Interactive potential of *Pseudomonas* species with plants

Suhana Shaikh¹,², Nutan Yadav¹, Anoop R. Markande¹,³*

¹CG Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli, Gujarat, India; ²Microbiology, Nagindas Hiralal Bhayani, Ankleshwar, Gujarat, India; ³Department of Biological Sciences, PD Patel Institute of Applied Sciences, Charotar University of Science and Technology, Anand, Gujarat, India.

ARTICLE INFO

Article history:
Received on: April 23, 2020
Accepted on: August 09, 2020
Available online: November 25, 2020

Key words:
Biocontrol, induced systemic resistance, PGPR, phytopathogen, *Pseudomonas*, rhizosphere

ABSTRACT

Pseudomonas species or pseudomonads are known for their metabolic and ubiquitous diversity which enables them to survive in extreme conditions such as in marine and terrestrial environments as well as in association with flora and fauna. The sequenced genomes of many strains of *Pseudomonas* spp. show their vast repertoire of biotechnological applicability potential with respect to their genetic makeup and also exhibit industrially important applications due to physicochemical tolerances to extreme conditions (such as temperature, pH, and toxic chemicals and solvents). The best studied species include opportunistic human and plant pathogens, soil bacteria, and the plant growth-promoting pseudomonads. *Pseudomonas* species also are plant-commensals known for exhibiting effective antimicrobial activities and enabling plants to retrieve key nutrients. Hence, studying *Pseudomonas* with respect to its various characteristics in response to plant interactions is a far more important subject to be studied for their effective applications. In this review, the Pseudomonads have been analyzed extensively for their genome; biomolecules produced and plant beneficial activities. Thus, the present work helps future endeavors for Pseudomonad research by streamlining the areas.

1. INTRODUCTION

Understanding of the beneficial activity and diversity of plant-bacterial association is important for maintenance and sustainable agriculture in agricultural-ecosystems [1-3]. The plant growth promoting rhizobacteria colonize the rhizosphere rapidly, suppress soil-borne pathogen at the root surface, and stimulate plant growth [4-7].

Since the dawn of agriculture, humans have been battling against plant diseases and pests which were greatly helped by the invention and deployment of chemical pesticides use which enhanced crop production increasing the need for persistent disease management strategies in 20th century. Although chemicals are available for plant-pest and disease-management, no alternatives are available for pest resistance for pesticides. The environmental, health, and safety concerns of these chemical products have increased the need for search for alternatives to control plant diseases and pests [8,10].

One group of bacteria that have become a focal point for research on biocontrol of plant diseases is the genus *Pseudomonas* (ubiquitous Gram-negative rod shaped gamma-proteobacteria possessing polar flagella) [13,51]. Their physiological and ecological diversity reported globally (which can extended to genetic level) are known for their secondary metabolite production which are applicable for integrated biocontrol of plant diseases [18-20]. The genome size of *Pseudomonas* species typically varies from 4.6 to 7.1 Mb having G+C content of 57.8 to 66.6% with 4237–6396 predicted genes [21]. Using multi-locus sequencing techniques, genus *Pseudomonas*, currently, possesses more than 100 species with further groups and sub-groups [3,22,24,26]. The details of pseudomonads whose genome has been elucidated are discussed in Table 1.

Genus *Pseudomonas* are ecologically significant and the most heterogeneous group termed as pseudomonads are characterized by the presence of a complex enzymatic system and elevated metabolic versatility. With simple nutritional requirements *Pseudomonas* spp. are found in nature, from industrial equipment, oils-pills, aseptic solutions, cosmetics, medical products, and clinical instruments [29]. Certain they are known to be pathogens or carriers for plants and human infections, while others strains and species exhibit biocontrol and bioremediation activities [14,18]. They have also been reported for their ability to produce effective biosurfactants [31] and efficient remediation capabilities [33,35].

Fluorescent pseudomonads are visually distinguishable than other species in the genus due to their water-soluble fluorescent pigment production. Root associated pseudomonads in rhizosphere (which is a zone of high microbial activity) enhances and acts in the management of plant health [20,24,25]. They are known to act as both plant pathogens (*Pseudomonas* syringae) and plant growth promoters (fluorescent pseudomonads) and fight the phytopathogens [22,26,27]. They are known to be rapid root...
The present review covers different aspects of plant growth promoting bacterial (fluorescent pseudomonad) interaction with plants and rhizospheric microorganisms enhancing the disease resistance with agricultural and horticultural uses.

2. TAXONOMY

At present, the plant pathogenic *Pseudomonas* species are taxonomically restricted to specific group of organisms using rRNA gene analysis and about 21 plant associations are reported with 50 different pathogenic strains (termed pathovars or pv- a confusing concept of taxonomy) of *P. syringae*. The complete genomes of three important pathovars belonging to *P. syringae* have been sequenced. Host reactions to pathogen infections have been studied extensively because *P. syringae* pv. tomato could infect other model plants such as *Arabidopsis*. The common symptoms of plant pathogenic pseudomonads that cause various important diseases show cankers, galls, blights, soft rots, leaf, and stem spots. Other important virulence factors causing pathogenicity include type III secretion system, production of secondary metabolites (hormones, phytotoxins, pectolytic enzymes, exopolysaccharides, etc.), and ice nucleation activity. No single strategy has been effective against plant pathogenic pseudomonads and may need polyphasic strategies (combinations of physical, chemical, and biological strategies) [9]. For specific detection of plant pathogenic pseudomonads, tools of molecular biology are increasingly gaining diagnostic importance [20,27,52].

2.1. *P. syringae* Caused Symptoms on Plants

A variety of *P. syringae* pv. syringae infections on woody plants are dependent on the microbial strain, plant part infected, and the environment [53]. Disease symptoms of *P. syringae* infections are due to plant-microbe interactions involving molecular interactions modulated by biotic and abiotic conditions and hence the concept in *P. syringae* having continuum of potential pathogenesis with evolutionary significance [54]. Multiple symptoms can occur simultaneously on a single plant, such as (1) turning of brown to black coloration of flowers and/or flower buds, (2) buds-dead and dormant, (3) necrotic leaf spots, (4) discolored and/or blackened leaf veins and petioles (due to systemic invasion and infection), (5) fruit spots and blisters, (6) shoot-tie-dieback (appearing as dead and blackened twig tissue extending to some distance from the tip), and (7) stem cankers: Bark depressions which darken with age.

2.2. The *Pseudomonas fluorescens* Group

Many strains of pseudomonads are fluorescent made up of seven subgroups and around 50 studied strains and species. They are common surface-microflora of virtually all plant tissues, along with many other natural habitats. Some of these plant associated strains are excellent promoters of plant growth and antagonists of plant pathogens. These strains have been enhanced as commercial products of plant growth promotion and agricultural bio-control agents (biofertilizers and biopesticides) [3,26].

Table 1: Genome studies of Pseudomonads

Strain	Source of isolation	References	
P. aeruginosa 2192	Chronically-infected cystic fibrosis patient	Mathee et al., (2008) [18]	
P. aeruginosa C3719	“Manchester epidemic strain” isolated from cystic fibrosis patient		
P. aeruginosa LEB58	“Liverpool epidemic strain” isolated from cystic fibrosis patient	Winstead et al., (2009) [28]	
P. aeruginosa PA14	Wound, from culture collection at University of California at Berkeley	Lee et al., (2006) [29]	
P. aeruginosa PA01	Burn wound	Stover et al., (2000) [30]	
P. entomophila L48	Fruit or fruit fly	Vodovar et al., [31]	
P. fluorescens Pf-5	Soil	Paulsen et al., (2005) [32]	
P. fluorescens PfO-1	Leaf of sugar beet	Silby et al., (2009) [10]	
P. fluorescens SBW25	Soil		
P. putida KT2440	Cured strain lacking the TOL plasmid	Nelson et al., (2002) [33]	
P. putida W619	Endophytic strain isolated from poplar	Taghavi et al., (2009) [34]	
P. stutzeri A1501	Rice paddy soils	Yan et al., (2008) [35]	
P. syringae pv. *oryzae*	Rice	Reinhardt et al., (2009) [36]	
P. syringae pv. *phaseolicola* 1448A	Bean	Joardar et al., (2005) [37]	
P. syringae pv. syringae B728a	Leaf of bean	Fell et al., (2005) [38]	
P. syringae pv. *tomato* DC3000	Tomato	Buell et al., (2003) [39]	
P. syringae pv. *tomato* T1	Tomato	Almeida et al., (2010) [40]	
P. protegens CHA0	Developmental stages of cabbage root fly	Flury et al., (2019) [41]	
P. syringae pv. *syringae* B728	Common bean	Helmann et al., (2019) [42]	
P. syringae pv. *actinidiae* (Psa)	Kiwi fruit plant	Donati et al., (2020) [43]	
P. chlororaphis subsp. *aurantica* ARS-38	Cotton	Mehnaz et al., (2020) [44]	
P. aeruginosa AJD 2	Monocropic cotton rhizosphere	Joshi and Chitanand (2020) [45]	
Fluorescent pseudomonads produce phytohormones – indole acetic acid (IAA), gibberlins, cytokinins, and ethylene production inhibitors, helping in increasing the plant root absorptive surface for nutrient and water uptake [11]. They can act directly on the nutritional status and thus growth and physiology of plant they colonize. *P. fluorescens* having aminocyclopropane-1-carboxylic acid– or ACC-deaminase activity [18,58] is important as it controls the quantity of plant ACC deaminase left for ethylene biosynthesis [59]. When checked using in vitro plate assays of the fluorescent strain, *P. aeruginosa* PJHU15 was found to be positive for the production of IAA and phosphate solubilization [60,61]. This fluorescent *P. aeruginosa* was used in consortium with *Trichoderma harzianum* and *Bacillus subtilis* leading to improvement of plant health inducing the systemic resistance and proteome-level changes when challenged with *Sclerotinia sclerotiorum* [3,48,59,62,63]. The consortium was also modulated for nutritional and antioxidant quality of pericarps of pea seeds [64]. Mutualistic, host associated bacteria were checked on model plant *Arabidopsis* against *P. fluorescens* and here, commensal and pathogenic lifestyles of these host-associated bacteria convergently lost and gained in multi-lineage homologous reconstruction further constituting the early step of bacterial differentiation into pathogenic and commensal lifestyles [65].

A significant group of players in crop growth, yield, and maintenance having capability, as phosphate solubilizing and biocontrol agents are termed as plant growth promoting rhizobacteria (PGPR). *Pseudomonads* possess many PGPR traits such as (i) rapid growth in vitro and provision for mass production; (ii) utilize seed and root exudates rapidly; (iii) colonize and dominate the rhizosphere, spermosphere, and even in the interior of plants; (iv) bioactive metabolite production (volatiles, siderophores, growth promoting substances, and antibiotics); (v) environmental stress resistance, and (vi) compete aggressively with other microorganisms. They are also responsible for the innate suppressiveness of some soils to pathogens [3,53,61,66-68]. The pseudomonads exhibited spatial separation from the pathogen on the above ground plant parts, either in the stem [69] or on the leaf surface [70]. Pseudomonads which have been reported to possess PGPR traits are discussed in Table 2.

Pseudomonas brassicacearum, a harmless commensal and a member of *Pseudomonas fluorescence* group containing more than 51 species, is known for its plant growth promotion (PGP) and biocontrol activities. It is also closely related to *P. corrugata*, an opportunistic phytopathogen [71].

3. PLANT DISEASE PROTECTION

3.1. Antibiosis

Fluorescent pseudomonads are known producers of variety of antibiotics and act as biocontrol agents [3,17,24,46,71]. The biocontrol agents produced by fluorescent pseudomonads include pyocyanin [17], pyrrolnitrin [73], phenazine-1-carboxylic acid [29], 2,4-diacetylphloroglucinol (Phl), and pyoluteorin [74]. *P. fluorescens* SF4c produces more than one functional bacteriocin (such as S-type bacteriocin and phage-tail-like bacteriocin-Tailocins) by their regulator Prr gene [75]. Flury et al. (2019) showed the role of insects such as cabbage root fly, *Delia radicum* in different developmental stages by harboring persistant root-colonizing *P. protegens* CHA0 as dispersal agents to new host plants [76].

3.2. Toxic Products (HCN Production)

Fluorescent pseudomonads have been long known for their production of HCN in disease suppression [77,78]. The rate of HCN production has been reported to be relative to the plant species and its root exudates which show in reciprocation, beneficial effect on the growth of plant [79]. Some of these act as biocontrol by producing HCN have also been reported for their ability to induce plant resistance against phytopathogenic fungal diseases [80,81], for example, in wheat [82]. Ferramola et al. (2020) used the *Larrea divaricata* Cav. (jariila) proteins to induce the antibody production and used the cross-reactivity of antibodies produced against nosocomial pathogen *Pseudomonas aeruginosa* [83].

3.3. Niche Domination (by Competing for Nutrients Available at Root Niches)

Plant exudates dictate the plant dependent rhizosphere microflora. The surface surrounding rhizosphere acts as carbon sink [3,49,83] providing various nutrients (including important elements, water, and other secondary metabolites such as antimicrobials, enzymes, vitamins, mucilage, and plant growth regulators). Thus resulting in influx of diversity of micro- and macro-organisms (pathogens included) at the rhizosphere site and resulting in competition for nutrients and consequently at this niche. The fast adaptability of fluorescent pseudomonads and other beneficial microorganisms (PGPR) to such condition make them effective competitors against pathogens. Most of these PGPR are flagellated and respond with chemotactic responses for plant exudates reaching root surfaces faster than others [26,84].

Many pseudomonads such as *P. psychrotolerans* CS51 and *P. aeruginosa* AID 2 have been studied recently for their genome-wide ability to encode PGP traits [86,87]. Singh et al. (2019) have compiled an excellent overview of different PGPR strains of *Pseudomonas* spp. and their mediated tolerance responses for different heavy metals [89].

3.4. Cellular Communication

Cellular communication or quorum sensing (QS) within the spatially structured *P. fluorescens* rhizospheres communities was found to be possible. QS signaling is dependent on cell density, their spatial distribution and mass transfer [91]. N-acyl homoserine lactone (AHL) based QS signaling molecules is predominantly seen among Gram-negative bacteria. *Pseudomonad* motility on semi-solid surfaces is mediated by type IV pili and peritrichous flagella [53,93] and Pyoverdine seems to be playing a major role in this locomotion as the mutations in pvdQ (which codes for stages of pyoverdine biosynthesis) resulted in bacterial motility loss [95].

3.5. Pseudomonas spp. Producing Rhamnolipids

The rhamnolipids are a group of biosurfactants and their production is regulated by the QS molecules. These biosurfactants (Rhamnolipids) have some extreme properties such as antimicrobial properties (antibacterial, antifungal, and antiviral) [72,90,91]. These surfactants are important in cell-to-cell interaction (or Quorum sensing), bacterial cell motility, cellular differentiation, and water channels formation these are the characteristics of the *Pseudomonas* biofilm. In comparison to the chemical surfactants, biological biosurfactants are more valuable for the environment and different industrial uses [97,101,103]. Rhamnolipids are widely used in agriculture, pharmaceutical, pesticide removal, improvement in oil recovery, household cleaning, and food industry. *P. aeruginosa* rhamnolipid shows the wide range of the bacteria such as *A. faecalis*, *E. coli*, *Micrococcus luteus*, *Mycobacterium phlei*, *Serratia Marcescens*, and *S. epidermidis*. *P. aeruginosa* rhamnolipids are also show the antifungal activity against the *Aspergillus niger*, *Aureobasidium pullulans*, *Chaetomium globosum*, and *Penicillium*...
Table 2: Pseudomonads as PGPR and plant responses

Bacteria	Enzymatic activity	Host plant	Plant responses	References
P. polymyxa	Indole-3-acetic acid	Wheat grass	Increased growth over uninoculated Control	Holl et al., (1988) [69]
P. putida	ACC deaminase	Tomato	Inoculated tomato seed increased plant resistance in 55 days to nine consecutive days of flooding and increased resistance to salinity	Gricheko and Glick, (2001) [94]
P. asplenii	ACC deaminase	Rape seeds	Significant increase in fresh and dry weight and biomass yield	Reed and Glick, (2005) [95]
P. putida	Indole-3-acetic acid	Canola	Two–threefold increases in the length of seedling roots	Ahmad, Ahmad and Khan, (2005) [96]
P. fluorescens	ACC deaminase	Maize	Increased root length and fresh weight under saline conditions	Kausar and Shahzad, (2006) [97]
P. fragi	Hydrogen cyanide	Wheat seedlings	Significantly increases the germination percentage, germination rate, plant biomass and nutrient uptake	Selvakumar et al., (2008) [98]
P. fluorescens	ACC deaminase	Groundnut plants	Improved the saline resistance and yield	
P. putida UW4	Indole-3-acetic acid and ACC deaminase	Canola	Under saline conditions, protected the seedling of canola from growth inhibition	Siddikee et al., (2010) [99]
P. aeruginosa	Hydrogen cyanide	Wheat	Control fungus diseases and enhance defense against phyto-pathogen	Rana et al., (2011) [100]
P. chlororaphis	Siderophore production	Maize	Increased root shoot biomass and seed germination rate	Hayat, Ahmed and Sheirdil, (2012) [101]
P. fluorescens Psd	Tryptophan Monooxygenase	Sorghum (var. *Sudex chari*)	Increased root shoot biomass and seed germination rate	Kochar, Upadhyay and Srivastava, (2011) [102]
P. fluorescens EBC191	Indoleacetonitrilase, Nitrile hydrolase	NA	NA	Kiziak et al., (2005) [103]
Pseudomonas sp. K-9	Phenylacetaldoxime Dehydratase	NA	NA	Kato and Asano, (2005) [104]
P. putida WCS358	Cell envelope components Flagella	Arabidopsis	Inducement of systemic resistance	Meziane et al., (2005) [57]
P. fluorescens WCS374	Lipopolysaccharides	Radish	Inducement of systemic resistance	Leeman et al., (1995) [105]
P. fluorescens WCS417	Lipopolysaccharides	Arabidopsis Carnation Radish	Inducement of systemic resistance	Van Peer and Schippers, (1992); Leeman et al., (1995); Van Wees et al., (1997) [105–107]
P. putida WCS358	LPS or pseudobactin	Arabidopsis Bean Tomato	Inducement of systemic resistance	Meziane et al., (2005) [57]
P. putida BTP1	Iron-regulated metabolites N-alkylated benzylamine Derivative	Bean Tomato	Inducement of systemic resistance	Ongena et al., (2005) [108]
P. fluorescens CHA0	Pseudobactin siderophore	Tobacco Radish Arabidopsis Bean Eucalyptus Tomato	Inducement of systemic resistance	Maurhofer et al., (1994); Leeman et al., (1996); Meziane et al., (2005); Ran et al., (2005) [57,63,84,109]
P. fluorescens WCS374	Salicylic acid	Vegetable Other	Inducement of systemic resistance and root exudates	Maurhofer et al., (1994); De Meyer and Höfte, (1997); De Meyer, Audenaert and Höfte, (1999) [84,110,111]
P. putida WCS358	Cell envelope components Flagella	Arabidopsis	Inducement of systemic resistance	Meziane et al., (2005) [57]
P. fluorescens WCS374	Lipopolysaccharides	Radish	Inducement of systemic resistance	Leeman et al., (1995) [105]
P. fluorescens WCS417	Lipopolysaccharides	Arabidopsis Carnation	Inducement of systemic resistance	Van Peer and Schippers, (1992) Leeman et al., (1996); Van Wees et al., (1997) [106,107,109]

Contd...
4. INFLUENCE OF PSEUDOMONAS SPECIES

Among the various rhizobacteria, *Pseudomonas* spp., are aggressive rhizospheres and rhizoplane colonizers of different crop plants [47] with broad spectrum of antagonistic activity against plant pathogens [79,80,82,119,120]. The primary biocontrol mechanism of many pseudomonads includes the production of metabolites such as HCN, antibiotics, and siderophores [95]. The beneficial effect on dry mass of plant shoot was more evident with HCN producing *Pseudomonas* strains [110], especially *P. aeruginosa*, a PGPR has been found to be an effective biocontrol agent of root pathogens [15,81]. Many pseudomonads have been reported for such abilities such as control of damping off of cotton seedlings caused by *R. solani* using the antibiotic produced by the *P. fluorescens* [81] and *Septoria tritici* (*Mycosphaerella graminicola*) suppressed by *P. aeruginosa* strain leci [111]. The siderophore producing pseudomonads with mixtures of *Bradyrhizobium japonicum* strain USDA 110 improved nodulation [3,87,124]. *P. fluorescens* CHAO, isolated in Switzerland, has been the most highly studied pseudomonad capable of producing different bioactive compounds (such as IAA, siderophores, antibiotics, and HCN) making it the best PGPR so far [89,125].

Plants can be protected from various pests and diseases by the strains of *pseudomonads* which induce systemic resistance or ISR [3,24,115-117]. The enhancement of plant defensive capacity due to specific chemical and biotic stimuli is called induced resistance [95]. It was found that PGPR especially fluorescent pseudomonads induced systemic resistance (ISR) leading to plant disease suppression [68,69]. Pseudomonads beneficial to plants are studied in Table 3.

Costa-Gutierrez et al. (2020) showed the ISR of soybean and corn against certain foliar pathogens by root-colonizing non-pathogenic *P. putida* KT2440 [118]. Gislason and de Kievit (2020) studied all the 21 sequenced genomes of *P. brassicacearum* and *P. corrugata* clade for PGP, biocontrol activities, and pathogenicity. They reported the extreme similarity among these two groups of beneficial and harmful bacteria. The bacterial ability to manipulate plant immune system to form harmful/harmless associations, the physiological and genotypic state of the host plant, and other stressors (biotic/abiotic) contribute to the plant-microbe interactions and results [71]. The strain *P. putida* KT2440 was found to be excellent root colonizer of agronomical important crops with ability to activate the ISR against certain plant pathogens [118].

Azelaic acid, a dicarboxylic acid is shown to play the *Arabidopsis* plant signaling specifically promoting the resistance priming by salicylic acid (SA) as a part of plant immunity against *Pseudomonas nitroreducens* DSM 9128 [119].

4.1. Lipopolysaccharides

Many reports suggested that pathogenic bacterial cell surface components such as the lipopolysaccharides can induce resistance (ISR) as reported in *P. fluorescens* inducement of carnation plants against *Fusarium oxysporum* f. sp. *dianthi* infections [53]. The LPS of *P. fluorescens* strains was demonstrated to be of important in ISR against wilt of radish caused by *F. oxysporum* f. sp. *raphanin* [120]. However, redundancy of ISR triggering traits in *P. fluorescens* strains was reported for the suppression of *Fusarium* wilt in radish [121]. In *A. thaliana*, application of isolated LPS of *P. fluorescens* and *P. putida* has been reported to be involved in ISR against *P. syringae* pv. tomato, triggering ISR which was further found to be having redundancy in ISR triggering traits in these strains [12,58,122]. A mutant of *P. fluorescens* strains lacking the 0-antigen no longer triggered ISR and the iron-regulated elicitor of ISR in BTP1 (an *N* alkylatedbenzylamine derivative) in bean and tomato [58]. Pseudobactin mediated ISR was effective against *Tobacco necrosis virus* in tobacco with reduction in numbers of viral lesions and lesion diameter in comparison to pseudobactin-negative mutant of *P. fluorescens* CHAO [123].

Table 2: (Continued)

Bacteria	Enzymatic activity	Host plant	Plant responses	References
P. aeruginosa 7NSK2	Pyocyanin and pyochelin (and/or salicylic acid)	Tomato	Inducement of systemic resistance	Audenaert et al., (2002) [112]
P. fluorescens WCS374	Unknown	Radish	Inducement of systemic resistance	Leeman et al., (1996) [109]
P. fluorescens WCS417	Unknown	Radish	Inducement of systemic resistance	Iavicoli et al., (2003) [113]
P. fluorescens CHA0	Antibiotics 2,4-Diacetyl- phloroglucinol	Arabidopsis	Disease suppression	Siddiqui and Shaukat, (2003) [114]
P. fluorescens Q2-87	2,4-Diacetyl phloroglucinol	Arabidopsis	Inducement of systemic resistance	Weller et al., (2004) [115]
P. putida KT2440	Indole compounds, Siderophore synthesis, and phosphate solubilization	Soybean and Corn	Induced systemic resistance in response to certain foliar pathogens	Costa-Gutierrez et al. (2020) [116]
P. chlororaphis subsp., *aurantiaca* ARS-38	Production of indole acetic acid, hydrogen cyanide, l-hydroxypropanic acid, phenazines (lipopeptide), and a hydroxamate-type siderophore	Wheat	Increased root and shoot dry weights in wheat seedling growth	Mehnaz et al. (2020) [44]
P. psychrotolerans CSS1	Auxin biosynthesis, nitrate and nitrite ammonification, phosphate-specific transport system, and the sulfate transport system	Cucumber	Endogenous indole-3-acetic acid (IAA) and gibberellins (GAs) resulting in enhanced cucumber growth (root shoot length) and increased the heavy metal tolerance	Kang et al. (2020) [85]
P. syringae pv. *tomato* (Pst) DC3000	Pathogenicity	*Arabidopsis thaliana*	Cation-Chloride Co-Transporter 1 (CCC1)	Han et al. (2020) [117]
Table 3: Plant beneficial pseudomonads

Strain	Origin/ Plant protection	Plant-beneficial traits documented	Reference
DR54	Sugarbeet	Viscosinamide, chitinase	Sanguin et al., (2008) [131]
F113	Sugarbeet	DAPG, HCN, pyoverdine, ACC deaminase, T3SS	Moënne-Loccoz et al., (1998) [132]
KD	Wheat	T3SS, HCN, pyoverdine	Rezzonico et al., (2007) [133]
Pf29A	Wheat	Pathogen growth inhibition, ISR	Barret et al., (2009) [134]
Q2-87	Wheat	DAPG, HCN, ACC deaminase	Weller, (2007) [135]
Q8r1-96	Wheat	DAPG	Mavrodi et al., (2006) [136]
SBW25	Sugar beet	T3SS, competition, pyoverdine	Sanguin et al., (2008) [131]
WCS365	Potato	ISR, siderophore, competition, T3SS	de Weert et al., (2002) [83]
WCS374	Potato	ISR, pseudoverdine, pseudomonine, salicylate, T3SS	Pieterse et al., (2003) [48]
Pseudomonas spp.	Arabidopsis and Potato	Phenazine-production and Rhizosphere colonization	Zboralski et al., (2020) [137]
2P24	Wheat	DAPG, HCN, pyoverdine	Sanguin et al., (2008) [131]
2-79	Wheat	Phenazine-1-carboxylate, pyoverdine, anthranalate, T3SS	Cook et al., (1995) [138]
CHA0	Tobacco	DAPG, HCN, ISR, pyoluteorin, pyoverdine, salicylate, pyrrolnitrin, ISR	Haas and Défago, (2005) [139]
PF-5	Cotton	Pyoluteorin, pyrrolnitrin, DAPG, HCN, pyoverdine	Loper, Kobayashi and Paulsen, (2007) [140]
LBUM677	Soybean, Canola and Corn	Increase in plant biomass, total oil content and lipid composition	Jiménez et al. (2020) [141]
KT2440	Soybean and Corn	Seed germination, root and stem length increment under saline conditions	Costa-Gutierrez et al. (2020) [116]

Fluorescent pseudomonads with biocontrol capability (Production of DAPG: 2,4-diacetylphloroglucinol, ACC: 1-aminocyclopropane-1-carboxylate, ISR: Induced systemic resistance, HCN: hydrogen)

![Figure 1: Pseudomonas sp. - Plant interactions. The orange section shows the inducement of systemic resistance in plants and blue sections indicate the cation solubilisations](image-url)
4.2. Iron-regulated Metabolites

Under iron limiting conditions, most aerobic and facultative anaerobic microorganisms (including fluorescent Pseudomonads) produce siderophores (low-molecular weight Fe⁺ specific chelators). The siderophores sequester ferrous ions and form ferrated siderophores which are, in turn, taken up by microbial cells through surface mediated uptake [124]. Siderophores have also been implicated in ISR in several systems like bacterial wilt suppression caused by Ralstonia solanacearum in Eucalyptus urophylla (due to P. putida siderophores) [64]. It was observed that bacterial SA production was not involved in ISR by PGPR as SA production was suppressed in the rhizosphere probably due to SA being a precursor of SA-containing siderophores such as “pseudomonine” in P. fluorescens [125] and “pyochelin” in P. aeruginosa [126] thus being utilized to extinction. SA has been reported for its complex ISR activity in tobacco, tomato and bean but was predominantly seen in mutant that can synthesize it but unable to incorporate it in pyochelin [110,127,144]. Many antibiotics are produced by the Pseudomonas spp. strains including 2,4-diacetylphloroglucinol (DAPG) and its role in ISR was recently demonstrated in Arabidopsis. Here, DAPG produced by P. fluorescens CHA0 elicited ISR against Peronospora parasitica [131]. In tomato, P. fluorescens CHA0 induced DAPG mediated ISR against the root-knot nematode Meloidogyne javanica (as DAPG-negative mutant was ineffective and restoration of effectiveness on mutant complementation) [132]. DAPG produced by P. fluorescens in Arabidopsis was also found to be effective for the ISR against P. syringae pv. Tomato [133]. The phenazine antibiotic pyocyanin produced by P. aeruginosa was found to be involved in ISR against B. cinerea in tomato [126].

The Pseudomonas spp. ability to induce plant responses are summarized in Figure 1. There is a need for model designing for understanding the microbe [134]. The ability of the bacterial genus in effectively establishing itself as plant pathogen and growth promoter has increased the value of studies in this regard. The future of this research relies on the development of effective microbial combinations and consortia providing a stable community which could work effectively against plant pathogens and improve the plant growth [111,129,146].

5. CONCLUSION

For understanding of this complex microorganism Pseudomonas, it is imperative to understand the mechanisms involved in plant growth promotion and different aspects of these interactions. The rhizospheric competence is a prerequisite for effective biocontrol applications, root-microbe, cell-to-cell and microbe-to-microbe interaction, while genetic and environmental factors affecting growth will help in elucidation of the mechanisms should be adopted. Thus, there is a need for designing different strategic approaches and constructing models to improve the efficiency of this bacterium. The discovery of strains from diverse ecological niches and targeting biosynthetic genes specifically may result with the identification of biomolecules and metabolites, detection of their mechanisms involved and may further increase the knowledge of the topic. Basic genetic engineering methods can be employed coupled with multiple modes of action. Exploration of molecular tools and techniques to study the interactions of fluorescent Pseudomonads with –plants and – pathogens by studying genome expression and proteome level changes during interactions can clarify the complex rhizosphere biodiversity. Thus, further studies should focus on the identification of genes and gene-products in Pseudomonads and plants that decide improved biocontrol and efficient colonization of rhizospheres. Further studies into ISR in fluorescent pseudomonads can open new horizons for research in signaling network and related mechanisms involved.

6. ACKNOWLEDGMENTS

The authors would like to thank the Provost, Uka Tarsadia University and HOD and Principal, PD Patel Institute of Applied Sciences, Charotar University of Science and Technology, respectively, for all the help and encouragement.

7. AUTHORS’ CONTRIBUTIONS

SS and NY collected data and prepared the basic manuscript (given first and second authorship according to contribution) under the guidance of corresponding author AM who planned, corrected, and structured the manuscript.

REFERENCES

1. Cook RJ, Baker KF. The nature and practice of biological control of plant pathogens. In: The Nature and Practice of Biological Control of Plant Pathogens. St. Paul, Minnesota, USA: American Phytopathological Society; 1983. p. 539.
2. Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 2016;21:1-17.
3. Saharan B, Nehra V. Plant growth promoting rhizobacteria: A critical review. Life Sci Med Res 2011;2011:1-30.
4. Germida JJ, Siciliano SD, de Freitas JR, Seib AM. Diversity of root-associated Bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 1998;26:43-50.
5. Bloemberg GV, Lugtenberg BJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 2001;4:343-50.
6. Ahantarig A, Chantawat N, Waterfield NR, Kittayapong P. PirAB toxin from Photorhabdus asymbiotica as a larvicide against dengue vectors. Appl Environ Microbiol 2009;75:4627-9.
7. Yakhin OL, Lubyanov AA, Yakhin IA, Brown PH. Biotrimulants in plant science: A global perspective. Front Plant Sci 2017;7:1-32.
8. Moenizadeh A, Sharif-Zadeh F, Ahmadzadeh M, Tajabadi F. Biopriming of sunflower (“Helianthus annuus” L.) seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth. Aust J Crop Sci 2010;4:564.
9. Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Natl Prod Rep 2009;26:1408-46.
10. Silby MW, Cerdeño-Tárraga AM, Vernikos GS, Giddens SR, Jackson RW, Preston GM, et al. Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 2009;10:R51.
11. Markande AR, Mikaelyan A, Nayak BB, Patel KD, Vachharajani NB, Vennila A, et al. Analysis of midgut bacterial community structure of Neanthes chilkaensis from polluted mudflats. Adv Microbiol 2014;4:906-18.
12. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. The formation of 2,4-diacetylphloroglucinol (DAPG) and its role in ISR was also found to be effective for the ISR against P. aureofaciens. Front Microbiol 2015;2015:1-18.
13. Imam J, Singh PK, Shukla P. Plant microbe interactions in post genomic era: Perspectives and applications. Front Microbiol 2016;7:1-15.
14. Mulet M, Lalucat J, Valdés EC. DNA sequence based analysis of the Pseudomonas species. Environ Microbiol 2010;12:1513-30.
15. Franzetti L, Scarpellini M. Characterisation of Pseudomonas spp.
Isolated from foods. Ann Microbiol 2007;57:39-47.

16. Loper JE, Hassan KA, Mavrodi DV, Davis EW. Comparative genomics of plant-associated *Pseudomonas* spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 2012;8:1-27.

17. Santoyo G, del Orozco-Mosqueda MC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of *Bacillus* and *Pseudomonas*: A review. Biocontrol Sci Technol 2012;22:855-72.

18. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, Koehrsen M, et al. Dynamics of *Pseudomonas aeruginosa* genome evolution. Proc Natl Acad Sci U S A 2008;105:3100-5.

19. Winsteadley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, et al. Newly introduced genomic prophage islands are critical determinants of *in vivo* competitiveness in the Liverpool epidemic strain of *Pseudomonas aeruginosa*. Genome Res 2009;19:12-23.

20. Bossis E, Lemanceau P, Latour X, Gardan L. The taxonomy of *Pseudomonas fluorescens* and *Pseudomonas putida*: current status and need for revision. Agronomie. 2000;20:51-63.

21. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warriner P, Hickey MJ, et al. Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen. Nature 2000;406:959-64.

22. Markande AR, Kapagunta C, Patil PS, Nayak BB. 2016. Effective remediation of fish processing waste using mixed culture biofilms capable of simultaneous nitrification and denitrification. *Journal of Basic Microbiology*. 2016;56:1-5.

23. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, et al. Complete genome sequence of the plant commensal *Pseudomonas fluorescens* Pf-5. Nat Biotechnol 2005;23:873-8.

24. Dowling DN, O’Gara F. Metabolites of *Pseudomonas* involved in the biocontrol of plant disease. *Trends in Biotechnology*. 1994;12:133-41.

25. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, et al. Genome survey and characterization of endophytic *Bacteria* exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 2009;75:748-57.

26. Schippers B, Bakker AW, Bakker PAHM. Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. *Annual Reviews in Phytopathology*. 1987;25:339-58.

27. Reinhardt JA, Baltrus DA, Nishimura MT, Jek WR, Jones CD, Dangl JL. *De novo* assembly using low-coverage short read sequence data from the rice pathogen *Pseudomonas syringae* pv. oryzae. *Genome Research*. 2009;19:294-305.

28. Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R, Brinkac LM, et al. Whole-genome sequence analysis of *Pseudomonas syringae* pv. *syringae* subsp. *phaseolicola* 1448A reveals divergence among pathovars in genes involved in virulence and transposition. *The ISME journal*. 2019;13:860-72.

29. Flury P, Vesea P, Dominguez-Ferreras A, Tinguely C, Ullrich CI, Kleespies RG, et al. Persistence of root-colonizing *Pseudomonas* protegens in herbivorous insects throughout different developmental stages and dispersal to new host plants. *The ISME journal*. 2019;13:860-72.

30. Dowling DN, O’Gara F. Metabolites of *Pseudomonas* involved in the biocontrol of plant disease. *Trends in Biotechnology*. 1994;12:133-41.

31. Donati I, Cellini A, Sangiorgio D, Vanneste JL, Scortichini M, Balsei GM, Spinelli F. *Pseudomonas syringae* pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. *Microbial Ecology*. 2020;8:187-235.

32. Pieterse CM, van Pelt JA, Verhagen BW, Ton J, van Wees SC, Léon-Kloosterziel KM, et al. Induced systemic resistance by plant growth-
promoting rhizobacteria. Symbiosis 2003;35:39-54.

49. Schroth MN, Hancock JG. Disease-suppressive soil and root-colonizing bacteria. 1982;216:1376-81.

50. Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with Bacteria. Ann Rev Phytopathol 1988;26:379-407.

51. Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB. Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Ann Appl Biol 2013;163:33-46.

52. O’Brien HE, Thakur S, Guttman DS. Evolution of Plant Pathogenesis in Pseudomonas syringae: A Genomics Perspective. The Annual Review of Phytopathology. 2011;49(1):269-89.

53. Morris CE, Lamichhane JR, Nikolić I, Stanković S, Moury B. The overlapping continuum of host range among strains in the Pseudomonas syringae complex. Phytopathol Res 2019;1:1-16.

54. Xin XF, Kvitko B, He SY. Pseudomonas syringae: What it takes to be a pathogen. Nat Rev Microbiol 2018;16:316-28.

55. Cellini A, Donati I, Fiorentini L, Vandelle E, Polverari A, Venturi V, et al. N-Acyl Homoserine lactones and lux solos regulate social behaviour and virulence of Pseudomonas syringae pv. Actinidiae. Microbial Ecol 2020;79:383-96.

56. Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y. Phylogeny of the 1-aminoacylpropane-1-carboxylic acid deaminase-encoding gene acdS in phytopathogenic and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 2006;56:455-70.

57. Meziane H, Van Der Sluis I, Van Loon LC, Höfte M, Bakker PA. Determinants of Pseudomonas putida WCS58 involved in inducing systemic resistance in plants. Mol Plant Pathol 2005;6:177-85.

58. Jain A, Singh A, Singh S, Singh V, Singh HB. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against. J Plant Physiol 2015;182:79-94.

59. Jain A, Singh A, Singh S, Singh HB. Phenols enhancement effect of microbial consortium in pea plants restrained Sclerotinia sclerotiorum. Biol Control 2015;89:23-32.

60. Satyaprakash M, Nikitha T, Reddi EU, Sadhana B, Vani SS, Vani SS. Phosphorous and phosphate solubilising Bacteria and their role in plant nutrition. Int J Curr Microbiol Appl Sci 2017;6:2133-44.

61. Jain A, Singh S, Sarma BK, Singh HB. Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 2012;112:537-50.

62. Jain A, Singh A, Singh S, Singh HB. Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 2013;32:388-98.

63. Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PH. Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 2005;113:59-70.

64. Melnyk RA, Hossain SS, Haney CH. Convergent gain and loss of genomic islands drive lifestyle changes in plant associated Pseudomonas. ISME J 2019;13:1575-88.

65. Van Peer R, Niemann GJ, Stolz A, Klein J. Nitrilase from coastal soil. J Microbiol Biotechnol 2010;20:1577-84.

66. Ferramola FF, Dávila S del V, Sasso CV, Mattar Domínguez MA. Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. MPMI-Molecular Plant-Microbe Interactions. 1996;9:642-5.

67. Kiziak C, Conradt D, Stolz A, Mattes R, Klein J. Nitrilase from Pseudomonas putida WCS417r induce resistance in Physcomitrella patens against Fusarium oxysporum. Mycopathologia. 1991;81:1508-12.

68. Holl FB, Chanway CP, Turkington R, Radley R. Growth response of chestnut weevil (Xylocerus crassus), white clover (Trifolium repens), and perennial ryegrass (Lolium perenne) to inoculation with Bacillus polymyxa. Soil Biol Biochem 1988;20:19-24.

69. Grichko VP, Glick BR. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting Bacteria. Plant Physiol Biochem 2001;39:11-7.

70. Reed ML, Glick BR. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 2005;51:1061-9.

71. Dahiya JS. Control of Rhizoctonia solani, causal agent of brown gridding root rot of rapsedee. Pseudomonas fluorescens. Botanical Bulletin of Academia Sinica. 1988;29:13542.

72. Kauras K, Shahzad SM. Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agric For Soc Sci 2006;2:216-8.

73. Keel C, Vosard C, Berling CH, Khar G, Defago G. Iron sufficiency, a prerequisite for suppression of tobacco root rot by. Pseudomonas fluorescens. Phytopathology. 1989;79:584-9.

74. Siddique MA, Chauhan PS, Anandham R, Han GH, Sa T. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 2010;20:1577-84.

75. Laville J, Vosard C, Keel C, Mauroher M, Defago G, Haas D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proceedings of the National Academy of Sciences, USA. 1992;89:1562-6.

76. Hayat R, Ahmed I, Sheiridil RA. An overview of plant growth rhizobacteria (PGPR) for sustainable agriculture. In: Crop Production for Agricultural Improvement. Dordrecht: Springer; 2012. p. 557-79.

77. Flahsman MA, Eyal Z, Zilberstein A, Vosard C, Haas D. Suppression of Septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida. MPMI-Molecular Plant-Microbe Interactions. 1996;9:642-5.

78. Kizaik C, Conradt D, Stolz A, Mattes R, Klein J. Nitrilase from Pseudomonas fluorescens EBC191: Cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 2005;151:3639-48.

79. Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, et al. Interactions between 16S rRNA gene sequences of Pseudomonas syringae spp. strain WCS417r and human rhizobacteria on growth promotion of maize under salinity conditions. Microorganisms. 2020;8:1-22.

80. Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PA, Schippers B. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology. 1995;85:1021-7.

81. Ferramola FF, Dávila S del V, Sasso CV, Mattar Domínguez MA. Molecular mimicry between Lactarius deliciosus and Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact. 2005;18:569-70.

82. Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, et al. Interactions between 16S rRNA gene sequences of Pseudomonas syringae spp. strain WCS417r and human rhizobacteria on growth promotion of maize under salinity conditions. Microorganisms. 2020;8:1-22.

83. Leeman M, Van Ouden FM, Van Pelt JA, Dirxk FP, Steijl H, et al. Interactions between 16S rRNA gene sequences of Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact. 2005;18:569-70.
Bakker PA, et al. Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 1996;86:149-55.

87. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infection and Immunity. 2008;76:4176-82

88. De Meyer G, Höfte M. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 1997;87:588-93

89. Van Loon LC, Bakker PAHM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Annual review of phytopathology. 1998;36:453-83.

90. Iavicoli A, Boutet E, Buchala A, Métro JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interac 2003;16:851-8.

91. Siddiqui IA, Shaukat SS. Suppression of root-knot disease by Arabidopsis thaliana in tomato: Importance of bacterial secondary metabolite, 2, 4-diacetylphloroglucinol. Soil Biol Biochem 2003;35:1615-23.

92. Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CM, Bakker PA, Van Loon LC. Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol (DAPG)-producing Pseudomonas. Phytopathology 2004;94:S108.

93. Costa-Gutierrez SB, Lamji M, Santo MC, Zenoff AM, Vincent PA, Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CMJ, Bakker PAHM. Systemic resistance induced by rhizosphere bacteria. In: PGPR Amelioration in Sustainable Agriculture. Netherlands: Elsevier Inc.; 2019. p. 239-52.

94. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 2008;76:4176-82.

95. Iavicoli A, Boutet E, Buchala A, Métro JP. Induced Systemic Resistance in Arabidopsis thaliana in Response to Root Inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interactions. 2003;16(10):851-8

96. Van Loon LC, Bakker PA, Pieterse CM. Systemic resistance induced by rhizosphere Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology. 1997;87:588-93

97. Singh SK, Singh PP, Gupta A, Singh AK, Keshri J. Tolerance of heavy metal toxicity using PGPR strains of Pseudomonas species. In: PGPR Amelioration in Sustainable Agriculture. Netherlands: Elsevier Inc.; 2019. p. 239-52.

98. Davison J. Plant beneficial Bacteria. Nat Biotechnol 1988;6:282-6.

99. Siddiqui IA, Ehtesham-ul-Haque S, Ghaffar A. Effects of Pseudomonas aeruginosa and chemical fertilizers on root-rot and root-knot diseases of mungbean. Pak J Nematol 1999;17:77-86.

100. Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E, Volkering F, Breure AM, van Andel GJ. Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Microbiology 1995;61:1699-705.

101. Chaves EG, Melo LC, Moreira LJ. Biochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil. Food Chem 2000;71:303-10.

102. Roivola M. Flagella-driven chemotaxis towards exudate from soybean oil and girdling root rot of rapeseed. by Pseudomonas fluorescens Acacia. J Bacteriol 1982;149:40-6.
127. Shaikh S, Yadav N, Markande AR. Interactive potential of Pseudomonas species with plants. J App Biol Biotech. 2020;8(6):101-111. DOI: 10.7324/JABB.2020.80616