Synthesis and Properties of Dichlorovinyl Derivatives of Tetrazoles

L. V. Myznikova,*, S. V. Voronaa, A. S. Lyakhovb, L. S. Ivashkevichb, and Yu. E. Zevatskiic

a Institute of Experimental Medicine, St. Petersburg, 197376 Russia
b Department of the Belarusian State University “Research Institute of Physical and Chemical Problems,” Minsk, 220006 Belarus
c St. Petersburg State Institute of Technology (Technical University), St. Petersburg, 190013 Russia

*e-mail: myznikov_lv@mail.ru

Received July 1, 2021; revised July 1, 2021; accepted July 14, 2021

Abstract—1-Substituted 1\textsubscript{H}-tetrazole-5-thiols and 5-substituted 1\textsubscript{H}-tetrazoles easily reacted with trichloroethylene to form the corresponding S- and N-dichlorovinyl derivatives, respectively. In the case of 5-substituted 1\textsubscript{H}-tetrazoles, the reaction led to a mixture of 1- and 2-dichlorovinyltetrazoles. 5-Substituted-2-dichlorovinyltetrazoles are characterized by low thermal stability, but easily enter into the polymerization reaction.

Keywords: 1-substituted 1\textsubscript{H}-tetrazole-5-thiols, 5-substituted 1\textsubscript{H}-tetrazoles, trichlorethylene, dichlorovinyl derivatives

DOI: 10.1134/S1070363221090061

Vinyl derivatives of (thio)tetrazoles attract attention as starting materials for the synthesis of high molecular weight compounds, biologically active substances, and functional materials [1–5]. Vinyltetrazole-based polymers are components of promising energy-intensive materials, gas separation membranes, nonwoven filter materials for medicine, and other composite materials [1, 2].

To date, the problem of synthesizing unsubstituted vinyltetrazoles has been successfully solved. Although the known methods for the preparation of these compounds are multistage, they make it possible to obtain the corresponding vinyl derivatives in good yields [2, 6]. In contrast, almost all known methods for the preparation of substituted vinyltetrazoles can be reduced to two main groups: the functionalization of previously obtained vinyltetrazoles using metal-catalyzed cross-coupling [7] and the addition reaction of thiotetrazoles to the activated triple bond C≡C [8]. Both of these reaction groups make it possible to obtain only a limited range of the products, with aromatic substituents in the first case and, usually, with electron-withdrawing carboxyl or keto groups in the second. As for the vinyl chloride derivatives of tetrazoles, no method for their preparation has been proposed to date.

One of the simple ways to introduce a chlorovinyl group could be nucleophilic substitution of halogen at the double bond; however, such reactions are hindered due to the low reactivity of substituted vinyl chlorides. At the same time, with an increase in the number of chlorine atoms, the reactivity increases significantly, and trichlorethylene can already react with strong nucleophiles to form halogen substitution products [9]. Since 1-substituted tetrazole-5-thiols and 5-substituted tetrazoles are rather strong nucleophiles, it can be expected that their reaction with trichlorethylene will lead to dichlorovinylthio- and dichlorovinyltetrazoles. Taking into account the prospects for the use of these compounds, the study of this reaction is an urgent task.

1-Substituted 1\textsubscript{H}-tetrazole-5-thiols were found to react with trichlorethylene at 80–90°C in the presence of K\textsubscript{2}CO\textsubscript{3} in DMF to form dichlorovinyl derivatives in good yields (Scheme 1). It should be noted that we have previously shown that 1-substituted 1\textsubscript{H}-tetrazole-5-thiols easily enter into the copper-catalyzed cross-coupling reaction with aryl halides [10], however, in the case of trichlorethylene, the addition of copper compounds did not have any effect on the reaction course.
The synthesized 1-substituted dichlorovinylthiotetrazoles are stable compounds. For compound 2c (R = 1-naphthyl), we managed to grow single crystals suitable for X-ray diffraction analysis. The crystallographic data (Table 1, Fig. 1) confirmed the expected structure of the synthesized compound. It crystallizes in the monoclinic space group $C2/c$, with one molecule in an asymmetric cell and eight molecules in a unit cell. The chlorine atoms of the vinyl fragment are in the $trans$-position. The tetrazole ring is significantly unfolded relative to the naphthyl substituent, with a dihedral angle between the root-mean-square planes of these fragments of $86.58(3)^{\circ}$. Although there are no hydrogen bonds in the crystal structure of compound 2c, it is stabilized by π–π-stacking interactions with the participation of π-systems of naphthyl fragments of neighboring molecules.

We found that the reaction of 5-phenyl-1H-tetrazole with trichlorethylene in DMF in the presence of $K_2\text{CO}_3$ at a temperature below 80–90°C gives rise to 1-dichlorovinyl-5-phenyltetrazoles with a yield of 25–35%, as well as a significant amount of resinification products. This reaction outcome was found to be due to the fact that 2-dichlorovinyltetrazoles have low thermal stability and decompose upon heating. Indeed, when the reaction is carried out in DMSO in the presence of KOH, the temperature can be lowered to 40°C. As a result, a mixture of 1- and 2-dichlorovinyltetrazoles is formed within 1–2 h with a total yield of 43–74%. Under these conditions, we obtained a series of 1- and 2-dichlorovinyltetrazoles with various substituents at position 5 of the tetrazole ring (Scheme 2). The ratio of 1- and 2-isomers varies from 1.3 : 1 to 1 : 2, respectively.

In contrast to the corresponding 1-isomers and dichlorovinylthiotetrazoles, 2-dichlorovinyltetrazoles isolated in pure form have low stability and decompose when stored at room temperature, but can be stored for a long time at -18°C. The addition of radical initiators causes rapid polymerization of 5-substituted 2-dichlorovinyltetrazoles, which makes these compounds promising monomers for the preparation of functional materials.

In summary, trichlorethylene is a convenient and available substrate for the preparation of dichlorovinylthiotetrazoles, 1- and 2-dichlorovinyltetrazoles. 2-Dichlorovinyltetrazoles can be used as starting compounds for the synthesis of high molecular weight compounds.

EXPERIMENTAL

1H and 13C NMR spectra were recorded on a Bruker Avance III HD 400 NanoBay spectrometer (400 and 100 MHz, respectively) in CDCl$_3$ solution, the internal
standard was the residual signals of the solvent. IR spectra were recorded on a Shimadzu FTIR-8400S spectrometer from KBr pellets. Elemental analysis was performed on a LECO CHNS-932 analyzer. The purity and individuality of the obtained compounds were monitored by TLC on Merck Silicagel UV-254 plates. Melting points were determined on a Kofler table. All starting materials and solvents were of reagent or analytical grade.

Single crystal X-ray diffraction analysis of compound 2c was performed on a SMART Apex II X-ray diffractometer (Bruker AXS GmbH, Germany) using MoKα radiation (graphite monochromator). The structure was solved by direct methods using the SIR2014 program [11] and refined using F² by full-matrix least squares in the anisotropic approximation for non-hydrogen atoms using the SHELXL-2014 software package [12]. The positions of hydrogen atoms were calculated geometrically and refined within the framework of the rider model with Uiso(H) = 1.2 Ueq (C). Molecular graphics were performed using the PLATON software [13]. The obtained crystallographic data were deposited with the Cambridge Crystallographic Data Center (CCDC 2090214).

(E)-5-[(1,2-Dichlorovinyl)thio]-1-phenyl-1H-tetrazole (2a). To a mixture of 3.8 g (21.3 mmol) of 1-phenyl-1H-tetrazole-5-thiol and 8.81 g (63.9 mmol) of K₂CO₃ in 6 mL of DMF was added 8.40 g (63.9 mmol) of trichlorethylene. The reaction mixture was stirred for 2.5 h at 80–90°C, then poured into 50 mL of cold water and extracted with chloroform (3×30 mL). The organic layer was washed with water (3×30 mL) and saturated NaCl solution, then dried with anhydrous Na₂SO₄. The solvent was removed in vacuum. Yield 4.37 g (75%), yellow crystals, mp 87–89°C (EtOH). IR spectrum, ν, cm⁻¹ (KBr): 3109 m (СН), 3031 m (С=С), 1594 m (С=N), 1560 s (Ph), 1074 m (С–N), 736 m (С–Cl), 697 s (С–S).

1H NMR spectrum, δ, ppm: 6.69 s (1Н, СН), 7.56–7.60 m (5Н, Ph). 13C NMR spectrum, δС, ppm: 122.8 (SC=), 124.6 (=СCl), 126.8 (Ph), 129.9 (Ph), 130.9 (Ph), 133.3 (Ph), 148.5 (C–N). Found, %: C 39.45; Н 2.33; N 20.44. C₉H₆Cl₂N₄S. Calculated, %: C 39.58; Н 2.21; N 20.51.

Compounds 2b–2g were prepared similarly.

(E)-5-[(1,2-Dichlorovinyl)thio]-1-[2-(difluoro-methoxy)phenyl]-1H-tetrazole (2b). Yield 49%, yellow

Table 1. Crystallographic data for compound 2c

Parameter	2c
Formula	C₁₃H₈Cl₂N₄S
T, K	100
λ, Å	0.71073
Crystal system	Monoclinic
Space group	C2/c
a, Å	19.1797(3)
b, Å	7.75882(2)
c, Å	18.4182(2)
β, deg	97.3825(9)
V, Å³	2718.12(6)
Z	8
dcalc_g/cm³	1.580
μ(MoKₐ), mm⁻¹	0.624
Crystal size, mm	0.42×0.41×0.16
Reflections collected:	
all	30050
independent	4162 (Rint 0.0175)
Refined parameters	181
GOOF	1.052
I > 2σ(I)	R₁ 0.0275, R₂ 0.0719
All data	R₁ 0.0291, R₂ 0.0730

43–74%

R = Ph (a), 4-ClC₆H₄ (b), 4-FC₆H₄ (c), 4-MeC₆H₄ (d), 4-(CH₃)₂NC₆H₄ (e), Bn (f).
oil. IR spectrum, ν, cm⁻¹ (KBr): 3159 m (CH), 3029 m (C=C), 1598 m (C=N), 1510 s (Ph), 1246 m (CF₂), 1135 s (C–O), 1060 m (C–N), 760 m (C–Cl), 695 s (C–S). ¹H NMR spectrum, δ, ppm: 6.48 s (1H, CHF₂), 6.67 s (1H, CH), 7.40–7.51 m (3H, Ph), 7.62–7.66 m (1H, Ph). ¹³C NMR spectrum, δC, ppm: 115.20 t (CHF₂, JHH = 264.5 Hz), 120.44 (OCPH), 122.98 (=CCl), 124.57 (SC=), 126.33 (Ph), 126.67 (Ph), 128.44 (Ph), 133.10 (Ph), 145.39 (Ph), 150.26 (C₆). Found, %: C 35.60; H 1.59; N 18.60. C₁₀H₆Cl₂F₂N₄ O₅S. Calculated, %: C 35.42; H 1.78; N 20.07; S 11.48.

(E)-5-{(1,2-Dichlorovinyl)thio}-1-(naphth-1-yl)-1H-tetrazole (2e). Yield 79%, colorless crystals, mp 106–108°C (EtOH–H₂O). IR spectrum, ν, cm⁻¹ (KBr): 3104 m (CH), 3060 m (C=C), 1598 m (C=N), 1511 s (Ar), 1465 s (Ar), 1058 m (C–N), 727 m (C–Cl), 698 s (C–S). ¹H NMR spectrum, δ, ppm: 6.58 s (1H, CH), 7.27 d (1H, H₂Ar, JHH = 4.0 Hz), 7.55–7.64 m (4H, H₄), 7.99 d (1H, H₂Ar, JHH = 4.0 Hz). ¹³C NMR spectrum, δC, ppm: 122.3 (=CCl), 122.5 (N–C=), 126.68. C₁₁H₁₀Cl₂N₄. Calculated, %: C 44.86; H 2.51; N 23.24. C₂₀H₁₈Cl₂F₂N₄. Calculated, %: C 38.72; H 2.15; N 26.68. C₆H₁₂Cl₂N₄S. Calculated, %: C 22.76; H 1.91; N 26.55.

(E)-5-{(1,2-Dichlorovinyl)thio}-1-methyl-1H-tetrazole (2g). Yield 43%, yellow crystals, mp 48–50°C (EtOAc). IR spectrum, ν, cm⁻¹ (KBr): 3121 m (CH), 3060 m (C=C), 2956 m (CH₂), 1565 m (C=N), 1089 m (C–N), 735 m (C–Cl), 670 s (C–S). ¹H NMR spectrum, δ, ppm: 4.08 s (3H, CH₃), 6.74 s (1H, CH). ¹³C NMR spectrum, δC, ppm: 34.61 (CH₂), 123.36 (=CCl), 124.51 (SC=), 147.75 (C–N). Found, %: C 22.59; H 2.13; N 42.68. C₆H₁₂Cl₂N₄S. Calculated, %: C 22.76; H 1.91; N 26.55.

(E)-1-(1,2-Dichlorovinyl)-5-phenyl-1H-tetrazole (4a) and (E)-2-(1,2-dichlorovinyl)-5-phenyl-2H-tetrazole (5a). Trichlorethylene 1.35 g (10.27 mmol) was added to a solution of 1 g (6.85 mmol) 5-phenyl-1H-tetrazole and 1.15 g (20.55 mmol) of KOH in 20 mL of DMSO. The reaction mixture was stirred for 1.5 h at 40°C, then poured into 100 mL of chloroform and extracted with cold water (3×30 mL). The organic layer was washed with saturated NaCl solution, then dried with Na₂SO₄. The solvent was removed in vacuum. The product was purified by column chromatography in the ethyl acetate–hexane system (1 : 9). Yield 1.22 g (74%) (4a; 5a = 1 : 1.2, by NMR).
(E)-2-(1,2-Dichlorovinyl)-5-phenyl-2H-tetrazole (5a). Yellow oil. IR spectrum, ν, cm⁻¹ (KBr): 3080 m (CH), 3034 m (C=–C), 1620 m (C=N), 1530 s (Ph), 1078 m (C–N), 731 m (C=C). ¹H NMR spectrum, δ, ppm: 8.62 s (1H, CH), 7.50–7.54 m (3H, Ph), 8.21–8.23 m (2H, Ph). ¹³C NMR spectrum, δC, ppm: 116.4 (=СCl), 119.0 (N=C=), 122.5 (Ph), 129.9 (Ph), 153.8 (C=N). Found, %: C 41.79; H 1.80; N 21.79. C₁₀H₈Cl₂N₄. Calculated, %: C 41.73; H 1.95; Cl 27.37; F 7.33; N 21.63.

(4-Fluorophenyl)-2-(1,2-dichlorovinyl)-2H-tetrazole (5c). Yellowish crystals, mp 52–54°C (hexane). IR spectrum, ν, cm⁻¹: 3090 m (CH), 2997 m (C=C), 1604 s (C=N), 1541 m (Ph), 1093 s (C=N), 1023 m (C=–F), 757 m (C–F), 1633 m (C–N). ¹H NMR spectrum, δ, ppm: 6.85 s (1H, CH), 7.22–7.27 m (2H, Ph), 8.23–8.27 m (2H, Ph). ¹³C NMR spectrum, δC, ppm: 116.4 (=СCl), 119.0 (N=C=), 122.5 (Ph), 124.6 (Ph), 129.4 (Ph), 129.5 (Ph), 163.3 (C–N). Found, %: C 41.61; H 1.89; N 21.45. C₁₀H₈Cl₂F₂N₄. Calculated, %: C 41.73; H 1.95; Cl 27.37; F 7.33; N 21.63.

Yellowish crystals. IR spectrum, ν, cm⁻¹: 3090 m (CH), 2997 m (C=C), 1604 s (C=N), 1541 m (Ph), 1093 s (C=N), 1023 m (C=–F), 757 m (C–F), 1633 m (C–N). ¹H NMR spectrum, δ, ppm: 6.85 s (1H, CH), 7.22–7.27 m (2H, Ph), 8.23–8.27 m (2H, Ph). ¹³C NMR spectrum, δC, ppm: 116.4 (=СCl), 119.0 (N=C=), 122.5 (Ph), 124.6 (Ph), 129.4 (Ph), 129.5 (Ph), 163.3 (C–N). Found, %: C 41.61; H 1.89; N 21.45. C₁₀H₈Cl₂F₂N₄. Calculated, %: C 41.73; H 1.95; Cl 27.37; F 7.33; N 21.63.

(4-Fluorophenyl)-2-(1,2-dichlorovinyl)-2H-tetrazole (5d). Yield 65% (4d : 5d = 1 : 3).

(4-Fluorophenyl)-2-(2-tolyl)-2H-tetrazole (5d). Yellowish crystals, mp 88–91°C (EtOH–H₂O). IR spectrum, ν, cm⁻¹ (KBr): 3077 m (CH), 3036 m (C=C), 2859 s (CH₃), 1612 s (C=N), 1535 s (Ph), 1090 m (C–N), 736 m (C=C). ¹H NMR spectrum, δ, ppm: 2.42 s (3H, CH₃), 7.48–7.50 m (2H, Ph), 7.76–7.78 m (2H, Ph), 7.82 s (1H, CH). ¹³C NMR spectrum, δC, ppm: 21.6 (CH₃), 119.2 (=СCl), 121.6 (N=C=), 124.8 (Ph), 128.3 (Ph), 130.8 (Ph), 143.6 (Ph), 154.2 (C–N). Found, %: C 47.15; H 3.04; N 21.85. C₁₀H₈Cl₂N₄. Calculated, %: C 47.08; H 3.16; N 21.96.

(E)-5-(1,2-Dichlorovinyl)-1-(1,2-dichlorovinyl)-1H-tetrazole (4b) and (E)-5-(4-chlorophenyl)-2-(1,2-dichlorovinyl)-2H-tetrazole (4c). Yield 87% (4b : 4c = 1 : 2).

(4-Fluorophenyl)-1-(1,2-dichlorovinyl)-1H-tetrazole (4e). Colorless crystals, mp 84–86°C (hexane). IR spectrum, ν, cm⁻¹: 3097 m (CH), 2992 m (C=C), 1608 s (C=N), 1540 m (Ph), 1091 s (C=N), 1022 m (C=–F), 746 m (C=C). ¹H NMR spectrum, δ, ppm: 8.67 s (1H, CH), 7.27–7.31 m (2H, Ph), 7.90–7.94 m (2H, Ph). ¹³C NMR spectrum, δC, ppm: 116.8 (=СCl), 117.0 (N=C=), 118.7 (Ph), 122.4 (Ph), 122.9 (Ph), 130.6 (Ph), 153.3 (C=N). Found, %: C 41.79; H 1.80; N 21.79. C₁₀H₈Cl₂F₂N₄. Calculated, %: C 41.73; H 1.95; Cl 27.37; F 7.33; N 21.63.

(E)-5-(p-Toly)-1-(1,2-dichlorovinyl)1H-tetrazole (4d). Colorless crystals, mp 76–78°C (EtOH). IR spectrum, ν, cm⁻¹ (KBr): 3088 m (CH), 3056 m (C=C), 2855 s (CH₃), 1611 s (C=N), 1565 m (Ph), 1071 m (C–N), 742 m (C=C). ¹H NMR spectrum, δ, ppm: 2.40 s (3H, CH₃), 7.41–7.44 m (2H, Ph), 7.85 s (1H, CH), 8.02–8.04 m (2H, Ph). ¹³C NMR spectrum, δC, ppm: 21.6 (CH₃), 122.0 (=СCl), 123.1 (N=C=), 123.3 (Ph), 127.3 (Ph), 130.5 (Ph), 142.1 (Ph), 165.4 (C–N). Found, %: C 46.94; H 3.25; N 22.02. C₁₀H₈Cl₂N₄. Calculated, %: C 47.08; H 3.16; N 21.96.

(E)-5-[1-(1,2-Dichlorovinyl)-1H-tetrazol-5-yl]-N,N-dimethylaniline (4e) and (E)-4-[2-(1,2-dichlorovinyl)2H-tetrazol-5-yl]-N,N-dimethylaniline (5e). Yield 67% (4d : 5d = 1 : 1.7).

(E)-4-[1-(1,2-Dichlorovinyl)-1H-tetrazol-5-yl]-N,N-dimethylaniline (4e). Yellowish crystals, mp 76–78°C (EtOH). IR spectrum, ν, cm⁻¹ (KBr): 3092 m (CH), 3035 m (C=C), 2823 s (CH₃), 1611 s (C=N), 1544 s (Ph), 1295 (R₂N), 1074 m (C–N), 744 m (C=C). ¹H NMR spectrum, δ, ppm: 3.10 s (6H, CH₃), 6.79–6.81 m (2H, CH₃), 7.48–7.50 m (2H, Ph), 8.21–8.23 m (2H, Ph).
Ph), 6.84 s (1H, CH), 7.81–7.84 m (2H, Ph). 13C NMR spectrum, δ_c, ppm: 40.1 (CH$_3$), 108.8 (Ph), 111.9 (–CCI), 121.8 (N–C=), 123.8 (Ph), 129.4 (Ph), 152.5 (Ph), 154.2 (C–N). Found, %: C 46.55; H 3.85; N 24.73. C$_{11}$H$_1$Cl$_2$N$_5$. Calculated, %: C 46.50; H 3.90; N 24.65.

(E)-4-[2-(1,2-Dichlorovinyl)-2H-tetrazol-5-yl]-N,N-dimethylaniline (5e). Yellow crystals, mp 60–62°C (hexane–EtOAc). IR spectrum, ν, cm$^{-1}$ (KBr): 3088 s (CH), 3028 m (CH$_2$), 1622 m (C=N), 1502 s (Ph), 1094 m (C–N), 720 m (C–Cl). 1H NMR spectrum, δ, ppm: 3.09 s (6H, CH$_3$), 6.80 s (1H, CH), 6.87–6.89 m (2H, Ph), 8.10–8.12 m (2H, Ph). 13C NMR spectrum, δ_c, ppm: 40.1 (CH$_3$), 100.1 (Ph), 113.1 (–CCI), 118.4 (N–C=), 128.5 (Ph), 133.6 (Ph), 142.9 (Ph), 165.8 (C–N). Found, %: C 45.68; H 3.99; N 21.51. C$_{10}$H$_{11}$Cl$_2$N$_5$. Calculated, %: C 46.50; H 3.90; N 24.65.

(E)-1-(1,2-Dichlorovinyl)-5-benzyl-1H-tetrazole (4f) and (E)-2-(1,2-dichlorovinyl)-5-benzyl-1H-tetrazole (5f). Yield 47% ($4f : 5f = 1 : 2$).

(E)-1-(1,2-Dichlorovinyl)-5-benzyl-1H-tetrazole (4f). Colorless crystals, mp 56–58°C (hexane–EtOAc). IR spectrum, ν, cm$^{-1}$: 3093 s (CH), 3031 m (C=C), 2913 m (CH$_2$), 1627 s (CH$_2$), 1607 s (C=N), 1521 s (Ph), 1275 (R$_3$N), 1063 m (C–N), 750 m (C–Cl). 1H NMR spectrum, δ, ppm: 3.09 s (6H, CH$_3$), 6.80 s (1H, CH), 6.87–6.89 m (2H, Ph), 8.10–8.12 m (2H, Ph). 13C NMR spectrum, δ_c, ppm: 31.8 (CH$_3$), 6.71 s (1H, CH), 7.25–7.27 m (3H, Ph), 7.33–7.35 m (2H, Ph). 13C NMR spectrum, δ_c, ppm: 29.7 (CH$_3$), 142.9 (Ph), 158.9 (C–N). Found, %: C 47.23; H 3.30; N 21.79. C$_{10}$H$_{11}$Cl$_2$N$_5$. Calculated, %: C 47.08; H 3.16; N 21.96.

(E)-2-(1,2-Dichlorovinyl)-5-benzyl-1H-tetrazole (4f). Yellow oil. IR spectrum, ν, cm$^{-1}$: 3086 s (CH), 3028 m (CH$_2$), 2957 s (CH$_2$), 1627 s (C=N), 1496 m (Ph), 1086 m (C–N), 737 m (C–Cl). 1H NMR spectrum, δ, ppm: 4.36 s (2H, CH$_2$), 6.78 s (1H, CH), 7.30–7.32 m (3H, Ph), 7.35–7.37 m (2H, Ph), 8.10–8.12 m (2H, Ph). 13C NMR spectrum, δ_c, ppm: 31.8 (CH$_2$), 118.8 (=CCI), 124.5 (N–C=), 127.2 (Ph), 128.8 (Ph), 135.8 (Ph), 166.0 (C–N). Found, %: C 47.08; H 3.06; N 21.94. C$_{10}$H$_{11}$Cl$_2$N$_5$. Calculated, %: C 47.08; H 3.16; N 21.96.

FUNDING

The work was carried out within the framework of the State Program of Scientific Research of the Republic of Belarus “Chemical Processes, Reagents and Technologies, Bioregulators and Bioorganic Chemistry” (project 2.1.01.01).

CONFLICT OF INTEREST

No conflict of interest was declared by the authors.

OPEN ACCESS

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. Ostrovskii, V.A., Popova, V.A., and Trifonov, R.E., Adv. Heterocycl. Chem., 2017, vol. 123, p. 1. https://doi.org/10.1016/bs.aihch.2016.12.003
2. Kizhnyaev, V.N. and Vereshchagina, L.I., Russ. Chem. Rev., 2003, vol. 72, no. 2, p. 143. https://doi.org/10.1070/RC2003v072n02ABEH000731
3. Myznikov, L.V., Vorona, S.V., Artamonova, T.V., and Zevatskii, Yu.E., Russ. Chem. Bull., 2016, vol. 65, p. 923. https://doi.org/10.1007/s11172-016-1394-z
4. Zeng, J., Cheng, C., Huang, B., Huang, C., and Chen, J., Sensors and Actuators (B), 2017, vol. 243, p. 234. https://doi.org/10.1016/j.snb.2016.11.148
5. Zeng, J., Cheng, C., Chang, C., Huang, C., and Chen, J., Dyes and Pigments, 2017, vol. 139, p. 300. https://doi.org/10.1016/j.dyepig.2016.11.047
6. Aleshunin, P.A. and Ostrovskii, V.A., Russ. J. Org. Chem., 2012, vol. 48, no. 6, p. 877. https://doi.org/10.1134/S1070428012060255
7. Aleshunin, P.A., Esikov, K.A., Dolgushin, F.M., and Ostrovskii, V.A., Russ. J. Org. Chem., 2012, vol. 48, no. 11, p. 1464. https://doi.org/10.1134/S1070428012110097
8. Myznikov, L.V., Melnikova, Yu.V., Baichurin, R.I., Artamonova, T.V., and Zevatskii, Yu.E., Russ. J. Gen.
SYNTHESIS AND PROPERTIES OF DICHLOROVINYL DERIVATIVES

Chem., 2018, vol. 88, no. 2, p. 216.
https://doi.org/10.1134/S1070363218020068

9. Kaberdin, R.V. and Potkin, V.I., Russ. Chem. Rev., 1994, vol. 63, no. 8, p. 641.
https://doi.org/10.1070/RC1994v063n08ABEH000109

10. Dmitrieva, U.N., Ramsh, S.M., Zevatskii, Yu.E., Artemonova, T.V., and Myznikov, L.V., Chem. Heterocycl. Compd., 2011, vol. 48, no. 2, p. 355.
https://doi.org/10.1134/S1070363218020068

11. Burla, M.C., Caliandro, R., Carrozzini, B., Cascarano, G.L., Cuacci, C., Giacovazzo, C., Mallamo, M., Mazzone, A., and Polidori, G., J. Appl. Cryst., 2015, vol. 48, p. 306.
https://doi.org/10.1107/S1600576715001132

12. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3.
https://doi.org/10.1107/S2053229614024218

13. Spek, A.L., Acta Crystallogr. (D), 2009, vol. 65, p. 148.
https://doi.org/10.1107/S090744490804362X