Lifestyle Intervention for Weight Loss and Cardiometabolic Changes in the Setting of Glucokinase Regulatory Protein Inhibition

Glucokinase Regulatory Protein-Leu446Pro Variant in Look AHEAD

L. Maria Belalcazar, MD; George D. Papandonatos, PhD; Bahar Erar, MS; Inga Peter, PhD; Hadeel Alkofide, PhD; Ashok Balasubramanyam, MD; Ariel Brautbar, MD; Steven E. Kahn, MB, ChB; William C. Knowler, MD, DrPH; Christie M. Ballantyne, MD; Jeanne M. McCaffery, PhD; Gordon S. Huggins, MD; for the Genetics Subgroup of the Look AHEAD Study

Background—Glucokinase regulatory protein (GCKR) inhibitors offer a novel treatment approach for glucose control in diabetes mellitus; however, their cardiometabolic effects, particularly in relation to increased triglycerides and C-reactive protein (CRP) levels, are of concern. GCKR Leu446Pro is a common variant associated with reduced GCKR function, increased triglycerides, and CRP.

Methods and Results—We investigated whether a 1-year intensive lifestyle intervention (ILI) for weight loss would avert the unfavorable cardiometabolic effects associated with GCKR Leu446Pro when compared with a diabetes mellitus support and education arm in overweight/obese individuals with type 2 diabetes mellitus with triglyceride (n=3214) and CRP (n=1411) data participating in a randomized lifestyle intervention study for weight loss, Action for Health in Diabetes Mellitus (Look AHEAD). Once demographics, medication use and baseline adiposity, and fitness were accounted for, ILI did not modify the baseline association of GCKR-Leu446Pro with elevated triglycerides (β±SE=0.067±0.013, P=1.5×10⁻⁷ and β±SE=0.052±0.015, P=5×10⁻⁴) or with elevated CRP (β±SE=0.136±0.034, P=5.1×10⁻³ and β±SE=0.903±0.038, P=0.015) in the overall sample and Non-Hispanic Whites, respectively. The lack of a protective effect from ILI at 1 year when compared with diabetes mellitus support and education (ILI versus diabetes mellitus support and education interaction for triglyceride and CRP change, respectively: P=0.64 and 0.37 in the overall sample; P=0.27 and 0.05 in Non-Hispanic Whites) persisted after additional adjustment for changes in adiposity and fitness.

Conclusions—Moderate improvements in adiposity and fitness with ILI did not mitigate the adverse cardiometabolic effects of GCKR inhibition in overweight/obese individuals with diabetes mellitus. (Circ Cardiovasc Genet. 2016;9:71-78. DOI: 10.1161/CIRCGENETICS.115.001192.)

Key Words: behavioral intervention ▪ C-reactive protein ▪ diabetes mellitus ▪ GCKR ▪ lifestyle ▪ obesity ▪ triglycerides

GCKR is found abundantly in liver, mainly in the nucleus of hepatocytes, where it plays a major role in the post-translational regulation of glucokinase (hexokinase IV). Glucokinase phosphorylates glucose, a fundamental step in the uptake of glucose by the liver for glycolysis, glycogen formation, and lipogenesis.4 When glucose levels are low, GCKR binds hepatic glucokinase in the nucleus, rendering the enzyme inactive and keeping it sequestered until glucose levels increase.5 The liver sees inhibition of glucokinase activity as a state of glucose depletion; glycogen levels decrease and gluconeogenesis increases, raising circulating glucose levels.6 Glucokinase is also present in pancreatic islet cells, where it functions as a glucose sensor.
that modulates insulin secretion, explaining the increased risk of hypoglycemia observed with activating glucokinase mutations or with systemic pharmacological glucokinase activation.8–9

Recent experiments in animals have shown that small molecule disruptors of GCKR promote lowering of blood glucose in hyperglycemic, but not in normoglycemic, animals,10,11 highlighting the advantage of this pharmacological approach over that of direct glucokinase activation for the treatment of individuals with diabetes mellitus. However, worsening of hypertriglyceridemia and subclinical inflammation, resulting from GCKR inhibition,12 may, as in the case of glucokinase activation,9,13 offset the beneficial glucose-lowering effect of this therapeutic approach. Identifying potential strategies to mitigate the adverse metabolic effects that occur with disruption of GCKR function are needed if glucokinase-related pharmacological strategies are to be used for the treatment of diabetes mellitus.

Understanding the effects of genetics on disease development and response to therapy has revolutionized the treatment of cardiometabolic disease: Sulfonylureas are now used instead of insulin to effectively treat individuals with neonatal diabetes mellitus expressing ATP-sensitive potassium channel subunit Kir6.2-activating mutations14; monoclonal antibody therapies that inhibit proprotein convertase subtilisin-kexin type 9 are now available as potent therapeutic alternatives for individuals at high risk of direct glucokinase activation for the treatment of individuals with diabetes mellitus. However, worsening of hypertriglyceridemia and subclinical inflammation, resulting from GCKR inhibition,11,12 may, as in the case of glucokinase activation,9,13 offset the beneficial glucose-lowering effect of this therapeutic approach. Identifying potential strategies to mitigate the adverse metabolic effects that occur with disruption of GCKR function are needed if glucokinase-related pharmacological strategies are to be used for the treatment of diabetes mellitus.

In this substudy of The Action for Health in Diabetes (Look AHEAD), a randomized lifestyle intervention trial in overweight/obese individuals with type 2 diabetes mellitus (T2DM), we examined the effects of an intensive lifestyle intervention (ILI) aimed at producing weight loss on changes in triglyceride and CRP levels in the setting of genetic GCKR inhibition. We hypothesized that in the setting of diabetes mellitus, a 1-year of ILI would favorably alter the association of GCKR-Leu446Pro with dyslipidemia and high CRP levels, when compared with a control arm of diabetes mellitus support and education (DSE), and that the favorable effects of ILI would depend on the resulting improvement of overall adiposity and fitness. The liver plays an important role in the synthesis of CRP and in the production of circulating triglyceride-rich lipoproteins. We have observed in Look AHEAD that ILI resulted in a reduction in triglyceride and CRP levels,22,23 changes that could lead to an attenuation of the proinflammatory and lipogenic effects of GCKR-Leu446Pro in the liver. Our hypothesis is supported by findings from the Diabetes Prevention Program (DPP) in nondiabetic individuals showing that lifestyle intervention for weight loss was able to reduce the effects of the P466 allele on hypertriglyceridemia.24

Methods

Study Design and Participants

Look AHEAD study is a multicenter trial that randomly assigned participants with T2DM who were overweight or obese to ILI, with the goal of producing 7% weight loss through calorie restriction and physical activity or to DSE with no weight loss or physical activity goals.20 The intervention was modeled after that of DPP, but intensified given the greater severity of obesity and the use of insulin in our participants. During the first year, ILI participants attended 3 group sessions and 1 individual monthly encounter (initial 6 months), followed by 2 group and 1 individual monthly appointments thereafter, aimed at supporting behavioral change to increase physical activity to 175 weekly minutes of moderate-intensity exercise and to reduce caloric intake. The activity program relied on at-home exercise, mostly brisk walking. Participants were also asked to increase lifestyle forms of physical activity. The energy intake goal was 1200 to 1500 kcal/day if body weight was <114 kg and 1500 to 1800 kcal/day if weight was ≥114 kg. DSE participants received 3 group health information sessions during the year. All participants were required to pass a test of behavioral adherence before enrollment26 and to continue care with a primary provider during trial participation. ILI treatment session attendance at 1 year was excellent, regardless of underlying weight category.17 Although the randomized study ended early without a significant difference in the primary cardiovascular end point between treatment arms, the behavioral intervention was successful as participants in the ILI arm lost significantly greater amounts of weight and showed greater improvement in fitness, waist circumference, and indices of diabetes mellitus control, including a reduction in diabetes mellitus medication use, hemoglobin A1c, and fasting glucose, compared with DSE participants.22,23 The maximal benefits of ILI on weight loss and on fitness were evident during the first year of the trial when the intervention was most intense. In addition, and in relation to this study, participants in the ILI group showed greater improvements in triglycerides and CRP levels at year 1 when compared with the DSE group.21,22

Of 4047 Look AHEAD participants with available DNA, 276 were excluded: 1 subject had missing data on the marker of interest (rs1260326), 256 subjects had missing lipid medication information, 240 subjects were taking niacin or fibrates at both measurement times and were excluded because of the known medication effects on triglycerides, and 19 subjects were excluded because they were missing triglycerides and CRP levels at both time points. If participants initiated niacin or fibrates use after enrollment, the 1-year time point was dropped from the analyses, but the subjects themselves were retained in the data set because they still contributed to the estimation of baseline outcomes. This yielded an effective sample size of 3771 participants with both phenotypic and genotypic data, of which 2607 were non-Hispanic Whites (NHW).

In NHW-specific analyses, all 4 subjects from the smallest site were excluded because they had all been assigned to the ILI arm, and therefore, this site could not contribute to the estimation of ILI-DSE differences. Of note, measurements for CRP were obtained in approximately the first half of Look AHEAD participants at each study site, 1523 of which had also consented to genetic testing. Analysis on the effect of the intervention on the association of the GCKR variant with biomarker change was performed in 3214 participants with triglyceride levels at baseline and year 1 (2232 NHW) and in 1411 (1085 NHW) with available CRP data at both time points. All included participants signed informed consent for participation in Look AHEAD, including genetic analyses, with Institutional Review Board approval by their local institutions. Genetic analyses were approved by the Miriam Hospital and Tufts Medical Center Institutional Review Boards and measurement of CRP by the Baylor College of Medicine Institutional Review Board. Genotyping was performed using the Metabochip (Illumina, San Diego, CA).

Anthropometry and Fitness

Procedures for anthropometric measures, including body mass index (BMI) and waist circumference, have been previously described.19
Fitness was defined as the estimated level of metabolic equivalents of task (1 metabolic equivalents of task = 3.5 mL/kg/min of oxygen uptake) achieved on a treadmill workload (speed and grade) at 80% of maximal heart rate (submaximal) or at a rating of 16 on the Rating of Perceived Exertion scale for participants on β-blockers, as described previously.29

Biomarker Measurements

Fasting triglyceride levels were measured enzymatically using methods standardized to the Centers for Disease Control and Prevention reference methods.23 Hs-CRP was measured using a latex particle–enhanced immunoturbidometric assay (Equal Diagnostics/Genzyme) as previously described.22

Statistical Analysis

Continuous variables were summarized using mean/SD if symmetrical. Variables that were log-transformed to reduce skewness, including CRP and triglyceride levels, were displayed in both the original scale using median/interquartile-range and in the logarithmic scale using mean/SD in descriptive analysis.

Baseline (Y0) and Year 1 (Y1) measurements of interest were modeled jointly across time as multivariate normal variables with an unstructured covariance matrix. Associations with baseline values of the outcome of interest (Y0) and with change in the outcome from baseline to year-1 (Y1-Y0) were then evaluated by a linear transformation. Because both CRP and triglyceride levels were log-transformed before being entered into the regression model (Y=ln Z), regression coefficients (β) measure the effect per minor allele copy (T) on the scale in which each particular outcome was analyzed, that is, they represent differences in log CRP and log triglyceride levels between the CC and TC genotypic groups. Differences between CC and TT genotypic groups can be estimated by doubling the marker effects shown on these tables. Of note, absolute differences in the logarithmic scale become relative differences, that is, percentage changes, when expressed in the original scale of the data. Hence, marker effects in the CRP and triglyceride scale can be obtained by exponentiating the corresponding linear regression coefficients and associated 95% confidence interval end points.

Three-way interaction models of individual single-nucleotide polymorphism (SNP) markers with measurement time (1 year versus baseline) and study arm (ILI versus DSE) were estimated for each outcome in Splus 8.2 (TIBCO Software, Seattle, WA) using restricted maximum likelihood. An additive genetic model was used, with genotype coded by the number of minor alleles (0/1/2 copies). Three distinct types of SNP effects were estimated, which can be interpreted as the effect of 1 additional copy of the corresponding minor allele on (1) baseline triglyceride and CRP levels for ILI and DSE participants combined; (2) ILI versus DSE differences in baseline triglyceride and CRP levels as a randomization check; (3) ILI versus DSE differences in 1 year change in triglycerides and CRP levels (SNP×treatment×time interaction). All our results are based on full 3-way hierarchical interaction models, that is, one in which all 2-way interactions is also included in the model, with no additional model simplification. To aid with the interpretation of interactions, we report marker effects on 1-year change separately for ILI and DSE.

Outcomes at baseline and year 1 were adjusted in successively elaborated models for (1) study site, age, sex, ancestry (based on the first 3 Ancestry Informative Marker principal components), concurrent use of lipid-lowering medications (over 97% statins), and thiazolidinediones (with pioglitazone and rosiglitazone effects modeled separately), as well as baseline hormonal replacement therapy in women; (2) all model (1) covariates plus BMI and fitness at baseline; (3) all Model (1) covariates plus BMI and fitness as time-varying covariates. Of note, Model 3 accounts for both baseline values and 1-year change in BMI and fitness on 1-year change in outcomes. With the exception of study site, covariates were fully interacted with time, treatment, and time by treatment, so as to allow their effects to vary across study arm and time point. Finally, to compare our findings with those from DPP assessing the effects of ILI on the association of triglyceride and CRP changes with GCKR-Leu446Pro in individuals without diabetes mellitus,24 we examined the associations of interest in models that adjusted for covariates in model (1) with the addition of baseline BMI and waist circumference, instead of medication use.

Results

Participant Characteristics at Baseline and Year 1

Sample characteristics are shown in Table 1 for the cohort of Look AHEAD participants with genetic and biomarker data. Sample sizes are shown for each outcome, both in the overall cohort and in NHW and mainly reflect biomarker availability because study dropout in Look AHEAD at year 1 was low (≤3%).23 Participants were obese, with mean BMI of 36.2 kg/m². Triglyceride levels were mildly elevated at baseline, more so in NHW than in the overall group. CRP levels were high in both the overall sample and in NHW as previously described.22 Use of statin and thiazolidinediones were similar between groups. The frequency of the minor allele (T) for the GCKR-Leu446Pro variant (rs1260326) was 35% in the overall sample and 40% in NHW, without differences in prevalence by treatment arm.

Similar to the overall Look AHEAD cohort,23 ILI participants in this study, in both the overall and the NHW samples, showed lower BMI, waist circumference, triglycerides, and CRP and improved fitness at 1 year, as compared with participants in the DSE group (all P<0.001; Table 1). Differences in lipid-lowering medication and thiazolidinedione use at 1 year were observed between study arms, with greater medication use among DSE participants.

Effects of GCKR-Leu446Pro Variant on Baseline Triglyceride and CRP Levels

Marker effects for the full sample and for NHW at baseline are shown in Table 2 for triglycerides and in Table 3 for CRP. Given that marker effects on triglyceride and CRP levels showed no between-arm differences by genotypic group in either the overall sample or among NHW at baseline, we show baseline results with both treatment groups combined. GCKR-Leu446Pro was significantly associated with increased levels of triglycerides and CRP at baseline. The association of the T allele with elevated log triglycerides in the overall sample (β±SE=0.068±0.013; P=7.3×10⁻⁴) corresponds to a 7% increase in triglycerides per minor allele copy (exp [β=1.07, 95% confidence interval=1.04–1.10]). The association was also significant among NHW alone (β±SE=0.053±0.015; P=3×10⁻⁴), with a 5% increase in triglycerides per minor allele copy (exp [β=1.05, 95% confidence interval=1.02–1.09]). Likewise, the T allele was associated with high log CRP in both the overall sample (β±SE=0.148±0.036; P=4.2×10⁻⁵) and among NHW (β±SE=0.016±0.042; P=0.01). This association corresponds to a 16% increase in CRP per minor allele copy (exp [β=1.16, 95% confidence interval=1.08–1.24) in the overall sample, attenuated to an 11% increase among NHW (exp [β=1.11, 95% confidence interval=1.02–1.21]). Additional adjustment for BMI and cardiorespiratory fitness at baseline did not materially affect these findings.

Associations of GCKR-Leu446Pro With 1-Year Change in Triglyceride and CRP Levels by Treatment Arm

Marker effects from baseline to follow-up are shown in Table 4 for triglycerides and in Table 5 for CRP. Estimates are presented...
separately for ILI and DSE and then compared across study arms. As seen from Table 4, no evidence emerged of ILI versus DSE differences in marker effects on 1-year change in triglycerides, whether one adjusted or not for baseline BMI and fitness or their 1-year change (P value ≥ 0.56 in the overall sample and ≥ 0.26 among NHW). Comparable results were obtained...
belalcazar et al lifestyle intervention and gckr leu446pro effects 75

Table 2. Baseline Associations of GCKR-Leu446Pro With Triglycerides in the Overall Sample and in Non-Hispanic Whites

Model	Overall	Non-Hispanic Whites				
	Beta	SE	P Value	Beta	SE	P Value
1	0.068	0.013	7.3E-08	0.053	0.015	0.0003
2	0.067	0.013	1.5E-07	0.052	0.015	0.0005

Model 1 adjusts for age, sex, ancestry (PCAs 1–3), clinic site, hormonal replacement therapy, use of lipid-lowering medication, and thiazolidinediones (pioglitazone and rosiglitazone modeled separately). Model 2 adds baseline BMI and fitness to Model 1. Allele T (the minor allele) was used as the coded allele. BMI indicates body mass index; GCKR, glucokinase regulatory protein; and PCAs 1–3, first 3 Ancestry Informative Marker principal components.

Discussion

To our knowledge, this is the first study to evaluate the interaction of GCKR-Leu446Pro status with a randomly assigned behavioral lifestyle intervention for weight loss on CRP and triglyceride levels in the setting of diabetes mellitus. Our study follows promising findings from the DPP23 in individuals without diabetes mellitus and takes advantage of the common occurrence of this genetic variant associated with decreased GCKR function. Our studies in a large sample of overweight/obese adults with T2DM show that, in contrast to what was observed with triglycerides in the less obese non-diabetic DPP cohort, randomization to ILI did not protect GCKR-Leu446Pro carriers against the increase in triglycerides and CRP levels observed at baseline, despite significant improvements in adiposity and fitness. Our results suggest that moderate weight loss and improved fitness are insufficient to mitigate the unfavorable effects of GCKR inhibition on hypertriglyceridemia and on subclinical inflammation, as measured by CRP, in individuals with T2DM and point to the need of developing other strategies to mitigate the adverse cardiometabolic effects of GCKR inhibitors for the treatment of hyperglycemia in diabetes mellitus.

As observed in studies involving mostly/only individuals without diabetes mellitus,11,21,24 we found in this cohort of overweight/obese individuals with diabetes mellitus that GCKR-Leu446Pro is associated with a median 7% and 15% increase in baseline triglyceride and CRP levels, respectively. GCKR, highly expressed in hepatocytes, blocks glucokinase activity when glucose levels are low by sequestering the enzyme in the nucleus.5,6 Decreased GCKR function results in increased gluconeogenesis and glycogenolysis and may, particularly if chronically stimulated, increase lipid synthesis, resulting in a rise in very low-density lipoprotein secretion and triglyceride deposition in the liver.4 Hepatic fat deposition activates mechanisms that result in local inflammation and increase the secretion of CRP.25

In DPP, the only other study to date examining the effects of a randomized weight loss intervention in GCKR carriers,33 a 1-year weight loss intervention was able to weaken the effects of GCKR-Leu446Pro on baseline triglyceride levels. The lack of an effect of ILI on the triglyceride effects of the variant in our study of diabetic patients, when compared with DPP (a study in adults without diabetes mellitus), is not the result of sample size differences, race/ethnicity, or a lack of significant weight loss because sample size was similar for this outcome between studies and change in weight loss was greater in Look AHEAD than in DPP. Furthermore, both studies included a diverse population. Rather, our results suggest that among overweight/obese diabetic patients, the underlying metabolic abnormalities may be such that ILI is not able to avert the deleterious effects of GCKR inhibition on triglyceride levels, a phenomenon that may in part be as a result of peculiarities of the effects of GCKR inhibition in individuals with chronic hyperglycemia, to the more advanced age and longer duration of dysmetabolism in our diabetic cohort, and to the use of medications that are not routinely prescribed in nondiabetic adults, including statins and thiazolidinediones. In addition, our results on the association of GCKR-Leu446Pro on CRP did not differ materially from those for CRP change in all models under examination in the overall sample (P≥0.20), although a borderline significant interaction effect was detected among NHW alone (P=0.05), after regression adjustment for the full set of variables under consideration.

Table 3. Baseline Associations of GCKR-Leu446Pro With CRP in the Overall Sample and in Non-Hispanic Whites

Model	Overall	Non-Hispanic Whites				
	Beta	SE	P Value	Beta	SE	P Value
1	0.148	0.036	4.2E-05	0.106	0.042	0.011
2	0.136	0.034	5.1E-05	0.093	0.038	0.015

Model 1 adjusts for age, sex, ancestry (PCAs 1–3), clinic site, hormonal replacement therapy, use of lipid-lowering medication, and thiazolidinediones (pioglitazone and rosiglitazone modeled separately). Model 2 adds baseline BMI and fitness to Model 1. Allele T (the minor allele) was used as the coded allele. BMI indicates body mass index; GCKR, glucokinase regulatory protein; and PCAs 1–3, first 3 Ancestry Informative Marker principal components.
of DPP. The CRP by treatment interaction we observed in favor of the DSE arm was limited to the NHW subgroup and was only of borderline significance (P ≤ 0.05 after adjustment for the full set of variables, including baseline BMI, fitness, and medication use). This interaction remained unchanged after accounting for adiposity and fitness changes. Of note, when analyzing data from our sample of overweight/obese individuals with diabetes mellitus using regression models similar to those of Pollin et al24 in the prediabetic sample of DPP, we were unable to find evidence of a protective effect of ILI on triglyceride or CRP change. These models (in the Data Supplement) examined the effects of ILI on the association of GCKR-Leu446Pro variant with changes in triglyceride and CRP levels after adjustments for demographics, baseline BMI, and waist circumference, without controlling for medication use.

We acknowledge that our study has several strengths, as well as limitations. Look AHEAD is the largest randomized lifestyle intervention study for weight loss in individuals with diabetes mellitus to date. It provides a unique opportunity, not available from observational studies, to examine the effects of intentional weight loss, increased physical activity, and improved fitness on the association of genetics with metabolic traits. Our study contributes novel data in the setting of T2DM, suggesting that changes in weight and fitness with ILI do not significantly mitigate the unfavorable lipid and inflammatory effects associated with GCKR inhibition. Our results have translational significance because they relate to a potential approach in the management of the adverse metabolic consequences of glucose-lowering therapies that rely on the disruption of GCKR function.

We recognize that the effects of ILI on GCKR-Leu446Pro observed in this study are not indicative of causality and that

Table 5. Associations of GCKR-Leu446Pro With 1-Year Change in CRP Levels by Treatment Arm in the Overall Sample and in Non-Hispanic Whites

Study Arm	Model	Overall	Non-Hispanic Whites			
	Beta	SE	P Value	Beta	SE	P Value
ILI						
1	0.024	0.046	0.59	0.065	0.055	0.24
2	0.022	0.046	0.63	0.067	0.055	0.22
3	0.011	0.044	0.80	0.061	0.053	0.25
DSE						
1	-0.065	0.048	0.18	-0.086	0.057	0.13
2	-0.064	0.048	0.19	-0.089	0.057	0.12
3	-0.060	0.047	0.20	-0.089	0.055	0.10
ILI vs DSE						
1	0.089	0.066	0.18	0.151	0.079	0.06
2	0.086	0.066	0.20	0.156	0.079	0.05
3	0.071	0.064	0.27	0.150	0.076	0.05

Model 1 adjusts for age, sex, ancestry (PCAs 1–3), clinic site, hormonal replacement therapy at baseline, 1-year use of lipid-lowering medication, and thiazolidinediones (pioglitazone and rosiglitazone modeled separately). Model 2 adds baseline BMI and fitness to Model 1. Model 3 adds BMI and fitness at 1 year to Model 2. Allele T (the minor allele) was used as the coded allele. BMI indicates body mass index; DSE, diabetes mellitus support and education arm; GCKR, glucokinase regulatory protein; ILI, intensive lifestyle intervention; and PCAs 1–3, first 3 Ancestry Informative Marker principal components.
the association of the genetic variant with triglycerides and CRP may not be fully comparable to that seen with pharmacological GCKR inhibition. Although Look AHEAD is the largest trial available to date with data in overweight/obese individuals with diabetes mellitus within a randomized lifestyle intervention for weight loss, our findings of genotype-treatment response interaction are limited because SNP×treatment interactions are likely to have smaller effect sizes than SNP main effects. Our power limitations preclude the performance of sensitivity analyses exploring whether certain subsets of diabetic GCKR variant carriers, such as those who achieved the greatest weight loss within the ILI arm in Look AHEAD, may have experienced a mitigation of the variant effect on lipid and inflammatory biomarker levels. Furthermore, it is possible, although highly unlikely given the findings of Pollin et al24 using a similar statistical approach in nondiabetic individuals, that a nonlinear model would have uncovered a potential benefit from ILI on variant carriers. Of note, despite our findings suggesting that ILI does not weaken the unfavorable associations of GCKR-Leu446Pro with elevated triglycerides and CRP, our study also suggests that GCKR inhibition does not interfere with the beneficial effects of ILI on triglyceride and CRP change in overweight/obese individuals with diabetes mellitus. Strategies that directly target triglyceride25 and inflammatory pathways deserve further investigation as potential approaches to enhance the metabolic benefits of ILI in the setting of GCKR inhibition.

Acknowledgments

The investigators thank the Look Action for Health in Diabetes Mellitus (AHEAD) study participants and the principal investigators, coinvestigators, and staff at each clinical site for their contributions to the success of the trial (please see Addendum for contributing Look AHEAD clinical center investigators and staff).

Sources of Funding

This study was funded by DK090043-02 and X01 HG006659 (Drs Papadonatos, McCaffery, Huggins) and HL090514-01 (Drs Belalcazar and Ballantyne). Look AHEAD was supported by the Department of Health and Human Services through the following cooperative agreements from the National Institutes of Health: DK57136, DK57149, DK56900, DK57177, DK57171, DK57151, DK57182, DK57131, DK57002, DK57078, DK57154, DK57178, DK57219, DK57008, DK57135, and DK56992. The following federal agencies have contributed support: National Institute of Diabetes and Digestive and Kidney Diseases; National Institutes of Health (NIH) Office of Research on Minority Health and Health Disparities; National Institutes of Health (NIH) Office of Research on Women’s Health; and the Centers for Disease Control and Prevention. This research was supported in part by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases. The Indian Health Service (IHS) provided personnel, medical oversight, and use of facilities. The opinions expressed in this article are those of the authors and do not necessarily reflect the views of the IHS or other funding sources. Additional support was received from The Johns Hopkins Medical Institutions Bayview General Clinical Research Center (M01RR02719); the Massachusetts General Hospital Mallinckrodt General Clinical Research Center (M01RR01066); the University of Colorado Health Sciences Center General Clinical Research Center (M01RR00051) and Clinical Nutrition Research Unit (P30 DK48520); the University of Tennessee at Memphis General Clinical Research Center (M01RR0021140); the University of Pittsburgh General Clinical Research Center (M01RR00056 44) and NIH grant (DK 046204); the VA Puget Sound Health Care System Medical Research Service, Department of Veterans Affairs; and the Frederic C. Barter General Clinical Research Center (M01RR01346). The following organizations have committed to make major contributions to Look AHEAD: Federal Express; Health Management Resources; Johnson & Johnson, LifeScan Inc; Optifast-Novartis Nutrition; Roche Pharmaceuticals; Ross Product Division of Abbott Laboratories; Slim-Fast Foods Company; and Unilever.

Disclosures

None.

Appendix

From the Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Medical Branch, Galveston (L.M.B., C.M.B.); Center for Statistical Sciences, Brown University, Providence, RI (G.D.P., B.E.); Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY (L.P.); Clinical Translational Sciences Program, Sackler School of Biomedical Research, Tufts University, Boston, MA (H.A.); Translational Metabolism Unit, Diabetes Research Center, Division of Diabetes, Endocrinology & Metabolism (A. Balasubramanyam) and Department of Medicine (A. Brautbar), Baylor College of Medicine, Houston, TX; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle (S.E.K.); National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ (W.C.K.); Methodist DeBakey Heart and Vascular Center, Houston, TX (C.M.B.); Weight Control and Diabetes Research Center, Department of Psychiatry and Human Behavior, The Miriam Hospital and Brown Medical School, Providence, RI (J.M.M.); and Molecular Cardiology Research Institute, Center for Translational Genomics, Tufts Medical Center and Tufts University, Boston, MA (G.S.H.).

References

1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–149. doi: 10.1016/j.drcp.2013.11.002.
2. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, et al. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 2011;378:31–40. doi: 10.1016/s0140-6736(11)60679-x.
3. de la Iglesia N, Mukhtar M, Seoane J, Guinovart JJ, Aguas L. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem. 2000;275:10597–10603.
4. Dentin R, Pégourié JP, Benhamed F, Fouléille F, Ferré P, Fauveau V, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279:20314–20326. doi: 10.1074/jbc.M312475200.
5. Grimsby J, Coffey JW, Dvorozniak MT, Magrano J, Li G, Matschinsky FM, et al. Characterization of glucokinase regulatory protein-deficient mice. J Biol Chem. 2000;275:7826–7831.
6. Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and current status. J Biol Chem. 2014;289:12189–12194. doi: 10.1074/jbc.M113475200.
7. Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A, Buchs A, et al. Familial hyperinsulinism caused by an activating glucokinase mutation. J Biol Chem. 2014;289:12189–12194. doi: 10.1074/jbc.M312475200.
8. Hansen T, et al. The second activating glucokinase mutation (A456V): a fresh view of glycolysis and glucokinase regulation. J Biol Chem. 1998;273:20358–20363. doi: 10.1074/jbc.1998011233080402.
9. Christensen HB, Jacobsen BB, Odíi S, Buetgger C, Cuesta-Munoz A, Hansen T, et al. The second activating glucokinase mutation (A456V): implications for glucose homeostasis and diabetes therapy. Diabetes. 2002;51:1240–1246.
10. Meiningner GE, Scott R, Albu M, Shentu Y, Luo E, Amin H, et al. Effects of MK-0941, a novel glucokinase activator, on glycemic control in insulin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2560–2566. doi: 10.2337/dc11-1200.
10. Lloyd DJ, St Jean DJ Jr, Kurzeja RJ, Wahl RC, Michelson K, Cupples R, et al. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature. 2013;504:437–440. doi: 10.1038/nature12724.

11. Orho-Melander M, Melander O, Guiducci C, Perez-Martinez P, Corella D, Roos C, et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes. 2008;57:3112–3121. doi: 10.2337/db08-0516.

12. Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, et al; NASH CRN; GIANT Consortium; MAGIC Investigators; GOLD Consortium. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7:e1001324. doi: 10.1371/journal.pgen.1001324.

13. De Ceaninck F, Kargar C, Ilic C, Caliez A, Rolin JO, Ubbenditck T, et al. Small molecule glucokinase activators disturb lipid homeostasis and induce fatty liver in rodents: a warning for therapeutic applications in humans. Br J Pharmacol. 2013;168:339–353. doi: 10.1111/bjp.12184.x.

14. Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, et al; Neonatal Diabetes International Collaborative Group. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355:467–477. doi: 10.1056/NEJMoa061759.

15. Robinson JG, Farnier M, Krempef M, Bergeron J, Luc G, Averna M, et al; ODYSSEY LONG TERM Investigators. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–1499. doi: 10.1056/NEJMoa1501031.

16. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al; LOOK AHEAD Study Group. One-year weight losses in the Look AHEAD study: factors associated with success. Obesity (Silver Spring). 2010;18:713–722. doi: 10.1089/obesity.2008.637.

17. Unick JL, Beavers D, Jakicic JM, Kitabchi AE, Knowler WC, Wadden TA, et al; Look AHEAD Research Group. Effectiveness of lifestyle interventions for individuals with severe obesity and type 2 diabetes: results from the Look AHEAD trial. Diabetes Care. 2011;34:2152–2157. doi: 10.2337/dc11-0874.

18. Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, et al; Look AHEAD Research Group. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308:2489–2496. doi: 10.1001/jama.2012.67929.

19. Jakicic JM, Jaramillo SA, Balasubramanyam A, Bancroft B, Curtis JM, Mathews A, et al; Look AHEAD Study Group. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the Look AHEAD Study. Int J Obes (Lond). 2011;35:479–487. doi: 10.1038/oby.2010.280.

20. Yoneda M, Mawatari H, Fujita K, Iida H, Yonemitsu K, Kato S, et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol. 2009;44:573–582. doi: 10.1007/s00535-007-2060-x.

21. Belalacazar LM, Rebossin DM, Haffner SM, Hoogeveen RC, Kriska AM, Schwenke DC, et al; Look AHEAD Research Group. A 1-year lifestyle intervention for weight loss in individuals with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change: from the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care. 2010;33:2897–2903. doi: 10.2337/dc10-0755.

22. Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, Clark JM, et al; Look AHEAD Research Group. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30:1374–1383. doi: 10.2337/dc07-0048.

23. Pollin TI, Jablonski KA, McAttee JB, Saxena R, Kathiresan S, Kahn SE, et al; Diabetes Prevention Program Research Group. Triglyceride response to an intensive lifestyle intervention is enhanced in carriers of the GCKR Pro446Leu polymorphism. J Clin Endocrinol Metab. 2011;96:E1142–E1147. doi: 10.1210/jc.2010-2324.

24. Ryan DH, Espeland MA, Foster GD, Haffner SM, Hubbard VS, Johnson KC, et al; Look AHEAD Research Group. Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials. 2003;24:610–628.

25. Wadden TA, West DS, Neiberg RH, Wing RR, Ryan DH, Johnson KC, et al; Look AHEAD Research Group. One-year weight losses in the Look AHEAD study: factors associated with success. Obesity (Silver Spring). 2011;19:47–56. doi: 10.1089/obesity.2008.408.

26. Unick JL, Beavers D, Jakicic JM, Kitabchi AE, Knowler WC, Wadden TA, et al; Look AHEAD Research Group. Effectiveness of lifestyle interventions for individuals with severe obesity and type 2 diabetes: results from the Look AHEAD trial. Diabetes Care. 2011;34:2152–2157. doi: 10.2337/dc11-0874.

27. Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, et al; Look AHEAD Research Group. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308:2489–2496. doi: 10.1001/jama.2012.67929.

28. Jakicic JM, Jaramillo SA, Balasubramanyam A, Bancroft B, Curtis JM, Mathews A, et al; Look AHEAD Study Group. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the Look AHEAD Study. Int J Obes (Lond). 2011;35:479–487. doi: 10.1038/oby.2008.280.

29. Yoneda M, Mawatari H, Fujita K, Iida H, Yonemitsu K, Kato S, et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol. 2009;44:573–582. doi: 10.1007/s00535-007-2060-x.

30. The Diabetes Prevention Program: baseline characteristics of the randomized cohort. The Diabetes Prevention Program Research Group. Diabetes. 2000;59:179–189. doi: 10.2337/diabetes.59.2.179.

31. The Diabetes Prevention Program: baseline characteristics of the randomized cohort. The Diabetes Prevention Program Research Group. Diabetes. 2002;51:1701–1715. doi: 10.2337/diabetes.51.11.1701.

32. Perez-Martinez P, Corella D, Shen J, Arnett DK, Yianakouris N, Tai ES, et al. Association between glucokinase regulatory protein (GCKR) and apolipoprotein A5 (APOA5) gene polymorphisms and triacylglycerol concentrations in fasting, postprandial, and fenofibrate-treated states. Am J Clin Nutr. 2009;89:391–399. doi: 10.3945/ajcn.2008.26363.

CLINICAL PERSPECTIVE

There is a growing need for treatment strategies that correct hyperglycemia without causing significant hypoglycemia or increasing cardiovascular disease risk in patients who have type-2 diabetes mellitus. Inhibitors of glucokinase regulatory protein (GCKR) have shown promise in controlling blood glucose levels; however, this benefit is associated with worsening of hypertriglyceridemia and subclinical inflammation. To better predict the effects of GCKR inhibition in the setting of type-2 diabetes mellitus, we studied the effects of a common coding variant, GCKR-Leu446Pro (rs1260326), which has reduced GCKR function, in Look Action for Health in Diabetes Mellitus (AHEAD), a randomized lifestyle intervention trial in overweight/obese individuals with type-2 diabetes mellitus. We asked whether an intensive lifestyle intervention aimed at producing weight loss also modified the effects of genetic GCKR inhibition on changes in triglyceride and the inflammatory biomarker C-reactive protein. Our hypothesis was supported by findings from the Diabetes Prevention Program that showed that a behavioral intervention reduced the effects of the P466 allele on hypertriglyceridemia in nonobese individuals. Compared with baseline, the body mass index decreased significantly in the intensive lifestyle intervention group but not in a diet support and education group; however, intensive lifestyle intervention did not protect against the increase in triglyceride and C-reactive protein levels observed with GCKR-Leu446Pro at baseline. Taken together, our results demonstrate that a behavioral intervention designed to produce moderate weight loss does not mitigate the adverse cardiometabolic effects of GCKR inhibition in obese individuals with diabetes mellitus. Additional strategies are required to better control the effects of GCKR inhibition on triglycerides and inflammation.