Prospects for Abiotic Stress Tolerance in Crops Utilizing Phyto- and Bio-Stimulants

Nidhi Rai1,2, Shashi Pandey Rai1 and Birinchi Kumar Sarma2*

1 Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India, 2 Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India

Environmental stressors such as salinity, drought, high temperature, high rainfall, etc. have already demonstrated the negative impacts on plant growth and development and thereby limiting productivity of the crops. Therefore, in the time to come, more sustainable efforts are required in agricultural practices to ensure food production and security under such adverse environmental conditions. A most promising and eco-friendly way to achieve this goal would be to apply biostimulants to address the environmental concerns. Non-microbial biostimulants such as humic substances (HA), protein hydrolysate, plant-based products and seaweed extracts (SWE), etc. and/or microbial inoculants comprising of plant growth-promoting microbes such as arbuscular mycorrhizal fungi (AMF), fluorescent and non-fluorescent Pseudomonas, Trichoderma spp., Bacillus spp. etc. have tremendous potentiality to enhance plant growth, flowering, crop productivity, nutrient use efficiency (NUE) and translocation, as well as enhancing tolerance to a wide range of abiotic stresses by modifying physiological, biological and biochemical processes of the crop-plants. Similarly, application techniques and timing are also important to achieve the desired results. In this article we discussed the prospects of using seaweed, microbial, and plant-based biostimulants either individually or in combination for managing environmental stresses to achieve food security in a sustainable way. Particular attention was given to the modifications that take place in plant’s physiology under adverse environmental conditions and how different biostimulants re-program the host’s physiology to withstand such stresses. Additionally, we also discussed how application of biostimulants can overcome the issue of nutrient deficiency in agricultural lands and improve their use efficiency by crop plants.

Keywords: biostimulants, abiotic stress tolerance, microbial inoculants, seaweed extract, plant-based biostimulants, crop improvement

INTRODUCTION

Biostimulants are natural or synthetic products derived from plants and/or microbes, and have the potential to promote the physiological processes of plants benefitting nutrient uptake and translocation, as well as enhanced tolerance to several abiotic stresses. These products can be directly applied to seeds, seedlings and plants or can be introduced into the rhizosphere of crops with the goal to improve plant productivity and growth in a sustainable way under environmental stresses. Plants continuously face stressful events such as drought, salinity, extreme temperature,
high rainfall, etc., at every stage of their growth and development starting from seed germination to completion of the entire life cycle. The abiotic stress factors may alter the plant's physiological processes and/or thereby increase their susceptibility to pests and pathogens and serve as a limiting factor for plant's survival, productivity and growth (West et al., 2012; Maharshi et al., 2021). A diverse agro-chemical and traditional approaches are being adopted to mitigate the adverse environmental effects but one of the most promising and eco-friendly ways recognized to achieve this goal is to use biostimulants to address such concerns (Yakhin et al., 2017). It is because of the fact that in most cases it was observed that application of biostimulants can diminish the demand of synthetic fertilizers and pesticides as the biostimulants have the potentiality to enhance the crop’s nutrient use efficiency (NUE) for both micro- and macro-nutrients (Calvo et al., 2014; Van Oosten et al., 2017). However, the plant biostimulants (PBs) are not a direct substitute of fertilizers and pesticides. But their application can very well reduce the need for fertilizers and pesticides and thereby reduce their potential impact on environmental hazards in a crop production system. In earlier articles, biostimulants are discussed mostly in the context of plant-based products that have potentiality to stimulate plant growth under various stresses. However, in majority of the articles the microbe-based biostimulants were not discussed or compared with the plant-based biostimulants. Therefore, the current article presents a holistic insight into the various plant- and microbial-biostimulants, their uses under different environmental conditions and a mechanistic view of the biostimulants.

DEFINITION

Many definitions of phyto- and bio-stimulants are available in scientific literatures. According to Zhang and Schmidt (2000) biostimulants are the materials used in trace amounts to promote plant growth. The authors used the words “tracer amount” for biostimulants to distinguish the biostimulants from other nutrients, which also promote plant growth when applied in larger amounts. Later on Kauffman et al. (2007) defined biostimulants with little modifications and according to them “biostimulants” are materials, other than fertilizers, that promote plant growth when applied in low quantities. However, biostimulants are still a “moving target” in the European Union (EU). From the industrial perspective, the definition of biostimulants as given by the European Biostimulants Industry Council (EBIC) in 2012 is “plant biostimulants contain substance and/or micro-organisms whose function when applied to plants or the rhizosphere is to stimulate the natural processes to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stresses, and crop quality, with no direct action against the pests” (www.biostimulants.eu). The concept of PBs has continuously been investigated since 1933 but has received considerable focus only in the last two and half decades as a potential mixture to alleviate the negative effects of climate change (Craigie, 2011; Sharma et al., 2014; Ricci et al., 2019; Jindo et al., 2020). Based on the previous considerations the Environmental Protection Agency (EPA) in 2019 defined biostimulants as “naturally-occurring substance or microbe that is used either by itself or in combination with other naturally-occurring substances or microbes for the purpose of stimulating natural processes in plants or in the soil in order to improve nutrient and/ or water use efficiency by plants, help plants tolerate abiotic stress, or improve the physical, chemical, and/or biological characteristics of the soil as a medium for plant growth.” Since biostimulants are derived from diversity of sources like plants, humic substances, protein hydrolysate, seaweed extracts, macro- and micro-alga, living microbial cultures and plant growth-promoting microbes (PGPM), etc., these compounds are therefore poorly characterized and their mode of actions are also undefined at cellular and molecular levels. Thus, due to the current knowledge gaps the concepts of PBs are still evolving (Calvo et al., 2014; Li et al., 2021), which is somewhat indicative of the diversity of inputs that can be accepted as PBs.

Flurry of researches were conducted in order to evaluate the PBs for improving growth and development of seedlings and subsequently the plants after subjecting to several abiotic stresses like drought, saline environment, extreme temperature, heavy rainfall, etc. (Carillo et al., 2019). Additionally, different kinds of raw materials were also used along with non-microbial biostimulant components such as humic-substances, protein hydrolysate, plant-based products, seaweed extracts, etc. and/or microbial components comprising of PGPMs such as arbuscular mycorrhizal fungi, fluorescent Pseudomonas, Trichoderma spp., Bacillus spp. etc. They all have shown tremendous potentiality to enhance plant growth, flowering, crop productivity, nutrient use efficiency (NUE) and translocation, as well as enhancing tolerance to a wide range of abiotic stresses by modifying physiological, biological and biochemical processes of the crop-plants.

TYPES OF BIOSTIMULANTS AND THEIR SIGNIFICANCE

Abiotic stresses like drought, salinity, extreme temperature, high rainfall, etc. are becoming most important threats to food security resulting from constant changes in climate. To cope with these stresses, plants respond by changing several molecular and physiological processes or initiating a number of defense responses to adapt such stresses. It has been highlighted in several studies that application of biostimulants even at very low quantities can promote plant's performance by re-programming the natural processes of plants under such harmful environments (Huang et al., 2013; de Vasconcelos and Chaves, 2019). Some major categories of biostimulants that are currently recognized by scientists are asserted to stimulate the plant defense responses and provide stress tolerance capabilities to them by both non-microbial and microbial means (Halpern et al., 2015; Gupta et al., 2021a). A graphical representation is presented in Figure 1 for these biostimulants according to their classes.
Non-microbial Biostimulants

The non-microbial biostimulants include beneficial plant botanicals or natural plant biostimulants seaweed extracts and their raw materials like protein hydrolysates, amino acids containing products, humic substances, etc. can improve crop productivity even under environmental stress (Pichyangkura and Chadchawan, 2015; Drobek et al., 2020; Rouphael et al., 2020b; Del Buono, 2021).

Seaweed or Algal Extracts

Seaweeds are diverse group of multicellular macroalgae mostly found in marine water. Most of the algal species belong to the members of Rhodophyta, Phaeophyta, Chlorophyta and Charophyta (Carillo et al., 2020). In ancient agricultural practices, seaweeds were used as sources of organic matter and fertilizer nutrients, but their role as biostimulants was not recognized. The effect of seaweed extracts as biostimulants has recently been reported by many researchers, which promotes the commercialization of seaweeds and their purified compounds such as different carbohydrates including alginites, fucoidan, carrageenans and some other plant hormones that are significantly associated with plant growth (Battacharyya et al., 2015). Additionally, they also contain plant hormones such as auxins and cytokinins or other hormone-like substances such as sterols and polyamines (Craigie, 2011). Majority of the algal extracts are formulations obtained from brown algae including Ascophyllum nodosum and some other genera such as Fucus, Laminaria spp., etc. (Khan et al., 2009; Sharma et al., 2014). Since microalgae are rich source of metabolites and growth-promoting hormones they can be very well utilized in agriculture in various ways such as soil conditioners and/or plant growth biostimulators (Bulgari et al., 2019; Behera et al., 2021). It was reported that seed germination and seedling growth of lettuce plants were promoted when the seeds were primed with A. nodosum extracts under elevated temperature conditions. These bio-active extracts when sprayed to the plants were also able to enhance the plant’s performance under different abiotic stresses, and thereby compensated the possible yield loss and maintained productivity of several crops (Battacharyya et al., 2015).

Humic Substances

Humic substances are the category of naturally occurring constituents of soil organic matter that can be formed by decay and transformation of plants debris, animals, and microbial residues in the environment by microbial activities (Correia et al., 2019). Humic substances are characterized into humins, humic acids (HA) as well as fulvic acids, according to their solubility in water and molecular weights (Bai et al., 2015). These substances can be directly applied onto soil, and can act on fertility of the soil by altering their physical, chemical, biological and physicochemical properties. In several studies, it was observed that application of HA on crop plants can stimulate growth and development of the plants and increase the biomass, but their effect on the host physiology is not fully understood yet (Rose et al., 2014). Humic substances are known to be helpful for uptakeing of nutrients and water by forming soluble complexes along with the nutrients. In this way, they help in reducing nutrient leaching and making them more easily available for the plants (Chen et al., 2004). Since humic substances improve the physical properties of soil, they form an enzymatically active component in the rhizosphere that alters the activity of microorganisms and increase the population of rhizosphere microbiome often correlated with enhancing growth of plants (Visser, 1985). Humic substances also help plants to tolerate abiotic stresses. Several earlier studies showed that HA isolated from vermicompost or other similar organic sources, when applied benefited the crop plants by reducing soil sodicity and elevating micro-and macro-nutrients such as N, Fe, Mg, P, S, K, Ca, Cu and Mn in plant parts (Cimrin et al., 2010). Further, HA also helps plants in stress protection by stimulating the biosynthesis of antioxidative and ROS scavenging enzymes (Garcia et al., 2012).

Protein Hydrolysates

Protein hydrolysates are mixtures of proteinaceous and non-proteinaceous compounds including amino acids, peptides and polypeptides. Such mixtures generally arise from the chemical as well as enzymatic hydrolysis of plant and animal raw materials (Colla et al., 2017). The plant-based protein hydrolysates are generally produced from vegetable or fruit wastes, pulses, etc., while animal-based biostimulants are obtained from raw materials of bird feathers, milk casein, skin collagen fibers, animal tissues, fish wastes, etc. (Colla et al., 2015; Scaglia et al., 2017). Several earlier studies confirmed that commercial products of protein hydrolysates from animal origin have negative impacts on plant growth compared to the plant-based protein hydrolysate (Cerdan et al., 2008). For examples, animal-based protein hydrolysates contain high amount of thermostable amino acids like glycine, alanine, and proline including hydroxyproline and hydroxylysine, but their high concentrations may inhibit root growth, nutrient use efficiency and thus negatively affect plant growth and yield (Trovato et al., 2018). Similarly, Rouphael et al. (2021) reported that the application of above 0.05g N/kg concentration of animal-based protein hydrolysates on basil plants caused a decrease in the number and area of leaves, plant photosynthetic rate, and biomass production. But in some cases application of animal-based protein hydrolysates in higher
concentration was found to counter the negative impact of toxic ions as well. However, Botta (2012) examined that use of animal-based hydrolysates increased biomass of shoots in comparison to control plants. Whereas, Trevisan et al. (2019) observed that when a plant-based protein hydrolysates (APR®, ILSA, S.p.A., Arzigano VI, Italy) was used in the hydroponically grown maize plants, the protein hydrolysates stimulated plant growth and defense responses against several abiotic stresses and the approach was hailed for its eco-friendly manner (Ugolini et al., 2015). Further, Lucini et al. (2015) observed in a metabolomic profiling of lettuce that applications of protein hydrolysate lightened the saline stress by differentially regulating the defense-related genes and metabolites like terpenes, carbohydrates, amino acids and sterols. The hormonal, chelating and antioxidant activities were also observed in several other studies. For example, Colla et al. (2017) published that hormonal activities in complex protein, amino acids and tissue hydrolysates, prolines, etc. with chelating properties protected the plants from several heavy metals and ion toxicities. Some of the nitrogenous compounds like amino acids viz., glycine, betaine and proline also have antioxidant properties, which protect the plants from abiotic stresses by acting as a scavenger of free radicals. Protein hydrolysates are well studied to help in microbial growth and activity in rhizosphere zones and thereby improve overall fertility of soils (Bulgari et al., 2019).

Microbial Biostimulants

Microbial biostimulants (MBs) include some beneficial bacteria, mainly PGPRs such as Azotobacter, Azospirillum, Rhizobium, fluorescent Pseudomonads, etc., arbuscular mycorrhizal fungi, and some other important fungi like Trichoderma, Piriformospora sp., etc. (Ruzzi and Arroca, 2015; Rouphael et al., 2020b). The list of some categorized MBs and their specific functions are mentioned in Table 1.

Plant Growth-Promoting Rhizobacteria as Biostimulants

Plant growth-promoting rhizobacteria (PGPR) are root-associated plant-growth-promoting bacteria that form symbiotic associations with many crop plants. Phytohormones produced by PGPR effectively participate in the regulation of plant growth. Based on their agricultural output, they are utilized for different purposes such as bio-fertilizers, bio-pesticides and bio-control agents as well as phyto-stimulants (Bhattacharyya and Jha, 2012). PGPR-based biostimulants are considerably used as an effective agroecological technique for stimulating plant growth and enhancing nutrient use efficiency in the crop plants and they also provide resistance to the host plants against a variety of abiotic stresses, from perception to the activation of cellular and molecular events (Le Mire et al., 2016; Lephatsi et al., 2021). PGPR comprises several genera including Arthrobacter, Enterobacter, Azotobacter, Azospirillum, Acinetobacter, Pseudomonas, Streptomyces, Ochrobactrum, Bacillus, Rhodococcus, Rhizobium, Bradyrhizobium, etc. and have the potential to act both as phyto- and bio-stimulants (Zhao et al., 2018). Some of them, mainly Pseudomonas, Rhizopogus, and Bacillus species are commercially exploited in a significant way as soil activators with capability to endorse plant growth (Radhakrishnan et al., 2017). Applications of PGPR as biostimulants in agricultural practices have been widely reviewed in several scientific articles as well as in textbooks. Many authors have reported that inoculation of Bacillus, Brevibacillus, and Rhizobium spp. in broccoli roots (Brassica oleraceae) increased the photosynthetic rate by reducing chlorophyll degradation or stimulation of its synthesis and thereby increased the overall yield of crops (Khan et al., 2009; Yildirim et al., 2011). Similar results were also observed in tomatoes treated with Azotobacter, Bacillus and Pseudomonas and also in Fragaria ananassa following treatment with different groups of PGPR (Karlidag et al., 2013). PGPR are also able to improve plant’s responses against the environmental stresses by stimulating biological and physio-chemical activities of the plants (Ruzzi and Arroca, 2015). Kumar et al. (2019) reported that application of Pseudomonas fluorescens OKC not only protected the pigeonpea plants from salinity stress but also protected from the wilt pathogen Fusarium udum. Similarly, Vaishnav et al. (2020) demonstrated that Sphingobacterium sp. BHU-AV3 can provide tolerance to salinity in tomato plants by inducing the antioxidant activities and metabolism pathways. Other salt-tolerant PGPRs such as Serratia spp., Rhizobium spp., and Azospirillum, etc. are also found to rapidly influence the growth and yield of lettuce and wheat grown in saline soils (Fasciglione et al., 2015; Upadhyay and Singh, 2015). Similar results were also observed in pea (Pisum sativum) crop following treatment with Pseudomonas sp. under drought stress condition by activation of photosynthetic rate and antioxidant properties (Heidari and Golpayegani, 2012).

Arbuscular Mycorrhizal Fungi as Biostimulants

Arbuscular Mycorrhizal Fungi (AMF) are widely spread endomycorrhizal fungi having association with the plants established through penetration by the fungal hyphae into the root cortical cells of the host plants (Behie and Bidochka, 2014). This mycorrhizal association with plants are beneficial for both the organisms, because the fungi absorbs foods from the host plants and in return helps the plant in increasing their root growth and surface area for absorption of nutrients and water. In addition, they can mediate the hormonal steadiness of the crop plants, and thereby stimulate plant growth and impart tolerance against different stresses. Based on these properties the AMFs are also categorized as biostimulants (Rouphael et al., 2020b). Among the microbial biostimulants, AMFs are crucially involved in supporting the host plant nutrition by increasing the absorption of mineral nutrients beyond the rhizospheric zones of the crop plants. Most predominantly used mycorrhizal biostimulants are Rhizophagus spp., Septoglycus viscous, Claroideoglomus etunicatum, Claroideoglomus claroideum, etc. in the sustainable agriculture production system (Du Jardin, 2015; Zardak et al., 2018). AMF can improve the crop productivity under nutrient deficient conditions by producing low molecular weight molecules including siderophores, which chelates iron ions, as well as secrete enzymes such as phosphatases that hydrolyse phosphates from organic P compounds (Smith et al., 2011). It has also been observed that application of AMF viz., Scutellospora spp., Acaulospora spp., Gigaspora spp., Glomus aggregatum,
TABLE 1 | The functional and mechanistic roles of several type of biostimulants in crops performances under different abiotic stress condition.

Sr. No	Environmental stresses	Biostimulants	Crop plants	Action mechanism/function/crop performance	References
1.	Drought	A. brasilense	T. aestivum, L. lycopersicum	Antioxidant, chelating agent for free radicals	Pereyra et al., 2012; Romero et al., 2014
2.	Drought	Ascophyllum. nodosum	C. sinensis	Protection against drought stress	Saia et al., 2015
3.	Drought	A. nodosum	Glycine max	Over-expression of drought responsive transcription factors protein like GmRD22, GmDREB, GmERD1 and GmBIPD	Shukla et al., 2018
4.	Salinity	A. brasilense	L. sativa, v. faba, T. aestivum	Provide salinity stress tolerance	Fasciiglione et al., 2015
5.	Salinity	A. chrococcum	Z. mays, Triticum aestivum	Improve resistance to salinity stress	Rojas-Tapia et al., 2012
6.	Salinity	A. lipoferum	T. aestivum	Salinity stress tolerance	Bacillo et al., 2004
7.	Temperature	A. chrococcum	T. aestivum	Improve the thermal resistance of plants	Egamberdiyeva and Heflich, 2004; Battacharyya et al., 2015
8.	Cold	A. nodosum	K. alvarezi	Provide tolerance to cold	Loureiro et al., 2014
9.	Cold	F. glaciei	S. lycopersicum	Provide cold stress tolerance	Subramanian et al., 2016
10.	Cold	A. nodosum	Arabidopsis	Overexpression of cold responsive genes like CB73, and RD29A, etc.	Rayirath et al., 2009
11.	Heat	SWE	A. stolonifera	Improve the thermal resistance of plants	Zhang and Ervin, 2008
12.	Drought	SWE	S. oleracea	Plant protection against drought stress	Xu and Leskovar, 2015
13.	Drought and ion homeostasis	SWE	V. vinifera	Induction of cell death and chloroplast degradation by TAGs diminution	Mancuso et al., 2006
14.	Drought	SWE	S. nipponica, P. eugenoides	Oxidative and drought stress alleviation via several biosynthetic reductions	Elansary et al., 2016
15.	Cold	SWE	Zea. mays	Improve the chilling resistance of plants	Bradacova et al., 2016
16.	Oxidative	SWE	Arabidopsis	Protect from oxidative stress via accumulation of maltose and fumarate and malate, etc	Subramanian et al., 2016

HUMIC SUBSTANCES AS BIOSTIMULANTS

Sr. No	Environmental stresses	Biostimulants	Crop plants	Action mechanism/function/crop performance	References
17.	Drought	Humic and fulvic acids	F. arundinacea	Soil electricity conductivity management	Zhang et al., 2002
18.	Drought	Humic and fulvic acids	A. palustris	Plant protection against drought stress	Zhang and Ervin, 2004
19.	Salt and ion homeostasis	Humic acid and phosphorous	C. annuum	Protect membrane damage and provide nutrient uptake	Çimrin et al., 2010
20.	Oxidative and drought stress	Humic acid	O. sativa	Plant protection against oxidative stress	Garcia et al., 2012
21.	Salinity	Humic acid	Phaseolus vulgaris	Provide plant nitrate, nitrogen and phosphorus, soil conductivity	Aydin et al., 2012
22.	Salinity	phosphorus / humic acid	Capsicum annuum	Maintain fresh and dry weight of shoot and root	Mesut et al., 2010

PROTEIN HYDROLYSATES SUBSTANCES AS BIOSTIMULANTS

Sr. No	Environmental stresses	Biostimulants	Crop plants	Action mechanism/function/crop performance	References
23.	Ion homeostasis	Protein compounds	H. vulgare	Maintain iron homeostasis	Cuin and Shabala, 2007
24.	Salinity	Protein hydrolysates	Zea. mays	Salinity stress tolerance	Ertani et al., 2013
25.	Heavy metal	Protein hydrolysates	Triticum. aestivum	Shiderophore production	Zhu et al., 2006
26.	Salt and cold stress	Protein hydrolysates	L. sativa	Salinity and cold stress tolerance	Lucini et al., 2015
27.	Salinity	Protein hydrolysates	D. lotus	Stress resistance	Visconti et al., 2015

(Continued)
Sr. No	Environmental stresses	Biostimulants	Crop plants	Action mechanism/function/crop performance	References
28.	Heat	Protein compounds	L. perenne	Improve the thermal resistance of plants	Botta, 2013
29.	Salinity	Protein hydrolysates	L. sativa	Improve fresh and dry	Lucini et al., 2015
30.	Salinity	protein hydrolysates	Lettuce	Improved plant nitrogen metabolism	Lucini et al., 2015
31.	Drought	protein hydrolysate	S. lycopersicum	Hormonal imbalance (reduced cytokinins, etc.)	Paul K. et al., 2019
32.	Heat	Proline	Cicer arietinum	Lipid peroxidation, H_2O_2 “GSH" proline	Kaushal et al., 2011

MICROORGANISMS AS BIOSTIMULANTS

Sr. No	Environmental stresses	Biostimulants	Crop plants	Action mechanism/function/crop performance	References
33.	Heat	P. putida	T. aestivum, S. bicolor	% germination, shoot and root length	Ali et al., 2011
34.	Cold	P. frederiksbergensis	Solanum lycopersicum	Stress tolerance	Subramanian et al., 2016
35.	Salinity	Glomus iranicum	Euonymus japonica	Increased plant growth by increasing the P, Ca and K concentrations in leaf	Gómez-Bellot et al., 2015
36.	Salinity	R. leguminosarum	V. faba, P. sativum	Reduce reactive oxygen species	Cordovilla et al., 1999
37.	Salinity	P. putida and P. aeruginosa	Cicer arietinum	Reduce abiotic and biotic stress	Sarkar et al., 2014
38.	Chilling/cold stress	Flavobacterium glaciei, P. frederiksbergensis, P. vancouverensis	Solanum lycopersicum	Increase shoot and root length and involve in proline accumulation	Subramanian et al., 2016
39.	Oxidative stress	Pseudomonas fluorescens	Cicer arietinum	Increase uptake of mineral nutrients, nutritional quality, Plant growth etc., increase the nutritive value, such as antioxidants of edible parts of crop plants	Yadav et al., 2017
40.	Abiotic stresses	PGPR + Trichoderma	Pulse crops,	Increases phenylalanine ammonia-lyase and peroxidase activities	Sarma et al., 2014, 2015; Singh et al., 2015; Kumar et al., 2017
41.	Drought	G. versiforme	Poncirus trifoliata	Increased fresh, dry biomass of plants by getting better uptake of P, K and Ca elements	Wu and Zou, 2009
42.	Drought	R. intraradices	Solanum lycopersicum	Higher fresh yield by 12–25% by uptake of N and P	Subramanian et al., 2006
43.	Drought	G. versiforme, R. intraradices	Cucumis melo	Provide higher tolerance to drought by enhancing antioxidant actions, net photosynthetic rate and nutrient use efficacy	Huang et al., 2011
44.	Drought	Glomus mixture including G. Diaphanum, G. claroideis and G. abitudinum	Capsicum annuum	Provide resistance to drought by maintaining water potential	Davies et al., 2002
45.	Salinity	R. intraradices	Solanum lycopersicum	Minimize Hydrogen peroxide accumulation and lipid peroxidation in plant to maintain oxidative damage.	Hajboland et al., 2010
46.	Salinity	F. mosseae	Solanum lycopersicum	Higher enrichment of P, K elements	Abdel and Chaoxing, 2011
47.	Nutrient deficient	G. versiforme	Citrus sinensis and C. reticulata	Increase photosynthetic rate and provide Mg during low Mg conditions	Xiao et al., 2014
48.	Salinity	Bacillus sps, Trichoderma sps., P. azotoformans and Polymyxa	Cucurbita sps.	Increase fresh biomass, K, Na uptake and K+/Na+ ratio	Yildirim et al., 2006
49.	Salinity	Rhizobium leguminosarum	Vicia faba/Pisum sativum	Plant growth and stress tolerance	Cordovilla et al., 1999
50.	Salinity	Azospirillum brasilense/Pantoea dispersa	Capsicum sps.	Improve dry biomass, maintain K+/Na+ ratio, net absorption rate Cl^{-} ion, CO2 amount, NO_3^{-} conc etc	Del Amor and Cuadra-Crespo, 2011
51.	Drought	Pseudomonas spp. (P. putida P. fluorescens)	P. sativum	Involve in overall growth development	Arshad et al., 2008
Rhizophagus irregularis (syn. *G. intraradices*), Funneliformis mosseae (syn. *G. mosseae*), *G. etunicatum*, *G. fasciculatum*, and *G. deserticola* along with some other beneficial microbes in the soil helps in nitrate transport as well (Saia et al., 2015). Sbrana et al. (2014) reviewed that symbiotic association of AMF could lead to changes in the biosynthesis of secondary metabolites in plants including important phyto-chemicals and also improve nutritionally significant compounds.

In addition to the mentioned properties, AMF-based biostimulants also provide tolerance to salinity stress and drought stress by increasing seed germination, growth parameters of shoots and roots, productivity, plant quality and yields (Jayne and Quigley, 2014). Similarly, Feng et al. (2002) showed that the colonization of AMF could increase the content of soluble sugars in salt-treated seedlings of maize, which indicates that these plants have a better osmotic adjustment capacity.

Offspring Important Beneficial Microbes and Their Consortia as Biostimulants

Bio-priming is one of the most potential tools in the sustainable crop production system without affecting soil health. It is a biological process of seeds/ seedling treatment with beneficial microorganisms to protect seeds and treated crops by stimulating induced systemic resistance to abiotic as well as biotic stresses (Meena et al., 2017; Patel et al.; de Vries et al., 2020). There are important endophytic microbes including some bacteria and fungi found to be involved in stimulating defense responses in plants and at the same time they are also effective directly against phytophagous insects and herbivory damage. For example, *Piriformospora indica* is capable of forming symbiotic relationship with several important crops and shown to increase their yield and defense against many soil-borne pathogens (Johri et al., 2015). Similarly, Mohd et al. (2017) reported that *P. indica* effectively mediate protection against arsenic toxicity in rice field following colonization of the paddy roots. In particular, the beneficial microbes comprising of both bacteria and fungi such as *Trichoderma* spp., *Pythium oligandrum*, *Talaromyces flavus*, *Glomus* spp., *Aureobasidium pullulans*, *Bacillus*, *Glomus*, *Pseudomonas*, and *Azospirillum* are being used as biopriming agents on seeds that helped in improving seed viability, resisting various kinds of stresses and crop yield. These microbes are defined as “biostimulant microorganisms,” because they can boost plant growth and defense responses from seed germination to the maturity stage (Paul S. et al., 2019). Among different beneficial microorganisms, *Trichoderma* spp. (including *T. harzianum* and *T. viride*) are the most abundantly reported fungi, and has been widely used as a source of different commercial biostimulants and biofungicides (Mahany et al., 2017). Sureshrao et al. (2016) showed that rice seedlings treated with *T. viride* had more lateral roots and better seed germination compared to the control plants. Similar outputs were also recorded by Lalitha and Arunalakshmi (2012) in mustard crops. To promote plant growth *Trichoderma* enhanced phytohormone production in the host plants as well as by secreting hormone-like compounds synthesized in their hyphae (Frac et al., 2018). These phytohormones help the plants to acclimateize with adverse situations by improving growth, and defense responses against a variety of stresses.

It was recently observed that combined plant root colonization by *Trichoderma* along with mycorrhiza such as *Glomus*, enhanced plant’s growth in terms of increase in the total biomass by about 20 to 30 times compared to the plants where they were applied individually (Sofo et al., 2012). Similarly, Rubin et al. (2017) also suggested that PGPR may also increase root biomass more effectively when applied in combination with other microbes. So, co-inoculation of bacteria and fungi with other beneficial microbes has become the most promising tool for sustainable crop production with few contradictions. A recent microbial biostimulant study have confirmed that the combined application of *Bacillus* spp., *Glomus* spp., and *Trichoderma* spp. not only protected the plants more effectively against a broad range of pathogenic microbes, but also provided protection to the plants under adverse environmental conditions by stimulating the defense mechanisms such as systemic acquired resistance (SAR), and induced systemic resistance (ISR) (Kaewchais, 2009; Colla et al., 2015).

Seed priming and watering of *Cucurbita pepo* with different organisms including *Bacillus pumilus*, *Paenibacillus azotoformans*, *Trichoderma harzianum*, and *Polymyxa* were observed helpful in gaining fresh weight, increasing the potassium content and balance of the K⁺:Na⁺ ratio under salinity stressed condition (Yildirim et al., 2006). It was also reported that the consortia of beneficial microbes including *G. intraradices*, *Trichoderma reesei*, *Trichoderma atroviride*, and *Heterocormium chaetospira* positively affected crop yield and quality (Du Jardin, 2015). Particular attention should be given to plant growth-promoting bacteria (*Bacillus* spp. and *Pseudomonas* spp.), endomycorrhizal fungi (*Glomus* spp.) and rhizospheric colonizer (*Trichoderma* spp.), that provides long term safety to the cultivated crops against pathogens and help plants for increasing nutrient uptake and use efficiency to gain optimum yields. Nanoparticles and nanomaterials-based biostimulants are considered to be a novel category of biostimulants and recently been reported by Juárez-Maldonado et al. (2019). Similarly, green synthesized silver nanoparticles (AgNPs) by naturally occurring bio-active components is also considered to be a novel category of biostimulants (Tripathi and Pandey-Rai, 2021). These nanomaterial products, when applied as foliar spray on the crop plants even in small quantities, provide tolerance to the abiotic stresses and improve the quantity and quality of the produces. For example, the application of ZnO₂ nanoparticles on tomatoes by aerial or soil application increased the number of leaves, plant height, growth, as well as chlorophyll and protein contents (Raliya et al., 2015). Their phyto- or bio-stimulant properties seem to be coupled with particle’s structure and nature, and not to their chemical compositions.

MECHANISMS OF BIOSTIMULANTS-MEDIATED CROP TOLERANCE TO ABIOTIC STRESSES

Abiotic stresses, including drought, high rainfall, salinity, extreme cold or heat, etc. are responsible for about 50–70% of yield loss by affecting the plant productivity (Carillo et al., 2019). To overcome the harmful effects from the abiotic
stresses, PBs have been used as an efficient agricultural tool for stress tolerance. However, the activities of PBs depend on several factors, such as application techniques, targeted crop as well as timing of inoculation (Bulgari et al., 2019). These abiotic stresses cause several physiological and biological disorders including membrane disfunctioning, reduction of photosynthesis and protein synthesis rate, hormonal imbalance, etc. Most detrimental stress of salinity is ionic imbalances and hyperosmotic condition, which caused by excess production of reactive oxygen species (ROS) and the anti-oxidant defense mechanisms (Di Mola et al., 2020). These ROS like oxygen molecule (O₂), superoxide (O²⁻), hydrogen peroxide (H₂O₂), hydroxyl radical (HO⁻) are strong oxidizing and reducible ROS, that generated in plant cells to maintain the homeostasis and stability of the stem cells (Das and Roychoudhury, 2014; Zeng et al., 2017). However, an excess level of ROS is reason for oxidative damage of the cells that cause cell death of the crop plants (Al-Ghamdi and Elansary, 2018). And the drought stress condition may lead to low water potentiality due to high solute concentration, which makes the plant cells to become turgid resulting in wilting and desiccation in plants. Scarcity of water may also cause soil mineral toxicities and can make plants more susceptible to damage from high temperature and high irradiance. Similarly, high temperature affects metabolism, respiration, and other physiological processes of the crops causing retardation in functioning and growth of the plants. This type of heat injury may lead to death of whole plants. Cold temperature stress is also one of the most limiting factors for the crops. Like other abiotic stresses, it can also cause several metabolic and physiological dysfunctioning of the crop such as degradation of chlorophyll, plasmolysis, amylolysis (conversion of starch to sugar), photosynthetic reduction, etc. Waterlogging is another environmental stress that leads to saturation of the soil with water. The major cause of waterlogging is heavy rainfall. Excess of water replace the air from soil pores, causing deficiency of oxygen and accumulation of carbon dioxide that hampers the growth of roots and plants. Therefore, these environmental stresses affect the plants in several ways and ultimately may cause threat to food security throughout the globe (Rouphael et al., 2018a).

To cope up with these problems plants activate several defense mechanisms against different abiotic stresses and PBs can play a significant role in triggering plant’s metabolic activities and stimulating performance under such adverse conditions (Rouphael et al., 2018b). There are various microbial (PGPR, AMF and other beneficial microbes) and nonmicrobial (seaweed extracts, protein hydrolysates and humic substances) biostimulants reported that take part in activation and regulation of several types of defense mechanisms by various modes of actions to promote plant growth. They also play a major role in abiotic stresses by altering the plant’s responses via different physiological and biological mechanisms including ROS scavenging activity, osmoprotection, membrane stability, stomatal guiding and xylem conductance, metal chelation, nutrient and water availability and phytohormonal signaling in plants (Van Oosten et al., 2017). The functional and mechanistic roles of different types of biostimulants in crop performance under stress conditions are given in Table 1. Different techniques for inoculating biostimulants are available. Some of those include seed treatment, seedling dip method, and foliar spray or soil application via soil drenching, incorporation of soil marine products and addition of extracts to hydroponics. Mechanisms of actions of these biostimulants vary according to the nature and characteristics of the biostimulants. It has been investigated that the protein-based biostimulants directly penetrate plant tissues of the applied area and enter into the cells, while penetration of the protein hydrolysates in a plant cell takes place through the diffusion process through membrane openings/pores. It is an energy-dependent process (Kolomazník et al., 2012). Other biostimulants like microbial inoculants interact with the plants by penetration of the hyphae into the plant tissues and making the symbiotic or mycorrhizal associations. When these biostimulants enter into the treated leaves and root their translocation starts toward the most distant part of the plants (Pecha et al., 2012). However, for understanding the mode of action, it is necessary to first identify the biologically active compounds (Henda and Bordenave-Juchereau, 2013). Inside the host plants these biostimulants helps in activation of stress-responsive genes by the signal transduction and transcriptional regulations. Schematic representations of physiological effects by different biostimulants under adverse conditions are shown diagrammatically in Figure 2.

Among the seaweed extracts used as biostimulants, Ascophyllum nodosum extract (ANE) has been used extensively to impart tolerance to plants from number of biotic as well as abiotic stresses. It has been previously studied that foliar spray of ANE regulates the genes expression of photosynthesis and ROS scavenging activities under stressed conditions. The mechanism of ROS scavenging involves both enzymatic antioxidants including Superoxide dismutase (SOD), ascorbate peroxidise (APX), glutathione peroxidase (GPX), and catalase (CAT) as well as nonenzymatic antioxidants such as ascorbates, glutathione, proline, glycine betain, tocotherol (Miller et al., 2010; Elansary et al., 2017; Sharma et al., 2019). Further, the accumulation of MDA (malondialdehyde) content in plant cells/tissues is considered as an important indicator for drought-induced peroxidative damage (Shukla et al., 2011). It was also reported by Carvalho et al. (2018), that ANE applications in bean (Phaseolus vulgaris) reduces the ROS-induced MDA production by improving CAT activity and thereby making the plants more tolerant to drought. Similarly, soil drenching with ANE in S. nipponica and P. eugenioides growing soils mitigated drought effects by overproduction of antioxidants and higher lipid peroxidation, thereby reducing the ROS content and particular stresses (Elansary et al., 2016) (Figure 3).

The bioactive constituents isolated from A. nodosum extracts were found to regulate various steps of post-transcriptional and post-translational regulation of different TFs family proteins, such as AP2/ERF, NF-YA, WRKY, COR15A, MYB, LHY1 and some others which provide stress tolerance to crops (Goni et al., 2018; Jithesh et al., 2019). Shukla et al. (2018) reported that binding of AtGRF7 to the promoter element of AtDREB2a down-regulates its expression, which leads to salinity tolerance. It was
reported in *Arabidopsis* that, plants treated with ANE lowered the levels of *AtGRF7*-led overexpression of *AtDREB2a* and *AtRD29* genes and thereby provided better salinity tolerance (Shukla et al., 2018). ANE is also involved in regulation of cold or freezing stress tolerance by inducing the expression of cold-responsive genes such as *COR15A*, *CBF3* and *RD29A* (Rayirath et al., 2009). Further, transcriptome studies by Nair et al. (2012) revealed that the lipophilic components of ANE regulate the expression of more than thousands of genes in response to freezing stress. They also concluded that seaweed extract components have the tendency to positively regulate *P5CS1* and *P5CS2* genes involved in proline biosynthesis and negatively regulate the expression of proline catabolic genes. The accumulation of proline inside the plant increases the ability to tolerate different types of environmental stresses.

Protein hydrolysates and humic substances also play crucial roles in stress tolerance. They involve in activation of antioxidant enzymes and free radicals having ROS scavenging properties.
FIGURE 3 | Schematic representation of antioxidant defense mechanisms against several abiotic stresses in plant. A series of redox coupled reactions with some important signaling pathways including osmoprotection by osmolyte accumulation, ROS scavenging, lipid peroxidation and phytohormonal signaling pathways are presented. BADH, betain aldehyde dehydrogenase; CMO, cholin monoxygenase; SAM, S-adenosylmethionine; GSSG, glutathione disulfide; CAT, catalase; GSH, glutathione; GR, glutathione reductase; DHAR, dehydroascorbate reductase; MDHAR, monodehydroascorbate reductase.

and chelating ionic compounds and metals (Abd El-Mageed et al., 2017). The exogenous application of proline and betaine to *Hordeum vulgare* reduces the NaCl-induced efflux of potassium ions by relatively low concentrations of compatible solutes (Cuin and Shabala, 2005). Garcia et al. (2012) reported that extracts isolated from vermicompost when used for treatment of rice (*Oryza sativa* L.) plants it differentially regulated *H*+ ATPases located on the plasma membranes and provided tolerance to salinity and drought stresses. Similarly, when tomato (*Solanum lycopersicum*) plants were treated with vermicompost it has led to more than 40% of proton extrusion by facilitating the potential of acid growth, hormonal regulations and nutrient uptake (Zandonadi et al., 2016). Similarly, microbial biostimulants comprises of various kinds of beneficial endophytic, symbiotic and ectoparasitic microbes. These microbes show positive interactions with the plants or colonize in the rhizosphere and stimulate several growth responsive genes. They also involve significantly in activation of several defense responsive mechanisms including SAR and ISR. PGPR have been found to enhance the growth of several vegetables and crop plants including lettuce, beans, tomato and pepper etc. by production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and ISR in several plants against drought and other stresses (Mayak et al., 2004). ACC deaminase producing microbes induce longer roots of the host plants that provide better uptake of water and minerals even in drought like situations (Zahir et al., 2008). It was documented that a volatile organic compound (VOC) produced by a *Bacillus* spp. involved in ISR. Similarly, plants treated with exopolysaccharides (EPS)-producing bacteria also helped in improving the soil structure and provided resistance to water stress. EPS by interacting with the sodium ions in soil also helps in reducing the salt stress (Sandhiya et al., 2009). Similarly, co-inoculation of *Rhizobium* with *Pseudomonas* in maize plants helped in accumulation of proline and uptake of potassium ions resulted in salt tolerance (Bano and Fatima, 2009). There are some other beneficial microbes that have tendency to regulate the phytohormones, viz., abscisic acid (ABA), ethylene (ET), salicylic acid (SA) and jasmonic acid (JA), Brassinosteroid (BRs) mediated singling pathways which are mostly stimulate the accumulation of antioxidant in the plant cells and engaged with the defense responses of the host plants (Sharma et al., 2019). It was also observed that wheat plants treated with *Bacillus amyloliquefaciens* and *Azospirillum brasilense* had the tendency to tolerate heat at their young seedling stage. Additionally, *Rhizoglomus irregular*, *Glomus* (AMF) or *Bacillus licheniformis* inoculation with the diverse communities of beneficial bacteria involved in solubilisation of phosphate and production of siderophores compounds and indole-3 acetic acid (IAA), which normally benefits the crop’s performance (Saia et al., 2015; Rai et al., 2021).
In addition to the above-mentioned biostimulants, the use of their natural products or whole organisms can also have dual benefits against both biological and environmental stresses. For example, seed priming of tomato plants with *Trichoderma* spp. provides resistance to *Fusarium* spp. by accumulation of antioxidant, defense-related WRKY proteins, and quantifiable lignin in plant cells (Hyder et al., 2017). Similarly, Woo and Pepe (2018) reported that potential biostimulants comprising more than one microbe such as *Trichoderma*-Azotobacter and *Trichoderma*-Glomus like microbial formulations had proved better agricultural tools for sustainable crop management in improving harvest quality and quantity of final yield.

ROLE OF PHYTO- OR BIO-STIMULANTS IN IMPROVING NUTRIENT USE EFFICIENCY AND MANAGEMENT OF POST-HARVEST LOSSES

The soil nutrient imbalances or poor quality of soils cause chronic diseases in crop plants surviving in the nutrient-deficient area. In nutrient deficient condition the plants are unable to synthesize important molecules like chlorophyll, nucleic acids, proteins and lipids that are important for normal growth of the crops. Plants become susceptible to several diseases and many enzymes may not function properly under such situations and even complete plant failure may appear at seedling stage in nutrient-deficient conditions. Hence, it is important that plants should be very effective in nutrient use efficiency (NUE). NUE by plant is dependent on the plant's ability for efficient uptake of nutrients such as N from soil followed by its internal transport, storage and remobilization. NUE is different from biological nitrogen fixation (BNF) in the context that in BNF soil bacteria such as Rhizobia can fix atmospheric nitrogen (N$_2$) and convert it to the usable NH$_3$ form which then can be utilized by plants. According to several scientific studies on biostimulants, it was proved that biostimulant components have the ability to increase nutrient uptake with increasing crop productivity (Ebic Welcomes Compromise Reached At Trilogue Meeting on Fertilising Products Regulation, 2019) through different strategies (Garcia-Martinez et al., 2010). In fact its application may be effective in bad soil circumstances as they have the ability to change soil texture as well as increasing macro- and micro-nutrient solubility and modify architecture of the roots system for better transport of nutrients in plants (Halpern et al., 2015). Protein hydrolysates also have the tendency to form complex structures with soil nutrients and therefore they become more available to crops (Farrell et al., 2014). Di Mola et al. (2019) confirmed in their study that plants treated with protein hydrolysates and SWE-based biostimulants enhances the fresh biomass under optimal and sub-optimal nitrogen compositions (0 and 10 kg ha/1) compared to the untreated plants, but the efficiency of PBs was reduced under excesses nitrogen fertilizer (20 and 30 kg ha/1). Similarly, another study showed that synergistic application of non-microbial and microbial (*Trichoderma virens*) based biostimulants on lettuce plants grown with suboptimal, optimal and supraoptimal nitrogen conditions (0, 70 and 140 kg ha/1) (Rouphael et al., 2020a). The valuable impressions of PBs were less prominent under optimal nitrogen conditions, while absent under excesses N circumstances. There are so many symbiotic and non-symbiotic microbes that are present in the soil including Azospirillum, Azotobacter, Bacillus, Klebsiella, Azorhizobium, Bradyrhizobium, Rhizobium, and Sinorhizobium that widely used as plant growth promoters as they increase the amount of N, P, K and other micro-nutrients in soil (Bhardwaj et al., 2014). Recently, Gupta et al. (2021b) and Ngoroyemoto et al. (2021) reported that treatment of the onion (*Allium cepa*) and Amaranthus (*Amaranthus hybridus*) plants individually with two PGPR strains namely *Bacillus licheniformis* and *Pseudomonas fluorescens* and a seaweed extract or in combinations improved the mineral nutrition, growth and yield parameters of onion and Amaranthus.

Several experiments were also done to investigate the positive effect of PBs on the productivity of crops. For example, Koleska et al. (2017)’s report showed that foliar spray of biostimulants products on tomato plants grown under NPK nutrient deficient conditions had better yield in comparison to control plants. Similar results have been observed by Anjum et al. (2014) where growth of garlic plants were stimulated by use of PBs under nutrient deficient conditions. Sandepogu et al. (2019) have demonstrated an experiment on combined application of *A. nodosum* extract and humic substances on lettuce and spinach plants. A combination of 0.25% ANE + 0.2% HA was found suitable for better growth and productivity of crops as compared to the other treatments. Similarly, Fan et al. (2014) where they noticed that pre-harvest root treatment of spinach plants by ANE extract had efficiency to minimize the post-harvest losses (PHL) by reducing ROS and lipid peroxidation activity. Sandepogu et al. (2019) concluded that treatment with PBs before harvesting of crops not only improved the NUE and mineral status but also addressed the issue of reducing post-harvest losses in a sustainable way.

CONCLUSION AND FUTURE PERSPECTIVES

The biostimulants including natural substances and microbial inoculants are a novel category of agricultural inputs having great tendency to stimulate better N uptake, plant-growth and tolerance to different abiotic stresses. This review provides knowledge on the current understanding on the progress in the area of identification and utilization of biostimulants in agriculture and further highlights their effects on enhancing crop tolerance to abiotic stresses. The article also focuses on the plant defense mechanisms following application of biostimulants under different environmental stress conditions. Due to high diversity and complexity of biostimulants, characterization of their bioactive components, physiological and molecular stimulation, signaling molecules and mode of actions are still not worked out thoroughly and therefore, are important interests for future researches and commercial applications. The effect of PBs depends on many parameters including raw materials,
application techniques, targeted crop and timing of inoculation as well as climatic conditions. From the previous studies and observations it was observed that synergistic application of different biostimulators or consortia of microbial inoculants can play significant roles in plant growth promotion and promote crop’s tolerance to survive in challenging environments. Therefore, it would be equally useful to have products combining plant-based extracts mixed with microbial strains for greater efficacy and effectiveness.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

REFERENCES

Abd El-Mageed, T. A., Semida, W. M., and Rady, M. M. (2017). Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. *Agric. Water Manag.* 193, 46–54. doi: 10.1016/j.agwat.2017.08.004

Abdel, A. H. A., and Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. *Sci. Horticult.* 127, 228–233. doi: 10.1016/j.scienta.2010.09.020

Al-Ghamdi, A. A., and Elansary, H. O. (2018). Synergetic effects of 5-aminovaleric acid and *Azospirillum* nododum seaweed extracts on *Asparagus* phenolics and stress related genes under saline irrigation. *Plant Physiol. Biochem.* 129, 273–284. doi: 10.1016/j.phytochemistry.2018.06.008

Ali, S. Z., Sandhya, V., Grover, M., Linga, V. R., and Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting *Pseudomonas putida* strain AKMP7 on growth of wheat (*Triticum sp.*) under heat stress. *J. Plant Interact.* 6, 239–246. doi: 10.1080/17429145.2010.545147

Anjum, K., Ahmed, M., Baber, J. K., Alizai, M. A., Ahmed, N., and Tareen, M. H. (2014). Response of garlic bulb yield to bio-stimulant (bio-cozyme) under calcareous soil. *Sci. Int. J.* 8, 3058–3062.

Arshad, M., Shaharooma, B., and Mahmood, T. (2008). Inoculation with *Pseudomonas* spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (*Pisum sativum* L.). *Pedosphere* 18, 611–620. doi: 10.1016/S0213-0080(08)60055-7

Aydin, A., Kant, C., and Turan, M. (2012). Humic acid application alleviates salinity stress of bean (*Phaseolus vulgaris* L.) plants decreasing membrane leakage. *Afr. J. Agric. Res.* 7, 1073–1086. doi: 10.5897/AJAR10.274

Bacilio, M., Rodriguez, H., Moreno, M., Hernandez, J. P., and Bashan, Y. (2004). Mitigation of salt stress in wheat seedlings by a gfp-tagged *Azospirillum lipophilum*. *Biol. Fertil. Soils* 40, 188–193. doi: 10.1007/s00374-004-0757-2

Bai, Y., Wu, F., Xing, B., Meng, W., Shi, G., Ma, Y., et al. (2015). Isolation and characterization of Chinese standard fulvic acid sub-fractions separated from seaweed extracts as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. *Agric. Water Manag.* 142, 19–27. doi: 10.1016/j.agwat.2017.08.004

Botta, A. (2012). “Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action,” in *World Congress on the Use of Biostimulants in Agriculture*, Vol. 1009, 29–35. doi: 10.1007/s00299-016-1980-4

Botta, A. (2013). Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. *Acta Hortic.* 1009, 29–35.

Bradicova, K., Werner, N. F., Morad-Talab, N., Asim, M., Imran, M., Weinmann, M., et al. (2016). Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. *Chem. Biol. Technol. Agric.* 3, 1–10. doi: 10.1186/s40538-016-0069-1

Bulgari, R., Franzoni, G., and Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. *Agronomy* 9:306. doi: 10.3390/agronomy9060306

Calvo, P., Nelson, L., and Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. *Plant Soil* 383, 3–41. doi: 10.1007/s11104-014-2131-8

Carillo, P., Ciarmiello, L. F., Woodrow, P., Corrado, G., Chiaiese, P., and Roupheal, Y. (2020). Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. *Biologia* 9:253. doi: 10.3390/biology9090253

Carillo, P., Colla, G., Fusco, M. G., Dell'Aversana, E., Al-Nkhel, C., Giordano, M., et al. (2019). Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. *Agronomy* 9:450. doi: 10.3390/agronomy9080450

Carvalho, M. E. A., De Camargo, E., Castro, P. R., and Gaziola, S. A., et al. (2019). Biostimulants application characterization of Chinese standard fulvic acid sub-fractions separated from forest soil by stepwise elution with pyrophosphate buffer. *Sci. Rep.* 5:8723. doi: 10.1038/srep08723

Cerdan, M., Sanchez-Sanchez, A., Oliver, M., Juan, M., and Sanchez-Andreu, J. J. (2008). “Effect of foliar and root applications of amino acids on iron uptake by tomato plants,” in *IV Balkan Symposium on Vegetables and Potatoes*, Vol. 830, 481–488.

Chen, Y., Clapp, C. E., and Magen, H. (2004). Mechanisms of plant growth stimulation by humic substances: the role of organo-iron complexes. *Soil Sci. Plant Nutr.* 50, 1089–1095. doi: 10.1080/03830768.2004.10408579

Chirin, K. M., Turkmen, O., Turan, M., and Tuncer, B. (2010). Phosphorus and humic acid application alleviate salinity stress of pepper seedling. *Afr. J. Biotechnol.* 9, 5845–5851.

Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., et al. (2017). Biostimulator action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. *Front. Plant Sci.* 8:2202. doi: 10.3389/fpls.2017.02202

Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., et al. (2015). Protein hydrolysates as biostimulants in horticulture. *Sci. Hortic.* 196, 28–38. doi: 10.1016/j.scienta.2015.09.012

Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. *J. Appl. Phycol.* 23, 371–393. doi: 10.1007/s10811-010-9560-4

Correia, S., Queiros, F., Ribeiro, C., Vilela, A., Aires, A., Barros, A. I., et al. (2008). “Effect of foliar and root applications of amino acids on iron uptake by tomato plants,” in *IV Balkan Symposium on Vegetables and Potatoes*, Vol. 830, 481–488.

Donia, M. Z.,和Jha。 (2012). Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. *Agric. Water Manag.* 193, 46–54. doi: 10.1016/j.agwat.2017.08.004
substances and plant hormones for phosphorous acquisition. Agronomy 10:640. doi: 10.3390/ agronomy10050640

Jithesh, M. N., Shukla, P. S., Kant, P., Joshi, J., Critchley, A. T., and Prithiviraj, B. (2019). Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. J. Plant Growth Regul. 38, 463–478. doi: 10.1007/s00124-018-9861-4

Johri, A. K., Oelmüller, R., Dua, M., Yadav, V., Kumar, M., Tuteja, N., et al. (2015). Effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182, 124–133. doi: 10.1016/j.scienta.2014.11.022

Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., et al. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 24, 3315–3335. doi: 10.1007/s11356-016-6810-0

Maharshi, A., Rashid, M. M., Teli, B., Yadav, S. K., Singh, D. P., and Sarma, B. K. (2021). Salt stress alters pathogenic behaviour of Fusarium oxysporum f. sp. ciceris and contributes to severity in chickpea wilt incidence. Physiol. Mol. Plant Pathol. 113:101602. doi: 10.1016/j.mppp.2021.101602

Mancuso, S., Briand, X., Mugnai, S., and Azzi, E. (2006). Marine bioactive substances and plant hormones for phosphorous acquisition. Biol. Fertil. Soils 40, 563–577. doi: 10.1007/s00374-006-0118-9

Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., et al. (2017). Plant beneficial rhizobacterial microorganism (PRRM) strategies to improve nutrients use efficiency: a review. Ecol. Eng. 107, 8–32. doi: 10.1016/j.ecoleng.2017.06.058

Mutsuk, C., T. Önder, T. Metin and Burcu, T. (2010). Phosphorus and humic acid application alleviates salinity stress of pepper seedling. Afr. J. Biotechnol. 9, 3845–3851.

Miller, G. A. D., Suzuki, N., Cifici-Yilmaz, S. U. L. T. A. N., and Mittler, R. O. N. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33, 453–467. doi: 10.1111/j.1365-3040.2009.02041.x

Mohd, S., Shukla, J., Kushwaha, A. S., Mandrah, K., Shankar, J., Arjaria, N., et al. (2017). Endophytic fungi Funigrosorum indica mediated protection of host from arsenic toxicity. Front. Microbiol. 8:754. doi: 10.3389/fmicb.2017.00754

Nair, P., Kandasamy, S., Zhang, J., Xi, K., Kirby, C., Benkel, B., et al. (2012). Transcriptional and metabolic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics, 13, 1–23. doi: 10.1186/1471-2164-13-643

Ngoryemoto, N., Kulkarni, M. G., Stirk, W. A., Gupta, S., Finnie, J. F., and Van Staden, J. (2021). Interactions between microorganisms and a seaweed-derived biostimulant on the growth and biochemical composition of Amaranthus hybridus L. Nat. Prod. Commun. 15, 1–11. doi: 10.1177/1934578X20934228

Patel, J. S., Kharwar, R. N., Singh, H. B., Upadhyay, R. S., and Sarma, B. K. (2017). Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC) enhances resistance of pea against Erasyspe pisi through enhanced ROS generation and lignifications. Front. Microbiol. 8:306. doi: 10.3389/fmicb.2017.00306

Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P., and Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and
dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. *Metallomics* 7, 1584–1594. doi: 10.1039/C5MT00168D

Rayirath, P., Benkel, B., Hodges, D. M., Allan- Wojtas, P., MacKinnon, S., Critchley, A. T., et al. (2009). Lipopolishic components of the brown seaweed, *Ascosiphon nodosum*, enhance freezing tolerance in *Arabidopsis thaliana*. *Planta*. 230, 135–147. doi: 10.1007/s00425-009-0920-8

Ricci, M., Tilbury, L., Daridon, B., and Sukalac, K. (2019). General principles to justify plant biostimulant claims. *Front. Plant Sci.* 10:944. doi: 10.3389/fpls.2019.00944

Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., and Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (*Zea mays*). *Applied Soil Eco.,* 61, 264–272. doi: 10.1016/j.apsoil.2012.01.006

Romo, A. M., Vega, D., and Correa, O. S. (2014). *Azospirillum brasilense* mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. *Appl. Soil Ecol.* 82, 38–43. doi: 10.1016/j.apsoil.2014.05.010

Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., and Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. *Adv. Agron.* 124, 37–89. doi: 10.1080/00652113.2013.801331

Rouphael, Y., Carillo, P., Colla, G., Fiorentino, N., Sabatino, L., El-Nakhel, C., Rouphael, Y., Kyriacou, M. C., Petropoulos, S. A., and Colla, G. (2021). Improved salinity tolerance of *Arachis hypogaea* (L.) by the interaction of halotolerant plant-growth-promoting rhizobacteria. *J. Plant Growth Regul.* 31, 195–206. doi: 10.1007/s00344-011-9231-y

Rouphael, Y., Porza, T., Critchley, A. T., Hiltz, D., Norrie, J., and Prithiviraj, B. (2018). *Ascosiphon nodosum* extract mitigates salinity stress in *Arabidopsis thaliana* by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. *PLoS ONE* 13:e0206221. doi: 10.3390/journal.pone.0206221

Sarkar, A., Singh, G. S., and Dwivedi, P. (2015). Potential role of *Trichoderma asperellum* T42 strain in growth of pea plant for sustainable agriculture. *J. Pure Appl. Microbiol.* 9, 1069–1074.

Smith, S. E., Jakobsen, I., Grenlund, M., and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. *Plant Physiol.* 156, 1050–1057. doi: 10.1104/pp.111.174581

Singh, B. N., Singh, A., Singh, G. S., and Dwivedi, P. (2012). Direct effects of *Trichoderma harzianum* strain T2 on micropropagated shoots of *GinSeLa®* (*Punus cerasus × Punus canescens*) rootstock. *Environ. Exp. Bot.* 76, 33–38. doi: 10.1016/j.envexpbot.2011.10.006

Subramanian, K. S., Santhanakrishnan, P., and Balasubramanian, P. (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. *Sci. Hortic.* 107, 245–253. doi: 10.1016/j.scienta.2005.07.006

Subramanian, P., Kim, K., Krishnamoorthy, R., Mageswari, A., Selvakumar, G., and Sa, T. (2016). Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (*Solanum lycopersicum Mill.*) under low temperatures. *PLoS ONE* 11:e0161592. doi: 10.3390/journal.pone.0161592

Sureshrao, K. S., Pradespoo, K. T., Dnyanobarao, G. S., Agrawal, T., and Kotashette, A. S. (2016). Root growth stimulation in rice (*Oryza sativa* L.) by seed biopriming with *Trichoderma sp.* *Appl. Biol. Res.* 18, 30–38. doi: 10.5989/0974-4517.2016.00005.7

Trevisan, S., Manoli, A., and Quaggiootti, S. (2019). A novel biostimulant, belonging to protein hydrolysates, mitigates abiotic stress effects on maize seedlings grown in hydroponics. *Agronomy* 9:28. doi: 10.3390/agronomy9010028

Tripathi, D., and Pandey-Rai, S. (2021). “Impacts of green synthesized silver nanoparticles with natural bioactive compounds on plant’s developmental behavior,” in *Natural Bioactive Compounds* (New York, NY: Academic Press), 435–452.

Trovato, M., Mattioli, R., and Costantino, P. (2018). From *A. rhizogenes* RoD to plant PSCS: exploiting proline to control plant development. *Plants* 7:108. doi: 10.3390/plants7040108

Ugolini, L., Cinti, S., Righetti, L., Stefan, A., Matteo, R., D’Avino, L., et al. (2015). Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulator. *Ind. Crops Prod.* 75, 15–23. doi: 10.1016/j.indcrop.2014.11.026

Upadhyay, S. K., and Singh, D. P. (2015). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. *Plant Biol.* 17, 288–293. doi: 10.1111/plb.12173

Vaishnav, A., Singh, J., Singh, P., Rajput, R. S., Singh, H. B., and Sarma, B. K. (2020). *Sphingobacterium sp.* *BHU-AV3* induces salt tolerance in tomato by enhancing antioxidant activities and energy metabolism. *Front. Microbiol.* 11:443. doi: 10.3389/fmicb.2020.00443
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., and Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. https://chembioagro.springeropen.com/Chem. Biol. Technol. Agric. 4:5. doi: 10.1186/s40538-017-0089-5

Visconti, F., de Paz, J. M., Bonet, L., Jordà, M., Quinones, A., and Intrigliolo, D. S. (2015). Effects of a commercial calcium protein hydrolysate on the salt tolerance of Diospyros kaki L. cv. “Rojo Brillante” grafted on Diospyros lotus L. Sci. Hortic. 185, 129–138. doi: 10.1016/j.scienta.2015.01.028

Visser, S. A. (1985). Physiological action of humic substances on microbial cells. Soil Biol. Biochem. 17, 452–462. doi: 10.1016/0038-0717(85)90009-4

West, J. S., Townsend, J. A., Stevens, M., and Fitt, B. D. (2012). Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur. J. Plant Pathol. 133, 315–331. doi: 10.1007/s10658-011-9932-x

Woo, S. L., and Pepe, O. (2018). Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9:1801. doi: 10.3389/fpls.2018.01801

Wu, Q., and Zou, Y. (2009). Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Phil. Agric. Sci. 92, 33–38.

Xiao, J. X., Hu, C. Y., Chen, Y. Y., Yang, B., and Hua, J. (2014). Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Sci. Hortic. 177, 14–20. doi: 10.1016/j.scienta.2014.07.016

Xu, C., and Leskovar, D. I. (2015). Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 183, 39–47. doi: 10.1016/j.scienta.2014.12.004

Yadav, S. K., Singh, S., Singh, H. B., and Sarma, B. K. (2017). Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. J. Agric. Food Chem. 65, 6122–6130. doi: 10.1021/acs.jafc.7b03126

Yakhnin, O. I., Lubyanova, A. A., Yakhin, I. A., and Brown, P. H. (2017). Biostimulants in plant science: a global perspective. Front. Plant Sci. 7:2049. doi: 10.3389/fpls.2016.02049

Yildirim, E., Karlidag, H., Turan, M., Dursun, A., and Goktepe, F. (2011). Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HorticScience 46, 932–936. doi: 10.21273/HORTSCI.46.6.932

Yildirim, E., Taylor, A. G., and Spittler, T. D. (2006). Ameliorative effects of biological treatments on growth of squash plants under salt stress. Sci. Hortic. 111, 1–6. doi: 10.1016/j.scienta.2006.06.003

Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., and Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J. Microbiol. Biotechnol. 18, 958–963.

Zandonadi, D. B., Santos, M. P., Caixeta, L. S., Marinho, E. B., Peres, L. E. P., and Façanha, A. R. (2016). Plant proton pumps as markers of biostimulant action. Sci. Agric. 73, 24–28. doi: 10.1590/0103-9016-2015-0076

Zardak, S., Movahhedi Dehnavi, M., Salehi, A., and Gholamhoseini, M. (2018). Effects of using arbuscular mycorrhizal fungi to alleviate drought stress on the physiological traits and essential oil yield of fennel. Rhizosphere 6, 31–38. doi: 10.1016/j.chisph.2018.02.001

Zeng, J., Dong, Z., Wu, H., Tian, Z., and Zhao, Z. (2017). Redox regulation of plant stem cell fate. EMBO J. 36, 2844–2855. doi: 10.15252/embj.201695955

Zhang, X., and Ervin, E. H. (2004). Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 44, 1737–1745. doi: 10.2135/cropsci2004.1737

Zhang, X., and Ervin, E. H. (2008). Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci. 48, 364–370. doi: 10.2135/cropsci2007.05.0262

Zhang, X., and Schmidt, R. E. (2000). Hormone-containing products’ impact on antioxidative status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 40, 1344–1349. doi: 10.2135/cropsci2000.4051344x

Zhao, D., Zhao, H., Zhao, D., Zhu, X., Wang, Y., Duan, Y., et al. (2018). Isolation and identification of bacteria from rhizosphere soil and their effect on plant growth promotion and root-knot nematode disease. Biol. Control 119, 12–19. doi: 10.1016/j.biocontrol.2018.01.004

Zhao, D., Zhou, H., and Qian, H. (2006). Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochem. 41, 1296–1302. doi: 10.1016/j.procbio.2005.12.029

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Rai, Rai and Sarma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.