Multiple Species of *Trichosporon* Produce Biofilms Highly Resistant to Triazoles and Amphotericin B

Isabel Antonieta Iturrieta-González¹, Ana Carolina Barbosa Padovan¹,²*, Fernando César Bizerra¹, Rosane Christine Hahn³, Arnaldo Lopes Colombo¹*

¹Laboratório Especial de Micologia, Disciplina de Infectologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil, ²Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil, ³Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Mato Grosso, Cuiabá, MT, Brazil

Abstract

Invasive infections caused by *Trichosporon* spp. have increased considerably in recent years, especially in neutropenic and critically ill patients using catheters and antibiotics. The genus presents limited sensitivity to different antifungal agents, but triazoles are the first choice for treatment. Here, we investigated the biofilm production and antifungal susceptibility to triazoles and amphotericin B of 54 *Trichosporon* spp. isolates obtained from blood samples (19), urine (20) and superficial mycosis (15). All isolates and 7 reference strains were identified by sequence analysis and phylogenetic inferences of the IGS1 region of the rDNA. Biofilms were grown on 96-well plates and quantitation was performed using crystal violet staining, complemented with Scanning Electron Microscopy (SEM). Susceptibility tests for fluconazole, itraconazole, voriconazole, and amphotericin B were processed using the microdilution broth method (CLSI) for planktonic cells and XTT reduction assay for biofilm-forming cells. Our results showed that *T. asahii* was the most frequent species identified (66.7%), followed by *T. faecale* (11.1%), *T. asteroides* (9.3%), *T. inkin* (7.4%), *T. dermatis* (3.7%) and one *T. coremiiforme* (1.8%). We identified 4 genotypes within *T. asahii* isolates (G1, G3, G4 and G5) and 2 genotypes within *T. faecale* (G1 and G3). All species exhibited high adhesion and biofilm formation capabilities, mainly *T. inkin*, *T. asteroides* and *T. faecale*. Microscopy images of high biofilm-producing isolates showed that *T. asahii* presented mainly hyphae and arthroconidia, whereas *T. asteroides* exhibited mainly short arthroconidia and few filaments. Voriconazole exhibited the best in vitro activity against all species tested. Biofilm-forming cells of isolates and reference strains were highly resistant to all antifungals tested. We concluded that levels of biofilm formation by *Trichosporon* spp. were similar or even greater than those described for the *Candida* genus. Biofilm-forming cells were at least 1,000 times more resistant to antifungals than planktonic cells, especially to voriconazole.

Citation: Iturrieta-González IA, Padovan ACB, Bizerra FC, Hahn RC, Colombo AL (2014) Multiple Species of *Trichosporon* Produce Biofilms Highly Resistant to Triazoles and Amphotericin B. PLoS ONE 9(10): e109553. doi:10.1371/journal.pone.0109553

Editor: David R. Andes, University of Wisconsin Medical School, United States of America

Received May 9, 2014; Accepted July 30, 2014; Published October 31, 2014

Copyright: © 2014 Iturrieta-González et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This study received funds through A.L.C. from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (grant 2007/08575-1) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. I.A.I.G. received a master training fellowship from CNPq; A.C.B.P. received a postdoctoral fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (PND 26460-09-0); F.C.B. received a postdoctoral fellowship from the Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Dr. Colombo has received research and educational grants from Astellas, MSD, Pfizer and United Medical in the last two years. All the other authors report no conflicts of interest relevant to this article. The authors alone are responsible for the content and the writing of the paper.

Email: arnaldolcolombo@gmail.com

These authors are co-first authors on this work.

Introduction

Trichosporon spp. are basidiomycetous yeast-like organisms that are widely distributed in nature, and can generally be isolated from soil, water, decomposing matter, and bird and bat droppings [1]. Occasionally, it can be part of the transient human microbiota, mainly in the skin, nails and mucosa of the respiratory and gastrointestinal tracts [1,2]. According to data provided by the ARTEMIS DISK collection, *Trichosporon* spp. are considered to be the second or third most commonly isolated yeast species in clinical laboratories, representing 5.5 to 10.6% of all isolates [3,4,5].

Trichosporon sp. has been classically associated with white piedra and hypersensitivity pneumonitis syndrome [1,6,7,8,9]. However, in recent decades, *Trichosporon* sp. has been recognized as an important pathogen of systemic infections affecting immunocompromised patients, mainly those with hematological malignancies and neutropenia, as well as critically ill patients with a central venous catheter in place [10,11,12,13].

The genus contains 51 species, 16 of which are able to infect human hosts [1]. Species identification based on phenotypic methods usually generates inconsistent results, and none of the commercially available tests includes new species in the genus in their databases [14]. Consequently, sequencing of the Intergenic
Spacer 1 (IGS1) of the rDNA, which presents high variability within the genus, is a robust method to identify medically important *Trichosporon* species [15,16].

There are only a few studies addressing virulence factors in *Trichosporon* spp., including biofilm production [17,18,19]. In addition, there is a lack of information on the antifungal susceptibility of *T. asahii* and clinically relevant emergent species within the genus. Most studies have adapted the Clinical and Laboratory Standards Institute (CLSI) microdilution method standardized for testing *Candida* spp. and *Cryptococcus* spp. to evaluate the in vitro antifungal susceptibility of *Trichosporon* spp. [20,21,22,23]. Available data suggest that triazoles appear to be the most effective antifungal class against *Trichosporon* spp. [21,23,24,25].

Different species within a genus may have biological peculiarities regarding their virulence mechanisms and drug susceptibility. In this study, we evaluated the biofilm formation and antifungal susceptibility profile of 54 clinical isolates of *Trichosporon* spp., whose species identification was confirmed by sequencing the IGS1 region of the rDNA.

Materials and Methods

Isolates and growth conditions

We tested a total of 54 clinical isolates of *Trichosporon* spp. obtained from different patients assisted between 2001 and 2010. Due to the retrospective character of the study, no informed consent was required for the IRB committee approval. Ethics Committee number 1497/11. The strains were obtained from different patients assisted between 2001 and 2010. *Trichosporon* spp. isolates in a 96-well plate format, we standardized a protocol adapted from Jin et al. (2003) and Di Bonaventura et al. (2006) [33,34]. We tested different protocol conditions, such as inoculum size (10^5, 10^6 and 10^7 cells/ml), adhesion time (60, 90 and 120 min), and biofilm maturation (48 and 72 h) with static or shaking (75 rpm) incubation at 37°C. We used the isolates *C. tropicalis* LEMI 651 and *C. metapsilosis* LEMI 1799 as control strains because they were previously characterized as being high and low biofilm producers, respectively, by Melo et al. (2011) [35]. Clinical isolates and control strains were cultured in YPD at 35°C for 48 h and further subcultured under agitation in RPMI 1640 medium (pH 7.0 - MOPS) overnight at 37°C. Cells were collected by centrifugation and washed twice with sterile PBS. Cells were resuspended in RPMI 1640 (pH 7.0 - MOPS) and the inoculum adjusted to 0.4 O.D. at 530 nm (A_530), which corresponds to 10^7 cells/ml. Inocula of 100 μl of the cell suspensions were added to 96-well polystyrene plates with flat bottoms (Techno Plastic Products, TPP, Switzerland), using 8 wells per isolate. Plates were incubated at 37°C for 90 min with agitation at 75 rpm. After incubation, cells were aspirated, and wells were washed twice with 150 μl PBS to remove the non-adherent cells. Finally, 150 μl RPMI 1640 medium (pH 7.0 - MOPS) was added to each well, and the plate was incubated at 37°C and 75 rpm for 48 h to allow biofilm formation. Culture media were changed every 24 hours. Each experiment was performed in triplicate, and biofilm quantifications are expressed as means of 24 readings (wells) per isolate ± standard deviation.

Biofilm formation

To assess biofilm formation of *Trichosporon* spp. isolates in a 96-well plate format, we standardized a protocol adapted from Jin et al. (2003) and Di Bonaventura et al. (2006) [33,34]. We tested different protocol conditions, such as inoculum size (10^5, 10^6 and 10^7 cells/ml), adhesion time (60, 90 and 120 min), and biofilm maturation (48 and 72 h) with static or shaking (75 rpm) incubation at 37°C. We used the isolates *C. tropicalis* LEMI 651 and *C. metapsilosis* LEMI 1799 as control strains because they were previously characterized as being high and low biofilm producers, respectively, by Melo et al. (2011) [35]. Clinical isolates and control strains were cultured in YPD at 35°C for 48 h and further subcultured under agitation in RPMI 1640 medium (pH 7.0 - MOPS) overnight at 37°C. Cells were collected by centrifugation and washed twice with sterile PBS. Cells were resuspended in RPMI 1640 (pH 7.0 - MOPS) and the inoculum adjusted to 0.4 O.D. at 530 nm (A_530), which corresponds to 10^7 cells/ml. Inocula of 100 μl of the cell suspensions were added to 96-well polystyrene plates with flat bottoms (Techno Plastic Products, TPP, Switzerland), using 8 wells per isolate. Plates were incubated at 37°C for 90 min with agitation at 75 rpm. After incubation, cells were aspirated, and wells were washed twice with 150 μl PBS to remove the non-adherent cells. Finally, 150 μl RPMI 1640 medium (pH 7.0 - MOPS) was added to each well, and the plate was incubated at 37°C and 75 rpm for 48 h to allow biofilm formation. Culture media were changed every 24 hours. Each experiment was performed in triplicate, and biofilm quantifications are expressed as means of 24 readings (wells) per isolate ± standard deviation.

Biofilm quantification with crystal violet staining

Mature biofilms had the culture medium aspirated, and they were washed twice with 200 μl sterile PBS to remove non-biofilm-forming cells. For quantification using crystal violet staining, plates were dried for 45 min at room temperature. Biofilms were stained with 110 μl 0.4% aqueous crystal violet (CV) solution for 45 min. Afterwards, the CV solution was removed, and the wells were washed 3 to 5 times with 200 μl sterile distilled water. To destain the biofilms, 200 μl 95% ethanol was added, and the plate was incubated for 45 min. One hundred μl of the solution were transferred to another microplate, and the absorbance was read using a Microplate Reader 680 (BIO RAD, Hercules, USA) at 570 nm.

Scanning electron microscopy (SEM)

Scanning electron microscopy was performed with 3 *T. asahii* and 1 *T. asteroides* isolates selected based on their biofilm production capabilities. Biofilms were formed on sterile polyvinyl chloride (PVC) strips (surface area, 0.5 cm²), incubated into 24-well polystyrene plates with flat bottoms (Techno Plastic Products, TPP, Switzerland), according to the protocol described previously [36]. Briefly, all biofilms formed on PVC strips were fixed overnight at 4°C with a solution composed by 4% formaldehyde and 2% glutaraldehyde buffered with 0.1 M sodium cacodylate at pH 7.2. Subsequently, biofilms were washed repeatedly with 1%...
osmium tetroxide buffered with cacodylate for 1 h, then treated with 1% tannic acid for 45 min, washed three times with distilled water for 15 min, and finally, treated with 1% osmium tetroxide buffered with cacodylate for 1 h. Biofilms were dehydrated with a graded series of ethanol washes (critical-point dried in CO2) and coated with gold to be analyzed in the scanning electron microscope JEOL JSM-5300 (Peabody, MA, USA).

Antifungal susceptibility testing against planktonic and biofilm-forming cells

We adapted the assay conditions of the Clinical and Laboratory Standards Institute broth microdilution method (CLSI, M27-A3/ S4) to evaluate the response of planktonic fungal cells to the following drugs: fluconazole (FLC), itraconazole (ITC), voriconazole (VRC) and amphotericin B (AMB). Antifungal compounds were obtained as pure powders from the manufacturers Pfizer Inc., NY, USA and Sigma Chemical Corporation, St. Louis, MO, USA, Candida parapsilosis ATCC 22019 and C. krusei ATCC 6258 were used as controls.

Susceptibility tests for biofilm-forming cells were processed following the protocol previously described by Melo et al. (2011) [35]. Biofilms were grown for 24 h before replacement of the medium with fresh RPMI 1640 (pH 7.0 - MOPS) supplemented with the antifungals at the following concentrations: FLC (64-1024 µg/ml), ITC (1–16 µg/ml), VRC (4–64 µg/ml) and AMB (2–32 µg/ml). Biofilms were grown for 48 h and quantified afterwards using the XTT reduction assay. For the XTT (2,3-Bis-[2-Methoxy-4-Nitro-5-Sulfophenyl]-2H-Tetrazolium-5-Carboxanilide) reduction assay, a solution containing 200 µl PBS with 12 µl 5:1 1 mg/ml XTT (Sigma Aldrich); Menadione 0.4 mM (Sigma Aldrich) was used. The plate was incubated for 2 h at 35°C in the dark to allow XTT metabolization. Thereafter 100 µl of this solution was transferred to another microplate, and the absorbance was read using a Microplate Reader 680 (BIO RAD, Hercules, USA) at 490 nm.

Minimal Inhibitory Concentrations (MIC) of the drugs on planktonic cells were determined by visual readings after 48 h of incubation based on the lower concentration capable of inhibiting 50% of cell growth for azoles and total growth inhibition for AMB. Biofilm MICs at 48 h were defined as the lowest concentration capable of inhibiting 50% and 80% of cell growth for azoles and AMB, respectively [35].

Statistical analysis

We performed comparisons between MIC values generated by *T. asahii* and non-*T. asahii* isolates as well as the biofilm production among different genotypes of *T. asahii* and *T. faecale*, applying the Mann-Whitney test implemented in the GraphPad Prism 6.0 software (http://www.graphpad.com/guides/prism/6/statistics/).

Results

Phenotypic and molecular identification of *Trichosporon* isolates

All 54 clinical and 7 reference strains of *Trichosporon* spp. included in the analysis were considered pure and viable and presented morphological and biochemical characteristics compatible with the *Trichosporon* genus. DNA sequences of the IGS1 region of the rDNA from all isolates ranged from 435 to 630 bp after coning assembly and editing. For species identification, alignments performed with the BLASTn tool successfully identified 38 of 61 *Trichosporon* spp. isolates with query coverage ≥ 99%, identity ≥99%, and E-value = 0.0. Three *T. faecale* isolates (ST004B, EB087B and EB108A) generated lower identity or coverage values in the BLASTn searches, 96% and 97%, respectively. Therefore, their species identification was further confirmed by phylogenetic analysis (Figure S1). The 54 clinical isolates were identified as follows: 36 *T. asahii*, 6 *T. faecale*, 5 *T. asteroides*, 4 *T. inken*, 2 *T. dermatidis* and 1 *T. coremiforme* (Table 1 and Table S1).

Genotyping of *T. asahii* and *T. faecale* isolates

Clinical isolates identified by IGS1 rDNA sequencing as *T. asahii* (36) and *T. faecale* (6) were subjected to phylogenetic analysis to confirm their identification and characterize their genotypes (Figure 1 and Figure S1). The network analysis (Figure 1) showed that 36 clinical isolates identified as *T. asahii* grouped into 4 different genotypes: 1, 3, 4 and 5. *Trichosporon asahii* G1 comprised 30 clinical isolates, the 2 reference strains CBS 2479 and CBS 7631, the G1 reference sequence (GenBank number: AB066386) and the supposedly G11 reference sequence (GenBank number: EU441160); *T. asahii* G3 consisted of 3 clinical isolates and the G3 reference sequence (GenBank number: AB066397); *T. asahii* G4 grouped 1 clinical isolate and the G4 reference sequence (GenBank number: AB180191); and *T. asahii* G5 included 2 clinical isolates and the G5 reference sequence (GenBank number: AB071387). The other reference sequences obtained from GenBank that did not grouped with our clinical isolates were: G2: AB072606, G6: AB180192, G7: AB180194, G8: AB439002, G9: AB439003, G10: EU441158, and G12: JF412789. Four of 6 *T. faecale* clinical isolates and the *T. faecale* CBS 4828 were classified as genotype 1 (G1 reference sequence number: AB066413). The isolates EB087B and EB108A had their molecular identification confirmed as *T. faecale* genotype 3 (G3 reference sequence number: AB439006). *Trichosporon faecale* G2 reference sequence (GenBank number: AB439004) did not group with any of the clinical isolates.

The consensus tree inferred by the Bayesian method (Figure S1) corroborated the network analysis, confirming the identification of *T. asahii* isolates within 4 different genotypes, including the first-time identification of the genotype 5 among Brazilian isolates and the identification of ST004B, EB087B and EB108A as *T. faecale* isolates.

Biofilm production by *Trichosporon* spp.

In a pilot study it was tested the protocol conditions for *Trichosporon* spp. biofilm formation into 96-well plates. We observed that 107 cells/ml, 90 min adhesion time and 48 h biofilm growth at 75 rpm provided the most reproducible results than the other combinations (data not shown). Comparative analysis of the quantification by CV method of biofilms grown during 48 and 72 h showed that the last time point returned lower absorbance values than the first one due to biofilm detachment from the wells, mostly from isolates that were further classified as high biofilm producers (data not shown).

The total biofilm mass of 54 clinical isolates and 7 reference strains of *Trichosporon* spp. was then assessed by CV staining after 48 h growth. Absorbance values ranged from 0.109 to 3.337. To correlate the capability for biofilm production with the different species tested and isolation sites, we arbitrarily established three categories (33.3 percentiles) of biofilm production based on the total range of the CV quantifications exhibited by the 61 isolates, categorizing the producers as follows: low: A570<1, medium: A570≥1.01 to 2.499 or high: A570≥2.5. Figure 2 illustrates the biofilm production by all strains tested according to the isolation source and species distribution. *Trichosporon* sp. strains were scaled from the highest to the lowest biofilm producer as
T. inkin > T. asteroides = T. faecale > T. asahii. The two T. dermatis isolates (classified as medium and high biofilm producers) and the single T. coremiiforme isolate (high biofilm producer) were not included in this rank scale due to the low number of isolates tested. When considering the source of isolation, 93.3% of the Trichosporon spp. strains isolated from skin were categorized as high or medium biofilm producers. Otherwise, 65% to 73.7% of the strains isolated from blood and urine, respectively, were considered high or medium biofilm producers. The reference strains were characterized as low (T. asahii CBS2479, T. mucoides CBS7625 and T. faecale CBS4828), medium (T. asahii CBS7631 and T. ovoides CBS7556) or high (T. dermatis CBS2043 and T. inkin CBS5585) biofilm producers.

There were no significant differences in terms of biofilm production across different genotypes identified within T. asahii and T. faecale isolates (Figure 1).

Biofilm Scanning Electron Microscopy Analysis (SEM) of Trichosporon spp. isolates

To check the efficiency of the CV method to quantify biofilms of Trichosporon spp., we generated SEM images of 4 Trichosporon spp. strains categorized as low, medium and high biofilm

Table 1. Species distribution of 54 Trichosporon spp. clinical isolates according to the site of infection or colonization identified by IGS1 rDNA sequencing.

Species	Number of Isolates/Source	Total/Percentage		
	Blood	Urine	Superficial Mycosis or Skin Colonization	
T. asahii	12	20	4	36/66.7%
T. faecale	-	-	6	6/11.1%
T. asteroides	5	-	-	5/9.3%
T. inkin	-	-	4	4/7.4%
T. dermatis	1	-	1	2/3.7%
T. coremiiforme	1	-	-	1/1.8%
Total	**19**	**20**	**15**	**54/100%**

doi:10.1371/journal.pone.0109553.t001

Figure 1. Median-joining genotypes network of T. asahii, T. faecale and T. coremiiforme based on IGS1 rDNA sequences related to biofilm quantitation. Dashed square groups the 12 different genotypes (G1 to G12) of T. asahii. Dashed circle groups the 3 different genotypes of T. faecale. Circumference sizes are proportional to the genotype frequencies. Black dots (mv = median vectors) are hypothetical missing intermediates.

doi:10.1371/journal.pone.0109553.g001
or isolation site, all strains were highly resistant to all antifungals tested.

"Trichosporon" spp. strains because a clear bias of the species distribution was observed, e.g., "T. faeale" was identified only among superficial mycosis isolates, and all isolates identified in urine samples were "T. asahii." Table 3 summarizes MIC values for all antifungals tested against biofilm-forming cells. Regardless of the "Trichosporon" spp. species or isolation site, all strains were highly resistant to all antifungals tested.

Susceptibility of planktonic and biofilm-forming cells of "Trichosporon" spp. isolates against 4 antifungal agents

The MIC readings of susceptibility tests for both planktonic and biofilm forming cells were performed after 48 h of incubation. Table 2 summarizes the planktonic MIC₅₀, MIC₉₀, and MIC ranges (µg/ml) and the geometric means (GM) obtained for the 54 clinical isolates of "Trichosporon" spp. against 4 antifungal agents. Of note, "T. asahii," "T. asteroides" and "T. faeale" isolates exhibited MIC₅₀ values for AMB ≥2 µg/ml. "Trichosporon asahii" isolates exhibited higher MIC values for all antifungals tested except for VRZ (Table 2 and Figure 4). Figure 4 depicts the comparison between MIC values obtained for "T. asahii" and non-"T. asahii" isolates. In general, significant differences were found between the two groups considering FLC, ITC and AMB, whereas VOR was the azole that exhibited the best in vitro activity against all "Trichosporon" species.

We were not able to compare whether the isolation site had an impact on the antifungal susceptibility profiles of the "Trichosporon" spp. strains because a clear bias of the species distribution was observed, e.g., "T. faeale" was identified only among superficial mycosis isolates, and all isolates identified in urine samples were "T. asahii." Table 3 summarizes MIC values for all antifungals tested against biofilm-forming cells. Regardless of the "Trichosporon" spp. species or isolation site, all strains were highly resistant to all antifungals tested.

Discussion

"Trichosporon" sp. isolates are classically recognized as a cause of superficial mycoses but have recently emerged as pathogens in invasive infections, particularly in patients with acute leukemia and those subjected to invasive clinical procedures [10,37]. It is still controversial whether there is bias in the distribution of "Trichosporon" species among different sites of infection as well as other putative biological peculiarities of the large number of recently described species within the genus, such as antifungal susceptibility and virulence. In this study, we showed that 6 "Trichosporon" species from 54 clinical isolates obtained from different types of human infections were able to form robust biofilms in vitro that were not susceptible to triazoles or amphotericin B.

Regarding the species distribution within different human sites, we found that "T. asahii" was the most frequently isolated species (36 of 54 isolates) in both blood and urine samples, as previously described by other studies [12,25,38,39]. In addition to "T. asahii," other publications reported that "T. mucoides" and "T. asteroides" are among the species most isolated from invasive fungal infections due to "Trichosporon" spp. [27,40]. Curiously, we were not able to isolate any other species than "T. asahii" from urine samples. In contrast, in superficial mycosis or skin colonization, "T. inkin," "T. ovoides" and "T. cutaneum" are most commonly found [1]. At this site, the majority of the isolates were identified by IGS1 rDNA sequencing as "T. faeale," followed by "T. inkin" and "T. asahii."

Phylogenetic analysis of IGS1 sequences confirmed the presence of 4 different genotypes among "T. asahii" isolates, with G1 being the most prevalent in Brazil as previously documented by our group [27]. Interestingly, we found isolates belonging to "T. asahii" G5 and "T. faeale" G1 and G3 for the first time among Brazilian isolates. Recently, Xia and collaborators (2012) described three new genotypes of "T. asahii": G10, G11 and G12 [41]. In our analysis, we fail to differentiate G11 reference sequence from G1 representatives. Refinement in the analysis of genotypes including a larger number of isolates is mandatory to resolve whether or not G11 is a novel genotype or represents an artifact due to IGS1 sequencing error.
Table 2. *In vitro* activity of 4 antifungal drugs against planktonic cells of 54 clinical isolates of *Trichosporon* spp. according to the isolation site.

Species/Blood culture (Number of isolates)	MIC (µg/ml)	Fluconazole	Itraconazole	Voriconazole	Amphotericin B				
		Interval	MIC₅₀	MIC₉₀	GM	Interval	MIC₅₀	MIC₉₀	GM
T. asahii (12)		1–8	2	8	2.67	0.125–0.5	0.25	0.5	0.22
						0.03–0.06	0.03	0.03	0.032
T. asteroides (5)		0.25–1	0.25	0.5	0.38	0.06–0.125	0.125	0.125	0.108
						0.03	0.03	0.03	0.03
T. dermatis (1)		2	-	-	-	0.125	-	-	0.03
T. coremiiforme (1)		0.5	-	-	-	0.125	-	-	0.03

Species/Urine (Number of isolates)	MIC (µg/ml)	Fluconazole	Itraconazole	Voriconazole	Amphotericin B				
		Interval	MIC₅₀	MIC₉₀	GM	Interval	MIC₅₀	MIC₉₀	GM
T. asahii (20)		2–4	4	4	3.14	0.125–0.5	0.25	0.5	0.241
						0.03–0.06	0.06	0.06	0.047
T. asteroides (5)		0.25–1	0.25	0.5	0.38	0.06–0.125	0.125	0.125	0.108
						0.03	0.03	0.03	0.03
T. dermatis (1)		2	-	-	-	0.125	-	-	0.03
T. coremiiforme (1)		0.5	-	-	-	0.125	-	-	0.03

Species/Superficial Mycosis (Number of isolates)	MIC (µg/ml)	Fluconazole	Itraconazole	Voriconazole	Amphotericin B				
		Interval	MIC₅₀	MIC₉₀	GM	Interval	MIC₅₀	MIC₉₀	GM
T. faecale (6)		0.5–4	2	2	1.59	0.125–0.5	0.125	0.25	0.25
						0.03–0.125	0.03	0.06	0.048
T. asahii (4)		1–2	1	2	1.41	0.125–0.25	0.125	0.125	0.149
						0.03–0.06	0.03	0.03	0.03
T. inkin (4)		0.125–0.5	0.5	0.5	0.35	0.03–0.06	0.03	0.06	0.042
						0.03	0.03	0.03	0.03
T. dermatis (1)		1	-	-	-	0.03	-	-	0.03

MIC₅₀: Minimal inhibitory concentration capable of inhibiting growth of 50% of isolates.

MIC₉₀: Minimal inhibitory concentration capable of inhibiting growth of 90% of isolates.

GM: Geometric Mean.

doi:10.1371/journal.pone.0109553.t002
Fungal biofilm formation has gained attention among clinicians specifically due to its capability to increase mortality in patients with *Candida* spp. fungemia [42]. In our work, we quantified the in vitro biofilm formation of 54 clinical isolates belonging to different *Trichosporon* species by using the crystal violet staining method. We verified that isolates representative of the 6 *Trichosporon* species tested have a high production of biofilms with quantification values similar to or higher than those described for *Candida* spp. In addition, it seems that *Trichosporon* spp. are able to produce much more biofilm than other basidiomycetes, such as *Rhodotorula* spp. and *Cryptococcus* spp. [35,36,43,44]. Despite some intraspecific variations in biofilm production, it is clear that more than half of the isolates representative of different *Trichosporon* species were considered to be high biofilm producers in blood, urine and skin samples. Interestingly, non-*T. asahii* isolates obtained from superficial samples produced the same amount or even more biofilms compared with strains isolated from blood samples. This finding may reflect the need for high adherence and biofilm formation to promote colonization and infection on the skin and in hair samples of human hosts. In the literature, there are only 3 published studies evaluating slime or biofilm production, and these exclusively test *T. asahii* isolates [19,34,45]. Therefore, to our knowledge, this is the first time that it has been shown that non-*T. asahii* isolates are high biofilm producers.

As already demonstrated with *Candida* spp. and *Rhodotorula* spp. strains [35,36], CV is a reliable tool to accurately quantify the whole biofilm mass produced by fungal cells. Indeed, we succeeded in demonstrating that the protocol for biofilm formation on 96-well plates and the quantification by CV staining exhibited good correlation with SEM images.

After adapting the CLSI protocol for antifungal susceptibility testing of planktonic cells, we found that AMB has limited in vitro antifungal activity against *T. asahii*, *T. asteroides* and *T. faecale*. Not surprisingly, we found that *T. asahii* isolates exhibited higher MICs for FLC, ITC and AMB than non-*T. asahii* isolates, corroborating the results of other studies [22,24,27,46]. As already observed, VRC presented the best antifungal activity across all species tested [24,46]. Considering that triazoles are the antifungal agents used for first-line treatment of infections caused by *Trichosporon* spp., the presence of isolates with high MICs for this drug class is disturbing. The susceptibility of biofilm-forming cells demonstrated that all 6 species were intrinsically resistant to all antifungal agents tested, independent of genotype, isolation site and biofilm quantification. Considering that voriconazole is supposed to be the best alternative to treat deep-seated infections...
Table 3. In vitro Trichosporon spp. Species (Number of isolates) MIC (µg/ml) Interval MIC50 MIC90 Interval MIC50 MIC90 Interval MIC50 MIC90 Interval MIC50 MIC90

Species (Trichosporon spp.)	MIC (µg/ml)	Interval	MIC50	MIC90	MIC (µg/ml)	Interval	MIC50	MIC90	MIC (µg/ml)	Interval	MIC50	MIC90	MIC (µg/ml)	Interval	MIC50	MIC90
T. asahii	1024	-	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16
T. faecale	1024	-	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16
T. asteroides	1024	-	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16
T. inkin	1024	-	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16
T. dermatis	1024	-	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16
T. coremiiforme	1024	-	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16

Supporting Information

Figure S1 Phylogenetic tree and genotypes of 36 *T. asahii* and 6 *T. faecale* isolates inferred by the Bayesian method. Reference sequences obtained from GenBank of *T. asahii* were G1: AB066386, G2: AB072606, G3: AB066397, G4: AB180191, G5: AB071387, G6: AB180192, G7: AB180194, G8: AB439002, G9: AB439003, G10: EU441158, G11: EU441160, and G12: JF412789. Reference sequences obtained from GenBank of *T. faecale* genotypes were: G1: AB066413, G2: AB439004, and G3: AB439006.

Table S1 Clinical and microbiological data of 61 *Trichosporon* sp. isolates molecularly identified by sequence analysis of the ITS1 region.

Acknowledgments

We are very grateful to Diniz P. Leite Jr. for helping with the isolation of part of the *Trichosporon* sp. strains, Dr. Anderson M. Rodrigues for helping with network analysis, Professor Edna Freymüller for helping with electron microscopy imaging and Marcelo H. Freire for imaging editing support.

Author Contributions

Conceived and designed the experiments: IAIG ACBP ALC. Performed the experiments: IAIG ACBP FCB. Analyzed the data: IAIG ACBP FCB. Contributed reagents/materials/analysis tools: ACBP RCH ALC. Wrote the paper: IAIG ACBP ALC.

References

1. Colombo AL, Padovan AC, Chaves GM (2011) Current knowledge of *Trichosporon* spp. and Trichosporonosis. Clin Microbiol Rev 24: 682–700.
2. Magalhaes AR, Mondino SS, Silva M, Nishikawa MM (2008) Morphological and biochemical characterization of the aetiological agents of white piedra. Mem Inst Oswaldo Cruz 103: 786–790.
3. Pfaffer MA, Diekema DJ, Rinaldi MG, Barnes R, Hu B, et al. (2005) Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a 6.5-year analysis of susceptibilities of *Candida* and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. J Clin Microbiol 43: 5848–5852.
4. Pfaffer MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, et al. (2007) Results from the ARTEMIS DISK Global Antifungal Surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of *Candida* species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45: 1735–1745.
5. Pfaffer MA, Diekema DJ, Gibbs DL, Newell VA, Bijie H, et al. (2009) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: 10-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. Journal of Clinical Microbiology 47: 117–123.
25. Araujo Ribeiro M, Alastruey-Izquierdo A, Gomez-Lopez A, Rodriguez-Tudela JL, Cuenca-Estrella M (2008) Molecular identification and susceptibility testing of Trichosporon asahii isolates from a Brazilian hospital. Rev Iberoam Micol 25: 221–225.

26. Larone DH (1995) Medically Important Fungi - A Guide to Identification. Washington, D.C: ASM Press. 274 p.

27. Chagas-Neto TC, Chaves GM, Melo AS, Colombo AL (2009) Bloodstream infections due to Trichosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing, and antifungal susceptibility testing. J Clin Microbiol 47: 1074–1081.

28. Santos DW, Padovan AC, Melo AS, Gonçalves SS, Arzedo VR, et al. (2013) Molecular identification, antifungal susceptibility non-sporulating model: a useful tool for studying the epidemiology of phaeohyphomycosis. Mycopathologia 175: 445–454.

29. Gony M, Guimond S, Gaucel O (2010) SeaView version 4: A multiphactical graphical interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221–224.

30. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1415–1421.

31. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring phylogenetic relationships among DNA sequences. Mol Biol Evol 16: 37–50.

32. Rouquie F, Hueschenbeck JP (2003) MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

33. Jin Y, Yip HK, Samaransayake YH, Yau JY, Samaransayake JP (2003) Biofilm forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 41: 2961–2967.

34. Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D'Antonio D, et al. (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50: 3269–3276.

35. Melo AS, Bizerra FC, Freymuller E, Arthington-Skagg BA, Colombo AL (2011) Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Med Mycol 49: 253–262.

36. Nunes JM, Bizerra FC, Ferreira RC, Colombo AL (2013) Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother 57: 382–389.

37. Watson KC, Kallfelz S (1976) Brain abscess due to Trichosporon cutaneum. J Med Microbiol 3: 191–194.

38. Silva V, Zepeda G, Alcarde D (2003) [Nosocomial urinary infection due to Trichosporon asahii. First two cases in Chile]. Rev Iberoam Microl 20: 21–23.

39. Rodrigues Gda S, de Faria RR, Guazzelli LS, Oliveira Fde M, Severo LC (2006) [Nosocomial infection due to Trichosporon asahii: clinical revision of 22 cases]. Rev Iberoam Microl 23: 85–89.

40. Walsh TJ, Gold A, Hiemsen J, Fleming R, Rossides E, et al. (2004) Infections by Trichosporon asahii forming ability of Trichosporon asahii strains isolated from the clinical samples of hospitalized patients. Mikrobiyol Bul 40: 225–235.

41. Xia ZK, Yang RY, Wang WL, Cong L (2012) Genotyping and Antifungal Drug Susceptibility of Trichosporon asahii Isolated from Chinese Patients. Mycopathologia 173: 127–133.

42. Tamburrello M, Fisio B, Treccarichi EM, Ponteprato P, Luoto AR, et al. (2012) Risk factors and outcomes of candidemia caused by biofilm-forming isolates in a tertiary care hospital. PLoS One 7: e33705.

43. Melo AS, Padovan AC, Serafin RM, Puzer L, Carmona AK, et al. (2006) The Candida albicans AAA ATPass homologue of Saccharomyces cerevisiae Rsa7p (YLL046c) is essential for proper morphology, biofilm formation and activity of secreted aspartyl proteinases. Gene Mol Res 5: 664–687.

44. Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73: 4592–4601.

45. Dağ A, Cerkicciolu N (2006) [Investigation of some virulence factors of Trichosporon asahii strains isolated from the clinical samples of hospitalized patients]. Mikrobiyol Bul 40: 225–235.

46. Haziroyan G, Canton E, Sahin S, Arikan-Akdog lu S (2013) Head-to-head comparison of inhibitory and fungicidal activities of fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole against clinical isolates of Trichosporon asahii. Antimicrob Agents Chemother 57: 4891–4897.