Capacity of entanglement in random pure state

Kazumi Okuyama

Department of Physics, Shinshu University,
3-1-1 Asahi, Matsumoto 390-8621, Japan

E-mail: kazumi@azusa.shinshu-u.ac.jp

Abstract: We compute the capacity of entanglement in the bipartite random pure state model using the replica method. We find the exact expression of the capacity of entanglement which is valid for a finite dimension of the Hilbert space. We argue that in the gravitational path integral, the capacity of entanglement receives contributions only from the sub-leading saddle points corresponding to the partially connected geometries.
1 Introduction

In recent papers [1, 2], the Page curve of the Hawking radiation [3] is reproduced from the replica computation of the entanglement entropy (see also [4] for a review). As argued by Page in [5], the entropy computation of the Hawking radiation is nicely modeled by the random pure state $|\Psi\rangle$ in a bipartite Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B.$$ \hfill (1.1)

Here the subsystems A and B correspond to the Hawking radiation and the black hole, respectively. From the reduced density matrix ρ_A of the subsystem A

$$\rho_A = Tr_B |\Psi\rangle \langle \Psi|,$$ \hfill (1.2)

we can compute the entanglement entropy S_A

$$S_A = -\langle Tr \rho_A \log \rho_A \rangle,$$ \hfill (1.3)

where the bracket $\langle \cdots \rangle$ denotes the ensemble average over the random pure state $|\Psi\rangle$. The exact form of S_A (4.5) is obtained in [5] as a function of the dimensions d_A, d_B of the Hilbert spaces (1.1)

$$d_A = \dim \mathcal{H}_A, \quad d_B = \dim \mathcal{H}_B.$$ \hfill (1.4)

As discussed in [3], S_A in the random pure state model exhibits a similar behavior as the Page curve for the Hawking radiation from an evaporating black hole.

In a recent paper [6], it is argued that the capacity of entanglement C_A introduced in [7] is a useful quantity to diagnose the phase transition around the Page time. C_A is defined by

$$C_A = \text{Tr}(\rho_A K^2) - (\text{Tr} \rho_A K)^2,$$ \hfill (1.5)

where $K = -\log \rho_A$ is the modular Hamiltonian. In other words, C_A measures the fluctuation of the modular Hamiltonian. See e.g. [8–10] for the study of C_A in various models.
In this paper, we compute the capacity of entanglement in the random pure state model using the replica method. From the ensemble average of $\text{Tr} \rho^n_A$ over the random pure state, we can compute the entanglement entropy S_A and the capacity of entanglement C_A as the derivative with respect to the replica number n at $n = 1$

$$S_A = -\partial_n \log \langle \text{Tr} \rho^n_A \rangle \bigg|_{n=1} = -\partial_n \langle \text{Tr} \rho^n_A \rangle \bigg|_{n=1},$$

$$C_A = \partial^2_n \log \langle \text{Tr} \rho^n_A \rangle \bigg|_{n=1} = \partial^2_n \langle \text{Tr} \rho^n_A \rangle \bigg|_{n=1} - (S_A)^2. \quad (1.6)$$

We find the exact form of C_A as a function of the dimensions d_A, d_B of the Hilbert spaces $\mathcal{H}_A, \mathcal{H}_B$. The exact expression of C_A in (4.9) is the main result of this paper.

As discussed in [1, 2], fully disconnected or fully connected geometries dominate in the replica computation of the entropy S_A, and their contributions exchange dominance around the Page time. In the case of the capacity C_A, it turns out that the leading saddle point from the fully disconnected or fully connected geometries does not contribute to C_A, and it receives non-zero contributions only from the sub-leading saddle points corresponding to the partially connected geometries. This is consistent with the result of [10] that C_A is a measure of the partial entanglement.

This paper is organized as follows. In section 2, we review the random pure state model and the known exact result of $\langle \text{Tr} \rho^n_A \rangle$. We find a new formula of $\langle \text{Tr} \rho^n_A \rangle$ in terms of the Narayana number (2.13), which is useful for the replica computation of the entanglement entropy S_A and the capacity of entanglement C_A. In section 3, we compute S_A and C_A in the planar limit using the replica method. Our computation shows that the leading saddle point does not contribute to C_A and it receives contributions only from sub-leading saddle points. In section 4, we compute the exact S_A and C_A using the replica method. Finally we conclude in section 5.

2 Random pure state model

In this section, let us briefly review the random pure state model. We consider a pure state $|\Psi\rangle$ in the bipartite Hilbert space $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. This models the black hole evaporation where A corresponds to the Hawking radiation while B corresponds to the black hole. In the model discussed in [1], A and B correspond to the end of the world brane and the bulk JT gravity, respectively. We can expand the state $|\Psi\rangle$ in terms of the orthonormal basis of \mathcal{H}_A and \mathcal{H}_B

$$|\Psi\rangle = N \sum_{i=1}^{d_A} \sum_{\alpha=1}^{d_B} X_{i\alpha} |i\rangle_A \otimes |\alpha\rangle_B, \quad (2.1)$$

where N is the normalization factor to ensure the unit norm of $|\Psi\rangle$

$$\langle \Psi | \Psi \rangle = 1. \quad (2.2)$$

It is useful to regard the coefficient $X_{i\alpha}$ in (2.1) as a component of the $d_A \times d_B$ complex matrix X

$$X = (X_{i\alpha}). \quad (2.3)$$
Then the normalization factor \mathcal{N} is written as

$$\mathcal{N} = \frac{1}{\sqrt{\operatorname{Tr}(XX^\dagger)}}. \quad (2.4)$$

We are interested in the reduced density matrix ρ_A defined in (1.2) obtained by tracing out B. In terms of the matrix X in (2.3), ρ_A is written as a $d_A \times d_A$ matrix

$$\rho_A = \frac{XX^\dagger}{\operatorname{Tr}(XX^\dagger)} = \frac{W}{\operatorname{Tr}W}, \quad (2.5)$$

where $W = XX^\dagger$. The ensemble average over the random pure state $|\Psi\rangle$ can be defined by the Gaussian integral over the matrix X

$$\langle O(W) \rangle = \frac{\int dXdX^\dagger O(W)e^{-\operatorname{Tr}(XX^\dagger)}}{\int dXdX^\dagger e^{-\operatorname{Tr}(XX^\dagger)}}. \quad (2.6)$$

As a distribution of the matrix $W = XX^\dagger$, this is known as the Wishart-Laguerre ensemble. See [11] for a nice review on this subject.

The matrix integral (2.6) can be written as the eigenvalue integral by diagonalizing the matrix W. In the original paper by Page [5], the entropy S_A was computed by evaluating the eigenvalue integral of log ρ_A directly. In this paper, we will compute the entropy S_A and the capacity C_A using the replica method (1.6). To do this, we need the expectation value of the moment $\operatorname{Tr} \rho_A^n$. Fortunately, the exact result of $\langle \operatorname{Tr} \rho_A^n \rangle$ is already obtained in [12].

$$\langle \operatorname{Tr} \rho_A^n \rangle = \frac{\Gamma(d_Ad_B)}{\Gamma(d_Ad_B + n + 1)} \cdot \frac{1}{n} \sum_{j=1}^{n} (-1)^{j-1} [d_A + n - j][d_B + n - j]n!}{(j-1)!(n-j)!}, \quad (2.8)$$

where $[a]_n = a(a-1)\cdots(a-n+1)$ denotes the falling factorial. For instance, the first few terms of $\langle \operatorname{Tr} \rho_A^n \rangle$ read

$$\langle \operatorname{Tr} \rho_A^2 \rangle = \frac{d_A + d_B}{d_Ad_B + 1}, \quad \langle \operatorname{Tr} \rho_A^3 \rangle = \frac{d_A^2 + 3d_Ad_B + d_B^2 + 1}{(d_Ad_B + 1)(d_Ad_B + 2)}, \quad (2.9)$$

$$\langle \operatorname{Tr} \rho_A^4 \rangle = \frac{d_A^3 + 6d_A^2d_B + 6d_Ad_B^2 + d_B^3 + 5d_A + 5d_B}{(d_Ad_B + 1)(d_Ad_B + 2)(d_Ad_B + 3)},$$

which agree with the known exact results of $\langle \operatorname{Tr} \rho_A^n \rangle$ [15, 16]. Note that $\langle \operatorname{Tr} \rho_A^n \rangle$ in (2.8) is symmetric under the exchange of d_A and d_B, which implies that S_A and C_A are also symmetric functions of d_A and d_B

$$S_A(d_A, d_B) = S_A(d_B, d_A), \quad C_A(d_A, d_B) = C_A(d_B, d_A). \quad (2.10)$$
In what follows, we will assume \(d_A \leq d_B \) without loss of generality. \(S_A \) and \(C_A \) in the opposite regime \(d_A > d_B \) can be obtained by exchanging \(d_A \) and \(d_B \) using the symmetry (2.10).

When \(n \) is a positive integer, the summation of \(j \) in (2.8) can be extended to \(j = \infty \) since the summand vanishes for \(j > n \). Then (2.8) becomes

\[
\langle \mathrm{Tr} \rho^n_A \rangle = \frac{\Gamma(d_A d_B)}{\Gamma(d_A d_B + n)} \cdot \frac{1}{n} \sum_{j=1}^{\infty} \frac{(-1)^{j-1} [d_A + n - j]_n [d_B + n - j]_n}{(j-1)! (n-j)!}
\]

\[
= \frac{\Gamma(d_A + n) \Gamma(d_B + n) \Gamma(d_A d_B + 1)}{\Gamma(n+1) \Gamma(d_B + 1) \Gamma(d_A + 1) \Gamma(d_A d_B + n)}
\times 3F_2(\{1 - d_A, 1 - d_B, 1 - n\}, \{1 - d_A - n, 1 - d_B - n\}; 1). \tag{2.11}
\]

The last expression makes sense for non-integer \(n \) and it defines an analytic continuation of \(\langle \mathrm{Tr} \rho^n_A \rangle \) away from the integer \(n \). One can in principle compute the derivative of the last expression in (2.11) with respect to \(n \) to find \(S_A \) and \(C_A \). However, it is not straightforward to simplify the derivative of the hypergeometric function \(3F_2 \) in (2.11).

It turns out that it is useful to rewrite (2.11) as the following form using the identity of \(3F_2 \) \(^2\)

\[
\langle \mathrm{Tr} \rho^n_A \rangle = \frac{\Gamma(d_B + n) \Gamma(d_A d_B + 1)}{\Gamma(d_B + 1) \Gamma(d_A d_B + n)}
\times 3F_2(\{1 - d_A, 1 - d_B, 1 - n\}, \{2, 1 - d_B - n\}; 1). \tag{2.12}
\]

We find that this is expanded as

\[
\langle \mathrm{Tr} \rho^n_A \rangle = \sum_{k=1}^{\infty} N_{n,k} \frac{\Gamma(d_A) \Gamma(d_B + 1 + n - k) \Gamma(d_A d_B + 1)}{\Gamma(d_A + 1 - k) \Gamma(d_B + 1) \Gamma(d_A d_B + n)} , \tag{2.13}
\]

where \(N_{n,k} \) is the Narayana number

\[
N_{n,k} = \frac{1}{n} \binom{n}{k} \frac{n}{k-1} = \frac{\Gamma(n) \Gamma(n+1)}{k!(k-1)! \Gamma(1+n-k) \Gamma(2+n-k)}. \tag{2.14}
\]

Indeed, one can show that the summation in (2.13) reproduces the hypergeometric function in (2.12). This expression (2.13) makes contact with the planar limit of \(\langle \mathrm{Tr} \rho^n_A \rangle \) where the Narayana number naturally appears from the number of non-crossing permutations \([17]\).

When \(n \) is a positive integer, the summation of \(k \) in (2.13) is truncated at \(k = n \) and one can easily check that (2.13) reproduces the result (2.9) for small \(n \).

Using the analytic continuation of the Narayana number by the last expression in (2.14), we can define a natural analytic continuation of \(\langle \mathrm{Tr} \rho^n_A \rangle \) in (2.13) for non-integer \(n \). When \(d_A \leq d_B \) and \(d_A \) is a positive integer, the summation in (2.13) vanishes for \(k > d_A \) and hence (2.13) becomes

\[
\langle \mathrm{Tr} \rho^n_A \rangle = \sum_{k=1}^{d_A} N_{n,k} \frac{\Gamma(d_A) \Gamma(d_B + 1 + n - k) \Gamma(d_A d_B + 1)}{\Gamma(d_A + 1 - k) \Gamma(d_B + 1) \Gamma(d_A d_B + n)} . \tag{2.15}
\]

In section 4, we will use this expression of \(\langle \mathrm{Tr} \rho^n_A \rangle \) for the replica computation of the exact \(S_A \) and \(C_A \).

\(^2\)See the identity in the Wolfram Functions Site http://functions.wolfram.com/07.27.17.0046.01.
3 Planar limit

Before discussing the exact result of C_A, in this section we will compute C_A in the planar limit

$$d_A, d_B \rightarrow \infty \text{ with } \alpha = \frac{d_A}{d_B} : \text{ fixed.} \quad (3.1)$$

We will assume $\alpha \leq 1$ without loss of generality. C_A in the opposite regime $\alpha > 1$ can be obtained by sending $\alpha \rightarrow \alpha - 1$ using the symmetry (2.10). The computation of C_A in this limit (3.1) has been already done in [6] using the planar eigenvalue density of the Wishart-Laguerre ensemble, known as the Marchenko–Pastur distribution. Here we will use the replica method to compute C_A, which clarifies the role of replica wormholes in C_A.

In the planar limit (3.1), the exact result of $\langle \text{Tr} \rho_A^n \rangle$ in (2.15) reduces to [17]

$$\langle \text{Tr} \rho_A^n \rangle_{\text{planar}} = d_A 1 - n \sum_{k=1}^{\infty} N_{n,k} \alpha^{k-1}. \quad (3.2)$$

When n is a positive integer, the sum over k is truncated to $1 \leq k \leq n$ since the Narayana number $N_{n,k}$ in (2.14) vanishes for $k \geq n + 1$. The first few terms of the planar expectation values of $\text{Tr} \rho_A^n$ are given by

$$\begin{align*}
\langle \text{Tr} \rho_A^2 \rangle_{\text{planar}} &= \frac{d_A + d_B}{d_A d_B}, \\
\langle \text{Tr} \rho_A^3 \rangle_{\text{planar}} &= \frac{d_A^2 + 3d_A d_B + d_B^2}{(d_A d_B)^2}, \\
\langle \text{Tr} \rho_A^4 \rangle_{\text{planar}} &= \frac{d_A^3 + 6d_A^2 d_B + 6d_A d_B^2 + d_B^3}{(d_A d_B)^3}.
\end{align*} \quad (3.3)$$

One can see that (3.3) is obtained from the planar limit of the exact result (2.9), as expected.

When n is a positive integer, (3.2) is expanded as

$$\langle \text{Tr} \rho_A^n \rangle_{\text{planar}} = d_A 1 - n + \frac{1}{2} n(n - 1) d_A^{-2} - d_B^{-1} + \cdots + d_B^{-n}. \quad (3.4)$$

In the gravitational path integral, the first term $d_A 1 - n$ and the last term d_B^{-n} come from fully disconnected and fully connected geometries, respectively. If we assume $d_A < d_B$, the dominant contribution is the first term $d_A 1 - n$ and $\langle \text{Tr} \rho_A^n \rangle_{\text{planar}}$ is written as

$$\langle \text{Tr} \rho_A^n \rangle_{\text{planar}} = d_A 1 - n \left[1 + f(n, \alpha) \right], \quad (3.5)$$

where $f(n, \alpha)$ is given by

$$f(n, \alpha) = \sum_{k=2}^{\infty} N_{n,k} \alpha^{k-1} = 2 F_1 (1 - n, -n; 2; \alpha) - 1. \quad (3.6)$$

In other words, in the gravitational picture $f(n, \alpha)$ summarizes all contributions from the sub-dominant, partially connected geometries. Note that $f(n, \alpha)$ vanishes at $n = 1$ by our definition in (3.6)

$$f(1, \alpha) = 0. \quad (3.7)$$
Plugging (3.5) into (1.6) we find
\begin{align}
S_{A, \text{planar}} &= \log d_A - f'(1, \alpha), \\
C_{A, \text{planar}} &= f''(1, \alpha) - f'(1, \alpha)^2,
\end{align}
where the prime in f' and f'' denotes the derivative with respect to n. Note that the capacity is completely determined by the sub-leading contributions $f(n, \alpha)$ in (3.5). In fact, if we use the leading approximation of the trace
\[
\langle \text{Tr} \rho^n_A \rangle_{\text{planar}} \approx d_A^{1-n},
\]
the capacity vanishes
\[
C_{A, \text{planar}} = \partial_n^2 \langle \text{Tr} \rho^n_A \rangle_{\text{planar}} \bigg|_{n=1}^2 - \left(\partial_n \langle \text{Tr} \rho^n_A \rangle_{\text{planar}} \bigg|_{n=1} \right)^2
\approx (\log d_A)^2 - (\log d_A)^2 = 0.
\]
The same conclusion holds in the opposite regime $d_A > d_B$ as well if we use the leading approximation $\langle \text{Tr} \rho^n_A \rangle_{\text{planar}} \approx d_B^{1-n}$. This implies that the dominant saddle point of gravitational path integral does not contribute to the capacity. In other words, the capacity of entanglement is sensitive to the sub-dominant saddle points corresponding to the partially connected geometries. Thus, C_A is a useful probe of the contributions of replica wormholes which are not fully connected nor fully disconnected geometries, but some “intermediate” geometries. This is consistent with the result in [10] that C_A takes a non-zero value for partially entangled states and C_A vanishes for the pure state or a maximally entangled state. Namely, C_A is a measure of partial entanglement [10].

Let us evaluate $f'(1, \alpha)$ and $f''(1, \alpha)$. From (3.6) they are written as
\begin{align}
f'(1, \alpha) &= \sum_{k=2}^{\infty} \partial_n N_{n,k} \bigg|_{n=1} \alpha^{k-1}, \\
f''(1, \alpha) &= \sum_{k=2}^{\infty} \partial_n^2 N_{n,k} \bigg|_{n=1} \alpha^{k-1}.
\end{align}
Thus, we need to compute the derivative of Narayana number $N_{n,k}$ at $n = 1$. From (2.14), one can easily show that $N_{n,k}$ is expanded around $n = 1$ as
\[
N_{n,k} = \begin{cases}
1, & (k = 1), \\
\frac{1}{2} (n - 1) + \frac{1}{2} (n - 1)^2, & (k = 2), \\
- \frac{(n - 1)^2}{k(k - 2)(k - 1)^2} + \mathcal{O}((n - 1)^3), & (k \geq 3).
\end{cases}
\]
This implies that the first derivative $\partial_n N_{n,k}$ at $n = 1$ vanishes unless $k = 2$, and $f'(1, \alpha)$ in (3.11) becomes
\[
f'(1, \alpha) = \alpha \partial_n N_{n,2} \bigg|_{n=1} = \frac{\alpha}{2}.
\]
In a similar manner, from (3.12) we find that $f''(1, \alpha)$ in (3.11) becomes

$$f''(1, \alpha) = \alpha - \sum_{k=3}^{\infty} \frac{2}{k(k-2)(k-1)^2} \alpha^{k-1}$$

$$= -1 - \frac{3\alpha}{2} + (\alpha - \alpha^{-1}) \log(1 - \alpha) + 2\text{Li}_2(\alpha).$$

Finally, plugging the result of $f'(1, \alpha)$ in (3.13) and $f''(1, \alpha)$ in (3.14) into the definition of $S_{A,\text{planar}}$ and $C_{A,\text{planar}}$ in (3.8) we find

$$S_{A,\text{planar}} = \log d_A - \frac{\alpha}{2},$$

$$C_{A,\text{planar}} = -1 - \frac{3\alpha}{2} - \frac{\alpha^2}{4} + (\alpha - \alpha^{-1}) \log(1 - \alpha) + 2\text{Li}_2(\alpha).$$

This agrees with the result in [6] obtained from the Marchenko–Pastur distribution. Our replica computation reveals the importance of the sub-leading contribution $f(n, \alpha)$ to the capacity of entanglement.

We note in passing that $C_{A,\text{planar}}$ in (3.15) takes the maximal value at $\alpha = 1$, or $d_A = d_B$ [6, 10]

$$C_{A,\text{planar}}^{(\text{max})} = C_{A,\text{planar}} \bigg|_{\alpha=1} = \frac{\pi^2}{3} - \frac{11}{4}.$$

4 Exact capacity of entanglement at finite d_A, d_B

In this section we will compute the exact S_A and C_A using the exact result of $\langle \text{Tr} \rho_A^n \rangle$ in (2.15). Here we assume that d_A and d_B are both integers and $d_A \leq d_B$.

Let us first compute the entanglement entropy S_A. Plugging (2.15) into the definition of S_A in (1.6) we find

$$S_A = -\lim_{n \to 1} \sum_{k=1}^{d_A} \frac{\Gamma(d_A) \Gamma(d_B + 1 + n - k) \Gamma(d_A d_B + 1)}{\Gamma(d_A + 1 - k) \Gamma(d_B + 1) \Gamma(d_A d_B + n)}$$

$$\times \left[N_{n,k} \left(\psi(d_B + 1 + n - k) - \psi(d_A d_B + n) \right) + \partial_n N_{n,k} \right],$$

where $\psi(z)$ denotes the digamma function

$$\psi(z) = \frac{d}{dz} \log \Gamma(z).$$

From the behavior (3.12) of the Narayana number $N_{n,k}$ near $n = 1$, (4.1) becomes

$$S_A = \psi(d_A d_B + 1) - \psi(d_B + 1) - \frac{1}{2} \frac{\Gamma(d_A) \Gamma(d_B)}{\Gamma(d_A + 1) \Gamma(d_B + 1)}.$$

3The exact computation of S_A by the replica method is also considered in [18] using the expression of $\langle \text{Tr} \rho_A^n \rangle$ in (2.8).
Using the property of the digamma function
\[
\psi(m + 1) = \sum_{k=1}^{m} \frac{1}{k} - \gamma, \quad (m \in \mathbb{N}), \tag{4.4}
\]
with \(\gamma\) being the Euler’s constant, we arrive at the exact entanglement entropy \(S_A\) for \(d_A \leq d_B\)
\[
S_A = \sum_{k=d_B+1}^{d_A d_B} \frac{1}{k} - \frac{d_A - 1}{2d_B}. \tag{4.5}
\]
This agrees with the famous Page’s result \([5]^{4}\). \(S_A\) in the opposite regime \(d_A > d_B\) is obtained from (4.5) by exchanging the role of \(d_A\) and \(d_B\). Note that the first term of (4.5) is written as
\[
\sum_{k=d_B+1}^{d_A d_B} \frac{1}{k} = H_{d_A d_B} - H_{d_B}, \tag{4.6}
\]
where \(H_m = \sum_{k=1}^{m} 1/k\) denotes the harmonic number.

Figure 1: Plot of the entanglement entropy \(S_A\) as a function of \(\log d_A\). We have set \(d_B = 20\) in this figure. The blue solid curve represents the exact result of \(S_A\) in (4.5). The orange dashed curve is the leading approximation \(S_A = \log d_A\) \((d_A \leq d_B)\) and \(S_A = \log d_B\) \((d_A > d_B)\).

In Fig. 1, we show the plot of \(S_A\) as a function of \(\log d_A\) with a fixed \(d_B\). As we can see from Fig. 1, \(S_A\) grows like \(\log d_A\) for small \(d_A\) and approaches \(\log d_B\) for large \(d_A\). At least qualitatively, this reproduces the Page curve of the Hawking radiation \([3]\) if we regard the subsystem \(A\) as the radiation and the subsystem \(B\) as the black hole and \(t = \log d_A\) as time. Around the Page time \(t = \log d_B\), the contributions from the fully disconnected and the fully connected geometries exchange dominance in the replica computation of \(S_A\) \([1, 2]\).
Next, let us compute the capacity of entanglement C_A by the replica method (1.6). To do this, we need to compute the second derivative of $\langle \text{Tr} \rho_A^n \rangle$ at $n = 1$

$$\left. \partial_n^2 \langle \text{Tr} \rho_A^n \rangle \right|_{n=1} = \lim_{n \to 1} \sum_{k=1}^{d_A} \frac{\Gamma(d_A)\Gamma(d_B + 1 + n - k)\Gamma(d_A d_B + 1)}{\Gamma(d_A + 1 - k)\Gamma(d_B + 1)\Gamma(d_A d_B + n)}$$

$$\times \left[N_{n,k} \left(\psi(d_B + 1 + n - k) - \psi(d_A d_B + n) \right)^2
+ 2 \partial_n N_{n,k} \left(\psi(d_B + 1 + n - k) - \psi(d_A d_B + n) \right)
+ N_{n,k} \left(\psi_1(d_A + 1 + n - k) - \psi_1(d_A d_B + n) \right) + \partial_n^2 N_{n,k} \right],$$

(4.7)

where $\psi_1(z) = \frac{d}{dz} \psi(z)$ denotes the trigamma function. Using the relation

$$\psi_1(m + 1) = \frac{\pi^2}{6} - \sum_{k=1}^{m} \frac{1}{k^2}, \quad (m \in \mathbb{N}),$$

(4.8)

and the behavior (3.12) of $N_{n,k}$ near $n = 1$, after some algebra we find the exact result of capacity C_A for $d_A \leq d_B$

$$C_A = \sum_{k=d_B+1}^{d_A d_B} \frac{1}{k^2} - \frac{(d_A - 1)(d_A + 3)}{4d_B} + \frac{d_A - 1}{d_B} - \sum_{k=3}^{d_A} 2 \frac{1}{k(k-2)(k-1)^2} \prod_{i=0}^{k-2} \frac{d_A - 1 - i}{d_B - i}.$$

(4.9)

This is our main result. C_A in the opposite regime $d_A > d_B$ is obtained from (4.9) by exchanging d_A and d_B using the symmetry (2.10). Note that the first term of (4.9) is written as

$$\sum_{k=d_B+1}^{d_A d_B} \frac{1}{k^2} = H_{d_A d_B}^{(2)} - H_{d_B}^{(2)},$$

(4.10)

where $H_{m}^{(2)} = \sum_{k=1}^{m} 1/k^2$ denotes the generalized harmonic number of the 2nd order. This is similar to the first term of S_A in (4.5), but the other terms in C_A are more complicated than S_A.

One can easily check that (4.9) reduces to $C_{A, \text{planar}}$ in (3.15) in the planar limit (3.1). Also, one can check that $C_A(d_A, d_B)$ in (4.9) for $d_A, d_B = 2, 3$ agree with the result in [10]

$$C_A(2, 2) = \frac{13}{36},$$

$$C_A(2, 3) = \frac{1169}{3600},$$

$$C_A(3, 3) = \frac{2898541}{6350400}.$$

(4.11)

From the exact result (4.9), we find the small d_A and the large d_A behavior of C_A

$$C_A \approx \begin{cases}
\left(\frac{d_A}{d_B} - 1 \right) \frac{1}{d_B}, & (1 \leq d_A \ll d_B), \\
\left(\frac{d_B}{d_A} - 1 \right) \frac{1}{d_A}, & (d_A \gg d_B).
\end{cases}$$

(4.12)
Our exact C_A in (4.9) takes the maximal value at $d_A = d_B$

$$
C_A^{(\text{max})} = \sum_{k=1}^{d_B} \frac{1}{k^2} + \sum_{k=1}^{d_B} \frac{1}{k^2} + \frac{1}{d_B} - \frac{1}{4d_B^2} - \frac{11}{4}.
$$

(4.13)

In the large d_B limit this is expanded as

$$
C_A^{(\text{max})} = \frac{\pi^2}{3} - \frac{11}{4} - \frac{3}{4d_B^2} + \mathcal{O}(d_B^{-3}),
$$

(4.14)

where the first two terms agree with the maximal value of capacity in the planar limit (3.16). For finite d_A, d_B, one can show that the exact C_A is bounded from above

$$
C_A \leq C_A^{(\text{max})} < \frac{\pi^2}{3} - \frac{11}{4}.
$$

(4.15)

Figure 2: Plot of the capacity of entanglement C_A as a function of $\log d_A$. We have set $d_B = 20$ in this figure. The blue solid curve is the exact result of C_A in (4.9). The orange dashed curves represent the asymptotic behavior of C_A in (4.12). The dashed vertical line is at $d_A = d_B$ where C_A becomes maximal.

In Fig. 2, we show the plot of the exact capacity C_A in (4.9). We can see that C_A vanishes for $d_A = 1$ and approaches zero at large $d_A \gg d_B$. This is qualitatively similar to the result of the planar limit found in [6]. We emphasize that our result (4.9) is exact at finite d_A, d_B and (4.9) includes all the non-planar corrections. As we argued in the previous section, C_A is sensitive to the sub-leading terms in $\langle \text{Tr} \rho_A^3 \rangle$ corresponding to the partially connected geometries. Indeed, C_A vanishes at the early and late “time” $t = \log d_A$ where the fully connected or fully disconnected geometry is dominant. C_A takes a non-zero value near the Page time $t = \log d_B$ (or $d_A = d_B$) which is interpreted that the partially connected geometries give substantial contributions to C_A near the Page time.
5 Conclusions and outlook

In this paper, we have computed the exact capacity of entanglement C_A (4.9) at finite d_A, d_B using the replica method (1.6). At the technical level, the important ingredient in our computation is the new exact formula (2.15) of $\langle \text{Tr} \rho^n_A \rangle$ written in terms of the Narayana number $N_{n,k}$. This formula (2.15) makes the relation to the planar limit manifest. We argued that C_A vanishes for the fully connected or fully disconnected geometries, and C_A is sensitive to the sub-leading contributions to $\langle \text{Tr} \rho^n_A \rangle$ coming from the partial connected geometries in the gravitational path integral. This suggests that C_A is a good probe of the partial entanglement, as discussed in [10].

There are several open questions. The capacity of entanglement is introduced in [7] as an analogue of the heat capacity. Indeed, if we introduce the modular Hamiltonian $K = -\log \rho_A$, the moment $\text{Tr} \rho^n_A$ looks like the partition function

$$Z_n = \text{Tr} \rho^n_A = \text{Tr} e^{-nK},$$

and n plays the role of the inverse temperature β. In this picture, our definition (1.6) of S_A and C_A is based on the “annealed” free energy $\log \langle Z_n \rangle$

$$S_A = -\partial_n \log \langle Z_n \rangle \bigg|_{n=1}, \quad C_A = \partial^2_n \log \langle Z_n \rangle \bigg|_{n=1}. \quad (5.2)$$

One could consider the quenched version of S_A and C_A as well

$$S_A^{\text{qu}} = -\partial_n \langle \log Z_n \rangle \bigg|_{n=1}, \quad C_A^{\text{qu}} = \partial^2_n \langle \log Z_n \rangle \bigg|_{n=1}. \quad (5.3)$$

We leave the computation of the quenched version of S_A and C_A as an interesting future problem.

It would be interesting to study the gravitational picture of the capacity of entanglement. C_A is related to the quantum fluctuation of the modular Hamiltonian and the prescription of the gravitational computation of C_A is proposed in [8]. We have argued that C_A receives contributions only from the sub-leading partially connected geometries in the replica computation. It would be interesting to related this picture to the prescription in [8].

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant No. 19K03845.

References

[1] G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, “Replica wormholes and the black hole interior,” arXiv:1911.11977 [hep-th].

[2] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05 (2020) 013, arXiv:1911.12333 [hep-th].
[3] D. N. Page, “Information in black hole radiation,” *Phys. Rev. Lett.* 71 (1993) 3743–3746, arXiv:hep-th/9306083.

[4] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “The entropy of Hawking radiation,” arXiv:2006.06872 [hep-th].

[5] D. N. Page, “Average entropy of a subsystem,” *Phys. Rev. Lett.* 71 (1993) 1291–1294, arXiv:gr-qc/9305007.

[6] K. Kawabata, T. Nishioka, Y. Okuyama, and K. Watanabe, “Probing Hawking radiation through capacity of entanglement,” arXiv:2102.02425 [hep-th].

[7] H. Yao and X.-L. Qi, “Entanglement entropy and entanglement spectrum of the Kitaev model,” *Phys. Rev. Lett.* 105 (2010) 080501, arXiv:1001.1165 [cond-mat].

[8] Y. Nakaguchi and T. Nishioka, “A holographic proof of Rényi entropic inequalities,” *JHEP* 12 (2016) 129, arXiv:1606.08443 [hep-th].

[9] Y. O. Nakagawa and S. Furukawa, “Capacity of entanglement and the distribution of density matrix eigenvalues in gapless systems,” *Phys. Rev. B* 96 no. 20, (2017) 205108, arXiv:1708.08924 [cond-mat.str-el].

[10] J. De Boer, J. Järvelä, and E. Keski-Vakkuri, “Aspects of capacity of entanglement,” *Phys. Rev. D* 99 no. 6, (2019) 066012, arXiv:1807.07357 [hep-th].

[11] B. Collins and I. Nechita, “Random matrix techniques in quantum information theory,” *J. Math. Phys.* 57 (2016) 015215, arXiv:1509.04689 [quant-ph].

[12] I. Nechita, “Asymptotics of random density matrices,” *Ann. Henri Poincaré* 8 (2007) 1521, arXiv:quant-ph/0702154.

[13] P. J. Hanlon, R. P. Stanley, and J. R. Stembridge, “Some combinatorial aspects of the spectra of normally distributed random matrices,” *Contemp. Math* 138 (1992) 151–174.

[14] U. Haagerup and S. Thorbjørnsen, “Random matrices with complex Gaussian entries,” *Expo. Math.* 21 (2003) 293.

[15] E. Lubkin, “Entropy of an n-system from its correlation with a k-reservoir,” *J. Math. Phys.* 19 (1978) 1028.

[16] H.-J. Sommers and K. Zyczkowski, “Statistical properties of random density matrices,” *J. Phys. A: Math. Gen.* 34 (2004) 8457, arXiv:quant-ph/0405031.

[17] J. Kudler-Flam, “Relative Entropy of Random States and Black Holes,” arXiv:2102.05053 [hep-th].

[18] J. P. Dyer, “Divergence of Lubkin’s series for a quantum subsystem’s mean entropy,” arXiv:1406.5776 [cond-mat].

[19] S. K. Foong and S. Kanno, “Proof of Page’s conjecture on the average entropy of a subsystem,” *Phys. Rev. Lett.* 72 (1993) 1148.

[20] J. Sánchez-Ruiz, “Simple proof of Page’s conjecture on the average entropy of a subsystem,” *Phys. Rev. E* 52 (1995) 5653.

[21] S. Sen, “Average Entropy of a Quantum Subsystem,” *Phys. Rev. Lett.* 77 (1996) 1.