RICCI CURVATURE AND YAMABE CONSTANTS

JIMMY PETEAN

Abstract. We prove that if (M^n, g) is a closed Riemannian manifold of dimension $n \geq 3$ with volume V and Ricci curvature $\text{Ricci}(g) \geq \rho > 0$ then the Yamabe constant of the conformal class $[g]$ satisfies $Y(M, [g]) \geq n\rho V^{2/n}$; the equality is achieved if g is an Einstein metric (of Ricci curvature ρ). This has actually already been proved by S. Ilias [6] in the context of Sobolev inequalities. This implies for instance that if g_1 is the Fubini-Study metric on $\mathbb{C}P^2$ and g is any other Riemannian metric on $\mathbb{C}P^2$ with $\text{Ricci}(g) \geq \text{Ricci}(g_1)$ then $\text{Vol}(\mathbb{C}P^2, g) \leq \text{Vol}(\mathbb{C}P^2, g_1)$.

1. Introduction

Let (M^n, g) be a closed Riemannian manifold of dimension $n \geq 3$. Restricting the total scalar curvature functional to the conformal class $[g]$ of g we have the Yamabe functional defined on $L^2_1(M)$ by

$$Y_g(f) = \frac{a_n \int_M \|\nabla f\|^2 dvol_g + \int_M \text{Scal}_g f^2 dvol_g}{(\int_M f^p dvol_g)^{2/p}}.$$

In the expression, and throughout the article, $a_n = \frac{4(n-1)}{n-2}$, $p = p_n = \frac{2n}{n-2}$, $dvol_g$ is the volume element of g and Scal_g its scalar curvature.

The Yamabe constant of the conformal class of g, $Y(M, [g])$ is the infimum of this functional. A fundamental result proved in several stages by Yamabe [13], Trudinger [12], Aubin [11] and R. Schoen [10] says that there is always a minimizing function f_0 which is smooth and positive. The metric $f_0^{-n/(n-2)} g$ then has constant scalar curvature and is called a Yamabe metric.

The metric of constant sectional curvature 1, g_0, on the sphere is a Yamabe metric and we will denote $Y_n = Y(S^n, g_0) = n(n-1)V_n^{2/n}$ (V_n is the volume of (S^n, g_0)). This value is important in the study of Yamabe constants since Aubin [11] showed that for any conformal class $[g]$ in any closed n-dimensional manifold M, $Y(M, [g]) \leq Y_n$ (actually the solution of the Yamabe problem comes from showing that the inequality is strict except for the case of $[g_0]$). It is also easy to check that $Y(M, [g])$ is positive if and only if there is a metric of positive scalar curvature on $[g]$ (since the infimum of the Yamabe functional is always realized). One sees that the study of the Yamabe constant of a conformal class depends strongly on whether the invariant is positive or non-positive. In the non-positive case it is particularly useful that the Yamabe constant of the conformal class of a metric g is bounded from below by

J. Petean is partially supported by grant 46274-E of CONACYT.
\[\inf_M \{\text{Scal}_g\} \Vol(M, g)^{\frac{2}{n}}. \] This follows by a simple application of H"older’s inequality to the Yamabe functional and it was first pointed out by O. Kobayashi [7]. This is no longer true in the positive case; by considering Riemannian products one can easily build examples of unit volume Riemannian metrics with scalar curvature constant and very big (\(\gg Y_n \)).

The aim of this article is to prove that in the positive case there is a similar lower bound for the Yamabe constant using the infimum of the Ricci curvature instead of the scalar curvature. Namely, we will prove:

Theorem A: Let \((M^n, g)\) be a closed Riemannian manifold with Ricci curvature \(\text{Ricci}(g) \geq n - 1\) and volume \(V_0\). Then

\[Y(M, [g]) \geq n(n - 1) V_0^{\frac{2}{n}} = \left(\frac{V_0}{V_n} \right)^{\frac{2}{n}} Y_n. \]

The author was informed by Guofang Wang that the inequality in this Theorem has already been proved by S. Ilias [6]. Actually the proof given in this article goes along the same lines as Ilias’ original proof. Note that if \(g\) is an Einstein metric (of constant Ricci curvature \(n-1\)) then it is known to be a Yamabe metric and \(Y(M, [g]) = n(n - 1)V_0^{\frac{2}{n}} = \left(\frac{V_0}{V_n} \right)^{\frac{2}{n}} Y_n\). The inequality is therefore optimal. C. Böhm, M. Wang and W. Ziller [3] have shown that for \(\delta\) close to 1 and \(g_0\) the round metric on \(S^2\) the Riemannian metric \(\delta g_0 \times g_0\) on \(S^2 \times S^2\) is a Yamabe metric: when \(\delta \neq 1\) this is probably the simplest case where inequality in Theorem A is strict.

The Yamabe invariant of \(M\) was introduced by R. Schoen [11] and O. Kobayashi [7] as:

\[Y(M) = \sup_{[g]} Y(M, [g]), \]

the supremum of the Yamabe constants over the space of all conformal classes of metrics on \(M\). Knowledge of the Yamabe invariant and Theorem A produce some restriction between Ricci curvature and volume of any Riemannian metric on the given manifold. For instance C. LeBrun [8] (and M. Gursky and C. LeBrun [5] by more elementary methods) have shown that the Yamabe invariant of \(\mathbb{CP}^2\) is realized by the conformal class of the (Kähler-Einstein) Fubini-Study metric \(g_1\). Therefore we obtain:
Theorem B: For any Riemannian metric \(g \) on \(\mathbb{CP}^2 \) with Ricci curvature \(\text{Ricci}(g) \geq \text{Ricci}(g_1) \) we have \(\text{Vol} (\mathbb{CP}^2, g) \leq \text{Vol} (\mathbb{CP}^2, g_1) \).

As another application one recalls that for a Riemannian 4-manifold \((M, g)\) the space of self-dual 2-forms gives a polarization of \(M \); namely, a maximal linear subspace of \(H^2(M) \) where the intersection form is positive definite \(\mathbb{C} \). Now if \(g_K \) is a positive Kähler-Einstein metric on \(M \) and \(g \) is any other Riemannian metric on \(M \) which defines the same polarization as \(g_K \) then C. LeBrun proved that \(Y(M, [g]) \leq Y(M, [g_K]) \), and then we have again that if \(\text{Ricci}(g) \geq \text{Ricci}(g_K) \) then \(\text{Vol}(M, g) \leq \text{Vol}(M, g_K) \).

Acknowledgements: The author would like to express his gratitude to IMPA where this work was carried on with the partial support of CAPES-Brazil. He would also like to thank Claude LeBrun for very helpful comments on the original draft of the manuscript. He would also like to thank Guofang Wang for pointing out the reference \([7]\).

2. Spherical rearrangements and isoperimetric inequalities

In this section we recall a few results we will need for the proof of Theorem A. Fix a smooth positive function \(f \) on a closed Riemannian manifold \((M, g)\) of volume \(V_0 \). The spherical rearrangement of \(f \) is the radially symmetric positive function \(f_* \) on \(S^n \) such that if we renormalize \(S^n \) to have volume \(V_0 \) (and constant sectional curvature) then \(\mu(\{f > t\}) = \mu(\{f_* > t\}) \), for all \(t \in \mathbb{R} \). Here and throughout the article \(\mu \) means the measure corresponding to the volume element of the corresponding Riemannian metric.

Note that for any positive number \(q \)

\[
\int_M f^q = \int_{S^n_{V_0}} f_*^q.
\]

Also recall the coarea formula:

\[
\int_M \|\nabla f\|^2 = \int_0^\infty \left(\int_{f^{-1}(t)} \|\nabla f\| d\sigma_t \right) dt,
\]

and if \(t_0 \) is a regular value of \(f \) then the function \(t \to \mu(f < t) \) is smooth at \(t_0 \) and

\[
\frac{d}{dt}\mu(f < t)(t_0) = \int_{f^{-1}(t_0)} \|\nabla f\|^{-1} d\sigma_t
\]

(\(d\sigma_t \) means the volume element coming from the induced Riemannian metric).

Let us also recall the following definition introduced by Bérard-Besson-Gallot \([2]\)

Definition 2.1. For any \(\beta \in (0, 1) \) let \(W_\beta = \{ \Omega \subset M : \Omega \text{ is open with smooth boundary and } \text{Vol}(\Omega) = \beta V_0 \} \). The isoperimetric function of \((M, g)\) is
$h_{(M,g)}(\beta) = h(\beta) = \inf \left(\frac{\mu(\partial \Omega)}{V_0} : \Omega \in W_\beta \right)$.

Bérard-Besson-Gallot proved that if the Ricci curvature of (M, g), $\text{Ricci}(g) \geq n - 1$ and d is the diameter then $h(\beta) \geq A(d) h_0(\beta)$; where h_0 is the isoperimetric function of the round sphere of curvature 1 and

$$A(d) = \left(\int_0^\frac{\pi}{2} \cos^{n-1}(t) \, dt \right)^\frac{1}{n} \left(\int_0^\frac{\pi}{2} \cos^{n-1}(t) \, dt \right)^{-\frac{1}{n}}.$$

Note that $A(d) \geq 1$ by Myers theorem. This is an improvement on M. Gromov’s estimate in [3, Appendix C]. Actually, Gromov’s estimate (which does not contain the factor $A(d)$) would be enough for the proof of Theorem A. It is well-known that $h_0(\beta) V_n$ is the area of the $(n-1)$-sphere which bounds a geodesic ball of volume βV_n. Note also that if λ is a positive constant then the isoperimetric functions of g and λg are related by $h_{\lambda g} = \frac{1}{\sqrt{\lambda}} h_g$.

3. PROOF OF THEOREM A

Proof. Let f be a positive smooth function on M with only non-degenerate (and therefore finite) critical points. We will consider the spherical rearrangement f_* of f. We will think of f_* as defined in the round sphere $S^n_{V_0}$ of volume V_0 and therefore for any $t \in \mathbb{R}$, $\mu\{f > t\} = \mu\{f_* > t\}$. Note that $S^n_{V_0}$ is obtained by multiplying the round metric of curvature 1 by $(\frac{V_0}{V_n})^{\frac{2}{n}}$. One can put the maximum of f_* in the south pole q_0 of $S^n_{V_0}$. Then if r is the distance in $S^n_{V_0}$ to q_0 then f_* is a function of r and $f_*(r) = t$ if and only if the volume of the geodesic ball of radius r in $S^n_{V_0}$ equals $\mu\{f > t\}$. It follows that if t is a regular value of f then f_* is differentiable at r and t is a regular value of f_*. Note in this case that $\|\nabla f_*\|$ is constant along $f_*^{-1}(t)$ since f_* is radially symmetric. Then we can write

$$\int_{f_*^{-1}(t)} \|\nabla f_*\| d\sigma_t = \left(\mu(f_*^{-1}(t)) \right)^2 \left(\int_{f_*^{-1}(t)} \|\nabla f_*\|^{-1} d\sigma_t \right)^{-1}.$$

We now want to compare the L^2-norms of the gradients of f and f_*. By the coarea formula

$$\int_M \|\nabla f\|^2 = \int_0^\infty \left(\int_{f^{-1}(t)} \|\nabla f\| d\sigma_t \right) dt.$$

But from Hölder’s inequality (write $1 = \|\nabla f\|^{-1/2} \|\nabla f\|^{1/2}$)

$$\int_{f_*^{-1}(t)} \|\nabla f\| d\sigma_t \geq \left(\mu(f^{-1}(t)) \right)^2 \left(\int_{f_*^{-1}(t)} \|\nabla f\|^{-1} d\sigma_t \right)^{-1}.$$

Also note that
\[
\int_{f^{-1}(t)} \|\nabla f\|^{-1} d\sigma_t = -\frac{d}{dt}(\mu\{f > t\}) = \int_{f^{-1}(t)} \|\nabla f\|^{-1} d\sigma_t.
\]

On the other hand, \(\{f > t\}\) is a domain in \(M\) with volume \(\mu\{f > t\}\) and boundary \(f^{-1}(t)\). By the definition of the isoperimetric function

\[
\mu(f^{-1}(t)) \geq V_0 h_{(M,g)} \left(\frac{\mu\{f > t\}}{V_0} \right).
\]

If we let \(h_0\) be the isoperimetric function for the sphere then the estimate of Bérard-Besson-Gallot says that

\[
h \geq h_0 A(d).
\]

The isoperimetric function on the round sphere is realized by round balls. Therefore

\[
\mu(f^{-1}(t)) \geq V_0 h_0 \left(\frac{\mu\{f > t\}}{V_0} \right) A(d) = V_0 \left(\frac{V_0}{V_n} \right)^{\frac{1}{n}} h_{S^{n}_0} \left(\frac{\mu\{f > t\}}{V_0} \right) A(d)
\]

\[
= \left(\frac{V_0}{V_n} \right)^{\frac{1}{n}} \mu(f^{-1}(t)) A(d).
\]

And finally,

\[
\int_M \|\nabla f\|^2 \geq \int_0^\infty (\mu(f^{-1}(t)))^2 \left(\int_{f^{-1}(t)} \|\nabla f\|^{-1} d\sigma_t \right)^{-1} dt
\]

\[
\geq \left(\frac{V_0}{V_n} \right)^{\frac{2}{n}} (A(d))^2 \int_0^\infty (\mu(f^{-1}(t)))^2 \left(\int_{f^{-1}(t)} \|\nabla f\|^{-1} d\sigma_t \right)^{-1} dt
\]

\[
= \left(\frac{V_0}{V_n} \right)^{\frac{2}{n}} (A(d))^2 \int_{S^{n}_0} \|\nabla f\| d\sigma_t dt
\]

\[
= \left(\frac{V_0}{V_n} \right)^{\frac{2}{n}} (A(d))^2 \int_{S^{n}_0} \|\nabla f\|^2
\]

(by the coarea formula).

Therefore

\[
Y_g(f) = \frac{a_n \int_M \|\nabla f\|^2 + \int_M s_g f^2}{(\int_M f^p)^{\frac{2}{p}}} \geq \frac{a_n \int_M \|\nabla f\|^2 + n(n-1) \int_M f^2}{(\int_M f^p)^{\frac{2}{p}}},
\]

since \(\text{Ricci}_g \geq n - 1\). And then from the previous discussion
\[Y_g(f) \geq \frac{a_n V_0^2 V_n^{-2} (A(d))^2 \int_{S_{V_0}} \| \nabla f_* \|^2 + V_0^2 V_n^{-2} \int_{S_{V_0}} \text{Scal}_{S_{V_0}} f_*^2}{\left(\int_{S_{V_0}} f_*^p \right)^{\frac{2}{p}}}. \]

And since \(A(d) \geq 1, \)

\[Y_g(f) \geq \left(\frac{V_0}{V_n} \right)^{\frac{2}{n}} Y_{S_{V_0}} (f_*) \geq \left(\frac{V_0}{V_n} \right)^{\frac{2}{n}} Y_n = V_0^{\frac{2}{n}} n(n - 1). \]

Since every non-negative function \(f \in L^2_1(M) \) can be approximated (in \(L^2_1(M) \)) by a positive Morse function, Theorem A follows by taking the infimum for all \(f \in L^2_1(M). \)

□

References

[1] T. Aubin, *Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire*, J. Math. Pures Appl. 55 (1976), 269-296.

[2] P. H. Bérard, G. Besson, S. Gallot, *Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov*, Inventiones math. 80 (1985), 295-308.

[3] C. Böhm, M. Wang, W. Ziller, *A variational approach for compact homogeneous Einstein manifolds*, Geom. Funct. Anal. 14 (2004), 681-733.

[4] M. Gromov, *Metric structures for Riemannian and non-Riemannian spaces* (translated by S. M. Bates), Progress in Mathematics 152 (Birkhäuser, Boston, 1999).

[5] M. Gursky, C. LeBrun, *Yamabe invariants and \(\text{Spin}^c \) structures*, Geom. funct. anal. 8 (1998), 965-977.

[6] S. Ilias, *Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes*, Ann. Inst. Fourier (Grenoble), 33, no. 2, 151-165.

[7] O. Kobayashi, *Scalar curvature of a metric with unit volume*, Math. Ann 279 (1987), 253-265.

[8] C. LeBrun, *Yamabe constants and the perturbed Seiberg-Witten equations*, Comm. An. Geom. 5 (1997), 535-553.

[9] C. LeBrun, *Polarized 4-manifolds, extremal Kähler metrics, and Seiberg-Witten theory*, Math. Res. Lett. 5 (1995), 653-662.

[10] R. Schoen, *Conformal deformation of a Riemannian metric to constant scalar curvature*, J. Differential Geometry 20 (1984), 479-495.

[11] R. Schoen, *Variational theory for the total scalar curvature functional for Riemannian metrics and related topics*, Lectures Notes in Math. 1365, Springer-Verlag, Berlin, 1987, 120-154.

[12] N. Trudinger, *Remarks concerning the conformal deformation of Riemannian structures on compact manifolds*, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265-274.

[13] H. Yamabe, *On a deformation of Riemannian structures on compact manifolds*, Osaka Math. J. 12 (1960), 21-37.