1. Introduction

The fifth-generation mobile communication system (5G) was commercialized in 2020. The main features of 5G are threefold: “enhanced mobile broadband”, “massive machine-type communication”, and “ultra-reliable low-latency communications” (ITU-R M2410, 2017). So far, 5G has mainly been operated on sub-6-GHz bands. However, to fully utilize the features of 5G, new frequency bands must be assigned to International Mobile Telecommunications (IMT) systems. Therefore, over the last decade, efforts have been made to develop new frequency bands for IMT systems. As a result, at the World Radiocommunication Conference 2019, a total of 17.25 GHz of new bandwidth from 24.25 to 71 GHz was identified for IMT systems (WRC, 2020). Moreover, studies on beyond 5G and 6G have begun, and plans to use frequencies up to 300 GHz for IMT have been made (DOCOMO, 2020; Latva-aho & Leppanen, 2019). Unlike radio waves in conventional frequency bands, those in these high-frequency bands are weakly diffracted. Several standard models for predicting propagation characteristics in high-frequency bands have been developed (ITU-R M2412, 2017; Salous et al., 2020; Sasaki et al., 2015). These methods mainly use statistical models based on measurement data. Since the statistical models are constructed from measurement data, they have sufficient reliability, but their effectiveness outside the measured frequency range is not guaranteed. On the contrary, since a theory-based model is derived from electromagnetic-field theory, the parameter-setting range for a theory-based model is often valid in the range that the original theory is applicable. One representative theory-based model is the Walfisch-Bertoni (W-B) model (Walfisch et al., 1988). The W-B model is a widely used model for over-rooftop propagation environments, and the related models have been adopted as an international standard model. It targets applications in the UHF band from 300 MHz to 3 GHz and introduces various mathematical approximations. Because of these approximations, millimeter-wave bands are out of the application range of the W-B model. In the current study, therefore, the applicable frequency range of the W-B model was extended to the millimeter wave band.

2. Walfisch-Bertoni Model and Related Models

2.1. Walfisch-Bertoni and Related Models

The model proposed by Walfisch and Bertoni is a physical model of propagation that takes place in urban environments. The geometry to explain the model is shown in Figure 1.

In the W-B model, α is the grazing angle in units of radians of a radio wave incident on one building of a row of buildings, and H is the height of the transmitting antenna from the building-rooftop level in units of meters. d is the

Abstract

Extending the frequency range of the Walfisch-Bertoni (W-B) model, which is a representative theory-based model, was investigated. To extend the W-B model, three changes to the original W-B model were made: (i) remodeling over rooftop path, (ii) introducing a slant path, and (iii) modeling of multiple reflections between buildings. To validate the proposed model, propagation loss predicted by the model was compared with measurement results. Comparison with the measurement results shows that root mean square errors of propagation loss predicted by the proposed model are 5.8 dB for radio wave frequency of 2.2 GHz, 6.6 dB for 5.2 GHz, and 3.3 dB for 26.4 GHz. It is therefore concluded that the proposed model has can achieve high estimation accuracy for all measured frequency bands.
center-to-center spacing of the row of buildings in units of meters, \(h \) is building height in units of meters, and \(h_m \) is the height of the receiving antenna from ground level in units of meters. In the W-B model, it is assumed that all the building rows are the same height, and each row is replaced by a half screen. Using these parameters, the W-B model is formulated as follows:

\[
L = L_f + L_{\text{rs}} + L_{\text{msd}}
\]

\[
L_f = 32.4 + 20\log_{10}(f_{\text{MHz}}) + 20\log_{10}(R_k)
\]

\[
L_{\text{msd}} = 68.9 - 9\log_{10}(f_{\text{MHz}}) - 9\log_{10}(d) + 18\log_{10}(R_k) - 18\log_{10}(H) - 18\log_{10}\left(1 - \frac{R_k^2}{17H}\right)
\]

\[
L_{\text{rs}} = -8.8 + 10\log_{10}(f_{\text{MHz}}) + 5\log_{10}\left(\frac{d}{2}\right) + (h - h_m)^2 + 20\log_{10}\left(\tan^{-1}\left(\frac{2(h - h_m)}{d}\right)\right)
\]

where \(f_{\text{MHz}} \) is the frequency in MHz.

As shown above, this W-B model is composed of three components. The first component is free-space path loss, \(L_f \), the second is path loss associated with diffraction down to street level, \(L_{\text{rs}} \), and the third is path loss propagated over the rooftop by multiple diffraction past rows of buildings, \(L_{\text{msd}} \). When this model was developed, the operating frequency bands of IMT systems were assumed as UHF bands. The applicable range of this model is therefore from 300 MHz to 3 GHz in terms of operating frequency and from 1 to 20 km in terms of propagation distance.

Based on the W-B model, several related models have been developed. For example, the COST 231 Walfisch-Ikegami (W-I) model (Correia, 2009) basically follows the W-B model, but the term \(L_{\text{msd}} \) is replaced by the model proposed by Ikegami and coworkers (Ikegami et al., 1991). When a base station is placed above a rooftop, the model is re-organized as follows:

\[
L = L_f + L_{\text{rs}} + L_{\text{msd}}
\]

\[
L_f = 32.4 + 20\log_{10}(f_{\text{MHz}}) + 20\log_{10}(R_k)
\]

\[
L_{\text{rs}} = -16.9 - 10\log_{10}(w_s) + 10\log_{10}(f_{\text{MHz}}) + 20\log_{10}(h - h_m) + L_{\text{ori}}
\]

\[
L_{\text{msd}} = -18\log_{10}(H + 1) + 54 + 18\log_{10}(R_k) + \left[-4 + 0.7\left(\frac{f_{\text{MHz}}}{925} - 1\right)\right]\log_{10}(f_{\text{MHz}}) - 9\log_{10}(d)
\]

\[
L_{\text{ori}} = \begin{cases}
-10.0 + 0.354\phi \\
2.5 + 0.075(\phi - 35) \\
4.0 - 0.114(\phi - 55)
\end{cases}
\]

where \(w_s \) is street width and \(\phi \) is angle of signal arrival relative to the street axis.

The applicable range of the W-I model is from 800 MHz to 2 GHz in terms of operating frequency and from 0.02 to 5 km in terms of propagation distance. The major difference between the W-I and W-B models is in term \(L_{\text{msd}} \). In the case of the W-B model, \(L_{\text{msd}} \) is derived theoretically, while in the case of the W-I model, it is derived empirically on the basis of the W-B model. The W-I model is widely adopted as an international standardized model (ITU-RP1411, 2019), and a number of extensions to it have been presented.
2.2. Problems With Current Models

When the W-B model was developed, some assumptions and approximations were applied. Among them, assuming the same applicable range of operating frequency and propagation distance when attempting to extend the model to higher frequency bands makes is a critical problem.

Dependence of settled field amplitude Q (Walfisch et al., 1988) on parameter $\alpha \sqrt{d/\lambda}$ is plotted in Figure 2. Here, $\alpha \sqrt{d/\lambda}$ (which is a parameter used in the original paper proposing the W-B model) represents the square root of the inverse of the maximum number of half screens that do not shield the Fresnel zone in the past half screens. Red circles represent simulated values based on plane-wave diffraction by a series of half screens. In the W-B model, it is assumed that the height of the base-station antenna is 40 m, the distance to the mobile device is in the range 1–20 km, and a typical value of d is 40 m. Under these assumptions, the range of $\alpha \sqrt{d/\lambda}$ is from 0.02 to 0.5 for $f_{\text{MHz}} = 1$ GHz. In this range, simulated settled field amplitude Q can be regarded as a straight line. Therefore, the curve predicted with the W-B model is approximated as the blue dashed line in the figure. On the contrary, the range of $\alpha \sqrt{d/\lambda}$ frequently exceeds 1.0 at frequency above the UHF band, such as the millimeter-wave band. Moreover, α becomes large when distance R_k within 1 km (which is an important area for IMT services on high-frequency bands). Even in this case, range of settled field amplitude Q frequently exceeds 1.0. This means power is amplified while a signal is propagating over multiple rooftops.

L_{msd} and L_{rts} calculated by the W-B model are shown in Figure 3. Parameters used in this calculation are listed in Table 1. This figure shows that L_{msd} is a constant value regardless of distance, and L_{msd} is increased with increasing distance R_k. On the contrary, L_{msd} has a positive value above 500 m, but becomes negative below 500 m. This result implies traveling waves are amplified below 500 m while propagating over multiple rooftop; however, realistically, such amplification cannot happen.

Predicted propagation loss by the W-B and W-I models at $R_k = 1$ km is plotted in shows Figure 4. The horizontal axis represents frequency in unit of GHz. As shown in this figure, propagation loss in the case of the W-B model increases linearly with increasing frequency. In contrast, propagation loss in the case of the W-I model increases greatly as frequency increases to an unrealistic level. This difference is due to differences in L_{msd} for both models. It is therefore concluded that a modeling approach based on the W-I model is not suitable for extending the frequency range. Accordingly, extending the frequency range by taking the approach based on the W-B model was investigated.

3. Modified W-B Model to Cover High-Frequency Bands

3.1. Remodeling of Over-rooftop Path

As described in Section 2.2, the original equation to derive L_{msd} has a problem in regard to covering high-frequency bands. The problem is that settled field amplitude Q exceeds 1.0 from a certain region. Therefore, to solve that problem, it is proposed to divide the section into a region where settled field amplitude Q does not exceed 1.0 and a region where Q exceeds 1.0, and original equation is applied to the former region, and 1.0 is applied to the latter region. The modified model is characterized by the orange line shown in Figure 5.
The characteristics of the proposed and conventional models (expressed in units of dB) are given as follows:

\[
L_{\text{mod}} = \begin{cases}
16.8 + 20 \log_{10} \left(\frac{R_m}{d} \right) - 20 \log_{10} \left(H \right) - 10 \log_{10} \left(f_{\text{MHz}} \right) - 10 \log_{10} \left(d \right) & \text{for } \alpha \frac{d}{\lambda} < 0.4 \\
0 & \text{for } \alpha \frac{d}{\lambda} \geq 0.4
\end{cases}
\]

Here, some terms in original equation for \(L_{\text{mod}} \) have been deleted for simplification of equation.

3.2. Introduction of Slant Path

Actually, horizontal distance and actual propagation distance start to differ as the distance becomes shorter because of the difference in antenna height. For this reason, slant path rather than horizontal path has to be introduced. The equation for deriving \(L_f \) is therefore slightly modified as follows:

\[
L_f = -27.6 + 20 \log_{10} \left(f_{\text{MHz}} \right) + 20 \log_{10} \left[\sqrt{\left(\frac{R_m}{d} \right)^2 + \left(H + h_m \right)^2} \right]
\]

Here, variable of horizontal distance has been changed from \(R_k \) (in units of kilometers) to \(R_m \) (in units of meters).

3.3. Modeling of Multiple Reflections Between Buildings

A method for evaluating height-variation characteristics of propagation loss for fixed wireless access systems has been proposed (Kita et al., 2007). In that study, it was revealed that propagation loss of multiple reflection waves from neighboring buildings is smaller than diffraction loss under some situation. Especially, multiple-reflection loss sometimes becomes smaller than diffraction loss in the high-frequency band because diffraction loss increases with increasing frequency. Therefore, multiple reflection paths have to be considered for improving prediction accuracy of propagation loss.

As shown by the red continuous line in Figure 6, let us consider a radio-wave from a transmitting station that passes just over one building (with
height \(h \) and hits another building (also with height \(h \)) at spacing \(d \), is reflected \(n \) times between the two buildings, and is finally received at a receiving station with height \(h_m \) located between the two buildings. The value of \(n \) is the smallest integer that satisfies the condition:

\[
\frac{H}{R_m} \leq \frac{h - h_m}{d / 2 + n_d d}
\]

When reflection loss per wall surface is \(L_r \), the multiply reflected radio-wave incurs additional loss \(L_{mr} \) given by

\[
L_{mr} = n_k L_R \approx \frac{2(h - h_m) R_m - dH}{2dH} L_r
\]

3.4. Summary of Proposed Model

To summarize the model introduced in Sections 3.1–3.3, the W-B model is modified to cover high-frequency bands as follows:

\[
L = L_f + L_{mod} + \min(L_{mr}, L_{ms})
\]

\[
L_f = -27.6 + 20 \log_{10}(\nu f_{MHz}) + 20 \log_{10}\left[\sqrt{(R_m + d / 2)^2 + (H + h - h_m)^2}\right]
\]

\[
L_{mod} = \begin{cases}
16.8 + 20 \log_{10}(R_m) - 20 \log_{10}(\nu f_{MHz}) - 10 \log_{10}(d) & \text{for } \alpha \frac{d}{\lambda} < 0.4 \\
0 & \text{for } \alpha \frac{d}{\lambda} \geq 0.4
\end{cases}
\]

\[
L_{ms} = -11.5 + 10 \log_{10}(\nu f_{MHz}) + 510 \log_{10}\left[\frac{d^2}{2} + (h - h_m)^2\right] + 20 \log_{10}\left[\tan^{-1}\left(\frac{2(h - h_m)}{d}\right) - \alpha\right]
\]

\[
L_{mr} = \frac{2(h - h_m) R_m - dH}{2dH} \times L_r
\]

\[
\alpha = \tan^{-1}\left(\frac{H}{R_m}\right)
\]

An example of the prediction results given by the modified W-B model is shown in Figure 7. The parameters used in this simulation are identical to the values listed in Table 1. Difference between the proposed
and original W-B models can be found within 200 m. In other words, diffraction causes higher loss than multiple reflections when the horizontal distance between transmitting and receiving station is within 200 m, and multiple reflections cause higher loss than diffraction when the distance is over 200 m.

4. Validation of Proposed Model by Measurement

4.1. Measurement Environment and Parameters

To validate the proposed model, propagation loss was measured in Tokyo, Japan. Measured frequency bands were 2.2, 5.2, and 26.4 GHz with continuous waves. Measurement parameters and environmental parameters are summarized in Table 2. The base station was set on the rooftop of a building with height of 41.0 m from the ground. The antenna height was 1.5 m from the rooftop, so the top of the antenna was 42.5 m from the ground. A receiver and data logger were set on a measurement vehicle moving at approximately 30 km/h along a road of a predetermined route. A receiving antenna was installed on the roof of the vehicle at a height of 2.7 m from the ground. The antenna’s radiation pattern was omni-directional in the horizontal plane for both the transmitter and receiver.

A view from the base station to the measurement area is shown in Figure 8, and the locations of the base station and measurement area are shown in Figure 9. Most of the buildings in the measurement area are detached houses. The average building heights along the main roads that cross from left to right and from top to bottom near the base station are higher than those in other areas. However, in consideration of the total number of buildings in the measurement area, the number of buildings along the main roads is small. Average building height of the measurement area is therefore 8.3 m. Average building space is 14.2 m; however, the value of road orientation which is an angle between the incident wave and street at which the measurement took place varies. Accordingly, in the calculation of propagation loss, road orientation of 45

Table 2: Measurement Condition and Environmental Parameters
Measurement parameters

Frequency
Tx height
Rx height
Average building height
Average building spacing

Figure 8. View from base station to measurement area.

Figure 9. Locations of base station and measurement area.
degrees (which is the expected value) was assumed for deriving d. These environmental parameters were automatically calculated by using our geographic information system.

Measured distance from the base station was from 30 to 1,400 m, and total running distance during the measurement was 23.6 km. However, due to the shielding effect of the rooftop surface on which the base-station antenna was installed and the vertical radiation pattern of antenna, measurement data acquired within a distance of 100 m were neglected. Measurement data were gathered and averaged over 10-m intervals.

4.2. Validation Results

The measurement results and prediction results are compared in Figures 10–12 for frequencies of 2.2, 5.2, and 26.4 GHz, respectively. Green dotted lines represent free-space path loss, blue breaking lines shows results predicted by the W-B model, the red solid shows results predicted by the proposed model, and black circles show measurements. In this validation, L_s was set to 8 dB. These figures show that the prediction by the W-B model overestimate propagation loss. Especially, prediction error by the W-B model increases with decreasing distance. On the other hand, predicted propagation loss by the proposed model agreement well with the measurements for all frequency bands. Root mean square errors (RMSEs) of the W-B model are 6.5 dB for 2.2 GHz, 9.9 dB for 5.2 GHz, and 5.0 dB for 26.4 GHz, and RMSEs of the proposed model are 5.8 dB for 2.2 GHz, 6.6 dB for 5.2 GHz, and 3.3 dB for 26.4 GHz. Especially, in the distance range from 100 to 1,000 m (which is the extended distance range for the proposed model), RMSEs of the W-B model are 6.5 dB for 2.2 GHz, 10.0 dB for 5.2 GHz, and 12.8 dB for 26.4 GHz, and RMSEs of the proposed model are 5.8 dB for 2.2 GHz, 5.6 dB for 5.2 GHz, and 7.7 dB for 26.4 GHz.

5. Conclusions

High-frequency bands, such as the millimeter wave band, are planned to be allocated to 5G-and-beyond systems. To evaluate interference and design communication areas, a propagation model for these frequency bands has to be developed. To construct a theory-based propagation model that can estimate propagation loss in high-frequency bands, problems with the original Walfisch-Bertoni model (which is a representative theory-based model) are pointed out. The original W-B model was modified to extend it to higher frequency bands by three additions: (i) re-modeling over a rooftop path, (ii) introducing a slant path, and (iii) modeling of multiple reflections between buildings. To validate the proposed model, predicted propagation loss was compared with measurement propagation loss for frequencies in the range of 2.2 GHz–26.4 GHz. Comparison with the measurement results shows that RMSEs of propagation loss predicted by the proposed model are 5.8 dB for radiowave frequency of 2.2 GHz, 6.6 dB for 5.2 GHz, and 3.3 dB for 26.4 GHz. It is therefore concluded that the proposed model has can achieve high estimation accuracy for all measured frequency bands.
Data Availability Statement

Data sets for this research have been deposited in a public accessible domain (https://www.ieice.org/cs/ap/language/en/misc-eng/denpan-db/prop-db-eng/prop_db_eng_1/).

References

Correia, L. M. (2009). A view of the COST 231-Bertoni-Ikegami model. Paper presented at 3rd European Conference on Antennas and Propagation, EuCAP, Berlin, Germany.

DOCOMO. (2020). 5G evolution and 6G. Retrieved from https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_6g/DOCOMO_6G_White_PaperEN_20200124.pdf

Ikegami, F., Takeuchi, T., & Yoshida, S. (1991). Theoretical prediction of mean field strength for Urban Mobile Radio. *IEEE Transactions on Antennas and Propagation*, 39(3), 299–302. https://doi.org/10.1109/8.76325

ITU-RM2410. (2017). Minimum requirements related to technical performance for IMT-2020 radio interface(s). Geneva, Switzerland: ITU.

ITU-RM2412. (2017). Guidelines for evaluation of radio interface technologies for IMT-2020. Geneva, Switzerland: ITU.

ITU-RP1411. (2019). Propagation data and prediction methods for the planning of short-range outdoor radio communication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. Geneva, Switzerland: ITU.

Kita, N., & Yamada, W., & Sato, A. (2007). New method for evaluating height gain at subscriber station for wireless access systems in microwave band. *IEICE Transactions on Communications*, E90-B(10), 2903–2914. https://doi.org/10.1093/ietcom/e90-b.10.2903

Latva-aho, M., & Leppanen, K. (2019). Key drivers and research challenges for 6G ubiquitous wireless intelligence. Retrieved from http://julitika.oulu.fi/files/isbn9789526223544.pdf

Salous, S., Lee, J., Kim, M. D., Sasaki, M., Yamada, W., Raimundo, X., & Cheema, A. A. (2020). Radio propagation measurements and modeling for standardization of the site general path loss model in International Telecommunications Union recommendations for 5G wireless networks. *Radio Science*, 55(1), 1–12. https://doi.org/10.1029/2019RS006924

Sasaki, M., Yamada, W., Sugiyama, T., & Imai, T. (2015). Path loss variation characteristics at 26GHz band in street microcell environment. *IEICE Transactions on Communications*, E98-B(5), 783–789. https://doi.org/10.1587/transcom.E98.B.783

Walfisch, J., & Bertoni, H. L. (1988). A theoretical model of UHF propagation in urban environments. *IEEE Transactions on Antennas and Propagation*, 36, 1788–1796. https://doi.org/10.1109/8.14401

WRC. (2020). Final acts WRC-19 (2020). Retrieved from https://www.itu.int/dms_pub/iitu-e/opb/act/R-19-WRC-PDF-1.pdf