Dedekind sums take each value infinitely many times

Kurt Girstmair

Abstract

For \(a \in \mathbb{Z} \) and \(b \in \mathbb{N} \), \((a, b) = 1 \), let \(s(a, b) \) denote the classical Dedekind sum. We show that Dedekind sums take this value infinitely many times in the following sense. There are pairs \((a_i, b_i), \ i \in \mathbb{N} \), with \(b_i \) tending to infinity as \(i \) grows, such that \(s(a_i, b_i) = s(a, b) \) for all \(i \in \mathbb{N} \).

1. Introduction and result

Let \(a \) be an integer, \(b \) a natural number, and \((a, b) = 1 \). The classical Dedekind sum \(s(a, b) \) is defined by

\[
s(a, b) = \sum_{k=1}^{b} ((k/b))((ak/b)).
\]

Here

\[
((x)) = \begin{cases} x - \lfloor x \rfloor - 1/2 & \text{if } x \in \mathbb{R} \setminus \mathbb{Z}; \\ 0 & \text{if } x \in \mathbb{Z} \end{cases}
\]

(see [9, p. 1]).

Originally, Dedekind sums appeared in the theory of modular forms (see [1]). But these sums have also interesting applications in a number of other fields, so in connection with class numbers, lattice point problems, topology, and algebraic geometry (see [2, 7, 9, 10]). Starting with Rademacher [8], several authors have studied the distribution of Dedekind sums (for instance, [3, 5, 11]).

It is often more convenient to work with

\[
S(a, b) = 12s(a, b)
\]

instead. We call \(S(a, b) \) a normalized Dedekind sum.

Let \(r \) be a rational number such that there exist \(a \in \mathbb{Z} \) and \(b \in \mathbb{N} \), \((a, b) = 1 \) with \(S(a, b) = r \). Then

\[
S(a + jb, b) = r \text{ for all } j \in \mathbb{Z}.
\] (1)

Accordingly, the value \(r \) is taken infinitely many times in a trivial sense (\(b \) fixed, \(a \) running through a congruence class mod \(b \)).

In the present paper, however, we say that the value \(r \) is taken infinitely many times if, and only if, there exists a sequence \((a_i, b_i), \ i \in \mathbb{N} \), such that \(b_i \to \infty \) as \(i \to \infty \) and \(S(a_i, b_i) = r \) for all \(i \in \mathbb{N} \).
The only possible $r \in \mathbb{Z}$ that can be the value of a normalized Dedekind sum is $r = 0$. The value 0 is taken infinitely many times since $S(a, a^2 + 1) = 0$ for all $a \in \mathbb{N}$. This is well-known (see [9, p. 28]). Our main result is the following theorem.

Theorem 1 Let $r \in \mathbb{Q}$ be the value of a normalized Dedekind sum. Then the value r is taken infinitely many times.

2. The proof

Let x be a real number, $0 < x < 1$. We consider the regular continued fraction expansion

$$x = \lfloor 0, c_1, c_2, \ldots \rfloor,$$

where the c_i are natural numbers. This expansion is finite, if, and only if, $x \in \mathbb{Q}$. In this case it has the form

$$x = \lfloor 0, c_1, \ldots, c_n \rfloor$$

with $n \geq 1$ and $c_n \geq 2$. In the present setting the only irrational numbers of interest are quadratic irrationals. A number x is a quadratic irrational if, and only if, its continued fraction expansion is infinite and periodic. We need only quadratic irrationals that are nearly purely periodic, i.e.,

$$x = \lfloor 0, c_1, \ldots, c_L \rfloor = \lfloor 0, c_1, \ldots, c_L, c_1, \ldots, c_L, \ldots \rfloor.$$

Let p_k/q_k, $k \geq 0$, be the kth convergent of x. The convergents are defined recursively in a well-known way (see [6, p. 250]). In particular, $p_k \in \mathbb{Z}$, $q_k \in \mathbb{N}$, and $(p_k, q_k) = 1$ for all $k \geq 0$. Hence $S(p_k, q_k)$ is the value of a normalized Dedekind sum. If $x = a/b = \lfloor 0, c_1, \ldots, c_n \rfloor$ is rational, $a, b \in \mathbb{N}$, $(a, b) = 1$, then $p_n = a$, $q_n = b$ (and so $p_n/q_n = x$). Otherwise, q_k tends to infinity for $k \to \infty$.

The core of the proof of Theorem 1 is the following lemma, which is one of the main results of [4].

Lemma 1 Let $x = \lfloor 0, c_1, \ldots, c_L \rfloor$ be a quadratic irrational with odd period length L. If $k \geq 0$, $k \equiv L - 1 \mod 2L$, then

$$S(p_k, q_k) = S(p_{L-1}, q_{L-1}).$$

Remark. The constant value $S(p_k, q_k)$, $k \equiv L - 1 \mod 2L$, takes the form

$$S(p_k, q_k) = \sum_{j=1}^{L} (-1)^{j-1} c_j + x + x',$$ \hspace{1cm} (2)

where x' is the algebraic conjugate of x (see [4]).

Proof of Theorem 1 Let $S(a, b)$ be the value of a normalized Dedekind sum. By (1), we may assume that $0 \leq a < b$, so $0 \leq a/b < 1$. Due to the remark that precedes Theorem 1 we suppose that $S(a, b) \neq 0$. Then $a/b \neq 0$. Let

$$a/b = \lfloor 0, c_1, \ldots, c_n \rfloor$$
be the continued fraction expansion of a/b. We have $n \geq 1$ and, in particular, $c_n \geq 2$.

Case 1: n is even. Choose an arbitrary natural number c and define
\[
x = [0, c_1, \ldots, c_n, c].
\]
So this quadratic irrational has the odd number $L = n + 1$ as a period length. By Lemma 1 the convergents of x satisfy
\[
S(p_k, q_k) = S(p_{L-1}, q_{L-1}) = S(p_n, q_n) = S(a, b)
\]
for $k \geq 0$, $k \equiv L - 1 \mod 2L$. Since $q_k \to \infty$ for $k \to \infty$, the value $S(a, b)$ is taken infinitely many times.

Case 2: n is odd. We write $a/b = [0, c_1, \ldots, c_{n-1}, c_n - 1, 1]$ and put
\[
x = [0, c_1, \ldots, c_{n-1}, c_n - 1, 1, 1].
\]
So the odd number $L = n + 2$ is a period length of x. Observe that $p_{n+1} = a, q_{n+1} = b$. We obtain
\[
S(p_k, q_k) = S(p_{L-1}, q_{L-1}) = S(p_{n+1}, q_{n+1}) = S(a, b)
\]
for $k \geq 0$, $k \equiv L - 1 \mod 2L$. This gives the same result as in Case 1. \qed

Example. Let $a = 5$, $b = 14$. Then $S(a, b) = 18/7$ and $a/b = [0, 2, 1, 3, 1, 4]$. Here $n = 3$, so Case 2 of the proof applies. Accordingly, we define $x = [0, 2, 1, 3, 1, 1] = -5/7 + \sqrt{226}/14$ and have $L = 5$. We obtain $p_4 = a, q_4 = b$ and, for instance, $p_{14} = 4535, q_{14} = 12614, p_{24} = 4090565, q_{24} = 11377814, p_{34} = 3689685095, q_{34} = 10262775614$, where 14, 24 and 34 are $\equiv L - 1 \mod 2L$. Indeed, $S(p_{34}, q_{34}) = S(p_{24}, q_{24}) = S(p_{14}, q_{14}) = S(a, b) = 18/7$. From (2) we also obtain $S(a, b) = 2 - 1 + 3 - 1 - 10/7 = 18/7$.

Remarks. 1. The proof of Theorem 1 has exhibited a sequence (a_i, b_i) such that $b_i \to \infty$ and $S(a_i, b_i) = S(a, b)$ for all $i \in \mathbb{N}$. The sequence b_i, however, grows exponentially in i. This is a consequence of the exponential growth of the denominators q_k of the convergents of x. Accordingly, the set of the numbers b_i is rather thin within the set \mathbb{N}. In a number of special cases the author could establish a sequence (a_i, b_i) of this kind such that b_i is a polynomial of degree 4 in i — and so the set of the numbers b_i is considerably denser in \mathbb{N}.

2. It would be interesting to know more about the density of the set of all suitable numbers b_i. In our case, the following values of (a_i, b_i) with $b_i < 1000$ yield $S(a_i, b_i) = 18/7$: $(5, 14), (27, 70), (13, 119), (31, 259), (157, 406), (47, 455), (293, 707), (111, 854)$. This suggests that the set of all suitable b_i could be relatively dense in \mathbb{N}.

References

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer, New York, 1976.

[2] M. Atiyah, The logarithm of the Dedekind \(\eta\)-function, Math. Ann. 278 (1987), 335–380.

[3] R. W. Bruggeman, On the distribution of Dedekind sums, in: Contemp. Math. 166, Amer. Math. Soc., Providence, RI, 1994, 197–210.
[4] K. Girstmair, Dedekind sums with small denominators, Int. J. Number Th. 8 (2012), 1965–1970.

[5] D. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113–116.

[6] L. K. Hua, Introduction to Number Theory, Springer, Berlin, 1982.

[7] C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über Quadratischen Zahlkörpern, Akademie-Verlag, Berlin, 1957.

[8] H. Rademacher, Zur Theorie der Dedekindschen Summen, Math. Z. 63 (1956), 445–463.

[9] H. Rademacher, E. Grosswald, Dedekind sums, Mathematical Association of America, 1972.

[10] G. Urzúa, Arrangements of curves and algebraic surfaces, J. Algebraic Geom. 19 (2010), 335–365.

[11] I. Vardi, Dedekind sums have a limiting distribution, Internat. Math. Res. Notices 1993, 1–12.

Kurt Girstmair
Institut für Mathematik
Universität Innsbruck
Technikerstr. 13/7
A-6020 Innsbruck, Austria
Kurt.Girstmair@uibk.ac.at