Memantine Improves Safety of Thrombolysis for Stroke

Axel Montagne, MSc; Marie Hébert, MSc; Amandine Jullienne, MSc; Flavie Lesepet, MSc; Audrey Le Béhot, MSc; Morgane Louessard, MSc; Maxime Gauberti, MSc; Cyrille Orset, PhD; Carine Ali, PhD; Véronique Agin, PhD; Eric Maubert, PhD; Denis Vivien, PhD

Background and Purpose—Despite side effects including N-methyl-d-aspartate-mediated neurotoxicity, recombinant tissue-type plasminogen activator (rtPA) remains the only approved acute treatment for ischemic stroke. Memantine, used for treatment of Alzheimer disease, is an antagonist for N-methyl-d-aspartate receptors. We investigated whether memantine could be used as a neuroprotective adjunct therapy for rtPA-induced thrombolysis after stroke.

Methods—In vitro N-methyl-d-aspartate exposure, oxygen and glucose deprivation, and N-methyl-d-aspartate-mediated calcium videomicroscopy experiments were performed on murine cortical neurons in the presence of rtPA and memantine. The therapeutic safety of rtPA and memantine coadministration was evaluated in mouse models of thrombotic stroke and intracerebral hemorrhage. Ischemic and hemorrhagic volumes were assessed by MRI and neurological evaluation was performed by the string test and automated gait analysis.

Results—Our in vitro observations showed that memantine was able to prevent the proneurotoxic effects of rtPA in cultured cortical neurons. Although memantine did not alter the fibrinolytic activity of rtPA, our in vivo observations revealed that it blunted the noxious effects of delayed thrombolysis on lesion volumes and neurological deficits after ischemic stroke. In addition, memantine rescued rtPA-induced decrease in survival rate after intracerebral hemorrhage.

Conclusions—Memantine could be used as an adjunct therapy to improve the safety of thrombolysis. (Stroke. 2012;43:2774-2781.)

Key Words: glutamatergic transmission ■ ischemic/hemorrhagic strokes ■ memantine ■ rtPA ■ sensorimotor functions ■ thrombolysis

The thrombolytic agent recombinant tissue-type plasminogen activator (rtPA) remains the only approved acute treatment for ischemic stroke.1 Nevertheless, its use is limited to a short therapeutic window2 due to a lack of efficiency and potential deleterious effects3 when thrombolysis is delayed or performed in susceptible individuals.4 rtPA exerts several key functions at the levels of both the blood–brain barrier and brain parenchyma.5 Vascular tPA promotes fibrinolysis and can cross the blood–brain barrier.5 In the brain parenchyma, it can act in concert with tPA released by neuronal and endothelial cells.5 Due to its interaction with several proteins/receptors,7 tPA does not act solely as a plasminogen activator. For instance, tPA also binds to low-density lipoprotein receptor-related protein and thus activates metalloproteinase-dependent blood–brain barrier leakage.8 tPA also promotes the conversion of platelet-derived growth factor-C to its active form, a mechanism suggested to impair blood–brain barrier integrity.9 Interestingly, tPA is also a positive neuromodulator of N-methyl-d-aspartate receptors (NMDAR) leading to an increased sensitivity of neurons to excitotoxicity.10,11 Thus, besides its proven beneficial fibrinolytic activity in patients with stroke, rtPA may promote hemorrhagic transformations12 and neuronal death.4 NMDAR-mediated excitotoxicity is thought to be a major cause of neuronal death after stroke.13 Unfortunately, all strategies targeting NMDAR have failed in the clinical setting.14 Previously, in a model of thrombotic stroke in mice, we evidenced that an experimental strategy designed to block the interaction of tPA with NMDAR persistently reduced brain lesions, neurological deficits, and extended the therapeutic window of rtPA.15 The uncompetitive NMDAR antagonist memantine (1-amino-3,5-dimethyladamantane) was approved for the symptomatic treatment of the moderate to severe forms of Alzheimer disease. Some preclinical studies in rodents have suggested the potential use of memantine as a neuroprotective agent for ischemic or hemorrhagic stroke.16–18 Remarkably, memantine acts preferentially on NMDAR containing the GluN-2D subunit,19 which is actually the preferential target of the proneurotoxic action of tPA.20,21 Thus, we postulated that memantine may be a...
good candidate in combination with rtPA treatment to improve stroke outcome.

Methods

Materials
N-methyl-D-aspartate (NMDA) and memantine were from Tocris (Bristol, UK). Human rtPA (Actilyse) was from Boehringer Ingelheim (Paris, France). Dulbecco modified Eagle medium, poly-D-lysine, laminin, glutamine, cytosine β-D-arabinoside, glycin, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid and bicarbonate-buffered saline solution, and type VII collagenase were from Sigma-Aldrich (L’Isle d’Abeau, France). Fura2/AM, fetal bovine serum, and horse serum were from Invitrogen (Cergy-Pontoise, France). Thrombin was from Kordia (Lille, France). Hematologic micropipettes were from Hecht (Sondheim-Rhoen, Germany).

Neuronal Cultures
Cultured cortical neurons were prepared from Swiss mouse embryos (E14–15) provided by CURB (Caen, France), as previously described.21 To inhibit glial proliferation, β-D-arabinoside (10 μmol/L) was added after either 3 days in vitro or 7 days in vitro for neuronal death experiments and calcium videomicroscopy, respectively.

Excitotoxic Neuronal Death
As previously described,21 excitotoxicity was induced at 12 to 13 days in vitro by exposure to NMDA (10 μmol/L) in serum-free Dulbecco modified Eagle medium supplemented with 10 μmol/L of glycine for 24 hours. NMDA was applied alone or together with rtPA (0.3 μmol/L) and/or memantine (1, 5, or 10 μmol/L). After 24 hours, neuronal death was quantified by measurement of lactate dehydrogenase released from damaged cells (Roche Diagnostics, Mannheim, Germany).

Oxygen and Glucose Deprivation on Neuronal Cultures
Oxygen and glucose deprivation was performed in a hypoxic chamber (IN VIVO, 500; Ruskin) programmed at 1% O2, 5% CO2, and 37°C. At 11 to 12 days in vitro, cortical neurons were submitted to an oxygen and glucose deprivation or not for 30 minutes. In the chamber, neurons were switched to glucose/saline free deoxygenated Dulbecco modified Eagle medium and then were treated with rtPA (0.3 μmol/L) and/or memantine (1 or 10 μmol/L). After 30 minutes, cells were removed from the hypoxic chamber and the medium was replaced with oxygenated Dulbecco modified Eagle medium (4.5 μg/L glucose). rtPA and/or memantine was again added after reoxygenation. Neuronal death was assessed 24 hours later by lactate dehydrogenase measurement.

Calcium Videomicroscopy
As previously described,3 neurons (14 days in vitro) were loaded with Fura2/AM (10 μmol/L) for 45 minutes at 37°C. NMDA stimulations (50 μmol/L) were performed twice to show the reproducibility of responses. Then, neurons were treated for 45 minutes with memantine (1 and 10 μmol/L) and/or rtPA (0.3 μmol/L), and another NMDA exposure was then applied. Fura-2 (excitation: 340/380 nm, emission: 510 nm) ratio images were acquired with a CCD camera (Princeton Instrument, Trenton, NJ) and digitized (256×512 pixels) using Metafluor 6.2r6 software (Universal Imaging Corporation, Chester, PA). The area under the curve is represented as a percentage of the first response to NMDA exposure.

Clot Lysis Assay
Euglobulin fraction of pooled human plasma was resuspended in N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid buffer. Calcium chloride (12 mmol/L) and rtPA (10 IU, ie, 1.5 μmol/L) and/or 20 mmol/L of memantine were added. Absorbance (405 nm) was monitored during 18 hours at 37°C. Results are the time to achieve 50% of clot lysis.

Animals
Male Swiss mice (39±3 g) provided by CURB (Caen, France) were housed with a 12-hour light/12-hour dark cycle in standard polypropylene cages (37×23.5×18 cm; Charles River, France) with free access to water and food (SDS Dietex, France). Experiments were performed in accordance with the French (Decree 87/848) and the European Communities Council (Directive 86/609) guidelines. During surgery, mice were deeply anesthetized and maintained with 2% isoflurane in a 70%/30% gas mixture (N2O/O2) and the rectal temperature was maintained at 37±0.5°C. For in vivo experiments, a cluster randomized design was established thanks to the Excel randomization function with 6 animals per day including a minimum of one animal per group each day.

Thrombotic Stroke Model and Thrombolysis
Anesthetized mice were placed in a stereotaxic frame. As previously described,22 thrombotic stroke was induced by injecting thrombin (1.0 IU in 1 μL) directly in the middle cerebral artery. To induce thrombolysis, rtPA was intravenously injected (tail vein, 200 μL, 10 mg/kg, 10% bolus and 90% infusion over 40 minutes) either at 4 hours or 20 minutes postclot onset15 with or without an intravenous bolus of memantine (200 μL, 20 mg/kg) just before rtPA infusion. Control groups received the same volume of saline with or without memantine (n=7–8 per group). Cerebral blood velocity was continuously monitored by laser Doppler (Oxford Optronix) up to 1 hour after clot formation and also during drug injection.

Intracerebral Hemorrhagic Model
A striatal unilateral stereotaxic injection (coordinates: 0.5 mm anterior, 2 mm lateral, −2.5 mm ventral to the bregma; stereotaxic atlas G. Paxinos & K.B.J. Franklin) of Type VII collagenase (0.05 IU in 1 μL) was performed.21 A catheter was inserted into the tail vein to inject rtPA bolus (10 mg/kg) or saline with or without memantine bolus (20 mg/kg) 30 minutes after inducing intracerebral hemorrhage (ICH). Mice were thus divided into 4 groups: saline (n=9), rtPA (n=10), memantine/rtPA (n=10), and memantine (n=8). Survival rates were estimated at 1, 6, 24, and 72 hours post-ICH.

Magnetic Resonance Imaging
Experiments were carried out on a Pharmascan T7 (Bruker, Germany). T2-weighted images were acquired using a multislice multiecho sequence: TE/TR 51.3 ms/2500 ms. Two-dimensional time-of-flight angiographies (TE/TR 12 ms/7 ms) were acquired at 6, 24, and 48 hours after stroke. Angiographic score was assessed with blinding of the evaluator and graded as follows: 0=complete disappearance of the occluded artery on angiography images, 1=partial disappearance, and 2=normal appearance. Gradient echo sequences with flow compensation T2*-weighted images (TE/TR 7.7 ms/500 ms) were acquired after stroke. In the ICH model, T2*-weighted images were also acquired to evaluate hemorrhagic volumes. Ischemic and hemorrhagic volumes were quantified on MRI using ImageJ software. Volumetric measurements were performed by an experimenter “blind” to treatments.

Behavioral Tests

String Test
Mice were suspended by their fore paws on a horizontally stretched wire (diameter 1.5 mm), and their ability to remain suspended on the wire was evaluated. After training (3 consecutive trials before surgery), a single 30-second trial was performed the day of test. A 0 to 4 rating system was used to evaluate the performance of each animal: 0=unable to remain on the string; 1=hangs by both fore paws; 2=attempts to climb onto string; 3=both fore paws and one or both hind paws around the string; and 4=4 paws and tail around the string with lateral movement.

CatWalk XT System
The apparatus (Noldus Information Technology, Wageningen, The Netherlands) consists of an enclosed walkway (130×68×152 cm)
with a glass plate, a light source, and a high-speed video camera that accurately records footprints. The video capture is then processed by the CatWalk XT software (Version 9). After training (2 explorations of the walkway before surgery), mice were subjected to 3 consecutive runs of gait assessment at 24 hours poststroke.

All behavioral tests were conducted by 2 experimenters “blind” to treatments.

Statistical Analyses
Power analysis for thrombotic stroke and ICH models was determined a priori from data of the literature and preliminary results, respectively, using G*Power software. Results obtained in vitro and in vivo are expressed as mean±SD. Statistical analyses were performed using JMP software. All probability values are 2-tailed. Statistical significance was concluded for \(P < 0.05 \). Parametric tests were performed to analyze calcium videomicroscopy. Thus, data were analyzed by 2-way analyses of variance with repeated measurements followed when appropriate by supplementary Tukey honestly significant difference (post hoc tests). The log-rank test was used to assess the statistical significance of the Kaplan-Meier survival curves.

For in vitro neuronal death measurements, ischemic and hemorrhagic volumes analyses, behavioral experiments, clot lysis assay, and angiographies analyses, data were analyzed with nonparametric tests. In these cases, Kruskal-Wallis tests were used followed, when appropriate, by Mann-Whitney \(U \) tests as post hoc tests. In addition, Pearson correlation test was used to examine the potential relationships between functional data (size of the right hind limb print) and the weight of mice.

Results
Memantine Prevents the Proneurotoxic Effects of rtPA In Vitro
Memantine dose-dependently prevented NMDA-mediated neuronal death with near complete protection achieved at
10 μmol/L (Figure 1A; 91% compared with NMDA; \(P < 0.05 \)). Interestingly, at 1 μmol/L, a dose that by itself does not protect neurons against basal NMDA-mediated neurotoxicity (Figure 1A), memantine prevented the 42% rtPA-dependent potentiation of NMDA-induced neuronal death (Figure 1B; \(P < 0.05 \)). Memantine was also tested on cortical neurons subjected to oxygen and glucose deprivation. A dose of 1 μmol/L memantine (a dose with no effect on oxygen and glucose deprivation-induced neurotoxicity by itself) totally prevented the rtPA-induced potentiation after a 30-minute oxygen and glucose deprivation (Figure 1C; 64% compared with rtPA; \(P < 0.05 \)). Accordingly, calcium videoimaging performed as an index of NMDAR activity (Figure 2A) revealed that 1 μmol/L of memantine prevented the rtPA-mediated increase in NMDA-induced calcium influx (Figure 2B–C; 50% compared with NMDA + rtPA; \(P < 0.001 \)).

Memantine Reduces the Noxious Actions of Delayed Thrombolysis by rtPA

Memantine was then tested in a thrombotic stroke model in mice with rtPA-induced reperfusion.22 In this model, early thrombolysis by rtPA (20 minutes postonset) is beneficial, whereas late thrombolysis (4 hours postonset) is deleterious.15 The effect of intravenous memantine (20 mg/kg, a dose chosen based on the literature23) as an adjunct treatment to late thrombolysis by rtPA was thus tested. T2-weighted MR images at 6, 24, and 48 hours after stroke (Figure 3A) revealed that although memantine did not alter the extent of the ischemic damage in the absence of rtPA (Figure 3B; 16.68 mm³ versus 15.37 mm³ for saline condition at 24 hours; \(P > 0.05 \)), its co injection prevented the deleterious effects of a delayed rtPA-induced reperfusion (Figure 3B; 15.19 mm³ versus 21.36 mm³ for late rtPA alone at 24 hours; \(P < 0.05 \)). Although the deleterious effects of delayed thrombolysis appeared at 6 hours postclot onset and continued to progress between 24 and 48 hours, the lesion volumes of control, memantine, and memantine/rtPA-treated groups reached their maximum at 24 hours (Figure 3A–B). T2-weighted MR images 15 days postischemia showed that animals with late rtPA-induced thrombolysis have a smaller cortical volume than those treated with memantine (Figure 3A–C). Regardless of the treatment group, no bleeding complication was detected on high sensitive T2*-weighted images (Figure 3D).

Similar experiments were performed with both memantine and rtPA, either alone or in combination, injected 20 minutes after stroke onset at a time for which rtPA alone was reported to have benefit.15 Memantine alone was not protective (online-only Data Supplement Figure I). Similarly, the combination of rtPA with memantine at an early time point (20 minutes postclot onset) did not show additive neuroprotective effect when compared with rtPA-induced thrombolysis alone (online-only Data Supplement Figure I).

Memantine Precludes the Deleterious Effects of Delayed Thrombolysis by rtPA on Sensorimotor Functions

Sensorimotor functions were evaluated by the string test 24 hours after stroke onset (online-only Data Supplement Figure
IIA). Mice with late rtPA-induced thrombolysis showed the highest deficits with a mean neuroscore (2.63 of 4) lower than the saline group (3.13 of 4; online-only Data Supplement Figure IIB; saline versus late rtPA; \(P < 0.172 \)). In contrast, late memantine/rtPA-treated mice displayed a better neuroscore (3.25 of 4; online-only Data Supplement Figure IIB; late memantine/rtPA versus late rtPA; \(P < 0.074 \)).

Gait analyses were also performed 24 hours poststroke. The maximum contact area spatial parameter (ie, the maximum area of a paw in contact with the glass plate during the stance phase) was used as a measure of individual paw prints, as previously described. The size of the right hind limb print was reduced (27%) in delayed reperfused animals (Figure 4A; saline versus late rtPA; \(P < 0.05 \)), whereas memantine alone did not improve the deficit measured in saline animals (Figure 4A; saline versus late memantine; \(P > 0.05 \)). The coinjection of memantine with rtPA prevented the deleterious effects of late thrombolysis (Figure 4A; late rtPA versus late memantine/rtPA; \(P = 0.05 \) and saline versus late memantine/rtPA; \(P > 0.05 \)). No correlation was found between the size of the right hind limb print and the weight of mice (Figure 4B; \(P > 0.05 \)).

Memantine Does Not Alter the Fibrinolytic Action of rtPA

This beneficial effect of memantine, when combined with rtPA, was not associated with an impaired fibrinolytic activity of rtPA, as evidenced by in vitro clot lysis assays (Figure 5), similar rates of reperfusion (online-only Data Supplement Figure IIIA–B), and mean angiographic scores (online-only Data Supplement Figure IIIC–D).

Memantine Rescues rtPA-Induced Hematoma Expansion and Survival Rate After ICH

We have investigated the effect of memantine in a model of brain hemorrhage induced by an intrastriatal injection of collagenase in mice. As shown on T2*-weighted images, although intravenous rtPA increased the hemorrhagic volumes when injected 30 minutes after ICH, this prohemorrhagic action of rtPA was prevented by the coinjection of memantine (Figure 6A). Remarkably, the survival of rtPA-treated animals after ICH was increased by a coinjection of memantine (Figure 6B; log-rank \(P < 0.05 \)).

Discussion

Neuroprotective agents with high affinity for NMDAR such as MK-801 led to clinical noxious effects, including drowsiness and even coma. Memantine is an uncompetitive, open-channel NMDAR antagonist with low to moderate affinity, which can reduce NMDAR activity. Accordingly, preclinical data indicate that memantine may exert neuroprotective effects on dementia and global and focal cerebral ischemia. Memantine is approved in Europe and in the United States for the symptomatic treatment of the moderate to severe forms of Alzheimer disease. Despite its beneficial fibrinolytic activity, rtPA may have noxious effects after stroke by promoting hemorrhagic transformations and NMDAR-mediated neurotoxicity. Our data reveal...
that memantine counteracts the deleterious effects of rtPA in cultured neurons subjected to a set of excitotoxic paradigms as well as in vivo under ischemic or hemorrhagic conditions in mice. Functional assessments also demonstrate the beneficial action of memantine. In a model of embolic stroke in rats, Back and coworkers failed to reveal a benefit of memantine when injected intraperitonially. Here, we show that combination of memantine with rtPA is associated with better sensorimotor status (string test) and use of the plantar surface of the ipsilateral hind limb (CatWalk), a parameter also impaired in other cortical infarct models. Memantine, as an individual treatment, is not effective in our thrombotic stroke model. These data are in agreement with the literature, because any beneficial effect of memantine alone was reported on a stroke model performed in healthy adult mice or rats when administrated after stroke onset. Memantine, injected poststroke onset, was only reported to display beneficial effects on a model of hypertensive rats and on a model of embolic stroke in the rabbit. This lack of efficacy of memantine alone could be related either to the time of rtPA treatment or the severity of the ischemic lesion. In our hands, memantine alone is not beneficial but rescues the benefit of rtPA treatment when injected late after stroke onset at a time when rtPA alone is deleterious. Thus, memantine increases the therapeutic window of rtPA-induced thrombolysis.

At the mechanistic level, some reports suggest that the neuroprotective properties of memantine could be mediated by an increased production of brain-derived neurotrophic factor in the brain. Alternatively, it was also reported that the memantine is a 6- to 8-fold more selective antagonist for GluN-2C- or GluN-2D-containing NMDAR than for GluN-2A or GluN-2B subunits. These observations and our present results are in agreement with previous demonstrations that the proneurotoxic effect of rtPA occurs preferentially through GluN-2D-containing extrasynaptic NMDAR. Unfortunately, we have reported that the new selective

Figure 4. Memantine prevents the deleterious effects of delayed thrombolysis by rtPA on sensorimotor functions. Gait analyses were performed 24 hours after stroke with the CatWalk system. Individual paw prints: (A) maximum contact area of right hind paw of mice from the 4 groups receiving late treatment with representative images of right hind paw (RH) prints (n=8 per group, *P<0.05). B. Variation in maximum contact area of the right hind paw with body weight in animals from the 4 groups receiving late treatment. rtPA indicates recombinant tissue-type plasminogen activator.

Figure 5. Memantine does not alter the fibrinolytic action of rtPA on in vitro clot lysis assays. Representative clot lysis assays with or without rtPA (1.5 μg/mL) and/or memantine (20 mmol/L). Histograms represent the mean half lysis time measured from these experiments (N=3, n=9; NS indicates not significant). rtPA indicates recombinant tissue-type plasminogen activator.
GluN-2D antagonist UBP145 ([2R*,3S*]-1-[9-bromophenanthrene-3-carbonyl]piperazine-2,3-dicarboxylic acid) was not effective when injected intravenously in a model of cortical excitotoxicity. It is why we decide to focus our interest on memantine, a previously reported NMDAR antagonist with a selectivity for GluN-2D-containing NMDAR, also approved for human use with no major side effect reported so far.33 Our present data suggest that memantine specifically prevents the deleterious effects of rtPA on NMDAR signaling without affecting its beneficial vascular effects and the basal NMDAR functions. Our results on an ICH model are consistent with previous studies showing a beneficial effect of memantine in a similar ICH model34 associated with reduced levels of active endogenous tPA and matrix metalloproteinase-9.35 Similarly, MK-801, a NMDAR antagonist, was shown to counteract the neurotoxicity of rtPA in a model of ICH in pigs.36

Summary/Conclusions

Although its safety in the acute stroke settings remains to be determined, both the proven safety of memantine in chronic poststroke aphasia37 and the present study provide in vitro and in vivo evidence supporting the use of memantine as an adjunct therapy to improve safety of rtPA-induced thrombolysis.

Sources of Funding

This work was supported by grants from the “Institut National de la Santé Et de la Recherche Médicale” (INSERM). Axel Montagne is recipient of a PhD fellowship from the “Conseil Régional de Basse-Normandie” (CRBN) and Guerbet.

Disclosures

None.

References

1. NINDS Study Group. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rtPA Stroke Study Group. N Engl J Med. 1995;333:1581–1587.
2. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–1329.
3. Nicole O, Dacogne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 2001;7:59–64.
4. Strbian D, Meretoja A, Putaala J, Kaste M, Tatlisumak T. Cerebral edema in acute ischemic stroke patients treated with intravenous thrombolysis. Int J Stroke. 2012;1747–4949.
5. Vivien D, Gauberti M, Montagne A, Defer G, Touzé E. Impact of tissue plasminogen activator on the neurovascular unit: from clinical data to experimental evidence. J Cereb Blood Flow Metab. 2011;31:2119–2134.
6. Benchenane K, Berezowski V, Ali C, Fernández-Monreal M, López-Atalaya JP, Brillault J, et al. Tissue-type plasminogen activator crosses the intact blood–brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation. 2005;111:2241–2249.
7. Yepes M, Roussel BD, Ali C, Vivien D. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32:48–55.
8. Suzuki Y. Role of tissue-type plasminogen activator in ischemic stroke. J Pharmacol Sci. 2010;113:203–207.
9. Su EL, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood–brain barrier integrity during ischemic stroke. Nat Med. 2008;14: 731–737.
10. Samson AL, Mcdaalf RL. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50:673–678.
11. Benchenane K, Castel H, Boulouard M, Bluthé R, Fernandez-Monreal M, Roussel BD, et al. Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. J Cell Sci. 2007;120:578–585.
12. Lees KR, Bluhmki E, von Kummer R, Brott TG, Toni D, Grotta JC, et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet. 2010;375:1695–1703.
13. Dirmagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–397.
14. Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. *Neuropharmacology*. 1999;38:735–767.

15. Macrez R, Obiang P, Guiberti M, Roussel BD, Baron A, Barcq J, et al. Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. *Stroke*. 2011;42:2315–2322.

16. Backhaus C, Kriegstein J. Extract of kava (Piper methysticum) and its methysticin constituents protect brain tissue against ischemic damage in rodents. *Eur J Pharmacol*. 1992;215:265–269.

17. Lapchak PA. Memantine, an uncompetitive low affinity NMDA open-channel antagonist improves clinical rating scores in a multiple infarct embolic stroke model in rabbits. *Brain Res*. 2006;1088:141–147.

18. Lapchak PA, Araujo DM. Advances in hemorrhagic stroke therapy: conventional and novel approaches. *Expert Opin Emerg Drugs*. 2007;12:389–406.

19. Kotermanski SE, Johnson JW. Mg2+/H11001 imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. *J Neurosci*. 2009;29:2774–2779.

20. Baron A, Montagne A, Cassé F, Launay S, Maubert E, Ali C, et al. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. *Cell Death Differ*. 2010;17:860–871.

21. Jullienne A, Montagne A, Orset C, Lesept F, Jane DE, Monaghan DT, et al. Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo. *Mol Neurodegener*. 2011;6:68.

22. Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, et al. Mouse model of in situ thromboembolic stroke and reperfusion. *Stroke*. 2007;38:2771–2778.

23. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. *Stroke*. 1990;21:801–807.

24. Culmsee C, Junker V, Kremers W, Thal S, Plesnila N, Kriegstein J. Combination therapy in ischemic stroke: synergistic neuroprotective effects of memantine and clenbuterol. *Stroke*. 2004;35:1197–1202.

25. Vandeputte C, Taymans J, Casteels C, Coun F, Ni Y, Van Laere K, et al. Automated quantitative gait analysis in animal models of movement disorders. *BMC Neurosci*. 2010;11:92.

26. Lipton SA, Chen HV. Paradigm shift in neuroprotective drug development: clinically tolerated NMDA receptor inhibition by memantine. *Cell Death Differ*. 2004;11:18–20.

27. Wilcock GK. Memantine for the treatment of dementia. *Lancet Neurol*. 2003;2:503–505.

28. Block F, Schwarz M. Memantine reduces functional and morphological consequences induced by global ischemia in rats. *Neurosci Lett*. 1996;208:41–44.

29. García-Yébenes I, Sobrado M, Zarruk JG, Castellanos M, Pérez de la Ossa N, Dávalos A, et al. A mouse model of hemorrhagic transformation by delayed tissue plasminogen activator administration after in situ thromboembolic stroke. *Stroke*. 2011;42:196–203.

30. Back T, Otto D, Kittner D, Schuler OG, Hennerici MG, Menzel HD. Failure to improve the effect of thrombolysis by memantine in a rat embolic stroke model. *Neurof Res*. 2007;29:264–269.

31. Dogan A, Eras MA, Rao VL, Dempsey RJ. Protective effects of memantine against ischemia–reperfusion injury in spontaneously hypertensive rats. *Acta Neurochir (Wien)*. 1999;141:1077–1113.

32. Marvanová M, Lakso M, Pirhonen J, Nawa H, Wong G, Castrén E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. *Mol Cell Neurosci*. 2001;18:247–258.

33. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. *Cochrane Database Syst Rev*. 2006;2:CD003154.

34. Sinn D, Lee S, Chu K, Jung KH, Song EC, Kim JH, et al. Combined neuroprotective effects of celecoxib and memantine in experimental intracerebral hemorrhage. *Neurosurgery*. 2007;61:238–242.

35. Lee S, Chu K, Jung K, Kim J, Kim EH, Kim SJ, et al. Memantine reduces hematoma expansion in experimental intracerebral hemorrhage, resulting in functional improvement. *J Cereb Blood Flow Metab*. 2006;26:536–544.

36. Thiex R, Weis J, Kringes T, Barreiro S, Yalisikli-Alemi F, Gilshbach JM, et al. Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. *J Neurosurg*. 2007;106:314–320.

37. Berthier ML, Green C, Lara JP, Higuera C, Barbancho MA, Dávila G, et al. Memantine and constraint-induced aphasia therapy in chronic post-stroke aphasia. *Ann Neurol*. 2009;65:577–585.
Memantine Improves Safety of Thrombolysis for Stroke
Axel Montagne, Marie Hébart, Amandine Jullienne, Flavie Lesept, Audrey Le Béhot, Morgane Louessard, Maxime Gauberti, Cyrille Orset, Carine Ali, Véronique Agin, Eric Maubert and Denis Vivien

Stroke. 2012;43:2774-2781; originally published online August 9, 2012;
doi: 10.1161/STROKEAHA.112.669374

Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/43/10/2774

Data Supplement (unedited) at:
http://stroke.ahajournals.org/content/suppl/2012/08/09/STROKEAHA.112.669374.DC1
http://stroke.ahajournals.org/content/suppl/2013/10/08/STROKEAHA.112.669374.DC2

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Stroke is online at:
http://stroke.ahajournals.org/subscriptions/
SUPPLEMENTAL MATERIAL

MEMANTINE IMPROVES SAFETY OF THROMBOLYSIS FOR STROKE

Axel Montagne, MSc, Marie Hébert, MSc, Amandine Jullienne, MSc, Flavie Lesept, MSc, Audrey Le Béhot, MSc, Morgane Louessard, MSc, Maxime Gauberti, MSc, Cyrille Orset, PhD, Carine Ali, PhD, Véronique Agin, PhD, Eric Maubert, PhD and Denis Vivien, PhD.

INSERM, INSERM UMR-S 919, Université de Caen Basse-Normandie, Serine Proteases and Pathophysiology of the neurovascular Unit, GIP Cyceron, 14074 Caen, France.

Corresponding author: Pr Denis Vivien, PhD.

INSERM UMR-S 919, Serine Proteases and Pathophysiology of the neurovascular Unit, GIP Cyceron, Bd H. Becquerel, BP 5229, Caen, F-14074 France.

Tel: +33231470166 and Fax: +33231470222 / e-mail: vivien@cyceron.fr

Cover title: Memantine counteracts tPA deleterious effects.

Supplementary Figure 1: Longitudinal monitoring of ischemic lesions by MRI following early treatment.

Supplementary Figure 2: String test.

Supplementary Figure 3: Memantine does not alter the fibrinolytic action of rtPA on in vivo studies: Laser Doppler and Magnetic Resonance Angiographies analyses.
Supplementary Figure 1: Longitudinal monitoring of ischemic lesions by MRI following early treatment.

(A) Representative images of the ischemic lesions on T2-weighted magnetic resonance (MR) images of mice reperfused or not with rtPA (10 mg/kg) at 20 minutes post-ischemia, co-injected or not with memantine (20 mg/kg). (B) Ischemic volumes were measured for each group (n=7-8 per group, *: p<0.05 and NS: not significant). (C) Cortical volumes (controlateral versus ipsilateral) were measured 15 days following stroke (n=7-8 per group). (D) Representative T2*-weighted high resolution at 24 hours following stroke for each group. No bleeding transformation was detected (n=7-8 per group).
Supplementary Figure 2: String test.

Behavioral tests were conducted 24 hours following stroke. (A and B) Sensorimotor deficits were evaluated by performing a string test. (A) Representative images of performance for the rating scale. (B) String score of mice from the four groups receiving late treatment.
Supplementary Figure 3: Memantine does not alter the fibrinolytic action of rtPA on *in vivo* studies: Laser Doppler and Magnetic Resonance Angiographies analyses.

Mean Cerebral Blood Flow (CBF) assessed by laser Doppler flowmetry before surgery, during middle cerebral artery occlusion and during late (A) or early (B) treatment with saline, rtPA, memantine/rtPA or memantine alone (n=7-8 mice per group). Magnetic resonance angiographies were performed at the indicated times (n=7-8 mice per group, NS: not significant). Mean angiographic scores indicated that memantine did not affect late (C) or (D) early rtPA-induced thrombolysis 6 hours following stroke.
Введение тромболизиса — рекомбинантного тканевого активатора плазминогена (рТАП/ТАП) — остается единственным одобренным методом оказания неотложной помощи при ишемическом инсульте [1]. Тем не менее его использование ограничено непродолжительным активатором плазминогена (рТАП/ТАП) — остается единственным одобренным методом оказания неотложной помощи при ишемическом инсульте. Мемантин, используемый для лечения болезни Альцгеймера, является антагонистом рецепторов N-метил-D-аспартата. Изучили эффективность использования мемантина в качестве нейропротектора при проведении системного тромболизиса после инсульта. Методы. Все эксперименты in vitro, а именно, оценку воздействия N-метил-D-аспартата, кислородно-глюкозной депривации и N-метил-D-аспартат-опосредованной видеомикроскопию с целью определения притока кальция в клетку, проводили на нейронах коры мышей на фоне введения рТАП и мемантин. Терапевтическую безопасность одновременного применения рТАП и мемантин изучили в моделях тромботического инсульта и внутримозгового кровоизлияния у мышей. Объем ишемического и геморрагического поражения оценивали по результатам МРТ, а неврологическое обследование выполняли путем проведения струнного теста и с помощью автоматизированного анализа походки. Результаты. Наблюдения in vitro продемонстрировали наличие у мемантин способности предотвращать нейротоксинический эффект рТАП в культивированных кортикальных нейронах. Несмотря на то что мемантин не оказывал влияния на фибринолитическую активность рТАП, наблюдения in vivo показали, что он ослаблял вредные последствия отсроченного тромболизиса, а именно уменьшал объем очага поражения и снижал неврологический дефicit после ишемического инсульта. Кроме того, на фоне введения мемантин повышалась выживаемость после внутримозгового кровоизлияния, часто снижающаяся при проведении системного тромболизиса. Выводы. Мемантин можно использовать в качестве дополнительной терапии для повышения безопасности системного тромболизиса.
использования мемантин в качестве нейропротектора при ишемическом или геморрагическом инсульте [16–18]. Примечательно, что мемантин действует преимущественно на NMDA-рецепторы, содержащие субъединицу GluN-2D [19], фактически являющуюся избирательной целью нейротоксичного действия ТАП. [20, 21]. Таким образом, предположили, что для улучшения исходов после инсульта сочетание рТАП с мемантином может быть эффективным.

МЕТОДЫ

Материалы

N-метил-D-аспартат (NMDA) и мемантин были предоставлены компанией Tocris (Бротсель, Великобритания). Человеческий рТАП (Активилз) был предоставлен компанией Boehringer Ingelheim (Великобритания). Человеческий рТАП (Актилизе) был предоставлен компанией Tocris (Бротсель, Великобритания). Модифицированную по способу Дульбекко среду Игла с добавлением 1% O2 и 5% CO2 при 37 °C. Кислородо-глюкозную депривацию культур нейронов осуществляли путем введения NMDA (10 мкмоль/л) в бессывороточную, модифицированную по способу Дульбекко, среду Игла, с добавлением 10 мкмоль/л глицина на 24 часа. NMDA вводили через 3 дня инкубации процесса гибели нейронов в условиях 10 мкмоль/л глицина на 24 часа. NMDA вводили в концентрациях 1, 5 или 10 мкмоль/л.

Культуры нейронов

Культуральные кортикальные нейроны получали из эмбрионов швейцарских мышей (E14-15), предоставленных CURB (Кан, Франция), как описывали ранее [21]. Для подавления пролиферации глиальных клеток добавляли β-D-арabinозид (в концентрации 10 мкмоль/л) через 3 дня in vitro или через 7 дней in vitro для изучения процесса гибели нейронов, видеомикроскопии — с целью определения поступления кальция в клетки соответственно.

Гибель нейронов вследствие эксайтотоксичности

Как было описано ранее [21], эксайтотоксичность индуцировали на 12–13-й день in vitro путем введения NMDA (10 мкмоль/л) в бессывороточную, модифицированную по способу Дульбекко, среду Игла с добавлением 10 мкмоль/л глицина на 24 часа. NMDA вводили отдельно или в сочетании с рТАП (0,3 мкмоль/л), и/или мемантином (в концентрациях 1, 5 или 10 мкмоль/л). Через 24 часа количество оценивали степень гибели нейронов путем определения содержания лактатдегидрогеназы.

Кислородо-глюкозная депривация культур нейронов

Кислородо-глюкозную депривацию выполняли в гипоксической камере (IN VIVO, 500; Ruskin) с запрограммированным содержанием 1% O2 и 5% CO2 при 37 °C. Через 11–12 дней in vitro кортикальные нейроны помещали или не помещали в условия кислородо-глюкозной депривации на 30 минут. В камере нейроны пересаживали на бессывороточную, безглюкозную, деоксигенированную, модифицированную по способу Дульбекко, среду Игла, а затем добавляли рТАП (0,3 мкмоль/л) и/или мемантин (1 или 10 мкмоль/л). Через 30 минут клетки извлекали из гипоксической камеры, а среду заменили на оксигенированную, модифицированную по способу Дульбекко среду Игла (4,5 г/л глюкозы). Во время реоксигенации снова добавляли рТАП и/или мемантин. Гибель нейронов оценивали через 24 часа путем определения содержания лактатдегидрогеназы.

Видеомикроскопия с целью определения содержания кальция

Как описывали ранее [3], нейроны (на 14-й день культивирования in vitro) погружали в среду Fura2/AM (10 мкмоль/л) на 45 минут при 37 °C. Дважды вводили NMDA (50 мкмоль/л), чтобы продемонстрировать воспроизводимость реакции. Затем нейроны в течение 45 минут обрабатывали мемантином (1 и 10 мкмоль/л) и/или рТАП (0,3 мкмоль/л), а затем вновь вводили NMDA. Соотношение изображений нейронов после культивирования в среде Fura2 (возбуждение: 340/380 нм, эмиссия: 510 нм) получили с помощью ПЭС-камеры (Princeton Instrument, Трентон, штат Нью-Джерси) и оцифровали (матрица: 256×512 пикселей) с использованием программного обеспечения Metaflour 6.2r6 (Universal Imaging Corporation, Честер, Пенсильвания). Площадь под кривой представляет собой процентное соотношение выживших клеток после первой реакции и после воздействия NMDA.

Анализ лизиса тромба

Фракцию эуглобулина общей человеческой плазмы наносили в буфере N-2-гидроксиэтилпиперазин-N’-2-этансульфоновой кислоты. Добавляли хлорид кальция (12 ммоль/л) и рТАП (10 МЕ, т.е. 1,5 мкмоль/л) и/или 20 мкмоль/л мемантин. Вели мониторинг поглощения (405 нм) в течение 18 часов при 37 °C. Результатом являлось время достижения 50% лизиса тромба.

Животные

Самцов швейцарских мышей (39±3 г), предоставленных компанией CURB (Кан, Франция), помещали в условиях циркадного цикла (12 часов света/12 часов темноты) в стандартные полипропиленовые ячейки (37×23,5×18 см; Charles River, Франция). Эксперименты осуществляли в соответствии с рекомендациями Совета Французского Постановления 87/848 и Европейского Сообщества (Постановление 86/609). Во время операции мышей вводили в глубокий наркоз с помощью 2% изофлурана на 70/30% газовой смеси (N2O/O2) и температуру в прямой кишке поддерживали на уровне 37±0,5 °C. Для экспериментов in vivo, благодаря функции рандомизации в Excel, был разработан кластерный рандоми-
зированный дизайн, с рандомизацией по 6 животных в день, включая минимум одно животное в группе каждый день.

Модель тромботического инсульта и тромбоэлис
Мышей под наркозом помещали в стереотаксические рамки. Как ранее описано [22], развитие тромботического инсульта индуцировали введением тромбина (1,0 МЕ в 1 мкл) непосредственно в среднюю мозговую артерию. Через 4 часа или 20 минут после образования тромба [15] с целью тромболизиса внутривенно вводили рТАП (в хвостовую вену 200 мкд, 10 мг/кг: 10% в виде болюса и 90% в виде инфузии в течение 40 минут) или без внутривенного введения мемантин в виде болюса (200 мкд, 20 мг/кг) непосредственно перед инфузий рТАП. Животным контрольной группы вводили такой же объем физиологического раствора с или без мемантин (n=7-8 в группе). Скорость церебрального кровотока непрерывно контролировали с помощью лазерной допплеровской флоуметрии (Oxford Optronix) в течение часа после формирования тромба, а также во время инъекции препаратов.

Модель внутримозгового кровоизлияния
Выполнили одностороннюю стереотаксическую инъекцию коллагеназы VII типа (0,05 МЕ в 1 мл) в полосатое тело (координаты: 0,5 мм кпереди, 2 мм латеральнее и 2,5 мм вентральнее брегмы; стереотаксический атлас G. Paxinos & K.B.J. Franklin) [23]. Через 30 минут после инъекции внутримозгового кровоизлияния (ВМК) в хвостовую вену вводили катетер для инъекции болюса рТАП (10 мг/кг) или физиологического раствора с или без болюса мемантин (20 мг/кг). Таким образом, мышей разделили на 4 группы: вводили физиологический раствор (n=9), рТАП (n=10), мемантин/рТАП (n=10) и мемантин (n=8). Выживаемость оценивали через 1, 6, 24 и 72 часа после развития ВМК.

Магнитно-резонансная томография
Исследования выполняли на томографе Pharmscan7T (Bruker, Германия). T2-взвешенные изображения получали в мультирезовой мульти-эхо последовательности с ВЕ/TR=51,3/2500 мс. Двумерную времепролетную ангиографию (ВЕ/TR=12/7 мс) проводили через 6, 24, и 48 часов после инсульта. Оценку результатов ангиографии проводили без соответствующего информирования эксперта, по следующим критериям: 0 – полное исчезновение окклюзии артерии на ангиографических изображениях, 1 – частичный регресс и 2 – нормальный вид. После развития инсульта животных стерилизовали T2*-взвешенные изображения с использованием последовательности градиентное эхо с компенсацией кровотока (ВЕ/TR=7,7/500 мс). В модели ВМК для оценки объема кровоизлияния также получали T2*-взвешенные изображения. Объемы ишемического и геморрагического поражений количественно оценивали по результатам МРТ с помощью программного обеспечения ImageJ. Волюметрические измерения проводили без информирования эксперта относительно проведенного лечения.

Поведенческие тесты
Струнный тест
Мышей подшевеливали за лапки на горизонтально натянутой струне диаметром 1,5 мм и оценивали их способность удерживаться в таком положении. После тренировки (3 последовательных испытания до контрольной проверки) в день испытания проводили одно-кратное 30-секундное исследование. Для оценки показателей тестирования у каждого животного использовали 4-балльную шкалу: 0 баллов – в состоянии удерживаться на струне, 1 балл – висит на двух передних лапах; 2 балла – попытки подняться на струну, 3 балла – держится передними лапками и одной или обеими задними лапками за струну и 4 балла – держится 4 лапками и хвостом обхватывает струну, при этом совершает боковое продвижение по струне.

Система CatWalk XT
Apparatus (Noldus Information Technology, Ватергейген, Нидерланды) включает закрытую дорожку (130×68×152 см) со стеклянной пластиной, источника света и высокоскоростную видеокамеру, точно регистрирующую следы лапок. Полученное видео затем обрабатывается программным обеспечением CatWalk XT (версия 9.0). После тренировки (2 исследования походки до проведения вмешательства) через 24 часа после развития инсульта у мышей проводили 3 последовательных теста с целью оценки походки.

Все поведенческие тесты провели 2 экспериментатора, неосведомленные относительно проведенного лечения.

Статистический анализ
Анализ мощности моделей тромботического инсульта в ВМК определили априорно, по данным литературы и предварительным результатам, соответственно с использованием программного обеспечения G*Power. Результаты, полученные in vitro и in vivo, представлены в виде "среднее значение±СО". Статистический анализ проводили с использованием программного обеспечения JMP. Все значения вероятности были двусторонними. Статистически значимыми считали различия при p<0,05.

Для анализа поступления кальция в клетки посредством видеомикроскопии выполнили параметрические тесты. Таким образом, данные анализировали с помощью 2-стороннего дисперсионного анализа с повторными измерениями и, при необходимости, с последующим дополнительным использованием критерия достоверно значимой разности Тьюки (post hoc тесты). Лог-ранговый критерий использовали для оценки статистической значимости кривых выживаемости Каплана-Мейера.

Для оценки гибели нейронов in vitro, объема ишемического и геморрагического поражения, результатов поведенческого тестирования, лизиса тромба и результатов ангиографии данные проанализировали с
помощью непараметрических тестов. В этих случаях использовали тесты Крускала-Уоллиса и затем, по необходимости, U-тест Манна-Уитни в качестве post hoc тестов. Кроме того, использовали тест корреляции Пирсона для изучения потенциальной связи между функциональными параметрами (размер отпечатка правой задней конечности) и массой тела мыши.

РЕЗУЛЬТАТЫ

Мемантин предотвращает нейротоксичное действие pTAP in vitro

В зависимости от дозы мемантин предотвращал NMDA-опосредованную гибель нейронов, при этом почти полная защита достигалась при дозе 10 мкмоль/л (рис. 1А; 91% по сравнению с NMDA; р<0,05). Интересно, что в дозе 1 мкмоль/л, которая сама по себе не защищает нейроны от исходной NMDA-опосредованной нейротоксичности (рис. 1А), мемантин предотвращал 42% pTAP-зависимого потенцирования NMDA-индукционной гибели нейронов (рис. 1Б, р<0,05). Действие мемантин также изучали на кортикальных нейронах в условиях кислородо-глюкозной депривации. Мемантин в дозе 1 мкмоль/л (в дозе, которая сама по себе не оказывает влияния на нейротоксичность, индуцированную кислородо-глюкозной депривацией) полностью предотвратил pTAP-индукционное потенцирование после 30-минутной кислородо-глюкозной депривации (рис. 1В; -64% по сравнению с pTAP, р<0,05).

Мемантин уменьшает вредные воздействия отсроченного системного тромболизиса

Изучали действие мемантин в модели тромботического инсульта у мышей с pTAP-индукционным тромбообразованием и последующей реокисгенацией. Мемантин в дозе 1 мкмоль/л предотвращал pTAP-индуцированное увеличение LDH-активности в культуре нейронов (рис. 2А–В; -50% по сравнению с NMDA+pTAP, р<0,001).

Рисунок 1. Мемантин предотвращает потенцирование эксплайтотоксической гибели нейронов, индуцированной введением pTAP. А. В культуру кортикальных нейронов вводили NMDA (10 мкмоль/л) с или без мемантин (1, 5 и 10 мкмоль/л) В. или мемантин в сочетании с pTAP (0,3 мкмоль/л) в течение 24 часов до проведения оценки гибели нейронов (N=4 независимые культуры, n=12, р*<0,05; НЗ – незначимо). Б. В культуру кортикальных нейронов вводили pTAP (0,3 мкмоль/л) с или без мемантин (1 и 10 мкмоль/л), во время и после 30-минутной кислородо-глюкозной депривации выполняли количественную оценку гибели нейронов через 24 часа (N=3 независимые культуры, n=12, р*<0,05; НЗ – незначимо). pTAP – рекомбинантный тканевой активатор плазминогена; NMDA – N-метил-D-аспартат.
Рисунок 2. Мемантин предотвращает рТАП-индуктированное поступление кальция в клетку через активированные NMDA-рецепторы.
А. Результаты видеовизуализации поступления кальция в кортикальные нейроны, продемонстрированные на 2 фотографиях (масштаб: 10 мкм). Б–В. Два последовательных 30-секундных воздействия NMDA (N= стимуляция NMDA; 50 мкмоль/л) зарегистрировали до 45-минутной инкубации в присутствии рТАП (0,3 мкмоль/л) или мемантина (1 или 10 мкмоль/л) изолированно или в сочетании. После инкубации зарегистрировали последнюю стимуляцию NMDA (N=3 независимые культуры, n=150 клеток, **h<0,001; НЗ – незначимо). рТАП – рекомбинантный тканевой активатор плазминогена; NMDA – N-метил-D-аспартат.

ной реперфузии [22]. В этой модели проведение системного тромболизиса в раннем периоде (через 20 минут после развития инсульта) эффективно, в то время как отсроченный тромболизис (через 4 часа после развития инсульта) оказывает отрицательное воздействие [15]. В связи с этим изучили влияние внутривенного введения мемантина (20 мг/кг, доза выбрана по литературным данным [24]) в качестве вспомогательного лечения в дополнение к проведению системного тромболизиса. При анализе T2-взвешенных МР-изображений, выполненных через 6, 24 и 48 часов после развития инсульта (рис. 3А), выявили, что несмотря на отсутствие влияния мемантина на размер ишемического повреждения в отсутствии рТАП (рис. 3Б; 16,68 vs 15,37 мм³ при введении физиологического раствора через 24 часа, p<0,05), его внутривенное введение предотвратило пагубные последствия отсроченной рТАП-индуктированной реперфузии (рис. 3Б; 15,19 по сравнению с 21,36 мм³ при отсроченном тромболизисе через 24 часа, p<0,05). Хотя негативное воздействие отсроченного тромболизиса проявилось через 6 часов после образования тромба и прогрессировало в течение 24–48 часов, объемы поражения в контрольной группе, группе мемантина и группе мемантин/рТАП, достигли своего максимума через 24 часа (рис. 3А–Б). Т2-взвешенные МР-изображения, выполненные через 15 дней после ишемии, показали, что у животных с отсроченным системным тромболизисом объем кортикального поражения был меньшим, чем на фоне применения мемантина (рис. 3А–В). Независимо от группы лечения на высокочувствительных Т2*-взвешенных изображениях не обнаружили признаков геморрагических осложнений (рис. 3Г). Подобные эксперименты проводили и с мемантином, и с рТАП, по отдельности или в сочетании, с введением препаратов через 20 минут после инсульта, т.е. в рамках временного ока, в котором, согласно литературе, эффективно действие только рТАП [13]. Мемантин сам по себе не оказывал протективного действия (рис. 1 в дополнительных данных on-line). Кроме того, сочетание мемантина с рТАП в раннем периоде (через 20 минут после образования тромба) не показало наличия дополнительного нейропротекторного эффекта по сравнению с проведением только рТАП-индуктированного тромболизиса (рис. 1 в дополнительных данных on-line).
Мемантин предотвращает вредное воздействие отсроченного системного тромболизиса на сенсомоторные функции

Сенсомоторную функцию оценивали по результатам струнного теста через 24 часа после развития инсульта (см. рис. ПА в дополнительных данных on-line). У мышей с отсроченным тромболизисом был более выраженный неврологический дефицит, и средние показатели при оценке результатов струнного теста на 15-й день после развития инсульта (n=8 в группе, p<0,05, значимо по сравнению с другими группами). В. Объемы кортикальных поражений (контралатеральное по сравнению с ипсилатеральным) измеряли через 15 дней после развития инсульта (n=8 в группе, p<0,05, значимо по сравнению с другими группами). Г. Примеры T2*-взвешенных изображений высокого разрешения через 24 часа после инсульта в каждой группе. Признаков геморрагической трансформации не обнаружили (n=8 в группе). pТАП — рекомбинантный тканевой активатор плазминогена.

Рисунок 3. Длительный мониторинг ишемического поражения на MРТ после отсроченного лечения. А. Примеры ишемических поражений на T2-взвешенных MР-томограммах у мышей, которым проводили или не проводили реперфузию рТАП (10 мг/кг) через 4 часа после ишемии в сочетании с введением мемантина (20 мг/кг) или без него. Б. Объемы ишемических поражений измеряли в каждой группе (n=8 в группе, *p<0,05 и $p<0,05, значимое по сравнению с другими группами). В. Объемы кортикальных поражений (контралатеральное по сравнению с ипсилатеральным) измеряли через 15 дней после развития инсульта (n=8 в группе, $p<0,05, значимо по сравнению с другими группами). Г. Примеры T2*-взвешенных изображений высокого разрешения через 24 часа после инсульта в каждой группе. Признаков геморрагической трансформации не обнаружили (n=8 в группе). pTA — рекомбинантный тканевой активатор плазминогена.

Мемантин предотвращает вредное воздействие отсроченного системного тромболизиса на сенсомоторные функции

Сенсомоторную функцию оценивали по результатам струнного теста через 24 часа после развития инсульта (см. рис. ПА в дополнительных данных on-line). У мышей с отсроченным системным тромболизисом был более выраженный неврологический дефицит, и средние показатели при оценке результатов струнного теста были ниже (2,63 из 4 баллов), чем в группе мышей, получавших физиологический раствор (3,13 из 4 баллов; рис. ПБ в дополнительных данных on-line, физиологический раствор vs отсроченное введение pТАП, p=0,172). В отличие от этого отсроченное введение мемантина/пТАП привело к улучшению показателей струнного теста (3,25 из 4 баллов, см. рис. ПБ в дополнительных данных on-line; отсроченное введение мемантина/пТАП vs отсроченным тромболизисом, p=0,074).

Анализ походки также выполняли через 24 часа после развития инсульта. Использовали такой показатель, как максимальная площадь контакта (т.е. максимальная площадь контакта лапки со стеклянной пластинкой во время фазы опоры) в качестве параметра индивидуального отпечатка лапки, как ранее описано [25]. Размер слева правой задней конечности был меньше (-27%) в группе животных с отсроченной реперфузии (рис. 4А; физиологический раствор vs отсроченный тромболизис; p<0,05), в то время как введение только мемантина не привело к улучшению дефицита у животных, получавших физиологический раствор (рис. 4А; физиологический раствор vs отсроченное введение мемантина; p>0,05). Введение мемантина в сочетании с пТАП привело к предотвращению вредных последствий отсроченного тромболизиса (рис. 4A; отсроченный системный тромболизис vs отсроченное введение мемантина/pТАП, p=0,05, и физиологический раствор vs отсроченное введение мемантина/pТАП, p>0,05). Корреляции между размером слева правой задней конечности и массой мыши не обнаружили (рис. 4Б; p>0,05).
Мемантин не изменяет фибринолитическую активность рТАП
Этот благоприятный эффект мемантин в сочетании с рТАП не был ассоциирован с нарушением фибринолитической активности рТАП, о чем свидетельствовали результаты анализа лизиса тромба in vitro (рис. 5), аналогичные показателям реперфузии (см. рис. IIIА–Б в дополнительных данных on-line), а также средние показатели оценки результатов ангиографии (см. рис. IIIВ–Г в дополнительных данных on-line).
Мемантин уменьшает рост рТАП-индукционной гематомы и повышает выживаемость после ВМК
Изучили влияние мемантин в модели ВМК, индуцированного интрастриальной инъекцией коллагензы у мышей. Как показано на T2*-взвешенных изображениях, несмотря на то что внутривенное введение рТАП через 30 минут после ВМК привело к увеличению объема кровоизлияния, это протеморрагическое действие рТАП было предотвращено введением мемантин (рис. 6а). Примечательно, что на фоне сочетания мемантин с рТАП, выживаемость животных после ВМК повысилась (рис. 6б; логарифмический ранговый критерий, р<0,05).

■ ОБСУЖДЕНИЕ
Применение нейропротекторов с высоким сродством к NMDA-рецепторам, таких как MK-801, приводило к развитию клинически вредного воздействия, включая сонливость и даже кому [26]. Мемантин является неконкурентным антагонистом открытых каналов NMDA с низким и умеренным аффинитетом, что позволяет снизить активность NMDA-рецепторов [17, 26]. Таким образом, доклинические данные свидетельствуют о том, что мемантин может оказывать нейропротекторное воздействие при деменции, а также при глобальной и очаговой церебральной ишемии [24, 27, 28]. Мемантин одобрен в Европе и в Соединенных Штатах для симптоматического лечения болезни Альцгеймера средней и тяжелой степени тяжести. Несмотря на наличие полезной антифибринолитической активности, рТАП может оказывать негативное воздействие после инсульта посредством содействия развитию геморрагической трансформации [12, 29] и NMDA-опосредованной нейротоксичности [3, 4, 15]. Результаты проведенного исследования свидетельствуют о том, что мемантин предотвращает негативное влияние рТАП на культивируемые нейроны, подтверждается значительному экскитотокическому воздействию,
а также in vivo у мышей при ишемическом и геморрагическом поражении головного мозга. Результаты функционального тестирования также демонстрируют благоприятное влияние мемантина. В модели эмболического инсульта у крыс T. Back и соавт. [30] не удалось обнаружить у мемантина наличия благоприятного воздействия при его интраперитонеальном введении. В настоящем исследовании было показано, что сочетание мемантина с рТАП ассоциировано с улучшением сенсомоторного статуса (строенный тест) и использования подошвенной поверхности инсплатеральных задних конечностей (CatWalk), т.е. параметра, нарушенное которого отмечали также и в других моделях кортикального инфаркта [25]. Использование мемантина в качестве монотерапии не оказывало эффекта в модели тромботического инсульта. Эти наблюдения согласуются с литературными данными, поскольку было несколько сообщений о наличии положительного эффекта мемантина, используемого в качестве монотерапии после развития инсульта в моделях кортыльного инсульта у здоровых взрослых мышей или крыс. Мемантин при внутривенном введении после развития инсульта продемонстрировал положительное воздействие только в модели у крыс с артериальной гипертензией [31] и в модели эмболического инсульта у кроликов [17]. Отсутствие эффективности мемантина, используемого
в качестве монотерапии, может быть связано либо со сроками проведения системного тромболизиса, либо с тяжестью ишемического поражения. Согласно результатам проведенного исследования, мемантин сам по себе не эффективен, но повышает эффективность рТАП при его введении в поздние сроки после инсульта, в то время как проведение только системного тромболизиса оказывает неблагоприятное воздействие. Таким образом, мемантин расширяет терапевтическое окно для проведения системного тромболизиса.

С механистической точки зрения, согласно некоторым источникам, нейропротекторное действие мемантина может быть опосредовано повышением образования нейротрофического фактора головного мозга [32]. Кроме того, приводили данные о том, что мемантин является в 6–8 раз более избирательным антагонистом NMDA-рецепторов, содержащих GluN-2C или GluN-2D субъединицы, чем GluN-2A или GluN-2B субъединицы [19]. Эти наблюдения и результаты настоящего исследования согласуются с ранее приведенными данными о том, что пронейротоксический эффект рТАП разывается преимущественно посредством воздействия на внесинаптические NMDA-рецепторы, содержащие GluN-2D [20, 21]. К сожалению, мы уже сообщали, что новый избирательный GluN-2D антиагонист UBP145 ([2R*, 3S*]-1-[9-бромфенантрен-3-карбонил] пиперазин-2,3-дикарбоновая кислота) не был эффективен, но повышает эффективность rТАП при афазии после инсульта [37] и результаты настоящего исследования in vitro и in vivo подтверждают эффективность использования мемантина в качестве вспомогательной терапии для повышения безопасности системного тромболизиса.

Резюме/выводы

Несмотря на то что безопасность применения мемантина в условиях острого инсульта еще предстоит определить, доказанная безопасность использования мемантина в афазии после инсульта [37] и результаты настоящего исследования in vitro и in vivo подтверждают эффективность использования мемантина в качестве вспомогательной терапии для повышения безопасности системного тромболизиса.

ЛИТЕРАТУРА

1. NINDS Study Group. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rtPA Stroke Study Group. N Engl J Med. 1995;333:1581–1587.
2. Hacke W., Kaste M., Bluhmki E., Brozman M., Dávalos A., Guidetti D., et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359:1317–1329.
3. Nicole O., Docagne F., Ali C., Margail I., Carmeliet P., MacKenzie E.T., et al. The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat Med. 2001;7:59–64.
4. Strbian D., Meretoja A., Putaala J., Kaste M., Tatlisumak T. Cerebral edema in acute ischemic stroke patients treated with intravenous thrombolyis. Int J Stroke. 2012;1747–4949.
5. Vivien D., Gauberti M., Montagne A., Defer G., Touzé E. Impact of tissue plasminogen activator on the neurovascular unit: from clinical data to experimental evidence. J Cereb Blood Flow Metab. 2011;31:2119–2134.
6. Benchenane K., Berezowski V., Ali C., Fernández-Monreal M., López-Atalaya J.P., Bril Guillot J., et al. Tissue-type plasminogen activator crosses the intact blood – brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis. Circulation. 2005;111:2241–2249.
7. Yepes M., Roussel B.D., Ali C., Vivien D. Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci. 2009;32:48–55.
8. Suzuki Y. Role of tissue-type plasminogen activator in ischemic stroke. J Pharmacol Sci. 2010;113:203–207.
9. Su E.J., Fredriksson L., Geyer M., Folestad E., Cale J., Andrae J., et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood–brain barrier integrity during ischemic stroke. Nat Med. 2008;14:731–737.
10. Samson A.L., Medcalf R.L. Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron. 2006;50:673–678.
11. Benchenane K., Castel H., Boulouard M., Bluthé R., Fernandez-Monreal M., Roussel B.D., et al. Anti-NR1 N-terminal-domain vaccination unmasks the crucial action of tPA on NMDA-receptor-mediated toxicity and spatial memory. J Cell Sci. 2007;120:578–585.
12. Lees K.R., Bluhmki E., von Kummer R., Brott T.G., Toni D., Grotta J.C., et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLAS, NINDS, and EPITHET trials. Lancet. 2010;375:1695–1703.
13. Dinagl U., Iadecola C., Moskowitz M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22:391–397.
14. Parsons C.G., Danysh W., Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology. 1999;38:735–767.
15. Macrez R., Obiang P., Gauberti M., Roussel B.D., Baron A., Parco J., et al. Antibodies preventing the interaction of tissue-type plasminogen activator with N-methyl-D-aspartate receptors reduce stroke damages and extend the therapeutic window of thrombolysis. Stroke. 2011;42:2315–2322.
16. Backhaus C., Kriegstein J. Extract of kava (Piper methysticum) and its methylxanthin constituents protect brain tissue against ischemic damage in rodents. Eur J Pharmacol. 1992;215:265–269.
17. Lapach P.A. Memantine, an uncompetitive low affinity NMDA open-
channel antagonist improves clinical rating scores in a multiple infarct embolic stroke model in rabbits. Brain Res. 2006;1088:141–147.

18. Lapchak P.A., Araujo D.M. Advances in hemorrhagic stroke therapy: conventional and novel approaches. Expert Opin Emerg Drugs. 2007;12:389–406.

19. Kotermanski S.E., Johnson J.W. Mg²⁺ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci. 2009;29:2774–2779.

20. Baron A., Montagne A., Cass F., Launay S., Maubert E., Ali C., et al. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity. Cell Death Differ. 2010;17:860–871.

21. Jullienne A., Montagne A., Orset C., Lesept F., Jane D.E., Monaghan D.T., et al. Selective inhibition of GluN2D-containing N-methyl-D-aspartate receptors prevents tissue plasminogen activator-promoted neurotoxicity both in vitro and in vivo. Mol Neurodegener. 2011;6:68.

22. Orset C., Macrez R., Young A.R., Panthou D., Angles-Cano E., Maubert E., et al. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke. 2007;38:2771–2778.

23. Rosenberg G.A., Mun-Bryce S., Wesley M., Kornfeld M. Collagenaseinduced intracerebral hemorrhage in rats. Stroke. 1990;21:801–807.

24. Culmsee C., Junker V., Kremers W., Thal S., Plesnila N., Kriegstein J. Combination therapy in ischemic stroke: synergistic neuroprotective effects of memantine and clenbuterol. Stroke. 2004;35:1197–1202.

25. Vandeputte C., Taymans J., Casteels C., Coun F., Ni Y., Van Laere K., et al. Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci. 2010;11:92.

26. Lipton S.A., Chen H.V. Paradigm shift in neuroprotective drug development: clinically tolerated NMDA receptor inhibition by memantine. Cell Death Differ. 2004;11:18–20.

27. Wilcock G.K. Memantine for the treatment of dementia. Lancet Neurol. 2003;2:503–505.

28. Block F., Schwarz M. Memantine reduces functional and morphological consequences induced by global ischemia in rats. Neurosci Lett. 1996;208:41–44.

29. García-Yébenes L., Sobrado M., Zarruk J.G., Castellanos M., Pérez de la Ossa N., Dávalos A., et al. A mouse model of hemorrhagic transformation by delayed tissue plasminogen activator administration after in situ thromboembolic stroke. 2011;42:196–203.

30. Back T., Otto D., Kittner D., Schüller O.G., Hennenri M.G., Mennel H.D. Failure to improve the effect of thrombolysis by memantine in a rat embolic stroke model. Neurol Res. 2007;29:264–269.

31. Dogan A., Eras M.A., Rao V.L., Dempsey R.J. Protective effects of memantine against ischemia–reperfusion injury in spontaneously hypertensive rats. Acta Neurochir (Wien). 1999;141:1107:1113.

32. Marvanová M., Lakso M., Pirhonen J., Nawa H., Wong G., Casténon E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci. 2001;18:247–258.

33. McShane R., Areosa Sastre A., Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006;2:CD003154.

34. Sinn D., Lee S., Chu K., Jung K.H., Song E.C., Kim J.M., et al. Combined neuroprotective effects of celecoxib and memantine in experimental intracerebral hemorrhage. Neurosci Lett. 2007;411:238–242.

35. Lee S., Chu K., Jung K., Kim J., Kim E.H., Kim S.J., et al. Memantine reduces hematoma expansion in experimental intracerebral hemorrhage, resulting in functional improvement. J Cereb Blood Flow Metab. 2006;26:536–544.

36. Thiex R., Weis J., Krings T., Barreiro S., Yakisikil-Alemi F., Gilsbach J.M., et al. Addition of intravenous N-methyl-D-aspartate receptor antagonists to local fibrinolytic therapy for the optimal treatment of experimental intracerebral hemorrhages. J Neurosurg. 2007;106:314–320.

37. Berthier M.L., Green C., Lara J.P., Higuera C., Barbancho M.A., Dávila G., et al. Memantine and constraint-induced aphasia therapy in chronic poststroke aphasia. Ann Neurol. 2009;65:577–585.