Unexpected results in neutron-rich radioactive beams induced fusion

J.F. Liang
Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract. The fission-fragment beams at HRIBF provide a unique opportunity for studying the mechanisms of fusion involving nuclei with large neutron excess. To explore the role of transfer couplings, fusion excitation functions have been measured using neutron-rich radioactive 132Sn beams incident on 40Ca and 58Ni targets. The sub-barrier fusion enhancement for 132Sn+40Ca is larger than that for 132Sn+58Ni although the neutron transfer Q-values are similar for the two reactions. The fusion excitation function for 46Ti+124Sn has been measured in an attempt to resolve the differences observed in 132Sn+40Ca and 132Sn+58Ni.

1. Introduction
Fusion induced by radioactive beams has been an active area of research in recent years[1, 2]. At energies near and below the Coulomb barrier, the fusion rate is expected to be enhanced due to the larger r.m.s. radius of the unstable nuclei, the excitations of collective modes, and nucleon transfer. Several stable beam experiments have found that large sub-barrier fusion enhancement correlates with the presence of positive Q-value transfer channels[3, 4]. The effects of coupling to nucleon transfer is expected to be significant for reactions involving radioactive nuclei because, for some projectile and target combinations, there is a large number of nucleon transfer channels with large positive Q-values. The couplings to these transfer reactions could result in substantially enhancing the fusion cross sections at sub-barrier energies.

Neutron-rich radioactive beams may be used to produce isotopes of heavy elements. These beams may help reach the predicted N=184 neutron shell closure[5]. Moreover, the fusion of neutron-rich nuclei in the crust of neutron stars may play an important role in the energy generation and distribution in neutron stars[6]. Therefore, it is important to understand the reaction mechanisms of fusion induced by neutron-rich nuclei.

2. Beams of 132Sn produced at HRIBF
The Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory uses the Isotope Separator On-Line technique to produce radioactive beams[7]. In this work, the neutron-rich radioactive beams were produced by proton induced uranium fission. A 50 MeV proton beam accelerated by the Oak Ridge Ischronous Cyclotron bombarded a uranium carbide target. The fission fragments were ionized and mass analyzed on a high voltage platform. Because the electrostatic tandem accelerator required negative ions as input, a charge exchange cell filled with Cs vapor was used to convert the positively charged ions to negative ions. For the 132Sn beams, molecular SnS$^+$ was extracted from the ion source. The SnS molecular ions were broken up by collisions with the Cs vapor. By extracting the SnS$^+$ ions, the isobaric contaminants,
3. Fusion of 124,132Sn+40,48Ca

The sub-barrier fusion cross sections for 40Ca+96Zr were much enhanced compared to 40Ca+90Zr[3]. Coupled-channels calculations considering the excitation of the projectile and target were able to reproduce the fusion excitation function for 40Ca+90Zr but underpredict that for 40Ca+96Zr. The sub-barrier fusion enhancement for 40Ca+96Zr was attributed to the couplings to neutron transfer because the Q-values for up to 9 neutrons transferring from 96Zr to 40Ca are positive. In contrast, the Q-values for neutron transfer are negative for 40Ca+90Zr. A subsequent measurement of the fusion of 40Ca+94Zr supported the conclusion[10]. The nuclear structure properties of 94Zr and 96Zr are different but a large sub-barrier fusion enhancement is present in 40Ca+94Zr whereas the Q-values for neutron transfer are positive. Table 1 lists the Q-values for up to four neutrons transferring from the ground state in Zr to the ground state in Ca. Additionally, the fusion excitation functions for 40Ca+94,96Zr were measured to high precision which allowed for deducing the barrier distributions. A tail of the low energy barrier extends to energies well below the uncoupled barrier for 40Ca+94,96Zr but is absent in 40Ca+90Zr. This tail is the fingerprint of coupling to positive Q-value channels.

The fusion of 40Ca+124Sn was measured by Scarlassara et al. at Legnaro and large sub-barrier fusion enhancement was observed[4]. Because the Q-values for transferring 2 to 11 neutrons from 124Sn to 40Ca are positive, the large sub-barrier fusion enhancement was attributed to the coupling to transfer, similar to the fusion of 40Ca+96Zr. Doubly magic 132Sn has eight extra neutrons compared to 124Sn. The number of open channels for neutron transfer is larger in 40Ca+132Sn than in 40Ca+124Sn. The Q-values for neutron transfer in 40Ca+132Sn are larger, too. The sub-barrier fusion of 40Ca+132Sn is expected to be enhanced due to the coupling of transfer.

The fusion of 124,132Sn+40,48Ca were measured in inverse kinematics at HRIBF using the apparatus described in Ref. [8]. The fusion excitation function for 124Sn+40Ca is in good agreement with Scarlassara et al.’s measurement. The fusion cross sections as a function of the reaction energy for the four reactions are shown in Fig. 1. The excitation functions are compared in reduced scale where the differences in nuclear size (R_c) and barrier height (B_o) are factored out for the cross section and center-of-mass energy, respectively. A simple scaling method was used here with $R_c = A_P^{1/3} + A_T^{1/3}$ and $B_o = Z_P Z_T / R_c$ where A_P (A_T) and Z_P (Z_T) are the mass and atomic number of the projectile (target), respectively. The dashed curve is the result of a one-dimensional barrier penetration calculation. All four reactions exhibit fusion enhancement at energies below the barrier. The sub-barrier enhancement is larger for reactions involving 40Ca. For reactions with the same Ca isotope, the sub-barrier fusion rate is higher for the 124Sn induced reaction than the 132Sn induced reaction. This trend coincides with the fact
Figure 1. Reduced fusion cross sections for 124,132Sn+40,48Ca are displayed as a function of reduced energy in the center-of-mass. The nuclear size and the barrier height are factored out for the cross section and the energy, respectively. The dotted curve is the result of a one-dimensional barrier penetration calculation. The circles are for 132Sn+48Ca, the triangles are for 124Sn+48Ca, the stars are for 132Sn+40Ca, and the squares are for 124Sn+40Ca that 132Sn is doubly magic and less collective than 124Sn. Therefore, the influence of coupling to the inelastic excitation of Sn on sub-barrier fusion enhancement is larger for 124Sn+Ca than for 132Sn+Ca.

Coupled-channels calculations considering the excitations of the projectile and target are able to reproduce the fusion excitation function for 124Sn+48Ca but underpredict the sub-barrier cross sections for 124,132Sn+40Ca[9]. The Q-values for neutron transfer in the reactions with 48Ca are negative whereas there are positive Q-value transfer channels in the reactions with 40Ca. The large sub-barrier fusion enhancement in 132Sn+40Ca can be attributed to the couplings to neutron transfer just like 40Ca+124Sn and 40Ca+96Zr.

4. Fusion of 132Sn+58Ni
To further explore the effects of transfer couplings, measurements of the fusion excitation function for 132Sn+58Ni were performed at HRIBF with 132Sn beams[11]. The Q-values for neutron transfer is larger than those in 132Sn+40Ca. The reduced fusion excitation functions
for 124,132Sn+58,64Ni are compared in Fig. 2. The fusion cross sections for 124Sn+58,64Ni are obtained from Ref. [12]. Because the compound nucleus is heavier and the reaction is more mass-symmetric, fusion hindrance due to quasifission reduces the fusion cross sections at high energies for the neutron deficient 124Sn+58Ni reaction. The four excitation functions, 124,132Sn+58,64Ni, overlap in the sub-barrier region even though the Q-values for neutron transfer differ significantly among these reactions. This behavior is dramatically different from the comparison among the 124,132Sn+40,48Ca reactions. Furthermore, the Sn+Ni excitation functions overlap with the reference reaction, 132Sn+48Ca, which has no positive Q-values for transfer, as shown in Fig. 2. The sub-barrier cross sections for 132Sn+40Ca are much larger than those for Sn+Ni.

![Figure 2](image-url)

Figure 2. Reduced fusion cross sections for 124,132Sn+58,64Ni are displayed as a function of reduced energy in the center-of-mass. The nuclear size and the barrier height are factored out for the cross section and the energy, respectively. The circles are for 132Sn+58Ni, the triangles are for 132Sn+64Ni, the stars are for 124Sn+58Ni, and the squares are for 124Sn+64Ni. The excitation functions for 132Sn+40,48Ca are shown by the diamonds and crosses for comparisons.

5. **Fusion of 48Ti+124Sn**

It is puzzling that the sub-barrier fusion enhancement due to the coupling to neutron transfer is very pronounced in 132Sn+40Ca but absent in 132Sn+58Ni. The Q-values for ground state to ground state multineutron transfer are similar between the two reactions, as shown in Fig. 3.
Moreover, the number of open transfer channels is larger in \(^{132}\text{Sn} + ^{40}\text{Ca}\) than \(^{124}\text{Sn} + ^{40}\text{Ca}\) but the sub-barrier fusion enhancement due to transfer is comparable for the two reactions.

Figure 3. \(Q\)-values for ground state to ground state neutron transfer for \(^{132}\text{Sn} + ^{58}\text{Ni}\) (left panel) and \(^{132}\text{Sn} + ^{40}\text{Ca}\) (right panel).

Some of the differences for the two reaction systems, \(^{124,132}\text{Sn} + ^{40}\text{Ca}\) and \(^{124,132}\text{Sn} + ^{58}\text{Ni}\), that may contribute to the observed differences in sub-barrier fusion enhancement are discussed below. The product of the atomic number of the projectile and target, \(Z_p Z_t\), is 1000 for Sn+Ca and 1400 for Sn+Ni. The rate of deep inelastic collisions becomes higher for Sn+Ni because of the larger \(Z_p Z_t\). This may influence the fusion yield at energies below the barrier[13]. The open orbitals for neutrons transferred from \(^{132}\text{Sn}\) to \(^{40}\text{Ca}\) are \(f_{7/2}\) and above whereas the open orbitals for neutrons transferred to \(^{58}\text{Ni}\) are \(p_{3/2}\) and above. The transfer form factor is a function of the angular momentum of the initial and final states. As a result, the strength for the transfer couplings would be different for the two reactions. The \(^{40}\text{Ca}\) nucleus has a very collective octupole state, \(E^* = 3.74\) MeV. The coupling to the excitation to this state can renormalize the potential and may result in a lowered barrier[16].

To investigate the differences in sub-barrier fusion enhancement in \(^{124}\text{Sn} + ^{40}\text{Ca}\) and \(^{124}\text{Sn} + ^{58}\text{Ni}\) and the couplings to transfer, the fusion excitation functions for \(^{124}\text{Sn} + ^{46,50}\text{Ti}\) have been measured at HRIBF. The \(^{124}\text{Sn} + ^{46}\text{Ti}\) reaction bears some similarities to \(^{124}\text{Sn} + ^{40}\text{Ca}\). The \(Z_p Z_t\) is 1100 and the neutrons transferred from \(^{124}\text{Sn}\) to \(^{46}\text{Ti}\) can populate the \(f_{7/2}\) orbital and above. However, the octupole state of \(^{46}\text{Ti}\) is much less collective than \(^{40}\text{Ca}\) but similar to \(^{58}\text{Ni}\).

Fig. 4 presents the reduced fusion excitation function for \(^{124}\text{Sn} + ^{46}\text{Ti}\) and the comparison with that for \(^{124}\text{Sn} + ^{40}\text{Ca}\). The excitation functions for \(^{124}\text{Sn} + ^{48}\text{Ca}\) and \(^{124}\text{Sn} + ^{50}\text{Ti}\) are shown for comparison as well. The latter two reactions do not have positive \(Q\)-values for neutron transfer. The sub-barrier fusion enhancement is comparable for these two reactions and is smaller than \(^{124}\text{Sn} + ^{46}\text{Ti}\) and \(^{124}\text{Sn} + ^{40}\text{Ca}\). For \(^{124}\text{Sn} + ^{46}\text{Ti}\), the sub-barrier fusion enhancement is less than \(^{124}\text{Sn} + ^{40}\text{Ca}\) even though the \(Q\)-values for neutron transfer are similar. The slope of the fall-off at sub-barrier energies for \(^{124}\text{Sn} + ^{46}\text{Ti}\) is less steep than \(^{124}\text{Sn} + ^{40}\text{Ca}\). This suggests that the effect of coupling to positive \(Q\)-value channels is larger in \(^{124}\text{Sn} + ^{46}\text{Ti}\).

It is necessary to inspect the details of the reaction mechanisms in order to gain insight into the differences observed among these reactions. A high precision measurement of the fusion excitation function for \(^{124}\text{Sn} + ^{50}\text{Ti}\) was carried out at the Australian National University. The \(^{46}\text{Ti}\) beams were accelerated by the 14UD tandem accelerator and incident on a \(^{124}\text{Sn}\) target. The evaporation residues were transported by the gas-filled superconducting solenoid (SOLITAIRe) and detected by two multiwire proportional counters at and behind the focal plane[14]. The
Fusion excitation functions for $^{124}\text{Sn} + ^{46,50}\text{Ti}$ and $^{124}\text{Sn} + ^{40,48}\text{Ca}$ are compared in reduced scales where the nuclear size and the barrier height are factored out. The circles are for $^{124}\text{Sn} + ^{48}\text{Ca}$, the crosses are for $^{124}\text{Sn} + ^{40}\text{Ca}$, the triangles are for $^{124}\text{Sn} + ^{50}\text{Ti}$, and the squares are for $^{124}\text{Sn} + ^{46}\text{Ti}$.

A preliminary analysis shows that the barrier distribution deduced for $^{46}\text{Ti} + ^{124}\text{Sn}$ has a low energy barrier about 3% below the uncoupled barrier which is obtained from the Broglia-Winther systematics. In contrast the barrier distribution for $^{40}\text{Ca} + ^{124}\text{Sn}$ has a low energy barrier at 5% below the uncoupled barrier and the tail falls off more steeply than that for $^{46}\text{Ti} + ^{124}\text{Sn}$. This is a hint that the coupling to transfer may be more important in $^{46}\text{Ti} + ^{124}\text{Sn}$. The large sub-barrier fusion enhancement in $^{40}\text{Ca} + ^{124}\text{Sn}$ may be explained by potential renormalization.

Exploratory coupled-channels calculations were performed using the ccFULL code to examine the predicted barrier distributions for the three reaction systems $^{40}\text{Ca} + ^{124}\text{Sn}$, $^{48}\text{Ti} + ^{124}\text{Sn}$, and $^{58}\text{Ni} + ^{124}\text{Sn}$. Because all three reactions share a common nucleus ^{124}Sn, a comparison of the coupling to the inelastic excitations of the other reaction partner is presented in Fig. 5. The nuclear structure properties of the excited 2^+ and 3^- states were obtained from Raman and Spears, respectively. As can be seen, the coupling to the excitation of the octupole state of in ^{40}Ca produces a low energy barrier 4% below the uncoupled barrier. The barrier distribution is dominated by the coupling to the 3^- state. For the other two reactions,
the low energy barrier is only 2% below the uncoupled barrier. Therefore, the coupling to the inelastic excitation of the octupole state of 40Ca plays a major role in enhancing the fusion of 40Ca+124Sn at sub-barrier energies. It is conceivable that the couplings to inelastic excitations and neutron transfer result in the large sub-barrier fusion enhancement observed in 40Ca+124Sn with coupling to the 3^- state in 40Ca playing a major role.

Figure 5. Barrier distributions deduced from coupled-channels calculations for 124Sn+40Ca, 124Sn+58Ni, and 124Sn+46Ti.

6. Summary and conclusions
Fusion excitation functions have been measured using neutron-rich radioactive 132Sn beams incident on 40Ca and 58Ni targets. The sub-barrier fusion enhancement for 132Sn+40Ca is larger than that for 132Sn+58Ni although the neutron transfer Q-values are similar for the two reactions. To further explore the coupling to neutron transfer, the fusion excitation function for 46Ti+124Sn has been measured to high precision. The barrier distributions deduced from the excitation functions suggest that the large sub-barrier fusion enhancement in 132Sn+40Ca may be the result of coupling to neutron transfer and inelastic excitations of the projectile and target with the coupling to the octupole state in 40Ca playing a major role.

The use of radioactive beams has enabled the discovery of new phenomena in atomic nuclei. However, the beam intensity produced at the present facilities is still several orders of magnitude lower than stable beams. In reaction mechanism studies, sometimes high precision measurements are required to reveal the dominating mechanisms, as demonstrated in the measurement of the fusion excitation function for 46Ti+124Sn.

7. Acknowledgment
The author wishes to thank J.M. Allmond, C.J. Gross, Z. Kohley, K. Lagergren, P.E. Mueller, D. Shapira, R.L. Varner (ORNL), A.L. Caraley (SUNY at Oswego), J.J. Kolata, A. Roberts, A. Howard (Notre Dame), W. Loveland (Oregon State) for collaborating on measurements at HRIBF and M. Dasgupta, D.J. Hinde, E. Williams, M.L. Brown, I.P. Carter, M. Evers, D.H. Luong, A. Wakhle (ANU) for collaborating on measurements at ANU. Research at HRIBF was supported by the Office of Nuclear Physics, Department of Energy.

[1] Liang J F and Signorini C 2005 Int. J. Mod. Phys. E 14 1121
[2] Keeley N, Raabe R, Alamanos N, Sida J L 2007 Prog. Part. Nucl. Phys. 59 579
[3] Timmers H et al. 1998 Nucl. Phys. A633 421
[4] Scarlarsra F et al. 2000 Nucl. Phys. A672 99
[5] Loveland W 2007 Phys. Rev. C. 76 069801
[6] Horowitz C J, Dussan H, and Berry D K 2008 Phys. Rev. C 77 045807
[7] Beene J R. et al. 2011 J. Phys. G 38 024002
[8] Shapira D et al. 2005 *Nucl. Instrum. Methods Phys. Res., Sect. A* **551** 330
[9] Kolata J J et al. 2012 *Phys. Rev. C* **85** 054603
[10] Stefanini A M et al. 2007 *Phys. Rev. C* **76** 014610
[11] Kohley Z et al. 2011 *Phys. Rev. Lett.* **107** 202701
[12] Lesko K T et al. 1986 *Phys. Rev. C* **34** 2155
[13] Wolfs F L H 1987 *Phys. Rev. C* **36** 1379
[14] Rodrígues M D et al. 2010 *Nucl. Instrum. Methods Phys. Res., Sect. A* **614** 119
[15] R. A. Broglia and A. Winther 1991 *Heavy Ion Reactions*, Frontiers in Physics Lecture Series, Vol. 84 (Addison-Wesley, Redwood, CA, 1991).
[16] Trotta M et al. 2001 *Phys. Rev. C* **65** 011601(R)
[17] Hagino K, Rowley N, and Kruppa A T 1999 *Comput. Phys. Commun.* **123** 143
[18] Raman S et al. 1987 *At. Data Nucl. Data Tables* **36** 1
[19] Spear R H 1989 *At. Data Nucl. Data Tables* **42** 55