Bilateral primary spontaneous pneumothorax with multiple bleb performed by VATS and wedge resection: A rare case in Indonesian adult and review article

Nisya Hapsari, Resti Yudhawati *

Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Surabaya, Indonesia

ARTICLE INFO

Keywords: Primary spontaneous pneumothorax Multiple blebs Wedge resection VATS

ABSTRACT

Background: Bilateral primary spontaneous pneumothorax (PSP) is a rare case of lung disease.
Case presentation: A 20-year-old man with a complaint of shortness of breath is suspected of having PSP and tuberculosis. The patient underwent water seal drainage installation in both lung cavities, but showed no improvement. Multiple blebs were found after a few days. A wedge resection with VATS became an option. The patient had improved lung function after the procedure.
Discussion: The WSD installation showed lungs improvement. However, when trained for lung expansion, the lung condition became bad. After wedge resection with the help of VATS on multiple blebs, the lung had a significant improvement.
Conclusion: Wedge resection could be considered in PSP patients with multiple blebs.

1. Introduction

Primary spontaneous pneumothorax (PSP) is one of the most common lung diseases affecting adolescents and young adults [1]. The incidence of PSP is estimated at 18–24 cases/100,000 in men and 6–9.8 cases/100,000 in women [2]. It is reported that 90% of PSP cases occur with blebs or bullae [3] that indicates the need for bullectomy because there are ruptures easily and lungs fail to expand [3,4]. The most common PSP is unilateral while, bilateral PSP is reported in only about 1–2% [2,5]. We found a rare case of bilateral PSP patients with chest wall adhesions who underwent VATS (video-assisted thoracoscopic surgery) and wedge resection. Based on the findings, we are interested in reporting the case using the 2020 Surgical Case Report (SCARE) Guidelines [6].

2. Case presentation

A 20-year-old male, Javanese, with a complaint of shortness of breath. The patient experienced shortness of breath for ±2 weeks and worsened a day before being admitted to the hospital. The complaint was accompanied by coughing 1 week before hospitalization. The patient had no history of allergy and comorbid diseases (such as diabetes mellitus, hypertension, asthma, etc.). There was no history of lung disease in the family. Pulmonary function examination results obtained RR = 28 ×/min. The examination showed a decrease in vocal fremitus and hyper resonance on percussion in both lung fields. On auscultation, there was decreased vesicular base sound in both lung fields. The results of blood gas analysis showed respiratory alkalosis with moderate hypoxemia with the administration of 3 lpm nasal O2. X-ray results showed bilateral pneumothorax, with a heavier left lung (Fig. 1). Furthermore, water seal drainage (WSD) was installed in both lungs.

On the third day of treatment, the patient showed improvement in RR = 26 ×/min, Spo2 = 96% with Nasal O2 3 lpm. On the 8th day of treatment, the patient's right lung had maximal expansion. The chest tube was clamped for 1 × 24 h. On day 10, the GeneXpert was declared negative and the right lung collapsed. The clamp was reopened on the chest tube of the right lung, while the left lung had not shown improvement. On the 15th day, there was a change in lung conditions where the left lung was fully expanded and the right lung was still not fully expanded. The left lung clamp was performed on the 8th day on the right lung. On the 16th day, the left lung was still fully expanded but the right lung was still not fully expanded. The WSD in the left lung was

* Corresponding author at: R. Yudhawati, Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Jl. Mayjend Prof. Dr. Moetopo 6 – 8, Airlangga, Gubeng, Surabaya, East Java 60286, Indonesia.
E-mail addresses: nisya.hapsari@yahoo.com (N. Hapsari), resti.yudhawati2021@gmail.com (R. Yudhawati).

https://doi.org/10.1016/j.ijscr.2021.106222
Received 4 June 2021; Received in revised form 5 July 2021; Accepted 17 July 2021
Available online 20 July 2021
2210-2612/© 2021 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license
removed and still inflated (Fig. 2). At this time, the patient was diagnosed with a right secondary spontaneous pneumothorax.

On the 23rd day, the patient experienced severe shortness of breath. When the patient underwent a puncture test, his shortness of breath suddenly got severe with coughing up blood, cold sweat, and desaturation with a peripheral oxygen saturation of 85–86%. The paramedic team then installed contra ventile and mini WSD. After 2 chest tube insertions, shortness of breath did not decrease and increasing instead. Therefore, the patient was placed on a ventilator and chest tube. On the 24th day, a chest CT scan without contrast showed a right hydro pneumothorax and a left pneumothorax that had a chest tube attached with a distal tip as high as VTh level 4–5 on the right side and as high as VTh 5–6 on the left side, multiple blebs in the apical segment of the superior lobe of the lung. Right and apicoposterior segments of the left superior lobe showed no bronchopleural fistula (Fig. 3).

On the 34th day, the patient underwent Wedge Resection with VATS. Multiple bullae in the left superior lobe were found with pulmonary adhesions to the chest wall. The attachment was released and continued with wedge resection with 4 staplers via uniportal VATS. Multiple blebs were found leaking in that section. A chest X-ray was conducted after wedge resection to evaluate the procedure. On the 38th day, the results of the GeneXpert tissue were negative. The WSD was removed on the 39th day (Fig. 4).

3. Discussion

Primary spontaneous pneumothorax is often asymptomatic. However, a larger pneumothorax can cause sudden dyspnea, chest pain, increased heart rate, anxiety, and increased hypotension and tachycardia. This condition indicates that pneumothorax has an intrapleural
pressure that exceeds atmospheric pressure, causing mediastinal deviation, reducing venous return, and cardiovascular collapse [7]. According to the British Thoracic Society guidelines (2003), approximately 50% of PSP patients go to the hospital >2 days after the onset of symptoms [2].

Diagnosis of patients with PSP is conducted through an accurate medical history, detailed physical examination, and evaluation of radiological examinations. A chest X-ray taken with the patient standing
The recurrence rate of pneumothorax after aspiration can be utilized as initial management for patients with primary pneumothorax. The procedure may be considered for younger patients (<50 years old) with a secondary pneumothorax of moderate size (1–2 cm in size). Percutaneous needle aspiration results from incomplete lung expansion in 59–83% of patients with PSP and 33–67% of patients with PSS. The recurrence rate of pneumothorax after aspiration is almost the same as after chest tube insertion. Chest tube insertion is the most common surgical procedure performed in thoracic surgery. Chest tube placement is indicated for patients with symptomatic PSP, as well as symptomatic, iatrogenic, and traumatic pneumothorax. The goal of chest tube placement is an expansion of the collapsed lung [8].

Surgery is a common method for pneumothorax with persistent air leakage (5–7 days after thoracic drainage), failure of lung expansion, repeated pneumothorax (ipsilateral or contralateral), bilateral spontaneous pneumothorax, hemothorax, patients with high-risk occupation (aircraft personnel, scuba divers). The goal of surgery for pneumothorax is to remove air from the pleural space (bleb resection) and prevent recurrence (removal of the intrapleural space). Small posterior thoracotomy, transaxillary mini-thoracotomy, minimally invasive endoscopic surgery (VATS) are common surgical procedures. Bullae can be removed by different surgical procedures, including lung resection, staple excision, electrocoagulation, suture ligation. To prevent recurrence of the pneumothorax, resection is combined with several procedures to remove the inter-pleural space. These procedures can include parietal pleurectomy (partial-apical or total), parietal pleural abrasion (mechanical pleurodesis), chemical pleurodesis (application of sclerosing agents). Open thoracotomy with bullectomy and pleural abrasion or pleurectomy can effectively reduce the recurrence rate by 1%. In minimally invasive surgery, not all blebs can be detected, and the recurrence rate is 5–10% higher, but the length of hospitalization is shorter better postoperative lung air exchange, and less severe postoperative pain [8–10].

Open surgery is slightly superior or equally effective as the ‘closed’ thoracoscopy method but has higher morbidity. A thoracoscopy is recommended should there are clinical indications for invasive surgery. When performed without pleurodesis, the recurrence rate is very high up to 20%. Adequate pleurodesis is the basis for thoracoscopy, thereby preventing recurrence. All pleurodesis techniques are based on the successful induction of some form of pleural inflammatory agent. This can be achieved by mechanical abrasion, partial resection, or thoracoscopy installation of an abrasive agent (e.g. talc). There is evidence that the use of talc is safe, in both short and long-term studies and does not cause cancer, pulmonary fibrosis, impaired lung function, or impairment in subsequent thoracic surgery, and is the cheapest agent. Recurrence prevention techniques on thoracoscopy, be it ‘medical’ or ‘surgical’, usually show a recurrence rate of between 0 and 10% [2,11,12].

4. Conclusion

A 20-year-old man with a complaint of shortness of breath is suspected of having PSP and tuberculosis. Water seal drainage is installed in both lung cavities. When treated for a few days, the lung condition has an ups and downs prognosis. GeneXpert results do not support the diagnosis of tuberculosis. Bleb is found in both lung cavities, thereby wedge resection is performed with VATS. After treatment, the lung condition improved and the WSD is removed.

Consent

We have requested the patient’s consent to publish this case report for educational purposes.

Funding

None.

Ethical approval

We have conducted an ethical approval base on the Declaration of Helsinki at Ethical Committee in Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.

Guarantor

Resti Yudawati.
Research registration

Not applicable.

Provenance and peer review

Not commissioned, externally peer-reviewed.

CRediT authorship contribution statement

Nisya Hapsari: collecting data, analysis, drafts, revisions, and supervision; Resti Yudhawati: methodology, analysis, revision, and review.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Acknowledgment

We would like to thank Fis Citra Ariyanto for helping us in the editing and proofreading process.

References

[1] P. Mendogni, J. Vannucci, M. Ghisalberti, M. Anile, B. Aramini, M.T. Congedo, et al., Epidemiology and management of primary spontaneous pneumothorax: a systematic review, Interact. Cardiovasc. Thorac. Surg. 30 (3) (2020) 337–345, https://doi.org/10.1093/icvts/irz290.
[2] A. Dzeljiljii, W. Rokicki, M. Rokicki, K. Karus, New aspects in the diagnosis and treatment of primary spontaneous pneumothorax, Kardiolog'an Torakokhirurg'ia Pol. 14 (1) (2017) 27–31, https://doi.org/10.5114/ktp.2017.66926.
[3] Rob Hallifax J, Magda Laskowicz-Szkontor, Najib Rahman M, Predicting outcomes in primary spontaneous pneumothorax using air leak measurements, Thorax 74 (4) (2019) 410–412, https://doi.org/10.1136/thoraxjnl-2018-212116.
[4] S.P. Lah, Review: diagnosis and treatment of primary spontaneous pneumothorax, J Zhejiang Univ Sci B 11 (10) (2010) 735–744, https://doi.org/10.1631/jzus.B1000131.
[5] J. Kewhatraveen, P. Morris, C. Kanitsoraphan, H. La, N. Sriratanaviriyakul, Simultaneous bilateral primary spontaneous pneumothorax: a case report and a review of the literature, Case Rep. Pulmonol. 2019 (2019) 6583842, https://doi.org/10.1155/2019/6583842.
[6] R.A. Agha, T. Franchi, C. Sohrabi, G. Mathew, A. Kerwan, A. Thoma, et al., The SCARE 2020 guideline: updating consensus surgical CAse REport (SCARE) guidelines, Int. J. Surg. 84 (2020) 226–230, https://doi.org/10.1016/j.ijsu.2020.10.034.
[7] X. Wang, L. Wang, H. Wang, H. Zhang, Simultaneous bilateral video-assisted thoracoscopic surgery for the treatment of primary spontaneous pneumothorax, Cell Biochem. Biophys. 71 (3) (2015) 1703–1708, https://doi.org/10.1007/s12013-014-0393-7.
[8] P. Zarogoulidis, I. Kioumis, G. Pitsiou, K. Porpodis, S. Lampaki, A. Papaivannou, et al., Pneumothorax: from definition to diagnosis and treatment, J. Thorac. Dis. 6 (Suppl 4) (2014), S372-S6, https://doi.org/10.3978/j.issn.2072-1439.2014.09.24.
[9] S. Keplea, J.C. Dalphin, A.L. Parmentier, J.B. Pretailly, M. Gantelet, N. Bernard, et al., Primary spontaneous pneumothorax admitted in emergency unit: does first episode differ from recurrence? A cross-sectional study, Can. Respir. J. 2017 (2017), 2729548, https://doi.org/10.1155/2017/2729548.
[10] J. Plojoux, M. Froudarakis, J.P. Janssens, P.M. Soccal, J.M. Tschopp, New insights and improved strategies for the management of primary spontaneous pneumothorax, Clin. Respir. J. 13 (4) (2019) 195–201, https://doi.org/10.1111/crj.12990.
[11] M. Noppen, T. De Keukeleire, Pneumothorax, Respiration 76 (2) (2008) 121–127, https://doi.org/10.1159/000135952.
[12] G. Cardillo, O.J. Bintcliffe, F. Carleo, L. Carbone, M. Di Martino, B.C. Kahan, et al., Primary spontaneous pneumothorax: a cohort study of VATS with talc poudrage, Thorax 71 (9) (2016) 847–853, https://doi.org/10.1136/thoraxjnl-2015-207976.