Climatic Rather than Edaphic Variables Determine Leaf C, N, P Stoichiometry of Deciduous *Quercus* Species

Yutong Lin (linyutong@scbg.ac.cn)
South China Botanical Garden
https://orcid.org/0000-0001-6816-8422

Yuan Lai
South China Botanical Garden

Songbo Tang
South China Botanical Garden

Zhangfen Qin
South China Botanical Garden

Jianfeng Liu
Research Institute of Forestry, Chinese Academy of Forestry

Fengfeng Kang
Beijing Forestry University

Yuanwen Kuang
South China Botanical Garden

Research Article

Keywords: Climate change, edaphic variables, latitude, leaf stoichiometry, longitude, *Quercus* species

Posted Date: November 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-900936/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
[Read Full License]
Abstract

Purpose

Leaf elemental stoichiometry is indicative of plant nutrient limitation, community composition, ecosystem function. Understanding the variations of leaf carbon (C), nitrogen (N), and phosphorus (P) stoichiometry at genus-level across large geographic regions and identifying their driving factors are important to predict species’ distribution range shifts affected by climate change.

Methods

Here, we determined the patterns of leaf concentrations ([]) and ratios (/) of C, N, P of five deciduous oaks species (Quercus) across China covering ~ 20 latitude (~21–41˚ N) and longitude (~99–119˚ E) degrees, and detected their relationships with climatic, edaphic variables.

Results

Leaf [C], [N] and N/P, C/P significantly increased, while leaf [P] and C/N decreased with the increasing latitude. Leaf stoichiometry except for leaf [C] had no significant trends along the longitude. Climatic variables, i.e. mean annual temperature, mean annual precipitation, the maximum temperature of the warmest month, temperature seasonality, aridity index, and the potential evapo-transpiration were the determinants of the geographic patterns of leaf C, N, P stoichiometry. The mean annual precipitation and the maximum temperature of the warmest month indirectly regulated leaf C/N, C/P and N/P via altering leaf [P]. Edaphic variables had non-significant effects on leaf C, N, and P stoichiometry at the broad geographic range.

Conclusions

Climatic variables have more important effects than edaphic properties on leaf C, N, P stoichiometry of the studied deciduous Quercus species, which imply the ongoing climate change will alter nutrient strategies and potentially shift the distribution range of this eurytopic species.

Introduction

Under the scenarios of climate change, the temperature and the precipitation regimes are predicted to increase and shift, respectively. Affected by climate change, some mid-latitude and semi-arid regions are projected to have ~ 1.5 to 2 times of the global warming rate in the next several decades; furthermore, most regions are projected to have more frequent and intensified precipitation extremes (IPCC 2021). The warming as well as the precipitation regime shifts have considerable effects on the cycles of carbon (C), water, and energy regionally and globally (IPCC 2021; Zeng et al. 2017), in consequence, integratively affect the vegetation activities (Gao et al. 2019), and ecosystems functions (Yuan and Chen 2015). For instance, the warming and the drought altered litter decomposition and organic matter mineralization via
changing soil physical-chemical properties and microbial activities, leading to variations of plant nutrient availability and leaf stoichiometry (Reich and Oleksyn 2004; Yuan and Chen 2015).

Leaf stoichiometry drives basic physiological and ecological processes and indicates plant nutrient status, community composition, ecosystem functions (Lü et al. 2017). Carbon, nitrogen (N), and phosphorus (P) are important elements affecting the sustainability and the balance of biogeochemical cycles in terrestrial ecosystems (Gruber and Galloway 2008). Plant N and P regulate productivity and C sequestration in terrestrial ecosystems. Both the concentrations ([]) and the ratios (/) of leaf C, N and P are closely related to the utilization, the allocation of photosynthetic products and nutrients, and to a certain extent, to the ecological strategies of plant species (Ye and Wang 2021).

The spatial variability of plant stoichiometry can be affected by multiple environmental factors either at regional or global scales. At the regional scale, plant [N] and [P] decreased, and [C] increased, with increasing mean annual temperature (MAT) across China's terrestrial biomes (Tang et al. 2018); while leaf [N] and [P] of 753 terrestrial plant species increased with decreasing MAT but leaf N/P did not show significant changes in China (Han et al. 2005). However, when much more plant species (1900) across China were taken into consideration, plant functional type exhibited the greatest effects on most leaf nutrients, and precipitation explained more variations than temperature for leaf [N] but not for leaf [P] (Han et al. 2011). At the global scale, leaf [N] and [P] increased from the tropics to the mid-latitudes and remained stable or decreased at higher latitudes, and leaf N/P increased with temperature (Reich and Oleksyn 2004).

Up to date, the main large-scale (regional and global) patterns of plant stoichiometry have mainly been explored at multispecies- or community-level, mostly based on meta-analyses of literature (Han et al. 2005, 2011; Tian et al. 2018, 2019), which highlighted the potential replacement of species along environmental gradients (Elser et al. 2009; Han et al. 2005). However, large-scale patterns of leaf stoichiometry of C, N, and P based on measurements at family- and genus-level are scarcely explored except for very few researches (Tian et al. 2019; Sun et al. 2017), which are vitally important to predict plant's physiological strategies from their evolutionary adaptation to environmental nutrient availability, although the underlying mechanisms remain unclear (Tian et al. 2019). Research considering leaf stoichiometry of C, N, P at genus-level is potential to produce detailed parameters necessary for plant physiological and ecosystem functioning predictive models in macro-ecology and biogeography (He et al., 2019; Tang et al. 2018).

Large-scale ecological sampling on plant species at genus-level helps to better understand variations on leaf stoichiometry of C, N, P and provides opportunities to investigate the impacts of climate change on species' range shift (e.g., expansion, contraction, or displacement) (Pecl et al. 2017; Rigling et al. 2013), and on the consequent alteration of forest compositions, structures and functions (Albrich et al. 2020; Wieczynski et al. 2019). Deciduous oak (Quercus, Fagaceae) is one of the eurytopic species growing from temperate to tropical regions of China (Sun et al. 2014; Zhou 1993), across which with drastic variability of climatic and edaphic variables (Liu et al. 2005). Here, we sampled the leaves of five deciduous
Quercus species from a broad geographic range (latitudinal and longitudinal gradients) across China, determined leaf [C], [N], [P], and C/N, C/P, N/P, and detected their relationships with climatic and edaphic variables. We aimed to explore the patterns of leaf stoichiometry of C, N, P at *Quercus*-level and to examine its potential linkage with climatic and edaphic variables. We hypothesized that: 1) the geographical patterns of leaf C, N, P stoichiometry of *Quercus* genus are similar to those at community-level at regional and global scales; 2) climatic variables determine the leaf patterns of C, N, P stoichiometry of the deciduous *Quercus* species, since climate governs the functional diversity and controls the geographic shifts of plants (Aleixo et al. 2019; Wieczynski et al. 2019). Specifically, we managed to identify how climatic and (or) edaphic variables influence leaf C, N, P stoichiometry of the deciduous *Quercus* species. Results have great implications for understanding the potential species’ range shift, forest composition, and community dynamic in the contexts of phytogeography and climate change.

Materials And Methods

Field sampling and trait measurement

During the mid- and late-growing seasons from July to October 2019, the leaves of five deciduous *Quercus* species (*Quercus variabilis*, *Q. aliena*, *Q. fabrei*, *Q. acutissima*, *Q. serrata*) were sampled from 22 locations covering approximately 20 latitudes (~ 21–41° N) and 20 longitudes (~ 99–119° E) across China (Figure 1). The sampled latitudinal and longitudinal gradients have a MAT and a MAP ranging from 8.2 to 23.2°C and from 767 to 1866 mm, respectively (Fick and Hijmans 2017). According to the distribution of the deciduous *Quercus* species, we sampled the oaks and ensured that the sampling sites were evenly distributed across latitude and longitude. At each sampling location, the mature and healthy leaves were collected from at least three individual trees for each species growing in natural forests. Uniformity, the individual trees with diameter at breast height larger than 5 cm and tree height above 2 m were selected. Soils at 0 - 20 cm depth below each tree were sampled at the same time. The leaf and soil samples were put in sealed plastic bags with ices and transported back laboratory within 8 hours.

In the laboratory, a sub-sample of the leaves was oven-dried to constant weight, and ground for [C], [N], and [P] measurements. Leaf [C] and [N] were determined using an elemental analyzer (Costech Analytical Technologies, Valencia, USA). Leaf [P] was determined by the molybdenum-antimony anti-colorimetric method (Dong 1997). Leaf C/N, C/P and N/P were calculated accordingly to leaf [C], [N] and [P]. Soil samples were air-dried, ground, and sieved for the measurement of pH, the concentrations of soil organic matter (SOM), soil total N (SN), soil total P (SP), and soil water content (SWC), according to the standard procedures (Liu et al. 1996). Specifically, SWC was determined by oven drying about 20 g of fresh soil at 105°C for 48 h. The soil pH was measured in a 1: 2.5 soil: water (w/v) mixture using a glass-electrode meter (FiveEasyPlusTM FE28, Mettler Toledo, Switzerland). Soil organic matter (SOM) and total nitrogen (SN) concentrations were determined by using K₂Cr₂O₇ titration method and micro-Kjeldahl method,
respectively. The concentration of soil total phosphorus (SP) was determined by the molybdenum antimony colorimetric method after digestion with \(\text{H}_2\text{SO}_4-\text{HClO}_4 \).

Climatic variables

Climatic variables including MAT, the minimum temperature of the coldest month (\(T_{\text{min}} \)), the maximum temperature of the warmest month (\(T_{\text{max}} \)), mean temperature of the driest quarter (\(T_{\text{dry}} \)), mean temperature of the wettest quarter (\(T_{\text{wet}} \)), temperature seasonality (\(TS \)), MAP, precipitation of the driest month (\(P_{\text{min}} \)), precipitation of the wettest month (\(P_{\text{max}} \)), precipitation of the coldest quarter (\(P_{\text{cold}} \)), precipitation of the warmest quarter (\(P_{\text{warm}} \)), and precipitation seasonality (\(PS \)) during 1970-2000 at the sampling locations were obtained from the WorldClim Bioclimatic variables for WorldClim version 2 (Fick and Hijmans 2017). Temperature seasonality (\(TS \)) was the difference between the annual maximum and minimum temperature, i.e. the standard deviation of annual temperature multiplied by 100. Precipitation seasonality (\(PS \)) was the coefficient of variation calculated based on monthly rainfall data. The aridity index (\(AI, \) annual) is the ratio of MAP to the potential evapo-transpiration (PET), which was obtained from the global aridity index and potential evapo-transpiration climate database v2 (https://cgiarcsi.community/category/data/) (Trabucco and Zomer 2019).

Statistical analysis

Prior to analyses, the data of leaf C, N, P stoichiometry was tested for approximate normality (Shapiro–Wilk test) and log\(_{10}\)-transformed to achieve normality when necessary. The climatic and edaphic variables were standardized via equation (A) to a mean of 0 and standard deviation of 1 to reduce the magnitude and multicollinearity (Du et al 2020).

\[
\text{Standardized value} = \frac{\text{Original value} - \text{mean value}}{\text{Standard deviation}} \tag{A}
\]

To eliminate the interference of species on the relationships between leaf traits and latitude and longitude, general linear-mixed effect models (GLMEMs) were employed with species as the random effects (Crawley, 2012). We used step and lmer function in lmerTest R package to establish best-fit models based on AICc of each model to find out which and how environmental factors control the geographical patterns of leaf C, N, and P stoichiometry. We selected the first five environmental factors that significantly affected leaf C, N, P stoichiometry to calculate their relative importance through relaimpo R package (Chevan and Sutherland 1991). In addition, the relationships between the most important factors and leaf C, N, P stoichiometry were analyzed by general linear models (GLMs). The correlations among leaf stoichiometry were estimated by idaFast function in R package pcalg (Kalisch et al. 2012). Finally, the structural equation model (SEM) was utilized to explore the pathway of environmental factors that influence leaf stoichiometry (Gerlach et al. 1979). Based on the goodness-of-fit criteria, including the probability level (\(P \)), comparative fit index (CFI), the ratio of \(\chi^2 \) to degrees of freedom (\(\chi^2 / df \)), and root mean squared error of approximation (RMSEA), we selected the model when \(P > 0.05, \chi^2 / df \leq 2, \text{CFI} \geq 0.98, \) and RMSEA having the lowest value (Schermelleh-Engel et al. 2003). The
significant pathway coefficients were determined using 95% bootstrap confidence intervals. The following three potential pathways were considered in a hypothesis-oriented model: 1) climatic or edaphic variables will primarily influence leaf [C], [N] or [P]; 2) leaf C/N, C/P and N/P that are controlled by leaf [C], [N] or [P] might relate directly to climatic or edaphic variables; 3) there are potential pathways among these leaf stoichiometric traits. All statistical analyses were performed using the R v.3.6.3 software (R Core Team 2019), except for SEMs, by IBM SPSS Amos 24 (SPSS Inc., Chicago, IL, USA). Significance was set at $P < 0.05$.

Results

Geographic patterns of leaf C, N, P stoichiometry

The mean values of leaf [C], [N], [P], C/N, C/P, and N/P of the studied deciduous *Quercus* were 474.8, 17.3 and 1.13 mg g$^{-1}$, and 28.9, 438.7, 15.9, respectively (Table 1). The patterns of all leaf stoichiometric traits of the studied deciduous oaks varied significantly as indicated by the coefficient of variation (Table 1). Specifically, leaf [C], [N], C/P, and N/P significantly decreased but leaf [P] and C/N increased with latitude ($P < 0.01$), however, only leaf [C] decreased significantly with increasing longitude ($P < 0.01$) (Figure 2).

The deciduous *Quercus* species in this study	1,900 plant species in China (Han et al 2011)	1,280 plant species across globe (Reich and Oleksyn 2004)				
Mean	SE	Minimum	Maximum	CV	Mean	Mean
-------	------	---------	----------	----	------	------
[C]	474.8	1.3	416.4	519	4.11	-
[N]	17.3	0.3	9.6	29.4	23.3	22.3
[P]	1.13	0.02	0.73	1.87	21.22	1.68
C/N	28.9	0.4	16.7	44.9	21.46	-
C/P	438.7	6.2	257.4	676.3	21.42	-
N/P	15.9	0.3	8.1	32.5	32.28	13.3

Determinants of leaf C, N, and P stoichiometry
According to the stepwise regression models and relative importance analysis, we found that climatic rather than edaphic variables significantly affected the leaf stoichiometries of the deciduous oaks (Figure 3, Table S1). Specifically, both the MAP and AI controlled the variation of leaf [N], C/N and N/P ($P < 0.05$), while PET and TS determined the patterns of leaf [C] ($P < 0.05$). The MAT, Tmax, and TS were the driving factors on leaf [P] and C/P ($P < 0.001$).

For the temperature-related factors, leaf [C], [N], C/P, and N/P (Figure 4a, b, e, f) were positively while leaf [P] and C/N (Figure 4c and d) were negatively related to MAT; leaf C, N and P stoichiometry except for leaf [P] and C/N were negatively related to TS (Figure 4a, b, d, e); only leaf [P], C/P and N/P were significantly affected by Tmax (Figure 4c, e, f). For the moisture-related factors, leaf [C], [N], C/P, and N/P (Figure 4g, h, k, l) increased while leaf [P] and C/N (Figure 4i, j) decreased significantly with Al; leaf [C], [P], C/P, N/P (Figure 4g, h, k, l) increased but leaf [P] and C/N (Figure 4i, j) decreased significantly with MAP; only leaf [P], C/P and N/P (Figure 4i, k, l) were significantly affected by PET.

Pathway of climatic variables affecting leaf stoichiometry

According to the structural equation model, the climatic variables, i.e. Tmax and MAP exhibited significant effects on the variations of leaf C, N and P stoichiometry, in particular on those of leaf [P], of the studied deciduous *Quercus* species (Figure 5). Both Tmax and MAP had direct influences (negative) on leaf [P] instead of leaf [C] or [N] and indirect effects on the variations of leaf C/N, C/P and N/P. Furthermore, MAP showed direct effects on the variations of leaf N/P. The variations of leaf [N] and [P] directly affected leaf C/N (negative) and C/P (positive), and the variation of leaf N/P was directly regulated by leaf C/N and C/P (Figure 5). The Tmax and MAP indirectly regulated leaf C/N, C/P and N/P via altering leaf [P] across the geographic scale.

Discussion

Patterns of leaf C, N, and P stoichiometry at Quercus-level were partly consistent with those at community-level

Geographical variations of leaf traits especially those related to C and N cycles are helpful to predict the adaptation and the fate of wide distribution plant species under global change (Blonder et al. 2017; Martínez-Sancho et al. 2018). Our results showed that leaf [N], [P] and N/P of the studied deciduous *Quercus* species were lower than those of 1,900 plant species in China (Han et al. 2011) and 1,280 plant species across the globe (Reich and Oleksyn 2004) (Table 1). The decreasing leaf [C], [N], C/P, N/P the increasing leaf [P] and C/N with increasing latitude (Figure 2) indicated that the *Quercus* species might alter nutrient allocation strategies to adapt to environmental change. The patterns of leaf C, N, and P stoichiometry at genus-level (*Quercus*) across China in this study were partly consistent with those general biogeographic ones that leaf [N] and [P] increase and leaf N/P decrease with increasing latitude
(or decreasing MAT) at multispecies- and community-level (e.g., Reich and Oleksyn 2004; Han et al. 2005, 2011; Tian et al. 2018, 2019), which tested our hypothesis 1.

The increase of leaf C/N and the decrease of leaf [N] along the latitudinal gradient in this study (Figure 2) were consistent with the patterns of 109 dominant species across China's forests (Tang et al. 2021). The results identified the reduction of N use efficiency (Wang et al. 2014) and N availability (Tang et al. 2021) from tropical to temperate forests. Leaf C/P and N/P are vital for plant growth, since the distribution and the variation of P-rich ribosomal RNA occur at different growth rates (Elser et al. 2003; Lambers and Poorter 2004; Makino et al. 2003). The significant increases in leaf C/P and N/P of the studied deciduous *Quercus* species with latitude coincided with a field investigation from temperate to tropical forests (Zhang et al. 2018). The results implied that the deciduous *Quercus* species maintain higher growth rate in temperate than in tropical forests, since deciduous species growing at temperate tended to be more resource acquisitive and grew faster within short growing season than at tropic (Ramírez-Valiente et al. 2017; Qi et al. 2020). Furthermore, the higher leaf [N] and N/P but the lower leaf [P] at low than high latitudes (Figure 2) suggested intensified P limitation (Li et al. 2016; Zhang et al. 2018) from northern to southern China. This pattern can be explained by the soil substrate age hypothesis (SSAH) which suggests that P limitation occurs in tropical forests (low latitude) due to soil aging and leaching (Reich and Oleksyn 2004).

Climatic variables determine the spatial patterns of leaf C, N, P of *Quercus* at a large geographical scale

The geographical variations in plant nutrients are associated with climate gradations and likely reflect the responses and adaptations of plants to climate change (Hedin 2003; Wright et al. 2004). The north-to-south and west-to-east transects across China both reflect shifts from cold, dry to warm, humid conditions, although the temperature gradient is more obvious in the former and the moisture gradient is more pronounced in the latter (Figure S1, S2). In this study, the significant relationships between MAT, Tmax, TS, MAP, PET, AI and leaf C, N, P stoichiometry implied that the nutrient status of the studied deciduous *Quercus* species was more likely affected by the co-regulation of temperature- and moisture-related factors, due to the slowdown of litter decomposition and soil N mineralization at low precipitation and temperature (Finger et al. 2016; Li et al. 2020). The results were partly identified by the temperature-plant physiology hypothesis (Reich and Oleksyn 2004), as reported that the stoichiometry of *Quercus variabilis* leaves was driven mostly by the variations of temperature and aridity rather than soil conditions and leaf structure (Sun et al. 2015).

Soil is the primary source for most plant nutrients at standing and plotting levels (Asner and Martin 2016; Feng et al. 2021; Liu et al. 2017). The roles of soils on plant nutrients can not be ignored despite we did not find the dominance of edaphic variables on leaf C, N, P stoichiometry of the studied deciduous *Quercus* at broad geographic scales (Figure 3, 5). On large spatial scales, the roles of climatic variables may conceal or be more significant than those of edaphic factors on plant elemental stoichiometry (Ordoñez et al. 2009; Sun et al. 2012), because the physiological and metabolic processes of plants were more sensitive to climate change than to soil conditions, which were identified at regional (Feng et al.
2021; Liu et al. 2017) and global scales (e.g. Hartmann 2011; He et al. 2020). Soils provide the main nutrient elements to maintain plant growth, but have a weak capacity to alter species composition or vegetation types (Zhang et al. 2018). The alterations of hydrothermal conditions caused by the changes in climate might have resulted in the different patterns of leaf C, N, and P stoichiometry of the studied deciduous Quercus species.

Possible mechanisms of climatic variables controlling leaf C, N, P stoichiometry

Plants form different nutrient strategies to adapt to changes in soil and climate (McGroddy et al. 2004; Freschet et al. 2015). Results from SEM in this study (Figure 5) suggested that the studied deciduous Quercus species regulate nutrient strategy under different hydrothermal conditions, that is, directly alter leaf [P] and then indirectly alter leaf C/N, C/P and N/P under the changes in climate variables across the geographic scale. The increasing temperature (Han et al. 2005; Kang et al. 2011) as well as the increasing precipitation (Du et al. 2020) had negative effects on leaf [P], which supported our results that the increasing Tmax and MAP led to low leaf [P] (Figure 5), and further decreased the photosynthesis P utilization, photosynthesis rate (leaf [C]) and N use efficiency, as indicated by the negative effects on stoichiometric ratios such as C/N, C/P and N/P (Figure 5). The identified strong correlations between leaf [N] and photosynthetic rate, N use efficiency (Guo et al. 2016) coincidentally confirmed our results (Figure 5). Although local variations in leaf stoichiometry were affected largely by the heterogeneity of soil nutrients and soil ages (Reich and Oleksyn 2004), our results indicated that regional variations of leaf C, N and P stoichiometry were primarily affected by climatic factors. This finding coincided with Zhang et al. (2018), who demonstrated that the spatial patterns of leaf stoichiometry from temperate to tropical forests were more affected by climate factors than soil factors. Specifically, the low precipitation and temperature in northern China might inhibit the decomposition and mineralization of soil organic matter and reduce N inputs of the ecosystem (Finger et al. 2016; Li et al. 2020), leading to low leaf [N] and N/P of the studied Quercus species (Figure 4). The results revealed how climatic variables influence leaf C, N, P stoichiometry of the deciduous Quercus species, which provided evidence for predicting nutrient strategies, which have considerable impacts on plant growth and survival, and further leading to potential distribution shifts of the eurytopic species, under the ongoing climate change.

Conclusions

We analyzed the spatial patterns of leaf C, N, P stoichiometry of five deciduous Quercus species and their linkages to the environmental variables across a broad geographic range in China. We found that the deciduous Quercus species significantly decreased leaf [C], [N], C/P, and N/P, but increased leaf [P] and C/N, with the increasing latitude. Leaf stoichiometry except for leaf [C] had no significant trends along the longitudinal gradient. The climatic variables, i.e. mean annual temperature and precipitation, the max temperature of the warmest month, temperature seasonality, aridity index, and potential evapotranspiration, rather than the edaphic variables, were the determinants of the geographic patterns of leaf C, N, P stoichiometry of the studied deciduous Quercus species. Affected by climate change, Quercus species will alter leaf [P] to regulate leaf C, N, and P stoichiometry. The patterns of leaf C, N, and P
stoichiometry at genus level (*Quercus*) and their association with climatic variables suggest that the eurytopic species will adjust nutrient strategies and potentially shift the distribution range affected by climate change.

Declarations

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 41771522) and the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (No. GML2019ZD0408). We thank Caichuan Huang, Chaodong Yang, Chenhua Lei, Chunyu Zhou, Hao Jiang, Jiang Liu, Jinfu Liu, Liqin Gao, Meihua Liu, Rongxun Xu, Xiaofei Lu, Xiaoming Fang, Xinchun Lin, Xinghao Tang, Yihua Xiao, and Yongxing Li for their generous help in samplings.

Authors' contributions

Y.W. designed the study; Y.T., Y.W., S.B., Y.L., Z.F., J.F. and F.F. performed the experiments; Y.T. analyzed the data; Y.T. and Y.W. drafted the manuscript. All authors contributed critically to the revised manuscript.

Availability of data

The data that support the findings of this study are available in the supplementary material of this article.

Conflict of interest statement

The authors declare no conflicts of interest.

References

1. Albrich K, Rammer W, Seidl R (2020) Climate change causes critical transitions and irreversible alterations of mountain forests. Glob Change Biol 26: 4013-4027. https://doi.org/10.1111/gcb.15118
2. Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L (2019) Amazonian rainforest tree mortality driven by climate and functional traits. Nat Clim Chang 9: 384-388. https://doi.org/10.1038/s41558-019-0458-0
3. Asner GP, Martin RE (2016) Convergent elevation trends in canopy chemical traits of tropical forests. Glob Chang Biol 22: 2216-2227. https://doi.org/10.1111/gcb.13164
4. Blonder B, Salinas N, Patrick Bentley L, Shenkin A, Chambi Porroa PO, Valdez Tejeira Y, Violle C, Fyllas NM, Goldsmith GR, Martin RE, Asner GP, Diaz S, Enquist BJ, Malhi Y (2017) Predicting trait-
environment relationships for venation networks along an Andes-Amazon elevation gradient. Ecology 98: 1239-1255. https://doi.org/10.1002/ecy.1747

5. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45: 90-96. https://doi.org/10.2307/2684366

6. Crawley MJ (2012) Mixed-Effects Models. In Crawle M J (ed), The R Book, pp. 681-714. England: Wiley. https://doi.org/10.1002/9781118448908.ch19

7. Dong M (1997) Survey, observation and analysis of terrestrial biocommunities. Standards Press of China, Beijing.152-154. (in Chinese)

8. Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB (2020) Global patterns of terrestrial nitrogen and phosphorus limitation. Nat Geosci 13: 221–226. https://doi.org/10.1038/s41561-019-0530-4

9. Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate-stoichiometry couplings in diverse biota. Ecol Lett 6: 936-943. https://doi.org/10.1046/j.1461-0248.2003.00518.x

10. Elser JJ, Andersen T, Baron JS, Bergstrom AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009) Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326: 835-837. https://doi.org/10.1126/science.1176199

11. Feng J, Tang M, Zhu B (2021) Soil priming effect and its responses to nutrient addition along a tropical forest elevation gradient. Glob Change Biol 27: 2793-2806. https://doi.org/10.1111/gcb.15587

12. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37: 4302-4315. https://doi.org/10.1002/joc.5086

13. Finger RA, Turetsky MR, Kieelland K, Ruess RW, Mack MC, Euskirchen ES (2016) Effects of permafrost thaw on nitrogen availability and plant–soil interactions in a boreal Alaskan lowland. J Ecol 104: 1542-1554. https://doi.org/10.1111/1365-2745.12639

14. Freschet GT, Swart EM, Cornelissen JHC (2015) Integrated plant phenotypic responses to contrasting above- and below-ground resources: key roles of specific leaf area and root mass fraction. New Phytol 206: 1247-1260. https://doi.org/10.1111/nph.13352

15. Gao M, Piao S, Chen A, Yang H, Liu Q, Fu YH, Janssens IA (2019) Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat Commun 10: 2970. https://doi.org/10.1038/s41467-019-11035-w

16. Gerlach RW, Kowalski BR, Wold HOA (1979) Partial least-squares path modelling with latent variables. Anal Chim Acta 112: 417-421. https://doi.org/10.1016/S0003-2670(01)85039-X

17. Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451: 293-296. https://doi.org/10.1038/nature06592

18. Guo, R, Sun, S, Liu, B (2016) Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer. Sci Rep 6: 33539. https://doi.org/10.1038/srep33539
19. Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168: 377-385. https://doi.org/10.1111/j.1469-8137.2005.01530.x

20. Han W, Fang J, Reich PB, Ian Woodward F, Wang Z (2011) Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett 14: 788-796. https://doi.org/10.1111/j.1461-0248.2011.01641.x

21. Hartmann H (2011) Will a 385 million year-struggle for light become a struggle for water and for carbon? – How trees may cope with more frequent climate change-type drought events. Glob Change Biol 17: 642-655. https://doi.org/10.1111/j.1365-2486.2010.02248.x

22. Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84: 2231-2255. https://doi.org/10.1890/02-4066

23. He P, Gleason SM, Wright IJ, Liu H, Zhu S, Lu M, Luo Q, Li R, Wu G, Yan E, Song Y, Mi X, Hao G, Reich PB, Wang Y, Ellsworth DS, Ye Q (2020) Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Glob Change Biol 2020: 1833–1841. https://doi.org/10.1111/gcb.14929

24. He N, Liu C, Piao S, Sack L, Xu L, Luo Y, He J, Han X, Zhou G, Zhou X, Lin Y, Yu Q, Liu S, Sun W, Niu S, Li S, Zhang J, Yu G (2019) Ecosystem traits linking functional traits to macroecology. Trends Ecol Evol 34: 200-210. https://doi.org/10.1016/j.tree.2018.11.004

25. IPCC (2021) Summary for Policymakers. In Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekiçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. In Press.

26. Kalisch M, Maechler M, Colombo D, Maathuis MH, Buehlmann P (2012) Causal inference using graphical models with the r package pcalg. J Stat Softw 47: 1–26. https://doi.org/10.18637/jss.v047.i11

27. Kang H, Zhuang H, Wu L, Liu Q, Shen G, Berg B, Man R, Liu C (2011) Variation in leaf nitrogen and phosphorus stoichiometry in *Picea abies* across Europe: An analysis based on local observations. For Ecol Manag 26: 195-202. https://doi.org/10.1016/j.foreco.2010.10.004.

28. Lambers H, Poorter H (2004) Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv Ecol Res 34: 283-362. https://doi.org/10.1016/S0005-2504(03)34004-8

29. Li Z, Zeng Z, Tian D, Wang J, Wang B, Chen HYH, Quan Q, Chen W, Yang J, Meng C, Wang Y, Niu S (2020) Global variations and controlling factors of soil nitrogen turnover rate. Earth-Sci Rev 207: 103250. https://doi.org/10.1016/j.earscirev.2020.103250

30. Liu BH, Xu M, Henderson M, Qi Y (2005) Observed trends of precipitation amount, frequency, and intensity in China, 1960-2000. J Geophys Res 110: D08103. https://doi.org/10.1029/2004jd004864
31. Liu G (1996) Soil physical and chemical analysis and description of soil profiles. Standards Press of China, Beijing. (in Chinese)

32. Liu J, Arend M, Yang W, Schaub M, Ni Y, Gessler A, Jiang Z, Rigling A, Li M (2017) Effects of drought on leaf carbon source and growth of European beech are modulated by soil type. Sci Rep 7: 42462. https://doi.org/10.1038/srep42462

33. Lü X, Reed S, Hou S, Hu Y, Wei H, Lü F, Cui Q, Han X (2017) Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe. Biogeochemistry 133: 295-305. https://doi.org/10.1007/s10533-017-0333-x

34. Makino W, Cotner JB, Sterner RW, Elser JJ (2003) Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct Ecol 17: 121-130. https://doi.org/10.1046/j.1365-2435.2003.00712.x

35. Martínez-Sancho E, Dorado-Liñán I, Gutiérrez Merino E, Matiu M, Helle G, Heinrich I, Menzel A (2018) Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits. Glob Change Biol 24: 1012-1028. https://doi.org/10.1111/gcb.13937

36. McGroddy ME, Daufresne T, Hedin LO (2004) Scaling of C:N:P stoichiometry in forests worldwide: Implications of terrestrial redfield-type ratios. Ecology 85: 2390-2401. https://doi.org/10.1890/03-0351

37. Ordoñez JC, Van Bodegom PM, Witte J-PM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18: 137-149. https://doi.org/10.1111/j.1466-8238.2008.00441.x

38. Pecl GT, Araujo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355: eaai9214. https://doi.org/10.1126/science.aai9214

39. Qi J, Fan Z, Fu P, Zhang Y, Sterck F (2020) Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees: carbon gain, hydraulics and nutrient-use efficiencies. Tree Physiol 41: 12-23. https://doi.org/10.1093/treephys/tpaa131

40. R Core Team 2019 R: A Language and Environment for Statistical Computing (Vienna: R Foundation for Statistical Computing). https://www.R-project.org/

41. Ramírez-Valiente JA, Center A, Sparks JP, Sparks KL, Etterson JR, Longwell T, Pilz G, Cavender-Bares J (2017) Population-level differentiation in growth rates and leaf traits in seedlings of the neotropical live oak Quercus oleoides grown under natural and manipulated precipitation regimes. Front Plant Sci 8: 585. https://doi.org/10.3389/fpls.2017.00585

42. Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101: 11001-11006. https://doi.org/10.1073/pnas.0403588101

43. Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Chang Biol 19: 229-240. https://doi.org/10.1111/gcb.12038
44. Schermelleh-Engel K, Moosbrugger H, Müller H (2003). Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Method Psychol Res 8: 23-74. Internet: http://www.mpr-online.de

45. Sun L, Zhang B, Wang B, Zhang G, Zhang W, Zhang B, Chang S, Chen T, Liu G (2017) Leaf elemental stoichiometry of Tamarix Lour. species in relation to geographic, climatic, soil, and genetic components in China. Ecol Eng 106: 448-457. https://doi.org/10.1016/j.ecoleng.2017.06.018.

46. Sun X, Kang H, Du H, Hu H, Zhou J, Hou J, Zhou X, Liu C (2012) Stoichiometric traits of oriental oak (Quercus variabilis) acorns and their variations in relation to environmental variables across temperate to subtropical China. Ecol Res 27: 765-773. https://doi.org/10.1007/s11284-012-0953-5

47. Sun X, Kang H, Kattge J, Gao Y, Liu C (2015) Biogeographic patterns of multi-element stoichiometry of Quercus variabilis leaves across China. Can J For Res 45: 1827-1834. https://doi.org/10.1139/cjfr-2015-0110

48. Sun Y, Hu H, Huang H, Vargas-Mendoza CF (2014) Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): a dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genet Genomes 10: 1531-1539. https://doi.org/10.1007/s11295-014-0776-3

49. Tang S, Lai Y, Tang X, Phillips OL, Liu J, Chen D, Wen D, Wang S, Chen L, Tian X, Kuang Y (2021) Multiple environmental factors regulate the large-scale patterns of plant water use efficiency and nitrogen availability across China's forests. Environ Res Lett 16: 034026. https://doi.org/10.1088/1748-9326/abe3bb

50. Tang Z, Xu W, Zhou G, Bai Y, Li J, Tang X, Chen D, Liu Q, Ma W, Xiong G, He H, He N, Guo Y, Guo Q, Zhu J, Han W, Hu H, Fang J, Xie Z (2018) Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems. Proc Natl Acad Sci U S A 115: 4033-4038. https://doi.org/10.1073/pnas.1700295114

51. Tian D, Reich PB, Chen HYH, Xiang Y, Luo Y, Shen Y, Meng C, Han W, Niu S (2018) Global changes alter plant multi-element stoichiometric coupling. New Phytol 221: 807-817. https://doi.org/10.1111/nph.15428

52. Tian D, Yan Z, Ma S, Ding Y, Luo Y, Chen Y, Du E, Han W, Kovacs ED, Shen H, Hu H, Kattge J, Schmid B, Fang J (2019) Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China Life Sciences 62: 1047-1057. https://doi.org/10.1007/s11427-019-9584-1

53. Trabucco A, Zomer R (2019) Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. figshare. Fileset. https://doi.org/10.6084/m9.figshare.7504448.v3

54. Wang M, Murphy MT, Moore TR (2014) Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog. Oecologia 174: 365–377. https://doi.org/10.1007/s00442-013-2784-7

55. Wieczynski DJ, Boyle B, Buzzard V, Duran SM, Henderson AN, Hulshof CM, Kerkhoff AJ, McCarthy MC, Michaletz ST, Swenson NG, Asner GP, Bentley LP, Enquist BJ, Savage VM (2019) Climate shapes
and shifts functional biodiversity in forests worldwide. Proc Natl Acad Sci U S A 116: 587-592. https://doi.org/10.1073/pnas.1813723116

56. Wright IJ, Reich PB, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428: 821-827. https://doi.org/10.1038/nature02403

57. Ye S, Wang Q (2021) Response of plant C, N and P stoichiometry to nitrogen addition. International Journal of Ecology 10: 258-265. (in Chinese) https://doi.org/10.12677/IJE.2021.102030

58. Yuan ZY, Chen, HYH (2015) Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat Clim Chang 5: 465-469. https://doi.org/10.1038/nclimate2549

59. Zeng Z, Piao S, Li L, Zhou L, Ciais P, Wang T, Li Y, Lian X, Wood EF, Friedlingstein P, Mao J, Estes LD, Myneni RB, Peng S, Shi X, Seneviratne SI, Wang Y (2017) Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat Clim Chang 7: 432–436. https://doi.org/10.1038/nclimate3299

60. Zhang J, Zhao N, Liu C, Yang H, Li M, Yu G, Wilcox K, Yu Q, He N (2018) C:N:P stoichiometry in China's forests: From organs to ecosystems. Funct Ecol 32: 50-60. https://doi.org/10.1111/1365-2435.12979

61. Zhou Z (1993) The fossil history of \textit{Quercus}. \textit{Acta Botanica Yunnanica} 15: 21-33. (in Chinese)

Figures
Figure 1

Locations of 22 sampling sites for the five deciduous Quercus species along latitudinal and longitudinal gradients across China. AK, Ankang in Shaanxi; BJ, Beijing; BS, Baise in Guangxi; CX, Chuxiong in Yunan; DL, Dali in Yunnan; GL, Guilin in Guangxi; GY, Guiyang in Guizhou; GZ, Guangzhou in Guangdong; HT, Huitong in Hunan; HY, Huaiyuan in Henan; JA, Ji’an in Jiangxi; JJ, Jiujiang in Jiangxi; JS, Jingshan in Hubei; JZ, Jinzhong in Shanxi; LA, Lin’an in Zhejiang; MM, Maoming in Guangdong; NJ, Nanjing in Jiangsu; NP, Nanping in Fujian; PX, Pingxiang in Jiangxi; SG, Shaoguan in Guangdong; SY, Shaoyang in Hunan; TG, Tonggu in Jiangxi. QAl, Quercus alinea; QAc, Quercus acutissima; QF, Quercus fabri; QS, Quercus serrata; QV, Quercus variabilis. The numbers before the species abbreviations represent the long-term (1970-2000) mean annual temperature (MAT, °C) and precipitation (MAP, mm), respectively, of the sampling locations.
Figure 2

Latitudinal (yellow) and longitudinal (green) patterns of leaf C, N, and P stoichiometry of the deciduous Quercus species. [C], leaf carbon concentration (mg g⁻¹); [N], leaf nitrogen concentration (mg g⁻¹); [P], leaf phosphorus concentration (mg g⁻¹); C/N, leaf carbon to nitrogen concentration ratios; C/P, leaf carbon to phosphorus concentration ratios; N/P, leaf nitrogen to phosphorus concentration ratios.
Relative importance of environmental factors on leaf stoichiometric traits of the deciduous Quercus species presented by radar maps. MAT, mean annual temperature (°C); Tmin, the minimum temperature of the coldest month; Tmax, the maximum temperature of the warmest month; Twet, mean temperature of the wettest quarter; TS, temperature seasonality; MAP, mean annual precipitation (mm); Pmin, precipitation of driest month; Pcold, precipitation of coldest quarter; PET, annual potential evapotranspiration; AI, aridity index; SWC, soil water content (%). The abbreviations of leaf stoichiometric traits can be found in Figure 2. “*” “**” “***” showed $P < 0.05$, 0.01, < 0.001, respectively.
Figure 4

The relationships between the temperature-related (a - f), the moisture-related (g - l) factors and leaf C, N, P stoichiometry of the deciduous Quercus species. The red, green, and black colors in a - f indicated the relationships of leaf C, N, and P stoichiometry with mean annual temperature (MAT), the maximum temperature of the warmest month (Tmax), and temperature seasonality (TS), respectively; while those in g - l indicated the relationships of leaf C, N, and P stoichiometry with mean annual precipitation (MAP),
potential evapo-transpiration (PET), and aridity index (AI), respectively. The abbreviation of leaf traits can be found in Figure 2.

Figure 5

Structural equation model (SEM) of the influencing pathway of the varying climatic factors and leaf stoichiometry. The black and red lines represent the positive and negative effects (P < 0.05), and the values on the line represent the path coefficients in the model. Abbreviations of the leaf stoichiometric traits and environmental factors are the same as indicated in Figure 2 and Figure 3.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx