Fragment antigen binding domains (F\textsubscript{abs}) as tools to study assembly-line polyketide synthases

Katarina M. Guzmana, Chaitan Khoslaa,b,*

a Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
b Department of Chemistry, Stanford ChEM-H, Stanford University, Stanford, CA, 94305, USA

ARTICLE INFO

Keywords: Crystallography Polyketide synthases Fragment antigen binding domains

ABSTRACT

The crystallization of proteins remains a bottleneck in our fundamental understanding of their functions. Therefore, discovering tools that aid crystallization is crucial. In this review, the versatility of fragment-antigen binding domains (F\textsubscript{abs}) as protein crystallization chaperones is discussed. F\textsubscript{abs} have aided the crystallization of membrane-bound and soluble proteins as well as RNA. The ability to bind three F\textsubscript{abs} onto a single protein target has demonstrated their potential for crystallization of challenging proteins. We describe a high-throughput workflow for identifying F\textsubscript{abs} to aid the crystallization of a protein of interest (POI) by leveraging phage display technologies and differential scanning fluorimetry (DSF). This workflow has proven to be especially effective in our structural studies of assembly-line polyketide synthases (PKSs), which harbor flexible domains and assume transient conformations. PKSs are of interest to us due to their ability to synthesize an unusually broad range of medicinally relevant compounds. Despite years of research studying these megasynthases, their overall topology has remained elusive. One F\textsubscript{ab}, in particular, 1B2, has successfully enabled X-ray crystallographic and single particle cryo-electronic microscopic (cryoEM) analyses of multiple modules from distinct assembly-line PKSs. Its use has not only facilitated multidomain protein crystallization but has also enhanced particle quality via cryoEM, thereby enabling the visualization of intact PKS modules at near-atomic (3-5 Å) resolution. The identification of PKS-binding F\textsubscript{abs} can be expected to continue playing a key role in furthering our knowledge of polyketide biosynthesis on assembly-line PKSs.

1. Introduction

Structural analysis of enzymes is invaluable in understanding their functions and enabling their engineering. However, a major bottleneck exists in obtaining high-quality diffracting protein crystals for structural analysis at atomic resolution. Traditional methods to optimize crystal quality employ cofactors, additives, and seeding to enhance crystal growth or quality. But in the absence of lead crystals, there can be no optimization. Protein crystallization chaperones (CCs) may fill this need by binding to a protein of interest (POI) and increasing their probability of crystallization [1]. One of the first reported instances of CCs dates back to 1987 when an antigen-binding fragment (F\textsubscript{ab}) complexed with N9 neuraminidase enhanced crystal growth [2]. A F\textsubscript{ab} is just one of many types of CCs; the list includes scFvs [3], V\textsubscript{iH}-Hs [4-6] (or nanobodies [7]), affibodies [8], and DARPins [9] (Fig. 1). Each CC offers unique advantages; moreover they can complement each other based on differences in their epitope sites (e.g., F\textsubscript{ab}-DARPin-POI or DARPin-V\textsubscript{iH}-POI) [10,11]. Here we focus on applications of F\textsubscript{abs} as CCs. We propose a high-throughput workflow for identifying F\textsubscript{abs} as CCs. We also summarize examples of how their deployment to study polyketide synthases (PKSs) could address longstanding questions in biochemical problem areas of interest.

2. Fabs as crystallization chaperones (CCs)

Fab CCs have been useful in a broad range of protein crystallization efforts (Fig. 2) [12-18]. Their ability to increase sample homogeneity [1], improve model-phasing, and mask flexible or charged residues [18, 19] are just a few examples of mechanisms that have led to their adoption as CCs. Additionally, advances in phage display library technologies have increased the probability of obtaining a Fab that complexes tightly with the POI [20,21]. Compared to traditional hybridoma
techniques, phage libraries are inexpensive and have high throughput. They also enable antigen-antibody pairings under defined conditions. Once a F_{ab} is identified and sequenced, it can be expressed as a correctly folded heterodimer in the periplasmic space of E. coli [22]. The so-called light and heavy chain subunits of the F_{ab} are independently expressed and secreted into the periplasm, where inter-subunit dimerization and disulfide bond formation occurs. While unoptimized protein titers are often low, several efforts aimed at improving F_{ab} expression levels have proved successful [23–25].

2.1. Examples of F_{ab}-POI complexes

Numerous F_{ab}-POI complexes have been structurally characterized to date. Through the following examples, we highlight the advantages of using a F_{ab} as a CC compared to smaller alternatives. F_{ab}s appear to be especially effective at enhancing crystallization by selecting and stabilizing a specific conformation of the POI. While a common apprehension to utilizing F_{ab}s is that they induce a non-native conformation, the prevalence of an energetically unfavorable conformer is inherently low. As such, the F_{ab} simply selects a conformation that already exists under the screening conditions. This is especially attractive for large protein complexes, such as PKSs and membrane channels, that dynamically undergo significant conformational changes during their catalytic cycles. Screening large F_{ab} libraries against a POI under a range of conditions (e.g., presence or absence of substrate, high or low salt concentrations) has the potential to reveal distinct conformations. A historically prominent example of a F_{ab} stabilizing a protein conformation is that of the KcsA potassium ion channel, whose closed conformation was elucidated with a F_{ab} as a CC [26]. As of 1998 a crystal structure (3.2 Å) of the C-terminally truncated version of this ion channel had been solved (PDB ID 1BL8) [27]. However, a higher
resolution structure was required to reveal the specific location of ions within the channel. In 2001, a F\textsubscript{ab} specific for the N-terminal tetrameric KcsA was deployed to improve resolution. The resulting structure [13] was solved at a high resolution (2.0 Å) in part due to protein contacts between neighboring F\textsubscript{ab}s (PDB ID 1K4C, Fig. 2). Despite this enhanced resolution, crystallization of the full-length protein remained elusive, presumably due to the inherent flexibility of the C-terminus that projected into the cytoplasm. Therefore, a C-terminal-specific F\textsubscript{ab} was identified and utilized to obtain crystals. The structure of the full-length KcsA-F\textsubscript{ab} (PDB ID 3EFF) [26], alongside an independent C-terminal-POI/F\textsubscript{ab} complex, was solved. The KcsA models could be overlaid with minimal differences, thus providing additional support (along with activity assays) that the F\textsubscript{ab}s did not induce “unnatural” structural changes.

In two other circumstances, the larger size of F\textsubscript{ab}s proved to be advantageous relative to smaller CCs (scFv, V\textsubscript{H}H) that lacked multiple complementary determining regions (CDRs). The larger number of interacting residues offered the potential to mask more hydrophobic or flexible side chains that hindered crystallization while also providing an opportunity to optimize binding properties. In the case of ubiquitin, the linkage site (K63 versus K48) was known to influence the fate of the poly-ubiquitinated protein [28]. To understand the structural basis for these differences, researchers sought to identify K48- and K63-specific F\textsubscript{ab}s. From an initial library screen, Aputu2.07 specifically bound the K48-linked di-ubiquitin (K\textsubscript{d}~1 nM). The K63-linked di-ubiquitin POI was recognized by Aputu2.16 (K\textsubscript{d}~90 nM), although this F\textsubscript{ab} was non-specific (K\textsubscript{d}~40 µM for K48-linked di-ubiquitin). Following a round of affinity maturation, four clones were obtained with 10-fold enhanced binding for the K63-conjugated POI and no recognition capacity for the K48 adduct. Mutations in both the light and heavy chain CDRs had led to increased F\textsubscript{ab} specificity.

In yet another example, an inhibitory scFv for the MT-SP1 protease was identified, however, Farady et al. [12] were unable to crystallize the complex. When the scFv was converted into a F\textsubscript{ab}, crystals were readily obtained (Fig. 2). The ability to obtain F\textsubscript{ab}-MT-SP1 but not scFv-MT-SP1 crystals highlights the importance of the size of F\textsubscript{ab}s, which could lead to enhanced crystal contacts in the lattice.

Perhaps most interestingly, F\textsubscript{ab}s are not limited to single use for a POI. The ability to simultaneously bind two or even three distinct F\textsubscript{ab}s to the same target molecule (Fig. 2) highlights the versatility of these tools. In the case of the toll-like receptor TLR3, three F\textsubscript{ab}s were essential for crystallization [18]. The authors utilized several common techniques in an effort to obtain high-quality crystals. However, no crystals were obtained until three neutral F\textsubscript{ab}s were simultaneously bound to TLR3. These combined examples illustrate the broad usage of F\textsubscript{ab}s and, in many cases, how their use “saved the day”.

2.2. High-throughput methods for F\textsubscript{ab} identification

F\textsubscript{ab}s have shown great promise as CCs however, due to their relatively low yield, it would be advantageous to determine their effect on crystallization before large scale production. Differential scanning fluorimetry (DSF) allows protein scientists to assess many F\textsubscript{ab} properties (masked hydrophobic residues) of a POI. DSF paired with phage display selection of F\textsubscript{ab}s offers a powerful, high-throughput workflow to enhance crystalllography efforts.

3. Polyketide synthases (PKSs)

A good test of one’s understanding of an enzyme’s structure-mechanism relationships is the ability to engineer the enzyme to...
exhibit a new property. Through a deeper understanding of active site structures, several enzymes have been engineered [31–33]; however, assembly-line PKSs have been relatively resistant to improvement via engineering [34–39]. These PKSs are large multifunctional and multimodular enzymes that are responsible for the biosynthesis of many medicinally relevant compounds. Their ability to catalyze stereospecific biosynthesis is especially striking. Minimally, a catalytic module of an assembly-line PKS is composed of three domains – ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP) [40]. Additional reducing domains – ketoreductase (KR), dehydratase (DH), enoyl reductase (ER) – establish the degree of reduction for each acyl unit (Fig. 4). The co-linear biosynthetic mechanisms of assembly-line PKSs [41,42] has inspired researchers to “mix-and-match” domains and modules to make novel natural products. Unfortunately, in most cases, the yields of these new products are often very low. It is generally believed that improvements in the catalytic activities of these hybrid enzymes would depend on an improved understanding of critical protein-protein and protein-substrate interfaces and interactions. Several PKS domains and multi-domain constructs have been structurally characterized at atomic resolution [43-53]. While these structures have undoubtedly provided insight into enzyme function, visualization of intact PKS modules is needed to understand the overall arrangement and cooperative functions of these assembly lines.

3.1. Relevance of Fas

Due to their inherent flexibility and large size, intact PKS modules have been resistant to structural characterization. Until recently, our understanding of PKS modules relied heavily on comparisons to the evolutionarily and functionally related vertebrate fatty acid synthases (FASs) [54]. The 4.5 Å structure (PDB ID 2CF2) of the porcine FAS [55, 56] was remarkably similar to the higher resolution structures of the KS-AT didomains of module 5 (PDB ID 2HG4) [49] and module 3 (PDB ID 2Q03) [51] of the 6-deoxyerythronolide B synthase (DEBS) as well as an analogous fragment from the curacin synthase [53] (PDB ID 4MZ0). In all cases the homodimeric protein assemblies had a dimeric ketosynthase (KS) interface flanked by acyltransferase (AT) domains on either side (Fig. 5); this model has come to be referred to as the “extended” model of a PKS. More recent studies of the iterative lova-statin synthase LovB (Cryo-EM) [57] and DEBS module 2 (small-angle X-ray scattering, i.e., SAXS) [58] support this “extended” architecture. However, a markedly distinct “arched” model (Cryo-EM) has been proposed for module 5 of the pikromycin PKS (PikAIII) [59,60].

In an effort to reconcile these differences while enhancing particle quality of these flexible megaenzymes, two efforts have recently leveraged the use of a Fas. 1B2. 1B2 was identified from a phage-display library patterned against DEBS module 3 [52] and was found to bind the N-terminal docking domain (DD) of this homodimeric protein. The crystal structure of 1B2 complexed with DD(3)-KS-AT3 (PDB ID 6C9U) agreed with the previously reported “extended” conformations of KS-AT domains. Because 1B2 did not inhibit the core catalytic activities of the module, it supported the hypothesis that the “extended” conformation is preserved throughout the catalytic cycle. Two recent Cryo-EM studies further underscore this hypothesis, both studies leveraged 1B2 and found the Fas to be crucial in their analysis [61,62]. The Lasalocid A PKS module (Lsd14) was determined at 2.4 (X-ray) and 3.1 Å (Cryo-EM) resolutions, respectively. Meanwhile DEBS module 1 was resolved to 3.2–4.3 Å via Cryo-EM. Notably, both studies revealed asymmetric architectures of PKS modules, a feature that may have been overlooked in the solution of the PikAIII structure due to symmetry constraints imposed during data processing. Ongoing efforts are focused on generalizing the utility of a 1B2/DD(3)-PKS, (where PKS represents any PKS module) model for cryo-EM analysis of PKS modules.

3.2. Future use of Fas

Although 1B2 has proven versatile for evaluating an entire PKS module, additional screening of multiple PKS modules against Fas libraries is warranted. Identification of neutral Fas that bind different PKS epitopes could help resolve portions of Cryo-EM models that remain elusive. One portion of the PKS that remains especially difficult to model is the flexible TE domain [61]. The structure of a Fas that recognizes the DEBS TE (3A6, PDB ID 6MLK) has been reported; this can be considered a neutral Fas because the TE maintains its catalytic activity as part of the
As previously reported (Fig. 2), multiple elongation portion of the enzyme (gray). DH, ER, and KR domains outlined below in modification region (orange). DEBS DD(3)-KS/AT (gray) bound to 1B2 (Fαβ, pink) (bottom). αβ represent the two subunits of the homodimer.

In contrast to 1B2 and 3A6, Fαβ inhibit specific reactions catalyzed by assembly-line PKSs and are also likely to be useful. Two Fabs that bind the KR domain of Module 1 of DEBS have been reported (PDB ID 6WH9 and 6W7S) [64]: one of them (1D10) inhibits NADPH-dependent reduction of the growing polyketide chain. The ability to identify an inhibitory Fαβ that changes the rate-limiting step in PKS turnover has the capacity to enhance our understanding of how the corresponding domain operates.

4. Concluding remarks

Crystallization of assembly-line PKSs is crucial for both fundamental understanding and our future ability to engineer new functions. Although traditional optimization techniques (cofactors, additives, etc.) are useful, they are limited for particularly challenging protein targets. Therefore, CCs have been employed in a broad range of applications to enhance X-ray and Cryo-EM studies. We have focused on the use of Fαβ5 as versatile CCs for PKSs. Their ability to stabilize specific conformations is particularly advantageous for highly flexible megasynthases which undergo large conformational changes during a catalytic cycle. This stabilizing effect has been recently exploited in two complementary Cryo-EM studies of PKS modules. In the future the use of multiple neutral Fαβ5 that bind increasingly larger complexes may be helpful. The use of inhibitory Fαβ to understand the catalytic chemistry of PKSs is also feasible and informative.

Declaration of competing interest

None.

CRediT authorship contribution statement

Katarina M. Guzman: Writing – wrote original draft, developed figures, and edited. Chaitan Khosla: Writing – reviewed and edited.

Acknowledgment

NIH grant R35 GM141799 (to C.K.). Stanford Graduate Fellowship (SGF) Award (to K.M.G.).

References

[1] Koide S. Engineering of recombinant crystallization chaperones. Curr Opin Struct Biol 2009;19(4):449–57. https://doi.org/10.1016/j.sbi.2009.04.008.
[2] Air GM, Webster RG, Colman PM, Laver WG. Distribution of sequence differences in influenza N9 neuraminidase of tern and whale viruses and crystallization of the whole neuraminidase complexed with antibodies. Virology 1987;160(2):346–54. https://doi.org/10.1016/0042-6822(87)90005-S.
[3] Ostermeier C, Iwata S, Ludwig B, Michel H. Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Biol 1995;2(10):842–6. https://doi.org/10.1038/nsb0995-842.
[4] Hamers-Casterman C, Atrachouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature 1993;363(6428):446–8. https://doi.org/10.1038/363446a0.
[5] Barthelmy PA, Raah H, Appleton BA, Bond CJ, Wu P, Wiesmann C, Sidhu SS. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem 2008;283(6):3639–54. https://doi.org/10.1074/jbc.m708362200.
[6] Tereshko V, Iusal S, Koide A, Margafel K, Koide S, Konsiakoff AA. Toward chaperone-assisted crystalllography: protein engineering enhancement of crystal packing and X-ray phasing capabilities of a cameld single-domain antibody (VHII) scaffold. Protein Sci 2008;17(7):1175–87. https://doi.org/10.1110/ps.03892108.
[7] Rasmussen SG, Choi IU, Fung JJ, Pardon E, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Koblika TS, Schnapp A, Konetzi K, Sunahara RK, Gollman SH, Pauchtch A, Stemayt J, Weis W, Koblika BK. Structure of a nanobody-stabilized active state of the f(2) adrenergic receptor. Nature 2011;469(7329):175–80. https://doi.org/10.1038/nature09648.
[8] Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahms H, Barthelemy PA, Raab H, Appleton BA, Bond CJ, Wu P, Wiesmann C, Sidhu SS. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem 2008;283(6):3639–54. https://doi.org/10.1074/jbc.m708362200.
[9] Sennhauser G, Grütter MG. Chaperone-assisted crystalllography with DARPins. Structure 2008;16(10):1443–53. https://doi.org/10.1016/j.str.2008.08.010.
[10] Huber T, Steiner D, Rothligerger D, Plückthun A. In vitro selection and characterization of DARPin and Fab fragments for the co-crystallization of membrane proteins: the Na+(–)citrate symporter CitS as an example. J Struct Biol 2007;159(2):206–21. https://doi.org/10.1016/j.jsb.2007.01.013.
[11] Veesler D, Dreier B, Blangy S, Licheire J, Trevblay D, Moineau S, Spinelli S, Tegoni M, Plückthun A, Campanacci V, Cambillau C. Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camellid VH binding mode. J Biol Chem 2009;284(44):30718–26. https://doi.org/10.1074/jbc.M109.037812.
[12] Farady CJ, Egeo PF, Schneider EL, Farragh MR, Craik CS. Structure of an Fab-protease complex reveals a highly specific non-canonical mechanism of inhibition. J Mol Biol 2008;380(2):351–60. https://doi.org/10.1016/j.jmb.2008.05.009.
[13] Zhou Y, Mora-Cabral JL, Kaufman A, MacKinnon R, Chemistry of ion coordination and hydration revealed by a K+:channel-Fab complex at 20 A resolution. Nature 2001;414(6859):43–8. https://doi.org/10.1038/35102009.
[14] Ye JD, Tereleshko V, Frederiksen JK, Koide A, Fellouze FA, Sidhu SS, Koide S, Konsiakoff AA, Piccirilli JA. Synthetic antibodies for specific recognition and crystallization of structured RNA. Proc Natl Acad Sci U S A 2008;105(15):5827–32. https://doi.org/10.1073/pnas.0709082105.
[15] Croll TJ, Smith BJ, Margetts MB, Whittaker J, Weiss MA, Ward CW, Lawrence MC. Higher-resolution structure of the human insulin receptor ectodomain: multi-
Synthetic and Systems Biotechnology 7 (2022) 506–512

K.M. Guzman and C. Khosla

modal inclusion of the insert domain. Structure 2016;24(3):469–76. https://doi.org/10.1016/j.str.2015.12.014.

[16] Hunter C, Michaud-Deschamps J. Crystalization of membrane proteins mediated by antibody fragments. Curr Opin Struct Biol 2002;12(4):450–8. https://doi.org/10.1016/s0959-440x(02)00354-8.

[17] Griffen L, Lawson A. Antibody fragments as tools in crystallography. Clin Exp Immunol 2011;165(3):285–91. https://doi.org/10.1111/j.1365-2249.2011.04427.x.

[18] Malia TJ, Obmolova G, Luo J, Treplavkov A, Sweet R, Gilliland GL. Crystallography of a challenging antigen-antibody complex: TLR3 ECD with three noncompeting Fab. Acta Crystallogr Sect F Struct Biol Commun 2011;PT0:1290–5. https://doi.org/10.1107/S1744999911003983.

[19] Derewenda ZS, Veklich PG. Entropy and surface engineering in protein crystalization. Acta Crystallogr D Biol Crystallogr 2006;62(Pt 1):116–24. https://doi.org/10.1107/S0907484405028377.

[20] Fellouse FA, Eski K, Bittalán S, Raptis D, Cancaci VJ, Koide A, Jharu N, Vasser M, Wiesmann C, Kostkaif AA, Koide S, Sibudu SS. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. J Mol Biol 2007;373(4):924–40. https://doi.org/10.1016/j.jmb.2007.08.005.

[21] Hornsby M, Paduch M, Miersch S, Sonntag M, Grelsma W, Werts M, Wong AR, Bailey CB, Loubat A, Liu YZ, Chen Y, Chang S, Benites VT, Hopwood DA, Santi DV. Combinatorial polyketide biosynthesis by de novo design guided engineering of polyketide synthases. J Am Chem Soc 2020;142(22):9896–908. https://doi.org/10.1021/jacs.0c02549.

[22] Skerra A. A general vector, pASK84, for cloning, bacterial production, and single-step purification of antibody Fab fragments as chaperones for structure determination. J Mol Biol 2018;430(3):511–8. https://doi.org/10.1016/j.jmb.2017.12.012.

[23] Hornsby M, Paduch M, Miersch S, Sonderegger M, Guzman A, Werts M, Wong AR, Bailey CB, Loubat A, Liu YZ, Chen Y, Chang S, Benites VT, Hopwood DA, Santi DV. Combinatorial polyketide biosynthesis by de novo design guided engineering of polyketide synthases. J Am Chem Soc 2020;142(22):9896–908. https://doi.org/10.1021/jacs.0c02549.

[24] Vasser M, Wiesmann C, Kossiakoff AA, Koide S, Sidhu SS. High-throughput stability optimization of proteins for structural studies. Anal Biochem 2006;357(2):289–95. https://doi.org/10.1016/j.ab.2006.07.027.

[25] Whicher JR, Rossini E, Linden A, Paithankar KS, Zeug M, Ignatova Z, Urlaub H, Smith JL, Skiniotis G. Structural rearrangements of a challenging antigen-antibody complex: TLR3 ECD with three noncompeting Fab fragments as chaperones for structure determination. J Mol Biol 2018;430(3):9896–908. https://doi.org/10.1016/j.jmb.2017.12.012.

[26] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[27] Smith S, Tsai SC. The type I fatty acid and polyketide synthases: a tale of two worlds. Structure 2002;10(7):723–6. https://doi.org/10.1016/s1069-2918(02)00258-7.

[28] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[29] Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[30] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[31] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[32] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[33] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[34] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[35] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[36] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.

[37] Whicher JR, Smaga SS, Hansen DA, Brown WC, Gerwick WH, Sherman DH, Smith JL. Cyanobacterial polyketide synthase docking domains: a tool for engineering natural product biosynthesis. Chem Biol 2013;20(11):1340–6. https://doi.org/10.1016/j.chembiol.2013.09.015.
[62] Bagde S, Mathews I, Fromme C, Kim CY. Asymmetric architecture of type I modular polyketide synthase revealed by X-ray and cryo-EM. Science 2021;374(6568):723-5. https://doi.org/10.1126/science.abi8532.

[63] Li X, Sevillano N, La Greca F, Hsu J, Mathews II, Matsui T, Craik CS, Khosla C. Discovery and characterization of a thioesterase-specific monoclonal antibody that recognizes the 6-deoxyerythronolide B synthase. Biochemistry 2018;57(43):6201-8. https://doi.org/10.1021/acs.biochem.8b00886.

[64] Cogan D, Li X, Sevillano N, Mathews I, Matsui T, Craik C, Khosla C. Antibody probes of module 1 of the 6-deoxyerythronolide B synthase reveal an extended conformation during ketoreduction. J Am Chem Soc 2020;142:14933-9. https://doi.org/10.1021/jacs.0c05133.