Acute Ischemia and Sudden Cardiac Death

Disturbances in cardiac rhythm resulting from an acute reduction in blood supply to a region of the heart are a major cause of sudden cardiac death (SCD).1,2 Specifically, lethal ventricular arrhythmias (sustained ventricular tachycardia [VT] or ventricular fibrillation [VF]) due to acute coronary artery occlusion account for 80% of all cases of SCD without a prior history of heart disease.3 The electrophysiological changes leading to the induction and sustenance of ventricular arrhythmias in the acute (∼1 hour) period of regional ischemia (phase 1, during which approximately 50% of all SCDs occur4) have been extensively studied,5,6 yet the mechanisms remain unclear. Here, we briefly summarize known contributors to acute ischemia-induced ventricular arrhythmias, followed by a more detailed exploration of the potential role that changes in intracellular calcium (Ca^{2+}) handling may play in that setting.

Ischemia-Induced Ventricular Arrhythmias

Ventricular arrhythmias in acute ischemia are caused by focal (ectopic excitation) and nonfocal (reentry) mechanisms, due to an interaction of alterations in myocardial electrical, mechanical, and biochemical properties (summarized below — for further details and references, see reviews by Carmeliet7 or Janse and Wit8).

Subcellular effects. Principal ischemia-induced intracellular changes include: (i) decreased adenosine triphosphate (ATP) and increased adenosine diphosphate (ADP) (due to hypoxia/anoxia); (ii) decreased pH (resulting from carbon dioxide retention and increased proton production); (iii) increased sodium (Na+) concentration (caused by increased Na+ influx and decreased efflux); (iv) increased Ca^{2+} concentration ([Ca^{2+}]_{i}); discussed below); (v) activation of the ATP-inactivated potassium (K') current (I_{KATP}) with an increase in the ADP/ATP ratio; (vi) decreased fast Na+ current (I_{Na}^{f}) primarily a result of increased inactivation due to acidosis, oxidative stress, and depolarization of resting transmembrane potential, V_{m}; and (vii) decreased L-type Ca^{2+} current (I_{Ca,L}^{L}, discussed below). These occur at the same time as important interstitial changes, including increased extracellular K' concentration (largely due to increased K' efflux via I_{KATP} and to a lesser extent to decreased influx and shrinkage of the extracellular space) and elevated levels of catecholamines (due to acidosis-induced endogenous release from sympathetic nerve terminals).

Cell- and tissue-level effects. At the whole cell level, extracellular hyperkalemia causes a shift in the equilibrium potential for K', which results in depolarization of resting V_{m} (facilitated by an increasing inward leak current). Initially,
this causes an increase in cell excitability as v_m approaches threshold. As extracellular K$^+$ concentration continues to increase, there is a subsequent decrease in the rate of the action potential (AP) upstroke and in AP amplitude, as I_{Na} is decreased due to channel inactivation. At the same time, the AP is at first slightly prolonged (due to a decrease in local temperature of the myocardium), followed by AP shortening (primarily by activation of $I_{\text{K,ATP}}$). In contrast to the effect on AP duration (APD), ischemia causes an increase in the effective refractory period (ERP, caused by I_{Na} inactivation), which results in post-repolarization refractoriness (although ERP is shortened at the border between healthy and fully ischemic tissue, explained below). In tissue, conduction velocity (CV, which is determined by AP upstroke velocity and amplitude, as well as the ease of intercellular propagation) is reduced, at first by the change in AP characteristics, and then more severely with the closure of gap junctions as ischemia progresses.

Mechanisms of arrhythmogenesis. As acute ischemia is dynamic, with effects progressing in time after coronary artery occlusion, so is the frequency of the associated arrhythmias. Arrhythmias tend to occur in two distinct phases. Specific timings vary with species and experimental preparation, but in general the first phase (phase 1a) occurs approximately 2–10 minutes after occlusion (with a peak in arrhythmias at around 6 minutes), while the second phase (phase 1b) occurs after approximately 20–40 minutes (with a peak at around 30 minutes). In addition, effects are nonuniform across the ischemic region, with heterogeneities pronounced at the ischemic border. These heterogeneities, such as an increase in excitability and a shortening of ERP in the border zone (due to injury current), are important factors in the generation of arrhythmias.

The nature and underlying mechanisms of arrhythmias in the two subphases of acute ischemia are also distinct. Phase 1a arrhythmias are not generally lethal, manifesting as short periods of VT only (facilitated by the ischemia-induced decrease in excitation wave-length = APD × CV). These arrhythmias are mostly triggered by reentry near the border zone, with abnormal impulses traveling through an extended circuit in the ischemic tissue or multiple wavefronts around a region of conduction block (although some ectopic excitation occurs as excitability is initially increased). Phase 1b arrhythmias, on the other hand, are more deadly (and thought to be the primary source of SCD), as they often degenerate into VF. The mechanism of their genesis, however, is less clear. In phase 1b, there is a greater extent of ectopic excitation, than in phase 1a, both in the ventricular myocardium and in Purkinje fibers, most likely resulting from a combination of depolarizing influences of increased catecholamine levels (stimulating, for instance, intracellular Ca$^{2+}$ release), enhanced stretch of border zone tissue (which stimulates stretch-activated currents), an increased source–sink relationship (due to cellular uncoupling), increased [Ca$^{2+}$], and increased injury current. At the same time, the propensity for triggered activity to result in reentry is heightened by the decrease in CV (as gap junctions begin to close) and a further increase in extracellular K$^+$ concentration. As mentioned earlier, the extensive reviews by Carmeliet5 or Janse and Wit6 can be referred to for references and further details.

Changes in Intracellular Calcium Handling During Acute Ischemia

While it is clear that many factors contribute to arrhythmias during acute ischemia, the involvement of altered intracellular Ca$^{2+}$ handling is of particular interest, as it appears to have a critical role in arrhythmogenesis in various other disease states.7 Specifically, acute ischemia is known to affect various aspects of Ca$^{2+}$ handling, resulting in important changes in [Ca$^{2+}$] and the Ca$^{2+}$ transient.

Intracellular calcium handling under physiological conditions. Under normal conditions, excitation rapidly propagates into the cell interior via specialized sarcolemmal invaginations (transverse tubules). Depolarization causes opening of voltage-sensitive L-type Ca$^{2+}$ channels (LCCs) concentrated in this region, which causes an influx of Ca$^{2+}$ into the dyadic cleft and a localized increase in [Ca$^{2+}$]. In direct apposition to LCCs are sarcoplasmic reticulum (SR) release channels (ryanodine receptors [RyR]), which together form couplons that allow a regional increase in [Ca$^{2+}$], to stimulate RyR opening and cause release of Ca$^{2+}$ from the SR (a process known as Ca$^{2+}$-induced Ca$^{2+}$ release [CICR]). This large increase in [Ca$^{2+}$] (up to 10 times diastolic levels) forms the upstroke of the Ca$^{2+}$ transient, during which Ca$^{2+}$ binds to troponin C on the myofilaments, enabling crossbridge cycling and muscle contraction. Upon relaxation, Ca$^{2+}$ is released from the myofilaments and then either extruded from the cell by the Na$^+$/Ca$^{2+}$ exchanger (NCX, ~28% of cytosolic Ca$^{2+}$, and to a lesser degree the sarcolemmal Ca$^{2+}$ ATPase, ~2%), or resequistered in the SR by the SR Ca$^{2+}$ ATPase (SERCA, ~70%), so that preexcitation Ca$^{2+}$ concentrations are restored. It is worth noting that only a small fraction of cytosolic Ca$^{2+}$ is free at rest, with most bound to cytoplasmic proteins.

Ca$^{2+}$ is also found in other intracellular compartments, where it is has important regulatory functions. In the mitochondria, Ca$^{2+}$ regulates dehydrogenase activity to match energy production to utilization. The free concentration of Ca$^{2+}$ in the mitochondria is generally lower than in the cytosol and follows changes in that compartment. Ca$^{2+}$ influx occurs primarily through the uniporter driven by an electrical gradient (the mitochondrial matrix is negative with respect to the cytoplasm). Efflux depends on the proton gradient, occurring through mitochondrial NCX and the Na$^+$/hydrogen (H$^+$) exchanger (NHE), which act in concert to keep intranitochondrial Ca$^{2+}$ and Na$^+$ concentrations at low levels. As the mitochondria constitute a large fraction of
cell volume, they can accumulate a relatively large amount of Ca\(^{2+}\), and as such act essentially as a Ca\(^{2+}\) buffer. Specific details regarding normal intracellular Ca\(^{2+}\) handling can be found in the comprehensive review by Bers\(^8\) or Santulli and Marks.\(^9\)

Ischemic effects on calcium-induced calcium release.

Effects on L-type Ca\(^{2+}\) channel activity. It has been shown in human embryonic kidney cells expressing the α1-subunit of the LCC (which contains the pore-forming and voltage-sensing regions of the channel and is able to conduct ions in the absence of other accessory subunits) that hypoxia alone impairs \(I_{\text{Ca,L}}\) activation kinetics in a PO\(_{-}\)-dependent manner.\(^10\) This is thought to occur via posttranslational redox modification of the channel\(^11\) or a change in the sensitivity to changes in oxygen tension,\(^12\) although confirmation of their relative contribution is still needed.\(^13\) With reduced oxygen availability, there is a reduction in ATP, which further affects \(I_{\text{Ca,L}}\) by decreasing peak current, as demonstrated in isolated guinea pig ventricular myocytes.\(^14\) On the other hand, it has also been shown in these cells that hypoxia increases LCC sensitivity to β-adrenergic stimulation (as occurs with increased catecholamine levels during acute ischemia), which acts to increase \(I_{\text{Ca,L}}\), opposing the reduction in activation and peak current.\(^15\) In the case of combined oxidative and glycolytic metabolic inhibition (as occurs in phase 1b), the efficacy of LCCs to initiate CICR is impaired, causing a reduction in the ratio of \(I_{\text{Ca,L}}\) to Ca\(^{2+}\) transient amplitude.\(^16\) This effect, however, was found not to be linked with LCC dephosphorylation, so may be a result of alterations in RyR activity.

Acidosis also affects \(I_{\text{Ca,L}}\), reducing peak current in isolated guinea pig ventricular myocytes.\(^16\) In isolated rabbit hearts, reductions in pH to 6.3 have been shown to produce a ~70% reduction in the maximal conductance of \(I_{\text{Ca,L}}\).\(^17\) This effect is enhanced when combined with inhibition of the NHE,\(^18\) as occurs in phase 1b. Of interest, in isolated rabbit sinoatrial node cells, ischemia in fact increases \(I_{\text{Ca,L}}\),\(^19\) which is thought to relate to differences in the LCC α-subunit found in sinoatrial node (Cav 1.3) vs. ventricular (Cav 1.2) cells.\(^20\) In addition, there is a reduction in the conductance of T-type Ca\(^{2+}\) channels during acute ischemia,\(^19\) but the expression of that channel in ventricular myocytes is negligible.\(^5\)

Ligands produced during acute ischemia similarly affect \(I_{\text{Ca,L}}\). Amphipheles (long-chain acylcarnitines, LCAs) accumulate in ischemia as β-oxidation slows.\(^21\) The effect of LCAs on LCCs is debated, with previous literature indicating both current amplification\(^22\) and inhibition.\(^23\) In support of the importance of an LCA effect on Ca\(^{2+}\) handling during ischemia, however, is the finding that in isolated rat ventricular myocytes, an increase in LCAs is associated with afterdepolarizations (although this may also be linked to enhanced \(I_{\text{Na}}\)).\(^24\) Reactive oxygen species (ROS) have also been shown to be produced during acute ischemia in cultured chick embryo ventricular myocytes\(^25,26\) and intact guinea pig hearts.\(^27\) ROS is produced with mitochondrial electron transport chain damage\(^28\) or uncoupling of nitric oxide synthase (NOS),\(^29\) and by NADPH\(^30\) or xanthine\(^31\) oxidase (for further details regarding ROS production during ischemia, see the review by Raedschelders et al.\(^32\)). These volatile molecules have been shown to increase \(I_{\text{Ca,L}}\) density,\(^33\) via redox modification of the LCC α-subunit.\(^34,35\) LCCs are also sensitive to the increase in [Ca\(^{2+}\)]\(_i\) that occurs with ischemia, which increases the rate of their inactivation (via modulation of the α1-subunit by the Ca\(^{2+}\)-calmodulin complex\(^36\)), resulting in a negative inhibition of LCCs (similar to the voltage dependence of their inactivation).\(^37\)

Effects on RyR activity. RyR channels are regulated by various accessory proteins and their modulators, including cystolic calmodulin, FK506-binding protein (FKBP 12.6), protein kinase A, protein phosphatases, and luminal triadin, junctin, and calsequestrin.\(^38\) Within the first hour of ischemia, it has been shown in canine myocardium and isolated rat hearts that the number of available RyR channels is significantly reduced.\(^38,39\) The sensitivity of the RyR to cystolic Ca\(^{2+}\) is reduced by progressive acidification, and to a lesser extent reductions in ATP,\(^40\) which is an important modulator of RyR sensitivity to both luminal and cytoplasmic SR [Ca\(^{2+}\)].\(^41,42\) Conversely, increased ROS, which alters the oxidative status of RyR, leads to enhanced Ca\(^{2+}\) sensitivity and leak.\(^30\) This posttranslational modification of RyR by ROS has been linked to an increase in the open probability of the channel by S-glutathionylation.\(^43\) Furthermore, the activity of NOS has been shown to be augmented early in acute ischemia,\(^44,45\) promoting an increase in nitric oxide and cGMP production.\(^46\) This increase in NOS activity, acting through cGMP-dependent or -independent pathways, modifies phosphodiesterase activity or nitrrosylation of cysteine residues on proteins,\(^47\) which reduces \(I_{\text{Ca,L}}\),\(^48-50\) while amplifying RyR and SERCA activity (thus increasing Ca\(^{2+}\) spark frequency).\(^48,51\)

Ischemic effects on calcium extrusion and reuptake.

Effects on NCX activity. With a reversal potential of ~35 mV, NCX typically functions during diastole in forward mode, extruding one Ca\(^{2+}\) ion in exchange for three Na\(^{+}\) ions, and thus generating a net inward current.\(^52\) During ischemia, however, it has been proposed that NCX begins to function primarily in reverse mode, reducing Ca\(^{2+}\) efflux while increasing influx, thus contributing to cytosolic Ca\(^{2+}\) overload.\(^53\) This is thought to be linked to the increase in intracellular Na\(^{+}\) concentration resulting from enhanced NHE activity in response to the reduction in intracellular pH.\(^54,55\) There is some debate, however, regarding the changes in NHE activity that occur with ischemia, as some have shown that NHE is inhibited by ischemia.\(^18\) Inhibition of NHE is thought to be driven by a decrease in extracellular pH,\(^56\) but others have shown that the stimulatory effects of low intracellular pH dominate.\(^57\) Either way, as ischemia progresses, NCX function is generally reduced.\(^58\)
Effects on SERCA activity. During acute ischemia, SERCA expression has been shown to be relatively unchanged. Its function, however, is highly dependent on metabolic status (decreased ATP in ischemia reduces the energy available for its activity), in addition to the activity of the inhibitory protein phosphatase (PLB). Within the first –20 minutes of ischemia, PLB has been shown to increase phosphorylation of SERCA. This increase in phosphorylation results from reduced activity of protein phosphatases by acidic inhibition, thus maintaining the phosphorylation status of PLB and of SERCA activity. As ischemia progresses, the maximum rate of SERCA conductance is reduced, and dephosphorylation of PLB by calcineurin-activated protein phosphatases impairs SERCA kinetics and reduces SR Ca²⁺ load. Redox modification of SERCA has also been demonstrated, however, its effects are generally limited.

Ischemic effects on intracellular calcium concentration and calcium transient morphology. During acute ischemia, Ca²⁺ influx begins to exceed efflux (with some delay), due to reduced efficiency of Ca²⁺ removal by the NCX (and ultimately influx when it operates in reverse mode), combined with an increased inward leak current. This causes diastolic [Ca²⁺], to increase, plateauing at approximately three times that of initial values by 30 minutes. This increase in [Ca²⁺], is facilitated by the ischemia-induced reduction in Ca²⁺ uptake by the SR, as well as displacement of Ca²⁺ from cytoplasmic binding sites by protons, an increase in Ca²⁺ spark frequency, and decreased myofilament Ca²⁺ sensitivity. At the same time, the increase is mitigated by accumulation of Ca²⁺ in mitochondria due to reduced mitochondrial electrical and proton gradients as oxidative metabolism is reduced.

Ischemia-induced alterations in CICR, on the other hand, result in a decrease in SR Ca²⁺ release, which manifests as a decrease in the rate of the Ca²⁺ transient upstroke and in Ca²⁺ transient amplitude. At the same time, the rate of Ca²⁺ transient decay is decreased, although Ca²⁺ transient duration is generally maintained (or only slightly increased). In the face of a decreasing APD, a maintained (or lengthened) Ca²⁺ transient is partly accounted for by slowed RyR kinetics, which reduces the rate of Ca²⁺ release, thus indirectly delaying recovery, which is enhanced as SERCA function declines. Yet this appears to occur without a change in SERCA Ca²⁺ content, suggesting that ischemia equivocally impairs both release and reuptake mechanisms.

Calcium-Driven Arrhythmias During Acute Ischemia
Ischemia-induced changes in intracellular Ca²⁺ handling may have important implications for arrhythmogenesis, contributing to arrhythmic triggers (premature excitation) and substrate (proarrhythmic condition creating a setting for reentry).

Arrhythmic triggers driven by Ca²⁺, manifesting as premature depolarizations, are commonly classified as early or delayed afterdepolarizations (EADs or DADs, respectively). EADs occur during the plateau or repolarization phase of the AP. In many disease states, EADs during the AP plateau occur when repolarization is delayed, resulting in an increase in APD sufficient for the reactivation of I_{Ca,L} and a subsequent depolarizing current. During acute ischemia, however, APD is shortened and I_{Ca,L} inhibited, so it is unlikely that EADs occur during the AP plateau in that setting. EADs during AP repolarization, on the other hand, have been shown to occur both with increased and decreased APD. In the case of increased APD, EADs during AP repolarization can occur independent of changes in cytosolic Ca²⁺, resulting from electrotonic interactions between regions of varying APD, which may be important during regional ischemia, where spatial heterogeneities in APD exist between ischemic and healthy tissues. In the case of shortened APD, on the other hand, if Ca²⁺ transient duration in maintained (as is the case during much of the acute phase of ischemia), Ca²⁺ remains elevated during cellular repolarization (under normal conditions, AP and Ca²⁺ transient duration are generally similar). This divergence of AP and Ca²⁺ transient duration creates a vulnerable window for EADs to occur, due to the depolarizing current generated by the NCX, which is exacerbated by the increased intracellular Na⁺ concentration. Evidence for the importance of this mechanism in acute ischemia comes from a global ischemia model in the isolated rabbit heart with Ca²⁺ chelation by BAPTA. In that study, it was shown that during global ischemia AP duration decreased, while Ca²⁺ transient duration increased (Fig. 1A and C). With pre-application of BAPTA, however, Ca²⁺ transient duration instead decreased during ischemia (and to a similar degree as AP duration; Fig. 1B and D). Thus, while the duration of the Ca²⁺ transient was greater that the AP in both cases, the difference was higher without BAPTA (Fig. 1C and D), such that Ca²⁺ chelation reduced the period over which the Ca²⁺ transient intruded into electrical diastole (Fig. 1A and B). This change was associated reduction in the incidence of endocardial focal discharges (a result attributed to a reduced incidence of EADs).

DADs, on the other hand, occur during the resting phase of the AP. The driving current for DADs has been shown in both isolated human ventricular myocytes and sheep ventricular and Purkinje cells to be generated by elevated [Ca²⁺], acting through the NCX or the Ca²⁺-activated chloride channel. This has been demonstrated to be an important mechanism for ischemia-induced arrhythmias in chronically instrumented dog experiments, in which pretreatment with BAPTA reduced the incidence of arrhythmias. Moreover, it has been suggested that both DADs and EADs during ischemia may be more prevalent in endocardial tissue, potentially relating to transmural differences in SERCA expression and [Ca²⁺]. EADs and DADs may be exacerbated by additional factors during acute ischemia. Nonuniform contraction that occurs with changes in mechanical properties of the myocardium, especially stretch at the border zone, may contribute to EADs and DADs. While stretch-activated channels may partly account for stretch-induced premature excitation,
The localized increase of catecholamines during acute ischemia may also have important implications for Ca$^{2+}$-driven arrhythmias. Stretch can result in a transient increase in Ca$^{2+}$ spark frequency, related to increased ROS. At the same time, stretch increases the affinity of troponin C for Ca$^{2+}$, such that with stretch more Ca$^{2+}$ is bound and then released upon relaxation, which slows Ca$^{2+}$ handling.

Stretch also causes significant changes in intracellular Ca$^{2+}$ handling. Stretch can result in an acute and transient increase in Ca$^{2+}$-mediated focal arrhythmias.

Figure 1. Evidence for the importance of a difference in calcium transient duration (Ca$_{TD_{80}}$) and action potential duration (APD$_{80}$) for early afterdepolarizations in acute ischemia. (A, B) Membrane potential (V$_{m}$) and intracellular calcium concentration (Ca$_{i}$) recordings at baseline (Stage 1), after 30 minutes of perfusion without (A) or with (B) BAPTA (Stage 2), and after 5 minutes (Stage 3) and 10 minutes (Stage 4) of global ischemia in the isolated rabbit heart (blue and black numbers indicate Ca$_{TD_{80}}$ and APD$_{80}$, respectively; red asterisks indicate a greater difference between the two when perfusion with and without BAPTA are compared). (C, D) Average values of Ca$_{TD_{80}}$ and APD$_{80}$ over the four experimental stages ($^*P < 0.01$ and $^*P < 0.001$ compared to baseline; $^{**}P < 0.05$ and $^{***}P < 0.001$ when Ca$_{TD_{80}}$ is compared to APD$_{80}$). Reproduced from Wu et al.© 2011 Wiley Periodicals, Inc.

Thus, with uncoupling, a larger effect on Ca$^{2+}$-driven afterdepolarizations and cellular uncoupling has been demonstrated with localized injection of norepinephrine in the isolated rabbit heart. In that study, norepinephrine injection caused focal ventricular excitation (Fig. 2A(ii)), associated with a decrease in Ca$^{2+}$ transient duration (compared to saline injection-induced excitation; Fig. 2B(i), B(ii), and D), along with a localized reduction in the V_m-Ca$^{2+}$ delay (Fig. 2C(i), C(ii), and E). Under conditions of moderate cellular uncoupling (by pre-application of carbenoxolone), the effect of norepinephrine injection on Ca$^{2+}$ transient duration was similar (Fig. 2B(iii) and D), however the spatial extent of changes in the V_m-Ca$^{2+}$ delay was increased (Fig. 2C(iii) and E). Thus, with uncoupling, a larger effect on V_m was observed for the same effect on Ca$^{2+}$, indicating a decrease in the electrotonic influence of the surrounding myocardium, which increased the propensity for Ca$^{2+}$-mediated focal arrhythmias.
Baumeister and Quinn

Figure 2. Effects of localized catecholamine (norepinephrine, NE) application in the isolated rabbit heart. (A) Transmembrane potential (V_m) activation time, (B) calcium (Ca^{2+}) transient duration at 50% amplitude ($CaTD_{50}$), and (C) V_m-Ca^{2+} delay measured during a premature ventricular excitation induced by local injection (at the site indicated by the white asterisk) of normal Tyrode’s solution (i; NT – CON) or NE (ii; NE – CON) under control conditions, or after local NE injection with moderate cellular uncoupling by pre-application of carbenoxolone (iii; NE – CBX). (D) $CaTD_{50}$ and (E) V_m-Ca^{2+} delay for each type of injection as a function of distance from the injection site. (F) Number of premature ventricular complexes (PVCs) per injection and (G) the proportion of injections resulting in ≥1 PVC (right) for low-dose (gray) and high-dose (black) NE under control conditions (solid bars) and with application of CBX (hatched bars; *P < 0.05 and **P < 0.01 when compared to control). Reproduced from Myles et al.116, with permission from Wolters Kluwer Health, Inc. Promotional and commercial use of the material is prohibited without permission from the publishers, Wolters Kluwer. Please contact healthpermissions@wolterskluwer.com.

(Fig. 2F and G). As ischemia progresses, however, cellular uncoupling becomes more severe as connexin phosphorylation is reduced, in part due to the increase in $[Ca^{2+}]_{i}$117,118 (which in fact can be prevented by reducing Ca^{2+} overload119). While this increase in uncoupling is likely to prevent propagation of EADs and DADs, it will increase the potential for reentry by causing conduction block or by slowing conduction and increasing the excitable gap.120
Altered calcium handling and ventricular arrhythmias in acute ischemia

Alterations in Ca²⁺ handling during ischemia have also been shown to give rise to rate-dependent beat-to-beat variations in the magnitude of Ca²⁺ release (Ca²⁺ transient alternans, which occurs when excitation precedes recovery of the previous Ca²⁺ transient, resulting in reduced Ca²⁺ release, followed by a compensatory increase).⁷,¹²,¹¹,¹² 2 Ca²⁺ transient alternans may be arrhythmogenic if beats with augmented Ca²⁺ release are sufficient to initiate afterdepolarizations.¹²,¹³ As for EADs and DADs, Ca²⁺ transient alternans appear to occur more readily in the endocardium, because of transmural heterogeneities in Ca²⁺ handling.¹² Moreover, if Ca²⁺ transient alternans in turn contribute to electrical alternans, the increase in dispersion of refractoriness may promote conduction slowing and block, facilitating reentry.¹²

Conclusion

Arrhythmias during acute ischemia result from a combination of electrical, mechanical, and biochemical changes in the heart. Alterations in intracellular Ca²⁺ handling, specifically, may play an important role in both ectopic excitation and reentrant activity. With further investigation, especially focusing on the importance of intrasubject heterogeneities and intersubject variability,¹² facilitated by a combined experimental–computational approach,¹² there is the potential for identification of novel Ca²⁺-handling-related targets for antiarrhythmic therapy.

Author Contributions

Wrote the paper: PB, TAQ. Both the authors reviewed and approved the final manuscript.

REFERENCES

1. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115:2305–15.
2. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation. 1999;99:2334–51.
3. Myerburg RJ, Interian A Jr, Mitraan RM, Kessler KM, Castellanos A. Frequency of sudden cardiac death and profiles of risk. Am J Cardiol. 1997;80:109–9.
4. Di Diego JM, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias during ischemia before reperfusion. Am J Physiol Heart Circ Physiol. 1999;277:H2240–6.
5. Allen DG, Xiao X-H. Role of the cardiac Na⁺/H⁺ exchanger during ischemia and reperfusion. Cardiovasc Res. 2003;57:934–41.
6. Du YM, Nathan RD. Ionic basis of ischemia-induced bradycardia in the rabbit sinus node. J Mol Cell Cardiol. 2007;42:155–25.
7. Da Y-M, Nathan RD. Simulated ischemia enhances L-type calcium current in pacemaker cells isolated from the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol. 2007;293:H1296–94.
8. Datorre SD, Creer MH, Pogwizd SM, Corg BR. Amphotericin lipid metabolites and their relation to arrhythmogenesis in the ischemic heart. J Mol Cell Cardiol. 1991;23:11–22.
9. Wu J, Corg BR. Influence of long-chain acylcarnitines on voltage-dependent calcium current in adult ventricular myocytes. Am J Physiol Heart Circ Physiol. 1992;263:H1410–7.
10. De Haas D, Bernard M, Pinet C, et al. Different pathways for sodium entry in cardiac cells during ischemia and early reperfusion. Mol Cell Biochem. 2003;242:115–20.
11. Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT. Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol Heart Circ Physiol. 1999;277:H2240–6.
12. Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB. Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol. 1997;29:2751–83.
13. Kevin LG, Camara AKS, Ries ML, Nowalija E, Snow DF. Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2003;284:H556–74.
14. Muntener DM, Sturza A, Maria JD, Borza C, Duicu OM, Morns C. The role of mitochondrial reactive oxygen species in cardiovascular injury and protective strategies. Oxid Med Longev Cardio. 2016:2016:8254942.
15. Simon JN, Duplan D, Casavel B, Canieric R. Nitric oxide synthase regulation of cardiac excitation–contraction coupling in health and disease. J Mol Cell Cardiol. 2014;73:80–91.
16. Kohler AC, Sag CM, Maier LS. Reactive oxygen species and excitation–contraction coupling in the context of cardiac pathology. J Mol Cell Cardiol. 2014;73:92–102.
17. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathological implications. J Physiol. 2004;555:59–606.
18. Raedschelders K, Anesley DM, Chen DYY. The cellular and molecular origin of reactive oxygen species production during myocardial ischemia and reperfusion. Pharmacol Ther. 2012;133:230–55.
19. Hool LC. Evidence for the regulation of L-type Ca²⁺ channels in the heart by reactive oxygen species: mechanism for mediating pathology. Clin Exp Pharmacol Physiol. 2008;35:229–35.
20. Tang H, Viola HM, Filipovska A, Hool LC. Ca²⁺ v1.2 calcium channel is glutathionylated during oxidative stress in guinea pig and ischemic human heart. Free Radic Biol Med. 2011;51:1501–11.
21. Muralidharan P, Cserne Szappanos H, Ingley E, Hool L. Evidence for redox sensing by a human cardiac Ca²⁺ channel. Sci Rep. 2016:6:18307.
22. Peterson BZ, Demaria CD, Adelman JP, Yue DT. Erratum: calmodulin is the Ca²⁺ sensor for Ca²⁺-dependent inactivation of L-type calcium channels. Neuron. 1999;22:844.
23. Kubalova Z. Inactivation of L-type calcium channels in cardiomyocytes: experimental and theoretical approaches. Gen Physiol Biophys. 2003;22:441–54.
24. Domenech RJ, Sánchez G, Donoso P, Parra V, Macho P. Effect of tachycardia on myocardial sarcoplasmic reticulum and Ca²⁺ dynamics: a mechanism for preconditioning? J Mol Cell Cardiol. 2003;35:1429–37.
25. Zucchi R, Ronca-Testoni S, Yu G, Galbani P, Ronca G, Mariani M. Effect of ischemia and reperfusion on cardiac ryanodine receptors–sarcoplasmic reticulum Ca²⁺ channels. Circ Res. 1994;74:271–80.
26. Xu L, Mann G, Meissner G. Regulation of cardiac Ca²⁺ release channel (ryanodine receptor) by Ca²⁺, H⁺, Mg²⁺, and adenine nucleotides under normal and simulated ischemic conditions. Circ Res. 1996;79:1090–9.
27. Meissner G, Henderson JS. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca²⁺ and is modulated by Mg²⁺, adenine nucleotide, and calmodulin. J Biol Chem. 1987;262:3065–73.
28. Tencerová B, Zahradníková A, Gaburjáková J, Gaburjáková M. Luminal Ca²⁺ controls Ca²⁺ transients by direct Ca²⁺ release. J Mol Cell Cardiol. 2016:10(s1):190–98.
29. Sánchez G, Pedrozo Z, Domenech RJ, Hidalgo C, Donoso P. Tachycardia increases NADPH oxidase activity and RyR2 S-glutathionylation in ventricular muscle. J Mol Cell Cardiol. 2005;39:982–91.
30. Coonka S, Sivlszvaz Z, Fulop F, et al. Classic preconditioning decreases the harmful accumulation of nitric oxide during ischemia and reperfusion in rat hearts. Circulation. 1999;100:3260–6.
Depe C, Fíratín L, Hue L. Activation of nitric oxide synthase by ischaemia in the perfused heart. Cardiovasc Res. 1997;33:92–7.

Zweier JL, Wang P, Koppusamy P. Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy. J Mol Med. 1995;73:270–4.

Lima B, Forester MT, Hess DT, Stamler JS. N-nitrosylation in cardiovascular signaling. Circ Res. 2010;106:633–46.

Burger DE, Lu X, Lei M, et al. Neuronal nitric oxide synthase protects against myocardial infarction-induced ventricular arrhythmia and mortality in mice. Circ Res. 2011;109:150–54.

Potser M, Romanin C, Schreinemayer W, Meyer B, Gierschek K. N-nitrosation controls gating and conductance of the α1 subunit of class C L-type Ca²⁺ channels. J Biol Chem. 2001;276:14797–803.

Sun J, Picht E, Gindusb KS, Bers DM, Steenbergen C, Murphy E. Hypercontractile fetal hearts exhibit increased S-nitrosylation of the L-type Ca²⁺ channel α1 subunit and reduced ischaemia/reperfusion injury. Circ Res. 2006;98:403–11.

Zhang YH, Jin CZ, Jiang JH, Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J Physiol. 2014;592:1105–200.

Bers DM. Cardiac Na/Ca exchange function in rabbit, mouse and man: what’s the difference? J Mol Cell Cardiol. 2002;34:69–73.

Conway SJ, Koushik SV. Cardiac sodium–calcium exchanger: a double-edged sword. Cardiovasc Res. 2001;51:194–7.

Inahashi K, Pott C, Goldhaber JI, Steenbergen C, Philipson KD, Murphy E. Cardiac-specific ablation of the Na+/Ca²⁺ exchanger confers protection against ischaemia/reperfusion injury. Circ Res. 2005;97:91–6.

Murphy E, Perlman M, London RE, Steenbergen C. Amiloride delays the ischaemia-induced rise in cytosolic free calcium. Circ Res. 1991;68:1250–8.

Park CO, Xiao XX, Allen DG. Changes in intracellular Na⁺ and π in rat heart during the first minutes of normothermic global ischemia. Am J Physiol Heart Circ Physiol. 1999;276:H1581–90.

Vaughn-Jones RD, Wu-M-L. Extracellular H⁺ inactivation of Na⁺–H⁺ exchange in the sheep heart. Purkinje fibres. J Physiol. 1990;428:44–66.

Bensohn MM, Philipson KD, Weiss RS. L-Phosphorylcholine and sodium–calcium exchange in cardiac sarcoclemma: comparison with ischaemia. Am J Physiol. 1991;260:C433–8.

Shintani-Ishida K, Yoshida KI. Ischemia induces phospholamban dephosphorylation. J Cardiovasc Electrophysiol. 1991;2:697–78.

Periasamy M, Bhumathy P, Bageu GJ. Regulation of sarcoplasmic reticulum Ca²⁺ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res. 2008;77:265–73.

Virtone L, Mundina-Weilenmann C, Said M, Ferrero P, Mattiazzi A. Time course and mechanisms of phosphorylation of phospholamban residues in ischemia-reperfusion rat hearts: dissociation of phospholamban phosphorylation pathways. J Mol Cell Cardiol. 2002;34:39–50.

Mundina-Weilenmann C, Virtone L, Cingolani HE, Orchard CH. Effects of acidosis on phosphorylation and tropomyosin I in rat cardiac muscle phosphorylase. Am J Physiol. 1996;270:C107–14.

Wilensky RL, Trzanz-Jensen J, Coronel R, Wilde AA, Fiolet JW, Jainse MJ. The subendocardial border zone during acute ischemia of the rabbit heart: an electrophysiologic, metabolic, and morphologic correlative study. Circulation. 1986;74:1317–46.

Fiolet JW, Baartscheer A. Cellular calcium homeostasis during ischemia; a thermodynamic approach. Cardiovasc Res. 2000;45:500–6.

Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in myocardial cells subjected to ischemia/reperfusion injury. J Cardiovasc Electrophysiol. 2008;19:1345–54.

Miklos Z, Ivanics T, Roemen THM, et al. Time related changes in calcium handling in the isolated ischemic and reperfused rat heart. Mol Cell Biochem. 2003;250:121–4.

Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT. Effect of ischemia on calcium-dependent fluorescent transients in rabbit hearts containing indo 1: correlation with monophasic action potentials and contraction. Circulation. 1988;78:1047–59.

Venkataraman R, Holcomb MB, Harder R, Knollmann BC, Baundenbacher F. Ratiometric imaging of calcium during ischemia-reperfusion injury in isolated mouse hearts using fura-2. Biomed Eng Online. 2012;11:39.

Lakireddy V, Bawea P, Syed A, Bub G, Bourjdir M, El-Sherif N. Contrast- ing effects of ischemia on the kinetics of membrane voltage and intracellular calcium transients underlie electrical alternans. Am J Physiol Heart Circ Physiol. 2005;288:H460–7.

Tu WJ, Lin S-F, Hsieh Y-C, Lin T-C, Lin J-C, Ting C-T. Pretreatment of BAPTA-AM suppresses the genesis of repetitive endocardial focal discharges and pacing-induced ventricular arrhythmia during global ischemia. J Cardiovasc Electrophysiol. 2011;22:151–66.

Díaz ME, Eisner DA, O’Neill SC. Depressed ryodine receptor activity increases variability and duration of the systolic Ca²⁺ transient in rat ventricular myocytes. Circ Res. 2002;91:585–93.

Counsel P. The management of clinical arrhythmias: an overview on invasive versus non-invasive electrophysiology. Eur Heart J. 1987;8:92–9.

Boyden PA, Dun W, Stovsens BD. What is a Ca²⁺ wave? Is it like an electrical wave? Arthritis Rheum. 2015;67:35–9.

Maruyama M, Lin SF, Xie Y, et al. Genetics of phase 3 early afterdepolarizations and triggered activity in acquired long-QT syndrome. Circ Arhythm Electrophysiol. 2005;8:103–13.

Yamada M, Ohto K, Niwa A, Tujino N, Nakada T, Hirose M. Contribution of L-type Ca²⁺ channels to early afterdepolarizations induced by Ika, and Ika, channel suppression in guinea pig ventricular myocytes. J Membr Biol. 2008;222:151–66.

Chen PS, Ogawa M, Marumaya M, et al. Imaging arrhythmogenic calcium signaling in intact hearts. Pediatr Cardiol. 2012;33:698–714.

Dutta S, Mincholce A, Zaccar E, Quinn TA, Taggart P, Rodriguez E. B. Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. Prog Biophys Mol Biol. 2016;120:236–48.

Janse MJ, van Capelle FJ, Morsink H, et al. Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts: evidence for two different arrhythmogenic mechanisms. Circ Res. 1980;47:151–65.

Dutta S, Bishop MJ, Pathmanathan P, et al. Interpreting optical mapping recordings in the ischemic heart: a combined experimental and computational investigation. Lab Invest Compu Sci. 2011;666:20–7.

Choi BR, Salama G. Simultaneous maps of optical action potentials and calcium transients in guinea-pig hearts: mechanisms underlying concordant alternans. Cardiovasc Res. 1999;43:265–76.

Lang I, Jung B, Ogawa M, Chen PS, Lin SF. Intracellular calcium dynamics, shortened action potential duration, and late-phase 3 early afterdepolarization in Langendorff-perfused rabbit ventricles. J Cardiovasc Electrophysiol. 2012;23:1366–71.

Dutta S, Holzem K, Kang C, et al. Arrhythmogenic remodeling of β₁ versus β₂ adrenergic signaling in the human failing heart. Circ Arhythm Electrophysiol. 2015;8:409–19.

Xie Y, Liao Z, Grandi E, Shiferaw Y, Bers DM. Short [Na⁺] changes and positive feedback between membrane potential and [Ca²⁺]i underlie intermittent early afterdepolarizations and arrhythmias. Circ Arhythm Electrophysiol. 2015;8:1472–80.

Verkeek AO, Veldkamp MW, Baartscheer A, et al. Ionic mechanism of delayed afterdepolarizations in ventricular cells isolated from human end-stage failing hearts. Circulation. 2001;104:2728–33.

Verkeek AO, Veldkamp MW, Bouman LN, van Ginneken AG. Calcium-activated Cl⁻ current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes. Circulation. 2000;101:2639–44.

Billman GE, McIroy B, Johnson JD. Elevated cardiac myocardial calcium and its role in sudden cardiac death. PASEBF. 1991;5:2586–92.

Xing D, Martins JB. Triggered activity due to delayed afterdepolarizations in sites of focal origin of ischemic ventricular tachycardia. Am J Physiol Heart Circ Physiol. 2004;287:H2078–84.

Laurita KR, Katra R, Wible B, Xiaoping W, Koo MH. Transmural heterogeneity of calcium handling in canine. J Gen Physiol. 2003;122:685–87.

Figueroed VM, Brands D, Weiner MW, Massie BM, Camacho SA. Endocardial versus epicardial differences of intracellular free calcium under normal and ischemic conditions in perfused rat hearts. Circ Res. 1993;72:1082–90.

Quinn TA. The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Inter Soc Cardiovasc Electrophysiol. 2014;35:91–3.

Quinn TA, Kohn P, Ravens U. Cardiac mechano-electric and mechano-electro-mechanical coupling. Prog Biophys Mol Biol. 2016;121:110–22.
99. Allen DG, Kentish JC. The cellular basis of the length-tension relation in cardiac muscle. *J Mol Cell Cardiol*. 1985;17:821–40.
100. Calaghan SC, White E. The role of calcium in the response of cardiac muscle to stretch. *Prog Biophys Mol Biol*. 1999;71:59–90.
101. ter Keurs HE. The interaction of Ca²⁺ with sarcomeric proteins: role in function and dysfunction of the heart. *Am J Physiol Heart Circ Physiol*. 2012;302:H38–50.
102. Iribe G, Ward CW, Camelliti P, et al. Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca²⁺ spark rate. *Circ Res*. 2009;104:787–95.
103. Prosser BL, Khairallah RJ, Ziman AP, Ward CW, Lederer WJ. X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca²⁺]. *J Mol Cell Cardiol*. 2013;58:172–81.
104. Housmans PR, Lee NKM, Blanks JR. Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. *Science*. 1983;221:59–63.
105. Wakayama Y, Miura M, Stuyvers BD, Boyden PA, ter Keurs HE. Spatial nonuniformity of excitation-contraction coupling causes arrhythmogenic Ca²⁺ waves in rat cardiac muscle. *Circ Res*. 2005;96:1266–73.
106. Miura M, Wakayama Y, Endoh H, et al. Spatial non-uniformity of excitation-contraction coupling can enhance arrhythmogenic-delayed afterdepolarizations in rat cardiac muscle. *Cardiovasc Res*. 2008;79:55–61.
107. Miura M, Nishio T, Hattori T, et al. Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle. *Circulation*. 2010;121:2711–2.
108. Schomig A, Haass M, Richardt G. Catecholamine release and arrhythmias in acute myocardial ischaemia. *Eur Heart J*. 1991;12:38–47.
109. Lameris TW, de Zeeuw S, Alberts G, et al. Time course and mechanism of myocardial ßcatecholamine release and arrhythmias in acute myocardial ischemia. *Eur Heart J*. 1991;12:38–47.
110. Choi B-R, Burton F, Salama G. Cytosolic Ca²⁺ triggers early afterdepolarizations and torsade de pointes in rabbit hearts with type 2 QT syndrome. *J Physiol*. 2002;543:615–31.
111. Gaur N, Rudy Y, Hool L. Contributions of ion channel currents to ventricular action potentials: implications for phase-1b arrhythmias. *Cardiovasc Res*. 2001;51:30–40.
112. Carmeliet E, Vereecke J. Adrenaline and the plateau phase of the cardiac action potential: importance of Ca²⁺, Na⁺, and K⁺ conductance. *Pflugers Arch*. 1969;313:300–15.
113. Verkerk AO, Veldkamp MW, Coronel R, Wilders R, Van Ginneken ACG. Effects of cell-to-cell uncoupling and catecholamines on Purkinje and ventricular action potentials: implications for phase-1b arrhythmias. *Cardiovasc Res*. 2001;51:30–40.
114. Campos FO, Shiferaw Y, Prassl AJ, Boyle PM, Vignod EJ, Plank G. Stochastic spontaneous calcium release events trigger premature ventricular complexes by overcoming electrotonic load. *Cardiovasc Res*. 2015;107:75–83.
115. Liu MB, de Lange E, Garfinkel A, Weiss JN, Qz Z. Delayed afterdepolarizations generate both triggers and a vulnerable substrate promoting reentry in cardiac tissue. *Heart Rhythm*. 2015;12:2115–24.
116. Myles RC, Wang L, Kang C, Biers DM, Ripplinger CM. Local ß-adrenergic stimulation overcomes source-sink mismatch to generate focal fibrillation. *Circ Res*. 2012;110:1454–64.
117. Beardlee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. *Circ Res*. 2000;87:656–62.
118. de Groot JR, Coronel R. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis. *Cardiovasc Res*. 2004;62:323–34.
119. Sahu G, Berar AK. Contribution of intracellular calcium and pH in ischemic uncoupling of cardiac gap junction channels formed of connexins 43, 40, and 45: a critical function of C-terminal domain. *PLoS One*. 2013;8:e1–14.
120. Smith WT, Fleet WF, Johnson TA, Engle CL, Caswo C. The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling. *Circulation*. 1995;92:3051–60.
121. Qian YW, Chusin WT, Lin SF, Han J, Sung RJ. Spatial heterogeneity of calcium transient alternans during the early phase of myocardial ischemia in the blood-perfused rabbit heart. *Circulation*. 2001;104:2082–7.
122. Wu Y, Chusin WT. Calcium transient alternans in blood-perfused ischemic hearts: observations with fluorescent indicator fura red. *Am J Physiol Heart Circ Physiol*. 1997;273:H2161–9.
123. Chusin WT. Calcium and cardiac arrhythmias: DADs, EADs, and alternans. *Crit Rev Clin Lab Sci*. 2003;40:337–75.
124. Weiss JN, Nivala M, Garfinkel A, Qu Z. Alternans and arrhythmias: from cell to heart. *Circ Res*. 2011;108:95–112.
125. Uemura A, Naito Y, Matsubara T. Dynamics of Ca²⁺ transient alternans during the early phase of myocardial ischemia in the blood-perfused ischemic heart. *Crit Rev Clin Lab Sci*. 2003;40:337–75.
126. Walker ML, Rosenbaum DS. Repolarization alternans: implications for the mechanism and prevention of sudden cardiac death. *Cardiovasc Res*. 2003;57:599–614.
127. Gemmell P, Burrage K, Rodriguez B, Quinn TA. Rabbit-specific computational modelling of cardiac cell electrophysiology: using populations of models to explore variability in the response to ischemia. *Prog Biophys Mol Biol*. 2016;121:169–84.
128. Quinn TA, Kohl P. Systems biology of the heart: hype or hope? *Ann NY Acad Sci*. 2011;1245:40–3.