Synchrotron X-ray diffraction study of a charge stripe order in 1/8-doped La$_{1.875}$Ba$_{0.125-2x}$Sr$_x$CuO$_4$

H. Kimura,1 H. Goka,2 M. Fujita,2 Y. Noda,1 K. Yamada,2 and N. Ikeda3

1Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
2Institute for Chemical Research, Kyoto University, Gokasho, Uji 610-0011, Japan
3Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan

(Dated: March 22, 2022)

Lattice distortions associated with charge stripe order in 1/8 hole-doped La$_{1.875}$Ba$_{0.125-2x}$Sr$_x$CuO$_4$ are studied using synchrotron X-ray diffraction for $x = 0.05$ and $x = 0.075$. The propagation wave vector and charge order correlation lengths are determined with a high accuracy, revealing that the oblique charge stripes in orthorhombic $x = 0.075$ crystal are more disordered than the aligned stripes in tetragonal $x = 0.05$ crystal. The twofold periodicity of lattice modulations along the c-axis is explained by long-range Coulomb interactions between holes on neighboring CuO$_2$ planes.

PACS numbers: 74.72.Dn, 71.45.Lr, 61.10.-i

The interplay between spin and charge correlations in hole-doped CuO$_2$ planes is widely believed to be related to the mechanisms of high-T_c superconductivity. In La$_{2-x}$Ba$_x$CuO$_4$, which is a prototypical high-T_c superconductor, anomalously suppression of superconductivity has been observed at around a specific hole concentration of $x = 1/8$, where the Low-Temperature-Tetragonal (LTT) crystal phase ($P4_2/nmc$ symmetry) occurs.1,2 Tranquada et al. have found the incommensurate spin- and charge orders in the LTT phase of La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (LNSCO) with $x = 0.13^{3,4,5}$. The results revealed that a strong relation exists between spin/charge ordering, crystal structure, and the suppression of high-T_c superconductivity. Based on the stripe model,6,7 these relationships can be explained by the pinning of dynamical charge stripe correlations by lattice potentials, resulting in the strong suppression of superconductivity. Recently, a systematic neutron scattering study of the incommensurate spin/charge order in La$_{1.875}$Ba$_{0.125-2x}$Sr$_x$CuO$_4$ (LBSCO) with $0.05 \leq x \leq 0.085$ has confirmed that charge ordering only occurs in LTT and LTLO (Low-Temperature-Less-Orthorhombic, $Pcem$ symmetry) phases and competes with superconductivity, whereas the robustness of magnetic order depends weakly on crystal structure and T_c suppression compared to charge order.8 Hence, an understanding of the microscopic nature of charge order is important for clarifying the relationship between charge correlation and superconductivity.

Although charge order is observed as lattice distortions in neutron scattering, X-ray diffraction can, in principle, directly detect charge distributions, which would provide direct evidence of charge order. A recent synchrotron X-ray diffraction study of LNCSO at $x = 0.12$ has determined the propagation wave vector of the incommensurate charge order, $Q_{\text{ch}} = (\pm 2\epsilon 0 \frac{1}{2})$ with $\epsilon = 0.118$ r.l.u. (reciprocal lattice unit)8. Although the superlattice observed in the X-ray diffraction study was mainly the result of lattice distortions, precise determination of the wave vector Q_{ch} revealed that the lattice distortions are caused by the formation of charge stripe order. In LBSCO systems, neutron scattering measurements have found that the in-plane component of Q_{ch} for $x = 0.05$ in the LTT structure is different from that for $x = 0.075$ in the LTLO structure, which suggests a strong relationship between stripe pattern and crystal symmetry.9 However, detailed information about the three dimensional correlation of the charge order is not available yet because no synchrotron X-ray diffraction measurements have been carried out in LBSCO systems.

Synchrotron X-ray diffraction measurements of LBSCO with $x = 0.05$ and 0.075 are conducted to study the nature of charge stripe order in detail, and to examine the relationship between charge correlation and crystal structure.

X-ray diffraction experiments were performed at the Crystal Structure Analysis Beam Line (BL02B1)10 of SPring-8. X-ray energy was tuned to 30 keV using a sagittally bent Si(311) double monochromator. A double platinum mirror vertically collimates the incident beam and completely eliminates higher order harmonics. Single crystals of LBSCO with $x = 0.05$ and $x = 0.075$ were obtained from the same batch as crystals used in previous neutron scattering studies.7,9,11 The cylindrical crystals are about 5 mm in diameter with a height of 1 mm. The reciprocal lattice is defined in the $I4/mmm$ symmetry where the two short axes correspond to the distance between the nearest-neighbor Cu atoms along the in-plane Cu-O bond. At the (2 0 0) point, the longitudinal resolution ($\parallel a^*\text{-axis}$) was about 0.014 Å$^{-1}$ and transverse resolutions along the b^*- and the c^*- axes were ~ 0.005 Å$^{-1}$ and ~ 0.046 Å$^{-1}$, respectively.

Figures (a) and (b) show H-scan profiles of superlattice peaks around $Q = (2 - 2\epsilon 0 0.5)$ for $x = 0.05$ and $x = 0.075$, respectively, after adjusting against a background measurement. Raw data is shown in the inset of each figure. As can be seen in the figures, the superlattice peaks for both $x = 0.05$ and $x = 0.075$ crystals are clearly located at $H = 1.76$ r.l.u. Thus the incommensurability 2ϵ is exactly 0.240 ± 0.001 r.l.u. In a previ-
minor neutron scattering study11, the incommensurability of elastic magnetic peaks of $x = 0.05$ samples was found to be $\epsilon = 0.120 \pm 0.001$ r.l.u., indicating that the superlattice peaks observed in the present study indeed correspond to second-order harmonics of magnetic order. The line-widths are clearly broadened with respect to instrument resolution (indicated by bold horizontal lines in the figures), which gives finite in-plane correlation lengths along the a-axis ($\equiv \xi_a$) of 130 ± 20 Å and 120 ± 30 Å for $x = 0.05$ and $x = 0.075$, respectively.

K-scan profiles of superlattice peaks at around $Q = (2 - 2\epsilon 0 0.5)$ are shown in Figs. 2(a) and (b) after background correction. Figure 2(c) shows a trajectory of the q-scan and the locations of superlattice peaks in reciprocal lattice space. Note that the K-direction is perpendicular to the propagation wave vector Q_{ch}. The peak for the $x = 0.05$ crystal is almost at $K = 0$ (indicated by a dashed line in the figure), whereas for the $x = 0.075$ crystal, the peak is clearly shifted away from $K = 0$. The amplitude of the peak shift was found to be 0.007 ± 0.001 r.l.u, the same as found in a previous neutron scattering study9. In addition, the $x = 0.075$ crystal used in the x-ray diffraction was composed of a single domain unlike the crystal from the neutron scattering study9, which contained a twin due to the orthorhombic symmetry of $Pccn$. Hence, the shift of the superlattice peak in the $x = 0.075$ crystal is clearly not an artifact, with the quartet of superlattice peaks forming a regular rectangular shape in reciprocal lattice space, as shown by the open diamonds in Fig. 2(c). This arrangement of peaks satisfies the orthorhombic symmetry of the LTLO phase, not the tetragonal symmetry of the LTT phase, indicating that the pattern of charge order is closely related to crystal structure. The in-plane correlation length along the b-axis ($\equiv \xi_b$) for the tetragonal $x = 0.05$ crystal was 110 ± 10 Å, and similar for ξ_a. In comparison, ξ_b of the orthorhombic $x = 0.075 (= 70\pm 8$ Å) is clearly shorter than ξ_x and also shorter than the ξ_b of the $x = 0.05$ crystal.

Figure 3 shows the L-dependence of the superlattice peaks around $Q = (2 - 2\epsilon 0 0.5)$ for (a) $x = 0.05$ and (b) $x = 0.075$, corresponding to out-of-plane correlations. The plots show the difference between data at $T = 11$ K and 45 K. Raw data for the $x = 0.05$ crystal at each temperature is plotted in the inset of Fig. 3(a). Intensities of both the samples modulate sinusoidally and exhibit broad maxima at $L = \pm 0.5$ r.l.u., indicative of a twofold periodicity along c-axis. The line-width is much broader than instrument resolution. Thus a reasonably short out-of-plane correlation length ξ_c of ~ 9 Å was ob-

![Fig. 1](image1.png)

FIG. 1: H-scan profiles of superlattice peaks for (a) $x = 0.05$ and (b) $x = 0.075$ crystals. Backgrounds have been subtracted. The insets show the raw data taken at around 12 K (closed circle) and around 45 K (open circle). Bold horizontal lines indicate instrument resolution.

![Fig. 2](image2.png)

FIG. 2: Q-profiles of superlattice peaks along K-direction for (a) $x = 0.05$ and (b) $x = 0.075$ crystals. Backgrounds measured at 45 K have been subtracted. Bold horizontal lines indicate instrument resolution. A trajectory of the q-scan and schematic peak positions of the superlattice are shown in (c). Solid circles and open diamonds correspond to the positions for $x = 0.05$ and 0.075, respectively.
tained for both the $x = 0.05$ and 0.075 crystals, which is shorter than that of the next-nearest-neighbor (n.n.n.) distance between CuO$_2$ planes. The large anisotropy between ξ_{ab} and ξ_c suggests two-dimensional charge correlations. Solid curves in Fig. 3 denote fits to the equation $|F(L)|^2 \propto |1 - e^{-i2\pi L}|^2 = 4\sin(\pi L)$. The good agreement of this equation with the data indicates that there is an antiphase relationship between n.n.n. CuO$_2$ layers, which are separated by a distance c, which can be explained by a long-range Coulomb interaction between doped holes on the CuO$_2$ planes. The integrated intensity along L of the superlattice peak is $\sim 10^7$ times weaker than that of the fundamental (2 0 0) Bragg reflection of intensity $\sim 10^8$ cps. In addition, the relative intensity of superlattice peak to the fundamental peak is ~ 10 times weaker than found in the neutron scattering study. These results show that lattice distortions are the main contributor to the superlattice intensity and that the relative intensity is qualitatively consistent with a model in which the large atomic displacement resulting from charge order is oxygen. The amplitude of oxygen displacement along the a-axis can be estimated to be less than 10^{-3} Å by a simple calculation based on the stripe model and using the measured relative intensities.

The temperature dependence of superlattice peak intensity and of the (3 0 0) reflection, which corresponds to the order parameter of structural phase transition into the LTT or LTLO phase, were measured. Results are shown in Figs. 4(a) and (b) for the $x = 0.05$ and $x = 0.075$ crystals, respectively. Structural phase transition temperatures, T_{d2}, are indicated in the figures at the point where the (3 0 0) superlattice intensity diminishes.

The T_{d2} transition temperatures for the $x = 0.05$ and $x = 0.075$ crystals were thus estimated to be 38 K and 34 K, respectively, almost identical to those obtained by neutron scattering. Remarkably, the temperature dependence of the superlattice peak intensity (closed circles) is almost identical to that of the order parameter for the LTT/LTLO phase (open circles), suggesting that the ordering process of charge order is closely related to that of LTLO structural phase transition. These results are quite a contrast to the LNSCO system, where the superlattice peak evolves gradually as temperature decreases whereas the LTT order parameter exhibits a first order phase transition.

High-Q resolution as well as the high-statistics of the present X-ray diffraction study have provided precise propagation wave vectors of the superlattice peaks associated with charge order, giving $Q_{chl} = (\pm 0.24 \mp \eta \frac{1}{2})$ with $\eta = 0$ and 0.007 r.l.u. for $x = 0.05$ and $x = 0.075$ crystal, respectively. It is remarkable that the incommensurability $\epsilon = 0.12$ r.l.u. of both samples is almost identical to that of LNSCO for $x = 0.12$ but is inconsistent with hole-doping $x = 1/8$ of the present samples. As can be seen in Fig. 4, charge order and the LTT structures are strongly coupled, displaying that commensurability with the lattice is essentially important for stabilizing charge order. In this case, one can easily imagine that ϵ should have a commensurate value of 1/8, as predicted theoretically. Tranquada et al. have noted that the incommensurate value of ϵ can be regarded as a disordered stripe in which there is the mixture of distinct stripe periods of 4a and 5a. In scattering intensities calculated under this assumption, the charge order peak is broad-
ened whereas the magnetic order peak remains sharp. In fact, in our LBSCO system, the intrinsic line-width of the superlattice peak along H-direction is considerably broader than that of resolution-limited magnetic peaks observed by neutron scattering7,11. These results imply that charge stripe order in cuprates is intrinsically disordered in comparison with that of isostructural systems of $La_{2-x}Sr_xNiO_4$ in which stripe order is mostly stabilized around commensurate positions with $\epsilon = 1/2$. It should be noted that the high two-dimensionality of charge correlation ($\xi_{\alpha\beta}/\xi_c > 6$) could make the stripe correlation disordered.

Line-broadening of the superlattice peak is seen along both the H-direction and the K-direction. In particular, these systematic experiments using single domain crystals have revealed that line-widths along the K-axis for orthorhombic $x = 0.075$ crystals are much broader than for tetragonal $x = 0.05$ crystals. Based on the stripe model, the line-width along K corresponds to the mosaicity of the charge stripe. In addition, the orthorhombic symmetry of superlattice peaks in $x = 0.075$ crystals suggests that the charge stripes are oblique. As Fujita et al. have noted3, a corrugated pattern in the CuO$_2$ plane in LTLO phase can easily produce steps or kinks in the stripes, giving rise to the oblique of charge stripe. In this point of view, more oblique stripes could introduce the steps or kinks more randomly, which yields charge stripe mosaicity. Therefore, oblique stripe order becomes more disordered or smectic in comparison with the aligned stripe, consistent with the present results.

In the LTT phase, the tilting pattern of the CuO$_6$ octahedra, i.e. the lattice potential pattern, is rotated by 90° with respect to the nearest-neighbor layers. Thus the wave vector of charge order is rotated by 90°. Furthermore, the phase of charge order is shifted by π from the n.n.n. layer to minimize the energy losses due to Coulomb interactions, giving rise to a twofold periodicity along the c axis. Therefore, the 2c periodicity of the superlattice peaks suggests that the doped holes are indeed arranged one-dimensionally across the two dimensional CuO$_2$ plane.

In conclusion, the propagation wave vector and three dimensional correlation of charge order in LBSCO systems were determined accurately using high-intensity synchrotron X-ray diffraction. Despite the 1/8-hole doping, the incommensurability of the superlattice peak ($\epsilon = 0.12 \text{ r.l.u.}$) is clearly shifted away from the commensurate value of 1/8, indicating that charge stripe order in cuprates is intrinsically disordered. The orthorhombic $x = 0.075$ crystal provided detailed information about the peak shift as well as the line width of the superlattice peak, indicating that the oblique stripes in $x = 0.075$ crystal are more disordered than the aligned stripes in $x = 0.05$ crystal. The charge order was also found to be 2c periodic and two-dimensional in nature. A proper determination of the atomic displacement pattern associated with the charge order is required to fully understand the essential nature of the (disordered) charge stripe order.

We thank K. Machida, M. Matsuda, H. Yamase, and J. M. Tranquada for valuable discussions. This work was supported in part by a Grant-In-Aid for the Encouragement of Young Scientists (13740198 and 13740216, 2001), Scientific research B (14340105, 2000), Scientific Research on Priority Areas (12046239, 2001), and Creative Scientific Research (13NP0201) from the Japanese Ministry of Education, Science, Sports and Culture, and by the Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Corporation. The synchrotron X-ray experiments were carried out at the SPring-8 facility with the approval of the Japan Synchrotron Radiation Research Institute (Proposal No. 1998A0157, 1999A0234, and 2000B0321).

\begin{thebibliography}{99}
\bibitem{1} A. R. Moodenbaugh, Youwen Xu, M. Suenaga, T. J. Follcets, and R. N. Shelton, Phys. Rev. B \textbf{38}, 4596 (1988).
\bibitem{2} D. J. Axe, A. H. Moudden, D. Hohlwein, D. E. Cox, K. M. Mohanty, A. R. Moodenbaugh, and Youwen Xu, Phys. Rev. Lett. \textbf{62}, 2751, (1989).
\bibitem{3} J. M. Tranquada, J. D. Axe, Y. Nakamura, and S. Uchida, Nature \textbf{375}, 561 (1995).
\bibitem{4} J. M. Tranquada, J. D. Axe, N. Ichikawa, Y. Nakamura, S. Uchida, and B. Nachumi, Phys. Rev. B \textbf{54}, 7489 (1996).
\bibitem{5} J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y. Nakamura, and S. Uchida, Phys. Rev. Lett. \textbf{78}, 338 (1997).
\bibitem{6} S. A. Killelson, E. Fradokin, and V. J. Emery, Nature \textbf{393}, 550 (1998).
\bibitem{7} M. Fujita, H. Goka, K. Yamada, and M. Matsuda, Phys. Rev. Lett. \textbf{88}, 167008, (2002).
\bibitem{8} M. V. Zimmermann, A. Vigliante, T. Niemöller, N. Ichikawa, T. Frello, J. Madsen, P. Wochner, S. Uchida, N. H. Andersen, J. M. Tranquada, D. Gibbs, and J. R. Schneider, Europhys. Lett. \textbf{41}, 629, (1998).
\bibitem{9} M. Fujita, H. Goka, K. Yamada, and M. Matsuda, Phys. Rev. B \textbf{66}, 184503 (2002).
\bibitem{10} Y. Noda, K. Oshihama, H. Toraya, K. Tanaka, H. Terauchi, H. Maeta, and H. Konishi, J. Synchrotron Radiation \textbf{5}, 485 (1998).
\bibitem{11} M. Fujita, H. Goka, and K. Yamada, J. Phys. Soc. Jpn. Suppl. A \textbf{70}, 49 (2001).
\bibitem{12} M. Vojta and S. Sachdev, Phys. Rev. Lett. \textbf{83}, 3916, (1999).
\bibitem{13} H. Yoshizawa, T. Kakeshita, R. Kajimoto, T. Tanabe, T. Katsufuji, and Y. Tokura, Phys. Rev. B \textbf{61}, R854 (2000).
\bibitem{14} J. M. Tranquada, N. Ichikawa, and S. Uchida, Phys. Rev. B \textbf{59}, 14712 (1999).
\end{thebibliography}