Effects of Blocking D2/D3 Receptors on Mismatch Negativity and P3a Amplitude of Initially Antipsychotic Naïve, First Episode Schizophrenia Patients

Signe Düring, MD, PhD; Birte Yding Glenthøj, MSc, MD; Bob Oranje, MSc, PhD

Center for Neuropsychiatric Schizophrenia Research, and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Psychiatric Center Glostrup, Glostrup, Denmark; Faculty of Health Sciences, Department of Neurology, Psychiatry, and Sensory Sciences, Copenhagen, University of Copenhagen.

Correspondence: Signe Düring, MD, Center for Neuropsychiatric Schizophrenia Research, Copenhagen University Hospital, Psychiatric Center Glostrup, Ndr. Ringvej 29–67, DK-2600 Glostrup, Denmark (Signe@cnsr.dk).

Abstract

Background: Reduced mismatch negativity and P3a amplitude have been suggested to be among the core deficits in schizophrenia since the late 1970s. Blockade of dopamine D2 receptors play an important role in the treatment of schizophrenia. In addition, there is some evidence indicating that deficits in mismatch negativity and P3a amplitude are related to increased dopaminergic activity. This is the first study investigating the effect of amisulpride, a potent D2-antagonist, on mismatch negativity and P3a amplitude in a large group of antipsychotic-naïve, first-episode schizophrenia patients.

Methods: Fifty-one antipsychotic-naïve, first-episode schizophrenia patients were tested in a mismatch negativity paradigm at baseline and after 6 weeks of treatment with amisulpride. We further examined 48 age- and gender-matched controls in this paradigm.

Results: At baseline, the patients showed significantly reduced P3a amplitude compared with healthy controls, but no differences in mismatch negativity. Although the treatment with amisulpride significantly improved the patients’ psychopathological (PANSS) and functional (GAF) scores, it did not influence their mismatch negativity amplitude, while also their reduced P3a amplitude persisted.

Conclusion: Our findings show that antipsychotic naïve, first-episode patients with schizophrenia have normal mismatch negativity yet reduced P3a amplitude compared with healthy controls. In spite of the fact that the 6-week amisulpride treatment improved the patients both clinically and functionally, it had no effect on either mismatch negativity or P3a amplitude. This suggests that even though there is a dopaminergic involvement in global functioning and symptomatology in schizophrenia, there is no such involvement in these particular measures of early information processing.

Keywords: First episode schizophrenia, D2 blockade, psychophysiology, mismatch negativity
Introduction

Psychophysiological measures, including mismatch negativity (MMN), have been intensively investigated over the last 30 years in the search for objective and reproducible methods to support a diagnosis of schizophrenia. MMN was first described in the 1970s (Naatanen et al., 1978) and later reported as deficient in schizophrenia patients in various stages of the disease (Shelley et al., 1991; Javitt et al., 1998; Light and Braff, 2005; Naatanen et al., 2005).

MMN is usually considered to be a reflexive response to the breach of sensory memory patterns, generated in cortical brain regions: temporal and frontal (Alho et al., 1994; Umbricht and Krijes, 2005; Oknina et al., 2005; Naatanen and Kahkonen, 2009). As such, it is often referred to as an “orienting reflex.” Generally, a so-called auditory odd-ball paradigm is used to assess MMN, where an occasional deviant sound (the “odd-ball”) is presented in a stream of frequently occurring (standard) sounds. In a healthy brain, the detection of the odd-ball triggers MMN: a negative deflection in the encephalogram (EEG) with maximum amplitude usually appearing at frontal sites. Both differences in pitch (frequency) and duration have frequently been used as characteristics to differentiate deviant from standard stimuli in MMN paradigms. Both have been found to be deficient in patients with schizophrenia (Balderweg et al., 2002; Horton et al., 2011; Atkinson et al., 2012a; Fisher et al., 2012), although it has been suggested that duration deviants have more discriminative power to separate patients from controls than the frequency deviants (Magno et al., 2008; Todd et al., 2008a).

Another measure of attention that is often simultaneously assessed with MMN is the P3a amplitude: a positive deflection in the EEG succeeding MMN after presentation of a deviant stimulus. Similar to MMN, the P3a amplitude has frequently been found to be reduced in patients with schizophrenia (Kiang et al., 2007; Atkinson et al., 2012b).

There is some evidence for a dopaminergic involvement in MMN: aripiprazol appears to ameliorate MMN deficits in schizophrenia patients (Zhou et al., 2013), while haloperidol increases MMN in healthy volunteers (Kahkonen et al., 2001). Furthermore, it has been proposed that dopaminergic activity in the frontoparietal brain modulates P3a amplitude (for review, see Polich 2007; Huang 2015). Indeed, sulpiride (dopaminergic antagonist) increases P300 amplitude in subjects with low amplitudes, yet decreases it in subjects with high amplitudes.

The current study was designed to investigate the involvement of dopamine on both MMN and P3a amplitude further. We previously reported on the influence of 6 weeks of treatment with amisulpride (a specific D2/D3 dopaminergic antagonist) on sensory and sensorimotor gating in initially antipsychotic-naïve, first-episode patients with schizophrenia (During et al., 2014). In the present study, we investigated amisulpride’s effect on MMN and the P3a amplitude in this same cohort of subjects. Given the literature cited above, we expected deficient MMN and P3a amplitude in our patients compared with controls at baseline, while treatment with amisulpride would ameliorate both deficits.

Methods

Subjects

The study was approved by the Ethical Committee of the Capital Region Copenhagen (Registration: HD-2008–088) according to the ethical principles and guidelines for medical research as stated in the Declaration of Helsinki (amendment of Washington 2002).

The procedure has been described before (During et al., 2014). Written and oral information was given to the patients, and all patients signed informed consent. A total of 61 first-episode, antipsychotic-drug naïve schizophrenia patients between 18 and 41 years of age and 48 controls matched on gender, age, and parental socioeconomic status were recruited for the study. The patients were referred from psychiatric centers in the Capital Region of Copenhagen and completed the Schedule of Clinical Assessment, version 2.1 (Wing et al. 1990) performed by a trained physician (S.D.) and nurse (G.S.A.). All included patients met the ICD-10 criteria for schizophrenia and schizoaffective disorder. Controls were recruited from the community via an advertisement in www.forsoegsperson.dk. Participation was offered only to control subjects with no previous or current mental health issues (confirmed by the Schedule of Clinical Assessment, version 2.1 interview) and no known first-degree relatives with mental health disorders. Neither patients nor controls had ever participated in psychophysiological studies before. They were examined physically to exclude somatic illness.

The severity of psychopathological symptoms was assessed by the PANSS interview (positive and negative syndrome scale) (Kay et al., 1988). Exclusion criteria were previous impact-related unconsciousness, organic brain damage or disease, intellectual disability (IQ<70), diseases or processes contraindicated with amisulpride treatment (allergy, prolactin producing tumor, etc.), and all patients treated involuntarily or under judicial ruling. Substance use and abuse were not exclusion criteria, but their extent and type were noted. Urine samples were collected to confirm self-report (benzodiazepines, cannabis, central stimulants).

At baseline, 51 patients and 48 controls completed MMN testing. Of the 10 patients who did not complete testing, 7 were too psychotic to participate in the examinations; 1 was excluded due to a brain lesion found on an MRI scan prior to testing, 1 dropped out due to physical obstruction to correctly fit the EEG cap, and 1 did not want to proceed after the first tests in the Copenhagen Psychophysiology Test Battery (CPTB) paradigm. The subjects were reassessed after 6 weeks following the baseline assessment: 33 patients and 43 controls agreed to be retested. The predominant dropout reasons were discomfort during the baseline assessment, insufficient treatment effect, side effects, and/or worsening of symptoms.

Between baseline and follow-up, patients were treated with amisulpride dosages according to their clinical needs (50–800 mg/d, mean 288 [SD: 170]).

Procedure

All subjects were examined with the CPTB (Jensen et al., 2008; Wienberg et al., 2010a; Oranje and Glenthoj, 2013). The CPTB includes PPI, P50 suppression, MMN, and selective attention paradigms. Tests are always assessed in this fixed order. To keep this report focused, only results of the MMN paradigm are presented in the current article. Results of the other paradigms are published elsewhere (During et al., 2014). In addition, there were 3 other publications of our research group on this specific cohort (Nielsen et al., 2011a, 2011b; Nordholm et al., 2013a, 2013b). To avoid acute and/or withdrawal effects of nicotine, smoking was not allowed from 1 hour prior to testing. All subjects were requested not to drink any caffeinated beverages on a test day until all tests were completed. In addition, patients were asked to refrain from taking benzodiazepines from 11:00 pm onwards on the evening prior to testing.
a test day. During testing, subjects were seated in a comfortable armchair in a room with a sound level <40 dB situated adjacent to the control room. They were instructed to avoid unnecessary movements and, since MMN is usually recorded without the subjects’ attention drawn towards the stimuli, they were asked to ignore all stimuli and to watch a muted video on a screen in front of them (a nature documentary).

Paradigm

Stimulus Presentation

Auditory stimuli were presented by a computer running Presentation (Neurobehavorial Systems, Inc., Albany, NY) software (soundcard: Creative soundblaster 5.1, 2008 Creative Technology Ltd, Singapore, Singapore) and were presented binaurally through stereo insert earphones (Eartone ABR, 1996–2008 Interacoustics A/S, Assens, Denmark, C and H Distributors Inc, Milwaukee, WI). The soft- and hardware settings were calibrated by means of an artificial ear (Bruel and Kjær, type 2133, Odin Metrology Inc., Thousand Oaks, CA).

MMN Paradigm

The paradigm consisted of 1800 stimuli that were presented binaurally. Four types were presented: standard tones with a frequency of 1000 Hz (50 ms) and a probability of 83%, deviant tones with a frequency of 1200 Hz and duration of 50 ms (probability 6%), deviant tones with a frequency of 1000 Hz and duration of 100 ms (probability 6%), and deviant tones with a frequency of 1200 Hz and duration of 100 ms (probability 6%). All stimuli were 75 dB. The stimuli were presented in 1 run, with an interstimulus interval randomized between 300 and 500 ms. The duration of the task was approximately 12 minutes.

Signal Recording and Processing

EEG as well as electromyography recordings were performed with BioSemi hardware (Amsterdam, Netherlands), using a cap with 64 active electrodes. BESA software (version 5.2.4, MEGIS Software GmbH, Gräfelfing, Germany) was used for further processing of the data. Besides assessing MMN and P3a amplitude from the electrodes where their maximum amplitudes were reached (electrode FC2), we assessed amplitudes at electrodes Fz and Cz. Processing of the data started with resampling from 1200 Hz and duration of 100 ms (probability 6%). All stimuli were 75 dB. The stimuli were presented in 1 run, with an interstimulus interval randomized between 300 and 500 ms. The duration of the task was approximately 12 minutes.

Statistical Analyses

All analyses were performed with SPSS version 21.00 (SPSS). Gender and age were used as covariates throughout all analyses but were excluded if they did not reach statistical significance. Both MMN and P3a amplitude data were normally distributed (Kolmogorov-Smirnov-test), although some values in the data were more than 3 SDs above or below the average, in which case they were excluded from analysis. Maximum amplitude was reached on electrode FCz for MMN as well as P3a amplitudes.

Baseline MMN and P3a amplitude data were analyzed with repeated measures ANCOVA. Within factors in the ANCOVAs were “lead” (amplitudes assessed at Fz, FCz, and Cz) and “deviant-type” (frequency, duration or the combination frequency-duration), while “group” (patients or controls) was used as a between factor.

Effects of time (which is equivalent to treatment in patients) was assessed by adding the within factor “time” (baseline or 6-week follow-up) to the above-mentioned analyses. To prevent alpha-inflation, further analyses with Student’s t tests were performed only when the ANCOVAs indicated significance.

The effect of amisulpride on psychopathology (PANSS positive, negative, general and total scores) and functioning (GAF score) data were analyzed with paired samples Student’s t tests (baseline to 6 weeks), while correlations between MMN and P3a amplitude, dose of medication, symptomatology, and functioning scores were investigated with Pearson’s correlation test.

Results

General

Since patients and controls were matched, they did not differ in either age or gender composition. The patients were considerably to severely ill, as can be inferred from their PANSS scores, and were treated with low to moderate doses of amisulpride (Table 1). The patients who dropped out of the study (from baseline to 6-week follow-up) did not differ significantly in PANSS scores (total, general, positive, or negative, P value range: 0.061–0.58) from patients who completed the study. Neither did the baseline MMN [F(1,47) = 0.853; P = .36] nor the P3a amplitudes [F(1,48) = 0.077; P = .78] differ between those who dropped out and those who completed the study.

MMN

The baseline ANCOVA showed a significant main effect of deviant type only [F(2,95) = 36.78; P < .001]. Neither a significant main effect of group [F(1,96) = 0.371; P = .544] nor significant group interaction effects (P > .06) were found. Neither splitting on deviants (frequency, duration, or their combination) nor on electrodes revealed any group effects (P > .131), indicating that both patients and controls showed similar baseline levels of MMN.

Similar to the baseline data, no group effects were detected from baseline to follow-up, indicating similar levels of MMN in patients and controls, regardless of time (which equals treatment in patients), lead, or deviant stimulus.

P3a Amplitude

The baseline ANCOVA showed a significant main effect of group [F(1,94) = 3.97; P = .049], indicating that patients scored lower P3a amplitude than controls on all 3 electrodes and across all 3 deviants. To determine the origin of this effect, we split the ANCOVA on the 3 separate deviant trials. Neither the frequency [F(1,96) = 0.82; P = .37] nor the duration deviant [F(1,94) = 2.48; P = .12] showed any group effects. However, the combined frequency-duration deviant showed a group effect that reached a trend
level of significance \(F(1,94) = 3.56; P = .06 \), which appeared to be based on electrode FCz only, where patients scored significantly lower P3a amplitude than controls \(F(1,94) = 4.77; P = .03 \). This is also the electrode where maximum P3a amplitude was recorded, regardless of group or deviant-type.

Baseline to (6 week) follow-up analyses also showed a significant main effect of group \(F(1,71) = 4.52; P = .037 \), indicating that patients scored lower P3a amplitudes, regardless of time (treatment), lead, or deviant-type. To determine the origin of this group effect, we again split the ANCOVA on the 3 separate deviant stimuli. Similar to the baseline analyses, neither the frequency \(F(1,73) = 0.437; P = .51 \) nor the duration deviant \(F(1,71) = 3.13; P = .082 \) showed any group effects. However, the combined frequency-duration deviant showed a significant main group effect \(F(1,71) = 5.31; P = .024 \), indicating that patients scored lower P3a amplitude than controls, regardless of time (treatment). Neither patients \(F(1,29) = 2.74; P = .11 \) nor controls \(F(1,41) = 0.32; P = .57 \) showed a significant difference in P3a amplitude over time.

Psychopathology/Functioning

A statistically significant reduction in PANSS positive \(t = 8.1, df = 36, P < .001 \), general \(t = 7.8, df = 36, P < .001 \), and total \(t = 7.3, df = 36, P < .001 \) scores, but not in PANSS negative score \(t = 1.1, df = 36, P = .295 \), was found in patients between baseline and 6-week follow-up. Furthermore, the patients’ total GAF score increased significantly \(t = 4.7, df = 38, P < .001 \) in this same period of time (Table 1). No significant correlations were found between

Table 1. Demographics, PANSS Scores, and Medication

Subjects (N)	Controls	Patients	Controls	Patients
(male/female)	48 (31/17)	51 (31/19)	43 (30/13)	33 (22/11)
Mean age (SD)	25.8 (6.4)	24.9 (6.1)		
Average PANSS scores (SD)				
Positive	20.1 (3.8)	14.4 (4.0)**	14.4 (4.0)**	
Negative	21.4 (7.2)	19.4 (6.0)		
General	42.6 (8.9)	31.5 (8.5)**		
Total	84.1 (15.8)	65.2 (15.3)**		
GAF score total	40.7 (9.1)	50.7 (14.4)**		
Mean dosage antipsychotic medication	288.5 (170.0)			

*Significantly decreased compared with baseline, \(P < .05 \); **significantly decreased compared with baseline, \(P < .01 \).
the electrophysiological measures (MMN and P3a amplitude) and the psychopathological/functional measures (PANSS and GAF scores) at either baseline or at follow-up (see Figures 1 and 2).

Discussion

This is the first study to selectively investigate the effect of D2/D3 blockade in a large cohort of antipsychotic-naïve, first-episode schizophrenia patients. We found no significant MMN differences between patients and controls either at baseline or at follow-up. However, we did find a significant difference between patients and controls in P3a amplitude both at baseline and at follow-up. Furthermore, PANSS (positive, general, and total, but not negative scores) and GAF-scores improved significantly during the course of 6 weeks amisulpride treatment.

In our previous study on MMN in a similar yet smaller cohort of antipsychotic-naïve, first-episode patients with schizophrenia, we found no significant MMN deficits in our patients either, using a typical, frequency-only based MMN paradigm; we did however find MMN deficits in these patients in a dichotic listening paradigm in which the same frequency deviants were used (Oranje et al., submitted). Our current results, showing neither frequency nor duration-based MMN deficits in our patients using a typical MMN paradigm, appear to be consistent with these previous findings. Other studies failed to show MMN deficits in first-episode schizophrenia as well (Salisbury et al., 2002a; Devrim-Ucok et al., 2008a; Magno et al., 2008), while other groups have found differences in chronically ill patients (Horton et al., 2011; Todd et al., 2013). This may indicate that MMN deficits are caused by either progression of the disease, for example, due to loss of cortical tissue in areas related to the regulation of attention and orienting (Rosburg et al., 2004; Todd et al., 2013), or effects of medication. In general, however, it is important to realize that these studies have been performed with very different paradigms in which various types of deviant stimuli were used. As mentioned above, there are some reports suggesting that deviant stimuli based on duration have a higher discriminative power to separate schizophrenia patients from healthy controls than frequency deviants (Magno et al., 2008; Todd et al., 2008a), although this was not the case in our current study. Neither did we find effects of amisulpride treatment, suggesting that reducing dopaminergic-D2 receptor activity has no influence on MMN. Our previous study on a similar cohort of antipsychotic-naïve, first-episode patients with schizophrenia showed that 6 months of treatment with quetiapine normalized the (frequency-based) MMN deficits that we found in the dichotic listening paradigm only. Since quetiapine has a strong serotonergic influence, this could indicate serotonergic involvement in the regulation of MMN. This is in agreement with 2 other studies from our laboratory, where we found altered MMN in healthy volunteers following administration of 10 and 15 mg of the selective serotonergic reuptake inhibitor escitalopram (Oranje et al., 2008; Wienberg et al., 2010b). Nevertheless, other second generation antipsychotics with a high serotonergic affinity, such as clozapine, risperidone, and olanzapine, do not ameliorate MMN deficits (Umbricht et al., 1999; Korostenskaja et al., 2005).

Our patients did show significantly reduced P3a amplitude to the combined frequency/duration oddballs compared with controls. Amisulpride did not ameliorate this deficit, which in turn suggests that dopamine-D2 receptors are not involved in this particular deviant-based P3a deficiency. Alternatively, the absence of a treatment effect may be related to the dosages of amisulpride that were used in the present study, which were...
relatively low due to the fact that we only included antipsychotic naïve, first-episode patients in our study: these patients are known to clinically improve with lower dosages of antipsychotics than patients suffering from more advanced stages of schizophrenia. Logically, this line of reasoning can also explain why we found no treatment effects on MMN amplitude.

We found a significant improvement in PANSS- and GAF scores, indicating a clinically sufficient effect of amisulpride in spite of its lack in ameliorating the deficiencies in our chosen measures. Most likely this also explains why we did not find any correlation between our current psychophysiological measures and these scores on psychopathology or daily functioning. Even though the basic information processes reflected by P3a amplitude and MMN in theory could underlie some features in the symptomatology in schizophrenia, our data do not suggest such a direct linkage. Other literature supports the absence of such a relationship with symptomatology (Salisbury et al., 2002b; Devrim-Ucok et al., 2008b), although there is some evidence that MN amplitude correlates with a subclass of PANSS items (Todd et al., 2008b). Studies on the relationship between MMN and daily functioning suggest associations in chronic patients with schizophrenia (Light and Braff, 2005). However, similar to our data, no such relationships are found in recent onset patients or in individuals at risk for developing schizophrenia (Jahshan et al., 2012).

There are strengths but also limitations to our study. Obvious strengths are the rather large population of antipsychotic-naïve, first-episode schizophrenia patients and the longitudinal design of this study. Another strength of our study is that amisulpride is rather specific for the dopaminergic D2/D3 receptor system.

A limitation may have been that our patients had to go through a large battery of tests and as such were not as ill as this particular group of patients usually is. This, in combination with the fact that schizophrenia is such a heterogeneous disease, may have limited the representativeness of our results of this particular population in general. More severely ill patients might have shown more explicit psychophysiological deficits. Nevertheless, the average PANSS scores did indicate moderate to severe symptomatology, which is to be expected in first-episode patients (Boter et al., 2009; Wobrock et al., 2013). Another limitation may have been the relatively short treatment period and the low to moderate dosages of amisulpride within the recommended dosage for clinical treatment. However, many other treatment studies have used very similar periods; nevertheless, we cannot be certain whether our results persist over longer periods of time, or if higher dosages of amisulpride would have been used.

In conclusion, we found P3a amplitude to be reduced in a large cohort of antipsychotic-naïve, first-episode schizophrenia patients. Six weeks of treatment with amisulpride did not ameliorate this P3a amplitude deficit, suggesting that it does not improve by blockade of dopamine D2/D3 receptors. In contrast to what we expected, we found no MMN deficits in our patients. Since there are many reports on MMN deficits in patients with schizophrenia, our results may indicate that these deficits appear later in the disease, either due to progression of the disease or due to medical treatment.

Acknowledgments

The authors recognize the valuable work of the research assistants Katharina Alfsen (CRN) and Mikkel Erlang Sørensen (MSC) as well as of research secretary Lisbeth Jensen from the Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS) for assisting in the recruitment and assessment of participants.

This study was sponsored by the University of Copenhagen, Faculty of Health and Medical Sciences (211-0747/10-3012), Psychiatry of the Capital Region of Copenhagen, and CINS (Lundbeck Foundation Center for clinical Intervention and Neuropsychiatric research)(R25-A2701).

Statement of Interest

None.

References

Albrecht MA, Martin-Iverson MT, Price G, Lee J, Iyyalol R (2011) Dexamphetamine-induced reduction of P3a and P3b in healthy participants. J Psychopharmacol 25:1623–1631.

Alho K, Woods DL, Algazi A, Knight RT, Naatanen R (1994) Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalogr Clin Neurophysiol 91:353–362.

Atkinson RJ, Michie PT, Schall U (2012a) Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biol Psychiatry 71:98–104.

Atkinson RJ, Michie PT, Schall U (2012b) Duration mismatch negativity and P3a in first-episode psychosis and individuals at ultra-high risk of psychosis. Biol Psychiatry 71:98–104.

Baldeweg T, Klugman A, Cruzelier JH, Hirsch SR (2002) Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. Int J Psychophysiolog 43:111–122.

Boter H, Peusknens J, Libiger J, Fleischacker WW, Davidson M, Calderisi S, Kahn RS (2009) Effectiveness of antipsychotics in first-episode schizophrenia and schizophreniform disorder on response and remission: an open randomized clinical trial (EUFEST). Schizophr Res 115:97–103.

Devrim-Ucok M, Keskin-Ergen HY, Ucok A (2008a) Mismatch negativity at acute and post-acute phases of first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 258:179–185.

Devrim-Ucok M, Keskin-Ergen HY, Ucok A (2008b) Mismatch negativity at acute and post-acute phases of first-episode schizophrenia. Eur Arch Psychiatry Clin Neurosci 258:179–185.

During S, Glenthoj BY, Andersen GS, Oranje B (2014) Effects of dopamine D2/D3 blockade on human sensory and sensorimotor gating in initially antipsychotic-naïve, first-episode schizophrenia patients. Neuropsychopharmacology 39:3000–3008.

Fisher DJ, Labelle A, Knott VJ (2012) Alterations of mismatch negativity (MMN) in schizophrenia patients with auditory hallucinations experiencing acute exacerbation of illness. Schizophr Res 139:237–245.

Horton J, Millar A, Labelle A, Knott VJ (2011) MMN responsivity to manipulations of frequency and duration deviants in chronic, clozapine-treated schizophrenia patients. Schizophr Res 126:202–211.

Huang WJ (2015) The neurophysiology of p300. Eur Rev Med Pharmacol 19:1480–1488.

Jahshan C, Cadenhead KS, Rissling AJ, Kirihara K, Braff DL, Light GA (2012) Automatic sensory information processing abnormalities across the illness course of schizophrenia. Psychol Med 42:85–97.

Javitt DC, Grochowski S, Shelley AM, Ritter W (1998) Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/
interdeviant interval. Electroencephalogr Clin Neurophysiol 108:143–153.

Jensen KS, Oranje B, Wienberg M, Glenthoj BY (2008) The effects of increased serotonergic activity on human sensory gating and its neural generators. Psychopharmacology (Berl) 196:631–641.

Kahkonen S, Ahveninen J, Jaaskelainen IP, Kaakkola S, Naatanen R, Huttunen J, Pekkonen E (2001) Effects of haloperidol on selective attention: a combined whole-head MEG and high-resolution EEG study. Neuropsychopharmacology 25:498–504.

Kahkonen S, Ahveninen J, Pekkonen E, Kaakkola S, Huttunen J, Ilmoniemi RJ, Jaaskelainen IP (2002) Dopamine modulates involuntary attention shifting and reorienting: an electromagnetic study. Clin Neurophysiol 113:1894–1902.

Kay SR, Opler LA, Lindenmayer JP (1988) Reliability and validity of the positive and negative syndrome scale for schizophrenics. Psychiatry Res 23:99–110.

Kiang M, Light GA, Prugh J, Coulson S, Braff DL, Kutas M (2007) Cognitive, neurophysiological, and functional correlates of proverb interpretation abnormalities in schizophrenia. J Int Neuropsychol Soc 13:653–663.

Korostenskaja M, Dapsys K, Siurkute A, Maciulis V, Ruksenas O, Kahkonen S (2005) Effects of olanzapine on auditory P300 and mismatch negativity (MMN) in schizophrenia spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 29:543–548.

Light GA, Braff DL (2005) Mismatch negativity deficits are associated with poor functioning in schizophrenia patients. Arch Gen Psychiatry 62:127–136.

Magoon E, Yeap S, Thakore JH, Garavan H, De SP, Foxe JJ (2008) Are auditory-evoked frequency and duration mismatch negativity deficits endophenotypic for schizophrenia? High-density electrical mapping in clinically unaffected first-degree relatives and first-episode and chronic schizophrenia. Biol Psychiatry 64:385–391.

Naatanen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42:313–329.

Naatanen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42:25–32.

Naatanen R, Kahkonen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol 12:125–135.

Nieuwenhuis S, Aston-Jones G, Cohen JD (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol Bull 131:510–532.

Okhina LB, Wild-Wall N, Oades RD, Juran SA, Ropcke B, Pfuel ler U, Weisbrod M, Chan E, Chen EY (2005) Frontal and temporal sources of mismatch negativity in healthy controls, patients at onset of schizophrenia in adolescence and others at 15 years after onset. Schizophr Res 76:25–41.

Oranje B, Glenthoj BY (2013) Clonidine normalizes sensorimotor gating deficits in patients with schizophrenia on stable medication. Schizophr Bull 39:684–691.

Oranje B, Jensen K, Wienberg M, Glenthoj BY (2008) Divergent effects of increased serotonergic activity on psychophysiological parameters of human attention. Int J Neuropsychopharmacol 11:453–463.

Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148.

Rosburg T, Kreitschmann-Andermahr I, Sauer H (2004) Mismatch negativity in schizophrenia research. An indicator of early processing disorders of acoustic information. Nervenarzt 75:633–641.

Salisbury DF, Shenton ME, Griggs CB, Bonner-Jackson A, McCa rley RW (2002a) Mismatch negativity in chronic schizophrenia and first-episode schizophrenia. Arch Gen Psychiatry 59:686–694.

Salisbury DF, Shenton ME, Griggs CB, Bonner-Jackson A, McCa rley RW (2002b) Mismatch negativity in chronic schizophrenia and first-episode schizophrenia. Arch Gen Psychiatry 59:686–694.

Shelley AM, Ward PB, Catts SV, Richie PT, Andrews S, McConaghy N (1991) Mismatch negativity: an index of a preattentive processing deficit in schizophrenia. Biol Psychiatry 30:1059–1062.

Todd J, Michie PT, Schall U, Karayanidis F, Yabe H, Naatanen R (2008a) Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biol Psychiatry 63:58–64.

Todd J, Michie PT, Schall U, Karayanidis F, Yabe H, Naatanen R (2008b) Deviant matters: duration, frequency, and intensity deviants reveal different patterns of mismatch negativity reduction in early and late schizophrenia. Biol Psychiatry 63:58–64.

Todd J, Harms L, Schall U, Michie PT (2013) Mismatch negativity: translating the potential. Front Psychiatry 4:171.

Umbricht D, Javitt D, Novak G, Bates J, Pollack S, Lieberman J, Kane J (1999) Effects of risperidone on auditory event-related potentials in schizophrenia. Int J Neuropsychopharmacol 2:299–304.

Umbricht D, Krijes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76:1–23.

Wienberg M, Glenthoj BY, Jensen KS, Oranje B (2010a) A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers. J Psychopharmacol 24:1183–1192.

Wienberg M, Glenthoj BY, Jensen KS, Oranje B (2010b) A single high dose of escitalopram increases mismatch negativity without affecting processing negativity or P300 amplitude in healthy volunteers. J Psychopharmacol 24:1183–1192.

Wobrock T, Falkai P, Schneider-Axmann T, Hasan A, Galderisi S, Davidson M, Kahn RS, Derks EM, Boter H, Rybakowski JK, Libiger J, Dollfus S, Lopez-Ibor JJ, Peuskens J, Hranov LG, Gaebel W, Fleischhacker WW (2013) Comorbid substance abuse in first-episode schizophrenia: effects on cognition and psychopathology in the EUFEST study. Schizophr Res 147:132–139.

Zhou Z, Zhu H, Chen L (2013) Effect of aripiprazole on mismatch negativity (MMN) in schizophrenia. PLoS One 8:e52186.