New records of two species of Cubozoa from Thailand

SHO TOSHINO¹*, JUN NISHIKAWA², KHWANRUAN SRINUI³, SUPATTRA TALEB³ & HIROSHI MIYAKE⁴

¹Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Hata, Kochi, 788–0333, Japan
²School of Marine Science and Technology, Tokai University, 3–20–1, Orido, Shimizu, Shizuoka 424–8610, Japan
³Institute of Marine Science, Burapha University, Saensuk, Muang, Chon Buri, 20131, Thailand
⁴School of Marine Biosciences, Kitasato University, 1–15–1, Kitasato, Sagamihara, Kanagawa 252–0373, Japan

Received 27 November 2018; Accepted 21 March 2019 Responsible Editor: Dhugal Lindsay
doi: 10.3800/pbr.14.143

Abstract: The stings of box jellyfishes can be fatal, so knowing the fauna of a certain area is important to save lives. Five described and two still-undescribed species of Cubozoa have been reported from Thailand: Chironex indrasaksajiae, Chironex sp., Chiropsella sp., Chiropsoides buitendijki, Copula sivickisi, Morbakka fenneri, and Tripedalia cystophora. We made detailed observations of the morphology of two of the species newly recorded in Thailand: Alatina morandinii and Tripedalia binata. The molecular phylogeny of these species is also discussed. Additional investigations are needed to understand the diversity of Cubozoa in Thailand.

Key words: Alatina morandinii, box jellyfish, species diversity, sting, Tripedalia binata

Introduction

Jellyfish in the phylum Cnidaria, class Cubozoa are called box jellyfish and their stings can be fatal (Cunningham & Goetz 1996, Fenner & Williamson 1996). Numerous severe or fatal injuries to humans caused by cubozoan stings have been reported from the Gulf of Thailand and the Andaman Sea (Aungtonya & Chanachon 2012, Thaikruea et al. 2015, Thaikruea & Siriariyaporn 2015, 2016). Consequently, it is important to understand the species diversity, biology, and ecology of cubozoans. Several studies of the distribution (Stiasny 1922, 1926, Aungtonya & Chanachon 2012, Aungtonya et al. 2018), seasonal occurrence (Sucharitakul et al. 2018), and life cycle (Toshino et al. 2016) of cubozoans have been carried out in Thailand. However, the sampling coverage remains small and their species diversity is not clear.

To date, five described and two still-undescribed cubozoan species have been reported in Thai waters: Chironex indrasaksajiae Sucharitakul et al., 2017, Chiropsella sp., Chiropsoides buitendijki (Horst, 1907), Chironex sp., Copula sivickisi (Stiasny, 1926), Morbakka fenneri Gershwin, 2008, and Tripedalia cystophora Conant, 1897 (Stiasny 1922, Kramp 1961, Aungtonya & Chanachon 2012, Sucharitakul et al. 2017, 2018). The current study performed morphological and molecular phylogenetic analyses of two cubozoans that are new records for Thailand.

Materials and Methods

Medusae of two unidentified species were collected using an underwater fish-luring lamp (YF-500, Hapyson, Japan) in a mangrove swamp in Trat Province (12.1670N, 102.5701E), the eastern Gulf of Thailand, between 21:00 and 23:30 on March 17, 2014 (water surface temperature 32.3°C, salinity 21.8). The medusae were captured with a dip net (mesh size 0.2 mm) and fixed with 5% formaldehyde solution in seawater after observing spawning (see Toshino et al. 2016). Parts of the tentacles were preserved in 99.5% ethanol for molecular analysis.

Unidentified cubopolyps were found on the walls of culture tanks in Bangsaen Aquarium, Chon Buri Province, on March 18, 2014. The polyps were transferred to Petri dishes filled with filtered seawater (1 μm filter pore size) and kept at 25°C. The polyps were fed Artemia nauplii twice a week. The culturing water was replaced completely with filtered seawater (1 μm filter pore size) about 3 hrs after
feeding. Metamorphosis was induced by raising the temperature from 25 to 30°C. During metamorphosis, the cultures were not fed and the water was not changed. Newly detached medusae were kept in a 1000-mL polypropylene beaker in filtered seawater (1 µm) at 28°C. The medusae were fed Artemia nauplii daily. The culture water was replaced with fresh seawater about 3 h after feeding.

Taxonomic observations and morphological measurements were made on live or preserved specimens. Lengths were measured using the method described in Gershwin (2005a), Straehler-Pohl & Jarms (2011) and Toshino et al. (2015) with digital calipers (CD-20CPX, Mitutoyo Corporation, Japan) and Image J (NIH, USA) to the nearest 0.1 mm.

Near-complete sequences of the nuclear 18S rDNA gene (approximately 1800 bp) were used for molecular phylogenetic analysis. Genomic DNA was extracted from the ethanol-preserved tissue of cultured specimens using the DNeasy Blood and Tissue Kit (QIAGEN, Germany) according to the manufacturer's instructions. 18S rDNA was PCR amplified and sequenced using the primers and protocols outlined in Collins et al. (2008). The new sequences were aligned using MEGA 6.06 with built-in ClustalW (Tamura et al. 2013). Phylogenetic analysis and pairwise distance measurements were determined using the maximum likelihood method with 1000 bootstrap replications in MEGA 6.06. All sequences have been deposited in DDBJ under accession numbers LC480260 and LC480261 (Table 1).

Results

Class Cubozoa Werner, 1973

Family Carybdeidae Gegenbaur, 1857

Table 1. Taxa included in the phylogenetic analyses and GenBank accession numbers for the sequences. Sequences obtained in this study are in **bold**. a) Bentlage et al. (2010); b) Chae et al. (2017); c) Collins (2002); d) Straehler-Pohl & Toshino (2015); and e) Toshino et al. (2015).

Species	Accession No.	Locality	Reference
Carybdea branchi	GQ849089	Cape town, South Africa,	a
Carybdea brevipesdalia	KY212121	Jeju Island, South Korea	b
Copula stiviciski	AF358110	Unknown	c
Tripedalia cystophora	GQ849088	Kakaban, Derawan Island marine lake, Indonesia	a
Tripedalia binata	**LC480260**	Trat, Thailand	**This study**
Tamoya haplonema	GQ849085	North Carolina, Oak Island, USA	a
Tamoya ohboya	GQ849086	Bonaire, No Name Beach, Netherlands Antilles	a
Malo kingi	GQ849084	Queensland, Port Douglas, Australia,	a
Morbakka virulentia	GQ849083	Hiroshima, Japan	a
Alatina alata	GQ849082	Queensland, Osprey Reef, Australia,	a
Alatina morandini	LC047803	Nagasaki, Japan	d
Alatina morandini	LC047805	Hamburg, Germany	d
Alatina morandini	LC047802	Ishigaki Island, Ryukyu Islands, Japan	d
Alatina morandini	**LC480261**	Bangsaen Aquarium, Chon Buri, Thailand	**This study**
Chironex flecteri	GQ849073	Darwin, Northern Territory, Australia	a
Chironex yamaguchii	GQ849076	Ishigaki Island, Ryukyu Islands, Japan	a
Chiropsella bart	AF358103	Unknown	c
Meteorona kishinouyei	LC033480	Matsukawa-ura, Souma, Fukushima, Japan	e
Chiropsalmus quadrumanus	GQ849078	Macae, Rio de Janeiro state, Brazil	a

| Table 2. **Morphometrics (mm) of Tripedalia binata** after Toshino et al. (2015). BH, bell height; DBW, diagonal bell width; DEW, diagonal exumbrella width; DSW, diagonal subumbrella width; ML, manubrium length; IKL, inner keel length; IKW, inner keel width; IRW, interrhopalial width; OKL, outer keel length; OKW, outer keel width; RH, rhopalium height; PCW, pedalial canal width; PP, primary pedalium; PW, pedalial width; SP, secondary pedalium; TBW, tentacle base width; and VW, velarial width. |

BH	DBW	DEW	DSW	IRW	PW (PP/SP)	PCW (PP/SP)	OKW (PP/SP)
8.0	14.2	13.2	11.9	6.3	1.1/1.1	0.3/0.3	0.3/0.4
IKW (PP/SP)	OKL (PP/SP)	IKL (PP/SP)	TBW (PP/SP)	RH	VW	ML	SEX
0.5/0.4	4.0/4.6	4.2/3.9	0.3/0.3	1.4	1.8	4.5	Female

Class Cubozoa Werner, 1973
Order Carybdeida Gegenbaur, 1857
New records of two cubozoans from Thailand

Fig. 1. Preserved mature female medusae of *Tripedalia binata*: A) lateral, B) apical, and C) oral views. Scale bar = 1 cm.

Fig. 2. Preserved mature female medusae of *Tripedalia binata*: A) gonad, B) manubrium, C) phacellae, D) rhopalial niche ostium, E) pedalium (lateral view), F) pedalium (dorsal view), G) tentacle, H) velarium, and I) pedalial canal bend. Scale bars = 0.5 mm (A, D, I) and 1 mm (B, C, E–H). po, stomach pocket; pu, stomach purse.
Fig. 3. Live mature polyps of *Alatina morandinii*: A) lateral view, B) oral view, and C) creeping polyp, lateral view. Scale bars = 0.2 mm.

Fig. 4. Live young medusae of *Alatina morandinii*: A, B) lateral, C) apical, and D) oral views, E, F) exumbrella, G) gastric filaments, H) rhopalium, I) pedalium, and J) tentacle structure. Scale bars = 1 mm (A–F), 0.2 mm (G), and 0.1 mm (H–J).
Family Tripedaliidae Conant, 1897
Genus Tripedalia Conant, 1897
Tripedalia binata Moore, 1988

Description. Bell cubic 8 mm high and 13 mm in diameter (Table 2, Fig. 1A–C). Rounded nematocyst clusters scattered over entire exumbrella (Fig. 1A, B). Gonads leaf-shaped (Fig. 2A), but butterfly-shaped in female and stick-shaped in male before spawning. Manubrium long, about 60% of bell height (Fig. 2B). Manubrium cruciform with four narrow, lanceolate lips (Fig. 2B). Phacellae epaullette-shaped comprised of single-rooted simple gastric filaments (Fig. 2C). Four stomach pockets located beneath each gastric phacella (Fig. 2C). Four stomach purses located above the perradial mesenteries (Fig. 2C). Rhopaliar niche ovum-shaped without rhopalial horns (Fig. 2D). Pedalia knife-shaped, two per corner of the umbrella (Fig. 2E, F). Pedalial canal bend rounded without appendage (Fig. 2I). Tentacles eight, with one per pedalium, base width up to 0.3 mm thick, round in cross-section, perl-string-like composed of nematocyst rings (Fig. 2G). Velarium with 3 velarial roots, 1 velarial canal root per octant, pointed digit-like shape (Fig. 2H). Velarial width about 20% of diagonal subumbrella width.

Nematocysts
Not examined in this study.

Family Alatinidae Gershwin, 2005
Genus Alatina Gershwin, 2005
Alatina morandinii Straehler-Pohl & Jarms, 2011

Description (cubopolyp). Polyp solitary, with amphora-shaped calyx and short stalk (Fig. 3A, B). The expanded body about 1.0 mm in length. Zooxanthellae (Fig. 5B) in the body, except stalk. Tentacles 10 to 19 (mean: 13, n= 20), bearing a single stenotele at the tip of each tentacle (Fig. 5B, C). Polyps asexually produce daughter polyps by lateral budding. The buds develop into worm-shaped creeping polyps (Fig. 3C), which bear 4 to 6 tentacles.

Nematocysts
Two different types of nematocyst were found in the entire polyp: stenoteles and heterotrichous microbasic euryteles (Fig. 5A).

Molecular analysis
The maximum likelihood tree (Fig. 6) revealed that Tripedalia binata from Trat Province and Tripedalia cystophora were in a monophyletic group, the Tripedaliidae. The polyps from Bangsaen Aquarium were identical to Alatina morandinii from Germany and Japan.

Discussion
Tripedalia binata was described by Moore (1988) based on specimens from Australia and India. The morphological inspection of T. binata from Thailand agrees well with the morphological descriptions of Moore (1988) and Underwood et al. (2013). Straehler-Pohl et al. (2014) reported that rhopalial horns could be observed above the top of the rhopalial niches in T. binata from Australia. However, rhopalial horns were not present in the Thai specimen. Additional specimens collected from Thailand are needed for comparison and clarification as to whether this is intraspecific variation or not. Tripedalia binata is a rare species that has been recorded only from eastern India (Moore 1988) and northern Australia (Underwood et al. 2013). The medusae appear in creeks, aquaculture ponds, and sandy beaches near mangroves during the rainy season (Moore 1988, Underwood...
et al. 2013). Our report is the third official record after the report of Toshino et al. (2016) for this species since its discovery. Our sampling site was a semi-closed mangrove swamp leading to the sea, with seawater flowing into the swamp during rising tides (Toshino et al. 2016).

The family Alatinidae Gershwin, 2005 comprises 13 species in three genera: *Alatina* Gershwin, 2005, *Keesingia* Gershwin, 2014, and *Manokia* Southcott, 1967 (Southcott 1967, Gershwin 2005b, 2014). *Alatina morandinii* was described as *Carybdea morandinii* (Straehler-Pohl & Jarms 2011). However, the species was recently moved to the genus *Alatina* based on its morphology and molecular phylogenetic analyses (Straehler-Pohl & Toshino 2015). *Alatina morandinii* is a mysterious species because mature medusae have not yet been found in the wild. Cubopolyps of the species have been reported in tanks from aquariums in Germany and Japan and on dead coral near the shore in Okinawa, southern Japan (Straehler-Pohl & Jarms 2011). In this study, the polyps were found in tanks at the Bangsaen Aquarium, Thailand. According to husbandry specialist Nattawut Luangoon, the water in this tank came directly from the sea near the aquarium, and may have contained either embryos or polyps of this species. The creatures and substrates in the tank all originated from Thailand, and never from other places. This study is the first record of an Alatinidae species in Thailand though *Alatina alata* (Reynaud, 1830) has been reported from “Indochina”, the Malayan Archipelago, the Philippines and other tropical regions (Kramp 1961, Lawley et al. 2016).

Three species belonging to the order Carybdeida and four species belonging to the order Chirodropida have previously been reported from Thai waters (Stiasny 1922, 1926, Aungtonya & Chanachon 2012, Sucharitakul et al. 2017, 2018). In addition, we recorded two more species of the order Carybdeida. However, more unrecorded or undescribed species like *Chiropsella* sp. and *Chironex* sp. (Sucharitakul et al. 2018) are likely to inhabit Thailand waters. Intensive sampling and further investigations are needed to understand the diversity of Cubozoa in Thai waters, which may also help to prevent sting injuries in humans.

Acknowledgements

We would like to express our sincere thanks to the staff of the Institute of Marine Science, Burapha University and Sesoko Tropical Biosphere Research Center. This manuscript was greatly improved by the constructive comments of Dr. Ilka-Straehler-Pohl and one anonymous reviewer. The research was financially supported by the JSPS KAKENHI Grant Numbers JP18K14791, 26304030.

References

Aungtonya C, Chanachon K (2012) Species and distribution of venomous jellyfish in coastal areas of Phuket province. Phuket Marine Biological Center, Phuket, 51 pp.
Aungtonya C, Xiao J, Zhang X, Wutthitunisil N (2018) The Genus *Chiropsoides* (Chirodripida: Chiropsalmidae) from the Andaman Sea, Thai waters. Acta Oceanol Sin 37(10): 119–125.

Bentlage B, Cartwright P, Yanagihara AA, Lewis C, Richards GS, Collins AG (2010) Evolution of box jellyfish (Cnidaria: Cubozoa), a group of highly toxic invertebrates. Proc R Soc B 277: 493–501.

Chae J, Yoon WD, Kim B, Ki JS (2017) First record of box jellyfish, *Carybdea brevipes* (Cnidaria: Cubozoa: Carybdeidae) from Korean Coastal Waters: Morphology and Molecular Descriptions. Anim Syst Evol Diversity 33(1): 8–16.

Collins AG (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15: 418–432.

Collins AG, Bentlage B, Lindner A, Lindsay D, Haddock SHD, Jarms G, Norenburg JL, Jankowski T, Cartwright P (2008) Phylogenetics of Trachylina (Cnidaria: Hydrozoa) with new insights on the evolution of some problematical taxa. J Mar Biol Ass UK 88(8): 1673–1685.

Cunningham P, Goetz P (1996) Pisces Guide to Venomous & Toxic Marine Life of the World. Pisces Books, Houston, TX, 152 pp.

Fenner PJ, Williamson JA (1996) Worldwide deaths and severe envenomation from jellyfish stings. Med J Aust 165(11): 658–661.

Gershwin L (2005a) Taxonomy and Phylogeny of Australian Cuboza. PhD thesis. James Cook University, Australia.

Gershwin L (2005b) *Carybdea alata* auct. and *Manokia stiasnyi*, reclassification to a new family with description of a new genus and two new species. Mem Qld Mus 51: 501–523.

Gershwin L (2014) Two new species of box jellies (Cnidaria: Cuboza: Carybdeidae) from the central coast of Western Australia, both presumed to cause Irukandji syndrome. Rec Aust Mus 29: 10–19.

Krampl PL (1961) Synopsis of the medusae of the world. J Mar Biol Ass UK 40: 7–469.

Lawley JW, Lewis C, Bentlage B, Yanagihara A, Goodwill R, Kayal E, Hurwitz K, Collins AG (2016) Box jellyfish *Alatina alata* has a circumtropical distribution. Biol Bull 231(2): 152–169.

Moore SJ (1988) A new species of cubomedusan (Cuboza: Cnidaria) from northern Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 5(1): 1–4.

Southcotton RV (1967) Revision of some Carybdeidae (Scycphotidae: Cubomedusae) including a description of the jellyfish responsible for the "Irukandji syndrome". Aust J Zool 15(3): 651–671.

Stiasny G (1922) Papers from Dr. Th. Mortensen's Pacific Expedition 1914–1916. XII. Die Scyphomedusen Sammlung von Dr. Th. Mortensen nebst anderen Medusen aus dem Zoologischen Museum der Universität in Kopenhagen. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i København 73: 499–511.

Stiasny G (1926) Über einige Scyphomedusen von Puerto Galera, Mindoro (Philippinen). Zoologische Mededelingen Rijks Museum van Natuurlijke Historie in Leiden 9: 239–248.

Straehler-Pohl I, Jarms G (2011) Morphology and life cycle of *Carybdea morandinii*, sp. nov. (Cnidaria), a cubozoan with zoaxanthellae and peculiar polyp anatomy. Zootaxa 2755: 36–56.

Straehler-Pohl I, Garm A, Morandini AC (2014) Sexual dimorphism in Tripedaliidae (Conant 1897) (Cnidaria, Cuboza, Carybdeida). Zootaxa 3785(4): 533–549.

Straehler-Pohl I, Toshino S (2015) *Carybdea morandinii* — New investigations on its life cycle reveal its true genus: *Carybdea morandinii* Straehler-Pohl & Jarms, 2011 becomes *Alatina morandinii* (Straehler-Pohl & Jarms, 2011). Plankton Benthos Res 10(4): 167–177.

Sucharitakul P, Chomdej S, Achalawitikut T, Arsiranant I (2017) Description of *Chironex indrasaksajiae* Sucharitakul sp. nov. (Cnidaria, Cuboza, Chirodripida): A new species of box jellyfish from the Gulf of Thailand. Phuket Mar Biol Res Bull 74: 33–44.

Sucharitakul P, Chomdej S, Achalawitikut T, Aongsara S, Arsiranant I, Paiphongphuew P, Chanachon K (2018) Chirodripid box jellyfish in the Gulf of Thailand. Mar Biodivers: 1–6.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729.

Thaikruea L, Suriaritakul P, Chomdej S, Achalawitikut T, Aongsara S, Arsiranant I, Paiphongphuew P, Chanachon K (2015) Chirodripid box jellyfish cases on Koh Samui and Koh Pha-ngan in the Gulf of Thailand. BMC Res Notes 9: 108.

Toshino S, Miyake H, Shibata H (2015) *Meteorona kishinouyei*, a new family, genus and species (Cnidaria, Cuboza, Chirodripida) from Japanese Waters. Zokeys 503: 1–21.

Toshino S, Miyake H, Sriruk K, Duangnoi N, Muthuwan V, Sawatpeera S, Honda S, Shibata H (2016) Development of *Tripedalia binata* Moore, 1988 (Cuboza: Carybdeida: Tripedaliidae) collected from the eastern Gulf of Thailand with implications for the phylogeny of the Cuboza. Hydrobiologia 792(1): 37–51.

Underwood AH, Taylor S, Seymour J (2013) Range extension of the cubozoan, *Tripedalia binata*, from Far North Queensland, Australia. Mem Q Mus-Nature 56(2): 1–8.