Ionization of the atomic gas in redshifted radio sources

S. J. Curran,1* R. W. Hunstead,2 H. M. Johnston,2 M. T. Whiting,3 E. M. Sadler,4,2,3 J. R. Allison4 and R. Athreya5

1School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
2Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
3CSIRO Astronomy and Space Science, PO Box 76, Epping NSW 1710, Australia
4Sub-department of Astrophysics; Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
5Indian Institute of Science Education and Research, 900, NCL Innovation Park, Dr Homi Bhabha Road Pune, Maharashtra 411008, India

Accepted 2018 December 24. Received 2018 December 20; in original form 2018 October 18

ABSTRACT

We report the results of a survey for H I 21-cm absorption at \(z \lesssim 0.4 \) in a new sample of radio sources with the Giant Metrewave Radio Telescope. Of the 11 sources for which there are good data, we obtain zero detections, where four are expected upon accounting for the ionizing photon rates and sensitivity. Adding these to the previously published values, we confirm that the non-detection of 21-cm absorption in active sources at high redshift is due to photo-ionization of the gas rather than excitation by 21-cm photons (significant at 6.09\(\sigma \) and 2.90\(\sigma \), respectively). We also confirm a strong correlation between the absorption strength and the reddening of the source, suggesting that dust plays a significant role in shielding the gas from the ambient ultraviolet field. An anticorrelation between the 21-cm detection rate and the radio turnover frequency is also found, which runs contrary to what is expected on the basis that the higher the turnover frequency, the more compact the source. It is, however, consistent with the hypothesis that the turnover frequency is related to the electron density, supported by a correlation between the turnover frequency and ionizing photon rate.

Key words: galaxies: active – galaxies: fundamental parameters – galaxies: ISM – quasars: absorption lines – radio continuum: galaxies – radio lines: galaxies.

1 INTRODUCTION

Cold neutral gas, the reservoir for star formation throughout the Universe, is traced through absorption of the background 21-cm continuum by neutral hydrogen (H I). Beyond the Milky Way, this is either detected in quiescent galaxies, which intervene the sight line to more distant radio sources, or within the host of the continuum source itself. In the former intervening systems, absorption via the Ly\(\alpha \) transition of H I is often also detected (and usually a prerequisite for 21-cm searches), while this is not the case for the latter associated systems. This is due to the ‘proximity effect’, where the absorption by neutral atomic gas (or its tracers, e.g. MgII) becomes sparser as the absorption redshift approaches that of the background source, due to the higher ionizing (\(\lambda_{\text{ion}} \lesssim 912 \) Å) fluxes (e.g. Weymann, Carswell & Smith 1981; Bajtlik, Duncan & Ostriker 1988; Wild et al. 2008; Jilán, Chand & Srianand submitted).

A similar effect has been seen for the 21-cm transition, where associated H I 21-cm absorption has never been detected in radio sources above a ‘critical UV luminosity’ of \(L_{\text{UV}} \sim 10^{43} \) W Hz\(^{-1} \) (Curran et al. 2008), a result which has been confirmed several times since (Curran et al. 2011a, 2013b, 2016a, 2017a,b; Allison et al. 2012; Gerbè et al. 2015; Aditya, Kanekar & Kurapati 2016; Aditya & Kanekar 2018a; Grasha et al. submitted).1 This luminosity corresponds to an ionizing photon rate of \(Q_{\text{HI}} \equiv \int_{0}^{\infty} (L_{\nu}/h\nu) \, dv \approx 3 \times 10^{56} \) s\(^{-1} \) (where \(\nu = 3.29 \times 10^{15} \) Hz), which, from a model of a quasar placed within an exponential gas disk, is just sufficient to ionize all of the neutral gas in a large spiral (Curran & Whiting 2012). This explains the ubiquitous absence of 21-cm absorption in any source with \(Q_{\text{HI}} \gtrsim 3 \times 10^{56} \) s\(^{-1} \), at any redshift and independent of source classification. Curran et al. (2008) suggested a selection effect, where the traditional pre-selection of targets of known optical redshifts biases 21-cm surveys towards objects that are the most UV luminous in the source rest frame. If the gas is completely ionized, even the Square Kilometre Array (SKA) will fail to detect 21-cm absorption in the currently known high-redshift radio sources, with future searches being required to dispense with the reliance upon an optical redshift to which to tune the receiver (Curran et al. 2013c; Morganti, Sadler & Curran 2015).

1Grasha et al. (submitted), which is still in submission, report 0 new detections of H I 21-cm absorption out of 89 new searches over 0.02 < \(z < 3.8 \) (see Grasha & Darling 2011).

* E-mail: scurran.astro@gmail.com
Nevertheless, in order to further test this and improve the statistics, we have embarked upon a survey of a new sample of flat spectrum radio sources over a large redshift space. In Curran et al. (2017a), we reported our $z \gtrsim 2.6$ survey with the Green Bank Telescope (GBT) and the Giant Metrewave Radio Telescope (GMRT) and here we report our $z \lesssim 0.4$ GMRT observations.

2 Source Selection, Observations and Data Reduction

As in the previous stage of this survey (Curran et al. 2017a), the sources were selected from the Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry (ICRF2; Ma et al. 2009). This comprises a sample of strong flat spectrum radio sources, of which 1682 now have known redshifts (Titov & Malkin 2009; Titov et al. 2013 and references therein), yielding a frequency to which to tune the receiver in the search for 21-cm absorption. Furthermore, all are VLBI calibrators and so have significant compact flux, thus maximizing the chance of a high covering factor and thus optical depth (Curran et al. 2013a; see Section 3.1). The goal of the survey was to search and quantify the incidence of associated HI 21-cm absorption over all redshifts and since our previous observations (Curran et al. 2017a) searched 19 sources at $z \gtrsim 2.6$, we wished to complement this with lower redshift data. Band-5 of the Upgraded Giant Metrewave Radio Telescope (uGMRT) spans a range of 1000–1450 MHz and, of the ICRF2 sources for which 1420 MHz is redshifted into this range (HI 21-cm at $z \lesssim 0.42$), there are 24 for which the estimated flux density exceeded $S_{\text{obs}} \approx 0.2$ Jy at the redshifted 21-cm frequency. Of these, there were 23 with sufficient optical/UV photometry to determine the ionizing photon rate, of which time was awarded to observe 19 (see Table 1).

In order to strike a balance between sensitivity and sample size, the $S_{\text{obs}} \geq 0.2$ Jy sources were observed for a total of 1 h each, including overheads (calibration and slewing). The observations were taken with the full 30 antenna array on 2018 March 23, in two orthogonal circular polarizations (LL & RR). For bandpass calibration 3C 48, 3C 147, and 3C 298 were used, with the phases being self-calibrated. The Band-5 receiver was used with the GSB bandpass calibration 3C 48, 3C 147, and 3C 298 were used, with the phases being self-calibrated. The Band-5 receiver was used with the GSB back-end, over a bandwidth of 16 MHz and 512 channels, giving a spectral resolution of ≈ 8 km s$^{-1}$ over ± 2000 km s$^{-1}$, in order to cover any uncertainties in the redshift. The data were calibrated and flagged using the MIRIAD interferometry reduction package. After averaging the two polarizations, a spectrum was extracted from the cube. At these frequencies, radio frequency interference (RFI) was low and a satisfactory image was produced in all but five cases2 (see Table 1).

3 Results

3.1 Observational results

In Fig. 1, we show the final spectra, smoothed to a spectral resolution of $\Delta v = 20$ km s$^{-1}$, and summarize the results in Table 1. The velocity integrated optical depth of the 21-cm absorption, $NHI = \int \tau dv$, is related to the total neutral hydrogen column density via

$$N_{HI} = 1.823 \times 10^{14} \frac{T_{\text{spin}}}{f} \int \tau dv,$$

where T_{spin} is the spin temperature of the gas, which is a measure of the excitation from the lower hyperfine level (Purcell & Field 1956; Field 1959; Bahcall & Ekers 1969). The observed optical depth, τ_{obs}, is the ratio of the line depth, ΔS, to the observed background flux, S_{obs}, and is related to the intrinsic optical depth via

$$\tau = -\ln \left(1 - \frac{\tau_{\text{obs}}}{f} \right) \approx \frac{\tau_{\text{obs}}}{f}, \quad \text{for } \tau_{\text{obs}} \ll \frac{\Delta S}{S_{\text{obs}}} \lesssim 0.3,$$

where the covering factor, f, is the fraction of S_{obs} intercepted by the absorber. Therefore, in the optically thin regime (where $\tau_{\text{obs}} \lesssim 0.3$), equation (1) can be approximated as

$$N_{HI} \approx 1.823 \times 10^{18} \frac{T_{\text{spin}}}{f} \int \tau_{\text{obs}} dv,$$

which we use to derive the absorption strength sensitivities. Of the 19 targets, the absorption strength could be obtained for 11 which we show in comparison to the previously published values (Fig. 2).3

Our sensitivities span from $N_{HI} = 10^{17.9} - 10^{18.7} T_{\text{spin}}/f$ cm$^{-2}$ per 20 km s$^{-1}$ channel, which is within the range of the previous detections at $z \gtrsim 0.1$.4

Note that, although we reach an rms noise level of 18 mJy per 8.41 km s$^{-1}$ (giving a 3σ to a sensitivity of $N_{HI} > 2.0 \times 10^{18} T_{\text{spin}}/f$ cm$^{-2}$) in 2003-38A, we do not detect the $N_{HI} = 3.5 \times 10^{18} T_{\text{spin}}/f$ cm$^{-2}$ absorption of Aditya & Kanekar (2018b) in the cube extracted spectrum. In the uv data, however, a feature is apparent in the RR polarization only, with a similar full-width at zero intensity of $FWZI \approx 50$ km s$^{-1}$, although the feature is shallower (15, cf. 40 mJy) and offset at $+1750$ km s$^{-1}$ (cf. -50 km s$^{-1}$) from $z = 0.229$ (i.e. at $z = 0.236$).

3.2 Ionizing photon rates

Following the procedure of Curran et al. (2013b), for each source we obtained the photometry from NASA/IPAC Extragalactic Database (NED), the Wide-Field Infrared Survey Explorer (WISE; Wright et al. 2010), Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006) and the Galaxy Evolution Explorer (GALEX; data release GRe65) databases. Each flux datum, S_v, was converted to a luminosity, via $L_v = 4\pi D_L^2 S_v/(z+1)$, where D_L is the luminosity distance to the source, and corrected for Galactic extinction (Schlegel, Finkbeiner & Davis 1998). A power law was then fit to the UV rest-frame data, allowing the ionizing photon rate to be determined for all but five cases2 (see Table 1).

3These are compiled from de Waard, Strom & Miley (1985), Mirabel (1989), van Gorkom et al. (1989), Uson, Bagri & Cornwell (1991), Carilli, Perlmutter & Stokoe (1992), Carilli et al. (1998, 2007), Moore, Carilli & Menten (1999), Peck, Taylor & Conway (1999), Peck et al. (2000), Röttgering et al. (1999), Morganti et al. (2001), Ishwara-Chandra, Dwarkanath & Anantharamaiyah (2003), Veerman et al. (2003), Curran et al. (2006, 2008, 2011a,b, 2013b,c, 2016a, 2017b), Gupta et al. (2006), Orienti, Morganti & Dallacasa (2006), Kanekar et al. (2009), Emonts et al. (2010), Salter et al. (2010), Chandola, Sirothia & Saikia (2011), Chandola, Gupta & Saikia (2013), Allison et al. (2012, 2015), Yan et al. (2012, 2016), Gerêb et al. (2015), Srianand et al. (2015), Aditya et al. (2016, 2017), Aditya & Kanekar (2018a,b), Curran et al. (2017a), Grasha et al. (submitted), Jones, Ghosh & Salter (2018), and Aditya (2019). Note that, in order to compare our limits with those in the literature, each has been re-sampled to the same spectral resolution (20 km s$^{-1}$, as in Fig. 1). This is used as the FWHM to obtain the integrated optical depth limit, thus giving the $N_{HI}f/T_{\text{spin}}$ limit per channel (see Curran 2012).

4We restrict our analysis to these redshifts, due to possible weakening of the absorption by coincident 21-cm emission (Curian & Duchesne 2018).

5http://galex.stsci.edu/GRe6/
Table 1. The observational results. \(z \) is the optical redshift of the source, \(\Delta S \) the rms noise reached per 20 km s\(^{-1} \) channel, \(S_{\text{meas}} \) is the measured flux density, \(\tau_{3\sigma} \), the derived limit to the optical depth, where \(\tau_{3\sigma} = -\ln(1 - 3\Delta S/S_{\text{meas}}) \) is quoted for these non-detections. These give the quoted column densities [cm\(^{-2}\)], where \(T_{\text{spin}} \) is the spin temperature and \(f \) the covering factor, followed by the frequency (MHz) and redshift ranges over which the limit applies (between the RFI spikes to either side of the expected redshift).

Name	\(z \)	\(\Delta S \) (mJy)	\(S_{\text{meas}} \) (Jy)	\(\tau_{3\sigma} \)	\(N_{\text{HI}} \) (cm\(^{-2}\))	\(\nu \) range (MHz)	\(z \) range
B2 0003+38A	0.229	7.5	0.419	<0.054	2.0 \times 10^{18} T_{\text{spin}}/f	1.4751–1.1590	0.225 43–0.23781
[HB99] 0716+714	0.300	20.7	0.434	RFI DOMINANT	1.08683–1.09854	0.292 99–0.30693	
[HB99] 0754+100	0.266	2.94	0.386	<0.023	8.3 \times 10^{17} T_{\text{spin}}/f	1.1881–1.2647	0.260 94–0.26957
FBQS J0833.5+422401	0.249 153	–	RFI DOMINANT	1.13753–1.14313	0.242 56–0.24868		
[HB99] 0836+182	0.280	3.13	0.262	<0.036	1.3 \times 10^{18} T_{\text{spin}}/f	1.10233–1.11650	0.272 19–0.28855
WISE J092915.43+501336.0	0.370 387	2.47	0.330	<0.022	8.2 \times 10^{17} T_{\text{spin}}/f	1.03078–1.04315	0.361 66–0.37799
PKS 1108+201	0.299 1	–	NO FLUX CALIBRATION	1.09047–1.10093	0.290 19–0.30256		
SBS 1150+497	0.333 66	4.91	0.345	<0.043	1.6 \times 10^{18} T_{\text{spin}}/f	1.064 50–1.07188	0.325 16–0.33434
FBQS J120922.7+411941	0.377	–	NO FLUX CALIBRATION	1.02336–1.03752	0.369 04–0.38798		
[HB99] 1216–010	0.415	13.4	INSUFFICIENT FLUX	9.985–13.0153	0.401 97–0.42307		
[HB99] 1236+077	0.400	13.3	0.356	<0.11	4.1 \times 10^{18} T_{\text{spin}}/f	1.007 62–1.02333	0.388 02–0.40967
PG 1302–102	0.278 4	8.28	0.543	<0.046	1.7 \times 10^{18} T_{\text{spin}}/f	1.10238–1.11652	0.272 17–0.28849
[HB99] 1502+036	0.407 88	–	BANDPASS RIPPLE DOMINANT	1.00211–1.01680	0.396 94–0.41742		
[HB99] 1546+027	0.414 38	13.2	0.997	<0.040	1.4 \times 10^{18} T_{\text{spin}}/f	0.997 11–1.01165	0.404 05–0.42452
[HB99] 1717+178	0.137	3.63	0.355	<0.031	1.1 \times 10^{18} T_{\text{spin}}/f	1.24680–1.25868	0.128 51–0.13924
[HB99] 1749+096	0.322	15.7	0.580	<0.081	3.0 \times 10^{18} T_{\text{spin}}/f	1.24137–1.25721	0.129 81–0.14422
[RB99] 2140–048	0.341	9.12	0.741	<0.037	1.4 \times 10^{18} T_{\text{spin}}/f	1.05213–1.06365	0.335 41–0.35030
WISE J233412.82+073627.6	0.401	–	NO FLUX CALIBRATION	1.00688–1.02198	0.389 85–0.41070		

Note. 0003+38A detected at \(N_{\text{HI}} = 3.5 \times 10^{17} T_{\text{spin}}/f \) cm\(^{-2}\) by Aditya & Kanekar (2018b), 0754+100 observed to a sensitivity of \(<7.3 \times 10^{17} T_{\text{spin}}/f \) cm\(^{-2}\) per 30 km s\(^{-1}\) channel by Grasha et al. (submitted), 1108+201 to \(<8.1 \times 10^{17} T_{\text{spin}}/f \) cm\(^{-2}\) per 17.8 km s\(^{-1}\) channel by Aditya & Kanekar (2018a). Flux calibration was not possible for 1206+416 nor J2334+0736, with the task gpf00122b oscaling the fluxes.

Given that the sample is larger with more comprehensive photometry,\(^6\) we now examine other selection factors, over and above the ionizing photon rate, which could affect the 21-cm absorption detection rate (e.g. the degree of dust reddening and the coverage of the background flux; Curran et al. 2017b).

4 DISCUSSION

4.1 Photo-ionization versus excitation by 21-cm photons

First, we examine the suggestion of Aditya et al. (2016) and Aditya & Kanekar (2018a,b) that gas excitation by the incident radio continuum may be responsible for the paucity of 21-cm detections at high redshift. As mentioned in Section 3.1, the spin temperature of the gas can be raised by excitation to the upper hyperfine level by 21-cm photons and the Malmquist bias would cause the high-redshift sources to be the most luminous. Due to the detection of 21-cm absorption over all of the same radio luminosities as the non-detections, this was deemed an unlikely cause by Curran et al. (2008), with Curran & Whiting (2010) using the T-statistic to show that the UV was dominant over the radio luminosity. Since the sample has increased significantly, however, we revisit this. The T-statistic is given by

\[
T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(N_1^{-1} + N_2^{-1})}}
\]

where \(\hat{p}_1 = X_1/N_1 \) and \(\hat{p}_2 = X_2/N_2 \) are the two measured proportions (i.e. the detection rate below and above the cut) and \(\hat{p} = (X_1 + X_2)/(N_1 + N_2) \) is the total proportion. This has the standard normal distribution under the null hypothesis that the proportions

\(^6\)Note that Aditya et al. (2017) detect 21-cm absorption at \(z = 1.223 \) in TXS 1954+513 for which they claim \(L_{\text{UV}} \approx 4 \times 10^{43} \) W Hz\(^{-1}\). This, however, is extrapolated from just two optical (\(R \) band and \(B \) band) photometry points, which we deem insufficient (see Curran et al. 2013b).

\(^7\)Giving 397 compared to 211 sources previously (Curran et al. 2017a).
Figure 1. The reduced spectra shown at a spectral resolution of 20 km s$^{-1}$. The ordinate gives the flux density (Jy), except for J1209+413 & J2334+0738 (see Table 1), and the abscissa the barycentric frequency (MHz). The scale along the top shows the redshift of HI 21-cm over the frequency range and the downwards arrow shows the frequency of the absorption expected from the optical redshift, with the horizontal bar showing a span of ± 200 km s$^{-1}$ for guidance. Note that the features in 1150+497 and J1209+413 are also apparent off source in the image and so are not considered to be real.

Examining this further, by including the limits to the absorption strength via the Astronomy SURVival Analysis (ASURV) package (Isobe, Feigelson & Nelson 1986), a generalized non-parametric Kendall-tau test gives a probability of $P(\tau) = 1.30 \times 10^{-8}$ of the $N_{\text{HI}}/T_{\text{spin}} - Q_{\text{HI}}$ anticorrelation occurring by chance (Fig. 7), which is significant at $S(\tau) = 5.69\sigma$. For the continuum radio luminosity, the correlation remains weak (Fig. 8), thus suggesting that photo-ionization of the neutral gas is the primary reason for the non-detection of 21-cm absorption in the high-redshift sources.

$(\hat{p}_1$ and \hat{p}_2) are the same, which we reject for $Q_{\text{HI}} \gtrsim 10^{21}$ s$^{-1}$, where the difference between the two proportions is significant at $>3\sigma$ (Fig. 5).

In Fig. 6, we show the T-statistic for the rest-frame 1420 MHz continuum luminosity, obtained from the second order polynomial fit to the radio SEDs (e.g. Fig. 3). This peaks at $<3\sigma$, indicating that excitation by the continuum radio luminosity has less of an effect on the detection of 21-cm absorption. The increase at $L_{21\text{-cm}} \gtrsim 10^{26}$ W Hz$^{-1}$ is most likely due to the correlation between the radio and UV luminosities, which are both degenerate with redshift (Curran & Whiting 2010).
4.2 Other factors

4.2.1 Source reddening

Another factor that is shown to have an effect on the H\textsc{i} 21-cm detection rate is the redness of the source (Webster et al. 1995; Carilli et al. 1998), with Curran et al. (2006, 2017b) and Curran & Whiting (2010) finding a correlation between visible (or blue)–near-infrared colour and the absorption strength. Although the visible magnitudes will be degenerate with the ionizing photon rate, this may provide evidence of dust shielding the neutral gas from ambient UV radiation. This effect has also been observed for the molecular absorption strength in intervening absorption systems (Curran et al. 2011), where the absorbing gas is remote from the ionizing UV continuum, suggesting that the reddening is indeed at least partially due to dust. This, however, has been recently disputed by Aditya & Kanekar (2018b), who found no correlation between the absorption strength and degree of reddening (through the red–near-infrared colour). Obtaining the visible and near-infrared magnitudes from the photometry fits of the entire sample (Section 3.2), in Fig. 9 we show the T-statistic for the visible–near-infrared colour, from which we see that the degree of reddening has a significant effect on the detection rate at \(V - K \gtrsim 3 \). Furthermore, Fig. 10 demonstrates a strong correlation between the absorption strength and degree of reddening (and also suggests that our targets may not be sufficiently reddened). This is inconsistent with the finding of Aditya & Kanekar (2018b), who use \(R - K \), the \(R \) magnitude will not be as susceptible to dust attenuation as the \(V \) magnitude. Additionally, they use a smaller (58 cf. 230 sources, for which we could obtain the magnitudes) and more biased (containing \(\alpha_{21\text{-cm}} > -0.5 \) sources only) sample.

4.2.2 Spectral index

In addition to excitation of the gas raising the spin temperature, the coverage of the continuum flux can affect the detection of 21-cm absorption: Low coverage \((f < 1)\) will reduce the observed optical depth (equation 2), as has been observed in the case of intervening absorption (Curran et al. 2005). For associated absorption, the observed optical depth is known to be anticorrelated with the extent of the radio emission, consistent with \(f \propto \tau_{\text{obs}} \) (Curran et al. 2013a).

Generally, the radio emission extents are unknown and the extent of the absorbing medium would also be required to determine the covering factor. One proxy for the covering factor, via the radio source size, is the spectral index. Here, extended radio sources beaming along our sight line are expected to have flatter radio SEDs than those in which the lobes are projected in the plane of the sky (Fanti et al. 1990). Indeed, Curran et al. (2013b) attributed their non-detections in eight \(L_{\text{UV}} \lesssim 10^{33} \) W Hz\(^{-1}\) sources to the selection of ultra-steep spectrum (\(\alpha_{21\text{-cm}} \lesssim -1 \)) sources at \(z \gtrsim 3 \) (de Breuck et al. 2002). Therefore, any correlation between the spectral index and absorption strength would suggest a strong relationship between the spectral slope and the extent of the radio emission.

From the T-statistic (Fig. 11), we do see that the detections may favour flat spectrum (\(\alpha_{21\text{-cm}} \approx 0 \)) sources, although this is not significant and so could be the result of small numbers at \(\mid \alpha_{21\text{-cm}} \mid \gtrsim 1 \).

4.2.3 Turnover frequency

Another tracer of radio source size is the presence of a turnover in the SED, due to free–free absorption/synchrotron self-absorption at low frequencies causing a turnover at \(v_{\text{TO}} \sim \text{GHz} \). In such gigahertz peaked sources (GPS), the turnover frequency is anticorrelated with the source size (e.g. O’Dea 1998; Fanti 2000; Orienti et al. 2006) and a possible correlation between the detection of 21-cm absorption and the turnover frequency was suggested in nearby galaxies, where \(\langle v_{\text{TO}} \rangle = 10^{8.66 \pm 0.32} \) Hz for the detections, compared to \(\langle v_{\text{TO}} \rangle = 10^{9.00 \pm 0.21} \) Hz for the non-detections (Curran et al. 2016b).

For the whole sample, we obtain the rest-frame (intrinsic) turnover frequency from the second order polynomial fit to the radio SEDs (see Curran et al. 2013b), which shows a significant (>3\(\sigma \)) effect for \(v_{\text{TO}} \gtrsim 1 \text{GHz} \) (Fig. 12). However, this is due to a lower 21-cm detection rate at higher values of \(v_{\text{TO}} \), which would suggest that the detection rate decreases with the background continuum size,
Figure 3. The rest-frame photometry for each of the 19 targets. The broken curve shows the fit to the radio data and the dashed line shows the power-law fit to the optical/UV data, the vertical dotted line signifies a rest-frame frequency of 3.29×10^{15} Hz ($\lambda = 912$ Å) and the horizontal line the critical $\lambda = 912$ Å luminosity of $L_{\text{UV}} \sim 10^{23}$ W Hz$^{-1}$, with the shading showing the region over which the ionizing photon rate is derived.

Figure 4. The ionizing ($\lambda \lesssim 912$ Å) photon rate versus redshift for the H I 21-cm absorption searches. The symbols and histogram are as per Fig. 2.
Table 2. The ionizing photon rates for the targets for which we could obtain limits to the 21-cm absorption strength (Table 1).

Source	z	$N_{\text{H}_1}\ (\text{cm}^{-2})$	$Q_{\text{H}_1}\ (\text{s}^{-1})$
0003+38A	0.229	$3.5 \times 10^{18} \frac{T_{\text{spin}}}{f}$	1.3×10^{51}
0754+100	0.266	$< 5.9 \times 10^{17} \frac{T_{\text{spin}}}{f}$	7.9×10^{52}
0836+182	0.280	$< 1.3 \times 10^{18} \frac{T_{\text{spin}}}{f}$	5.8×10^{54}
0929+5013	0.370	$387 < 8.2 \times 10^{17} \frac{T_{\text{spin}}}{f}$	6.6×10^{54}
1108+201	0.299	$< 4.2 \times 10^{17} \frac{T_{\text{spin}}}{f}$	3.6×10^{54}
1150+497	0.333	$66 < 1.6 \times 10^{18} \frac{T_{\text{spin}}}{f}$	2.0×10^{53}
1236+077	0.400	$< 4.1 \times 10^{18} \frac{T_{\text{spin}}}{f}$	2.2×10^{54}
1302−102	0.278	$4 < 1.7 \times 10^{18} \frac{T_{\text{spin}}}{f}$	8.9×10^{55}
1546+027	0.414	$1.4 \times 10^{18} \frac{T_{\text{spin}}}{f}$	6.5×10^{53}
1717−178	0.137	$< 1.1 \times 10^{18} \frac{T_{\text{spin}}}{f}$	1.6×10^{54}
1749−096	0.322	$< 3.0 \times 10^{18} \frac{T_{\text{spin}}}{f}$	2.0×10^{55}
2140−048	0.344	$< 1.4 \times 10^{18} \frac{T_{\text{spin}}}{f}$	2.2×10^{56}

Note. $N_{\text{H}_1} = 3.5 \times 10^{18} \frac{T_{\text{spin}}}{f}$ cm$^{-2}$ in 0003+38A from Aditya & Kanekar (2018a, submitted). Combining these with our useful spectra, gives 11. The binomial statistics have significantly increased, due to a larger sample and general detection rate over the sensitivities reached. Given that the statistics have significantly increased, due to a larger sample and more complete photometry, we revisit the main observational factors believed to affect the detection of H$_1$ 21-cm absorption:

(i) We confirm that the photo-ionization of the neutral gas by high-ionizing ($\lambda \lesssim 912$ Å) photon rates is most likely responsible for the paucity of 21-cm absorption at high redshift. The binomial
Figure 8. The absorption strength versus the 21-cm continuum luminosity.

Figure 9. As Fig. 5, but for the visible–near-infrared colour.

Figure 10. The absorption strength versus the visible–near-infrared colour.

Figure 11. As Fig. 5, but for the rest-frame 1420 MHz spectral index (see Section 4.1).

Figure 12. As Fig. 5, but for the radio-band turnover frequency.

Figure 13. The rest-frame turnover frequency versus the redshift for all of the published H I 21-cm absorption searches which exhibit a turnover.
of the gas, rather than excitation to the upper hyper-fine level by neutral atomic gas at high redshift is dominated by photo-ionization. Thus, we conclude that photo-ionization of the gas is the main factor in rendering detections of H I 21-cm absorption rare at redshifts of $z \gtrsim 1$: A high-redshift source sufficiently bright to provide a spectrum in the optical band is extremely UV luminous in the source rest frame, thus introducing a selection effect where the optical pre-selection of targets biases against the sources most likely to contain large quantities of cool neutral gas. Again, this appears to be independent of the radio properties, implying an ubiquitous effect, and reinforces our conclusion that the pre-selection of targets based upon the optical spectra must be foregone in favour of wide-band radio observations.

ACKNOWLEDGEMENTS

We wish to thank the anonymous referee for their prompt and helpful comments. We also thank the staff of the GMRT who have made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc This research has made use of NASA’s Astrophysics Data System Bibliographic Services and ASURV Rev 1.2 (Lavalley, Isobe & Feigelson 1992), which implements the methods presented in Isobe et al. (1986).

REFERENCES

Aditya J. N. H. S., 2019, MNRAS, 482, 5597
Aditya J. N. H. S., Kanekar N., 2018a, MNRAS, 473, 59
Aditya J. N. H. S., Kanekar N., 2018b, MNRAS, 481, 1578
Aditya J. N. H. S., Kanekar N., Kurapati S., 2016, MNRAS, 455, 4000
Aditya J. N. H. S., Kanekar N., Prochaska J. X., Day B., Lynam P., Cruz J., 2017, MNRAS, 465, 5011
Allison J. R. et al., 2012, MNRAS, 423, 2601
Allison J. R. et al., 2015, MNRAS, 453, 1249
Bahcall J. N., Ekers R. D., 1969, ApJ, 157, 1055
Bajtlik S., Duncan R. C., Ostriker J. P., 1988, ApJ, 327, 570
Carilli C. L., Menten K. M., Reid M. J., Rupen M. P., Yun M. S., 1998, ApJ, 494, 175
Carilli C. L., Perlman E. S., Stocke J. T., 1992, ApJ, 400, L13
Carilli C. L., Wang R., van Hoven M. B., Dwarakanath K., Chengalur J. N., Wyithe S., 2007, AJ, 133, 2841

Figure 14. As Fig. 13, but for the ionizing photon rate.

Figure 15. As Fig. 13, but for the radio power.
