Development and validation of a high-throughput whole cell assay to investigate *Staphylococcus aureus* adhesion to host ligands

Laurenne E. Petrie†, Allison C. Leonard†, Julia Murphy, and Georgina Cox*©

From the College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada

Edited by Joseph M. Jez

*For correspondence: Georgina Cox, gcx@uoguelph.ca.

© 2020 Petrie et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.

*This article contains supporting information.
†These authors contributed equally to this work.

Staphylococcus aureus adhesion to the host’s skin and mucosae enables asymptomatic colonization and the establishment of infection. This process is facilitated by cell wall-anchored adhesins that bind to host ligands. Therapeutics targeting this process could provide significant clinical benefits; however, the development of anti-adhesives requires an in-depth knowledge of adhesion-associated factors and an assay amenable to high-throughput applications. Here, we describe the development of a sensitive and robust whole cell assay to enable the large-scale profiling of *S. aureus* adhesion to host ligands. To validate the assay, and to gain insight into cellular factors contributing to adhesion, we profiled a sequence-defined *S. aureus* transposon mutant library, identifying mutants with attenuated adhesion to human-derived fibronectin, keratin, and fibrinogen. Our screening approach was validated by the identification of known adhesion-related proteins, such as the housekeeping sortase responsible for covalently linking adhesins to the cell wall. In addition, we also identified genetic loci that could represent undescribed anti-adhesive targets. To compare and contrast the genetic requirements of adhesion to each host ligand, we generated a *S. aureus* Genetic Adhesion Network, which identified a core gene set involved in adhesion to all three host ligands, and unique genetic signatures. In summary, this assay will enable high-throughput chemical screens to identify anti-adhesives and our findings provide insight into the target space of such an approach.

An important component of bacterial virulence is adhesion to the host’s skin and mucosae (1–4); as such, the development of anti-adhesive therapeutics could provide significant clinical benefits (1, 3, 5). However, such an approach requires an in-depth knowledge of adhesion-associated factors in clinically relevant strains (6). In addition, sensitive and robust assays are required to enable high-throughput chemical screening campaigns.

This study is focused on the opportunistic pathogen *Staphylococcus aureus*. The organism’s arsenal of virulence factors enables a variety of diseases ranging from skin and soft tissue infections to severe systemic infections (7). Strains of *S. aureus* possess numerous cell wall-anchored (CWA) surface proteins (8) covalently attached to the peptidoglycan through the action of sortases, mainly the housekeeping transpeptidase sortase A (SrtA) (9, 10). CWA proteins perform many functions, including adhesion, immune evasion, iron acquisition, and biofilm formation (8). As such, the pathogenicity of SrtA-deficient *S. aureus* strains is significantly impaired in several animal models of infection (11–13). In regard to adhesion, a subset of CWA proteins recognize different host ligands, which enables *S. aureus* strains to colonize and cause infections in distinct sites within the body (8). Therefore, specific anti-adhesives will be required in different clinical contexts.

One bottleneck in the study of *S. aureus* adhesion is the lack of a high-throughput and whole cell assay. Rather than focusing on a single target (e.g. SrtA), a whole cell assay would permit an unbiased phenotypic approach for identifying anti-adhesives, enabling the sampling of a larger target space. Furthermore, whole cell assays provide inhibitors with guaranteed biological activity, which is often a limiting factor of target-based approaches (14, 15). Existing adhesion detection methods have largely relied on staining of adhered bacteria with crystal violet, or the manual enumeration of colony-forming units (16–20). Although these assays are capable of detecting strains with reduced adhesion, they lack the feasibility, consistency, sensitivity, and/or speed required for high-throughput applications. To overcome these limitations, we describe the development of an ELISA to detect *S. aureus* adhesion to host ligands in a high-throughput manner.

To validate our high-throughput screening assay, and to gain insight into the genetic requirements of *S. aureus* host cell adhesion, we performed a large-scale genetic screen, profiling an arrayed transposon mutant library of methicillin-resistant *S. aureus* (MRSA) USA300 (21). Specifically, we investigated the genetic requirements of *S. aureus* adhesion to three different host cell ligands: fibronectin, keratin, and fibrinogen. These ligands are implicated in distinct and clinically relevant scenarios, as detailed below.

Fibronectin

S. aureus can invade, survive, and replicate within professional and non-professional phagocytic cells (22, 23). The interaction of *S. aureus* with fibronectin underlies the organism’s ability to invade non-professional phagocytic host cells, which is mediated by the fibronectin-binding proteins (FnBPs) A and B.
(24–29). Host cell invasion facilitates the establishment of chronic and difficult to treat infections (24, 30–32); the intracellular lifestyle of S. aureus protects the bacterium from antibiotics (33) and the host’s immune system (34). Furthermore, endothelial host cell invasion can cause inflammation, endocarditis, and crossover into blood vessels, resulting in systemic infections (35). Interfering with S. aureus fibronectin adhesion could provide significant clinical impact; in this instance, anti-adhesives would likely act as adjuvants (36) potentiating antibiotics in infected individuals and could reduce the occurrence of chronic infections.

Keratin

The ability of S. aureus to colonize the skin and nasal cavity is facilitated by the CWA adhesin clumping factor B (ClfB), which recognizes analogous binding motifs within keratin and cornified envelope proteins such as loricrin, located within the epidermis (1, 37–41). S. aureus persistently colonizes the nasal cavity of ~20% of the adult population (42, 43) and the majority (~80%) of aggressive hospital infections are caused by these colonizing isolates (1, 44–46). Interfering with ClfB-mediated adhesion to the skin could enable the development of S. aureus decolonizing agents (1).

Fibrinogen

Finally, the interaction of S. aureus with fibrinogen/fibrin is important during the early stages of infection (47). S. aureus adhesion to fibrinogen is associated with the colonization of prosthetic joints and/or indwelling devices (48), cell clumping, and the formation of a protective fibrin/fibrinogen shield; the latter two of which are important for virulence and immune evasion (49, 50). Although S. aureus produces an array of factors interacting with fibrinogen, clumping factor A (ClfA) is the adhesin enabling the abovementioned pathogenic traits (51). Consequently, ClfA has been the focus of S. aureus vaccine efforts (52).

Although the molecular basis and importance of the abovementioned S. aureus host-ligand interactions are well-described, it is likely that numerous cellular factors contribute to adhesion, which are all candidate anti-adhesive targets. Indeed, virulence gene expression is controlled by intricate networks of regulators (53) and the surface stability of adhesins is governed by the controlled production of extracellular proteases, which degrade adhesins and/or host ligands (54–58). As such, our high-throughput genetic screen identified 20 adhesion defective mutants and we used this information to construct a S. aureus Genetic Adhesion Network. Overall, we identified a core gene set involved in adhesion to all three host ligands and we delineated unique genetic signatures. Although the genetic screen validated our high-throughput whole cell assay, identifying a significant proportion of known adhesion-associated factors, we also identified previously undescribed genetic loci that warrant further investigation. These new loci may represent undescribed drug targets and this assay is well suited to identify new small molecule inhibitors of all the targets identified in this study.

In summary, this whole cell assay will enable strategies to inhibit S. aureus host cell adhesion, providing a means to profile large chemical libraries, and also sheds light on the target space of such an approach. The identification of anti-adhesive therapeutics could provide an important complement to traditional antibacterial chemotherapy, for use as single or combinatorial therapies, potentially reducing the need for antibiotics and/or enhancing antibiotic action (36) during infection.

Results

The development of a whole cell high-throughput assay to detect surface adhered S. aureus

To enable the large-scale profiling of S. aureus adhesion to host ligands, here we describe the development of a whole cell high-throughput assay (Fig. 1A). We selected the predominant community-associated MRSA strain in North America: MRSA USA300 (59, 60), which is designated CMRSA-10 in Canada.
Investigating *S. aureus* adhesion to host ligands

![Figure 2. Optimization of the whole cell adhesion assay.](image)

To detect surface-adhered MRSA USA300, we developed an ELISA-based approach, selecting a mouse monoclonal primary antibody with affinity for intact and UV-treated *S. aureus*, and a horseradish peroxidase-conjugated secondary antibody. To optimize the assay, we first assessed detection of MRSA USA300 JE2 adhering to human-derived fibronectin, keratin, and fibrinogen. It is well described that the affinity of *S. aureus* for host ligands changes throughout the cell cycle; the strains were grown to the OD600nm range highlighted by the gray box. This range was selected based on the OD600nm where MRSA USA300 JE2 adhesion was maximal and presented an optimum ratio of separation between MRSA USA300 JE2 and the isogenic mutants of each respective ligand. To optimize the screening window, dose-dependent ELISAs were performed with MRSA USA300 JE2 and isogenic JE2 srtA::Tn adhering to human-derived fibronectin (D), keratin (E), and fibrinogen (F). The strains were grown to the specified OD600nm highlighted by the gray box and standardized to an OD600nm of 1.0.

Validation of the high-throughput whole cell *S. aureus* adhesion assay

To validate the use of our assay for the large-scale profiling of *S. aureus* adhesion, we took a functional genomics approach to identify genetic loci contributing to adhesion to fibronectin, keratin, or fibrinogen. We used an MRSA USA300 transposon library comprised of 1,920 annotated mutants generated by the insertion of the mariner-based *bursa aurealis* transposon into...
genes that are not considered to be essential for growth under standard laboratory conditions (21). In total, this library provides coverage of >75% of the predicted MRSA USA300 genes (73). For profiling of the individual mutants, the library was arrayed into a 96-well–microtiter plate glycerol stock. A cryo-replicator was used to inoculate the library into tryptic soy broth (TSB) in 96-well–round bottom microtiter plates. After 18 h at 37 °C, these cultures were used to inoculate fresh TSB, and the strains were grown at 37 °C until the OD_{600nm} range shown in Fig. 2A was reached, which depends on the host ligand being profiled. The growth of each mutant was measured, revealing reproducible growth (Fig. 3), and enabled the identification of strains with growth defects. The bacterial cells were then applied to microtiter plates coated with the individual host ligands and the ELISA was performed, which reproducibly detected adhesion (Fig. 3). To circumvent the limitations of plate-to-plate variation, the growth and adhesion values were normalized by the interquartile mean (IQM) (74). The IQM represents the mean of the inner two quartiles of ranked data, thereby preventing any influence from outliers (74). We then determined the ratio between adhesion and growth for each mutant (Fig. 4). A hit was defined as a mutant that provided a ratio less than 4 standard deviations for keratin and fibronectin, and less than 6 standard deviations for fibrinogen, from the IQM of the data set. Because the mutants were sampled at a higher OD_{600nm} in the fibrinogen screen, the variance was lower and a higher cut-off value was used.

As anticipated, the assay was validated by the identification of known adhesion-related determinants, such as the gene encoding SrtA, which was identified in all three screens. We also identified disruptions within genes encoding key host ligand adhesins: clfB in the keratin screen and clfA in the fibrinogen screen (Fig. 4). Because there are two fibronectin binding proteins (FnBPA/B), disruption of either gene alone is not sufficient to impair fibronectin adhesion (Fig. 4).

Construction of a S. aureus genetic adhesion network highlights the anti-adhesive target space

All adhesion attenuated mutants identified in the primary adhesion screens (Fig. 4) were compiled into a sublibrary and profiled for adhesion to all three host ligands, as described above. For mutants that showed confirmed adhesion-related phenotypes, the transposons were transduced using phage 80α into a fresh JE2 background, to eliminate the possibility of

![Figure 3. Replica plots of normalized growth and adhesion values from the large-scale profiling of an MRSA USA300 transposon library (21). Growth (OD_{600nm}) is shown on the left (red) and adhesion (A_{450nm}) values are shown on the right (green). A, fibronectin; B, keratin; C, fibrinogen. R1 = replicate 1 and R2 = replicate 2.](image-url)
secondary-site mutations. Transposon insertions were confirmed by PCR and the newly generated mutants were then profiled to assess dose-dependent adhesion to each host ligand (Fig. S1). A single concentration of each ligand was selected to compare the relative adhesion of each mutant to the parental strain (Table 1). This information was used to create a visual

Figure 4. Identifying genetic loci associated with \textit{S. aureus} adhesion to human-derived fibronectin, keratin, and fibrinogen, respectively. The values shown in the index plots are the ratio between the average of duplicate adhesion values \((A_{450\text{nm}})\) and duplicate growth values \((OD_{600\text{nm}})\) (see Fig. 3). The strains are ordered based on their associated SAUSA300 accession number (21). The screens were performed with ligand concentrations and strains sampled at the given time points depicted in Fig. 2. Strains falling below the red lines exhibited a ratio less than 4 standard deviations (fibronectin and keratin) and 6 standard deviations (fibrinogen) from the IQM (75) of the data set.
Investigating *S. aureus* adhesion to host ligands

Table 1

The *S. aureus* Genetic Adhesion Network Genes associated with *S. aureus* adhesion to a minimum of one of three host ligands (keratin, fibronectin, and fibrinogen)

Adhesion was assessed by titrating each host ligand (Fig. S1). For creation of the Genetic Adhesion Network, a final concentration was selected for each ligand, as indicated. The value listed for each mutant strain is the average percentage of adhesion relative to wild-type JE2 (three biological replicates), with lower values indicating a greater reduction in adhesion to a specific ligand. Genes *mazE* (SAUSA300_2026), *recD2* (SAUSA300_1576), *rpiR* (SAUSA300_2264), and *ydiL* (SAUSA300_1984) are provisional names provided on the basis of their predicted structure and function. One gene, labeled hypo, is unannotated (SAUSA300_0602). *p* values were calculated using the two-tailed, unpaired Student's *t* test; statistically significant (*, *p* ≤ 0.05) decreases in adhesion, compared with wild-type JE2, were used to create the Genetic Adhesion Network (Fig. S5).

Gene	Locus	Keratin (0.125 μg/well) % adhesion	Keratin p value	Fibronectin (0.125 μg/well) % adhesion	Fibronectin p value	Fibrinogen (0.25 μg/well) % adhesion	Fibrinogen p value
agrC	SAUSA300_1991	106.8	0.57	102.4	0.75	77.0	0.040*
arlR	SAUSA300_1308	107.4	0.33	111.5	0.25	57.9	0.00096*
atl	SAUSA300_0955	51.6	0.026*	23.7	0.0015*	50.7	0.0044*
cfIA	SAUSA300_0772	104.0	0.72	130.1	0.20	44.4	0.00050*
cfIB	SAUSA300_2565	42.2	0.0055*	81.4	0.45	101.9	0.26
codY	SAUSA300_1148	68.3	0.038*	49.4	0.012*	97.2	0.80
fmtA	SAUSA300_0959	60.5	0.028*	73.2	0.12	76.7	0.049*
fmtC	SAUSA300_1255	96.1	0.44	82.7	0.13	54.5	0.00093*
hypo	SAUSA300_0602	100.4	0.95	100.4	0.97	65.1	0.026*
mazE	SAUSA300_2026	98.9	0.92	68.9	0.0058*	96.3	0.75
recD2	SAUSA300_1576	41.8	0.00029*	38.4	0.0019*	20.6	0.000082*
rplK	SAUSA300_2264	116.6	0.050	67.1	0.0056*	136.9	0.020
rpoF	SAUSA300_2022	18.6	0.0013*	25.7	0.0012*	35.2	0.0018*
rsbU	SAUSA300_2025	16.5	0.0012*	17.0	0.00082*	35.3	0.0016*
sacE	SAUSA300_0691	108.1	0.43	79.6	0.030*	121.7	0.056
sacS	SAUSA300_0690	104.9	0.44	86.0	0.037*	117.5	0.016
sarA	SAUSA300_0605	26.0	0.00016*	29.6	0.000051*	17.7	0.000085*
sarS	SAUSA300_0114	104.3	0.55	70.4	0.014*	116.1	0.14
srtA	SAUSA300_2467	20.9	0.0015*	21.4	0.00083*	34.4	0.0016*
ydiL	SAUSA300_1984	102.8	0.86	115.7	0.068	69.0	0.015*

representation of the contribution of each gene to adhesion (Fig. 5). By comparing adhesion of each strain to each of the three polymers we observed similarities and differences between the three screens. In total, we identified 20 genetic loci associated with adhesion to at least one of the three host ligands; 12 for fibronectin, 9 for keratin, and 13 for fibrinogen. We also identified a core gene set required for adhesion to all three host ligands and we identified undescribed genetic loci. Importantly, these genes represent potential targets that could be identified in future screens of chemical libraries. To further strengthen our findings, we profiled poorly characterized adhesion-defective mutants (*sarS, rpiR, fmtC, fmtA, recD2, hypo, and ydiL*) using crystal violet as an alternative detection method (Fig. S2). By employing this method, with the exception of *sarS* in the fibronectin screen, we confirmed that all of the mutants displayed reduced adhesion, which is not a reflection of reduced affinity of the detecting antibodies.

Assessing the proteolytic activity of adhesion attenuated mutants

We identified a number of genes associated with virulence gene regulation, and three were identified in all three screens: *rpoF* (the alternative sigma factor B; SigB; α5) (75), *rsbU* (75) (increases SigB activity; *rsbW* (75) was also identified, which is a polar mutation), and the gene encoding the global staphylococcal accessory regulator (*sarA*) (76). These genes are known to impact the expression of a wide variety of virulence-related genes, including the genes encoding adhesins (77, 78). In addition to positively regulating adhesin gene expression (76, 79), a number of the identified regulators (e.g. SarA and CodY) also repress extracellular protease production (54). Therefore, disruptions within these repressors would enhance the mutant’s proteolytic capabilities. Some of these proteases are known to
Investigating S. aureus adhesion to host ligands

Figure 6. Assessing the level of proteolytic activity in the adhesion attenuated mutants. Protease activity was assessed using TSA containing 1.5% Difco Skim Milk. The zones of clearance were measured using ImageJ. Each strain was measured with at least three biological replicates. Welch’s t test (**, \(p \leq 0.01; ***, p \leq 0.001; ****, p \leq 0.0001 \)) was used to compare the mean length for each mutant to the mean of the parental strain (red dashed line).

Impact the stability of surface proteins (55, 56) and/or host ligands, enabling the bacterium to detach and disseminate (54, 57, 66). The NTML has previously been profiled to identify mutants with protease activity, which highlighted 12 mutants (brnQ, ilvE, sarA, xerC, hslU, codY, rpoF, rsbW, rsbV, rsbU, NE1833) with increased production, many of which had previously been associated with this phenomenon (21). As shown in Fig. 5, a number of these mutants also exhibit reduced adhesion. We assessed the level of proteolytic activity of the newly generated mutants on casein plates (Fig. 6), by measuring the zone of clearance, which enabled us to compare the extent of protease production for each mutant. Overall, we identified varying degrees of proteolysis, with five mutants exhibiting enhanced protease production and six with decreased levels (Fig. 6).

Discussion

The antibiotic resistance crisis signifies an urgent need for orthogonal and complementary therapeutics to control and treat bacterial infections. Antivirulence approaches (80), including the inhibition of bacterial host cell adhesion (1), could reduce the severity of this global health crisis. However, the development of such strategies requires sensitive and robust assays amenable to high-throughput applications, and an in-depth understanding of the underlying processes. Here, we present an ELISA-based approach (Fig. 1) for the high-throughput profiling of S. aureus adhesion to host ligands. We performed a genetic screen to confirm the assay was able to detect genetic alterations of this study by broadly categorizing each identified genetic locus into four likely and/or known groups: 1) adhesin-associated roles (srp, rpiR, fntC, fntA, recD2, hypo, and ydiL); 2) adhesin-surface presentation (srtA, arlRS); 3) extracellular protease production (rpoF, rsbU, codY, saeRS, sarA); and 4) unknown/unconfirmed roles (sarS, rpiR, hslU, codY, fntC, fntA, recD2, hypo, ydiL). In terms of adhesin expression (Group 1), we identified a number of genes associated with virulence gene regulation: rpoF (75, 77, 78), rsbU (75, 77, 78), and sarA (76, 87–89). These genes are known to impact the expression of genes

In this work we identified 20 genetic loci (1% of the NTML) associated with adhesion to at least one of the three clinically important host ligands. As anticipated, many of the identified genes have previously been implicated in adhesion. For example, in addition to identifying the srtA mutant, which is devoid of CWAs, the clfB mutant was identified in the keratin screen, and clfA in the fibrinogen screen. In addition, we also identified the gene encoding the major peptidoglycan hydrolase, autolysin (Atl), which reduced adhesion to all three host ligands (Fig. 5 and Fig. S1). Atl, and the functionally interchangeable enzyme in Staphylococcus epidermidis (AtlE) (81), have been described as staphylococcal adhesins (82). These proteins have been associated with adhesion to polystyrene (82) and host proteins including fibrinogen (83, 84), fibrinogen (84), vitronectin (84, 85), heparin (83), gelatin (83), heat shock cognate 71-kDa protein (Hsc70) (86), and thrombospondin 1 (86). Here, we show that keratin is a host cell ligand also affected by loss of Atl.

Generation of a Genetic Adhesion Network identified a core subset of genes (\(n = 6 \)) required for adhesion to all three ligands (Fig. 5 and Table 1), which included expected genes such as srtA (11), sarA (87–89), rpoF and rpoF-related genes (rsbU) (77, 78), and atl (83, 84). Inhibitors of these elements could represent anti-adhesives capable of simultaneously interfering with the interaction of S. aureus with fibronectin, keratin, and fibrinogen.

To the best of our knowledge, the adhesion-associated roles of sarS, rpiR, fntC, fntA, recD2, hypo, and ydiL (Fig. 5, Fig. S2, Table 1) remain unknown. Of note, we were unable to confirm the adhesion-associated defect of sarS using an alternative detection method (Fig. S2). In addition, genomic assessment and operon predictions (90) showed that some of these genes are located within an operon (e.g. recD2), and thus we cannot rule out polar effects due to transposon insertion. Complementation studies are required to further confirm the adhesion phenotypes.

Based on our current knowledge, we summarize the findings of this study by broadly categorizing each identified genetic locus (Fig. 5) into four likely and/or known groups: 1) adhesin gene expression (saeRS, codY, rsbU, rpoF, sarA); 2) adhesin surface presentation (srtA, arlRS); 3) extracellular protease production (rpoF, rsbU, codY, saeRS, sarA); and 4) unknown/unconfirmed roles (sarS, rpiR, hslU, clfB, fntC, fntA, recD2, hypo, ydiL). In terms of adhesin expression (Group 1), we identified a number of genes associated with virulence gene regulation: rpoF (75, 77, 78), rsbU (75, 77, 78), and sarA (76, 87–89). These genes are known to impact the expression of genes...
encoding adhesins (77, 78). Furthermore, deletion of codY reduced the affinity of S. aureus for keratin and fibronectin (Fig. 5) and CodY has been shown to positively influence the expression of the fibronectin adhesin fnbA (79). In regard to adhesin surface presentation (Group 2), SrtA covalently attaches adhesins to the peptidoglycan (9, 10), and disruption of the ArlRS two-component system reduces fibrinogen adhesion due to increased production of the Giant Staphylococcal Surface Protein (encoded by the ebl gene), preventing fibrinogen recognition by ClfA (91). As described, in addition to positively regulating adhesin gene expression (76, 79), a number of the identified regulators (e.g. SarA and CodY) also repress extracellular protease production (Group 3) (54–57, 66), which can degrade surface proteins and/or host ligands. Indeed, increased protease production (e.g. due to loss of SarA repression (55)) attenuates virulence, and complete loss of protease activity causes a hypervirulent phenotype, which could be due to the increased stability of surface-associate virulence factors (57, 58). Because we identified a number of genes that have previously been associated with protease production, we assessed the proteolytic activity of the newly created mutants (Fig. 6) (54). Overall, we identified a significant enrichment of mutants with varying degrees of protease production. Importantly, in addition to degrading adhesins, extracellular proteases can also degrade host ligands. This study sampled both possibilities simultaneously, because we applied the bacterial cells and the spent growth medium, containing secreted proteases, to immobilized ligands. Proteolytic assessment could be used to provide insight into the targets of candidate anti-adhesives identified with varying degrees of adhesion, which suggests it will be well suited for chemical library screening, enabling the identification of anti-adhesives with differing degrees of potencies.

Materials and methods

Bacterial strains, plasmids, and growth conditions

The NTML (NR-48501) and MRSA USA300 JE2 (21) were obtained from the Network on Antimicrobial Resistance in S. aureus (NARSA) repository through BEI resources, NIAID, National Institutes of Health (RRID:SCR_013698). The NTML was constructed in the MRSA USA300 JE2 strain, which was used as a background for all purposes of this study. Regeneration of the adhesion-attenuated mutants of interest was accomplished by transducing the transposons into the parental JE2 strain using phage 80a transduction. Successful transductants were selected on erythromycin (5–10 µg/ml) and confirmed by PCR using gene- and transposon-specific primers (Table 2). Unless otherwise stated, S. aureus strains were propagated in BD Bacto™ Tryptic Soy Broth. For profiling of the NTML, the strain library was arrayed in a 96-well–microtiter plate glycerol (25% v/v) stock format at −80 °C. A cryo-replicator and replicator press (EnzyScreen) were used to inoculate 100 µl of TSB in 96-well–round bottom microtiter plates. All strains were grown at 37°C with aeration at 220 rpm (25 mm throw), with the exception of microtiter plates that were aerated with 900 rpm using an incubator with a 3-mm throw (INFORS HT Multitron).

Antibodies and reagents

Surface adhered S. aureus was detected using a mouse anti-S. aureus monoclonal primary antibody raised against UV-inactivated S. aureus (Invitrogen) and a secondary anti-mouse goat IgM, HRP-conjugated antibody (Invitrogen). HRP colorimetric substrate (1-step™ Ultra 3,3',5,5'-tetramethylbenzidine) and Nunc™ Immunosorbent (Maxisorp™) 96-well–microtiter plates were purchased from Thermo Scientific. Maxisorp™ plates were coated with keratin derived from human epidermis and fibronectin and fibrinogen from human plasma (Millipore Sigma). BSA (BSA, HyClone™) was solubilized in PBS.

The ELISA-based S. aureus adhesion assay

For coating Maxisorp™ plates with host ligands, 100 µl of keratin (diluted in carbonate buffer: 15 mM Na2HCO3, 35 mM NaHCO3 (pH 9.6)), fibrinogen, or fibronectin (diluted in PBS (pH 7.4)), were applied and incubated at 4 °C for 18 h. The plates were blocked with 300 µl of 2% BSA (w/v) for 1.5 h at room temperature. The microtiter plate lids were removed, and the bacterial cultures were irradiated under UV light for 20 min and stored at 4 °C. 100 µl of each culture was applied to the host ligand-coated microtiter plate wells, the plates were sealed, agitated for 5 min (900 rpm), and incubated for 1 h with gentle shaking (100 rpm). 100 µl of the primary antibody (2 µg/ml in 1% BSA) was applied to each well and the plates were agitated for 5 min (600 rpm), followed by 1 h incubation with gentle shaking (100 rpm). 100 µl of the HRP-conjugated secondary antibody (125 ng/ml in 1% BSA) was applied as described for the primary antibody. Adhesion was assessed using 100 µl of room temperature equilibrated colorimetric substrate (3,3',5,5'-tetramethylbenzidine), which was agitated for 1 min (600 rpm), followed by gentle shaking (100 rpm) for 20 min. The reaction was quenched by oxidation with 100 µl of 2 M H2SO4. Absorbance was measured at 450 nm using a BioTek Synergy H1 microplate reader. Between each described step, the plates were incubated at room temperature and washed four times with 300 µl of PBS (pH 7.4), with the
exception of host ligand aspiration, where the plates were only washed once with 300 µl of PBS. When assessing fibrinogen adhesion, the PBS was supplemented with 1.7 mM CaCl$_2$.

To optimize the described assay, the strains were sampled at different stages of the growth cycle. Overnight saturated cultures were diluted 1:100 in TSB and the bacterial cells were harvested via centrifugation (4000 × g, 4 °C) at intervals of 0.2 from an OD$_{600nm}$ of 0.2 to 1.2. The cells were washed with PBS and standardized to an OD$_{600nm}$ of 1.0. Simultaneously, the polymer and antibodies concentrations were varied until an optimal signal to noise ratio was achieved, by assessment of the Z-factor (92). The parental MRSA USA300 JE2 strain and an isogenic $srtA$::Tn mutant strain were used as positive and negative controls, respectively.

MRSA USA300 primary antibody recognition was determined by coating a Nunc$^\text{TM}$ MaxiSorp$^\text{TM}$ microtiter plate with MRSA USA300 JE2 and isogenic JE2 $srtA$::Tn. Overnight saturated cultures were diluted 1:100 in TSB and the strains were propagated to an OD$_{600nm}$ of 0.6. The cells were harvested via centrifugation (4000 × g, 4 °C), washed with PBS, and standardized in PBS to an OD$_{600nm}$ of 0.5, 0.25, 0.125, 0.0625, and 0.0313. The standardized cultures were applied to an uncoated Nunc$^\text{TM}$ MaxiSorp$^\text{TM}$ microtiter plate, blocked, and washed as described. Overnight cultures were diluted 1:100 in 10 ml of TSB in 50-ml tubes. To assess fibrinogen and keratin adhesion, 100 µl of each culture was applied to fibronectin-coated microtiter plate wells, the plates were sealed, agitated for 5 min (900 rpm), and incubated for 1 h with gentle shaking (100 rpm). The bacterial cultures were irradiated under UV light for 20 min. For fibronectin adhesion, due to the lower OD$_{600nm}$, 200 µl of each culture was applied to fibronectin-coated microtiter plate wells and the plates were treated as described, this step was repeated twice. Adhesion was assessed by staining adherent cells with 100 µl of filtered 0.5% (w/v) crystal violet for 2 min, washing three times in 300 ml of 0.7% (v/v) acetic acid. Absorbance was measured at 595 nm using a BioTek Synergy H1 microplate reader.

Crystal violet adhesion assay

Nunc$^\text{TM}$ MaxiSorp$^\text{TM}$ microtiter plates were coated with ligands, blocked, and washed as described. Overnight cultures were diluted 1:100 in 10 ml of TSB in 50-ml tubes. To assess fibrinogen and keratin adhesion, 100 µl of each culture, propagated to the respective OD$_{600nm}$ was applied to ligand-coated microtiter plate wells, the plates were sealed, agitated for 5 min (900 rpm), and incubated for 1 h with gentle shaking (100 rpm). The bacterial cultures were irradiated under UV light for 20 min. For fibronectin adhesion, due to the lower OD$_{600nm}$, 200 µl of each culture was applied to fibronectin-coated microtiter plate wells and the plates were treated as described, this step was repeated twice. Adhesion was assessed by staining adherent cells with 100 µl of filtered 0.5% (w/v) crystal violet for 2 min, washing three times in 300 µl of PBS (pH 7.4), and solubilizing in 0.7% (v/v) acetic acid. Absorbance was measured at 595 nm using a BioTek Synergy H1 microplate reader.

Profiling the NTML to identify adhesion attenuated mutants

The NTML was profiled using a cryo-replicator (EnzyScreen) to inoculate 100 µl of TSB (5 µg/ml of erythromycin), followed by incubation at 37 °C for 18 h with aeration (900 rpm). These saturated cultures were then used to inoculate 100 µl of TSB and the strains were grown to the appropriate OD$_{600nm}$ for each host

Primers Sequence (5′-3′)	Transposon primer used	Source
upstream	CTCGATTCTATTTAATTTG	Bae et al. (2008)
rpoF_Tn_check	GCGAAAGAGTCGAAATCTTTGC	Buster
rpiR_Tn_check	CGCGTTAAACAACAATAGC	New_Upstream
rot_Tn_check	GCATAAGTTAGCATACTCAC	Buster
RecD2_Tn_check	TTATCACCTTTTCTCAAG	Upstream
srtA_Tn_check	TTATTTGACTTCTGTAGCTACA	Upstream
rsbW_rversus_check	TTATCGAAGATTTTACG	Buster
sara_Tn_check	GAGTTGTAATTTTGGTCA	Buster
sarS_Tn_check	AGTGCAATATACAGAGAAGA	New_Upstream
sdcS_Nat_Tn_check	GTGGGCGAATTTTGCAG	New_Upstream
NaT_fwd_check	GTGGGCGAATTTTGCAG	New_Upstream
spa_rversus_check	CTAGGTGTAGTTGAGAC	New_Buster
srtA_Tn_check	TTATTTGACCTTGTAGCTCAAAAGATTAGTCAG	New_Buster
srtB_Tn_check	TTAATTTTGTAGCTCAAAAGATTAGTCAG	New_Buster
vrg_Tn_check	TTACCTACCTTTAATATTGGGAC	New_Buster
xerC_Tn_check	GGAATCAGAGGATTTTGCAG	New_Buster
yabl_rversus_check	CACAACAGATTTTGCAG	New_Buster
Ydil_Tn_check	GGGAATCAGAGGATTTTGCAG	New_Buster
Yfeh_Tn_check	ATGTTGAGAGGATTTTGCAG	New_Buster

Table 2 Primers used in this study
A monoclonal antibody ligand (Fig. 2). The adhesion assay was performed as described above. Data were ranked and normalization was performed by using the IQM method (74). Ranked data were divided into four quartiles where the mean of the inner two quartiles represents the IQM (74). Normalization per plate was achieved by comparing each strain to the IQM (74).

To confirm the adhesion attenuated phenotypes, the newly generated transposon mutants were propagated in microtiter plates as described. MaxiSorp™ plates were coated with increasing concentrations of fibronectin, keratin, or fibrinogen, starting at a high dose of 1 μg/well (10 μg/ml). The ELISA was performed as described above, with a minor modification. Following UV irradiation, 50 μl of each culture and 50 μl of PBS were applied to the host ligand-coated microtiter plate wells. MRSA USA300 JE2 was included in each plate as a control. Each strain was assessed using a minimum of three biological replicates. The resulting data were used to generate the genetic adhesion network, which was created using Cytoscape (93). GraphPad Prism 8 was used for statistical analysis.

Assessing mutant proteolytic activity
Proteolytic activity was assessed on TSA containing 1.5% Difco Skin Milk. Cultures were inoculated into 100 μl of TSB and propagated overnight at 37°C with aeration (900 rpm). Each strain was point inoculated onto the skim milk agar, from the overnight culture, using a cryo-replicator. Plates were incubated at 37°C for 24 h before being imaged. Zones of clearing were assessed using ImageJ (94), by measuring from the edge of the spotted colony to the edge of the zone of clearance. Each strain was measured with at least three biological replicates. GraphPad Prism 8 was used for statistical analysis. Welch’s t test was used to compare the mean length for each mutant to the mean of the parental strain (JE2).

Data availability
The authors confirm that the data supporting the findings of this study are available within this article (and its supporting material). The raw data from the primary genome-wide adhesion screens are available upon request. Please contact the corresponding author (gc Cox@uoguelph.ca).

Acknowledgments—We thank Maritza Vatta for technical assistance with aspects of the adhesion assay. We also thank Dr. David Heinrichs and Dr. Mariya Goncheva for assistance and advice with the transduction.

Author contributions—L. E. P., A. C. L., and G. C. data curation; L. E. P., A. C. L., and G. C. formal analysis; L. E. P., A. C. L., and J. M. validation; L. E. P., A. C. L., and J. M. investigation; L. E. P. and A. C. L. visualization; L. E. P. and G. C. methodology; A. C. L. and G. C. writing-review and editing; G. C. conceptualization; G. C. resources; G. C. supervision; G. C. funding acquisition; G. C. writing-original draft; G. C. project administration.

Funding and additional information—This work was supported by New Frontiers in Research Fund-Exploration Grant NFRFE-2018-01058, a Medical Research Grant from the J. P. Bickell Foundation, and the Canada Foundation for Innovation Grant JELF 37730 (to G. C.).

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: CWA, cell wall-anchored; SrtA, sortase A; MRSA, methicillin-resistant S. aureus; FnBP, fibronectin-binding protein; ClfB, clumping factor B; ClfA, clumping factor A; TSB, tryptic soy broth; IQM, interquartile mean; Atl, autolysin; HRP, horseradish peroxidase.

References
1. Leonard, A. C., Petrie, L. E., and Cox, G. (2019) Bacterial anti-adhesives: inhibition of Staphylococcus aureus nasal colonization. ACS Infect. Dis. 5, 1668–1681 CrossRef Medline
2. Johnny, W. P. (1996) Bacterial pathogenesis (Barron, S., Ed) in Medical Microbiology, 4 Ed., Galveston, TX
3. Ofek, J., Hasty, D. L., and Sharon, N. (2003) Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol. Med. Microbiol. 38, 181–191 CrossRef Medline
4. Pizarro-Cerdà, J., and Cossart, P. (2006) Bacterial adhesion and entry into host cells. Cell 124, 715–727 CrossRef Medline
5. Sattin, S., and Bernardi, A. (2016) Glycoconjugates and glycomimetics as microbial anti-adhesives. Trends Biotechnol. 34, 483–495 CrossRef Medline
6. Spaulding, C. N., Klein, R. D., Schreiber, H. L. T., Janetka, J. W., and Hultgren, S. J. (2018) Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes 4, 4 CrossRef Medline
7. Crossley, K. B. (2010) Staphylococci in human disease, Wiley-Blackwell, Chichester, UK
8. Foster, T. J., Geoghegan, J. A., Ganesh, V. K., and Höök, M. (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12, 49–62 CrossRef Medline
9. Mazmanian, S. K., Ton-That, H., and Schneewind, O. (2001) Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40, 1049–1057 CrossRef Medline
10. Ilangovan, U., Ton-That, H., Iwahara, J., Schneewind, O., and Clubb, R. T. (2001) Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc. Natl. Acad. Sci. U.S.A. 98, 6056–6061 CrossRef Medline
11. Mazmanian, S. K., Liu, G., Jensen, E. R., Lenoy, E., and Schneewind, O. (2000) Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. U.S.A. 97, 5510–5515 CrossRef Medline
12. Jonsson, I. M., Mazmanian, S. K., Schneewind, O., Verdrengh, M., Bremell, T., and Tarkowski, A. (2002) On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis. J. Infect. Dis. 185, 1417–1424 CrossRef Medline
13. Weiss, W. J., Lenoy, E., Murphy, T., Tardio, L., Burgio, P., Projan, S. J., Schneewind, O., and Aklesne, L. (2004) Effect of srtA and srtB gene expression on the virulence of Staphylococcus aureus in animal models of infection. J. Antimicrob. Chemother. 53, 480–486 CrossRef Medline
14. Matano, L. M., Morris, H. G., Wood, B. M., Meredith, T. C., and Walker, S. (2016) Accelerating the discovery of antibacterial compounds using pathway-directed whole cell screening. Bioorg. Med. Chem. 24, 6307–6314 CrossRef Medline
15. Payne, D. J., Gwynn, M. N., Holmes, D. J., and Pompliano, D. L. (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug. Discov. 6, 29–40 CrossRef Medline
16. Herman-Bausier, P., El-Kirat-Chatel, S., Foster, T. J., Geoghegan, J. A., and Dufrêne, Y. F. (2015) Staphylococcus aureus fibronectin-binding protein A

Investigating S. aureus adhesion to host ligands

ASSM

J. Biol. Chem. (2020) 295(49) 16700–16712 16709
mediates cell-cell adhesion through low-affinity homophilic bonds. MBio 6, e00413–e00415 CrossRef Medline

17. Oh, K. B., Oh, M. N., Kim, J. G., Shin, D. S., and Shin, J. (2006) Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Appl. Microbiol. Biotechnol. 70, 102–106 CrossRef Medline

18. Weidenmaier, C., Kokai-Kun, J. F., Kristian, S. A., Chanturiya, T., Kalgan, H., Gross, M., Nicholson, G., Neumeister, B., Moné, J. J., and Pescel, A. (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245 CrossRef Medline

19. Pickering, A. C., Vitry, P., Prysto, V., Garcia, B., Hőök, M., Schoenbeck, F., Geoghegan, J. A., Dufrené Jr, Y. F., and Fitzgerald, J. R. (2019) Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion. PLoS Pathog. 15, e1007816

20. Roche, F. M., Meehan, M., and Foster, T. J. (2003) The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149, 2759–2767 CrossRef Medline

21. Fey, P. D., Endres, J. L., Yajjala, V. K., Widhelm, T. J., Boissy, R. J., Bose, J. L., and Bayles, K. W. (2013) A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4, e00537-12 CrossRef Medline

22. Flannigan, R. S., Heit, B., and Heinrichs, D. E. (2016) Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cell Microbiol. 18, 514–535 CrossRef Medline

23. Grosz, M., Kolter, J., Papatroma, K., Winkler, A. C., Schäfer, D., Chatterjee, C. S., Geiger, T., Wolz, C., Ohslen, K., Otto, M., Rudel, T., Sinha, B., and Fraunholz, M. (2014) Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin alpha. Cell Microbiol. 16, 451–465 CrossRef Medline

24. Josse, J., Laurent, F., and Diot, A. (2017) Staphylococcal adhesion and host cell invasion: fibronectin-binding and other mechanisms. Front. Microbiol. 8, 2433 CrossRef Medline

25. Tran Van Nieuw, G., and Isberg, R. R. (1993) Staphylococcal adhesion to host ligands: a historical perspective of the ecological niche, with suggestions for future therapy considerations. Adv. Microbiol. 7, 420–449 CrossRef Medline

26. Bornstein, E. (2017) Eradication of Staphylococcus aureus and MRSA in the nares: A historical perspective of the ecological niche, with suggestions for future therapy considerations. Adv. Microbiol. 7, 420–449 CrossRef Medline

27. Gruntheimer, M., Hussain, M., Becker, P., Hellmann, C., Peters, G., and Sinha, B. (2004) Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect. Immun. 72, 7155–7163 CrossRef Medline

28. Sinha, B., Francois, P., Que, Y. A., Hussain, M., Hellmann, C., Moreillon, P., Lew, D., Krause, K. H., Peters, G., and Hellmann, M. (2000) Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect. Immun. 68, 6871–6878 CrossRef Medline

29. Löfler, B., Tuchscherr, L., Niemann, S., and Peters, G. (2014) Staphylococcus aureus persistence in non-professional phagocytes. Int. J. Med. Microbiol. 304, 170–176 CrossRef Medline

30. Sinha, B., and Fraunholz, M. (2010) Staphylococcus aureus host cell invasion and post-invasion events. Int. J. Med. Microbiol. 300, 170–175 CrossRef Medline

31. Strobel, M., Pfeiffer, H., Tuchscherr, L., Volker, U., Schmidt, F., Kramko, N., Schnittler, H. J., Fraunholz, M. J., Löfler, B., Peters, G., and Niemann, S. (2016) Post-invasion events after infection with Staphylococcus aureus
immobilized fibrinogen and fibronectin. Infect. Immun. 73, 4793–4802 CrossRef Medline

85. Kohler, T. P., Gisch, N., Binsker, U., Schlag, M., Darm, K., Völker, U., Zähringer, U., and Hammerschmidt, S. (2014) Repeating structures of the major staphylococcal autolysin are essential for the interaction with human thrombospondin 1 and vitronectin. J. Biol. Chem. 289, 4070–4082 CrossRef Medline

86. Hirschhausen, N., Schlesier, T., Schmidt, M. A., Götz, F., Peters, G., and Heilmann, C. (2010) A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol. 12, 1746–1764 CrossRef Medline

87. Xiong, Y. Q., Bayer, A. S., Yeaman, M. R., Van Wamel, W., Manna, A. C., and Cheung, A. L. (2004) Impacts of sarA and agr in Staphylococcus aureus strain Newman on fibronectin-binding protein A gene expression and fibronectin adherence capacity in vitro and in experimental infective endocarditis. Infect. Immun. 72, 1832–1836 CrossRef Medline

88. Chien, Y., Manna, A. C., Projan, S. J., and Cheung, A. L. (1999) SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J. Biol. Chem. 274, 37169–37176 CrossRef Medline

89. Cheung, A. L., Koomey, J. M., Butler, C. A., Projan, S. J., and Fischetti, V. A. (1992) Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc. Natl. Acad. Sci. U.S.A. 89, 6462–6466 CrossRef Medline

90. Price, M. N., Huang, K. H., Alm, E. J., and Arkin, A. P. (2005) A novel method for accurate operon predictions in all sequenced prokaryotes. Nucleic Acids Res. 33, 880–892 CrossRef Medline

91. Walker, J. N., Crosby, H. A., Spaulding, A. R., Salgado-Pabón, W., Malone, C. L., Rosenthal, C. B., Schlievert, P. M., Boyd, J. M., and Horswill, A. R. (2013) The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog. 9, e1003819 CrossRef Medline

92. Zhang, J. H., Chung, T. D., and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 4, 67–73 CrossRef Medline

93. Franz, M., Lopes, C. T., Huck, G., Dong, Y., Sumer, O., and Bader, G. D. (2016) Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics 32, 309–311 CrossRef Medline

94. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 CrossRef Medline

95. Bae, T., Glass, E. M., Schniewind, O., and Missiakas, D. (2008) Generating a collection of insertion mutations in the Staphylococcus aureus genome using bursa aurealis. Methods Mol. Biol. 416, 103–116 CrossRef Medline

Investigating S. aureus adhesion to host ligands

J. Biol. Chem. (2020) 295(49) 16700–16712