On a cover time problem on a dynamic graph with steps at random times

Yunus Emre Demirci∗ Ümit Işlak† Mehmet Akif Yıldız‡

March 2, 2023

Abstract

We introduce a cover time problem for random walks on dynamic graphs in which the graph expands in time and the walker moves at random times. Number of nodes covered at a certain time and number of returns to original states are analyzed in the resulting model.

Keywords: Dynamic graph, random walk, cover time, coupon collecting.

1 Introduction

Let us begin by recalling the well-known coupon collector problem. Consider a set containing m distinct objects (“coupons”), for example, pictures of soccer players. The collector samples from the set with replacement. On each trial she has a fixed probability p_i of drawing a type i object, independently of all past events. A well-known question is then the expected time to collect all coupons, though various other probabilities/expectations can be of interest. The coupon collecting emerges in distinct sciences, and has various applications. See [6] for an elementary treatment of this problem. [7] is a classical paper on the subject with relations to other well known problems in probability theory and computer science.

In our setting, the coupon collector problem can be considered as a special case of the cover time problem for random walks on graphs (which is the complete graph K_n in case of the coupon collector problem). In this general setup, one is interested in the cover time

∗Queen’s University, Department of Mathematics and Statistics, Kingston, ON, Canada, email: 21yed@queensu.ca
†Boğaziçi University, Department of Mathematics, Istanbul, Turkey, email: umit.islak1@boun.edu.tr
‡University of Amsterdam, Korteweg-de Vries Institute for Mathematics, Amsterdam, the Netherlands, e-mail: m.a.yildiz@uva.nl
required for all vertices of a graph to be visited at least once when the walker traverses randomly on the vertices according to certain probabilities. The cover time in random walks (which is a Markov chain) has been investigated in numerous studies in the literature. Two general references for Markov chains are [8] and [9]. The reader can find various results on cover times in [2] and [11]. The former also contains various related conjectures. The standard cover time problem has several variations in literature such as the edge cover problem [12], having multiple walkers [4] or covering trees [3].

Our purpose here is to give yet another very simple variation of the classical cover time problem on graphs. On contrary to the classical setting, we are interested in a dynamic version in which the walker moves in a graph which expands in time. Such dynamic graphs arise in various areas, for example, in collaboration networks, acquaintance graphs and the web graph. Our main motivation was indeed the web graph in which the vertices correspond to web sites, and the edges correspond to links between them. This is clearly a dynamic graph since new sites open each day and they link to previous existing pages. Our setup below is that a random walker starts at a certain web page initially and wanders around the evolving graph, and we try to understand statistics such as the number of nodes visited until a specific time. We are curious about the possible uses of such modeling for a search engines which has the goal to discover as many web pages as possible by doing a random walk. The approaches in references [1] and [5] are same direction, but both are different than our model. Also, after posting our paper on arxiv, we were got in touch by Dr. Videla about a recent work following the same model we discuss below [10]. Due to this, there had been some minor changes in our manuscript, with references to the cited paper. The model we discuss below is as follows:

(i) Assume there are \(k_0\) (call \(v_1, v_2, \ldots, v_{k_0}\)) vertices at the beginning (at time 0) for some \(k_0 \geq 3\), and that the initial configuration is a complete graph on these \(k_0\) vertices. We also assume that there is a walker at one of these vertices.

(ii) For each \(t \in \mathbb{N}\), create a new vertex \(v_{k_0+t}\) at time \(t\), and join it to all present vertices.

(iii) The walker moves to one of the remaining current vertices at random where the time intervals between moves are exponentially distributed with parameter \(1/\lambda\).

Taking this construction as our base ground, we study mainly two statistics throughout the paper: (1) Number of nodes visited up to a given time, (2) Number of visits to a specified initial node up to a certain time. Note that the arrival of a new vertex could also be modeled as an independent Poisson process, but we decided to keep the deterministic one in our analysis because otherwise the notations turn out to be cumbersome. In either case as a technical remark, let us note that since the graph structure evolves in time, the underlying probability space changes accordingly. For relevant discussions of the construction of the process, the reader may check [10].
As already noted, our model is a special case of the one proposed by [10], but below we give a more detailed analysis of the statistics we study due to this specialization. Before the main discussion, let us also briefly tell about the references [1] and [5] where cover time problems for dynamic graphs are analyzed. In [5], the authors consider two similar models for growing the graph with an inspiration from web graphs. In both models, there is a sequence of connected graphs $\mathcal{G} = \{G(t) : t = 1, 2, \ldots\}$ for which $G(t)$ is constructed from $G(t - 1)$ by including a new vertex and a fixed number of edges between the new vertex and the vertices of $G(t - 1)$. Here, the initial graph $G(1)$ consists of a single vertex with some self-loops. While the neighbors of the new vertex is chosen independently and uniformly with the possibility of multiple connections in the first model, the new vertex is linked with previous vertices with probability proportional to their degrees in the second one. For both models, there is a walker traversing on the vertices where she walks for a fixed length at each step. Following these models, the authors examine the expectation of the number of vertices which have not been visited by the walker up to a certain step. In particular, the authors study certain asymptotics related to the portion of the vertices not visited by the walker.

On the other hand, another dynamic model was examined in [1] which is much different than our model since in their setting the graphs evolves in time but on a fixed set of vertices. It is known that the covering of static graphs always requires a polynomial time. In their work in [1], the authors prove that this is not the case for evolving graph models. They construct a sequence of stars in a way that the hitting time between two specific vertices is exponential in terms of the size of stars, which implies that the cover time is not polynomial.

The rest of the paper is organized as follows. Next section presents our findings on the number of nodes covered at a certain time T which we call N_T. We study the expectation, the variance and certain asymptotics related to this statistic. In Section 3 we will be looking at probabilities and expectations related to the number of visits to the initial vertices.

2 Number of nodes covered at a certain time

Unless otherwise stated, we consider the model introduced in Introduction. For $T \in \mathbb{N}$, let N_T be the number of vertices visited at least once by the walker up to time T. The purpose of this section is to analyze $\mathbb{E}[N_T]$ and $\text{Var}(N_T)$ along with the asymptotics related to N_T. Below $\mathcal{H}(n)$ denotes finite sums of harmonic series, i.e. $\mathcal{H}(n) = \sum_{i=1}^{n} \frac{1}{i}$.

2.1 Expectation

We begin with the analysis of $\mathbb{E}[N_T]$. Let us note that Theorem 2.1 is available in [10]. We include the details of our elementary treatment for the sake of complements. Also, the argument given here will be useful later in Section 2.2.
Theorem 2.1 (i) We have

\[\mathbb{E}[N_T] = (k_0 + T - 1) - (k_0 - 1)e^{-\lambda \mathcal{H}(k_0+T-2)} \left(\sum_{j=k_0+1}^{k_0+T-1} e^{\lambda \mathcal{H}(j-2)} \right). \]

(ii) As \(T \to \infty, \frac{\mathbb{E}[N_T]}{T} \sim \frac{\lambda}{1+\lambda}. \)

Proof. (i) Let \(T > 0 \) and \(u_j = u_j(T) \) be the probability that the vertex \(j \) is visited at least once from the walker up to time \(T \). Without loss of generality, assume we start at the vertex \(v_1 \). Clearly, \(u_1 = 1 \) and \(u_s = 0 \) for \(s \geq k_0 + T \). Observe that \(\mathbb{E}[N_T] = 1 + \sum_{j=2}^{k_0+T-1} u_j \).

Let us now calculate the probability \(u_j \) for \(1 \leq j \leq T \). Let \(M_t \) be the number of moves by the walker on the time interval \([t-1, t)\) for \(t \geq 1 \). We know \(M_t \) has Poisson distribution with parameter \(\lambda \). Also, it is well-known that \(M_t \) and \(M_s \) are independent for \(t \neq s \). Therefore, for any \(1 \leq j \leq T \) and \(m_j, m_{j+1}, \ldots, m_T \in \mathbb{N}_{\geq 0} \), we get \(\mathbb{P}(M_j = m_j, M_{j+1} = m_{j+1}, \ldots, M_T = m_T) = \prod_{s=j}^{T} e^{-\lambda \lambda^{m_s}} \).

Now, suppose \(M_1 = m_1, M_2 = m_2, \ldots, M_T = m_T \) are given where \(m_1, m_2, \ldots, m_T \in \mathbb{N}_{\geq 0} \). If \(2 \leq j \leq k_0 \), then the walker does not visit the vertex \(v_j \) up to time \(T \) with probability \(\left(\frac{k_0 - 2}{k_0} \right)^{m_1} \cdot \left(\frac{k_0 - 1}{k_0} \right)^{m_2} \cdot \left(\frac{k_0}{k_0 + 1} \right)^{m_3} \cdot \left(\frac{k_0 + T - 3}{k_0 + T - 2} \right)^{m_T} \). Let us call this quantity as \(R[j; m_1, m_2, \ldots, m_T] \). Similarly, if \(k_0 + 1 \leq j \leq k_0 + T - 1 \), then the walker does not visit the vertex \(v_j \) up to time \(T \) with probability \(\left(\frac{j - 2}{j - 1} \right)^{m_{j-k_0+1}} \cdot \left(\frac{j - 1}{j} \right)^{m_{j-k_0+2}} \cdot \cdots \cdot \left(\frac{k_0 + T - 3}{k_0 + T - 2} \right)^{m_T} \). We write \(S[j; m_1, m_2, \ldots, m_T] \) for this last probability.

Now, for \(2 \leq j \leq k_0 \), by conditioning on \(M_1, M_2, \ldots, M_T \), we have

\[1 - u_j = \sum_{m_1, m_2, \ldots, m_T \in \mathbb{N}_{\geq 0}} R[j; m_1, m_2, \ldots, m_T] \cdot \mathbb{P}(M_i = m_i \text{ for } 1 \leq i \leq T) \]

On the other hand, observe that we can express \(R[j; m_1, m_2, \ldots, m_T] \) as \(\prod_{s=1}^{T} (1 - \frac{1}{k_0+s-2})^{m_s} \).
Therefore, we can write

\[
1 - u_j = \sum_{m_1, m_2, \ldots, m_T \in \mathbb{N}_{\geq 0}} \left(\prod_{s=1}^{T} \left(1 - \frac{1}{k_0 + s - 2} \right)^{m_s} \right) \cdot e^{-\lambda} \frac{\lambda^{m_s}}{m_s!} \\
= \sum_{m_1, m_2, \ldots, m_T \in \mathbb{N}_{\geq 0}} \prod_{s=1}^{T} e^{-\lambda} \frac{\left(\lambda - \frac{\lambda}{k_0 + s - 2} \right)^{m_s}}{m_s!} \\
= \sum_{m_1, m_2, \ldots, m_T \in \mathbb{N}_{\geq 0}} e^{-\lambda T} \cdot \prod_{s=1}^{T} \left(1 - \frac{\lambda}{k_0 + s - 2} \right)^{m_s} = e^{-\lambda T} \cdot \sum_{m_1, m_2, \ldots, m_T \in \mathbb{N}_{\geq 0}} \prod_{s=1}^{T} e^{-\lambda} \frac{\left(\lambda - \frac{\lambda}{k_0 + s - 2} \right)^{m_s}}{m_s!} \\
= e^{-\lambda T} \cdot \prod_{s=1}^{T} \sum_{l=0}^{\infty} \frac{(\lambda - \frac{\lambda}{k_0 + s - 2})^l}{l!} = e^{-\lambda T} \cdot \prod_{s=1}^{T} e^{\lambda - \frac{\lambda}{k_0 + s - 2}} = e^{-\lambda \left(\frac{1}{k_0 - 1} + \frac{1}{k_0} + \cdots + \frac{1}{k_0 + T - 2} \right)}
\]

In a similar way, for \(k_0 + 1 \leq j \leq k_0 + T - 1 \), again conditioning on \(M_{k_0+j+1}, M_{k_0+j+2}, \ldots, M_T \) gives

\[
1 - u_j = \sum_{m_{j-k_0+1}, m_{j-k_0+2}, \ldots, m_T \in \mathbb{N}_{\geq 0}} S[j; m_1, m_2, \ldots, m_T] \cdot \mathbb{P}(M_i = m_i \text{ for } j - k_0 + 1 \leq i \leq T).
\]

Noting that we can express \(S[j; m_1, m_2, \ldots, m_T] \) as \(\prod_{s=j-k_0+1}^{T} \left(1 - \frac{1}{k_0 + s - 2} \right)^{m_s} \), computations as in previous case then gives

\[
1 - u_j = e^{-\lambda \left(\frac{1}{k_0 - 1} + \frac{1}{k_0} + \cdots + \frac{1}{k_0 + T - 2} \right)}, \quad k_0 + 1 \leq j \leq k_0 + T - 1.
\]

As a result,

\[
u_j = \begin{cases}
1 - e^{-\lambda \left(\mathcal{H}(k_0 + T - 2) - \mathcal{H}(k_0 - 2) \right)}, & \text{if } 2 \leq j \leq k_0, \\
1 - e^{-\lambda \left(\mathcal{H}(k_0 + T - 2) - \mathcal{H}(j - 2) \right)}, & \text{if } k_0 + 1 \leq j \leq k_0 + T - 1.
\end{cases}
\] \tag{2}

Therefore, recalling \(\mathbb{E}[N_T] = 1 + \sum_{j=2}^{k_0+T-1} u_j \), the result follows.

(ii) The asymptotic assertion follows from the inequalities \(\frac{1}{2(m+1)} + \ln m + \gamma < \mathcal{H}(m) < \frac{1}{2m} + \ln m + \gamma \), \(m \in \mathbb{N} \), where \(\gamma = 0.5772 \cdots \) is the Euler-Mascheroni constant. \(\square \)

2.2 Variance

Theorem 2.2
(i) For \(2 \leq r < s \leq k_0 + T - 1 \), the events \(A_r \) and \(A_s \) are independent.

(ii) We have \(\text{Var}(N_T) = \sum_{j=2}^{k_0+T-1} (1 - u_j) \cdot u_j \), where \(u_j \)'s are as given in (2).

(iii) We have \(\text{Var}(N_T) \sim \lambda \frac{\lambda}{(\lambda+1)(2\lambda+1)}T \).
Proof. (i)-(ii) Let $A_j = A_j(T)$ be the event that the vertex j is not visited by the walker up to time T. Suppose $M_1 = m_1, M_2 = m_2, \ldots, M_T = m_T$ are given where $m_1, m_2, \ldots, m_T \in \mathbb{N}_{\geq 0}$. Let us assume that $k_0+1 \leq r < s \leq k_0+T-1$. Then, the event $A_r \cap A_s$ occurs with probability

$$
\left(\frac{r-2}{r-1}\right)^{m_r} \left(\frac{s-3}{r-2}\right)^{m_r+1} \cdots \left(\frac{s-3}{s-2}\right)^{m_r} \left(\frac{s-3}{s}\right)^{m_r+1} \cdots \left(\frac{k_0+T-4}{k_0+T-1}\right)^{m_r}.
$$

Thus, with a conditioning argument similar to the expectation case, we may write

$$
\mathbb{P}(A_r \cap A_s) = e^{-\lambda} \left(\frac{r}{r-1} + \cdots + \frac{s}{s-2} + \cdots + \frac{s}{s} + \cdots + \frac{k_0+2}{k_0+1}\right) = e^{-\lambda} \left(\frac{r}{r-1} + \cdots + \frac{s}{s-2} + \cdots + \frac{s}{s} + \cdots + \frac{k_0+2}{k_0+1}\right).
$$

As a result, we have $\mathbb{P}(A_r \cap A_s) = (1-u_r)(1-u_s) = \mathbb{P}(A_r)\mathbb{P}(A_s)$, for $k_0+1 \leq r < s \leq k_0+T-1$. In a similar way, it can be seen that the equality $\mathbb{P}(A_r \cap A_s) = \mathbb{P}(A_r)\mathbb{P}(A_s)$ holds for all $2 \leq r < s \leq k_0 + T - 1$.

Define U_T as the number of unvisited vertices among $\{v_1, v_2, \ldots, v_{k_0+T-1}\}$ by the walker up to time T. Since $N_T + U_T = k_0 + T - 1$, we have $\text{Var}(N_T) = \text{Var}(U_T)$. Now, by using the equalities $U_T = \sum_{j=2}^{k_0+T-1} 1(A_j), \mathbb{P}(A_j) = 1 - u_j$, and the fact that equality $\mathbb{P}(A_r \cap A_s) = \mathbb{P}(A_r)\mathbb{P}(A_s)$ holds for all $2 \leq r < s \leq k_0 + T - 1$, we get $\text{Var}(U_T) = \sum_{j=2}^{k_0+T-1} (1-u_j)u_j$, from which $\text{Var}(N_T) = \sum_{j=2}^{k_0+T-1} (1-u_j)u_j$ follows.

(iii) Again follows from $\frac{1}{2(m+1)} + \ln m + \gamma < \mathcal{H}(m) < \frac{1}{2m} + \ln m + \gamma, \ m \in \mathbb{N}$. □

Remark 2.1 (Cover time of a fixed subset) The independence in previous result can also be used for studying the classical cover time of a fixed subset of the vertices. Let us briefly include a discussion about this. Letting $k \geq k_0$ be fixed, we study the cover time of the set $\{1, 2, \ldots, k\}$. Let C_k be the first time at which all the vertices in $\{1, 2, \ldots, k\}$ have been visited. For convenience, we assume all the moves by the walker on the time interval $(t-1, t]$ are done at time t. By assumption, C_k can take only integer values. Let $T \geq k-k_0+1$, and recall that the events $B_j(T) := \{\text{vertex } j \text{ is visited by time } T\}$ are independent by Theorem 2.2 for $2 \leq r < s \leq k_0 + T - 1$. Hence, $\mathbb{P}(C_k \geq T) = 1 - \mathbb{P}(B_2(T) \cap B_3(T) \cap \cdots \cap B_k(T)) = 1 - u_2(T)u_3(T)\cdots u_k(T)$, where $u_i(T)$ are given as in (2) (note the dependence on T). Then, the cover time is

$$
\mathbb{E}[C_k] = \sum_{j=1}^{\infty} \mathbb{P}(C_k \geq j) = \sum_{j=1}^{k-k_0} \mathbb{P}(C_k \geq j) + \sum_{T=k-k_0+1}^{\infty} \mathbb{P}(C_k \geq T)
$$

$$
= (k-k_0) + \sum_{T=k-k_0+1}^{\infty} \left(1 - \prod_{j=2}^{k} u_j(T)\right).
$$
Now, specializing to the case \(k = k_0 \), and noting \(u_2(T) = \cdots = u_{k_0}(T) \) for any \(T \), this can be rewritten as,

\[
\mathbb{E}[C_k] = \sum_{T=1}^{\infty} (1 - u_2(T)^{k_0-1}) = \sum_{T=1}^{\infty} \left(1 - \left(1 - e^{-\lambda(H(k_0 + T - 2) - H(k_0 - 2))} \right)^{k_0-1} \right)
\]

\[
= \sum_{T=1}^{\infty} \sum_{j=1}^{k_0-1} \binom{k_0 - 1}{j} (-1)^{j+1} e^{-\lambda j(H(k_0 + T - 2) - H(k_0 - 2))}
\]

\[
= \sum_{j=1}^{k_0-1} \binom{k_0 - 1}{j} (-1)^{j+1} \sum_{T=1}^{\infty} e^{-\lambda j(H(k_0 + T - 2) - H(k_0 - 2))}.
\]

2.3 Asymptotics for \(N_T \)

The purpose of this section is to provide a law of large numbers and a central limit theorem for \(N_T \). Towards the former, we first derive a deviation inequality for \(N_T \). For this purpose recall that the events \(B_j := \{ \text{vertex } j \text{ is visited by time } T \} \) are independent. Letting then \(Y_j \) be the indicator of \(B_j \), and using Azuma-Hoeffding inequality, for any \(t > 0 \), we have

\[
P(\left| N_T - \mathbb{E}[N_T] \right| \geq t) = P \left(\left| \sum_{j=1}^{k_0+T} Y_j - \mathbb{E}[N_T] \right| \geq t \right) \leq \exp \left(-\frac{2t^2}{\sum_{j=1}^{k_0+T} 1} \right) = \exp \left(-\frac{2t^2}{k_0 + T} \right). \]

In other words, letting \(\alpha_T = \mathbb{E}[N_T/T] \), for any \(\epsilon > 0 \), we have

\[
P \left(\left| \frac{N_T}{T} - \alpha_T \right| \geq \epsilon \right) \leq \exp \left(-\frac{2\epsilon^2 T^2}{k_0 + T} \right), \quad T > 0.
\]

Then, for any \(\epsilon > 0 \)

\[
\sum_{T=1}^{\infty} P \left(\left| \frac{N_T}{T} - \alpha_T \right| \geq \epsilon \right) \leq \sum_{T=1}^{\infty} \exp \left(-\frac{2\epsilon^2 T^2}{k_0 + T} \right) < \infty.
\]

Therefore, the first Borel-Cantelli lemma and Theorem 2.1(i) yields

Theorem 2.3 \(\frac{N_T}{T} \to a.s. \frac{\lambda}{1+\lambda} \).

Next we prove a central limit theorem for \(N_T \). For this purpose we will be using the following standard result.

Theorem 2.4 Suppose \(X_1, X_2, \ldots \) be a sequence of mean zero, independent random variables such that \(\mathbb{E}[X_i^4] < \infty \) for each \(i \). If \(W_n = \frac{\sum_{i=1}^{n} X_i}{\sigma} \) and \(\sigma^2 = \text{Var} (\sum_{i=1}^{n} X_i) \), then

\[
d_W(W_n, G) \leq \frac{1}{\sigma^3} \sum_{i=1}^{n} \mathbb{E}|X_i|^3 + C \sqrt{\sum_{i=1}^{n} \mathbb{E}|X_i|^4} / \sigma^2,
\]
where C is some constant independent of n, d_W is the Wasserstein distance between probability measures and G is a standard Gaussian random variable.

In our case, we set $X_i = 1(B_i) - \mathbb{P}(B_i)$, $i \geq 1$, where $B_j := \{\text{vertex } j \text{ is visited by time } T\}$. Then the following central limit theorem follows after straightforward manipulations with keeping $\text{Var}(N_T) \sim \frac{\lambda}{(\lambda+1)(2\lambda+1)}T$ in mind.

Theorem 2.5 We have

$$d_W\left(\frac{N_T - \mathbb{E}[N_T]}{\text{Var}(N_T)}, G\right) \leq C\sqrt{n},$$

for some constant C independent of n. In particular, $\frac{N_T - \mathbb{E}[N_T]}{\text{Var}(N_T)}$ converges in distribution to a standard normal random variable.

Remark 2.2 To keep the discussion simple, we take the node generation times deterministic in this manuscript. However, some elementary manipulations could be used to carry the results to random generation times. A related brief discussion can be found in the arxiv version of the paper.

3 Number of visits to the initial nodes

The main purpose of this section to study the expected number of visits to the initial state v_1 up to time T when there are initially $k_0 > 0$ many vertices. This is Theorem 3.1 below. Throughout the way we will compute various other related probabilities. First, we begin with the calculation of the probability of not visiting the initial vertex a second time until a specified time.

When there are k_0 vertices at the beginning, let us define $P(T, k_0)$ to be the probability of not visiting the initial vertex a second time up to time T. Obviously $P(0, k_0) = 1$.

Proposition 3.1 For all $T > 1$, $P(T, k_0) = e^{-\lambda T} + \sum_{i=0}^{T-1} \left(1 + \frac{1}{k_0 - 2i+1}\right) e^{-\lambda \left(i + \sum_{j=1}^{T-1} \frac{1}{k_0 - 2i+1}\right)}$.

Proof. Recall that M_t is the number of moves on the interval $[t-1, t)$ for $t \geq 1$, and that after a unit of time, a new node is created. If $M_1 = 0$, a unit time later the walker is still on the initial vertex and the number of vertices is $k_0 + 1$. If $M_1 > 0$, a unit time later it should not have visited initial vertex a second time and the number of vertices is $k_0 + 1$.

We have

$$P(T, k_0) = P(M_1 = 0)P(T - 1, k_0 + 1) + P(M_1 \geq 1 \text{ and no visits to } v_1 \text{ in } M_1 \text{ steps})(1 - u_*),$$

where u_* is the probability that we do have a revisit to the state where we are at time 1 during the interval $(1, T]$. Here is a bit more explanation for the reasoning here. The first term on the right-hand side of (3) is due to the case where the walker did not have any
moves during the initial unit interval. Regarding the second term on the right-hand side, the walker had a move in the first unit time interval and ended up her move at some other vertex. This “other” vertex is now considered to be the new initial vertex and we then look at the probability of not visiting it for which we write $1 - u_s$.

Continuing our computation, we then have

$$P(T, k_0) = e^{-\lambda} P(T-1, k_0 + 1) + \sum_{r=1}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \left(\frac{k_0 - 2}{k_0 - 1} \right)^{r-1} \left(e^{-\lambda \left(\frac{1}{k_0} + \ldots + \frac{1}{k_0 + T-2} \right)} \right)$$

$$= e^{-\lambda} P(T-1, k_0 + 1) + e^{-\lambda} \sum_{r=1}^{\infty} \left(\frac{k_0 - 2}{k_0 - 1} \right)^r \left(\frac{k_0 - 1}{k_0 - 2} \right) \left(e^{-\lambda \left(\frac{1}{k_0} + \ldots + \frac{1}{k_0 + T-2} \right)} \right)$$

$$= e^{-\lambda} P(T-1, k_0 + 1) + \left(\frac{k_0 - 1}{k_0 - 2} \right) \left(e^{-\lambda \left(\frac{1}{k_0} + \ldots + \frac{1}{k_0 + T-2} \right)} \right)$$

Iterating this recursion we obtain

$$P(T, k_0) = \left(\frac{k_0 - 1}{k_0 - 2} \right) \left(e^{-\lambda \left(\frac{1}{k_0} + \ldots + \frac{1}{k_0 + T-2} \right)} \right)$$

$$+ e^{-\lambda} \left(\left(\frac{k_0}{k_0 - 1} \right) \left(e^{-\lambda \left(\frac{1}{k_0} + \ldots + \frac{1}{k_0 + T-2} \right)} \right) + e^{-\lambda} P(T - 2, k_0 + 2) \right)$$

$$= \ldots$$

$$= \frac{k_0 - 1}{k_0 - 2} e^{-\lambda \left(\frac{1}{k_0} + \ldots + \frac{1}{k_0 + T-2} \right)} + \frac{k_0}{k_0 - 1} e^{-\lambda \left(\frac{2}{k_0} + \ldots + \frac{1}{k_0 + T-2} \right)} + \ldots + e^{-\lambda \left(\frac{T - 2}{k_0 + T - 3} + \frac{1}{k_0 + T - 2} \right)} + e^{-\lambda T}$$

$$= e^{-\lambda T} + \sum_{i=0}^{T-1} \frac{k_0 - 1 + i}{k_0 - 2 + i} e^{-\lambda \left(\frac{i + \sum_{j=1}^{T-i} \frac{1}{k_0 - 2 + j} \right)}.$$

Next we look at the probability of being at one of the initial vertices v at the end of a certain amount of time when the walker starts the walk from v with some given probability.

Proposition 3.2 Assume that p is the probability of starting the walk from vertex v at the beginning. Let p_r be the probability of being at vertex v after r steps of the random walk in a unit time where no new vertex is generated. Then for all $r \geq 0$, we have $p_r = \frac{1}{k_0} - \frac{1 - pk_0}{k_0} \left(-\frac{1}{k_0 - 1} \right)^r$.

9
Proof. The result is clearly true for \(r = 0 \). For the general case, in order to be at the node \(v \) after \(r \) steps, it must be in some other node one step earlier and it must move to the node \(v \) in the last step: \(p_r = (1 - p_{r-1}) \frac{1}{k_0 - 1} \). Subtracting \(p_{r-1} \) from \(p_r \), this gives us for all \(r \geq 2 \)

\[
p_r - p_{r-1} = (1 - p_{r-1}) \frac{1}{k_0 - 1} - (1 - p_{r-2}) \frac{1}{k_0 - 1} = (p_{r-1} - p_{r-2}) \left(-\frac{1}{k_0 - 1} \right).
\]

When we use this formula recursively, we obtain that, \(p_r - p_{r-1} = (p_1 - p_0) \left(-\frac{1}{k_0 - 1} \right)^{r-1} \) for all \(r \geq 1 \). Summing up from 1 to \(r \) gives

\[
\sum_{i=1}^{r} (p_i - p_{i-1}) = \sum_{i=1}^{r} \left((p_1 - p_0) \left(-\frac{1}{k_0 - 1} \right)^{i-1} \right), \quad \text{or,} \quad p_r = p_0 + (p_1 - p_0) \sum_{i=1}^{r} \left(-\frac{1}{k_0 - 1} \right)^{i-1}.
\]

We know that \(p_1 = (1 - p_0) \frac{1}{k_0 - 1} \) and \(p_0 = p \), so \(p_r = p_0 + \frac{1}{k_0 - 1} \left(-\frac{1}{k_0 - 1} \right)^{r} \). \(\square \)

Now define \(P_{k_0}(p) \) to be the probability of being at vertex \(v \) at the end of the first unit time if the probability of starting from vertex \(v \) equals to \(p \) and the initial number of vertices equals to \(k_0 \).

Proposition 3.3 We have \(P_{k_0}(p) = \frac{1}{k_0} - \frac{1 - pk_0}{k_0} e^{-\lambda k_0} \).

Proof. Proof follows via the use of Proposition 3.2 and the following observations:

\[
P_{k_0}(p) = \sum_{r=0}^{\infty} P(M_1 = r)p_r = \sum_{r=0}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} p_r = \sum_{r=0}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \left(\frac{1}{k_0} - \frac{1 - pk_0}{k_0} \left(-\frac{1}{k_0 - 1} \right) \right)^r
\]

\[
= \sum_{r=0}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \frac{1}{k_0} - \sum_{r=0}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \frac{1 - pk_0}{k_0} = \frac{1}{k_0} - \frac{1 - pk_0}{k_0} e^{-\lambda k_0}.
\]

\(\square \)

Let next \(Q(T, k_0) \) be the probability of being at the initial vertex at time \(T \) when the number of vertices is \(k_0 \) at the beginning. There are two cases for it to be at vertex \(v \) at time \(T \). Either it will be at vertex \(v \) at time \(T - 1 \), and it will be still at vertex \(v \) at time \(T \). Or it will be in another vertex at time \(T - 1 \) and jump to vertex \(v \) during the last interval.

Proposition 3.4 We have

\[
Q(T, k_0) = \left(\prod_{j=1}^{T} e^{-\frac{\lambda}{k_0} k_0 + j - 2} \right) \left(1 + \sum_{j=1}^{T} \frac{1 - e^{-\frac{\lambda}{k_0} k_0 + j - 2}}{(k_0 + j - 1) \prod_{i=1}^{j} e^{-\frac{\lambda}{k_0} k_0 + i - 2}} \right).
\]
Proof. Observe that \(Q(0, k_0) = 1\) and \(Q(1, k_0) = P_{k_0}(1) = \frac{1}{k_0} + \frac{k_0 - 1}{k_0} e^{-\frac{-\lambda k_0}{k_0 - 1}}\). If we recall the observation just before the statement of the proposition, we see that for \(T \geq 1\),

\[
Q(T, k_0) = \mathbb{P} (\text{being at initial vertex at time } T - 1 \text{ when starting with } k_0 \text{ vertices}) \cdot \mathbb{P} (\text{being at initial vertex at time } T - 1 \text{ when starting with } k_0 + T - 1) \cdot \mathbb{P} (\text{not being at initial vertex at time } T - 1 \text{ when starting with } k_0 \text{ vertices}) \cdot \mathbb{P} (\text{being at initial vertex at time } 1 \text{ when starting from another vertex with } k_0 + T - 1 \text{ vertices})
\]

Some elementary manipulations then give

\[
Q(T, k_0) = Q(T - 1, k_0) Q(1, k_0 + T - 1) + (1 - Q(T - 1, k_0)) \frac{1}{k_0 + T - 2} (1 - Q(1, k_0 + T - 1))
\]

Division of both sides by \(\prod_{i=1}^{T} e^{-\frac{\lambda (k_0 + T - 1 - i)}{k_0 + T - 2}}\) yields

\[
\frac{Q(T, k_0)}{\prod_{i=1}^{T} e^{-\frac{\lambda (k_0 + T - 1 - i)}{k_0 + T - 2}}} = \frac{Q(T - 1, k_0)}{\prod_{i=1}^{T-1} e^{-\frac{\lambda (k_0 + T - 1 - i)}{k_0 + T - 2}}} + \frac{1 - e^{-\frac{\lambda (k_0 + T - 1)}{k_0 + T - 2}}}{(k_0 + T - 1) \prod_{i=1}^{T} e^{-\frac{\lambda (k_0 + T - 1 - i)}{k_0 + T - 2}}}.
\]

Summing up these expressions from 1 to \(T\), and multiplication by \(\prod_{i=1}^{T} e^{-\frac{\lambda (k_0 + T - 1 - i)}{k_0 + T - 2}}\) conclude the proof.

Next we will calculate \(E_{P_k}^{k_0}\) which is defined to be the expected number of visits to vertex \(v\) by the end of the first unit time when the probability of starting from vertex \(v\) equals to \(p\) and the initial number of vertices equals to \(k_0\).

Proposition 3.5 We have \(E_{P_k}^{k_0} = \frac{\lambda}{k_0} + \frac{1 - p k_0}{k_0} \left(1 - e^{-\frac{\lambda k_0}{k_0 - 1}}\right)\).
3 NUMBER OF VISITS TO THE INITIAL NODES

Proof. Recall that p_r is the probability of being at vertex v after r steps. We have

$$E_p^{k_0} = \sum_{r=0}^{\infty} P(M_1 = r)\mathbb{E}[$$number of visits to vertex v in r steps$]$$

$$= \sum_{r=0}^{\infty} P(M_1 = r) \left(\sum_{i=1}^{r} p_i\right) = \sum_{r=0}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \cdot \left(\sum_{i=1}^{r} p_i\right)$$

$$= \sum_{r=1}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \cdot \frac{1}{k_0} \left(1 - \frac{1 - pk_0}{k_0} \left(-\frac{1}{k_0 - 1}\right)^i\right)$$

$$= \sum_{r=1}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \cdot \left(\frac{r}{k_0} + \sum_{i=1}^{r-1} \left(\frac{1}{k_0 - 1}\right)^i\right)$$

$$= \lambda \sum_{r=1}^{\infty} \frac{e^{-\lambda} \lambda^{r-1}}{(r-1)!} + \sum_{r=1}^{\infty} \frac{e^{-\lambda} \lambda^r}{r!} \cdot \frac{1 - pk_0}{k_0^2} \cdot \left(1 - \left(\frac{1}{k_0 - 1}\right)^r\right)$$

$$= \lambda \frac{1}{k_0} + \frac{1 - pk_0}{k_0^2} \left(1 - e^{-\lambda} + e^{-\lambda} - e^{-\lambda \frac{k_0}{k_0-1}}\right) = \lambda \frac{1}{k_0} + \frac{1 - pk_0}{k_0^2} \left(1 - e^{-\lambda \frac{k_0}{k_0-1}}\right).$$

Definition $E_p^{k_0}[T]$ to be the expectation of number of visits to vertex v up to time T, when the probability of starting from vertex v equals to p and the number of vertices equals to k_0 at the beginning. In particular, $E_p^{k_0}[1] = E_p^{k_0} = \frac{\lambda}{k_0} + \frac{1 - pk_0}{k_0^2} \left(1 - e^{-\lambda \frac{k_0}{k_0-1}}\right)$. Our main result is on $E_p^{k_0}[T]$.

Theorem 3.1 We have $E_p^{k_0}[T] = \sum_{i=1}^{T-1} \left(\frac{\lambda}{k_0 + i} + \frac{1 - Q(i,k_0)(k_0 + i)^2}{(k_0 + i)^2} \left(1 - e^{-\lambda \frac{k_0 + i}{k_0 + i + 1}}\right)\right)$, where $Q(i,k_0)$'s are as given in Proposition 3.4.

Proof. We will sum up the expected values corresponding to each time interval. The probability of being at vertex v_1 at time i is $Q(i,k_0)$. The expected number of visits to v_1 from time i to $i+1$ is $E_p^{k_0}[1]$. We get

$$E_p^{k_0}[T] = \sum_{i=0}^{T-1} \left(E_p^{k_0+i}[1]\right) = \sum_{i=0}^{T-1} \left(\frac{\lambda}{k_0 + i} + \frac{1 - Q(i,k_0)(k_0 + i)^2}{(k_0 + i)^2} \left(1 - e^{-\lambda \frac{k_0 + i}{k_0 + i + 1}}\right)\right).$$

Acknowledgement. We would like to thank Nesin Mathematics Village for their kind hospitality where part of this work was done. The second author is supported partially by BAP grant 20B06P1. We would also like to thank the anonymous referee whose suggestions and corrections improved the paper significantly.
References

[1] Avin, C., M. Koucky and Z. Lotker, “How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs)”, ICALP 2008: Automata, Languages and Programming, pp. 121-132, 2008.

[2] Aldous, David, and Jim Fill, Reversible Markov chains and random walks on graphs, 2002.

[3] Brightwell, G. and P. Winkler, “Extremal cover time for random walks on trees”, Journal of Graph Theory, Vol. 14, pp. 547 - 554, 1990.

[4] Broder, A. Z., P. Raghavan, A. R. Karlin and E. Upfal, “Trading space for the time in undirected s – t connectivity”, SIAM Journal of Computing, Vol. 23, pp. 324-334, 1994.

[5] Cooper, C. and A. Frieze, “Crawling on simple models of web graphs.”, Internet Mathematics, Vol. 1, pp. 57-90, 2003.

[6] Ferrante, Marco, and Monica Saltalamacchia, “The coupon collector’s problem.” Materials matemàtiques (2014): 0001-35.

[7] Flajolet, P., D. Gardy and L. Thimonier, “Birthday paradox, coupon collectors, caching algorithms and self-organizing search”, Discrete Applied Mathematics, Vol. 39, No. 3, pp. 207 - 229, 1992.

[8] Meyn, Sean P., and Richard L. Tweedie, Markov chains and stochastic stability. Springer Science & Business Media, 2012.

[9] Norris, James R., and John Robert Norris, Markov chains. No. 2. Cambridge university press, 1998.

[10] Videla, Leonardo A. “Out-of-equilibrium random walks.” Advances in Applied Probability 52.3 (2020): 772-797.

[11] Wilmer, E. L., David A. Levin, and Yuval Peres, Markov chains and mixing times, American Mathematical Soc., Providence (2009).

[12] Zuckerman, D., “On the time to traverse all edges in a graph”, Information Process Letters, Vol. 38, pp. 335-337, 1991.