Trends in Mycobacterium Tuberculosis and prevalence of Rifampicin Resistance in Eastern zone, Tigray Region, Northern Ethiopia

CURRENT STATUS: UNDER REVIEW

Getachew Abay Kahsu
Adigrat University

getakahsu@yahoo.com
ORCiD: https://orcid.org/0000-0002-7444-9543

Bahlibi Hailay
Adigrat General Hospital

DOI:
10.21203/rs.2.21744/v1

SUBJECT AREAS
Infectious Diseases Internal Medicine

KEYWORDS
Adigrat General Hospital, Rifampicin-resistant, Mycobacterium tuberculosis
Abstract

Background

Tuberculosis (TB) is an infectious disease usually caused by Mycobacterium tuberculosis (MTB) bacteria. The emergence of Mono or multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis (XDR-TB), poses a considerable challenge to Mycobacterium tuberculosis control programs in the worldwide; however, there has been no reliable and organized data on trends and prevalence drug resistance of Mycobacterium tuberculosis in study area; Therefore, aim of this study to determine the trends of Mycobacterium tuberculosis and prevalence of Rifampicin resistance in eastern zone, Tigray, Northern Ethiopia.

Methods

Hospital based retrospective cross-sectional study was conducted at Adigrat General Hospital from June 01 to August 30, 2019. Data was collected retrospectively from the registration books using data extraction format commence January 01, 2015, December 30, 2018. Data was entered into Epi-Info 3.1 and exported and analyzed using SPSS Version 20. The results were summarized using descriptive statistics, tables, and figures. P values < 0.05 would be considered statistically significant.

Result

A total of 5,944 Mycobacterium tuberculosis presumptive patients were included in the study. The majority of the study participants were male (58.1%). The median age of the participants was 40.0 (IQR 57, 26) years, the majority age-group was 30-44 years. The overall prevalence of Mycobacterium tuberculosis was 1446 (24.3%). Of the total confirmed cases, 132 (9.1%) were resistant to rifampicin. From total Rifampicin resistant 129 (97.7%) new cases and the rest were previously treated tuberculosis patients. Age, reason for diagnosis, site of presumptive tuberculosis, being HIV infected was found a significant association with our dependent variable; however, only Age and being HIV infected associated with rifampicin resistance.

Conclusion

In our study, the overall trends of Mycobacterium tuberculosis and prevalence of rifampicin resistance were found high and increased; therefore, maximizing early detection of drug-resistant
Mycobacterium tuberculosis and strengthening TB infection control activities and proper implementation of directly observed treatment are recommended reducing the burden of this contagious disease.

Introduction
Tuberculosis (TB) is a contagious and airborne caused by the bacillus Mycobacterium tuberculosis (MTB). It typically affects the lungs (pulmonary TB) but can affect other sites as well (extra pulmonary TB). Relatively small proportion of people infected with Mycobacterium tuberculosis will go on to develop TB disease; however, the probability of developing TB is much higher among people with immune debilitated. TB affects mostly adults in the economically productive age groups; around two-thirds of cases are estimated to occur among people aged 15–59 years [1]. About one-quarter of the world's population has latent TB, which means people have been infected with TB bacteria but are not (yet) ill with the disease and cannot transmit the disease [2].

Tuberculosis (TB) have existed for millennia and remains a major global health problem. It causes ill-health of approximately 10 million people each year and is one of the top ten causes of death worldwide. According to the Global Tuberculosis Report 2017, 10.4 million people are estimated incidence to have all forms of TB in 2016 while an estimated number of death 1.3 million people excluding deaths attributed to TB/HIV. In addition, an estimated 4.1% of these new TB cases and 19% of the previously treated cases are believed to harbor Drug resistant-TB with an estimated 240,000 deaths annually due to MDR-TB [3]. World Health Organization (WHO) estimates that 4.5 million people are co-infected with Human Immunodeficiency Virus (HIV) and TB globally [4].

Ethiopia is among the 30 High TB, HIV and multidrug resistance (MDR-TB) Burden Countries, that accounted for 80% of all estimated TB cases worldwide, with an annual estimated TB incidence of 207/100,000 populations and death rate of 33 per 100,000 populations in 2014 [5]. Among the notified TB cases in 2014, 1300 (1.6%) of new TB cases and 11.8% previously treated TB cases [3]. Besides, drug resistance (DR-TB) sentinel report in 2013 shows the MDR-TB prevalence of 2.3% among new and 17.8% among previously retreated TB cases. In the same year notified 119, 592 new TB cases and enrolled 597 drug-resistant TB cases [6]. And many studies showed the prevalence of
Mycobacterium tuberculosis with rifampicin resistance in Ethiopia ranged from 4.7-18.3%. Mutations region of 81 base pairs (bp) of rpoB gene has been found in about 96% of rifampicin (RMP) resistant M. Tuberculosis [7-8].

Ethiopia is implementing a comprehensive TB/Leprosy and TB/HIV control programs and has achieved a lot in the past decades and is on track to achieve the MDG (Millennium development goal) targets regarding TB and HIV. However, Tuberculosis (TB) still remain a major public health problem claiming the lives of thousands of Ethiopians every year [9]. The Case detection rate was very low using smear Microscopy. Now the Ethiopian government continued its commitment in the fight against TB by joining the new post-2015 Global TB Strategy called “END TB strategy” by increasing case detection & further reducing the burden of disease. To achieve the strategy Ethiopia endorsed many advanced technologies concordantly with WHO recommendations. One of the technologies is the geneXpert MTB/RIF assay. The assay detects MTB and rifampicin resistance; conferring mutations using three specific primers and five unique molecular probes. It provides results in less than two hours and has minimal bio-safety requirements and training [10].

Ethiopia is one of the high burden countries, reflected both in its TB incidence and the estimated rates of MDRTB. However, there has been no reliable and organized data on trends and prevalence rifampicin resistance of Mycobacterium tuberculosis in Ethiopia. As far as our knowledge, there are no studies conducted concerning document reviewing systematically trends in Mycobacterium tuberculosis and prevalence of rifampicin resistance using Gene expert in Adigrat area. Therefore, this study aimed to determine the trends in Mycobacterium tuberculosis and the prevalence of rifampicin resistance using Gene expert among TB-presumptive cases at Adigrat General Hospital, northern, Ethiopia.

Methods And Materials

Study Design, Area and Period

Retrospective cross-sectional study design was used to collect the secondary data from June 01-August 30, 2019 in Adigrat General Hospital. The Adigrat General Hospital is found in Tigay, northern Ethiopia and 560 miles far from capital city Addis Ababa. The Adigart General Hospital offers service
around one million people, including the catchment health facilities. It gives all service, including directly observed treatment clinic for TB patients.

Inclusion criteria

Those who had completed data in the registration book were included during the study period specified.

Exclusion criteria

Indeterminate and/or invalid GeneXpert results were excluded from the study.

Dependent variable

Mycobacterium Tuberculosis and Rifampicin resistance TB

Independent variable

Sex, residence, age, Co-infection, Previously treated, Tuberculosis treatment outcomes and year of diagnosis.

Sample size

Retrospectively all presumptive TB suspected patients from a TB registration book from January 01, 2015 to December 30, 2018 was being included.

Data collection and laboratory methods

The data were collected retrospectively from TB registration books in Adigart General Hospital at The Directly Observed Treatment, short course clinic (DOTS). Data was collected using developed checklist.

Quality of data

The quality of data was maintained by checking the completeness of necessary information, the obtained data were cross-checked and double entered and re-checked to assure the quality of data.

Statistical Analysis and interpretation

Data obtained through the checklist and laboratory test results were double entered into the Epi-info 3.1 software. Data analysis was performed using SPSS 20. Descriptive analysis, frequencies, and Figures were used to explain the findings. Chi-square analysis was used to correlate categorical variables. In all cases, the p-value less than 0.05 were considered statistically significant.
Results
A total of 5944 presumptive TB patients eligible for GeneXpert Mycobacterium Tuberculosis / rifampicin resistance assay were retrospectively included in this study. Among these the majority was male 3455 (58.1%). The median age of the participants was 40.0 (IQC-57, 26), the majority were in the age group 30–44 Years. Of the total participants 513 (8.6%) were HIV positive. Among the presumptive TB patients preponderantly by new case 5733 (96.5%). Diagnoses of Mycobacterium Tuberculosis using the GeneXpert have increased since 2015 to December 30, 2018. (Table 1)

Table-1-Socio-demographic and clinical characteristics of the study subjects in Adigrat General Hospital, Eastern Zone, Tigray, Ethiopia 2020

Variables	Frequency	Percentage
Sex		
Female	2489	41.9
Male	3455	58.1
Residence		
Urban	5121	86.2
Rural	823	13.8
Age (Years)		
=<14	236	4.0
15-29	1568	26.4
30-44	1620	27.3
45-59	1107	18.6
60-74	1039	17.5
75-89	362	6.1
>=90	12	.2
Total	5944	100.0
Reason for diagnosis		
Presumptive TB	5027	84.6
Presumptive DR TB	917	15.4
Presumptive DRTB		
New	5733	96.5
Relapse	105	1.8
Failure	87	1.5
Lost to follow-up	19	0.3
Site of presumptive TB		
Pulmonary	5819	97.9
Extra-pulmonary	125	2.1
HIV status		
Negative	4761	80.1
Positive	513	8.6
Unknown	670	11.3
Year of Diagnosis		
2015	604	10.2
2016	1479	24.9
2017	1872	31.5
2018	1989	33.5

The overall prevalence of Mycobacterium tuberculosis among all forms of presumptive TB patient was 1446/5944 (24.3%). The Mycobacterium tuberculosis positivity rate was observed in the productive age group 30-44years, in 420 (7.1%). Of the total, Mycobacterium Tuberculosis detected 1188/1446 (82.2%) & 258/1446 (17.8%) were presumptive of TB and drug resistance TB respectively. The proportion of MTB detected among Presumptive of TB and drug resistance of TB were found 1188/5027 (23.6%) & 258/917 (28.1%) respectively. MTB/HIV Co-infection was observed in 171/513 (33.3%) of the patients. From the total previously treated TB cases 60/211 (28.4%) were MTB
detected. The trends of the prevalence of Mycobacterium Tuberculosis relatively increased gradually but higher in 2018. Correlation analysis of MTB strongly associated with age, reason for diagnosis, site of sample collected and being HIV infected. (Table 2)

Table 2-Prevalence of *M. Tuberculosis* among presumptive TB patients diagnosed in Adigrat General Hospital using Gene Xpert MTB/RIF assay, 2020

Variables	M. Tuberculosis result by xpert	Total (%)	P-Value	
	Detected (%)	Not-Detected (%)		
Sex				
Female	596 (10.0)	1893 (31.9)	2489 (41.9)	0.401
Male	850 (14.3)	2605 (43.8)	3455 (58.1)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	
Residence				
Urban	1266 (21.3)	3855 (64.9)	5121 (86.2)	0.207
Rural	180 (3.0)	643 (10.8)	823 (13.8)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	
Age (Years)				
=<14	44 (0.7)	192 (3.2)	236 (3.9)	0.000
15-29	393 (6.6)	1175 (19.8)	1568 (26.4)	
30-44	420 (7.1)	1200 (20.2)	1620 (27.3)	
45-59	258 (4.3)	849 (14.3)	1107 (18.6)	
60-74	235 (3.9)	804 (13.5)	1039 (17.4)	
75-89	93 (1.6)	269 (4.5)	362 (6.1)	
>=90	3 (0.1)	9 (0.2)	12 (0.3)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	
Reason for diagnosis				
Presumptive TB	1188 (20.0)	3839 (64.6)	5027 (84.6)	0.007
Presumptive DR TB	258 (4.3)	659 (11.1)	917 (15.4)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	
Presumptive DRTB				
New	1385 (23.3)	4348 (73.1)	5733 (96.4)	0.189
Relapse	31 (0.5)	74 (1.2)	105 (1.8)	
Failure	27 (0.4)	60 (1.0)	87 (1.4)	
Lost to follow-up	3 (0.1)	16 (0.3)	19 (0.4)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	
Site of presumptive TB				
Pulmonary	1414 (23.8)	4405 (74.1)	5819 (97.9)	0.007
Extra-pulmonary	32 (0.5)	92 (1.6)	125 (2.1)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	
HIV status				
Negative	1128 (18.9)	3633 (61.1)	4761 (80.0)	0.000
Positive	171 (2.9)	342 (5.8)	513 (8.7)	
Unknown	147 (2.5)	523 (8.8)	670 (11.3)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	
Year of Diagnosis				
2015	142 (2.4)	462 (7.8)	604 (10.2)	0.011
2016	339 (5.7)	1140 (19.2)	1479 (24.9)	
2017	425 (7.2)	1447 (24.3)	1872 (31.5)	
2018	540 (9.0)	1449 (24.4)	1989 (33.4)	
Total	1446 (24.3)	4498 (75.7)	5944 (100)	

In this study a total 5944 study subject enrolled from registration book were the sample processed by GeneXpert MTB/RIF from January 01,2015 to december 30,2018, 1446/5944 (24.3%) were positive for Mycobacterium Tuberculosis, From the total confirmed all forms of presumptive TB case, 132 (9.1 %) were resistant to rifampicin, of which 29/132 (21.9 %) presumptive drug resistance of TB. The magnitude of rifampicin resistant was relatively higher in productive age groups 30-44 years. Of the total TB-HIV Co-infected patients 26/171 (15.2 %) where RIF resistance. The trends of TB and rifampicin resistant were increased from year to year, the minimum observed in 2015 and the
The sensitivity and resistance of rifampicin results showed a statistical significant difference with different age groups (p<=0.000), & HIV status (p<=0.001). (Table 3)

Table-3 Prevalence of rifampicin-resistant M. Tuberculosis in each variable among the total M. Tuberculosis cases using Gene Xpert MTB/RIF assay, in Adigrat General Hospital, 2020

Variables	Pattern of RIF				
	Sensitive N (%)	Resistant N (%)	Total N (%)	P-Value	
Sex					
Female	535 (37.0)	61 (4.2)	596 (41.2)	0.229	
Male	779 (53.9)	71 (4.9)	850 (58.8)		
Total	1314 (90.9)	132 (9.1)	1446 (100)		
Residence					
Urban	1151 (79.6)	115 (7.9)	1266 (87.5)	0.876	
Rural	163 (11.3)	17 (1.2)	180 (12.5)		
Total	1314 (90.9)	132 (9.1)	1446 (100)		
Age (Years)					
<=14	41 (2.8)	3 (0.2)	44 (3.0)	0.000	
15-29	376 (26.0)	17 (1.2)	393 (27.2)		
30-44	386 (26.7)	34 (2.4)	420 (29.1)		
45-59	225 (15.6)	33 (2.3)	258 (17.8)		
60-74	205 (11.4)	30 (6.5)	235 (16.3)		
75-89	78 (5.4)	15 (1.0)	93 (6.4)		
>=90	3 (0.2)	0	3 (0.2)		
Total	1314 (90.9)	132 (9.1)	1446 (100)		
Reason for diagnosis					
Presumptive TB	1085 (75.0)	103 (7.1)	1188 (82.1)	0.101	
Presumptive DR TB	229 (15.9)	29 (2.0)	258 (17.9)		
Total	1314 (90.9)	132 (9.1)	1446 (100)		
Presumptive DRTB					
New	1256 (86.9)	129 (8.8)	1385 (95.7)	0.229	
Relapse	30 (2.1)	1 (0.1)	31 (2.2)		
Failure	26 (1.8)	1 (0.1)	27 (1.9)		
Lost to follow-up	2 (0.1)	1 (0.1)	3 (0.2)		
Total	1314 (90.9)	132 (9.1)	1446 (100)		
Site of presumptive TB					
Pulmonary	1283 (88.7)	131 (9.0)	1414 (97.8)	0.092	
Extra-pulmonary	31 (2.2)	1 (0.1)	32 (2.2)		
Total	1314 (90.9)	132 (9.1)	1446 (100)		
HIV status					
Negative	1036 (71.7)	92 (6.4)	1128 (78.1)	0.012	
Positive	145 (10.0)	26 (1.8)	171 (11.8)		
Unknown	133 (9.2)	14 (0.9)	147 (10.1)		
Total	1314 (90.9)	132 (9.1)	1446 (100)		
Year of Diagnosis					
2015	123 (8.5)	19 (1.3)	142 (9.8)	0.303	
2016	310 (21.5)	29 (2.0)	339 (23.5)		
2017	386 (26.7)	39 (2.7)	425 (29.4)		
2018	495 (34.2)	45 (3.1)	540 (37.3)		
Total	1314 (90.9)	132 (9.1)	5944 (100)		

The trends of positivity in Mycobacterium tuberculosis and rifampicin resistance were increased from 2015 to 2018. In 2015 Mycobacterium tuberculosis were found in 142/604 (23.5 %) of whom 19/145 (13.4 %) were rifampicin resistant and in 2018 Mycobacterium tuberculosis prevalence were 540/1989 (27.1 %) of whom 45/540 (8.3%) rifampicin resistant. In general rifampicin resistant in January 2015, 2016, 2017 and till December 30, 2018 were shown 13.4 %, 8.6 %, 9.2 % & 8.3 % respectively. Figure 1

Discussion
The World Health Organization continued for search innovative technologies for the accurate and reliable laboratory diagnosis of TB to curb Mycobacterium tuberculosis and drug resistance worldwide. However, the emerging of drug-resistant forms of TB, which needs more resources to detect, to successfully treat and effectively reduce the burden is among the top challenges. Gene Xpert MTB/RIF assay is a new automated real-time Nucleic Acid Amplification Technology that overcomes many of the current operational difficulties in TB diagnosis [11].

The present study, the overall prevalence of all forms of presumptive Mycobacterium tuberculosis was 24.3%. Our finding was similar to studies conducted in the Debremarkos Hospital (23.2%) [12], Gondar Referral Hospital (24.6%) [13], India (27.6%) [4], South Africa (26%) [14] & Nigeria (22.9%) [15] and WHO report in Africa (25%) [2]. However, it was lower compared to reports in Jigjiga (65.5%) [16], Kenya (32.25%) [17] & in eastern Uttar Pradesh (32.9%) [18]. The main difference due to the fact that in our study, we included all forms of presumptive tuberculosis while other studies included identified cases of M. Tuberculosis. In contrast, our finding was higher when compared with other studies conducted in Metema and Armacho (5.7%) [6] & Felege Hiwot Referral Hospital and Debretabor Hospital (14.6%) [19], other parts of Ethiopia (4.7%-10.8%) [20–22], Nigeria (10.3%) [23] and India (2.31%) [24]. The variation might be due to the difference in study design and type & number of participant and environmental condition.

The co-infection, TB-HIV in this study was found high 171 (33.3%). This finding was supported by the study conducted in Amhara (27.7%) [25], in Ethiopia (29.4%) [26], & in Central Nigeria (36.3%) [27]. However, much higher than studies conducted in the Debremarkos referral Hospital (16.6%) [12], different studies in Ethiopia (20.3–24.2%) [13, 28–31], estimated report from WHO in Ethiopia in 2016 14% (9.6%-19%) [2], and much lower than studies conducted in the FelegeHiwot referral Hospital and Debretabor Hospital (41.9%) [19], Zambia (98.3%) [32] & South Africa (> 70%) [33]. The possible explanation for this difference could be due to the fact that HIV infected patients are one of the eligible groups recommended being tested by the Xpert and most likely they have a higher prevalence of HIV.

In this study, Mycobacterium tuberculosis common prevalent in all ages, but has seriously hit the
productive age group (30–44 years) 29.0%, of whom 34/420 (8.1%) Rifampicin resistance. The Positivity finding was in line with the study conducted in previous reports in Gonder (29.8%) [13], different studies in Ethiopia [20–22, 34], WHO reports 2017 [2] & Agaro Teaching Health Center in southwestern Ethiopia [35]. This contrasts with several studies in different part of Nigeria and Zambia [17, 23, 32], and higher in eastern Uttar Pradesh (40%) [18].

In the present study, the percentage Mycobacterium tuberculosis were significantly higher in presumptive drug resistance (27.8%) compared to presumptive TB patients (23.7%) with (P < 0.003). This finding was comparable to a study conducted in Debremarkos Referral Hospital [12], FelegeHiwot referral Hospital and Debretabor Hospital [19], in Gonder [13], & eastern Uttar Pradesh [18]. However, it's much lower than studies conducted in Debremarkos referral Hospital (38%) [12] & Zimbabwe (37.1%) [36].The discrepancies might be due to in our study we included all presumptive TB and a high number of participants.

According to our study, we found 132 (9.1%) of rifampicin resistance among confirmed TB cases on average. This is comparable with a study conducted in Debremarkos Referral Hospital (10.3%) [12], FelegeHiwot referral Hospital and Debretabor Hospital (9.3%)[19],India (10.5%) [37].In the other hand, it is higher than the studies conducted in different part of Ethiopia (2.9%-5.7%) [6, 18, 30–32], Nigeria (2.9%) [23] and Zambia (5.9%) [32].The possible explanation for these variation could be due to the fact that this study was included retrospectively four years and difference in study design .However, it lower than study conduct in Gonder 15.8% [13], other part of Ethiopia [41] and China (26.3%) [42].

Conclusion
The overall prevalence of Mycobacterium Tuberculosis and Rifampicin resistant was found high, especially HIV positive patients. Therefore, maximizing early detection of drug-resistant Mycobacterium Tuberculosis and strengthening TB infection control activities and proper implementation of Directly Observed Treatment, short course is recommended to reduce the burden of this infectious disease as well as further study is needed to detect multi drug resistance Mycobacterium Tuberculosis in the area.
List Of Abbreviations
ADU: Adigrat University; AGHL: Adigrat General Hospital Laboratory; DNA: Deoxyribonucleic Acid; DOTS: Directly Observed Treatment, short course; HIV: Human Immunodeficiency Virus; MDR TB: Multidrug Resistance Tuberculosis; RIF: Rifampicin; RNA: Ribonucleic Acid; TB: Tuberculosis; WHO: World Health Organization; XDR TB: Extensively Drug Resistant Tuberculosis

Declarations

Acknowledgements
First of all we would like to thank the research, approving and ethics committee, which was established in the medical laboratory technology department who gave us the chance to conduct this research and Adigrat General Hospital laboratory that help us by giving documented information about gene Xpert.

We also wish to express our sincere thanks and appreciation to Dr. Chernet Gebre medical director and Mr. Tedros Hadera chief executive officer of the hospital & all Adigrat Laboratory staffs for their supporting and communicated to access all documents.

Authors' contributions
GK conceived and designed the study, performed the analysis, interpreted data, and drafted the manuscript. BH assisted with the design, proposal preparation, performed analysis and interpretation of data, and critically prepared and reviewed the manuscript. All authors read and approved the submitted version of the manuscript.

Funding Statement
Not applicable.

Availability of data
The finding of this study is generated from the data collected and analyzed based on the stated methods and materials. All the data are already found in the manuscript and there are no supplementary files. The original data supporting this finding will be available at any time upon request.

Ethics approval and consent to participate
This study was reviewed and approved by research and community service Ethical Review Board (RERB) of Adigart University, College of medicine and Health Sciences and after discussion of the purpose and aim of the study permission was obtained from Adigrat General Hospital Chief executive officer and Laboratory Head to access the registration book. Written informed consent was not sought from the study participants as secondary data were used. Confidentiality of the result was also maintained anonymously and not communicated for other purposes.

Consent for publication

Not applicable

Conflicts of Interest

The authors declare that they have no competing interests.

References

1. Ramos JM, Fernández-muñoz M, Tisiano G, Fano H, Yohannes T, Gosa A, et al. iMedPub Journals Use of Xpert MTB / RIF Assay in Rural Health Facilities in Southern Ethiopia Keywords : 2017;6-9.

2. World Health Organization https://www.who.int/news-room/fact sheets/detail/tuberculosis. Oct, 2019

3. World Health Organization. resistant TB (MDR / RR-TB): Update 2017 The global TB situation (1). 2017;34. Available from: https://www.who.int/tb/areas-of-work/drug-resistant-tb/MDR_TB_2017.pdf?ua=1

4. Alvarez-Uria G, Azcona JM, Midde M, Naik PK, Reddy S, Reddy R. Rapid Diagnosis of Pulmonary and Extrapulmonary Tuberculosis in HIV-Infected Patients. Comparison of LED Fluorescent Microscopy and the GeneXpert MTB/RIF Assay in a District Hospital in India. Tuberc Res Treat [Internet]. 2012;2012:1-4. Available from: http://www.hindawi.com/journals/trt/2012/932862/
5. Mekonnen F, Tessema B, Moges F, Gelaw A, Eshetie S, Kumera G. Multidrug resistant tuberculosis: Prevalence and risk factors in the districts of Metema and west Armachiho, Northwest Ethiopia. BMC Infect Dis. 2015;15(1):2–7.

6. Ethiopian Federal Ministry of Health. Guidelines for clinical and programmatic management of TB, leprosy and TB/HIV in Ethiopia. 2012; (March): 43–6. Available from: www.medbox.org

7. Nigus DM, Lingerew WM, Beyene BA, Tamiru AA, Lemma MT, Melaku MY. Prevalence of Multi Drug Resistant Tuberculosis among Presumptive Multi Drug Resistant Tuberculosis Cases in Amhara National Regional State, Ethiopia. Mycobact Dis [Internet]. 2014;04(03):2–7. Available from: http://omicsonline.org/open-access/prevalence-of-multi-drug-resistant-tuberculosis-among-presumptive-multi-drug-resistant-tuberculosis-cases-in-amhara-national-regional-state-ethiopia-2161-1068.1000152.php?aid=26221

8. Getahun M, Ameni G, Kebede A, Yaregal Z, Hailu E, Medihn G, et al. Molecular typing and drug sensitivity testing of Mycobacterium tuberculosis isolated from a community-based survey in Ethiopia. BMC Public Health. 2015;15(1):1–7.

9. Ministries of Health / Ethiopian Public Heath Institute Implementation Federal Democratic Republic of Ethiopia Mideline for GeneXpert MTB / RIF Assay in Ethiopia. 2014;7–50. Available from: https://www.ephi.gov.et/images/pictures/Implementation Guideline

10. Democratic F, Of R, Health MOF, Edition S. Federal Democratic Republic of Ethiopia Management of Drug Resistant. 2014; (October).

11. Automated Real-time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB / RIF System. 2011;
12. Mulu W, Abera B, Yimer M, Hailu T, Ayele H, Abate D. Rifampicin-resistance pattern of Mycobacterium tuberculosis and associated factors among presumptive tuberculosis patients referred to Debre Markos Referral Hospital, Ethiopia: a cross-sectional study. BMC Res Notes. 2017;10(1):1–8.

13. Jaleta KN, Gizachew M, Gelaw B, Tesfa H, Getaneh A, Biadgo B. Rifampicin-resistant Mycobacterium tuberculosis among tuberculosis-presumptive cases at University of Gondar hospital, northwest Ethiopia. Infect Drug Resist. 2017;10:185–92.

14. Cox HS, Mbhele S, Mohess N, Whitelaw A, Muller O, Zemanay W, et al. Impact of Xpert MTB/RIF for TB Diagnosis in a Primary Care Clinic with High TB and HIV Prevalence in South Africa: A Pragmatic Randomized Trial. PLoS MED. 2014;11(11):1–12.

15. Ebuenyi POI& ID. Prevalence of rifampicin resistance by automated Genexpert rifampicin assay in patients with pulmonary tuberculosis in Yenagoa, Nigeria. Pan Afr MED J [Internet]. 2018;(29):204. Available from: doi: 10.11604/Pamj.2018.29.204.14579

16. Mesfin W., Mulualem A., Mubarek A., et al. Use of Xpert MTB/RIF for the Identification of TB and Drug Resistance among Smear-Negative and Re-Treatment Cases in Rural Areas of Ethiopia .The open microbiolgy journal.2019;13. Available from https://openmicrobiologyjournal.com, DOI: 10.2174/1874285801913010188

17. PK M, MP N, DN M. Performance of GeneXpert Assay in Detecting Pulmonary Tuberculosis and Rifampicin Resistance in Patients Attending Kitui County Hospital, Kenya. J Trop Dis [Internet]. 2017;05(04). Available from: https://www.omicsonline.org/open-access/performance-of-genexpert-assay-in-detecting-pulmonary-tuberculosisand-rifampicin-resistance-in-patients-attending-kitui-county-hos-2329-891X-1000246.php?aid=94061
18. Gautam PB, Mishra A, Kumar S. Prevalence of rifampicin resistant Mycobacterium tuberculosis and associated factors among presumptive tuberculosis patients in eastern Uttar Pradesh: a cross sectional study. 2018;5(6):2271-6.

19. Derbie A, Worku S, Mekonnen D, Mezgebu Y, Teshager A, Birhan A, et al. Xpert MTB/RIF assay for the diagnosis of Mycobacterium tuberculosis and its Rifampicin resistance at Felege Hiwot and Debre Tabor Hospitals, Northwest Ethiopia: A preliminary implementation research. Ethiopia J Heal Dev. 2016;30(2):60-5.

20. Deribew A, Negussu N, Melaku Z, Deribe K. Investigation outcomes of tuberculosis suspects in the health centers of Addis Ababa, Ethiopia. PLoS One. 2011;6(4):2-6.

21. Gebre D ML. Prevalence of smear positive pulmonary tuberculosis among patients attending Seka Health Center, Jimma, Oromia Region, Ethiopia. East Afr J Public Heal. 2010;3(7):268-73.

22. Yohanes A, Abera S, Ali S. Smear positive pulmonary tuberculosis among suspected patients attending Metehara sugar factory, hospital; eastern Ethiopia. Afr Health Sci. 2012;12(3):325–30.

23. Azuonwu O, N, I, W K. Molecular Detection of Mycobacterium tuberculosis (MTB) and Rifampicin Resistant Strain among Subjects Accessing Health Care at the Federal Medical Centre, Yenegoa, Bayelsa State; Nigeria. Transl Biomed [Internet]. 2017;08(03):1–7. Available from: http://www.transbiomedicine.com/translational-biomedicine/molecular-detection-of-mycobacterium-tuberculosis-mtb-and-rifampicin-resistant-strain-among-subjects-accessing-health-care-at-fede.php?aid=20359

24. Sharma S, Madan M, Agrawal C, Asthana A. Genotype MTBDR plus assay for molecular detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis. Indian J Pathol Microbiol [Internet]. 2014;57(3):423. Available from: http://www.ijpmonline.org/text.asp?2014/57/3/423/138738
25. Mitku AA, Dessie ZG, Muluneh EK, Workie DL. Prevalence and associated factors of TB/HIV co-infection among HIV infected patients in Amhara region, Ethiopia. Afr Health Sci [Internet]. 2016;16(2):588–95. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L611111626%5Cnhttp://dx.doi.org/10.4314/ahs.v16i2.29%5Cnhttp://findit.library.jhu.edu/resolve?sid=EMBASE&issn=16806905&id=doi:10.4314%2Fahs.v16i2.29&atitle=Prevalence+and+associated+factors

26. Ali SA, Mavundla TR, Fantu R, Awoke T. Outcomes of TB treatment in HIV co-infected TB patients in Ethiopia: a cross-sectional analytic study. BMC Infect Dis [Internet]. 2016;1–9. Available from: http://dx.doi.org/10.1186/s12879-016-1967-3

27. Gyar SD, Dauda E, Reuben CR. Prevalence of Tuberculosis in HIV/AIDS Patients in Lafia, Central Nigeria. Int J Curr Microbiol Appl Sci. 2014;3(6):831–8.

28. Ahmed A, Mekonnen D, Shiferaw AM, Belayneh F, Yenit MK. Incidence and determinants of tuberculosis infection among adult patients with HIV attending HIV care in northeast Ethiopia: a retrospective cohort study. 2018;1–14.

29. Mohammed S, Gebremariam TT. Tuberculosis among HIV-positive patients at Butajira Hospital, South-Central. 2015;6(12):1406–11.

30. Tarekegne D, Jemal M, Atanaw T, Ebabu A, Endris M, Moges F. Prevalence of human immunodeficiency virus infection in a cohort of tuberculosis patients at Metema Hospital, Northwest Ethiopia: a 3 year retrospective study. BMC Res Notes. 2016;1–6.

31. Worku S, Derbie A, Mekonnen D, Biadglegne F. Treatment outcomes of tuberculosis patients under directly observed treatment, short-course at Debre Tabor General Hospital, northwest Ethiopia: nine-year retrospective study. 2018;1–7.

32. Masenga SK, Mubila H, Hamooya BM. Rifampicin resistance in Mycobacterium tuberculosis patients using the GeneXpert at The Livingstone Central Hospital for the year 2015: A cross sectional explorative study. BMC Infect Dis. 2017;17(1):1–4.
33. Coovadia YM, Mahomed S, Pillay M, Werner L, Mlisana K. Rifampicin mono-resistance in Mycobacterium tuberculosis in KwaZulu-Natal, South Africa: A significant phenomenon in a high prevalence TB-HIV region. PLoS One. 2013;8(11):8–12.

34. Abdella K, Abdissa K, Kebede W, Abebe G. Drug resistance patterns of Mycobacterium tuberculosis complex and associated factors among treatment cases around Jimma, Southwest Ethiopia. BMC Public Health [Internet]. 2015;15(1):1–7. Available from: http://dx.doi.org/10.1186/s12889-015-1955-3

35. Hussien A. Brief Communication Smear Positive Pulmonary Tuberculosis (Ptb) Prevalence Amongst Patients In Agaro Teaching Health Center, South West Ethiopia. Ethiopian J Heal Sci. 1991;22:71–6.

36. Makamure B, Mhaka J, Makumbirofa S, Mutetwa R, Mupfumi L, Mason P et al. Microscopic-observation drug-susceptibility assay for the diagnosis of drug-resistant tuberculosis in Harare Zimbabwe. PLoS One. 2013;8(2): e55872.

37. Gupta A, Mathuria JP, Singh SK, Gulati AK, Anupurba S. Anti tubercular drug resistance in four healthcare facilities in north India. J Heal Popul Nutr. 2011;29(6):583–92.

38. Seyoum B, Demissie M, Worku A, Bekele S, Aseffa A. Prevalence and Drug Resistance Patterns of Mycobacterium tuberculosis among New Smear Positive Pulmonary Tuberculosis Patients in Eastern Ethiopia. Tuberc Res Treat [Internet]. 2014;2014:1–7. Available from: http://www.hindawi.com/journals/trt/2014/753492/

39. Mesfin EA, Beyene D, Tesfaye A, Admasu A, Addise D, Amare M, et al. Drug-resistance patterns of Mycobacterium tuberculosis strains and associated risk factors among multi drug-resistant tuberculosis suspected patients from Ethiopia. PLoS One. 2018;13(6):1–16.

40. First Ethiopian National Population Based Tuberculosis Prevalence survey. Ethiopian
Public health institute 2011; Available from:
https://www.ephi.gov.et/images/downloads/Tuberculosis%20Prevalence%20Survey.pdf

41. Mekonnen D, Admassu A, Mulu W, Amor A, Benito A, Gelaye W, et al. Multidrug-resistant and heteroresistant Mycobacterium tuberculosis and associated gene mutations in Ethiopia. Int J Infect Dis. 2015;39:34-8.

42. Yang Y, Zhou C, Shi L, Meng H, Yan H. Prevalence and characterization of drug-resistant tuberculosis in a local hospital of Northeast China. Int J Infect Dis [Internet]. 2014;22:83-6. Available from: http://dx.doi.org/10.1016/j.ijid.2013.12.015

Figures
Figure 1

Trends of Mycobacterium tuberculosis and Rifampicin resistant in Adigrat General Hospital,Tigray,Northern, Ethiopia 2020.