POSITIVSTELLENSATZÄ FOR NONCOMMUTATIVE RATIONAL EXPRESSIONS

J. E. PASCOE

Abstract. We derive some Positivstellensätze for noncommutative rational expressions from the Positivstellensätze for noncommutative polynomials. Specifically, we show that if a noncommutative rational expression is positive on a polynomially convex set, then there is an algebraic certificate witnessing that fact. As in the case of noncommutative polynomials, our results are nicer when we additionally assume positivity on a convex set–that is, we obtain a so-called “perfect Positivstellensatz” on convex sets.

1. Introduction

We consider the positivity of noncommutative rational functions on polynomially convex sets. The theory on positive noncommutative polynomials has been well-studied [3, 6, 4], essentially inspired by the operator theoretic methods from the theory of positive (commutative) polynomials on polynomially convex sets originating in the work [10, 9]. We note that going from the polynomial to the rational case is less clear than in the noncommutative case because we cannot “clear denominators,” as it were.

A noncommutative polynomial (over \mathbb{C}) in d-variables is an element of the free associative algebra over \mathbb{C} in the noncommuting letters x_1, \ldots, x_d. For example $1000x_1x_2x_1 - x_2^2$ and $x_1^2 + x_1x_2$ are noncommutative polynomials in two variables. A matricial noncommutative polynomial is a matrix with noncommutative polynomial entries. For example,

$$
\begin{bmatrix}
7i & 1000x_1x_2x_1 - x_2^2 \\
x_1^2 + x_1x_2 & 0
\end{bmatrix}
$$

Date: November 9, 2018.

2010 Mathematics Subject Classification. Primary 13J30, 16K40, 47L07; Secondary 15A22, 26C15, 47A63.

Key words and phrases. Noncommutative rational function, positive rational function, Hilberts 17th problem, noncommutative Positivstellensatz.

Research supported by NSF Mathematical Science Postdoctoral Research Fellowship DMS 1606260.
is a matricial noncommutative polynomial. We define an involution \(* \) on matricial noncommutative polynomials to be the involution which treats each \(x_i \) as a self-adjoint variable. For example,
\[
\begin{bmatrix}
7i & 1000x_1x_2x_1 - x_2^2 \\
x_1^2 + x_1x_2 & 0
\end{bmatrix}^* =
\begin{bmatrix}
-7i & x_1^2 + x_2x_1 \\
1000x_1x_2x_1 - x_2^2 & 0
\end{bmatrix}.
\]

We say a collection \(\mathcal{P} \) of square matricial noncommutative polynomials is \textbf{Archimedian} if \(\mathcal{P} \) contains elements of the form \(C_i - x_i^2 \) for some real numbers \(C_i \) and each element of \(\mathcal{P} \) is self-adjoint.

Let \(\mathcal{H} \) be the infinite dimensional separable Hilbert space. For a self-adjoint operator \(T \), we say \(T \geq 0 \) if \(T \) is positive semidefinite, we say \(T > 0 \) if \(T \) is strictly positive definite in the sense that the spectrum of \(T \) is contained in \((0, \infty)\). We define
\[
\mathcal{D}_\mathcal{P} = \{ X \in B(\mathcal{H})^d | p(X) \geq 0, \forall p \in \mathcal{P}, X_i = X_i^* \}.
\]

Previously, Helton and McCullough showed the following Positivstellensatz for matricial noncommutative polynomials.

\begin{theorem}[Helton, McCullough [6]]\end{theorem}
Let \(\mathcal{P} \) be an Archimedian collection of matricial noncommutative polynomials. Let \(q \) be a square matricial noncommutative polynomial. If \(q > 0 \) on \(\mathcal{D}_\mathcal{P} \), then
\[
q = \sum_{\text{finite}} s_i^* s_i + \sum_{\text{finite}} r_j^* p_j r_j
\]
where \(s_i, r_j \) are all matricial noncommutative polynomials and \(p_j \in \mathcal{P} \).

\section{The Rational Positivstellensatz}

A \textbf{noncommutative rational expression} is a syntactically correct expression involving \(+, (,),^{-1}\) the letters \(x_1, \ldots, x_d \) and scalar numbers. We say two nondegenerate expressions are \textbf{equivalent} if they agree on the intersection of their domains. (Nondegeneracy means that the expression is defined for at least one input, or equivalently that the domain is a dense set with interior. That is, examples such as \(0^{-1} \) are disallowed.) Examples of noncommutative rational expressions include
\[
1, x_1x_1^{-1}, 1 + x_2(8x_1^3x_2x_1 + 8)^{-1}.
\]
We note that the first two are equivalent.

A \textbf{matricial noncommutative rational expression} is a matrix with noncommutative rational expression entries.

We show the following theorem.

\begin{theorem} \end{theorem}
Let \(\mathcal{P} \) be an Archimedian collection of noncommutative polynomials. Let \(q \) be a square matricial noncommutative rational
expression defined on all of \mathcal{D}_P. If the noncommutative rational expression $q > 0$ on \mathcal{D}_P, then

$$q \equiv \sum_{finite} s_i^* s_i + \sum_{finite} r_j^* p_j r_j \quad (2.1)$$

where s_i, r_j are all matricial noncommutative rational expressions defined on \mathcal{D}_P and $p_j \in \mathcal{P}$.

Proof. We let $g_j(x)$ be such that the term $g_j(x)^{-1}$ occurs in q. The proof will go by strong induction on the number of such terms. Define

$O = \mathcal{P} \cup \{\pm[1-u_jg_j(x)]^*[1-u_jg_j(x)], \pm[1-g_j(x)u_j]^*[1-g_j(x)u_j]\} \cup \{D_j-u_j^*u_j\}$

where D_j are positive real scalars chosen to be large enough so that $D_j - [g_j(x)^{-1}]^*g_j(x)^{-1}$ is positive on \mathcal{D}_P.

We now define a self-adjoint noncommutative polynomial $\hat{q}(x, u)$ so that $\hat{q}(x, u) = q(x)$. Now \hat{q} is a noncommutative polynomial in terms of x_i and u_j. Moreover, in terms of the x_i and u_j, we see that $q(x, u)$ is positive on \mathcal{D}_O, so by Theorem 1.1

$$\hat{q} = \sum_{finite} s_i^* s_i + \sum_{finite} r_j^* o_j r_j$$

for some $o_j \in O$. We now analyze each term of the form $t_j = r_j^* o_j r_j$. We need to show that $t_j(x, g)$ is of the form (2.1). If $o_j \in \mathcal{P}$, we are fine. If $o_j = \pm[1-u_jg_j(x)]^*[1-u_jg_j(x)]$, we are also fine, since $t_j(x, g) = 0$, and similarly for the reversed case. If $o_j = D_j - [u_j]^* u_j$ we note that $ao_j(x, g) = D_j - [g_j(x)^{-1}]^* g_j(x)^{-1} = [g_j(x)^{-1}]^*[D_j g_j(x)^* g_j(x) - 1]g_j(x)^{-1}$, and since $D_j g_j(x)^* g_j(x) - 1 > 0$ on \mathcal{D}_P, by induction it is of the form (2.1), so we are done.

We note that the same proof can be adapted for the hereditary case in [6]. Moreover, we note that this implies the Agler model theory for rational functions on polynomially convex sets established variously in [2, 1].

3. The Convex Perfect Rational Positivstellensatz

It is important to note that in Theorem 1.1 and Theorem 2.1 the complexity of the sum of squares representation is unbounded and we needed strict inequality. Specifically, in (2.1), the number of terms in each sum and the degree of each s_i and r_j are not bounded in the statement of the theorem. However, Helton, Klep and McCullough [4] showed that bounds do exist when we additionally assume that \mathcal{D}_P is convex and contains 0 and moreover that \mathcal{P} consists of a single monic linear pencil, L, a self-adjoint linear matrix polynomial such that $L(0)$...
is the identity. We note that for any finite set \mathcal{P} of noncommutative polynomials such that $\mathcal{D}_\mathcal{P}$ is convex and contains 0, there exists such an L \cite{7}.

Our goal is to prove the following:

Theorem 3.1. Let L be a monic linear pencil. Suppose $\mathcal{D}_{\{L\}}$ is convex. Let r be a square matricial noncommutative rational expression defined on all of $\mathcal{D}_{\{L\}}$. The noncommutative rational expression $r \geq 0$ on all of $\mathcal{D}_{\{L\}}$ if and only if

$$r \equiv \sum_{\text{finite}} s_i^*s_i + \sum_{\text{finite}} r_j^*Lr_j \quad (3.1)$$

where s_i, r_j are all matricial noncommutative rational expressions defined on all of $\mathcal{D}_{\{L\}}$.

Proof. Given an expression $r(x)$, we consider the expression $\tilde{r}(x, u)$ where each $g_j(x)^{-1}$ occurring in r has been replaced by u_j as in the proof of Theorem 2.1.

First we consider the minimal set \mathcal{C}_r of rational expressions such that:

1. $ab \in \mathcal{C}_r \Rightarrow b \in \mathcal{C}_r$,
2. $(a + b)c \in \mathcal{C}_r \Rightarrow ac \in \mathcal{C}_r, bc \in \mathcal{C}_r$,
3. $a + b \in \mathcal{C} \Rightarrow a \in \mathcal{C}_r, b \in \mathcal{C}_r$,
4. $a^{-1}b \in \mathcal{C} \Rightarrow aa^{-1}b \in \mathcal{C}_r$.

From \mathcal{C}_r, form a set $\tilde{\mathcal{C}}_r$ by replacing each occurrence of $g_j(x)^{-1}$ in elements of \mathcal{C}_r with a new symbol u_j. We define the set of \mathcal{M}_r to be

$$\mathcal{M}_r = \{g_j(x)u_jb - b|g_j(x)u_jb \in \tilde{\mathcal{C}}_r\}.$$

Define

$$\mathcal{Z}_r = \{(X, U, v)|m(X, U)v = 0, m \in \mathcal{M}_r, L(X) \geq 0\}.$$

We note that for $(X, U, v) \in \mathcal{Z}_r$ and $\tilde{a}(x, u) \in \tilde{\mathcal{C}}_r$, one can show we have that $\tilde{a}(X, U)v = \tilde{a}(x, g(X)^{-1})v$ via a recursive argument. We see that $\tilde{r}(x, u)$ satisfies

$$\langle r(X)v, v \rangle = \langle \tilde{r}(X, U)v, v \rangle \geq 0,$$

on \mathcal{Z}_r since $\tilde{r}(X, U)v = r(X)v$ on \mathcal{Z}_r by construction. Now, we apply the Helton-Klep-Nelson convex Positivstellensatz\cite[Theorem 1.9]{5}, where the variety is given by \mathcal{Z}_r and the convex set is $\{(X, U)|L(X) \geq 0\}$, to get that:

$$\tilde{r}(x, u) = \sum s_i^*s_i + \sum \tilde{r}_j^*L\tilde{r}_j + \sum \iota_k^*m_k + m_k\iota_k$$
where each ι_k is in the real radical of the ideal generated by the elements of \mathcal{M}_r. That is, each $\iota_k(X,U)v$ vanishes on Z_r. So, substituting $g_j(x)^{-1}$ for u_j we get that
\[
 r(x) = \sum s_i^* s_i + \sum r_j^* L r_j.
\]

We note that we could have proved a bit more: that on the variety Z_r that \tilde{r} is positive and given by a sum of squares. This would essentially correspond to the so-called Moore-Penrose evaluation in [8]. Moreover, we note that the main result on positive rational functions, the noncommutative analogue of Artin’s solution to Hilbert’s seventeenth problem, that regular positive rational expressions are sums of squares [8], follows from our present theorem by taking an empty monic linear pencil, in fact, we obtain a slightly better matricial version of that result. Moreover, one has size bounds inherited from the Helton-Klep-Nelson convex Positivstellensatz [5], that is, checking that a noncommutative rational expression is effective using the algorithms given in [5].

References

[1] J. Agler and J.E. McCarthy. Global holomorphic functions in several noncommuting variables. Canad. J. Math., 67:241–285, 2015.
[2] Joseph A. Ball, Gilbert Groenewald, and Tanit Malakorn. Conservative Structured Noncommutative Multidimensional Linear Systems, pages 179–223. Birkhäuser Basel, Basel, 2006.
[3] J. W. Helton. Positive noncommutative polynomials are sums of squares. Ann. of Math., 156(2):675–694, 2002.
[4] J.W. Helton, I. Kelp, and S. McCullough. The convex Positivstellensatz in a free algebra. Adv. Math., 231:516–534, 2012.
[5] J.W. Helton, I. Klep, S. McCullough, and C. Nelson. Noncommutative polynomials nonnegative on a variety intersect a convex set. J. Funct. Anal., 266(12):6684–6752, 2014.
[6] J.W. Helton and S. McCullough. A Positivstellensatz for non-commutative polynomials. Trans. AMS, 356:3721–3737, 2004.
[7] J.W. Helton and S. McCullough. Every convex free basic semi-algebraic set has an LMI representation. Ann. of Math., 176(2):979–1013, 2012.
[8] Igor Klep, James Eldred Pascoe, and Jurij Volcic. Regular and positive non-commutative rational functions. J. Lond. Math. Soc., 2017. to appear.
[9] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J., 42:969–984, 1993.
[10] K. Schmüdgen. The K-moment problem for compact on semi-algebraic sets. Math. Ann., 289(2):203–206, 1991.
Department of Mathematics, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1146, St. Louis, MO 63130, USA.

E-mail address: pascoej@math.wustl.edu