QUESTIONS AND ANSWERS — A CATEGORY ARISING IN LINEAR LOGIC, COMPLEXITY THEORY, AND SET THEORY

ANDREAS BASS

ABSTRACT. A category used by de Paiva to model linear logic also occurs in Vojtás's analysis of cardinal characteristics of the continuum. Its morphisms have been used in describing reductions between search problems in complexity theory. We describe this category and how it arises in these various contexts. We also show how these contexts suggest certain new multiplicative connectives for linear logic. Perhaps the most interesting of these is a sequential composition suggested by the set-theoretic application.

INTRODUCTION

The purpose of this paper is to discuss a category that has appeared explicitly in work of de Paiva [15] on linear logic and in work of Vojtás [21, 22] on cardinal characteristics of the continuum. We call this category \(P\mathcal{V} \) in honor of de Paiva and Vojtás (or, more informally, in honor of Peter and Valeria). The same category is implicit in a concept of many-one reduction of search problems in complexity theory [12, 19].

The objects of \(P\mathcal{V} \) are binary relations between sets; more precisely they are triples \(A = (A_-, A_+, A) \), where \(A_- \) and \(A_+ \) are sets and \(A \subseteq A_- \times A_+ \) is a binary relation between them. (We systematically use the notation of boldface capital letters for objects, the corresponding lightface letters for the relation components, and subscripts \(-\) and \(+\) for the two set components.) A morphism from \(A \) to \(B = (B_-, B_+, B) \) is a pair of functions \(f_- : B_- \rightarrow A_- \) and \(f_+ : A_+ \rightarrow B_+ \) such that, for all \(b \in B_- \) and all \(a \in A_+ \),

\[
A(f_-(b), a) \Rightarrow B(b, f_+(a)).
\]

(Note that the function with the minus subscript goes backward.) Composition of these morphisms is defined componentwise, with the order reversed on the minus components: \((f \circ g)_- = g_- \circ f_- \) and \((f \circ g)_+ = f_+ \circ g_+ \). This clearly defines a category \(P\mathcal{V} \).

The category \(P\mathcal{V} \) is the special case of de Paiva’s construction \(GC \) from [15] where \(C \) is the category of sets. It is also the dual of Vojtás’s category \(GT \) of generalized Galois-Tukey connections [21, 22].

Intuitively, we think of an object \(A \) of \(P\mathcal{V} \) as representing a problem (or a type of problem). The elements of \(A_- \) are instances of the problem, i.e., specific questions.

1991 Mathematics Subject Classification. 03G30 03F65 03E05 03E75 18B99 68Q25.

Partially supported by NSF grant DMS-9204276.
of this type; the elements of A_+ are possible answers; and the relation A represents correctness, i.e., $A(x, y)$ means that y is a correct answer to the question x.

There are strong but superficial similarities between \mathcal{PV} and a special case of a construction due to Chu and presented in the appendix of [1] and Section 3 of [2]. (Readers unfamiliar with the Chu construction can skip this paragraph, as it will not be mentioned later.) Specifically, Chu’s construction, applied to the cartesian closed category of sets and the object 2, yields a $*$-autonomous category in which the objects are the same as those of \mathcal{PV} and the morphisms differ from those of \mathcal{PV} only in that they are required to satisfy $A(f^{-}(b), a) \iff B(b, f^{+}(a))$ rather than just an implication from left to right. This apparently minor difference in the definition leads to major differences in other aspects of the category. Specifically, the internal hom-functor and the tensor product in Chu’s category are entirely different from those of \mathcal{PV}.

In the next few sections, we shall describe how \mathcal{PV} arose in various contexts. Thereafter, we indicate how ideas that arise naturally in these contexts suggest new constructions in linear logic.

Reductions of Search Problems

Much of the theory of computational complexity (e.g., [8]) deals with decision problems. Such a problem is specified by giving a set of instances together with a subset called the set of positive instances; the problem is to determine, given an arbitrary instance, whether it is positive. In a typical example, the instances might be graphs and the positive instances might be the 3-colorable graphs. In another example, instances might be boolean formulas and positive instances might be the satisfiable ones. A (many-one) reduction from one decision problem to another is a map sending instances of the former to instances of the latter in such a way that an instance of the former is positive if and only if its image is positive. Clearly, an algorithm computing such a reduction and an algorithm solving the latter decision problem can be combined to yield an algorithm solving the former.

There are situations in complexity theory where it is useful to consider not only decision problems but also search problems. A search problem is specified by giving a set of instances, a set of witnesses, and a binary relation between them; the problem is to find, given an instance, some witness related to it. For example, the 3-colorability decision problem mentioned above (given a graph, is it 3-colorable?) can be converted into the 3-coloring search problem (given a graph, find a 3-coloring). Here the instances are graphs, the witnesses are 3-valued functions on the vertices of graphs, and the binary relation relates each graph to its (proper) 3-colorings. Similarly, there is a search version of the boolean satisfiability problem, where instances are boolean formulas, witnesses are truth assignments, and the binary relation is the satisfaction relation. Notice that a search problem is just an object A of \mathcal{PV}, the set of instances being A_- and the set of witnesses A_+.

There is a reasonable analog of many-one reducibility in the context of search problems. A reduction of B to A should first convert every instance $b \in B_-$ of B to an instance $a \in A_-$ of A (just as for decision problems), and then, if a witness w related to a is given, it should allow us, using w and remembering the original instance b, to compute a witness related to b. Again, an algorithm computing such a reduction and an algorithm solving A can clearly be combined to yield an algorithm solving B. Most known many-one reductions between NP decision
problems [8] implicitly involve many-one reductions of the corresponding search
problems.
Formally, a *reduction* therefore consists of two functions, \(f_- : B_- \to A_- \) and
\(f_+ : A_+ \times B_- \to B_+ \) such that, for all \(b \in B_- \) and \(w \in A_+ \),
\[
A(f_-(b), w) \implies B(b, f_+(w, b)).
\]

This is nearly, but not quite, the definition of a morphism from \(A \) to \(B \). The
difference is that in a morphism \(f_+ \) would have only \(w \), not \(b \), as its argument.
Thus, morphisms amount to reductions where the final witness (for \(b \)) is computed
from a witness \(w \) for \(a = f_-(b) \) without remembering \(b \). This notion of reduction
has been used in the literature [12, 19], but I would not argue that it is as natural
as the version where one is allowed to remember \(b \).

These observations lead to a suggestion that we record for future reference.

Suggestion 1. Find a natural place in the theory of \(\mathcal{PV} \) for reductions as de-
scribed above, i.e., pairs of functions that are like morphisms except that \(f_+ \) takes
an additional argument from \(B_- \) and the implication relating \(f_- \) and \(f_+ \) is amended
accordingly.

A “dual” modification of the notion of morphism, allowing \(f_- \) to have an extra
argument in \(A_+ \), occurred in de Paiva’s work [14] on a categorial version of Gödel’s
Dialectica interpretation, work that preceded the introduction of \(\mathcal{PV} \) in [15].

Linear Logic

The search problems (objects of \(\mathcal{PV} \)) and reductions (morphisms of \(\mathcal{PV} \) or general-
ized morphisms as in Suggestion 1) described in the preceding section are vaguely
related to some of the intuitions that underlie Girard’s linear logic [9]. Girard has
written about linear logic as a logic of questions and answers (or actions and re-
actions) [9, 10], so it seems reasonable to try to model this idea in terms of \(\mathcal{PV} \).
Also, the fact that in a many-one reduction of \(B \) to \(A \) a witness for \(B \) is produced
from exactly one witness for \(A \) is reminiscent of the central idea of linear logic that
a conclusion is obtained by using each hypothesis exactly once. In this section,
we attempt to make these vague intuitions precise. Our goal here is to develop
de Paiva’s interpretation of linear logic (at least the multiplicative and additive
parts; the exponentials will be discussed briefly later) in a step by step fashion that
emphasizes the naturality or necessity of the definitions used.

We intend to use objects of \(\mathcal{PV} \) as the interpretations of the formulas of linear
logic. This corresponds to Girard’s intuition that for any formula \(A \) there are
questions and answers of type \(A \). Of course, in addition to questions and answers,
objects of \(\mathcal{PV} \) also have a correctness relation between them. It is reasonable to
expect that one formula linearly implies another, in a particular interpretation, if
and only if there is a morphism in \(\mathcal{PV} \) from (the object interpreting) the former to
(the object interpreting) the latter; we shall see this more precisely later.

To produce an interpretation of linear logic, we must tell how to interpret the
connectives, and we must define what it means for a sequent to be true in an
interpretation.

Perhaps the easiest part of this task is to interpret the additive connectives, \&
and \oplus. It seems to be universally accepted [17] that a reasonable categorial model
for \& is provided by the cartesian product of objects. Thus, we can define:

\[
A \& B = A \times B,
\]

and

\[
A \oplus B = (A \times B_+) \cup (B \times A_-).
\]

For \oplus, we define:

\[
A \oplus B = (A \times B_+) \cup (B \times A_-).
\]

These definitions are motivated by the idea that \& and \oplus should correspond to
the logical operations of conjunction and disjunction, respectively. The cartesian
cartesian product \(A \times B \) corresponds to the set of pairs \((a, b)\) where \(a \in A \) and
\(b \in B \), and hence captures the idea of a product of \(A \) and \(B \). Similarly, the union
\((A \times B_+) \cup (B \times A_-) \) corresponds to the set of pairs where either \(a \in A \) or
\(b \in B \), and hence captures the idea of a disjunction of \(A \) and \(B \).
of linear logic will interpret these as the product and coproduct of the category. Fortunately, \(\mathcal{PV} \) has products and coproducts, so we adopt these as the interpretations of the additive connectives. The result is that “with” is interpreted as

\[
(A_-, A_+, A) \& (B_-, B_+, B) = (A_- + B_-, A_+ \times B_+, W),
\]

where

\[
W(x, (a, b)) \iff \begin{cases}
 A(x, a), & \text{if } x \in A_- \\
 B(x, b), & \text{if } x \in B_-
\end{cases}
\]

“plus” is interpreted as

\[
(A_-, A_+, A) \oplus (B_-, B_+, B) = (A_- \times B_-, A_+ + B_+, V)
\]

where

\[
V((a, b), x) \iff \begin{cases}
 A(a, x), & \text{if } x \in A_+ \\
 B(b, x), & \text{if } x \in B_+
\end{cases}
\]

and the additive units are

\[
\top = (\emptyset, 1, \emptyset) \quad \text{and} \quad 0 = (1, \emptyset, \emptyset),
\]

where 1 represents any one-element set.

These definitions correspond reasonably well to the intuitive meanings of the additive connectives in terms of questions and answers or in terms of Girard’s “action” description of linear logic [10]. To answer a disjunction \(A \oplus B \) is to provide an answer to one of \(A \) and \(B \); correctness means that, confronted with questions of both types, we answer one of them correctly (in the sense of \(A \) or \(B \)). To answer a conjunction \(A \& B \) we must give answers for both, but we are confronted with a question of only one type and only our answer to that one needs to be correct. The intuitive discussion of conjunction, in particular the fact that we must give answers of both types even though only one will be relevant to the question, might make better sense if we think of the answer as being given before the question is known. This is a rather strange way of running a dialogue, but it will arise again later in other contexts (and I’ve seen examples of it in real life).

There is also a natural interpretation of linear negation, since (cf. [9, 10]) questions of type \(A \) are answers of type the negation \(A^\perp \) of \(A \) and vice versa. We define

\[
(A_-, A_+, A)^\perp = (A_+, A_-, A^\perp),
\]

where

\[
A^\perp(x, y) \iff \neg A(y, x).
\]

So linear negation interchanges questions with answers and replaces the correctness relation by the complement of its converse. Perhaps a few words should be said about the use of the complement of the converse rather than just the converse. There are several reasons for this, perhaps the most intuitive being that we are, after all, defining a sort of negation. Another way to look at it is to think of a contest between a questioner and an answerer, where success for the questioner is defined to mean failure for the answerer (cf. the discussion of challengers and solvers in [11]). “That’s a good question” often means that I have no good answer.
For another indication that the given definition of \bot is appropriate, see the section on set-theoretic applications below.

Mathematically, the strongest reason for defining \bot as we did is that it gives a contravariant involution of the category $\mathcal{P}V$. That is, the operation \bot on objects and the operation on morphisms defined by $(f_-, f_+)^\bot = (f_+, f_-)$ constitute a contravariant functor from $\mathcal{P}V$ to itself, whose square is the identity. This corresponds to the equivalences in linear logic between $A \vdash B$ and $B \bot \vdash A \bot$ and between $A \bot \bot$ and A.

We turn now to a more delicate matter, the interpretation of the multiplicative connectives. We begin with “times.” Girard’s intuitive explanation of the difference between the multiplicative conjunction \otimes and the additive conjunction $\&$ in [10] is that the former represents an ability to perform both actions while the latter represents an ability to do either one of the two actions (chosen externally). Looking back at the interpretation of $\&$, we would expect to modify it by allowing questions of both sorts, rather than just one, and requiring both components of the answer to be correct. This operation on objects of $\mathcal{P}V$ is quite natural, and occurs in both [15] and [21]. De Paiva uses the notation \otimes for it, although it is not the interpretation of Girard’s connective \otimes in her interpretation of linear logic. Vojtěš uses the notation \times even though it is not the product in the category. We shall use the notation \otimes and regard it as a sort of provisional tensor product. Formally, we define

$$(A_-, A_+, A) \otimes (B_-, B_+, B) = (A_- \times B_-, A_+ \times B_+, A \times B),$$

where the relation $A \times B$ is defined by

$$(A \times B)((x, y), (a, b)) \iff A(x, a) \text{ and } B(y, b).$$

Of course, since we have already interpreted negation, our provisional \otimes gives rise to a dual connective, the provisional “par”:

$$(A_-, A_+, A) \overline{\otimes} (B_-, B_+, B) = (A_- \times B_-, A_+ \times B_+, P)$$

where

$$P((x, y), (a, b)) \iff A(x, a) \text{ or } B(y, b).$$

To see why these interpretations of the multiplicative connectives are only provisional and must be modified, we turn to the question of soundness of the interpretation. This requires, of course, that we define what is meant by a sequent being valid, which presumably depends on a notion of sequents being true in particular interpretations, i.e., with particular objects as values of the atomic formulas. For simplicity, we work with one-sided sequents, as in [9]. So a sequent is a finite list (or multi-set) of formulas, each interpreted as an object of $\mathcal{P}V$. Since a sequent is deductively equivalent in linear logic with the par of its members, we interpret the sequent as the (provisional) par of its members, i.e., as a certain object of $\mathcal{P}V$. So we must specify what we mean by truth of an object of $\mathcal{P}V$, and then we must try to verify the soundness of the axioms and rules of linear logic.

There are two plausible interpretations of truth of an object $A = (A_-, A_+, A)$, both saying intuitively that one can answer all the questions of type A. The difference between the two is in whether the answer can depend on the question.
The first (provisional) interpretation of truth allows the answer to depend on the question, as one would probably expect intuitively.

\[\models_1 (A_-, A_+, A) \iff \forall x \in A_- \exists y \in A_+ A(x, y). \]

The second, stronger (provisional) interpretation is that one answer must uniformly answer all questions correctly.

\[\models_2 (A_-, A_+, A) \iff \exists y \in A_+ \forall x \in A_- A(x, y). \]

Before dismissing the second interpretation as unreasonably strong, one should note that the two interpretations are dual to each other in the sense that \(A \) is true in either sense if and only if its negation \(A^\perp \) is not true in the other sense. Furthermore, the second definition fits better with the idea that truth of a sequent \(A \vdash B \) should mean the existence of a morphism from \(A \) to \(B \). If we specialize to the case where \(A \) is the multiplicative unit 1, so that the sequent \(A \vdash B \) becomes deductively equivalent (in linear logic) with \(\top B \), and if we note that the unit for our provisional \(\otimes \) is \((1, 1, \text{true}) \), then we see that truth of \(B \) should be equivalent to existence of a morphism from \((1, 1, \text{true}) \) to \(B \). It is easily checked that existence of such a morphism is precisely the second definition of truth above.

Finally, as we shall see in a moment, each definition has its own advantages and disadvantages when one tries to prove the soundness of linear logic, and eventually we shall need to adopt a compromise between them. The remark above about the relationship between \(\models_1, \models_2 \) and negation suggests that either version of \(\models \), used alone, might have difficulties with the axioms \(\vdash A, A^\perp \) (which say that linear negation is no stronger than it should be) or the cut rule (which says that linear negation is no weaker than it should be). Let us consider what happens if one tries to establish the soundness of the axioms and cut for either version of \(\models \).

For the axioms, we wish to show that \(A \not\exists A^\perp \) is true for each object \(A \) of \(\mathcal{PV} \). In \(A \not\exists A^\perp \), the questions are pairs \((x, y) \) where \(x \in A_- \) and \(y \in (A^\perp)_- = A_+ \), and the answers are pairs \((a, b) \) where \(a \in A_+ \) and \(b \in (A^\perp)_+ = A_- \). The answer \((a, b) \) is correct for the question \((x, y) \) if and only if either \(A(x, a) \) or \(\neg A(b, y) \) (the latter being the definition of \(A^\perp(y, b) \)). Obviously, any question \((x, y) \) is correctly answered by \((y, x) \). So \(\models_1 A \not\exists A^\perp \). On the other hand, we do not in general have \(\models_2 A \not\exists A^\perp \), since an easy calculation shows that this would mean that in \(A \) either some answer is correct for all questions or some question has no correct answer. There are, of course, easy examples of \(A \) where this fails; the simplest is to take \(A_- = A_+ = \emptyset \), and if one insists on non-empty sets then the simplest is \(A_- = A_+ = \{1, 2\} \) with \(A \) being the relation of equality. So, for the soundness of the axioms, \(\models_1 \) works properly, but \(\models_2 \) does not.

Now consider the cut rule. We wish to show that, if \(B \not\exists A \) and \(C \not\exists A^\perp \) are true, then so is \(B \not\exists C \). If we interpret truth as \(\models_2 \), then this is easy. Suppose \((b, x) \) correctly answers all questions in \(B \not\exists A \) and \((c, y) \) correctly answers all questions in \(C \not\exists A^\perp \); we claim that \((b, c) \) correctly answers all questions \((p, q) \) in \(B \not\exists C \). Indeed, if \((p, q) \) were a counterexample, then \(b \) is not correct for \(p \) and \(c \) is not correct for \(q \), yet \((b, x) \) is correct for \((p, y) \) and \((c, y) \) is correct for \((q, y) \) (where the four occurrences of “correct” refer to \(B, C, B \not\exists A, \) and \(C \not\exists A^\perp \), respectively). But then we must have, by definition of \(\not\exists \), that \(c \) correctly answers \(y \) in \(A \) and that \(c \)
correctly answers x in A^\perp. That is impossible, by definition of \perp, so the cut rule preserves $|=2$. Unfortunately, it fails to preserve $|=1$. The easiest counterexamples occur when both B and C have questions with no correct answers (but B_\perp and C_\perp are non-empty). Then $B\not\not\not A$ is not true, so the soundness of the cut rule would require that at least one of $B\not\not\not A$ and $C\not\not\not A^\perp$ also fail to be true. That means that either A or its negation must have a question with no correct answer, i.e., in A either some answer is correct for all questions or some question has no correct answer. Since that is not the case in general, we conclude that the cut rule is unsound for $|=1$.

Summarizing the preceding discussion, we have

1. If we define truth allowing answers to depend on questions ($|=1$), then the axioms of linear logic are sound but the cut rule is not.
2. If we define truth requiring the answer to be independent of the question ($|=2$), then the cut rule is sound but the axioms are not.

Fortunately, there is a way out of this dilemma. Consider the dependence of answers on questions that was needed to obtain the soundness of the axioms. At first sight, it is an extremely strong dependence; indeed, the answer (y, x) is, except for the order of components, identical to the question (x, y). But the dependence is special in that each component of the answer depends only on the other component of the question.

Rather surprisingly, this sort of cross-dependence also makes the cut rule sound. To see this, suppose that both $B\not\not\not A$ and $C\not\not\not A^\perp$ are true in this new sense. That is, there are functions $f : B_\perp \to A_+ \land g : A_\perp \to B_+$ such that, for all $b \in B_\perp$ and $x \in A_-$,

1. $B(b, g(x))$ or $A(x, f(b))$,

and similarly there are $f' : C_\perp \to (A^\perp)_+ = A_-$ and $g' : (A^\perp)_- = A_+ \to C_+$ such that, for all $c \in C_-$ and all $y \in A_+$,

2. $C(c, g'(y))$ or $\neg A(f'(c), y)$.

Then we claim that $g' \circ f : B_\perp \to C_+$ and $g \circ f' : C_\perp \to B_+$ satisfy, for all $b \in B_\perp$ and $c \in C_-$,

$$B(b, g(f'(c))) \quad \text{or} \quad C(c, g'(f(b))),$$

which means that $B\not\not\not C$ is true in the “cross-dependence” sense. To verify the claim, let such b and c be given. If $A(f'(c), f(b))$, then (2) implies $C(c, g'(f(b)))$. If $\neg A(f'(c), f(b))$, then (1) implies $B(b, g(f'(c)))$. So the claim is true in either case, and we have verified the soundness of the cut rule.

By allowing the answer in one component of a sequent to depend on the questions in the other components but not in the same component, this “cross-dependence” notion of truth makes crucial use of the commas in a sequent, to distinguish the components. But linear logic requires (by the introduction rules for times and especially for par) that the commas in a sequent behave exactly like the connective $\not\not\not$. So it seems necessary to build cross-dependence into the interpretation of this connective. This will lead to the correct definition of the multiplicative connectives, replacing the provisional interpretations given earlier.
We define the par operation on objects of \mathcal{PV} by

$$(A_-, A_+, A) \otimes (B_-, B_+, B) = (A_+ \times B_-, A_-^+ \times B_+^A, P),$$

where

$$P((x, y), (f, g)) \iff A(x, f(y)) \text{ or } B(y, g(x)).$$

This operation \otimes is the object part of a functor, the action on morphisms being $(f \otimes g)_- = f_- \times g_-$ and $(f \otimes g)_+ = f_+^+ \times g_+^+$. It is easy to check that \otimes is associative (up to natural isomorphism). In the par of several objects, questions are tuples consisting of one question from each of the objects, and answers are tuples of functions, each producing an answer in one component when given as inputs questions in all the other components.

We also interpret commas in sequents as the new \emptyset (rather than \otimes). This change in the interpretation of the commas makes \models_2 behave like the cross-dependence notion of truth described earlier. To see this, note that \models_2 requires the existence of a single answer correct for all questions at once, but the new \otimes allows that answer to consist of functions whereby each component of the answer can depend on the other components of the question. We therefore adopt \models_2 as the (non-provisional) definition of truth, and from now on we write it simply as \models. The previous discussion shows that the axioms and the cut rule are sound. We sometimes refer to an answer that is correct for all questions in an object A as a solution of the problem A. So truth means having a solution.

Of course, the new interpretation of par gives, by duality, a new interpretation of times.

$$(A_-, A_+, A) \otimes (B_-, B_+, B) = (A_-^+ \times B_+^A, A_+ \times B_+, T),$$

where

$$T((f, g), (x, y)) \iff A(f(y), x) \text{ and } B(g(x), y).$$

(This connective was called \otimes in [15].) The units for the multiplicative connectives are $1 = (1, 1, \text{true})$ and $\bot = (1, 1, \text{false})$, where true and false represent the obvious relations on a singleton. The linear implication $A \rightarrow B$ defined as $A^\perp \emptyset B$ is

$$(A_-, A_+, A) \rightarrow (B_-, B_+, B) = (A_+ \times B_-, A_-^+ \times B_+^A, C),$$

where

$$C((x, y), (f, g)) \iff [A(f(y), x) \Rightarrow B(g(x))].$$

Notice that a solution of $A \rightarrow B$ is precisely a morphism $A \rightarrow B$ in \mathcal{PV}. This indicates that the definitions of the multiplicative connectives and of truth, though not immediately intuitive, are proper in the context of the category \mathcal{PV}.

The belief that these definitions are reasonable is reinforced by de Paiva’s theorem [15] that the multiplicative and additive fragment of linear logic is sound for this interpretation. (Her theorem actually covers full linear logic, including the exponentials, but we have not yet discussed the interpretation of the exponentials.)

Linear logic validates the mix rule: If A and B are both true, then so is $A \emptyset B$. Also, the interpretation satisfies all formulas of the form $A^\perp \emptyset (A \emptyset A)$, a special case of
while using linear logic, rather unintuitive. This is attested by the fact that de Paiva [15], while using \otimes to interpret the multiplicative conjunction, calls it \otimes and reserves the symbol \otimes for the more intuitive construction that I called \otimes. Vojtáš [21] also discusses \otimes, calling it \times, but never has any use for \otimes. Since \otimes seems much more natural than the "correct" \otimes, it should have its own place in the logic.

Suggestion 2. Find a natural place in the theory of \mathcal{PV} for the operation \otimes.

Cardinal Characteristics of the Continuum

We begin this section by introducing a few (just enough to serve as examples later) of the many cardinal characteristics of the continuum that have been studied by set-theorists, topologists, and others. For more information about these and other characteristics, see [18] and the references cited there. All the cardinal characteristics considered here (and almost all the others) are uncountable cardinals smaller than or equal to the cardinality $\mathfrak{c} = 2^{\aleph_0}$ of the continuum. So they are of little interest if the continuum hypothesis ($\mathfrak{c} = \aleph_1$) holds, but in the absence of the continuum hypothesis there are many interesting connections, usually in the form of inequalities, between various characteristics. (There are also independence results showing that certain inequalities are not provable from the usual ZFC axioms of set theory.) Part of the work of Vojtáš [21, 22] on which this section is based can be viewed as a way to extract from the inequality proofs information which is of interest even if the continuum hypothesis holds.

Definitions. If X and Y are subsets of \mathbb{N}, we say that X splits Y if both $Y \cap X$ and $Y - X$ are infinite. The splitting number s is the smallest cardinality of any family S of subsets of \mathbb{N} such that every infinite subset of \mathbb{N} is split by some element of S. The refining number (also called the unsplitting or reaping number) r is the smallest cardinality of any family \mathcal{R} of infinite subsets of \mathbb{N} such that no single set splits all the sets in \mathcal{R}. r_σ is the smallest cardinality of any family \mathcal{R} of infinite subsets of \mathbb{N} such that, for any countably many subsets S_k of \mathbb{N}, some set in \mathcal{R} is not split by any S_k.

These cardinals arise naturally in analysis, for example in connection with the Bolzano-Weierstrass theorem, which asserts that a bounded sequence of real numbers has a convergent subsequence. A straightforward diagonal argument extends this to show that, for any countably many bounded sequences of real numbers $x_k = (x_{kn})_{n \in \mathbb{N}}$, there is a single infinite $A \subseteq \mathbb{N}$ such that the subsequences indexed by A, $(x_{kn})_{n \in A}$, all converge. If one tries to extend this to uncountably many sequences, then the first cardinal for which the analogous result fails is s. Also, r_σ is the smallest cardinality of any family \mathcal{R} of infinite subsets of \mathbb{N} such that, for every bounded sequence $(x_n)_{n \in \mathbb{N}}$, there is a convergent subsequence $(x_n)_{n \in A}$ with $A \in \mathcal{R}$. There is an analogous description of r, where the sequences $(x_n)_{n \in \mathbb{N}}$ are required to have only finitely many distinct terms. For more information about these aspects of the cardinal characteristics, see [20].

Definitions. A function $f : \mathbb{N} \to \mathbb{N}$ dominates another such function g if, for all but finitely many $n \in \mathbb{N}$, $f(n) > g(n)$. The dominating number d is the smallest such that every function $\mathbb{N} \to \mathbb{N}$ is dominated by a function whose graph Γ is of cardinality d. In other words, d is the smallest cardinality of any family \mathcal{G} of pairs of functions $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that for every function $f : \mathbb{N} \to \mathbb{N}$, there is some $(g, h) \in \mathcal{G}$ such that $f(n) < g(n)$ for all but finitely many n. As a result, d is the smallest cardinality of any family of functions \mathcal{F} such that, for every function $f : \mathbb{N} \to \mathbb{N}$, there is some $g \in \mathcal{F}$ such that $f(n) < g(n)$ for all but finitely many n. The family of all these functions is called \mathcal{F}_d, and the dominating number d is the smallest cardinality of any family $\mathcal{F} \subseteq \mathcal{F}_d$ such that, for every function $f : \mathbb{N} \to \mathbb{N}$, there is some $g \in \mathcal{F}$ such that $f(n) < g(n)$ for all but finitely many n. The dominating number d is the smallest cardinality of any family $\mathcal{F} \subseteq \mathcal{F}_d$ such that, for every function $f : \mathbb{N} \to \mathbb{N}$, there is some $g \in \mathcal{F}$ such that $f(n) < g(n)$ for all but finitely many n. The dominating number d is the smallest cardinality of any family $\mathcal{F} \subseteq \mathcal{F}_d$ such that, for every function $f : \mathbb{N} \to \mathbb{N}$, there is some $g \in \mathcal{F}$ such that $f(n) < g(n)$ for all but finitely many n.
cardinality of any family $\mathcal{D} \subseteq \mathbb{N}^\mathbb{N}$ such that every $g \in \mathbb{N}^\mathbb{N}$ is dominated by some $f \in \mathcal{D}$. The bounding number b is the smallest cardinality of any family $\mathcal{B} \subseteq \mathbb{N}^\mathbb{N}$ such that no single g dominates all the members of \mathcal{B}.

The known inequalities between these cardinals (and \aleph_1 and $c = 2^{\aleph_0}$) are

$$\aleph_1 \leq s \leq d \leq c,$$

and

$$\aleph_1 \leq b \leq r \leq r_\sigma \leq c,$$

It is known that any further inequalities between these cardinals are independent of ZFC, except that it is still an open problem whether $r = r_\sigma$ is provable.

The connection between the theory of these cardinals and the category \mathcal{PV} discussed in previous sections becomes visible when one considers the proofs of some of these inequalities, so we shall prove the two non-trivial (but well known) ones, discussed in previous sections becomes visible when one considers the proofs of some of these inequalities, so we shall prove the two non-trivial (but well known) ones, namely that (α, β)periment with the image of this under \perp, namely that (α, β) is a morphism from $(\mathcal{P}(\mathbb{N}), \mathcal{P}_\infty(\mathbb{N}))$ to $(\mathcal{PV}(\mathbb{N}), \mathcal{P}(\mathbb{N}))$. In both cases, the cardinal inequality follows from the following general fact. Define for each object A of \mathcal{PV} the norm $\|A\|$ as the smallest cardinality of any set $X \subseteq A_+$ of answers sufficient to contain at least one correct answer for every question in A_- (undefined if there is no such set, i.e., if some question has no correct answer, i.e., if A_+ is true). Then the existence of a morphism $f : A \rightarrow B$ implies that $\|A\| \geq \|B\|$, because f_* sends any set of the sort required in the definition of $\|A\|$ to one as

Proof of $s \leq d$. There is a map $\alpha : \mathbb{N}^\mathbb{N} \rightarrow \mathcal{P}(\mathbb{N})$ sending every dominating family \mathcal{D} (as in the definition of d) to a splitting family (as in the definition of s). In fact, one can associate to each infinite $X \subseteq \mathbb{N}$ a function $\beta(X) = f \in \mathbb{N}^\mathbb{N}$ such that, if g dominates f, then $\alpha(g)$ splits X.

Given g, to define $\alpha(g)$, partition \mathbb{N} into a sequence of intervals $[0, a_1], [a_1, a_2], \ldots$ such that, for each $n \in \mathbb{N}$, $g(n)$ is at most one interval beyond n (it’s trivial to define such a_i’s by induction), and let $\alpha(g)$ be the union of the even-numbered intervals. Define $\beta(X)$ to send each $n \in \mathbb{N}$ to the next element of X greater than n. If $f = \beta(X)$, if g dominates f, and a_i’s are as in the definition of $\alpha(g)$, and if k is large enough, then the element $f(a_k - 1)$ of X lies in the interval $[a_k, a_{k+1})$. So X meets all but finitely many of the intervals $[a_k, a_{k+1})$ and is therefore split by $\alpha(g)$.

Proof of $b \leq r$. There is a function $\beta : \mathcal{P}_\infty(\mathbb{N}) \rightarrow \mathbb{N}^\mathbb{N}$ sending every unsplittable family \mathcal{R} (as in the definition of r) to an undominated family (as in the definition of b). In fact, one can associate to each $g \in \mathbb{N}^\mathbb{N}$ a set $\alpha(g) = Y \in \mathcal{P}(\mathbb{N})$ such that, if Y does not split X then g does not dominate $\beta(X)$.

The same α and β as in the preceding proof will work, as the properties required of them here are logically equivalent to the properties required there.

In the notation of the preceding sections, the pair (β, α) in the first of these proofs is a morphism in \mathcal{PV} from $(\mathbb{N}^\mathbb{N}, \mathcal{P}_\infty(\mathbb{N}))$ to $(\mathbb{N}^\mathbb{N}, \mathcal{P}(\mathbb{N}))$, is split by). In the second proof, we used the image of this under \perp, namely that (α, β) is a morphism from $(\mathcal{P}(\mathbb{N}), \mathcal{P}_\infty(\mathbb{N}))$ to $(\mathcal{PV}(\mathbb{N}), \mathcal{P}(\mathbb{N}))$. In both cases, the cardinal inequality follows from the following general fact. Define for each object A of \mathcal{PV} the norm $\|A\|$ as the smallest cardinality of any set $X \subseteq A_+$ of answers sufficient to contain at least one correct answer for every question in A_- (undefined if there is no such set, i.e., if some question has no correct answer, i.e., if A_+ is true). Then the existence of a morphism $f : A \rightarrow B$ implies that $\|A\| \geq \|B\|$, because f_* sends any set of the sort required in the definition of $\|A\|$ to one as
required for $\| B \|$.

What I called the norm of A is, in Vojtás's notation [21, 22]
\(\vartheta(A) \); Vojtás's $\varbeta(A)$ is $\| A^\perp \|$.

It is an empirical fact that proofs of inequalities between cardinal characteristics of the continuum usually proceed by representing the characteristics as norms of objects in $\mathcal{P}V$ and then exhibiting explicit morphisms between those objects. This fact is explicit in Vojtás's [21, 22] and implicit in [7]. It applies even to trivial inequalities like $\varbeta \leq \vartheta$ (where the required morphism from $(\mathbb{N}^\mathbb{N}, \mathbb{N}^\mathbb{N})$, is dominated by) to $(\mathbb{N}^\mathbb{N}, \mathbb{N}^\mathbb{N})$, does not dominate) consists of identity maps on both components) as well as to inequalities much deeper than the examples proved above; see for example the presentation in [7] of Bartoszyński's theorem [3] that the smallest number of meager sets whose union is not meager is at least as large as the corresponding number for “measure zero” in place of “meager.”

It is tempting to regard the existence of a morphism $A \rightarrow B$ as a strong formulation of the inequality $\| A \| \geq \| B \|$ that is significant even in the presence of the continuum hypothesis (which makes inequalities between cardinal characteristics trivial as these cardinals lie between \aleph_1 and \mathfrak{c} inclusive). The situation is, however, not quite so simple. My student, Olga Yiparaki, has shown that, in the presence of the continuum hypothesis (or certain weaker assumptions), there are morphisms in $\mathcal{P}V$ in both directions between any two objects that correspond (as in [21, 22]) to cardinal characteristics of the continuum. Those morphisms, however, are highly non-constructive, whereas those used in the usual proofs of cardinal inequalities are quite explicit. It therefore seems likely that a strengthening of these cardinal inequalities that retains its significance in the presence of the continuum hypothesis is to require not merely the existence of morphisms but the existence of “nice” morphisms, say ones whose components are Borel mappings.

The linear negation defined on $\mathcal{P}V$ gives a precise version of an intuitive “duality” in the theory of cardinal characteristics. In that theory, one often refers to the cardinals $\| A \|$ and $\| A^\perp \|$ as being dual to each other; see for example the introduction to [13]. On cardinals, this is not well defined, for two objects can have the same norm while their negations have different norms, but it is the shadow, in the world of cardinals, of the (well defined) linear negation in $\mathcal{P}V$. It may be worth noting in this connection that $(\mathcal{P}(\mathbb{N}), \mathcal{P}_\infty(\mathbb{N}))$, does not split), whose norm is r, and $(\mathcal{P}(\mathbb{N})^\mathbb{N}, \mathcal{P}_\infty(\mathbb{N}),$ has no component that splits), whose norm is r_σ, have negations both of norm s.

In addition to inequalities of the sort discussed above, which relate two cardinal characteristics of the continuum, there are a few theorems that relate three (occasionally even four) of them. We consider one relatively easy example here, since it leads to an idea that should connect to linear logic. The example concerns Ramsey’s theorem [16], which asserts (in a simple form) that, whenever the set $[\mathbb{N}]^2$ of two-element subsets of \mathbb{N} is partitioned into two pieces, then there is an infinite $H \subseteq \mathbb{N}$ that is homogeneous in the sense that all its two element subsets lie in the same piece of the partition. The cardinal hom was defined in [5] as the smallest cardinality of a family \mathcal{H} of infinite subsets of \mathbb{N} such that, for every partition of $[\mathbb{N}]^2$ as in Ramsey’s theorem, a homogeneous set can be found in \mathcal{H}. It was shown in [5] that this cardinal is bounded below by $\max\{r, \vartheta\}$ and above by $\max\{r_\sigma, \vartheta\}$. The lower bound amounts to two ordinary inequalities, $\text{hom} \geq r$ and $\text{hom} \geq \vartheta$, both of which were proved by exhibiting morphisms between the appropriate objects of $\mathcal{P}V$. The upper bound genuinely relates three cardinals, and we wish to make some comments about its proof, so we begin by sketching the proof.
Proof of \(\text{hom} \leq \max\{r, d\} \). Fix a family \(\mathcal{R}_0 \) of \(r \) subsets of \(\mathbb{N} \) such that no countably many sets split all the sets in \(\mathcal{R}_0 \). Within each set \(A \in \mathcal{R}_0 \), fix a family \(\mathcal{R}_1(A) \) of \(r \) sets such that no single set splits them all. Also, fix a family \(\mathcal{D} \) of functions dominating all functions \(\mathbb{N} \to \mathbb{N} \). For each \(A \in \mathcal{R}_0 \), for each \(B \in \mathcal{R}_1(A) \), and for each \(f \in \mathcal{D} \), choose a subset \(Z = Z(A, B, f) \) of \(B \) so thin that, if \(x < y \) are in \(Z \) then \(f(x) < y \). We claim that the family \(\mathcal{H} \) of all these \(Z \)'s, which clearly has cardinality \(\max\{r, d\} \) (since \(r \leq r \)), contains almost homogeneous sets for all partitions of \([\mathbb{N}]^2 \) into two parts. “Almost homogeneous” means that the set becomes homogeneous when finitely many of its elements are removed. Since we can close \(\mathcal{H} \) under such finite changes without increasing its cardinality, the claim completes the proof.

To prove the claim, let \([\mathbb{N}]^2 \) be partitioned into two parts. For each natural number \(n \) let \(C_n \) consist of those \(x \) for which \(\{n, x\} \) is in the first part. By choice of \(\mathcal{R}_0 \), it contains a set \(A \) unsplit by any \(C_n \). Let \(g(n) \) be so large that all \(x \in A \) with \(x \geq g(n) \) have \(\{n, x\} \) in the same piece of the partition, and let \(Q \) be the set of \(n \) for which this is the first piece. Choose \(B \in \mathcal{R}_1(A) \) unsplit by \(Q \) and \(f \in \mathcal{D} \) dominating \(g \). It is then easy to check that \(Z(A, B, f) \) is almost homogeneous for the given partition. \(\square \)

To discuss this proof in terms of \(PV \), we introduce the natural objects of \(PV \) whose norms are the cardinals under consideration. For mnemonic purposes, we name each object with the capital letter corresponding to the lower-case letter naming the cardinal.

\[
\text{HOM} = ([p : [\mathbb{N}]^2 \to 2], \mathcal{P}_\infty(\mathbb{N}), \text{AH}),
\]

where \(\text{AH} \) is the relation of almost homogeneity, \(\text{AH}(p, H) \) means that \(H \) is almost homogeneous for the partition \(p \).

\[
\text{D} = ([\mathbb{N}^\infty, \mathbb{N}^\infty], \text{dominated by}).
\]

\[
\text{R} = (\mathcal{P}(\mathbb{N}), \mathcal{P}_\infty(\mathbb{N}), \text{does not split}).
\]

\[
\text{R}_\sigma = (\mathcal{P}(\mathbb{N})^\infty, \mathcal{P}_\infty(\mathbb{N}), \text{has no component that splits}).
\]

The structure of the preceding proof is then as follows. From a question \(p \) in \(\text{HOM} \), we first produced a question \(\langle C_n \rangle_{n \in \mathbb{N}} \) in \(\text{R}_\sigma \). Using an answer \(A \) to this question and also using again the original question \(p \), we produced questions \(g \) in \(\text{D} \) and \(Q \) in \(\text{R} \). From answers \(f \) and \(B \) to these questions, along with the previous answer \(A \), we finally produced an answer \(H \) to the original question \(p \) in \(\text{HOM} \).

This can be described as a morphism into \(\text{HOM} \) from a suitable combination of \(\text{D} \), \(\text{R} \), and \(\text{R}_\sigma \), but the relevant combination is a bit different from what we have considered previously. The part of the construction involving \(\text{D} \) and \(\text{R} \) is just the provisional tensor product \(\otimes \); that is, we had a question \(\langle g, Q \rangle \) in \(\text{D} \otimes \text{R} \) and we obtained an answer \(\langle f, B \rangle \) for it. (Strictly speaking, we used a version of \(\text{R} \) on \(A \) rather than on \(\mathbb{N} \), but we shall ignore this detail.) The novelty is in how \(\text{D} \otimes \text{R} \) is combined with \(\text{R}_\sigma \). For what we produced from \(p \) was a question in \(\text{R}_\sigma \) together with a function converting answers to this question into questions in \(\text{D} \otimes \text{R} \). This thing that we produced ought to be a question in the object that is being mapped to \(\text{HOM} \). An answer in that object ought to be what we used in order to get the answer \(H \) for \(\text{HOM} \), namely \(\langle A, B, f \rangle \).
Motivated by these considerations, we define a connective, denoted by a semicolon (to suggest sequential composition), as follows.

\[(A_-, A_+, A); (B_-, B_+, B) = (A_- \times B_+^A, A_+ \times B_+, S),\]

where

\[S((x, f), (a, b)) \iff A(x, a) \text{ and } B(f(a), b).\]

Thus, a question of sort \(A; B\) consists of a first question in \(A\), followed by a second question in \(B\) that may depend on the answer to the first. A correct answer consists of correct answers to both of the constituent questions. Thus, sequential composition can be viewed as describing a dialog in which the questioner first asks a question in \(A\), is given an answer, selects on the basis of this answer a question in \(B\), and is given an answer to this as well.

The proof of \(\text{hom} \leq \max\{r, d\}\) exhibits a morphism from \(R_\sigma; (D \otimes R)\) to \(\text{HOM}\).

The cardinal inequality follows from the existence of such a morphism, since one easily checks that the operations on infinite cardinal norms corresponding to the operations \(\otimes\) and \(;\) are both simply max.

The sequential composition of objects of \(\mathcal{PV}\) occurs repeatedly in the proofs of inequalities relating three cardinal characteristics. A typical example is the proof that the minimum number of meager sets of reals with a non-meager union is the minimum of \(b\) and the minimum number of meager sets that cover the real line \([13, 4, 7]\). Vojtěš [21] describes the strategy for proving such three-way relations between cardinals in terms of what he calls a max-min diagram. This diagram amounts exactly to a morphism from the sequential composition of two objects to a third object. In other words, sequential composition is the reification of the max-min diagram as an object of \(\mathcal{PV}\).

Sequential composition also seems a natural concept to add to linear logic from the computational point of view. Linear logic is generally viewed as a logic of parallel computation, but even parallel computations often have sequential parts, so it seems reasonable to include in the logic a way to describe sequentiality. These ideas are not yet sufficiently developed to support any claims about sequential composition, as defined in the \(\mathcal{PV}\) model, being the (or a) right way to do this. In addition to semantical interpretations, one would certainly want good axioms governing any sequential composition connective that is to be added to linear logic, and one would hope that some of the pleasant proof theory of linear logic would survive the addition. Much remains to be done in this direction.

Suggestion 3. Find a place for sequential composition (specifically for the connective called \(;\) above) in linear logic and the theory of \(\mathcal{PV}\).

Generalized Multiplicative Connectives

The previous sections have led to three suggestions of natural connectives to add to linear logic. (Actually, Suggestion 1 concerned not a connective but a modified notion of morphism. But such a modification should correspond to a reinterpretation of \(\to\) and therefore of \(\otimes\) and \(\otimes\) as well.) The suggested new connectives are all analogous to the multiplicatives in that both the set of questions and the set of answers are cartesian products. (For the additive connectives, one of the two sets was a disjoint union.) The factors in these products are either sets
of questions or answers from the constituent objects or else sets of functions, from questions to answers or vice versa. With these preliminary comments, it seems natural to describe general multiplicative conjunctions (cousins of \otimes) as follows.

A general multiplicative conjunction operates on n objects $A_1 \ldots A_n$ of PV to produce an object C, where $C_+ = A_1^+ \times \ldots A_n^+$ and where C_- consists of n-tuples (f_i) of functions where f_i maps some product of A_{j+}'s into A_{i-}. Which A_{j+}'s occur in the domain of which f_i's is given by the specification of the particular connective. An answer (a_i) is correct for a question (f_i) if each a_i correctly answers in A_i the question obtained by evaluating f_i at the relevant a_j's.

For example, \otimes is a generalized multiplicative conjunction, for which $n = 2$ and each f_i has domain A_j for the j different from i. Similarly, we obtain $\overline{\otimes}$ if the domains of the f_i's are taken to be empty products (i.e., singletons); no j is relevant to any i. Sequential composition is obtained by having f_1 depend on no arguments while f_2 has an argument in A_1.

Dual (via \perp) to generalized multiplicative conjunctions are generalized multiplicative disjunctions. Here the answers are allowed to depend on some questions, rather than vice versa (exactly which dependences are allowed is the specification of a particular connective), and correctness means correctness in at least one component, rather than in all.

To avoid possible confusion, we stress that the generalization of the multiplicative connectives proposed here is quite different from that proposed by Danos and Regnier [6]. The Danos-Regnier multiplicatives can correspond to many different classical connectives, whereas mine correspond only to conjunction and disjunction.

One could, of course, consider combining the two generalizations, but we do not attempt this here.

There are non-trivial unary conjunction and disjunction connectives. The conjunction is given by

$$\kappa(A_-, A_+, A) = (A_-^{A_+}, A_+, \kappa A),$$

where

$$\kappa A(f, a) \iff A(f(a), a).$$

The dual disjunction is

$$\alpha(A_-, A_+, A) = (A_-, A_+^{A_-}, \alpha A)$$

where

$$\alpha A(a, f) \iff A(a, f(a)).$$

These operations were called T and R in [15].

The modified concept of morphism from A to B in Suggestion 1, where f_+ maps $A_+ \times B_-$, rather than just B_-, into B_+, amounts to a morphism (in the standard PV sense) from A to αB. This concept of morphism thus gives rise to the Kleisli category of \mathcal{PV} with respect to the monad α. (We have defined α only on objects, but it is routine to define it on morphisms and to describe its monad structure.)

De Paiva's Dialectica category [14] built over the category of sets has as morphisms $A \rightarrow B$ the \mathcal{PV} morphisms $\kappa A \rightarrow B$. It is dual (via \perp) to the category in the preceding paragraph and is the co-Kleisli category of the comonad κ (see [15, Prop. 7]).

The connective α also provides a way to reinstate the notion of truth $|=_1$ that was discarded when we replaced the provisional \otimes and \exists with the final versions. Indeed, $|=A$ holds if and only if $|=\alpha A$.

Girard has pointed out that the exponential connectives or modalities, ! and ?, unlike the other connectives, are not determined by the axioms of linear logic. More precisely, if one added to linear logic a second pair of modalities, say !′ and ?′, subject to the same rules of inference as the original pair, then one could not deduce that the new modalities are equivalent to the old. Several versions of the exponentials could coexist in one model of linear logic.

\(PV \) provides an example of this phenomenon. De Paiva [15] gave an interpretation of the exponentials in which ! is a combination of the unary conjunction \(\kappa \) defined above and a construction \(S \) where multisets \(m \) of questions are regarded as questions and a correct answer to \(m \) is a single answer that is correct for all the questions in \(m \). (Neither \(\kappa \) nor \(S \) alone can serve as an interpretation of !.) Another interpretation of the exponentials in \(PV \), validating the exponential rules of linear logic, is given by

\[
!(A_-, A_+, A) = (1, A_+, U)
\]

where 1 is a singleton, say \(\{*\} \) and

\[
U(*, a) \iff \forall x \in A_- A(x, a),
\]

and its dual

\[
?(A_-, A_+, A) = (A_-, 1, E)
\]

where

\[
E(a, *) \iff \exists x \in A_+ A(a, x).
\]

Intuitively, a question of type !\(A \) (namely \(* \)) amounts to all questions of type \(A \); a correct answer in !\(A \) must correctly answer all questions in \(A \) simultaneously.

It is easy to check that Girard’s rules of inference for the exponentials are sound for this simple interpretation.

References

1. M. Barr, *-Autonomous Categories, Lecture Notes in Mathematics* 752, Springer-Verlag, 1979.
2. M. Barr, *-Autonomous categories and linear logic*, Math. Struct. Comp. Sci. 1 (1991), 159–178.
3. T. Bartoszyński, *Additivity of measure implies additivity of category*, Trans. Amer. Math. Soc. 281 (1984), 209–213.
4. T. Bartoszyński and H. Judah, *Measure and Category — The Asymmetry* (to appear).
5. A. Blass, *Simple cardinal characteristics of the continuum*, Set Theory of the Reals (H. Judah, ed.), Israel Math. Conf. Proc. 6, 1993, pp. 63–90.
6. V. Danos and L. Regnier, *The structure of multiplicatives*, Arch. Math. Logic 28 (1989), 181–203.
7. D. H. Fremlin, *Cichorii’s diagram*, Séminaire Initiation à l’Analyse (G. Choquet, M. Rogalski, and J. Saint-Raymond, eds.), Univ. Pierre et Marie Curie, 1983/84, pp. (5-01)–(5-13).
8. M. R. Garey and D. S. Johnson, *Computers and Intractability*, W. H. Freeman and Co., 1979.
9. J. Y. Girard, *Linear logic*, Theoret. Comp. Sci. 50 (1987), 1–102.
10. J. Y. Girard, *Toward a geometry of interaction*, Categories in Computer Science and Logic (J. W. Gray and A. Scedrov, eds.), Contemp. Math. 92, Amer. Math. Soc., 1989, pp. 69–108.
11. Y. Gurevich, *The challenger-solver game: variations on the theme of P=\#NP*, Bull. Europ. Assoc. Theoret. Comp. Sci. 39 (1989), 112–121.
12. R. Impagliazzo and L. Levin, *No better ways to generate hard NP instances than picking uniformly at random*, Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1989, pp. 812–821.
13. A. Miller, *Additivity of measure implies dominating reals*, Proc. Amer. Math. Soc. **91** (1984), 111–117.

14. V. C. V. de Paiva, *The Dialectica categories*, Categories in Computer Science and Logic (J. W. Gray and A. Scedrov, eds.), Contemp. Math. 92, Amer. Math. Soc., 1989, pp. 47–62.

15. V. C. V. de Paiva, *A Dialectica-like model of linear logic*, Category Theory and Computer Science (D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. Pitts, and A. Poigné, eds.), Lecture Notes in Computer Science 389, Springer-Verlag, 1989, pp. 341–356.

16. F. P. Ramsey, *On a problem of formal logic*, Proc. London Math. Soc. (2) **30** (1930), 264–286.

17. R. A. G. Seely, *Linear logic, *-autonomous categories, and cofree algebras*, Categories in Computer Science and Logic (J. W. Gray and A. Scedrov, eds.), Contemp. Math. 92, Amer. Math. Soc., 1989, pp. 371–382.

18. J. Vaughan, *Small uncountable cardinals and topology*, Open Problems in Topology (J. van Mill and G. Reed, eds.), North-Holland, 1990, pp. 195–218.

19. R. Venkatesan and L. Levin, *Random instances of a graph coloring problem are hard*, Symposium on Theory of Computing, Assoc. for Computing Machinery, 1988, pp. 217–222.

20. P. Vojtáš, *Set-theoretic characteristics of summability of sequences and convergence of series*, Comment. Math. Univ. Carolinae **28** (1987), 173–183.

21. P. Vojtáš, *Generalized Galois-Tukey connections between explicit relations on classical objects of real analysis*, preprint (1991).

22. P. Vojtáš, *Topological cardinal invariants and the Galois-Tukey category* (to appear).

Mathematics Dept., University of Michigan, Ann Arbor, MI 48109, U.S.A.
E-mail address: ablass@umich.edu