In the Minimal Supersymmetric Standard Model, the effective b quark Yukawa coupling to the lightest neutral Higgs boson is enhanced. Therefore, the associated production of the lightest Higgs boson with a b quark is an important discovery channel. We consider the SUSY QCD contributions from squarks and gluinos and discuss the decoupling properties of these effects. A comparison of our exact $O(\alpha_s)$ results with those of a widely used effective Lagrangian approach, the Δ_b approximation, is also presented.

1. Introduction

In the MSSM, the production mechanisms for the Higgs bosons can be significantly different from that in the Standard Model. For large values of $\tan\beta$, the heavier Higgs bosons, A and H, are predominantly produced in association with b quarks. Even for $\tan\beta \sim 5$, the production rate in association with b quarks is similar to that from gluon fusion for A and H production (Dittmaier et al. [2011]). For the lighter Higgs boson, h, the dominant production mechanism at both the Tevatron and the LHC is production with b quarks for light $M_A (\lesssim 200$ GeV$)$, where the $b\bar{b}h$ coupling is enhanced. Both the Tevatron [Benjamin et al. [2010]] and the LHC experiments [Chatrchyan et al. [2011]] have presented limits Higgs production in association with b quarks, searching for the decays $h \rightarrow \tau^+\tau^-$ and bb. These limits are obtained in the context of the MSSM are sensitive to the b-squark and gluino loop corrections which we consider here.

The rates for bh associated production at the LHC and the Tevatron have been extensively studied (Dawson et al. [2006], Campbell et al. [2004], Maltoni et al. [2003], Dawson et al. [2005], Dittmaier et al. [2004], Dicus et al. [1999], Dawson et al. [2004], Maltoni et al. [2003]). In the 4-flavor number scheme, the lowest order processes for producing a Higgs boson and a b quark are $gg \rightarrow b\bar{b}h$ and $qq \rightarrow b\bar{b}h$ (Dawson et al. [2006], Campbell et al. [2004], Maltoni et al. [2003]). In the 4-flavor number scheme, the lowest order process is $bg \rightarrow bh$ ($bg \rightarrow b\bar{b}$). The two schemes represent different orderings of perturbation theory and calculations in the two schemes produce rates which are in qualitative agreement (Dittmaier et al. [2011], Campbell et al. [2004]). In this paper, we use the 5-flavor number scheme for simplicity. The resummation of threshold logarithms (Field et al. [2007]), electroweak corrections (Dawson and Jaiswal [2010], Beccaria et al. [2010]) and SUSY QCD corrections (Dawson and Jackson [2008]) have also been computed for bh production in the 5-flavor number scheme.

Here, we focus on the role of squark and gluino loops. The properties of the SUSY QCD corrections to the $b\bar{b}h$ vertex, both for the decay $h \rightarrow b\bar{b}$ (Dabelstein [1995], Hall et al. [1994], Carena et al. [2000], Guasch et al. [2003]) and the production, $b\bar{b} \rightarrow h$ (Dittmaier et al. [2004], Guasch et al. [2003], Haber et al. [2001], Harlander and Kilgore [2003]), were computed long ago. The contributions from b squarks and gluinos to the lightest MSSM Higgs boson mass are known at 2-loops (Heinemeyer et al. [2005], Brignole et al. [2002]), while the 2-loop SQCD contributions to the $b\bar{b}h$ vertex is known in the limit in which the Higgs mass is much smaller than the squark and gluino masses (Noth and Spira [2010, 2008]). The contributions of squarks and gluinos to the on-shell $b\bar{b}h$ vertex are non-decoupling for heavy squark and gluino masses and decoupling is only achieved when the pseudoscalar mass, M_A, also becomes large.

An effective Lagrangian approach, the Δ_b approximation [Hall et al. [1994], Carena et al. [2000]), can be used to approximate the SQCD contributions to the on-shell $b\bar{b}h$ vertex and to resum the $(\alpha_s, \tan\beta/M_{\text{SUSY}})^n$ enhanced terms. The numerical accuracy of the Δ_b effective Lagrangian approach has been examined for a number of cases. The 2-loop contributions to the lightest MSSM Higgs boson mass of $O(\alpha_s\alpha_t\alpha_s)$ were computed by Heinemeyer et al. [2005] and Brignole et al. [2002], and it was found that the majority of these corrections could be absorbed into a 1-loop contribution by defining an effective b quark mass using the Δ_b approach. The sub-leading contributions to the Higgs boson mass (those not absorbed into Δ_b) are then of $O(1$ GeV$)$. The Δ_b approach also yields an excellent approximation to the SQCD corrections for the decay process $h \rightarrow b\bar{b}$ (Guasch et al. [2003]). It is particularly interesting to study the accuracy of the Δ_b approximation for production processes where one of the b quarks is off-shell. The SQCD contributions from squarks and gluinos to the...
inclusive Higgs production rate in association with \(b \) quarks has been studied extensively in the 4FNS by
\cite{Dittmaier2007}, where the the lowest order contribution is \(gg \to bbh \). In the 4FNS, the inclusive

cross section including the exact 1-loop SQCD corrections is reproduced to within a few percent using the \(\Delta_b \)

approximation. However, the accuracy of the \(\Delta_b \) approximation for the MSSM neutral Higgs boson production

in the 5FNS has been studied for only a small set of MSSM parameters in Ref. \cite{Dawson2008}. The major new result of this paper is a detailed study of the accuracy of the \(\Delta_b \) approach in the 5FNS for the

\(bg \to bh \) production process. In this case, one of the \(b \) quarks is off-shell and there are contributions which are

not contained in the effective Lagrangian approach.

In this article, we give a brief review of the effective Lagrangian approximation in section 1. In section 2,

we summarize the SQCD calculations for \(bg \to bh \) \cite{Dawson2008} including terms which are

enhanced by \(m_b \tan \beta \) \cite{Dawson2011}. Analytic results for the SQCD corrections to \(bg \to bh \) in the extreme mixing scenarios in the \(b \) squark sector have been calculated by \cite{Dawson2011} and are presented

in Section 3. Section 4 contains numerical results for the \(\sqrt{s} = 7 \) TeV LHC. Finally, our conclusions are

summarized in Section 5.

\section{SQCD Contributions to \(gb \to bh \)}

\subsection{\(\Delta_b \) Approximation: The Effective Lagrangian Approach}

Loop corrections which are enhanced by powers of \(\alpha_s \tan \beta \) can be included in an effective Lagrangian approach

\cite{Hall1994, Carena2000, Guasch2003}. Using the effective Lagrangian, which we term

the Improved Born Approximation (or \(\Delta_b \) approximation), the cross section is written in terms of the effective
coupling,

\[
g_{\Delta_b}^{bh} \equiv g_{bh} \left(\frac{1}{1 + \Delta_b} \right) \left(1 - \frac{\Delta_b}{\tan \beta \tan \alpha} \right),
\]

where

\[
g_{bh} = -\left(\frac{\sin \alpha}{\cos \beta} \right) \frac{\mu_R}{\mu_{SM}}
\]

and the 1-loop contribution to \(\Delta_b \) from sbottom/gluino loops is \cite{Hall1994, Carena2000, Guasch2003}

\[
\Delta_b = \frac{2\alpha_s(M_S)}{3\pi} M_{\tilde{b}} \tan \beta I(M_{\tilde{b}_1}, M_{\tilde{b}_2}, M_{\tilde{g}}),
\]

where the function \(I(a, b, c) \) is,

\[
I(a, b, c) = \frac{1}{(a^2 - b^2)(b^2 - c^2)(a^2 - c^2)} \left(a^2 b^2 \log \left(\frac{a^2}{b^2} \right) + b^2 c^2 \log \left(\frac{b^2}{c^2} \right) + c^2 a^2 \log \left(\frac{c^2}{a^2} \right) \right),
\]

The Improved Born Approximation consists of rescaling the tree level cross section, \(\sigma_0 \), by the coupling of Eq. \ref{eq:ib}

\[
\sigma_{IBA} = \left(\frac{g_{\Delta_b}}{g_{bh}} \right)^2 \sigma_0.
\]

The Improved Born Approximation has been shown to accurately reproduce the full SQCD calculation of

\(pp \to t\bar{b}H^+ \) \cite{Berger2005, Dittmaier2009}. The one-loop result including the SQCD corrections

for \(bg \to bh \) can be written as,

\[
\sigma_{SQCD} \equiv \sigma_{IBA} \left(1 + \Delta_{SQCD} \right),
\]

where \(\Delta_{SQCD} \) is found from the exact SQCD calculation summarized in Appendix B of \cite{Dawson2011}.
2.2. Full One-loop SQCD Contributions to $gb \rightarrow bh$

The SQCD contributions to the $gb \rightarrow bh$ process have been computed in Ref. [Dawson and Jackson 2008] in the $m_b = 0$ limit and further, in Ref. [Dawson et al. 2011] where terms which are enhanced by $m_b \tan \beta$ have been included.

The tree level diagrams for $g(q_1) + b(q_2) \rightarrow b(p_b) + h(p_h)$ are shown in Fig. 1. The amplitude can be written as a sum of following dimensionless spinor products

$$M_\mu^s = \frac{\bar{\tau}(p_b) (\not{q}_1 + \not{q}_2) \gamma^\mu u(q_2)}{s},$$

$$M_\mu^t = \frac{\bar{\tau}(p_b) \gamma^\mu (p_b - \not{q}_1) u(q_2)}{t},$$

$$M_\mu^1 = q_2^2 \tau(p_b) u(q_2),$$

$$M_\mu^2 = \frac{\bar{\tau}(p_b) \gamma^\mu u(q_2)}{m_b},$$

$$M_\mu^3 = p_b^2 \tau(p_b) \not{q}_1 u(q_2),$$

$$M_\mu^4 = q_2^2 \tau(p_b) \not{q}_1 u(q_2).$$

(7)

where $s = (q_1 + q_2)^2$, $t = (p_b - q_1)^2$ and $u = (p_b - q_2)^2$. In the $m_b = 0$ limit, the tree level amplitude depends only on M_μ^s and M_μ^t, and M_μ^1 is generated at one-loop. When the effects of the b mass are included, M_μ^2, M_μ^3, and M_μ^4 are also generated.

The tree level amplitude is

$$A_{\alpha\beta}^{s} | 0 = -g_s g_{bhh} (T^a)_{\alpha\beta} \epsilon_\mu(q_1) \{M_\mu^s + M_\mu^t\},$$

(8)

and the one loop contribution can be written as

$$A_{\alpha\beta}^{s} = -\frac{\alpha_s(\mu_R)}{4\pi} g_s g_{bhh} (T^a)_{\alpha\beta} \sum_j X_j M^*_j \epsilon_\mu(q_1).$$

(9)

For detailed calculation of counter-terms and the coefficients X_j, cf. [Dawson et al. 2011].

3. Results for Maximal and Minimal Mixing in the b-Squark Sector

3.1. Maximal Mixing

The SQCD contributions to $bg \rightarrow bh$ can be examined analytically in several scenarios. In the maximal mixing scenario,

$$|\tilde{m}_L^2 - \tilde{m}_R^2| << \frac{m_b}{1 + \Delta_0} |X_b|.$$

(10)
We expand in powers of $\frac{|\tilde{m}_L^2 - \tilde{m}_R^2|}{m_{S,b} X_b}$. In this case the sbottom masses are nearly degenerate,

$$M_{b_S}^2 = \left| M_{b_1}^2 - M_{b_2}^2 \right| = \frac{1}{2} \left[M_{b_1}^2 + M_{b_2}^2 \right]$$

$$\left| M_{b_1}^2 - M_{b_2}^2 \right| = \left(\frac{2m_b}{1 + \Delta_b} \right) \left(1 + \frac{(\tilde{m}_L^2 - \tilde{m}_R^2)(1 + \Delta_b)^2}{8m_b^2 X_b} \right) \ll M_S^2.$$ \hspace{1cm} (11)

This scenario is termed maximal mixing since

$$\sin 2\theta_b \sim 1 - \frac{(\tilde{m}_L^2 - \tilde{m}_R^2)(1 + \Delta_b)^2}{8m_b^2 X_b}.$$ \hspace{1cm} (12)

We expand the contributions of the exact one-loop SQCD calculation (see Appendix B of Dawson et al. 2011) in powers of $1/M_S$, keeping terms to $O(M_{EW}^2/M_S^2)$ and assuming $M_S \sim M_{\tilde{g}} \sim \mu \sim A_b \sim \tilde{m}_L \sim \tilde{m}_R \gg M_W, M_Z, M_h \sim M_{EW}$. In the expansions, we assume the large $\tan \beta$ limit and take $m_b \tan \beta \sim O(M_{EW})$.

The minimal mixing scenario is characterized by a mass splitting between the b squarks which is of order the b squark mass, $|M_{b_1}^2 - M_{b_2}^2| \sim M_S^2$. In this case,

$$|\tilde{m}_L^2 - \tilde{m}_R^2| >> \frac{m_b}{X_b},$$ \hspace{1cm} (14)

and the mixing angle in the b squark sector is close to zero,

$$\cos 2\theta_b \sim 1 - \frac{2m_b^2 X_b^2}{(M_{b_1}^2 - M_{b_2}^2)^2} \left(\frac{1}{1 + \Delta_b} \right)^2.$$ \hspace{1cm} (15)

As in the previous section, the spin and color averaged amplitude-squared is,

$$|\mathcal{A}|^2_{\text{min}} = -\frac{2\alpha_s \pi}{3} (g_{\tilde{g}bb}^2) \left(\frac{M_{b_1}^2 + u^2}{st} \right) \left[1 + 2 \left(\frac{\delta_{gbbh}}{g_{bbh}} \right)_{\text{max}} \right]$$

$$+ \frac{\alpha_s}{2\pi} \delta_{\kappa_{\text{min}}} M_{b_S}^2 \frac{M_{b_1}^2}{M_S^2} + O\left(\frac{M_{EW}^2}{M_S^2} \right)^4 \alpha_s^3.$$

3.2. Minimal Mixing

The minimal mixing scenario is characterized by a mass splitting between the b squarks which is of order the b squark mass, $|M_{b_1}^2 - M_{b_2}^2| \sim M_S^2$. In this case,

$$|\tilde{m}_L^2 - \tilde{m}_R^2| >> \frac{m_b}{X_b},$$ \hspace{1cm} (14)

and the mixing angle in the b squark sector is close to zero,

$$\cos 2\theta_b \sim 1 - \frac{2m_b^2 X_b^2}{(M_{b_1}^2 - M_{b_2}^2)^2} \left(\frac{1}{1 + \Delta_b} \right)^2.$$ \hspace{1cm} (15)

As in the previous section, the spin and color averaged amplitude-squared is,

$$|\mathcal{A}|^2_{\text{min}} = -\frac{2\alpha_s \pi}{3} (g_{\tilde{g}bb}^2) \left(\frac{M_{b_1}^2 + u^2}{st} \right) \left[1 + 2 \left(\frac{\delta_{gbbh}}{g_{bbh}} \right)_{\text{min}} \right]$$

$$+ \frac{\alpha_s}{2\pi} \delta_{\kappa_{\text{min}}} M_{b_S}^2 \frac{M_{b_1}^2}{M_S^2} + O\left(\frac{M_{EW}^2}{M_S^2} \right)^4 \alpha_s^3.$$

The contributions which are not contained in σ_{IBA}, $\left(\frac{\delta_{gbbh}}{g_{bbh}} \right)_{\text{min}}$ and $\delta_{\kappa_{\text{min}}} M_{b_S}^2$ are given in Dawson et al. 2011 and again found to be suppressed by $O\left(\frac{M_{EW}^2}{M_S^2} \right)^2$.

4. Numerical Results

The numerical results for $pp \rightarrow b(b)h$ at $\sqrt{s} = 7 \text{ TeV}$ were presented in [Dawson et al. (2011)]. The renormalization and factorization scales were chosen to be $\mu_R = \mu_F = M_h/2$ and the CTEQ6m NLO parton distribution functions [Nadolsky et al. (2008)] were used. Figs. 2, 3, and 4 show the percentage deviation of the complete one-loop SQCD calculation from the Improved Born Approximation of Eq. 5 for $\tan \beta = 40$ and $\tan \beta = 20$ and representative values of the MSSM parameters. In both extremes of b squark mixing, the Improved Born Approximation approximation is within a few percent of the complete one-loop SQCD calculation and so is a reliable prediction for the rate. This is true for both large and small M_A. In addition, the large M_S expansion accurately reproduces the full SQCD one-loop result to within a few percent. These results are expected from the expansions of Eqs. 13 and 16 since the terms which differ between the Improved Born Approximation and the one-loop calculation are suppressed in the large M_S limit.

Fig. 5 compares the total SQCD rate for maximal and minimal mixing, which bracket the allowed mixing possibilities. For large M_S, the effect of the mixing is quite small, while for $M_S \sim 800 \text{ GeV}$, the mixing effects are at most a few fb. The accuracy of the Improved Born Approximation as a function of m_R is shown in Fig. 6 for fixed M_A, μ, and m_L. As m_R is increased, the effects become very tiny. Even for light gluino masses, the Improved Born Approximation reproduces the exact SQCD result to within a few percent.

![Image](https://via.placeholder.com/150)

Figure 2: Percentage difference between the Improved Born Approximation and the exact one-loop SQCD calculation of $pp \rightarrow bh$ for maximal mixing in the b-squark sector at $\sqrt{s} = 7 \text{ TeV}$, $\tan \beta = 40$, and $M_A = 1 \text{ TeV}$.

In Fig. 7, we show the scale dependence for the total rate, including NLO QCD and SQCD corrections (dotted lines) for a representative set of MSSM parameters at $\sqrt{s} = 7 \text{ TeV}$. The NLO scale dependence is quite small when $\mu_R = \mu_F \sim M_h$. However, there is a roughly $\sim 5\%$ difference between the predictions found using the CTEQ6m PDFs and the MSTW2008 NLO PDFs [Martin et al. (2009)]. In Fig. 8, we show the scale dependence for small μ_F (as preferred by [Maltoni et al. (2003)]), and see that it is significantly larger than in Fig. 7. This is consistent with the results of [Dittmaier et al. (2011), Harlander and Kilgore (2003)].

5. Conclusion

The analytical and numerical results presented in the previous sections clearly demonstrate that deviations from the Δ_b approximation are suppressed by powers of (M_{EW}/M_S) in the large $\tan \beta$ region. The Δ_b approximation hence yields an accurate prediction in the 5 flavor number scheme for the cross section for squark and gluino masses at the TeV scale.

References

S. Dittmaier et al. (LHC Higgs Cross Section Working Group) (2011), 1101.0593.
Figure 3: Percentage difference between the Improved Born Approximation and the exact one-loop SQCD calculation of $pp \rightarrow bh$ for maximal mixing in the b-squark sector at $\sqrt{s} = 7$ TeV, $\tan \beta = 20$, and $M_A = 250$ GeV.

Figure 4: Percentage difference between the Improved Born Approximation and the exact one-loop SQCD calculation for $pp \rightarrow bh$ for minimal mixing in the b-squark sector at $\sqrt{s} = 7$ TeV.

D. Benjamin et al. (Tevatron New Phenomena and Higgs Working Group) (2010), 1003.3363.
S. Chatrchyan et al. (CMS) (2011), 1104.1619.
S. Dawson, C. B. Jackson, L. Reina, and D. Wackeroth, Mod. Phys. Lett. A21, 89 (2006), hep-ph/0508293.
J. Campbell et al. (2004), hep-ph/0405302.
F. Maltoni, Z. Sullivan, and S. Willenbrock, Phys. Rev. D67, 093005 (2003), hep-ph/0301033.
S. Dawson, C. B. Jackson, L. Reina, and D. Wackeroth, Phys. Rev. Lett. 94, 031802 (2005), hep-ph/0408077.
S. Dittmaier, M. Kramer, and M. Spira, Phys. Rev. D70, 074010 (2004), hep-ph/0309204.
D. Dicus, T. Stelzer, Z. Sullivan, and S. Willenbrock, Phys. Rev. D59, 094016 (1999), hep-ph/9811492.
S. Dawson, C. B. Jackson, L. Reina, and D. Wackeroth, Phys. Rev. D69, 074027 (2004), hep-ph/0311067.
F. Maltoni, T. McElmurry, and S. Willenbrock, Phys. Rev. D72, 074024 (2005), hep-ph/0505014.
J. Campbell, R. K. Ellis, F. Maltoni, and S. Willenbrock, Phys. Rev. D67, 095002 (2003), hep-ph/0204093.
M. S. Carena, A. Menon, and C. E. M. Wagner, Phys. Rev. D76, 035004 (2007), arXiv:0704.1143 [hep-ph].
M. S. Carena, S. Mrenna, and C. E. M. Wagner, Phys. Rev. D66, 075010 (1999), hep-ph/9808312.
B. Field, L. Reina, and C. B. Jackson, Phys. Rev. D76, 074008 (2007), 0705.0035.
S. Dawson and P. Jaiswal, Phys. Rev. D81, 073008 (2010), 1002.2672.
M. Beccaria et al., Phys. Rev. D82, 093018 (2010), 1005.0759.
Figure 5: Comparison between the exact one-loop SQCD calculation for $pp \rightarrow bh$ for minimal and maximal mixing in the b squark sector at $\sqrt{s} = 7$ TeV and $\tan \beta = 40$. The minimal mixing curve has $m_R = \sqrt{2} M_S$ and $\tilde{\theta}_b \sim 0$, while the maximal mixing curve has $m_R = M_S$ and $\tilde{\theta}_b \sim \frac{\pi}{4}$.

Figure 6: Percentage difference between the Improved Born Approximation and the exact one-loop SQCD calculation for $pp \rightarrow bh$ as a function of m_R at $\sqrt{s} = 7$ TeV and $\tan \beta = 40$.

S. Dawson and C. B. Jackson, Phys. Rev. D77, 015019 (2008), 0709.4519.
A. Dabelstein, Nucl. Phys. B456, 25 (1995), hep-ph/9503443.
L. J. Hall, R. Rattazzi, and U. Sarid, Phys. Rev. D50, 7048 (1994), hep-ph/9306309.
M. S. Carena, D. Garcia, U. Nierste, and C. E. M. Wagner, Nucl. Phys. B577, 88 (2000), hep-ph/9912516.
J. Guasch, P. Haffiger, and M. Spira, Phys. Rev. D68, 115001 (2003), hep-ph/0305101.
H. E. Haber et al., Phys. Rev. D63, 055004 (2001), hep-ph/0007006.
R. V. Harlander and W. B. Kilgore, Phys. Rev. D68, 13001 (2003), hep-ph/0304035.
S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, Eur. Phys. J. C39, 465 (2005), hep-ph/0411114.
A. Brignole, G. Degrassi, P. Slavich, and F. Zwirner, Nucl. Phys. B643, 79 (2002), hep-ph/0206101.
D. Noth and M. Spira (2010), 1001.1935.
D. Noth and M. Spira, Phys. Rev. Lett. 101, 181801 (2008), 0808.0087.
S. Dittmaier, M. Kramer, A. Muck, and T. Schluter, JHEP 03, 114 (2007), hep-ph/0611353.
S. Dawson, C. Jackson, and P. Jaiswal, Phys.Rev. D83, 115007 (2011), 1104.1631.
M. S. Carena, M. Olechowski, S. Pokorski, and C. E. M. Wagner, Nucl. Phys. B426, 269 (1994), hep-ph/9402253.
E. L. Berger, T. Han, J. Jiang, and T. Plehn, Phys. Rev. D71, 115012 (2005), hep-ph/0312286.
Figure 7: Total cross section for \(pp \rightarrow b\overline{b}h \) production including NLO QCD and SQCD corrections (dotted lines) as a function of renormalization/factorization scale using CTEQ6m (black) and MSTW2008 NLO (red) PDFs. We take \(M_{\tilde{g}} = 1 \text{ TeV} \) and the remaining MSSM parameters as in Fig. 2.

Figure 8: Total cross section for \(pp \rightarrow b\overline{b}h \) production including NLO QCD and SQCD corrections as a function of the factorization scale using MSTW2008 NLO PDFs. We take \(M_{\tilde{g}} = 1 \text{ TeV} \) and the remaining MSSM parameters as in Fig. 2.

S. Dittmaier, M. Kramer, M. Spira, and M. Walser (2009), 0906.2648.
P. M. Nadolsky et al., Phys. Rev. D78, 013004 (2008), 0802.0007.
A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C63, 189 (2009), 0901.0002.