Purification and Characterization of a Novel Soluble Receptor for Interleukin 1

By J. A. Symons, J. A. Eastgate, and G. W. Duff

Summary

Affinity chromatography and reverse-phase high-performance liquid chromatography was used to purify a soluble interleukin 1\(\beta\) (IL-1\(\beta\)) specific binding protein from the supernatant of a human B cell line, Raji. The purified protein specifically bound \(^{125}\)I-IL-1\(\beta\) forming a 60-kD complex in nonreducing conditions and a 70-kD complex in reducing conditions. Binding was found to be displaceable by mature human and murine IL-1\(\beta\) and human 31-kD IL-1\(\beta\) propeptide, but not displaceable by human and murine IL-1\(\alpha\) or human IL-1 receptor (IL-1R) antagonist. Ligand blotting revealed a 47-kD molecule that specifically bound IL-1\(\beta\). Measurement of binding affinity of the cell surface Raji IL-1R (\(K_d = 2.2\) nm) and the Raji soluble (s)IL-1R (\(K_d = 2.7\) nm) demonstrated a similar affinity for \(^{125}\)I-IL-1\(\beta\). Purified sIL-1R inhibited binding of IL-1\(\beta\) to cell lines with both type I (80 kD) and type II (65 kD) IL-1Rs, but did not interfere with IL-1\(\alpha\) binding. This natural sIL-1R may function as an important regulatory molecule of IL-1\(\beta\) in vivo.

Materials and Methods

Purification of Raji sIL-1R. The Raji cell line was obtained from the European Cell Culture Collection (Porton, Wilts, UK). Cells were maintained at 37°C in RPMI 1640 containing 5% FCS, and media was aspirated every 3–4 d, centrifuged, and stored at −50°C. Before purification, culture supernatants were concentrated 20-fold using a Microcon ultrafiltration system containing 10-kD cut-off filters (Millipore Continental Water Systems, Bedford, MA). sIL-1R protein was detected by soluble covalent crosslinking as previously described (8).

Partial purification of the sIL-1R was achieved using a wheat-germ agglutinin sepharose 6MB column (Pharmacia LKB Biotechnology, UK) as previously described. sIL-1R was further purified using a IL-1\(\beta\) (mutant K138C) (10) thiol sepharose column containing 4 mg/ml IL-1\(\beta\). Concentrated IL-1\(\beta\) binding protein preparations were applied to the column using a flow rate of 1 ml/min and continually recycled for up to 48 h at 4°C. The column was then washed in 100 mM Tris-HCl, pH 8.1 (20-column volumes), 100 mM Tris-HCl, pH 8.1, 1.0 M NaCl (20-column volumes), and subsequently eluted with 5 ml of 3 M NH4SCN in PBS. The eluate was extensively dialyzed against 100 mM Tris-HCl, pH 8.1, concentrated 10-fold with a centrifuge concentrator (cut-off, 10 kD; Amicon Ltd.) and stored at −70°C.

Affinity-purified, sIL-1R was subjected to a reverse-phase, RP300 Aquapore 30 × 2.1-mm C8 column (Applied Biosystems Inc., Foster City, CA). Sample was eluted in a 10–70% (vol/vol) acetonitrile gradient with 0.3% (vol/vol) trifluoroacetic acid over a 45-min period at a flow rate of 0.2 ml/min. After neutralization with Tris, fractions were screened for IL-1 binding activity by soluble covalent crosslinking.

Ligand Blotting of sIL-1R. Purified sIL-1R (5 µl) was subjected to electrophoresis on 10% SDS-polyacrylamide gels and trans-
Figure 2. Ligand binding of Raji sIL-1R with \(^{125}\)I IL-1\(\beta\). Purified sIL-1R was subjected to electrophoresis on a 10% SDS polyacrylamide gel and transferred onto 0.45-\(\mu\)M nitrocellulose filters. After blocking, filters were probed with \(^{125}\)I IL-1\(\beta\) (5 ng/ml) alone (lane 1), with excess IL-1\(\alpha\) (lane 2), with excess IL-1\(\beta\) (lane 3), and with excess TNF-\(\alpha\) (lane 4). Protein markers are in kilodaltons.

Figure 3. Specific binding of cell surface and soluble Raji IL-1R. Raji cells (A) or purified Raji sIL-1R (B) were incubated with varying concentrations of \(^{125}\)I IL-1\(\beta\) for 4 h at 8\(^\circ\)C and ligand-receptor complexes separated from free ligand by centrifugation through phtalate oil mixture (A) or by precipitation with polyethylene glycol (B). Binding shown represents specific binding Scatchard analysis (inset) gives \(K_d\) of (A) \(\approx2.2\) nM and (B) \(\approx2.7\) nM. Results are representative of two experiments.

Results

Purification of Raji sIL1R. Wheat germ agglutinin and IL-1\(\beta\) affinity-purified, soluble IL-1R was injected onto a reverse-phase HPLC column. sIL-1R eluted with \(\approx43\%\) (vol/vol) acetonitrile as determined by soluble crosslinking and was associated with three overlapping protein peaks (data not shown).

Specificity of sIL1R Ligand Binding. The specificity of the Raji sIL-1R was investigated by adding a 500-fold excess of cold cytokine to purified sIL-1R incubated with \(^{125}\)I IL-1\(\beta\). The results shown in Fig. 1 show a 60-kD complex that was formed between \(^{125}\)I IL-1\(\beta\) and the purified sIL-1R in the absence of a competing agent (lane 1). Addition of excess human IL-1\(\alpha\) (lane 2) or murine IL-1\(\alpha\) (lane 4) did not inhibit binding, however, addition of excess human IL-1\(\beta\) (lane 3) or murine IL-1\(\beta\) (lane 5) displaced \(^{125}\)I IL-1\(\beta\) binding, as did the addition of 500-fold excess human 31-kD IL-1\(\beta\) (lane 6). Excess TNF-\(\alpha\) (lane 8) or human rIL-1R antagonist (lane 7) did not inhibit \(^{125}\)I IL-1\(\beta\) binding. Lane 9 shows the effect of reducing conditions on the apparent molecular mass of the \(^{125}\)I IL-1\(\beta\)/sIL-1R complex, reduction of disulphide bonds causing the complex to migrate at \(\approx69\) kD.

Ligand Blotting of sIL1\(\beta\) Binding Protein. Purified sIL-1R was separated on a 10% SDS-PAGE gel under nonreducing conditions and blotted onto nitrocellulose. Probing with \(^{125}\)I IL-1\(\beta\) revealed a band migrating at 47 kD (Fig. 2). This band was also seen when the blots were incubated with 100-fold excess cold IL-1\(\alpha\) or TNF-\(\alpha\) but not when incubated with excess cold IL-1\(\beta\). No binding was seen when the sIL-1R was separated under reducing conditions (data not shown).
Cell Surface and Soluble Raji IL-1R Binding. Analysis of
125I IL-1β binding to the Raji cell surface IL-1R and sIL-1R
showed that both exhibited specific and saturable binding (Fig.
3). Scatchard analysis revealed that the Raji cell surface IL-1R
bound 125I IL-1β with an apparent K_{d} of 2.2 nM (Fig. 3 A),
while the soluble receptor protein bound 125I IL-1β with a
K_{d} of 2.7 nM (Fig. 3 B).

Inhibition of IL-1R Binding by sIL-1R. Raji (type II IL-1R
bearing) and EL-4 NOB.1 (type I IL-1R bearing) cells were
incubated with 125I IL-1α and 125I IL-1β in the presence or
absence of decreasing concentrations of purified sIL-1R (Fig.
4). Raji did not bind 125I IL-1α (data not shown), however,
125I IL-1β binding was inhibited in a dose-related fashion by
the sIL-1R preparation. The sIL-1R also inhibited 125I IL-1β
binding to the EL-4 NOB.1 cell line, however, 125I IL-1α
binding was not affected by incubation with sIL-1R.

Discussion

The present study described the purification and charac-
terization of a sIL-1R derived from the supernatant of the
human B cell Burkitt lymphoma cell line Raji. The protein
binds IL-1β but not IL-1α. We have previously described a
protein with the same properties in normal human plasma,
serum, synovial exudate, and supernatants from activated
PBMC (7, 8).

We purified the Raji sIL-1R by sequential wheat germ ag-
glutinin affinity chromatography, IL-1β affinity chromatog-
raphy, and reverse-phase HPLC. The specificity of this mate-
rial was characterized by using soluble covalent crosslinking
and confirmed our previous findings that the sIL-1R specifically
bound to IL-1β. Murine IL-1 molecules showed the same
binding specificity to the purified sIL-1R. The human IL-1R
antagonist (12) failed to inhibit binding of 125I IL-1β to the
sIL-1R, and it has been reported that this molecule fails to
bind the type II cell surface IL-1R. Interestingly, we found
that excess human 31-kD IL-1β propeptide could displace the
mature 17-kD molecule from the sIL-1R. Previously published
studies have shown that the IL-1β propeptide fails to bind
the type II IL-1R and has no biological activity on cells with
this receptor (13). The finding that the sIL-1R binds to the
propeptide may have important implications for the in vivo
handling of IL-1β. Treatment of the sIL-1R/125I IL-1β
complex with reducing agents revealed an apparent change in the
molecular mass of the complex from \sim60 to \sim70 kD. As
IL-1β contains no disulphide linkages, it is likely that the sIL-1R
is held in its conformational shape by disulphide bonds.

Further characterization of the sIL-1R was achieved by ligand
blotting, previously used to study a number of cell surface
receptors, including the type I IL-1R (11). Ligand blotting
demonstrated a 47-kD molecule in nonreducing conditions
that, again, specifically bound IL-1β. Use of reducing agents
led to loss of binding activity (data not shown), indicating
that the disulphide-bonded cysteine residues probably hold
the receptor in a functional conformation.

Scatchard analysis of cell surface and soluble 125I IL-1β
binding showed the K_{d} of the cell surface IL-1R to be 2.2
nM. This is in good agreement with previous studies (14).
We have previously demonstrated that a sIL-1β binding pro-
tein semi-purified from synovial fluid (SF) had a K_{d} of \sim0.4
nM (8). Analysis of the binding of IL-1β to the Raji sIL-1R
revealed a K_{d} of 2.7 nM very similar to the Raji cell surface
IL-1R, although others have found Raji sIL-1R to have a lower
affinity (15). The sixfold difference in the affinity of the SF
sIL-1R and the Raji-derived sIL-1R might be explained by
other IL-1 binding factors in the SF preparations. However,
pancreatic islet β cells also possess IL-1R specific for IL-1β
and appear to express both high (K_{d} = 0.2 nM) and low
(K_{a} = 1.4 nM) sites (16), therefore synovial cells may shed
a higher affinity sIL-1R than the Raji clone.

Given the high affinity for IL-1β, the molecule may func-
tion as a specific inhibitor of IL-1β in vivo. To test this, we
performed binding studies using EL-4 NOB.1, a T cell line
with a type I IL-1R, and Raji cells that only possess a type
II IL-1R. The results showed that the sIL-1R inhibited IL-1β
binding to both cell lines in a dose-dependent fashion, how-
ever, IL-1α binding to EL-4 NOB.1 was not inhibited. Soluble
cytokine receptors may have considerable therapeutic poten-
tial. Recent studies have used a recombinant truncated type
II IL-1R to inhibit rejection of heart allografts (17) and IL-1
induced B cell function (18). The natural soluble IL-1R may
play an important role in modulating IL-1β activities in vivo.

The finding of certain cell types able to discriminate be-
 tween IL-1α and IL-1β has important biological implications.
It has been noted that IL-1β is more potent than IL-1α
in the brain, pancreas, ovarian granulosa cells, Leydig cells,
and immunostimulatory activity in vivo. Differential expression
of IL-1R types may explain these observations. Additionally
release of the sIL-1R could be induced from normal human

![Figure 4](image-url)

Figure 4. Inhibition of cell surface IL-1R binding by sIL-1R. Raji and
EL-4 NOB.1 cells (40) were incubated with 5 ng/ml 125I IL-1 in the pres-
ence of various concentrations of purified sIL-1R. After incubation at 8°C
for 4 h, bound and free ligand were separated by centrifugation through
a phenol oil mixture. Binding in the absence of sIL-1R was 6,852 cpm
for IL-1α and EL-4, 4,339 cpm for IL-1β, and EL-4 and 3,052 cpm
for IL-1β and Raji. Results are representative of three individual experiments.
PBMC after stimulation with mitogen (8), indicating that this IL-1β-specific IL-1R probably plays a role in normal immune responses. The natural sIL-1R may be useful in modulating the actions of IL-1β in vivo, especially where immunopathogenesis is associated specifically with IL-1β.

We thank Miss Shona Elshaw for preparation of this manuscript. Dr. Alan Shaw (Glaxo Institute of Molecular Biology) for his generous gift of the mutant IL-1β and other recombinant cytokines, Mr. Pierre Graber (Glaxo Institute of Molecular Biology) for technical advice on affinity chromatography, and Synergen Inc. (Boulder, CO) for the generous gift of human IL-1 receptor antagonist.

This work was supported by a Medical Research Council Training Fellowship, a project grant from the Oliver Bird Trust, and a programme grant from the Arthritis and Rheumatism Council for Research (UK).

Address correspondence to J. A. Symons, Section of Molecular Medicine, Department of Medicine and Pharmacology, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.

Received for publication 29 April 1991 and in revised form 15 July 1991.

References

1. Di Giovine, F.S., and G.W. Duff. 1990. Interleukin 1: the first interleukin. Immunol. Today. 11:13.
2. Bomsztyk, K., J.E. Sims, T.H. Stanton, J. Slack, C.J. McMahon, M.A. Valentine, and S.K. Dower. 1989. Evidence for different interleukin 1 receptors in murine B and T cell lines. Proc. Natl. Acad. Sci. USA. 86:8034.
3. Bird, T.A., and J. Saklatvala. 1986. Identification of a common class of high affinity receptors for both types of proline interleukin 1 on connective tissue cells. Nature (Lond.). 324:263.
4. Matsushima, K., T. Akahoshi, M. Yamada, Y. Furutani, and J.J. Oppenheim. 1986. Properties of a specific interleukin 1 (IL-1) receptor on human Epstein Barr virus-transformed B lymphocytes: identity of the receptor for IL-1 alpha and IL-1 beta. J. Immunol. 136:4496.
5. Mosely, B., M.P. Beckmann, C.J. March, R.L. Idzerda, S.D. Gimpel, T.V. Bos, D. Friend, A. Alpert, D. Anderson, J. Jackson, J.M. Wignall, C. Smith, G. Gallis, J.E. Sims, D. Urdal, M.B. Widmer, D. Cosman, and L.S. Park. 1989. The murine interleukin 4 receptor: molecular cloning and characterisation of secreted and membrane bound forms. Cell. 59:335.
6. Robb, R.J., and R.M. Kutny. 1987. Structure-function relationships for the II-2 receptor system IV analysis of the sequence and ligand binding properties of soluble Tac protein. J. Immunol. 139:855.
7. Eastgate, J.A., J.A. Symons, and G.W. Duff. 1990. Identification of an interleukin 1 beta binding protein in human plasma. FEBS (Fed. Eur. Biochem. Soc.) Lett. 260:213.
8. Symons, J.A., J.A. Eastgate, and G.W. Duff. 1990. A soluble binding protein-specific for interleukin 1 beta is produced by activated mononuclear cells. Cytokine. 2:190.
9. Symons, J.A., and G.W. Duff. 1990. A soluble form of the interleukin 1 receptor produced by a human B cell line. FEBS (Fed. Eur. Biochem. Soc.) Lett. 272:133.
10. Wingfield, P., P. Graber, A.R. Shaw, A.M. Gronenborn, G.M. Clore, and H.R. MacDonald. 1989. Preparation, characterisation and application of interleukin 1 beta mutant proteins with surface-accessible cysteine residues. Eur. J. Biochem. 179:565.
11. Bird, T.A., A.J.H. Gearing, and J. Saklatvala. 1988. Murine interleukin 1 receptor: Direct identification by ligand blotting and purification to homogeneity of an interleukin 1 binding glycoprotein. J. Biol. Chem. 263:12063.
12. Eisenberg, S.P., R.J. Evans, W.P. Arend, E. Verderber, M.T. Brewer, C.H. Hannum, and R.C. Thompson. 1990. Primary structure and functional expression from complementary DNA of a human interleukin 1 inhibitor. Nature (Lond.). 343:341.
13. Mosely, B., D.L. Urdal, K.S. Prickett, A. Larsen, D. Cosman, P.J. Conlon, S. Gillis, and S.K. Dower. 1987. The interleukin 1 receptor binds the human interleukin 1 alpha precursor but not the interleukin 1 beta precursor. J. Biol. Chem. 262:2941.
14. Horuk, R., J.J. Huang, M. Covington, and R.C. Newton. 1987. A biochemical and kinetic analysis of the interleukin 1 receptor: evidence for differences in molecular properties of IL-1 receptors. J. Biol. Chem. 262:16275.
15. Giri, J.G., R.C. Newton, and R. Horuk. 1990. Identification of soluble interleukin 1 binding protein in cell-free supernatants: evidence for soluble interleukin 1 receptor. J. Biol. Chem. 265:17416.
16. Hammonds, P., M. Beggs, G. Beresford, J. Espinal, J. Clarke, and R.J. Mertz. 1990. Insulin-secreting beta-cells possess specific receptors for interleukin 1 beta. FEBS (Fed. Eur. Biochem. Soc.) Lett. 261:97.
17. Fanslow, W.C., J.E. Sims, H. Sassenfeld, P.J. Morrissey, S. Gillis, S.K. Dower, and M.B. Widmer. 1990. Regulation of allosreactivity in vivo by a soluble form of the interleukin 1 receptor. Science (Wash. DC). 248:739.
18. Maliszewski, C.R., T.A. Sato, T.V. Bos, S. Waugh, S.K. Dower, J. Slack, M.P. Beckmann, and K.H. Grabstein. 1990. Cytokine receptors and B cell functions I. Recombinant soluble receptors specifically inhibit IL-1 and IL-4 induced B cell activities in vitro. J. Immunol. 144:3028.