Lithosynthesis of the properties in the transport construction on the cement base

Larisa Svatovskaya¹, Alexander Kabanov¹ and Maxim Sychov²

¹Emperor I Alexander I St. Petersburg State Transport University (PGUPS). Moskovsky pr., 9, St. Petersburg, 190031, Russia
²Petersburg State Technological Institute (Technical University) Moskovsky pr., 26, St. Petersburg 190013. Russia

E-mail: lbsvatovskaya@yandex.ru

Abstract. Lithosynthesis is the new method of technical and geocoprotective properties improvement for the cement based construction. The point of the method is the reactions in the pores and capillaries of artificial mineral stone. The classification of the reactions is presented and level of the properties improvement is shown. The examples of the lithosynthesis application are shown with geoecoprotective aspect taken into consideration.

1. Introduction
There are a few ways to influence the concrete on the cement base technical properties. Now a new one based on the pore and capillary properties of artificial stone on the binder base is offered. The point of the method is penetration of absorbed solution with ions or nanoparticulars in the structure of the hardening artificial stone on the cement base or any other mineral nature. The size of the pores and capillaries must be more than 1 nm. Such kind of pores and capillaries can absorb not only ions but nanoparticulars with size from 1 nm and then in the stone a reaction between substances is possible. The result of interaction is calcium silicate hydrate formation if we use silica sol or heavy metal ions silicate hydrates if we use heavy metal ion solution for the detoxication, for example the waste water. According to the papers [1-6] it is possible to detoxicate heavy metal ions in such a way.

2. Methods and experiments
In the Table 1 the lithosynthesis classification of the reactions according to the nature solution are shown – nano solution and solution with heavy metal ions. In the Table 2 the thermodynamic aspect of the lithosynthesis reaction is shown and according to the conclusions of the thermodynamic every reaction has negative free Gibbs energy and because of that they are allowed. To improve quality of concrete on the cement base it is necessary to use hardening concrete of 2-3days from the start of the hardening. The concrete any class articles were sunk into the solution of the 3% silica sol concentration for the saturation (a few hours). After that concrete had a usual process of the normal (natural) hardening and in 28 days it was checked according to the usual method of Russian state standards.
Table 1. Classification of lithosynthesis according to nature of constructions

Nature of absorbing construction	Examples of solutions	Process of binding (fragment of reaction)	Free Gibbs energy of the reactions	Main property of influence
Silicate Hydrates, pH>7	1. Silica sol	1. SiO$_2$·nH$_2$O, soling	N/A	Technical, detoxication
	2. Al(III) – solution	2. Al$^{3+}$+6OH$^-$=[AlO$_3$]$^{3-}$		
	3. Fe(III) - solution	3. Fe$^{3+}$+3OH$^-$=Fe(OH)$_3$		
	4. Pb(II), Cu(II), Cd(II) and others	4. Pb$^{2+}$+2OH$^-$=Pb(OH)$_2$		
	heavy metal ions	contained solutions		
Silicate Hydrates, pH>7	5. Organic solution	5. 2C$_6$H$_5$OH+Ca(OH)$_2$ = Ca(C$_6$H$_5$O)$_2$+2H$_2$O	Negative	Detoxication
Sulfate Hydrates pH=7	6. Pb(II)-solution	6. Pb$^{2+}$+CaSO$_4$·2H$_2$O = PbSO$_4$↓+ Ca$^{2+}$+2H$_2$O	Negative	Detoxication
Aluminates Hydrates pH>7	7. Silica sol	7. Soling	Negative	Technical

Table 2. Thermodynamic calculation of the reactions during lithosynthesis*

n/n	Reaction during lithosynthesis	ΔG^{0}_{298} of the reactions, kJ
1.	6Ca$^{2+}$+6(SiO$_2$·H$_2$O)+12OH$^-$=6CaO·6SiO$_2$·H$_2$O+11H$_2$O	-417.4
2.	Ca$^{2+}$+2(SiO$_2$·H$_2$O)+2OH$^-$=CaO·2SiO$_2$·2H$_2$O+H$_2$O	-93.4
3.	6Ca$^{2+}$+3(2SiO$_2$·3H$_2$O)+12OH$^-$= 6CaO·6SiO$_2$·H$_2$O+14H$_2$O	-367.8
4.	Ca$^{2+}$+2SiO$_2$·3H$_2$O+2OH$^-$=CaO·2SiO$_2$·2H$_2$O+2H$_2$O	-177.2
5.	2Pb$^{2+}$+2(CaO·SiO$_2$·H$_2$O)+H$_2$O=PbO·SiO$_2$·H$_2$O+Pb(OH)$_2$+SiO$_2$·H$_2$O+2Ca$^{2+}$	ΔG^{0}_{298}<0
6.	2Cd$^{2+}$+2(CaO·SiO$_2$·H$_2$O)+H$_2$O=CaO·SiO$_2$·H$_2$O+Ca(OH)$_2$+SiO$_2$·H$_2$O+2Cd$^{2+}$	ΔG^{0}_{298}<0

* In the reactions 1-4 silica sol is used for technical properties increasing. The reactions 5, 6 are the examples of heavy metal ions detoxication.

In the Table 3 are shown the main properties of SAT (sol absorption technology) concrete.

The transport concrete can be utilized in the geosphere when we have waste water with heavy metal ions. The absorption of heavy metal polluted solution takes place and hydroxides and heavy metal ion silicate hydrates are formed in the concrete body. In the Table 4 the results are shown as detoxication of heavy metal ions in numbers of TC (tolerable concentration). For the experiment the dispersions of any class crushed concrete were used. If the construction articles are taken, then the numbers of TC may be a little lower.
Table 3. Results of SAT-concrete

Concrete classes	Compressive strength, +Δ	Bending strength, +Δ	Water absorption, -Δ	Abrasion, -Δ	Cold resistance cycles, +Δ,
B15, B20, B25, B30	15-30	20-35	50-65	20-30	75-90

Table 4. Detoxication coefficient of construction material as property due to lithosynthesis, number

Construction material	Average absorption capacity, c, kg/t	Cu(II) 3·10⁻³, kg/t	Pb(II) 32·10⁻³, kg/t	Cd(II) 0.5·10⁻³, kg/t
Cement and clinker minerals	3-4	1000-1300	~100	~6000
Foam article	~2	~800	~70	~4000
Heavy concrete	~1	~300	~30	~2000

*Numbers of TC are ratio absorption capacity, C, at tolerable concentration, TC

3. Discussing

The special part of SAT is using hardening articles and such kind of method can be useful for transport technology when surface is especially important. As an example might be taken a road exploitation when surface of concrete carries extremely high loads (more than 50 million during life cycle). The hardness of concrete SAT surface of road has been checked and the result is the prediction of life cycles more than 40% increasing. In the papers [7, 8, 9, 10, 11] is shown the mechanism of the properties increasing. As for the detoxication, the meaning of the detoxication coefficient is high enough.

It is known [12, 13, 14, 15, 16] that not far from railway has been observed pollutions nearly 20 number of TC and articles or dispersions of materials due to lithosynthesis can detoxicate of heavy metal ions. To develop lithosynthesis for geosphere detoxication has been obtained number TC for materials, for example, calcium sulphates till 100 meaning. It is clear that these are large possibilities for lithosynthesis application and according to the papers [17, 18, 19, 20, 21] details of possible influence may be explained.

It is important to say that technologies on the cement base have the very reserve for lithosynthesis. For example, the technologies of soil strengthening by means of mixing with cement. Then the artificial stone is formed with pores and capillaries, and because of that the lithosynthesis is good enough for the detoxication of waste water with heavy metal ions, when strengthened soil absorbs such kind of waste water.

In the table 5 are presented the examples of usage the lithosynthesis of the construction systems properties.
Table 5. Lithosynthesis of the construction properties

Construction system	The way of taking in the system	Lithoreaction	Properties	
I Articles and constructions on the cement base	Absorption of silica sol, solution, pH > 7	Hydrates calcium silicates formation, $\Delta G^{0}_{298} < 0$	Technical Increasing the level of the properties, quality and durability	Geocoprotective Waste decreasing, because of durability, decreasing of natural resources consumption Detoxication of heavy metal ions because of binding in substances with very low solubility product
II Articles and constructions on the cement base	Absorption of heavy metal ions containing in solution (waste water)	Hydrates of heavy metal ions, silicates hydroxides, $\Delta G^{0}_{298} < 0$	Not less than before of absorption	
III Strengthened soils due to cement	Absorption of waste water with pollution	Formation of hydrates and hydroxides of heavy metal	Not less than before of absorption Detoxication	

4. Conclusions.
1. Lithosynthesis for the cement properties improvement and detoxication is shown.
2. The levels of technical properties improvement by means of lithosynthesis are being shown.
3. The level of detoxication due to lithosynthesis is shown.

5. References
[1] Svatovskaya L B, Shershneva M V and Puzanova Y E 2010 Geochemistry International T 48 6 pp 621-623
[2] Svatovskaya L, Shershneva M, Baydarashvily M, Sychova A, Sychov M and Gravit M 2015 Procedia Engineering 117 pp 350-354
[3] Svatovskaya L B, Sakharova A S, Baidarashvili M M and Petriaev A V 2015 IACMAG 2014 pp 152
[4] Svatovskaya L B, Sychova A, Sychov M and Okrepilov V 2016 MATEC Web of Conferences DOI: 10/105 l/matecconf/20165301024 53 01024 pp 1-4
[5] Svatovskaya L B, Sychova A, Sychov M and Okrepilov V 2016 MATEC Web of Conferences DOI: 10/105 l/matecconf/20165301024 53 01024
[6] Svatovskaya L B, Sychova A, Sychov M and Gravit M 2016 15th International scientific conference Underground Urbanization as a Prerequisite for Sustainable Development Procedia Engineering 165 pp 1771-1775
[7] Svatovskaya L B, Sychova A, Soloviova V, Maslennikiva L and Sychov M 2016 Indian Journal of Science and Technology vol 9 (42) n 104304
[8] Svatovskaya L B, Sychova A, Soloviova V, Maslennikiva L and Sychov M 2016 Indian Journal of Science and Technology vol 9 (42) November 2016 n 104231
[9] Sakharova A S, Svatovskaya L B, Baidarashvili M M and Petriaev A V 2016 Procedia Engineering The 3rd International Conference on Transportation Geotechnics ICTG 2016 p 1401-1408
[10] Svatovskaya L B 2016 Natural and thechnical sciences ISSN 1684-2626 9 pp 49-52
[11] Svatovskaya L B and others 2016 Transport construction 7 pp 30-32
[12] Svatovskaya L B and others 2016 Monogragh PGUPS
[13] Cheremisina O A, Sychev M M, Myakin S V, Korsakov V G, Popov V V and Artsutanov N Y 2002 Russian Journal of Physical Chemistry 76 (9) pp 1472-1475
[14] Myakin S V, Korsakov V G, Panova T I, Sosnov E A, Fomchenkova Yu C, Sychov M M and Shilova O A 2011 Glass Physics and Chemistry 37 (6) pp 624-628
[15] Korsakov G, Alekseev S A, Sychov M M, Tsvetkova M N, Komarov E V, Lee B, Myakin S V and Vasil'eva I V 2007 Thermodynamic Model Russian Journal of Applied Chemistry 80 (11) pp 1931-1935
[16] Sychov M M, Mjakin S V, Nakanishi Y, Korsakov V G, Vasiljeva I V, Bakhmetjev V V, Soiovjeva O V and Komarov E V 2005 Cl phosphors Appl Surf Sc 244 (1-4) pp 461-464
[17] Fledman R F and Sereda P J 1993 Journal of Applied Chemistry 13 pp 375-382
[18] Pellenq R J-M, Lequeux N and Van Damme H 2008 Cement and Concrete Research 38 pp 159-174
[19] Jennings H M 2008 Cement and Concrete Research 38 pp 275-289
[20] Chen J J, Thomas J J, Taylor H F W and Jennings H M 2004 Cement and Concrete Research 34(9) pp 1499-1599
[21] Richardson I G 2008 Cement and Concrete Research 38 pp 137-158