Review Article

Temperature Controlled Radiofrequency Ablation

Olaf J. Eick, PhD.
Sr. Scientist, Bakken Research Center Maastricht, the Netherlands

Address for correspondence: Olaf J. Eick, PhD, Sr. Scientist, Bakken Research Center Maastricht, the Netherlands. Email: olaf.eick@medtronic.com

Since its introduction in 1987, radiofrequency (RF) ablation has developed to become the treatment of choice for symptoms caused by atrioventricular (AV) reentrant tachycardia, isthmus related atrial flutter, AV-nodal reentrant tachycardia and to some extent also for certain types of ventricular tachycardias. The introduction of new cardiac activation mapping systems has further contributed to the successful and safe application of RF ablation for various tachyarrhythmias.

Historical Background

In 1979, the first catheter ablation was performed coincidentally when Fontaine et al. observed a complete AV block in a patient undergoing defibrillation while one defibrillator electrode was in electrical contact with a catheter electrode positioned at the bundle of His. In the early 80's high voltage direct current ablation was further developed by Gallagher and Scheinman and used as a therapeutic approach to treat supraventricular tachycardias. Although highly effective, direct current ablation was accompanied by severe complications such as cardiac tamponade, hypotension following shock delivery and the induction of ventricular arrhythmias, which stimulated the search for alternative energy sources. Huang et al. investigated in 1987 experimentally the use of radiofrequency energy for catheter ablation, followed by the first AV-node ablation by Budde et al. and the interruption of an accessory pathway by Borggreffe et al.

The advantages of radiofrequency energy as compared to direct current are the generation of well circumscribed lesions without stimulation or sensory effects. In order to more appropriately titrate radiofrequency power, catheter tip temperature monitoring was investigated experimentally in 1989 by Hindricks et al. and Haines et al. In 1992 Langberg et al. published their observations of using temperature monitoring with a thermistor embedded in the distal electrode during catheter ablation of accessory pathways in 20 patients. As a result of a constant power delivery, the tip temperature increased gradually to reach a steady state within a few seconds. Neither the applied power nor the electrogram characteristics at the ablation site (amplitude, signal stability) could predict tip temperature. Lower temperatures were found when transient blocks had been induced (50 ± 8°C) than when permanent blocks resulted in accessory pathway ablation (62 ± 15°C). Complications were not reported. Consequently, a closed loop temperature control system was introduced to regulate the applied power such that a preset target temperature could be reached and maintained during radiofrequency delivery. Calkins et al. reported in 1994 a multicenter experience with 270 consecutive patients undergoing catheter ablation of supraventricular arrhythmias. Compared to the power control mode, application of radiofrequency energy delivered using the temperature control mode was associated with a...
threefold reduction in the incidence of developing a coagulum and a fivefold reduction in the incidence of automatic power shutdown due to an impedance rise or an electrode temperature of greater than 100° C. Whether the target temperature was reached or not was related to the ablation site, with ablation of the atrioventricular junction resulting in the highest temperatures and ablation of AVNRT the lowest. In addition, the temperature of the applications of radiofrequency energy that resulted in successful ablation was not significantly different from the temperature of those that failed.

Tissue Heating

In RF ablation, the heating of cardiac tissue is mainly resistive. RF current is applied to the tissue via a metal electrode at the tip of the catheter, with a large skin electrode serving as indifferent electrode. The current density patterns in the tissue are determined by electrode size and geometry, electrode contact and local tissue properties. Also, of course, the current density will be proportional to the current (I) delivered by the RF generator, which, for constant resistance (R) of the electrode-tissue volume conductor is proportional to the square root of the RF power (P = I² R).

Current flow through a resistive medium causes heating, which is proportional to the square of the current or, locally, to the square of the local current density. The temperature increase will locally be proportional to the energy applied per second (local power), and increases inversely proportional to the heat capacity of the local medium. In addition, when temperature differences between adjacent areas develop because of differences in local current density or local heat capacity, heat will conduct from "hotter" to "colder" areas, causing the temperature of the former to decrease and that of the latter to increase. Additionally, heat loss to the blood pool at the surface and to intramyocardial vessels determine the temperature profile within the tissue.

Temperature Distribution

The heating occurs especially in the proximity of the active electrode due to its relatively small surface area causing locally high current density as compared to the site of the indifferent electrode. Typically, living tissue will be permanently destroyed at temperatures of approximately 45° to 50° C sustained for several seconds. The tissue surface is cooled by the blood flow and thus the highest temperature during radiofrequency delivery occurs slightly below the surface. In a numerical model, the temperature distribution during radiofrequency energy was simulated. The model described a 7 F electrode, 4 mm in length positioned perpendicularly to the tissue, and considered heat convection within the tissue and heat loss due to convective cooling. The catheter tip temperature rises rapidly at the beginning. It approached the target temperature (60° C) in about 2 to 3 s. Then the RF generator adjusted the delivered power to maintain the target temperature. When the ablation stopped, tip temperature dropped rapidly due to convective cooling by the blood flow. The
temperatures measured within the tissue (0.8 mm, 2.0 mm, and 2.9 mm) rose more slowly and after 30 s the temperature at 0.8 mm depth became higher than the electrode temperature.

Figure 1: Model for radiofrequency ablation simulating a 7 F electrode, 4 mm in length and positioned perpendicularly to the tissue. Heat convection within the tissue and heat loss due to convective cooling were considered and temperatures over time and distance were calculated by solving the appropriate heat equations.

The heating of cardiac tissue by radiofrequency current thus depends on the current density distribution in the tissue, the tissue's heat capacity and heat conduction properties and heat convection.

Catheter Tip Temperature

The catheter tip temperature in turn depends on the tissue temperature but also on convective cooling by the surrounding blood, and the tissue contact of the ablation electrode13-15. In addition, the measured catheter tip temperature depends on the electrode material with its heat capacity and the type and location of the temperature sensor. There are mainly 2 different types of temperature sensors, i.e. a thermocouple and a thermistor. The thermistor requires a driving current and the electrical resistance changes as the temperature of the electric conductor changes. More frequently used are thermocouples based on the so called 'Seebeck effect'. When 2 different metals are connected (sensing junction) a voltage can be measured at the reference junction that is proportional to the temperature difference between the 2 junctions. For temperature measurements during radiofrequency ablation typically type T thermocouples are being used that consist out of copper and constantan wires and are incorporated in the center of the ablation electrode.

Relation between Tip temperature, Tissue Temperature and Lesion Size

Radiofrequency current heats cardiac tissue and in turn the catheter electrode is being heated. Consequently, the catheter tip temperature is always lower - or ideally equal - than the superficial tissue temperature.

The catheter tip temperature, which is measured and used to control the radiofrequency power output, can be significantly lower than the tissue temperature16,17. Kongsgaard et al. evaluated the differences between tip temperature and tissue temperature in vitro for different catheter electrode dimensions and flow rates during temperature controlled radiofrequency delivery16. With a thermosensor placed approximately 1 mm beneath a 4 mm catheter, the temperature within the tissue was on average $42 \pm 6^\circ$C higher than at the electrode tip after 30
seconds radiofrequency delivery with a preset target temperature of 70° C.

Only under standardized and stable experimental conditions of flow and electrode-tissue contact the tip temperature correlates to lesion size because increasing target temperature then increases power consumption and in turn increases lesion size \(^7,14\).

Figure 2: Temperature behavior over time at the electrode tip and 1, 3 and 5mm deep within the tissue for different flow conditions (a, high flow; b, intermediate flow and c, no flow) with a target temperature of 70° C, i.e. a temperature increase of 33° C and power limit of 50 W.

During temperature controlled radiofrequency ablation tip temperature, tissue temperature and lesion size are affected by electrode-tissue contact and cooling effects by the blood flow. Petersen et al. investigated the effect of convective cooling on lesion dimensions \(^18\). In vivo, 2 different application sites in the left ventricle of pigs were ablated with a target temperature of 80° C using a 4 mm tip catheter. With higher convective cooling at septal sites,
the delivered power to reach target temperature was higher resulting in deeper and greater lesions than at apical sites. The applied power was positively related to lesion volume ($r = 0.66$) whereas the measured tip temperature was not ($r = -0.49$).

It is important to understand that radiofrequency power delivered to the tissue determines lesion size and that the catheter tip temperature is poorly correlated to lesion size in vivo. With good contact between catheter tip and tissue and low cooling of the catheter tip the target temperature can be reached with little power resulting in fairly small lesions although a high tip temperature is being measured. In contrast, a low tip temperature can be due to a high level of convective cooling resulting in high power consumption to reach target temperature yielding relatively large lesions. This is best illustrated with active cooling of the catheter tip using irrigation during radiofrequency energy delivery. The tip temperature is usually below 40° C but that allows the application of high power output for longer durations.

Nakagawa et al. compared the lesion dimensions produced with saline-irrigated electrodes with those produced with non-irrigated electrodes in a canine thigh muscle preparation19. With saline irrigation at 20 ml/min high radiofrequency voltage (66V) could be applied over 60 s resulting in lesion volumes of $700 \pm 217 \text{ mm}^3$, whereas constant radiofrequency delivery was terminated prematurely due to an impedance rise at tip temperatures of nearly 100° C resulting in lesions of only $135 \pm 33 \text{ mm}^3$. In the temperature controlled mode with a target temperature of 80° C lesions with a volume of $275 \pm 55 \text{ mm}^3$ were produced. These results were further confirmed in an animal study performed by Skrumeda et al. who reported significantly larger lesions using irrigation during constant power delivery as compared to non-irrigated ablations either in temperature or power controlled mode20.

With high irrigation flow rates catheter tip temperature is not representative for tissue temperature and therefore feedback cannot be used to control power output. However, Petersen et al. demonstrated the feasibility of tip temperature controlled irrigated radiofrequency delivery with low irrigation flow rates yielding larger lesions compared to non-irrigated ablations21.

A similar effect can be observed with large tip electrodes. With large electrode tips a larger area of the electrode tip is exposed to the blood flow than with standard tip lengths resulting in higher power consumption and lower tip temperatures yielding larger lesions22.

In addition to cooling effects, the electrode tissue-contact affects the catheter tip temperature and the difference between tip temperature and tissue temperature. Avitall et al. evaluated the influence of electrode tissue contact on temperature rise and lesion size under stable flow conditions in an in vivo animal model during constant power delivery23. They demonstrated a higher temperature rise within the first 10 seconds and an increase in lesion volume with improving electrode-tissue contact.

With poor contact between electrode tip and tissue less electrode material is in contact with the tissue and heating of the tip by the tissue occurs at a smaller rate resulting in relatively low tip temperatures. As a consequence, the RF generator increases power output in order to reach target temperature.

If the electrode-tissue interface temperature increases above the boiling point due to inadequately high power delivery, any liquids under the electrode will boil and vapor will form causing a popping sound. This is often associated with sudden impedance rise and catheter dislodgment and may cause significant tissue damage17,24. As evaporation may also occur intramurally, a gas bubble may develop within the tissue under the electrode. Continuous application of radiofrequency energy will cause the bubble to expand and its pressure to increase, which may lead to eruption of the gas bubble through the weakest path, leaving behind a gaping hole. The release of the gas bubble is associated with a popping sound and likely with tearing of cardiac tissue25. Furthermore, if blood is between the electrode and the tissue during delivery of radiofrequency energy, a rapid increase in temperature may result in coagulum formation on the metallic surface of the electrode. Coagulum formation, in turn, causes a rapid increase in voltage across the rising impedance, which may result in arcing and tissue charring.
Olaf J. Eick, “Temperature Controlled Radiofrequency Ablation”

Outlook

Since catheter tip temperature is affected by cooling effects and electrode-tissue contact it would be ideal to monitor in real time the tissue temperature during radiofrequency energy delivery. Recently, it was shown in an in vitro study that the lesion size becomes less dependent from cooling effects and electrode-tissue contact if the radiofrequency power is controlled by the tissue temperature instead of the catheter tip temperature \(^2\). An extractable needle that measures the tissue temperature at a certain depth may allow tissue temperature feedback to the RF generator. Erdogan et al. suggested to measure an electrochemical potential at the ablation electrode that detects the release of free radicals during lesion generation \(^3\). In vitro they could demonstrate that this potential correlates to lesion size. In addition, new technologies may be implemented in the future including infrared sensors and ultrasound transducers to monitor tissue temperatures during radiofrequency delivery.

Conclusion

Monitoring catheter tip temperature and closed loop control of power output are useful to avoid excessive heating at the tissue surface, that may result in coagulum formation, and to accomplish effective heating at the target area. However, the catheter tip temperature is affected by cooling effects and electrode-tissue contact and thus poorly correlated to lesion size. New means should be developed to assess tissue temperatures during radiofrequency delivery to achieve predictable and reproducible lesions.

References

1. Vedel J, Frank R, Fontaine G, Grosogoeat Y. Bloc auriculoventriculaire intra-hisien definitif induit au cours d'une exploration endoventriculaire droite. Arch Mal Coer 1978; 72:107-12.

2. Gallagher JJ, Svenson RH, Kasell JH et al. Catheter technique for closed-chest ablation of the atrioventricular conduction system. N Engl J Med 1982 Jan.; 306(4):194-200.

3. Scheinman MM, Morady F, Hess DS, Gonzalez R. Catheter-induced ablation of the atrioventricular junction to control refractory supraventricular arrhythmias. JAMA 1982 Aug.; 248(7):851-5.

4. Huang SK, Bharati S, Graham AR et al. Closed chest catheter desiccation of the atrioventricular junction using radiofrequency energy--a new method of catheter ablation. J Am Coll Cardiol 1987 Feb.; 9(2):349-58.

5. Budde T, Breithardt G, Borggrefe M et al. Initial experiences with high-frequency electric ablation of the AV conduction system in the human. Z Kardiol 1987 Apr.; 76(4):204-10.

6. Borggrefe M, Budde T, Podczeck A, Breithardt G. High frequency alternating current ablation of an accessory pathway in humans. J Am Coll Cardiol 1987 Sept.; 10(3):576-82.

7. Haines DE, Watson DD. Tissue heating during radiofrequency catheter ablation: a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall. Pacing Clin Electrophysiol 1989 June; 12(6):962-76.

8. Langberg JJ, Calkins H, El-Atassi R et al. Temperature monitoring during radiofrequency catheter ablation of accessory pathways. Circulation 1992 Nov.; 86(5):1469-74.

9. Calkins H, Prystowsky E, Carlson M et al. Temperature monitoring during radiofrequency catheter ablation procedures using closed loop control. Atakr Multicenter Investigators Group.
Circulation 1994 Sept.; 90(3):1279-86.

10. Erez A, Shitzer A. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation. J Biomech Eng 1980 Feb.; 102(1):42-9.

11. Eick OJ. Development and Validation of a Model for Radiofrequency Ablation. Biomed Tech (Berl) 1999 June; 44(6):163-71.

12. Cao H, Vorperian VR, Tsai JZ et al. Temperature measurement within myocardium during in vitro RF catheter ablation. IEEE Trans Biomed Eng 2000 Nov.; 47(11):1518-24.

13. Haines DE. Determinants of lesion size during radiofrequency catheter ablation: The role of electrode-tissue contact pressure and duration of energy delivery. J Cardiovasc Electrophysiol 1991; 2:509-15.

14. Eick OJ, Wittkampf FH, Bronneberg T, Schumacher B. The LETR-Principle: a novel method to assess electrode-tissue contact in radiofrequency ablation. J Cardiovasc Electrophysiol 1998 Nov.; 9(11):1180-5.

15. Nakagawa H, Wittkampf FH, Yamanashi WS et al. Inverse relationship between electrode size and lesion size during radiofrequency ablation with active electrode cooling. Circulation 1998 Aug.; 98(5):458-65.

16. Kongsgaard E, Steen T, Jensen O et al. Temperature guided radiofrequency catheter ablation of myocardium: comparison of catheter tip and tissue temperatures in vitro. Pacing Clin Electrophysiol 1997 May; 20(5 Pt 1):1252-60.

17. Haines DE, Verow AF. Observations on electrode-tissue interface temperature and effect on electrical impedance during radiofrequency ablation of ventricular myocardium. Circulation 1990 Sept.; 82(3):1034-8.

18. Petersen HH, Chen X, Pietersen A et al. Lesion size in relation to ablation site during radiofrequency ablation. Pacing Clin Electrophysiol 1998 Jan.; 21(1 Pt 2):322-6.

19. Nakagawa H, Yamanashi WS, Pitha JV et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 1995 Apr.; 91(8):2264-73.

20. Skrumeda LL, Mehra R. Comparison of standard and irrigated radiofrequency ablation in the canine ventricle. J Cardiovasc Electrophysiol 1998 Nov.; 9(11):1196-205.

21. Petersen HH, Chen X, Pietersen A et al. Tissue temperatures and lesion size during irrigated tip catheter radiofrequency ablation: an in vitro comparison of temperature-controlled irrigated tip ablation, power-controlled irrigated tip ablation, and standard temperature-controlled ablation. Pacing Clin Electrophysiol 2000 Jan.; 23(1):8-17.

22. Petersen HH, Chen X, Pietersen A et al. Lesion Dimensions During Temperature-Controlled Radiofrequency Catheter Ablation of Left Ventricular Porcine Myocardium. Circulation 1999 Jan.; 99:319-25.

23. Avital B, Mughal K, Hare J et al. The effects of electrode-tissue contact on radiofrequency lesion generation. Pacing Clin Electrophysiol 1997 Dec.; 20(12 Pt 1):2899-910.

Indian Pacing and Electrophysiology Journal (ISSN 0972-6292), 2(3): 66-73 (2002)
24. Eick OJ, Gerritse B, Schumacher B. Popping Phenomena in Temperature Controlled Radiofrequency Ablation: When and Why do they Occur ? Pacing Clin Electrophysiol 2000; 23(2):253-8.

25. Avitall, B., Morgan, M, Hare, J, Khan, K, and Lessila, C. Intracardiac explosions during radiofrequency ablation: histopathology in the acute and chronic dog model. (Abstract) Circulation 1992; 86: I-191.

26. Eick OJ, Bierbaum D. Tissue Temperature Controlled Radiofrequency Ablation. Pacing Clin Electrophysiol. In press.

27. Erdogan A, Carlsson J, Grumbrecht S et al. Electrochemical potentials during radiofrequency energy delivery: a new method to control catheter ablation of arrhythmias. Europace 2001 July; 3(3):201-7.