Analysis of the Microbial Community Structure in Coastal Sediment of an Ascidian Farm in South Korea through 16S rRNA Gene Amplicon Sequencing

Ilwon Jeong, Jong-Oh Kim, Seokjin Yoon, Kyunghoi Kim

ABSTRACT

Aquaculture places contamination pressure on the coastal environment. We investigated the microbial community structure changes in sediment in an ascidian Styela clava farm. Data profiling of the 16S rRNA gene amplicon sequence shows that the microbial diversity of sediment in the Styela clava farm is dominated by Proteobacteria (relative abundance, 95.34 to 97.85%).

A scidian Styela clava farms exist only in Republic of Korea, especially because Styela clava is cultivated only in Jinhae Bay (1). Jindong Bay is in the northwest section of Jinhae Bay and is mainly used as a Styela clava farm. Jindong Bay has a low seawater exchange rate (35% in 100 days) with water current velocity of 3 to 10 cm/s, resulting in high mortality rates for Styela clava (2). Several environmental investigations have been conducted to decrease the mortality rates for Styela clava (1, 3). Although aquaculture has the potential to deteriorate the benthic environment due to the accumulation of pollutants (3), there has been less environmental evaluation related to the benthic environment in the Styela clava farm. Therefore, it is necessary to investigate the effect of the Styela clava farm on the benthic environment. In this study, the microbial community structure changes in sediments from the Styela clava farm were investigated through 16S rRNA gene amplicon sequencing.

Sediment samples were collected from Jindong Bay (35°5.9120'N, 128°28.3750'E) in April, August, October, and December 2019. Using a Peterson grab sampler, surface sediment samples from a depth of 15 cm (water depth, 3 m) were collected in 1-liter sterile high-density polyethylene (HDPE) bottles; the samples were stored immediately at −20°C for DNA analysis (4). The samples were delivered to Macrogen, Inc. (Seoul, Republic of Korea). Total DNA was extracted from 10 g of sediment using the DNeasy PowerMax soil kit (Qiagen) according to the manufacturer’s instructions. The 16S rRNA gene amplicon sequencing libraries were prepared with Herculase II Fusion DNA polymerase and the Nextera XT index kit v2 with the primers Bakt_341F and Bakt_805R according to the manufacturer’s guidelines. Paired-end sequencing was conducted.

TABLE 1 Summary data obtained for sediment samples from Jindong Bay

Parameter	Data for sample collected in:	April	August	October	December
No. of reads		147,232	188,758	140,213	106,164
No. of OTUs		15,819	23,077	18,890	17,985
Proportion of bacteria (%)		97.35	96.36	95.34	97.85
Proportion of archaea (%)		0.01	0.01	0.05	0.01
SRA accession no.		SRX11044005	SRX11044006	SRX11044007	SRX11044008

Citation

Jeong I, Kim J-O, Yoon S, Kim K. 2021. Analysis of the microbial community structure in coastal sediment of an ascidian farm in South Korea through 16S rRNA gene amplicon sequencing. Microbiol Resour Announc 10: e00584-21. https://doi.org/10.1128/MRA.00584-21.

Editor J. Cameron Thrash, University of Southern California

Copyright © 2021 Jeong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Kyunghoi Kim, hokim@pknu.ac.kr.

Received 8 June 2021
Accepted 23 June 2021
Published 29 July 2021
with the Illumina MiSeq platform. The raw data obtained (301 bp long) were assembled with high quality scores (average score, >20) (4, 5). Using an identity cutoff value of 97% similarity, the operational taxonomic units (OTUs) were clustered with QIIME v1.8.0 against the Ribosomal Database Project (RDP) database. A total of 582,367 raw reads and 75,771 OTUs were sequenced for 16S rRNA gene libraries (Table 1). The total OTUs were assigned to 23 bacterial phyla, 48 classes, 85 orders, 148 families, 372 genera, and 527 species.

The predominant phylum was **Proteobacteria** (relative abundance of 67.91 to 73.34%), followed by **Bacteroidetes** (12.40 to 16.26%), **Chloroflexi** (2.00 to 3.22%), **Cyanobacteria** (1.10 to 2.49%), **Actinobacteria** (1.01 to 1.42%), **Firmicutes** (0.99 to 1.19%), **Acidobacteria** (0.96 to 1.71%), **Fusobacteria** (0.64 to 3.02%), **Calditrichaeota** (0.59 to 0.93%), **Planctomycetes** (0.27 to 0.34%), **Spirochaetes** (0.23 to 0.70%), **Nitrospirae** (0.23 to 0.55%), **Verrucomicrobia** (0.20 to 0.49%), **Ignavibacteriae** (0.17 to 0.26%), **Tenericutes** (0.00 to 0.36%), **Kiritimatiellaeota** (0.00 to 0.18%), and **Fibrobacteres** (0.00 to 0.11%), as shown in Fig. 1.

The 16S rRNA gene amplicon sequencing of samples from Jindong Bay reported here is the first result to represent the microbial structure of sediments in the ascidian *Styela clava* farm. This result will provide valuable resources for future research with respect to *Styela clava* aquaculture.

Data availability. The 16S rRNA gene amplicon sequences from this study are available in the NCBI Sequence Read Archive (SRA) under the accession number PRJNA733697.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant 2021R1I1A3060374). A part of this work was supported by a grant from the National Institute of Fisheries Science (grant R2021031).
REFERENCES

1. Park J, Cho Y, Lee W-C, Hong S, Kim H-C, Kim J-B, Park J. 2012. Characteristics of carbon circulation for ascidian farm in Jindong Bay in summer and winter. J Wetlands Res 14:211–221.

2. National Fisheries Research and Development Institute. 2013. The development of suitable sites selection and rearrangement technology for warty sea squirt aquaculture. National Fisheries Research and Development Institute, Busan, South Korea.

3. Cho YS, Hong SJ, Lee WC, Kim HC, Kim JB. 2013. Suitable site assessment using habitat suitability index for Styela clava and Styela plicata in Jindong Bay. J Korean Soc Mar Environ Saf 19:597–605. https://doi.org/10.7837/kosomes.2013.19.6.597.

4. Serrano W, Olaechea RM, Cerpa L, Herrera J, Indacochea A. 2021. Bacterial diversity profiling around the Orca Seamount in the Bransfield Strait, Antarctica, based on 16S rRNA gene amplicon sequences. Microbiol Resour Announc 10:e01290-20. https://doi.org/10.1128/MRA.01290-20.

5. Pecher WT, Martínez FL, DasSarma P, Guzmán D, DasSarma S. 2020. 16S rRNA gene diversity in the salt crust of Salar de Uyuni, Bolivia, the world’s largest salt flat. Microbiol Resour Announc 9:e00374-20. https://doi.org/10.1128/MRA.00374-20.