Ventricular arrhythmia (VA) is a highly fatal arrhythmia that involves multiple ion channels. Of all sudden cardiac death events, ~85% result from VAs, including ventricular tachycardia and ventricular fibrillation. Calcium/calmodulin-dependent pro‑tein kinase II (CaMKII) is an important ion channel regulator that participates in the excitation-contraction coupling of the heart, and as such is important for regulating its electrophysiological function. CaMKII can be activated in a Ca\(^{2+}\)/calmodulin (CaM)-dependent or Ca\(^{2+}\)/CaM-independent manner, serving a key role in the occurrence and development of VA. The present review aimed to determine whether activated CaMKII induces early afterdepolarizations and delayed afterdepolarizations that result in VA by regulating sodium, potassium and calcium ions. Assessing VA mechanisms based on the CaMKII pathway is of great significance to the clinical treatment of VA and the development of effective drugs for use in clinical practice.

1. Introduction

Arrhythmias, particularly ventricular arrhythmias (VAs), have a relatively high morbidity and mortality among the population, with ~250,000 deaths reported annually in the USA alone (1). Similarly to ventricular fibrillation (VF), VA has been reported to occur in >10% of all patients with acute myocardial infarction (AMI) prior to hospitalization, and survival in these patients remains poor (2). A total of 17 million deaths occur per year, worldwide, as a result of cardiovascular disease, 50% of which are attributable to sudden cardiac death (SCD) (2). The major cause of SCD is VA, particularly ventricular tachycardia (VT) and VF, which account for ~85% of all SCD events (3,4).

VA is an arrhythmia that originates in the ventricles that does not require any myocardial tissue above the His bundle to maintain (5). VA is particularly common in clinical practice and includes premature ventricular contraction, VT and VF (6,7). Reentry and triggered activity are the two main mechanisms of tachyarrhythmia. Reentry occurs when a beat encounters ventricular myocardium modified by fibrosis, scarring or conduction abnormalities (6). Triggered activity is caused by early afterdepolarizations (EADs), which are induced by reducing the repolarization reserve, either due to increases-inward currents, reducing outward currents or both, occurring in the second and third stages of the action potential (AP) (6,8). Delayed afterdepolarizations (DADs) are mediated by Ca\(^{2+}\) dysregulation after the fourth stage of the AP. Abnormal depolarizations reach the membrane potential threshold and further
give rise to a spontaneous AP between two regular APs (6,8,9). According to mechanistic studies (10,11), the occurrence and development of VA events during the acute phase of AMI can be attributed to diastolic Ca\(^{2+}\) leak and disturbed Ca\(^{2+}\) homeostasis. This can be induced by enhanced sympathetic tone and is accompanied by the formation of reentry circuits, further increasing vulnerability to VT (12).

Calcium/calmodulin-dependent protein kinase II (CaMKII) is a versatile serine/threonine kinase that is found widely in muscle, nerve and immune tissues (13). CaMKII serves multiple regulatory effects, including excitation-contraction coupling, excitation-transcription coupling, Ca\(^{2+}\) handling and mitochondrial function in cardiomyocytes (14,15). Chronic activation of CaMKII causes significant cardiomyocyte remodelling and alterations in Ca\(^{2+}\) handling, ion channels, cell-to-cell coupling and metabolism, leading to increased susceptibility to VA (15-21). The present review aimed to assess the participation of CaMKII in the occurrence of EADs and DADs by targeting L-type Ca\(^{2+}\) channels (LTCCs), phospholamban (PLB), ryanodine receptors (RyRs), voltage-gated Na\(^{+}\) (Na\(_{\text{v}}\)) channels and multiple voltage-gated K\(^{+}\) channels, which further result in VA (18,19).

2. Molecular structure, function, subtypes and distribution of CaMKII

Molecular structure and function of CaMKII. CaMKII is a serine/threonine kinase that is composed of two stacked hexamers assembled from 12 monomers (22,23). Each monomer is composed of an N-terminal catalytic region, an intermediate regulatory do-main and a C-terminal associated region (15,23). The catalytic region contains an ATP and target substrate binding site, which is responsible for the regulation of kinase activity (23). Under basic conditions, the function of the catalytic region is inhibited by interacting with the intermediate regulatory region (23). The intermediate regulatory region interacts with Ca\(^{2+}\)/calmodulin (CaM) at a K\(_{\text{D}}\) of 10-50 nM, which not only activates CaMKII but also prevents the inhibitory effect of the catalytic region, but also increases the activity of CaMKII by phosphorylating threonine 287 (Thr287) (18,26). CaMKII, which can inhibit the function of the N-terminal catalytic region, resulting in the inactivation of CaMKII (23). When Ca\(^{2+}\) content increases, Ca\(^{2+}\) combines with CaM (a ubiquitous intracellular Ca\(^{2+}\) binding protein) to form Ca\(^{2+}\)/CaM (24). The intermediate regulatory region binds to Ca\(^{2+}\)/CaM, which causes conformational changes in the pseudosubstrate region and releases the catalytic domain, exposing the substrate and ATP binding sites, further resulting in CaMKII activation (Fig. 1) (23,24).

Ca\(^{2+}\)/CaM independent CaMKII activation pathway. In the presence of ATP, continuously increasing Ca\(^{2+}\)/CaM sustanably combines with the intermediate regulatory region of CaMKII, which results in the autophosphorylation of Thr287. Thr287 autophosphorylation significantly increases the affinity of Ca\(^{2+}\)/CaM to the intermediate regulatory region, slowing the release of Ca\(^{2+}\)/CaM and retaining residual activity even after the dissociation of Ca\(^{2+}\)/CaM, further resulting in CaMKII activation (3,16,24). A previous study by Erickson et al (25) showed that the methionine 281/282 (Met281/282) site is oxidized in the presence of reactive oxygen species (ROS). Oxidation of Met281/282 can not only lead to the autonomous activation of CaMKII by preventing the recombination of the catalytic domain and the intermediate regulatory region, but also promote CaMKII activation at low intracellular Ca\(^{2+}\) concentrations by increasing the capability of CaMKII to be activated by Ca\(^{2+}\)/CaM (3,18). In addition, O-linked glycosylation at serine 280 (Ser280) and nitric oxide (NO)-dependent nitrosation at cysteine 290 (Cys290) can activate CaMKII. Ser280 O-linked-glycosylation of CaMKII has been demonstrated to promote Thr287 autophosphorylation (Fig. 1) (18,26).

4. CaMKII regulates cardiac Na\(_{\text{v}}\) channels to induce VA

Na\(_{\text{v}}\) channels and sodium ion current. Under normal conditions, Na\(_{\text{v}}\) channels rapidly activate and inactivate, resulting in a transient Na\(^{+}\) current (I\(_{\text{Na,t}}\)), which allows for AP depolarization (phase 0 of the AP). However, even under physiological conditions, a minor population of Na\(_{\text{v}}\) channels may fail to inactivate, giving rise to a late Na\(^{+}\) current (I\(_{\text{Na,l}}\)) that persists throughout the AP. Importantly, amplification of I\(_{\text{Na,l}}\) in disease settings has been demonstrated to increase arrhythmia susceptibility (27).

CaMKII regulates Na\(_{\text{v}}\) channels. CaMKII has a VA-inducing effect by regulating Na\(_{\text{v}}\) channels. Previous studies have demonstrated that acute CaMKII overexpression may shift Na\(_{\text{v}}\) channel resting potential to more negative membrane potentials, enhancing in-termediate inactivation and slowing recovery from inactivation, thereby reducing the fraction of available Na\(_{\text{v}}\) channels. However, this also slows I\(_{\text{Na,t}}\) inactivation, enhances I\(_{\text{Na,l}}\) and increases intracellular Na\(^{+}\) concentrations. These effects increase susceptibility to arrhythmia (27,28) Additionally, serine 571 of Na\(_{1,5}\) is in the Na\(_{\text{v}}\) pore-forming subunit and is a key site of CaMKII phosphorylation. Na\(_{\text{v}}\) channels can be
continuously opened or reopened to produce long-lasting $I_{\text{Na,L}}$ via phosphorylation at this subunit (16,29). Increased $I_{\text{Na,L}}$ can significantly prolong the AP duration (APD) and increase the Na^+ load in cardiomyocytes, which can enhance the Na^+-Ca^{2+} exchanger (NCX) activity in the reverse mode (3Na^+ extruded from the cell in exchange for 1Ca^{2+}), further increasing the Ca^{2+} load in cardiomyocytes (Fig. 2) (30-33). A prolonged APD in combination with an increased Ca^{2+} load can induce EADs and DADs, eventually leading to VA. In addition, $I_{\text{Na,L}}$ can enhance the Ca^{2+} regulation capacity through the feed-back regulation of CaMKII, thereby participating in the occurrence of VA (16).

5. CaMKII regulates K^+ channels to induce VA

K^+ channels and K^+ current. The K^+ current formed by the K^+ channels of the heart is a key determinant of heart excitability. There are three types of K^+ currents in the heart: Transient outward K^+ current (I_{to}), inward rectifier K^+ current (I_{K1}) and delayed rectifier K^+ current (I_{K}). I_{to} is mainly generated by the activation of voltage-gated K^+ channels with subunits that mainly consist of $\text{KV4.2}, \text{KV4.3}$ and KV1.4. I_{K1} produced by KV4.3 is primarily involved in the formation of the first phase of the AP (the early stage of rapid repolarization) (34). I_{K} is primarily produced by the activation of the inward rectifier K^+ channel, which is important for maintaining the resting cell membrane potential and the third phase of the AP (end of rapid repolarization). The inward rectifier K^+ channel pore-forming subunit is composed of Kir2.1 and Kir6.2. I_{K1} is generally considered to be antiarrhythmic as it stabilizes the resting membrane potential (35). I_{K} is mainly produced by the activation of delayed rectifier K^+ channel groups with pore-forming subunits consisting of $\text{K}_{1.5}$, human ether-a-go-go-related
MA et al.: CaMKII REGULATES ION CHANNELS TO INDUCE VA

CaMKII regulates K⁺ channels. CaMKII induces VA by participating in the regulation of Iᵣ, Iₖ, and Iₖ. Chronic CaMKII activation reduces Iᵣ intensity by reducing the mRNA and protein expression levels of the KV4.2 and KV4.3 subunits. In addition, decreased expression of the KV4.3 subunit can cause feedback that activates CaMKII. The KV4.3 subunit can also bind to the Ca²⁺/CaM binding site of CaMKII (34). Activation of a large amount of CaMKII can increase its ability to regulate K⁺ channels. Chronic CaMKII activation also reduces the intensity of Iₖ by reducing the mRNA and protein expression levels of the Kir2.1 and Kir6.2 subunits (36,37). A slow change in Iₖ intensity causes the resting membrane potential to be unstable, such that the depolarization current can be transformed into larger DADs, leading to the occurrence of VA (37,38). Chronic activation of CaMKII can phosphorylate the serine 484 site of the KV7.1 subunit, leading to a decrease in Iₖ intensity (39). It has been suggested that reduction in Iᵣ, Iₖ, and Iₖ intensity can lead to prolongation of the APD, which promotes the occurrence of VA (Fig. 2) (36).

6. CaMKII regulates Ca²⁺ channels to induce VA

Ca²⁺ cycle. The excitation-contraction coupling of cardiomyocytes is a highly coordinated process that links electrical signals with mechanical contractions. LTCCs can produce an L-type Ca²⁺ current (I_Ca,L) that participates in the formation of the second phase of the AP. LTCCs coupled with Ca²⁺ induces Ca²⁺ release from RyRs. Ca²⁺ is returned to the SR by SERCA2 and extruded via the NCX after participating in myofilament contraction. CaMKII, calcium/calmodulin dependent protein kinase II; APD, action potential duration; NCX, Na⁺-Ca²⁺ exchanger; LTCCs, L-type Ca²⁺ channels; RyRs, ryanodine receptors; SR, sarcoplasmic reticulum; SERCA2, sarco(endo)plasmic reticulum calcium ATPase 2.

Figure 2. Proposed model of CaMKII-induced ventricular arrhythmia. (A and E) CaMKII increases late Na⁺ currents by phosphorylation at the Serine 571 site, further prolonging the APD and decreasing NCX function, which results in increased Ca²⁺ load (B). CaMKII reduces the outward K⁺ current, inward rectifier K⁺ current and delayed rectifier K⁺ current intensity, further prolonging the APD (C-E). CaMKII increases Ca²⁺ overload in the cytosol by phosphorylating LTCCs and RyRs. LTCCs coupled with Ca²⁺ induces further Ca²⁺ release from RyRs. Ca²⁺ is returned to the SR by SERCA2 and extruded via the NCX after participating in myofilament contraction. CaMKII, calcium/calmodulin dependent protein kinase II; APD, action potential duration; NCX, Na⁺-Ca²⁺ exchanger; LTCCs, L-type Ca²⁺ channels; RyRs, ryanodine receptors; SR, sarcoplasmic reticulum; SERCA2, sarco(endo)plasmic reticulum calcium ATPase 2.
a VA-causing effect. CaMKII activation can increase LTCC phosphorylation, which generates a greater $I_{\text{Na,L}}$ (32). The serine 2814 site of RyR$_2$ is phosphorylated upon CaMKII activation, which occurs when the release of Ca$^{2+}$ stored in the diastolic SR abnormally increases (31,42-44). Abnormally released Ca$^{2+}$ propagates along adjacent RyR$_2$ on the SR and activates them to trigger further Ca$^{2+}$ release (8,12). Increased intracellular Ca$^{2+}$ concentrations can participate in the regulation of Na$^+$ channel function through CaMKII activation, thereby adjusting the flow of Na$^+$ (45). Excess Ca$^{2+}$ in the cytoplasm is extruded via the NCX, which produces an inward current (I_C; Fig. 2). When I_C is sufficient to depolarize the myocardial cell membrane, Na$^+$ channels can be activated, which triggers additional APs and further results in DADs (8,29,31,40,43). When $I_{\text{Na,L}}$ or I_C is greater than the outward current (mainly K$^+$ current) during the later period of the AP, the APD can be prolonged, which leads to the occurrence of EADs (8). The occurrence of DADs and EADs will eventually lead to VA. However, the threonine 17 (Thr17) site of PLB, which is mainly expressed in the SR to regulate SERCA2 activity, is a specific target of CaMKII phosphorylation. PLB phosphorylation at Thr17 helps to limit cytosolic Ca$^{2+}$ overload by increasing SERCA2 activity and accelerating SR Ca$^{2+}$ reuptake, which is beneficial for improving Ca$^{2+}$ cycle dysfunction and reducing the risk of VA (46-48).

7. Summary and outlook

In summary, VA is a highly fatal arrhythmia, involving the regulation of multiple ion channels. CaMKII serves an important regulatory role in the mechanism of VA. Overexpression of CaMKII can promote the occurrence of DADs and EADs by increasing the extent of $I_{\text{Na,L}}$, decreasing the intensity of I_{K1} and I_K, and increasing Ca$^{2+}$ in the cytoplasm, thereby inducing VA. Additionally, CaMKII activation is closely related to connexin 43 dysregulation; however, CaMKII activation also indirectly decreases the expression and subcellular localization of connexin 43 in intercalated discs. Both effects potentially increase arrhythmogenic susceptibility (49-53).

CaMKII inhibition also has a potential proarrhythmic effect. Early ischemia may increase CaMKII activation due to a progressive increase in Ca$^{2+}$ concentration and excessive formation of ROS (54,55). CaMKII activity is detrimental in this process; however, it is beneficial during the first minutes of ischemia, as it has a regulative effect on conduction and can avoid ischemia-mediated conduction block (55). Previous studies have demonstrated that CaMKII upregulation is of great significance to maintaining conduction during ischemia. Therefore, intervening through CaMKII activity can cause the heterogeneous depression of conduction during ischemia, exacerbating the arrhythmia substrate and resulting in a proarrhythmic condition (20,55).

It is necessary to develop novel drugs based on mechanistic research. Currently, effective clinical treatments for VA include non-pharmacological treatments, such as defibrillation, radiofrequency catheter ablation and pharmacological interventions that include blockers of Na$^+$ channels (class I), β-receptors (class II), K$^+$ channels (class III) and Ca$^{2+}$ channels (class IV), as well as miscellaneous agents such as digoxin and adenosine. However, each treatment has specific limitations. For example, the pharmacological treatment of VA results in substantial toxicities and the potential for proarrhythmic side effects (35). Therefore, it is necessary to develop novel antiarrhythmic drugs based on a comprehensive understanding of the proarrhythmic mechanisms of CaMKII. At present, pharmacological inhibitors of CaMKII (such as KN93 and GS-680), peptide inhibitors (such as CN19o) and CaMKII-targeted interference drugs (such as RNAi) have been developed, though these inhibitors are associated with bioavailability limitations and poorly understood in vivo effects (23). Therefore, the molecular mechanism underlying the role of CaMKII in VA requires further examination. For example, whether there are other sites of CaMKII phosphorylation in Na$^+$, K$^+$, Ca$^{2+}$ and other ion channels still requires further study. Related VA-specific drugs, such as targeted inhibi-tors of CaMKII phosphorylation sites on ion channels, also require further development.

Acknowledgements

Not applicable.

Funding

The present review was supported by Hebei Administration of Traditional Chinese Medicine, China (grant no. 5000 RMB) and The First Hospital of Hebei Medical University. (grant no. 203777117D)

Availability of data and materials

Not applicable.

Authors' contributions

KM searched literature and further analysed the data, and wrote, revised and finalized the manuscript. GM analyzed the data from literature, drafted the article and produced the final manuscript. ZG conceived the current review and revised the manuscript. LW and GL conceived and designed the study, and LG confirm the authenticity of all the raw data. All authors have read and approved the final manuscript. LW and GL confirm the authenticity of all the raw data.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Bernardi J, Aromolaran KA, Zhu H and Aromolaran AS: Circadian Mechanisms: Cardiac Ion Channel Remodeling and Arrhythmias. Front Physiol 11: 611860, 2021.
2. Sattler SM, Skibsybe L, Linz D, Lubberding AF, Tielt-Hansen J and Jespersen T: Ventricular Arrhythmias in First Acute Myocardial Infarction: Epidemiology, Mechanisms, and Interventions in Large Animal Models. Front Cardiovasc Med 6: 158, 2019.

3. Donahue JK: Current state of the art for cardiac arrhythmia gene therapy. Pharmacol Ther 176: 60-65, 2017.

4. Jazayeri MA and Emert MP: Sudden Cardiac Death: Who Is at Risk? Med Clin North Am 103: 913-930, 2019.

5. Hauser CN, Parkash R, Froemming T, Denniss AR and Gregory AT: The Contemporary Era of Sudden Cardiac Death and Ventricular Arrhythmias: Basic Concepts, Recent Developments and Future Directions. Heart Lung Circ 28: 1-5, 2019.

6. Almameneh ST and Ziv O: Ventricular Arrhythmias. Med Clin North Am 103: 881-955, 2019.

7. Markman TM and Nazarian T: Treatment of ventricular arrhythmias: What's New? Trends Cardiovasc Med 29: 249-261, 2019.

8. Skogstad J and Aronsen JM: Hypokalemia-Induced Arrhythmias in Heart Failure: New Insights and Implications for Therapy. Front Physiol 9: 1500, 2018.

9. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS and Qu Z: Early afterdepolarizations and cardiac arrhythmia. Heart Rhythm 7: 1891-1907, 2010.

10. Di Diego JM and Antzelveitch C: Ischemic ventricular arrhythmias: Experimental models and their clinical relevance. Heart Rhythm 8: 1963-1968, 2011.

11. Landstrom AP, Dobrev D and Wehrens XHT: Calcium Signaling and Cardiac Arrhythmias. Circ Res 120: 1969-1993, 2017.

12. Mohler PJ and Hund TJ: CaMKII-dependent late Na+ channel current increases electrical dispersion and arrhythmia in heart failure. JCI Insight 3: 3, 2018.

13. Howard T, Greer-Short A, Satroplus T, Patel N, Nassal D, Waugh T, Browne S, Gussak G, Gilani M, AlMahameed ST and Ziv O: Ventricular Arrhythmias. Med Clin North Am 103: 881-955, 2019.

14. Bers DM: Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70: 23-49, 2008.

15. Hegyi B, Bers DM and Bossuyt J: CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 127: 246-259, 2019.

16. Greer-Short A, Musa H, Aksma KN, Nl L, Word TA, Reynolds JO, Grat D, Lane C, El-Refaey M, Unudurthi S, et al: Cardiomyopathy: Calcium/calmodulin-Dependent Protein Kinase II regulates cardiac ion channel functions. Front Physiol 8: 50, 2017.

17. Pyo JS, Hong JH, Jeong MH, Ahn BY, Vuong TA, Lee DI, Choi S, Koo SH, Cho H and Kang JS: Cardiac specific PRMT1 ablation causes heart failure through CaMKII dysregulation. Nat Commun 9: 5107, 2018.

18. Wood BM, Simon M, Galice S, Alfim CC, Ferrero M, Pinna NN, Markman TM and Nazarian S: Treatment of ventricular arrhythmias: What's New? Trends Cardiovasc Med 29: 249-261, 2019.
41. Lee TI, Chen YC, Lin YK, Chung CC, Lu YY, Kao YH and Chen YJ: Empagliflozin Attenuates Myocardial Sodium and Calcium Dysregulation and Reverses Cardiac Remodeling in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 20: 20, 2019.

42. Kamada R, Yokoshiki H, Mitsuyama H, Watanabe M, Mizukami K, Tenma T, Takahashi M, Takada S and Anzai T: Arrhythmogenic β-adrenergic signaling in cardiac hypertrophy: The role of small-conductance calcium-activated potassium channels via activation of CaMKII. Eur J Pharmacol 844: 110-117, 2019.

43. Popescu I, Yin G, Velmurugan S, Erickson JR, Despa F and Despa S: Lower sarcoplasmic reticulum Ca\(^{2+}\) threshold for triggering afterdepolarizations in diabetic rat hearts. Heart Rhythm 16: 765-772, 2019.

44. Soliman H, Nyamandi V, Garcia-Patino M, Zhang PC, Lin E, Jia ZP, Tibbits GF, Hove-Madsen L and MacLeod KM: ROCK2 promotes ryanodine receptor phosphorylation and arrhythmic calcium release in diabetic cardiomyocytes. Int J Cardiol 281: 90-98, 2019.

45. Johnson CN: Calcium modulation of cardiac sodium channels. J Physiol 598: 2835-2846, 2020.

46. Zhong P, Quan D, Huang Y and Huang H: CaMKII Activation Promotes Cardiac Electrical Remodeling and Increases the Susceptibility to Arrhythmia Induction in High-fat Diet-Fed Mice With Hyperlipidemia Conditions. J Cardiovasc Pharmacol 70: 245-254, 2017.

47. Sun L, Chen Y, Luo H, Xu M, Meng G and Zhang W: Ca\(^{2+}\)/calmodulin-dependent protein kinase II regulation by inhibitor I of protein phosphatase 1 alleviates necroptosis in high glucose-induced cardiomyocytes injury. Biochem Pharmacol 163: 194-205, 2019.

48. Tzimas C, Terrovitis J, Lehnart SE, Kranias EG and Sanoudou D: Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition ameliorates arrhythmias elicited by junctin ablation under stress conditions. Heart Rhythm 12: 1599-1610, 2015.

49. Cao L, Chen Y, Lu L, Liu Y, Wang Y, Fan J and Yin Y: Angiotensin II upregulates fibroblast-myofibroblast transition through Cx43-dependent CaMKII and TGF-β1 signaling in neonatal rat cardiac fibroblasts. Acta Biochim Biophys Sin (Shanghai) 50: 843-852, 2018.

50. Himelman E, Lillo MA, Nouet J, Gonzalez JP, Zhao Q, Xie LH, Li H, Liu T, Wehrens XH, Lampe PD, et al: Prevention of connexin-43 remodeling protects against Duchenne muscular dystrophy cardiomyopathy. J Clin Invest 130: 1713-1727, 2020.

51. Huang RY, Laing JG, Kanter EM, Berthoud VM, Bao M, Rohrs HW, Townsend RR and Yamada KA: Identification of CaMKII phosphorylation sites in Connexin43 by high-resolution mass spectrometry. J Proteome Res 10: 1098-1109, 2011.

52. Li W, Gao H, Gao J and Wang Z: Upregulation of MMP-9 and CaMKII prompts cardiac electrophysiological changes that predispose denervated transplanted hearts to arrhythmogenesis after prolonged cold ischemic storage. Biomed Pharmacother 112: 108641, 2019.

53. Takanari H, Bourgonje VJ, Fontes MS, Raaijmakers AJ, Driessen H, Jansen JA, van der Nagel R, Kok B, van Stuijvenberg L, Boulaksil M, et al: Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent. Cardiovasc Res 111: 410-421, 2016.

54. Pasdois P, Beauvoit B, Tariosse L, Vinassa B, Bonoron-Adèle S and Dos Santos P: Effect of diazoxide on flavoprotein oxidation and reactive oxygen species generation during ischemia-reperfusion: A study on Langendorff-perfused rat hearts using optic fibers. Am J Physiol Heart Circ Physiol 294: H2088-H2097, 2008.

55. Warren M, Sciuto KJ, Taylor TG, Garg V, Torres NS, Shibayama J, Spitzer KW and Zaitsev AV: Blockade of CaMKII depresses conduction preferentially in the right ventricular outflow tract and promotes ischemic ventricular fibrillation in the rabbit heart. Am J Physiol Heart Circ Physiol 312: H752-H767, 2017.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.