Heparin-induced Thrombocytopenia in Patients with Coronavirus Disease 2019: Systematic Review and Meta-analysis

Tracking no: ADV-2021-005314R1

Noppacharn Uaprasert (Faculty of Medicine, Chulalongkorn University, Thailand) Nuanrat Tangcheewinsirikul (Faculty of Medicine, Chulalongkorn University, Thailand) Ponlapat Rojnuckarin (Faculty of Medicine, Chulalongkorn University, Thailand) Rushad Patell (Beth Israel Deaconess Medical Center, United States) Jeffrey Zwicker (Beth Israel Deaconess Medical Center, United States) Thita Chiasakul (Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red C, United States)

Abstract:
Heparin thromboprophylaxis is routinely administered during hospitalization for coronavirus disease 2019 (COVID-19). Due to the immune stimulation related to COVID-19, there is ongoing concern regarding a heightened incidence of heparin-induced thrombocytopenia (HIT). We performed a literature search using PubMed, EMBASE, Cochrane and, medRxiv database to identify studies that reported clinical and laboratory characteristics and/or the incidence of HIT in COVID-19 patients. The primary aim was to systematically review the clinical features and outcomes of COVID-19 patients with confirmed HIT. The secondary objective was to perform a meta-analysis to estimate the incidence of HIT in hospitalized COVID-19 patients. A meta-analysis of 7 studies including 5,849 patients revealed the pooled incidence of HIT in COVID-19 of 0.8% (95% confidence interval [CI], 0.2-3.2%; I² = 89%). The estimated incidences were 1.2% (95%CI, 0.3-3.9%; I² = 65%) versus 0.1% (95%CI, 0.0-0.4%; I² = 0%) in therapeutic versus prophylactic heparin subgroups, respectively. The pooled incidences of HIT were higher in critically ill COVID-19 patients (2.2%, 95%CI, 0.6-8.3%; I² = 72.5%) compared to non-critically ill patients (0.1%, 95%CI, 0.0-0.4%; I² = 0%). There were 19 cases of confirmed HIT and one with autoimmune HIT for clinical and laboratory characterization. The median time from heparin initiation to HIT diagnosis was 13.5 (interquartile range [IQR], 10.75, 16.25) days. Twelve (63%) developed thromboembolism after heparin therapy. In conclusion, the incidence of HIT in COVID-19 patients was comparable to non-COVID-19 medical patients, with higher incidences with therapeutic anticoagulation and in critically ill patients.

Conflict of interest:
COI declared - see note

COI notes: J.I.Z. reports research funding from Incyte and Quercegen; consultancy services to Sanofi, CSL, and Parexel; and honoraria from/advisory board participation with Pfizer/Bristol Myers Squibb (BMS), Portola, Daiichi, Sanofi and CSL Behring.

Preprint server: No;

Author contributions and disclosures: N.U. was involved in conceptualization, database search, screening of abstracts and full texts, data extraction and analysis, quality appraisal, and writing the original draft and revision of manuscript; N.T. was involved in conceptualization, database search, screening of abstracts and full texts, and editing of the manuscript and the revised manuscript; P.R. was involved in data analysis, appraisal and editing of the manuscript and the revised manuscript; R.P. was involved in data analysis and editing of the manuscript and the revised manuscript; J.I.Z. was involved in appraisal and editing of the manuscript and the revised manuscript; and T.C. was involved in conceptualization, adjudication, data analysis and editing of the manuscript and the revised manuscript.

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: The publication-related data can be accessed by email to the corresponding author.

Clinical trial registration information (if any):
Heparin-induced Thrombocytopenia in Patients with Coronavirus Disease 2019: Systematic Review and Meta-analysis

Noppacharn Uaprasert,¹,² Nuanrat Tangcheewinsirikul,¹,² Ponlapat Rojnuckarin,¹,² Rushad Patell,³ Jeffrey I Zwicker,³ Thita Chiasakul.¹,²

¹Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.

²Research Unit in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.

³Division of Hematology and Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA

Corresponding author: Noppacharn Uaprasert, MD
Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital Rama IV Rd, Pathumwan, Bangkok, 10330, Thailand, Email: drnoppacharn@yahoo.com

Short title: Heparin-induced thrombocytopenia in COVID-19

Type of Manuscript: Original Article

This article comprises 1) 243 words of the abstract 2) 3160 words of the text 3) 47 references 4) 4 tables, 5) 5 figures and 6) Supplementary data including 1 table and 1 figure
Key words: heparin-induced thrombocytopenia, anti-platelet factor 4/heparin antibodies, COVID-19, systematic review, meta-analysis

Abstract

Heparin thromboprophylaxis is routinely administered during hospitalization for coronavirus disease 2019 (COVID-19). Due to the immune stimulation related to COVID-19, there is ongoing concern regarding a heightened incidence of heparin-induced thrombocytopenia (HIT). We performed a literature search using PubMed, EMBASE, Cochrane and, medRxiv database to identify studies that reported clinical and laboratory characteristics and/or the incidence of HIT in COVID-19 patients. The primary aim was to systematically review the clinical features and outcomes of COVID-19 patients with confirmed HIT. The secondary objective was to perform a meta-analysis to estimate the incidence of HIT in hospitalized COVID-19 patients. A meta-analysis of 7 studies including 5,849 patients revealed the pooled incidence of HIT in COVID-19 of 0.8% (95% confidence interval [CI], 0.2-3.2%; $I^2 = 89\%$). The estimated incidences were 1.2% (95%CI, 0.3-3.9%; $I^2 = 65\%$) versus 0.1% (95%CI, 0.0-0.4%; $I^2 = 0\%$) in therapeutic versus prophylactic heparin subgroups, respectively. The pooled incidences of HIT were higher in critically ill COVID-19 patients (2.2%, 95%CI, 0.6-8.3%; $I^2 = 72.5\%$) compared to non-critically ill patients (0.1%, 95%CI, 0.0-0.4%; $I^2 = 0\%$). There were 19 cases of confirmed HIT and one with autoimmune HIT for clinical and laboratory characterization. The median time from heparin initiation to HIT diagnosis was 13.5 (interquartile range [IQR], 10.75, 16.25) days. Twelve (63%) developed thromboembolism after heparin therapy. In conclusion, the incidence of HIT
in COVID-19 patients was comparable to non-COVID-19 medical patients, with higher incidences with therapeutic anticoagulation and in critically ill patients.
Introduction

Since the first emerging cluster of pneumonia in China in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 170 million individuals and caused nearly 4 million deaths worldwide. Abnormal coagulation parameters, especially elevated D-dimer levels, were rapidly recognized as the key features of patients infected with SARS-CoV-2 and were associated with poor outcomes suggesting that hypercoagulation may play roles in the disease pathogenesis. The early report from China suggested a potential survival benefit of anticoagulation in coronavirus disease 2019 (COVID-19) patients.

Shortly after its spread to Europe, there were several cohorts that identified the high incidence of thromboembolism in hospitalized COVID-19 patients. Therefore, several international guidelines recommended anticoagulants for the management of COVID-19-associated coagulopathy and routine pharmacological thromboprophylaxis for all hospitalized COVID-19 patients without contraindications. However, a significant proportion of patients, especially in the intensive care unit (ICU), developed both arterial and venous thromboembolism despite standard-dose thromboprophylaxis. Consequently, many medical centers have implemented intermediate-dose or therapeutic-dose anticoagulants to prevent thromboembolic complications. Currently, there are several randomized controlled trials evaluating the efficacy and safety of different intensities of thromboprophylaxis in hospitalized COVID-19 patients. In a recently published INSPIRATION randomized controlled trials, intermediate-dose prophylactic anticoagulation did not provide additional benefits over standard-dose prophylaxis.
Heparin-induced thrombocytopenia (HIT) is an uncommon but serious immunologic complication from heparin leading to transient thrombocytopenia accompanied by highly prothrombotic state.20 Diagnosis of HIT, especially in critically-ill patients, is challenging since there are many alternative causes of thrombocytopenia.21,22 Non-pathologic anti-platelet 4/heparin antibodies (anti-PF4/H Abs) may also be present in this population.20 The diagnosis of HIT requires confirmatory tests that demonstrate platelet activation of anti-PF4/H Abs in the presence of heparin.

According to the guidelines,10-13 unfractionated heparin (UFH) or low molecular weight heparin (LMWH) are indicated for hospitalized COVID-19 patients. The wide use of heparin may lead to increasing incidence of HIT, complicating patient care by aggravating thrombocytopenia and intensifying thrombotic risks. Awareness and early recognition is critical for proper management (i.e., initiation of non-heparin anticoagulants and avoiding platelet transfusion).20,21

To date, the incidence, clinical characteristics and impacts of HIT on hospitalized COVID-19 patients remain largely unknown. We conducted a systematic review to characterize clinical manifestations, laboratory profiles, management and clinical outcomes of HIT and performed a meta-analysis to estimate the incidence of HIT in hospitalized COVID-19 patients.

Methods

The protocol for this review was pre-specified and registered in PROSPERO (CRD42021240788). The study was subsequently conducted following Preferred
Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The primary objective of this study was to systematically characterize clinical and laboratory presentations, diagnosis, management and clinical outcomes of HIT and HIT with thrombosis in hospitalized COVID-19 patients. The meta-analysis of the incidence of HIT, the incidence of anti-PF4/H Abs and risks associated with HIT development were planned if there were sufficient data for analysis. The pre-specified subgroup analyses including types of heparin (unfractionated heparin versus low molecular weight heparin), intensities of heparins (prophylactic versus therapeutic) and severity of patients with COVID-19 (critically ill versus non-critically ill) would be performed if there were sufficient data.

Data source, search strategy and study selection

A systematic search of electronic databases was performed using PubMed, EMBASE, Cochrane Library Database and the preprint server (medRxiv) from inception to March 8th, 2021 and was updated on June 14th, 2021 to identify studies reporting cases with confirmed HIT using platelet activation assays and/or incidence of HIT in COVID-19 patients. The following search terms were used: heparin, anticoagulant, anticoagulation, antithrombotic, thrombocytopenia, platelet, platelet factor 4, HIT, immune, coagulopathy, thrombosis, novel coronavirus 2019, COVID-19, SARS-CoV-2 and 2019-nCoV.

The inclusion criteria for eligible studies were as follows: (1) individual case reports or case series including less than 20 adult patients (age ≥ 18 years) who were hospitalized for COVID-19 and confirmed HIT using the following platelet activation assays: serotonin release assay (SRA), heparin-induced platelet activation (HIPA) test, platelet
aggregation test or flow cytometric assay; or (2) randomized controlled trials, retrospective or prospective observational studies enrolling at least 20 adult patients who were hospitalized for COVID-19 with reported incidence of HIT or sufficient data for computing the incidence of HIT. Non-original articles (such as reviews, commentaries, or guidelines) and duplicated studies were excluded. Two authors (N.U. and N.T.) independently searched the literature, screened titles and abstracts, and reviewed full texts to identify potentially eligible studies. Disagreements were resolved by consensus or a third reviewer (T.C.) when necessary. The selection result was reported according to the PRISMA flowchart.

Data extraction

Two authors (N.U. and N.T.) independently reviewed full data from individual selected studies including supplementary materials and independently extracted pre-specified data. Disagreements of extracted data were resolved by consensus or a third reviewer (T.C.) when necessary. The primary outcome was clinical and laboratory characteristics and clinical outcomes of COVID-19 patients with confirmed HIT. The secondary outcomes were the incidence of HIT, the incidence of anti-PF4/H Ab detection, and risks associated with HIT development in hospitalized COVID-19 patients.

For each study, the following data were extracted: study design, study population, number of participants, baseline characteristics of patients (age, sex, and severity), heparin administration (indications, types, intensity, and duration of heparin exposure before HIT diagnosis), initial platelet counts, nadir platelet counts, thromboembolic events after heparin initiation, clinical scoring systems, screening immunoassays for HIT, confirmatory assays for HIT, alternative non-heparin anticoagulants, bleeding
Quality Assessment

The methodological quality of included studies for meta-analysis was performed independently by two authors (N.U. and N.T.) using a validated tool for assessing studies reporting prevalence data. The tool contains 10 items assessing the external validity and internal validity of the study. For each item, a score of 0 or 1 was assigned to the answers yes or no, respectively. The summary assessment of overall risk of bias was rated according to the responses to the 10 items and included studies were classified based on the total score as low (0-3), moderate (4-6), or high risk (7-10) of bias.

Data analysis

The meta-analysis was performed using Comprehensive Meta-analysis (Version 2; Biostat, Englewood, NJ, USA). The pooled incidence of each outcome was calculated using DerSimonian and Laird method with random-effects model and were reported as the pooled incidence with 95% confidence interval (CI). Statistical heterogeneity was assessed using I² statistic, which measured the inconsistency across study results. Inter-study heterogeneity was assigned as insignificant (I² = 0-25%), low (I² = 26-50%), moderate (I² = 51-75%), and high (I² >75%). The funnel plot for evaluation of publication bias was not performed due to the low number of studies included in the meta-analysis (less than 10 studies). For descriptive statistics, normality of the data was
tested using Shapiro-Wilk test. Continuous data were presented as means (± standard deviations, SD) or medians with interquartile ranges as appropriate. All descriptive analyses were computed using SPSS version 22.0 for Window (Chicago, SPSS Inc.).

Results

The PRISMA flow diagram was shown in Figure 1. A total of 2,008 unique studies were identified by literature search and were screened by titles and abstracts. Of these, 1,986 were excluded, and 22 full texts were screened for eligibility. Eventually, 15 studies were assigned as low risk of bias, while the other 3 studies were classified as moderate risk of bias. (Supplementary data, Table S1).

Study Characteristics

The main characteristics of the 15 included studies (12 published full-texts, 1 full-preprint report and 2 abstracts) were summarized in Table 1. Across 15 studies (8,053 total patients), there were a total of 40 reported HIT patients. Of these, 19 HIT cases and one with autoimmune HIT who had diagnosis confirmed by SRA or HIPA were included for clinical and laboratory characterization. From 6 concurrent cohorts, clinical and laboratory data of 26 patients who were suspected to have HIT but had negative confirmatory tests were available for comparison.
A total of 7 studies were included for the estimation of the pooled incidence of HIT.29,32-36,40 These 7 studies collectively included a total of 5,849 patients, ranging from 86 to 2,574 patients.

Clinical and laboratory characteristics of confirmed HIT in hospitalized patients with COVID-19

From 11 studies, there were 19 confirmed HIT cases and one with autoimmune HIT, with sufficient data for characterization.26-33,37-39 Clinical and laboratory characteristics of individual cases were summarized in Table 2. Among the 19 documented cases of HIT, the median age was 62.0 (interquartile range [IQR], 51.0, 64.0) years. Males were the predominant proportion (74%). All but one patient (95%) were critically ill and were admitted to the ICU. Nine patients received UFH, 2 received LMWH and 8 received both LMWH and UFH. Of the 18 patients with available data on heparin intensity, 13 (72%) received therapeutic-intensity anticoagulation, while 5 (28%) received prophylactic anticoagulation. The median time from heparin initiation to HIT diagnosis was 13.5 (IQR, 10.75, 16.25) days. Median baseline platelet counts and median nadir platelet counts were 223 x 109/L (IQR, 160.5, 297) and 56 x 109/L (IQR, 37, 73), respectively. All but one patient had intermediate or high pre-test probability for HIT using the 4T scoring system with the median of 5.5 (IQR, 4, 6). Twelve patients (63%) developed thrombosis after heparin administration. A total 15 of 19 (79%) confirmed HIT cases demonstrated platelet recovery after heparin substitution with non-heparin anticoagulants. Of the 17 with known survival outcomes, 4 died shortly after HIT diagnosis.

Only one COVID-19 patient with autoimmune HIT was identified.39 He presented with pulmonary embolisms coexisting with severe thrombocytopenia 8 days after diagnosis.
of COVID-19 without previous heparin exposure, leading to a high suspicion of autoimmune HIT, which was confirmed by presence of functional anti-PF4/H Abs using SRA. He was successfully treated with intravenous immunoglobulin and argatroban followed by apixaban.

In 6 concurrent studies, hospitalized COVID-19 patients who were suspected to have HIT but had negative confirmatory tests were reported. Among these, 26 cases were reviewed for comparison with confirmed HIT (Table 3). Clinical and laboratory variables of patients with confirmed HIT and patients with negative HIT confirmatory tests were summarized (Table 4). The variables of both groups were closely similar.

Sixteen patients (61.5%) developed thromboembolic events after heparin therapy. Of patients with known survival outcomes, 13 of 20 (65%) patients died shortly after suspected HIT.

Incidence of heparin-induced thrombocytopenia in hospitalized patients with COVID-19

From 7 studies (N = 5,849 patients), the pooled incidence of HIT in hospitalized COVID-19 patients was 0.8% (95%CI, 0.2%, 3.2%; I² = 89%) (Figure 2). A sensitivity analysis of 4 studies (N = 3,031), in which the diagnostic criteria for HIT were specified, revealed the pooled incidence of 0.8% (95%CI, 0.1%, 6.4%; I² = 89%) (Supplementary figure S1).

A subgroup analysis according to the study’s risk of bias was performed (Figure 3). The pooled incidence of 3 small studies with moderate risk of bias, which included 268 patients mostly receiving UFH, was 4.5% (95%CI, 2.0%, 10.0%; I² = 46%). The pooled
incidence of 4 larger studies with low risk of bias (5,581 patients) was 0.2% (95%CI, 0.1%, 0.7%; \(I^2 = 43\% \)). There was a significant difference between the low risk and the moderate risk of bias (\(P < 0.001 \)).

Data on the incidence of HIT stratified by anticoagulation intensity were available in 4 studies. The pooled incidence of HIT in patients receiving prophylactic-intensity heparins was 0.1% (3 studies, \(N = 3,010 \), 95%CI, 0.0%, 0.4%; \(I^2 = 0\% \)), while the pooled incidence of HIT in patients receiving therapeutic heparins was 1.2% (4 studies, \(N = 2,033 \), 95%CI, 0.3%, 3.9%; \(I^2 = 65\% \)) (Figure 4). The pair-wise comparison revealed significant difference between prophylactic versus therapeutic heparins (\(P = 0.007 \)). We also analyzed the difference of HIT in the largest cohort including 2,574 patients receiving heparins. HIT development was higher in patients receiving therapeutic anticoagulation compared to prophylactic anticoagulation (odds ratio, 28.8, 95%CI, 3.7, 223.5, \(P = 0.001 \)).

A subgroup analysis to estimate pooled incidences of HIT in critically ill COVID-19 patients and non-critically ill COVID-19 patients was performed. A total of 3,169 patients from 5 studies were available for analysis. The pooled incidence of HIT in critically ill COVID-19 patients was 2.2% (4 studies, \(N = 508 \), 95%CI, 0.6%, 8.3%; \(I^2 = 73\% \)), while the pooled incidence of HIT in non-critically ill COVID-19 patients was 0.1% (2 studies, \(N = 2,661 \), 95%CI, 0.0%, 0.4%; \(I^2 = 0\% \)) (Figure 5). The pair-wise comparison revealed significant difference between critically ill and non-critically ill COVID-19 patients (\(P = 0.002 \)).
Although the pre-specified subgroup analysis to assess the risk for HIT between UFH and LMWH was planned, there were no sufficient data to compute the pooled incidences of HIT for UFH and LMWH.

Incidence of anti-platelet factor 4/heparin antibody detection in hospitalized patients with COVID-19

Existing data were not sufficient for estimating the pooled incidence of anti-PF4/H Abs (activating and non-activating) in all hospitalized COVID-19 patients receiving heparins, since the tests were only performed based on suspicion of HIT. In the only one study whereby anti-PF4/H Abs were screened in 172 consecutive patients (64 ICU and 108 non-ICU), the frequency of anti-PF4/H-associated polyspecific Abs (IgM, IgA and IgG; OD of > 0.5) was 33%, while the frequency of anti-PF4/H-associated monospecific IgG (OD of > 0.5) was 16%. Of the 19 cases with anti-PF4/H-associated polyspecific Abs OD of > 1.0, seven (37%) patients had thromboembolic events. However, all patients with positive anti-PF4/H Abs yielded negative HIT confirmatory tests.

Discussion

In this systematic review, we characterized 19 hospitalized COVID-19 patients with confirmed HIT using standard platelet activation assays. There were 26 patients who were suspected HIT but had negative confirmatory tests from concurrent cohorts for comparison. Some cases were assigned as HIT in their original cohorts due to strongly positive immunoassays. However, the recent study revealed that patients with COVID-19 frequently had strongly positive immunoassays without platelet
activating antibodies indicating non-pathogenic antibodies. Therefore, HIT diagnosis requires confirmatory heparin-dependent platelet activating tests despite the strongly positive immunoassays to avoid over-diagnosis and over-treatment of HIT.

Of the 19 confirmed cases of HIT, most patients were critically ill in the ICU, and males were predominant. The overrepresentation of males in COVID-19 patients with suspected HIT may be explained by the higher proportion of male patients admitted in the ICU and the higher probability to develop thrombocytopenia triggering investigation for HIT.

Half of patients were diagnosed after 14 days of heparin exposure, suggesting a delay in diagnoses of HIT in COVID-19 patients. Most of the patients with suspected HIT obtained a 4T score of ≥ 4. In addition, a similar proportion of confirmed HIT (12 of 19, 63%) and suspected HIT (16 of 26, 61.5%) cases developed thrombosis after heparin administration. Therefore, it is apparent that clinical features such as platelet counts and the presence of thrombosis cannot reliably predict the diagnosis of HIT in COVID-19 patients, and functional tests are required for the definitive diagnosis.

Almost all patients with confirmed HIT had platelet recovery shortly after switching to non-heparin anticoagulants. When the causes of thrombocytopenia are not obvious, immediate platelet response to alternative anticoagulant may be suggestive of HIT diagnosis. This observation may be helpful while waiting for a confirmatory assay, which may not be readily available for timely clinical management.

In this meta-analysis, we report the pooled incidence of HIT in hospitalized COVID-19 patients of 0.8% (95%CI, 0.2%, 3.2%) which was comparable to those reported from
large cohorts and meta-analysis of non-COVID-19 medical patients, which the incidences of HIT ranged from 0.08 to 0.94%. However, there was high heterogeneity among studies as 3 small cohorts with moderate risk of bias had very high incidence of HIT in COVID-19 patients (4.5%, 95%CI, 2%, 10%). All confirmed HIT in these 3 cohorts received therapeutic doses of UFH. In contrast, the pooled incidence of HIT from 4 larger cohorts with low risks of bias was 0.2% (95%CI, 0.1%, 0.7%) similar to non-COVID-19 patients. Therefore, prospective systematic studies are warranted to determine the incidence of HIT among different COVID-19 populations (based on disease severity, types of heparin and heparin dosing).

In critically ill patients, non-activating anti-PF4/H Abs may be present without causing HIT. In these cases, the screening immunologic assays are positive with negative confirmatory tests. In our review, there was only one study that screened anti-PF4/H Abs in consecutive hospitalized COVID-19 patients. Compared to the HIT incidence of 0.2% (95%CI, 0%, 1.1%), the frequency of patients with detected anti-PF4/H Abs was substantially higher (33%). Similarly to non-COVID-19 cases, HIT developed in less than 10% of patients with detectable anti-PF4/H Abs. Therefore, the routine screening for anti-PF4/H Abs in COVID-19 patients receiving heparin is probably not cost-efficient.

The pre-specified subgroup analysis was performed to assess the risk of heparin intensity and HIT development in COVID-19. Hospitalized COVID-19 patients who received therapeutic doses of heparins were at greater risk for HIT than those who received prophylactic doses of heparins. The recent INSPIRATION randomized controlled trial failed to demonstrate the benefits of intermediate-dose anticoagulation, compared with prophylactic-dose anticoagulation, to reduce thrombosis or mortality in
ICU patients with COVID-19.19 Notably, 7 thrombocytopenia of unspecified causes occurred only in patients assigned to the intermediate-dose group with the absolute risk difference of 2.2\% (95\%CI, 0.4\%, 3.8\%, \(P = 0.01 \)). Therefore, the risk of HIT in higher intensity anticoagulation should be considered.

The estimated incidence of HIT in critically ill COVID-19 patients was 2.2\%. This was relatively higher than those previously reported in non-COVID-19 patients (0.3-0.5\%).21,45 The hyperactivation of the immune system in COVID-19 may activate platelets to release of PF4 into circulation and stimulate anti-PF4/H Ab production.46 Severe endothelial injury, platelet hyperactivation and immune dysregulation after SARS-CoV-2 infection may involve in development of HIT in critically ill COVID-19 patients.47

There are some limitations of this study. Most of studies were case reports, small case series or retrospective cohorts, which were prone to biases due to different HIT confirmatory tests and criteria, lack of central adjudication of HIT cases and incomplete data collection. In addition, all but one cohorts did not perform systematic surveillance, which may lead to either under- or overestimation of the incidences of HIT in COVID-19 patients due to case selection, as well as significant heterogeneity among studies. Finally, the number of studies included in both qualitative and quantitative were relatively small.

\textbf{Conclusions}
In this systematic review and meta-analysis, we reported a pooled incidence of HIT in COVID-19 patients of 0.8% which was similar to those previously reported in non-COVID-19 medical patients. However, the incidence of HIT in COVID-19 patients might be increased in patients receiving therapeutic-dose heparin and in critically ill patients. The clinical and laboratory profiles between COVID-19 patients with confirmed HIT and suspected HIT with negative confirmation were similar. A large prospective cohort with systematic surveillance of HIT is required to estimate the true incidence and determine risk factors for HIT in hospitalized COVID-19 patients.

Authorship

Contribution: N.U. was involved in conceptualization, database search, screening of abstracts and full texts, data extraction and analysis, quality appraisal, and writing the original draft and revision of manuscript; N.T. was involved in conceptualization, database search, screening of abstracts and full texts, and editing of the manuscript and the revised manuscript; P.R. was involved in data analysis, appraisal and editing of the manuscript and the revised manuscript; R.P. was involved in data analysis and editing of the manuscript and the revised manuscript; J.I.Z. was involved in appraisal and editing of the manuscript and the revised manuscript; and T.C. was involved in conceptualization, adjudication, data analysis and editing of the manuscript and the revised manuscript.

Conflict-of-interest Statements:
The authors (NU, NT, PR, RP and TC) declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. J.I.Z. reports research funding from Incyte and Quercegen; consultancy services to Sanofi, CSL, and Parexel; and honoraria from/advisory board participation with Pfizer/Bristol Myers Squibb (BMS), Portola, Daiichi, Sanofi and CSL Behring.

References

1. Worldometer. COVID-19 coronavirus pandemic. 2020. https://www.worldometers.info/coronavirus/ (accessed June 18, 2021)

2. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18:844-847

3. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395:1054-1062.

4. Jin S, Jin Y, Xu B, Hong J, Yang X. Prevalence and impact of coagulation dysfunction in COVID-19 in China: A meta-analysis. Thromb Haemost. 2020;120:1524-1535.

5. Uaprasert N, Moonla C, Sosoithikul D, Rojnuckarin P, Chiasakul T. Systemic coagulopathy in hospitalized patients with coronavirus disease 2019: a systematic
6. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1994-1099.

7. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18:1995-2002.

8. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-147.

9. Longchamp A, Longchamp J, Manzocchi-Besson S, Whiting L, Haller C, Jeanneret S, et al. Venous thromboembolism in critically ill patients with COVID-19: Results of a screening study for deep vein thrombosis. Res Pract Thromb Haemost. 2020;4:842-847.

10. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18:1023-1026.

11. Spyropoulos AC, Levy JH, Ageno W, Connors JM, Hunt BJ, Iba T, et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost 2020;18:1859-1865.
12. Moores LK, Tritschler T, Brosnahan S, Carrier M, Collen JF, Doerschug K, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST Guideline and Expert Panel Report. Chest. 2020;158:1143-1163.

13. Cuker A, Tseng EK, Nieuwlaat R, Angchaisuksiri P, Blair C, Dane K, et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv 2021;5:872-888.

14. Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18:1743-1746.

15. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136:489-500.

16. Patell R, Chiasakul T, Bauer E, Zwicker JI. Pharmacologic Thromboprophylaxis and Thrombosis in Hospitalized Patients with COVID-19: A Pooled Analysis. Thromb Haemost 2021;121:76-85.

17. Sholzberg M, Tang GH, Negri E, Rahhal H, Kreuziger LB, Pompilio CE, et al. Coagulopathy of hospitalised COVID-19: A Pragmatic Randomised Controlled Trial of Therapeutic Anticoagulation versus Standard Care as a Rapid Response to the COVID-19 Pandemic (RAPID COVID COAG - RAPID Trial): A structured summary of a study protocol for a randomised controlled trial. Trials. 2021;22:202.

18. Marietta M, Vandelli P, Mighali P, Vicini R, Coluccio V, D'Amico R; COVID-19 HD Study Group. Randomised controlled trial comparing efficacy and safety of high versus
Low Molecular Weight Heparin dosages in hospitalized patients with severe COVID-19 pneumonia and coagulopathy not requiring invasive mechanical ventilation (COVID-19 HD): a structured summary of a study protocol. Trials. 2020;21:574.

19. INSPIRATION Investigators, Sadeghipour P, Talasaz AH, Rashidi F, Sharif-Kashani B, Beigmohammadi MT, Farrokhpour M, et al. Effect of intermediate-dose vs standard-dose prophylactic anticoagulation on thrombotic events, extracorporeal membrane oxygenation treatment, or mortality among patients with COVID-19 admitted to the intensive care unit: The INSPIRATION randomized clinical trial. JAMA. 2021;325:1620-1630.

20. Greinacher A. CLINICAL PRACTICE. Heparin-Induced Thrombocytopenia. N Engl J Med 2015;373:252-61.

21. East JM, Cserti-Gazdewich CM, Granton JT. Heparin-Induced Thrombocytopenia in the Critically Ill Patient. Chest. 2018;154:678-690.

22. Uaprasert N, Chanswangphuwana C, Akkwat B, Rojnuckarin P. Comparison of diagnostic performance of the heparin-induced thrombocytopenia expert probability and the 4Ts score in screening for heparin-induced thrombocytopenia. Blood Coagul Fibrinolysis. 2013;24:261-268.

23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

24. Hoy D, Brooks P, Woolf A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65:934-939.
25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring in consistency in meta-analyses. BMJ. 2003;327:557-560.

26. Riker RR, May TL, Fraser GL, Gagnon DJ, Bandara M, Zemrak WR, et al. Heparin-induced thrombocytopenia with thrombosis in COVID-19 adult respiratory distress syndrome. Res Pract Thromb Haemost. 2020;4:936-941.

27. Lingamaneni P, Gonakoti S, Moturi K, Vohra I, Zia M. J Investig Med High Impact Case Rep. Jan-Dec 2020;8:2324709620944091.

28. May JE, Siniard RC, Marques M. The challenges of diagnosing heparin-induced thrombocytopenia in patients with COVID-19. Res Pract Thromb Haemost 2020;4:1066-1067.

29. Patell R, Khan AM, Bogue T, Merrill M, Koshy A, Bindal P, et al. Heparin induced thrombocytopenia antibodies in Covid-19. Am J Hematol. 2020 Jul 13;10.1002/ajh.25935. Online ahead of print.

30. Bidar F, Hékimian G, Martin-Toutain I, Lebreton G, Combes A, Frère C. Heparin-induced thrombocytopenia in COVID-19 patients with severe acute respiratory distress syndrome requiring extracorporeal membrane oxygenation: two case reports. J Artif Organs. 2020 Aug 12. doi: 10.1007/s10047-020-01203-x. Online ahead of print.

31. Tran M, Sheth C, Bhandari R, Cameron SJ, Hornacek D. SARS-CoV-2 and pulmonary embolism: who stole the platelets? Thromb J. 2020 Sep 3;18:16. doi: 10.1186/s12959-020-00229-8.
32. Daviet F, Guervilly C, Baldesi O, Bernard-Guervilly F, Pilarczyk E, Genin A, et al. Heparin-Induced Thrombocytopenia in Severe COVID-19. Circulation. 2020;142:1875-1877.

33. Delrue M, Siguret V, Neuwirth M, Brumpt C, Voicu S, Burlacu R, et al. Contrast between Prevalence of HIT Antibodies and Confirmed HIT in Hospitalized COVID-19 Patients: A Prospective Study with Clinical Implications. Thromb Haemost. 2020 Dec 9. doi: 10.1055/a-1333-4688. Online ahead of print.

34. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46:1089-1098.

35. Ionescu F, Jaiyesimi I, Petrescu I, Lawler PR, Castillo E, Munoz-Maldonado Y, et al. Association of anticoagulation dose and survival in hospitalized COVID-19 patients: A retrospective propensity score-weighted analysis. Eur J Haematol. 2021;106:165-174.

36. Santi RM, Sciancalepore P, Olivieri G, Contino L, Ladetto M. The rationale for the use of Unfractionated Heparin (UFH) in the treatment of Thromboembolic Events (TE) in patients infected with COVID-19. Blood Transfus 2020;18(SUPPL 4):S484-S485.

37. Warrior S, Behrens E, Gezer S, Venugopal P, Jain S. Heparin-induced thrombocytopenia in patients with COVID-19. Blood Adv 2020;136 (suppl1):17-18.

38. Madala S, Krzyzak M, Dehghani S. Cureus. Is COVID-19 an Independent Risk Factor for Heparin-Induced Thrombocytopenia? Cureus. 2021;13:e13425.
39. Julian K, Bucher D, Jain R. Autoimmune heparin-induced thrombocytopenia: a rare manifestation of COVID-19. BMJ Case Rep. 2021;14:e243315.

40. The ATTACC, ACTIV-4a, and REMAP-CAP Investigators, Lawler PR, Goligher EC, Berger JS, Neal MD, McVerry BJ, Nicolau JC, et al. Therapeutic Anticoagulation in Non-Critically Ill Patients with Covid-19. medRxiv 2021.05.13.21256846; doi: https://doi.org/10.1101/2021.05.13.21256846 [Access June 14th, 2021].

41. Brodard J, Kremer Hovinga JA, Fontana P, Studt JD, Gruel Y, et al. COVID-19 patients often show high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. J Thromb Haemost. 2021;19:1294-1298.

42. Peckham H, de Gruijter NM, Raine C, Radziszewska A, Ciurtin C, Wedderburn LR, et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat Commun. 2020;11:6317.

43. Greinacher A, Warkentin TE. Risk of heparin-induced thrombocytopenia in patients receiving thromboprophylaxis. Expert Rev Hematol 2008;1:75-85.

44. Pouplard C, May MA, Regina S, Marchand M, Fusciardi J, Gruel Y. Changes in platelet count after cardiac surgery can effectively predict the development of pathogenic heparin-dependent antibodies. Br J Haematol 2005;128:837-41.

45. Selleng K, Warkentin TE, Greinacher A. Heparin-induced thrombocytopenia in intensive care patients. Crit Care Med 2007;35:1165-1176.

46. Comer SP, Cullivan S, Szklanna PB, Weiss L, Cullen S, Kelliher S, et al. COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS Biol 2021;19:e3001109.
47. Goldman M, Hermans C. Thrombotic thrombocytopenia associated with COVID-19 infection or vaccination: Possible paths to platelet factor 4 autoimmunity. PLoS Med 2021;18:e1003648.
Table 1 Characteristics of included studies

Authors	Study design	N	Study population	Pretest clinical scoring system	Immunoassay for screening HIT	Platelet activation assay for confirming HIT	Suspected HIT/confirmed HIT	Proportion of ICU or critical illness
Riker26 2020	Case report	16	Thrombocytopenia with anti-PF4 Ab among intubated COVID-19 patients with ARDS	4T score	ELISA	SRA	3/1	16 (100%)
Lingamaneni27 2020	Case report	5	COVID-19 patients with HIT suspicion	4T score	ELISA	SRA	5/1	5 (100%)
May26 2020	Case report	7	Hospitalized COVID-19 patients with positive anti-platelet factor 4 Ab	4T score	ELISA	SRA	7/1	7 (100%)
Patell28 2020	Retrospective cohort	88	patients hospitalized with Covid-19 and received intravenous UFH for ≥ 5 days	4T score	Latex immune turbidimetric assay	SRA	8/3	NR
Bidar29 2020	Case report	2	Confirmed HIT in COVID-19 patients with severe ARDS on VVECMO	NR	ELISA	HIPA	2/2	2 (100%)
Tran31 2020	Case report	1	A patient with SARS-CoV-2 pneumonitis and confirmed HIT	4T score	ELISA	HIPA	1/1	1
Daviet32 2020	Retrospective cohort	86	COVID-19 ARDS in 2 ICUs enrolled in COAG-COVID trial	4T score	Quantitative CIA; IgG specific	HIPA	NR/7	86 (100%)
Delrue33 2020	Retrospective cohort	626	All consecutive SARS-CoV-2-infected adults admitted to the ICU	4T score	PaGIA, ELISA IgG	HIPLA, SRA	10/1	184 (29.4%)
Study	Design	Population	Intervention	Outcome	Treatment	Additional Details		
-------	--------	------------	--------------	---------	-----------	--------------------		
Helms et al. 2020	Prospective cohort	150	All patients with SARS-CoV-2 ARDS admitted to the ICU	NR	NR	NR	4/0	150 (100%)
Ionescu et al. 2020	Retrospective cohort	3480 (2574 receiving LMWH or UFH)	Consecutive COVID-19 adult patients hospitalized within 8 hospitals located in Southeast Michigan	NR	NR	NR	NR/12	642 (18.4%)
Santi et al. 2020	Retrospective cohort	94	Hospitalized patients infected with COVID-19	NR	NR	NR	NR/2	NR
Warrior et al. 2020	Retrospective cohort	1265	Hospitalized COVID-19 positive patients	4T score	ELISA	SRA	8/1	NR
Madala et al. 2021	Case report	1	A patient with SARS-CoV-2 pneumonia and ischemic stroke	4T score	ELISA	SRA	1/1	1
Julian et al. 2021	Case report	1	A patient with COVID-19 positive and confirmed autoimmune HIT	N/A	ELISA	SRA	1/1	1
Lawler et al. 2021	Randomized controlled trial	2231	Non-critically ill patients hospitalized for Covid-19	4T score	ELISA	SRA	NA/0	0

Ab, antibody; HIT, heparin-induced thrombocytopenia; ICU, intensive care unit; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; NR, not reported; LMWH, low molecular weight heparin; UFH, unfractionated heparin; ELISA (or EIA): Enzyme-linked immunosorbent assay (or enzyme immunoassay);
Table 2 Clinical and laboratory characteristics of hospitalized COVID-19 patients with confirmed heparin-induced thrombocytopenia

Case	Age (years), Sex	Severity of COVID-19	Indication of heparin	Type and dose of heparin	Duration of heparin to HIT diagnosis (days)	Initial platelet count (x 10^9/L)	Nadir platelet count (x 10^9/L)	Thrombosis after heparin initiation	4T score	Screening test	Confirmatory test	Non-heparin anticoagulants	Platelet response after HIT treatment	Outcomes of patients as reported
1st	70, M	ICU (MV, ARDS)	DVT prophylaxis	UFH; prophylaxis	20	438	90	PE	6	ELISA (OD 2.0)	SRA, positive (48%)	Bivalirudin	Death shortly after HIT diagnosis	
2nd	63, M	ICU (MV)	DVT prophylaxis	LMWH; prophylaxis	12	304	96	DVT	6	ELISA (OD 1.2)	SRA, positive (49%)	Argatroban	Death shortly after HIT diagnosis	
3rd	61, F	ICU (RRT)	RRT	UFH; prophylactic	N/A	N/A	37	N/A	4	ELISA (OD 0.95)	SRA, positive	N/A	N/A	
4th	68, F	ICU	AF	UFH; therapeutic	7	416	< 5	None	4	LITA (1.8 U/mL)	SRA, positive	Argatroban, bivalirudin	Platelet recovery	
5th	63, M	ICU	STEMI	UFH; therapeutic	6	154	51	Splenic infarct and cerebral infarct	8	LITA (1.6 U/mL)	SRA, borderline positive	Argatroban	Platelet recovery	
6th	49, M	ICU	COVID pneumonia	UFH; therapeutic	12	176	25	None	6	LITA (1.9 U/mL)	SRA, borderline positive	Argatroban	Platelet recovery	
7th	62, F	ICU (MV, ECMO)	PE, ECMO	UFH; therapeutic	16	237	29	None	3	ELISA (OD 1.8)	HiPA, positive	Argatroban	Platelet recovery, discharge from hospital	
8th	38, M	ICU (MV, ECMO)	ECMO	UFH; therapeutic	21	248	50	None	4	ELISA (OD 1.6)	HiPA, positive	Argatroban	Platelet recovery, discharge from hospital	
9th	62, M	ICU (MV)	VTE prophylaxis	LMWH and UFH flush; prophylactic	17	412	91	PE	4	ELISA (OD 1.1)	HiPA, positive	Bivalirudin	Platelet recovery	
10th	46, M	ICU (ARDS, MV, Clinical trial (COAG-	LMWH and UFH; therapeutic	16	61	33	Multiple DVT	6	CIA (46 U/mL)	HiPA, positive	Argatroban	Discharge from ICU		
#	Sex	Age	ICU Present (Causes)	COVID**a**	Anticoagulant	ADW	CIA	HIPA	Argatroban	Platelet Recovery/Discharge	Status			
----	-----	-----	---------------------	------------	---------------	-----	-----	------	------------	-----------------------------	--------			
11**1**	50, M	13	ECMO (ARDS, MV, ECMO)	Clinical trial (COAG-COVID)**a**	LMWH and UFH; therapeutic	243	73	Intracardiac thrombus, ECMO membrane thrombosis	6	CIA (11 U/mL)	HIPA, positive	Argatroban	Still in ICU	
12**1**	43, F	15	ICU (ARDS, MV, ECMO)	Clinical trial (COAG-COVID)**a**	LMWH and UFH; therapeutic	160	48	Multiple DVT, ECMO pump thrombosis	6	CIA (39 U/mL)	HIPA, positive	Argatroban	Still in ICU	
13**1**	63, M	14	ICU (ARDS, MV)	Clinical trial (COAG-COVID)**a**	LMWH and UFH; therapeutic	191	56	Stroke	4	CIA (60 U/mL)	HIPA, positive	Danaparoid	Alive	
14**1**	59, M	9	ICU (ARDS, MV)	Clinical trial (COAG-COVID)**a**	LMWH and UFH; therapeutic	161	62	DVT	5	CIA (4 U/mL)	HIPA, positive	Danaparoid	Discharge from ICU	
15**1**	57, M	11	ICU (ARDS)	Clinical trial (COAG-COVID)**a**	UFH; therapeutic	159	39	None	5	CIA (21 U/mL)	HIPA, positive	Danaparoid	Alive	
16**1**	69, M	16	ICU (ARDS, MV)	Clinical trial (COAG-COVID)**a**	UFH; therapeutic	215	107	None	4	CIA (2 U/mL)	HIPA, positive	Danaparoid	Alive	
17**1**	64, M	18	ICU	VTE prophylaxis	LMWH; prophylactic	223	67	DVT	6	PaGIA positive, ELISA IgG (OD 2.4)	HIPLA, positive (75%), SRA, positive (94% at 0.1 U/mL and 103% at 0.5 U/mL heparin)	Argatroban (13 days), danaparoid (19 days), apixaban at discharge	Alive	
18**1**	63, M	N/A	ICU (RRT)	RRT	LMWH and UFH; NA	N/A	N/A	PE	≥ 4	ELISA IgG (OD 0.62)	SRA, positive	Argatroban	N/A	Death
19**1**	65, F	12	Non-ICU	AF	LMWH and UFH; therapeutic	290	63	Stroke, PE, iliac and femoral artery thrombosis	6	CIA (9.7 U/mL)	SRA, positive (94%)	Argatroban, apixaban	Platelet recovery, discharge from hospital	Alive
20**1**	65, M	6	Non-ICU	N/A	N/A	N/A	N/A	DVT, PE (at	N/A	N/A	NR, SRA, positive	Argatroban, Platelet recovery, discharge from hospital	Alive	
Table 3 Clinical and laboratory characteristics of hospitalized COVID-19 patients with negative confirmatory tests for heparin-induced thrombocytopenia														
Case	Age (years), Sex	Severity of COVID-19	Indication of heparin	Type and dose of heparin during HIT diagnosis	Duration of heparin when tested for HIT (days)	Initial platelet count (x 10^9/L)	Nadir platelet count (x 10^9/L)	Thrombosis after heparin initiation	4T score	Screening test	Confirmatory test	Non-heparin anticoagulants	Platelet recovery after HIT treatment	Patients' outcome as reported
------	-----------------	----------------------	----------------------	---	---	-------------------------------	------------------------------	-----------------------------------	---------	----------------------------	-----------------------------	--------------------------------	---	---
1	74, M	ICU (MV, ARDS)	DVT prophylaxis	LMWH and UFH; prophylactic	12	143	68	Upper extremity venous thrombosis	4	ELISA (OD 1.3)	SRA, negative (0%)	Fondaparinux then bivalirudin	None	Death
2	53, M	ICU (MV, ARDS)	AF	UFH; therapeutic	11	207	22	Skin necrosis	6	ELISA (OD 0.48)	SRA negative (0%)	Argatroban then apixaban	Recovery	Alive
3	53, M	ICU (ARDS)	ACS and AF	N/A	7	N/A	N/A	None	5	ELISA (OD 0.71)	SRA negative	Argatroban	N/A	
4	61, F	ICU (ARDS)	DVT	N/A	6	N/A	N/A	DVT	7	ELISA (OD 0.77)	SRA, negative	N/A	N/A	
5	68, F	ICU (ARDS)	DVT	N/A	8	N/A	N/A	DVT	7	ELISA (OD 0.42)	SRA, negative	N/A	N/A	
6	63, M	ICU (ARDS)	Suspected PE	N/A	2	N/A	N/A	Suspected PE	4	ELISA (OD 0.31)	SRA, negative	N/A	N/A	
7	50, M	ICU (ECMO)	ECMO	UFH; prophylactic	N/A	N/A	49	None	5	ELISA (OD 0.63)	SRA, negative	N/A	N/A	Death
8	79, F	N/A	VTE prophylaxis	LMWH; prophylactic	N/A	N/A	155	None	3	ELISA (OD 1.89)	SRA, negative	N/A	N/A	Alive
9	58, F	N/A	VTE prophylaxis	LMWH; prophylactic	N/A	N/A	305	PE	3	ELISA (OD 0.51)	SRA, negative	N/A	N/A	Death
10	38, M	ICU (ECMO)	VTE prophylaxis, ECMO	LMWH and UFH; prophylactic	N/A	N/A	39	None	3	ELISA (OD 0.83)	SRA, negative	N/A	N/A	
11	71, F	ICU (RRT)	RRT	UFH; prophylactic	N/A	N/A	70	Stroke	6	ELISA (OD 0.47)	SRA, negative	N/A	N/A	Death
12	46, M	N/A	VTE prophylaxis	LMWH; prophylactic	N/A	N/A	59	DVT	5	ELISA (OD 0.83)	SRA, negative	N/A	N/A	
No.	Age	Gender	Location	Diagnosis	Prophylaxis	Mechanical Ventilation	ECMO	VTE Treatment	ELISA	SRA	HIPA	HLA	N/A	Outcome
-----	-----	--------	----------	-----------	-------------	------------------------	------	---------------	-------	-----	------	-----	-----	---------
13th	49, M	ICU	COVID pneumonia	UFH; therapeutic	6	211	47	None	6	LITA (1.1 U/mL)	SRA, negative	Argatroban	None	Death
14th	77, M	ICU	VTE prophylaxis	LMWH and UFH; prophylactic	11	136	59	None	5	PaGIA, negative	HIPLA, negative	None	N/A	Death
15th	63, M	ICU	VTE prophylaxis	LMWH and UFH; therapeutic	14	250	11	None	4	PaGIA, negative	HIPLA, negative	None	N/A	Alive
16th	60, M	ICU	VTE prophylaxis and DVT treatment	LMWH and UFH; therapeutic	21	153	36	DVT	4	PaGIA, negative	HIPLA, negative	None	N/A	Death
17th	63, M	ICU	AF	LMWH and UFH; therapeutic	12	177	38	None	4	PaGIA, negative	HIPLA, negative	None	N/A	Death
18th	71, M	ICU	AF	LMWH and UFH; therapeutic	21	240	77	None	4	PaGIA, negative	HIPLA, negative	None	N/A	Death
19th	66, M	ICU	PE	UFH; therapeutic	2	121	59	PE and DVT	4	PaGIA, negative	HIPLA, negative	None	N/A	Alive
20th	50, M	ICU	VTE prophylaxis	LMWH; prophylactic	12	227	136	Stroke	6	PaGIA, negative	HIPLA, negative	None	N/A	Alive
21st	67, M	ICU	AF	UFH; therapeutic	23	363	138	DVT	6	PaGIA, negative	HIPLA, negative	None	N/A	Death
22st	65, M	ICU	PE suspicion	LMWH and UFH; therapeutic	24	317	138	PE and DVT	6	PaGIA, negative	HIPLA, negative	Argatroban	N/A	Death
23st	58, M	N/A	N/A	LMWH; N/A	N/A	N/A	60	DVT	≥ 4	ELISA IgG (OD 1.68)	SRA, negative	Argatroban	N/A	Death
24st	77, M	ICU (RRT)	N/A	LMWH and UFH; N/A	N/A	N/A	28	Stroke	≥ 4	ELISA IgG (0.7)	SRA, negative	Argatroban	N/A	Alive
25st	36, M	N/A	N/A	LMWH; N/A	N/A	N/A	2	None	≥ 4	ELISA IgG (0.88)	SRA, negative	Argatroban	N/A	Alive
26st	34, M	N/A	N/A	LMWH; N/A	N/A	N/A	65	DVT	≥ 4	N/A	SRA, negative	Bivalirudin	N/A	Alive

M, male; F, female; ARDS, acute respiratory distress syndrome; ICU, intensive care unit; MV, mechanical ventilation; ECMO, extracorporeal membrane oxygenation; RRT, renal replacement therapy; VTE, venous thromboembolism; DVT, deep vein thrombosis; PE, pulmonary embolism; TE, thromboembolism; UFH, unfractionated heparin; LMWH, low molecular weight heparin; ELISA, enzyme-link immunosorbent assay; LITA, latex immune turbidimetric assay; PaGIA, particle gel immunoassay; HIPLA, heparin-induced platelet activation assay (positivity threshold 13%); SRA, serotonin release assay; HIPA, heparin-induced platelet activation assay; N/A, not available.
Table 4 Clinical characteristics and laboratory profiles of hospitalized COVID-19 patients with confirmed heparin-induced thrombocytopenia and patients with negative confirmatory tests

Variables	Patients with confirmed HIT (N = 19)	Patients with negative confirmatory tests (N = 26)
Age (years)	62.0 (50.0, 64.0)^a	62 (50, 68.75)^a
Sex (male; female)	14 (74%); 5 (26%)	21 (81%); 5 (19%)
Type of heparins (UFH; LMWH)	17 (63%); 10 (37%)	15 (43%); 16 (46%) [4 N/A (11%)]
Intensity of anticoagulants (prophylactic; therapeutic)	5 (26.3%); 13 (68.4%); [1 N/A (5.3%)]	9 (34.6%); 9 (34.6%); [8 N/A (30.8%)]
Duration of heparin to HIT diagnosis (days)	13.5 (10.75, 16.25)^a	11 (6, 21)^a
Initial platelet counts (x 10⁹/L)	223 (160.5, 297)^a	209 (145.5, 247.5)^a
Nadir platelet counts (x 10⁹/L)	56 (37, 73)^a	59 (37.5, 91.75)^a
Thrombosis after heparin administration	12 (63%)	16 (61.5%)
4T score	5.5 (4, 6)^a	5 (4, 6)^a

HIT, heparin-induced thrombocytopenia; UFH, unfractionated heparin; LMWH, low molecular weight heparin; N/A, not available; ^aMedian (interquartile range)
Figure legend

Figure 1 PRISMA Flow Diagram

Figure 2 Forest plot showing pooled estimated incidence of heparin-induced thrombocytopenia in hospitalized COVID-19 patients

Figure 3 Forest plot showing the pooled estimated incidence of heparin-induced thrombocytopenia in hospitalized COVID-19 patients according to the risks of bias

Figure 4 Forest plot showing the pooled estimated incidence of heparin-induced thrombocytopenia in hospitalized COVID-19 patients according to the intensities of heparins

Figure 5 Forest plot showing the pooled estimated incidence of heparin-induced thrombocytopenia in hospitalized COVID-19 patients according to severity of patients
Figure 1

Records identified through database searching (n = 2,438)
(EMBASE = 1,703, MEDLINE = 633, Cochrane = 71, Preprint servers = 31)

Records after duplicates removed (n = 2,008)

Records screened (n = 2,008)

Records excluded (n = 1,986)

Full-text articles excluded, with reasons (n = 7)
- Case reports or case series without confirmatory tests for HIT

Full-text articles assessed for eligibility (n = 22)

Studies included in qualitative synthesis (n = 15)

Studies included in quantitative synthesis (meta-analysis) (n = 7)
Study name	Event rate	Lower limit	Upper limit	Total
Daviet2020	0.081	0.039	0.161	7 / 86
Dulrie2020	0.002	0.000	0.011	1 / 626
Helms2020	0.003	0.000	0.051	0 / 150
Ionescu2020	0.005	0.003	0.008	12 / 2574
Patell2020	0.034	0.011	0.100	3 / 88
Santi2020	0.021	0.005	0.081	2 / 94
Lawler2021	0.000	0.000	0.004	0 / 2231
	0.008	0.002	0.032	

Heterogeneity: df = 6 (P < 0.001); $I^2 = 89\%$
Study name	Subgroup within study	Event rate	Lower limit	Upper limit	Total
Dulrue	low	0.002	0.000	0.011	1/626
Helms	low	0.003	0.000	0.051	0/150
Ionescu	low	0.005	0.003	0.008	12/2574
Lawler	low	0.000	0.000	0.004	0/2231
Daviet	moderate	0.081	0.039	0.161	7/86
Patell	moderate	0.034	0.011	0.100	3/88
Santi	moderate	0.021	0.005	0.081	2/94

Heterogeneity of low risk of bias studies: df = 3 (P = 0.152); I² = 43%
Heterogeneity of moderate risk of bias studies: df = 2 (P = 0.156); I² = 46%
Study name	Subgroup within study	Event rate	Lower limit	Upper limit	Total	Relative weight
Helms	prophylactic	0.005	0.000	0.071	0/105	24.92
Ionescu	prophylactic	0.001	0.000	0.004	1/1855	50.05
Lawler	prophylactic	0.000	0.000	0.008	0/1050	25.03
Helms	therapeutic	0.011	0.001	0.151	0/45	13.66
Ionescu	therapeutic	0.015	0.008	0.027	11/719	40.42
Patell	therapeutic	0.034	0.011	0.100	3/88	32.16
Lawler	therapeutic	0.000	0.000	0.007	0/1181	13.76
		0.012	0.003	0.039		
		0.004	0.001	0.009		

Heterogeneity of prophylactic doses: df = 2 (P = 0.399); I² = 0%

Heterogeneity of therapeutic doses: df = 3 (P = 0.037); I² = 65%
Study name	Subgroup within study	Event rate and 95%CI	Relative weight
		Event Lower Upper	
		rate limit limit	
Helms	Critically ill	0.003 0.000 0.051 0/150	14.88
Patell	Critically ill	0.034 0.011 0.100 3/88	29.93
Daviet	Critically ill	0.081 0.039 0.161 7/86	33.88
Delrue	Critically ill	0.005 0.001 0.038 1/184	21.35
Delrue	Non-critically ill	0.001 0.000 0.018 0/442	49.98
Lawler	Non-critically ill	0.000 0.000 0.004 0/2219	50.02

Heterogeneity of critically ill patients: df = 3 (P = 0.012); I² = 73%
Heterogeneity of non-critically ill patients: df = 1 (P = 0.42); I² = 0%