Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Etoposide-based therapy for severe forms of COVID-19

Kamel Hamizia,b, Souhila Aouidane, Ghania Belaalouia,c

a Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA), Faculty of Medicine, Batna 2 University, Batna, Algeria
b Radiotherapy Service, Anti-Cancer Center of Batna, Batna, Algeria
c Laboratory of Acquired and Constitutional Genetic Diseases (MAGECA), Faculty of Medicine, Batna 2 University, Batna, Algeria

ARTICLE INFO

Keywords:
COVID-19
Haemophagocytic lymphohistiocytosis
HLH
Etoposide

ABSTRACT

The new coronavirus infection COVID-19 has quickly become a global health emergency. Mortality is principally due to severe Acute Respiratory Distress Syndrome (ARDS) which relays only on supportive treatment. Numerous pathological, clinical and laboratory findings rise the similarity between moderate to severe COVID-19 and haemophagocytic lymphohistiocytosis (HLH). Etoposide-based protocol including dexamethasone is the standard of care for secondary HLH. The protocol has been successfully used in HLHs that are secondary to EBV and H1N1 infections by inducing complete response and prolonged survival. These observations prompt to consider this cytotoxic therapy in HLH associated to moderately severe to severe forms of COVID-19.

Introduction

The COVID-19 was declared first by the World Health Organization (WHO) as a public health emergency of international concern then it was characterized as a pandemic [1]. The health crisis has led to another deep and global socio-economic crisis. This rises the need to urgently find a treatment in order to reduce the length of stay in hospitals and intensive care units and the number of deaths. Since vaccines are still at least 12–18 months away, the focus is on drug development by exploring the available therapeutic possibilities.

Severe cases are the most challenging as they may be complicated by a severe Acute Respiratory Distress Syndrome (ARDS) [2]. The current management of ARDS is only supportive [3]. But there are many ongoing clinical trials testing potential antiviral drugs that have been used against Betacoronaviruses associated with previous epidemics of SARS-CoV and MERS-CoV (HIV drugs or Ebola frizzled drug) as well as promising malaria drugs chloroquine and hydroxychloroquine.

COVID-19 and haemophagocytic lymphohistiocytosis (HLH)

The development of ARDS in COVID-19 is associated to the upregulation of many pro-inflammatory cytokines and chemokines: interleukin (IL)-2, IL-7, granulocyte colony stimulating factor, interferon-γ (IFN-γ), inducible protein 10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumour necrosis factor-α (TNF-α) [4]. This up-regulation is the main characteristic of Cytokines Storm Syndromes (CSS). The CSSs are associated with hemophagocytic lymphohistiocytosis (HLH) which can be primary or familial (pHLH) or secondary, acquired or reactive (sHLH) [5]. The sHLH, occurring frequently after an infection, are life-threatening syndromes of extreme immune activation leading to a multiorgan failure and a severe hypercytokinaemia [6]. The revised criteria for HLH diagnosis include fever, splenomegaly, bicytopenia, hypertriglyceridaemia or hypofibrinogenaemia (or both), haemophagocytosis, ferritin ≥500 µg/L, low NK cell activity, and soluble IL-2 receptor ≥2400 U/mL). Five of the eight criteria in total are needed to make a diagnosis of HLH (Table 1) [7]. It is noteworthy that many of these criteria were described as predictors of COVID-19 mortality [7–9]. Moreover, pathologic examinations of a COVID-19 patient’s lung revealed patchy inflammatory cellular infiltration and multinucleated giant cells [10]. The latter cells may be haemophagocytes.

Even though the pathophysiology of HLH secondary to an infection is still largely unclear, it is presumably similar to the one of pHLH [5]. In immunocompetent individuals, intracellular pathogens trigger a T-helper cell 1 (Th1)-type immune response with a release of pro-inflammatory cytokines that activate histiocytes (macrophages and dendritic cells), NK cells and cytotoxic T-cells (CTLs). These cells continue to reciprocally stimulate each other through receptor interaction and by cytokines. In sHLH, there is a dysfunction of CTLs and/or NK cells leading to the persistence of the antigenic insult which maintains cytokines release [11]. Interestingly, data from China suggests the viral load is higher in patients with more severe disease [12]. This may be due the persistence of the viral insult caused by cytotoxic cells...
The expected therapeutic mechanism of etoposide

Etoposide is a topoisomerase II inhibitor. It has been shown, in a murine model of HLH, that its therapeutic mechanism involved potent deletion of activated T cells and efficient suppression of inflammatory cytokine production. This was a remarkably selective effect; no direct anti-inflammatory effect on macrophages or dendritic cells was observed and no deletion of quiescent naive or memory T cells [22]. This effect does not seem to hamper antiviral response in human since the combined therapy with dexamethasone increased the survival of patients with EBV associated HLH [16–18].

How could the treatment be tested?

The HLH Steering Committee of the Histiocyte Society recommends the HLH-94 protocol as standard of care for infection-Associated HLH [15]. The suggested therapy for patients with viral infections and severe sHLH is the use of the combination of etoposide and dexamethasone for eight weeks. Age-adjusted doses of Etoposide are administered once a week with weekly decisions on whether to continue etoposide treatment or not, following the clinical and laboratory response of the patient. Dexamethasone is administered daily starting with 10 mg/m² during the first week then the dose will half decrease every week. It is important to keep antivirals and to provide supportive care: broad-spectrum antibiotics, antimycotic and gastric protection [19].

The authors submitted the present protocol to the Ministry of Population Health and Hospital Reform in their region and are waiting for its eventual adoption. Alternatively, we think that WHO may consider this protocol in the ongoing clinical trials on COVID-19 treatment.

Contributors

K H and S A considered HLH treatment. G B supported this idea and developed it further. G B wrote the manuscript and the final version was approved by all the authors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

References

[1] WHO. Coronavirus disease 2019 (COVID-19) Situation Report – 67. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200327-sitrep-67-covid-19.pdf?sfvrsn=b656b8eb_4.
[2] Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020.
[3] WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. https://www.who.int/publications-detailclinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-ncov-infection-is-suspected-2020.
[4] Huang C, Wang Y, Li X, et al. Clinical features of patients with 2019 novel coronavirus in Wuhan China. Lancet 2019;395(2020):497–506.
[5] Cun RQ, Behrens EM. Cytokine storm syndrome. Springer; 2019.
[6] Yildiz H, Van Den Neste E, Defour JP, Danse E, Yonhi JC. Adult haemophagocytic lymphohistiocytosis: a review. QJM 2020.
[7] Henter JI, Horne A, Arico M, et al. HLH-2004: diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer 2007;48:124–31.
[8] Fardet L, Galicier L, Lambotte O, et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol 2016;66:2613–20.
[9] Ruan Q, Yang X, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020.
[10] Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase 2019 Novel Coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol 2020.
[11] Janka G. Hemophagocytic lymphohistiocytosis: when the immune system runs amok. Klinische Padiatrie 2009;221:278–85.
[12] Liu Y, Yan LM, Wan L, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis 2020.
[13] Beutel G, Wiesner O, Eder M, et al. Virus-associated hemophagocytic syndrome as a major contributor to death in patients with 2009 influenza A (H1N1) infection. Crit Care 2011;15:R80.
[14] Bergsten E, Horne A, Arico M, et al. Confluent treatment in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood 2017;130:2728–38.
[15] Ehl S, Antigarraga J, von Bahr Greenwood T, et al. Recommendations for the use of etoposide-based therapy and bone marrow transplantation for the treatment of...
HLH: consensus statements by the HLH steering committee of the histiocyte society. J Allergy Clin Immunol Pract 2018;6:1508–17.

[16] Imashuku S, Hibi S, Ohara T, et al. Effective control of Epstein-Barr virus-related hemophagocytic lymphohistiocytosis with immunochemotherapy. Histiocyte Society. Blood 1999;93:1869–74.

[17] Imashuku S, Kuriyama K, Sakai R, et al. Treatment of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) in young adults: a report from the HLH study center. Med Pediatr Oncol 2003;41:103–9.

[18] Imashuku S, Kuriyama K, Teramura T, et al. Requirement for etoposide in the treatment of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. J Clin Oncol 2001;19:2665–73.

[19] Henter JI, Palmkvist-Kaijser K, Holzgraefe B, Bryceson YT, Palmer K. Cytotoxic therapy for severe swine flu A/H1N1. Lancet 2010;376:2116.

[20] Aleem A, Al Amoudi S, Al-Mashhadani S, Siddiqui N. Haemophagocytic syndrome associated with hepatitis-B virus infection responding to etoposide. Clin Lab Haematol 2005;27:395–8.

[21] Trottestam H, Horne A, Arico M, et al. Chemoimmunotherapy for hemophagocytic lymphohistiocytosis: long-term results of the HLH-94 treatment protocol. Blood 2011;118:4577–84.

[22] Johnson TS, Terrell CE, Millen SH, Katz JD, Hildeman DA, Jordan MB. Etoposide selectively ablates activated T cells to control the immunoregulatory disorder hemophagocytic lymphohistiocytosis. J Immunol 2014;192:84–91.