The Existence of Planar 4-Connected Essentially 6-Edge-Connected Graphs with No Claw-Decompositions

Morteza Hasanvand

Received: 28 June 2022 / Revised: 31 October 2022 / Accepted: 6 November 2022 / Published online: 5 December 2022
© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022

Abstract
In 2006 Barát and Thomassen conjectured that every planar 4-edge-connected 4-regular simple graph of size divisible by three admits a claw-decomposition. Later, Lai (2007) disproved this conjecture by a family of planar graphs with edge-connectivity 4 which the smallest one contains 24 vertices. In this note, we first give a smaller counterexample having only 18 vertices and next construct a family of planar 4-connected essentially 6-edge-connected 4-regular simple graphs of size divisible by three with no claw-decompositions. This result provides the sharpness for two known results which say that every 5-edge-connected graph of size divisible by three admits a claw-decomposition if it is essentially 6-edge-connected or planar.

Keywords Modulo orientation · Claw-decomposition · Star-decomposition · Planar graph · Edge-connectivity

1 Introduction

In this article, graphs have no loops, but multiple edges are allowed, and a simple graph has neither loops nor multiple edges. Let G be a graph. The vertex set, the edge set, and the maximum degree of vertices of G are denoted by $V(G)$, $E(G)$, and $\Delta(G)$, respectively. We denote by $d_G(v)$, $d^-_G(v)$, and $d^+_G(v)$, the degree, the in-degree, and the out-degree of a vertex v in the graph G. For a vertex set A, we denote by $e_G(A)$ the number of edges with both ends in A. An orientation of the graph G is said to be p-orientation, if for each vertex v, $d^+_G(v) \equiv p(v)$, where $p : V(G) \to Z_k$ is a mapping and Z_k is the cyclic group of order k. For the zero function p, the graph G has a p-orientation if and only if it admits a k-star-decomposition. A graph is termed essentially λ-edge-connected, if the edges of any edge cut of size strictly less than λ are incident with a common vertex.

Morteza Hasanvand
morteza.hasanvand@alum.sharif.edu

1 Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
In 2006 Barát and Thomassen \[1\] conjectured that every planar 4-edge-connected 4-regular simple graph G of size divisible by 3 admits a claw-decomposition. Lai \[9\] disproved this conjecture by a class of planar graphs with vertex-connectivity two. Lai and Li \[8\] proved the following stronger assertion for planar 5-edge-connected graphs, in terms of Z_3-connectivity, using the duality of planar graphs with graph colouring. A direct proof of Theorem 1.1 is found by Richter, Thomassen, and Younger \[12\] and this theorem is recently developed to projective planar graphs by de Jong and Richter \[5\].

Theorem 1.1 ((\[8\])) Let G be a planar graph and let $p : V(G) \to Z_3$ be a mapping with $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. If G is 5-edge-connected, then it has a p-orientation.

Corollary 1.2 (see Theorem 4.2 in \[12\]) Every 5-edge-connected planar graph of size divisible by 3 admits a claw-decomposition.

In 2012 Thomassen \[13\] developed Theorem 1.1 to 8-edge-connected graphs and succeeded to confirm another conjecture proposed by Barát and Thomassen \[1\] about the existence of claw-decomposition in graphs with high enough edge-connectivity. Next, Lovász, Thomassen, Wu, and Zhang (2013) improved Thomassen’s result to edge-connectivity 6. In particular, they proved a stronger version which contains the following result as a corollary on essentially edge-connected graphs.

Theorem 1.3 ([10], see also Theorem 1.1 in [3]) Every 5-edge-connected essentially 6-edge-connected graph of size divisible by 3 admits a claw-decomposition.

In this note, we show that Barát and Thomassen’s conjecture \[1\] does not hold in planar 4-connected essentially 6-edge-connected simple graphs by giving a new family of 4-regular graphs with no claw-decompositions. This shows that (i) the needed edge-connectivity in Corollary 1.2 is best possible even for essentially 6-edge-connected graphs and (ii) the needed edge-connectivity in Theorem 1.3 is best possible even in planar graphs. In Sect. 3, we also give another family of graphs with high essential edge-connectivity but with no k-star-decompositions, and provide a useful criterion for the existence of k-star-decompositions in graphs with maximum degree at most $2k - 1$; in particular, the existence of claw-decompositions in 4-regular graphs.

2 Claw-Decompositions in 4-Regular Graphs

In 1992 Jaeger, Linial, Payan, and Tarsi \[4\] constructed a 4-edge-connected 4-regular simple graph of order 12 with no claw-decompositions (the third graph in Fig. 1). By a computer search, we observed that there are only four 4-regular connected simple graphs of order 12 with no claw-decompositions using a regular generator due to Meringer \[11\]. In addition, we observed that among 4-regular connected simple graphs of order 15 (resp. 18) there are only 146 (resp. 15932).
graphs without claw-decompositions which is less than 0.02% (resp. 0.002%) of them. Recently, Delcourt and Postle [3] proved that this ratio must tend to zero.

For planar graphs, Lai [9] introduced a family of planar 2-connected 4-edge-connected 4-regular simple graphs with no claw-decompositions of which the smallest one contains 24 vertices. By a computer search (using a planar graph generator due to Brinkmann and McKay [2]), we observed that there is a smaller such planar graph containing only 18 vertices, illustrated in Fig. 2.

Motivated by Theorem 1.3, one may ask whether there is such a planar graph with higher essential edge-connectivity or even vertex-connectivity. By searching among planar 3-connected 4-regular graphs of order 21, we discovered a number of such desired planar graphs. Some of them have vertex-connectivity 4 and some essential edge-connectivity 6; for example, see Fig. 3. According to Corollary 3.4, one can easily prove these graphs do not have a claw-decomposition using independent sets. For instance, the graph in Fig. 2 has independence number 5, the right graph in Fig. 3 has independence number 6, and the left graph in Fig. 3 has a unique independent set of size 7 (up to isomorphism) such that by removing it the resulting graph has a component with two cycles.

It remains to decide whether Theorem 1.1 holds for planar 4-connected essentially 6-edge-connected graphs, except for a finite number of graphs. We show that the answer is surprisingly false by the following graph construction.
Theorem 2.1 There are infinitely many planar 4-connected essentially 6-edge-connected 4-regular simple graphs of size divisible by 3 with no claw-decompositions.

Proof Consider $3n$ copies of the graph in Fig. 4 and for every $i \in \mathbb{Z}_{3n}$, add three edges z_iz_{i+1}, x_ia_{i+1}, and y_ib_{i+1} to the new graph. Call the resulting graph G_{48n} which has $48n$ vertices. Figure 5 illustrates the graph G_{48}. As observed in [1, 9], if a 4-regular graph G has a claw-decomposition, then the non-center vertices form an independent set of size $|V(G)|/3$. If G_{48n} has a claw-decomposition, then it must have an independent set X of size $16n$. But X includes at most 5 vertices from every block and hence it has at most $15n$ vertices which is a contradiction. The vertex connectivity and essentially edge-connectivity of G_{48n} can easily be verified. The proof is left to the reader.

3 Graphs with High Essential Edge-Connectivity and Without k-Star-Decompositions

It is known that every $(2k-1)$-edge-connected essentially $(3k-3)$-edge-connected graph G of size divisible by k with $k \geq 3$ admits a k-star-decomposition, and there are $(2k-2)$-edge-connected $(2k-2)$-regular graphs of size divisible by k with no k-star-decompositions, see [3, 7, 10]. Motivated by Theorem 2.1, we are going to show that there are regular graphs with the highest essential edge-connectivity but without k-star-decompositions.
Theorem 3.1 For any integer k with $k \geq 3$, there are infinitely many $(2k - 2)$-connected essentially $(4k - 6)$-edge-connected $(2k - 2)$-regular simple graphs of size divisible by k with no k-star-decompositions.

Proof We may assume that $k \geq 4$ as the assertion holds by Theorem 2.1 for the special case $k = 3$. Take G to be the Cartesian product of the cycle of order kn and the complete graph of order $2k - 3$, where n is an arbitrary positive integer. It is not hard to check that G is $(2k - 2)$-connected essentially $(4k - 6)$-edge-connected $(2k - 2)$-regular simple graph of size divisible by k. We claim that G has no k-star-decompositions. Otherwise, the number of stars must be $(1 - 1/k)|V(G)|$, since G contains $(k - 1)|V(G)|$ edges. Thus the number of non-center vertices must be $|V(G)|/k$ and these vertices form an independent set of G. On the other hand, according to the construction, the graph G has independence number at most $|V(G)|/(2k - 3)$. Since $2k - 3 > k$, we arrive at a contradiction. \square

In the following, we are going to present a helpful criterion for the existence of k-star-decompositions in terms of independent sets. For this purpose, we need the following well-known theorem due to Hakimi [6].

Lemma 3.2 ([6]) Let G be a graph and let p be an integer-valued function on $V(G)$. Then G has an orientation such that for all $v \in V(G)$, $d^{-}_G(v) \leq p(v)$, if and only if for all $A \subseteq V(G)$,

$$e_G(A) \leq \sum_{v \in A} p(v),$$

Now, we are ready to prove the next assertion.

Theorem 3.3 Let G be a graph of size divisible by k satisfying $\Delta(G) \leq 2k - 1$ which k is an integer number with $k \geq 3$. The graph G admits a k-star-decomposition if and only if it has an independent set S of size $|V(G)| - \frac{1}{k}|E(G)|$ such that for every $A \subseteq V(G) \setminus S$,

![Fig. 5 A planar 4-connected essentially 6-edge-connected 4-regular graph of order 48 with no claw-decompositions](image-url)
\[
e_G(A) \leq \sum_{v \in A} (d_G(v) - k).
\]

Proof First assume that there is an independent set \(S \) of size \(|V(G)| - |E(G)|/k\) satisfying the theorem. By Lemma 3.2, there is an orientation of \(G \setminus S \) such that every vertex of it has in-degree at most \(d_G(v) - k \). According to the assumption, we also have

\[
\sum_{v \in V(G) \setminus S} k = k(|V(G)| - |S|) = |E(G)| = \sum_{v \in V(G) \setminus S} d_G(v) - |E(G \setminus S)|.
\]

Therefore, \(G \setminus S \) has size \(\sum_{v \in V(G) \setminus S} (d_G(v) - k) \) and hence every vertex \(v \) of it has in-degree \(d_G(v) - k \). Let us orient the remaining edges from \(V(G) \setminus S \) to \(S \) to obtain an orientation for \(G \) so that every vertex in \(S \) has out-degree zero and every vertex in \(V(G) \setminus S \) has out-degree \(k \). Obviously, this orientation induces a \(k \)-star-decomposition for \(G \).

Now, assume that \(G \) has a \(k \)-star-decomposition. Obviously, the number of stars must be \(|E(G)|/k\). Since \(G \) has maximum degree at most \(2k - 1 \), every vertex is the center of at most one star. Thus the number of center vertices must be \(|E(G)|/k\). If we set \(S \) to be the set of all non-center vertices, then this set must be an independent set and we must have \(|S| = |V(G)| - |E(G)|/k\). Let us orient the edges of \(G \) such that the edges of every star leave the center. This implies that every vertex \(v \in V(G) \setminus S \) has in-degree at most \(d_G(v) - k \) in \(G \) and so does in \(G \setminus S \). By Lemma 3.2, for every \(A \subseteq V(G) \setminus S \), \(e_G(A) \leq \sum_{v \in A} (d_G(v) - k) \). Hence the proof is completed. \(\square \)

The following corollary is a useful tool to show why the left graph in Fig. 3 does not have a claw-decomposition. More precisely, it has a unique independence set of size \(|V(G)|/3\) (up to isomorphism).

Corollary 3.4 Let \(G \) be a 4-regular graph of size divisible by three. Then \(G \) admits a claw-decomposition if and only if it has an independent set \(S \) of size \(|V(G)|/3\) such that every component of \(V(G) \setminus S \) contains exactly one cycle.

Proof Apply Theorem 3.3 and use the fact that a graph \(H \) of size \(|V(H)|\) satisfies \(e_H(A) \leq |A| \) for every \(A \subseteq V(H) \), if and only if every component of it contains exactly one cycle. Note that if \(S \) is an independent set of size \(|V(G)|/3\), then the number of edges of \(G \setminus S \) must be \(|V(G)\setminus S|\). \(\square \)

Funding No funding was received for conducting this study.

Data availability Not applicable.

Declarations

Conflict of interest None.
Code availability Not applicable.

References

1. Barát, J., Thomassen, C.: Claw-decompositions and Tutte-orientations. J. Graph Theory 52, 135–146 (2006)
2. Brinkmann, G., McKay, B.D.: Fast generation of planar graphs. MATCH Commun. Math. Comput. Chem. 58, 323–357 (2007)
3. Delcourt, M., Postle, L.: Random 4-regular graphs have 3-star decompositions asymptotically almost surely. Eur. J. Combin. 72, 97–111 (2018)
4. Jaeger, F., Linial, N., Payan, C., Tarsi, M.: Group connectivity of graphs—a nonhomogeneous analogue of nowhere-zero flow properties. J. Combin. Theory Ser. B 56, 165–182 (1992)
5. de Jong, J.V., Richter, R.B.: Strong 3-flow conjecture for projective planar graphs (2020). arXiv: 2011.00672
6. Hakimi, S.L.: On the degrees of the vertices of a directed graph. J. Franklin Inst. 279, 290–308 (1965)
7. Hasanvand, M.: Modulo orientations with bounded out-degrees. arXiv:1702.07039v3
8. Lai, H.-J., Li, X.: Group chromatic number of planar graphs of girth at least 4. J. Graph Theory 52, 51–72 (2006)
9. Lai, H.-J.: Mod $(2p + 1)$-orientations and $K_{1,2p+1}$-decompositions. SIAM J. Discrete Math. 21, 844–850 (2007)
10. Lovász, L.M., Thomassen, C., Wu, Y., Zhang, C.-Q.: Nowhere-zero 3-flows and modulo k-orientations. J. Combin. Theory Ser. B 103, 587–598 (2013)
11. Meringer, M.: Fast generation of regular graphs and construction of cages. J. Graph Theory 30, 137–146 (1999)
12. Richter, R.B., Thomassen, C., Younger, D.H.: Group-colouring, group-connectivity, claw-decompositions, and orientations in 5-edge-connected planar graphs. J. Combin. 7, 219–232 (2016)
13. Thomassen, C.: The weak 3-flow conjecture and the weak circular flow conjecture. J. Combin. Theory Ser. B 102, 521–529 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.