TLR4 Single Nucleotide Polymorphisms (SNPs) Associated with Salmonella Shedding in Pigs

Jalusa Deon Kich1,2*, Jolita Janutenaike Uthe1,3, Magda Vieira Benavides4, Maurício Egídio Cantão2, Ricardo Zanella5, Christopher Keith Tuggle3 and Shawn Michelle Dunkin Bearson1

1 USDA/ARS/National Animal Disease Center, 1920 Dayton Ave, Ames, IA, USA; 2 Embrapa Swine and Poultry, Br 153, Km 110, Concórdia, SC, Brazil; 3 Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, USA; 4 Embrapa LabEx USA/USDA, Beltsville Agriculture Research Center, Beltsville, MD, USA; 5 Embrapa Swine and Poultry BJT/CNPq, Concórdia, SC, Brazil

*Corresponding author: jalusa.kich@embrapa.br

Abstract

Toll-like receptor 4 (TLR4) is a key factor in the innate immune recognition of lipopolysaccharide (LPS) from Gram-negative bacteria. Previous studies from our group identified differences in the expression profile of TLR4 and genes affected by the TLR4 signaling pathway among pigs that shed varying levels of Salmonella, a Gram-negative bacterium. Therefore, genetic variation in this gene may be involved with the host’s immune response to bacterial infections. The current study screened for single nucleotide polymorphisms (SNPs) in the TLR4 gene and tested their association with Salmonella fecal shedding. Pigs (n=117) were intranasally challenged at 7 weeks of age with 1 x 10⁹ CFU of S. Typhimurium χ4232 and were classified as low or persistent Salmonella shedders based on the levels of Salmonella being excreted in fecal material. Salmonella fecal shedding was determined by quantitative bacteriology on days 2, 7, 14, and 20/21 post exposure, and the cumulative levels of Salmonella were calculated to identify the low (n=20) and persistent (n=20) Salmonella shedder pigs. From those 40 animals, the TLR4 region was sequenced, and 18 single nucleotide polymorphisms (SNPs) in TLR4 were identified. Twelve SNPs have been previously described and six are novel SNPs of which five are in the 5’ untranslated region and one is in intron 2. Single marker association test identified 13 SNPs associated with the qualitative trait of Salmonella fecal shedding, and seven of those SNPs were also associated with a quantitative measurement of fecal shedding (P < 0.05). Using a stepwise regression process, a haplotype composed of SNPs rs80787918 and rs80907449 (P ≤ 4.0 x 10⁻⁵) spanning a region of 4.9Kb was identified, thereby providing additional information of the influence of those SNPs on Salmonella fecal shedding in pigs.

Keywords: TLR4, single nucleotide polymorphisms (SNPs), Salmonella, swine

Introduction

Salmonella is a widespread foodborne pathogen with the ability to adapt to different environments. Swine (Sus scrofa) are an important reservoir of Salmonella because colonization and shedding of this bacterium, imposing elevated risks to public and animal health. Thus, diverse intervention strategies are needed to control the transmission of Salmonella from pork to humans and to the environment.

In bacterial infections, the severity of infection is impacted by the pathogenicity of the microorganism and its interaction with the host immune defense system (Zanella et al., 2011). Toll-like receptor 4 (TLR4) is a well-characterized gram-negative bacterial lipopolysaccharide (LPS) recognition receptor and a host inflammatory response activator well conserved among animal species (Noreen et al., 2012, Yang et al. 2012). Schröder and Schumann (2005) suggested that mutations in the TLR4 regions involved with pathogen recognition and transduction signaling may affect host susceptibility to infection. Polymorphisms in the TLR4 gene have been associated with different infectious diseases in humans, cattle, chicken and pigs (Noreen et al., 2012, Kataria et al. 2011, Leveque et al. 2003, Yang et al., 2012).

In swine, TLR4 is located on Sus scrofa 1 (SSC1) V10.2 (289,776,058 bp to 289,785,087 bp). Thomas et al. (2006) identified the genomic structure of porcine TLR4, and Shinkai et al. (2006) described the distribution of SNPs for five TLRs in pigs. Specifically for TLR4, 13 SNPs were widely distributed in 11 pig breeds, and of those, seven were non-synonymous. Thirty four SNPs were identified in TLR4 using pigs representing European commercial breeds and some traditional breeds (n=259), and of these, 17 SNPs were located in the non-coding region and 17 SNPs were found in the coding region (Palermo et al., 2009). Furthermore, polymorphisms in the TLR4 gene have been identified as potential genetic markers for disease susceptibility in pigs (Uenishi & Shinkay, 2009). Our group had reported up-regulation of TLR4 and its target genes in pigs challenged with Salmonella enterica serovar Typhimurium (Huang et al., 2011). Therefore, to determine if TLR4 is a possible candidate gene associated with Salmonella shedding, we first sequenced the TLR4 gene for SNPs identification and tested their associations with Salmonella shedding status.

Material and Methods
Briefly, 117 pigs were intranasally challenged at 7 weeks of age with 1 x 10^9 CFU of S. Typhimurium as previously described (Huang et al., 2011, Uthe et al., 2009). At days 2, 7, 14 and 20/21 post-inoculation (pi), Salmonella fecal shedding was quantified using a standard bacteriological test previously described (Uthe et al., 2009). Forty pigs were chosen based on their fecal culture status; quantitative classification of the phenotype was scored based on cumulative Salmonella fecal shedding. Genomic DNA was extracted from blood samples and purified as previously described (Uthe et al., 2009). Nine sets of primers were designed to cover all exons (n=3) of TLR4 (SSC1: 289,775,345bp - 289,786,312bp V. 10.2). PCR products were sequenced and polymorphisms were identified using Phred/Phrap/Consed/PolyPhred software. A single and multiple marker association tests were conducted within PLINK (V1.07) and R statistical programs (Purcell et al., 2007).

Results

For the quantitative measurement of Salmonella shedding cumulative measurements were taken within days 2, 7, 14 and 20/21 pi (Figure 1). Sequencing analysis of those forty (n=40) animals identified 18 SNPs; twelve were previously described in the literature and/or annotated in GenBank and six are novel SNPs (Table 1).

Of the 18 SNPs, thirteen (n=13) SNPs were associated (P ≤ 0.05) with Salmonella shedding as a qualitative phenotype using a Chi-squared test; of those 13 SNPs, seven were also associated with Salmonella shedding as a quantitative phenotype using a Wald Statistical test (Table 1).

![Figure 1: Area under the log curve illustrating the log of cumulative colony forming units (CFU). Quantitative bacteriology of Salmonella shedding in swine fecal samples was performed at day 2, 7, 14 and 20/21 days post-challenge with S. Typhimurium, and CFU were determined.](image)

Table 1. Identified SNPs and position in the TLR4 gene of Salmonella low and persistent shedder pigs.

SNP	Location in Sus Scrofa genome (bp)	GenBank accession number	Single Marker Association (P-value)	
			qualitative	quantitative
SNP1#	SSC1:289,774,983 No	0.033	0.064	
SNP2#	SSC1:289,775,046 No	0.033	0.064	
SNP3#	SSC1:289,775,081 No	0.033	0.064	
SNP4#	SSC1:289,775,543 No	0.133	0.244	
SNP5	SSC1:289,775,665 rs80830544	0.363	0.550	
SNP6#	SSC1:289,775,979 No	0.025	0.056	
SNP7	SSC1:289,780,226 rs80881287	0.004	0.029	
SNP8**	SSC1:289,780,292 rs80787918	0.002	0.013	
SNP9#	SSC1:289,782,761 No	0.001	0.025	
SNP10	SSC1:289,782,834 rs80923358	0.003	0.037	
SNP11	SSC1:289,782,933 rs80951861	0.003	0.037	
SNP12*	SSC1:289,783,127 rs80811682	0.007	0.054	
SNP13*	SSC1:289,783,342 (Shinkai et al., 2006)	0.285	0.514	
SNP14	SSC1:289,783,476 rs80981701	0.064	0.105	
SNP15*	SSC1:289,783,478 rs80955017	0.034	0.046	
SNP16*	SSC1:289,783,543 rs80894552	0.176	0.231	
SNP17	SSC1:289,784,913 rs80834103	0.025	0.056	
SNP18**	SSC1:289,785,250 rs80907449	0.002	0.011	

*non-synonymous SNPs; **haplotype components; # novel SNPs
Using a haplotype construction and the backward-elimination process, the most significant haplotype for both measurements of *Salmonella* shedding, qualitative ($P \leq 7.9 \times 10^{-4}$) and quantitative ($P \leq 4.0 \times 10^{-3}$) comprised a region of 4.9Kb composed of SNPS, rs80787918 (SNP8) and rs80907449 (SNP18) ($r^2=0.902$) located at SSC1:289,780,292 bp and SSC1:289,785,250 bp, respectively (Table 2).

Discussion

Four SNPs, SNP12, SNP13, SNP15 and SNP16, located on exon three of TLR4 gene are non-synonymous mutations and they are positioned between SNP8 and SNP18. When the additive effects of those markers were tested within the haplotype constructed with markers SNP8 and SNP18, it was not observed any improvement in the association test. The significance of those results was possibly penalized by the addition of markers into the association test, due to the limited number of samples.

The haplotype CC of SNP8 and SNP18 was identified in higher frequency in persistent shedding pigs (67.5%) compared to low shedding pigs (30%); furthermore, the frequency of haplotype TT in low shedding pigs (65%) was greater when compared to persistent shedding pigs (32.5%). No animals from the persistent shedding group were identified with the haplotype TC or CT, while it was observed in low frequency in the low shedding group (2.5%). Together, these results suggest that the region located between SNP8 and SNP18, more specifically on exon 3, is possibly harboring the causative mutation for *Salmonella* colonization and shedding variation in swine.

Conclusion

The results from this study support the concept that TLR4 is an important modulator associated with the porcine response to *Salmonella* infection in swine.

Acknowledgements and Funding

Thanks Jennifer Jones for technical assistance. This project was supported by USDA, ARS CRIS funds, National Pork Board grant, and by National Research Initiative competitive grant from the USDA.

References

Huang, T.H., Utte, J.J., Bearson, S.M, Demirkale, C.Y., Nettleton, D., Knetter, S., Christian, C., Ramer-Tait, A.E., Wannemuehler, M.J., Tuggle, C.K., 2011. Distinct peripheral blood RNA responses to *Salmonella* in pigs differing in *Salmonella* shedding levels: intersection in IFNG, TLR and miRNA pathways. PloS ONE. 6, e28786.

Kataria, R.S., Tait, R.G. Jr., Kumar, D., Ortega, M.A., Rodriguez, J., Reecy, J.M., 2011. Association of toll-like receptor four single nucleotide polymorphisms with incidence of infectious bovine keratoconjunctivitis (IBK) in cattle. Immunogenetics. 63, 115-119.

Leveque, G., Forgetta, V., Morroll, S., Smith, A.I., Bumstead, N., Barrow, P., Lorredo-Osti, J.C., Morgan, K., Malo, D., 2003. Allelic variation in TLR4 is linked to susceptibility to *Salmonella enterica* serovar Typhimurium infection in chickens. Infect. Immun. 71, 1116-1124.

Noreen, M., Shah, M.A., Mall, S.M., Choudhary, S., Hussain, T., Ahmed I., Jalil, S.F., Raza, M.I., 2012. TLRT4 polymorphisms and diseases susceptibility. Inflamm. Res. 61, 177-188.

Palermo, S., Capra, E., Torremorell, M., Dolzan, M., Davoli, R., Haley, C.S, Giuffra E., 2009. Toll-like receptor 4 genetic diversity among pig populations. Anim. Genet. 40, 289-299.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P, de Bakker, P.I., Daly, M.J., Sham, P.C. 2007 PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Gen. 81, 559-575.

Schröder, N.W.J., Schumann R,R., 2005. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 5, 156–164.

Shinkai, H., Tanaka, M., Morozumi, T., Eguchi-Ogawa, T., Okumura, N., Muneta, Y., Awata, T., Uenishi, H., 2006. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5 and TLR6 genes. Immunogenetics. 58, 324-330.

Thomas, A.V., Broers, A.D., Vandegaart, H.F., Desmecht, D.J., 2006. Genomic structure, promoter analysis and expression of the porcine (*Sus scrofa*) TLR4 gene. Mol. Immunol. 43, 653-659.

Table 2. Haplotypes frequency (SNPs rs80787918 and rs80907449) and associations with qualitative and quantitative phenotypes of *Salmonella* shedding.

Haplotype	Persistent Shedders	Low Shedders	Qualitative (P Val.)	Quantitative (P Val.)
CC	0.675	0.3	0.00079	0.004201
TC	0	0.025	0.3143	0.1054
CT	0	0.025	0.3143	0.1445
TT	0.325	0.65	0.00334	0.02912
Uenishi, H, Shinkay, H., 2009. Porcine Toll-like receptors: The front line of pathogen monitoring and possible implications for disease resistance. Dev. Comp. Immunol. 33, 353-361.

Uthe, J.J, Qu, L., Couture, O., Bearson, S.M., O’Connor, A.M., McKean, J.D., Torres, Y.R., Dekkers, J.C., Nettleton, D., Tuggle, C.K., 2011. Use of bioinformatics SNP predictions in differentially expressed genes to find SNPs associated with Salmonella colonization in swine. J. Anim. Breed. Genet. 128, 354-365.

Uthe, J.J., Wang, Y., Qu, L., Nettleton, D., Tuggle, C.K., Bearson, S.M., 2009. Correlating blood immune parameters and CCT7 genetic variant with the shedding of Salmonella enterica serovar Typhimurium in swine. Vet. Microbiol. 135, 384-388.

Yang, X.Q., Murani E., Ponsuksili, S., Wimmers, K., 2012. Association of TLR4 polymorphism with cytokine expression level and pulmonary lesion in pigs. Mol. Biol. Reports. 39, 7003-7009.

Zanella, R., Settles, M.L., McKay, S.D., Schnabel, R., Taylor, J., Whitlock, R.H., Schukken Y., Van Kessel, J.S., Smith, J.M., Neibergs, H.L., 2011. Identification of loci associated with tolerance to Johne’s disease in Holstein cattle. Anim. Genet. 42, 28–38.