Fas-associated factor (Faf1) is a novel CD40 interactor that regulates CD40-induced NF-κB activation via a negative feedback loop

T Elmetwali1, LS Young2 and DH Palmer*,1

CD40-induced signalling through ligation with its natural ligand (CD40L/CD154) is dependent on recruitment of TRAF molecules to the cytoplasmic domain of the receptor. Here, we applied the yeast two-hybrid system to examine whether other proteins can interact with CD40. Fas-Associated Factor 1 (FAF1) was isolated from a HeLa cDNA library using the CD40 cytoplasmic tail (216–278 aa) as a bait construct. FAF1 was able to interact with CD40 both in vitro and in vivo. The FAF1 N-terminal domain was sufficient to bind CD40 and required the TRAF6-binding domain within the cytoplasmic tail of CD40 for binding. CD40 ligation induced FAF1 expression in an NFκB-dependent manner. Knockdown of FAF1 prolonged CD40-induced NFκB, whereas overexpression of FAF1 suppressed CD40-induced NFκB activity and this required interaction of FAF1 with the CD40 receptor via its FID domain. Thus, we report a novel role for FAF1 in regulating CD40-induced NFκB activation via a negative feedback loop. Loss of FAF1 function in certain human malignancies may contribute to oncogenesis through unchecked NFκB activation, and further understanding of this process may provide a biomarker of NFκB-targeted therapies for such malignancies.

Cell Death and Disease (2014) 5, e1213; doi:10.1038/cddis.2014.172; published online 8 May 2014

Subject Category: Cancer

CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, and its ligand (CD40L/CD154) have a central role in coordinating immune responses and can mediate antiviral and antitumour effects. CD40 is expressed in normal B cells and malignant haemopoietic cells. Although CD40 ligation induces the survival and proliferation of normal B cells and of low-grade B-cell malignancies, the activation of CD40 in Burkitt lymphoma cells results in growth inhibition and apoptosis.2–4 CD40 expression is also upregulated in a number of carcinomas. It is assumed that CD40 expression in the context of malignant epithelium confers a growth/survival advantage via signalling pathways such as NFκB and PI3K/Akt signalling, which act in concert to regulate many of the pleiotropic activities of CD40 in a cell type-dependent manner.5–7 Previous studies have shown that stimulation of Hela cells expressing a CD40 mutant (CD40AmT6; the amino acids T254,Q 234,E 235 within the CD40 cytoplasmic tail were replaced by A residues), which does not bind TRAF2,3,5 and 6,6,7,10 induced robust ERK and JNK phosphorylation, detectable phosphorylation of p38 and significant IκBα degradation, suggesting that other signalling motifs within CD40 or other proteins may still be involved in CD40-induced signalling pathways. Therefore, identification of other proteins that directly interact with the CD40 receptor may provide better understanding of CD40-induced signalling pathways. In this study, we attempted to identify other CD40-interacting proteins by utilising the yeast two-hybrid analysis technique (YTH) using the CD40 cytoplasmic tail as the bait construct. Fas-Associated Factor 1 (FAF1) was isolated as a novel CD40-interacting partner, and we report a novel function for FAF1 regulation of CD40-induced NFκB.

Received 11.11.13; revised 03.2.14; accepted 13.2.14; Edited by G Raschella

1 Cancer Research UK Centre, University of Liverpool, Daulby Street, Liverpool, UK and 2Warwick Medical School, University of Warwick, Coventry, UK
*Corresponding author: DH Palmer, Molecular and Clinical Cancer Medicine, University of Liverpool, 5th Floor UCD, Duncan Building, Daulby Street, Liverpool L69 3GA, UK. Tel/Fax: +44 151 7064177; E-mail: Daniel.Palmer@liverpool.ac.uk

Abbreviations: bp, base pair; DD, death domain; DED, death effector domain; DEDID, death-effector domain-interacting domain; DISC, death-inducing signalling complex; E.coli, Escherichia coli; FAF1, Fas-associated factor 1; FID, Fas-interacting domain; GFP, Green fluorescent protein; Gln, Glycine; GLU, Glutamine; HA, haemagglutinin; IL-1β, interleukin-1β; IP, immunoprecipitation; LMP1, latent membrane protein 1; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinases; Mt, mutant; NFκB, nuclear factor κB; PI3K, phosphatidylinositol 3 kinase; Pro, proline; rsCD40L, recombinant soluble CD40 ligand; siRNA, small interfering RNA; Thr, threonine; TNF-α, tumour necrosis factor α; TRADD, TNF receptor-associated death domain; TRAF, TNF receptor-associated factor; Wt, wild type; YTH, yeast two-hybrid
Results

Identification of FAF1 as a novel CD40 interactor by YTH analysis. Before screening the HeLa cDNA library, the inability of CD40 to activate the transcription of the reporter markers was confirmed as EGY48 yeast cells harbouring the pEG202/LexA-CD40 bait construct were unable to grow on Glu/CM-H,L plate. In the primary screening of the HeLa cDNA library, several clones were selected and seven of these were found to interact specifically with the CD40 bait construct. On sequencing, one clone was found to code a partial cDNA of FAF1 (50–602 aa) and the other six clones were partial cDNAs of the TRAF3 molecule.

To verify this putative interaction between FAF1 and CD40, EGY48 yeast cells harbouring the pEG202/LexA-CD40 (bait) or pEG202/LexA construct were grown in Glu/CM-H,L liquid medium, and LexA-CD40 fusion expression was then confirmed by immunoblotting analysis using a specific anti-LexA antibody (Figure 1a). To test the CD40–FAF1 interaction, EGY48 cells harbouring the CD40 bait construct were co-transformed with the isolated pJG4-5/FAF1-HA.tag (prey) or the empty pJG4-5 vector. An interaction between CD40 and FAF1 proteins was confirmed as yeast cells were able to grow and form single colonies on the selective Gal-Raff/CM-H,W,L but not on the Glu/CM-H,W,L (Figure 1b). The inability of yeast cells harbouring either pEG202/LexA-CD40 or the pJG4-5/FAF1-HA.tag alone or the empty vectors to grow on the selective Gal-Raff/CM-H,W,L medium further indicates the specificity of CD40-FAF1 interaction in the two-hybrid system.

FAF1 interacts with the TRAF6-binding domain of CD40 via its Fas-interacting domain. To confirm CD40–FAF1 interaction in vitro and to determine which domain of CD40 was requisite for this, we investigated whether a series GST-CD40 fusions including wild-type CD40, CD40mT6 (which does not bind any of TRAF6, TRAF2 or TRAF3) mutants were expressed and purified from E.coli BL21 bacterial cells for GST pull-down assays (Figure 2a). In addition, a GST-LMP1 fusion protein was used as a negative control as an LMP1 protein does not possess a TRAF6-binding domain; instead, TRAF6 is recruited to LMP1 indirectly via TRADD molecules in the LMP1-induced signalling complex.11 An overexpressed FAF1 protein from the pJG4-5/FAF1-HA.tag construct in yeast cells was specifically detected using an anti-HA specific antibody with GST-CD40wt and A mutant but not with the CD40mT6 or CD40AmT6 or the LMP1 control, indicating the requirement of the TRAF6-binding domain of CD40 for its interaction with FAF1 (Figure 2b).

To determine which domain of FAF1 mediates its interaction with CD40, full-length FAF1 and truncated N-terminal domain, which contains the Fas-interacting domain (FID) required for FAF1–Fas interaction, (FAF1mt; 1-305aa) were cloned as HA-tagged fusions in pMCV/HA vectors (Figure 2c). Expression of full-length FAF1 and FAF1mt in HEK293 cells was confirmed by immunoblotting analysis using an anti-HA specific antibody (Figure 2d). FAF1wt and FAF1mt were transiently co-expressed with CD40 in HEK293 cells, and lysates were subjected to immunoprecipitation (IP) using a monoclonal anti-CD40 antibody. Both full-length FAF1 and FAF1mt co-immunoprecipitated specifically with CD40, but not with the empty pcDNA3.1 vector control, indicating that the FAF1 N-terminal domain (1–305 aa) is sufficient for CD40–FAF1 interaction (Figure 2e).

Endogenous interaction of FAF1 with CD40 in CD40-expressing carcinoma cells was also demonstrated by co-immunoprecipitation in EJ cells, confirming the physiological relevance of this interaction (Figure 3).

CD40 ligation induces FAF1 in an NFκB-dependent manner. We next sought to investigate the functional significance of CD40–FAF1 interaction. To examine the effect of CD40 ligation on FAF1 expression, CD40-positive carcinomas (EJ, AGS, Hela cells stably expressing CD40) and CD40-negative Hela cells (Figure 4a) were each treated with recombinant soluble CD40L (1 µg/ml) for 20 min, 2h, 4 h and 6 h or left untreated as a negative control. Cells were collected for protein lysate preparation and total RNA...
FAF1 protein expression was upregulated following CD40 ligation in CD40-positive carcinomas but not in the CD40-negative Hela control (Figure 4b). Next RT-PCR was performed to quantify the level of FAF1 mRNA expression. FAF1 mRNA was upregulated following CD40 ligation in CD40-positive cells but not in CD40-negative cells in a time-dependent manner, confirming that FAF1 upregulation was due to increased transcription rather than protein stabilisation (Figure 4c).

As CD40 ligation activates the transcription factor, NFκB, we investigated whether CD40-induced FAF1 expression is regulated by NFκB. CD40-positive EJ cells and AGS cells were treated with rsCD40L (1 μg/ml) in the presence or absence of the NFκB inhibitor, SC-514 (30 μM). FAF1 upregulation was suppressed in cells pretreated with the
FAF1 inhibits CD40-induced NF\(_k\)B activation. FAF1 has been reported to regulate NF\(_k\)B when induced by a variety of stimuli including TNF-\(\alpha\), IL-1\(\beta\) and LPS in a HEK293 cell transfection system.\(^\text{12}\) To test the effect of FAF1 on CD40-induced NF\(_k\)B activation, HEK293 cells transfected with the luciferase reporter plasmids pNF\(_k\)B-Luc firefly reporter (Stratagene, La Jolla, CA, USA), the pRL-TK renilla reporter (Promega, Madison, WI, USA) and the pCDNA3.1/CD40wt construct were co-transfected with either GFP-expressing pEGFPC1 vector or pEGFPC1/FAF1 construct. CD40-induced NF\(_k\)B activation was significantly reduced when FAF1 was co-expressed with CD40 in an FAF1 concentration-dependent manner (Figure 5a). To confirm that this effect was not due to FAF1 overexpression negatively affecting the concomitant expression of CD40, the level of CD40 expression in the presence or absence of FAF1 was examined by western blotting using anti-CD40 and GFP specific antibodies for detection of CD40 and GFP-FAF1 fusions. FAF1 expression did not alter the level of CD40 expression (Figure 5b).

To examine the effect of FAF1 downregulation on CD40-induced NF\(_k\)B activity, CD40-positive EJ cells and AGS cells were transfected with FAF1 siRNA (SC-37520) or scrambled siRNA as a control (SC-37007) for 48 h then treated with rsCD40L (1 \(\mu\)g/ml) for 20 min, 2 h and 4 h or left untreated as a negative control. Cells were then lysed in situ and the levels of FAF1, total I\(_k\)B\(_\alpha\), phospho-I\(_k\)B\(_\alpha\) were analysed by western blotting. FAF1 knockdown resulted in lower I\(_k\)B\(_\alpha\) protein levels and higher levels of phospho-I\(_k\)B\(_\alpha\), indicating that FAF1 downregulation allowed a more robust and prolonged activation of NF\(_k\)B and further indicating its regulatory role in CD40-induced NF\(_k\)B activation (Figures 5c and d).

Inhibition of CD40-induced NF\(_k\)B by FAF1 requires FAF1–CD40 interaction. FAF1 has previously been reported to regulate TNF\(_\alpha\)-induced NF\(_k\)B via direct interaction with RelA, IKK\(\beta\) or CK2, and these require the active ubiquitin-like C-terminal domain of the protein. However, as we have shown here that FAF1 interacts with CD40 and that this interaction requires the TRAF6-binding domain of CD40 and the N-terminal FID domain of FAF1, we postulated that FAF1 regulation of CD40-induced NF\(_k\)B activation may be via an alternative mechanism requiring this interaction, perhaps through competition with TRAF6 for occupancy of this binding site on the CD40 receptor. If this were the case, then it would be anticipated that the CD40-binding FID domain of FAF1 would be sufficient to inhibit CD40-induced NF\(_k\)B even in the absence of the active C-terminal domain of FAF1. This was investigated by examining the effect of truncated FAF1 (FAF1mt: 1–305 aa) compared with full-length FAF1 on CD40-induced NF\(_k\)B activation. HEK293 cells transfected with NF\(_k\)B reporters as above were co-transfected with CD40 and either wt or truncated mt FAF1 (or the relevant empty vector controls) as described in Figure 5a.

Similar to wild-type full-length FAF1, the truncated mutant FAF1 retained the capacity to inhibit CD40-induced NF\(_k\)B activation (Figure 6a).

To further confirm that the mechanism of this inhibition is dependent on direct FAF1–CD40 interaction, we investigated the effect of wt and mt FAF1 on NF\(_k\)B activated by a CD40-independent stimulus, TNF\(_\alpha\). Thus, HEK293 cells transiently transfected with the reporter plasmids were again co-transfected with either wt or mt FAF1 plasmids before treatment with TNF\(_\alpha\) (30 nm). Although expression of FAF1mt resulted in modest inhibition of TNF\(_\alpha\)-induced NF\(_k\)B activation, inhibition was more profound with full-length FAF1, suggesting that, unlike CD40, FAF1-mediated inhibition of TNF-induced NF\(_k\)B activation requires the full-length protein with its C-terminal ubiquitin-related functions (Figure 6b).

FAF1 regulates TRAF6-mediated CD40 signalling through competition for CD40 receptor binding. Activation of NF\(_k\)B by CD40 is, to a large extent, dependent upon TRAF6 binding to the CD40 receptor upon its ligation. We have shown above that FAF1 can regulate CD40-induced NF\(_k\)B activation and that this requires interaction of FAF1 with the CD40 receptor. Furthermore, we have shown that FAF1 interaction with CD40 is via the TRAF6-binding domain. Thus, we hypothesise that
FAF1-mediated regulation of NFκB is through competition with TRAF6 for CD40 binding.

To investigate this, HEK293 cells were co-transfected with permutations of plasmids expressing CD40, TRAF6, HA-tagged FAF1 or control plasmids as indicated in Figure 7 and then subjected to co-immunoblotting using specific antibodies against CD40 and β-actin. As expected, co-transfection with CD40 and HA-FAF1 resulted in co-immunoprecipitation of FAF1 with CD40 (Figure 7, lane 5). However, the additional transfection of TRAF6 resulted in a significant reduction in FAF1 co-IP with CD40 (Figure 7, lane 7). Blotting of total cell lysates indicated that this reduction was not due to an effect of TRAF6 transfection on the level of HA-FAF1 expression as cells transfected with CD40, HA-FAF1 and TRAF6 satisfactorily expressed all three proteins (Figure 7, lower panel). As TRAF6 and FAF1 do not directly interact with each other, these data suggest that FAF1 and TRAF6 are competing for the TRAF6-binding site of CD40.

Discussion

Although the interaction between CD40 and members of the TRAF family is well characterised, this is the first study to show an interaction between CD40 and Fas-associated factor 1 (FAF1). FAF1 was first identified as a partner of the Fas receptor using yeast two-hybrid analysis and has recently been reported as a component of the death-inducing signalling complex (DISC) in Fas-mediated apoptosis. Although structurally FAF1 does not contain any typical death motifs such as a death domain (DD), death effector domain (DED) or caspase recruitment domain, FAF1 overexpression can initiate apoptosis in the absence of any extrinsic death signals. FAF1 is a 74-kDa protein with an N-terminal domain that mediates its interaction with Fas, the Fas-interacting domain (FID), and a functional ubiquitin-like C-terminal domain that is required for its pro-apoptotic activity. FAF1 is also involved in the ubiquitination pathway and interacts with ubiquitin and valosin-containing protein, a multiubiquitin chain-targeting factor, stabilising the protein, which may activate survival pathways including Akt and NFκB. In addition, FAF1 inhibits the chaperone activities of the heat-shock proteins Hsc70 and Hsp70.

Here we report for the first time the finding that FAF1 is also a novel interactor with the CD40 receptor. We further demonstrate that the CD40–FAF1 interaction requires the TRAF6-binding domain in CD40 and the FID of FAF1, as CD40 mutants lacking the TRAF6-binding domain failed to
bind to FAF1, although the N-terminal domain of FAF1 (FAF1mt; 1-305aa) was sufficient to bind to CD40 in the co-immunoprecipitation analysis.

Although in the yeast two-hybrid experiments CD40 could not pull down full-length FAF1, this may be attributable to the high proteolytic activity associated with protein purification in...
then suppresses CD40-induced NF-κB, we postulate a regulatory role for FAF1 in CD40-induced NF-κB signalling via a negative feedback loop. This is further supported by the kinetics of NF-κB and FAF1 activation in response to CD40 ligation with a rapid, yet transient induction of NF-κB followed temporally by increased FAF1 expression and then rapid downregulation of NF-κB.

FAF1 is reported to regulate TNF-induced NF-κB activity via direct interaction with RelA, preventing its translocation to the nucleus or through interaction with IKKβ to suppress IKK activity or by binding to and blocking the protein kinase CK2.15,20–22 Functional CK2 is a key NF-κB regulator that can phosphorylates IkB and activate the IKKα kinase, leading to NF-κB activation.23–25 However, here we report a novel mechanism by which FAF1 regulates NF-κB induced by CD40 ligation. We have demonstrated for the first time that FAF1 interacts directly with CD40 via the TRAF6-binding domain of the receptor. As TRAF6 binding in response to CD40 ligation is, at least in part, responsible for CD40-mediated NF-κB activation, we propose that FAF1 regulates NF-κB in the context of CD40 signalling through competition with TRAF6 for its CD40-binding domain (Figure 7). Thus, CD40 ligation recruits TRAF6 to the receptor, which, in turn, stimulates NF-κB activation. Among other things, this results in transcriptional activation of the FAF1 gene and the increased FAF1 protein then competes with, and displaces, TRAF6 from the CD40 receptor, thus terminating NF-κB activation via a negative feedback loop (Figure 8). This is supported by our observation that a truncated FAF1, lacking the functional C-terminal domain but retaining the capacity to bind to CD40, is still able to inhibit CD40-induced NF-κB activation. Indeed, NF-κB inhibition was more pronounced with the mutant compared with wtFAF1 perhaps due to the stoichiometry of the shorter mutant protein allowing it to access the TRAF6-binding site of the CD40 receptor more readily (Figure 6a).

As well as having an important homeostatic role in regulating CD40 signalling, it is likely that aberrant FAF1 function has a pathological role in cancer. For example, it has been reported that FAF1 function is downregulated in mantle cell lymphoma,26 gastric cancer27 and mesothelioma.28 Thus, loss of regulatory function of FAF1 may permit constitutive NF-κB signalling, which then contributes to the malignant phenotype. Perturbation of FAF1 function may therefore serve as a predictive biomarker for sensitivity to therapeutic inhibition of NF-κB-dependent cancers. Further studies to characterise loss of FAF1 in solid tumours, particularly those associated with CD40 expression and their potential sensitivity to NF-κB inhibition, are warranted and are currently underway in our laboratory.

Materials and Methods

Maintenance of cell lines. Bladder carcinoma EJ cells, gastric carcinoma AGS cells, cervical carcinoma HeLa cells, Hela cells stably expressing wild-type CD40 and embryonic kidney (HEK) 293 cells were maintained in either RPMI 1640 or DMEM supplemented with 2 mM glutamine, 10% FCS.

Plasmids. A cDNA encoding wild-type CD40 cytosolic tail (216–278 aa) was amplified by PCR (Table 1) from the pCDNA3.1/CD40 construct and cloned into the LexA-based pEG202 yeast two-hybrid plasmid between EcoRI and XhoI restriction sites. FAF1 wild-type and its FID-containing mutant (1–305 aa) were amplified by PCR and engineered with a XhoI-EcoRI artificial sites and cloned as
FAF1 is a novel CD40 interactor
T Elmewall et al

Figure 8 Proposed mechanism of FAF1 regulation of CD40 ligand-induced NFκB activity. In the absence of CD40 ligand, the conformation of the CD40 receptor favours FAF1 binding. In this conformation, TRAF6 is not bound to the receptor and is therefore degraded resulting in low NFκB activity. In the early stage of CD40 ligation, receptor trimerisation promotes recruitment of TRAF6. This results in NFκB induction, which, in turn, upregulates FAF1 expression. Higher FAF1 protein levels result in NFκB inhibition by direct inhibition of the assembly of the IKK complex and, indirectly, by competing with the CD40-TRAF6 binding through the TRAF6-binding domain.

GFP fusions into the pEGFC1 vector (Clontech, Mountain View, CA, USA). To clone the FAF1 wild-type and its FID mutant as HA-tagged fusions, they were released from the pEGFC1 vector by XhoI-KpnI restriction and cloned into a home-modified pMCV/HA expression vector.

Yeast two-hybrid screening. A LexA-based yeast two-hybrid screen was performed as described previously by Golemis et al.39 In brief, the Hela cDNA library, cloned into the pG4-5 vector, was used for screen for CD40 cytoplasmic domain interacting proteins. The cDNAs were expressed as fusions to a nuclear localisation sequence, transcriptional activation domain (the acid blob B42AD) and a haemagglutinin (HA) epitope under the control of the GAL1 promoter.39 The LexA DNA-binding domain fusion in the pEG202 vector was the screen ‘bait’. To construct the pEG202/CD40 plasmid, the CD40 cytoplasmic domain (646–834 bp) coding sequence was PCR amplified from the pcDNA3.1/CD40 construct using BglII-XhoI primers (Table 1), cloned into the TOPO2.1 vector (Invitrogen, Carlsbad, CA, USA) and subcloned into pEG202 via the EcoR1-XhoI sites, expressing a LexA-CD40 fusion under the control of the alcohol dehydrogenase 1 (ADH1) promoter. The pEG202/CD40 construct was transformed into the yeast reporter Saccharomyces cerevisiae strain EG48 (Matα,ura3-52 his3-13 LexA-operator) in a lithium acetate-mediated transformation method40 and tested for the inability to self-activate by growing on glucose/leucine (Glu/CM-H,W,L) and replica-plated on Glu/CM lacking histidine, tryptophan and leucine (Glu/CM-H,W,L) liquid medium. For the co-immunoprecipitation studies, 293 cells co-transfected with 2μg empty pcDNA and pMCV/HA-FAF1wt or empty pcDNA3.1 and pMCV/HA-FAF1mt mutant or pcDNA/CD40 and pMCV/HA-FAF1wt, or pcDNA3.1/CD40 and pMCV/HA-FAF1mt mutant were lysed in situ with co-immunoprecipitation lysis buffer (1% Brij-98/PBS, 1 mM MgCl2, 0.5 mM CaCl2, 150 mM NaCl, 20 mM Hepes pH 7.4, 1 mM Na3VO4, 50 mM NaF, 5 μg/ml leupeptin, 1 μg/ml aprotonin, and 1 μg/ml pepstatin), allowed to lyse on ice for 20 min and centrifuged for 5 min at 15 000 r.p.m. at 4°C. One milligram of total protein/ml co-immunoprecipitation lysis buffer was precleared for 1 h at 4°C with 20 μl Protein G sepharose beads (Amersham) (1:1 slurry, prewashed in co-immunoprecipitation lysis buffer). CD40 immunocomplexes were then prepared by incubating the pre-cleared lysate with 4 μg mouse monoclonal anti-CD40 antibody (MABTECH) overnight at 4°C then precipitated by incubating for 2 h at 4°C with 20 μl protein G-Sepharose beads washed three times with co-immunoprecipitation lysis buffer. The CD40-sepharose bead complexes were subjected to slow-spin centrifugation (3000 r.p.m., 5 min at 4°C) and then washed three times with 1 ml co-immunoprecipitation lysis buffer using slow-spin centrifugation to pellet the beads. Beads were drained with a Hamilton glass syringe and resuspended in 35 μl 2× concentrated GSB. Samples were denatured by boiling for 5 min and examined by western blotting.

RNA extraction and RT-PCR. Total RNA was extracted using the RNAzol reagent (Biogenosis Ltd, Poole, UK), and cDNA synthesis was performed using the RETROscript RT enzyme (Ambion Europe, Huntingdon, UK) according to the manufacturer’s instructions. RT-PCR was performed using PLATINUM Tag DNA polymerase (Invitrogen) utilizing the human FAF1-specific primers: FAF1: forward 5′-GCCACCATTAATGGGAGG-3′ and reverse 5′-CAGATCCAAAGCCGAGGCT-3′. The amount of cDNA template used for the RT-PCR was adjusted on the basis of amplification with primers specific for human GAPDH: forward 5′-CTCTCAAACTACAGTGGGGC-3′ and reverse 5′-ACCAACGAGTCCTCACTGGTGA-3′.

RNA interference studies. Small interfering RNA (siRNA) directed to FAF1 (SC-37520) and a control siRNA-A (SC-37007), which does not lead to specific degradation of any known cellular mRNA, were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Cells were transfected with 50 μM of either siRNA according to the manufacturer’s instructions.

Reporter gene assay. HEK293 cells growing in 48-well plates were transfected with pNFκB-Luc firefly reporter (Strategene), pRL-TK renilla reporter (Promega) and the indicated expression plasmids. After 24h, cell lysates were prepared and the firefly and renilla luciferase activities were measured using the dual-luciferase reporter assay system (Promega). The relative luciferase activity (RLA) was calculated as follows: RLA = firefly luciferase activity/renilla luciferase activity.
Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements
This work was supported by funding from a Cancer Research UK Clinician Scientist Fellowship (DHP) and from the Northwest Cancer Research Fund. The Helix cDNA library was the kind gift of Dr Antonio M Makris, Department of Natural Products and Biotechnology, Mediterranean Agronomic Institute of Chania, PO Box 85, Chania 73100, Greece.

Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution-NoCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.