Economics of growing kokum (Garcinia indica Choisy) seedling on different potting media

MS Gawankar, SV Juvekar, DC Rajput and BR Salvi

DOI: https://doi.org/10.22271/chemi.2020.v8.i1af.8580

Abstract

Kokum (Garcinia indica Choisy) is commonly known as Kokum butter tree and underexploited tree spices mostly found in Konkan region of Maharashtra, Goa, Karnataka, Kerala and Surat district of Gujarat on the West Coast of India (Haldankar et al., 2012 and Braganza et al., 2012) [6, 2]. The seeds (Kernels) are rich source of oil known as kokum butter, which is in solid form at room temperature Availability of strong and vigorous seedling as a rootstock plays vital role in the success of nursery programme. With a view to hasten the growth of seedling in order to get strong and vigorous seedling as rootstock at early stage of growth an experiment was undertaken at College of Horticulture, Dapoli, Dist. Ratnagiri 415 712 (M.S.) during the year 2018 to find out most effective potting media for seedling growth of Kokum.

The experiment was conducted in Randomized Block Design with six treatments and four replications. The treatment comprises T1: Soil + FYM (3:1) with 1” Cocopeat at top, T2: Soil + Vermicompost (3:1) with 1” Cocopeat at top, T3: Soil + FYM + Vermicompost (2:1:1) with 1” Cocopeat at top. T4: Soil + FYM + Rice husk (1:1:1) with 1” Cocopeat at top. T5: Soil + FYM + Vermicompost + Cocopeat (1:1:1) and T6: Soil + FYM (1:1). Results revealed that treatment T5 i.e. Soil + FYM at 1:1 proportion recorded maximum seedling height (48.60 cm), more number of leaves (39.83), highest leaf length (20.11 cm), leaf width (1.93 cm), leaf area (40.61 cm²) and the highest AGR (0.094 cm/day) and RGR (0.0024 cm/cm/day) at 360 days. Similarly, media containing Soil + FYM at 1:1 proportion recorded highest seedling survival percentage (97.50%) and highest percentage of graftable seedlings (83.25%) at 360 DAB and resulted in generating higher gross income (Rs. 3900), maximum net returns (Rs. 467.61) with highest B: C ratio (1.13) and seedling grown on this media were light in weight and easy to transport.

Keywords: Media, growth, survival and graftable seedlings

Introduction

Kokum (Garcinia indica choisy) is underexploited dioecious tree condiment belongs to family Guttiferae. It is commonly known as Kokum butter tree in English and vernacular names are kokum, ratamba, birand, amsol (Braganza et al., 2012) [2]. Kokum is commonly known as Kokum butter tree in English and other vernacular names are kokum, ratamba, birand, amsol (Konkani and Marathi) brindon (Portuguese in Goa), murugalu (Kannada) and punarpuli (Malayalam) (Braganza et al., 2012) [2]

Kokum has got multifarious uses and therefore, finds an inevitable place in the lifestyle of local population. The fruit juice is used for preparation of syrup, squash, RTS, agal (salted juice) etc. The dried rind is used as a souring agent in Goan cuisine. The seeds are rich source of oil known as kokum butter, which is in solid form at room temperature. It is nutritive and used for smoothening, softening etc. It is also used for cosmetic, confectionary and culinary purposes.

As the growth of kokum seedling at nursery establishment is very slow which needs to hasten to get vigorous rootstock for grafting at early stage of growth. Soil + FYM (3:1) is a basic media used for nursery production. However, its requirement in nursery programme is very huge and becoming scare with time. Different growing media other than soil like Cocopeat, Rice husk, FYM, Vermicompost etc. are light in weight and also have good porous structure which can be used as component along with soil. Very little work on economic importance of different media on growth of underexploited fruit trees has been done with this view; present investigation to find out most economic potting media for seedling growth of Kokum was carried out.
Material & Methods

The experiment was conducted at College of Horticulture, under Dr. Balasheb Sawant Konkon Krishi Vidyapeeth, Dapoli, Dist. Ratnagiri 415 712 (MS.) during the year 2018 as a part of M. Sc (Hort.) degree programme. The experiment was laid out in Randomized Block Design with six treatments namely T₁: Soil + FYM (3:1) with 1" Cocopeat at top, T₂: Soil + Vermicompost (3:1) with 1" Cocopeat at top, T₃: Soil + FYM + Vermicompost (2:1:1) with 1" Cocopeat at top, T₄: Soil + FYM + Rice husk (1:1:1) with 1" Cocopeat at top, T₅: Soil + FYM + Vermicompost + Cocopeat (1:1:1:1) and T₆: Soil + FYM (1:1) and treatments were replicated four times. Randomly selected six-month-old kokum seedlings uniform in growth grown in polybags of size 6″ x 8″ were transferred in polythene bags of 9″ x 11″ size and used for the experimental purpose. A group of 100 seedlings was formed a unit. Average leaf length (cm), average leaf width (cm) and leaf area (cm²) were measured with the help of Portable leaf area meter (Licor, company. USA.). Absolute growth rate (cm/day) AGR for increase in plant height was calculated by using formula given by Radford (1967) \[^{[13]}\] and expressed as height in cm/day.

\[
AGR = \frac{(H_2-H_1)}{(t_2-t_1)}
\]

Where, H₂ and H₁ represent height per plant and t₂ and t₁ time intervals between two observations, respectively. Relative growth rate (cm/cm/day) is the rate of increase in height (cm) per time and expressed as cm/cm/day. RGR was calculated by the using formula given by Briggs *et al.* (1920) \[^{[3]}\]

\[
RGR = \frac{(\log_e H_2 - \log_e H_1)}{(t_2-t_1)}
\]

Where, H₂ and H₁ represent the plant height per plant at t₂ and t₁ times, respectively. Statistical analysis of the data was carried out by following the standard method of analysis of variance as given by Panse and Sukhatme (1985) \[^{[10]}\]. Graphs and plates have been used to project the important results.

Result & Discussion

Data pertaining to height of seedling, number of leaves, number of shoots and leaf characters are presented in Table 1 and depicted with Figure 1.
Effect of growing media on seedling height

Data presented in Table 1 revealed that at 360 DAB maximum height (48.60 cm) was recorded in T6 (Soil + FYM 1:1) and was superior over the rest of the treatments. Treatment T4 (40.03) was at par with T3 (43.13) (Soil + FYM + Vermicompost + Cocopeat 1:1:1:1). The minimum height (22.95 cm) was observed in T1 (Soil + FYM 3:1 with 1” Cocopeat at top). It was observed that treatment T6 (Soil + FYM 1:1) was found to be superior for height of kokum seedling. This may be due to the role of FYM in increasing aeration and water holding capacity of soil, availability of essential nutrients for plant growth and also improve soil physical, chemical and biological properties (Ramteke et al., 2016) [14]. Similar findings were reported by Parasana et al., (2013) for mango in growing media containing Soil + Sand + FYM (2: 1:1), Panchal et al., (2014) [8] for khirni seedling in Soil + Cocopeat + FYM (1:1:1).

Treatments	Height (cm)	Number of leaves	Number of shoots	Ave. leaf length (cm)	Ave. leaf width (cm)	Leaf area (cm²)
T1: Soil + FYM (3:1) with 1” Cocopeat at top	22.95	23.40	0.18	13.22	1.09	15.73
T2: Soil + Vermicompost (3:1) with 1” Cocopeat at top	31.98	25.58	0.70	13.65	1.11	15.83
T3: Soil + FYM + Vermicompost (2:1:1) with 1” Cocopeat at top	30.56	25.38	0.65	13.53	1.13	15.81
T4: Soil + FYM + Rice husk (1:1:1) with 1” Cocopeat at top	40.03	31.03	1.60	17.25	1.61	31.27
T5: Soil + FYM + Vermicompost + Cocopeat (1:1:1:1)	43.13	36.73	2.98	19.38	1.81	37.56
T6: Soil + FYM (1:1)	48.60	39.83	2.65	20.11	1.93	40.61

Effect of different growing media on growth of kokum seedlings at 360 days after bagging (DAB)

Table 1: Effect of different growing media on growth of kokum seedlings at 360 days after bagging (DAB)

SEm ±
3.73 | 4.10 | 0.77 | 2.44 | 0.23 | 7.69

Effect of growing media on leaf length

At 360 DAB the treatment T6 recorded the highest leaf length (20.11 cm) in media Soil + FYM 1:1 and was at par with T3 (19.38 cm). The lowest leaf length (13.22 cm) was recorded in treatment T1 (Soil + FYM (3:1) with 1” Cocopeat at top) however it was at par with T3 (13.53 cm) and T2 (13.65 cm). Thus, the present investigation showed that the leaf length was influenced by media. It was maximum in treatment T6 (Soil + FYM 1:1). The results are in accordance with the findings of Gawankar (2019) [4] in jackfruit.

Effect of growing media on leaf width

At 360 DAB the highest average leaf width (1.93 cm) was recorded in treatment T6 (Soil + FYM 1:1) which was at par with T3 (1.81 cm). The lowest average leaf width (1.09 cm) was observed in treatment T1 (Soil + FYM (3:1) with 1” Cocopeat at top) which was at par with T2 (1.11 cm) and T1 (1.61 cm). Thus, the study revealed that treatment T6 (Soil + FYM 1:1) found to be superior for average leaf width of kokum seedling.

Effect of growing media on leaf area

At 360 DAB the highest leaf area (40.61 cm²) was recorded in treatment T6 (Soil + FYM 1:1) which was at par with T3 (37.56 cm²). While the lowest leaf area (15.73 cm²) was observed in treatment T1 (Soil + FYM (3:1) with 1” Cocopeat at top) which was at par with T3 (15.81 cm²) and T2 (15.83 cm²).

The study revealed that the leaf area of kokum was influenced by media and was maximum in treatment T6 (Soil + FYM 1:1). The availability of nutrients in growing substrate greatly affects the size of leaves. The dimension of leaf namely leaf length, leaf width and leaf area are deciding the opportunity to capture solar radiation which is the main determinant of photosynthesis and overall growth of seedling.

In current investigation maximum leaf length, leaf width and leaf area were noticed under Soil + FYM 1:1 proportion. This could be due to properties of media namely pH value, EC value and water holding capacity favorable for emergence and expansion of leaves. Petar-Onoh et al., (2014) [11] have also reported that the standard nursery soil is appropriate growth media for stimulation of emergence and expansion of leaves in African nutmeg. Similar findings were reported by Bhwardiag (2014) [1] in papaya.

Effect of growing media on absolute growth rate (AGR)

Data pertaining to the effect of different growing media on absolute growth rate (cm/day) are presented in Table 2. At 0-180 DAB the highest AGR (0.094 cm/day) recorded in treatment T6 and the lowest AGR (0.045 cm/day) was

"2117"
observed in T1 (Soil + FYM (3:1) with 1" Cocopeat at top). At 180-360 DAB the highest AGR (0.140 cm/day) was observed in treatment T6 (Soil + FYM 1:1) and lowest AGR (0.052 cm/day) was in T1 (Soil + FYM (3:1) with 1" Cocopeat at top).

Effect of growing media on relative growth rate (AGR)

AGR is an index of efficiency of the plant to grow in contest of the photosynthesis of the crop per unit area. It measures the efficiency of the plant to grow per unit area per unit time. It is the growth rate relative to previous size. It is also called as exponential growth rate which is a quantification of speed of plant growth.

Data regarding effect of different growing media on relative growth rate (cm/cm/day) are presented in Table 2. At 360 DAB the highest RGR (0.0024 cm/cm/day) was observed in treatment T1 (Soil + FYM 3:1) and the lowest RGR (0.0018 cm/cm/day) was observed in T1 (Soil + FYM (3:1) with 1" Cocopeat at top).

Study revealed that the treatment T6 (Soil + FYM 1:1) recorded the maximum RGR of kokum seedling. This may be due to the fact that FYM would have increased aeration and water holding capacity in soil, availability of essential nutrients for plant growth and conversions of unavailable nutrients to available forms through microbial activity. Similar results were reported by Ramteke et al., (2016) [14] for papaya seedling in soil + Sand + Cocopeat and vermicompost in 1:1:1 proportion.

Effect of growing media on seedling survival percentage

Data presented in Table 3 indicated that the highest survival of seedlings (97.50%) was also recorded in treatment T6 (Soil + FYM 1:1) which was at par with T3 (97.00%) and T5 (95.00%). Significantly the lowest survival of seedling (91.50%) was recorded in treatment T1 (Soil + FYM 3:1) with 1" Cocopeat at top and was at par with treatment T2 (93.25%) and T3 (93.50%). In present investigation treatment T6 i.e. media having Soil + FYM at 1:1 reported maximum survival percentage of kokum seedling indicating effectiveness of FYM in the media which was also been reported by Qyom (2011) and Gholap and Polara (2015) [5] in mango.

Effect of different growing media on graftable size seedlings

Obtaining healthy and vigorous seedling which is further utilized for grafting purpose is the important aspect for any nursery programme. The data pertaining to percentage of graftable size seedlings as influenced by different media presented in Table 3 revealed that significantly the highest percentage of graftable seedlings was obtained in the treatment T6 (83.25%) i.e. in media Soil + FYM at 1:1 proportion and was at par with T4 (81.75%), T2 and T3 (71.75%) and T5 (71.00%). Significantly lowest percentage of graftable seedlings was obtained in T1 (45.75%) where Soil + FYM at 3:1 proportion with 1" Cocopeat at top was the potting media. Study revealed that kokum seedlings rose in Soil + FYM at 1:1 proportion produced 83.25 percent graftable seedlings at earliest of 360 days after bagging. Thus, media having Soil + FYM at 1:1 proportion found effective in enhancing growth of seedling for obtaining graftable size seedlings. This may be due to the media containing Soil + FYM might have accredited nutritional status in the media which enhanced photosynthetic activity resulted in more plant stored material, thereby exhibited favourable effect on seedling growth (Gholap and Polara 2015) [5].
Cost of production of Kokum seedlings on different potting media

The data on gross income, total cost, net returns, benefit to cost ratio (B: C) and weight of seedling at a time of sale as influenced by different growing media are presented in Table 3.

Cost of producing 100 seedlings on different media indicated that total cost on production of seedling was the highest in treatment T3 (Rs. 4565.77) which is due to more proportion and expenditure on soil. Gross income generated was the highest in treatment T0 (Rs. 3900) and minimum in treatment T1 (Rs.3660). Net returns (Rs. 467.61) and B: C ratio (1.13) was the highest in treatment T6. This may be due to highest survival of seedling found in this treatment.

Thus, treatment T6 (Soil + FYM (1:1)) was found superior and resulted in generating higher gross income (Rs. 3900), maximum net returns (Rs. 467.61) with highest B: C ratio (1.13). The weight of bag was also less in this treatment (1.70 kg/bag).

Conclusion

In present study growing media having Soil + FYM at 1:1 proportion was found better for increasing seedling height, number of leaves, leaf area, survival percentage of seedling after transferring in bigger size polybag and getting more percentage of graftable seedlings at early stage of growth. Thus, it is concluded that use of Soil + FYM of 1:1 proportion is the best medium for raising seedlings.

References

1. Bhardwaj RL. Effect of growing media on seed germination and seedling growth of papaya cv. ‘Red lady’. African Journal of Plant Science. 2014; 8(4):178-184.
2. Braganza Miguel, Ajit Shirodkar, Jayarama Bhat D, Krishnan S. Resource Book on Kokum, Western Ghats Kokum Foundation, Panaji – Goa, India, 2012.
3. Briggs GE, Kidd F, West C. A quantitative analysis of crop growth. Ann. Appl. Biol. 1920; 7:202-203.
4. Gawankar MS. Studies on seed storage methods for seed viability and effect of growing media on softwood grafting in jackfruit (Artocarpus heterophyllus Lam.) A Ph.D. (Agri.) thesis submitted to Dr. B. S. Konkan Krishi Vidyapeeth, Dapoli, 2019.
5. Gholap SS, Polara ND. Effect of growing media and storage of stone on the success and survival of soft wood grafting in mango (Manifera indica L.). The American journal of science and medical research. 2015; 1(1):2377-6196.
6. Haldankar PM, Pawar CD, Kshirsagar PJ, Kulkarni MM. Present Status and future thrust areas in production technology of Kokum (Garcinia indica Choisy), Resource Book on Kokum, Western Ghats Kokum Foundation, Panaji – Goa, India, 2012.
7. Khot AA. Effect of different potting media on success and growth of Bullock’s Heart (Annona reticulata L.), M.Sc. (Agri.) thesis submitted to Dr. B. S. Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, 2017.
8. Panchal GP, Parasana JS, Patel SR, Patel MV. Effect of different growing media and levels of Iba on growth and development of Khirni (Manilkara hexandra Roxb) seedlings Cv. Local. Global Journal of Bioscience and Biotechnology. 2014; 3(4):379-383.
9. Parasana JS, Ray NR, Sarodiya BN, Patel KA, Panchal, GP. Effect of mixture of growing media on germination and seedlings growth of different mango (Mangifera indica L.) cultivars under net house conditions, Asian J. Hort. 2012; 7(2):409-411.
10. Panse VG, Sukhatme PV. Statistical method for agricultural workers. Indian Council of agricultural research New Delhi, fourth edition, 1985.
11. Peter-Onoh CA, Obiefunja JC, Ngwuta AA, Onoh PA, Ibeawuchi II, Ekwugha EU. et al Efficacy of five different growth media in seedling emergence and juvenile phenology of Monodora myristica (African nutmeg, Ehuru) in the nursery. Journal of Agricultural and Veterinary Science. 2014; 7(5):60-63.
12. Qayom A. Studies on the effect of media composition on seed germination, growth and its effect on grafting in mango (Mangifera indica L.). M.Sc. (Horti.) thesis submitted to the University of Agricultural Sciences, Bangalore, 2011.
13. Radford PJ. Growth analysis formulae, their use and abuse. Crop Sci. 1967; 7:171-175.
14. Ramteke V, Paitihankar DH, Baghel MM, Kurrey VK. Impact of gas and propagation media on growth rate and leaf chlorophyll content of papaya seedlings. Research Journal of Agricultural Sciences. 2016; 7(1):169-171.