Identification of a mitotic recombination hotspot on chromosome III of the asexual fungus *Aspergillus niger* and its possible correlation elevated basal transcription

Peter J. I. van de Vondervoort · Sandra M. J. Langeveld · Jaap Visser · Noël N. M. E. van Peij · Herman J. Pel · Cees A. M. J. J. van den Hondel · Arthur F. J. Ram

Received: 17 April 2007 / Revised: 29 June 2007 / Accepted: 2 July 2007 / Published online: 8 August 2007
© Springer-Verlag 2007

Abstract Genetic recombination is an important tool in strain breeding in many organisms. We studied the possibilities of mitotic recombination in strain breeding of the asexual fungus *Aspergillus niger*. By identifying genes that complemented mapped auxotrophic mutations, the physical map was compared to the genetic map of chromosome III using the genome sequence. In a program to construct a chromosome III-specific marker strain by selecting mitotic crossing-over in diploids, a mitotic recombination hotspot was identified. Analysis of the mitotic recombination hotspot revealed some physical features, elevated basal transcription and a possible correlation with purine stretches.

Keywords Parasexual cycle · Physical map · Somatic cross · Genome atlas · Purine stretch · Transcription

Introduction

Aspergillus niger fermentation products have many uses in food applications, for example, as a producer of organic acids and enzymes (Archer 2000). Production processes have been thoroughly optimized by improvements in process technology (Naidu and Panda 1998; Schügerl 2000) and by strain breeding (Punt et al. 2002). Classical improved strains have been obtained using random mutagenesis, recombination and genetic modification based on transformation of protoplasts.

Because of its haploid nature, *A. niger* production strains can be improved by subsequent rounds of mutation and selection. Genetic recombination is more troublesome because *A. niger* lacks a sexual cycle. An alternative is recombination using the parasexual cycle, which first was described for *Aspergillus nidulans* (Pontecorvo et al. 1953). The parasexual cycle starts with a heterokaryon, which can be obtained via anastomosis or protoplast fusion. Using double markers, a heterokaryon can be selected and maintained on synthetic medium. A heterozygous diploid, formed by the fusion of the two different nuclei, can be selected as a prototroph. Through chemically induced loss of chromosomes, this diploid is reduced to an unstable aneuploid, finally giving rise to stable haploids. Essentially in this way complete chromosomes are exchanged between the starting strains. Markers with less than 25% recombination are believed to be located on the same chromosome. Using the parasexual cycle, 89 genetic markers were assigned to a linkage group and several marker strains were constructed (Bos et al. 1993).

Although in *A. niger* mitotic crossing-over of homologous chromosomes occurs at low frequencies, it is the only method used to determine the gene order on a linkage group. In a heterozygote diploid, all markers distal to a
cross-over become homozygous. Debets et al. (1993) used several genetic markers to select such partially homozygous diploids, thereby constructing a genetic map of A. niger which shows the gene order of 60 markers.

For the improvement of strain properties, such as enzyme production, the construction of a diploid may result in improved isolates (Khattab and Bazaraa 2005; Loera and Cordova 2003; Montiel-Gonzalez et al. 2002). By completing the parasexual cross, also recombinants with higher enzyme production than the parental strains have been isolated (Ball et al. 1978; Das 1980; Das and Ghosh 1989).

This strategy was also successfully used for genetically modified production strains (Bodie et al. 1994). Furthermore, the parasexual cycle can be used for recombination of less compatible strains via protoplast fusion. Heterokaryons that would not be formed otherwise can be obtained this way, and haploidization followed by selection has resulted in the isolation of improved strains (Rubinder et al. 2000).

Usually recombinants are selected randomly, after which their performance is compared to their parents. By first assigning mutations or disruptions to a linkage group, recombination of unlinked properties can be achieved in an orchestrated manner (Swart et al. 1990; van den Hombergh et al. 1997).

Recombination of linked mutations is troublesome because of the low rate of mitotic crossing-over in A. niger. Meiotic crossing between mitotically linked markers is much more frequent and provides a means to establish reliable genetic maps. Possibly an increased rate of mitotic crossing-over could approach the advantages of meiotic recombination. In several organisms, mitotic crossing-over has been induced using heat shock, chemicals or irradiation (Becker et al. 2003; Davies et al. 1975; Hilton et al. 1985; Jansen 1964; Klinner et al. 1984; Sermonti and Morpurgo 1959; Whelan et al. 1980). In order to examine the use of increasing mitotic recombination with effectors in A. niger, a chromosome specific tester strain would be very useful.

With the A. niger genomic sequence available (Pel et al. 2007), the genetic map can be improved by cloning a number of markers, thus linking the genetic map to the physical map. Using such linked markers, we investigated mitotic crossing-over via selection of partially homozygous diploids. For this purpose we chose to study markers on chromosome III for several reasons; many markers are available on both arms, on the left arm the cloned markers pyrA and adeB2 are present and in parasexual crosses the linked markers bioA and lysE28 were found to have recombination frequencies around 15% (Bos et al. 1988). Furthermore, the sequence information for chromosome III, located on supercontigs 12 and 15 adds up to 4.5 Mb (Pel et al. 2007), while the estimated size by CHEF gels is 4.1 Mb (Verdoes et al. 1994a). This indicates that the sequence information for this chromosome must be close to complete. Using the improved genetic map of chromosome III, we constructed specific marker strains with which we studied the occurrence and frequency of mitotic crossing-over.

Materials and methods

The A. niger strains used were derived from CBS 120.49 and were kindly provided by the Laboratory of Genetics, Wageningen University, The Netherlands. The strains used to construct diploids and new master strains are listed in Table 1.

| Strains used for the complementation of genetic markers | N945 (adeB2; nicA1) for adeB, N521 (fwnA1; adeE8) for adeE8, N658 (lysA7 argD6; nicA1) for argD and lysA, N660 (bioA1 argL2; nicA1; pabA1) for argL, N687 (fwnA1; proC3 lysA7 cysA2) for cysA and lysA, N705 (fwnA1; cnxD6; leuA1; nicA1) for cnxD, N733 (hisD4; adeE13) for adeG13, N884 (bioA1 lysE28) for bioA and lysE, N885 (bioA1 hisH8; nicB5) for hisH, N901 (ohvA1; bioB2; argI15 metB10) for bioB. All strains carry the cspa1 mutation, conferring low conidiophores and dense sporulation. |

PCR cloning and complementation of genetic markers

Open reading frames (ORFs) selected for complementation of markers were cloned by using a forward primer 200 bases 5’ of the start codon, and a reversed primer 200 bases 3’ of the stop codon. The PCR was performed on genomic DNA of A. niger CBS 513.88, using pfu-polymerase (Promega). After the last cycle of amplification, Amplitaq (Applied Biosystems) and dATP were added, incubated at 72°C and 1 μl of the PCR mix was used in the pGEMT easy cloning kit (Promega). Of twenty different clones plasmid DNA was isolated and pooled. Transformations were performed essentially as described by Kusters-van Someren et al. (1991). A mixture of 1 μg of the pooled PCR-clones...
and 5 μg of an ama1 containing plasmid (Verdoes et al. 1994b) was used for PEG-mediated transformation of 10^6 protoplasts. Transformants appearing were tested for their residual markers. The successful transformations were repeated using plasmid DNA from single clones.

Selection for mitotic crossing-over and segregation of diploids

Diploids were selected as described (Bos et al. 1989). Selection of cnxD homzygous diploids was done by growing single cell colonies of diploids on minimal medium (MM) with sodium nitrate as single nitrogen source and stab inoculation of these colonies on selective complete medium (CM) containing 150 mM KClO_4 and proper supplements for all markers present in the diploids. These diploids were analyzed by haploidization on CM plates with 0.88 mg/l dl-l-benomyl followed by replica plating of the progeny to establish their phenotype.

Microarray data

The microarray data of all ORFs examined in this study are averaged data of days 3 and 5 expression levels using GeneChips for a glucose fed-batch culture of CBS 513.88 (Pel et al. 2007). The expression levels were normalized to an average of 100.

Results

Linking the genetic map to the physical map

A first goal was to identify genes complementing known genetic auxotrophic marker genes on Chromosome III and to link the position of these genes on the physical map with the genetic map. Candidate genes for the corresponding biosynthetic routes were selected from supercontigs 12 and 15, comprising Chromosome III specific contigs (Pel et al. 2007) by using the FunCat annotation (Ruepp et al. 2004) (Table 2). A second criterion for the selection of genes was presence of their transcripts in a GenChip hybridization experiment using RNA isolated from a glucose fed-batch fermentation (Pel et al. 2007). With two of the markers, pyrA and areA, already identified (Goosen et al. 1987; Lenouvel et al. 2001), 14 remaining candidates were cloned as genomic PCR clones. Using these clones, complementation was verified for a sector-like growth, indicating that the homzygous diploids originated from independent crossover events. These diploids were analysed by haploidization on benomyl, and 14 of them appeared to have had a mitotic crossover between lysA7 and argD6, one diploid had a crossover between lysA7 and the centromere, but no crossover between argD6 and cnxD9 was found (Fig. 2). In a second recombination experiment using diploid 2 (Table 2) with cnxD6 and argD6, we found one diploid with a crossover between argD and cnxD. The other 12 selected homozy-
Homozygous cnxD6 diploids resulted from crossovers between the centromere and argD6 (Fig. 2). Of the first crossed-over diploid N933 was isolated, which was subsequently used for the construction of diploid 3.

Delimiting the recombination hotspot

Apparently, in A. niger there is a preference for mitotic crossover in the genomic region between lysA and argD compared to the region between argD and cnxD (Fig. 2). First mentioned region overlaps the region between lysA and bioA where the previously reported recombinations were found (Bos et al. 1988). To further examine the distribution of mitotic crossovers we analysed 26 homozygous cnxD6 diploids selected from diploid number 3 and 18 homozygous cnxD9 diploids selected from diploid number 4. In the first case, 25 crossovers occurred between the centromere and hisH8 and only 1 between argD6 and cnxD6. In the latter case, only 1 crossover occurred between the centromere and lysA7, 10 between lysA7 and hisH8, 2 between hisH8 and bioA1 and 5 between bioA1 and cnxD9 (Fig. 2). This clearly shows that there is a recombination hotspot in the 80 kb region between hisH and lysA.

Analysis of the recombination hotspot

Possibly the region between hisH and lysA contains genetic elements that increase crossing-over. We searched for microsatellite repeats (Majewski and Ott 2000) and polyA stretches, using the pattern search on the Biomax server

ORF name	Possible corresponding markers	Complementation found of mutation	No complementation of mutations	Position of the ORF (kb)
End of An12				2562
An12g08960	areA	areAd	lysA7	2131
An12g07690	lysA or lysE			1845
An12g03570	pyrA	pyrA6		907
An12g01280	argD or argL			354
An12g01110	cysA			319
An12g00320	adeB E or G			76
Centromere				0
An15g00350	lysA or lysE	lysA7		94
An15g00610	hisH	hisH8		174
An15g01980	bioA or bioB	bioB2	bioA1	534
An15g01990	bioA or bioB		bioA1 B2	535
An15g02000	bioA or bioB	bioA1	bioB2	539
An15g02340	argD or argL		argD6 L25	612
An15g02360	argD or argL	argD6	argL25	618
An15g05170	cysA		cysA2	1220
An15g05720	cnxD	cnxD6		1334
End of An15				1877
Furthermore, the expression profiles of all ORFs on supercontig 15 were examined, using the microarray data published by Pel et al. (2007) (Fig. 3a, b) and the Genome Atlas of supercontig 15, kindly provided by Dr. D. Ussery using previously developed tools (Skovgaard et al. 2002; Wanchanthuek et al. 2006) (Fig. 3c, d). We found a short polyA stretch and three GA stretches and at the telomeric side of the hisH gene a CT repeat. Looking at expression across supercontig 15 on a scale of 0–3,000, there is no apparent abnormality near the mitotic recombination hotspot (Fig. 3a). There is a large region from 990 to 1,240 kb where gene expression seems to be low. With the expression plotted on a scale from 0 to 100, it becomes clear that within the mitotic recombination hotspot, particularly around hisH, the lowest transcribed ORFs have a higher transcription compared to the lowest transcribed ORFs outside this region (Fig. 3b). Another feature deviating along the complete lysA–hisH region is a more negative stacking energy, indicating a more stabilized region (Skovgaard et al. 2002) and a low AT percentage. The position preference, a measure for flexibility (Baldi et al. 1996) is only slightly higher near hisH. There are a few simple repeats in the lysA–hisH region and there are multiple purine or pyrimidine stretches of minimal 10 bases ((Y)10 vs. (R)10) around hisH, coinciding with an elevated GC skew (G-C)/(G + C) and AT (A-T)/(A + T) skew. A zoom-in of the lysA–hisH region is shown in Fig. 3d.

Occurrence of purine stretches in supercontig 15

Purine stretches inside ORFs are known to block transcription via the formation of an intramolecular triple helix.

![Diagram](image_url)
(Bidichandani et al. 1998; Grabczyk and Fishman 1995) while purine stretches were also reported to occur more often in fungal genomes than could be expected from random sequences (Ussery et al. 2002). As the genome atlas shows the occurrence of purine stretches to be different in the genomic region of interest, we had a closer look at them. Inside the coding DNA located in the region between lysA and hisH, the largest purine stretches are 17 and 16 bases, respectively. Outside the coding DNA there are 6 purine stretches of 32–65 bases long, and 2.7 kb at the centromeric side of hisH, an 80 bp purine stretch containing only two pyrimidines.

Discussion

To link the genetic map to the physical map, thirteen ORFs were selected to possibly complement eleven markers. Six of those genes indeed complemented a corresponding marker, which is indicative for the high quality of the genome annotation. Six of these markers and two already cloned markers areA and pyrA, were positioned on the genetic map by Debets et al. (1993; see also Fig. 1). The position found for lysA on the right arm is not in agreement with the expected position left of the centromere. The experimental evidence for the left arm position is mainly provided by selection for mitotic crossing-over on fluororotic acid (FOA) in a diploid heterozygous for pyrA5 and lysA7 (F. Debets, personal communication). FOA is very mutagenic compared to chlorate and possibly induced additional crossovers that led to a false positioning of lysA. In our results with cnxD selected crossovers in diploids 1 and 3, we found further evidence for lysA to be located on the right arm (Fig. 2). The resulting physical map can be seen as an improved genetic map because more markers are placed in the correct physical order. The genetic distance of these markers, however, is still unclear.

A series of mitotic recombinations to combine multiple genetic markers into one single master strain proved much more difficult than expected because of the presence of a mitotic recombination hotspot in the region between lysA and hisH (Fig. 2). There are several examples of increased recombination in genomic regions, both during mitosis and meiosis. Meiotic recombination hotspots can be caused by increased double-strand breaks in defined genomic regions (Nishant and Rao 2006). In yeast, mitotic recombination in general occurs more often near the centromere (Minet et al. 1980) and a mitotic recombination hotspot is also proposed to act via double-strand breaks (Neitz and Carbon 1987), while HotI stimulates mitotic recombination in adjacent sequences (Stewart and Roeder 1989). In A. nidulans, there is a position dependent difference between meiotic recombination and mitotic recombination. Using sexual crosses, genetic distances near the centromeric region appear larger than the physical distances (Aleksenko et al. 2001; Espeso et al. 2005), while the opposite is found when using mitotic recombination (Käfer 1977). Although there seems to be a preference for mitotic crossing-over near the centromere, we conclude that the 80 kb region between lysA and hisH contains a true mitotic recombination hotspot, because most mitotic crossover events occur in that region and not in the 94 kb centromere-lysA region (Fig. 2).

The expression graphs and the genome atlas (Fig. 3) visualize some interesting features of the mitotic recombination hotspot. Over the whole lysA–hisH region there is a high basic transcription, indicating an open chromatin structure (Fig. 3b). A high AT percentage compared to the rest of the supercontig causes an increased stacking energy, which indicates a more stable helix (Ornstein et al. 1978). Around hisH, both GC-skew and AT-skew are higher, coinciding with purine stretches (Ussery et al. 2002). In some plants and fungi, an elevated GC-skew near the transcription start sites of highly transcribed genes was found (Fuji-mori et al. 2005). As mentioned before, purine stretches can have a drastic effect on transcription. The lysA–hisH region contains purine stretches outside coding DNA, whereas inside the ORFs no apparent purine stretches are found. Additionally, the region of low transcription from 990 to 1,240 kb contains very few purine stretches (Fig. 3) and is situated between the markers argD and cnxD, which show very little recombination. Ussery et al. (2002) reported that in microbial eukaryotic chromosomes, the purine tracks occur more often than would be expected from random sequences, and are localized mainly in non-coding regions. Also, a relation between mitotic recombination frequencies and transcription levels (Saxe et al. 2000; Aguilera 2002; Grewal and Elgin 2002) may be relevant in the lysA–hisH region.

All together, it is not clear whether the deviating physical properties of the DNA cause the mitotic recombination hotspot or influence the level of transcription, and if so, which of them is most important. However, the connection between noted properties could be through elevated basic transcription, causing or caused by an open chromatin structure that could lead to an increased mitotic recombination in the lysA–hisH region. Especially the presence of purine stretches outside coding DNA, and the absence of purine stretches inside coding DNA seem to correlate with basic transcription and mitotic recombination. However, we cannot exclude that the mitotic recombination hotspot could also be caused by a yet unidentified genetic element.

Acknowledgment The authors wish to thank Fons Debets for help with the recombination of cnxD and argD, Dave Ussery for making the genome atlas and Mark Arentshorst for technical assistance.
References

Aguilera A (2002) The connection between transcription and genomic instability. EMBO J 21:195–201
Alekseenko A, Nielsen ML, Clutterbuck AJ (2001) Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans. Fungal Genet Biol 32:45–54
Archer DB (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483
Baldi P, Brunak S, Chauvin Y, Krogh A (1996) Naturally occurring orotidine-5-phosphate-decarboxylase gene. Curr Genet 11:499–503
Grabczyk E, Fishman MC (1995) A long purine-pyrimidine homopolymer acts as a transcriptional diode. J Biol Chem 270:1791–1797
Grewal SI, Elgin SC (2002) Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12:178–87
Hilton C, Markie D, Corner B, Rickerek E, Poultier R (1985) Heat-shock induces chromosome loss in the yeast Candida albicans. Mol Gen Genet 200:162–168
Jansen GJO (1964) UV-induced mitotic recombination in the pabal region of Aspergillus nidulans. Genetica 35:127–131
Käfer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131
Khattab AA, Bazaraa WA (2005) Screening, mutagenesis and protoplast fusion of Aspergillus niger for the enhancement of extracellular glucose oxidase production. J Ind Microbiol Biotechnol 32:289–294
Klinner U, Samsonova IA, Böttcher F (1984) Genetic analysis of the yeast Candida maltosa by means of induced parasexual processes. Curr Microbiol 11:241–245
Kusters-van Someren MA, Harmsen JAM, Kester HCM, Visser J (1991) Structure of the Aspergillus niger pelA gene and its expression in Aspergillus niger and Aspergillus nidulans. Curr Genet 20:293–299
Lenouvel F, Fraissinet-Tachet L, van de Vondervort PJL, Visser J (2001) Isolation of UV-induced mutations in the areA nitrogen regulatory gene of Aspergillus niger, and construction of a disruption mutant. Mol Gen Genomics 266:42–47
Loera O, Cordova J (2003) Improvement of xylanase production by a parasexual cross between Aspergillus niger strains. Braz Arch Biol Technol 46:177–181
Majewski J, Ott J (2000) GT repeats are associated with recombination on human chromosome 22. Genome Res 10:1108–1114
Minet M, Grossenbacher-Gruber AM, Thuriaux P (1980) The origin of a centromere effect on mitotic recombination. Curr Genet 2:53–60
Montiel-Gonzalez AM, Fernandez FJ, Viniegra-Gonzalez G, Loera O (2002) Invertase production on solid-state fermentation by Aspergillus niger strains improved by parasexual recombination. Appl Biochem Biotechnol 102:63–70
Naidu GSN, Panda T (1998) Production of pectolytic enzymes—a review. Bioprocess Biosyst Eng 19:355–361
Neitz M, Carbon J (1987) Characterization of a centromere-linked recombination hot spot in Saccharomyces cerevisiae. Mol Cell Biol 7:3871–3879
Nishant KT, Rao MRS (2006) Molecular features of meiotic recombination hot spots. BioEssays 28:45–56
Ornstein WK, Rein R, Breen DL, MacElroy RD (1978) An optimized protocol for mutagenesis of human chromosome 22. Mol Cell Biol 7:3871–3879
Peh HD, de Winde JW, Archer DA, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornel M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijk PW, van Dijk A, Dijkhuizen L, Driessen AJM, d’Enfert C, Geysens S, Goosen C, Groot GSP, Grooth PJW, Guilleutte T, Henriass B, Herweijer M, van den Homberger JPTW, van den Houndel CAMJJ, van de Heijden RTJM, van der Kaaai RM, Kils FM, Kools HJ, Kubecb CP, Vankuyk PA, Lauber J, Lu X, van der Maarel MJEC, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olslootm H, Pal K, van Peij NNME, Ram AFJ, Rinus U, Roubos JA, Sagi CMJ, Schmol M, Sun J, Ussery D, Varga J, Verveven W, van de Vondervort PJL, Wedler H, Wistten HAB, An-Ping Zeng, van Oyen AJJ, Visser J, Hein Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513,88. Nature Biotech. doi:10.1038/nbt1282
Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Buiton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238

Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Honderd CAMJJ (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

Rubinder K, Chadha BS, Singh S, Saini HS (2000) Amylase hyper-producing haploid recombinant strains of Thermomyces lanuginosus obtained by intraspecific protoplast fusion. Can J Microbiol 46:669–673

Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Mewes HW, Rupp A (2004) The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Res 32:5539–5545

Saxe D, Datta A, Jinks-Robertson S (2000) Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol Cell Biol 20:5404–5414

Schrüger K (2000) Development of bioreaction engineering. Adv Biochem Eng Biotechnol 70:41–76

Sermonti G, Morpurgo G (1959) Action of manganous chloride on induced somatic segregation in Penicillium chrysogenum diploids. Genetics 44:437–447

Skovgaard M, Jensen LJ, Friis C, Staerfeldt HH, Worning P, Brunak S, Ussery D (2002) The atlas visualization of genomewide information. In: Wren B, Dorrell N (eds) Methods in microbiology, vol 33. Academic Press, London, pp. 49–63

Stewart SE, Roeder GS (1989) Transcription by RNA polymerase I stimulates mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 9:3464–3472

Swart K, van de Vondervoort PJJ, Witteveen CFB, Visser J (1990) Genetic localization of a series of genes affecting glucose oxidase levels in Aspergillus niger. Curr Genet 18:435–439

Ussery D, Soumpasis DM, Brunak S, Stuerfeldt HH, Worning P, Krogh H (2002) Bias of purine stretches in sequenced chromosomes. Comp Chem 26:531–541

van den Hombergh JPTW, van de Vondervoort PJJ, Fraissinet-Tachet L, Visser J (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263

Verdoes JC, Calil MR, Punt PJ, Debets F, Swart K, Stouthamer AH, van den Hondel CAMJJ (1994a) The complete karyotype of Aspergillus niger: the use of introduced electrophoretic mobility variation of chromosomes for gene assignment studies. Mol Gen Genet 244:75–80

Verdoes JC, Punt PJ, van der Berg P, Debets F, Stouthamer AH, van den Hondel CAMJJ (1994b) Characterization of an efficient gene cloning strategy for Aspergillus niger based on an autonomously replicating plasmid: cloning of the nicB gene of A. niger. Gene 146:159–165

Wanchanthuek P, Hallin PF, Gouveia-Oliveira R, Ussery D (2006) Structural features of fungal genomes. Top Cur Genet 15:47–77

Whelan WL, Partridge RM, Magee PT (1980) Heterozygosity and segregation in Candida albicans. Mol Gen Genet 180:107–113