yama, a mutant allele of Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis

Yongjuan Guan¹, Devanshi Jain²,³,*, Scott Keeney²,⁴, P. Jeremy Wang¹,*

¹ Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA, ² Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA, ³ Department of Genetics, Rutgers University, Piscataway, NJ, USA, ⁴ Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, USA.

*devanshi.jain@rutgers.edu (DJ); pwang@vet.upenn.edu (PJW)
Abstract
Piwi-interacting RNAs (piRNAs) play critical roles in protecting germline genome integrity and promoting normal spermiogenic differentiation. In mammals, there are two populations of piRNAs: pre-pachytene and pachytene piRNAs. Transposon-rich pre-pachytene piRNAs are expressed in fetal and perinatal germ cells and are required for retrotransposon silencing, whereas transposon-poor pachytene piRNAs are expressed in spermatocytes and round spermatids and regulate mRNA transcript levels. MOV10L1, a germ cell-specific RNA helicase, is essential for the production of both populations of piRNAs. Although the requirement of the RNA helicase domain located in the MOV10L1 C-terminal region for piRNA biogenesis is well known, its large N-terminal region remains mysterious. Here we report a novel Mov10l1 mutation in the Mov10l1 N-terminal region named yama. The yama mutation results in a single amino acid substitution V229E. The yama mutation causes meiotic arrest, de-repression of transposable elements, and male sterility because of defects in pre-pachytene piRNA biogenesis. Moreover, restricting the Mov10l1 mutation effects to later stages in germ cell development by combining with a postnatal conditional deletion of a complementing wild-type allele causes absence of pachytene piRNAs, accumulation of piRNA precursors, polar conglomeration of piRNA pathway proteins in spermatocytes, and spermiogenic arrest. Mechanistically, the V229E substitution in MOV10L1 reduces its interaction with PLD6, an endonuclease that generates the 5’ ends of piRNA intermediates. Our results uncover an important role for the MOV10L1-PLD6 interaction in piRNA biogenesis throughout male germ cell development.

Author Summary
Small non-coding RNAs play critical roles in silencing of exogenous viruses, endogenous retroviruses, and transposable elements, and also play multifaceted roles in controlling gene expression. Piwi-interacting RNAs (piRNAs) are found in gonads in diverse species from flies to humans. An evolutionarily conserved function of piRNAs is to silence transposable elements through an adaptive mechanism and thus to protect the germline genome integrity. In mammals, piRNAs also provide a poorly understood function to regulate postmeiotic differentiation of spermatids. More than two dozen proteins are involved in the piRNA pathway. MOV10L1, a germ-cell-specific RNA helicase, binds to piRNA precursors to initiate piRNA biogenesis. Here we have identified a single amino acid substitution (V229E) in MOV10L1 in the yama mutant.
When constitutively expressed as the only source of MOV10L1 throughout germ cell development, the yama mutation abolishes piRNA biogenesis, de-silences transposable elements, and causes meiotic arrest. When the mutant phenotype is instead revealed only later in germ cell development by conditionally inactivating a complementing wild-type copy of the gene, the point mutant abolishes formation of later classes of piRNAs and again disrupts germ cell development. Point mutations in MOV10L1 may thus contribute to male infertility in humans.

Introduction

Transposable elements, which constitute around 40% of the mammalian genome, play important roles in genome evolution. However, their mobilization can disrupt gene function and cause diseases [1, 2]. Production of piRNAs in the germline is one of the major mechanisms to silence retrotransposons to protect genome integrity. piRNAs are small (26-31 nt) non-coding RNAs with a preference for a 5’ uridine nucleotide [3]. piRNAs associate with homologs of the Drosophila melanogaster Piwi protein, which in mouse include MIWI (PIWIL1), MILI (PIWIL2), and MIWI2 (PIWIL4). In the mouse germline, two populations of piRNAs are present: pre-pachytene and pachytene piRNAs. Pre-pachytene piRNAs associate with MILI and MIWI2 in embryonic and perinatal germ cells and are required for DNA methylation and retrotransposon silencing [4-7]. Pachytene piRNAs are present in spermatocytes and round spermatids and are associated with MILI and MIWI [8-10]. In contrast with the predominant role of pre-pachytene piRNAs in silencing transposable elements, pachytene piRNAs are implicated in cleavage of messenger RNAs in testis [11-14]. The mRNA cleavage is dependent on the slicer activity of MIWI [14, 15]. In addition, MIWI binds to and stabilizes spermiogenic mRNAs directly [16]. MIWI and pachytene piRNAs also function in activating translation of a subset of spermiogenic mRNAs [17]. Thus, piRNAs perform diverse functions throughout male germ cell development in mammals.

In addition to the Piwi proteins, more than 20 other proteins are involved in the piRNA pathway [3]. A number of Tudor domain-containing (TDRD) proteins (TDRD1 [18-20], TDRD5 [21, 22], TDRD9 [23, 24], TDRD12 [25], and TDRKH [26, 27]), in general, function as scaffold proteins in the assembly of piRNA ribonucleoprotein particles by binding to arginine-methylated Piwi proteins [28-31]. The Drosophila Zucchini protein functions as an endonuclease in piRNA biogenesis [32-34], and its mammalian orthologue PLD6 is essential for piRNA biogenesis in
mouse [35, 36]. Zucchini/PLD6 cleaves precursor transcripts into intermediate piRNA fragments, whose 5’ ends are bound and protected by Piwi proteins; subsequently the Piwi-bound fragments are trimmed to the length of mature piRNAs by the 3’-to-5’ exoribonuclease PNLDC1 [37-40].

MOV10L1, a germ cell-specific RNA helicase, is a key regulator of piRNA biogenesis. MOV10L1 interacts with all Piwi proteins and binds to piRNA precursors to initiate primary piRNA biogenesis [41, 42]. MOV10L1 functions as an RNA helicase and resolves G-quadruplex RNA secondary structures [42, 43]. Constitutive inactivation of MOV10L1 leads to loss of mature piRNAs, de-repression of retrotransposons, arrest during meiotic prophase, and male infertility [41, 44]. In contrast, conditional deletion of the Mov10l1 gene postnatally leads to arrest during postmeiotic spermatid differentiation, without overt defects in transposon silencing [45]. Two point mutations previously generated in the MOV10L1 C-terminal RNA helicase domain revealed an essential role for its RNA helicase activity in piRNA biogenesis [42, 46]. However, the function of the large N-terminal region of MOV10L1 remains unknown. We address this question here using a Mov10l1 V229E missense mutant recovered as part of a recently described N-ethyl-N-nitrosourea (ENU) mutagenesis screen for novel meiotic mutants [47, 48]. This substitution attenuates the interaction between MOV10L1 and PLD6 and causes a profound failure in both pre-pachytene and pachytene piRNA biogenesis. We named this mutant allele yama, for ‘yields abnormal meiosis and Mov10l1-affected’. Other hits we previously described from the screen are rahu, ketu and shani [47-49]. Yama, Rahu, Ketu and Shani are harbingers of misfortune in Vedic mythology.

Results

Mov10l1^{yama/yama} males exhibit meiotic arrest and sterility

The Mov10l1^{yama} allele was isolated in an N-ethyl-N-nitrosourea (ENU) mutagenesis screen for mutants with autosomal recessive defects in meiosis. Details of the screen are provided elsewhere [47, 48]. Briefly, mutagenesis was performed on male mice of the C57BL/6J strain, and then a three-generation breeding scheme was carried out including outcrossing with females of the FVB/NJ strain (Fig 1A). Third-generation male offspring were screened for meiotic defects by immunostaining spermatocyte squash preparations for SYCP3 and γH2AX.
In a screen line we named *yama*, nine of 27 third-generation males screened displayed abnormal SYCP3 and γH2AX immunostaining patterns indicative of meiotic defects (Fig 1B).

The phenotype was first coarsely mapped using SNP genotyping arrays and manual genotyping of strain polymorphisms to a 17.44-Mb interval on Chromosome 15 as described previously (Fig 1C) [47]. Whole-exome sequencing was performed on DNA from one mutant and un-annotated variants were identified as previously described [47]. This analysis revealed a single exonic mutation located in *Mov10l1*. This variant is a T to A transition at position Chr. 15: 88994968 (GRCm38/mm10), resulting in a missense mutation in exon 5: V229E (codon GTG229GAG) (S1 Fig). Valine 229 in MOV10L1 is highly evolutionarily conserved (Fig 2A).

Mov10l1/*yama/yama* mice were viable and exhibited no obvious gross abnormalities. *Mov10l1*/*yama/yama* females were fertile (7.3 ± 1.0 pups/litter, n=4) but males were sterile. The body weight was comparable between 8-week-old *Mov10l1*/*yama/yama* mice (24.2 ± 1.1 g, n=3) and *Mov10l1*/*+/yama* littermates (23.8 ± 0.9 g, n=3). However, the testis weight of adult *Mov10l1*/*yama/yama* males was sharply reduced in comparison with their heterozygous littermates (Fig 2B and 2C). The *Mov10l1*/*+/yama* adult testis contains a full spectrum of germ cells: spermatogonia, spermatocytes, round spermatids, and elongated spermatids (Fig 2D). During the first wave of spermatogenesis in juvenile testis, round spermatids appear at postnatal day 21 (P21) and elongated spermatids are present at P28. Histological analysis revealed that, in contrast with *Mov10l1*/*+/yama* testes, *Mov10l1*/*yama/yama* testes from P21, P28, and P60 all lacked post-meiotic spermatids and displayed meiotic arrest (Fig 2D).

To define the stage of meiotic arrest in *Mov10l1*/*yama/yama* testes, we examined chromosomal synapsis in spermatocytes by immunofluorescence of nuclear spreads with anti-SYCP1 and anti-SYCP3 antibodies. The synaptonemal complex (SC) is a tripartite proteinaceous structure that physically links homologous chromosomes during meiosis. While SYCP3 is a component of the SC lateral elements formed along the axis of each chromosome, SYCP1, a SC transverse element, connects the two lateral elements to form synapsis between the homologous chromosomes [50]. In control (*Mov10l1*/*+/yama*) pachytene spermatocytes, all chromosomes were fully synapsed except the sex chromosomes (Fig 2E). In contrast, the most advanced *Mov10l1*/*yama/yama* spermatocytes assembled the synaptonemal complex lateral elements containing SYCP3 but lacked chromosomal synapsis as shown by the absence of SYCP1, and thus were considered zygotene-like spermatocytes (Fig 2E). TUNEL analysis revealed that apoptosis was
strongly increased in P21 (juvenile) and P60 (adult) *Mov10l1*/*yama*/*yama* testes, suggesting that defective spermatocytes were eliminated in the mutants due to the meiotic checkpoint (Fig 2F). The V229E mutation caused a blockade in early meiosis and thus phenocopied the previously reported *Mov10l1*−/− knockout mutant [41].

Western blot analysis showed that the abundance of MOV10L1 protein was modestly lower in *Mov10l1*/*yama*/*yama* testis than wild type at P21, and was more substantially reduced at P60 (Fig 2G). Because MOV10L1 is abundantly expressed in pachytene spermatocytes, and P21/P60 wild type testes were rich in pachytene spermatocytes but the mutant testes were depleted of normal pachytene spermatocytes, the reduction of MOV10L1 abundance in the mutant testis could be due to depletion of pachytene spermatocytes. It is also possible that the MOV10L1 (V229E) protein was less stable. To test the latter possibility, we expressed MOV10L1 and MOV10L1 V229E in HEK293T cells separately. The protein abundance of MOV10L1 and MOV10L1 V229E was similar, indicating that the V229E substitution does not affect the intrinsic stability of MOV10L1 (Fig 2H).

De-repression of LINE1 and IAP retrotransposons in *Mov10l1*/*yama*/*yama* testis

Because MOV10L1-dependent biogenesis of pre-pachytene pRNAs is required for silencing of retrotransposons [41, 42], we sought to address whether transposable elements were affected in *Mov10l1*/*yama*/*yama* testes. We examined the expression of LINE1 and IAP in P21 and P60 *Mov10l1*/*yama*/*yama* and *Mov10l1*/*yama*/*yama* testis sections by immunostaining with anti-LINE1 ORF1 and anti-IAP GAG antibodies. LINE1 and IAP were barely detected in the *Mov10l1*/*yama*/*yama* testes but were significantly upregulated in the *Mov10l1*/*yama*/*yama* testes (Fig 3A and 3B). Consistent with the upregulation patterns in *Mov10l1*-null testes [41], LINE1 was mainly upregulated in spermatocytes, whereas IAP was de-repressed in spermatogonia in *Mov10l1*/*yama*/*yama* testes (Fig 3A and 3B). These results were confirmed by Western blot and quantitative RT-PCR analyses in *Mov10l1*/*yama*/*yama* and *Mov10l1*/*yama*/*yama* testes at different ages (Fig 3C and 3D). These data demonstrate that retrotransposons are not silenced in *Mov10l1*/*yama*/*yama* testes.

We next examined the expression and localization of MILI and MIWI, two postnatal Piwi proteins, in P21 and P60 *Mov10l1*/*yama*/*yama* and *Mov10l1*/*yama*/*yama* testes. As expected, MILI was detected in both spermatogonia and pachytene spermatocytes in *Mov10l1*/*yama*/*yama* testis (Fig 3E). However, MILI was only detected in spermatogonia in *Mov10l1*/*yama*/*yama* testes, because of
absence of pachytene spermatocytes in the mutant testes (Fig 3E). As expected, MIWI was expressed in pachytene spermatocytes but not in spermatogonia in Mov10l1^{+/yama} testis, and thus MIWI was not detected in Mov10l1^{yama/yama} testes (Fig 3F).

Mov10l1^{fl/yama} Ngn3-Cre males display round spermatid arrest

Due to the meiotic arrest at the zygotene-like stage, the Mov10l1^{yama/yama} testis is devoid of pachytene spermatocytes and thus is expected to lack pachytene piRNAs (Fig 2D). To assess the function of MOV10L1 N-terminal region in pachytene piRNA production, we bypassed the early meiotic block by using a Mov10l1^{fl} conditional (floxed) allele [41]. We generated Mov10l1^{fl/yama} Ngn3-Cre mice, in which Ngn3-Cre expression begins in postnatal day 7 [45, 51]. The testes from Mov10l1^{fl/yama} Ngn3-Cre males were smaller (Fig 4A and 4B). Histological analysis showed that spermatogenesis from P21 Mov10l1^{fl/yama} Ngn3-Cre mice progressed to the round spermatid stage as in wild type (Fig 4C). However, germ cells from adult Mov10l1^{fl/yama} Ngn3-Cre mice were arrested at the round spermatid stage, as evidenced by the lack of elongated spermatids in P60 testes (Fig 4C). Therefore, in contrast with the meiotic arrest phenotype observed in Mov10l1^{yama/yama} testis, Mov10l1^{fl/yama} Ngn3-Cre males displayed post-meiotic round spermatid arrest, which was previously observed in Mov10l1^{fl/c} Ngn3-Cre males [45]. The lack of complementation of the Mov10l1 mutant (Mov10l1⁻) allele by the yama allele further proved that the phenotype-causing mutation lied in Mov10l1.

MOV10L1 V229E mutation blocks the primary processing of pachytene piRNA precursors

Mov10l1^{fl/c} Ngn3-Cre testis displays round spermatid and lack pachytene piRNAs [45]. To assess the production of pachytene piRNAs in Mov10l1^{fl/yama} Ngn3-Cre testes, we isolated and radiolabeled the total RNA from testes and found that Mov10l1^{fl/yama} Ngn3-Cre testes were devoid of pachytene piRNAs, which were ~30 nt (Fig 4D). Pachytene piRNAs are derived from long precursor transcripts from genomic clusters [8, 10, 52]. Long primary piRNA precursor transcripts are further cleaved into intermediate RNAs and processed into mature piRNAs. The absence of pachytene piRNAs in Mov10l1^{fl/yama} Ngn3-Cre testes could be due to the blockage of pachytene piRNA precursor processing. To test this possibility, we examined the level of precursors of three pachytene piRNAs: piR1, piR2 and piLR (Fig 4E). qRT-PCR analysis revealed that these three precursors accumulated by 2 to 5-fold in the mutant testes compared
with the wild type testes (Fig 4E). As expected, the abundance of miRNA precursor Pre-let7g remained constant (Fig 4E). These results demonstrate that the V229 residue of MOV10L1 is essential for the primary processing of piRNA precursor transcripts.

To evaluate whether the absence of pachytene piRNAs leads to de-repression of retrotransposons, such as LINE1 and IAP, in Mov10l1fl/yama Ngn3-Cre germ cells, we immunostained adult wild type and Mov10l1fl/yama Ngn3-Cre testis sections with anti-LINE1 and anti-IAP antibodies. In comparison with the dramatic increase of retrotransposons in Mov10l1yama/yama and Mov10l1fl/fl testes, LINE1 and IAP were barely detected in Mov10l1fl/yama Ngn3-Cre adult testis (S2A Fig). Therefore, pachytene piRNAs are not required for repression of LINE1 and IAP retrotransposons.

During the chromatin remodeling process in elongating spermatids, DNA double strand breaks (DSBs) are introduced into the germ cell genome by topoisomerase II beta (TOP2B) to resolve DNA supercoils [53]. The formation of DSBs triggers activation of phosphorylation of histone H2AX (γH2AX). Therefore, in wild-type testis, γH2AX is present in the germ cells that undergo chromatin configuration in elongating spermatids but not in round spermatids (S2B Fig). However, a dramatic increase of DNA damage visualized by γH2AX was observed in round spermatids from Mov10l1fl/yama Ngn3-Cre testes (S2B Fig). This result was previously observed in Mov10l1fl/minus Ngn3-Cre testes [45]. These results confirm that pachytene piRNAs play a role in maintaining genome integrity in post-meiotic round spermatids.

Dissociation of MOV10L1 from piRNA pathway proteins in Mov10l1fl/yama Ngn3-Cre testes

We next evaluated the localization of piRNA pathway proteins, including MILI, MIWI and TDRD1 in Mov10l1fl/yama Ngn3-Cre and wild type testes. As expected, these three proteins were highly expressed in the cytoplasm of spermatocytes in wild type testes. Strikingly, these proteins congregated to one pole in the cytoplasm of spermatocytes in Mov10l1fl/yama Ngn3-Cre testes (Fig 5A-C), indicating that the piRNA pathway was severely disturbed. However, MOV10L1V229E localized throughout the cytoplasm of spermatocytes but did not display polar aggregation (Fig 5D). MOV10L1 interacts with MILI, MIWI, and TDRD1 [45]. Since these piRNA pathway proteins were still present in Mov10l1fl/yama Ngn3-Cre testes, we sought to address whether the associations between MOV10L1 and piRNA pathway proteins were affected in Mov10l1fl/yama Ngn3-Cre testes. MOV10L1 was abundant in MILI-immunoprecipitated complexes from wild
type testes but absent in MILI-containing complexes from \(\text{Mov10l1}^{\text{fl/yama}} \text{Ngn3-Cre} \) testes (Fig 5E). To confirm this result, we performed reciprocal immunoprecipitations and found that MILI was absent in MOV10L1-immunoprecipitated proteins from \(\text{Mov10l1}^{\text{fl/yama}} \text{Ngn3-Cre} \) testes (Fig 5F). Likewise, our co-immunoprecipitation assays revealed that MOV10L1 was sharply decreased in MIWI or TDRD1-immunoprecipitated proteins from \(\text{Mov10l1}^{\text{fl/yama}} \text{Ngn3-Cre} \) testes, in comparison with control testes (Fig 5G and H).

PLD6 is an endoribonuclease essential for the cleavage of piRNA precursor transcripts [32, 33]. Western blot analyses showed that PLD6 was slightly reduced in P14 and P21 \(\text{Mov10l1}^{\text{fl/yama}} \text{Ngn3-Cre} \) testes (Fig 5I). To test the association of MOV10L1 and PLD6 in testes, we performed co-immunoprecipitation and found that they formed a complex \textit{in vivo} (Fig 5J). Consistently, MOV10L1 and PLD6 are found in the same fractions from testis ribosome profiling experiments [54]. However, this association was abolished in \(\text{Mov10l1}^{\text{fl/yama}} \text{Ngn3-Cre} \) testes (Fig 4I). These results demonstrate that the association of MOV10L1V229E with the piRNA pathway proteins is either abolished or severely reduced, which provides a molecular mechanism underlining the piRNA biogenesis defect.

The V229E substitution attenuates the MOV10L1-PLD6 interaction

To test whether the V229E mutation directly affects the interaction between MOV10L1 and the piRNA pathway proteins, we co-expressed these proteins in HEK293T cells. Indeed, wild type MOV10L1 interacted with all Piwi proteins (MILI, MIWI, and MIWI2) in transfected cells (Fig 6A-C). Strikingly, MOV10L1V229E was still associated with the Piwi proteins (Fig 6A-C). MEIOB, a meiosis-specific ssDNA-binding protein required for meiotic recombination, served as a negative control [55, 56]. As expected, MOVO10L1 did not interact with MEIOB (Fig 6D).

These results from co-transfection experiments in cultured cells were in stark contrast with the absent or reduced association of MOV10L1V229E with Piwi proteins in testes (Fig 5). It is possible that the piRNA biogenesis machinery is disrupted so that the piRNA pathway proteins are segregated into different subcellular compartments in the mutant testis.

PLD6 plays a conserved role in piRNA biogenesis in \textit{Drosophila} and mice [35, 36, 57]. Wild type full-length MOV10L1 was co-immunoprecipitated with PLD6 in HEK293T cells, however, the interaction of MOV10L1V229E with PLD6 was reduced (Fig 6E and 6H). To further investigate the MOV10L1-PLD6 interaction, MOV10L1 was divided into two halves:
MOV10L1N (aa 1-708) and MOV10L1C (aa 709-1239) (Fig 6H). Co-transfection experiments in HEK293T cells showed that PLD6 was associated with MOV10L1N (Fig 6F), but not with MOV10L1C (Fig 6G). However, this interaction was absent between PLD6 and MOV10L1NV229E (Fig 6F). These results imply that the failure in piRNA biogenesis in \textit{Mov10l1} V229E mutant testes could be due to reduced interaction between MOV10L1 and PLD6 (Fig 7).

Discussion

The MOV10L1 C-terminal RNA helicase activity is essential for piRNA biogenesis (Fig 2A and 7A) [41, 42, 46]. Here, the identification of the mutation (V229E) in a phenotype-driven ENU mutagenesis screen has allowed us to probe the function of the MOV10L1 N-terminal region. We find that the V229 residue in the MOV10L1 N-terminal region is critical for piRNA biogenesis and spermatogenesis. Mechanistically, the V229E substitution reduces the interaction between MOV10L1 and PLD6 (Fig 7B). MOV10L1 preferentially binds to RNA G-quadruplex both \textit{in vivo} and \textit{in vitro} [42, 43]. Recent biochemical studies have shown that binding to G-quadruplex requires both the N- and C-termini of MOV10L1 [43]. Therefore, we cannot exclude the possibility that the V229E substitution might affect G-quadruplex binding. The MOV10L1 C-terminal region alone does not interact with PLD6. Although MOV10L1N-V229E does not interact with PLD6, the MOV10L1-V229E (full-length) showed reduced interaction with PLD6, suggesting that the MOV10L1 C-terminal region contributes to this interaction but is not sufficient. In our working model (Fig 7B), MOV10L1 binds to piRNA precursors. The V229E inhibits the recruitment of PLD6, resulting in a failure of piRNA precursor cleavage and thus a lack of mature piRNAs. As a consequence, piRNA precursor transcripts accumulate in the \textit{Mov10l1} mutant testis.

MOV10L1 interacts with all Piwi proteins [41]. Association of MILI and MIWI with MOV10L1V229E is either absent or dramatically reduced in the \textit{Mov10l1}fl/yama Ngn3-Cre testis. However, when co-expressed in HEK293T cells, MOV10L1V229E still interacts with Piwi proteins. What accounts for this difference between \textit{in vivo} (testis) and \textit{in vitro} (HEK293T cells)? Normally, piRNA biogenesis factors localize to cytoplasmic granules called nuage or inter-mitochondrial cement [58]. We postulate that the piRNA biogenesis machinery has collapsed in the \textit{Mov10l1}fl/yama Ngn3-Cre testis, due to defects in the very early steps of piRNA biogenesis (Fig 7B), and as a result, the piRNA pathway proteins are redistributed. One possible
explanation is that MOV10L1^{V229E} interacts with Piwi proteins in vitro because they are overexpressed. Another possible but non-mutually exclusive explanation is that MOV10L1^{V229E} is physically separated from other proteins such as Piwi and PLD6 in the mutant testes. The latter explanation is supported by the abnormal polar aggregation of MILI, MIWI, and TDRD1 in the cytoplasm of pachytene spermatocytes from the Mov10l1^{fl/yama} Ngn3-Cre testis. It is further supported by the diffuse cytoplasmic distribution and the lack of polar aggregation of MOV10L1^{V229E} in pachytene spermatocytes from the Mov10l1^{fl/yama} Ngn3-Cre testis.

The unusual polar aggregation of piRNA pathway proteins was previously observed in Mov10l1 RNA helicase domain deletion mutant testis [45], Pld6^{−/−} testis [35], and Tdrkh^{cKO} testis [27]. Previous studies have shown that mitochondria colocalize with the polar aggregates in mutant germ cells [27, 35, 45]. Although the reason for polar aggregation of piRNA pathway proteins in mutant testes is unknown, it might result from perturbation of piRNA production. Both nuage and mitochondria are important for piRNA biogenesis. Nuage is located closely to or between mitochondria [18]. While the piRNA pathway proteins such as Piwi and MOV10L1 mostly localize to nuage, notably, PLD6, PNLDC1, and TDRKH are mitochondrial proteins [26, 27, 35-37]. TDRKH functions as a scaffold protein to recruit MIWI and PNLDC1 to mitochondria for 3’ trimming of piRNA intermediates [27]. The importance of the MOV10L1-PLD6 interaction in piRNA biogenesis provides another connection between nuage and mitochondria.

Materials and methods

Ethics statement

Mice were maintained and used for experimentation according to the guidelines of the Institutional Animal Care and Use Committees of the University of Pennsylvania and Memorial Sloan Kettering Cancer Center (MSKCC).

Generation of the Mov10l1^{yama} mutant

The Mov10l1^{yama} allele was isolated in an N-ethyl-N-nitrosourea (ENU) mutagenesis screen for mutants with autosomal recessive defects in meiosis (Fig 1). Mutagenesis and breeding for screening purposes were conducted at Memorial Sloan Kettering Cancer Center (MSKCC).
The *yama* mutation (T to A) creates a novel *Bse*RI restriction site (S1 Fig). The wild type and mutant alleles were assayed by primers ACACGACATTGTCAATGCTGTG and GTGGTATGATCTAGTGGAACCAGAA followed by *Bse*RI restriction enzyme digestion at 37°C for 3 hours. Both alleles produce a 220-bp PCR product and only the mutant PCR product can be digested into 179-bp and 41-bp fragments by *Bse*RI.

The *Mov10l1*+/− and *Mov10l1*fl/fl mice were previously generated (MMRRC stock number for *Mov10l1*fl/fl mice: 036983-UNC) [41]. The *Ngn3*-Cre mice were purchased from the Jackson Laboratory (Stock number: *Neurog3*-Cre, 006333) [51].

Histological and immunofluorescence analyses

For histological analysis, testes were fixed in Bouin’s solution at room temperature overnight, embedded with paraffin and sectioned. Sections were stained with hematoxylin and eosin. In terms of immunofluorescence analysis, testes were fixed in 4% paraformaldehyde (in 1x PBS) for 6 hours at 4°C, dehydrated in 30% sucrose (in 1x PBS) overnight and sectioned. For surface nuclear spread analysis, testicular tubules were extracted in hypotonic treatment buffer (30 mM Tris, 50 mM Sucrose, 17 mM Trisodium Citrate Dihydrate, 5 mM EDTA, 0.5 mM DTT, 1 mM PMSF). Cells were suspended in 100 mM sucrose and were then spread on a slide which was soaked in paraformaldehyde solution containing Triton X-100. The sections were blocked with 10% goat serum at room temperature for 1 hour and then incubated with primary antibodies at 37°C for 3 hours. The sections were washed with 1xTBS three times and then incubated with a fluorescein secondary antibody (Vector Laboratories) at 37°C for 1 hour. After three washes, mounting medium with DAPI (H-1200, Vector Laboratories) was added to the sections. The primary and secondary antibodies used for immunofluorescence analyses were listed in S1 Table.

RNA extraction and detection of pachytene piRNAs

Total testis RNA was extracted with Trizol (Invitrogen) according to the manufacturer’s protocol. 1 µg RNA was dephosphorylated and radiolabeled as described previously [20].

Reverse transcription and quantitative real-time PCR
1 µg RNA was treated with DNase I and reverse transcribed to cDNA with Superscript II reverse transcriptase (ThermoFisher Scientific). The primers for real-time PCR were listed in S2 Table. Each sample was assayed in triplicates. Quantification was normalized to Actb using the ΔCt method.

Expression constructs

The MOV10L1, MILI, MIWI and MIWI2 expression constructs were previously described [41]. PLD6 expression plasmid was constructed by subcloning mouse PLD6 cDNA to pcDNA3 vector harboring a C-terminal V5 tag. MOV10L1-V229E mutation was generated by overlapping PCR [59] and subcloned into the pCI-neo vector harboring an N-terminal HA tag. MOV10L1 truncated plasmids were engineered by subcloning into pCI-neo vector or pEGFP-C1 vector. All the constructs were verified by Sanger sequencing on an ABI 3730 DNA analyzer.

Cell culture and transfections

HEK293T cells were maintained in DMEM/high glucose (Mediatech) supplemented with 10% FBS (Sigma) and penicillin/streptomycin (Invitrogen). Plasmid DNA transfections in HEK293T cells were carried out using a standard calcium phosphate method. Briefly, transfections were performed when HEK293T cells were 80% confluent. The transfection mixture (2 µg plasmid, 12.5 µl 2 M CaCl₂, 85 µl ddH₂O and 100 µl 2xHEPES, pH 7.15) was incubated at room temperature for 30 min before being added to one well of a 6-well plate in a dropwise manner. Cells were collected 24-36 hours after transfection for further analysis. For cycloheximide treatment experiment, 24 hours after transfection, the cells were treated with cycloheximide (20 µg/ml) for 24 hours to inhibit *de novo* protein synthesis. Cells were collected in 2xSDS PAGE buffer for immunoblotting analysis.

Co-immunoprecipitation and immunoblotting assays

1x10⁷ cells were collected after transfection for *in vitro* co-immunoprecipitation and 2 pairs of P21 or P28 juvenile testes were used for *in vivo* co-immunoprecipitation. Cells or testes were lysed in 1 ml RIPA buffer (10 mM Tris, pH 8.0, 140 mM NaCl, 1% Trion X-100, 0.1% sodium deoxycholate, 0.1% SDS, 1 mM EDTA) supplemented with 1mM PMSF. For immunoprecipitation (IP), 1.5% of the lysates were used as inputs. The remaining lysates were
pre-cleared with 15 μl protein G Dynabeads (Thermo Fisher Scientific) for two hours, incubated with 1–2 μl primary antibodies at 4°C for 1 hour, and then incubated with 30 μl protein G Dynabeads overnight. The immunoprecipitated complexes were washed with the RIPA buffer four times and boiled in 30 μl 2× SDS-PAGE loading buffer for 10 min. 20 μl of supernatants were resolved by SDS-PAGE, transferred onto nitrocellulose membranes using iBlot (Invitrogen), and immunoblotted with indicated antibodies. The primary and secondary antibodies used for co-IP and western blot analyses were listed in S1 Table. Band quantification was performed with ImageJ (Version 1.51).

Statistics
Statistical analysis was performed with Student’s t-test.

Supporting Information

S1 Fig. The Mov10l1yama allele sequence. Exon 5 sequence is shown in red (Reference sequence: NCBI accession number XM_006521556). The mutation is highlighted in green in exon 5 (GTG229GAG → V229E). BseRI site is underlined: GAGGAG(N)\textsubscript{10}. PCR genotyping primers: Forward primer is highlighted in yellow. Reverse primer is highlighted in magenta.

S2 Fig. Immunofluorescence analysis of LINE1, IAP and γH2AX in Mov10l1fl/yama Ngn3-Cre males. (A) Sections of testes from 6-week-old wild-type and Mov10l1fl/yama Ngn3-Cre males were immunostained with anti-LINE1 and anti-IAP antibodies. Mov10l1-/- (knockout) testis serves as a positive control [41]. (B) Presence of γH2AX in round spermatids from 6-week-old Mov10l1fl/yama Ngn3-Cre testes (right panels). Note that elongating spermatids in wild type stage XI tubules are γH2AX-positive (left panels) but round spermatids in wild type tubules are γH2AX-negative (middle panels). Abbreviations: Spg, spermatogonia; Spc, spermatocytes; RS, round spermatids; ES, elongating spermatids; Zyg, zygotene spermatocytes; Pa, pachytene spermatocytes; Dip, diplotene spermatocytes. Scale bars, 25 μm.
S1 Table. Primary and secondary antibodies.

(DOCX)

S2 Table. Real-time PCR primers.

(DOCX)

Acknowledgments

We thank Ramesh S. Pillai for LINE1 ORF1 antibody, Bryan Cullen for anti-IAP antibody, Shinichiro Chuma for TDRD1 antibody, and Prabhakara Reddi for anti-SP10 (ACRV1) antibody. We thank Wang lab members (Jessica Chotiner, Rui Guo, Rong Liu, Fang Yang) for critical reading of the manuscript. We thank Keeney lab members Luis Torres and Jacqulyn Song for assistance with genotyping and mouse husbandry. We thank the Genetic Analysis Facility (Centre for Applied Genomics, Hospital for Sick Children, Toronto, ON, Canada) for microarray analysis. For whole-exome sequencing, we thank Nathalie Lailler at the MSKCC Integrated Genomics Operation.

Author contributions: YG, DJ, SK, and PJW conceptualized the study, designed the experiments, and analyzed the data. YG carried out the experiments. DJ generated the yama mutant mice. YG, DJ, SK, and PJW wrote the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials.

References

1. Goodier JL, Kazazian HH, Jr. (2008) Retrotransposons revisited: The restraint and rehabilitation of parasites. Cell 135: 23-35.
2. Huang CR, Burns KH, Boeke JD. (2012) Active transposition in genomes. Annu Rev Genet 46: 651-675.
3. Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. (2019) PIWI-interacting RNAs: Small RNAs with big functions. Nat Rev Genet 20: 89-108.
4. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, et al. (2008) DNA methylation of retrotransposon genes is regulated by piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22: 908-917.
5. Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, et al. (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31: 785-799.

6. De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, et al. (2011) The endonuclease activity of mili fuels piRNA amplification that silences LINE1 elements. Nature 480: 259-263.

7. Yang Z, Chen KM, Pandey RR, Homolka D, Reuter M, et al. (2016) PIWI slicing and EXD1 drive biogenesis of nuclear piRNAs from cytosolic targets of the mouse piRNA pathway. Mol Cell 61: 138-152.

8. Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, et al. (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442: 203-207.

9. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. (2006) A germline-specific class of small RNAs binds mammalian piwi proteins. Nature 442: 199-202.

10. Grivna ST, Beyret E, Wang Z, Lin H. (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 20: 1709-1714.

11. Gou LT, Dai P, Yang JH, Xue Y, Hu YP, et al. (2014) Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 24: 680-700.

12. Goh WS, Falcatori I, Tam OH, Burgess R, Meikar O, et al. (2015) piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 29: 1032-1044.

13. Zhang P, Kang JY, Gou LT, Wang J, Xue Y, et al. (2015) MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 25: 193-207.

14. Watanabe T, Cheng EC, Zhong M, Lin H. (2015) Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res 25: 368-380.

15. Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, et al. (2011) Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480: 264-267.

16. Vourekas A, Zheng Q, Alexiou P, Maragkakis M, Kirino Y, et al. (2012) Mili and miwi target RNA repertoire reveals piRNA biogenesis and function of miwi in spermiogenesis. Nat Struct Mol Biol 19: 773-781.

17. Dai P, Wang X, Gou LT, Li ZT, Wen Z, et al. (2019) A translation-activating function of MIWI/piRNA during mouse spermiogenesis. Cell 179: 1566-1581.e16.

18. Chuma S, Hosokawa M, Kitamura K, Kasai S, Fujioka M, et al. (2006) Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice. Proc Natl Acad Sci U S A 103: 15894-15899.

19. Wang J, Saxe JP, Tanaka T, Chuma S, Lin H. (2009) Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 19: 640-644.

20. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, et al. (2009) Loss of the mili-interacting tudor domain-containing protein-1 activates transposons and alters the mili-associated small RNA profile. Nat Struct Mol Biol 16: 639-646.

21. Sun YH, Jiang F, Li XZ. (2018) Disruption of Tdrd5 decouples the stepwise processing of long precursor transcripts during pachytene PIWI-interacting RNA biogenesis. Biol Reprod 99: 684-685.

22. Ding D, Liu J, Midic U, Wu Y, Dong K, et al. (2018) TDRD5 binds piRNA precursors and selectively enhances pachytene piRNA processing in mice. Nat Commun 9: 127-017-02622-w.
23. Shoji M, Tanaka T, Hosokawa M, Reuter M, Stark A, et al. (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell 17: 775-787.

24. Wenda JM, Homolka D, Yang Z, Spinelli P, Sachidanandam R, et al. (2017) Distinct roles of RNA helicases MVH and TDRD9 in PIWI slicing-triggered mammalian piRNA biogenesis and function. Dev Cell 41: 623-637.e9.

25. Pandey RR, Tokuzawa Y, Yang Z, Hayashi E, Ichisaka T, et al. (2013) Tudor domain containing 12 (TDRD12) is essential for secondary PIWI interacting RNA biogenesis in mice. Proc Natl Acad Sci U S A 110: 16492-16497.

26. Saxe JP, Chen M, Zhao H, Lin H. (2013) Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. Embo j 32: 1869-1885.

27. Ding D, Liu J, Dong K, Melnick AF, Latham KE, et al. (2019) Mitochondrial membrane-based initial separation of MIWI and MILI functions during pachytene piRNA biogenesis. Nucleic Acids Res 47: 2594-2608.

28. Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, et al. (2009) Arginine methylation of piwi proteins catalysed by dPRMT5 is required for Ago3 and aub stability. Nat Cell Biol 11: 652-658.

29. Chen C, Jin J, James DA, Adams-Cioaba MA, Park JG, et al. (2009) Mouse piwi interactome identifies binding mechanism of tdrkh tudor domain to arginine methylated miwi. Proc Natl Acad Sci U S A 106: 20336-20341.

30. Kirino Y, Vourekas A, Sayed N, de Lima Alves F, Thomson T, et al. (2010) Arginine methylation of aubergine mediates tudor binding and germ plasm localization. Rna 16: 70-78.

31. Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, et al. (2009) Proteomic analysis of murine piwi proteins reveals a role for arginine methylation in specifying interaction with tudor family members. Genes Dev 23: 1749-1762.

32. Ipsaro JJ, Haase AD, Knott SR, Joshua-Tor L, Hannon GJ. (2012) The structural biochemistry of zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491: 279-283.

33. Nishimasu H, Ishizu H, Saito K, Fukushima H, Kamatani MK, et al. (2012) Structure and function of zucchini endoribonuclease in piRNA biogenesis. Nature 491: 284-287.

34. Voigt F, Reuter M, Kasaruho A, Schulz EC, Pillai RS, et al. (2012) Crystal structure of the primary piRNA biogenesis factor zucchini reveals similarity to the bacterial PLD endonuclease nuc. Rna 18: 2128-2134.

35. Watanabe T, Chuma S, Yamamoto Y, Kuramochi-Miyagawa S, Totoki Y, et al. (2011) MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev Cell 20: 364-375.

36. Huang H, Gao Q, Peng X, Choi SY, Sarma K, et al. (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 20: 376-387.

37. Izumi N, Shoji K, Sakaguchi Y, Honda S, Kirino Y, et al. (2016) Identification and functional analysis of the pre-piRNA 3' trimer in silkworms. Cell 164: 962-973.

38. Ding D, Liu J, Dong K, Midic U, Hess RA, et al. (2017) PNLDC1 is essential for piRNA 3' end trimming and transposon silencing during spermatogenesis in mice. Nat Commun 8: 819-017-00854-4.
39. Zhang Y, Guo R, Cui Y, Zhu Z, Zhang Y, et al. (2017) An essential role for PNLD1C1 in piRNA 3' end trimming and male fertility in mice. Cell Res 27: 1392-1396.
40. Nishimura T, Nagamori I, Nakatani T, Izumi N, Tomari Y, et al. (2018) PNLD1C1, mouse pre-piRNA trimer, is required for meiotic and post-meiotic male germ cell development. EMBO Rep 19: 10.15252/embr.201744957. Epub 2018 Feb 14.
41. Zheng K, Xiol J, Reuter M, Eckardt S, Leu NA, et al. (2010) Mouse MOV10L1 associates with piwi proteins and is an essential component of the piwi-interacting RNA (piRNA) pathway. Proc Natl Acad Sci U S A 107: 11841-11846.
42. Vourekas A, Zheng K, Fu Q, Maragkakis M, Alexiou P, et al. (2015) The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev 29: 617-629.
43. Zhang X, Yu L, Ye S, Xie J, Huang X, et al. (2019) MOV10L1 binds RNA G-quadruplex in a structure-specific manner and resolves it more efficiently than MOV10. Iscience 17: 36-48.
44. Frost RJ, Hamra FK, Richardson JA, Qi X, Bassel-Duby R, et al. (2010) MOV10L1 is necessary for protection of spermatocytes against retrotransposons by piwi-interacting RNAs. Proc Natl Acad Sci U S A 107: 11847-11852.
45. Zheng K, Wang PJ. (2012) Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. PLoS Genet 8: e1003038.
46. Fu Q, Pandey RR, Leu NA, Pillai RS, Wang PJ. (2016) Mutations in the MOV10L1 ATP hydrolysis motif cause piRNA biogenesis failure and male sterility in mice. Biol Reprod 95: 103.
47. Jain D, Meydan C, Lange J, Claeyx Bouauart C, Lailler N, et al. (2017) Rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genet 13: e1006964.
48. Jain D, Puno MR, Meydan C, Lailler N, Mason CE, et al. (2018) Ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife 7: 10.7554/eLife.30919.
49. Petrillo C, Barroca V, Ribeiro J, Lailler N, Livera G, et al. (2020) Shani mutation in mouse affects splicing of Spata22 and leads to impaired meiotic recombination. Chromosoma 129: 161-179.
50. Yang F, Wang PJ. (2009) The mammalian synaptonemal complex: A scaffold and beyond. Genome Dyn 5: 69-80.
51. Schonhoff SE, Giel-Moloney M, Leiter AB. (2004) Neurogenin 3-expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non-endocrine cell types. Dev Biol 270: 443-454.
52. Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, et al. (2013) An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol Cell 50: 67-81.
53. Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. (2008) DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod 78: 324-332.
54. Sun YH, Zhu J, Xie LH, Li Z, Meduri R, et al. (2020) Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nat Cell Biol 22: 200-212.
55. Luo M, Yang F, Leu NA, Landaiache J, Handel MA, et al. (2013) MEIOB exhibits single-stranded DNA-binding and exonuclease activities and is essential for meiotic recombination. Nat Commun 4: 2788.
56. Souquet B, Abby E, Herve R, Finsterbusch F, Tourpin S, et al. (2013) MEIOB targets single-strand DNA and is necessary for meiotic recombination. PLoS Genet 9: e1003784.

57. Pane A, Wehr K, Schupbach T. (2007) Zucchini and squash encode two putative nucleases required for rasiRNA production in the drosophila germline. Dev Cell 12: 851-862.

58. Pillai RS, Chuma S. (2012) piRNAs and their involvement in male germline development in mice. Dev Growth Differ 54: 78-92.

59. Wang PJ, Page DC. (2002) Functional substitution for TAFII250 by a retroposed homolog that is expressed in human spermatogenesis. Hum Mol Genet 11: 2341-2346.

60. Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR. (2006) APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res 34: 89-95.

61. Chuma S, Hiyoshi M, Yamamoto A, Hosokawa M, Takamune K, et al. (2003) Mouse tudor repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech Dev 120: 979-990.

62. Reddi PP, Naaby-Hansen S, Aquilonik I, Tsai JY, Silver LM, et al. (1995) Complementary deoxyribonucleic acid cloning and characterization of mSP-10: The mouse homologue of human acrosomal protein SP-10. Biol Reprod 53: 873-881.
Figure Legends

Fig 1. Isolation of the *Mov10l1* <i>yama</i> allele. (A) Breeding scheme used to isolate mutants with autosomal recessive defects in meiosis. Male mice of the C57BL/6J strain (B6) were mutagenized with ENU and bred to wild-type females of the FVB/NJ strain (FVB) to generate founder (F1) males that were potential mutation carriers. Each F1 male was then bred to wild-type females (FVB/NJ strain) to produce second generation (G2) offspring and G2 daughters were crossed back to their F1 sire to produce third-generation (G3) offspring. G3 males were screened for meiotic defects. For a line carrying a single autosomal recessive mutation of interest, roughly one eighth of G3 males were expected to be homozygous. (B) Screen results obtained for the <i>yama</i> line where the F1 male was harem-bred to seven G2 females. This generated 27 G3 males; 18 males were wild type and nine males displayed the <i>yama</i> phenotype. (C) SNP genotypes of four G3 <i>yama</i> mutants (A, B, C, D) obtained using the Illumina Medium Density Linkage Panel are shown on the left. As mutagenesis was performed on B6 males, we expected ENU-induced mutations to be linked to B6 variants for strain polymorphisms that differed between B6 and FVB. We also expected G3 mutants to be homozygous for those same linked B6 variants. Therefore, we mapped the phenotype-causing mutation by searching for regions of B6 homozygosity that are shared between mutants. The single 32.45-Mbp region of B6 SNP homozygosity that is shared between mutants A, B, C, and D is highlighted in grey. A detailed view of variants within this region is shown in the middle for two informative <i>yama</i> mutants (B, D). We narrowed this region by manually genotyping more G3 mutants and phenotypically wild-type siblings for additional SNPs within this region. We expected phenotypically wild-type G3 mice not to be homozygous for the phenotype-causing mutation or its linked B6 variants. A detailed view of variants used to refine the mapped region is shown on the right for one informative wild-type mouse (E'). The mapped region was further narrowed down to a 17.44-Mbp interval on Chromosome 15, flanked by heterozygous SNPs rs31562483 (Chr15:85684090) and rs13482751 (Chr15:102951530).

Fig 2. The *Mov10l1* V229E mutation causes meiotic arrest and male sterility. (A) Schematic diagram of the full-length mouse MOV10L1 protein (XP_006521619) and the conservation of the V229 residue. K830A and DE940.941AA mutations in the RNA helicase domain were
previously reported and included for comparison [42, 46]. (B) Dramatic size reduction of testis from 8-week-old \(Mov10l1^{yama/yama}\) mice. (C) Reduction of testis weight in 8-week-old \(Mov10l1^{yama/yama}\) mice (mean ± s.d.; \(n = 3\) per genotype). (D) Histology of postnatal day 21 (P21), P28 and P60 testes from control and \(Mov10l1^{yama/yama}\) mice. Abbreviations: Zyg-like, zygotene-like spermatocytes; Pa, pachytene spermatocytes; RS, round spermatid; ES, elongating spermatid. Scale bar, 50 µm. (E) Synapsis analysis of spermatocytes from P60 (adult) testes. Scale bar, 10 µm. (F) TUNEL analysis of seminiferous tubules from P21 and P60 testes. Quantification of TUNEL-positive spermatocytes at P60 is plotted. \(n\), the number of stage IV tubules from \(Mov10l1^{+/yama}\) testes or TUNEL-positive tubules from \(Mov10l1^{yama/yama}\) testes. ACRV1, a marker of acrosome, is used for staging of seminiferous tubules in wild type P60 testes. Scale bar, 50 µm. (G) Western blot analysis of MOV10L1 in P21 and P60 testes. \(Mov10l1^{-/-}\) (knockout) testis serves as a negative control. ACTB serves as a loading control. (H) Western blot analysis of wild type MOV10L1 and MOV10L1\(^{V229E}\) in HEK293T cells. Transfected cells were collected after 24 hours with or without cycloheximide. Cycloheximide inhibits \textit{de novo} protein synthesis so that protein stability can be compared in the absence of translation.

Fig 3. De-repression of retrotransposons in \(Mov10l1^{yama/yama}\) testis. Sections of testes from P21 and P60 \(Mov10l1^{yama/yama}\) and control males were immunostained with anti-LINE1 ORF1 (A) and anti-IAP GAG (B) antibodies. DNA was stained with DAPI. (C) Western blot analysis of LINE1 ORF1 and IAP GAP proteins in testes. ACTB serves as a loading control. (D) Quantitative RT-PCR analysis of LINE1 and IAP transcripts (mean ± s.d.) in P10 and P21 testes. (E, F) Sections of testes from P21 and P60 \(Mov10l1^{yama/yama}\) and control males were immunostained with anti-MILI (E) and anti-MIWI (F). Spg, spermatogonia; Pa, pachytene spermatocytes; Spc, spermatocytes. Scale bars, 50 µm.

Fig 4. Round spermatid arrest in adult \(Mov10l1^{fl/yama} Ngn3\)-Cre testes. (A) Images of 8-week-old testes. (B) Reduction of testis weight in 8-week-old \(Mov10l1^{fl/yama} Ngn3\)-Cre mice (mean ± s.d.; \(n = 3\) per genotype). (C) Histological analysis of P21 and P60 wild type and \(Mov10l1^{fl/yama} Ngn3\)-Cre testes. Pa, pachytene spermatocytes; RS, round spermatids; ES, elongated spermatids. Scale bar, 50 µm. (D) Depletion of pachytene piRNAs in 6-week-old...
Mov10l1fl/yama Ngn3-Cre testes. Total RNAs were 32P-end-labelled and separated by denaturing polyacrylamide gel electrophoresis. The experiment was done twice with the same result. 28S and 18S ribosomal RNAs serve as loading controls. (E) Quantitative RT-PCR analysis of pachytene piRNA precursor transcripts in 8-week-old testes. Values (mean ± s.d.; triplicates) are the fold change in Mov10l1fl/yama Ngn3-Cre testis normalized to levels in wild-type testis defined as 1. Pre-let7g, a miRNA precursor, serves as a control.

Fig 5. Dissociation of MOV10L1V229E with MILI, MIWI, TDRD1, and PLD6 in Mov10l1fl/yama Ngn3-Cre mouse testes. Polar congregation of piRNA pathway proteins MILI (A), MIWI (B), and TDRD1 (C) in Mov10l1fl/yama Ngn3-Cre spermatocytes from P21 and P60 testes. (D) Localization of MOV10L1 in Mov10l1fl/+ and Mov10l1fl/yama Ngn3-Cre testes. Enlarged view of representative pachytene (Pa) spermatocytes (boxed) are shown in top right corners. Scale bars, 50 µm. (E-J) Co-immunoprecipitation analyses of MOV10L1 with MILI (E and F), MIWI (G), and TDRD1 (H), and PLD6 (J). P21 testes were used for co-IP analyses in panels E, F, H, and J. P28 testes were used for co-IP analyses in G. (I) Western blot analysis of PLD6 in P14 and P21 Mov10l1fl/yama Ngn3-Cre and control testes.

Fig 6. The V229E substitution reduces the interaction between MOV10L1 and PLD6 in HEK293T cells. (A-C) Co-immunoprecipitation analyses of MOV10L1 with MILI (A), MIWI (B), and MIWI2 (C). (D) No interaction was observed between MOV10L1 and MEIOB. MEIOB serves as a negative control. (E) Reduced interaction between PLD6 and MOV10L1-V229E. (F, G) Co-immunoprecipitation analyses of PLD6 with MOV10L1N (F), MOV10L1N-V229E (F) and MOV10L1C (G). Band quantification (A, B, C, and E): the band intensity in the 1st and 3rd lanes from left is set at 1.00 in both input and IP; the band intensity in 2nd and 4th lanes is normalized to that in 1st and 3rd lanes respectively. All co-IP experiments were performed twice. (H) Schematic diagram of the MOV10L1 full-length protein and its variants. The RNA helicase domain is shown. Asterisk denotes the V229E substitution. PLD6-binding: +, strong; +/-, reduced; -, no binding.

Fig 7. MOV10L1 V229 residue is critical for processing of piRNA precursors. (A) A timeline of mouse spermatogenesis. MOV10L1 developmental expression pattern is shown along
with two distinct piRNA populations. The point of spermatogenic arrest in each mouse mutant is indicated (X). The Ngn3-Cre expression start point is shown. Mov10l1^{−/−} and Mov10l1^{fl/−} Ngn3-Cre mice with deletion of the RNA helicase domain were reported previously and included for comparison [41, 45]. (B) Working model for the essential role of the MOV10L1 V229 residue in the piRNA biogenesis. In the wild type germ cells, MOV10L1 C-terminal region contains the RNA helicase domain and binds to single-stranded piRNA precursors [42]. MOV10L1 recruits Piwi proteins, PLD6 and other proteins to process the piRNA precursor. PLD6, an endoribonuclease, cleaves the precursor transcript to release the 5’ RNA fragment, which is bound by a Piwi protein and processed into a mature piRNA. In this process, the N-terminal half of MOV10L1 recruits PLD6 to the piRNA processing complex by interaction. In the Mov10l1 V229E mutant germ cells, the V229E mutation disrupts the MOV10L1-PLD6 interaction, leading to a failure in the cleavage of piRNA precursor.
Figure 6
Figure 1

(A) Pedigree diagram showing the generation (F1, G2, G3) and the genotypes of the mice. The symbols indicate females (○) and males (●). The genotypes are marked as wild type, heterozygous, and homozygous.

(B) Table showing the sire, dam, and number of male offspring at screening. The age at screening is also provided.

(C) Genetic mapping of the yama locus. The chromosome bands are labeled A, B, C, and D. The mapped region is narrowed by manual genotyping. The markers are rs13482751 and rs31562483.
Figure 2
Figure 3
Figure 4

(A) Adult testes

WT fl/yama, Cre

(B) Testis weight (mg)

P < 0.05

WT fl/yama, Cre

(C) P21 P60

WT

(D) Total RNAs (6-wk)

Ngn3-Cre - Cre
Mov1011 fl/+ fl/yama

(E) Relative expression

Pre-piR1 Pre-piR2 Pre-piLR LINE1 Pre-let7g

Pachytene piRNAs

28S 18S
Figure 5
Figure 7