INTRODUCTION

Tivozanib, sold under the brand name Fotivda, is a medication used for the treatment of relapsed [1, 2] or refractory advanced renal cell carcinoma (RCC) [3-5]. It is an oral VEGF receptor tyrosine kinase inhibitor [6]. The most common side effects include fatigue [7], hypertension [8, 9], diarrhea, decreased appetite [10], nausea, dysphonia [11], hypothyroidism [12, 13], cough [14], and stomatitis [15]. Tivozanib must not be combined with St. John's Wort, an inducer of the liver enzyme [16, 17] CYP3A4. It should not be taken during pregnancy as it is teratogenic [18, 19], embryotoxic and fetotoxic in rats. Administration of a single dose of tivozanib with rifampicin, a strong inducer of the enzyme CYP3A4 [20, 21], cuts the biological half-life and total exposure (AUC) of tivozanib in half, but has no relevant influence on highest concentrations in the blood. Combination with ketoconazole, a strong CYP3A4 inhibitor, has no relevant effects. The clinical significance of these findings is not known. A quinoline urea derivative, tivozanib suppresses angiogenesis [22, 23] by being selectively inhibitory against vascular endothelial growth factor (VEGF) [24, 25]. It is designed to inhibit all three VEGF receptors [26, 27]. After tivozanib is taken by mouth, highest blood serum levels are reached after 2 to 24 h. The total AUC is independent of food intake. When in the bloodstream, over 99% of the substance are bound to plasma proteins, predominantly albumin. Although the enzymes CYP3A4 and CYP1A1 [28] and several UGTs are capable of metabolising the drug, over 90% circulate in unchanged form. The metabolites are demethylation, hydroxylation and N-oxidation products and glucuronides [29]. The biological half-life is 4.5 to 5.1 d; 79% being excreted via the faeces, mostly unchanged, and 12% via the urine, completely unchanged. Tivozanib is used in form of the hydrochloride monohydrate. The aim of the study is to estimate the plasma ingredient Tivozanib by using RP-HPLC.

MATERIALS AND METHODS

Chemicals

Acetonitrile, HPLC-grade formic acid, water were purchased from Merck India Ltd, Mumbai, India. API of Tivozanib standard was procured from Glenmark, Mumbai.
Till today there are no HPLC methods were reported in the literature. Hence we developed a method for the quantification of Tivozanib. The developed HPLC method was utilized for the estimation of the drug by in vitro method. Different extractions were tried using acetonitrile, methanol, and dimethylformamide.

Validation procedure
The analytical parameters such as system suitability, precision, specificity, accuracy, linearity, robustness, LOD, LOQ, forced degradation and stability were validated according to ICH Q2 (R1) guidelines [31-34].

Preparation of buffer
1 ml of formic acid is dissolved in 1 lt of HPLC grade water and filter through 0.45 µ filter paper.

Chromatographic conditions
The HPLC analysis was performed on reverse phase HPLC system with isocratic elution mode using a mobile phase of acetonitrile and 0.1% formic acid (50:50 v/v) and X-bridge phenyl (150x4.6 mm, 3.5 µ) column with a flow rate of 1 ml/min.

Diluent
Mobile phase was used as diluent.

Preparation of the standard solution
For standard stock solution preparation, add 70 ml of diluents to 13.4 mg of Tivozanib taken in a 100 ml volumetric flask and sonicate for 10 min to fully dissolve the contents and then make up to the mark with diluent. 5 ml of solution is drawn from the above normal stock solution into a 50 ml volumetric flask and diluted up to the level.

Preparation of the sample solution
For sample solution preparation, add 70 ml of diluents to 52.8 mg of Tivozanib sample (each tablet contains 1.34 mg of Tivozanib) taken in a 10 ml volumetric flask and sonicate it for 20 min to fully dissolve the contents and then make up to the mark with diluent. 1 ml of solution is drawn from the above sample stock solution into a 10 ml volumetric flask and diluted up to the level.

RESULTS AND DISCUSSION
The main analytical challenge during development of a new method was to separate active Pharma ingredients. In order to provide a good performance the chromatographic conditions were optimized.

System suitability
In System suitability injecting standard solution and reported USP tailing and plate count values are tabulated in table 1 [35].

System suitability parameter	Acceptance criteria	Tivozanib
USP Plate Count	NLT 2000	4257
USP Tailing	NMT 2.0	1.21
USP Resolution	NLT 2.0	-
% RSD	NMT 2.0	1.35

![Fig. 2: Chromatogram of standard](image)

![Fig. 3: Chromatogram of blank](image)
Specificity
In this test method placebo, standard and sample solutions were analyzed individually to examine the interference. The below fig. shows that the active ingredient was well separated from blank and their excipients and there was no interference of placebo with the principal peak. Hence the method is specific.

Linearity
The area of the linearity peak versus different concentrations has been evaluated for Tivozanib, as 10, 25, 50, 75, 100, 125, 150 percent respectively. Linearity was performed in the range of 1.34-20.1µg/ml of Tivozanib. The correlation coefficient achieved was greater than 0.9991.

Table 2: Linearity of tivozanib

S. No.	Conc. µg/ml	Tivozanib area count
1	1.34	371255
2	3.35	826268
3	6.70	1703314
4	10.05	2350807
5	13.40	3059642
6	16.75	4068593
Corr. coef		0.99910
Slope		236568.29
Intercep		20236.13

Fig. 4: Calibration plot of tivozanib

Accuracy
In this method, Accuracy was conducted in triplicate by analyzing active pharma ingredient sample solution at three kinds of concentration levels of 50, 100 and 150% of each at a specified limit. The percentage recovery was measured and found to be within the limit. The accuracy and reliability of the developed method was established. The percentage recovery values were found to be in the range of 99.65-100.93% for Tivozanib. The results are given in table 3.

Table 3: Results of accuracy

S. No.	% Level	Tivozanib % recovery
1	50	99.65
2	100	100.12
3	150	100.93
mean		100.23
SD		0.648

mean±SD (n=3)

Table 4: Intraday precision results of tivozanib

Tivozanib	Conc.(µg/ml)	Area counts	% assay as is
1	1.34	2948264	99.2
2		2949491	99.3
3		2937437	98.9
4		2944641	99.1
5		2931517	98.7
6		2946124	99.2
% RSD	0.238		
mean	99.07		
SD	0.22509		

mean±SD (n=6)
In method precision study prepare six different standard solutions in the concentration of Tivozanib (13.4 µg/ml) are injected into HPLC system. Tivozanib %assay found to be in the range of 99.74-100.63.

Intraday precision
Six replicates of a sample solution containing Tivozanib (13.4 µg/ml) were analysed on the same day. Peak areas were calculated, which were used to calculate mean, SD and %RSD values. These results are given below table 4.

Intermediate precision
Six replicates of the sample solutions were studied by various researchers, and on separate days different instruments were tested.

Inter-day precision
Six replicates of a sample solution containing Tivozanib (13.4 µg/ml) were analysed on a different day. Peak areas were calculated which were used to calculate mean, SD and %RSD values. The present method was found to be precise as the RSD values were less than 2% and also the percentage assay values were close to be 100%. The results are given in table 5 [36].

LOD and LOQ
The LOD concentration for Tivozanib was 0.017 µg/ml and s/n values is 6. The LOQ concentration for Tivozanib was 0.055 µg/ml and the s/n value was 27. The method is validated as per the ICH guidelines [37]. Results of LOD and LOQ were shown in table 6.
Table 5: Inter-day outcomes of tivozanib

S. No.	Conc.(µg/ml)	Area counts	% assay as is
1	13.4	2938262	98.9
2	2936513	98.8	
3	2947542	99.2	
4	2954684	99.5	
5	2931509	98.7	
6	2976118	100.2	

%RSD 0.554
Mean 99.22
SD 0.56362

Table 6: LOD and LOQ for tivozanib

Tivozanib	LOD	LOQ	
Concentration	s/n	Concentration	s/n
0.017 µg/ml	6	0.055 µg/ml	27

Robustness

The conditions of the experiment were designed to test the robustness of established system intentionally altered, such as flow rate, mobile phase in organic percentage in all these varied conditions. Robustness results for Tivozanib found to be within the limit and results are tabulated in table 7 [38].

Table 7: Robustness data of tivozanib

Parameter name	% RSD of tivozanib
Flow minus (0.8 ml/min)	0.17
Flow plus (1.2 ml/min)	0.06
Organic minus (-10%)	1.20
Organic plus (+10%)	0.49

Stability

The sample solution was kept at room temperature and at 2-8 °C up to 24 h. Then these solutions were pumped into the device and calculate the % of deviation from initial to 24 h [39]. There was no significant deviation observed and confirmed that the solutions were stable up to 24 h percentage of the assay was not quite 2%. There is no effect in storage conditions for Tivozanib drug. The results are given below table 8.

Table 8: Stability results of tivozanib

Stability	Tivozanib	% of deviation
Initial	98.9	0.00
6 h	98.5	-0.40
12 h	98.5	-0.40
18 h	95.5	-3.44
24 h	92.2	-6.77

Degradation studies

The Tivozanib sample was subjected into various forced degradation conditions to effect partial degradation of the drug. Studies of forced degradation have carried out to find out that the method is suitable for products of degradation [40]. In addition, the studies provide details about the conditions during which the drug is unstable, in order that the measures are often taken during formulation to avoid potential instabilities [41].
REFERENCES

1. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev. 2010;35(2):276-84. doi: 10.1016/j.neubiorev.2009.11.016, PMID 19932711.

2. Hudson A, Stamp JA. Ovarian hormones and propensity to drug relapse: a review. Neurosci Biobehav Rev. 2011;35(3):427-36. doi: 10.1016/j.neubiorev.2010.05.001, PMID 20488201.

3. Jmi Bi, Rathmell WK, Godley P. Renal cell carcinoma. Curr Opin Oncol. 2008;20(3):300-6. doi: 10.1097/CCO.0b013e3282b7f72b, PMID 18391630.

4. Quinn DI, Lara PN. Renal-cell cancer—targeting an immune process. N Engl J Med. 2015;373(19):1872-4. doi: 10.1056/NEJMep1511252, PMID 2640149.

5. Ljungberg B, Campbell SC, Choi HY, Jacqmin D, Lee JE, Weikert S, Kiemeney LA. The epidemiology of renal cell carcinoma. Eur Urol. 2011;60(4):615-21. doi: 10.1016/j.eururo.2011.06.049, PMID 21741761.

6. Levitzki A, Mishani E. Tyrophostins and other tyrosine kinase inhibitors. Annu Rev Biochem. 2006;75:93-109. doi: 10.1146/annurev.biochem.75.103004.142657, PMID 16756486.

7. Mills RJ, Young CA, Pallant JF, Tennant A. Development of a the neurological fatigue index (NFI-MS). Health Qual Life Outcomes. 2010;8:22. doi: 10.1186/1477-7525-8-22, PMID 20814417.

8. Vazquez J. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptors 5. Dev Cell. 2011;21(2):301-14. doi: 10.1016/j.devcel.2011.06.033, PMID 21741761.

9. Defects Res A Clin Mol Teratol. 2005;73(6):409-20. doi: 10.1002/bdra.20127, PMID 15880700.

10. Qi H, Mathias M, Nesterl S, Bengel C, Nem D, Gödtel Armbrust U, Lang T, Taudien S, Burk O, Wojnowski L. The unique complexity of the CYP3A4 upstream region suggests a nongenetic explanation of its expression variability. Pharmacogenet Genomics. 2010;20(3):167-78. doi: 10.1097/PPG.0b013e32833edibe6, PMID 20147837.

11. Bishop Bailey D, Thomson S, Askari A, Faulkner A, Wheeler James C. Lipid-metabolism CYPs in the regulation and dysregulation of metabolism. Annu Rev Nutr. 2014;34:236-79. doi: 10.1146/annurev-nutr-071813-105747, PMID 24819323.

12. Birbirir A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O. Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol. 2014;307(1):C25-38. doi: 10.1152/ajpcell.00178.2013, PMID 24788248.

13. McDougall SR, Anderson AR, Chaplain MA. Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol. 2006;241(3):564-89. doi: 10.1016/j.jtbi.2005.12.022, PMID 16487543.

14. Campas C, Bolos J, Castaner R, Tiwazbamsiin D, Funats D, Fruts D, 2009;34(10):793-6. doi: 10.1358/dof.2009.034.10.1417872.

15. Karkainen M, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000;19(49):5598-605. doi: 10.1038/sj.onc.1203855, PMID 11114740.

16. Stuttefield E, Balmer Hofer K. Structure and function of VEGF receptors. U1MB Life. 2009;61(9):915-22. doi: 10.1002/jub.234, PMID 19658168.

17. Zygmunt T, Gay CM, Blonderle J, Singh MK, Faherty KM, Means PC, Herwig L, Krudzewig AB, Belting HG, Affolter M, Epstein JA, Torres Vaque J. Semaphorin-plexin signaling and angiogenic potential via the VEGF decoy receptors sFlt1. Cell. 2011;21(2):301-14. doi: 10.1016/j.jdevel2011.06.033, PMID 21802755.

18. Badal S, Delgoda R. Role of the modulation of CYP1A1 expression and activity in chemoprevention. J Appl Toxcol. 2014;34(7):743-53. doi: 10.1002/tox.20268, PMID 24532440.

19. Yang G, Ge S, Singh R, Basu S, Shatzer K, Zen M, Liu J, Tu Y, Zhang C, Wei J, Shi J, Zhu L, Liu Z, Wang Y, Gao S, Hu M. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab Rev. 2017;49(2):105-38. doi: 10.1080/03602532.2017.1502936, PMID 28268877.

20. Cijo M, Xavier, Kanakadura Basawaiah. RUP-ICLC Development and validation of metoflorin hydrochloride in pure drug and pharmaceutical formulations. World J Pharm Pharm Sci. 2015;4:1649-68.

21. Sri Girija K, Bishkhal Babu K, Venkateswara Rao A. A new high - performance liquid chromatography method for the separation and simultaneous quantification of Epitifibatide and its impurities in pharmaceutical injection formulation. Int J Appl Pharm. 2021;13:165-72.

22. VLN Balaji Gupta, VLN T Venkateswara Rao B, Kishore Babu B. RP-HPLC (stability indicating) based assay method for the simultaneous estimation of Darorivine, tenosivir disoproxil fumarate and lamivudine. Int J Appl Pharm. 2021;13:163-9.

23. Murali Krishnam Raju P, Venkata Narayana B, Shyamala P, Murthy Murthy. Development, validation and forced degradation for Uulipristal acetate in pharmaceutical dosage form. Asian J Pharm Clin Res. 2021;14:83-9.

24. Lim J, Jose S, Devakumar D. Development and validation of rp-hplc method for the estimation of escitalopram oxalate and...
flupentixol dihydrochloride in combined dosage form and plasma. Int J Pharm Pharm Sci. 2021;13:61-6.

37. Syed Rafi, Kantipudi Rambabu. Stability indicating validated HPLC method for the determination of aceclofenac and misoprostol in bulk and pharmaceutical formulation. IJRPS 2020;11(4):7848-53. doi: 10.26452/jirps.v11i4.4669.

38. Gunturu Raviteja, Kantipudi Rambabu. A study of development and validation of a method for simultaneous estimation of cidofovir and famciclovir using RP-HPLC. IJRPS 2020;11(4):7878-84. doi: 10.26452/jirps.v11i4.4673.

39. Vijayakumari M, Balasekhar Reddy Ch B. Stability indicating validated hplc method for the determination of zanubrutinib in bulk and pharmaceutical dosage form. Asian J Pharm Clin Res. 2020;13:159-62.

40. Charu Pandya P, Sadhana Rajput J. Development and validation of stability indicating method RP-HPLC method of Aacotamide. Int J Pharm Pharm Sci. 2018;10:1-8.

41. Athavia BA, Dedania ZR, Dedania RR, Swamy SMV, Prajapati CB. Stability indicating HPLC method for determination of vilazodone hydrochloride. Int J Curr Pharm Sci 2017;9(4):123-9. doi: 10.22159/ijcpr.2017v9i4.20975.