Synthesis and cytotoxic evaluation of malachite green derived oleanolic and ursolic acid piperazineamides

Sander Friedrich1 · Immo Serbian1 · Sophie Hoenke1 · Ratna Kancana Wolfram1 · René Csuk1

Received: 23 January 2020 / Accepted: 24 March 2020 / Published online: 9 April 2020
© The Author(s) 2020

Abstract
The coupling of acetylated piperazinylamide spaced triterpenoic oleanolic acid and ursolic acid with meta or para substituted carboxylated malachite green analogs gave conjugates 10, 11, 15, and 16 that were cytotoxic for several human tumor cell lines. Especially, an oleanolic acid-derived compound 10 was cytotoxic for MCF-7 human breast carcinoma cells \(EC_{50} = 0.7 \mu M\). These derivatives represent first examples of triterpenoic acid derivatives holding a cationic scaffold derived from malachite green.

Graphical Abstract

Keywords Oleanolic acid · Ursolic acid · Cytotoxicity · Terpenoids · Malachite green

Introduction
Chemotherapeutic treatment of cancer represents still a scientific challenge. Although nowadays many patients suffering from cancer can be cured or—at least—their life span can be increased. Several types of cancer, however, are difficult to be handled, and the cure rate (Holzel et al. 2017; Laffman-Johnson 2012; Vliek et al. 2018) remained low over all the years despite intensive research.

Recently the potential of scaffolds holding a cationic functional group came into the focus of renewed interest inasmuch as their transport into cells might be facilitated by cation-transporters (Cai et al. 2016; Everett et al. 2013; Qian et al. 2016). Some of these transporters were reported to be overexpressed in malignant cells (Cai et al. 2014; Cai et al. 2016; Everett et al. 2013). Several molecules holding a cationic residue are cytotoxic and seem to target the mitochondria, such as ammonium (Biedermann et al. 2010; Kataev et al. 2014) or phosphonium salts (Spivak et al. 2013, 2017) of more complex molecules. Thus, these compounds are mitocans (“mitochondrially targeted anticancer drugs”).

Supplementary information The online version of this article (https://doi.org/10.1007/s00044-020-02536-1) contains supplementary material, which is available to authorized users.

René Csuk
rene.csuk@chemie.uni-halle.de

1 Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
Some conjugates of pentacyclic triterpenes are mitocans, too. Thus, hybrids holding an extra cationic functional group have shown promising to excellent cytotoxic results. While “simple” quaternary ammonium salts (Biedermann et al. 2010; Kataev, Strobykina, and Zakharova 2014) were only of moderate cytotoxicity with their EC50 values being in the same potency range as phosphonium salts (Spivak et al. 2017, 2013), hybrids consisting of a suitable pentacyclic triterpene, an amine spacer and a BODIPY-FL group (Brandes et al. 2020; Krajcovicova et al. 2018) held lower EC50 values against a variety of different human cancer cell lines. Superior cytotoxicity, however, was found for those triterpenoids holding one or two O-acetyl groups on ring A, an amide spacer at C-28 (preferentially a piperazinyl residue), and a rhodamine B moiety attached to this spacer (Sommerwerk et al. 2017). EC50 values in the low micro-molar (Kahnt et al. 2018; Wolfram et al. 2018a, 2018b) and even nano-molar range (Sommerwerk et al. 2017) were reported for these conjugates.

Results and discussion

In extension of these findings and due to the close structural similarity between malachite green (A) and rhodamine B (B, Fig. 1) we became interested in the synthesis and biological evaluation of conjugates holding a cationic triphenylmethane moiety especially of scaffolds of the “malachite green type”, i.e., 1 and 2; these scaffolds differ from malachite green by the presence of an additional carboxyl group; the latter is necessary for the attachment to the triterpene-spacer adduct.

Recently conjugates holding this type of a malachite green moiety (Müller et al. 1997; Rassow and Gruber 1915; Yang et al. 2007) have been used for the production of antibodies to be used in environmental analyses (Yang et al. 2007), as part of a fluorophore to label antimicrobial peptides (Zhao et al. 2016) and for the detection of nerve gas simulants by chromogenic chemodosimeters (Costero et al. 2012).

The synthesis of 1 (Scheme 1) started with the reaction of m-formyl-benzoic acid (3) with N,N-dimethylaniline in tetrachloro-p-benzoquinone afforded 41% of 1 while from 6 (Harle et al. 2018; Mueller et al. 1981; Rassow and Gruber 1915) under the same conditions 2 was obtained; both compounds are dark green solids. Compounds of this type are also known as “Mordant Green” or “Mordant Blue”.

Fig. 1 Structure of malachite green (a) and rhodamine B (b) as well as of scaffolds 1 and 2. The lower section displays the close structural similarity between malachite green and rhodamine B.
Oleanolic acid (7) was acetylated (Sommerwerk et al. 2017) (Scheme 2) to yield acetate 8; the latter compound was coupled with piperazine as previously reported to yield 9 (Sommerwerk et al. 2017). Compound 1 was activated in situ with oxalyl chloride and coupled with 9 to afford target compound 10. Reaction of 9 with 2 gave 11.

Acetylation of ursolic acid (12) gave acetate 13 followed by its reaction with piperazine to yield amide 14 (Sommerwerk et al. 2017). Coupling of the latter compound with 1 or 2 as described above afforded the hybrids 15 and 16, respectively.

The compounds were screened for their cytotoxic activity using sulforhodamine B assays; the results from these assays are summarized in Table 1. Betulinic acid and doxorubicin were used as standards. While ursolic acid (12) is of similar cytotoxicity as standard betulinic acid, no significant cytotoxicity was found for oleanolic acid (7). Cytotoxicity increased about tenfold for the acetylated piperazinylamides 9 and 14. Except for the HT29 human adenocarcinoma cells, the EC50 values determined for the carboxylated malachite green derivatives 1 and 2 were found in the low one-digit μM range. As far as the coupling products 10, 11, 15, and 16 are concerned, oleanolic acid-derived compounds 10 and 11 were of significantly higher cytotoxicity than ursolic acid-derived 15 and 16. The selectivity between tumor cells and the nonmalignant fibroblasts is—by and large—the same as in betulinic acid but significantly better than that of doxorubicin. Furthermore, meta substituted malachite green carboxylates 10 and 15 were about twice as cytotoxic than para substituted analogs 11 and 16, respectively. Thus, this makes oleanolic acid-derived 10 to the most cytotoxic compound of this series holding EC50 values between 0.7 and 0.9 μM. Furthermore, 10 is ~17 times more cytotoxic than standard triterpenoic acid betulinic acid and circa 50 times more cytotoxic than starting material oleanolic acid. Interestingly, while the lowest cytotoxicity was observed for HT29 cells, for an analogous rhodamine B derivative especially for this cell line the highest cytotoxicity has been noted. This seems to prove that both the type of triterpenic acid, the type of amide linkage, the type of cationic residue, and its substitution pattern are of great importance both with respect to a tumor cell line-specific cytotoxicity and to cytotoxicity in general. Ongoing studies in our laboratory try to gain a deeper insight into these observations.

Conclusion

Coupling of acetylated triterpenoic oleanolic acid and ursolic acid holding a piperazinylamide spacer with meta or para substituted carboxylated malachite green analogs gave conjugates 10, 11, 15, and 16, respectively. These compounds were cytotoxic for several human tumor cell lines. Thereby, oleanolic acid-derived compound 10 was especially cytotoxic for MCF-7 human breast carcinoma cells (EC50 = 0.7 μM).

Experimental

NMR spectra were recorded using the Varian spectrometers Gemini 2000 or Unity 500 (δ given in ppm, J in Hz; typical experiments: H-H-COSY, HMBC, HSQC, NOESY), MS spectra were taken on a Finnigan MAT LCQ 7000 (electrospray, voltage 4.1 kV, sheath gas nitrogen) instrument. The optical rotations were measured on a Perkin-Elmer polarimeter at 20 °C; TLC was performed on silica gel (Merck 5554, detection with cerium molybdate reagent); melting points are uncorrected (Leica hot stage microscope), and elemental analyses were performed on a Foss Heraeus Vario EL (C-HNS) unit. IR spectra were recorded on a Perkin Elmer FT-IR spectrometer Spectrum 1000. The solvents were dried according to usual procedures. The purity of the compounds was determined by HPLC and found to be >96%. Oleanolic acid (7) and ursolic acid (12) were obtained from Betulinines (Stifbná Skalice, Czech Republic) in bulk quantities.

Synthesis

\[\text{N-(4-((3-carboxyphenyl)(4-(dimethylamino)phenyl)methylene)cyclohexa-2,5-dien-1-yldien)-N-methylenethanaminium chloride (1)} \]

Following the procedure given for the synthesis of 2 from 4 (1.34 mmol, 500 mg), tetrachloro-p-benzoquinone (393 mg, 1.6 mmol) and glacial acetic acid (1 mL; 0.1 mmol) followed by crystallization of the solid from water (100 mL) 1 (224 mg, 41%) was obtained as a purple
Scheme 2 Synthesis of compounds 7–16: reactions and conditions: a Ac$_2$O, NEt$_3$, DMAP, DCM, 88% (of 8), 64% (of 13); b oxalyl chloride, THF; DCM, piperazine 49%; c oxalyl chloride, THF; NEt$_3$, DMAP, 25 °C, 2 h, 50%; d oxalyl chloride, THF; NEt$_3$, DMAP, 25 °C, 2 h, 50%; e oxalyl chloride, THF; DCM, piperazine 57%; f oxalyl chloride, THF; NEt$_3$, DMAP, 25 °C, 2 h, 50%; g oxalyl chloride, THF; NEt$_3$, DMAP, 25 °C, 2 h, 41%.

#	FaDu	A2780	HT29	MCF-7	SW1736	NIH 3T3
1	6.1 ± 1.0	9.7 ± 1.1	18.2 ± 1.4	6.4 ± 0.8	8.1 ± 1.5	6.3 ± 1.7
2	8.2 ± 0.9	4.6 ± 0.7	12.4 ± 1.2	6.5 ± 1.1	9.7 ± 0.8	5.2 ± 1.1
7	>30	>30	>30	>30	>30	>30
9	n.d.	1.7 ± 0.1	1.3 ± 0.1	1.7 ± 0.1	1.8 ± 0.9	2.2 ± 1.0
10	0.8 ± 0.2	0.9 ± 0.2	4.3 ± 0.5	0.7 ± 0.1	0.9 ± 0.1	0.6 ± 0.2
11	1.5 ± 0.1	2.1 ± 0.3	4.6 ± 0.2	1.4 ± 0.3	1.7 ± 0.1	1.5 ± 0.3
12	n.d.	11.7 ± 0.6	10.6 ± 0.7	12.7 ± 0.1	14.3 ± 0.4	5.2 ± 1.4
14	n.d.	2.1 ± 0.1	1.9 ± 0.3	2.0 ± 0.1	3.1 ± 0.8	9.7 ± 0.8
15	1.5 ± 0.1	1.4 ± 0.3	2.4 ± 0.2	1.2 ± 0.1	1.7 ± 0.4	1.2 ± 0.3
16	2.3 ± 0.2	4.9 ± 0.6	7.9 ± 0.5	2.9 ± 0.7	4.0 ± 0.5	2.6 ± 0.7
Betulinic acid	n.d.	12.7 ± 1.8	18.4 ± 2.0	12.0 ± 1.7	16.4 ± 1.9	16.1 ± 1.4
Doxorubicin	n.d.	0.01 ± 0.01	0.9 ± 0.2	1.1 ± 0.3	1.7 ± 0.3	0.008 ± 0.001

Human cancer cell lines: FaDu (hypopharyngeal carcinoma), A2780 (ovarian carcinoma), HT29 (colorectal carcinoma), MCF-7 (breast adenocarcinoma), SW1736 (thyroid carcinoma) NIH 3T3 (nonmalignant fibroblasts); cutoff 30 μM

n.d. not determined
solid; \(R_F = (\text{ACN/H}_2\text{O}, 85:15) = 0.44; \) m.p. 207–210 °C;
\(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 10.23 \) (s, 1H, COOH), 8.25 (d, \(J = 7.8 \) Hz, 1H, 4'-H), 7.80 (t, \(J = 1.8 \) Hz, 1H, 2'-H), 7.73 (t, \(J = 7.7 \) Hz, 1H, 5'-H), 7.56 (dt, 7.7, 1.5 Hz, 1H, 6'-H), 7.34–7.29 (m, 4H, 2-H, 7-H), 7.08 (d, \(J = 9.3 \) Hz, 4H, 3-H, 8-H) ppm; \(^{13}\)C NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 174.0 \) (C-5), 172.4 (C-OOH), 167.0 (C-9), 156.9 (C-1), 140.5 (C-7), 138.5 (C-6'), 134.9 (C-2'), 133.5 (C-4'), 131.6 (C-1'), 129.6 (C-3', C-4), 121.1 (C-5'), 114.7 (C-3, C8), 41.0 (1-NMe2), 21.5 (9-NMe2) ppm; IR (KBr): \(\nu = 3449, 3082, 1591, 1521, 1474, 1383, 1322, 1244, 1147, 1102, 1028, 831, 759, \) cm\(^{-1}\);
\(^{1}\)H-\(^{13}\)C (CHCl3): \(\lambda_{max} \) (log \(e \)) = 220 (3.4), 345.17 (2.82), 475.22 (2.72), 682.72 (3.06), 714.92 (3.27) nm; MS (ESI, MeOH): \(m/z \) (%): 373.33 (100%, [M–Cl]+); analysis calcld for \(\text{C}_{24}\text{H}_{24}\text{N}_{2}\text{O}_2\): C 70.49, H 6.16, N 6.85; found: C 70.35, H 6.38, N 6.73.

\[\text{N-(4-(4-carboxyphenyl)(4-(dimethylamino)phenyl)methylene)cyclohexa-2,5-dien-1-yliden)-N-methylmethyleneamminochloride (2) } \]

To a solution of \(5 \) (500 mg, 1.34 mmol) and tetrachloro-p-benzoquinone (393 mg, 1.6 mmol) in CHCl\(_3\) (50 mL) glacial acetic acid (1 mL, 0.1 mmol) was added, and stirring at 35 °C was continued for 2 h. The volatiles were removed under reduced pressure, and the residue was crystallized from water (100 mL) to yield 2 (970 mg, 65%) as a dark green solid; \(R_F = 0.3 \) (ACN/H\(_2\)O, 85:15); m.p. 230–232 °C; \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 10.21 \) (s, 1H, COOH), 8.12 (d, \(J = 8.7 \) Hz, 2H, 3'-H), 7.42 (d, \(J = 8.5 \) Hz, 2H, 2'-H), 7.32 (d, \(J = 9.2 \) Hz, 2H, 3-H), 7.08 (d, \(J = 9.2 \) Hz, 2H, 2-H), 6.97 (d, \(J = 9.2 \) Hz, 2H, 7-H), 6.61 (d, \(J = 9.2 \) Hz, 2H, 8-H), 3.31 (s, 12H, 1–NMe\(_2\)), 2.85 (s, 6H, 9–NMe\(_2\)) ppm; \(^{13}\)C NMR (100 MHz, DMSO-\(d_6\)): \(\delta = 173.6 \) (C-5), 166.7 (C-OOH), 156.7 (C-1), 154.3 (C-9), 140.3 (C-3), 136.0 (C-1'), 1349 (C-2'), 1343 (C-4'), 129.7 (C-3'), 128.9 (C-7), 121.0 (C-6), 111.9 (C-8), 41.1 (1–NMe\(_2\)), 40.6 (9–NMe\(_2\)) ppm; IR (KBr): \(\nu = 3447, 2929, 1591, 1521, 1474, 1383, 1322, 1244, 1147, 1102, 1028, 831, 759, \) cm\(^{-1}\);
\(^{1}\)H-\(^{13}\)C (CHCl3): \(\lambda_{max} \) (log \(e \)) = 270.37 (4.16) nm; MS (ESI, MeOH): \(m/z \) (%): 375.33 (100%, [M + H\(^+\)]+); analysis calcld for \(\text{C}_{24}\text{H}_{24}\text{N}_{2}\text{O}_2\): C 76.98, H 7.00, N 7.48; found: C 76.83, H 7.15, N 7.31.

4-[Bis(4-dimethylamino)phenyl]methyl-benzoic acid (6)

To a solution of \(5 \) (1.44 g, 9.6 mmol) and ZnCl\(_2\) (3.9 g, 28.8 mmol) in ethanol (100 mL) \(N \), \(N \)-dimethylamine (3.6 mL, 28.8 mmol) was slowly added, and the mixture was stirred under reflux for 1 day. The mixture was diluted with methanol (40 mL), the pH value was adjusted to 5 by adding aq. HCl, and the precipitate was filtered off. Compound \(6 \) (245 g, 69%) was obtained as light green/blue solid; \(R_F = 0.95 \) (n-hexane/EtOAc, 3:1); m.p. 252 °C (decomp.) (lit: 250 °C, decomp. (Yang et al. 2007)); \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 12.76 \) (s, 1H, 5'-H), 7.88–7.82 (m, 2H, 3'-H), 7.21–7.16 (m, 2H, 2'-H), 6.93–6.85 (m, 4H, 2-H), 5.38 (s, 1H, 5-H), 2.83 (s, 12H, NMe\(_2\)) ppm; \(^{13}\)C NMR (400 MHz, DMSO-\(d_6\)): \(\delta = 167.8 \) (C-5'), 151.1 (C-1'), 149.3 (C-1), 131.9 (C-4), 129.8 (C-2), 129.7 (C-3'), 129.4 (C-2'), 112.8 (C-3'), 54.59 (C-5), 40.7 (NMe\(_2\)) ppm; IR (KBr): \(\nu = 3447, 2929, 1591, 1521, 1474, 1383, 1322, 1244, 1147, 1102, 1028, 831, 759, \) cm\(^{-1}\);
\(^{1}\)H-\(^{13}\)C (CHCl3): \(\lambda_{max} \) (log \(e \)) = 270.37 (4.16) nm; MS (ESI, MeOH): \(m/z \) (%): 375.33 (100%, [M + H\(^+\)]+); analysis calcld for \(\text{C}_{24}\text{H}_{24}\text{N}_{2}\text{O}_2\): C 76.98, H 7.00, N 7.48; found: C 76.77, H 7.19, N 7.29.

3β-Acetoxyloxy-olean-12-en-28-oic acid (8)

Acetylation of \(7 \) as previously described gave \(8 \) (88%) as a colorless solid; \(R_F = 0.7 \) (silica gel, toluene/ethyl acetate/formic acid/heptane, 80:26:5:1); m.p. 263–265 °C (lit.: 260–261 °C (Sommerwerk et al. 2017); \([\alpha]_{D}^2 = +117.7^\circ \) (c 0.37, CHCl3), (lit.: +119° (c 0.1, CHCl3) (Sommerwerk et al. 2017); MS (ESI, MeOH): \(m/z \) (%): 497.5 (75%, [M – H\(^-\)]), 995.2 (100%, [2M – H\(^-\)]), 1017.7 (29%, [2M – 2H + Na\(^+\)].

3β-Acetoxyloxy-olean-12-en-28-yl piperazine (9)

Reaction of \(8 \) with oxalyl chloride and piperazine as previously described gave \(9 \) (49%); \(R_F = 0.46 \) (silica gel,
CHCl₃/MeOH, 9:1); m.p. 172–176 °C (lit.: 170–176 °C) (Sommerwerk et al. 2017); MS (ESI, MeOH): m/z = 567.4 (45%, [M + H]+).

N-(4-((4-dimethylamino)phenyl)-3-((4-3β-acetoxyolean-12-en-28-carboxy)piperazin-1-yl)oxy)-carbonylphenylethylenecyclohexa-2,5-dien-1-yliden)-N-methylmethanaminium chloride (10)

Following the procedure given for the synthesis of 11, from 1 (200 mg, 0.49 mmol) compound 10 (240 mg, 49.8%) was obtained as a dark green solid; Rₑ (CHCl₃/MeOH, 9:1) = 0.35; m.p. 212–215 °C. **¹H NMR (400 MHz, CDCl₃): δ = 8.02 (s, 1H, 37-H), 7.78–7.69 (m, 1H, 39-H), 7.49–7.33 (m, 4H, 2′-H, 7′-H), 7.05–6.91 (d, J = 8.9 Hz, 1H, 40-H), 6.99 (d, J = 8.8 Hz, 4H, 3′-H, 8′-H), 6.72–6.58 (m, 1H, 38-H), 5.21 (t, J = 3.6 Hz, 1H, 12-H), 4.49 (m, 1H, 3-H), 3.72 (q, J = 7.0 Hz, 4H, 33-H), 3.39 (s, 6H, N-Me₂), 3.23 (d, J = 15.5 Hz, 4H, 34-H), 2.96 (s, 1H, 18-H), 2.17 (m, 1H, 16-H₂), 2.04 (s, 3H, 32-H), 1.94–1.86 (m, 2H, 11-H), 1.63–1.54 (m, 8H, 6-H, 16-H₂, 2-H, 15-H₅, 7-H), 1.53–1.20 (m, 11H, 2-H, 15-H₂, 21-H, 1-H, 19-H, 9-H), 0.79 (m, 1H, 5-H), 0.89–0.80 (m, 12H, 23-H, 24-H, 25-H, 27-H), 0.72 (s, 3H, 30-H), 0.70 (s, 6H, 26-H, 29-H) ppm; **¹³C NMR (100 MHz, CDCl₃): δ = 171.0 (C-28), 171.0 (C-31), 169.3 (C-35), 157.0 (C-1′, C-9′), 143.6 (C-7′), 140.9 (C-8′), 140.8 (C-2′), 138.5 (C-41), 134.9 (C-39), 133.4 (C-37), 131.5 (C-40), 129.5 (C-38), 125.0 (C-12), 121.9 (C-36), 120.4 (C-6′), 114.3 (C-3′), 81.3 (C-3), 56.0 (C-30), 47.4 (C-9), 46.6 (C-34), 43.4 (C-33), 41.2 (1-NCH₂), 39.4 (C-8), 39.0 (C-5), 38.8 (C-17), 38.6 (C-1), 37.5 (C-4), 36.5 (C-10), 36.0 (C-18), 34.9 (C-21), 33.3 (C-22), 31.9 (C-14), 30.4 (C-20), 30.3 (C-27), 28.3 (C-24), 23.7 (C-15), 23.6 (C-2), 23.5 (C-11), 23.4 (C-19), 23.0 (C-16), 21.6 (C-32), 21.2 (C-29), 18.4 (C-6), 17.0 (C-23), 16.1 (C-26), 15.9 (C-25), 8.4 (C-7), 0.89 (C-5) ppm) IR (KBr): ν(C=O) = 1715, 1595 cm⁻¹; UV–vis (CHCl₃): λmax (log ε) = 242 (3.16), 345 (3.83), 475 (3.61), 617.15 (1.79), 732.12 nm (3.22 nm) MS (ESI, MeOH): m/z: c.l. (%) = 921.80 (100%, [M – Cl]⁻); analysis calcd for C₅₀H₃₁N₂O₄Cl: C 75.24, H 8.52, N 5.85; found: C 75.13, H 8.81, N 5.43.

3β-Acetoxy-urs-12-en-28-oic acid (13)

Acetylation of 12 as previously described (Sommerwerk et al. 2017) gave 13 (64%) as a colorless solid; Rₑ = 0.7 (silica gel, toluene/ethyl acetate/formic acid/heptane, 80:26:5:1); m.p. 242–244 °C (lit.: 242.7–244.1 °C); [α]D = +69.89° (c 0.86, CHCl₃), (lit.: +71.2° (c 1.0, CHCl₃); MS (ESI, MeOH): m/z = 497.5 (64%, [M – H]⁻), 542.9 (30%, [M + HCO₃]⁻), 995.1 (68%, [2M – H]⁻), 1017.5 (100%, [2M – 2H + Na]⁻).

3β-Acetoxy-olean-12-en-28-yl piperazine (14)

Reaction of 13 with oxalyl chloride and piperazine as previously (Sommerwerk et al. 2017) described gave 14 (57%); Rₑ = 0.44 (silica gel, CHCl₃/MeOH, 9:1); m.p. 158–161 °C
Following the procedure given for the synthesis of 11 from 1 (200 mg, 0.49 mmol) and 14 (333 mg, 0.59 mmol) compound 15 (200 mg, 50%) was obtained as a green solid; Rf (CHCl3/MeOH, 9:1) = 0.35; m.p. 214–218 °C; 1H NMR (400 MHz, CDCl3): δ = 8.00 (s, 1H, 37-H), 7.70 (d, J = 3.8 Hz, 1H, 39-H), 7.62 (t, J = 3.7 Hz, 1H, 38-H), 7.44-7.28 (m, 5H, 2′-H, 7′-H, 40-H), 7.01 (d, J = 5.4 Hz, 4H, 3′-H, 8′-H), 5.23 (t, J = 3.7 Hz, 1H, 12-H), 4.47 (t, J = 7.9 Hz, 1H, 3-H), 3.70 (m, 4H, 33-H), 3.38 (s, 6H, NMe2), 3.14 (m, 4H, 34-H), 2.94 (m, 1H, 18-H), 2.12 (m, 1H, 16-Ha), 1.79 (m, 2H, 11-H), 1.78 (s, 3H, 29-H), 0.85 (s, 3H, 24-H), 0.83 (s, 3H, 25-H), 0.89 (s, 3H, 26-H), 0.69 (s, 3H, 23-H), 2.02 (s, 3H, 32-H), 1.97–1.79 (m, 2H, 11-H), 1.78–1.45 (m, 16H, 19-H, 6-H, 16-H, 2-H, 15-H, 7-H, 22-H, 21-H, 1-H), 1.44–1.28 (m, 1H, 20-H), 1.19 (m, 2H, 5-H, 9-H), 1.11 (s, 3H, 23-H), 0.89 (s, 12H, 27-H, 25-H, 24-H), 0.84 (s, 6H, 26-H, 30-H), 0.69 (s, 3H, 29-H) ppm; 13C NMR (100 MHz, CDCl3): δ = 175.1 (C-28), 171.0 (C-31), 169.1 (C-35), 157.0 (C-1′, C-9′), 146.4 (C-13), 144.5 (C-36), 140.7 (C-2′, C7′), 140.0 (C-5′), 135.8 (C-41), 132.8 (C-40), 131.2 (C-39), 129.0 (C-38), 127.3 (C-4′, C6′), 121.6 (C-12), 114.2 (C-3′, C8′), 80.9 (C-3), 55.3 (C-5), 47.7 (C-9), 47.6 (C-17), 47.6 (C-34), 46.3 (C-33), 43.7 (C-18), 43.6 (C-14), 41.9 (C-19), 41.3 (C-10), 39.3 (C-8), 39.1 (C-22), 38.2 (C-1), 38.1 (C-7), 37.8 (C-4), 37.7 (C-21), 36.9 (C-15), 33.0 (C-20), 30.3 (C-16), 28.0 (C-11), 27.9 (C-27), 24.0 (C-2), 23.5 (C-30), 23.4 (C-32), 21.3 (C-6), 18.2 (C-29), 16.9 (26C), 16.7 (C-23), 15.4 (C-25) ppm; IR (KBr): ν = 3447 sbr, 2940 w, 1584 w, 1582 s, 1528 w, 1470 m, 1460 m, 1371 w, 1302 m, 1248 w, 1171 wm cm⁻¹; UV–vis (CHCl3): λmax (log ε) = 226.9 (3.9), 256.0 (4.1), 486.2 (3.98), 682 (4.21), 737.0 (4.6) nm; MS (ESI, MeOH): m/z (%) = 921.73 (100%, [M − Cl]−); C26H51N4O4Cl (957.78): C 75.24, H 8.52, N 5.85; found: C 75.11, H 8.69, N 5.49.

Acknowledgements We like to thank Dr D. Ströhl and his team for the NMR spectra and the late Dr R. Kluge for numerous ESI-MS measurements. IR and UV–vis spectra were recorded by V. Simon. The cell lines were provided by Dr T. Müller. Open Access funding provided by Projekt DEAL.

Compliance with ethical standards
Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References
Biedermann D,Eigenrova B,Hajduch M, Sarek J (2010) Synthesis and evaluation of biological activity of the quaternary ammonium...
salts of lupane-, oleanane-, and ursane-type acids. Synthesis 3839–3848
Brandes B, Hoenke S, Fischer L, Csink R (2020) Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur J Med Chem 185:111858
Cai H, Wahajuddin M, Everett R, Thakker DR (2014) Do cation-selective transporters help or hurt the antitumor efficacy of metformin in breast cancer. Cancer Res 74:4639
Cai H, Zhang YH, Han TX, Everett RS, Thakker DR (2016) Cation-selective transporters are critical to the AMPK-mediated antiproliferative effects of metformin in human breast cancer cells. Intern J Cancer 138:2281–2292
Costero AM, Parra M, Gil S, Gotor R, Martinez-Manez R, Sancenon F, Royo S (2012) Selective detection of nerve agent simulants by using triarylmethanol-based chromogenic chemodosimoters. Eur J Org Chem 26:4937–4946
Everett RS, Zhang YH, OnoiiwU IM, Bae-Jump VL, Thakker DR (2013) Multiple cation-selective transporters contribute to the antiproliferative effects of metformin in ovarian cancer cell lines. Cancer Res 73. https://doi.org/10.1158/1538-7445.AM2013-4427
Harle JP, Arata S, Mine S, Kamegawa S, Nguyet VT, Maeda T, Nakazumi H, Fujiiwara H (2018) Malachite green derivatives for dye-sensitized solar cells: optoelectronic characterizations and persistence on TiO2. Bull Chem Soc Jpn 91:52–64
Holzel D, Eckel R, Bauerfeind I, Baier B, Fischer L, Csuk R (2018) Design, synthesis and antitumor activity. Med Chem Res 26:518–531
Spivak AV, Nedopekina DA, Khalitova RR, Gubaidullin RR, Odinokov VN, Bel’skii YP, Bel’skaya NV, Khazanov VA (2013) Triphenylphosphonium cations of betulinic acid derivatives: synthesis and antitumor activity. Med Chem Res 26:155–171
Spivak AV, Nedopekina DA, Shakurova ER, Khalitova RR, Gubaidullin RR, Odinokov VN, Dzemhilev UM, Bel’skii YP, Bel’skaya NV, Stankevich SA, Korotkaya EK, Khazanov VA (2013) Synthesis of lupane triterpenoids with triphenylphosphonium substituents and studies of their antitumor activity. Russ Chem Bull 62:188–198
Vliek S, Jager A, Jonge-Lavrencic M, Lotz JP, Gonsalves A, Graeser M, Nitz U, Mandjes IAM, Holtkamp MJ, Schot M, Retel VP, Kuip EJ, Wymenga MN, Konings IR, Tjan-Heijnen VCG, Kroep JR, Schröder CP, Van der Wall E, Linn SC (2018) Substantially improving the cure rate of high-risk BRCA1-like breast cancer patients with personalized therapy (SUBITO)—an international randomized phase III trial. Cancer Res 78. https://doi.org/10.1158/1538-7445.SABCS17-OT2-07-08
Wolfram RK, Fischer L, Kluge R, Ströhl D, Al-Harrasi A, Csink R (2018a) Homopiperazine-rodamine B adducts of triterpenic acids are strong mitocans. Eur J Med Chem 155:869–879
Wolfram RK, Keller L, Csink R (2018b) Targeting mitochondria: esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis. Eur J Med Chem 155:203–210
Yang MC, Fang JM, Kuo TF, Wang DM, Huang YL, Liu LY, Chen PH, Chang TH (2007) Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water. J Agric Food Chem 55:8851–8856
Zhao C, Fernandez A, Avlonitis N, Vande Velde G, Bradley M, Read ND, Vendrell M (2016) Searching for the optimal fluorophore to label antimicrobial peptides. ACS Comb Sci 18:689–696