ABSTRACT

The neurotrophic tyrosine receptor kinase (NTRK) gene fusions encode three tropomyosin receptor kinases (TRKA, TRKB, TRKC) that contribute to central and peripheral nervous system development and function. NTRK gene fusions are oncogenic drivers of various adult and paediatric tumours. Several methods have been used to detect NTRK gene fusions including immunohistochemistry, fluorescence in situ hybridisation, reverse transcriptase polymerase chain reaction, and DNA- or RNA-based next-generation sequencing. For patients with TRK fusion cancer, TRK inhibition is an important therapeutic target. Following the FDA approval of the selective TRK inhibitor, larotrectinib, as well as the ongoing development of multi-kinase inhibitors with activity in TRK fusion cancer, testing for NTRK gene fusions should become part of the standard diagnostic process. In this review we discuss the biology of NTRK gene fusions, and we present a testing algorithm to aid detection of these gene fusions in clinical practice and guide treatment decisions.

INTRODUCTION

Fusions involving neurotrophic tyrosine receptor kinases (NTRK) were among the first gene translocations described in cancer. Selective inhibition of the resulting tropomyosin receptor kinase (TRK) fusion proteins offers a precision medicine approach to the treatment of a range of tumour types.

NTRK structure and function

Tropomyosin receptor kinase A, B and C (TRKA, TRKB and TRKC) encoded by the NTRK1, NTRK2 and NTRK3 genes located on human chromosomes 1q23.1, 9q21.33 and 15q25.3, respectively, are receptor tyrosine kinases expressed in human neuronal tissue.

All three TRK receptors comprise an extracellular ligand-binding domain, a transmembrane region and an intracellular adenosine triphosphate-binding domain. TRK receptors are activated when neurotrophins ligands bind to the extracellular domain of the receptor (figure 1A).

NTRK gene fusions

NTRK gene fusions result from intra-chromosomal or inter-chromosomal rearrangements that juxtapose the 3' region of the NTRK gene with the 5' sequence of a fusion partner gene expressed by the tumour cell progenitor (figure 1B). The NTRK gene fusion transcript encodes a protein composed of the N-terminus of the fusion partner with the TRK partner tyrosine kinase domain. In most characterised fusions, the 5' partner gene sequence encodes one or more dimersisation domains, resulting in a constitutively active fusion protein. This constitutive activation results in uninterrupted downstream signalling messages, thereby acting as a true oncogenic driver. Although fusions may occur in any of the three NTRK genes, most of those identified to date involve either NTRK3 or NTRK1.

TRK fusion cancer

Fusions involving the NTRK1, 2 and 3 genes have been identified as oncogenic drivers and diagnostic markers in various cancer types (table 1). TRK fusion proteins are often mutually exclusive of other known fusion proteins involving kinases. Specific NTRK gene fusions are associated with certain tumours, for example, the ETV6-NTRK3 gene fusion is exhibited by 90%-100% of mammary analogue secretory carcinomas, >90% of secretory breast cancers, and is present in most cases of infantile fibrosarcoma and congenital mesoblastic nephroma. In contrast some cancers have many different fusion partners. In lung cancer, seven different gene fusions involving the NTRK1 gene leading to constitutive TRKA tyrosine kinase domain activation have been described (table 1), for example, rearrangement of the 5' portion of the
Figure 1 Schematic figure showing the TRK receptor tyrosine kinases, activating neurotrophins and the major signal transduction pathways (A) and the genomic structures of NTRK1, NTRK2, and NTRK3, with the size of each gene in parentheses (B). The ETV6 and NTRK3 gene fusion and the resultant constitutively active TRK fusion protein is a typical example. GSK3β, glycogen synthase kinase 3 beta; Ig, immunoglobulin; mRNA, messenger ribonucleic acid; NTRK, neurotrophic tyrosine receptor kinase; PI3K, phosphoinositide-3-kinase; SAM, sterile alpha motif; TRK, tropomyosin receptor kinase.
Table 1
NTRK gene fusions identified in adult and paediatric cancers by relative frequency of NTRK gene fusions

Tumour	NTRK1	NTRK2	NTRK3
Adult cancers			
High frequency (>80%)			
Mammary analogue secretory carcinomas		ETV6	
Secretory breast carcinoma			ETV6
Intermediate frequency (5%–25%)			
Papillary thyroid cancer			ETV6
Appendiceal cancer			
Glioma/glioblastoma			
Astrocytoma			
Gastrointestinal stromal tumour			ETV6
Head and neck cancer		PAN3	
Lung cancer			TRIM24
Sarcoma			
Breast cancer			
Acute lymphoblastic leukaemia, acute myeloid leukaemia, histiocytosis, multiple myeloma, dendritic cell neoplasms			ETV6
Uterine sarcoma		RBPM5	
Cholangiocarcinoma			
Pancreatic cancer			
Melanoma			
Colorectal cancer			
Paediatric cancers			
High frequency (>80%)			
Secretory breast carcinoma		ETV6	
Infantile fibrosarcoma and other mesenchymal tumours		EMLA6	ETV6
Cellular and mixed congenital mesoblastic nephroma			
Intermediate frequency (5%–25%)			
Papillary thyroid cancer			ETV6
Spitz tumours			ETV6
Paediatric high-grade gliomas			ETV6
Low frequency (<5%)			
Ganglioglioma			
Astrocytoma			

Epidemiology of TRK fusion cancer

NTRK gene fusions may occur in as many as 1% of all solid tumours. They are found in numerous tumour types in both adult and paediatric patients (table 1). Two main categories of tumours are identified: rare cancers with a high frequency (>80%) of NTRK gene fusions and more common cancers with a lower frequency of NTRK gene fusions (either 5%–25% or <5%; table 1). A high frequency of NTRK gene fusions have been identified in mammary analogue secretory carcinomas (90%–100%) and secretory breast carcinomas (>90%) in adult patients, and in infantile fibrosarcomas (91%–100%) and other mesenchymal tumours (100%) and congenital mesoblastic nephromas (83%) in paediatric patients. NTRK gene fusions are found at a lower frequency in radiation-associated papillary thyroid cancer (14.5%) and adult patients and papillary thyroid cancer (26%) and Spitzoid tumours (16%) in paediatric or adolescent patients. The reported frequency of NTRK gene fusions in common cancer types is generally <5%, including head and neck cancer (0.2%), lung cancer (0.2%–3.3%), colorectal cancer (0.7%–1.5%), skin cutaneous melanoma (0.3%), and sarcoma (1%).

Treatments targeting NTRK gene fusions

A number of TRK inhibitors are emerging which can be subdivided into those that are selective inhibitors for TRK and those that are multi-kinase inhibitors active against a range of targets including TRK. Larotrectinib is currently the only selective TRK inhibitor and was approved by the Food and Drug Administration (FDA) in November 2018. Data on 55 larotrectinib–treated paediatric and adult patients with TRK fusion-positive advanced solid tumours, representing 17 unique cancer types, have been evaluated. Objective tumour responses,
based on independent radiologic review, were seen in 75% of patients. At 1 year, 71% of the responses were ongoing and 55% of patients remained progression-free. The median duration of response had not been reached after a median follow-up of 8.3 months. The same was true for median progression-free survival after a median follow-up of 9.9 months. Larotrectinib was well tolerated. Adverse events were predominantly of grade 1 or no patient discontinued larotrectinib due to drug-related adverse events. Furthermore, no adverse event of grade 3 or 4 that was considered by the investigators to be related to larotrectinib occurred in more than 5% of patients. Among infants, children and adolescents (n=24), larotrectinib was well tolerated and showed a high response rate in those with advanced, TRK fusion-positive solid tumours (n=17). Five of these children (median age, 2 years; range, 0.4–12 years) with locally advanced soft tissue tumours achieved a partial response to larotrectinib (RECIST v1.1) and underwent surgical resection after a median of six cycles (range, 4–9 cycles) of treatment. Similar findings were reported by Drilon et al for two children with locally advanced infantile fibrosarcoma. Larotrectinib treatment resulted in sufficient tumour shrinkage to allow for limb-sparing surgery with pathologic assessment confirming negative margins (R0 surgery). Both patients were progression-free without larotrectinib treatment after 4.8 months and 6.0 months of follow-up.

Favourable preliminary results were seen with entrectinib in two Phase I clinical trials of paediatric and adult patients with NTRK, ROS1 or ALK fusions leading to further investigations in patients with NTRK gene fusions. TRK inhibitors developed to overcome acquired resistance to first-generation TRK inhibitors are already in development. LOXO-195 (BAY 2731954) has demonstrated efficacy against treatment-resistant alleles of NTRK gene fusions in patients with TRK fusion-positive cancers. Repotrectinib, a TRK, ROS1 and ALK inhibitor, has demonstrated confirmed responses in patients with ROS1 or NTRK3 fusion-positive cancers who had relapsed on earlier-generation inhibitors.

Testing Methods for TRK Fusion Cancers

For optimal clinical efficacy of TRK inhibitors, an effective diagnostic strategy to detect NTRK gene fusions in tumour samples is essential to guide treatment selection. Approaches that may be used to directly or indirectly detect the presence of a gene fusion in clinical tissue samples include immunohistochemistry (IHC), fluorescence in situ hybridisation (FISH), reverse transcriptase polymerase chain reaction (RT-PCR) and next-generation sequencing (NGS) using DNA or RNA.

Immunohistochemistry

IHC enables detection of TRK overexpression as a surrogate for the presence of an NTRK gene fusion and provides a time-efficient and tissue-efficient technique that may be used for routine screening. Studies employing pan-TRK monoclonal antibody cocktails have demonstrated positive TRK expression in tumour samples. However, some studies indicate that interpretation of IHC data may be more challenging than initially ascertained. In an analysis of 11,502 formalin-fixed paraffin-embedded (FFPE) tumour samples of various cancer types for the presence of gene fusions, 31 cases (0.27%) with NTRK gene fusions were identified by NGS. Of the 28 cases that were assessed by pan-TRK IHC, 21 scored positive (>1% of tumour cells staining at any intensity above background), giving a sensitivity of only 75%, and 45% of tumours with NTRK3 fusions scored negative by IHC. False negative cases could be related to sample preparation, for example, fixation. Therefore, it is important to check if internal controls such as endothelial cells are positive, or to use external controls such as positive cell lines. Similarly, positive IHC results must be followed with confirmatory testing using a molecular method to verify the presence of a fusion, as overexpression of wildtype TRK proteins may also be detected.

Fluorescence in Situ Hybridisation

Break-apart FISH is a well-established method for detecting clinically relevant gene fusion events and is of value in tumours

Table 2 Overview of testing methods currently available for NTRK gene fusions

Assay	Advantages	Disadvantages
IHC	Low cost²³ 53, Readsible³⁴	May not be specific for NTRK gene fusion as it detects both wild-type and fusion protein¹⁸
	Detects TRKA, B and C¹⁶	Possible false positives³⁴
	Turnaround time 1–2 days¹³	Possible false negatives for fusions involving TRKC⁶⁰
FISH	The location of the target within the cell is visible⁵⁴55	The target sequence must be known for conventional FISH otherwise three separate tests are required for NTRK1, NTRK2 and NTRK³⁶
	Several targets can be detected in one sample using several fluorophores³⁴	Complex chromosomal translocations can result in false positive signals⁵⁶
	Requires knowledge of only one of the two fusion partners when using break-apart probes	False negative results may be above 30%¹³
	NTRK gene fusions with unknown partners can be detected using break-apart FISH	
	FISH is readily available in most laboratories and institutes	
RT-PCR	High sensitivity and specificity³⁴	Target sequences must be known (i.e., cannot readily detect novel fusion partners)³²
	Low cost per assay³²	A comprehensive multiplex RT-PCR assay might be challenging because of the potentially large number of possible⁵ fusion partners³²
NGS	May detect novel fusion partners (depending on the assay used)¹²	Commercially available DNA-based NGS platforms may not be capable of identifying all NTRK gene fusions, especially those involving NTRK2 and NTRK3, which have large intronic regions⁴⁸
	Can be used to evaluate multiple actionable targets simultaneously while preserving limited tissue³²	DNA-NGS is limited by intron size⁵⁶
	Currently used for NTRK testing¹⁰	RNA-NGS is limited by RNA quality⁵⁶
	RNA-NGS is preferred over DNA-NGS as sequencing for RNA-based testing is focused on coding sequences not introns⁵¹	
with a high prevalence of NTRK gene fusions involving recurrent fusions\(^5\) (figure 2B). The ETV6-NTRK3 gene fusion was one of the first NTRK gene fusions reported and has been identified in numerous cancer types: \(^5\)it is amenable for detection using break-apart FISH (figure 2B). As FISH is largely limited to the detection of a single gene fusion, a separate break-apart FISH probe is required for each of the three NTRK genes. \(^5\) Furthermore, the 5’ gene fusion partner will not be identified. \(^5\) False negatives may result if the deletion is small enough to leave enough of the complementary regions for hybridisation of both FISH probes or if there is a complex FISH pattern with numerous nuclei showing atypical doublet fusion signals and only a few nuclei with split signals. \(^5\) Indeed, in one study ETV6 was associated with a 36% false negative rate. \(^6\)

REVERSE TRANSCRIPTASE POLYMERASE CHAIN REACTION

RT-PCR provides an alternative or complementary approach to FISH, detecting NTRK gene fusions using primers in the coding sequence of the 5’ fusion partner and the NTRK kinase domain. \(^4\)\(^5\)\(^7\) A disadvantage of RT-PCR is that the large number of possible 5’ fusion partners may make a comprehensive multiplex RT-PCR assay challenging. \(^4\)\(^5\)\(^7\) An alternative approach could be to assess the ratio of 5’ and 3’ amplicons of each of the NTRK genes by multiplex RT-PCR reactions, with an imbalance in the ratio for a specific gene suggesting a possible fusion event. \(^7\)

NEXT-GENERATION SEQUENCING

NGS provides a precise method to detect NTRK gene fusions, with high sensitivity and specificity compared with other testing methods. \(^5\)\(^7\) An advantage of NGS is that multiple oncogenic events in addition to NTRK gene fusions can be identified from a single tumour sample. \(^5\)\(^7\) A wide variety of NGS-based approaches are available for fusion testing with the primary distinguishing factor being whether they are RNA- or DNA-based. \(^5\)\(^6\) Access to NGS in a clinical setting may be limited as availability of this technique varies between regions and countries.

DNA-based next-generation sequencing

Although DNA-based NGS panels may detect multiple oncogenic genomic events from one sample, not all DNA-based NGS platforms can identify all NTRK gene fusions, especially those involving NTRK2 and NTRK3 where detection of gene fusions is complicated by the presence of large introns that are typically inadequately sequenced and difficult to analyse. \(^5\)\(^6\) (figure 1B).

RNA-based next-generation sequencing

The advantage of RNA-based NGS over DNA-based NGS is that sequencing is focused on the mature mRNA hence is not affected by intron size. \(^5\)\(^6\) A disadvantage is the high reliance on RNA quality, which can be poor if obtained from FFPE samples. \(^5\)\(^6\) Many NGS assays now include RNA fusions in their gene panels, and it is likely that NGS diagnostics that depend on RNA for fusion detection will increasingly be used in clinical practice to test for NTRK gene fusions.

NTRK gene fusion testing algorithm

A proposed screening algorithm for identifying patients with TRK fusion cancer is presented (figure 3). The algorithm incorporates the strengths and availability of each diagnostic technique. The algorithm is based on the categorisation of tumours into two groups based on the incidence of NTRK gene fusion.

In tumours with a high frequency of NTRK gene fusion events, FISH is recommended, with pan-TRK IHC as an alternative if FISH is unavailable. Confirmation by targeted NGS in those cases with positive pan-TRK IHC can be conducted concurrently with treatment considerations. The pattern of TRK staining by IHC may also inform selection of a confirmatory test, as tumours harbouring NTRK1 rearrangements typically show strong, diffuse cytoplasmic staining. In contrast, tumours harbouring NTRK3 rearrangements may have weaker expression but often have at least focal nuclear staining. Negative results from FISH or pan-TRK IHC should be confirmed by NGS, although selection of a broader panel including other receptor tyrosine kinases is warranted as these tumours have a high likelihood of harbouring other diagnostic and/or therapeutic alterations.

In solid tumours where gene fusions are common, but the frequency of NTRK gene fusions is lower (5%–25%), an NGS panel that includes NTRK fusions is recommended as the preferred test for patients. For tumours with a very low frequency of NTRK gene fusions (<5%), but where molecular screening is common, inclusion of NTRK genes in routine NGS analysis is recommended. For tumours with a low frequency of NTRK fusions, where NGS is not available or is not routinely performed for a histotype, pan-TRK IHC should be performed for screening with NGS confirmation of positive IHC results.

In all cases where NGS is recommended, and particularly for those cases in which an NTRK3 rearrangement is favoured by IHC, RNA-based NGS is the ideal testing assay for NTRK gene fusions. Note that this algorithm is not intended to replace the independent medical judgement of the physician in the context of individual clinical circumstances to determine a patient’s care.

Conclusions and future directions

NTRK gene fusions have been identified across a range of tumour types and occur at a high frequency in certain rare cancers. \(^2\)\(^3\)\(^4\)\(^5\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\)\(^11\)\(^12\) More common cancers have a low but significant frequency of NTRK gene fusions\(^2\)\(^3\)\(^4\)\(^5\)\(^6\)\(^7\)\(^8\)\(^9\)\(^10\)\(^11\)\(^12\) and thus represent a sizeable at-risk patient population. With the recent FDA approval of the selective TRK inhibitor, larotrectinib (Vitrakvi), along with the continued development of multi-kinase inhibitors with activity in TRK fusion cancer, testing for NTRK gene fusions should become part of the standard diagnostic process. Marked differences in the prevalence of NTRK gene fusions across tumour types mean that clinical diagnostic strategies will vary accordingly but will rely on IHC, FISH and NGS assays. The
Take home messages

- The \(NTRK \) genes (\(NTRK1 \), \(NTRK2 \) and \(NTRK3 \)) encode for TRKA, TRKB and TRKC receptors, three transmembrane proteins, and are normally expressed in neuronal tissue during development.
- Fusions involving \(NTRK \) genes are oncogenic drivers across a wide range of tumour types and are either highly enriched in select tumour types or infrequently found in other cancers, including common tumours.
- \(NTRK \) gene fusions should be treated as tumour-agnostic biomarkers.
- Specific TRK inhibitors have shown histology-agnostic activity in adult and paediatric patients harbouring \(NTRK \) gene fusions providing high durable response rates with a low incidence of adverse events.
- IHC, FISH, RT-PCR and NGS are effective screening techniques for identification of TRK fusion cancer. Implementation of these methods can be tailored to individual patients based on histological and clinical presentation.

Figure 3 Testing algorithm for TRK fusion cancer. CMN, congenital mesoblastic nephroma; FISH, fluorescence in situ hybridisation; IHC, immunohistochemistry; MASC, mammary analogue secretory carcinoma; NGS, next-generation sequencing; NSCLC, non-small cell lung cancer; \(NTRK \), neurotrophic tyrosine receptor kinase; SBC, secretory breast carcinoma; TRK, tropomyosin receptor kinase.

suggested testing algorithm for TRK fusion cancer considers the aetiology of tumours as well as the availability of testing methods to guide detection of these fusions in the clinic. The optimal use of tumour tissue, especially from small biopsies or cytology specimens, and optimisation of multiplexed approaches, remains an area of active research and development.

Handling editor Newton ACS Wong.

Acknowledgements The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution that is paying any applicable article publishing charge ('APC') for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to below.

Contributors All authors contributed equally to the preparation, drafting and reviewing of the manuscript. Medical writing support, including assisting authors with the development of the outline and initial draft, incorporation of comments and preparation of tables and figures, was provided by Penny Butcher, PhD and Alison Scott, PhD; editorial support, including fact-checking, referencing, figure preparation,
formatting, proofreading and submission was provided by Annabel Ola, MSc, all of Scion (London, UK), supported by Bayer Healthcare Pharmaceuticals and Lexo Oncology according to Good Publication Practice guidelines (http://annals.org/aim/article/2424869/good-publication-practice-communicating-company-sponsored-medical-research-gpp3).

Competing interests: FP-L has participated in advisory boards for Bayer, Roche, Illumina and Nanostring, and been involved in studies sponsored by Bayer. ERR has had a role as an expert consultant, participated in a meeting and participated in an advisory board for Bayer Healthcare Pharmaceuticals; and received honoraria Pharmaceutical; participated in meetings for Merck US, Bristol Meyers Squibb and Bayer Healthcare Pharmaceuticals; participated in meetings for Merck US, Bristol Meyers Squibb and Bayer Healthcare Pharmaceuticals; participated in advisory boards for Merck US, Bristol Meyers Squibb and Bayer Healthcare Pharmaceuticals; and received honoraria from Amgen.

Patient and consent for publication: Not required.

Provenance and peer review: Not commissioned; externally peer reviewed.

Open access: This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Pulciani S, Santos E, Lauver NV, et al. Oncogenes in solid human tumours. Nature 1982;300:539–42.
2. Amata A, Sartore-Bianchi A, Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016;1:e000023.
3. Hugo Gene Nomenclature Committee (HGNC). Symbol report: NTRK1. Available: https://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:58031 [Accessed 12 Sep 2018].
4. Hugo Gene Nomenclature Committee (HGNC). Symbol report: NTRK2. Available: https://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:58032 [Accessed 12 Sep 2018].
5. Hugo Gene Nomenclature Committee (HGNC). Symbol report: NTRK3. Available: https://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=HGNC:58033 [Accessed 12 Sep 2018].
6. Klein R, Jing SQ, Nanduri V, et al. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 1991;65:189–97.
7. Vashisht A, Le AT, Doebele RC. TRKshing down an old oncogene in a new era of targeted therapy. Cancer Discov 2015;5:25–34.
8. Rubin IB, Segal RA. Growth, survival and migration: the trk to cancer. Cancer Treat Res 2003;115:1–18.
9. Stranks N, Cerami E, Shalhm S, et al. The landscape of kinase fusions in cancer. Nat Commun 2014;5:4846.
10. Drilon A, Laetsch TW, Kummur S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 2018;378:731–9.
11. Skalová A, Vaněček T, Sima R, et al. Mammary analogue secretory carcinoma of salivary glands, containing the ETV6-NTRK3 fusion gene: a hitherto undescribed salivary gland tumor entity. Am J Surg Pathol 2010;34:599–608.
12. Togron C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367–76.
13. Greco A, Mariani C, Miranda C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 1995;15:6118–27.
14. Ronsley R, Babbage JM, Lines LW, et al. Application of genomics to identify therapeutic potential coiled-coil domain.
Best practice

54 Kerr KM, López-Ríos F. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway? [Ann Oncol] 2016;27:i16–24.

55 Cui C, Shu W, Li P. Fluorescence in situ hybridization: cell-based genetic diagnostic and research applications. [Front Cell Dev Biol] 2016;4:89.

56 Davies KD, Le AT, Sheren J, et al. Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples. [J Thorac Oncol] 2018;13:1474–82.

57 Beadling C, Wald AI, Warrick A, et al. A multiplexed amplicon approach for detecting gene fusions by next-generation sequencing. [J Mol Diagn] 2016;18:165–75.

58 Sheikine Y, Kuo FC, Lindeman NI. Clinical and technical aspects of genomic diagnostics for precision oncology. [J Clin Oncol] 2017;35:929–33.

59 Murphy DA, Ely HA, Shoemaker R, et al. Detecting gene rearrangements in patient populations through a 2-step diagnostic test comprised of rapid IHC enrichment followed by sensitive next-generation sequencing. [Appl Immunohistochem Mol Morphol] 2017;25:513–23.

60 Hung YP, Fletcher CDM, Hornick JL. Evaluation of pan-TRK immunohistochemistry in infantile fibrosarcoma, lipofibromatosis-like neural tumour and histological mimics. [Histopathology] 2018;73:634–44.

61 Rudzinski ER, Lockwood CM, Stohr BA, et al. Pan-Trk immunohistochemistry identifies NTRK rearrangements in pediatric mesenchymal tumors. [Am J Surg Pathol] 2018;42:927–35.

62 Gatalica Z, Xu J, Swensen J, et al. Molecular characterization of cancers with NTRK gene fusions. [Mod Pathol] 2019;32:147–53.

63 Davis JL, Lockwood CM, Stohr B, et al. Expanding the spectrum of pediatric NTRK-rearranged mesenchymal tumors. [Am J Surg Pathol] 2019;43:435–45.