Assessment of the Defatting Efficacy of Mechanical and Chemical Treatment for Allograft Cancellous Bone and Its Effects on Biomechanics Properties of Bone

CURRENT STATUS: POSTED

Kun-chi Hua
Department of Orthopedic oncology, Tianjin Hospital
ORCiD: https://orcid.org/0000-0001-6786-6595

Jiang-tao Feng
Department of Orthopedic Oncology, Tianjin Hospital

Xiong-gang Yang
Department of Orthopedic Oncology, Tianjin Hospital

yongcheng Hu
HuYC62@163.com Corresponding Author
ORCiD: https://orcid.org/0000-0002-9526-672X

DOI:
10.21203/rs.2.22191/v1

SUBJECT AREAS
Orthopedics

KEYWORDS
Allograft, Defatting, Biomechanical, Washing, Alcohol
Abstract

Background To assess the defatting efficacy of high pressure washing and gradient alcohol and biomechanical properties of defatted bone.

Methods Fresh cancellous bone was obtained from the femoral condyle and divided into 6 groups according to different defatting treatments, which were high pressure washing for 10 seconds (10S group), 20 seconds (20S group), 30 seconds (30S group), gradient alcohol immersion (Alcohol group), acetone immersion (Acetone group), and non-defatted (Fresh group). The appearance of 6 groups was observed, comparing the appearance difference between defatted bone and fresh bone. The residual lipid content and infrared spectrum were used to compare the efficacy of defatting, the DNA content was used to compare the cell content after defatting, and the maximum stress and elastic modulus were used to compare the effects of defatting treatment on biomechanical properties.

Results The fresh bone was yellow and the pores contained a lot of fat. The defatted bone was white and the porous network was clear. No difference in residual lipid content among the three groups under high pressure washing (1.45 ± 0.16%, 1.40 ± 0.13%, 1.46 ± 0.11%, respectively) (p = 0.828). No difference in residual lipid content among the 10S, alcohol, and acetone groups (1.45 ± 0.16%, 1.28 ± 0.07%, 1.13 ± 0.22%, respectively) (p = 0.125). Infrared spectra showed that the fat content of the five defatting groups was significantly lower than that of the fresh group. No difference in residual lipid content among the three groups under high pressure washing (4.53 ± 0.23ug/ml, 4.61±0.18ug/ml, 4.66 ± 0.25ug/ml, respectively) (p = 0.645). No difference in residual lipid content among the 10S, alcohol, and acetone groups (4.53 ± 0.23ug/ml, 4.29 ± 0.24ug/ml, 4.27±0.29ug/ml, respectively) (p = 0.247). The maximum stress of the bone decreased significantly with the increase of the washing time (9.95 ± 0.31Mpa, 9.07 ± 0.45Mpa, 8.17 ± 0.35Mpa, respectively) (p = 0.003). The elastic modulus of the bone decreased significantly with the increase of the washing time (116.40 ± 3.54Mpa, 106.10 ± 5.29Mpa, 95.63 ± 4.08Mpa, respectively) (p = 0.003). There was no statistical difference in the maximum stress between the fresh group, the 10S group, the alcohol group and the acetone group (10.09 ± 0.67Mpa, 9.95 ± 0.31Mpa, 10.11 ± 0.07Mpa, 10.09 ± 0.39Mpa) (p = 0.963). There was no statistical difference in the maximum stress between the fresh group, the 10S group,
the alcohol group and the acetone group (119.93 ± 4.94Mpa, 116.40 ± 3.54Mpa, 118.27 ± 0.85Mpa, 118.10 ± 4.52Mpa) (p = 0.737).

Conclusion The results of this experiment indicate that the defatting efficiency was satisfactory at a time of 10 seconds under high pressure washing. High pressure washing and gradient alcohol were similar to conventional acetone solvent extraction defatting.

Introduction

The lipid component in allograft bone graft material will reduce the safety and effectiveness of the transplantation\(^\text{[1-3]}\). Because intra-bone fat and lipoproteins and liposoluble glycopeptides on cell membranes have been proven to be important antigenic components in bone transplantation, lipid components can cause immune rejection\(^\text{[4-6]}\). In addition, because the fat in the bone tissue fills the pores of the bone marrow cavity and the lumen, the hydrophobicity of the fat makes it difficult for some chemical reagents to enter the pores of the bone matrix, which affects the wettability of the material. As a result, important procedures such as decellularization and deproteinization that reduce immunogenicity cannot be performed effectively\(^\text{[7]}\). The presence of fat reduces the bone conduction capacity of allograft bone and affects its osteogenesis ability. The fat formed on the surface of bone trabecula forms a barrier to prevent cell growth. It can also cause macrophages to react and cause excessive absorption of bone tissue to form fibers tissue filling, these will affect the osteogenic properties of the graft material\(^\text{[8]}\). The presence of fat will increase the cytotoxicity of the transplanted material. Irradiation is a commonly used method for allograft bone sterilization. Even allograft bone obtained under sterile conditions needs to be sterilized. \(\gamma\)-irradiation is a strong oxidative process. The oxidized or peroxidized lipids are generated in the bone lipid components after irradiation, and the content of peroxidized lipids in bone after irradiation is increased by 2 to 3 times compared with before irradiation\(^\text{[9]}\). The non-defatted allograft bone is brown after irradiation and sterilization. This change is thought to be related to the massive production of lipofuscin-like substances produced by lipid oxidation, and lipofuscin is considered to be one of the important indicators of cell aging\(^\text{[10-11]}\). Therefore, defatting has become the primary procedure for obtaining
The defatting treatment is mainly divided into two categories: chemical and mechanical. The chemical treatment mainly uses organic solvents to extract fats. Organic solvent extraction is to extract the lipid components in allograft bone with volatile organic solvents. This technique can use either pure organic solvents or mixtures of organic solvents. Common solvents are petroleum ether, ethanol, methanol, chloroform, dichloroethane, and acetone. Acetone, as a classic defatting solvent, has been proven to have an excellent defatting efficiency, and it is also a commonly used treatment\(^{12-13}\). Mechanical treatment is mainly based on ultrasonic cleaning. The high-frequency vibration removes fat from the surface of bone tissue and pores. Using this treatment alone cannot effectively remove fat from bone, and it is generally used in conjunction with organic solvents. In addition to the above treatments, some researchers have proposed the use of lipase to remove fat components from bone tissue through the hydrolysis of enzymes, and the effectiveness of this treatment was confirmed by degreasing the porcine bone\(^{14}\). However, there are many types of lipases, and the enzymes have different hydrolysis capabilities, which makes it difficult to use as a conventional defatting treatment.

Based on the principle of extraction, researchers have proposed a treatment for defatting using supercritical fluid extraction, which uses the high permeability, high diffusivity, and high solubility of fluids in a region (supercritical region) above the critical point. The lipid component is extracted, and almost no organic solvent is used in the extraction process. There is no solvent residue in the extract and no pollution to the environment. Supercritical fluid has both gas and liquid duality. It has both high permeability and low viscosity equivalent to gas, and similar density and excellent dissolving power as liquid\(^{15-18}\). However, the equipment required for supercritical fluid extraction is expensive and complicated to operate, which has become an important reason for limiting the widespread promotion of this treatment.

Gradient alcohol treatment is commonly used for dehydration and decellularization of biological samples. If a high concentration of alcohol is used during the defatting process, the intracellular proteins will rapidly denature, and denaturation will prevent alcohol from entering the cells. Gradient
alcohol with increasing concentration can avoid this phenomenon and make the solvent contact the cells more fully. Gardin et al.19 studied the defatting technology of xenogeneic bone with defatting treatment with gradient alcohol, and found that the fat content of bone treated with gradient alcohol was significantly lower than that of bone without gradient alcohol. Gradient alcohol treatment can cause fat cell rupture and lipid dissolution at the same time, to achieve the purpose of defatting. The high pressure water gun is a high pressure cleaner, commonly known as a high pressure water jet cleaner. It is a machine that uses a power unit to make the high pressure plunger pump produce high pressure water to wash the surface of the object. It can peel off dirt and wash away, and achieve the purpose of cleaning the surface of objects. High pressure washing removes lipids and blood from bone and reduces the number of bacteria in the graft. Because high pressure water column is used to clean up the bone, there is no need to worry about the problem of chemical residues. In practical applications, no research has been conducted on the duration of high pressure washing and defatting efficiency. Reasonable washing time is an important parameter for high pressure washing, because bone is bound to withstand continuous washing with high pressure water column. However, insufficient washing time will also cause a large amount of residual immunogenic substances in the bone tissue, especially fat.

The purpose of this study was, first, to find a reasonable high pressure washing time that would ensure effective removal of fat and unaffected mechanical properties of bone tissue. Secondly, the effects of acetone, gradient alcohol and high pressure washing on the defatting efficiency and biomechanical properties of allograft cancellous bone were evaluated.

Materials And Methods

\textbf{Allograft bone}

The method for obtaining human cancellous bone is as follows: (1) Put fresh human femoral condyle into a sterile plastic bag and freeze it at -80 °C for more than 4 weeks, (2) obtain 5mm x 5mm x 5mm cancellous bone, (3) the obtained cancellous bone pieces are put into deionized water and washed with an ultrasonic cleaner for 4 hours, and the deionized water is replaced every hour. After processing, the bone pieces were dried in a 50 °C drying box for 6 hours. After drying, the sample
polyethylene was vacuum-sealed and waited for defatting.

Grouping

The prepared bone pieces were divided into 6 groups, and 5 groups were selected for defatting treatment. The mechanical treatment was performed by high pressure washing. The washing time was 10 seconds (10S group), 20 seconds (20S group), and 30 seconds (30S group). Chemical treatment used gradient alcohol method (alcohol group). Standard control group was treated with acetone (acetone group). The remaining 1 group of non-defatted bone was used as a control (fresh group).

Defatting process

Processed by high pressure washing: bone cubes were placed in a self-made nylon net bag, the opening of the net bag could be tightened, the spray gun head was extended into the net bag, and the tip of the gun was 10 cm away from the surface of the bone. In the process of detachment, choose a columnar spray head, set the cleaning pressure 6MPa, voltage 220V / 50Hz, power 1.6kw, speed 2800r / min, stopwatch timing, washing for 10 seconds (10S group), 20 seconds (20S group), and 30 seconds (30S group).

Processed by gradient alcohol (Alcohol group): first, used deionized water and 100% ethanol to configure 50% alcohol. Place the bone cubes in a 200ml beaker, add the configured 50% alcohol 150ml, and soaked for 2 hours, then changed to 75% alcohol 150ml, soaked for 2 hours, then changed to 95% alcohol 150ml, soaked for 2 hours, finally, changed to 150ml of 100% ethanol, soaked for 2 hours. During the process, the mechanical stirrer was used for stirring, and the rotation speed was set to 200r / min.

Processed by acetone (Acetone group): firstly, deionized water and 100% ethanol were used to configure 50% alcohol. Place the bone cubes in a 200ml beaker, added 150ml of acetone, and soaked for 3 hours, then changed to 150ml of 50% alcohol and soaked for 1 hour, changed to 150ml of acetone and soaked for 3 hours, finally, changed to 150ml of 50% alcohol and soaked for 1 hour in the process, the mechanical stirrer was used for stirring, and the rotation speed was set to 200 r / min.

Fresh group: bone pieces were placed in a 200ml beaker, 150ml of deionized water was added, and
the deionized water was replaced every 2 hours. During the process, the mechanical stirrer was used for stirring, and the speed was set to 200r / min.

After the 6 groups were finished, they were put into deionized water, washed with ultrasonic cleaner for 12 hours, and replaced with deionized water every 3 hours. The washed bone pieces are dried in a 50 °C dry oven for 6 hours. After drying, they were placed in a desiccator to room temperature. After being sealed, they were placed in a -20 °C refrigerator and stored frozen.

Appearance

Observe the general shape of the bone and the morphology and color of the material. The clearer the pores of the bone and the whiter the color, the more effective the treatment proved.

Residual lipid content

Soxhlet extraction was used to determine the residual lipid content of bone mass after defatting.

Soxhlet extraction was a method of extracting compounds from solid matter. Five groups of bone pieces were pulverized to bone particles with a particle size of <900 μm using a high-speed pulverizer. The qualitative filter paper was folded into a filter paper bag, and the analytical balance was precisely weighed. Each group of bone particles was equally divided into 5 parts. After being put into the filter paper bag, the weight was precisely weighed again to obtain the weight of each bone particle, which was recorded as M_1. Put the filter paper bag into the siphon, and add 150 ml of petroleum ether. Connect the Soxhlet extractor in sequence, put the connected instrument into a thermostatic water bath, set the water temperature to 50 °C, start timing when the first siphon, continue extracting for 24 hours, and keep petroleum ether to rinse the sample every 10 minutes. After Soxhlet extraction was completed, the filter paper bag was taken out, dried at 50 °C for 6 hours, and placed in a desiccator to room temperature. Precisely weighed the total weight of the dried filter paper bag and the weight of the filter paper, calculate the bone after defatting, and recorded it as M_2.

Residual lipid content calculation formula:

$$\text{Residual lipid content} = \frac{(M_1 - M_2)}{M_1} \times 100\%$$

Note: M_1 was the mass before soxhlet extraction, and M_2 was the mass after soxhlet extraction.
The residual lipid content was continuous variable. The lower the value, the better the efficacy of the defatting treatment.

Infrared spectrometer

In this experiment, infrared spectroscopy was used to observe the changes of lipid components in bone after different defatting treatment, and compared with fresh bone. Infrared spectroscopy was a method for structural analysis based on the selective absorption of electromagnetic radiation in the infrared region by different substances, and a method for analyzing the composition of various compounds that absorb infrared light. Take 2mg of bone in each of the 6 groups to fully grind, then added about 200mg of pure KBr powder to grind evenly, place it in a mold, press 110Pa pressure on a hydraulic press to form a transparent sheet, and it could be used for measurement. After the preparation was completed, the potassium bromide tablet containing the sample was placed on a magnetic tablet holder, together with the tablet holder, placed in the optical path of the infrared spectrometer, and scanned in the range of 4000 - 400 cm\(^{-1}\) to draw an infrared absorption spectrum. Compared with the infrared spectrum of fresh bone, the lower the characteristic absorption peak of the lipid component, the higher the efficiency of the defatting treatment.

DNA content

DNA (Deoxyribo Nucleic Acid) content could represent the amount of cells remaining in the bone. In this experiment, the DNA content in each group of bone was measured to compare the difference of the remaining cells in different defatted bone. The animal tissue / cell genomic DNA extraction kit was used to isolate the DNA from the bone. After obtaining the high-quality genomic DNA, used an ultraviolet spectrophotometer (wavelength setting is 260nm) to obtain the OD (Optical Density) value of each group solution and calculated the corresponding DNA content.

DNA content (ug / ml) = OD value × 50ug / ml × dilution factor

Note: OD = Optical Density

Each group of tests was repeated 5 times. DNA content was continuous variable. The lower the value, the lower the number of remaining cells in the group.

Biomechanical test
Biomechanics referred to the use of electronic universal testing machine to detect the biomechanical properties of bone. This experiment mainly observed the maximum stress and elastic modulus of the bone. The maximum stress referred to the reaction force generated per unit area when the material was about to be damaged by external force, which was the limit value for the material to work safely. The elastic modulus referred to the stress required for a unit to deform elastically under the action of an external force, and it was an index reflecting the material's ability to resist elastic deformation. Six bone blocks were taken from each group for biomechanical testing. Before the test, ensured that the force line of the loading device was perpendicular to the surface of the bone block, and perform a displacement control loading (1mm / min) biomechanical test. The ambient temperature was 20 ℃ and the humidity was 50%. The test was stopped when the bone tissue was deformed or ruptured to obtain the maximum stress and elastic modulus. The maximum stress and elastic modulus were continuous variables. The larger the value, the better the biomechanical properties of the defatted bone.

Statistical analysis

Statistical analysis was processed with SPSS 20.0 (Statistical Package for Social Sciences, IBM, USA) statistical software. Continuous variables (residual lipid content, DNA content, maximum stress and elastic modulus) conforming to the normal distribution were expressed as mean ± standard deviation (x ± s). One-way ANOVA was used for comparison between multiple groups. For further pairwise comparisons, the SNK-q test was used for all variances, and the LSD-t test was used for variances. Two-sided test, when \(p < 0.05 \), the difference was considered statistically significant.

Results

Results of appearance

The surface of fresh bone mass was rough, covered with fat, and the pores were not obvious. The defatted bone was white and had a clear porous structure. The pores communicated with each other, and the pore walls were clean without soft tissue adhesion.

Measurement of residual lipid content

Soxhlet extraction method was used to determine the residual lipid content of each group. The
residual lipid content of the 10S group was 1.45 ± 0.16%, the residual lipid content of the 20S group was 1.40 ± 0.13%, the residual lipid content of the 30S group was 1.46 ± 0.11%, the residual lipid content in the alcohol group was 1.28 ± 0.07%, and the residual lipid content in the acetone group was 1.13 ± 0.22%. The 10S, 20S and 30S groups showed no statistical difference between the 3 groups by one-way ANOVA (F = 0.195, p = 0.828). The residual fat content of the 10S group, the alcohol group and the acetone group showed that there was no statistical difference between the three groups by one-way ANOVA (F = 2.996, p = 0.125).

Measurement results of infrared spectrometer

After the tablet preparation was completed, 6 groups of spectra were drawn using an infrared spectrometer. Compared with the fresh group, at 2916-2936 cm⁻¹, the absorption peak height of the five groups of defatted bone mass was significantly reduced, and this peak was formed by the stretching vibration of C-H in saturated fat, which represented fat content, it could be considered that the fat content of defatted bone mass was significantly reduced. In addition, the absorption peaks related to OH⁻, H⁺, PO₄³⁻, and CO₃²⁻ in the five defatting groups had almost no difference in position and intensity compared with fresh bone mass, indicating that these defatting treatments could maintain basic composition and natural structural state.

Measurement of DNA content

UV spectrophotometer to obtain the OD value, and then calculated the DNA content of each group. The DNA content of the 10S group was 4.53 ± 0.23ug / ml, the DNA content of the 20S group was 4.61 ± 0.18ug / ml, the DNA content of the 30S group was 4.66 ± 0.25ug / ml, the DNA content of the alcohol group was 4.29 ± 0.24ug / ml, and the DNA content of the acetone group was 4.27 ± 0.29ug / ml. The 10S, 20S, and 30S groups showed no statistical difference between the 3 groups by one-way ANOVA (F = 0.455, p = 0.645). The DNA content of the 10S, the alcohol and the acetone groups showed that there was no statistical difference between the three groups by one-way ANOVA (F = 1.577, p = 0.247).

Results of biomechanical tests
The electronic universal testing machine performed compression failure experiments to obtain the maximum stress and elastic modulus of each group. The maximum stress of the 10S group was 9.95 ± 0.31Mpa, and the elastic modulus was 116.40 ± 3.54Mpa. The maximum stress of the 20S group was 9.07 ± 0.45Mpa, and the elastic modulus was 106.10 ± 5.29Mpa. The maximum stress of the 30S group was 8.17 ± 0.35Mpa, and the elastic modulus was 95.63 ± 4.08Mpa. The maximum stress of the alcohol group was 10.11 ± 0.07Mpa, and the elastic modulus was 118.27 ± 0.85Mpa. The maximum stress of the acetone group was 10.09 ± 0.39Mpa, and the elastic modulus was 118.10 ± 4.52Mpa. The maximum stress of the fresh group was 10.09 ± 0.67Mpa, and the elastic modulus was 119.93 ± 4.94Mpa. The one-way ANOVA of the maximum stress (F = 16.96, p = 0.003) and elastic modulus (F = 16.98, p = 0.003) of the three groups of high pressure washing had statistical differences. Further pairwise comparison, in terms of maximum stress, there was a statistical difference between the 10S group and the 20S group, the 10S group was significantly higher than the 20S group (p = 0.028). The 10S group was significantly different from the 30S group, and the 10S group was significantly higher than the 30S group (p = 0.001). The 20S group was significantly different from the 30S group, and the 20S group was significantly higher than the 30S group (p=0.026). In terms of elastic modulus, there was a statistical difference between the 10S group and the 20S group, and the 10S group was significantly higher than the 20S group (p = 0.049). There was a statistical difference between the 10S group and 30S group, and the 10S group was significantly higher than the 30S group (p = 0.003). The 20S group was significantly different from the 30S group, and the 20S group was significantly higher than the 30S group (p = 0.043). The one-way ANOVA of the maximum stress and elastic modulus of the fresh group, 10S group, alcohol group, and acetone group had no statistical differences (F = 0.092, p = 0.963). The one-way ANOVA of the elastic modulus and elastic modulus of the fresh group, 10S group, alcohol group, and acetone group had no statistical differences (F = 0.431, p = 0.737).

Discussion
The most important thing for allograft transplantation is to solve the immune rejection among different individuals. Defatting is an important treatment to reduce the immunogenicity of allograft
In bone transplantation, the response of the recipient to the allograft bone is mainly a T lymphocyte-mediated response to the allograft bone cell surface antigen. T cells recognize antigens on the cell surface, not on minerals or bone matrix. Cell surface antigens are glycoproteins, glycolipids, and glycopeptides embedded on the surface of cell membranes. They are distinguishing marks for cells and sites for immune recognition. To reduce the immunogenicity of allograft bone, it is necessary to reduce cell surface antigens or change its structure. By removing lipoproteins and liposoluble glycopeptides from bone fat and cell membranes, the integrity of cellular antigens is destroyed, thereby reducing the immunogenicity of allograft bone.

Chappard et al. implanted a non-defatted bone mass into a New Zealand rabbit. Shortly after implantation, a wide range of non-specific inflammation was observed around the graft, and significant fibrosis appeared between the trabecular bone and newly generated giant cells. The appearance of these giant cells was similar to the appearance of Langerhans giant cells observed around the acute pancreatitis lesions, and the pathological characteristics of acute pancreatitis were mainly the release of lipase from the pancreas into the blood and enzymatic hydrolysis of adipose tissue.

The fat contained in bone tissue fills the pores of the bone marrow cavity and other lumens. Thoren et al. observed the immunogenicity and osteogenic capacity of the grafts after defatting the frozen allogeneic bone and implanted them into rabbits. The results showed that defatting could remove these fats, not only increasing the wettability of allogeneic bone, but also leaving pores for new bone formation. One week after the defatted allogeneic bone was implanted into the animal, it was observed that bone marrow mesenchymal stem cells grew into the void left by the lipid clearance, and new bone was also generated in small amounts. Necrosis of surrounding tissues occurred after implantation, and inflammatory cells appeared in large numbers and were wrapped around the necrotic tissue. This study confirmed that the presence of fat reduces the bone conduction capacity of allogeneic bone and affects its osteogenesis ability. The fat formed on the surface of bone trabecula forms a barrier to prevent cell growth, and could also cause macrophage responses to cause excessive absorption of bone to form fibrous tissue filling. The bone graft material with a high
degree of fat removal was easily infiltrated by body fluids after implantation in the body, and the blood vessels and tissues around the host bone were more likely to grow in, which was conducive to new bone formation.

Irradiation is a commonly used method for sterilization of allograft bone. Even allograft bone obtained under aseptic conditions needs to be sterilized by irradiation before being stored in a bone bank\(^ {29-30}\). Gamma irradiation is a strong oxidative process. After exposure to lipid components in bone, oxidized or peroxidized lipids are formed. These have strong cytotoxicity\(^ {31-33}\). Marie et al.\(^ {34}\) co-cultured irradiated human cancellous bone with osteoblasts, and the results showed that a large number of dead osteoblasts appeared around the graft, but no obvious cell death occurred around the unirradiated graft. The content of peroxidized lipid in the grafts after irradiation was significantly higher than that in the non-irradiated group. Oxidized lipids were considered to be the main cause of the large number of osteoblastic deaths. Therefore, when preparing allograft bone, defatting treatment should be added to reduce the cytotoxicity of the graft.

The past defatting treatments mainly used mechanical and chemical. Mechanical defatting was mainly based on ultrasonic cleaning, but the combination of ultrasonic and deionized water alone could not achieve the goal of degreasing. The chemical treatment was mainly chloroform and acetone. The organic solvent was used to extract the lipid components to achieve the goal of separating bone tissue and lipid. However, the residue of organic solvents and poor wettability of bone were important factors affecting the defatting efficacy\(^ {35}\). Two novel defatting treatments were used in this experiment. One was the mechanical treatment of high pressure water gun washing, and the other was the chemical treatment of gradient alcohol soaking. In our experiments, the first thing we solved was the determination of the time of high pressure washing. Before the formal test, we carried out a pre-test to determine the washing time. It was found that when the washing time was greater than 30 seconds, the structure of bone tissue was severely damaged and could not receive further defatting treatment. Therefore, the upper limit of the washing time was determined to be 30 seconds. Combined with experience in actual production, the high pressure washing time was
determined as 10 seconds (10S group), 20 seconds (20S group), and 30 seconds (30S group). In appearance, there was no significant difference in color and morphology, and the three groups were all white with clear pores. The Soxhlet extraction method was used to determine the residual lipid content of the bone mass in each group. As a result, there was no statistical difference in the residual lipid content of the three groups of bone mass. Further observation of the infrared spectrum confirmed that there was no significant difference in the remaining fat content of the three groups of bone. Not only that, from the infrared spectrum, the absorption peaks of the three groups of OH^-, H^+, PO_4^{3-}, and CO_3^{2-} were compared with the fresh group, and there was almost no difference in position and intensity. It showed that the treatment of high pressure washing for 10 seconds, 20 seconds, and 30 seconds could maintain the basic composition and natural structural state of collagen and inorganic matter. In addition, we also observed the effect of high pressure washing on the DNA content, and the results showed that there was no significant difference in the DNA content of the three groups, proving that high pressure washing for 10 seconds, 20 seconds, and 30 seconds had the same ability to remove cells in bone. In order to observe whether the prolonged time of high pressure washing would reduce the mechanical properties of bone, we performed biomechanical tests on three groups, mainly to observe the changes in their maximum stress and elastic modulus. The results showed that there were significant differences between the maximum stress and elastic modulus of the three groups, and the maximum stress and elastic modulus of the bone decreased significantly with the increase of the washing time. Therefore, we believed that the time of high pressure washing should be selected as 10 seconds, because prolonging the washing time could not only improve the degreasing effect, but also reduced the mechanical properties of the bone.

This experiment used acetone (acetone group) as the standard defatting scheme, and compared the efficacy of high pressure washing (10S group) and gradient alcohol (alcohol group) treatments.

Appearance observation showed that the fresh bone was rough on the surface, covered with fat, and the pores were not obvious. The defatted bone was white and clear, with a clear porous structure. The soxhlet extraction method was used to determine the residual lipid content of the three groups of
defatted bone. As a result, there was no statistical difference in the residual lipid content of the three groups. Further observation of the infrared spectrum confirmed once again the results of no significant difference in the residual lipid content of the three groups. Moreover, from the infrared spectrum, the absorption peaks related to OH^-, H^+, PO_4^{3-}, and CO_3^{2-} of the three groups had almost no difference in position and intensity compared with fresh bone. It showed that the defatting treatments of acetone, gradient alcohol and high pressure washing could maintain the basic composition and natural structural state of collagen and inorganic matter. In addition, we also observed the efficacy of different defatting treatments on the DNA content, and the results showed that there was no significant difference in the DNA content of the three groups, demonstrating that high pressure washing, gradient alcohol and acetone had the same ability to remove cells in bone. In order to observe whether the three types of defatting treatment would reduce the biomechanical properties of bone, we performed biomechanical tests on three groups and fresh group, mainly to observe the changes in their maximum stress and elastic modulus. It was found that there was no significant difference in maximum stress and elastic modulus between the three groups and the fresh group. Therefore, we believed that high pressure washing and gradient alcohol were effective treatments, which could achieve the same defatting efficacy as the acetone treatment, while ensuring the integrity of the internal structure of the bone and stable biomechanical properties.

Conclusion

The results of this experiment indicate that the defatting efficiency was satisfactory at a time of 10 seconds under high pressure washing, and prolonging the time could not improve the defatting efficiency, but reduced the biomechanical properties of the bone. High pressure washing and gradient alcohol were similar to traditional acetone solvent extraction defatting. Most of the organic solvents used for defatting were toxic, and the residue in the material was not conducive to the adhesion of bone cells and the repair of bone tissue. Therefore, the selection of non-toxic defatting treatment is of great significance for the antigen treatment of allograft bone. High pressure washing and gradient alcohol have the above characteristics, which lays a good foundation for the next step in constructing allograft bone for transplantation. However, these two treatments still need further in vitro cell tests,
in vivo implantation experiments and animal experiments to verify their safety and efficacy.

Abbreviations

DNA
Deoxyribo Nucleic Acid
OD
Optical Density

Declarations

Acknowledgments

I would like to express my special thanks to my partners for the encouragement and support they gave me during my study. Thanks to my girlfriend, Miss Sun, for her support for my life and research.

Disclosure

The authors declare no conflict of interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The authors declare that all the data supporting the findings of this study are available within the article and its supplementary information files.

Authors’ contributions

Hua KC: methodology, validation, formal analysis, investigation, data curation, writing-original draft, writing-reviewing and editing, project administration.
Feng JT: methodology, validation, formal analysis.
Yang XG: data curation, writing-original draft.
Hu YC: conceptualization, methodology, validation, investigation, writing-reviewing and editing.

All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication
Not applicable.

Competing interests

The authors declare that they have no competing interest.

References

1. Riu G D, Meloni S M, Raho M T, et al. Delayed Iliac Abscess as An Unusual Complication of an Iliac Bone Graft in an Orthognathic Case[J]. International Journal of Oral & Maxillofacial Surgery, 2008, 37(12):1156-1158.

2. Kuriki K, Tajima K, Tokudome S. Accelerated solvent extraction for quantitative measurement of fatty acids in plasma and erythrocytes[J]. Lipids, 2006, 41(6):605-614.

3. Feng W, Lian Y, Zhou Z, et al. Distribution of the Alpha-Gal Epitope on Adult Porcine Bone Tissue[J]. Transplantation Proceedings, 2006, 38(7):2247-2251.

4. Czitrom, Andrei A. The Immune Response: The Afferent Arm[J]. Clinical Orthopaedics and Related Research, 1996, 326(326):11-24.

5. Horowitz, Mark C, Friedlaender, Gary E, Qian, He-Ying. The Immune Response: The Efferent Arm[J]. Clin Orthop Relat Res, 326(326):25-34.

6. Urist M R, Mikulski A, Boyd S D. A chemosterilized antigen-extracted autodigested alloimplant for bone banks[J]. Archives of Surgery, 1975, 110(4):416-428.

7. Chappard D, Fressonnet C, Genty C, et al. Fat in bone xenografts: importance of the purification procedures on cleanliness, wettability and biocompatibility[J]. Biomaterials, 1993, 14(7):507-512.

8. Thorén, Klas, Aspenberg P, Thorngren K G. Lipid extraction decreases the specific immunologic response to bone allografts in rabbits[J]. Acta Orthopaedica, 1993, 64(1):44-46.
9. Nguyen H, Morgan D A F, Forwood M R. Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics[J]. Cell and Tissue Banking, 2007, 8(2):93-105.

10. Frayssinet P, Rouquet N, Mathon D, et al. Histological integration of allogeneic cancellous bone tissue treated by supercritical CO2 implanted in sheep bones[J]. Biomaterials, 1998, 19(24):2247-2253.

11. Parhami F, Morrow A D, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients.[J]. Arteriosclerosis Thrombosis & Vascular Biology, 1997, 17(4):680-7.

12. Fages J, Marty A, Delga C, et al. Use of supercritical CO2 for bone delipidation[J]. Biomaterials, 1994, 15(9):650-656.

13. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone[J]. Biomaterials, 2004, 25(6):987-994.

14. Zhang N, Zhou M, Zhang Y, et al. Porcine bone grafts defatted by lipase: efficacy of defatting and assessment of cytocompatibility[J]. Cell and Tissue Banking, 2014, 15(3):357-367.

15. Haas R, Haidvogl D, Donath K, et al. Freeze-dried homogeneous and heterogeneous bone for sinus augmentation in sheep. Part I: histological findings.[J]. Clinical Oral Implants Research, 2010, 13(4):396-404.

16. OuaSsi M, Alves A, Bouhnik Y, et al. Three-Step Ileal Pouch-Anal Anastomosis under Total Laparoscopic Approach for Acute or Severe Colitis Complicating Inflammatory Bowel Disease[J]. Journal of the American College of Surgeons, 2006, 202(4):637-642.

17. Bemelman W. Laparoscopic-assisted bowel resections in inflammatory bowel disease
18. Browaeys H, Bouvry P, Bruyn H D. A Literature Review on Biomaterials in Sinus Augmentation Procedures [J]. Clinical implant dentistry and related research, 2007, 9(3):166-177.

19. Gardin C, Ricci S, Ferroni L, et al. Decellularization and Delipidation Protocols of Bovine Bone and Pericardium for Bone Grafting and Guided Bone Regeneration Procedures [J]. PLOS ONE, 2015, 10(7):e0132344.

20. Tapety F I, Amizuka N, Uoshima K, et al. A histological evaluation of the involvement of Bio-Oss® in osteoblastic differentiation and matrix synthesis [J]. Clinical oral implants research, 2004, 15(3):315-324.

21. Iorgi N D, Rosol M, Mittelman S D, et al. Reciprocal Relation between Marrow Adiposity and the Amount of Bone in the Axial and Appendicular Skeleton of Young Adults [J]. Journal of Clinical Endocrinology & Metabolism, 2008, 93(6):2281-2286.

22. Friedlaender G E. Immune responses to osteochondral allografts. Current knowledge and future directions [J]. Clinical Orthopaedics and Related Research, 1983, 174(174):58-68.

23. Horowitz M C, Friedlaender G E. Induction of specific T-cell responsiveness to allogeneic bone. [J]. JBJS, 1991, 73(8):1157-68.

24. Muscolo D L, Caletti E, Schajowicz F, et al. Tissue-typing in human massive allografts of frozen bone [J]. Journal of Bone & Joint Surgery-american Volume, 1987, 69(4):583-595.

25. E Möller. Advances in and future of tissue typing [J]. Transplantation Proceedings, 1991, 23(1 Pt 1):63-66.

26. David D. Eckels. Alloreactivity: Allogeneic presentation of endogenous peptide or direct recognition of MHC polymorphism? A review [J]. Tissue Antigens, 1990, 35(2).
27. Muscolo D L, Ayerza M A, Calabrese M E, et al. Human Leukocyte Antigen Matching, Radiographic Score, and Histologic Findings in Massive Frozen Bone Allografts[J]. Clinical Orthopaedics and Related Research, 1996, 326(326):115-126.

28. Thorén K, Aspenberg P, Thorngren K G. Lipid extracted bank bone. Bone conductive and mechanical properties.[J]. Clinical Orthopaedics & Related Research, 1995, 311(311):232-246.

29. Schwarz N, Redl H, Schiesser A, et al. Irradiation-sterilization of rat bone matrix gelatin[J]. Acta Orthopaedica, 1988, 59(2):165-167.

30. Ostrowski K, Dziedzic-Goclawska A, Stachowicz W, et al. Radiation-induced paramagnetic centers in research on bone physiopathology[J]. Clinical Orthopaedics & Related Research, 1991, &NA;(272):21-9.

31. Schreiner L J, Cameron I G, Funduk N, et al. Proton NMR spin grouping and exchange in dentin[J]. Biophysical Journal, 1991, 59(3):629-639.

32. Akkus O, Belaney R M, Das P. Free radical scavenging alleviates the biomechanical impairment of gamma radiation sterilized bone tissue[J]. Journal of Orthopaedic Research, 2005, 23(4):838-845.

33. Burgess H W, Mackrell J, Toms D, et al. Response of Bone Subjected to Optimized High Dose Irradiation[J]. Journal of Biomaterials Applications, 2010, 24(5):387-400.

34. Marie Françoise Moreau, Gallois Y, Basle M F, et al. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells[J]. Biomaterials, 2000, 21(4):369-376.

35. Kalus U, Helga Müller, Baudisch H, et al. A method for the determination of the residual chloroform in defatted cancellous bone transplants[J]. Cell and Tissue Banking, 2005, 6(1):71-75.
| Material and Equipment | Company | Model | Parameter |
|------------------------|---------|-------|-----------|
| Deionized Water | Wonderful Biological Materials, Beijing, China | | |
| Alcohol | Beijing Chemical Reagent Company, Beijing, China | | 75%~95% and 100% v/v |
| Acetone | Tianjin Damao Chemical Reagent Factory, Tianjin, China | | Analytical pure |
| Petroleum Ether | Tianjin Damao Chemical Reagent Factory, Tianjin, China | | 30~60°C |
| Animal Tissue/Cell Genomic Dna Extraction Kit | Solarbio, Beijing, China | D1700-100T | Store dry at room temperature (15 °C -25 °C), retest period is 12 months. |
| Potassium Bromide Powder | Bangjing Industrial, Shanghai, China | Spectral purity | |
| -80 °C Refrigerator | Zhongke Meiling Cryogenic Technology, Anhui, China | DW-HL828 | Temperature inside the box: -10 °C ~ -86 °C; Effective volume: 828L; Rated voltage: 220V |
| -20 °C Refrigerator | Hefei Midea Refrigerator, Anhui, China | BD/BC-96KM(E) | Freezing temperature in the box: -16 °C ~ -24 °C; Freezing capacity: 16kg / 24h; Structural features: Flip-top door, can stay at any angle within ≥30 ° and ≤75 ° |
| High Pressure Rinsing Gun | Jeremy Equipment, China | GTQ-1600 | Cylindrical nozzle, cleaning pressure 6MPa; fan nozzle, cleaning pressure 4 ~ 5MPa |
| Ultrasonic Cleaner | Kexi Century Technology, Beijing, China | KX-1024 | Ultrasonic power 1200W, ultrasonic frequency: 28KHz, heating power 2000W |
| Digital Display Constant Speed Electric Mixer | Changzhou Ronghua Instrument Manufacturing, Jiangsu, China. | JJ-1H | |
| High-Speed Pulverizer | Red Sun Electromechanical, Zhengjiang, China | RRH-A1000 | |
| Soxhlet Extractor | Shubo Glass Instrument, Sichuan, China | 250ml | |
| Constant Temperature Water Bath | Guohua Electric, Jiangsu, China | HH-2 | |
| Fourier Transform Infrared Spectrometer | Thermo Fisher Scientific, Massachusetts, Usa | Nicolet iS10 | Spectral resolution: better than 0.4cm⁻¹; spectral range: 7800-350cm⁻¹; wave number accuracy: 0.01cm⁻¹. |
| Desktop High-Solarbio, Beijing, China | YZ-D2012 plus | | The maximum speed is 15000 rpm, and the |
Speed Micro Mini Centrifuge

maximum relative centrifugal force (RCF) is 15100 xg.

Uv Spectrophotometer
Inesa Analytical Instrument, Shanghai, China

Transmittance measurement range: 0.0% ~200.0%; absorbance measurement range -0.301A ~ 4.000A.

Electronic Universal Testing Machine
Jinan Chuanbai Instrument Equipment, Shandong, China

The maximum test force is 10 kN, the relative error of the test force is ± 1%, the effective measurement force range is 0.2-100% FS, and the beam moving speed is 0.001 to 500 mm / min.

Electronic Balance
Jingqi Instrument, Shanghai, China

Weighing range is 0~200g, standard deviation is 0.0002 g.

Figures
DNA content determination process: grinding bone mass (a), centrifugation (b), UV spectrophotometer to measure OD (optical density) value (c). Bone mass was ground to bone powder with a diameter of 0.80-1.50mm. When centrifuging, please put the balanced centrifuge tube symmetrically into the centrifugal rotor (position balance), cover the centrifugal rotor and pay attention to whether it was tight. The wavelength setting value of the ultraviolet spectrophotometer was 260.0nm, and it was adjusted to “zero” after the setting was completed.

Appearance of fresh group and five groups defatted bone. From left to right, fresh group, 10S group, 20S group, 30S group, alcohol group and acetone group. The fresh bone was yellow with a lot of fat in the pores, and the defatted bone mass was white and the porous network structure was clear.
one-way ANOVA: F=0.195, p=0.828
Error bars: Standard deviation

Residual lipid content in three groups of high pressure washing. The abscissa represents the grouping and the ordinate represents the residual lipid content. Error bars represent standard deviations. One-way ANOVA was used to compare the residual lipid content between the three groups (F = 0.195, p = 0.828). It was proved that there was no statistical difference in the residual lipid content among the three groups.
Residual lipid content in different defatting treatments. The abscissa represents the grouping and the ordinate represents the residual lipid content. Error bars represent standard deviations. One-way ANOVA was used to compare the residual lipid content between the three groups ($F = 2.966, p = 0.125$). It was proved that there was no statistical difference in the residual lipid content among the three groups.
Infrared spectrum of fresh group: the small absorption peaks at 559cm⁻¹ and 605cm⁻¹ were caused by the asymmetric bending vibration of the O-P-O bond in PO₄³⁻; the strong absorption peak at 1037cm⁻¹ was the asymmetric stretching vibration peak of the P-O bond in PO₄³⁻. Asymmetric stretching vibration of CO₃²⁻ could be observed at 1464cm⁻¹ and 1561cm⁻¹, indicating that the bone contains more carbonate. The bending vibration peak of hydroxyl groups in water appeared at 1637cm⁻¹, which indicated that the bone still contained a certain amount of moisture, while the strong absorption peak generated by hydroxyl groups in hydroxyapatite appeared at 3417cm⁻¹. There were two strong absorption peaks at 2853cm⁻¹ and 2924cm⁻¹, which were mainly formed by the C-H stretching vibration in saturated fatty acids, which proved that the fresh group bone contains a lot of fat.
Infrared spectrum of 10S group: the small absorption peak at 561 cm\(^{-1}\) was caused by the asymmetric bending vibration of the O-P-O bond in PO\(_4^3-\). The strong absorption peak at 1036 cm\(^{-1}\) was the asymmetric stretching vibration peak of the P-O bond in PO\(_4^3-\). Asymmetric stretching vibration of CO\(_3^2-\) could be observed at 1385 cm\(^{-1}\), indicating that the bone contains carbonate. The bending vibration peak of hydroxyl groups in water appeared at 1637 cm\(^{-1}\), which indicated that the bone still contained a certain amount of moisture, while the strong absorption peak generated by hydroxyl groups in hydroxyapatite appeared at 3418 cm\(^{-1}\). There were two absorption peaks at 2853 cm\(^{-1}\) and 2923 cm\(^{-1}\), which were mainly formed by the C-H stretching vibration in saturated fatty acids, which proved that the bone in the 10S group still contains a small amount of fat.
Infrared spectrum of 20S group: the small absorption peak at 604 cm⁻¹ was caused by the asymmetric bending vibration of the O-P-O bond in PO₄³⁻. The strong absorption peak at 1036 cm⁻¹ was the asymmetric stretching vibration peak of the P-O bond in PO₄³⁻. Asymmetric stretching vibration of CO₃²⁻ could be observed at 1384 cm⁻¹, indicating that the bone contains carbonate. A bending vibration peak of hydroxyl groups in water appeared at 1618 cm⁻¹, indicating that bone still contained a certain amount of moisture, while a strong absorption peak generated by hydroxyl groups in hydroxyapatite appeared at 3415 cm⁻¹. There were two absorption peaks at 2852 cm⁻¹ and 2922 cm⁻¹, which were mainly formed by the C-H stretching vibration in saturated fatty acids, which proved that the bone in the 20S group still contains a small amount of fat.
Figure 8

Infrared spectrum of 30S group: the small absorption peak at 560 cm\(^{-1}\) was caused by the asymmetric bending vibration of the O-P-O bond in PO\(_4^3\)-. The strong absorption peak at 1037 cm\(^{-1}\) was the asymmetric stretching vibration peak of the P-O bond in PO\(_4^3\)-. Asymmetric stretching vibration of CO\(_3^2\)- could be observed at 1385 cm\(^{-1}\), indicating that the bone contains carbonate. The bending vibration peak of hydroxyl groups in water appeared at 1637 cm\(^{-1}\), indicating that the bone still contained a certain amount of water, while the strong absorption peaks of hydroxyl groups in hydroxylapatite appeared at 3427 cm\(^{-1}\). There were two absorption peaks at 2852 cm\(^{-1}\) and 2923 cm\(^{-1}\), which were mainly formed by the C-H stretching vibration in saturated fatty acids, which proved that the bone in the 30S group still contains a small amount of fat.
Figure 9

Infrared spectrum of alcohol group: the small absorption peak at 559cm⁻¹ was caused by the asymmetric bending vibration of the O-P-O bond in PO₄³⁻. The strong absorption peak at 1038cm⁻¹ was the asymmetric stretching vibration peak of the P-O bond in PO₄³⁻. Asymmetric stretching vibration of CO₃²⁻ could be observed at 1384cm⁻¹, indicating that the bone contains carbonate. The bending vibration peak of hydroxyl groups in water appeared at 1654cm⁻¹, indicating that the bone still contained a certain amount of moisture, while the strong absorption peaks of hydroxyl groups in hydroxyapatite appeared at 3434cm⁻¹. There were two absorption peaks at 2853cm⁻¹ and 2923cm⁻¹, which were mainly formed by the C-H stretching vibration in saturated fatty acids, which proved that the bone in the alcohol group still contains a small amount of fat.
Infrared spectrum of acetone group: the small absorption peak at 605 cm$^{-1}$ was caused by the asymmetric bending vibration of the O-P-O bond in PO$_4^{3-}$. The strong absorption peak at 1036 cm$^{-1}$ was the asymmetric stretching vibration peak of the P-O bond in PO$_4^{3-}$. Asymmetric stretching vibration of CO$_3^{2-}$ could be observed at 1407 cm$^{-1}$, indicating that the bone contains carbonate. The bending vibration peak of hydroxyl groups in water appeared at 1638 cm$^{-1}$, indicating that the bone still contained a certain amount of moisture, while the strong absorption peak generated by hydroxyl groups in hydroxyapatite appeared at 3415 cm$^{-1}$. There were two absorption peaks at 2853 cm$^{-1}$ and 2924 cm$^{-1}$, which were mainly formed by the C-H stretching vibration in saturated fatty acids, which proved that the bone in the acetone group still contains a small amount of fat.
DNA content in three groups of high pressure washing. The abscissa represents the grouping and the ordinate represents the DNA content. Error bars represent standard deviations. One-way ANOVA was used to compare the DNA content between the three groups ($F=0.455$, $p=0.645$). It was proved that there was no statistical difference in the DNA content among the three groups.
Figure 12

DNA content in different defatting treatments. The abscissa represents the grouping and the ordinate represents the DNA content. Error bars represent standard deviations. One-way ANOVA was used to compare the DNA content between the three groups ($F=1.577$, $p=0.247$). It was proved that there was no statistical difference in the DNA content among the three groups.
Maximum stress in three groups of high pressure washing. The abscissa represents the grouping and the ordinate represents the maximum stress. Error bars represent standard deviations. One-way ANOVA was used to compare the maximum stress between the three groups (F=16.96, p=0.003). It was proved that there was a statistical difference in the maximum stress among the three groups. Further pairwise comparison, there was a statistical difference between the 10S group and the 20S group, the 10S group was significantly higher than the 20S group. The 10S group was significantly different from the 30S group, and the 10S group was significantly higher than the 30S group. The 20S group was significantly different from the 30S group, and the 20S group was significantly higher than the 30S group.
Elastic modulus in three groups of high pressure washing. The abscissa represents the grouping and the ordinate represents the elastic modulus. Error bars represent standard deviations. One-way ANOVA was used to compare the elastic modulus between the three groups (F = 16.98, p = 0.003). It was proved that there was a statistical difference in the elastic modulus among the three groups. Further pairwise comparison, there was a statistical difference between the 10S group and the 20S group, the 10S group was significantly higher than the 20S group. The 10S group was significantly different from the 30S group, and the 10S group was significantly higher than the 30S group. The 20S group was significantly different from the 30S group, and the 20S group was significantly higher
than the 30S group.

Figure 15

Maximum stress in fresh, 10S, alcohol and acetone groups. The abscissa represents the grouping and the ordinate represents the maximum stress. Error bars represent standard deviations. Independent t-test was used to compare the maximum stress of the fresh group with the 10S group, the alcohol group, and the acetone group. The results showed that there was no statistical difference between the fresh group and the 10S group, the alcohol group, and the acetone group (p > 0.05).
Elastic modulus in fresh, 10S, alcohol and acetone groups. The abscissa represents the grouping and the ordinate represents the elastic modulus. Error bars represent standard deviations. Independent t-test was used to compare the elastic modulus of the fresh group with the 10S group, the alcohol group, and the acetone group. The results showed that there was no statistical difference between the fresh group and the 10S group, the alcohol group, and the acetone group (p > 0.05).