H$_2$S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo

Luyan Wu1,6, Yusuke Ishigaki2,6, Yuxuan Hu1, Keisuke Sugimoto2, Wenhui Zeng1, Takashi Harimoto2, Yidan Sun1, Jian He3, Takanori Suzuki2*, Xiqun Jiang4, Hong-Yuan Chen1 & Deju Ye1,5*

Afterglow luminescent probes with high signal-to-background ratio show promise for in vivo imaging; however, such probes that can be selectively delivered into target sites and switch on afterglow luminescence remain limited. We optimize an organic electrochromic material and integrate it into near-infrared (NIR) photosensitizer (silicon 2,3-naphthalocyanine bis(triethylsilyloxide) and (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) containing nanoparticles, developing an H$_2$S-activatable NIR afterglow probe ($\text{F}_1$$^{2+}$-ANP). $\text{F}_1$$^{2+}$-ANP displays a fast reaction rate (1563 ± 141 M$^{-1}$ s$^{-1}$) and large afterglow turn-on ratio (~122-fold) toward H$_2$S, enabling high-sensitivity and -specificity measurement of H$_2$S concentration in bloods from healthy persons, hepatic or colorectal cancer patients. We further construct a hepatic-tumor-targeting and H$_2$S-activatable afterglow probe ($\text{F}_1$$^{2+}$-ANP-Gal) for noninvasive, real-time imaging of tiny subcutaneous HepG2 tumors (<3 mm in diameter) and orthotopic liver tumors in mice. Strikingly, $\text{F}_1$$^{2+}$-ANP-Gal accurately delineates tumor margins in excised hepatic cancer specimens, which may facilitate intraoperative guidance of hepatic cancer surgery.
Fluorescence imaging probes are indispensable in biomedical research and clinical diagnosis owing to their low cost, simple operation, and noninvasiveness; these characteristics enable real-time detection of physiological and pathological processes at the molecular and cellular levels\(^1\text{-}^3\). However, because fluorescence imaging requires real-time light excitation, the inevitable light absorption, scattering, and autofluorescence of biological tissues can limit penetration depth and elicit a low signal-to-background ratio (SBR), compromising the sensitivity for in vivo imaging\(^4\text{-}^7\). Afterglow luminescent probes (also called persistent luminescent probes), which can trap excitation energy in defects and slowly release photons after cessation of light excitation, have recently emerged as promising tools for overcoming the limitations of fluorescence probes in biosensing and molecular imaging\(^8\text{-}^{11}\). Afterglow imaging with these luminescent probes does not require real-time excitation with an external light, causing no autofluorescence interference from biological tissues and offering greatly improved SBR and sensitivity to visualize disease sites in vivo\(^12\text{-}^15\).

During the past few years, several prominent afterglow probes have been developed using rare-earth heavy metal ion (e.g., europium or praseodymium)-doping inorganic nanoparticles\(^9\text{-}^{16}\text-, \text{20}\) or organic and polymeric afterglow materials\(^17\text{-}^{20}\), \text{22}\text{-}^{24}\). Richard and co-workers\(^25\) optimized chromium-doped zinc gallate (ZnGa\(_2\text{O}_4\); Cr\(_{0.005}\)) to develop inorganic nanoparticles that can emit intense long-lasting near-infrared (NIR) afterglow luminescence for noninvasive tracking of labeled cells and imaging of vascularization and grafted tumor cells. Pu and co-workers\(^26\) proposed poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)-based semiconducting polymer nanoparticles (SPNs) to develop biocompatible organic afterglow probes for sensitive detection of tumor metastasis and monitoring of hepatotoxicity in vivo\(^26\).

Despite encouraging results, these afterglow probes encounter limitations when applied for in vivo diagnosis. Inorganic nanoparticle-based afterglow probes may be hampered by systemic toxicity concerns related to potential leakage of heavy metal ions\(^7\text{-}^9\text-, \text{22}\text-, \text{28}\). Current MEH-PPV-based organic afterglow probes could be compromised by poor targeting ability to facilitate efficient delivery and accumulation in disease sites (e.g., tumors) after systemic injection\(^29\text{-}^31\). In addition, most afterglow probes are designed as “always-on” luminescent probes; a continuous signal may produce a high background signal regardless of proximity or interaction with the molecular target of interest, thereby interfering with sensitivity and real-time imaging capacity\(^13\text{-}^{25}\text-, \text{27}\text-, \text{29}\). By contrast, activatable afterglow luminescent probes with “off-on” signals in response to a biological target of interest can substantially reduce the background signal, improving SBR for real-time imaging. However, given a lack of effective activation approaches, activatable afterglow probes have been rarely developed for in vivo imaging\(^32\text-, \text{33}\).

Hydrogen sulfide (H\(_2\text{S}\)) is a highly reactive endogenous signaling molecule, playing a critical role in diverse physiological functions\(^33\text{-}^{35}\). Aberrant concentration and tissue distribution of H\(_2\text{S}\) are associated with many diseases (e.g., liver inflammation, hypertension, diabetes, and cancers)\(^36\text{-}^{39}\). Therefore, precise spatiotemporal detection of H\(_2\text{S}\) in living subjects is essential to the study of the biological functions and accurate diagnosis of H\(_2\text{S}\)-related diseases. Although numerous H\(_2\text{S}\)-activatable fluorescent probes have been developed, the insufficient reaction kinetics, poor in vivo targeting ability, and limited tissue penetration of fluorescent probes have restricted the capacity to detect H\(_2\text{S}\) concentrations and locations in living animals\(^40\text{-}^{46}\). Recently, we reported the engineering of an organic π-electron structure-based electrophromatic material (EM I\(^{2+}\)) as an H\(_2\text{S}\)-responsive chromophore, which was amenable to build H\(_2\text{S}\)-activatable NIR fluorescent probes for noninvasive imaging of H\(_2\text{S}\) in living mice\(^47\).

In this paper, we optimize the structure of EM I\(^{2+}\) into a bis (pentafluorophenyl)-substituted EM I\(^{2+}\) that exhibits longer absorption wavelengths and significantly improved reaction kinetics toward H\(_2\text{S}\) under physiological conditions. We showcase its feasibility to control afterglow luminescence from MEH-PPV (580 nm) and doping NIR photosensitizer (silicon 2,3-naphthalocyanine bis(triethylsiloloxide), NIR775; 780 nm) when integrated into an MEH-PPV- and NIR775-containing afterglow nanoparticle (F\(_{1}^{2+}\)-ANP). Significant activation of afterglow luminescence by a factor of ~122-fold can be achieved by inactivating F\(_{1}^{2+}\)-ANP with H\(_2\text{S}\) within 1 min, followed by irradiation with an 808-nm laser, allowing for rapid quantification of the H\(_2\text{S}\) concentration in blood samples of healthy persons and patients diagnosed with hepatic cancers (HCCs) or colorectal cancers (CRCs). Moreover, through incorporation of β-galactose (β-Gal) ligands on the surface, we build a hepatic tumor-targeting and H\(_2\text{S}\)-activatable afterglow probe (F\(_{1}^{2+}\)-ANP-Gal) that offers sensitive detection of subcutaneous and orthotopic liver tumors in living mice and delineation of liver tumor lesions in clinically excised HCC specimens. The demonstration of H\(_2\text{S}\)-activatable afterglow luminescent probes feasible for sensitive and reliable detection of endogenous H\(_2\text{S}\) underscores the potential of smart activatable afterglow luminescent probes for in vivo imaging.

Results

Design of H\(_2\text{S}\)-activatable NIR afterglow probe. Figure 1 shows the design of an H\(_2\text{S}\)-activatable NIR afterglow probe (F\(_{1}^{2+}\)-ANP). NIR775 was chosen as an NIR-excitable photosensitizer due to its stronger ability to generate singlet oxygen (\(1\text{O}_2\)) compared to MEH-PPV, amplifying the afterglow of MEH-PPV upon pre-irradiation by 808-nm light\(^26\text-, \text{47}\). Furthermore, efficient intraparticle energy transfer (ET) from MEH-PPV to NIR775 can promote a red shift of afterglow wavelength into the NIR window, permitting improved penetration depth in biological tissues. We employed EM I\(^{2+}\) as a H\(_2\text{S}\)-responsive chromophore because it is designed to have longer ultraviolet-visible–NIR (UV–visible–NIR) absorptions (550 and 758 nm) than EM I\(^{2+}\) (546 and 685 nm), ensuring extensive spectral overlaps with MEH-PPV and NIR775 emissions (Fig. 1a).

Additionally, EM I\(^{2+}\) possesses a more positive reduction potential (\(E^\text{red} = +0.40 \text{ V vs. SCE}\) than EM I\(^{2+}\) (I\(^{2+}\)+ at +0.25 VS. SCE), allowing for faster reaction to H\(_2\text{S}\) via two-electron reduction. Within the compact nanoprobe F\(_{1}^{2+}\)-ANP, the fluorescence and \(1\text{O}_2\) generation ability of MEH-PPV and NIR775 are each quenched by EM I\(^{2+}\) due to efficient fluorescence resonance ET (FRET) from MEH-PPV and NIR775 to EM I\(^{2+}\); the afterglow of F\(_{1}^{2+}\)-ANP is substantially quenched at the “off” state (Fig. 1b). In the presence of H\(_2\text{S}\), the EM I\(^{2+}\) can be rapidly reduced into diene EM F\(_2\) with distinct blue-shift absorption (\(\lambda_{\text{abs}} < 500 \text{ nm}\)); the FRET process is hence eliminated, leading to recovery of \(1\text{O}_2\) production in F\(_2\)-ANP under 808-nm light irradiation. Therefore, NIR afterglow is activated at “on” state through \(1\text{O}_2\)-dependent oxidation of MEH-PPV, followed by an efficient intraparticle ET process. Ultraslow background noise and deep-tissue penetration are achieved given advantages of long-lasting afterglow luminescence and rapid reaction kinetics. The probe thus presents a high SBR for rapid and sensitive detection of H\(_2\text{S}\) levels in human blood samples, clinical liver tumor resections, and living mice.

Optimization of EM I\(^{2+}\) into EM F1\(^{2+}\). We first optimized EM I\(^{2+}\) into EM F\(_1^{2+}\) by replacing the two phenyl rings with electron-withdrawing pentafluorophenyl rings (Fig. 1a). Density functional theory (DFT) calculation predicted that the introduction of two pentafluorophenyl groups would lead to an energetically lower-lying lowest unoccupied molecular orbital of F\(_1^{2+}\).
Fig. 1 Schematic illustration of the design of F12+-ANP. a Optimization of dication EM 12+ into F12+ by introducing two electron-withdrawing pentfluorophenyl groups, and proposed chemical conversion of F12+ into diene F2 upon reduction by H2S. b Preparation of F12+-ANP and proposed mechanism of H2S-mediated fast activation of NIR afterglow luminescence at 780 nm following pre-irradiation with an 808-nm laser. c The detailed photoreaction processes to produce NIR afterglow luminescence within activated F12+-ANP (i.e., F2-ANP). F12+-ANP was designed to contain hydrophobic EM F12+, MEH-PPV, and NIR775 via DSPE-PEG2000-assisted nanoprecipitation. F12+-ANP is initially afterglow "off" owing to the presence of F12+ that can quench both the fluorescence and 1O2 production of MEH-PPV and NIR775 via two efficient FRET processes. Upon reaction with H2S, F12+ was reduced into F2, and the FRET-based quenching processes were eliminated within F2-ANP, resulting in the recovery of fluorescence and 1O2 production capacity. Upon irradiation with the 808-nm laser, NIR775 can sensitize O2 to generate 1O2, which then oxidizes the vinylene bond of MEH-PPV to form unstable dioxetane. After cessation of irradiation, the subsequent slow degradation into MEH-PPV-aldehyde and releases photons at 580 nm, followed by efficient intraparticle ET to NIR775, ultimately switching "on" NIR afterglow luminescence at 780 nm.

(-8.1 eV) than 12+ (-7.8 eV), which was validated by cyclic voltammetry (CV) analysis (Supplementary Fig. 1c). The Ered of F12+ (+0.40 V vs. SCE) was higher than that of 12+ (+0.25 V vs. SCE), indicating that F12+ could act as a stronger oxidant toward H2S. High-performance liquid chromatography (HPLC) analysis showed that purple F12+ could be efficiently reduced into light yellow diene F2 by NaHS (H2S donor) in phosphate-buffered saline (PBS) buffer (pH 7.4), resulting in a noticeable blue shift of UV-visible-NIR absorption from 550 and 758 nm to 430 nm (Supplementary Fig. 2b, c). The second-order reaction rate (k2) between F12+ and NaHS in PBS buffer (pH 7.4) was found to be 3600 ± 130 M−1 s−1, ~11.8-fold faster than that of 12+ (304 ± 8 M−1 s−1; k2 is defined as mean ± standard deviation from three independent measurements) (Supplementary Fig. 2d–i). Moreover, the introduction of electron-withdrawing groups contributed to a red shift of the NIR absorption band from 685 nm in 12+ to 758 nm in F12+, causing extensive spectral overlap between F12+ absorption and NIR775 emission (Supplementary Fig. 3a). Therefore, F12+ quenched NIR775 fluorescence more efficiently (~1428-fold) than 12+ (~740-fold) (Supplementary Fig. 3c). F12+ was also highly stable following incubation in the PBS buffer (pH 7.4) for 7 days, and little photobleaching occurred upon irradiation with an 808-nm laser (1 W cm−2) for 3 min (Supplementary Fig. 4). These results
Afterglow luminescence spectra and images (inset) of incubation with NaHS in PBS buffer. Fluorescence spectra was acquired by synchronous buffer at 37 °C.

different reductants or ROS (200 μM with NaHS (200 μM).

Fig. 2 Characterization of F12+-ANP in vitro. a Comparison of the UV-visible-NIR absorption spectra of F12+-ANP, F12+, NIR775, and MEH-PPV. b DLS and transmission electron microscopy (TEM) image (inset) of F12+-ANP. c Fluorescence and d absorption spectra of F12+-ANP (58/28/2.2 μg mL⁻¹ F12⁺(BF4⁻)/MEH-PPV/NIR775) in the absence or presence of NaHS (200 μM, 1 min). Inset: photographs of F12+-ANP before (−) and after (+) incubation with NaHS in PBS buffer. Fluorescence spectra was acquired by synchronous fluorescence scanning (λex = 400–800 nm, offset = 100 nm).

e Afterglow luminescence spectra and images (inset) of F12+-ANP (58/28/2.2 μg mL⁻¹ F12⁺(BF4⁻)/MEH-PPV/NIR775) with and without incubation with NaHS (200 μM) in PBS buffer (pH 7.4) at 37 °C for 1 min, followed by irradiation with 808-nm laser (1 W cm⁻², 1 min). After cessation of laser, the afterglow images were acquired under an open filter, with an acquisition time of 60 s. f Decay of afterglow luminescence of H2S-activated F12+-ANP in PBS buffer at 37 °C. g Afterglow luminescence images of F12+-ANP (58/28/2.2 μg mL⁻¹ F12⁺(BF4⁻)/MEH-PPV/NIR775) upon incubation with varying concentrations of NaHS (0, 1.5, 3, 5, 10, 15, 20, 25, 30, 40, 50, 80, 125, 200, and 250 μM) at 37 °C for 1 min. h Plot of the afterglow luminescence intensity of F12+-ANP and the concentration of NaHS from 0 to 50 μM. i Afterglow luminescence intensities and images (inset) of F12+-ANP upon incubation with different reductants or ROS (200 μM NaHS, 1.25 mM L-cysteine (L-Cys), 10 mM glutathione (GSH), 1 mM homocysteine (Hcy), 1.25 mM ascorbic acid (VC), 1.25 mM dithiothreitol (DTT), 100 μM β-mercaptoethanol (BME), 1 mM H2O2, 1 mM ClO−, ONOO− (1 mM NaNO2 + 1 mM H2O2), O2− (100 μM xanthine + 22 mM xanthine oxidase)) for 10 min. The solutions were then irradiated with the 808-nm laser (1 W cm⁻², 1 min), and the NIR afterglow images were collected for 60 s with a 790 nm filter after the end of irradiation. Data denote mean ± standard deviation (s.d.) (n = 3). Source data are provided as a Source Data file.

indicate that F12⁺ was a more efficient H₂S-responsive chromophore than I²⁺.

Preparation of F12+-ANP. We then employed F12⁺ to prepare an H₂S-activatable NIR afterglow luminescent probe (F12+-ANP) by doping it into NIR775 and MEH-PPV-based afterglow SPNS via DSPE-PEG-assisted encapsulation (Fig. 1b). The encapsulating ratio of MEH-PPV, NIR775, and F12⁺(BF4⁻)₂ within F12+-ANP was optimized at ~28/2.2/58 (by mass) (Supplementary Fig. 5), unveiling characteristic absorption bands of MEH-PPV, NIR775, and F12⁺ (Fig. 2a). Dynamic light scattering (DLS) and transmission electron microscopy analysis revealed that F12+-ANP appeared as mono-disperse nanoparticles, with a mean hydrodynamic size of ~55 nm (Fig. 2b). As expected, the fluorescence of MEH-PPV (580 nm) and NIR775 (780 nm) within F12+-ANP was efficiently quenched by F12⁺ owing to extensive spectral overlaps between their fluorescence emissions and F12⁺ absorption (Fig. 2c). Fluorescence lifetime measurement revealed that the lifetimes of MEH-PPV and NIR775 within
F1$^{2+}$-ANP were dramatically shortened as compared with that in the absence of F1$^{2+}$ (Supplementary Fig. 6), suggesting that efficient FRET processes occurred between MEH-PPV and F1$^{2+}$, and NIR775 and F1$^{2+}$, with ET efficiency estimated to be 97.1% and 99.9%, respectively (Supplementary Fig. 7 and Supplementary Note 1). Upon incubation with NaHS (90 μM) in PBS buffer (pH 7.4) for 1 min, F1$^{2+}$ absorption above 500 nm within F1$^{2+}$-ANP nearly disappeared, and the solution color changed from violet to light orange (Fig. 2d). Interestingly, the initially quenched fluorescence at 580 and 780 nm were activated by H$_2$S (Fig. 2c). The k_2 between F1$^{2+}$-ANP and H$_2$S in PBS buffer (pH 7.4) was 1563 ± 141 M$^{-1}$ s$^{-1}$ (Supplementary Fig. 8), much faster than other reported optical probes amenable for in vivo imaging of H$_2$S (Supplementary Dataset 1).

As O$_2$ is indispensable in oxidizing MEH-PPV into PPV dioxetanes, which subsequently decompose into MEH-PPV-aldehyde and emit afterglow luminescence (Fig. 1c), the O$_2$ generation ability of F1$^{2+}$-ANP before and after reaction with NaHS was measured. Irradiation of F1$^{2+}$-ANP with the 808-nm laser (1 W cm$^{-2}$, 1 min) induced little enhancement in singlet oxygen sensor green (SOSG) fluorescence, indicating low ability to produce O$_2$ (Supplementary Fig. 9). However, irradiation of F1$^{2+}$-ANP after incubation with NaHS for 1 min produced remarkably enhanced SOSG fluorescence. Generated O$_2$ could evoke MEH-PPV oxidation as evidenced by the gradually declining MEH-PPV absorption within activated F1$^{2+}$-ANP (i.e., F2-ANP) upon irradiation with the 808-nm laser (1 W cm$^{-2}$) for 0–60 min (Supplementary Fig. 10).

We next investigated the afterglow luminescence of F1$^{2-}$-ANP in the absence or presence of NaHS in PBS buffer (pH 7.4) at 37 °C. After optimizing irradiation conditions (Supplementary Fig. 11), the solutions were pre-irradiated by the 808-nm laser at a power density of 1 W cm$^{-2}$ for 1 min. F1$^{2-}$-ANP exhibited little afterglow in the absence of NaHS, whereas NaHS-treated F1$^{2-}$-ANP displayed obvious afterglow signals in the visible and NIR regions. Signal quantification from the images (Fig. 2e, inset) showed that afterglow intensities increased by ~122-fold. Notably, the afterglow signals in the NIR region were much higher than those in the visible region, presumably attributable to the ET process from F1$^{2-}$-ANP within activated F1$^{2-}$-ANP to NIR775 and F1$^{2-}$, with ET efficiency estimated to be 97.1% and 99.9%, respectively (Supplementary Fig. 7 and Supplementary Note 1). Upon incubation with NaHS (90 μM) in PBS buffer (pH 7.4) for 1 min, F1$^{2-}$-ANP absorption above 500 nm within F1$^{2-}$-ANP nearly disappeared, and the solution color changed from violet to light orange (Fig. 2d). Accordingly, the initially quenched fluorescence at 580 and 780 nm were activated by H$_2$S (Fig. 2c). The k_2 between F1$^{2-}$-ANP and H$_2$S in PBS buffer (pH 7.4) was 1563 ± 141 M$^{-1}$ s$^{-1}$ (Supplementary Fig. 8), much faster than other reported optical probes amenable for in vivo imaging of H$_2$S (Supplementary Dataset 1).

Detection of H$_2$S in HCC cells. Since increased H$_2$S level is found in malignant liver tumors30-31, we investigated the potential to detect H$_2$S in human HCC HepG2 cells through afterglow imaging. The overexpression of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) for the biosynthesis of endogenous H$_2$S in HepG2 cells was validated by Western Blot (WB) analysis (Supplementary Fig. 22). To enable efficient entry into HepG2 cells, β-Gal capable of targeting to β-Gal receptors overexpressed on HepG2 cells was introduced to the surface of F1$^{2-}$-ANP to prepare F1$^{2-}$-ANP-Gal (Fig. 3a). Akin to F1$^{2-}$-ANP, F1$^{2-}$-ANP-Gal manifested as mono-disperse nanoparticles in PBS buffer (pH 7.4) and exhibited significantly activated afterglow in response to H$_2$S (Supplementary Fig. 23). F1$^{2-}$-ANP-Gal demonstrated low toxicity to HepG2 cells by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, with little cell death observed before and after irradiation with the 808-nm laser (1 W cm$^{-2}$, 1 min) (Supplementary Fig. 24). After optimizing incubation conditions (Supplementary Figs. 25 and 26), F1$^{2-}$-ANP-Gal could be taken up by HepG2 cells via β-Gal receptor-mediated endocytosis (Fig. 3b), resulting in intracellular fluorescence distributed mainly in lysosomes and mitochondria (Supplementary Fig. 27). We then collected cell pellets (~1 × 105 cells) and irradiated with the 808-nm laser (1 W cm$^{-2}$, 1 min) to produce afterglow. As presented in Fig. 3c, HepG2 cells incubated with F1$^{2-}$-ANP-Gal showed a much brighter afterglow image compared to that of F1$^{2+}$-ANP, β-Gal-pre-treated HepG2 cells, or β-Gal receptor-deficient human lung cancer A549 cells incubated with F1$^{2-}$-ANP-Gal. The afterglow intensity in HepG2 cells incubated with F1$^{2-}$-ANP-Gal was more than 7-fold higher than that with F1$^{2+}$-ANP (Fig. 3d). We subsequently applied F1$^{2+}$-ANP-Gal to monitor H$_2$S fluctuation in HepG2 cells (Fig. 3f, g). Afterglow signals in F1$^{2+}$-ANP-Gal-treated HepG2 cell pellets (~3 × 104 cells) increased noticeably when pre-treated with extraneous NaHS; pre-treatment with ZnCl$_2$ to scavenge H$_2$S reduced afterglow substantially. HepG2 cells stimulated with L-Cys (a precursor for biosynthesis of H$_2$S) to upregulate intracellular H$_2$S levels could augment afterglow, which was greatly enhanced when adding DL-propargylglycine (PAG; 50 μg mL$^{-1}$) and aminoxyacetic acid (AOAA; 20 μM) to inhibit endogenous CSE and CBS activities. These results were confirmed by fluorescence imaging of H$_2$S in individual HepG2 cells (Fig. 3e). We also found that afterglow signals in F1$^{2+}$-ANP-Gal-treated HepG2 cell pellets increased with the cell number, which could allow to detect 1000 and 5000 HepG2 cells in vitro and in vivo, respectively, much lower than fluorescence (Supplementary Figs. 28 and 29). Moreover, the afterglow luminescence of F1$^{2+}$-ANP-Gal could still be clearly observed in HepG2 cells even after irradiation for 12 cycles over 24 h, suggesting the potential for long-term afterglow imaging in live HepG2 cells (Supplementary Fig. 30). Thus, F1$^{2+}$-ANP-Gal was an efficient probe capable of sensitively detecting HepG2 cells through afterglow imaging of endogenous H$_2$S.
Afterglow imaging of H$_2$S in subcutaneous liver tumors. Prior to afterglow imaging of H$_2$S in vivo, the penetration depth of afterglow luminescence emitted from the H$_2$S-activated F1$^{2+}$-ANP-Gal was examined. The afterglow and fluorescence signals each declined with the thickness of chicken tissues (Supplementary Fig. 31). However, because tissue autofluorescence was minimized without real-time excitation, the afterglow exerted significantly higher SBR than NIR fluorescence. At a thickness of ~4 cm, the SBR of afterglow remained as high as 18.7 ± 4.6 (SBR of NIR fluorescence was close to 1. These results indicate that the penetration of afterglow luminescence was much deeper than that of NIR fluorescence, which was also confirmed by the larger SBR of afterglow (~201) versus fluorescence (~2.5) when detecting signals through a mouse body (~1.9 cm). We next determined the blood half-life ($t_{1/2}$) of F1$^{2+}$-ANP-Gal following intravenous (i.v.) injection into mice. The $t_{1/2}$ was measured to be ~7.5 h, permitting efficient circulation to facilitate delivery into tumor tissues. The biodistribution study showed that F1$^{2+}$-ANP-Gal accumulated mainly in the liver of healthy mice at 12 h post injection (%ID/g = 23.6%, Supplementary Fig. 32).

We next applied F1$^{2+}$-ANP-Gal for afterglow imaging of endogenous H$_2$S in subcutaneous (s.c.) HepG2 tumors (Fig. 4a). After i.v. injection into mice, afterglow and fluorescence signals both increased gradually and peaked after 12 h (Fig. 4b and Supplementary Fig. 33). However, owing to the low background signal of afterglow, the SBR of afterglow was much higher than that of fluorescence (Fig. 4c). At 12 h, the average SBR of afterglow was 71.9 ± 8.8, ~30-fold higher than that of fluorescence (2.4 ± 0.4). When L-Cys was injected into tumors to upregulate H$_2$S levels, afterglow and fluorescence signals were both significantly enhanced, whereas intratumoral (i.t.) injection of ZnCl$_2$ to scavenge tumor H$_2$S reduced tumor afterglow and fluorescence. The SBR of afterglow 12 h post injection of
F1²⁻-ANP-Gal and l-Cys increased to 133.8 ± 24.9, ~1.9- and ~2.9-fold higher than that of F1²⁺-ANP-Gal alone and F1²⁺-ANP-Gal plus ZnCl₂ (46.7 ± 1.6), respectively. In addition, mice injected with untargeted F1²⁻-ANP showed much lower afterglow signals and SBR (44.2 ± 3.1) in HepG2 tumors compared to F1²⁺-ANP-Gal. These results aligned with ex vivo fluorescence imaging of resected tumor tissue slices (Supplementary Fig. 34), affirming that F1²⁺-ANP-Gal could deliver into HepG2 tumors and efficiently detect tumor H₂S levels.

We applied F1²⁺-ANP-Gal to noninvasively monitor HepG2 tumor growth in living mice. After s.c. injection of HepG2 cells (2 × 10⁶) at ~4, ~8, and ~15 days, average tumor sizes grew

Fig. 4 Afterglow imaging of H₂S in s.c. HepG2 tumors. a Schematic for noninvasive fluorescence and afterglow imaging of H₂S in HepG2 tumor-bearing mice. b Afterglow (left) and fluorescence (right) imaging of HepG2 tumors in mice at 0, 4, 8, 12, and 24 h following i.v. injection of F1²⁺-ANP-Gal or F1²⁺-ANP in saline (saline), F1²⁺-ANP-Gal with i.t. injection of l-Cys or ZnCl₂, l-Cys (1 mM, 25 µL) or ZnCl₂ (1 mM, 25 µL) was injected into tumors at 3.5 h post i.v. injection of F1²⁺-ANP-Gal (21/100/8 µg F1²⁺(BF₄⁻)/MEH-PPV/NIR775, 200 µL). c Quantification of SBRs for afterglow (solid) and fluorescence (dash) imaging of HepG2 tumors in mice treated with F1²⁺-ANP-Gal or F1²⁺-ANP alone, F1²⁺-ANP-Gal plus L-Cys, or ZnCl₂ at indicated time point. d Afterglow (up) and fluorescence (down) imaging of HepG2 tumors at size of ~12, ~45, and ~100 mm³ in mice at 12 h post i.v. injection of F1²⁺-ANP-Gal. e Quantification of afterglow and fluorescence intensities of HepG2 tumors at different size. f Plots of the SBRs for afterglow and fluorescence imaging versus the tumor size revealed a strong correlation for F1²⁺-ANP-Gal (Person’s r = 0.99). For afterglow imaging, the mouse body was irradiated with the 808-nm laser (1 W cm⁻²) for 1 min. After cessation of laser, the afterglow images were acquired for 60 s with an open filter. The fluorescence images were acquired with λex/em = 740/790 nm. Red arrows indicate the locations of HepG2 tumors in mice, and black circles indicate the background locations. Data denote mean ± s.d. (*P < 0.05, **P < 0.01, n = 3). Statistical differences were analyzed by Student’s t test. Source data are provided as a Source Data file.
Fig. 5 Noninvasive imaging of orthotopic liver tumors in mice. a Schematic for afterglow imaging of orthotopic HepG2 tumors in living mice. b Bioluminescence (BL), fluorescence (FL), and afterglow imaging of control mice (Control) and orthotopic HepG2 tumor (liver tumor) bearing mice at 12 h post i.v. injection of F_1^{2+}-ANP-Gal (211/100/8 μg F_1^{2+}-BF_4^-)/MEH-PPV/NIR775, 200 μL). c Afterglow (red) and FL (blue) intensities in the livers of control mice and orthotopic liver tumor-bearing mice. d Comparison of the SBRs for afterglow and fluorescence imaging of livers in control mice and orthotopic liver tumor-bearing mice. Red arrows indicate the locations of livers, and black circles indicate the background locations. e Representative ex vivo afterglow images of main organs (e.g., liver (Li), lung (Lu), heart (He), kidneys (Ki), intestines (In), stomach (St), spleen (Sp), and tumor (Tu)) resected from control mice (left) and orthotopic HepG2 tumor-bearing mice (right) at 12 h post i.v. injection of F_1^{2+}-ANP-Gal. Red arrow and yellow dash box indicate the locations of HepG2 tumor in the liver and normal liver tissues chosen for region of interest (ROI), respectively. f Comparison of the average afterglow intensities of tumors and main organs resected from control (blue) and orthotopic liver tumor (red) mice. g WB analysis shows the relative CBS and CSE protein levels in the liver tissues resected from control mice and HepG2 tumor tissues resected from orthotopic liver tumor mice. All afterglow luminescence images were acquired for 60 s with an open filter, after pre-irradiation of mouse body or organs with the 808-nm laser (1 W cm $^{-2}$, 1 min). All fluorescence images were acquired with $\lambda_{ex/em}$ = 740/790 nm. Data denote mean ± s.d. (*$P < 0.05$, **$P < 0.01$, n = 3). Statistical differences were analyzed by Student’s t test. Source data are provided as a Source Data file.

Imaging of orthotopic liver tumors in mice. By virtue of the deep-tissue penetration of afterglow imaging, F_1^{2+}-ANP-Gal was applied to detect orthotopic HepG2 liver tumors through afterglow imaging of H$_2$S. Orthotopic liver tumors were established by inoculation of luciferase-transfected HepG2 cells (HepG2/Luc) into the lobe of livers of mice (Fig. 5a). Strong bioluminescence (BL) in liver indicated the successful establishment of orthotopic liver tumors after 15 days (Fig. 5b). We then injected (i.v.) F_1^{2+}-ANP-Gal into mice followed by irradiation of each mice body (face up) with the 808-nm laser (1 W cm $^{-2}$, 1 min) after 12 h (Fig. 5a). NIR fluorescence and afterglow images both showed that mice with orthotopic liver tumors had brighter signals relative to control mice (Fig. 5b, c), with locations closely matching those of BL images. The SBR of afterglow in orthotopic liver tumors was 124.5 ± 12.5, 2.5-fold higher than that in livers of control mice (50.0 ± 10.9) (Fig. 5d). The SBR of afterglow was also much higher compared to that of fluorescence in liver tumors (4.3 ± 1.2). We subsequently conducted ex vivo imaging of main organs (e.g., liver, lung, heart, kidneys, intestines, stomach, and spleen) resected from control mice and orthotopic liver tumor mice. Figure 5e shows that tumor tissues in the resected liver exhibited the brightest afterglow image among all resected organs. The afterglow intensity in tumor was ~5.3-fold higher than that in surrounding liver tissues and ~3.6-fold higher than normal liver tissues of control mice (Fig. 5f). NIR fluorescence imaging of the same tissues verified these findings (Supplementary Fig. 35), which were further confirmed via fluorescence imaging of tumor and normal tissue slices (Supplementary Fig. 36). Subsequent WB analysis revealed that enhanced afterglow and fluorescence in orthotopic HepG2/Luc tumors concurred with the higher expression of CBS and CSE enzymes compared to normal liver tissues (Fig. 5g and Supplementary Fig. 37). These findings demonstrate that F_1^{2+}-ANP-Gal could offer a large SBR to accurately and noninvasively position orthotopic liver tumor foci via afterglow imaging of H$_2$S.
Detection of H_{2}S in clinical blood samples. We employed the activatable afterglow to detect H_{2}S levels in human blood samples collected from 10 healthy persons, 10 HCC patients, and 10 CRC patients in clinics. Following incubation of 2-fold diluted blood with F1^{2-}-ANP for 1 min, afterglow signals in HCC and CRC patients’ bloods were much higher than that in healthy persons (Fig. 6a, b). We took a standard curve established by the addition of NaHS into healthy persons’ blood as the internal standard, and the average H_{2}S level in the whole blood of healthy persons was 27.6 ± 2.7 μM (the H_{2}S level is expressed as mean ± standard deviation, n = 10); the level increased to 47.0 ± 5.0 and 75.9 ± 11.9 μM in the whole blood of HCC and CRC patients, respectively (Fig. 6c and Supplementary Fig. 38). These results revealed that blood H_{2}S levels in HCC and CRC patients were upregulated compared to healthy persons, suggesting that H_{2}S could serve as a potential blood marker for certain malignant cancers (e.g., HCC and CRC). Thus, F1^{2-}-ANP presents high potential to quantify blood H_{2}S levels for cancer diagnosis.

Detection of liver tumor tissues in clinical specimens. Having demonstrated the higher blood H_{2}S levels in HCC patients’ bloods, we employed afterglow to delineate tumor margins in clinically excised HCC specimens. Excised liver tissues from four HCC patients were incubated with F1^{2-}-ANP-Gal in PBS buffer (pH 7.4) for 3 h to allow efficient internalization and activation by H_{2}S. After being washed with PBS buffer, whole specimens were irradiated with the 808-nm laser (1 W cm\(^{-2}\)) for 1 min; the resulting afterglow and fluorescence images were acquired immediately (Fig. 7a). A strong afterglow image appeared in the left section of the specimen, corroborating the NIR fluorescence image of the tissue slice (Fig. 7b, c). Subsequent hematoxylin and eosin (H&E) staining revealed that the left section of the specimen was characterized by tumor tissue (Fig. 7d). Lesions with clear afterglow and fluorescence signals resulting from F1^{2-}-ANP-Gal staining accorded with the tumor location was indicated by H&E staining, as was observed in the other three specimens from different HCC patients (Supplementary Figs. 39–41). These results suggest that F1^{2-}-ANP-Gal was effective in delineating liver tumor lesions in clinical specimens. Upon dividing the signal intensity in tumor lesions by that in adjacent normal liver tissue, the average SBR in afterglow imaging of the four clinical specimens was 58.6 ± 13.2, significantly higher than that in fluorescence (2.2 ± 0.7) (Fig. 7e). Such a high afterglow SBR could promote detection of tumor lesions in the specimen covered with 1.5-cm-thick chicken tissue (Supplementary Fig. 42). These findings imply that F1^{2-}-ANP-Gal may have promise for detecting deeply located tumor cells, which could be applied to identify tumor margins and accurately guide liver tumor surgery in the future.

In vivo clearance and biosafety evaluations. To evaluate the in vivo clearance and biosafety, we injected (i.v.) F1^{2-}-ANP-Gal at the same dose as the imaging dose (211/100/8 μg F1^{2-}(BF4\(^{-}\))/MEH-PPV/NIR775, 200 μL). The NIR fluorescence images showed that the NIR fluorescence was gradually observed in the liver, with intensity maximized at 12 h (Supplementary Fig. 43). After that, the NIR fluorescence in mice decreased overtime, and nearly returned to the background after 28 days, indicating that F1^{2-}-ANP-Gal could be cleared out after systemic administration. We then monitored the body weights, showing little difference between F1^{2-}-ANP-Gal-treated and saline-treated mice for 28 days (Supplementary Fig. 44a). Moreover, the subsequent biochemistry and hematology test of mice 1, 7, 14, and 28 days post injection of F1^{2-}-ANP-Gal showed that all the markers related to liver or kidney functions were within the reference range.
Discussion

Afterglow luminescence holds great promise for sensitive and noninvasive imaging of biomolecules in living subjects; however, real-time afterglow imaging remains rare due to lack of afterglow probes that can be rapidly activated by a molecular target to produce intense afterglow luminescence. Herein, we optimized the structure of an organic π-electron system-based EM into EM and engineered it as an effective H2S-responsive chromophore capable of integrating with NIR775 and MEH-PPV to develop H2S-activatable NIR afterglow probe (F12+-ANP-Gal) for in vivo imaging. F12+ with two electron-withdrawing pentafluorophenyl groups showed strong absorptions at 550 and 758 nm, overlapping more extensively with MEH-PPV (580 nm) and NIR775 emissions (780 nm) than 12+. F12+ also possessed a more positive value of Ered (+0.40 V vs. SCE) than 12+ (+0.25 V vs. SCE), permitting much faster reaction kinetics toward H2S (k2 = 3600 ± 130 M$^{-1}$ s$^{-1}$). These features offer F12+ noteworthy advantages over 12+ in designing activatable afterglow probes. The longer absorption of F12+ could (a) allow it to prevent NIR775 from generating 1O2, which is key to eliciting afterglow luminescence (Supplementary Fig. 9) and (b) directly quench visible and NIR afterglow luminescence of F12+-ANP. Accordingly, afterglow signals could be substantially quenched in an “off” state. Upon reaction with H2S, rapid reaction kinetics between F12+ and H2S could allow H2S to efficiently reduce F12+ into F2 within 1 min, thereby recovering afterglow luminescence.
by a factor of ~122-fold (Fig. 2e). Such activatable afterglow probes with large turn-on ratio and ultrafast reaction kinetics could facilitate sensitive and real-time detection of H$_2$S in vitro and in vivo.

H$_2$S is recognized as the third signaling gasotransmitter, participating in many essential physiological and pathological processes. Throughout the past few years, many colorimetric and fluorescent probes have been developed for H$_2$S measurement. However, due to the low concentration and transient nature of H$_2$S in biology, the detection of endogenous H$_2$S with these probes has been compromised by insufficient sensitivity, selectivity, or reaction kinetics. F$_{1}^{2+}$-ANP possesses high sensitivity, selectivity, and an ultrafast response to H$_2$S, rendering it suitable for quantification of H$_2$S concentration in mouse blood samples (Supplementary Fig. 21). Parallel measurements of H$_2$S levels in human blood freshly collected from healthy persons, HCC patients, and CRC patients were taken following incubation with F$_{1}^{2+}$-ANP for 1 min. Findings showed that blood H$_2$S levels in HCC and CRC patients were substantially higher than in healthy persons (Fig. 6), suggesting that H$_2$S could be a potential blood marker for cancer diagnosis.

In addition to detecting blood H$_2$S in vitro, F$_{1}^{2+}$-ANP was engineered into a hepatic tumor-targeting and H$_2$S-activatable afterglow luminescence probe, F$_{1}^{2+}$-ANP-Gal, for afterglow imaging of hepatic tumor H$_2$S in vivo. With a long blood circulation half-life and β-Gal receptor-mediated active delivery, F$_{1}^{2+}$-ANP-Gal could efficiently enter s.c. HepG2 tumors after iv. injection into mice, turning on afterglow luminescence for real-time and noninvasive monitoring of H$_2$S fluctuations in tumors. Benefiting from low tissue autofluorescence in the absence of real-time light excitation, F$_{1}^{2+}$-ANP-Gal with activated NIR afterglow presented a much higher SBR (47.8 ± 5.9) than NIR fluorescence (1.1 ± 0.4), permitting greater sensitivity to detect tiny s.c. HepG2 tumors (~12 mm3, Fig. 4d, f). The SBR resulting from afterglow images also increased linearly with tumor size, suggesting the potential of F$_{1}^{2+}$-ANP-Gal for (a) accurate detection of early-stage liver tumors and (b) noninvasive monitoring of HepG2 tumor growth in living mice through afterglow imaging of H$_2$S. Moreover, the enhanced penetration depth of NIR afterglow luminescence could allow F$_{1}^{2+}$-ANP-Gal to sensitively detect orthotopic liver tumors, affording a large SBR (124.5 ± 12.5) to precisely position liver tumor foci in mice (Fig. 5). Of note, the H$_2$S-induced rapid and substantial afterglow enhancement in F$_{1}^{2+}$-ANP-Gal could also offer a large SBR (58.6 ± 13.2) to identify liver tumor lesions in excised HCC specimens, with tumor margins aligning with H&E staining (Fig. 7). These results may offer valuable information to guide surgical resection of liver tumor tissues in intraoperative HCC patients.

In conclusion, we report the design and development of H$_2$S-activatable NIR afterglow luminescence probes by doping EM F$_{1}^{2+}$ and NIR775 into MEH-PPV-based organic afterglow nanoparticles. Our findings demonstrate the probe’s utility in noninvasive and real-time imaging of H$_2$S in living mice. F$_{1}^{2+}$-ANP can be selectively and rapidly activated by H$_2$S, leading to a large afterglow luminescence turn-on ratio (~122-fold) after pre-irradiation with an 808-nm laser, which is useful for quantifying the H$_2$S concentration in the blood of healthy persons (27.6 ± 2.7 μM), HCC patients (47.0 ± 5.0 μM), and CRC patients (75.9 ± 11.9 μM). A hepatic tumor-targeting and H$_2$S-activatable afterglow probe (F$_{1}^{2+}$-ANP-Gal) is also built, offering a high SBR and deep-tissue penetration for high-sensitivity imaging of s.c. and orthotopic liver tumors via afterglow imaging of H$_2$S in mice. Moreover, F$_{1}^{2+}$-ANP-Gal can accurately delineate liver tumor margins in excised HCC specimens, which may be especially useful for image-guided HCC surgery. This study presents the potential of using H$_2$S-activatable afterglow luminescence probes for in vivo imaging, which could detect H$_2$S levels in other diseases (e.g., liver inflammation and hypertension) and promote early disease diagnosis in the future.

Methods

Chemicals and characterization. H and D nuclear magnetic resonance (NMR) spectra were recorded on a BRUKER AscendTM 400 (1H/400 MHz and 13C/100 MHz) spectrometer. Mass spectra were recorded on a JEOL JMS-700 spectrometer in FD mode (CC-MS&NMR Laboratory, Research Faculty of Agriculture, Hokkaido University). Redox potentials (E$^{\text{red}}$ and E$^{\text{ox}}$) were measured by CV in dry CH$_3$Cl containing 0.1 M Bu$_4$NBF$_6$, as a supporting electrolyte at a scan rate of 1.0 mV s$^{-1}$. A Pt disk and wire electrodes were used as the working and counter electrodes, respectively. The working electrode was polished using a water suspension of Al$_2$O$_3$ (0.05 μm) before use. UV–visible–NIR chromatography was performed on a silica gel 1-40 (YMC, 40–63 μm), a silica gel 60 N (Kanto Chemical Co., Inc., spherical neutral, 40–50 μm), or aluminum oxide 90 standardized (Merck, 63–200 μm). The DFT calculations were performed with the Gaussian 09 W program package. The geometries of the compounds were optimized by using the B3LYP method in combination with the 6-31G* basis set, unless otherwise indicated. Melting points were measured on a Yamato MP-21 melting point apparatus and are recorded uncorrected. Elemental analyses were performed on an Exeter Analytical CE440 (the Open Facility, Global Facility Center, Creative Research Institution, Hokkaido University). Emission analysis was carried out on a Wallac 1420 Multigene (PerkinElmer, USA). Transmission electron microscopy images were conducted on a JEM-1011 transmission electron microscope (JEOL Ltd., Japan) with an accelerating voltage of 100 kV. MTT assay was performed on a microplate reader (Tcans). The afterglow luminescence spectra, afterglow, and fluorescent images in vitro or vivo were acquired with a Zeiss MRM III or an LS55 nm–680 nm–815 nm high-power NIR laser (FC-808-10W-MM, Xilong Company, China) was used to irradiate the specified irradiation sites to generate the afterglow luminescence, unless otherwise noted.

Synthesis of F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$. The synthesis of F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$ was depicted in Supplementary Fig. 46 and Supplementary Methods. The NMR spectra and single crystal analysis of F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$ were summarized in Supplementary Figs. 47–53.

Preparation of F$_{1}^{2+}$-ANP and F$_{2}^{2+}$-ANP-Gal. All the nanoparticles were prepared using amphiphilic polymers-assisted nanoprecipitation method. Typically, to prepare F$_{1}^{2+}$-ANP, F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$ (0.52 mg), MEH-PPV (0.25 mg), NIR775 (0.02 mg), and DSPE-PEG$_{2000}$ (10 mg) were dissolved in tetrahydrofuran (THF, 0.5 mL) to form a homogeneous solution. These solutions were rapidly injected into D.I. water (9 mL) under continuous sonication. After addition, the mixture was kept sonicated for 10 min in an ice-water bath. Then, THF was washed with a rotary evaporator. The resulting deep color aqueous solution was washed with D.I. water three times, using a 10 K centrifugal filter (Millipore) under centrifugation at 2400 \times g for 15 min. The amount of F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$ and MEH-PPV (NIR775) were determined by indirectly measuring the UV–visible absorption spectra of filtrate, showing that nearly all F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$, MEH-PPV, and NIR775 were encapsulated into nanoparticles.

To prepare F$_{1}^{2+}$-ANP-NH$_2$, F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$ (0.025 mg), MEH-PPV (0.025 mg), NIR775 (0.02 mg), DSPE-PEG$_{2000}$ (8 mg), and DSPE-PEG$_{2000}$-NH$_2$ (2 mg) were dissolved in THF (0.5 mL) to form a homogeneous solution. These solutions were rapidly injected into D.I. water (9 mL) under continuous sonication. After addition, the mixture was kept sonicated for 10 min in an ice-water bath. Then, THF was removed with a rotary evaporator. The resulting deep color aqueous solution was washed with D.I. water three times, using a 10 K centrifugal filter (Millipore) under centrifugation at 2400 \times g for 15 min. The F$_{1}^{2+}$-ANP-NH$_2$ solution was finally concentrated to 252 μg mL$^{-1}$ (based on the mass of MEH-PPV) by ultrafiltration, and used for the preparation of F$_{1}^{2+}$-ANP-Gal. Typically, β-Gal-COOH (1.5 mg), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (3.0 mg), and N-hydroxysuccinimide (2 mg) were dissolved in 1.0 mL PBS (1×, pH 7.4) and the solution was stirred at room temperature (r.t.) for 1 h. Then, F$_{1}^{2+}$-ANP-NH$_2$ (522/252/19 μg mL$^{-1}$) F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$/MEH-PPV/NIR775 was added, and the mixture was kept stirring at r.t. for another 6 h. The reaction solution was then washed with PBS for three times via using centrifugal filter units with molecular weight cutoff of 10 kDa under centrifugation at 2400 \times g to remove excess reactant. The stock solution was stored at 4°C under dark. The amount of F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$ and MEH-PPV (NIR775) were determined by indirectly measuring the UV–visible–NIR absorption of filtrate, showing that nearly all F$_{1}^{2+}$ (BF$_{2}^{–}$)$_3$, MEH-PPV and NIR775 were encapsulated into nanoparticles.
Measurement of the fluorescence and afterglow luminescence. To measure the fluorescence of F1+−ANP or F1−−ANP-Gal in response to H2S, F1+−ANP, or F1−−ANP-Gal (2.2 μg/NI775, 28 μg MEH-PPV, 58 μg F1+−(BF4)−2, in 1.0 mL PBS buffer (pH 7.4) were incubated with NaHS (200 μM) at 37 °C for 1 min, and the fluorescence spectra were recorded on a HORIBA Jobin Yvon Fluoromax-4 fluorometer with fluorescence synchronous scanning mode (λex = 400–800 nm, offset = 50 nm).

To measure the afterglow luminescence of F1+−ANP or F1−−ANP-Gal in response to H2S, F1+−ANP, or F1−−ANP-Gal (2.2 μg/NI775, 28 μg MEH-PPV, 58 μg F1+−(BF4)−2, in 1.0 mL PBS buffer (pH 7.4) were incubated with 200 μM NaHS at 37 °C for 1 min. Then, the incubation solutions were illuminated by an 808-nm laser for 200–1000 s. The afterglow luminescence images were acquired on an IVIS Spectrum imaging system equipped with an open filter or a 790 nm emission filter, with an acquisition time of 60 s. The afterglow luminescence intensity in each image was quantified by applying region of interest (ROI) over the image, using the Living Image Software (4.5.2, PerkinElmer, MA, USA).

Cell culture. Human HCC HepG2 cells and human lung cancer A549 cancer cells were purchased from Stem Cell Bank, Chinese Academy of Sciences (Shanghai, China). All cell lines were routinely tested to exclude infection with mycoplasma. They were authenticated by the supplier using short tandem repeat test. Human HCC HepG2 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM). Human lung cancer A549 cancer cells were grown in F-12 medium. All the media were supplemented with 10% fetal bovine serum (FBS), 1% penicillin, and streptomycin. All cells were maintained at 37 °C in a humidified atmosphere with 5% CO2.

Imaging of H2S in HepG2 cells. HepG2 Cells were plated at a density of 5 × 104 cells per well onto a glass-bottom dish (In Vitro Scientific, MA, USA). Human HCC HepG2 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM). Human lung cancer A549 cancer cells were grown in F-12 medium. All the media were supplemented with 10% fetal bovine serum (FBS), 1% penicillin, and streptomycin. All cells were maintained at 37 °C in a humidified atmosphere with 5% CO2.

Imaging of tumor H2S in vivo. To image H2S in HepG2 tumors, mice bearing s.c. HepG2 tumors were i.v. injected with F1+−ANP and F1−−ANP-Gal (211/100/8 μg F1+−(BF4)−2/MEH-PPV/NI775, in 200 μL saline). After 3.5 h, t-Cys (1 mM, 25 μL) or ZnCl2 (1 mM, 25 μL) was directly injected into tumors to regulate tumor H2S levels. The fluorescence and afterglow images were acquired at 0, 4, 8, 12, and 24 h using an IVIS Lumina XR III imaging system. To image H2S in different sizes of HepG2 tumors, HepG2 tumors at an average size of 12–45, and ~100 mm3 were i.v. injected with F1−−ANP-Gal (211/100/8 mg F1−−(BF4)−2/MEH-PPV/NI775, in 200 μL saline). The fluorescence and afterglow images were acquired at 12 h post injection. To image H2S in orthotopic HepG2 mice, tumors were orthotopically located by BL imaging. After 2 weeks, mice with HCC model were successfully established for afterglow and fluorescence imaging.

WB analysis of CSE and CBS expression. To conduct the WB analysis of mouse liver and orthotopic HepG2 tumor tissue homogenates, normal mice and mice with orthotopic liver tumors were euthanized, and the livers from normal mice and the HepG2 tumor tissues from the orthotopic liver tumor-bearing mice were resected. Liver and HepG2 tumor tissues were then homogenized with lysis buffer. The homogenates were centrifuged at 10,000 g for 30 min, and the lysates were obtained. GE Healthcare MiniSpin centrifuge (13,000 × g for 5 min) at 4 °C. All proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10%) and transferred to nitrocellulose membranes by electroblotting. The membrane was blocked in 5% skim milk powder for 1.0% Tris-buffered saline/ Tween-20 (TBST: 20 mM Tris, 150 mM NaCl, and 0.1% Tween) for 2 h, then incubated with antibody raised against CBS (Abcam, ab135552) or anti-mouse F1+−ANP-Gal (211/100/8 mg F1−−(BF4)−2/MEH-PPV/NI775, in 200 μL saline). The fluorescence and afterglow images were acquired at 12 h post injection. The fluorescence images were acquired on an IVIS Lumina XR III imaging system, with λex/λem = 740/970 nm. To acquire afterglow images, the mouse body was at 0, 4, 8, 12, and 24 h post i.v. injection of F2+−ANP-Gal was irradiated under the 808-nm laser (1 W cm−2) for 1 min. After cessation of laser, the afterglow luminescence images were immediately acquired on an IVIS Spectrum imaging system equipped with an open filter, with an acquisition time of 60 s.

The resulting band intensities were quantified by applying region of interest (ROI) over the images, using the Living Image Software (4.5.2, PerkinElmer, MA, USA).

Investigation of tissue-penetration ability. To investigate the tissue-penetration ability, F1+−ANP-Gal (0.026/0.33/0.684 mg mL−1 NI775/MEH-PPV/F1+−(BF4)−2, 200 μL) in PBS buffer (pH 7.4) was incubated with NaHS (2.0 mM) at 37 °C for 10 min. The incubation solution was then irradiated with the 808-nm laser (1 W cm−2) for 1 min. After removal of laser, the afterglow luminescence images were immediately acquired on an IVIS Spectrum imaging system equipped with an open filter, with an acquisition time of 60 s. The afterglow luminescence intensities in the cell and afterglow luminescence images were quantified by applying ROI over the images, using the Living Image Software (4.5.2, PerkinElmer, MA, USA).

Measurement of the H2S concentration in human blood. Whole-blood samples were collected from healthy volunteers and the patients with HCC and CRC at Affiliated Drum Tower Hospital of Nanjing University (Nanjing, China). For the detection of H2S in blood samples of healthy persons and patients diagnosed with HCC or CRC, freshly collected blood samples were 2-fold diluted with PBS buffer (1×, pH 7.4), and then incubated with F1−−ANP (2.2/28/58 μg mL−1 NI775/MEH-PPV/F1−−(BF4)−2, 200 μL) at 37 °C for 1 min, followed by irradiation with the 808-nm laser (1 W cm−2) for 1 min. After removal of laser, the afterglow luminescence images were immediately acquired for 60 s with a 790 nm filter. The afterglow luminescence intensities at 790 nm for F1+−ANP were quantified by applying ROI over the images using the Living Image Software (4.5.2, PerkinElmer, MA, USA). With constructing a

Animal and tumor models. BALB/c mice (~6–8 weeks old) were purchased from the Model Animal Research Center (MARC) of Nanjing University in China. All animal experiments were performed in compliance with the Guidelines established by the Institutional Animal Care and Use Committee (IACUC) of Nanjing University.

To establish tumors, HepG2 cells (2.0 × 106 cells, 50 μL) suspended in 50 v/v% mixture of Matrigel in supplemented DMEM (10% FBS, 1% pen/strep (100 U mL−1 penicillin and 100 μg mL−1 streptomycin)) were injected subcutaneously into the selected positions of nude mice. The tumor volume (V) was determined assuming ellipsoid shape with the formula of V = (l × w2)/2, where the length (L) and width (W) of each tumor was measured using a caliper. When the tumor volume reached about 12–100 mm3, fluorescence and afterglow imaging were conducted. To establish an orthotopic HCC model, a midline incision of the anterior abdominal wall was made. HepG2 cells transfected with luciferase (HepG2/Luc) (2 × 106, 100 μL saline) were carefully injected into the liver of mice under anesthesia by pentobarbital sodium. Tumor growths were monitored by BL imaging. After 2 weeks, mice with HCC model were successfully established for afterglow and fluorescence imaging.
standard curve in healthy blood by an internal standard method, the concentrations of H2S in whole bloods of healthy persons and HCC or CRC patients were obtained.

Imaging of human HCC specimens. HCC specimens were collected from the patients with HCC at Affiliated Drum Tower Hospital of Nanjing University (Nanjing, China). This study was approved by institutional review board of Affiliated Drum Tower Hospital of Nanjing University, and all subjects provided written informed consent under institutional review board prior to sample collection. HCC specimens were resected from four HCC patients. HCC specimens were infiltrated with F11-ANP-Gal (58/28/2.2 μg mL−1 F11-ANP (BF2−) MEH-PPV/NIR775) in PBS buffer for 3 h. The specimens were then rinsed with PBS buffer (1x, pH 7.4) three times to remove nonspecifically absorbed F11-ANP-Gal on the tissues. The specimens were irradiated with the 808-nm laser (1 W cm−2, 1 min). After removal of laser, the afterglow images were acquired on an IVIS Spectrum imaging system equipped with an open filter, with an acquisition time of 60 s. The fluorescence images were acquired with λex/em = 740/790 nm. ROIs were drawn over the tumor and adjacent normal liver tissues to quantify the fluorescence and afterglow intensities using the Living Image Software. The SBRs were calculated by dividing the fluorescence and afterglow intensities in tumor to that in normal liver tissues.

Immunohistochemistry studies. HCC tissues were fixed in 4% formalin and then embedded in paraffin before 10-μm sectioning. Histology samples were stained by H&E using a standard protocol. White light images were acquired using an IX73 optical microscope equipped with a color camera.

Statistical analysis. Results are expressed as the mean ± standard deviation unless otherwise stated. Statistical differences among experimental groups were analyzed by Student’s t test. P < 0.05 was considered statistically significant. All statistical calculations were performed using GraphPad Prism 6 including assumptions of tests used (GraphPad Software Inc., CA, USA).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 2b, f, i, h, i, 3d, g, e, f, 5c, d, f, g, 6b, c and 7e and Supplementary Figs. 24–i, 5c, l, 8, d, 9d, 11, 12b, 14c, d, 15, 16d, 17a–c, j, 18, 19b, d, 20b, d, 22, 21a, c, 23a, b, f, 24, 28b, d, 29b, c, 30b, 31, e, 32, 33, 35b, 37, 38b, 39d, 40d, 41d, 42c, d, 43b and 44 are provided as a Source Data file. The authors declare that all other data related to this study are available in the article and/or its Supplementary Information files or from the authors upon reasonable request.

Received: 5 August 2019; Accepted: 18 December 2019; Published online: 23 January 2020

References

1. Razgulin, A., Ma, N. & Rao, J. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem. Soc. Rev. 40, 4186–4216 (2011).

2. Zhang, J. et al. Fluorescent probes for disease-relevant enzymes. Chem. Soc. Rev. 48, 683–722 (2019).

3. Zhang, Y. et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat. Nanotechnol. 9, 631 (2014).

4. Huang, J., Li, J., Lyu, Y., Mao, Q. & Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).

5. Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

6. Moore, C., Chen, F., Wang, J. & Jkoster, J. V. Listening for the therapeutic window: advances in drug delivery utilizing photoacoustic imaging. Adv. Drug Delivery Rev. 144, 78–89 (2019).

7. Yan, R. et al. Activatable NIR fluorescence/MRI bimodal probes for in vivo imaging by enzyme-mediated fluorescent reaction and self-assembly. J. Am. Chem. Soc. 141, 10331–10341 (2019).

8. Palmer, M., Pu, K., Shao, S. & Rao, J. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).

9. Abdulkayum, A., Chen, J.-T., Zhao, Q. & Yan, X.-P. Functional near-infrared-emitting Cr3+/Pb2+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013).
37. Kolhuru, G. K., Shen, X., Bir, S. C. & Kevil, C. G. Hydrogen sulfide chemical biology: pathophysiologica roles and detection. *Nitric Oxide* 35, 5–20 (2013).

38. Das, A. et al. Impairment of an endothelial NADP⁺:H₂S signaling network is a reversible cause of vascular aging. *Cell* 173, 74–89 (2018).

39. Ning, N. et al. Dysregulation of hydrogen sulphide metabolism impairs oviductal transport of embryos. *Nat. Commun.* 5, 4107 (2014).

40. Zhou, Z. et al. Förster resonance energy transfer switchable self-assembled micellar nanoprobe: ratiometric fluorescent trapping of endogenous H₂S generation via flupastatin-stimulated upregulation. *J. Am. Chem. Soc.* 137, 8490–8498 (2015).

41. Sasakura, K. et al. Development of a highly selective fluorescence probe for hydrogen sulfide. *J. Am. Chem. Soc.* 133, 18003–18005 (2011).

42. Rhee, S. K. et al. A ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H₂S production in parkinson’s disease gene knockout astrocytes. *J. Am. Chem. Soc.* 135, 9915–9923 (2013).

43. Qian, Y. et al. Selective fluorescent probes for live-cell monitoring of sulphide. *Nat. Commun.* 2, 495 (2011).

44. Du, Z. et al. Quantitative monitoring and visualization of hydrogen sulfide in vivo using a luminescent probe based on a ruthenium(II) complex. *Angew. Chem. Int. Ed.* 57, 3999–4004 (2018).

45. Liu, Y. et al. Rationally designed pure-inorganic upconversion nanoprobes for ultra-highly selective hydrogen sulfide imaging and elimination in vivo. *Chem. Sci.* 10, 1193–1200 (2019).

46. Chen, Y. et al. A ratiometric fluorescent probe for rapid detection of hydrogen sulfide in mitochondria. *Angew. Chem. Int. Ed.* 52, 1688–1691 (2013).

47. Wu, L. et al. Engineering of electrochromic materials as activatable probes for molecular imaging and photodynamic therapy. *J. Am. Chem. Soc.* 140, 1630–16352 (2018).

48. Bhatia, M., Sidhapurivala, J. N., Wei Ng, S., Tamizhibeli, R. & Mooschala, S. M. Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis. *J. Cell. Mol. Med.* 12, 580–590 (2008).

49. Zhou, Y. et al. Inorganic–organic hybrid nanoprobe for NIR-excited imaging of hydrogen sulfide in cell cultures and inflammation in a mouse model. *Small* 10, 4874–4885 (2014).

50. Wu, D. et al. Hydrogen sulfide in cancer: friend or foe? *Nitric Oxide* 50, 38–45 (2015).

51. Shi, D.-T. et al. Selective fluorogenic imaging of hepatocellular H₂S by a galactosyl azidoanilphallalimide probe. *Chem. Commun.* 51, 3653–3655 (2015).

52. Wang, X. et al. A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells. *Chem. Sci.* 4, 2551–2556 (2013).

53. Lin, Y. S., Chen, W., Xian, M. & Chang, C. J. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. *Chem. Soc. Rev.* 44, 4596–4618 (2015).

54. Wang, F. et al. Realizing highly chemoselective detection of H₂S in vitro and in vivo with fluorescent probes inside core-shell silica nanoparticles. *Biomaterials* 159, 82–90 (2018).

55. Lin, Y. S., Lippert, A. R. & Chang, C. J. Cell-trappable fluorescent probes for endogenous hydrogen sulfide signaling and imaging H₂O₂-dependent H₂S production. *Proc. Natl. Acad. Sci. USA* 110, 7131–7135 (2013).

56. Adarsh, N., Krishnan, M. S. & Ramaiah, D. Sensitive naked eye detection of hydrogen sulfide and nitric oxide by Aza-BODIPY dyes in aqueous medium. *Anal. Chem.* 86, 9335–9342 (2014).

57. Qian, Y. et al. A fluorescent probe for rapid detection of hydrogen sulfide in blood plasma and brain tissues in mice. *Chem. Sci.* 3, 2920–2923 (2012).

58. Whitfield, N. L., Kreimier, E. L., Verdial, F. C., Skovgaard, N. & Olson, K. R. Reappraisal of H₂S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 294, 1930–1937 (2008).

Acknowledgements

Yuhua Zhu from Nanjing University for the help on fluorescence lifetime measurements is acknowledged. Financial supports from the National Key R&D Program of China (2017YFA0701301), National Natural Science Foundation of China (21922406, 21775071, and 21632008), Natural Science Foundation of Jiangsu Province (BK20190055), the Fundamental Research Funds for the Central Universities (20514380185), Excellent Research Program of Nanjing University (ZYTH004), CAS Key Laboratory of Receptor Research (SIMM1904YKF-03), and Grant-in-aid for Scientific Research on Innovation Areas “Middle molecular strategy” from MEXT (Japan) are acknowledged.

Author contributions

D.Y., T.S., and L.W. conceived the research plan. L.W., Y.I., W.Z., and Y.S. performed the experiments. K.S. and T.H. synthesized electrochromic materials. L.W., Y.I., T.S., and D.Y. analyzed the data. L.W., J.H., X.J., H.C., T.S. and D.Y. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-14307-y.

Correspondence and requests for materials should be addressed to T.S. or D.Y.

Peer review information *Nature Communications* thanks Xiaogang Liu, Xiaoyuan Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020