A hybrid electrocoagulation-adsorption process for fluoride removal from semiconductor wastewater

S N A Jalil1*, N Amri1, A A Ajien1, N F Ismail1 and B Ballinger2

1Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
2School of Chemical Engineering, Universiti Sains Malaysia, Kampus Kejuruteraan, 14300 Nibong Tebal, Pulau Pinang, Malaysia

*sitinurehan@uitm.edu.my

Abstract. Semiconductor processing facilities regularly emit wastewater with fluoride concentrations exceeding 100 mg/L which can cause major health issues in the local population. This research aims to address this issue by optimising an electrocoagulation-adsorption (EC-AD) process using two aluminium electrodes and activated carbon. The applied voltage (5, 15, and 20V) and adsorbent dosage (0.20, 0.50, and 1.00g) parameters were varied to treat a synthetic wastewater solution containing 100 mg/L of fluorine. It was found that fluoride removal efficiencies are significantly affected by the adsorbent dosages and applied voltages used. Increasing the applied voltage from 5V to 20V increased the removal efficiency from 37.55% to 64.25% for 0.2g adsorbent dosage and from 33.85% to 67.25% for 0.5g dosage. After all the parameter combinations were tested, an applied voltage of 20V and an adsorbent dosage of 0.50g produced the maximum fluoride removal efficiency. These parameter values thus define the optimal conditions for the EC-AD process to reduce fluoride from highly concentrated wastewater. The AD, EC, and hybrid EC-AD process achieved fluoride removal efficiencies of 2.86%, 41.13%, and 67.25% respectively from synthetic wastewater. Therefore, it was showed that the combination EC-AD process performs better than adsorption (AD) or electrocoagulation (EC) processes used in isolation.

1. Introduction
The semiconductor industry is one of the major developing industries in the world. This industry produces the components for many electronic devices such as smartphone memory chips, microprocessors, commodity integrated circuit and complex SOC (or system on a chip) [1–4] and has generated at least US$40 billion (RM186.94 billion) of world marketing sales. However, the industry generates industrial wastewater effluent which contains fluoride concentrations within the range 100 – 2000 mg/L [5–8]. Such high fluoride concentration exceeds the World Health Organization’s (WHO) permissible limit of 1.50 mg/L. Any humans or animal species that contact this water may suffer several major adverse health effects such as skeletal fluorosis, dental fluorosis, and cancer [9]. Furthermore, it does not comply the Malaysian Department of Environment’s (DOE) Standard that requires water effluent to contain less than 2.0 mg/L for Standard A and 5.0 mg/L for Standard B [10]. Therefore, it is required that fluoride be removed from semiconductor wastewater effluent.

Many water treatment technologies, such as coagulation, electrocoagulation (EC), adsorption (AD), membrane, and ion-exchange processes have been applied to treat high fluoride concentrations in
Among all these water treatment technologies, coagulation, EC, and AD processes exhibit relatively high fluoride removal efficiencies. However, this research has investigated low initial fluoride concentrations and therefore cannot be used to assess the capabilities of EC and AD technologies in treating effluent with high fluoride concentration [12–17]. Furthermore, many researches are moving toward hybrid water treatment technologies to improve the removal efficiency of contaminants found in industrial wastewater effluent [18,19]. Therefore, this study will assess EC, AD and a hybrid EC-AD process for removing fluoride at high concentrations from simulated semiconductor wastewater effluent. This is a proof-of-concept study for the EC-AD process, as no published studies have investigated this technology for processing semiconductor wastewater effluent.

2. Methodology

2.1 Sampling material
A fresh stock of 1000 mg/L of fluoride solution was firstly prepared synthetically by dissolving 2.2101 g of NaF (QRèC (Asia) Sdn Bhd, Malaysia, 100%) into a 1000 mL of deionized water, followed by 0.10 M of NaCl as supporting electrolyte in the water (QRèC (Asia) Sdn Bhd, Malaysia, 100%). NaCl is selected as supporting electrolyte as it can improve the conductivity of solution as well as is able to eliminate passive films on aluminium electrodes due to pitting corrosion [12]. 0.10 M of HCl (Fisher Scientific (Malaysia) Sdn Bhd, Malaysia, 37%) or 0.10 M of NaOH (QRèC (Asia) Sdn Bhd, Malaysia, 100%) was used to adjust pH solution to 7 [20, 21]. A total ionic strength adjustment buffer (TISAB) solution (Fisher Scientific, United Kingdom) is added to the synthetic fluoride solution with the volume ratio of 1:100 for fluoride concentration measurement [13]. After the preparation of the fresh stock solution, 100 mL of the 1000 mg/L of synthetic fluoride solution is poured into 900 mL of deionized water so that the water sample contain 100 mg/L of initial fluoride concentration.

2.2 Experimental procedures
Hybrid EC-AD experiment is the combination of EC and AD experiment. EC experiment was carried out by connecting two aluminium electrodes; each having the dimension of 140 mm × 60 mm × 2 mm, to the anode and cathode of the power supply (UNILAB, England) and partially immersing the electrodes into 1000 mL of synthetic solution containing 100 mg/L of initial fluoride concentration; whereas AD experiment was conducted by placing certain amount of coconut shell-based activated carbon into the solution. A magnetic stirrer is placed into the solution so that it agitated the solution at 150 rpm. The duration of the operation is 60 minutes.

After 60 minutes, the water sample was filtered by using Whatman No.1 Filter Paper and subsequently was added by TISAB solution in order to eliminate aluminium interference [13]. The treated water sample was then sent to measure the final fluoride concentration by using ion selective electrode (EUTECH Instruments, Singapore). Finally, the efficiency of fluoride removal for hybrid EC-AD process is calculated by using Eq. 1:

\[
\text{Fluoride Removal Efficiency (\%) } = \frac{[F]_i - [F]_o}{[F]_o} \times 100\%
\]

where \([F]_o\) and \([F]_i\) are the initial and final fluoride concentration, respectively.

3. Result and Discussion

3.1 Effects of Operating Parameter on Hybrid EC-AD Performance
Figure 1 shows the effect of applied voltage and adsorbent dosage on the hybrid EC-AD performance in fluoride removal. The applied voltage that was tested at 5, 15, and 20 V, while the adsorbent dosage was tested for 0.20, 0.50, and 1.00 g values. The performance of hybrid EC-AD in fluoride removal for the integration of each applied voltage and each adsorbent dosage was evaluated.
3.2 Effect of Applied Voltage

Applied voltage is one of the critical parameters that influences the performance of hybrid EC-AD. Based on the Figure 1, it can be concluded that an increase in applied voltage results in the steady improvement on fluoride removal efficiency for the hybrid EC-AD process. This statement is true when the adsorbent dosage applied on the hybrid water treatment process is 0.20 and 0.50 g. When adsorbent dosage is 0.20 g, the hybrid EC-AD system has fluoride removal efficiency 37.55, 49.65, and 64.25% at the operating applied voltages of 5, 15, and 20V respectively. For the parameter of 0.50 g of adsorbent dosage, the fluoride removal efficiency is 33.85, 59.45, and 67.25%. Basically, the applied voltage is closely related to the electrical flow; when applied voltage increases, the electrical flow increases which subsequently leads to a growing amount of generated aluminum hydroxide (Al(OH)$_3$) coagulants. The increasing amount of the coagulants causes additional fluoride to be aggregated and coagulated, and therefore increasing the efficiency of fluoride removal by the hybrid EC-AD process [20, 22, 23, 24].

3.3 Effect of Adsorbent Dosage

Adsorbent dosage is also has the potential to influence the performance of the hybrid EC-AD process. The fluoride removal efficiency for hybrid EC-AD increases with increasing adsorbent dosage under an applied voltage of 15V. At this voltage, the fluoride removal efficiency were recorded as 49.65, 59.45, and 64.65% for adsorbent dosages 0.20, 0.50, and 1.00 g respectively. This result is similar to the outcomes reported for the adsorption experiment conducted by Dutta et al. [25] and Poudyal et al. [16]. The activated carbon adsorbent has a large surface area. As adsorbent dosage increases, the total surface area (and active sites) also increases. This results in the increase of fluoride removal efficiency [17,26–28] as seen in Figure 1.

3.4 Optimum Condition of Hybrid EC-AD for Fluoride Removal

Table 1 shows the fluoride removal efficiency for hybrid EC-AD with the variation of applied voltage and adsorbent dosage. Based on the table, lower fluoride removal efficiencies are obtained under certain applied voltages and adsorbent dosages due to technical incompatibilities that arise during the hybrid EC-AD process [29].
Table 1. Results of hybrid EC-AD performance with variation of applied voltage and adsorbent dosage.

Applied Voltage	Adsorbent Dosage 0.20 g	Adsorbent Dosage 0.50 g	Adsorbent Dosage 1.00 g
5 V	37.55%	33.85%	43.15%
15 V	49.65%	59.45%	64.65%
20 V	64.25%	67.25%	47.35%

The results in Table 1 for the 5 V applied voltage exhibit a similar trend to those reported by Saijala and co-workers. They obtained fluoride removal efficiency values of 40, 36, 46, and 40% for adsorbent dosages of 2.00, 3.00, 4.00, and 5.00 g respectively using an AD process [30]. The possible explanation is that the activated carbon that was grounded by the mortar does not have uniform particle sizes that could make the fluoride removal efficiency be proportional to the adsorbent dosage. In the previous work done by Getachew and his companions [17], the activated carbon was grounded by mortar and sieved in order to obtain uniform particle mesh size of 0.60 mm. This uniform particle size of activated carbon may cause the fluoride removal efficiency to be proportional to the adsorbent dosage.

At 20 V of applied voltage, the fluoride removal efficiency increases from 64.25 to 67.25% when the adsorbent dosage increases from 0.20 to 0.50 g, but decreases to 47.35% as 1.00 g of adsorbent dosage is applied on the hybrid EC-AD process. This outcome suggests that fluoride is not effectively removed despite the further addition of adsorbent in hybrid EC-AD process [31]. The outcome may also be explained by the excessive coagulant that was generated at 20 V which may cause ineffectiveness in fluoride removal by the hybrid EC-AD process. During the generation of excessive coagulants, the adsorbent remain without coagulants and is dissolved in water when fluoride is removed in the hybrid EC-AD process [32]. This indicates that moderate adsorbent dosage is required to maximize the effectiveness of the hybrid EC-AD process for the treatment of wastewater with high fluoride concentration [33]. Based on Table 1, the maximum fluoride removal efficiency achieved was 67.25% at 20 V applied voltage and 0.50 g of activated carbon dosage. For this reason, optimum applied voltage and adsorbent dosage for the operation of hybrid EC-AD process is 20 V and 0.50 g respectively.

3.5 Comparison of EC, AD and Hybrid EC-AD Performance

The data to compare the performance of EC, AD, and hybrid EC-AD in fluoride removal from wastewater at optimum condition of 20 V of applied voltage and 0.50 g of adsorbent dosage is shown in Figure 2. The fluoride removal efficiency for AD and EC is 2.86% and 41.13% respectively in the optimum condition. It can be observed that the fusion of EC and AD process achieve the highest fluoride removal efficiency when the hybrid EC-AD (67.25%) is compared with both EC and AD process. This outcome corresponds to the findings of an experiment conducted by Ouaissa and co-workers that found out that the integration process of EC-AD exhibits the highest pollutant removal efficiency compared to the single EC and AD processes [18].
Figure 2. Fluoride removal efficiency for AD (Adsorption), EC (Electrocoagulation) and hybrid EC-AD technologies at optimum conditions.

The AD process has the lowest fluoride removal efficiency due to the fact that higher initial fluoride concentration leads to decreasing AD performance in fluoride removal [16,17,25]. This can be explained by stating that the 0.50 g of activated carbon provides not enough active site so that a large portion of fluoride can be removed from the wastewater and hence causing little effect on the fluoride removal efficiency [16,17,34]. EC process has greater fluoride removal efficiency as compared to the AD process. This is because 20 V of applied voltage generates many coagulants required which provide more active sites that significantly larger amount of fluoride can be removed, but the applied voltage is still not strong enough to achieve the minimum fluoride removal efficiency of 80% due to the effect of the initial fluoride concentration [12–14]. When EC and AD processes are integrated to form hybrid EC-AD, the fluoride removal efficiency is significantly improved. This finding can be explained by stating that the combination of EC and AD can cause larger removal of fluoride, which leads to higher fluoride removal efficiency [29]. Based on this discovery, although the fluoride removal efficiency for hybrid EC-AD is less than 80% due to high fluoride concentration [12–14], the hybrid EC-AD exhibit a great potential in removing high fluoride concentration from the industrial wastewater.

4. Conclusion
This work investigated how varying applied voltage and adsorbent dosage affected hybrid EC-AD performance. Results showed that increasing applied voltage gave higher hybrid EC-AD fluoride removal efficiencies except for at an adsorbent dosage of 1.00g and a voltage of 20V. In evaluating the effect of adsorbent dosage on hybrid EC-AD performance, increasing adsorbent dosage enhances the fluoride removal efficiency. This is true for the hybrid EC-AD that operates under 15V of applied voltage with 0.20 g, 0.50 g, and 1.00 g of adsorbent dosage.

From the results it was found that an applied voltage of 20V and an adsorbent dosage of 0.50g gave the maximum fluoride removal efficiency (67.25%). Therefore, optimum applied voltage is 20 V and optimum adsorbent dosage is 0.50 g for this study. In comparing the EC, AD, and hybrid EC-AD performance in fluoride removal from wastewater treatment, the coupling process of EC-AD exhibit the highest fluoride removal efficiency. However, the final concentration in water still exceeds the Malaysian DOE’s mandatory limit of 2.0 – 5.0 mg/L of fluoride concentration after the hybrid EC-AD testing. Therefore, several factors such as number of electrodes and operating time must be enhanced so that the wastewater treatment technology can improve its potential in treating industrial wastewater effluent that contain high concentration of fluoride.
Acknowledgments
The authors would like to thank all the support from Faculty of Chemical Engineering, UiTM Cawangan Pulau Pinang including resources, necessary facilities such as laboratory and instruments, student and laboratory assistants for this research.

References
[1] Investopedia 2008 The Industry Handbook: Semiconductor Industry Investopedia.com. p. 1- 65.
[2] Semiconductor Industry Association 2015 The U.S. Semiconductor Industry: 2015 Factbook. United States.
[3] Tuah Y 2016 E&E–A gateway to Malaysia’s trade Borneo Post Retrieved from https://www.statistics.gov.my/dosm/uploads/files/5_Gallery/2_Media/4_Stats@media/1_General_News/2016/Borneo_Post_160416_EE_A_gateway_to_Malaysias_trade.pdf. on 2 Jan 2019.
[4] Kong S 2017 Semiconductors end year on a high Borneo Post. Retrieved from https://www.theborneopost.com/2017/02/07/semiconductors-end-year-on-a-high/ on 2 Jan 2019.
[5] Gurtubay L Dañobeitia I Barona A Prado J and Elías A. 2010 Viability study on two treatments for an industrial effluent containing sulphide and fluoride Chem. Eng. J. 162, p. 91-96.
[6] Chuang T Huang C J Liu J C 2003 Treatment of semiconductor wastewater by dissolved air flotation J. Environ. Eng. 128, p. 974-980.
[7] Saha S 1993 Treatment of aqueous effluent for fluoride removal Water Resour. 27, p. 1347-1350.
[8] Drouiche N Ghaffour N Lounici H and Mameri N 2008 Electrochemical treatment of chemical mechanical polishing wastewater: removal of fluoride — sludge characteristics — operating cost Desalination 223, p. 134-142.
[9] Gorchev H G and Ozolins G 2011 WHO Guidelines for Drinking - Water Quality., 4th Ed., World Health Organization.
[10] Department of Environment 2010 Environmental Requirements: A Guide For Investors 11th Ed. Federal Government Administrative Center, Putrajaya.
[11] Waghmare S S and Arfin T 2015 Fluoride removal from water by various techniques - review, Int. J. Innov. Sci. Eng. Technol. 2, p. 560-571.
[12] Behbahani M Moghaddam M R A Arami M and Al A 2011 Techno-economical evaluation of fluoride removal by electrocoagulation process: Optimization through response surface methodology Desalination 271, p. 209-218.
[13] Shivayogimath C B and Punage S 2014 Optimization of parameters for fluoride removal by electrocoagulation using aluminum electrodes in monopolar parallel combination Int. J. Eng. Res. Technol. 3, p. 1276-1280.
[14] Takdastan A Tabar S E Islam A Bazafkan M H and Naisi A K 2015 The effect of the electrode in fluoride removal from drinking water by electrocoagulation process, Int. Conf. Chem. Environ. Biol. Sci. 1, p. 39-44.
[15] Thakur L S and Mondal P 2017 Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: parametric and cost evaluation J. Environ. Manage. 190, p. 102-112.
[16] Poudyal M and Babel S 2015 Removal of fluoride using granular activated carbon and domestic sewage sludge Int. Conf. Informatics, Environ. Energy Appl. 82, p. 139-143.
[17] Getachew T Hussien A and Rao VM 2015 Defluoridation of water by activated carbon prepared from banana (Musa paradisiaca) peel and coffee (Coffea arabica) husk Int. J. Environ. Sci. Technol. 12, p. 1857-1866.
[18] Ait Ouissa Y Chabani M Amrane A and Bensmaila A 2012 Integration of electro coagulation and adsorption for the treatment of tannery wastewater - The case of an Algerian factory, Rouiba Procedia Eng. 33, p. 98-101.
[19] Narayanan N V and Ganesan M 2009 Use of adsorption using granular activated carbon (GAC)
for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation J. Hazard. Mater. 161, p. 575-580.
[20] Environmental Protection Agency 2002 Water Treatment Manuals: Coagulation, Flocculation & Clarification, An Ghnömhaireacht um Chaomhná Comhshaoil, Wexford, Ireland.
[21] Alaska Department of Environmental Conservation 2009 Introduction to Water Treatment, in: Anderson T Duclos N Folster L Lindley K Pollen M and Smith K (Eds.) Introd. to Small Water Syst., University of Alaska, Sitka, p. 95-145.
[22] Emanjomeh M Sivakumar M and Schafer A 2004 Fluoride removal by using a batch electrocoagulation reactor J. Environ. Manage. 90, p. 143-152.
[23] Geankoplis C J 1993 Transport Processes and Unit Operations Prentice-Hall Int. p. 1-937.
[24] Shepherd R A 1992 Granular Activated Carbon for Water & Wastewater Treatment Carbtrol Corporation September Rev 10 p. 92.
[25] Dutta M Ray T and Basu J K 2012 Batch adsorption of fluoride ions onto microwave assisted activated carbon derived from acacia auriculiformis scrap wood Arch. Appl. Sci. Res. 4, p. 536-550.
[26] Ariffin N Mustafa M A B Remy M Mohd R Zaino A Murshed M F and Faris M A 2017 Review on Adsorption of Heavy Metal in Wastewater by Using Geopolymer, MATEC Web Conf. 1023.
[27] Bhaumik R Mondal N K Das B Roy P Pal K C and Das C 2012 Eggshell powder as an adsorbent for removal of fluoride from aqueous solution: equilibrium, kinetic and thermodynamic studies E-Journal Chem. 9, p. 1457-1480.
[28] Togarepi EMahamadi C and Mangombe A 2012 Deflouridation of water using physico-chemically treated sand as a low-cost adsorbent: an equilibrium study, African J. Environ. Sci. Technol. 6, p. 176-181.
[29] Barrera-Díaz C E Roa-Morales G Hernández P B Fernandez-Marchante C M and Rodrigo M A 2014 Enhanced electrocoagulation: New approaches to improve the electrochemical process, J. Electrochem. Sci. Eng. 4, p. 285-296.
[30] Sailaja K V Bhagawan D Himabindu V and Cherukuri J 2015 Removal of fluoride from drinking water by adsorption onto activated alumina and activated carbon Int. J. Eng. Res. Appl. 5, p. 19-24.
[31] Chang S Wang K Liang H Chen H Li H Peng T Su Y and Chang C 2010 Treatment of reactive black 5 by combined electrocoagulation – granular activated carbon adsorption – microwave regeneration process J. Hazard. Mater. 175, p. 850-857.
[32] Pereira H Carvalho D Huang J Zhao M and Liu G 2015 Improvement of methylene blue removal by electrocoagulation / banana peel adsorption coupling in a batch system Alexandria Eng. J. 34, p. 777-786.
[33] Aouni A Lafi R and Hafiane A 2017 Feasibility evaluation of combined electrocoagulation / adsorption process by optimizing parameters removal for textile wastewater treatment Desalin. Water Treat. 60 10890.
[34] Padmavathy K S Madhu G Haseena P V 2016 A study on effects of pH, sdsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles Procedia Technol. 24, p. 585-594.