A Maximum Edge-Weight Clique Extraction Algorithm Based on Branch-and-Bound

Satoshi Shimizu∗, Kazuaki Yamaguchi† and Sumio Masuda‡
Graduate School of Engineering, Kobe University

December 30, 2020

Abstract
The maximum edge-weight clique problem is to find a clique whose sum of edge-weight is the maximum for a given edge-weighted undirected graph. The problem is NP-hard and some branch-and-bound algorithms have been proposed. In this paper, we propose a new exact algorithm based on branch-and-bound. It assigns edge-weights to vertices and calculates upper bounds using vertex coloring. By some computational experiments, we confirmed our algorithm is faster than previous algorithms.

1 Introduction
For a simple undirected graph $G = (V, E)$, a vertex subset $C \subseteq V$ is called a clique if any pair of vertices in C are adjacent. Given a simple undirected graph $G = (V, E)$, the maximum clique problem (MCP) is to find the clique of maximum cardinality. MCP has lots of practical applications: bioinformatics [2], coding theory [10, 4], economics [3] and more. MCP is known to be NP-hard [12], and the decision version is one of the Karp’s 21 NP-complete problems [15]. Since it has theoretical importance, there have been a number of studies in decades [31].

Given a simple undirected graph $G = (V, E)$ and non-negative weight $w(\cdot, \cdot)$ for each edge, the maximum edge-weight clique problem (MEWCP) is to find the clique of maximum weight. Obviously, MEWCP is a generalization of MCP. Because of edge-weights, MEWCP has practical applications that cannot be handled by MCP: pattern recognition [19], protein side-chain packing [11, 6], market basket analysis [7], communication analysis [9] and so on.

To obtain exact solutions of MEWCP, there are two approaches in previous works. One approach is formulating MEWCP into mathematical programming

∗ss81054@gmail.com
†ky@kobe-u.ac.jp
‡masuda@kobe-u.ac.jp
and solve it by existing solvers. Formulations based on integer programming (IP) \cite{13} and mixed integer programming (MIP) \cite{24} were proposed.

The other approach is based on branch-and-bound. Branch-and-bound algorithms recursively divide subproblems into smaller subproblems to search optimal solutions. For each subproblem, it calculates upper bounds of the weight of feasible solutions and prunes unnecessary subproblems that have no possibility to improve the incumbent (current best solution). Variety of algorithms adopt different strategies in branching strategy, search strategy and pruning rule. The branching strategy is how to divide a given problem into subproblems. The search strategy is the order in which subproblems are explored. The pruning rule is how to calculate upper bounds to prune unnecessary subproblems. A survey of branch-and-bound is shown in \cite{18}. For MEWCP, CBQ proposed in \cite{14} uses quadratic relaxation to obtain upper bounds. Our previous algorithm EWCLIQUE is also based on the branch-and-bound \cite{24}. EWCLIQUE decomposes edge-weights of each subproblem into three components, and calculates an upper bound for each of them.

In this paper, we propose a new branch-and-bound algorithm MECQ for MEWCP. For each subproblem, our algorithm assigns weights of edges to vertices. To obtain upper bounds using the assigned vertex weights, our algorithm calculates vertex coloring that is a procedure to divide the vertex set into a collection of independent sets. By some computational experiments, we confirm our algorithm is faster than previous methods.

The remainder of this paper is organized as follows. Our algorithm MECQ is described in Section 2. The results of computational experiments are in Section 3. We conclude the paper in Section 4.

2 Our algorithm MECQ

The proposed algorithm MECQ is based on the branch-and-bound. Hereafter let \(P(C, S) \) be a subproblem of MEWCP, where \(C \) is a constructed clique and \(S \) is a set of candidate vertices to be added to \(C \). Note that \(C \subseteq N(v) \) must be satisfied for any element \(v \in S \), where \(N(v) \) is the set of adjacent vertices of \(v \). \(P(\emptyset, V) \) corresponds to the instance of MEWCP. In this section, we first describe pruning rules of our algorithm. Next, we show the branching strategy that divides \(P(C, S) \) into subproblems, and the search strategy to determine the order of subproblems to be solved.

2.1 Pruning Rules

First, we describe an upper bound calculation for graphs where both vertices and edges are weighted. Then, we show that an upper bound of \(P(C, S) \) can be calculated in the same way.

For a graph \(G = (V, E) \), let \(w(v) \) and \(w(u, v) \) denote the weight of vertex \(v \) and the weight of edge \((u, v) \), respectively. Hereafter we define \(w(u, v) = 0 \) for any \((u, v) \notin E \) for simplicity. Let \(G(S) \) be a subgraph of \(G \) induced by a
2.1.1 Upper bound of vertex-and-edge-weighted graph

Vertex coloring is to color vertices such that no adjacent vertices have the same color. A vertex set of each color forms an independent set. The smallest number of colors needed to color a graph G is called chromatic number $\chi(G)$. Let $\omega(G)$ be the clique number (the number of vertices in a maximum clique). Since at most one vertex can be included in a clique from each independent set, $\chi(G)$ is an upper bound of $\omega(G)$. Therefore heuristic vertex coloring is often used to obtain upper bounds for MCP \[27, 29\]. For the maximum weight clique problem (MWCP), the sum of the maximum vertex weight of each independent set is used as an upper bound \[16, 25\]. To calculate upper bounds of the MEWCP, we consider assigning edge weights to incident vertices. Let $\tau(v)$ be the index of the independent set including vertex v. Namely, $\tau(v) = i$ for all $v \in I_i$. Let $\sigma[v]$ be the total weight assigned to the vertex v as follows:

$$\sigma[v] = w(v) + \sum_{i<\tau(v)} \max\{w(u, v) \mid u \in I_i \cap N(v)\}. \quad (1)$$

An example G_{ex} of a vertex-and-edge-weighted graph is shown in Figure 1. Numbers in parentheses are the vertex weights. For G_{ex}, Figure 2 shows the
assignment of independent set indices $\tau(\cdot)$ and the weight $\sigma[\cdot]$ of equation 1. At most one vertex of $I_1 \cap N(v_5) = \{v_1, v_6\}$ can be included in a clique since I_1 is an independent set. Therefore we assign only the larger weight of edges (v_1, v_5) and (v_5, v_6) to v_5 for upper bound calculation. We can ignore smaller weights to tighten upper bounds.

The following lemma shows that an upper bound of the MEWCP can be calculated by using vertex coloring.

Lemma 1. For a clique C in a vertex-and-edge-weighted graph, the following inequality holds where $k = \max \{\tau(v) \mid v \in V\}$:

$$W(C) \leq \sum_{i=1}^{k} \max \{\sigma[v] \mid v \in I_i\}. \quad (2)$$

Proof. Since at most one vertex in I_i can be included in C, $|C \cap I_i| \leq 1$ holds. From the definition, $C \subseteq N(v)$ for all $v \in C$. Therefore following inequality is obtained:

$$W(C) = \sum_{v \in C} w(v) + \sum_{(u,v) \in E(C)} w(u,v) \quad (3)$$

$$= \sum_{v \in C} w(v) + \sum_{v \in C} \sum_{1 < \tau(v) \leq \tau} \sum_{u \in C \cap I_i} w(u,v) \quad (4)$$

$$\leq \sum_{v \in C} w(v) + \sum_{v \in C} \sum_{1 < \tau(v) \leq \tau} \max \{w(u,v) \mid u \in N(v) \cap I_i\} \quad (5)$$

$$= \sum_{v \in C} \sigma[v] \quad (6)$$

$$= \sum_{i=1}^{k} \sum_{v \in C \cap I_i} \sigma[v] \quad (7)$$

$$\leq \sum_{i=1}^{k} \max \{\sigma[v] \mid v \in I_i\} \quad (8)$$

\[\square\]

Our algorithm uses Lemma 1 to obtain upper bounds. In the example G_{ex}, the clique of maximum weight is $\{v_4, v_5, v_6\}$ and its weight is 35. Using $\sigma[\cdot]$ of Figure 2 an upper bound can be calculated by Lemma 1 as follows:

$$W(C) \leq \max \{\sigma[v_1], \sigma[v_3], \sigma[v_6]\} + \max \{\sigma[v_2], \sigma[v_4]\} + \max \{\sigma[v_5]\} \quad (9)$$

$$= 36 \quad (10)$$
2.1.2 Upper bound calculation for MEWCP

Let F be any feasible solution of a subproblem $P(C, S)$ of MEWCP. F is a union of C and a subset of S. $W(F)$ can be calculated as follows:

$$W(F) = W(C) + \sum_{u \in C} \sum_{v \in S \cap F} w(u, v) + W(S \cap F). \quad (11)$$

In the branch-and-bound, our algorithm calculates upper bounds of $W(F)$ to prune unnecessary subproblems. Since the term $W(C)$ is obviously obtained in branching steps, we have to calculate an upper bound of $\sum_{u \in C} \sum_{v \in S \cap F} w(u, v) + W(S \cap F)$.

To obtain vertex-and-edge-weighted graphs, our algorithm assigns edge-weights of $\{(u, v) \mid u \in C, v \in S \cap F\}$ to vertices $v \in S \cap F$. Let $w_p(C, v)$ be the total edge-weight assigned to $v \in S \cap F$ as follows:

$$w_p(C, v) = \sum_{u \in C} w(u, v). \quad (12)$$

Hereafter $w_p(v)$ denotes $w_p(C, v)$ when C can be obviously identified. Using $w_p(v)$ and equation (11) following equation holds:

$$W(F) = W(C) + \sum_{v \in S \cap F} w_p(v) + W(S \cap F). \quad (13)$$

Note that the assigned weight $w_p(\cdot)$ and equation (13) is originally proposed in our previous work [24].

For the vertex induced subgraph $G(S)$ of $P(C, S)$, let $G(C, S)$ be the subgraph that can be obtained by assigning the weight $w_p(v)$ to each vertex in $G(S)$. The proposed algorithm uses the vertex-and-edge-weighed graph $G(C, S)$ to calculate an upper bound of $W(F)$. Equation (13) indicates that the sum of $W(C)$ and an upper bound of clique weight in $G(C, S)$ is an upper bound of $W(F)$. Hence the proposed algorithm calculates an upper bound of $W(F)$ for $P(C, S)$ as follows:

1. Obtain the vertex-and-edge-weighted graph $G(C, S)$ using $w_p(\cdot)$ of equation (12).
2. Divide S into mutually disjoint independent sets I_1, I_2, \ldots, I_k by vertex coloring.
3. Calculate $\sigma[\cdot]$ for each vertex in $G(C, S)$ using equation (11).
4. Calculate an upper bound of $W(F)$ using Lemma (1).

2.2 Branch-and-bound

Algorithm (1) shows the main part of the proposed algorithm. The inputs are a graph $G = (V, E)$, edge-weights $w(\cdot, \cdot)$ and an initial solution C_{initial}. It searches
Algorithm 1 MECQ

INPUT: $G = (V, E)$, $w(\cdot, \cdot)$, $C_{initial}$

OUTPUT: a maximum edge-weight clique C_{max}

GLOBAL VARIABLES: C_{max}

1: $C_{max} \leftarrow C_{initial}$
2: EXPAND(\emptyset, V)
3: return C_{max}

Algorithm 2 Solving a subproblem

INPUT: a subproblem $P(C, S)$

OUTPUT: Update C_{max} to a better clique if it exists.

GLOBAL VARIABLES: C_{max}

1: procedure EXPAND(C, S)
2: if $S = \emptyset$ then
3: if $W(C) > W(C_{max})$ then
4: $C_{max} \leftarrow C$
5: end if
6: return
7: end if
8: $\Pi, upper[\cdot] \leftarrow$ CALC_SEQ_AND_UB(C, S)
9: for each p_i in order of Π do
10: if $W(C) + upper[p_i] > W(C_{max})$ then
11: EXPAND($C \cup \{p_i\}, (S \setminus \{p_j \mid j < i\}) \cap N(p_i)$)
12: end if
13: end for
14: end procedure

for solutions by the recursive procedure EXPAND. Our algorithm accepts a feasible solution $C_{initial}$ as an initial incumbent. Although our algorithm works when $C_{initial}$ is empty, given non-empty $C_{initial}$, our algorithm can use it as a lower bound and can efficiently prune subproblems in some cases.

Algorithm 2 shows the recursive procedure EXPAND to update the best solution so far. When S is empty, it is the base case that updates the optimal solution C_{max} (lines from 2 to 7). Otherwise, at line 8 the function CALC_SEQ_AND_UB returns a sequence $\Pi = [p_1, p_2, \ldots, p_{|S|}]$ of vertices in S and an array $upper[\cdot]$ of upper bounds using vertex coloring (described in 2.2.1). In the loop of lines from 9 to 13 in Algorithm 2 it recursively searches solutions at line 11. The branching strategy, pruning rules and search strategy of our algorithm are as follows:

Branching Strategy

For each p_i of Π, our algorithm generates a child subproblem $P(C \cup \{p_i\}, (S \setminus \{p_j \mid j < i\}) \cap N(p_i))$. Excepting the order of vertices in Π, this strategy is same as previous algorithm EWCLIQUE [24] and is widely
used in branch-and-bound algorithms of MCP and MWCP [22, 28, 26, 11].

Pruning Rules

For each \(P(C \cup \{p_i\}, (S \setminus \{p_j \mid j < i\}) \cap N(p_i)) \), an upper bound based on equation 2 is stored in the array \(\text{upper}[p_i] \).

Search Strategy

In order of \(\Pi = [p_1, p_2, \ldots, p_{|S|}] \), our algorithm searches \(P(C \cup \{p_i\}, (S \setminus \{p_j \mid j < i\}) \cap N(p_i)) \). Since \(\Pi = [p_1, p_2, \ldots, p_{|S|}] \) is ordered in non-increasing of \(\text{upper}[\cdot] \) (described in 2.2.1), this strategy is to find cliques of large weight early.

2.2.1 Subroutine CALC_SEQ_AND_UB

Algorithm 3 shows the function CALC_SEQ_AND_UB. It receives a subproblem \(P(C, S) \) and returns a sequence \(\Pi = [p_1, p_2, \ldots, p_{|S|}] \) of vertices in \(S \) and an array \(\text{upper}[\cdot] \) of upper bounds. The array \(\text{upper}[p_i] \) contains an upper bound of \(P(C \cup \{p_i\}, (S \setminus \{p_j \mid j < i\}) \cap N(p_i)) \). It is used at line 10 of Algorithm 2.

\(\Pi \) is ordered in non-increasing of \(\text{upper}[\cdot] \) and is used in branching strategy and search strategy.

Here we describe the detail of Algorithm 3. At line 3, it initializes \(\sigma[\cdot] \) to \(w_{\rho}(\cdot) \). Each iteration of the while loop from line 7 to 22, it increments \(k \) and constructs a maximal independent set \(I_k \), appends the vertices in \(I_k \) to \(\Pi \), and updates \(\sigma[\cdot] \). The loop terminates when all vertices are added to \(\Pi \). In the loop of lines from 11 to 18, it constructs a maximal independent set. In line 15, it appends the vertices in \(I_k \) to the head of \(\Pi \) in order of assignment to independent sets. In the maximal independent set construction, \(X \) is the set of candidate vertices to be added to the independent set. At line 12, our algorithm picks vertices from \(X \) in non-decreasing order of \(\sigma[\cdot] \). This makes \(\Pi \) non-increasing order of upper bounds. At line 20, our algorithm updates \(\sigma[\cdot] \) for vertices that are not added to any independent set and are adjacent to vertices in the constructed independent set.

3 Computational experiments

We implemented our algorithm MECQ in C++ to compare with previous algorithms. In the experiments, our algorithm received an initial solution \(C_{\text{initial}} \) calculated by phased local search (PLS) [20]. PLS is a heuristic based on local search. To avoid to be trapped into local optimums, it switches three phases that have different search policies. The one iteration of PLS consists of 50 searches of random phase, 50 searches of penalty phase and 100 searches of degree phase. Our algorithm used PLS with 10 iterations and used the best solution found by the PLS as an initial solution.
Algorithm 3 Calculate a vertex sequence and upper bounds

INPUT: a subproblem $P(C, S)$

OUTPUT: a vertex sequence Π and an array $upper[\cdot]$

1: procedure `CALC_SEQ_AND_UB(C, S)`
2:
3: for $v \in S$ do
4: \hspace{1em} $\sigma[v] \leftarrow w_{\rho}(v)$
5: end for
6: $S' \leftarrow S$ \hspace{1em} \triangleright uncolored vertex set
7: $k \leftarrow 0$ \hspace{1em} \triangleright number of independent sets
8: while $S' \neq \emptyset$ do
9: \hspace{1em} $k \leftarrow k + 1$
10: \hspace{1em} $I_k \leftarrow \emptyset$
11: \hspace{1em} $X \leftarrow S'$ \hspace{1em} \triangleright candidate vertex set to add to I_k
12: \hspace{1em} while $X \neq \emptyset$ do
13: \hspace{2em} $v \leftarrow$ a vertex of minimum $\sigma[\cdot]$ in X
14: \hspace{2em} $upper[v] \leftarrow \sigma[v] + \sum_{i<k} \max \{\sigma[u] \mid u \in I_i\}$
15: \hspace{2em} $I_k \leftarrow I_k \cup \{v\}$ \hspace{1em} $\triangleright \tau(v) = k$
16: \hspace{2em} Append v to the head of Π.
17: \hspace{2em} $X \leftarrow X \setminus N(v)$
18: \hspace{2em} $S' \leftarrow S' \setminus \{v\}$
19: end while
20: for $v \in S'$ do
21: \hspace{2em} $\sigma[v] \leftarrow \sigma[v] + \max \{w(u, v) \mid u \in N(v) \cap I_k\}$
22: end for
23: \hspace{2em} $\sigma[v] \leftarrow \sigma[v] + \max \{w(u, v) \mid u \in N(v) \cap I_k\}$
24: end procedure

3.1 Random graphs

We generated uniform random graphs. Edge-weights were uniform random integer values from 1 to 10. The compared algorithms are EWCLIQUE [24] and mathematical programming formulations of MIP proposed in [23]. We used the C++ implementation of EWCLIQUE that was used in our previous work [24]. For the formulations of MIP, we used the mathematical programming solver IBM CPLEX 12.5.

The compiler is g++ 5.4.0 with optimization option -O2. The OS is Linux 4.4.0. The CPU is Intel@CoreTM i7-6700 CPU 3.40 GHz. RAM is 16GB. Note that CPLEX is a multi-thread solver based on branch-and-cut, and our algorithm is a single-thread solver based on branch-and-bound.

Table 1 shows the CPU time for random graphs. The symbol ϵ shows that the CPU time is less than 0.01 sec. The column LB shows the weight of initial solutions given by PLS. For all conditions, our algorithm MECQ obtained optimal solutions in a shorter time than previous methods. For the random graphs, the initial solution given by PLS does not improve performance.
Table 1: CPU time for random graphs [sec]

	\(V\)	\(d\)	weight	optimal	MECCQ + PLS	MECCQ	Total	MECCQ without PLS	\([23]\)	\([24]\)
300	0.1	60.7	60.7	60.7	0.01	60.7	0.01	91.54		
350	0.1	64.8	64.8	64.8	0.01	64.8	0.01	90.96		
15000	0.1	174.7	148.3	0.73	408.56	409.29	402.75	460.90	>1000	
250	0.2	97.3	97.3	97.3	0.02	97.3	0.02	64.26		
280	0.2	102.4	102.4	102.4	0.02	102.4	0.02	119.47		
5500	0.2	254.8	212.2	0.37	319.27	319.64	319.93	440.29	>1000	
200	0.3	150.0	150.0	150.0	0.02	150.0	0.02	97.16		
250	0.3	332.8	291.1	0.26	227.70	227.96	232.99	459.05	>1000	
160	0.4	185.5	185.5	185.5	0.02	185.5	0.02	97.16		
200	0.4	224.0	224.0	224.0	0.03	224.0	0.03	57.54		
1400	0.4	444.3	406.8	0.21	293.71	293.92	295.09	758.22	>1000	
140	0.5	272.7	272.7	272.7	0.01	272.7	0.01	21.98		
170	0.5	300.6	300.6	300.6	0.03	300.6	0.03	21.98		
750	0.5	560.3	546.5	0.15	164.32	164.47	164.76	603.91	>1000	
120	0.6	399.0	399.0	399.0	0.01	399.0	0.01	18.10		
150	0.6	424.6	424.6	424.6	0.03	424.6	0.03	28.57		
450	0.6	754.2	745.9	0.03	125.43	125.46	125.59	716.48	>1000	
100	0.7	583.5	583.5	583.5	0.01	583.5	0.01	52.72		
110	0.7	607.1	607.1	607.1	0.01	607.1	0.01	31.23		
270	0.7	1049.7	1049.7	1049.7	0.02	1049.7	0.02	62.78		
80	0.8	879.0	879.0	879.0	0.01	879.0	0.01	7.28		
90	0.8	978.0	978.0	978.0	0.01	978.0	0.01	21.51		
170	0.8	1580.2	1580.2	1580.2	0.01	1580.2	0.01	485.50	>1000	
110	0.9	2666.4	2666.4	2666.4	0.02	2666.4	0.02	21.51		

Table 2 shows the number of recursive iterations of MECQ and EWCLIQUE. The value of the time [\(\mu s\)] is calculated by CPU time per iteration. The value of the iteration ratio is the ratio of iterations of MECQ and EWCLIQUE. From the result, we confirm that although the computation time of upper bounds of MECQ is longer than EWCLIQUE, the iterations of MECQ is less than our previous algorithm EWCLIQUE. The difference of CPU time can be explained by this. One reason is MECQ calculates upper bounds of equation 13 at once. EWCLIQUE calculates upper bounds in two steps and calculates the sum of two upper bounds.

3.2 DIMACS benchmarks

DIMACS is a set of benchmarks for MCP [30]. We used them as benchmarks of MEWCP by giving weights to edges in the same way as [24, 20, 13, 14]. For each edge \((v_i, v_j)\), we gave the weight \(w(v_i, v_j) = (i+j) \mod 200 + 1\).

For the DIMACS benchmarks, the results of computational experiments for previous methods are shown in [14, 13]. Hence we also compared our algorithm with the branch-and-bound algorithm CBQ [14] and mathematical programming formulations proposed in [13]. We quote the results shown in [14, 13] to our
Table 2: Iterations for random graphs

	iterations	iterations	time [µs]	iterations	time [µs]	iterations	time [µs]
MEQ	with PLS	without PLS		EWCLIQUE			
V	d						
300	0.1	312.6	357.2	ε	1835.1	ε	19.46%
350	0.1	443.4	514.5	ε	2721.0	ε	18.91%
15000	0.1	56824211.6	56842802.3	7.09	702255007.1	0.66	8.09%
250	0.2	974.5	1043.8	ε	6412.8	ε	16.28%
280	0.2	1424.7	1515.2	ε	9862.9	ε	15.36%
5500	0.2	75843118.8	75882002.3	4.22	1537843711.0	0.29	4.93%
200	0.3	1547.8	1644.2	ε	14169.8	ε	11.60%
250	0.3	3449.5	3896.9	2.57	34844.2	0.29	11.18%
2500	0.3	65558818.2	65673225.6	3.55	1824084938.8	0.25	3.60%
160	0.4	2740.6	2895.5	3.45	31813.3	0.31	9.10%
200	0.4	5062.9	5868.7	1.70	70701.9	0.28	8.30%
1400	0.4	73127999.6	73361911.2	4.02	2993314273.1	0.25	2.45%
140	0.5	4511.5	5200.1	1.92	88105.7	0.23	5.90%
170	0.5	11351.4	11829.1	2.54	224608.1	0.27	5.27%
750	0.5	37702959.2	38847817.4	4.24	2342210511.1	0.26	1.66%
120	0.6	8166.3	8804.9	2.27	208388.4	0.24	1.42%
130	0.6	11338.8	13157.6	2.28	288494.1	0.24	4.56%
450	0.6	27505132.9	2849833.9	4.34	2725764995.6	0.26	1.04%
100	0.7	12737.1	13792.0	2.90	437892.1	0.25	3.15%
110	0.7	24203.6	26032.4	2.30	950029.7	0.25	2.74%
270	0.7	13547235.5	14004499.2	4.30	2141882035.0	0.28	0.69%
80	0.8	17659.5	20083.0	2.49	617626.3	0.26	3.25%
90	0.8	37616.7	45288.8	2.65	1578193.4	0.28	2.87%
170	0.8	79478247.6	87159995.9	4.26	1510657832.0	0.32	0.58%
70	0.9	30957.5	37263.2	2.95	2355972.7	0.26	1.58%
80	0.9	102852.5	111808.0	3.33	9974393.5	0.29	1.11%
110	0.9	5009165.9	5402681.4	4.31	1951189872.0	0.30	0.28%

result tables. The CPU used in [14] is Intel® Core™ i7 2.90 GHz. The CPU used in [13] is Intel® Core™ i7 3.40 GHz.

Table 3 shows the CPU time for DIMACS. Table 4 shows the number of recursive iterations of MEQ and EWCLIQUE. Except for hamming8-2 and san200.9.1, our algorithm MEQ obtained optimal solutions in a shorter time than others. For hamming8-2 and san200.9.1, MEQ has usable performance. Only the MEQ with PLS solved all instances in the table in 1000 sec. Although the initial solutions given by PLS did not improve performance in random graphs, they worked well in DIMACS. Especially for benchmark families gen and san, it reduced a lot of computation time.
Table 3: CPU time for DIMACS (sec)

| Algorithm | $|I|$ | 100 | 400 | 200 | 500 | 1000 | 10000 |
|-----------|-----|-----|-----|-----|-----|------|-------|
| Brockhaus | 200 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 |
| hamming-2-2 | 64 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| keller4-2-2 | 171 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| MANN-2 | 45 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| gb-1000-2-2 | 1000 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| gb-1000-5-5 | 1000 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| ggen200 | 200 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| hamming-2-2 | 64 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| keller4-2-2 | 171 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| MANN-2 | 45 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| gb-1000-2-2 | 1000 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
| gb-1000-5-5 | 1000 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |

11
| graph | $|V|$ | d | MECQ with PLS iterations | MECQ without PLS iterations | time [µs] | EWCLIQUE time [µs] | EWCLIQUE ratio |
|-------|-----|-----|-------------------------|---------------------------|--------|------------------|----------|
| brock200.1 | 200 | 0.75 | 607449 | 6103600 | 3.95 | 132864116 | 0.25 | 0.46% |
| brock200.2 | 200 | 0.50 | 14073 | 19906 | 3.01 | 345371 | 0.29 | 5.76% |
| brock200.6 | 200 | 0.61 | 114928 | 130560 | 3.22 | 4282305 | 0.30 | 3.05% |
| brock200.61 | 200 | 0.66 | 287037 | 310735 | 3.77 | 1381425 | 0.35 | 2.25% |
| C125.9 | 125 | 0.90 | 4329351 | 4551897 | 5.45 | | | |
| c-fat200-1 | 200 | 0.08 | 28 | 38 | ϵ | 632 | ϵ | 6.01% |
| c-fat200-2 | 200 | 0.16 | 97 | 107 | ϵ | 6780 | ϵ | 1.58% |
| c-fat200-3 | 200 | 0.43 | 113 | 141 | ϵ | 13819445 | 0.54 | 0.00% |
| c-fat500-10 | 500 | 0.37 | 3853 | 3947 | 60.81 | 4282305 | 0.30 | 3.05% |
| c-fat500-2 | 500 | 0.07 | 92 | 126 | ϵ | 4679 | ϵ | 2.69% |
| c-fat500-5 | 500 | 0.19 | 324 | 404 | 24.75 | 1227023 | 0.35 | 0.03% |
| DSJC500 | 500 | 1.00 | 2419493 | 2494606 | 4.01 | 200152687 | 0.22 | 1.25% |
| gen200.95 | 200 | 0.90 | 13443980 | | | | |
| hamming-6-2 | 6 | 0.90 | 32 | 48 | ϵ | 896 | ϵ | 5.36% |
| hamming-6-4 | 6 | 0.35 | 265 | 265 | ϵ | 340 | ϵ | 77.94% |
| hamming-8-2 | 256 | 0.97 | 479056 | 479125 | 42.45 | 65731 | 0.29 | 5.76% |
| hamming-8-4 | 256 | 0.64 | 86587 | 86767 | 6.20 | 2475100 | 0.59 | 3.58% |
| johnson-16-2-4 | 120 | 0.76 | 309697 | 309697 | 0.58 | 1905154 | 0.13 | 16.26% |
| johnson8-2-4 | 70 | 0.77 | 79 | 79 | ϵ | 150 | ϵ | 52.67% |
| johnson8-4-4 | 70 | 0.77 | 354 | 361 | ϵ | 3953 | ϵ | 9.13% |
| keller4 | 171 | 0.65 | 61141 | 61170 | 3.32 | 2158496 | 0.32 | 1.25% |
| MANNa9 | 45 | 0.93 | 35116 | 35128 | 0.57 | 116041 | 0.17 | 30.27% |
| p-hat1000-1 | 1000 | 0.24 | 562124 | 591829 | 3.33 | 9800185 | 0.30 | 5.98% |
| p-hat1500-1 | 1500 | 0.25 | 4552944 | 4565892 | 4.30 | 106284583 | 0.31 | 4.30% |
| p-hat1300-1 | 300 | 0.24 | 3975 | 4221 | 2.37 | 50151 | 0.20 | 8.42% |
| p-hat1300-2 | 300 | 0.49 | 876123 | 1053858 | 6.60 | 13446327 | 0.32 | 0.78% |
| p-hat1500-1 | 500 | 0.25 | 27485 | 27601 | 2.90 | 408371 | 0.28 | 5.89% |
| p-hat700-1 | 700 | 0.25 | 110426 | 113403 | 3.35 | 167857 | 0.31 | 6.76% |
| san1000 | 1000 | 0.50 | 345909 | 383525 | 50.74 | | | |
| san200.7-1 | 200 | 0.70 | 6694 | 425248 | 4.59 | 38749894 | 0.14 | 0.11% |
| san200.7-2 | 200 | 0.70 | 335623 | 680897 | 5.90 | 4872878 | 0.37 | 1.40% |
| san200.9-1 | 200 | 0.90 | 1637449 | | | | |
| san200.9-2 | 200 | 0.90 | 4463399 | 25206475 | 72.79 | 30316916 | 2.75 | 1.72% |
| san400.7-1 | 400 | 0.50 | 11065 | 68967 | 9.13 | 43132933 | 1.40 | 0.16% |
| san400.7-2 | 400 | 0.70 | 547682 | 53869639 | 166.74 | | | |
| san400.7-3 | 400 | 0.70 | 2841349 | 57665379 | 64.93 | | | |
| san400.7-4 | 400 | 0.70 | 20591310 | 39873392 | 32.99 | | | |
| san200.7 | 200 | 0.70 | 1045157 | 1196523 | 3.63 | 55871960 | 0.33 | 2.14% |
4 Conclusion

We proposed a branch-and-bound algorithm MECQ for MEWCP. Our algorithm calculates upper bounds using vertex coloring. In the vertex coloring procedure, our algorithm assigns edge weights to vertices to calculate upper bounds. By some computational experiments, we confirmed our algorithm is faster than previous ones.

Although modern techniques are proposed for MCP [17, 21], they cannot be directly applied to MEWCP because of edge weights. To apply such techniques to MEWCP, modifying them is a future work.

Recently, quantum annealer is studied to solve NP-hard problems including MCP [8, 3]. Quantum annealer can solve the quadratic unconstrained binary optimization (QUBO) problem. Since quantum annealer solvers are heuristic, efficient exact solvers are required to evaluate them. QUBO can be formulated as MEWCP by the vertex-and-edge-weighted complete graphs where negative weight is allowed. Hence handling negative weight is one future work.

References

[1] Dukka Bahadur K.C, Tatsuya Akutsu, Etsuji Tomita, and Tomokazu Seki. Protein side-chain packing problem: a maximum edge-weight clique algorithmic approach. In The second conference on Asia-Pacific bioinformatics-Volume 29, pages 191–200. Australian Computer Society, Inc., 2004.

[2] Dukka Bahadur K.C, Tatsuya Akutsu, Etsuji Tomita, Tomokazu Seki, and Asao Fujiyama. Point matching under non-uniform distortions and protein side chain packing based on efficient maximum clique algorithms. Genome Informatics, 13:143–152, 2002.

[3] Zhengbing Bian, Fabian Chudak, William Macready, Aidan Roy, Roberto Sebastiani, and Stefano Varotti. Solving sat and maxsat with a quantum annealer: Foundations and a preliminary report. In International Symposium on Frontiers of Combining Systems, pages 153–171. Springer, 2017.

[4] Galina T Bogdanova, Andries E Brouwer, Stoian N Kapralov, and Patric RJ Östergård. Error-correcting codes over an alphabet of four elements. Designs, Codes and Cryptography, 23(3):333–342, 2001.

[5] Vladimir Boginski, Sergiy Butenko, and Panos M. Pardalos. Mining market data: A network approach. Computers & Operations Research, 33(11):3171 – 3184, 2006. Part Special Issue: Operations Research and Data Mining.

[6] J.B Brown, Dukka Bahadur K.C, Etsuji Tomita, and Tatsuya Akutsu. Multiple methods for protein side chain packing using maximum weight cliques. Genome Informatics, 17(1):3–12, 2006.

[7] Luís Cavique. A scalable algorithm for the market basket analysis. Journal of Retailing and Consumer Services, 14(6):400–407, 2007.
[8] Guillaume Chapuis, Hristo Djidjev, Georg Hahn, and Guillaume Rizk. Finding maximum cliques on the d-wave quantum annealer. *Journal of Signal Processing Systems*, 2018.

[9] Steven R Corman, Timothy Kuhn, Robert D McPhee, and Kevin J Dooley. Studying complex discursive systems. *Human communication research*, 28(2):157–206, 2002.

[10] Tuvi Etzion and Patric RJ Ostergard. Greedy and heuristic algorithms for codes and colorings. *IEEE Transactions on Information Theory*, 44(1):382–388, 1998.

[11] Zhiwen Fang, Chu-Min Li, and Ke Xu. An exact algorithm based on maxsat reasoning for the maximum weight clique problem. *Journal of Artificial Intelligence Research*, 55:799–833, 2016.

[12] Michael R Gary and David S Johnson. *Computers and Intractability - A Guide to the Theory of NP-completeness*. WH Freeman and Company, 1979.

[13] Luis Gouveia and Pedro Martins. Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. *EURO Journal on Computational Optimization*, 3(1):1–30, 2015.

[14] Seyedmohammadhossein Hosseinian, Dalila B.M.M. Fontes, and Sergiy Butenko. A nonconvex quadratic optimization approach to the maximum edge weight clique problem. *Journal of Global Optimization*, 72(2):219–240, Mar 2018.

[15] Richard M Karp. Reducibility among combinatorial problems. In *Complexity of computer computations*, pages 85–103. Springer, 1972.

[16] Deniss Kumlander. A new exact algorithm for the maximum-weight clique problem based on a heuristic vertex-coloring and a backtrack search. In *Proceedings of the 5th International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences*, pages 202–208. Citeseer, 2004.

[17] Chu-Min Li, Hua Jiang, and Felip Manyà. On minimization of the number of branches in branch-and-bound algorithms for the maximum clique problem. *Computers & Operations Research*, 84:1–15, 2017.

[18] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C Sewell. Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning. *Discrete Optimization*, 19:79–102, 2016.

[19] Massimiliano Pavan and Marcello Pelillo. Generalizing the motzkin-straus theorem to edge-weighted graphs, with applications to image segmentation. In *International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 485–500. Springer, 2003.
[20] Wayne Pullan. Approximating the maximum vertex/edge weighted clique using local search. *Journal of Heuristics*, 14(2):117–134, 2008.

[21] Pablo San Segundo, Alexey Nikolaev, Mikhail Batsyn, and Panos M Pardalos. Improved infra-chromatic bound for exact maximum clique search. *Informatica*, 27(2):463–487, 2016.

[22] Pablo San Segundo, Diego Rodríguez-Losada, and Agustín Jiménez. An exact bit-parallel algorithm for the maximum clique problem. *Computers & Operations Research*, 38(2):571–581, 2011.

[23] Satoshi Shimizu, Kazuaki Yamaguchi, and Sumio Masuda. Mathematical programming formulation for the maximum edge-weight clique problem. *IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences (in Japanese)*, J100-A(8):313–315, 2017.

[24] Satoshi Shimizu, Kazuaki Yamaguchi, and Sumio Masuda. A branch-and-bound based exact algorithm for the maximum edge-weight clique problem. In *5th International Conference on Computational Science/Intelligence and Applied Informatics (CSII 2018)*. IEEE, 2018.

[25] Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, and Sumio Masuda. Some improvements on Kumlander’s maximum weight clique extraction algorithm. In *International Conference on Electrical, Computer, Electronics and Communication Engineering (ICECECE 2012)*, pages 307–311, 2012.

[26] Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, and Sumio Masuda. Fast maximum weight clique extraction algorithm: Optimal tables for branch-and-bound. *Discrete Applied Mathematics*, 223:120–134, 2017.

[27] Etsuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A simple and faster branch-and-bound algorithm for finding a maximum clique. In *WALCOM: Algorithms and computation*, pages 191–203. Springer, 2010.

[28] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. *Journal of Global Optimization*, 37(1):95–111, 2007.

[29] Etsuji Tomita, Kohei Yoshida, Takuro Hatta, Atsuki Nagao, Hiro Ito, and Mitsuo Wakatsuki. A much faster branch-and-bound algorithm for finding a maximum clique. In *International Workshop on Frontiers in Algorithmics*, pages 215–226. Springer, 2016.

[30] Michael Trick, Vavsek Chvatal, Bill Cook, David Johnson, Cathy McGeoch, Bob Tarjan, et al. DIMACS implementation challenges. http://dimacs.rutgers.edu/Challenges/

[31] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique problems. *European Journal of Operational Research*, 242(3):693–709, 2015.