7-14-2021

Predictors of Permanent Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement - A Systematic Review and Meta-Analysis.

Waqas Ullah
Salman Zahid
Syeda Ramsha Zaidi
Deepika Sarvepalli
Shujaul Haq

See next page for additional authors

Follow this and additional works at: https://jdc.jefferson.edu/abingtonfp

Part of the Cardiology Commons

Let us know how access to this document benefits you

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Abington Jefferson Health Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Authors
Waqas Ullah, Salman Zahid, Syeda Ramsha Zaidi, Deepika Sarvepalli, Shujaul Haq, Sohaib Roomi, Maryam Mukhtar, Muhammad Atif Khan, Smitha Narayana Gowda, Nicholas Ruggiero, Alec Vishnevsky, and David L. Fischman
SYSTEMATIC REVIEW AND META-ANALYSIS

Predictors of Permanent Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement - A Systematic Review and Meta-Analysis

Waqas Ullah, MD; Salman Zahid, MD; Syeda Ramsha Zaidi, MD; Deepika Sarvepalli, MBBS; Shujaul Haq, MD; Sohaib Roomi, MD; Maryam Mukhtar, MBBS; Muhammad Atif Khan, MD; Smitha Narayana Gowda, MD; Nicholas Ruggiero, MD; Alec Vishnevsky, MD; David L. Fischman, MD

BACKGROUND: As transcatheter aortic valve replacement (TAVR) technology expands to healthy and lower-risk populations, the burden and predictors of procedure-related complications including the need for permanent pacemaker (PPM) implantation needs to be identified.

METHODS AND RESULTS: Digital databases were systematically searched to identify studies reporting the incidence of PPM implantation after TAVR. A random- and fixed-effects model was used to calculate unadjusted odds ratios (OR) for all predictors. A total of 78 studies, recruiting 31,261 patients were included in the final analysis. Overall, 6212 patients required a PPM, with a mean of 18.9% PPM per study and net rate ranging from 0.16% to 51%. The pooled estimates on a random-effects model indicated significantly higher odds of post-TAVR PPM implantation for men (OR, 1.16; 95% CI, 1.04–1.28); for patients with baseline mobitz type-1 second-degree atrioventricular block (OR, 3.13; 95% CI, 1.64–5.93), left anterior hemiblock (OR, 1.43; 95% CI, 1.09–1.86), bifascicular block (OR, 2.59; 95% CI, 1.52–4.42), right bundle-branch block (OR, 2.48; 95% CI, 2.17–2.83), and for periprocedural atrioventricular block (OR, 4.17; 95% CI, 2.69–6.46). The mechanically expandable valves had 1.44 (95% CI, 1.18–1.76), while self-expandable valves had 1.93 (95% CI, 1.42–2.63) fold higher odds of PPM requirement compared with self-expandable and balloon-expandable valves, respectively.

CONCLUSIONS: Male sex, baseline atrioventricular conduction delays, intraprocedural atrioventricular block, and use of mechanically expandable and self-expanding prosthesis served as positive predictors of PPM implantation in patients undergoing TAVR.

Key Words: aortic disease ■ aortic valve ■ aortic valve implantation ■ aortic valve stenosis ■ atrioventricular block ■ pacemaker ■ transcathether aortic valve replacement

As the rheumatic etiology of aortic stenosis (AS) has significantly waned over time, age-related AS remains the most common valvular disease in the developed world.1 Valve replacement is the only definitive and effective treatment to improve survival in these patients, however, a multitude of coexisting comorbidities, including but not limited to chronic cardiac or pulmonary diseases, operative risks, extremes of age and poor physical health serve as barriers to surgical aortic valve replacement (SAVR). Transcatheter aortic valve replacement (TAVR) has recently emerged as a reasonable alternative to rescue these high-risk patients.2 The first TAVR was performed in 2002, in France, on a 57-year-old man in whom SAVR was...

Correspondence to: Waqas Ullah, MD, Department of Medicine, Section of Cardiology, Thomas Jefferson University Hospitals, 111 South 11th Street Philadelphia, PA 19107. E-mail: waqasullah.drr@gmail.com

Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.121.020906

For Sources of Funding and Disclosures, see page 13.

© 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

J Am Heart Assoc. 2021;10:e020906. DOI: 10.1161/JAHA.121.020906

10.1161/JAHA.121.020906
CONTRARY to medical therapy in patients with severe AS, but is also no-inferior to SAVR, even in low-risk patients.4–6

However, like any other therapeutic intervention, the advent of TAVR has presented its own set of challenges urging the need for a favorable risk-benefit estimation. With the widespread availability and expanded indication of TAVR to a lower-risk healthy population, there are concerns about the rising trend of procedural complications associated with TAVR. A frequent issue encountered with this procedure is conduction defects requiring permanent pacemaker (PPM) implantation.7,8 The bundle of His and the bundle branches run in the vicinity of where the prosthesis is being placed. These conduction abnormalities arise primarily due to the proximity of the aortic annulus to the atrioventricular conduction system that gets manipulated during the procedure.7 Data suggests that the prevalence of conduction defects post-procedure also depends upon the type of valve implanted during the TAVR procedure.8 The 2 most common prostheses used are balloon-expandable Edwards Sapien Valve (ESV) and self-expanding Medtronic Corevalve Revealing System (MCRS) with a 5%-12% incidence of PPM implantation post-procedure in the former and 24%-33% in the latter.9 Due to the manipulation of the old valve, aortic annulus dilatation and subsequent implantation of a prosthetic valve, conduction defects are common. In our study, we intend to identify various cardiac and non-cardiac predictors that lead to PPM implantation following TAVR. We also aim to gauge the risk of conduction abnormalities based on the type of prosthesis and access site used in TAVR.

METHODS

Data was obtained from published articles on the topic. All data can be obtained from the references mentioned in the supplementary file. The consolidated extracted data is available on demand.

Search Strategy

PubMed, Embase, Ovid, and Cochrane databases were queried with various combinations of keywords and medical subject headings (MeSH) to identify studies of interest. There were no time filters or language restrictions placed. Backward snowballing by screening the references of relevant articles were also performed to retrieve unidentified articles that were missed on the primary search. The MeSH used included 2 subsets: one for TAVR using the keywords “percutaneous prosthetic valve,” “transcatheter aortic valve replacement,” “TAVR,” “transcatheter aortic valve implantation,” “TAVI,” “percutaneous approach,” “minimal invasive aortic valve replacement,” “transapical aortic valve replacement,” and the other for PPM and heart block including “LAFB,” “LPFB,” “LBBB,” “pacemaker implantation,” “heart block,” “conduction abnormalities,” and “conduction delays.” The 2 subsets of MeSH were systematically combined using Boolean operators. The final results from all possible combinations were downloaded into an EndNote library. All randomized control trials (RCT) and
observational cohort studies (OCS) until April 2021, were screened for relevance. Any OCS or RCT that assessed the post-TAVR rate of atrioventricular conduction or cardiac rhythm abnormalities and subsequent PPM implantation during the same hospitalization or within 30-days of TAVR procedure were included. To avoid the inclusion of duplicate data, we only selected the most contemporary data when overlapping study populations (according to the period of recruitment and participating institutions) were reported; however, we cautiously included all patients reporting different predictors from studies of overlapping populations. To measure the impact of the procedure on PPM implantation, all patients with prophylactic implantation of PPM before the TAVR procedure were excluded from the analysis.

Data Extraction

Raw data about the events of PPM implantation in different predictor comparison groups were extracted for analysis by the first 9 authors independently. Detailed study- and patient-level baseline characteristics including the type of study design; recruitment period, region, and follow-up duration; sample size, number of post-TAVR PPM implantations, sex, age, procedural risk assessment (by logistic EuroSCORE [European System for Cardiac Operative Risk Evaluation] or STS-PROM [Society of Thoracic Surgeons Predicted Risk of Mortality] score), and baseline comorbidities were abstracted. Additionally, data related to the access site (transfemoral versus trans subclavian, transapical versus transvascular), type of prosthesis (MCRS versus ESV versus LOTUS), inclusion criteria, and definition of outcomes were obtained from individual studies (Table S1). Finally, the post-TAVR indications for PPM implantation in each article were also extracted. Based on previous reviews, the following proposed potential predictors were selected: age, sex, baseline conduction abnormalities, anatomical features, access route, and valve types. Case reports, review articles, conference papers, and articles with insufficient data or no control arms were excluded. Patients with prior PPM implantation unrelated to TAVR were also excluded from our analysis. All data was validated by the corresponding author; in case of missing data authors of the original article were contacted. The detailed search map is given in Data S1.

Statistical Analysis

The statistical analysis was performed using the DerSimonian and Laird (DL) and Mantel Haenszel (MH) methods on random- and fixed-effects models, respectively. The unadjusted odds ratio (OR) for dichotomous outcomes of RCTs and OCS were calculated. The “test for overall effect” was reported as a z value corroborating the inference from the 95% confidence interval. To avoid the influence of study design on pooled estimates, a stratified analysis based on the type of study (OCS versus RCT) was performed. A subgroup analysis based on the type of implanted valve (mechanically expandable versus self-expanding versus balloon-expansible), access route (transfemoral versus trans subclavian), and procedure type (transapical versus transvascular) was also performed. Sensitivity analysis after exclusion of small studies with fewer than 200 patients was done to determine the impact of sample size on pooled estimates. Descriptive characteristics for continuous data were reported as mean and SD, whereas categorical variables were presented as frequencies and percentages. Higgins I-squared (I²) statistical model was used to determine heterogeneity in outcomes of the included studies. The observed heterogeneity was regarded statistically significant if the I² statistics P value was <0.05. Publication bias was illustrated graphically using a funnel plot. The methodological quality assessment of the included RCTs was performed using the risk of bias-2 (RoB-2) tool and the Oxford quality scoring system (Jadad score). The Newcastle-Ottawa Scale was used for assessing non-randomized studies. The probability value of two-sided P<0.05 was considered statistically significant. All statistical analysis was performed using the Cochrane Review Manager (RevMan) version 5.3 and STATA software (version 16.0, STATA Corp., College Station, Texas).

Quality of the Included Studies

The overall quality of the included studies was high. The risk of bias-2 (RoB-2) tool used 5 different bias assessments: selection, detection, performance, attrition, and reporting. All 3 of the included RCTs in our meta-analysis were open-label, posing some theoretical risk to “allocation concealment;” however, the overall risk of selection bias was reduced due to adequate randomization. Because most RCTs used an “intention to treat model” or had a lower loss at follow-up, the risk of attrition bias was minimal. Similarly, the risk of reporting, detection and performance bias was lower due to appropriate reporting and adequate blinding of outcome assessors, respectively. The RoB-2 plots are given in Figure 1. 10–12 The methodological quality of included RCTs was also high on the Jadad scale with a score >3 (Table S2). Observational studies were mostly matched in terms of clinical profile and demographics to curtail selection bias. The Newcastle-Ottawa Scale for assessing nonrandomized studies indicated the inclusion of high-quality observational studies (score >7) (Table S3).
RESULTS

Search Results

The initial search revealed 4118 articles. After the removal of irrelevant (1561) and duplicate (2109) items, 448 studies were selected for full-text review. Of these, 370 articles were excluded based on different reasons including: review articles (35), meta-analyses (41), insufficient data for analysis (162), duplicate population studies (47), no risk factors data (80), and other reasons (5). A total of 78 articles (3 RCTs, 75 observational studies) qualified for quantitative analysis. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram is shown in Figure 2 and the PRISMA checklist is given in Data S2.

Study Characteristics

A total of 31,261 patients undergoing TAVR from 78 studies were included, of these 6212 (19.8%) received PPM, while 25,049 (80.2%) did not require a PPM.79–85 Most of the studies were from the United States and

![Figure 1. Overall (A) and study-level (B) methodological bias assessment of the included randomized clinical trials with the Cochrane risk of bias tool-2.](image-url)
Europe. Two of the RCTs were multi-continental, recruiting patients from the US, Australia, Germany, and Brazil. All included studies were published between 2009 and 2020 with an average recruitment period of approximately 4 years. The mean age of the included population was 81±8 years, comprising on average 46% male patients. The proportion of PPM implantation across different baseline comorbidities was comparable between the 2 groups. The detailed baseline characteristics are given in Tables S4 and S5, while the procedure characteristics of TAVR are given in Table S6. The summary is illustrated in Figure 1. The overall study-level rate of post-TAVR PPM ranged from 0.16% to 51.1%. The need for PPM implantation across different baseline comorbidities was variable as shown in Table S7 and Figure 3. The etiology for PPM implantation was only mentioned in 19.9% of patients (n=1238/6212). Post-TAVR complete atrioventricular block was the most commonly observed indication for PPM implantation; other causes included bradycardia,

Figure 2. PRISMA flow diagram showing the included studies.
new-onset left bundle-branch block (LBBB), and trifascicular block (Table). Patients with a prior history of PPM before the index TAVR procedure were mostly excluded from the analysis of their respective study. Two studies (De-Carlo and Hamandi et al) had prophylactic PPM implantation before the TAVR procedure in 158 patients; these patients were excluded from the analysis. Most PPM implantations were performed during the same hospitalization or within 30-days of the TAVR procedure. Most studies employed a transfemoral approach for TAVR, while 31 studies used transapical access in about 32% of its population. Mechanical (LOTUS) self-expanding (MCRS and Evolut R) and balloon-expandable (ESV) aortic prosthesis were the major valves used in the included studies. MCRS was used in 55, while ESV and Lotus were used in 46 and 12 studies, respectively. The mean log EuroSCORE for patients among the included studies was around 18.9±10 and the mean Society of Thoracic Surgeons score was found to be 5.85. The overall follow-up duration ranged from 2 to 36 months, with a mean follow-up of 8.02 months (Tables S4 through S6).

Pooled Analysis of Overall Studies

Twenty-nine different potential predictors for the PPM implantation were evaluated. The number of patients having post-TAVR PPM implantation (n=6212) from all studies contributed to the pooled OR calculation for each predictor. On a random effects model of binary data, the aggregate odds for post-TAVR PPM implantation irrespective of the type of valve was higher in the male population compared with the female patients (OR, 1.16; 95% CI, 1.04–1.28). The baseline electrocardiographic conduction abnormalities, mobitz type-1 second-degree heart block (OR, 3.13; 95% CI, 1.64–5.93), mobitz type-2 second-degree heart block (OR, 3.89; 95% CI, 2.54–5.95), left anterior fascicular hemiblock (LAFB; OR, 1.43; 95% CI, 1.09–1.86), bifascicular block (OR, 2.59; 95% CI, 1.52–4.42), right bundle-branch block (RBBB; OR, 2.48; 95% CI, 2.17–2.83), and intraprocedural atroventricular block (OR, 4.17; 95% CI, 2.69–6.46) were associated with significantly higher odds of PPM implantation. The baseline predictor variables that were not statistically significantly associated with PPM implantation were age (OR, 1.19; 95% CI, 0.95–1.49), first-degree heart block (OR, 1.09; 95% CI, 0.85–2.37), atrial fibrillation (AF; OR, 1.05; 95% CI, 0.93–1.20), left posterior fascicular hemiblock (LPFB; OR, 3.34; 95% CI, 1.1–11.13), left bundle branch block (LBBB; OR, 1.06; 95% CI, 0.87–1.29), severe pulmonary hypertension (OR, 1.78; 95% CI, 0.82–3.89), moderate/severe mitral regurgitation (MR; OR, 3.3; 95% CI, 0.59–18.32), unspecified heart failure; OR, 1.06; 95% CI, 0.72–1.55), and heart failure with preserved ejection fraction (OR, 1.01; 95% CI, 0.51–2.01). Of note, patients receiving 29 mm of prosthesis had significantly higher odds of PPM implantation compared with 23 mm prosthesis (OR, 1.49; 95% CI, 1.06–2.08). However, there appeared to be a statistically nonsignificant difference in the odds of PPM implantation between 23 mm versus 26 mm prosthesis (OR, 1.12; 95% CI, 0.62–2.03) and for patients with intraventricular septum size >11 mm (OR, 1.71; 95% CI, 0.17–17.41) and >22 mm (OR, 1.65; 95% CI, 0.55–4.93). The detailed valvular and anatomical variant estimates for PPM need are given Table S8.

Analysis of all predictors on a fixed-effects model mirrored the findings of the random-effects model with 2 exceptions; first-degree heart block (OR, 0.35; 95% CI, 0.30–0.40) was found to be associated with a significantly lower risk, while LBBB (OR, 1.29; 95% CI, 1.14–1.46) had significantly higher odds of need for PPM. The detailed forest plots for both random and fixed effects are given in Figures S1 through S16. The heterogeneity in the outcomes of these studies was P<0.05, except for the studies comparing the RBBB and male populations, which showed significant heterogeneity (I²=52% and I²=74%, both P<0.05), respectively (Figure 4). There was no significant difference in the odds of mortality in patients receiving PPM compared with those who did not receive PPM at 30 days and 1 year in 12 studies that included survival data (Figure 5).

On pooled analysis of continuous data, membranous septal length (MSL) was inversely, while the depth of prosthesis was directly, associated with the risk of PPM implantation. The mean MSL was 5.6 mm for patients requiring PPM implantation compared with 6.8 mm for those who did not require PPM, while the mean depth for prosthesis implantation for the former group was 6.86 mm compared with 5.34 mm in patients who did not require PPM (Figures S17 and S18).

Subgroup and Sensitivity Analyses

Overall, a head-to-head comparison based on the type of prosthesis favored the balloon-expandable valves irrespective of the prevalence of different predictors. On a random-effects model, the mechanically expandable valve (OR, 1.44; 95% CI, 1.18–1.76) and self-expanding valves (OR, 1.93; 95% CI, 1.42–2.63) had higher PPM requirements compared with the self-expanding and balloon-expandable valves, respectively. Based on a breakdown data of 16 studies, MCRS implantation was associated with significantly higher odds of PPM implantation compared with ESV (OR, 2.48; 95% CI, 1.91–3.22). By contrast, the LOTUS valve implantation was associated with higher odds (OR, 1.61; 95% CI, 1.23–2.1) of PPM implantation compared with MCRS. Compared with EVOLUT-R, the risk of PPM implantation was not significantly different in LOTUS and ESV (Table S9). There was no significant difference in the odds of PPM implantation
in patients undergoing a transarterial versus transapical approach (OR 1.02; 95% CI, 0.1–10.1), transfemoral versus subclavian approach (OR 1.13; 95% CI, 0.6–2.1). These findings remained invariant on a fixed-effects model. The heterogeneity among these studies ranged from $I^2=0\%$ to $I^2=54\%$ (Figure 6, Figures S14 through S16).

Overall, a subgroup analysis based on the type of valve used, study design and access site mirrored the
The present meta-analysis represents the most contemporary and largest evidence on the predictors of PPM implantation in patients with severe AS undergoing TAVR. Our findings revealed that male sex, pre-TAVR baseline atrioventricular conduction abnormalities (including Mobitz type-1 second-degree heart block, LAFB, RBBB), and intraprocedural atrioventricular block were associated with higher odds of PPM implantation, irrespective of the type of prosthesis or choice of the access site. A stratified analysis based on the prosthesis design showed a 2.4-fold increased risk of PPM implantation with MCRS (self-expanding) compared with ESV (balloon-expandable), and 1.61 times higher odds of PPM-need in LOTUS (mechanically expandable) compared with MCRS. The overall odds of PPM implantation remained identical in patients aged >80 years versus the younger population and those having first-degree heart block, AF, prolonged PR-interval, LPFB, and LBBB, when compared with their corresponding control groups who had an absence of these rhythm abnormalities. The type of approach (transapical versus transvascular) or choice of access site (transfemoral versus trans-subclavian) also had no impact on the risk of PPM implantation. Among the anatomical and valvar variants, the membranous septal length (MSL) was inversely, while the depth of prosthesis implantation was directly associated with the risk of PPM implantation. Larger devices (29 mm) had a higher risk of PPM implantation, while there was no impact of interventricular septum thickness, mitral regurgitation, or pulmonary hypertension on the need for PPM implantation.
for PPM during TAVR. On subgroup analysis, only the MCRS data followed the results of the pooled analysis, indicating that the overall findings were mostly driven by the data obtained from patients receiving self-expanding valves. The major post-procedural etiology for PPM implantation was a periprocedural occurrence of high-degree heart block, new-onset LBBB, or persistent bradycardia.

It is imperative to identify patients at an increased risk of PPM implantation before a TAVR procedure, as timely detection of high-risk patients can potentially prevent the occurrence of atrioventricular block and its associated complications (including syncope and sudden cardiac death). Also, patients with post-TAVR atrioventricular nodal abnormalities are prone to prolonged hospitalization, putting a high financial burden on the healthcare budget. PPM predictors in this context can help in the effective allocation of limited resources. With all its benefits, PPM placement comes at the cost of loss of atrioventricular synchrony, lack of physiological heart rate control, and increased risk of bleeding and pocket infection. Early detection of patients at high risk of PPM implantation and identification of pre-specified predictors, therefore provides an opportunity to mitigate these risks and to favorably lower the harm-benefit ratio.

Among the measured predictors for PPM implantation, the demographic risk factors including age and sex are of paramount importance. Current evidence on sex-related differences in post-TAVR complications and the need for PPM is conflicting in recently published studies. Our large-scale analysis shows a
16% higher rate of PPM implantation in men. This can partly be explained by the relatively larger-sized bioprosthesis (>25 mm) they receive, but mostly because of the higher prevalence of baseline comorbidities, putting men at a greater risk of procedural complications.\(^{63,90}\) Additionally, our results also revealed a numerically higher rate of PPM use (by 19%) in a population age >80 years, however, the difference did not reach statistical significance. These findings contrast the results of Ramkumar et al. and Ledwoch et al. studies, which denoted a significantly higher risk of post-TAVR PPM placement in octogenarians by 30% and 35%, respectively.\(^{37,44}\) Amongst the cardiac predictors, the presence of a LAFB, bifascicular block and second degree atrioventricular block are known to be associated with higher chances of receiving a PPM after TAVR.\(^{7–9}\) Our study echoes the same trend and expands these findings by demonstrating a 1.3-, 2.1-, and 3.1-fold increase in the odds of the need for PPM implantation in LAFB, bifascicular block and second degree atrioventricular block, respectively.\(^{9}\) Regarding the baseline first-degree atrioventricular block, Dolci et al and Naveh et al showed an increased incidence of PPM placement at 1 year of TAVR.\(^{46,91}\) By contrast, we believe that a first-degree atrioventricular block is a mere delay of atrioventricular conduction rather than a true block and that is why our study demonstrated no impact of first-degree heart block on the need for PPM implantation.

Studies have shown a higher incidence of post-TAVR atrioventricular blocks in patients with baseline conduction blocks, due to the manipulation of an already diseased conduction system.\(^{37,44,46,61,73,92,93}\) Pre-procedure LBBB and RBBB resulted in up to 1.5 times greater risk of PPM implantation after TAVR.\(^{92,93}\) In our study, RBBB conferred a 2.48 times greater risk of PPM implantation, much higher than the expected rise seen in previous studies. Intriguingly, baseline LBBB on our analysis did not increase the peri-procedural odds of atrioventricular block or the need for PPM implantation on a random-effects model. These effects were consistent across the different types of prosthesis and
Figure 6. Forest plot showing the pooled estimate comparison of (A) self expanding vs balloon expandable and (B) mechanically expandable vs self-expanding.

DL indicates DerSimonian and Laird; MH, Mantel-Haenszel; PPM, permanent pacemaker.
access sites used for the TAVR procedure. When comparing the risk of atrial arrhythmias induced conduction abnormalities, we found that AF had no impact on the need for PPM implantation after TAVR. These findings were in line with the previous literature that also demonstrated an identical rate of need for PPM. While a subset of the PARTNER registry showed that patients with sinus rhythm before TAVR and AF at discharge were twice more likely to get a PPM, patients with chronic AF had <6% risk of PPM, not significantly different from patients having no-AF at baseline.

On review, we found 40 previous meta-analyses discussing the risk factors of PPM implantation, however in light of the current evidence the applicability of those studies is limited. Most of these meta-analyses included a smaller number of previously published studies ranging from 4 to 41 articles, missing a large amount of contemporary data. The selection criteria and measured predictors were limited with respect to conduction abnormalities evaluated, indications for TAVR, and in some incidences inclusive of SAVR patients. More importantly, these studies had conflicting results. By contrast, our meta-analysis is the largest study (78 studies), including all patients who underwent TAVR for symptomatic AS (irrespective of the etiology), a wider range of demographics predictors, conduction abnormalities and procedural characteristics (29 predictors). Our study also provides a subgroup analysis on the type of valve and sensitivity analysis based on the sample size and study design. The detailed study-level characteristics and differences of our study from previous meta-analyses are given in Table S12.

Previous small-scale studies have also shown that atrioventricular conduction disturbances and a subsequent requirement for PPM were more common after the implantation of non-balloon expandable valves. Our results validated these findings by demonstrating a 1.93 and 2.8 times higher rate of PPM implantation in the self-expanding and mechanically expandable prosthesis compared with the balloon-expandable valves. MCRS and LOTUS, being a self-expanding and mechanically expandable valve increases the risk of complete heart block due to deeper implantation into the aortic annulus, tissue edema, and sustained pressure on the conduction pathway (atrioventricular

Figure 7. Factors increasing the risk of PPM implantation post-TAVR (red text indicates a higher risk).
node and left bundle branches). These effects might be delayed in the balloon-expandable valves (ESV) due to the intermittent nature of expansion and lower risk of tissue impingement. Although relatively lower, the newer generation balloon-expandable prosthesis is not devoid of the risk of PPM implantation. A study by Bisson and colleagues noted that in an effort to decrease a paravalvular leak, the newer ESV comes with an outer skirt, increasing the odds of PPM implantation. In contrast to the studies by Puls et al and Rouge et al that showed a higher prevalence of PPM implantation in transfemoral approach compared with trans subclavian access, we found no impact of the choice of the TAVR access site (transapical versus transvascular) and (transfemoral versus trans subclavian) on the need for PPM implantation. To summarize, men, patients with baseline conduction abnormalities and those receiving the self-expanding or mechanically expandable prostheses are at higher risk of PPM implantation after TAVR.

Limitations
Our study is constrained by the limitations of the included studies. A multivariate logistic regression model is required to control for potential confounders and to obtain an independent impact of the predictor. Patient-level data were missing to determine the adjusted odds of PPM predictors. For the same reason, we could not assess the impact of the procedure technique and could not account for the differential use of medications or other causes of atrioventricular conduction abnormalities. The impact of unmeasured confounding factors and operators’ skills could not be measured. Although we selected a wide range of potential, previously proven predictors, the available data for some comparisons were sparse. Due to the lack of extended follow-up data the long-term effectiveness of PPM could not be evaluated. It is also important to note that the reasons for PPM implantation were variable in included studies, hence PPM implantation in our analysis should not be interpreted as a surrogate marker of atrioventricular conduction disturbances. The need for PPM in post-TAVR patients can be influenced by several economic and logistic factors out of the scope of the current study.

CONCLUSIONS
Patients with baseline conduction abnormalities, men, and those receiving mechanical- or self-expanding larger-sized prostheses for transcatheter aortic valve replacement are at an increased risk of pacemaker implantation. Given the clinical and economic impact of TAVR, interventionists should cautiously risk-stratify and identify patients at a high risk of the need for PPM.

REFERENCES
1. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet. 2017;389:1323–1335. DOI: 10.1016/S0140-6736(16)32381-9.
2. Makkar RR, Fontana GP, Jilaihawi H, Kapadia S, Pichard AD, Douglas PS, Bavaria BH, Webb JG, Herrmann HC, et al. Transcatheter aortic-valve replacement for inoperable severe aortic stenosis. N Engl J Med. 2012;366:1696–1704. DOI: 10.1056/NEJMoa1202277.
3. Criber A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106:24:3008–3008. DOI: 10.1161/01.CIR.0000047200.38165.B8.
4. Leon MB, Smith CR, Mack MJ, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1587–1607. DOI: 10.1056/NEJMoa1005822.
5. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364:2187–2198. DOI: 10.1056/NEJMoa1103510.
6. Reardon MJ, van Mieghem NM, Popma JJ, Kleinman NS, Sandergaard L, Muntz M, Adams DH, Deeb GM, Maini B, Gada H, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2013;368:306–315. DOI: 10.1056/NEJMoa1302597.
7. Khawaja MZ, Rajani R, Cook A, Khavandi A, Chowdhary S, Spence MS, Brown S, Khan SQ, Walker N, et al. Permanent pacemaker insertion after CoreValve transcatheter aortic valve implantation: incidence and contributing factors (the UK CoreValve Collaborative). Circulation. 2011;124:951–960. DOI: 10.1161/CIRCULATIONAHA.110.971522.
8. Nazif TM, Dixon JM, Hahn RT, Xu K, Bavaria V, Douglas PS, El-Chami MF, Herrmann HC, Mack M, Makkar RR, et al. Predictors and clinical outcomes of permanent pacemaker implantation after transcatheter aortic valve replacement: the PARTNER (Placement of AoRtic TranScatheterER Valves) trial and registry. JACC Cardiovasc Inter. 2015;6:860–869. DOI: 10.1016/j.jcvi.2014.07.022.
9. De Carlo M, Giannini C, Bedogni F, Kugmann S, Brambilla N, De Marco F, Zucchelli G, Testa L, Oreglia J, Petronio AS. Safety of a conservative strategy of permanent pacemaker implantation after transcatheter aortic valve implantation. Am Heart J. 2012;163:492–499. DOI: 10.1016/j.ahj.2011.12.009.
10. Meduri C, Kereiakes DJ, Rajagopal V, Makkar RR, O’Hair D, Linke A, Waksman R, Bavaria V, Stoler RC, Mishkel GJ, et al. Pacemaker
index and permanent pacemaker implantation after Transcatheter Aortic Valve Replacement (TAVR) with Edwards SAPIEN™ 3 TAVR Valves: a single-center experience. Cureus. 2019;11:209–219. DOI: 10.7759/cureus.5142.

86. Chevreul K, Brunni M, Cadier B, Haour G, Eltschniinhof H, Prat A, Leguerrier A, Blanchard D, Fournial G, Jüng B, et al. Cost of transcatheter aortic valve implantation and factors associated with higher hospital stay cost in patients of the FRANCE (French Aortic National CoreValve and Edwards) registry. Arch Cardiovasc Dis. 2013;106:209–219. DOI: 10.1016/j.acvd.2013.01.006.

87. Curtis AB, Worley SJ, Adamson PB, Chung ES, Niazi I, Sherifleez L, Shinn T, St John Sutton M. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013;368:1585–1593. DOI: 10.1056/NEJMoa1301056.

88. Tops LF, Schalij MJ, Bax JJ. The effects of right ventricular apical pacing on ventricular function and dysynchrony: implications for therapy. J Am Coll Cardiol. 2009;54:764–776. DOI: 10.1016/j.jacc.2009.06.006.

89. D’Ascenzo F, Gonella A, Moretti C, Omedè P, Salizoon S, La Torre M, Giordana F, Barbanti M, Ussia GP, Brambilla N, et al. Gender differences in patients undergoing TAVI: a multicentre study. EuroIntervention. 2013;9:367–372. DOI: 10.4244/EIJ95SA99.

90. Buja P, Napodano M, Tamburino C, Petronio AS, Ettori F, Santoro G, Ussia GP, Kluggmann S, Bedogni F, Ramondo A, et al. Comparison of variables in men versus women undergoing transcatheter aortic valve implantation for severe aortic stenosis (from Italian Multicenter CoreValve registry). Am J Cardiol. 2013;111:88–93. DOI: 10.1016/j.amjcard.2012.08.051.

91. Dolci G, Vollena EM, van der Kley F, de Weger A, Marsan NA, Delgado V, Bax JJ. One-year follow-up of conduction abnormalities after transcatheter aortic valve implantation with the SAPIEN 3 valve. Am J Cardiol. 2019;124:1239–1245. DOI: 10.1016/j.amjcard.2019.07.035.

92. Noirongh G, Jafari M, Pilgrim T, Stortecy S, Meier B, Warnesper W, Windecker S. Predictors of permanent pacemaker implantation in patients with severe aortic stenosis undergoing TAVR: a meta-analysis. J Am Coll Cardiol. 2014;64:129–140. DOI: 10.1016/j.jacc.2014.04.033.

93. Fischer Q, Himbert D, Webb JB, Eltschinauf H, Muñoz-García AJ, Tamburino C, Nombela-Franco L, Nielispaack F, Moris C, Ruel M, et al. Impact of preexisting left bundle branch block in transcatheter aortic valve replacement recipients. Circ Cardiovasc Interv. 2018;11:e006927. DOI: 10.1161/CIRCINTERVENTIONS.118.006927.

94. Biviano AB, Nazif T, Dixon J, Garan A, Abrams M, Fleitman J, Hassan M, Kabadia S, Babalvaros I, Xu KE, et al. Atrial fibrillation is associated with increased pacemaker implantation rates in the placement of AoRTic transcatheter valve (PARTNER) trial. J Atr Fibrillation. 2017;10. DOI: 10.4022/jafib.1494.

95. Erkapi D, De Rosa S, Kelava A, Lehmanna R, Fichtlischerb S, Hohenloser SH. Risk for permanent pacemaker after transcatheter aortic valve implantation: a comprehensive analysis of the literature. J Cardiovasc Electrophysiol. 2012;23:391–397. DOI: 10.1111/j.1540-8167.2011.02211.x.

96. Gozdek M, Ratajczak J, Arndt A, Zieliński K, Pasierski M, Matteucci M, Fina D, Jirtono F, Mean P, Raffa GM, et al. Transcatheter aortic valve replacement with Lotus and Sapien 3 prosthetic valves: a systematic review and meta-analysis. J Thorac Dis. 2020;12:893. DOI: 10.21037/jtd.2019.12.107.

97. Zhan Y, Saadat S, Soin A, Kawabori M, Chen FY. A meta-analysis comparing transaxillary and transfemoral transcatheter aortic valve replacement. J Thorac Dis. 2019;11:5140. DOI: 10.21037/jtd.2019.12.07.

98. Zafar MR, Mustafa SF, Miller TW, Alkhwani T, Sharma UC. Outcomes after transcatheter aortic valve replacement in cancer survivors with prior chest radiation therapy: a systematic review and meta-analysis. Cardio-Oncology. 2020;6:1. DOI: 10.1186/s40590-020-00066-y.

99. Xi Z, Liu T, Liang J, Zhou YJ, Liu W. Impact of postprocedural permanent pacemaker implantation on clinical outcomes after transcatheter aortic valve replacement: a systematic review and meta-analysis. J Thorac Dis. 2019;11:5140. DOI: 10.21037/jtd.2019.12.02.

100. Shoar S, Batra S, Gubraka I, Ikrum W, Javed M, Hosseini F, Naderan M, Shoar N, John J, Modukuru VR, et al. Effect of pre-existing left bundle branch block on post-procedural outcomes of transcatheter aortic valve replacement: a meta-analysis of comparative studies. Am J Cardiovvasc Dis. 2020;10:294.

101. Biondi-Zoccai G, Peruzzi M, Abbate A, Gertz ZM, Benedetto U, et al. Network meta-analysis on the comparative effectiveness and
Ullah et al. PPM in TAVR

132. Saint Croix GR, Lacy SC, Hrachian H, Beehar N. Clinical impact of preexisting right bundle branch block after transcatheter aortic valve replacement: a systematic review and meta-analysis. J Interv Cardiol. 2020;2020:21. DOI: 10.1155/2020/1799516.

133. Franzoni I, Latbo A, Masiaro F, Costopoulos C, Testa L, Figini F, Giannini F, Basavarajah S, Musardo M, Slavich M, et al. Comparison of incidence and predictors of left bundle branch block after transcatheter aortic valve implantation using the CoreValve versus the Edwards valve. Am J Cardiol. 2013;112:554–559. DOI: 10.1016/j.amjcard.2013.04.026.

134. Bisson A, Bodin A, Herbert J, Lacour T, Saint Etienne C, Pierre B, Clementy N, Deharo P, Babuty D, Fauchier L. Pacemaker implantation after balloon-or self-expandable transcatheter aortic valve replacement in patients with aortic stenosis. J Am Heart Assoc. 2020;9:e015896. DOI: 10.1161/JAHA.120.015896.

135. Puls M, Sobisik A, Bleckmann A, Jacobshagen C, Danner BC, Huenlich M, Beissbarth T, Schoendube F, Hasenfuss G, Seipel R, et al. Impact of frailty on short-and long-term morbidity and mortality after transcatheter aortic valve implantation: risk assessment by Katz Index of activities of daily living. EuroIntervention. 2014;10:609–619. DOI: 10.4244/EIJY14M08_03.
Supplemental Material
Data S1.

A. SEARCH STRATEGY and MAP:

((((((((((per-cutaneous aortic valve implantation AND cardiac pacemaker)) OR (per-cutaneous aortic valve implantation AND artificial pacemaker)) OR (per-cutaneous aortic valve implantation AND pacer)) OR (per-cutaneous aortic valve implantation AND cardiac pacemaker)) OR (g transcatheter aortic valve implantation AND artificial pacemaker)) OR ((transcatheter aortic valve implantation AND cardiac pacemaker)) OR (transcatheter aortic valve implantation AND artificial pacemaker)) OR (transcatheter aortic valve implantation AND pacer)) OR (transcatheter aortic valve implantation AND pacemaker))) OR (((tavr AND cardiac pacemaker)) OR (tavr AND artificial pacemaker)) OR (tavr AND pacer)) OR (tavr AND pacemaker)))) OR (((((((per-cutaneous aortic valve replacement AND cardiac pacemaker)) OR (per-cutaneous aortic valve replacement AND artificial pacemaker)) OR (per-cutaneous aortic valve replacement AND pacemaker)) OR (transcatheter aortic valve replacement AND artificial pacemaker)) OR (transcatheter aortic valve replacement AND pacer)) OR (transcatheter aortic valve replacement AND pacemaker))) OR (((tavr AND cardiac pacemaker)) OR (tavr AND artificial pacemaker)) OR (tavr AND pacer)) OR (tavr AND pacemaker)))))
PRISMA 2020 Checklist

Data S2.

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE	1	Identify the report as a systematic review.	Page 1
ABSTRACT	2	See the PRISMA 2020 for Abstracts checklist.	Page 2
INTRODUCTION	3	Describe the rationale for the review in the context of existing knowledge.	Page 3
	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 3
METHODS	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	Page 4
	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Page 3
	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Page 3, Supplementary page 3
	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	Page 4
	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	Page 4
	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	Page 4
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Page 4
	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 5,7
	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Page 4
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 5
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 4-5
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 4-5
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 4-5
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	Page 4,6,7
PRISMA 2020 Checklist

13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	Page 7
14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	Page 7
15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	Page 7

RESULTS

16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Page 5
16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	Page 5
17	Cite each included study and present its characteristics.	Page 5
18	Present assessments of risk of bias for each included study.	Page 5, Figure 1
19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	S.Figure 1-21
20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	S.Table 4
20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	Page 6-7
20c	Present results of all investigations of possible causes of heterogeneity among study results.	Page 6-7
20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	S.Table 11
21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	S.Figure 25
22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	Page 6-7

DISCUSSION

23a	Provide a general interpretation of the results in the context of other evidence.	Page 7,8,9
23b	Discuss any limitations of the evidence included in the review.	Page 9
23c	Discuss any limitations of the review processes used.	Page 10
23d	Discuss implications of the results for practice, policy, and future research.	Page 9

OTHER INFORMATION

24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	NA
24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	NA
24c	Describe and explain any amendments to information provided at registration or in the protocol.	NA
25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 1
26	Declare any competing interests of review authors.	Page 1
27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	Page 1
Table S1: Inclusion criteria of the included RCTs

Author/Study/Year/Ref	Inclusion Criteria	MACCE Components
Meduri (REPRISE III) 2019	Symptomatic Aortic Stenosis and STS predicted risk of Mortality >8%.	Cardiovascular Mortality, MI, Stroke, Conduction abnormality requiring new-pacemaker placement, Paravalvular leakage.
Thiele (SOLVE-TAVI) 2020	Symptomatic Aortic Stenosis, Age >75 years and high predicted surgical risk of Mortality defined as Logistic Euroscore >20% or STS score >10%.	Cardiovascular Mortality, MI, Stroke, Conduction abnormality requiring new-pacemaker placement, Paravalvular leakage.
Reardon (REPRISE III) 2019	Severe Native Aortic stenosis, and STS predicted risk of Mortality >8%	Cardiovascular Mortality, MI, Stroke, Conduction abnormality requiring new-pacemaker placement, Paravalvular leakage.
Table S2: Randomized studies quality assessment using the Oxford Quality Scoring System. (Jadad score ≥ 3 considered high quality)

Author/Study/Year/Ref	Rating Scale List	Jadad Score	
Meduri (REPRISE III) 2019	Was the study described as random	Yes	3
	Was the randomization described and appropriate	Yes	
	Was the study described as double-blind	No	
	Was the method of double-blinding appropriate	No	
	Was there a description of dropouts and withdrawals	Yes	
Thiele (SOLVE-TAVI) 2020	Was the study described as random	Yes	3
	Was the randomization described and appropriate	Yes	
	Was the study described as double-blind	No	
	Was the method of double-blinding appropriate	No	
	Was there a description of dropouts and withdrawals	Yes	
Reardon (REPRISE III) 2019	Was the study described as random	Yes	3
	Was the randomization described and appropriate	Yes	
	Was the study described as double-blind	No	
	Was the method of double-blinding appropriate	No	
	Was there a description of dropouts and withdrawals	Yes	
Table S3: Quality Assessment of the included observational studies

Author/Study	Year	Representativeness of the exposed	Selection of the non-exposed cohort	Ascertainment of exposure	Outcome not present at baseline	Comparability of the cohort	Assessment of outcome	Enough follow-up duration	Adequate follow-up	Total score
Hamandi	2020	*	*	*	*	*	*	*	*	8
Kochman	2020	*	*	*	*	*	*	*	*	8
Sharma	2020	*	*	*	*	*	*	*	*	9
Ay	2019	*	*	*	*	*	*	*	*	9
Giordano	2019	*	*	*	*	*	*	*	*	9
Kaneo	2019	*	*	*	*	*	*	*	*	9
Karacop	2019	*	*	*	*	*	*	*	*	9
Ball	2018	*	*	*	*	*	*	*	*	9
Bhargava	2018	*	*	*	*	*	*	*	*	9
Doshi	2018	*	*	*	*	*	*	*	*	8
Eitan	2018	*	*	*	*	*	*	*	*	8
Finkelstein	2018	*	*	*	*	*	*	*	*	8
Gonska	2018	*	*	*	*	*	*	*	*	9
Yousef	2018	*	*	*	*	*	*	*	*	9
Enriquez-Rodriguez	2017	*	*	*	*	*	*	*	*	8
Monteiro	2017	*	*	*	*	*	*	*	*	9
Rogers	2017	*	*	*	*	*	*	*	*	8
Soliman	2017	*	*	*	*	*	*	*	*	9
Van Mourik	2017	*	*	*	*	*	*	*	*	8
Ben-Shoshan	2016	*	*	*	*	*	*	*	*	8
Kahraman	2016	*	*	*	*	*	*	*	*	9
Kley	2016	*	*	*	*	*	*	*	*	8
Ramkumar	2016	*	*	*	*	*	*	*	*	8
Sawaya	2016	*	*	*	*	*	*	*	*	8
Zaman	2016	*	*	*	*	*	*	*	*	9
Gauthier	2015	*	*	*	*	*	*	*	*	9
Rouge	2015	*	*	*	*	*	*	*	*	8
Boerlage-Van Dijk	2014	*	*	*	*	*	*	*	*	9
Simms	2013	*	*	*	*	*	*	*	*	9
Akin	2012	*	*	*	*	*	*	*	*	9
Bagur	2012	*	*	*	*	*	*	*	*	9
De Carlo	2012	*	*	*	*	*	*	*	*	9
Gilard	2012	*	*	*	*	*	*	*	*	8
Ledwoch	2012	*	*	*	*	*	*	*	*	8
Mouillet	2012	*	*	*	*	*	*	*	*	9
Muniz-Garcia	2012	*	*	*	*	*	*	*	*	9
Nuis	2012	*	*	*	*	*	*	*	*	9
Pulse	2012	*	*	*	*	*	*	*	*	8
Saia	2012	*	*	*	*	*	*	*	*	9
Salinas	2012	*	*	*	*	*	*	*	*	9
Schroeter	2012	*	*	*	*	*	*	*	*	9
Van der Boon	2012	*	*	*	*	*	*	*	*	9
Bosmans	2011	*	*	*	*	*	*	*	*	7
Calvi	2011	*	*	*	*	*	*	*	*	8
Chorianopoulos	2011	*	*	*	*	*	*	*	*	9
D’Ancona	2011	*	*	*	*	*	*	*	*	9
Ewe	2011	*	*	*	*	*	*	*	*	9
Fraccaro	2011	*	*	*	*	*	*	*	*	8
Guetta	2011	*	*	*	*	*	*	*	*	9
Khawaja	2011	*	*	*	*	*	*	*	*	9
Author	Year	Quality Score								
-----------------	------	---------------								
Pilgrim	2011	* * * * * * *	8							
Baan	2010	* * * *	9							
Bleiziffer	2010	* * * *	8							
Elchnameff	2010	* * * *	9							
Erkpic	2010	* * * *	9							
Ewe	2010	* * * *	9							
Ferriera	2010	* * * *	9							
Godino	2010	* * * *	8							
Haworth	2010	* * * *	9							
Lefevre	2010	* * * *	8							
Piazza	2010	* * * *	8							
Rodes-Cabau	2010	* * * *	9							
Roten	2010	* * * *	9							
Thielmann	2009	* * * *	9							
Aslan	2020	* * * *	9							
Hamdan	2015	* * * *	9							
Jilaihawi	2019	* * * *	9							
Matsushita	2020	* * * *	7							
Tretter	2019	* * * *	9							
Zaid	2020	* * * *	9							
Ahmad	2019	* * * *	7							

The methodological quality of retrospective or prospective observational studies was done using Newcastle–Ottawa scale (NOS) quality scale. Each asterisk/star in the Newcastle-Ottawa Scaling System (NOS) represents responses of the biases questionnaire. Each bias assessment part gets one star except comparability that gets a maximum of 2 stars. Each star counts towards the total score. Score <5 represents poor quality, 5-6 represents moderate quality and 7 to 9 are considered as high quality. Total of 30 studies had a NOS score >7 representing a high quality. Rest of the studies had moderate to poor quality owing to the ascertainment bias, comparability, and follow up limitations.
Table S4: The demographics of the population in all the included studies

Author	Year	Study	Country	Period	F	U	Size	PPM	PPM %	Mean age	Male	EuroSCORE	STS	Valve type
Hamandi	2020	OCS	US	2012-2016	12	424	110	25.9	82	52.9	Sapien, CoreValve, Evolut			
Sharma	2020	OCS	US	2012-2016	1	226	25	11.1	81±7	50.4	Edwards Sapien			
Thiele	2020	OCS	Germany	2016-2018	438	90	20.6	81.7±5	48.9	4.10	Evolut R vs Sapien 3			
Kochman	2020	OCS	Poland	2015-2016	24	24	6	75.3±7	50.0	lotus	CoreValve			
Meduri	2019	RCT	US, Brazil, Australia	2014-2015	12	704	245	26.9	82±8	49.0	LOTUS and CoreValve			
Karacop	2019	OCS	Turkey	2013-2018	3	150	49	32.7	81±8	72.7	CoreValve			
Ay	2019	OCS	Turkey	2012-2017	27	274	25	9.1	78	37.2	ESV XR, Corevalve, Lotus			
Kaneko	2019	OCS	Germany	2015-2017	92	17	18.5	82±7	32.6	17±13	Evolut R			
Reardon	2019	RCT	US, Europe, Australia	2014-2018	2	912	263	28.8	82±8	49.0	Corevalve vs Lotus			
Giordanj	2019	OCS	Italy	2012-2018	1	197	284	14.4	83.5	42.3	ESV, portico, evol, evol			
Doshi	2018	OCS	US	2012-2014	12	821	194	9	23	81±8	Not mentioned			
Bhawardwaj	2018	OCS	US	2012-2016	12	383	44	11.5	83±8	50.9	Edward Sapien and CoreValve			
Gonska	2018	OCS	Germany	2014-2016	12	612	168	27.5	80±6	47.1	Corevalve, ESV and Lotus Edge			
Yousif	2018	OCS	Switzerland	2008-2014	12	546	103	18.9	81.35	48.5	Corevalve, ESV, Symetis, Ventor			
Ball	2018	OCS	US	2012-2016	209	44	21.1			56.5	CoreValve, ESV, Lotus, CoreValve			
Eitau	2018	OCS	Germany	2014-2017	92	18	23	82.4	93.5	21.04	ESV & core valve			
Finkelstei	2018	OCS	Israel	2012-2016	735	122	16.6	81	44.6	3.40	ESV core valve			
Monteiro	2017	OCS	Brazil	2008-2015	1	670	135	20.2	82±7	47.9	CoreValve and Sapien XT			
Enríquez-R	2017	OCS	Spain	2013-2016	1	144	18	12.5	83±6	47.9	CoreValve and Sapien XT			
Rogers	2017	OCS	US	2013-2016	257	17	6.6	82±8	49.4	6.96	sapien corevalve			
Soliman	2017	OCS	Egypt	2013-2016	6	40	5	12.5	73.9±8.4	52.5	medtronic			
vanMourik	2017	OCS	Netherlands	2010-2013	36	114	5	4.4	79±8.7	32.5	sapien			
Kley	2016	OCS	Netherlands	2007-2013	12	240	25	10.4	81	0.0	Edward Sapien XT, Corevalve			
Zaman	2016	OCS	Australia	2012-2015	95	27	27.4	83±6	44.5	7.3±8	Lotus			
Kahraman	2016	OCS	Turkey	2012-2014	6	136	6	4.4	79.4	38.2	NA			
Sawaya	2016	OCS	France	2010-2015	12	790	87	11	82±8	47.9	sapien			
Ben-Shoshan	2016	OCS	Israel	2014-2016	1	232	48	24.5	82.3±6.1	46.1	ESV, Medtronic			
Ramkumar	2016	OCS	Australia	2012-2015	1	104	25	24	46.2	lotus	CoreValve			
Rouge	2015	OCS	France	2009-2015	6	150	18	12	82.6	45.3	ESV and Medtronic			
Gauthier	2015	OCS	France	2009-2013	176	13	7.4	85	51.7	25.28	ESV, Evolut and portico			
Boerlage	2014	OCS	Netherlands	2007-2011	12	121	23	19	80.5±7	38.1	19.2±12	Corevalve		
Simms	2013	OCS	UK	2008-2010	12	100	17	17	81±6	48.0	Medtronic CoreValve			
Nuis	2012	OCS	Columbia, Nether	2005-2011	1	235	48	20.4	80±7	48.9	medtronic			
Pulse	2012	OCS	Germany	2008-2010	12	180	9	5	82.1±5.4	30.0	medtronic and sapien			
Ledwoch	2012	OCS	Germany	2009-2010	1	114	7	386	33.7	82±6	Medtronic and sapien			
Akin	2012	OCS	Germany	2007-2008	0	2	45	23	51.1	81±6	Medtronic CoreValve			
Bagur	2012	OCS	Canada	2005-2010	1	411	30	7.3	81±11	42.8	Medtronic CoreValve			
De Carlo	2012	OCS	Italy	2007-2010	12	275	66	24	82±6	46.6	Medtronic CoreValve			
Name	Year	Country	Year Range	Values	Comment									
---------------	------	---------	------------	--------	--------------------------									
Gilard	2012	France	2010-2011	3.8	319 497 15.6 83±7 51.0 22±14 14±2	CoreValve and ESV								
Muniz-Garcia	2012	Spain	2008-2011	1.8	174 48 27.6 79±7 37.4 19±6 7.5	Medtronic CoreValve								
Saia	2012	Italy	2008-2010	20.8	12 60 17 82±6 43.3 23±8 9±7	Medtronic CoreValve								
Salinas	2012	Spain	2008-2010	20.8	12 34 3 8.8 84 38.2 23.0	Edward SAPIEN								
Schroeter	2012	Germany	2008-2009	20.8	88 32 36.4 80±6 23±12	Medtronic CoreValve								
van der Boon	2012	Netherlands	2005-2011	20.8	12 167 36 21.6 81±7 46.0 13.0	Medtronic CoreValve								
Mouillet	2012	France	2007-2011	20.8	10 79 21 26.6 82±17 31.0 23±10	Medtronic CoreValve								
Liang	2012	New Zealand	2008-2011	20.8	21 53 5 9.4 80±7 56.6 26±16 6±1	CoreValve and ESV								
Pilgrim	2011	Switzerland	2007-2010	20.8	12 256 60 23.4 82±6 56.3 40±15	Medtronic and ESV								
Bosmans	2011	Belgium	2010	20.8	12 328 40 12.2 83±6 46.0 28±16	CoreValve and ESV								
D’Ancona	2011	Germany	2008-2011	20.8	12 322 20 6.2 82±6 33.2 39±12 10±1	Edward SAPIEN								
Ewe	2011	Netherlands	2009-2011	20.8	29 104 4 3.8 80.6±7.9 50.0 21±12 8.7±3.6	Edward SAPIEN								
Fracaro	2011	Italy	2007-2009	20.8	6 64 25 39.1 81±7 45.0 24±15	Medtronic CoreValve								
Guetta	2011	Israel	2008-2010	20.8	3 70 28 40 83±5 37.0	Medtronic CoreValve								
Khawaja	2011	UK	2007-2009	20.8	243 81 33.3 81±7 50.6	Medtronic CoreValve								
Calvi	2011	Italy	2007-2011	20.8	12 162 52 32.1 81±5 39.5 28±15	Medtronic CoreValve								
Chorianopoulos	2011	Germany	2009-2011	20.8	1 130 46 35.4 81±6 41.5 24±13	Medtronic CoreValve								
Hayashida	2011	France	2006-2010	20.8	7 260 17 6.5 83±6.3 49.6 24±11.3	CoreValve and ESV								
Bleiziffer	2010	Germany	2007-2009	20.8	0.5 159 35 22 80.8±6.2 43.0 21±13	CoreValve and ESV								
Elliottnoff	2010	France	2009-2009	20.8	1 244 29 11.9 82±7.3 56.6 25±11.1 18.9±12.8	CoreValve and ESV								
Baan	2010	Netherlands	2009-2011	20.8	1 34 7 0.2 80±8 53.0 5±13	Medtronic CoreValve								
Ewe	2010	Netherlands	2007-2010	20.8	12 147 7 4.8 80±7 42.9 21.8±11	Edward SAPIEN								
Ferreira	2010	Portugal	2007-2009	20.8	32 8 25 81 34.0 23±9 14.9	Medtronic CoreValve								
Godino	2010	Italy	2007-2010	20.8	6 137 23 0.16	53.3	CoreValve and ESV							
Erkapic	2010	Germany	2008-2009	20.8	0.4 50 17 34 80±6 46.0 20±15	CoreValve and ESV								
Hawthorn	2010	UK	2007-2008	20.8	5 33 8 24 81.5±6.7 57.0 24±15	Medtronic CoreValve								
Piazza	2010	Netherlands	2005-2009	20.8	6 91 17 18.7 81±7 42.9 16±9	Medtronic CoreValve								
Rodes-Cabau	2010	Canada	2005-2009	20.8	8 339 17 5 81±8 44.8 9±8 6.4	Edward SAPIEN								
Roten	2010	Switzerland	2007-2009	20.8	2.6 67 23 34.3 83 46.0 23.0	CoreValve and ESV								
Lefevre	2010	Europe	2007-2008	20.8	12 130 3 2.3 82±6.5 44.6 30±13.7 11.6±8.5	Edward SAPIEN								
Attias	2010	France	2006-2009	20.8	1 83 7 8.4 81±9 53.0 26±14 15±13	CoreValve and ESV								
Petronio	2010	Italy	2007-2009	20.8	6 514 84 16.3 83 44.0 20.1	Medtronic CoreValve								
Thielmann	2009	Germany	2005-2008	20.8	12 39 4 10.3 81±5 38.0 44.2±12.6 17.9±16	Edward SAPIEN								
Aslan	2020	Turkey	2017-2020	20.8	140 24 17 78±8 36.4	Edward SAPIEN XT, Medtronic CoreValve evolut								
Hamdan	2015	Israel	2015	20.8	73 21 29 79±6 45.0	CoreValve, Engager								
Jilaihawi	2019	US	2016-2018	20.8	1 248 24 9.6 83±7 57.3 6±0.2 9 Evolut R, Evolut Pro, XL									
Matsushita	2020	France	2014-2018	20.8	3 242 114 47 38.4	Sapiens 3, Evolut R								
Trettter	2019	US	2013-2017	20.8	6 200 41 20.5 81±7.7 49.0 4.7±2.8	Sapiens XT, Sapiens 3, LOTUS, CoreValve, Evolut R, Evolut								
Zaid	2020	US	2015-2019	20.8	1 532 57 10.7 80.7±8 57.9 5.5	Sapiens 3								
Excluded patients with prophylactic PPM: Hamandi (126), De Carlo (32); Excluded patients with prior PPM: Kochman (4), Elan (14), Ben-Shoshan 36, Meduri (160), Sharma (36), Doshi (62), D'Ancona (36), Chorianopoulos (32); OCS: Observational Cohort Study, RCT: Randomized Controlled Trial, FU: Follow up in years, STS: Society of Thoracic Surgeons Score
Table S5: The baseline comorbidities of the population in all the included studies (all numbers indicate percentages).

Author	AF	LBBB	RBBB	EF	Sm	DM	HTN	HLD	CKD	CVA	Ob	LC	PAD	MI	PCI	CABG	CAD	COPD
Sharma	10	12																
Thiele	45			38	91	41	82	12										
Kochman	25			21	67		13											
Meduri	29	8	12	31	92		13	1	28	17	31	24	21					
Karacop		52	34	35	79	16	62											
Ay	32			50		29	62	17										
Kaneko	34	8	10	67	77	32	49											
Reardon	34			56														
Giordano																		
Doshi	44	9	3	28	79	37	14	2										
Bhardwaj	43	10	13	3	36	94												
Gonska	36	20	30	30		10	10											
Yousif																		
Ball	32	10	11	39	91													
Eitan	47	14	28	87	65	11												
Finkeleitei	29			6	4	85	71	64	17	66		10						
Monteiro	14	14	11	32	75	49	76	7										
Enriquez-R	34			37	80	46	19											
Rogers	38								33	6		1	14	13	25	10		
Soliman	35	53	65															
vanMourik	25			26	65	36	33					1						
Kley	18			52	29	75	22											
Zaman	28	8	7		23	75	14											
Kahraman	21			30	70	15												
Sawaya	27	2	4	54	3	25	64	46	2	8		25	10					
Ben-Shoshan	32			56	23	40	88	76										
Ram Kumar	32			23	76													
Rouge	31	28	59															
Gautier	20																	
Boerlage	31	12	12	28	50	12												
Simms	29			28	23	19												
Nuis	21			24	56	5												
Pulse	7			36		61	12											
Ledwoch	24			34	65	6	8											
Akin	16	2	4	27	38	91												
Bagur	23	8	5	54	29	79	60	24										
Name	14	12	52	53	10	21	16	18	48	25								
----------------	----	----	----	----	----	----	----	----	----	----								
De Carlo																		
Gilard	26																	
Muniz-Garcia	32	17	17	37	76	52	17	16										
Saia	15	18	59	15		5		23	2	12								
Salinas	50			56	41	68	9	14	15									
Schroeter	32	8	7							56								
van der Boon	25	8	10	51	22	55	5	21	10	24								
Mouillet	25	20	9	49	18	68	25		24									
Liang	32	15	9						26	57								
Pilgrim	26	56	16	24	78	60	9		25	18								
Bosmans										9								
D'Ancona	29								29	24								
Ewe	21	37	60	12	43	23	40											
Fracca	16	14	13	52					55	11								
Guetta	27	24	16	16	83				23	54								
Khawaja	19	13	10															
Calvi	17	3	50	30	31	85	58	16										
Chorianopoulos	22	7	14							32								
Hayashida	50	7	71	49	13			34	15	30								
Bleiziffer	26	17	4															
Elchnainoff		51	27	69	10			73	23	25								
Baan	42	6	9	32	53	21			27	12								
Ewe	20			35	25	77	46		35	18								
Ferriera	28							50	97									
Godino		29	26	37	23				35	29								
Erkapic	34	1	14	51	30	82												
Haworth	18	9	21	9		17		21	23	23								
Piazza	28	15	6															
Rodes-Cabau	34	55	6	23	74	71	23		35	51								
Roten	12	16	19	51	22	72												
Lefevre	25			53	32	74	42		34	21								
Attias					52				28	13								
Petronio	12	8	5	27	75	8		19	22	16								
Thielmann	51	28	92	54	18			62	53	36								
Aslan	21	38				61	28											
Hamdan	14	1	10	38	84	70			14	22								
Jilaihawi	17	6	15	65	31	24	2											
Matsushita	31	15	57	30	85	56	42	13										
Tretter	31	7	17	31	90	29	9		19									
Zaid	37	5	45	91	21	32												
------------	----	-----	-----	----	----	----												
Ahmad																		
Table S6: Procedural characteristics and type of valves used across the included studies (all numbers indicate percentages).

Author	Apical access	Femoral access	MR-Pro ADM >/= 1.3 nmol/l	TAVR using ACURATE TA device	Medtronic Corevalve	Edward Sapien	Lotus Transarterial vs transapical comparison (y or n)	Trans Subclavien vs Transfemoral (y or n)
Hamandi	12.7	84.5		9.8	86.9	y	n	
Sharma	17.6	77.8		100	y	n		
Thiele	100	50		100	50	n	n	
Kochman	100	100		33.8	66.1	n	n	
Meduri	36.6(100%)	36.6		36.6	50	2.9	n	
Karazop	100	100		79.6	18	82		
Ay	100	100		100	100	n	n	
Kaneko	100	100		100	100	y	n	
Reardon	90.2	11.8		35.6	27.3	7.6	n	66.5
Giordano	79.6	100		79.6	100	n	n	
Hamandi	12.7	84.5		9.8	86.9	y	n	
Sharma	17.6	77.8		100	y	n		
Thiele	100	50		100	50	n	n	
Kochman	100	100		33.8	66.1	n	n	
Meduri	36.6(100%)	36.6		36.6	50	2.9	n	
Karazop	100	100		79.6	18	82		
Ay	100	100		100	100	y	n	
Kaneko	100	100		100	100	n	n	
Reardon	90.2	11.8		35.6	27.3	7.6	n	66.5
Giordano	79.6	100		79.6	100	n	n	
Hamandi	12.7	84.5		9.8	86.9	y	n	
Sharma	17.6	77.8		100	y	n		
Thiele	100	50		100	50	n	n	
Kochman	100	100		33.8	66.1	n	n	
Meduri	36.6(100%)	36.6		36.6	50	2.9	n	
Karazop	100	100		79.6	18	82		
Ay	100	100		100	100	n	n	
Kaneko	100	100		100	100	y	n	
Reardon	90.2	11.8		35.6	27.3	7.6	n	66.5
Giordano	79.6	100		79.6	100	n	n	
Hamandi	12.7	84.5		9.8	86.9	y	n	
Sharma	17.6	77.8		100	y	n		
Thiele	100	50		100	50	n	n	
Kochman	100	100		33.8	66.1	n	n	
Meduri	36.6(100%)	36.6		36.6	50	2.9	n	
Karazop	100	100		79.6	18	82		
Ay	100	100		100	100	y	n	
Kaneko	100	100		100	100	n	n	
Reardon	90.2	11.8		35.6	27.3	7.6	n	66.5
Giordano	79.6	100		79.6	100	n	n	
Name	25	75	61.2	38.8	y	n		
--------	----	----	------	------	----	---		
Roten	47	53	100	13.3	100	100	100	
Lefevre	100	100	86.7	89.5	100	100	100	
Attias	100	100	100	100	100	100	100	
Petronio	61.5	38.5	52.9	47.1	100	100	100	
Thielmann	100	100	86.7	89.5	100	100	100	
Aslan	8.2	80.8	91.7	99.6	74.4	74.4	74.4	
Hamdan	100	100	100	100	100	100	100	
Jilaihawi	100	100	100	100	100	100	100	
Matsushita	100	100	100	100	100	100	100	
Tretter	100	100	100	100	100	100	100	
Zaid	100	100	100	100	100	100	100	
Ahmad	100	100	100	100	100	100	100	

*n=no, y=yes
Table S7: Proportion of PPM implantation across different baseline comorbidities in the included studies

Variable	Total	PPM	PPM (%)	No PPM	No PPM (%)
Diabetes Mellitus	5904	1034	17.51	4870	82.49
Hypertension	14879	3401	22.86	11478	77.14
Hyperlipidemia	2634	104	3.95	2530	96.05
COPD	3034	314	10.35	2720	89.65
Prior CVA	1747	135	7.73	1612	92.27
CKD	5839	1168	20.00	4671	80.00
Liver Cirrhosis	215	50	23.26	165	76.74
PAD	2928	292	9.97	2636	90.03
Smokers	425	38	8.94	387	91.06
Prior MI	2776	233	8.39	2543	91.61
Prior PCI	2581	353	13.68	2228	86.32
Prior CABG	2453	234	9.54	2219	90.46

COPD- Chronic Obstructive Pulmonary Disease, CVA- Cerebrovascular Accident, CKD- Chronic Kidney Disease, PAD- Peripheral arterial disease, MI- Myocardial Infarction, PCI- Percutaneous coronary intervention, CABG- Coronary Artery Bypass graft
Table S8: Pooled estimates of anatomical and valvular predictors for PPM implantation in TAVR

Anatomical Variants	Valvular Variants	
23mm vs. 26mm prosthesis (2)	LOTUS vs. EvolutR	1.12 (0.62-2.03)
29mm vs. 23mm (7)	LOTUS vs. ESV	1.49 (1.06-2.08)
IV septum >22mm vs. <22mm (1)	LOTUS vs. MCRS	1.65 (0.55-4.93)
IV septum>11mm vs. <11mm (1)	P-HTN (>60mmHg) vs. No P-HTN (3)	1.71 (0.17-17.41)
LVOT>22mm vs. <22mm (1)	Severe MR vs. No MR (3)	1.65 (0.55-4.93)
		1.78 (0.82-3.89)
		3.30 (0.59-18.32)

Abbreviations: mm: millimeter, PPM- Permanent pacemaker, TAVR- Transaortic valve replacement, IV septum- interventricular septum, LVOT- Left ventricular outflow tract, P-HTN: Pulmonary hypertension, MCRS - Medtronic CoreValve Revalving System, ESV: Edwards SAPIEN valve,
Table S9: Predictors of PPM Implantation across different valve types

Variables	Medtronic CoreValve	Edward SAPIENS Valve	LOTUS	EVOLUT R
	OR (95%CI)	OR (95%CI)	OR (95%CI)	OR (95%CI)
Male vs. Female (MCV)	1.33 (1.02-1.73)	1.25 (0.70-2.24)	-	2.14 (0.73-6.27)*
1st HB vs. No 1st HB	1.95 (1.18-3.24)	1.56 (0.20-11.8)	0.19 (0.04-0.89)*	1.47 (0.41-5.23)*
LBBB vs. No LBBB	0.99 (0.66-1.48)	0.28 (0.03-2.39)	0.34 (0.04-2.86)*	0.29 (0.02-2.28)*
LAHB vs. No LAHB	1.94 (1.11-3.38)	1.95 (0.32-12.01)	-	-
LPHB vs. No LPHB	1.19 (0.05-29.88)	2.29 (0.12-41.9)	-	-
RBBB vs. No RBBB	4.03 (2.47-6.56)	14 (0.51-387)*	1.01 (0.18-5.54)*	4.31 (1.02-18.22)*
Bifascicular Block	-	3.84 (0.67-21.9)	-	-
IPB vs. No IPB	8.04 (3.53-18.2)	12.83 (1.26-130)*	-	-
AF vs. No AF	1.39 (0.86-2.26)	0.70 (0.34-1.43)	0.12 (0.01-0.92)*	0.55 (0.16-1.85)*
Transfemoral vs. Subclavian	0.35 (0.09-1.31)	-	-	-
Transapical	-	1.11 (0.46-2.72)	-	-

*Less than 3 studies with small sample size were used to calculate these values

Abbreviations: PPM- Permanent pacemaker, MCV- medtronic corevalve, HB- Heart block, LBBB- left bundle branch block, LAHB- Left anterior hemiblock, LPHB- Left posterior hemiblock, RBBB- Right bundle branch block, IPB- intraprocedural block, AF- atrial fibrillation
Table S10: Sensitivity and subgroup analysis based on sample size and study design

Variable	Sensitivity analysis based on sample size (<200 removed)	Sensitivity analysis based on study design (RCT removed)
Age	1.25 (0.98-1.60)	-
Male sex	1.47 (1.12-1.91)	-
First degree heart block	0.68 (0.14-3.30)	0.86 (0.27-2.80)
Mobitz type 1 2nd Degree Heart Block	6.77 (2.82-16.22)	-
Mobitz type 2 2nd Degree Heart Block	3.89 (2.54-5.95)	-
Atrial Fibrillation	1.08 (0.89-1.32)	-
Left Anterior Hemiblock	1.60 (1.17-2.18)	1.87 (1.19-2.93)
Left Posterior Hemiblock	1.23 (0.05-30.77)	-
Intraprocedural AV Block	8.04 (3.53-18.29)	-
Left bundle branch block	1.14 (0.84-1.55)	1.01 (0.76-1.35)
Right bundle branch block	4.12 (2.83-6)	4.21 (3.13-5.66)
Bifascicular Block	2.38 (1.94-6.01)	-
Heart Failure with Preserved Ejection Fraction	1.60 (0.88-2.91)	-
Transarterial Approach with Transapical Approach (Edward Sapien)	1.44 (0.34-6.04)	-
Transfemoral approach with Subclavian Approach (MCV)	0.84 (0.41-1.75)	-
Medtronic CoreValve with Edward SAPIEN	2.87 (1.96-4.21)	3.03 (2.57-3.56)
LOTUS valve with Medtronic CoreValve	1.76 (1.38-2.25)	1.75 (1.38-2.22)
Edward SAPIEN valve with Medtronic EvolutR valve	0.81 (0.58-1.14)	-
Table S11: Number of studies and patients with PPM and total patients across different predictors.

Variable	PPM/Predictor present	PPM/Predictor absent
Age >80 (n=5)		
Ledwoch	278/788	108/359
Kley	14/135	11/105
Ay	14/132	11/142
Kahraman	4/69	2/67
Ramkumar	7/23	18/81
Sex (male) (n=31)		
Monteiro	80/321	55/349
Meduri	122/345	123/359
Bharadwaj	20/195	24/188
Gonska	88/288	80/324
Karacop	35/109	14/41
Yousif	59/270	44/276
Kaneko	8/30	9/62
Boerlage-Van Dijk	6/40	17/65
Ball	25/118	19/91
Tretter	21/93	20/107
Ledwoch	174/468	212/679
Bleiziffer	13/68	22/91
Baan	2/14	5/13
Roten	13/31	10/36
D’Ancona	8/107	12/215
Fraccaro	15/29	10/35
Akın	10/18	13/27
Calvi	22/64	30/98
Bagur	14/176	16/235
De Carlo	37/128	29/147
Munoz-Garcia	21/65	27/109
Saia	8/24	9/36
Simms	10/48	7/52
van der Boon	19/77	17/90
Mouillet	7/25	14/54
Ahmad	11/136	6/133
Matsushita	45/94	69/148
Hamdan	7/33	14/40
Aslan	9/51	15/89
Zaid	31/308	26/224
Jilawahi	10/142	14/106
Hayashida	10/129	7/131
Atrial fibrillation (n=31)		
Monteiro	19/91	116/579
Doshi	925/3653	1086/4557
Meduri	78/202	167/502
Bharadwaj	11/163	33/220
Gonska	66/220	102/392
Kaneko	4/31	13/61
Zaman	3/19	23/76
Name	Count 1	Count 2
--------------------------	---------	---------
Boerlage-Van Dijk	7/30	98/75
Ball	18/67	26/142
Matsushita	40/76	74/166
Hamadan	4/10	17/63
Ledwoch	103/277	283/870
Bleiziffer	9/41	26/118
Baan	4/10	3/17
Erkapic	5/17	12/33
Roten	4/8	19/59
D’Ancona	5/93	15/229
Calvi	11/27	41/135
Bagur	4/96	26/315
Chorianopoulos	6/29	40/101
Munoz-Garcia	14/56	34/118
Salinas	2/17	1/17
Schroeter	16/28	16/60
Simms	7/29	10/71
Aslan	6/29	18/111
Van der Boon	12/41	24/126
Roten	4/8	19/59
Mouillet	6/21	15/58
Tretter	13/61	28/139
Ahmad	8/99	9/170
Jilawahi	4/43	20/205

1st degree AV block (n=16)

Name	Count 1	Count 2
Monteiro	29/104	106/566
Doshi	127/2857	1822/5353
Meduri	25/56	220/648
Sharma	5/47	20/179
Kaneko	4/17	13/75
Zaman	8/23	18/192
Boerlage-Van Dijk	5/19	18/86
Hamadan	3/13	18/60
Baan	2/5	5/22
Tretter	2/22	27/187
Bleiziffer	7/22	28/137
Erkapic	4/10	13/40
Bagur	1/38	29/373
Jilawahi	4/29	20/219
Chorianopoulos	9/15	37/115
De Carlo	17/50	49/225

2nd degree Mobitz I AV block (n=3)

Name	Count 1	Count 2
Monteiro	1/1	134/669
Doshi	14/21	1935/8189
Liang	1/1	4/52

2nd degree Mobitz II AV block (n=2)

Name	Count 1	Count 2
Monteiro	0/1	135/669
Doshi	48/86	1963/8124

3rd degree AV block (n=4)

Name	Count 1	Count 2
Doshi	622/777	1351/7457
Karacop	49/49	0/101
First Name	Last Name	Number of Patients
----------------	---------------	--------------------
Sharma	Liang	3/3

Left anterior hemiblock (n=9)

First Name	Last Name	Number of Patients
Meduri	51/121	194/583
Sharma	7/34	18/192
Ball	2/7	42/202
Erkapic	4/8	13/42
Calvi	1/4	51/158
Bagur	3/29	27/382
De Carlo	18/46	48/229
Jilawahi	1/12	23/236
Van der Boon	5/19	31/148

Left posterior hemiblock (n=4)

First Name	Last Name	Number of Patients
Sharma	2/3	23/223
Ball	0/1	44/208
Jilawahi	1/4	23/244
Van der Boon	0/1	36/166

Intraprocedural AV block (n=3)

First Name	Last Name	Number of Patients
Sharma	13/30	12/196
Bleiziffer	18/37	17/122
Munoz-Garcia	22/34	26/140

Left bundle branch block (n=29)

First Name	Last Name	Number of Patients
Monteiro	15/93	120/577
Doshi	260/731	1751/7479
Meduri	20/56	225/648
Bharadwaj	3/39	41/344
Hamandi	13/52	97/372
Sharma	1/23	24/203
Kaneko	0/7	17/92
Zaman	1/8	26/87
Boerlage-Van Dijk	1/14	22/91
Ball	28/100	16/109
Sawaya	0/14	43/230
Hamadan	1/9	12/72
Roten	1/11	22/56
Bleiziffer	7/27	28/132
Eltchnainoff	4/27	25/182
Baan	0/2	7/25
Erkapic	0/5	17/45
Haworth	1/3	7/27
Roten	1/11	22/56
Khawaja	14/32	67/211
Calvi	2/5	50/157
Bagur	1/33	29/378
Chorianopoulos	3/9	43/121
De Carlo	9/37	57/238
Saia	1/9	16/51
Schroeter	2/7	30/81
Jilawahi	0/14	24/234
Tretter	1/14	40/186
Van der Boon	3/14	33/153
Right bundle branch block (n=29)		

Monteiro	36/71	99/599
Doshi	96/220	1791/7990
Meduri	68/85	177/619
Bharadwaj	11/50	33/333
Sharma	10/28	15/198
Kaneko	4/9	13/83
Zaman	6/7	21/88
Boerlage-Van Dijk	5/11	18/94
Ball	11/23	33/186
Sawaya	12/29	31/215
Hamadan	4/7	17/66
Matsushita	19/35	95/207
Bleiziffer	3/6	32/153
Baan	0/2	7/25
Ferreira	4/7	4/20
Erkapic	6/7	11/43
Haworth	6/7	2/23
Piazza	5/5	12/75
Roten	10/13	13/54
Guetta	10/11	18/59
Khawaja	15/23	66/220
Bagur	7/20	23/391
Chorianopoulos	12/18	34/112
De Carlo	15/32	51/243
Saia	4/11	13/49
Van der Boon	11/17	25/150
Jilawahi	8/37	16/211
Tretter	18/34	23/166
Mouillet	3/7	18/72

Bifascicular block (n=4)
Sharma
Ball
Jilawahi
Sawaya

23mm vs 26mm prosthesis (n=2)
D’Ancona
Bagur

23mm vs 29mm prosthesis (n=7)
Akin
Saia
Fraccaro
Guetta
Boon
Chorianopoulos
Garcia

Severe Pulmonary Hypertension (n=3)
Guetta
Munoz-Garcia
Calvi

| Interventricular septum greater than 11mm (1) |
Metric	Value					
Interventricular septum greater than 22mm	1/4					
Moderate/Severe MR						
Akim	1/45					
Boon	30/143					
Bagur	21/307					
MCRS vs. Edwards SAPIEN(n=16)						
Monteiro	16/172					
Thiele	41/214					
Ball	1/24					
Soliman	1/17					
Ledwoch	34/235					
Bleiziffer	2/35					
Godino	7/61					
Erkapic	1/14					
Roten	3/26					
Bosmans	9/163					
Gilard	243/1793					
Liang	0/15					
Attitias	5/72					
Ben-Shoshan	26/108					
Eltchnainoff	9/166					
Rogue	12/135					
LOTUS vs. MCV (n=4)						
Ball	36/148					
Meduri	16/53					
Gonska	49/150					
Reardon	61/305					
LOTUS vs. Evolut R (n=1)						
Giordana	122/703					
LOTUS vs. Edwards SAPIEN (n=2)						
Ball	1/24					
Giordana	72/541					
Edwards SAPIEN vs. EVOLUT R (n=5)						
Eitan	8/28					
Rodriguez	6/80					
Rogers	9/74					
Ben-Shoshan	22/88					
Finklestein	90/512					
Preserved LVEF (n=5)						
Simms	17/90					
Fraccaro	53/313					
Ewe	6/94					
Munoz-Garcia	40/151					
Access route (transfemoral vs. transapical (n=12)						
Eltchnainoff	4/71					
Sharma	4/40					
Rodes-Cabau	11/177					
Roten	3/17					
----------------	--------	--------				
Bosmans	35/232	5/88				
Ewe	2/45	2/59				
Lefevre	1/61	3/69				
Bagur	15/223	15/188				
Gauthier	10/66	3/59				
Thielmann	4/14	0/20				
Godino	17/107	3/15				
Erkapic	16/36	1/14				
Access route (transfemoral vs. subclavian) - MCRS (n=4)						
Petronio	74/460	10/54				
Saia	10/49	7/11				
Fraccaro	22/60	3/4				
Etchnainoff	22/161	3/12				
Self-Expanding vs. Balloon-Expanding valves (n=18)						
Liang	5/38	0/15				
Soliman	4/23	1/17				
Erkapic	16/36	1/14				
Ball	36/148	1/24				
Attitias	2/11	5/72				
Bleiziffer	33/124	2/35				
Roten	20/41	3/26				
Eitan	9/37	5/55				
Rodriguez	6/80	12/64				
Giordana	12/46	7/61				
Rogers	9/74	9/108				
Bosman	31/121	9/163				
Ben-Shoshan	22/88	26/108				
Montiero	119/498	16/172				
Thiel	49/213	41/214				
Finkelstein	90/512	32/223				
Ledowoch	352/912	34/235				
Aslan	15/74	9/66				
Gilard	252/874	243/1793				
Mechanically-Expandable vs. Self-Expanding Valves (n=5)						
Ball	3/10	36/148				
Meduri	71/192	16/53				
Gonska	98/225	49/150				
Giordana	35/151	122/703				
Reardon	202/607	61/305				
Heart Failure (Unspecified) (n=4)						
Meduri	182/531	63/173				
Bharadwaj	8/105	36/278				
Ahmad	3/39	14/230				
Kaneko	4/9	13/83				
Pilgrim	12/37	48/219				
Author	Year	S	PPM risk factors	Comparison arms	Model	Results
----------------	------	----	---	---------------------------------------	------------	---
Erkapic	2011	32	Bradycardia, bifascicular block, RBBB	CVP VS ESP	Random and Fixed	Higher risk of PPM in CVP, with prior RBBB
Gozdek	2020	11	Lotus valve	Lotus Vs Sapiens 3	Random	Higher risk of PPM with Lotus
Zhan	2019	5	Access (transfemoral vs transaxial)	Transfemoral vs Transaxial	Random	No difference in PPM implantation with different access
Zafar	2020	4	Chest radiation in patients with thoracic malignancy	Hx of chest radiation vs no chest radiation	Random	No difference in PPM implantation in patients who received chest radiation
Xi	2019	20	Long term outcomes of TAVR and Self expandable prosthesis	Self expandable vs balloon expandable prosthesis	Random and Fixed	Self expandable prosthesis had 2.5 fold increased risk of PPM implantation compared to balloon expandable prosthesis
Siontis	2014	41	Age, sex, Afib, LBBB, RBBB, preserved EF, access route, first degree AV block, left anterior and posterior hemiblock, intraprocedural AV Block, medtronic vs Edwards valve, PR >200	Predictors of pacemaker	Random	Male sex, intraprocedural AV block, baseline conduction abnormalities predicted PPM implantation
Shoar	2020	3	Preexisting LBBB	TAVR in patients with LBBB vs no LBBB	Random	LBBB has an increased risk of PPM after TAVR
Biondi	2014	4	Valve type (TAVR vs. SAVR risk factors)	CoreValve vs Sapien	Fixed	Higher PPM risk in CoreValve
Alperi	2020	35	Implantation depth, different types of valves and pre TAVR balloon aortic valvuloplasty	sapien3 vs EvoluR vs acurate neo vs portico	-	Pre-TAVR BAV has no impact. Sapien 3 and Acurate Neo valves had lowest risk for PPM. Deeper valve implantation and a shorter MS length has high risk
An lee	2020	27	SEV, BEV	SEV vs BEV in post TAVR	Random	Transcatheter aortic IV, SEV was associated with larger postprocedural effective orifice area but higher rates of PPM.
Ando	2016	7	RBBB, self-expandable prosthesis valve, and depth of implantation	NO-LBBB vs Non NO LBBB (NO=New onset)	Random	LBBB after TAVI was associated with an increased rate of PPM
Faroux	2020	30	New onset persistent (NOP)-LBBB	NOP-LBBB	Random and Fixed	NOP-LBBB had increased risk of all-cause death and PPM at 1-year follow-up.
Fu	2019	15	PPM in TAVR	PPM in SAVR	Random	PPM implantation rate for TAVR is higher than SAVR at 1-year
Gozdek (duplicate, same as 3)	2020	11	Lotus valve	Sapien 3	Random	Lotus was associated with higher rate of PPM implantation
Haddad	2019	12	Core Valve	Jena Valve	Random	Early gen. Valve associated with increased PPM compared to new gen valves for TAVI in AR
Kanjanahattakij	2018	9	Bicuspid aortic valve (BAV) TAVR	Tricuspid valve TAVR	Random	No difference in pacemaker implantation, major bleeding, and major vascular complication
Khan	2017	12	TAVR	SAVR	Random	High PPM and paravalvular leaks in TAVR.
Khan	2020	7	TAVR	SAVR	Random	High risk of PPM in TAVR
--------------	-------	-------	------	------	--------	--------------------------
Khatri	2021	49	CoreValve, Transarterial route	CoreValve vs Edwards Sapien valve	Random	PPI was 5 times more common with the CoreValve than the Sapien valve
Lee	2020	31	Transaxillary route	Transaxillary vs direct aortic approach	Random	Direct aortic TAVR was associated with lower risks of permanent pacemaker implantation and valve malposition than transaxillary TAVR
Li	2020	13	TAVR	SAVR	Random	No difference in PPM between TAVR and SAVR
Lou	2020	21	TAVR	TAVR vs SAVR	Random	TAVR had high complication, paravalvular leak, and PPM
Krasopolous	2016	8	CoreValve	Transfemoral Edwards Sapiens vs Transapical Edwards Sapiens vs CoreValve	Random	CoreValve implantation was associated with an increased risk of PPM
Liu	2018	3	TAVR	SAVR and Medical therapy	Fixed	No differences in the risk of PPM, myocardial infarction, acute kidney injury or endocarditis
Liu	2020	5	Nonagenarians	Younger patients	Random and Fixed	Nonagenarians had higher complications but no difference in PPM risk
Wagner	2019	19	TAVR	TAVR vs SAVR, BAV, and medical therapy	Random and Fixed	TAVR had lower risk of PPM compared to SAVR
Wang	2020	6	TAVR	SUAVR (sutureless aortic valve replacement)	Random and Fixed	No significant difference in need for PPM
Williams	2020	4	Sutureless and rapid-deployment aortic valve replacement (SURD-AVR)	Edwards Lifeciences (Edwards Lifesciences, California) valves	Random	PPM insertion rate was 8.2%
Xie	2016	17	BAV pts with TAVR	non-BAV	Random and Fixed	No difference in the risk of PPM
Seimens	2016	4	Trans-arterial vs surgical approach	TAVR vs SAVR	Randomized	TAVI had lower risk of PPM
Rosendael	2018	40	Pre-procedural conduction abnormalities including RBBB, prolonged PR interval, Atrial fibrillation and first degree AV block; LVOT calcification amount; Implantation depth.	Preprocedural anatomical and conduction abnormalities, present vs not present.	Random and Fixed	Electrical factor, calcification of the left ventricular outflow tract, balloon valvuloplasty and depth of implantation had increased risk of PPI.
Regueiro	2016	17	Pre-procedural conduction abnormalities. New onset LBBB post-TAVR	Edward SApiens vs Medtronic valve.	Fixed	New-onset LBBB had higher PPM risk
R Khan	2020	7	Undergoing TAVR. Moderate vs low surgical risk	TAVR vs SAVR.	Randomized	High PPM in TAVR
Quintana	2019	5	BAV	TAV	Fixed	No difference of PPM in BAV and TAV
Panchal	2015	27	Valve type used for TAVR	Edwards vs Medronic Corevalve	Random and Fixed	PPM higher in Corevalve compared to EV
Author	Year	Case Number	Intervention	Comparator	Study Type	Conclusion
---------------	------	-------------	--------------	------------	------------	------------
Nagaraja	2014	39	TAVR	TAVR vs SAVR	Random and Fixed	No difference in risk of PPM in TAVR and SAVR
Malik	2020	4	TAVR	TAVR vs SAVR	Random	High risk of PPM in TAVR
Ma	2020	7	Chronic liver disease (CLD)	No CLD	Fixed	CLD has lower PPM risk
M Gozdek	2020	6	Valve type used for TAVR	Self expandable valve vs Balloon-expandable Valve	Random and Fixed	Lower risk of PPM in Accurate neo self expandable valve
Arora	2016	29	TAVR	SAVR	Random	Increase risk of PPM in TAVR.
Croix	2020	11	RBBB	TAVR in No RBBB	Fixed	RBBB had higher incidence of PPM & mortality at 30 days
SUPPLEMENTAL FOREST PLOTS FOR ALL STUDIES:

Figure S1: Forest Plot showing an individual and pooled OR of PPM Implantation in patients age>80

Study	Age<80	Age≥80	Odds Ratio with 95% CI	Weight (%)		
	Events	Total	Events	Total		
Kley 2016 2016	14	135	11	105	0.99 [0.43, 2.27]	7.38
Ay 2019	14	132	11	142	1.37 [0.60, 3.12]	7.48
Kahraman 2016	4	69	2	67	1.94 [0.34, 10.96]	1.70
Ramkumar 2016	7	23	18	81	1.37 [0.51, 3.68]	5.20
Ledwoch 2012	278	788	108	359	1.17 [0.91, 1.51]	78.24
Overall					1.19 [0.95, 1.49]	
Random-DL model					1.19 [0.95, 1.49]	
Fixed-MH model					1.19 [0.95, 1.49]	

Heterogeneity: τ² = 0.00, I² = 0.00%, H² = 1.00

Test of θ = θ₀: Q(4) = 0.70, p = 0.95

Test of θ = 0: z = 1.52, p = 0.13

Decreases PPM Implantation

Increases PPM Implantation
Figure S2: Forest Plot showing an individual and pooled OR of PPM Implantation in Male Patients
Study	Male Events	Male Total	Female Events	Female Total	Odds Ratio with 95% CI	Weight (%)
Monteiro	80	321	55	349	1.58 [1.09, 2.30]	7.30
Meduri	122	345	123	359	1.03 [0.77, 1.38]	12.15
Bharadwaj	20	195	24	188	0.80 [0.43, 1.50]	2.82
Gonska	88	288	80	324	1.24 [0.88, 1.74]	8.79
Karacop	35	109	14	41	0.94 [0.46, 1.92]	2.00
Yousef	59	270	44	276	1.37 [0.90, 2.10]	5.69
Kaneko	8	30	9	62	1.84 [0.64, 5.24]	0.94
Boonlage-Van Dijk	4	40	17	65	0.57 [0.21, 1.58]	1.01
Ball	25	118	19	91	1.01 [0.53, 1.96]	2.39
Trettter	21	93	20	107	1.21 [0.62, 2.37]	2.27
Ledwoch	174	468	212	679	1.19 [0.94, 1.50]	19.01
Bleijffer	13	68	22	91	0.79 [0.37, 1.66]	1.81
Bean	2	14	5	13	0.37 [0.06, 2.26]	0.32
Roten	13	31	10	36	1.51 [0.58, 3.92]	1.13
D’Ancona	8	107	12	215	1.34 [0.63, 3.38]	1.20
Fraccaro	15	29	10	35	1.81 [0.71, 4.63]	1.16
Akin	10	18	13	27	1.15 [0.42, 3.18]	0.99
Calvi	22	64	30	98	1.12 [0.60, 2.12]	2.56
Bagur	14	176	16	235	1.17 [0.56, 2.46]	1.86
De Carlo	37	128	29	147	1.47 [0.85, 2.52]	3.51
Munoz-Garcia	21	65	27	109	1.30 [0.68, 2.49]	2.45
Saia	8	24	9	36	1.33 [0.45, 3.94]	0.88
Simms	10	48	7	52	1.55 [0.55, 4.39]	0.95
van der Boon	19	77	17	90	1.31 [0.63, 2.69]	1.97
Mouillet	7	25	14	54	1.08 [0.39, 3.01]	0.98
Ahmad	11	136	6	133	1.79 [0.64, 4.99]	0.98
Matsushita	45	94	69	148	1.03 [0.65, 1.62]	4.94
Hamdan	7	33	14	40	0.61 [0.22, 1.68]	0.99
Astaran	9	51	15	89	1.05 [0.43, 2.56]	1.28
Zaid	31	308	26	224	0.87 [0.50, 1.50]	3.41
Jillawali	10	142	14	106	0.53 [0.23, 1.25]	1.42
Hayashida	10	129	7	131	1.45 [0.54, 3.93]	1.04

Random-DL model

Fixed-MH model

Heterogeneity: $I^2 = 0.00$, $F^2 = 0.00\%$, $H^2 = 1.00$

Test of $\theta = 0$: $Q(31) = 20.62$, $p = 0.92$

Test of $\theta = 0$: $z = 2.81$, $p = 0.00$
Figure S3: Forest Plot showing an individual and pooled OR of PPM Implantation with First Degree Heart Block

Study	1st HB Events	Total	No 1st HB Events	Total	Odds Ratio with 95% CI	Weight (%)
Monteiro	29	104	106	566	1.49 [0.94, 2.36]	8.50
Doshi	127	2,857	1,822	5,353	0.13 [0.11, 0.16]	9.15
Meduri	25	56	220	648	1.31 [0.80, 2.16]	8.38
Sharma	5	47	20	179	0.95 [0.34, 2.67]	6.34
Kaneko	4	17	13	75	1.36 [0.39, 4.68]	5.56
Zaman	8	23	18	192	3.71 [1.45, 9.48]	6.70
Boerlage-Van Dijk	5	19	18	86	1.26 [0.42, 3.81]	6.04
Hamadan	3	13	18	60	0.77 [0.20, 3.00]	5.13
Baan	2	5	5	22	1.76 [0.26, 11.84]	3.59
Trotter	2	22	27	187	0.63 [0.14, 2.83]	4.67
Bleiziffer	7	22	28	137	1.56 [0.61, 4.00]	6.69
Erkapic	4	10	13	40	1.23 [0.33, 4.60]	5.28
Bagur	1	38	29	373	0.34 [0.04, 2.55]	3.33
Jilawahi	4	29	20	219	1.51 [0.48, 4.73]	5.91
Chorianopoulos	9	15	37	115	1.86 [0.75, 4.61]	6.83
De Carlo	17	50	49	225	1.56 [0.83, 2.93]	7.91

Random-DL model

Fixed-MH model

Heterogeneity: $\tau^2 = 0.59$, $I^2 = 82.43\%$, $H^2 = 5.69$

Test of $\theta = \theta_0$: $Q(15) = 270.14$, $p = 0.00$

Test of $\theta = 0$: $z = 0.33$, $p = 0.74$

Decreases PPM Implantation

Increases PPM Implantation
Figure S4: Forest Plot showing an individual and pooled OR of PPM Implantation with Mobitz type 1 2nd Degree Heart Block

Study	Mobitz-1	No Mobitz-1	Odds Ratio with 95% CI	Weight (%)
Monteiro 2017	1 1	134 669	4.99 [0.31, 80.31]	5.36
Doshi 2018	14 21	1,935 8,189	2.82 [1.43, 5.56]	89.90
Liang 2012	1 1	4 52	13.00 [0.68, 248.99]	4.74

Overall

Random-DL model

Fixed-MH model

Heterogeneity: $I^2 = 0.00\%$, $H^2 = 1.00$
Test of $θ_i = θ_r$: $Q(2) = 1.09$, $p = 0.58$
Test of $θ = 0$: $z = 3.48$, $p = 0.00$
Figure S5: Forest Plot showing an individual and pooled OR of PPM Implantation with Atrial Fibrillation
Study	AF Events	AF Total	No AF Events	No AF Total	Odds Ratio with 95% CI	Weight (%)
Monteiro	19	91	116	579	1.04 [0.61, 1.76]	2.04
Doshi	925	3,653	1,068	4,557	1.06 [0.96, 1.17]	60.50
Meduri	78	202	167	502	1.16 [0.85, 1.59]	5.86
Bharadwaj	11	163	33	220	0.45 [0.22, 0.92]	1.14
Gonska	66	220	102	392	1.15 [0.81, 1.64]	4.71
Kaneko	4	31	13	61	0.61 [0.18, 2.01]	0.40
Zaman	3	19	23	76	0.52 [0.14, 1.92]	0.34
Boerlage-Van Dijk	7	30	98	75	0.18 [0.07, 0.43]	0.76
Ball	18	67	26	142	1.47 [0.75, 2.88]	1.30
Matsushita	40	76	74	166	1.18 [0.74, 1.89]	2.62
Hamadan	4	10	17	63	1.46 [0.41, 5.32]	0.36
Ledwoch	103	277	283	870	1.14 [0.88, 1.49]	8.39
Bleiziffer	9	41	26	118	1.00 [0.43, 2.30]	0.83
Baan	4	10	3	17	2.27 [0.42, 12.27]	0.20
Erkapic	5	17	12	33	0.81 [0.24, 2.68]	0.41
Roten	4	8	19	59	1.55 [0.42, 5.74]	0.34
D'Ancona	5	93	15	229	0.82 [0.29, 2.52]	0.54
Calvi	11	27	41	135	1.34 [0.61, 2.94]	0.95
Bagur	4	96	26	315	0.50 [0.17, 1.48]	0.50
Chorianopoulos	6	29	40	101	0.52 [0.20, 1.35]	0.64
Munoz-Garcia	14	56	34	118	0.87 [0.43, 1.75]	1.19
Salinas	2	17	1	17	2.00 [0.17, 24.19]	0.09
Schroeter	16	28	16	60	2.14 [0.94, 4.89]	0.85
Simms	7	29	10	71	1.71 [0.59, 4.94]	0.52
Asian	6	29	18	111	1.28 [0.46, 3.50]	0.57
Van der Boon	12	41	24	126	1.54 [0.71, 3.34]	0.96
Roten	4	8	19	59	1.55 [0.42, 5.74]	0.34
Mouillet	6	21	15	58	1.10 [0.38, 3.22]	0.51
Tretter	13	61	28	139	1.06 [0.51, 2.18]	1.11
Ahmad	8	99	9	170	1.53 [0.57, 4.08]	0.80
Jillawi	4	43	20	205	0.95 [0.31, 2.93]	0.46

Random-DL model

Fixed-MH model

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

Test of $\beta_j = 0$: $Q(50) = 37.54$, $p = 0.16$

Test of $\beta = 0$: $z = 1.64$, $p = 0.10$

Decreases PPM Implantation

Increases PPM Implantation

1/32 1/4 2 16
Figure S6: Forest Plot showing an individual and pooled OR of PPM Implantation with Left Anterior Fascicular Block (LAFB)

Study	LAFB Events	LAFB Total	No LAFB Events	No LAFB Total	OR with 95% CI	Weight (%)
Meduri	51	121	194	583	1.27 [0.88, 1.83]	53.33
Sharma	7	34	18	192	2.20 [0.85, 5.66]	7.95
Ball	2	7	42	202	1.37 [0.28, 6.85]	2.76
Erkapic	4	8	13	42	1.62 [0.42, 6.24]	3.89
Calvi	1	4	51	158	0.77 [0.08, 7.09]	1.45
Bagur	3	29	27	382	1.46 [0.42, 5.11]	4.55
De Carlo	18	46	48	229	1.87 [1.00, 3.50]	18.08
Jilawahi	1	12	23	236	0.86 [0.11, 6.87]	1.64
Van der Boon	5	19	31	148	1.26 [0.44, 3.62]	6.35

Random-DL model
1.43 [1.09, 1.86]

Fixed-MH model
1.43 [1.09, 1.86]

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

Test of $\theta_1 = \theta_2$: $Q(8) = 2.53$, $p = 0.96$

Decreases PPM Implantation

Increases PPM Implantation

Test of $\theta = 0$: $z = 2.60$, $p = 0.01$

Figure S7: Forest Plot showing an individual and pooled OR of PPM Implantation with Left Posterior Fascicular Block (LPFB)

Study	LPFB Events	LPFB Total	No LPFB Events	No LPFB Total	OR with 95% CI	Weight (%)
Sharma	2	3	23	223	6.46 [1.03, 40.70]	42.87
Ball	0	1	44	208	1.56 [0.06, 38.97]	14.02
Jilawahi	1	4	23	244	2.65 [0.28, 24.73]	29.12
Van der Boon	0	1	36	166	1.52 [0.06, 38.08]	13.99

Random-DL model
3.34 [1.00, 11.13]

Fixed-MH model
3.34 [1.00, 11.13]

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

Test of $\theta_1 = \theta_2$: $Q(3) = 0.98$, $p = 0.81$

Decreases PPM Implantation

Increases PPM Implantation

Test of $\theta = 0$: $z = 1.96$, $p = 0.05$
Figure S8: Forest Plot showing an individual and pooled OR of PPM Implantation with Intraprocedural AV Block

Study	Periprocedural Block	Odds Ratio with 95% CI	Weight (%)			
	Events	Total	Events	Total		
Sharma	13	30	12	196	7.08 [2.95, 16.96]	25.14
Bleiziffer	18	37	17	122	3.49 [1.64, 7.45]	33.39
Munoz-Garcia	22	34	26	140	3.48 [1.76, 6.88]	41.47

Random-DL model
Fixed-MH model
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

Test of $\theta = 0$: $Q(2) = 1.89$, $p = 0.39$
Test of $\theta = 0$: $z = 6.39$, $p = 0.00$

Figure S9: Forest Plot showing an individual and pooled OR of PPM Implantation with Left Bundle Branch block.
Study	LBBB Events	LBBB Total	No LBBB Events	No LBBB Total	Odds Ratio with 95% CI	Weight (%)
Monteiro	15	93	120	577	0.78 [0.43, 1.36]	8.90
Doshi	260	731	1,751	7,479	1.52 [1.31, 1.77]	19.40
Meduri	20	56	225	648	1.03 [0.60, 1.75]	9.78
Bharadwaj	3	39	41	344	0.65 [0.19, 2.18]	2.98
Hamandi	13	52	97	372	0.96 [0.50, 1.83]	7.78
Sharma	1	23	24	203	0.37 [0.05, 2.85]	1.16
Kaneko	0	7	17	92	0.35 [0.02, 6.46]	0.59
Zaman	1	8	26	87	0.42 [0.05, 3.50]	1.08
Boerlage-Van Dijk	1	14	22	91	0.30 [0.04, 2.37]	1.13
Ball	28	100	16	109	1.91 [0.97, 3.73]	7.42
Sawaya	0	14	43	230	0.18 [0.01, 3.12]	0.62
Hamadan	1	9	12	72	0.67 [0.08, 5.75]	1.05
Roten	1	11	22	56	0.23 [0.03, 1.90]	1.10
Bleiziffer	7	27	28	132	1.22 [0.48, 3.09]	4.68
Ettchmaïnoff	4	27	25	182	1.08 [0.35, 3.34]	3.39
Baan	0	2	7	25	0.68 [0.03, 15.77]	0.51
Erkagic	0	5	17	45	0.24 [0.01, 4.50]	0.58
Haworth	1	3	7	27	1.29 [0.12, 14.33]	0.85
Roten	1	11	22	56	0.23 [0.03, 1.90]	1.10
Khawaja	14	32	87	211	1.38 [0.24, 6.67]	7.23
Calvi	2	5	50	157	1.26 [0.24, 2.73]	1.70
Bagur	1	33	29	378	0.39 [0.05, 2.99]	1.19
Chorianopoulos	3	9	43	121	0.94 [0.24, 3.63]	2.49
De Carlo	9	37	57	238	1.02 [0.46, 2.22]	6.01
Saia	1	9	16	51	0.35 [0.04, 3.01]	1.07
Schreeter	2	7	30	81	0.77 [0.15, 3.92]	1.78
Jilawahi	0	14	24	234	0.33 [0.02, 5.70]	0.62
Trotter	1	14	40	186	0.33 [0.04, 2.60]	1.15
Van der Boon	3	14	33	153	0.99 [0.27, 3.85]	2.66

Random-DL model

Fixed-MH model

Heterogeneity: $I^2 = 0.06$, $I^2 = 23.92\%$, $H^2 = 1.31$

Test of $\theta = \theta$: $Q(28) = 31.99$, $p = 0.27$ (Decreases PPM Implantation)

Test of $\theta = 0$: $z = -0.10$, $p = 0.92$ (Increases PPM Implantation)
Figure S10: Forest Plot showing an individual and pooled OR of PPM Implantation with RBBB

Study	RBBB Events	RBBB Total	No RBBB Events	No RBBB Total	Odds Ratio with 95% CI	Weight (%)
Monteiro	36	71	99	599	3.07 [1.95, 4.83]	8.54
Doshi	96	220	1,791	7,990	1.95 [1.52, 2.49]	16.67
Meduri	68	85	177	619	2.80 [1.95, 4.01]	11.47
Bharadwaj	11	50	33	333	2.22 [1.05, 4.67]	3.95
Sharma	10	28	15	198	4.71 [1.93, 11.51]	2.87
Kaneko	4	9	13	83	2.84 [0.76, 10.57]	1.40
Zaman	6	7	21	88	3.59 [1.09, 11.80]	1.69
Boerlage-Van Dijk	5	11	18	94	2.37 [0.74, 7.66]	1.74
Ball	11	23	33	186	2.70 [1.20, 6.05]	3.42
Sawaya	12	29	31	215	2.87 [1.33, 6.20]	3.72
Hamadan	4	7	17	66	2.22 [0.58, 8.47]	1.35
Matsushita	19	35	95	207	1.18 [0.64, 2.17]	5.50
Bleiziffer	3	6	32	153	2.39 [0.57, 10.06]	1.18
Baan	0	2	7	25	0.68 [0.03, 15.77]	0.26
Ferreira	4	7	4	20	2.86 [0.56, 14.60]	0.93
Erkapic	6	7	11	43	3.35 [0.94, 12.00]	1.48
Haworth	6	7	2	23	9.88 [1.61, 60.24]	0.76
Piazza	5	5	12	75	6.25 [1.57, 24.87]	1.28
Roten	10	13	13	54	3.20 [1.15, 8.89]	2.24
Guetta	10	11	18	59	2.98 [1.09, 8.15]	2.31
Khawaja	15	23	86	220	2.17 [1.07, 4.41]	4.32
Bagur	7	20	23	391	5.95 [2.28, 15.51]	2.53
Chorianopoulos	12	18	34	112	2.20 [0.96, 5.01]	3.30
De Carlo	15	32	51	243	2.23 [1.13, 4.42]	4.56
Saia	4	11	13	49	1.37 [0.37, 5.02]	1.44
Van der Boon	11	17	25	150	3.88 [1.63, 9.25]	3.01
Jilawahi	8	37	16	211	2.85 [1.14, 7.14]	2.73
Tretter	18	34	23	166	3.82 [1.86, 7.84]	4.19
Mouillet	3	7	18	72	1.71 [0.40, 7.29]	1.17

Random-DL model

Fixed-MH model

Heterogeneity: $\tau^2 = 0.02$, $I^2 = 14.34\%$, $H^2 = 1.17$

Test of $\theta = 0$: $Q(28) = 25.67$, $p = 0.59$ **Decreases PPM Implantation**

Test of $\theta = 0$: $z = 11.67$, $p = 0.00$ **Increases PPM Implantation**

Odds Ratio with 95% CI: $2.48 [2.17, 2.83]$
Figure S11: Forest Plot showing an individual and pooled OR of PPM Implantation with Bifascicular Block

Study	Bifascicular Block	No Bifascicular Block	Odds Ratio with 95% CI	Weight (%)		
	Events	Total	Events	Total		
Sharma	7	16	18	210	5.10 [1.86, 14.02]	29.87
Ball	2	3	42	206	3.27 [0.53, 20.18]	11.66
Jilawahi	2	8	22	240	2.73 [0.55, 13.64]	14.42
Sawaya	12	45	31	199	1.71 [0.82, 3.59]	44.05

Random-DL model

Fixed-MH model

Heterogeneity: $I^2 = 0.12$, $P = 24.58\%$, $H^2 = 1.33$

Test of $\theta = \theta^*$; $Q(3) = 3.00$, $p = 0.39$

Test of $\theta = 0$: $z = 2.98$, $p = 0.00$

Figure S12: Forest Plot showing an individual and pooled OR of PPM Implantation in Heart Failure

Study	HF	Total	No HF	Total	Odds Ratio with 95% CI	Weight (%)
	Events	Total	Events	Total		
Meduri	182	531	63	173	0.94 [0.67, 1.31]	56.29
Bharadwaj	8	105	36	278	0.59 [0.26, 1.31]	14.59
Ahmad	3	39	14	230	1.26 [0.35, 4.60]	5.94
Kaneko	4	9	13	83	2.84 [0.76, 10.57]	5.75
Pilgrim	12	37	48	219	1.48 [0.72, 3.05]	17.43

Random-DL model

Fixed-MH model

Heterogeneity: $I^2 = 0.02$, $P = 11.57\%$, $H^2 = 1.13$

Test of $\theta = \theta^*$; $Q(4) = 5.49$, $p = 0.24$

Test of $\theta = 0$: $z = 0.19$, $p = 0.85$

Figure S13: Forest Plot showing an individual and pooled OR of PPM Implantation in Heart Failure with Preserved Ejection Fraction.
Study	HFpEF Events	HFpEF Total	No HFpEF Events	No HFpEF Total	Odds Ratio with 95% CI	Weight (%)
Simms	0	10	17	90	0.25 [0.01, 4.40]	3.43
Fraccaro	10	39	53	313	1.51 [0.71, 3.22]	50.25
Ewe	1	41	6	94	0.38 [0.04, 3.28]	6.18
Ewe	0	97	2	50	0.10 [0.00, 2.20]	3.05
Munoz-Garcia	8	23	40	151	1.31 [0.55, 3.16]	37.09

Random-DL model

Fixed-MH model

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

Test of $\theta = 0$: $Q(4) = 5.09$, $p = 0.28$

Test of $\theta = 0$: $z = 0.49$, $p = 0.63$

Decreases PPM Implantation Increases PPM Implantation
Figure S14: Forest Plot showing an individual and pooled OR of PPM Implantation comparing Transfemoral approach with Transapical Approach

Study	Transfemoral	Transapical	Odds Ratio with 95% CI	Weight (%)		
	Events	Total	Events	Total		
Eltchnainoff	22	161	4	71	2.43 [0.81, 7.30]	10.68
Sharma	21	176	4	40	1.19 [0.39, 3.67]	10.39
Rodes-Cabau	6	168	11	177	0.57 [0.21, 1.59]	11.88
Roten	20	50	3	17	2.27 [0.60, 8.59]	8.10
Bosmans	35	232	5	88	2.66 [1.01, 6.99]	12.65
Ewe	2	45	2	59	1.31 [0.18, 9.67]	4.14
Lefevre	1	61	3	69	0.38 [0.04, 3.72]	3.25
Bagur	15	223	15	188	0.84 [0.40, 1.77]	17.11
Gauthier	10	66	3	59	2.98 [0.78, 11.35]	8.05
Thielmann	4	14	0	20	12.72 [0.63, 255.10]	1.97
Godino	17	107	3	15	0.79 [0.21, 3.04]	8.02
Erkapic	16	36	1	14	6.22 [0.75, 51.45]	3.76

Random-DL model

Fixed-MH model

Heterogeneity: $\tau^2 = 0.14, I^2 = 25.78\%$, $H^2 = 1.35$

Test of $\theta = \theta_0$; $Q(11) = 15.13, p = 0.18$ Decreases PPM Implantation

Test of $\theta = 0$: $z = 1.70, p = 0.09$ Increases PPM Implantation
Figure S16: Forest Plot showing an individual and pooled OR of PPM Implantation comparing Transfemoral approach with subclavian approach

Study	Transfemoral Events	Total	Subclavian Events	Total	Odds Ratio with 95% CI	Weight (%)
Petronio	74	460	10	54	0.87 [0.42, 1.78]	50.99
Saia	10	49	7	11	0.32 [0.10, 1.03]	21.04
Fraccaro	22	60	3	4	0.49 [0.10, 2.36]	11.84
Eltchnainoff	22	161	3	12	0.55 [0.14, 2.09]	16.13

Random-DL model
Fixed-MH model
Heterogeneity: $\tau^2 = 0.02, I^2 = 5.71\%, H^2 = 1.06$
Test of $\theta = 0; Q(3) = 2.20, p = 0.53$
Test of $\theta = 0; z = -1.76, p = 0.08$

Decreases PPM Implantation
Increases PPM Implantation

Figure S17: Forest plot showing the mean difference of implantation depth for patients with and without PPM

Study or Subgroup	PPM Mean ± SD	Total Mean ± SD	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI	
Hamadian 2016	8.5 ± 4.7	21	5.6 ± 2.8	52	6.09 [0.88, 6.11]	3.60 [0.52, 3.87]
Treble 2019	6.4 ± 2.9	41	5.5 ± 2.6	169	1.81 [0.97, 1.95]	1.09 [0.57, 1.50]
Jilliham 2019	4.5 ± 1.9	24	3.2 ± 1.0	224	2.50 [0.81, 3.20]	1.30 [0.50, 2.10]
Asian 2020	9.2 ± 1.7	24	7.4 ± 2.1	118	2.03 [0.80, 3.26]	1.80 [0.72, 2.88]
Enoshiba 2020	5.7 ± 2.3	114	5.1 ± 1.9	129	2.64 [0.88, 3.40]	0.65 [0.38, 1.14]
Total (95% CI)	224	679	100.0%	1.25 [0.64, 1.87]	0.65 [0.38, 1.14]	

Heterogeneity: Tau² = 0.27, Chi² = 9.58, df = 4 (P = 0.04), I² = 59%
Test for overall effect Z = 3.98 (P < 0.0001)

Figure S18: Forest plot showing the pooled mean membranous septal length for patients with and without PPM
Figure S19: Forest Plot showing an individual and pooled OR of PPM Implantation comparing Medtronic CoreValve with Edwards SAPIEN valve

Study	Events	Total	Events	Total	MCV Odds Ratio with 95% CI	ESV Weight (%)
Monteiro	119	498	16	172	2.57 [1.48, 4.45]	10.27
Thiele	49	213	41	214	1.20 [0.76, 1.89]	11.43
Ball	36	148	1	24	5.84 [0.76, 44.60]	2.00
Soliman	4	23	1	17	2.96 [0.30, 28.88]	1.64
Ledwoch	325	912	34	235	2.67 [1.82, 3.90]	12.38
Bleiziffer	33	124	2	35	4.66 [1.06, 20.37]	3.40
Godino	12	46	7	61	2.27 [0.83, 6.23]	5.81
Erkapic	16	36	1	14	6.22 [0.75, 51.45]	1.87
Roten	20	41	3	26	4.23 [1.14, 15.66]	4.07
Bosmans	31	121	9	163	4.64 [2.13, 10.11]	7.74
Gilard	252	874	243	1,793	2.13 [1.75, 2.58]	14.37
Liang	5	38	0	15	4.43 [0.23, 84.99]	1.02
Attalas	2	11	5	72	2.62 [0.45, 15.19]	2.56
Ben-Shoshan	22	88	26	108	1.04 [0.55, 1.96]	9.28
Eltchmanoff	20	78	9	166	4.73 [2.06, 10.86]	7.24
Rogue	6	12	12	135	5.62 [1.79, 17.66]	4.93

Random-DL model

Fixed-MH model

Heterogeneity: T² = 0.16, I² = 59.62%, H² = 2.48

Test of θ = θ: Q(15) = 26.99, p = 0.03 (Decreases PPM Implantation)

Test of θ = 0: z = 6.05, p = 0.00 (Increases PPM Implantation)
Figure S20: Forest Plot showing an individual and pooled OR of PPM Implantation comparing LOTUS valve with Medtronic CoreValve

Study	Lotus Events	Total	Corevalve Events	Total	Odds Ratio with 95% CI	Weight (%)
Meduri 2019	71	192	16	53	1.22 [0.66, 2.28]	18.59
Gonska 2018	98	225	4	27	2.94 [1.00, 8.63]	6.20
Reardon 2019	202	607	61	305	1.66 [1.21, 2.29]	71.21
Ball 2018	3	10	36	148	1.23 [0.32, 4.71]	4.00
Overall					1.61 [1.23, 2.10]	
Random-DL model					1.61 [1.23, 2.10]	
Fixed-MH model					1.61 [1.23, 2.10]	

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

Test of $\theta = \theta_0$: $Q(3) = 2.14$, $p = 0.54$
\textbf{Decreases PPM Implantation}

Test of $\theta = 0$: $z = 3.48$, $p = 0.00$

Figure S21: Forest Plot showing an individual and pooled OR of PPM Implantation comparing Edwards SAPIEN valve with Medtronic EvolutR valve

Study	ESV Events	Total	EVOLUT-R Events	Total	Odds Ratio with 95% CI	Weight (%)
Eitan	10	50	8	28	0.70 [0.25, 1.98]	8.63
Rodriguez	12	64	6	80	2.50 [0.89, 7.03]	8.71
Rogers	9	108	9	74	0.69 [0.26, 1.81]	9.88
Ben-Shoshan	26	108	22	88	0.96 [0.51, 1.81]	23.16
Finklestein	32	223	90	512	0.82 [0.53, 1.26]	49.62
Random-DL model					0.92 [0.65, 1.29]	
Fixed-MH model					0.91 [0.67, 1.23]	

Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$

Test of $\theta = \theta_0$: $Q(4) = 4.52$, $p = 0.34$
\textbf{Decreases PPM Implantation}

Test of $\theta = 0$: $z = -0.63$, $p = 0.53$

Figure S22: Sensitivity Analysis on the pooled estimate of PPM implantation in patients with First Degree HB.
Figure S23: Sensitivity Analysis on the pooled estimate of PPM implantation in patients with RBBB.
Figure S24: Sensitivity Analysis on the pooled estimate of PPM implantation in patients with LBBB.

Sorted by I^2

- Omitting Doshi
- Omitting Monteiro
- Omitting Roten.1
- Omitting Roten
- Omitting Boereange-Van Dijk
- Omitting Tretter
- Omitting Salo
- Omitting Sharma
- Omitting Bharadwaj
- Omitting Zaman
- Omitting Sawaya
- Omitting Bagur
- Omitting Erkacpic
- Omitting Ball
- Omitting Hamandi
- Omitting Meduri
- Omitting Jilawahi
- Omitting Kaneko
- Omitting Schroeter
- Omitting De Carlo
- Omitting Baan
- Omitting Hamadan
- Omitting Chrorianopoulos
- Omitting Van der Boon
- Omitting Elshnainoff
- Omitting Khawaja
- Omitting Beiziffer
- Omitting Haworth
- Omitting Calvi

I^2 values:
- $I^2 = 6\%$, $\hat{\sigma} = 0.93$ [0.73-1.18]
- $I^2 = 40\%$, $\hat{\sigma} = 0.95$ [0.71-1.27]
- $I^2 = 41\%$, $\hat{\sigma} = 0.97$ [0.74-1.25]
- $I^2 = 41\%$, $\hat{\sigma} = 0.97$ [0.74-1.25]
- $I^2 = 43\%$, $\hat{\sigma} = 0.95$ [0.73-1.25]
- $I^2 = 44\%$, $\hat{\sigma} = 0.95$ [0.72-1.24]
- $I^2 = 44\%$, $\hat{\sigma} = 0.95$ [0.72-1.24]
- $I^2 = 44\%$, $\hat{\sigma} = 0.94$ [0.72-1.24]
- $I^2 = 44\%$, $\hat{\sigma} = 0.94$ [0.71-1.24]
- $I^2 = 44\%$, $\hat{\sigma} = 0.94$ [0.71-1.24]
- $I^2 = 45\%$, $\hat{\sigma} = 0.93$ [0.71-1.22]
- $I^2 = 45\%$, $\hat{\sigma} = 0.94$ [0.71-1.24]
- $I^2 = 45\%$, $\hat{\sigma} = 0.93$ [0.71-1.22]
- $I^2 = 45\%$, $\hat{\sigma} = 0.85$ [0.65-1.11]
- $I^2 = 45\%$, $\hat{\sigma} = 0.91$ [0.68-1.22]
- $I^2 = 45\%$, $\hat{\sigma} = 0.89$ [0.67-1.20]
- $I^2 = 45\%$, $\hat{\sigma} = 0.93$ [0.70-1.22]
- $I^2 = 45\%$, $\hat{\sigma} = 0.93$ [0.70-1.22]
- $I^2 = 46\%$, $\hat{\sigma} = 0.92$ [0.70-1.23]
- $I^2 = 46\%$, $\hat{\sigma} = 0.90$ [0.68-1.21]
- $I^2 = 46\%$, $\hat{\sigma} = 0.92$ [0.70-1.22]
- $I^2 = 46\%$, $\hat{\sigma} = 0.92$ [0.69-1.22]
- $I^2 = 46\%$, $\hat{\sigma} = 0.91$ [0.69-1.21]
- $I^2 = 46\%$, $\hat{\sigma} = 0.91$ [0.68-1.20]
- $I^2 = 46\%$, $\hat{\sigma} = 0.87$ [0.65-1.15]
- $I^2 = 47\%$, $\hat{\sigma} = 0.89$ [0.87-1.19]
- $I^2 = 47\%$, $\hat{\sigma} = 0.94$ [0.69-1.20]
- $I^2 = 47\%$, $\hat{\sigma} = 0.91$ [0.68-1.20]
Figure S25: Funnel plot showing minimal publication bias comparing the pooled estimate of PPM predictor across studies for sex.