Oxidized phospholipids on alkyl-amide scaffold demonstrate anti-endotoxin and endothelial barrier-protective properties

Olga V Oskolkova, Alma Hodzic, Pratap Karki, Bernd Gesslbauer, Yunbo Ke, Dina C Hofer, Juliane G Bogner-Strauss, Jean-Marie Galano, Camille Oger, Anna Birukova, et al.

To cite this version:

Olga V Oskolkova, Alma Hodzic, Pratap Karki, Bernd Gesslbauer, Yunbo Ke, et al.. Oxidized phospholipids on alkyl-amide scaffold demonstrate anti-endotoxin and endothelial barrier-protective properties. Free Radical Biology and Medicine, Elsevier, 2021, 174, pp.264 - 271. 10.1016/j.freeradbiomed.2021.07.041 . hal-03378766

HAL Id: hal-03378766
https://hal.umontpellier.fr/hal-03378766
Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Oxidized phospholipids on alkyl-amide scaffold demonstrate anti-endotoxin and endothelial barrier-protective properties

Olga V. Oskolkova a, *,1, Alma Hodzic a, *,1, Pratap Karki b, Bernd Gesslbauer a, Yunbo Ke b, Dina C. Hofer c, Juliane G. Bogner-Strauss c, Jean-Marie Galano d, Camille Oger d, Anna Birukova b, Thierry Durand d, Konstantin Birukov b, Valery Bochkov a, e, f, **

a Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria
b Department of Anaesthesiology, University of Maryland School of Medicine, 20 Penn. Street, HSF-2, Room 145, Baltimore, MD, 21201, USA
c Institute of Biochemistry, Graz University of Technology, Humboldtstrasse 46/III, 8010, Graz, Austria
d Institut des Biomolecules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Rabaud, BP14491, 34093, Montpellier Cedex05, France
e Field of Excellence BioHealth - University of Graz, Graz, Austria
f Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria

** Corresponding author. Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria

E-mail addresses: o.oskolkova@uni-graz.at (O.V. Oskolkova), al.hodzic@edu.uni-graz.at (A. Hodzic), PKarki@som.umaryland.edu (P. Karki), bernd.gesslbauer@uni-graz.at (B. Gesslbauer), yke@som.umaryland.edu (Y. Ke), dina.bonazzoli@thermofisher.com (D.C. Hofer), juliane.bogner-strauss@tugraz.at (J.G. Bogner-Strauss), jean-marie.galano@umontpellier.fr (J.-M. Galano), camille.oger@umontpellier.fr (C. Oger), abirukova@som.umaryland.edu (A. Birukova), thierry.durand@umontpellier.fr (T. Durand), kbirukov@som.umaryland.edu (K. Birukov), valery.bochkov@uni-graz.at (V. Bochkov).

* These authors contributed equally.

** Corresponding author.

ABSTRACT

Oxidized phospholipids (OxPLs) containing enzymatically or non-enzymatically oxidized fatty acids (oxylipins) are increasingly recognized as lipid mediators involved in pathogenesis of diseases. Further understanding of structure-activity relationship and molecular mechanisms activated by OxPLs is hampered by the complexity of synthesis of individual molecular species. Although dozens of individual free oxylipins are commercially available, their attachment to the phospholipid scaffold requires relatively harsh conditions during activation of carboxy-group, which may lead to decomposition of unstable oxylipins. Furthermore, additional protection-deprotection steps are required for oxylipins containing hydroxy-groups. In this work we describe synthesis of OxPLs containing oxylipins bound at the sn-2-position via an amide-bond that is characteristic of sphingo-phospholipids. Activation of oxylipins and attachment to the phospholipid scaffold are performed under mild conditions and characterized by high yield. Hydroxy-groups of oxylipins do not interfere with reactions and therefore no protection/deprotection steps are needed. In order to prevent oxylipin migration, a fatty acid residue at the sn-1 position was bound through an alkyl bond, which is a common bond present in a large proportion of naturally occurring phospholipids. An additional advantage of combining alkyl and amide bonds in a single phospholipid molecule is that both types of bonds are phospholipase A 1.-A 2.-resistant, which may be expected to improve biological stability of OxPLs and thus simplify analysis of their effects. As proof of principle, several alkyl-amide oxidized phosphatidylcholines (OxPCs) containing either linear or prostan ring oxylipins have been synthesized. Importantly, we show here that alkyl-amide-OxPCs demonstrated biological activities similar to those of di-acyl-OxPCs. Alkyl-amide-OxPCs inhibited pro-inflammatory action of LPS and increased endothelial cellular barrier in vitro and in mouse models. The effects of alkyl-amide and di-acyl-OxPCs developed in a similar range of concentrations. We hypothesize that alkyl-amide-OxPLs may become a useful tool for deeper analysis of the structure-activity relationship of OxPLs.

ARTICLE INFO

Keywords:
Oxidized phospholipids
Synthesis
Lipopolysaccharide
Lung endothelial barrier

Abbreviations: BAF, Bronchoalveolar fluid; EDC, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride; HUVEC-Cert, immortalized human umbilical vein endothelial cells; IPS, Lipopolysaccharide; PI, phosphatid; PC, phosphatidylcholine; OxPC, oxidized phosphocholine; OxPL, oxidized phospholipid; TEA, Triethylamine; THF, Tetrahydrofuran.

* Corresponding author.
** Corresponding author. Institute of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46/III, 8010, Graz, Austria.

https://doi.org/10.1016/j.freeradbiomed.2021.07.041
Received 18 June 2021; Received in revised form 25 July 2021; Accepted 31 July 2021
Available online 8 August 2021
0891-5849/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Oxidation of lipids is a common mechanism generating biologically active molecules. Some lipid oxidation products are genuine mediators that are recognized by cellular receptors (e.g., prostaglandins and isoprostanes), while other act less specifically by non-selective modification of biomolecules leading to activation of signaling stress pathways. The majority of oxidation-prone PUFAs in the cell are bound to phospholipids (PLs), which can be oxidized through enzymatic or non-enzymatic mechanisms leading to the formation of oxidized PLs (OxPLs) that contain oxygenated fatty acids. Accumulation of OxPLs has been described in a number of pathological conditions [1–4]. Recent advances in analysis of OxPLs as disease biomarkers in combination with animal disease model data support the notion that OxPLs play causative pathogenic role in a number of disease states [5–9]. More detailed understanding of the biological role of OxPLs and mechanisms of their action is hampered by the lack of synthetic individual molecular species. Just a few OxPLs are commercially available. Although syntheses of OxPLs are established [10–16], they are laborious and performed in a limited number of laboratories. Here we describe a relatively simple and fast method for synthesis of alkyl-amide OxPLs. A broad variety of oxylipins, including those containing hydroxyl groups, can be attached to the PL.

Fig. 1. Scheme for the synthesis of alkyl-amide-OxPLs. A) Synthesis of a common precursor 1-O-hexadecyl-2-amino-2-deoxy-sn-glycero-3-phosphocholine (6). Reagents: a) Boc₂O, TEA; b) [(isoPr)₂N]POCH₂CH₂CN, (isoPr)₂NH salt of 1H-tetrazole, CH₂Cl₂; c) choline tosylate, 1H-tetrazole; d) tert-ButOOH; e) TEA; f) TFA in CH₂Cl₂. B) General scheme for synthesis of alkyl-amide-PLs. Reagents: g) oxylipin containing one carboxylic group, EDC, CH₂Cl₂; h) lyso-amino-phospholipid (6), THF, TEA.
backbone via this synthetic pathway under mild conditions and with high yield. Here we show that alkyl-amide-OxPLs demonstrate biological activities previously described for di-acyl-OxPLs, such as antagonism of bacterial lipopolysaccharide (LPS) and protection of endothelial barrier.

2. Methods

Synthetic procedures, products, and methods of biological testing are described in Supplementary materials.
3. Results

Synthesis of alkyl-amide-OxPCs was performed in 2 stages. First, lysophosphatidylcholine (6) was synthesized. This stage consisted of 6 individual reactions, three of which were performed in one pot (Fig. 1A). During the second stage (Fig. 1B), oxylipins were attached to the lysophosphatidylcholine scaffold using 2 reactions. First, an oxylipin was treated with N-hydroxysuccinimide leading to formation of respective activated ester (8). This reaction was characterized by complete conversion of oxylipins (Supplementary Fig. 1, Step 1). The resulting N-hydroxysuccinimide ester of an oxylipin (8) was purified by liquid-liquid extraction. In the second reaction, isolated activated ester (8) reacted with lysophosphatidylcholine (6), which was preliminary deprotonated using triethylamine. The method was successfully applied to several prostanoids and linear oxylipins containing ω-terminal hydroxyl groups, altogether 9 compounds (Fig. 1 and Supplementary Fig. 2).

We further tested the influence of different solvents on the last (coupling) reaction using PGE2 as a sample oxylipin. It was found that the coupling of oxylipins to the phosphatidylcholine scaffold was characterized by comparable yield in different solvents (tetrahydrofuran/dichloromethane (1:1 or 2:1 by vol.), tetrahydrofuran-methanol (10:1 by vol.), tetrahydrofuran-acetonitrile methanol (3:1:0.5 by vol.), and in the presence of water (up to vol. 10% in THF) or tertiary amines (up to 10% TEA). In all cases the yield of the final (coupling) reaction in the presence of equimolar amounts of oxylipins and lysosphosphatidylcholine was around 50%. Addition of a > 2-fold molar excess of lysosphosphatidylcholine resulted in essentially quantitative incorporation of oxylipins (Supplementary Fig. 1, Step 2).

In order to check if alkyl-amide-OxPCs demonstrate biological activities described for their di-acyl homologs, we first tested if alkyl-amide-OxPCs can inhibit pro-inflammatory effects of LPS [17–19]. Indeed, alkyl-amide-OxPCs containing prostanoid derivatives of arachidonate, PGE2, PGB2, PGA2, PGE3, and PGE2e containing Δ(5,12,14)-trienoic and ω- or Δ5,12,14-trienoic fatty acids as well as linear ω-terminal hydroxy fatty acids (8-hydroxy-octanoic and 12-hydroxy-docosahexaenoic acids) inhibited secretion of IL-8 in LPS-treated HUVEC cells (Fig. 2A and Supplementary Fig. 3) and primary HUVECs (data not shown). In contrast, free prostanoids did not inhibit LPS-induced IL-8 secretion in HUVEC cells or primary HUVECs (data not shown). The inactivity of free prostanoids suggests that alkyl-amide-OxPCs inhibit effects of LPS through a mechanism that is independent of classical prostanoid receptors. This hypothesis is in a good agreement with data showing direct binding of OxPCs to the TLR4 accessory proteins which prevented their interaction with LPS [17,19].

An important question was whether the inhibitory effects of alkylamide-OxPCs may be explained by their toxic action on cells. This is unlikely for two reasons. First, direct analysis of toxicity has shown that none of the tested alkyl-amide-OxPCs was toxic at concentrations used in our experiments (Supplementary Figs. 4A–4D). In addition, we found that the inhibitory action of alkyl-amide-OxPCs was observed in cells stimulated by LPS, but not in those treated with TNF or IL-1β (Fig. 2B). In addition to suppression of IL-8 protein production, PGE2-NH-PC (Fig. 2C) and PGE2-NH-PC (data not shown) induced inhibition by LPS of mRNA encoding for IL-8 and other pro-inflammatory chemokines and leukocyte adhesion molecules. The data are in good agreement with proposed action of OxPCs as antagonists of TLR4 [17,19] and rule out non-specific inhibition resulting from compound toxicity.

We further compared concentration dependence of the anti-LPS effects of alkyl-amide-OxPCs with that of well-characterized di-acyl OxPC, OxPAPC [19]. Alkyl-amide-OxPCs inhibited LPS-induced secretion of IL-8 protein and expression of E-selectin on the surface of endothelial cells at similar concentrations as OxPAPC (Fig. 2D and E). The data suggest that modification of sn-1 and sn-2 bonds does not significantly change structural features of OxPCs that are important for their anti-LPS activity.

To ensure that the anti-LPS activity is not limited to PCs containing a cyclic prostate ring, linear fatty acids with a ω-terminal hydroxide have been attached to the alkyl-amide-OxPC scaffold. The data presented in Supplementary Figs. 3A–3D demonstrate that these 12-hydroxy-C12- or 8-hydroxy-C8-containing alkyl-amide-PCs inhibited induction of IL-8 protein and mRNA in LPS-treated HUVEC cells and that this effect was not due to toxicity (Supplementary Figs. 3E and 3F).

Ability to protect endothelial barrier in vitro and in vivo is a characteristic property of di-acyl-OxPLs [20–25]. We found that also alkyl-amide-OxPCs demonstrated barrier-protective activity. The barrier-enhancing effect of PGE2-alkyl-amide-PC was sustained and lasted for at least 20 h (Fig. 3A). The action of PGE2-alkyl-amide-PC was accompanied by enhancement of cell junctions and peripheral cytoskeleton associated with barrier enhancement (Fig. 3B) as well as activation of intracellular signaling that stimulates barrier function of endothelial cells (Fig. 3C), which are similar to the action of di-acyl-OxPLs [21,25]. PGE2-alkyl-amide-PC also inhibited disturbances in endothelial barrier caused by LPS (Fig. 3D), IL-6 (Fig. 3E), or thrombin (Fig. 3F). Moreover, PGE2-NH-PC reversed damage of the endothelial monolayer induced by heat-killed Gram-positive bacteria (Supplementary Fig. 5).

Di-acyl-OxPCs are known to inhibit inflammation in several in vivo models including LPS-induced peritonitis [18,19]. In agreement with these data, alkyl-amide-OxPCs inhibited systemic upregulation of inflammatory cytokine KC induced by intraperitoneal LPS injection in mice (Fig. 4A). Furthermore, similarly to di-acyl-OxPCs [25], alkyl-amide-OxPCs reduced severity of lung edema induced by LPS instillation in mice (Fig. 4B and C). The data demonstrate protective activity of alkyl-amide-OxPCs in vivo that is similar to that of di-acyl-OxPCs.

4. Discussion

OxPLs are known to be present in vivo and are increasingly recognized for their involvement in disease pathogenesis [26,27]. Here we describe a novel procedure for synthesis of OxPLs based on alkyl-amide scaffold. These compounds mimic various biological effects described previously for OxPLs. An important advantage of our method is a minimal number and mild conditions of synthetic steps involving oxylipin precursors. These are i) activation of a carboxylic group of oxylipin and ii) coupling to the PL backbone. Both reactions are performed under significantly milder conditions as compared to methods involving protection/deprotection steps [10,16]. Another advantage of the procedure is the application of a simple liquid-liquid extraction instead of chromatography for purification of activated oxylipin intermediate. Altogether these experimental improvements aim at reducing the loss of oxylipin, which is especially important considering the complexity of synthesis and high commercial price of certain oxylipins.

Another advantage of this method is flexibility, i.e., applicability to a wider variety of oxylipins as compared to existing methods. A standard method of coupling oxylipins to the glycerol backbone using DCC/DMAP [10,16,28] is limited to molecules without free OH groups. In case of OH-containing oxylipins, which are very common, hydroxyl groups should be first protected, e.g., by silyl groups, followed by deprotection at the end of synthesis. In contrast, our method is more universal and allows coupling of aldehyde, keto-, epoxide-, as well as hydroxyl-containing oxylipins (e.g., PGE2) without additional protection-deprotection cycles. A further advantage of this method is that it is faster as compared to existing procedures. Most synthetic steps are needed for the synthesis of a single universal precursor lyso-amoio-PC (6). This precursor can be directly coupled to all possible oxylipins having one carboxylic group. Lysophosphatidylcholine (6) is stable and can be stored for at least 1 year. The use of a single precursor and robustness of coupling reaction simplify the parallel synthesis of multiple individual alkyl-amide-OxPCs, for example for analysis of structure-activity relationship.

What are the limitations of the method? First, the method can be directly applied only for synthesis of PC, PA, PG, and PI. Generation of PE- and PS-OxPLs is possible, but requires additional protection.
Fig. 3. Effect of PGE$_2$-NH-PC on endothelial barrier and on enhancement of cell junctions and intracellular signaling.

A) Primary HPAECs cultured on electrodes were incubated with different concentrations of PGE$_2$-NH-PC (A) in EBM-2 medium containing 2% serum. The graph shows electrical resistance of the endothelial monolayer.

B) HPAECs grown on gelatin-coated glass coverslips were exposed to 5 μM of PGE$_2$-NH-PC in EBM-2 and 2% FCS for indicated time points and subjected for immunostaining with VE-cadherin antibody (Cayman, 1:500) to visualize adherens junctions. F-actin and nuclei were stained with Texas Red phalloidin and DAPI, respectively. EC barrier in cell monolayers is marked by arrows.

C) left: HPAECs were stimulated with 3 μM of PGE$_2$-NH-PC for 30 min. Normalized cell homogenates were immunoprecipitated against VE-cadherin, and samples were analyzed by Western blotting using antibodies for ZO-1 (Cell Signaling Technology; 1:1000 dilution), p120-catenin (BD Transduction Laboratories; 1:1000 dilution), β-catenin (Santa Cruz, 1:1000 dilution), and VE-cadherin (Santa Cruz, 1:1000 dilution).

C) right: Primary HPAECs were incubated with 3 μM PGE$_2$-NH-PC in EBM-2 with 2% FCS for 15 min or 60 min. Cell homogenates were harvested and analyzed by Western blotting using antibodies against pPAK1/2 (Cell Signaling Technology; 1:1000 dilution), VASP (Cell Signaling Technology; 1:1000 dilution), and α-tubulin (Proteintech; dilution 1:5000).

D-F) HPAECs grown on ECIS electrode arrays were incubated with 5 μM of PGE$_2$-NH-PC for 30 min followed by addition of agonists: 100 ng/ml of LPS (D), combination of 25 ng/ml of IL-6 and 50 ng/ml of IL-6 soluble receptor (E), and 0.2 U/ml of thrombin (F). EC monolayer permeability was determined by monitoring TER over indicated time periods in ECIS system. Normalized resistance = 1 is shown as a dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 4. Alkyl-amide oxidized phospholipids inhibit LPS-induced inflammation and protect lung endothelial barrier in vivo. A) C57BL/6J wild type mice were injected i.p. with 200 μl of LPS in PBS (20 μg, 1 mg/kg mouse) in the presence or absence of PGE$_2$-NH-PC (200 μg, 10 mg/kg mouse). After 2 and 4 hrs, blood was collected retro-orbitally, and the KC cytokine in blood plasma was determined by ELISA. n = 5–6 mice. B) C57BL/6J wild type mice were challenged with LPS (0.7 mg/kg, i.t.) in the presence or absence of PGE$_2$-NH-PC (20 pg/kg, i.v.) and after 20 hrs Evans blue dye (30 ml/kg) was injected i.v. Photographs depict the accumulation of Evans blue dye in the lung tissue reflecting increased vascular permeability. (C) C57BL/6J wild type mice were treated i.t. with LPS (0.7 mg/kg body weight, n = 11) or without LPS (n = 6) in the absence or presence of 20 μg/kg synthetic phospholipids (8-isoPGA$_2$-NH-PC, n = 5; PGA$_2$-NH-PC, n = 7; or PGE$_2$-NH-PC, n = 3). After 24 hrs, bronchoalveolar lavage (BAL) fluids were collected and total cell count and protein content were determined. Mean values ± SD are indicated; *p ≤ 0.05, ***p ≤ 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
depletion steps. The latter, however, is also required in all currently known chemical methods of OxPLs synthesis [16]. The same applies to synthesis of OxPLs containing α-terminal carboxylic group: both in published methods and in our procedure one of COOH groups in di-carboxylic oxylipins has to be protected.

Another potential limitation of our method is the type of sn-1 and sn-2 bonds, namely ether- and amide bonds replacing two ester bonds that are present in the majority of natural PLs. However, ether- and amide bonds in PLs are absolutely physiological: up to 20 % of total phospholipids in human cells contain sn-1-alkyl residues [29]. Furthermore, binding of fatty acid residues through the amide bond is characteristic of the common phospholipid sphingomyelin, which is comparable in abundance with PC in cells [30] and blood plasma [31]. Additionally, the non-cleavable ether bond prevents acyl migration, which is a known characteristic of acyl-PLs [32]. This stability may be advantageous for analysis of structure-activity relationships of OxPLs.

In support of the notion that properties of alkyl-amide-OxPLs are generally similar to those of di-acyl species, we have found that alkyl-amide-OxPCs demonstrated biological activities similar to those of di-acyl-OxPCs. In particular, we tested effects of alkyl-amide-OxPCs on pro-inflammatory action of LPS and on the endothelial barrier. In both assays, alkyl-amide-OxPCs induced in vitro and in vivo similar biological effects and acted at similar concentrations as di-acyl-OxPCs. The mechanisms of barrier-protective and anti-LPS action of OxPCs have been reviewed [26,33]. Di-acyl-OxPCs have been shown by several research groups to antagonize LPS action in different cell types and animal models [17,18,22]. The inhibitory mechanism at least partially is based on mutually exclusive binding of OxPCs to the TLR4 accessory proteins that are crucially important for recognition of LPS and activation of the receptor. This inhibitory mechanism is supported by direct binding of OxPCs to LPB (LPS-binding protein), CD14 and MD-2 [17,19]. In addition, an alternative mechanism of anti-inflammatory action has been suggested, which is based on the release of electrophilic oxylipins from the phospholipid scaffold, followed by activation of NRF2 [34] that is increasingly recognized for its anti-inflammatory activity [35]. However, phospholipids containing ether and amide bonds are known to be resistant to phospholipases A and, in addition, to inhibit the enzyme via a competitive mechanism [36,37]. Because alkyl-amide-OxPLs inhibited LPS effects in our experiments as potently as diacyl homologs, one may conclude that a mechanism [36, 37]. Because alkyl-amide-OxPLs inhibited LPS effects in our experiments as potently as diacyl homologs, one may conclude that a

Acknowledgement

Financial support from Austrian Science Fund (grant P27682 to VB) is gratefully acknowledged. This work was performed within Pan-European Network in Lipidomics and Epilipidomics (COST Grant CA19105). Authors thank Dr. O. Kunert (University of Graz) for recording of NMR-spectra.

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.freeradbiomed.2021.07.041.

References

[1] K.H. Zheng, S. Smitzian, T. Prowade, I. Kroon, W.S.A. Jenkins, M.K. Doris, A. C. White, N.K.L.M. Timmers, J. Hjortnaes, M.A. Rogers, E. Aikawa, B.J. Arsenault, J.J. Witztum, D.E. Newby, M.L. Koschinsky, Z.A. Fayad, E.S.G. Stroes, S. M. Boekholdt, M.R. Dweck, Lipoprotein(a) and oxidized phospholipids promote valvular calcification in patients with aortic stenosis. J. Am. Coll. Cardiol. 73 (2019) 2150-2162, https://doi.org/10.1016/j.jacc.2019.01.070.
[2] S. Smitzian, P. Willeit, J. Willett, P. Santer, M. Mayr, Q. Xu, A. Mayr, J.J. Witztum, S. Kiechl, Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events, J. Am. Coll. Cardiol. 60 (2012) 2218-2229, https://doi.org/10.1016/j.jacc.2012.08.079.
[3] Y.S. Byun, J.H.-Lee, B.J. Arsenault, X. Yang, W. Bao, D. DeMicco, R. Laskey, J. L. Witztum, S. Smitzian, Relationship of oxidized phospholipids on apoprotein B-100 to cardiovascular outcomes in patients treated with intensive versus moderate atorvastatin therapy: the TNT trial, J. Am. Coll. Cardiol. 65 (2015) 1286-1295, https://doi.org/10.1016/j.jacc.2015.01.050.
[4] Y.S. Byun, X. Yang, W. Bao, D. DeMicco, R. Laskey, J.J. Witztum, S. Smitzian, Oxidized phospholipids on apoprotein B-100 and recurrent ischemic events following stroke or transient ischemic attack, J. Am. Coll. Cardiol. 69 (2017) 147-158, https://doi.org/10.1016/j.jacc.2016.11.057.
[5] X. Sun, J.S. Seidman, F. Zhao, T.D. Troutman, N.J. Spoon, X. Que, F. Zhou, Z. Liao, M. Paullias, X. Yang, J.A. Magida, T. Kisselueva, D.A. Brenner, M. Downes, R.M. Evans, A.R. Saltiel, S. Smitzian, C.K. Glass, J.J. Witztum, Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis, Cell Metab. 31 (2020) 189-206, https://doi.org/10.1016/j.cmet.2019.10.014, eb.
[6] B. Oehler, A. Brack, R. Blum, H.L. Rittner, Pain control by targeting oxidized phospholipids: functions, mechanisms, perspectives, Front. Endocrinol. 11 (2020) 613868, https://doi.org/10.3389/fendo.2020.613868.
[7] X. Que, M.-Y. Hung, C. Yeang, A. Gonen, T.A. Prohaska, X. Sun, C. Dielch, A. Maatta, D.E. Gaddis, K. Bowden, J. Patterson, J.G. MacDonald, S. Via-Herttuala, P.L. Mellon, C.C. Hedrick, K. Ley, Y.I. Miller, C.K. Glass, L.I. Peterson, J.C. Binder, S. Smitzian, J.L. Witztum, Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice, Nature 558 (2018) 301-306, https://doi.org/10.1038/s41586-018-0198-8.
[8] E. Ambrogini, X. Que, S. Wang, F. Yamaguchi, R.S. Weinstein, S. Smitzian, C. Manolagas, J.L. Witztum, R.L. Jilka, Oxidation-specific epitopes restrain bone formation, Nat. Commun. 9 (2018) 2193, https://doi.org/10.1038/s41467-018-04047-5.
[9] C. Yeang, D. Hasansally, X. Que, M.-Y. Hung, A. Stamkovic, D. Chan, R. Chaudhary, V. Margulets, A.L. Edel, M. Hoshijima, Y. Gu, W. Bradford, N. Dabson, P. Mu, D.Y. Chiu, D.S. Jasal, G.N. Pierce, K.I. Peterson, L. Ar, K. Kirshenbaum, J.J. Witztum, S. Smitzian, A. Ravandi, Reduction of myocardial ischaemia-reperfusion injury by inactivating oxidized phospholipids, Cardiovasc. Res. 115 (2019) 179-189, https://doi.org/10.1093/cvr/cvy186.
[10] M.E. Jung, J.A. Berliner, D. Angst, D. Yue, L. Koroniak, A.D. Watson, R. Li, Total synthesis of the epoxy isoprostane phospholipids PEEP and PEPC, Org. Lett. 7 (2005) 3933−3935, https://doi.org/10.1021/ol050145y.
[11] O. Friedli, S. Freiengang, Cyclcopentene-containing oxidized phospholipids and their isoprostanes as pro-resolving mediators of inflammation, Biochim. Biophys. Acta Mol. Cell. Lipids 1862 (2017) 382-392, https://doi.org/10.1016/j.bbalip.2016.07.006.
[12] H.P. Acharya, Y. Kobayashi, Total synthesis of 2-(5,6-epoxyisoprostane A2) phospholycholine and elucidation of the relative configuration of the isoprostane moiety, Angew. Chem. Int. Ed. Engl. 44 (2005) 3481-3484, https://doi.org/10.1002/anie.200500534.
[13] J. Egger, P. Breitscher, S. Freiengang, M. Kopf, E.M. Carreira, Synthesis of epoxyisoprostanes: effects in reducing secretion of pro-inflammatory cytokines IL-6 and IL-12, Angew Chem. Int. Ed. Engl. 52 (2013) 5382-5385, https://doi.org/10.1002/anie.201300739.
[14] M.E. Jung, J.A. Berliner, D. Angst, D. Yue, L. Koroniak, A.D. Watson, R. Li, Total synthesis of the epoxy isoprostane phospholipids PEEP and PEPC, Org. Lett. 7 (2005) 3933−3935, https://doi.org/10.1021/ol050145y.
[15] O.V. Oskolkova et al., Free Radical Biology and Medicine 174 (2021) 264–271.

O.V. Oskolkova et al.

Free Radical Biology and Medicine 174 (2021) 264–271