Deterministic Identification Over Poisson Channels

Mohammad J. Salariseddigh

Institute for Communications Engineering

Joint work with:

Uzi Pereg (TUM-LNT), Holger Boche (TUM-LTI),
Christian Deppe (TUM-LNT), and Robert Schober (FAU-IDC)

Monday 19 July 2021
Outline

1. Motivation
2. Main Contributions
3. Definitions
4. Main Results
5. Conclusions
Outline

1. Motivation
2. Main Contributions
3. Definitions
4. Main Results
5. Conclusions
Transmission vs. Identification

- **Shannon’s setting:** Bob recovers the message.

 ![Diagram of Shannon's setting](image)

- **Identification setting:** Bob asks if a message was sent or not?

 ![Diagram of Identification setting](image)
Transmission vs. Identification

- **Shannon’s setting**: Bob recovers the message.

- **Identification setting**: Bob asks if a message was sent or not?

- **V2X and P2MP communications**
- **Cancer treatment and smart drug delivery**
- **Any event-triggered scenario**
Randomized Identification (RI) \(^1\)

- Originally introduced by Ahlswede and Dueck (1989)
- Capacity was established with randomness at encoder
- Encoder employs distribution to select codewords

Remarkable Property

- Reliable identification is possible with code size growth \(\sim 2^{2nR}\)
- Sharp difference to transmission with code size growth \(\sim 2^{nR}\)

\(^1\) R. Ahlswede, and G. Dueck, "Identification via channels", 1989
Deterministic Identification (DI) \(^2\) \(^3\)

- Encoder uses deterministic mapping for coding

Why deterministic?
- Simpler implementation (random resource not required)
- Suitable for Jamming scenarios
- Suitable for molecular communication

\(^2\) R. Ahlswede and N. Cai. “Identification without randomization”, 1999

\(^3\) M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, “Deterministic identification over channels with power constraints,” IEEE Int'l Conf. Commun. (ICC), 2021 [arXiv:2010.04239, 2021]
Outline

1 Motivation

2 Main Contributions

3 Definitions

4 Main Results

5 Conclusions
Main Contributions

- We develop lower and upper bounds on the DI capacity for the memoryless discrete time Poisson channels (DTPC) subject to both average and peak power constraints.

- We use the bounds to determine the **correct scale**.

- We show that the optimal code size scales as $\sim 2^{(n \log n)R}$.
DI Codes

Definition

An \((L(n, R), n, \lambda_1, \lambda_2)\)-DI code for DTPC \(W\) is a system

\[
\{(u_i, D_i)\}_{i \in [1:L(n, R)]}
\]

subject to

1. **Code size**: \(L(n, R) = 2^{(n \log n)R}\)
2. **Code-word**: \(u_i \in \mathcal{X}^n\), decoding sets: \(D_i \subset \mathcal{Y}^n\)
3. **Input constraints**:
 - \(0 < u_{i,t} \leq P_{\text{max}}\)
 - \(n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{\text{avg}}\)
4. **Error requirement type I**: \(W^n(D_i | u_i) > 1 - \lambda_1\)
5. **Error requirement type II**: \(W^n(D_i | u_j) < \lambda_2\) for \(i \neq j\)
Definition

An \((L(n, R), n, \lambda_1, \lambda_2)\)-DI code for DTPC \(\mathcal{W}\) is a system \(\{(u_i, D_i)\}_{i \in [1:L(n, R)]}\) subject to

1. Code size: \(L(n, R) = 2^{(n \log n) R}\)
2. Code-word: \(u_i \in \mathcal{X}^n\), decoding sets: \(D_i \subset \mathcal{Y}^n\)
3. Input constraints:
 - \(0 < u_{i,t} \leq P_{max}\)
 - \(n^{-1} \sum_{t=1}^n u_{i,t} \leq P_{avg}\)
4. Error requirement type I: \(W^n(D_i | u_i) > 1 - \lambda_1\)
5. Error requirement type II: \(W^n(D_i | u_j) < \lambda_2\) for \(i \neq j\)
Outline

1 Motivation
2 Main Contributions
3 Definitions
4 Main Results
5 Conclusions
DI for Poisson Channel

$Y(t) \sim \text{Pois}(\lambda + u_i(t))$
DI for Poisson Channel

\[Y(t) \sim \text{Pois} (\lambda + u_i(t)) \]

Definitions

- Dark current $\rightarrow \lambda \in (0, \infty)$
- Realization of channel output $\rightarrow y \in \mathbb{N}_0^n$
- Power const. $0 < u_{i,t} \leq P_{\text{max}}$ and $\frac{1}{n} \sum_{t=1}^n u_{i,t} \leq P_{\text{avg}}$
- Channel law $\rightarrow W^n(y|u_i) = \prod_{t=1}^n \frac{e^{-(\lambda+u_{i,t})} (\lambda+u_{i,t})^{y_t}}{y_t!}$
DI for Poisson Channel

Theorem

4 Let \mathcal{W} be a DTPC with dark current $\lambda \in (0, \infty)$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{\text{avg}}$ and $0 < u_{i,t} \leq P_{\text{max}}$ for $L(n, R) = 2^{(n \log n)R}$ is bounded by

$$\frac{1}{4} \leq C_{\text{DI}}(\mathcal{W}, L) \leq \frac{3}{2}$$
DI for Poisson Channel

Theorem

4 Let \mathcal{W} be a DTPC with dark current $\lambda \in (0, \infty)$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{\text{avg}}$ and $0 < u_{i,t} \leq P_{\text{max}}$ for $L(n, R) = 2^{(n \log n)R}$ is bounded by

$$\frac{1}{4} \leq C_{DI}(\mathcal{W}, L) \leq \frac{3}{2}$$

Corollary (Traditional Scales)

DI capacity in traditional scales is given by

$$C_{DI}(\mathcal{W}, L) = \begin{cases} \infty & \text{for } L(n, R) = 2^{nR} \\ 0 & \text{for } L(n, R) = 2^{2^{nR}} \end{cases}$$

4 M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, and R. Schober, "Deterministic identification over Poisson channels," Submitted to the IEEE Glob. Commun. Conf. (GLOBECOM), 2021 [arXiv:2107.06061]
DI for Poisson Channel

Theorem

Let \mathcal{W} be a DTPC with dark current $\lambda \in (0, \infty)$. Then the DI capacity subject to power constraints $n^{-1} \sum_{t=1}^{n} u_{i,t} \leq P_{\text{avg}}$ and $0 < u_{i,t} \leq P_{\text{max}}$ for $L(n, R) = 2^{(n\log n)^R}$ is bounded by

$$\frac{1}{4} \leq \mathbb{C}_{\text{DI}}(\mathcal{W}, L) \leq \frac{3}{2}$$

Corollary (Traditional Scales)

DI capacity in traditional scales is given by

$$\mathbb{C}_{\text{DI}}(\mathcal{W}, L) = \begin{cases} \infty & \text{for } L(n, R) = 2^{nR} \\ 0 & \text{for } L(n, R) = 2^{2^{nR}} \end{cases}$$

Achiev. proof: sphere pkg. of rad. $n^{\frac{1}{4}} \Rightarrow 2^{\frac{1}{4}(n\log n)}$ codewords

4 M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over Poisson channels," Submitted to the IEEE Glob. Commun. Conf. (GLOBECOM), 2021 [arXiv:2107.06061]
Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- **Minkowski-Hlawka Theorem** guarantees a density $\Delta \geq 2^{-n}$
- $2^n \log(n)R \geq \Delta \cdot \frac{\text{Vol}(Q_0[n,A])}{\text{Vol}(S_{u_1}(n,\sqrt{n\epsilon_n}))} \geq 2^{-n} \cdot \frac{A^n}{\text{Vol}(S_{u_1}(n,\sqrt{n\epsilon_n}))}$
- $R \geq \frac{1}{n\log n} \left[o(n \log n) + \frac{n}{2} \log n - \frac{1}{4} (1 + b) \cdot n \log n \right] \xrightarrow{n \to \infty} \frac{1}{4}$
Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- **Minkowski-Hlawka Theorem** guarantees a density $\Delta \geq 2^{-n}$
- $2^{n \log(n)R} \geq \Delta \cdot \frac{\text{Vol}(Q_0[n,A])}{\text{Vol}(S_{u_1}(n,\sqrt{n\epsilon_n}))} \geq 2^{-n} \cdot \frac{A^n}{\text{Vol}(S_{u_1}(n,\sqrt{n\epsilon_n}))}$
- $R \geq \frac{1}{n \log n} \left[o(n \log n) + \frac{n}{2} \log n - \frac{1}{4} (1 + b) \cdot n \log n \right] \xrightarrow{n \to \infty} \frac{1}{4}$

Chebyshev's inequality leads to the following error bounds:

1. $P_{e,1}(i) \leq \frac{c_1^2}{n^2 \epsilon_n^2}$
2. $P_{e,2}(i,j) \leq \frac{c_2^2}{n^2 \epsilon_n^2}$
Proof Sketch. (Achievability)

- Dense sphere packing arrangement with radius $\sqrt{n\epsilon_n}$
- **Minkowski-Hlawka Theorem** guarantees a density $\Delta \geq 2^{-n}$

$$2^{n\log(n)}R \geq \Delta \cdot \frac{\text{Vol}(Q_0[n,A])}{\text{Vol}(S_{u_1}(n,\sqrt{n\epsilon_n}))} \geq 2^{-n} \cdot \frac{A^n}{\text{Vol}(S_{u_1}(n,\sqrt{n\epsilon_n}))}$$

$$R \geq \frac{1}{n\log n} \left[o(n\log n) + \frac{n}{2} \log n - \frac{1}{4} (1 + b) \cdot n \log n \right] \xrightarrow{n \to \infty} \frac{1}{4}$$

Chebyshev’s inequality leads to the following error bounds:

1. $P_{e,1}(i) \leq \frac{c_1}{n\epsilon_n^2}$
2. $P_{e,2}(i,j) \leq \frac{c_2}{n\epsilon_n^2}$

- Cond. 1 & 2 $\rightarrow \epsilon_n = \frac{A}{n^{\frac{1}{2}(1-b)}}$ for $b > 0$ being arbitrarily small
Proof Sketch. (Converse)

We show that if two distinct code-words u_i and u_j satisfy

$$\left| 1 - \frac{v_{i_2,t}}{v_{i_1,t}} \right| \leq \epsilon'_n , \text{ for all } t \in [1 : n],$$

where $v_{i,t} = \lambda + u_{i,t}$ is the letter for shifted codeword, then using the continuity of the Poisson PDF, we obtain

$$P_{e,1}(i) + P_{e,2}(i,j) \geq 1 - \kappa_n$$
Proof Sketch. (Converse)

- We show that if two distinct code-words \(u_i \) and \(u_j \) satisfy
 \[
 1 - \frac{v_{i_2,t}}{v_{i_1,t}} \leq \epsilon'_n, \quad \text{for all } t \in [1 : n],
 \]
 where \(v_{i,t} = \lambda + u_{i,t} \) is the letter for shifted codeword, then using the continuity of the Poisson PDF, we obtain

 \[
P_{e,1}(i) + P_{e,2}(i,j) \geq 1 - \kappa_n
 \]

- We have

 \[
 |u_{i_1,t} - u_{i_2,t}| = |v_{i_1,t} - v_{i_2,t}| \geq \epsilon'_n v_{i_1,t} > \lambda \epsilon'_n
 \]

- Hence

 \[
 \|u_{i_1} - u_{i_2}\| > \lambda \epsilon'_n
 \]
Proof Sketch Cont. (Converse)

- **Tight** upper-bound requires:
 1. ϵ'_n large as possible
 2. κ_n tends to zero

- By conditions 1 & 2 we obtain

$$
\epsilon'_n = \frac{P_{\text{max}}}{n^{1+b}}
$$

for $b > 0$ being an arbitrarily small rate

$$
\text{rate} \uparrow \iff \epsilon'_n \downarrow
$$
Coding Scale

$L(n, R)$

2^{2nR} • randomized id

$2^{(n \log n)R}$ • deterministic identification

2^{nR} • transmission

$2^{\sqrt{n}R}$ • covert commun.

S., Pereg, Boche & Deppe, ITW 2020

M. J. Salariseddigh, U. Pereg, H. Boche, and C. Deppe, "Deterministic identification over fading channels," IEEE Inf. Theory Workshop (ITW), 2020 [arXiv:2010.10010, 2021]
Outline

1 Motivation

2 Main Contributions

3 Definitions

4 Main Results

5 Conclusions
Conclusions

- We have determined DI capacity for
 - discrete time Poisson channel \(2^{(n \log n)C} = n^nC \) behavior
 As opposed to \(2^{2^{nR}} \) for randomized identification

- We observed that DI coding scale is the same for both DTPC and fading channels

- Future directions
 - Address other molecular communication channel models
 - Try Multi-user scenarios
Thank You!