Selective Quadruple C(sp³)-F Functionalization of Polyfluoroalkyl Ketones

Xie et al., iScience 23, 101259
July 24, 2020 © 2020 The Author(s).
https://doi.org/10.1016/j.isci.2020.101259
Selective Quadruple C(sp³)-F Functionalization of Polyfluoroalkyl Ketones

Ting Xie,¹,⁵ Guo-Qiang Wang,²,⁵ Ya-Wen Wang,¹ Weidong Rao,³ Haiyan Xu,⁴ Shuhua Li,²,⁎ Zhi-Liang Shen,¹,⁶,⁎ and Xue-Qiang Chu¹,⁎

SUMMARY
The significance of organofluorine compounds has inspired the establishment of numerous methods for the functionalization of rather inert C-F bonds. Despite advances achieved in the manipulation of C(sp²)-F bonds by employing transition-metal catalysts, such as Pd, Rh, Cu, Ni, Ru, and Ir, strategies that address the paucity of effective pathways for selective activation of multiple C(sp³)-F bonds remained challenging. In this context, we present an unprecedented coupling-aromatization-cyclization reaction of polyfluorinated ketones with diverse N- and S-nucleophiles that forms regiodefined perfluoroalkylated naphtho[1,2-b]furan/benzofuran derivatives by harnessing Co-promoted distinctive quadruple C(sp³)-F bonds cleavage relay. This chemistry involving controlled and successive selective defluorination at heteronuclear centers would greatly contribute to the preparation of drug-like heterocycles as well as the late-stage elaboration of biorelevant compounds. Controlled experiments and DFT theoretical studies revealed that the combination of cheap cobalt salt with Cs₂CO₃ enable expeditious C-F functionalization.

INTRODUCTION
The past decades have witnessed a boom in organofluorine chemistry mainly owing to the unique physical and chemical benefits conferred by the incorporation of fluorine atom or fluorine-containing fragments into organic molecules, which have gained widespread recognition throughout drug discovery, crop protection, polymer chemistry, and materials science (Shao et al., 2015; Feng et al., 2018; Ni and Hu, 2016; Chu and Qing, 2014; Jeschke, 2004; Wang et al., 2014; Cardoso et al., 2018; Ragni et al., 2018). However, it is still challenging and highly desirable to develop reliable tools for performing controlled and selective cleavage of C-F bonds because of the notorious inertness of fluorinated entities arising from their thermodynamic stability and kinetic issues (Wang et al., 2014; Cardoso et al., 2018; Ragni et al., 2018; O’Hagan, 2008). In this context, not only C-F bond construction but also C-F bond activation and functionalization have become attractive subjects for realizing efficient preparation of oligofluorinated compounds, especially starting from readily available polyfluorinated bulk chemicals (Eisenstein et al., 2017; Ahrens et al., 2015; Amii and Uneyama, 2009).

Substantial progress has been made in the manipulation of alkenyl (Fujita et al., 2019; Hu et al., 2017, 2018; Lu et al., 2017; Thornbury and Toste, 2016; Tian et al., 2019) and aryl C(sp³)-F bonds (Shao et al., 2017; Honeycutt and Hoov, 2018; Priya and Weaver, 2018; Tian et al., 2018) by means of transition-metal catalysis, photocatalysis, and electrochemical techniques (through oxidative addition, single-electron reduction, fluoride abstraction, elimination, nucleophilic substitution, etc.). Although there are many reactions involving aliphatic C-F bond activation by electrophilic compounds (Si-, B-, and P-based cations), Lewis acids, and transition metal species (Jaroschik, 2018; Shen et al., 2015; Stahl et al., 2013), selective transformations of multiple unactivated aliphatic C(sp³)-F bonds attached remote to π-system (such as benzylc and allylic moieties) is still scarce (Wang et al., 2018a, 2018b; Kojima et al., 2018; Huang and Hayashi, 2016; Choi et al., 2011; Wang and Jui, 2018; Chen et al., 2017; Romanov-Michailidis et al., 2018; Xu et al., 2015; Wang et al., 2019; Giffin et al., 2013; Pigeon et al., 2010; Gu et al., 2009; Blessey et al., 2012; Hazari et al., 2009; Xue et al., 2015) (Figure 1A). A remarkable particularity of multifluorocarbons is that their reactivity decreases along with an increase in the number of geminal fluorine atoms; this situation increases their difficulties for partial or complete defluorination through discriminating even slightly different
reactivity among several C-F bonds (Luo, 2007). On the other hand, although palladium- (Thornbury and Toste, 2016; Xu et al., 2015; Pigeon et al., 2010; Hazari et al., 2009), ruthenium- (Tian et al., 2015, 2018; Wang et al., 2018a, 2018b; Huang and Hayashi, 2016), copper- (Hu et al., 2017, 2018; Wang et al., 2018a, 2018b; Kojima et al., 2018), nickel- (Lu et al., 2017; Honeycutt and Hoov, 2018; Tian et al., 2018; Giffin et al., 2013), and iridium-catalyzed (Priya and Weaver, 2018; Choi et al., 2011; Chen et al., 2017; Romanov-Michaelidis et al., 2018) C-F functionalization have recently stimulated intense research efforts, the use of earth-abundant and cheap cobalt salts as feasible promoters for such transformations remained less explored (Kuehnel et al., 2013; Ehm et al., 2016; Andrella et al., 2019; Jaeger et al., 2019).

Figure 1. C(sp³)-F Bonds Cleavage Strategy

(A) Existing approaches through fluoride abstraction, oxidative addition, single-electron reduction, and nucleophilic substitution, all of which are not suitable for the multiple C-F bonds cleavage.

(B) Naphtho[1,2-b]furan skeleton in naturally occurring and pharmaceutically relevant compounds.

(C) Our strategy toward the synthesis of naphtho[1,2-b]furan or benzofuran derivatives via highly selective quadruple C(sp³)-F functionalization.
RESULTS AND DISCUSSION
Optimization of Reaction Conditions
Initially, we commenced our investigation by using 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1a) as a substrate, along with 2-methyl-1H-benzo[d]imidazole (2a) as a nitrogen nucleophile, in the presence of 10 mol% of CoBr2, 1.0 equiv of Bu4NBr (TBAB), and 2.5 equiv of Cs2CO3 in DMSO at 70°C under N2 for 10 h (Table 1; also see Tables S1–S5 in Supplemental Information for details). To our delight, the proposed tandem strategy could be successfully realized to afford C-N bond-forming (Barwal and Van der Eycken, 2013) product 3a in 74% NMR yield (70% isolated yield; Table 1, entry 1). Notably, the excellent performance of the reaction required the simultaneous use of cobalt salt, additive TBAB, and base (Mao et al., 2019; Xue et al., 2015) (Table 1, entries 2–4), as the reaction proceeded with reduced efficiency in the absence of any of them. It is noteworthy that decreasing reaction temperature even to room temperature still gave the same good yield of the product 3a (Table 1, entry 5). In addition, in a striking comparison with other solvents, including MeCN and DMF (Table 1, entries 6–7), DMSO was found to be the best reaction medium for the transformation (Table 1, entry 5). Furthermore, careful screening of other bases and cobalt sources indicated that Cs2CO3 and CoBr2 were still the base and catalyst of choices in the present reaction (Table 1, entries 8–12).

Substrate Scope Study
With the optimized reaction conditions in hand, the general applicability of this predictable and mild cascade reaction was tested with a wide range of electronically disparate nitrogen nucleophiles. As shown in Scheme 1, almost every kind of privileged N-heterocycle components in medicinal chemistry (Taylor et al., 2014), including, but not limited to, benzimidazoles (3a–3h, 39%–87%), imidazoles (4a–4c, 44%–94%), indazoles (5a–5c, 60%–79%), pyrazoles (6a–6d, 43%–92%), triazoles (7–8, 87%–99%), tetrazole (9, 39%), indoles (10a–10d, 57%–76%), pyrroles (11a–11c, 39%–66%), carbazole (12, 40%), and purine (13, 36%), could directly couple with substrate 1a to produce pentafluoroethylated naphtho[1,2-b]furan in moderate to good yields. Particularly, besides the ready introduction of polyfluoroalkyl group and N-heterocycle in naphtho[1,2-b]furan skeleton, the present protocol also serves as an efficient method for the direct construction of naphtho[1,2-b]furan scaffold via defluorination and cyclization cascade, which also have its merit when compared with previous methods where preprepared or commercial naphtho[1,2-b]furan was directly employed for further functionalization (Heravi and Zadsirjan, 2015). Importantly, some synthetically valuable functional groups, such as halogen (Cl, Br, I), ester, nitro, formyl, keto, as well as cyano group, were amenable to the present catalytic system, which offered the synthetic potential for further elaboration.

Notably, as for nucleophiles such as indazole, triazole, indole, pyrrole, and carbazole, the isolated yields
of the corresponding products could be remarkably improved by means of increasing reaction temperature and prolonging reaction time. In addition, considering the procedural simplicity and synthetically easy accessibility, a concise procedure was successfully achieved for the large-scale construction of product 10d under slightly modified reaction conditions (62%, 0.88 g). These results clearly demonstrated the high efficiency and unique advantages of this amination protocol. However, our attempts to expand the substrate scope to anilines (14a-14b), sulfonamide (14c), and cyclic amine (14d) have been proven fruitless. Moreover, the structure of product 6b was unambiguously confirmed by single crystal X-ray diffraction analysis (CCDC 1881997; Figure 2; also see Supplemental Information for details).

In view of the importance of late-stage modification in drug discovery, this practical approach has been specifically evaluated with respect to representative nitrogen-containing complex molecules (Scheme 2). For example, the hypertension therapeutic dibazol could be smoothly incorporated into the naphtho[1,2-b]furan derivative 15a in 38% yield. A pharmaceutical unit of telmisartan readily underwent this dehydrogenative and defluorinative reactions, leading to the desirable heterocycle 15b in a good yield (88%). Naturally occurring substances such as L-histidine and theophylline also reacted chemoselectively with α-perfluoroalkyl ketone 1a to furnish the corresponding products 15c and 15d in 35% and 49% yields, respectively. Furthermore, by using three known nitrogen-containing drugs (axitinib, alizapride, irbesartan) as viable coupling partners in the present protocol, we were also able to achieve the functionalization of these pharmaceuticals (15e-15g). Interestingly, the problems arising from the competitive couplings with nucleophilic amide moieties were well avoided in these cases (15e-15f).

Driven by the success of above reactions, subsequently we attempted to expand the substrate scope of four C(sp³)-F bonds cleavage to encompass various α-polyfluoroalkyl ketones as starting materials

Entry	Catalyst	Additive	Base	Solvent	Yield (%)^{a,b}
1	CoBr₂	TBAB	Cs₂CO₃	DMSO	74 (70)
2	–	TBAB	Cs₂CO₃	DMSO	39
3	CoBr₂	–	Cs₂CO₃	DMSO	58
4	CoBr₂	TBAB	–	DMSO	trace
5	CoBr₂	TBAB	Cs₂CO₃	DMSO	74 (71)
6	CoBr₂	TBAB	Cs₂CO₃	MeCN	55^d
7	CoBr₂	TBAB	Cs₂CO₃	DMF	61^d
8	CoBr₂	TBAB	K₂CO₃	DMSO	67^d
9	CoBr₂	TBAB	Li₂CO₃	DMSO	0^d
10	CoBr₂	TBAB	DABCO	DMSO	<10^d
11	Co(OAc)₂	TBAB	Cs₂CO₃	DMSO	49^d
12	Co(C₂O₄)(H₂O)	TBAB	Cs₂CO₃	DMSO	0^d

Table 1. Four C(sp³)-F Bonds Functionalization: Optimization of Reaction Conditions

^aReaction conditions: 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 0.30 mmol), 2-methyl-1H-benzo[d]imidazole (2a, 0.60 mmol), catalyst (0.03 mmol), additive (0.3 mmol), and base (0.75 mmol) in solvent (2.0 mL) at 70 °C for 10 h under N₂; TBAB = tetrabutylammonium bromide.

^bYields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.

^cIsolated yield.

^dAt room temperature.
A variety of ketones bearing either electron-donating groups (including MeO, OBn, Me) or electron-withdrawing groups (such as F, Cl, Br) on the phenyl rings were tolerated, affording the polycyclic products with acceptable yields (16a-16h, 36%-96% yields). However, ketone 1j was proven to be an unsuccessful substrate.

Scheme 1. Four C(sp^3)-F Bonds Functionalization: Substrate Scope of Various Nitrogen Nucleophiles

*Standard reaction conditions (0.3 mmol scale); isolated yields.

1. At 70°C.
2. 10 h.
3. At 100°C.
4. 3 mmol scale reaction for 48 h.
5. At 120°C.

(Scheme 3). A variety of ketones bearing either electron-donating groups (including MeO, OBn, Me) or electron-withdrawing groups (such as F, Cl, Br) on the phenyl rings were tolerated, affording the polycyclic products with acceptable yields (16a-16h, 36%-96% yields). However, ketone 1j was proven to be an unsuccessful substrate.
inappropriate candidate for the present reaction (16i), and it remained intact in the reaction. In addition, substrate 1 possessing an alkyl or aryl substituent at the C4-position underwent the aromatization-cyclization cascade with high efficiency (16j-16k, 59%-95% yields). In a similar manner, the reaction worked equally well with heteroaryl ketone to provide the anticipated heterocyclic variant 16l in 96% yield. Apart from perfluorobutyl 3,4-dihydronaphthalen-1(2H)-one (1a), we were pleased to observe that the generality of this transformation could be further broadened by employing diverse perfluorobutyl cyclohex-2-en-1-one derivatives, which produced perfluoroethyl benzofuran derivatives 16m-16v in 58%-84% yields. The substrate 1w derived from Nandrolone could also participate into the coupling with 2s to produce the product 16v in 58% yield. Also, our method was able to address the paucity of process for site-selective fluoroalkylation. Interestingly, the perfluoroalkyl chain length ranging from 10 to 3 carbons only has a slight impact on the reaction outcomes (16w-16b, 50%-85% yields). Furthermore, our protocol allowed convenient access to trifluoromethyl-substituted drug analogue 16b’ (Taylor et al., 2014). In view that π-conjugated benzofuran derivatives are pivotal structural constituents of optoelectronic materials and pharmaceutical molecules, the present distinctive methodology will provide chemists an attractive alternative for manufacturing these fluorinated polyfused skeletons (Tsujii and Nakamura, 2017).

The development of original and novel scaffolds is a persistent quest in medicinal chemistry. Finally, the reactions employing aryl mercaptan (2r-2s) forged the desired sulfoethers 17 and 18 containing heterocycles (Scheme 4A-I). Moreover, the use of benzoimidazole 2t, which possessed a halogen at the C2 position, produced an unexpected pentacyclic fused compound 19 through the removal of three fluorides [Scheme 4A-II; also see the X-ray crystal structure of compound 19 (CCDC 1881996; Figure 2) in Supplemental Information for details]. However, 1,3-bis-nucleophiles possessing a carbon atom as the tether could not participate in the designed aromatization-annulation and predominantly afforded condensed dihydrobenzoquinazoline 20 and dihydrobenzoquinoline 21 in 72% and 73% yields, respectively (Schemes 4A-III and 1A-IV). These results would significantly contribute to the mechanistic understanding of the reaction pathway.

Mechanism Study
Further insights were obtained for elementary information of the reaction mechanism via the control experiments outlined in Scheme 4B. First, no anticipated product 23 was isolated when 2-(perfluorobutyl)cyclohexan-1-one (22) was employed as a prefluorinated building block, revealing that the phenyl group or unsaturated C=C moiety in the α-polyfluoroalkyl ketone was essential for the established cascade defluorination (Scheme 4B-I). Next, the experiment employing seven-membered ring 24 under the standard conditions has been proven futile, indicating that the autoaromatization of the dihydronaphthaleneone might become an important driving force for the successive C(sp3)-F bonds cleavage (Scheme 4B-II). Then, the significance of the nucleophiles was demonstrated through the fact that piperidine exclusively coupled with 1a, leading to β-aminated ketone 26 in 38% yield (Scheme 4B-III; also see Scheme 1, 14d). Moreover, it was found that α-defluorination occurred to form intermediate 27 (with TBAB, via 1,4-conjugate addition of Br anion) and 28 (without TBAB) in the absence of an N-nucleophile (Schemes 4B-IV and 4B-V). We believed that TBAB additive might accelerate the sequential events of C-N/C-O couplings, aromatization, and defluorination. On the other hand, the poor solubility of Cs2CO3 might lead to inconsistencies in mixing the
reagents and thus poor reproducibility, and this issue could be alleviated by the addition of TBAB (Sasson and Neumann, 1997). Simultaneously, less than 5% yield of byproduct 29 was obtained under basic conditions (Scheme 4B-V). As expected, key intermediate 28 could be converted to the corresponding product 3a in 86% yield under the standard conditions (Scheme 4B-VI).

Density Functional Theory Calculations

Density functional theory (DFT) calculations with the B3LYP functional (Becke, 1993; 1988; Lee et al., 1988), including Grimme’s D3 dispersion correction (DFT-D3) (Grimme et al., 2010; Goerigk and Grimme, 2011), were carried out to explore the role of Cs₂CO₃ and CoBr₂ on this quadruple C(sp³)-F bond functionalization (Data S1) [all calculations were performed with the Gaussian 09 package (Frisch et al., 2013), and optimized structures were visualized using CYLview (Legault, 2009); see Supplemental Information for computational details]. It should be noted that the desired product 3a could be obtained in 39% yield in the absence of CoBr₂ (Table 1, entry 2). Therefore, we first investigated the possible pathway of the Cs₂CO₃-mediated defluorinative C-N/C-O coupling reaction by using 2-(perfluoropropyl)-3,4-dihydropthalen-1(2H)-one (1c') and 2-methyl-1H-benzo[d]imidazole (2a) as model substrates. As indicated earlier, the perfluoroalkyl chain length only has a slight impact on the reaction outcomes. Therefore, we chose simpler 1c' rather than 1a as a model substrate to simplify the theoretical calculation. The calculated free energy profile and optimized transition state structures are listed in Figure 3.

As shown in Figures 3 and 4A, the entire pathway consists of the following steps: (1) a Cs₂CO₃-assisted elimination of the first HF, proceeding through the deprotonation of the α-hydrogen of carbonyl compound 1c' (via TS₁c'/IN₁) and the subsequent elimination of fluorine anion (via TS₂a/MN₁) in an E2 elimination manner, generates an α,β-unsaturated intermediate IN₂. The corresponding barrier of these two transition states
are only 7.8 and 6.4 kcal/mol, respectively. (2) The nucleophilic vinylic substitution (SNV) of IN2, in which the fluorine atom is replaced by a nitrogen nucleophile (2a), produces a C-N coupling intermediate IN4. The rate-determining step of this process is the π-perpendicular attack of 2a toward IN2 (TSIN2/IN3), with a barrier of 15.2 kcal/mol. Abstraction of F⁻ by the Cs₂HCO₃ cation from the tetrahedral intermediate IN3 forms the enamine intermediate IN4, which is exergonic by 16.3 kcal/mol. (3) Further elimination of the third HF proceeding through a similar deprotonation (via TSIN4/IN5) and fluorine anion elimination sequence (via

Scheme 3. Four C(sp³)-F Bonds Functionalization: Substrate Scope of Various Perfluoroalkyl Ketones

*Standard reaction conditions (0.2 mmol scale), isolated yields.

b0.05 mmol scale.

c0.3 mmol scale.
TS\textsubscript{IN5/IN6} affords a delocalized naphthalen-1(4\textsubscript{H})-one intermediate \textit{IN6}. Owing to the \(\pi\)-conjugated effect as well as the existence of Cs+ ... O and Cs+ ... F interaction, the third C-F bond cleavage step is ready to occur (highly exergonic by about 48.6 kcal/mol) (Li et al., 2013). (4) Rearomatization of \textit{IN6} via the deprotonation of naphthalen-1(4\textsubscript{H})-one (TS\textsubscript{IN6/IN7}) furnishes a zwitterionic complex \textit{IN7}, which could further undergo an intramolecular SNV-type cyclization (via TS\textsubscript{IN7/16b'}) to give the desired product 16b'. The whole defluorination coupling reaction is totally exergonic by 90.2 kcal/mol (relative to the separated reactants). The intramolecular cyclization reaction of \textit{IN7}, involving a single-step O-nucleophilic \(\sigma\)-attack (TS\textsubscript{IN7/16b'}), is the rate-limiting step of the reaction pathway with a barrier of 25.6 kcal/mol. It is noted that Cs\textsubscript{2}CO\textsubscript{3} plays a

Scheme 4. Four C(sp3)-F Bonds Functionalization with Other Mono- or Dinucleophiles and Control Experiments

(A) Four C(sp3)-F bonds cleavage with aryl mercaptan or 1,3-dinucleophiles.

(B) Some control experiments performed for gaining more mechanistic insight.
crucial role for facilitating both the HF elimination and the nucleophilic vinylic substitution. These computational results are consistent with experimental observations.

Next, we also performed DFT calculations to reveal the influence of CoBr₂ additive on this defluorination reactions. Some key steps with relatively high activation barriers discussed earlier (TS₁c'/IN₁' and TS₁N₂/IN₃) were calculated in the presence of CoBr₂ (see Figures S235 and S236 in Supplemental Information for details). Our calculations show that CoBr₂ could lower the activation barrier of N-nucleophilic vinylic substitution step from 15.2 kcal/mol to 5.9 kcal/mol (Co-TS₁c'/IN₁'), which makes the intermolecular C-N bond formation more readily. However, it does not have significant influence on the rate-limiting step (26.7 kcal/mol for Co-TS₁N₂/IN₃' and 25.6 kcal/mol for TS₁N₂/IN₃'). We hypothesized that the basicity of conjugated acid CsHCO₃, which is formed with the consumption of strong base Cs₂CO₃ during the reaction process, is not sufficient to deprotonate the related substrates or intermediates in the absence of Co(II) salt. Both the barriers of the deprotonation of 1c' (via TS₁c'/IN₁') and the nucleophilic addition of nucleophile 2a toward IN₂ (via TS₁N₂/IN₃') activated by CsHCO₃ are higher than those activated by Cs₂CO₃ (24.3 kcal/mol versus 7.8 kcal/mol and 28.2 kcal/mol versus 15.2 kcal/mol) (Figure 4B). Interestingly, energy barriers of transition states with CoBr₂, Co-TS₁c'/IN₁' and Co-TS₁N₂/IN₃', are calculated to be lower in energies than those with only CsHCO₃ (8.3 kcal/mol versus 24.3 kcal/mol and 17.1 kcal/mol versus 28.2 kcal/mol). These computational results suggest that CoBr₂ might act as a Lewis acid (Stahl et al., 2013) to facilitate the base-mediated defluorinative cascade. It was found that other Lewis acid alternatives could also promote the defluorinative cascade under the optimal reaction conditions (see Table S6 in Supplemental Information for details), which is consistent with this computational result.

On the basis of the abovementioned control experiments, DFT calculations, and literature survey (Jaroschik, 2018; Shen et al., 2015; Stahl et al., 2013), a possible mechanism of the Co(II)-assisted/base-promoted defluorination for the formation of the observed products is described in Scheme 5. Initially, a rapid nucleophilic 1,4-addition/flouride elimination event of the N- or S-nucleophile with α,β-unsaturated carbonyl compound A, which is in situ generated from substrate 1 by spontaneously removing a molecule of HF
with the assistance of Cs$_2$CO$_3$, occurs to give the β-coupled species C. Subsequently, tautomerization of nascent C affords a more stable endocyclic naphthalen-1(4H)-one D. Next, β,\,γ-desaturation readily proceeds in the presence of Cs$_2$CO$_3$ by extrusion of the third fluoride ion to produce the transient intermediate E, mainly owing to the π-conjugated effect. The subsequent formation of a naphthol/phenol anion F may be explained by a base-assisted elimination of a proton at C4-position of E, and autoaromatization greatly contributes to the driving force of this step (Pigeon et al., 2010). Finally, occurrence of an intramolecular O-nucleophilic vinylic substitution (Li et al., 2013)(SNV; via intermediate F) delivers the ring-closure products 3-18 via readily cleaving the fourth C-F bond. On the other hand, the possibility that the reaction proceeds through 5-endo-trig cyclization could not be ruled out (Ichikawa et al., 2002). Alternatively, external nucleophilic attack by 2-(1H-benzo[d]imidazol-2-yl)acetanilide ($2u$) or 4-bromobenzimidamide ($2v$), which bears two reactive sites (Schemes 4-III and 4-IV), would preferentially condense to produce conventional heterocycles 20-21 rather than undergoing successive defluorination. Notably, intramolecular nucleophilic annulation of intermediate F would also furnish the polycyclic fused product 19, where the new C-O bond was forged with benzoimidazole keeping γ-C-F bond intact. This result indirectly reflects the formation of intermediate F in the reaction. It should be mentioned that the reactions are highly regioselective because a wide variety of perfluoroalkylated naphtho[1,2-b]furan derivatives could be exclusively accessed even if there might potentially exist several competitive side reactions.

Conclusions

In summary, we have developed an appealing cobalt(II)/Cs$_2$CO$_3$-promoted quadruple defluorinative mode for accessing perfluoroalkylated naphtho[1,2-b]furan/benzofuran derivatives by using prefluoroalkylated ketones with various N-heterocycles, including benzimidazole, imidazole, indazole, pyrazole, triazole, tetrazole, indole, pyrrole, carbazole, and purine. This method exhibited mild reaction conditions, broad substrate scope, and good functional group compatibility. Extension of the method to other kinds of S-nucleophiles also improved the synthetic potentials of the present method in the context of diversity-oriented
The method could also be applied to the late-stage functionalization of some representative nitrogen-containing druglike molecules, which might potentially find applications in medicinal chemistry and pharmaceutical industry. Controlled experiments and DFT theoretical studies revealed that the combination of cheap cobalt salt with Cs$_2$CO$_3$ enables expeditious C-F cleavage. As such, we anticipate that this strategy will provide a complementary new approach to enable the fluorine-containing modification of complex biological molecules that are not easy to achieve by using current state-of-the-art methods.

Limitations of the Study
However, the substrate scope of N-nucleophile is somewhat limited, as anilines, sulfonamide, and cyclic amine have been proven fruitless in the present reactions.

Resource Availability

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Zhi-Liang Shen (ias_zlshen@njtech.edu.cn).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability
The crystallography data have been deposited at the Cambridge Crystallographic Data Center (CCDC) under accession number CCDC: 1881996 (19) and CCDC: 1881997 (6b) and can be obtained free of charge from www.ccdc.cam.ac.uk/getstructures.
Original/source data for Figures 1–4, Schemes 1–5, and Table 1 in the paper are available at https://doi.org/10.1016/j.isci.2020.101259. Cartesian coordinate is provided as a xyz file (Data S1.xyz).

METHODS
All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101259.

ACKNOWLEDGMENTS
We gratefully acknowledge the National Natural Science Foundation of China (Grants No. 21901087 and 21833002), the Natural Science Foundation of Jiangsu Province, China (BK20180690 and BK20190951), the financial support from Nanjing Tech University (Start-up Grant Nos. 39837118 and 39837146), Jiangsu Education Department (19KJB150008), and Nanjing Forestry University. We thank Professor Zhuangzhi Shi (Nanjing University, China) for valuable discussions. All the theoretical calculations were performed on an IBM Blade cluster system from the High-Performance Computing Center (HPCC) of Nanjing University.

AUTHOR CONTRIBUTIONS
T. X. and G.-Q.W. contributed equally to this work. T.X. and X.-Q.C. performed the experiments and analyzed the data. Y.-W.W. checked the Supporting Information. X.-Q.C. and Z.-L.S. designed the project and wrote the manuscript. The computational work was conducted by G.-Q.W. and S.L. The project was financed by W.R., Z.-L.S., H.X., and X.-Q.C. All authors discussed the experimental results and commented on the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: February 16, 2020
Revised: May 6, 2020
Accepted: June 5, 2020
Published: July 24, 2020

REFERENCES
Ahrens, T., Kohlmann, J., Ahrens, M., and Braun, T. (2015). Functionalization of fluorinated molecules by transition-metal-mediated C-F bond activation to access fluorinated building blocks. Chem. Rev. 115, 931–972.

Amii, H., and Uneyama, K. (2009). C-F bond activation in organic synthesis. Chem. Rev. 109, 2119–2183.

Andrellas, N.O., Xu, N., Gabriullin, B.M., Ehm, C., and Baker, R.T. (2019). Selective copper complex-catalyzed hydrodefluorination of fluoroalkenes and aly fluorides: a tale of two mechanisms. J. Am. Chem. Soc. 141, 11506–11521.

Bariwal, J., and Van der Eycken, E. (2013). C–N bond forming cross-coupling reactions: an overview. Chem. Soc. Rev. 42, 9283-9303.

Becke, A.D. (1988). Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A Mol. Opt. Phys. 38, 3098–3100.

Becke, A.D. (1993). Density-functional thermochemistry. III. the role of exact exchange. J. Chem. Phys. 98, 5648–5652.

Blessley, G., Holden, P., Walker, M., Brown, J.M., and Gouverneur, V. (2012). Palladium-catalyzed substitution and cross-coupling of benzylic fluorides. Org. Lett. 14, 2754–2757.

Cardoso, V.F., Correa, D.M., Ribeiro, C., Fernandes, M.M., and Lanceros-Mendez, S. (2018). Fluorinated polymers as smart materials for advanced biomedical applications. Polymers 10, 161–186.

Cernak, T., Dylstra, K.D., Tyagarajan, S., Vachal, P., and Krka, S.W. (2016). The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576.

Chen, K., Berg, N., Gschwind, R., and Konig, B. (2017). Selective single ClF3-C bond cleavage in trifluoromethylarenes: merging visible-light catalysis with Lewis acid activation. J. Am. Chem. Soc. 139, 18444–18447.

Choi, J., Wang, D.Y., Kundu, S., Choly, Y., Emge, T.J., Krogh-Jespersen, K., and Goldman, A.S. (2011). Net oxidative addition of ClFs–F bonds to iodinium via initial C–H bond activation. Science 332, 1545–1548.

Chu, L., and Qing, F.-L. (2014). Oxidative trifluoromethylation and trifluoromethylthiolation reactions using [trifluoromethyl]trimethylsilane as a nucleophilic CF3 source. Acc. Chem. Res. 47, 1513–1522.

Dugan, T.R., Sun, X., Rybak-Akimo, E.V., Olutunji-Ojo, O., Cundari, T.R., and Holland, P.L. (2011). A masked two-coordinate cobalt(I) complex that activates C-F bonds. J. Am. Chem. Soc. 133, 12418-12421.

Dugan, T.R., Goldberg, J.M., Brennessel, W.W., and Holland, P.L. (2012). Low-coordinate cobalt fluoride complexes: synthesis, reactions, and production from C-C bond activation reactions. Organometallics 31, 1349-1360.

Ehm, C., Kriger, J., and Lentz, D. (2016). How a thermally unstable metal hydrido complex can yield high catalytic activity even at elevated temperatures. Chem. Eur. J. 22, 9305–9310.

Eisenstein, O., Milani, J., and Perutz, R.N. (2017). Selectivity of C-H activation and competition between C-H and C-F bond activation at fluorocarbons. Chem. Rev. 117, 8710–8753.
Feng, Z., Xiao, Y.-L., and Zhang, X. (2018). Transition-metal (Cu, Pd, Ni)-catalyzed difluoroalkylation via cross-coupling with difluoroalkyl halides. Acc. Chem. Res. 51, 2264–2278.

Frisch, M.J., et al. (2013). Gaussian 09, Revision D.01 (Gaussian, Inc.).

Fujita, T., Fuchibe, K., and Ichikawa, J. (2019). Transition-metal-mediated and -catalyzed C-F bond activation by fluoride elimination. Angew. Chem. Int. Ed. 58, 390–402.

Giffin, K.A., Harrison, D.J., Korobkov, I., and Baker, R.T. (2013). Activation of C-F and Ni-C bonds of [P,S]-ligated nickel perfluormetallacycles. Organometallics 32, 7424–7430.

Goerigk, L., and Grimme, S. (2011). Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theor. Comput. 7, 291–309.

Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 132, 154104.

Gu, W., Haneline, M.R., Douvris, C., and Ozervy, O.V. (2009). Carbon—carbon coupling of Csp3–F bonds using aluminium catalysts. J. Am. Chem. Soc. 131, 11203–11212.

Guan, H.-P., Luo, B.-H., and Hu, C.-M. (1997). An effective synthesis of 2-trifluoromethyl- or 2-(1,1-Difluoroalkyl)thiophenes. Synthesis, 461–464.

Hazari, A., Gouverneur, V., and Brown, J.M. (2009). Palladium-catalyzed substitution of allylic fluorides. Angew. Chem. Int. Ed. 48, 1296–1299.

Heravi, M.M., and Zadserjan, V. (2015). Recent advances in the synthesis of benzol[b]-furans. Adv. Heterocycl. Chem. 117, 261–376.

Honecutt, A.P., and Hoov, J.M. (2018). Nickel-catalyzed oxidative decarboxylative annulation for the synthesis of heterocycle-containing phenanthridinones. Org. Lett. 20, 7216–7219.

Hu, J., Han, X., Yuan, Y., and Shi, Z. (2017). Stereoselective synthesis of Z-fluoroalkenes through copper-catalyzed hydrodefluorination of gem-difluoroalkanes with water. Angew. Chem. Int. Ed. 56, 13342–13346.

Hu, J., Zhao, Y., and Shi, Z. (2018). Highly tunable multiboration of gem-difluoroalkanes via copper catalysis. Nat. Catal. 1, 860–869.

Huang, Y., and Hayashi, T. (2016). Rhodium-catalyzed asymmetric arylation/defluorination of 1-trifluoromethylalkynes forming enantioenriched 1,1-difluoroalkanes. J. Am. Chem. Soc. 138, 12340–12343.

Huang, W., Hu, M., Wan, X., and Shen, Q. (2019). Facilitating the transmetallation step with arylazides in nickel-catalyzed enantioselective arylation of secondary benzylic halides. Nat. Commun. 10, 2963.
Tian, P., Feng, C., and Loh, T.-P. (2015). Rhodium-catalysed C(sp2)-C(sp2) bond formation via C-H/C-F activation. Nat. Commun. 6, 7472.

Tian, Y.-M., Guo, X.-N., Kuntze-Fechner, M.W., Krummenacher, I., Braunischweg, H., Radius, U., Steffen, A., and Marder, T.B. (2018). Selective photocatalytic C–F borylation of polyfluoroarenes by Rh/Ni dual catalysis providing valuable fluorinated arylboronate esters. J. Am. Chem. Soc. 140, 17612–17623.

Tsuji, H., and Nakamura, E. (2017). Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc. Chem. Res. 50, 396–406.

Wang, H., and Jui, N.T. (2018). Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes. J. Am. Chem. Soc. 140, 163–166.

Wang, J., Sánchez-Roselló, M., Aceña, J.L., Pozo, C., Sorochinsky, A.E., Fusteró, S., Soloshonok, V.A., and Liu, H. (2014). Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 114, 2432–2506.

Wang, M., Pu, X., Zhao, Y., Wang, P., Li, Z., Zhu, Z., and Shi, Z. (2018a). Enantioselective copper-catalyzed defluoroalkylation using arylboronate-activated alkyl grignard reagents. J. Am. Chem. Soc. 140, 9061–9065.

Wang, C.-Q., Ye, L., Feng, C., and Loh, T.-P. (2018b). C-F bond cleavage enabled redox-neutral [4+1] annulation via C-H bond activation. J. Am. Chem. Soc. 139, 1762–1765.

Wang, J., Ogawa, Y., and Shibata, N. (2019). Activation of saturated fluorocarbons to synthesize spirobiindanes, monofluoroalkenes, and indane derivatives. iScience 17, 132–143.

Xie, Q., Li, L., Zhu, Z., Zhang, R., Ni, C., and Hu, J. (2018). From C1 to C2: TMSCF3 as a precursor for pentafluoroethylation. Angew. Chem. Int. Ed. 57, 13211–13215.

Xu, J., Ahmed, E.-A., Xiao, B., Lu, Q.-Q., Wang, Y.-L., Yu, C.-G., and Fu, Y. (2015). Pd-catalyzed regioselective activation of gem-difluorinated cyclopropanes: a highly efficient approach to 2-fluorinated allylic scaffolds. Angew. Chem. Int. Ed. 54, 8231–8235.

Xue, C., Huang, X., Wu, S., Zhou, J., Dai, J., Fu, C., and Ma, S. (2015). TfOH-catalyzed domino cyclosomerization/hydrolytic defluorination of 2,3-allenyl perfluoroalkyl ketones. Chem. Commun. 51, 17112–17115.
Supplemental Information

Selective Quadruple C(sp3)-F Functionalization of Polyfluoroalkyl Ketones

Ting Xie, Guo-Qiang Wang, Ya-Wen Wang, Weidong Rao, Haiyan Xu, Shuhua Li, Zhi-Liang Shen, and Xue-Qiang Chu
Supplemental Figures for NMR spectrums:

Figure S1. 1H NMR spectrum of 3a, related to Scheme 1.

Figure S2. 19F NMR spectrum of 3a, related to Scheme 1.
Figure S3. 13C NMR spectrum of 3a, related to Scheme 1.

Figure S4. 1H NMR spectrum of 3b, related to Scheme 1.
Figure S5. 19F NMR spectrum of 3b, related to Scheme 1.

Figure S6. 13C NMR spectrum of 3b, related to Scheme 1.
Figure S7. 1H NMR spectrum of 3c, related to Scheme 1.

Figure S8. 19F NMR spectrum of 3c, related to Scheme 1.
Figure S9. 13C NMR spectrum of 3c, related to Scheme 1.

Figure S10. 1H NMR spectrum of 3d-I or 3d-II, related to Scheme 1.
Figure S11. 19F NMR spectrum of 3d-I or 3d-II, related to Scheme 1.

Figure S12. 13C NMR spectrum of 3d-I or 3d-II, related to Scheme 1.
Figure S13. 1H NMR spectrum of 3d-I or 3d-II, related to Scheme 1.

Figure S14. 19F NMR spectrum of 3d-I or 3d-II, related to Scheme 1.
Figure S15. 13C NMR spectrum of 3d-I or 3d-II, related to Scheme 1.

Figure S16. 1H NMR spectrum of 3e-I and 3e-II, related to Scheme 1.
Figure S17. 19F NMR spectrum of 3e-I and 3e-II, related to Scheme 1.

Figure S18. 13C NMR spectrum of 3e-I and 3e-II, related to Scheme 1.
Figure S19. 1H NMR spectrum of 3f-I or 3f-II, related to Scheme 1.

Figure S20. 19F NMR spectrum of 3f-I or 3f-II, related to Scheme 1.
Figure S21. 13C NMR spectrum of 3f-I or 3f-II, related to Scheme 1.

Figure S22. 1H NMR spectrum of 3f-I or 3f-II, related to Scheme 1.
Figure S23. 19F NMR spectrum of 3f-I or 3f-II, related to Scheme 1.

Figure S24. 13C NMR spectrum of 3f-I or 3f-II, related to Scheme 1.
Figure S25. 1H NMR spectrum of 3g, related to Scheme 1.

Figure S26. 19F NMR spectrum of 3g, related to Scheme 1.
Figure S27. 13C NMR spectrum of 3g, related to Scheme 1.

Figure S28. 1H NMR spectrum of 3h-I or 3h-II, related to Scheme 1.
Figure S29. 19F NMR spectrum of 3h-I or 3h-II, related to Scheme 1.

Figure S30. 13C NMR spectrum of 3h-I or 3h-II, related to Scheme 1.
Figure S31. 1H NMR spectrum of 3h-I or 3h-II, related to Scheme 1.

Figure S32. 19F NMR spectrum of 3h-I or 3h-II, related to Scheme 1.
Figure S33. 13C NMR spectrum of 3h-I or 3h-II, related to Scheme 1.

Figure S34. 1H NMR spectrum of 4a, related to Scheme 1.
Figure S35. 19F NMR spectrum of 4a, related to Scheme 1.

Figure S36. 13C NMR spectrum of 4a, related to Scheme 1.
Figure S37. 1H NMR spectrum of 4b, related to Scheme 1.

Figure S38. 19F NMR spectrum of 4b, related to Scheme 1.
Figure S39. 13C NMR spectrum of 4b, related to Scheme 1.

Figure S40. 1H NMR spectrum of 4c, related to Scheme 1.
Figure S41. 19F NMR spectrum of 4c, related to Scheme 1.

Figure S42. 13C NMR spectrum of 4c, related to Scheme 1.
Figure S43. 1H NMR spectrum of 5a, related to Scheme 1.

Figure S44. 19F NMR spectrum of 5a, related to Scheme 1.
Figure S45. 13C NMR spectrum of 5a, related to Scheme 1.

Figure S46. 1H NMR spectrum of 5b, related to Scheme 1.
Figure S47. 19F NMR spectrum of 5b, related to Scheme 1.

Figure S48. 13C NMR spectrum of 5b, related to Scheme 1.
Figure S49. 1H NMR spectrum of 5c-I, related to Scheme 1.

Figure S50. 19F NMR spectrum of 5c-I, related to Scheme 1.
Figure S51. 13C NMR spectrum of 5c-I, related to Scheme 1.

Figure S52. 1H NMR spectrum of 5c-II, related to Scheme 1.
Figure S53. 19F NMR spectrum of 5c-II, related to Scheme 1.

Figure S54. 13C NMR spectrum of 5c-II, related to Scheme 1.
Figure S55. 1H NMR spectrum of 6a, related to Scheme 1.

Figure S56. 19F NMR spectrum of 6a, related to Scheme 1.
Figure S57. 13C NMR spectrum of 6a, related to Scheme 1.

Figure S58. 1H NMR spectrum of 6b, related to Scheme 1.
Figure S59. 19F NMR spectrum of 6b, related to Scheme 1.

Figure S60. 13C NMR spectrum of 6b, related to Scheme 1.
Figure S61. 1H NMR spectrum of $6c$, related to Scheme 1.

Figure S62. 19F NMR spectrum of $6c$, related to Scheme 1.
Figure S63. 13C NMR spectrum of 6c, related to Scheme 1.

Figure S64. 1H NMR spectrum of 6d, related to Scheme 1.
Figure S65. 19F NMR spectrum of 6d, related to Scheme 1.

Figure S66. 13C NMR spectrum of 6d, related to Scheme 1.
Figure S67. 1H NMR spectrum of 7a, related to Scheme 1.

Figure S68. 19F NMR spectrum of 7a, related to Scheme 1.
Figure S69. 13C NMR spectrum of 7a, related to Scheme 1.

Figure S70. 1H NMR spectrum of 7b-I or 7b-II, related to Scheme 1.
Figure S71. 19F NMR spectrum of 7b-I or 7b-II, related to Scheme 1.

Figure S72. 13C NMR spectrum of 7b-I or 7b-II, related to Scheme 1.
Figure S73. 1H NMR spectrum of 7b-I or 7b-II, related to Scheme 1.

Figure S74. 19F NMR spectrum of 7b-I or 7b-II, related to Scheme 1.
Figure S75. 13C NMR spectrum of 7b-I or 7b-II, related to Scheme 1.

Figure S76. 1H NMR spectrum of 7c-I, 7c-II, or 7c-III, related to Scheme 1.
Figure S77. 19F NMR spectrum of 7c-I, 7c-II, or 7c-III, related to Scheme 1.

Figure S78. 13C NMR spectrum of 7c-I, 7c-II, or 7c-III, related to Scheme 1.
Figure S79. 1H NMR spectrum of 8-I, related to Scheme 1.

Figure S80. 19F NMR spectrum of 8-I, related to Scheme 1.
Figure S81. 13C NMR spectrum of 8-I, related to Scheme 1.

Figure S82. 1H NMR spectrum of 8-II, related to Scheme 1.
Figure S83. 19F NMR spectrum of 8-II, related to Scheme 1.

Figure S84. 13C NMR spectrum of 8-II, related to Scheme 1.
Figure S85. 1H NMR spectrum of 9, related to Scheme 1.

Figure S86. 19F NMR spectrum of 9, related to Scheme 1.
Figure S87. 13C NMR spectrum of 9, related to Scheme 1.

Figure S88. 1H NMR spectrum of 10a, related to Scheme 1.
Figure S89. 19F NMR spectrum of 10a, related to Scheme 1.

Figure S90. 13C NMR spectrum of 10a, related to Scheme 1.
Figure S91. 1H NMR spectrum of 10b, related to Scheme 1.

Figure S92. 19F NMR spectrum of 10b, related to Scheme 1.
Figure S93. 13C NMR spectrum of 10b, related to Scheme 1.

Figure S94. 1H NMR spectrum of 10c, related to Scheme 1.
Figure S95. 19F NMR spectrum of 10c, related to Scheme 1.

Figure S96. 13C NMR spectrum of 10c, related to Scheme 1.
Figure S97. 1H NMR spectrum of 10d, related to Scheme 1.

Figure S98. 19F NMR spectrum of 10d, related to Scheme 1.
Figure S99. 13C NMR spectrum of 10d, related to Scheme 1.

Figure S100. 1H NMR spectrum of 11a, related to Scheme 1.
Figure S101. 19F NMR spectrum of 11a, related to Scheme 1.

Figure S102. 13C NMR spectrum of 11a, related to Scheme 1.
Figure S103. 1H NMR spectrum of 11b, related to Scheme 1.

Figure S104. 19F NMR spectrum of 11b, related to Scheme 1.
Figure S105. 13C NMR spectrum of $11b$, related to Scheme 1.

Figure S106. 1H NMR spectrum of $11c$, related to Scheme 1.
Figure S107. 19F NMR spectrum of 11c, related to Scheme 1.

Figure S108. 13C NMR spectrum of 11c, related to Scheme 1.
Figure S109. 1H NMR spectrum of 12, related to Scheme 1.

Figure S110. 19F NMR spectrum of 12, related to Scheme 1.
Figure S111. 13C NMR spectrum of 12, related to Scheme 1.

Figure S112. 1H NMR spectrum of 13, related to Scheme 1.
Figure S113. 19F NMR spectrum of 13, related to Scheme 1.

Figure S114. 13C NMR spectrum of 13, related to Scheme 1.
Figure S115. 1H NMR spectrum of 15a, related to Scheme 2.

Figure S116. 19F NMR spectrum of 15a, related to Scheme 2.
Figure S117. 13C NMR spectrum of 15a, related to Scheme 2.

Figure S118. 1H NMR spectrum of 15b, related to Scheme 2.
Figure S119. 19F NMR spectrum of 15b, related to Scheme 2.

Figure S120. 13C NMR spectrum of 15b, related to Scheme 2.
Figure S121. 1H NMR spectrum of 15c, related to Scheme 2.

Figure S122. 19F NMR spectrum of 15c, related to Scheme 2.
Figure S123. 13C NMR spectrum of 15c, related to Scheme 2.

Figure S124. 1H NMR spectrum of 15d, related to Scheme 2.
Figure S125. 19F NMR spectrum of 15d, related to Scheme 2.

Figure S126. 13C NMR spectrum of 15d, related to Scheme 2.
Figure S127. 1H NMR spectrum of 15e, related to Scheme 2.

Figure S128. 19F NMR spectrum of 15e, related to Scheme 2.
Figure S129. 13C NMR spectrum of 15e, related to Scheme 2.

Figure S130. 1H NMR spectrum of 15f-I, 15f-II, or 15f-III, related to Scheme 2.
Figure S131. 19F NMR spectrum of 15f-I, 15f-II, or 15f-III, related to Scheme 2.

Figure S132. 13C NMR spectrum of 15f-I, 15f-II, or 15f-III, related to Scheme 2.
Figure S133. 1H NMR spectrum of 15g, related to Scheme 2.

Figure S134. 19F NMR spectrum of 15g, related to Scheme 2.
Figure S135. 13C NMR spectrum of 15g, related to Scheme 2.

Figure S136. 1H NMR spectrum of 16a, related to Scheme 3.
Figure S137. 19F NMR spectrum of 16a, related to Scheme 3.

Figure S138. 13C NMR spectrum of 16a, related to Scheme 3.
Figure S139. 1H NMR spectrum of 16b, related to Scheme 3.

Figure S140. 19F NMR spectrum of 16b, related to Scheme 3.
Figure S141. 13C NMR spectrum of 16b, related to Scheme 3.

Figure S142. 1H NMR spectrum of 16c, related to Scheme 3.
Figure S143. 19F NMR spectrum of 16c, related to Scheme 3.

Figure S144. 13C NMR spectrum of 16c, related to Scheme 3.
Figure S145. 1H NMR spectrum of $16d$, related to Scheme 3.

Figure S146. 19F NMR spectrum of $16d$, related to Scheme 3.
Figure S147. 13C NMR spectrum of 16d, related to Scheme 3.

Figure S148. 1H NMR spectrum of 16e, related to Scheme 3.
Figure S149. 19F NMR spectrum of 16e, related to Scheme 3.

Figure S150. 13C NMR spectrum of 16e, related to Scheme 3.
Figure S151. 1H NMR spectrum of 16f, related to Scheme 3.

Figure S152. 19F NMR spectrum of 16f, related to Scheme 3.
Figure S153. 13C NMR spectrum of 16f, related to Scheme 3.

Figure S154. 1H NMR spectrum of 16g, related to Scheme 3.
Figure S155. 19F NMR spectrum of 16g, related to Scheme 3.

Figure S156. 13C NMR spectrum of 16g, related to Scheme 3.
Figure S157. 1H NMR spectrum of 16g, related to Scheme 3.

Figure S158. 19F NMR spectrum of 16h, related to Scheme 3.
Figure S159. 13C NMR spectrum of 16h, related to Scheme 3.

Figure S160. 1H NMR spectrum of 16j, related to Scheme 3.
Figure S161. 19F NMR spectrum of 16j, related to Scheme 3.

Figure S162. 13C NMR spectrum of 16j, related to Scheme 3.
Figure S163. 1H NMR spectrum of 16k, related to Scheme 3.

Figure S164. 19F NMR spectrum of 16k, related to Scheme 3.
Figure S165. 13C NMR spectrum of 16k, related to Scheme 3.

Figure S166. 1H NMR spectrum of 16l, related to Scheme 3.
Figure S167. 19F NMR spectrum of 16l, related to Scheme 3.

Figure S168. 13C NMR spectrum of 16l, related to Scheme 3.
Figure S169. 1H NMR spectrum of 16m, related to Scheme 3.

Figure S170. 19F NMR spectrum of 16m, related to Scheme 3.
Figure S171. 13C NMR spectrum of 16m, related to Scheme 3.

Figure S172. 1H NMR spectrum of 16n, related to Scheme 3.
Figure S173. \(^{19}\text{F}\) NMR spectrum of 16n, related to Scheme 3.

Figure S174. \(^{13}\text{C}\) NMR spectrum of 16n, related to Scheme 3.
Figure S175. 1H NMR spectrum of 16o, related to Scheme 3.

Figure S176. 19F NMR spectrum of 16o, related to Scheme 3.
Figure S177. 13C NMR spectrum of 16o, related to Scheme 3.

Figure S178. 1H NMR spectrum of 16p, related to Scheme 3.
Figure S179. 19F NMR spectrum of 16p, related to Scheme 3.

Figure S180. 13C NMR spectrum of 16p, related to Scheme 3.
Figure S181. 1H NMR spectrum of 16q, related to Scheme 3.

Figure S182. 19F NMR spectrum of 16q, related to Scheme 3.
Figure S183. 13C NMR spectrum of 16q, related to Scheme 3.

Figure S184. 1H NMR spectrum of 16r, related to Scheme 3.
Figure S185. 19F NMR spectrum of 16r, related to Scheme 3.

Figure S186. 13C NMR spectrum of 16r, related to Scheme 3.
Figure S187. 1H NMR spectrum of 16s, related to Scheme 3.

Figure S188. 19F NMR spectrum of 16s, related to Scheme 3.
Figure S189. 13C NMR spectrum of 16s, related to Scheme 3.

Figure S190. 1H NMR spectrum of 16t, related to Scheme 3.
Figure S191. 19F NMR spectrum of 16t, related to Scheme 3.

Figure S192. 13C NMR spectrum of 16t, related to Scheme 3.
Figure S193. 1H NMR spectrum of 16u, related to Scheme 3.

Figure S194. 19F NMR spectrum of 16u, related to Scheme 3.
Figure S195. 13C NMR spectrum of 16u, related to Scheme 3.

Figure S196. 1H NMR spectrum of 16v, related to Scheme 3.
Figure S197. 19F NMR spectrum of $16v$, related to Scheme 3.

Figure S198. 13C NMR spectrum of $16v$, related to Scheme 3.
Figure S199. 1H NMR spectrum of 16w, related to Scheme 3.

Figure S200. 19F NMR spectrum of 16w, related to Scheme 3.
Figure S201. 13C NMR spectrum of 16w, related to Scheme 3.

Figure S202. 1H NMR spectrum of 16x, related to Scheme 3.
Figure S203. 19F NMR spectrum of 16x, related to Scheme 3.

Figure S204. 13C NMR spectrum of 16x, related to Scheme 3.
Figure S205. 1H NMR spectrum of 16y, related to Scheme 3.

Figure S206. 19F NMR spectrum of 16y, related to Scheme 3.
Figure S207. 13C NMR spectrum of 16y, related to Scheme 3.

Figure S208. 1H NMR spectrum of 16z, related to Scheme 3.
Figure S209. 19F NMR spectrum of 16z, related to Scheme 3.

Figure S210. 13C NMR spectrum of 16z, related to Scheme 3.
Figure S211. 1H NMR spectrum of 16a', related to Scheme 3.

Figure S212. 19F NMR spectrum of 16a', related to Scheme 3.
Figure S213. 13C NMR spectrum of 16a', related to Scheme 3.

Figure S214. 1H NMR spectrum of 16b', related to Scheme 3.
Figure S215. 19F NMR spectrum of 16b', related to Scheme 3.

Figure S216. 13C NMR spectrum of 16b', related to Scheme 3.
Figure S217. 1H NMR spectrum of 17, related to Scheme 4.

Figure S218. 19F NMR spectrum of 17, related to Scheme 4.
Figure S219. 13C NMR spectrum of 17, related to Scheme 4.

Figure S220. 1H NMR spectrum of 18, related to Scheme 4.
Figure S221. 19F NMR spectrum of 18, related to Scheme 4.

Figure S222. 13C NMR spectrum of 18, related to Scheme 4.
Figure S223. 1H NMR spectrum of 19, related to Scheme 4.

Figure S224. 19F NMR spectrum of 19, related to Scheme 4.
Figure S225. 13C NMR spectrum of 19, related to Scheme 4.

Figure S226. 1H NMR spectrum of 20, related to Scheme 4.
Figure S227. 19F NMR spectrum of 20, related to Scheme 4.

Figure S228. 13C NMR spectrum of 20, related to Scheme 4.
Figure S229. 1H NMR spectrum of 21, related to Scheme 4.

Figure S230. 19F NMR spectrum of 21, related to Scheme 4.
Figure S231. 13C NMR spectrum of 21, related to Scheme 4.
Supplemental figures for X-Ray structures

Figure S232. X-Ray crystal data of 6b, related to Figure 2.

![Chemical structure of 6b](image)

Compound: 3,5-dimethyl-4-nitro-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-pyrazole (6b)

Crystal Number: CCDC 1881997

Chemical Formula: C₁₉H₁₂F₅N₃O₃

Formula weight: 425.3150

Space Group: P 21/c

Cell:

\[a = 18.612(4) \quad b = 13.533(3) \quad c = 7.5759(17) \]

Figure S233. X-Ray crystal data of 19, related to Figure 2.

![Chemical structure of 19](image)

Compound: (Z)-7-(perfluoropropylidene)-7H-benzo[4,5]imidazo[2,1-b]naphtho[2,1-e][1,3]oxazine (19)

Crystal Number: CCDC 1881996

Chemical Formula: C₂₁H₁₀F₆N₂O

Formula weight: 420.3144

Space Group: P n a 21

Cell:

\[a = 8.920(8) \quad b = 12.280(11) \quad c = 32.31(3) \]

Notice: these structures were collected at room temperature, where the disorder in the fluorinated groups is severe and can hardly be modelled.
Supplemental figures for computational details and discussion

All calculations were performed with the Gaussian 09 package (Frischet al., 2013). Geometry optimizations and frequency calculations were performed at the UB3LYP (Becke, 1988; Lee et al., 1988; Becke, 1993)/def2-SVP level (Weigend et al., 2005) in conjunction with the polarizable continuum model (PCM) (Tomasi et al. 1994) to account for the solvation effects of dimethyl sulfoxide (DMSO). To get more accurate energies, single point energies were computed at the UB3LYP/def2-TZVP (Weigend et al., 2005) level combined with Grimme’s DFT empirical dispersion correction (DFT-D3) for all the species (Grimme et al., 2010; Goerigk et al., 2011). The 3D structures of the optimized species were generated using CYLview (Legault, 2009). Activation free energy barriers reported here are defined as the free energy difference between the transition state and the lowest-energy stationary point or separated reactants before it along the reaction pathways.

Figure S234. 3D structures of the species involved in the Cs\(_2\)CO\(_3\)-mediated four C(sp\(^3\))-F bonds cleavage and C-N/O coupling reaction of 1c’ and 2a, related to Figure 3 and 4.
Figure S235. Transition state structures of Cs$_2$CO$_3$-mediated nucleophilic addition of 2a to IN2 without or with CoBr$_2$, related to Figure 3 and 4.

![Transition state structures](image1)

$\text{TS}_{\text{IN2/IN3}}$
\[\Delta G^\ddagger = 15.2 \text{ kcal/mol} \]

$\text{Co-TS}_{\text{IN2/IN3}}$
\[\Delta G^\ddagger = 5.9 \text{ kcal/mol} \]

Figure S236. Transition state structures of Cs$_2$CO$_3$-mediated intramolecular cyclization reaction of IN7 without or with CoBr$_2$, related to Figure 3 and 4.

![Transition state structures](image2)

$\text{TS}_{\text{IN7/16b}}$
\[\Delta G^\ddagger = 25.6 \text{ kcal/mol} \]

$\text{Co-TS}_{\text{IN7/16b}}$
\[\Delta G^\ddagger = 26.7 \text{ kcal/mol} \]

Figure S237. Cs$_2$CO$_3$- and CsHCO$_3$-mediated intramolecular cyclization reaction of IN7, related to Figure 3 and 4.

![Transition state structures](image3)

$\text{TS}_{\text{IN7/16b}}$(Cs$_2CO_3$)
\[\Delta G^\ddagger = 25.6 \text{ kcal/mol} \]

$\text{TS}_{\text{IN7/16b}}^{\prime}$(CsHCO$_3$)
\[\Delta G^\ddagger = 25.9 \text{ kcal/mol} \]

The CsHCO$_3$-mediated intramolecular cyclization reaction of IN7 (rate-limiting step) was also investigated. As shown in Figure S237, the corresponding transition states, $\text{TS}_{\text{IN7/16b}}$ and $\text{TS}_{\text{IN7/16b}}^{\prime}$, have almost similar activation barriers with Cs$_2$CO$_3$ and CsHCO$_3$. This result indicates that the base does not have significant influence on this process.
Figure S238. Various α-perfluoroalkyl ketones, related to Scheme 1-5.
Figure S239. Various nucleophiles, related to Scheme 1-5.
Optimization of reaction conditions

Table S1. Initial attempts for the designed reaction[a], related to Table 1.

Entry	Catalyst	Additive	Oxidant	Base	Yield of 3a (%)[b]
1	CoBr$_2$	TBAB	K$_2$S$_2$O$_8$	Cs$_2$CO$_3$	55 (52)[c]
2	CoBr$_2$	TBAB	--	Cs$_2$CO$_3$	74 (70)[c]
3	--	TBAB	K$_2$S$_2$O$_8$	Cs$_2$CO$_3$	39
4	--	TBAB	--	Cs$_2$CO$_3$	39
5	CoBr$_2$	--	--	Cs$_2$CO$_3$	58
6	CoBr$_2$	TBAB	K$_2$S$_2$O$_8$	--	trace

[a] Reaction conditions: 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 0.30 mmol), 2-methyl-1H-benzo[d]imidazole (2a, 0.60 mmol), catalyst (0.03 mmol), oxidant (0.3 mmol), additive (0.3 mmol), and base (0.75 mmol) in DMSO (2.0 mL) at 70 °C under N$_2$ for 10 h. [b] Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. [c] Isolated yield.

Table S2. Optimization of the reaction temperature[a], related to Table 1.

Entry	Temperature (°C)	Yield of 3a (%)[b]
1	rt	74 (71)[c]
2	50	55
3	70	74
4	100	46

[a] Reaction conditions: 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 0.30 mmol), 2-methyl-1H-benzo[d]imidazole (2a, 0.60 mmol), CoBr$_2$ (0.03 mmol), TBAB (0.3 mmol), and Cs$_2$CO$_3$ (0.75 mmol) in DMSO (2.0 mL) under N$_2$ for 10 h. [b] Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. [c] Isolated yield.
Table S3. Optimization of the reaction solvent[a], related to Table 1.

Entry	Solvent	Yield of 3a (%)[b]
1	DMSO	74 (71)[c]
2	MeCN	55
3	MeNO\textsubscript{2}	0
4	DCM	66
5	DMF	61

[a] Reaction conditions: 2-(perfluorobutyl)-3,4-dihydrornaphthalen-1(2H)-one (1a, 0.30 mmol), 2-methyl-1H-benzo[d]imidazole (2a, 0.60 mmol), CoBr\textsubscript{2} (0.03 mmol), TBAB (0.3 mmol), and Cs\textsubscript{2}CO\textsubscript{3} (0.75 mmol) in solvent (2.0 mL) at room temperature under N\textsubscript{2} for 10 h. [b] Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. [c] Isolated yield.

Table S4. Optimization of the reaction base[a], related to Table 1.

Entry	Base	Yield of 3a (%)[b]
1	Cs\textsubscript{2}CO\textsubscript{3}	74 (71)[c]
2	K\textsubscript{2}CO\textsubscript{3}	67
3	Li\textsubscript{2}CO\textsubscript{3}	0
4	‘BuONa	62
5	DABCO	<10
6	LiOH	56

[a] Reaction conditions: 2-(perfluorobutyl)-3,4-dihydrornaphthalen-1(2H)-one (1a, 0.30 mmol), 2-methyl-1H-benzo[d]imidazole (2a, 0.60 mmol), CoBr\textsubscript{2} (0.03 mmol), TBAB (0.3 mmol), and base (0.75 mmol) in DMSO (2.0 mL) at room temperature under N\textsubscript{2} for 10 h. [b] Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. [c] Isolated yield.
Table S5. Optimization of the reaction catalyst\(^{[a]}\), related to Table 1.

Entry	Catalyst	Yield of 3a (%)\(^{[b]}\)
1	CoBr\(_2\)	74 (71)\(^{[c]}\)
2	Co(OAc)\(_2\)	49
3	CoCl\(_2\)-6H\(_2\)\(_2\)O	75 (72)\(^{[c]}\)
4	Co(C\(_2\)O\(_4\))\(_2\)-2H\(_2\)\(_2\)O	0
5	CuBr\(_2\)	70

\(^{[a]}\) Reaction conditions: 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 0.30 mmol), 2-methyl-1H-benz[d]imidazole (2a, 0.60 mmol), catalyst (0.03 mmol), TBAB (0.3 mmol), and Cs\(_2\)CO\(_3\) (0.75 mmol) in DMSO (2.0 mL) at room temperature under N\(_2\) for 10 h. \(^{[b]}\) Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. \(^{[c]}\) Isolated yield.

Table S6. Other Lewis acids as catalysts\(^{[a]}\), related to Table 1.

Entry	Lewis acid	Yield of 3a (%)\(^{[b]}\)
1	CoBr\(_2\)	39
2	Co(OAc)\(_2\)	74
3	BF\(_3\) Et\(_2\)O	60
4	AlCl\(_3\)	74
5	NiBr\(_2\)	50
6	InBr\(_3\)	72
7	ZnBr\(_2\)	66
8	GaBr\(_3\)	75
9	Fe(OTf)\(_3\)	71
10	FeCl\(_2\)	63
11	Fe(acac)\(_3\)	44

\(^{[a]}\) Reaction conditions: 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 0.30 mmol), 2-methyl-1H-benz[d]imidazole (2a, 0.60 mmol), Lewis acid (0.03 mmol), TBAB (0.3 mmol), and Cs\(_2\)CO\(_3\) (0.75 mmol) in DMSO (2.0 mL) at room temperature under N\(_2\) for 10 h. \(^{[b]}\) Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard.
Preparation of Substrates

General procedures for the synthesis of α-perfluoroalkyl ketones

Figure S240. General procedure A (Pham et al., 2011), related to Scheme 1-4.

According to MacMillan’s reported method, a solution of enolsilane I (1.2 mmol), Ru(bpy)$_3$Cl$_2$•6H$_2$O (4.5 mg, 0.006 mmol, 0.5 mol%), N-ethyl-N-isopropylpropan-2-amine (424.0 µL, 2.4 mmol), perfluoroalkyl iodide II (12 mmol), H$_2$O (32.0 µL, 17.8 mmol) in THF (6.0 mL) was stirred under nitrogen atmosphere (by 3 times’ vacuum evacuation/N$_2$ backfill cycles) by irradiation with 8 W Blue LEDs at room temperature for 24 h. Upon completion of the reaction (indicated by TLC), solvent was removed under vacuum and the residue was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (1:500) as eluent to afford the α-perfluoroalkyl ketone I.

Representative examples:

2-(Perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1a) (Lee et al., 1988)

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.08 – 8.01$ (m, 1H), 7.57 – 7.49 (m, 1H), 7.35 (t, $J = 7.6$ Hz, 1H), 7.28 (s, 1H), 3.49 – 3.35 (m, 1H), 3.23 – 3.15 (m, 1H), 3.08 – 2.98 (m, 1H), 2.55 – 2.36 (m, 2H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.45 – -81.25$ (m, 3F), -108.96 – -113.38 (m, 2F), -118.78 – -121.94 (m, 2F), -125.80 – -126.50 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 190.3$ (m), 142.9, 134.2, 132.3 (m), 128.7, 127.9, 127.0, 49.3 (t, $J = 20.3$ Hz), 27.1, 22.9 (m) ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

2-Methyl-4-(perfluorobutyl)-5,6-dihydro-[1,1′-biphenyl]-3(4H)-one (1n)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.43 – 7.38$ (m, 2H), 7.37 – 7.32 (m, 1H), 7.23 – 7.19 (m, 2H), 3.39 – 3.24 (m, 1H), 2.88 – 2.76 (m, 1H), 2.73 – 2.64 (m, 1H), 2.48 – 2.34 (m, 2H), 1.76 (t, $J = 1.7$ Hz, 3H) ppm.
19F NMR (376 MHz, CDCl$_3$): $\delta = -80.67 \text{ to } -81.08 \text{ (m, 3F)}, -108.12 \text{ to } -114.26 \text{ (m, 2F)}, -119.45 \text{ to } -122.63 \text{ (m, 2F)}, -125.74 \text{ to } -126.38 \text{ (m, 2F)}$ ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 191.6, 156.5, 140.3, 132.2, 128.5, 128.3, 126.9, 47.6$ (t, $J = 20.3$ Hz), 30.7, 22.0, 13.1 ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

2,4'-Dimethyl-4-(perfluorobutyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (1o)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.25 \text{ to } 7.20$ (m, 2H), 7.13 \text{ to } 7.08$ (m, 2H), 3.36 \text{ to } 3.22 (m, 1H), 2.87 \text{ to } 2.75$ (m, 1H), 2.72 \text{ to } 2.60$ (m, 1H), 2.38 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.77$ (t, $J = 9.8$ Hz, 3F), -109.70 \text{ to } -114.25$ (m, 2F), -119.29 \text{ to } -122.06$ (m, 2F), -125.98$ (t, $J = 15.4$ Hz, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 191.7$ (t, $J = 1.4$ Hz), 156.6, 138.4, 137.3, 132.1, 129.1, 127.0, 47.6 (t, $J = 20.2$ Hz), 30.7, 22.0 (m), 21.2, 13.3 ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

4'-Chloro-2-methyl-4-(perfluorobutyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (1p)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.34$ (d, $J = 8.4$ Hz, 2H), 7.14 (d, $J = 8.4$ Hz, 2H), 3.35 \text{ to } 3.20 (m, 1H), 2.83 \text{ to } 2.71$ (m, 1H), 2.70 \text{ to } 2.58$ (m, 1H), 2.46 \text{ to } 2.29$ (m, 2H), 1.79 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.80 \text{ to } -80.92$ (m, 3F), -110.28 \text{ to } -114.09$ (m, 3F), -119.53 \text{ to } -121.96$ (m, 2F), -125.96 \text{ to } -126.14$ (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 191.2, 154.9, 138.6, 134.2, 132.4, 128.6, 128.4, 47.6$ (t, $J = 20.6$ Hz), 30.4, 21.8, 12.9 ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

2-Methyl-3-(naphthalen-1-yl)-6-(perfluorobutyl)cyclohex-2-en-1-one (1q)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.93 \text{ to } 7.86$ (m, 1H), 7.83 (d, $J = 8.3$ Hz, 1H), 7.69 \text{ to } 7.56$ (m, 1H), 7.54 \text{ to } 7.46$ (m, 3H), 7.24 \text{ to } 7.18$ (m, 1H), 3.55 \text{ to } 3.31$ (m, 1H), 2.96 \text{ to } 2.78$ (m, 1H), 2.78 \text{ to } 2.58$ (m, 1H), 2.50 (d, $J = 5.4$ Hz, 2H), 1.56 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.80$ (s, 3F), -109.50 \text{ to } -113.97$ (m, 2F), -119.36 \text{ to } -122.12$ (m, 2F), -125.92 (t, $J = 12.4$ Hz, 2F) ppm.
13C NMR (100 MHz, CDCl$_3$): $\delta = 191.3$ (m), 156.2 (d, $J = 18.6$ Hz), 138.1 (d, $J = 5.1$ Hz), 134.2 (d, $J = 9.4$ Hz), 133.6, 129.1 (d, $J = 9.3$ Hz), 128.7 (d, $J = 9.2$ Hz), 128.2 (d, $J = 7.5$ Hz), 126.8 (d, $J = 16.2$ Hz), 126.2 (d, $J = 5.1$ Hz), 125.4 (d, $J = 11.6$ Hz), 124.3 (d, $J = 4.8$ Hz), 123.6 (d, $J = 3.6$ Hz), 47.7 (q, $J = 20.0$ Hz), 31.1 (d, $J = 23.2$ Hz), 22.3 (m), 12.9 ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

6-Methyl-3-(perfluorobutyl)-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (1r)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.40 – 7.32$ (m, 2H), 7.31 – 7.25 (m, 1H), 7.04 (d, $J = 7.1$ Hz, 2H), 3.40 – 3.19 (m, 1H), 2.73 – 2.59 (m, 1H), 2.56 – 2.43 (m, 1H), 2.42 – 2.30 (m, 2H), 1.81 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.91$ (s, 3F), -110.17 – -113.94 (m, 2F), -119.49 – -122.08 (m, 2F), -126.06 (t, $J = 14.9$ Hz, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 189.8$ (m), 157.5, 137.9 (d, $J = 1.1$ Hz), 135.1, 129.8, 128.0, 127.3, 47.7 (t, $J = 21.0$ Hz), 30.1, 22.4, 21.4 (m) ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

6'-Methyl-2'-oxo-3'-(perfluorobutyl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-4-carbonitrile (1s)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.66$ (d, $J = 7.6$ Hz, 2H), 7.18 (d, $J = 7.5$ Hz, 2H), 3.43 – 3.26 (m, 1H), 2.82 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.46 – 2.37 (m, 2H), 1.85 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.83$ (t, $J = 9.7$ Hz, 3F), -110.32 – -113.64 (m, 2F), -119.39 – -122.20 (m, 2F), -126.01 (t, $J = 15.1$ Hz, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 189.2$ (t, $J = 2.1$ Hz), 158.9, 140.1, 136.5 (d, $J = 2.0$ Hz), 131.9, 130.8, 118.7, 111.3, 47.5 (t, $J = 21.4$ Hz), 30.2, 22.4, 21.3 (m) ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

3-Methyl-6-(perfluorobutyl)-2-(thiophen-2-yl)cylohex-2-en-1-one (1t)

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.37$ (d, $J = 4.9$ Hz, 1H), 7.04 (t, $J = 4.1$ Hz, 1H), 6.84 (d, $J = 2.5$ Hz, 1H), 3.41 – 3.25 (m, 1H), 2.80 – 2.67 (m, 1H), 2.63 – 2.50 (m, 1H), 2.43 – 2.33 (m, 2H), 2.01 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.09$ (t, $J = 9.8$ Hz, 3F), -109.64 – -113.10 (m, 2F), -118.74
13C NMR (100 MHz, CDCl$_3$): δ = 189.1 (m), 160.1, 134.6, 131.1, 128.4, 126.5, 126.4, 47.8 (t, $J = 21.3$ Hz), 30.8 (t, $J = 1.5$ Hz), 23.0, 21.3 (m) ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

5-Methyl-2-(perfluorobutyl)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (1u)

1H NMR (400 MHz, CDCl$_3$): δ = 7.31 – 7.18 (m, 3H), 7.11 (d, $J = 7.3$ Hz, 2H), 6.12 (s, 1H), 4.00 – 3.89 (m, 1H), 3.47 – 3.26 (m, 1H), 3.03 (dd, $J = 19.7$, 5.2 Hz, 1H), 2.55 (d, $J = 19.8$ Hz, 1H), 2.03 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -80.81 – -81.32 (m, 3F), -110.57 – -112.97 (m, 2F), -119.91 – -122.06 (m, 2F), -124.76 – -127.17 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 189.6 (m), 161.6, 142.0, 128.9, 128.9, 127.3 (t, $J = 1.9$ Hz), 126.8, 52.6 (t, $J = 20.1$ Hz), 37.4 (t, $J = 1.7$ Hz), 34.2, 24.1 (m) ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

3-((2-Bromophenyl)thio)-5-methyl-6-(perfluorobutyl)cyclohex-2-en-1-one (1v)

1H NMR (400 MHz, CDCl$_3$): δ = 7.74 (d, $J = 7.6$ Hz, 1H), 7.66 – 7.60 (m, 1H), 7.42 – 7.30 (m, 2H), 5.50 (d, $J = 2.0$ Hz, 1H), 3.12 – 2.80 (m, 3H), 2.27 (d, $J = 18.4$ Hz, 1H), 1.20 (d, $J = 7.1$ Hz, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -80.74 – -80.90 (m, 3F), -109.53 – -114.50 (m, 2F), -120.05 – -122.55 (m, 2F), -125.68 – -126.00 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 186.8 (m), 163.1, 137.7, 134.3, 132.1, 130.5, 128.8, 128.7, 120.1 (t, $J = 1.7$ Hz), 53.0 (t, $J = 20.1$ Hz), 33.6 (t, $J = 2.6$ Hz), 27.7 (m), 19.9 (d, $J = 0.9$ Hz) ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

(8R,9S,10R,13S,14S,17S)-13-Methyl-3-oxo-2-(perfluorobutyl)-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl acetate (1w)

1H NMR (400 MHz, CDCl$_3$): δ = 5.96 (s, 1H), 4.67 – 4.57 (m, 1H), 3.18 (t, $J = 17.9$ Hz, 1H), 2.68 – 2.47 (m, 2H), 2.35 – 2.25 (m, 2H), 2.24 – 2.13 (m, 1H), 2.05 (s, 3H), 1.91 – 1.75 (m, 4H), 1.72
- 1.60 (m, 2H), 1.58 – 1.48 (m, 1H), 1.41 – 1.24 (m, 4H), 1.14 – 1.05 (m, 2H), 0.86 (s, 3H) ppm.

\(^{19}F\) NMR (376 MHz, CDCl\(_3\)): \(\delta = -80.82\) (t, \(J = 9.5\) Hz, 3F), -110.30 – -113.92 (m, 2F), -120.11 – -122.69 (m, 2F), -125.83 (m), 171.2, 167.9, 124.3 (d, \(J = 1.5\) Hz), 82.4, 50.2, 49.4, 46.5 (t, \(J = 20.4\) Hz), 42.6, 40.0, 39.9 (t, \(J = 1.4\) Hz), 36.4, 35.5, 30.7, 27.4, 26.4 (m), 25.7, 23.3, 21.1, 12.0 ppm; carbons corresponding to the C-F group cannot be identified due to C-F coupling.

2-(Perfluorobutyl)-3,4-dihydonaphthalen-1(2H)-one (1a), 6-(benzyloxy)-2-(perfluorobutyl)-3,4-dihydonaphthalen-1(2H)-one (1e), 5-oxo-6-(perfluorobutyl)-5,6,7,8-tetrahydonaphthalen-1-yl 4-methylbenzenesulfonate (1f), 5-(perfluorobutyl)-6,7-dihydrobenzo[b]thiophen-4(5H)-one (1m), 2-methyl-4-(perfluorobutyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (1n), 2,4'-dimethyl-4-(perfluorobutyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (1o), 4'-chloro-2-methyl-4-(perfluorobutyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (1p), 2-methyl-3-(naphthalen-1-yl)-6-(perfluorobutyl)cyclohex-2-en-1-one (1q), 6-methyl-3-(perfluorobutyl)-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (1r), 6'-methyl-2'-oxo-3'-(perfluorobutyl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-4-carbonitrile (1s), 3-methyl-6-(perfluorobutyl)-2-(thiophen-2-yl)cyclohex-2-en-1-one (1t), 5-methyl-2-(perfluorobutyl)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (1u), 3-((2-bromophenyl)thio)-5-methyl-6-(perfluorobutyl)cyclohex-2-en-1-one (1v), 2-(perfluorodecyl)-3,4-dihydonaphthalen-1(2H)-one (1x), 2-(perfluorononyl)-3,4-dihydonaphthalen-1(2H)-one (1y), 2-(perfluoroctyl)-3,4-dihydonaphthalen-1(2H)-one (1z), 2-(perfluoroheptyl)-3,4-dihydonaphthalen-1(2H)-one (1b'), and 2-(perfluoropropyl)-3,4-dihydonaphthalen-1(2H)-one (1c') were synthesized according to general procedure A.
Figure S241. General procedure B (Su et al., 2017; Xie et al., 2018), related to Scheme 1-4.

Step 1: The solution of ketone III (5 mmol) in dry THF (25 mL) was cooled to -78 °C and then lithium diisopropylamide (LDA, 3.75 mL, 7.5 mmol, 2.0 mol/L in THF/hexane) was dropwise added to the reaction mixture. Nonafluorobutanesulfonyl fluoride (1.1 mL, 6 mmol) was added slowly by a syringe over 10 min. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) on Et₃N-treated silica gel eluting with petroleum ether to afford enol nonaflate IV.

Step 2: A solution of enol nonaflate IV (0.8 mmol), (NH₄)₂S₂O₈ (0.16 mmol, 37 mg), and AgNO₃ (0.008 mmol, 1.4 mg) in tBuOH (2.0 mL) and H₂O (2.0 mL) was stirred vigorously under nitrogen atmosphere (by 3 times’ vacuum evacuation/N₂ backfill cycles) at 30 °C for 12 h. Upon completion of the reaction (indicated by TLC), the reaction mixture was diluted with dichloromethane. The organic layer was separated and the aqueous layer was washed with dichloromethane (3×10 mL). The combined organic layers were dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate as eluent to afford α-perfluoroalkyl ketone 1.

Representative examples:

6-Methoxy-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1b)

¹H NMR (400 MHz, CDCl₃): δ = 8.02 (d, J = 8.8 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 3.87 (s, 3H), 3.44 – 3.30 (m, 1H), 3.20 – 3.10 (m, 1H), 3.00 – 2.91 (m, 1H), 2.50 – 2.34 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -80.45 – -81.24 (m, 3F), -108.98 – -113.48 (m, 2F), -118.81 –
13C NMR (100 MHz, CDCl$_3$): $\delta = 188.8$ (m), 164.1, 145.5, 130.3, 125.8, 113.7, 112.3, 55.4, 48.9 (t, $J = 20.4$ Hz), 27.3, 23.0 ppm; carbons corresponding to the C$_4$F$_9$ group cannot be identified due to C-F coupling.

7-Methoxy-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1b), 6-methoxy-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1c), 5-methoxy-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1d), 7-methyl-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1f), 7-fluoro-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1g), 7-chloro-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1h), 7-bromo-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1i), 4-methyl-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1k), 4-(3,4-dichlorophenyl)-2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1l), 2-(perfluorobutyl)cyclohexan-1-one (22), and 6-(perfluorobutyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (24) were synthesized according to general procedure B.

Mechanistic studies

Figure S242. Control experiment of 2-(perfluorobutyl)cyclohexan-1-one (22) with 1H-benzo[d][1,2,3]triazole (2s), related to Scheme 4.

![Scheme 4](image)

A solution of 2-(perfluorobutyl)cyclohexan-1-one (22, 95 mg, 0.3 mmol), 1H-benzo[d][1,2,3]triazole (2s, 71 mg, 0.6 mmol), CoBr$_2$ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs$_2$CO$_3$ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. No target product 23 was obtained. This result suggested that the phenyl moiety or unsaturated C=C bond in the \(\alpha\)-perfluoroalkyl ketone was essential for the established reaction.

Figure S243. Control experiment of 6-(perfluorobutyl)-6,7,8,9-tetrahydro-5H-
benzo[7]annulen-5-one (24) with 1H-benzo[d][1,2,3]triazole (2s), related to Scheme 4.

A solution of 6-(perfluorobutyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (24, 114 mg, 0.3 mmol), 1H-benzo[d][1,2,3]triazole (2s, 71 mg, 0.6 mmol), CoBr₂ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. No target product 25 was obtained. This result suggested that the aromatization was the important driving force for the C-F cleavage reaction.

Figure S244. Control experiment of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1a) with 1H-benzo[d][1,2,3]triazole (2j'), related to Scheme 4.

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1a, 109 mg, 0.3 mmol), piperidine (2j', 64 mg, 0.75 mmol), CoBr₂ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (500/1~200/1) as eluent to afford the pure product 26 (46 mg, 38%). No target product was obtained. This result suggested that the nucleophile was also essential for the aromatization/cyclization and successive dehydrogenation/defluorination.
Figure S245. Compound 26, related to Scheme 4.

A solution of 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 109 mg, 0.3 mmol), CoBr$_2$ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and...
Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (500/1~200/1) as eluent to afford the pure product 27 (45 mg, 37%). This result suggested that TBAB might participate in the reaction process.

Figure S247. Compound 27, related to Scheme 4.
Figure S248. Detection of the intermediate 2-(perfluorobutylidene)-3,4-dihydronaphthalen-1(2H)-one (28) and byproduct 2-(trifluoromethyl)-5,6-dihydro-4H-benzo[h]chromen-4-one (29), related to Scheme 4.

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1a, 1.82 g, 5 mmol), Cs₂CO₃ (4.1 g, 12.5 mmol) in DMSO (20.0 mL) was stirred under nitrogen atmosphere at room temperature for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (500/1~200/1) as eluent to afford the pure product 28 (499 mg, 29%) and byproduct 29 (<5%).

This result suggested that compound 28 was the possible reaction intermediate.

Figure S249. Compound 28, related to Scheme 4.
Figure S250. Compound 29, related to Scheme 4.
Figure S251. The reaction of 2-(perfluorobutylidene)-3,4-dihyronaphthalen-1(2H)-one (28) with 2-methyl-1H-benzo[d]imidazole (2a), related to Scheme 4.

A solution of 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (28, 103 mg, 0.3 mmol), 2-methyl-1H-benzo[d]imidazole (2a, 79 mg, 0.6 mmol), CoBr$_2$ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs$_2$CO$_3$ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. The reaction was then quenched by saturated NH$_4$Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO$_4$, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (100/1~20/1) as eluent to afford the pure product 3a (107 mg, 86%). This result suggested that compound 28 was the possible reaction intermediate.
Transparent Methods

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under N₂ atmosphere using undistilled solvent. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in CDCl₃ or DMSO-d₆ on Bruker Avance or Joel 400 MHz spectrometers. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI or EI Source). Column chromatography was generally performed on silica gel (300-400 mesh) or alkali alumina (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

General procedures for the synthesis of perfluoroalkylated naphtho[1,2-b]furan/benzofuran derivatives, related to Scheme 1-4.

A solution of α-perfluoroalkyl ketone 1 (0.3 mmol), N-heterocycle 2a-2v (0.6-0.9 mmol), CoBr₂ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at room temperature to 120 °C for 10-48 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate or dichloromethane/methanol as eluent to afford the pure products 3-16.

Large scale synthesis of perfluoroalkylated naphtho[1,2-b]furan 10d, related to Scheme 1.

A solution of 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 1.09 g, 3 mmol), 1,2,3,9-tetrahydro-4H-carbazol-4-one (2d’, 1.67 g, 9 mmol), CoBr₂ (0.07 g, 0.3 mmol), tetrabutylammonium bromide (0.97 g, 3 mmol, TBAB), and Cs₂CO₃ (2.44 g, 7.5 mmol) in DMSO (10.0 mL) was stirred under nitrogen atmosphere at 100 °C for 48 h. The reaction was then quenched by saturated NH₄Cl solution (50 mL) and diluted with EtOAc (50 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-
400 mesh) using petroleum ether/ethyl acetate (6/1) as eluent to afford the pure product 10d (0.87 g, 62%).

General procedure for the synthesis of perfluoroalkylated naphtho[1,2-b]furan 17-18, related to Scheme 4.
A solution of 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 109 mg, 0.3 mmol), 4-methylbenzenethiol (2r', 75 mg, 0.6 mmol) or naphthalene-2-thiol (2s', 96 mg, 0.6 mmol), CoBr₂ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether as eluent to afford the pure product 17 (56 mg, 46%) or 18 (69 mg, 52%).

General procedure for the synthesis of perfluoroalkylated benzo[4,5]imidazo[2,1-b]naphtho[2,1-e][1,3]oxazine 19, related to Scheme 4.
A solution of 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 109 mg, 0.3 mmol), 2-chloro-1H-benzo[d]imidazole (2t', 92 mg, 0.6 mmol), CoBr₂ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 36 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (50/1~3/1) as eluent to afford the pure product 19 (111 mg, 88%).

General procedure for the synthesis of perfluoroalkylated benzo[4,5]imidazo[1,2-b]isoquinoline 20, related to Scheme 4.
A solution of 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 109 mg, 0.3 mmol), 2-
(1H-benzo[d]imidazol-2-yl)acetonitrile (2u', 94 mg, 0.6 mmol), CoBr₂ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (50/1~3/1) as eluent to afford the pure product 20 (100 mg, 72%).

General procedure for the synthesis of perfluoroalkylated dihydrobenzo[h]quinazoline 21, related to Scheme 4.

A solution of 2-(perfluorobutyl)-3,4-dihyronaphthalen-1(2H)-one (1a, 109 mg, 0.3 mmol), 4-bromobenzimidamide (2v', 119 mg, 0.6 mmol), CoBr₂ (66 mg, 0.03 mmol), tetrabutylammonium bromide (97 mg, 0.3 mmol, TBAB), and Cs₂CO₃ (244 mg, 0.75 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere at 70 °C for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (50/1~20/1) as eluent to afford the pure product 21 (111 mg, 73%).

Characterization data for perfluoroalkylated naphtho[1,2-b]furan derivatives

![Chemical Structure](image)

2-Methyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (3a):

Yield = 71% (89 mg), 0.3 mmol scale. Yellow oil.

IR (KBr): ν = 3063, 1625, 1538, 812, 744 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.46 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.77 – 7.70 (m, 2H), 7.67 – 7.63 (m, 1H), 7.32 (td, J = 7.8, 1.1 Hz, 1H), 7.23 – 7.18
(m, 1H), 7.14 (d, J = 8.7 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 2.52 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -83.36 (t, J = 4.0 Hz, 3F), -113.83 – -116.67 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 151.7, 150.7, 142.6, 136.4, 135.5 (t, J = 31.0 Hz), 133.0, 128.8, 128.1, 127.9, 126.6, 123.0, 122.7, 122.6, 120.2, 120.0, 119.5, 118.9, 116.5, 109.7, 13.2 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{22}$H$_{14}$F$_3$N$_2$O [M+H]$^+$ 417.102, found: 417.1026.

2-Ethyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (3b):

Yield = 69% (89 mg), 0.3 mmol scale. Yellow solid. M.p. 70.8–72.2 °C.

IR (KBr): ν = 3064, 1616, 1535, 818, 747 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.50 – 8.44 (m, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.90 – 7.84 (m, 1H), 7.78 – 7.72 (m, 2H), 7.70 – 7.64 (m, 1H), 7.35 – 7.29 (m, 1H), 7.24 – 7.15 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H), 2.91 – 2.69 (m, 2H), 1.39 (t, J = 7.5 Hz, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -82.99 – -83.53 (m, 3F), -113.41 – -116.82 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 156.7, 151.2 (t, J = 1.4 Hz), 142.8, 137.0 (t, J = 31.5 Hz), 136.5, 133.2, 128.6, 127.8, 127.7, 126.4, 123.2, 122.9, 122.4 (t, J = 1.5 Hz), 121.0, 120.3, 120.2, 119.5, 116.2, 109.5, 20.8, 11.5 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{23}$H$_{16}$F$_3$N$_2$O [M+H]$^+$ 431.1177, found: 431.1183.

1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (3c):

Yield = 83% (100 mg), 0.3 mmol scale. Yellow oil.

IR (KBr): ν = 3120, 1628, 1614, 829, 746 cm$^{-1}$.

1H NMR (400 MHz, DMSO-D$_6$): δ = 8.61 (s, 1H), 8.42 – 8.37 (m, 1H), 8.18 (d, J = 8.0 Hz, 1H),
7.94 (d, J = 8.6 Hz, 1H), 7.88 – 7.85 (m, 1H), 7.84 – 7.79 (m, 1H), 7.78 – 7.72 (m, 1H), 7.39 – 7.29 (m, 4H) ppm.

19F NMR (376 MHz, DMSO-d_6): δ = -83.16 (t, J = 3.5 Hz, 3F), -113.87 (q, J = 3.4 Hz, 2F) ppm.

13C NMR (100 MHz, DMSO-d_6): δ = 150.2, 144.4, 143.0, 143.4 (t, J = 31.0 Hz), 132.9, 129.0, 128.3, 128.0, 126.5, 124.1, 123.3 (t, J = 1.8 Hz), 123.1, 120.1, 120.1, 120.0, 119.7, 116.9, 110.4 ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS m/z: calcd for $C_{21}H_{12}F_{12}N_2O$ [M+H]$^+$ 403.0864, found: 403.0866.

5-Bromo-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (3d-I) and 6-bromo-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (3d-II):

3d-I and its isomer 3d-II were separable but unidentified regioisomers.

Total yield = 62% (90 mg, 3d-I/3d-II = 1/1), 0.3 mmol scale.

Isomer I: Yellow solid. M.p. 108.8–110.6 °C.

IR (KBr): ν = 3069, 1719, 1491, 818, 792 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.48 – 8.43 (m, 1H), 8.14 – 8.06 (m, 2H), 8.04 – 7.99 (m, 1H), 7.80 – 7.74 (m, 2H), 7.72 – 7.67 (m, 1H), 7.45 (dd, $J = 8.6$, 1.6 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.15 (d, $J = 8.6$ Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -83.56 (t, J = 4.1 Hz, 3F), -112.49 – -115.54 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 151.0 (t, J = 1.3 Hz), 144.8 (t, J = 3.3 Hz), 144.1 (m), 135.5 (t, J = 31.8 Hz), 133.6, 133.2, 128.7, 128.0, 127.9, 127.5, 126.4, 123.7, 122.2 (t, J = 1.5 Hz), 121.0, 120.3, 119.5, 116.5, 116.4, 111.6 ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS m/z: calcd for $C_{21}H_{11}BrF_{12}N_2O$ [M+H]$^+$ 480.9975, found: 480.9975.

Isomer II: Yellow solid. M.p. 108.6–109.6 °C.

IR (KBr): ν = 3047, 1620, 1529, 811, 749 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.49 – 8.42 (m, 1H), 8.07 (s, 1H), 8.01 (d, $J = 8.5$ Hz, 1H), 7.80 (dd, $J = 8.7$, 5.3 Hz, 2H), 7.75 (dt, $J = 8.1$, 0.9 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.51 (dd, $J = 8.6$, 4.0 Hz, 2H), 7.38 – 7.30 (m, 4H) ppm.
1.6 Hz, 1H), 7.43 (s, 1H), 7.28 (d, J = 8.7 Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.54$ (t, J = 3.9 Hz, 3F), -112.45 – -115.58 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 151.0$ (t, J = 1.2 Hz), 143.8 (m), 142.4 (m), 135.6 (t, J = 31.9 Hz), 133.2, 128.7, 128.0, 127.9, 126.9, 126.5, 122.1, 122.1 (t, J = 1.9 Hz), 121.0, 120.3, 119.5, 117.7, 116.3, 113.4 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{11}$BrF$_5$N$_2$O$_3$ [M+H]$^+$ 480.9969, found: 480.9965.

Methyl 1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole-5-carboxylate (3e-I) and methyl 1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole-6-carboxylate (3e-II):

3e-I and its isomer 3e-II were inseparable regioisomers.

Total yield = 68% (94 mg, 3e-I/3e-II = 1/1), 0.3 mmol scale. Yellow solid.

Isomer I & II: IR (KBr): $\nu = 3187, 1719, 1620, 1529, 811, 749$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.69 – 8.66$ (m, 1H), 8.48 – 8.43 (m, 2H), 8.21 (d, J = 16.0 Hz, 2H), 8.15 – 8.10 (m, 1H), 8.09 – 8.06 (m, 1H), 8.04 – 7.94 (m, 4H), 7.80 – 7.72 (m, 4H), 7.72 – 7.65 (m, 2H), 7.31 (d, J = 8.5 Hz, 1H), 7.28 – 7.24 (m, 2H), 3.98 (t, J = 1.2 Hz, 3H), 3.87 (t, J = 1.2 Hz, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.27 – -83.87$ (m, 3F), -111.73 – -115.99 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 167.0, 166.8, 151.0, 146.7, 145.6, 144.6, 144.6, 143.1, 137.6, 135.6 (t, J = 31.5 Hz), 135.5 (t, J = 31.6 Hz), 134.3, 133.2, 133.2, 128.6, 128.6, 127.9, 127.9, 127.8, 127.8, 126.5, 126.4, 126.4, 125.8, 125.8, 124.7, 123.1, 122.1 (t, J = 1.7 Hz), 122.1 (t, J = 1.5 Hz), 120.9, 120.5, 120.2, 119.6, 119.5, 119.5, 116.3, 116.3, 112.4, 110.0, 52.1, 52.1 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{23}$H$_{14}$F$_3$N$_2$O$_3$ [M+H]$^+$ 461.0919, found: 461.0925.
5-Nitro-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (3f-I) and 6-nitro-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (3f-II):

3f-I and its isomer 3f-II were separable but unidentified regioisomers.

Yield = 87% (117 mg, 3f-I/3f-II = 1/1), 0.3 mmol scale.

Isomer I: Yellow solid. M.p. 131.4–132.6 °C.

IR (KBr): ν = 3071, 1629, 1523, 1345, 801, 739 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.86 (d, J = 2.1 Hz, 1H), 8.51 – 8.44 (m, 1H), 8.33 – 8.25 (m, 2H), 8.07 – 8.01 (m, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.81 – 7.76 (m, 1H), 7.75 – 7.69 (m, 1H), 7.36 (d, J = 9.0 Hz, 1H), 7.26 (d, J = 8.7 Hz, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.32 – -83.75 (m, 3F), -112.46 – -115.70 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.2 (t, J = 1.1 Hz), 146.3, 144.7, 143.0, 138.5, 136.0 (t, J = 31.7 Hz), 133.3, 128.8, 128.2, 128.1, 126.8, 121.6 (t, J = 1.7 Hz), 120.9, 120.3, 120.1, 119.3, 117.6, 115.9, 110.5 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₁H₁₁F₅N₃O₃ [M+H]⁺ 448.0721, found: 448.0719.

Isomer II: Yellow solid. M.p. 131.6–132.9 °C.

IR (KBr): ν = 3319, 1770, 1633, 1523, 803, 732 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.51 – 8.46 (m, 1H), 8.36 – 8.32 (m, 2H), 8.21 (d, J = 2.1 Hz, 1H), 8.06 – 8.02 (m, 2H), 7.84 – 7.77 (m, 2H), 7.75 – 7.70 (m, 1H), 7.24 (s, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.25 – -83.78 (m, 3F), -112.27 – -115.81 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.2 (t, J = 1.3 Hz), 147.6, 147.4 (t, J = 1.7 Hz), 144.9, 136.0 (t, J = 31.5 Hz), 134.1, 133.4, 128.8, 128.2, 128.1, 127.0, 121.3, 121.3, 121.0, 120.4, 119.3, 119.2, 115.8, 107.2 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₁H₁₁F₅N₃O₃ [M+H]⁺ 448.0715, found: 448.0719.
5,6-Dimethyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-y1)-1H-benzo[d]imidazole (3g):
Yield = 39% (50 mg), 0.3 mmol scale. Colorless oil.

IR (KBr): \(\nu = 2924, 1628, 1496, 810, 757 \text{ cm}^{-1} \).

\(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.48 – 8.43 \text{ (m, 1H)}, 8.01 \text{ (d, } J = 8.1 \text{ Hz, 1H)}, 7.98 \text{ (s, 1H)}, 7.78 – 7.73 \text{ (m, 2H)}, 7.71 – 7.65 \text{ (m, 2H)}, 7.30 \text{ (d, } J = 8.7 \text{ Hz, 1H)}, 7.04 \text{ (s, 1H)}, 2.42 \text{ (s, 3H)}, 2.32 \text{ (s, 3H)} \text{ ppm.}

\(^{19}F\) NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.54 \text{ (t, } J = 4.1 \text{ Hz, 3F)}, -112.37 – -115.49 \text{ (m, 2F)} \text{ ppm.}

\(^{13}C\) NMR (100 MHz, CDCl\(_3\)): \(\delta = 150.9, 142.4, 141.8, 135.3 \text{ (t, } J = 31.7 \text{ Hz)}, 133.7, 133.2, 133.1, 132.4, 128.6, 127.8, 127.7, 126.1, 123.0 \text{ (t, } J = 2.0 \text{ Hz)}, 121.0, 120.7, 120.3, 119.9, 116.9, 110.4, 20.5, 20.3 \text{ ppm; carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.}

HRMS m/z: calcd for C\(_{23}\)H\(_{16}\)F\(_5\)N\(_2\)O [M+H]\(^+\) 431.1177, found: 431.1179.

1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-y1)-1H-imidazo[4,5-c]pyridine (3h-I) and 3-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-y1)-3H-imidazo[4,5-c]pyridine (3h-II):

3h-I and its isomer 3h-II were separable but unidentified regioisomers.

Total yield = 64% (77 mg, 3h-I/3h-II = 1/1), 0.3 mmol scale.

Isomer I: Brown solid. M.p. 130.9–132.3 \(^\circ\)C.

IR (KBr): \(\nu = 3053, 1629, 1609, 823, 751 \text{ cm}^{-1} \).

\(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.75 \text{ (s, 1H)}, 8.62 \text{ (d, } J = 5.6 \text{ Hz, 1H)}, 8.50 – 8.45 \text{ (m, 1H)}, 8.22 \text{ (s, 1H)}, 8.03 \text{ (d, } J = 8.1 \text{ Hz, 1H)}, 7.91 – 7.87 \text{ (m, 1H)}, 7.83 – 7.76 \text{ (m, 2H)}, 7.74 – 7.68 \text{ (m, 1H)}, 7.30 \text{ (d, } J = 8.7 \text{ Hz, 1H)} \text{ ppm.}

\(^{19}F\) NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.27 – -83.77 \text{ (m, 3F)}, -112.19 – -115.63 \text{ (m, 2F)} \text{ ppm.}

\(^{13}C\) NMR (100 MHz, CDCl\(_3\)): \(\delta = 151.1 \text{ (t, } J = 1.1 \text{ Hz)}, 148.7, 145.9 \text{ (t, } J = 2.0 \text{ Hz)}, 143.3, 135.6 \)
(t, J = 32.0 Hz), 133.9, 133.3, 132.2 (t, J = 1.6 Hz), 128.7, 128.1, 128.0, 126.7, 121.7 (t, J = 1.5 Hz), 120.9, 120.3, 119.3, 116.1, 115.5 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₀H₁₁F₅N₃O [M+H]^+ 404.0823, found: 404.0829.

Isomer II: Yellow solid. M.p. 170.6–171.7 °C.

IR (KBr): ν = 3462, 1632, 1607, 816, 750 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 9.29 (s, 1H), 8.53 (d, J = 5.4 Hz, 1H), 8.47 (d, J = 8.3 Hz, 1H), 8.16 (d, J = 1.0 Hz, 1H), 8.03 (d, J = 8.1 Hz, 1H), 7.85 – 7.75 (m, 2H), 7.74 – 7.68 (m, 1H), 7.28 – 7.25 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.55 (d, J = 2.8 Hz, 3F), -112.55 – -115.65 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.1, 144.2, 143.8, 143.6, 140.4 (m), 139.4 (t, J = 2.1 Hz), 135.6 (t, J = 30.9 Hz), 133.3, 128.7, 128.1, 128.0, 126.6, 121.6 (m), 120.9, 120.3, 119.3, 116.1, 105.7 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₀H₁₁F₅N₃O [M+H]^+ 404.0817, found: 404.0825.

![Chemical Structure](image)

1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-imidazole (4a):

Yield = 44% (47 mg), 0.3 mmol scale. Yellow oil.

IR (KBr): ν = 2963, 1630, 1492, 809, 748 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.36 – 8.32 (m, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.77 – 7.72 (m, 2H), 7.69 – 7.64 (m, 1H), 7.63 – 7.58 (m, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.26 – 7.25 (m, 1H), 7.21 (s, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.55 (t, J = 3.3 Hz, 3F), -113.56 – -113.62 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 150.6 (t, J = 1.3 Hz), 138.1, 138.1, 133.8 (t, J = 31.5 Hz), 133.2, 130.4, 128.6, 127.8, 127.7, 126.3, 124.2 (t, J = 1.4 Hz), 120.8, 120.3, 119.6, 116.2 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₁₇H₁₀F₃N₂O [M+H]^+ 353.0708, found: 353.0710.
1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-imidazole-2-carbaldehyde (4b):

Yield = 55% (63 mg), 0.3 mmol scale. White solid. M.p. 177.5–178.8 °C.

IR (KBr): \(\nu = 3441, 1770, 1690, 826, 776 \text{ cm}^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 9.86 (d, J = 0.9 \text{ Hz}, 1\text{H}), 8.39 (d, J = 8.2 \text{ Hz}, 1\text{H}), 7.75 (d, J = 8.7 \text{ Hz}, 1\text{H}), 7.73 \text{ – } 7.67 (m, 1\text{H}), 7.67 \text{ – } 7.60 (m, 1\text{H}), 7.54 (d, J = 1.0 \text{ Hz}, 1\text{H}), 7.34 (s, 1\text{H}), 7.19 (d, J = 8.7 \text{ Hz}, 1\text{H}) \text{ ppm.} \)

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.66 (t, J = 4.1 \text{ Hz}, 3\text{F}), -113.17 \text{ – } -117.19 (m, 2\text{F}) \text{ ppm.} \)

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 180.0, 150.5 (t, J = 1.4 \text{ Hz}), 144.4, 134.9 (t, J = 31.6 \text{ Hz}), 133.1, 132.3, 128.6, 127.7, 127.5, 126.3, 123.9 (t, J = 2.6 \text{ Hz}), 120.9, 120.2, 120.1, 115.9 \text{ ppm}; \)

carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{18}\)H\(_{10}\)F\(_5\)N\(_2\)O\(_2\) [M+H\(^+\)]\(^*\) 381.0657, found: 381.0660.

2-Methyl-4-nitro-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-imidazole (4c):

Yield = 94% (116 mg), 0.3 mmol scale. White solid. M.p. 112.5–113.7 °C.

IR (KBr): \(\nu = 3160, 1629, 1547, 819, 753 \text{ cm}^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.47 \text{ – } 8.42 (m, 1\text{H}), 8.06 (d, J = 8.0 \text{ Hz}, 1\text{H}), 7.92 (d, J = 8.4 \text{ Hz}, 2\text{H}), 7.82 \text{ – } 7.76 (m, 1\text{H}), 7.76 \text{ – } 7.70 (m, 1\text{H}), 7.37 (d, J = 8.7 \text{ Hz}, 1\text{H}), 2.38 (s, 3\text{H}) \text{ ppm.} \)

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.30 \text{ – } -83.81 (m, 3\text{F}), -113.27 \text{ – } -116.45 (m, 2\text{F}) \text{ ppm.} \)

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 151.0 (t, J = 1.4 \text{ Hz}), 147.7, 146.4, 136.2 (t, J = 31.6 \text{ Hz}), 133.3, 128.7, 128.2, 128.1, 127.3, 122.1 (t, J = 2.2 \text{ Hz}), 121.2, 120.7, 120.2, 119.1, 115.1, 12.9 \text{ ppm}; \)

carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{18}\)H\(_{11}\)F\(_5\)N\(_3\)O\(_3\) [M+H\(^+\)]\(^*\) 412.0715, found: 412.0717.
Methyl 1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-indazole-3-carboxylate (5a):

Yield = 79% (109 mg), 0.3 mmol scale. White solid. M.p. 142.6–143.4 °C.

IR (KBr): \(\nu = 3071, 1710, 1629, 817, 750 \) cm\(^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.43 \) (d, \(J = 7.8 \) Hz, 1H), 8.41–8.36 (m, 1H), 7.97 (d, \(J = 8.1 \) Hz, 1H), 7.76–7.69 (m, 2H), 7.67–7.61 (m, 1H), 7.53–7.45 (m, 1H), 7.47–7.41 (m, 1H), 7.36 (d, \(J = 8.3 \) Hz, 1H), 7.32 (d, \(J = 8.7 \) Hz, 1H), 4.09 (s, 3H) ppm.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.08 \)–83.18 (m, 3F), -113.22–115.69 (m, 2F) ppm.

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 162.6, 150.7 \) (t, \(J = 1.3 \) Hz), 142.6, 138.5, 136.3 (t, \(J = 32.5 \) Hz), 133.1, 128.6, 128.2, 127.6, 127.5, 126.1, 125.1 (t, \(J = 1.9 \) Hz), 124.1, 123.5, 122.4, 120.8, 120.2, 120.1, 116.9, 110.1, 52.3 ppm; carbons corresponding to the \(\text{C}_2\text{F}_5 \) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{23}\)H\(_{14}\)F\(_5\)N\(_2\)O\(_3\) [M+H\(^+\)] 461.0919, found: 461.0919.

3-Iodo-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-indazole (5b):

Yield = 70% (111 mg), 0.3 mmol scale. Brown solid. M.p. 49.8–51.7 °C.

IR (KBr): \(\nu = 3066, 1756, 1613, 810, 746 \) cm\(^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.40 \) (d, \(J = 8.1 \) Hz, 1H), 7.94 (d, \(J = 8.1 \) Hz, 1H), 7.72–7.66 (m, 2H), 7.64–7.58 (m, 2H), 7.51–7.45 (m, 1H), 7.36–7.28 (m, 3H) ppm.

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -82.99 \) (t, \(J = 2.9 \) Hz, 3F), -114.11 (s, 2F) ppm.

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 150.7 \) (t, \(J = 1.0 \) Hz), 141.8, 135.4 (t, \(J = 32.3 \) Hz), 133.1, 128.9, 128.8, 128.6, 127.5, 127.4, 125.9, 125.4 (t, \(J = 1.9 \) Hz), 122.7, 121.9, 120.9, 120.2, 120.1, 117.3, 109.9, 97.1 ppm; carbons corresponding to the \(\text{C}_2\text{F}_5 \) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{23}\)H\(_{11}\)F\(_3\)IN\(_2\)O [M+H\(^+\)] 528.9831, found: 528.9831.
5-Bromo-2-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-2H-indazole (5c-I) and 6-bromo-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-indazole (5c-II):

5c-I and its isomer 5c-II were separable and identified regioisomers. Total yield = 60% (87 mg, 5c-I/5c-II = 1:2), 0.3 mmol scale.

5c-I: Yellow solid. M.p. 120.3–123.0 °C.

IR (KBr): ν = 3440, 1626, 1536, 801, 756 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.44 – 8.39 (m, 1H), 8.34 – 8.30 (m, 1H), 8.06 – 8.03 (m, 1H), 8.02 – 7.97 (m, 1H), 7.84 – 7.75 (m, 2H), 7.75 – 7.70 (m, 1H), 7.69 – 7.63 (m, 2H), 7.27 (d, J = 7.5 Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -83.18 (t, J = 4.0 Hz, 3F), -111.91 – -113.37 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 151.0, 150.7 (t, J = 1.0 Hz), 133.3, 132.8, 128.6, 127.9 (t, J = 1.4 Hz), 127.6, 127.6, 127.0, 126.5 (t, J = 3.3 Hz), 126.3, 121.9, 121.7, 120.7, 120.6, 120.4, 120.4, 119.5, 118.0 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{11}$BrF$_5$N$_2$O [M+H]$^+$ 480.9975, found: 480.9975.

5c-II: Yellow solid. M.p. 132.1–133.8 °C.

IR (KBr): ν = 3451, 1630, 1478, 810, 749 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.44 (d, J = 8.2 Hz, 1H), 8.31 (t, J = 1.0 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.78 – 7.69 (m, 3H), 7.68 – 7.62 (m, 1H), 7.54 (s, 1H), 7.42 – 7.37 (m, 1H), 7.35 – 7.31 (m, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -83.10 (t, J = 3.4 Hz, 3F), -114.26 (s, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 150.7 (t, J = 1.9 Hz), 142.1, 137.0, 135.7 (t, J = 1.3 Hz), 133.1, 128.6, 127.6, 127.5, 126.0, 125.8, 125.5 (t, J = 1.0 Hz), 123.4, 122.4, 122.2, 121.0, 120.3, 120.1, 117.1, 112.9 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{11}$BrF$_5$N$_2$O [M+H]$^+$ 480.9969, found: 480.9975.
3-Iodo-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-pyrazole (6a):

Yield = 43% (62 mg), 0.3 mmol scale. Yellow solid. M.p. 82.8–83.3 °C.

IR (KBr): $\nu =$ 3447, 1633, 1475, 811, 741 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta =$ 8.39 – 8.34 (m, 1H), 7.99 – 7.95 (m, 1H), 7.88 (d, $J =$ 0.4 Hz, 1H), 7.86 – 7.84 (m, 1H), 7.78 (d, $J =$ 8.6 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.66 – 7.61 (m, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta =$ -83.20 (t, $J =$ 4.0 Hz, 3F), -112.24 – -113.07 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta =$ 150.5 (t, $J =$ 1.3 Hz), 147.3, 136.1 (t, $J =$ 3.3 Hz), 133.1, 132.0 (t, $J =$ 32.2 Hz), 128.5, 127.5, 127.0 (m), 125.9, 120.7, 120.3, 119.9, 119.1, 118.0, 59.0 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{17}$H$_9$F$_5$IN$_2$O $[M+H]^+$ 478.9674, found: 478.9675.

3,5-Dimethyl-4-nitro-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-pyrazole (6b):

Yield = 92% (117 mg), 0.3 mmol scale. White solid. M.p. 155.0–156.2 °C.

IR (KBr): $\nu =$ 3447, 1633, 1532, 811, 742 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta =$ 8.45 – 8.36 (m, 1H), 7.99 (d, $J =$ 8.0 Hz, 1H), 7.82 (d, $J =$ 8.6 Hz, 1H), 7.75 – 7.70 (m, 1H), 7.69 – 7.64 (m, 1H), 7.36 (d, $J =$ 8.7 Hz, 1H), 2.65 (s, 3H), 2.58 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta =$ -83.19 (t, $J =$ 2.6 Hz, 3F), -114.21 – -116.27 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta =$ 150.8 (t, $J =$ 1.1 Hz), 148.1, 143.7, 136.8 (t, $J =$ 32.1 Hz), 133.2, 132.2, 128.6, 127.9, 127.7, 126.7, 124.3 (t, $J =$ 1.8 Hz), 120.7, 120.2, 119.7, 116.0, 14.1, 12.2 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{19}$H$_{13}$F$_5$N$_3$O$_3$ $[M+H]^+$ 426.0872, found: 426.0880.
1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-pyrazole (6c):

Yield = 46% (49 mg), 0.3 mmol scale. White solid. M.p. 78.9–79.1 °C.

IR (KBr): \(\nu = \) 3077, 1634, 1532, 811, 742 cm\(^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.37 (d, J = 8.1 \text{ Hz}, 1H), 7.96 (d, J = 8.0 \text{ Hz}, 1H), 7.89 (d, J = 1.6 \text{ Hz}, 1H), 7.85 – 7.81 (m, 1H), 7.81 – 7.74 (m, 2H), 7.72 – 7.58 (m, 2H), 6.55 (t, J = 2.1 \text{ Hz}, 1H) \text{ ppm} \).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.25 (t, J = 2.3 \text{ Hz}, 3F), -112.49 – -112.62 (m, 2F) \text{ ppm} \).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 150.5 (t, J = 1.3 \text{ Hz}), 142.3, 133.1, 132.1 (t, J = 1.3 \text{ Hz}), 131.6 (t, J = 32.8 \text{ Hz}), 128.5, 127.9 (t, J = 2.1 \text{ Hz}), 127.3, 125.7, 122.8, 120.8, 120.3, 119.5 (t, J = 1.0 \text{ Hz}), 118.5, 107.5 \text{ ppm} \); carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{17}\)H\(_{10}\)F\(_3\)N\(_2\)O [M+H]\(^{+}\) 353.0708, found: 353.0714.

4-Iodo-3,5-dimethyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-pyrazole (6d):

Yield = 75% (114 mg), 0.3 mmol scale. White solid. M.p. 80.3–81.8 °C.

IR (KBr): \(\nu = \) 3134, 1628, 1543, 804, 744 cm\(^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.41 – 8.35 (m, 1H), 7.97 (d, J = 8.1 \text{ Hz}, 1H), 7.76 (d, J = 8.6 \text{ Hz}, 1H), 7.72 – 7.67 (m, 1H), 7.65 – 7.60 (m, 1H), 7.36 (d, J = 8.7 \text{ Hz}, 1H), 2.34 (s, 3H), 2.22 (s, 3H) \text{ ppm} \).

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.13 – -83.20 (m, 3F), -112.58 – -117.51 (m, 2F) \text{ ppm} \).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 152.5, 150.5 (t, J = 1.4 \text{ Hz}), 143.6, 136.1 (t, J = 32.0 \text{ Hz}), 133.1, 128.6, 127.6, 127.4, 126.3 (t, J = 1.8 \text{ Hz}), 126.1, 120.9, 120.4 (t, J = 0.9 \text{ Hz}), 120.2, 116.8, 64.8, 14.3, 12.2 \text{ ppm} \); carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.
1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (7a): Yield = 98% (119 mg), 0.3 mmol scale. Pink solid. M.p. 71.1–73.2 °C.

IR (KBr): \(\nu = 3056, 1634, 1492, 811, 747 \text{ cm}^{-1} \).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta = 8.45 – 8.38 \text{ (m, 1H)}, 8.25 – 8.20 \text{ (m, 1H)}, 7.97 \text{ (d, } J = 8.1 \text{ Hz, 1H)}, 7.76 – 7.69 \text{ (m, 2H)}, 7.67 – 7.62 \text{ (m, 1H)}, 7.61 – 7.55 \text{ (m, 1H)}, 7.52 – 7.45 \text{ (m, 2H)}, 7.28 \text{ (d, } J = 8.7 \text{ Hz, 1H)} \text{ ppm.}

\(^19\text{F NMR}\) (376 MHz, CDCl\(_3\)): \(\delta = -83.15 \text{ (d, } J = 2.3 \text{ Hz, 3F)}, -114.25 \text{ (s, 2F)} \text{ ppm.}

\(^13\text{C NMR}\) (100 MHz, CDCl\(_3\)): \(\delta = 150.9 \text{ (t, } J = 1.2 \text{ Hz), 145.6, 135.7 \text{ (t, } J = 32.3 \text{ Hz), 134.2, 133.1, 128.9, 128.6, 127.8, 127.7, 126.4, 124.7, 122.8, 120.8 \text{ (t, } J = 1.9 \text{ Hz), 120.4, 120.2, 119.4, 116.6, 109.6 \text{ ppm; carbons corresponding to the } C_2F_5 \text{ group cannot be identified due to } C-F \text{ coupling.}

HRMS m/z: calcd for C\(_{20}\)H\(_{11}\)F\(_{5}\)N\(_3\)O \([M+H]^+\) 404.0817, found: 404.0826.

5-Chloro-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (7b-I) and 6-chloro-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (7b-II):

7b-I and its isomer 7b-II were separable but unidentified regioisomers.

Total yield = 99% (130 mg, 7b-I:7b-II = 1/1), 0.3 mmol scale.

Isomer I: White solid. M.p. 117.8–120.1 °C.

IR (KBr): \(\nu = 3065, 1632, 1610, 809, 759 \text{ cm}^{-1} \).
1H NMR (400 MHz, CDCl$_3$): $\delta = 8.47 - 8.42$ (m, 1H), 8.21 (dd, $J = 1.8$, 0.7 Hz, 1H), 8.00 (d, $J = 8.1$ Hz, 1H), 7.81 – 7.74 (m, 2H), 7.71 – 7.66 (m, 1H), 7.56 (dd, $J = 8.8$, 1.8 Hz, 1H), 7.41 (d, $J = 8.8$ Hz, 1H), 7.29 (d, $J = 8.7$ Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.16$ (t, $J = 3.9$ Hz, 3F), -114.30 (s, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 151.0$ (t, $J = 1.1$ Hz), 146.3, 135.9 (t, $J = 32.5$ Hz), 133.3, 133.0, 130.8, 129.9, 128.7, 128.0, 127.9, 126.7, 122.4 (t, $J = 1.8$ Hz), 120.8, 120.3, 119.9, 119.3, 116.4, 110.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{20}$H$_{10}$ClF$_{5}$N$_3$O [M+H]$^+$ 438.0433, found: 438.0432.

Isomer II: White solid. M.p. 118.9 – 120.0 °C.

IR (KBr): $\nu = 3069$, 1633, 1532, 811, 742 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.47 - 8.42$ (m, 1H), 8.15 (d, $J = 9.3$ Hz, 1H), 8.00 (d, $J = 8.1$ Hz, 1H), 7.80 (d, $J = 8.6$ Hz, 1H), 7.78 – 7.72 (m, 1H), 7.71 – 7.65 (m, 1H), 7.49 – 7.45 (m, 2H), 7.29 (d, $J = 8.7$ Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.12 - -83.25$ (m, 3F), -114.34 (s, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 151.0$ (t, $J = 1.0$ Hz), 144.2, 136.0 (t, $J = 32.5$ Hz), 135.7, 134.9, 133.2, 128.7, 127.9, 127.8, 126.7, 126.0, 122.3 (t, $J = 2.1$ Hz), 121.4, 120.8, 120.3, 119.3, 116.3, 109.5 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{20}$H$_{10}$ClF$_{5}$N$_3$O [M+H]$^+$ 438.0427, found: 438.0430.

5-Methyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (7c-I), 6-methyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (7c-II), and 5-methyl-2-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-2H-benzo[d][1,2,3]triazole (7c-III):

7c-I, 7c-II and its isomer 7c-II were inseparable and unidentified regioisomers.

Total yield = 87% (109 mg, 7c-I/7c-II/7c-III = 1/1/1), 0.3 mmol scale. Yellow solid.

IR (KBr): $\nu = 2962$, 1632, 1496, 809, 722 cm$^{-1}$.
1H NMR (400 MHz, CDCl$_3$): δ = 8.27 (d, J = 8.1 Hz, 1H), 7.97 – 7.79 (m, 1.5H), 7.64 – 7.54 (m, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.35 – 7.09 (m, 3.5H), 2.81 – 2.34 (m, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -83.11 – -83.19 (m, 3F), -114.18 (d, J = 25.9 Hz, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 150.8, 146.2, 145.5, 144.2, 139.9, 135.8 (t, J = 32.1 Hz), 135.7 (t, J = 32.1 Hz), 135.6 (t, J = 32.1 Hz), 134.9, 134.8, 134.2, 133.1, 132.8, 131.5, 131.0, 128.8, 128.6, 127.7, 127.6, 126.9, 126.3, 126.3, 126.0, 124.6, 123.0 (t, J = 1.4 Hz), 123.0 (t, J = 1.4 Hz), 122.9 (t, J = 1.4 Hz), 122.6, 120.8, 120.8, 120.1, 119.8, 119.8, 119.5, 119.5, 119.5, 119.3, 116.6, 109.1, 108.8, 106.8, 21.9, 21.3, 16.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{13}$F$_{3}$N$_3$O [M+H]$^+$ 418.0973, found: 418.0991.

3-Methyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-1,2,4-triazole (8-I) and 3-methyl-4-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-4H-1,2,4-triazole (8-II):

8-I and its isomer 8-II were separable and identified regioisomers.

Total yield = 91% (100 mg, 8-I/8-II = 2.8/1), 0.3 mmol scale.

Isomer 8-I: White solid. M.p. 143.0 – 144.3 °C.

IR (KBr): ν = 3119, 1653, 1635, 811, 729 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.36 (d, J = 9.4 Hz, 2H), 7.98 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.64 (t, J = 7.5 Hz, 1H), 2.58 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -83.39 (t, J = 4.2 Hz, 3F), -112.68 – -113.49 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 163.0, 150.7, 145.5 (t, J = 3.6 Hz), 133.2, 132.6 (t, J = 32.1 Hz), 128.5, 127.6, 127.6, 126.1, 124.2 (m), 120.6, 120.2, 118.9, 117.6, 13.9 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{17}$H$_{11}$F$_3$N$_3$O [M+H]$^+$ 368.0823, found: 368.0830.

Isomer 8-II: White solid. M.p. 144.2 – 145.5 °C.

IR (KBr): ν = 3057, 1750, 1528, 803, 748 cm$^{-1}$.
1H NMR (400 MHz, CDCl$_3$): $\delta = 8.45 - 8.38$ (m, 1H), 8.10 (s, 1H), 8.01 (d, $J = 8.1$ Hz, 1H), 7.82 (d, $J = 8.7$ Hz, 1H), 7.77 – 7.71 (m, 1H), 7.71 – 7.65 (m, 1H), 7.34 (d, $J = 8.7$ Hz, 1H), 2.45 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.24$ (t, $J = 3.9$ Hz, 3F), -112.81 – -117.59 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 155.0$ (m), 152.5, 150.8 (t, $J = 1.2$ Hz), 136.3 (t, $J = 31.6$ Hz), 133.2, 128.7, 127.9, 127.7, 126.6, 123.8 (t, $J = 2.2$ Hz), 120.8, 120.3, 119.7, 116.2, 12.0 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{17}$H$_{11}$F$_5$N$_3$O [M+H]$^+$ 368.0817, found: 368.0833.

1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-5-phenyl-1H-tetrazole (9):
Yield = 39% (50 mg), 0.3 mmol scale. Yellow solid. M.p. 131.7–132.5 °C.

IR (KBr): $\nu = 3423, 1620, 1536, 819, 728$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.41 - 8.36$ (m, 1H), 8.32 – 8.26 (m, 2H), 7.99 (d, $J = 7.3$ Hz, 1H), 7.96 – 7.92 (m, 1H), 7.84 (d, $J = 8.7$ Hz, 1H), 7.74 – 7.68 (m, 1H), 7.68 – 7.63 (m, 1H), 7.59 – 7.52 (m, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -82.78$ (t, $J = 4.1$ Hz, 3F), -112.60 – -112.98 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 165.6, 150.5$ (t, $J = 1.4$ Hz), 133.5 (t, $J = 33.4$ Hz), 133.2, 131.0, 129.1, 128.6, 127.8, 127.8, 127.2, 126.6, 126.5, 123.7 (m), 120.5, 120.3, 117.8, 117.3 (t, $J = 1.0$ Hz) ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{12}$F$_5$N$_4$O [M+H]$^+$ 431.0926, found: 431.0921.

Ethyl 1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-indole-3-carboxylate (10a):
Yield = 63% (89 mg), 0.3 mmol scale. Yellow solid. M.p. 134.0–135.2 °C.

IR (KBr): ν = 3066, 1626, 1540, 808, 751 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.44 (d, J = 7.9 Hz, 1H), 8.32 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 10.9 Hz, 2H), 7.73 (t, J = 8.1 Hz, 2H), 7.69 – 7.62 (m, 1H), 7.41 – 7.34 (m, 1H), 7.30 – 7.25 (m, 1H), 7.25 – 7.22 (m, 1H), 7.19 – 7.14 (m, 1H), 4.52 – 4.39 (m, 2H), 1.46 (t, J = 7.1 Hz, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.14 – -83.73 (m, 3F), -112.59 – -115.84 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 164.6, 150.8 (t, J = 1.3 Hz), 137.9, 135.7 (t, J = 31.8 Hz), 135.0, 133.2, 128.6, 127.7, 127.6, 126.4, 126.0, 124.9 (t, J = 1.8 Hz), 123.9, 122.9, 122.0, 121.0, 120.3, 120.2, 116.9, 110.9, 110.8, 60.1, 14.5 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₅H₁₇F₅NO₃ [M+H]⁺ 474.1123, found: 474.1126.

1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-indole-3-carbaldehyde (10b):

Yield = 57% (74 mg), 0.3 mmol scale. Light brown solid. M.p. 150.5–152.2 °C.

IR (KBr): ν = 3104, 1676, 1626, 1611, 805, 755 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 10.16 (s, 1H), 8.48 – 8.42 (m, 2H), 8.00 (d, J = 8.1 Hz, 1H), 7.90 (s, 1H), 7.79 – 7.72 (m, 2H), 7.71 – 7.65 (m, 1H), 7.44 – 7.38 (m, 1H), 7.36 – 7.30 (m, 1H), 7.26 (d, J = 8.7 Hz, 1H), 7.18 (d, J = 8.2 Hz, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.45 (t, J = 4.0 Hz, 3F), -112.29 – -115.94 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 185.0, 150.9 (t, J = 1.0 Hz), 139.2, 138.4, 135.7 (t, J = 31.7 Hz), 133.2, 128.6, 127.9, 127.7, 126.2, 125.1, 125.0, 124.6 (t, J = 1.6 Hz), 123.8, 122.4, 121.0, 120.7, 120.3, 119.9, 116.7, 110.8 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₃H₁₇F₅NO₂ [M+H]⁺ 430.0861, found: 430.0871.
1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-indole-3-carbonitrile (10c):
Yield = 65% (83 mg), 0.3 mmol scale. White solid. M.p. 169.8–171.3 °C.
IR (KBr): \(\nu = 3118, 2228, 1748, 1471, 804, 746 \) cm\(^{-1}\).
\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.46 \text{ (d, } J = 8.2 \text{ Hz, 1H), 8.01 \text{ (d, } J = 8.1 \text{ Hz, 1H), 7.92 – 7.86} \text{ (m, 1H), 7.80 – 7.73} \text{ (m, 3H), 7.72 – 7.66} \text{ (m, 1H), 7.45 – 7.39} \text{ (m, 1H), 7.38 – 7.33} \text{ (m, 1H), 7.26 – 7.19} \text{ (m, 2H) ppm.} \)
\(^19\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.01 \text{ – -83.86} \text{ (m, 3F), -112.07 – -116.33} \text{ (m, 2F) ppm.} \)
\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 150.9 \text{ (t, } J = 1.1 \text{ Hz), 136.6, 135.9 \text{ (t, } J = 31.9 \text{ Hz), 135.7, 133.2, 128.7, 127.9, 127.8, 127.3, 126.3, 125.2, 124.2 \text{ (t, } J = 1.3 \text{ Hz), 123.3, 120.9, 120.3, 120.1, 119.8, 116.5, 114.7, 111.4, 89.8 \text{ ppm; carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.} \)
HRMS m/z: calcd for C\(_{23}\)H\(_{12}\)F\(_5\)N\(_2\)O [M+H]\(^+\) 427.0864, found: 427.0870.

9-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1,2,3,9-tetrahydro-4H-carbazol-4-one (10d):
Yield = 76% (107 mg), 0.3 mmol scale. Light brown solid. M.p. 150.8–151.3 °C.
IR (KBr): \(\nu = 3116, 1721, 1659, 1617, 810, 749 \) cm\(^{-1}\).
\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.50 – 8.45 \text{ (m, 1H), 8.39 – 8.34} \text{ (m, 1H), 8.00 \text{ (d, } J = 7.5 \text{ Hz, 1H), 7.80 – 7.73} \text{ (m, 2H), 7.71 – 7.65} \text{ (m, 1H), 7.38 – 7.31} \text{ (m, 1H), 7.24 – 7.19} \text{ (m, 1H), 7.17 \text{ (d, } J = 8.7 \text{ Hz, 1H), 7.01 \text{ (d, } J = 8.2 \text{ Hz, 1H), 2.92 – 2.80} \text{ (m, 1H), 2.76 – 2.63} \text{ (m, 3H), 2.30 – 2.18} \text{ (m, 2H) ppm.} \)
\(^19\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.01 – -83.57 \text{ (m, 3F), -113.30 – -117.05} \text{ (m, 2F) ppm.} \)
\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 194.3, 152.6, 151.2 \text{ (t, } J = 1.2 \text{ Hz), 138.4, 137.2 \text{ (t, } J = 31.4 \text{ Hz), 133.2, 128.6, 127.9, 127.7, 126.4, 124.8, 123.9, 123.4, 122.7 \text{ (t, } J = 1.6 \text{ Hz), 121.7, 121.0,} \)
120.4, 120.2, 116.3, 114.8, 110.0, 38.0, 23.4, 22.2 ppm; carbons corresponding to the C$_2$Fs group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{26}$H$_{17}$F$_5$NO$_2$ [M+H]$^+$ 470.1174, found: 470.1184.

![Chemical structure](image)

1-(1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-pyrrol-3-yl)ethan-1-one (11a):

Yield = 39% (46 mg), 0.3 mmol scale. White solid. M.p. 98.1–98.7 °C.

IR (KBr): $\nu = 3141, 1667, 1629, 810, 759$ cm$^{-1}$.

1H **NMR** (400 MHz, CDCl$_3$): $\delta = 8.40$ (d, $J = 8.1$ Hz, 1H), 8.00 (d, $J = 8.0$ Hz, 1H), 7.81 (d, $J =$ 8.7 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.69 – 7.63 (m, 1H), 7.58 (t, $J = 1.8$ Hz, 1H), 7.51 (d, $J = 8.7$ Hz, 1H), 7.00 – 6.96 (m, 1H), 6.88 – 6.84 (m, 1H), 2.50 (s, 3H) ppm.

19F **NMR** (376 MHz, CDCl$_3$): $\delta =$ -83.48 (t, $J = 4.0$ Hz, 3F), -113.36 (q, $J = 3.7$ Hz, 2F) ppm.

13C **NMR** (100 MHz, CDCl$_3$): $\delta =$ 193.3, 150.5 (t, $J = 1.0$ Hz), 133.5 (t, $J = 31.9$ Hz), 133.2, 128.6, 127.9, 127.8, 127.6, 127.3 (t, $J = 1.5$ Hz), 127.0 (t, $J = 1.9$ Hz), 126.2, 124.5, 120.8, 120.3, 119.7, 116.4, 110.6, 27.3 ppm; carbons corresponding to the C$_2$Fs group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{26}$H$_{13}$F$_5$NO$_2$ [M+H]$^+$ 394.0861, found: 394.0869.

![Chemical structure](image)

1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-pyrrole-2-carbaldehyde (11b):

Yield = 66% (75 mg), 0.3 mmol scale. Yellow solid. M.p. 119.0–119.4 °C.

IR (KBr): $\nu =$ 3137, 1672, 1537, 815, 768 cm$^{-1}$.

1H **NMR** (400 MHz, CDCl$_3$): $\delta =$ 9.61 – 9.59 (m, 1H), 8.41 – 8.35 (m, 1H), 7.94 (d, $J = 8.1$ Hz, 1H), 7.72 (d, $J = 8.6$ Hz, 1H), 7.70 – 7.65 (m, 1H), 7.63 – 7.57 (m, 1H), 7.25 (d, $J = 8.6$ Hz, 1H), 7.23 – 7.20 (m, 1H), 7.09 (s, 1H), 6.53 (dd, $J = 4.0$, 2.7 Hz, 1H) ppm.
19F NMR (376 MHz, CDCl$_3$): $\delta = -83.62$ (t, $J = 3.9$ Hz, 3F), $-112.24 - -117.23$ (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 178.2, 150.2$ (t, $J = 1.2$ Hz), 135.0 (t, $J = 31.2$ Hz), 133.6, 133.1, 132.2, 128.5, 127.5, 127.2, 126.5 (t, $J = 2.3$ Hz), 125.9, 123.7 (m), 121.1, 121.0, 120.3, 116.6, 111.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{19}$H$_{11}$F$_5$NO$_2$ [M+H]$^+$ 380.0704, found: 380.0704.

![Chemical structure of 1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1,5,6,7-tetrahydro-4H-indol-4-one (11c):](image)

1-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1,5,6,7-tetrahydro-4H-indol-4-one (11c):
Yield = 46% (78 mg), 0.3 mmol scale. Yellow solid. M.p. 113.4–114.9 °C.

IR (KBr): $\nu = 2951, 1668, 1627, 809, 748$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.46 - 8.38$ (m, 1H), 8.01 (d, $J = 8.1$ Hz, 1H), 7.82 (d, $J = 8.7$ Hz, 1H), 7.74 (t, $J = 7.5$ Hz, 1H), 7.68 (t, $J = 7.6$ Hz, 1H), 7.35 (d, $J = 8.7$ Hz, 1H), 6.80 (d, $J = 4.2$ Hz, 2H), 2.61 (t, $J = 6.3$ Hz, 2H), 2.59 - 2.52 (m, 2H), 2.15 (p, $J = 6.3$ Hz, 2H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.53$ (t, $J = 3.2$ Hz, 3F), $-112.29 - -117.12$ (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 194.3, 150.6$ (t, $J = 1.3$ Hz), 145.3, 135.8 (t, $J = 31.5$ Hz), 133.2, 128.6, 127.8, 127.6, 126.4, 125.1 (t, $J = 1.8$ Hz), 124.5, 122.1, 120.9, 120.4, 120.2, 116.2, 107.0, 37.7, 23.7, 21.8 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{22}$H$_{15}$F$_5$NO$_2$ [M+H]$^+$ 420.1017, found: 420.1018.

![Chemical structure of 9-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-9H-carbazole (12):](image)

9-(2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)-9H-carbazole (12):
Yield = 40% (54 mg), 0.3 mmol scale. Yellow solid. M.p. 111.8–112.3 °C.

IR (KBr): $\nu = 3363, 1790, 1620, 812, 746$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.53 - 8.43$ (m, 1H), 8.20 – 8.16 (m, 2H), 7.91 (d, $J = 8.2$ Hz,
1H), 7.70 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 6.9 Hz, 2H), 7.42 – 7.36 (m, 2H), 7.35 – 7.30 (m, 2H), 7.19 – 7.16 (m, 2H), 7.01 (s, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -82.76 – -83.72 (m, 3F), -114.60 – -115.57 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 151.4, 141.4, 137.5 (t, J = 31.6 Hz), 133.1, 128.6, 127.5, 127.3, 126.3, 125.5, 123.9, 123.8 (t, J = 1.8 Hz), 121.2, 120.7, 120.7, 120.4, 120.2, 117.4, 110.0 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{26}$H$_{15}$F$_5$NO [M+H]$^+$ 452.1068, found: 452.1070.

N,N-Dimethyl-9-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-9H-purin-6-amine (13):

Yield = 36% (48 mg), 0.3 mmol scale. Yellow solid. M.p. 175.2–175.6 °C.

IR (KBr): ν = 2934, 1614, 1566, 820, 745 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.40 (d, J = 8.2 Hz, 1H), 8.38 – 8.35 (m, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.92 – 7.88 (m, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.36 (d, J = 8.7 Hz, 1H), 3.60 (s, 6H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -83.33 – -83.61 (m, 3F), -108.83 – -109.25 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 155.1, 153.5, 151.6, 151.0 (t, J = 1.1 Hz), 138.0, 135.3 (t, J = 31.2 Hz), 133.2, 128.5, 127.6, 127.5, 126.1, 121.5 (t, J = 1.3 Hz), 120.9, 120.2, 119.9, 119.6, 117.2, 116.9, 38.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{15}$F$_5$N$_5$O [M+H]$^+$ 448.1191, found: 448.1196.

2-Benzyl-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (15a):
Yield = 38% (56 mg), 0.3 mmol scale. Yellow oil.

IR (KBr): \(\nu = 2993, 1620, 1492, 812, 746 \text{ cm}^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.46 - 8.40 \) (m, 1H), 7.94 (d, \(J = 8.1 \text{ Hz} \), 1H), 7.90 – 7.86 (m, 1H), 7.76 – 7.70 (m, 1H), 7.68 – 7.62 (m, 1H), 7.54 (d, \(J = 8.6 \text{ Hz} \), 1H), 7.36 – 7.30 (m, 1H), 7.23 – 7.18 (m, 1H), 7.03 – 6.91 (m, 6H), 6.78 (d, \(J = 8.7 \text{ Hz} \), 1H), 4.43 – 4.02 (m, 2H) ppm.

\(^19\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -82.68 - 83.46 \) (m, 3F), -112.29 – -118.35 (m, 2F) ppm.

\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 154.0, 150.9 \) (t, \(J = 1.1 \text{ Hz} \)), 142.7, 136.8 (m), 136.7, 135.2, 133.1, 128.6, 128.6, 128.4, 127.6, 126.7, 125.9, 123.5, 123.0, 122.4 (d, \(J = 2.6 \text{ Hz} \)), 120.8, 120.2 (d, \(J = 0.7 \text{ Hz} \)), 120.1, 119.8, 116.2, 109.6, 34.5 ppm; carbons corresponding to the C\(_{2}F_{5}\) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{28}\)H\(_{18}\)F\(_{5}\)N\(_{2}\)O \([\text{M+H}]^+\) 493.1334, found: 493.1336.

1,7'-Dimethyl-3'-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-2'-propyl-1H,3'H-2,5'-bibenzo[d]imidazole (15b):

Yield = 88% (156 mg), 0.3 mmol scale. Yellow solid. M.p. 121.3 – 121.7 °C.

IR (KBr): \(\nu = 2967, 1624, 1529, 814, 745 \text{ cm}^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.51 – 8.38 \) (m, 1H), 8.02 – 7.91 (m, 1H), 7.81 – 7.68 (m, 3H), 7.64 (t, \(J = 7.6 \text{ Hz} \), 1H), 7.57 (s, 1H), 7.32 – 7.26 (m, 2H), 7.25 – 7.18 (m, 3H), 3.77 (s, 3H), 2.91 – 2.77 (m, 5H), 1.95 – 1.79 (m, 2H), 0.95 (t, \(J = 7.4 \text{ Hz} \), 3H) ppm.

\(^19\)F NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.01 \) (s, 3F), -114.62 – -114.84 (m, 2F) ppm.

\(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 156.5, 154.1, 151.2 \) (t, \(J = 1.1 \text{ Hz} \)), 143.2, 142.7, 136.8 (t, \(J = 31.8 \text{ Hz} \)), 136.5, 136.1, 133.2, 129.9, 128.6, 127.8, 127.6, 126.5, 124.9, 122.4, 122.3 (t, \(J = 1.6 \text{ Hz} \)), 122.1, 120.9, 120.2, 120.0, 119.4, 116.0, 109.3, 108.5, 31.5, 29.5, 21.1, 16.7, 13.7 ppm; carbons corresponding to the C\(_{2}F_{5}\) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{33}\)H\(_{26}\)F\(_{5}\)N\(_{4}\)O \([\text{M+H}]^+\) 589.2021, found: 589.2028.
Methyl (S)-2-(1,3-dioxoisindolin-2-yl)-3-(1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-imidazol-4-yl)propanoate (15c):

Yield = 35% (61 mg), 0.3 mmol scale. Yellow oil.

IR (KBr): $\nu = 2956, 1717, 1631, 814, 718$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.33$ (d, $J = 8.1$ Hz, 1H), 7.96 (d, $J = 7.8$ Hz, 1H), 7.87 – 7.81 (m, 2H), 7.75 – 7.69 (m, 3H), 7.69 – 7.62 (m, 2H), 7.59 (s, 1H), 7.22 (d, $J = 8.7$ Hz, 1H), 6.96 (s, 1H), 5.42 – 5.35 (m, 1H), 3.81 (s, 3H), 3.73 – 3.59 (m, 2H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.77$ (t, $J = 4.0$ Hz, 3F), -113.50 – -114.18 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 169.3, 167.3, 150.4$ (t, $J = 1.2$ Hz), 139.0, 137.9, 134.0, 133.7 (t, $J = 31.9$ Hz), 133.1, 131.7, 128.5, 127.7, 127.6, 126.2, 124.0 (t, $J = 2.0$ Hz), 123.4, 120.7, 120.2, 119.5, 118.5, 116.0, 52.8, 51.9, 27.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcld for C$_{29}$H$_{19}$F$_5$N$_3$O$_5$ [M+H]$^+$ 584.1239, found: 584.1245.

1,3-Dimethyl-9-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-3,9-dihydro-1H-purine-2,6-dione (15d):

Yield = 49% (68 mg), 0.3 mmol scale. Yellow solid. M.p. 236.5–237.1 °C.

IR (KBr): $\nu = 3125, 1712, 1676, 818, 748$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.43 – 8.35$ (m, 1H), 7.97 (d, $J = 8.1$ Hz, 1H), 7.83 – 7.76 (m, 2H), 7.74 – 7.68 (m, 1H), 7.67 – 7.61 (m, 1H), 7.34 (d, $J = 8.7$ Hz, 1H), 3.70 (s, 3H), 3.36 (s, 3H) ppm.
19F NMR (376 MHz, CDCl$_3$): δ = -83.53 (t, J = 4.1 Hz, 3F), -111.87 – -117.02 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 153.8, 151.6, 150.6 (t, J = 1.2 Hz), 149.2, 142.4, 135.5 (t, J = 31.1 Hz), 133.2, 128.5, 127.7, 127.6, 126.4, 122.0 (t, J = 1.2 Hz), 120.8, 120.2, 120.2, 116.2, 108.4, 30.0, 28.1 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{14}$F$_5$N$_4$O$_3$ [M+H]$^+$ 465.098, found: 465.0986.

(E)-N-Methyl-2-(((1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)thio)benzamide (15e):

Yield = 80% (54 mg), 0.1 mmol scale. Yellow solid. M.p. 113.1–113.5 °C.

IR (KBr): ν = 3072, 1676, 1623, 802, 760 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): δ = 8.65 (d, J = 4.4 Hz, 1H), 8.41 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 8.4 Hz, 1H), 8.04 – 7.93 (m, 2H), 7.77 – 7.63 (m, 5H), 7.57 (d, J = 7.3 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.37 (s, 1H), 7.34 – 7.30 (m, 1H), 7.28 – 7.18 (m, 4H), 6.31 (s, 1H), 2.91 (dd, J = 4.8, 1.1 Hz, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): δ = -82.92 (t, J = 3.2 Hz, 3F), -111.73 – -118.12 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): δ = 168.3, 155.0, 150.7 (t, J = 1.4 Hz), 149.8, 145.4, 142.9, 136.9, 136.7, 135.8, 135.1 (t, J = 33.1 Hz), 133.9, 133.1, 132.2, 131.9, 130.8, 128.7, 128.6, 127.5, 127.4, 127.3, 125.9, 125.9, 125.5 (t, J = 1.5 Hz), 122.6, 122.4, 122.4, 122.3, 121.8, 120.9, 120.2, 119.9, 117.4, 112.9, 26.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{36}$H$_{24}$F$_5$N$_4$O$_2$S [M+H]$^+$ 671.1535, found: 671.1539.
N-((1-allylpyrrolidin-2-yl)methyl)-6-methoxy-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole-5-carboxamide (15f-I), N-((1-allylpyrrolidin-2-yl)methyl)-5-methoxy-1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole-6-carboxamide (15f-II), and N-((1-allylpyrrolidin-2-yl)methyl)-6-methoxy-2-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-2H-benzo[d][1,2,3]triazole-5-carboxamide (15f-III):

15f-I, 15f-II and its isomer 15f-III were inseparable and unidentified regioisomers.

Total yield = 58% (35 mg, 15f-I/15f-II/15f-III = 10/6/1), 0.1 mmol scale. Yellow solid.

IR (KBr): \(\nu = 2967, 1659, 1525, 807, 757 \text{ cm}^{-1} \).

\(^1\)H NMR (400 MHz, CDCl\(_3\)):
\[\delta = 9.08 – 8.30 \text{ (m, 3H), 8.01 (t, } J = 8.3 \text{ Hz, 1H), 7.90 – 7.64 \text{ (m, 3H), 7.38 – 7.28 \text{ (m, 0.6H), 6.84 (s, 0.4H), 6.08 – 5.75 \text{ (m, 1H), 5.40 – 5.00 \text{ (m, 2H), 4.20 – 3.89 \text{ (m, 3H), 3.86 – 3.69 \text{ (m, 1H), 3.56 – 3.33 \text{ (m, 2H), 3.26 – 3.13 \text{ (m, 1H), 3.04 – 2.71 \text{ (m, 2H), 2.43 – 2.08 \text{ (m, 2H), 2.01 – 1.89 \text{ (m, 1H), 1.82 – 1.60 \text{ (m, 3H) ppm.}}}}\]

\(^{19}\)F NMR (376 MHz, CDCl\(_3\)):
\[\delta = -82.49 – -83.30 \text{ (m, 3F), -111.54 – -114.87 \text{ (m, 2F) ppm.}}\]

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)):
\[\delta = 164.6, 164.2, 158.9, 155.5, 151.0 \text{ (t, } J = 1.4 \text{ Hz), 150.9 \text{ (t, } J = 1.4 \text{ Hz), 147.2, 140.4, 136.3 \text{ (m), 135.7 \text{ (m), 133.2, 129.5, 128.6, 127.9, 127.8, 127.7, 126.7, 126.6, 125.6, 125.1, 122.5 \text{ (t, } J = 1.5 \text{ Hz), 122.4 \text{ (t, } J = 1.5 \text{ Hz), 120.9, 120.8, 120.3, 120.3, 119.5, 119.4, 116.6, 116.3, 113.9, 100.0, 90.1, 62.1 \text{ (m), 61.7 \text{ (m), 57.1 \text{ (m), 57.0 \text{ (m), 56.4, 56.4, 54.2, 41.4, 41.2, 28.4, 28.3, 23.0 ppm; carbons corresponding to the } C_2F_5 \text{ group cannot be identified due to } C-F \text{ coupling.}}}}\]

HRMS m/z: calcd for $C_{30}H_{27}F_5N_5O_3$ [M+H]$^+$ 600.2029, found: 600.2036.
2-Butyl-3-((2′-(1-(2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)-1,3-diazaspiro[4.4]non-1-en-4-one (15g):

Yield = 15% (32 mg), 0.3 mmol scale. Yellow solid. M.p. 184.6–185.9 °C.

IR (KBr): $\nu = 2962, 1727, 1629, 808, 758$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.32 – 8.24$ (m, 1H), 8.02 (d, $J = 7.8$ Hz, 1H), 7.88 – 7.81 (m, 1H), 7.76 – 7.65 (m, 3H), 7.63 – 7.54 (m, 2H), 7.25 – 7.20 (m, 1H), 6.69 (d, $J = 8.0$ Hz, 2H), 6.64 (d, $J = 8.8$ Hz, 1H), 6.57 (d, $J = 8.0$ Hz, 2H), 4.23 (s, 2H), 2.15 – 2.08 (m, 5H), 1.97 – 1.92 (m, 5H), 1.80 – 1.71 (m, 2H), 1.52 – 1.42 (m, 2H), 1.28 – 1.22 (m, 3H), 0.80 (t, $J = 7.3$ Hz, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -82.88$ (t, $J = 2.5$ Hz, 3F), -106.78 – -125.10 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 186.5, 161.3, 156.3, 150.3$ (t, $J = 1.3$ Hz), 140.8, 138.3, 136.3, 133.8 (t, $J = 32.1$ Hz), 132.9, 132.5, 132.0, 130.8, 128.7, 128.4, 128.1, 127.9, 127.8, 126.9, 125.8, 121.3, 120.5 (t, $J = 1.3$ Hz), 120.2, 120.0, 117.9, 116.6, 76.4, 60.4, 42.7, 37.3, 28.5, 27.6, 26.0, 22.2, 14.2, 13.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{39}$H$_{34}$F$_5$N$_6$O$_2$ [M+H]$^+$ 713.2658, found: 713.2661.

1-(8-Methoxy-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16a):

Yield = 96% (83 mg), 0.2 mmol scale. White solid. M.p. 176.8–177.5 °C.

IR (KBr): $\nu = 3074, 1636, 1601, 836, 753$ cm$^{-1}$.
1H NMR (400 MHz, CDCl$_3$): $\delta = 8.23$ (d, $J = 8.3$ Hz, 1H), 7.87 (d, $J = 9.0$ Hz, 1H), 7.72 – 7.64 (m, 2H), 7.61 – 7.56 (m, 1H), 7.54 – 7.44 (m, 2H), 7.29 (dd, $J = 8.9$, 2.4 Hz, 1H), 7.14 (d, $J = 8.6$ Hz, 1H), 4.04 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.16$ (t, $J = 4.0$ Hz, 3F), -114.37 (s, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 159.2$, 150.4 (t, $J = 0.9$ Hz), 145.6, 135.7 (t, $J = 32.1$ Hz), 134.2, 130.2, 128.9, 128.3, 126.0, 124.7, 122.8 (t, $J = 1.4$ Hz), 121.9, 120.4, 120.0, 119.9, 113.9, 109.6, 98.9, 55.6 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{13}$F$_{5}$N$_3$O$_2$ [M+H]$^+$ 434.092, found: 434.0927.

![Compound Structure](image-url)

1-(7-Methoxy-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16b):

Yield = 74% (64 mg), 0.2 mmol scale. Yellow solid. M.p. 134.0–135.2 °C.

IR (KBr): $\nu = 3066$, 1626, 1540, 808, 751 cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.34$ (d, $J = 9.0$ Hz, 1H), 8.22 (d, $J = 8.3$ Hz, 1H), 7.66 (d, $J = 8.7$ Hz, 1H), 7.62 – 7.55 (m, 1H), 7.54 – 7.45 (m, 2H), 7.38 (dd, $J = 9.0$, 2.4 Hz, 1H), 7.31 (d, $J = 2.3$ Hz, 1H), 7.29 – 7.25 (m, 1H), 3.97 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.17$ (t, $J = 2.6$ Hz, 3F), -114.19 (s, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 159.1$, 151.3 (t, $J = 1.1$ Hz), 145.6, 135.0, 134.9 (t, $J = 32.4$ Hz), 134.2, 128.9, 125.5, 124.7, 122.8 (t, $J = 1.7$ Hz), 121.9, 120.4, 119.8, 117.8, 117.3, 115.8, 109.7, 107.5, 55.4 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{13}$F$_{5}$N$_3$O$_2$ [M+H]$^+$ 434.0922, found: 434.0926.
1-(6-Methoxy-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole

(16c):
Yield = 53% (46 mg, 0.2 mmol scale). White solid. M.p. 137.0–138.9 °C.

IR (KBr): ν = 2944, 1634, 796, 721 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.22 (dd, J = 8.5, 5.6 Hz, 2H), 8.01 (d, J = 8.3 Hz, 1H), 7.65 (t, J = 8.1 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.54 – 7.44 (m, 2H), 7.28 (d, J = 8.9 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 4.04 (s, 3H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -82.89 – -83.30 (m, 3F), -114.30 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 155.9, 150.8 (t, J = 1.3 Hz), 145.6, 135.9 (t, J = 32.4 Hz), 134.3, 128.9, 128.7, 128.2, 127.6, 125.5, 124.7, 122.8 (t, J = 1.5 Hz), 122.0, 120.4, 120.2, 117.9, 117.3, 106.2, 55.7 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₁H₁₃F₉N₃O₂ [M+H]⁺ 434.0922, found: 434.0927.

1-(7-(Benzyloxy)-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole

(16d):
Yield = 36% (37 mg), 0.2 mmol scale. Light yellow solid. M.p. 109.7–111.1 °C.

IR (KBr): ν = 2907, 1641, 1612, 800, 746 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.37 (d, J = 9.0 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.54 – 7.34 (m, 9H), 7.28 (s, 1H), 5.23 (s, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.07 – -83.52 (m, 3F), -114.32 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 158.2, 151.2 (t, J = 1.2 Hz), 145.6, 136.2, 135.0, 134.9, 134.2, 128.9, 128.7, 128.2, 127.6, 125.5, 124.7, 122.8 (t, J = 1.5 Hz), 122.0, 120.4, 120.2, 117.9, 117.3,
115.9, 109.7, 108.9, 70.2 ppm; carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C\(_{27}\)H\(_{17}\)F\(_5\)N\(_3\)O\(_2\) [M+H]^+ 510.1235, found: 510.1242.

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{N=N}
\end{array}
\]

1-(8-Methyl-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16e):
Yield = 90% (75 mg), 0.2 mmol scale. Yellow solid. M.p. 150.5–151.4 °C.

IR (KBr): \(\nu = 2920, 1630, 1615, 830, 749 \text{ cm}^{-1}\).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta = 8.26 - 8.18 \text{ (m, 2H)}, 7.88 \text{ (d, } J = 8.4 \text{ Hz, 1H}), 7.71 \text{ (d, } J = 8.6 \text{ Hz, 1H}), 7.61 - 7.55 \text{ (m, 1H)}, 7.53 - 7.44 \text{ (m, 3H)}, 7.22 \text{ (d, } J = 8.7 \text{ Hz, 1H}), 2.64 \text{ (s, 3H) ppm.}

\(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)): \(\delta = -83.00 - -83.37 \text{ (m, 3F)}, -114.29 \text{ (s, 2F) ppm.}

\(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)): \(\delta = 150.7 \text{ (t, } J = 1.4 \text{ Hz)}, 145.6, 138.1, 135.6 \text{ (t, } J = 32.4 \text{ Hz)}, 134.2, 131.4, 129.8, 128.9, 128.4, 126.2, 124.7, 122.8 \text{ (t, } J = 1.6 \text{ Hz)}, 121.0, 120.4, 119.5, 119.3, 115.6, 109.7, 21.9 \text{ ppm; carbons corresponding to the } C_2 F_5 \text{ group cannot be identified due to C-F coupling.}

HRMS m/z: calcd for C\(_{21}\)H\(_{13}\)F\(_3\)N\(_3\)O [M+H]^+ 418.0973, found: 418.0979.

\[
\begin{array}{c}
\text{F} \\
\text{O} \\
\text{N=N}
\end{array}
\]

1-(8-Fluoro-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16f):
Yield = 80% (67 mg), 0.2 mmol scale. Colorless oil.

IR (KBr): \(\nu = 3073, 1629, 1596, 832, 734 \text{ cm}^{-1}\).

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta = 8.27 - 8.21 \text{ (m, 1H)}, 8.07 - 7.97 \text{ (m, 2H)}, 7.77 \text{ (d, } J = 8.7 \text{ Hz, 1H}), 7.63 - 7.58 \text{ (m, 1H)}, 7.55 - 7.50 \text{ (m, 1H)}, 7.48 \text{ (d, } J = 8.3 \text{ Hz, 1H}), 7.46 - 7.40 \text{ (m, 1H)}, 7.29 \text{ (d, } J = 8.7 \text{ Hz, 1H) ppm.}

\(^{19}\text{F NMR}\) (376 MHz, CDCl\(_3\)): \(\delta = -83.00 - -83.26 \text{ (m, 3F)}, -109.58 - -110.06 \text{ (m, 1F), -114.38 (s,}
1-(8-Chloro-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16g):

Yield = 65% (57 mg), 0.2 mmol scale. White solid. M.p. 135.7–137.1 °C.

IR (KBr): ν = 3066, 1749, 1491, 812, 748 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, J = 2.1 Hz, 1H), 8.25 – 8.21 (m, 1H), 7.94 (d, J = 8.7 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.55 – 7.45 (m, 2H), 7.33 (d, J = 8.7 Hz, 1H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 149.8 (t, J = 1.4 Hz), 145.6, 136.3 (t, J = 32.5 Hz), 145.6, 136.3 (t, J = 32.5 Hz), 134.2, 134.0, 131.3, 130.2, 129.0, 128.6, 126.1, 124.8, 122.9 (t, J = 2.0 Hz), 121.5, 120.5, 120.4, 119.5, 117.0, 109.6 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcld for C₂₀H₁₀ClF₅N₃O [M+H]⁺ 438.0427, found: 438.0437.

1-(8-Bromo-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16h):

Yield = 73% (70 mg), 0.2 mmol scale. Light brown solid. M.p. 156.1–156.7 °C.

IR (KBr): ν = 3067, 1630, 1611, 803, 733 cm⁻¹.
^{1}H NMR (400 MHz, CDCl$_3$): $\delta = 8.60 - 8.54$ (m, 1H), 8.26 – 8.20 (m, 1H), 7.89 – 7.83 (m, 1H), 7.77 – 7.70 (m, 2H), 7.64 – 7.57 (m, 1H), 7.55 – 7.45 (m, 2H), 7.37 – 7.32 (m, 1H) ppm.

^{19}F NMR (376 MHz, CDCl$_3$): $\delta = -83.07$ (t, $J = 2.5$ Hz, 3F), -114.35 (s, 2F) ppm.

^{13}C NMR (100 MHz, CDCl$_3$): $\delta = 149.6$ (t, $J = 1.4$ Hz), 145.6, 136.3 (t, $J = 32.2$ Hz), 134.2, 131.5, 131.1, 130.2, 129.0, 126.2, 124.8, 122.9 (t, $J = 1.5$ Hz), 122.7, 122.2, 121.8, 120.5, 120.4, 117.2, 109.5 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{20}$H$_{10}$BrF$_5$N$_3$O [M+H]$^+$ 481.9922, found: 481.9924.

1-(5-Methyl-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16j):

Yield = 59% (49 mg), 0.2 mmol scale. White solid. M.p. 122.9–124.2 °C.

IR (KBr): $\nu =$ 3071, 1630, 1613, 785, 756 cm$^{-1}$.

^{1}H NMR (400 MHz, CDCl$_3$): $\delta = 8.50 - 8.44$ (m, 1H), 8.24 (d, $J = 8.3$ Hz, 1H), 8.10 (d, $J = 7.7$ Hz, 1H), 7.80 – 7.68 (m, 2H), 7.64 – 7.56 (m, 1H), 7.54 – 7.44 (m, 2H), 7.14 (s, 1H), 2.66 (s, 3H) ppm.

^{19}F NMR (376 MHz, CDCl$_3$): $\delta = -83.18$ (t, $J = 4.0$ Hz, 3F), -114.23 (s, 2F) ppm.

^{13}C NMR (100 MHz, CDCl$_3$): $\delta = 150.2$ (t, $J = 1.3$ Hz), 145.6, 135.5 (t, $J = 32.5$ Hz), 134.3, 133.1, 132.5, 128.9, 127.6, 127.4, 125.3, 124.7, 122.5 (t, $J = 1.3$ Hz), 120.9, 120.7, 120.4, 119.1, 116.2, 109.7, 19.8 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{13}$F$_5$N$_3$O [M+H]$^+$ 418.0973, found: 418.0982.

1-(5-(3,4-Dichlorophenyl)-2-(perfluoroethyl)naphtho[1,2-b]furan-3-yl)-1H-
benzo[d][1,2,3]triazole (16k):
Yield = 95% (104 mg), 0.2 mmol scale. White solid. M.p. 173.0–174.1 °C.
IR (KBr): \(\nu = 3068, 1639, 1591, 819, 756 \text{ cm}^{-1}\).
\(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.55 \text{ (d, } J = 8.2 \text{ Hz, 1H)}, 8.25 – 8.19 \text{ (m, 1H)}, 7.89 \text{ (d, } J = 8.5 \text{ Hz, 1H)}, 7.80 \text{ (t, } J = 7.5 \text{ Hz, 1H)}, 7.70 – 7.64 \text{ (m, 1H)}, 7.63 – 7.57 \text{ (m, 1H)}, 7.55 – 7.47 \text{ (m, 4H)}, 7.25 \text{ (d, } J = 7.2 \text{ Hz, 2H) ppm.}\)
\(^{19}F\) NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.19 \text{ (t, } J = 3.6 \text{ Hz, 3F)}, -114.42 \text{ (s, 2F) ppm.}\)
\(^{13}C\) NMR (100 MHz, CDCl\(_3\)): \(\delta = 150.8 \text{ (t, } J = 1.2 \text{ Hz), 145.6, 139.4, 136.7, 136.1 \text{ (t, } J = 32.5 \text{ Hz), 134.2, 132.6, 132.2, 131.7, 131.5, 130.3, 129.4, 129.1, 128.1, 128.0, 126.8, 124.8, 122.9 \text{ (t, } J = 1.1 \text{ Hz), 121.1, 120.7, 120.5, 119.0, 117.4, 109.5 \text{ ppm; carbons corresponding to the } C_2F_5 \text{ group cannot be identified due to } C-F \text{ coupling.}\}
HRMS m/z: calcd for C\(_{26}\)H\(_{13}\)Cl\(_2\)F\(_5\)N\(_3\)O \([M+H]^+\) 548.0350, found: 548.0358.

1-(2-[(Perfluoroethyl)thieno[2,3-g]benzofuran-3-yl]-1H-benzo[d][1,2,3]triazole (16l):
Yield = 96% (79 mg), 0.2 mmol scale. Yellow solid. M.p. 111.7–112.9 °C.
IR (KBr): \(\nu = 3068, 1630, 1612, 797, 748 \text{ cm}^{-1}\).
\(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.23 \text{ (d, } J = 8.3 \text{ Hz, 1H)}, 7.87 – 7.81 \text{ (m, 2H)}, 7.72 \text{ (d, } J = 5.5 \text{ Hz, 1H)}, 7.62 – 7.56 \text{ (m, 1H)}, 7.53 – 7.48 \text{ (m, 1H)}, 7.46 \text{ (d, } J = 8.2 \text{ Hz, 1H}), 7.25 \text{ (d, } J = 8.6 \text{ Hz, 1H) ppm.}\)
\(^{19}F\) NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.15 \text{ (t, } J = 3.9 \text{ Hz, 3F)}, -114.47 \text{ (s, 2F) ppm.}\)
\(^{13}C\) NMR (100 MHz, CDCl\(_3\)): \(\delta = 149.3 \text{ (t, } J = 1.4 \text{ Hz), 145.6, 141.4, 135.1 \text{ (t, } J = 32.3 \text{ Hz), 134.2, 129.0, 128.9, 125.4, 124.7, 122.8 \text{ (t, } J = 1.5 \text{ Hz), 120.5, 120.1, 119.5, 118.7, 115.4, 109.6 \text{ ppm; carbons corresponding to the } C_2F_5 \text{ group cannot be identified due to } C-F \text{ coupling.}\}
HRMS m/z: calcd for C\(_{18}\)H\(_{15}\)F\(_5\)N\(_3\)OS \([M+H]^+\) 410.0381, found: 410.0384.
1-(7-Methyl-2-(perfluoroethyl)-6-phenylbenzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16m):
Yield = 60% (53 mg), 0.2 mmol scale. Yellow oil.
IR (KBr): ν = 3062, 1637, 1613, 772, 743 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): δ = 8.25 – 8.19 (m, 1H), 7.62 – 7.56 (m, 1H), 7.53 – 7.45 (m, 4H), 7.44 – 7.36 (m, 3H), 7.33 (d, J = 8.2 Hz, 1H), 7.23 (d, J = 8.2 Hz, 1H), 2.57 (s, 3H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -83.11 (t, J = 3.1 Hz, 3F), -114.92 (s, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 153.8 (t, J = 1.1 Hz), 145.6, 142.5, 139.8, 136.8 (t, J = 32.0 Hz), 134.2, 129.4, 128.9, 128.4, 127.6, 127.6, 124.7, 122.0 (t, J = 1.0 Hz), 121.9, 121.0, 120.4, 117.1, 109.6, 12.5 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.
HRMS m/z: calcd for C₂₃H₁₅F₅N₃O [M+H]+ 444.1130, found: 444.1128.

1-(7-Methyl-2-(perfluoroethyl)-6-(p-tolyl)benzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16n):
Yield = 78% (71 mg), 0.2 mmol scale. Yellow oil.
IR (KBr): ν = 2927, 1682, 1623, 766, 746 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): δ = 8.25 – 8.18 (m, 1H), 7.62 – 7.55 (m, 1H), 7.53 – 7.45 (m, 2H), 7.34 – 7.26 (m, 5H), 7.21 (d, J = 8.2 Hz, 1H), 2.57 (s, 3H), 2.43 (s, 3H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -82.86 – -83.38 (m, 3F), -114.89 (s, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 153.9 (t, J = 1.0 Hz), 145.6, 142.6, 137.4, 136.9, 136.7 (t, J = 31.9 Hz), 134.2, 129.2, 129.1, 128.8, 127.7, 124.7, 122.0 (t, J = 1.7 Hz), 121.8, 121.0, 120.4, 117.0, 109.6, 21.1, 12.5 ppm; carbons corresponding to the C₂F₅ group cannot be identified
due to C-F coupling.

HRMS m/z: calcd for C_{24}H_{17}F_{5}N_{3}O [M+H]^+ 458.1286, found: 458.1287.

![Chemical structure](image1)

1-(6-(4-Chlorophenyl)-7-methyl-2-(perfluoroethyl)benzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16o):

Yield = 72\% (69 mg), 0.2 mmol scale. Yellow solid. M.p. 95.5–96.3 °C.

IR (KBr): \(\nu = 3066, 1634, 1614, 747, 729 \text{ cm}^{-1} \).

\(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.22 \) (d, \(J = 8.3 \text{ Hz}, 1H \)), 7.63 – 7.56 (m, 1H), 7.53 – 7.50 (m, 1H), 7.49 – 7.43 (m, 3H), 7.33 – 7.27 (m, 3H), 7.24 (d, \(J = 8.2 \text{ Hz}, 1H \)), 2.56 (s, 3H) ppm.

\(^19F\) NMR (376 MHz, CDCl\(_3\)): \(\delta = -83.11 \) (t, \(J = 2.6 \text{ Hz}, 3F \)), -114.92 (s, 2F) ppm.

\(^{13C}\) NMR (100 MHz, CDCl\(_3\)): \(\delta = 153.8 \) (t, \(J = 1.0 \text{ Hz} \)), 145.6, 141.2, 138.2, 137.0 (t, \(J = 31.9 \text{ Hz} \)), 134.2, 133.8, 130.7, 128.9, 128.6, 127.4, 124.7, 122.2, 122.0 (t, \(J = 1.8 \text{ Hz} \)), 121.1, 120.5, 117.3, 109.6, 12.4 ppm; carbons corresponding to the C\(_2\)F\(_5\) group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C_{23}H_{14}ClF_{5}N_{3}O [M+H]^+ 478.0740, found: 478.0743.

![Chemical structure](image2)

1-(7-Methyl-6-(naphthalen-1-yl)-2-(perfluoroethyl)benzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16p):

Yield = 78\% (77 mg), 0.2 mmol scale. Yellow solid. M.p. 68.1–68.3 °C.

IR (KBr): \(\nu = 3062, 1636, 1593, 746, 731 \text{ cm}^{-1} \).

\(^1H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.25 \) (d, \(J = 8.3 \text{ Hz}, 1H \)), 7.95 (dd, \(J = 8.1, 4.0 \text{ Hz}, 2H \)), 7.66 – 7.61 (m, 1H), 7.60 – 7.43 (m, 6H), 7.42 – 7.38 (m, 1H), 7.37 – 7.28 (m, 2H), 2.35 (s, 3H) ppm.
19F NMR (376 MHz, CDCl₃): δ = -83.03 (d, J = 2.6 Hz, 3F), -114.80 (s, 2F) ppm.

13C NMR (100 MHz, CDCl₃): δ = 153.6, 145.6, 141.1, 137.4, 136.9 (t, J = 31.9 Hz), 134.2, 133.5, 131.7, 128.9, 128.4, 128.2, 127.1, 126.4, 126.0, 125.6, 125.3, 124.7, 122.6, 122.3, 122.2, 122.1, 120.5, 116.9, 109.7, 12.3 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₇H₁₇F₅N₃O [M+H]^+ 494.1286, found: 494.1287.

1-(6-Methyl-2-(perfluoroethyl)-7-phenylbenzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16q):

Yield = 84% (74 mg), 0.2 mmol scale. Yellow solid. M.p. 67.7–68.1 °C.

IR (KBr): ν = 3060, 1636, 1612, 748, 723 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 8.21 (d, J = 8.7 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.55 – 7.52 (m, 2H), 7.51 – 7.45 (m, 5H), 7.34 (d, J = 8.2 Hz, 1H), 7.23 (d, J = 8.1 Hz, 1H), 2.43 (s, 3H) ppm.

19F NMR (376 MHz, CDCl₃): δ = -83.09 – -83.50 (m, 3F), -114.87 (s, 2F) ppm.

13C NMR (100 MHz, CDCl₃): δ = 152.6 (t, J = 1.2 Hz), 145.6, 137.3, 136.4 (t, J = 31.5 Hz), 134.2, 133.2, 129.9, 128.5, 128.2, 126.9, 124.7, 121.8 (t, J = 1.1 Hz), 121.4, 120.4, 118.5, 109.7, 20.1 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₃H₁₅F₃N₃O [M+H]^+ 444.1130, found: 444.1132.

4-(3-(1H-benzo[d][1,2,3]triazol-1-yl)-6-methyl-2-(perfluoroethyl)benzofuran-7-yl)benzonitrile (16r):

Yield = 80% (75 mg), 0.2 mmol scale. Yellow solid. M.p. 93.6–94.3 °C.

IR (KBr): ν = 2992, 2228, 1637, 1607, 767 cm⁻¹.
1H NMR (400 MHz, CDCl$_3$): $\delta = 8.20$ (d, $J = 8.3$ Hz, 1H), 7.85 (d, $J = 8.0$ Hz, 2H), 7.62 (d, $J = 8.2$ Hz, 2H), 7.60 – 7.55 (m, 1H), 7.53 – 7.45 (m, 2H), 7.40 – 7.29 (m, 2H), 2.42 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.22$ (s, 3F), -114.91 (s, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 152.0, 145.5, 138.1, 137.1, 136.5$ (t, $J = 32.3$ Hz), 134.1, 132.3, 130.8, 128.9, 128.4, 124.8, 122.0, 121.6, 120.4, 119.7, 118.5, 112.2, 109.5, 20.0 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{24}$H$_{14}$F$_5$N$_4$O $[M+H]^+$ 469.1082, found: 469.1082.

1-(6-Methyl-2-(perfluoroethyl)-7-(thiophen-2-yl)benzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16s):

Yield = 59% (53 mg), 0.2 mmol scale. Yellow solid. M.p. 114.9–115.8 °C.

IR (KBr): $\nu = 2962, 1639, 1613, 745, 701$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.26 – 8.19$ (m, 1H), 7.62 – 7.56 (m, 2H), 7.54 – 7.44 (m, 2H), 7.40 – 7.32 (m, 2H), 7.27 – 7.22 (m, 2H), 2.61 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -82.27 – -84.16$ (m, 3F), -114.79 (s, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 152.5, 150.7$ (t, $J = 1.1$ Hz), 145.6, 138.1, 136.1 (t, $J = 32.0$ Hz), 134.2, 133.1, 129.2, 128.9, 128.5, 127.2, 127.1, 124.7, 121.7, 120.5, 120.1, 118.9, 109.7, 21.1 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{13}$F$_5$N$_3$O$[M+H]^+$ 450.0694, found: 450.0692.

1-(6-Methyl-2-(perfluoroethyl)-4-phenylbenzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16t):

Yield = 62% (55 mg), 0.2 mmol scale. Yellow solid. M.p. 104.8–105.4 °C.
IR (KBr): $\nu = 3034, 1635, 1621, 756, 745 \text{ cm}^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.91 - 7.85$ (m, 1H), 7.54 (s, 1H), 7.28 – 7.19 (m, 2H), 7.15 (s, 1H), 6.99 – 6.93 (m, 1H), 6.79 (d, $J = 7.3$ Hz, 3H), 6.75 – 6.68 (m, 2H), 2.58 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.47$ (t, $J = 2.5$ Hz, 3F), -115.71 (dd, $J = 28.2$, 2.6 Hz, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 155.0, 145.0, 139.4, 138.1$ (t, $J = 30.0$ Hz), 136.7, 136.3, 134.7, 128.1, 127.8, 127.4, 127.3, 127.2, 123.8, 121.6 (m), 119.6, 119.1, 111.6, 109.2, 21.8 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{23}$H$_{15}$F$_3$N$_3$O [M+H]$^+$ 444.1130, found: 444.1127.

1-(6-((2-Bromophenyl)thio)-4-methyl-2-(perfluoroethyl)benzofuran-3-yl)-1H-benzo[d][1,2,3]triazole (16u):

Yield = 75% (83 mg), 0.2 mmol scale. Yellow oil.

IR (KBr): $\nu = 3063, 1633, 1609, 783, 744 \text{ cm}^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.20$ (d, $J = 8.3$ Hz, 1H), 7.70 – 7.61 (m, 1H), 7.58 (d, $J = 7.3$ Hz, 1H), 7.53 – 7.44 (m, 1H), 7.43 – 7.33 (m, 2H), 7.28 (d, $J = 9.9$ Hz, 2H), 7.19 (s, 1H), 7.11 (s, 1H), 1.67 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -82.95 - -83.97$ (m, 3F), -114.71 – -117.31 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 154.8, 145.3, 138.5$ (t, $J = 31.6$ Hz), 136.6, 135.4, 135.3, 133.6, 133.2, 133.2, 129.3, 129.2, 128.8, 128.3, 126.2, 124.7, 122.0, 121.8 (m), 120.4, 112.1, 109.3, 16.9 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{23}$H$_{14}$BrF$_3$N$_3$O [M+H]$^+$ 553.9956, found: 553.9954.
(1S,3aS,3bR,10bS,12aS)-9-(1H-Benzo[d][1,2,3]triazol-1-yl)-12a-methyl-8-
(perfluoroethyl)-2,3,3a,3b,4,5,10b,11,12,12a-decahydro-1H-
cyclopenta[7,8]phenanthro[2,3-b]furan-1-yl acetate (16v):
Yield = 58% (17 mg), 0.05 mmol scale. Yellow solid. M.p. 96.1–96.5 °C.
IR (KBr): ν = 3441, 2930, 1736, 1633, 745 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 8.25 – 8.18 (m, 1H), 7.61 – 7.55 (m, 1H), 7.52 – 7.47 (m, 1H), 7.46 – 7.41 (m, 2H), 7.22 (s, 1H), 4.65 (dd, J = 9.1, 7.8 Hz, 1H), 3.13 – 3.03 (m, 2H), 2.30 – 2.19 (m, 2H), 2.16 – 2.08 (m, 1H), 2.04 (s, 3H), 1.99 – 1.90 (m, 1H), 1.84 – 1.78 (m, 1H), 1.77 – 1.71 (m, 1H), 1.55 – 1.39 (m, 5H), 1.32 – 1.26 (m, 2H), 0.79 (s, 3H) ppm.

19F NMR (376 MHz, CDCl₃): δ = -83.19 (t, J = 3.3 Hz, 3F), -114.87 – -115.40 (m, 2F) ppm.

13C NMR (100 MHz, CDCl₃): δ = 171.2, 152.9, 145.5, 139.5, 139.0, 136.1 (t, J = 30.5 Hz), 134.3, 128.8, 124.7, 121.8 (t, J = 1.7 Hz), 121.5, 120.4, 116.2, 111.9, 109.7, 82.5, 50.0, 43.9, 42.7, 38.0, 36.5, 30.1, 27.5, 26.8, 26.1, 23.3, 21.2, 11.9 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₃₀H₂₉F₅N₃O₃ [M+H]^+ 574.2124, found: 574.2128.

1-(2-(Perfluorooctyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (16w):
Yield = 67% (94 mg), 0.2 mmol scale. Yellow solid. M.p. 125.5–126.6 °C.
IR (KBr): ν = 3057, 1749, 1650, 815, 747 cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 8.46 (d, J = 8.1 Hz, 1H), 8.24 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.81 – 7.72 (m, 2H), 7.68 (t, J = 7.4 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H) ppm.

19F NMR (376 MHz, CDCl₃): δ = -80.75 (t, J = 9.9 Hz, 3F), -110.95 (s, 2F), -121.28 – -122.12 (m, 8F), -122.73 (s, 2F), -126.01 – -126.28 (m, 2F) ppm.
13C NMR (100 MHz, CDCl$_3$): $\delta = 151.0$ (t, $J = 1.4$ Hz), 145.6, 136.1 (t, $J = 32.8$ Hz), 134.3, 133.2, 128.9, 128.6, 127.8, 127.7, 126.4, 124.7, 123.0 (t, $J = 1.9$ Hz), 120.9, 120.5, 120.3, 119.6, 116.6, 109.6 ppm; carbons corresponding to the C$_8$F$_{17}$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{26}$H$_{11}$F$_{17}$N$_3$O $[M+H]^+$ 704.0625, found: 704.0640.

![Image of the compound](image)

1-(2-(Perfluoroheptyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (16x):

Yield = 85% (167 mg), 0.2 mmol scale. Yellow solid. M.p. 119.4–119.7 °C.

IR (KBr): $\nu = 3072, 1631, 1613, 810, 749$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta =$ 8.42 (d, $J = 8.1$ Hz, 1H), 8.23 (d, $J = 8.3$ Hz, 1H), 7.97 (d, $J = 8.1$ Hz, 1H), 7.77 – 7.69 (m, 2H), 7.69 – 7.63 (m, 1H), 7.62 – 7.55 (m, 1H), 7.53 – 7.44 (m, 2H), 7.29 (d, $J = 8.7$ Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta =$ -80.67 (t, $J = 9.8$ Hz, 3F), -110.96 (s, 2F), -121.32 – -121.68 (m, 2F), -121.90 (s, 2F), -122.67 (s, 2F), -126.00 – -126.20 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta =$ 150.9 (t, $J = 1.3$ Hz), 145.6, 135.7 (t, $J = 32.3$ Hz), 134.2, 133.1, 128.9, 128.6, 127.8, 127.7, 126.4, 124.7, 122.8 (t, $J = 1.6$ Hz), 120.8, 120.4, 120.2, 119.4, 116.5, 109.6 ppm; carbons corresponding to the C$_{15}$F$_{15}$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{26}$H$_{11}$F$_{15}$N$_3$O $[M+H]^+$ 654.0657, found: 654.0660.

![Image of the compound](image)

1-(2-(Perfluorohexyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d]imidazole (16y):

Yield = 70% (84 mg), 0.2 mmol scale). White solid. M.p. 105.7–106.2 °C.
IR (KBr): $\nu = 3073, 1627, 1533, 805, 720 \text{ cm}^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.46$ (d, $J = 8.2$ Hz, 1H), 8.24 (d, $J = 8.3$ Hz, 1H), 8.00 (d, $J = 8.1$ Hz, 1H), 7.81 – 7.72 (m, 2H), 7.71 – 7.65 (m, 1H), 7.62 – 7.55 (m, 1H), 7.54 – 7.48 (m, 1H), 7.45 (d, $J = 8.2$ Hz, 1H), 7.28 (d, $J = 8.7$ Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.67$ (t, $J = 10.6$ Hz, 3F), -110.93 (s, 2F), -121.63 (s, 2F), -122.23 – -123.01 (m, 2F), -125.77 – -126.34 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 151.0$ (t, $J = 1.1$ Hz), 154.6, 136.0 (t, $J = 32.6$ Hz), 134.4, 133.2, 128.9, 128.7, 127.9, 127.8, 126.5, 124.7, 123.0 (t, $J = 2.0$ Hz), 120.9, 120.5, 120.3, 119.6, 116.6, 109.6 ppm; carbons corresponding to the C$_5$F$_{11}$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{24}$H$_{11}$F$_{13}$N$_3$O [M+H]$^+$ 604.0689, found: 604.0689.

1-2-(Perfluoropentyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16z):

Yield = 72% (80 mg), 0.2 mmol scale. Yellow solid. M.p. 118.6–120.5 °C.

IR (KBr): $\nu = 3056, 1629, 1533, 814, 746 \text{ cm}^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.49 – 8.43$ (m, 1H), 8.26 – 8.20 (m, 1H), 8.00 (d, $J = 8.1$ Hz, 1H), 7.79 – 7.72 (m, 2H), 7.71 – 7.65 (m, 1H), 7.62 – 7.56 (m, 1H), 7.53 – 7.48 (m, 1H), 7.45 (d, $J = 8.2$ Hz, 1H), 7.28 (d, $J = 8.7$ Hz, 1H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -80.67$ (t, $J = 10.6$ Hz, 3F), -110.93 (s, 2F), -121.63 (s, 2F), -122.23 – -123.01 (m, 2F), -125.77 – -126.34 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 151.0$ (t, $J = 1.1$ Hz), 154.6, 136.0 (t, $J = 32.6$ Hz), 134.4, 133.2, 128.9, 128.7, 127.9, 127.8, 126.5, 124.7, 123.0 (t, $J = 2.0$ Hz), 120.9, 120.5, 120.3, 119.6, 116.6, 109.6 ppm; carbons corresponding to the C$_5$F$_{11}$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{23}$H$_{11}$F$_{11}$N$_3$O [M+H]$^+$ 554.0721, found: 554.0722.
1-(2-(Perfluorobutyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16a*):

Yield = 67% (67 mg), 0.2 mmol scale. White solid. M.p. 112.7–114.1 °C.

IR (KBr): ν = 3075, 1629, 1491, 805, 732 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.46 (d, J = 8.1 Hz, 1H), 8.24 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.81 – 7.73 (m, 2H), 7.63 – 7.56 (m, 1H), 7.54 – 7.48 (m, 1H), 7.45 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 8.7 Hz, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -80.77 (t, J = 10.3 Hz, 3F), -111.08 (s, 2F), -121.61 – -123.02 (m, 2F), -125.87 (td, J = 13.2, 5.9 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.0 (t, J = 1.6 Hz), 145.6, 136.0 (t, J = 33.2 Hz), 134.3, 133.2, 128.9, 128.7, 127.9, 127.8, 126.4, 124.7, 123.0 (t, J = 2.2 Hz), 120.9, 120.5, 120.3, 119.6, 116.6, 109.6 ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C₂₂H₁₁F₉N₃O [M+H]⁺ 504.0753, found: 504.0762.

1-(2-(Trifluoromethyl)naphtho[1,2-b]furan-3-yl)-1H-benzo[d][1,2,3]triazole (16b*):

Yield = 50% (35 mg), 0.2 mmol scale. Yellow solid. M.p. 86.1–87.3 °C.

IR (KBr): ν = 3063, 1627, 1613, 808, 745 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.46 (d, J = 8.2 Hz, 1H), 8.24 (d, J = 9.0 Hz, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.84 – 7.72 (m, 2H), 7.71 – 7.65 (m, 1H), 7.64 – 7.58 (m, 1H), 7.57 – 7.47 (m, 2H), 7.41 (d, J = 8.7 Hz, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -61.98 (s, 3F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 150.2 (t, J = 1.0 Hz), 145.7, 136.2 (t, J = 32.1 Hz), 133.9, 133.2, 129.0, 128.6, 127.8, 127.6, 126.3, 124.8, 120.9, 120.5, 120.3, 120.3 (q, J = 297.3 Hz), 119.0, 117.5, 117.0, 109.7 ppm.
2-(Perfluoroethyl)-3-(p-tolylthio)naphtho[1,2-b]furan (17):

Yield = 46% (56 mg), 0.3 mmol scale. White solid. M.p. 101.0–102.7 °C.

IR (KBr): $\nu = 3060, 1771, 1579, 810, 720$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.35 - 8.30$ (m, 1H), 7.88 (d, $J = 8.1$ Hz, 1H), 7.66 - 7.52 (m, 3H), 7.30 (d, $J = 8.7$ Hz, 1H), 7.24 - 7.20 (m, 2H), 7.05 (d, $J = 8.0$ Hz, 2H), 2.28 (s, 3H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -83.63$ (t, $J = 4.1$ Hz, 3F), -112.18 - -113.16 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 151.5$ (t, $J = 1.3$ Hz), 141.3 (t, $J = 29.6$ Hz), 137.0, 132.7, 130.3, 130.0, 129.8, 129.3, 128.4, 127.1, 126.9, 125.1, 124.2, 121.0, 120.3, 118.5, 21.0 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{14}$F$_5$OS [M+H]$^+$ 409.068, found: 409.0685.

3-(Naphthalen-2-ylthio)-2-(perfluoroethyl)naphtho[1,2-b]furan (18):

Yield = 52% (69 mg), 0.3 mmol scale. White solid. M.p. 135.1–135.8 °C.

IR (KBr): $\nu = 3366, 1771, 1579, 1501, 810, 747$ cm$^{-1}$.

1H NMR (400 MHz, CDCl$_3$): $\delta = 8.36$ (d, $J = 8.1$ Hz, 1H), 7.87 (d, $J = 8.0$ Hz, 1H), 7.81 - 7.73 (m, 2H), 7.71 - 7.61 (m, 3H), 7.59 - 7.52 (m, 2H), 7.46 - 7.38 (m, 2H), 7.37 - 7.27 (m, 2H) ppm.

19F NMR (376 MHz, CDCl$_3$): $\delta = -82.90 - -84.28$ (m, 3F), -112.06 - -113.36 (m, 2F) ppm.

13C NMR (100 MHz, CDCl$_3$): $\delta = 151.6$ (t, $J = 1.0$ Hz), 141.8 (t, $J = 29.9$ Hz), 133.6, 132.8, 132.0, 131.4, 129.0, 128.4, 127.7, 127.2, 127.1, 127.0, 126.8, 126.3, 126.1, 125.3, 124.3, 121.0, 120.3, 118.5, 117.4 ppm; carbons corresponding to the C$_2$F$_5$ group cannot be identified due to
C-F coupling.

HRMS m/z: calcd for C_{24}H_{14}F_{5}OS [M+H]^+ 445.0680, found: 445.0685.

(Z)-(Perfluoropropylidene)-7H-benzo[4,5]imidazo[2,1-b]naphtho[2,1-e][1,3]oxazine (19):

Yield = 88% (111 mg), 0.3 mmol scale. Yellow solid. M.p. 234.8–235.1 °C.

IR (KBr): $\nu = 3064, 1676, 1623, 801, 745$ cm$^{-1}$.

1H **NMR** (400 MHz, CDCl$_3$): $\delta = 8.57 – 8.51$ (m, 1H), 7.92 – 7.86 (m, 1H), 7.76 – 7.64 (m, 4H), $7.63 - 7.58$ (m, 1H), 7.50 – 7.43 (m, 1H), 7.40 – 7.31 (m, 2H) ppm.

19F **NMR** (376 MHz, CDCl$_3$): $\delta = -82.22 – -82.30$ (m, 3F), -111.27 (d, $J = 12.4$ Hz, 2F), -125.75 (dq, $J = 25.1, 12.5$ Hz, 1F) ppm.

13C **NMR** (100 MHz, CDCl$_3$): $\delta = 151.2, 147.3$ (d, $J = 4.8$ Hz), 140.2, 135.0, 134.5 (t, $J = 31.3$ Hz), 130.2 (t, $J = 2.5$ Hz), 129.0, 127.7, 127.6, 124.5 (t, $J = 0.9$ Hz), 124.2, 123.0, 122.9 (d, $J = 2.6$ Hz), 122.5 (t, $J = 7.9$ Hz), 122.0, 119.3, 113.4 (d, $J = 17.2$ Hz), 108.4 (d, $J = 2.4$ Hz) ppm; carbons corresponding to the C$_3$F$_6$ group cannot be identified due to C-F coupling.

HRMS m/z: calcd for C$_{21}$H$_{11}$F$_6$N$_2$O [M+H]^+ 421.0770, found: 421.0769.

7-(Perfluoropropyl)-5,6-dihydrobenzo[f]benzo[4,5]imidazo[1,2-b]isoquinoline-14-carbonitrile (20):

Yield = 72% (100 mg), 0.3 mmol scale. Yellow solid. M.p. 257.9–258.2 °C.

IR (KBr): $\nu = 2901, 2230, 1602, 1475, 742, 721$ cm$^{-1}$.

1H **NMR** (400 MHz, CDCl$_3$): $\delta = 8.07$ (d, $J = 8.2$ Hz, 1H), 7.95 (d, $J = 7.7$ Hz, 1H), 7.77 (d, $J = 8.5$ Hz, 1H), 7.63 – 7.47 (m, 3H), 7.39 (t, $J = 7.4$ Hz, 1H), 7.29 – 7.22 (m, 1H), 3.24 (d, $J = 15.6$ Hz, 1H), 2.94 (d, $J = 14.2$ Hz, 2H), 2.70 (t, $J = 14.3$ Hz, 1H) ppm.
\[^{19}F \text{ NMR} (376 \text{ MHz, CDCl}_3): \delta = -79.59 (t, J = 10.4 \text{ Hz}, 3\text{F}), -98.9 - 105.8 (m, 2\text{F}), -121.97 - -124.86 (m, 2\text{F}) \text{ ppm.} \]

\[^{13}C \text{ NMR} (100 \text{ MHz, CDCl}_3): \delta = 146.9, 145.9, 141.1, 139.5, 132.5 (t, J = 23.1 \text{ Hz}), 132.1, 129.5, 127.9, 127.3, 126.6, 126.1, 125.4, 121.9, 121.7 (d, J = 2.8 \text{ Hz}), 121.4, 115.9, 112.9, 102.0 (t, J = 5.5 \text{ Hz}), 28.3 (t, J = 1.5 \text{ Hz}), 25.5 (m) \text{ ppm; carbons corresponding to the C}_3\text{F}_7 \text{ group cannot be identified due to C-F coupling.} \]

HRMS m/z: calcd for C\(_{23}\)H\(_{13}\)F\(_7\)N\(_3\) [M+H]\(^+\) 464.0992, found: 464.0995.

\[\text{IR (KBr): } \nu = 3072, 2943, 1556, 1399, 1227, 930, 770, 743, 606 \text{ cm}^{-1}. \]

\[^1H \text{ NMR} (400 \text{ MHz, CDCl}_3): \delta = 8.53 (dd, J = 7.4, 1.7 \text{ Hz, 1H}), 8.47 - 8.43 (m, 2\text{H}), 7.67 - 7.61 (m, 2\text{H}), 7.51 - 7.43 (m, 2\text{H}), 7.32 - 7.27 (m, 1\text{H}), 3.21 - 3.14 (m, 2\text{H}), 3.00 - 2.97 (m, 2\text{H}) \text{ ppm.} \]

\[^{19}F \text{ NMR} (376 \text{ MHz, CDCl}_3): \delta = -79.64 (t, J = 9.5 \text{ Hz, 3F}), -110.17 (q, J = 9.6 \text{ Hz, 2F}), -125.41 - -125.47 (d, J = 3.6 \text{ Hz, 2F}) \text{ ppm.} \]

\[^{13}C \text{ NMR} (100 \text{ MHz, CDCl}_3): \delta = 162.6, 161.2, 152.1 (t, J_{C-F} = 25.3 \text{ Hz}), 139.4, 135.7, 132.0, 131.9, 131.8, 129.8, 127.9, 127.5, 126.4, 126.3, 125.9, 26.8, 22.9 (m) \text{ ppm; carbons corresponding to the C}_3\text{F}_7 \text{ group cannot be identified due to C-F coupling.} \]

HRMS m/z: calcd for C\(_{21}\)H\(_{13}\)BrF\(_7\)N\(_2\) [M+H]\(^+\) 505.0145, found: 505.0163.

Supplemental References

Frisch, M. J.; et al (2013). Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT.

Becke, A. D. (1988). Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behaviour. *Phys. Rev. A: At., Mol., Opt. Phys.* 38, 3098-3100.
Lee, C., Yang, W., and Parr, R. G. (1988). Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B: Condens. Matter Mater. Phys.* 37, 785-789.

Becke, A. D. (1993). Density-Functional Thermochemistry. III. The Role of Exact Exchange. *J. Chem. Phys.* 98, 5648-5652.

Weigend, F., and Ahlrichs, R. (2005). Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 7, 3297-3305.

Tomasi, J., and Persico, M. (1994). Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. *Chem. Rev.* 94, 2027-2094.

Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. (2010). A Consistent and Accurate *ab initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 132, 154104.

Goerigk, L., and Grimme, S. (2011). Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. *J. Chem. Theory Comput.* 7, 291-309.

Legault, C. Y. (2009). CYLview, version 1.0b; Université Sherbrooke: Quebec, Canada; http://www.cylview.org.

Pham, P. V., Nagib, D. A., and MacMillan, D. W. C. (2011). Photoredox Catalysis: A Mild, Operationally Simple Approach to the Synthesis of α-Trifluoromethyl Carbonyl Compounds. *Angew. Chem. Int. Ed.* 50, 6119–6122.

Su, X., Huang, H., Yuan, Y., and Li, Y. (2017). Radical Desulfur-Fragmentation and Reconstruction of Enol Triflates: Facile Access to α-Trifluoromethyl Ketones. *Angew. Chem., Int. Ed.* 56, 1338–1341.
Xie, T., Zhang, Y.-W., Liu, L.-L., Shen, Z.-L., Loh, T.-P., and Chu, X.-Q. (2018). Polycyclic Heteroaromatic Ring Construction Driven by Silver/Cobalt Co-Catalyzed Desulfonylative and Defluorinative Fragment-Recombination of Enol Nonaflates with Amidines. *Chem. Commun.* 54, 12722–12725.