Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
ROTAVIRUS INFECTION IN CALVES, PIGLETS, LAMBS AND GOAT KIDS IN TRINIDAD

J. S. KAMINJOLEO and A. A. ADESIYUN

School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago, W.I.

SUMMARY

Faecal samples from diarrhoeic and non-diarrhoeic calves, piglets, lambs and goat kids were collected and screened by a latex agglutination test to detect the presence of group A rotavirus antigen. Of a total of 470 animals screened, 138 (29.4%) had faecal samples positive for rotavirus antigen. The prevalences of infection were 27.7% (73/264) in calves, 27.8% (45/162) in piglets, 48.6% (18/37) in lambs and 28.6% (2/7) in goat kids. Rotavirus antigen was not detected in calves and lambs <1 week old and in piglets <2 weeks old. The highest prevalence was found in calves between the ages 1–6 weeks (72.6%); piglets, 2–8 weeks (91.1%) and in lambs 1–8 weeks (88.9%). The overall prevalence of infection was 39.9% for diarrhoeic and 13.4% for non-diarrhoeic animals and the difference was statistically significant (P≤0.001; X^2). Differences among husbandry systems in relation to the prevalence of rotavirus infection were not statistically significant (P≥0.05; X^2).

The relatively high prevalence of rotavirus infection in the young animals tested, coupled with the detected significantly higher infection rates in diarrhoeic animals, indicate that rotavirus may be important in livestock diarrhoea in Trinidad.

KEYWORDS: Rotavirus; diarrhoea; newborn; Trinidad.

INTRODUCTION

Rotavirus infection has been reported in man and in various animal species, particularly in connection with newborn animals (Mebus et al., 1969; Snodgrass et al., 1976; Wood et al., 1976; Flewett, 1977; Saif et al., 1977; McNulty et al., 1980). Infection is sometimes associated with diarrhoea either caused by rotavirus alone (Tzipori, 1981; Blood & Radostits, 1989) or together with some other enteropathogens (Moon et al., 1978; McNulty, 1983; Hess et al., 1984). Under field conditions, rotaviruses have been isolated from scouring animals (Snodgrass et al.,
MATERIALS AND METHODS

Animals
Calves <24 weeks old and piglets, lambs and goat kids <12 weeks old were sampled from farms under intensive, semi-intensive and extensive management systems. Farms were visited routinely and when cases of diarrhoea were reported. Each animal was sampled once only. The sampling protocol has been described (Adesiyun et al., 1992).

Collection of specimens
A faecal sample was collected from the rectum of each animal and placed in a sterile container which was appropriately labelled. A prepared questionnaire form was used to record animal's age and sex; date and place of collection of specimens; whether or not the animal had diarrhoea and the husbandry system used on the farm. Specimens were received at the laboratory ice-cooled <2 h after collection. Approximately 5 g faeces from each sample were transferred into a plastic bag that was labelled and kept at −20°C until required for testing.

Faecal examination
A commercially available kit (Rota Screen®, Mercia Diagnostics Limited, Code
M802, Surrey, UK) was used to screen the faecal samples for the presence of rotavirus according to the manufacturer’s instructions. A 10% suspension of each sample was prepared by mixing 0.1 ml or 0.1 g of the specimen with 1.0 ml extraction fluid. After mixing well, the suspension was left to stand at room temperature for 2 min. It was then centrifuged at 1000 g for 10 min at 4°C. Recommended 50 μl volumes of the clear supernate and respective reagents were used. Agglutination patterns were examined macroscopically, after 2 min of gently shaking the slide.

RESULTS

The distribution of samples positive for rotavirus amongst diarrhoeic and non-diarrhoeic animals, and management system is shown in Tables I and II, respectively.

An overall prevalence of rotavirus infection in livestock (29.4%; 138/470) was found in this study. A higher prevalence was observed in diarrhoeic (39.9%) than in non-diarrhoeic (13.4%) animals and the difference was statistically significant (P≤0.001; X²). A similar trend was detected in each of the four species studied and the differences in rotavirus detection between diarrhoeic and non-diarrhoeic

Table I
Frequency of rotavirus infection in diarrhoeic and non-diarrhoeic animals

Animal species	Total No. tested	No. (%) positive	Diarrhoeic	Non-diarrhoeic		
	No. tested	No. (%) positive	No. tested	No. (%) positive	No. tested	No. (%) positive
Calf	264	73 (27.7)	155	60 (38.7)	109	13 (11.9)
Piglet	162	45 (27.8)	94	33 (35.1)	68	12 (17.6)
Lamb	37	18 (48.6)	30	18 (60.0)	7	0 (0.0)
Goat kid	7	2 (28.6)	4	2 (50.0)	3	0 (0.0)
Total	470	138 (29.4)	283	113 (39.9)	187	25 (13.4)

Table II
Distribution of rotavirus infection by management systems

Animal species	Total No. tested	Intensive	Management system	Semi-intensive	Extensive		
	No. tested	No. (%) positive	No. tested	No. (%) positive	No. tested	No. (%) positive	
Calf	264	248	66 (26.6)	8	3 (37.5)	8	5 (62.5)
Piglet	162	104	28 (26.9)	58	17 (29.3)	0	0 (0.0)
Lamb	37	33	15 (45.5)	4	3 (75.0)	0	0 (0.0)
Goat kid	7	3	0 (0.0)	3	1 (33.3)	1	1 (100.0)
Total	470	388	109 (28.1)	73	24 (32.9)	9	6 (66.7)
faecal samples for each animal species had significance as follows: calves and lambs ($P\leq 0.001$; X^2); piglets ($P\leq 0.05$; X^2).

The prevalences of rotavirus infection were highest in the extensive (66.7%) husbandry systems; followed by the semi-intensive (32.9%) and intensive (28.1%) systems. However, the differences in prevalences of rotavirus infection in animals under different husbandry systems were not significant ($P\geq 0.05$; X^2).

The youngest animals positive for rotavirus infection were calves and lambs aged 1 week and piglets aged 2 weeks. The prevalence rate was highest in calves between the ages 1 to 6 weeks, 72.6% (53/73); piglets 2 to 8 weeks, 91.1% (41/45) and lambs 1 to 8 weeks, 88.9% (16/18). The prevalence rates peaked at 3 weeks, 20.5% (15/73) for calves, 8 weeks for piglets 31.1% (14/45) and lambs, 38.9% (7/18).

DISCUSSION

Group A rotavirus antigen was not detected in calves and lambs younger than 1 week and in piglets under 2 weeks of age in the present study. Gomwalk et al. (1988) detected rotavirus at low prevalence rates in 1 to 2-week old calves but the prevalence increased with age until it reached 36% between the ages 8 to 16 weeks. McNulty and Logan (1983) first detected rotavirus in calves of about 6 days old. Others have found rotavirus infections in calves after the third day following birth (Wood, 1978; De Leeuw et al., 1980; Sibalin et al., 1980; Gelberg et al., 1991a, b). Gelberg et al. (1991a) found that the shedding of rotavirus in piglets peaked at 3 to 4 weeks of age and Utrera et al. (1984) reported that rotavirus infection was detected more frequently in piglets that were 2 to 6 weeks old than in younger animals. In sheep, rotavirus has been isolated from the faeces of lambs with diarrhoea under 3 weeks old (Snodgrass et al., 1976). However, lambs that were 4 days old or older were reported to be only asymptomatically infected (Tzipori et al., 1981). Thus overall, the age related distribution of rotavirus infection in calves and piglets, in our findings and those of others are in agreement.

There is serological evidence of rotavirus infection in sheep and goats (Wood, et al., 1976) and Scott et al. (1978) reported the presence of rotavirus in goat kid faeces. However, there appears to be a scarcity of data on age related distribution of rotavirus in lambs and goat kids (Blood & Radostits, 1989). The very small number of goat kids (7/470) sampled and tested in the present study makes it difficult to draw any firm conclusions from the results.

The detection of rotavirus infection in non-diarrhoeic animals agrees with other reports (Snodgrass et al., 1976; De Leeuw et al., 1980; Perrin et al., 1981; Tzipori, 1981; De Rycke et al., 1982; McNulty & Logan, 1983), although the rates of infection vary from 42% (McNulty & Logan, 1983), 23.8% (De Rycke et al., 1982) to 12.5% (Perrin et al., 1981). Gelberg et al. (1991a) found that close to 30% of faecal samples from normal pigs contained rotavirus antigen. The occurrence of rotavirus antibodies in all ages of certain animal species has led to the conclusion that asymptomatic infections are common in those species (Brüssow et al., 1990).

The possible reasons given for low rates of rotavirus detection in non-diarrhoeic animals include excretion of undetectable levels of virus in the faeces (Crouch &
Acres, 1984) or the method of detection employed. A more sensitive method would detect more asymptomically infected animals than a less sensitive method (Crouch & Acres, 1984; Sukura & Neuvonen, 1990; Sanekata et al., 1991). Moreover, only serological tests which are performed using atypical rotavirus group specific antisera can detect atypical rotaviruses present in faecal samples (Chasey & Davies, 1984; Chasey & Banks, 1984; Magar et al., 1991).

The detection in our study of a significantly higher prevalence of rotavirus infections among diarrhoeic animals than non-diarrhoeic animals in all four animal species samples is of clinical significance. Rotavirus has been shown to be an important aetiological agent in diarrhoea in animals (Mebus et al., 1969; Snodgrass et al., 1976; Woode et al., 1976; Saif et al., 1977; Scott et al., 1978) and human beings (Kapikian et al., 1976; Flewett, 1977).

The rather higher prevalences of rotavirus infection detected amongst animals reared extensively and semi-intensively than in those kept under the intensive husbandry systems cannot be readily explained. Intensification of management systems would be expected to facilitate spread of infection among animals. It is, however, pertinent to mention that the differences in prevalence rates of rotavirus infections under the three systems were not statistically significant.

The LA test detected rotavirus in all four species indicating the presence of group A rotavirus in these animal species which, hitherto, had not been documented in Trinidad. In the only reported study on rotavirus infection in children in Trinidad, Hull et al. (1982), using counterimmune electrophoresis, found 23% of children were gastroenteritis positive for rotavirus infection while only 1% of apparently healthy children were positive. These authors suggested that rotavirus had an aetiological significance in diarrhoea in children. Based on data generated in our study, it is also evident that rotaviruses have clinical significance in diarrhoea in livestock in Trinidad and that there is a prevalence of group A rotaviruses in the species sampled. Further analysis of faecal samples by the PAGE is required in order to determine the presence of atypical rotaviruses or pararotaviruses.

ACKNOWLEDGEMENTS

The authors thank Dr R. Loregnard and Dr S. Johnson for their cooperation, Ms. Michele Noriega for technical assistance and Ms. Lu-Ann Joseph for help in the preparation of the manuscript. This work was supported by a grant from the University of the West Indies, St. Augustine Campus Research Fund Committee.

REFERENCES

ADESHUN, A. A., KAMINJOLDO, J. S., LOREGNARD, R. & KITSON-PIGGOT, W. (1992). Campylobacter infections in calves, piglets, lambs and kids in Trinidad. British Veterinary Journal 148, 547-56.

ARCHAMBAULT, D., MORIN, G., ELAZHARY, Y. & ROY, R. S. (1990). Study of virus excretion in faeces of diarrhoeic and asymptomatic calves infected with rotavirus. Zentralblatt für Veterinärmedizin Reihe B(Berlin) 37, 79–6.
BLOOD, D. C. & RADOSTITS, O. M. (1989). Veterinary Medicine. A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses. 7th edn, pp. 864–73. London: Baillière Tindall.

BOHL, E. H., SAIF, L. J., THEIL, K. E., AGNES, A. G. & CROSS, R. F. (1982). Porcine parovirus: detection, differentiation from rotavirus, and pathogenesis in gnotobiotic pigs. Journal of Clinical Microbiology 15, 312–19.

BRESSOW, H., EHREHORN, W., SÖTER, J. & SIDoti, J. (1990). Prevalence of antibodies to four bovine rotavirus strains in different age groups of cattle. Veterinary Microbiology 25, 143–51.

CHASEY, D. & DAVIES, P. (1984). Atypical rotavirus in pigs and cattle. Veterinary Record 114, 16–17.

CHASEY, D. & BANKS, J. (1984). The commonest rotaviruses from neonatal lamb diarrhoea in England and Wales have atypical electropherotypes. Veterinary Record 115, 326–7.

CROUCH, C. F. & ACRES, S. D. (1984). Prevalence of rotavirus and coronavirus antigens in the faeces of normal cows. Canadian Journal of Comparative Medicine 48, 340–2.

DE LEFUVRE, P. W., ELLENS, D. J., STRAYER, P. J., VAN BALKEN, J. A. M., MOERMAN, A. & BAANNINGER, T. (1980). Rotavirus infections in calves in dairy herds. Research in Veterinary Science 29, 135–41.

D’ERICK, J., LE ROUX, P., MELIK, N. & RAIMBUALT, P. (1982). Frequency of enteropathogenic K99 ST Escherichia coli and rotaviruses in neonatal diarrhoea of calves. Survey of a veterinarian’s clientele in Sarthe. Annales de Recherches Vétérinaires (Paris) 12, 403–11.

FLEWITT, T. H. (1977). Acute non-bacterial infectious gastroenteritis. In Recent Advances in Clinical Virology I, pp. 151–69, ed. A. P. Waterson. New York: Churchill Livingstone.

GELBER, H. B., WOOD, G. N., KNIPPE, T. S., HARDY, M. & HALL, W. F. (1991a). The shedding of group A rotavirus antigen in a newly established closed specific pathogen-free swine herd. Veterinary Microbiology 28, 213–29.

GELBER, H. B., PATTERSON, J. S. & WOOD, G. N. (1991b). A longitudinal study of rotavirus antibody titers in swine in a closed specific pathogen-free herd. Veterinary Microbiology 28, 231–42.

GOODALE, N. E., MOHAMMED, I. & UMHOJ, J. (1988). Rotavirus infection in diarrhoeic and non-diarrhoeic calves in Zaria. Zaria Veterinaire 3, 97–9.

HENS, R. G., BAUER, P. A., BAILER, G., MAYR, A., PUSCHECILL, A. & SCHMID, G. (1984). Synergism in experimental mixed infections of newborn colostrum deprived calves with bovine rotavirus and enterotoxigenic Escherichia coli (ETEC). Zentralblatt für Veterinärmedizin. Reihe B (Berlin) 31, 595–6.

HULL, B. P., SPEICE, L., BASSETT, D., SWANSTON, W. H. & TIKASINGHI, E. S. (1982). The relative importance of rotavirus and other pathogens in the etiology of gastroenteritis in Trinidadian children. American Journal of Tropical Medicine and Hygiene 31, 142–8.

KAPIKIAN, A. Z., KIM, H. W., WATT, R. G., et al. (1976). Human reovirus-like agent as the major pathogen associated with “winter” gastroenteritis in hospitalized infants and young children. New England Journal of Medicine 294, 965–72.

MAGAR, R., ROBINSON, Y. & MORIN, M. (1991). Identification of atypical rotaviruses in outbreaks of preweaning and postweaning diarrhoea in Quebec swine herds. Canadian Journal of Veterinary Research 55, 260–3.

MCNULTY, M. S. (1978). Rotaviruses. A review article. Journal of General Virology 40, 1–18.

MCNULTY, M. S. (1983). The aetiology, pathology and epidemiology of viral gastroenteritis. Annales Recherches Vétérinaires 14, 427–32.

MCNULTY, M. S. & LOGAN, E. F. (1983). Longitudinal survey of rotavirus infection in calves. Veterinary Record 113, 333–5.

MCNULTY, M. S., CURRAN, W. L., McFERRAN, J. B. & COLLIN, D. S. (1980). Viruses and diarrhoea in dogs. Veterinary Record 106, 350–1.

MEBUR, C. A., UNDERDAHL, N. R., RHODES, M. B. & TWEIHUS, M. J. (1969). Calf diarrhoea (Scours) reproduced with a virus from a field outbreak. University of Nebraska Agricultural Experimental Station Research Bulletin 233, 1–16.

MOON, H. W., McCLURKIN, A. W., ISAACSON, R. E., POHLENZ, J., SKARSTAD, S. M., GILLETTE, K. G. & BAETZ, A. L. (1978). Pathogenic relationship of rotavirus, Escherichia coli, and other
agents in mixed infections in calves. *Journal of the American Veterinary Medical Association* 5, 577-83.

Perrin, B., Martel, J. L., Solsona, M., Contrepos, M., Dubourgier, H. C., Girardeau, J. P., Gouff, P., Bordas, C., Havens, F., Quillieret-Eliez, A., Ramisse, J. & Sendral, R. (1981). Incidence of rotavirus infection and in combined infection of rotavirus and enteropathogenic *Escherichia coli* in French calves. *Annales Recherches Vétérinaires* 12, 259-63.

Sait, L. J., Bohl, E. H., Kohler, E. M. & Hughes, J. H. (1977). Immune electron microscopy of transmissible gastroenteritis virus and rotavirus (Reovirus-like agent) of swine. *American Journal of Veterinary Research* 38, 13-20.

Sakakita, T., Kishimoto, E., Sato, K., Honma, H., Otsumi, K. & Tsubokura, M. (1991). Detection of porcine rotavirus in stools by a latex agglutination test. *Veterinary Microbiology* 27, 245-51.

Scott, A. C., Luddington, J., Lucas, M. & Gilbert, F. R. (1978). Rotavirus in goats. *Veterinary Record* 103, 145.

Shallen, M., Szekely, H. & Berek, F. (1980). Rotavirusinfektionen in einem grösseren Rhindbestand. *Wiener Tierärztliche Monatschrift* 67, 122-7.

Snodgrass, D. R., Smith, W., Gray, E. W. & Herring, J. A. (1976). Rotavirus in lambs with diarrhoea. *Research in Veterinary Science* 20, 113-14.

Sikura, A. & Neuvonen, E. (1990). Latex test for rapid rotavirus diagnosis in calves. *Acta Veterinaria Scandinavica* 31, 1-4.

Tzipori, S. (1981). The aetiology and diagnosis of calf diarrhoea. *Veterinary Record* 108, 510-14.

Tzipori, S., Sherwood, D., Angus, K. W., Campbell, I. & Gordon, M. (1981). Diarrhoea in lambs: experimental infections with enterotoxigenic *Escherichia coli*, rotavirus, and *Cryptosporidium* sp. *Infection and Immunity* 33, 401-6.

Tzipori, S. (1985). The relative importance of enteric pathogens affecting neonates of domestic animals. *Advances in Veterinary Science and Comparative Medicine* 29, 103-206.

Uterca, V., Mazza, De I, R., Gorzelwa, M. & Esparza, J. (1984). Epidemiological aspects of porcine rotavirus infection in Venezuela. *Research in Veterinary Science* 36, 310-15.

Woope, G. N. (1978). Epizootiology of bovine rotavirus infection. *Veterinary Record* 103, 14-6.

Woope, G. N., Bridger, J., Hall, G. A., Jones, J. M. & Jackson, G. (1976). The isolation of reovirus-like agents (Rotaviruses) from acute gastroenteritis of piglets. *Journal of Medical Microbiology* 9, 203-9.

(Accepted for publication 28 September 1993)