On the number of connected components in complements to arrangements of submanifolds

I. N. Shnurnikov

Abstract

We consider arrangements of \(n \) connected codimensional one submanifolds in closed \(d \)–dimensional manifold \(M \). Let \(f \) be the number of connected components of the complement in \(M \) to the union of submanifolds. We prove the sharp lower bound for \(f \) via \(n \) and homology group \(H_{d-1}(M) \). The sets of all possible \(f \) – values for given \(n \) are studied for hyperplane arrangements in real projective spaces and for subtori arrangements in \(d \) – dimensional tori.

Introduction

The theory of plane arrangements in affine or projective spaces has been investigated rather thoroughly, see the book of P. Orlic, H. Terao \[A\] and V. A. Vassiliev’s review \[8\]. Inspired by a conjecture of B. Grünbaum \[2\], N. Martinov \[3\] found all possible pairs \((n, f)\) such that there is a real projective plane arrangement of \(n \) pseudolines and \(f \) regions. It turns out, that some facts concerning arrangements of hyperplanes or oriented matroids could be generalized to arrangements of submanifolds, see P. Deshpande dissertation \[1\]. So we are going to study the sets \(F(M, n) \) of connected components numbers of the complements in the closed manifold \(M \) to the unions of \(n \) closed connected codimensional one submanifolds. Sometimes it seems reasonable to restrict the type of submanifolds, for example, author \[7\] found sets \(F(M, n) \) of region numbers in arrangements of \(n \) closed geodesics in the two dimensional torus and the Klein bottle with locally flat metrics.

Homological bound of the number of connected components

Let \(M^n \) be connected \(n \)–dimensional smooth compact manifold without boundary, let \(A_i \subset M^n \) be distinct connected \((n-1) \)–dimensional closed submanifolds in \(M^n \) for \(1 \leq i \leq k \). Let us consider the union

\[
A = \bigcup_{i=1}^{k} A_i.
\]

We shall denote by \(f \) the number \(|\pi_0(M^n \setminus A)| \) of connected components of the complement to \(A \) in \(M^n \). Let \(UA \) be regular open neighbourhood of \(A \) in \(M^n \). Let

\[
M^n \setminus UA \cong \bigcup_{j=1}^{f} N_j,
\]

where \(N_j \) are the connected components of the complement to \(UA \) in \(M^n \). If \(M^n \) and all submanifolds \(A_i \) are orientable, then we assume \(G = \mathbb{Z} \). If some \(A_i \) or \(M^n \) is not orientable, then \(G = \mathbb{Z}_2 \).

*Yaroslavl State University, Delone Laboratory of Discrete and Computational Geometry. This work is supported by the Russian Government project 11.G34.31.0053.
Lemma 1. If closed \((n-1)\) – dimensional submanifolds \(A_i \subset M^n\), \(i = 1, \ldots, k\) intersect each other transversally, then
\[
\dim H_{n-1}(UA, G) = \dim H_{n-1}(A, G) \geq k
\]

Proof. The regular neighbourhood of \(UA\) is homotopically equivalent to \(A\) and so all homology groups of \(A\) and \(UA\) are the same. By induction on \(k\) let us prove
\[
\dim H_{n-1}\left(\bigcup_{i=1}^{k} A_i, G\right) \geq k.
\]
It is obvious for \(k = 1\) because for connected closed \((n-1)\) – dimensional manifold \(H_{n-1}(A_1, G) \cong G\).

Suppose the statement is true for \(k - 1\) submanifolds and let us prove it for \(k\) submanifolds. Let
\[
A' = \bigcup_{i=1}^{k-1} A_i.
\]
Then by induction assumption
\[
\dim H_{n-1}(A', G) \geq k - 1.
\]
By Meyer-Vietoris exact sequence for pair \(A', A_k\) we have:
\[
\rightarrow H_{n-1}(A' \cap A_k) \rightarrow H_{n-1}(A') \oplus H_{n-1}(A_k) \rightarrow H_{n-1}(A' \cup A_k) \rightarrow
\]
As submanifolds \(A_i\) and \(A_j\) intersect transversally then \(A' \cap A_k\) is a finite union of at most \((n-2)\) – dimensional submanifolds in \(M^n\). Hence \(H_{n-1}(A' \cap A_k) = 0\) and the map
\[
H_{n-1}(A') \oplus H_{n-1}(A_k) \rightarrow H_{n-1}(A' \cup A_k)
\]
is monomorphic. Therefore,
\[
\dim H_{n-1}(A' \cup A_k) \geq \dim H_{n-1}(A') + \dim H_{n-1}(A_k) \geq k.
\]
\[\square\]

Lemma 2. \[H_n(M^n, UA, G) \cong G^f\]

Proof.
\[
H_n(M^n, UA, G) = \widetilde{H}_n(M^n/UA, G) = \\
= \widetilde{H}_n\left(\sqcup_{j=1}^{f} N_j / \sqcup_{j=1}^{f} \partial N_j, \ G\right) = \widetilde{H}_n\left(\bigvee_{j=1}^{f} N_j / \partial N_j, \ G\right) = \\
= \bigoplus_{j=1}^{f} \widetilde{H}_n(N_j/\partial N_j, G) = G^f,
\]
where \(n \geq 1\), \(\bigvee\) is one point union, \(\widetilde{H}_n\) is the reduced homology group, \(\partial N_j\) is the boundary of \(N_j\).
\[\square\]

Theorem 1. Let \(A_1, \ldots, A_k\) be connected closed codimensional one submanifolds in a connected closed \(n\) – dimensional manifold \(M^n\). Suppose that the submanifolds \(A_i\) intersect each other transversally and \(A = \bigcup_i A_i\). Then
\[
|\pi_0(M^n \setminus A)| \geq k + 1 - \dim H_{n-1}(M^n, G),
\]
where \(G\) is chosen as before.
Proof. Let us write the exact homological pair sequence for inclusion $i : UA \rightarrow M^n$ with coefficients in G:

$$H_n(UA) \rightarrow H_n(M^n) \rightarrow H_n(M^n, UA) \rightarrow H_{n-1}(UA) \rightarrow H_{n-1}(M^n) \rightarrow$$

Notice that

$$H_n(UA) = H_n(A) = 0, \quad H_n(M_n) = G.$$

It follows from the exactness of sequence in $H_n(M^n)$, that the map

$$H_n(M^n) \rightarrow H_n(M^n, UA)$$

is monomorphic. By lemma 2

$$H_n(M^n, UA, G) \cong G^f$$

One can see that

$$\dim H_{n-1}(UA) \leq \dim \operatorname{Im} \partial_* + \dim \operatorname{Im} i_*,$$

where the homomorphisms are

$$\partial_* : H_n(M^n, UA) \rightarrow H_{n-1}(UA), \quad i_* : H_{n-1}(UA) \rightarrow H_{n-1}(M^n).$$

Notice that

$$\dim \operatorname{Im} i_* \leq \dim H_{n-1}(M^n), \quad \dim \operatorname{Im} \partial_* \leq f - 1.$$

By lemma \[\square\] \[\dim H_{n-1}(UA) \geq k\] and so $k \leq f - 1 + \dim H_{n-1}(M^n)$. \[\square\]

Remark 1. One can see that the inequality of the theorem is sharp for arrangements of

$$n \geq \dim H_{n-1}(M^n)$$

submanifolds in projective spaces, spheres, n – dimensional tori and Riemann surfaces of genus g.

Toric arrangements

Definition 1. By a flat d – dimensional torus T^d we mean a quotient of affine d – dimensional space by a nondegenerate d – lattice \mathbb{Z}^d (which is not surely integer lattice). A codimensional one subtorus is given by equation

$$\sum_i a_i x_i = c,$$

where a_i are rational, x_i are coordinates of \mathbb{R}^d in some lattice basis, c is real.

A codimensional one subtorus is closed submanifold of T^d homeomorphic to $(d-1)$ – dimensional torus. Let A be the union of n codimensional one subtori in the flat d – dimensional torus T^d. Consider the connected components of the complement $T^d \setminus A$; denote the number of connected components by $f = |\pi_0(T^d \setminus A)|$; let $F(T^d, n)$ be the set of all possible numbers f.

Theorem 2. For $n > d$

$$F(T^d, n) \supseteq \{n - d + 1, \ldots, n\} \cup \{l \in \mathbb{N} \mid l \geq 2(n - d)\}.$$

For $2 \leq n \leq d$ we have $F(T^d, n) = \mathbb{N}$.

3
Proof. Let $T^d = \mathbb{R}^d / \mathbb{Z}^d$ and e be the basis of \mathbb{Z}^d. Let (x_1, \ldots, x_d) be the coordinates of \mathbb{R}^d in the basis e. We shall construct examples for $\leq n$ and $\geq 2n - 2d$ regions separately.

Let us consider n hyperplanes in \mathbb{R}^d (an equation corresponds to a hyperplane):

$$ x_i = 0, \quad 1 \leq i \leq k, $$

$$ x_{k+1} = c_{i-k}, \quad k + 1 \leq i \leq n $$

for some integer k, $0 \leq k \leq d - 1$ and real c_{i-k} with different fractional parts. By the factorization map $\mathbb{R}^d \to \mathbb{R}^d / \mathbb{Z}^d$ we shall get a set $\{T^{d-1}_i, i = 1, \ldots, n\}$ of n codimensional one subtori. And the complement is homeomorphic to the prime product

$$ T^d \setminus \bigcup_i T^{d-1}_i \approx \mathbb{R}^k \times \left(S^1 \setminus \{p_1, \ldots, p_{n-k}\}\right) \times \left(S^1\right)^{d-k-1}, $$

where $S^1 \setminus \{p_1, \ldots, p_{n-k}\}$ denotes a circle without $n - k$ points. Hence the number of complement regions equals $n - k$, for an integer k such that $0 \leq k \leq d - 1$.

Now let us take integer nonnegative k and construct an arrangement with $2n - 2d + k$ connected components of the complement. We shall determine the subtori by equations:

$$ x_i = 0, \quad \text{for} \quad 2 \leq i \leq d, $$

$$ x_2 = kx_1 + \frac{1}{2}, $$

$$ x_1 = c_j \quad \text{for} \quad j = 1, \ldots, n - d, $$

whereas numbers $kc_j + \frac{1}{2}$ are not integer for any j. (This means that the intersection of three subtori

$$ x_2 = kx_1 + \frac{1}{2}, \quad x_1 = c_j, \quad x_2 = 0 $$

is an empty set.) One may see that

$$ T^d \setminus \bigcup_{i=3}^d \{x_i = 0\} \approx T^2 \times \mathbb{R}^{d-2}. $$

In the two-dimensional torus the equations

$$ x_2 = 0, $$

$$ x_2 = kx_1 + \frac{1}{2}, $$

$$ x_1 = c_j \quad \text{for} \quad j = 1, \ldots, n - d $$

produce the arrangement of $n - d + 2$ closed geodesics. The geodesics’ union divides the torus into $2n - 2d + k$ connected components (for more details on arrangements of closed geodesics in the flat torus see author’s paper [7]).

□

Conjecture 1. It seems believable that the inclusion in the theorem is indeed the equality for all $d \geq 2$ and $n \geq d$. Yet the equality is proved for $d = 2$ in [7].

Sets of region’s numbers in hyperplane arrangements

By an arrangement of n hyperplanes in the real projective space \mathbb{RP}^d we mean a set of n hyperplanes, such that there are no point belonging to all the hyperplanes. The arrangement produce the cell decomposition of the \mathbb{RP}^d, let f denotes the number of open d–cells. Let $F_n^{(d)}$ denotes the set of all possible numbers f arising in arrangements of n hyperplanes in \mathbb{RP}^d. Let m be the maximal number of hyperplanes, passing through one point.
Lemma 3. For arrangements of \(n \) hyperplanes in \(\mathbb{R}P^d \) we have

\[
f \geq (m - d + 1) \sum_{j=0}^{\left\lfloor \frac{d}{2} \right\rfloor} C_{m-2j}^d C_{m-2j}^{d-2j}.
\]

Proof. It follows from Zaslavsky formula for number of regions and some inequalities concerning the Möbius function of the arrangement poset. \(\square \)

Lemma 4. For arrangement of \(n \) hyperplanes in the real projective space \(\mathbb{R}P^d \)

\[
f \geq (n - m + 1)(m - d + 2)2^{d-2}.
\]

Proof. Let \(m \) hyperplanes \(A_1, \ldots, A_m \) have nonempty intersection \(Q \) (\(Q \) is a point). The family \(A_1, \ldots, A_m \) is a cone over some arrangement \(B \) of \(m \) planes in \(\mathbb{R}P^{d-1} \). The number \(f(B) \) of regions in arrangement \(B \) could be estimated (see Shannon paper [5], where this result is referred to McMullen) as:

\[
f(B) \geq (m - d + 2)2^{d-2}.
\]

Each of the remaining hyperplane of the former arrangement intersects the family \(A_1, \ldots, A_k \) by an arrangement \(B_i \), projective equivalent to \(B \). Thus

\[
f \geq f(B) + \sum_i f(B_i) = (n - m + 1)f(B).
\]

\(\square \)

Theorem 3. Let \(d \geq 3 \) and \(n \geq 2d + 5 \). Then the first four increasing numbers of \(F_n^{(d)} \) are the following:

\[
(n - d + 1)2^{d-1}, \quad 3(n - d)2^{d-2}, \quad (3n - 3d + 1)2^{d-2}, \quad 7(n - d)2^{d-3}.
\]

Proof. We are going to prove that the four mentioned numbers are the only realizable ones among numbers not greater than \(7(n - d)2^{d-3} \). After it one may see how to construct examples of arrangements with required numbers \(f \). Let us prove that if \(m \leq d + 1 \), then

\[
f \geq 7(n - d)2^{d-3}.
\]

For \(m = d \) we have an arrangement of hyperplanes in general position and the number of regions is the largest possible. If \(m = d + 1 \), then by lemma 3 we have

\[
f \geq \frac{C_n^{d+1}}{n - d} = \frac{n(n - 1)}{3} \cdot \frac{(n - 2)}{d} \cdot \frac{(n - 3)}{d - 1} \cdot \frac{m}{4} \cdot \frac{m}{n - d + 1} \geq 7 \cdot 2^{d-3}(n - d)
\]

because \(n \geq 2d + 5 \).

Now we prove the theorem for \(d = 3, n \geq 11 \). Let us consider three cases.

1. If \(m = n - 1 \), then \(f = 2\varphi \), where \(\varphi \in F_{n-1}^{(2)} \). The set \(F_{n-1}^{(2)} \) is known due to N. Martinov [3]

\[
\{ f \in F_{n-1}^{(2)} \mid f \leq 4n - 16 \} = \{ 2n - 4, 3n - 9, 3n - 8, 4n - 16 \}.
\]

2. \(m = n - 2 \). The arguments are the same as in the inductive step further (Martinov theorem [3] for the set \(F_n^{(2)} \) is also used).

3. If \(5 \leq m \leq n - 3 \), then by using lemma 4 we have

\[
f \geq 2(n - m + 1)(m - 1) \geq 8n - 32 \geq 7n - 21
\]

for \(n \geq 11 \).
Now we use induction on $d \geq 3$. Base is the validity of the theorem for $d = 3$. The assumption is the validity of the theorem for all integers $3 \leq d' < d$ and $n' \geq 2d' + 5$. To prove the induction step we shall consider three cases.

1. If $m = n - 1$, then $f = 2\varphi$, where $\varphi \in F_{n-1}^{(d-1)}$. By induction assumption for the set $F_{n-1}^{(d-1)}$ (note that $n - 1 \geq 2(d - 1) + 1$) we get that either φ is equal to one of four numbers

\[(n - d + 1)2^{d-2}, \quad 3(n - d)2^{d-3}, \quad (3n - 3d + 1)2^{d-3}, \quad 7(n - d)2^{d-4},\]

or $\varphi > 7(n - d)2^{d-4}$.

2. $m = n - 2$. Consider $n - 2$ hyperplanes p_1, \ldots, p_{n-2}, passing through one point. These hyperplanes cut \mathbb{RP}^d into φ regions and $\varphi \in F_{n-2}^{(d-1)}$. Let l denote the intersection of the two remaining hyperplanes. By the inductive assumption we have either

$$\varphi = (n - d)2^{d-2} \quad \text{or} \quad \varphi \geq 3(n - d - 1)2^{d-3}$$

(note that assumption may be used as $n - 2 \geq 2(d - 1) + 5$). If

$$l \in \bigcup_{i=1}^{n-2} p_i$$

then $f = 3\varphi$ and the case is over. If

$$l \notin \bigcup_{i=1}^{n-2} p_i$$

then let B be the set of planes $p_i \cap l$ in the l, where l is regarded as the ambient $(d - 2)$ - dimensional projective space. One may prove, that B is an arrangement of at least $n - 3$ planes in l. Then $f(B) \geq (n - d)2^{d-3}$ by Shannon theorem \[5\]. Since

$$f = 3\varphi + f(B) \geq 7(n - d)2d - 3,$$

the case is over.

3. If $d + 2 \leq m \leq n - 3$ then by lemma \[4\] we have

$$f \geq (n - m + 1)(m - d + 2)2^{d-2} \geq (4n - 4d - 4)2^{d-2} \geq 7(n - d)2^{d-3}$$

for $n \geq d + 8$. \hfill \Box

Lemma 5. For arrangement of n hyperplanes in the real projective space \mathbb{RP}^d

$$f \geq 2 \frac{n^2 - n}{m - d + 5}.$$

Proof. It follows from the similar inequality for arrangement of lines in the projective plane, see details in \[2\]. \hfill \Box

Theorem 4. First 36 increasing numbers of the set $F_{n}^{(3)}$ for $n \geq 50$ are the following (i.e. all realizable numbers up to $12n - 60$)

\[
\begin{align*}
4n - 8, & \quad 6n - 18, \quad 6n - 16, \quad 7n - 21, \quad 7n - 20, \quad 8n - 32, \quad 8n - 30, \quad 8n - 28, \\
8n - 26, & \quad 9n - 36, \quad 9n - 33, \quad 9n - 31, \quad 9n - 30, \quad 10n - 50, \quad 10n - 48, \quad 10n - 46, \\
10n - 44, & \quad 10n - 42, \quad 10n - 40, \quad 10n - 39, \quad 10n - 38, \quad 10n - 37, \quad 10n - 36, \quad 10n - 35, \\
11n - 44, & \quad 11n - 43, \quad 11n - 42, \quad 11n - 41, \quad 11n - 40, \quad 12n - 72, \quad 12n - 70, \quad 12n - 68, \\
12n - 66, & \quad 12n - 64, \quad 12n - 62, \quad 12n - 60.
\end{align*}
\]
Proof. Let \(m \) be the maximal number of hyperplanes, passing through one point. Examples for this numbers could be constructed for arrangements with \(m \geq n - 5 \). Let us prove that there are no other realizable numbers, smaller then \(12n - 60 \). Consider three cases.

1. If \(m \geq n - 5 \), then by enumeration of possibilities we have that either \(f \) belongs to given set or \(f \geq 12n - 60 \).
2. If \(8 \leq m \leq n - 6 \), then by lemma 4 we have \(f \geq 7n - 49 \).
3. If \(m \leq 7 \) then by lemma 5

\[
f \geq 2 \frac{n^2 - n}{9} \geq 12n - 60
\]

for \(n \geq 50 \). \(\square \)

References

[1] P. Deshpande, Arrangements of Submanifolds and the Tangent Bundle Complement. Electronic Thesis and Dissertation Repository, Paper 154 (2011).
[2] B. Grünbaum, Arrangements and Spreads. AMS, Providence, Rhode Island, 1972.
[3] N. Martinov, Classification of arrangements by the number of their cells. Discrete and Comput. Geometry (1993) 9, N 1, 39–46.
[4] P. Orlic, H. Terao, Arrangements of Hyperplanes. Springer – Verlag, Berlin – Heidelberg, 1992. 329 pp.
[5] R.W. Shannon, A lower bound on the number of cells in arrangements of hyperplanes. Jour. of combinatorial theory (A), 20, (1976) 327–335.
[6] I.N. Shnurnikov, Into how many regions do \(n \) lines divide the plane if at most \(n - k \) of them are concurrent? Moscow Univ. Math. Bull., ser. 1 (2010) 65:5, 208 – 212.
[7] I.N. Shnurnikov, On the number of regions formed by arrangements of closed geodesics on flat surfaces, Math. Notes 90, N 3 – 4 (2011), 619 – 622.
[8] V.A. Vassiliev, Topology of plane arrangements and their complements. Uspekhi Mat. Nauk, 56, iss. 2(338), (2001), 167 — 203.