Price Clustering and Discreteness: Is there Chaos behind the Noise?

Antonios Antoniou Constantinos E. Vorlow*

February 2, 2008

Abstract

We investigate the “compass rose” (Crack, T.F. and Ledoit, O. (1996), Journal of Finance, 51(2), pg. 751-762) patterns revealed in phase portraits (delay plots) of stock returns. The structures observed in these diagrams have been attributed mainly to price clustering and discreteness. Using wavelet based denoising, we examine the noise-free versions of a set of FTSE100 stock returns time series. We reveal evidence of non-periodic cyclical dynamics. As a second stage we apply Surrogate Data Analysis on the original and denoised stock returns. Our results suggest that there is a strong nonlinear and possibly deterministic signature in the data generating processes of the stock returns sequences.

1 Introduction

The empirical investigation of the dynamics of stock returns has been an area of intensive research since the beginning of last century (see thesis of Bachelier [1]). The understanding of dynamics observed in price fluctuations are of paramount importance to activities such as forecasting for investment decision support, risk modelling and derivative pricing. Moreover, the complexity of their structure, as a result of agent-market interactions, is an indicator of the nature of overall

*Corresponding author email: Costas@vorlow.org, www: http://www.vorlow.org. We wish to thank Timothy Crack, James B. Ramsey, Tassos Malliaris, Alexandros Leontitsis, and the participants of the APFA 2004 conference in Warsaw for their useful comments and suggestions on an initial draft and earlier research which this paper advances. We also wish to acknowledge the valuable help and support of Duncan Rand and the University of Durham “High Performance Computing Service”. We finally thank the anonymous referees of the 1st Bonzenfreies Colloquium on Market Dynamics and Quantitative Economics (2004), for their useful comments and suggestions. All analysis was conducted on R (version 1.8.1, see [42]; the software is available from http://www.r-project.org). The authors retain the sole responsibility of any errors or omissions.
market conditions and organization. This complexity may also reflect the level of agent’s rationality and risk tolerance. It becomes apparent that the explanation of certain qualities of the structure of market dynamics, provides the opportunity to improve the understanding of their current and future states. Clearly such an exercise is of great importance to all market participants that aim to minimize their risks and protect their investments and profits.

Viewing economies and markets in particular as a dynamical system, we can draw many inferences by examining their observable outputs: sequences of stock prices and the corresponding returns. Crack and Ledoit (2) have first revealed a “compass rose” pattern discovered in scatter diagrams of returns against their lagged values (i.e., phase portraits), such as the one depicted in Fig. 1(a). They attributed the pattern to price clustering and discreteness and especially the tick size and suggested reasons for its appearance.\(^1\) Our aim is by using an approach consistent with the tradition of econophysics, to continue their research by revealing yet more interesting patterns and showing that the compass rose is a mask for more subtle dynamics. In this paper we establish the case of existence of nonstochastic nonlinear dynamics via the calculation of the BDS statistic (3). We use this as a discriminating statistic for a permutation test based framework (“Surrogate Data Analysis” (SDA) by (9)) that allows us to support our results at various levels of significance. As a second step, following (10; 11; 12), we reduce the level of noise in the original returns sequences using Wavelet based thresholding (the WaveShrink technique by (13)). We then recalculate the BDS statistic on the denoised sequences and their surrogates and test again for the absence of linear dynamics. Meanwhile we produce the compass rose of the denoised sequences only to reveal an entirely different structure that is strongly reminiscent of a dynamical attractor. Our findings are consistent with the hypothesis that the returns sequence dynamics may be characterized by nonlinearities that can be of a complex-deterministic character. The results produced here may bring us closer to establishing that a significant part of the driving force generating financial prices could indeed be chaotic.

\(^{1}\)Clustering in stock market prices has been an issue that concerned research since the 1960’s (e.g., see refs. (3, 4) who were motivated by the original findings of (5)). Ref. (6) investigated dependencies related to clustering and discreteness. This research was followed by (7) who conducted simulations on price rounding and discreteness and showed that the hypothesis of a geometric Brownian motion for daily and weekly frequencies could be rejected. In general, price clustering and discreteness is an important chapter of “market’s microstructure” with serious implications on risk evaluation, the optimal design of securities and market efficiency.
2 Investigating the Compass Rose

Crack and Ledoit (2) suggested first the use of phase portraits in order to reveal the compass rose. This implied the investigation of some sort of time-dependency among stock return sequences. This could be linear or nonlinear, a result of stochastic (random) or nonstochastic (deterministic) data generating process (DGP), or even a mixture of the above behind the asset price dynamics. The authors also proposed that the formations revealed could be of use for calibrating tests of the existence of chaos in returns sequences. Since then various papers have appeared on this theme (see (14; 15; 16; 17; 18; 19; 20; 21)). We believe that two issues can be addressed further:

1. As (22) note, observed stock prices are not always the true equilibrium prices and hence the image of market dynamics observed through them could be partial. Moreover, in markets where significant fixing takes place, there is a variable amount of error introduced into the price level which is then passed to the returns ((see 23, for a discussion on this)).

2. Generating logarithmic or percentage returns, i.e., 1st order differencing, is a high-pass filter (24). In this respect, all return sequences will contain amplified noise. Consequently, any interesting and possibly non-stochastic structures may be concealed and/or distorted. The importance of this becomes even greater if we take into account point (1) above.

In the following pages, we investigate further the issue of compass rose formations in stocks from the UK market. We analyze the daily closing prices of stocks in the FTSE ALL SHARE and especially the FTSE 100 index, spanning the period 01/01/1970 to 5/30/2003 (a maximum of 8717 observations). A total of 53 FTSE100 stocks were available with a full (homogeneous) range of prices for the above time-span. Remarkably, all 53 high-capitalization company prices and corresponding returns revealed the patterns we observe and report in this paper (some more intensively and clearly than others).2

3 Surrogate Data Analysis and Waveshrink

Following (9; 25) (see also (26; 27)), we investigated the possibility of the observed structures of the compass rose being a “one-off” situation. The basic purpose of the SDA procedure is to provide a framework that will allow us to deny the null hypothesis that the data are generated by a linear stochastic system. It basically comprises of two steps (see (28; 27) for an extensive overview):

2Although (2) use percentage returns, we concentrate on continuously compounding return sequences (logarithmic returns) and observe the same patterns.
• The production of data sets from a model which captures deliberately only certain “linear” properties of the original sequence. These sets are called “surrogate data”.

• The rejection of the null hypothesis H_0 according to a calculation of a discriminating statistic. This will suggest that the original data is very unlikely to have been generated by a process consistent with the null hypothesis.

If the value of the statistic calculated on the original data set is different from the sets of values obtained on the surrogate data, we have a clear indication for the rejection of the null. There are various different nulls, some more composite than others and each null is usually accompanied by its own procedure of surrogate data generation. For the purposes of this paper we followed Refs. (27; 29; 25). We thus generated phase-randomized amplitude-adjusted surrogates (termed “AAFT”) to test for the null hypothesis that the return sequences were monotonic nonlinear transformation of linearly filtered noise (which is also maintained as the “most interesting”). Such surrogates are expected to exhibit the same spectral and distributional characteristics as in the original series, however they are purely linear processes. As a discriminating statistic we chose the BDS test (8; 30; 31; 32).

We simulated AAFT surrogate data from the original returns sequences, and produced the compass roses for various stocks. An example of an AAFT surrogate set compass rose for the BP stock is presented in Fig. 3(c). We can clearly see there that both the randomly shuffled sequence (Fig. 3(b)) and the AAFT surrogates loose the compass rose structure whereas the bootstrapped sequence maintains it (Fig. 3(d)). This was an initial indication that the results of clustering and discreteness may not be manifestations of linear-random dynamics.

Following the results of the SDA analysis on the phase portraits, we chose to test for independence under an SDA framework for a subset of 53 FTSE100 stocks’ returns. We used the BDS test as a discriminating statistic, and generated the AAFT surrogate sets for each stock, testing the null at 5%, 2.5% and 1% significance levels. In tables 1 and 2 we present the results of the SDA. In table 1 we quote the results for a BDS test neighborhood size of 0.5 times the standard deviation of each returns sequence, for significance levels $\alpha = 5\%, 2.5\%$ and 1%. The results here refute clearly the null that the sequences are a monotonic nonlinear transformation of linearly filtered white noise. This is a strong indication of absence of linear dynamics and randomness and supports the premise of nonlinear deterministic complexity in the returns. The results of table 2 are also supporting this finding. There we have provided more detail, checking for neighborhood sizes of $\epsilon_1 = 0.5 \times s_x$, $\epsilon_2 = 1.0 \times s_x$, $\epsilon_3 = 1.5 \times s_x$ and $\epsilon_4 = 2.0 \times s_x$, where s_x denotes the standard deviation of each returns sequence. The level of

\footnote{For a discussion on the differences of bootstrapping and surrogate data analysis refer to (33).}
significance for table 2 is $\alpha = 5\%$. The results clearly show that the above null is strongly refuted.

Since the results of SDA where pointing towards more complex, nonlinear dynamics (possibly deterministic) we tested as a next step, the returns sequences after these have been filtered for noise reduction. For each stock returns sequence we produced a filtered version, using the Waveshrink (13) approach. We then produced AAFT surrogates and tested for $\alpha = 2.5\%$ significance level. In table 3 we produce the results for the BP stock, where the Waveshrink (34; 13) routine has been applied for a Daubechies 8 (D8) wavelet. Wavelets here are a justified choice in order to avoid the “bleaching” of the returns sequences (35), and preserve any delicate deterministic structures in the DGP. Our approach is also consistent with Refs. (36; 37; 38). Looking at the values of the BDS statistic for the original prefiltered sequence and its AAFT surrogates, as well as the p-value of the statistic for sizes of neighborhood ranging from 0.5 to 1.5 times the standard deviation, we can safely reject the null at a 5% significance level. Only for a size of neighborhood of $2 \times$ standard deviation $\epsilon_4 = 0.0035$ (which is a considerable size), we can reject the null at a level of significance of almost 70%.

Searching for qualitative evidence of deterministic dynamics and aperiodic cycles we looked at the phase portraits of the denoised sequences. For example, in Fig. 1 (b) we can clearly see the phase portrait for the BP denoised returns reveals dynamics that are similar to chaotic attractors. A detail of the core of the phase portrait in Fig. 1 (c) exhibits dynamics that are very similar to that of the Mackey-Glass attractor (39) in Fig. 1 (d). This appears to be in line with (40; 41).

4Choices of different mother wavelets produced similar results. See also Ref. (11)
Another interesting diagram that reveals the effects of stock price clustering and discreteness is depicted in Fig. 2 (a). There we have plotted the prices of BP stock against the corresponding logarithmic returns. We can clearly see patterns of correlation and anticorrelation in the same diagram. This is the first time such patterns have been revealed in financial literature and they need to be investigated further. In nonlinear science, the phase portraits (i.e., the compass rose) are usually called “delay plots” whereas the plot of a sequence of prices from a function against its first derivative are called “phase plots”. Thus the diagram in Fig. 2 (a) could be loosely termed as a phase plot. If we generate the same kind of display for the denoised sequences (in this case for the BP stock), we see clearly the cyclical but aperiodic behavior observed in the phase portraits also repeated here (Fig. 2 (b)).

The results lead us to deduce that the presence of chaotic dynamics can not be excluded. Such a statement though should also involve the calculation of certain invariant measures that characterize chaos (such as entropy or dimension based statistics). Moreover, these results should also be backed by a suitable SDA testing exercise. We retain this as a strategy for future research. It would also be interesting to observe if these smoother though irregular cyclical dynamics revealed in this paper are irrespective of the noise reduction technique (i.e., robust under different noise reduction techniques).

4 Conclusions and future research

We have investigated the dynamics of sequences of daily closing prices and the corresponding returns for stocks traded in the London Stock Exchange in the last three decades, as these are observed through the compass rose phase portraits. Our results suggest that the amount of noise inherent in the examined sequences may be covering more “interesting” dynamics. Using wavelet based noise reduction techniques we filtered the return sequences only to uncover a strong aperiodic nonlinear behavior, characteristic of many phenomena that are governed by complex deterministic dynamics. The SDA hypothesis testing framework employed here also suggests the absence of stochastic randomness and linear dynamics for both original and denoised returns sequences. Our results show that the apparently random dynamics and discreteness observed in closing price sequences, may conceal via the generation of noise in the returns, a more delicate structure and aperiodic cyclical dynamics. However, further research in needed to maintain the hypothesis of nonlinear determinism in stock price time series dynamics.
References

[1] Louis Jean Baptiste Alphonse Bachelier. *Théorie de la spéculations*. Gauthier-Villars, Paris, 1900. French Dissertation, Faculté des sciences de Paris.

[2] Timothy Falcon Crack and Olivier Ledoit. Robust Structure without Predictability: The “Compass Rose” Pattern of the Stock Market. *Journal of Finance*, 51(2):751–762, 1996.

[3] Victor Niederhoffer. Clustering of Stock Prices. *Operations Research*, 13(2):258–265, 1965.

[4] Victor Niederhoffer. A New Look at Clustering of Stock Prices. *The Journal of Business*, 39(2):309–313, 1966.

[5] M.F.M. Osborne. Periodic Structure in the Brownian Motion of Stock Prices. *Operations Research*, 10(3):345–379, 1962.

[6] Victor Niederhoffer and M.F.M. Osborne. Market Making and Reversal on the Stock Exchange. *Journal of the American Statistical Association*, 61(316):897–916, 1966.

[7] Eric. Rosenfeld. *Stochastic Processes of Common Stock Returns: An Empirical Examination*. PhD thesis, MIT Sloan School of Management, 1980.

[8] W.A Brock, W. Dechert, and J. Scheinkman. A test for independence based upon the correlation dimension. Working paper, University of Wisconsin, 1987.

[9] James Theiler, Stephen Eubank, A. Longtin, Bryan Galdrikian, and J. Doyne Farmer. Testing for nonlinearity in time series: the method of surrogate data. *Physica D: Nonlinear Phenomena*, 58(1-4):77–94, 1992.

[10] Ping Chen. A Random Walk or Color Chaos on the Stock Market? Time-Frequency Analysis of S&P Indexes. *Studies in Nonlinear Dynamics and Econometrics*, 1(2):87–103, 1996.

[11] Antonios Antoniou and Constantinos E. Vorlow. Recurrence quantification analysis of wavelet pre-filtered index returns. *Physica A*, 2004. Forthcoming.

[12] Gregory Wornell. *Signal Processing with Fractals: A Wavelet Based approach*. Prentice Hall, 1995.

[13] David L. Donoho and Iain M. Johnstone. Adapting to Unknown Smoothness via Wavelet Shrinkage. *Journal of the American Statistical Association*, 90(432):1200–1224, 1995.
[14] Walter Kramer and Ralf Runde. Chaos and the compass rose. *Economics Letters*, 54(2):113–118, 1997.

[15] An-Sing Chen. The square compass rose: the evidence from Taiwan. *Journal of Multinational Financial Management*, 7(2):127–144, 1997.

[16] George G. Szpiro. Tick size, the compass rose and market nanostructure. *Journal of Banking & Finance*, 22(12):1559–1569, 1998.

[17] Chun I. Lee, Kimberly C. Gleason, and Ike Mathur. A Comprehensive Examination of the Compass Rose Pattern in Futures Markets. *The Journal of Futures Markets*, 19(5):541–564, 1999.

[18] Kimberly C. Gleason, Chun I. Lee, and Ike Mathur. An explanation for the compass rose pattern. *Economics Letters*, 68(2):127–133, 2000.

[19] Eliza Wang, Robert Hudson, and Kevin Keasey. Tick size and the compass rose: further insights. *Economics Letters*, 68(2):119–125, 2000.

[20] Yue Fang. The compass rose and random walk tests. *Computational Statistics & Data Analysis*, 39(3):299–310, 2002.

[21] Michael D. McKenzie and Alex Frino. The tick/volatility ratio as a determinant of the compass rose: empirical evidence from decimalisation on the NYSE. *Accounting & Finance*, 43(3):331–331, 2003.

[22] David Chinhuyng Cho and Edward W. Frees. Estimating the Volatility of Discrete stock Prices. *Journal of Finance*, 43(2):451–66, 1988.

[23] C.A. Ball, W.N. Torous, and A.E. Tschoeogl. The Degree of Price Resolution: The Case of the Gold Market. *The Journal of Futures Markets*, 5(1):29–43, 1985.

[24] H.D.I. Abarbanel. *Analysis of Observed Chaotic Data*. Springer-Verlag, New York, 1995.

[25] T. Schreiber and A. Schmitz. Surrogate time series. *Physica D*, 142(3-4):346–382, 2000.

[26] Daniel T. Kaplan and Leon Glass. *Understanding nonlinear dynamics*. Textbooks in mathematical sciences. Springer-Verlag, New York, 1995.

[27] H. Kantz and T. Schreiber. *Nonlinear Time Series Analysis*. Number 7 in Cambridge Nonlinear Science series. Cambridge University Press, UK, 1997.

[28] Andreas Galka. *Topics in nonlinear time series analysis : with implications for EEG analysis*. River Edge N.J., Singapore, 2000.
[29] Th. Schreiber and A. Schmitz. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett., 77(4):635–638, 1996.

[30] William A. Brock, David A. Hsieh, and Blake LeBaron. Nonlinear dynamics, chaos, and instability: Statistical theory and economic evidence. MIT Press, 1991.

[31] William A. Brock and Ehung G. Baek. Some theory of statistical inference for nonlinear science. Review of Economic Studies, 58(4):697–716, 1991.

[32] Blake LeBaron. A fast algorithm for the bds statistic. Studies in Nonlinear Dynamics and Econometrics, 2(2):53–59, 1997.

[33] J.H. Moore. Bootstrapping, permutation testing and the method of surrogate data. Physics in Medicine and Biology, 44:L11–L12, 1999.

[34] Andrew Bruce and Hong-Ye Gao. Understanding WaveShrink: Variance and bias estimation. Biometrika, 83(4), 1996.

[35] J. Theiler and S. Eubank. Don’t bleach chaotic data. Chaos, 3:771–782, 1993.

[36] Enrico Capobianco. Statistical Analysis of Financial Volatility by Wavelet Shrinkage. Methodology and Computing in Applied Probability, 4(1):423–444, 1999.

[37] Enrico Capobianco. Wavelet Transforms for the Statistical Analysis of Returns Generating Stochastic Processes. International Journal of Theoretical and Applied Finance, 3(4):511–534, 2001.

[38] Enrico Capobianco. Empirical volatility analysis: feature detection and signal extraction with function dictionaries. Physica A, 319:495–514, 2003.

[39] M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:287–289, 1977.

[40] Catherine Kyrtsou and Michel Terraza. Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey-Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series. Computational Economics, 21(3):257–276, 2003.

[41] Catherine Kyrtsou and Michel Terraza. Stochastic Chaos or ARCH Effects in Stock Series? a Comparative Study. International Review of Financial Analysis, 11(4):407–431, 2002.

[42] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.
Table 1: Surrogate Data Analysis results on actual returns for 53 companies in the FTSE100. Discriminating statistic: BDS test. Neighbourhood size $\epsilon = 0.5 \times s_x$, where s_x = standard deviation of x. Biases and standard errors (s.e.) reported for significance levels $\alpha = 5\%$, 2.5% and 1%.

BDS Statistic	$\alpha = 5\%$	$\alpha = 2.5\%$	$\alpha = 1\%$
FTSE ALL SHARE - PRICE INDEX	27.11	-25.29	1.01
FTSE 100 - PRICE INDEX	31.9	-31.61	1.24
ALLIED DOMECQ	18.68	-18.64	1.08
AMVESCAP	32.51	-32.38	0.7
ASD BRIT FOODS	28.44	-28.44	0.96
AVIVA	22.57	-22.18	0.98
BARCLAYS	23.1	-22.29	1.06
BOC GROUP	23.19	-23.19	1.11
BOOTS GROUP	19.99	-19.55	1.27
BP	17.27	-16.95	1.13
BRIT AMERICAN TOBACCO	17.76	-17.43	1.23
BRITISH LAND	36.57	-36.36	1.27
BUNZL	25.95	-24.82	0.78
CADBURY SCHWEPPES	24.89	-24.55	1.26
DAILY MAIL 'A'	34.58	-34.10	1.19
DIAGEO	23.41	-23.33	1.11
DIXONS GP.	25.12	-24.65	0.98
EMAP	33.47	-32.82	0.9
EXEL	31.92	-30.59	1.27
FOREIGN & COLONIAL	25.76	-25.04	0.8
GKN	22.41	-22.37	0.89
GLAXOSMITKLINE	18.48	-18.05	0.94
GRANADA	31.42	-30.44	1.16
GUJ	43.46	-43.23	1.29
HANSON	23.26	-22.95	1.19
HILTON GROUP	22.41	-22.23	1.1
IMP CHM.INDS	21.56	-21.43	0.96
JOHNSON MATTHEY	28.6	-27.32	0.9
LAND SECURITIES	26.82	-26.36	0.79
LEGAL & GENERAL	24.83	-24.67	1.23
MARKS & SPENCER GROUP	22.22	-22.10	1.22
MORGAN (WM) SPMIKTS	22.36	-21.71	1.22
NEXF	23.44	-23.05	1.05
PEARSON	29.34	-28.47	1.05
PROVIDENT FINL	32.23	-31.93	1.13
PRIMAVIAL	23.3	-23.13	0.87
RECKITT BENCKISER	23.43	-22.62	1.29
REED ELSEVIER	24.67	-24.40	1.37
RENTOKIL INITIAL	29.41	-28.93	0.78
REXAM	26.26	-26.08	1.03
RIO TINTO	23.14	-22.48	0.8
ROYAL BANK OF SCOTLAND	27.18	-26.85	1.11
SAINSURY (J)	27.13	-26.78	0.92
SCHROEDERS	32.63	-32.39	1.17
SCOT & NEWCASTLE	28.46	-27.93	1.25
SHELL TRANSPORT & TRDG.	24.07	-23.36	0.96
SMITH & NEPHEW	28.28	-28.07	0.74
SMITHS GROUP	25.67	-24.30	0.99
STD.CHARtered	33.79	-32.78	0.71
TESCO	20.95	-20.58	1.12
UNILEVER (UK)	23.95	-23.70	0.81
WHITBREAD	22.32	-21.59	1.14
WOLSELEY	26.37	-25.03	1.2
WPP GROUP	34.11	-33.73	0.86
Table 2: Surrogate Data Analysis results on actual returns for 53 companies in the FTSE100. Discriminating statistic: BDS test (embedding dimension 3).

Company	BDS Statistic (95%)	Bias	Standard Error
ALLIED DOMECQ	13.75	1.02	0.99
AMVESCAP	25.6	1.11	1.11
AVIVA	18.31	1.18	1.18
BOOTS GROUP	15.77	1.11	1.11
BP	12.89	1.08	1.08
BRITISH AMERICAN TOBACCO	14.28	1.06	1.06
BRITISH LAND	28.42	1.03	1.03
DIAGEO	18.05	1.12	1.12
DIXONS GP.	20.6	1.05	1.05
EMAP	27.63	1.02	1.02
EXEL	25.56	1.08	1.08
FOREIGN & COLONIAL	20.47	1.06	1.06
GKN	17.02	1.04	1.04
GLAXOSMITKLINE	14.12	1.11	1.11
GRANADA	24.34	1.06	1.06
GUS	29.9	1.02	1.02
HANSON	19.56	1.11	1.11
HILTON GROUP	17.77	1.01	1.01
IMP CHM INDS.	17.11	1.03	1.03
JOHNSON MATTHEY	22.63	1.07	1.07
LAND SECURITIES	21.54	1.03	1.03
LEGAL & GENERAL	19.17	1.1	1.11
MARKS & SPENCER GROUP	17.69	1.09	1.09
MORRISON (WM) SIMRTS.	17.14	1.08	1.08
NEXT	17.35	1.1	1.11
PEARMON	23.95	1.04	1.04
PROVIDENT FINL	23.8	1.03	1.03
PRUDENTIAL	18.21	1.1	1.11
RECKITT BENCISER	19.09	1.06	1.06
REED ELSEVIER	19.57	1.03	1.03
RENTOLK INITIAL	23.14	1.1	1.11
REXAM	20.18	1.02	1.02
RIO TINTO	17.96	1.06	1.06
ROYAL BANK OF SCOTLAND	21.44	1.1	1.11
SAINSURB (J)	21.44	1.06	1.06
SCHRODERS	25.54	1.06	1.06
SCOT & NEWCASTLE	21.71	1.1	1.11
SHELL TRANSPORT & TRDG.	19.4	0.91	0.91
SMITH & NEPHEW	22.05	1.12	1.12
SMITHS GROUP	20.72	1.09	1.09
STD CHARTERED	26.61	1.17	1.17
TESCO	16.39	1.22	1.22
TOMKINS	21.92	1.05	1.05
UNILEVER (UK)	19.18	1.02	1.02
WHITBREAD	16.91	0.94	0.94
WOLSELEY	20.51	0.88	0.88
WPP GROUP	37.81	1.34	1.34
Table 3: Surrogate Data Analysis results on D8 pre-filtered BP returns. Discriminating statistic: BDS test (embedding dimension 2). Neighbourhood size $\epsilon_1 = 0.5 \times s_x$, $\epsilon_2 = 1.0 \times s_x$, $\epsilon_3 = 1.5 \times s_x$ and $\epsilon_4 = 2.0 \times s_x$, where $s_x = \text{standard} \ \text{deviation of } x$.

Neighbourhood Size	$\epsilon_1 = 0.0004$	$\epsilon_1 = 0.0017$	$\epsilon_2 = 0.0026$	$\epsilon_4 = 0.0035$
1	922.89	444.06	316.55	280.90
2	837.02	417.54	300.76	266.65
3	934.51	446.17	317.84	281.37
4	933.59	446.77	318.31	281.97
5	880.90	430.70	308.58	273.29
6	936.90	446.80	318.40	281.44
7	889.16	432.69	309.08	272.54
8	928.31	444.19	316.63	279.94
9	916.11	441.64	316.03	280.41
10	881.64	431.72	308.36	273.35
11	916.71	441.76	315.27	279.04
12	932.64	446.76	318.92	282.99
13	832.50	417.22	300.04	266.62
14	932.27	446.08	318.41	282.52
15	925.76	444.06	317.08	280.87
16	941.02	447.37	318.04	279.56
17	913.54	440.37	314.19	278.49
18	888.79	433.23	309.91	274.35
19	935.24	446.81	318.27	281.28
20	831.79	416.32	299.63	265.58
21	799.68	406.98	292.95	259.33
22	832.68	416.32	294.47	264.23
23	865.91	425.52	305.02	269.74
24	884.16	432.43	310.04	275.97
25	882.36	431.60	309.22	274.49
26	872.69	427.79	306.57	271.06
27	903.62	437.21	312.30	276.44
28	943.29	449.77	320.33	284.10
29	927.47	444.60	317.18	280.81
30	897.28	435.32	310.77	274.88
31	931.34	446.29	318.95	283.01
32	892.41	434.36	311.11	276.10
33	921.26	441.78	315.33	277.76
34	882.30	432.09	309.36	274.94
35	938.17	448.33	319.22	282.41
36	935.55	447.50	318.72	282.32
37	809.99	409.72	295.84	262.73
38	919.59	442.14	315.87	279.80
39	885.79	432.02	309.67	274.05
40	877.49	430.08	308.29	273.56

Original | 1793.68 | 567.17 | 337.70 | 273.59 |
Significance | 23.07 | 11.43 | 3.61 | 0.40 |
p-value | 0.00 | 0.00 | 0.00 | 0.69 |
Figure 1: The BP stock returns compass rose (a), details of the denoised BP returns phase portraits (b,c) and the Mackey-Glass attractor (d).
Figure 2: Phase diagrams of the original (a) and denoised (b) BP prices-returns.
Figure 3: Details of compass roses of the original (a), randomly shuffled (b), AAFT surrogate (c) and bootstrapped (d) BP returns sequences.