Cardiac adaptations to 60 day head-down-tilt bed rest deconditioning. Findings from the AGBRESA study

Fabian Hoffmann¹,²*, Jérémy Rabineau³, Dennis Mehrkens², Darius A. Gerlach¹, Stefan Moestl¹, Bernd W. Johannes¹, Enrico G. Caiani⁴,⁵, Pierre Francois Migeotte³, Jens Jordan⁶ and Jens Tank¹

¹Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany; ²Department of Internal Medicine III, University of Cologne, Cologne, Germany; ³LPHYS, Université Libre de Bruxelles, Bruxelles, Belgium; ⁴Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy; ⁵Consiglio Nazionale delle Ricerche, Institute of Electronics and Information and Telecommunication Engineering, Milan, Italy; ⁶Head of the Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany

Abstract

Aims Reduced physical activity increases the risk of heart failure; however, non-invasive methodologies detecting subclinical changes in myocardial function are not available. We hypothesized that myocardial, left ventricular, systolic strain measurements could capture subtle abnormalities in myocardial function secondary to physical inactivity.

Methods and results In the AGBRESA study, which assessed artificial gravity through centrifugation as potential countermeasure for space travel, 24 healthy persons (eight women) were submitted to 60 day strict –6° head-down-tilt bed rest. Participants were assigned to three groups of eight subjects: a control group, continuous artificial gravity training on a short-arm centrifuge (30 min/day), or intermittent centrifugation (6 × 5 min/day). We assessed cardiac morphology, function, strain, and haemodynamics by cardiac magnetic resonance imaging (MRI) and echocardiography. We observed no differences between groups and, therefore, conducted a pooled analysis. Consistent with deconditioning, resting heart rate (Δ8.3 ± 6.3 b.p.m., P < 0.0001), orthostatic heart rate responses (Δ22.8 ± 19.7 b.p.m., P < 0.0001), and diastolic blood pressure (Δ8.8 ± 6.6 mmHg, P < 0.0001) increased, whereas cardiac output (Δ−0.56 ± 0.94 L/min, P = 0.096) decreased during bed rest. Left ventricular mass index obtained by MRI did not change. Echocardiographic left ventricular, systolic, global longitudinal strain (Δ1.8 ± 1.83%, P < 0.0001) decreased, whereas left ventricular, systolic, global MRI circumferential strain increased not significantly (Δ−0.68 ± 1.85%, P = 0.0843). MRI values rapidly returned to baseline during recovery.

Conclusion Prolonged head-down-tilt bed rest provokes changes in cardiac function, particularly strain measurements, that appear functional rather than mediated through cardiac remodelling. Thus, strain measurements are of limited utility in assessing influences of physical deconditioning or exercise interventions on cardiac function.

Keywords Cardiac atrophy; Heart failure; Myocardial strain; Bed rest; Immobilization

Background and aims

Reduced physical activity increases the risk of heart failure later in life.¹,² Conversely, exercise interventions reverse cardiac changes associated with sedentary ageing, as determined by right heart catheterization and three-dimensional echocardiography.³ To guide exercise interventions in patients, less invasive methodology is required. Echocardiographic left ventricular, systolic, global longitudinal strain predicts cardiovascular morbidity and mortality.⁴ Left ventricular, systolic, global circumferential strain analysis by magnetic resonance imaging (MRI) may further improve risk prediction.⁵ Head-down-tilt bed rest models cardiovascular deconditioning in weightlessness.⁶ The response resembles cardiovascular adaptation to sedentary ageing⁷ and provides a highly standardized model to assess deconditioning influences on cardiac function. We tested the hypothesis that left ventricular, systolic, myocardial strain measurements,
obtained through echocardiography or MRI, could detect subclinical changes in myocardial function secondary to bed rest deconditioning. Furthermore, we determined whether artificial gravity through short-arm centrifugation would ameliorate the response.

Methods

This study is part of the NASA/ESA/DLR 60 day –6° head-down-tilt bed rest study ‘Artificial Gravity Bed Rest with European Space Agency’ (AGBRESA) conducted at the DLR: envihab. The study enrolled 24 healthy persons (23–54 years, 24.3 ± 2 kg/m²). The study was approved by the North Rhine Medical Association Ethics Committee and prospectively registered (DRKS00015677).

The study comprised 14 day baseline, 60 day strict –6° head-down-tilt bed rest, and 15 day recovery. Participants were pseudorandomly distributed to a control group, daily 6 x 5 min short-arm centrifugation with 3 min breaks, or daily continuous 30 min short-arm centrifugation, each with 1 Gz at the centre of mass. Participants did not exercise, were on a controlled sodium diet, and maintained a constant body weight.

We performed echocardiographic and Doppler imaging (Vivid-IQ with M5SC-RS sector probe, GE Healthcare, Boston, Massachusetts, USA) at baseline (supine, 6 days before bed rest) and at the end of bed rest (–6° head-down-tilt, 1 day before recovery) to assess biplane end-diastolic and end-systolic volumes; mitral annulus plane systolic excursion; left ventricular, systolic, global longitudinal peak strain by speckle tracking; transmitral filling patterns [E wave, A wave, E/A, and tissue Doppler of the lateral mitral annulus (e’lat) velocities and ratio]; and stroke volume index (derived from pulse-wave Doppler velocity–time integral of the left ventricular outflow tract, its diameter, and body surface area).

Cardiac MRI (3-T Biograph, PET/MR, Siemens, Munich, Germany) was performed at baseline (5 days before bed rest), on 56th day of bed rest, and on 4th day of recovery. We recorded two-chamber, three-chamber, and 4-chamber cine loops (1.6 x 1.6 x 6 mm; TE 1.43 ms, TR 39.24 ms, 25 phases) and a complete short-axis stack (1.6 x 1.6 x 7 mm; TE 1.43 ms, TR 45.78 ms, 25 phases) with retrospective electrocardiogram gating and analysed cardiac output; left ventricular mass index; ejection fraction; left ventricular, systolic, global circumferential strain and strain rate; and time to peak (cmr42 Siemens Integration, version 5.9.3, Circle Cardiovascular Imaging Inc.) (see Appendix 1).

During passive orthostatic testing at the last day of baseline and on the last day of bed rest, we recorded resting heart rate and blood pressure.

Results are reported as mean ± standard deviation. We calculated group and time point effects using linear mixed-effect

Table 1 Cohort analysis

Parameter	Baseline	Bed rest	Recovery	P
Heart rate (b.p.m.)	64 ± 9.6	72.3 ± 10.6	69.6 ± 10.5	<0.0001
Systolic blood pressure (mmHg)	125 ± 11.1	124.3 ± 8.9	122.7 ± 70.6	0.561
Diastolic blood pressure (mmHg)	69.6 ± 7.3	78.5 ± 6.9	70.3 ± 6.3	<0.0001
Upright–supine heart rate (b.p.m.)	22.8 ± 10.5	6 ± 1	6.8 ± 1.2	0.015
Ejection fraction a,b,c (%)	68.3 ± 3.9	66.4 ± 4.8	63.9 ± 4.7	0.005
LV mass index c (g/m²)	66.6 ± 11.3	64.5 ± 11.7	65.8 ± 9.8	0.792
LV stroke volume index d (mL)	51.5 ± 10	44.1 ± 6.3		0.001
LV EDV d (mL)	100.1 ± 28.2	79.7 ± 17.6		<0.0001
MAPSE e (mm)	18.5 ± 2.7	16.6 ± 3.1		0.013
Global longitudinal PS d (%)	–19.9 ± 2.1	–18.1 ± 2.1		<0.0001
Global circumferential Ps a,c (%)	–18.6 ± 1.7	–19.1 ± 1.6	–18.1 ± 1.7	0.049
Global circumferential t2p c (%)	–0.97 ± 0.1	–1.14 ± 0.18	–1 ± 0.11	<0.0001
E-wave velocity a (cm/s)	79.4 ± 14.1	65.3 ± 12.5		<0.0001
A-wave velocity a (cm/s)	52.7 ± 13	53.3 ± 12.1		0.796
E/A d	1.58 ± 0.39	1.25 ± 0.24		0.015
e' lateral d (cm/s)	15.5 ± 2.9	12.3 ± 2.7		<0.0001
E/e lateral ratio d	5.25 ± 1.17	5.68 ± 1.66		0.0889

LV, left ventricular; LV EDV, left ventricular end-diastolic volume; MAPSE, mitral annulus plane systolic excursion; PS, peak strain; sSR, systolic strain rate; t2p, time to systolic peak strain.

Absolute mean values ± standard deviation of the whole cohort for all three time points (baseline, bed rest, and recovery). P-values for linear mixed-effect model analysis. P < 0.05 indicates significance. All strain measurements refer to the left ventricle in systole. All strain values refer to the left ventricle in systole.

1In pairwise comparison of baseline vs. bed rest and baseline vs. recovery, values do not differ significantly.
2In pairwise comparison of baseline vs. recovery, results differ significantly (P = 0.005).
3Parameters obtained by cardiac magnetic resonance imaging.
4Parameters obtained by echocardiography.

ESC Heart Failure (2020)
DOI: 10.1002/ehf2.13103
model analysis. \(P < 0.05 \) indicated statistical significance. The data supporting the reported results are available from the corresponding author upon reasonable request.

Results

Because baseline characteristics and cardiac responses did not differ between groups (Appendix 1), we conducted a pooled analysis in all 24 participants (Table 1). Compared with baseline, supine heart rate increased 8.3 ± 6.3 b.p.m. \((P < 0.0001)\), systolic blood pressure did not change, and diastolic blood pressure increased 8.8 ± 6.6 mmHg \((P < 0.0001)\) at the end of bed rest. On Day 4 of recovery, blood pressure had returned to baseline, while resting heart rate remained elevated by 5.6 ± 8.4 b.p.m. \((P < 0.001)\). With standing, heart rate increased 22.8 ± 10.5 b.p.m. at baseline and 45.6 ± 21.4 b.p.m. following bed rest \((P < 0.0001; Figure 1)\).

Following bed rest, cardiac output and left ventricular stroke volume index had decreased 8.2% \((-0.54 \pm 0.94 \text{ L/min}, P = 0.0096)\) and 14.4% \((-7.4 \pm 8.3 \text{ mL/m}^2, P = 0.0168)\), respectively. Left ventricular end-diastolic volume determined by echocardiography decreased 20.3 ± 15.4% \((P = 0.0001)\) together with ejection fraction \((6.4 \pm 5.1\%)\). Left ventricular mass index did not change \((Figure 2)\). Left ventricular mass index by MRI, which was significantly greater in men compared with women \((P = 0.0001)\), did not change in men \((baseline: \text{70.4 \pm 10.7; recovery: 68.7 \pm 8.6 \text{ g/m}^2, P = 0.69})\) or in women \((baseline: \text{59 \pm 8.6; recovery: 59.8 \pm 9.9 \text{ g/m}^2, P = 0.968})\). Mitral annulus plane systolic excursion and global longitudinal peak strain were reduced following bed rest \((Table 1)\).

Left ventricular, systolic global circumferential peak strain by cardiac MRI did not change significantly with bed rest \((Figure 3)\). However, following 4 day recovery, global circumferential peak strain tended to decrease compared with bed rest \((P = 0.05; Figure 4)\). Circumferential contraction expressed as systolic strain rate and time to peak was significantly augmented at Day 56 of bed rest compared with baseline with increases in strain rate and shortened time to peak. While peak values for transmitral A wave did not change with bed rest, E was reduced such that the E/A ratio decreased. We observed a similar pattern for e’/lat, whereas E/e’lat remained unchanged.

Artificial gravity through intermittent or continuous centrifugation did not abolish cardiovascular adaptations to head-down-tilt bed rest \((Appendix 1)\).

Discussion

Sixty days of strict head-down-tilt bed rest elicited cardiovascular deconditioning indicated by increases in resting and upright heart rate with reductions in left ventricular end-diastolic volume, cardiac output, and stroke volume. Yet bed rest did not lead to clinical apparent heart failure. Previous studies showed worsened cardiopulmonary fitness and orthostatic tolerance.\(^{8}\) Yet we did not observe sustained reductions in left ventricular function assessed by systolic strain analysis in line with shorter duration bed rest studies.\(^{9}\)

Finally, myocardial mass did not change significantly, suggesting that cardiac atrophy is not a general feature during physical deconditioning and cannot be seen as risk factor for developing chronic heart failure. While we cannot exclude modest improvements in cardiovascular deconditioning, artificial gravity failed to abolish the response.

Figure 1 Cardiac deconditioning. Supine and upright heart rate, left ventricular (LV) stroke volume index, and cardiac output at baseline and after 60 day bed rest. \(*P < 0.05\).
Strain can be affected by intrinsic myocardial properties, cardiac loading conditions, and sympathetic drive. We and others observed reductions in left ventricular end-diastolic volume with predominant long-axis diameter shortening following bed rest deconditioning. The phenomenon may result from plasma volume reductions during bed rest. Plasma volume reductions are at least in part explained by cephalad volume shifts promoting natriuretic peptide release through atrial stretch. The left ventricle seems less compliant with a smaller stroke volume independent of the volume loss. The asymmetric change in left ventricular shape likely explains differential global circumferential and longitudinal strain responses. Normalization of strain and left ventricular volumes within days of recovery is consistent with loading-dependent functional changes rather than cardiac remodelling that might lead to persistent cardiac dysfunction. Left ventricular diastolic filling, which is also preload dependent, changed as well. Similar volume

Figure 2 Left ventricular (LV) function and morphology. LV ejection fraction, LV mass index derived from cardiac magnetic resonance imaging at baseline, after 60 day bed rest, and recovery. LV end-diastolic volume by echocardiography at baseline and after 60 day bed rest. *P < 0.05.

Figure 3 Cardiac strain. Cardiac strain measurements at baseline and after 60 day bed rest (56 days for circumferential strain). *P < 0.05. MAPSE, mitral annulus plane systolic excursion.
alterations have been reported during 5 and 35 days of bed rest.13,20 Altered loading conditions may also explain the significant albeit small reduction in left ventricular ejection fraction upon recovery.

Cardiac function measurements could be confounded by sympathetic activation, which is an expected physiological response to plasma volume reductions. Indeed, increases in resting heart rate and diastolic blood pressure, which we observed at the end of bed rest similar to others,13 often occur in conditions associated with increased sympathetic drive.21,22 Previous findings in bed rest studies support the idea that sympathetic activity is, indeed, increased.23–25 Furthermore, after 21 day bed rest, plasma norepinephrine increased more with orthostasis compared with baseline.26 We speculate that sympathetic activation may have increased circumferential strain with bed rest.

\textbf{Figure 4} Global circumferential peak strain. Circumferential peak strain measurements at baseline, end of bed rest, and end of recovery in a representative study participant. Upper panel: end-systolic cross-sectional short-axis cardiac magnetic resonance imaging images at the level just above the papillary muscles with circumferential strain overlay. Middle panel: Bull’s eye view of the 16 American Heart Association (AHA) myocardial segments model with circumferential peak strain values and colour coding, where deeper blue resembles higher strain values. Lower panel: Circumferential peak strain time course over one heartbeat for the 16 AHA myocardial segments model.
The main limitation of our study is the relatively small sample size limiting statistical power and detailed subgroup analyses. Yet rigorous standardization including controlled sodium intake and caloric adjustment to maintain body weight made it possible observing small but relevant physiological changes in cardiovascular function. Furthermore, participants were relatively young with low heart failure risk. Finally, longer periods of limited physical activity may be required to alter intrinsic myocardial properties and to promote interstitial fibrosis.

We conclude that 60 days of –6° head-down-tilt bed rest provoke changes in cardiac function that appear functional rather than mediated through cardiac remodelling. Additional risks such as older age or concomitant cardiovascular disease may be required to express cardiac dysfunction and consecutive chronic heart failure. Because –6° head-down-tilt bed rest is a model for weightless conditions, our findings are reassuring for human space travel. While in weightlessness, cardiopulmonary fitness and orthostatic tolerance will deteriorate in the absence of sufficient countermeasures, overt cardiac disease appears unlikely. Furthermore, our findings might have implications for patients undergoing forced bed rest in, for example, intensive care settings. Finally, our study suggests that strain measurements, as preload-dependent analysis, may be of limited utility in prospectively guiding exercise interventions in the prevention of heart failure. While deconditioning elicits plasma volume reductions and sympathetic activation, physical exercise, particularly endurance training, elicits the opposite response.27,28 Thus, intrinsic changes in myocardial functional properties cannot be discerned.

Acknowledgement

The authors would like to thank Dr James MacNamara for valuable discussions regarding myocardial strain analysis.

Conflict of interest

None.

Funding

This work was supported by NASA, ESA, the Belgian Federal Scientific Policy Office (PRODEX PEA 400110826), and programmatic funding of the German Aerospace Center (DLR). F.H. received funding from the German Aerospace Center (DLR) and the German Federal Ministry of Economy and Technology (BMWi; 50WB1816). J.R. was supported by the Fonds de la Recherche Scientifique (Mandat Aspirant F.R. S.–FNRS FC 29801).

References

1. Pandey A, Garg S, Khunger M, Darden D, Ayers C, Kumbhani DJ, Mayo HG, de Lemos JA, Berry JD. Dose-response relationship between physical activity and risk of heart failure: a meta-analysis. *Circulation* 2015; 132: 1786–1794.
2. Pandey A, Cornwell WK 3rd, Willis B, Neelandel LJ, Gao A, Leonard D, DeFina L, Berry JD. Body mass index and cardiopulmonary fitness in mid-life and risk of heart failure hospitalization in older age: findings from the Cooper Center Longitudinal Study. *JACC Heart Fail* 2017; 5: 367–374.
3. Howden EJ, Sarma S, Lawley JS, Opondo M, Cornwell W, Stoller D, Urey MA, Adams-Huet B, Levine BD. Reversing the cardiac effects of sedentary aging in middle age—a randomized controlled trial: implications for heart failure prevention. *Circulation* 2018; 137: 1549–1560.
4. Haugaa KH, Edvardsen T. Global longitudinal strain: the best biomarker for predicting prognosis in heart failure? *Eur J Heart Fail* 2016; 18: 1340–1341.
5. Amzulescu MS, De Graene M, Langet H, Pasquet A, Vancaeynwent D, Pouluer AC, Vanoverschelde JL, Gerber BL. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. *Eur Heart J Cardiovasc Imaging* 2019; 20: 605–619.
6. Taylor HL, Henschel A, Brożek J, Keys A. Effects of bed rest on cardiovascular function and work performance. *J Appl Physiol* 1949; 2: 223–239.
7. Kehler DS, Theou O, Rockwood K. Bed rest and accelerated aging in relation to the musculoskeletal and cardiovascular systems and frailty biomarkers: a review. *Exp Gerontol* 2019; 124: 110643.
8. Barbic F, Heusser K, Minonzio M, Shiffer D, Cairo B, Tank J, Jordan J, Diedrich A, Gauger P, Zamuner RA, Porta A, Furlan F, Gerber BL. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. *Eur Heart J Cardiovasc Imaging* 2019; 20: 605–619.
9. Greaves D, Arbeille P, Guillot L, Zuj K, Caiani EG. Effects of exercise countermeasure on myocardial contractility measured by 4D speckle tracking during a 21-day head-down bed rest. *Eur J Appl Physiol* 2019; 119: 2477–2486.
10. Negishi K, Borowski AG, Popovic ZB, Greenberg NL, Martin DS, Bungo MW, Levine BD, Thomas JD. Effect of gravitational gradients on cardiac filling and performance. *J Am Soc Echocardiogr* 2017; 30: 1180–1188.
11. Dorfman TA, Levine BD, Tillery T, Peshock RM, Hastings JL, Schneider SM, Macias BR, Biolo G, Hargens AR. Cardiac atrophy in women following bed rest. *J Appl Physiol (1985)* 2007; 103: 8–16.
12. Fortney SM, Turner C, Steinmann L, Driscoll T, Alfrey C. Blood volume responses of men and women to bed rest. *J Clin Pharmacol* 1994; 34: 434–439.
13. Kozakova M, Malshi E, Morizzo C, Pedri S, Santini F, Biolo G, Pagani M, Palombo C. Impact of prolonged cardiac unloading on left ventricular mass and longitudinal myocardial performance: an experimental bed rest study in humans. *J Hypertens* 2011; 29: 137–143.
14. Perhonen MA, Zuckerman JH, Levine BD. Deterioration of left ventricular chamber performance after bed rest: “cardiovascular deconditioning” or...
hypovolemia? Circulation 2001; 103: 1851–1857.
15. Buckey JC Jr, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, Yancy CW Jr, Meyer DM, Blomqvist CG. Central venous pressure in space. J Appl Physiol (1985) 1996; 81: 19–25.
16. White RJ, Blomqvist CG. Central venous pressure and cardiac function during spaceflight. J Appl Physiol (1985) 1998; 85: 738–746.
17. Videbaek R, Norsk P. Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol (1985) 1997; 83: 1862–1866.
18. Hung KC, Huang HL, Chu CM, Chen CC, Hsieh IC, Chang ST, Fang JT, Wen MS. Evaluating preload dependence of a novel Doppler application in assessment of left ventricular diastolic function during hemodialysis. Am J Kidney Dis 2004; 43: 1040–1046.
19. Ie EH, Vletter WB, ten Cate FJ, Nette RW, Weimar W, Roelandt JR, Zietse R. Preload dependence of new Doppler techniques limits their utility for left ventricular diastolic function assessment in hemodialysis patients. J Am Soc Nephrol 2003; 14: 1858–1862.
20. Caiani EG, Massabaua P, Weinert L, Vaida P, Lang RM. Effects of 5 days of head-down bed rest, with and without short-arm centrifugation as countermeasure, on cardiac function in males (BR-AG1 study). J Appl Physiol (1985) 2014; 117: 624–632.
21. Freeman R, Chapleau MW. Testing the autonomic nervous system. Handb Clin Neurol 2013; 115: 115–136.
22. Low PA. Testing the autonomic nervous system. Semin Neurol 2003; 23: 407–421.
23. Dittmer DK, Teasell R. Complications of immobilization and bed rest. Part 1: musculoskeletal and cardiovascular complications. Can Fam Physician 1993; 39: 1428–1432 1435–1427.
24. Tanaka K, Nishimura N, Sato M, Kanikowska D, Shimizu Y, Inukai Y, Abe C, Iwata C, Morita H, Iwase S, Sugeno J. Arterial pressure oscillation and muscle sympathetic nerve activity after 20 days of head-down bed rest. Auton Neurosci 2013; 177: 266–270.
25. Shoemaker JK, Hogeman CS, Sinoway LI. Sympathetic responses to Valsalva’s manoeuvre following bed rest. Can J Appl Physiol 2003; 28: 342–355.
26. Stenger MB, Evans JM, Knapp CF, Lee SM, Phillips TR, Perez SA, Moore AD Jr, Paloski WH, Platts SH. Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur J Appl Physiol 2012; 112: 605–616.
27. Mueller PJ. Exercise training and sympathetic nervous system activity: evidence for physical activity dependent neural plasticity. Clin Exp Pharmacol Physiol 2007; 34: 377–384.
28. Iwasaki K, Zhang R, Zuckerman JH, Levine BD. Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol (1985) 2003; 95: 1575–1583.
Baseline Characteristics

	Total	Control	Continuous AG	Intermittent AG	P
Weight (kg)	74 ± 10.1	79.5 ± 12.7	71.3 ± 9.9	71.3 ± 4.8	0.1709
Height (cm)	174.4 ± 8.7	176.9 ± 7.3	172.1 ± 8.1	174.1 ± 10.7	0.566
Body surface area (m²)	1.89 ± 0.169	1.96 ± 0.19	1.84 ± 0.17	1.85 ± 0.14	0.2874
Age (years)	33.3 ± 9.3	33.8 ± 8.2	31.4 ± 9.9	34.6 ± 10.6	0.7855
Heart rate (b.p.m.)	64 ± 9.6	63.8 ± 7	63.4 ± 13.2	63.4 ± 9	0.9752
Systolic blood pressure (mmHg)	125 ± 11.1	125.2 ± 8.2	127 ± 14.9	122.9 ± 10.2	0.78
Diastolic blood pressure (mmHg)	69.6 ± 7.3	71 ± 8.2	70.3 ± 6.4	67.5 ± 7.6	0.6187
Cardiac output (L/min)	6.59 ± 0.89	6.75 ± 0.85	6.57 ± 0.89	6.44 ± 1	0.7935
Ejection fraction (%)	68.3 ± 3.9	66.6 ± 3.4	70.5 ± 4	67.8 ± 3.5	0.11
LV mass index (g/m²)	100.1 ± 28.2	109.2 ± 34.9	98.5 ± 29.3	92.6 ± 19.5	0.5095
LV stroke volume index (mL/²)	51.5 ± 10	50.5 ± 14.3	50.8 ± 9.8	53.2 ± 4.7	0.8566
MAPSE (mm)	18.5 ± 2.7	17.5 ± 3	18.3 ± 2.8	19.7 ± 2.1	0.276
Global longitudinal PS (%)	−19.9 ± 2.1	−19.7 ± 2.2	−19.8 ± 1.7	−20.2 ± 2.6	0.8966
Global circumferential PS (%)	−18.6 ± 1.7	−18.6 ± 1.6	−18.3 ± 2	−18.8 ± 1.6	0.8181
Global circumferential sSR (1/s)	−0.97 ± 0.1	−0.98 ± 0.11	−0.97 ± 0.12	−0.99 ± 0.08	0.958
Global circumferential t²p (ms)	315 ± 35.1	312.3 ± 34.7	323.3 ± 47.1	303 ± 19.6	0.5296
E-wave velocity (cm/s)	79.4 ± 14.8	79.6 ± 17.1	80.9 ± 9.6	77.6 ± 16.4	0.9053
A-wave velocity (cm/s)	52.7 ± 13	56.5 ± 15.1	53 ± 15.7	48.6 ± 6.2	0.4993
E to A ratio	1.58 ± 0.39	1.5 ± 0.45	1.62 ± 0.38	1.61 ± 0.39	0.8078
e’lateral (cm/s)	15.5 ± 2.9	14.8 ± 2.5	16.3 ± 3.8	15.1 ± 2.3	0.561
E to e’lateral ratio	5.25 ± 1.17	5.47 ± 1.48	5.17 ± 1.17	5.17 ± 0.97	0.8646

LV, left ventricular; LV EDV, left ventricular end-diastolic volume; MAPSE, mitral annulus plane systolic excursion; PS, peak strain; sSR, systolic strain rate; t²p, time to systolic peak strain.

Baseline characteristics: Absolute mean values ± standard deviation of the whole cohort and three subgroups [control, continuous artificial gravity (AG) and intermittent AG] at baseline. P-values for linear mixed-effect model analysis. P < 0.05 indicates significance. All strain measurements refer to the left ventricle in systole.

	Bed rest—Baseline		Recovery—Baseline					
	Control	Continuous AG	Intermittent AG	P	Control	Continuous AG	Intermittent AG	P
Heart rate (b.p.m.)	8.2 ± 7.6	9 ± 4.6	7.6 ± 7.1	0.9021	7.7 ± 5.3	9.4 ± 8	0.2 ± 9.2	0.0616
Systolic blood pressure (mmHg)	3.4 ± 7.2	-3.1 ± 13.5	-2.5 ± 6.7	0.3459	-1.5 ± 7.6	6 ± 7.9	6 ± 8.9	0.3729
Diastolic blood pressure (mmHg)	9.1 ± 6.8	8.6 ± 5.9	8.8 ± 8.0	0.8677	-1 ± 4.7	2.5 ± 2.4	6 ± 6.8	0.3882
Cardiac output (L/min)	-0.51 ± 0.81	-0.41 ± 1.1	-0.76 ± 0.99	0.7657	0.07 ± 0.77	0.54 ± 1.1	0.18 ± 1.02	0.3729
Ejection fraction (%)	-2.06 ± 5.19	-1.69 ± 5.06	-2.08 ± 5.1	0.985	-4.36 ± 3.09	-4.3 ± 3.8	-4.43 ± 3.93	0.988
LV mass index (g/m²)	-0.58 ± 6.43	-5 ± 3.97	-0.84 ± 5.82	0.222	-1.95 ± 5.21	-2.59 ± 6.05	2.04 ± 7.56	0.308
LV stroke volume index (mL/L)	-7.3 ± 12.3	-8.3 ± 6.2	-6.6 ± 6	0.926				
LV EDV (mL)	-26.8 ± 29.2	-16.1 ± 15	-18.1 ± 10	0.3181				
MAPSE (mm)	-0.69 ± 3.06	-3.28 ± 3	-1.72 ± 4.12	0.335				
Global longitudinal PS (%)	-2.03 ± 1.54	-2.36 ± 1.28	-1.01 ± 2.42	0.3181				
Global circumferential PS (%)	0.15 ± 2.21	-1.34 ± 1.77	-0.86 ± 1.38	0.2676	1.7 ± 1.59	-0.39 ± 1.53	-0.05 ± 1.91	0.054
Global circumferential sSR (1/s)	-0.16 ± 0.16	-0.25 ± 0.2	-0.18 ± 0.12	0.5263	0.01 ± 0.14	-0.08 ± 0.15	-0.03 ± 0.15	0.4863
Global circumferential t2p (ms)	-23.2 ± 33.7	-38.8 ± 40	24.3 ± 31.1	0.6181	0.0 ± 21.6	-23.1 ± 40.8	-3.1 ± 37.6	0.3897
E-wave velocity (cm/s)	-2 ± 18	-11.3 ± 13.7	-11 ± 10.2	0.3867				
A-wave velocity (cm/s)	-7.5 ± 12.3	3.5 ± 18.6	5.9 ± 14.3	0.1992				
E to A ratio	-0.26 ± 0.34	-0.34 ± 0.54	-0.36 ± 0.42	0.883				
e′lateral (cm/s)	-4.3 ± 2.3	-3.1 ± 2.3	-2.4 ± 1.8	0.8168				
E to e′lateral ratio	0.33 ± 2.65	0.25 ± 1.33	0.42 ± 2.10	0.741				

LV, left ventricular; LV EDV, left ventricular end-diastolic volume; MAPSE, mitral annulus plane systolic excursion; PS, peak strain; sSR, systolic strain rate; t2p, time to systolic peak strain. Intergroup comparison: Differences of bed rest—baseline and recovery—baseline ± standard deviation of the whole cohort and three subgroups [control, continuous artificial gravity (AG), and intermittent AG]. All strain measurements refer to the left ventricle in systole. P < 0.05 indicates significance.
Cardiac magnetic resonance imaging
acquisition parameters

Two-chamber, three-chamber, and four-chamber views and right ventricular long-axis view—cine

CINE_3CV_4CV_RV_2CV
TA: 3.2 ± PM: REF voxel size: 1.6 × 1.6 × 6.0 mm PAT: 2 Rel. SNR: 1.00: tff
Properties
Prior recon: Off
Load images to viewer: On
Inline movie: On
Auto store images: On
Load images to stamp segments: On
Load images to graphic segments: On
Auto open inline display: Off
Auto close inline display: Off
Start measurement without further preparation: Off
Wait for user to start: Off
Start measurements: Single measurement
Routine
Slice group: 1
AutoAlign:
Phase oversampling: 50%
FoV read: 340 mm
FoV phase: 83.7%
Slice thickness: 6.0 mm
TR: 39.24 ms
TE: 1.43 ms
Averages: 1
Concatenations: 1
Filter: Distortion corr. (2D)
Prescan normalize:
Image filter:
Coil elements: BP1, 2; SP1-3
Slices: 1
Dist. factor: 20%
Position: L4.2 A1.0 H24.6 mm
Orientation: T > C3.2 > S-12.2
Phase enc. dir.: A >> P
Contrast—Common
TR: 39.24 ms
TE: 1.43 ms
Magn. preparation: None
Flip angle: 40°
Fat suppr.: None
Wrap-up magn.: Restore
Contrast—Dynamic
Averages: 1
Averaging mode: Short term
Reconstruction: Magnitude
Measurements: 1
Multiple series: Each slice
Resolution—Common
FoV read: 340 mm
FoV phase: 83.70%
Slice thickness: 6.0 mm
Base resolution: 208
Phase resolution: 80%
Phase partial Fourier: Off
Trajectory: Cartesian
View sharing: Off
Interpolation: Off
Resolution—iPAT
PAT mode: GRAPPA
Accel. factor PE: 2
Ref. lines PE: 24

(Continues)
CINE_3CV_4CV_RV_2CV
Matrix coil mode
Reference scan mode
Resolution—Filter image
Image filter
! Intensity
Edge enhancement
Smoothing
Unfiltered images
Distortion corr.
Mode
Unfiltered images
Prescan normalize
Unfiltered images
Normalize
B1 filter
Resolution—Filter raw data
Raw filter
Elliptical filter
POCS
Geometry—Common
Slice group 1
FoV read
FoV phase
Slice thickness
TR
Multi-slice mode
Series
Concatenations
Slices 1
Dist. factor 20%
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S-12.2
Phase enc. dir. A >> P
Geometry—AutoAlign
Slice group 1
AutoAlign
Position
Orientation
Phase enc. dir.
Initial position
L
P
H
Initial rotation
Initial orientation
Geometry—Saturation
Fat suppr.
Wrap-up magn.
Special sat.
Geometry—Navigator
Geometry—Tim planning suite
Set-n-Go protocol
Table position
Table position
Inline composing
System—Miscellaneous
Positioning mode REF
Table position H
Table position 0 mm
MSMA S-C-T
Sagittal R >> L
Coronal A >> P
Transversal F >> H
Coil combine mode sum of squares
Save uncombined off
Matrix coil mode auto (triple)
AutoAlign
Coil select mode off—AutoCoilSelect
System—Adjustments
B0 Shim mode Cardiac
B1 Shim mode TrueForm
Adjust with body coil Off
Confirm freq. adjustment Off
Assume dominant fat Off
Assume silicone Off
Adjustment tolerance Auto
System—Adjust volume
Position L4.2 A1.0 H24.6 mm
Orientation T > C32.0 > S-12.2
Rotation A >> P 7.56°
R >> L 285 mm
F >> H 340 mm
Reset 6 mm Off
System—Tx/Rx
Frequency 1H 123.197081 MHz
Correction factor 1 High
Gain 1.000
Reset Off
Physio—Signal1
1st signalemode ECG/retro
Average cycle 290 ± 23 ms
Average cycle No signal ms
Calculated phases 25
TR 39.24 ms
Concatenations 1
Segments 12
Arrhythmia detection None
Physio—Cardiac
Tagging None
Magn. preparation None
Fat suppr. None
Dark blood Off
FoV read 340 mm
FoV phase 83.70%
Phase resolution 80%
Cine
Cine On
Physio—Cardiac
Trajectory Cartesian
View sharing Off
Dummy heartbeats 1
Physio—PACE
Resp. control Breath-hold
Concatenations 1
Inline—Common
Subtract Off
Measurements 1
StdDev Off
Save original images On
Inline—Cardiac
Inline evaluation Off
Mgn. preparation Ventricular function
Contrasts None
TE 1.43 ms
TR 39.24 ms
Save original images On
Inline—MIP
MIP-Sag Off
MIP-Cor Off
MIP-Tra Off
MIP-Time Off
Save original images On
Inline—Composing
Inline composing Off
(Continues)
Cardiac deconditioning

CINE_3CV_4CV_RV_2CV

- Distortion corr.: On
- Mode: 2D
- Unfiltered images: Off

Sequence—Part 1
- Introduction: Off
- Dimension: 2D
- Reordering: Linear
- Asymmetric echo: Weak
- Contrasts: 1
- Optimization: Min. TE TR
- Multi-slice mode: Sequential
- Echo spacing: 3.3 ms
- Sequence type: Tru
- Bandwidth: 962 Hz/Px

Sequence—Part 2
- Define: Segments
- Segments: 12
- Trufl delta freq.: 0 Hz
- RF pulse type: Normal
- Gradient mode: Fast
- Excitation: Slice-sel.
- Flip angle mode: Constant
- Cine: On
- Sequence—Assistant
 - Mode: Min flip angle
 - Min flip angle: 45°
 - Allowed delay: 5 s

Left ventricular short-axis stack—cine

CINE_segmented_SAX*

- TA: 2.0 s PM: REF voxel size: 1.6 × 1.6 × 7.0 mm PAT: 3 Rel. SNR: 1.00: tfi
- Properties
 - Prio recon: Off
 - Load images to viewer: On
 - Inline movie: On
 - Auto store images: On
 - Load images to stamp segments: On
 - Load images to graphic segments: On
 - Auto open inline display: Off
 - Auto close inline display: Off
 - Start measurement without further preparation: Off
 - Wait for user to start: Off
 - Start measurements: Single measurement
- Routine
 - Slice group: 1
 - AutoAlign
 - Phase oversampling: 50%
 - FoV read: 340 mm
 - FoV phase: 80.8%
 - Slice thickness: 7.0 mm
 - TR: 45.78 ms
 - TE: 1.43 ms
 - Averages: 1
 - Concatenations: 1
 - Filter
 - Distortion corr. (2D)
 - Prescan normalize
 - Image filter
 - Coil elements: BP1, 2; SP1–3
 - Slices: 1
 - Dist. factor: 20%
 - Position: L4.2 A1.0 H24.6 mm
 - Orientation: T > C32.0 > S-12.2
 - Phase enc. dir: A >> P

(Continues)
CINE_segmented_SAX*

Parameter	Value
TR	45.78 ms
TE	1.43 ms
Magn. preparation	None
Flip angle	40°
Fat suppr.	None
Wrap-up magn.	Restore
Contrast—Common	
Averages	1
Averaging mode	Short term
Reconstruction Measurements	1
Multiple series	Each slice
Resolution—Common	
FoV read	340 mm
FoV phase	80.80%
Slice thickness	7.0 mm
Base resolution	208
Phase resolution	70%
Phase partial Fourier	Off
Trajectory	Cartesian
View sharing	Off
Interpolation	Off
Resolution—Dynamic	
Averages	1
Averaging mode	Short term
Measurements	1
Multiple series	Each slice
Resolution—Common	
FoV read	340 mm
FoV phase	80.80%
Slice thickness	7.0 mm
Base resolution	208
Phase resolution	70%
Phase partial Fourier	Off
Trajectory	Cartesian
View sharing	Off
Interpolation	Off
Resolution—ipAT	
PAT mode	GRAPPA
Accel. factor PE	3
Ref. lines PE	24
Matrix coil mode	Auto (triple)
Reference scan mode	Integrated
Resolution—Filter image	
Image filter	On
Intensity	Medium
Edge enhancement	1
Smoothing	3
Unfiltered images	Off
Distortion corr.	On
Mode	2D
Unfiltered images	Off
Prescan Normalize	On
Unfiltered images	Off
Normalize	Off
B1 filter	Off
Resolution—Filter raw data	
Raw filter	Off
Elliptical filter	Off
POCS	Off
Geometry—Common	
Slice group 1	340 mm
FoV read	80.8%
FoV phase	7.0 mm
Slice thickness	45.78 ms
TR	Sequential
Multi-slice mode	To apex
Series base	1
Concatenations	1
Slices	20%
Dist. factor	L4.2 A1.0 H24.6 mm
Position	T > C32.0 > S-12.2
Orientation	A >> P
Phase enc. dir.	
Geometry—AutoAlign	
Slice group	L4.2 A1.0 H24.6 mm
AutoAlign	T > C32.0 > S-12.2
Position	A >> P
Orientation	Isocentre
Phase enc. dir.	0.0 mm
Initial position	

(Continues)
Parameter	Value
P	0.0 mm
H	0.0 mm
Initial rotation	0.0°
Initial orientation	Transversal
Geometry—Saturation	
Fat suppr.	None
Wrap-up magn.	Restore
Special sat.	None
Geometry—Navigator	
Geometry—Tim planning suite	
Set-n-Go protocol	Off
Table position	H
Table position	0 mm
Inline composing	Off
System—Miscellaneous	
Positioning mode	REF
Table position	H
Table position	0 mm
MSMA	S-C-T
Sagittal	
Coronal	
Transversal	
Coil combine mode	Sum of squares
Save uncombined	Off
Matrix coil mode	Auto (triple)
AutoAlign	
Coil select mode	Off—AutoCoilSelect
System—Adjustments	
B0 Shim mode	Cardiac
B1 Shim mode	TrueForm
Adjust with body coil	Off
Confirm freq. adjustment	Off
Assume dominant fat	Off
Assume silicone	Off
Adjustment tolerance	Auto
System—Adjust volume	
Position	L4.2 A1.0 H24.6 mm
Rotation	T > C32.0 > S-12.2
A >> P	7.56°
R >> L	275 mm
F >> H	340 mm
Reset	7 mm
Reset	Off
System—Tx/Rx	
Frequency 1H	123.197081 MHz
Correction factor	1
Gain	High
Img. scale cor.	1.000
Reset	Off
? Ref. amplitude 1H	0.000 V
Physio—Signal1	
1st signal/mode	ECG/retro
Average cycle	290 ± 23 ms
Average cycle	No signal ms
Calculated phases	25
TR	45.78 ms
Concatenations	1
Segments	14
Arrhythmia detection	None
Physio—Cardiac	
Tagging	None
Magn. preparation	None
Fat suppr.	None
Dark blood	Off
FoV read	340 mm
FoV phase	80.80%
Phase resolution	70%
Cine	On

(Continues)
CINE_segmented_SAX*
Physio—Cardiac
Trajectory
View sharing
Dummy heartbeats
Physio—PACE
Resp. control
Concatenations
Inline—Common
Subtract
Measurements
StdDev
Save original images
Inline—Cardiac
Inline evaluation
Magn. preparation
TE
TR
Save original images
Inline—MIP
MIP-Sag
MIP-Cor
MIP-Tra
MIP-Time
Save original images
Inline—Composing
Inline composing
Distortion corr.
Mode
Unfiltered images
Sequence—Part 1
Introduction
Dimension
Reordering
Asymmetric echo
Contrasts
Optimization
Multi-slice mode
Echo spacing
Sequence type
Bandwidth
Sequence—Part 2
Define
Segments
Trufl delta freq.
RF pulse type
Gradient mode
Excitation
Flip angle mode
Cine
Sequence—Assistant
Mode
Min flip angle
Allowed delay