A Simple Method for Assessing Severity of Common Root Rot on Barley

Mohammad Imad Eddin Arabi* and Mohammad Jawhar
Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
(Received on September 4, 2013; Revised on September 22, 2013; Accepted on September 22, 2013)

Common root rot caused by *Cochliobolus sativus* is a serious disease of barley. A simple and reliable method for assessing this disease would enhance our capacity in identifying resistance sources and developing resistant barley cultivars. In searching for such a method, a conidial suspension of *C. sativus* was dropped onto sterilized elongated subcrown internodes and incubated in sandwich filter paper using polyethylene transparent envelopes. Initial disease symptoms were easily detected after 48h of inoculation. Highly significant correlation coefficients were found in each experiment (A, B and C) between sandwich filter paper and seedling assays, indicating that this testing procedure was reliable. The method presented facilitates a rapid pre-selection under uniform conditions which is of importance from a breeder’s point of view.

Host genotypes. Five barley cultivars used in this study were chosen for their wide genetic variability for *C. sativus* reaction from highly susceptible to highly resistant (Arabi and Jawhar, 1999) (Table 1). The universal susceptible cultivar WI 2291 from Australia was included in each set as a check.

Preparation of inocula and inoculation. Isolates of *C. sativus* were obtained from barley SCIs showing CRR symptoms in different regions of northern Syria. During a preliminary study, five isolates (single spore) were selected on the basis of morphological and physiological criteria. The fungus was grown separately in 9 cm Petri dishes containing potato dextrose agar (PDA, DIFCO, Detroit, MI. USA) with 13 mg/l kanamycin sulphate added after autoclaving and incubated at 22 ± 1°C in the dark for 10 days to allow mycelial growth and sporulation. A mixture of equal ratio of each isolate was used in this study. The conidial suspension was adjusted to 5×10^5 conidia/ml and 40 ml of sterile distilled water. Part of seeds of the five genotypes were surface-sterilized with 5% sodium hypochlorite solution for 5 min and then soaked three times in sterile distilled water. They were inoculated by mixing thoroughly with conidial inoculum. After inoculation, seeds were grown in pots.

Pot experiment. Inoculated seeds were sown into 21 pots filled with sterilized peatmoss, and arranged in a randomized complete block design with three replicates. The
deep seeding was 6 cm (Kokko et al., 1995). Each experimental unit consisted of five pots of ten seeds per genotype. Pots were placed in a growth chamber at temperatures 22 ± 1°C (day) and 17 ± 1°C (night) with a daylength of 12 h and a relative humidity of 80–90%. Seedlings were irrigated with Knop’s nutrient solution (1 g NaNO₃; 0.25 g KNO₃; 0.25 g MgSO₄·7H₂O; 0.25 g KH₂PO₄; and 10 mg FeCl₃ per 1000 ml water). To elongate the SCIs, the second part of seeds of the five genotypes was sown for one week in the same manner but without inoculation with *C. sativus*.

Sandwich filter paper experiment. After one week of planting, the non-inoculated SCIs were taken and washed three times using sterile distilled water. Ten SCIs per genotype were inoculated with a mixture of five isolates of *C. sativus* (5 ml of the conidial suspension) and incubated under similar conditions as mentioned above for 5 days in sandwich filter paper placed into polyethylene transparent envelopes SCIs controls were treated with sterile distilled water. The experiment was repeated three times.

Disease assessment. The infection response based on the measurement of individual SCI discoloration (%) was assessed 7 weeks for seedling assay, and five days for sandwich filter paper method post inoculation. The 0–5 scale as described by Kokko et al. (1995) was used for the two both methods.

Statistical analysis. Data of different tests were analyzed to determine whether there was a significant test × genotype interaction. The relationship among disease ratings on sandwich filter paper assay and seedlings was examined by studying the correlation among genotypes means in all different experiments using STAT-ITCF program (Anonymous, 1988).

The disease symptoms (discoloration and necrosis of the SCIs) were easily detected on the SCIs placed into the transparent envelope after 48 h of inoculation (Fig. 1). SCI discoloration was typically observed in infected plants with the severity values being consistently higher in the susceptible genotypes in both experiments (Tables 1 and 2).

Analysis of variance showed that there were significant differences among genotypes. Infection responses of barley genotypes to all *C. sativus* were summarized in Table 2. Highly significant correlation coefficients were found in each experiment (A, B and C) between sandwich filter paper and seedling assays (Fig. 2), indicating that this testing procedure was reliable.

Inoculation with the *C. sativus* virulent pathotypes increased discoloration of the SCIs on susceptible genotypes in transparent envelopes and pot experiments. Both methods showed that Thibaut was resistant, whereas the ratings of genotypes shown to be either moderately resistant or susceptible to CRR pathogen were quite consistent among

Table 1. Developmental stages of CRR on barley using sandwich filter paper method

Disease development	Hours after inoculation
SCI white color	24
Unblemished creamy white color	48
Stunted chlorotic lesions	72
Elongated dark brown lesions	96
A darkening or reddish brown decay	120

Table 2. Disease rating of barley reaction to CRR (5 × 10⁵ conidia/ml) by using standard seedling inoculation test (I) and the sandwich filter paper method (II)

Genotype	Source	(I)	(II)
		A B C	A B C
Arrivate	USA	91.67a 94.33a 89.00a	94.00a 97.02a 88.11a
WI2291	Australia	81.67a 90.00b 80.33a	91.00a 88.11a 85.07a
Golf	England	55.67b 65.33b 53.67b	63.69b 57.70b 52.13b
Igri	Germany	47.63c 44.13c 33.17c	41.01c 37.10c 32.23b
Thibaut	France	17.00d 16.00d 16.67d	21.00d 19.45d 16.33c

Values within a column followed by different letters differ significantly at $P = 0.001$ (Newman-Keuls).
Assessment of Barley Reaction to Common Root Rot

The results clearly indicated that the reaction of barley genotypes to \textit{C. sativus} was similar in the two methods and that the transparent envelop was useful for CRR evaluation in a short time.

Different factors have been shown to influence the susceptibility of barley to CRR pathogen under field conditions (Van Leur et al., 1997). These researchers demonstrated that susceptibility was related to both inoculum level and climate conditions. In our sandwich filter paper experiments, the level of inoculum was controlled. Therefore, precise assessment could be made on the barley reaction to CRR disease. Furthermore, the soil may contain other fungi and bacteria that can cause SCI rotting, which can lead to misdiagnosis of infection symptoms with \textit{C. sativus}. In addition, high soil moisture may also lead to SCI discoloration similar to that caused by a \textit{C. sativus} infection.

\textit{C. sativus} is pathogenic to many gramineous hosts; many researchers are therefore studying the diseases caused by this fungus (Fernandez and Conner, 2011; Tinline, 1988). In particular, abundant research on its pathogenicity and on plant-pathogen interactions at the macro and molecular levels has been conducted in barley. Since the fungus can infect barley at any growth stage and causes serious yield loss (Mathre et al., 2003), the risk of escape of highly pathogenic test isolates from glasshouses into barley production areas needs to be minimized.

The sandwich filter paper method is both simple and rapid; it enables the resistance of all plants to be evaluated rapidly under uniform conditions after 5 days of inoculation compared with 7 weeks in pots in the common method. Moreover, this method can help to replicate infection assays, and to test large numbers of isolates and barley genotypes in a short and early time in breeding programs.

Acknowledgments

The authors thank the Director General of AECS and the Head of the Molecular Biology and Biotechnology Department for their continuous support throughout this work. Thanks also extended to Dr. B. Al-safadi for critical reading of the manuscript.

References

Anonymous, 1988. STAT-ITCF, Programme, MICROSTA, realized by ECOSOFT, 2nd Ver. Institut Technique des Cereals et des Fourraiges Paris, pp. 55.

Arabi, M. I. E. and Jawhar, M. 1999. A rapid technique for determining common root rot reaction in barley. \textit{Plant Breed.} 118:278–280.

Ducek, L. J., Verma, P. R. and Spurr, D. T. 1985. Effect of inoculum density of \textit{Cochliobolus sativus} on common root rot of wheat and barley. \textit{Can. J. Plant Pathol.} 7:382–386.

Fernandez, M. R. and Conner, R. L. 2011. Root and crown rot of wheat. \textit{Prairie Soils Crops J.} 4:151–157.

Fernandez, M. R., Holzgang, G. and Turkington, T. K. 2009. Common root rot and crown rot of barley crops across Saskatchewan and in north-central Alberta. \textit{Can. J. Plant Pathol.} 31:96–102.

Kokko, E. G., Conner, R. L., Kozub, G. C. and Lee, B. 1995. Effects of common root rot on discoloration and growth of spring wheat root system. \textit{Phytopathology} 85:203–208.

Kumar, J., Schafer, P., Huckelhoven, R., Langen, G., Baltruschat, H., Stein, E., Nagarajan, S. and Kogel, H. K. 2002. \textit{Bipolaris sorokiniana}, a cereal pathogen of global concern: cytological and molecular approaches towards better control. \textit{Mol. Plant Pathol.} 3:185–195.

Van Leur, J. G., Alamdar, M. Z. and Khawatmi, S. 1997. Effect of \textit{Cochliobolus sativus} on yields of barley under experimental conditions in northern Syria. \textit{Aust. J. Agric. Res.} 48:1–7.

Mathre, D. E., Johnston, R. H. and Grey, W. E. 2003. Diagnosis of common root rot of wheat and barley. Online. \textit{Plant Health Progress} doi:10.1094/PHP-2003-0819-01-DG.

Meldrum, S. I., Platz, G. J. and Ogle, H. J. 2004. Pathotypes of \textit{Cochliobolus sativus} on barley in Australia. \textit{Aust. Plant Pathol.} 33:109–114.

Tinline, R. D. 1988. \textit{Cochliobolus sativus}, a pathogen of wide host range. Pages. 113–122, in: Advances in Plant Pathology. Vol. 6 D.S. Ingram and P.J. Williams, eds. Academic Press, London.

Verma, P. R., Morrial, R. A. A. and Tinline, R. D. 1976. The effect of common root rot on components of grain yield in Manitou wheat. \textit{Can. J. Bot.} 54:2888–2892.