Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
BRIEF REPORTS

Meeting the needs of rural veterans through rapid implementation of pharmacist-provided telehealth management of diabetes during the COVID-19 pandemic

Shekinah G. Baum*, Lindsy M. Coan, Angela K. Porter

ARTICLE INFO

Article history:
Received 22 April 2022
Accepted 10 October 2022

ABSTRACT

Background: The rapid implementation of telehealth care owing to the coronavirus disease 2019 (COVID-19) pandemic allowed clinical pharmacist practitioners (CPPs) within the Veterans Health Administration (VA) to continue to provide diabetes management to veterans with health care disparities, including rural veterans.

Objectives: This project aimed to describe the change in hemoglobin A1c (HbA1c) in telehealth-naïve veterans with types 1 or 2 diabetes mellitus (DM) before and after the rapid implementation of CPP-provided telehealth DM management owing to the COVID-19 pandemic. The project also sought to describe potential health care disparities that may be addressed by the increase in telehealth use and the impact of metformin sustained action (SA) recalls.

Methods: Analysis included patients receiving face-to-face DM-focused visits with a CPP before the COVID-19 pandemic (June 1, 2019, to December 1, 2019) who transitioned to telehealth care via telephone or VA Video Connect during the COVID-19 pandemic (June 1, 2020, to December 1, 2020). One or more HbA1c readings within each time frame was required for inclusion. Patients were excluded if previously enrolled in VA telehealth DM management.

Results: The rapidly implemented telehealth management of DM provided by VA CPPs was observed to maintain or improve HbA1c control in 84.2% of patients. During the same time frame, 10.9% of patients were taken off metformin SA secondary to national drug recalls. In total, 76% of patients were from rural communities and > 52% of patients traveled greater than 50 miles round trip to receive face-to-face DM care before the pandemic.

Conclusion: Glycemic control was improved or maintained for most patients who were rapidly converted to pharmacist-provided telehealth DM management during the COVID-19 pandemic. A large majority of rural patients were reached as a result of CPP-provided telehealth care. This provides evidence to support the continued widespread telehealth utilization to effectively manage DM and reach veterans with health care disparities, particularly rural communities.

© 2022 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

Background

The Veterans Health Administration (VA) has been using telehealth to successfully manage patients with chronic diseases, including diabetes mellitus (DM), since 2003 with the establishment of VA’s Telehealth Services department. In more recent years, VA has increased the impact of telehealth through the use of VA Video Connect (VVC) technology that provides scheduled and on-demand synchronous audio-video health care visits. Although the VA was early to explore telehealth options, the degree of implementation increased because of the coronavirus disease 2019 (COVID-19) pandemic.

Disclosure: The authors declare no relevant conflicts of interest or financial relationships.

Previous presentations: The study has been presented at the 2021 American College of Clinical Pharmacy Virtual Poster Symposium, virtual, May 26, 2021; and North Carolina Association of Pharmacists 2021 Annual Poster Session, virtual, June 8, 2021.

* Correspondence: Shekinah G. Baum, PharmD, Veterans Integrative Pain Management Clinical Pharmacist Practitioner, Western North Carolina Veterans Affairs Health Care System, 1100 Tunnel Rd., Asheville, NC 28806. E-mail address: shekinah.baum1@va.gov (S.G. Baum).

ORCIDs

Angela K. Porter: http://orcid.org/0000-0002-0871-5006
Shekinah G. Baum: http://orcid.org/0000-0001-6945-7090

https://doi.org/10.1016/j.japh.2022.10.009
1544-3191/© 2022 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Weekly telehealth video appointments increased from 10,000 in February 2020 to 120,000 in May 2020, representing an increase of over 1000%. Since the pandemic, the terms telehealth, telecommunication, and telemedicine have become more commonly used in health care settings. The Centers for Medicare and Medicaid Services (CMS) defines telemedicine to include interactive telecommunication using both audio and video equipment. During the COVID-19 pandemic, CMS issued a waiver to allow reimbursement for audio-only telehealth care of certain services, including evaluation and management from a qualified health care provider. This CMS waiver allowed for telephone visits to be included under the umbrella term “telehealth” and become a more common means for conducting clinic visits during the first year of the pandemic.

Literature has shown that using telehealth to manage DM is both safe and effective. A systematic review and meta-analysis reviewed 13 randomized controlled trials to “assess the impact of telemedicine interventions on change in hemoglobin A1c (HbA1c), blood pressure, low-density lipoprotein cholesterol, and body mass index.” Marcolino et al. determined that telemedicine, including video or audio-only telephone follow-up, in addition to usual care showed improved glycemic control compared with usual care alone. A multicenter randomized controlled trial evaluated glucose control in 338 patients with type 2 DM who received telemedicine, telemonitoring, or conventional care from an endocrinologist over the course of 24 weeks; results demonstrated equivalent glucose control with synchronous audio-video telemedicine care compared with usual face-to-face care. Patients living in rural locations, defined by the U.S. Census Bureau as open country or settlements with < 2500 residents, have the opportunity to benefit from increased use of tele-health. Research conducted for rural patients outside of the VA has added to the understanding that HbA1c is better controlled when telehealth measures are implemented for follow-up care of DM. In addition, studies have emphasized the importance of telehealth technology for providing care to vulnerable populations, including the older, racial minorities, and rural veterans who may not otherwise be able to receive timely in-person clinical care.

Over several decades, VA has been a leader in pioneering the use of clinical pharmacist practitioners (CPPs) to manage chronic disease states, including DM. CPPs within the VA are authorized by their facility as advanced practice providers and function as collaborative practitioners according to their clinical scope of practice, functioning with a high level of clinical autonomy to provide comprehensive medication management. Clinical studies indicate that when CPPs provide comprehensive medication management for patients with DM, improvements in clinical outcomes are noted. CPPs are in a unique position to combine pharmacotherapy expertise, patient-friendly education, and clinical flexibility to improve patient care.

In the spring of 2020, the COVID-19 pandemic increased the urgency to use telehealth for outpatient care. Owing to social distancing recommendations to prevent the spread of COVID-19, many providers quickly began using telehealth to care for their patients safely and effectively. The rapid implementation of telehealth care provided the opportunity for VA CPPs to quickly reach veterans with health care disparities. Rural veterans previously traveling extensive distances for outpatient appointments benefited from the switch to virtual care by saving time, income, and the coordination of transportation assistance.

This project aimed to examine the impact of rapidly implemented CPP telehealth clinics during the COVID-19 pandemic at the Western North Carolina VA Health Care System (WNCVAHCS), specifically evaluating HbA1c control in VA telehealth-naïve patients with types 1 or 2 DM. The hypothesis was HbA1c would be maintained during the abrupt conversion to CPP-provided telehealth visits. Given the variability with the use of the term telehealth for the purposes of this project, the term includes outpatient clinic visits conducted by CPPs over either telephone (audio only) or synchronous audio-video modalities. Authors also describe the potential impact of increased telehealth utilization on health care disparities, including veterans previously traveling from rural distances to receive DM care by face-to-face CPP clinic visits.

During the time frame included in this project, widespread metformin sustained action (SA) recalls affected many patients receiving care at this facility. WNCVAHC made a facility-wide decision to discontinue all use of metformin SA in the spring of 2020 owing to difficulty procuring the formulation. Given the evidence of metformin’s ability to provide improvement in HbA1c, due diligence was warranted to review this potential impact during the same time frame.

Objectives

This project sought to identify veterans affected by the rapid change from face-to-face DM management to telehealth care provided by CPPs. The primary objective was to compare the change in average HbA1c in telehealth-naïve patients with type 1 or 2 DM before and after the rapid implementation of CPP-provided telehealth DM management.

In addition, secondary objectives outlined the impact of metformin SA recalls and potential health care disparities that may be addressed by the increase in telehealth use. Potential health care disparities included age, race, ethnicity, rurality, and travel distance to VA facility before conversion to tele-health. As a result of the widespread metformin SA recalls, this VA facility discontinued all use of metformin SA between June 1, 2020, and December 1, 2020. Given the time frame of this factor, evaluation of metformin SA impact was included in the project analysis.

Methods

The project was conducted as a quality assurance retrospective chart review with permission from the VA facility institutional review board. Included patients were referred to a CPP for focused management of type 1 or type 2 DM by June 1, 2019. CPP practice encompassed all elements of comprehensive medication management authorized by the VA Pharmacy Benefits Management Clinical Scope of Practice Guidance. CPP management of DM varied based on individual CPP practice autonomy and use of primary literature and guideline-directed therapeutic interventions. Typically, these CPPs provided medication management, recommended dietary and lifestyle interventions, and applicable monitoring and education of DM. In addition, CPPs managed associated
comorbidities such as hypertension, heart failure, and dyslipidemia. CPPs at this facility practiced clinical independence regarding DM management with access to other health care professionals, including primary care physicians, mental health providers, and endocrinology specialists for consultation or referral, as needed.

Patients included in this review had a minimum of 2 face-to-face clinic visits with a CPP before December 1, 2019. Patients had to be subsequently transitioned to telehealth care between June 1, 2020, and December 1, 2020, with at least 1 CPP telehealth visit during that time frame. Telehealth care was defined as either telephone (audio only), VVC, or other secure form of synchronous audio-video visit (i.e., Doximity). Patients received DM-focused visits with a CPP only via telehealth during this time frame given that all in-person CPP DM clinics were closed in attempts to minimize the spread of COVID-19. Included patients also required one or more HbA1c readings during each review time frame (June 1, 2019, to December 1, 2019, and June 1, 2020, to December 1, 2020). Patients were excluded if they had been previously enrolled in telehealth DM management or if they were not receiving insulin before June 1, 2019. Patients not receiving insulin before the pandemic were excluded to avoid potential confounding created if administration education was delivered only via telehealth.

Evaluation of the primary outcome was conducted by defining change in average HbA1c as maintained, improved, or worsened. These categories were established as follows: a 0%–1% change in average HbA1c considered “maintained” DM control, > 1% increase in average HbA1c defined as “worsened” control, and > 1% decrease in average HbA1c considered “improved” control. The 1% margins were defined by taking into consideration both potential HbA1c laboratory margin of error and clinically insignificant change in HbA1c, which is defined in the literature as ≤ 0.5%.[25,26] The VA and Department of Defense clinical practice guidelines reference that laboratory margin of error related to HbA1c readings may contain up to a 0.5% difference, which is considered an insignificant difference for margin of error.[27] Ultimately, allowing for a 1% discrepancy in HbA1c change took into account both the potential laboratory error (0.5%) and any insignificant change in HbA1c (≤ 0.5%).

Patients included in the primary outcome were subsequently reviewed for the defined secondary outcomes. Data pulled directly from the VA electronic medical record identified the following: age, residential zip code, diabetes diagnosis code, total number of face-to-face CPP visits between June 1, 2019, and December 1, 2019, total number of telephone CPP visits between June 1, 2019, and December 1, 2020, and December 1, 2019, to December 1, 2020, total number of synchronous audio-video CPP visits between June 1, 2020, and December 1, 2020, average HbA1c during each time frame (June 1, 2019, to December 1, 2019, and June 1, 2020, to December 1, 2020), race, ethnicity, and metformin SA or immediate release (IR) prescriptions filled between June 1, 2019, and June 1, 2020, to December 1, 2019, and June 1 to December 1, 2020. Distance traveled to VA facility was determined via Google Maps evaluation of patients’ residential zip code and VA facility zip code. Rurality was determined by assessing the U.S. Department of Housing and Urban Development area code of each veteran’s residential zip code. All results were evaluated using descriptive analysis.

Results

A total of 522 patients met the inclusion criteria. Background and demographic data are presented in Table 1. Most patients were between the ages of 65–74 years, with approximately 79% of patients categorized as older. Most patients identified as white (n = 469, 89.8%) and non-Hispanic or Latino (98.9%); this was consistent with the distribution of race and ethnicity among WNCVAHCS veterans. The distribution of type 1 and type 2 DM diagnoses was as expected for the patient population with a mere 16 patients (3%) who had type 1 DM. Before the implementation of telehealth visits, > 52% of patients were traveling greater than 50 miles round trip to receive face-to-face DM care. Most patients included in this analysis (76.6%) were traveling from rural locations before they were quickly converted to telehealth visits.

Results showed 72% of patients maintained DM control when transitioned to telehealth management during the COVID-19 pandemic (Table 2). An additional 12.2% of patients saw an improvement in HbA1c, whereas 15.7% experienced a > 1% increase in HbA1c. The average number of face-to-face CPP visits during the 6-month time frame in 2019 was similar to the average number of telehealth visits during the 6 months in 2020 (2.34 vs. 2.12, respectively). Further evaluation of the telehealth visits between June 1, 2020, and December 1, 2020, demonstrated a vast majority of telehealth visits were conducted via telephone compared with synchronous audio-video modalities (1.91 vs. 0.22, respectively). A small portion of patients were receiving metformin SA between June 1, 2019, and December 1, 2019 (n = 82, 15.7%). Twenty-five of the 82 patients previously receiving metformin SA were successfully...
 switched to metformin IR following the extensive drug recalls during the same time they were converted to telehealth care (June 1, 2020, to December 1, 2020). As a result of the facility-wide decision to stop all metformin SA use, a total of 57 patients (10.9%) were taken off metformin entirely between June 1, 2020, and December 1, 2020. The loss of metformin SA was evenly distributed among primary outcome groups and did not seem to affect the results.

Discussion

The results of the primary objective were consistent with the original project hypothesis that most patients would maintain HbA1c control when converted to telehealth care. Based on no change in CPP clinic availability between the 2 time frames evaluated, it was expected that patients would maintain a similar quantity of follow-up visits during each 6-month time frame. Given the small portion of patients who required metformin discontinuation when visits were quickly switched to telehealth, the national drug recalls did not extensively affect type 2 DM care during that time.

Strengths of this project include a balanced population sample among the evaluation groups for the primary outcome, which was indicative of the general population at the VA facility. The project was a cost-effective design: conducted as a quality assurance retrospective review that required no additional funding. The inclusion of potential confounders, including metformin SA drug recalls, was an additional strength of this project. Including drug recalls of metformin SA was particularly important considering the 1%-1.5% average HbA1c reduction that metformin can achieve.20 Considering rurality and travel distance to VA clinic was important given the typically frequent follow-up visits for DM management and unique location of the facility in rural Western North Carolina. This highlights the potential time and cost savings for veterans requiring transportation assistance or time off work to travel to and from clinic appointments.

The project investigators recognize the potential limitations of this project and results evaluation. The methods used to analyze the results were descriptive in nature, and the project was unable to be powered for the primary end point based on consultation with a statistician. Results were not able to be further analyzed to distinguish the impact of telephone versus video visits on glycemic control owing to the minimal number of video visits conducted during this time frame. Since the first year of the pandemic, more patients have gained access to complete video visits, both with the assistance of VA-issued tablet devices and additional technology education and support from VA staff. The limitation of providing DM care and education via audio-only visits is noted and taken into consideration by excluding patients who had not received insulin administration education before the switch to telehealth.

In addition, the inability to quantify many other potential confounders during the COVID-19 pandemic may have affected results. Many patients living in rural settings experienced the following inequities even before the COVID-19 pandemic with lack of nearby grocery stores containing nutritious, healthy, fresh foods; medical centers and health care clinics; and fitness centers and limited employment opportunities. These confounders were likely further affected during the COVID-19 pandemic by food shortages, closing or limited access to gymnasium or other physical recreational facilities, lack of accurate evaluation of weight gain or loss during stay-at-home ordinances, and the psychological impact of the pandemic on mental health wellbeing. Although the lack of evaluation for these factors may limit the results analysis, we feel the results nonetheless represent a strong indication toward the benefit of effectively managed DM provided by CPPs via telehealth. Most noteworthy is the large majority of rural veterans, previously traveling extensive distances to receive timely DM follow-up care at WNCVAHCS, who maintained HbA1c after successfully converting to telehealth care.

Conclusion

The rapidly implemented telehealth management of DM provided by CPPs resulted in maintained or improved HbA1c control in 84.2% of patients. This project included a large majority of rural patients (76%) who were reached because of CPP-provided telehealth care. We recognize that many of these rural veterans face additional challenges to maintain glycemic control including minimal access to nearby nutritious food

Status of metformin prescribing	Total	%
Receiving metformin SA (June 1, 2019, to December 1, 2019)	82	15.7
Switched to metformin IR (June 1, 2020, to December 1, 2020)	25	4.8
Stopped metformin (June 1, 2020, to December 1, 2020)	57	10.9

Abbreviations used: CPP, clinical pharmacist practitioner; HbA1c, hemoglobin A1c; IR, immediate release; SA, sustained action.

Table 2
Primary and secondary outcomes (N = 522)
options, recreational facilities, employment opportunities, and medical centers. This project provides evidence to support the continued use of telehealth to reach a greater range of rural patients to effectively manage DM.

References

1. VHA telehealth services. Clinic Based Telehealth Operations Manual: Clinical Video Telehealth Store-and-Forward Telehealth. Department of Veterans Affairs Patient Care Services; July 2014.
2. U.S. Department of Veterans Affairs. Spotlight on telehealth. Available at: https://www.hsrdr.research.va.gov/news/article/telehealth-0720.cfm#:--text = VA%20documented%20the%20first%20instance%20of%20% 209%E2%80%939%20telehealth%E2%80%9D%20in%3A201.7%20million% 20instances%20of%20telehealth%20to%20care%20to. Accessed September 19, 2022.
3. AllOnGeorgia VA. video connect visits increase 1000% during COVID-19 pandemic. Available at: https://allongeorgia.com/georgia-health/va-video-connect-visits-increase-1000-during-covid-19-pandemic. Accessed September 19, 2022.
4. Koonin LM, Hoots B, Tsang CA, et al. Trends in the use of telehealth during the emergence of the COVID-19 pandemic – United States, January-March 2020 [published correction appears in MMWR Morb Mortal Wkly Rep. 2020;69(45):1711]. MMWR Morb Mortal Wkly Rep. 2020;69(43):1595–1599.
5. Medicaid.gov. Telemicine. Available at: https://www.medicaid.gov/medicaidbenefits/telemedicine/index.html. Accessed September 19, 2022.
6. Centers for Medicare and Medicaid Services. COVID-19 emergency declaration blanket waivers for health care providers. Available at: https://www.cms.gov/files/document/summary-covid-19-emergency-declaration-waivers.pdf. Accessed September 19, 2022.
7. Marcolino MS, Maia JX, Alkmim MB, Boersma E, Ribeiro AL. Telemedicine application in the care of diabetes patients: systematic review and meta-analysis. PloS One. 2013;8(11):e79246.
8. Jeong JY, Jeon JH, Bae KH, et al. Smart care based on telemonitoring and telemedicine for type 2 diabetes care: multi-center randomized controlled trial. Telemed J E Health. 2018;24(8):604–613.
9. U.S. Department of Agriculture. Rural classifications: overview. Available at: https://www.ers.usda.gov/topics/rural-economy-population/ruralclassifications/. Accessed September 19, 2022.
10. Nicolucci A, Cerone S, Chiariatti A, Muscas F, Gensini G. A randomized controlled trial on home telemonitoring for the management of metabolic and cardiovascular risk in patients with type 2 diabetes. Diabetes Technol Ther. 2015;17(8):563–570.
11. Warren R, Carlisle K, Mihala G, Scuffham PA. Effects of telemonitoring on glycaemic control and healthcare costs in type 2 diabetes: a randomised controlled trial. J Telemed Telecare. 2018;24(9):586–595.
12. Egede LE, Williams JS, Vornonza DC, Knapp RG, Fernandes JK. Randomized controlled trial of technology-assisted case management in low income adults with type 2 diabetes. Diabetes Technol Ther. 2017;19(8):476–482.
13. Day SC, Day G, Keller M, et al. Personalized implementation of video telehealth for rural veterans (PIVOT-R). Mhealth. 2021;7:24.
14. Shura RD, Bready TW, Tupper LA. Telehealth in response to the COVID-19 pandemic in rural veteran and military beneficiaries. J Rural Health. 2021;37(1):200–204.
15. Cheng MKW, Allison TA, McStein BW, Cattle CJ, Lo DT. The adoption of video visits during the COVID-19 pandemic by VA home based primary care. J Am Geriatr Soc. 2021;69(2):318–320.
16. Pekmezaris R, Kozikowski A, Pacarelli B, et al. A telehealth-delivered pulmonary rehabilitation intervention in underserved Hispanic and African American patients with chronic obstructive pulmonary disease: a community-based participatory research approach. JMIR Form Res. 2020;4(1):e13197.
17. Greer N, Bolduc J, Geurink J, et al. Pharmacist-led chronic disease management: a systematic review of effectiveness and harms compared with usual care. Ann Intern Med. 2016;165(1):30–40.
18. Veterans Health Administration. VA Handbook 5005/55. II. Dept of Veterans Affairs. 2012, 15–14, Appendix G15.
19. Veterans Health Administration. VHA Handbook 1108.11. Clinical pharmacy services. Dept Vet Aff. 2017. 10-1.
20. Sullivan J, Jett BP, Gradick M, Zuber J. Effect of clinical pharmacist intervention on hemoglobin A1c reduction in veteran patients with type 2 diabetes in a rural setting. Ann Pharmacother. 2016;50(12):1023–1027.
21. Ourth HL, Hur K, Morreale AP, Cunningham F, Thakkar B, Aspinall S. Comparison of clinical pharmacy specialists and usual care in outpatient management of hyperglycemia in Veterans Affairs Medical Centers. Am J Health Syst Pharm. 2019;76(1):26–33.
22. Ahn DT. The COVID-19 pandemic: a “tech”-tonic shift toward virtual diabetes care. J Diabetes Sci Technol. 2020;14(4):708–709.
23. Venkatesh N, Paldus B, Lee MH, Maclaas BJ, Jenkins AJ, O’Neal DN. COVID-19, type 1 diabetes clinical practice, research, and remote medical care: a view from the land down-under. J Diabetes Sci Technol. 2020;14(4):803–804.
24. Fantz CR. Rivers M. COVID-19 awakens a new focus on surge capacity blood glucose testing and the critical role of telehealth in self-management. J Diabetes Sci Technol. 2020;14(4):733–734.
25. Lisi DM. Applying recent A1C recommendations in clinical practice. US Pharm. 2018;43(10):15–22. Available at: https://www.uspharmacist.com/article/applying-recent-a1c-recommendations-in-clinical-practice. Accessed September 23, 2022.
26. Little RR. Rohlffing CL. The long and winding road to optimal HbA1c measurement. Clin Chim Acta. 2013;418:63–71.
27. Version 5.0. The management of type 2 diabetes mellitus in primary care work group. VA/DoD Clinical Practice Guideline for the Management of Type 2 Diabetes Mellitus in Primary Care. Department of Veterans Affairs, Department of Defense; 2017.

Shekinah G. Baum, PharmD, Veterans Integrative Pain Management Clinical Pharmacist Practitioner, Western North Carolina Veterans Affairs Health Care System, Asheville, NC

Lindsay M. Goan, PharmD, BCACP, Cedes, Patient Aligned Care Team Clinical Pharmacist Practitioner, Western North Carolina Veterans Affairs Health Care System, Asheville, NC

Angela K. Porter, PharmD, BCACP, Cedes, Associate Chief of Clinical Pharmacy Services, Western North Carolina Veterans Affairs Health Care System, Asheville, NC