I. INTRODUCTION

Honeycomb-lattice iridates of the type $A_2\text{IrO}_3$ ($A=$Li, Na) with the effective angular momentum $J_{\text{eff}} = 1/2$ due to strong spin-orbit coupling have been under active experimental investigation [1,2] mainly because of their interesting properties associated with predicted topologically non-trivial states, including the Kitaev spin-liquid state [3,4]. What is more, topological superconductivity has been proposed based on the Kitaev-Heisenberg model with the spin $S = 1/2$ emerging with hole doping [5,8].

Another interesting compound with the honeycomb structure is Li$_2$RuO$_3$. One of the differences from $A_2\text{IrO}_3$ is that Li$_2$RuO$_3$ has nominally $S = 1$, as expected for the low-spin state of Ru$^{4+}$ ($4d^5$). Interestingly, Li$_2$RuO$_3$ exhibits dimerization of Ru-Ru ions at $T_d \approx 540$ K, accompanied by a sharp decrease of magnetization below T_d [9]. More recently, it is found that the disorder in the Ru-Ru dimer configuration sensitively affects the magnetic behavior [10]. In addition, the dimer transition has been revealed to be of the first-order type [11], especially in samples with more coherent dimer configuration with $T_d \approx 550$ K [10].

It has been also demonstrated that the dimer transition is not an ordinary Peierls transition. In a recent study based on a combination of high-energy X-ray diffraction (XRD), pair distribution function (PDF) analysis, and density functional theory (DFT) calculations, it has been found that the dimers dynamically survive even above T_d [12]. Thus, the transition can be regarded as the change from a static “dimer-solid” state at low temperatures to a dynamic “dimer-liquid” state above T_d [12].

The potential utility of Li$_2$RuO$_3$ as a material for batteries has motivated investigation on its electrochemical properties as well [13]. The delithiated series Li$_{2-x}$RuO$_3$ has been synthesized from Li$_2$RuO$_3$ by electrochemical deintercalation of lithium [14,16] and by chemical oxidation by I_2 [15]. Moreover, it has been revealed that a part of Ru$^{4+}$ changes to Ru$^{5+}$ by delithiation based on a sequence of experiments [18,20].

However, concerning the physical properties of Li$_{2-x}$RuO$_3$, only magnetization has been reported in the limited temperature range between 83 and 293 K [17]. In particular, the relation between the dimer transition and delithiation has not been reported.

The effect of Li deficiency on the dimer transition is of primary interest for the following reasons. Firstly, the hole doping by delithiation could lead to the spin $S = 1/2$ state and thus to various topological phases including exotic superconductivity. Secondly, the dimer formation may be substantially changed by Li deficiency or hole doping, leading to a possible new dimer state related to dimer-solid and dimer-liquid states.

In this work, we report properties of heavily delithiated Li$_{2-x}$RuO$_3$ obtained by chemical oxidation. We confirm a crystallographic phase distinct from the pristine phase. This phase, emerging by heavy delithiation, shall be called the “D-phase”. We compare structural and magnetic properties of the D-phase with those of the stoichiometric “S-phase”. In particular, we find in the D-phase a new dimer-solid state with a different electronic configuration from that in the S-phase.

II. EXPERIMENT

Pristine Li$_2$RuO$_3$ samples were prepared from Li$_2$CO$_3$ (Aldrich, 99.997%) and RuO$_2$ (Rare metallic, 99.9%) by means of solid-state reaction. After the starting powders were dried, stoichiometric quantities were mixed and ground for 1 h in a conventional mortar. We added acetone to improve the homogeneity of the powder [10]. The powder was pelleted and heated at 1000°C for 24 h in the first step. Next, the pellet was re-ground in acetone for 1 h, pelleted, and heated at 900°C for 48 h followed by natural cooling. This choice of the synthesis procedure is based on the previous study [10]. Purity, as well as the coherence of the dimer configuration were verified by XRD and magnetic susceptibility measurements as described below.

The delithiation was performed based on the reaction:

$$\text{Li}_2\text{RuO}_3 + \frac{y}{2}I_2 \xrightarrow{\text{CH}_3\text{CN}} \text{Li}_{2-x}\text{RuO}_3 + x\text{LiI} + \frac{y - x}{2}I_2$$ (1)
I$_2$ (Wako, 99.9%) was dissolved in acetonitrile (CH$_3$CN) with the concentration of 0.3384 mol/L. After precise measurement of its mass, the powder of Li$_2$RuO$_3$ was soaked in the iodine solution for 3 days at room temperature. Then the Li$_{2-x}$RuO$_3$ powder was washed with clean acetonitrile. Since XRD analysis indicated that stronger delithiation was necessary, after another measurement of the mass, the powder was soaked in a new solution of I$_2$ 0.3683 mol/L for 18 h under stirring at 560 rpm. The containers were covered with aluminum foil in order to avoid the conversion of I$^-\rightarrow$I$_2$ triggered by light. The Li$_{2-x}$RuO$_3$ powder was taken out, and rinsed with clean acetonitrile until the color of the acetonitrile became completely transparent. A less-delithiated sample of Li$_2$RuO$_3$ was dried in acetonitrile was measured through titration with a commercial diffractometer (Bruker, D8 Advance) using CuKα radiation ($\lambda = 1.54184$ Å, $E = 8.041$ keV) equipped with a one-dimensional array of detectors and a nickel monochromator. High-energy XRD measurements at room temperature were performed at the beam line ID22 of the European Synchrotron Radiation Facility (ESRF). X-ray beam of the energy 30.993 keV ($\lambda = 0.40003$ Å) was used. High-energy XRD measurements at various elevated temperatures were performed at the beam line ID11 at ESRF. A double Laue monochromator was used to select X-ray of the energy of 87.5 keV ($\lambda = 0.14169$ Å). The beam was focused to ca. 100 mm using refractive lenses. The scattered X-ray was detected using a CCD camera (FReLoN). Temperature control was achieved using a hot-air blower. Data were continuously collected upon heating to 723 K at 2.5 K/min, and upon cooling to room temperature at the same rate. Typical temperature resolution was 0.2 K/pattern. We find a noticeable difference between the actual sample temperature and the thermometer temperature. Thus, a linear correction to the thermometer temperature was made, so that T_d of Li$_2$RuO$_3$ recorded in the XRD measurement matches with the T_d of the magnetization measurements.

The magnetization measurements were performed using a commercial superconducting quantum interference device magnetometer (Quantum Design, MPMS). The magnetization at high temperatures (300 to 700 K) were measured using the oven option for MPMS. We used quartz tubes as sample holders for the high temperature measurements. The sample tubes were sealed with ceramic bond (Resbond, 907GF) in order to prevent any gas released from the sample to damage the inside of the oven sample space. We checked the thermometer calibration of the oven by measuring the ferromagnetic transition ($T_C=62.7$ K) of Ni (Rare metallic, 99.99%) at several fields [23]. The calibration error in T_C of Ni is less than 0.2%. Measurements from 1.8 to 300 K were performed with the ordinary setup of MPMS in zero-field-cooled (ZFC) and field-cooled (FC) sequences.

III. RESULTS AND DISCUSSION

A. Structure

Figure [1] shows the high-energy powder XRD spectra for Li$_{2-x}$RuO$_3$ samples with various values of x measured at room temperature. This provides high-resolution spectra containing clear superlattice peaks at low angles. Figure [2] shows CuKα XRD with Rietveld fitting. The pristine ($x = 0$) sample exhibits the patterns expected for the pure Li$_2$RuO$_3$. The spectrum can be well fitted with the space group (SG) $P2_1/m$ [No. 11, Fig 2(a)] as reported previously [9, 12, 23].

The delithiated samples exhibit patterns with substantial differences compared with the $x = 0$ sample as described below. The $x \approx 0.73$ sample, exhibiting almost single-phase behavior, has the $(h00)$ and $(00l)$ peaks shifted to lower angles and the $(0kl)$ peaks shifted to higher angles (Fig. [1c]), indicating increase in the values of a and c and decrease in the value of b [Fig 2c]). Nevertheless, the spectrum of this delithiated sample can be well fitted also with the SG $P2_1/m$ [Fig 2b]. We designate the crystallographic phase observed in the $x \approx 0.73$ sample as the D-phase. In addition to the main peaks associated with the D-phase, we can identify minor phases such as the S-phase Li$_2$RuO$_3$, RuO$_2$, and yet another delithiated phase Li$_{2-x}$RuO$_3$ with $x \approx 1.1$ (SG $R3$, No. 148) [14].

For the sample with $x \approx 0.34$, we find that the XRD peaks such as (001) and (020) are clearly split into two peaks [Fig 1c]: one group similar to those of the $x = 0$ sample and the other similar to those of the $x \approx 0.73$ sample. This fact indicates that the crystal-structure...
change due to delithiation is not continuous: there are two crystallographically distinct phases with \(x = 0 \) and \(x > 0 \) and they coexist in similar ratio in the \(x \approx 0.34 \) sample.

In addition to the shifts in the main peaks, three small peaks but sharp peaks are observed in the delithiated samples at \(2\theta = 3.140^\circ, 3.714^\circ, \) and \(4.017^\circ \) [\(d = 7.30, 6.18, \) and \(5.71 \) Å, Fig. 1(b)], indicating the presence of a superlattice structure. Although these small peaks have not been reported in pristine or delithiated \(\text{Li}_2\text{RuO}_3 \), a superlattice in \(\text{Li}_{2-x}\text{Ru}_{1-y}\text{M}_y\text{O}_3 \) (\(M = \text{Mn}, \text{Sn} \)) has been recently found as additional spots in electron diffraction \[18, 19\]. In these studies, the structure has approximately been described with the SG \(C2/m \) (neglecting the presence of the superlattice and Ru-Ru dimers even for small values of \(y \)). It has been suggested that the origin of the superlattice is the distortion in the oxygen positions \[18, 20\]. Another possibility is an ordering of Ru valency (charge order) as we discuss latter. Since the SG in \(\text{Li}_{2-x}\text{RuO}_3 \) with the superlattice taken into account is not trivial, we hereafter consider the SG \(P2_1/m \) to evaluate the cell parameters and the Ru ion positions.

The cell parameters of the S and D-phases, obtained from the laboratory XRD data, are compared in Table I. The cell parameters of the S and D-phases, obtained from laboratory XRD data, are compared in Table I. The structure factor used in both cases is the one of \(\text{RuO}_3 \) with the superlattice taken into account. Furthermore, the relation \(\sqrt{3a/b} \) of \(\text{Li}_{2-x}\text{RuO}_3 \) is closer to the unity than that of \(\text{Li}_2\text{RuO}_3 \). Thus, on average, the structure of \(\text{Li}_{2-x}\text{RuO}_3 \) seems to be more symmetric.

TABLE I. Cell parameters of \(\text{Li}_2\text{RuO}_3 \) (S-phase) and \(\text{Li}_{2-x}\text{RuO}_3 \) (\(x \approx 0.73 \), D-phase) at room temperature obtained from laboratory XRD spectra. The space group used for both phases is \(P2_1/m \).

\(x \)	\(a \) (Å)	\(b \) (Å)	\(c \) (Å)	\(\sqrt{3a/b} \)	\(\beta \) (°)	\(\chi \)	\(GOF \)	
0	4.922	8.787	5.896	124.36	0.970	10.96	7.31	1.50
0.73	4.937	8.630	5.898	123.54	0.991	11.35	4.37	2.60

FIG. 1. Temperature variations of the high-energy powder XRD spectra at room temperature of \(\text{Li}_{2-x}\text{RuO}_3 \) samples with \(x = 0, 0.34, \) and 0.73, taken with X-ray of 30.993 keV (\(\lambda = 0.40003739 \) (180) Å) at the beam line ID22 of the ESRF. Panels (a), (b), and (c) present data in the ranges \(0^\circ < 2\theta < 20^\circ, 3^\circ < 2\theta < 4.5^\circ, \) and \(4.5^\circ < 2\theta < 6.5^\circ, \) respectively. The peak indices of the stoichiometric \(\text{Li}_2\text{RuO}_3 \) are shown in (c) based on the room-temperature crystal structure reported by Miura et al. \[18, 19\]. The (101) peak is characteristic of the dimer-solid state \[8, 12\].
Reflecting the dimer-solid state in the S-phase, the dimer bond \(L_2 \) is \(\approx 16\% \) shorter than the long bonds \(L_1 \) and \(L_3 \). In contrast, for the D-phase, the difference is only about 6%.

In Sec. III C, we will discuss local structures in more detail.

Figure 4 shows high-energy XRD patterns \((E = 87.5 \text{ keV}, \lambda = 0.14169 \text{ Å})\) of the \(x \approx 0.73 \) sample (dominated by the D-phase) at selected temperatures on heating \((302 \text{ K to 694 K})\) and after subsequent cooling \((333 \text{ K})\). While heating, the three superlattice peaks between \(2\theta = 1.1^\circ \) and \(1.5^\circ \) disappear at \(\approx 609 \text{ K} \). At the same temperature, a sudden increase in the RuO\(_2\) peak intensity, for example the one at \(2\theta = 3.2^\circ \), is observed. These facts indicate the decomposition of Li\(_2\)RuO\(_3\) \((x \approx 0.73)\) into Li\(_3\)RuO\(_3\) and RuO\(_2\) starting from this temperature (see Appendix A for details).

B. Magnetization

Figure 5 shows the temperature dependence of the magnetic susceptibility of the \(x = 0 \) and \(x \approx 0.73 \) samples. Diamagnetic contributions of ion cores have been subtracted \(\text{[28]} \). The overall shapes of curves for these samples differ in several aspects. At low temperatures, both samples exhibit Curie-like behavior; the difference will be discussed later. Both samples exhibit a minimum of magnetic susceptibility but at different temperatures: \(\approx 150 \text{ K} \) for the sample with \(x = 0 \) and \(\approx 200 \text{ K} \) for the sample with \(x \approx 0.73 \). With increasing temperature, the magnetic susceptibility of both samples increases toward the transition from dimer solid to dimer liquid. The change of the magnetic susceptibility in the pristine sample Li\(_2\)RuO\(_3\) is relatively gradual below \(\approx 500 \text{ K} \), followed by a sharp jump characteristic of the first-order transition (Appendix D). In contrast, the sample with \(x \approx 0.73 \) does not exhibit a gradual change below the transition but exhibits a clearer change in the slope of the \(M(T)/H \) curve at \(T \approx 539 \text{ K} \). Between this temperature and 609 K, no clear change in the averaged crystalline structure was observed and the superlattice peaks are maintained (inset of Fig. 5). Thus, the change in the susceptibility seems to be mainly linked to changes in the electronic state, but not to chemical decomposition.

At 609 K, there is another change of slope in the \(M(T)/H \) curve (Fig. 5). As already explained, the decomposition of Li\(_{2-x}\)RuO\(_3\) into Li\(_3\)RuO\(_3\) begins at this temperature (see also Appendix A). Therefore, the slope change at 609 K is mainly due to the decomposition. Thus, in the warming run the susceptibility of the \(x \approx 0.73 \) sample above 609 K represents the sum of those of evolving multiple phases. While warming above 658 K, there is a slight but sharp drop in the susceptibility of the \(x \approx 0.73 \) sample (dominated by the S-phase at this temperature). Across this temperature, there is no noticeable anomaly in the XRD spectra. Thus, the sharp drop probably reflects a reorganization of lithium or oxygen induced by the vacancies of lithium in the initial Li\(_{2-x}\)RuO\(_3\).

The purple curve in Fig. 6 is obtained from the susceptibility in the cooling process of the \(x \approx 0.73 \) sample after decomposition. Under this condition, the sample...
is dominated by Li$_2$RuO$_3$ and RuO$_2$ (see Appendix A). The raw data matches with the susceptibility shown by the red curve of the $x \approx 0.73$ sample as the purple curve in Fig. 4. From 1.8 to 300 K, the magnetization was measured while warming up after ZFC. From 300 to 700 K the magnetization was measured in temperature up sweep, except for the purple curve which is for the molar susceptibility of Li$_2$RuO$_3$ contained in the $x \approx 0.73$ sample on cooling from 700 K to 300 K (see text). Results of the Curie-Weiss fitting $(\chi = C/(T - \Theta) + \chi_0)$ are also shown with broken curves. Colors of the curve for $x \approx 0.73$ correspond to those in Fig. 4.

Fig. 4. Magnetic susceptibility vs temperature of (a) Li$_2$RuO$_3$ and (b) Li$_{2-x}$RuO$_3$ ($x \approx 0.73$) from 1.8 to 45 K at different magnetic fields measured in ZFC (closed symbols) and FC (open symbols) processes. The raw data matches with the susceptibility shown by the purple curve in Fig. 4. From 1.8 to 300 K, the magnetization was measured while warming up after ZFC. From 300 to 700 K the magnetization was measured in temperature up sweep, except for the purple curve which is for the molar susceptibility of Li$_2$RuO$_3$ contained in the $x \approx 0.73$ sample on cooling from 700 K to 300 K (see text). Results of the Curie-Weiss fitting $(\chi = C/(T - \Theta) + \chi_0)$ are also shown with broken curves. Colors of the curve for $x \approx 0.73$ correspond to those in Fig. 4.

Fig. 5. Magnetic susceptibility vs temperature of the $x = 0$ sample (S-phase) and the $x \approx 0.73$ sample (mostly D-phase) from 1.8 to 700 K at $H = 10$ kOe. Corrections of diamagnetic contributions of ion cores have been made. From 1.8 to 300 K, the magnetization was measured while warming up after ZFC. From 300 to 700 K the magnetization was measured in temperature up sweep, except for the purple curve which is for the molar susceptibility of Li$_2$RuO$_3$ contained in the $x \approx 0.73$ sample on cooling from 700 K to 300 K (see text). Results of the Curie-Weiss fitting $(\chi = C/(T - \Theta) + \chi_0)$ are also shown with broken curves. Colors of the curve for $x \approx 0.73$ correspond to those in Fig. 4.

Fig. 6. Magnetic susceptibility vs temperature of (a) Li$_2$RuO$_3$ and (b) Li$_{2-x}$RuO$_3$ ($x \approx 0.73$) from 1.8 to 45 K at different magnetic fields measured in ZFC (closed symbols) and FC (open symbols) processes.

In an earlier study, it is proposed that samples with broad magnetic transitions at T_d are accompanied by a dimer decoherent configuration, namely dimer patterns breaking the long-range ordered configuration. Such dimer decoherent configuration results in nondimerized Ru ions with finite spin. To examine the number of such nondimerized ions, we assume that they exhibit $S = 1$ and $S = 3/2$ for the S-phase and D-phase, respectively, and that they can be treated as nearly free spins. From the Curie-Weiss fitting described above, the quantity of nondimerized ions with finite spin is probably due to magnetic ordering with antiferromagnetic interactions. No trace of superconductivity was found by AC susceptibility measurements using an adiabatic demagnetization refrigerator or transport measurements down to 0.1 K.

TABLE II. Curie-Weiss fitting parameters, expected Curie constant and localized spins.

x	Curie const. (emu K/mol)	Θ (K)	χ_0 (emu/mol)	μ_{eff} (emu)	Fitting range (K)	Expec. Loc. spins (%)	Δ Loc. spins (%)
0	0.00039	0.96	0.0002610	0.056	3–50	1	0.039
0.73	0.00625	-16.0	0.0001349	0.22	15–200	3/2	0.333
For the S-phase, it is expected that the magnetization is governed by the Ru$^{4+}$ (4d^7) ion. The origin of the decrease of the magnetization below T_d has been attributed to the formation of dimers with molecular orbitals (MOs) with $S \approx 0$ [29]. In contrast, the greater magnetization above T_d has been explained by the partial breakdown of MOs. In the dimer-liquid state above T_d, the Ru 4d orbitals keep the MO formed only by the σ bonds, leading to dynamic dimers [12].

Since the Curie-Weiss analysis indicates that most of the Ru ions form dimers with $S = 0$ even in Li$_{2-x}$RuO$_3$, there are three possible electronic configurations of the dimers in the dimer-solid state as depicted in Fig. 7. The configuration in panel (a) is what already proposed for the S-phase (Refs. [4, 12, 29]).

We propose that in the D-phase the most probable configuration for Ru$^{5+}$ is the dimer formed between Ru$^{5+}$ and Ru$^{5+}$ [Fig. 7(b)], since such a dimer has electrons only in the lower-energy bonding states. In contrast, the dimers formed between Ru$^{4+}$ and Ru$^{5+}$ ions or Ru$^{4+}$ and Ru$^{5+}$ ions [Fig. 7(a, c)] contain electrons also in higher-energy antibonding states. Actually, the amount of dimers with the configuration Ru$^{5+}$-Ru$^{5+}$ accompanied by spin $S = 1/2$ must be quite small based on the observed small Curie constant.

The situation that most of the Ru ions form iso-valent spinless dimers is actually difficult to be realized if Ru$^{5+}$ and Ru$^{4+}$ ions distribute randomly. Thus, the Ru ions in the D-phase may exhibit charge ordering between Ru$^{4+}$ and Ru$^{5+}$ ions. Such charge ordering may be the origin of the observed superlattice.

Since Ru$^{4+}$-Ru$^{4+}$ dimers contain a MO with higher energy than those of Ru$^{5+}$-Ru$^{5+}$ dimers i.e. δ^*, it is more likely that the δ^* of the Ru$^{4+}$-Ru$^{4+}$ dimers breaks at lower temperature than MOs of Ru$^{5+}$-Ru$^{5+}$ [Fig. 7(b)]. The T_d where MOs of Li$_2$RuO$_3$ break has been demonstrated to depend on the dimer coherence configuration [10]. Thus, similar to the S-phase, the enhancement of magnetization in the D-phase at ~ 539 K (Fig. 11(1)) is probably related to the breaking of MOs of the Ru$^{4+}$–Ru$^{4+}$ dimers.

In the context of the linear combination of atomic orbitals, the bond lengths L of different dimer configurations can be estimated in terms of the quantity called the bond order B, which is evaluated as

$$B = \frac{1}{2}(n_b - n_a), \quad (3)$$

where n_b and n_a are the numbers of electrons in the bonding and antibonding states, respectively. In Fig. 7 the values of B of the possible electronic configurations are shown. Pauling found an empirical relation between B and the bond length L [31, 34]:

$$L = L_0 - f \log_{10}(B), \quad (4)$$

where the value of f depends on the atoms and L_0 is the bond length for $B = 1$. Later this relation was derived from the Friedel model [32]. In order to evaluate the

![FIG. 7. Molecular orbital diagrams of possible configurations of the dimers of Li$_2$RuO$_3$ (S-phase) and Li$_{2-x}$RuO$_3$ (D-phase). Panels (a), (b), and (c) depict the molecular orbitals in the dimer-solid state consisting of Ru$^{4+}$–Ru$^{4+}$, Ru$^{5+}$–Ru$^{5+}$, and Ru$^{4+}$–Ru$^{5+}$ dimers, respectively. Configuration in the panel (c) is less likely to occur based on the observed magnetic susceptibility. Panel (d) depicts the molecular orbitals in the dimer-liquid state formed by Ru$^{4+}$–Ru$^{4+}$ ions proposed in Ref. [12]. B is the bond order defined by Eq. (4).]

C. Electronic configuration of dimers

According to the outcome of the last section, the D-phase is dominated by Ru-Ru dimers. In this section, we discuss the electronic configuration of these dimers and their correlation with the crystalline structure.

We first discuss the probable valency of Ru ions in the D-phase. It has been demonstrated by X-ray photoemission spectroscopy, Mössbauer spectroscopy, electronic paramagnetic resonance measurements, and DFT calculations, that the deintercalation of lithium from Li$_2$RuO$_3$ leads to the valence change from Ru$^{4+}$ to Ru$^{5+}$. In higher x range than $x = 1$, where Ru ions are fully oxidized to pentavalent, it is revealed that further delithiation induces loss of oxygen, presence of peroxyces (O$_2^-$), and oxidation of Ru$^{5+}$ into Ru$^{6+}$ ions [18, 21]. Thus, in the sample of the present study with $x \approx 0.73$, the ratio of the amount of Ru$^{5+}$ among the total Ru ions would be similar to this x value and the others remain Ru$^{4+}$. In other words the valency of the sample can be approximately expressed as Li$_{2-x}$Ru$_{1-x}$Ru$_{2-x}^{5+}$O$_3$.
constant f, we use the value of the bond length of the dimer-liquid state of the S-phase ($L_0 = 2.68 \text{ Å}$) [12], where only the σ-MO is occupied i.e. $B = 1$ [Fig. 7(d)]. We also use the bond lengths of the short bond in the dimer-solid state of the S-phase ($L = 2.58 \text{ Å}$) where the σ, π, δ, and δ^* MOs are occupied i.e. $B = 2$ [Fig. 7(a)]. From these values, we obtain $f = 0.332$. By using these values we estimate the length of the Ru$^{5+}$–Ru$^{5+}$ bond in the dimer-solid state to be $L = 2.52 \text{ Å}$.

Since in the dimer-solid state of the $x \approx 0.73$ sample, around 73% of the dimers are formed by Ru$^{5+}$–Ru$^{5+}$ ions and the rest by by Ru$^{4+}$–Ru$^{4+}$ ions, the average length of the short bonds is expected to be 2.56 Å if we assume that the dimers are all located in the L_2 bonds. This is 0.04 Å shorter than the dimer entirely formed between Ru$^{4+}$ and Ru$^{4+}$ ions in the S-phase. On the other hand, the observations for the sum of the bond lengths ($L_T = L_1 + L_2 + L_3$) of the D-phase ($L_T = 8.592 \text{ Å}$) is 0.074 Å shorter than that of the S-phase ($L_T = 8.666 \text{ Å}$). The excess of shrinkage of L_T may be due to the difference in ionic size between Ru$^{4+}$ ($r = 0.62 \text{ Å}$) and Ru$^{5+}$ ($r = 0.565 \text{ Å}$) [33] in the nondimer bonds, although covalency needs to be considered. The reduced difference between short and long bonds in the D-phase suggests that some dimers are distributed in L_1 and L_3 as well.

IV. CONCLUSION

We successfully synthesized the delithiated phase Li$_{2-x}$RuO$_3$, the D-phase, with structures distinct from the stoichiometric Li$_3$RuO$_3$, the S-phase. For the first time, we identify the magnetic properties of the D-phase. We found that the Ru ions also form dimers as in the S-phase. There should be two kinds of dimers in the D-phase: Ru$^{4+}$–Ru$^{4+}$ dimers as in the S-phase and additional Ru$^{5+}$–Ru$^{5+}$ dimers. The latter should have a new molecular orbital configuration, in which no electrons occupy antibonding states. We find that above $T \approx 539 \text{ K}$ the D-phase exhibits a strong linear increase in the susceptibility. In analogy to the S-phase, this magnetic feature is most likely associated with the change from the dimer-solid to dimer-liquid states. Structural and magnetic properties indicate that the dimers in the dimer-solid state are located not only in the L_2 bonds but also in the L_1 and L_3 bonds. Such dimer distribution may lead to the observed superlattice structure.

ACKNOWLEDGMENTS

We thank G. Khaliullin, Z. Fisk, H. Takagi, M. Braden, and T. Fröhlich for useful discussions. We are grateful to Y. Honda for his support in the chemical composition analysis. We also acknowledge J. Wright and M. Di Michiel for their supports. This work was supported by the Grants-in-Aid for Scientific Research on Innovative Areas Topological Materials Science (KAKENHI Grant No. 15H05852), as well as KAKENHI Grant No. 26247060, from JSPS of Japan. M.-P. J.-S. is supported by the Japanese government (MEXT) scholarship.

Appendix A: Reaction of Li$_{2-x}$RuO$_3$ at high temperatures

In the XRD spectra shown in Fig. 4 the peak intensities of the RuO$_2$ ($P4_2/mnm$) peaks at 625 K are markedly higher than those at 583 K. See for example the peak at $2\theta = 2.57$. We find that this enhancement starts at $\approx 609 \text{ K}$ (not shown in the figure). The structure of the main phase after heating above $T \approx 609 \text{ K}$ is equivalent to that of the S-phase Li$_2$RuO$_3$.

Besides, as shown in Fig. 5 the temperature dependence of the susceptibility of Li$_{2-x}$RuO$_3$ $x \approx 0.73$ changes substantially before and after heating to 700 K. The behavior after heating to 700 K becomes similar to that of pristine Li$_2$RuO$_3$ (compare purple and black lines in Fig. 5). While repeating magnetization measurements, the obtained curves remain almost equivalent to the purple curve in Fig. 5.

These results indicate that, when Li$_{2-x}$RuO$_3$ is heated above $T \approx 609 \text{ K}$, it decomposes into Li$_2$RuO$_3$ and RuO$_2$ according to the following reaction:

$$\text{Li}_2\text{RuO}_3\xrightarrow{\text{heat in air or He}} \left(\frac{2-x}{2}\right)\text{Li}_2\text{RuO}_3 + \frac{x}{2}\text{RuO}_2 + \frac{x}{4}\text{O}_2.$$ \hspace{1cm} (A1)

This decomposition reaction seems to be triggered by the loss of oxygen.

The minor phase Li$_{2-x}$RuO$_3$ with $x \approx 1.1$ (SG $R3$), decomposes at lower temperatures. The peak at $2\theta = 1.75^\circ$ seen as a shoulder in Fig. 4 is characteristic of this phase, disappears at 497 K. The magnetization exhibits a small change of slope at this temperature (Fig. 5).

Appendix B: First-order transition of the S-phase Li$_2$RuO$_3$

Initially the dimer transition of the pristine Li$_2$RuO$_3$ was considered to be second order [3]. However, recent studies indicate that the dimer transition is a first-order transition [11, 12]. Figure 8 shows the high-energy XRD spectra of pristine Li$_2$RuO$_3$ at three different temperatures. At the temperature close to the dimer transition, the spectrum shows the combination of the structures of the dimer-solid and dimer-liquid states. This coexistence provides additional evidence for the first-order transition.
FIG. 8. (color online) High-energy XRD spectra of pristine \(\text{Li}_2\text{RuO}_3 \) sample at three different temperatures: Below \(T_d \sim 550 \) K, close to \(T_d \), and above \(T_d \). It shows the coexistence of the dimer-solid and dimer-liquid states, which is typical of a first-order transition. The blue arrows indicate peaks characteristic of the dimer-solid state and red arrows peaks of the dimer-liquid state. The measurements with \(E = 87.5 \) keV \((\lambda = 0.14169 \text{ Å}) \) were performed at the beam line ID11 of ESRF.

[1] Y. Singh and P. Gegenwart, \textit{Phys. Rev. B} \textbf{82}, 064412 (2010).
[2] T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L. Veiga, G. Fabbris, D. Haskel, and H. Takagi, \textit{Phys. Rev. Lett.} \textbf{114}, 077202 (2015).
[3] A. Kitaev, \textit{Ann. Phys.} \textbf{321}, 2 (2006).
[4] A. Shitade, H. Katsura, J. Kune, X.-L. Qi, S.-C. Zhang, and N. Nagaosa, \textit{Phys. Rev. Lett.} \textbf{102}, 256403 (2009).
[5] Y.-Z. You, I. Kimchi, and A. Vishwanath, \textit{Phys. Rev. B} \textbf{86}, 085145 (2012).
[6] T. Hyart, A. R. Wright, G. Khalilullin, and B. Rosenow, \textit{Phys. Rev. B} \textbf{85}, 140510 (2012).
[7] S. Okamoto, \textit{Phys. Rev. B} \textbf{87}, 064508 (2013).
[8] D. D. Scherer, M. M. Scherer, G. Khalilullin, C. Honerkamp, and B. Rosenow, \textit{Phys. Rev. B} \textbf{90}, 045135 (2014).
[9] Y. Miura, Y. Yasui, M. Sato, N. Igawa, and K. Kakurai, \textit{J. Phys. Soc. Jpn.} \textbf{76}, 033705 (2007).
[10] M.-P. Jimenez-Segura, A. Ikeda, S. Yonezawa, and Y. Maeno, \textit{Phys. Rev. B} \textbf{93}, 075133 (2016).
[11] I. Terasaki, S. Abe, Y. Yasui, R. Okazaki, and H. Taniguchi, \textit{J. Mater. Chem. C} \textbf{3}, 10430 (2015).
[12] S. A. J. Kimber, I. I. Mazin, J. Shen, H. O. Jeschke, S. V. Streletssov, D. N. Argyriou, R. Valentí, and D. I. Khomskii, \textit{Phys. Rev. B} \textbf{89}, 081408 (2014).
[13] S. Sarkar, P. Mahale, and S. Mitra, \textit{J. Electrochem. Soc.} \textbf{161}, A934 (2014).
[14] H. Kobayashi, R. Kanno, Y. Kawamoto, M. Tabuchi, O. Nakamura, and M. Takano, \textit{Solid State Ionics} \textbf{82}, 25 (1995).
[15] S. Taminato, M. Hirayama, K. Suzuki, K. Kim, Y. Zheng, K. Tanura, J. Mizuki, and R. Kanno, \textit{J. Mater. Chem. A} \textbf{2}, 17875 (2014).
[16] D. Mori, H. Kobayashi, T. Okumura, and Y. Inaguma, \textit{Electrochemistry} \textbf{83}, 1071 (2015).
[17] H. Kobayashi, R. Kanno, Y. Kawamoto, M. Tabuchi, and O. Nakamura, \textit{Solid State Ionics} \textbf{86}, 859 (1996).
[18] M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M.-L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, and J.-M. Tarascon, \textit{Nat Mater} \textbf{12}, 827 (2013).
[19] M. Sathiya, K. Ramesha, G. Rousse, D. Foix, D. Gonbeau, A. S. Prakash, M. L. Doublet, K. Hemalatha, and J.-M. Tarascon, \textit{Chem. Mater.} \textbf{25}, 1121 (2013).
[20] B. Li, R. Shao, H. Yan, L. An, B. Zhang, H. Wei, J. Ma, D. Xia, and X. Han, \textit{Adv. Funct. Mater.} \textbf{n/a} (2016).
[21] Daniel C. Harris, \textit{Quantitative Chemical Analysis}, 7th ed. (W. H. Freeman, 2006).
[22] P. Patnaik, \textit{Dean’s Analytical Chemistry Handbook}, 2nd ed. (McGraw-Hill Education, New York, 2004).
[23] J. S. Kouvel and M. E. Fisher, \textit{Phys. Rev.} \textbf{136}, A1626 (1964).
[24] H. Lei, W.-G. Yin, Z. Zhong, and H. Hosono, \textit{Phys. Rev. B} \textbf{89}, 020409 (2014).
[25] K. Momma and F. Izumi, \textit{J. Appl. Cryst.} \textbf{44}, 1272 (2011).
[26] G. A. Bain and J. F. Berry, \textit{J. Chem. Educ.} \textbf{85}, 532 (2008).
[27] J. M. Fletcher, W. E. Gardner, B. F. Greenfield, M. J. Holdoway, and M. H. Rand, \textit{J. Chem. Soc. A}, \textbf{653} (1968).
[28] S. Yonezawa, T. Higuchi, Y. Sugimoto, C. Sow, and Y. Maeno, \textit{Review of Scientific Instruments} \textbf{86}, 093903 (2015).
[29] Y. Miura, M. Sato, Y. Yamakawa, T. Habaguchi, and Y. Ono. J. Phys. Soc. Jpn. 78, 094706 (2009).
[30] L. Pauling. J. Am. Chem. Soc. 69, 542 (1947).
[31] L. Pauling. Mineral. Soc. Am. Spec. Pap. 3, 125 (1970).
[32] Adrian P. Sutton, Electronic Structure Of Materials, Oxford Science Publications (Oxford University Press, New York, 1993).
[33] R. D. Shannon. Acta Crystallographica Section A 32, 751 (1976).