EDITORIALS

1199

4. Janssen WJ, Stefanski AL, Bochner BS, Evans CM. Control of lung
defence by mucins and macrophages: ancient defence mechanisms
with modern functions. Eur Respir J 2016;48:1201–1214.

5. Jia Y, Yu H, Fernandes SM, Wei Y, Gonzalez-Gil A, Motari MG, et al.
Expression of ligands for Siglec-8 and Siglec-9 in human airways and
airway cells. J Allergy Clin Immunol 2015;135:799–810.e7.

6. Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE,
Boerner RM, et al. Muc5b is required for airway defence. Nature 2014;
505:412–416.

7. Conil C, Montero-Fernandez A, Borg E, Osadolor T, Viola P, De Lauretis A,
et al. Mucins MUC5B and MUC5AC in distal airways and honeycomb
spaces: comparison among idiopathic pulmonary fibrosis/usual
interstitial pneumonia, fibrotic nonspecific interstitial pneumonitis,
and control lungs. Am J Respir Crit Care Med 2016;193:462–464.

8. Nakano Y, Yang IV, Walts AD, Watson AM, Helling BA, Fletcher AA, et al.
MUC5B promoter variant rs35705950 affects MUC5B expression in
the distal airways in idiopathic pulmonary fibrosis. Am J Respir Crit Care
Med 2016;193:464–466.

9. Lack C, Raghu G. Idiopathic pulmonary fibrosis: unmasking cryptogenic
environmental factors. Eur Respir J 2019;53:1801699.

10. Helling BA, Gerber AN, Kadiyala V, Sasse SK, Pedersen BS, Sparks L,
et al. Regulation of MUC5B expression in idiopathic pulmonary fibrosis.
Am J Respir Cell Mol Biol 2017;57:91–99.

11. Hormozdian F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Blow M, et al.
Colocalization of GWAS and eQTL signals detects target genes. Am J
Hum Genet 2016;99:1245–1260.

12. Pelito AL, Zhang Y, Fingerlin TE, Ma SF, Garcia JG, Richards TJ, et al.
Association between the MUC5B promoter polymorphism and
survival in patients with idiopathic pulmonary fibrosis. JAMA 2013;
309:2232–2239.

13. van Moorsel CHM, van der Vis JJ, Duckworth A, Scotton CJ, Benschop C,
Ellinghaus D, et al. The MUC5B promoter polymorphism associates
with severe COVID-19 in the European population. Front Med (Lausanne)
2021;8:668024.

14. García-Carmona S, Falfán-Valencia R, Verónica-Aguilar A,
Buenza-Roldán I, Chávez-Galán L, Hernández-Zenteno RJ, et al.
COVID-19 survivor patients carrying the rs35705950 risk allele in
MUC5B have higher plasma levels of mucin 5B. Curr Issues Mol Biol
2022;44:3283–3290.

15. Hobbs BD, de Jong K, Lamontagne M, Bossé Y, Shrine N, Artigas MS,
et al.; COPDGene Investigators; ECLIPSE Investigators; LifeLines
Investigators; SPIROMICS Research Group; International COPD
Genetics Network Investigators; UK BiLEVE Investigators; International
COPD Genetics Consortium. Genetic loci associated with chronic
obstructive pulmonary disease overlap with loci for lung function and
pulmonary fibrosis. Nat Genet 2017;49:426–432.

16. Kim W, Cho MH, Sakomsakolpat P, Lynch DA, Coxson HO, Tal-Singer R,
et al. DSP variants may be associated with longitudinal change in
quantitative emphysema. Respir Res 2019:20:160.

17. Hao Y, Bates S, Mou H, Yun JH, Pham B, Liu J, et al. Genome-wide
association study: functional variant rs2076295 regulates desmoplakin
expression in airway epithelial cells. Am J Respir Crit Care Med 2020;
202:1225–1236.

Rare Genetic Variants Provide Protection for Obstructive Sleep Apnea

Obstructive sleep apnea (OSA) is an extremely common condition
worldwide. OSA was shown many years ago to aggregate in families
(1). Although this has been known for decades, progress in identifying
relevant gene variants has been slow. This likely reflects both
inadequate sample sizes and the etiological heterogeneity of OSA, with
multiple risk factors that are each likely influenced by many genes.

Multiple approaches to identifying gene variants have been used,
including candidate gene studies (which have been very
underpowered [2]), family-based linkage studies (3) (which identified
LOD scores below accepted ranges even for suggestive significance),
and genome-wide association studies. Two different phenotyping
approaches to genome-wide association studies have been used: case-
control analysis on the basis of clinical diagnosis (4) and quantitative
trait analysis using measures from overnight sleep studies (e.g., the
apnea–hypopnea index [AHI]) (5) shown to be heritable (6). The
latter has been facilitated by conducting sleep studies in population-
based cohorts. However, this approach can be challenging because
there may be only a small subset of individuals with clinically
meaningful OSA (5). There are also questions about whether subjects
identified in the general population are representative of individuals
who present clinically (7).

Although these efforts have begun to identify reproducible gene
variants related to OSA, all variants together explain only a small
fraction of the estimated heritability (4). Given that prior analyses
have typically focused on common genetic variants
(e.g., minor allele frequency [MAF] > 5%), one possible explanation
for this “missing heritability” is associations with rare variants
that have a lower prevalence (e.g., MAF < 5%). Although each individual
variant is rare, there are a lot of them. In other complex traits, rare
variants have been shown to explain a proportion of the missing
heritability (8), supporting their potential role in OSA.

To assess the effect of rare variants, the study of Liang and
colleagues (pp. 1271–1280) in this issue of the Journal (9) takes an
interesting and informative multistage approach, leveraging major
resources assembled by the highly innovative Trans-Omics for
Precision Medicine (TOPMed) program sponsored by the NHLBI.
Stage I involved linkage analysis for AHI in 487 European
Americans from 118 families in the CFS (Cleveland Family Study)
(1). The highest linkage peak was a suggestive association (LOD = 2.
31) on chromosome 7q31. The investigators then used a number of
filtering strategies and both gene-based burden tests and sequence
kernel association tests to identify rare variants and implicated
genes in the 20-cM region centered on the linkage peak. Although
a number of different rare variants were identified, the most
significant gene was CAV1 (Caveolin-1), which contained 21

*This article is open access and distributed under the terms of the Creative
Commons Attribution Non-Commercial No Derivatives License 4.0. For commercial
usage and reprints, please e-mail Diane Garn (dgarn@thoracic.org).
Originally Published in Press as DOI: 10.1164/rccm.202207-1414ED
on July 29, 2022.
noncoding variants with MAF \(\leq 0.01 \) associated with reduced AHI on the basis of the burden test (9).

Stage II and stage III analyses focused on quantitative analyses in available cohorts of unrelated individuals. In stage II, the authors analyzed associations for variants within 70 genes implicated in stage I, using whole-genome sequencing data in 2,772 individuals of European ancestry from four cohorts in the TOPMed program. Although analyses restricted to functional rare variants did not identify associated genes, gene-based analyses of noncoding variants identified nominal associations of seven genes (\(\text{CAV1}, \text{TES} \) [testin LIM domain protein], \(\text{ASZ1} \) [ankyrin repeat, SAM and basic leucine zipper domain containing 1], \(\text{PTPRZ1} \) [protein tyrosine phosphatase receptor type Z1], \(\text{SND1} \) [staphylococcal nuclease and Tudor domain containing 1], \(\text{AKRIB1} \) [aldo-keto reductase family 1 member B], and \(\text{POT1} \) [protection of telomeres 1]). Although none of the associations remained significant after correction for multiple comparisons, \(\text{CAV1} \) was associated with lower AHI at this stage. These seven nominally associated genes were then carried forward to stage III using genotype data from 4,449 new individuals. \(\text{CAV1} \) variants were consistently associated with lower AHI in stage III, and gene-based associations remained significant after correcting for multiple comparisons. As further evidence supporting this result, investigators returned to the CFS and showed that individuals carrying any of the 21 noncoding variants in \(\text{CAV1} \) had much lower AHI than noncarriers; carriers were slightly younger, with lower body mass index, neck circumference, and blood pressure. Finally, bioinformatics approaches were used, using RNA sequencing data for 44 tissues in the Genotype-Tissue Expression Project database (10). Identified variants in \(\text{CAV1} \) were associated with higher expression of \(\text{CAV1} \) in skeletal muscle and in T cells in the MESA (Multi-Ethnic Study of Atherosclerosis) cohort (9). Thus, the overall conclusion of this elegant study is that \(\text{CAV1} \) harbors rare, noncoding variants that increase expression of \(\text{CAV1} \) and are protective against OSA.

This study by Liang and colleagues (9) shows the power of using the resources that have been assembled by TOPMed, such as whole-genome sequencing data, coupled with appropriate statistical techniques to answer important questions and advance knowledge. The question now is “Where do we go from here?” First, it is important to see this result replicated in other studies, including in clinical cohorts with real-world patients. The authors failed to replicate results in the UK Biobank study, but as they show, there is likely to be a large number of subjects in the UK Biobank with unrecognized OSA. Fortunately, relevant cohorts are increasingly becoming available (4). Extreme phenotypes of OSA have also been identified (11). “Extreme control subjects” are individuals with high likelihood of OSA on the basis of age, sex, and body mass index but who do not have OSA. Are these rare variants more common in these individuals?

Another question is “Why does \(\text{CAV1} \) protect you from OSA?” There remains the potential for pleiotropy or confounding, as \(\text{CAV1} \) is associated with multiple OSA-related comorbidities. However, the authors also present a number of mechanistic hypotheses, including possible effects on upper airway muscle or cardiopulmonary functions. Ultimately, future functional studies are needed. Although functional studies of genes associated with sleep duration can be performed in multiple model systems, including high-throughput studies in \(\text{Drosophila} \) and zebrafish (12) and more in-depth studies in mice (13), a challenge to functional studies of genes for OSA remains which animal model and phenotype to investigate.

Thus, this study is an important step toward understanding the unexplained heritability of OSA. Although additional replication is needed, it raises a number of important questions about mechanisms. We may finally be turning the corner in the search for gene variants that affect OSA risk, and the next few years are set to be a highly productive era of investigation in this area.

References

1. Redline S, Tishler PV, Tosteson TD, Williamson J, Kump K, Browner I, et al. The familial aggregation of obstructive sleep apnea. *Am J Respir Crit Care Med* 1995;151:682–687.

2. Varvariou V, Dahabreh IJ, Malhotra A, Kales SN. A review of genetic association studies of obstructive sleep apnea: field synopsis and meta-analysis. *Sleep (Basel)* 2011;34:1461–1468.

3. Palmer LJ, Buxbaum SG, Larkin E, Patel SR, Elston RC, Tishler PV, et al. A whole-genome scan for obstructive sleep apnea and obesity. *Am J Hum Genet* 2003;72:340–350.

4. Straus S, Ruotsalainen S, Ollila HM, Karjalainen J, Kiiskinen T, Reeve M, et al. Genetic associations with obstructive sleep apnea traits in Hispanic/Latino Americans. *Am J Respir Crit Care Med* 2016;194:886–897.

5. Liang J, Cade BE, Wang H, Chen H, Gleason KJ, Larkin EK, et al. Comparison of heritability estimation and linkage analysis for multiple traits using principal component analyses. *Genet Epidemiol* 2016;40:222–232.

6. Amardottir ES, Bjornsdottir E, Olafsdottir KA, Benediktsdottir B, Gislason T. Obstructive sleep apnoea in the general population: highly prevalent but minimal symptoms. *Eur Respir J* 2016;47:194–202.

7. Misawa K, Hasegawa T, Mishima E, Jutabha P, Ouchi M, Kojima K, et al. Contribution of rare variants of the \(\text{SLC22A12} \) gene to the missing heritability of serum urate levels. *Genetics* 2020;204:1079–1090.

8. Liang J, Wang H, Cade BE, Kurniasyah N, He KY, Lee J, et al. Targeted genome sequencing identifies multiple rare variants in Caveolin-1 associated with obstructive sleep apnea. *Am J Respir Crit Care Med* 2022;206:1271–1280.

9. The GTex Consortium. The Genotype-Tissue Expression (GTEx) Project. *Nat Genet* 2013;45:580–585.

10. Rizzatti FG, Mazzotti DR, Mindel J, Maislin G, Keenan BT, Bittencourt L, et al. Defining extreme phenotypes of OSA across international sleep centers. *Chest* 2020;158:1187–1197.

11. Palermo J, Chesi A, Zimmerman A, Santì S, Lasconi C, Brown EB, et al. Variant-to-gene-mapping followed by cross-species genetic screening identifies GFI-1/anchor biosynthesis as novel regulator of sleep [preprint]. *bioRxiv*; 2021 [accessed 2022 July 11]. Available from: https://www.biorxiv.org/content/10.1101/2021.12.19.472248v1.

12. Keenan BT, Galante RJ, Jiang L, Zhang L, Guo X, Veatch OJ, et al. The dihydropyrimidine dehydrogenase gene contributes to heritable differences in sleep in mice. *Curr Biol* 2021;31:5238–5248.e7.