Investigation of Crustal Deformation by the Means of Directly Defined Spatial Chords – Possibility or Predeterminancy

Slaveyko Gospodinov 1, Elena Peneva 1, Tatyana Lambeva 1

1 University of Architecture, Civil Engineering and Geodesy, Bulgaria, Sofia 1164, 1 Hristo Smirnenski Blvd., Bulgaria

sgospodinov@mail.bg

Abstract. The possible effect of the reductions to the measured distances between the points in a geodynamic geodetic network on the reliability of the subsequently calculated deformations has been analysed. Experimental investigations on the basis of doubly measured spatial chords from the real network and their analogues in UTM-projection have been planned and implemented. Reduction adjustments have been indisputably found to lead to distortion of the deformation model. The problem about block-determined Earth crust deformation has been discussed. A method for calculation of the elements of deformation by geodetic determined linear deformations has been proposed.

1. Introduction
Organized and applied in an appropriate way, geodetic methods are inseparable and essential part of the sophisticated complex of investigations in the field of geodynamics. These investigations cover areas varying in territorial range, which are characterized with enhanced intensity of deformation processes.

Rapid development of the modern geodetic technique and geodetic technologies are a prerequisite for obtaining more and more detailed, comprehensive and accurate information on the dynamic behaviour of the earth crust. What is essential in the case is to ensure the prerequisites which are necessary for obtaining reliable to the highest degree information reflecting the peculiarities of the earth dynamics. From this point of view a comprehensive redefinition of the approach of organization and processing of geodetic measurements for the purposes of geodynamics is necessary.

2. Reduced on the ellipsoid chords – necessity or inertia?
Most possibly, because of the conservatism or by the professional force of habit, the application of conventional geodetic methods and approaches in the process of geodynamic investigations is too common. The fact that the object of observation has specific peculiarities and is non-stationary in time is ignored. The priority of reliability of the obtained information, naturally defined by the accuracy maximal for the given moment, in the geodynamic investigations, is not taken into account.

Given the foregoing, the common practice that geodetic surveyors who work in the field of geodynamics use reduced [2,7,8] (to the surface of a referent ellipsoid or a map projection) geodetic
measurements, is somewhat strange and ungrounded. Such an approach, which is imperatively applicable in the regular geodesy, would lead to significant manipulations of the deformation model. The main reasons for such a statement are the following [4,6]:

• geodetically determined elements which are reduced on the referent ellipsoid (today – most frequently lengths), depend directly on the over ellipsoid heights of the defining points. The great possibility that sections with different height can be in fact subjected to the same intensity of deformation processes is not taken into account.
• the length of the reduced chord depends on the parameters of the chosen referent ellipsoid.
• the length of the distance in projection is definitively influenced by the remoteness of the main meridian (parallel).

Thus, following the route of tradition and routine practice, geodetic surveyors often use elements which have undergone deformations of fully geometric nature, and these deformations are not of geodynamic origin. In this way, whether deliberately or not, a manipulated deformation model with modified sensitivity and reliability is created.

3. Purpose and organization of experiment
In the context of the stated above, it would be interesting to find a practical confirmation of the stated opinion supporting the use of directly measured values [1,4,9], mainly spatial chords. For the purpose, the results from GPS-measurements (2002, 2004) (Table 1) between the points in the local geodynamic network in the area of Krupnik, South-West of Bulgaria (Figure 1) are used.

The components of the symmetric tensor of deformation and main deformation axes (Table 2.) [9], as well as the area deformations and shear deformations (Table 3), referred to the centre of gravity of each finite element of the network, are calculated on the basis of registered linear deformations of the chords [5].

Table 1. Spatial GPS-chords network in the area of Krupnik – Kresna geodynamic network

№ side	S₁ [m] - 2002	S₂ [m] - 2004
1 - 5	2494.693	2494.683
1 - 15	1670.814	1670.812
5 - 15	2086.616	2086.612
5 - 11	3214.730	3214.729
15 - 11	2024.799	2024.804
1 - 16	2528.508	2528.516
15 - 16	1026.307	1026.320
16 - 11	1307.287	1307.295
1 - 12	3975.577	3975.583
12 - 16	1737.655	1737.660
12 - 11	1870.379	1870.377
3.1. Calculation of the deformation parameters by the means of spatial chords for the period 2002 - 2004, defined by GPS measurements

Table 2. Elements of the symmetric tensor of deformation and main deformation axes

№	Δ	Triangle	Eₓₓ, \ .10°	Eᵧᵧ, \ .10°	γₓᵧ, \ .10°	E_max, \ .10°	E_min, \ .10°	Φ, [g]
1	Δ 1 5 15	-1.708	-2.558	-3.782	1.673	-5.939	442.9577	
2	Δ 5 11 15	3.084	-2.143	-0.507	3.133	-2.192	403.0746	
3	Δ 15 11 16	2.592	25.818	10.191	29.656	-1.246	213.1615	
4	Δ 16 11 12	8.184	-0.214	-7.198	12.318	-4.348	422.5540	
5	Δ 16 12 15	7.665	5.942	10.579	17.418	-3.811	44.8617	
6	Δ 1 15 16	-2.062	18.364	-3.293	18.882	-2.579	205.0872	

Table 3. Area deformations and shear deformations, calculated by the method of finite elements

№	Δ	X, [m]	Y, [m]	Eₓₓ + Eᵧᵧ, \ .10°	Eₓₓ - Eᵧᵧ, \ .10°
1	4635553.645	677053.312	-4.266	0.851	
2	4636621.292	677635.574	0.941	5.228	
3	4636551.161	678606.179	28.410	-23.226	
4	4636799.946	679468.722	7.970	8.398	
5	4635732.299	678886.459	13.607	1.723	
6	4635483.514	678023.917	16.302	-20.426	

Figures 2, 4, 6, 8, 10, 12 and 14 show graphically the main deformation axes, the angular deformations, the areas of area deformations and shear deformations, for the different periods of measurement.

3.2. Calculation of the deformation parameters by the means of distances in UTM – projection for the period 2002 - 2004

Directly measured chords between the points of the earth surface, obtained as a result of GPS measurements, are reduced to distances in UTM – projection.

All the necessary reductions for converting to chords from the ellipsoid, geodetic line and ultimately to distances in UTM – projection, respectively, are made on the measured bases.

The data from the reduction of spatial chords to distances in UTM – projection are given in Tables 4 and 5.

From the distances reduced in this way, similar calculations for determining the deformation parameters for each cycle of measurements are made.

The components of the symmetric tensor of deformations and main deformation axes are given in Table 6. Area deformations and shear deformations (Table 7), are also calculated for the centre of gravity of each finite element of the network.

The results obtained by the performed calculations are graphically presented as follows: main deformation axes (Figure 2 and 3), angular deformations (Figures 5 and 7), areas of area deformations (Figures 9 and 11) and shear deformations (Figures 13 and 15) for each epoch of measurement.
Table 4. Reduction of spatial chords to distances in UTM – projection

№ side	S - 2002 r., [m]	№ p.	H, [m]	∆h, [m]	chord from the ellipsoid	geodetic line	distance in UTM projection
1 - 5	2494.683	1	719.199	-373.911	2277.178	2289.474	2288.559
1 - 15	1670.814	5	345.288	-356.157	1505.118	1508.640	1508.036
1 - 16	2528.508	11	501.664	-290.760	2304.706	2317.458	2316.531
1 - 12	3975.577	12	836.994	117.795	3541.444	3588.626	3587.190
5 - 15	2086.616	15	363.042	17.754	1976.659	1984.673	1983.880
5 - 11	3214.730	16	428.439	156.376	3010.998	3039.725	3038.509
11 - 15	2024.799				-138.622	1891.772	1898.032
11 - 16	1307.287				-73.225	1216.458	1218.313
11 - 12	1870.379				335.330	1665.609	1670.389
12 - 16	1737.655				-408.555	1537.017	1540.769
15 - 16	1026.307				65.397	964.333	965.256

Table 5. Comparison between ellipsoidal chords and distances in UTM projection

№ side	S - 2004 r., [m]	№ p.	H, [m]	∆h, [m]	chord from the ellipsoid	geodetic line	distance in UTM projection
1 - 5	2494.683	1	719.199	-373.911	2277.169	2289.465	2288.549
1 - 15	1670.814	5	345.288	-356.160	1505.116	1508.638	1508.035
1 - 16	2528.516	11	501.658	-290.762	2304.714	2317.466	2316.539
1 - 12	3975.577	12	836.987	117.795	3541.451	3588.631	3587.196
5 - 15	2086.616	15	363.032	17.751	1976.656	1984.670	1983.876
5 - 11	3214.729	16	428.430	156.377	3010.997	3039.724	3038.508
11 - 15	2024.804				-138.626	1891.777	1898.036
11 - 16	1307.295				-73.228	1216.465	1218.321
11 - 12	1870.377				335.329	1665.607	1670.387
12 - 16	1737.660				-408.555	1537.022	1540.774
15 - 16	1026.307				65.398	964.345	965.268

Table 6. Elements of the symmetric tensor of deformation and main deformation axes

№ Δ	Triangle	E_XX , .10^6	E_YY , .10^6	E_ZZ , .10^6	E_max , .10^6	E_min , .10^6	Φ, [g]
1 Δ	1 5 15	-0.621	-3.010	-0.278	-3.042	-0.589	403.683
2 Δ	5 11 15	0.996	-3.570	-3.337	2.757	5.330	420.089
3 Δ	11 16 16	4.408	14.315	12.291	22.613	3.891	228.409
4 Δ	11 16 12	6.714	3.061	5.244	10.441	-0.666	30.6366
5 Δ	1 16 12	-2.223	0.480	-5.349	4.646	-6.389	235.111
6 Δ	1 15 16	-0.411	10.120	3.067	10.948	-1.239	209.0212

Table 7. Area deformations and shear deformations, calculated by the method of finite elements

№ Δ	X, [m]	Y, [m]	E_XX + E_YY, .10^6	E_XX - E_YY, .10^6
1 Δ	4635553.645	677053.312	-3.631	2.389
2 Δ	4636621.292	677635.574	-2.574	4.566
3 Δ	4636551.161	678606.179	18.723	9.970
4 Δ	4636799.946	679468.722	9.775	3.652
5 Δ	4635732.299	678886.459	-1.743	-2.702
6 Δ	4635483.514	678023.917	9.709	10.531
Main axes of deformations, calculated by directly measured chords and distances in UTM projection

Figure 2. Main axes of deformations, calculated by directly measured chords

Figure 3. Main axes of deformations, calculated by directly measured chords distances in UTM projection

Intensity of the field of the angular deformations $\gamma \cdot 10^{-6}$

Figure 4. With directly measured chords

Figure 5. With distances in UTM – projection
2D presentation of the area of the angular deformations $\gamma_{xy} \cdot 10^6$

Figure 6. With directly measured chords

Figure 7. With distances in UTM – projection

Intensity of the field of the area deformations $E_{xx} + E_{yy} \cdot 10^6$

Figure 8. With directly measured chords

Figure 9. With distances in UTM – projection

2D presentation of the field of the area deformations $E_{xx} + E_{yy} \cdot 10^6$

Figure 10. With directly measured chords

Figure 11. With distances in UTM – projection
Intensity of the field of the shear deformations $E_{xx} + E_{yy} \cdot 10^6$

![Diagram](image1.png)

Figure 12. With directly measured chords

![Diagram](image2.png)

Figure 13. With distances in UTM – projection

2D presentation of the field of the shear deformations $E_{xx} + E_{yy} \cdot 10^6$

![Diagram](image3.png)

Figure 14. With directly measured chords

![Diagram](image4.png)

Figure 15. With distances in UTM – projection

4. **Block determined earth crust deformation and a possibility for their calculation**

Often, specialists, working in the area of geodynamics, assume, for practical reasons or due to the lack of information, theories, which presuppose a very simplified and integrated model of the Earth crust [10,11,12]. At the same time, methods and approaches to accumulate information are used, which do not provide for the essential aspects of the main purpose—timely, authentic and precise information. Thus, often geodetic measurements for geodynamic purposes are prepared, carried out and processed meeting the main requirements to regular geodetic works, designed for the solution of routine problems.

The major lapse, made usually in such cases, is not to take into consideration the specifics of the task and the specifics of the surveyed site—the Earth crust with its structure and its dynamic behavior in time. According to the most-widely spread lately theories of the Earth crust is the theory of block structure, i.e. that the Earth crust is structured of individual, hierarchically arranged and autonomous blocks, which vary in dimension and according to rheological properties.

On this background, a question is coming: How, in the course of preparation and performance of the repeated geodetic surveys, the divergences of the rheological properties of the individual consolidated quasy-continual blocks can be given account of?
A possible answer of this question can be found in a well-known connection in the theory of deformations [5, 9]:

$$
\epsilon_i = \cos^2 a_i x + \sin^2 a_i y + \cos a_i \sin a_i \gamma
$$

(1)

where:

$$
\epsilon_i = \frac{L_i - L_0}{L_0} \quad \text{- is linear deformation of segment } i;
$$

$$
a_i \quad \text{- specified angle of segment } i;
$$

$$
L_0 \quad \text{- initial length of segment } i;
$$

$$
L_i \quad \text{- actual length of segment } i.
$$

If segment i falls simultaneously into two different quasi-continual blocks and the part lying in block I is signified with I_1 and the part lying in block II - respectively with II_1 for the relative linear deformation it can be written [5]:

$$
\epsilon_i = \frac{\delta L_i^I - \delta L_i^{II}}{L_i^I}
$$

(2)

where:

$$
\delta L_i^I \quad \text{- variation of length } L_i^I;
$$

$$
\delta L_i^{II} \quad \text{- variation of length } L_i^{II}.
$$

For the part of the segment i, lying in block I, the representations shall be used:

$$
L_i^I = k L_i^0
$$

(3)

where:

$$
k \quad \text{- coefficient of proportionality.}
$$

Then, after non-complex transformations, for ϵ_i is obtained:

$$
\epsilon_i = k \epsilon_i^I + (1 - k) \epsilon_i^{II},
$$

(4)

where:

$$
\epsilon_i^I \quad \text{- relative linear deformation of part of segment } i, \text{ lying in block } I;
$$

$$
\epsilon_i^{II} \quad \text{- relative linear deformation of part of segment } i, \text{ lying in block } II;
$$

The obtained result is:
\[
\epsilon_i = k \cos^2 a_i e'_{xx} + k \sin^2 a_i e'_{yy} + k \cos a_i \sin a_i \gamma'_{xy} + \\
(1 - k) \cos^2 a_i e''_{xx} + (1 - k) \sin^2 a_i e''_{yy} + (1 - k) \cos a_i \sin a_i \gamma''_{xy}
\]

(5)

where:

- \(e'_{xx}, e'_{yy}, e'_{zz}\) are components of symmetric tensor of deformations of block \(I\);
- \(e''_{xx}, e''_{yy}, e''_{zz}\) - components of symmetric tensor of deformations of block \(II\).

Obviously for the calculation of all the six components of deformation are necessarily six measured chords and their linear deformations. Several possible configurations of chords are shown on Figure 16. On the Figure 17 are presented area, shear and angle deformations of Earth crust, calculated for a real object by linear deformations of six chords, situated as a geodetic quadrangle (Figure 16).

Figure 16: Possible configuration of geodetic measured chords

Figure 17: Graphic presentation of area, shear and angle deformations for a real object
5. Conclusions

1. Bearings, modules and directions of the main deformation axes, calculated by the means of distances in projection, are different from the ones, calculated by directly measured chords between the points.

2. The field of the area deformations for the period 2002 – 2004, calculated by linear deformations of the distances in UTM-projection, is considerably different by the field, obtained by direct chords.

3. The extreme points of the shear deformations coincide in location with those, determined by spatial chords, but are opposite in sign.

4. In consideration of reliability, it is preferable to calculate the deformation components by directly measured elements (lengths) with appropriately chosen accuracy and frequency of measurements.

5. The reporting of the block structure of the Earth crust is a way to realistic interpretation of the results of the geodetic measurements.

6. Is not necessary to use an ordinary geodetic network for a successful realization of repeated geodetic measurements for geodynamics purposes. I needs only a right configuration of chords.

7. With an already designed and stabilized geodetic network for geodynamic investigations a choice of various combinations of different configurations of chords is possible.

References

[1] Antova G., “Visualization of geoinformation in dam deformation monitoring”, III International Conference on Cartography and GIS – conference proceedings, Nesebar, Bulgaria, 2010.
[2] Azzouzi R., Ettarid M., Semlali El H. et Rimi A., “Contribution à la détermination des déplacements horizontaux récents et des déformations des plaques Africaine et Eurasienne dans l'Ouest Méditerranéen, au cours de la période 1997 – 2003”, 2nd FIG Regional Conference, Marrakech, Marocco, 2 – 5 December, 2003.
[3] Fadev A. B., “The finite element method in geomechanics”; Moskow, Nedra, 1987.
[4] Gospodinov Sl., “An opportunity to track area crust distortions by direct geodetic observations”, Annual of UASEC, Sofia, volume XXXVI, III, 1991 – 1992.
[5] Gospodinov Sl., Basic geodetic networks for geodynamics realisations /Dissertation/, Sofia, 1989.
[6] Gospodinov Sl., “Determination of Block Deformations of the Earth's Crust by Measured Spatial Chords”, Sofia, 2011.
[7] Rukieh M. et al.; “Recent geodynamics as a source of geological and seismic hazards for Western part of Syria”, International symposium on „Modern technologies, education and professional practice in Geodesy and Related fields”. Sofia, 3 – 4 November, 2005.
[8] Sylvester A. G., “Near - field tectonic geodesy. In Active Tectonics”, National Academy Press, Washington, D. C., pp. 164 – 80, 1986.
[9] Varbanov Hr., Tepavicharov A., Ganev T., “Applied theory of elasticity and plasticity”, Sofia, 1992.
[10] Yavasoglu H. et al.; “GPS measurements on the Western Marmara segment of North Anatolian fault”, International symposium on „Modern technologies, education and professional practice in Geodesy and Related fields”. Sofia, 3 – 4 November, 2005.
[11] Yeats R. S., Sieh K., Allen Cl. R.; “The geology of earthquakes”, New York – Oxford University press, chapter 5, pp. 88 – 113, 1997.
[12] Zakarevicius A., Slaupa S., Stanionis A., „Strain and stress modelling of the Earth's crust of the GPS polygon of the Ignalina nuclear power plant”, International symposium on „Modern technologies, education and professional practice in Geodesy and Related fields”. Sofia, 3 – 4 November, 2005.