Fermi surfaces and quantum oscillations in underdoped high-\(T_c\) superconductors

\(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) and \(\text{YBa}_2\text{Cu}_4\text{O}_8\)

Hyungju Oh,1 Hyoung Joon Choi,1,∗ Steven G. Louie,2,3 and Marvin L. Cohen2,3

1Department of Physics and IPAP, Yonsei University, Seoul 120-749, Korea
2Department of Physics, University of California, Berkeley, California 94720, USA
3Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Dated: December 12, 2009)

We study underdoped high-\(T_c\) superconductors \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) and \(\text{YBa}_2\text{Cu}_4\text{O}_8\) using first-principles pseudopotential methods with additional Coulomb interactions at the Cu atoms, and obtain Fermi-surface pocket areas in close agreement with measured Shubnikov-de Haas and de Haas-van Alphen oscillations. With antiferromagnetic order in CuO\(_2\) planes, stable in the calculations, small hole pockets are formed near the so-called Fermi-arc positions in the Brillouin zone which reproduce the low-frequency oscillations. A large electron pocket, necessary for the negative Hall coefficient, is also formed in \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\), giving rise to the high-frequency oscillations as well. Effective masses and specific heats are also calculated and compared with measurements. Our results highlight the important role of magnetic order in the electronic structure of underdoped high-\(T_c\) superconductors.

PACS numbers: 71.10.+y, 74.25.Jb, 74.72.-h, 74.25.Ha

The normal-state electronic structures of the underdoped high-\(T_c\) superconductors have been studied for more than twenty years, but the Fermi-surface (FS) topology is still only partially understood [1, 2, 3, 4, 5, 6, 7, 8]. An important observation is the disconnected FSs [1, 2], namely Fermi arcs, observed in angle-resolved photoemission spectroscopy (ARPES), which initiated intense investigations about whether the FSs are really disconnected arcs or closed pockets of which one side is hardly visible in ARPES. Recently, in contrast to having Fermi arcs, de Haas-van Alphen (dHvA) oscillations in the magnetization and Shubnikov-de Haas (SdH) oscillations in the resistance [2, 3, 4, 6, 7, 8] observed in ortho-II \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) and \(\text{YBa}_2\text{Cu}_4\text{O}_8\) suggest well-defined close pockets in the FS of underdoped high-\(T_c\) cuprates. The measured oscillations for \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) are a dominant one at \(500\pm 20\) T with a satellite at \(1650\pm 40\) T, and more recently a dominant oscillation at \(540\pm 15\) T with satellites at \(450\pm 15\) T, \(630\pm 40\) T, and \(1130\pm 20\) T. For \(\text{YBa}_2\text{Cu}_4\text{O}_8\), oscillation at \(660\pm 15\) T is observed [2, 8].

The measured dHvA and SdH oscillations provide extreme cross-sectional areas of closed FS pockets [12], but they alone are not enough to identify the shapes and locations of the pockets. Thus, a quantitative theoretical calculation of the FS geometry can be useful to determine the FS topology. First-principles calculations based on the density functional theory (DFT) approach have been performed for \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) and \(\text{YBa}_2\text{Cu}_4\text{O}_8\) [2, 10, 11], but the calculated FSs could not explain the oscillation measurements. In contrast to the measurements, reported DFT calculations predict only FS pockets much larger than \(500\) T, and do not obtain the electron-type carriers implied by the observed negative Hall coefficients [12].

According to model calculations [13, 14, 15, 16, 17], antiferromagnetic (AFM) order or a \(d\)-density wave may result in small pockets in regions of the FS. Although using DFT calculations, one may examine static magnetic order using spin-density functional theory [19]; as yet, no magnetic order has been considered in the reported DFT calculations of \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) and \(\text{YBa}_2\text{Cu}_4\text{O}_8\).

In this Letter, we present, for the first time, first-principles spin-density functional calculations of \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) and \(\text{YBa}_2\text{Cu}_4\text{O}_8\) with a Coulomb repulsion \(U\) at Cu sites which yield FSs consistent with the dHvA and SdH measurements. It is shown that, with physically reasonable \(U\) values, the AFM order in the CuO\(_2\) planes reconstructs the FS and produces pockets with sizes consistent with the measured frequencies. Moreover, the calculated FS of \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) has a large electron pocket which explains the observed negative Hall coefficients. In addition, cyclotron effective masses and specific heats are calculated and compared with experiments. Our results support the possible importance of magnetic order in the electronic structures of underdoped high-\(T_c\) cuprates.

Our present work is based on \textit{ab-initio} pseudopotential density-functional calculations with pseudo-atomic orbitals to expand the electronic wavefunctions [20]. Coulomb interaction at Cu \(d\) orbitals, parameterized by \(U\) and \(J\) [21, 22], is added to the local \(\text{(spin)}\) density approximation \([L(S)\text{DA}+U]\). With experimental atomic structures [23, 24], we minimize the total energy with respect to the magnetic moments of Cu atoms in the CuO\(_2\) planes and CuO chains to consider the possibility of AFM order. Our results are that \(\text{YBa}_2\text{Cu}_3\text{O}_8\) is an AFM insulator and \(\text{YBa}_2\text{Cu}_3\text{O}_7\) is a non-magnetic metal.

Using the LDA+\(U\) method with no magnetic order, we obtain the electronic structure for \(\text{YBa}_2\text{Cu}_3\text{O}_{6.5}\) (Figs. 1a...
and 1b), which are in good agreement with previous calculations. The FS has only large hole pockets and open orbits (Fig. 1b); however, this is not in agreement with the observed quantum oscillations.

When magnetic order is considered in the LSDA+U calculations for YBa$_2$Cu$_3$O$_{6.5}$, a checker-board-type AFM order is stabilized in the CuO$_2$ planes, and this drastically changes the electronic structures (Figs. 1c and 1d). With $U = 6.0$ eV and $J = 1.0$ eV, each Cu atom in the CuO$_2$ plane has 0.48 Bohr magneton (μ_B), while the CuO chains are still non-magnetic. The FS (Fig. 1d) now consists of small hole pockets (α and α' indicating the two largest ones) and a large electron pocket (β). The calculated pocket areas, which are not very sensitive to U and J around the used values, are in good agreement with the experimental observations (Fig. 1f). This shows that the AFM order may be a way to quantitatively explain the measured dHvA and SdH frequencies.

Figure 1d shows that the hole pockets (α and α') are located at $(\pm \frac{\pi}{2}, \pm \frac{\pi}{2})$, close to the positions of the Fermi arcs in the ARPES data. This supports the idea that slow AFM fluctuations may form hole pockets near $(\pm \frac{\pi}{2}, \pm \frac{\pi}{2})$, with their shapes possibly modified to form the arcs because of short-range fluctuations.

Figure 1d also shows that the electron pocket (β) is much more anisotropic than the hole pockets (α and α'). This arises because the electron pocket is derived from the CuO chain and the CuO$_2$ plane, while the hole pockets come from the CuO$_2$ plane only. To have an isotropic resistivity as observed in experiments at temperature below 80 K, we find that the electron mean free path along the chain direction should be about one quarter of that perpendicular to the chain because of directional difference in the group velocity.

For more detailed comparison, Fig. 2a shows the k_z dependence of FS pocket areas. The three largest extreme areas of hole pockets are 485 and 621 T at $k_z = 0$ and 708 T at $k_z = \pi/c$ (Fig. 2a), which overestimate by about 15 % the experimental low frequencies, 450, 540, and 630 T. The largest extreme area of the electron pocket (β) is 1450 T at $k_z = 0$ (Fig. 2a), and it underestimates by 12 % the experimental high frequency, 1650 T. If the Fermi level is shifted to higher energy, hole pockets would shrink and the electron pocket would expand (Figs. 2b and 2c). With a Fermi-level shift (ΔE_F) of 4 meV above the charge-neutrality level, the extreme pocket sizes become 441, 564, and 652 T for the holes and 708 T at $k_z = 0$ (Fig. 2a), and it underestimates by 15 % the experimental low frequencies, 450, 540, and 630 T. The largest extreme area of the electron pocket (β) is 1450 T at $k_z = 0$ (Fig. 2a), and it underestimates by 12 % the experimental high frequency, 1650 T. If the Fermi level is shifted to higher energy, hole pockets would shrink and the electron pocket would expand (Figs. 2b and 2c). With a Fermi-level shift (ΔE_F) of 4 meV above the charge-neutrality level, the extreme pocket sizes become 441, 564, and 652 T for the holes and 708 T at $k_z = 0$ (Fig. 2a), and it underestimates by 15 % the experimental low frequencies, 450, 540, and 630 T. The largest extreme area of the electron pocket (β) is 1450 T at $k_z = 0$ (Fig. 2a), and it underestimates by 12 % the experimental high frequency, 1650 T.
and 2c) and the electronic contribution to the normal-state specific heat from the LSDA+U electronic structure of YBa2Cu3O6.5. The obtained cyclotron effective masses are 1.78 times the free electron mass \((m_e)\) for the \(\alpha'\) pocket and 1.88 \(m_e\) for the \(\beta\) pocket. These values are smaller than measured values, \(1.78 \sim 1.9 m_e\) for the low frequency and \(3.8 m_e\) for the high frequency \([3,4,5]\), but they are consistent with experiments in the sense that the effective mass of the low-frequency oscillation (from the \(\alpha'\) pocket in our result) is smaller than that of the high-frequency oscillation (from the \(\beta\) pocket in our result). The calculated Sommerfeld coefficient for the normal-state specific heat is 9.28 mJ mol\(^{-1}\) K\(^{-2}\) which slightly underestimates the experimental value of 10 mJ mol\(^{-1}\) K\(^{-2}\) \([27]\). The differences between our values and the measured ones may originate from many-body effects.

The presence of the electron pocket in our FS (Fig. 1d) definitely opens a chance of a negative Hall coefficient, but it alone is not sufficient since the total numbers of holes and electrons in our calculation are equal to each other to represent a charge-neutral stoichiometric sample. Since the Hall coefficient is inversely proportional to the net charge of the carriers, a slight imbalance of the two types of carriers would result in a relatively large Hall coefficient. With \(\Delta E_F = 4\) meV, as discussed above for the oscillation frequencies, we can obtain a negative Hall coefficient of -25 mm\(^2\)C\(^{-1}\) at 70 T (Fig. 3a), close to the experimental value of about -30 mm\(^2\)C\(^{-1}\) \([12]\).

Figure 3 shows the Hall coefficients obtained by semiclassical transport theory within the relaxation-time approximation, assuming temperature-dependent but field-independent mean free paths \((\lambda)\) and \(\Delta E_F = 4\) meV. At 50 K, we assume isotropic \(\lambda\)'s for holes, which are 40 nm for the \(\alpha\) and \(\alpha'\) pockets and 10 nm for the other smaller pockets, and anisotropic \(\lambda\) for electrons \((\beta)\), which are 20 and 80 nm for motion along and perpendicular to the CuO chain, respectively. At 1.5 K they are increased to ten times the values at 50 K. These values of \(\lambda\)'s are adjusted to show a theoretical reproduction of the experimental data although they are quite a bit larger than those estimated from oscillation amplitudes. With the assumed \(\lambda\)'s, the calculated Hall coefficient is negative at high magnetic field and low temperature (Fig. 3a), becoming positive at high temperature (Fig. 3b), as in the experiment \([12]\).

The SdH oscillations are displayed in Fig. 3a by modifying the conductivity tensor \(\sigma_{ij}\) to include effects of the Landau levels \([28]\). The above mentioned mean free paths \((\lambda)\) are used for \(\sigma_{ij}\) itself; however, a reduction of \(\lambda\)'s by a factor of 0.05 is assumed for the modification factor of \(\sigma_{ij}\) for quantum oscillations, yielding SdH oscillation amplitudes close to experiments \([12]\). This may suggest that the charge carriers in the material lose their quantum coherence much faster than their classical linear momenta, but it is beyond the scope of our present work to justify the assumed \(\lambda\)'s. In our results, the low-frequency oscillations (from the hole pockets) are much stronger than the high-frequency oscillation (from the electron pocket) since the average mean free time is larger for the holes than for the electrons even with the assumed \(\lambda\)'s because of the difference in their group velocities. Thus, the dominant oscillation in the Hall coefficient (Fig. 3a) originates from the hole pockets although the Hall coefficient itself is negative at high field due to the electron pocket. The calculated SdH oscillations grow with the magnetic field (Fig. 3a), as observed experimentally \([12]\).

Compared with model calculations considering magnetic fluctuations \([13,14]\), our results show that the presence of CuO chains in YBa2Cu3O6.5 is important for explaining the high-frequency quantum oscillation and the negative Hall coefficient. Since our results are based on a static long-range magnetic order stable in the LSDA+U method, fluctuations in real materials may modify the FS. As discussed above, one possibility is the evolution of the small-size hole pockets \((\alpha\) and \(\alpha'\) in Fig. 1d) to arcs, as proposed by the model calculations.

While the \(d\)-density-wave theory predicts hole pockets larger than electron pockets, our result predicts an electron pocket larger than hole pockets, and assigns FS pockets to the observed frequencies oppositely. Thus, in our work, the observed major frequency originates from small-size hole pockets while the negative Hall coefficient is due to a large-size electron pocket.

For YBa2Cu3O8, as in the case of YBa2Cu3O6.5, we obtain very different FSs with and without AFM order in the CuO2 planes (Fig. 4). With the LDA+U method with \(U = 3.1\) eV and \(J = 0.8\) eV for all Cu \(d\) orbitals, we obtain a FS consisting of large hole pockets and open orbits (Fig. 4b) which is consistent with previous first-principles calculations \([29]\). When the magnetic order is considered by the LSDA+U method with the same \(U\) and \(J\), AFM order is stable in the CuO2 planes with 0.22 \(\mu_B\) at each Cu atom, and the FS consists of small hole pockets \((\alpha\) and \(\alpha'\) indicating the two largest ones), open orbits, and small electron pockets \((\beta)\), as shown in Fig. 4d. The calculated FS pocket areas are 721 T.
FIG. 4: (Color online) Electronic structures in YBa$_2$Cu$_4$O$_8$ with Coulomb interaction at Cu d orbitals ($U = 3.1$ eV and $J = 0.8$ eV). (a) The LDA+U band structure and (b) the FS in the non-magnetic case. (c) The LSDA+U band structure and (d) the FS with a checker-board-type AFM order in the CuO$_2$ planes. In (b) and (d), the FSs are drawn in the momentum space corresponding to a real-space unit cell containing a Cu atom on each CuO$_2$ plane. Blue (red) lines are hole pockets and open orbits (electron pockets). (e) FS pockets in (d). The α, α′, and β pocket areas are 721, 729, and 685 T2, respectively. (f) Comparison with the measured FS pocket area (660 T2 [30]) in the dashed line.

(α), 729 T (α′), and 685 T (β), which are close to the measured value 660 T2 [30, 31], overestimating it by about 10% or less. Contrary to YBa$_2$Cu$_3$O$_{6.5}$, the calculated FS pocket sizes in YBa$_2$Cu$_4$O$_8$ are sensitive to U and J around the used values. Calculated cyclotron effective masses, 0.45 m_e for holes and 0.52 m_e for electrons, are much smaller than the measured values of 2.7 ~ 3.0 m_e [30, 31], but calculated Sommerfeld coefficient for the normal-state specific heat, 6.97 mJ mol$^{-1}$ K$^{-2}$, is rather close to the experimental value of 9 mJ mol$^{-1}$K$^{-2}$ [30].

In summary, we have studied the electronic structures of YBa$_2$Cu$_3$O$_{6.5}$ and YBa$_2$Cu$_4$O$_8$ by the LSDA+U method, and the results yield FS topologies fully consistent with quantum oscillation measurements. It is shown that the magnetic order in the CuO$_2$ planes may explain quantitatively the dHvA and SdH oscillation frequencies, the negative Hall coefficients, and the specific heat. These results point to the importance of magnetic order for understanding the electronic structures of the underdoped high-T_c cuprates.

This work was supported by the NRF of Korea (Grant Nos. KRF-2007-314-C00075 and R01-2007-000-20922-0), by NSF under Grant No. DMR07-05941, and by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. DOE under Contract No. DE-AC02-05CH11231. Early version of LSDA+U methodology was supported by NSF; H.J.C. was supported by BES DMSE during collaborative visits. Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2008-S02-0004), NSF through TeraGrid resources at SDSC, and DOE at LBNL’s NERSC facility.

* Email: h.j.choi@yonsei.ac.kr

[1] M. Norman et al., Nature (London) 392, 157 (1998).
[2] M. A. Hossain et al., Nat. Phys. 4, 527 (2008).
[3] N. Doiron-Leyraud et al., Nature (London) 447, 565 (2007).
[4] C. Jaudet et al., Phys. Rev. Lett. 100, 187005 (2008).
[5] S. E. Sebastian et al., Nature (London) 454, 200 (2008).
[6] A. Audouard et al., arXiv:0812.0458.
[7] A. F. Bangura et al., Phys. Rev. Lett. 100, 047004 (2008).
[8] E. A. Yelland et al., Phys. Rev. Lett. 100, 047003 (2008).
[9] A. Carrington and E. A. Yelland, Phys. Rev. B 76, 140508(R) (2007).
[10] I. S. Efimov, G. A. Sawatzky, and A. Damascelli, Phys. Rev. B 77, 060504(R) (2008).
[11] D. Puggioni, A. Filippetti, and V. Fiorentini, Phys. Rev. B 79, 064519 (2009).
[12] D. LeBoeuf et al., Nature (London) 450, 533 (2007).
[13] N. Harrison, R. D. McDonald, and J. Singleton, Phys. Rev. Lett. 99, 206406 (2007).
[14] T. Morinari, arXiv:0805.1977.
[15] W. Chen, K. Yang, T. M. Rice, and F. C. Zhang, Europhys. Lett. 82, 17004 (2008).
[16] S. Chakravarty and H.-Y. Lee, PNAS 105, 8835 (2008).
[17] D. Podolsky and H.-Y. Lee, Phys. Rev. B 78, 224516 (2008).
[18] L. Onsager, Phil. Mag. 43, 1006 (1952).
[19] P. Zhang, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett. 98, 067005 (2007).
[20] D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler, Int. J. Quantum Chem. 65, 453 (1997).
[21] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
[22] S. Y. Park and H. J. Choi, Phys. Rev. B 80, 155122 (2009).
[23] J. Grybos et al., Physica C 220, 138 (1994).
[24] Y. Yamada et al., Physica C 173, 155 (1991).
[25] V. Hinkov et al., Science 319, 597 (2008); A. P. Kampf, Phys. Rep. 249, 219 (1994); R. J. Birgeneau, C. Stock, J. M. Tranquada, and K. Yamada, J. Phys. Soc. Jpn. 75, 111003 (2006); S. M. Hayden et al., Phys. Rev. B 66, 821 (1991); B. Lake et al., Science 291, 1759 (2001).
[26] Y. Ando, K. Segawa, S. Komiy, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).
[27] J. W. Loram, J. Luo, J. R. Cooper, W. Y. Liang, and J. L. Tallon, J. Phys. Chem. Solids 62, 59 (2001).
[28] T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974).
[29] J. Yu, K. T. Park, and A. J. Freeman, Physica C 172,
467 (1991).
[30] J.W. Loram, APS March Meeting, Denver, Colorado.