Association of poorly controlled HbA$_{1c}$ with increased risk of progression to end-stage kidney disease and all-cause mortality in patients with diabetes and chronic kidney disease

Sheng-Jen Chen1*, Hsiu-Yin Chiang2*, Pei-Shan Chen2, Shih-Ni Chang3, Sheng-Hsuan Chen2, Min-Yen Wu2, Hung-Chieh Yeh3,4, I-Wen Ting3,4, Hsiu-Chen Tsai2, Pei-Chun Chen5*, Chin-Chi Kuo2,3,4

1 Department of Education, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan, 2 Big Data Center, China Medical University Hospital, Taichung, Taiwan, 3 Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan, 4 Department of Internal Medicine, AKI-CARE (Clinical Advancement, Research and Education) Center, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan, 5 Department of Public Health, China Medical University, Taichung, Taiwan

* These authors contributed equally to this work.

chinchik@gmail.com (CCK); peichun@mail.cmu.edu.tw (PCC)

Abstract

Glycosylated hemoglobin (HbA1c) targets for patients with chronic kidney disease (CKD) and type 2 diabetes remain controversial. To evaluate whether baseline HbA$_{1c}$ and HbA$_{1c}$ trajectories are associated with the risk of end-stage kidney disease (ESKD) and all-cause mortality, we recruited adult patients with CKD and type 2 diabetes from a “Pre-ESKD Program” at a medical center in Taiwan from 2003 to 2017. Group-based trajectory modeling was performed to identify distinct patient groups that contained patients with similar longitudinal HbA$_{1c}$ patterns. Cox proportional hazard models were used to estimate hazard ratios (HRs) of ESKD and mortality associated with baseline HbA$_{1c}$ levels and HbA$_{1c}$ trajectories. In the analysis related to baseline HbA$_{1c}$ ($n = 4543$), the adjusted HRs [95% confidence interval (CI)] of all-cause mortality were 1.06 (0.95–1.18) and 1.25 (95% CI, 1.07–1.46) in patients with an HbA$_{1c}$ level of 7%–9% (53–75 mmol/mol) and >9% (>75 mmol/mol), respectively, as compared with those with an HbA$_{1c}$ level < 7% (<53 mmol/mol). In the trajectory analysis ($n = 2692$), three distinct longitudinal HbA$_{1c}$ trajectories were identified: nearly optimal (55.9%), moderate to stable (34.2%), and poor control (9.9%). Compared with the “nearly optimal” HbA$_{1c}$ trajectory group, the “moderate-to-stable” group did not have significantly higher mortality, but the “poorly controlled” group had 35% higher risk of mortality (adjusted HR = 1.35, 95% CI, 1.06–1.71). Neither baseline levels of HbA$_{1c}$ nor trajectories were associated with ESKD risk. In conclusion, in patients with CKD and type 2 diabetes, poorly controlled HbA$_{1c}$ was associated with increased risk of death and ESKD.
diabetes, poor glycemic control was associated with an elevated risk of mortality but not associated with a risk of progression to ESKD.

Introduction

Diabetic nephropathy is a leading cause of end-stage kidney disease (ESKD) worldwide and accounts for a considerable proportion of the global ESKD incidence, including in Singapore (66.4%), the United States (46.9%), Taiwan (46.2%), Japan (42.5%), Canada (37.7%), and the United Kingdom (26.5%) [1]. For patients with coexisting type 2 diabetes and chronic kidney disease (CKD), optimal glycemic control targets have been explored in diverse populations. Currie et al. [2] reported a U-shaped association between all-cause mortality and glycosylated hemoglobin (HbA1c) levels in patients with diabetes. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) [3] trial, the risk of all-cause mortality among patients with CKD stage 1–3 was higher in the intensive therapy group (median HbA1c of approximately 6.5%, 48 mmol/mol in the 12th month of follow-up) than in the standard therapy group (median HbA1c of approximately 7.6%, 60 mmol/mol in the 12th month of follow-up). Shurraw et al. [4] revealed a U-shaped association between the risk of all-cause mortality and a baseline HbA1c level of <6.5% (48 mmol/mol) or > 8.0% (64 mmol/mol). Another study on baseline HbA1c revealed that compared with patients who had CKD stage 3 or 4 and a baseline HbA1c level < 6.0%, patients with CKD stage 3 or 4 and a baseline HbA1c level > 9.0% (75 mmol/mol) had higher risk of ESKD (rather than all-cause mortality). However, the ESKD risk was lower in patients with CKD stage 5 [5]. The latest KDIGO (Kidney Disease: Improving Global Outcomes) guidelines suggest that the acceptable HbA1c target ranges from 6.5%–8.0% (48–64 mmol/mol) [6]; however, this consensus on a glycemic control target was mainly based on clinical trials in which patients with preserved kidney function (i.e., those with an estimated glomerular filtration rate [eGFR] of ≥60 mL/min/1.73 m²) were selected [7–9]. Whether the study findings can be generalized to patients with coexisting diabetes and advanced CKD in real-world settings deserves attention [3, 10, 11].

None of the aforementioned studies have explored the prognostic role of the longitudinal trajectory of HbA1c level in patients with type 2 diabetes and CKD; such an exploration could aid in optimal glycemic control threshold estimation. Although a single value of HbA1c could reflect the average blood glucose level over a period of up to 3 months, its representativeness of longer-term glycemic control is insufficient, and thus, up to four annual HbA1c measurements have been suggested [6]. Although the KDIGO Work Group noted the potential for more stringent glycemic control to improve clinical outcomes in terms of all-cause mortality, cardiovascular death, and CKD progression [6], more robust evidence is required to verify whether stringent glycemic control can modify the disease course of patients with type 2 diabetes and CKD. In this study, we used a 15-year single-center longitudinal database to systematically investigate the association of both baseline HbA1c levels and HbA1c trajectories with the risk of progression to ESKD and all-cause mortality in patients with type 2 diabetes and CKD.

Materials and methods

Study population

In 2002, Taiwan’s National Health Insurance launched the Project of Integrated Care of CKD and, since 2007, the project’s focus has been CKD stages 3b–5 [12]. This pre-end-stage kidney disease (ESKD) program was a multidisciplinary approach to the design of individualized care.
plans for a wide range of patients with CKD. Patients with eGFR < 45 mL/min/1.73 m² (i.e., CKD stage 3b–5), or with eGFR ≥ 45 mL/min/1.73 m² (i.e., CKD stage 1–3a) with evident proteinuria (urine protein and creatinine ratio ≥ 1000 mg/gm) were eligible to participate in the Pre-ESKD Program. The objective was to meet the therapeutic goals listed in the guidelines of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative [13]. China Medical University Hospital (CMUH), a tertiary medical center located in Central Taiwan, joined the Pre-ESKD program in 2003. Consecutive patients with CKD who were willing to participate were prospectively enrolled. The CMUH pre-ESKD program currently includes more than 11 000 participants and has an overall retention rate of 90%. CKD diagnoses are based on the working diagnoses of nephrologists or the criteria outlined in the aforementioned initiative’s guidelines [13]. Patients in CKD stages 3b, 4, and 5 were, respectively, followed up at 12, 8, and 4 weeks, or as necessary. Biochemical markers of renal injury including serum creatinine, eGFR, and the spot urine protein–creatinine ratio (PCR) were measured at intervals of no more than 12 weeks. Detailed information on the Pre-ESKD Program has been provided previously [14, 15]. Throughout the manuscript, we use the phrase Pre-ESKD (end-stage kidney disease) program to refer to this multidisciplinary care program.

The index date was defined as the date of first enrollment in the Pre-ESKD program. We first identified patients with a diagnosis of diabetes based on the International Classification of Diseases, 9th and 10th revision Clinical Modification (ICD-9-CM 250 or ICD-10-CM E08-E11, E13) codes and prescriptions of antidiabetic agents before the index date as well as during an additional 1-year inclusion window following the index date. The exclusion criteria included (1) age < 20 years or > 90 years, (2) having a history of dialysis or kidney transplant before the index date, (3) having type 1 diabetes, and (4) not having a recorded baseline HbA1c value. Baseline HbA1c was defined as the HbA1c value recorded 1 year before or 3 months after the index date; the measurement closest to the index date was used. Patients with type 1 diabetes were identified from certificates of catastrophic illness issued by the National Health Insurance Administration, Ministry of Health and Welfare of Taiwan. Because we wanted to observe longitudinal HbA1c patterns, only patients with at least three measurements of HbA1c were included in the trajectory analysis. Patients included in the HbA1c trajectory analysis was had to have had at least a 6-month follow-up and a last HbA1c measurement at least 6 months after the index date (Fig 1). Consequently, 4543 patients were included in the baseline HbA1c analysis and 2692 patients were included in the trajectory analysis (Fig 1).

Measurement of HbA1c

All HbA1c levels were measured at the central laboratory of CMUH. Before September 2013, HbA1c was measured using Tosoh’s Automated Glycohemoglobin Analyzer HLC-723G7 (Tosoh G7; Tosoh Corporation, Minato-Ku, Tokyo, Japan). Two-point calibration was performed using a standard HbA1c sample after every device power-up. The analyzer could distinguish between labile A1c and stable HbA1c, indicating a minimal risk of measurement error. Calculation of HbA1c levels was based on the ratio of the stable HbA1c fraction chromatographic area to that of total glycosylated hemoglobin, and the HbA1c ratio of each result was automatically adjusted using the calibration equation [16]. From September 2013 onward, the HbA1c measurement protocol was switched; Premier Hb9210 (Trinity Biotech Plc., Wicklow, Ireland.) was used thereafter. Premier Hb9210 uses boronate-affinity high-performance liquid chromatography to detect all types of the presented glycosylated Hb species. The final HbA1c results are determined from a simple peak area fraction.

According to prespecified HbA1c values from the literature and the latest American Diabetes Association practice guidelines, we divided the patients into three groups: those with a
baseline HbA\textsubscript{1c} level $<7\% (<53 \text{ mmol/mol})$, $7\%–9\% (53–75 \text{ mmol/mol})$, and $>9\% (>75 \text{ mmol/mol})$; [4, 5, 17]. In the trajectory analysis, we used all available HbA\textsubscript{1c} measurements collected during follow-up for each patient to determine the patient subgroups with similar patterns in longitudinal HbA\textsubscript{1c}.

Other covariables

Sociodemographic variables, including age, sex, education level, smoking status, and alcohol consumption, were collected through a questionnaire during enrollment. Smoking status and alcohol consumption status were categorized as never, former, and current [18]. Body mass index (BMI) was calculated as weight in kilograms divided by height in meters squared, and the latest measurements obtained within ± 2 years of the index date were used in the analysis. Baseline levels of all biochemical variables were determined using the latest measurements obtained within 90 days to 1 year of the index date. eGFR was calculated using the CKD epidemiology
collaboration equation: \[eGFR = 141 \times \min (S-Cre/\kappa, 1) \^{\alpha} \times \max(S-Cre/\kappa, 1)^{-1.209} \times 0.993^{\text{age}} \times 1.018 \times \begin{cases} 1.159 & \text{[if patient is female]} \\ 1.159 & \text{[if Black]} \end{cases} \] \times \begin{cases} 0.7 & \text{[for female patients]} \\ 0.9 & \text{[for male patients]} \end{cases} \] where \(S-Cre \) is serum creatinine, \(\kappa \) is 0.7 for female patients and 0.9 for male patients, and \(\alpha \) is \(-0.329\) for female patients and \(-0.411\) for male patients [19]. The baseline eGFR of each patient was determined using their serum creatinine level, and patients were assigned to corresponding CKD stages based on the following cutoff values: \(> 90 \), \(60–89.9 \), \(30–59.9 \), and \(< 15 \) mL/min/1.73 m\(^2\). CKD stage was then determined on the basis of the following cutoff values for eGFR: \(> 90 \) (stage 1), 60–89.9 (stage 2), 30–59.9 (stage 3), 15–29.9 (stage 4), and \(< 15 \) (stage 5) mL/min/1.73 m\(^2\). Missing values of the pooled urine protein–creatinine ratio (uPCR) were estimated from the urine albumin–creatinine ratio (uACR) by using the following formula: \[\ln(uACR) = 1.32 \times \ln(uPCR) - 2.64 \] [20]. Data on comorbidities and medication use were collected by searching the electronic health records within 1 year before the index date. Hypertension was defined as the presence of related diagnosis codes (ICD-9 codes 401–405 and ICD-10 codes I10–I15) or the prescription of an antihypertensive agent. Cardiovascular disease (CVD) included coronary artery disease, myocardial infarction, stroke, or heart failure (ICD-9 codes 394.9, 396, 410–414, 422.9, 424.0–424.2, 428.0, 428.9, 429.2, 430–438, and ICD-10 codes G45-G46, I11.0, I13.0, I13.2, I20-I25, I50, I60-I63, I69).

Outcomes and follow-up
Survival status and date of death was ascertained through data linkage with the National Death Registry of Taiwan. To minimize bias, we created a proxy outcome for progression to ESKD—a doubling of serum creatinine (S-Cre) concentration—in the main analysis to balance the risk of dialysis among the three baseline HbA1c groups. Progression to ESKD was defined as the initiation of peritoneal dialysis, hemodialysis, kidney transplantation, and doubling of S-Cre compared with the baseline. For each study participant, the follow-up period was from the index date until the earliest occurrence of ESKD, loss to follow-up, death, or December 31, 2017 whichever occurred first.

Statistical analyses
Continuous variables were expressed as a median and interquartile range (IQR), and the differences in continuous variables among the groups were determined using the Wilcoxon rank sum test. Categorical variables were expressed as percentages, and the differences in categorical variables among the HbA1c categories were examined using a chi-squared test. \(P \) values for trends were calculated using Spearman’s correlation for continuous variables and the Cochran–Armitage trend test for categorical variables.

A semiparametric group-based trajectory model (GBTM) was used to characterize the distinct trajectories of HbA1c during the follow-up period. The PROC TRAJ macro, developed using the SAS software package, fits a semiparametric mixture model to longitudinal data by using the maximum likelihood method [21–23]. GBTM is a useful approach for trajectory characterization when the number of potential subgroups and trajectory shapes of each subgroup are still unclear, and the Bayesian information criterion was employed to assess model fit by balancing model complexity. We empirically processed 2- and 3-group solutions and focused on the 3-group solution eventually after considering the sample size and facilitation of meaningful clinical interpretations. Missing values of sociodemographic variables were imputed using multiple imputation under the “missing at random” assumption. Associations of baseline HbA1c and HbA1c trajectories with the risk for ESKD and all-cause mortality were assessed using Cox proportional hazard models with age as the time scale. The subdistribution hazard model developed by Fine and Gray was fitted for ESKD; it accounted for competing
risks of death without ESKD. We constructed three models with increasing levels of covariate adjustment. Model 1 was adjusted for sex, body mass index, smoking status, alcohol consumption, and education. Model 2 was further adjusted for systolic blood pressure, cardiovascular disease, primary etiologies of CKD, baseline medication use (contrast, nonsteroidal anti-inflammatory drugs, oral antidiabetic agents, insulin, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, diuretics, and epoetin), triglyceride level, and low-density lipoprotein cholesterol level. Model 3 was adjusted for all variables in Model 2 and baseline hemoglobin, eGFR, and pooled uPCR.

The dose–response relationship of baseline HbA1c levels with all-cause mortality and ESKD risk was characterized using a restricted cubic spline in the Cox regression analysis with knots at the 10th, 50th, and 90th percentiles of the overall distribution of HbA1c levels. We further performed exploratory subgroup analyses to evaluate potential effect modifications in the fully adjusted model according to age (< 65 vs. ≥ 65 years), sex, BMI category (< 25 vs. ≥ 25 kg/m²), smoking status, alcohol consumption, CKD stage (1–2 vs. 3–5), hypertension, and CVD. All statistical analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) and R (version 3.6.0; R Foundation for Statistical Computing, Vienna, Austria).

Ethics statement

All methods used in this study were performed in accordance with the relevant guidelines and regulations. The study was approved by the Big Data Center of CMUH and the Research Ethical Committee/Institutional Review Board of China Medical University Hospital (CMUH105-REC3-068); the need to obtain written informed consent for the present study was waived by the Research Ethical Committee of CMUH.

Results

Characteristics of study subjects by baseline HbA1c levels

Among the 4543 subjects included in the baseline HbA1c analysis, the median age at enrollment was 67.6 years (IQR: 59.2–75.7), the median HbA1c level was 7.1% (IQR: 6.30–8.20), and the median eGFR was 26.5 mL/min/1.73 m² (IQR: 13.8–43.8; Table 1). The median follow-up duration was 1.6 (IQR: 0.7–3.0) years for the development of ESKD and 3.8 (IQR: 1.9–6.3) years for all-cause mortality. At baseline, of all patients, 89.74% had a urine PCR value of ≥150 mg/g and 85.7% had a urine ACR value of ≥30 mg/g. Patients with a higher baseline HbA1c level were younger and tended to have longer follow-up durations of ESKD and higher BMI (Table 1). In addition, patients with a higher HbA1c level had a higher eGFR. Correspondingly, the proportion of CKD stage 5 and phosphorus and albumin levels were significantly lower in patients with a higher HbA1c level than in those with a lower HbA1c level. Overall, 25.7% and 51.2% of our population were treated with an angiotensin-converting enzyme inhibitor (ACEi) and angiotensin II receptor blocker (ARB), respectively. The proportion of patients with progression to ESKD was significantly lower in the group with baseline HbA1c of 7–9% (53–75 mmol/mol) whereas all-cause mortality was comparable in the three groups “Table 1”.

Characteristics of participants by HbA1c trajectories

Overall, 2692 patients were enrolled in the trajectory analysis, and the median number of HbA1c measurements was 8 (IQR: 5–14) per patient during the study period. The median follow-up duration was 2.6 (IQR: 1.6–4.0) years for the development of ESKD and 4.4 (IQR: 2.7–6.5) years for all-cause mortality. Three distinct longitudinal HbA1c trajectories were identified by the GBTM: nearly optimal (55.9%), moderate-to-stable (34.2%), and poorly controlled
Table 1. Demographic and clinical characteristics of the study population by baseline HbA1c categories.

Characteristics	N (n = 4543)	Total <7% (<53 mmol/mol) (n = 2126)	Baseline HbA1c 7–9% (53–75 mmol/mol) (n = 1798)	>9% (>75 mmol/mol) (n = 619)	P-value b	P for trend a		
Demographic information, median (IQR)								
Age at entry (year)	4543	67.6 (59.2, 75.7)	68.7 (60.2, 76.7)	67.4 (59.4, 75.3)	63.9 (54.6, 73.4)	< 0.001	< 0.001	
Male, n (%)	4543	2507 (55.2)	1202 (56.5)	950 (52.8)	355 (57.4)	0.034	0.514	
Education level (year), n (%)	4543	0.650	-	0.760	-	0.080	-	
Follow up duration of ESKD (year)	4543	1.6 (0.7, 3.0)	1.5 (0.6, 3.0)	1.8 (0.9, 3.1)	1.9 (0.9, 3.0)	< .001	< .001	
Body mass index (kg/m²) c	4504	25.1 (22.8, 27.9)	24.9 (22.5, 27.6)	25.2 (23.0, 28.0)	25.4 (23.1, 28.8)	< .001	< .001	
Follow up duration of mortality (year)	4543	3.8 (1.9, 6.3)	3.4 (1.6, 6.0)	4.2 (2.2, 6.4)	4.0 (2.2, 6.3)	< .001	< .001	
Systolic blood pressure (mmHg)	4512	135 (127, 150)	135 (127, 150)	135 (127, 150)	135 (127, 150)	0.855	0.992	
Diastolic blood pressure (mmHg)	4512	79 (70, 81)	78 (69, 80)	80 (70, 82)	80 (70, 85)	< 0.001	< 0.001	
Behavioral, n (%)	4543	0.111	-	0.136	-	0.080	-	
Smoking status	4543	Never 3699 (81.4)	1743 (82.0)	1471 (81.8)	485 (78.4)	0.080	-	
	4543	Former 381 (8.4)	187 (8.8)	138 (7.7)	56 (9.1)	0.034	-	
	4543	Current 463 (10.2)	196 (9.2)	189 (10.5)	78 (12.6)	0.019	-	
Alcohol consumption	4543	Never 4116 (90.6)	1931 (90.8)	1640 (91.2)	545 (88.1)	0.111	-	
	4543	Former 274 (6.0)	129 (6.1)	95 (5.3)	50 (8.1)	0.047	-	
	4543	Current 153 (3.4)	66 (3.1)	63 (3.5)	24 (3.9)	0.074	-	
Baseline comorbidities d, n (%)	4533	Hypertension 3377 (74.5)	1571 (74.1)	1361 (75.9)	445 (72.0)	0.136	0.760	
	4533	Cardiovascular disease 1823 (40.2)	829 (39.1)	756 (42.1)	238 (38.5)	0.098	0.562	
	4535	Primary etiologies of CKD				< 0.001	-	
	4533	Renal Parenchymal Diseases 418 (9.2)	281 (13.3)	102 (5.7)	35 (5.7)	0.305	0.289	
	4535	Systemic Disease 4040 (89.1)	1783 (84.2)	1678 (93.3)	579 (93.5)	0.098	0.562	
	4533	Obstructive Nephropathy and Urinary Tract Diseases 39 (0.9)	28 (1.3)	9 (0.5)	2 (0.3)	0.388	0.001	
	4533	Other 38 (0.8)	26 (1.2)	9 (0.5)	3 (0.5)	0.288	0.001	
	4538	CKD stage				< 0.001	-	
	4533	Stage 1–2 477(10.5)	157 (7.4)	226 (12.6)	94 (15.2)	0.136	0.760	
	4533	Stage 3 1611(35.5)	700 (33.0)	671 (37.3)	240 (38.8)	0.098	0.562	
	4533	Stage 4 1257(27.7)	571 (26.9)	517 (28.8)	169 (27.3)	0.136	0.760	
	4533	Stage 5 1193(26.3)	695 (32.7)	383 (21.3)	115 (18.6)	0.098	0.562	
Baseline medication profiles d, n (%)	4480	Nonsteroidal anti-inflammatory drugs 1134 (25.3)	528 (23.3)	445 (25.0)	161 (26.3)	0.833	0.737	
	4480	Contrast 680 (15.2)	317 (15.2)	259 (14.6)	104 (17.0)	0.364	0.508	
	4480	Anti-diabetic agents	2963 (66.1)	1280 (61.2)	1244 (70.0)	439 (71.6)	< 0.001	< 0.001
	4480	Oral antidiabetic agents 1791 (40.0)	678 (32.4)	765 (43.1)	348 (56.8)	< 0.001	< 0.001	
	4480	Insulin	1791 (40.0)	678 (32.4)	765 (43.1)	348 (56.8)	< 0.001	< 0.001

(Continued)
Table 1. (Continued)

Characteristics	N	Total (n = 4543)	Baseline Biochemical Profiles, Median (IQR)	P-value	P for trend		
Angiotensin-converting enzyme inhibitors	4480	1152 (25.7)	510 (24.4)	469 (26.4)	173 (28.2)	0.115	0.038
Angiotensin II receptor blockers	4480	2293 (51.2)	1013 (48.5)	977 (55.0)	303 (49.4)	< 0.001	0.051
Diuretics	4480	2661 (59.4)	1249 (59.8)	1043 (58.7)	369 (60.2)	0.726	0.907
β blockers	4480	1942 (43.4)	925 (44.3)	761 (42.8)	256 (41.8)	0.465	0.218
Anti-platelet agents	4480	1443 (32.2)	577 (27.6)	640 (36.0)	226 (36.9)	< 0.001	< 0.001
Statin	4480	384 (8.6)	145 (6.9)	164 (9.2)	75 (12.2)	< 0.001	< 0.001
Fibrate	4480	563 (12.6)	359 (17.2)	159 (9.0)	45 (7.3)	< 0.001	< 0.001
Anti-platelet agents	4480	621 (13.9)	270 (12.9)	268 (15.1)	83 (13.5)	0.148	0.276
Aspirin, Ticlopidine, Clopidogrel	4480	288 (6.4)	141 (6.8)	109 (6.1)	38 (6.2)	0.719	0.486
Dipyridamole	4480	1443 (32.2)	577 (27.6)	640 (36.0)	226 (36.9)	< 0.001	< 0.001
Epoetin	4480	384 (8.6)	145 (6.9)	164 (9.2)	75 (12.2)	< 0.001	< 0.001

(Continued)
(9.9%) (Fig 2). The HbA$_{1c}$ trajectory of the “nearly-optimal” group was stably below a HbA$_{1c}$ level of 7% (53 mmol/mol), whereas the “moderate-to-stable” and “poorly controlled” groups had HbA$_{1c}$ trajectories that fluctuated at approximately 8% (64 mmol/mol) and 10% (86 mmol/mol), respectively. Both the “moderate-to-stable” and “poorly controlled” groups had downward trends in HbA$_{1c}$ levels during the follow-up, particularly in the case of the “poorly controlled” group. Compared with the “nearly optimal” and “moderate-to-stable” groups, patients in the “poorly controlled” group—similar to those with baseline HbA$_{1c}$ levels of > 9% (> 75 mmol/mol)—were younger and tended to have longer follow-up for progression to ESKD and a higher BMI. Those patients were also less likely to have baseline CKD stage 4–5 with a corresponding higher eGFR at baseline (S1 Table). Deviating slightly from the observations made in the baseline analysis, the proportion of patients with progression to ESKD was slightly higher in the “poorly controlled” group than in the other groups, whereas all-cause mortality was comparable among the three groups (S1 Table).

ESKD risk and all-cause mortality based on baseline HbA$_{1c}$ and HbA$_{1c}$ trajectory

The analysis of baseline HbA$_{1c}$, revealed that 2053 ESKD events and 1698 deaths occurred over a total 9888 and 19 253 person-years of follow-up, respectively. The incidence and HR of developing ESKD and all-cause mortality are revealed in Table 2. In the unadjusted model, a modest inverse association was found between the baseline HbA1c category and risk of ESKD (P for trend = 0.028); the HR (95% CI) for a baseline HbA1c level of 7%–9% (53–75 mmol/mol) and >9% (> 75 mmol/mol) versus an HbA1c level of <7% (53 mmol/mol) was 0.92 (0.83–1.01) and 0.87 (0.76–1.002), respectively. The inverse association remained, although attenuated, after controlling for demographics, smoking, and alcohol consumption in model 1 and additionally after controlling for systolic blood pressure, cardiovascular disease, lipid levels, primary etiologies of CKD, and medication use in model 2. However, in model 3, in which
baseline hemoglobin, eGFR, and pooled uPCR were additionally controlled, the inverse association between the baseline HbA\textsubscript{1c} level and risk of progression to ESKD was not found. We did not discover a significant association between the baseline HbA\textsubscript{1c} level and all-cause mortality in the unadjusted model and adjusted models 1 and 2. However, a positive association was found in model 3 (P for trend = 0.009); the HR (95% CI) for a baseline HbA\textsubscript{1c} of >9% (>75 mmol/mol) versus <7% (53 mmol/mol) was 1.25 (1.07–1.46). The dose–response curve between baseline HbA\textsubscript{1c} levels and the risk of all-cause mortality in model 3 showed a monotonic relationship ($P = 0.02$; Fig 3B), but such a relationship did not appear between baseline HbA\textsubscript{1c} and risk of ESKD (Fig 3A). An exploratory subgroup analysis revealed that the associations between the baseline HbA\textsubscript{1c} level and risk of all-cause mortality were consistent in patient subgroups stratified in accordance with in priori selected variables (Fig 4). Generally, the association between a high baseline HbA\textsubscript{1c} level and all-cause mortality was stronger in patients free of advanced CKD, hypertension, and CVD.

In analysis of HbA\textsubscript{1c} trajectories, 1157 ESKD events and 799 deaths occurred over a total 8116 and 12 745 person-years of follow-up, respectively. No significant association was discovered between the HbA\textsubscript{1c} trajectory categories and risk of developing ESKD in the unadjusted

![Fig 2. HbA\textsubscript{1c} trajectories by group-based trajectory modeling as per the three-trajectory solution.](https://doi.org/10.1371/journal.pone.0274605.g002)
model or any adjusted model (Table 2). In model 3, the adjusted HR (95% CI) of progression to ESKD was 1.03 (0.92–1.16) for the “moderate-to-stable” HbA1c group and 1.13 (0.94–1.35) for the “poor control” group as compared with the “nearly optimal” group (Table 2). However, the HbA1c trajectory categories were associated with all-cause mortality. In model 3, the “poor control” group had 35% higher risk of mortality (6%–71%) than the “nearly optimal” group (Table 2).

Discussion

Our findings revealed that a high HbA1c level at the time of Pre-ESKD Program enrollment and a poorly controlled HbA1c trajectory over the follow-up period were associated with increased risk of all-cause mortality in patients with type 2 diabetes and CKD. Despite emerging evidence endorsing the relaxation of HbA1c as a goal for older patients with multiple comorbidities including CKD, maintaining the longitudinal HbA1c level at <9% (75 mmol/
mol) remains vital for improving patients’ overall survival. The null associations of progression to ESKD with a high baseline HbA1c level and a “poorly controlled” HbA1c trajectory should be interpreted cautiously, because the risk of ESKD associated with HbA1c levels may have been modified by the differential erythrocyte lifespan between early and advanced of CKD.

The relatively linear dose–response relationship between the baseline HbA1c level and risk of all-cause mortality was inconsistent with the findings of a study by Shurraw et al. [4], who found a U-shaped relationship between baseline HbA1c and all-cause mortality in patients with CKD stage 3 and 4. In further analyses of Shurraw et al. in which CKD stages 3 and 4 were stratified separately, the magnitude of the increased risk of ESKD associated with poor glycemic control—single baseline HbA1c level >9% (>75 mmol/mol) as opposed to <7% (<53 mmol/mol)—was greater among patients with CKD stage 3 than among those with CKD stage 4 [4]. This minor discrepancy between our study and that of Shurraw et al. is likely due to differences in the study population and statistical approaches. First, the present study further included patients with CKD stage 5 and patients with CKD stages 1–3a with evident proteinuria. Second, our study was based on a well-interoperated dataset incorporating a single institution’s electronic medical records and the national Pre-ESKD Program, meaning that our confounding control was better because variables such as smoking status, alcohol consumption, hemoglobin level, proteinuria, lipid profile, and medication use were available [4]. Conversely, most studies have demonstrated a positive association between baseline HbA1c and the risk of progression to ESKD [4, 5]. On the basis of overarching findings across studies including our own, we can conclude that avoiding an HbA1c level of >9% (>75 mmol/mol) is likely to benefit patients with type 2 diabetes and CKD, even when the disease stage is advanced. Notably, we did not observe better kidney prognosis and mortality outcomes in patients with an HbA1c level of <7% (<53 mmol/mol) compared with those having an HbA1c level of 7%–9% (53–75 mmol/mol). However, whether the therapeutic goal of an HbA1c level >7%–7.5% should be relaxed is beyond the scope of this study and requires clinical and

Fig 3. Dose-response plot of the baseline HbA1c and adjusted hazard ratios for (A) progression to end-stage kidney disease and (B) all-cause mortality according to baseline HbA1c (%). Solid lines represent adjusted hazard ratios based on restricted cubic splines for baseline HbA1c, with knots at the 10th, 50th, and 90th percentiles. Shaded areas represent the upper and lower 95% confidence intervals. The reference was set at the 10th percentile of HbA1c levels. Variables adjusted are the same as that shown in Model 3 presented in Table 2. Missing values were imputed by multiple imputation.

https://doi.org/10.1371/journal.pone.0274605.g003
research consensus concerning the definition of intensive glycemic control for patients with diabetes and CKD (ADA 2022) [24].

Few empirical studies have explored the prognostic role of longitudinal trends in HbA1c in patients with type 2 diabetes and CKD. A study of 770 patients with type 2 diabetes and CKD demonstrated that a "moderate increase" HbA1c trajectory was associated with increased risk of CKD progression compared with a "near-optimal stable" trajectory [25]. The kidney function of that study population was relatively well preserved (median eGFR = 84.8 mL/min/1.73 m²). In addition, instead of the development of ESKD, CKD progression was defined by a decline in CKD stage with a ≥ 25% reduction of baseline eGFR [25]. The consistently observed association between a poor glycemic control trajectory and increased risks of ESKD and mortality in patients with diabetes and CKD highlights the importance of taking proactive measures to prevent hyperglycemic states over the course of CKD care. An integrated CKD care

Fig 4. Subgroup analysis of the hazard ratios (95% confidence interval) of all-cause mortality associated with baseline HbA1c groups. BMI: body mass index, CKD: chronic kidney disease, CVD: cardiovascular disease.

https://doi.org/10.1371/journal.pone.0274605.g004
program should target diabetic patients with poor long-term glycemic control, particularly those with early CKD.

This study has several limitations. First, this was a retrospective cohort study and we could not derive causal inferences from its results. Second, selection bias due to correlation between the HbA1c level and CKD stage should be considered. Briefly, patients with more advanced CKD would have shorter red blood cell survival, leading to a relatively low HbA1c level even in a similar glycemic milieu. Patients with CKD in the lower stratum of baseline HbA1c were more likely to have a more advanced CKD stage and therefore progress more rapidly to ESKD. To minimize this bias, we created a proxy outcome for progression to ESKD—a doubling of the S-Cre concentration—in the main analysis; this balanced the risk of dialysis among the three baseline HbA1c groups. We also restricted our analysis of patients with CKD stage 3 and found that a baseline HbA1c level of >9% (>75 mmol/mol) was significantly associated with increased risk of progression to ESKD [aHR 1.35 (95% CI, 1.04–1.75)] but not increased risk of mortality [aHR 1.05 (95% CI, 0.78–1.41)], as compared with the <7% (53 mmol/mol) group. This observation provides a complimentary perspective to our main findings and supports the hypothesis that an HbA1c level > 9%, is associated with increased risk of both ESKD and mortality in patients with CKD. The effect of poorly controlled HbA1c may be modified by an inherited propensity toward outcomes of interest, which was introduced by the differential erythrocyte lifespan across CKD stages. Third, the possibility of residual confounding—such as a lack of access to detailed dietary information and compliance with medication—could not be completely excluded. Fourth, the follow-up duration may have been insufficient to observe the development of ESKD in patients with CKD stages 1–3. To minimize the impact of the potentially insufficient follow-up, we also used doubling of S-Cre as a surrogate endpoint to define the progression of CKD to ESKD.

Conclusion

In individuals with CKD and type 2 diabetes, maintaining the HbA1c level < 9% (<75 mmol/mol) remains crucial for halting CKD progression and reducing the mortality risk. Patients in the early stages of CKD were particularly vulnerable to the negative effects of chronic hyperglycemia and accelerated progression to ESKD. Whether the development and integration of a glycemic optimization protocol into the existing CKD program for patients with diabetes and CKD can help lower the CKD-related healthcare burden requires clinical trial validation and thus warrants further study.

Supporting information

S1 Table. Demographic and clinical characteristics of the study population by the longitudinal HbA1c trajectories.

(DOCX)

S2 Table. Hazard ratios (95% confidence interval) of 30% decline of estimated glomerular filtration rate (eGFR), doubling serum creatinine, progression to end-stage kidney disease (ESKD), and all-cause mortality associated with baseline HbA1c groups.

(DOCX)

Acknowledgments

We appreciate the support from the Big Data Center of CMUH for data exploration, statistical analysis, manuscript preparation, and the support of the iHi Clinical Research Platform. We would like to thank the Health and Welfare Data Science Center, Ministry of Health Welfare,
and Health Data Science Center, China Medical University Hospital for providing administrative, technical support.

Prior presentation

Part of this study was presented as abstract at Joint Conference on Medical Informatics in Taiwan 2020 on Air, 24–30 August 2020.

Author Contributions

Conceptualization: Sheng-Jen Chen, Hsiu-Yin Chiang, I-Wen Ting, Pei-Chun Chen, Chin-Chi Kuo.

Data curation: Hsiu-Yin Chiang, Pei-Shan Chen, Shih-Ni Chang.

Formal analysis: Hsiu-Yin Chiang, Pei-Shan Chen, Shih-Ni Chang, Sheng-Hsuan Chen, Min-Yen Wu.

Methodology: Sheng-Jen Chen, Hung-Chieh Yeh, I-Wen Ting, Pei-Chun Chen, Chin-Chi Kuo.

Project administration: Chin-Chi Kuo.

Supervision: Chin-Chi Kuo.

Validation: Pei-Shan Chen, Hung-Chieh Yeh, I-Wen Ting, Hsiu-Chen Tsai.

Visualization: Pei-Shan Chen, Shih-Ni Chang, Sheng-Hsuan Chen, Min-Yen Wu.

Writing – original draft: Sheng-Jen Chen, Hsiu-Yin Chiang, Pei-Chun Chen, Chin-Chi Kuo.

Writing – review & editing: Sheng-Jen Chen, Pei-Shan Chen, Shih-Ni Chang, Sheng-Hsuan Chen, Min-Yen Wu, Hung-Chieh Yeh, Hsiu-Chen Tsai.

References

1. System USRD. 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD: 2020.

2. Currie CJ, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, et al. Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study. The Lancet. 2010; 375(9713):481–9. https://doi.org/10.1016/S0140-6736(09)61969-3 PMID: 20110121

3. Papademetriou V, Lovato L, Doumas M, Nylen E, Mottl A, Cohen RM, et al. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. 2015; 87(3):649–59. https://doi.org/10.1038/ki.2014.296 PMID: 25229335

4. Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Archives of Internal Medicine. 2011; 171(21):1920–7. https://doi.org/10.1001/archinternmed.2011.537 PMID: 22123800

5. Kuo I-C, Lin HY-H, Niu S-W, Hwang D-Y, Lee J-J, Tsai J-C, et al. Glycated hemoglobin and outcomes in patients with advanced diabetic chronic kidney disease. Scientific reports. 2016; 6:20028. https://doi.org/10.1038/srep20028 PMID: 26818011

6. Navaneethan SD, Zoungas S, Caramori ML, Chan JC, Heerspink HJ, Hurst C, et al. Diabetes Management in Chronic Kidney Disease: Synopsis of the 2020 KDIGO Clinical Practice Guideline. Annals of Internal Medicine. 2020. https://doi.org/10.7326/M20-5938 PMID: 33166222

7. Group AC. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. New England journal of medicine. 2008; 358(24):2560–72. https://doi.org/10.1056/NEJMoa0802987 PMID: 18539916

8. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. New England journal of medicine. 2008; 359(15):1577–89. https://doi.org/10.1056/NEJMoa0806470 PMID: 18784090
9. Ruospo M, Saglimbene VM, Palmer SC, De Cosmo S, Pacilli A, Lamacchia O, et al. Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database of Systematic Reviews. 2017;(6). https://doi.org/10.1002/14651858.CD010137.pub2 PMID: 28594069

10. Zoungas S, Chalmers J, Ninomiya T, Li Q, Cooper M, Colagiuri S, et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds. Diabetologia. 2012; 55(3):636–43. https://doi.org/10.1007/s00125-011-2404-1 PMID: 22186981

11. Zoungas S, Arima H, Gerstein HC, Holman RR, Woodward M, Reaven P, et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. The lancet Diabetes & endocrinology. 2017; 5(6):431–7. https://doi.org/10.1016/S2213-8587(17)30104-3 PMID: 28365411

12. Lin CM, Yang MC, Hwang SJ, Sung JM. Progression of stages 3b-5 chronic kidney disease—preliminary results of Taiwan national pre-ESRD disease management program in Southern Taiwan. J Formos Med Assoc. 2013; 112(12):773–82. Epub 2013/12/07. https://doi.org/10.1016/j.jfma.2013.10.021 PMID: 24309170.

13. National Kidney Foundation. KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. Am J Kidney Dis. 2002; 39:S1–S000.

14. King EK, Hsieh MH, Chang DR, Lu CT, Ting IW, Wang CCN, et al. Prediction of non-responsiveness to pre-dialysis care program in patients with chronic kidney disease: a retrospective cohort analysis. Sci Rep. 2021; 11(1):13938. Epub 2021/07/08. https://doi.org/10.1038/s41598-021-93254-0 PMID: 34230524.

15. Tsai CW, Huang HC, Chiang HY, Chung CW, Chiu HT, Liang CC, et al. First-year estimated glomerular filtration rate variability after pre-end-stage renal disease program enrollment and adverse outcomes of chronic kidney disease. Nephrol Dial Transplant. 2019; 34(12):2066–78. Epub 2018/07/10. https://doi.org/10.1093/ndt/gfy200 PMID: 29982714.

16. Chapelle J-P, Teixeira J, Maisin D, Assink H, Barla G, Stroobants AK, et al. Multicentre evaluation of the Tosoh HbA1c G8 analyser. Clinical chemistry and laboratory medicine. 2010; 48(3):365–71. https://doi.org/10.1515/CCLM.2010.062 PMID: 20020820

17. Association AD. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020; 43(Supplement 1):S66–S76. https://doi.org/10.2337/dc20-S006 PMID: 31862749

18. Tsai C-W, Hu C-H, Hwang HC, Yeh T-C, Ting I-W, Wang CCN, et al. First-year estimated glomerular filtration rate variability after pre-end-stage renal disease program enrollment and adverse outcomes of chronic kidney disease. Nephrol Dial Transplant. 2018; 33(2):231–41. https://doi.org/10.1093/ndt/gfx297 PMID: 29140472

19. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF III, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Annals of internal medicine. 2009; 150(9):604–12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006 PMID: 19414639

20. Yamamoto K, Nagamatsu H, Yoshida K, Nishi Y, Mihara T, Mizuno A, et al. The total urine protein-to-creatinine ratio can predict the presence of microalbuminuria. PLoS One. 2014; 9(3):e91067. https://doi.org/10.1371/journal.pone.0091067 PMID: 24614247

21. Nagin DS. Analyzing developmental trajectories: a semiparametric, group-based approach. Psychological methods. 1999; 4(2):139. https://doi.org/10.1037/1082-989X.4.2.139

22. Nagin DS, Odgers CL. Group-based trajectory modeling in clinical research. Annual review of clinical psychology. 2010; 6:109–38. https://doi.org/10.1146/annurev.clinspy.121208.131413 PMID: 20192788

23. Jones BL, Nagin DS, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociological methods & research. 2001; 29(3):374–93. https://doi.org/10.1177/0049124101029003005

24. Schernthaner G, Kitz E, Scherthaner G-H. Strict glycaemic control in diabetic patients with CKD or ESRD: beneficial or deadly? Nephrology Dialysis Transplantation. 2010; 25(7):2044–7. https://doi.org/10.1093/ndt/gfq199 PMID: 20386830

25. Low S, Zhang X, Wang J, Yeoh LY, Liu YL, Ang SF, et al. The impact of HbA1c trajectories on chronic kidney disease progression in type 2 diabetes. Nephrology. 2018. https://doi.org/10.1093/ndt/gfy104. SP428.