Using Soft Polymer Template Engineering of Mesoporous TiO₂ Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency

Qing Lian,* Muhamad Z. Mokhtar, Dongdong Lu, Mingning Zhu, Janet Jacobs, Andrew B. Foster, Andrew G. Thomas, Ben F. Spencer, Shanglin Wu, Chen Liu, Nigel W. Hodson, Benjamin Smith, Abdulaziz Alkaltham, Osama M. Alkhudhari, Trystan Watson, and Brian R. Saunders*

ABSTRACT: The mesoporous (meso)-TiO₂ layer is a key component of high-efficiency perovskite solar cells (PSCs). Herein, pore size controllable meso-TiO₂ layers are prepared using spin coating of commercial TiO₂ nanoparticle (NP) paste with added soft polymer templates (SPT) followed by removal of the SPT at 500 °C. The SPTs consist of swollen crosslinked polymer colloids (microgels, MGs) or a commercial linear polymer (denoted as LIN). The MGs and LIN were comprised of the same polymer, which was poly(N-isopropylacrylamide) (PNIPAm). Large (L-MG) and small (S-MG) MG SPTs were employed to study the effect of the template size. The SPT approach enabled pore size engineering in one deposition step. The SPT/TiO₂ nanoparticle films had pore sizes > 100 nm, whereas the average pore size was 37 nm for the control meso-TiO₂ scaffold. The largest pore sizes were obtained using L-MG. SPT engineering increased the perovskite grain size in the same order as the SPT sizes: LIN < S-MG < L-MG and these grain sizes were larger than those obtained using the control. The power conversion efficiencies (PCEs) of the SPT/TiO₂ devices were ~20% higher than that for the control meso-TiO₂ device and the PCE of the champion S-MG device was 18.8%. The PCE improvement is due to the increased grain size and more effective light harvesting of the SPT devices. The increased grain size was also responsible for the improved stability of the SPT/TiO₂ devices. The SPT method used here is simple, scalable, and versatile and should also apply to other PSCs.

KEYWORDS: perovskite solar cells, template engineering, mesoporous TiO₂, microgel, porosity, grain size

INTRODUCTION

The power conversion efficiency (PCE) of perovskite solar cells (PSC) has increased from 3.8% in 2009¹ to 25.2%,² which is exceptional. Many high-efficiency PSCs use a mesoporous (meso-) TiO₂ layer,¹³−¹⁷ which evolved from dye-sensitized solar cells. The electron transport within the meso-TiO₂ layer has been enhanced by doping Li, Ta, and Nb⁸−¹¹ into the TiO₂ layer. The PCE of PSCs and other solar cells¹² has been increased through pore size engineering of meso-TiO₂.¹³−¹⁵ A seminal study by Hwang et al. used polystyrene (PS) particles as templates to include well-controlled pores within meso-TiO₂ layers for PSCs.¹³ However, the PS particles were hard spheres in the solvent used to deposit the TiO₂ nanoparticles (NPs), which brings into question the important issue of template colloidal stability during film formation. Shao et al. added a linear polymer into TiO₂ paste to increase the pore size of the printed TiO₂ layer for PSCs.¹⁴ Their polymer system was not particulate and should have dissolved well in the solvent used to deposit the TiO₂ NPs. Indeed, their PCE values were relatively high. Their system contained multiple components and home-made TiO₂ nanoparticles (NPs), which may render adoption of that approach challenging. In contrast, we aimed to use a polymer that was in the soft (swollen) state and as many commercial ingredients as possible to provide a simple and versatile templating method for improving the control of meso-TiO₂ pore size using pore size engineering. We hypothesized that increasing the meso-TiO₂ pore size would increase perovskite (PVK) grain size and PCE.

Received: February 5, 2020
Accepted: April 2, 2020
Published: April 2, 2020
The regular n–i–p architecture has been widely used for fabricating PSCs and consists of glass/indium tin oxide (ITO) (or fluorine-doped tin oxide, FTO)/electron-transport layer/perovskite layer/hole-transport layer/metal electrode. Compared with a planar architecture, PSCs with a meso-TiO₂ layer generally show a higher efficiency and lower hysteresis. This is because a larger interfacial area between TiO₂ and the perovskite in the mesoporous structure leads to faster electron transport. The extent of infiltration of the perovskite within the meso-TiO₂ layer strongly affects the PCE and this has led researchers to engineer the porosity. Xiao et al. used nanoporous TiO₂ spheres to prepare PSCs. Ramos et al. constructed one-dimensional (1D) TiO₂ nanocolumnar electron-transport layers (ETLs) to give viable PSCs. Chen et al. used three-dimensional (3D) rutile TiO₂ nanodendrite nanoparticles (NPs). However, colloidal stability is essential to achieve well-distributed template particles. What is missing from the literature is a simple method that enables pores greater than 100 nm in the meso-TiO₂ layer to be prepared in one step or only gave modest PCE values. None of these approaches used templating methods that could not be performed in one step or only gave modest PCE values. None of these approaches used templating methods to construct our SPT MG particles. It is the combination of the amide and isopropyl nature of MGs would give a potentially useful additive for pore formation in the meso-TiO₂ layer. Unfortunately, neither PS MGs nor PNFV MGs swell in ethanol (EtOH), the solvent used for TiO₂ paste, which prevented colloidal stability being achieved. However, EtOH is a thermodynamically good solvent for PNIPAm. Therefore, poly(N-isopropylacrylamide) (PNIPAm) was selected to construct our SPT MG particles. It is the combination of the amide and isopropyl groups within PNIPAm that enabled the polymer to swell in EtOH. We stress that this study is the first time that (i) MGs have been used to adjust the pore size of meso-TiO₂ films, and (ii) MG template meso-TiO₂ films have been used to construct PSCs. Furthermore, in contrast to our earlier studies where MGs were used as additives, here the MGs are removed (burnt out) by heating to 500 °C and do not remain in the PSCs. The method used to prepare the SPT/TiO₂ films and perovskite films (SPT/TiO₂/PVK) is depicted in Figure 1. The PCEs of the present devices are 2–3 times higher than those obtained for the earlier PSCs that contained MGs. Figure S1 summarizes the previous PSC studies using MGs as well as the PCEs and confirms the novelty of the present work.

The first aim of this study was to increase the pore size of meso-TiO₂ using one-step deposition. Two MG systems with different sizes (large, L-MG and small, S-MG) and linear PNIPAm (LIN) are used for this purpose (Figure 1). The MGs can be prepared at the multiton scale in principle. We employed commercial TiO₂ paste, which contains EtOH, and synthesized MGs and purchased LIN. The study begins with a

Figure 1. Preparation of soft polymer-templated (SPT)/TiO₂ and SPT/TiO₂/perovskite (PVK) films. The PNIPAm MG particles are crosslinked by mBAAm and swell in the solvent (EtOH, ethanol). LIN (i.e., linear PNIPAm) chains were not crosslinked and are swollen coils in EtOH. These SPTs form pores within the TiO₂ nanoparticle (NP) layer during spin coating and are subsequently removed by high-temperature sintering.
characterization of the MGs and LIN followed by an investigation of SPT/TiO2 NP film morphology. We then prepare SPT/TiO2/PVK films and show that the grain size increased compared to control films. The SPT/TiO2/PVK PSCs are shown to have much higher PCEs (champion PCE of 9.92 %) than the control system. The high PCE of the LIN/TiO2/PVK PSC (17.2 %) demonstrates the versatility of our approach because this system was constructed using commercial materials. The SPT approach should be applicable to other PSCs that employ meso-TiO2 scaffolds.

EXPERIMENTAL SECTION

Materials. Linear poly(N-isopropylacrylamide) (PNIPAm denoted as LIN, average Mn = 85 000 g/mol, Sigma product number 901422), ammonium persulfate (APS, ≥98.0, Sigma), NIPAm (≥99%), N,N'-methylene bis(acrylamide) (mBAAm, 99%, Sigma), potassium persulfate (KPS, 99%, Sigma), methacrylic acid (MAA, Sigma, 98%), sodium dodecyl sulfate (SDS, 98.5%, Sigma), methylammonium bromide (MABr, ≥99.5%, Ossila), methylammonium chloride (MACI), formamidinium iodide (FAI, 98%, Ossila), and PbI2 (99.99% trace metals basis, TCI) were all used as received. N,N-dimethylformamide (DMF, 99.8%, Acros), dimethyl sulfoxide (DMSO, ≥99.7%, Acros), TiO2 paste (18 NRT, 19 wt %, GreatCell Solar), titanium isopropoxide (TIP, 97%, Sigma), spiro-OMeTAD (Spiro, 99%, Sigma), and 4-tert-butylpyrididine (TBP, 96%, Sigma) were all used as received. Bis(trifluoromethane)-sulfonimide lithium salt (Li-TFSI, 99.95%, Sigma), triis(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) tri(bis(trifluoromethane)sulfonimide) (FK209 Co(III) TFSI), acetonitrile (≥99.9%, Acros), 1-butanol (BuOH, anhydrous, 99.8%, Sigma), chlorobenzene (CBZ, 99.8%, Acros), acetone (ACS reagent, ≥99.5%, Fisher Scientific), absolute ethanol (EtOH, ≥99.8%, Fisher Scientific), and 2-propanol (IPA, 99.5%, Acros) were also used as received. All water used was of ultra-high-purity quality.

Synthesis of Small Microgels. The S-MG particles were prepared by precipitation polymerization following a reported method. Briefly, NIPAm (1.50 g, 13.2 mmol), mBAAm (20.6 g, 0.13 mmol), and SDS (40 mg) were added to water (100.0 mL). The solution was degassed with N2 gas for 1 h in a 250 mL glass reactor equipped with a stirrer and the solution was heated to 70 °C. Then, APS (65 mg) dissolved in water (0.30 mL) was quickly added to start particle growth, KPS aqueous solution (5.0 mL, 10 mM) was added to the dispersion and stirring was maintained. The reaction mixture was stirred for 4 h under a nitrogen atmosphere and cooled to room temperature. The dispersion was then dialyzed against EtOH for 6 weeks with regular solvent changes to replace the dispersion medium with EtOH.

Synthesis of Large Microgels. The L-MG particles were prepared by precipitation polymerization based on the work of Zhan et al. Briefly, NIPAm (188 mg, 1.62 mmol), mBAAm (3.0 mg, 0.019 mmol), MAA (162 mg, 0.18 mmol), and SDS (5.4 mg) were dissolved in water (200.0 mL). This mixture was then degassed with N2 for 1 h at 70 °C in a 50 mL glass reactor equipped with a stirrer. To begin particle growth, KPS aqueous solution (5.0 mL, 10 mM) was quickly added. The polymerization was conducted at 70 °C for 7 h under a N2 atmosphere. The aqueous dispersion medium was replaced using five centrifugation (at 1180 g)/resuspension cycles in EtOH.

Mesoporous TiO2 Film Preparation. For the preparation of the control meso-TiO2 film, 18 NRT paste (1.0 g, 19 wt %) was diluted to 9.9 mL with EtOH to give a TiO2 concentration of 19.0 mg/mL. Then, the TAA solution (80 μL) was added to give a concentration of 6.00 mmol. Control TiO2 films were made by dropping a portion of the TiO2 dispersion (80 μL) onto ITO glass and then spin coating at 2000 rpm for 30 s. Finally, the substrate was transferred into a preheated furnace and sintered at 500 °C for 30 min.

Linear PNIPAm/TiO2 Film Preparation. TiO2 NP/LIN dispersion was prepared by mixing LIN powder (21 mg) into TiO2 paste (1.0 g, 19 wt %). Then, TAA (80 μL) and EtOH (9.92 mL) were added. The combined TiO2 NP/LIN/TAA/EtOH dispersion was mixed with the aid of sonication. LIN/TiO2 films were prepared by pipetting the dispersion (80 μL) onto ITO glass followed by spin coating at 2000 rpm for 30 s. The film was sintered as described above.

Microgel/TiO2 Film Preparation. SPT/TiO2 films prepared using S-MG or L-MG followed the same procedure. TiO2 NP/MG dispersion was prepared by mixing MG dispersion (0.20 g/mL, 0.050 mL) into TiO2 paste (1.0 g, 19 wt %). Then, TAA (80 μL) and EtOH (9.87 mL) were added. The combined TiO2 NP/MG/TAA/EtOH dispersion was mixed with the aid of sonication. The spin-coating procedure and sintering conditions used to prepare the MG/TiO2 films were the same as those described above for the LIN/TiO2 film. **Perovskite Film Preparation.** A PbI2 solution (75 μL) containing PbI2 (500 mg) at a concentration of 1.0 mM in a mixed solvent of DMF (950 μL) and DMSO (50 μL) was dropped onto the TiO2 NP films on ITO and then spun at 1500 rpm for 30 s. The substrate was then placed onto a 70 °C hot plate and heated for 1.0 min and cooled to room temperature. Next, 100 μL of the double cation solution FAI (60 mg, 0.349 mM), MABr (60 mg, 0.054 mM), and MACI (60 mg, 0.089 mM) was added to 1.0 mL of the IPA solution and dropped onto the PbI2 films. The substrate was then spun at 2000 rpm for 30 s. The FA(3-x)MAxPbI3 (x, Br, Cl) film was transferred onto a 150 °C hot plate and annealed for 15 min. For XRD studies, PMMA/CBZ solution (10 mg/mL) was spin-coated onto the perovskite film at 4000 rpm for 10 s for encapsulation. The thicknesses of the SPT/TiO2/PVK films prepared using L-MG, S-MG, LIN as SPTs and the control TiO2 were measured (Dektak) to be 355 ± 14, 390 ± 19, 355 ± 9, and 346 ± 16 nm, respectively.

Device Fabrication. ITO glass (Ossila) was patterned using Zn and HCl (4.0 M), then cleaned with water and sonicated using acetone, IPA, and EtOH and washed with water, then dried under a N2 stream, and then treated by UV-ozone plasma for 20 min. The TiO2 blocking layer was deposited onto the cleaned ITO substrate by spin coating TIP solution (70 μL), 5000 rpm for 30 s and then sintered at 450 °C for 45 min. The SPT/TiO2 or meso-TiO2 films were then deposited using the conditions described above. After TiO2 layer deposition, the substrates were transferred to a 2% humidity nitrogen-filled glovebox for the next stages of fabrication. The perovskite layer was prepared via a two-step method, as described above. A Spiro solution in CBZ (90 mg/mL) was mixed with TBP (34 μL), Li-TFSI solution (17 μL of 157 mg/mL in acetonitrile), and FK209 Co(III) TFSI (10 μL of 300 mg/mL in acetonitrile). The Spiro layer was spin-coated at 4000 rpm for 15 s. Finally, an Au counter electrode (80 nm) was deposited by thermal evaporation under high vacuum. A 0.080 cm2 metal mask was used to define the active solar cell area.

Physical Measurements. Dynamic light scattering (DLS) measurements were conducted using a Malvern Zetasizer Nano ZS instrument and provided the z-average diameter (d). Scanning electron microscopy (SEM) was performed using an FEI Magellan 400 XHR FEG-SEM instrument. The TiO2 films were measured using an accelerating voltage of 5 kV. The particle and pore sizes were measured by SEM. At least 100 particles or pores were counted. Perovskite films were measured under a 3 kV accelerating voltage. The cross section of solar cells was prepared via the focused ion beam (FIB) technique using an FEI Quanta 3D FIB/SEM system with multiple current and voltage approaches to minimize spatial sample damage. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images were captured by using FEI Talos F200A ultrahigh brightness SuperX FEG (200 kV). Chemical analysis was performed using SuperX silicon drift detectors in the Talos, and the built-in pole piece of the objective lens enabled high-resolution and high-precision elemental mapping. The thickness of the films was measured using a Dektak XT profilometer. UV–visible spectra were obtained using a Hitachi U-1800 spectrophotometer. PL spectra were measured using a double monochromator FLS980 instrument (Edinburgh Instruments, U.K.). XRD patterns were obtained using a Bruker D8 Advance diffractometer (Cu Kα). TiO2,

www.acsami.org

ACS Applied Materials & Interfaces

ACS Appl. Mater. Interfaces 2020, 12, 18578–18589

https://doi.org/10.1021/acsami.0c02348

ACS App. Mater. Interfaces 2020, 12, 18578–18589
and MGs atomic force microscopy (AFM) images were captured using a Bruker catalyst. Films were scanned using tapping mode. The Si AFM probe was purchased from Nunano. The probe was autotuned by the Nanoscope software; the drive frequency was 388 kHz. The scan rate was 0.25 Hz. Images were processed using the Nanoscope software. Perovskite film images were captured using JPK NanoWizard IV. The scanning rate was 6.5 Hz. Images were processed using the JPKSPM Data Processing software. EQE data were obtained using a Newport QuantX-300 instrument. A Micro-meritics ASAP 2020 sorption analyzer was used to obtain N_2 adsorption/desorption isotherms at 77 K and to measure the Brunauer–Emmett–Teller (BET) surface area. Nitrogen adsorption/desorption isotherms were measured at 77 K using bulk samples heated at 500 °C for 2 h. Helium was used for the free space determination. The pore size distribution was determined using the BJH method. Electrochemical impedance spectroscopy (EIS) measurements were performed using phase-sensitive detection of the current using a lock-in amplifier. An AC voltage of 10 mV was applied, and the frequency swept between 1.0 Hz and 1 MHz. The voltage was supplied using an Agilent 33210A function generator. Ultraviolet photoemission spectroscopy (UPS) was performed using a HIS 13 high intensity VUV source (200 mA emission, Focus GmbH) within an ESCA2SR spectrometer (Scienta Omicron GmbH) using He II (40.5 eV) photons. Thermogravimetric analysis (TGA) was performed in air using a TA Instruments Q800 instrument. The LIN sample was heated in air from room temperature to 490 °C at 5 °C/ min and then from 490 to 510 °C at 0.3 °C/min. Device Measurements. Current−voltage measurements of the PSCs were measured under a class AAA solar simulator (Newport Oriel Sol3A) at AM1.5 and 100 mW/cm² illumination conditions and calibrated against a KG5 filtered silicon reference cell (Newport Oriel 91150-KG5) using a Smart PV and OLED Multiplexor Test Board. The J−V measurements were conducted in ambient air. The devices were measured following 30 s light soaking, with a 0.020 V/s scan rate and 0.1 s settling time unless otherwise stated. Both forward (short circuit to open circuit) and reverse (open circuit to short circuit) sweeps were measured.

RESULTS AND DISCUSSION

Soft Particle-Templated TiO₂ Nanoparticle Film Morphology. We studied three SPT species in this work. Two SPTs were MGs (L-MG and S-MG) and the third was a commercially available linear polymer (LIN). All of the SPTs are composed of PNIPam (Figure 1). PNIPam was selected as the template polymer because it is soluble in EtOH, which is a key solvent used in TiO₂ pastes. PNIPam is a temperature-responsive polymer in water and collapses (i.e., MG particles and LIN coils deswell) after annealing. The MGs increased the pore size within the TiO₂ scaffolds prepared using L-MG (Figure 3A), although a wide range of sizes is evident. The pore size distribution measured from the SEM data (Figure 3) show that relatively large pores are present for the TiO₂ scaffolds prepared using LIN (Figure 3C). The pore size distributions measured from the SEM data (Figure 3) show that larger pores are produced with larger SPTs. TiO₂ films are shown in Figure S3. It is important to note that the SPTs were removed from all of the scaffolds in this study by sintering at 500 °C. This was demonstrated in three ways. First, L-MG microgel dispersion was placed on ITO-coated glass, which was heated at 500 °C on a hot plate. The solvent rapidly evaporated and then the polymer turned black and was completely burnt off within 397 s (See Movie S1 and Figure S4). Second, SEM images of L-MG before and after being heated at 500 °C were measured (See Figure S5). They show that the L-MG particles completely disappeared as a result of the heat treatment. Third, TGA data for LIN (Figure S6) show that ~95% of the mass was lost as a consequence of heating to 500 °C. The discussions that follow concern SPT/TiO₂ and meso-TiO₂ layers annealed at 500 °C for 30 min unless otherwise stated.

SEM images for the MG- and LIN-templated TiO₂ films as well as the control meso-TiO₂ film are shown in Figure 3. Representative pores are highlighted by yellow arrows. While the MGs increased the pore size within the TiO₂ films when a concentration of 5 wt % was used (Figure 3A,B), we found that a LIN concentration of 10 wt % was required to achieve comparably large pores (Figure 3C). The pore size distributions measured from the SEM data (Figure 3) show that relatively large pores are present for the TiO₂ scaffold prepared using L-MG (Figure 3A), although a wide range of sizes is evident. The pore size distribution is relatively narrow for S-MG/TiO₂ (Figure 3B) and LIN/TiO₂ (Figure 3C). The average pore sizes measured for L-MG/TiO₂, S-MG/TiO₂, and LIN/TiO₂ films as well as the meso-TiO₂ film are 112 ± 86, 113 ± 49, 66 ± 33, and 37 ± 12 nm, respectively. This trend is similar to those for the films before annealing (see Figure S3) although the pore sizes had increased by a factor of about two due to annealing. The average pore sizes occupy a gap in the literature for pore size-adjusted TiO₂ films deposited in one step for PSCs. P123 polymer-adjusted meso-TiO₂ had a pore size of 16–34 nm, whereas TiO₂ scaffolds prepared with a pore diameter of ~200 nm were prepared using sacrificial PS particles. The data in Figure 3 show that larger pores are produced with larger SPTs. The final stages of the spin coating of the SPTs from EtOH will necessarily correspond to the collapsed PNIPam state as
Nitrogen adsorption/desorption isotherms were measured for these systems. The minimum sample mass requirements necessitated the use of bulk scaffolds prepared by drop casting rather than spin coating. The pore size distributions appear in Figure S8. The average surface area values and pore sizes were 79–82 m²/g and 21–22 nm, respectively. There was no measurable difference between these values for the different scaffolds. These results do not agree with both the TEM (Figure 3) and AFM (Figures 3 and S7) for the spin-coated scaffolds. This discrepancy is due to (a) the use of bulk samples, which meant that the scaffold formation mechanism lacked the rotational forces and large material loss of spin coating and (b) the relative insensitivity of the BET method to pore sizes larger than ~20 nm.44 It is suggested that SPT/TiO₂ morphology observed (Figure 3) is favored by spin coating. We use the TEM pore sizes for the discussions below.

The ability of light to pass through the SPT/TiO₂ films is important for solar cell applications. Transmittance spectra of the films were measured (Figure S9A) and are similar to those reported elsewhere for TiO₂ films.45 The spectra show that the LIN/TiO₂ film had the lowest average transmittance (71.3%) over the 300–800 nm range (Figure S9B). This is because the LIN/TiO₂ film was thicker than other SPT/TiO₂ films and meso-TiO₂ as discussed above. The S-MG/TiO₂ and L-MG/TiO₂ films had average transmittance values of 76.1 and 77.2%, respectively. These values are only slightly less than that measured for the meso-TiO₂ film of 78.6%.

Perovskite Films Prepared Using SPT/TiO₂ Films. We next prepared perovskite films using the two-step method depicted in Figure 1. SEM images and grain size distributions obtained from the SEM data are shown in Figure 4. Large grains (with many greater than 1 μm) can be seen in the films prepared using each of the SPT/TiO₂ films (Figure 4A–C). In contrast, smaller grains are present for the meso-TiO₂/PVK film (Figure 4D). (Larger area SEM images are shown in Figure S10.) The average grain sizes for the films grown using L-MG/TiO₂, L-MG/TiO₂, LIN/TiO₂, and meso-TiO₂ films are 865 ± 175, 755 ± 215, 660 ± 225, and 570 ± 170 nm, respectively. Hence, the average grain sizes decreased in the order: L-MG/TiO₂/PVK > S-MG/TiO₂/PVK > LIN/TiO₂/PVK > meso-TiO₂/PVK. Importantly, this order follows that of the D_SEM values (Table S1). However, this order does not fully agree with the average pore sizes discussed above because the average pore sizes were not distinguishable for L-MG and S-MG. This result implies that crystals grown from the largest pores within the distribution of pores dominated the final crystal size.

AFM images were obtained for the films and are also shown in Figure 4. (Larger area AFM images and line profiles are shown in Figure S11.) The differences in the crystal size discussed above are confirmed by the AFM data. The RMS roughness values for the films grown using L-MG/TiO₂, S-MG/TiO₂, LIN/TiO₂, and meso-TiO₂ films are 22.1, 25.3, 22.2, and 19.9 nm, respectively, based on line profiles. Hence, the SPT/TiO₂/PVK films have greater roughness than the control meso-TiO₂/PVK film. The RMS roughness values for the underlying SPT/TiO₂ scaffolds were also greater than that for the meso-TiO₂ scaffold (see above). Differences in the initial heights of the TiO₂ scaffold can be expected to be approximately translated to the final PVK films if capping layers recrystallize on the scaffolds.46 In addition, the increased grain size of the SPT/TiO₂/PVK films likely also contributes to their increased roughness.

Figure 3. SEM, pore size distributions, and tapping mode AFM images for SPT/TiO₂ films of (A) L-MG/TiO₂, (B) S-MG/TiO₂, and (C) LIN/TiO₂. The control meso-TiO₂ film is shown in (D). The yellow arrows highlight pores. The red arrows in the distributions show the positions of the D_SEM values for the respective SPT obtained from Figure 2. Scale bars: 200 nm.
The increased grain size for the SPT/TiO₂/PVK films likely originates from less restriction during crystal growth as perovskite crystal domain size can be constrained by the pore size of preformed TiO₂ scaffolds. An increase in the pore size for the meso-TiO₂ layer is known to increase PbI₂ infiltration due to faster and less obstructed mass transport. Fu et al. proposed a dissolution/recrystallization model for two-step deposition wherein supply of PbI₂ from within the scaffold to the surface caused MAPbI₃ crystals to grow in the capping layer. For the present TiO₂ scaffolds, as the pore size of the SPT TiO₂ scaffold increases, the rate of supply of PbI₂ should also increase, which is proposed to increase the rate of crystal growth and hence the PVK grain size. To test this proposal, we prepared a planar PVK film without any scaffold and hence without obstruction for crystal growth. The SEM images also showed many large grains (see Figure S12). The average grain size was 867 ± 438 nm. While the average grain size is indistinguishable from that for the L-MG/TiO₂/PVK film (Figure 4A), the grain size distribution for the planar PVK film is far more polydisperse. This result suggests a beneficial effect of our SPT/TiO₂ approach in delivering films with more uniform grain sizes compared to planar PVK films.

Devices were prepared using the SPT/TiO₂ films and the architecture is depicted in Figure 5A. Data from the champion S-MG/TiO₂ PSC cell are shown in Figure 5B, which had a PCE of 18.8%. The device performance data extracted from the J–V curves are shown in Figure 5C−F and these values are tabulated in Table S2. The highest average V_{oc} was 1.04 V for the S-MG/TiO₂/PVK system (Figure 5C). Furthermore, the V_{oc} values for the SPT/TiO₂-based PSCs were all significantly larger than those for the meso-TiO₂-based PSC. This is
attributed to the increased grain sizes for the SPT/TiO2 systems noted above since \(V_{oc} \) for PSCs is known to increase with the grain size.48 Grain boundaries are well known to contain defects and have a high density of trap states.49 Traps favor nonradiative recombination, which decreases \(V_{oc} \). Hence, because our devices prepared with the SPT/TiO2 films have larger grains, they have fewer traps and higher \(V_{oc} \) values compared to the system prepared using meso-TiO2, which had smaller grains.

The fill factor (FF) and \(J_{sc} \) values are also higher for the devices prepared using SPT/TiO2 films than for the meso-TiO2 films (Figure 5D,E). This result is expected because increases in \(V_{oc} \) are theoretically linked to increases in \(J_{sc} \) (and EQE).51 The devices prepared using S-MG/TiO2 had the greatest reproducibility and highest average PCE of 17.8% (Figure 5F). The average PCE values are clearly higher for the films prepared using SPT/TiO2 compared to that prepared using meso-TiO2 (14.9%). The average PCE values for the S-MG/TiO2/PVK and L-MG/TiO2/PVK (17.4%) devices were close to that of the LIN/TiO2/PVK devices (17.2%). Hence, it can be concluded that using SPT/TiO2 films (either MGs or LIN) gave a similar large increase in PCE (an increase of \(\approx 20\% \)) compared to the control meso-TiO2 system. The variation of \(J \) with time (Figure 5G) and steady-state power output (SPO, Figure 5H) were measured. The SPO values for the SPT/TiO2/PVK devices showed much better stability compared to the control. All of these data augur well for versatility and potential widespread use of our new method as the MGs are easily prepared using a scalable preparation.

Crucially, LIN is commercially available.

Hysteresis is an important topic for PSCs52,53 because it is a source of instability that affects PSC performance. The hysteresis index (HI) for devices prepared using L-MG/TiO2, S-MG/TiO2, LIN/TiO2, and meso-TiO2 was calculated using the normalized difference between the reverse and forward PCE values.54 We investigated the effect of the scan rate on the HI over the range of 0.020–0.20 V/s. The data (Table S3) show that the variations in the HI values with the scan rate were modest and a clear trend was not present for all samples. It follows that there are no large differences in the sweep-rate-induced ion accumulation between the samples over the sweep ranges studied. The average HI values for L-MG/TiO2, S-MG/TiO2, LIN/TiO2, and meso-TiO2 are 5.8, 6.0, 4.4, and 2.4%, respectively (see Figure S13). Hence, the HI increased using SPT/TiO2. However, the HI was relatively low for all cases (\(\leq 6\% \)). Our trend is opposite to that reported by Shao et al.14 Planar PSCs are generally known to have greater HI values than meso-TiO2-based PSCs.52 This is because of less perovskite/electron-transport layer contact for planar devices, which results in slower electron extraction. Fast extraction of electrons is aiding by meso-TiO2 due to the high surface area and this is given low HI values.55 Because the SPT/TiO2 films had larger pores than meso-TiO2 (Figure 3), the perovskite/TiO2 contact area decreased, which would account for the relative increase of HI observed.56 In regard to achieving a balance between PCE and HI, the LIN/TiO2-based device has an optimum balance of improved PCE (average of 17.2%) and low HI (average of 4.4%).

The variation of the normalized PCE for nonencapsulated devices exposed to ambient conditions is shown in Figure S11. The variation of \(V_{oc} \), \(J_{sc} \), and FF appears in Figure S14A–C. The stability of all of the devices decreased at first and then plateaued. The LIN/TiO2 devices maintained \(\approx 70\% \) of their initial PCE after 1870 h (78 days) and had the best stability (Figure S1). The values for S-MG/TiO2 (67%) and L-MG/TiO2 (56%) were higher than those of the control meso-TiO2 system (49%). Moisture-induced degradation begins at grain boundaries and proceeds inward.57 Larger grain sizes provide smaller surface area-to-volume ratios, which slow the rate of moisture degradation.58 We attribute the better stability of the SPT/TiO2 devices to the larger grain sizes compared to the control prepared using meso-TiO2 (as shown in Figure 4).

Investigating Origin of Performance Increase for SPT/TiO2/PVK Devices. An intriguing question is why the devices prepared using the SPT/TiO2 had higher PCEs than those prepared using meso-TiO2. We investigated the structures of the perovskite films using X-ray scattering (Figure S15). The scattering profiles are ascribed to the cubic \(\alpha \)-perovskite phase and are similar to those reported for related perovskites.59,60 There are no clear differences for the perovskite phase. Residual PbI2 is present for the films prepared using S-MG/TiO2 and LIN/TiO2 but mostly absent for the films prepared using L-MG/TiO2 and meso-TiO2. We examined a cross section of an ITO/bl-TiO2/S-MG/TiO2/PVK/Spiro/Au device using HAADF-STEM (see Figure 6A).

![Figure 6](image-url)
contributed to the increased PCE of the SPT/TiO2-based PSCs compared to the control meso-TiO2 system, the grain size differences apparent from SEM (and AFM) are likely the main reason for the PCE improvement.65 EIS measurements were performed for the devices, and the real (Z”) and imaginary (−Z”) components of the impedance are shown in Figure 7D. The data were measured in the dark with a bias of Voc. A single recombination semicircle indicates that only one type of charge transport dominated66 and has also been reported elsewhere.67 We initially used a simple ideal semiconductor equivalent circuit model68 to fit the data (Figure 7D). The parameters Rs, RHF, and CHF are the series resistance, high-frequency resistance, and high-frequency capacitance, respectively. The values from the fits are shown in Table S4. Because the frequencies for the maxima were greater than 300 MHz, the data are associated with the recombination of free carriers.69 RHF increases with the semicircle size and is inversely proportional to the recombination rate.70 The latter was lowest for the meso-TiO2/PVK device, which had the lowest Jsc (Table S2). The electron lifetime (τHF = RHFC HF) was calculated66 (Table S4). The value for meso-TiO2 of 95 μs is close to that reported elsewhere.67 The τHF values for the SPT/TiO2/PVK devices (135–325 μs) are all much higher than those for meso-TiO2/PVK. This is due to the larger grain sizes of the SPT/TiO2/PVK films (Figure 3) because the increased grain size results in less recombination at grain boundaries71 and higher diffusion lengths.72 The fit for LIN/TiO2/PVK is improved by adding an additional RC circuit element72 (Figure S16), and the fitted data are shown in the last row of Table S4. The value for τHF decreases to 265 μs but remains much greater than that for the meso-TiO2/PVK control. The EIS data support the view that the increased grain size is responsible for the higher PCEs of the SPT/TiO2/PVK systems.

Figure S17 shows the UPS valence spectra for the SPT/TiO2/PVK and meso-TiO2/PVK films. The energy difference between the valence band and the Fermi level (Ev) was 0.67 to 0.70 eV for all of the films and was not distinguishable. The spectral features and values are similar to those reported elsewhere for related systems.73,74 The UV–visible spectra (Figure 7A) show that the absorption onset was similar (∼760 nm), which implies that significant bandgap differences between the systems were not present. Hence, the increased porosity for the SPT/TiO2/PVK did not significantly affect Ev or the positions of the valence or conduction band edges for PVK in these systems.

The performance improvement of the SPT/TiO2/PVK devices occurs despite the decreased interfacial contact between PVK and the TiO2 scaffold that resulted from the increased pore size. Hwang et al. noted that improvement in the grain size of their devices dominated a decreased PVK/TiO2 interfacial area and attributed this to a decrease in the number of PVK/interface trap sites.13 The results of this study support the conjecture that an improvement in the PVK grain size can be more important for increasing PCE than a decrease of the PVK/TiO2 area. Following a comment from a reviewer, we conducted a two-probe resistance test for ITO annealed at 500 °C for 30 min. The resistance increased from 75 to 245 Ω due to the annealing treatment. This trend is in agreement with the literature for ITO.75 Because FTO is stable to such annealing,76 it follows that the PCEs reported here could be further increased by replacing ITO with FTO. This will be pursued in future work.

Figure 7. (A) UV–visible and (B) PL spectra for ITO/bl-TiO2/SPT/TiO2/PVK and ITO/bl-TiO2/meso-TiO2/PVK films. The excitation wavelength was 470 nm. (C) EQE spectra for devices. The legend in (B) applies to (A)–(C). (D) Nyquist plots and the equivalent circuit diagram for the devices. Z′ and Z″ are the real and imaginary components of the complex impedance, respectively. Rs, RHF, and CHF are the series resistance, high-frequency resistance, and high-frequency capacitance. An extended model that gives an improved fit to the LIN-based data is shown in Figure S16.

because that film had the largest thickness and roughness (above). The absorbance values for L-MG/TiO2/PVK and LIN/TiO2/PVK films are also greater than those for the meso-TiO2/PVK film. The absorption onsets were all ~785 nm and unaffected by the pore size. PL spectra were also obtained (Figure 7B). Those data show quenching increases in the substrate order: meso-TiO2 < LIN/TiO2 < L-MG/TiO2 < S-MG/TiO2. This result implies more efficient electron transport to the TiO2 scaffold from L-MG/TiO2/PVK and S-MG/TiO2/PVK films compared to LIN/TiO2/PVK and meso-TiO2/PVK. This would be expected from the larger grain sizes for the films (above) since grain boundaries act as an impediment to charge transport.82

We measured the EQE for the devices (Figure 7C). The integrated current densities for the devices prepared using L-MG/TiO2, S-MG/TiO2, LIN/TiO2, and meso-TiO2 devices were 23.4, 23.1, 23.1, and 21.2 mA/cm2, respectively. All of these values are lower than those measured from the J–V curves (Table S2) by an average of 6%. Interestingly, the EQE spectra for the SPT/TiO2/PVK films are very similar and there is a pronounced increase in the EQE for these systems at wavelengths greater than 500 nm compared to that for meso-TiO2/PVK. Ye et al.83 attributed enhancements in EQE at such wavelengths to an optical interference effect caused by TiO2 NP scattering. The pores for the SPT/TiO2 films are substantially larger than those for the control film (Figure 3) and relatively intense light scattering is expected. Furthermore, enhanced light scattering from the increased roughness of the SPT/TiO2/PVK film surfaces (discussed above) is also expected to have increased the EQE through increased light absorption. Indeed, higher absorption for the SPT/TiO2/PVK films was noted above for Figure 7A. Theoretical studies have also predicted increased EQE values for PVK films that scatter more light.84 While increased light scattering appears to have
CONCLUSIONS

In summary, we have investigated the use of three pore size engineering additives to prepare SPT/TiO₂ scaffolds. They were MGs of two different sizes as well as linear PNIPAM. The MGs were prepared using a scaleable method and the LIN is commercially available. All three SPTs gave meso-TiO₂ with an increased pore size, which in turn increased the perovskite grain size. The PSCs for all three systems prepared from SPT/TiO₂ had substantially higher PCE values and stabilities than those of the control prepared with the meso-TiO₂. This improvement was due to a combination of increased perovskite grain size as well as improved charge transfer and light scattering. The study has shown that SPTs can increase the perovskite grain size via the pore size increase of the TiO₂ NP layer. The one-step SPT engineering approach to prepare pore-controlled TiO₂ films using scalable and commercially available polymer additives introduced in this study should apply to other PSCs.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c02248.

Comparison of the present work with previous PSC studies involving MGs, DLS data for MGs and LIN with discussion, video and photographs and SEM of L-MG being burnt on an ITO surface, TGA of LIN being heated to 500 °C, TiO₂ AFM images and line profiles, hysteresis index data, sintered TiO₂ transmittance spectra and average transmittance values, pore size distribution data, large-area SEM images for non-anneled and annealed SPT/TiO₂ as well as SPT/TiO₂/PVK films and a planar PVK film, device stability data, X-ray scattering patterns, electrochemical impedance spectroscopy data, UPS spectra, SPT particle size data, J–V figures of merit data (PDF)

A few drops of L-MG microgel dispersion was placed on ITO-coated glass, which was heated to 500 °C on a hot plate; water quickly evaporated and L-MG turned black and then is completely burnt off after only 397 s; photographs from the video are shown in Figure S4 (Movie S1) (MOV)

AUTHOR INFORMATION

Corresponding Authors

Qing Lian — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom; Email: qing.lian@manchester.ac.uk

Brian R. Saunders — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom; orcid.org/0000-0003-1410-2967; Email: brian.saunders@manchester.ac.uk

Authors

Muhammad Z. Mokhtar — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom

Dongdong Lu — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom

Mingning Zhu — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom

Janet Jacobs — Photon Science Institute, The University of Manchester, Manchester M13 9PL, United Kingdom

Andrew B. Foster — Department of Chemistry, University of Manchester, Manchester M13 9PL, United Kingdom; orcid.org/0000-0001-8222-673X

Andrew G. Thomas — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom; Photon Science Institute and The Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom; orcid.org/0000-0002-1900-6686

Ben F. Spencer — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom; The Henry Royce Institute, The University of Manchester, Manchester M13 9PL, United Kingdom; orcid.org/0000-0002-1453-5327

Shanglin Wu — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom

Chen Liu — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom

Nigel W. Hudson — BioAFM Facility, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Manchester M13 9PT, United Kingdom

Benjamin Smith — SPECIFIC, College of Engineering, Swansea University Bay Campus, Swansea SA1 8EN, United Kingdom

Abdulaziz Alkaltham — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom

Osama M. Alkhudhari — Department of Materials, University of Manchester, Manchester M1 3BB, United Kingdom

Trystan Watson — SPECIFIC, College of Engineering, Swansea University Bay Campus, Swansea SA1 8EN, United Kingdom; orcid.org/0000-0002-8015-1436

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsami.0c02248

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

B.R.S. would like to thank the EPSRC for funding (EP/R020485/1). The authors thank the staff in the EM Core Facility in the Faculty of Biology, Medicine, and Health for their assistance. This work was also supported by the Henry Royce Institute for Advanced Materials, funded through EPSRC grants EP/R00661X/1, EP/P025021/1, and EP/P025498/1. The authors thank Dr. Liang Zhang (University of Manchester) and Damindi Jones (University of Manchester) for assistance with this work.

REFERENCES

(1) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6090–6091.

(2) NREL Best Research-cell Efficiencies, 2020. www.nrel.gov/pv/cell-efficiency.html.

(3) Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Efficient Inorganic–organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors. Nat. Photonics 2013, 7, 486–491.

(4) Pham, H. D.; Jain, S. M.; Li, M.; Manzhos, S.; Feron, K.; Pitchaimuthu, S.; Liu, Z.; Motta, N.; Wang, H.; Durrant, J. R.; Sonar, P. Dopant-free Novel Hole-transporting Materials Based on Quinacridone Dye for High-performance and Humidity-stable Mesoporous Perovskite Solar Cells. J. Mater. Chem. A 2019, 7, 5315–5323.

(5) Bandara, R. M. I.; Jayawardena, K. D. G. I.; Adeyemo, S. O.; Hinder, S. J.; Smith, J. A.; Thirimanne, H. M.; Wong, N. C.; Amin, F.; 18586

ACS Appl. Mater. Interfaces 2020, 12, 18578–18589
(41) Senff, H.; Richtering, W. Temperature Sensitive Microgel Suspensions: Colloidal Phase Behavior and Rheology of Soft Spheres. J. Chem. Phys. 1999, 111, 1705–1711.

(42) Bachan, H.; Brown, A. C.; Clarke, K. C.; Dhada, K. S.; Douglas, A.; Hansen, C. E.; Herman, E.; Hyatt, J. S.; Kodlekere, P.; Meng, Z.; Saxena, S.; Spears, M. W., Jr.; Welsch, N.; Lyon, L. A. Ultrafast, Highly Deformable Microgels. Soft Matter 2015, 11, 2018–2028.

(43) Krebs, F. C. Fabrication and Processing of Polymer Solar Cells: A Review of Painting and Coating Techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.

(44) De Lange, M. F.; Vlugt, T. J. H.; Gascon, J.; Kapteijn, F. Adsorptive Characterization of Porous Solids: Error Analysis Guides the Way. Microporous Mesoporous Mater. 2014, 200, 199–215.

(45) Hong Pan, J.; In Lee, W. Selective Control of Cubic and Hexagonal Mesophases for Titania and Silica Thin Films with Spin-coating. New J. Chem. 2005, 29, 841–846.

(46) Fu, Y.; Meng, F.; Rowley, M. B.; Thompson, B. J.; Shearer, M. J.; Ma, D.; Hamers, R. J.; Wright, J. C.; Jin, S. Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications. J. Am. Chem. Soc. 2015, 137, 5810–5818.

(47) Umeyama, T.; Imahori, H. A Chemical Approach to Perovskite Solar Cells: Control of Electron-transporting Mesoporous TiO2 and Utilization of Nanocarbon Materials. Dalton Trans. 2017, 46, 15615–15627.

(48) Adhyyaka, G. W. P.; Brittan, S.; Ábolínás, H.; Loé, A.; Li, X.; Keelor, J. D.; Luo, Y.; Duevski, T.; Heeren, R. M. A.; Ellis, S. R.; Fenning, D. P.; Garnett, E. C. Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites. Adv. Mater. 2018, 30, No. 1804792.

(49) Yang, S.; Dai, J.; Yu, Z.; Shao, Y.; Zhou, Y.; Xiao, X.; Zeng, X. C.; Huang, J. Tailoring Passivation Molecular Structures for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. J. Am. Chem. Soc. 2019, 141, 5781–5787.

(50) Liu, Z.; Krückemeier, L.; Krogeimera, B.; Klingebiel, B.; Márquez, J. A.; Levenko, S.; Öz, S.; Mathur, S.; Rau, U.; Unold, T.; Kirchhart, T. Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Thin Films. ACS Energy Lett. 2016, 1, 561–565.

(51) Ye, T.; Ma, S.; Jiang, X.; Petrovic, M.; Vijla, C.; Ramakrishna, S.; Wei, L. Electrospayed TiO2 Nanoporous Hemispheres for Enhanced Electron Transport and Device Performance of Formamidinium Based Perovskite Solar Cells. Nanoscale 2017, 9, 412–420.

(52) Abdelraouf, O. A. M.; Allam, N. K. Towards Nanostructured Perovskite Solar Cells with Enhanced Efficiency: Coupled Optical and Electrical Modeling. Sol. Energy 2016, 137, 364–370.

(53) Ameen, E.; Mohajerani, E.; Ghafarkhani, M.; Safari, N.; Alavi, S. A. The Investigation of the Unseen Interrelationship of Grain Size, Ionic Defects, Device Physics and Performance of Perovskite Solar Cells. J. Phys. D: Appl. Phys. 2019, 52, No. 125501.

(54) Bisquert, J.; Mora-Sero, I.; Fabregat-Santos, F. Diffusion–Recombination Impedance Model for Solar Cells with Disorder and Nonlinear Recombination. ChemElectroChem 2014, 1, 289–296.

(55) Bag, M.; Renna, L. A.; Adhikari, R. Y.; Karak, S.; Liu, F.; Lahtii, P. M.; Russell, T. P.; Tuominen, M. T.; Venkataraman, D. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. J. Am. Chem. Soc. 2015, 137, 1310–13137.

(56) Shao, S.; Abdou-Aguye, M.; Sherkar, T. S.; Fang, H.-H.; Adjokate, S.; Brink, G.; Kooi, B. J.; Koster, L. J. A.; Loi, M. A. The Effect of the Microstructure on Trap-Assisted Recombination and Light Soaking Phenomenon in Hybrid Perovskite Solar Cells. Adv. Funct. Mater. 2016, 26, 8094–8102.

(57) Chen, X.; Shirai, Y.; Yanagida, M.; Miyano, K. Effect of Light and Voltage on Electrochemical Impedance Spectroscopy of Perovskite Solar Cells: An Empirical Approach Based on Modified Randles Circuit. J. Phys. Chem. C. 2019, 123, 3968–3978.

(58) Wang, Q.; Chen, B.; Liu, Y.; Deng, Y.; Bai, Y.; Dong, Q.; Huang, J. Scaling behavior of Moisture-induced Grain Degradation in Polycrystalline Hybrid Perovskite Thin Films. Energy Environ. Sci. 2017, 10, S16–S22.
(75) Lin, B.-T.; Chen, Y.-F.; Lin, J.-J.; Wu, C.-Y. Temperature Dependence of Resistance and Thermopower of Thin Indium Tin Oxide Films. *Thin Solid Films* 2010, *518*, 6997−7001.

(76) Li, F.; Chen, C.; Tan, F.; Li, C.; Yue, G.; Shen, L.; Zhang, W. Semitransparent Inverted Polymer Solar Cells Employing a Sol-gel-derived TiO2 Electron-selective Layer on FTO and MoO3/Ag/MoO3 Transparent Electrode. *Nanoscale Res. Lett.* 2014, *9*, 579.