Formin-like2 regulates Rho/ROCK pathway to promote actin assembly and cell invasion of colorectal cancer

Yuanfeng Zeng,1,2,5 Huijun Xie,1,3,5 Yudan Qiao,1,3 Jianmei Wang,1,3 Xiling Zhu,1,4 Guoyang He,1,3 Yuling Li,1,3 Xiaoli Ren,1,3 Feifei Wang,1,3 Li Liang1,3 and Yanqing Ding1,3

1Department of Pathology, Southern Medical University, Guangzhou; 2Department of Pathology, the People’s Hospital, Nanchang; 3Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou; 4Department of Oncology, General Hospital of Armed Police Forces, Beijing, China

Key words
Colorectal cancer, FMNL2, invasion, LARG, Rho/ROCK signaling

Correspondence
Li Liang, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
Tel: +86 2062 787274; Fax: +86 2061 642148;
E-mail: redsnow007@hotmail.com
and
Yanqing Ding, Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong province, People’s Republic of China.
Tel/Fax: +86 2061 642148;
E-mail: dyq@fimmu.com

Funding Information
This work was supported by the National Basic Research Program of China (973 program, 2015CB554002), the Project of the National Natural Science Foundation of China supported by the NSFC-Guangdong Joint Fund (U1201226), the National Natural Science Foundation of China (81472313, 81071735, 81272759, 81172382), the Guangdong Provincial Natural Science Foundation of China (S201301001454) and the Guangzhou Science & Technology Plan Project (201300000056).

5These authors contributed equally to this study.

Received March 20, 2015; Revised July 16, 2015; Accepted August 2, 2015
Cancer Sci 106 (2015) 1385–1393
doi: 10.1111/cas.12768

The movement of cancer cells into tissues surrounding the tumor and vasculature is the first step in the spread of metastatic cancers. The acquisition of enhanced motility of cancer cells is necessary for cancer invasion and metastasis by remodeling of actin cytoskeleton.(1) A better understanding of the mechanisms of cytoskeletal regulation may provide novel therapeutic strategies that will block the metastatic progression, reduce the dissemination of cancer cells and increase the survival rates of patients.

Diaphanous-related formins (DRF) are Rho-GTPase binding proteins that possess conserved functions in actin cytoskeleton dynamics exerted through their formin homology (FH)2 domains. (2) DRF are not only involved in essential cellular processes such as cytokinesis, cell movement and polarity, but frequently deregulated during pathological situations like tumor cell transformation and metastasis.(3,4) Some DRF, such as mDia1, have been reported to be critically involved in cancer cell invasion. (5) The DRF contain an N-terminal Rho GTPase binding domain (GBD) which, upon binding to a Rho family GTPase, alleviates autoinhibition of inactive DRF. (6) Rho binding to the GBD results in the dissociation of bound N-terminal diaphanous inhibitory domain (DID), and subsequent CRC cell invasion. DRF could activate RhoA/ROCK, actin assembly and CRC cell invasion. Moreover, DRF promoted the formation of filopodia and stress fiber, and activated the SRF transcription in a Rho-dependent manner. Also demonstrated that DRF was necessary for LPA-induced invasion, RhoA/ROCK activation, actin assembly and SRF activation. DRF was an essential component of LPA signal transduction toward RhoA by directly interacting with LARG. LARG silenced inhibited RhoA/ROCK pathway and CRC cell invasion. Collectively, these data indicate that DRF, acting as upstream of RhoA by interacting with LARG, can promote actin assembly and CRC cell invasion through a Rho/ROCK-dependent mechanism.
actin filament polymerization.\(^{(7,8)}\) In addition to being regarded as downstream effectors of Rho GTPase signaling, DRF also act as upstream modulators to either potentiate or terminate Rho GTPase signaling.\(^{(9)}\) mDia1 and DAAM1 are not only treated with 10\(^{-4}\) M Y27632 (Sigma) was added to the culture media at 100 V for 1.5 h. Membranes were blocked overnight. Anti-LARG (Abcam, USA), anti-p115Rho-GEF (Abcam, UK), anti-FMNL2 monoclonal antibody (Abnova, Taiwan), anti-RhoA, anti-RhoB and anti-Cdc42. SDS-PAGE was used for pure protein according to the manufacturer’s instructions. Purified GST fusion proteins were then incubated with equal amounts of FLAG-MFN2 fusion proteins for 2 h at 4°C with constant shaking. Glutathione-Sepharose 4B beads were washed with ice-cold PBS (pH 7.4) three times. Bound proteins were eluted by elution buffer (50 mM Tris-Cl, 10 mM reduced glutathione, 500 mM NaCl, 10% glycerol, 1% Triton X-100). The eluted proteins were subjected to western blot identification. See, also, the Materials and Methods in Supplementary Data S1.

Materials and Methods

Cell lines and agents. FMNL2 expressing HT29 and SW480 cell lines, FMNL2 depleting SW620 and SW480 cell lines were previously established as described.\(^{(23)}\) All cell lines were cultured in DMEM (GIBCO, Gaithersburg, MD, USA) with 10% FBS in a humidified 5% CO\(_2\) atmosphere at 37°C. For inhibitor treatment, 0.5 \(\mu M\) C3 transferase (Sigma, Poole, UK) or 10 \(\mu M\) Y27632 (Sigma) was added to the cultured cells for 2 days. For LPA stimulation, the cells were treated with 10 \(\mu M\) LPA (Sigma) for 5 min and cell culture was then terminated.

Construction of plasmids and transfection. For LARG knockdown, two different siRNA duplexes of LARG were designed: siRNA1 (sense, 5'-AAG AAA CTC GTC GCA TCT TCC-3') and siRNA2 (sense, 5'-AAG GAA GAG AAG GTT AAT-3'). Two pairs of double-stranded DNA were cloned into the plasmid vector Pgenesil-1, containing EGFP gene for convenient detection (Genesil Biotechnology, Shanghai, China). To obtain RhoAV14, an active mutant construct of RhoA, the wide-type coding region of RhoA was amplified by PCR and inserted into the vector. A mutant construct was generated using the KOD-Plus-Mutagenesis Kit (TOYOBO, Japan). The primers were selected as follows: 5'-GAT GTA GCC TGT GGA AAG AGA TGCT-3' or 5'-ACC AAC AAT CAC CAG TTT CTG CCG-3'. DNA was purified with a Mini Plasmid Purification Kit (Qigem, Japan) and digested with an appropriate restriction enzyme. Fragments were electrophoresed on 1% agarose to verify the insertion of sequences. Approximately 1 \(\times 10^5\) cells/well were plated in six-well plates in medium containing 10% FBS to grow overnight to 90% confluence. The cells were then transfected with 3 \(\mu g\) of plasmids using Lipofectamine2000 according to the instructions (Invitrogen, USA). The plate was incubated for 48 h until it was ready for further assay.

Rho family GTPase activity assay. Rho-pull-down assay was performed using a Rho activation assay kit (CST, USA). Briefly, FMNL2-expressing cells or FMNL2-depleting cells were allowed to grow to 80% confluence. Cells were lysed for 2 min in 1 \(\times\) MLB lysis buffer. Equal volumes of lysates were incubated with glutathione-agarose beads containing 20–30 \(\mu g\) of glutathione-S-transferase GST, USA)-Rhotekin (for RhoA, RhoB and RhoD) or GST-C21-activated kinase (for Rac1 and Cdc42) fusion proteins at 4°C for 30–60 min, and then pelleted at 16,128 \(g\) for 10 s. Western blot of the total amount of Rho in cell lysates was performed for the comparison of Rho activity (level of GP-bound Rho) in the same samples.

GST pull-down assay. Gene segment LARG was amplified by PCR and then integrated to expression plasmid pGEX-4T-1. The recombinant plasmid was transformed into colibacillus BL21 (DE3), and induced for expression by IPTG. SDS-PAGE was used for detection and analysis. Glutathione Sepharose4B (GE Healthcare, Little Chalfont, UK) affinity chromatography was applied for purifying fusion protein according to the manufacturer’s instructions. Purified GST fusion proteins were then incubated with equal amounts of FLAG-MFN2-CT (transfected HEK293 cell extracts) for 2 h at 4°C with constant shaking. Glutathione-Sepharose 4B beads were washed with ice-cold PBS (pH 7.4) three times. Bound proteins were eluted by elution buffer (50 Mm Tris-CI, 10 mM reduced glutathione, pH 8.0); eluted proteins were subjected to western blot identification.

See, also, the Materials and Methods in Supplementary Data S1.

Results

Formin-like2 activates RhoA, RhoC and Cdc42, but has no effect on RhoB and Rac1. Diaphanous-related formins associate...
directly with small Rho family GTPases and, in recent years, much progress has been made in demonstrating how DRF act as both upstream modulators and downstream effectors of Rho GTPase signaling. Rho family GTPases, including RhoA, RhoB, RhoC, Rac and Cdc42, are key regulators of actin cytoskeletal dynamics associated with cell motility and invasion, and their expression and activation generally increase with tumor progression. Recent evidence shows that FMNL2 promotes CRC cell invasion and metastasis, and acts as downstream effectors of RhoC and Cdc42. Thus, we hypothesized that FMNL2 might also promote invasion in part by regulating the activities of Rho family GTPases. To address this possibility, we evaluated the levels of active GTP-bound endogenous RhoA, RhoB, RhoC, Rac1 or Cdc42 in

Fig. 1. Formin-like2 (FMNL2) regulates Rho/ROCK pathway and requires ROCK to promote cell invasion. (a) Expression of FMNL2 in FMNL2-expressing and FMNL2-silencing cells by western blot. (b) The levels of active GTP-bound RhoA, RhoB, RhoC, Rac1 and Cdc42 and their total proteins in FMNL2-expressing and FMNL2-depleting cells by western blot. (c) Expressions of Cofilin, LIMK, MLC and their phosphorylation levels in FMNL2-expressing and FMNL2-depleting cells by western blot. (d) The levels of RhoA-GTP, p-Cofilin, p-LIMK, p-MLC in FMNL2-expressing cells treated with C3 transferase. (e) The levels of RhoA-GTP, p-Cofilin, p-LIMK, p-MLC in FMNL2-expressing cells treated with Y27632. GAPDH was shown as a control.
FMNL2 expressing HT29 and SW480 cells and FMNL2 depleting SW620 cells using Rho GTPase activity assays. Western blot analysis validated the successful transfection of FMNL2 in CRC cells (Fig. 1a). Only active RhoA-GTP, RhoC-GTP, Cdc42-GTP were significantly increased in FMNL2 expressing HT29 and SW480 cells, with no changes of total RhoA, RhoC and Cdc42 protein amounts (Fig. 1b), while in FMNL2 depleting SW620 cells, the active levels of RhoA-GTP, RhoC-GTP, Cdc42-GTP were decreased (Fig. 1b). These findings demonstrate that FMNL2 can activate RhoA, RhoC and Cdc42 in CRC cells.

Formin-like2 regulates RhoA/ROCK pathway and requires ROCK to promote cell invasion. Rock is a major effector of Rho family GTPases and can be activated by Rho. Rock phosphorylates and activates LIM kinase, which phosphorylates cofilin. Cofilin stimulates actin depolymerization and changes in cell structure, and phosphorylation of cofilin by LIM kinase represses this activity. As RhoA/ROCK signaling pathway is essential to regulate actin assembly and tumor cell invasion, we tested the possibility that FMNL2 may regulate RhoA/ROCK pathway. The western blot results showed that overexpression of FMNL2 in HT29 and SW480 cells induced the activations of p-Cofilin, p-LIMK and p-MLC, three downstream effector proteins of Rho/ROCK pathway, while silence of FMNL2 showed the opposite effects. However, there were no significant differences in the total amount of the three proteins (Fig. 1c). We then treated FMNL2 expressing cells with C3 transferase (a potent inhibitor of Rho) and Y27632 (a selective inhibitor of ROCK), respectively. The results showed that both C3 transferase and Y27632 resulted in reduced phosphorylation levels of Cofilin, LIMK and MLC in FMNL2 expressing cells. However, only C3 transferase inhibited the activation of RhoA (Fig. 1d,e).

To determine whether signaling through Rho GTPases was necessary for FMNL2-induced invasion, we evaluated the effect of C3 transferase or Y27632 on FMNL2-induced invasion in vitro. Results showed that the invasive abilities of FMNL2 expressing HT29 and SW480 cells were significantly reduced when treated with C3 transferase or Y27632. This suggests that FMNL2 induces invasion through a RhoA/ROCK-dependent mechanism.
Formin-like2 promotes actin assembly in part through Rho/ROCK pathway. As a major actin filament nucleator, DRFs produce linear actin filaments that are the hallmarks of stress fibers and filopodia. Formin-like2 has been reported to play an important role in the formations of stress-fiber and filopodia, respectively. To assess the role of FMNL2 in actin assembly, we detected F-actin contents stained by phalloidin in FMNL2 expressing and depleting cells. Results showed that FMNL2 expressing HT29 and SW480 cells had an increased F-actin content, while knockdown of FMNL2 in SW620 cells showed the reverse effect (Fig. 2a, d and Suppl. Fig. 1a–c). Moreover, ectopic FMNL2 caused an obvious increase of filopodia at the leading edge, most obviously in SW480 cells. In contrast, the presence of filopodia sharply declined with decreasing levels of FMNL2 (Suppl. Fig. 1a,b). FMNL2 also induced the formation of actin stress fibers that were thicker and more sparsely distributed in the cytoplasm of HT29 cells, while the density and thickness of stress fibers were decreased obviously when FMNL2 was knocked down (Suppl. Fig. 1a). After that, we observed the effect of inhibitors C3 transferase and Y27632 on FMNL2-induced actin assembly and found that both C3 transferase and Y27632 induced the formation of F-actin contents and filopodia (Fig. 2d and Suppl. Fig. 1c). These data reveal a novel role of FMNL2 in the actin assembly of CRC, in part through Rho/ROCK pathway.

Formin-like2 activates the serum response factor transcription factor in a Rho-dependent manner. Beyond being coupled to the regulation of cytoskeletal filaments via signaling components in the cytoplasm, formins have been shown to have functional nuclear localization signals. Formin-like2 induces actin polymerization to activate the actin/MAL/SRF transcriptional response. To determine whether FMNL2 affected SRF transcription through its influence on Rho activity, we detected the MAL/SRF transcriptional activity in FMNL2 expressing cells and FMNL2 depleting cells. The results showed that FMNL2 robustly stimulated SRF activation, while FMNL2 silence markedly inhibited SRF activation (P < 0.01; Fig. 2e). Then we knocked down SRF with shRNA in FMNL2 expressing SW480 and HT29 cells or treated those cells with C3 transferase. Both SRF knockdown and C3 transferase effectively reduced SRF activation (P < 0.01; Fig. 2f). Interestingly and in agreement with previous findings, SRF activity induced by FMNL2 was more significantly inhibited by SRF knockdown than C3 (P < 0.01; Fig. 2f), suggesting that other modulators downstream of FMNL2 might be involved in FMNL2-induced SRF activation besides Rho GTPases. These observations support such a model in which FMNL2 stimulates Rho GTPases to promote MAL/SRF activation.

To determine whether SRF activity was required for subsequent actin assembly and invasion induced by FMNL2, we evaluated the effects of SRF knockdown on FMNL2-induced actin assembly and invasion in vitro. The results showed that SRF knockdown obviously inhibited the formation of filopodia and stress fibers induced by FMNL2 (P < 0.01; Suppl. Fig. 1d–f). Moreover, the invasive abilities of HT29/FMNL2 and SW480/FMNL2 cells were significantly blocked by SRF knockdown (P < 0.01, Suppl. Fig. 1g,h). The above results strongly indicate that SRF activity is necessary for FMNL2-induced actin assembly and invasion.

Formin-like2 is necessary for LPA-induced invasion and RhoA/ROCK activation. Lysophosphatidic acid signal is known to play an important role in cell proliferation and invasion of a variety of human cancers. LPA was the first agonist identified to activate RhoA. Therefore, we assessed whether FMNL2 was involved in LPA-induced cell behaviors. We detected the invasive abilities of FMNL2 depleting cells and control cells under the treatment of LPA and found that knockdown of FMNL2 could inhibit LPA-induced invasion in CRC cells (P < 0.05, Fig. 3a,b). Because mDia1 has been reported as one part of LPA-induced RhoA activation, we also assessed the effect of mDia1 knockdown or double knockdown of FMNL2 and mDia1 on LPA-induced invasion in CRC cells. The results showed that mDia1 knockdown indeed repressed CRC cell invasion induced by LPA. The repressive activity with double knockdown of FMNL2 and mDia1 was obviously enhanced compared with that of each alone (P < 0.01, Fig. 3a,b). To confirm that the inhibitory effect of FMNL2 and mDia1 silencing in LPA-induced invasion was due to the inactivation of RhoA/Rock signaling, we then measured the activities of RhoA-GTP, p-Cofilin, p-LIMK and p-MLC in FMNL2 depleting SW620 and SW480/M5 cells induced by LPA. After treatment with LPA, RhoA-GTP activity and the phosphorylation levels of Cofilin, LIMK and MLC were obviously increased in control cells, but not in FMNL2-depleting cells (Fig. 3c). It suggests that RhoA/Rock activation induced by LPA can be suppressed by FMNL2 silence.

Formin-like2 directly interacts with LARG. Lysophosphatidic acid receptors belong to the group of G-protein-coupled receptors which can rapidly activate Rho/ROCK through G12/13 and regulate tumor cell morphology and invasion. The activation of Rho induced by LPA requires Rho-GEF activity, such as leukemia-associated Rho-GEF (LARG) and p115Rho-GEF. We tested whether FMNL2 co-localized with LARG or p115RhoGEF in SW620 cells, FMNL2 expressing SW480 and HT29 cells. Immunofluorescence analysis showed that both LARG and p115RhoGEF co-localized with FMNL2 in the cytoplasm of cancer cells (Fig. 4a). Next, Co-IP was used to assess the interaction between FMNL2 and LARG or p115RhoGEF. The GST pull-down assay also validated the direct binding of FMNL2-CT and LARG in vitro (Fig. 4e). Moreover, LPA promoted the interaction of endogenous LARG with FMNL2.
Thus, our results support that FMNL2 interacts with LARG directly. Formin-like2 promotes RhoA/Rock pathway, serum response factor activation and cell invasion dependent on LARG. Because FMNL2 can interact with LARG, we sought to examine whether FMNL2 affected the expression of LARG. We found that overexpression of FMNL2 in HT29 cells upregulated LARG at both mRNA and protein levels, while knockdown of FMNL2 in SW620 cells decreased the level of LARG (Fig. 5a,b), indicating that LARG may be a downstream effector of FMNL2 in CRC cells. LPA plays an important role in promoting cancer cell invasion(38) and LARG was required for LPA-induced RhoA activation, we next determined the involvement of LARG in FMNL2-induced cell invasion. We transfected two LARG-specific shRNA into SW620 cells and FMNL2 expressing HT29 cells (Fig. 5c) and found that LARG silence significantly reduced the invasiveness of SW620 and FMNL2 expressing HT29 cells (Fig. 5d,e). We also tested the effect of LARG on the activation of RhoA/ROCK signaling pathway and SRF transcription induced by FMNL2. LARG silence not only led to decreased RhoA-GTP activity and reduced phosphorylation levels of Cofilin, LIMK, MLC and SRF activity in SW620 cells, but also rescued FMNL2-induced RhoA/ROCK signaling and SRF activations (Fig. 5f,g). Together, these data suggest that FMNL2 promotes the activation of RhoA/ROCK pathway and CRC cell invasion dependent on LARG.

Discussion

In this study, we explored the possible signaling pathway to account for CRC invasion promoted by FMNL2. Recent studies indicate that DRF also act as modulators of the Rho GTPases to either potentiate or terminate Rho GTPase signaling.(9) The constitutively active derivative of mDia1, mDia2 and mDia3 could activate RhoA in HEK293 cells.(10) As a novel member of the DRF family, FMNL2 contributes to the invasive and metastatic processes of CRC. It acts as a downstream effector of RhoC or Cdc42 to promote cell motility.(25,26) However, whether FMNL2 regulates Rho GTPase signaling to promote these phenotypes in CRC has not yet been elucidated.

Evidence shows that Rho/ROCK signaling is essential to regulate actin assembly and promote tumor cell invasion.(10) Rho family GTPases include RhoA, RhoB, RhoC, Rac and Cdc42, which are key regulators of actin cytoskeletal dynam-
ics and play distinct roles in tumor progression. RhoA, the best-characterized Rho GTPase, contributes to cell motility by stimulating contractility and the formation of actin stress fibers. RhoC has distinct as well as overlapping functions with RhoA, and its overexpression has recently been closely linked with highly invasive and metastatic forms of many human cancers. Rac and Cdc42 also play well-established roles in cell motility. They promote actin polymerization associated with membrane-protrusive structures at the leading edge of a moving cell. ROCK mediates Rho-dependent effects on stress fibers by phosphorylating other signaling intermediates, such as LIM kinase, cofillin or myosin light chain phosphatase. In this study, we first evaluated whether FMNL2 regulated Rho/ROCK signaling pathway. Our results showed that FMNL2 promoted the activations of RhoA, RhoC and Cdc42, but not RhoB and Rac1. FMNL2 regulated Rho/ROCK pathway, and the signaling through the Rho effector ROCK was necessary for FMNL2-induced invasion.

Diaphanous-related formins are major actin filament nucleators, which can generate bundles composed of linear actin filaments, like those found in stress fibers and filopodia. Roles of DRF1 during formation of membrane protrusions by tumor cells and invasion have been recently reported. mDia1 and mDia2 are necessary for the formation of stress-fiber and filopodia, respectively. Rho GTPases also promote actin polymerization associated with membrane-protrusive structures (lamellipodia and filopodia). We examined the effect of FMNL2 on actin assembly. Results showed that FMNL2 caused an obvious increase of F-actin content. FMNL2 also promoted the formations of stress fibers in the cytoplasm of HT29 cells and filopodia at the leading edge of SW480 cells. FMNL2-induced actin assembly was dependent on Rho/ROCK pathway. In addition to regulating the actin polymerization via signaling components in the cytoplasm, DRF have the ability to activate the MAL/SRF transcriptional response. Constitutively active derivatives of mDia1 are sufficient to induce potent activation of a MAL/SRF reporter gene. Our study also validated that FMNL2 could activate the MAL/SRF transcriptional activity. Moreover, SRF activity was necessary for FMNL2-induced actin assembly and invasion. The above results provide evidence for the relevant function of FMNL2 in the actin assembly of CRC cells.

Lysophosphatidic acid was the first agonist identified to activate Rho. LPA-induced invasion has been reported to be regulated by Rho-mediated activation of actomyosin contractility in cancer cells. DRF can act upstream to regulate Rho GTPase signaling. A constitutively active derivative of mDia2 or the FH2 domain of mDia1 was sufficient to induce RhoA activation. We next tested the possibility that FMNL2 might be part of a signal transduction pathway toward Rho. We stimulated cells with LPA under conditions in which FMNL2 expression was suppressed by siRNA and found that FMNL2 silence was sufficient to suppress LPA-induced invasion, Rho/ROCK pathway, SRF activation and actin assembly, suggesting that FMNL2 was an essential component of LPA signal transduction toward Rho. LPA receptors belong to the group of G-protein-coupled receptors that activate the heterotrimeric G-proteins G12 and G13, which can bind to RGS-containing Rho-GEF. Rho-GEF activity is required by Rho

Fig. 4. Formin-like2 (FMNL2) directly interacts with LARG. (a) Immunofluorescence analysis of co-localization of FMNL2 with LARG or p115Rho-GEF in SW480/FMNL2 and HT29/FMNL2 cells. Scale bars represent 5 μm. (b) The interaction between LARG and FMNL2 in SW620 and HT29/FMNL2 cells by Co-IP. (c, d) The interaction between FMNL2 and p115RhoGEF in SW620 and HT29/FMNL2 cells by Co-IP. (e) The interaction between FMNL2 and LARG in vitro by GST pull-down assay. (f) The endogenous interaction between FMNL2 and LARG in SW620 cells under the treatment of lysophosphatidic acid (LPA) by Co-IP.
activation induced by LPA. mDia1 was found to bind specifically to the Rho-GEF LARG but not the related proteins p115RhoGEF and PDZ-RhoGEF, to induce RhoA activation. Therefore, we detected the interaction between FMNL2-CT and LARG or P115RhoGEF. The results showed that FMNL2 only interacted with LARG directly and LPA treatment enhanced the interaction between FMNL2 and LARG. Moreover, FMNL2 regulated the expression of LARG. LARG has been identified as a gene fusion rearranged in acute myeloid leukemia (AML) and is involved in cancer cell invasion. Consistently, our study proved that LARG silence reduced RhoA/ROCK activation, SRF activation and CRC cell invasion induced by FMNL2. Thus, those findings indicate that FMNL2 is required and sufficient for full LPA-induced actin assembly and cell invasion. This effect can be mediated through interaction of FMNL2 with LARG.

In summary, our study reveals an essential role for FMNL2 in the activations of Rho/ROCK pathway, SRF transcription or actin assembly, and subsequent CRC cell invasion. Most importantly, our results imply a novel signaling module by which FMNL2 can function upstream of Rho by interacting with LARG. We think that FMNL2 is an important determinant of malignant cellular behavior and is a promising target for therapeutic intervention.

Disclosure Statement

The authors have no conflict of interest to declare.
References

1. Kedrin D, van Rheenen J, Hernandez L, Condeelis J, Segall JE. Cell motility and cytoskeletal regulation in invasion and metastasis. J Mammary Gland Biol Neoplasia 2007; 12: 143–52.

2. Faxi J, Grosse R. Staying in shape with formins. Dev Cell 2006; 10: 693–706.

3. Eisenmann KM, Harris ES, Kichen SM et al. Dia-interacting protein modulates formin-mediated actin assembly at the cell cortex. Curr Biol 2007; 17: 579–91.

4. Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev 2005; 15: 87–96.

5. Carreira S, Goodall J, Denat L et al. MitF regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–39.

6. Goode BL, Eck MJ. Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 2007; 76: 593–627.

7. Lu J, Meng W, Poy F et al. Structure of the FH2 domain of Daam 1: implications for formin regulation of actin assembly. J Mol Biol 2007; 369: 1258–69.

8. Seth A, Otomo C, Rosen MK. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpba and mDia1. J Cell Biol 2006; 174: 701–13.

9. Young KG, Copeland JW. Formins in cell signaling. Biochim Biophys Acta 2010; 1803: 183–90.

10. Kitzing TM, Sahadevan AS, Brandt DT et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Dev Cell 2007; 21: 1478–83.

11. Matusek T, Djiane A, Jankovics F et al. The Drosophila formin DAAM regulates the tracheal cuticle pattern through organizing the actin cytoskeleton. Development 2006; 133: 957–66.

12. Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 2006; 16: 1515–23.

13. Watanabe N, Kato T, Fujita A, Ishizaka T, Narumiya S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1999; 1: 136–43.

14. Copeland JW, Treisman R. The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol Biol Cell 2002; 13: 4088–99.

15. Miraflés F, Posern G, Zaramytsiu D, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Curr Biol 2003; 13: 329–42.

16. Goulimi P, Kneling H, Engel U, Grosse R. LARG and mDia1 link Galpha12/13 to cell polarity and microtubule dynamics. Mol Biol Cell 2008; 19: 30–40.

17. Zhang YF, Liu L, Ding YQ. Isolation and characterization of human colorectal cancer cell subline with unique metastatic potential in the liver. Nan Fang Yi Ke Da Xue Xue Bao 2007; 27: 126–30.

18. Wang S, Zhou J, Wang XY et al. Down-regulated expression of SATB2 is associated with metastasis and poor prognosis in colorectal cancer. J Pathol 2009; 218: 23472–7.

19. Zhu XL, Liang L, Ding YQ. Overexpression of FMNL2 is closely related to metastasis of colorectal cancer. Int J Colorectal Dis 2008; 23: 1041–7.

20. Zhu XL, Liang L, Ding YQ. Expression of FMNL2 and its relation to the metastatic potential of human colorectal cancer cells. Nan Fang Yi Ke Da Xue Xue Bao 2008; 28: 1276–8.

21. Li Y, Zhu X, Zheng Y et al. FMNL2 enhances invasion of colorectal carcinoma by inducing epithelial-mesenchymal transition. Mol Cancer Res 2010; 8: 1579–90.

22. Zhu XL, Zeng YF, Guan J et al. FMNL2 is a positive regulator of cell motility and metastasis in colorectal carcinoma. J Pathol 2011; 224: 377–88.

23. Liang L, Li X, Zhang X et al. MicroRNA-137, an HMGAI target, suppresses colorectal cancer cell invasion and metastasis in mice by directly targeting FMNL2. Gastroenterology 2013; 144: 624–35.

24. Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R. Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC. Oncogene 2010; 29: 2441–8.

25. Block J, Breitschepper D, Kuhn S et al. FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr Biol 2012; 22: 1005–12.

26. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer 2002; 2: 133–42.

27. Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 2004; 301: 43–9.

28. Amano M, Fukata Y, Kaibuchi K. Regulation and functions of rho-associated kinase. Exp Cell Res 2000; 261: 44–51.

29. Schrenbeck A, Breitschepper T, Arasada R, Schleicher M, Faix J. The Diphanoenous-related forming dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 2005; 7: 619–25.

30. Pellegrin S, Mellor H. The Rho family GTPase Cdc42 induces filopodia through mDia2. Curr Biol 2005; 15: 128–33.

31. Yang C, Czech L, Gerboth S et al. Novel roles of formin mDia2 in lamelipodia and filopodia formation in motile cells. PLoS Biol 2007; 5: 317.

32. Tominga T, Sahai E, Chardin P, McCormick F, Courteige SA. Diphanoenous-related forming DIA2 regulates Rho GTPase and Src tyrosine kinase signaling. Mol Cell 2005; 15: 133–42.

33. Peng J, Wallaj BJ, Flanders A, Swiatek PJ, Alberts AS. Disruption of the Diphanoenous-related formin Drf3 genes encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr Biol 2003; 13: 534–45.

34. Chan DC, Leder P. Genetic evidence that formins function within the nucleus. J Biol Chem 2006; 281: 13327–32.

35. Stenouropoulos A, Ginetidis D, Copeland J, Treisman R. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 1999; 98: 159–69.

36. Ridley AJ, Schwartz MA, Burridge K et al. Cell migration: integrating signals from front to back. Science 2003; 302: 1704–9.

37. Szwacka K, Kla T, Mahmoud M et al. Lysoosphatidic acid induces focal adhesion assembly through Rho/Rho associated kinase pathway in human ovarian cancer cells. Gynecol Oncol 2002; 87: 252–9.

38. Van Deuwen FN, Olivo C, Grivell S et al. Rac activation by lysoosphatidic acid LPA1 receptors through the guanine nucleotide exchange factor. J Biol Chem 2003; 278: 400–6.

39. Habas R, Kato Y, He X. Wnt/βCatenin activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 2001; 107: 843–54.

40. Vega FM, Fruhwirth G, Ng T, Ridley AJ, Rho A and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 2011; 193: 655–65.

41. Hakem A, Sanchez-Sweatman O, You-Ten A et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 2005; 19: 1974–9.

42. Sarmiento C, Wang W, Dovas A et al. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J Cell Biol 2008; 180: 1245–60.

43. Imamura F, Shinkai K, Mukai M et al. Rho-Mediated protein tyrosine phosphorylation in lysoosphatidic-acid-induced tumor-cell invasion. Int J Cancer 1996; 65: 627–32.

44. Kourlas PJ, Strout MP, Becknell B et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor; evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci U S A 2000; 97: 2145–50.

Supporting Information

Additional supporting information may be found in the online version of this article:

Data S1 Supplementary Materials and Methods

Fig. S1. Formin-like2 (FMNL2)-induced actin assembly, serum response factor (SRF) activation and cell invasion are also dependent on SRF activation.