Impact of the ligand deformation on the \mathcal{P},\mathcal{T}-violation effects in the YbOH molecule

Anna Zakharova1,2a and Alexander Petrov1,2b

1St. Petersburg State University, St. Petersburg, 7/9 Universitetskaya nab., 199034, Russia
2Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, 1, mkr. Orlova roshcha, 188300, Russia

(Dated: 16 August 2022)

The ytterbium monohydroxide is a promising molecule for a new physics searches. It is well known that levels of the opposite parity, separated by the energy split, so-called l-doublets, define the experimental electric field strength required for the molecule polarization. In addition, in our previous paper2 we have shown that the value of l-doubling directly influences the sensitivity of linear triatomic molecules to the \mathcal{P},\mathcal{T}-odd effects. In our work2 we have calculated the value of l-doubling for the YbOH molecule with approximation of fixed O-H bond length. Accounting the importance of this property, in the present study, we consider the additional degree of freedom corresponding to the ligand (OH) deformation.

I. INTRODUCTION

Symmetry breaking with respect to the spatial reflection (\mathcal{P}), the time inversion (\mathcal{T}), and the charge conjugation (\mathcal{C}) are embedded in the Standard model (SM)[4] One of the possible sources of the strong \mathcal{P},\mathcal{T}-violation in the SM is θ term, that however is negligible[5,6]. The observed source of the \mathcal{P} and \mathcal{C} non-conservation comes from the weak interaction, that affects only the left components of the lepton and quark spinors. This fact means that \mathcal{P}, and \mathcal{C} symmetries are broken separately[7]. However, the combined \mathcal{CP} parity could be conserved. But in SM there is a Cabibbo-Kobayashi-Maskawa (CKM)[8,9] matrix, which is associated with the interaction of quarks and W^{\pm}-bosons, and Pontecorvo–Maki–Nakagawa–Sakata matrix (PMNS)[10,11] which is associated with the interaction of leptons with W^{\pm}-bosons. When these matrices have complex components, they violate \mathcal{CP}, which is manifested in neutral kaon and $B^{0}-\bar{B}^{0}$-meson decays[12]. Because of the \mathcal{CPT} theorem, \mathcal{CP} combination is equivalent to time reversal \mathcal{T}.

The probable effect of the \mathcal{CP}-symmetry violation in the Standard model can be found in the electron electric dipole moment (eEDM) and scalar-pseudoscalar electron-nucleon interaction (S-PS)[13] parametrized correspondingly by d_e and k_s constants. In the SM the predicted values for these constants are very small. Nevertheless, there are many extensions of the SM that can lead to the considerable increase of the d_e and k_s constants[14,15]. To investigate the \mathcal{CP}-violating physics, tabletop experiments with atoms and molecules can be employed[16,17]. The current limit on the electron electric dipole moment (the ACME II experiment), $|d_e| < 1.1 \times 10^{-29}$ e·cm (90% confidence), was set by measuring the spin precession using thorium monoxide (ThO) molecules in the metastable electronic H$^3\Delta_1$ state[18]. In its turn, cold polar molecules provide unique opportunities for further progress in search for effects of symmetry violation[19]. The strength of polyatomic species as probes of the parity-violating physics lies in a possibility of laser-cooling that does not interfere with the existence of the parity doublets[20]. Unlike the diatomic molecules, polyatomic ones possess the distinctive rovibrational spectrum with additional energy levels of opposite parity. The transverse vibrations of triatomic molecules result in l-doublets[21,22]. For symmetric top molecules nonvibrational K-doublets, associated with rotation of the molecule around its axis, appear[23,24].

One dimensional laser-cooling was made for SrOH, CaO, CaOCH\textsubscript{3}[30,31], and the YbOH[33,34] molecules. Recently, the magneto-optical trapping and cooling of the CaOH molecule was achieved[35]. The molecule we are considering, ytterbium monohydroxide, is a good candidate for the eEDM search[27,29].

For triatomic molecules, the external fields are mixing the opposite parity levels, and due to this, the molecule is polarized to a degree determined by a coefficient $\Delta E_{\mathcal{P},\mathcal{T}}$[11,36]. If the electron has eEDM and interacts with the nucleus by the S-PS, the \mathcal{P},\mathcal{T}-nonconservation emerges in the energy difference between levels with opposite projection of the total angular momentum on the field’s axis:

$$\Delta E_{\mathcal{P},\mathcal{T}} = P(2E_{\text{eff}}d_e + 2E_kk_s),$$

Knowing the enhancement coefficients E_{eff}, E_k and P one may extract the value of the constants d_e and k_s from this energy splitting[30,35].

Recently, we have calculated the enhancement factors E_{eff} and E_k for the RaOH, YbOH, and the symmetric top molecule RaOCH\textsubscript{3}[27,30,39] the rovibrational wavefunctions were obtained[27,30,39] on the CCSD level. Our computational approach, that does take into account the rotational and anharmonic effects, allowed us to calculate l-doubling for the triatomic molecules RaOH and YbOH. We have

a)Electronic mail: zakharova.annet@gmail.com
b)Electronic mail: petrov.an@pnpi.nrcki.ru
also determined the value of the polarization coefficient P for the YbOH molecule\cite{1}. In our work\cite{2} we have shown that the l-doubling structure is, in general, different from Ω-doubling of diatomics, and the P value tends to approach 50% value for most of the ground rotational levels of the first excited $v_2 = 1$ bending mode of YbOH. For some levels a maximum of the polarization P_{max} value as a function of electric field with $1/2 < |P|_{\text{max}} < 1$ is observed. The smaller the l-doubling, the larger is the $|P|_{\text{max}}$. Thus, the value of l-doubling directly influences the sensitivity of linear triatomic molecules to the \mathcal{P}, \mathcal{T}-odd effects.

However, when calculating l-doubling, in our preceding work\cite{2} we assumed that the deformations of the ligand may be neglected as the corresponding vibrational frequency is much higher than the frequencies for bending and stretching of the whole molecule. The aim of the present paper is to take into account the change of the ligand’s bond length (i.e., of the equilibrium ligand size and its vibrational frequency) due to the interaction with bending and stretching modes of the YbOH.

II. POTENTIAL SURFACE INTERPOLATION

To obtain the potential surface we used the Dirac 19 program suite\cite{3}. The PNPI\cite{4} 42-valence electron basis was used to describe the Ytterbium atom. Moreover, to simplify calculations with a heavy atom, we employed the 28-electron generalized relativistic effective potential, also developed by the PNPI Quantum Chemistry Laboratory\cite{5,6}. For oxygen and hydrogen atoms, we used cc-pVTZ basis sets. Active space for the coupled cluster computations comprises 21 active and 30 frozen electrons.

We obtain the CCSD and CCSD(T) potential surface V on the grid of coordinates (R_i, r_j, θ_k),

\begin{align*}
\{R_i\} &= 3.3, 3.5, \ldots 4.3 \text{ a.u.} \quad (2) \\
\{r_j\} &= 1.632, 1.732, \ldots 2.032 \text{ a.u.} \quad (3) \\
\{\theta_k\} &= 0^\circ, 5^\circ, 10^\circ, 15^\circ, 20^\circ, 25^\circ, 55^\circ, 90^\circ, 122^\circ, 155^\circ \quad (4)
\end{align*}

At the first step we approximate the dependence on r for each (R_i, θ_k) by the Morse potential

\[V(r) = V_0 + D(1 - e^{-\alpha(r-r_{eq})})^2 \quad (5) \]

where r_{eq} is the equilibrium ligand size, D – dissociation energy, α is the exponent parameter, and V_0 is the energy of the minimum. The values for V_0 and r_{eq} parameters for various configurations of YbOH are presented on Fig. 1 and Fig. 2 correspondingly.

At the second step, for each R_i we interpolate the dependence of this set of parameters $V_0(R_i, \theta_k)$, $r_{eq}(R_i, \theta_k)$, $D(R_i, \theta_k)$, and $\alpha(R_i, \theta_k)$, on θ by the Akima splines.

Then, using Akima splines, obtained at the previous step, we take the values at the zeros of the $(\lambda_{\text{max}}+1)$-th Legendre polynomial $P_{\lambda_{\text{max}}+1}(x)$, where $x = \cos \theta$. For each R_i, we then use the Gauss-Legendre method to rep-
To solve eq. (12) we use the expansion
\[\psi_{\text{nuc}}(\vec{R}, \vec{r}) = \sum_{\lambda=0}^{\lambda_{\text{max}}} \sum_{j=0}^{l_{\text{max}}} \sum_{m=0}^{m_{\text{max}}} F_{JjLm}(R) \Phi_{JjLM}(\vec{R}, \vec{r}) f_n(r), \]
where
\[\Phi_{JjLM}(\vec{R}, \vec{r}) = \sum_{m_{L,j} m_j} C_{Lm_{L,j} m_j}^{Jm} Y_{Lm_{L}}(\vec{R}) Y_{jm}_j(\vec{r}) \]
is coupled to conserved total angular momentum \(J \) basis set, \(Y_{Lm_{L}} \) is a spherical function, \(f_n(r) \) is a solution of
\[\left(-\frac{1}{2\mu_{\text{OH}}} \frac{\partial^2}{\partial \vec{r}^2} + V(R, r, \theta) \right) f_n(r) = \epsilon_n f_n(r), \]
where \(R_i \) and \(\theta_i \) are some fixed values. To test the approximation \((13) \) we perform our computations for different sets of \((R_i, \theta_i)\).

Substituting wavefunction \((13) \) to eq. \((12) \) one gets the system of close-coupled equations for \(F_{JjLm}(R) \).

III. METHODS

We use the Born-Oppenheimer approximation to separate wavefunction to \(\psi_{\text{nuc}} \), responsible for the nuclear motion in the adiabatic potential of the electrons, and the \(\psi_{\text{elec}} \), corresponding to the electronic motion in the field of heavy nuclei
\[\psi_{\text{total}} \approx \psi_{\text{nuc}}(\vec{R}, \vec{r}) \psi_{\text{elec}}(\vec{R}, \vec{r} q), \]
where \(q \) are the generalized coordinates of the electrons, \(\vec{R} \) is the vector from the Ytterbium atom to the center of mass of the OH ligand, \(\vec{r} \) is the vector from the Oxygen to the Hydrogen atom.

The Hamiltonian of nuclei takes the form,
\[\hat{H}_{\text{nuc}} = -\frac{1}{2\mu} \frac{\partial^2}{\partial \vec{R}^2} - \frac{1}{2\mu_{\text{OH}}} \frac{\partial^2}{\partial \vec{r}^2} + \frac{\hat{L}^2}{2\mu R^2} + \frac{\hat{j}^2}{2\mu_{\text{OH}} r^2} + V(R, r, \theta), \]
where \(\theta \) is the angle between vectors \(\vec{R} \) and \(\vec{r} \) (so that \(\theta = 0 \) corresponds to the Yb-O-H linear configuration), \(\mu \) is the Yb-OH reduced mass, \(\mu_{\text{OH}} \) is the reduced mass of the ligand, \(\hat{L} \) and \(\hat{j} \) are the angular momentum of the whole system rotation and the OH angular momentum correspondingly. Directions of axes \(\hat{r} \) and \(\hat{R} \) are represented in Fig. \(3 \). \(V \) is the electronic potential surface obtained on the CCSD or CCSD(T) level and depending only on the relative Jacobi coordinates \((R, r, \theta) \).

The nuclear wavefunction \(\psi_{\text{nuc}}(\vec{R}, \vec{r}) \) is the solution of the Schrödinger equation
\[\hat{H}_{\text{nuc}} \psi_{\text{nuc}}(\vec{R}, \vec{r}) = E \psi_{\text{nuc}}(\vec{R}, \vec{r}). \]

To solve eq. \((12) \) we use the expansion

IV. RESULTS

The parameters obtained from the spectrum of the nuclear wavefunctions \(\psi_{\text{nuc}} \) compared with the results from the rigid ligand approximation and experimental values are presented in the Table \(I \). One can see that taking into account the ligand deformation improves the agreement with experiments. To test our method and codes, which now take into account the ligand deformation, we performed calculations with two different sets of the parameters \(R_i \) and \(\theta_i \) from eq. \((15) \). The Set 1 corresponds to \(R_1 = 3.9 \text{ a.u}, \theta_1 = 0 \) and and Set 2 corresponds to \(R_2 = 4.2 \text{ a.u}, \theta_1 = 0.5 \text{ radians} \). In Table \(I \) one can see that results with Set 1 and Set 2 converge to each other as quantum number \(n_{\text{max}} \) (see eq. \((13) \)) increases. Table \(I \) also show that for purposes of the present paper it is sufficient to use \(n_{\text{max}} = 2 \). Probably inclusion of the noniterative triple excitations to the coupled cluster computations and using more extensive basis sets are necessary to reach the accuracy of the calculation on the order of \(5 \text{ cm}^{-1} \) for the vibrational frequencies, what is out of scope of the current work.

However, to estimate the actual value of the \(l \)-doubling one can note the following. The decrease of the \(l \)-doubling
value together with the increase of the ν_2 frequency is consistent with the estimate,

$$q \simeq \frac{B^2}{\nu_2} \left(1 + 4 \sum_{k=1,3} \frac{\xi_k^2}{k^2 \nu_2^2} \right) (v + 1), \quad \Delta E = 2q.$$

(16)

where ξ_k are Coriolis coefficients. As the current experimental data for the ν_2 frequency fall into a rather wide range $319 - 339 \text{ cm}^{-1}$, we sum up our results for l-doubling with the estimate of $\Delta E_{l=1} \simeq 24 - 26 \text{ MHz}$.

ACKNOWLEDGMENTS

The work is supported by the Russian Science Foundation grant No. 18-12-00227.

AUTHOR DECLARATIONS

Conflict of interest

The authors have no conflicts to disclose.

AVAILABILITY OF DATA

The data that support the findings of this study are available from the corresponding author upon reasonable request.

1. A. Petrov and A. Zakharova, “Sensitivity of the yboh molecule to p t-odd effects in an external electric field,” Physical Review A 105, L050801 (2022).

2. A. Zakharova, I. Kurchavov, and A. Petrov, “Rovibrational structure of the ytterbium monohydroxide molecule and the p, t-violation searches,” The Journal of Chemical Physics 107, 1743 (1997).

3. A. Petrov, “Systematic effects in the HfF$_2$ molecule,” Phys. Rev. Lett. 119, 051801 (2017).

4. Z. Maki, M. Nakagawa, and S. Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys. 26, 831–839 (1962).

5. S. M. Barr, “T-and p-odd electron-nucleon interactions and the electric dipole moments of large atoms,” Physical Review D 45, 4148 (1992).

6. B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge,” Zh. Eksp. Teor. Fiz. 34, 247 (1957).

7. T. Fukuyama, “Searching for new physics beyond the standard model in electric dipole moment experiments,” International Journal of Modern Physics A 27, 1230015 (2012).

8. M. Pospelov and A. Ritz, “CKM benchmarks for electron electric dipole moment experiments,” Phys. Rev. D 89, 056006 (2014).

9. V. Yamauchi and N. Yamanaka, “Large long-distance contributions to the electric dipole moments of charged leptons in the standard model,” Phys. Rev. Lett. 125, 241802 (2020).

10. D. DeMille, J. M. Doyle, and A. O. Sushkov, “Probing the frontiers of particle physics with tabletop-scale experiments,” Science 357, 990–994 (2017).

11. V. Andreev, D. Ang, D. DeMille, J. Doyle, G. Gabrielse, J. Haeffner, N. Hutzler, Z. Lasner, C. Meisenhelder, B. O’Leary, et al., “Improved limit on the electric dipole moment of the electron,” Nature 562, 355–360 (2018).

12. V. Cirigliano, A. Crivellin, W. Dekens, J. de Vries, M. Hofferberth, and E. Mereghetti, “C_2P violation in higgs-gauge interactions: From tabletop experiments to the lhc,” Physical Review Letters 123, 051801 (2019).

13. N. R. Hutzler, A. Borschevsky, D. Budker, D. DeMille, V. Flambaum, G. Gabrielse, R. Ruiz, A. Jayich, L. Orozco, M. Ramsey-Musolf, et al., “Searches for new sources of cp violation using molecules as quantum sensors,” arXiv preprint arXiv:2010.08709 (2020).

14. W. B. Cairncross, D. N. Gresh, M. Gran, K. C. Cassel, T. S. Roussey, Y. Ni, Y. Zhou, J. Ye, and E. A. Cornell, “Precision measurement of the electron’s electric dipole moment using trapped molecular ions,” Phys. Rev. Lett. 119, 153001 (2017).

15. A. N. Petrov, “Systematic effects in the HfF$_2$ ion experiment to search for the electric dipole moment of the electron,” Phys. Rev. A 97, 052504 (2018).

16. H. Alarcon, J. Alexander, V. Anastassoupolos, T. Aoki, R. Baartman, S. Baessler, L. Bartoszek, D. H. Beck, F. Bedeschi, R. Berger, M. Berz, H. L. Bethem, T. Bhattacharyya, M. Blaskiewicz, T. Blum, T. Bowcorly, A. Brechlerovska, G. Gwinn, S. Hoekstra, H. Gohlke, H. Hoelstetter, H. Huang, R. N. Hutzler, M. Incagli, T. M. Ito, T. Izbouch, A. M. Jayich, J. Jeong, D. Kaplan, M. Karuza, D. Kawai, O. Kim, I. Koop, W. Koersch, E. Korobkina, V. Lebedev, J. Lee, S. Lee, R. Lehnert, K. K. H. Leung, C.-Y. Liu, J. Long, A. Lusiani, W. J. Marciano, J. Haefner, N. Hutzler, B. C. Casey, G. Casse, G. Cattore, L. Cheng, T. Chupp, V. Cianciolo, V. Cirigliano, S. M. Clayton, C. Crawford, B. P. Das, H. Davediashvili, J. de Vries, D. DeMille, D. Denisov, M. V. Diwan, J. M. Doyle, J. Engel, G. Fanourakis, R. Fatemi, B. W. Filippone, V. V. Flambaum, T. Fieg, N. Fomin, W. Fischer, G. Gabrielse, R. F. G. Ruiz, A. Gardikiotis, C. Gatti, A. Geraci, J. Gooding, B. Golub, P. Grahame, F. Gray, W. C. Griffith, S. Hacisalihoglu, G. Gwinn, S. Hoekstra, H. Gohlke, H. Hoelstetter, H. Huang, R. N. Hutzler, M. Incagli, T. M. Ito, T. Izbouch, A. M. Jayich, J. Jeong, D. Kaplan, M. Karuza, D. Kawai, O. Kim, I. Koop, W. Koersch, E. Korobkina, V. Lebedev, J. Lee, S. Lee, R. Lehnert, K. K. H. Leung, C.-Y. Liu, J. Long, A. Lusiani, W. J. Marciano, M. Maroudas, A. Matlashov, N. Matsumoto, R. Mawhorter, J. R. McElwee, T. F. Meot, E. Mereghetti, J. P. Miller, W. M. Morse, J. Mott, Z. Omarov, L. A. Orozco, C. M. O’Shaughnessy, C. Ozben, S. Park, R. W. Pattie, A. N. Petrov, G. M. Piacentino, B. R. Philips, D. Podobedov, M. Poelker, D. Pocanic, V. S. Prasanna, J. Price, M. J. Ramsey-Musolf, D. Rappari, S. Rajendran, M. Reece, A. Reid, S. Rescia, A. Ritz, B. L. Roberts, M. S.
TABLE I. Rovibrational spectrum parameters

Parameter	Rigid ligand, CCSD(T)	CCSD	CCSD(T)	Experiment
Stretching mode ν_1, cm$^{-1}$	550	545	536	529.34 (1)
Bending mode ν_2, cm$^{-1}$	319	351	342	319(5) (2)
Ligand mode ν_3, cm$^{-1}$	-	4055	4030	-
Rotational constant $B(\nu_1 = 0, \nu_2 = 0, \nu_3 = 0)$, cm$^{-1}$	0.2461	0.2456	0.2468	0.24543(13) (2)
Rotational constant $B(\nu_1 = 1, \nu_2 = 0, \nu_3 = 0)$, cm$^{-1}$	-	0.2437	0.2443	0.243977(35) (2)
l-doubling $\Delta E_{J=1} = 2q$, MHz	26	23	24	-

a The number in parentheses denotes 2σ deviation

TABLE II. Convergence of the results with n_{max} (see eq. (13)) for different sets of parameters R_i and θ_i (see eq. (15)) for CCSD(T) calculations

Parameter	Set of R_i, θ_i	$n_{\text{max}} = 1$	$n_{\text{max}} = 2$	$n_{\text{max}} = 3$
Bending mode ν_2, cm$^{-1}$	1	344.0892	341.9777	341.9655
	2	340.9922	341.9698	341.9671
l-doubling $\Delta E_{J=1} = 2q$, MHz	1	23.520	24.247	24.257
	2	23.712	24.235	24.256

Safronova, Y. Sakemi, P. Schmidt-Wellenburg, A. Shindler, Y. K. Semertzidis, A. Silenko, J. T. Singh, L. V. Skripnikov, A. Soni, E. Stephenson, R. Suleiman, A. Sunaga, M. Syphers, S. Syritsyn, M. R. Tarbutt, P. Thoerrgen, R. G. E. Timmermans, V. Tischchenko, A. V. Titov, N. Tsoupas, T. Tzamarias, A. Variola, G. Venanzoni, E. Vilella, J. Vossebeld, P. Winter, E. Won, A. Zelenski, T. Zelevinsky, Y. Zhou, and K. Zioutas, “Electric dipole moments and the search for new physics,” Physical review letters 118, 032819 (2021), arXiv:2012.08427 [physics.atom-ph].

A. Zelenski, T. Zelevinsky, Y. Zhou, and K. Zioutas, “Electric dipole moments and the search for new physics,” Physical review letters 118, 032819 (2021), arXiv:2012.08427 [physics.atom-ph].

URL: http://www.qchem.pnpi.spb.ru/Basis/ (available at http://dx.doi.org/10.5281/zenodo.3572669, see also http://www.diracprogram.org).

42. A. Titov and N. Mosyagin, "Generalized relativistic effective core potential: Theoretical grounds," International journal of quantum chemistry 71, 359–401 (1999).

43. N. S. Mosyagin, A. V. Titov, and A. V. Titov, “Shape-consistent relativistic effective potentials of small atomic cores,” International Review of Atomic and Molecular Physics 1, 63–72 (2010).

44. N. S. Mosyagin, A. V. Zaitsevskii, L. V. Skripnikov, and A. V. Titov, “Generalized relativistic effective core potentials for actinides,” International Journal of Quantum Chemistry 116, 301–305 (2021).
315 (2016).
45P. McGuire and D. J. Kouri, “Quantum mechanical close coupling approach to molecular collisions. J_c-conserving coupled states approximation,” The Journal of Chemical Physics 60, 2488–2499 (1974).
46G. Herzberg, Molecular spectra and molecular structure. Vol. 3: Electronic spectra and electronic structure of polyatomic molecules (New York: Van Nostrand, 1966).

47T. C. Melville and J. A. Coxon, “The visible laser excitation spectrum of YbOH: The $\tilde{A}^{2}Π - \tilde{X}^{2}Σ^+$ transition,” The Journal of Chemical Physics 115, 6974–6978 (2001).
48C. Zhang, B. L. Augenbraun, Z. D. Lasner, N. B. Vilas, J. M. Doyle, and L. Cheng, “Accurate prediction and measurement of vibronic branching ratios for laser cooling linear polyatomic molecules,” The Journal of Chemical Physics 155, 091101 (2021).
49E. T. Mengesha, A. T. Le, T. C. Steimle, L. Cheng, C. Zhang, B. L. Augenbraun, Z. Lasner, and J. Doyle, “Branching ratios, radiative lifetimes, and transition dipole moments for yboh,” The Journal of Physical Chemistry A 124, 3135–3148 (2020).