NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae

Sánchez-Martín, Javier ; Keller, Beat

Abstract: Recent progress in large-scale sequencing, genomics, and rapid gene isolation techniques has accelerated the identification of race-specific resistance (R) genes and their corresponding avirulence (Avr) genes in wheat, barley, rye, and their wild relatives. Here, we describe the growing repertoire of identified R and Avr genes with special emphasis on novel R gene architectures, revealing that there is a large diversity of proteins encoded by race-specific resistance genes that extends beyond the canonical nucleotide-binding domain leucine-rich repeat proteins. Immune receptors with unique domain architectures controlling race-specific resistance possibly reveal novel aspects on the biology of host-pathogen interactions. We conclude that the polyploid cereal genomes have a large evolutionary potential to generate diverse types of resistance genes.

DOI: https://doi.org/10.1016/j.pbi.2021.102053

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-204683
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Sánchez-Martín, Javier; Keller, Beat (2021). NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Current Opinion in Plant Biology, 62:102053.
DOI: https://doi.org/10.1016/j.pbi.2021.102053
NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in *Triticeae*
Javier Sánchez-Martín and Beat Keller

Abstract
Recent progress in large-scale sequencing, genomics, and rapid gene isolation techniques has accelerated the identification of race-specific resistance (*R*) genes and their corresponding avirulence (*Avr*) genes in wheat, barley, rye, and their wild relatives. Here, we describe the growing repertoire of identified *R* and *Avr* genes with special emphasis on novel *R* gene architectures, revealing that there is a large diversity of proteins encoded by race-specific resistance genes that extends beyond the canonical nucleotide-binding domain leucine-rich repeat proteins. Immune receptors with unique domain architectures controlling race-specific resistance possibly reveal novel aspects on the biology of host–pathogen interactions. We conclude that the polyploid cereal genomes possibly reveal novel aspects on the biology of host domain architectures controlling race-specific resistance genes. Immune receptors with unique domain architectures controlling race-specific resistance possibly reveal novel aspects on the biology of host–pathogen interactions. We conclude that the polyploid cereal genomes possibly reveal novel aspects on the biology of host domain architectures controlling race-specific resistance genes.

Addresses
Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland

Corresponding authors: Keller, Beat (bkeller@botinst.uzh.ch); Sánchez-Martín, Javier (javier.sanchezmartin@botinst.uzh.ch)

Keywords
R gene, Race-specific resistance, NLR, Non-NLR proteins, Effector-triggered immunity.

Introduction
Genetic analysis of plant disease resistance against adapted pathogens has revealed two distinct, main forms of resistance in response to pathogen infection. Race-specific resistance provides mostly complete resistance to some races of a pathogen species and is controlled by single resistance (*R*) genes. Resistance only occurs in the presence of an *R* gene and the corresponding pathogen avirulence (*Avr*) gene [1]. In contrast, non–race-specific resistance provides mostly partial, quantitative resistance (QR) to all races of a pathogen species and is independent of specific avirulence genes. QR delays disease development, and several quantitative trait loci act additively to confer resistance [2]. Some of the genes underlying these quantitative trait loci may make major contributions to QR. This is the case for the wheat genes *Lr67/Yr46* [3] and *Lr34/Yr18/Pm38* [4] that provide partial, QR against leaf rust, stripe rust, stem rust, and powdery mildew or *Fhb7* against *Fusarium* [5]. In addition to race-specific and QR genes, there are susceptibility genes, like the barley *Mlo* gene, where loss-of-function was found to confer recessively inherited resistance to virtually all the barley powdery mildew isolates [6].

Different types of plant immune receptors recognize pathogen-derived molecules initiating differential defense responses which then converge into common signaling pathways [7]. Pattern recognition receptors, PRRs, (either receptor-like kinases or receptor-like proteins) recognize conserved pathogen-associated (or microbial-associated) molecular patterns, triggering pattern-triggered immunity (PTI) to induce defense reactions against nonadapted pathogens. Residual levels of PTI were proposed to provide basal resistance against adapted pathogens [8,9], which would place PTI within non–race-specific resistance. *Triticeae* PRRs remain largely unidentified, although some candidates have been pinpointed [10]. Most race-specific *R* genes identified encode nucleotide-binding domain leucine-rich repeat (NLR) immune receptors that recognize pathogen strain–specific effectors. The resulting effector-triggered immunity efficiently stops pathogen spread.

Hundreds of *R* genes have been genetically described in the major cereal crops [11] and remain as an essential pillar for disease resistance breeding. Recent gold standard genomic resources [12–15] alongside innovative gene cloning strategies have greatly facilitated *R* gene cloning [16], providing tangible opportunities to broaden disease resistance diversity in crops. Here, we focus on recent progress in the molecular identification of race-specific resistance genes in wheat, barley, rye, and wild relatives. These genes include the canonical *R* genes encoding NLR proteins, but also an increasing number of novel immune receptors with unique domain architectures.
architectures, possibly revealing novel aspects of host–
pathogen interactions. Importantly, the term resistance
gene is not associated with a specific molecular charac-
teristic, but rather based on a phenotypic and genetic
characterization (Box 1).

NLR-based race-specific resistance in
Triticaceae is highly diversified and
polymeric

A growing number of wheat, barley, and rye resistance
genes have been molecularly isolated [16,17], including
genes from wild relatives that are functional in wheat
(Table 1). They are mostly active against fungal diseases
but can also confer resistance to aphids [18]. Some rye
genes have been cloned from rye chromosomal trans-
locations introgressed into wheat [19–21]. This has also
revealed that members of the same NLR gene cluster
have evolved into stem rust resistance genes in wheat
(Sr37) and rye (Sr50) or powdery mildew resistance
genes in barley and wheat (Mla allelic series), raising
interesting evolutionary implications on conserved
effector function and recognition [22]. For most of the
isolated genes, forward genetic screens revealed only
one complementation group. This suggests that addi-
tional genes are not necessary for race-specific resis-
tance. Alternatively, these genes might be redundant or
essential, thereby escaping detection by mutagenesis.

Recent genomic analysis has revealed the complete sets
of NLR coding genes in wheat. In the reference genome
of cultivar Chinese Spring, 3400 full-length NLR loci
were detected, with 1560 of them expressed and with
intact open reading frames [24]. The pan-NLRome of
wheat, that is the complete diversity of NLR coding
genomes in the gene pool, was estimated by comparing 10
high-quality genomes from diverse wheat elite varieties.
Among the ten genomes studied, only 31–34% of the
NLR signatures were found across all genomes, whereas
the number of unique NLR signatures ranged from 22 to
192. Furthermore, it was estimated that 10 wheat ge-
genomes reveal about 90% of all NLR genes present in the
wheat gene pool, which is estimated to consist of 5905 to
7780 unique NLR genes [25]. Thus, the theoretical
maximal number of NLR-based, race-specific resistance
genomes (excluding allelic variants) in wheat is around
7,000, of which less than 10% would have been genetically
described until now. However, the wheat pan-NLRome
could be even larger. The lines selected in the 10+ Wheat
Genomes Project cover well the global genetic diversity
of elite wheat cultivars, but they possibly do not represent
the complete diversity present in landraces and in the
diploid and tetraploid genomes of wheat.

Some NLR genes have unique functional aspects only
partially understood. For example, both expression as well
as resistance phenotype increased with temperature for the
Sr21 gene [26]. Moreover, *Sr21* expression and
resistance were lower in wheat genotypes with a D
genome. D genome—based suppression was also observed
for stem rust resistance in the cultivar ‘Canthatch’.
However, it is not known if the suppressed stem rust
resistance gene encodes an NLR. The suppressor on the
D genome of ‘Canthatch’ was identified as a subunit of
the mediator complex which is conserved in eukaryotes
and regulates gene expression [27]. Suppression of the
rye NLR *Pm8* by an ortholog in wheat was found to occur
at the protein level, a mechanism which might be
responsible for the frequent suppression of genes intro-
gressed into bread wheat from diploid or tetraploid wheat
relatives [28].
Table 1
List of cloned race-specific resistance genes against fungal pathogens isolated in wheat, barley, rye, and wild relatives and their corresponding Avr genes.

Donor species	Gene	Gene product	Disease, causal agent	Immune trigger
Triticum aestivum	*Lr1*	NLR	Wheat leaf rust, *Pgt*	–
Triticum aestivum	*Lr10*	NLR	–	–
Triticum aestivum	*Lr14a*	ANK	–	–
Aegilops tauschii	*Li21*	NLR	–	–
Aegilops tauschii	*Li22a*	NLR	–	–
Hordeum vulgare	*Rph1*	NLR	Barley leaf rust, *Ph*	–
H. vulgare subp. spontaneum	*Rph15*	BED–NLR	–	–
Ae. tauschii ssp. stragulata	*Sr7A1662*	NLR	–	–
Triticum turgidum ssp. durum	*Sr13*	NLR	–	–
Triticum monococcum	*Sr21*	NLR	–	–
Triticum monococcum	*Sr22*	NLR	–	–
Aegilops tauschii	*Sr33*	NLR	–	–
Triticum monococcum	*Sr35*	NLR	AvrSr35	–
Aegilops tauschii	*Sr45*	NLR	–	–
Ae. tauschii ssp. stragulata	*Sr46*	NLR	–	–
Secale cereale	*Sr50*	NLR	AvrSr50	–
Triticum monococcum	*Sr60*	TKP	–	–
Hordeum vulgare	*Rpg1*	TKP	–	–
Triticum aestivum	*Yr5*	BED–NLR	Wheat yellow rust, *Pst*	–
Triticum aestivum	*Yr7*	BED–NLR	–	–
Triticum aestivum	*Yr10*	NLR	–	–
Triticum turgidum ssp. dicoccoides	*Yr15*	TKP	–	–
Aegilops tauschii	*Ya52388R*	NLR	–	–
Triticum urartu	*Yu1*	ANK–NLR–WRKY	–	–
Triticum aestivum	*Pm1a*	NLR	Wheat powdery mildew, *Bgt*	AvrPm1a
Aegilops tauschii	*Pm2*	NLR	AvrPm2	–
Triticum aestivum	*Pm3b*	NLR	AvrPm3b	–
Triticum aestivum	*Pm3a,d*	NLR	AvrPm3a,d	–
Triticum carthlicum	*Pm4b*	MCTP kinase	–	–
Triticum aestivum	*Pm5e*	NLR	–	–
Secale cereale	*Pm8*	NLR	–	–
Secale cereale	*Pm17*	NLR	–	–
Dasypyrum villosum	*Pm21*	NLR	–	–
Triticum aestivum	*Pm24*	TKP	–	–
Triticum turgidum ssp. dicoccoides	*Pm41*	NLR	–	–
Hordeum vulgare	*Mia1, 13*	NLR	Barley powdery mildew, *Bgh*	AvrPm1a, 13
Hordeum vulgare	*Mia7,9,10,22 and alleles*	NLR	Avr7,9,10,22	–
Triticum aestivum	*Stb6*	WAK	Septoria tritici blotch, *Zt*	AvrStb6
Triticum aestivum	*Sn1*	WAK	SNB, *Sn*	SnTox1
Triticum aestivum	*Tsn1*	K-NLR	SNB, *Sn*, tan spot, *Ptr*	SnToxA
Hordeum vulgare	*rcss*	WAK	Barley spot blotch, *Bp*	–

Pt: *Puccinia triticina*; Ph: *Puccinia hordei*; Pgt: *Puccinia graminis* f. sp. *triticici*; Pst: *Puccinia striiformis* f. sp. *triticici*; Bgt: *Blumeria graminis* f. sp. *hordei*; Zt: *Zymoseptoria tritici*; Sn: *Stagonospora nodorum*, causal agent of SNB (*Stagonospora nodorum* blotch); *Ptr*: *Pyrenophora triticarii-repentis*; Bp: *Bipolaris sorokiniana*.

a Donor species refers to the original source of the resistance gene.
b ANK: ankyrin-transmembrane domain protein.
c BED–NLR: zinc-finger BED–NLR proteins.
d TKP: tandem kinase proteins.
e ANK–NLR–WRKY: ankyrin repeat and WRKY domain–containing NLR protein.
f MCTP kinase: multiple C2-domains and transmembrane region kinase protein.
g K-NLR: serine/threonine kinase–NLR; NLR: nucleotide-binding domain leucine-rich repeat (NLR) proteins; WAK: wall-associated receptor (WAK)-like protein.
h Resistance genes for which molecular identification was carried out based on forward genetic screens, and only one complementation group was found. Barley *Rph1* is the exception with additional complementation groups found.
NLR resistance genes with integrated domains (IDs)

In addition to the domains found in typical NLR proteins, some wheat and barley NLRs contain IDs that may be involved in receptor activation or downstream signaling [29]. Some of these chimeric genes are ancient, and they originated before the speciation of grass lineages. For example, rice contains NLRs with zinc-finger BED domains [30,31]. In wheat, two active resistance genes encoding ID-NLRs have recently been cloned. First, the wheat stripe rust resistance genes Yr5, Yr7, and YrSP encode proteins with an N-terminal noncanonical zinc-finger BED domain [32]. The BED domain replaces the coiled-coil domain present in canonical NLR proteins, and it is followed by the NB-ARC and the LRR domains. Mutant analysis shows that this BED domain is critical for resistance and displays a high degree of sequence conservation among the BED—NLR proteins encoded by the Yr5, Yr7, and YrSP genes, implying the BED domain plays a major role in protein function. Moreover, each gene has a distinct recognition specificity, attributable to the numerous polymorphisms in the C-terminal LRR domain. Therefore, it is assumed that race-specificity in BED—NLR proteins is controlled similarly to canonical NLR proteins (Figure 1).

The wheat YrU1 gene encodes an ID-NLR with ID domains at both its C and N termini: an N-terminal ankyrin repeat and a C-terminal WRKY domain [33]. This type of ID-NLR protein is only found in wheat-related species, and it self-associates in vivo and in planta through the CC and ANK domains. The WRKY domain is a putative transcriptional domain that might be involved in recognition of a stripe rust effector to activate immune response similarly to the Arabidopsis resistance protein complex RPS4/RRS1 [34] (Figure 1).

Tandem kinase proteins (TKPs) can confer both race-specific as well as non–race-specific resistance

Four Triticeae resistance genes, the barley stem rust resistance gene Rpg1 [35], the wheat yellow and stem rust resistance genes Yr15 [36] and Sr60 [37], and the wheat powdery mildew resistance gene Pm24 [37], encode resistance proteins with a protein architecture made of two tandem kinase (or pseudokinase) domains. All these TKPs belong to serine/threonine non-RD (non-arginine-aspartate) kinases, previously shown to be involved in plant immunity [38], and have evolved by either fusion or duplication of two kinase domains. Based on the presence of conserved residues of serine/threonine protein kinases [39] (Figure 2), at least one of the two kinase domains is functional. Besides, both kinase and pseudokinase domains are required to confer resistance in mutant and transgenic analysis [35–37].

TKP-mediated resistance is associated with hypersensitive response [35–37], indicative of an effector-triggered immunity–like resistance response. Moreover, Yr15 and Rpg1 are cytosolic proteins [36,40] (Figure 1), suggesting recognition of intracellular effectors. However, resistance spectra exhibited by these genes differ. Although Sr60 confers resistance to some of the (few) wheat stem rust races tested, Yr15 was shown to protect against dozens of genetically and geographically diverse yellow rust races [36] and Pm24 to 93 Chinese Bgt isolates. Moreover, Rpg1 has provided remarkable durable resistance under field conditions spanning decades [41]. Consequently, Yr15 and Rpg1 have been considered as non–race-specific resistance genes. However, as (few) virulent races breaking Rpg1- and Yr15-mediated resistance have been identified [42,43], TKP-encoding genes must possibly be considered as race-specific. Few polymorphic alleles among TKP-encoding genes have been reported [37,44], which contrasts to canonical NLR-encoding R genes where multiple functional allelic series and rapid diversification of resistance clusters have been described.

Interestingly, Yr15 introgression lines display different resistance phenotypes [36,45], indicating that the genetic background is important for gene function, and additional genetic components play a role in TKP-mediated resistance. A similar situation has been observed in Pto-mediated resistance among wild tomato populations, displaying resistance variation of Pto alleles recognizing the corresponding AvrPto genes [46] (Figure 1). Here, it is believed that malfunction of some of Pto response network genes would result in such resistance variation.

TKP proteins contain a kinase domain with serine/threonine specificity with strong homology to Pto and PRRs (Figure 2). Pto functions together with the NLR protein Prf to confer resistance against bacterial pathogens in tomatoes [47]. It could be that the diverse, genetic background–dependent resistance responses by Pto result from the presence/absence of as yet unknown genetic components also involved in TKP-mediated resistance. In Rpg1-mediated resistance, E3 ubiquitin ligase SCF (Skp1-cullin 1-F-box) complex components seem to be involved in resistance function [48]. It is likely that additional genetic components modulate TKP-mediated resistance. Finally, it has been hypothesized that the pseudokinase domain serves as decoy for the effectors, and after interaction, the pseudokinase activates the kinase domain to phosphorylate downstream components resulting in resistance [36] (Figure 2). Evidently, the elucidation of TKP-mediated signaling will require additional work to establish the molecular mechanism underlying this resistance.

Wall-associated kinases (WAKs)

WAKs are receptor-like kinases with an extracellular galacturonan-binding domain, transmembrane domain, and cytoplasmic serine threonine kinase domain with a
Non-NLR proteins control race-specific resistance

Sánchez-Martín and Keller

The development of nonbiased gene isolation strategies in cereals such as MutChromSeq [59] has resulted in a range of biological functions [49], including pathogen resistance. The wheat Stb6 gene [50] confers race-specific resistance against the fungus Zymoseptoria tritici by detecting the presence of a matching apoplastic effector [51,52] in a gene-for-gene manner without hypersensitive response [52] (Figure 1). This differs from the previous WAKs conferring pathogen resistance, like the maize Hml which confers partial, QR to northern corn leaf blight [53,54]. In an inverse gene-for-gene interaction, the wheat WAK-encoding Snn1 gene [55] is hijacked by the necrotrophic toxin SnToxA, which is directly recognized by the Snn1 protein [56] (Figure 1). Both SnToxA as well as AvrStb6 recognized by Stb6 are proteins, suggesting that WAK protein receptors can recognize proteinaceous effectors in addition to oligogalacturonide ligands [57]. Finally, the recent cloning of rrs5 revealed two tightly linked genes, Sbs1 and Sbs2, encoding two WAK proteins that act as susceptibility targets of the barley hemibiotrophic fungal pathogen Bipolaris sorokiniana [58]. Genes encoding WAKs are abundant in cereal genomes, and there is a need for more studies on their contribution to race-specific as well as quantitative disease resistance in cereals.

Figure 1

Schematic representation of a plant cell and models for race-specific resistance gene function. (A) WAK-mediated susceptibility/resistance. SnToxA secreted by the pathogen is recognized in the apoplasm by direct interaction with the Snn1 WAK protein. On recognition, signaling leads to the induction of cell death and Septoria nodorum blotch disease. On the other side, the Stb6 WAK protein detects the corresponding apoplastic AvrStb6, leading to a strong resistance response and completely blocking Septoria tritici blotch disease progression. (B) TKP-mediated resistance (Rpg1, Yr15). The signaling cascade for these cytosolic proteins is currently unknown. It has been proposed that pseudokinase domains might serve as decoys for rust effectors. In this case, on effector recognition, the pseudokinase protein may act as a ‘molecular switch’ to activate the kinase domain. Alternatively, based on the high similarity at the sequence level between the kinase domains of TKP proteins and PRRs (Figure 1), TKPs might be guardes of nonpoly-morphic, possibly redundant NLRs. The pseudokinase domain would act as a cofactor (bait) to stabilize the interaction with the NLR, which results in inhibition of the latter. The binding of the effector to the pseudokinase would trigger a structural change in the TKP protein and subsequently activate the NLR. (C) Lr14a-mediated resistance. The Lr14a gene encodes a membrane-bound protein with multiple ankyrin domains and structural similarities to nonselective cation channels. It remains unclear if Ca2+ plays a role in Lr14a-mediated resistance and how the corresponding effector is recognized. (D) YrU1-mediated resistance. In the proposed model, the effector binds to the WRKY domain, resulting in conformational changes and oligomerization of YrU1 proteins through the ANK and CC domains. (E) BED–NLR-mediated resistance. In this case, the BED domains, which substitute the CC domain in canonical NLR proteins, might act as decoys for pathogen effector targets. Consequently, on effector recognition by the BED domain, conformational changes and oligomerization could lead to activation. (F) NLR-mediated resistance. Canonical NLRs might activate via direct, indirect (guard/decoy), and integrated decoy recognition models. Here, Sr35-mediated resistance is shown, where the Sr35 NLR protein directly recognizes the AvrSr35 protein through the LRR domains, activating disease resistance. (G) Pm4b-mediated resistance. In the absence of the AvrPm4, Pm4b_V1 and Pm4b_V2 form an endoplasmic reticulum (ER)—associated heterocomplex interacting via C2 domains. On AvrPm4 recognition by the kinase domain, the heterocomplex might undergo conformation changes, leading to activation of the kinase activity and disease resistance.

www.sciencedirect.com
the molecular identification of immune receptors with unique, previously unknown, domain architectures. The \textit{Lr14a} gene conferring resistance to the wheat leaf rust pathogen was found to encode a chimeric protein with an N-terminal ankyrin repeat domain and a C-terminal transmembrane domain \cite{60} with overall protein sequence homology to the Arabidopsis ACD6 protein. \textit{Lr14a} also shows similarity to the human transient receptor potential ankyrin channels that are \(\text{Ca}^{2+} \)-permeable nonselective cation channels (Figure 1). The \textit{Pm4} gene encodes a chimeric protein of a serine–threonine kinase and multiple C2-domains and transmembrane regions \cite{61}. Functional analysis of \textit{Pm4} revealed that two protein variants resulting from constitutive alternative splicing are needed for resistance and that the two encoded protein variants interact biochemically forming an endoplasmic reticulum–associated complex (Figure 1). \textit{Pm4} shows homology to Arabidopsis proteins located in plasmodesmata, suggesting the unidentified \textit{AvrPm4} effector could be recognized at the plasmodesmata. Both \textit{Lr14a} and \textit{Pm4} will undoubtedly reveal novel molecular mechanisms for achieving race-specific plant immunity.

Future research directions and open questions

In contrast to the well-studied interactions of NLRs with effectors, the molecular analysis of non–NLR-based race-specific resistance is at an early stage. It will be important to isolate the corresponding pathogen avirulence genes,
which will also allow to identify host targets and to understand their relationship with resistance genes. AvrStb6 is the only known avirulence gene corresponding to a non-NLR protein [51,52]. It has the typical characteristics of a short, secreted protein with no homologies to known proteins, very similar to avirulence proteins recognized by NLRs. Avr gene identification might rapidly advance for stem rust and powdery mildew resistance genes where there has been progress in the identification of several avirulence genes recognized by NLR immune receptors (Table 1) [62—66]. Such work is essential to determine if non-NLR race-specific resistance genes, particularly the group encoding kinase domain proteins, function independently of NLR action or if they are guardees of nonpolymorphic and possibly redundant NLR proteins, similar to the Pto—Prf interaction in tomatoes where the Pto kinase is the target of the pathogen effector [47] (Figure 1).

It will also be important to study the resistance phenotypes of single non-NLR genes in defined, susceptible genetic backgrounds, either by backcrossing or by the development of transgenic lines. Furthermore, the relevance of the genetic background for gene function must be studied in detail: for example, the protein encoded by Lr14a confers a unique resistance phenotype, which depends on several modifier genes [67]. The further characterization of modifier genes will give insight into molecular mechanisms of gene function. Finally, all the novel types of resistance proteins must be explored for use in agriculture and for possible improvement by mutational changes. The future isolation of a large number of the genetically described resistance genes in cereals and their corresponding AVR genes will establish the whole interactome of R–Avr proteins and provide the basis for the development of effective and durable strategies to combat cereal diseases.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Swiss National Science Foundation, Switzerland (Grant 310030R_182833).

References

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest
** of outstanding interest

1. Flor HH: *Current status of the gene-for-gene concept*. *Annu Rev Phytopathol* 1971, 9:275–296.

2. Niko RE, Qi X, Marcel TC: *Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms*. *Annu Rev Phytopathol* 2015, 53:445–470.

3. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayifte M, Huerta-Espino J, Lillero M, Viccans L, Milne R, Periyannan S, et al.: *A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat*. *Nat Genet* 2015, 47:1494–1498.

4. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, Mcdaffden H, Bossolini E, Selter LL, Keller B: A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. *Science* (80-2009), 323:1360–1363.

5. Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Liu Z, Chen L, Xu S, Guo J, et al.: *Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat*. *Science* (80-) 2020, https://doi.org/10.1126/science.aba5435.

6. Piffanelli P, Ramsay L, Waugh R, Benabdelmoula A, D’Hont A, Hollricher K, Jørgensen JH, Lu Y, Tsuda K, et al.: *ABC transporter confers durable resistance to powdery mildew*. *Nature* 2004, https://doi.org/10.1038/nature02781.

7. Lu Y, Tsuda K: *Intimate association of PRR- and NLR-mediated signaling in plant immunity*. *Mol Plant Microbe Interact* 2020, https://doi.org/10.1094/mpmi-08-20-0239-ia.

8. Couto D, Zipfel C: *Regulation of pattern recognition receptor signalling in plants*. *Nat Rev Immunol* 2016, https://doi.org/10.1038/nri.2016.77.

9. Jones JDG, Dangl JL: *The plant immune system*. *Nature* 2006, 444:323–329.

10. Hückelhoven R, Seidl A: *Intimate association of PRR- and NLR-mediated signaling in plant immunity*. *Mol Plant Microbe Interact* 2020, https://doi.org/10.1094/mpmi-08-20-0239-ia.

11. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC, Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, et al.: *Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat*. *Science* (80-) 2020, https://doi.org/10.1126/science.aba5435.

12. Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, et al.: *Wild emmer genome architecture and diversity elucidate wheat evolution and domestication*. *Science* (80-) 2017, https://doi.org/10.1126/science.aan0032.

13. Ling HG, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, et al.: *Genome sequence of the progenitor of wheat A subgenome Triticum urartu*. *Nature* 2018, https://doi.org/10.1038/s41586-018-0108-0.

14. Luo MC, Gu YQ, Piu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, et al.: *Genome sequence of the progenitor of the wheat D genome Aegilops tausachii*. *Nature* 2017, https://doi.org/10.1038/nature24486.

15. Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J, et al.: *Shifting the limits in wheat research and breeding using a fully annotated reference genome*. *Science* (80-) 2018, https://doi.org/10.1126/science.aar7191.

16. Keller B, Wicker T, Krattinger SG: *Advances in wheat and pathogen genomics: implications for disease control*. *Annu Rev Phytopathol* 2018, 56, X–X.

17. Zhang J, Zhang P, Dodds P, Lagudah E: *How target-sequence enrichment and sequencing (TEnSeq) pipelines have catalyzed resistance gene cloning in the wheat-rust pathosystem*. *Front Plant Sci* 2020, https://doi.org/10.3389/fpls.2020.00678.

18. Nicolas V, Venter E: *Silencing of a unique integrated domain nucleotide-binding leucine-rich repeat gene in wheat abolishes diuraphis noxia resistance*. *Mol Plant Microbe Interact* 2018, https://doi.org/10.1094/MPMI-11-17-0262-R.

19. Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Kukowski P, Wicker T, Yahiouai N, Mago R, Keller B: *Rye Pm8 and wheat Pm3 are orthologous genes and show...
evolutionary conservation of resistance function against powdery mildew. Plant J 2013, 76:957–969.

20. Mago R, Zhang P, Vautrin S, Simkova H, Bansal U, Luo MC, Rouse M, Karagoulis K, Periyannan S, Kolmer J, et al.: The wheat Sr50 gene reveals rich diversity at a cereal disease resis-
tance locus. Nat Plants 2015, https://doi.org/10.1038/
npplants.2015.186.

21. Singh SP, Hurni S, Ruinelli M, Brunner S, Sanchez-Martín J, Krukowksi P, Pedditto D, Buchmann G, Zbinden H, Keller B: Evolutionary divergence of the yw17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol 2018, 98:249–260.

22. Krottenger SG, Keller B: Molecular genetics and evolution of disease resistance in cereals. New Phytol 2016, https://doi.org/10.1111/nph.14097.Key.

23. Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P, et al.: A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol 2020, https://doi.org/10.1111/nph.17622.

24. Steuemagel B, Witek K, Krottenger SG, Ramirez-Gonzalez RH, Schoonbeek HJ, Yu G, Baxs E, Witek AI, Yadav I, Kräseleya KV, et al.: The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol 2020, https://doi.org/10.1104/pp.19.01273.

25. Walkowiak S, Gao L, Monat C, Haberer G, Delorean E, Thambugula D, Klymiuk V, Byms B, Clavijo B, Koo D, et al.: Multiple wheat genomes reveal global variation in modern breeding. Nature 2020, https://doi.org/10.1038/s41586-020-2961-x.

Ten chromosomes pseudomolecule genomes of elite wheat varieties are presented in this seminal paper of wheat genomics that will facilitate breeding. It reports a detailed multi-genome-derived NLR protein repertoire that will assist in the cloning of resistance genes.

27. Hieber CW, Moscou MJ, Hewitt T, Steuemagel B, Hernández-Pinzón I, Green P, Pujol V, Zhang P, Rouse MN, Jin Y, et al.: Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nat Comm 2020, https://doi.org/10.1038/s41467-020-14937-2.

This paper describes the genetic basis of resistance suppression by identifying SuSr-D1, a suppressor of wheat stem rust resistance. Authors present how post sub-genomes impact on regulatory processes at the transcriptional level, which could help to transfer resistance genes present in close relatives of wheat, frequently suppressed in hexaploid backgrounds.

28. Hurni S, Brunner S, Stirnweis D, Herren G, Pedditto P, McIntosh RA, Keller B: The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J 2014, 79:904–913.

29. Sarris PF, Cevik V, Dagdas G, Jones JDG, Krisaleva KV: Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 2016, https://doi.org/10.1186/s12915-016-0228-7.

30. Read AC, Hutin M, Moscou MJ, Rinaldi FC, Bogdanove AJ: Cloning of the rice Xo1 resistance gene and interaction of the Xo1 protein with the defense-suppressing Xanthomonas effector T3SS. Mol Plant Microbe Interact 2020, https://doi.org/10.1094/MPMI-05-20-0131-SC.

31. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T: Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol 2018, 98:249–260.

This paper reports on the identification of two major yellow rust resistance genes encoding proteins containing a zinc-finger BED domain followed by canonical NB-ARC and LRR domains, demonstrating the involvement of ID-NLRs in race-specific resistance in wheat.

33. Wang H, Zou S, Li Y, Lin F, Tang D: An ankyrin-repeat and * WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nat Commun 2020, https://doi.org/10.1038/s41467-020-15139-8.

This paper reports on the identification of the yellow rust resistance gene YrT1 that encodes an NLR protein with ID domains at both protein termini: an N-terminal ankyrin-repeat and a C-terminal WRKY domain, which could be involved in effector recognition.

34. Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, et al.: A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 2015, https://doi.org/10.1016/j.
cell.2015.04.024.

35. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A: The barley stem rust resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A 2002, 99:9328–9333.

36. Klymiuk Y, Yaniv E, Huang L, Raads F, Fatiukha A, Chen S, Feng L, Frendek Z, Kräseleya KV, et al.: Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 2018, https://doi.org/10.1038/s41467-018-06138-9.

Together with [45] evaluates the impact of the genetic background on resistance gene function by introducing and evaluating the resistance phenotype conferred by the wheat yellow rust Yr15 gene in susceptible backgrounds. This type of work gives insights into molecular mechanisms of gene function that can be used to develop locally adapted cultivars with an optimal expression of resistance phenotypes.

37. Lu P, Guo L, Wang Z, Li B, Li J, Li Y, Qiu D, Shi W, Yang L, * Wang N, et al.: A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 2020, https://doi.org/10.1038/s41467-020-14294-0.

This paper describes a rare mutated T1605G gene, conferring resistance to the barley stem rust receptor-like serine/threonine-specific protein kinase Rpg1. Proc Natl Acad Sci U S A 2006, https://doi.org/10.1073/pnas.0602379103.

38. Bardick C, Schwessinger B, Ronald P: Non-arginine-aspartate (non-RD) kinases are associated with innate immune recep-
tors that recognize conserved microbial signatures. Curr Opin Plant Biol 2012, https://doi.org/10.1016/j.
opbi.2012.05.002.

39. Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science (80-) 1988, https://doi.org/10.1126.
sf3c91115.

40. Nimbara J, Brueggeman R, Maiers C, Clay C, Rostoks N, Kannangara CG, von Wettstein D, Steffenson BJ, Kleinhofs A: Subcellular localization and functions of the barley stem rust resistance receptor-like serine/threonine-specific protein kinase Rpg1. Proc Natl Acad Sci U S A 2006, https://doi.org/10.1073/pnas.0602379103.

41. Steffenson BJ: Analysis of durable resistance to stem rust in barley. Euphytica 1992, https://doi.org/10.1007/BF00023920.

42. Hovmøller MS, Justesen AF: Appearance of atypical Puccinia striiformis f. sp. tritici phenotypes in north-western Europe. Aust J Agric Res 2007.

43. Steffenson BJ, Solanki S, Brueggeman RS: Landraces from mountainous regions of Switzerland are sources of important genes for stem rust resistance in barley. Alpine Biol 2016, https://doi.org/10.1007/s00035-015-0161-3.

44. Chen S, Rous MN, Zhang W, Zhang X, Guo Y, Briggs J, * Ducovsky J: Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol 2020, https://doi.org/10.1111/nph.16169.

This paper describes Sr60 that encodes a TKP protein to confer resistance against wheat stem rust. Authors show that a partial race-specific resistance gene that, upon pathogen infection, is up-regulated, which moreover up-regulates several pathogenesis-related genes.

45. Klymiuk V, Fatiukha A, Raads D, Bocharova V, Huang L, Feng L, * Jawar S, Pozniak C, Coaker G, Ducovsky J, et al.: Three pre-
viously characterized resistances to yellow rust are encoded
by a single locus Wtk1. J Exp Bot 2020, https://doi.org/10.1093/jxb/eraa262.

Together with [36] evaluates the impact of the genetic background on resistance gene function by introducing and evaluating the resistance phenotype conferred by the wheat yellow rust Yr15 gene in susceptible backgrounds. This type of work gives insights into molecular mechanisms of gene function that can be used to develop locally adapted cultivars with an optimal expression of resistance phenotypes.

46. Rose LE, Langley CH, Bernal AJ, Michelmore RW. Natural variation in the Pto pathogen resistance gene within species of wild tomato (Lycopersicon). I. Functional analysis of Pto alleles. Genetics 2005, https://doi.org/10.1134/S0016635X05040092.

47. Mucyn TS, Clemente A, Andriotis VME, Balmuth AL, Oldroyd GED, Staswick AJ, Rathjen JP: The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 2006, https://doi.org/10.1105/tpc.106.041016.

48. Solanki S, Richards J, Ameen G, Wang X, Khan A, Ali H, Stangel A, Tamang P, Gross T, Gross P, et al.: Characterization of genes required for both Rpg1 and rpg4-mediated wheat stem rust resistance in barley. BMC Genom 2019, https://doi.org/10.1186/s12864-019-5858-z.

49. Dievert A, Gottin C, Peacutin C, Ranwez V, Chantret N: Origin and diversity of plant receptor-like kinases. Annu Rev Plant Biol 2020, https://doi.org/10.1146/annurev-plant-073019-025927.

50. Saintenac C, Lee W-S, Cambon F, Rudd JJ, King RC: A domain swap approach reveals a role of the plant wall-associated receptor-like kinase family in fungal-specific immunity. Plant Cell 2015, https://doi.org/10.1105/tpc.115.138468.

51. Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducaise A, Confais J, Compain J, Lapalu N, et al.: A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol 2017, 214:619–631.

52. Kema GHJ, Mirzade Gohari A, Aouni L, Gibriel HAY, Ware SB, Breen S, Dong C, Xu B, Zhang X, et al.: Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science (80-) 2017, https://doi.org/10.1126/science.aao4810.

53. Friesen TL, Stuenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP: Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 2006, https://doi.org/10.1038/ng1839.

54. Brutos A, Sicilia F, Macone A, Cervone F, De Lorenzo G: A domain swap approach reveals a role of the plant wall-associated kinase WAK1 as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 2013, https://doi.org/10.1073/pnas.1000765110.

55. Ameen G, Solanki S, Drader T, Sager-Bittara L, Steffenson B, Kleinhofs A, Vogiatzis C, Brueggeman RS: rs58-mediated spot blotch resistance in barley is conferred by wall-associated kinases that resist pathogen manipulation. bioRxiv 2020, https://doi.org/10.1101/2020.04.13.040238.

56. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamkis N, Vrána J, Kubaláková M, Krtatína SG, Wickert T, et al.: Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 2016, 17.

57. Kolodzić MC, Singla J, Sánchez-Martín J, Zbinden H, Šimková H, Karafátová M, Doležel J, Gronnier J, Poretti M, Glauer G, et al.: A membrane-bound ankyrin repeat protein confers race-specific leaf rust resistance in wheat. Nat Commun 2021, 12:956.

This paper reports the cloning of a race-specific resistance gene to leaf rust encoding a membrane-bound protein with multiple ankyrin domains. Lr14a is structurally similar to non-selective cation chan-

58. Ameen G, Solanki S, Drader T, Sager-Bittara L, Steffenson B, Kleinhofs A, Vogiatzis C, Brueggeman RS: rs58-mediated spot blotch resistance in barley is conferred by wall-associated kinases that resist pathogen manipulation. bioRxiv 2020, https://doi.org/10.1101/2020.04.13.040238.

59. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamkis N, Vrána J, Kubaláková M, Krtatína SG, Wickert T, et al.: Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 2016, 17.

60. Kolodzić MC, Singla J, Sánchez-Martín J, Zbinden H, Šimková H, Karafátová M, Doležel J, Gronnier J, Poretti M, Glauer G, et al.: A membrane-bound ankyrin repeat protein confers race-specific leaf rust resistance in wheat. Nat Commun 2021, 12:956.

This paper reports the cloning of a race-specific resistance gene to leaf rust encoding a membrane-bound protein with multiple ankyrin domains. Lr14a is structurally similar to non-selective cation chan-

61. Sánchez-Martín J, Widrig V, Herren G, Wickert T, Zbinden H, ** Gronnier J, Spörli L, Praz CR, Heuberger M, Kolodzić MC, et al.: Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins. Nat Plants 2021, 7:327–341.

This paper describes the cloning of the wheat powdery mildew Pm4 gene encoding a kinase-MCTP protein, a chimeric protein resulting from an MCTP and serine-threonine kinase. The gene undergoes constitutive alternative splicing to generate two isoforms, both required for resistance and contributing equally to resistance. Both isoforms create an ER-associated complex revealing a novel and unique mole-

62. Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Brein S, Dong C, Xu B, Zhang X, et al.: Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science (80-) 2017, https://doi.org/10.1126/science.aao4810.

Together with [63], this paper describes the first wheat stem rust Avr gene, which is directly recognised by the corresponding NLR immune receptor. This finding provides tools for molecular surveillance and early detection of virulent races that can assist in pathogen-informed breeding strategies.

63. Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S, Chao S, Anderson N, De Soto MF, Rouse M, Szabo L, et al.: Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust UG99. Science (80-) 2017, https://doi.org/10.1126/science.aao7294.

Together with [62], this paper describes the first wheat stem rust Avr gene, which is directly recognised by the corresponding NLR immune receptor. This finding provides tools for molecular surveillance and early detection of virulent races that can assist in pathogen-informed breeding strategies.

64. Bourras S, Kunz L, Xue M, Praz CR, Müller MC, Kälin C, Ackermann P, Flückiger S, Parlange F, et al.: The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cuneiform mites on wheat. Nat Commun 2019, https://doi.org/10.1038/s41467-019-10274-1.
Authors describe five effector proteins from powdery mildew of wheat, rye, and the wild grass *Dactylis glomerata* recognized by three allelic NLR immune receptors, Pm3b, Pm3c and Pm3d showing that AvrPm3-Pm3 interactions control both race-specific and host-specificity of cereal mildews on wheat.

65. Bouras S, McNally KE, Ben-David R, Patlange F, Roffler S, Praz CR, Oberhaensli S, Menardo F, Stirnweis D, Frenkel Z, et al.: Multiple avirulence loci and allelle-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. *Plant Cell* 2015, 27:2991–3012.

66. Praz CR, Bouras S, Zeng F, Sánchez-Martín J, Menardo F, Xue M, Yang L, Roffler S, Bóni R, Herren G, et al.: AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. *New Phytol* 2017, 213:1301–1314.

67. Law CN, Johnson R: A genetic study of leaf rust resistance in *wheat*. *Can J Genet Cytol* 1967, 9:805–822.

68. Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC: Leaf rust resistance gene Lr1, isolated from bread wheat (*Triticum aestivum L.*) is a member of the large pssr67 gene family. *Plant Mol Biol* 2007, https://doi.org/10.1007/s11103-007-9201-8.

69. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B: Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (*Triticum aestivum L.*) genome. *Proc Natl Acad Sci U S A* 2003, https://doi.org/10.1073/pnas.2435133100.

70. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS: Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 2003, 164:655–664.

71. Thind AK, Wicker T, Simková H, Fossati D, Moulet O, Brabant C, Vránová J, Dolezel J, Krattinger SG: Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. *Nat Biotechnol* 2017, https://doi.org/10.1038/nbt.3877.

72. Dračatos PM, Bartov J, Elmansour H, Singh D, Karafíátová M, Zhang P, Steuernagel B, Svacina R, Cobbin JCA, Clark B, et al.: The coiled-coil NLR RH1, confers leaf rust resistance in barley cultivar Sudan. *Plant Physiol* 2019, https://doi.org/10.1104/pp.18.01052.

73. Chen C, Clark B, Martin M, Matny O, Steffenson BJ, Franckowiak JD, Mascher M, Singh D, Perovic D, Richardson T, et al.: Ancient BED-domain-containing immune receptor from wild barley carries widely effective resistance to leaf rust. *bioRxiv* 2020, https://doi.org/10.1101/2020.01.19.911446.

74. Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N, et al.: Resistance gene cloning from a wild crop relative by genome sequencing by exploiting pan-genome variation in wild diploid wheat.

75. Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J: Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. *Proc Natl Acad Sci U S A* 2017, https://doi.org/10.1073/pnas.1706277114.

76. Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones J DG, et al.: Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. *Nat Biotechnol* 2016, 34:625–625.

77. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, et al.: The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. *Science* (80-) 2013, https://doi.org/10.1126/science.1239028.

78. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Aksenov E, Dubcovsky J: Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. *Science* (80-) 2013, https://doi.org/10.1126/science.1239022.

79. Liu W, Frick M, Huel R, Nykifork C, Wang X, Gaudet DA, Eudes F, Conner RL, Kuzyk A, Chen Q, et al.: The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. *Mol Plant* 2014, https://doi.org/10.1093/mp/ssu112.

80. Zhang C, Huang L, Zhang H, Hao Q, Luu B, Wang M, Epstein L, Liu M, Koo C, Qi J, et al.: An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. *Nat Commun* 2019, https://doi.org/10.1038/s41467-019-11872-9.

81. Hewitt T, Mueller MC, Molnár I, Mascher M, Holusová K, Simková H, Kunz L, Zhang J, Li J, Bhatt D, et al.: A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from *Blumeria graminis*. *New Phytol* 2021, 229:2812–2826.

82. Yahiaoui N, Strichumpa P, Drumier R, Keller B: Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. *Plant J* 2004, 37:528–538.

83. Strichumpa P, Brunner S, Keller B, Yahiaoui N: Allelic series of four powdery mildew resistance genes at the Pm3 locus in hexaploid bread wheat. *Plant Physiol* 2005, 139:885–895.

84. Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Zhang Z, Zhang R, et al.: Pm21 from *Haynaldia villosa* encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. *Mol Plant* 2018, https://doi.org/10.1016/j.molp.2018.02.013.

85. He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T: Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. *Mol Plant* 2018, https://doi.org/10.1016/j.molp.2018.03.004.

86. Li M, Dong L, Li B, Wang Z, Xie J, Qiu D, Li Y, Shi W, Yang L, Wu Q, et al.: A CNL protein in wild emmer wheat confers powdery mildew resistance. *New Phytol* 2020, https://doi.org/10.1111/nph.17671.

87. Seeholzer S, Tsuchimatsu T, Jordan T, Bieri S, Pajonk S, Wang Y, Jahoor A, Shimizu K, Keller B, Schütte-Lefert P: Diversity at the *Mla* powdery mildew resistance locus from cultivated barley reveals sites of positive selection. *Mol Plant Microbe Interact* 2010, 23:497–509.

88. Lu X, Kracher B, Saur IML, Bauer S, Ellwood SR, Wise R, Yaeno T: Allelic barley *Mla* immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. *Proc Natl Acad Sci USA* 2016, 113:E6486–E6495.

89. Saur IML, Bauer S, Kracher B, Lu X, Franzeskakis L, Müller MC, Sabelbeck B, Kümmel F, Panstruga R, Maekawa T, et al.: Multiple pairs of allelic *Mla* immune receptor-powdery mildew AVR a effectors argue for a direct recognition mechanism. *eLife* 2019, https://doi.org/10.7554/eLife.44471.

90. Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, McDonald BA, Solomon PS, Lu S, Shelver WL, et al.: The cysteine rich necrotrophic effector SnTox1 produced by *Stagonospora nodorum* triggers susceptibility of wheat lines harboring *Srnl*. *PLoS Pathog* 2012, https://doi.org/10.1371/journal.ppat.1002467.

91. Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS, et al.: A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. *Proc Natl Acad Sci USA* 2010, https://doi.org/10.1073/pnas.1004090107.