Updated systematic review and meta-analysis of the predictive value of serum biomarkers in the assessment and management of fever during neutropenia in children with cancer

Tasnim Arif1 | Robert S. Phillips2,3

1Department of Paediatric Haematology and Oncology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
2Centre for Reviews and Dissemination, University of York, York, United Kingdom
3Department of Paediatric Haematology and Oncology, Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom

Correspondence
Tasnim Arif, Department of Paediatric Haematology and Oncology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, United Kingdom. Email: tasnim.arif1@nhs.net

Abstract
Routinely measurable biomarkers as predictors for adverse outcomes in febrile neutropenia could improve management through risk stratification. This systematic review assesses the predictive role of biomarkers in identifying events such as bacteraemia, clinically documented infections, microbiologically documented infection, severe sepsis requiring intensive care or high dependency care and death. This review collates 8319 episodes from 4843 patients. C-reactive protein (CRP), interleukin (IL)-6, IL-8 and procalcitonin (PCT) consistently predict bacteraemia and severe sepsis; other outcomes have highly heterogeneous results. Performance of the biomarkers at admission using different thresholds demonstrates that PCT > 0.5 ng/mL offers the best compromise between sensitivity and specificity: sensitivity 0.67 (confidence interval [CI] 0.53-0.79) specificity 0.73 (CI 0.66-0.77). Seventeen studies describe the use of serial biomarkers, with PCT having the greatest discriminatory role. Biomarkers, potentially with serial measurements, may predict adverse outcomes in paediatric febrile neutropenia and their role in risk stratification is promising.

KEYWORDS
biomarker, children, febrile neutropenia, sensitivity, specificity

1 | INTRODUCTION

Neutropenic sepsis, or febrile neutropenia (FN), remains a serious complication of childhood cancer therapy with an incidence of bacteraemia in 11-24% cases, paediatric intensive care unit (PICU) admissions in 0.9-11% cases, and fatality in 0.2-3% cases.1-8 For this reason, children receiving anticancer treatment are frequently required to present to hospital if they have a fever. Subsequently, they experience long hospital admissions for treatment of FN despite data supporting safe and effective use of risk-stratified early discharge.9-11

There are at least 25 different paediatric clinical decision rules for the assessment of FN. These require local calibration before implementation, and lack of discriminatory value in the adolescents and young adult (AYA) group suggests this group may need its own risk prediction model.12-14

Biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT) have been used to fortify adult risk systems successfully.15,16 Three paediatric clinical decision rules have utilised biomarkers to guide risk stratification (CRP in two rules and PCT in one17-19). The International Pediatric Fever and Neutropenia Guideline Panel and the National Institute of Clinical Excellence (NICE) have recommended further research in the use of biomarkers for differentiating between low-, standard- or high-risk episodes and guide on-going treatment.20,21
Two previous systematic reviews have assessed the use of biomarkers in predicting adverse outcomes in febrile neutropenic episodes in children and young people with cancer.\(^\text{22,23}\) These reviews showed marked variation in terms of the quality of individual studies, biomarkers used and outcomes measured, which made it difficult to make comparisons between the biomarkers. Further studies have been published since the last review in 2011, necessitating an updated systematic review to evaluate the sensitivity and specificity of serum biomarkers in predicting adverse outcomes in paediatric FN.

2 | MATERIALS AND METHODS

This is an update of two preceding systematic reviews of the predictive value of serum biomarkers in the assessment and management of fever during neutropenia in children with cancer.\(^\text{22,23}\) The review protocol was registered with the International register of systematic reviews (PROSPERO) database of systematic reviews: CRD42016036350 in March 2016 (https://www.crd.york.ac.uk/prospero/).

2.1 | Search strategy and selection criteria

The update search strategy mirrored the preceding reviews. It was undertaken in April 2016 and further updated in November 2018 in MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Health Technology Assessment Database, Cochrane Central Register of Controlled Trials, Web of Science Conference Proceedings Citation Index–Science and Literatura Latinoamericana e do Caribe em Ciencias da Saude (LILACS). The full electronic search strategy for the MEDLINE database is provided in Supporting Information S1. Reference lists of systematic reviews were examined for further relevant studies. Published and unpublished studies were included. Language restrictions were not applied and relevant non-English language studies were translated. Authors were contacted where further details were required about study conduct or data.

The titles and abstracts of studies were screened by two independent reviewers (TA and AH). Disagreements were resolved through consensus or recourse to a third reviewer (RSP).

Studies deemed eligible for the systemic review included diagnostic cohort studies of patients receiving anticancer treatment for solid, brain or haematological malignancies between the ages of 0 and 24 years, who presented to hospital or community settings with FN, assessed a biomarker and its value in predicting an adverse outcome of the FN episode.

The adverse outcomes considered included death, PICU/HDU (high dependency unit) admission, single organ impairment, invasive bacterial or fungal infection, presence of microbiologically documented infection (MDI) and presence of radiologically confirmed infection. Studies with combined adult and children populations were excluded if the outcome data for children or young people (0–24 years) could not be reported separately.

2.2 | Data extraction and risk of bias assessment

Data were extracted by one reviewer using a standardised data extraction form, which had been used in the preceding systematic reviews, and checked for accuracy independently by a second reviewer.

General data items extracted from the studies included demographics, geographical location, participant inclusion/exclusion criteria, clinical characteristics and treatment course. Data were extracted for the index tests (serum biomarker values) and adverse outcomes (e.g. survival, intensive/high dependency care admission, sepsis, bacteraemia). Biomarker data for different cutoff values as well as different or serial time points were obtained.

Studies were included if data could be extracted by either a 2 × 2 tables comparing dichotomized test results against the study adverse outcome or by a measure of central tendency plus spread (e.g. mean and standard deviation or median with range). If only the latter data were available, it was converted using the assumption of normality and 2 × 2 tables derived for cut-offs reported in other studies.

Risk of bias was assessed using an adapted Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool, which had been used in the preceding reviews. The quality item ‘time between index test and reference test were appropriate’ was considered indiscriminate because the index test (biomarker) and reference test (clinical outcome) are always examined within a single episode of FN; the ‘intermediate results’ outcome was deemed irrelevant as biomarker values were required, so the ‘positive’, ‘intermediate’ and negative’ categories were obsolete.

2.3 | Methods of data synthesis

Quantitative pooling was performed for the commonest biomarkers if there was sufficient data for meta-analysis, where the same biomarker for equivalent clinical outcomes was available. Where possible, the groups were analysed for sources of heterogeneity. The MADA package was used in R to undertake the data pooling. The results are displayed using cross-hairs plots in receiver operating characteristic (ROC) space. This graphical approach combines the forest plot with the ROC curve, showing study weight, the bivariate relationship of sensitivity and specificity, and the confidence intervals around each individual study as well as the overall pooled estimate.

3 | RESULTS

The search strategy identified 509 articles, of which 38 new articles were included. Sixteen studies were excluded because data were not extractable either by a 2 × 2 table of dichotomized data or by a measure of central tendency plus spread. Twenty-two remaining studies with suitable quantitative data were combined with 21 studies from the preceding two systematic reviews (Figure 1). Two further studies were excluded before quantitative synthesis because there were insufficient studies looking at similar outcomes using interleukin (IL)-10\(^\text{24}\) or insufficient numbers examining adrenomedullin.\(^\text{25}\)
3.1 Study and population characteristics

Twenty-two new studies with quantitative data were identified in this update comprising of 1851 patients and 3060 episodes. The new studies were geographically diverse (11 different countries) with an appropriate range of paediatric malignant diagnoses (Table 1). The mean age of the patients within these studies was 6.7 years with an age range between 0.3 and 23 years. One study did not provide data on patient age. Hematopoietic stem cell transplant (HSCT) patients were not represented in this population. The population characteristics of these 22 studies mirrored the population of the studies in the previous reviews in terms of malignant diagnoses, age range, and lack of HSCT patients.

Many biomarkers have been used to predict adverse outcomes in paediatric FN but CRP, PCT, IL-6, and IL-8 remain the most commonly studied (13 studies, eight studies, eight studies and eight studies, respectively). Fourteen studies assessed more than one biomarker in their populations, and seven studies assessed more than two biomarkers. Biomarkers were tested at serial time points in 12 out of 22 studies.

The outcomes measures reported were infections (microbiological or clinical), PICU, length of stay (LOS) in hospital, death and fever of unknown origin (FUO). Infections were described as MDIs, clinically documented infections (CDIs), bacteraemia, blood stream infection, severe infection, sepsis, severe sepsis and systemic infection. The most commonly reported outcomes were bacteraemia, CDI, MDI and FUO.

3.2 Risk of bias assessment

The summarised QUADAS-2 assessment of the 22 new studies is shown in Figure 2; the quality assessment of individual studies is provided in Supporting Information S2.

The selection process was inadequately described in 12 (55%) studies and three included studies were not cohort designed. Two of these studies were case-control40,44 and one was a clinical trial.38 FN data relating to biomarkers and outcomes were extractable from these studies but case-control studies have been shown to exaggerate diagnostic accuracy estimates48 and the clinical trial data introduced bias through non-blinding of the index test (biomarkers), using different index tests in separate groups, and using the result of the index test to define groups within the study.

FN was defined clearly within a study but varied between studies. This review found 17 definitions of FN including 16 for fever and four for neutropenia. All studies, except one, included definitions of fever to include a threshold of above 38°C as a solitary (four studies) or sustained (11 studies) temperature. One study differed by defining fever as a solitary temperature over 38.5°C. Twenty studies defined neutropenia as a count below 0.5 × 10⁹/L, although ‘falling counts’ under 1.0 × 10⁹/L was accepted within six of these definitions. The other two studies used falling counts under 0.75 × 10⁹/L and under 1.0 × 10⁹/L26 as definitions of neutropenia.

Descriptions of how multiple episodes were included in a study is poorly described in most studies, as is whether the index test was blindly interpreted without knowledge of the outcome. Descriptions
Citation	Mean age, years (range, years)	Underlying conditions (n)	Markers studied [and time point(s)]	Number of patients	Number of episodes	Endpoints studied	Comments on endpoints
Aggarwal et al.27	6 (2-13)	ALL (40), NHL (6), AML (2)	IL-5, IL-6, IL-8, TNF-α [within 24 h]	48	52	CDI, MDI, FN related death	Group 1 = No focus of infection (low risk), Group 2 = clinical or radiological documented focus of infection (high risk), Group 3 = microbiologically proven infection or FN related death (high risk)
Aquino et al.28	7.6 (±3.3)	ALL (38), AML (6), Solid (16)	ESR, CRP, protein C level, IFN-G, IL-1B, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, TNF-α, MIP-1a, MIP-1b, MCP-1, exotoxin [admission]	47	58	Bacteraemia LOS	
Badurdeen et al.26	Not stated	ALL (22), AML (10), Lymphoma (4), Bone sarcomas (5), soft tissue sarcomas (6), CNS (6), other malignancies (2)	IL-1, IL-5, IL-6, IL-8, IL-10, IL-12p70, CRP [timing unclear]	44	55	Bacteraemia	
Chaudhary et al.29	6 (1-23)	ALL/AML (20), RMS (2), HL (1), ATRT (1), Immature teratoma (1), NBL (1)	IL-6, CRP [days 1 and 3]	26	57	CDI, MDI, FUO	MDI = ≥1 blood culture positive, other positive culture
Cost et al.30	Median 6.8 (no range)	ALL (66), AML (9), CNS (13), lymphoma (4), sarcomas (11), other (13)	IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, CRP, GMCSF, IFN-G, TNF-α [<24 h]	116	195	Bacteraemia PICU, death	PICU admission, fluid resus, and death commented on but no data available with biomarkers
Delebarre et al.31	7.6 (±5.1)	ALL (54), AML (21), lymphoma (19), bone (25), RMS (16), brain (8), NBL (5), nephroblastoma (5), others (6)	CRP, PCT [timing unclear]	160	372	Severe infection	'Severe infection' defined as bacteraemia, positive culture of an abnormally sterile body fluid, invasive fungal infection, localized infection at risk of extension
Demirkaya et al.32	7.5 (1-18)	Leukaemias (27), solid (7), lymphoma (3)	Adrenomedullin, CRP, PCT [days 0, 3, 7-10]	37	50	CDI, MDI, sepsis, severe sepsis, Death, FUO	Sepsis-SIRS in presence of suspected/proven infection. Severe sepsis-sepsis and cardiac or ARDS, or two more organ dysfunction
Hazan et al.33	9.5 (±5.9)	Solid (75), nonsolid (120)	CRP [admission, daily during hospitalization]	73	195	Blood stream infection (BSI)	Positive blood culture at admission, or >10 days after BSI episode, followed by disappearance of first pathogen (three blood cultures), CONS ≥2 separate occasions
Hemming et al.34	Median 5.2 (1.3-18)	Solid (14), lymphomas (4), leukaemias (9)	PCT [admission, days 2 and 3]	27	48	Severe infection Non-severe infection	Severe and non-severe infection as per PICNIC collaboration definition³⁵
Kar et al.36	Median 3.41 (5.75-11.9)	ALL (50), AML (8), NHL (7), Hodgkin (1), NBL (1), Wilms (1)	CRP [admission]	68	200	CDI, MDI, fever of unknown origin (FUO)	
Kesik et al.35	Median 10 (1.66-16)	PNET (2), Ewings (3), HL (2), NBL (3), NHL (2), osteosarcoma (1), ependymoma (1)	Adrenomedullin [0 h, 24 h, 48 h, 7 days]	14	36	Culture positive Culture negative	Culture positive—microorganism identified in blood or urine
Mian et al.37	Median 12 (2-21)	ALL (10), AML (5), NHL (1), bone (6), RMS (3), CNS (4), NBL (4), others (3)	HS-CRP, PCT, IL-1α, IL-1β, IL-1Ra, IL-2, sIL-2Ra, IL-3, 4, 5, 6, 7, 8, 9, 10, IL-12, TNF-α, and TNF-β [days 1 and 2]	36	89	High risk Low risk	High risk: micropositive blood culture, prolonged hospital stay (>7 days), admission to PICU. Low risk: none of high-risk outcomes (negative blood culture, pneumonia, colitis, cellulitis)

(Continues)
Citation	Mean age, years (range, years)	Underlying conditions (n)	Markers studied [and time point(s)]	Number of patients	Number of episodes	Endpoints studied	Comments on endpoints
Miedema et al⁹³	Median 1 (1-6)	ALL (58), AML (13), lymphoma (12), solid (42), brain (13), other (3)	IL-8, CRP [admission and at 12-24 h]	141	233	Safety, Bacteraemia, LOS	Clinical trial primary outcome = safety (blood culture positive, recurrent fever). Secondary outcome = bacteraemia, duration of fever, LOS, or complications (PICU admission/death). IL-8 used to group low-risk and medium-risk episodes
Oberoi et al⁹⁰	Median 5 (4-7)	ALL only	CRP [admission]	176	320	Complications (yes or no)	Definition of complication: septic shock, pneumonia (requiring invasive/non-invasive support), renal failure, neutropenic enterocolitis, encephalopathy, congestive cardiac failure, mucosal bleeds, other complications that were considered serious and clinically significant
Penagos-Paniagua et al⁹⁵	9.3 (± 3.9)	ALL (49), AML (11), NHL (10), soft tissue sarcomas (11), HL (2), NBL (1), retinoblastoma (1), other (6)	CRP [admission]	127	98	CDI, MDI, FUO	
Reitman et al⁹¹	8.6	Not stated	PCT [admission and 12-24 h]	70	89	Bacteraemia	Not defined
Santolaya et al⁹²	9.2 (no range)	Leukaemia (303), lymphoma (27), solid (117) [episode data]	CRP, IL-8 [admission and 24 h]	403	447	Severe sepsis	'Severe sepsis' as per international definition⁹³
Schroder and Lodahl⁹⁴	5.7 (0.3-15)	Haematological cancer (45), solid (40)	PCT, CRP [admission and serial samples within 48 h, timings unclear]	85	230	Systemic infection (SI) Non-systemic infection (NSI)	SI—culture positive bacteraemia. NSI—all other causes of fever
Urbonas et al⁹⁵	7 (1-18)	Haematological and non-haematological cancers (numbers unclear)	IL-6, IL-8 [days 1 and 2]	37	61	Bacteraemia/sepsis group, FUO group	Bacteraemia/sepsis: positive blood culture, clinically documented sepsis. FUO-negative blood culture, absence of clinical/microbiological signs of infection
Urbonas et al⁹⁴	3 (1-17)	ALL (16), AML (2), NHL (1), non-haematological cancer (5)	IL-10 [day 1]	24	36	Septic group, FUO group	Septic: positive blood culture, clinically documented sepsis
Urbanas et al⁹⁵	Median 6 (range 1-17)	ALL (28), AML (2), NHL (1), non-haematological cancer (6)	PCT, IL-2R, sHLA-G, prespsin [day 1]	37	62	Bacteraemia/sepsis group, FUO group	Bacteremia/sepsis: positive blood culture, clinically documented sepsis
van der Galien et al⁹⁷	Median 6.3 (0.8-18.8)	Hematologic (44), solid (24), brain (7)	IL-6, PCT [admission, 12-24 h]	55	77	Bacterial infection No bacterial infection	Bacterial infection: blood culture, or culture of fluid from otherwise sterile site, or radiologically documented infection

Abbreviations: ALL, acute lymphoblastic leukemia; NHL, non-Hodgkin's lymphoma; AML, acute myeloid leukemia; CNS, central nervous system tumors; RMS, rhabdomyosarcomas; HL, Hodgkin's lymphoma; ATRT, atypical teratoid rhabdoid tumors; NB, neuroblastoma; PNET, primitive neuroectodermal tumors; IL, interleukin; ESR, erythrocyte sedimentation rate; IFN-γ, interferon-gamma; MIP, monocyte chemoattractant protein; MCP, monocyte chemoattractant protein; GMCSF, granulocyte macrophage colony stimulating factor; sHLA-G, soluble human leukocyte antigen G.
of outcomes (reference standards) were explained well within studies but descriptions of the same outcome, such as bacteraemia, sepsis and severe infection, differed between studies. Definitions of MDI, CDI and FUO were similar between studies. Although measures of LOS, PICU admission and death were reported, data were usually not presented in context of biomarker levels against these outcome measures.

The timings of tests were not given in two studies. \(^{19,26}\) ‘Admission’ samples were reported as taken before the commencement of treatment. When serial biomarkers were used, timings varied between studies and missing values were unclear if mean results were given.

3.3 Quantitative synthesis

This updated review now collates 8315 FN episodes from 4822 patients evaluating 30 different biomarkers. The most common biomarkers reported are CRP (42 studies), PCT (22 studies), IL-6 (20 studies) and IL-8 (13 studies). The next most frequently studied biomarkers are tumour necrosis factor-alpha/RII (TNF-\(\alpha\)/RII) with nine studies, IL-5 with eight studies, and IL-10 and IL-2 with seven studies each. The aggregate number of studies looking at other biomarkers is shown in Supporting Information S3. Quantitative synthesis was performed on the four most common biomarkers due to the availability of sufficient data on biomarker and similar outcomes.

Quantitative synthesis was possible for CRP and clinical bacterial infections, bacteraemia, serious bacterial infections and severe sepsis; PCT and clinical bacterial infections, bacteraemia, microbiologically defined infections and serious bacterial infections; IL-6 and clinical bacterial infections, bacteraemia, and serious bacterial infections; and finally, IL-8 and clinical bacterial infections, bacteraemia, serious bacterial infections and severe sepsis. There were insufficient data to provide quantitative synthesis of outcomes such as LOS, PICU admissions and death. The analyses per-outcome can be seen in Supporting Information S4. The pooled sensitivity (pSn) and specificity (pSp) for the biomarkers to detect any adverse outcome is CRP pSn 40% (95% confidence interval [CI] 20-75%), pSp 65% (95%CI 30-85%); PCT pSn 60% (95% CI 35-80%), pSp 75% (95%CI 50-90%); IL-6 pSn 65% (95% CI 20-85%), pSp 70% (95%CI 30-90%); and IL-8 pSn 70% (95% CI 40-90%), pSp 60% (95%CI 25-80%).

Bivariate meta-analysis of the biomarkers at different cutoff levels reiterates the expected relationship found in the previous reviews; low biomarker cutoff levels predict adverse outcomes with great sensitivity but poor specificity, and high biomarker cutoff levels predict adverse outcomes with poor sensitivity but good specificity (Table 2).

The cross-hairs ROC plots (Figure 3A–D) displaying the predictive ability of the biomarkers at commonly reported cutoff points illustrates imprecision within each study as well as between study heterogeneity.
3.4 | Comparison of biomarkers

Thirteen studies in this review used more than one biomarker and gave comparative descriptions of performance.26–32,37,38,42,44,45,47 Three out of the four studies comparing the performance of CRP and PCT31,32,37,44 found the latter to be better at predicting adverse outcomes. Such comparisons can be affected by the choice of cutoff, but the following are consistent across thresholds. PCT appeared to be more discriminatory at admission, whereas CRP was more discriminatory after 48 h. In one of these comparative studies, CRP was more sensitive but not more specific than PCT. CRP was also found to be more sensitive but less specific in a study where its performance was compared with IL-8.42 There were seven studies evaluating CRP and IL-8 or IL-6,26–30,37,38,42 but only two compared their predictive capacities, finding that the ILs added greater predictive value than CRP.29,30 Five studies explored the predictive role of IL-6 and IL-8: one found IL-8 to perform better,30 one found them to be equivalent,45 and the other three did not make any comparisons.26,27,37 There were no direct comparisons of PCT with IL-8 but one study compared the predictive value of PCT to IL-6,47 finding that IL-6 demonstrated better discriminatory power at admission and at 12–24 h of admission but particularly at admission. The authors also found combining PCT (>0.25 ng/L) with IL-6 (>60 ng/L), which significantly increased the likelihood of identifying a bacterial infection at both time points.

3.5 | Use of serial biomarkers

Eleven new studies in this systematic review assessed the four commonest biomarkers at more than one time point. Serial CRP levels were evaluated in seven studies, PCT in six studies, IL-8 in four studies and IL-6 in four studies (Table 3). The description of the timings was often unclear or varied; for example, studies describe the timing of the initial biomarker as ‘admission’, ‘day 0’ or ‘day 1’. Meta-analysis was not possible due to varying time points and outcome measures, and insufficient data.

Four of seven studies evaluating serial CRPs described a better predictive value after 48 h than at admission, echoing five out of six studies showing serial PCTs were likely to be more useful than single PCTs. The claimed benefit of serial IL-8 levels was inconsistent, and two of the four IL-6 studies showed no benefit in serial assessment.

4 | DISCUSSION

This systematic review includes 8315 FN episodes from 4822 patients from 11 different countries. The age of patients represented in this systematic review characterise the general paediatric oncology patient population well. However, HSCT population is poorly represented in these studies. This group is subject to more intense systemic anticancer treatment, so there should be caution in extrapolating the results of this review to HSCT patients.

The number of biomarkers being explored has doubled from 14 in the original 2011 review to 30 in the 2018 update. Laboratory techniques allow panels of multiple biomarkers to be explored simultaneously but small study numbers prevent meaningful quantitative synthesis of such biomarkers. Interestingly, lactate was not explored as a biomarker in any of these studies despite its incorporation in national and international sepsis guidelines.49

The overall quality of studies included in this systematic review was good with the greatest difficulties found in reporting whether the biomarkers were interpreted without knowledge of the outcome. Variation in the definition of FN has decreased in the updated 22 studies, this update with more consistency for fever to be defined as a temperature over 38°C and neutropenia as below 0.5 × 109/L. The majority of studies did not clarify how multiple FN episodes in the same patient would be defined. This could have affected the quality of their study if the episodes occurred within a short period of time (i.e. biomarker had not returned to baseline levels) or there was overrepresentation of patients with genetic predisposition to
FIGURE 3 Cross-hairs ROC plot showing relationship of sensitivity and specificity at different cutoff levels of (A) PCT, (B) CRP, (C) IL-6, and (D) IL-8. Crosses = individual studies; centre of cross = predictive value, length of cross = CIs within the study. Small circle = pooled predictive value of marker, solid ellipse 95% confidence region, dashed ellipse 95% prediction region.
TABLE 3 Serial biomarker studies in updated review describing time points for biomarker analysis, outcomes assessed, and study findings

Biomarker	Study	Time points (days)	Outcomes assessed	Reported findings
CRP	Chaudhary et al\(^{29}\)	1, 3	MDI, CDI	Statistically significantly higher on 3 versus 1 for MDI (not CDI)
CRP	Demirkaya et al\(^{32}\)	0, 3, 7-10	MDI, CDI, sepsis, death	Statistically significantly higher on 3 versus 0. No difference 7-10.
CRP	Hazan et al\(^{33}\)	A, daily	Bacteraemia	Statistically significantly higher on A and 5-8 for bacteraemia
CRP	Mian et al\(^{37}\)	1, 2	Bacteraemia, LOS, ICU	No statistical difference
CRP	Miedema et al\(^{38}\)	A, 0.5-1	Bacteraemia, LOS, PICU, death	Clinical trial, levels predetermined
CRP	Santolaya et al\(^{42}\)	A, 1	Severe sepsis	Increase >100 mg/L at 24 h risks severe sepsis
CRP	Schroder and Lodahl\(^{44}\)	A, unclear (within 2)	Bacteraemia	Description; discriminatory power better after 2 than A
PCT	Demirkaya et al\(^{32}\)	0, 3, 7-10	MDI, CDI, sepsis, death	Statistically significantly lower on 3 versus 7-10. 0 versus 3 showed no difference
PCT	Hemming et al\(^{34}\)	0, 2, 3	SBI	Description; rose on 2 versus 0 in three out of three cases of SBI
PCT	Mian et al\(^{37}\)	1, 2	Bacteraemia, LOS, PICU	No statistical difference
PCT	Reitman et al\(^{41}\)	A, 0.5-1	Bacteraemia	Serial PCT is better than single PCT
PCT	Schroder and Lodahl\(^{44}\)	A, unclear (within 2)	Bacteraemia	Description; discriminatory power rises over time
PCT	Van der Galien et al\(^{47}\)	A, 0.5-1	Bacterial infection	Significantly higher at both time points and discriminatory power increases with time
IL-8	Mian et al\(^{37}\)	1, 2	Bacteraemia, LOS, PICU	Statistically significantly lower on 2 versus 1
IL-8	Miedema et al\(^{38}\)	A, 0.5-1	Bacteraemia, LOS, PICU, death	Clinical trial, levels predetermined
IL-8	Santolaya et al\(^{42}\)	A, 1	Severe sepsis	Increase >300 pg/mL at 24 h risks severe sepsis
IL-6	Urbonas et al\(^{45}\)	1, 2	Bacteraemia	No benefit in doing serial IL-8
IL-6	Chaudhary et al\(^{29}\)	1, 3	MDI, CDI	Not statistically significantly different between days 1 and 3
IL-6	Mian et al\(^{37}\)	1, 2	Bacteraemia, LOS, ICU	Statistically significantly lower on 2 versus 1
IL-6	Urbonas et al\(^{54}\)	1, 2	Bacteraemia	No benefit in doing serial IL-8
IL-6	Van der Galien et al\(^{47}\)	A, 0.5-1	Bacterial infection	Significantly higher at both time points and discriminatory power decreases with time

Abbreviation: A, admission time-point.

infections, in their biomarker response, or fever without adverse outcome.\(^{50}\)

Episodes were not described in context of clinical features (e.g. haemodynamic parameters, maximum/duration of temperature, etc.) or patient-specific features (e.g. type of cancer, intensity of anticancer regimen, trisomy 21) that would normally be used in clinical decision rules. Therefore, associations between biomarker and clinical outcomes found in this review do not account for the complexity of multiple factors in an FN episode. The PICNICCC (Predicting Infectious Complications of Neutropenic sepsis In Children with Cancer) collaboration has collected data on 20 variables within FN episodes including patient-specific clinical features and laboratory variables.\(^{51}\) The influence of these multiple variables in predicting FN outcomes can be better explored in such individual patient data meta-analyses.

The outcomes explored in individual studies were relevant but when grouping the outcomes of all the studies, there was considerable overlap, for example, MDI and bacteraemia, CDI and sepsis, bacteraemia and sepsis, or severe infection and bacteraemia. This could explain the marked heterogeneity seen in the cross-hair plot of biomarkers predicting different outcome groups (Supporting Information S4). Better collaboration in future research is required to provide consistency in outcome definitions.\(^{52}\) This review did not find adequate data to perform meta-analyses on LOS in hospital or community-based treatment (i.e. treatment duration) but the available data for such outcomes are likely to be confounded by centre-specific FN policy.

The biomarkers predictive ability decreased in sensitivity and increased in specificity as the cutoff level increased. The potential use of different biomarker assays between studies for a given threshold may impact the reliability of the pSn and pSp results obtained, especially where fewer studies contributed to the pSp/pSn of a threshold. The trade between an acceptable level of sensitivity and specificity is a clinical decision and factors such as study/episode numbers and heterogeneity of data should be considered when deciding upon which threshold to use in clinical practice.
Comparative descriptions of the biomarkers found CRP to be the poorest performing biomarker. The ILs possibly have a predictive role within 24 h of admission but greater patient numbers and studies are required to strengthen this finding. PCT is more discriminatory at admission and performs better than CRP but its performance against the ILs has only been explored in one study against IL-6.

The update found 12 out of 22 studies evaluated biomarkers at serial time points. The previous systematic review identified only six serial biomarker studies. Serial PCT studies in this review supported the findings of the previous review showing a better discriminatory power over time with a rise interval of 24-48 h and then a fall. The serial CRP results appear to show higher levels after 48-72 h, which probably reflects its slower kinetic activity compared to PCT implying CRP is not clinically useful in making decisions about early de-escalation or cessation of treatment. This review found no strong predictive role of serial IL-6 and IL-8. Inconsistencies in methodology and reporting of outcomes would not allow meta-analyses of these biomarkers to be performed. However, the descriptive findings of these studies suggest encouraging results for the predictive use of serial PCT and further studies using consistent methodological and reporting approaches should focus in this area.

5 | CONCLUSIONS

Biomarkers have been used to fortify existing clinical decision rules in the management of FN. The choice of biomarker for predicting an adverse outcome and the choice of optimal threshold remain inconclusive due to the variability within and between studies. However, based on this review, PCT at a threshold of 0.5 ng/mL appears the most suitable admission biomarker to predict adverse outcomes. There may be additional benefit in using serial PCT measurements. This needs to be validated through a larger multicentre study, using consistent biomarker timings, assays and outcome definitions, before widespread clinical recommendation and use.

ACKNOWLEDGMENTS

The authors would like to acknowledge Alex Hodkinson, Centre for Reviews and Dissemination, University of York, for help with abstract screening and data extraction, and Kath Wright, Centre for Reviews and Dissemination, University of York, as originator of original search strategy.

CONFLICT OF INTERESTS

There are no competing interests to declare. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. R.S.P. is supported by NIHR award (NIHR Post-doctoral Fellowship 10872). The views expressed in this publication are those of the authors and not necessarily those of the NHS, the National Institute for Health Research, or the Department of Health and Social Care (DHCS).

ORCID

Tasnim Arif https://orcid.org/0000-0002-8062-7449

REFERENCES

1. Duncan C, Chisholm JC, Freeman S, Riley U, Sharland M, Pritchard-Jones K. A prospective study of admissions for febrile neutropenia in secondary paediatric units in South East England. Pediatr Blood Cancer. 2007;49(5): 678-681.
2. Basu SK, Fernandez ID, Fisher SG, Asselin BL, Lyman GH. Length of stay and mortality associated with febrile neutropenia among children with cancer. J Clin Oncol. 2005; 23(31):7958-7966.
3. Hann C, IV, Paemsans M, Gaya H, Glauser M. A comparison of outcome from febrile neutropenic episodes in children compared with adults: results from four EORTC studies. Br J Haematol. 1997;99(3):580-588.
4. Petrilli AS, Dantas LS, Campos MC, Tanaka C, Ginani VC, Seber A. Oral ciprofloxacin vs. intravenous ceftriaxone administered in an outpatient setting for fever and neutropenia in low-risk pediatric oncology patients: randomized prospective trial. Med Pediatr Oncol. 2000;34(2):87-91.
5. Baorto EP, Aquino VM, Mullen CA, Buchanan GR, DeBaun MR. Clinical parameters associated with low bacteremia risk in 1100 pediatric oncology patients with fever and neutropenia. Cancer. 2001;92(4):909-913.
6. Santolaya ME, Alvarez AM, Aviles CL, Becker A, Cofre J, Enriquez N. Prospective evaluation of a model of prediction of invasive bacterial infection risk among children with cancer, fever, and neutropenia. Clin Infect Dis. 2002;35(6):678-683.
7. Al Omar S, Nazer L, Alkayed K. A prospective study of febrile neutropenia in pediatric cancer patients in Jordan. J Pediatr Hematol Oncol. 2013;35(8):614-617.
8. Walwyn M, Nicholson A, Lee MG, Wharfe G, Frankson MA. [Febrile neutropaenia in cancer patients] Neutropenia febril en pacientes con cancer. West Indian Med J. 2010;59:209.
9. Morgan JE, Cleminson J, Atkin K, Stewart LA, Phillips RS. Systematic review of reduced therapy regimens for children with low risk febrile neutropenia. Support Care Cancer. 2016;24(6):2651-2660.
10. Pizzo PA. Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med. 1999;332(18):1323-1332.
11. Klaassen RJ, Goodman TR, Pham B, Doyle JJ. “Low-risk” prediction rule for pediatric oncology patients presenting with fever and neutropenia. J Clin Oncol. 2000;18(5):1012-1019.
12. Phillips RS, Bhuller K, Sung L, et al. Risk stratification in febrile neutropenic episodes in adolescent/youth adult patients with cancer. Eur J Cancer. 2016;64:101-106.
13. Phillips B, Wade R, Stewart LA, Sutton AJ. Systematic review and meta-analysis of the discriminatory performance of risk prediction rules in febrile neutropaenic episodes in children and young people. Eur J Cancer. 2010;46(16):2950-2964.
14. Phillips RS, Lehrnbecher T, Alexander S, Sung L. Updated systematic review and meta-analysis of the performance of risk prediction rules in children and young people with febrile neutropaenia. PLoS One. 2012;7(5):e38300.
15. Combariza JF, Lombana M, Pino LE, Arango M. C-reactive protein and the MASCC risk index identify high-risk patients with febrile neutropenia and hematologic neoplasms. Support Care Cancer. 2015;23(4):1009-1013.
16. AHN S, Lee YS, Lim KS, Lee JH. Adding procalcitonin to the MASCC risk index score could improve risk stratification of patients with febrile neutropenia. Support Care Cancer. 2013;21(8):2303-2308.
17. Ammann RA, Hirt A, Lüthy AR, Aebi C. Identification of children presenting with fever in chemotherapy-induced neutropenia at low risk for severe bacterial infection. Med Pediatr Oncol. 2003;41(5):436-443.
18. Santolaya ME, Alvarez AM, Becker A, et al. Prospective, multicenter evaluation of risk factors associated with invasive bacterial infection in children with cancer, neutropenia, and fever. J Clin Oncol. 2001;19(14):3415-3421.

19. Delebarre M, Dubos F, Macher E, Garnier N, Mazingue F. Identifying high-risk patients for severe infection in children with chemotherapy-induced febrile neutropenia: a new decision rule. Pediatr Blood Cancer. 2010;55:823.

20. Lehrnbecher T, Phillips R, Alexander S, et al. Guideline for the management of fever and neutropenia in children with cancer and/or undergoing hematopoietic stem-cell transplantation. J Clin Oncol. 2012;30(35):4427-4438.

21. National Institute for Health and Care Excellence (NICE). CG151 Neutropenic sepsis: prevention and management of neutropenic sepsis in cancer patients: Full guideline. https://www.nice.org.uk/guidance/cg151. Accessed June 14, 2019.

22. Phillips RS, Wade R, Lehrnbecher T, Stewart LA, Sutton AJ. Systematic review and meta-analysis of the value of initial biomarkers in predicting adverse outcome in febrile neutropenic episodes in children and young people with cancer. BMC Med. 2012;10:6.

23. Haeusler GM, Carlesse F, Phillips RS. An updated systematic review and meta-analysis of the predictive value of serum biomarkers in the assessment of fever during neutropenia in children with cancer. Pediatr Infect Dis J. 2013;32(10):e390-e396.

24. Urbonas V, Eidukaite A, Tamuliene I. Increased interleukin-10 levels correlate with bacteremia and sepsis in febrile neutropenia pediatric oncology patients. Cytokine. 2012;57(3):313-315.

25. Keski V, Atas E, Gulcan Kurt Y, et al. Adrenomedullin predicts high risk and culture positivity in children with solid tumors suffering from neutropenic fever. J Infect Chemother. 2016;22(9):617-621.

26. Badurdeen S, Hodge G, Osborn M, et al. Elevated serum cytokine levels using cytokometric bead arrays predict culture-positive infections in childhood oncology patients with febrile neutropenia. J Pediatr Hematol Oncol. 2012;34(1):e36-e38.

27. Aggarwal R, Bansal D, Bansal F, et al. Interleukin-5, interleukin-6, interleukin-8 and tumour necrosis factor-alpha levels obtained within 24 h of admission do not predict high-risk infection in children with febrile neutropenia. Indian J. 2013;31(3):226-229.

28. Aquino VM, Cost C, Gomez A, et al. Predictive value of interleukin-5 and monocyte chemotactic protein-1 for bacteremia in children with febrile neutropenia. J Pediatr Hematol Oncol. 2012;34(6):e241-e245.

29. Chaudhary N, Kosaraju K, Bhat K, Bairy I, Borker A. Significance of interleukin-6 (IL-6) and C-reactive protein (CRP) in children and young adults with febrile neutropenia during chemotherapy for cancer: a prospective study. J Pediatr Hematol Oncol. 2012;34(8):617-623.

30. Cost CR, Stegner MM, Leonard D, Leavy P. IL-8 predicts pediatric oncology patients with febrile neutropenia at low risk for bacteremia. J Pediatr Hematol Oncol. 2013;35(3):206-211.

31. Delebarre M, Garnier N, Macher E, et al. Which variables are useful for predicting severe infection in children with febrile neutropenia? J Pediatr Hematol Oncol. 2015;37(8):e468-e474.

32. Demirkaya M, Tugcu D, Akcay A, et al. Adrenomedullin—a new marker in febrile neutropenia: comparison with CRP and procalcitonin. Pediatr Hematol Oncol. 2015;32(7):482-489.

33. Hazan G, Ben-Shimol S, Fruchtman Y, et al. Clinical and laboratory parameter dynamics as markers of blood stream infections in pediatric oncology patients with fever and neutropenia. J Pediatr Hematol Oncol. 2014;36(5):e275-e279.

34. Hemming V, Jakes AD, Shenton G, Phillips B. Prospective cohort study of procalcitonin levels in children with cancer presenting with febrile neutropenia. BMC Pediatr. 2017;17(1):2.

35. Phillips RS, Sung L, Ammann RA, et al. Predicting microbiologically defined infection in febrile neutropenic episodes in children: global individual participant data multivariable meta-analysis. Br J Cancer. 2016;114(6):623-630.

36. Kar YD, Ozdemir ZC, Bor O. Evaluation of febrile neutropenic attacks of pediatric hematology-oncology patients. Turk Pediatri Arsivi. 2017;52(4):213-220.

37. Mian A, Becton D, Saylors R, et al. Biomarkers for risk stratification of febrile neutropenia among children with malignancy: a pilot study. Pediatr Blood Cancer. 2012;59(2):238-245.

38. Miedema KG, Tissing WJ, Abbink FC, et al. Risk-adapted approach for fever and neutropenia in paediatric cancer patients—a national multi-centre study. Eur J Cancer. 2016;53:16-24.

39. Oberoi S, Das A, Trehan A, Ray P, Bansal D. Can complications in febrile neutropenia be predicted? Report from a developing country. Support Care Cancer. 2017;25(11):3523-3528.

40. Penagos-Paniagua M, Villasis-Keever MA, Miranda-Novales MG, et al. [Usefulness of C-reactive protein in the diagnosis of bacterial infection in the pediatric patient with cancer, fever and neutropenia]. Utilidad de la proteína C reactiva para el diagnostico de infeccion bacteriana en el paciente pediátrico con cancer, fiebre y neutropenia. Bol Med Hosp Infant Mex. 2012;69(5):376-383.

41. Reitman AJ, Pisk RM, Gates JV, 3rd, Ozeman JD. Serial procalcitonin levels to detect bacteremia in febrile neutropenia. Clin Pediatri (Phila). 2012;51(12):1175-1183.

42. Santolaya ME, Alvarez AM, Aviles CL, et al. Prospective validation of a risk prediction model for severe sepsis in children with cancer and high-risk febrile neutropenia. Pediatr Infect Dis J. 2013;32(12):1318-1323.

43. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2-8.

44. Schroder H, Lodahl D. Procalcitonin adds to diagnosis, but does not reduce initial antibiotics in febrile neutropenic children. Dan Med Bull. 2011;58(3):A4233.

45. Urbonas V, Eidukaite A, Tamuliene I. The diagnostic value of interleukin-6 and interleukin-8 for early prediction of bacteremia and sepsis in children with febrile neutropenia and cancer. J Pediatr Hema tol Oncol. 2012;34(2):122-127.

46. Urbonas V, Eidukaite A, Tamuliene I. The predictive value of soluble biomarkers (CD14 subtype, interleukin-2 receptor, human leucocyte antigen-G) and procalcitonin in the detection of bacteremia and sepsis in pediatric oncology patients with chemotherapy-induced febrile neutropenia. Cytokine. 2013;62(1):34-37.

47. van der Galien HT, Loeffen EAH, Miedema KGE, Tissing WJE. Risk-adapted approach for fever and neutropenia in paediatric cancer patients—a national multi-centre study. Eur J Cancer. 2015;52(4):213-220.

48. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle. Crit Care Med. 2010;38(6):1619-1628.

49. Pehlivan M, Sahin HH, Ozdilli K, et al. Gene polymorphisms and febrile neutropenia in acute leukemia—no association with IL-4, CCR-5, IL-1RA, but the MBL-2, ACE, and TLR-4 are associated with the disease in Turkish patients: a preliminary study. Genet Test Mol Biomarkers. 2014;18(7):474-481.

50. Phillips RS, Sutton AJ, Riley RD, et al. Predicting infectious complications in neutropenic children and young people with cancer (IPD protocol). Syst Rev. 2012;1:8.

51. Haeusler GM, Phillips RS, Lehrnbecher T, Sung L, Ammann RA. The reporting of outcomes in studies of fever and neutropenia in children with cancer: time for consensus. Pediatr Blood Cancer. 2013;60(10):1563-1564.
53. Irwin AD, Carrol ED. Procalcitonin. Arch Dis Child Educ Pract Ed. 2011;96(6):228-233.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Arif T, Phillips RS. Updated systematic review and meta-analysis of the predictive value of serum biomarkers in the assessment and management of fever during neutropenia in children with cancer. Pediatr Blood Cancer. 2019;66:e27887. https://doi.org/10.1002/pbc.27887