INTRODUCTION

Intestinal nematodes are among the most common and widely distributed animal parasites of humans, estimated to infect over 2.5 billion of the world’s population, the majority of infections occurring in children. Among the most prevalent intestinal worms are the hookworm (*Ancylostoma duodenale* and *Necator americanus*), roundworm (*Ascaris lumbricoides*) and whipworm (*Trichuris trichiura*), which are typically found endemic in developing and tropical countries. These infections are normally transmitted by soil and are chronic in nature, which is in part due to endemic regions often lacking intervention that can curb transmission (ie medicinal care, diagnosis tools, effective sanitation, protocols to prevent reinfection and efficient treatment plans). Globally, these infections are accountable for causing severe morbidity to over 300 million individuals. Clinical manifestations of infections include malnutrition, cognitive dysfunction, vitamin deficiencies and growth retardation, which all severely impair the quality of life of affected individuals. Despite their prevalence, this group of parasitic infections is considered as “minor” and often neglected in clinical treatment.

Current research is focused on defining host-protective responses that lead to parasite expulsion, which are exceedingly difficult to elucidate within infected human populations. However, studies using various well-established laboratory models of GI nematode infections have greatly contributed to our knowledge in understating how the host coordinates immune responses associated with resistance.
Perhaps, the most commonly used murine models of helminth infections include *Trichuris muris*, *Trichinella spiralis*, *Nippostrongylus brasiliensis* and *Heligmosoides polygyrus*, and a summary of each parasites’ life cycle during infection is shown in Table 1.

Typically, most laboratory models of intestinal helminth infections can elicit a strong CD4+/Th2-mediated immune response. Immune characteristics associated with a Th2 mediated environment are the secretion of type 2 signature cytokines (IL-4, IL-13, IL-9 and IL-5), activation of Th2 cells, antibody class switching to IgG1 (in mice) and IgE, and induction of alternatively activated macrophages, eosinophils, basophils and mast cells. This response is often referred to as an “allergic” immune response and is associated with goblet cell hyperplasia. As goblet cells are the major source of mucins (the major macromolecule of the intestinal mucus barrier), the expansion of this cell type can lead to the increased secretion of mucins which can consequently lead to alterations in the protective properties of the mucus barrier. The altered barrier can directly or indirectly affect parasite establishment within the GI niche, thus impeding the ability of the parasite to productively interact with the host and to thrive and survive. The involvement of mucus as a protective barrier during GI nematode infection was initially identified in the early 1980s, whereby the “mucus–trap” hypothesis was coined. It was demonstrated that during *T. spiralis* and *N. brasiliensis* infection, the parasites were surrounded by mucus prior to their expulsion, indicating a role for mucus to physically separate and prevent the establishment of parasites within their niche. This observation suggested a direct role for the mucus barrier as an effector mechanism to protect the host and aid parasite expulsion. Indeed, subsequent characterization of animal models for GI helminth infections and the development of protocols to assess mucosal barrier properties have allowed the development of robust systems to directly investigate aspects of mucus barrier function and properties in vivo. These studies have demonstrated that mucins and mucus-associated proteins hold key roles in altering the intestinal niche to enhance parasite expulsion, thus contributing to immune-mediated host protection. Further insight into the precise functional role(s) that mucins and mucus-associated proteins play within the mucus barrier may uncover potential avenues for novel therapeutic targets to eradicate this group of important neglected tropical diseases.

In this short review, we discuss the nature and formation of the intestinal mucus barrier and its mucin components during homeostasis. We will provide details on how mucins form mucus and describe the complexities of mucin synthesis, structure and function. Furthermore, we will elaborate how the immune system controls mucin production and properties to produce a mucus barrier with effective host-protective function to combat GI nematode infections. Together this will highlight that mucus is not just a passive physical barrier but is a highly regulated and dynamic defence mechanism, and an important part of a coordinated immune-driven host response against GI nematode infections.

Table 1 Commonly used murine gastrointestinal (GI) colonizing nematodes, describing the niche and life cycle of parasites

Murine GI nematode	Type of parasite	Life cycle	GI niche
Trichuris muris	Whipworm	After ingestion of embryonated eggs, they hatch and invade the epithelial layer of the caecum and proximal colon, undergoing 4 moults before becoming adults.	Caecum
Trichinella spiralis	Roundworm	Infection occurs via ingestion of L1 larvae found within the muscle of a previously infected host. L1 larvae invade epithelial cells of the small intestine where they rapidly moult to adulthood.	Small intestine
Nippostrongylus brasiliensis	Hookworm	L3 larvae penetrate the skin, pass through the vasculature to the airways and crawl up the bronchi to be swallowed into the GI tract where they inhabit the small intestine.	Small intestine
Heligmosoides polygyrus	Roundworm/hookworm	Free-living L3 larvae are ingested and penetrate the submucosa of the small intestine; they moult and then reemerge into the intestinal lumen of the small intestine remaining in the villi.	Small intestine
general intrinsic roles such as providing specific ligands for pathogen entrapment, lubrication, hydration and aiding digestion. However, exactly how the intestinal mucus barrier is organized and assembled is not fully defined, but the gel-like properties of mucus are primarily dictated by the unique structure of the polymeric gel-forming mucin, MUC2 (humans)/Muc2 (mice).

MUCINS

Mucins are a family of large and highly O-glycosylated proteins that typically have a molecular weight in excess of 1 MDa. There have been 18 family members identified in humans, which have orthologues in mice and a subset of these mucins are selectively expressed at different anatomical sites along the GI tract. Mucins can further be classified into 2 major subtypes: transmembrane and secreted mucins. It is the secreted mucins that form the foundation of mucus and are responsible for the characteristic rheological properties of this gel-like secretion, while the transmembrane mucins are typically located at the apical cell surface of epithelial cells. Both subtypes of mucins contain central mucin domains, enriched in repeats of proline, serine and threonine residues (PTS or mucin domains). These domains are sites for the attachment of O-linked glycans that results in stiffening of the protein core, which in turn leads to the enhanced space-filling capacity of these glycoproteins which is important for their protective function.

The major intestinal transmembrane mucins, MUC1, MUC3 (murine orthologue Muc17), MUC4 and MUC13, are intercalated into the apical surface of the intestinal epithelium and contribute to the glycoalyx layer. However, the focus of this review will be the major component of the intestinal mucus gel, the secreted polymeric mucin, MUC2. It is noteworthy that MUC5AC expression can be induced within the intestine during foetal development, adenocarcinoma inflammatory bowel disease, and of specific relevance to this review, during helminth infection.

MUC2 was the first polymeric, gel-forming mucin to be sequenced and characterized in humans, and it shares a large degree of homology with mouse Muc2. The glycoprotein is proposed to form large, net-like insoluble complexes, mediated by covalent linkages between mucin monomers (disulphide and isopeptide bonds). MUC2 has a well-described domain organization, including an N-terminal domain, 2 PTS domains (one larger than the other), 2 cysteine-rich (Cys) domains flanking the smaller PTS domain and a C-terminal domain (Figure 2).

The N-terminal region of MUC2 is comprised of 3 von Willebrand factor D-domains (vWF D1–3), and the smaller C-terminal region is comprised of a vWF D-domain (D4), a vWF B- and C-domain and a cysteine knot (CK). Both the N- and C-terminal domains are enriched in cysteine residues that facilitate both inter- and intramolecular disulphide bond formation; the intermolecular disulphide linkages are responsible for mucin polymerization.

4 | **MUC2 BIOSYNTHESIS**

Polymeric MUC2 undergoes a complex, multistep synthesis that puts a high-energy demand upon the intestinal cells within which it is made and stored. As MUC2 traverses the secretory pathway, it is dimerized, extensively O-glycosylated, further polymerized and then stored within secretory granules prior to secretion (Figure 3). Specialized cells with appropriate machinery synthesize polymeric mucins, and in the intestine, MUC2 is produced predominantly by goblet cells, which are found interspersed between enterocytes, enteroendocrine, secretory and stem cells in the intestinal epithelial layer (Figure 1); goblet cells are found at higher frequency at the most distal portions of the GI tract.

Within goblet cells, the MUC2 protein backbone is synthesized and transported to the ER, where high mannose-type N-linked
glycosylation occurs (Figure 3, step 1). Before further modifications, MUC2 monomers will dimerize through cysteine residues located within the C-terminal CK domain prior to transport to the golgi compartment (Figure 3, steps 2 and 3). Within the cis-golgi compartment, the addition of GalNAc by polypeptide GalNAc-transferases (ppGalNAc-T) will initiate O-linked glycosylation. Extension of the glycan backbone will occur as the protein moves through the organelle by the addition of galactose (Gal) and N-acetylglucosamine (GlcNAc) residues, while sulphate and fucose groups can be differentially added to decorate the backbone (Figure 3, step 4). At the trans-golgi compartment, the addition of sialic acid or GalNAc will cease glycan extension. The end result is a highly decorated protein dimer with nearly
80% of the mass accounted for by glycans. These glycan chains are highly heterogeneous in chain length and composition even at homeostasis. Importantly, glycan structure can be influenced during parasitic infections, which aids host protection against pathogenesis (which will be discussed further below).33-36

Finally, MUC2 dimers have been proposed to trimerize through disulphide bonds mediated by cysteine residues located in the N-terminal vWfD3 domain and isopeptide bonds formed between the side chains of lysine and glutamine residues (Figure 3, step 5).27 These covalent linkages give rise to very large and highly glycosylated polymers,37,38 which are packaged in dehydrated form inside secretory granules (Figure 3, step 6). This storage mechanism allows for the release of fully synthesized MUC2 polymers which undergo rapid hydration and expansion on the intestinal epithelial surface to maintain mucus barrier integrity during homeostasis or barrier breach.39 Hydration and expansion of MUC2 polymers is dictated by the ionic composition and water availability at the intestinal epithelial surface, and after secretion, mucin polymers can expand their volume up to 1000 times, becoming entangled within one another to form the structural framework of the mucus gel.39,40

The control of mucin secretion has yet to be fully defined, but it is evident that intestinal goblet cells secrete MUC2 at a basal rate during homeostasis, but the major route during environmental and infectious challenge is by regulated secretion via compound exocytosis.41 The secretion of MUC2 can be influenced by a broad range of mediators including cytokine signals, microbial-derived products, adrenocorticotropic hormones, autophagic proteins, reactive oxygen species and components of the inflammasome (NOD-, LRR- and pyrin domain-containing 6).10,11,42-46

Recent research in mice suggests that there may be different types of intestinal Muc2-secreting goblet cells and their function and secretory activity is dictated by their location within the intestinal crypt.47 Birchenough and colleagues describe “sentinel” goblet cells that are located at the top of the colonic crypts and secrete Muc2 after bacterial-induced activation of Nlrp6 inflammasome via TLR/MyD88 signalling axis.48 It has yet to be determined whether these different types of goblet cell have different gene signatures, or may arise due to the natural maturation of the goblet cell as it moves up the crypt during epithelial cell turnover. Further research using intestinal-derived 3-D enteroid cultures will provide a simple and manipulable system to directly assess signalling cues that are required for goblet cell function and help our understanding of goblet cell biology during inflammatory threat.48

5 | IMMUNE CONTROL AGAINST GI NEMATODE INFECTION

Infection with GI nematodes is commonly associated with the generation of type 2 immunity; the cytokine IL-13 is a critical driver for this response and is primarily derived from type 2 innate lymphoid cells (ILC2) and Th2 cells. The induction of IL-13 and IL-4 leads to the expansion of goblet cells, a trait that has been observed during N. brasiliensis, T. spiralis and acute T. muris infections.10,49,50 As goblet cells are the major mucin-producing cells in the intestine, this expansion leads to alterations in mucus barrier properties, through secretion of mucins and other goblet cell-associated proteins. In recent years, there has been significant progress in understanding the initial mediators of goblet cell hyperplasia during GI nematode infection.

ILC2s were originally identified as an alternative source of type 2 cytokines in mice lacking T or B cells51 and have been demonstrated to be a critical source of IL-13 and IL-13-driven goblet cell responses during GI nematode infections. ILC2s can be primed and activated after stimulation with epithelial-derived cues: IL-25, IL-33, TSLP.52 More recently, neuropeptide neurenomedin U signalling has been indicated to be a potent type 2 cytokine initiator; capable of causing activation and proliferation of ILC2s, and associated with accelerated expulsion of N. brasiliensis.53 ILC2s are primed early during H. polygyrus and N. brasiliensis infection,54 providing a source of IL-13 which promotes the production of type 2 cytokines and goblet cell hyperplasia. More recently, data has emerged to suggest tuft cells are critical in orchestrating signalling cues for type 2-mediated immunity during GI nematode infections, facilitating the communication between the epithelium and the underlying immune cells.55 Tuft cells are a chemosensory cell of the gut,56 and the induction of tuft cells has been demonstrated to provide an early supply of IL-25 during N. brasiliensis, T. spiralis and H. polygyrus infection, which in turn leads to the induction of IL-13 producing ILC2s and results in a feedforward system to cause tuft cell hyperplasia54,55 (Figure 4). Furthermore, goblet cell hyperplasia during N. brasiliensis infection is dependent on the presence of tuft cells, as mice deficient in tuft cells (Pouf2f3−/− mice) not only have reduced IL-25 expression and ILC2 expansion, but goblet cell hyperplasia did not occur and animals were unable to expel the parasite, unlike their wild-type counterparts.56 Interestingly, single-cell RNA-sequencing data have revealed that there are 2 different subtypes of tuft cells, with tuft-2 cells being significantly upregulated during H. polygyrus infection and shown to express the epithelial cytokine Tslp and the pan-immune marker CD45 (an atypical nonhematopoietic cell marker),57 which highlights an additional level of complexity of this cell type and its role in immunity.

It is important to note that although it is widely accepted that the IL-13/IL-4 signalling axis is the primary mediator of goblet cell hyperplasia, and therefore effector functions,49,60,61 there is evidence to suggest that other immune mediators can coordinate goblet cell effector functions. For example, a study conducted by Marillier and colleagues demonstrated goblet cell hyperplasia is observed independent of the IL-13/IL-4 signalling apparatus,58 and Muc2 and Muc3 transcripts were augmented even in the absence of IL-4 during T. spiralis infection.50 Furthermore, inflammatory cytokines have been implicated to have a role in goblet cell function during parasitic infection, including IL-1, TNF and IL-22,62-65 and it is yet to be defined if microbial factors, the inflammasome and adrenergic and cholinergic receptors can influence the secretion of mucins and other goblet cell-associated products during parasitic invasion.
Despite the long-standing mucus-trap hypothesis, there are still many gaps in our knowledge of the precise functional role(s) of the mucus barrier during host protection against GI nematodes. Studies have shown that IL-13 increased mucus production during *N. brasiliensis* expulsion and this mucus was hypothesized to interfere with the parasites’ ability to associate with the intestinal epithelium and feed. Furthermore, inflammatory mediators held within the mucus barrier have been demonstrated to have paralyzing activity against nematodes. These findings suggest that mucus is a crucial innate defence mechanism against invading GI parasitic nematodes and the known roles of different components of the mucus barrier are discussed below.

6 | GI NEMATODE INFECTION AND MUCINS

As mucins are the structural framework of the mucus barrier and the epithelial cell glycocalyx, multiple studies have examined the role of these glycoproteins during GI parasite infection. For example, *Muc2* and *Muc17* transcripts are significantly upregulated during *T. spiralis* infection in mice, and in an experimental *T. spiralis* infection in pigs, there was an increase in goblet cell-stored mucins and a change in the glycosylation pattern of the mucin glycans within the small intestine. Moreover, using a porcine model of *Trichuris* infection, *Trichuris suis*, there was a significant upregulation of mucin production, and in mice, *T. muris* infection caused an increase in the levels of *Muc2* transcripts only at the site of the parasite colonization (i.e., the mouse caecum) at the time of worm expulsion. Perhaps surprisingly, ablation of *Muc2* in vivo only led to a delayed *T. muris* expulsion during acute infection, even though a Th2-mediated immune response prevailed. Further studies showed there was an induction of the polymeric mucin *Muc5ac*, normally a gastric and lung mucin, which was important for *T. muris* parasite expulsion and suggested a protective function for this mucin in the intestine. This was confirmed using *Muc5ac*-deficient mice, which were completely susceptible to *T. muris* infection unlike their wild-type counterparts. Importantly, the susceptible phenotype was not reversed even after administration of anti-IFN-γ to skew the Th1-dominated environment generated in chronic infection towards a Th2-directed immune response, normally associated with resistance. Importantly, there was an induction of *Muc5ac* transcripts in *T. suis* infected pigs, suggesting a protective role across species, and there is data to suggest that *Muc5ac* may also have a broad anthelminthic action as *Muc5ac* null mice were also impaired in their ability to efficiently expel *N. brasiliensis* and *T. spiralis*. The invading GI nematodes are likely, therefore, to employ strategies to subvert the mucus barrier to allow them to establish within their intestinal niche, which facilitates the complex interplay between host and parasite. For example, in chronic *T. muris* infection the parasite secretes excretory/secretory products (E/S) that contain proteases, such as serine proteases. These proteases can degrade the polymeric Muc2 network and hence increase the porosity of the barrier aiding establishment of the parasite in the caecal epithelium. During acute infection, however, Muc5ac is not degraded by *T. muris* E/S derived proteases. In addition, the resistant mice showed a
significant upregulation of serine protease inhibitors (ie serpins) that protect mucin polymers from degradation maintaining the integrity of the mucus barrier. Further work is required to elucidate the signaling cues employed to initiate Muc5ac expression within the intestine, as this pathway could be a potential therapeutic target to induce parasite expulsion in humans and domestic animals.

8 | GI NEMATODE INFECTION AND ALTERATIONS IN MUCIN GLYCOME

A unique feature of mucins is the heterogeneous array of glycan structures that decorate the polypeptide backbone, and these glycans have well-established roles in influencing pathogenic organisms, including GI nematodes. Mucin glycans have been highlighted to be significantly altered during multiple inflammatory responses within the intestine, including during infection with *N. brasilensis*, *T. spiralis*, *T. muris* and *H. polygyrus*. It has yet to be determined whether these changes occur as a result of the inflammatory environment or to resolve the infection; clearly more research is required to define the precise role of mucin glycans. Most of our current understanding of the central role that mucin glycosylation plays during inflammatory threat has come from challenging rodents with infectious agents, and there are data to suggest that during GI nematode infections, there are multiple changes in the expression of glycosyltransferases, the enzymes responsible for the synthesis of the glycans. Yamauchi et al have demonstrated that by day 2-3 of *T. spiralis* infection, there is an increase in α-2-3-sialyltransferase IV. Additionally, during maturation of *T. spiralis*, there is also an induction of 3-0 sulphotransferase-1 expression in the intestine that peaks at day 14 post-infection and falls only when parasite expulsion occurs. Furthermore, Dolichos biflorus agglutinin (DBA) and Muc2 dual staining showed a higher prevalence of GalNAc residues on Muc2 in acute *T. muris* infection compared to chronic infection. The functional consequences of these changes remain to be elucidated.

One aspect of mucin glycosylation that has received most attention from researchers during GI nematode infection is the sialic acid and sulphate content of the Muc2 O-glycans. The relative ratio of these negatively charged species has been hypothesized to influence parasite establishment. An in vitro study has demonstrated that a decrease in the level of sulphated mucins (sulphomucins) leads to a reduction in the establishment of *Strongyloides venezuelensis*, with the degree of sulphation affecting the time of parasite expulsion in Syrian golden hamsters. Furthermore, sulphotransferases are induced prior to *N. brasilensis* expulsion, and the induction of specific sialic acid-containing mucins (sialomucins) bearing Sd blood group antigens, driven via the IL-13/4 receptor axis, has also been correlated with parasite expulsion. During chronic *T. muris* infection, there is a change from sulpho- to sialomucins restricted to the niche of the parasite. In contrast, during acute *T. muris* infections there is maintenance of the level of sulphomucins, driven by IL-13. Importantly, Muc2 containing the sulphated glycans is less susceptible to parasite-mediated proteolytic degradation than its sialomucin counterpart that dominates in chronic infection. Furthermore, in a murine model with reduced mucin sulphation at homeostasis due to a genetic deletion of sulphate anion transporter 1 (Sat-1), mice that would normally be resistant to infection become susceptible, despite the prevailing Th2 immune response. These changes in mucin glycosylation lead to global changes in the mucosal barrier, affecting mucin charge density, which leads to direct alterations within the barrier, including mucus hydration and viscosity that in turn may hinder the parasites’ ability to degrade the mucus and thus contribute to host protection.

9 | GI NEMATODE INFECTION AND MUCUS-ASSOCIATED PROTEINS

Although the major structural component of the intestinal mucus gel is MUC2/Muc2, the viscous gel is a multifaceted mixture of molecules that contains water, electrolytes, carbohydrates, proteins, nucleic acids, amino acids and lipids. Proteomic analyses of mucus samples derived from the large intestine have demonstrated that there are hundreds of proteins held within the mucus gel during homeostasis. However, it is important to note that as the intestinal tract is such a dynamic and exposed tissue, it is also likely that the mucus gel will contain exfoliated cells from the rapidly turned over epithelial layer, bacterial-derived products and dietary components, making it difficult to extrapolate which proteins are functionally important. However, proteins with a structural, antimicrobial and regulatory function have been associated with the mucus gel and have been identified to be present during parasitic infection. Several nonmucin proteins have also been demonstrated to be present within goblet cell granules within the intestine, including IgG Fc-gamma-binding protein (FCGBP), trefoil factor (TTF), chloride channel regulator calcium-activated-1 (CLCA1), resistin-like molecule (RELM)-β and ZG16, but relatively few have been investigated during GI nematode infection.

RELM-β is found within ceecal and colonic mucosa as a hexamer and trimer and is induced by a Th2 response. It has been proposed that RELM-β can affect the ATP levels and hence the fitness of *H. polygyrus* and *N. brasilensis* through impairing the parasites ability to feed. Moreover, RELM-β can aid host protection against *N. brasilensis* by causing entrapment of the parasite and reducing parasite motility. However, during *T. muris* and *T. spiralis* infection there is an induction of RELM-β expression, but it appears to play little role in expulsion. Additionally, the expression of antimicrobial agents derived from goblet cells, namely angiogenin 4, intelectin-1 and intelectin-3, have been associated with *T. muris* expulsion, but their functional importance has yet to be determined.

Trefoil factors (TFFs) are a family of 3 cysteine-rich proteins, TFF1, TFF2 and TFF3, having roles in mucosal repair and protection against GI insult. Studies have demonstrated that TFFs interact with mucins to aid mucus gel integrity. For example, TFF3 has been demonstrated to promote mucosal barrier protection during a rat colitis model. Despite this, *T. spiralis*-infected TFF3 knockout mice had no clear phenotype in comparison with their wild-type counterpart during infection. It has been suggested, however, that TFF2 plays...
important roles during the lung stage of N. brasiliensis infection, which has been correlated with augmenting both IL-33 and Muc5ac expressions within the lung.98

10 | CONCLUSION

Taken together, these data suggest that goblet cells and their secreted products, in particular the polymeric mucus, are important elements for initial protection against GI helminths, and necessary for subsequent clearance of parasites during infection. Not only is there a change in mucus barrier composition and properties, but there is also changes in mucin expression and glycosylation during GI nematode infections. These changes in the mucus barrier constitute a coordinated and critical arm of the innate immune effector response against GI helminths. A better understanding of the regulatory pathways involved in eliciting these changes could highlight novel therapeutic targets to help eradicate this prevalent group of parasites.

ACKNOWLEDGEMENTS

Catherine Sharpe is supported by a BBSRC DTP studentship. The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, is supported by core funding from the Wellcome Trust (grant number 203128/Z/16/Z). R.K.G. acknowledges the support from the Wellcome Trust, Investigator Award (grant number 083620/Z).

DISCLOSURES

The authors declare no conflict of interest.

ORCID

C. Sharpe http://orcid.org/0000-0003-0704-3380
D. J. Thornton http://orcid.org/0000-0001-7148-1970
R. K. Gencis http://orcid.org/0000-0002-7592-0085

REFERENCES

1. Bethony J, Brooker S, Albonico M, et al. Soil-transmitted helminth infections: ascariaisis, trichuriasis, and hookworm. Lancet. 2006;367:1521-1532.
2. Shea-Donohue T, Sun R, Bohl JA, McLean LP, Zhao AP. Enteric nematodes and the path to up-regulation of type 2 cytokines IL-4 and IL-13. Cytokine. 2015;75:62-67.
3. Stephenson LS, Holland CV, Cooper ES. The public health significance of Trichuris trichiura. Parasitology. 2000;121:S73-S95.
4. World Health Organization, TDR Disease Reference Group on Helminth Infections. Research priorities for helminth infections. World Health Organ Tech Rep Ser. 2012;972:1-174.
5. Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nat Rev Immunol. 2011;11:375-388.
6. Miller HRP, Huntley JF, Wallace GR. Immune exclusion and mucus trapping during the rapid expulsion of Nippostrongylus-brasiliensis from primed rats. Immunology. 1981;44:419-429.
7. Carlisle MS, McGregor DD, Appleton JA. Intestinal mucus entrapment of Trichinella spiralis larvae induced by specific antibodies. Immunology. 1991;74:546-551.
8. Bell RG, Adams LS, Ogden RW. Intestinal mucus trapping in the rapid expulsion of Trichinella-spiralis by rats – induction and expression analyzed by quantitative worm recovery. Infect Immun. 1984:45:267-272.
9. Hasnain SZ, Evans CM, Roy M, et al. Muc5ac: a critical component mediating the rejection of enteric nematodes. J Exp Med. 2011;208:893-900.
10. Hasnain SZ, Thornton DJ, Gencis RK. Changes in the mucus barrier during acute and chronic Trichurus muris infection. Parasite Immunol. 2011;33:45-55.
11. Hasnain SZ, Wang HQ, Ghia JE, et al. Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology. 2010;138:1763-1771.
12. Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280:G922-G929.
13. Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA. 2011;108:4659-4665.
14. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837-848.
15. Kamphuis JB, Mercier-Bonin M, Eutamene H, Theodorou V. Mucus organisation is shaped by colonic content; a new view. Sci Rep. 2017;7:8527.
16. Johansson MEV, Gustafsson JK, Sjoberg KE, et al. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PLoS One. 2010;5:e12238.
17. Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucus in airways mucus. Annu Rev Physiol. 2008;70:459-486.
18. Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M. Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut. 2000;47:589-594.
19. Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucus in innate host defense mechanisms against pathogens. J Innate Immun. 2009;1:123-135.
20. Lang TG, Hansson GC, Samuelsson T. An inventory of mucin genes in the chicken genome shows that the mucin domain of Muc13 is encoded by multiple exons and that ovomucin is part of a locus of related gel-forming mucus BM. BMC Genomics. 2006;7:197.
21. Lang TA, Hansson GC, Samuelsson T. Gel-forming mucins appeared early in metazoan evolution. Proc Natl Acad Sci USA. 2007;104:16209-16214.
22. Lindén SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183-197.
23. Sheehan JK, Thornton DJ, Howard M, Carlstedt I, Corfield AP, Paraskeva C. Biosynthesis of the MUC2 mucin: evidence for a slow assembly of fully glycosylated units. Biochem J. 1996;315:1055-1060.
24. Busine MP, Devisse L, Savidge TC, et al. Mucin gene expression in human embryonic and fetal intestine. Gut. 1998;43:519-524.
25. Busine MP, Desreuxa P, Leteurtre E, et al. Mucin gene expression in intestinal epithelial cells in Crohn's disease. Gut. 2001;49:544-551.
26. Forgue-Lafitte ME, Fabiani B, Levy PP, Maurin N, Flejou JF, Bara J. Abnormal expression of M1/MUC5AC mucin in distal colon of patients with diverticulitis, ulcerative colitis and cancer. Int J Cancer. 2007;121:1543-1549.
27. Recktenwald CV, Hansson GC. The reduction-insensitive bonds of the MUC2 Mucin are isopeptide bonds. J Biol Chem. 2016;291:13580-13590.
28. Bell SL, Khatri IA, Xu GQ, Forster JF. Evidence that a peptide corre-
sponding to the rat Muc2 C-terminus undergoes disulphide-mediated
dimerization. Eur J Biochem. 1998;253:123-131.
29. Rousseau K, Byrne C, Kim YS, Gum JR, Swallow DM, Toribara NW.
The complete genomic organization of the human MUC6 and MUC2
mucin genes. Genomics. 2004;83:936-939.
30. Klopj LWJ, Vannrens L, Strous GJ. Cloning and analysis of human gas-
tric mucin cdna reveals 2 types of conserved cysteine-rich domains.
Biochem J. 1995;308:831-838.
31. Jensen PH, Kolarich D, Packer NH. Mucin-type O-glycosylation – put-
ting the pieces together. FEBS J. 2010;277:81-94.
32. Carlstedt I, Lindgren H, Sheehan JK, Ulmsten U, Wingerup L. Isolation
and characterization of human cervical-mucus glycoproteins. Biochem
J. 1983;211:13-22.
33. Larsson JMH, Karlsson H, Crespo JG, et al. Altered O-glycosylation pro-
file of MUC2 mucin occurs in active ulcerative colitis and is associated
with increased inflammation. Inflamm Bowel Dis. 2011;17:2299-2307.
34. Robbe C, Capon C, Coddeville B, Michalski JC. Structural diversity and
specific distribution of O-glycans in normal human mucus along the
testinal tract. Biochem J. 2004;384:307-316.
35. Hasnain SZ, McGuckin MA, Grencis RK, Thornton DJ. Serine prote-
ase(s) Secreted by the nematode Trichuris muris degrade the mucous
barrier. PLoS Negl Trop Dis. 2012;6:e1856.
36. Staubach F, Kunzel S, Baines AC, et al. Expression of the blood-group-
related glycosyltransferase B4galnt2 influences the intestinal micro-
bioita in mice. ISME J. 2012;6:1345-1355.
37. Perez-Vilar J, Eckhardt AE, DeLuca A, Hill RL. Porcine submaxillary
mucin forms disulfide-linked multimers through its amino-terminal D-
domains. J Biol Chem. 1998;273:14442-14449.
38. Godl K, Johansson MEV, Lidell ME, et al. The N terminus of the MUC2
mucin forms trimers that are held together within a trypsin-resistant
core fragment. J Biol Chem. 2002;277:47248-47256.
39. Ambort D, Johansson MEV, Gustafsson JK, et al. Calcium and pH-
dependent packing and release of the gel-forming MUC2 mucin. Proc
Natl Acad Sci USA. 2012;109:5645-5650.
40. Gustafsson JK, Ermund A, Ambort D, et al. Bicarbonate and functional
CFTR channel are required for proper mucin secretion and link cystic
fibrosis with its mucus phenotype. J Exp Med. 2012;209:1263-1272.
41. Specian RD, Neutra MR. Mechanism of rapid mucin secretion in gob-
let cell stimulated by acetylcholine. J Cell Biol. 1980;85:626-640.
42. Kirkham S, Sheehan JK, Knight D, Richardson PS, Thornton DJ. Heterogeneity of airways mucus: variations in the amounts and glyco-
forms of the major oligomeric mucins MUC5AC and MUC5B. Biochem
J. 2002;361:537-546.
43. Lidell ME, Moncada DM, Chadee K, Hansson GC. Entamoeba histo-
otica cysteine proteases cleave the MUC2 mucin in its C-terminal
domain and dissolve the protective colonic mucus gel. Proc Natl Acad
Sci USA. 2006;103:9298-9303.
44. Linden SK, Florion THJ, McGuckin MA. Mucin dynamics in intestinal
bacterial infection. PLoS One. 2008;3:e3952.
45. Patel KK, Miyoshi H, Beatty WL, et al. Autophagy proteins control goblet
cell function by potentiating reactive oxygen species production.
EMBO J. 2013;32:3130-3144.
46. Wlodarska M, Nystrom EEL, Johansson MEV, Hanson GC. INNATE
IMMUNITY A sentinel goblet cell guards the colonic crypt by triggering
Nlrp6-dependent Muc2 secretion. Science. 2016;352:1535-1542.
47. Sato T, Vries RG, Snipurrt HJ, et al. Single Lgr5 stem cells build
crypt-villus structures in vitro without a mesenchymal niche. Nature.
2009;459:262-265.
48. Khan WI, Blennerhasset P, Ma C, Matthaei KL, Collins SM. Stat6 de-
pendent goblet cell hyperplasia during intestinal nematode infection.
Parasite Immunol. 2001;23:39-42.
83. Tsubokawa D, Nakamura T, Goso Y, Takano Y, Kurihara M, Ishihara M, Ishikawa N, Shi BB, Khan AI, Nawa Y. Reserpine-induced sulphomucin production by goblet cells in the jejunum of rats and its significance in the establishment of intestinal helminths. Parasite Immunol. 1995;17:581-586.

84. Shi BB, Ishikawa N, Itoh H, et al. Goblet cell mucins of 4 genera of the subfamily cricetinae with reference to the protective activity against Strongyloides venezuelensis. Parasite Immunol. 1994;16:553-559.

85. Soga K, Yamauchi J, Kawai Y, Uchikawa R, Tegoshi T, Arizono N. Altered expression of goblet cell- and mucin glycosylation-related genes in the intestinal epithelium during infection with the nematode Nippostrongylus brasiliensis in rat. APMIS. 2006;114:270-278.

86. Holmen JM, Olson FJ, Karlsson H, Hansson GC. Two glycosylation alterations of mouse intestinal mucins due to infection caused by the parasite Nippostrongylus brasiliensis. Glycoconj J. 2002;19:67-75.

87. Karlsson NG, Olson FJ, Karlsson H, Hansson GC. Identification of transient glycosylation alterations of sialylated mucin oligosaccharides during infection by the rat intestinal parasite Nippostrongylus brasiliensis. Biochem J. 2000;350:805-814.

88. Yamauchi J, Kawai Y, Yamada M, Uchikawa R, Tegoshi T, Arizono N. Induction of Sd(a)-sialomucin by interleukin-4 (IL-4) or intestinal trefoil factor (ITF/TFF3). Parasitol Res. 2006;55:207-211.

89. Albert TK, Laubinger W, Muller S, et al. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J Proteome Res. 2010;9:3108-3117.

90. Komiya T, Tanigawa Y, Hirohashi S. Cloning and identification of the gene gob-5, which is expressed in intestinal goblet cells in mice. Biochem Biophys Res Commun. 1999;255:347-351.

91. Dehlawi MS, Mahida YR, Hughes K, Wakelin D. Effects of Trichinella spiralis infection on intestinal pathology in mice lacking interleukin-4 (IL-4) or intestinal trefoil factor (ITF/TFF3). Parasitol Int. 2006;55:207-211.

92. Artis D, Mei LW, Keilbaugh SA, et al. RELM beta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci USA. 2004;101:13596-13600.

93. Herbert DR, Yang JQ, Hogan SP, et al. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. J Exp Med. 2009;206:2947-2957.

94. Taupin D, Podolsky DK. Trefoil factors: initiators of mucosal healing. J Exp Med. 2012;213:42248.

95. D’Elia R, deSchoolmeester ML, Zeef LAH, Wright SH, Pemberton AD, Else KJ. Expulsion of Trichinella spiralis is dependent on the Muc5ac mucin. Parasite Immunol. 2013;35:G348-G356.

96. Poulsen SS, Kissow H, Hare K, Hartmann B, Thim L. Luminal and paracellular signalling in intestinal helminths. Nat Rev Mol Cell Biol. 2003;4:721-732.

97. Poel JH, Otten J, De Vries AP. The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One. 2012;7:e42248.

98. Artis D, Mei LW, Keilbaugh SA, et al. RELM beta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci USA. 2004;101:13596-13600.

99. Herbert DR, Yang JQ, Hogan SP, et al. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. J Exp Med. 2009;206:2947-2957.

100. D’Elia R, deSchoolmeester ML, Zeef LAH, Wright SH, Pemberton AD, Else KJ. Expulsion of Trichinella spiralis is dependent on the Muc5ac mucin. Parasite Immunol. 2013;35:G348-G356.

101. Dehlawi MS, Mahida YR, Hughes K, Wakelin D. Effects of Trichinella spiralis infection on intestinal pathology in mice lacking interleukin-4 (IL-4) or intestinal trefoil factor (ITF/TFF3). Parasitol Int. 2006;55:207-211.

102. Albert TK, Laubinger W, Muller S, et al. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J Proteome Res. 2010;9:3108-3117.

103. Komiya T, Tanigawa Y, Hirohashi S. Cloning and identification of the gene gob-5, which is expressed in intestinal goblet cells in mice. Biochem Biophys Res Commun. 1999;255:347-351.

104. Patel SD, Rajala MW, Rossetti L, Scherer PE, Shapiro L. Disulfide-dependent multimeric assembly of resistin family hormones. Science. 2004;304:1154-1158.

105. Artis D, Mei LW, Keilbaugh SA, et al. RELM beta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci USA. 2004;101:13596-13600.

106. Taupin D, Podolsky DK. Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol. 2003;4:721-732.

107. Poel JH, Otten J, De Vries AP. The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One. 2012;7:e42248.

108. Artis D, Mei LW, Keilbaugh SA, et al. RELM beta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci USA. 2004;101:13596-13600.

109. Herbert DR, Yang JQ, Hogan SP, et al. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. J Exp Med. 2009;206:2947-2957.

110. D’Elia R, deSchoolmeester ML, Zeef LAH, Wright SH, Pemberton AD, Else KJ. Expulsion of Trichinella spiralis is dependent on the Muc5ac mucin. Parasite Immunol. 2013;35:G348-G356.

111. Dehlawi MS, Mahida YR, Hughes K, Wakelin D. Effects of Trichinella spiralis infection on intestinal pathology in mice lacking interleukin-4 (IL-4) or intestinal trefoil factor (ITF/TFF3). Parasitol Int. 2006;55:207-211.

112. Albert TK, Laubinger W, Muller S, et al. Human intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is released by hydrogen sulfide. J Proteome Res. 2010;9:3108-3117.

113. Komiya T, Tanigawa Y, Hirohashi S. Cloning and identification of the gene gob-5, which is expressed in intestinal goblet cells in mice. Biochem Biophys Res Commun. 1999;255:347-351.

114. Patel SD, Rajala MW, Rossetti L, Scherer PE, Shapiro L. Disulfide-dependent multimeric assembly of resistin family hormones. Science. 2004;304:1154-1158.

115. Artis D, Mei LW, Keilbaugh SA, et al. RELM beta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci USA. 2004;101:13596-13600.

116. Taupin D, Podolsky DK. Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol. 2003;4:721-732.

117. Poel JH, Otten J, De Vries AP. The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One. 2012;7:e42248.

118. Artis D, Mei LW, Keilbaugh SA, et al. RELM beta/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci USA. 2004;101:13596-13600.

119. Herbert DR, Yang JQ, Hogan SP, et al. Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. J Exp Med. 2009;206:2947-2957.

120. D’Elia R, deSchoolmeester ML, Zeef LAH, Wright SH, Pemberton AD, Else KJ. Expulsion of Trichinella spiralis is dependent on the Muc5ac mucin. Parasite Immunol. 2013;35:G348-G356.

121. Dehlawi MS, Mahida YR, Hughes K, Wakelin D. Effects of Trichinella spiralis infection on intestinal pathology in mice lacking interleukin-4 (IL-4) or intestinal trefoil factor (ITF/TFF3). Parasitol Int. 2006;55:207-211.