Review

Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Xanthium strumarium L.: A Review

Wenxiang Fan 1, Linhong Fan 1, Chengyi Peng 1, Qing Zhang 1, Li Wang 1, Lin Li 1, Jiaolong Wang 1, Dayong Zhang 1,2, Wei Peng 1,* and Chunjie Wu 1,*

1 School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; fax: +86-028-61801001 (W.P.); Tel.: +86-028-61801001 (W.P. & C.W.)
2 Sichuan Neautus Traditional Chinese Herb Limited Company, Chengdu 611731, China
* Correspondence: pengwei@cdutcm.com (W.P.); wucjcdtcm@163.com (C.W.); Tel.: +86-028-61801001 (W.P. & C.W.)

Received: 28 December 2018; Accepted: 16 January 2019; Published: 19 January 2019

Abstract: Xanthium strumarium L. (Asteraceae) is a common and well-known traditional Chinese herbal medicine usually named Cang-Er-Zi, and has been used for thousands of years in China. The purpose of this paper is to summarize the progress of modern research, and provide a systematic review on the traditional usages, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology of the X. strumarium. Moreover, an in-depth discussion of some valuable issues and possible development for future research on this plant is also given. X. strumarium, as a traditional herbal medicine, has been extensively applied to treat many diseases, such as rhinitis, nasal sinusitis, headache, gastric ulcer, urticaria, rheumatism bacterial, fungal infections and arthritis. Up to now, more than 170 chemical constituents have been isolated and identified from X. strumarium, including sesquiterpenoids, phenols, glycoside, alkaloids, fatty acid and others [4]. In addition, increasing evidence has indicated that X. strumarium possesses a wide spectrum of pharmacological activities including anti-allergic rhinitis (AR) effects, anti-tumor effects, anti-inflammatory and analgesic effects, insecticide and antiparasitic effects, antioxidant effects, antibacterial and antifungal effects, antidiabetic effects, antilipidemic effects and antiviral effects. However, further research should focus on investigating bioactive compounds and demonstrate the mechanism of its detoxification, and more reasonable quality control standards for X. strumarium should also be established.

Keywords: Xanthium strumarium L.; traditional usages; botany; phytochemistry; pharmacology; pharmacokinetics; toxicology

1. Introduction

Since 1963, the fruits of Xanthium strumarium L. have been listed in the Pharmacopoeia of the People’s Republic of China (CH.P.), and currently over 60 formulas containing the fruits of X. strumarium have been applied for treating various diseases, including rhinitis, nasal sinusitis, headache, gastric ulcer, urticarial, rheumatism, bacterial and fungal infections, and arthritis [1–3]. So far, many studies have been devoted to the pharmacological and phytochemical studies of X. strumarium, and more than 170 chemical compounds have been isolated and identified from this plant, including sesquiterpene lactones, phenols, glycoside, alkaloids, fatty acid and others [4]. In addition, increasing evidence has indicated that X. strumarium possesses a wide spectrum of pharmacological activities including...
analgesic and anti-inflammatory, antioxidant, hypoglycemic, anti-cancer, antibacterial and antifungal, anti-trypanosomal, anti-tussive activities, and effects on nervous and digestive systems, as well as other effects [1]. Nowadays, the fruits of *X. strumarium* remains a common Traditional Chinese Medicine (TCM) listed in the C.H.P, and atractyloside and chlorogenic acid are used as the quality indicator agents for evaluating quality of the fruits of *X. strumarium* [5].

In this paper, we systematically summarize the traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics as well as the safety aspects of *X. strumarium*, hoping that it could propel the research forward for applying the medicinal values of this plant completely. Moreover, potential research directions and emphasis on *Xanthium strumarium* L. are discussed as well.

2. Traditional Usages

X. strumarium has a long history for utilization as a medicinal plant in China due to its extensive biological and pharmacological activities. In particular, the fruit is the predominant medicinal part of *X. strumarium*, and is one of the most common used herbal medicines to treat rhinitis and headache for thousands years [6]. Before clinical use, the fruits of *X. strumarium* are often processed by stir-baking to a yellowish color, which aims to reduce toxicity and enhance efficacy. The first record of the pharmacological effects of this plant can be traced back to ShenNong BenCaoJing, which is the earliest monograph of TCM during the Eastern Han dynasty. In this monograph, it was used for the treatment of anemofrigid headache and rheumatic arthralgia. Then, in Mingyi Bielu which is another known TCM monograph, *X. strumarium* was recorded as an effective herbal medicine with the function of curing gonyalgalia. In Yaoxinglun, *X. strumarium* was described as an agent for treating hepatic heat and eye diseases. Subsequently, another famous monograph, Xinxiu Bencao, described *X. strumarium* with improving eyesight, antiepileptic and anti-inflammatory properties. Besides, *X. strumarium* was also listed in some other classical monographs of materia medica in China, such as Bencao Shiyi, Bencao Mengquan, Depei Bencao, Caomu Bianfang, Tianbao Bencao and others.

Currently, the fruits of *X. strumarium* have become an important traditional Chinese medicine commonly used in clinic for the treatment of nasal diseases (including acute and chronic rhinitis, allergic rhinitis (AR), nasosinusitis, and nasal obstruction), itching diseases, and painful diseases. In order to meet clinical needs better, various forms of formulas are developed, such as pills, tablets, granules, oral liquid, powders and others (Table 1). Furthermore, in India, *X. strumarium*, commonly known as Chotagokhru or Chotadhatura, are usually used to cure leucoderma, poisonous bites of insects, epilepsy, and biliousness [7]. In addition, several North American Indian tribes and Zuni tribes apply this plant to relieve constipation, diarrhoea and vomiting [1]. Besides, *X. strumarium* is also reported as a folk herbal medicine in Bangladesh for the treatment of urinary disorder, ear infection, diabetic, and gastric disorder [8].

Apart from clinical application, its potential capacity as a biodiesel feedstock has been proven. *X. strumarium* has very strong environmental adaptability and thus has numerous wild resources. The seed has a high oil content (42.34%) which gives potential annual output of 100,000 tons just in China [9]. Furthermore, the research in Pakistan also found the prospects of non-edible seed oils for use as biodiesel to solve the serious energy crisis [10].

Table 1. The traditional and clinical uses of *Xanthium strumarium* in China.

Preparation Name	Main Compositions	Traditional and Clinical Uses	References
Li Bi Tablets	Xanthii Fructus, Scutellariae Radix, Magnoliae Flos, Menthae Haplocalycis Herba, Angelicae Dahuricae Radix, Asar Radix Et Rhizoma, Taraxaci Herba	Curing common cold with nasal obstruction, nasosinusitis, turbid nasal discharge	“Chinese Pharmacopoeia (2010)” a
Shuang Xin Bi Dou Yan Ke Li	Xanthii Fructus, Magnoliae Flos, Angelicae Dahuricae Radix, Asar Radix Et Rhizoma, Lonicerae Japonicae Flos, Lonicerae Japonicae Caulis, Taraxaci Herba, Glycyrrhizae Radix Et Rhizoma, Platycodonis Radix, Chrysanthemi Flos, Scutellariae Radix, Paoniae Radix Rubra, Coicis Semen, Rehmanniae Radix	Treating nasosinusitis	“Guo Jia Zhong Cheng Yao Biao Zun” b
Preparation Name	Main Compositions	Traditional and Clinical Uses	References
------------------	-------------------	------------------------------	------------
Xiao Er Bi Yan Tablets	Xanthii Fructus, Ligustici Rhizoma Et Radix, Saposhnikoviae Radix, Angelicae Dahuricae Radix, Polygony Tintori Foliu, Taraxaci Herba, Cnicifugae Rhizoma, Glycyrrhizae Radix Et Rhizoma	Curing chronic rhinitis of child	“Zhong Yao Cheng Fang Zhi Ji” c
Yu Yuan Wan	Xanthii Fructus, Scutellariae Radix, Gardeniae Fructus, Schrophulariae Radix, Magnoliae Flos, Ophiopogonis Radix, Lycii Cortex, Paonae Radix Rubra, Forsythiae Fructus, Angelicae Dahuricae Radix, Menthae Haplocalyx Herba, Schizonepetae Herba, Glycyrrhizae Radix Et Rhizoma, Platycodonis Radix	Treating redness and swelling of the nostrils, swelling and pain in throat	“Zhong Yao Cheng Fang Zhi Ji” c
Yi Xuan Ning Jiao Nang	Xanthii Fructus, Chrysanthemi Flos, Arisaema Cum Bile, Scutellariae Radix, Bambusae Caulyis in Taenias, Ostreae Concha, Crataege Fructus, Citri Reticulatae Pericarpium, Paonae Radix Alba Poria, Lycii Fructus	Treating hyperactivity of liver-yang, vertigo due to deficiency of Qi and blood	“Xin Yao Zhuan Zheng Biao Zhum” d
Qing Re Zhi Ke Li	Xanthii Fructus, Scutellariae Radix, Fritillariae Thunbergii Bulbus, Paridis Rhizoma, Commelinae Herba, Anemarrhenae Rhizoma, Gypsum Fibrosum, Citri Reticulatae Pericarpium, Auranti Fructus, Armeniacae Semen Amarum, Platycodonis Radix	Curing cough, phlegm, fever, pharyngalgia, thirst, chest tightness, dry stool, yellow urine due to pulmonary retention of phlegmoperiyxia; acute bronchitis, acute exacerbation of chronic bronchitis	“Xin Yao Zhuan Zheng Biao Zhum” d
Di Tong Bi Yan Liquid	Xanthii Fructus, Taraxaci Herba, Asari Radix Et Rhizoma, Scutellariae Radix, Ephedrae Radix, Acori Tatarinowii Rhizoma, Angelicae Dahuricae Radix, Magnoliae Flos	Curing common cold with nasal obstruction, chronic rhinitis, allergic rhinitis, nasosinusitis	“Zhong Yao Cheng Fang Zhi Ji” c
Di Tong Bi Yan Liquid Pen Wu Ji	Xanthii Fructus, Scutellariae Radix, Taraxaci Herba, Ephedrae Radix, Magnoliae Flos, Angelicae Dahuricae Radix, Asari Radix Et Rhizoma, Acori Tatarinowii Rhizoma	Curing common cold with nasal obstruction, chronic rhinitis, allergic rhinitis, nasosinusitis	“Xin Yao Zhuan Zheng Biao Zhum” d
Fu Yang Chong Ji	Xanthii Fructus, Chuanxiong Rhizoma, Carthami Flos, Kochiae Fructus	Treating pruritus, eczema, urticaria	“Zhong Yao Cheng Fang Zhi Ji” c
Dan Xiang Bi Yan Tablets	Xanthii Fructus, Pogostemonis Herba, Angelicae Dahuricae Radix, Centipedi Herba, Schizonepetae Herba, Lonicerae Japonicae Flos, Chrysanthemi Indici Flos	Curing chronic simple rhinitis, allergic rhinitis, acute and chronic rhinitis, and nasosinusitis	“Zhong Yao Cheng Fang Zhi Ji” c
Nao Ning Tablets	Xanthii Fructus, Polygona Rhizoma, Epimedi Foliu, Ophiopogonis Radix, Ginseng Radix Et Rhizoma Rubra, Polygalae Radix, Ziziphi Spinose Semen, Schisandrae Chinensis Fructus, Lycii Fructus, Cervi Cornus Pantotrichum, Testudinis Carapax Et Plastrum, Poria, Jujubae Fructus, Rehmanniae Radix Praeparata, Cervi Cornus Colla	Curing neurasthenia, forgetfulness and insomnia, dizziness and palpitation, weariness of body, weak heat and spontaneous perspiration, impotence and spermatorrhea	“Zhong Yao Cheng Fang Zhi Ji” c
Nao Ning Su Tablets	Xanthii Fructus, Polygona Rhizoma, Lycii Fructus, Poria, Epimedi Foliu, Polygalae Radix, Jujubae Fructus, Schisandrae Chinensis Fructus, Ziziphi Spinose Semen, Ophiopogonis Radix, Testudinis Carapax Et Plastrum, Cervi Cornus Pantotrichum, Cervi Cornus Colla, Rehmanniae Radix Praeparata, Ginseng Radix Et Rhizoma	Curing neurasthenia, forgetfulness and insomnia, dizziness and palpitation, weariness of body, weak heat and spontaneous perspiration, impotence and spermatorrhea	“Zhong Yao Cheng Fang Zhi Ji” c
Qin Zhi Bi Yan Tang Jiang	Xanthii Fructus, Scutellariae Radix, Angelicae Dahuricae Radix, Ephedrae Herba, Magnoliae Flos, Centipedi Herba, Menthae Haplocalyx Herba	Treating acute rhinitis	“Chinese Pharmacopoeia (2015)” a
Cang Yi Di Bi You	Xanthii Fructus, Angelicae Dahuricae Radix, Borneolum Syntheticum	Curing nasosinusitis, nasal obstruction and runny nose	“Zhong Yao Cheng Fang Zhi Ji” c
Cang Xin Qi Wu Ji	Xanthii Fructus, Magnoliae Flos, Asari Radix Et Rhizoma, Angelicae Dahuricae Radix, Copidis Rhizoma	Curing nasal obstruction, rhinocenesus, sneeze, allergic rhinitis, acute and chronic rhinitis	“Guo Jia Zhong Cheng Yao Biao Zhum” b
Xin Yi Bi Yan Pills	Xanthii Fructus, Magnoliae Flos, Menthae Haplocalyx Herba, Perillae Foliu, Glycyrrhizae Radix Et Rhizoma, Pogostemonis Herba, Centipedi Herba, Satidis Radix, Angelicae Dahuricae Radix, Saposhnikoviae Radix, Houttuyniae Herba, Chrysantheni Flos	Treating allergic rhinitis, chronic rhinitis, nervous headache, cold and rhinorrhea, nasal obstruction	“Zhong Yao Cheng Fang Zhi Ji” c
Xin Qin Chong Ji	Xanthii Fructus, Asari Radix Et Rhizoma, Scutellariae Radix, Schizonepetae Herba, Saposhnikoviae Radix, Angelicae Dahuricae Radix, Astragli Radix, Atractylodis Macrocephalae Rhizoma, Cinnamomi Ramulus, Acori Tatarinowii Rhizoma	Curing allergic rhinitis due to deficiency of lung qi	“Zhong Yao Cheng Fang Zhi Ji” c
Preparation Name	Main Compositions	Traditional and Clinical Uses	References
------------------	-------------------	-------------------------------	------------
Xin Qin Tablets	Xanthii Fructus, Asari Radix Et Rhizoma, Scutellariae Radix, Schizonepetae Herba, Saposhnikoviae Radix, Angelicae Dahuricae Radix, Astragali Radix, Atractylodis Macrocephalae Rhizoma, Cinnamomum Ramulus	Curing allergic rhinitis, deficiency of lung qi, exogenous pathogenic wind	“Xin Yao Zhuan Zheng Biao Zhun” d
Xin Qin Ke Li	Xanthii Fructus, Asari Radix Et Rhizoma, Scutellariae Radix, Schizonepetae Herba, Saposhnikoviae Radix, Angelicae Dahuricae Radix, Astragali Radix, Atractylodis Macrocephalae Rhizoma, Cinnamomum Ramulus, Acori Tatarinovii Rhizoma	Curing rhinocnesmus, sneeze, rhinorrhea, cold, allergic rhinitis	“Chinese Pharmacopoeia (2010)” a
Tong Qiao Bi Yan Tablets	Xanthii Fructus, Saposhnikoviae Radix, Astragali Radix, Magnoliae Flos, Atractylodis Macrocephalae Rhizoma, Menthae Haplocalycis Herba	Curing nasal obstruction, rhinorrhea, rhinocnesmus, forehead headache, chronic rhinitis, allergic rhinitis, nasosinusitis	“Chinese Pharmacopoeia (2010)” a
Tong Qiao Bi Yan Jiao Nang	Xanthii Fructus, Saposhnikoviae Radix, Astragali Radix, Magnoliae Flos, Atractylodis Macrocephalae Rhizoma, Menthae Haplocalycis Herba	Curing nasal obstruction, rhinorrhea, rhinocnesmus, forehead headache, chronic rhinitis, allergic rhinitis, nasosinusitis	“Xin Yao Zhuan Zheng Biao Zhun” d
Tong Qiao Bi Yan Ke Li	Xanthii Fructus, Astragali Radix, Magnoliae Flos, Atractylodis Macrocephalae Rhizoma, Menthae Haplocalycis Herba	Curing nasal obstruction, rhinorrhea, rhinocnesmus, forehead headache, chronic rhinitis, allergic rhinitis, nasosinusitis	“Chinese Pharmacopoeia (2015)” a
Fang Zhi Bi Yan Tablets	Xanthii Fructus, Chrysanthemi Indici Flos, Centipedeae Herba, Angelicae Dahuricae Radix, Saposhnikoviae Radix, Xanthii Fructus, Astragali Radix, Ephedrae Herba, Paeoniae Radix Alba, Arisaema Cum Bile, Glycyrrhize Radix Et Rhizoma, Tribuli Fructus	Curing sneeze, nasal obstruction, headache, allergic rhinitis, nasosinusitis	“Zhong Yao Cheng Fang Zhi Ji” c
Bi Yan Qing Du Ji	Xanthii Fructus, Chrysanthemi Indici Flos, Paridis Rhizoma, Zanthoxyli Radix, Prunellae Spica, Gentianae Radix Et Rhizoma, Codonopsis Radix	Treating chronic inflammation of nasopharynx, swelling and pain in throat	“Zhong Yao Cheng Fang Zhi Ji” c
Bi Yan Qing Du Ke Li	Xanthii Fructus, Chrysanthemi Indici Flos, Paridis Rhizoma, Zanthoxyli Radix, Prunellae Spica, Gentianae Radix Et Rhizoma, Codonopsis Radix	Treating chronic inflammation of nasopharynx	“Chinese Pharmacopoeia (2015)” a
Bi Yuan Pills	Xanthii Fructus, Magnoliae Flos, Lonicerae Japonicae Flos, Rubiae Radix Et Rhizoma, Chrysanthemi Indici Flos	Curing nasal obstruction, nasosinusitis, ventilation lack, rhinorrhea, anosmia, headache, pain of superciliary ridge	“Chinese Pharmacopoeia (2010)” a
Bi Yuan He Ji	Xanthii Fructus, Magnoliae Flos, Lonicerae Japonicae Flos, Rubiae Radix Et Rhizoma, Chrysanthemi Indici Flos	Curing nasal obstruction, nasosinusitis, ventilation lack, rhinorrhea, anosmia, headache, pain of superciliary ridge	“Xin Yao Zhuan Zheng Biao Zhun” d
Bi Yuan Tablets	Xanthii Fructus, Magnoliae Flos, Lonicerae Japonicae Flos, Rubiae Radix Et Rhizoma, Chrysanthemi Indici Flos	Curing chronic rhinitis, nasosinusitis	“Zhong Yao Cheng Fang Zhi Ji” c
Bi Yuan Shu Kou Fu Ye	Xanthii Fructus, Magnoliae Flos, Menthae Haplocalycis Herba, Angelicae Dahuricae Radix, Scutellariae Radix, Gardeniae Fructus, Bupleuri Radis, Asari Radix Et Rhizoma, Chuanxiong Rhizoma, Astragali Radix, Clematidis Armandii Caulis, Platycodonis Radix, Poria	Curing rhinitis, nasosinusitis	“Chinese Pharmacopoeia (2010)” a
Bi Yuan Shu Jiao Nang	Xanthii Fructus, Magnoliae Flos, Menthae Haplocalycis Herba, Angelicae Dahuricae Radix, Scutellariae Radix, Gardeniae Fructus, Bupleuri Radis, Asari Radix Et Rhizoma, Chuanxiong Rhizoma, Astragali Radix, Clematidis Armandii Caulis, Platycodonis Radix, Poria	Curing rhinitis, nasosinusitis	“Chinese Pharmacopoeia (2010)” a
Bi Yuan Tong Qiao Ke Li	Xanthii Fructus, Magnoliae Flos, Angelicae Dahuricae Radix, Menthae Haplocalycis Herba, Ligustici Rhizoma Et Radix, Scutellariae Radix, Forsythiae Fructus, Chrysanthemi Indici Flos, Trichosanthis Radix, Paeoniae Radix Alba, Artemisiae Salviae Miltiorrhizae Radix Et Rhizoma, Poria, Glycyrrhize Radix Et Rhizoma	Curing acute nasosinusitis, nasal obstruction, headache, fever	“Chinese Pharmacopoeia (2015)” a
Bi Yan Ling Pills	Xanthii Fructus, Magnoliae Flos, Angelicae Dahuricae Radix, Asari Radix Et Rhizoma, Scutellariae Radix, Fritillariae Cirrhosae Bulbus, Sojaee Semen Praeparatum	Curing nasosinusitis, nasal obstruction, chronic rhinitis	“Zhong Yao Cheng Fang Zhi Ji” c
Bi Yan Ling Tablets	Xanthii Fructus, Magnoliae Flos, Angelicae Dahuricae Radix, Asari Radix Et Rhizoma, Scutellariae Radix, Fritillariae Cirrhosae Bulbus, Sojaee Semen Praeparatum	Treating chronic nasosinusitis, rhinitis, nasal obstruction and headache, anosmia	“Zhong Yao Cheng Fang Zhi Ji” c
The capitula are discoid, whose female (proximal) or functionally male (distal) are in racemiform enclosed in the hardened involucre, with two hooked beaks and hooked bristles [11,12]. Male capitula are saucer-shaped, 3–5 mm in diameter. The achenes are black, fusiform, obovoid, and both surfaces are hirtellous or strigose, usually with gland-dotted, margin entire or toothed. The capitula are discoid, whose female (proximal) or functionally male (distal) are in racemiform enclosed in the hardened involucre, with two hooked beaks and hooked bristles [11,12]. Male capitula are saucer-shaped, 3–5 mm in diameter. The achenes are black, fusiform, obovoid, and both surfaces are hirtellous or strigose, usually with gland-dotted, margin entire or toothed.

3. Botany

Xanthium, belonging to the Asteraceae family, is a taxonomically complex genus, which includes more than 20 species in the world and three species and one varietas in China [8]. _Xanthium strumarium_ L. (Figure 1) is an annual herb approximately 20–90 cm in height, its stems are erect, branched, often speckled with purple and have short white hairs scattered across the surface. Leaves are green, cauline, mostly alternate (proximal 2–6 sometimes opposite) with petiole, which are 5–20 cm long and 4–16 cm wide; the shape of blades are lanceolate, linear, ovate, orbicular-deltate, or suborbicular, and both surfaces are hirtellous or strigose, usually with gland-dotted, margin entire or toothed. The capitula are discoid, whose female (proximal) or functionally male (distal) are in racemiform to spiciform arrays or borne singly (in axils). The female capitula are elliptic, 2–5 mm in diameter; Male capitula are saucer-shaped, 3–5 mm in diameter. The achenes are black, fusiform, obovoid, enclosed in the hardened involucre, with two hooked beaks and hooked bristles [11,12].

![Figure 1. Xanthium strumarium L. A–D represent the whole plants (A), leaves (B), inflorescence (C) and fruits (D) of X. strumarium L.](image)
This plant is widely distributed all over the world, including Russia, Iran, India, North Korea and Japan. It is native to China and widely distributed in the area of Northeast China, Southwest China, North China, East China and South China. It often grows in plains, hills, mountains and wilderness roadsides. The flowering time ranges from July to August, and fruiting stage lasts from September to October in China [1].

4. Phytochemistry

So far, many phytochemical studies of *X. strumarium* have been conducted, and more than 170 compounds have been isolated and identified from this plant. Among them, sesquiterpenes and phenylpropanoids are the most abundant and major bioactive constituents in *X. strumarium*, and are considered as the characteristic constituents of this plant. In addition to the chemical constituents found in fruits, constituents in other parts of *X. strumarium* were also comprehensively reported, including leaves, roots and stems, etc. In this section, the identified compounds are listed in the following table and the corresponding structures are also comprehensively presented. (Table 2, Figures 2–12).

Table 2. Chemical constituents isolated from *X. strumarium*.

Classification	No.	Chemical Component	Part of Plant	Reference
	1	sibirolide A	Fruits	[13]
	2	sibirolide B	Fruits	[13]
	3	norxanthantolide A	Fruits	[13]
	4	norxanthantolide B	Fruits	[13]
	5	norxanthantolide C	Fruits	[13]
	6	norxanthantolide D	Fruits	[13]
	7	norxanthantolide E	Fruits	[13]
	8	norxanthantolide F	Fruits	[13]
	9	1β-hydroxy-5α-chloro-8-epi-xanthatin	Aerial parts	[14]
	10	11α,13-dihydro-8-epi-xanthatin	Aerial parts	[14]
	11	xanthinin	Leaves	[15]
	12	xanthumin	Leaves	[15]
	13	xanthanol	Leaves	[15]
	14	xanthanol Acetate	Leaves	[15]
	15	iso xanthanol	Leaves	[15]
	16	xanthumanol	Leaves	[16]
	17	deacetoxylxanthumin	Leaves	[16]
	18	xanthatin	Leaves	[16]
	19	xanthinosin	Leaves	[16]
	20	tomentosin	Leaves	[17]
	21	8-epi-tomentosin	Leaves	[17]
	22	11α,13-dihydroxanthuminol	Leaves	[18]
	23	desacetylxantholin	Leaves	[18]
	24	(2E,4E,1'S,5'S,6'R)-dihydrophaseic acid	Fruits	[19]
	25	8-epi-xanthatin	Aerial parts	[20]
	26	2-hydroxy xanthinosin	Aerial parts	[21]
	27	lasidiol p-methoxybenzoate	Leaves	[18]
	28	1β, 4β, 4α,5α-diepoxyxanth-11(13)-en-12-oic acid	Aerial parts	[22]
	29	11α,13-dihydroxanthatin	Aerial parts	[22]
	30	4β,5β-epoxyxanth-11(13)-en-12-oic acid	Aerial parts	[22]
	31	4-epi-xanthanol	Aerial parts	[22]
	32	4-epi-isoxanthanol	Aerial parts	[22]
	33	4-oxo-bedfordia acid	Aerial parts	[22]
	34	2-hydroxytomentosin	Aerial parts	[20]
	35	2-hydroxytomentosin-1β,5β-epoxide	Aerial parts	[20]
	36	xantholin	Aerial parts	[21]
	37	6β,9β-dihydroxy-8-epi-xanthatin	Leaves	[21]
	38	irusoniolide	Aerial parts	[21]
	39	(35S,5R,6R,7E)-5,6-epoxy-3-hydroxy-7-megastigmen-9-one	Fruits	[14]
	40	pungiolide E	Aerial parts	[25]
	41	pungiolide A	Aerial parts	[25]
	42	pungiolide D	Aerial parts	[25]
	43	5-azuleneacetic acid	Aerial parts	[21]
	44	dihydrophaseic acid sodium salt 4’-O-β-D-glucopyranoside	Fruits	[26]
	45	(35S,5R,6R,7E,9β)-megastigman-7ene-3,5,6,9-tetrol-3-O-β-D-glucopyranoside	Aerial parts	[27]

Classification	No.	Chemical Component	Part of Plant	Reference
Triterpenoids	46	betulinic acid	Roots	[28]
	47	betulin	Roots	[28]
	48	erythrodiol	Roots	[28]
	49	lup-20(29)-en-3β-ol	Aerial parts	[27]
No.	Classification	Chemical Component	Part of Plant	Reference
-----	----------------	-------------------	--------------	-----------
50	Triterpenoids	lupenyl acetate	Aerial parts	[29]
51	Triterpenoids	lupeol acetate	Whole plants	[30]
52	Triterpenoids	β-amyrin	Aerial parts	[31]
53	Triterpenoids	oleanolic acid	Aerial parts	[31]
54	Triterpenoids	α-amyrin	Leaves	[32]
55	Phenylpropenoids	1,3,5-tri-O-cafeoylquinic acid	Fruits	[33]
56	Phenylpropenoids	3,5-di-O-cafeoylquinic acid	Fruits	[33]
57	Phenylpropenoids	neochlorogenic acid	Fruits	[34]
58	Phenylpropenoids	1,3-di-O-cafeoylquinic acid	Fruits	[34]
59	Phenylpropenoids	methyl-3,5-di-O-cafeoylquinic acid	Fruits	[34]
60	Phenylpropenoids	chlorogenic acid	Fruits	[35]
61	Phenylpropenoids	1,4-di-O-cafeoylquinic acid	Fruits	[35]
62	Phenylpropenoids	4,5-di-O-cafeoylquinic acid	Fruits	[35]
63	Phenylpropenoids	5-O-cafeoylquinic acid	Fruits	[35]
64	Phenylpropenoids	1,5-di-O-cafeoylquinic acid	Fruits	[36]
65	Phenylpropenoids	3,4-di-O-cafeoylquinic acid	Fruits	[37]
66	Phenylpropenoids	3,5-di-O-cafeoylquinic acid	Fruits	[37]
67	Phenylpropenoids	1,4-di-O-cafeoylquinic acid	Fruits	[37]
68	Phenylpropenoids	4,5-di-O-cafeoylquinic acid	Fruits	[37]
69	Phenylpropenoids	5-O-cafeoylquinic acid	Fruits	[37]
70	Phenylpropenoids	xanthiazone-(2-O-cafeoyl)-β-D-glucopyranoside	Whole plants	[44]
71	Phenylpropenoids	rel-(2α,3β,5β)-7-O-methylcedrusin	Fruits	[42]
72	Phenylpropenoids	caffeic acid choline ester	Fruits	[46]
73	Phenylpropenoids	3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one	Fruits	[41]
74	Phenylpropenoids	3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one	Fruits	[41]
75	Phenylpropenoids	1,3-propanediol	Fruits	[42]
76	Phenylpropenoids	1,5,2R,1,2,6,7-8,9,10-dehydrodiconiferyl alcohol	Fruits	[42]
77	Phenylpropenoids	3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one	Fruits	[42]
78	Phenylpropenoids	3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one	Fruits	[42]
79	Phenylpropenoids	3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one	Fruits	[42]
80	Phenylpropenoids	xanthiunonic B	Fruits	[40]
81	Phenylpropenoids	xanthiunonic C	Fruits	[40]
82	Phenylpropenoids	xanthiunonic D	Fruits	[40]
83	Phenylpropenoids	xanthiunonic E	Fruits	[40]
84	Phenylpropenoids	xanthiunonic F	Fruits	[40]
85	Phenylpropenoids	xanthiunonic G	Fruits	[40]
86	Phenylpropenoids	xanthiunonic H	Fruits	[40]
87	Phenylpropenoids	xanthiunonic I	Fruits	[40]
88	Phenylpropenoids	xanthiunonic J	Fruits	[40]
89	Phenylpropenoids	xanthiunonic K	Fruits	[40]
90	Phenylpropenoids	xanthiunonic L	Fruits	[40]
91	Phenylpropenoids	xanthiunonic M	Fruits	[40]
92	Phenylpropenoids	xanthiunonic N	Fruits	[40]
93	Phenylpropenoids	xanthiunonic O	Fruits	[40]
94	Phenylpropenoids	xanthiunonic P	Fruits	[40]
95	Phenylpropenoids	xanthiunonic Q	Fruits	[40]
96	Phenylpropenoids	xanthiunonic R	Fruits	[40]
97	Phenylpropenoids	xanthiunonic S	Fruits	[40]
98	Phenylpropenoids	xanthiunonic T	Fruits	[40]
99	Phenylpropenoids	xanthiunonic U	Fruits	[40]
100	Phenylpropenoids	xanthiunonic V	Fruits	[40]
101	Phenylpropenoids	xanthiunonic W	Fruits	[40]
102	Phenylpropenoids	xanthiunonic X	Fruits	[40]
103	Phenylpropenoids	xanthiunonic Y	Fruits	[40]
104	Phenylpropenoids	xanthiunonic Z	Fruits	[40]
105	Phenylpropenoids	xanthiunonic A	Fruits	[40]
106	Phenylpropenoids	xanthiunonic B	Fruits	[40]
107	Phenylpropenoids	xanthiunonic C	Fruits	[40]
108	Phenylpropenoids	xanthiunonic D	Fruits	[40]
109	Phenylpropenoids	xanthiunonic E	Fruits	[40]
110	Phenylpropenoids	xanthiunonic F	Fruits	[40]
111	Phenylpropenoids	xanthiunonic G	Fruits	[40]
112	Phenylpropenoids	xanthiunonic H	Fruits	[40]
Table 2. Cont.

Classification	No.	Chemical Component	Part of Plant	Reference
Lignanoids	113	1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-trihydroxypropyl)-2-methoxy]-phenoxo-1,3-propanediol	Fruits	[48]
	115	syringaresinol	Roots	[39]
	116	fructusol A	Fruits	[42]
	117	balanophonin	Fruits	[24]
	118	4-exominoaresinol	Roots	[28]
	119	pinosinol	Fruits	[24]
Coumarins	120	jatrocin B	Roots	[39]
	121	clemsisomin A	Roots	[39]
	122	clemsisomin C	Roots	[39]
	123	scopoletin	Roots	[39]
Coumarins	124	stigmast-4-en-β-ol-3-one	Roots	[39]
	125	β-sitostene	Roots	[39]
	126	β-sitosterol	Fruits, Leaves	[39]
	127	daucosterol	Roots	[39]
	128	5α,8α-epidioxy-2E-ergosta-6,22-dien-3β-ol	Roots	[39]
	129	6β-hydroxy-stigmaster-4,22-dien-3-one	Roots	[28]
	130	6β-hydroxy-stigmaster-4-en-3-one	Roots	[28]
	131	3-oxo-∆4,6-sitostene	Roots	[28]
Steroids	132	β-daucosterol	Roots	[28]
	133	β-stigmastereol	Roots	[28]
	134	7-ketoestisterol	Roots	[28]
	135	stigmastereol	Aerial parts	[31]
	136	β-sitosterol-3-O-β-D-glucopyranoside	Aerial parts	[31]
	137	ergosterol	Whole plants	[30]
	138	taraxasteryl acetate	Whole plants	[30]
	139	7α-hydroxy-β-sitosterol (stigmast-5-ene-3β,7α-diol)	Fruits	[24]
	140	stigmast-4-ene-3β,6α-diol	Fruits	[24]
	141	14-methyl-12,13-dehydro-sitosterol-heptadecanone	Leaves	[32]
Glycosides	142	atрактиloside	Fruits	[49]
	143	carboxyatraktloside	Burns	[50]
	144	3β-norpinan-2-one-3-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside	Fruits	[41]
	145	8-O-β-D-glucopyranoside	Fruits	[41]
	146	8-O-β-D-glucopyranoside	Fruits	[41]
	147	7-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranosyl]oxymethyl]-8,9-dimethyl-4,8-dihydrobenzo[1,4]thiazine-3,5-dione	Fruits	[41]
	148	3′,4′-didesulfated-atрактиloside	Fruits	[46]
	149	2-methyl-3-buten-2-ol-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside	Fruits	[51]
	150	everlastoside C	Fruits	[51]
Flavonoids	151	ononin	Fruits	[43]
	152	quercetin	Fruits	[37]
	153	allopialtin	Fruits	[37]
	154	patuletin-3-glucuronide	Fruits	[34]
Flavonoids	155	quercetin-3-O-glucuronide	Fruits	[34]
	156	formononemin	Fruits	[43]
Thiazides	157	xanthiazone	Fruits	[36]
	158	2-hydroxy-xanthiazone	Fruits	[42]
	159	11-O-β-D-glucopyranoside	Fruits	[43]
	160	2-hydroxy-7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzo[1,4]thiazine-3,5-dione-11-O-β-D-glucopyranoside	Fruits	[43]
	161	7-Hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzo[1,4]thiazine-3,5-dione-(2-O-cafeiny)-β-D-glucopyranoside	Fruits	[52]
Anthraquinones & naphthoquinones	162	xanthaldehyde	Fruits	[53]
	163	chrysophanic acid	Fruits	[54]
	164	emodin	Fruits	[54]
	165	aloe emodin	Fruits	[54]
	166	5-hydroxy-3,6-dimethoxy-7-methyl-1,4-napthalenedione	Roots	[28]
Other compounds	167	5-methyluracil	Roots	[39]
	168	uracil	Roots	[39]
	169	sibiricumthionol	Fruits	[19]
	170	indole-3-carbaldehyde	Fruits	[45]
	171	N-(1′-D-deoxyxylitolyl)-6,7-dimethyl-1,4-dihydro-2,3-quinoxalinedione	Fruits	[38]
	172	nonadecanoic acid	Roots	[39]
	173	hexadecanoic acid	Leaves	[32]
4.1. Sesquiterpenoids and Triterpenoids

Sesquiterpenoids have many important biological functions and physiological activities, which are abundant in *X. strumarium*. Sesquiterpene lactones, the main characteristic components of plants in the Asteraceae family, exhibit strong activities with anti-microbial, antiviral, anti-tumor and anti-inflammation [55,56]. The predominant sesquiterpene lactones are the guaiane type and seco-guaiane type, of which xanthanolides are the important active constituent. In 2015, eight sesquiterpenes were isolated from the fruits of *X. strumarium*, including sibirolide A (1), sibirolide B (2) and norxanthanolide A–F (3–8) [13]. In addition, 1β-hydroxyl-5α-chloro-8-epi-xanthatin (9) and 11α, 13-dihydro-8-epi-xanthatin (10) were isolated from the aerial parts of *X. strumarium* [14]. Moreover, xanthinin (11), xanthumin (12), xanthanol (13), xanthanol acetate (14), iso-xanthanol (13), xanthumanol (16), de-acetoxyxanthumin (17), xanthatin (18), xanthinosin (19), tomentosin (20) were isolated from the leaves of *X. strumarium* [15,16]. Furthermore, other sesquiterpenoids were isolated and identified from the fruits, leaves and aerial parts of *X. strumarium*, including 8-epi-tomentosin (21) [17], 11α,13-dihydroxanthuminol (22), desacetyl xanthanol (23) [18], (2E,4E,1'S,2'R,4'S,6'R)-dihydrophaseic acid (24) [19], 8-epi-xanthatin (25) [20], 2-hydroxy xanthinosin (26) [21], lasidiol p-methoxybenzoate (27) [18], 1β,4β, 4α,5α-diepoxyxanth-11(13)-en-12-oic acid (28), 11α,13-dihydroxanthatin (29), 4β, 5β-epoxyxanthatin-1α,4α-endoperoxide (30), 4-epi-xantholin (31), 4-epi-isoxantholin (32), 4-oxo-bedfordia acid (33) [22], 2-hydroxytomentosin (34), 2-hydroxytomentosin-1β,5β-epoxide (35) [20], xanthnon (36) [21], 6β,9β-dihydroxy-8-epi-xanthatin (37) [25], inusoniolide (38) [21], (3S,5R,6S,7E)-5,6-epoxy-3-hydroxy-7-megastigmene-9-one (39) [24], pungiolide E (40), pungiolide A (41), pungiolide D (42) [25], 5-azuleneacetic acid sodium salt 4’-O-β-D-glucopyranoside (44) [26], (3S,5R,6R,7E,9S)-megastigman-7ene-3,5,6,9-tetrol-3-O-β-D-glucopyranoside (45) [27].

Triterpenoids are another important kind of biomolecule found in *X. strumarium*. Nine triterpenoids including betulinic acid (46), botulin (47), erythrodiol (48) [28], lup-20(29)-en-3β-ol (49) [27], lupenyl acetate (50) [29], lupeol acetate (51) [30], β-amyrin (52), oleanolic acid (53) [31] and α-amyrin (54) [32] are reported from this plant. The chemical structures of these sesquiterpenoids and triterpenoids isolated from *X. strumarium* are shown in Figures 2 and 3.
β,5β-epoxide (35) [20], xanthnon (36) [21], 6β,9β-dihydroxy-8-epi-xanthatin (37) [25], inusoniolide (38) [21], (3S,5R,6S,7E)-5,6-epoxy-3-hydroxy-7-megastigmene-9-one (39) [24], pungiolide E (40), pungiolide A (41), pungiolide D (42) [25], 5-azuleneacetic acid (43) [21], dihydrophaseic acid sodium salt 4'-O-β-D-glucopyranoside (44) [26], (3S,5R,6R,7E,9S)-megastigman-7ene-3,5,6,9-tetrol-3-O-β-D-glucopyranoside (45) [27].

Triterpenoids are another important kind of biomolecule found in X. strumarium. Nine triterpenoids including betulinic acid (46), botulin (47), erythrodiol (48) [28], lup-20(29)-en-3β-ol (49) [27], lupenyl acetate (50) [29], lupeol acetate (51) [30], β-amyrin (52), oleanolic acid (53) [31] and α-amyrin (54) [32] are reported from this plant. The chemical structures of these sesquiterpenoids and triterpenoids isolated from X. strumarium are shown in Figures 2 and 3.

Figure 2. Cont.
Figure 2. Chemical structures of the sesquiterpenoids in X. strumarium.
Phenylpropanoids are also important active constituents found in *X. strumarium*. To date, 45 phenylpropanoids have been reported in this plant. Phenolic acids, mainly chlorogenic acid, are considered to be the main anti-inflammatory and analgesic active ingredients and the highest content of organic acids [57]. The phenolic acids in *X. strumarium* contain caffeic acid, ferulic acid, and protocatechuic acid, etc. However, studies have shown that factors such as origin, harvesting time, processing time and temperature have obvious effects on the content of phenolic acid in *X. strumarium* [58]. Thirteen caffeoylquinic acids (CQA) derivatives were isolated from *X. strumarium*, including 1,3,5-tri-(4’-hydroxy-3’-methoxy)-1,3-propanediol (75), (4’)-hydroxy-3’-methoxy)-1,3-propanediol (72) [19], isovanillic acid ([36]), protocatechuic acid ([83]) [19], isovanillic acid ([84]) [30], 7-(4-hydroxy-3-methoxyphenyl)-1-phenyleth-4-en-3-one ([85]) [28], xanthiazone-(2-O-cafeoyl)-β-D-glucopyranoside ([86]) [44], rel-(2α,3β)-7-O-methylcedrusin ([87]) [42], caffeic acid choline ester ([88]) [38], icariside
D1 (89) [45], 3-methoxy-4-hydroxy-transcinnamaldehyde (90) [24], methylchlorogenate (91) [46], icariside F2 (92), arbutin (93), coniferine (94) [45], 3-hydroxy-1-(4-hydroxy-phenyl)-propan-1-one (95) [47], ω-hydroxypropioguaiacone (96) [45], caffeic acid ethyl ester (97) [19], 4-hydroxy-3-methoxycinnamaldehyde (98) [37], p-hydroxybenzaldehyde (99) [24], The chemical structures of these phenylpropenoids isolated from X. strumarium are shown in Figure 4.
4.3. Lignanoids and Coumarins

In recent years, some studies found that *X. strumarium* contain lignanoids and coumarins, moreover, 21 lignanoids and four coumarins have been discovered in this plant and are displayed in Figures 5 and 6. In 2017, xanthiumnolic B (100) was found from the fruits of *X. strumarium* and its anti-inflammatory activity has been demonstrated [40]. Later, 14 lignanoids were also isolated from the fruits of *X. strumarium*, including (-)-1-O-β-D-glucopyranosyl-2-{2-methoxy-4-[1-(E)-propen-3-ol]phenoxyl} -propane-3-ol (101), leptolepisol D (102), dihydrodehydrodiconiferyl alcohol (103), chushizisin E (104), (-)-(2R)-1-O-β-D-glucopyranosyl-2-{2-methoxy-4-[Eformylvinyl]phenoxyl}propane-3-ol (105), (-)-7R,8S-dehydrodiconiferyl alcohol (106), (-)-simulanol (107), 2-(4-hydroxy-3-methoxyphenyl)-3-(2-hydroxy-5-methoxyphenyl)-3-oxo-1-propanol (108), diospyrosin (109), dehydrodiconiferyl alcohol (110), balanophonin A (111), threo-dihydroxydehydrodiconiferyl alcohol (112), 1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-trihydroxypropyl)-2-methoxy]-phenoxy-1,3-propandiol (113), 7R,8S-dihydrodehydrodiconiferyl alcohol 4-O-β-D-glucopyranoside (114) [48]. Furthermore, syringaresinol (115) [39], fructusol A (116) [42], balanophonin (117) [24], 4-oxopinoresinol (118) [28], pinoresinol (119) [24] were identified from the plant.

In 2011, Kan et al. isolated four coumarins from the roots of *X. strumarium* for the first time, including scopoletin (120), Jatrocin B (121), cleomiscosin A (122), cleomiscosin C (123) [39].
Figure 5. Chemical structures of the lignanoids in *X. strumarium*.

Figure 6. Chemical structures of the coumarins in *X. strumarium*.
4.4. Steroids

A few studies have been conducted investigating the steroids in *X. strumarium*. In 2010, β-sitostenone (124), β-sitosterol (125), daucosterol (126), stigmast-4-en-β-ol-3-one (127), and 5α-δ-epidioxy-22E-ergosta-6,22-dien-3β-ol (128) were isolated from *X. strumarium* [39]. Furthermore, Chen et al. found 6β-hydroxy-stigmast-4,22-dien-3-one (129), 6β-hydroxy-stigmast-4-en-3-one (130), 3-oxo-Δ4,5-sitostenone (131), β-daucosterol (132), β-stigmasterol (133) and 7-ketositosterol (134) from the roots of *X. strumarium* [28].

Lately, stigmasterol (135), β-sitosterol-3-O-β-D-glucopyranoside (136) [31], ergosterol (137), taraxasteryl acetate (138) [30], 7α-hydroxy-β-sitosterol(stigmast-5-ene-3β,7α-diol) (139), stigmast-4-ene-3β,6α-diol (140) [24] and 14-methyl-12,13-dehydro-sitosterol-heptadecenate (141) [32] were isolated and identified in *X. strumarium*. The chemical structures of these steroids isolated from *X. strumarium* are shown in Figure 7.

![Figure 7. Chemical structures of the steroids in X. strumarium.](image-url)
4.5. Glycosides

In 1962, Song et al. isolated a toxic glycoside component named AA2 from the fruits of X. strumarium, which has been authenticated as atractyloside (142) by Wang in 1983 [49,59]. Subsequently, John et al. found another toxic ingredient known as carboxyatractyloside (143) in 1975 [50]. Research showed that the content of atractyloside in X. strumarium could be reduced after stir-flying, and its toxicity could be reduced. [60] Lately, seven other glycosides were separated from the fruits of X. strumarium, such as 3β-norpinan-2-one 3-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (144), (6Z)-3-hydroxymethyl-7-methylocta-1,6-dien-3-ol 8-O-β-D-glucopyranoside (145), (6E)-3-hydroxymethyl-7-methylocta-1,6-dien-3-ol 8-O-β-D-glucopyranoside (146), 7-[(β-D-apiofuranosyl-(1→6)-β-D-glucopyranosyl)oxyethyl]-8,8-dimethyl-4,8-dihydrobenzo[1,4]thiazine-3,5-dione (147) [41], 3′,4′-dedisulphated-tractyloside (148) [46], 2-methyl-3-buten-2-ol-phated-tractylosideimethy-D-glucopyranoside (149), everlastoside C (150) [51], and all glycosides are displayed in Figure 8.

4.6. Flavonoids

Flavonoids are common chemical components in plants all over the world. Six flavonoids including ononin (151) [43], quercetin (152), allopatauletin (153) [37], patuletin-3-glucuronide (154), quercetin-3-O-glucuronide (155) [34], formononetin (156) [43] have been isolated from this plant and are presented in Figure 9.
4.7. Thiazides

To this day, six thiazides from *X. strumarium* have been reported. In 1997, xanthiazone (157) was isolated from the aqueous acetone extract of the fruits [36]. Furthermore, 2-hydroxy-xanthiazone (158) [42], 7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]-thiazine-3,5-dione-11-O-β-D-glucopyranoside (159), 2-hydroxy-7-hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-11-O-β-D-glucopyranoside (160) [43], 7-Hydroxymethyl-8,8-dimethyl-4,8-dihydrobenzol[1,4]thiazine-3,5-dione-(2-O-cafeoyl)-β-D-glucopyranoside (161) [52], and xanthialdehyde (162) [53] were identified from this plant (Figure 10).

![Chemical structures of the Thiazides in X. strumarium.](image1)

A few studies have been focused on anthraquinones in *X. strumarium*. In one report in 2005, Huang et al. found chrysophanic acid (163), emodin (164) and aloe emodin (165) in the fruits of *X. strumarium* [54]. Then, the 5-hydroxy-3,6-dimethoxy-7-methyl-1,4-naphthalenedione (166), a new naphthoquinone, was isolated from the roots of *X. strumarium* [28] (Figure 11).

![Chemical structures of the anthraquinones and naphthoquinones in X. strumarium.](image2)
4.8. Other Compounds

Apart from these major types of phytochemical compounds mentioned above, there are some other chemical ingredients isolated from X. strumarium, including 5-methyluracil (167), uracil (168) [39], sibiricumthionol (169) [19], indole-3-carbaldehyde (170) [45], N-(1’-D-deoxyxylitolyl)-6,7-dimethyl-1,4-dihydro-2,3-quinoxalinedione (171) [38], nonadecanoic acid (172) [39], hexadecanoic acid (173) [32] (Figure 12).

5. Pharmacology

5.1. Anti-AR Effect

X. strumarium is a traditional medicine widely used in the treatment of nasal diseases, especially allergic rhinitis (AR). In modern pharmacological study, the mechanism of X. strumarium in treating AR has been studied extensively. In 2003, it was reported that WEX inhibited compound 48/80 (C48/80)-induced systemic anaphylaxis in mice (0.01 to 1 g/kg, p.o.), and the mechanism may be related to the inhibition of histamine and TNF-α released from rat peritoneal mast cells (RPMC) [61,62]. In 2008, Zhao et al. found that WEX (0.25–1 mg/mL) can modulate the human mast cell-mediated and peripheral blood mononuclear cell (PBMNC)-mediated inflammatory and immunological reactions which induced by pro-inflammatory cytokines including interleukin (IL)-4, IL-6, IL-8, GM-CSF and TNF-α [63]. Furthermore, the MEX is found to possess the inhibitory effect on the activation of C48/80 stimulated mast cells, and the mechanism was correlated to inhibit Ca²⁺ uptake and histamine release, and increase cAMP in RPMC [64]. In addition, in 2014, Peng et al. demonstrated that the caffeoylxanthiazonoside (CXT) (5, 10, 20 mg/kg, p.o.) isolated from the fruits of X. strumarium was helpful to alleviate the nasal symptoms of ovalbumin (OVA) induced AR rats via anti-allergic, down-regulating IgE, anti-inflammatory and analgesic properties [65].

5.2. Anti-Tumor Effect

Anti-tumor effects are also regarded as primary pharmacological properties of X. strumarium, and have been extensively investigated in lung cancer, breast cancer, cervical cancer, colon cancer, liver cancer, meningioma, and leukemia.

Tao et al. studied the inhibitory effect of xanthatin (1-40 μM), an active agent in X. strumarium, against lung cancer cells (Cell lines of A549, H1975, H1299, H1650 and HCC827) and its potential mechanisms [66,67]. It found that xanthatin could downregulate the STAT3, GSK3β and β-catenin, moreover, xanthatin could also trigger Chk1-mediated DNA damage and destabilize Cdc25C via lysosomal degradation [66–68]. In 1995, Ahn et al. isolated three cytotoxic compounds from the leaves of X. strumarium, among them, xanthatin and 8-epi-xanthatin possessed obvious anti-tumor activity on A549 cells with IC₅₀ (half maximal inhibitory concentration) values of 1.3 and 1.1 μg/mL, respectively [17]. Later, in 2002, it was reported that 1,8-epi-xanthatin epoxide has notable anti-tumor
effect against A549 cells with IC\textsubscript{50} value of 3.0 \textmu M [69]. Furthermore, Wang et al. and Ferrer et al. reported that 8-epi-xanthatin-1α,5α-epoxide, 1β-hydroxyl-5α-chloro-8-epi-xanthatin and EEXA can inhibit the proliferation of A549 cells (IC\textsubscript{50} = 9.5 \textmu M, 20.7 \textmu M and 52.2 \textmu g/mL, respectively) [25,70].

In 2007, by using CellTiter 96 assay in vitro, Ramiréz-Erosa et al. found that xanthatin and xanthinosin, two sesquiterpene lactones isolated from the burs of X. strumarium, obviously restrain the proliferation of breast cancer MDA-MB-231 cells with the IC\textsubscript{50} values of 13.9 and 4.8 \textmu g/mL, respectively [71]. Furthermore, Takeda et al. studied the mechanism of xanthatin against breast cancer MDA-MB-231 cells in 2011, and the results indicated that xanthatin (5–25 \textmu M) inhibits cell growth via inducing caspase independent cell death which were irrelevant with FTase inhibition [72]. In addition, xanthatin (2.5–10 \textmu M) can also up-regulate GADD45γ tumor suppressor gene, and induce the prolonged expression of c-Fos via N-acetyl-l-cysteine-sensitive mechanism [73,74]. In 2016, the anti-tumor activity of EEXA on MFC7 cells was reported as well, with an IC\textsubscript{50} value of 70.6 \textmu g/mL [70].

In 2015, Vaishnav et al. demonstrated that WEX with a concentration of 12.5–50 \textmu g/mL were able to induce death in HeLa cervical cancer cells by altering the antioxidant levels [75]. Recently, Liu et al. revealed that xanthatin (5–20 \textmu M) targeted the selenocysteine (Sec) residue of thioredoxin reductase (TrxR) and inhibited the enzyme activity irreversibly [76]. Meanwhile, the inhibition of TrxR by xanthatin promoted oxidative stress-mediated apoptosis of HeLa cells.

In 1995, Ahn et al. reported that xanthatin and 8-epi-xanthatin were remarkably cytotoxic to colon cancer HCT-15 cells with ED\textsubscript{50} (median effective dose) values of 1.1 and 0.1 \textmu g/mL, respectively [17]. Later, in 2007, Ramírez-Erosa et al. (2007) found that xanthatin (IC\textsubscript{50} = 6.15 \textmu g/mL) and xanthinosin (IC\textsubscript{50} = 6.15 \textmu g/mL) possessed the function of inhibiting WiDr cells growth [71]. Furthermore, eremophil-1(10),11(13)-dien-12,8β-olide, 8-epi-xanthatin-1β,5β-epoxide and tomentosin were isolated from the aerial parts of X. strumarium, and their anti-tumor activities on BGC-823 cells and KE-97 cells were also determined. The related results showed that the IC\textsubscript{50} values of three compounds on BGC-823 cells are 13.22, 2.43, and 4.54 \textmu M, respectively. Similarly, IC\textsubscript{50} values of three compounds on BGC-823 cells are 4.41, 1.44, and 3.47 \textmu M, respectively [77]. Moreover, Zhang et al. reported that xanthatin (3.9–18.6 \textmu M) inhibited the proliferation of MKN-45 cells by inducing G2/M cell cycle arrest and apoptosis [78]. Later, in 2015, Karmakar et al. found that xanthinosin (8 \textmu M) and lasidiol p-methoxybenzoate (16 \textmu M) potentiate both extrinsic and intrinsic TRAIL-mediated apoptosis pathways and also decreased the level of cell survival protein Bcl-2 in AGS cells [20]. Simultaneously, fructusnoid C (IC\textsubscript{50} = 7.6 \textmu M) also reported to exhibit cytotoxic effects on AGS cells [79]. EEXA and CFEEXA have been identified as the active ingredients against the growth of CT26 cells with IC\textsubscript{50} values of 58.9 and 25.3 \textmu g/mL, respectively [70].

Furthermore, the anti-tumor effects of X. strumarium on liver cancers have also been reported in recent years. In 2013, Wang et al. found that the 1β-hydroxyl-5α-chloro-8-epi-xanthatin possessed significant in vitro cytotoxicity with an IC\textsubscript{50} value of 5.1 \textmu M against SNU387 cells [25]. Later, in 2017, the cytotoxic effects of MEX and EAFMEX on HepG2 cells were verified as LC\textsubscript{50} (Lethal Concentration 50) values of 112.9 and 68.739 \textmu g/mL [80]. Furthermore, Liu et al. demonstrated that xanthatin (5–40 \textmu M) can induce HepG2 cells apoptosis by inhibiting thioredoxin reductase and eliciting oxidative stress [76].

Additionally, an investigation in 1995 indicated that Xanthatin and 8-epi-xanthatin both have cytotoxic effects on SK-MEL-2 cells with ED\textsubscript{50} values 0.5 and 0.2 \textmu g/mL, respectively [17]. In 2012, the EEEXS showed notable inhibitory activity on Mel-Ab cells through downregulation of tyrosinase via GSK3β phosphorylation at concentrations of 1–50 \textmu g/mL [81]. Later, in 2013, Li et al. reported the anti-tumor effects of xanthatin both in vitro and in vivo. Previous results showed that xanthatin (2.5–40 \textmu M) possess a remarkable anti-proliferative effect against B16-F10 cells, and the related mechanism probably associated with activation of Wnt/β-catenin pathway as well as inhibition of angiogenesis. Meanwhile, the in vivo evidence in mice (xanthatin, 0.1–0.4 mg/10 g, i.p.) also verified the results mentioned above [82].
In 1994, DFEEXA was reported to be toxic to leukemia P-388 cells with an IC\(_{50}\) value of 1.64 µg/mL [83]. In addition, results of Nibret et al. showed that xanthatin has significant cytotoxic on HL-60 cells in 2011 [84]. Another report in 2017 reported that both MEX and EAFMEX have inhibitory effects on Jurkat cells, and EAFMEX showed higher toxicity to Jurkat cells when compared to MEX [80]. Besides, in 1995, Ahn et al. found that xanthatin and 8-epi-xanthatin have cytotoxic effects on CNS carcinoma XF-498 cells, and the ED\(_{50}\) values were 1.7 and 1.3 µg/mL, respectively [17]. In 2013, Pan et al. reported that WEX can cause significant cytotoxic effects on arcoma S180 cells in vivo (S180 cells bearing mice, 5–20 g/kg) [85]. The in vitro anti-proliferative activity of CEXR and MEXR on laryngeal cancer HEP-2 cells were implemented at doses of 12.5–100 µg/mL, and the two extracts of X. strumarium showed potent cytotoxic activities against the HEP-2 cells [86].

5.3. Anti-Inflammatory and Analgesic Effects

In 2004, it was reported that WEX (10, 100 and 1000 µg/mL) inhibited inflammatory responses in Lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages via decreasing IFN-\(\gamma\), LPS-induced NO production and TNF-\(\alpha\) production in a dose dependent manner [87]. Furthermore, in 2005, Kim et al. evaluated the anti-inflammatory and anti-nociceptive activities of MEX both in vitro and in vivo, it showed that the MEX (30, 60 and 90 mg/mL) can down-regulate the production of NO, PGE\(_2\) and TNF-\(\alpha\), and MEX treatment (100 and 200 mg/kg/day, p.o.) clearly reduced carrageenan induced hind paw edema in rats [88]. In addition, MEX (100 and 200 mg/kg/day, p.o.) significantly reduced the amount of writhing induced by acetic acid, and increased jumping response latency in a hot plate test. Later, in 2008, xanthatin and xanthinosin were reported to inhibit LPS-induced inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression in microglial BV-2 cells with IC\(_{50}\) values of 0.47 and 11.2 µM, respectively [89]. By using LPS inhibition assay and animal model of inflammation (carrageenan induced hind paw edema), the MEXL (100, 200 and 400 mg/kg) showed obvious anti-inflammatory activity both in vitro (IC\(_{50}\) = 87 µg/mL) and in vivo [90]. A report in 2015 showed that MEXR (50–400 µg/mL) can suppress inflammatory responses via the inhibition of nuclear factor-\(\kappa\)B (NF-\(\kappa\)B) and signal transducer and activator of transcription 3 (STAT3) in LPS-induced murine macrophages [91]. Moreover, the WEX was found to restrain LPS-induced inflammatory responses through suppressing NF-\(\kappa\)B activation, inhibiting JNK/p38 MAPK phosphorylation, and enhancing HO-1 expression in macrophages [92]. In 2016, Hossen et al. demonstrated that the inhibitory effect of MEX on the inflammatory disease possibly related to signaling inhibition of MAPK and AP-1 [93]. In another study, Hossen et al. found the potential anti-inflammatory activity of MEXA on LPS-treated macrophages and an HCl/EtOH-induced mouse model of gastritis by inhibiting PDK1 kinase activity and blocking signaling to its downstream transcription factor, NF-\(\kappa\)B [94]. Later, in 2017, Jiang et al. found a new phenylpropanoid derivative named Xanthiumnolic E isolated from X. strumarium, which has notable inhibitory effect on LPS-induced nitric oxide (NO) production with IC\(_{50}\) value of 8.73 µM [26].

Additionally, X. strumarium was confirmed to inhibit some other kinds of inflammatory and painful diseases. In 2011, Huang et al. suggested that WEX inhibited the development of paw edema induced by carrageenan, and exhibited inhibitory activity on acetic acid effect and reduced the formalin effect at the late-phase (0.1, 0.5 and 1.0 g/kg, p.o.) [95]. In addition, the NFEEX at doses of 0.5, 0.75 and 1.0 mg/ear showed strong anti-inflammatory activity in the croton-oil-induced ear edema test, and reduced the amount of writhing induced by acetic acid in mice in a dose-dependent manner (100, 200 and 400 mg/kg) [96]. A report in 2011 demonstrated the anti-inflammatory activity of xanthatin by inhibiting both PGE\(_2\) synthesis and 5-lipoxygenase activity at doses of 100 and 97 mg/mL, respectively [84]. Furthermore, Park et al. first explained the anti-inflammatory mechanism of EEX, which inhibited TNF-\(\alpha\)/IFN-\(\gamma\)-induced expression of Th2 chemokines (TARC and MDC) by blocking the activation of the NF-\(\kappa\)B, STAT1 and ERK-MAPK pathways in HaCaT keratinocytes [97]. The hot plate test, acetic acid induced writhing test and formalin test were applied to evaluate the analgesic
activity of EEX, and it showed significant analgesic activity at concentrations of 250 and 500 mg/kg body weight [98].

5.4. Insecticide and Antiparasitic Effects

In 1995, Talakal et al. reported that EEXL possess anti-plasmodial activity against *Trypanosoma evansi* both in vitro and in vivo. The EEXL exhibited trypanocidal activity at all the four tested doses at 5, 50, 500 and 1000 µg/mL in vitro, and it can significantly prolong the survival period of the *T. evansi* infected mice at concentrations of 100, 300 and 1000 mg/kg [99]. In 2011, xanthatin was demonstrated to be the dominating insecticidal active compound against *Trypanosoma brucei brucei* with an IC₅₀ value of 2.63mg/mL and a selectivity index of 20 [84]. In addition, Go¨kce et al. showed that MEX exhibited both ingestion toxicity and ovicidal activity to *Paralobesia viteana* with an LC₅₀ of 11.02% (w/w) [100]. In 2012, by using schizont inhibition assay, the anti-plasmodial activity of EEXL against *Plasmodium berghei* was assessed, and it showed significant activity (IC₅₀ = 4 µg/mL) and high selectivity index in vitro [101]. Later, in 2014, Roy et al. found that WEXL had distinct insecticidal properties against *Callosobruchus chinensis* with strong toxicity, repellent properties, inhibited fecundity and adult emergence of the insects at 1%, 2% and 4% concentrations [102]. Moreover, it is reported that EEX revealed anti-nematode activity against *Meloidogyne javanica* in inhibiting egg hatching and inducing mortality among second stage juveniles (J2s) [103]. Furthermore, the effect of MEX on the mortality rates of *Aedes caspius* and *Culex pipiens* were investigated, and the results revealed that the LC₅₀ values of MEX were found to be 531.07 and 502.32 µg/mL against *A. caspius* and *C. pipiens*, respectively [80].

5.5. Antioxidant Effect

In 2010, it was reported that CEXR and MEXR showed significant free radical scavenging activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method with LC₅₀ values of 10.28 and 40.40 µg/mL, respectively [86]. After administration of PEEXW (250 and 500 mg/kg, p.o., for 20 days), the contents of superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase significantly increased in rats’ brain [104]. Later, in 2011, Huang et al. found that WEXL had distinct antioxidant properties against *Callisosbruchus chinensis* with strong toxicity, repellent properties, inhibited fecundity and adult emergence of the insects at 1%, 2% and 4% concentrations [102]. Moreover, it is reported that EEX revealed anti-nematode activity against *Meloidogyne javanica* in inhibiting egg hatching and inducing mortality among second stage juveniles (J2s) [103]. Furthermore, the effect of MEX on the mortality rates of *Aedes caspius* and *Culex pipiens* were investigated, and the results revealed that the LC₅₀ values of MEX were found to be 531.07 and 502.32 µg/mL against *A. caspius* and *C. pipiens*, respectively [80].
5.6. Antibacterial and Antifungal Effects

In 1983, Mehta et al. reported that the WEXFT possessed antimicrobial properties against *Vibrio cholera* [109]. Later, a study in 1997 revealed that the xanthatin isolated from the leaves of *X. strumarium* had notable potent activities against *Staphylococcus epidermidis*, *Bacillus cereus*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Salmonella typhi* with minimum inhibitory concentration (MIC) values of 31.3, 62.5, 31.3, 125 and 125 µg/mL, respectively [110]. In addition, it is reported that MEXL (500 and 100 mg/mL) exhibited strong activity against *K. pneumoniae*, *Proteus vulgaris*, *P. aeruginosa*, *Pseudomonas putida*, *Salmonella typhimurium*, *B. cereus*, *Bacillus subtilis* and *S. epidermidis* [111]. In 2015, Chen et al. also reported that *β*-sitosterol and *β*-daucosterol isolated from the *X. strumarium* have significant inhibitory effects against *Escherichia coli*, with MIC values of 0.17 and 0.35 mg/mL, respectively [112]. By using the disc diffusion method, Devkota et al. determined the antibacterial activity of MEXL and WEXL, and results showed that the two extracts inhibited growth towards *K. pneumoniae*, *Proteus mirabilis*, *E. coli*, *B. subtilis*, *Enterococcus faecalis* and *Staphylococcus aureus* at concentrations of 50, 100, 150, 200 and 250 mg/mL [113]. Moreover, Sharifi-Rad et al. revealed that EOXL can significantly suppress the growth of *S. aureus*, *B. subtilis*, *K. pneumoniae* and *P. aeruginosa* with MIC values of 0.5, 1.3, 4.8 and 20.5 µg/mL, respectively; additionally, EOXL (30, 60 and 120 mg/mL) also exhibited obvious antibacterial activity against Shiga toxin-producing *Escherichia coli* [114,115]. Furthermore, Wang et al. revealed that WEX possessed antibacterial potentials against *S. aureus* and *E. coli* with MIC values of 31.25 and 7.81 mg/mL, respectively [116]. Using the disk diffusion, the antibacterial activity of EOXF on *Rathayibacter toxicus* and *Pyricularia oryzae* was evaluated, and the MIC values were 25 and 12.5 µg/mL, respectively [108].

Similar to the antibacterial potentials, the antifungal activities of *X. strumarium* were also deeply investigated. In the year of 2002, Kim et al. found an antifungal constituent from *X. strumarium*, which was named deacetylxanthomin. It can inhibit mycelial growth and zoospore germination of *Phytophthora drechsleri* with a MIC value of 12.5 µg/mL [117]. In 2011, Yanar et al. used radial growth technique to test the antifungal activities of MEX against *Phytophthora infestans*, and the MEX showed the lowest MIC value of 2.0% w/v which was lower than the standard fungicide (Metalaxyl 4% + Mancuzeb 64%, MIC value was 2.5%, w/v) [118]. Later, in 2015, Sharifi-Rad et al. investigated the antifungal ability of EOXL on *Candida albicans* and *Aspergillus niger*, and the MIC values were 55.2 and 34.3 µg/mL, respectively [114]. In vitro, using the disk diffusion method, the EOXL exhibited strong inhibition against *Pyricularia oryzae* and *Fusarium oxysporum* with MIC values of 12.5 and 50 µg/mL, respectively [108]. Furthermore, the EOXL showed remarkable growth inhibition of a wide spectrum of fungal strains, such as *A. niger*, *Aspergillus flavus*, *F. oxysporum*, *Fusarium solani*, *Alternaria alternata* and *Penicillium digitatum* with both MIC and MBC (minimum bactericidal concentration) values of 8 µg/mL [119].

5.7. Antidiabetic Effect

In 1974, Kupiecki et al. found that the WEX (15 and 30 mg/kg, i.p.) exhibited potent hypoglycemic activity in normal rats in a dose-dependent manner [120]. In 2000, the antidiabetic effect of caffeic acid isolated from *X. strumarium* was investigated on both streptozotocin-induced and insulin-resistant rat models. The results showed that caffeic acid (0.5–3.0 mg/kg, i.v.) can decrease the plasma glucose level via increasing the glucose utilization [121]. In 2011, Narendiran et al. found that MEXS at the doses of 100 and 200 mg/kg (p.o., for 30 days) had remarkable diabetic activity in normal-glycemic and streptazocin induced hyperglycemic rats [105]. A report in 2013 demonstrated that the methyl-3,5-di-O-cafeoylquinate showed strong ability to counteract diabetic complications via competitive inhibition of aldose reductase (AR) and galactitol formation in rat lenses [47]. In addition, it is reported that the CFMEXL exhibited notable inhibitory activity on α-glucosidase enzyme with the IC\textsubscript{50} value of 72 µg/mL. [122]. Similarly, another study found that MEX also had a strong α-glucosidase inhibitory effect with IC\textsubscript{50} value of 15.25 µg/mL [28].
5.8. Antilipidemic Effect

Recently, investigations into the antilipidemic effects of *X. strumarium* have been conducted. In 2011, the CEXR and EEXR were evaluated for anti-lipidemic activity in Triton WR-1339 induced hyperlipidemia in Swiss albino rats. The results showed that CEXR and EEXR (200 and 400 mg/kg p.o.) can significantly decrease the contents of plasma cholesterol, TG, LDL, and VLDL and increase plasma HDL levels, which was possibly related to their significant antioxidant activity [106]. Later, in 2016, Li et al. found that WEX (570 and 1140 mg/kg, p.o., for 6 weeks) could improve the synthesis of fatty acid and TG, thus decreased the circulating free fatty acid (FFA) levels, indicating that WEX is involved in solving the abnormality of FFA in the circulation, which is executed by promoting the storage of the excess fat, rather than the elimination of added fat [123]. Furthermore, after treatment with WEX (3.7 and 11.11 g/kg, p.o., for 4 weeks), the blood glucose, TC, TG, LDLC levels decreased and HDLC levels increased in diabetic mice [124].

5.9. Antiviral Activity

In 2009, it was reported that the WEX (0.01, 0.1 and 1.0 g/kg, i.g., for 10 days) possessed antiviral activity against duck hepatitis B virus, and it can delay pathological changes [125]. In addition, five compounds were isolated from the fruits of *X. strumarium*, and their antiviral abilities were also evaluated. The results indicated that norxanthantolide F, 2-desoxy-6-epi-parthemollin, xanthatin, threo-guaiaacylglycerol-8′-vanillic acid ether and caffeic acid ethyl ester exhibited notable activity against influenza A virus with IC₅₀ values of 6.4, 8.6, 8.4, 8.4 and 3.7 µM, respectively by a cytopathic effect (CPE) inhibition method [13].

5.10. Other Pharmacological Effects

Apart from the pharmacological effects displayed above, *X. strumarium* also possesses some other activities. In 2016, the CXT (10, 20, and 40 mg/kg, i.p.) isolated from fruits of *X. strumarium* showed significant anti-septic activity in animal models of Cecal ligation and puncture (CLP) operation. Meanwhile, the CXT can increase survival rates of septic mice induced by CLP and decrease TNF-α and IL-6 levels induced by LPS in serum of mice [126]. After treatment with WEX (570 and 1140 mg/kg p.o., for 6 weeks), the glucose tolerance and insulin sensitivity improved, meanwhile, lipogenesis increases and lipid oxidation decreased in the liver of high-fat diet rats [127]. In 2014, Lin et al. demonstrated that the EEX (75 and 300 mg/kg, p.o.) can significantly inhibit paw swelling and arthritic score and increase body weight loss and decrease the thymus index in animal model of rheumatoid arthritis induced by Complete Freund’s Adjuvant (CFA) [128]. Moreover, the overproduction of TNF-α and IL-1β was notably suppressed in the serum of all EEX-treated rats. The anti-pyretic activity of MEXW (200 and 400 mg/kg, p.o.) was estimated on yeast induced hyperpyrexia, and it showed significant reduction in elevated body temperature [129]. Using Maximal Electroshock (MES) and Pentylenetetrazole (PTZ) induced seizures models, the anticonvulsant activity of PEEXW was tested, and results showed that PEEXW can reduce the mean duration of extensor phase and delay onset of myoclonic spasm and clonic convulsion of treated groups at doses of 250 and 500 mg/kg [130]. In 2016, Panigrah et al. explored the antiulithiatic effect of HEEXB, and showed that HEEXB can restore the impairment induced by ethylene glycol including hyperoxaluria, crystalluria, hypocalciuria, polyurea, raised serum urea, creatinine, erythrocytic lipid peroxidise and nitric oxide, kidney calcium content as well as crystal deposition. The mechanism may be related to inhibition of various pathways involved in renal calcium oxalate formation, antioxidant property and down regulation of matrix glycoprotein, osteopontin (OPN) [131]. A report in 2012 indicated the antiulcer effect of EEXL in pylorus ligation induced gastric ulcers, and its gastro-protective mechanism may be due to DNA repair, free radical scavenging and down regulation of oxidativenitrosative stress along with cytokines [132]. In an in vivo study, with the CXT treatment (10, 20 and 40 mg/kg, p.o.), the cardiac hypertrophy reduced and
fractional shortening (FS), ejection fraction (EF), cardiac output (CO) and heart rate (HR) reversed via suppressing the expression of pro-inflammatory cytokines and the NF-κB signaling pathway [133].

5.11. Summary of Pharmacologic Effects

In conclusion, *X. strumarium* has a wide range of pharmacological effects including anti-AR effects, anti-tumor effects, anti-inflammatory and analgesic effects, insecticide and antiparasitic effects, antioxidant effects, antibacterial and antifungal effects, antidiabetic effects, antilipidemic effects, and antiviral effects. (Table 3). It is noteworthy that the research areas of modern pharmacy primarily focus on chemical components and extracts, which indicated the promising potential of *X. strumarium* for treating disease. Nevertheless, the chemical constituents and corresponding pharmacological effects of *X. strumarium* are not systematically sorted out and analyzed. Therefore, it is necessary to investigate the pharmacological activity, structure-activity relationship and mechanism of *X. strumarium* both in vitro and in vivo experiments in the future.

Table 3. Pharmacological effects of *X. strumarium*.

Effects	Detail	Extracts/Compounds	Concentration/Dose	In Vivo/In vitro	Reference
Anti-AR effects	Inhibiting C 48/80-induced systemic anaphylaxis	WEX	Mice, 0.01–1 g/kg (p.o.)	in vivo	[61,62]
	Inhibiting histamine and TNF-α released from RPMC	WEX	RPMC, 0.01–1 mg/mL	in vitro	[63]
	Modulating the HMC-1- and PBMNC-mediated inflammatory and immunological reactions	WEX	HMC-1, PBMNC, 0.25–1 mg/mL	in vitro	[63]
	Inhibiting histamine and cAMP released from RPMC	MEX	RPMC, 20–500 µg/mL	in vitro	[64]
	Ameliorate the nasal symptoms of OVA induced AR rats via anti-allergic, down-regulating IgE; anti-inflammatory and analgesic properties	CXT	Rats, 5, 10, 20 mg/kg (p.o.)	in vivo	[65]
Lung cancer	Growth inhibition by suppression of STAT3, GSK3β and β-catenin	xanthatin	Cell lines of A549, H1975, H1299, H1650 & HCC827, 1–40 µM	in vitro	[66–68]
	Triggering Chk1-mediated DNA damage and destabilization of Gdc25C via lysosomal degradation	xanthatin	xanthatin		
	Cytotoxic effects on A549 cell	xanthatin	IC₅₀ = 1.1 µg/mL in vitro	[17]	
	8-epi-xanthatin IC₅₀ = 3.0 µM in vitro	8-epi-xanthatin	IC₅₀ = 3.0 µM in vitro	[69]	
	8-epi-xanthatin epoxide IC₅₀ = 1.3 µg/mL in vitro	8-epi-xanthatin	IC₅₀ = 1.3 µg/mL in vitro	[17]	
	8-epi-xanthatin-1α, 5α-epoxide IC₅₀ = 9.5 µM in vitro	8-epi-xanthatin	IC₅₀ = 9.5 µM in vitro	[25]	
	1β-hydroxy-5α-chloro-8-epi-xanthatin IC₅₀ = 20.7 µM in vitro	EEXA	IC₅₀ = 20.7 µM in vitro	[25]	
	1β-hydroxy-5α-chloro-8-epi-xanthatin-1α, 5α-epoxide IC₅₀ = 52.2 µg/mL in vitro	EEXA	IC₅₀ = 52.2 µg/mL in vitro	[70]	
Anti-tumor effects	Cytotoxic effects on MDA-MB-231 cells	xanthatin	IC₅₀ = 13.9 µg/mL in vitro	[71]	
	Cytotoxic effects on MDA-MB-231 cells	xanthinosin	IC₅₀ = 4.8 µg/mL in vitro	[71]	
	Inhibiting cell growth via inducing caspase dependent cell death	xanthatin	MDA-MB-231 cells, 5–25 µM in vitro	[72]	
Breast cancer	Cytotoxic effects on MDA-MB-231 cells	xanthatin	IC₅₀ = 13.9 µg/mL in vitro	[71]	
	Cytotoxic effects on MDA-MB-231 cells	xanthinosin	IC₅₀ = 4.8 µg/mL in vitro	[71]	
	Inhibiting cell growth via inducing caspase dependent cell death	xanthatin	MDA-MB-231 cells, 5–25 µM in vitro	[72]	
Table 3. Cont.

Effects	Detail	Extracts/Compounds	Concentration/Dose	In Vivo/In vitro	Reference
Anti-tumor effects	Up-regulating GADD45γ tumor suppressor gene; inducing the prolonged expression of c-Fos via N-acetyl-l-cysteine-sensitive mechanism	xanthatin	MDA-MB-231 cells, 2.5–10 µM	in vitro	[73,74]
Cytotoxic effects on MFC7 cells		EEXA	IC50 = 70.6 µg/mL	in vitro	[70]
Colon cancer	Altering the antioxidant levels	WEX	Hela cells, 12.5–50 µg/mL	in vitro	[75]
Cytotoxic effects on MFC7 cells		EEXA	IC50 = 70.6 µg/mL	in vitro	[70]
Cervical cancer	Promoting apoptosis via inhibiting thioreodoxin reductase and eliciting oxidative stress	xanthatin	Hela cells, 5–20 µM	in vitro	[76]
Colon cancer	Cytotoxic effects on HCT-15 cells	xanthatin	ED50 = 1.1 µg/mL	in vitro	[17]
Cytotoxic effects on WiDr cells	8-epi-xanthatin	IC50 = 6.15 µg/mL	in vitro	[71]	
Cytotoxic effects on BGC-823 cells	xanthinosis	IC50 = 2.65 µg/mL	in vitro	[71]	
	xeremophil-1(10),11(13)-diene-12,8β-olide	IC50 = 13.22 µM	in vitro	[77]	
	8-epi-xanthatin-1β,5β-epoxide	IC50 = 2.43 µM	in vitro	[77]	
	tomentosin	IC50 = 4.54 µM	in vitro	[77]	
	xeremophil-1(10),11(13)-diene-12,8β-olide	IC50 = 4.41 µM	in vitro	[77]	
	8-epi-xanthatin-1β,5β-epoxide	IC50 = 1.44 µM	in vitro	[77]	
	tomentosin	IC50 = 3.47 µM	in vitro	[77]	
Cytotoxic effects on KE-97 cells	xanthatin	MRN-45 Cells, 3.9–18.6 µM	in vitro	[75]	
	xanthinosis	AGS cells, 8 µM	in vitro	[18]	
	lasidiol	p-methoxybenzoate	AGS cells, 16 µM	in vitro	[18]
	protein Bcl-2	EEXA	IC50 = 58.9 µg/mL	in vitro	[70]
	Cytotoxic effects on CT26 cells	xanthatin	HepG2 cells, 5–40 µM	in vitro	[76]
Liver cancer	Cytotoxic effects on SNU387 cells	1β-hydroxy-1α-chloro-8-epi-xanthatin	IC50 = 5.1 µM	in vitro	[25]
Cytotoxic effects on HepG2 cells	MEX	LC50 = 112.9 µg/mL	in vitro	[80]	
	EAFMEX	LC50 = 68.7 µg/mL	in vitro	[80]	
Induction of apoptosis via inhibiting thioreodoxin reductase and eliciting oxidative stress	xanthatin	HepG2 cells, 5–40 µM	in vitro	[76]	
Meningioma	Cytotoxic effects on SK-MEL-2 cells	xanthatin	ED50 = 0.5 µg/mL	in vitro	[17]
	8-epi-xanthatin	ED50 = 0.2 µg/mL	in vitro	[17]	
	EEXS	Mel-Ab cells, 1–50 µg/mL	in vitro	[81]	
	Inhibiting cell proliferation associated with activation of Wnt/β-catenin pathway and inhibition of angiogenesis	xanthatin	B16-F10 cells, 2.5–40µM	in vitro	[82]
Leukemia	Cytotoxic effects on P-388 cells	DFEEXA	IC50 = 1.64 µg/mL	in vitro	[83]
	xanthatin	IC50 = 52.50 µg/mL	in vitro	[84]	
Cytotoxic effects on HL-60 cells	MEX	LC50 = 50.18 µg/mL	in vitro	[80]	
	EAFMEX	LC50 = 48.73 µg/mL	in vitro	[80]	
Meningioma	Cytotoxic effects on SK-MEL-2 cells	xanthatin	ED50 = 0.5 µg/mL	in vitro	[17]
	8-epi-xanthatin	ED50 = 0.2 µg/mL	in vitro	[17]	
	EEXS	Mel-Ab cells, 1–50 µg/mL	in vitro	[81]	
	Inhibiting cell proliferation associated with activation of Wnt/β-catenin pathway and inhibition of angiogenesis	xanthatin	B16-F10 cells, 2.5–40µM	in vitro	[82]
	Cytotoxic effects on P-388 cells	DFEEXA	IC50 = 1.64 µg/mL	in vitro	[83]
	xanthatin	IC50 = 52.50 µg/mL	in vitro	[84]	
	Cytotoxic effects on HL-60 cells	MEX	LC50 = 50.18 µg/mL	in vitro	[80]
	EAFMEX	LC50 = 48.73 µg/mL	in vitro	[80]	
Leukemia	Cytotoxic effects on P-388 cells	DFEEXA	IC50 = 1.64 µg/mL	in vitro	[83]
	xanthatin	IC50 = 52.50 µg/mL	in vitro	[84]	
	Cytotoxic effects on HL-60 cells	MEX	LC50 = 50.18 µg/mL	in vitro	[80]
	EAFMEX	LC50 = 48.73 µg/mL	in vitro	[80]	
	Cytotoxic effects on MFC7 cells	EEXA	IC50 = 70.6 µg/mL	in vitro	[70]
Table 3. Cont.

Effects	Detail	Extracts/Compounds	Concentration/Dose	In Vivo/ In vitro	Reference
Anti-inflammatory					
Inhibiting LPS-stimulated	WEX	10, 100 and 1000	In vitro	[87]	
inflammatory	MEX	µg/mL			
	xanthatin and xanthinosin	30, 60 and 90	in vitro	[88]	
		mg/mL			
		11.2 µM	in vitro	[89]	
Inhibiting LPS-stimulated	MEXL	IC₅₀ = 87 µg/mL	in vitro	[90]	
inflammatory	MEXR	50–400 µg/mL	in vitro	[91]	
	WEX	0.5, 1 and 2	in vitro	[92]	
	MEX	mg/mL			
	MEXA	0–300 µg/mL	in vitro	[93]	
	xanthiumnolic E	IC₅₀ = 8.73 µM	in vitro	[26]	
Inhibiting carrageenan induced	MEX	100, 200 mg/kg/d	in vivo	[88]	
hind paw edema	WEX	(p.o.)			
		0.1, 0.5 and 1.0	in vitro	[95]	
		g/kg, (p.o.)			
		100, 200 and 400			
		mg/kg body weight.			
Anti-inflammatory and analgesic effects					
Inhibiting croton-oil-induced	MEXL	100, 200 mg/kg/d	in vivo	[90]	
ear edema	MEX	(p.o.)			
	NFEEX	Mice, 0.5, 0.75 and	in vivo	[96]	
		1.0 mg/ear			
	xanthatin	100 and 97 mg/mL,	in vitro	[84]	
		respectively			
	EEX	10 µg/mL	in vitro	[97]	
Analgesic effect					
Ameliorating HCl/EtOH-induced	MEXA	50 and 200 mg/kg	in vivo	[94]	
gastritis lesions		(p.o.)			
Analgesic effect on acetic acid	MEX	100, 200 mg/kg/d	in vivo	[88]	
induced abdominal constriction		(p.o.)			
test and a hot plate test					
Reducing the number of writhings	NFEEX	Mice, 100,200 and	in vivo	[96]	
induced by acetic acid		400 mg/kg body			
wt.		weight.			
Analgesic effect on writhing	WXF	0.1, 0.5 and 1.0	in vivo	[95]	
and formalin tests		g/kg, (p.o.)			
Analgesic effect on hot plate	EEX	250 and 500 mg/kg	in vivo	[98]	
test, acetic acid induced		(p.o.)			
writhing and formalin test		body weight.			
Insecticide and antiparasitic effects					
Antiplasmodial activity against	EEXL	5, 50, 500 and 1000	in vitro	[99]	
T. evansi		µg/mL			
Insecticidal effects against	xanthatin	IC₅₀ = 2.63 µg/mL	in vitro	[84]	
T. b. brucei		LC₅₀ = 11.02 (w/w)		[100]	
Anti-insect effects towards P.	EEXL	IC₅₀ = 4 µg/mL	in vitro	[101]	
vitacea		1%, 2% and 4%			
Insecticide and antiparasitic		concentration			
effects					
Anti-nematode activity against	EEXL	LC₅₀ = 531.07 and	in vitro	[103]	
M. javanica		3% and 12%			
Insecticidal effects against A.		concentration			
caspius, C. pipiens	MEX	502.32 µg/mL,	in vitro	[80]	
		respectively			
Table 3. Cont.

Effects	Detail	Concentration/Dose	In Vivo/In vitro	Reference	
Antioxidant effects					
Scavenging DPPH	CEXR and MEXR	IC\(_{50}\) = 10.28 and 40.40 \(\mu\)g/mL	in vitro	[86]	
	WEX	0.05-0.2 mg/mL	in vitro	[95]	
	EEXR and CEXR	IC\(_{50}\) = 29.81 and 24.85 \(\mu\)g/mL	in vitro	[106]	
	EEXL	IC\(_{50}\) = 85 \(\mu\)g/mL	in vitro	[107]	
	hexadecanoic acid, \(\alpha\)-amyrin, 14-methyl-12,13-dehydro-sitosterol-heptadecenate	IC\(_{50}\) = 106.4, 64.16 and 76.18 \(\mu\)g/mL	in vitro	[32]	
Scavenging DPPH	EOX	138.87 \(\mu\)g/mL	in vitro	[108]	
	MEX	Not mentioned	in vitro		
	EEXR and CEXR	IC\(_{50}\) = 395.20 and 418.30 \(\mu\)g/mL	in vitro	[106]	
	EEXL	IC\(_{50}\) = 72 \(\mu\)g/mL	in vitro	[107]	
	WEX	0.05-0.2 mg/mL	in vitro	[95]	
	WEX	0.05-0.2 mg/mL	in vitro	[95]	
	EEXL	IC\(_{50}\) = 9.23 \(\mu\)g/mL	in vivo	[105]	
	EEXL	IC\(_{50}\) = 62 \(\mu\)g/mL	in vivo	[107]	
	PEEXW	body weight (p.o. for 20 days)	in vivo	[104]	
	WEX	250 and 500 mg/kg	in vitro	[95]	
	WEX	100 and 200 mg/kg (p.o., for 10 days)	in vivo	[105]	
	EEXR and CEXR	IC\(_{50}\) = 495.30 and 418.30 \(\mu\)g/mL	in vitro	[106]	
	EEXL	IC\(_{50}\) = 62 \(\mu\)g/mL	in vitro	[107]	
	MEXS	β-sitosterol and β-daucosterol	MIC = 0.17 and 0.35 \(\mu\)g/mL	in vitro	[112]
	MEX	50, 100, 150, 200, and 250 \(\mu\)g/mL, respectively	in vitro	[113]	
	MEXL	50 and 100 \(\mu\)g/mL	in vitro	[111]	
	WEX	0.05-0.2 mg/mL	in vitro	[95]	
	WEX	0.05-0.2 mg/mL	in vitro	[95]	
	MEX	25, 50 and 50 \(\mu\)g/mL, respectively	in vitro	[108]	
	MEXL	50 \(\mu\)g/mL	in vitro	[113]	
FRAP antioxidant activity	MEX	Not mentioned	in vitro	[28]	

Antibacterial and antifungal effects

Effects	Detail	Concentration/Dose	In Vivo/In vitro	Reference		
Antibacterial	Inhibitory effects against \(V\). cholerae \(V\). cereus, \(K\). pneumoniae, \(P\). aeruginosa and \(S\). typhimurium, \(B\). cereus, \(B\). subtilis, \(S\). epidermidis	Xanthatin	Not mentioned	MIC = 31.3, 62.5, 125 and 125 \(\mu\)g/mL	in vitro	[109]
	Inhibitory effects against \(P\). vulgaris, \(P\). aeruginosa, \(P\). putida, \(S\). typhimurium, \(B\). cereus, \(B\). subtilis, \(S\). epidermidis	MEX	500 and 100 \(\mu\)g/mL	in vitro	[111]	
	Inhibitory effects against \(E\). coli	β-sitosterol and \(\beta\)-daucosterol	MIC = 0.17 and 0.35 \(\mu\)g/mL, respectively	in vitro	[112]	
	Inhibitory effects towards \(K\). pneumonia, \(P\). mirabilis, \(E\). coli, \(B\). subtilis, \(E\). faecalis, \(S\). aureus, \(B\). subtilis, \(K\). pneumonia, \(P\). aeruginosa	MEXL	30, 60 and 120 \(\mu\)g/mL	in vitro	[115]	
	Inhibitory effects against \(S\). aureus and \(E\). coli	MEX	MIC = 31.25 and 7.81 mg/mL, respectively	in vitro	[116]	
	Inhibitory effects against \(R\). toxicus, \(S\). aureus and \(F\). oxysporum	MEX	MIC = 25, 50 and 25 \(\mu\)g/mL, respectively	in vitro	[108]	
	Inhibitory effects against \(A\). flavus, \(F\). oxysporum, \(F\). solani, \(A\). alternata and \(P\). digitatum	MEX	MIC = 8 \(\mu\)g/mL and MFC = 8 \(\mu\)g/mL	in vitro	[109]	
Antibacterial and antifungal effects	Inhibitory effects against \(P\). dreckleri, \(P\). infestans and \(A\). niger	Xanthathin and \(\alpha\)-amyrin	Not mentioned	MIC = 2.0% w/v, respectively	in vitro	[117]
	Inhibitory effects against \(P\). oryzae and \(F\). oxysporum	\(\alpha\)-amyrin	30, 60 and 120 \(\mu\)g/mL	in vitro	[115]	
	Inhibitory effects against \(A\). niger, \(A\). flavus, \(F\). oxysporum, \(F\). solani, \(A\). alternata and \(P\). digitatum	\(\alpha\)-amyrin	MFC = 8 \(\mu\)g/mL	in vitro	[108]	
Table 3. Cont.

Effects	Detail	Extracts/Compounds	Concentration/ Dose	In Vivo/ In vitro	Reference
Antidiabetic effects	Exhibiting potent hypoglycemic activity	WEX	15 and 30 mg/kg (i.p.)	in vivo	[120]
	Decreasing the plasma glucose in diabetic rats	caffeic acid	0.5–3 mg/kg (i.v.)	in vivo	[121]
	Decreasing the blood glucose and HbA1C level and increase the level of insulin	MEXS	100 and 200 mg/kg (p.o., for 30 days)	in vivo	[105]
	Inhibitory effect against rAR and rhAR	methyl-3,5-di-O-caffeoylquinate	IC₅₀ = 0.30 and 0.67 μM, respectively	in vivo	[47]
	Inhibitory effect against α-glucosidase	CFMEXL	IC₅₀ = 72 μg/mL.	in vitro	[122]
	Inhibitory effect against α-glucosidase	MEX	IC₅₀ = 15.25 mg/mL.	in vivo	[28]
Antilipidemic effects	Decreasing plasma cholesterol, triglyceride, LDL, and VLDL and increasing plasma HDL levels	CEXR and EEXR	200 and 400 mg/kg (p.o.)	in vivo	[106]
	Improving lipid homeostasis	WEX	570 and 1140 mg/kg (p.o., for 6 weeks)	in vivo	[123]
	Decreasing blood glucose, TC, TG, LDLC levels and increasing HDLC levels.	WEX	3.7 and 11.11 g/kg (p.o., for 4 weeks)	in vivo	[124]
Antiviral activity	Antiviral activity against duck hepatitis B virus	WEX	0.01, 0.1 and 1 g/kg (i.g., for 10 days)	in vivo	[125]
	Antiviral activity against Influenza A virus	nornaxanthotiolde F	IC₅₀ = 6.4 μM	in vitro	[13]
	Antiviral activity against Influenza A virus	2-desoxy-6-epi-parthenolliol	IC₅₀ = 8.6 μM	in vitro	[13]
	Antiviral activity against Influenza A virus	xanthatin	IC₅₀ = 8.4 μM	in vitro	[13]
	Antiviral activity against Influenza A virus	threo-guaiacylglycerol-8'-vanillic acid ether	IC₅₀ = 8.4 μM	in vitro	[13]
	Antiviral activity against Influenza A virus	caffeic acid ethyl ester	IC₅₀ = 3.7 μM	in vitro	[13]
Other pharmacological effects	Anti-septic activity	CXT	10, 20 and 40 mg/kg (i.p.)	in vivo	[126]
	Attenuating hepatic steatosis	WEX	570 and 1140 mg/kg (p.o., for 6 weeks)	in vivo	[127]
	Anti-arthritis effect	EEX	75 and 300 mg/kg (p.o.)	in vivo	[128]
Other pharmacological effects	Anti-pyretic activity	MEXW	200 and 400 mg/kg (p.o.)	in vivo	[129]
	Anti-epileptic activity	PEEXW	250 and 500 mg/kg (p.o., for 20 days)	in vivo	[130]
	Antiurolithiatic effect	HEEXB	500 mg/kg (p.o.)	in vivo	[131]
	Antiulcer effect	EEXL	200 and 400 mg/kg (p.o.)	in vivo	[132]
	Cardioprotective effect	CXT	10, 20 and 40 mg/kg (p.o.)	in vivo	[133]

6. Pharmacokinetics

Up to now, there are few reports on the pharmacokinetics of the extracts or monomers of *X. strumarium*. Previous pharmacokinetics studies of *X. strumarium* mainly focused on its active compounds including xanthatin, cryptochlorogenic acid, and toxic ingredient such as atractyloside. In 2014, a sensitive, specific and rapid ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (UHPLC-MS/MS) method was applied to research pharmacokinetic properties of xanthatin in rat plasma. After intravenous injection of xanthatin at a dose of 2.4 mg/200 g, 4.8 mg/200 g and 9.6 mg/200 g, respectively. The t_{1/2} of three concentrations were found to be 108.58 ± 32.82, 123.50 ± 66.69, and 181.71 ± 148.26 min, respectively; and the peak plasma concentration (C_{max}) values were 418.72 ± 137.51, 904.89 ± 193.53, and 1773.46 ± 1733.10 ng/mL, respectively. As the dose increased, the AUC₀–t and AUC₀–∞ were gradually enlarged, and the AUC₀–t of three doses were 14,340.20 ± 7122.41, 32,149.52 ± 11,259.44, and 49,524.28 ± 28,520.88 ng h/mL, respectively; furthermore, the AUC₀–∞ of three levels are 15,538.97 ± 7733.12, 36,431.22 ± 14,498.16, and 61,885.45 ± 30,704.80 ng h/mL, respectively. In addition, the total body CL were 0.13 ± 0.14, 0.17 ± 0.11, 0.22 ± 0.13 mL/min and V_d were 46.85 ± 20.19, 159.99 ± 30.49, and 208.22 ± 85.97 mL of three concentrations [134].
After intragastric administration of the atractyloside at doses of 11.4, 22.8, and 45.6 mg/kg, the peak time (T\textsubscript{max}) values were determined to be 0.38, 1.85, 0.27 h, respectively, the t\textsubscript{1/2} were 13.64, 9.62, 8.61 h, respectively, and the peak plasma concentration (C\textsubscript{max}) values were 41.98, 24.61, 263.40 µg/mL, respectively. In addition, the area under the concentration-time curve (AUC) was also determined, and the AUC\textsubscript{0–t} was 132.70, 222.90, and 345.20 µg h/L. The results showed that the toxicokinetic behavior of atractyloside in rats was non-linear within the experimental dose range [135].

Furthermore, Shen et al. studied the pharmacokinetics of neochlorogenic acid and cryptochlorogenic acid in X. strumarium and its processed products after intragastric administration in rats. The results showed that the T\textsubscript{max} of neochlorogenic acid and cryptochlorogenic acid in processed fruits of X. strumarium were 2.94 ± 0.18, and 3.00 ± 0.46 h, respectively; the t\textsubscript{1/2} of neochlorogenic acid and cryptochlorogenic acid in processed fruits of X. strumarium were 2.35 ± 1.11, 1.97 ± 0.66 h. Moreover, the T\textsubscript{max} of neochlorogenic acid and cryptochlorogenic acid in raw fruits of X. strumarium were 3.75 ± 0.46, 2.75 ± 0.27 h, and the t\textsubscript{1/2} of neochlorogenic acid and cryptochlorogenic acid in raw fruits of X. strumarium were 1.70 ± 0.61, 2.12 ± 0.68 h. The neochlorogenic acid in fruits of X. strumarium, after being processed, takes effect quickly and lasts for a long time, while the cryptochlorogenic acid takes effect slowly and has a short action time [136].

7. Toxicity

In 1990, it was reported that X. strumarium has medium to strong allergenic effects and is poisonous to mammals, and atractyloside and carboxyatractyloside are considered to be the major toxic compounds [137]. X. strumarium is prudently ranked into the medium grade with less toxicity in the Shennong Bencao Jing, a monograph of materia medica. Some other Chinese materia medicas also record that X. strumarium possessed mild toxicity, such as Bencao Pinhui Jingyao, Bencao Huiyan. Thus, it is obvious that the ancient Chinese people have had a clear understanding of the toxicity of X. strumarium for a long time [138].

In recent years, many investigations have indicated the toxic effects and related mechanisms of the extracts and monomers of X. strumarium (Table 4). In 2005, Li et al. found that the median lethal concentration (LD\textsubscript{50}) value of the WEX in mice was 201.14 g/kg (i.g., crude herbs mass equal) [139]. In addition, a report in 2012 suggested that the LD\textsubscript{50} value of the WEX in mice was 167.60 g/kg (crude herbs mass equal, i.g.), however the LD\textsubscript{50} value was 194.15 g/kg (i.g., crude herb mass equivalent) in Fu’s research report [140,141]. These changes can be attributed to the toxicity of X. strumarium which varied with the processing method, genetic characteristics and growing conditions [138]. Furthermore, the LD\textsubscript{50} value of the EEX in mice was 275.41 g/kg (crude herbs mass equal, i.g.), which was higher than WEX [140]. Another study showed that the carboxyatractyloside (10–100 mg, i.v.) can induce death in swine [142].

Recently, animal experiments and clinical studies on X. strumarium showed that hepatotoxicity is the main toxicity. In 2011, Wang et al. demonstrated that kaurene glycosides including atractyloside (50–200 mg/kg, i.p.) and carboxyatractyloside (50–150 mg/kg, i.p.) induced hepatotoxicity in mice by way of its induction of oxidative stress as lipid peroxidation in liver [143]. Besides, the chief mechanism of atractyloside poisoning is deemed to be inhibition of the mitochondrial ADP transporter [144]. Furthermore, the WFEEX and NFEEX (0.06, 0.3, 0.7 g/kg, i.g., for 28 days), which have marked hepatotoxicity to rats, can cause pathological changes, such as enlarged hepatic cell space, karyolysis, and inflammatory cell infiltration [145]. Moreover, it has been reported that WEX (21.0 g/kg i.g., for 28 days) significantly increased the content of ALT, AST in mice serum and decreased weight loss [146]. In addition, a study in 2014 found that WEX (7.5, 15.0 and 30.0 g/kg, i.g., for 5 days) can increased the serum ALT, AST, ALP, TBIL levels and the contents of LDL/vLDL, β-HB, glutamate, choline, acetate, glucose in male rats [147]. Finally, in 2018, Zeng et al. indicated that the contents of GLDH, α-GST increased and miRNA-122 decreased after administered WEX (16.7 g/kg i.g., for 7 days), which can be used as sensitive biomarkers for studying the regularity of hepatotoxicity of X. strumarium [148]. Apart from hepatotoxicity, Mandal et al. studied the neurotoxicity of the MEXA
in mice and results show that MEXA (100, 200, 300 mg/kg) can obviously depress the action of central nervous system [149].

Table 4. Toxicities and side effects of X. strumarium.

Extracts/Compounds	Animal/Subjects	LD50/Toxic Dose Range	Toxic Reactions	Reference
WEX	mice	LD50 = 201.14 g/kg (i.g., crude herb mass equivalent)	Death	[139]
WEX	mice	LD50 = 167.60 g/kg (i.g., crude herb mass equivalent)	Death	[140]
EEX	mice	LD50 = 275.41 g/kg (i.g., crude herb mass equivalent)	Death	[140]
WEX	mice	LD50 = 194.15g/kg (i.g., crude herb mass equivalent)	Death	[141]
carboxyatractyloside	swine	10–100 mg (i.v.)	Death	[142]
atractyloside	mice	50–200 mg/kg (i.p.)	Increasing contents of ALT, AST, ALP, MDA in mice serum	[143]
carboxyatractyloside	mice	50–150 mg/kg (i.p.)	Increasing contents of ALT, AST, ALP, MDA in mice serum	[143]
NFEEX	mice	0.06, 0.3, 0.7 g/kg (i.g., for 28 days)	Weight loss, enlarged hepatic cell space, karyolysis and inflammatory cell infiltration	[145]
WFEEX	mice	0.06, 0.3, 0.7 g/kg (i.g., for 28 days)	Weight loss, enlarged hepatic cell space, karyolysis, and inflammatory cell infiltration	[145]
WEX	mice	21.0 g/kg (i.g., for 28 days)	Weight loss and increase of ALT, AST in mice serum	[146]
WEX	mice	7.5, 15.0 and 30.0 g/kg (i.g., for 5 days)	Increasing contents of VLDL/LDL, β-HB, glutamate, choline, acetate, glucose in serum	[147]
WEX	mice	16.7 g/kg (i.g., for 7 days)	Increasing contents of GLDH, α-GST and decreasing miRNA-122	[148]
MEXA	mice	100, 200, 300 mg/kg	Depressing the action of central nervous system	[149]
atractyloside	hepatocytes	0.01–0.05 g/L	Reducing cell viability and intracellular GSH content	[150]
atractyloside, carboxyatractyloside	L-02 cells, BRL cells	100 μmol/L for 48 h	Inhibiting cell proliferation, improving LDH activity	[147]
WEX	HK-2 cells	100 μg/mL	Inhibiting cell proliferation	[151]
HEEXA	CHO cells	25–100 μg/mL	Inducing DNA damage	[152]
EFEEX	CHO cells	IC50 = 231.1 μg/ml	Decreasing viability of cell	[153]
WEX	fatfish	15 μg/mL	Decreasing hatch rate	[154]

Many other studies have demonstrated that different medicinal parts and extraction parts are also cytotoxic to normal cells including hepatocytes, nephrocytes, ovary cells, etc. The cell inhibition ability of atractyloside on rat hepatocytes was investigated, and the results demonstrated that atractyloside (0.01–0.05 g/L) induced dose-dependent hepatotoxicity according to obvious decreases of cell viability, intracellular glutathione (GSH) content and albumin secretion [150]. Furthermore, atractyloside and carboxyatractyloside was reported to improve LDH activity and inhibit cell proliferation at the concentration of 100 μmol/L [147]. In 2013, Yu et al. indicated that WEX at concentrations 100 μg/mL can inhibit growth of HK-2 cells [151]. Moreover, HEXA (25–100 μg/mL) also causes in vitro DNA damage at cytotoxic concentrations through sister chromatid exchanges, chromosome aberrations, and comet assay, meanwhile, it also shows significant reduction in CHO cell viability [152]. In 2016, Su et al. compared the cytotoxicities of the components with different polarities, and study indicated that EAFEEX (IC50 = 231.1 μg/mL) was the most toxic part [153].

In recent years, few investigations have focused on the toxic effects of X. strumarium on reproduction. In 2014, it was reported that the WEX possessed reproductive toxicity to zebrafish embryos, including decreases in hatch rate, and increases in mortality rate, heart rate and swimming speed [154].

8. Future Perspectives and Conclusions

In summary, X. strumarium, which possesses anti-AR effects, anti-inflammatory and analgesic effects and anti-tumor effects, has been widely applied to clinical practice in many countries. In the
meantime, many modern studies on *X. strumarium* were also carried out, and its pharmacological activities and chemical compositions have been preliminarily investigated. Nevertheless, how to find out the mechanism of pharmacological activities and its related compounds, develop clinical efficacy of *X. strumarium* and ensure medication safety are still extremely crucial now.

First, the chemical compounds and pharmacological activity studies of *X. strumarium* mainly focused on its fruits, but there are few investigations on the roots, leaves, stems and other parts of *X. strumarium*. In order to enlarge the source domain of the active compounds and maximize the plant utilization rate, it is very critical for researchers to conduct a comprehensive evaluation of other parts of this plant. Second, the fruits of *X. strumarium* are officially recognized as *Cang-Er-Zi* in the Chinese Pharmacopoeia (2015 Edition), but many other *Xanthium* species such as *X. mongolicum* Kitag, *Xanthium spinosum* L. and *Xanthium canadens* Mill were used as *X. strumarium* alternatives in many areas of China. Therefore, the physical properties, chemical compositions and pharmacological activities should be used to identify and differentiate the different varieties, and it is important to guarantee the safety and efficacy with these herbs to ensure its suitability for clinical use. Third, in China, *X. strumarium* is commonly used after processing in clinical medicine, but the mechanism of its detoxification still needs further study. The degree of processing depends mainly on the subjective experience of people, and it is difficult to ensure the consistency of the quality of Chinese Medicine. Thus, the intelligent sensory technology combined with artificial intelligence technology, such as machine vision, electronic nose and electronic tongue can be applied to standardize processing methods. Fourth, on the basis of current research progress in vivo and in vitro, many active compounds of *X. strumarium* have been found and identified, which are probably developed into effective drugs. Among them, xanthatin possessed strong anticancer activity against many kinds of tumors, which means that it has the potential to become an anticancer drug in the future. However, systematic investigations on pharmacokinetics, target-organ toxicity and clinical research of xanthatin will help to develop its bioactive constituents as novel drugs. Fifth, traditional Chinese medicine has the characteristics of multi-component, multi-target and multi-channel, and a single component cannot completely reveal its pharmacological activity. Recently, quality marker (Q-Markers) technologies have started to contribute to scientifically interpreting the correlation degree of effectiveness-material basis-quality control of significant components in traditional Chinese Medicine. For *X. strumarium*, Q-Markers technologies are able to clarify its possible action, toxicity mechanism and symbolic components, and it is helpful to establish the whole quality control and quality traceability system of *X. strumarium*.

Author Contributions: Conceptualization, W.P. and C.W.; writing—original draft preparation, W.F., L.F., C.P., Q.Z., L.W., LL., J.W.; writing—review and editing, W.P. and D.Z.; funding acquisition, W.P. and C.W.

Funding: This work was funded by the China Postdoctoral Science Foundation (no. 2018M631071); Innovative Research Team of Chinese Medicine Discipline in Chengdu University of Traditional Chinese Medicine (no.030041007) and Sichuan Science and Technology Project (no.2018Y0435).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Description
WEX	water extracts of fruit of *Xanthium strumarium*
MEX	methanol extracts of fruits of *X. strumarium*
EEXA	ethanol extracts of aerial parts of *X. strumarium*
EEXS	ethanol extracts of stems of *X. strumarium*
WFEEX	water fraction of ethanol extracts of fruits of *X. strumarium*
NFEEX	n-butanol fraction of ethanol extracts of fruits of *X. strumarium*
MEXA	methanol extracts of aerial parts of *X. strumarium*
HEXA	hydroalcoholic extracts of aerial parts of *X. strumarium*
EAFEEX	ethylacetate fraction of ethanol extracts of fruits of *X. strumarium*
CFEEEXA	chloroform fraction of ethanol extracts of aerial parts of *X. strumarium*
CEXR	chloroform extracts of roots of *X. strumarium*
MEXR methanol extracts of roots of *X. strumarium*
EAFMEX ethylacetate fraction of methanol extracts of fruits of *X. strumarium*
DFEXA dichloromethane fraction of ethanol extracts of aerial parts of *X. strumarium*
EEX ethanol extracts of fruits of *X. strumarium*
WEXL water extracts of leaves of *X. strumarium*
EEXL ethanol extracts of leaves of *X. strumarium*
PEEXW petroleum ether extracts of whole plant of *X. strumarium*
MEXL methanol extracts of leaves of *X. strumarium*
EEXR ethanol extracts of roots of *X. strumarium*
EOX essential oil of fruits of *X. strumarium*
EOXL essential oil of leaves of *X. strumarium*
WEXFT water extract of flowering twigs of *X. strumarium*
CFMEXL chloroform fraction of methanol extracts of leaves of *X. strumarium*
MEXS methanol extracts of stems of *X. strumarium*
HEEXB hydro-ethanol extracts of burs of *X. strumarium*
EFEEX ethylacetate fraction of ethanol extracts of *X. strumarium*

References
1. Kamboj, A.; Saluja, A.K. Phytopharmacological review of *Xanthium strumarium* L. (Cocklebur). *Int. J. Green Pharm.* 2010, 4, 129–139. [CrossRef]
2. Chinese Pharmacopoeia Commission. *Pharmacopoeia of the People’s Republic of China Part I*; People’s Medical Publishing House: Beijing, China, 1963; p. 130. (In Chinese)
3. Amin, S.; Barkatullah; Khan, H. Pharmacology of Xanthium species. A review. *J. Phytopharmacol.* 2016, 5, 126–127.
4. Zhuang, Y.S.; Hu, J.; Cai, H.; Qin, K.M.; Yang, B.; Liu, X.; Cai, B.C. advanced study on chemical constituents and pharmaceutical activities of *Xanthium strumarium*. *J. Nanjing Univ. Tradit. Chin. Med.* 2017, 33, 428–432. (In Chinese)
5. Chinese Pharmacopoeia Commission. *Pharmacopoeia of the People’s Republic of China Part I*; People’s Medical Publishing House: Beijing, China, 2015; p. 162. (In Chinese)
6. Nanjing University of Traditional Chinese Medicine. *Traditional Chinese Medicine Dictionary*; Shanghai Science and Technology Press: Shanghai, China, 1986; p. 1071. (In Chinese)
7. Chopra, R.N.; Nayar, S.L.; Chopra, I.C. *Glossary of Indian Medicinal Plants*; Council of Scientific and Industrial Research: New Delhi, India, 1986; p. 259.
8. Islam, M.R.; Uddin, M.Z.; Rahman, M.S.; Tutul, E.; Rahman, M.Z.; Hassan, M.A.; Faiz, M.A.; Hossain, M.; Hussain, M.; Rashid, M.A. Ethnobotanical, phytochemical and toxicological studies of *Xanthium strumarium* L. *Bangladesh Med. Res. Counc. Bull.* 2009, 35, 84–90. [CrossRef] [PubMed]
9. Chang, F.; Hanna, M.A.; Zhang, D.J.; Li, H.; Zhou, Q.; Song, B.A.; Yang, S. Production of biodiesel from non-edible herbaceous vegetable oil: *Xanthium sibiricum* Patr. *Biore sourc. Technol.* 2013, 140, 435–438. [CrossRef] [PubMed]
10. Rozina; Asif, S.; Ahmad, M.; Zafar, M.; Ali, N. Prospects and potential of fatty acid methyl esters of some non-edible seed oils for use as biodiesel in Pakistan. *Renew. Sustain. Energy Rev.* 2017, 74, 687–702. [CrossRef]
11. Chinese Flora Commission. *Flora of China*; Science Publishing House: Beijing, China, 1975; p. 325. (In Chinese)
12. State Administration of Traditional Chinese Medicine. *Chinese Materia Medica*; Shanghai Science and Technology Press: Shanghai, China, 1998; pp. 1010–1013. (In Chinese)
13. Shi, Y.S.; Liu, Y.B.; Ma, S.G.; Li, Y.; Qu, J.; Li, L.; Yuan, S.P.; Hou, Q.; Li, Y.H.; Jiang, J.D.; et al. Bioactive Sesquiterpenes and Lignans from the Fruits of *Xanthium sibiricum*. *J. Nat. Prod.* 2015, 78, 1526–1535. [CrossRef] [PubMed]
14. Han, T.; Zhang, H.; Li, H.L.; Zhang, Q.H.; Zheng, H.C.; Qin, L.P. Composition of supercritical fluid extracts of some Xanthium species from China. *Chem. Nat. Compd.* 2008, 6, 814–816. [CrossRef]
15. Winters, T.E.; Theodore, A.; Geissman, D.S. Sesquiterpene lactones of Xanthium species. Xanthanol and isoxanthanol, and correlation of xanthinin with ivalbin. *J. Org. Chem.* 1969, 34, 153–155. [CrossRef]

16. McMillan, C.; Chavez, P.I.; Mabry, T.J. Sesquiterpene lactones of *Xanthium strumarium* in a texas population and in experimental hybrids. *Biochem. Syst. Ecol.* 1975, 3, 137–141. [CrossRef]

17. Ahn, J.W.; No, Z.; Ryu, S.Y.; Zee, O.P. Isolation of cytotoxic compounds from the leaves of *Xanthium strumarium* L. *Nat. Prod. Sci.* 1995, 1, 1–4.

18. Karmakar, U.K.; Ishikawa, N.; Toume, K.; Ariai, M.A.; Sadhu, S.K.; Ahmed, F.; Ishibashi, M. Sesquiterpenes with TRAIL-resistance overcoming activity from *Xanthium strumarium*. *Bioorg. Med. Chem.* 2015, 23, 4746–4754. [CrossRef] [PubMed]

19. Shi, Y.S.; Li, L.; Liu, Y.B.; Ma, S.G.; Li, Y.; Qu, J.; Liu, Q.; Shen, Z.F.; Chen, X.G.; Yu, S.S. A new thiophene and two new monoterpenoids from *Xanthium sibiricum*. *J. Asian Nat. Prod. Res.* 2015, 17, 1039–1047. [CrossRef] [PubMed]

20. Malik, M.S.; Sangwan, N.K.; Dhindsa, K.S. Xanthanolides from *Xanthium strumarium*. *Phytochemistry* 1992, 32, 206–207. [CrossRef]

21. Hu, D.Y.; Yang, S.Y.; Yuan, C.S.; Han, G.T.; Shen, H.M. Isolation and identification of chemical constituents in *Xanthium sibiricum*. *Chin. Tradit. Herbal Drugs* 2012, 43, 640–644. (In Chinese)

22. Mahmoud, A.A. Xanthanolides and xanthane epoxide derivatives from *Xanthium strumarium*. *Planta Med.* 1998, 64, 724–727. [CrossRef] [PubMed]

23. Saxena, V.K.; Mondal, S.K. A xanthanolide from *Xanthium sibiricum*. *Phytochemistry* 1994, 35, 1080–1082. [CrossRef]

24. Chen, J.; Wang, R.; Shi, Y.P. Chemical constituents from *Xanthii Fructus*. *Chin. Tradit. Herbal Drugs* 2013, 44, 1717–1720. (In Chinese)

25. Wang, L.; Wang, J.; Li, F.; Liu, X.; Chen, B.; Tang, Y.X.; Wang, M.K. Cytotoxic sesquiterpene lactones from aerial parts of *Xanthium sibiricum*. *Planta Med.* 2013, 79, 661–665. [CrossRef]

26. Jiang, H.; Yang, L.; Xing, X.D.; Yan, M.L.; Guo, X.Y.; Su, X.L.; Sun, Y.P.; Yang, B.Y.; Wang, Q.H.; Kuang, H.X. Chemical constituents of terpenoids from *Xanthium strumarium*. *Chin. Tradit. Pat. Med.* 2018, 40, 2461–2466.

27. Cui, W.P. Chemical Constituents from Three Medicinal Plants and Their Bioactivities. Ph.D. Thesis, East China Normal University, Shanghai, China, 2013. (In Chinese)

28. Ingawale, A.S.; Sadiq, M.B.; Nguyen, L.T.; Ngan, T.B. Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of *Xanthium strumarium* L. fruits. *Biocatal. Agric. Biotechnol.* 2018, 14, 40–47. [CrossRef]

29. Wahab, A.; Sultana, A.; Khan, K.M.; Irshad, A.; Ambreen, N.; Ali, M.; Bilal, M. Chemical investigation of *Xanthium strumarium* Linn and biological activity of its different fractions. *J. Pharm. Res.* 2012, 5, 1984–1987.

30. Li, N.; Zhang, W.Z. Studies on Chemical Constituents of *Xanthium sibiricum* Patrin ex Widder. *J. Qiqihar Univ.* 2016, 32, 51–53. (In Chinese)

31. Sultana, A. Phytochemical studies on the Chemical Constituents of *Xanthium strumarium* Linn., Synthesis in addition Bioactivities of 2, 3-Diaminonaphthalenimidazole Derivatives and Amides of Piperic Acid. Ph.D. Thesis, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan, 2014.

32. Kaur, M.; Kamboj, A.; Rathour, A.; Saluja, A.K. Isolation and Characterization of Constituents from the Leaves of *Xanthium strumarium* and their Evaluation for Antioxidant and Antimicrobial Potential. *Nat. Prod. Chem. Res.* 2015, 3, 168–173. [CrossRef]

33. Agata, I.; Goto, S.; Hatano, T.; Nishibe, S.; Okuda, T. 1, 3, 5-tri-O-cafeoylquinic acid from *Xanthium strumarium*. *Phytochemistry* 1993, 33, 508–509. [CrossRef]

34. Hwang, S.H.; Wang, Z.Q.; Yoon, H.N.; Lim, S.S. *Xanthium strumarium* as an Inhibitor of α-Glucosidase, Protein Tyrosine Phosphatase 1β, Protein Glycation and ABTS*⁺ for Diabetic and Its Complication. *Molecules* 2016, 21, 1241. [CrossRef]

35. Han, T.; Li, H.L.; Hu, Y.; Zhang, Q.Y.; Huang, B.K.; Zheng, H.C.; Rahman, K.; Qin, L.P. Phenolic acids in *Fructus Xanthii* and determination of contents of total phenolic acids in different species and populations of Xanthium in China. *J. Chin. Intergr. Med.* 2006, 4, 194–198. (In Chinese) [CrossRef]

36. Tian, J.; Xia, Y.F.; Fang, K.H. Simultaneous determination of eight phenolic acids in *Xanthium sibiricum* by HPLC. *Chin. Tradit. Pat. Med.* 2013, 36, 1623–1626. (In Chinese)

37. Yuan, H.E. Study on the Chemical Constituents of *Herba Commelinae* and *Fructus Xanthii*. Master’s Thesis, Jinan University, Guangzhou, China, 2014. (In Chinese)
38. Cheng, Z.; Wang, L.; Chen, B.; Li, F.; Wang, M.K. Chemical Constituents from Fructus Xanthii. Chin. J. Appl. Environ. Biol. 2011, 17, 350–352. [CrossRef]

39. Kan, S.Q.; Chen, G.Y.; Han, C.R.; Chen, Z.; Song, X.M.; Ren, M.; Jiang, H. Chemical constituents from the roots of Xanthium sibiricum. Nat. Prod. Res. 2011, 25, 1243–1249. [CrossRef]

40. Jiang, H.; Yang, L.; Ma, G.X.; Xing, X.D.; Yan, M.L.; Zhang, Y.Y.; Wang, Q.H.; Yang, B.Y.; Kuang, H.X.; Xu, X.D. New phenylpropanoid derivatives from the fruits of Xanthium sibiricum and their anti-inflammatory activity. Fitoterapia 2017, 117, 11–15. [CrossRef] [PubMed]

41. Jiang, H.; Yang, L.; Liu, C.; Hou, H.; Wang, Q.; Wang, Z.; Yang, B.; Kuang, H. Four new glycosides from the fruit of Xanthium sibiricum. Molecules 2013, 18, 12464–12473. [CrossRef] [PubMed]

42. Yin, R.H.; Bai, X.; Feng, T.; Dong, Z.J.; Li, Z.H.; Liu, J.K. Two new compounds from Xanthium strumarium. Chin. Tradit. Pat. Med. 2006, 42, 567–570. [CrossRef]

43. Pandey, D.P.; Rather, M.A. Isolation and Identification of Phytochemicals from Xanthium strumarium. Int. J. ChemTech Res. 2012, 4, 266–271.

44. Jiang, H.; Yang, L.; Xing, X.D.; Zhang, Y.Y.; Yan, M.L.; Yang, B.Y.; Wang, Q.H.; Kuang, H.X. Chemical constituents from fruits of Xanthium sibiricum. Chin. Tradit. Herbal Drugs 2017, 48, 47–51. (In Chinese)

45. Qu, Y.L.; Dai, Y.H.; Wang, D.; Cui, Z. Chemical constituents in the fruits of Xanthium sibiricum. Chin. J. Med. Chem. 2010, 20, 214–216. (In Chinese)

46. Yoon, H.N.; Lee, M.Y.; Kim, J.K.; Suh, H.W.; Lim, S.S. Aldose Reductase Inhibitory Compounds from Xanthium strumarium. Arch. Pharmacal. Res. 2013, 36, 1090–1095. [CrossRef]

47. Jiang, H.; Yang, L.; Xing, X.D.; Yan, M.L.; Guo, X.Y.; Xu, X.L.; Sun, Y.P.; Yang, B.Y.; Wang, Q.H.; Kuang, H.X. Study on lignans from Xanthii Fructus. Chin. J. Chin. Mater. Med 2018, 43, 2097–2103. (In Chinese)

48. Wang, S.X.; Ren, L.J.; Sun, Z.R.; Pei, Y.H.; Zhu, T.R. Toxic Constituents in Seeds of Xanthium mongolicum. Chin. J. Med. Chem. 1983, 14, 529–531. (In Chinese)

49. Craig, J.C.; Mole, M.L.; Billets, S.; El-Feraly, F. Isolation and identification of the hypoglycemic agent, carboxyatractyloside from Xanthium strumarium. Phytochemistry 1976, 15, 1178. [CrossRef]

50. Ma, Y.T.; Huang, M.C.; Hsu, F.L.; Chang, H.F. Isolation and Identification of Chemical Constituents from the Fruit of Xanthium Sibiricum. Bot. Rev. 2013, 79, 1083–1085. [CrossRef]

51. Lee, C.L.; Huang, P.C.; Hsieh, P.W.; Hwang, T.L.; Hou, Y.Y.; Chang, F.R.; Wu, Y.C. (−)-Xanthienopyran, a new inhibitor of superoxide anion generation by activated neutrophils, and further constituents of the seeds of Xanthium strumarium. Planta Med. 2008, 74, 1276–1279. [CrossRef] [PubMed]

52. Huang, W.H.; Yu, J.G.; Sun, L.; Guo, B.L.; Li, D.Y. Studies on Chemical Constituents of Xanthium sibiricum. Chin. J. Chin. Mater. Med. 2005, 30, 1027–1028. (In Chinese)

53. Vasas, A.; Hohmann, J. Xanthane sesquiterpenoids: Structure, synthesis and biological activity. Nat. Prod. Rep. 2011, 28, 824–842. [CrossRef]

54. Seaman, F.C. Sesquiterpene lactones as taxonomic characters in the asteraceae. Bot. Rev. 1982, 48, 121–594. [CrossRef]

55. Hong, Y.; Han, Y.Q.; Xia, L.Z.; Gui, J.; Chen, X.; Sun, Y.H. Simultaneous Determination of Nine Phenolic Acid Components in Xanthii Fructus. Chin. Pharm. J. 2013, 13, 1109–1112. (In Chinese)

56. Hong, Y.; Han, Y.Q.; Xia, L.Z.; Gui, J.; Chen, X.; Sun, Y.H. Influence of processing on contents of carboxyatractyloside and atracyloside in Xanthii Fructus. Chin. Tradit. Pat. Med. 2013, 35, 353–356. (In Chinese)

57. Hong, S.H.; Jeong, H.J.; Kim, H.M. Inhibitory effects of Xanthii Fructus extract on mast cell-mediated allergic reaction in murine model. J. Ethnopharmacol. 2003, 88, 229–234. [CrossRef]
Liu, R.; Shi, D.; Zhang, J.; Li, X.; Han, X.; Yao, X.; Fang, J. Xanthatin Promotes Apoptosis via Inhibiting Thioreductase and Eliciting Oxidative Damage. **J. Toxicol. Sci.** 2013, 8, 385–397. [CrossRef] [PubMed]

Takeda, S.; Noguchi, M.; Matsuo, K.; Yamaguchi, Y.; Kudo, T.; Nishimura, H.; Okamoto, Y.; Amamoto, T.; Shindo, M.; Omiecinski, C.J.; et al. (-)-Xanthatin selectively induces GADD45γ and stimulates caspase-independent cell death in human breast cancer MDA-MB-231 cells. **Chem. Res. Toxicol.** 2011, 24, 855–865. [CrossRef] [PubMed]

Takeda, S.; Nishimura, H.; Koyachi, K.; Matsumoto, K.; Yoshida, K.; Okamoto, Y.; Amamoto, T.; Shindo, M.; Omiecinski, C.J.; et al. (-)-Xanthatin up-regulation of the GADD45γ tumor suppressor gene in MDA-MB-231 breast cancer cells: Role of topoisomerase IIα inhibition and reactive oxygen species. **Toxiconology** 2013, 305, 1–9. [CrossRef] [PubMed]

Takeda, S.; Nishimura, H.; Koyachi, K.; Matsumoto, K.; Yoshida, K.; Okamoto, Y.; Amamoto, T.; Shindo, M.; Aramaki, H. (-)-Xanthatin induces the prolonged expression of c-Fos through an N-acetyl-l-cysteine (NAC)-sensitive mechanism in human breast cancer MDA-MB-231 cells. **J. Toxicol. Sci.** 2013, 38, 547–557. [CrossRef] [PubMed]

Vaishnav, K.; George, L.B.; Highland, H.N. Induction of cell death through alteration of antioxidant activity in HeLa cervical cancer cells by *Xanthium strumarium* L. extract. **IOSR J. Pharm. Biol. Sci.** 2015, 10, 33–42.

Liu, R.; Shi, D.; Zhang, J.; Li, X.; Han, X.; Yao, X.; Fang, J. Xanthatin Promotes Apoptosis via Inhibiting Thioreductase and Eliciting Oxidative Damage. **J. Toxicol. Sci.** 2013, 8, 385–397. [CrossRef] [PubMed]

Bui, V.B.; Liu, S.T.; Zhu, J.J.; Xiong, J.; Zhao, Y.; Yang, G.X.; Xia, G.; Hu, J.F. Sesquiterpene lactones from the aerial parts of *Xanthium sibiricum* and their cytotoxic effects on human cancer cell lines. **Phytochem. Lett.** 2012, 5, 685–689. [CrossRef]

Zhang, L.; Tao, L.; Ruan, J.; Li, W.; Wu, Y.; Yan, L.; Zhang, F.; Fan, F.; Zheng, S.; Wang, A.; et al. Xanthatin induces G2/M cell cycle arrest and apoptosis in human gastric carcinoma MKN-45 cells. **Planta Med.** 2012, 78, 890–895. [CrossRef]
100. Gökçe, A.; Isaacs, R.; Whalon, M.E. Ovicidal, larvicidal and anti-ovipositional activities of *Bifora radians* and other plant extracts on the grape berry moth *Paralobesia viteana* (Clemens). *J. Pest. Sci.* 2011, 84, 487–493. [CrossRef]

101. Chandel, S.; Bagai, U. Screening of Cytotoxicity and Antiplasmodial Activity of *Xanthium strumarium* L. Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 625–631.

102. Roy, B.; Amin, M.R.; Jalal, S.; Kwon, Y.J.; Suh, S.J. Evaluation of common cocklebur *Xanthium strumarium* leaf extract as post-harvest grain protectant of black gram against pulse beetle *Callosobruchus chinensis* (Coleoptera: Bruchidae) and isolation of crude compound. *Entomol. Res.* 2014, 44, 254–261. [CrossRef]

103. Kepenekci, I.; Saglam, H.D. Extracts of some indigenous plants affecting hatching and mortality in the root-knot nematode *Meloidogyne javanica* (Treub) Chitwood. *Egypt. J. Pest Control* 2015, 25, 39–44.

104. Kumar, K.K.S.; Rajkapoor, B. Effect of *Xanthium strumarium* L. Extracts on Antioxidant Enzymes Levels in Rat Brain after Induction of Epilepsy. *Pharmacologyonline* 2010, 2, 883–888.

105. Narendiran, S.; Mohanambal, E.; Kumar, P.S.; Shankar, M.; Kuttimani, T.; Vijayakumar, B. Study of anti-diabetic and anti-oxidant activities of *Xanthium strumarium* (Linn.) stems on diabetic rats. *J. Pharm. Res.* 2011, 4, 3728–3732.

106. Sridharamurthy, N.B.; Yogananda, R.; Srinivas, U. In-vitro Antioxidant and Antilipidemic Activities of *Xanthium strumarium* L. *Curr. Trends Biotechnol. Pharm.* 2011, 5, 1362–1371.

107. Kamboj, A.; Atri, P.; Saluja, A.K. Phytochemical Screening, In-vitro Evaluation of Antioxidant and Free Radical Scavenging Activity of Leaves, Stems and Roots of *Xanthium strumarium* L., (Compositae). *Br. J. Pharm. Res.* 2014, 4, 1–22. [CrossRef]

108. Ghahari1, S.; Alinezhad, H.; Nematzadeh, G.A.; Tajbakhsh, M.; Baharfar, R. Biochemical Composition, Antioxidant and Biological Activities of the Essential Oil and Fruit Extract of *Xanthium strumarium* Linn. From Northern Iran. *Agr. Sci. Technol.* 2017, 19, 1603–1616.

109. Mehta, P.; Chopra, S.; Mehta, A. Antimicrobial properties of some plant extracts against bacteria. *Folia Microbiol.* 1983, 28, 467–469. [CrossRef]

110. Sato, Y.; Oketani, H.; Yamada, T.; Singyouchi, K.; Ohtsubo, T.; Kihara, M.; Shibata, H.; Higuti, T. A xanthanolide with potent antibacterial activity against methicillin-resistant *Staphylococcus aureus*. *J. Pharm. Pharmacol.* 2015, 29, 739–744. [CrossRef] [PubMed]

111. Sridharamurthy, N.B.; Yogananda, R.; Srinivas, U. In-vitro Antioxidant and Antilipidemic Activities of *Xanthium strumarium* L. *Curr. Trends Biotechnol. Pharm.* 2011, 5, 1362–1371.

112. Chen, W.H.; Liu, W.J.; Wang, Y.; Song, X.P.; Chen, G.Y. A new naphthoquinone and other antibacterial constituents from the roots of *Xanthium sibiricum*. *Nat. Prod. Res.* 2015, 29, 739–744. [CrossRef] [PubMed]

113. Devkota, A.; Das, R.K. Antibacterial activities of *Xanthium strumarium* L. *J. Nat. Hist. Mus.* 2015, 29, 70–77. [CrossRef]

114. Sharifi-Rad, J.; Hoseini-Alfatemi, S.M.; Sharifi-Rad, M.; Sharifi-Rad, M.; Iriti, M.; Sharifi-Rad, M.; Sharifi-Rad, R.; Raesi, S. Phytochemical compositions and biological activities of essential oil from *Xanthium strumarium* L. *Molecules* 2015, 20, 7034–7047. [CrossRef] [PubMed]

115. Sharifi-Rad, J.; Soufi, L.; Ayatollahi, S.A.; Iriti, M.; Sharifi-Rad, M.; Varoni, E.M.; Shahri, F.; Esposito, S.; Kuhestani, K.; Sharifi-Rad, M. Anti-bacterial effect of essential oil from *Xanthium strumarium* against shiga toxin-producing *Escherichia coli*. *Cell. Mol. Biol.* 2016, 62, 69–74. [PubMed]

116. Wang, W.; Jiang, H.; Zhiwei, W.U.; Qian, J.; Wang, X.; Jinxiu, X.U. Study on the bacteriostatic effects of 7 kinds of chinese herbal medicines such as ophiopogon japonicus and comb. *Agric. Sci. Technol.* 2016, 17, 2560.

117. Kim, D.K.; Shim, C.K.; Bae, D.W.; Kawk, Y.S.; Yang, M.S.; Kim, H.K. Identification and Biological Characteristics of an Antifungal Compound Extracted from Cocklebur (*Xanthium strumarium*) against *Phytophthora drechsleri*. *Plant Pathol.* J. 2002, 18, 288–292. [CrossRef]

118. Yanar, Y.; Kadioğlu, L.; Gökçe, A.; Demirtaş, D.; Gören, N.; Çam, H.; Whalon, M. In vitro antifungal activities of 26 plant extracts on mycelial growth of *Phytophthora infestans* (Mont.) de Bary. *Afr. J. Biotechnol.* 2011, 10, 2625–2629.

119. Parveen, Z.; Mazhar, S.; Siddique, S.; Manzoor, A.; Ali, Z. Chemical Composition and Antifungal Activity of Essential Oil from *Xanthium strumarium* L. Leaves. *Indian J. Pharm. Sci.* 2017, 79, 316–321. [CrossRef]

120. Kupiecki, F.P.; Ogzewalla, C.D.; Schell, F.M. Isolation and characterization of a hypoglycemic agent from *Xanthium strumarium*. *J. Pharm. Sci.* 1974, 63, 1166–1167. [CrossRef] [PubMed]
121. Hsu, F.L.; Chen, Y.C.; Cheng, J.T. Caffeic acid as active principle from the fruit of *Xanthium strumarium* to lower plasma glucose in diabetic rats. *Planta Med.* 2000, 66, 228–230. [CrossRef]

122. Khuda, F.; Iqbal, Z.; Khan, A.; Zakiiullah; Shah, Y.; Khan, A. Report: Screening of selected medicinal plants for their enzyme inhibitory potential—A validation of their ethnopharmacological uses. *Pak. J. Pharm. Sci.* 2014, 27, 593–596. [PubMed]

123. Li, X.M.; Yang, M.X.; Li, Z.P.; Xue, M.; ShangGuan, Z.S.; Ou, Z.M.; Liu, M.; Liu, S.H.; Yang, S.Y.; Li, X.J. *Fructus xanthii* improves lipid homeostasis in the epididymal adipose tissue of rats fed a high-fat diet. *Mol. Med. Rep.* 2016, 13, 787–795. [CrossRef] [PubMed]

124. Li, T.X.; Shen, J.Y.; Li, M.; Wang, G.R. Effects of *Xanthium strumarium* on Blood Glucose and Lipid in Diabetic Mice before and after Processing. *Lishizhen Med. Mater. Med. Res.* 2017, 28, 608–609. (In Chinese)

125. Liu, Y.; Wu, Z.M.; Lan, P. Experimental Study on Effect of Fructus Xanthii Extract on Duck Hepatitis B Virus. *Lishizhen Med. Mater. Med. Res.* 2009, 20, 1776–1777. (In Chinese)

126. Wang, Y.H.; Li, T.H.; Wu, B.Q.; Liu, H.; Shi, Y.F.; Feng, D.Y. Protective effects of caffeine-xanthiazonoside isolated from fruits of *Xanthium strumarium* in mice. *Pharm. Biol.* 2015, 53, 1367–1371. [CrossRef] [PubMed]

127. Li, X.M.; Li, Z.P.; Xue, M.; Ou, Z.M.; Liu, M.; Yang, M.X.; Liu, S.H.; Yang, S.Y.; Li, X.J. *Fructus Xanthii* Attenuates Hepatic Steatosis in Rats Fed on High-Fat Diet. *PLoS ONE* 2013, 8, e61499. [CrossRef] [PubMed]

128. Lin, B.; Zhao, Y.; Han, P.; Yue, W.; Ma, X.Q.; Rahman, K.; Zheng, C.J.; Qin, L.P.; Han, T. Anti-arthritic activity of *xanthium strumarium* L. extract on complete Freund’s adjuvant induced arthritis in rats. *J. Ethnopharmacol.* 2014, 155, 248–255. [CrossRef]

129. Afsar, S.K.; Kumar, K.R.; Raveesha, P.; Sree, K. Evaluation of Anti-pyretic Activity of Methanolic Whole Plant Extract of *Xanthium strumarium* Against Yeast Induced Pyrexia Model in Wistar Rats. *J. Pharm. Res.* 2012, 5, 5277–5279.

130. Kumar, K.K.S.; Rajkapoor, B. Evaluation of Anti-epileptic Activity of *Xanthium strumarium* L. *Pharmacologyonline* 2010, 2, 850–855.

131. Panigrahi, P.N.; Dey, S.; Sahoo, M.; Choudhary, S.S.; Mahajan, S. Alteration in oxidative/nitrosative imbalance, histochemical expression of osteopontin and antiatherothrombogenic efficacy of *xanthium strumarium* (L.) in ethylene glycol induced urolithiasis. *Biomed. Pharmacother.* 2016, 84, 1524–1532. [CrossRef] [PubMed]

132. Kandhare, A.D.; Kumar, V.S.; Adil, M.; Rajmane, A.R.; Ghosh, P.; Bodhankar, S.L. Investigation of gastro protective activity of *Xanthium strumarium* L. by modulation of cellular and biochemical marker. * Orient. Pharm. Exp. Med.* 2012, 12, 287–299. [CrossRef]

133. Yang, B.; Wang, F.; Cao, H.; Liu, G.; Zhang, Y.; Yan, P.; Li, B. Caffeoylxanthiazonoside exerts cardioprotective effects during chronic heart failure via inhibition of inflammatory responses in cardiac cells. *Exp. Ther. Med.* 2017, 14, 4224–4230. [CrossRef]

134. Yan, C.P.; Li, H.; Wu, Y.; Xie, D.H.; Weng, Z.B.; Cai, B.C.; Liu, X.; Li, W.D.; Chen, Z.P. Determination of xanthatin by ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry: Application to pharmacokinetic study of xanthatin in rat plasma. *J. Chromatogr. B* 2014, 974–978, 57–61. [CrossRef] [PubMed]

135. Shen, J.Y. Comparative Study of Pharmacodynamics and Pharmacokinetics before and after Processing *Xanthii Fructus*. Master’s Thesis, Guangzhou University of Chinese Medicine, Guangzhou, China, 2013. (In Chinese)

136. Chen, L.L. The Detection of atractylisode in Fructus Xanthii and the Pharmacokinetic of Atractylisode in Rat. Master’s Thesis, Guangzhou University of Chinese Medicine, Guangzhou, China, 2013. (In Chinese)

137. Witte, S.T.; Osweiler, G.D.; Stahr, H.M.; Moblely, G. Cocklebur toxicosis in cattle associated with the consumption of mature *Xanthium strumarium*. *J. Vet. Diagn. Invest.* 1990, 2, 263–267. [CrossRef] [PubMed]

138. Hu, Y.; Wang, J.X.; Zhang, L.; Huang, J.K.; Yang, X.H. Comprehensive evaluation and risk control measures of Xanthii Fructus. *Chin. J. Chin. Mater. Med.* 2017, 42, 4079–4085. (In Chinese)

139. Li, J.; Gao, T.; Xie, Z.Q.; Tang, Y. The Toxicity Comparison Experiment of the Extractions from *Fructus Xanthii*. *Lishizhen Med. Mater. Med. Res.* 2005, 16, 484–487. (In Chinese)

140. Yan, L.C.; Zhang, T.T.; Zhao, J.N.; Song, J.; Hua, H.; Li, L. Comparative study on acute toxicity of four extracts from Xanthii Fructus in mice. *Chin. J. Chin. Mater. Med.* 2012, 37, 2228–2231. (In Chinese)

141. Fu, S.; Guan, J.H. Experimental Study on the Toxicity and Efficacy of Siegesbeckiae and Cocklebur. *World J. Integr. Tradit. West. Med.* 2015, 10, 493–496. (In Chinese)
142. Stuart, B.P.; Cole, R.J.; Gosser, H.S. Cocklebur (xanthium strumarium L. var. strumarium) intoxication in swine: Review and redefinition of the toxic principle. *Vet. Pathol.* 1981, 18, 368–383.

143. Wang, Y.; Han, T.; Xue, L.M.; Han, P.; Zhang, Q.Y.; Huang, B.K.; Zhang, H.; Ming, Q.L.; Peng, W.; Qin, L.P. Hepatotoxicity of kaurene glycosides from *Xanthium strumarium* L. fruits in mice. *Die Pharm.* 2011, 66, 445–449.

144. Stewart, M.J.; Steenkamp, V. The Biochemistry and Toxicity of Atractyloside: A Review. *Ther. Drug Monit.* 2000, 22, 641–649. [CrossRef] [PubMed]

145. Jin, Y.; Liu, S.M.; Liu, Y.; Mou, H. Toxic effects of ethylacetate, n-butanol, and water extracts from alcohol extractions of cocklebur fruit on liver in rats. *Advers. Drug React. J.* 2010, 12, 17–20. (In Chinese)

146. Cao, M.; Wu, B.; Ma, D.; Bai, Y.; Liu, S.M. Metabolomics study on *Fructus Xanthii*-induced hepatotoxicity in rats. *Advers. Drug React. J.* 2011, 13, 287–293. (In Chinese)

147. Xue, L.M.; Zhang, Q.Y.; Han, P.; Jiang, Y.P.; Yan, R.D.; Wang, Y.; Rahman, K.; Jia, M.; Han, T.; Qin, L.P. Hepatotoxic constituents and toxicological mechanism of *Xanthium strumarium* L. fruits. *J. Ethnopharmacol.* 2014, 152, 272–282. [CrossRef] [PubMed]

148. Zeng, J.; Tang, S.W.; Liu, Y.H.; Wang, Y.Q.; Hua, Y.; Zhao, J.N. Experimental Study on Liver Toxicity of Raw and Stir-fried *Xanthium sibiricum* Based on Sensitive Biomarkers. *Pharm. Clin. Chin. Mater. Med.* 2018, 34, 122–125. (In Chinese)

149. Mandal, S.C.; Dhara, A.K.; Kumar, C.K.A.; Maiti, B.C. Neuropharmacological Activity of *Xanthium Strumarium* Linn. Extract. *J. Herbs Spices Med. Plants* 2001, 8, 69–77. [CrossRef]

150. Yin, J.; Li, D.; Hu, W.; Meng, Q. Effects of glycyrrhizic acid on cocklebur-induced hepatotoxicity in rat and human hepatocytes. *Phytother. Res.* 2008, 22, 395–400. [CrossRef]

151. Yu, J.; Song, M.Z.; Wang, J.; Li, Y.F.; Lin, P.; Que, L.; Bao, Z. In vitro cytotoxicity and in vivo acute and chronic toxicity of Xanthii Fructus and its processed product. *Biomed. Res. Int.* 2013, 2013, 1–12.

152. Piloto Ferrer, J.; Cozzi, R.; Cornetta, T.; Stano, P.; Fiore, M.; Degrassi, F.; De Salvia, R.; Remigio, A.; Francisco, M.; Quinones, O.; et al. *Xanthium strumarium* L. Extracts Produce DNA Damage Mediated by Cytotoxicity In vitro Assays but Does Not Induce Micronucleus in Mice. *Biomed. Res. Int.* 2014, 2014, 575197. [CrossRef] [PubMed]

153. Su, T.; Cheng, B.C.; Fu, X.Q.; Li, T.; Guo, H.; Cao, H.H.; Kwan, H.Y.; Tse, A.K.W.; Yu, H.; Cao, H.; et al. Comparison of the toxicities, bioactivities and chemical profiles of raw and processed Xanthii Fructus. *BMC Complement. Altern. Med.* 2016, 16, 24. [CrossRef] [PubMed]

154. Chen, X.Q.; Hou, H.R.; Liu, K.C.; Wang, X.M.; Peng, W.B.; Han, L.W.; Wang, X.; Chen, W.Y. Toxicity of *Fructus Xanthii* extract to the growth and motion behavior of zebrafish embryos. *Shandong Sci* 2014, 27, 10–13. (In Chinese)