Разработка метода ОТ-ПЦР в режиме реального времени для выявления РНК вируса гриппа птиц подтипа N2

П. Б. Акшалова¹, А. В. Андрюясов², Л. О. Щербакова³, С. Н. Колосов⁴, Н. Г. Зиняков⁵, И. А. Чвала⁶, Д. Б. Андрейчук⁷

ФГБУ «Федеральный центр охраны здоровья животных» (ФГБУ «ВНИИЗЖ»), г. Владимир, Россия

1 ORCID 0000-0009-1520-1887, e-mail: akshalova@arriah.ru
2 ORCID 0000-0001-6314-2119, e-mail: andriyasov_av@arriah.ru
3 ORCID 0000-0001-5434-6179, e-mail: scherbakova@arriah.ru
4 ORCID 0000-0002-8467-180X, e-mail: kolosov@arriah.ru
5 ORCID 0000-0002-3015-5594, e-mail: zinyakov@arriah.ru
6 ORCID 0000-0002-1659-3256 e-mail: chvala@arriah.ru
7 ORCID 0000-0002-1681-5795, e-mail: andreychuk@arriah.ru

Разработка метода ОТ-ПЦР в режиме реального времени для выявления РНК вируса гриппа птиц подтипа N2 активно циркулирует в популяциях домашних и диких птиц, и его регулярно выявляют в Китае, других странах Азии и России, особенно в комбинации с гемагглютинином подтипа H9. Поэтому применение метода для быстрого обнаружения данного инфекционного агента крайне необходимо. В представленной работе приводятся данные по выбору олигонуклеотидных праймеров и оптимизации условий постановки полимеразной цепной реакции с обратной транскрипцией в режиме реального времени для выявления вируса гриппа птиц подтипа N2. Для амплификации фрагмента гена нейраминидазы подтипа N2 были апробированы предложенные в 2016 году B. Hoffmann праймеры и зонд в модификации, а также выбранные в ходе исследования оригинальные праймеры и зонды с вирусами, имеющимися в рабочей коллекции лаборатории. В ходе работы определены оптимальные концентрации компонентов реакционной смеси для проведения полимеразной цепной реакции с обратной транскрипцией в режиме реального времени и температурно-временной режим. Разные комбинации праймеров тестировали на десяти изолятах вируса гриппа птиц подтипа N2, генетически отличающихся друг от друга по гену N. Девять вирусов выделены от птиц из регионов Российской Федерации и относятся к различным генетическим группам. Специфичность метода проверяли методом полимеразной цепной реакции с обратной транскрипцией в режиме реального времени с использованием изолятов вируса гриппа птиц с другим подтипов нейраминидазы (H5N8, H3N6, H4N6, H5N1, H10N7), а также проб, содержащих РНК вирусов ньюкаслской болезни, инфекционного бронхита кур и инфекционной бурсальной болезни. В результате проведенных исследований были подобраны и оптимизированы условия постановки полимеразной цепной реакции с обратной транскрипцией в режиме реального времени, которые обеспечивают высокую чувствительность и специфичность метода.

Ключевые слова: вирус гриппа птиц, ОТ-ПЦР-РВ, оптимизация, подтип нейраминидазы N2, чувствительность, специфичность.

Благодарность: Работа выполнена за счет бюджетных средств в рамках выполнения государственного задания по теме «Разработка методов определения первичной структуры гена N подтипов N2 и N8 и гена H вируса гриппа птиц с помощью ОТ-ПЦР и нуклеотидного секвенирования».

Для цитирования: Акшалова П. Б., Андрюясов А. В., Щербакова Л. О., Колосов С. Н., Зиняков Н. Г., Чвала И. А., Андрейчук Д. Б. Разработка метода ОТ-ПЦР в режиме реального времени для выявления РНК вируса гриппа птиц подтипа N2. Ветеринария сегодня. 2020; 3 (34): 186–192. DOI: 10.29326/2304-196X-2020-3-34-186-192.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Для корреспонденции: Акшалова Перизат Батырхановна, аспирант, сотрудник референтной лаборатории вирусных болезней птиц ФГБУ «ВНИИЗЖ», 600901, Россия, г. Владимир, мкр. Юрьевец, e-mail: akshalova@arriah.ru.
SUMMARY
Currently, N2 subtype avian influenza (AI) virus actively circulates in domestic and wild bird populations and is regularly detected in China, other Asian countries and Russia, particularly in combination with H9 hemagglutinin. Therefore, a method for rapid detection of the said infectious agent is urgently required. Data on oligonucleotide primer selection and reverse transcription real-time polymerase chain reaction condition optimization for N2 AI virus detection are presented in the paper. Modified primers and probe proposed by B. Hoffmann in 2006 as well as original primers and probes with the viruses available in the Laboratory working collection and selected during testing were assessed for N2 neuraminidase gene fragment amplification. Optimal concentrations of real-time RT-PCR master mix components and temperature-time mode were determined. Various combinations of primers were tested against ten N2 avian influenza virus isolates that genetically differed from each other in N gene. Nine viruses were isolated from birds in the Russian Federation regions and classified to different genetic groups. The real-time RT-PCR assay was tested for its specificity using AI virus isolates of different neuraminidase subtypes (H5N8, H3N6, H4N6, H5N1, H10N7) as well as samples containing other RNA-viruses: Newcastle disease virus, infectious bronchitis virus and infectious bursal disease virus. As a result of the testing, real-time RT-PCR conditions providing high sensitivity and specificity of the assay were selected and optimized.

Key words: avian influenza virus, real-time RT-PCR, optimization, N2 neuraminidase subtype, sensitivity, specificity.

Acknowledgements: The works were financed by the budget in the framework of the official programme: “Development of the methods for determination of primary structure of N gene of N2 and N8 subtype and H gene of AIV with RT-PCR and nucleotide sequencing”.

Conflict of interest. The authors declare no conflict of interest.

For correspondence: Perizat B. Akshalova, Post-Graduate Student, Researcher, Reference Laboratory for Avian Viral Diseases, FGBI “ARRIAH”, 600901, Russia, Vladimir, Yurevets, e-mail: akshalova@arriah.ru.

ВВЕДЕНИЕ
Грипп птиц – острая инфекционная болезнь, вызываемая вирусом семейства Orthomyxoviridae с сегментированным РНК-геномом отрицательной полярности, относящимся к роду Influenzavirus A [1]. Благодаря сегментированному геному возможна реассортация вируса гриппа птиц.

Существующая классификация вирусов гриппа типа А основана на характеристике их антигенных свойств, определяемых поверхностными гликопротеинами: гемагглютинином (HA) и нейраминидазой (NA). На долю нейраминидазы приходится 20% от всех поверхностных гликопротеинов. На поверхности вириона можно наблюдать одиночный шип NA или локальные кластеры NA, окруженные HA [2]. Нейраминидаза выполняет важные функции при инфицировании вирусом гриппа: обеспечивает проникновение вирусов в эпителиальные клетки дыхательных путей; оптимизирует фузионную активность NA; способствует высвобождению новых вирионов и предотвращает их агрегацию на поверхности клетки-хозяина.

На сегодняшний день от птиц выделены 16 подтипов NA и 9 подтипов НА в различных комбинациях. Однаково в 2012 и 2013 гг. появлялись данные о двух новых подтипов NA и НА – H17N10 и H18N11, выделенных от летучих мышей [3, 4].

При проведении диагностических исследований в референтной лаборатории вирусных болезней птиц ФГБУ «ВНИИЗЭ» для выявления вируса гриппа птиц (ВГП) типа А в патологическом материале сначала используют полимеразную цепную реакцию с обратной транскрипцией в режиме реального времени (ОТ-ПЦР-РВ) с приjemной системой на ген M [5–7]. В случае получения положительного результата необходимо исключить наличие в пробе NA подтипов Н5 и Н7, поскольку ВГП данных подтипов могут быть высокопатогенными и подлежат уведомлению МЭБ. Для полноты характеристики вируса следует определить и подтип NA.

Один из методов типирования NA является реакция торможения нейраминидазной активности (РТНА) [8], однако ее постановка занимает не менее двух суток и требует набора высоко качественных моноспецифических антисывороток и контрольных образцов.

Следовательно, поиск новых высокочувствительных, специфичных и надежных способов обнаружения и идентификации подтипа NA крайне необходим для своевременной постановки диагноза, когда требуется в короткие сроки (в течение одного рабочего дня) определить нейраминидазу ВГП.

В настоящее время вирус гриппа с нейраминидазой подтипа N2 достаточно широко распространен и активно циркулирует в популяциях домашних и диких птиц. В 2018 г. ВГП подтипа H9N2 был выявлен в трех коммерческих хозяйствах Приморского края, а также на птицефабрике Республики Таджикистан. В 2017–2018 гг. вспышки высокопатогенного генотипа птиц H5N2 зарегистрированы на одной из птицефабрик Костромской области. В 2019 г. ВГП подтипа H5N2 выявляли в Челябинской области и Забайкальском крае [9, 10].

Таким образом, разработка метода выявления генотипа ВГП подтипа N2 на основе ОТ-ПЦР-РВ, характеризующейся высокой степенью чувствительности, специфичности, быстрой постановки и получения результата с целью повышения эффективности профилактических мероприятий, является актуальной.

Цель работы – разработка метода выявления РНК вируса гриппа птиц подтипа N2 на основе ОТ-ПЦР-РВ с оригинальной системой пригемов и зондов и оптимизация параметров реакции.

Таблица 1

№	Название праймеров	Последовательность 5'-3'	Количество оснований
1	AIVN2-1316f	GARACYAGAGTRTGGTGGAC	20
2	AIVN2-1319f	AIVAGTRTGGTGGACYTC	20
3	AIVN2-1325f	GTRTTGGGACTYCAAAAYG	20
4	AIVN2-1379-FAM	(FAM) GGACGGTATCGGCTGGTATGG (BHQ1)	22
5	AIVN2-1414r	TTTCTAAATTGCGAAAGC	20
6	AIVN2-1421r	GGAGTTTTTITTTTTTTAAGT	20
7	AIVN2-1423r	AGTATCAAACAGGGTTTIT	20
8	AIVN2-1370-FAM	(FAM) GCTACHTATGGGACGCTGTCGACGTG (BHQ1)	34
9	AIVN2-1376-FAM	(FAM) TATGGAACAGGCTACTGTCGGTATGG (BHQ1)	26
10	AIVN2-1367F	AGTCTGGTGGACYTCAAAYG	21
11	AIVN2-1488R	AATTGGGAAATCTATATAGC	24
12	AIVN2-1444_FAM	(FAM) CATACGCGCCAGCCTGTCG (RTQ1)	18
13	AIVN2-1418r	GCGAAATCATATAGCG	20
14	AIVN2-1428r	TTTCTAAATTGGGACG	22
15	AIVN2-1430r	TTTTCTAAATTGGGACG	22
16	AIVN2-1383FAM	(FAM)-CAGGGTCATCGGCTGGGTAG (RTQ1)	19
17	AIVN2R-1383FAM	(FAM) CATACGCGCCAGCCTG (RTQ1)	19

Материалы и методы

С целью выбора праймеров и зондов, обеспечивающих высокий уровень чувствительности и специфичности ОТ-ПЦР-РВ, использовали изолят ВГП подтипа N2 из рагачей коллекции референтной лаборатории вирусных болезней птиц ОФБУ «ВНИИЗЖ». Для сравнительного анализа была сформирована база данных GenBank электронного ресурса NCBi (http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/). Множественное выравнивание нуклеотидных последовательностей с использованием алгоритма ClustalW и поиск наиболее консервативных участков проводили с помощью программы BioEdit 7.0. Специфичность праймеров и зондов была оценена с помощью online-ресурса Blast (NCBi) (https://blast.ncbi.nlm.nih.gov) с использованием изолятов ВГП других подтипов подтипов A (A/w_duck/Altai/1732/2013 H3N6, A/shoveler/Krasnoyarsk/1586/08 H4N6, A/chicken/Adygea/203/06 H5N1, A/mallard/Khabarovsk/12/2014 H10N7), а также штаммов «Winterfield 2512» вируса инфекционной бурсальной болезни, «H120» вируса инфекционного бронхита кур и ARMV/wild duck/Rus/Vladimir/44/15 вируса ньюкассской болезни. Выбранные праймеры и зонды синтезированы фирмой «Сионт» (Россия) (табл. 1).

Всего праймеров и зонды, за исключением № 10–12, подобраны в референтной лаборатории вирусных болезней птиц ОФБУ «ВНИИЗЖ». Обратный праймер AIVN2-1418r и зонд (FAM) CCATCAGGCCATGAGCCTG (RTQ1) являются модификациями соответствующих олигонуклеотидов, указанных в публикации B. Hoffmann et al. Зонд и праймеры с № 10–12 также рекомендованы B. Hoffmann et al. [11].

Выделение РНК из аттентных жидкостей развивающихся СПФ-эмбрионов кур, зараженных изолятами ВГП подтипа N2, проводили с использованием набора «АмплиПрайм РИБО-сорб» в соответствии с инструкцией по его применению. ОТ-ПЦР в режиме реального времени проводили с использованием дезоксинуклеотидтрифосфатов (dNТФ) (Fermentas, кат. № R0181), термостабильной Taq-ДНК-полимеразы GoTaq Flexi DNA Polymerase (Promega, кат. № M8295) и ревертазы iMLV (Сионт, кат. № E-040) в амплификаторе Rotor-Gene Q (Германия).

Результаты и обсуждение

Разработка метода ОТ-ПЦР-РВ для выявления РНК вируса гриппа птиц подтипа N2 включала в себя выбор системы праймеров и зондов, обеспечивающей достаточную чувствительность и специфичность реакции. Также необходимо было определить оптимальные условия постановки реакции: концентрацию компонентов реакционной смеси и температурно-временные режимы ОТ-ПЦР-РВ.

Выбор праймеров и зондов. С целью подбора праймерной системы для выявления нейраминидазы были проанализированы белые нуклеотидные последовательности гена NA изолятов ВГП подтипа N2, выделенных в период с 1999 по 2018 г. в странах Евразии и Африки и принадлежащих к различным генетическим группам, опубликованные в базе данных GenBank электронного ресурса NCBi (http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/).

Для сравнительного анализа была сформирована первоначальная выборка из 2822 нуклеотидных последовательностей гена NA изолятов ВГП подтипа N2. После пошаговой оптимизации, удаления из выборки наиболее генетически схожих последовательностей для анализа было выбрано 169 наиболее отличающихся между собой. Для всех последовательностей характерно наличие относительно консервативных участков, расположенных в начале и конце гена. Наиболее оптимальной для посадки праймеров выбрана область из двухсот нуклеотидных оснований в конце гена N, поскольку...
ОРИГИНАЛЬНЫЕ СТАТЬИ | БОЛЕЗНИ ПТИЦ ORIGINAL ARTICLES | AVIAN DISEASES

В целях повышения чувствительности и специфичности ОТ-ПЦР-РВ для выявления РНК ВГП подтипа N2 основной задачей была оптимизация концентрации компонентов реакционной смеси. Для достижения поставленной цели проведены постановки ОТ-ПЦР-РВ на ген N с использованием десятикратных разведений низковирулентного изолята ВГП подтипа H9N2, выделенного на территории Российской Федерации (Приморский край) в 2018 г. Для постановки реакции использовали тот же температурно-временной режим, что и в ОТ-ПЦР-РВ на ген N. В таблицах 3–6 представлены значения порогового цикла (Сt) реакции по двум разведениям РНК ВГП (10^{-2} и 10^{-3}) в трех повторностях.

Подбор оптимальной концентрации хлорида магния в ОТ-ПЦР-РВ. Одним из необходимых компонентов реакционной смеси, без которого невозможно функционирование ДНК-полимеразы, являются ионы Mg^{2+}. Они также оказывают наиболее существенное влияние на специфичность гибридизации праймеров. Оптимальная концентрация ионов Mg^{2+} может колебаться в достаточно широких пределах в зависимости от используемых систем праймеров и ферментов [13]. Для достижения наилучших результатов рекомендуется эмпирически подобрать концентрацию Mg^{2+} для используемой системы праймеров и ферментов. Результаты проведенных исследований представлены в таблице 3.

Из представленных в таблице 3 данных следует, что изменение концентрации соли магния оказывает значительное влияние на процесс амплификации. Выход специфического ПЦР-продукта был обнаружен при добавлении в реакционную смесь 2 мл MgCl_2. В ходе анализа полученных результатов было отмечено, что амплификация проходила эффективно при добавлении от 4 до 6 мл раствора MgCl_2. При этом минимальное отклонение значения Ct были получены при использовании 5 мл раствора хлорида магния. Это количество было принято за оптимальное. Следует

Таблица 2

№	Название изолятов	Исходный материал (Сt)	Значение Сt для разведения					
			10^{-3}	10^{-4}				
1	A/bird/Amursky/21/12 H9N2	11,27	14,01	17,08	20,49	23,93	26,86	—
2	A/chicken/Primorsk/419/18 H9N2	11,22	14,98	18,67	22,38	28,46	30,59	36,20
3	A/chicken/Kostroma/2367/18 H5N2	12,47	15,80	19,72	23,48	28,58	30,66	35,31
4	A/w.duck/Vladimir/446/09 H4N2	14,04	18,08	22,07	26,27	30,22	34,35	—
5	A/chicken/Tadjikistan/2379/18 H9N2	12,62	16,49	20,21	23,77	27,14	—	—
6	A/chicken/Chelyabinsk/30/19 H9N2	11,09	15,30	19,06	22,29	26,26	32,21	—
7	A/chicken/Primorsk/3124/18 H9N2	11,08	13,85	17,45	20,86	23,71	27,41	30,45
8	A/duck/Primorie/2621/2001 H5N2	11,27	15,02	18,00	21,5	24,63	28,51	—
9	A/trush/Mass/55 H9N2	14,36	17,37	20,67	24,25	27,28	30,32	—

«—» — отрицательный результат реакции (negative result).
отметить, что увеличение концентрации солей магния может привести к уменьшению специфичности реакции.

Подбор оптимальной концентрации праймеров в ОТ-ПЦР-РВ. Оптимальную концентрацию праймеров AIVN2-1367F и AIVN2-1418R подбирали экспериментально. С представленными в таблице 4 разведениями готовили реакционные смеси, добавляя в каждую из них разный объем праймеров, начиная с 0,5 мкл и заканчивая 2 мкл. В таблице 4 указаны объемы каждого из праймеров: прямого и обратного.

В результате проведенных исследований было установлено, что увеличение концентрации праймеров приводит к уменьшению чувствительности реакции, что наглядно продемонстрировано в таблице 4. Наименьшие значения пороговых циклов получены в реакциях, где к смеси добавляли 0,5 мкл каждого из праймеров.

Подбор оптимальной концентрации флуоресцентного зонда. С целью повышения эффективности амплификации и увеличения уровня флуоресценции амплификационных кривых был оптимизирован объем вносимого в реакцию зонда. Результаты исследований, полученные в ходе экспериментальной работы, сведены в таблицу 5. При добавлении в реакционную смесь от 0,75 и до 2 мкл зонда регистрировали незначительные изменения чувствительности ОТ-ПЦР-РВ. Средние пороговые значения отличались не более чем на 1,5 цикла. Наиболее стабильные результаты получены при использовании 1,5 мкл зонда AIVN2R-1383FAM. Кроме того, при добавлении указанного объема компонента на графике реакции визуально было заметно изменение максимальных значений уровня флуоресценции положительных проб.

С целью повышения чувствительности и специфичности ОТ-ПЦР-РВ для выявления РНК ВГП подтипа N2 были оптимизированы концентрации компонентов (хлорида магния, праймеров, флуоресцентного зонда) реакционной смеси. При использовании остальных

Разведение	Объем праймеров, мкл (концентрация 10 пмоль/мкл)			
	0,5	1	1,5	2
10⁻³	21,03	21,12	22,61	23,34
10⁻²	21,04	21,98	22,8	23,31
10⁻¹	21,13	22,4	22,09	23,23
Среднее	21,07	22,17	22,5	23,29
10⁻⁴	25,08	26,96	27,44	30,16
10⁻³	24,69	27,07	28,14	31,07
10⁻⁴	24,82	26,58	28,41	28,95
Среднее	24,86	26,87	28	30,06

Таблица 3
Значения порогового цикла при подборе оптимальной концентрации MgCl₂ в ОТ-ПЦР-РВ

Разведение	Объем MgCl₂, мкл (концентрация 25 мМ)							
	1,0	2,0	3,0	4,0	4,5	5,0	5,5	6,0
10⁻³	–	28,19	27,19	22,74	23,74	23,63	24,13	22,88
10⁻²	–	27,06	29,33	22,49	23,63	22,58	23,81	23,34
10⁻¹	–	28,14	28,57	22,25	24,08	23,89	23,99	23,22
Среднее	–	27,8	28,36	22,49	23,82	23,37	23,98	23,15

«–» – отрицательный результат реакции (negative result).

Таблица 4
Значения порогового цикла при подборе оптимальной концентрации праймеров в ОТ-ПЦР-РВ

Разведение	Объем праймеров, мкл (концентрация 10 пмоль/мкл)			
	0,5	1	1,5	2
10⁻¹	21,03	22,13	22,61	23,34
10⁻²	21,04	21,98	22,8	23,31
10⁻¹	21,13	22,4	22,09	23,23
Среднее	21,07	22,17	22,5	23,29
10⁻⁴	25,08	26,96	27,44	30,16
10⁻³	24,69	27,07	28,14	31,07
10⁻⁴	24,82	26,58	28,41	28,95
Среднее	24,86	26,87	28	30,06

Таблица 5
Значения порогового цикла при подборе оптимальной концентрации флуоресцентного зонда в ОТ-ПЦР-РВ

Разведение	Объем зонда, мкл (концентрация 10 пмоль/мкл)				
	0,5	0,75	1	1,5	2
10⁻¹	24,22	21,61	22,71	22,22	22,19
10⁻²	24,55	23,47	22,65	21,97	22,56
10⁻¹	24,58	22,72	22,96	21,47	21,69
Среднее	24,45	22,93	22,77	21,89	22,15
10⁻⁴	29,26	26,2	26,63	25,7	26,88
10⁻³	28,05	27,61	27,62	25,62	26,32
10⁻⁴	27,47	25,91	27,4	25,84	25,98
Среднее	28,26	26,57	27,22	25,72	26,39
компонентов реакции придерживались рекомендаций производителей.

Оптимизация температурно-временных параметров ОТ-ПЦР-РВ. Следующим этапом работы являлась оптимизация температурно-временного режима, собственно ПЦР, поскольку температурный режим обратной транскрипции определяется используемым ферментом – обратной транскриптазой. В данном случае речь идет об определении оптимальной температуры отжига для праймерной системы, состоящей из подобранных олигонуклеотидных праймеров и дуплексно-меченого зонда. Оптовальные этапы ПЦР – денатурация и синтез ДНК – проходят в достаточно узком температурном диапазоне. Денатурацию обычно проводят при 90–95 °С, а элонгацию цепи ДНК – при 68–72 °С [13]. Результаты подбора температуры отжига праймеров при постановке ОТ-ПЦР-РВ представлены в таблице 6.

Согласно представленным в таблице 6 данным, соответственно значения пороговых циклов наблюдаются при установке температурного диапазона отжига праймеров в пределах 55–60 °С. В целом данный диапазон температур подходит для большинства праймерных систем, используемых в ОТ-ПЦР-РВ для молекулярной диагностики гриппа птиц. Представляется вполне логичным использование этой же температуры отжига для идентификации подтипа N2. Таким образом, осуществить постановку ОТ-ПЦР-РВ на различные гены возможно с помощью этой же температуры отжига для праймерной системы, состоящей из подобранных олигонуклеотидных праймеров и дуплексно-меченого зонда. Определить оптимальную температуру отжига праймеров при постановке ОТ-ПЦР-РВ устанавливали следующие температурно-временные параметры: 20 мин при 40 °С (обратная транскрипция), 10 мин при 95 °С (активация полимеразы), далее 40 циклов ПЦР, состоящие из денатурации ДНК и элонгации цепи ДНК – 10 сек при 95 °С, отжига праймеров – 35 сек при 55 °С и элонгации КДНК – 10 сек при 72 °С.

Сравнительная чувствительность и специфичность метода ОТ-ПЦР-РВ для выявления гена ВГП подтипа N2. Одним из важнейших показателей ОТ-ПЦР-РВ является чувствительность. Обычно речь идет об аналитической чувствительности, то есть о минимальном количестве возбудителя, которое обнаруживается данным методом в конкретном клиническом материале. В данной работе речь ведется о сравнительной чувствительности, поскольку было проведено сравнение по этому параметру двух ОТ-ПЦР-РВ для выявления гена M (данные представлены в таблице 7) и гена N (табл. 7). Для оценки чувствительности разрабатываемого метода были приготовлены последовательные десятикратные разведения выделенной суммарной РНК 6 изолятов ВГП. С целью получения более достоверных данных ОТ-ПЦР-РВ ставили в трех повторностях.

В результате оптимизации концентрации компонентов и температурно-временных параметров реакции на ген N значения порогового цикла (Ct) десятикратных разведений изолятов ВГП были сопоставимы со значениями Ct для гена M. Количество разведений с положительным результатом для каждого изолята ВГП было одинаково в сравниваемых ОТ-ПЦР-РВ.

Оценку специфичности метода проводили, используя пробу с генетическим материалом ВГП подтипов N2 и N1, N6, N7, N8, а также пробы, содержащие РНК вирусов ньюкаслской болезни, инфекционного бронхита кур, инфекционной бурсальной болезни. В ходе экспериментальной работы были получены отрицательные результаты со всеми неспецифическими патогенами, подтверждающие специфичность разработанной ОТ-ПЦР-РВ.

Таблица 6 Значения порогового цикла при подборе оптимальной температуры отжига праймеров и зонда

Разведения	Температура отжига, °C		
	60	55	50
10^3	22,04	22,22	21,91
10^4	21,77	21,97	22,82
10^5	21,79	21,47	22,47
Среднее значение	21,87	21,89	22,4

Таблица 7 Значения порогового цикла для изолятов ВГП в ОТ-ПЦР-РВ на ген N

Название изолятов	Исходный материал (Ct)	Значение Сt для разведения					
		10^1	10^2	10^3	10^4		
A/chicken/Tadjikistan/2379/18 H9N2	12,19	15,92	19,24	23,16	26,11		
A/chicken/Chelyabinsk/30/19 H9N2	10,30	13,88	17,53	20,75	25,91	29,82	
A/chicken/Primorsk/3124/18 H9N2	10,62	13,43	17,22	21,05	24,77	29,10	36,73
A/bird/Amursky/21/12 H9N2	10	13,57	17,22	21,11	25,54	30,04	
A/duck/Primorie/2621/2001 H5N2	11,39	14,52	18,31	21,72	25,14	29,25	
A/ty/Mas/65 H6N2	10,9	14,34	18,54	21,24	26,04	29,70	

- «–» – отрицательный результат реакции (negative result).
ЗАКЛЮЧЕНИЕ

В результате проведенных исследований была подобрана промышленная система для выявления генома вируса гриппа птиц подтипа N2 и оптимизированы условия постановки OT-ПЦР-РВ: компонентный состав реакционной смеси и температурно-временной режим реакции. Показано, что с помощью предложенного метода возможно выявлять РНК вируса гриппа птиц указанного подтипа в пробах биологического материала. Высокие специфичность и чувствительность метода OT-ПЦР-РВ были подтверждены успешным выявлением геномного материала ВГПН2 в пробах от птиц, поступивших для исследования в 2019–2020 гг. из нескольких регионов Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

1. Штыря Ю. А., Мочалова Л. В., Бовин Н. В. Нейраминидаза вируса гриппа: структура и функция. Acta Naturae. 2009; 1 (2): 28–34. eLIBRARY ID: 15119667.
2. Волкова М. А., Чвала И. А., Осипова О. С., Сосипаторова В. Ю., Зиняков Н. Г. Осипова О. С., Чвала И. А., Осипова О. С., Андрейчук Д. Б., Чвала И. А. Серологический мониторинг гриппа птиц и оптимизация реакции. Показано, что с помощью предложенного метода возможно выявлять РНК вируса гриппа птиц указанного подтипа в пробах биологического материала. Высокие специфичность и чувствительность метода OT-ПЦР-РВ были подтверждены успешным выявлением геномного материала ВГПН2 в пробах от птиц, поступивших для исследования в 2019–2020 гг. из нескольких регионов Российской Федерации.

REFERENCES

1. Alexander D. J. Orthomyxovirus infections. In: Virus infections of Birds. Vol. 3. Ed. by J. B. McFerran, M. S. McNulty. Amsterdam: Elsevier; 1993: 287–316.
2. Shilyaeva Y. A., Mochalova L. V., Bovin N. V. Neuraminidase in influenza A virus neuraminidase subtype or neuraminidase antibody specificity. Methods Mol. Biol. 2008; 436: 67–75. DOI: 10.1007/978-1-59745-279-3_9.
3. Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., et al. New world avian influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002; 40 (9): 3256–3260. DOI: 10.1128/JCM.40.9.3256-3260.2002.
4. Volkova M. A., Chvala I. A., Yaroslavtseva P. S., Sosipatorova V. Yu., Osipova O. S., Chvala I. A. Serological monitoring for avian influenza virus in the Russian Federation in 2017–2018. Veterinary Science Today. 2019; 2 (29): 8–11. DOI: 10.29326/2304-196X-2019-2-29-3-7.
5. Zinyakov N. G., Osipova O. S., Akshalova P. B., Sosipatorova V. Yu., Andriyasov A. V., Andreychuk D. B., Chvala I. A. Analysis of genetic characteristics of influenza virus A/chicken/Chelyabinsk/30/2019 H9N2 isolated in Chelyabinsk oblast. Veterinary Science Today. 2019; 4 (31): 49–53. DOI: 10.29326/2304-196X-2019-4-31-49-53.
6. Hoffmann B., Hoffmann D., Henritzi D., Beer M., Tard T. C. Riems influenza typing array (RTA): An RT-qPCR based low-density array for subtyping avian and mammalian influenza a viruses. Sci. Rep. 2016; 6:27211. DOI: 10.1038/srep27211.
7. Andriyasov A. V., Andreychuk D. B., Chvala I. A. Methodical Guide for the detection of avian influenza virus RNA with real-time RT-qPCR [Methodicheskie rekomendacii po vyyavleniyu RNK virusa grippa ptic tipa A metodom OT-PCR v rezhime real'nogo vremeni] approved by the FGBI “ARRIAH” on May 31, 2016, No. 45-16. Vladimir: 2016. 13 p. (in Russian)
8. Zinets V., Osipova O. S., Akshaeva P. B., Sosipatorova V. Yu., Andriyasov A. V., Andreychuk D. B., Chvala I. A. Analysis of genetic characteristics of influenza virus A/chicken/Chelyabinsk/30/2019 H9N2 isolated in Chelyabinsk oblast. Veterinary Science Today. 2019; 4 (31): 49–53. DOI: 10.29326/2304-196X-2019-4-31-49-53.
9. Akshalova Perizat Batsyrakhzyevna, аспирант, сотрудник референтной лаборатории вирусных болезней птиц ФГБУ “ВНИЗЖ”, г. Владимир, Россия.
10. Андреев Артем Валерьевич, кандидат биологических наук, ведущий научный сотрудник референтной лаборатории вирусных болезней птиц ФГБУ “ВНИЗЖ”, г. Владимир, Россия.
11. Сосипаторова Валентина Юрьевна, кандидат биологических наук, ведущий научный сотрудник референтной лаборатории вирусных болезней птиц ФГБУ “ВНИЗЖ”, г. Владимир, Россия.
12. Андрейчук Дмитрий Борисович, кандидат биологических наук, заведующий референтной лабораторией вирусных болезней птиц ФГБУ “ВНИЗЖ”, г. Владимир, Россия.
13. Tong S., Li Y., Rivailer P., Conardy Ch., Castillo D. A., Chen L.-M., et al. A distinct lineage of influenza A virus from bats. Proc. Natl. Acad. Sci. USA. 2012; 109 (11): 4269–4274. DOI: 10.1073/pnas.1116200109.