The Black Hole Interior and a Curious Sum Rule

Amit Giveona, Nissan Itzhakib and Jan Troostc

a Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
b Physics Department, Tel-Aviv University, Ramat-Aviv, 69978, Israel
c Laboratoire de Physique Théorique
Unité Mixte du CRNS et de l’École Normale Supérieure
associée à l’Université Pierre et Marie Curie 6
UMR 8549
École Normale Supérieure
24 Rue Lhomond Paris 75005, France

Abstract

We analyze the Euclidean geometry near non-extremal NS5-branes in string theory, including regions beyond the horizon and beyond the singularity of the black brane. The various regions have an exact description in string theory, in terms of cigar, trumpet and negative level minimal model conformal field theories. We study the worldsheet elliptic genera of these three superconformal theories, and show that their sum vanishes. We speculate on the significance of this curious sum rule for black hole physics.

1 Introduction

The Wick rotation of the Lorentzian black hole geometry to a Euclidean solution of gravity gives valuable information about quantum black holes. For the Schwarzschild solution, the Euclidean geometry reads

\[ds^2 = (1 - 2M/r)dt^2 + \frac{dr^2}{1 - 2M/r} + r^2d\Omega^2. \]

The region that corresponds to the exterior of the black hole \(r > 2M \) is known as the cigar geometry. From the cigar geometry, one reads off the relationship between the black hole temperature and mass and the value of the Euclidean action that corresponds to
the entropy of the black hole \[1\], and one can fix the Hartle-Hawking wave function \[2\] associated with the Lorentzian extended geometry \[3\].

The region that corresponds to the interior of the black hole, \(r < 2M \), does not appear to be physical. In the region between the horizon and the singularity, \(0 < r < 2M \), the space-time signature is \((-,-,+,+)\). It includes two time directions (\(r \) and \(t \)). The big advantage of Wick rotation is thus lost; instead of getting a Euclidean space in which the path integral is well defined, we get a divergent path integral. The region beyond the singularity \(r < 0 \) is again more standard in that its signature is Euclidean.

In this short note, we study an analogue of the Schwarzschild geometry which is the geometry of near non-extremal NS5-branes. We consider the three regions identified above, after analytic continuation, and study those regions from the perspective of a string worldsheet theory. We establish a curious sum rule for the worldsheet elliptic genera associated to the three Euclidean regions. This could be viewed as an indication that in string theory the interior of the black hole plays an important role even after Wick rotation.

2 The NS5-brane geometry

The near horizon Euclidean geometry associated with \(k \) near extremal NS5-branes in the type II superstring is described (at \(\alpha' = 2 \)) by the metric and dilaton \[4\]:

\[
\begin{align*}
 ds^2 &= (1 - 2M/r)dt^2 + \frac{k}{2r^2} \frac{dr^2}{1 - 2M/r} + 2kd\Omega_3^2 + ds_{T^5}^2, \\
 e^{-2\Phi} &= \frac{r}{2k},
\end{align*}
\]

where \(M \) is the energy density above extremality. There is an \(H \)-field flux on the three-sphere corresponding to \(k \) NS5-branes. The geometry has a similar causal structure to the Schwarzschild geometry \[1\].

In a first region I, outside the horizon \(r > 2M \), we have a two-dimensional cigar geometry (times an \(SU(2)_k \) Wess-Zumino-Witten model, a five-dimensional flat space, as well as a non-trivial dilaton profile). It has an exact conformal field theory description in terms of an \(SL(2,\mathbb{R})_k/U(1) \) coset conformal field theory \[5, 6, 7\].

In a second region II, between the horizon and singularity, \(0 < r < 2M \), we obtain a bell geometry with all negative signature, corresponding to an \(SU(2)_{-k}/U(1) \) coset
Figure 1: The relationship between the Lorentzian black hole in Kruskal coordinates and the different regions obtained after Wick rotation. Regions I and III are Euclidean. Region II includes two time directions.

conformal field theory at a negative level $-k$. The fact that the level is negative, and that we therefore have two time directions is also dictated by the vanishing of the total central charge of the string theory. The seeming singularity in the string coupling and metric are absent in the exact conformal field theory description (see e.g. [8, 9] for detailed discussions).

Finally, region III, the region beyond the singularity, is obtained by setting $r < 0$. The resulting geometry is that of the trumpet, the vectorially gauged $SL(2, \mathbb{R})_k/U(1)$ coset conformal field theory (see e.g. [10] for a review). See figure 1 for a map of the regions in the Lorentzian black hole in Kruskal coordinates to the conformal field theory target spaces.

For the regions outside the horizon and beyond the singularity, there are exact conformal field theory descriptions. The elliptic genera of these theories are known [11, 12, 13]. It should be noted that the trumpet theory is T-dual to the \mathbb{Z}_k orbifold of the cigar (see
e.g. [10]). The region between the horizon and the singularity corresponds to an \(N = 2 \) minimal model at a negative level. The elliptic genus of the conformal field theory with positive level was calculated longer ago [14]. We analytically continue the result into negative level \(-k\) and we demonstrate below the curious fact that the sum of the three elliptic genera vanishes.

3 The Sum Rule

The identity we wish to prove reads:

\[
\chi_I + \chi_{II} + \chi_{III} \equiv \chi_{\cos}(k) + \chi_{MM}(-k) + \chi_{\text{orb}}(k) = 0. \tag{3}
\]

where the minimal model elliptic genus \(\chi_{MM} \) at level \(k \) is given by:

\[
\chi_{MM}(k) = \frac{\theta_{11}(q, z^{1-\frac{1}{k}})}{\theta_{11}(q, z^{\frac{1}{k}})}, \tag{4}
\]

and the cigar coset and \(Z_k \) orbifold elliptic genera \(\chi_{\text{cos}} \) and \(\chi_{\text{orb}} \) are given by:

\[
\begin{aligned}
\chi_{\text{cos}} &= \chi_{\text{hol}} + \chi_{\text{rem}} \\
\chi_{\text{hol}} &= \frac{i\theta_{11}(q, z)}{\eta^3} \sum_{m \in \mathbb{Z}} \frac{q^{km^2}}{1 - q^{km}} z^{2m} \\
\chi_{\text{rem}} &= -i\theta_{11}(q, z) \sum_{m \in \mathbb{Z}} q^{km^2} \int_{-\infty - i\epsilon}^{\infty - i\epsilon} ds \frac{1}{2is + n + kw} q^{\frac{n^2}{4k} + \frac{(n-kw)^2}{4k}} z^{\frac{n-kw}{k} - \frac{n}{k} q^{-\frac{n}{k}}} \\
\chi_{\text{orb}} &= \chi_{\text{hol}} + \chi_{\text{rem}} \\
\chi_{\text{hol}} &= \frac{i\theta_{11}(q, z)}{\eta^3} \sum_{m \in \mathbb{Z}} \frac{q^{km^2}}{1 - q^{km}} z^{2m} \\
\chi_{\text{rem}} &= -i\theta_{11}(q, z) \sum_{n,w} \int_{-\infty - i\epsilon}^{\infty - i\epsilon} ds \frac{1}{2is + n + kw} q^{\frac{n^2}{4k} + \frac{(n-kw)^2}{4k}} z^{\frac{n-kw}{k} - \frac{n}{k} q^{-\frac{n}{k}}} \\
\end{aligned} \tag{5}
\]

The proof of the identity proceeds as follows. In a first step, we notice that the first two terms in equation (3) combine into a holomorphic expression. This is because of the identity (see the appendix of [15]):

\[
\chi_{\text{rem}} = -\frac{i\theta_{11}}{\eta^3} \sum_{m \in \mathbb{Z}} q^{km^2} z^{-2m} - \chi_{\text{orb,rem}}. \tag{6}
\]
The second step in the proof uses the theory of elliptic functions, or the theory of Jacobi forms. In particular, we follow a proof of the fact that the sum of $N = 2$ minimal model characters and a ratio of theta-functions are equal [16]. Thus, we attempt to prove that the ratio of the two elliptic functions is one:

$$\frac{\chi_{\text{cos}} + \chi_{\text{orb}}}{-\chi_{\text{MM}}(-k)} = 1.$$ \hspace{1cm} (7)

We observe that both numerator and denominator have identical modular and elliptic transformations properties. The ratio is therefore an elliptic function of z^k, and a modular form of weight zero. Moreover both numerator and denominator are holomorphic, due to the reasoning in step one of the proof. By inspection, it is clear that there are a finite number of poles and zeroes in the fundamental domain. It is therefore a ratio of a finite number of theta functions, which equals to one on the condition that the expression equals one in the $q \to 0$ limit [16]. This limit is easily taken, and the condition is verified. Therefore, we have proven the identity.

Side Remark

Note that in the special case of level $k = 1$ our identity encompasses a relation between the conifold and an analytically continued minimal model elliptic genus [17, 18]. It explains the relative factor of $\frac{1}{2}$ between the two, which arises from the fact that at level $k = 1$, the cigar and its Z_k orbifold are identical. Our identity also correctly captures the overall sign. The latter can be fixed from the Witten indices of the individual models.

4 Interpretations

A prosaic interpretation of the sum rule is that it is merely a curious mathematical fact. A second possibility is that this identity is a consequence of the local physics near the cigar tip, the tip of the orbifolded cigar, and the T-fold interpretation of the minimal model geometry [8, 9]. An exciting possibility is that the identity provides us with an important hint about black hole physics.

Let us entertain the latter possibility. We have a sum of three different conformal field theory elliptic genera that vanishes. One can view the zero on the right hand side of the sum rule (3) as the elliptic genus of a conformal field theory with a vanishing elliptic
Figure 2: Equation (8) suggests that the topology of the combined regions is that of a cylinder.

genus. A natural guess for such a conformal field theory is the conformal field theory on the cylinder. Namely the sum rule should be read (see figure 2):

\[\chi_I + \chi_{II} + \chi_{III} = \chi(\text{cylinder}). \]

(8)

If so, one can view the identity as an indication that there is a space associated to the direct sum of the three conformal field theories associated to the three Euclidean regions of the black brane geometry, that is topologically a cylinder. While the two time directions in the region between the horizon and the singularity render an intuitive interpretation hard, we believe that the point of view in which one takes the region beyond the horizon seriously even in the Euclidean setting needs to be further explored.

Note added

The identity (3) was independently found and very recently published in [19], where an interpretation in terms of a compactification of the cigar conformal field theory was
Acknowledgments
J.T. would like to thank the Hebrew University of Jerusalem as well as Tel-Aviv University for their warm hospitality during his visit. The work of A.G. and N.I. is supported in part by the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation (Center No. 1937/12). The work of A.G. is supported in part by the BSF – American-Israel Bi-National Science Foundation, and by a center of excellence supported by the Israel Science Foundation (grant number 1665/10).

References
[1] G. W. Gibbons and S. W. Hawking, “Action Integrals and Partition Functions in Quantum Gravity,” Phys. Rev. D 15, 2752 (1977).

[2] J. B. Hartle and S. W. Hawking, “Path Integral Derivation of Black Hole Radiance,” Phys. Rev. D 13, 2188 (1976).

[3] W. Israel, “Thermo field dynamics of black holes,” Phys. Lett. A 57, 107 (1976).

[4] G. T. Horowitz and A. Strominger, “Black strings and P-branes,” Nucl. Phys. B 360 (1991) 197.

[5] S. Elitzur, A. Forge and E. Rabinovici, “Some global aspects of string compactifications,” Nucl. Phys. B 359 (1991) 581.

[6] G. Mandal, A. M. Sengupta and S. R. Wadia, “Classical solutions of two-dimensional string theory,” Mod. Phys. Lett. A 6 (1991) 1685.

[7] E. Witten, “On string theory and black holes,” Phys. Rev. D 44 (1991) 314.

[8] J. M. Maldacena, G. W. Moore and N. Seiberg, “Geometrical interpretation of D-branes in gauged WZW models,” JHEP 0107 (2001) 046 [hep-th/0105038].

[9] C. Kounnas, N. Toumbas and J. Troost, “A Wave-function for stringy universes,” JHEP 0708 (2007) 018 [arXiv:0704.1996 [hep-th]].
[10] A. Giveon, M. Porrati and E. Rabinovici, “Target space duality in string theory,” Phys. Rept. 244 (1994) 77 [hep-th/9401139].

[11] J. Troost, “The non-compact elliptic genus: mock or modular,” JHEP 1006 (2010) 104 [arXiv:1004.3649 [hep-th]].

[12] T. Eguchi and Y. Sugawara, “Non-holomorphic Modular Forms and SL(2,R)/U(1) Superconformal Field Theory,” JHEP 1103 (2011) 107 [arXiv:1012.5721 [hep-th]].

[13] S. K. Ashok and J. Troost, “A Twisted Non-compact Elliptic Genus,” JHEP 1103 (2011) 067 [arXiv:1101.1059 [hep-th]].

[14] E. Witten, “On the Landau-Ginzburg description of N=2 minimal models,” Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026].

[15] S. K. Ashok and J. Troost, “Elliptic Genera of Non-compact Gepner Models and Mirror Symmetry,” JHEP 1207 (2012) 005 [arXiv:1204.3802 [hep-th]].

[16] P. Di Francesco and S. Yankielowicz, “Ramond sector characters and N=2 Landau-Ginzburg models,” Nucl. Phys. B 409 (1993) 186 [hep-th/9305037].

[17] H. Ooguri and C. Vafa, “Two-dimensional black hole and singularities of CY manifolds,” Nucl. Phys. B 463 (1996) 55 [hep-th/9511164].

[18] T. Eguchi and Y. Sugawara, “SL(2,R) / U(1) supercoset and elliptic genera of non-compact Calabi-Yau manifolds,” JHEP 0405 (2004) 014 [hep-th/0403193].

[19] Y. Sugawara, “Analytic Continuation’ of N=2 Minimal Model,” arXiv:1311.4708 [hep-th].