The Green’s function and equations of motion formalism allows one to exactly solve a large class of models useful for the study of strongly correlated systems. In this article, we study the influence of an external magnetic field h on the phase diagram of a system of Fermi particles living on the sites of a Bethe lattice with coordination number z and interacting through onsite U and nearest-neighbor V interactions. This is a physical realization of the extended Hubbard model in the atomic limit. Our results establish the existence of different phases in the three dimensional spaces (U, T, h) and (n, T, h) – where n is the filling – with relative phase transitions, as well as different types of charge ordering. The magnetic field may dramatically affect the critical temperature below which a long-range charge ordered phase is observed, as well as the behavior of thermodynamic quantities, inducing, for instance, magnetization plateaus in the magnetization curves. Relevant thermodynamic quantities – such as specific heat, susceptibility, entropy – are also investigated at finite temperature as functions of the on-site potential, particle density and of the magnetic field.