Laminin γ1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16–F10 mouse melanoma cells

Y Kuratomi*1,2, M Nomizu1,3, K Tanaka1,4, ML Ponce1, S Komiyama3, HK Kleinman1 and Y Yamada1
1Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland, MD 20892, USA; 2Department of Otologinolaryngology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; 3Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan; 4Department of Orthopedics, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

Laminin-1, a heterotrimer of α1, β1, and γ1 chains specific to basement membrane, promotes cell adhesion and migration, proteinase secretion and metastases of tumour cells. Several active sites on the α1 chain have been found to promote B16–F10 melanoma lung colonisation and here we have determined whether additional tumour promoting sites exist on the β1 and γ1 chains. Recently, we have identified novel cell adhesive peptides derived from laminin β1 and γ1 chains by systematic screening of synthetic peptides. Nine β1 peptides and seven γ1 peptides active for cell adhesion were tested for their effects on experimental pulmonary metastases of B16–F10 mouse melanoma cells in vivo. The most active adhesive peptide derived from the γ1 chain globular domain, C-16 (KAFDITYVRLKF), significantly enhanced pulmonary metastases of B16–F10 cells, whereas no other peptides showed enhancement. C-16 also stimulated migration of B16–F10 cells in the Boyden chamber assay in vitro. Furthermore, C-16 significantly induced the production of MMP-9 from B16–F10 cells. These results suggest that this specific laminin γ1 chain peptide has a metastasis-promoting activity and might be a new molecular target of anti-cancer treatment.

British Journal of Cancer (2002) 86, 1169 – 1173. DOI: 10.1038/sj/bjc/6600187 www.bjcancer.com
© 2002 Cancer Research UK

Keywords: laminin; peptide; metastasis; migration; adhesion

Laminin-1 is part of a family of glycoproteins specific to basement membrane. It has multiple biological activities including promoting cell adhesion, migration, differentiation, neurite outgrowth and tumour cell malignancy (Timpl et al, 1979; Kleinman et al, 1985; Martin and Timpl, 1987; Timpl, 1989). Laminin-1 enhances the metastatic phenotype of tumour cells (Terranova et al, 1982, 1984; Barsky et al, 1984). In addition, laminin-1 induces production of collagenase IV (Turpeenniemi-Hujanen et al, 1986), urokinase-type plasminogen activator, and the 92-kDa matrix metalloproteinase (MMP-9) (Khan and Falcone, 1997) in vitro.

Several biologically active sites on mouse laminin-1 that affect tumour cells have been previously identified using synthetic peptides (Yamada and Kleinman, 1992). YIGSR on the β1 chain promotes tumour cell adhesion and migration (Graf et al, 1987a,b; Iwamoto et al, 1988) and inhibits experimental pulmonary metastases of mouse melanoma cells and angiogenesis (Iwamoto et al, 1987; Sakamoto et al, 1991). IKVAV on the α1 chain promotes cell adhesion, tumour growth, angiogenesis, collagenase IV activity by tumour cells, and experimental metastases as well as plasminogen activator activation (Grant et al, 1989; Tashiro et al, 1989; Kanemoto et al, 1990; Stack et al, 1991; Nomizu et al, 1992).

Recently, we have systematically screened a large set of overlapping synthetic peptides covering the whole mouse laminin-1 for their cell adhesive activities. Five peptides from the G-domain of α1 chain (Nomizu et al, 1995), 12 peptides from the γ1 chain (Nomizu et al, 1997), 21 peptides from the short and long arms of α1 chain (Nomizu et al, 1998), and 12 peptides from the β1 chain (Nomizu et al, 2000) were found to have significant cell adhesive activity. In addition, several peptides from the laminin-1 have been identified to be active for angiogenesis (Malinda et al, 1999; Ponce et al, 1999), acinar formation of salivary gland (Hoffman et al, 1998), and neurite outgrowth (Powell et al, 2000).

We previously identified several laminin α1 peptides that influence the metastatic activities of B16–F10 melanoma cells. AG-73 peptide from the α1 G-domain causes liver metastases (Kim et al, 1998), A-13 peptide from the N-terminal globule promotes an increase in pulmonary metastases (Kuratomi et al, 1999), and the AG-73 peptide (LQVQLSIR) promotes increased lung colonies and liver metastases. Here we report effects of adhesive peptides from the β1 and γ1 chains on experimental pulmonary metastases of B16–F10 cells in vivo. We have screened other adhesive peptides from β1 and γ1 chains for metastatic activity. We found that one of the peptides derived from the short arm of γ1 chain, C-16 (KAFDITYVRLKF), significantly enhanced pulmonary metastases of B16–F10 cells. This peptide also stimulated the migration of...
B16–F10 cells in the Boyden chamber assay. In addition, C-16 significantly induced production of MMP-9 by B16–F10 cells.

MATERIALS AND METHODS

Preparation of synthetic peptides

Cell adhesive peptides from the laminin β1 and γ1 chain and control peptides were synthesised and purified by high performance liquid chromatography as previously described (Nomizu et al, 1997). The purity and identity of the peptides were confirmed by an analytical HPLC and a Sciex API IIIE triple quadruple ion spray mass spectrometer.

Cells and culture

B16–F10 mouse melanoma cells (Fidler and Nicolson, 1976) (a gift of Dr IJ Fidler, Houston, TX, USA) were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Life Technologies, Inc.) containing 10% foetal bovine serum (FBS; HyClone, UT, USA), 100 units ml⁻¹ penicillin, 100 μg ml⁻¹ streptomycin (Life Technologies, Inc.).

In vitro experimental pulmonary metastasis assay

For the in vitro experimental pulmonary metastasis assay, B16–F10 cells were detached by 0.02% EDTA in phosphate buffered saline (Versene, Life Technologies, Inc.) and suspended in DMEM (1000000 cells ml⁻¹). The cell suspension (0.2 ml) was injected into the tail veins of female C57BL6/N mice (9–12 weeks old). 0.2 mg of cell adhesion peptides (1 mg ml⁻¹ in DMEM) was also intravenously injected within 10 min after the cell injection to exclude cell aggregations by mixture of peptide and cells. The mice were sacrificed 16 days after injection. The lungs were removed, and the number of visible colonies on the surface of the lungs was counted. When many colonies were formed and the number of the colonies could not be counted correctly because of the fusion of the colonies, the number was scored as 500. Five mice were used for each peptide. Duplicate experiments gave similar results.

All animals were maintained in filter top micro isolator cages and provided with sterile water and food under conditions complying with National Institute of Health (NIH) regulations. All manipulations of experimental animals were conducted in a laminar flow hood using strictly controlled procedures adhering to the UKCCCR Guidelines for the Welfare of Animals in Experimental Neoplasia to minimise stress or suffering (UKCCCR, 1998).

In vitro migration assay

Migration of B16–F10 cells through polycarbonate filters was assayed using 48 well chemotaxis chambers (modified Boyden chamber, Neuro Probe, MD, USA) as described previously (Kuratomi et al, 1999). The lower wells of the chamber were loaded with DMEM containing 0.1% bovine serum albumin (BSA; Sigma) (DMEM/BSA) and 100 μg ml⁻¹ of peptide. Versene-detached B16–F10 cells (500000 cells per 50 μl in DMEM/BSA) were placed in the upper wells. After a 5 h incubation, cells on the lower surface of the filter were stained with Diff-Quik (Baxter, IL, USA), and counted under a microscope. Each peptide was tested in triplicate and each experiment was repeated at least twice.

Zymography

B16–F10 cells (2500000 cells) were plated onto 150 mm dishes with complete media. After 24 h, the media were replaced with serum-free DMEM containing various concentrations of peptides. The conditioned media were collected after a 16 h incubation at 37°C in 5% CO₂ and concentrated 50 times by using Centriprep 10 (Amicon). Equal aliquots of the conditioned media (20 μl per lane) were electrophoresed on 10% polyacrylamide gels containing 0.2% gelatin. The gels were washed with 10 mM Tris-HCl (pH 7.4) containing 2.5% Triton-X for 30 min, followed by two changes of 10 mM Tris-HCl (pH 7.4) for 30 min. After an overnight incubation in 50 mM Tris-HCl (pH 8.0) containing 5 mM CaCl₂ and 1 mM ZnCl₂ at room temperature, Coomassie blue was added to visualise the digested gelatin bands.

RESULTS

Effect of cell adhesive laminin β1 and γ1 chain peptides on experimental pulmonary metastasis of B16–F10 mouse melanoma cells

Nine peptides active for cell adhesion from the mouse laminin β1 chain (Nomizu et al, 2000) and seven peptides from the γ1 chain (Nomizu et al, 1997) were tested for their effects on in vivo experimental pulmonary metastases of B16–F10 mouse melanoma cells (Table 1). In control experiments (without peptides), the average of 163 metastatic colonies was formed on the surface of the lung within 16 days after B16–F10 cells were injected into the mouse tail vein (Table 2). Peptide C-16 (KAFDITYVRFLK) from the N-terminal globular domain of the γ1 chain significantly enhanced the number of B16–F10 lung colonies (average of 482 colonies, Table 2 and Figure 1). No other peptides showed stimulation or inhibition of pulmonary metastases of B16–F10 cells (data not shown). A scrambled peptide of C-16, C-16T (FYAFKKTILVRD), slightly increased the number of B16–F10 lung colonies (average of 234 colonies with range from 90 to 345), but the difference was not significant (Table 2, Figure 1). These results suggested a sequence-specific enhancement of in vivo pulmonary metastases of B16–F10 cells by C-16.

In vitro cell migration

In order to study the mechanism of the enhancement of B16–F10 lung colonisation by C-16, we examined the activities of these 16 cell adhesive peptides for cell migration. Among the 16 cell adhesive peptides, 8 peptides (B-32, 34, 62, 133, 160; C-16, 64, 68) stimulated migration of B16–F10 cells, with C-16 having the strongest effect. To identify the cell adhesive peptides in the migrating B16–F10 cells, zymography was performed on the conditioned media from these migrating cells. Zymography revealed that the control media containing 1% BSA (DMEM/BSA) contained a band corresponding to a 100 kDa gelatinase. However, a band corresponding to a 72 kDa gelatinase was also found in the conditioned media from migrating cells. In order to identify the 72 kDa gelatinase, peptide mapping was performed on the gels. The gelatinase from the conditioned media of migrating cells was digested with trypsin at room temperature and the digested gelatin band was removed from the gel and stained with Coomassie blue. The protein was extracted from the gel, and digested with trypsin at 37°C. The resulting peptides were identified by reverse-phase liquid chromatography and mass spectrometry. The resulting sequences were compared with the known sequences of the laminin γ1 chain. The results showed that the 72 kDa gelatinase was a product of a 72 kDa gelatinase.

Table 1: Cell adhesive laminin β1 and γ1 chain peptides used in this study

Peptides	Sequences	Residues
β1 chain		
B-20	HLMITKTRTPA	114–125
B-30	RQNLXLKTINLR	202–213
B-31	TNLRKFKVKLHT	210–221
B-32	KLHTGDLINLDS	218–229
B-34	REKYYAVMYDVM	234–245
B-54	KRLVGQR	461–468
B-62	GPGWVVEROY1	544–555
B-133	DSITYQMQSL	1298–1309
B-160	VILQSSAADIAR	1538–1549
γ1 chain		
C-16	KAFDITYVRFLK	139–150
C-28	TDWRITLRLNTF	245–257
C-35	UPRFNDPRVRAT	318–330
C-57	APVKGFLNGQVLSY	559–571
C-59	SFSDRVDDRDR	576–587
C-64	SETTVKYIFRLHE	615–627
C-68	TSIRGRTYSTER	650–661

Cell adhesive peptides were identified by systematic screening of overlapping peptides covering the entire mouse laminin β1 (Nomizu et al, 2000) and γ1 chains (Nomizu et al, 1997).
strongest enhancement activity (Figure 2). The migration – stimulatory activity of C-16 seemed to be comparable to that of peptide A-13 from the \(\alpha_1 \) chain which previously was shown to be highly active (Nomizu et al., 1998; Kuratomi et al., 1999). A control scrambled peptide, C-16T, showed no stimulatory activity of B16 – F10 cell migration.

Gelatin zymography

Because matrix metalloproteinases (MMPs) have been implicated in the metastatic process of tumour cells, we measured MMP production from B16 – F10 cells in the gelatin zymography assays (Figure 3). C-16 enhanced the production of MMP-9 (92 kDa gelatinase) in a dose-dependent manner. With 20 \(\mu \)g ml\(^{-1} \) of C-16, MMP-9 production was increased by approximately eight-fold over that observed with the untreated control. MMP-2 production was not stimulated by C-16. No other cell adhesive peptides from the \(\beta_1 \) and \(\gamma_1 \) chains stimulated the production of MMPs (data not shown).

DISCUSSION

Laminin-1 has been shown to promote the metastatic activity of melanoma cells (Terranova et al., 1982, 1984). We previously reported that several peptide sequences including RQVFQVAYIII-KA (A-13), IKVAV, and LQVQLSIR (AG-73) from the laminin \(\alpha_1 \) chain have such activity (Kanemoto et al., 1990; Kim et al., 1998; Kuratomi et al., 1999). In this report, we identified a new site, C-16 (KAFDITYVRLKF), on the laminin \(\gamma_1 \) chain which promotes lung colonisation of B16 – F10 cells in an experimental pulmonary metastasis model in mice.

C-16 enhanced B16 – F10 colonization about three-fold compared with control. C-16 appears to be the only site on the \(\gamma_1 \) chain of laminin-1 active for lung colonisation and no site on the \(\beta_1 \) chain was found to have this activity. C-16-mediated metastasis promoting activity is comparable to that of A-13 and IKVAV. Since laminin-1 is a highly potent promoter of the malignant metastasis of tumour cells, we measured MMP production from B16 – F10 cells in the gelatin zymography assays (Figure 3). C-16 enhanced the production of MMP-9 (92 kDa gelatinase) in a dose-dependent manner. With 20 \(\mu \)g ml\(^{-1} \) of C-16, MMP-9 production was increased by approximately eight-fold over that observed with the untreated control. MMP-2 production was not stimulated by C-16. No other cell adhesive peptides from the \(\beta_1 \) and \(\gamma_1 \) chains stimulated the production of MMPs (data not shown).

DISCUSSION

Laminin-1 has been shown to promote the metastatic activity of melanoma cells (Terranova et al., 1982, 1984). We previously reported that several peptide sequences including RQVFQVAYIII-KA (A-13), IKVAV, and LQVQLSIR (AG-73) from the laminin \(\alpha_1 \) chain have such activity (Kanemoto et al., 1990; Kim et al., 1998; Kuratomi et al., 1999). In this report, we identified a new site, C-16 (KAFDITYVRLKF), on the laminin \(\gamma_1 \) chain which promotes lung colonisation of B16 – F10 cells in an experimental pulmonary metastasis model in mice.

C-16 enhanced B16 – F10 colonization about three-fold compared with control. C-16 appears to be the only site on the \(\gamma_1 \) chain of laminin-1 active for lung colonisation and no site on the \(\beta_1 \) chain was found to have this activity. C-16-mediated metastasis promoting activity is comparable to that of A-13 and IKVAV. Since laminin-1 is a highly potent promoter of the malignant
Metastasis-promoting sequence in laminin γ1

Y Kuratomi et al

phenotype, it is not surprising that multiple sites for metastases have been identified.

The mechanism by which A-13 and C-16 increase lung colonisation is not known. Cells must adhere, migrate, invade (protease activity), proliferate, and generate blood supply in order to form a growing metastatic lesion. A-13 and C-16 have been found to promote all of these activities except cell proliferation. The role of A-13 and C-16 in angiogenesis in the metastatic lesion has not been tested. We did not examine the vascularity of the lung lesions and it is unlikely that A-13 and C-16 persists in the circulation or tissue for very long after injection. These are small molecules which are cleared very rapidly from the circulation. We speculate that A-13 and C-16 may enhance lung metastases by increasing the invasion activity of the cells.

Laminin-1 stimulates cell migration (Kleinman et al, 1985) and laminin γ1 peptides with metastasis-promoting activity also have activity for the migration of B16–F10 cells (Kuratomi et al, 1999). We have shown here that five β1 peptides and three γ1 peptides stimulated migration of B16–F10 cells, with C-16 being most active and comparable to A-13. Thus, laminin-1 has multiple active sites for cell migration, which may function cooperatively.

Matrix metalloproteinases have been thought to be critical in tumour invasion and metastases as well as in angiogenesis (Liotta, 1986; Liotta et al, 1991; Kohn and Liotta, 1995). C-16 showed strong stimulation of MMP-9 production by B16–F10 cells. The IKVAV peptide from the laminin γ1 chain also induces MMP-1 and MMP-9 production from human monocyte/macrophage (Corcoran et al, 1995). AG-73 was also reported to stimulate MMP-9 activity of B16–F10 cells at the concentration of 50 μg ml⁻¹ (Kim et al, 1998). C-16 is more potent in inducing MMP-9 production than AG-73. C-16 stimulated MMP-9 production nearly eight-fold at a concentration of 2 μg ml⁻¹. This high activity of C-16 for MMP-9 production as well as for cell migration may explain its potent metastasis-promoting activity.

Recently, expression of the γ2 chain of laminin-5, an epithelial cell–specific laminin, was predominantly detected at the invasive front of cancer cells of the colon, pancreas, stomach and oesophagus (Pyke et al, 1995; Soini et al, 1996; Sordat et al, 1998; Koshikawa et al, 1999; Yamamoto et al, 2001). The laminin γ2 chain has been suggested to play a key role in the progression of human carcinomas. C-16 is located in the N-terminal globular domain of the laminin γ1 chain, and this domain is deleted in the γ2 chain. However, it is possible that the deleted N-terminal globular domain is co-expressed with laminin γ2 chain by the proteolytic cleavage of the γ2 chain and that the cleaved domain induces migration and metastases of tumour cells in human cancers. Indeed, Giannelli et al (1997) have reported that laminin-5 becomes active for promoting cell migration when cleaved by MMP-2. It is possible that these active fragments of laminin-1 promote cell migration when it is degraded similar to laminin-5.

Figure 3 Effect of C-16 on activation of gelatinases. The conditioned media of B16–F10 cells incubated without peptide (lane 1) or with 2 μg ml⁻¹ (lane 2), 5 μg ml⁻¹ (lane 3), 10 μg ml⁻¹ (lane 4), 20 μg ml⁻¹ (lane 5) of C-16, or 20 μg ml⁻¹ of C-16T (lane 6) were harvested and electrophoresed on 10% SDS gel containing 1% gelatin. C-16 stimulated the activity of MMP-9 (92-kDa gelatinase) in a dose-dependent manner, whereas C-16T showed no stimulation.

Figure 4 Novel metastasis-promoting peptides from the mouse laminin γ1. AG-73 (Kim et al, 1998) and A-13 (Kuratomi et al, 1999) were found to promote experimental pulmonary metastases of B16–F10 cells. Previously, IKVAV was found to promote lung colonisation (Kanemoto et al, 1990). All peptides show stimulation of B16–F10 cell adhesion and migration activities. C-16, AG-73, and IKVAV stimulate 92-kDa gelatinase (MMP-9) activity of B16–F10 cells.

REFERENCES

Barsky SH, Rao CN, Williams JE, Liotta LA (1984) Laminin molecular domains which alter metastasis in a murine model. J Clin Invest 74: 843–848

Corcoran ML, Kibbey MC, Kleinman HK, Wahl LM (1995) Laminin SIKVAV peptide induction of monocyte/macrophage prostaglandin E2 and matrix metalloproteinases. J Biol Chem 270: 10365–10368

British Journal of Cancer (2002) 86(7), 1169 – 1173

© 2002 Cancer Research UK
Metastasis-promoting sequence in laminin γ1
Y Kuratomi et al

Nomizu M, Kuratomi Y, Song S-Y, Ponce ML, Hoffman MP, Powell SK, Miyoshi K, Otaka A, Kleinman HK, Yamada Y (1997) Identification of cell binding sequences in mouse laminin γ1 chain by systematic peptide screening. J Biol Chem 272: 32198 – 32205

Nomizu M, Kuratomi Y, Malinda KM, Song S-Y, Miyoshi K, Otaka A, Powell SK, Hoffman MP, Kleinman HK, Yamada Y (1998) Cell binding sequences in laminin γ1 chain. J Biol Chem 273: 32491 – 32499

Nomizu M, Kuratomi Y, Ponce ML, Song S-Y, Miyoshi K, Otaka A, Powell SK, Hoffman MP, Kleinman HK, Yamada Y (2000) Cell adhesive sequences in mouse laminin β1 chain. Arch Biochem Biophys 378: 311 – 320

Ponce ML, Nomizu M, Delgado MC, Kuratomi Y, Hoffman MP, Powell SK, Yamada Y, Kleinman HK, Malinda KM (1999) Identification of endothelial cell type specific sites on laminin γ1 chain. Circ Res 84: 688 – 694

Ponce ML,Nomizu M, Kleinman HK (2001) An angiogenic laminin site and its antagonist bind through the vβ3 and vβ1 integrins. FASEB J 15: 1389 – 1397

Powell SK, Rao J, Roque E, Nomizu M, Kuratomi Y, Yamada Y, Kleinman HK (2000) Neural cell response to multiple novel sites on laminin-1. J Neurosci 26: 302 – 312

Pyke C, Salo S, Ralkiaer E, Romer J, Dano K, Tryggvason K (1995) Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55: 4132 – 4139

Sakamoto N, Iwahana M, Tanaka NG, Osada Y (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDP Gly-Arg-Leu-Ser-Lys-Leu. Cancer Res 51: 903 – 906

Soini Y, Maatta M, Salo S, Tryggvason K, Autoio-Harmainen H (1996) Expression of the laminin γ2 chain in pancreatic adenocarcinoma. J Pathol 180: 290 – 294

Sordat I, Bosman FT, Dorta G, Rouselle P, Aberdam D, Blum AL, Sordat B (1998) Differential expression of laminin-5 subunits and integrins receptors in human colorectal neoplasia. J Pathol 185: 44 – 52

Stack S, Gray RD, Pizzo SV (1991) Modulation of plasminogen activation and type IV collagenase activity by a synthetic peptide derived from the laminin A chain. Biochemistry 30: 2073 – 2077

Tashiro K, Sephel GC, Weeks B, Sasaki M, Martin GR, Kleinman HK, Yamada Y (1989) A synthetic peptide containing the IKVAV sequence from the laminin A chain. J Cell Biol 108: 516 – 522

Terranova VP, Liotta LA, Russo RG, Martin GR (1982) Role of laminin in the attachment and metastasis of murine tumor cells. Cancer Res 42: 2265 – 2269

Terranova VP, Williams JE, Liotta LA, Martin GR (1984) Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. J Cell Biol 104: 982 – 985

Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin – a glycoprotein from basement membranes. J Biol Chem 254: 9933 – 9937

Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180: 448 – 502

Turpeenniemi-Hujanen T, Thorgerisson UP, Rao CN, Liotta LA (1986) Laminin increases the release of type IV collagenase from malignant cells. J Biol Chem 261: 1883 – 1889

UKCCCR (1998) United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia 2nd edn. Br J Cancer 77: 1 – 10

Yamamoto H, Itoh F, Iku S, Hosokawa M, Imai K (2001) Expression of the γ2 chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Cited Cancer Res 71: 896 – 900

© 2002 Cancer Research UK British Journal of Cancer (2002) 86(7), 1169 – 1173