Pathological Worry is Related to Poor Long-Term Pharmacological Treatment Response in Patients With Panic Disorder

Hyun-Ju Kim1*, Ji Eun Kim2*, and Sang-Hyuk Lee1,3

1Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
2Graduate School of Social Welfare, Yonsei University, Seoul, Republic of Korea
3Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea

Objective Several predictors of unfavorable pharmacological treatment response (PTR) in panic disorder (PD) patients have been suggested, such as the duration of the illness, presence of agoraphobia, depression, being a woman, and early trauma. This study aimed to examine whether pathological worry is associated with PTR in PD patients.

Methods This study included 335 PD patients and 418 healthy controls (HCs). The Penn State Worry Questionnaire (PSWQ), the Early Trauma Inventory Self-Report-Short Form (ETISR-SF), Beck Depression Inventory (BDI), Panic Disorder Severity Scale (PDSS), and Anxiety Sensitivity Inventory-Revised (ASI-R) were administered. We measured the PTR at 8 weeks and 6 months. Student t-test, chi-square tests, Pearson’s correlation analyses, and binary logistic regression model were used.

Results Our results showed that the total scores of the PSWQ correlated with the ETISR-SF, BDI, and ASI-R were significantly higher in patients with PD compared with HCs. The PSWQ and BDI could predict unfavorable PTR at 6 months in PD patients.

Conclusion This is the first study to demonstrate that pathological worry may contribute to poor long-term PTR in PD patients. Therefore, our research suggests that clinicians must be aware of worry to optimize PTR for PD patients.

Psychiatry Investig 2021;18(9):904-912

Keywords Panic disorder; Pathological worry; Penn State Worry Questionnaire; Pharmacotherapy; Treatment response.

INTRODUCTION

Generally, worry, which is defined as “a chain of thoughts and images, negatively affect-laden and relatively uncontrollable,” is a cognitive characteristic of anxiety that can be seen in normal individuals. In contrast, excessive worry is the cognitive component of anxiety and is closely associated with anxious apprehension, which may be an attempt at coping with unfavorable events.

Panic disorder (PD) is an anxiety disorder whose main symptoms are recurrent and unexpected panic attacks, excessive worry about future panic attacks, and physical symptoms such as the sensation of shortness of breath, palpitation, and fear of dying. In particular, excessive worry in PD consists of persistent concern or worry about the implications of a panic attack or its consequences such as losing control and having a heart attack, with a tendency to cause considerable distress and functional impairment. Therefore, in patients with PD, excessive worry is might be explained “trait worry” more than “state worry,” which is named pathological worry. In particular, the contents of pathological worry in PD differs from excessive worry about various events or activities in generalized anxiety disorder (GAD). However, patients with PD similar to GAD who experience pathological worry may tend to be focused on future negative outcomes that are vague in nature, resulting in problem generation rather than problem resolution.

To reduce symptoms like pathological worry in patients with PD, pharmacological treatment and second wave cognitive-behavioral therapy (CBT) have been well-established so far as effective methods. In addition, previous research has shown that pharmacotherapy is effective in reducing pathological wor-
ry symptoms in patients with GAD.10 However, diagnostic co-
morbidities such as anxiety disorders in patients with GAD
having pathological worry is associated with lack of recovery.11
Furthermore, in clinical settings, even when such patients with
PD are treated, the pharmacological treatment response (PTR)
may not be quite satisfactory because approximately 20%–40% of
patients with PD are non-responsive to pharmacotherapy
with antidepressants such as selective serotonin reuptake in-
hibitors (SSRIs), serotonin-norepinephrine reuptake inhibitors,
tricyclic antidepressants, and anxiolytics.12,13 In some clinical
trials in which patients with PD were treated with SSRIs and
anxiolytics for a period of 8 to 12 weeks, but 17%–61% of PD
patients didn’t respond to pharmacotherapy.14,15 Therefore, it is
important to early detect patients with PD having pathologi-
cal worry in advance so that other different alternative treat-
ments can be considered for each patient. Moreover, further
studies are needed to identify additional predictors of pharma-
cological treatment for patients with PD.

Several baseline predictors that could contribute to the PTR
in patients with PD have been suggested. Previous short-term
as well as long-term research has suggested several predictors
in PD such as duration of the illness, the symptom severities of
PD, presence of agoraphobia, comorbidities with other psychi-
atric disorders including depressive disorders and personality
disorders, and the female gender.16–22 In addition, some stud-
ies have found that recent emergency room visits and medical
comorbidities in PD were might be predictors of poor PTR in
patients with PD.23 Another study found an correlation between
early sexual trauma and neuroticism, and unfavorable long-
term PTR in patients with PD.24 However, few studies thus far
have determined whether pathological worry is a predictor of
PTR in PD. Further research about long-term pharmacother-
apy needs to be done due to the lack of studies on the responses
to long-term pharmacological treatment for pathological worry.

Our study addresses this gap in the literature by examining
whether pathological worries are associated with long-term
PTR in patients with PD using a relatively larger sample size
than those used in previous studies. We hypothesized that pa-
tients with PD who experience pathological worry will have an
unfavorable response to pharmacological treatments in long-
term follow-ups.

METHODS

Participants

Between 2011 and 2021, 335 patients with PD and 418 healthy
controls (HCs) participated in this study. We recruited partic-
ipants from patients with PD who were treated in the Depart-
ment of Psychiatry at CHA Bundang Medical Center. All par-
ticipants were Koreans aged between 18 and 70 years old. The
participants’ family histories of PD were established through
interviews. Participants with PD with or without agoraphobia
met the DSM-IV-TR Axis I Disorder, as diagnosed by trained
psychiatrists using the Structured Clinical Interview for DSM-
IV-TR. Although DSM-5 was published in 2013, we recruited
patients with PD with the previous criterion, DSM-IV-TR, to
collect data on a consistent basis from 2011 to 2021. Only pa-
tients primarily diagnosed as experiencing PD were included,
and PD patients with additional major medical comorbidities
were excluded. In addition, PD patients who followed up to 6
months after pharmacotherapy were included.

Participants with a primary diagnosis of any schizophrenia
spectrum disorders, bipolar disorders, depressive disorders,
anxiety disorders including GAD other than PD, substance use
disorders, personality disorder, mental retardation, major med-
dical disorders including neurological disorders, and pregnancy
were excluded. Furthermore, all patients with PD who had
been treated with individual or group psychotherapy such as
mindfulness-based cognitive therapy or CBT were excluded.
In addition to, HCs with a history of psychiatric disorders were
excluded.

All patients with PD had pharmacotherapy with SSRIs such
as escitalopram, paroxetine, and sertraline (escitalopram equiv-
ance dosage=9.97±7.50 [mean±SD] mg/day),25 and BDZs
including alprazolam, clonazepam, and diazepam were primar-
ily permitted on a pro re nata (PRN; as required) basis. Some
patients with PD were undergoing pharmacological treatment
with antidepressants and anxiolytics according to the Korean
Mediation Algorithm for PD26 or the Clinical Practice Guide-
lines: Treatment of PD.27 When analyzing several factors for
the PTR in PD, interview and clinical assessments were per-
formed during patients’ first visit to the hospital. Participants
were administered all self-report scales on the same day to rule
out memory recall bias after medication commencement.

All study procedures complied with to the Institutional Re-
view Board regulations and principles of Good Clinical Prac-
tice at the CHA Bundang Medical Center. After participants
were provided with an enough explanation of the study pro-
cess, methods, and purpose, their written informed consent
was obtained.

Clinical assessments

Penn State Worry Questionnaire

To evaluate pathological worry in patients with PD in clin-
cical settings, the Penn State Worry Questionnaire (PSWQ) is
used.28 The PSWQ consisting of 16-item is made to assess the
generality, excessiveness, and uncontrollability of pathological
worry. Items of this inventory are rated on a 1–5-point scale and
are known to have high internal consistency and excellent test-
Pathological Worry and Treatment Response in PD

Statistical analyses
To analyze the sociodemographic characteristics and clinical symptom severities including the PSWQ of patients with PD and HCs, the Student t-test and chi-square tests were performed. In addition, Pearson’s correlation analyses were applied to determine whether an association existed among continuous variables such as age, ETISR-SF, ASI-R, BDI, PDSS, and PSWQ at baseline. Further, a binary logistic regression model with treatment response as the dependent variable and with those that can influence the treatment response at 8 weeks and in 6 months as covariates was performed in PD. All statistical analyses used the IBD SPSS Statistics 26.0 software (IBM Corp., Armonk, NY, USA). All reported probability values were two-tailed where p<0.05 was considered statistically significant.

RESULTS

Sociodemographic and clinical characteristics
The sociodemographic and clinical characteristics of all study participants are summarized in Table 1. There were no significant differences between patients with PD and HCs in terms of age and gender at baseline. However, patients with PD had significantly lower levels of education than HCs (χ^2=90.12, p<0.001). Also, patients with PD were relatively less likely to live without a partner (χ^2=5.98, p=0.014), and their monthly incomes were relatively lower than those of HCs (χ^2=9.10, p=0.003). All clinical scale scores such as ETISR-SF (e.g., total sum, general, emotional, and sexual subtypes), ASI-R (e.g., total sum, all subtypes), and BDI at baseline were significantly higher in patients with PD compared with HCs (p<0.01). Over time, the total scores of PDSS in patients with PD gradually decreased from 12.33 (±6.33) (mean ±SD) at baseline to 9.89 (±5.01) at 8 weeks, then 8.85 (±4.77) at 6 months.

Comparison of pathological worry between patients with panic disorder and healthy controls
The total scores of the PSWQ at baseline were significantly higher in patients with PD compared with HCs [PD: 52.73 (±12.68) (mean ±SD), HCs: 38.64 (±9.14), t=14.14, p<0.001] (Table 2). The result remained the same after the ANCOVA analysis controlling for education levels, marital status, and monthly income.

Association between pathological worry and categorical variables in each panic disorder and healthy control group
The mean PSWQ scores of patients with PD did not significantly differ by gender, level of education, monthly income, and marital status (all, p>0.05). Furthermore, there was no statistical difference in the mean PSWQ scores by gender, level of education, and marital status in HCs (all, p>0.05). However, in HCs, the mean PSWQ scores differed significantly in monthly income levels, and the lower the monthly income, the higher the PSWQ scores (Fisher’s exact test, p=0.01).

Pearson’s correlation analyses among continuous variables in healthy controls and patients with panic disorder
Table 2 presents the correlations among continuous variables in HCs. The total scores of the PSWQ at baseline presented significantly positive associations with the total sum of all subtypes ETISR-SF; emotional early trauma scores, sexual early trauma scores, ASI-R, and BDI at baseline among HCs (p<0.05). However, there was a significant negative correlation between the PSWQ scores at baseline and age (p<0.05).

In patients with PD, the total PSWQ scores at baseline showed significantly positive correlations with the total sum of all subtypes of ETISR-SF; the emotional early trauma scores, ASI-R, BDI, and PDSS at baseline, at 8 weeks, and 6 months (all, p<
However, there were significant negative associations between the PSWQ scores at baseline and age (p<0.01) (Table 3).

Binary logistic regression analysis predicting the pharmacological treatment response at 6 months in patients with panic disorder

To evaluate which factors contributed to the response of pharmacological treatment at 6 months, a binary logistic regression analysis was performed (Table 4). This model only included the essential variables (i.e., age, gender, education level, marital status, monthly income, PSWQ, BDI, PDSS, ASI-R, and early trauma at baseline).

After 6 months, the PSWQ score at baseline (B=-0.072, p=0.018) and BDI (B=-0.089, p=0.047) were significantly negatively associated with the response of pharmacological treatment in patients with PD. In particular, higher total scores of PSWQ reduced the possibility of PTR in 6 months (OR=0.930, 95% CI=0.876–0.988). However, the monthly income and the total score of PDSS at baseline were positively significantly associated with the PTR in patients with PD in 6 months. Higher PDSS scores were associated with a significantly better PTR in 6 months (OR=0.284, 95% CI=1.158–1.524).

This research model proved to be significant at p<0.05, with the χ^2 value for the -2 log likelihood difference between the null model in which the independent variable was excluded, and these models with the independent variable. The explanatory powers of these models at 6 months were 30.5% based on the Cox and Snell’s R², and overall percentage was 67.8%.

DISCUSSION

This is the first study to demonstrate that pathological worry can influence the poor long-term PTR in patients with PD. The findings of our study suggest that patients with PD with pathological worry are more vulnerable and show more severe symptoms, which may lead to a chronic course of illness.
fore, our study shows that it is important for clinicians to check for these features at an early stage in patients with PD in initial interviews and to choose appropriate treatments for such individuals.

Previous studies showed the several risk factors contributing to worse PTR of patients with PD.16,18,19,21 In addition, our study showed that pathological worries affect long-term poor PTR in patients with PD. It is not clear why this occurs, but a neurobiological study showed that pathological worries were positively significantly correlated to the both medial orbitofrontal cortex (mOFC) volume playing a role in emotional decision-making under uncertain conditions in patients with GAD (p<0.001).38,39 Also, previous studies about PD have consistently reported volume reductions in mOFC.40,41 The OFC related to pathological worry contributes to preservative and inflexible thoughts and behaviors, and pathological worries suggest that repetitive nonreinforced thoughts and behaviors might be over-engaged when attempting to solve problems. Therefore, in patients with PD with pathological worries, maladaptive coping strategies related to the inability to activate a switch-off mechanism for fear might be reinforced, aggravating PTR.

From a psychological perspective, pathological worry is associated with coping strategies such as attempts to avoid negative events, interpersonal control, and cognitive failures. In the cognitive model of worry process presented by Eysenck,42 worry has three major functions: alarm, prompt, and preparation. In particular, the prompt function brings threat-related negative thoughts. The preparation function permits individuals to anticipate negative anticipatory scenarios in the future and to act with inappropriate coping strategies to prevent the anticipated negative events such as panic attacks, which makes the worry continue.

Our findings have shown a positive association between pathological worry and secondary depressive symptoms. In addition, it has shown that the severity of secondary depressive symptoms in PD were correlated with unfavorable long-term treatment responses, although we excluded participants with primary major depressive disorder consistent with prior literature.16,43-46 Patients with secondary depression might have an earlier age at onset their panic symptoms and appeared to be more agitated, according to a previous study.47 As a result, patients with PD with severe secondary depression might be more likely to suffer from maladaptive patterns of their behaviors and thoughts, which is associated with responses to pharmacological treatment at long-term follow-ups.

In addition, our findings have shown that high symptom severity of PD at baseline in patients with PD was associated with good long-term PTRs inconsistent with prior literature.44 It is unclear why high PDSS scores were related to better PTR in our findings. However, we assume that the participants whose high symptom severity scores at baseline and decreased scores rapidly over time may have been included in our study. Because we recruited patients with PD in the acute care hospital equipped with an emergency room, this environment might have affected the PTR in our study.

Furthermore, we found that the AS associated with pathological worry in patients with PD does not significantly directly influence the PTRs at long-term follow-ups. Previous studies have suggested AS as a predictor of panic-related pathology, which may affect the frequency of panic attacks.48-50 Although AS is significantly positively associated with pathological worry51 and increases the level of symptom severities, it is unknown whether it has a direct relationship with the unfavorable long-term PTR. Therefore, further studies are needed to examine whether AS directly contributes to long-term poor PTR.

Notably, previous studies showed an correlation between early trauma and the frequency of panic attacks or the age of

Table 2. Pearson’s correlations among continuous variables in healthy controls

Continuous variables	1	2	3	4	5	6	7	8	9
1PSWQ at baseline	-								
2Age	-0.181*	-							
ETISR-SF									
3Total sum of all subtypes	0.179*	-0.034							
4General	-0.080	0.160*	0.647**						
5Physical	0.075	-0.069	0.795**	0.275**					
6Emotional	0.367**	-0.125	0.673**	0.213**	0.292**				
7Sexual	0.179*	-0.056	0.381**	0.208**	0.141	0.221**			
8ASI-R at baseline	0.324**	0.017	0.218*	0.133	0.096	0.255**	0.037		
9BDI at baseline	0.472**	0.072	0.326**	0.176*	0.137	0.416**	0.142	0.370**	

*p<0.05; **p<0.01. PSWQ, Penn State Worry Questionnaire; ETISR-SF, Early Trauma Inventory Self Report-Short Form; ASI-R, Anxiety Sensitivity Index-Revised; BDI, Beck Depression Inventory
onset of disease in patients with PD. In addition, one such study suggested that early physical or sexual trauma are risk factors related to increased frequency of panic attacks in patients with PD. Another study showed that a past history of early trauma was related to an earlier onset of symptoms in patients with PD. Although our findings showed that the early trauma is positively correlated with pathological worry in patients with PD, there was no significant direct association between early trauma and long-term PTR in PD.

Our findings showed that the higher the patient’s income level, the better the long-term PTR. We assume that individuals with a higher level of income generally tend to show less symptoms and disability, resulting in better PTR after long-term follow-up, which is consistent with a previous study. However, our study findings showed that old age, gender, education level, and marital status are not significant potential sociodemographic predictors of long-term PTR. Therefore, further research on this is necessary in the future.

In addition, CBT effectively reduced pathological worries with a large overall effect size showing improvement following treatment at the 6-month follow-up in patients with GAD. According to Wells’s metacognitive model in GAD, negative beliefs about the uncontrollability, danger, and meaning of worry may cause patients to worry about worrying, which in turn intensifies anxiety symptoms. Further, changes in panic-related cognitions predicted the improvement of symptom severity for PD, mediating worry for CBT but not for pharmacotherapy. Therefore, patients with PD with pathological worries might experience more severe anxiety symptoms than PD patients without pathological worries, and this might also be related to PTR.

Our study has several limitations. First, it is believed that in addition to self-reported evaluation measures such as PSWQ, objective evaluation measures evaluated by clinicians are necessary. Second, recall bias can happen when evaluating early trauma. Third, we recruited patients with PD in an acute care hospital, some of which might have depressive episodes in the long-term follow-up, as happens in the natural course of PD. Therefore, the possibility cannot be ruled out that the sampling bias influenced the response to long-term pharmacological treatment.

In conclusion, the current findings suggest that the symptoms of pathological worries could be associated with poor long-term PTRs in patients with PD. The optimization of pharmacological treatments and CBT will be necessary for individuals with PD in the future.

Table 3. Pearson's correlations among continuous variables in patients with panic disorder

Continuous variables	1	2	3	4	5	6	7	8	9	10	11	12
PSWQ at baseline	-.178*											
ETISR-SF	-.313***	.274*										
Total sum of all subtypes	-.0153	.0108	.0149									
General	.0335***	.065	.0357**									
Physical	.0804***	-.0072	.0388***									
Emotional	.6822***	-.2022***	.3804***									
ASI-R at baseline	.6828***	-.2102***	.1848***									
ETR at baseline	.5357**	-.2355***	.1700*									
PDSS at 8 weeks	.3995**	-.2713***	.2372**									
PDSS at 6 months	.4174***	-.2859***	.2476**									
*p<0.05; **p<0.01; ***p<0.001. PSWQ, Penn State Worry Questionnaire; ETISR-SF, Early Trauma Inventory Self-Report-Short Form; ASI-R, Anxiety Sensitivity Index- Revised; BDI, Beck Depression Inventory; PDSS, Panic Disorder Severity Scale.												
Table 4. Binary logistic regression results predicting the pharmacological treatment response at 6 months in patients with panic disorder

Variables	B	p-value	Odds ratio (95% CI)
Age (years)	0.018	0.467	1.018 (0.970–1.069)
Gender (male)	0.582	0.267	1.789 (0.641–4.996)
Level of education (high school or less)	-0.381	0.495	0.683 (0.229–2.041)
Marital status (living without partner)	-0.815	0.443	0.443 (0.146–1.344)
Monthly income (below 1,800 $USD)	3.854	0.001	47.166 (4.571–486.658)
PSWQ at baseline (total sum)	-0.072	0.018*	0.930 (0.876–0.988)
BDI at baseline (total sum)	-0.089	0.047*	0.915 (0.839–0.999)
PDSS at baseline (total sum)	0.284	<0.001***	1.329 (1.158–1.524)
ASI-R at baseline (total sum)	0.017	0.283	1.017 (0.986–1.050)
Early trauma (ETISR-SF, total sum of all subtypes)	-0.068	0.346	0.934 (0.810–1.076)

-2 log likelihood 108.163
\[\chi^2 (df) \] 43.959 (10) (p<0.001***)
Cox & Snell R² 0.305
Overall percentage (%) 67.8

Criteria for response of pharmacological treatment in patients with panic disorder is classified as the total PDSS score of 40% or greater reduction compared to the PDSS total score at baseline. *p<0.05; **p<0.01; ***p<0.001. CI, confidence interval; PSWQ, Penn State Worry Questionnaire; BDI, Beck Depression Inventory; PDSS, Panic Disorder Severity Scale; ASI-R, Anxiety Sensitivity Inventory-Revised; ETISR-SF, Early Trauma Inventory Self Report-Short Form

Availability of Data and Material

The datasets generated or analyzed during the study are not publicly available because all participants did not consent their information exposure.

Conflicts of Interest

The authors have no potential conflicts of interest to disclose.

Author Contributions

Conceptualization: all authors. Data curation: all authors. Formal analysis: all authors. Funding acquisition: Sang-Hyuk Lee. Investigation: all authors. Methodology: all authors. Project administration: all authors. Resources: all authors. Software: all authors. Supervision: Sang-Hyuk Lee. Validation: all authors. Writing—original draft: all authors. Writing—review & editing: all authors.

ORCID iDs

Hyun-Ju Kim https://orcid.org/0000-0002-8093-3366
Ji Eun Kim https://orcid.org/0000-0003-0143-2633
Sang-Hyuk Lee https://orcid.org/0000-0001-9097-261X

Funding Statement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea which is funded by the Ministry of Education, Science and Technology; by the Ministry of Science and ICT of the Government of South Korea (2018-R1D1A1B07046978) and (NRF-2019M3C7A1032262) to S.H. Lee.

Acknowledgments

We thank all members of the Clinical Laboratory for Integrative studies in Mindfulness and Brain imaging for their kindness and its support.

REFERENCES

1. Borkovec TD, Robinson E, Pruzinsky T, DePree JA. Preliminary exploration of worry: some characteristics and processes. Behav Res Ther 1983;21:9-16.
2. Borkovec T, Ray WI, Stober J. Worry: a cognitive phenomenon intimately linked to affective, physiological, and interpersonal behavioral processes. Cognit Ther Res 1998;22:561-576.
3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Washington DC: American Psychiatric Pub; 2013.
4. Hallion LS, Tolkin DF, Assaf M, Goethe J, Diefenbach GJ. Cognitive control in generalized anxiety disorder: relation of inhibition impairments to worry and anxiety severity. Cognit Ther Res 2017;41:610-618.
5. Davey GC, Wells A. Worry and its Psychological Disorders: Theory, Assessment and Treatment. England: John Wiley & Sons Inc; 2006.
6. Youk K, Lee SH, Ryu M, Kim KH, Choi TK, Suh SY, et al. Usefulness of mindfulness-based cognitive therapy for treating insomnia in patients with anxiety disorders: a pilot study. J Nerv Ment Dis 2008;196:501-503.
7. Aghighi A, Mohammadi N, Taghanaki CR, Imani M. Effectiveness of emotion regulation group therapy on symptom reduction, worry and emotion dysregulation in individuals with Panic disorder. JAC 2020;10:65-88.
8. Vøllestad J, Sivertsen B, Nielsen GH. Mindfulness-based stress reduction for patients with anxiety disorders: evaluation in a randomized controlled trial. Behav Res Ther 2011;49:281-288.
9. Kim HS, Kim EJ. Effects of relaxation therapy on anxiety disorders: a systematic review and meta-analysis. Arch Psychiatr Nurs 2018;32:278-284.
10. Beheshti N, Zemestani M, Rezaei F. Comparing the effectiveness of cognitive behavioral therapy focused on intolerance of uncertainty and pharmacotherapy on worry, intolerance of uncertainty, and cognitive avoidance in patients with generalized anxiety disorder. Iran J Psychiatr Clin Psychol 2018;24:240-255.
11. Rodríguez BF, Weisberg RB, Pagano ME, Bruce SE, Spencer MA, Calpepper L, et al. Characteristics and predictors of full and partial recovery from generalized anxiety disorder in primary care patients. J Nerv Ment Dis 2006;194:91-97.
for pathological worry among clients with GAD. J Affect Disord 2008; 22:108-116.
56. Wells A. Meta-cognition and worry: a cognitive model of generalized anxiety disorder. Behav Cogn Psychother 1995;23:301-320.
57. Meuret AE, Rosenfeld D, Seidel A, Bhaskara L, Hofmann SG. Respiratory and cognitive mediators of treatment change in panic disorder: evidence for intervention specificity. J Consult Clin Psychol 2010;78: 691-704.