Colour, composition, digestibility, functionality and pasting properties of diverse kidney beans (*Phaseolus vulgaris*) flours

Khetan Shevkani a,*, Ravneet Kaur a, Narpinder Singh b, Dinhle P. Hlanze a

a Department of Applied Agriculture, Central University of Punjab, Bathinda, 151401, India
b Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, 143005, India

ARTICLE INFO

Keywords:
Beans
Digestibility
Functionality
Pasting
Proteins

ABSTRACT

The present work evaluated nine diverse kidney bean accessions for colour, composition, digestibility, protein profile, starch crystallinity, techno-functional properties, pasting properties and microstructure with the objective of identifying key attributes affecting their digestibility and functionality. The accessions exhibited dry matter digestibility, resistant starch (RS) content, water absorption capacity, fat absorption capacity, emulsifying activity index (EAI), foaming capacity (FC) and foam stability (FS) of 14.6–47.2%, 32.0–50.5%, 1.7–2.7 g/g, 1.4–1.7 g/g, 50.1–70.1 m²/g, 70.8–98.3% and 82.4–91.3%, respectively. Starch-lipid complexes (SLC), proteins and non-starch carbohydrates contributed to lower starch and dry matter-digestibility. Principal component analysis revealed positive relation of emulsification, foaming and water absorption capacity with proteins, starch, RS and ash-content while negative with crystallinity and amount of lipids, non-starch carbohydrates and digestible starch. Hydration ability of proteins promoted foaming whereas flour with lower *vicia* level was less surface active and exhibited the lowest EAI, FC and FS. Pasting temperature related positively with SLC, while average starch granule size was in strong positive relationship with RS content, peak viscosity and breakdown viscosity. The results could be useful for enhanced utilization of kidney beans in different foods.

1. Introduction

Pulses are inexpensive source of proteins, complex carbohydrates, vitamins, minerals and many health-benefitting phytochemicals (Shevkani et al., 2022). The inclusion of pulses in diets is generally recommended for healthy aging, obesity prevention, diabetes management, relieving constipation and reducing the risk of chronic diseases including coronary artery diseases and some cancers (Brennan et al., 2016; Shevkani and Chourasia, 2021). Pulses also are considered important to 1) meet increasing demands of dietary proteins for growing population of the world, 2) overcome challenges of protein-energy malnutrition, 3) improving soil-fertility and 4) reducing the emission of greenhouse gases (Henchion et al., 2017).

Pulses are used as an ingredient in the preparation of traditional and novel foods (e.g. soups, spreads, snacks, breakfast foods, pasta, etc.) to improve their nutritive value and technological properties (Sozer et al., 2017; Escobedo and Mojica, 2021). Also, they can find applications in specialized products (e.g. low/reduced-calorie/dietetic foods and gluten-free products) because of the absence of allergic gluten proteins and presence of fibre and resistant starch (RS) in considerable amounts (Singh, 2017). However, the successful application of pulses in such products will depend on their overall digestibility and techno-functional properties (water absorption capacity, fat absorption capacity, emulsifying properties, foaming properties and viscosity development) that depend in turn on their composition and the characteristics of their major components (Sreerama et al., 2012).

Kidney bean (*Phaseolus vulgaris*; KB) is one of the most popular pulses. It is an important source of dietary proteins and other nutrients in many countries of the world (Mishra et al., 2017). Different cultivars of KB have been investigated for physicochemical, hydration, cooking, textural and nutritional properties (Kaur et al., 2009; Sharma et al., 2015). Few studies on functional properties of KB cultivars have also been conducted (Siddiq et al., 2010; Gupta et al., 2018; Guldiken et al., 2021). However, the functionality of diverse beans and their accessions is not fully explored (Singh, 2017). Also, the intake of pulses has not incremented much during the last decades (Escobedo and Mojica, 2021). Therefore, studies on digestibility and techno-functional characterization of diverse KB accessions is important for 1) enhancing utilization of this pulse in different food systems through identification of accessions with specific functionality, 2) highlighting the key attributes affecting

* Corresponding author.
E-mail address: shevkani@gmail.com (K. Shevkani).

https://doi.org/10.1016/j.crfs.2022.03.006
Received 9 December 2021; Received in revised form 1 March 2022; Accepted 15 March 2022
Available online 19 March 2022
2665-9271 © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
digestibility and functionality and 3) elucidating the mechanisms behind these associations. In light of the above, the present study was conducted to analyse colour, composition, protein profiling, starch crystallinity, microstructure, digestibility, functional and pasting properties of flours from diverse KB accessions.

2. Materials and methods

2.1. Materials

Nine KB (EC-590329, EC-572723, EC-590326, Pi-244719, Pi-312296, Pi-249554, PLB-10-1, PLB-14-1 and IC-382213) accessions grown at Regional Station, National Bureau of Plant Genetic Resources, Shimla were used for this study. These accessions varied for grain colour from light yellowish-white and yellowish-grey to dark red. The grains were cleaned and ground to pass all through a sieve with 250 µm aperture to produce flours, which were stored at 4 °C in air tight polyethylene terephthalate jars till analysed.

2.2. Colour and composition

Colour parameters of different accessions (grains) and their flours were measured using Ultra Scan VIS Hunter Lab (Hunter Associates Laboratory Inc., U.S.A.). Colour parameters were \(L^* \) (darkness/lightness), \(a^* \) (greenness/redness) and \(b^* \) (blueness/yellowness). Ash, fat and protein (N × 6.25) content were estimated on dry basis following standard AOAC (1990) methods. Total carbohydrate content was calculated as difference. Total starch content was estimated using an assay kit (K-RSTAR, Megazyme, Ireland), while non-starch carbohydrates (NSC) content was determined as the difference between total carbohydrates and total starch content.

2.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis

Proteins were extracted following the method of Kaur et al. (2013) with slight modifications. Briefly, flours (200 mg) were weighed in micro-centrifuge tubes. Extraction buffer (1.0 ml) containing 50 mM Tris (pH 7.8), Triton X-100 (0.5%) and Dithiothreitol (2 mM) was mixed with flours in the micro-centrifuge tubes. After an incubation of 2 h at 4 °C with intermittent vortexing, the tubes were centrifuged at 10,000 ×g for 30 min (4 °C). The supernatants were boiled for 5 min and then centrifuged at 13,600 ×g for 10 min at room temperature. Total proteins in the supernatants were estimated using Bradford’s kit (Genei, Bangalore, India). Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was performed according to the method of Laemmli (1970) at a constant current of 35 mA employing resolving and stacking gels of 12% and 5%, respectively. The resolved gels were stained overnight with 0.25% Coomassie Brilliant Blue R-250 and de-stained with 20% methanol and 10% acetic acid solution.

2.4. X-ray diffraction

X-ray diffractograms of flours equilibrated at 100% relative humidity (at 25 °C for 72 h) were recorded using an X-ray diffractometer (7000, Shimadzu, Japan), operating at 45 kV and 40 mA. Flours were analysed at room temperature over a 2θ range from 4 to 30° with step size of 0.02° (Shevkani et al., 2014). Relative crystallinity was computed following the method of Roa et al. (2014) using Origin software (2022, OriginLab Corporation, Northampton, USA).

2.5. Scanning electron microscopy

Microstructure of flours was studied using a scanning electron microscope (Merlin, Carl Zeiss, Germany). Flours were adhered to stubs using a double-sided carbon tape and viewed at 5 kV and 1400X after being coated with gold using a sputter coater (Quorum Technologies, Lewes, UK).

2.6. Starch and dry matter-digestibility

Resistant starch (RS) and digestible starch (DS) content were determined using an assay kit (K-RSTAR, Megazyme, Ireland) based on AOAC-2002.02, AACC 32–40.01 and Codex Type-II methods. In-vitro dry matter digestibility was determined employing the method described by Odjo et al. (2018). Briefly, 500 mg flour was dispersed with 20 ml phosphate buffer (0.1 M, pH 6.0) and 8 ml hydrochloric acid solution (8 mL, 0.2 M). The pH of the dispersion was adjusted to 2.0 with 1 M hydrochloric acid or sodium hydroxide solution and 1 ml each of freshly prepared pepsin (25 g/l; P7000, Sigma-Aldrich) and chloramphenicol-solution (0.5 g/100 ml ethanol; Sigma-Aldrich) were added to the dispersions. The dispersions were then incubated at 39 °C for 2 h with gently shaking in a water bath shaker (Remi, India). Following pepsin hydrolysis, 8 ml phosphate buffer solution (0.2 M, pH 6.8) and 4 ml of sodium hydroxide solution (0.6 M) were added, pH was adjusted to 6.8 (with 1 M hydrochloric acid or sodium hydroxide solution) and 2 ml freshly prepared pancreatin solution (100 g/l; P1750, Sigma-Aldrich) was added. The mixture was then incubated at 39 °C for 4 h with gentle shaking in water bath shaker. Following pancreatic hydrolysis, centrifugation was done at 3220 ×g for 10 min to collect residue. The residue was dried at 60 °C for 72 h. The weight of dried residue was subtracted from the dry weight of flour to determine the weight of digestible matter. Dry matter digestibility was calculated as the percentage of digestible matter in flours.

2.7. Functional properties

Water and fat absorption capacity (WAC and FAC, respectively), emulsifying activity index (EAI), foaming capacity (FC) and foam stability (FS) were determined following the methods elaborated elsewhere (Shevkani et al., 2015a).

2.8. Pasting properties

Pasting properties were determined using a Rapid Visco-Analyzer (Newport Scientific Pty. Ltd., Warriewood, NSW, Australia). Viscosity profiles of suspensions (flour/water, 3:0.250 g) were recorded during heating (50–95 °C) after an equilibration time of 1 min at 50 °C, holding (95 °C) and cooling (95-50 °C) as described earlier (Singh et al., 2014). Parameters recorded were pasting temperature (PT), peak viscosity (PV), breakdown viscosity (BV), final viscosity (FV) and setback viscosity (SV).

2.9. Statistical analysis

The data reported are mean of triplicate observations except percent crystallinity that was measured in duplicate. The data was subjected to analysis of variance (ANOVA) employing Duncan’s test (\(P < 0.05 \)) and principal component analysis (PCA) using Minitab Statistical Software (State College, PA, USA).

3. Results and discussion

3.1. Colour properties

\(L^* \ a^* \) and \(b^* \) values of KB accessions varied in the range from 37.1 to 76.5, -0.2 to 11.4 and -0.7 to 12.4, respectively. Pi-244719 showed the lowest \(L^* \) value (37.1) with \(a^* \) and \(b^* \) value close to zero (-0.2 and -0.7, respectively) implying the darkest colour of grains. The grains of PLB-14-1 were reddish in colour with \(L^* \), \(a^* \) and \(b^* \) values of 43.4, 11.4 and 9.7, respectively, while PLB-10-1 were dark reddish-brown in appearance with colour values of 38.8, 6.5 and 1.8, respectively (Table 1). EC-590329 and EC-590326, in comparison, were yellowish-
Table 1

Accession	Colour properties of grains and flours of diverse kidney bean accessions.					
	Grains	Flours				
	L^*	a^*	b^*	L^*	a^*	b^*
EC	76.5 ± 1.1	0.8 ± 0.4	11.7 ± 0.2	91.4 ± 0.2	0.1 ± 0.1	8.3 ± 0.3
590329	0.1 ± 0.1	0.0 ± 0.0	0.7 ± 0.1	0.7 ± 0.1	0.1 ± 0.1	0.0 ± 0.0
EC	37.7 ± 1.1	0.1 ± 0.1	1.2 ± 0.1	83.5 ± 0.2	1.9 ± 0.2	5.6 ± 0.3
572273	0.4 ± 0.1	0.3 ± 0.1	0.0 ± 0.0	0.0 ± 0.0		
EC	72.4 ± 1.1	1.1 ± 0.1	12.4 ± 0.2	91.2 ± 0.2	0.3 ± 0.1	7.8 ± 0.3
590326	0.2 ± 0.1	0.1 ± 0.0	0.0 ± 0.0	0.0 ± 0.0		
Pi-244719	37.1 ± 0.2	0.7 ± 0.1	0.0 ± 0.0			
Pi-312296	45.6 ± 0.2	5.0 ± 0.2	8.4 ± 0.2	91.1 ± 0.2	8.3 ± 0.2	
Pi-249554	56.4 ± 0.2	2.9 ± 0.1	8.8 ± 0.1	86.3 ± 0.3	0.3 ± 0.1	
PLB-10-1	38.8 ± 0.3	6.5 ± 0.3	1.8 ± 0.1	86.5 ± 0.1	1.7 ± 0.3	
PLB-14-1	43.4 ± 0.3	11.4 ± 0.1	9.7 ± 0.2	85.5 ± 0.1	1.9 ± 0.2	
IC	44.3 ± 0.4	7.6 ± 0.4	8.9 ± 0.3	84.7 ± 0.4	1.7 ± 0.3	
382213	0.1 ± 0.1	0.4 ± 0.1	0.4 ± 0.1	0.3 ± 0.1	0.0 ± 0.0	0.0 ± 0.0

Values shown are mean ± SD. Values with same superscript in a column did not differ significantly ($P < 0.05$).

Table 2

Accession	Composition of diverse kidney bean accessions.					
	Protein content (%)	Lipid content (%)	Ash content (%)	Total carbohydrates (%)	Starch content (%)	Non-starch carbohydrates (%)
EC-590329	23.0 ± 0.3	2.5 ± 0.0	4.7 ± 0.3	69.8 ± 0.5	54.9 ± 0.7	14.9 ± 0.2
EC-572273	25.6 ± 0.1	2.2 ± 0.1	4.0 ± 0.1	68.3 ± 0.1	40.7 ± 1.1	27.5 ± 0.3
590326	25.5 ± 0.4	2.5 ± 0.0	3.9 ± 0.2	68.2 ± 0.1	56.0 ± 0.5	12.2 ± 0.6
Pi-244719	26.8 ± 0.2	1.6 ± 0.1	4.3 ± 1.0	67.4 ± 0.2	56.0 ± 1.4	11.4 ± 1.0
Pi-312296	26.4 ± 0.1	1.6 ± 0.1	4.5 ± 0.1	67.5 ± 0.4	55.7 ± 0.1	11.8 ± 0.1
Pi-249554	26.9 ± 0.3	1.9 ± 0.1	4.8 ± 0.6	66.4 ± 0.2	50.1 ± 0.8	16.3 ± 0.9
PLB-10-1	26.5 ± 0.1	1.9 ± 0.1	3.7 ± 0.1	68.4 ± 0.1	40.5 ± 0.2	27.8 ± 0.2
PLB-14-1	27.3 ± 0.1	1.5 ± 0.0	3.9 ± 0.1	67.3 ± 0.3	34.0 ± 0.1	33.3 ± 0.1
IC-382213	21.7 ± 0.3	3.2 ± 0.1	4.2 ± 0.3	70.9 ± 0.9	40.4 ± 1.7	30.4 ± 1.6

Values shown are mean ± SD. Values with same superscript in a column did not differ significantly ($P < 0.05$).
3.4. X-ray diffraction pattern and starch crystallinity

The X-ray diffraction analysis of KB accessions highlighted ‘A-type’ pattern with crystalline peaks at \(\approx 15^\circ \), \(\approx 17^\circ \), \(\approx 18^\circ \) and \(\approx 23^\circ \) 2\(\theta \) with minor peak at \(\approx 9^\circ \) 2\(\theta \) (Fig. 3). Similar diffractograms were also reported earlier for starch/flours of different cereals, pseudocereals and beans (Roa et al., 2014; Singh et al., 2014; Wang and Ratnayake, 2014; Shevkani et al., 2014; Waterschoot et al., 2015; Zhang et al., 2019).
Percentage crystallinity for different accessions varied between 13.8% and 20.2% which was lower than that reported for bean starches (18.2–23.8%) by Wang and Ratnayake (2014). The semicrystalline structure of starches was attributed to the hierarchical organization of glucan chains (particularly long chains of amylpectin molecules) within granules (Waterschoot et al., 2015; Wang and Ratnayake, 2014). A positive relationship of long amylpectin chains with starch crystal within granules (Waterschoot et al., 2015; Wang and Ratnayake, 2014). Glucan chains (particularly long chains of amylopectin molecules) restricted dietetic foods suitable for obese and diabetic individuals. PCA bodies. The occurrence of starch granules of 7–37 μm together with relatively small spherical protein bodies of 2–4 μm has been reported for different pulses (Acevedo et al., 2017; Ma et al., 2017; Shevkani et al., 2021b). In general, the granules were intact and embedded partly or completely within protein matrix and surrounded with small particles which were spherical in shape. However, the granules in EC-590329, Pi-244719 and Pi-312296 appeared embedded/coated with protein bodies and protein matrix to a relatively greater extent (Fig. 4). The average size of granules ranged from 22.9 μm (Pi-312296) and 28.2 μm (EC-590329) which was in agreement of Ma et al. (2017) who reported average granule size of 18.6–27.8 μm for different pulses starches.

3. Microstructure

The microstructure of KB accessions was characterized by the presence of spherical to oblong/elliptical granular structures (11.4–44.9 μm) along with smaller particles (2.5–3.3 μm) and irregularly-shaped cellular fragments (Fig. 4). The granular structures were possibly starch granules, whereas smaller spheres likely represented protein bodies. The occurrence of starch granules of 7–37 μm together with relatively small spherical protein bodies of 2–4 μm has been reported for different pulses (Acevedo et al., 2017; Ma et al., 2017; Shevkani et al., 2021b). In general, the granules were intact and embedded partly or completely within protein matrix and surrounded with small particles which were spherical in shape. However, the granules in EC-590329, Pi-244719 and Pi-312296 appeared embedded/coated with protein bodies and protein matrix to a relatively greater extent (Fig. 4). The average size of granules ranged from 22.9 μm (Pi-312296) and 28.2 μm (EC-590329) which was in agreement of Ma et al. (2017) who reported average granule size of 18.6–27.8 μm for different pulses starches.

3.6. Digestibility

Dry matter digestibility, RS and DS content of flours from different KB accessions are presented in Fig. 5. In general, flours showed high RS (32.0–50.5%) and low DS-content (2.1–8.5%). RS content of 13.4–36.0% for beans and 36.7–50.6% for lentils had been reported (Chung et al., 2008; Ai et al., 2017; Lu et al., 2018). RS refers to the portion of starch that resists action of amylolytic enzymes. The consumption of RS has been associated with prevention/management of diabetes and obesity, treatment of kidney diseases and reduced risk of certain cancers (Lockyer and Nugent, 2017). Therefore, high RS content of Pi-244719 (50.5%), EC-590329 (49.6%), EC-590326 (49.4%), Pi-312296 (49.2%) and Pi-249554 (44.5%) highlighted their usefulness in nutraceutical/health-benefitting foods. PCA revealed positive relation of relative proportion of V-type starch-lipid complexes with RS while negative with DS content of accessions (Fig. 1). This highlighted the contribution of starch-lipid complexes towards increased resistance of granules to enzymatic hydrolysis. In addition, RS also related positively with total starch and ash content of accessions (Fig. 1). Cappa et al. (2018) also reported positive correlation between RS and total starch content for dry beans. The accessions also differed widely for dry matter digestibility. In general, flours were only partially digestible (dry matter digestibility = 14.6–47.2%). Amongst different flours, EC-572723 showed the highest dry matter digestibility (47.2%), PLB-10-1 and PLB-14-1, on the other hand, were least digestible (14.6% and 14.8%, respectively). Therefore, these accessions (PLB-10-1 and PLB-14-1) may be considered for calorie-restricted dietetic foods suitable for obese and diabetic individuals. PCA revealed a negative relation of dry matter digestibility and DS content with percent crystallinity, NSC and protein content (Fig. 1). This highlighted that proteins, non-starch polysaccharides and sugars contributed to reduced starch and overall-digestibility of accessions possibly through strengthening flour matrices that made starch granules inaccessible to enzymes (Lu et al., 2018). High resistance of cereals and pulse flours to enzymatic hydrolysis has been attributed to a number of factors including stronger protein and fibre matrices (Sirichuwong et al., 2017; Setia et al., 2019; Guldiken et al., 2021). Low porosity of cotyledon cell wall, relating to its composition and characteristics, was demonstrated to affect starch digestibility by limiting diffusion of digestive enzymes (Li et al., 2019). Gradual increase in RS content (from 7.5% to 12.7%) and decrease in rapidly digestible starch content (from 73.1% to 51.5%) with the mixing of maize starch with pectin (0–10%) was also reported by Ma et al. (2019). Similarly, increase in starch digestibility of rice (decrease in RS content from 6.35% to 4.30% with increasing degree of milling from 0% to 12%) was also attributed to the removal of proteins, lipids and fibre during milling (Wang et al., 2021).

3.7. Techno-functional properties

Emulsifying activity index, FC and FS of KB flours varied in the range from 50.1 m²/g to 70.1 m²/g, 70.8%–98.3% and 82.4%–91.3%, respectively (Fig. 6). EAI, FC and FS of 39.6–61.7 m²/g, 9.7–26.7% and 42.9–80%, respectively were reported earlier for ungerminated/germinated lentil and horse gram flours (Ghumman et al., 2016). Amongst different flours, EC-590326 showed the highest EAI (70.1 m²/g), while the highest FC (98.3%) and FS (91.3%) were observed for Pi-249554 and PLB-10-1, respectively. In general, KB accessions were superior to soybean flours for foaming properties (FC = 18–88% and FS = 16–37%) as reported recently (Shevkani et al., 2021b). This implied the potential of beans in replacing soybean/floors in meals processed requiring aeration/leavening e.g. ice-creams, mousses, muffins, chiffon cakes, whipped toppings, etc. PCA revealed a positive relation of emulsifying and foaming properties with protein, ash and RS-content and negative with crystallinity and lipids, total carbohydrate and NSC-content (Fig. 1). Emulsions and foams are two-phase systems which require surface active agents in order to attain thermodynamic stability. In general, emulsifying and foaming properties of pulse ingredients are attributed to proteins and their ability to reduce surface tension after being adsorbed quickly at the oil-water or air-liquid interface. During emulsification and whipping, proteins migrate to interface where they undergo reorientation and form strong cohesive interfacial membranes. This contribute to emulsification and foaming depending on the ability of the interfacial films to withstand mechanical shocks during storage and handling (Damodaran, 2017). Lipids, on the other hand, being more surface active than proteins, can impair foaming by readily adsorbing at the interface and inhibiting adsorption of proteins (Damodaran, 2017). Therefore, it may be inferred that the presence of greater amount of proteins in beans promoted emulsification and foaming through contributing strength to the interfacial films and behaving as surface active molecules, while NSC and lipids possibly inhibited adsorption of proteins at the interface. Chen et al. (2019) also showed improvement in emulsifying properties of pea proteins with increasing protein concentration from 1.0 to 30 mg/ml, while Toews and Wang (2013) reported higher foaming for pulse protein concentrates obtained after defatting. In addition, the variability in emulsifying and foaming properties may also be attributed to the differences in protein profiling as IC-382213 flour with the least accumulation of vicilins showed the lowest EAI, FC and FS (61.4 m²/g, 84.5% and 98.4%, respectively). This might ascribe to higher surface activity of vicilins attributing to the ease of reorientation at the interface as a result of lower MW and greater flexibility in structure (Chen et al., 2019). Kimura et al. (2008) also reported high emulsifying properties of vicilins from pulses.

Water absorption capacity of flours of different KB accessions varied in the ranged from 1.7 to 2.7 g/g. The highest WAC was observed for PLB-14-1 (Fig. 6), which suggested its suitability in the processing of viscous foods, such as soups, gravies, custards, sauces, and batters
Fig. 4. Scanning electron micrograms of diverse kidney bean accessions.
Fig. 5. Dry matter digestibility, resistant starch content and digestible starch content of diverse kidney bean accessions.

Fig. 6. Techno-functional properties of flours from diverse kidney bean accessions (a: water and fat absorption capacity; b: emulsifying and foaming properties.)
3.8. Pasting properties

Bean flours also differed significantly for pasting properties (Table 3). PT (the minimum temperature at which viscosity began to rise steeply), PV (the point of maximum swelling of starch granules), BV (the susceptibility of swollen granules to disintegrate during heating and shearing), FV (the viscosity of cooled flour paste) and SV (the increase in paste viscosity during cooling as a result of reassociation of gelatinized starch and interaction amongst paste components) varied in the range from 79.2 °C to 84.3 °C, 372 cP to 1015 cP, 30 cP to 67 cP, 1088 cP to 1428 cP, respectively. Pi-312296, EC-590326 and PLB-14-1 showed higher PT than other accessions, while Pi-249554, Pi-244719 and EC-590329 showed higher PV, FV and SV. IC-382213 and EC-572723 showed lower BV, hence, may be considered suitable in foods requiring viscosity increase after cooking, e.g. soups and sauces. Meanwhile, EC-590326 with the lowest SV may be useful in foods (e.g. gels/sauces and gravies) in which retrogradation during cooling may deteriorate the product quality. In contrast, Pi-249554 with the highest FV and SV may be useful in enrichment of pastas, where the organized structure formed as a consequence of the reassociation of dissociated starch chains may contribute to the quality of final product (Luciano et al., 2012).

Pasting properties of flours are generally attributed to the content and characteristics of starches. This association was also observed in the present work as pasting parameters (PT, PV, BV, FV and SV) related positively with total starch and RS content of accessions (Fig. 1). However, at the same time, the pasting parameters were also observed to be in positive relation with average granule size and WAC and in negative relation with lipid content of accessions (Fig. 1). This suggested that larger granules in flours contributed to greater viscosity development possibly due to their ability to occupy more volume in pastes through swelling to a greater degree (Kaur et al., 2016), whereas flour lipids delayed gelatinization and restricted granular swelling possibly through impairing water absorption which reduced leaching of components from swollen granules during cooking and limited association of the leached components during cooling of pastes. Carbas et al. (2018) also reported a negative correlation of PV with lipids content of rice-bean blends. PCA also revealed a positive relation of pasting parameters with the proportion of starch-lipids complexes, though the relationship was stronger with PT. Srichuwong et al. (2017) also reported the contribution of starch-lipids towards increased PT of whole grain cereals and pseudo-cereals. In addition, the protective effects of non-starch polysaccharides and sugars on granular swelling, leaching and molecular re-association was also revealed by PCA as pasting parameters related negatively with total carbohydrates and NSC content (Fig. 1). Ma et al. (2019) also reported lower BV and SV for starch-pectin blends than starch alone and attributed the same to the interactions of pectin with amylose. In previous works, lower BV was observed for maize dry milling fractions and amaranth starches with higher proteins and lipid-content (Shevkani et al., 2014, Shevkani et al., 2021a). However, in the present study, BV did not appear to relate with the amount of proteins, but positively with starch content and average granule size while negatively with total carbohydrates and NSC-content, besides starch crystallinity and lipid content. This highlighted the possible contribution of bean NSC in providing the granules greater stability that made them to disintegrate less during pasting.

4. Conclusion

Bean accessions differed for composition, protein profile, digestibility, pasting and techno-functionality. Proteins and NSC were observed as major contributors to lower-starch and dry matter digestibility that contributed to reduced digestibility through strengthening flour matrices. Hydration ability of proteins promoted foaming while NSC and lipids reduced the same likely through inhibiting the adsorption of proteins at the interface. Paste viscosities of bean flours were attributed mainly to starches, while lipids and NSC suppressed granular swelling, restricted leaching during cooking and inhibited reassociation amongst paste components during cooling by making interaction with unravelled starch granules.

CRediT authorship contribution statement

Khetan Shevkani: Conceptualization, Formal analysis, Investigation, Writing – original draft, Writing – review & editing. Ravneet Kaur: Formal analysis, Investigation. Narpinder Singh: Formal analysis, Supervision, Writing – review & editing. Dinibh P. Hlane: Formal analysis, Investigation.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Authors acknowledge Dr. J.C. Rana, NBPRG, New Delhi for providing access for this research. K.S acknowledges Central University of Punjab, Bathinda for awarding Research Seed Money Grant and providing laboratory facilities.

References

Acevedo, B.A., Thompson, C.M., González-Foustel, N.S., Chaves, M.G., Avanza, M.V., 2017. Effect of different treatments on the microstructure and functional and pasting properties of pigeon pea (Cajanus cajan L.), dolichos bean (Dolichos lablab L.) and jack bean (Canavalia ensiformis) flours from the north-east Argentina. Int. J. Food Sci. Technol. 52, 222–230.

Ai, Y., Jin, Y., Kelly, J.D., Ng, P.K., 2017. Composition, functional properties, starch digestibility, and cookie-baking performance of dry bean flours from 25 Michigan-grown varieties. Cereal Chem 94, 400–408.

Aliko, R.E., Yada, R.V., Lencki, R.W., Marangoni, A.G., 1997. Structural and functional properties of a partially purified cowpea (Vigna unguiculata) globulin modified with protein kinase and glycoconjugate. J. Agric. Food Chem. 45, 2907–2913.

AOAC, 1990. Official Methods of Analysis, fifteenth ed. Association of Official Analytical Chemists, Washington, DC.

Brennan, M.A., Lan, T., Brennan, C.S., 2016. Synergistic effects of barley, oat and legume material on physiochemical and gummy properties of extruded cereal breakfast products. J. Food Process. Preserv. 40, 405–413.

Cappa, C., Kelly, J.D., Ng, P.K., 2018. Seed characteristics and physiochemical properties of powders of 25 edible dry bean varieties. Food Chem 253, 305–313.

Carbas, B., Pathania, S., Castanho, A., Lourenço, D., Veiga, I.M., Patto, M.C.V., Brites, C., 2018. Elucidating potential utilization of Portuguese common bean varieties in rice-based processed foods. J. Food Sci. Technol. 55, 1056–1064.

Chen, M., Lu, J., Liu, N., Nio, A-Tainada, J., Xu, F., Goff, H.D., Ma, J., Zhong, F., 2019. Study on the emulsifying stability and interfacial adsorption of pea proteins. Food Hydrocolloids 88, 247–255.

Chung, H.J., Liu, Q., Paus, K.P., Fan, M.Z., Rana, J.C., 2008. In vitro starch digestibility, expected glycemic index and some physiochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 41, 869–875.

Damodoran, S., 2017. Amino acids, peptides and proteins. In: Damodoran, S., Parkin, K. L. (Eds.), Fennesma’s Food Chemistry, fifth ed. CRC Press, Boca Raton, pp. 235–356.

Diaz, A.M., Caldas, G.V., Blair, M.W., 2010. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 43, 595–601.

Du, S.K., Jiang, H., Yu, X., Jane, J.L., 2014. Physicochemical and functional properties of navy bean flours. Eur. Food Res. Technol. 247, 1745–1756.

Guldiken, B., Konieczny, D., Wang, N., Hou, A., House, J.D., Tu, K., Rosendahl, S., 2018. Elucidating potential utilization of Portuguese common bean varieties in rice-based processed foods. J. Food Sci. Technol. 55, 1056–1064.

Henchion, M., Hayes, M., Mullien, A.M., Fenelon, M., Tiwary, B., 2017. Future protein characteristics of rice bean (Vigna unguiculata) and cowpea (Vigna coccineus) lines. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft-Technol.) 65, 73–80.

Kaur, S., Singh, J.P., Kaur, A., Singh, N., 2016. Development of eggless gluten-free rice muffins from the work reported in this paper.

Khan, A., Singh, N., Patil, A., Awasthi, A., Paul, M., 2022. Antioxidative and antimicrobial properties of pulse protein and their applications in gluten-free foods and sports nutrition. Int. J. Food Sci. Technol. https://doi.org/10.1111/jfst.15666 (in press).

Lockyer, S., Nugent, A.P., 2017. Health effects of resistant starch. Nutr. Bull. 42, 10–41.

Ma, M., Wang, Y., Wang, M., Jane, J.L., Du, S.K., 2017. Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocolloids 63, 249–255.

Makri, E.A., Doxastakis, G.I., 2006. Emulsifying and foaming properties of Phaseolus vulgaris and cocinnea proteins. Food Chem. 98, 558–568.

Makri, E.A., Tripathi, J., Gupta, S., Vartiyar, P.S., 2017. Effect of cooking on aroma profile of red kidney beans (Phaseolus vulgaris) and correlation with sensory quality. Food Chem 215, 401–409.

Mojica, L., Meyer, A., Berhow, M.A., de-Mejia, E.G., 2015. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Int. 69, 38–48.

Osorio, S., Béra, F., Beccers, Y., Fourcart, G., Malumphy, P., 2018. Influence of variety, harvesting date and drying temperature on the composition and the in vitro digestibility of corn. J. Cereal. Sci. 79, 218–225.

Parnam, N., Singh, N., Kaur, A., Virdi, A.S., Shevkani, K., 2017. Protein and microstructure evaluation of harder-to-cook and easy-to-cook grains from different kidney bean accessions. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft-Technol.) 79, 487–495.

Rao, D.F., Santagapita, P.R., Buera, M.P., Tolaba, M.P., 2014. Ball milling of Amaranth starch-enriched flour. Changes on particle size, starch crystallinity, and mechanical energy as a function of milling energy. Food Bioprocess Technol 7, 2723–2731.

Rui, X., Boye, J.J., Ribereau, S., Simpson, B.K., Franah, S.O., 2011. Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseolus vulgaris legume varieties. Food Res. Int. 44, 2497–2504.

Setia, R.B., Z. Nickerson, N. Psenjeniky, E. Malcolmson, A.-L.V., 2019. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res. Int. 122, 263–272.

Sharma, S., Singh, N., Virdi, A.S., Rana, J.C., 2015. Himalayan kidney bean germplasms: grain-flour characteristics, structural-functional properties and in-vitro digestibility of starches. Food Res. Int. 77, 498–505.

Shevkani, K., Kaur, A., Singh, G., Singh, B., Singh, N., 2014. Composition, rheological and extension behaviour of fractions produced by three successive reduction dry milling of corn. Food Bioprocess Technol 7, 1414–1423.

Shevkani, K., Kaur, A., Kumar, S., Singh, N., 2015a. Cowpea protein isolates: functional properties and application in gluten-free rich flours. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft-Technol.) 63, 927–935.

Shevkani, K., Singh, N., Chen, Y., Kaur, A., Yu, L., 2019. Pulse proteins: secondary structure, functionality and applications. J. Food Sci. Technol. 56, 2797–2798. https://doi.org/10.1007/s13197-019-05280-4.

Shevkani, K., Singh, N., Isono, N., Noda, T., 2021a. Structural and functional properties of amaranth starches from residue obtained during protein extraction. J. Food Meas. Charact. 15, 5087–5096.

Shevkani, K., Kaur, M., Singh, N., 2021b. Composition, pasting, functional, and microstructural properties of flours from different split dehulled pulses (dhals). J. Food Process. Preserv. 45, e15485.

Shevkani, K., Singh, N., Kaur, A., Rana, J.C., 2015b. Structural and functional characterization of kidney bean and field pea protein isolates: a comparative study. Food Hydrocolloids 43, 679–689.

Shevkani, K., Chourasia, S., 2021. Dietary proteins: functions, health benefits and healthy eating (aging chapter). In: Rattan, S.I.S., Kaur, G. (Eds.), Nutrition, Food and Diet in Ageing and Longevity. Springer Nature Switzerland AG, Cham, Switzerland, pp. 3–37.

Shevkani, K., Singh, N., Patil, A., Awasthi, A., Paul, M., 2022. Antioxidative and antimicrobial properties of pulse protein and their applications in gluten-free foods and sports nutrition. Int. J. Food Sci. Technol. https://doi.org/10.1111/jfst.15666 (in press).
Sreerama, Y.N., Sashikala, V.B., Pratape, V., Singh, V., 2012. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: evaluation of their flour functionality. Food Chem 131, 462–468.

Srichuwong, S., Curti, D., Austin, S., King, R., Lamothe, L., Gloria-Hernandez, H., 2017. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chem 233, 1–10.

Tiwari, B.K., Tiwari, U., Jagan Mohan, R., Alagusundaram, K., 2008. Effect of various pre-treatments on functional, physicochemical, and cooking properties of pigeon pea (Cajanus cajan L). Food Sci. Technol. Int. 14, 487–495.

Toews, R., Wang, N., 2013. Physicochemical and functional properties of protein concentrates from pulses. Food Res. Int. 52, 445–451.

Vatansever, S., Tulbek, M.C., Riaz, M.N., 2020. Low-and high-moisture extrusion of pulse proteins as plant-based meat ingredients: a review. Cereal Foods World 65, 12–14.

Wang, H., Ratnayake, W.S., 2014. Physicochemical and thermal properties ofPhaseolus vulgaris L. Var. Great northern bean starch. J. Food Sci. 79, C295–C300.

Wang, Z., Zhang, M., Liu, G., Deng, Y., Zhang, Y., Tang, X., Li, P., Wei, Z., 2021. Effect of the degree of milling on the physicochemical properties, pasting properties and in vitro digestibility of Simiaomi rice. Grain Oil Sci. Technol. https://doi.org/10.1016/j.gnost.2021.04.002 available online.

Waterschoot, J., Gomand, S.V., Fiers, E., Delcour, J.A., 2015. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch 67, 14–29.

Zhang, Z., Tian, X., Wang, P., Jiang, H., Li, W., 2019. Compositional, morphological, and physicochemical properties of starches from red adzuki bean, chickpea, faba bean, and baiyue bean grown in China. Food Sci. Nutr. 7, 2485–2494.

Zobel, H.F., 1988. Starch crystal transformations and their industrial importance. Starch 40, 1–7.