}^2 + \frac{y_2}{(2\pi)^2} A_{SG} F_{SG}^2 + \frac{y_4}{(2\pi)^2} A_{SG} F_{SG}^2 + \frac{y_5}{(2\pi)^2} A_{SG} F_{SG}^2.$$ (56)

which gives rise to the topological partition function

$$Z_{\text{top}}(M_d, A_\mu) = e^{i \int d^4x \mathcal{L}_{\text{top}}}.$$

To measure y_2, we choose a space-time manifold of the form $M_d \times M'_2 \times S_1$ (where S_1 is the time direction). We put a SG gauge field on space M_2 such that $\int_{M_2} \frac{1}{2\pi} F_{SG} = 1$. In the small M_2 limit, our theory reduces to a GG-gauge theory on $M'_2 \times S_1$ described by y_2 in $\mathcal{H}^3[U^{GG}(1), \mathbb{R}/\mathbb{Z}]$. We can then put a GG gauge field on space M_2 such that $\int_{M_2} \frac{1}{2\pi} F_{GG} = 1$. Such a configuration will induce 2y_2 unit of $U^{GG}(1)$-charges.

The y_4 term can be measured by putting a SG gauge field on space M_2 such that $\int_{M_2} \frac{1}{2\pi} F_{SG} = 1$ and a GG gauge field on space M'_2 such that $\int_{M'_2} \frac{1}{2\pi} F_{GG} = 1$ will induce 2y_2 unit of $U^{GG}(1)$-charges.

The y_5 term can be measured by putting a SG gauge field on space M_4 such that $\int_{M_4} \frac{1}{2\pi} F_{SG} = 1$. Such a SG gauge configuration will induce a 2y_4 unit of the $U^{GG}(1)$-charges. The SG gauge configuration will also induce a 6y_0 unit of the $U^{SG}(1)$-charges.

E. Bosonic $Z^{SG}_2 \times Z^{GG}_2$ SPT states

1. Topological invariants in (2+1)D

Next, let us consider SPT states with symmetry $G = Z^{SG}_2 \times Z^{GG}_2$ in 2+1 dimensions. Such a theory was studied in Ref. 56 using $U(1) \times U(1)$ Chern-Simons theory. The $Z^{SG}_2 \times Z^{GG}_2$ SPT states are classified by $\mathcal{H}^3(G, \mathbb{R}/\mathbb{Z})$, which has the following decomposition

$$\mathcal{H}^3(G, \mathbb{R}/\mathbb{Z}) = \oplus_{k=0}^{\infty} \mathcal{H}^3[Z^{SG}_2, H^{d-k}(Z^{GG}_2, \mathbb{R}/\mathbb{Z})]$$
$$= \mathcal{H}^3(Z^{GG}_2, \mathbb{R}/\mathbb{Z}) \oplus \mathcal{H}^3[Z^{SG}_2, H^1(Z^{GG}_2, \mathbb{R}/\mathbb{Z})] \oplus \mathcal{H}^3(Z^{SG}_2, \mathbb{R}/\mathbb{Z}),$$ (57)

with

$$\mathcal{H}^3(Z^{SG}_2, \mathbb{R}/\mathbb{Z}) = Z_2 = \{y_0\},$$
$$\mathcal{H}^3(Z^{GG}_2, \mathbb{R}/\mathbb{Z}) = Z_2 = \{y_2\},$$
$$\mathcal{H}^3(Z^{SG}_2, \mathbb{R}/\mathbb{Z}) = Z_2 = \{y_3\}.$$ (58)

y_0 labels different 2+1D Z^{SG}_2 SPT states and y_3 labels different 2+1D Z^{GG}_2 SPT states. To measure y_k, we may create two identical Z^{SG}_2 monodromy defects on a closed 2D space. We then measure the induced Z^{GG}_2-charge, which measures y_3. We can also measure the induced Z^{SG}_2-charge, which measures y_2.

To understand why measuring the induced Z^{SG}_2-charges and Z^{GG}_2 charges allow us to measure y_3 and y_2, let us start with the dual gauge theory description of the $Z^{SG}_2 \times Z^{GG}_2$ SPT state: The total Lagrangian has a form

$$\mathcal{L} + W_{\text{top}} = \frac{1}{4\pi} K_{IJ} a^I_\mu \theta I a^J_\lambda + \ldots$$ (59)

with

$$K = \begin{pmatrix} 2y_3 & 2y_2 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}.$$ (60)

Two K-matrices K_1 and K_2 are equivalent $K_1 \sim K_2$ (i.e. give rise to the same theory) if $K_1 = U^T K_2 U$ for an integer matrix with det(U) = ±1. We find $K(y_3, y_2, y_0) \sim K(y_3 + 2, y_2, y_0) \sim K(y_3, y_2 + 2, y_0) \sim K(y_3, y_2, y_0 + 2)$. Thus only $y_3, y_2, y_0 = 0, 1$ give rise to inequivalent K-matrices.

A particle carrying $l_I a^I_\mu$-charge will have a statistics

$$\theta_I = \pi l_I (K^{-1})^{IJ} l_J.$$ (61)

A particle carrying $l_I a^I_\mu$-charge will have a mutual statistics with a particle carrying $l_I a^I_\mu$-charge:

$$\theta_{IJ} = 2\pi l_I (K^{-1})^{IJ} l_J.$$ (62)

A particle with a unit of Z^{SG}_2-charge is described by a particle with a unit a^μ_μ-charge. A particle with a unit of Z^{GG}_2-charge is described by a particle with a unit a^μ_μ-charge. Using

$$K^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 2 & 0 & 0 \\ 2 & -2y_3 & 0 & -y_2 \\ 0 & 0 & 0 & 2 \\ 0 & -y_2 & 2 & -2y_0 \end{pmatrix},$$ (63)
we find that the Z_2^{SG}-charge (the unit a_1^1-charge) and the Z_2^{GG} gauge charge (the unit a_3^1-charge) are always bosonic.

Since a Z_2^{SG}-charge has a mutual statistics π with a unit a_3^1-charge, thus a unit a_2^1-charge correspond to a Z_2^{SG} monodromy defect. Similarly, a unit a_3^1-charge correspond to a Z_2^{GG} monodromy defect. We notice that a Z_2^{SG} monodromy defect always correspond to 1/2 units of a_3^1-flux and a Z_2^{GG} monodromy defect always correspond to 1/2 units of a_3^1-flux.

Let us move a Z_2^{SG} monodromy defect (described by $(l_1) = (0, 0, 0, 0)$) around a Z_2^{SG} monodromy defect (described by $(l_1) = (0, 1, 0, 0)$). From eqn. (62), we see that such a motion will induce a phase $\frac{\pi}{2}$. Thus a Z_2^{SG} monodromy defect carries $-y_2/2$ Z_2^{GG}-charges, and two identical Z_2^{SG}-monodromy defect carries y_2 Z_2^{GG}-charges.

Similarly, moving a Z_2^{SG} monodromy defect around another Z_2^{SG} monodromy defect induce a phase $-y_3\pi$. However, the phase $-y_3\pi$ has two contributions: one from the Z_2^{SG}-charge of the first monodromy defect going around the Z_2^{SG} flux of the second monodromy defect, and the other from the Z_2^{SG} flux of the first monodromy defect going around the Z_2^{SG}-charge of the second monodromy defect. Since each contribution is $-y_3\pi/2$, so each Z_2^{SG} monodromy defect carries $-y_2/2$ Z_2^{GG}-charges, and two identical Z_2^{SG}-monodromy defect carries y_3 Z_2^{SG}-charges.

2. Topological invariants in (3+1)D

In the above examples, we see that measuring topological responses give rise to a complete set of topological invariants which fully characterize the SPT states. We believe this is true in general. Next we will use this idea to study the $Z_2^{SG} \times Z_2^{GG}$ SPT states in (3+1)D, which are classified by $\mathcal{H}^i(G, \mathbb{R}/\mathbb{Z})$, which has the following decomposition

$$\mathcal{H}^i(G, \mathbb{R}/\mathbb{Z}) = \oplus_{k=0}^3 \mathcal{H}^k[Z_2^{SG}, \mathcal{H}^{d-k}(Z_2^{GG}, \mathbb{R}/\mathbb{Z})]$$

$$\oplus \mathcal{H}^1[Z_2^{SG}, \mathcal{H}^1(Z_2^{GG}, \mathbb{R}/\mathbb{Z})]$$

with

$$\mathcal{H}^1[Z_2^{SG}, \mathcal{H}^1(Z_2^{GG}, \mathbb{R}/\mathbb{Z})] = \mathbb{Z}_2 = \{y_1\},$$

$$\mathcal{H}^3[Z_2^{SG}, \mathcal{H}^1(Z_2^{GG}, \mathbb{R}/\mathbb{Z})] = \mathbb{Z}_2 = \{y_3\}.$$
(64)

To measure y_1, we choose the space to be $S_1 \times M_2$. We then create a Z_2^{SG} twist boundary condition on S_1 (which measure $\mathcal{H}^1(Z_2^{SG}, Z_2)$). In the small S_1, the SPT state on $S_1 \times M_2$ reduces to SPT state on M_2 which is described by $\mathcal{H}^3(Z_2^{GG}, \mathbb{R}/\mathbb{Z})$. The elements in $\mathcal{H}^3(Z_2^{GG}, \mathbb{R}/\mathbb{Z})$ can be measured by measuring the Z_2^{GG}-charge induced by two identical Z_2^{GG} monodromy defects on M_2. Thus y_1 is the Z_2^{GG} charge on space $S_1 \times M_2$ induced by two identical Z_2^{GG} monodromy defects on M_2 and a Z_2^{SG} twist boundary condition on S_1.

3. Topological invariants in (1+1)D

The topological invariants for bosonic $G = Z_2^{SG} \times Z_2^{GG}$ SPT states in (1+1)D have a similar structure, but much simpler. The SPT states are classified by $\mathcal{H}^i(G, \mathbb{R}/\mathbb{Z})$, which has the following decomposition

$$\mathcal{H}^i(G, \mathbb{R}/\mathbb{Z}) = \oplus_{k=0}^2 \mathcal{H}^k[Z_2^{SG}, \mathcal{H}^{d-k}(Z_2^{GG}, \mathbb{R}/\mathbb{Z})]$$

$$= \mathcal{H}^1[Z_2^{SG}, \mathcal{H}^1(Z_2^{GG}, \mathbb{R}/\mathbb{Z})] = \mathbb{Z}_2 = \{y_1\}.$$
(66)

To measure y_1, we choose the space to be S_1 and create a Z_2^{SG} twist boundary condition on S_1 (which measure $\mathcal{H}^1(Z_2^{SC}, M_2)$). Then we measure the induced Z_2^{GG}-charge on S_1, which gives rise to y_1.

F. Bosonic $U(1) \times Z_2$ SPT phases

In this section, we like to consider SPT states with symmetry $G = U(1) \times Z_2$ in 2+1 dimensions. The $U(1) \times Z_2$ SPT states are classified by $\mathcal{H}^i(G, \mathbb{R}/\mathbb{Z})$, which has the following decomposition

$$\mathcal{H}^i(G, \mathbb{R}/\mathbb{Z}) = \oplus_{k=0}^3 \mathcal{H}^k[Z_2, \mathcal{H}^{d-k}(U(1), \mathbb{R}/\mathbb{Z})]$$

$$= \mathcal{H}^3(U(1), \mathbb{R}/\mathbb{Z}) \oplus \mathcal{H}^2[Z_2, \mathcal{H}^1(U(1), \mathbb{R}/\mathbb{Z})]$$

$$\oplus \mathcal{H}^1(Z_2, \mathbb{R}/\mathbb{Z}),$$
(67)

with

$$\mathcal{H}^3(U(1), \mathbb{R}/\mathbb{Z}) = \mathbb{Z} = \{y_0\},$$

$$\mathcal{H}^2[Z_2, \mathcal{H}^1(U(1), \mathbb{R}/\mathbb{Z})] = \mathbb{Z}_2 = \{y_2\},$$

$$\mathcal{H}^1(Z_2, \mathbb{R}/\mathbb{Z}) = \mathbb{Z}_2 = \{y_3\}.$$
(68)

y_0 labels different 2+1D $U(1)$ SPT states and y_3 labels different 2+1D Z_2 SPT states. To measure y_k, we may create two identical Z_2^{SG} monodromy defects on a closed 2D space. We then measure the induced Z_2-charge, which measures y_3. We can also measure the induced $U(1)$-charge, which measures y_2 mod 2. Thus the bosonic $U(1) \times Z_2$ SPT phases is classified by $\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ in (2+1)D.

G. Fermionic $U(1) \times Z_2^f$ SPT phases

1. Topological invariants in 2+1D

The fermionic $U(1) \times Z_2^f$ SPT phases can be realized by systems with two types of fermions, one carry the $U(1)$ charge and the other is neutral. To construct the topological invariants for the fermionic $U(1) \times Z_2^f$ SPT states, we again “gauge” the $U(1) \times Z_2^f$ symmetry, and then put the fermion system on a 2D close space M_2 with a $U(1) \times Z_2^f$ gauge configuration that carries a unit of the $U(1)$ gauge flux $\int_{M_2} F = 1$. We then measure the $U(1)$-charge c_{11} and the Z_2^f-charge c_{12} of the ground
state on M_2 induced by the $U(1)$ gauge flux. Next, we put another $U(1) \times Z_2^f$ gauge configuration on M_2 with no $U(1)$ flux but two identical Z_2^f vortices, then measure the $U(1)$ charge c_{21} (mod 2) and the Z_2^f-charge c_{22}. So an integer matrix C formed by c_{ij}

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} \mod 2 & c_{22} \mod 2 \end{pmatrix}$$

(69)

is a potential topological invariant for fermionic $U(1) \times Z_2^f$ SPT phases in 3-dimensional space-time.

But which topological invariants can be realized? What are the actual topological invariants? One way to realize the fermionic $U(1) \times Z_2^f$ SPT phases is to view them the fermionic $U(1) \times U^f(1)$ SPT phases discussed in section IV B. Using the $U(1) \times U(1)$ Chern-Simons theory for the fermionic $U(1) \times U^f(1)$ SPT phases, we see that the following topological invariant

$$C_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

(70)

can be realized.

By binding the $U(1)$ charged fermion and neutral fermion to form a $U(1)$ charged boson, we can form other fermionic $U(1) \times Z_2^f$ SPT phases through the bosonic $U(1)$ SPT phases of the above bosonic bound states. This allows us to realize the following topological invariant

$$C'_1 = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

(71)

which is twice of C_1.

We may also assume that the fermionic $U(1) \times Z_2^f$ SPT phases are described by $y_k \in \mathcal{H}^k[U(1), f SPT_{Z_2^f}] k = 0, 1, 2,$ and $y_3 \in b SPT^3_U(U(1))$. ($y_3 \in b SPT^3_U(U(1))$ because $U(1)$ does not contain Z_2^f and is a bosonic symmetry for the fermion bound states discussed above.) Using $f SPT^1_{Z_2^f} = Z_2$ and $f SPT^k_{Z_2^f} = 0$ for $k > 1$, we have

$$y_0 = 0, \quad y_1 = 0,$n $$y_2 \in \mathcal{H}^2[U(1), f SPT^1_{Z_2^f}] = \mathcal{H}^2[U(1), Z_2] = Z_2$$

$$y_3 \in b SPT^3_U(U(1)) = \mathcal{H}^3[U(1), \mathbb{R}/\mathbb{Z}] = \mathbb{Z}.$$ (72)

y_2 can be measured by putting a $U(1) \times Z_2^f$ gauge configuration that carries a unit of the $U(1)$ gauge flux $\int_{M_2} \epsilon = 1$ on a closed 2D space, and then measure the induced fermion numbers (i.e. the Z_2^f charges). We see that $(y_2, y_3) = (1, 0)$ corresponds to the topological invariant C_1 discussed above, while $(y_2, y_3) = (0, 1)$ corresponds to the topological invariant C'_1.

We see that some of the fermionic $U(1) \times Z_2^f$ SPT phases are classified by Z in 3-dimensional space-time, whose topological invariant is C_1 times an integer. It is likely that those are all the fermionic $U(1) \times Z_2^f$ SPT phases. The integer Z that label the fermionic $U(1) \times Z_2^f$ SPT phases correspond to the integer Hall conductance. This result should be contrasted with the result for the fermionic $U^f(1)$ SPT phases discussed in section III D.

2. Topological invariants in 3+1D

Let us assume that the fermionic $U(1) \times Z_2^f$ SPT phases in 3+1D are described by $y_k \in \mathcal{H}^k[U(1), f SPT_{Z_2^f}^k]$ $k = 0, 1, 2, 3,$ and $y_4 \in b SPT^4_U(U(1))$ (since $U(1)$ does not contain Z_2^f and is a bosonic symmetry for the fermion bound states discussed above). Using $f SPT^1_{Z_2^f} = Z_2$ and $f SPT^k_{Z_2^f} = 0$ for $k > 1$, we have

$$y_0 = 0, \quad y_1 = 0, \quad y_2 = 0,$n $$y_3 \in \mathcal{H}^3[U(1), f SPT^1_{Z_2^f}] = \mathcal{H}^3[U(1), Z_2] = 0$$

$$y_4 \in b SPT^3_{U(SU)} = \mathcal{H}^4[U(1), \mathbb{R}/\mathbb{Z}] = 0.$$ (73)

This suggests that the fermionic $U(1) \times Z_2^f$ SPT phases in 3+1D are always trivial.

H. Fermionic $Z_2 \times Z_2^f$ SPT states

Now, let us consider fermionic SPT states with full symmetry $Z_2 \times Z_2^f$ in 2+1 dimensions. This kind of fermionic SPT states were studied in Ref. 79 using group super-cohomology theory where four fermionic $Z_2 \times Z_2^f$ SPT states (including the trivial one) were constructed. They were also studied in Ref. 81 where 8 SPT states were obtained (see also Ref. 82 and 83). To construct topological invariants for the fermionic $Z_2 \times Z_2^f$ SPT states, we may create two identical Z_2 monodromy defects on a closed 2D space. We then measure the induced Z_2-charge c_{11} and the Z_2^f-charge c_{12}. We then create two identical Z_2^f monodromy defects, and measure the induced Z_2-charge c_{21} and the Z_2^f-charge c_{22}. Note that $c_{ij} = c_{ji} = 0, 1$. Thus there are 8 potential different topological invariants.

But how many of them are actual topological invariants that can be realized by fermion systems? We may view the fermionic $U(1) \times U^f(1)$ SPT states discussed in section IV B as fermionic $Z_2 \times Z_2^f$ SPT states. We find that the $U(1) \times U^f(1)$ SPT states can realize a topological invariant

$$C_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mod 2.$$ (74)

If we assume that the fermions form bound states, we will get a bosonic system with Z_2 symmetry. Such a bosonic system can realize a topological invariant

$$C_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mod 2.$$ (75)
as discussed in section III B. The two kinds of topological invariants C_1 and C_2 will give us four different kinds of fermionic $Z_2 \times Z_2^f$ SPT states, which are classified by $Z_2 \times Z_2$.

The topological invariant C_1 is realized by a fermion system where the Z_2-charged fermions form a $\nu = 1$ integer quantum Hall state and the Z_2-neutral fermions form a $\nu = -1$ integer quantum Hall state. We can have a new topological invariant which is realized by a fermion system where the Z_2-charged fermions form a $p + ip$ superconducting state and the Z_2-neutral fermions form a $p - ip$ superconducting state.75,80 We will denote the new topological invariant as $C_1/2$, since stacking two of the $(p + ip)/(p - ip)$ superconducting states will realize the topological invariant C_1. Stacking four of the $(p + ip)/(p - ip)$ superconducting states will realize the topological invariant $2C_1$ which is trivial. The above consideration suggests that fermionic $Z_2 \times Z_2^f$ SPT states are classified by $Z_4 \times Z_2$. However, Ref. 75 suggested one needs to stack eight of the $(p + ip)/(p - ip)$ superconducting states to obtain a trivial fermionic SPT states. This implies that fermionic $Z_2 \times Z_2^f$ SPT states are classified by $Z_8 \times Z_2$.

Let us examine the assumption that the fermionic $Z_2 \times Z_2^f$ SPT phases are described by $y_k \in \mathcal{H}^k[Z_2, fSPT^3_{Z_2^f}]$ $k = 0, 1, 2$, and $y_3 \in bSPT^3_{Z_2}$ (note that Z_2 does not contain Z_2^f and is a bosonic symmetry for the fermion bound states discussed above). Using $fSPT^1_{Z_2} = Z_2$ and $fSPT^k_{Z_2^f} = 0$ for $k > 1$, we have

$$y_0 = 0, \quad y_1 = 0,$$
$$y_2 \in \mathcal{H}^2[Z_2, fSPT^1_{Z_2^f}] = \mathcal{H}^2[Z_2, Z_2] = Z_2,$$
$$y_3 \in bSPT^3_{Z_2} = \mathcal{H}^3[Z_2, \mathbb{R}/\mathbb{Z}] = Z_2. \quad (76)$$

y_2 can be measured by putting two identical Z_2 monodromy defects on an open 2D space, and then measure the induced fermion numbers (i.e. the Z_2^f charges). The possible induced fermion numbers are 0 and 1, but there is another possibility where there are two degenerate ground states: one with no fermion and the other with one fermion. Let us denote the later possibility as $y_2 = 1/2$. We see that $(y_2, y_3) = (1, 0)$ corresponds to the topological invariant C_1 discussed above, $(y_2, y_3) = (1/2, 0)$ corresponds to the topological invariant $C_1/2$, and $(y_2, y_3) = (0, 1)$ corresponds to the topological invariant C_2. So the assumption that $y_2 \in \mathcal{H}^2[Z_2, fSPT^1_{Z_2^f}]$ is not correct. It should be generalized to $y_2 \in \mathcal{H}^2[Z_2, fSPT^1_{Z_2^f}] + \text{extra}$.

V. SUMMARY

In this paper, we construct many topological invariants which allow us to physically measure the cocycles in $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ fully that classify the SPT states and some of the SET states for interacting bosons and fermions. Those topological invariants also allow us to understand some of the SPT states for interacting fermions. We list those results in table I. In particular, whether the fermionic $Z_2 \times Z_2^f$ SPT states in 2+1D are classified by $Z_4 \times Z_2$ or $Z_8 \times Z_2$ (or even Z_8 as suggested in Ref. 81) is an interesting issue to be resolved.

I like to thank Zheng-Cheng Gu and Xie Chen for many helpful discussions. This research is supported by NSF Grant No. DMR-1005541, NSF 11074140, and NSF 11274192. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research.

Appendix A: Group cohomology theory

1. Homogeneous group cocycle

In this section, we will briefly introduce group cohomology. The group cohomology class $\mathcal{H}^d(G, \mathcal{M})$ is an Abelian group constructed from a group G and an Abelian group \mathcal{M}. We will use "$+$" to represent the multiplication of the Abelian groups. Each elements of G also induce a mapping $\mathcal{M} \rightarrow \mathcal{M}$, which is denoted as

$$g \cdot m = m', \quad g \in G, \; m, m' \in \mathcal{M}. \quad (A1)$$

The map $g \cdot$ is a group homomorphism:

$$g \cdot (m_1 + m_2) = g \cdot m_1 + g \cdot m_2. \quad (A2)$$

The Abelian group \mathcal{M} with such a G-group homomorphism, is call a G-module.

A homogeneous d-cochain is a function $\nu_d : G^{d+1} \rightarrow \mathcal{M}$, that satisfies

$$\nu_d(g_0, \ldots, g_d) = g \cdot \nu_d(g_0, \ldots, g_d), \quad g, g_i \in G. \quad (A3)$$

We denote the set of d-cochains as $\mathcal{C}^d(G, \mathcal{M})$. Clearly $\mathcal{C}^d(G, \mathcal{M})$ is an Abelian group. homogeneous group cocycle.

Let us define a mapping d (group homomorphism)
from $C^d(G, \mathbb{M})$ to $C^{d+1}(G, \mathbb{M})$:

$$(d\nu_d)(g_0, \cdots, g_{d+1}) = \sum_{i=0}^{d+1} (-1)^i \nu_d(g_0, \cdots, \hat{g}_i, \cdots, g_{d+1})$$

(A4)

where $g_0, \cdots, \hat{g}_i, \cdots, g_{d+1}$ is the sequence $g_0, \cdots, g_i, \cdots, g_{d+1}$ with g_i removed. One can check that $d^2 = 0$. The homogeneous d-cocycles are then the homogeneous d-cochains that also satisfy the cocycle condition

$$d\nu_d = 0.$$
(A5)

We denote the set of d-cocycles as $Z^d(G, \mathbb{M})$. Clearly $Z^d(G, \mathbb{M})$ is an Abelian subgroup of $C^d(G, \mathbb{M})$.

Let us denote $B^d(G, \mathbb{M})$ as the image of the map $d : C^{d-1}(G, \mathbb{M}) \rightarrow C^d(G, \mathbb{M})$ and $B^0(G, \mathbb{M}) = \{0\}$. The elements in $B^d(G, \mathbb{M})$ are called d-coboundaries. Since $d^2 = 0$, $B^d(G, \mathbb{M})$ is a subgroup of $Z^d(G, \mathbb{M})$:

$$B^d(G, \mathbb{M}) \subset Z^d(G, \mathbb{M}).$$
(A6)

The group cohomology class $H^d(G, \mathbb{M})$ is then defined as

$$H^d(G, \mathbb{M}) = Z^d(G, \mathbb{M})/B^d(G, \mathbb{M}).$$
(A7)

We note that the d operator and the cochains $C^d(G, \mathbb{M})$ (for all values of d) form a so called cochain complex,

$$\cdots \rightarrow C^d(G, \mathbb{M}) \xrightarrow{d} C^{d+1}(G, \mathbb{M}) \xrightarrow{d} \cdots$$
(A8)

which is denoted as $C(G, \mathbb{M})$. So we may also write the group cohomology $H^d(G, \mathbb{M})$ as the standard cohomology of the cochain complex $H^d[C(G, \mathbb{M})]$.

2. Nonhomogeneous group cocycle

The above definition of group cohomology class can be rewritten in terms of nonhomogeneous group cochains/cocycles. An nonhomogeneous group d-cochain is a function $\omega_d : G^d \rightarrow M$. All $\omega_d(g_1, \cdots, g_d)$ form $C^d(G, \mathbb{M})$. The nonhomogeneous group cochains and the homogeneous group cochains are related as

$$\nu_d(g_0, g_1, \cdots, g_d) = \omega_d(\hat{g}_1, \cdots, \hat{g}_d),$$
(A9)

with

$$g_0 = 1, \ g_1 = g_0 \hat{g}_1, \ g_2 = g_1 \hat{g}_2, \ \cdots \ g_d = g_{d-1} \hat{g}_d.$$
(A10)

Now the d map has a form on ω_d:

$$(d\omega_d)(\hat{g}_1, \cdots, \hat{g}_{d+1}) = \hat{g}_1 \cdot \omega_d(g_2, \cdots, \hat{g}_{d+1})$$

$$+ \sum_{i=1}^{d} (-1)^i \omega_d(\hat{g}_1, \cdots, \hat{g}_i \hat{g}_{i+1}, \cdots, \hat{g}_{d+1})$$

$$+ (-1)^{d+1} \omega_d(\hat{g}_1, \cdots, \hat{g}_d)$$
(A11)

This allows us to define the nonhomogeneous group d-cocycles which satisfy $d\omega_d = 0$ and the nonhomogeneous group d-coboundaries which have a form $\omega_d = d\mu_{d-1}$. In the following, we are going to use nonhomogeneous group cocycles to study group cohomology.

3. “Normalized” cocycles

We know that each elements in $H^d(G, \mathbb{R}/\mathbb{Z})$ can be represented by many cocycles. In the following, we are going to find ways to simplify the cocycles, so that the simplified cocycles can still represent all the elements in $H^d(G, \mathbb{R}/\mathbb{Z})$.

One simplification can be obtained by considering “normalized” cochains, which satisfy

$$\omega_d(g_1, \cdots, g_d) = 0, \text{ if one of } g_i = 1.$$
(A12)

One can check that the d-operator maps a “normalized” cochain to a “normalized” cochain. The group cohomology classes obtained from the ordinary cochains is isomorphic to the group cohomology classes obtained from the “normalized” cochains. Let us use $C^d(G, \mathbb{M})$, $Z^d(G, \mathbb{M})$, and $B^d(G, \mathbb{M})$ to denote the “normalized” cochains, cocycles, and coboundaries. We have

$$H^d(G, \mathbb{M}) = Z^d(G, \mathbb{M})/B^d(G, \mathbb{M}).$$

Appendix B: The Künneth formula

The Künneth formula is a very helpful formula that allows us to calculate the cohomology of chain complex $X \times X'$ in terms of the cohomology of chain complex X and chain complex X'. The Künneth formula is given by (see Ref. 85 page 247)

$$H^d(X \times X', \mathbb{M} \otimes R \mathbb{M}') \cong \bigoplus_{k=0}^{d} H^k(X, \mathbb{M}) \otimes_R H^{d-k}(X', \mathbb{M}')$$

$$+ \bigoplus_{k=0}^{d+1} \text{Tor}_1^R(H^k(X, \mathbb{M}), H^{d-k+1}(X', \mathbb{M}')).$$
(B1)

Here R is a principle ideal domain and \mathbb{M}, \mathbb{M}' are R-modules such that $\text{Tor}_1^R(\mathbb{M}, \mathbb{M}') = 0$. Note that \mathbb{Z} and R are principal ideal domains, while \mathbb{R}/\mathbb{Z} is not. R-module is like a vector space over R (i.e. we can “multiply” a vector by an element of R.) For more details on principal ideal domain and R-module, see the corresponding Wiki articles.

The tensor-product operation \otimes_R and the torsion-product operation Tor_1^R have the following properties:

$$A \otimes \mathbb{Z} B \simeq B \otimes A,$$
$$\mathbb{Z} \otimes \mathbb{M} \simeq \mathbb{M} \otimes \mathbb{Z} \simeq \mathbb{M},$$
$$\mathbb{Z}_n \otimes \mathbb{M} \simeq \mathbb{M} \otimes \mathbb{Z} = \mathbb{M}/n\mathbb{M},$$
$$\mathbb{Z}_m \otimes \mathbb{Z} \mathbb{N} = \mathbb{Z}_{(m,n)},$$
$$(A \otimes B) \otimes_R \mathbb{M} = (A \otimes_R \mathbb{M}) \otimes (B \otimes_R \mathbb{M}),$$
$$\mathbb{M} \otimes_R (A \oplus B) = (\mathbb{M} \otimes_R A) \oplus (\mathbb{M} \otimes_R B);$$
(B2)
and
\[
\text{Tor}^R_1(A, B) \simeq \text{Tor}^R_1(B, A),
\]
\[
\text{Tor}^Z_1(Z, M) = \text{Tor}^Z_1(\mathbb{M}, Z) = 0,
\]
\[
\text{Tor}^Z_1(Z_n, \mathbb{M}) = \{ m \in \mathbb{M} | nm = 0 \},
\]
\[
\text{Tor}^Z_1(Z_m, Z_n) = Z_{(m,n)},
\]
\[
\text{Tor}^R_1(A \oplus B, \mathbb{M}) = \text{Tor}^R_1(A, \mathbb{M}) \oplus \text{Tor}^R_1(B, \mathbb{M}),
\]
\[
\text{Tor}^R_1(\mathbb{M}, A \oplus B) = \text{Tor}^R_1(\mathbb{M}, A) \oplus \text{Tor}^R_1(\mathbb{M}, B),
\]
where \((m, n)\) is the greatest common divisor of \(m\) and \(n\). These expressions allow us to compute the tensor-product \(\otimes_R\) and the torsion-product \(\text{Tor}^R_1\).

The Künneth formula works for topological cohomology where \(X\) and \(X'\) is treated as spaces. The Künneth formula also works for group cohomology where \(X\) and \(X'\) is treated as groups.

As the first application of Künneth formula, we like to use it to calculate \(H^*(X, \mathbb{M})\) from \(H^*(X, Z)\). By choosing \(R = Z = Z\). In this case, the condition \(\text{Tor}^R_1(\mathbb{M}, \mathbb{M}') = \text{Tor}^Z_1(Z, \mathbb{M}') = 0\) is always satisfied. So we have
\[
H^d(X \times X', \mathbb{M}') \simeq \bigoplus_{k=0}^d H^k(X, Z) \otimes Z H^{d-k}(X', \mathbb{M}') + \left[\bigoplus_{k=0}^{d+1} \text{Tor}^Z_1(H^k(X, Z), H^{d-k+1}(X', \mathbb{M}')) \right].
\]

Now we can further choose \(X'\) to be the space of one point, and use
\[
H^d(X', \mathbb{M}') = \begin{cases} \mathbb{M}' , & \text{if } d = 0, \\ 0 , & \text{if } d > 0, \end{cases}
\]
to reduce eqn. (B4) to
\[
H^d(X, \mathbb{M}) \simeq H^d(X, Z) \otimes Z \mathbb{M} \oplus \text{Tor}^Z_1(H^{d+1}(X, Z), \mathbb{M}),
\]
where \(\mathbb{M}'\) is renamed as \(\mathbb{M}\). The above is a form of the universal coefficient theorem which can be used to calculate \(H^*(X, \mathbb{M})\) from \(H^*(X, Z)\) and the module \(\mathbb{M}\).

Using the universal coefficient theorem, we can rewrite eqn. (B4) as
\[
H^d(X \times X', \mathbb{M}) \simeq \bigoplus_{k=0}^d H^k[X, H^{d-k}(X', \mathbb{M})].
\]

Appendix C: Lyndon-Hochschild-Serre spectral sequence

The Lyndon-Hochschild-Serre spectral sequence\(^{84,86}\) allows us to understand the structure of \(H^d(GG \times

1. L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937)
2. V. L. Ginzburg and L. D. Landau, Zh. Ekaper. Teoret. Fiz.
80 D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001), arXiv:cond-mat/0005069
81 S. Ryu and S.-C. Zhang, Phys. Rev. 85, 245132 (2012)
82 X.-L. Qi (2012), arXiv:1202.3983
83 H. Yao and S. Ryu (2012), arXiv:1202.5805
84 G. Hochschild and J.-P. Serre, Transactions of the American Mathematical Society (American Mathematical Society) 74, 110 (1953)
85 E. H. Spanier, *Algebraic Topology* (McGraw-Hill, New York, 1966)
86 R. C. Lyndon, Duke Mathematical Journal 15, 271 (1948)