Reproductive aspects of naleh fish (*Barbonymus* sp.): A native species from Nagan river, Aceh Province, Indonesia

DENI EFIZON1, AGUNG S. BATUBARA2, ZAINAL A. MUCHLISIN3, ROZA ELVYRA4, SYAMSUL RIZAL5, MOHD M. SITI-AZIZAH6

1Faculty of Fisheries and Marine Sciences, Universitas Riau. Kampus Bina Widyia, Jl. HR. Subrantas Km. 12.5, Simpang Baru, Pekanbaru 28293, Riau, Indonesia. Tel.: +62-761-63275, Fax.: +62-761-63275, *email: deni.efizon@lecturer.unri.ac.id*
2Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan. Jl. Willem Iskandar, Pasar V, Medan 20221, North Sumatra, Indonesia
3Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala. Jl. Putroe Pang, Darussalam, Banda Aceh 23111, Aceh, Indonesia
4Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala. Jl. Putroe Pang Darussalam, Banda Aceh 23111, Aceh, Indonesia
5Department of Marine Sciences, Faculty of Marine and Fisheries, Universitas Syiah Kuala. Jl. Putroe Pang Darussalam, Banda Aceh 23111, Aceh, Indonesia
6Institute Marine Biotechnology, University of Malaysia Terengganu. Kuala Terengganu 21300, Terengganu, Malaysia

Manuscript received: 20 November 2020. Revision accepted: 20 April 2021.

Abstract. Efizon D, Batubara AS, Muchlisin ZA, Elvyyra R, Rical S, Siti-azizah MM. 2021. Reproductive aspects of naleh fish (*Barbonymus* sp.): A native species from Nagan river, Aceh Province, Indonesia. Biodiversitas 22: 2682-2690. Naleh fish (*Barbonymus* sp.) is a native species in Indonesia and reproductive biology is key information to planning a better conservation strategy for this species. Hence, the present study aimed to examine the spawning season, sex ratio, and fecundity of the naleh fish harvested from Nagan Raya District, Aceh Province, Indonesia. Sampling was conducted from January to December 2016 at three sampling locations that were determined purposively based on the recommendations of local fishermen. The fish samples were caught using casting nets and gillnets at two-week intervals. A total of 761 fish samples, comprising 135 females and 626 males, with males predominating at a ratio of 1:4 (female: male). The gonadosomatic index (GSI) value of the females ranged from 0.58% to 4.28%, while 1.24% to 4.18% for males. The male fish first matured at 73 mm, whereas the female reached maturity at a size of 85 mm. The total fecundity ranged from 656-5725 eggs with an average of 2663.2 eggs, whereas the relative fecundity from 35.69-254.65 eggs gram\(^{-1}\) body weight with an average of 136.88 eggs gram\(^{-1}\) body weight. Our finding able to demonstrate that reproductive properties of *Barbonymus* sp. allow us to better estimate their spawning season either females and males, which can be useful for conservation planning and also their fecundity data was important for aquaculture development in the future.

Keywords: *Barbonymus*, fecundity, naleh, reproductive, spawning season

INTRODUCTION

Barbonymus is a true freshwater fish distributed widely in Southeast Asia countries, including Indonesia, Malaysia, Thailand, Vietnam, and the Philippines (Kottelat 2001; Cheng et al. 2004; Satrawaha and Pliasamorn 2009). Ten species of *Barbonymus* have been described worldwide (Yang et al. 2012; Zheng et al. 2016; Froese and Pauly 2018). This organism is a commercial freshwater fish and shows promise for aquaculture (Muchlisin 2013) and has been introduced to several countries, such as India, Pakistan, Bangladesh, and Spain (Mondol et al. 2005; Gante et al. 2008; Leunda 2010; Mollah et al. 2011; Hossain et al. 2016). In Aceh Province, Indonesia, two species of *Barbonymus* have been recorded, namely, *Barbonymus schwanenfeldii* (locally known as Lampan) and *Barbonymus sp.* (with a local name of naleh) (Batubara et al. 2018). Lampan fish is distributed within the eastern and central parts of Aceh Province, whereas the naleh fish is only found in the western and southern parts of the region (Muchlisin and Siti-Azizah 2009; Muchlisin et al. 2015). A previous study showed that naleh fish is genetically distant from other *Barbonymus* species that have been deposited in the Genbank and is therefore presumed a cryptic species (Batubara et al. 2021, pers. comm).

The lampan fish *B. schwanenfeldii* has been intensely studied by researchers in various aspects, for example, bioecology (Gante et al. 2008; Dewartoro 2015; Huwoyon and Kusmini 2017; Sabarudin et al. 2017; Apendi et al. 2018; Nyanti et al. 2018), genetics (Kamarudin and Eslamloo 2009; Kusmini et al. 2017a; Radona et al. 2017), fish nutrition and immunology (Esalamloo et al. 2012; Song et al. 2012; Esalamloo et al. 2013; Zhu et al. 2016; Esalamloo et al. 2017; Idris et al. 2017; Nyanti et al. 2017; Huwoyon et al. 2018), pathology (Székely et al. 2009; Abdullah et al. 2018), and population dynamics (Isa et al. 2012). However, the reports on naleh fish as cryptic species in Nagan river are very limited.

To date, only four studies have been reported about naleh fish, and they mainly focused on morphological variations (Batubara et al. 2018), length-weight relations and condition factors (Batubara et al. 2019a), population dynamics (Batubara et al. 2019b), and genetics (Batubara et
al. 2021, pers. comm); meanwhile, the biological aspects of naleh fish has never been studied. This fish has been intensively harvested and subjected to (Batubara et al. 2019b), and therefore, conservation action is extremely crucial. According to the studies of Cnaani and Sivan (2009) and Muchlisin et al. (2010), information on the reproductive biology of fish is useful for developing an artificial breeding technology. The data on reproductive biology are also crucial to plan for better fisheries management strategy (Chew and Zulkafli 2012; Hossen et al. 2017). Barbieri et al. (2011) stated that the data on reproductive aspects is an essential reference to determine the reproductive ability of fish and population dynamics. Hence, the present study aimed to analyze several reproductive biological aspects of the naleh fish as cryptic species in Nagan river, Aceh Province, Indonesia.

MATERIALS AND METHODS

Time and site

Sampling was conducted from January to December 2016 at the Nagan river, Nagan Raya District, Aceh Province, Indonesia. The samples were processed and analyzed in the Laboratory of Ichthyology, Faculty of Marine and Fisheries, Universitas Syiah Kuala in Banda Aceh, Indonesia.

Sampling procedure

Sampling was performed twice per month (two-week interval) for 12 months at three sampling sites along Nagan river. The sampling sites were determined purposively based on information on locations where naleh fish are often caught as mentioned by local fishermen: (i) Babah Krueng Village (4°16ʹ25.25ʺN; 96°24ʹ22.34ʺE); (ii) Blang Mesjid Village (4°17ʹ4.73ʺN; 96°25ʹ56.83ʺE); and (iii) Pante Ara Village (4°16ʹ48.49ʺN; 96°27ʹ8.50ʺE) (Figure 1).

The fish were sampled using gillnets, casting nets, and handline hooks from 08.00 AM to 16.00 PM. The sampled fish were washed, and the total body weight (g) and total length (mm) were measured using a digital balance (Toledo, AB-204, standard error = 0.01 g) and digital calipers (Mitutoyo, CD-6CS, standard error = 0.01 mm), respectively. The representative fish were photographed for documentation, preserved in 10% formalin, and then transported to the laboratory in Universitas Syiah Kuala, Banda Aceh for further analysis. The research was followed for the care and use of animals during the research (Section of Animal Care and Use in Research. Chapter 6, Article 11-13 (https://lppm.unsyiah.ac.id/files/ Etika-Penelitian-Unsyiah.pdf).

Gonad maturity stage and gonadosomatic index (GSI) analyses

The fish samples were anesthetized and overdosed using oil clove, weighed, and measured (total length, mm). Then, the fish were sacrificed by abdominal section. The gonads were removed and cleaned using tissue paper. The gonads were weighed and observed for various characteristics (morphology, color, surface texture, and the presence of milt or oocytes). The fish were grouped into five stages of gonad maturity following the work of Haryono et al. (2015). The classification was developed by Haryono et al. (2015) for B. balleroides, a relative of naleh fish. The GSI was calculated based on the work of Muchlisin et al. (2010) as follows: GSI (%) = gonad weight (g)/ Total body weight (g) x 100.

![Figure 1. Map of Nagan Raya District, Aceh Province, Indonesia showing the sampling sites (black dots)](image-url)
Sex dimorphism, sex ratio, and fecundity analyses

Sex dimorphism was observed to distinguish the morphological and coloration differences between male and female fish. The sex ratio was calculated based on the work of Adenike (2013) and Muchlisin et al. (2010) as follows: Sex ratio = Total male fish/Total female fish. The relative and total fecundities were examined using gravimetry following the work of Muchlisin et al. (2011) and Muchlisin (2014) as follows: TF= n. (Wt/Ws); RF = TF/BW, where TF is the total fecundity (oocytes per spawning season), RF is the relative fecundity (oocytes g⁻¹ bodyweight), n is the total oocyte in a subsample of the gonad, Wt is the total weight of the gonad (g), Ws is the total weight of the subsample of the gonad (g), and BW is the total body weight of fish (g).

Histological analysis

Histological samples were prepared based on the work of Muchlisin et al. (2010) as follows: the gonad samples were preserved with 10% formalin for 5 days. After one week, the gonad samples were washed with tap water and dehydrated in an increasing alcohol series (70%–96% alcohol) for 30 min. Then, the gonad samples were cleared using xylene, embedded in paraffin, and then sectioned at 4-5 µm thickness using a microtome (SLEE Modelo CUT 4062). The sections were stretched in a 40°C water bath prepared with distilled water. The sections were mounted on an object-glass slide and then dried for 24 h at 37°C followed by one h drying at 60°C on a stove. The sections were stained with eosin for 15 min, dehydrated using 70% alcohol, and dried at 40°C for 25 s. The samples were observed under a stereomicroscope (Olympus CX23, Japan).

Ethics approval and consent to participate

The authors confirm that the ethical policies of the journal have adhered to, and the study is in compliance with Syiah Kuala University Research and Ethics Guidelines, Section of Animal Care and Use in Research.

Results and Discussion

GSI and proportion of mature fish

Compare to the males, the average GSI of female naleh fish was higher in January and April. The proportion of mature female fish was also higher during this month. The female GSI decreased during February and March, increased in April, and then decreased gradually from May to October (Table 1). The proportion of mature female fish also increased with the increase in GSI. Meanwhile, the high GSI values of male fish were observed in February, May, and June (Table 2). Matured fish were noted throughout the year, but higher proportions of mature females were recorded in January and April, whereas higher proportions of matured males were noted in February, May, and June. These findings indicated the asynchronous gonad maturation between male and female naleh fish where when the female GSI value was high, the male GSI value was low and vice versa. However, the synchronous gonad maturity was recorded in May and June. Based on the total length of fish samples, most of the matured female and male naleh fish reached sizes of 105-125 and 83-103 mm, respectively. The females matured first at the size of 85 mm, whereas males achieved maturity at a size of 73 mm (Figure 2).

Figure 2. Proportion of mature fish based on length class for 12 months sampling: A. Male (n = 334 fish); B. Female (n = 55 fish)
Histological analysis of female gonads (ovary) showed that the gonads consisted of oocytes of several sizes, indicating that the fish exhibited asynchronous gonad development (Figure 3). This study revealed seven stages of gonad development among the female naleh fish: namely; primary oocytes with an average size of ±50 µm, lipid vesicle stage (average oocyte size of ±275 µm), cortical alveolus stage (average oocyte size of ±385 µm), vitellogenic stage (average oocyte size of ±650 µm), protein granule stage (average oocyte size of ±750 µm), migrating stage with the oocyte size of ±1000 µm, and migrating stage with the oocyte size of ±1250 µm (Figure 4). No significant correlation was observed between GSI and rainfall in 2016 (Figure 5).

Sex ratio, fecundity, and dimorphism

The results revealed that the male naleh fish was predominant throughout the year with the highest ratio in October, whereas the sex ratios of males and females were equal in December (Table 3). The total fecundity ranged between 656-5725 eggs with an average of 2663 eggs per

Table 1. Gonad development stage and GSI of Female naleh fish

Month	Total sample	Total fish based on gonad development stage (%)	GSI (%)	Gonadal development (%)	Total (%)						
		I	II	III	IV	V		Immature	Mature		
January	13	7.69	30.77	7.69	53.85	0.00	0.87-11.23(4.02 ± 3.00)	38.46	61.54	100	
February	11	36.36	45.45	9.09	9.09	0.00	0.56-9.19(2.12 ± 2.43)	81.82	18.18	100	
March	6	0.00	16.67	16.67	33.33	33.33	0.87-3.77(1.97 ± 1.08)	50.00	50.00	100	
April	8	0.00	25.00	12.50	62.50	0.00	0.90-9.23(4.28 ± 3.09)	25.00	75.00	100	
May	10	0.00	20.00	30.00	30.00	20.00	1.15-5.24(3.00 ± 1.29)	40.00	60.00	100	
June	7	28.57	14.29	57.14	0.00	0.00	0.86-5.20(3.15 ± 1.93)	42.86	57.14	100	
July	9	11.11	44.44	11.11	11.11	22.22	0.49-5.63(2.41 ± 1.54)	77.78	22.22	100	
August	15	53.33	26.67	6.67	13.33	0.00	0.20-7.05(2.48 ± 2.17)	80.00	20.00	100	
September	8	12.50	37.50	0.00	12.50	37.50	0.34-7.52(1.63 ± 2.41)	87.50	12.50	100	
October	4	25.00	25.00	25.00	0.00	25.00	0.19-1.54(0.58 ± 0.63)	75.00	25.00	100	
November	18	44.44	27.78	16.67	11.11	0.00	0.31-6.48(1.80 ± 1.79)	72.22	27.78	100	
December	26	26.92	19.23	42.31	11.54	0.00	0.56-6.22(2.37 ± 1.66)	46.15	53.85	100	

Noted: Bold value is the highest recorded in the respective month

Table 2. Gonad development stage and GSI of male naleh fish

Month	Total sample	Total fish based on gonad development stage (%)	GSI (%)	Gonadal development (%)	Total (%)						
		I	II	III	IV	V		Immature	Mature		
January	70	15.71	25.71	27.14	31.43	0.00	0.31-5.95(2.25 ± 1.29)	41.43	58.57	100	
February	54	3.70	11.11	27.78	55.56	1.85	0.68-8.47(4.18 ± 1.95)	16.67	83.33	100	
March	51	15.69	19.61	21.57	37.25	5.88	0.20-6.74(2.56 ± 1.66)	41.18	58.82	100	
April	75	40.00	12.00	10.67	37.33	0.00	0.10-7.63(2.19 ± 1.98)	52.00	48.00	100	
May	57	0.00	38.60	33.33	26.32	1.75	0.63-10.53(3.01 ± 1.62)	40.35	59.65	100	
June	52	13.46	15.38	19.23	51.92	0.00	0.44-5.54(3.15 ± 1.40)	28.85	71.15	100	
July	52	26.92	21.15	7.69	38.46	5.77	0.17-14.71(2.91 ± 2.74)	53.85	46.15	100	
August	51	29.41	19.61	11.76	39.22	0.00	0.41-7.52(2.71 ± 1.92)	49.02	50.98	100	
September	43	18.60	39.53	18.60	20.93	2.33	0.17-10.04(1.85 ± 1.68)	60.47	39.53	100	
October	56	21.43	26.79	17.86	19.64	14.29	0.12-9.04(1.24 ± 1.57)	62.50	37.50	100	
November	39	38.46	30.77	23.08	7.69	0.00	0.14-5.47(1.44 ± 1.00)	69.23	30.77	100	
December	26	38.46	19.23	11.54	30.77	0.00	0.43-3.74(1.59 ± 0.88)	57.69	42.31	100	

Noted: Bold value is the highest recorded in the respective month

Figure 3. Asynchronous maturity of naleh gonad: primary oocytes (Po), lipid vesicles (Lv), cortical alveolus stage (Cas), vitellogenic (V); advanced vitellogenic (Av), migrating (M), and hydrated (H) stages
spawning season, whereas the relative fecundity ranged between 36-255 eggs g\(^{-1}\) bodyweight with an average of 137 eggs g\(^{-1}\) bodyweight. A strong relationship was noted between fecundity and body weight, that is, fecundity increased with the increase in body weight (Figure 6.A). A similar trend was also observed in the fish length, that is, the fecundity increased as the total length increased. For example, the fish with a length between 85 mm to 95 mm yielded 1110.8 eggs per fish, and it increased to 4552.5 eggs at lengths between 135 mm to 145 mm (Figure 6.B). Male and female fish showed sexual dimorphism, in which the male fish are smaller than females. The male /male fish showed a compressed body shape, whereas the females exhibited a unanimous body shape. However, the sex coloration between male and female was difficult to distinguish.

Table 3. Sex ratio of *Barbonymus* sp. according to monthly sampling

Month	Total individuals	Proportion (%)	Ratio (M: F)			
	Male	Female	Male	Female		
January	70	13	84.34	15.66	5.7	
February	54	11	83.08	16.92	4.9	
March	51	6	89.47	10.53	8.5	
April	75	8	90.36	9.64	9.4	
May	57	10	85.07	14.93	5.7	
June	52	7	88.14	11.86	7.4	
July	52	9	85.25	14.75	5.8	
August	51	15	77.27	22.73	3.4	
September	43	8	84.31	15.69	5.4	
October	56	4	93.33	6.67	14.0	
November	39	18	68.42	31.58	2.2	
December	26	26	50.00	50.00	1.0	
Average	52.17	11.25	81.59	18.41	6.1	

Figure 4. Gonad development of female fish based on oocyte size: A. Primary oocyte; B. Lipid vesicle; C. Cortical alveolus stage; D. Vitellogenic; E. Advanced vitellogenic; F. Migrating; G. Hydrated stages
The study revealed that naleh fish *Barbonymus* sp. are multiple spawners, that is, they spawn over a year with the peak of spawning season in May and June or at the end of the rainy season. Histological analysis showed several sizes of oocytes in the ovary, indicating the asynchronous gonad development pattern. Asynchronous multiple spawners were also recorded for *B. schwanenfeldii* from Perak River, Malaysia (McAdam et al. 1999). However, a contrary finding was reported for the *B. gonionotus* from Rajshahi waters Bangladesh (Bhuiyan et al. 2006) and from Serayu river Central Java, Indonesia (Haryono et al. 2015), where this species thrives as a total spawner. According to the work of Colmenero et al. (2013), a gonad of total spawner fish had oocytes with a homogenous size, indicating the same level of development (synchronous); these fish can lay eggs as a whole during spawning, whereas multiple spawner fish feature different levels of oocyte development (asynchronous) in the gonad, which consists of several oocyte sizes that indicate different levels of maturity; thus, at the time of spawning, the eggs released are only those that have matured, whereas the un matures ones will be released in the next (Muchlisin 2014). Haryono et al. (2015) reported that spawning patterns in fish are influenced by the availability of food sources, water temperatures (seasons), and locations; therefore, fish of the same species but different locations possibly have different spawning patterns as detected in this study. However, no correlation was detected between rainfall and the spawning season of naleh fish. However, in general, the peak spawning season of freshwater fish in tropical region occurs during the rainy season as recorded in several species, including depik *Rasbora tawarensis* in Lake Laut Tawar, Indonesia (Muchlisin et al. 2010, 2011), *Prochilodus brevis* in the Brazilian (Chellappa et al. 2009), and *R. lateristriata* in Ngrancah River, Indonesia (Sentosa et al. 2010).

The present study revealed that the *Barbonymus* sp. males first mature at 73 mm followed by the females at a size of 85 mm, with the total fecundity reaching 2663 eggs. These sizes are smaller than those of other *Barbonymus*, for example, Jasmine and Begum (2016) reported that the *B. gonionotus* females in Padma waters, Bangladesh first show mature gonads at 130 mm size, with the mean total fecundity reaching 58,660 eggs. Moreover, Bhuiyan et al. (2006) reported that the female *B. gonionotus* from Rajshahi waters, Bangladesh first mature at 159 mm in size with an average fecundity of 6964 eggs. Besides, female *B. balleroides* first mature at a size of 175 mm, with a total fecundity of 17,347 eggs (Haryono et al. 2015). The size of the first mature fish gonad is an important indication of overfishing, where overfished species tend to mature earlier or at smaller sizes. Therefore, based on this present study and data on population dynamics (Batubara et al. 2019b), the naleh fish in the Nag Raya River has been overfished, and this previous finding is supported by the present study. A similar finding was observed with *Rasbora tawarensis* (locally name of depik), another endemic species of fish in Aceh (Muchlisin et al. 2010).

The results showed that the fecundity of naleh fish was positively correlated with body weight and the total length, where the fecundity increased with increasing fish length and body weight. This finding coincides with that of Bhuiyan et al. (2006), who worked on *B. gonionotus*. A similar finding was also reported for *R. tawarensis* in Lake Laut Tawar (Muchlisin et al. 2010) and *Scaphirhynchus albus* and *Noturus placidus* (Bulger et al. 2002; Albers et

Figure 5. Relationship between rainfall and average GSI of naleh fish in 2016

Figure 6. A. correlation between body weight and fecundity and B. the correlation between total length and fecundity

The results showed that the fecundity of naleh fish was positively correlated with body weight and the total length, where the fecundity increased with increasing fish length and body weight. This finding coincides with that of Bhuiyan et al. (2006), who worked on *B. gonionotus*. A similar finding was also reported for *R. tawarensis* in Lake Laut Tawar (Muchlisin et al. 2010) and *Scaphirhynchus albus* and *Noturus placidus* (Bulger et al. 2002; Albers et...
In general, the fecundity of nile fish is lower than other Barbonymus species, for example, B. gonionotus in the Padma waters (Jasmine and Begum 2016) and Rajshahi water bodies (Bhuiyan et al. 2006), B. schwanenfeldii in Jambi waters (Kusmini et al. 2018) and the Iberian Peninsula (Gante et al. 2008), and B. collingwoodii in Opak River, Bantul, Jogjayakarta (Yusuf 2013). However, the fecundity of nile fish is higher than that of B. balleroides in Cirata Reservoir, Cianjur, West Java (Kusmini et al. 2017b). Bryan et al. (2007) stated that fecundity is not only influenced by internal factors (genetics, age, and size) but also by external factors, including feed sources and environmental conditions. Therefore, fish of the same species but different water habitats will possibly have varying fecundities due to environmental conditions and the availability of food sources.

The sex ratio of nile fish shows that males were predominant with a ratio of 1:4 (female: male), whereas the mature fish sex ratio was 1:6 (female: male). The ideal sex ratio is when the numbers of males and females are balanced (Haryono et al. 2015; Jasmine and Begum 2016). Baroiller et al. (2008) indicated that the sex ratio of fish in nature is strongly influenced by the temperature and pH of the waters, for instance, in tilapia, warmer waters will produce more male fish. This condition is probably related to global warming, where the average earth temperature has been increasing over the years (Levitus et al. 2000; King et al. 2006). The low number of females will have an impact on the low number of new recruitments of progeny; on the other hand, the threat to the nile fish population in the Nagan river has been increasing over years due to overfishing, environmental damage, and pollution (Batubara et al. 2019b). Besides, mature female fish are mainly targeted by local fishermen because the eggs are popularly consumed by the locals. This practice is probably another reason why the number of female fish is lower. Besides, based on the observations in the present study, in the dry season (or at the end of the rainy season), which is also the peak of the spawning season of this species, local fishermen use poison to catch fish. This condition gives pressure on the nile fish population in the Nagan river.

In conclusion, nile fish are asynchronous multiple spawners; they spawn throughout the year with the spawning season peak in May and June. The males are predominant in the population with the sex ratio male: female = 6:1. The male fish first mature at 73 mm, followed by females at 85 mm, with the average total and relative fecundities of 2663 eggs and 136.88 eggs gram⁻¹ body weight, respectively.

ACKNOWLEDGEMENTS

The authors thank the Ichthyofaunas Research Group members for their kind cooperation during laboratory work and Khaidir for his assistance during the field survey.

REFERENCES

Abduallah A, Ramly R, Ridzwon MSM, Sudirwan F, Abas A, Ahmad K, Mumi M, Kua BC. 2018. First detection of tilapia lake virus (TLV) in wild river carp (Barbonymus schwanenfeldii) at Timah Tosah Lake, Malaysia. J Fish Dis 41: 1459-1462. DOI: 10.1111/jfd.12843.

Adenike FA. 2013. The sex ratio, gonadosomatic index, stages of gonadal development and fecundity ofSompat Grunt, Pomadasys jabelini (Cuvier, 1830). Pak J Zool 45 (1): 41-46.

Albers JL, Wildhaber ML, De-Lonay AJ. 2013. Gonadosomatic index and fecundity of Lower Missouri and Middle Mississippi River endangered pallid sturgeon estimated using minimally invasive techniques. J Appl Ichthyol 29: 1-10. DOI: 10.1111/jai.12231.

Apendi A, Ling TY, Nyanti L, Sim SF, Grinang J, Ganyai T. 2018. Tolerance of Barbonymus schwanenfeldii under salinity exposure. AACL Bioflux 11 (5): 1574-1586.

Barbieri SKL, Peterson NJB, Murua H, Tomkiewicz J, Wyasksi DM, Sabordio-rey F. 2011. Emerging issues and methodological advances in fisheries reproductive biology. Mar Coast Fish 3: 32-51. DOI: 10.1080/19425210.2011.555725.

Baroiller JF, D’Cotta H, Saillant E. 2008. Environmental effects on fish sex determination and differentiation. Sex Dev 3: 118-135. DOI: 10.1159/000223077.

Batubara AS, Muchlisin ZA, Efizon D, Elvyra R, Fadli N, Irham M. 2018. Morphometric variations of the Genus Barbonymus (Pisces, Cyprinidae) harvested from Aceh Waters, Indonesia. Fish Aquat Life 26: 231-237. DOI: 10.2478/aoaf-2018-0026.

Batubara AS, Muchlisin ZA, Efizon D, Elvyra R, Irham M. 2019a. Length-weight relationships and condition factors of the nile fish, Barbonymus gonionotus (Pisces, Cyprinidae) harvested from Nagan Raya Waters, Indonesia. Vestnik Zool 53: 75-82. DOI: 10.2478/vzoo-2019-0008.

Batubara AS, Efizon D, Elvyra R, Rizal S, Muchlisin ZA. 2019b. Population dynamics of the nile fish Barbonymus sp. (Pisces: Cyprinidae) in Nagan River Waters, Aceh Province, Indonesia. Jordan J Biol Sci 12 (3): 361-366.

Bhuiyan AS, Islam K, Zaman T. 2006. Fecundity and ovarian characteristics of Puntius gonionotus (Bloch/Bleeker) (Cyprinidae: Cypriniformes). J Bio-sci 4: 99-102. DOI: 10.3329/jbs.v14i0.451.

Bryan JL, Wildhaber ML, Papoulas DM, De-Lonay AJ, Tillet DE, Annis ML. 2007. Estimation of gonad volume, fecundity, and reproductive stage of shovelnose sturgeon using sonography and endoscopy with application to the endangered pallid sturgeon. J Appl Ichthyol 23: 411-419. DOI: 10.1111/j.1439-0426.2007.00889.x.

Bulger AG, Wilkinson CD, Edds DR. 2002. Breeding behavior and reproductive life history of the Neoshos Madtom, Noturus placidus (Teleostei: Ictaluridae). Transact Kansas Acad Sci 105: 106-124. DOI: 10.1660/0022-8443(2002)105[0106:nhbprt]2.0.co;2.

Chellappa S, Bueno RMX, Chellappa T, Chellappa NT, Eval VMFA. 2009. Reproductive seasonality of the fish Pomadasys jubelini and limnoecology of semi-arid Brazilian reservoirs. Limnologica 39: 325-329. DOI: 10.1016/j.limno.2009.06.003.

Cheng P, Baran E, Touch BT. 2004. Synthesis of All Published Information on Java Barb Barbonymus gonionotus ("trey chopin") based on Fishbase 2004. WorldFish Center and Inland Fisheries Research and Development Institute, Cambodia.

Chew PC, Zulkafi AR. 2012. Sperm Cryopreservation of Some Freshwater Fish Species in Malaysia. InTech Published, China.

Cnaani A, Sivan BL. 2009. Sexual development in fish, practical applications for aquaculture. Sex Dev 3: 164-175. DOI: 10.1159/000223080.

Colmenero AI, Tuset VM, Recasens L, Sanchez P. 2013. Reproductive biology of black anglerfish (Lophius budgenssa) in the northwestern Mediterranean Sea. Fish Bull 111: 390-401. DOI: 10.17755/fb.111.4.8.

Dewantoro E. 2015. Keragaan gonad ikan tenggadak (Barbonymus schwanenfeldii) setelah dinjeksi hormon HCG secara berkala. Jurnal Akuaatika 6 (1): 1-10. [Indonesian]

Esalamloo K, Morshed V, Azozi M, Ashouri G, Ali M, Iqbal F. 2012. Effects of starvation and re-feeding on growth performance, feed utilization and body composition of Tinfoil barb (Barbonymus schwanenfeldii). World J Fish Mar Sci 4: 489-495. DOI: 10.5829/doi.wjfish.2012.04.05.6465.

Esalamloo K, Akhavan SR, Henry MA. 2013. Effects of dietary administration of Bacillus probiotics on the non-specific immune responses of tinfoil barb, Barbonymus schwanenfeldii.
 logistical and biochemical parameters in fish. Environ Biol Fish 55: 369-380. DOI: 10.1023/a:10075693194300.

Mollah MFA, Moniruzzaman M, Rahman MM. 2011. Effects of stocking densities on growth and survival of Thai Sharpnout (Barbonymus gonionotus) in earthen ponds. J Bangladesh Agric Univ 9: 327-338. DOI: 10.3329/jbau.v9i2.11048.

Mondol MR, Dewan S, Hossain MA, Asaduzzaman M, Islam MA. 2005. Feeding and feeding habits of Puntius gonionotus (Thai Sarpintu) in rice field. Pak. J Biol Sci 8: 386-395. DOI: 10.3923/pjbs.2005.386.395.

Muchlis ZA, Siti-Azizah MN. 2009. Diversity and distribution of freshwater fishes in Aceh Waters, Northern Sumatera, Indonesia. Intl J Zool Res 5: 62-79. DOI: 10.3923/ijz.2009.62.79.

Muchlis ZA, Musman M, Siti Azizah MN. 2010. Spawning seasons of Rasbora tawarensis in Lake Latu Tawar, Aceh Province, Indonesia. Reprod Biol Endocrinol 8: 1-8. DOI: 10.1186/1477-8278-8-49.

Muchlis ZA, Musman M, Fadli N, Siti-Azizah MN. 2011. Fecondity and spawning frequency of Rasbora tawarensis (Pisces: Cyprinidae) an endemic species from Lake Latu Tawar, Aceh, Indonesia. AACL Bioflux 4: 273-279.

Muchlis ZA. 2013. Potency of freshwater fishes in Aceh waters as a basis for aquaculture development programs. Jurnal Iktiologi Indonesia 13 (1): 91-96. DOI: 10.32491/ji.v13i1.115.

Muchlis ZA. 2014. A general overview on some aspects of fish reproduction. AACL Bioflux 10: 43-52. DOI: 10.31370/aijst.3.1.1355.

Muchlis ZA, Akyun Q, Rizka N, Fadli N, Sugianto S, Halim A, Siti-Azizah MN. 2015. Ichthyofauna of Triap Peat Swamp Forest, Province Aceh, Indonesia. Check List 11: 1-9. DOI: 10.15560/11.2.1560.

Nyangi L, Ling TY, Soo CL, Sim SF, Grinjan J. 2017. Acidification tolerance of Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758):implication of fish size. AACL Bioflux 10: 746-755.

Nyangi L, Soo CL, Ahmad-Tarmizi NN, Ling TY, Sim SF, Grinjan J, Ganyai T, Ping LS. 2018. Effects of water temperature, dissolved oxygen and total suspended solids on juvenile Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758). AACL Bioflux: 11: 404-406.

Radona D, Soelistyowati DT, Carman O, Gustiano R. 2017. Keragaman genetika dan morfometri ikan tengadak Barbonymus schwanenfeldii (Bleeker 1854) asal Sumatera, Jawa, dan Kalimantan. Jurnal Iktiologi Indonesia 16 (3): 259-268. [Indonesian]

Sarabunid N, Idris NSU, Halim NSA. 2017. Determination of condition factor (CF) and hepatosomatic index (HSI) of Barbonymus schwanenfeldii from Galas River, Kelantan. J Trop Resour Sustain Sci 5: 55-57.

Satrawaha R, Plisasomorn C. 2009. Length-weight and length-length relationships of fish species from the Chi River, northeastern Thailand. J Appl Ichthyol 25: 787-788. DOI: 10.1111/j.1439-0426.2009.01293.x.

Sentosa AA, Djumanto D. 2010. Spawning habitat of Rasbora lateristriata in Ngrancah River, Kulon Progo Regency. Jurnal Iktiologi Indonesia 10: 55-63. DOI: 10.32491/ji.v10i1.178.

Song B, Lin X, Xu Z. 2012. Effects of upstream exercise training on feeding efficiency, growth and nutritional components of juvenile tinfoil barbies (Barbodes schwanenfeldii). J Fish China 36: 106-114. DOI: 10.3724/sp.j.1231.2012.27597.

Székely CS, Shaharom-harrison F, Cech G, Ostoros G, Molnár K. 2009. Myxozoan infections in fishes of the Tasik Kenyir water reservoir, Terenggana, Malaysia. Die Aquat Org 83: 37-48. DOI: 10.3354/dao01991.

Yang L, Hirt V, Sado T, Arunachalam M, Mani AM, Wu H, Mayden RL, Miya M. 2012. Phylogenetic placements of Barbonymus and Rasbora on a cytochrome b and mitochondrial DNA gene tree. Biogeography 1231: 1-21.

Zhu Z, Song B, Lin X, Xu Z. 2016. Effect of sustained training on glycolysis and fatty acids oxidation in swimming muscles and liver in juvenile tinfoil barb Barbonymus schwanenfeldii (Bleeker, 1854). Aquatic Science 78: 1-12. DOI: 10.1007/s12552-015-0243-6.
