JACOB’S LADDER AS GENERATOR OF NEW CLASS OF ITERATED L_2-ORTHOGONAL SYSTEMS AND THEIR DEPENDENCE ON THE RIEMANN’S FUNCTION $\zeta\left(\frac{1}{2} + it\right)$

JAN MOSER

Abstract. In this paper new classes of L_2-orthogonal functions are constructed as iterated L_2-orthogonal systems. In order to do this we use the theory of the Riemann’s zeta-function as well as our theory of Jacob’s ladders. The main result is new one in the theory of the Riemann’s zeta-function and simultaneously in the theory of L_2-orthogonal systems.

DEDICATED TO THE MEMORY OF FOURIER’S EGYPTIAN ANABASE

1. Main result

1.1. Let us remind the following notions:

(a) Jacob’s ladder $\varphi_1(t)$,

(b) the function

$$\tilde{Z}^2(t) = \frac{d\varphi_1(t)}{dt} = \frac{1}{\omega(t)} \left| \zeta\left(\frac{1}{2} + it\right) \right|^2,$$

$$\omega(t) = \left\{ 1 + O\left(\frac{\ln \ln t}{\ln t}\right) \right\} \ln t, \quad t \to \infty,$$

(1.1)

(c) the (direct) iterations of the Jacob’s ladder

$$\varphi_1^0(t) = t, \quad \varphi_1^1(t) = \varphi_1(t), \quad \varphi_1^2(t) = \varphi_1(\varphi_1(t)), \ldots, \varphi_1^k(t) = \varphi_1(\varphi_1^{k-1}(t))$$

for every fixed $k \in \mathbb{N}$,

(d) the reverse iterations (by means of $\varphi_1(t)$)

$$U = o\left(\frac{T}{\ln T}\right), \quad T \to \infty,$$

of the basic segment

$$[T, T + U] = [T, T + U], \quad [T, T + U], \ldots, [T, T + U],$$

where

(1.2)

$$[0, T + U] \prec \left[\frac{1}{T}, T + U\right] \prec \cdots \prec \left[\frac{k}{T}, T + U\right],$$

that we have introduced into the theory of the Riemann’s zeta-function in our papers [1] – [4].

Key words and phrases. Riemann zeta-function.
1.2. The following theorem is the main result of this paper.

Theorem 1. For every fixed L_2-orthogonal system
\[
\{f_n(t)\}_{n=0}^{\infty}, \ t \in [a, a + 2l], \ a \in \mathbb{R}, \ l \in \mathbb{R}^+
\]
and for every fixed $k \in \mathbb{N}$ there is the set of k new iterated L_2-orthogonal systems
\[
\{f_n^p(t)\}_{n=0}^{\infty}, \ t \in [a, a + 2l], \ p = 1, 2, \ldots, k,
\]
where
\[
f_n^p(t) = f_n\left(\varphi_1^p\left(\frac{p}{T + 2l - T}(t - a) + \frac{p}{T}\right) - T + a\right) \times
\left|\prod_{r=0}^{p-1} \tilde{Z}\left(\varphi_1^p\left(\frac{p}{T + 2l - T}(t - a) + \frac{p}{T}\right)\right)\right|,
\]
for all sufficiently big $T > 0$.

1.3. For example, by Theorem 1, we can assign the following set of k new iterated orthogonal systems
\[
P_n^p(t) = P_n\left(\varphi_1^p\left(\frac{1}{T + 2l - T}(t + 1) + \frac{1}{T}\right) - T - 1\right) \times
\left|\prod_{r=0}^{p-1} \tilde{Z}\left(\varphi_1^p\left(\frac{1}{T + 2l - T}(t + 1) + \frac{1}{T}\right)\right)\right|,
\]
for all sufficiently big T to the classical Legendre’s orthogonal system
\[
\{P_n(t)\}_{n=0}^{\infty}, \ t \in [-1, 1]; \ a = -1, \ l = 1.
\]

For example
\[
P_n^1(t) = P_n\left(\varphi_1\left(\frac{1}{T + 2l - T}(t + 1) + \frac{1}{T}\right) - T - 1\right) \times
\left|\tilde{Z}\left(\varphi_1\left(\frac{1}{T + 2l - T}(t + 1) + \frac{1}{T}\right)\right)\right|, \ t \in [-1, 1].
\]

1.4. Restating Theorem 1 we have the following

Corollary 1. For L_2-orthogonal system \[1.3\] there is the set of k new iterated L_2-orthogonal systems
\[
\left\{f_n^p\left(\varphi_1^p\left(\frac{p}{T + 2l - T}(t - a) + \frac{p}{T}\right) - T + a\right)\right\}_{n=0}^{\infty},
\]
$t \in [a, a + 2l], \ p = 1, \ldots, k,$
with weights
\[\prod_{r=0}^{p-1} \tilde{Z} \left(\varphi_1 \left(\frac{T + 2l - T}{2l} (t + 1) + \frac{T}{T} \right) \right) \]
and this last is (see (1.1))
\[\sim \frac{1}{\ln^p T} \prod_{r=0}^{p-1} \tilde{Z}^2 \left(\varphi_1 \left(\frac{T + 2l - T}{2l} (t - a) + \frac{T}{T} \right) \right), \quad T \to \infty. \]

1.5. Now we give some remarks.

Remark 1. Theorem 1 represents completely new result in the theory of the Riemann’s zeta-function and simultaneously in the theory of \(L^2 \)-orthogonal systems.

Remark 2. The last row for all sufficiently big \(T > 0 \) in the Theorem 1 gives the continuum set of possibilities for construction of new \(k \)-tuples of iterated \(L^2 \)-orthogonal systems for every fixed system (1.3).

Remark 3. Dependence of iterated \(L^2 \)-orthogonal systems (1.4) on the Riemann’s zeta-function \(\zeta \left(\frac{1}{2} + it \right) \) is evident one, see (1.1), (1.5).

Remark 4. This paper is the continuation of 54 papers concerning Jacob’s ladders. These can be found in arXiv [math.CA] starting with the paper [1].

2. Jacob’s ladders

2.1. Let us remind the following non-linear integral equation
\[\int_0^{\mu[Z(T)]} Z^2(t) e^{-\tilde{Z} \varphi(t)} dt = \int_0^T Z^2(t) dt \]
we have introduced in the paper [1], where
\[Z(t) = e^{i\tilde{Z}(t)} \zeta \left(\frac{1}{2} + it \right), \]
\[\tilde{Z}(t) = -\frac{t}{2} \ln \pi + \text{Im} \left\{ \ln \Gamma \left(\frac{1}{4} + i \frac{t}{2} \right) \right\}, \]
and the class of functions \(\{\mu\} \) specified as
\[\mu \in C^\infty ([y_0, +\infty)) \]
monotonically increasing and unbounded from above and obeying the inequality
\[\mu(y) \geq 7y \ln y. \]

2.2. The following statement holds (see [1]).

Lemma 1. For any \(\mu \in \{\mu\} \) there is exactly one solution to the integral equation (2.1):
\[\varphi(T) = \varphi(T, \mu), \quad T \in [T_0, +\infty), \quad T_0 = T_0[\varphi] > 0, \]
\[\varphi(T) \xrightarrow{T \to \infty} \infty. \]
Let the symbol \(\{ \varphi \} \) denote the system of these solutions. The function \(\varphi(T) \) is related to the zeroes of the Riemann’s zeta-function on the critical line by the following way. Let \(t = \gamma \) be such a zero of
\[
\zeta \left(\frac{1}{2} + it \right)
\]
and of the order \(n(\gamma) \), where
\[
n(\gamma) = \mathcal{O}(\ln \gamma), \quad \gamma \to \infty,
\]
of course. Then the following holds true.

Remark 5. The points \([\gamma, \varphi(\gamma)], \gamma > T_0\) (and only these points) are inflection points with the horizontal tangent. In more detail, the following system of equations holds true:
\[
\varphi'(\gamma) = \varphi''(\gamma) = \cdots = \varphi^{(2n)}(\gamma) = 0, \quad \varphi^{(2n+1)}(\gamma) \neq 0, \quad n = n(\gamma).
\]

Definition 1. With respect to the above mentioned property, an element \(\varphi \in \{ \varphi \} \) is called Jacob’s ladder leading to \([+\infty, +\infty]\). The rungs of that ladder are segments of the curve \(\varphi \) lying in the neighbourhoods of the points \([\gamma, \varphi(\gamma)], \gamma > T_0\).

Remark 6. We call \(\varphi(T) \) as Jacob’s ladder in analogy with Jacob’s dream in Chumash, Bereishis, 28:12.

Remark 7. Finally, the composite function \(g[\varphi(T)] \) is also called Jacob’s ladder for any function \(g \) that is increasing, \(C^\infty \) on \([y_0, +\infty)\) and unbounded from above. For example, the function
\[
(2.4) \quad \varphi_1(T) = \frac{1}{2} \varphi(T)
\]
as composition of \(g(y) = \frac{1}{2} y, \ y \geq y_0, \ y = \varphi(T), \ T \geq T_0[\varphi] = T_0[\varphi_1], \ g'_0 = \frac{1}{2} > 0 \) is the Jacob’s ladder.

3. Basic property of Jacob’s ladders: existence of almost exact expressions for the classical Hardy-Littlewood integral (1918)

3.1. Let us remind the Hardy-Littlewood integral
\[
(3.1) \quad \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 dt
\]
can be expressed as follows:
\[
(3.2) \quad \int_0^T \left| \zeta \left(\frac{1}{2} + it \right) \right|^2 dt = T \ln T + (2c - 1 - \ln 2\pi)T + R(T),
\]
with, for example, Ingham’s error term
\[
(3.3) \quad R(T) = \mathcal{O}(T^{\frac{1}{2}} \ln T) = \mathcal{O}(T^{\frac{1}{2}+\delta}), \ \delta > 0, \ T \to \infty
\]
for arbitrarily small \(\delta \).

Next, by Good’s \(\Omega \)-theorem (1977) we have that
\[
(3.4) \quad R(T) = \Omega(T^{\frac{1}{2}}), \ T \to \infty.
\]
Remark 8. Let
\[R_a(T) = \mathcal{O}(T^{\frac{1}{4} + \alpha}), \quad a \in [\delta, \frac{1}{4} + \delta], \quad T \to \infty. \]
Then, by (3.4), it is true that for every valid estimate of type (3.5) one obtains:
\[\limsup_{T \to \infty} |R_a(T)| = +\infty. \]
In other words, every expression of the type (3.2) possesses an unbounded error term at infinity.

3.2. Under the circumstances (3.2) and (3.6) we have proved in [1] that the Hardy-Littlewood integral (3.1) has an infinite set of other completely new and almost exact representations expressed by the following:

Property 1.
\[\int_0^T \left| c \left(\frac{1}{2} + it \right) \right|^2 \, dt = \varphi_1(T) \ln \{ \varphi_1(T) \} + \]
\[+ (c - \ln 2\pi) \varphi_1(T) + c_0 + \mathcal{O} \left(\frac{\ln T}{T} \right), \quad T \to \infty, \]
(comp. (2.4)) with the following
\[\lim_{T \to \infty} \hat{R}(T) = \lim_{T \to \infty} \mathcal{O} \left(\frac{\ln T}{T} \right) = 0, \]
where \(c \) is the Euler’s constant and \(c_0 \) is the constant from the Titchmarsh-Kober-Atkinson formula.

Remark 9. Comparison of (3.6) and (3.8) completely characterizes the level of exactness of our representation (3.7) of the Hardy-Littlewood integral (3.1).

4. Asymptotic relation between Jacob’s ladder and the prime-counting function

4.1. Further, in the paper [1], (6.2), we have obtained the following formula.

Lemma 2.
\[T - \varphi_1(T) \sim (1 - c)\pi(T); \quad \pi(T) \sim \frac{T}{\ln T}, \quad T \to \infty. \]

Remark 10. As a consequence, the Jacob’s ladder can be viewed as complementary function to the function
\[(1 - c)\pi(T) \]
in the sense that
\[\varphi_1(T) + (1 - c)\pi(T) \sim T, \quad T \to \infty. \]

4.2. Let (see [3], (1.11))
\[y = \varphi_1(t): \quad \varphi_0^k(t) = t, \quad \varphi_1^k(t) = \varphi_1(t), \quad \varphi_2^k(t) = \varphi_1(\varphi_1(t)), \ldots, \]
\[\varphi_1^k(t) = \varphi_1(\varphi_1^{k-1}(t)), \ldots, \quad t \in [T, T + U], \quad T \geq T_0[\varphi_1], \]
of course (see [4.11])
\[T_0 > \varphi_1(T_0), \]
and the symbol \(\varphi_1^k(t) \) represents the k-th iteration of the Jacob’s ladder.
Remark 11. Let us remind that the functions
\[\varphi_k^1(t), \text{ } k = 2, 3, \ldots \]
are increasing since \(\varphi_1^1(t) \) is increasing.

4.3. In the case
\[t \mapsto \varphi_k^1(t), \text{ } t \in [T, T + U] \]
it follows from Lemma 2 that:

\[\varphi_k^1(t) - \varphi_{k+1}^1(t) \sim (1 - c) \frac{\varphi_k^1(t)}{\ln \varphi_k^1(t)}, \text{ } k = 0, 1, \ldots, n, \text{ } t \to \infty, \]

where \(n \in \mathbb{N} \) is arbitrary and fixed one. Now formulae (4.5) imply the following properties of the set \(\{\varphi_k^1(t)\}_{k=0}^{n+1} \):

Lemma 3. For
\[t \in [T, T + U], \text{ } U = o \left(\frac{T}{\ln T} \right), \text{ } T \to \infty \]
the following statements hold true:

\[t \sim \varphi_1^1(t) \sim \varphi_2^1(t) \sim \cdots \sim \varphi_{n+1}^1(t), \]
\[t > \varphi_1^1(t) > \varphi_2^1(t) > \cdots > \varphi_{n+1}^1(t), \]
\[\varphi_k^1(T) > (1 - \epsilon)T, \text{ } k = 0, 1, \ldots, n + 1, \text{ } \epsilon > 0, \text{ } \epsilon \text{ small and fixed}, \]
\[\varphi_k^1(T + U) - \varphi_k^1(T) < \frac{1}{2n + 5 \ln T}, \text{ } k = 1, \ldots, n + 1, \]
\[\varphi_k^1(T) - \varphi_{k+1}^1(T + U) > 0.18 \times \frac{T}{\ln T}, \text{ } k = 0, 1, \ldots, n. \]

4.4. Further, we have introduced (see [3], (2.2)) the following set
\[D(T, U, n) = \bigcup_{k=0}^{n+1} [\varphi_k^1(T), \varphi_k^1(T + U)]. \]

Remark 12. We list here the properties of the set (4.12):

(a) It is disconnected set (see (4.11)) for every admissible \(U \), (see (4.6));
(b) Components of the set \(D \) are distributed as follows: (see (4.11))
\[[\varphi_{n+1}^1(T), \varphi_{n+1}^1(T + U)] \prec [\varphi_n^1(T), \varphi_n^1(T + U)] \prec \cdots \prec [\varphi_1^1(T), \varphi_1^1(T + U)] \prec [\varphi_0^1(T), \varphi_0^1(T + U)] = [T, T + U]. \]

Remark 13. Asymptotic behaviour of the set \(D \) is as follows: at \(T \to \infty \) its components receding unboundedly each from other (see (4.11)) and all together recede to infinity. Hence at large \(T \) the set (4.12) behaves like one-dimensional Friedmann-Hubble expanding universe.
5. On the function $\hat{Z}^2(t)$

Let us recall the following formula we have proved in [1]:
\begin{equation}
Z^2(t) = \Phi'_{\varphi}(\varphi(t)) \frac{d\varphi(t)}{dt}, \quad t \in [T, T + U], \quad U = o\left(\frac{T}{\ln T}\right),
\end{equation}
where
\begin{equation}
\Phi'_{\varphi}[\varphi] = \frac{2}{\varphi^2} \int_0^{\mu[\varphi]} t e^{-\frac{2}{\varphi} t} Z^2(t) dt + \frac{Z^2(\mu[\varphi])}{\varphi} \frac{d\mu[\varphi]}{d\varphi},
\end{equation}
(see [1], (3.5), (3.9)). Now we put (see (2.4) and [2], (9.1))
\begin{equation}
\hat{Z}^2(t) = \frac{d\varphi(t)}{dt}, \quad t \geq T_0[\varphi_1].
\end{equation}
In the next step we present just the result (see [2], Lemma 1, (7.7) – (7.9), (9.2)):

Lemma 4. If
\begin{equation}
\mu_a[\varphi] = a \varphi \ln \varphi, \quad a \in [7, 8],
\end{equation}
\begin{equation}
t \in [T, T + U], \quad U = o\left(\frac{T}{\ln T}\right),
\end{equation}
then
\begin{equation}
\Phi'_{\varphi}[\varphi(t)] = \frac{1}{2} \left\{ 1 + \mathcal{O}\left(\frac{\ln \ln t}{\ln t}\right) \right\} \ln t,
\end{equation}
i.e. (see (5.1), (5.2))
\begin{equation}
\hat{Z}^2(t) = \frac{d\varphi(t)}{dt} = \frac{1}{\omega(t)} \left| \zeta\left(\frac{1}{2} + it\right) \right|^2,
\end{equation}
where
\begin{equation}
\omega(t) = 2\Phi'_{\varphi}[\varphi(t)] = \left\{ 1 + \mathcal{O}\left(\frac{\ln \ln t}{\ln t}\right) \right\} \ln t, \quad t \to \infty.
\end{equation}

Remark 14. The segment $[7, 8]$ is sufficient one for our purposes since the continuum set $\mu_a[\varphi]$ corresponds to this one (comp. [23], (5.1)).

6. Reverse iterations

6.1. Next, in our paper [4] we have introduced the reverse iterations by means of the Jacob’s ladder. First, we define the sequence
\begin{equation}
\{ T \}_k^{k_0}
\end{equation}
by the formula
\begin{equation}
\varphi^k_1(T) = T_k^{k-1}, \quad k = 1, 2, \ldots, k_0, \quad T = T_0[\varphi_1]
\end{equation}
(where $k_0 \in \mathbb{N}$ is an arbitrary and fixed numer) since the function $\varphi_1(T)$, $T \to \infty$ increases to $+\infty$. Further we have
\begin{equation}
\varphi_1(T) = T_k^{k-1} \Rightarrow \ldots \Rightarrow \varphi_1^k(T) = T, \quad k = 1, \ldots, k_0.
\end{equation}
Since
\[\varphi_1(T) = T \Rightarrow \frac{T}{\varphi_1(T)} = T = \varphi_1^{-1}(T), \]
and then we may use the inverse function \(\varphi_1^{-1}(T) \) to generate a reverse iterations. Namely we have:
\[\varphi_1(T) = T \Rightarrow \frac{T}{\varphi_1^{-1}(T)} = \varphi_1^{-1}(\varphi_1^{-1}(T)) = \varphi_1^{-2}(T), \ldots, \]
\[\frac{T}{\varphi_1^{-k}(T)} = \varphi_1^{-k}(\varphi_1^{-k}(T)) = \varphi_1^{-k}(T), \]
where the last row gives the \(k \)-th reverse iteration of the point \(T = \frac{0}{0} \). Of course, we have
\[\varphi_1^{k}(T) = \varphi_1^{k}(\varphi_1^{-k}(T)) = T. \]

6.2. Now, the basic formula (4.1) gives the following properties of the reverse iterations (see [4], (5.1) – (5.13)).

Lemma 5. If
\[U = o \left(\frac{T}{\ln T} \right), \quad T \to \infty \]
then
\[\varphi_1^{k}[\frac{0}{0}, T + U] = \varphi_1^{k} \left(\frac{0}{0}, \frac{T}{T + U} \right), \quad T = [T, T + U], \]
\[\| \frac{T}{T + U} \| = \frac{0}{T} - \frac{k}{k} = \frac{0}{T} - \frac{0}{T}, \quad k = 1, \ldots, k_0, \]
\[\frac{0}{T} - \frac{k}{k} - \frac{0}{T} = \frac{0}{T} - \frac{k}{k} = o \left(\frac{T}{\ln T} \right), \]
\[\| \frac{k}{k} - \frac{k}{k} \| = \frac{0}{T} - \frac{k}{k} - \frac{0}{T} = \frac{0}{T} - \frac{k}{k} - \frac{0}{T} \sim (1 - c) \frac{T}{\ln T}, \]
\[||[T, T + U]|| \prec \frac{1}{T} - \frac{1}{T + U} \prec \cdots \prec \frac{k}{k} - \frac{k}{k}, \quad k = 1, \ldots, k_0, \]

(comp. Lemma 3 and (4.13)).

From (6.6) – (6.10) we obtain the following property of the Jacob’s ladders.

Property 2. For every segment
\[[T, T + U], \quad U = o \left(\frac{T}{\ln T} \right), \quad T \to \infty \]
there is the following class of disconnected sets (comp. (4.12))
\[\Delta(T, U) = \bigcup_{r=0}^{k} [T, T + U], \quad 1 \leq k \leq k_0, \]

generated by the Jacob’s ladder \(\varphi_1(T) \).

Remark 15. Asymptotic behaviour of the set \(\Delta \) is the same as behavior of the set (4.12), i.e. at \(T \to \infty \) its components receding unboundedly each from other and all together recede to infinity. Hence at large \(T \) the set (6.11) behaves like one-dimensional Friedmann-Hubble expanding universe.
6.3. Further, we have the following statement, see [4], (6.4):

Lemma 6. If

\[(6.12) \quad t \in [\varphi_1^{-k}(T), \varphi_1^{-k}(T + U)], \quad k = 1, \ldots, k_0,\]

then (see (6.5))

\[(6.13) \quad \varphi_1^r(t) \in [\varphi_1^{-r-k}(T), \varphi_1^{-r-k}(T + U)], \quad r = 0, 1, \ldots, k,\]

i.e.

\[\varphi_1^0(t) = t \in [\varphi_1^{-k}(T), \varphi_1^{-k}(T + U)] = [T, T + U],\]
\[\varphi_1^1(t) \in [\varphi_1^{-k+1}(T), \varphi_1^{-k+1}(T + U)] = [T, T + U],\]
\[\vdots\]
\[\varphi_1^{k-1}(t) \in [\varphi_1^{-1}(T), \varphi_1^{-1}(T + U)] = [T, T + U],\]
\[\varphi_1^k(t) \in [\varphi_1^0(T), \varphi_1^0(T + U)] = [T, T + U].\]

7. Main lemma and proof of Theorem 1

7.1. In connection with direct and reverse iterations we have proved (see [4], (7.1), (7.2)) the following

Lemma 7. If

\[(7.1) \quad U = o \left(\frac{T}{\ln T} \right), \quad T \to \infty,\]

then for every Lebesgue-integrable function

\[g(t), \quad t \in [T, T + U]\]

the following holds true:

\[(7.2) \quad \int_T^{T+U} g(t)dt = \int_T^{T+U} \sum_{r=0}^{k-1} Z^2([\varphi_1^r(t)]|dt, \quad k = 1, \ldots, k_0.\]

Remark 16. We have obtained the case \(k = 1:\)

\[(7.3) \quad \int_T^{T+U} g(t)dt = \int_T^{1+U} g(\varphi_1(t))Z^2(t)dt\]

in our paper [2], (9.5).

7.2. Now we proceed to the proof of our Theorem 1.
Proof of Theorem 1. Since the system (1.3) is fixed one then the corresponding \(l \) is also fixed and consequently the condition (7.1)

\[
l = o \left(\frac{T}{\ln T} \right), \quad T \to \infty
\]

is fulfilled for all sufficiently big positive \(T \). Now we have

\[
m \neq n : \quad 0 = \int_a^{a+2l} f_m(t)f_n(t)\,dt = \int_T^{T+2l} f_m(\tau - T + a)f_n(\tau - a)\,d\tau =
\]

and next, by our Lemma 7 for sufficiently big \(T > 0 \), one obtains

\[
= \int_T^{p+2l} f_m[\varphi_1^p(\rho) - T + a]f_n[\varphi_1^p(\rho) - T + a] \prod_{r=0}^{p-1} \tilde{Z}^2[\varphi_1^p(\rho)]d\rho =
\]

and next, by simple substitution

\[
\rho = \frac{p}{T + 2l - T}(t - a) + T, \quad t \in [a, a+2l], \quad \rho \in [T, T + 2l]
\]

we obtain

\[
\frac{p}{T + 2l - T} \int_a^{a+2l} f_m[\varphi_1^p(\frac{p}{T + 2l - T}(t - a) + T) - T + a] \times
\]

\[
\times f_n[\varphi_1^p(\frac{p}{T + 2l - T}(t - a) + T) - T + a] \times
\]

\[
\times \prod_{r=0}^{k-1} \tilde{Z}^2[\varphi_1^p(\frac{p}{T + 2l - T}(t - a) + T)]\,dt =
\]

and, in the next step, we finish with (see (1.5))

\[
(7.5) = \frac{p}{T + 2l - T} \int_a^{a+2l} f_m^p(t)f_n^p(t)\,dt \Rightarrow \int_a^{a+2l} f_m^p(t)f_n^p(t)\,dt = 0.
\]

7.3. We give at once the following.

Remark 17. If we use the last formula in (7.5) as the origin of a new process (an analogue of this in the subsection 7.2), then we obtain \(k^2 \) new iterated \(L_2 \)-orthogonal systems

\[
\{f_n^{p_1,p_2}(t)\}_{n=0}^{\infty}, \quad t \in [a, a + 2l], \quad p_1, p_2 = 1, \ldots, k
\]
JACOB'S LADDER AS GENERATOR OF NEW CLASS OF ITERATED L₂-ORTHOGONAL SYSTEMS AND THEIR DEPENDENCE ON THE RIEMANN'S FUNCTION ζ(\frac{1}{2} + it)

where

\[f_n^{p_1,p_2}(t) = \]

\[= f_n[\varphi_1^{p_1}(\frac{T + 2l - T}{2l}(\varphi_1^{p_2}(\frac{T + 2l - T}{2l}(t - a) + \frac{p_2}{T} - \frac{p_1}{T} - T + a) - T + a)\times\]

\[\times \prod_{r=0}^{p_1-1} |\tilde{Z}[\varphi_1^{p_1}(\frac{T + 2l - T}{2l}(\varphi_1^{p_2}(\frac{T + 2l - T}{2l}(t - a) + \frac{p_2}{T} - \frac{p_1}{T} - T + a))|\times\]

\[\times \prod_{r=0}^{p_2-1} |\tilde{Z}[\varphi_1^{p_2}(\frac{T + 2l - T}{2l}(t - a) + \frac{p_2}{T})|,\]

and so on up to \(k^l \) new iterated \(L₂ \)-orthogonal systems

\(\{f_n^{p_1,p_2,...,p_l}(t)\}, \ t \in [a, a + 2l], \ p_1, \ldots, p_l = 1, \ldots, k \)

for every fixed \(l \in \mathbb{N} \).

7.4. Let us notice that the transformation (7.6)

\[w = w(t) = \varphi_1^{p}(\frac{T + 2l - T}{2l}(t - a) - T + a), \ t \in [a, a + 2l] \]

has the following properties:

(a) by the subsection 6.1:

\[w(a) = \varphi_1^{p}(\frac{T}{2l} - \frac{p}{T}(t - a)) - T + a, \ t \in [a, a + 2l] \]

(b) since the function \(\varphi_1^{p}(u) \) is increasing one and

\[u = \frac{T + 2l - T}{2l}(t - a) + \frac{p}{T}, \ u \in [a, a + 2l] \]

is evident then the composed function

\[w(t), \ t \in [a, a + 2l] \]

is increasing that is

\[w(t) \in [a, a + 2l]. \]

Remark 18. Consequently, it follows from (a) and (b) that by the one-to-one correspondence (7.6) we have defined new automorphism on \([a, a + 2l]\), i.e. the \(k, k^2, \ldots, k^l \) of new automorphisms for every fixed sufficiently big positive \(T \).

I would like to thank Michal Demetrian for his moral support of my study of Jacob's ladders.
References

[1] J. Moser, ‘Jacob’s ladders and almost exact asymptotic representation of the Hardy-Littlewood integral’, Math. Notes 88, (2010), 414-422, arXiv: 0901.3937.

[2] J. Moser, ‘Jacob’s ladders, structure of the Hardy-Littlewood integral and some new class of nonlinear integral equations’, Proc. Steklov Inst. 276 (2011), 208-221, arXiv: 1103.0359.

[3] J. Moser, ‘Jacob’s ladders, their iterations and new class of integrals connected with parts of the Hardy-Littlewood integral of the function $|\zeta\left(\frac{1}{2} + it\right)|^2$’, arXiv: 1209.4719, (2012).

[4] J. Moser, ‘Jacob’s ladders, reverse iterations and new infinite set of L_2-orthogonal systems generated by the Riemann zeta-function, arXiv: 1402.2098.

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynska Dolina M105, 842 48 Bratislava, SLOVAKIA

Email address: jan.moser@fmph.uniba.sk