Optimal Fronthaul Quantization for Cloud Radio Positioning

Seongah Jeong, Osvaldo Simeone, Alexander Haimovich and Joonhyuk Kang

Abstract

The design of a wireless positioning system that is implemented by means of a Cloud Radio Access Network (C-RAN), is investigated. The C-RAN under study consists of a single cluster of distributed radio units (RUs), which are managed by a centralized control unit (CU). The RUs are synchronous and compress the received baseband signals, which are then forward to the CU over finite-capacity fronthaul links. The CU determines the position of the target, e.g., a mobile station, based on the compressed baseband signals. The problem of maximizing the localization accuracy under limited fronthaul capacity constraints is formulated with respect to the quantization noise power spectral densities (PSDs) used for the compression at the RUs. The proposed solution is based on the Cramér-Rao bound (CRB) on the localization accuracy, and on information-theoretic bounds on the compression rate. Moreover, the analysis explicitly accounts for the uncertainty of parameters at the CU via a robust, or worst-case, optimization formulation. The proposed algorithm leverages the Charnes-Cooper transformation and Majorization Minimization (MM) programming, and is shown via numerical results to outperform conventional solutions.

Index Terms

Cloud Radio Access Networks (C-RANs), quantization, localization, Cramér-Rao bound (CRB).

I. INTRODUCTION

Cloud Radio Access Networks (C-RANs) provide a novel architecture for wireless cellular systems, whereby all baseband processing is migrated from the base stations to a centralized control unit (CU). In the uplink of a C-RAN, the role of the base stations is hence reduced to that of radio units (RUs) that downconvert the received radio signals, which are then digitized and sent on fronthaul links to the CU.
A key limitation of C-RANs is the finite capacity available on the fronthaul link connecting the RUs to the CU (see Fig. 1). This is dealt with via the implementation of compression strategies at the RUs that aim at reducing the bit rate produced by the digitized baseband signals [1].

A key requirement in modern cellular system is location-awareness, which finds applications for security, disaster response, emergency relief and surveillance in GPS-denied environment [2]. In location-aware cellular networks, the positions of the mobile stations are estimated based on the radio signals received by the base stations. In most of the work in this area, a CU, or fusion center, performs localization by ideally collecting and processing the signals received by the base stations, or more generally wireless sensors, by means of various methods based on the estimation of time of arrival (TOA) [3], [4], time difference of arrival (TDOA) [4], angle of arrival [2] or received signal strength (RSS) [5]–[7]. In these works, no capacity limitations are imposed on the link between the base stations and the CU. Exceptions to this observation are the works [5]–[7], in which RSS-based localization is considered based on nonuniformly quantized baseband signals received by the wireless sensors with scalar quantization.

In this work, we study the problem of positioning in the C-RAN system illustrated in Fig. 1. In this system, each RU receives, compresses the received baseband signals and forwards it to the CU over fronthaul links. The CU estimates the target’s position based on the quantized data from RUs. We refer to the system as providing Cloud Radio Positioning. Differently from the previous studies [5]–[7], we assume synchronous RUs and investigate the performance of localization based on the vectors of received baseband signals, in keeping with the C-RAN principle, rather than on the signal amplitudes only as in [5]–[7]. Moreover, we account for the uncertainty of parameters, such as inter-node distance, angle and channel gains, at the CU via a robust, or worst-case, optimization formulation, rather than the average performance criterion used in [5]–[7]. The key problem of interest is the design of the optimal quantization at the RUs with the aim of maximizing the worst-case localization accuracy under the fronthaul capacity constraint. Specifically, we propose an algorithm that solves the robust optimization problem at hand via the Charnes-Cooper transformation and Majorization Minimization (MM) programming (Section III). The
algorithm is shown via numerical results to outperform conventional solutions (Section IV).

II. SYSTEM MODEL

We consider a Cloud Radio Positioning system consisting of \(N_r \) distributed single-antenna RUs and a CU, whose goal is locating a single-antenna radio transmitter (see Fig. 1). The RUs may account for different types of infrastructure nodes such as macro/femto/pico base stations, relay stations or distributed antennas. The set of RUs is denoted as \(\mathcal{N}_r = \{1, \ldots, N_r\} \) and is placed within a \(\delta \times \delta \) square region. The RUs are connected to the CU via finite-capacity fronthaul links. Based on the signals received on the fronthaul links from the RUs, the CU aims at locating a radio transmitter, e.g., a mobile station, whose position is \(p = [x \ y]^T \) and is known a priori to lie in a given region \(A_p \), which may be smaller than the overall square region. We will refer to the terminal to be located as the target. In particular, each RU \(j \) for \(j \in \mathcal{N}_r \) is located at position \(p_j = [x_j \ y_j]^T \) in this area. The distance and angle between the target and RU \(j \) are defined as \(d_j = \|p - p_j\| \) and \(\phi_j = \tan^{-1}((y - y_j)/(x - x_j)) \), respectively. The positions of all RUs are assumed to be known to the CU. We assume \(N_r \geq 3 \) so that the target’s position \(p \) can be determined at the CU via triangulation based on the time measurements from the received signals from RUs.

In order to enable the CU to locate the target, each RU \(j \) downconverts the received signal to baseband, compresses and forwards it to the CU through the corresponding fronthaul link. The fronthaul link between RU \(j \) and CU is assumed to have capacity \(C_j \) (bits/s/Hz), where the normalization is with respect to the bandwidth of the signal transmitted by the target. Note that the fronthaul links can be either wireless, e.g., a microwave link, or wired, e.g., a coaxial cable or a fiber optics link. The impact of the fronthaul capacity limitations will be further discussed below.

A. Signal Model

We start by detailing the system model. The channel between the target and each RU \(j \) is frequency-flat and is described by the impulse response

\[
h_j(t) = g_j \delta(t - \tau_j),
\]

(1)
or, equivalently, by the transfer function \(H_j(f) = g_j e^{-j2\pi f \tau_j} \). In (1), the parameter \(\tau_j \) is the propagation delay of the path between the target and the RU \(j \), which depends on the target’s position as \(\tau_j = |p - p_j|/c \) with \(c \) being the propagation speed. Note that the model (1) assumes the presence of a common time reference between the target and the RU \(j \) for all \(j \in \mathcal{N}_r \). Also, in (1), the parameter \(g_j \) models the path loss as \(g_j = \alpha_j / d_j^\mu \) with \(\mu \) being the path loss exponent and \(\alpha_j \) being the channel fading coefficient, which is assumed to have power \(\sigma_{\alpha_j}^2 = E[|\alpha_j|^2] \) so that the power of the channel gain \(g_j \) is \(\sigma_{g_j}^2 = \sigma_{\alpha_j}^2 / d_j^{2\mu} \). We assume that each RU and the CU are informed only about the channel fading powers \(\sigma_{\alpha_j}^2 \) but not about the instantaneous values \(\alpha_j \). These powers can be estimated, e.g., via RSS measurements.

The target transmits the upconverted version of a baseband signal \(x(t) \) to the RUs. The signal \(x(t) \) is assumed to be a training sequence known to all the nodes, and its Fourier transform and energy spectral density (ESD) are denoted by \(X(f) \) and \(S_x(f) = |X(f)|^2 \), respectively. We observe that one could also consider unknown transmitted signal by using the averaging approach in [8], but this will not be pursued further here. The baseband waveform received at the RU \(j \) can be written as

\[
y_j(t) = h_j(t) * x(t) + z_j(t) = g_j x(t - \tau_j) + z_j(t),
\]

where \(z_j(t) \) is a stationary complex baseband Gaussian random process that represents the signal-independent disturbance, which includes the contribution of the noise and also of the interference from possible coexisting systems. The power spectral density of \(z_j(t) \) is denoted as \(S_{z_j}(f) \). Note that the noise \(z_j(t) \) can be colored and, hence, its PSD \(S_{z_j}(f) \) is generally non-white.

The RU \(j \) communicates the received signal \(y_j(t) \) in (2) to the CU after compression. The compressed signal \(\hat{y}_j(t) \) available at the CU is modeled as

\[
\hat{y}_j(t) = y_j(t) + q_j(t),
\]

where the random process \(q_j(t) \) is independent of \(y_j(t) \) and represents the quantization noise [9]. The quantization noise is assumed to be stationary Gaussian with zero mean and PSD \(S_{q_j}(f) \). Based on the quantized signals \(\hat{y}_j(t) \) for all \(j \in \mathcal{N}_r \), the CU estimates the target’s position \(p \).
The selection of the PSD $S_{q_j}(f)$ is constrained by the fronthaul capacity C_j. Specifically, for each channel realization g_j, the rate produced by the quantization operation in (3) is bounded below by the mutual information $T^{-1}I(\{y_j(t)\}_{t=0}^T; \{\hat{y}_j(t)\}_{t=0}^T)$, where T is the transmission period [10]. Note that, throughout the paper, the mutual information is computed for a given realization of the channel gains g_j for $j \in \mathcal{N}_r$. We will use the discussed information-theoretic bound in order to formulate the design problem based on the fact that quantization schemes exist that are known to operate at rates close to the information-theoretic limit (see, e.g., [11] and references therein). Moreover, one could account for suboptimal quantization by modeling explicitly the gap to the information-theoretic limit.

We impose a long-term fronthaul capacity constraint. Specifically, we assume that the fronthaul capacity can be shared across multiple realizations of the target-RU channels. This happens, for instance, if the RUs can quantize the signal received across multiple coherence times of the target-RU channels. This leads to the constraint

$$C_j \geq \frac{1}{T} E_{g_j} \left[I(\{y_j(t)\}_{t=0}^T; \{\hat{y}_j(t)\}_{t=0}^T) \right].$$ \hspace{1cm} (4)

The constraint (4) has the further advantage of admitting a simple bound that can be calculated at the CU given only the available information about the average power σ_j^2. To obtain such bound, we first apply Szegö’s theorem [12] to (4), assuming that T is sufficiently large, and rewrite the constraint (4) as

$$C_j \geq E_{g_j} \left[\frac{1}{B} \int_{-B/2}^{B/2} \log_2 \left(1 + \frac{g_j^2 S_x(f) + S_z(f) S_{q_j}(f)}{S_{q_j}(f)} \right) df \right] \triangleq \bar{E}_{g_j} \left[R_j(g_j, S_{q_j}) \right],$$ \hspace{1cm} (5)

where B is the bandwidth and we have defined the function $R_j(g_j, S_{q_j})$ as the argument of the expectation in (5). We then apply Jensen’s inequality to the function $R_j(g_j, S_{q_j})$, which is concave in g_j, yielding the stricter constraint

$$C_j \geq \frac{1}{B} \int_{-B/2}^{B/2} \log_2 \left(E_{g_j} \left[1 + \frac{g_j^2 S_x(f) + S_z(f)}{S_{q_j}(f)} \right] \right) df = R_j(\sigma_j, S_{q_j}).$$ \hspace{1cm} (6)

Note that (6) implies (5), and hence any solution feasible with respect to (6) is also feasible with respect to (5).
B. Performance Metric for Localization

The localization performance can be measured by the squared position error (SPE) [3], [4], [13]

$$\rho(p, S_q) = E_{y,q} \left[||\hat{p}(\hat{y}) - p||^2 \right],$$

(7)

where $\hat{p}(\hat{y})$ is the estimate of the target performed at the CU based on the knowledge of the quantized received signals $\hat{y} = [\hat{y}_1 \cdots \hat{y}_{N_r}]^T$ with \hat{y}_j being a shorthand for $\{\hat{y}_j(t)\}_{t=0}^T$; $S_q = [S_{q_1} \cdots S_{q_{N_r}}]^T$ collects all the PSDs of the quantization noises (suppressing the dependence on the frequency for simplicity of notation); and $g = [g_1 \cdots g_{N_r}]^T$. In (7), we have made the explicit dependence of the SPE $\rho(p, S_q)$ on the position p and the quantization noise PSDs S_q. Note also that the expectation in (7) is taken over the joint distribution of the received signals and of the channel fading gains. To evaluate this quality based on the information available at the CU, we proceed as follows. The SPE $\rho(p, S_q)$ is first bounded by the Cramér-Rao bound (CRB) [13]

$$\rho(p, S_q) \geq E_g \left[\text{tr}\{J^{-1}(p, g, S_q)\} \right],$$

(8)

where $J(p, g, S_q)$ is the Equivalent Fisher Information Matrix (EFIM) for the estimation of the target’s position p (see, e.g., [3], [4]). We recall that the need to resort to the EFIM stems from the presence of the unknown parameter g [3], [4]. In light of the bound (8), and given its analytical tractability, as discussed above, we will use the CRB as the performance metric for localization. Similar to [4], the EFIM for the position of target is calculated as

$$J(p, g, S_q) = \sum_{j \in N_r} J_{\phi}(\phi_j) \frac{8\pi^2 g_j^2}{c^2} \int_{-\infty}^{\infty} \frac{f^2 S_x(f)}{S_{z_j}(f) + S_{q_j}(f)} df,$$

(9)

where we have defined the direction matrix $J_{\phi}(\phi) = [\cos^2(\phi) \cos(\phi) \sin(\phi); \cos(\phi) \sin(\phi) \sin^2(\phi)]$. In the following, given (9), we will also use the notation $J(\phi, g, S_q)$ for the EFIM to emphasize the dependence on the the inter-node angles $\phi = [\phi_1 \cdots \phi_{N_r}]^T$. In order to deal with the expectation in (8) over the channel gains g, we again leverage the Jensen’s inequality as in (6) to obtain the inequality

$$E_g \left[\text{tr}\{J^{-1}(p, g, S_q)\} \right] \geq \text{tr} \left\{ E_g \left[\sum_{j \in N_r} J_{\phi}(\phi_j) \frac{8\pi^2 g_j^2}{c^2} \int_{-\infty}^{\infty} \frac{f^2 S_x(f)}{S_{z_j}(f) + S_{q_j}(f)} df \right] \right\}^{-1} \geq \text{tr}\{J^{-1}(p, \sigma_g, S_q)\},$$

(10)

where $\sigma_g = [\sigma_{g_1} \cdots \sigma_{g_{N_r}}]^T$. In the following, similar to the discussion around the fronthaul constraint (6), we will adopt the lower bound in (10) as the performance metric for the localization accuracy.
C. Problem Formulation

Here, we formulate the problem of optimizing the quantization strategy under fronthaul capacity constraints. As mentioned, the a priori information available at the CU about the position of the target is characterized by the uncertainty area A_p, which is generally included in the overall square region. An example is illustrated in Fig. 2. The region A_p is arbitrary but is assumed to exclude the regions very close to the RUs in order to ensure the validity of the path loss model. To simplify the analysis, the region A_p is described, as in [3], as the union of a finite set of circular areas $\{A_p^{(l)}\}_{l \in L}$, in the sense that we have the inclusion relationship $A_p \subseteq \bigcup_{l \in L} A_p^{(l)}$. Each circle $A_p^{(l)}$ is centered at $\hat{p}^{(l)}$ and has radius Δ. Note that a larger radius Δ generally leads to a less accurate approximation of the uncertainty region A_p, but, as it will be seen below, it reduces the complexity of the resulting algorithm. As shown in Fig. 2, when the circle $A_p^{(l)}$ includes the target p, i.e., $p \in A_p^{(l)}$, the actual inter-node distances and angles lie in following uncertainty sets [3], [4]:

$$d_j \in S_{d_j}^{(l)} = \left[d_j^{(l)} - \Delta, d_j^{(l)} + \Delta \right]$$

and

$$\phi_j \in S_{\phi_j}^{(l)} = \left[\phi_j^{(l)} - \epsilon_j^{(l)}, \phi_j^{(l)} + \epsilon_j^{(l)} \right],$$

for all $j \in \mathcal{N}_r$, respectively, where $\epsilon_j^{(l)} = \arcsin(\Delta/d_j^{(l)})$ is the angular uncertainty defined by the radius Δ. Moreover, from (11) and the definition of g_j, the average channel power gain lies in the interval $\sigma_{gj} \in S_{\sigma_{gj}}^{(l)} = [\sigma_{L,gj}^{(l)}, \sigma_{U,gj}^{(l)}]$, where $\sigma_{L,gj}^{(l)} = \sigma_{\alpha_j}/(d_j^{(l)} + \Delta)^\mu$ and $\sigma_{U,gj}^{(l)} = \sigma_{\alpha_j}/(d_j^{(l)} - \Delta)^\mu$. Considering the union over all the circular regions, the angular positions and the average channel power gains lie in the uncertainty set \mathcal{U} such as $(\phi, \sigma_g) \in \mathcal{U} = \bigcup_{l \in L} \mathcal{U}_l$, where $\mathcal{U}_l = \prod_{j \in \mathcal{N}_r} S_{\phi_j}^{(l)} \times S_{\sigma_{gj}}^{(l)}$.

Following the robust optimization methodology introduced in [14], we wish to optimize the PSDs of quantization noises with the aim of minimizing the worst-case localization error of the target by finding \mathcal{U}_l to provide the maximal CRB in \mathcal{U}. Specifically, we are interested in a solution to the problem

$$\min_{s_{gj}(f) \geq 0} \max_{l \in L} \max_{(\phi, \sigma_g) \in \mathcal{U}_l} \text{tr} \left\{ J^{-1}(\phi, \sigma_g, S_q) \right\}$$

s.t.

$$\max_{\sigma_{gj} \in \mathcal{U}_l \cap S_{\sigma_{gj}}^{(l')}} \left(R_j(\sigma_{gj}', S_q) - C_j \right) \leq 0, \quad \text{for } l' \in L \text{ and for } j \in \mathcal{N}_r.$$

Note that the constraint (12b) guarantees the feasibility of the solution with respect to the fronthaul constraint no matter what the channel gain is, and hence irrespective of the target distance within the
uncertainty region. Note also that, since the worst-case values of \(\sigma_{g_j} \), for the objective (12a) and the constraint (12b) need not be the same, we differentiate \(\sigma_{g_j} \) from \(\sigma'_{g_j} \).

III. OPTIMIZATION OF FRONTHAUL QUANTIZATION

In this section, we propose an algorithm that aims at minimizing the worst-case SPE under fronthaul capacity constraints over the fronthaul quantization noise PSDs as per problem (12). To this end, we first address the inner optimization problems over \((\phi, \sigma_g) \in \mathcal{U}_t \) and \(\sigma'_{g_j} \in \bigcup_{l \in L} S'_{\sigma'_{g_j}} \) in Sec. III-A. We then consider the outer optimizations over \(l \) and \(S_q \) in Sec. III-B.

A. Optimization over \((\phi, \sigma_g) \) and \(\sigma'_{g_j} \)

We here focus on the optimizations over \((\phi, \sigma_g) \) for the maximal CRB and over \(\sigma'_{g_j} \) for the maximal rate within \(\mathcal{U}_t \) in (12), namely \(\max_{(\phi, \sigma_g) \in \mathcal{U}_t} \text{tr}\{J^{-1}(\phi, \sigma_g, S_q)\} \) and \(\max_{\sigma'_{g_j} \in \bigcup_{l \in L} S'_{\sigma'_{g_j}}} (R_j(\sigma'_{g_j}, S_{q_j}) - C_j) \) for given PSDs \(S_q \). Both functions \(\text{tr}\{J^{-1}(\phi, \sigma_g, S_q)\} \) and \(R_j(\sigma'_{g_j}, S_{q_j}) \) are monotonically non-increasing and non-decreasing functions of the channel gain standard deviations \(\sigma_{g_j} \), respectively. This leads us immediately to conclude that the maximizations at hand are achieved at the smallest possible value for \(\max_{(\phi, \sigma_g) \in \mathcal{U}_t} \text{tr}\{J^{-1}(\phi, \sigma_g, S_q)\} \) and the largest value for \(\max_{\sigma'_{g_j} \in \bigcup_{l \in L} S'_{\sigma'_{g_j}}} (R_j(\sigma'_{g_j}, S_{q_j}) - C_j) \), namely, respectively, at \(\sigma_{g_j} = \sigma^{(l)}_{L,g_j} \) and \(\sigma'_{g_j} = \sigma^{(r)}_{U,g_j} \), irrespective of the values of \(\phi \) and \(S_q \) for both problems. The maximization over the angle \(\phi \) in \(\max_{(\phi, \sigma_g) \in \mathcal{U}_t} \text{tr}\{J^{-1}(\phi, \sigma_g, S_q)\} \) is instead carried out by following the relaxation method introduced in [4]. To this end, let us define, for every circle \(l \in L \), the matrix \(Q_\phi(\phi_j^{(l)}) \) as \(Q_\phi(\phi_j^{(l)}) = J_\phi(\phi_j^{(l)}) - \sin \epsilon_j^{(l)} I \). We also define the matrix

\[
Q(\sigma_g, S_q) = \sum_{j \in N_r} Q_\phi(\phi_j^{(l)}) \frac{8\pi^2\sigma_g^2}{c^2} \int_{-\infty}^{\infty} \frac{f^2 S_z(f)}{S_{z_j}(f) + S_{b_j}(f)} df,
\]

which is obtained by using \(Q_\phi(\phi_j^{(l)}) \) in lieu of \(J_\phi(\phi) \) in \(J(\phi, \sigma_g, S_q) \). Then, if \(Q(\sigma_g, S_q) \succeq 0 \), denoting \(\sigma^{(l)}_{L,g} = [\sigma^{(l)}_{L,g_1} \cdots \sigma^{(l)}_{L,g_{N_r}}]^T \), the worst-case CRB \(\max_{(\phi, \sigma_g) \in \mathcal{U}_t} \text{tr}\{J^{-1}(\phi, \sigma_g, S_q)\} \) is upper bounded as

\[
\max_{(\phi, \sigma_g) \in \mathcal{U}_t} \text{tr}\{J^{-1}(\phi, \sigma_g, S_q)\} = \max_{\phi \in \Pi_{j \in N_r} S^{(l)}_{\sigma_j}} \text{tr}\{J^{-1}(\phi, \sigma^{(l)}_{L,g}, S_q)\} \leq \text{tr}\{Q^{-1}(\sigma^{(l)}_{L,g}, S_q)\}, \tag{14}
\]

where the first equality follows from the discussion above and the second inequality is as in [4] Sec. IV-A. The inequality in (14) provides a conservative measure of the worst-case CRB for all positions.
within the circle $A_p^{(l)}$. We will adopt the bound (14) as the performance criterion, and the validity of this choice will be validated in Section IV by elaborating on the performance of the proposed algorithm via numerical results.

B. Optimization over l and S_q

Given the discussion above, the optimization problem (12) is restated in the more conservative formulation

\[
\min_{S_q(f) \geq 0} \max_{l \in \mathcal{L}} \quad \text{tr} \left\{ Q^{-1}(\sigma_{L,g}^{(l)}, S_q) \right\} \tag{15a}
\]

\[
\text{s.t.} \quad R_j(\sigma_{U,g,l}^{(l)}, S_q) \leq C_j, \quad \text{for } l' \in \mathcal{L} \text{ and for } j \in \mathcal{N}_r. \tag{15b}
\]

In order to address problem (15), we first make the change of variables $A_q(j) = 1/S_q(f)$. This is done in order to avoid the unbounded solution $S_q(f) = \infty$ for frequencies that are neglected by the quantization and hence have infinite quantization noise. Note that, due to (15b), the solution $S_q(f) = 0$, and hence $A_q(j) = \infty$ is not feasible for any finite C_j. Then, we consider the epigraph formulation of (15) which is given as

\[
\min_{A_q(f) \geq 0} \quad t \tag{16a}
\]

\[
\text{s.t.} \quad \text{tr} \left\{ Q^{-1}(\sigma_{L,g}^{(l)}, A_q) \right\} - t \leq 0, \quad \text{for } l \in \mathcal{L}, \tag{16b}
\]

\[
R_j(\sigma_{U,g,l}^{(l)}, A_q) \leq C_j, \quad \text{for } l \in \mathcal{L} \text{ and for } j \in \mathcal{N}_r, \tag{16c}
\]

where $A_q = [A_q_1 \cdots A_q_{N_r}]^T$. Note that in the epigraph formulation (16), there is no need to distinguish between l and l' as in (15). We note that $Q(\sigma_{L,g}^{(l)}, A_q)$ in (16b) includes a linear fractional function, which can be simplified by using the Charnes-Cooper transformation [15]. Specifically, by letting $m_j(f) = A_q(j)/(1 + S_z(f)A_q(f))$ and $n_j(f) = 1/(1 + S_z(f)A_q(f))$, the problem (16) can be transformed to the following equivalent problem:

\[
\min_{0 \leq m_j(f), 0 \leq n_j(f) < 1} \quad t \tag{17a}
\]

\[
\text{s.t.} \quad \text{tr} \left\{ \left(\sum_{j \in \mathcal{N}_r} Q_{\phi(j)} \frac{8\pi^2 \sigma_{L,g}^{(l)} \sigma_{L,g}^{(l)} \int_{-\infty}^{\infty} f^2 S_x(f)m_j(f)df}{c^2} \right)^{-1} \right\} - t \leq 0, \quad \text{for } l \in \mathcal{L}, \tag{17b}
\]

\[
\frac{1}{B} \int_{-B/2}^{B/2} \log_2 \left(1 + \sigma_{U,g,l}^{(l)} S_z(f) m_j(f) \frac{m_j(f)}{n_j(f)} \right) df \leq C_j, \quad \text{for } l \in \mathcal{L} \text{ and for } j \in \mathcal{N}_r, \tag{17c}
\]

\[
S_z(j) m_j(f) + n_j(f) = 1, \quad \text{for } j \in \mathcal{N}_r, \tag{17d}
\]
where \(\mathbf{m} = [m_1 \cdots m_{N_r}]^T \), \(\mathbf{n} = [n_1 \cdots n_{N_r}]^T \) and \(m_j \) and \(n_j \) are shorthands for the functions \(m_j(f) \) and \(n_j(f) \), respectively. Note that the number of constraints (17b) and (17c) depends on the number of circular areas used to approximate the uncertainty region \(A_p \) (see Fig. 2).

The optimization problem (17) is complicated since (i) the unknowns \(m_j(f) \) and \(n_j(f) \) are continuous functions of the frequency \(f \); (ii) the constraint (17c) is not convex. Note that the objective function (17a) is convex. To deal with (i), we discretize the frequency domain using a uniform quantization of the frequency axis with \(N_f \) equally spaced points. As for (ii), we leverage the standard MM method [16]. In particular, (17c) can be written as a difference of convex (DC) functions and hence a locally tight upper bound can be obtained by linearizing the negative convex function (see e.g., [16]). The details are shown in Algorithm 1. We note that each iteration of the MM algorithm provides a feasible solution of the problem (17) since the rate used in (18c) of Algorithm 1 is always an upper bound of the actual rate due to the concavity of the logarithmic function.

IV. Numerical Results

In this section, we evaluate the performance of the proposed algorithm. For reference, we consider a baseline scheme that assumes white quantization noise PSDs \(S_{q_j}(f) = \sigma^2_{q_j} \), where \(\sigma^2_{q_j} \) is computed by imposing equality in the constraint (15b) for the circle \(l' \) having the maximal rate among \(l' \in \mathcal{L} \). In the following numerical results, the size of the area is \(\delta = 500 \) m and the path loss exponent is \(\mu = 3 \). Moreover, the two-sided bandwidth is \(B = 1 \) MHz and the channel power is normalized to \(\sigma^2_{\alpha_j} = 1 \) for all \(j \in \mathcal{N}_r \). The ESD of the signal is \(S_x(f) = -59 \) dBm/Hz in the bandwidth \([\frac{-B}{2}, \frac{B}{2}]\), and \(S_x(f) = 0 \), otherwise. Accounting for both thermal noise and interference, the channel noises \(z_j(t) \) for all \(j \in \mathcal{N}_r \) are assumed to follow a standard autoregressive model of order 1 with correlation coefficient \(\rho \), so that the noise PSDs are \(S_z(f) = N_0(1-\rho^2)/(|1-\rho e^{-j2\pi f/B}|^2) \) with parameters \(N_0 = -174 \) dBm/Hz and \(\rho = 0.9 \). We assume the rectangular uncertainty region \(A_p \) is a square, of size 200 m \(\times \) 200 m and is centered as shown in Fig. 3. We set the radius of the circular areas \(\{A_p^{(l)}\}_{l \in \mathcal{L}} \) that cover the uncertainty regions to \(\Delta = 50\sqrt{2} \) m and choose the centers \(\tilde{\mathbf{p}}^{(l)} \) as \(\tilde{\mathbf{p}}^{(1)} = [-50\quad -50]^T \), \(\tilde{\mathbf{p}}^{(2)} = [-50\quad 50]^T \), \(\tilde{\mathbf{p}}^{(3)} = [50\quad -50]^T \)
and $\mathbf{p}^{(4)} = [50, 50]^T$ so that the number of circular regions is $|L| = 4$. We recall that choosing a smaller Δ generally leads to a better approximation of the uncertainty region, but it increases significantly the computational complexity due to the increase in the constraints in problem (17). We consider $N_r = 16$ RUs, equally spaced along each side as illustrated in Fig. 3 and impose an equal fronthaul capacity constraint $C_j = C$ for all RUs $j \in N_r$. Furthermore, we set $N_f = 100$ for discretizing the frequency axis.

Fig. 4 shows the square root of the average worst-case SPE as a function of the fronthaul capacity C. To evaluate this quantity, we generated 400 target’s positions uniformly distributed in uncertainty region A_p. For each position, we calculated the CRB (8) by using the PSDs $S_{q_j}(f)$ for $j \in N_r$ obtained via Algorithm 1 or by using the baseline white PSDs. Specifically, by means of Monte Carlo simulation, we evaluated the average CRB (8) with respect to the channel fading coefficients α_j for $j \in N_r$, which are independent and follow the exponential distribution with unit power. Finally, we chose the average worst SPE for the given C across all considered positions and computed its square root.

As shown in Fig. 4, a larger fronthaul capacity C allows the RUs to transmit a more accurate representation of the received baseband signals to the CU, which in turn improves the localization accuracy. It is also observed that the proposed design outperforms baseline white quantization noise PSDs strategy of conventional solution at low-to-moderate values of C. For instance, for $C = 0.1$ bits/s/Hz, the proposed scheme obtains a square root of average worst-case SPE of around 4.8 m, while the baseline white quantization noise PSD strategy provides a localization error of around 8.5 m.

In Fig. 5, we show the quantization noise PSDs $S_{q_j}(f)$ obtained when the fronthaul capacity constraint is $C = 5$ bits/s/Hz. Due to the symmetric topology of the RUs, we only show the PSDs for the RU 1, RU 2 and RU 3. As shown in Fig. 5, a larger quantization noise is assigned by all RUs to frequencies at which the noise PSD is more pronounced, hence compressing more accurately frequencies that are less affected by noise.

V. CONCLUSIONS

In this paper, we have investigated fronthaul quantization design for Cloud Radio Positioning. The problem of interest is to maximize the localization accuracy under fronthaul capacity constraints with
respect to the quantization noise PSDs used for the compression at the RUs. Under the assumption of synchronous RUs, a robust, or worst-case, optimization formulation is adopted and the resulting algorithm is shown via numerical results to outperform conventional solutions.

REFERENCES

[1] China Mobile, “C-RAN: the road towards green RAN,” White Paper, ver. 2.5, China mobile Research Institute, Oct. 2011.
[2] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Proc. Magazine, vol. 22, no. 4, pp. 70–84, July 2005.
[3] Y. Shen, W. Dai, and M. Z. Win, “Power optimization for network localization,” IEEE/ACM Trans. on Networking, vol. 22, no. 4, pp. 1337–1350, Aug. 2014.
[4] S. Jeong, O. Simeone, A. Haimovich, and J. Kang, “Beamforming design for joint localization and data transmission in distributed antenna system,” to appear in Trans. on Veh. Technol., [arXiv:1311.1567].
[5] E. Masazade, R. Niu, and P. K. Varshney, “Dynamic bit allocation for object tracking in wireless sensor networks,” IEEE Trans. Sig. Proc., vol. 60, no. 10, pp. 5048–5063, Oct. 2012.
[6] R. Niu and P. K. Varshney, “Target location estimation in sensor networks with quantized data,” IEEE Trans. Sig. Proc., vol. 54, no. 12, pp. 4519–4528, Dec. 2006.
[7] O. Ozdemir, R. Niu, and P. K. Varshney, “Channel aware target localization with quantized data in wireless sensor networks,” IEEE Trans. Sig. Proc., vol. 57, no. 03, pp. 1190–1202, Mar. 2009.
[8] A. N. D’Andrea, U. Mengali, and R. Reggiannini, “The modified Cramer-Rao bound and its application to synchronization problems,” IEEE Trans. Comm., vol. 42, no. 234, pp. 1391–1399, Feb./Mar./Apr. 1994.
[9] A. Gersho and R. Grey, Vector Quantization and Signal Compression. Boston: MA Kluwer, 1992.
[10] T. M. Cover and J. A. Thomas, Element of Information Theory. John Wiley & Sons, 2006.
[11] Y. Yang, S. Cheng, Z. Xiong, and W. Zhao, “Wyner-Ziv coding based on TCQ and LDPC codes,” IEEE Trans. Comm., vol. 57, no. 2, pp. 376–387, Feb. 2009.
[12] A. Wyner, “Shannon theoretic approach to a Gaussian cellular multiple access channel,” IEEE Trans. Info. Th., vol. 40, no. 6, pp. 1713–1727, Nov. 1994.
[13] S. M. Kay, Fundamentals of Signal Processing-Estimation Theory. Englandwood Cliffs, NJ: Prentice Hall, 1993.
[14] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization. Princeton University Press, 2009.
[15] A. Charnes and W. W. Cooper, “Programming with linear fractional functionals,” Naval Res. Logistics Quarterly, vol. 9, pp. 181–186, 1962.
[16] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The American Statistician, vol. 58, no. 1, pp. 30–37, Feb. 2004.
Fig. 1. Illustration of the considered Cloud Radio Positioning system, which consists of N_r distributed single-antenna RUs, a single-antenna target, e.g., a mobile terminal, and a CU. The RUs are connected to the CU via finite-capacity fronthaul links. The target is known a priori to be in a given uncertainty region A_p.
Fig. 2. The target is in the shaded area A_p. The region A_p is covered by a set of circular areas $\{A_p^{(l)}\}_{l \in L}$, with radius Δ, each of which is centered at location $\tilde{p}^{(l)}$.

Fig. 3. Topology for the examples discussed in Section III.
Fig. 4. Square root of average worst-case SPE as a function of the fronthaul capacity C for the set-up in Fig. 3.

Fig. 5. Quantization noise $S_{q_j}(f)$ obtained by the proposed algorithm for RUs 1, 2 and 3 along with the noise PSDs $S_z(f)$ for $C = 5 \text{ bits/s/Hz}$.
Algorithm 1: Robust fronthaul quantization algorithm (problem (17))

1. Initialize a nonnegative $m^{(1)}$ and a sufficiently large positive integer N_f.

2. (MM algorithm) Update $m^{(i+1)}$ as a solution of the following convex problem:

$$
\begin{align*}
\min_{m^{(i+1)}, t} & \quad t \\
\text{s.t.} & \quad \text{tr} \left\{ \left(\sum_{j=1}^{N_r} Q_{\phi_j(t)} \frac{8\pi^2 \sigma_{L,qj}^2}{c^2} \sum_{n=1}^{N_f/2} \frac{2B}{N_f} f_n^2 S_x(f_n) m_j^{(i+1)}(f_n) \right)^{-1} \right\} - t \leq 0 \quad \text{for } l \in \mathcal{L}, \\
& \quad \sum_{n=1}^{N_f/2} \frac{2}{N_f} \left[h \left(m_j^{(i+1)}(f_n), m_j^{(i)}(f_n) \right) - \log_2(n_j(f_n)) \right] \leq C_j \quad \text{for } l \in \mathcal{L} \text{ and for } j \in \mathcal{N}_r, \\
& \quad \sum_{j=1}^{N_r} Q_{\phi_j(t)} \frac{8\pi^2 \sigma_{L,qj}^2}{c^2} \sum_{n=1}^{N_f/2} \frac{2B}{N_f} f_n^2 S_x(f_n) m_j^{(i+1)}(f_n) \geq 0 \quad \text{for } l \in \mathcal{L}, \quad (18b) \\
& \quad S_{2j}(f_n) m_j^{(i+1)}(f_n) + n_j(f_n) = 1 \quad \text{for } j \in \mathcal{N}_r, \quad (18c) \\
& \quad 0 \leq n_j(f_n) < 1 \quad \text{for } j \in \mathcal{N}_r, \quad (18d) \\
& \quad m_j^{(i+1)}(f_n) \geq 0 \quad \text{for } j \in \mathcal{N}_r, \quad (18e) \\
\end{align*}
$$

where $f_n = \frac{nB}{N_f}$ and $h(m_j^{(i+1)}(f_n), m_j^{(i)}(f_n))$ is the linear function defined as

$$
h \left(m_j^{(i+1)}(f_n), m_j^{(i)}(f_n) \right) = \log_2 \left(1 + \sigma_{U,qj}^2 S_x(f_n) m_j^{(i)}(f_n) \right) \\
+ \frac{\sigma_{U,qj}^2 S_x(f_n)}{\ln 2 \left(1 + \sigma_{U,qj}^2 S_x(f_n) m_j^{(i)}(f_n) \right)} \left(m_j^{(i+1)}(f_n) - m_j^{(i)}(f_n) \right). \quad (19)
$$

3. Stop if $\sum_{j=1}^{N_r} \sum_{n=1}^{N_f} \left\| m_j^{(i+1)}(f_n) - m_j^{(i)}(f_n) \right\|_F < \delta_{th}$ with a predefined threshold value δ_{th}. Otherwise, $i \leftarrow i + 1$ and go back to step 2.

4. Obtain S_q by calculating

$$
S_{qj}(f) = \left\{ \frac{n_j(f_n)}{m_j^{(i+1)}(f_n)} \right\}_{n=1,\ldots,N_f}. \quad (20)
$$