Correction: The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance

Carol A Clausen1*, Nami S Kartal2, Rachel A Arango1 and Frederick Green III1

Correction

Chemical retention calculations have been corrected in Table 1 [1].

Table 1 Average chemical retention of pre-leached wood blocks.

Treatment	Concentration (%)	Retention (kg/m³)	Std dev.
Untreated	-	-	-
30 nm ZnO	1.0	8.9	0.3
30 nm ZnO	2.5	22.8	0.8
30 nm ZnO	5.0	44.3	5.2
70 nm ZnO	1.0	8.4	1.1
70 nm ZnO	2.5	21.7	2.7
70 nm ZnO	5.0	46.5	5.7
Zn SO4	1.0	8.7	0.4
Zn SO4	2.5	23.1	0.7
Zn SO4	5.0	43.3	1.0

Reference

1. Clausen CA, Kartal SN, Arango RA, Green F III: The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Res Lett 2011, 6:427.

doi:10.1186/1556-276X-6-465

Cite this article as: Clausen et al: Correction: The role of particle size of particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance. Nanoscale Research Letters 2011 6:465.