A new K\(^+\) channel-independent mechanism is involved in the antioxidant effect of XE-991 in an in vitro model of glucose metabolism impairment: implications for Alzheimer’s disease

Silvia Piccirillo\(^1\), Alessandra Preziuso\(^1\), Salvatore Amoroso\(^1\), Tiziano Serfilippi\(^1\), Francesco Miceli\(^2\), Simona Magi\(^1\)\(^{\ast}\) and Vincenzo Lariccia\(^1\)

© The Author(s) 2022

Alzheimer’s disease (AD) is a neurodegenerative disorder that represents the first cause of dementia. Although there has been significant progress in AD research, the actual mechanisms underlying this pathology remain largely unknown. There is increasing evidence that oxidative stress, metabolic alterations, and mitochondrial dysfunction are key players in the development and worsening of AD. As a result, in the past few years, remarkable attempts have been made to develop neuroprotective strategies against the impairment of mitochondrial dynamics and cell redox status. In the present study, we reveal a novel antioxidant K\(^+\) channel-independent effect of the M-current inhibitor XE-991 in SH-SY5Y cells differentiated with retinoic acid (RA) and primary rat cortical neurons exposed to the glycolysis inhibitor glyceraldehyde (GA). This experimental approach aimed to create a condition of hypometabolism accompanied by mitochondrial dysfunction and redox imbalance, as frequently observed in the beginning stage of the disease. We found that XE-991 exerted a neuroprotective action most likely through the resumption of superoxide dismutase (SOD) activity, which was significantly compromised during GA challenge. We also observed that the enhancement of SOD activity was accompanied by a sequence of positive effects; these included the reduction in basal Ca\(^{2+}\) levels within cytoplasmic and mitochondrial compartments, the decrease in mitochondrial reactive oxygen species (ROS) production, the modulation of AMPK/mTOR pathway, the recovery of ΔΨ\(_{\text{m}}\), collapse, the increase in the intracellular ATP content and the decrease in amyloid-β (A\(β\)) and hyperphosphorylated form of tau protein (pTau) levels. Collectively, our study reveals an off-target antioxidant effect of XE-991 and paves the way toward the further evaluation of new therapeutic uses of already existing molecules to accelerate the process of developing an effective therapy to counteract AD.

Cell Death Discovery (2022)8:391; https://doi.org/10.1038/s41420-022-01187-y

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder that represents the first common cause of dementia, affecting approximately 50 million people all over the world [1–3]. The major pathological features of AD are the accumulation of amyloid-β (A\(β\)) plaques, and intracellular neurofibrillary tangles, which contain the microtubule-associated protein tau in its hyperphosphorylated form (pTau) [3, 4]. Mounting evidence suggests that mitochondrial alteration, metabolic dysfunction, and oxidative damage are upstream events that may cause the subsequent pathogenic cascade typically associated with AD [5, 6]. Several reports have described mitochondrial aberrations in the AD brain [5, 7] and a greater metabolic decline, mainly in regard to the metabolic use of glucose in both the hippocampus and cortex of AD patients in comparison to healthy controls [8]. Moreover, it has been observed that prior to plaque formation, intracellular A\(β\) may selectively accumulate within mitochondria, thus contributing to bioenergetic impairment [9]. All the above-mentioned events lead to less efficient production of ATP and, at the same time, shift the balance toward pro-oxidant activities [10, 11]. Of note, oxidative stress not only takes part in the onset of AD, but also activates several intracellular pathways that favor the formation of A\(β\) fragments, thereby promoting the development of the disease [12–14]. Therefore, enhanced oxidative stress could be the trigger, but also the consequence, of the mitochondrial dysfunction characterizing AD [15]. In recent years, remarkable efforts have been made to discover neuroprotective strategies against reactive oxygen species (ROS)-induced damage and mitochondrial impairment [16, 17]. Interestingly, it has been reported that activators of M-current (\(I_{\text{M}}\)), a subthreshold voltage-gated potassium (K\(^+\)) current encoded by the Kv7/KCNQ channels and critically implicated in the regulation of neuronal excitability in humans [18], exert K\(^+\) channel-independent neuroprotective actions in different models of excitotoxicity-induced cell damage and cerebral ischemia [19–22]. In particular, it has been observed that retigabine (Ret) and flupirtine, in addition to their role as \(I_{\text{M}}\) enhancers, play a neuroprotective role by stimulating the elevation of intracellular glutathione levels [21], thereby countering ROS production [19–22], without any involvement of \(I_{\text{M}}\)-opening activity.

\(^{1}\)Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, Via Tronto 10/A, 60126 Ancona, Italy. \(^{2}\)Department of Neuroscience, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy. \(^{\ast}\)email: s.magi@staff.unipmn.it

Received: 29 November 2021 Revised: 6 September 2022 Accepted: 9 September 2022

Published online: 20 September 2022
Regarding the inhibition of I_{Km}, previous studies demonstrated that, in healthy mice, the Kv7 antagonist XE-991 can potentiate learning and memory and revert the impairment of cognitive functions in different neurodegenerative models [23, 24]. However, to date, there is no evidence that inhibitors of the I_{km} may act through K\(^+\) channel-independent mechanisms.

Here, we describe a new antioxidant-related K\(^+\) channel-independent mechanism by which the Kv7 antagonist XE-991 improved cell viability in different in vitro neuronal models exposed to the glycolysis inhibitor glyceraldehyde (GA), which is able to create a condition of hypometabolism accompanied by mitochondrial dysfunction and redox imbalance, thus reproducing an environment frequently observed in the beginning stage of the disease [25, 26].

RESULTS
Retigabine and XE-991 exerted a neuroprotective effect in GA-challenged RA-differentiated SH-SY5Y cells

To create an environment reproducing the early stages of AD, we used GA, which is known to alter cell energy metabolism [26] and to induce neurotoxicity through the generation of advanced glycation end products (AGEs) [27–30]. Considering that RA-differentiated SH-SY5Y cells express both the Kv7.2 and Kv7.5 channels (Fig. S1), and the well-known neuroprotective effect of retigabine (Ret), we initially investigated whether the modulation of Kv7 channels could play a role in our experimental setting. RA-differentiated SH-SY5Y were exposed to Ret (30 µM) and the well-known neuroprotective effect of retigabine (Ret), we initially investigated whether the modulation of Kv7 channels could play a role in our experimental setting. RA-differentiated SH-SY5Y were exposed to Ret (30 µM)—at a concentration fully activating the I_{km} [31]—1 h before and throughout the duration of GA (1 mM) treatment (Fig. 1A, B). As shown in Fig. 1A, Ret significantly improved cell viability (Fig. 1A).

To elucidate whether the neuroprotective effects of Ret could rely on I_{km} activation, we exposed cells to the I_{km} inhibitor XE-991 (10 µM) together with Ret. Interestingly, we found that XE-991 failed to antagonize Ret-induced neuroprotection (Fig. 1A), suggesting that the I_{km} was not involved in the neuroprotection induced by Ret. Therefore, we evaluated the effect of XE-991 (10 µM) in the absence of Ret. As reported in Fig. 1B, XE-991 (10 µM) alone was able to mitigate cell damage induced by GA, further supporting that Kv7 channels were not involved in GA-induced neurotoxicity. Since Ret can exert antioxidant activity [19, 20], we explored this possibility in our experimental setting. We found that Ret significantly reduced mitochondrial ROS production in RA-differentiated SH-SY5Y cells (Fig. 1C). Interestingly, we found that XE-991 was also able to reduce mitochondrial ROS production after GA challenge (Fig. 1C), confirming that Kv7 channels were not implicated in GA-induced neurotoxicity and revealing a new activity of this compound. Additionally, the Icagen’s N-(6-chloropyridin-3-yl)-3,4-difluorobenzamide (ICA-27243), a Kv7 channel opener not structurally related to Ret [32], was unable to protect from GA-induced cytotoxicity (Fig. 52). Finally, we investigated whether Kv7 channels, cells were treated XE-991 at a concentration of 300 nM, which is not active on Kv7 channels (XE-991 IC_{50} ~0.6 µM) [33] (Fig. 1D, E). Interestingly, this concentration of XE-991 was able to improve cell survival (Fig. 1D) and reduce the increase in mitochondrial ROS generation (Fig. 1E). These data suggested that the protection exerted by XE-991 could be due to K\(^+\) channel-independent mechanisms, most likely relying on the modulation of antioxidant defenses.

XE-991 exerted a neuroprotective effect against GA toxicity in primary rat cortical neurons

Once it was demonstrated that XE-991 could act through Kv7 channel-independent mechanisms in RA-differentiated SH-SY5Y cells, we focused on investigating whether XE-991 (300 nM) exposure could mitigate cell damage induced by GA in primary rat cortical neurons. As shown in Fig. 2, similar findings were observed in rat primary cortical neurons, where XE-991 significantly ameliorated cell viability (Fig. 2A) and reduced the rise of mitochondrial ROS production (Fig. 2B, C).

XE-991 stimulated superoxide dismutase (SOD) activity

Considering the lack of evidence that inhibitors of the I_{km} may act through K\(^+\) channel-independent mechanisms, we further explored the mechanism underlying XE-991 antioxidant activity. We focused our attention on superoxide dismutase (SOD) enzymes, which are essential for neuronal viability and defense against oxidative stress [34]. For instance, in the mouse model Tg2576 AD, SOD deficiency promotes the appearance of an AD-like phenotype, including the aggregation of A\(\beta\) peptide and the hyperphosphorylation of tau [35]. Further studies conducted in the same model demonstrated that the overexpression of SOD prevents memory impairment and amyloid plaque deposition [36]. Therefore, we sought to explore whether XE-991 could have a regulatory effect on these antioxidant enzymes in primary rat cortical neurons exposed to GA. The results showed that SOD activity was significantly reduced in primary rat cortical neurons treated with GA. Interestingly, when neurons were treated with XE-991, SOD activity was fully restored (Fig. 2D). The same result was observed in RA-differentiated SH-SY5Y, where 1 h exposure of XE-991 totally rescued the reduction in SOD activity induced by GA (Fig. S3).

XE-991 reversed the elevation of Ca\(^{2+}\) levels induced by GA within cytoplasmic and mitochondrial compartments in primary rat cortical neurons

The alteration of Ca\(^{2+}\) handling is a central driver of AD progression linking amyloid metabolism to neurodegeneration [7, 37]. Since our previous experiments demonstrated that the metabolic perturbation elicited by GA was accompanied by the alteration of the mechanisms underlying Ca\(^{2+}\) homeostasis [25], we evaluated whether the protection exerted by XE-991 could also reflect regulation of Ca\(^{2+}\) balance. To this aim, we measured both cytoplasmic and mitochondrial Ca\(^{2+}\) levels. In Fluo-4-AM and Rhod-2-AM loaded rat cortical neurons, we found that exposure to GA significantly increased basal Ca\(^{2+}\) levels in both cytoplasmic (Fig. 3A, B) and mitochondrial compartments (Fig. 3C, D), whereas XE-991 reversed the elevation of both cytoplasmic and mitochondrial Ca\(^{2+}\) (Fig. 3).

XE-991 rescued the inner mitochondrial membrane depolarization and ATP reduction induced by GA challenge in primary rat cortical neurons

Mitochondrial energy production, through oxidative phosphorylation, generates an inner membrane potential (ΔΨ_m), which represents the main driving force for ATP synthesis [38]. We have previously observed that in primary rat cortical neurons a ΔΨ_m loss occurred in parallel with the intracellular ATP depletion induced by GA [26]. Therefore, we first evaluated whether XE-991 could influence ΔΨ_m collapse. When cells were pretreated with XE-991, the reduction in ΔΨ_m induced by GA exposure was completely prevented (Fig. 4A–C). Given that XE-991 counteracted the ΔΨ_m collapse in the background of GA challenge, we investigated whether XE-991 exposure could also influence the content of intracellular ATP (Fig. 4D). Our data showed that pretreatment with XE-991 completely rescued the intracellular ATP reduction induced by GA challenge (Fig. 4D).

XE-991 counteracted the rise of AD biomarker levels induced by GA in primary rat cortical neurons and RA-differentiated SH-SY5Y cells

In AD, neuronal loss correlates with pathological burdens of A\(\beta\) plaques deposition and intracellular neurofibrillary tangles composed of pTau fibrils [39]. As previously reported, cells treated with GA showed a marked increase in both extracellular A\(\beta_{1-42}\) and intracellular pTau levels [25], therefore, we next wondered...
whether the neuroprotective effects of XE-991 would also extend to AD biomarker levels. Interestingly, we found that in both primary rat cortical neurons and RA-differentiated SH-SYSY treated with XE-991, the cellular accumulation of both Aβ (Fig. 5) and pTau (Fig. 6) was significantly reduced compared to what was observed in GA-challenged cells. Moreover, immunofluorescence analysis showed the colocalization of intracellular Aβ with mitochondria (Fig. 5B, D). To further assess the deposition of Aβ in the mitochondria, we isolated the mitochondrial fraction from RA-differentiated SH-SYSY cells and assessed Aβ levels by western blot. As reported in Fig. 5E, F (Fig. S5), in our mitochondrial preparations, we were able to detect a range of Aβ 6E10-immunoreactive bands corresponding to oligomers and aggregates, whose levels were higher after GA treatment, confirming the ability of GA to increase Aβ deposition and the potential of XE-991 to halt this effect.

XE-991 ameliorated cell viability through the modulation of AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway

To go further into the mechanisms by which XE-991 promotes cell survival, we explored potential signaling pathways implicated in GA-induced neurotoxicity and assessed the effect of XE-991. In particular, previous reports demonstrated that oxidative stress stimuli (including AGEs formation) and AMPK inactivation are strictly connected [40, 41], suggesting a role of redox balance in modulating AMPK and in committing the cell to death under conditions of glucose metabolism impairment. In this view, we
Identified AMPK as a possible complex that could be influenced by GA treatment. Consistently, GA significantly reduced the levels of phosphorylated (Thr172) AMPKα (p-AMPKα) in both rat cortical neurons and RA-differentiated SH-SYSY cells (Figs. 7A, C and Fig. S6). As a downstream target of AMPK, we then checked for mTOR, which is known to be deregulated in AD [42, 43]. We observed that GA significantly increased phosphorylated (Ser2448) mTOR expression (p-mTOR) (Fig. 7B, D and Fig. S7). Interestingly, XE-991 treatment reversed the reduction in p-AMPKα and the increase in p-mTOR expressions observed after GA treatment (Fig. 7).

Fig. 2 The neuroprotective effect of XE-991 (300 nM) on cell viability, mitochondrial ROS production, and SOD activity measured in primary rat cortical neurons. A Evaluation of the effect of 1 h exposure to XE-991 (300 nM) on mitochondrial activity. B, C mitochondrial ROS production and D) SOD activity. XE-991 (300 nM) was added 1 h before GA (1 mM) exposure and maintained for the whole GA treatment (24 h). In each experiment MTT reduction, the fluorescence intensity of MitoTracker Red CM-H2XRos and SOD activity were expressed as control percentages. Differences among means were evaluated by one-way ANOVA followed by Dunnett’s post hoc test. A F (3, 23) = 32.45. Each column depicts the mean ± S.E.M. of at least three independent experiments that were performed in triplicate. *Significant versus all groups (p < 0.0001 versus control groups and p < 0.05 versus XE-991 + GA); **significant versus all groups (p < 0.0001 versus XE-991 and p < 0.05 versus GA). B F (3, 11) = 19.02. The bar plot shows the mean ± S.E.M. of the fluorescence increase evoked by ROS production. For each experimental group, the statistical analysis was performed by using the basal values derived from at least three independent experiments, and 100–150 cells were recorded for each session. *Significant versus all groups (p < 0.0001). C Representative pictures of mitochondrial ROS obtained by MitoTracker Red CM-H2XRos staining deriving from at least three independent experiments. Scale bar = 50 µm. D F (3, 18) = 8.763. Each column shows the mean ± S.E.M. of at least four independent experiments that were performed in triplicate. *Significant versus all groups (p < 0.01 versus Ctl, p < 0.05 versus XE-991, and p < 0.001 versus XE-991 + GA).
In the current study, we revealed a novel antioxidant K⁺ channel-independent effect of the IKM inhibitor XE-991. In particular, by using GA, we created a condition of hypometabolism accompanied by mitochondrial dysfunction and redox imbalance [25, 26], thus reproducing an environment that often characterizes the early stages of AD. In this setting, we provided evidence that, in both RA-differentiated SH-SY5Y and primary rat cortical neurons, XE-991 exerted a protective action, most likely through the resumption of SOD activity, which was significantly compromised during GA challenge. These results are in line with previously reported studies showing that other drugs targeting neuronal Kv7 channels (Kv7.2–7.5), such as retigabine, act as free radical scavengers without any involvement of l_{ion} [19–22, 44].

DISCUSSION

The bar plots depict average data of the cytoplasmic (A) and mitochondrial (C) basal Ca²⁺ levels. The fluorescence intensity is transformed into calibrated Ca²⁺ by applying the following equation: \[
\text{[Ca}^{2+}] = \frac{K_d (F - F_{\text{min}})}{F_{\text{max}} - F}
\]
where \(K_d\) is the Ca²⁺ dissociation constant of the indicator (\(K_d\) Fluo-4-AM = 345 nM; \(K_d\) Rhod-2-AM = 570 nM); \(F_{\text{min}}\) and \(F_{\text{max}}\) represent the intensities of fluorescence at zero and saturating [Ca²⁺], respectively; and \(F\) represents the intensity of fluorescence at any given time. In each experiment, [Ca²⁺] was expressed as control percentage. B, D Representative images of the basal Ca²⁺ levels within cytoplasm (B) and mitochondria (D). Scale bar 50 µm. Differences were evaluated by one-way ANOVA followed by Dunnett’s post hoc test. A F (3, 10) = 11.67. For each experimental group, the statistical analysis was performed by using the basal values derived from three independent experiments, and 100–150 cells were recorded for each session. *Significant versus all groups (\(p < 0.01\) versus control groups and \(p < 0.05\) versus XE-991 + GA).

C F (3, 15) = 8.091. For each experimental group, the statistical analysis was performed by using the basal values derived from at least four independent experiments, and 100–150 cells were recorded for each session. *Significant versus all groups (\(p < 0.01\) versus control groups and \(p < 0.05\) versus XE-991 + GA).
note, we determined that the increase in SOD activity induced by XE-991 occurred in parallel with other major findings, namely, (1) the reduction in the basal Ca\(^{2+}\) levels within cytoplasmic and mitochondrial compartments, (2) the decrease in mitochondrial ROS production, (3) the recovery of ΔΨ\(_{m}\) collapse, (4) the restoration of the intracellular ATP content, and (5) the decrease in Aβ and pTau levels. We also checked for important death paradigms that could be potentially involved in GA-induced neurotoxicity and found the alteration of the AMPK-mTOR signaling pathway, which was restored by XE-991. These protective effects of XE-991 were observable at a lower concentration than that required to inhibit Kv7 channels, ruling out their involvement. Although our results may warrant further exploration, they support the role of oxidative stress as a driving force contributing to neurodegeneration [38], as reported in several studies, demonstrating that the restoration of antioxidant defenses improves neuronal viability, alleviates neurological dysfunctions, and reduces the risk of developing AD [35, 45–50]. Therefore, oxidative stress may be a promising target for therapeutic interventions.

We have previously demonstrated that the metabolic impairment induced by GA is accompanied by a perturbation of the overall oxidative status of neuronal cells [25]. In the present study, we also found that GA dramatically reduced SOD activity, supporting the neuronal shift to a pro-oxidant status. In agreement with this finding, in APP transgenic mice and in the
postmortem frontal cortex of AD patients, it has been shown that the impairment of SOD activity occurs concomitantly with the increase in Aβ levels [45, 51]. In the literature, significant evidence indicates that oxidative status may affect the activity of a variety of systems involved in controlling Ca^{2+} homeostasis, likely inducing dysregulation of intracellular Ca^{2+} levels [52]. Consistent with this finding, we showed that GA challenge was accompanied by a dramatic rise in intracellular Ca^{2+} levels, which concomitantly affected Ca^{2+} homeostasis within mitochondria as a consequence of their buffering activity. Overall, we propose that this phenomenon may represent the trigger for a cascade of events precipitating mitochondrial function and leading to neuronal death. Increased levels of Ca^{2+} within mitochondria could be responsible for the observed collapse of the ΔΨm and, at the same time, might augment the imbalance between pro-oxidant and antioxidant defenses, thus inducing the formation of mitochondrial ROS. Consequently, we can speculate that ATP-production systems underwent dramatic changes, as supported by the observed drop in intracellular ATP content. The significant reduction in neuronal viability occurring in this experimental setting represented a downstream event, which might have been further augmented by the increase in both Aβ and pTau levels. In fact, several reports indicate that oxidative stress and Ca^{2+} dysregulation may both converge on the abnormal production and deposition of Aβ peptide [53, 54], and on Tau phosphorylation [7, 55]. For instance, the rise of the mRNA and activity of β and γ secretases—which provide consecutive cleavages of Amyloid Precursor Protein (APP) [56], thus generating toxic Aβ peptides—correlates with the increase in oxidative biomarker (e.g., hydroxynonenal (HNE) and H2O2) levels [57]. Moreover, in line with these observations and with the experimental model proposed here, it has been shown that AGEs deriving from GA can augment the levels of APP and Aβ through the formation of ROS [27]. The alteration of Ca^{2+} homeostasis, which can occur in parallel with the imbalance of redox status [7], could contribute as well to alter both Aβ and pTau levels. In this regard, there is evidence that Ca^{2+} may directly interact with β-secretase, therefore enhancing its proteolytic activity and exacerbating Aβ formation [58]. In addition, a sustained increase in intracellular Ca^{2+} activates many Ca^{2+}-sensitive proteins, including key tau kinases (e.g., glycogen synthase kinase 3β and cyclin-dependent kinase 5), which promote Tau phosphorylation, and calpains, which regulate the cleavage of APP [59]. On the other hand, Aβ and pTau deposition can themselves be a trigger for oxidative stress and both cytosolic and mitochondrial Ca^{2+} deregulation [60, 61]. In our experimental setting, we provided evidence for a

Fig. 5 Aβ expression in primary rat cortical neurons and RA-differentiated SH-SYSY cells treated with GA and exposed to XE-991. A, C, E Quantification and B, D, F representative pictures of Aβ expression. The protein Aβ was detected by immunofluorescence staining (A–D) and western blot (E, F). F Immunoblotting analysis using the 6E10 antibody showed various sizes of bands corresponding to Aβ aggregates/oligomers (Aβ tetramers (Aβ4mer) ~17, Aβ oligomers (Aβn) ~25, ~40, and ~50 kDa). ANT was used as loading control to verify mitochondrial isolation, and GAPDH was used as cytoplasmic marker. In each experiment both the intensity of fluorescence and normalized optical density values of Aβ were reported as control percentages. Scale bar 50 µM. Differences among means were evaluated by one-way ANOVA followed by Dunnett’s post hoc test. A F (2, 6) = 12.53. Each column depicts the mean ± S.E.M. of three independent experiments (50–100 cells for each experimental group were analyzed). *Significant versus all groups (p < 0.01 versus Ctl, p < 0.05 versus XE-991 + GA). C F (2, 15) = 21.49. Each column depicts the mean ± S.E.M. of six independent experiments (for each experimental group, 50–100 cells were analyzed). *Significant versus Ctl (p < 0.0001) and XE-991 + GA (p < 0.05); **significant versus Ctl (p < 0.01) and GA (p < 0.05). E F (2, 9) = 14.99. Each column depicts the mean ± S.E.M. of four independent experiments. *Significant versus all groups (p < 0.01).
direct accumulation of Aβ within mitochondria, which is suggestive of pathological crosstalk between Aβ accumulation, oxidative damage, and Ca2+ dysregulation that incites neuronal injury, which is in line with the complex and multifactorial nature of AD pathology that cannot be simply tracked to single unipolar mechanism [62]. To gain further insights into our experimental model, we also attempted to check the involvement of death paradigms typically associated with AD, and we focused on the possible involvement of AMPK [42]. AMPK complex is primarily known as a sensor of the intracellular metabolism, even though AMPK activity can be also modulated by the intracellular redox balance [40, 63, 64]. Accordingly, neuronal samples with decreased AMPK activation exhibit alteration of mitochondrial dynamics and oxidative damage [65–67], two major AD features that were recapitulated by our experimental model. A decrease in AMPK activity has been observed in AD pathology and aging [68]. Here we found a significant reduction in AMPK activity in cells exposed to GA, which is known to alter energy metabolism and augment oxidative stress through the formation of AGEs [27–30]. In line with this finding, previous studies have described the neuroprotective role of AMPK activation against AGEs-induced oxidative stress and mitochondrial dysfunction [69]. Since AMPK regulates mTOR activity, and both have been shown to be deregulated in neurodegenerative diseases [42, 43, 68, 70, 71], we also checked for mTOR activation. As similarly seen in a different cell model exposed to AGE [41], downregulation of p-AMPKα expression was accompanied by an upregulation of p-mTOR expression, and both these changes were reversed by XE-991. Overall, these findings highlighted the potential of XE-991 to target metabolic dysfunctions that are the characteristic signatures of AD pathology. Although the exact role of the crosstalk between AMPK and mTOR pathway in AD is still debated, there is consensus on the inhibitory effect of mTOR on autophagy [43], a process that in AD has been linked to the increase in misfolded aggregated proteins and injured organelles, with main regard to mitochondria [72]. A possible speculation is that the demonstrated

![Fig. 6](image-url)
ROS scavenging activity of XE-991 may create a favorable environment for the activation of AMPK, which in turn may inhibit mTOR activity, finally increasing autophagy induction and, therefore, facilitating the clearance of the aberrant aggregates of Aβ and tau proteins. In Fig. 8, we illustrate our working hypothesis showing how metabolic impairment (here generated by GA) may represent the upstream event favoring the imbalance of cell oxidative status, the inactivation of AMPK, and the activation of mTOR, triggering a vicious self-feeding cycle culminating in neurodegeneration (Fig. 8).

Taken together, this study demonstrated that XE-991 could exert an antioxidant effect based on a K⁺ channel-independent mechanism, which possibly involves the enhancement of SOD activity. Our results confirm that oxidative imbalance is an initial event in AD and that it could trigger a complex neurodegenerative cascade. More importantly, we believe that our study may pave the way toward the further evaluation of new therapeutic uses of already existing molecules, to accelerate the process of developing an effective therapy to counteract AD.

MATERIALS AND METHODS

Cell culture and treatment

The SH-SYSY human neuroblastoma cell line, purchased from American Type Culture Collection (CRL-2266), was cultured as a monolayer in polystyrene dishes (100 mm diameter) in Dulbecco’s Modified Eagle’s Medium (Corning, New York, USA) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 μg/ml streptomycin (Comin).
Cells were grown in a humidified incubator at 37 °C and 5% CO₂, renewing the culture medium every 48 h. To induce neuronal differentiation, SH-SYSY cells were exposed to 10 µM all-trans retinoic acid (RA) for 6 days [73]. Cortical neurons were isolated from the cortex of Wistar rat pups (P2–P4) (Cat. 003WISTAR, Charles River, Lecco, Italy) as previously described [25]. The use of animals and procedures were in full compliance with the Ethics Committee for Animal Experiments of the University “Politecnica delle Marche” and in strict accordance with the guidelines of the Italian Ministry of Health (D.L. 26/2014). In brief, cortices were placed in ice-cold PBS soon after isolation and then trypsinized (0.005% trypsin/EDTA) for 15 min at 37 °C. After an additional step of homogenization, neurons were obtained. To assess mitochondrial activity and intracellular ATP content, neurons were grown on poly-D-lysine-coated glass cover slips in a 12 multiwell cell culture plate (1.3 × 10⁶ cells/well). Neuronal cultures were maintained in Neurobasal medium (Gibco-Invitrogen, Paisley, UK) supplemented with B27 (Gibco-Invitrogen) and 2 mM glutamine in the presence of B27 and 100 U/ml Neurotrophin-3 and Neurotrophin-4 (Invitrogen Life Technologies) or 5 µM Rhod-2-AM (Abcam, Cambridge, UK) in the medium for 45 min at 37 °C. After the loading period, neurons were washed in standard buffer solution for an additional 10 min. Finally, neurons were placed into a perfusion chamber mounted onto the stage of an inverted Zeiss Axiovert 200 microscope and perfused with standard buffer solution (in mM: 140 NaCl, 5 KCl, 1 CaCl₂, 0.5 MgCl₂, 10 HEPES, 5.5 glucose, buffered to pH 7.4 with NaOH) for about 200 s at 37 °C using a heated microscope stage and climate box from PeCon GmbH. After 200 s, the standard buffer solution was replaced with calibration solution 1 (EGTA 0 Ca²⁺) until the lowest fluorescent value was stably reached (about 100 s); then, calibration solution 1 was replaced with calibration solution 2 (high Ca²⁺) to obtain the highest fluorescent value (Fig. 54). Solutions were delivered by a peristaltic pump. Images were acquired every 5 s; Fluo-4-AM was excited at 488 nm, and the emitted fluorescence was recorded at 505–530 nm, while Rhod-2-AM was excited at 543 nm, and fluorescent emission was measured from 560 to 600 nm. Fluorescence analysis was performed offline after image acquisition.

Calibration solutions were prepared as previously described with minor modifications [75]. Specifically: calibration solution 1 (EGTA 0 Ca²⁺) contained (in mM) 140 NaCl, 5 KCl, 3 EGTA, 0.5 MgCl₂, 10 HEPES, 5.5 glucose, 0.01 A23187 pH 7.4; calibration solution 2 (high Ca²⁺) contained (in mM) 140 NaCl, 5 KCl, 4 CaCl₂, 0.5 MgCl₂, 10 HEPES, 5.5 glucose, 0.01 A23187 pH 7.4. Minimal Fluo-4-AM or Rhod-2-AM fluorescence (Fₘᵢₐₓ) was measured during exposure to Ca²⁺-free calibration solution 1 and maximal Fluo-4-AM or Rhod-2-AM fluorescence (Fₘᵢₐₓ) during exposure to calibration solution 2 containing (Ca²⁺) of 4 mM (Fig. 54). To transform Fluo-4-AM and Rhod-2-AM fluorescence into free (Ca²⁺), the equation first formulated by Grynkiewicz and colleagues was used [76]: [Ca²⁺] = Kd (F - Fₘᵢₐₓ) / (Fₘᵢₐₓ - F) where Kd is the apparent Ca²⁺ dissociation constant of the indicator; Fₘᵢₐₓ and Fₘᵢₐₓ are the fluorescence intensities at zero and saturating [Ca²⁺], respectively; and F is the fluorescence intensity at any given time [75].

Analysis of the mitochondrial inner membrane potential (ΔΨᵢₘ)
The ΔΨᵢₘ was evaluated by monitoring the fluorescence of tetra-methylrhodamine ethylester (TMRE, Abcam, Cambridge, UK) used in non-quenching mode [26]. Rat primary cortical neurons were grown on poly-D-lysine-coated glass cover slips and then subjected to the specific experimental protocol. After a loading phase with 10 nM TMRE in the culture medium at 37 °C for 30 min, neurons were washed twice with PBS and then permeabilized for 10 min with digitonin 5 µM, in

Fig. 8 Working hypothesis showing: (1) how oxidative stress may represent the main driving force contributing to the subsequent complex AD pathogenic cascade, and (2) how the restoration of SOD activity induced by XE-991 may halt this cascade.
intracellular buffer with the following composition (in mM): 135 KCl, 10 NaCl, 20 HEPES, 5 pyruvate, 2 glutamate, 2 malate, 0.5 KH₂PO₄, 1 MgCl₂, 5 EGTA, and 1.86 CaCl₂. Digitonin at low concentrations selectively renders the plasma membrane permeable without affecting the integrity of cellular organelles, such as mitochondria [77]. After permeabilization, neurons were continuously perfused with the intracellular solution containing TMRE (10 nM) and digitonin (5 μM). In these experimental conditions, the TMRE fluorescence decreases with mitochondrial membrane depolarization [26]. Images were acquired using a 510 LSM microscope (Carl Zeiss), with TMRE fluorescence (543 nm excitation/580–700 nm emission) collected every 5 s. The basal levels of the ΔΨm were monitored for ~300 s. As an internal control, 20 μM of carbonyl cyanide p-trifluoromethoxyphenylhydrazine (FCCP) was added after 180 s. Analysis of the fluorescence intensity was performed offline after image acquisition.

Evaluation of intracellular ATP levels
A commercially available luciferase-luciferin system (ATP lite, Biolegend, El Kerkem, El Kerkem) was used to measure the intracellular ATP levels, as previously described [25, 26, 73]. Brieﬂy, SH-SYSY cells were previously differentiated on 96-well ViewPlate (Perkin Elmer) and then exposed to the indicated treatments in DMEM medium. Primary rat cortical neurons were plated on 12 multwell plates, then treated in Neurobasal medium according to assigned experimental groups, and finally lysed and transferred to a 96-well ViewPlate (Perkin Elmer) for the ATP assay. The intracellular ATP levels were analyzed with a luminescence counter (Victor Multilabel Counter, Perkin Elmer), normalized to the respective primary protein content, and expressed as percentages of the control value.

Immunocytochemistry
Primary antibodies. Aβ₁-42 protein was identified by using a mouse monoclonal IgG1 antibody (clone 12F4, Cat. 803051, Biolegend, San Diego, CA, USA, dilution 1:100 in PBS with 1% BSA). As for pTau protein, a human PHF-Tau monoclonal IgG antibody was used (clone AT100, Cat. MN1060, recognizing Thr212 and Ser214, Thermo Scientific, Milano, Italy, dilution 1:1000 in PBS with 1% BSA).

Immunofluorescence staining. After the experimental procedures, the cells were firstly loaded with MitoTracker 300 nM (MitoTracker Red CMXRos M7512 Invitrogen [25, 73]) for 30 min at 37 °C, then ﬁxed with PBS and 3.7% formaldehyde for 30 min at RT and then ﬁnally permeabilized with PBS-Triton X-100 for 5 min at RT. Subsequently, the cells were incubated with the primary antibodies (Aβ₁-42 protein or pTau AT100) for 1.5 h at RT. A conjugated secondary antibody Alexa Anti-Mouse 488 (Cat. A-11059 Thermo Scientiﬁc, dilution 1:200) was used to detect the immunoreactions.

Western blot analysis
Western blot experiments were conducted on total lysates of rat primary cortical neurons, RA-differentiated SH-SYSY cells, and mitochondrial proteins-enriched fractions of RA-differentiated SH-SYSY cells [78, 79]. Total lysates of rat primary cortical neurons and RA-differentiated SH-SYSY cells were prepared in R-buffer 1X containing (in mM): 150 NaCl, 10 Tris-HCl (pH 7.4), 1 EDTA (pH 8.0), 1% SDS. Mitochondria and cytosolic fractions were collected from about 80% enriched (about 80%) 100 mm Petri dishes of RA-differentiated SH-SYSY cells according to the manufacturer’s instructions of a commercially available kit (QProteome Mitochondria Isolation kit, Qiagen, Milan, Italy) [80]. Protein content was assayed by the Bradford method (Bio-Rad, Milano, Italy). Samples containing equal amounts of protein (20–40 μg) were prepared in 6× Laemmli sample buffer with 2–mercaptoethanol and boiled for 10 min. Proteins were electrophoretically separated onto an 8–15% SDS-polyacrylamide gel and electro-transferred to a nitrocellulose membrane (Bio-Rad). To reduce nonspeciﬁc interactions, the membranes were blocked with non-fat dry milk (5% in PBS buffer) for 1 h, at RT. After the blocking phase, the membranes were incubated with the appropriate primary antibody overnight at 4 °C. To detect the immunoreactions, membranes were incubated with the appropriate secondary antibody conjugated to horseradish peroxidase (Goat anti-rabbit IgG-HRP Cat. sc-2004, Donkey anti-goat IgG-HRP Cat. sc-2020, Santa Cruz, CA, USA; Goat anti-Mouse IgG (H + L) HRP Cat. 62-6520, Thermo Scientiﬁc) for 1 h at RT. Blots were then developed with an enhanced chemiluminescence detection kit (Super Signal West Femto kit, Thermo Scientiﬁc), and images were acquired with a Uvitec Cambridge Chemiluminescence Imaging System (Cambridge, UK).

Primary antibodies. Primary antibodies used in this work are listed below: anti-Aβ clone 6E10 (Cat. 803004, dilution 1:500; Biolegend), anti-phospho-mTOR (Cat. sc-293133, dilution 1:100, Santa Cruz), anti-phospho AMPKα (Cat. 2535, dilution 1:1000, Cell Signaling, Danvers, MA, USA), anti-Adenine Nucleotide Translocator (ANT, Cat. sc-9299, dilution 1:1000, Santa Cruz) and anti-Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH, Cat. 60004-1-lg, dilution 1:10,000, Proteintech, Rosemont, IL, USA), anti-β-actin (Cat. sc-47778, dilution 1:1000, Santa Cruz). Band densities were analyzed with Uvitec Nine Alliance analysis software (Cambridge, UK) and normalized to the appropriate housekeeping protein expression.

Drugs and chemicals
Ret, XE-991, and ICA-27243 were obtained from Sigma, Tocris, and MedChemExpress, respectively. All the remaining chemicals were of analytical grade and were obtained from Sigma.

Data analysis
Data were reported as the mean ± standard error of the mean (S.E.M.). GraphPad Prism® 5 software (San Diego, USA) was used for the statistical analysis of the results. One-way ANOVA analysis followed by Dunnett’s post hoc test was used to calculate the differences between the mean values; the minimal level of signiﬁcance chosen was p < 0.05.

DATA AVAILABILITY
The data generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES
1. Villa C, Suphesiz H, Combi R, Akyuz E. Potassium channels in the neuronal homeostasis and neurodegenerative pathways underlying Alzheimer’s disease: an update. Mech Ageing Dev. 2020;185:111197.
2. Tobore TO. On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease. Neural Sci. 2019;40:1527–40.
3. Uddin MS, Kabir MT, Tewari D, Mathew B, Aleya L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci Total Environ. 2020;700:134836.
4. Joe E, Ringman JM. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ. 2019;367:36217.
5. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysioloogy. Biochim Biophys Acta. 2010;1802:2–10.
6. Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer’s disease. J Alzheimers Dis. 2018;62:1403–16.
7. Jadiya P, Kolmetzky DW, Tomar D, Di Meco A, Lombardi AA, Lambert JP, et al. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer’s disease. Nat Commun. 2019;10:3885.
8. Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 2011;10:187–98.
9. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19:2040–1.
10. Butcher E, Hallward B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20:148–60.
11. Cioffi F, Adam RM, Broersen K. Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J Alzheimers Dis. 2019;72:981–1017.
12. Chauhan VH, Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology. 2006;13:195–208.
13. Feng Y, Wang X. Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev. 2012;2012:472932.
14. Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013:316523.
15. Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener. 2020;15:30.
16. Dumont M, Beal MF. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med. 2011;51:1014–26.
17. Misrani A, Tabassum S, Yang L. Mitochondrial dysfunction and oxidative stress in Alzheimer's disease. Front Aging Neurosci. 2021;13:67588.

18. Greene DL, Hoshi N. Modulation of Kv7 channels and excitability in the brain. Cell Mol Life Sci. 2017;74:495–508.

19. Boscia F, Annunziato L, Tagliatela M. Retigabine and flupirtine exert neuroprotective actions in organotypic hippocampal cultures. Neuropharmacology. 2006;51:283–294.

20. Gassen M, Pergande G, Youdim MB. Antioxidant properties of the triaminopyrimidine, flupirtine. Biochem Pharmacol. 1998;56:1233–9.

21. Muller WE, Romero FJ, Perovic S, Pergande G, Pialoglou P. Protection of flupirtine on beta-amyloid-induced apoptosis in neuronal cells in vitro: prevention of amyloid-induced glutathione depletion. J Neurochem. 1997;68:2371–7.

22. Seyfried TN, Evert BO, Lyndfelt CF, Schulz JB, Kowar KA, Rocketger T, et al. Flupirtine and retigabine prevent L-glutamate toxicity in rat pheochromocytoma PC 12 cells. Eur J Pharmacol. 2000;400:155–66.

23. Liu H, Jia L, Chen X, Shi L, Xie J. The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson's disease. Brain Res Bull. 2018;137:12–9.

24. Shi L, Bion X, Qu Z, Ma Z, Zhou Y, Wang K, et al. Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels. Nat Commun. 2013;4:1435.

25. Magi S, Piccirillo S, Maiolino M, Lariccia V, Amoroso S. NCX1 and EAAC1 transporters are involved in the protective action of glutamate in an in vitro Alzheimer's disease-like model. Cell Calcium. 2020;91:102288.

26. Magi S, Prezioso A, Piccirillo S, Giampieri F, Cianciato D, Orciani M, et al. The neuroprotective effect of L-Carnitine against glutamate-induced metabolic impairment: possible implications in Alzheimer's disease. Cells. 2021;10:2109.

27. Ko SY, Lin YP, Lin YS, Chang SS. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic Biol Med. 2010;48:474–80.

28. Koriyama Y, Furukawa A, Muramatsum A, Takino J, Takeuchi M. Glyceraldehyde caused Alzheimer's disease-like alterations in diagnostic marker levels in SH-SY5Y human neuroblastoma cells. Sci Rep. 2015;5:13313.

29. Takeuchi M, Bucala R, Suzuki T, Ohtoku T, Yamazaki M, Koike T, et al. Neurotoxicity of advanced glycation end-products for cultured cortical neurons. J Neuropathol Exp Neurol. 2000;59:1094–105.

30. Takeuchi M, Kikuchi S, Sasaki N, Suzuki T, Iwaki M, et al. Involvement of oxidative stress in neurodegenerative diseases. J Neurochem. 2006;97:2820–30.

31. Liu H, Jia L, Chen X, Shi L, Xie J. The Kv7/KCNQ channel blocker XE991 protects nigral dopaminergic neurons in the 6-hydroxydopamine rat model of Parkinson's disease. Brain Res Bull. 2018;137:12–9.

32. Shi L, Bion X, Qu Z, Ma Z, Zhou Y, Wang K, et al. Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels. Nat Commun. 2013;4:1435.

33. Magi S, Piccirillo S, Maiolino M, Lariccia V, Amoroso S. NCX1 and EAAC1 transporters are involved in the protective action of glutamate in an in vitro Alzheimer's disease-like model. Cell Calcium. 2020;91:102288.

34. Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in cell death and survival. Cell Death Discovery. 2022;8:391.

35. Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, et al. SOD1 protects against amyloid-induced glutathione depletion. J Neurochem. 1997;68:2371–7.

36. Shi L, Bian X, Qu Z, Ma Z, Zhou Y, Wang K, et al. Peptide hormone ghrelin enhances neuronal excitability by inhibition of Kv7/KCNQ channels. Nat Commun. 2013;4:1435.

37. Murakami K, Murata N, Noda Y, Tahara S, Kaneko T, Kinoshita N, et al. SOD1 protects against amyloid-induced glutathione depletion. J Neurochem. 1997;68:2371–7.

38. Cenini G, Lloret A, Cascella R. Oxidative stress in neurodegenerative diseases: from cell signaling to neuronal cell death. Trends Neurosci. 2008;31:454–63.

39. O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci. 2011;34:185–204.

40. Cassidy L, Fernandez F, Johnson JB, Naik M, Owwoa AG, Broszczak DA. Oxidative stress in Alzheimer's disease: a review on emergent natural polyphenolic therapeutics. Complement Ther Med. 2020;49:102294.

41. Chami M, Checlef F. Alterations of the endoplasmic reticulum (ER) calcium signaling molecular components in Alzheimer's disease. Cells. 2020;9:2577.

42. Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, et al. Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain. Acta Neuropathol Commun. 2016;4:34.

43. Calvi-Verdugo M, Basca MJ, Montgomery and calcium in Alzheimer's disease: from cell signaling to neuronal cell death. Trends Neurosci. 2021;44:136–51.

44. Su B, Wang X, Nunomura A, Moreira PL, Lee HG, Perry G, et al. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res. 2016;53:525–32.

45. Saleem S. Apoptosis, autophagy, necrosis and their multigalore crosstalk in neurodegeneration. Neuroscience. 2021;449:162–74.

46. Shao D, Oka S, Liu T, Zhao P, Agia T, Sciarretta S, et al. A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab. 2020;19:232–45.

47. Sabeni B, Shinhara M, Ybanez MD, Hanawa N, Gaarde WA, Kaplanowitz N, et al. Regulation of H2O2-induced necrosis by PCK and AMP-activated kinase signaling in primary human immunodeficiency virus induced T-cell lines. J Physiol. 2008;586:567–73.

48. Chiang MC, Niel CJ, Cheng YC. Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurotox. 2018;11:151–10.

49. Chiang MC, Cheng YC, Chen SJ, Yen CH, Huang RN. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res. 2016;347:322–31.

50. Saleem S. Apoptosis, autophagy, necrosis and their multigalore crosstalk in neurodegeneration. Neuroscience. 2021;449:162–74.

51. Shao D, Oka S, Liu T, Zhao P, Agia T, Sciarretta S, et al. A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab. 2020;19:232–45.

52. Sabeni B, Shinhara M, Ybanez MD, Hanawa N, Gaarde WA, Kaplanowitz N, et al. Regulation of H2O2-induced necrosis by PCK and AMP-activated kinase signaling in primary human immunodeficiency virus induced T-cell lines. J Physiol. 2008;586:567–73.

53. Chiang MC, Niel CJ, Cheng YC. Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurotox. 2018;11:151–10.

54. Chiang MC, Cheng YC, Chen SJ, Yen CH, Huang RN. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction. Exp Cell Res. 2016;347:322–31.
74. Esteras N, Kopach O, Maiolino M, Lariccia V, Amoroso S, Qamar S, et al. Mitochondrial ROS control neuronal excitability and cell fate in frontotemporal dementia. Alzheimers Dement. 2022;18:318–38.

75. Ljubojevic S, Walther S, Asgarzoei M, Sedej S, Pieske B, Kockskamper J. In situ calibration of nucleoplasmic versus cytoplasmic Ca\(^{2+}\) concentration in adult cardiomyocytes. Biophys J. 2011;100:2356–66.

76. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca\(^{2+}\) indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440–50.

77. Fiskum G. Intracellular levels and distribution of Ca\(^{2+}\) in digitonin-permeabilized cells. Cell Calcium. 1985;6:25–37.

78. Maiolino M, Castaldo P, Lariccia V, Piccirillo S, Amoroso S, Magi S. Essential role of the Na\(^+-Ca\(^{2+}\) exchanger (NCX) in glutamate-enhanced cell survival in cardiac cells exposed to hypoxia/reoxygenation. Sci Rep. 2017;7:13073.

79. Castaldo P, Magi S, Cataldi M, Arcangeli S, Lariccia V, Nasti AA, et al. Altered regulation of glutamate release and decreased functional activity and expression of GLT1 and GLAST glutamate transporters in the hippocampus of adolescent rats perinatally exposed to Delta(9)-THC. Pharmacol Res. 2010;61:334–41.

80. Paventi G, Soldovieri MV, Servettini I, Barrese V, Miceli F, Sisalli MJ, et al. Kv7.4 channels regulate potassium permeability in neuronal mitochondria. Biochem Pharmacol. 2022;197:114931.

AUTHOR CONTRIBUTIONS
SP, AP, TS, and FM performed the experiments and analyzed the data; SM, SP, FM, and VL analyzed the data; SA, SM, and VL conceived the idea and supervised the study; SM, SM, and VL drafted the article; SA revised the article critically for important intellectual content; SP, AP, TS, SM, and VL revised the manuscript. All the authors read the article for final approval of the version to be published.

FUNDING
This study was supported by “Ministero dell’Istruzione, dell’Università e della Ricerca” (MIUR) Grant 2017YH35XK: “Bioenergetics and inflammation: novel insight for therapeutic approaches in Alzheimer Disease”; “Ricerca Scientifica di Ateneo” (RSA) Grants (2019–2020).

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41420-022-01187-y.

Correspondence and requests for materials should be addressed to Simona Magi.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.