Role of animal models in biomedical research: a review

P. Mukherjee†, S. Roy†, D. Ghosh and S. K. Nandi*

Abstract

The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.

Keywords: Animal models, Ethical concern, Animal research, Human diseases, Biomedical research

Background

The animals used in various studies and investigations are related to the evolution of human history. Though there are many shreds of evidence that Aristotle in ancient Greece successfully used animals in understanding the human body, the main breakthrough in animal models happened in the eighteenth and nineteenth centuries with the scientists like Jean Baptiste Van Helmont, Francesco Redi, John Needham, Lazzaro Spallanzani, Lavoisier and Pasteur who studied the origin of life using animal models [1]. At the same time, human physiology, anatomy, pathology as well as pharmacology were also studied using animal models. With the remarkable advancements in drug development, biomedicine and pre-clinical trials, the importance of animal models has increased many folds in the last decades, as the therapeutic outcome and drug safety are the foremost important criteria for a drug and medical device considered to be used in the human model [2]. The scientific apply of animal models in the arena of biological research and drug development is an age-old practice because of the notable resemblance in physiology and anatomy between humans and animals, especially mammals [3]. One must consider that the physiological processes of humans, as well as mammals, are complex in terms of circulatory factors, hormones, cellular structures, and tissue systems. Hence,
investigation of various aspects such as molecular structures, cellular and organ functions in physiological and pathological conditions must be taken into consideration.

The process of selection of an animal model for biomedical research is a very intricate part, as all models are not acceptable due to various limitations. Many factors should be taken into consideration during the selection of an ideal animal model for biomedical trials. The most important criteria are the proper selection of models in terms of resemblance between animal species and humans in terms of physiological and/or pathophysiological aspects. Detailed evaluation during the application of certain drugs/molecules/devices and their capacity to reproduce the disease or pathology at the same level as that of humans. Availability and the size of animal species under consideration. Long life duration of the animal species under study. A Large animal population in a model facilitates the availability of multiple sub-species.

Many animal species such as *Drosophila* (insects), *Danio rerio* or zebrafish (fish), *Caenorhabditis elegans* (nematodes), *Xenopus* (frogs), and mammals such as mice, rabbits, rats, cats, dogs, pigs, and monkeys have been accepted worldwide for their phylogenetic resemblance to humans [4].

Choice of an appropriate animal model is most of the time a tedious job and sometimes depends on assumptions and convenience of the study and researchers without considering whether the model will be appropriate or not. Irrational selection of an inappropriate animal model for scientific investigations will yield incorrect findings, as well as fetch misusage of resources and lives. Moreover, it results in erroneous, duplicative, and inappropriate experiments [5]. To minimize these problems, recently researchers have advanced their researches to produce animal models that are very specific to the research under consideration. They produced custom-made transgenic animal models by incorporating genetic information directly into the embryo either by injecting foreign DNA or through retroviral vectors [6]. Through the incorporation of human cells into the recipient animals, researchers can study the effects of pathogens similar to the way in the human body [7]. Proper selection of animal models is mainly related to the nature of the drug or medical devices under study. In many instances, a single animal model is not able to signify a human disease alone, in that case, the combination of several models can potentially signify the procedure [8].

Main text

The significance and challenges of animals in biomedical research

There has always been a debate among the researchers about the significance of animal models, as many experiments yield promising results, whereas, others couldn't produce desired outcomes, so, that model could be translated to humans too. Owing to their close phylogenetic closeness to humans, non-human primates are proved to be the most potential candidate. They have genetic, biochemical, and psychological activities similar to humans. In this context, the necessity of non-human primates continues to grow in several areas of research of human diseases viz. AIDS, Parkinson's disease, hepatitis, dentistry, orthopaedic surgical techniques, cardiovascular surgeries, psychological disorders, toxicological studies, drug development, toxicological studies as well as vaccine development [4]. The discovery of vaccines and diagnostic modalities with the animal model does not only benefit humans but also enhances the lifespan of animals and prevents many zoonotic diseases, with the production of many vaccines and drugs like rabies, tetanus, parvo virus, feline leukemia, etc (Table 1).

Ethical matters on the use of animals

Animal research adheres to a few dimensions like government legislation, public opinion, moral stand, and search for appropriate alternatives for the research. Mahatma Gandhi opined that to judge the greatness and moral progress of a nation, one should judge the way its animals are being treated. Government legislation restricts the researchers and institutes from likely injury, pain, or suffering that may arise during animal research [33]. On the contrary, many modern countries ruled that before human administration, vaccine testing, lethal dose testing should be done on animals [34]. Social acceptance has also an influential role in animal experiments as it utilizes public money [33]. In their moral view, many people think that dog has more moral impact than pig, rat, fishes, mouse, etc.

Ethical issues on animal experimentation started in 1959, where the emphasis has been given on principles of 3Rs, reduction, refinement, and replacement of animal use [35]. According to this principle, minimum necessary numbers of animals are to be used for scientific experiments i.e. reduction. Pain or distress of the animals during experiments has to be minimized, i.e. refinement. Wherever applicable replacements of the animals are to be done with other non-animal alternatives, i.e. replacement. Though these principles are considered as the cornerstone of animal experimentations, but there are questions regarding the implementation of these regulations [36].

Laboratory (small) and large animal models for human diseases

The importance of rat and mouse models has proved their outstanding importance in biomedical research.
Besides, other mammalian and non-mammalian small domestic animals like the guinea pig, hamster, rabbit, ferrets, birds, amphibians, fishes, flies, worms have equal importance in terms of anatomical and physiological resemblance with humans. Large animal models also proved their uniqueness due to specific anatomical and physiological characteristics pertinent to those specific researches (Table 2).

Transgenic animal models in biomedical research
The gene rule and role in the biological system of human diseases has improved many folds with the introduction of the transgenic animal model in biomedical research within the last three decades. The early example of most unique biological research started, when structural gene coding for the human growth hormone (GH) was initiated into mice after fusion with the regulatory region of mouse metallothionein-I gene, as a result, transgenic mouse produced and showed excess GH production [157].

Table 1 Significance and challenges of different animal models

Disease model/procedure	Animal model	Significance	Challenges	References
Ischemia and reperfusion injury of the spinal cord	Animal models are warranted	But, need several models are required (Pig, rabbit, mouse)		[9]
Cartilage defect repair with biomaterials	There are murine, ovine, leporine, caprine, porcine, canine, and equine models	In regards to cartilage thickness, joint biomechanics and ethical and licensing matters, caprine models are the best suited		[10]
Monoclonal antibodies for cancer treatment	Preclinical trials of monoclonal antibodies (mAbs) in animal models are required to reach the clinic	But, mAbs are less adapted to animal studies		[11]
Animal models to study of limb restoration	Cockroach: similar resemblance within the animal kingdom, cheap, least ethical regulations	Not ideal for the less resemblance with human		[12]
	Zebrafish: genome is well identified, vertebrate; grow very fast, high regenerative capacity, least ethical regulations	Not ideal for the less resemblance with human		[13, 14]
	Mouse: cheap, fast growth, well established genome, many species and transgenic strains, mammalian	Findings not trustworthy for human trials		[15–17]
	Rat: larger than mice, cheap, fast growth, well established genome, many species and transgenic strains, mammalian	Findings not trustworthy for human trials as well as maintenance cost is more than mice		[18–21]
	Dog: large in size, higher physical activity, cheaper than horse, mammalian, good for preclinical trials or results are trustworthy for human trials	More ethical constraints, more maturity period than rodents, expensive rearing cost		[22–26]
	Horse: larger mammal than dog, higher physical activity, trial result can easily be transferred to human	More ethical constraints, more maturity period, expensive rearing cost		[27–30]
Development of antibacterials	Efficacy and toxicity of antibacterials can be studied	But, animal model can’t predict human response to that component		[31]
Streptozotocin (STZ)—induced diabetes model	STZ produces clinical features in animals that resemble diabetes in humans	But, physiochemical properties and toxicities of STZ cause mortality to the animals		[32]

Linking of the genotype with disease phenotype has been expedited with the genome editing with the introduction of the CRISPR–Cas9 system by which disease-causing mutations are done in animal models [158]. Moreover, the production of transgenic animals has been radically changed by the introduction of the CRISPR–Cas9 system. Through the successful use of this model accurate human disease models in animals have been produced and possible therapies have been potentiated. Recapitulation of various disease-causing single nucleotide polymorphisms (SNPs) in animal models is achieved by the introduction of gRNA with the combination of Cas9 and donor template DNA [159], viz. mouse model has enormous importance in carrying human genetic traits, developmental similarities as well as disease translation [158, 160–162]. Zhang and Sharp labs at MIT/Broad Institute used CRISPR–Cas9 through AAV and lentivirus [163] both in vivo and ex vivo in neurons as well as endothelial cells of mice for the production of lung cancer model in mice where lung causing genes namely Kras, Tp53, and Lkb1 were mutated. On the other
Table 2 Biomedical significances and limitations of small animal models

Small animal models	Significances and limitations	References
Rats (Rattus norvegicus domestica) and Mice (Mus musculus) model	Easy breeding, handling, less rearing care, easily interchangeable between rats and mice: They are mostly inbred, so do not have genetic variations like a human, not a suitable model for inflammation study	[37–42]
Guinea pig (Cavia porcellus)	Mostly outbred, suitable for cholesterol metabolism, asthma model, feto-placental development and parturition, Alzheimer’s disease study, tuberculosis research, vaccine study. High phenotypic variations, Ebola research in guinea pig is limited due to the poor infectious potential of the virus	[43–63]
Hamster, especially golden hamster (Mesocricetus auratus)	Excellent for reproductive research due to the strict progesterone, but not oestrogen, short gestation period, unique an anatomical feature like loose subcutaneous space, important for micro-circulation studies, cancer model, infection model for leptospirosis, vaccine studies	[64–81]
Rabbit (Oryctolagus cuniculus)	Good model for surgically created osteoarthritis, wound healing model, drug study, asthma model, cholesterol model, cardiovascular disease model, Alzheimer’s disease model	[82–97]
Equids (Equus)	Important for the study of articular defects, orthopaedic models, tendinopathies, asthma model, reproductive models. But, more care expenses are required	[98–102]
Cattle (Bos taurus)	Important for study of female reproductive model, pregnancy related issues, tuberculosis models. But, more care expenses are required	[103–107]
Goat (Capra hircus)	Potential for orthopaedic studies, mechanical circulatory support devices, model for female to male XX sex reversal	[108–116]
Sheep (Ovis aries)	Easy to handle, easy sampling, physiological and anatomical nature are similar to humans, good for surgical model for bone and wound healing, asthma model, heart pathology, vaccine development, but, mostly inbred strains	[117–129]
Cat (Felis catus)	Important models for asthma, obesity, type-2 diabetes mellitus, HIV, cerebral palsy	[130–140]
Dog (Canis familiaris)	Narcolepsy, hemophilia B, or hereditary diseases, cancer, musculoskeletal research, etc	[141–150]
Pig (Sus scrofa)	Large litter size, more similar with human physiology, important for cardiovascular study, Alzheimer’s disease, Atherosclerosis, Type 2 diabetes mellitus, Breast cancer, etc	[151–156]

hand, an MIT-Harvard team [164] disrupted the tumor suppressor genes Pten and Tp53, and consequently liver cancer was produced in mice.

Animal models in pharmaceutical drug development

In recent advancements, animal models are the most practical tools for pre-clinical drug screening before application into clinical trials. Animal models are considered as most important in vivo models in terms of basic pharmacokinetic parameters like drug efficiency, safety, toxicological studies, as these pre-clinical data are required before translating into humans. Toxicological tests are performed on a large number of animals like general toxicity, mutagenicity, carcinogenicity, and teratogenicity and to evaluate whether the drugs are irritant to eyes and skin. In most instances, both in vitro and in vivo models are corroborated before proceeding to medical trials. In vivo models are mostly conducted in mice, rats, and rabbits [2]. Certain stages are involved in preclinical trials with animal models: firstly, if the trial drug shows desirable efficacy then only further studies are carried out; secondly, if a drug in pre-clinical trials on animals proved to be safe, then it is administered in small human volunteer groups, at the same time, the animal trial will go on to evaluate the effect of the drug when administered for an extended period [8, 165]. Mostly, rodents are used for these trials as they have similar biological properties to humans and are easy to handle and rear in laboratories. In new regulations, it is mandatory to carry on the trials on non-rodents such as rabbits, dogs, cats, or primates simultaneously with rodents [166].

Animal models in orthopedic research

There are many conditions involving bone pathologies such as osteomyelitis, osteosarcoma, osteoporosis, etc. Being a complex organ, the treatment of bone needs special care and extensive researches that involves specialized techniques as well as specific animal models for the studies of specific diseases. Herein, the animal models emphasize mostly related to fracture healing (critical size defect), osteoporosis, osteomyelitis, and osteosarcoma (Table 3).

Animal models in diabetic and burn wound healing

Type 2 diabetes and associated foot ulcer have turned into an epidemic worldwide in recent years causing severe socio-economic trouble to the patients as well as the health care system of the nation as a whole [208]. Various researches depicted that chance of developing an ulcer in diabetic patients varies between 15–25% [209, 210] and the chance of recurrence is about 20–58% among the patients within a year after recovery [211]. Hence, many researchers studied different
Animal model	Name of the procedure	Anaesthetic protocol	Procedure	Significance and limitations	References
Rat model	Critical size bone defect	Induction: 4% (vol/vol) isoflurane in oxygen for ~2 min. Maintenance of anesthesia with 2% (wt/vol) isoflurane. Administration of intraperitoneal (IP) injections of 0.05 mg/kg buprenorphine with 25 gauge needle for peri-operative analgesia and 5 ml/kg sterile normal saline with 18 gauge needle to account for fluid losses during surgery. Provides 30 min anesthesia	5 mm diameter of bilateral calvarial bone defect	The rat femur has more soft tissue coverage than other bones and the model has the potentiality to replicate the risk factors of non-union as humans. Haversian system is lacking, rotational stability is not achieved with only k-wire/intramedullary pins	[167–173]
Rabbit model	Critical size bone defect (Fig. 1a)	Intramuscular injection of Xylazine hydrochloride (5 mg/kg BW) and ketamine hydrochloride (50 mg/kg BW)	15 mm critical radial defect at distal diaphysis	Similar bone density with humans, though size and shape are different, as well as different in bone microstructure. Tibia and the less-weight carrying bones are more used	[168, 172–180]
Goat and sheep	Segmental bone defect	Intramuscular injection of Xylazine hydrochloride @ 0.1–0.2 mg/kg BW	3 cm defect in femur, tibia, radius, and metatarsus	Similar body weight and bone size like humans. Plexiform bone is predominant; Haversian remodeling can be seen in the later stage of the life cycle. Different bone metabolism as compared to monogastric animals	[171, 181–186]
Rabbit model	Osteomyelitis (Fig. 1d)	Intramuscular injection of Xylazine hydrochloride (5 mg/kg BW) and ketamine hydrochloride (50 mg/kg BW)	A needle is to be introduced into the proximal femur medullary cavity, 1 mL of bone marrow is to be removed and replaced with 0.1 mL 5% sodium morrhuate and 0.1 mL of Staphylococcus suspension (Kanin strain, 3 × 10^6 cfu/mL). The opening point is to be sealed with bone wax	Rabbit bones are ideal for plate and screw fixation and the medullary canal of the tibia and femur are capable to accommodate internal implants. But, a higher dose of inoculation 10^3–10^6 CFU is required for successful infection	[187–193]
Rat model	Osteomyelitis	Induction: 4% (vol/vol) isoflurane in oxygen for ~2 min. Maintenance of anesthesia with 2% (wt/vol) isoflurane. Administration of intraperitoneal injections of 0.05 mg/kg buprenorphine with 25 gauge needle for perioperative analgesia and 5 ml/kg sterile normal saline with 18 gauge needle to account for fluid losses during surgery. Provides 30 min anesthesia	K wire is to be inserted into the medullary cavity of tibia and then 5% sodium morrhuate injection followed by a S. aureus suspension (10^2 cfu/10 μL) is to be injected into the tibial metaphysis. To prevent bacterial leakage fibrin glue and sealant is to be used	Bones in the rat are suitable for a different pattern of fracture and intramedullary implants. But rats require 10^3–10^5 CFU inoculation dose	[191, 193, 194]
Animal model	Name of the procedure	Anaesthetic protocol	Procedure	Significance and limitations	References
--------------	-----------------------	----------------------	-----------	-----------------------------	------------
Goat model	Osteomyelitis	Intramuscular injection of Xylazine hydrochloride @ 0.1–0.2 mg/kg BW	3-mm drill hole is to be made in distal tibia and injection of 1 mL 5% sodium morrhuate, afterwards an injection 10 min later with S. aureus (7.05 x 10^4 cfu). To prevent bacterial leakage fibrin glue and sealant is to be used.	They are larger than other species under study hence implants and prostheses that are used in humans can be used in goats successfully. But they are expensive as well as the raring cost is more. Inoculation dose is 10^3–10^5 CFU in goat models	[191, 193, 195]
Rabbit model	Osteoporosis	Intramuscular injection of Xylazine hydrochloride (5 mg/kg BW) and ketamine hydrochloride (50 mg/kg BW)	Bilateral ovariecotmy afterwards IM injection of 1 mg/kg BW/day of methylprednisolone for 4 weeks	They achieve early skeletal maturity than other mammals	[196–200]
Sheep model	Osteoporosis	General anesthesia with intramuscular injection of Xylazine hydrochloride @ 0.1–0.2 mg/kg BW	Bilateral ovariecotmy, low calcium diet, weekly IM administration of dexamethasone for 6 weeks	They are docile, easy to handle, and house. Bone size similar to human. But, as they are ruminant, hence, oral drug administration does not yield the desired result. Surgical intervention is required to create an abomasal fistula	[201–204]
Mouse model	Osteosarcoma	Isoflurane/oxygen-based anesthesia for induction then maintenance by IM administration of Xylazine @10 mg/kg BW and ketamine @100 mg/kg BW	After the preparation of osteosarcoma cells as described by Uluçkan et al., a 0.5 cm skin incision is made just below the knee to expose tibial tuberosity, then cells are injected into the medullary cavity with 26–28 G syringe and skin is sutured	Cheap availability, easy to handle, genetic similarity with humans. Hence, become important for oncological research	[205–207]
materials or drugs to treat diabetic wounds. Similarly, burn wounds occur due to exposure to flames, hot surfaces, liquids, chemicals, or even cold exposure [212]. Though with the recent modalities like skin grafting prognosis has improved however, the mortality rate is high [213–215].

Diabetic wound rat model
For developing this model, clinically healthy male Wistar rats (150 ~ 250 g body weight) are used. To induce hyperglycemia, injection nicotinamide (NAD) @ 150 mg/kg BW intraperitoneally, after 15 min injection Streptozotocin (STZ) @ 65 mg/kg BW intraperitoneally [216] are to be injected. The same procedure has to be repeated after 24 h. Blood is to be collected from the tail after 72 h to check hyperglycemia. Rats having high blood glucose levels (≥ 10 mmol/L) are considered to be diabetic [217]. For wound creation, rats are to be anesthetized with a combination of xylazine @10 mg/kg (intramuscular injection) and ketamine @90 mg/kg (intramuscular injection) [218]. After marking the dorsal back area with methylene blue, the site is to be prepared aseptically after shaving [219]. Full-thickness wound creation is to be done with a sterile 6 mm biopsy punch measuring 6 mm diameter and 2 mm depth and left open [218] (Fig. 1c).

Burn wound models
Because of the severity and types of cause, the management of burn injuries poses a significant challenge to plastic surgeons in humans. In general, primary and secondary burn wounds heal by the primary healing process, but, third-degree burn injuries with the destruction of all the skin layers are resistant to the normal healing process and necessitate the added surgical procedures, such as skin grafting, and the relevance of advanced wound dressing [220]. Several researchers used the albino Winstar male rats (*Rattus norvegicus*) model weighing 250 ± 50 g for the study of burn wounds. Anesthesia was achieved with intramuscular administration of atropine sulfate (0.04 mg/kg BW) and after 10 min a combination of 10% ketamine (90 mg/kg) and 2% xylazine (10 mg/kg) intramuscularly produced adequate anesthesia [221]. After aseptic preparation of the dorsal back area, thermal injury has to be made with a 10 mm aluminium rod previously heated with 100 °C boiling water. The aluminium rod has to be kept in situ for 15 s. Immediately after the procedure analgesic is to be provided and to be continued for at least 3 days [222–224]. A hot air blower has been used to produce a 6% third-degree burn injury in a mouse model [225]. In pig, a partial-thickness burn model in the skin was produced by placing a glass bottle having heated water at 92 °C for 14 s [226] In other studies, a homemade heating device was placed over the
Table 4 Different animal models for cartilage rejuvenation or repair

Animal model	Anesthesia	Procedure	Significance and limitations	References
Rabbit	Intramuscular injection of Xylazine hydrochloride (5 mg/kg BW) and ketamine hydrochloride (50 mg/kg BW)	3 mm diameter critical size defect at shoulder or knee, depth 0.2–0.5 mm at the chondral or osteochondral site (Fig. 1f)	Low cost, easy to handle, and house, but different from humans in respect of biomechanics due to their different hopping and walking pattern	[10, 82, 237–239]
Sheep/Goat	General anesthesia with intramuscular injection of Xylazine hydrochloride @ 0.1–0.2 mg/kg BW	Knee joint surgically exposed and 6–7 mm circular critical defect is to be created with 0.4–1.5 mm depth at chondral/osteochondral site	Easy to rare, handle and have close anatomical similarity with humans but knee contact areas are different, hence this must be considered	[10, 232, 240–245]
Dog	General anesthesia using preanesthetic atropine sulphate @0.04 mg/kg BW SC after 10 min xylazine 1–2 mg/kg BW IM. Maintenance by ketamine @5–10 mg/kg BW IV and diazepam 0.5 mg/ kg BW slow IV	Surgically created 4 mm diameter circular critical size defect of 0.95–13 mm depth at the chondral/osteochondral site of Knee, shoulder, elbow, hip or ankle joint	They are a good model for cartilage repair as they can be trained for treadmill walking, swimming, etc. But, disadvantages are there. Firstly, ethical issues in several countries, moreover canine cartilage is thinner compared to human and anatomical difference exists in the knee joint	[10, 230, 244, 246–248]
skin for 35 s to create burn wound [227]. In rabbits, it was demonstrated to use a dry-heated brass rod for 10 and 20 s at 90 °C to create a deep partial-thickness burn wound in the ear [228]. In mice, a full-thickness burn was created under 3–5% isoflurane anesthesia and intraperitoneal caprofen 5 mg/kg as analgesia. Here, a 4 cm² brass rod attached to a temperature probe was first heated to 260 °C and then cool to 230 °C and finally placed on the dorsum skin for 9 s [229] (Fig. 1e).

Animal models in cartilage repair
Animal models have enormous importance in the study of cartilage repair. Though in vitro models have been reported, it could not replace the necessity of using animal models prior to clinical implementation [230–236] (Table 4).

Animal models in vascular grafting
With the increase of cardiovascular complications, there is a need for surgical intervention using vascular grafts. Vascular grafting and cardiac valve repair have become important issues to the clinicians for the replacement of damaged vessels [249, 250], hence there is an increased demand for tissue-engineered blood vessel substitute [250, 251]. The main prosthetic options are synthetic grafts such as polytetrafluoroethylene, polyethylene...

Table 5

Animal species	Type of graft	Graft diameter (mm)	Graft patency rate	In vivo study model	References
Ovine	EC-seeded xenogenic porcine decellularized carotid artery	5	Common carotid artery/external jugular vein arteriovenous shunt	[254]	
Canine	PCL + VEGF	2	100% in 4 weeks	Femoral artery	[255]
Canine	P(LLA-CL) + Autologus, EC preendothelialization	4	88.9% in 24 weeks	Femoral artery	[256]
Canine	P(LLA-CL)	4	75% in 3 months	Femoral artery	[257]
Ovine	Decellularized graft derived from fibrin gel and ovine dermal fibroblasts	4	100% in 168 days	Carotid artery	[258]
Ovine	Heparin and VEGF-treated xenogenic porcine dSIS	5	92% in 90 days	Carotid artery	[259]
Mouse	PCL	0.5	53% in 28 days	Carotid artery	[260]
Rabbit	P(LLA-CL) + Collagen + Elastin + VEGF	4	86% in 3 weeks	Infrarenal aorta	[261]
Ovine	PCL electrospun + PLC + PLCL sponge	5	100% in 8 weeks	Carotid artery	[262]
Ovine	PHBV/PCL-GF	4	50% in 1 year	Carotid artery	[263]

Table 6

Animal model	Anaesthesia	Procedure	Significance and limitations	References
Goat	Ketamine (11–33 mg/kg BW) and midazolam (0.5–1.5 mg/kg BW), intravenously followed by maintenance with an isoflurane-oxygen combination	Following the aseptic technique, the lumbar intervertebral discs were opened via left lateral retroperitoneal, transperitoneal approach. A titanium Kirschner wire was positioned in the L1 or L2 vertebral body to facilitate marking of vertebral levels on radiographs	Weight range, disc height, size, and shape are similar to humans. They can withstand the stress of anaesthesia and surgery well. But, goat torse has a different anatomical structure in comparison to a human	[268–272]
Rabbit	Intramuscular injection of Xylazine hydrochloride (5 mg/kg BW) and ketamine hydrochloride (50 mg/kg BW)	After positioning the rabbit in lateral decubitus position a 20 degrees inclination was produced. IVD was exposed with a posterolateral retroperitoneal approach. After dissecting the skin, subcutaneous tissue, and muscle, the left anterolateral aspect of L1–L5 was exposed. Then, one IVD is punctured between L1–L5 with the help of a 16-gauge needle to a depth of 5 mm in the left anterolateral annulus fibrosus in the annular stab method	Similar to human disc degeneration in biochemical and histological aspects. But, the method causes rapid narrowing of the disc space and disc height as well as rapid herniation of nucleus pulposus	[273–280]
terephthalate, and polyurethane [252], and autologous conduits. Although these types of synthetic grafts provide reasonable outcomes in large-diameter vascular applications, long-term patency is questionable as compared to autologous conduits in small-diameter (< 6 mm) applications due to their inclination to various complications [253]. Despite the superior outcome of autologous grafts, it has some disadvantages such as limited availability and prior use. Moreover, the determination of a suitable animal model needs considerations of various factors. The factors for the selection of animal species depend on diameter and length of conduits, period of implantation, anastomotic site, price, accessibility, reaction to anesthesia and surgery, and flow of blood at sites of graft implantation. Animal applications of these tissue-engineered vessels are, therefore, an utmost necessity as pre-clinical studies before use in humans (Fig. 1b, Table 5).

Animal models in disc degeneration

Intervertebral disc degeneration (IVDD) and herniation manifested as lower back pain cause a massive socioeconomic burden to the patient and society as a whole [264–267]. But there is a lack of treatment modalities to cure mildly to moderate degeneration as well as complications associated with surgical interventions associated with the advanced stage; hence, researchers are enormously trying to reinforce regenerative strategies and to lower the suffering by controlling the pain with the injection of stem cells, growth factors hydrogels for replacement of the disc [268]. Diverse animal models have been reported as a pre-clinical trial to translate the procedure in humans (Table 6).

Conclusions

The importance of animal models is unquestionable in terms of in vivo study for the implementation of any biomedical research to humans. It serves not only the human race but also well being of veterinary patients. Animal models have not only important roles in drug development, toxicity studies, pharmacokinetic studies of a drug, but also the pre-clinical study of medical and tissue engineering devices that are intended to be used in humans. Laboratory animal models are more cost-effective and agreeable to high throughput testing as compared to large animal models. Yet, to obtain preclinical data and to ascertain the clinical potential of vascular graft as well as orthopedic bone plates and implants, large animal models that mimic human anatomy and physiology are to be developed. Whatever may be the modes of using animal models for biomedical researches, it should abide by the principles of 3Rs, i.e., reduction, refinement, and replacement of animals.

Abbreviations

BW: Body weight; Cfu: Colony forming unit; ESC: Embryonic stem cell; IVDD: Intervertebral disc degeneration; PCL: Polycaprolactone; STZ: Streptozotocin; VEGF: Vascular endothelial growth factor.

Acknowledgements

The authors acknowledge the kind support of Vice-Chancellor, West Bengal University of Animal and Fishery Sciences, Kolkata, India.

Author contributions

SKN: Conceptualization, Methodology, Supervision and final correction of draft. PM and SR: Data curation, Writing-Original draft preparation. DG: Editing. All authors have read and approved the final manuscript.

Funding

There was no funding support for this study.

Availability of data and materials

The data in the present manuscript were collected by searching of literatures as well as involving authors own materials.

Declarations

Competing interests

The authors declare that there is no competing of interest in this manuscript.

Author details

1 Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India. 2 Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.

Received: 4 November 2021 Accepted: 21 June 2022

Published online: 01 July 2022

References

1. Oparin AI. The origin of life on the earth. 3rd ed. New York: Academic Press Inc.; 1957. p. XViii+495.
2. Pehlivanovic B, Dina F, Emina A, Ziga Smajic N, Fahir B. Animal models in modern biomedical research. Eur J Pharm Med Res. 2019;6(7):35–8.
3. Barré-Sinoussi F, Montagutelli X. Animal models are essential to biological research: issues and perspectives. Future Sci OA. 2015;1(4):FSO63.
4. Andersen ML, Winter LMF. Animal models in biological and biomedical research - experimental and ethical concerns. An Acad Bras Ciênc. 2017;91(suppl 1):e20170238.
5. Gad SC. Animal models in toxicology. In: Wesler P, editor. Encyclopedia of toxicology. Boca Raton: CRC/Taylor & Francis; 2005. p. 138–40.
6. Simmons D. The use of animal models in studying genetic disease: transgenesis and induced mutation. Nat Educ. 2008;1(1):70.
7. Ernst W. Humanized mice in infectious diseases. Comp Immunol Microbiol Infect Dis. 2016;49:29–38.
8. Dam DV, Deyn PPD. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol. 2011;164(4):1285–300.
9. Simon F, Oberhuber A, Schelzig H. Advantages and disadvantages of different animal models for studying ischemia/reperfusion injury of the spinal cord. Eur J Vasc Endovasc Surg. 2015;49(6):744.
10. Moran CJ, Ramesh A, Brama PA, O’Byrne JM, O’Brien FJ, Levingstone TJ. The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop. 2016;3(1):1.
11. Loisel S, Ohresser M, Pallardy M, Daydé D, Berthou C, Cartron G, et al. Relevance, advantages and limitations of animal models used in the...
development of monoclonal antibodies for cancer treatment. Crit Rev Oncol Hematol. 2007;62(1):34–42.
12. French V. Leg regeneration in the cockroach, Blatella germanica: II. Regeneration from a non-congruent tibial graft/host junction. J Embryol Exp Morphol. 1976;35(2):267–301.
13. Olsen AS, Sarras MP, Intine RV. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair Regen. 2010;18(5):532–42.
14. Pfefferli C, Jazwinski A. The art of fin regeneration in zebrafish. Regeneration. 2015;2(2):72–83.
15. Gutpelt KM, Hinrichs WT, Hoffman JM. Skeletal muscle fibrosis in the mdx/vtnm +/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy. PLoS ONE. 2015;10(1):e0117306.
16. Heber-Katz E, Leferovich JM, Bedelbaeva K, Gourevitch D. Spallanzani’s mouse: a model of restoration and regeneration. In: Heber-Katz E, editor. Regeneration: stem cells and beyond. Berlin: Springer; 2004. p. 165–89.
17. Zaccagnini G, Palmisano A, Canu T, Maimone B, Russo FML, Ambrogi F, et al. Magnetic resonance imaging allows the evaluation of tissue damage and regeneration in a mouse model of critical limb ischaemia. PLoS ONE. 2015;10(11):e0142111.
18. Cheng L, Liu Y, Zhao H, Guo Y-J, Nie L. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats. Biochem Biophys Res Commun. 2013;440(2):330–5.
19. Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, et al. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep. 2015;5(1):18353.
20. Oliveira RW, Barker JH, Berezukov I, Pindur L, Kynigopoulos S, Eisenchen Loges M, et al. Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Sci Rep. 2019;9(1):11433.
21. Zaccagnini G, Gaetano C, Della Pietra L, Nanni S, Grasselli A, Mangoni A, et al. Telomerase mediates vascular endothelial growth factor-dependent responsiveness in a rat model of hind limb ischaemia. J Biol Chem. 2005;280(15):14790–9.
22. Baraza-Flores P, Fontiengoma TM, Wuebbles RD, Hermann HJ, Nunes AM, Korneay JN, et al. Laminin-111 protein therapy enhances muscle regeneration and repair in the GRMD dog model of Duchenne muscular dystrophy. Hum Mol Genet. 2019;28(16):2686–95.
23. Cook J, Fox D, Malavya P, Tomlinson J, Farr J, Kuroki K, et al. Evaluation of small intestinal submucosal grafts for meniscal regeneration in a clinically relevant posterior meniscectomy model in dogs. J Knee Surg. 2006;19(3):159–67.
24. Farah Z, Fan H, Liu Z, He J-Q. A concise review of common animal models for the study of limb regeneration. Organgenesis. 2016;12(3):109–18.
25. Fitzpatrick N, Smith TJ, Pronger CJ, Yeadon R, Ring M, Goodship AE, et al. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J Tissue Eng Regen Med. 2010;4(4):308–17.
26. Parnell LKS, Volk SW. The evolution of animal models in wound healing research. 1993–2017. Adv Wound Care. 2019;8(12):692–702.
27. Smith RK, Garvican ER, Fortier LA. The current ‘state of play’ of regenerative medicine in horses: what is the horse could tell the human. Regen Med. 2014;9(5):673–85.
28. Grek R, Hansel L. The strengths and limits of animal models as illustrated by the discovery and development of antibacterials. Biol Syst Open Access. 2013;2(2):109.
29. Goyal SN, Reddy NM, Patel KR, Nakhate KT, Ojha S, Patil CR, et al. Challenges and issues with streptozocin-induced diabetes – a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact. 2016;244:49–63.
30. VandeWoude S, Rollin BE. Practical considerations in regenerative medicine research: IACUCs, ethics, and the use of animals in stem cell studies. ILAR J. 2010;51(1):84–2. https://doi.org/10.1093/ilar.51.1.82.
31. Kooijman M. Why animal studies are still being used in drug development. Altern Lab Anim. 2013;41(6):79–81.
32. Russell WMS, Burch RL. The principles of humane experimental technique. Princ hum exp tech. London: Methuen & Co. Limited; 1960, p. 252.
33. Rathore S, Parab A, Suriyakalaa U, Sankarganesh A, Siva D, et al. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mouse model. Colloids Surf B Biointerfaces. 2013;108:185–90.
34. Antony J, Sthinha MAA, Joseph TA, Suryaikalaa U, Sankarganesh A, Siva D, et al. Evaluation of therapeutic benefit analysis. Tissue Eng Part C Methods. 2017;23(12):850–62.
35. Shurey S, Akelina Y, Legagneux J, Malzone G, Jiga L, Gharam AM. The rat model in microsurgery education: classical exercises and new horizons. Arch Plast Surg. 2014;41(3):201–8.
36. Soares E, Prediger RD, Suntes N, Castro AA, Viana SD, Lemos C, et al. Spatial memory impairments in a prediabetic rat model. Neuroscience. 2013;250:565–77.
37. van Scheidt M, Zhao Y, Kurz T, Pan C, Zeng L, Yang X, et al. Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 2017;25(2):248–61.
38. Mequannint W, Makonnen E, Urka G. In vivo anti-inflammatory activities of leaf extracts of Ocimum lamifolium in mice model. J Ethnopharma- col. 2011;134(1):32–6.
39. Antwi AO, Obiri DD, Oso N. Stigmasteryl modulates allergic airway inflammation in guinea pig model of ovalbumin-induced asthma. Mediators Inflamm. 2017;2017:2953930.
40. Bates K, Vink R, Martins R, Harvey A. Aging, cortical injury and Alzheimer’s disease- like pathology in the guinea pig brain. Neurobiol Aging. 2014;35(6):1345–51.
41. Buels KS, Jacoby DB, Fryer AD. Non-bronchodilating mechanisms of tiotropium prevent airway hyperreactivity in a guinea-pig model of allergic asthma. Br J Pharmaco. 2012;165(5):1501–14.
42. Cashman KA, Broderick KE, Wilkinson ER, Shaila CI, Bell TM, Shurtleff AC, et al. Enhanced efficacy of a codon-optimized DNA vaccine encoding the glycoprotein precursor gene of lassa virus in a guinea pig disease model when delivered by dermal electroprotection. Vaccines. 2013;1(3):262–77.
43. Clark S, Hall Y, Williams A. Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med. 2015;5(5):a018572.
44. deOgurrn R, Leite JO, Ratiff J, Volek JS, McGarne MM, Fernandez ML. Effects of increased dietary cholesterol with carbohydrate restriction on hepatic lipid metabolism in guinea pigs. Comp Med. 2012;62(2):109–15.
45. Espinoza J, Montaño LM, Persuáz M. Nongenomic bronchodilating action elicited by dehydroepiandrosterone (DHEA) in a guinea pig asthma model. J Steroid Biochem Mol Biol. 2013;138:174–82.
46. Grover A, Troud J, Arnett K, Izzo L, Lucas M, Strain K, et al. Assessment of vaccine testing at three laboratories using the guinea pig model of tuberculosis. Tuberculosis. 2012;92(1):105–15.
47. Kondo M, Tsuiji M, Hara K, Arimura K, Yagi O, Tagaya E, et al. Chloride ion transport and overexpression of TMEM16A in a guinea-pig asthma model. Clin Exp Allergy. 2014;74(6):795–804.
48. Laroucy-Maumus G, Laye E, Clark S, Prandi J, Rayner E, Lepore M, et al. Protective efficacy of a lipid antigen vaccine in a guinea pig model of tuberculosis. Vaccine. 2017;35(10):1395–402.
49. Maghdessian R, Côté F, Rouleau T, Quadda ABD, Levy É, Lavoie J-C. Ascorbylperoxide contaminating parenteral nutrition perturbs the lipid metabolism in newborn guinea pig. J Pharmacol Exp Ther. 2010;334(1):278–84.
50. Mahajan SG, Mehta AA. Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma. Eur J Pharmaco. 2011;650(1):458–64.
51. Ordway DJ, Shanley CA, Caraway MW, Orme EA, Rucy DS, Hascall-Dove L, et al. Evaluation of standard chemotherapy in the guinea pig model of tuberculosis. Antimicrob Agents Chemother. 2010;54(5):1820–33.
56. Orme IM, Ordway DJ. Mouse and guinea pig models of tuberculosis. In: Jacobs WR Jr, McShane H, Mlazhy V, Orme IM, editors. Tuberculosis and the tubercle bacillus. John Wiley & Sons, Ltd; 2017. p. 143–62.
57. Pohanka M, Zemek F, Bandouchova H, Pikula J. Toxicological scoring of Alzheimer's disease drug hypertension in a guinea pig model. Toxicol Mech Methods. 2012;22(3):231–5.
58. Ryan VE, Bailey TW, Liu D, Vemulapalli T, Cooper B, Cox AD, et al. Listeria adhesion protein-expressing bioengineered probiotics prevent feto-placental transmission of Listeria monocytogenes in a pregnant guinea pig model. Microb Pathog. 2021;151:104752.
59. Salazar C, Valdivia G, Aridites AG, Ever J, Palacios AG. Genetic variants associated with neurodegenerative Alzheimer disease in natural models. Biol Res. 2016;49(1):14.
60. Sharman MJ, Nik SHM, Chen MM, Ong D, Wijaya L, Laws SM, et al. The guinea pig as a model for sporadic Alzheimer’s disease (AD): the impact of cholesterol on expression of AD-related genes. PLoS ONE. 2013;8(6):e66235.
61. Valdivia G, Acuña S, Schneider D, Ortiz R, Padilla O. Bradykinin exerts independent effects on trophoblast invasion and blood pressure in pregnant guinea pigs. Reprod Sci. 2020;27(8):1648–55.
62. Veseleknal R, Shilapobersky M, Pyles RB, Wei Q, Sullivan SM, Boume N. A Vaxfectin®-adjuvanted H5N2 psdm RNA vaccine is effective for prophylactic and therapeutic use in the guinea pig model of genital herpes. Vaccines. 2012;349(6):7046–51.
63. Yang R, Guo P, Song X, Liu F, Gao N. Hyperlipidemic guinea pig model: mechanisms of triglyceride metabolism disorder and comparison to rat. Biol Pharm Bull. 2011;34(7):1046–51.
64. Barbosa MDCL, Bouskela E, Cyrino FZ, Azevedo APS, Costa MCP, de Souza MDGC, et al. Effects of babassu oil on basal activity and macromolecular leakage in the microcirculation: observation in the hamster cheek pouch. Lipids Health Dis. 2012;11(1):158.
65. Camarozano AC, de Garcia ACFZ, Bottino DA, Bouskela E. Effects of microbubbles and ultrasound on the microcirculation: observation on the hamster cheek pouch. J Am Soc Echocardiogr. 2010;23(12):1323–30.
66. Chanut FJA, Williams AM. The syrian golden hamster estrous cycle: unique characteristics, visual guide to staging, and comparison with the rat. Toxicol Pathol. 2016;44(1):43–50.
67. Cruz SS, Garaballo MA, Trivillin VA, Itoz ME, Pozzi ECC, Thorn S, et al. Optimization of the classical oral cancerization protocol in hamster to study oral cancer therapy. Oral Dis. 2020;26(6):1175–84.
68. Evangelista KV, Lourdault K, Matsunaga J, Haake DA. Immunoprotective mechanisms to translational medicine. Pharmacol Ther. 2015;146:104–19.
69. Ford J, Canns K, Hess RA. Ductuli efferentes of the male golden Syrian hamster reproductive tract. Andrology. 2014;2(4):510–20.
70. Tsai AG, Intaglietta M, Sakai H, Delpy E, Rochelle CDL, Rousselot M, Zal F. Microcirculation and NO-CO Studies of a natural extracellular hemoglobin developed for an oxygen therapeutic carrier. Curr Drug Discov Technol. 2012;9(3):166–72. https://doi.org/10.2174/157016312802650814.
71. Gomes-Solecki M, Santecchia I, Werts C. Animal models of leptospirosis: a Vaxfectin®-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines. 2017;2:21.
72. Ye H, Yang K, Tan X-M, Fu X-J, Li X-H. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal muco carcinoma. Onco Targets Ther. 2015;8:1419–26.
73. Zhang W, Xie X, Wang J, Song N, Lu T, Wu D, et al. Increased inflammation with crude E. coli LPS protects against acute leptospirosis in hamsters. Emerg Microbes Infect. 2020;9(1):140–7.
74. Bajpayee AY, Scheu M, Grodzinsky AJ, Porter RM. A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage. J Orthop Res. 2015;33(5):660–7.
75. Brunner AM, Henn CM, Drewniak B, Lesieur-Brooks A, Machan J, Crisco JJ, et al. High dietary fat and the development of osteoarthritis in a rabbit model. Osteoarthr Cartil. 2012;20(6):584–92.
76. Camacho P, Fan H, Liu Z, He J-Q. Small mammalian animal models of heart disease. Ann J Cardiovasc Dis. 2012;3(9):70–9.
77. Dos Santos RA, Sudy R, Petêk F, Haber W. Physiologically variable ventilation in a rabbit model of asthma exacerbation. Br J Anaesth. 2020;125(6):1107–16.
78. Elmosry S, Funakoshi T, Sasazawa F, Toido M, Tadano S, Iwasaki N. Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model. Osteoarthritis Cartilage. 2014;22(1):121–7.
79. Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther. 2015;146:104–19.
80. Hu C-H, Tseng Y-W, Chiu C-Y, Lan K-C, Chou C-H, Tai C-S, et al. Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model. Stem Cell Res Ther. 2019;10(1):275.
81. Kamaruzaman NA, Sulaiman SA, Kaur G, Yahaya B. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma. BMC Complement Altern Med. 2014;14(1):176.
82. Kobayashi T, Ito T, Shomi M. Roles of the WHH rabbit in translational research on hypercholesterolemia and cardiovascular diseases. J Biomed Biotechnol. 2011;2011:406473.
83. Laverty S, Giraud CA, Williams JM, Hunziker EB, Pritzker KH. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rabbit. Osteoarthr Cartil. 2010;18:553-65.
84. Liang H, Baudouin C, Daull P, Garrigue J-S, Brignole-Baudouin F. Ocular heart disease. Am J Cardiovasc Dis. 2016;6(3):70–80.
85. Schreurs BG, Smith-Bell CA, Lemieux SK. Dietary cholesterol increases independent effects on trophoblast invasion and blood pressure in a hamster model of Alzheimer's disease. Neuroscience. 2013;254:61–9.
86. Shirai T, Kobayashi M, Nishitani K, Satake T, Kuroki H, Nakagawa Y, et al. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma. BMC Complement Altern Med. 2014;14(1):176.
87. Liang H, Baudouin C, Daull P, Garrigue J-S, Brignole-Baudouin F. Ocular heart disease. Am J Cardiovasc Dis. 2016;6(3):70–80.
88. Schreurs BG, Smith-Bell CA, Lemieux SK. Dietary cholesterol increases independent effects on trophoblast invasion and blood pressure in a hamster model of Alzheimer's disease. Neuroscience. 2013;254:61–9.
89. Schoenberg ED, Blake DA, Swann FB, Parlin AW, Zurakowski D, Margo LS, et al. Equine models for the investigation of mesenchymal stem cell therapies in orthopaedic disease. Oper Tech Sports Med. 2017;25(1):41–9.
99. Gastal EL, de Gastal MO, Wischral A, Davis J. The equine model to study the influence of obesity and insulin resistance in human ovarian function. Acta Sci Vet. 2011;59(Suppl 1):57-70.

100. Kajabi AW, Casula V, Sarin JK, Ketola JH, Nykanen O, Te Moller NCR, et al. Evaluation of articular cartilage with quantitative MRI in an equine model of post-traumatic osteoarthritis. J Orthop Res. 2021;39(1):63-73.

101. Nixon AJ, Begum L, Mohammed HO, Huebregtse B, O’Callaghan MM, Matthews GL. Autologous chondrocyte implantation drives early chondrogenesis and organized repair in extensive full- and partial-thickness cartilage defects in an equine model. J Orthop Res. 2017;35(7):1121-30.

102. Vargas A, Boivin R, Cano P, Murcia Y, Bazin I, Lavoie JP. Neutrophil extracellular traps are downregulated by glucocorticosteroids in lungs in an equine model of asthma. Respir Res. 2017;18(1):207.

103. Brooks-Pollock E, Wood JLN. Eliminating bovine tuberculosis in cattle. Vaccine. 2014;32(43):5645–9.

104. Hoeck VV, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Villarreal-Ramos B, Berg S, Chamberlain L, McShane H, Hewinson RO. Tuberculosis immunity: opportunities from studies with cattle. Dev Immunol. 2010;2011: e768542.

105. Malhotra A, Pelletier MH, Yu Y, Christou C, Walsh WR. A sheep model for canonicine bone healing. Front Surg. 2014;1:37.

106. Martineillo T, Gomiero C, Perazzi A, Iacopetti I, Gemignani F, DeBenedetti GM, et al. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res. 2018;14(1):202.

107. Swibel-Rosenthal LH, Benninger MS, Stone CH, Zacharek MA. Wound healing in the paranasal sinuses after coblation, part II: evaluation for endoscopic sinus surgery using a sheep model. Am J Rhinol Allergy. 2010;24(6):464–6.

108. Theodorakis D, Turozhakevich I, Calistrut A, Cebotari S, Meyer T, Sarkouch S, et al. Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep. Biomaterials. 2015;52:221–8.

109. Van der Velden J, Harkness LM, Barker DM, Barcham GJ, Ugalde CL, Van der Velden J, Harkness LM, Barker DM, Barcham GJ, Ugalde CL. Novel synthetic pulmonary heart valve allografts in elderly sheep. Biomaterials. 2010;489:128–40.

110. Gerds V, Wilson HL, Meurens F, van Drunen Littel S, van den Hurk S, Wilson V, van den Hurk S, Meurens F, van Drunen Littel S, van den Hurk S. The goat as a model for testing early intervention in cerebral palsy? Front Neurol. 2014;5:258.

111. Clowry GJ, Basuodan R, Chan F. What are the best animal models for testing early intervention in cerebral palsy? Front Neurol. 2014;5:258.

112. Lienau J, Schmidt-Bleek K, Peters A, Weber H, Ball HJ, Duda GN, et al. Insight into the molecular pathophysiology of delayed bone healing in a sheep model. Tissue Eng Part A. 2011;17(10):1919–9.

113. Pannetier M, Elzaiat M, Thépot D, Pailhoux E. Telling the story of XX sex determination. Sex Dev. 2012;6(1–3):33–45.

114. Hongli W, Fan Z, Feizhou Lv, Jianyuan J, Dayong L, Xinlei X. Osteoinductive activity of ErhBMP-2 after anterior cervical diskectomy and fusion with a ß-TCP interbody cage in a goat model. Orthopedics. 2010;33(10):e23183.

115. Asquith CRM, Sil BC, Lavinien T, Tizzard CJ, Coles SJ, Poso A, et al. Novel epidithiodiketopiperazines as anti-siral zinc ejetors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection. Bioorg Med Chem. 2019;27(18):4174–84.

116. Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Gavina-Bianchi P. Animal models of asthma: utility and limitations. J Asthma Allergy. 2017;10:293–301.

117. Clowry GJ, Basuodan R, Chan F. What are the best animal models for testing early intervention in cerebral palsy? Front Neurol. 2014;5:258.

118. Emmert MY, Schmitt BA, Loerakker S, Sanders B, Spriestersbach H, Faburay B, Gaudreault NN, Liu Q, Davis AS, Shivanna V, Sunwoo SY, et al. Development of a sheep challenge model for Rift Valley fever. Virology. 2018;549:128–40.

119. Gerds V, Wilson HL, Meurens F, van Drunen Littel S, van den Hurk S, Wilson V, van den Hurk S, Meurens F, van Drunen Littel S, van den Hurk S. The goat as a model for testing early intervention in cerebral palsy? Front Neurol. 2014;5:258.

120. Gouveris H, Nousia C, Giatromanolaki A, Riga M, Katomitochelakis M, Ypsilantis P, et al. Inferior nasal turbinate wound healing after submucosal radiofrequency tissue ablation and monopolar electrocautery: histologic study in a sheep model. Laryngoscope. 2010;120(7):1453–9.

121. Gouveris H, Nousia C, Giatromanolaki A, Riga M, Katomitochelakis M, Ypsilantis P, et al. Inferior nasal turbinate wound healing after submucosal radiofrequency tissue ablation and monopolar electrocautery: histologic study in a sheep model. Laryngoscope. 2010;120(7):1453–9.

122. Hosper NA, Eggink AJ, Roelofs LAJ, Wijnen RMH, van Luyn MJAJ, Bank RA, et al. Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model. Biomaterials. 2010;31(14):3910–9.

123. Jäger M, Ott C-E, Grünhagen J, Hecht J, Schell H, Mundlos S, et al. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing. BMC Genomics. 2011;12(1):158.

124. Lienau J, Schmidt-Bleek K, Peters A, Weber H, Ball HJ, Duda GN, et al. Insight into the molecular pathophysiology of delayed bone healing in a sheep model. Tissue Eng Part A. 2011;17(10):1919–9.

125. Malhotra A, Pelletier MH, Yu Y, Christou C, Walsh WR. A sheep model for canonicine bone healing. Front Surg. 2014;1:37.

126. Martineillo T, Gomiero C, Perazzi A, Iacopetti I, Gemignani F, DeBenedetti GM, et al. Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Vet Res. 2018;14(1):202.

127. Swibel-Rosenthal LH, Benninger MS, Stone CH, Zacharek MA. Wound healing in the paranasal sinuses after coblation, part II: evaluation for endoscopic sinus surgery using a sheep model. Am J Rhinol Allergy. 2010;24(6):464–6.

128. Theodoridis D, Turozhakevich I, Calistrut A, Cebotari S, Meyer T, Sarkouch S, et al. Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep. Biomaterials. 2015;52:221–8.

129. Van der Velden J, Harkness LM, Barker DM, Barcham GJ, Ugalde CL, Van der Velden J, Harkness LM, Barker DM, Barcham GJ, Ugalde CL. Novel synthetic pulmonary heart valve allografts in elderly sheep. Biomaterials. 2010;489:128–40.
142. Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD, Sanvito F, et al. Laboratory Animal Research (2022) 38:18

143. Correard S, Plassais J, Lagoutte L, Botherel N, Thibaud J-L, Hédan B, et al. Canine neuropaathies: powerful spontaneous models for human hereditary sensory neuropathies. Hum Genet. 2019;138(5):455–66.

145. Elbadawy M, Usui T, Mori T, Tsunedomi R, Hazama S, Nabeto R, et al. Establishment of a novel experimental model for muscular-invasive bladder cancer using a dog bladder cancer organoid cancer. Cancer Sci. 2019;110(9):2086–218.

147. French RA, Samelson-Jones BJ, Samelson JJ, Niemeyer GP, Lothrop CD Jr, Merricks BD, Miller ME, Bradbury AM, Million ED, Duan D, Taghian T, et al. Dog as a model in studies on human hereditary diseases. Acharya NK, Qi X, Goldwaser EL, Godsey GA, Wu H, Kosciuk MC, et al. High efficiency of BRCA1 knockout in vivo. van Hout GPJ, Bosch L, Ellenbroek GHJM, de Haan JJ, van Solinge WW, Wahlberg LU, Lind G, Almqvist PM, Kusk P, Tornøe J, Juliusson B, Palmiter RD, Norstedt G, Gelinas RE, Hammer RE, Brinster RL. Metal-derided lentiviral gene therapy in a dog model of hemophilia B cancer. Cancers. 2020;11(1):11335.

150. Luo Y, Li J, Liu Y, Liu Y, Du Y, Li S, et al. Ductal carcinoma in situ progression in dog model of breast cancer. Front Vet Sci. 2020;7:208.

152. Swintoni M. Dog as a model in studies on human hereditary diseases and their gene therapy. Reprod Biol. 2014;14(1):44–50.

153. Acharya NK, Qi X, Goldwaser EL, Godsey GA, Wu H, Kosciuk MC, et al. Retinal pathology is associated with increased blood-retina barrier permeability in a diabetic and hypercholesterolemic pig model. Beneficial effects of the LpPLA2 inhibitor Darapladib. Diab Vasc Dis Res. 2017;14(3):200–13.

154. Yang L, Guell M, Byrne S, Yang JL, De Los AA, Mali P, et al. Optimizational considerations of animal models used in tissue engineering of bone. Biomaterials. 2004;25(9):1697–714.

155. Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med. 2011;61(1):76–85.

156. Badyal DK, Desai C. Animal use in pharmacology education and research: the changing scenario. Indian J Pharmacol. 2014;46(3):257–65.

157. Fox JG, Barthold SW, Davission MT, Newcomer CE, Quimby FW, Smith AL. The mouse in biomedical research. Elsevier Inc.; 2007.

158. Lee DJ, Diachina S, Lee YT, Zhao L, Zou R, Tang N, et al. Decellularized bone matrix grafts for calvaria regeneration. J Tissue Eng. 2016;7:2041731416680306.

159. Liu M, Lv Y. Reconstructing bone with natural bone graft: a review of in vivo studies in bone defect animal model. Nanomaterials. 2018;8(12):999.

160. Mukherjee S, Nandi SK, Bunda D, Kundu B. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone. 2015;70:73–86.

161. Begam H, Nandi SK, Chanda A, Kundu B. Effect of bone morphogenetic protein on Zn-HAp and Zn-HAp/collagen composite: a systematic in vivo study. Res Vet Sci. 2017;115:1–9.

162. Dasgupta S, Maji K, Nandi SK. Investigating the mechanical, physico-chemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: in vitro and in vivo. Mater Sci Eng C. 2019;94:713–28.

163. Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbühl R, Szalay K. The effect of plateau-rich plasma on healing in critical-size long-bone defects. Biomaterials. 2008;29(29):3983–92.

164. Khan PK, Mahato A, Kundu N, Mukherjee P, Datta S, et al. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep. 2016;6:32964.

165. Mukherjee S, Nandi SK, Bunda D, Chanda A, Sen S, Das PK. Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model. J Mech Behav Biomed Mater. 2016;60:243–55.

166. Nandi SK, Kundu B, Bunda D, Kundu N, Mukherjee P, Datta S, et al. The repair of segmental bone defects and osteoporosis. J Orthop Res. 2018;36(6):1559–72.

167. Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbühl R, Szalay K. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials. 2008;29(29):3983–92.

168. Khan PK, Mahato A, Kundu N, Mukherjee P, Datta S, et al. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds. Sci Rep. 2016;6:32964.

169. Nandi SK, Kundu B, Bunda D, Chanda A, Sen S, Das PK. Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model. J Mech Behav Biomed Mater. 2016;60:243–55.

170. Mapara M, Thomas BS, Bhat KM. Rabbit as an animal model for experimental research. Dent Res J. 2012;9(1):111–8.

171. Pearce AJ, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.

172. Evring KK. Anesthesia techniques in sheep and goats. Vet Clin North Am Food Anim Pract. 1990;6(3):759–78.

173. Liu G, Zhao L, Zhang W, Cui L, Liu W, Gao Y. Repair of goat tibial defects with bone marrow stromal cells and β-tricalcium phosphate. J Vet Sci Mater Med. 2008;19(6):2367–76.

174. Nandi SK, Kundu B, Datta D, Basu DR. The repair of segmental bone defects with porous bioglass: an experimental study in goat. Res Vet Sci. 2009;86(1):162–73.

175. Nandi SK, Kundu B, Ghosh SK, De DK, Basu D. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci. 2008;9(2):183–91.

176. Wang L, Fan H, Zhang Z-Y, Lou A-J, Pei G-X, Jiang S, et al. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials. 2010;31(36):9452–61.

177. Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998;139(2):663–70.

178. Khouzam B, Nandi SK, Roy S, Duquette N, Soundapandian C, Datta S, et al. Systematic approach to treat chronic osteomyelitis through ceftriaxone–sulfactam impregnated porous β-tricalcium phosphate localized delivery system. Ceram Int. 2012;38(2):1533–48.
236. Moyer HR, Wang Y, Faroque T, Wick T, Singh KA, Xie L, et al. A new animal model for assessing cartilage repair and regeneration at a non-articular site. Tissue Eng Part A. 2010;16(7):2321–30.

237. Das P, Mishra R, Devi B, Rajesh K, Basak P, Roy M, et al. Decellularized xenogenic cartilage extracellular matrix (ECM) scaffolds for the reconstruction of osteochondral defects in rabbits. J Mater Chem B. 2021;9(24):4873–94.

238. Orth P, Zurakowski D, Wincheringer D, Madry H. Reliability, reproducibility, and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model. Tissue Eng Part C Methods. 2012;18(5):329–39.

239. Qi Y, Du Y, Li W, Dai X, Zhao T, Yan W. Cartilage repair using mesenchymal stem cell (MSC) sheet and MSCs-loaded biayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1424–33.

240. Desando G, Giavaresi G, Cavollo C, Bartolotti I, Sartoni F, Nicolli Aldini N, et al. Autologous bone marrow concentrate in a sheep model of osteoarthritis: new perspectives for cartilage and meniscus repair. Tissue Eng Part C Methods. 2016;22(6):608–19.

241. Marmotti A, Bruzzone M, Bonasia DE, Castoldi F, Degrèffer MMV, Bignard C, et al. Autologous cartilage fragments in a composite scaffold for one stage osteochondral repair in a goat model. Eur Cell Mater. 2013;25:15–32.

242. Miot S, Brehm W, Dickinson S, Sims T, Wixmerten A, Longinotti C, et al. Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur Cell Mater. 2012;23:222–36.

243. Udé CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, et al. Cartilage regeneration by chondrogenic induced Adult stem cells in osteoarthritic sheep model. PLoS ONE. 2014;9(6):e98770.

244. Proffen BL, McElfresh M, Fleming BC, Murray NM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–9.

245. LaPrade RF, Kimber KA, Wentorf FA, Olsen EJ. Anatomy of the postero-lateral aspect of the goat knee. J Orthop Res. 2006;24(2):141–8.

246. Cook JL, Hung CT, Kuroki K, Pfeiffer FM, et al. Animal models of cartilage repair: Bone Jt Res. 2013;4(4):89–94.

247. Sasaki A, Mizuno M, Mochizuki M, Sekiya I. Mesenchymal stem cells for reconstruction of osteochondral defects in rabbits. J Mater Chem B. 2013;25:222–30.

248. Ahern BJ, Parvizi J, Boston R, Schaer TP. Preclinical animal models in sinus trauma: a systematic review. Osteoarthr Cartil. 2019;27(12):1860–9.

249. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Executive summary: heart disease and stroke statistics—2014 update. Circulation. 2014;129(3):399–410.

250. Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, et al. The efficacy of Link N as a mediator of repair in a rabbit model of decellularization into the sheep femoral artery. Tissue Eng Part A. 2014;20(11–12):1726–34.

251. Koobatian MT, Row S, Smith RJ Jr, Koenigsknecht C, Andreadis ST, Swartz DD. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials. 2016;74:344–58.

252. Chan AH, Tan RP, Miller PL, Lee BSL, Vanaqsz L, Ng MKC, et al. Evaluation of synthetic vascular grafts in a mouse carotid grafting model. PLoS ONE. 2017;12(3):e0174773.

253. Hu T, Pan X-D, Zheng J, Ma W-G, Sun L-Z. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF. Int J Surg. 2017;44:244–9.

254. Matsuoka Y, Miyamoto S, Miyachi H, Inaki R, Shoji T, Blum K, et al. Improvement of a novel small-diameter tissue-engineered arterial graft with heparin conjugation. Ann Thorac Surg. 2021;111(4):1234–41.

255. Antonova LV, Mirnov AV, Yuzhinl AE, Krvikina EO, Shabaev AR, Revzova MA, et al. A brief report on an implantation of small-caliber biodegradable vascular grafts in a carotid artery of the sheep. Pharmaceutica. 2020;2013(5):101.

256. Cappello R, Bird JLE, Pfeiffer D, Bayliss MT, Duddia J. Notochordal cell production and extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine. 2006;31(8):873–82. https://doi.org/10.1097/01.brs.0000209302.00016f.

257. Centers for Disease Control Prevention (CDC). Prevalence and most common causes of disability among adults–United States 2005. MMWR Morb Mortal Wkly Rep. 2005;54(16):421–6.

258. Webb AA. Potential sources of neck and back pain in clinical conditions of dogs and cats: a review. Vet J Lond Engl. 1997;203(3):193–213.

259. Yelin E, Weinstein S, King T. The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum. 2016;46(3):259–60.

260. Gullbrand SE, Malhotra NR, Schaer TP, Zawacki Z, Martin JT, Bendigo JP, et al. A large animal model that recapitulates the spectrum of human intervertebral disc degeneration. Osteoarthris Cartil. 2017;25(1):146–56.

261. Zhang C, Gullbrand SE, Schaer TP, Lau YK, Jiang Z, Dodge GR, et al. Inflammatory cytokine and catalytic enzyme expression in a goat model of intervertebral disc degeneration. J Orthop Res. 2020;38(11):2521–31.

262. Zhang Y, Drapeau S, An HS, Markova D, Lenart BA, Anderson DG. Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine. 2011;36(19):1519–27.

263. Patel SA, Kepler CK, Schaer TP, Anderson DG. Large animal models of disc degeneration: In: Shapiro IM, Risdub MV, editors. The Intervertebral Disc: molecular and structural studies of the disc in health and disease. Vienna: Springer. 2014. p. 291–303.

264. Malli SE, Kumbhakam P, Dewle A, Srivastava A. Evaluation of tissue engineering approaches for disc degeneration in relevant animal models. ACS Appl Bio Mater. 2021;4(11):7271–37.

265. Ashinsky BG, Gullbrand SE, Bonneviev ED, Mandalapu SA, Wang C, Elliott DM, et al. Multiscale and multimodal structure–function analysis of intervertebral disc degeneration in a rabbit model. Osteoarthris Cartil. 2019;27(12):1860–9.

266. Kroeber MW, Unglaub F, Wang H, Schmid C, Thomsen M, Nerlich A, et al. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine. 2002;27(23):2684–90.

267. Leckie SK, Bechara BP, Hartman RA, Sowa GA, Woods BI, Coelho JP, et al. Injection of AAV2-BMP2 and AAV2-TIMP1 into the nucleus pulposus slows the course of intervertebral disc degeneration in an in vivo rabbit model. Spine. 2012;37(17):1717–20.

268. Miwaile F, Masuda K, Pchika R, Epure LM, Yoshikawa T, Hemmad A, et al. The efficacy of Link-N as a mediator of repair in a rabbit model of intervertebral disc degeneration. Arthritis Res Ther. 2011;13(4):R20.

269. Kong MH, Do DH, Miyazaki M, Wei F, Yoon S-H, Wang JC. Rabbit Model for in vivo Study of intervertebral disc degeneration and regeneration. J Korean Neurosurg Soc. 2008;44(5):327–33.
radiological and histological appearances of disc degeneration. Spine. 2005;30(1):5–14.

279. Lipson SJ, Muir H. Proteoglycans in experimental intervertebral disc degeneration. Spine. 1981;6(3):194–210. https://doi.org/10.1097/00007632-198105000-00002.

280. Sobajima S, Kompel JF, Kim JS, Wallach CJ, Robertson DD, Vogt MT, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine. 2005;30(1):15–24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.