A meta-analysis of ECG abnormalities (arrhythmia) in cardiomyopathies

Aref Albakri*
St-Marien Hospital Bonn Venusberg, Department of Internal Medicine, Bonn, Germany

Abstract
An electrocardiogram (ECG) is an important diagnostic test recommended for individuals with a clinical suspicion of heart disease. The primary diagnostic role is the assessment of the strength and time of electrical activity in the heart. It is also the most common test for the diagnosis of arrhythmias, which are disturbances in the heart rhythm and rate. An ECG test is recommended for patients with cardiomyopathy (CM) and heart failure (HF). The two are distinct but related cardiac disease entities, in which HF is the final sequela to CM, which is a progressive heart muscle disease. Although arrhythmias are prevalent in both CM and HF, few studies have investigated them as the primary objective. In the present pooled analysis of 66 studies (HF=26; CM=40), atrial fibrillation (AF), ventricular tachycardia (VT) and premature ventricular contractions (PVC) are the most common arrhythmias. The prevalence of AF is higher in HF (32.7%) compared to CM (19.2%) possible due to higher mean age in HF patients (71.8 years) compared to CM (42.7 years) because AF correlates with age. However, the prevalence of VT and PVC is much higher in CM patients (38.0% and 56.6%) compared to HF (3.7% and 13.3%). In both HF and CM, the ECG test is more useful on the differential diagnosis of arrhythmogenic right ventricular cardiomyopathy (ARVC), where it can differentiate ARVC from right ventricular outflow tract induced VT. In addition to diagnostic value, ECG-assessed arrhythmias can guide therapeutic intervention since AF and VT can be life-threatening and may require specific antiarrhythmic therapy.

Introduction
The electrocardiogram (ECG) is an important initial test used to detect and record the strength and time of the activation and propagation of cardiac electrical signals. It produces a graphical output that depicts each phase of the electrical signal as it travels throughout the heart. The graphical output provides information about cardiac rhythm and rate, and any aberration of the cardiac electrical conduction system [1]. Besides assessing electrical activity, the ECG is the mainstay of initial diagnostic tests for arrhythmias, which are disorders of the cardiac rhythm and rate. The detection of arrhythmias has important prognostic and therapeutic implications for patients with heart problems [2]. They are associated with an ominous prognosis and challenges in the efficacy of guideline-directed heart failure therapies. The ECG is one of the initial tests recommended for patients suspected or confirmed with cardiomyopathies (CM) and heart failure (HF).

Clinical distinction between CM and HF within the context of diagnosis and therapy has not been elucidated, and within the same context, the two terms have been used interchangeably. However, CM and HF are two very distinct, but related cardiac disease entities. On the one hand, CM is a spectrum of heterogeneous myocardial disorders that can potentially impair the normal functioning of the heart. In CM, the myocardium can become thin and stretched (dilated CM [D CM]), thickened (hypertrophy CM [HCM]), rigid and stiffened (restrictive CM [RCM]), thickened and spongy (left ventricular non-compaction CM [LVNC]), and fibrous and fatty (arrhythmogenic right ventricular CM [ARVC]) [2,3]. These variations of the structure of the myocardium form the basis of its primary classifications into DCM, HCM, RCM, LVNC, and ARVC. Each of these primary forms can be further subclassified into familial and non-familial forms, or into aetiological forms [2,3].

On the other hand, HF is the final and most severe sequelae to CM. Typically, CM affects the myocardium and progressively limits cardiac ability to contract and/or relax normally. When CM progresses, it compromises the pumping function of the heart leading to the development of HF, where the heart is unable to pump sufficient blood to meet the metabolic demands of tissues. The European Society of Cardiology (ESC) defines HF as a clinical syndrome characterized by typical symptoms of dyspnoea, oedema and fatigue, accompanied by signs of elevated jugular venous pressure, pulmonary crackles and peripheral oedema in the setting of structural and/or functional cardiac abnormalities [4]. The definition restricts itself within the symptomatic stages of HF and excludes the pre-clinical stage, which may manifest with asymptomatic systolic or diastolic LV dysfunction. Since HF is a sequela to CM, the pre-clinical stage may even suggest CM, further complicating the clinical distinction between the two disease entities.

In both CM and HF, ECG-detected arrhythmias are common, and usually portend an ominous prognosis, and in most cases, may require targeted preventive or curative therapies. However, differences in the prevalence, frequency, and types of arrhythmias in CM and HF have not been well-documented possibly because both disease entities rely on similar diagnostic and therapeutic approaches [3,4]. Nonetheless, the awareness of the prevalence of certain types of arrhythmias in the two disease entities is important to refine diagnostic tests and therapy, in turn, contributing to cost-efficient use of scarce clinical resources.
resources [2]. Thus, the present meta-analysis seeks to compare the use of ECG for the detection of arrhythmias in CM and HF patients. Unfortunately, due to a lack of studies that directly compare CM and HF, this meta-analysis compares findings from studies evaluating HF and studies evaluating CM. The intention is to get an insight into the commonly studied types of arrhythmias and their prevalence in both disease entities. The awareness of arrhythmias affecting the two disease entities has important clinical implications since it will deepen our understanding about them, and consequently guide in the selection of the most efficacious interventions and an overall improvement in the management of CM and/or HF.

Study selection

The present meta-analysis is a comparison of the findings of two previous unrelated meta-analyses on ECG-detected arrhythmias in HF and CM patients, respectively. The comparison is expected to give an insight into the differences in arrhythmic manifestations in the two cardiac disease entities in the absence of randomized controlled trials (RCTs) that directly compare the two diseases. In a synopsis, studies included in the two previous meta-analyses were searched in PubMed, and key journals in the field of cardiology, and complemented with a review of the top 100 results from Google Scholar, and references of articles and review papers. The inclusion criteria were studies that specifically recruited patients with CM or HF as per the current diagnostic guidelines, used ECG in the initial assessment, and reported the overall number, frequency or percentage of patients with arrhythmias. In both studies, the outcome of interest was the frequency of the different types of arrhythmias in different structural forms of CM and HF, respectively.

Study findings

Study characteristics

The total number of studies included in the two meta-analyses was 66, consisting of 26 studies [5-30] evaluating arrhythmias in HF and 40 studies [31-70] evaluating arrhythmias in CM. The HF studies had a total patient population of 147,318 with an equal gender representation (male=65.3%, female=34.7%) and an average age=61.7±15.03 years. The main types of HF evaluated were thyrotoxic HF, HFrEF, ischemic HF, HfPEF, HfMfE, hypertensive, right HF, and systolic HF. In the other hand, the CM studies had a smaller total population of 6,601 patients, relatively younger (42.7±15.3 years) and with a male preponderance (male=65.3%). Unlike HF studies that comprised of prospective, retrospective and registry, CM studies comprised of prospective, retrospective, and cross-sectional. In both meta-analyses, the most common ECG-detected arrhythmias were atrial fibrillation (AF), ventricular tachycardia (VT) and premature ventricular contraction (PVC), also known as ventricular extrasystoles or ventricular premature beats. Although other arrhythmias types were also mentioned, the data was insufficient to support a pooled analysis. Besides, arrhythmias that do not have significant implications on prognosis and therapy have not attracted sufficient studies compared to AF, VT and PVCs.

ECG-detected arrhythmias

Atrial fibrillation: In HF studies, AF was the most studied arrhythmia, with all the 26 studies listing the presence of AF in the initial ECG-based cardiac evaluation. The overall prevalence of AF was about a third (32.7%; 95% CI: 32.5% to 33.0%; Figure 1) of all the patients presenting with HF. The highest prevalence was among hypertensive HF (46.5%; 95% CI: 44.4% to 48.6%), and HFrEF patients (40.3%; 95 CI: 39.7% to 41.0%) while the least was in Thyrotoxic HF (6.7%; 95% CI: 5.1% to 8.8%) and high output HF (19.0%; 95% CI: 13.9% to 25.4%). Table 1 presents a summary of the prevalence of AF in different types of HF.

Similarly, in CM studies, AF was the most common reported arrhythmia in 67.5% of the included studies but with a much lower overall prevalence relative to HF (12.8%; 95% CI: 9.9% to 16.3%; Figure 2). In the primary types of CM, the highest prevalence was among RCM patients (19.2%; 95% CI: 7.3% to 41.8%) followed by DCM (15.2%; 95% CI 11.4% to 20.1%). The lowest prevalence was among ARVC patients (3.3%; 95% CI 1.2% to 9.1%) and LVNC (7.7% (95% CI 2.3% to 22.9%). Table 2 presents a summary of AF prevalence among primary structural forms of CM.

Ventricular tachycardia: Although VT is a potentially lethal arrhythmia, it was reported in only two HF studies [20,30] recruiting 3,360 patients, of which 94 had ECG-detected VT, a prevalence rate of 3.7% (95% CI: 3.0 to 4.5%). The prevalence could be higher since the majority of studies reported VAs in general without listing the specific clinical types. In the two studies, VT was f in patients with HFrEF, hypertensive HF and right HF (Figure 3).

In contrast, more studies, 72.5% reported VT in 1,107 CM patients out of 3,079, translating into a prevalence of 38.0% (95% CI: 33.5% to 42.7%), which is ten-fold higher than that reported in HF patients. Unlike HF, VT in CM was detected in all the five primary types of CM – ARVC, DCM, HCM, LVNC and RCM. The prevalence was the highest in ARVC (59.4%; 95% CI: 47.5% to 70.3%), followed by DCM (53.4%; 95% CI 24.8% to 41.2%), HCM (22.9%; 95% CI 15.4% to 32.8%), LVNC (20.2%; 95% CI 13.0% to 30.1%), and RCM (10.1%; 95% CI 0.1% to 9.2%) (Figure 4).

Premature ventricular contractions: In HF patients, only five (5) studies (19.2%) reported ECG-detected cases of PVCs on index admission [7,13,23,26,30]. Overall, PVCs were confirmed in 150 out of 1,389 HF patients diagnosed with HfPEF, hypertensive HF, ischemic HF, systolic HF and thyrotoxic HF. The overall prevalence was 13.3% (95% CI: 11.4% to 15.4%) (Figure 5).

In CM patients, eleven (11) studies or 27.5% [31,32,38,34,56,59,61,45,64,65] reported cases of PVCs in 434 patients out of a total of 8,282 patients at index admission. The overall prevalence was 56.6% (95% CI: 49.9% to 63.1%) (Figure 6), which is more than four-fold the prevalence reported in HF patients.

Discussion

ECG-detected arrhythmias are a common manifestation in patients with CM and HF as well as in other forms of heart diseases [1]. However, current evidence does not support the broad application of ECG tests in the general population because of the high probability of misinterpretation [4]. In HF and CM patients, the detection of arrhythmias in these patients is important since they portend an unfavourable prognosis and usually require adjunctive therapy to the guideline-directed evidence-based HF treatment [5-7]. Despite the high prevalence and clinical implications of arrhythmias in CM and HF patients, studies with an original aim of evaluating arrhythmias in patients with CM or HF are lacking. Most studies only provide the frequency or percentage of patients presenting with arrhythmias at index admission or after follow-up in studies evaluating the therapeutic efficacy of various clinical interventions for arrhythmias. Other studies examine the prognostication in all patients presenting with arrhythmias, the effect of arrhythmias on the efficacy of HF therapies.
Atrial Fibrillation in HF: Event Rate and 95% CI

Study name	Group by	Events/Total	Statistics for each study	Event rate and 95% CI	
	Subgroup within study	Total	Event rate	Lower limit	Upper limit
QWTO-HF (22)	HFmEF	15/23 / 25083	0.020	0.267	0.284
Karayes, 2005 [19]	HFmEF	15/23 / 50083	0.020	0.270	0.284
QWTO-HF (22)	HFpEF	19 / 71	0.141	0.077	0.242
Stegmayr, 1998 [16]	HFpEF	19/72 / 40425	0.340	0.335	0.344
Cullen, 2002 [11]	HFpEF	502 / 949	0.518	0.529	0.549
Karayes, 2005 [19]	HFpEF	5 / 42	0.130	0.098	0.337
Karmont, 2003 [14]	HFpEF	1 / 3	0.297	0.132	0.398
Karayes, 2005 [19]	HFpEF	15 / 79	0.190	0.118	0.291
Connolly, 2011 [16]	HFpEF	58/66 / 5951	0.690	0.677	0.792
Khandel, 2011 [17]	HFpEF	43 / 207	0.206	0.158	0.259
Daoud, 2014 [18]	HFpEF	121 / 523	0.311	0.157	0.209
EMRS II [20]	HFpEF	833 / 2319	0.375	0.362	0.388
AHEAD [21]	HFpEF	524 / 2421	0.283	0.268	0.302
QWTO-HF (22)	HFpEF	5162 / 51814	0.340	0.332	0.348
AHEAD [21]	High Output	54 / 179	0.150	0.130	0.254
ATTEND [19]	High Output	96 / 279	0.284	0.350	0.428
EMRS II [20]	High Output	152 / 497	0.323	0.232	0.422
Balleine, 2010 [20]	HFpEF	9 / 38	0.231	0.157	0.309
Balleine, 2010 [20]	HFpEF	9 / 42	0.228	0.189	0.281
Balleine, 2010 [20]	HFpEF	9 / 103	0.230	0.210	0.259
EMRS II [20]	Right HF	60 / 113	0.694	0.491	0.671
AHEAD [21]	Right HF	50 / 151	0.330	0.138	0.262
Hudelson, 2002 [24]	HFpEF	50 / 209	0.145	0.117	0.199
Khan, 2007 [25]	HFpEF	248 / 1931	0.297	0.258	0.278
Dukic, 2008 [26]	HFpEF	21 / 147	0.143	0.124	0.163
Oster, 2016 [27]	HFpEF	17 / 400	0.326	0.237	0.415
Amb, 2017 [28]	HFpEF	30/59 / 3974	0.372	0.382	0.392
Yen, 1995 [4]	HFpEF	4 / 135	0.029	0.011	0.076
Dorent, 2007 [29]	HFpEF	22 / 383	0.057	0.034	0.084
Seppala, 2013 [7]	HFpEF	8 / 72	0.111	0.030	0.173
Goyal, 2018 [8]	HFpEF	3 / 50	0.060	0.019	0.170
Balleine, 2018 [9]	HFpEF	12 / 103	0.117	0.067	0.164
Overall	HFpEF	46917 / 147212	0.327	0.313	0.330

Heterogeneity: Q = 4453.435; df(Q) = 32(p=0.000); Inconsistency (I-Squared) = 99.281%

Figure 1. Prevalence of atrial fibrillation in heart failure

Table 1. Atrial fibrillation event rate in heart failure types

HF Type	Positive Cases	Total Cases	Event Rate (%)	95% CI	Studies
Hypertensive HF	1,130	2,401	46.5	44.4 to 48.6	19-30
HFmEF	11,197	27,504	40.3	39.7 to 41.0	10-22
Right HF	96	269	37.9	31.8 to 44.5	20-21
HFpEF	13,730	40,425	34.0	33.5 to 34.4	13-22
SYSTOLIC HF	6,227	19,765	31.9	31.3 to 32.6	24-28
HFmEF	15,423	55,683	28.0	27.6 to 28.4	22
Ischemic HF	191	803	23.8	21.0 to 26.9	12-23
High Output HF	34	179	19.0	13.9 to 25.4	21
Thyrotoxic HF	47	753	6.7	5.1 to 8.8	5-9
Overall	48,075	147,212	32.7	32.5 to 33.0	5-30

HF: Heart Failure; HFmEF: Heart Failure with Mid-range Ejection Fraction; HFpEF: Heart Failure with Reduced Ejection Fraction; HFmEF: Heart Failure with Preserved Ejection Fraction; HFpEF: Heart Failure with Reduced Ejection Fraction
Table 2. Atrial fibrillation event rate in cardiomyopathy types

CM Type	Positive Cases	Total Cases	Event Rate (%)	95% CI	Studies
RCM	127	514	19.2	7.3 to 41.8	63-70
DCM	151	870	15.2	11.4 to 20.1	31-35,37-39
HCM	454	2,934	8.0	3.1 to 19.0	40,42,44,46
LVNC	23	398	7.7	2.3 to 22.9	48-50,52
ARVC	8	295	3.3	1.2 to 9.1	53,55
Overall			12.8	9.9 to 16.3	31-70

Atrial Fibrillation in CM: Event Rate and 95% CI

Study name	Comparison	Statistics for each study	Event rate and 95% CI
Roccu, 1996 [53]	ARVC		
Peters, 2003 [55]	ARVC		
Von der Haarling, 1984 [31]	DCM		
Keil, 1986 [32]	DCM		
Grannum, 2000 [33]	DCM		
Grannum, 2003 [34]	DCM		
Kuri, 2017 [35]	DCM		
Kapoor, 2018 [37]	DCM		
Shaik, 2019 [38]	DCM		
Boukila, 2019 [39]	DCM		
Saupe, 1978 [40]	HCM		
Billiot, 2000 [42]	HCN		
Dumont, 2004 [44]	HCN		
Molend, 2009 [45]	HCN		
Geetha, 2010 [46]	LVNC		
Murphy, 2005 [48]	LUND		
Callester, 2011 [50]	LUND		
D’Arcy, 2012 [52]	LVNC		
Ben de, 1980 [53]	RCI		
Fait, 1984 [54]	RCI		
Ambrus, 2008 [55]	RCI		
Rahman, 2004 [56]	RCI		
Khayesi, 2017 [57]	RCI		
Okimoto, 2019 [58]	RCI		
Cheng, 2013 [59]	RCI		
Omir, 2019 [70]	RCI		

Heterogeneity: Q = 278.26; df(Q) = 26(p=0.000); Inconsistency (I-Squared) = 91.915%

Figure 2. Prevalence of atrial fibrillation in cardiomyopathy

Ventricular Tachycardia in HF: Event Rate and 95% CI

Study name	Group by	Statistics for each study	Event rate and 95% CI
EHFS II [20]	HVEF		
EHFS II [20]	HVEF		
SUH, 2010 [30]	Hypertensive HF		
SUH, 2010 [30]	Hypertensive HF		
EHFS II [20]	Right HF		
EHFS II [20]	Right HF		
Overall			

Heterogeneity: Q = 154.256; df(Q) = 3(p=0.000); Inconsistency (I-Squared) = 98.865%

Figure 3. Prevalence of ventricular tachycardia in heart failure
Albakri A (2020) A meta-analysis of ECG abnormalities (arrhythmia) in cardiomyopathies

Ventricular Tachycardia in CM: Event Rate and 95% CI

Study name	Comparison	Total Event rate	Lower limit	Upper limit	
Bases, 1996 [63]	ARVC	15/20	0.500	0.328	0.672
Harir, 2000 [54]	ARVC	63/130	0.497	0.327	0.540
Rieder, 2003 [55]	ARVC	112/205	0.548	0.450	0.658
Neave, 2004 [66]	ARVC	112/205	0.548	0.450	0.658
De Cobelli, 2006 [57]	ARVC	14/23	0.093	0.042	0.192
Gharbi, 2010 [59]	ARVC	30/168	0.441	0.325	0.558
Kerem, 2011 [80]	ARVC	59/59	0.992	0.980	0.999
Hoffmayr, 2011 [81]	ARVC	41/60	0.594	0.475	0.705
Seravelli, 2012 [82]	ARVC	41/60	0.594	0.475	0.705
Von Ohlenhausen, 164 [51]	DCM	25/50	0.417	0.290	0.544
Nevi, 1986 [52]	DCM	20/33	0.466	0.351	0.586
Grima, 2000 [53]	DCM	73/202	0.347	0.254	0.415
Gramm, 2003 [44]	DCM	111/243	0.324	0.276	0.375
Kaberle, 2010 [57]	DCM	6/50	0.100	0.046	0.205
Sahai, 2010 [36]	DCM	3/10	0.100	0.033	0.200
Breen, 2019 [58]	DCM	28/189	0.467	0.345	0.592
Corrado, 1999 [43]	DCM	27/202	0.282	0.208	0.356
Blett, 2000 [42]	DCM	30/168	0.441	0.325	0.558
Suchard, 2006 [43]	DCM	17/102	0.346	0.254	0.435
Duffield, 2005 [44]	DCM	6/70	0.093	0.042	0.192
Ashcroft, 2006 [45]	DCM	5/70	0.071	0.025	0.126
Chir, 1999 [47]	DCM	20/153	0.109	0.046	0.205
Gecckic, 2000 [48]	DCM	14/54	0.412	0.351	0.511
Narang, 2005 [49]	DCM	10/45	0.222	0.154	0.300
Calabrese, 2011 [60]	DCM	17/77	0.221	0.142	0.327
Calabrese, 2012 [61]	DCM	5/20	0.100	0.046	0.192
Desilets, 2013 [52]	DCM	42/242	0.174	0.113	0.232
Calabrese, 2016 [60]	DCM	59/146	0.200	0.150	0.250
Falk, 1986 [84]	DCM	14/27	0.412	0.351	0.511
Okamoto, 2011 [88]	DCM	1/104	0.010	0.001	0.005
151/131		0.430	0.355	0.501	

Heterogeneity: Q = 292.752; df(Q) = 28(p=0.000); Inconsistency (I-Squared) = 90.436%

Figure 4. Prevalence of ventricular tachycardia in cardiomyopathy

Ventricular Premature Contractions in HF: Event Rate and 95% CI

Study name	Subgroup within study	Total Event rate	Lower limit	Upper limit
Karas, 2008 [13]	HFpEF	0.099	0.048	0.193
Karas, 2008 [13]	HFpHEF	0.099	0.048	0.193
Karas, 2008 [13]	HFpHEF	0.099	0.048	0.193
Sultana, 2010 [30]	Hypertrophic HF	0.084	0.012	0.171
Sultana, 2010 [30]	Hypertrophic HF	0.084	0.012	0.171
Bocorets, 2005 [23]	Ischemic HF+DID	0.197	0.161	0.238
Bocorets, 2005 [23]	Ischemic HF+DID	0.197	0.161	0.238
Devkota, 2016 [26]	Systolic HF	0.172	0.121	0.239
Devkota, 2016 [26]	Systolic HF	0.172	0.121	0.239
Yen, 1990 [8]	Thyroxic HF	0.010	0.004	0.027
Yen, 1990 [8]	Thyroxic HF	0.010	0.004	0.027
Stal, 2013 [7]	Thyroxic HF	0.026	0.009	0.055
Stal, 2013 [7]	Thyroxic HF	0.026	0.009	0.055
150/1389		0.120	0.114	0.154

Heterogeneity: Q = 58.247; df(Q) = 6(p=0.000); Inconsistency (I-Squared) = 89.699%

Figure 5. Prevalence of premature ventricular contractions in heart failure
or the prevalence and prognosis of arrhythmias in generally critically ill patients.

On the other hand, studies that evaluate ECG as a diagnostic tool in CM or HF patients mainly emphasize on the presence of ECG abnormalities since it is very unlikely for CM and HF patients to have normal ECG findings [4-6]. The most important ECG features indicating problems in electrical activation or propagation are vector information – P, QRS and T waves – that may assist in detecting cardiac chamber enlargement and other related changes [71]. For instance, left atrial (LA) enlargement can cause characteristics P wave changes. In patients with cardiac enlargement that improves in a relatively short period, R wave height may first increase and then decrease. Tissue oedema may be the underlying reason for the first increase and the distance between the recording electrode and the heart for the subsequent decrease, but other factors may modify such findings. Minor electrical conduction disturbances secondary to myocardial stretch may contribute to changes in the QRS complex. A decrease in the variability of RR intervals may also help to characterize cardiac problems [71].

Atrial fibrillation

Both HF and CM are primary cardiac diseases whose progression has been associated with an elevated risk of developing arrhythmias, especially in patients with co-existing ischemic heart disease [7-10]. Although arrhythmias are mostly a consequence of the two diseases, they can also be the causative agent as in the case of tachycardia- and PVCs-induced CM. Among arrhythmias, AF has been prevalent in both HF and CM patients, and presents a challenge to the managing clinician because of the increased risk of thromboembolic stroke and cardiac death [2,4].

The present findings indicate AF is the most studied arrhythmia in both CM and HF patients. Research focus on AF increased significantly after the publication of the Framingham Heart Study (FHS), which associated AF with heart diseases such as hypertension, coronary heart disease and cardiac failure, which was significantly more prevalent in older patients aged 70 years or older. In turn, increased stroke incidence associated with AF results from cardiovascular abnormalities [72]. Therefore, early identification of AF in HF patients is critical to guide specific adjunctive therapy to manage or treat AF.

Although AF is commonly found, unexceptionally, in both HF and CM patients, the present findings show that the overall prevalence of AF in HF patients (32.7%) is about twice that found in CM (19.2%). The underlying reason for the marked difference in the prevalence of AF in the two clinically similar cardiac disease entities is unclear since they share the same mechanisms. Typically, the primary cause of AF is a disturbance in cardiac electrical signals resulting in the atria (upper chambers of the heart) contracting faster and out of sync, in turn causing the atrial walls to fibrillate [72]. What causes the disturbance in electrical signals remains to be elucidated. However, age, genetics, heart disease, sick sinus syndrome, heart attack, and hypertension have identified as risk factors for the development of AF as well as HF [73-81]. Since AF and HF share almost the same risk factors, it may contribute to the high incidence of AF among HF patients. In particular, age may be an independent risk factor potentially contributing to the difference in AF prevalence between HF and CM patients [81,82]. The average age of HF patients in the included studies was 71.8 years, and that of CM patients was 42.7 years. In support of the influence of age on the prevalence of both AF and FH, the Framingham Heart Study [72] reported the incidence of AF increases significantly with age, and with a disproportional percentage of patients aged 70 years of age or older affected by AF and FH.

The high prevalence of AF in hypertensive patients more than in other HF types suggests that the causative agent may contribute to the slight differences in the prevalence of AF between HF phenotypes, and between AF and CM [78,80]. In the present analysis, patients with hypertensive HF have the highest prevalence of AF (46.5%), possibly because hypertension is a causative agent of both HF and AF. Hypertension and AF are two prevalent and often co-existing conditions, especially in the North American population. Hypertension may result in LV hypertrophy (LVH), impaired ventricular filling, LA enlargement and slowed the velocity of atrial conduction. These changes in cardiac structure and physiology may induce the development of AF.
and increase the risk of thromboembolic complications [73]. In patients with hypertension-associated AF, aggressive treatment of hypertension may reverse the structural changes in the heart and reduce or prevent the occurrence of AF.

In the present findings, HFrEF has the second most prevalent rate of AF (40.3%) and has been associated with increased morbidity, mortality and hospitalization. In these patients, AF can be the consequence and cause of HF. On the one hand, AF is a consequence of HF through neurohormonal imbalance and the activation of the renin-angiotensin-aldosterone system (RAAS), leading to increased filling pressure and afterload. These maladaptive physiological changes can lead to increased LA stretch and fibrosis, which contribute to the development of conduction disturbance and the initiation of maintenance of AF [74-78]. The RAAS can also directly contribute to pro-arrhythmic remodelling with angiotensin II, causing atrial fibrosis and anisotropic conduction. HF patients can also exhibit altered calcium handling and calcium overload, leading to after-depolarisations and arrhythmias [73]. On the other hand, AF can contribute to the development of HF through several mechanisms. In AF patients, the loss of atrial systole can impair LV filling and decrease cardiac output by up to 25%, especially in patients with diastolic dysfunction [79]. Irregular of rapid ventricular conduction can result in LV dysfunction and in some patients, tachycardia-induced CM [79,80]. The restoration of sinus rhythm increases stroke volume and LV emptying prior to a notable improvement in contractile function, which explains why some HF patients gain rapid hemodynamic improvement with cardioversion [81].

In CM patients, the highest prevalence of AF (19.2%) was seen in RCM patients. The high prevalence may be attributed to the heterogeneity of the causes of RCM. More importantly, whereas the definition of DCM and HCM primarily depends on morphological criteria, RCM is a primary abnormality in the diastolic function secondary to derangement in the dynamics of ventricular filling leading to increase ventricular end-diastolic pressure and dilated atria. In most cases, the systolic function is preserved or slight abnormally [65]. Second, RCM can develop in the late stages of HCM, DCM, valvular, hypertensive and ischemic heart disease or a specific heart muscle disease such as amyloidosis [63,67]. All these factors are associated with an increased risk of developing AF and may explain the high prevalence of AF in RCM patients relative to other CM phenotypes. In addition to aetiological agents, the high prevalence may be associated with delayed diagnosis of the disease. Often, RCM patients are diagnosed at an advanced stage of the disease with pronounced cardiopulmonary symptoms. It is because of the delayed diagnosis when the disease is almost training into HF that may explain the high prevalence rates [65,67]. Thus, the findings suggest that although AF is prevalent in both HF and CM, it is more common in HF than in CM patients unless the diagnosis is belated, usually during the advanced phase of the disease.

Ventricular tachycardia

Ventricular tachycardia is another common arrhythmia in both CM and HF patients. Same to AF, non-sustained VT (duration < 30 sec) and sustained VT (duration > 30 sec) [61] have also received extensive research interest because of their potentially life-threatening characteristic. It is a fast heart rate arising from improper electrical activity in the ventricles. Non-sustained VT may be more common but very unlikely to cause any health problems, but sustained VT is less common but more life-threatening [80]. The present findings reveal that the prevalence of VTs is much lower in HF patients at index admission (3.7%) relative to AF in the same population and relative to CM patients, whose overall prevalence was 38.0%, more than ten-fold the prevalence in HF patients. However, among HF patients, fewer studies reported the incidence of VT compared to CM studies. The prevalence of VT was high in all structural forms of CM - ARVC (59.4%), DCM (32.4%), HCM (22.9%), LVNC (20.2%), and RCM (10.1%).

The occurrence of VT in HF patients increases with the clinical severity of HF. Large myocardial infarction (MI) and greater LV systolic dysfunction are likely to be associated with VTs, which are the most common electrical mechanisms that can lead to sudden cardiac death (SCD) [80]. HF patients with systolic dysfunction who develop VTs are more vulnerable to SCD, especially when VT degenerates to VF. Patients with comorbid HF and VT usually present with cardiac arrest to the emergency department or with palpitations, syncope, chest pain, or ICD shocks to cardiology outpatient clinics, which vary based on the hemodynamic stability of VT. Both non-sustained and sustained VT in HF patients can result in considerable morbidity and mortality [82]. The most complicated VT in HF patients is VT storm (≥3 more episodes of sustained VT), which may necessitate ICD shock or anti-tachycardia pacing within 24 hours [82]. However, HFpEF patients with VT lack any approved treatment regimen by either ICD or drugs, and thus, most studies tend to focus on HFrEF patients, which may explain the high prevalence of VTs among these patients.

Several pathological mechanisms have been associated with the development of VT in HF patients. The most common is electrical re-entry around islands of heterogeneous myocardial fibrosis, particularly in areas of scar post-MI. Scar-related VT manifests as monomorphic with single QRS morphology. The induction of monomorphic VT during the electrophysiologic study (EPS) can predict patients with an increased likelihood of spontaneous VT [82-84]. Polymorphic VTs, presenting as continuously changing QRS morphology, has been linked to acute ischemia, drugs-associated QT prolongation or electrolyte imbalance. Increased activation of the sympathetic nervous system (SNS) can be another trigger for the induction of CT. The activation of SNS through beta-adrenoreceptors activates ryanodine receptor on the sarcoplasmic reticulum inside the cardiomyocytes resulting in the eflux of calcium and increase of intracellular concentration, which is a trigger for VT [82,83]. This mechanism explains the effect of beta-blockers in suppressing VT, and SCD in HF patients. Primary VT, which occurs between 24 and 48 hours of acute MI, acute ischemic is the transient or correctable cause of VT. In this case, revascularization is the primary management of primary VT. In contract, secondary VT, occurring after 48 hours of acute MI has been linked with worse clinical outcomes [84]. Other pathogenic mechanisms for AF include increased diastolic calcium levels, early and delayed after depolarisations.

Therapy for HF can also contribute to the initiation and maintenance of VT. Anti-arrhythmic drugs are one of the leading medications implicated as a cause of VT in HF patients. Digoxin is an arrhythmogenic drug commonly used in the management of HF. Dobutamine therapy for acute decompensated HF is also another common cause of VT [2-4]. Because of the risk of VT, patients on dobutamine require continuous monitoring. In some patients with advanced HF, VT can also manifest as a complication of LV assist device, mostly occurring peri-operatively. It is advisable to determine the underlying mechanism of VT in HF patients to inform the most efficacious therapy [84]. For instance, the best therapy for VT secondary to inflammation is antiarrhythmic medication and immunosuppression, whereas VT secondary to myocardial scarring is antiarrhythmic medication and catheter ablation [4].
Premature ventricular contractions

Premature ventricular contractions (PVCs) are the most frequent type of arrhythmias encountered in clinical practice in both healthy individuals and those with structural heart disease [23,36]. They are extra heartbeats initiated in the ventricles and disrupt the normal heart rhythm, sometimes causing the sensation of fluttering or a skipped heartbeat. In healthy individuals, PVCs are considered a benign entity. They are asymptomatic and are not a source of clinical concern and often requires no treatment [7,13]. In contrast, patients with underlying heart disease may require treatment [13]. In patients with CM or HF, the present findings indicate the overall prevalence of PVC in HF patients is 13.3%. It was detected in HFrEF, hypertensive HF, ischemic HF, systolic HF and thyrotoxic HF. Patients with CM had more than four-fold prevalence (56.6%) compared to HF patients. The findings are consistent with reports in the literature, indicating that the incidence of PVCs is common to individuals with normal or diseased hearts. Their detection is incidental, and affect 1% of the general population on standard 12-lead ECG and rises to between 40% and 75% on 24-48 hour ambulatory ECG recording [85]. The prevalence of PVCs is also age-dependent, which ranges from <1% on children < 11 years to 69% in individuals >75 years [86].

The pathophysiology of PVCs is not well known although ventricular myocytes spontaneously depolarize to create extrasystoles that results in mechanical dys synchrony with cardiac cycle [87,88]. The affected myocytes are triggered by cyclic adenosine monophosphate mediated and calcium-dependent delays in after depolarization [87]. In the absence of structural heart disease, most PVCs originate from the LV/RV outflow tract (LVOT/RVOT) or the epicardial tissues immediately adjacent to the aortic sinuses of Valsalva, although most foci are found in the RVOT [87]. Fascicular PVCs originate from within the LV Hts-Purkinje system although the may also originate from ventricular tissues adjacent to the aortomitral continuity, the tricuspid annulus, the mitral valve annulus, papillary muscles and other Purkinje-adjacent structures [87,88]. PVCs in the presence of structural heart diseases such as coronary artery disease, non-ischemic CM, ARVC, HCM, amyloidosis and sarcoidosis may require adjunctive therapy in addition to HF therapy. A 24% PVC burden has the best sensitivity and specificity in predicting the development of CM, although individuals with an untreated PVC burden of 20% are at risk of developing PVC [87]. Other risk factors for the development of PVC-induced CM are high frequency of PVCs, longer duration of PVCs, broad QRS complex PVCs, interpolated PVCs, male sex, lack of short-term variability of the PVC burden, and PVCs in asymptomatic patients [89].

The high prevalence of VTs in CM patients and its prognostic implications makes the 12-lead ECG an important diagnostic tool. Unlike HF patients where ECG has non-specific findings, in CM patients, ECG can provide valuable diagnostic information such as the presence of LVH, the presence of myocardial scar resulting in Q wave or fragmentation changes, corrected QT interval, morphologies of VAs and other clues of structural heart disease [82]. However, ECG findings should be interpreted and correlated with clinical symptoms to exclude misdiagnosis or innocent findings. In particular, ECG is useful in CM patients to identify V1's morphologies, which can help to identify the arrhythmogenic substrates as well as distinguish epicardial from endocardial electrical circuits [74]. More importantly, ECG is a valuable diagnostic tool in ARVC phenotype. The ECG morphology of VT/PVCs can differentiate between RVOT-VT and VT due to ARVC. Multiple VT forms, including a left bundle branch block (LBBB)/superior axis, essentially excludes RVOT-VT, shifting the pre-test probability towards ARVC [83].

References
1. Goldberger AL, Goldberger Z, Shvilkin A (2017) Goldberger's Clinical Electrocardiography: A Simplified Approach.
2. Maron BJ (2008) The 2006 American Heart Association classification of cardiomyopathies is the gold standard. Circ Heart Fail 1: 72-76. [Crossref]
3. Elliott P, Anderson B, Arbustini E, Bilinska Z, Cecchi F, et al. (2008) Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29: 270-276. [Crossref]
4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, et al. (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37: 2129-2200. [Crossref]
5. Yen SC (1966) The Electrocardiogram in Thyrotoxicosis. Folia Endocrinologica Japonica 36: 56-65.
6. Osman F, Franklyn JA, Holder RL, Sheppard MC, Gammage MD (2007) Cardiovascular manifestations of hyperthyroidism before and after antithyroid therapy: a matched case-control study. J Am Coll Cardiol 49: 71-81. [Crossref]
7. Sarpathy PK, Diggikar PM, Sachdeva V, Laddha M, Agarwal A, et al. (2013) Lipid profile and electrocardiographic changes in thyroid dysfunction. Medical Journal of Dr. DY Patil University 6: 250-253. [Crossref]
8. Goyal S, Goyal V (2016) A study of electrocardiographic changes in thyroid disorders. International Journal of Medical Research and Review 4: 486-490. [Crossref]
9. Baladi IH, Rai AA, Ahmed SM (2018) ECG changes in patients with primary hyperthyroidism. Pan Afr Med J 30(1): 246. [Crossref]
10. Stevenson WG, Stevenson LW, Middlekauff HR, Fonarow GC, Hamilton MA, et al. 1996. Improving survival for patients with atrial fibrillation and advanced heart failure. J Am Coll Cardiol 28: 1458-1463. [Crossref]
11. Cuffe MS, Califf RM, Adams Jr KF, Benza R, Bourge R, et al. (2002) Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. Jama 278: 1541-1547. [Crossref]
12. Familoni OB, Olunuga TO, Olufemi BW (2007) A clinical study of pattern and factors affecting outcome in Nigerian patients with advanced heart failure. Cardiovasc J Afr 18: 308. [Crossref]
13. Ostor E, Jensen G, Nyboe J, Hansen AT (1981) Electrocardiographic findings and their association with mortality in the Copenhagen City Heart Study. Circulation 63: 217-228. [Crossref]

14. Karaye KM, Sani MU (2008) Electrocardiographic abnormalities in patients with heart failure. Cardiovasc J Afr 19: 22-25. [Crossref]

15. Karaye KM, Sani MU (2008) Factors associated with poor prognosis among patients admitted with heart failure in a Nigerian tertiary medical centre: a cross-sectional study. BMC Cardiovasc Disord 8: 1-8. [Crossref]

16. Connolly SJ, Eikelboom J, Joyce R, Diener HC, Hart R, et al. (2011) Apixaban in patients with atrial fibrillation. N Engl J Med 364: 806-817. [Crossref]

17. Kelder JC, Cramer MJ, van Wijngaarden J, van Tooren R, Mosterd A, et al. (2011) The diagnostic value of physical examination and additional testing in primary care patients with suspected heart failure. Circulation 124: 2865-2873. [Crossref]

18. Dzudie A, Milo O, Edwards C, Cotter G, Davison BA, et al. (2014) Prognostic significance of ECG abnormalities for mortality risk in acute heart failure: insight from the Sub-Saharan Africa Survey of Heart Failure (THESSUS-HF). J Card Fail 20: 45-52.

19. Sato N, Kajimoto K, Keita T, Mizuno M, Minami Y, et al. (2013) Clinical features and outcome in hospitalized heart failure in Japan (from the ATTEND Registry). Circ J 77: 944-951. [Crossref]

20. Nieminen MS, Brutsaert DL, Dickstein K, Drexler H, Follath F, et al. (2006) EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J 27: 2725-2736. [Crossref]

21. Spinar J, Parentica J, Vitovec J, Widimsky P, Linhart A, et al. (2011). Baseline characteristics and hospital mortality in the Acute Heart Failure Database (AHEAD) Main registry. Crit Care 15: 1-13.

22. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, et al. (2012) Trends in characteristics and hospital mortality in the Acute Heart Failure Database (AHEAD) Main registry. Crit Care 15: 1-13. [Crossref]

23. Boyvilla V, Mogarala RR (2019) A Study of Clinical Profile of Dilated Cardiomyopathy in Correlation with ECG and Echocardiography. Journal of Dental and Medical Science 15: 1369-1374. [Crossref]

24. McLeod CJ, Ackerman MJ, Nishimura RA, Tajik AJ, Gersh BJ, et al. (2009) Outcome of patients with hypertrophic cardiomyopathy and a normal electrocardiogram. J Am Coll Cardiol 54: 229-233. [Crossref]

25. Chin TK, Perloff JK, Williams RG, Jue K, Mehrman R (1990) Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82: 507-513. [Crossref]

26. Oechslin EN, Jost CA, Rojas JR, Kaufmann PA, Jenni R (2000) Long-term follow-up of 34 adults with isolated ventricular non-compaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36: 493-500. [Crossref]

27. Murphy RT, Thanam R, Blanes JG, Ward D, Sevalds E, et al. (2005) Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J 26: 187-192. [Crossref]

28. Caliskan K, Szili-Torok T, Theuns DA, Kardos A, Geleijnse JL, et al. (2011) Indications and outcome of implantable cardioverter-defibrillators for primary and secondary prophylaxis in patients with noncompaction cardiomyopathy. J Cardiovasc Electrophysiol 22: 989-904. [Crossref]

29. Brescia ST, Rossano JW, Pignatelli R, Jefferies JL, Price JF, et al. (2013) Mortality and sudden death in pediatric left ventricular noncompaction in a tertiary referral center. Circulation 127: 2202-2208. [Crossref]

30. Basso C, Thieme G, Corrado D, Angelini A, Nava A, Valente M (1996). Arrhythmogenic right ventricular cardiomyopathy: dysplasia, dystrophy, or myocarditis? Circulation 94: 983-989. [Crossref]

31. Nava A, Folino AF, Balse B, Turini P, Boja GF, et al. (2000) Signal-averaged electrocardiogram in patients with arrhythmogenic right ventricular cardiomyopathy and ventricular arrhythmias. Eur Heart J 21: 58-65. [Crossref]

32. Peters S, Trummel M (2005) Diagnosis of arrhythmogenic right ventricular dysplasia- cardiomyopathy: value of standard ECG revisited. Ann Noninvasive Electrocardiol 8: 238-245.
56. Nasir K, Bomma C, Tandri H, Roguin A, Dalal D, et al. (2004) Electrocardiographic features of arrhythmogenic right ventricular dysplasia/cardio-myopathy according to disease severity: a need to broaden diagnostic criteria. *Circulation* 110: 1527-1534. [Crossref]

57. De Cobelli F, Pieroni M, Esposito A, Chimenti C, Belloni E, et al. (2006) Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. *J Am Coll Cardiol* 47: 1649-1654. [Crossref]

58. Steriotis AK, Bauce D, Daliento L, Rigato I, Mazzotti E, et al. (2009) Electrocardiographic pattern in arrhythmogenic right ventricular cardiomyopathy. *Am J Cardiol* 103: 1302-1308. [Crossref]

59. Quarta G, Ward D, Esteban MTT, Pantazis A, Elliott PM, et al. (2010) Dynamic electrocardiographic changes in patients with arrhythmogenic right ventricular cardiomyopathy. *Heart* 96: 516-522. [Crossref]

60. Kamath GS, Zareh W, Delaney J, Koneru JN, McKenna W, et al. (2011) Value of the signal-averaged electrocardiogram in arrhythmogenic right ventricular cardiomyopathy/dysplasia. *Heart Rhythm* 8: 256-262. [Crossref]

61. Hoffmayer KS, Machado ON, Marcus GM, Yang Y, Johnson CJ, et al. (2011) Electrocardiographic comparison of ventricular arrhythmias in patients with arrhythmogenic right ventricular cardiomyopathy and right ventricular outflow tract tachycardia. *J Am Coll Cardiol* 58: 831-838. [Crossref]

62. Sarrvari SI, Haugaa KH, Anfinsen OG, Leren TP, Smiseth OA, et al. (2011) Right ventricular mechanical dispersion is related to malignant arrhythmias: a study of patients with arrhythmogenic right ventricular cardiomyopathy and subclinical right ventricular dysfunction. *Eur Heart J* 32: 1089-1096. [Crossref]

63. Benotti JR, Grossman W, Cohn PF (1980) Clinical profile of restrictive cardiomyopathy. *Circulation* 61: 1206-1212. [Crossref]

64. Falk RH, Rubinow A, Cohen AS (1984) Cardiac arrhythmias in systemic amyloidosis: correlation with echocardiographic abnormalities. *J Am Coll Cardiol* 3: 107-113. [Crossref]

65. Ammash NM, Seward JB, Baile KR, Edwards WD, Tajik AJ (2000) Clinical profile and outcome of idiopathic restrictive cardiomyopathy. *Circulation* 101: 2490-2496. [Crossref]

66. Rahman JE, Helou EF, Gelzer-Bell R, Thompson RE, Kuo C, et al. (2004) Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. *J Am Coll Cardiol* 43: 410-415. [Crossref]

67. Hayashi T, Tsucha E, Kurokawa K, Ueda H, Yamada O, et al. (2007) Electrocardiographic and clinical characteristics of idiopathic restrictive cardiomyopathy in children. *Circ J* 71: 1534-1539. [Crossref]

68. Okamoto S, Hörnsten R, Obayashi K, Wijayatunga P, Suhr OB (2011) Continuous development of arrhythmia is observed in Swedish transplant patients with familial amyloidotic polyneuropathy (amyloidogenic transthyretin Val122Met variant). *Liver Transpl* 17: 122-128. [Crossref]

69. Cheng Z, Zhu K, Tian Z, Zhao D, Cui J, et al. (2013) The findings of electrocardiography in patients with cardiac amyloidosis. *Ann Noninvasive Electrocardiol* 18: 157-162. [Crossref]

70. Orini M, Graham AJ, Martinez-Naharro A, Andrews CM, de Marvao A, et al. (2019) Noninvasive mapping of the electrophysiological substrate in cardiac amyloidosis and its relationship to structural abnormalities. *J Am Heart Assoc* 8: e012097. [Crossref]

71. Tsunakawa H, Miyamoto N, Kawabata M, Mashima S (1993) Electrocardiogram in heart failure. *Nihon rinsho. Japanese Journal of Clinical Medicine* 51: 1222-1232. [Crossref]

72. Wolf PA, Abbott RD, Kannel WB (1991) Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. *Stroke* 22: 983-988. [Crossref]

73. Kotecha D, Piccini JP (2015) Atrial fibrillation in heart failure: what should we do? *Eur Heart J* 36: 3250-3257. [Crossref]

74. Kalifa J, Jafili J, Zaitsev AV, Bagwe S, Warren M, et al. (2003) Intra-atral pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. *Circulation* 108: 668-671. [Crossref]

75. Lalani GG, Schricker A, Gibson M, Rostamian A, Krummen DE, et al. (2012) Atrial conduction slows immediately before the onset of human atrial fibrillation: a bi-attrial contact mapping study of transitions to atrial fibrillation. *J Am Coll Cardiol* 59: 595-606. [Crossref]

76. Mills RW, Narayan SM, Mc Culloch AD (2008) Mechanisms of conduction slowing during myocardial stretch by ventricular volume loading in the rabbit. *Am J Physiol Heart Circ Physiol* 295: H1270-H1278. [Crossref]

77. Stiles MK, John B, Wong CX, Kulik P, Brooks AG, et al. (2009) Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the “second factor”. *J Am Coll Cardiol* 53: 1182-1191. [Crossref]

78. Healey JS, Israel CW, Connolly SJ, Hohnloser SH, Nair GM, et al. (2012) Relevance of electrical remodeling in human atrial fibrillation: results of the Asymptomatic Atrial Fibrillation and Stroke Evaluation in Pacemaker Patients and the Atrial Fibrillation Reduction Atrial Pacing Trial mechanisms of atrial fibrillation study. *Circ Arrhythm Electrophysiol* 5: 626-631. [Crossref]

79. Deedwania PC, Lardizabal JA (2010) Atrial fibrillation in heart failure: a comprehensive review. *Am J Med* 123: 198-204. [Crossref]

80. Nerheim P, Birger-Botkin S, Piracha L, Oshansky B (2004) Heart failure and sudden death in patients with tachycardia-induced cardiomyopathy and recurrent tachycardia. *Circulation* 110: 247-252. [Crossref]

81. Raymond RJ, Lee AJ, Messineo FC, Manning WJ, Silverman DI (1998) Cardiac performance early after cardioversion from atrial fibrillation. *Am Heart J* 136: 435-442. [Crossref]

82. Healey JS, Connolly SJ (2003) Atrial fibrillation: hypertension as a causative agent, risk factor for complications, and potential therapeutic target. *Am J Cardiol* 91: 9-14. [Crossref]

83. Mathuria N (2012) Ventricular Tachycardias in the Setting of Cardiomyopathy: Approaches to Ablation. *Tex Heart Inst J* 39: S29-S31. [Crossref]

84. Hoffmayer K, Scheiman MM (2012) Electrocardiographic patterns of ventricular atrial fibrillation in arrhythmogenic right ventricular dysplasia/cardio-myopathy. *Front Physiol* 3: 1-4. [Crossref]

85. Ng GA (2006) Treating patients with ventricular ectopic beats. *Heart* 92: 1707-1712. [Crossref]

86. Cha YM, Lee GK, Klarich KW, Grogan M (2012) Premature ventricular contraction-induced cardiomyopathy: a treatable condition. *Circ Arrhythm Electrophysiol* 5: 229-236. [Crossref]

87. Latchamsetty R, Bogun F (2015) Premature ventricular complexes and premature ventricular complex induced cardiomyopathy. *Curr Prob Cardiology* 40: 379-422. [Crossref]

88. Cantillon DJ (2013) Evaluation and management of premature ventricular complexes. *Cleve Clin J Med* 80: 377. [Crossref]

89. Baman TS, Lange DC, Ilg KJ, Gupta SK, Liu TY, et al. (2010) Relationship between burden of premature ventricular complexes and left ventricular function. *Heart Rhythm* 7: 865-869. [Crossref]