Divergent Copies of a Cryptosporidium parvum-Specific Subtelomeric Gene

Shijing Zhang 1, Li Chen 1, Falei Li 2, Na Li 2, Yaoyu Feng 1,2,* and Lihua Xiao 2,∗

1 State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; zhangshijing1@foxmail.com (S.Z.); casper_chenli@126.com (L.C.)
2 Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; falei0316@126.com (F.L.); nli@scau.edu.cn (N.L.)
* Correspondence: yyfeng@scau.edu.cn (Y.F.); lxiao1961@gmail.com (L.X.)

Received: 6 August 2019; Accepted: 16 September 2019; Published: 18 September 2019

Abstract: Subtype families of Cryptosporidium parvum differ in host range, with IIa and IId being found in a broad range of animals, IIc in humans, and IIo and Ilp in some rodents. Previous studies indicated that the subtelomeric cg6_5520-5510 gene in C. parvum is lost in many Cryptosporidium species, and could potentially contribute to the broad host range of the former. In this study, we identified the presence of a second copy of the gene in some C. parvum subtype families with a broad host range, and showed sequence differences among them. The sequence differences in the cg6_5520-5510 gene were not segregated by the sequence type of the 60 kDa glycoprotein gene. Genetic recombination appeared to have played a role in generating divergent nucleotide sequences between copies and among subtype families. These data support the previous conclusion on the potential involvement of the insulinase-like protease encoded by the subtelomeric cg6_5520-5510 gene in the broad host range of C. parvum IIa and IId subtypes.

Keywords: Cryptosporidium parvum; cg6_5520-5510 gene; subtype families; host range; genetic recombination

1. Introduction

Cryptosporidium spp. are common enteric pathogens, causing moderate to severe diarrhea in both humans and animals [1]. To date, about 40 Cryptosporidium species and approximately the same number of genotypes are recognized [2]. Most of them, such as Cryptosporidium hominis in humans and Cryptosporidium tyzzeri in house mice, have host specificity, being found in specific groups of animals. Among the few Cryptosporidium species with a broad host range, Cryptosporidium parvum is the most important zoonotic species, even though it is genetically related to C. hominis and C. tyzzeri [3,4]. Subtyping analysis based on the 60 kDa glycoprotein gene (gp60) has identified over 20 C. parvum subtype families [2]. Among the common ones, IIa appears to have the ability of infecting a broad range of animals as well as humans, while IIc appears to preferentially infect humans [2]. The story is complicated with the IId subtype family; while the IId subtype family is mostly found in sheep and goats in southern Europe, it is found in a broad range of animals in China, especially cattle [5]. Cattle in Egypt and Sweden are also frequently infected with the IId subtype family [2].

The genetic determinant of host adaptation in C. parvum subtypes remains unclear. In other apicomplexan parasites, gene duplication has been known as a major mechanism for adaptation to environmental changes [6–8]. Comparative genomics analysis of C. parvum and C. hominis has revealed the existence of copy-number variations in subtelomeric multigene families encoding the Cryptosporidium-specific MEDLE family of secreted proteins and insulinase-like proteases [3], suggesting...
that proteins encoded by these genes could be involved in host specificity of Cryptosporidium spp. Among them, cgΔ6_5510 and cgΔ6_5520 in chromosome 6, which encode insulinase-like proteases, are lost in many Cryptosporidium species such as C. hominis and Cryptosporidium ubiquitum [3,9]. There are also some variations in the number of subtelomeric genes of insulinase-like proteases between Ila and IId subtype families of C. parvum [10]. In addition, the cgΔ6_5510 gene was previously shown to be highly polymorphic within C. parvum [11]. Recently, we have provided evidence indicating that cgΔ6_5510 and cgΔ6_5520 are actually misannotated fragments of the full gene ‘cgΔ6_5520-5510’ and the protein it encodes could be involved in the invasion of host cells by sporozoites [12].

Thus far, the sequence characteristics of the cgΔ6_5520-5510 gene in divergent C. parvum subtypes are not clear. In our efforts of obtaining additional sequences of this gene from several subtype families of C. parvum, we have found the existence of multiple copies of the gene in some C. parvum subtype families.

2. Materials and Methods

2.1. Ethics Approval Statement

This study was approved by the Research Ethics Committee of the East China University of Science and Technology, with the approval number of 2015018 on 3rd Jan. 2015. Permission for collecting fecal specimens was obtained from owners or managers of the farms. Animals were handled in accordance with the Animal Ethics Procedures and Guidelines of the People’s Republic of China.

2.2. Cryptosporidium parvum Isolates

C. parvum IOWA isolate (subtype family Ila) oocysts were purchased from Waterborne, Inc. (New Orleans, LA, USA). Two fecal specimens (22578, and 27504) of the C. parvum IIdA19G1 subtype were collected from cattle in Shanghai and Henan, China. The presence of only a single subtype in Ila and IId isolates used was verified by examinations of the results of mapping of sequence reads from a separate study on the comparative genomics of C. parvum at the gp60 and several other polymorphic loci. Other C. parvum isolates used included one fecal specimen (43849) of the IlcA5G3a subtype from a child in Egypt, four fecal specimens (25115, 25118, 25121, and 25125) of the IloA14G1 subtype from Macaca fascicularis in Hainan, China, and four fecal specimens (27505, 27506, 27507, and 27508) of the IlpA9 subtype from bamboo rats in Hainan and Jiangxi, China. The C. parvum subtypes were identified by sequence analysis of the gp60 gene [13]. Duplicate PCR was used in the analysis of each specimen, with DNA of C. hominis IbA10G2 subtype as the positive control. A negative control with sterile water was used in each PCR analysis. Primers used for the amplification of the cgΔ6_5520-5510 gene in C. parvum Ila, IId, Iic, Ilo, and Ilp subtypes are listed in Table 1; Table 2.

2.3. PCR Analysis of cgΔ6_5520-5510

All PCR analyses in this study were performed with the KOD FX DNA Polymerase (TOYOBO, Osaka, Japan) in a total volume of 50 µL, containing 1 µL of DNA, 0.3 µM primers, 0.4 mM deoxynucleotide triphosphate, 25 µL of the 2 × KOD FX PCR buffer, and 1.0 U KOD FX DNA Polymerase. Whenever possible, single-round PCR was used in the amplification of the cgΔ6_5520-5510 gene. As specimens of the C. parvum Ilo and Ilp subtypes had low oocyst counts, they were analyzed by nested PCR. For nested PCR, 2 µL of the primary PCR product was used in the secondary PCR. A negative control with sterile water was used in each PCR analysis. Primers used for the amplification of the cgΔ6_5520-5510 gene in C. parvum Ila, IId, Iic, Ilo, and Ilp subtypes are listed in Table 1; Table 2. The PCR amplification was conducted under the following conditions: Denaturation at 95 °C for 5 min; 35 cycles of amplifications at 95 °C for 45 s, the specified annealing temperature for each primer
set (Tables 1 and 2) for 45 s, and 72 °C for 2 min (30 s for amplicons less than 1000 bp); and a final extension at 72 °C for 7 min. For low-concentration PCR products, we increased the number of PCR cycles for sequencing. PCR products of the cg6_5520-5510 gene generated were sequenced in both directions by Biosune Biotechnology, Shanghai, China. The data of PCR analyses were from at least three individual experiments.

2.4. TA Cloning of cg6_5520-5510 PCR Products

To obtain sequences of both copies of the cg6_5520-5510 gene from isolates of the IIA and IId subtype families, PCR products of the expected size were excised from the agarose electrophoresis gel and purified by using the E.Z.N.A.® Gel Extraction Kit (Omega bio-tek, Norcross, GA, USA). After incubation with DreamTaq PCR Master Mix (2 ×; Thermo Fisher Scientific, Waltham, MA, USA) at 72 °C for 30 min, the products were further purified using the E.Z.N.A.® Cycle Pure Kit (Omega bio-tek, Norcross, GA, USA) and cloned into the pMD 18-T Vector (TaKaRa, Otsu, Shiga, Japan). Escherichia coli DH5α competent cells (Tiangen Biotech, Beijing, China) were transformed with the recombinant plasmid and grown in Luria-Bertani agar plates with 50 µg/mL ampicillin. Positive colonies were identified by PCR analysis and sequencing using universal primers M13F (5′-CGCCAGGGTTTTCCACGACGAC-3′) and M13R (5′-AGCGGATAACAAACACACAGGA-3′) or specific primers designed for each subtype (Table 2). Positive clones were from at least three independent experiments of TA cloning (the cg6_5520-5510 gene was amplified from IIA or IId genomic DNA and cloned into the pMD 18-T Vector). We extracted four plasmids from four positive clones that have correct sequences of IIA-5520-5510-2, IId-5520-5510-1, IIo-5520-5510, and IIp-5520-5510, using E.Z.N.A.® Plasmid mini Kit I (Omega bio-tek, Norcross, GA, USA). The products were quantified by using the NanoDrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA) and diluted 1:500 in sterile water. We used 1 µL of the corresponding product as the template in a 50 µL PCR reaction mixture.

2.5. Sequence Analysis

We identified additional cg6_5520-5510 gene sequences from the whole genome sequencing data in GenBank by using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Eighteen of these sequences are near full-length and used in the sequence alignment and phylogenetic analyses (Table 3). The nucleotide sequences of the cg6_5520-5510 gene obtained from C. parvum IIA, IId, IIC, IIo, and IIP subtypes were aligned with each other and the 18 sequences of the cg6_5520-5510 gene downloaded from the GenBank, using ClustalX version 2.0.11 (http://www.clustal.org). A phylogenetic tree of the aligned sequences was constructed using the maximum likelihood method implemented in the MEGA 7 software (https://www.megasoftware.net/), based on the general time reversible model. The robustness of clad formation was assessed using bootstrap analysis with 1000 replicates. A sequence of the cg6_5520-5510 gene in C. tyzzeri (CTYZ_00001752 from CryptoDB database: https://cryptodb.org/cryptodb/) was used as the outgroup. Domains in the protein sequences encoded by the cg6_5520-5510 gene were identified by using HMMER (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan). The presence of divergent copies of the cg6_5520-5510 gene of the IOWA isolate was further confirmed by mapping of the Illumina sequence reads from a separate whole genome sequencing project to the reference IOWA genome in GenBank (AAEE0000000.1).

Fourteen cg6_5520-5510 gene sequences obtained in this study were submitted to the GenBank database under accession numbers MN090140 to MN090153.
Table 1. Primers designed to amplify the two copies of the cg6_5520-5510 gene in Cryptosporidium parvum Ila and IId subtypes.

Subtype Family	Target Region	Name of Primers	Forward Primer (5’ to 3’)	Reverse Primer (5’ to 3’)	Annealing Temperature	PCR Product (bp)	Usage
Ila, IId	5’ end of the cg6_5520-5510 gene	IId-F	CTTGTTATTTAATCTCCTTTAATTATTCATTC	ATAATAAATGTGTGTTTTTTATTTT	52 °C	954–975	Found mixed sequences
		IId-R	ATAAATAAGGTGTGTTTTTTATTTT	CTTGTTATTTAATCTCCTTTAATTATTCATTC	52 °C	954–975	Found mixed sequences
	3’ end of the cg6_5520-5510 gene	IId-F2	ACCGAAAAAGTGATTAGTGAATCTTGTGATCTGAC	CTCACTTTCATGAATTTTGAATGTCG	52 °C	818	Specific reverse primers
		IId-R	ATAAATAAGGTGTGTTTTTTATTTT	ACCGAAAAAGTGATTAGTGAATCTTGTGATCTGAC	52 °C	818	Specific reverse primers
Ila-5520-5510-1, IId-5520-5510-1	IIa-F	ATGACAAATATCTCAATAATAATACACTTTATCTTT	CTCCATAAAATTATTTAAAGTGAATC	58 °C, 52 °C	3165	Specific reverse primers	
		Specific-R1	CTCCATAAAATTATTTAAAGTGAATC	CTCCATAAAATTATTTAAAGTGAATC	58 °C, 52 °C	3165	Specific reverse primers
Ila-5520-5510-2, IId-5520-5510-2	IIa-F	ATGACAAATATCTCAATAATAATACACTTTATCTTT	CCCTCCATAAATTATTTAAAGTGAATC	58 °C, 52 °C	3165	Specific reverse primers	
		Specific-R2	CCCTCCATAAATTATTTAAAGTGAATC	CCCTCCATAAATTATTTAAAGTGAATC	58 °C, 52 °C	3165	Specific reverse primers
IIc	IIc-5520-5510	IIa-F	ATGACAAATATCTCAATAATAATACACTTTATCTTT	CTCCATAAAATTATTTAAAGTGAATC	58 °C	3162	Specific reverse primers
		Specific-R1	CTCCATAAAATTATTTAAAGTGAATC	CTCCATAAAATTATTTAAAGTGAATC	58 °C	3162	Specific reverse primers
		IIa-R	ATGACAAATATCTCAATAATAATACACTTTATCTTT	CCCTCCATAAATTATTTAAAGTGAATC	58 °C	3162	Specific reverse primers
		Specific-R2	CCCTCCATAAATTATTTAAAGTGAATC	CCCTCCATAAATTATTTAAAGTGAATC	58 °C	3162	Specific reverse primers
Ilo, Ilp	The full cg6_5520-5510 gene	Ilo-F	ATGACAAATATCTCAATAATAATACACTTTATCTTT	TTCATGAAATTTGAGTTCGCTATA	58 °C	3374	Primary PCR
		Ilo-R-new	TTCATGAAATTTGAGTTCGCTATA	TTCATGAAATTTGAGTTCGCTATA	58 °C	3374	Primary PCR
		Specific-R1	TTCATGAAATTTGAGTTCGCTATA	TTCATGAAATTTGAGTTCGCTATA	58 °C	3374	Primary PCR
		Specific-R2	TTCATGAAATTTGAGTTCGCTATA	TTCATGAAATTTGAGTTCGCTATA	58 °C	3374	Primary PCR

1 Used as primary primers in nested PCR for Ilo and Ilp samples; 2 used as secondary primers in nested PCR for Ilo and Ilp samples.
Table 2. Primers used to amplify near full sequences of the *cgδ6_5520-5510* gene in divergent *Cryptosporidium parvum* subtypes.

Subtype Family	Target Region	Name of Primers	Forward Primer (5’ to 3’)	Reverse Primer (5’ to 3’)	Annealing Temperature	PCR Product (bp)	Usage
Ila, Ild	IIa-5520-5510-2, Ild-5520-5510-1 full gene	IIa-F	ATGACAAATATCTCAATAATATACAATACATTTATCTT	CTCATCTTTCATGAATTTTGAGTGG	52 °C	~3360, ~3357	TA cloning
		IIa-R					
	IIa-5520-5510-1 near full gene	IIa-F	ATGACAAATATCTCAATAATATACAATACATTTATCTT	CTCCATAAATTTTTAAGGATGAATC	58 °C	~3165	Specific reverse primers
		Specific-R1					
	IId-5520-5510-2 near full gene	IIa-F	ATGACAAATATCTCAATAATATACAATACATTTATCTT	CTCCATAAATTTTTAAGGATGAATC	52 °C	~3192	Specific reverse primers
		Specific-R2					
Ilc	IIc-5520-5510 full gene	IIa-F	ATGACAAATATCTCAATAATATACAATACATTTATCTT	CTCATCTTTCATGAATTTTGAGTGG	52 °C	~3354	Sequencing directly, TA cloning
		IIa-R					
Ilo, Ilp	Ilo-5520-5510, Ilp-5520-5510 near full gene	IIa-F ^1	ATGACAAATATCTCAATAATATACAATACATTTATCTT	TCTGATGATCTAAACCTTGTGAAG	58 °C	~3374	Sequencing directly, TA cloning
		IIa-R-new ^1					
		Ilo-F ^2	AACCTCTAACCGCAGATTACATA	TCTGATGATCTAAACCTTGTGAAG	58 °C	~3224	
		Ilo-R ^2					

^1 Used as primary primers in nested PCR for Ilo and Ilp samples; ^2 used as secondary primers in nested PCR for Ilo and Ilp samples.
Table 3. Twenty-six sequences of the cg6_5520-5510 gene in *Cryptosporidium parvum* downloaded from the GenBank database.

Subtype Family	Subtype	Isolate	Geographic Location	Sequence Name in This Study	GenBank Accession Number	Nucleotide Position
IIa	IIaA15G1R1	35090	Egypt: El Beheira	IlaA15G1R1-LXLE01002308	LXLE01002308.1	1 to 2825
				IlaA15G1R1-LXLE01003238	LXLE01003238.1	8331 to 11714
	IIaA15G2R1		IOWA 1	IlaA15G2R1-AAEE0100000016	AAEE0100000016.1	23074 to 26443
			IOWA 1	IlaA15G2R1-BX583531.1	BX583531.1	27182 to 27519
			UKP4	IlaA15G2R1-LKHM0100000007	LKHM0100000007.1	24207 to 27566
			UKP5	IlaA15G2R1-LKHM0100000007	LKHM0100000007.1	24155 to 27514
			UKP6	IlaA15G2R1-LKHM0100000007	LKHM0100000007.1	19930 to 21805
			UKP7	IlaA15G2R1-LKHM0100000007	LKHM0100000007.1	199691 to 199852
			UKP2	IlaA15G2R1-LKHM0100000007	LKHM0100000007.1	196497 to 19869
			UKP13	IlaA17G1R1-PYCJ0100000002	PYZC010000002.1	4407 to 7769
			UKP14	IlaA17G1R1-PYCJ0100000002	PYZC010000002.1	108433 to 1085232
			UKP3	IlaA18G2R1-LKCL0100000007	LKCL010000007.1	23021 to 26687
			UKP7	IlaA18G2R1-LKCL0100000007	LKCL010000007.1	25874 to 29233
			UKP2	IlaA19G1R2-LKHM0200000007	LKHM0200000007.1	16497 to 19659
			UKP13	IlcA5G3a-PYQE0100000006	PYQE010000006.1	23118 to 26751
			UKP14	IlcA5G3a-PYQE0100000006	PYQE010000006.1	2767 to 6123
			UKP13	IlcA5G3b-PYBU0100000006	PYBU010000006.1	26498 to 29857
			UKP14	IlcA5G3b-PYBU0100000006	PYBU010000006.1	12986 to 16195
			UKP15	IlcA5G3a-PYQE0100000006	PYQE010000006.1	26379 to 28657
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	5184 to 5487
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	130844 to 134203
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	36841 to 40158
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	11759 to 12186
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	1797 to 2186
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	1 to 699
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	1 to 2342
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	11998 to 12428
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	1 to 2363
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	27295 to 28283
			UKP12	IlcA5G3a-PYQE0100000006	PYQE010000006.1	670660 to 675451

1 There are two copies of the cg6_5520-5510 gene in genomic sequences from these isolates. 2 These partial sequences were not used in the alignment and phylogenetic analyses. 3 Sequences were assembled from two or more whole genome shotgun sequences.
3. Results

3.1. Presence of Mixed Sequences in cgd6_5520-5510 PCR Products from IIa and IId Subtypes

We initially amplified the 5′ and 3′ ends of the cgd6_5520-5510 gene of C. parvum and sequenced the PCR products. In the sequence analysis of PCR products from the 5′ end of the gene in IId isolates, competing signals were present in the trace file after nucleotide position 528, leading to unreadable nucleotide sequences thereafter. This, however, was not seen in the DNA sequence analysis of IIa isolates (Figure 1A). Instead, there were 27 unresolved nucleotides presented in the ~818 bp fragment from the 3′ end of the cgd6_5520-5510 gene in the IIa isolate. A total of 26 unresolved nucleotide were also seen in this region of the gene in IId isolates. An inspection of the trace files from the DNA sequencing identified the presence of two different nucleotides at these positions for both IIa and IId isolates. No unresolved nucleotides and underlying signals were observed in trace files from any PCR products from the 5′ end of the cgd6_5520-5510 gene from IIa subtype, and from both ends of the gene of IIc, IIo, and IIp subtypes (Figure 1B).

Figure 1. Presence of dual copies of the cgd6_5520-5510 gene in Cryptosporidium parvum IIa and IId subtypes. (A) Sequencing trace files of PCR products of the 5′ end from the gene in C. parvum IIa and IId subtypes. Competing signals were present after nucleotide position 528 in the IId subtype. This, however, was not seen in the sequence analysis of the IIa isolates. (B) Sequencing trace files of PCR products of the 3′ end from the gene in C. parvum IIa, IId, IIc, IIo, and IIp subtypes. There were 27 unresolved nucleotides presented in the ~818 bp fragment from the 3′ end of the cgd6_5520-5510 gene from the IIa subtype (three of which are shown as the letter N in the top panel in B) and 26 unresolved nucleotide from the IId subtype (five of which are shown as the letter N in the second panel in B). No unresolved nucleotides were present in trace files from IIc, IIo, and IIp subtype families. The reference sequence used in the sequence comparisons was MK105815. The peak maps in the trace files were exported by using ChromasPro version 1.41 (https://chromaspro.software.informer.com/1.4/). The adenine (A), guanine (G), cytosine (C) and thymine (T) peaks are green, black, blue and red, respectively.
3.2. Two Copies of \(\text{cgd6}_\text{5520-5510} \) Gene in \(\text{C. parvum} \) Ila and IId Subtypes

We attempted to obtain sequences of the full or near full \(\text{cgd6}_\text{5520-5510} \) gene by sequencing TA-cloned PCR products. This led to the acquisition of the near complete \(\text{cgd6}_\text{5520-5510} \) gene from IIc, IIo, and IIp subtypes. Surprisingly, only one type of \(\text{cgd6}_\text{5520-5510} \) sequence was obtained from repeated sequencing of clones from the Ila or IId subtype. We obtained a total of 20 positive clones of the Ila-5520-5510-2 copy and 25 positive clones of the IId-5520-5510-1 copy from three individual experiments of TA cloning (Figure S1, Table S1, and Table S2). For the Ila subtype, the sequence (Ila-5520-5510-2) obtained had 39 nucleotide differences and a 3 bp insertion compared with the \(\text{cgd6}_\text{5520-5510} \) sequence MK105815 (Ila-5520-5510-1) we previously obtained from the same Ila isolate [12]. Twenty-seven of these nucleotide substitutions occurred at the same positions of the ~818 bp fragment from the 3’ end of the \(\text{cgd6}_\text{5520-5510} \) gene analyzed above, indicating the presence of two copies of the \(\text{cgd6}_\text{5520-5510} \) gene in the Ila genome.

Based on the nucleotide sequence differences among Ila-5520-5510-1, Ila-5520-5510-2, and the \(\text{cgd6}_\text{5520-5510} \) sequence obtained above from the IId subtype, we designed copy-specific reverse primers (Specific-R1, Specific-R2; Figure S2). The use of the primers in PCR analysis of the \(\text{C. parvum} \) IOWA isolate yielded the expected copy-specific PCR products (Figure 2). DNA sequencing of the PCR products from genomic DNA generated sequences identical to Ila-5520-5510-1 and Ila-5520-5510-2. These PCR primers also amplified the two copies of the \(\text{cgd6}_\text{5520-5510} \) gene in the IId subtype (Figure 2), producing one sequence (IId-5520-5510-1) that was identical to the \(\text{cgd6}_\text{5520-5510} \) gene sequence obtained above from cloned IId PCR product, and another sequence (IId-5520-5510-2) that had 184 nucleotide substitutions and a 21 bp insertion. Twenty-six of these nucleotide substitutions occurred at the same positions of the ~818 bp fragment from the 3’ end of the \(\text{cgd6}_\text{5520-5510} \) gene analyzed above, indicating the presence of two copies of the \(\text{cgd6}_\text{5520-5510} \) gene in the IId genome as well. The amplification efficiency of each copy was different when using the same primer in TA cloning or using the copy-specific reverse primers designed at the same position of each copy (Figure 2 and Figure S2).

The amplification efficiency of Ila-5520-5510-1 was lower than that of the other copy in PCR analysis of the Ila subtype, while the efficiency of IId-5520-5510-1, which had the highest sequence identity (over 99%) to Ila-5520-5510-1, was higher than that of the other copy in the PCR analysis of the IId subtype. We also used these copy-specific primers to amplify the \(\text{cgd6}_\text{5520-5510} \) gene from genomic DNA of the IIc, IIo, and IIp subtypes, and obtained PCR products by one of the primer sets, which generated the same sequence we obtained above for each subtype.

Using this strategy, we obtained the full sequences of the Ila-5520-5510-2 type from Ila subtype family, IId-5520-5510-1 from the IId subtype family, and IIc-5520-5510 from the IIc subtype family. We also obtained near full sequences of the Ila-5520-5510-1 type from the Ila subtype family, IId-5520-5510-2 from the IId subtype family, IIo-5520-5510 from the IIo subtype family, and IIp-5520-5510 type from the IIp subtype family. A total of 15 \(\text{cgd6}_\text{5520-5510} \) sequences from 12 specimens were obtained in this study. As Ila-5520-5510-1 is identical to the published MK105815 in source and sequence, the remaining 14 \(\text{cgd6}_\text{5520-5510} \) gene sequences were submitted to the GenBank database under accession numbers MN090140 to MN090153.
Figure 2. PCR amplification of the cg6_5520-5510 gene in Cryptosporidium parvum IIa, IId, IIo, and IIp genomic DNA using copy-specific primers using the corresponding plasmid from IIa-5520-5510-2, IId-5520-5510-1, IIo-5520-5510, or IIp-5520-5510 as a control for each subtype. The forward primer for all six lanes from the same subtype family is the same. Lane 1: PCR using Specific-R1 as the reverse primer; for IIa and IId subtypes, genomic DNA was used as the template, while for IIo and IIp subtypes, the primary PCR product was used as the template. Lane 2: PCR using Specific-R2 as the reverse primer; for IIa and IId subtype, genomic DNA was used as the template, while for IIo and IIp subtypes, the primary PCR products was used as the template. Lane 3: PCR using Specific-R1 as the reverse primer and the corresponding plasmid DNA for each subtype was used as the template. Lane 4: PCR using Specific-R2 as the reverse primer and the corresponding plasmid DNA for each subtype was used as the template; Lane 5: PCR using Specific-R1 as the reverse primer and sterile water was used as the template; Lane 6: PCR using Specific-R2 as the reverse primer and sterile water was used as the template. All these PCR products were sequenced. We amplified two copies of the cg6_5520-5510 gene from genomic DNA of the IIa and IId subtypes, but only one type of the cg6_5520-5510 gene from genomic DNA of the IIc (not shown), IIo, and IIp subtypes. Furthermore, we amplified PCR products from the corresponding plasmid of each subtype by only one of the primer sets, confirming the copy specificity of the primers. The results support the presence of two copies of the cg6_5520-5510 gene in C. parvum IIa and IId subtypes.

3.3. Sequence Characteristics of cg6_5520-5510 Gene from Different C. Parvum Subtype Families

There were ~1% sequence differences between the IIa-5520-5510-1 and IIa-5520-5510-2 types. All but one of the 39 nucleotide differences occurred within the 3′ end (cg6_5510 part) of the gene. By contrast, there were ~7% sequence differences between the two cg6_5520-5510 copies in the IId subtype, with nucleotide differences being present in both first and second halves of the full gene. Interestingly, there was over 99% nucleotide sequence identity between IIa-5520-5510-1 and IId-5520-5510-1 with the presence of only seven nucleotide differences over the full gene (Figure 3), while the differences between the other two types were relatively high (over 7%). The single-copied cg6_5520-5510 gene in IIc subtypes was also over 99% identical to IIa-5520-5510-1 type, with only 11 nucleotide differences and a 3 bp deletion. In particular, the sequence from IIcA5G3j had only three nucleotide differences compared with IIa-5520-5510-1. Similarly, the single-copied cg6_5520-5510 gene in the IIo and IIp subtypes had only six nucleotide differences between them. They, however, had 4%–7% sequence differences from the cg6_5520-5510 gene in IIa, IId, and IIc subtypes.

Using the BLAST analysis, we identified 26 cg6_5520-5510 gene sequences in GenBank (Table 3). The results of the BLAST analysis of the whole genome sequencing data showed that the two divergent copies of the cg6_5520-5510 gene were present in whole genome sequence data from at least four IIa isolates (IOWA, UKP1, UKP6, and 35090) and three IId isolates (UKP8, 31727, and 34902; Table 3). In all cases, these copies were present in two different contigs (under different GenBank accession numbers in Table 3), suggesting that the two copies of the cg6_5520-5510 gene were not presented in tandem. In isolate UKP1, which has fully assembled sequences at the chromosome level, the IIa-5520-5510-2 sequence was almost identical (with two nucleotide substitutions) to the 3363 bp sequence at the 5′ end of chromosome 6 (PYCJ0100002.1), while the partial IIa-5520-5510-1 sequence was identical to 901 bp at the 3′ end of chromosome 5 (PYCJ0100005.1), which has the remaining IIa-5520-5510-1 gene.
Microorganisms 2019, 7, 366 10 of 16

sequence missing. No other sequences of high identity were found in these genomes. The presence of two copies of the cg6_5520-5510 gene in the IOWA isolate was also confirmed by mapping of Illumina sequence reads we obtained from a separate whole genome sequencing project, which showed the presence of two types of sequence reads in the region of the cg6_5520-5510 gene (Figure S3).

Figure 3. Alignment of unique nucleotide sequences of the cg6_5520-5510 gene obtained in this study together with 18 other cg6_5520-5510 sequences. Seven representative sequences of the cg6_5520-5510 gene obtained in this study are shown in bold. The remaining 18 sequences were downloaded from the GenBank database (Table 3). The nucleotides identical to the reference sequence (the first line of the alignment) are shown as dots. Some of the sequences, which are identical in the first 2607 bp, have a sequence similarity to others in the last 777 bp, leading to a mosaic sequence pattern at the 3′ end of the alignment.

Eighteen of these NCBI sequences are near full-length, thus were used in the alignment and phylogenetic analyses. In an alignment of these sequences and the 15 sequences of the cg6_5520-5510 gene from the present study, there were four major sequence types in the region of nucleotides 1 to 2607. Within the last 777 bp (nucleotides 2608 to 3384 in the alignment) of the gene, there were a total of 40 nucleotide substitutions, with mosaic distribution of the nucleotide substitutions among subtypes. Some of the 33 sequences were identical in the first 2607 bp, but were divergent in the remaining part of the gene (Figures 3 and 4). For instance, nucleotide substitutions were detected in LKCL0100007.1, LKHM0100007.1, LKHN0100007.1, PYCJ0100002.1, LKHK0200007.1, BX538353.1, and Ila-5520-5510-2 sequences (all from Ila isolates) at positions 2618, 2662, and 2695 of the alignment. In contrast, Ilc-5520-5510 has a sequence identical to Ila-5520-5510-1 and Ild-5520-5510-1 in this region, despite having divergent sequences from them in the first 2607 bp, indicating the presence of mosaic
sequence patterns (Figures 3 and 4). The domain structure analysis revealed that all the proteins encoded by the cg6_5520-5510 gene had only two of the four domains in classic insulinases, and had the ‘HLLKQ’, ‘HLLEQ’, or ‘YLLEQ’ sequences instead of the Zn\(^{2+}\)-binding motif ‘HXXEH’ in the active domain of insulinases (Figure 4 and Figure S4).

Figure 4. The phylogenetic relationship among 34 cg6_5520-5510 gene sequences. There is a discordance in subtyping between cg6_5520-5510 and gp60 genes. The phylogenetic analysis based on the maximum likelihood method divided these cg6_5520-5510 gene types into two large groups. A sequence of the cg6_5520-5510 gene in Cryptosporidium tyzzeri (CTYZ_00001752 from CryptoDB database: [https://cryptodb.org/cryptodb/](https://cryptodb.org/cryptodb)) was used as the outgroup. Sequences from different subtype families are shown in different colors. The sequences obtained in this study are shown in bold. The zinc-binding motif of each sequence is shown in the middle of the figure. In the right of the figure, we have grouped these sequences by sequence similarity in different regions of the alignment. There are four major sequence types in the region of nucleotides 1 to 2607. Group 1 in orange was formed by sequences identical to Ila-5520-5510-1; group 2 in red was formed by sequences identical to IId-5520-5510-1; group 3 in yellow was formed by sequences identical to IId-5520-5510-1; and group 4 in green was formed by sequences identical to Ilo-5520-5510 or Ilp-5520-5510. Within the last 777 bp, the three sequences from Ilc subtypes are identical to Ila-5520-5510-1 and grouped together. There is a new group 2 in purple formed by sequences identical to Ila-5520-5510-2. The abscissa of the alignment is not drawn to scale.

3.4. Phylogenetic Relationship Among cg6_5520-5510 Gene Sequences

Phylogenetic analysis using the maximum likelihood method divided the cg6_5520-5510 sequences into two large groups, with discordant distribution of the sequences by gp60 subtype (Figure 4). Among them, the two copies of the cg6_5520-5510 gene in Ila, Ild-5520-5510-1 in IId and
IIc-5520-5510 in IIc formed one large group, whereas the IId-5520-5510-2 in IId, IIo-5520-5510 in IIo, and IIp-5520-5510 in IIp formed the other group. By the C. parvum gp60 subtype family, the two copies of the gene in the IIa subtype family were mostly in the first group. In contrast, the two copies of the gene in the IIaA15G1R1 subtype from Egypt were placed in different groups in the phylogenetic tree. The same was also true for the two copies of the gene in the IId subtype family. Similarly, the sequence of the gene in IIcA5G3j was placed in a group containing IIa-5520-5510-1, rather than together in a divergent clad containing sequences from other IIc isolates (Figure 4).

4. Discussion

Results of this study indicate the presence of two copies of the cg6d_5520-5510 gene in the IIa and IId subtype families of C. parvum. Previous studies indicated that cg6d_5520-5510 (MK105815, IIa-5520-5510-1 in this study) is a subtelomeric gene in the C. parvum genome and is lost in many other Cryptosporidium species [3,9]. In this study, we found competing signals and underlying peaks in the trace files from sequencing of the PCR products from the 5′ and 3′ ends of the cg6d_5520-5510 gene in all C. parvum IIa and IId isolates, suggesting the presence of two copies of the cg6d_5520-5510 gene. This was supported by a sequence analysis of cloned PCR products, in which we obtained a sequence of the cg6d_5520-5510 gene from C. parvum IOWA that was different from the published one. The use of copy-specific primers in PCR had provided further support, generating two types of cg6d_5520-5510 sequences from the isolate that differed by 1%. The long-term passage of the IOWA isolate in animal models and potential reproductive complexity of C. parvum probably have no significant effect on the presence of heterogeneous copies of the cg6d_5520-5510 gene in C. parvum IIa isolates, as supported by the detection of them in other isolates (such as 35091, UKP1 and UKP6) in the analyses of whole genome sequence data (Table 3). Apparently, two divergent copies of the cg6d_5520-5510 are also present in IId isolates, as revealed by analyses of DNA sequences from this study and whole genome projects in GenBank. In contrast, only one copy of the gene was found in the IIc, IIo, and IIp isolates in the analysis of sequences obtained from this study or GenBank. Therefore, there are apparent differences in the copy number of the cg6d_5520-5510 gene among subtype families of C. parvum. The location of the two copies of the cg6d_5520-5510 gene in the C. parvum genome remains to be determined. The results of the BLAST analysis of whole genome sequencing data showed that the two copies from IIa or IId subtype were present in two different contigs, suggesting they are likely on two different chromosomes. This was supported by a bioinformatics analysis of whole genome sequence data from UKP1, which indicates that one copy of the gene (IIa-5520-5510-2) is located at the 5′ end of chromosome 6 and the other (IIa-5520-5510-1) is located at the 3′ end of chromosome 5. However, we found a discordance in the genomic location of the two copies of the cg6d_5520-5510 gene in the two published genomes of chromosome 6 from the C. parvum IOWA isolate. In the BLAST analysis of NCBI sequences, IIa-5520-5510-1 was almost identical to the last two genes in chromosome 6 of the reference C. parvum IOWA genome: cg6d_5520 (XM_001388322.1) and cg6d_5510 (XM_625315.1), with the minor putative sequence differences attributable to the sequence errors present in the latter fragment of the reference genome [12]. It has, however, only 98.75% sequence identity to the last gene (1MB.841) in the chromosome 6 (BX538353.1) of the same isolate sequenced by another research group [14]. In contrast, IIa-5520-5510-2 was identical to the latter in the BLAST analysis, as also shown in the sequence alignment in the present study (Figure 3). Re-sequencing of the genome of the C. parvum IOWA isolate is needed to resolve this discrepancy in the genomic location of the two copies of the cg6d_5520-5510 gene in the published genomes of this isolate.

In the sequence analysis, IIa-5520-5510-1, IId-5520-5510-1, and IIc-5520-5510 are highly similar in sequences, thus are probably orthologs in the C. parvum genome. Between the two copies of the cg6d_5520-5510 gene in IId subtypes, IIa-5520-5510-1 is likely the ortholog of IId-5520-5510-1, as they have highly similar sequences. Thus, IIa-5520-5510-2 is likely the ortholog of IId-5520-5510-2, although there are ~7% sequence differences between them. The single-copied cg6d_5520-5510 gene in the IIo and IIp subtype families are probably also orthologs to each other, as their sequences are similar. Although
they are significantly different from other cgdl6_5520-5510 sequences, they are probably orthologs of Ila-5520-5510-1, IId-5520-5510-1, and Ilc-5520-5510. Interestingly, although Ila-5520-5510-1 and IId-5520-5510-1 in C. parvum Ila and IId subtypes are highly identical in sequences, the amplification efficiency of each copy was different. The different amplification efficiency of each copy in the Ila or IId subtype could have resulted from the minor differences between nucleotide sequences, especially in the primer regions (Figure S2). We also used these copy-specific primers to amplify the cgdl6_5520-5510 gene from genomic DNA of the Ilc, Ilo, and Ilp subtypes, and obtained PCR products by one of the primer sets. As Specific-R1 is more specific to Ilc-5520-5510, and Specific-R2 is more specific to Ilo-5520-5510 and Ilp-5520-5510 in the primer region (Figure S2), the copy-specific PCR results of the Ilc, Ilo, and Ilp subtypes are expected (Figure 2). Further studies are required to determine reasons for the differences in PCR amplification efficiency and to acquire the complete sequences of each gene copy in the genome of these divergent C. parvum subtypes.

The origin of the cgdl6_5520-5510 gene in divergent C. parvum subtype families is not clear. The single-copied gene in the Ilc subtype is highly identical to one of the copies from the Ila or IId subtypes, indicating that they share a common ancestor. In contrast, the single-copied cgdl6_5520-5510 genes in the Ilo and Ilp subtypes are highly identical to each other but divergent from their orthologs in Ila, Ilc, and IId subtypes. The second copy of the cgdl6_5520-5510 gene in IId subtypes, however, also has a very divergent sequence from the one shared by Ila, Ilc, and IId subtypes. These divergent IId, Ilo, and Ilp sequences probably have a different origin.

The duplicated cgdl6_5520-5510 gene probably contributes to the broad host range of C. parvum Ila and IId subtypes. Comparative genomics analysis of C. parvum and C. hominis has revealed the existence of copy-number variations in subtelomeric multigene families encoding the Cryptosporidium-specific MEDLE family of secreted proteins and insulinase-like proteases [3], suggesting that proteins encoded by these genes could be involved in host specificity of Cryptosporidium spp. The cgdl6_5520-5510 gene, which encodes an insulinase-like protease, apparently has two copies in Ila and IId subtypes, but is a single-copied gene in Ilc, Ilo, and Ilp subtypes. Among the C. parvum subtype families, Ila and IId are zoonotic subtypes with broader host ranges, while Ilc preferentially infects humans, and Ilo and Ilp are adapted to some rodents [2,15]. The concordance between the host range or C. parvum subtypes and copy numbers of the cgdl6_5520-5510 gene suggests that the cgdl6_5520-5510 gene could contribute to the host specificity in Cryptosporidium spp., as previously indicated in comparative genomics analysis of C. parvum and C. hominis [3]. In apicomplexans, the genetic diversity resulted from copy number variations has been viewed as a major mechanism enabling parasites to adapt to new ecological changes [7,8]. Copy number variations, which result from gene duplication and natural selection, have significant impacts on gene expression and phenotypic variation [16,17].

Genetic recombination is apparently present in the cgdl6_5520-5510 gene of C. parvum. One of the two copies of the cgdl6_5520-5510 gene in the IId subtype family, IId-5520-5510-1, is virtually identical to one copy of the gene in Ila, Ila-5520-5510-1, except for the last 210 bp of the gene, which is identical to the other copy of the gene in Ila, Ila-5520-5510-2, in this region. This mosaic sequence pattern was also seen in the Ilc subtype family. In fact, one of the Ilc subtype, IlcA5G3j, has a sequence (PUXU01000016.1) of the cgdl6_5520-5510 gene almost identical to Ila-5520-5510-1, while the gene in other three Ilc isolates has a more divergent sequence (Figures 3 and 4). Similarly, one of the Ila isolates from Egypt, 35090 of the IlaA15G1R1 subtype, has a second copy of the gene with a sequence (LXLE01003298.1) that is identical to IId-5520-5510-2 in the IId subtype family. As both Ila and IId subtype families are common in bovine animals in Egypt [18,19], genetic recombination apparently has produced this discordance in subtyping between the gp60 and cgdl6_5520-5510 loci. Genetic recombination has recently been identified as a mechanism for generating host-adapted and virulent C. parvum and C. hominis subtype families [3,20].

The transcription and the precise function of the cgdl6_5520-5510 gene are unclear. In our previous study, we analyzed the relative expression level of the cgdl6_5520-5510 gene over a 72-h time course in C. parvum-infected HCT-8 cells [12]. The expression of the cgdl6_5520-5510 gene was the highest at 2 h
post-infection and declined thereafter, which was similar to the published data on the expression of the original cgdd_5520 and cgdd_5510 genes [21]. In other studies, copy number variations were associated with multiple orders of magnitude changes in gene expression [17,22,23]. The relative expression level of each cgdd_5520-5510 copy in different subtypes remains to be determined. In this research, all the proteins encoded by the cgdd_5520-5510 gene types are similar in domain structure. These proteins have only two of the four domains of classic insulinases, and the ‘HLLKQ’, ‘HLLEQ’, or ‘YLLEQ’ sequences instead of the core motif “HXXEH”. A complete insulinase such as the human insulinase (IDE_HUMAN, UniProtKB/Swiss-Prot: P14735.4) usually has four conserved domains; the N-terminal domain contains the inverted Zn$^{2+}$-binding motif “HXXEH,” a core feature of M16 proteases, while the C-terminal domain is also required for dimerization and substrate recognition [24,25]. A previous study indicated that mutants with other motif sequences such as ‘HFCQH’ have no proteolytic activities [26]. An earlier study showed that INS20-19 (encoded by Ila-5520-5510-1 in the present study) could be involved in the invasion or early developmental process of C. parvum, but is probably not a functional insulinase [12]. The divergent amino acid sequences at the core motif ‘HXXEH’ shown in the present study also supports the conclusion that these proteins are probably not functional insulinases. Further studies are needed to determine the precise function of the cgdd_5520-5510 gene and investigate whether copy number variations of this gene in different C. parvum subtypes have an impact on gene expression.

5. Conclusions

This study has identified seven major sequence types of the cgdd_5520-5510 gene among Ila, IId, Iic, Ilo, and Ip subtype families of C. parvum, including two types each in the Ila and IId subtype families. These sequence types are discordant to sequence types at the gp60 locus, with additional observation of mosaic sequence patterns among the cgdd_5520-5510 sequence types. The likely presence of dual copies of the cgdd_5520-5510 gene could contribute to the broad host range of C. parvum Ila and IId subtypes, while genetic recombination appears to be responsible for the high sequence diversity of the cgdd_5520-5510 gene and the discordant subtyping results between the cgdd_5520-5510 and gp60 genes. These observations, however, need support from an extensive analysis of other isolates from these and other C. parvum subtype families, and direct whole-genome sequencing and comparative genomics analysis of various field isolates, including those included in the present study. In addition, careful re-sequencing, assembly, and re-annotation of the reference IOWA genome are needed to facilitate the identification of chromosomal location of these divergent copies in Ila and IId genomes. These approaches might lead to improved understanding of the genome structure and evolution of different C. parvum subtype families.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-2607/7/9/366/s1.

Author Contributions: Conceptualization, Y.F. and L.X.; methodology, Y.F. and L.X.; validation, S.Z.; investigation, S.Z.; resources, L.C., F.L. and N.L.; writing—original draft preparation, S.Z.; writing—review and editing, L.X.; supervision, Y.F. and L.X.; project administration, Y.F. and L.X.; funding acquisition, Y.F. and L.X.

Funding: Funding: This research was funded by the National Nature Science Foundation of China, grant number 31630078 and 31425025.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Checkley, W.; White, A.C.; Jaganath, D.; Arrowood, M.J.; Chalmers, R.M.; Chen, X.M.; Fayer, R.; Griffiths, J.K.; Guerrant, R.L.; Hedstrom, L.; et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect. Dis. 2015, 15, 85–94. [CrossRef]

2. Feng, Y.; Ryan, U.M.; Xiao, L. Genetic Diversity and Population Structure of Cryptosporidium. Trends Parasitol. 2018, 34, 997–1011. [CrossRef] [PubMed]
3. Guo, Y.; Tang, K.; Rowe, L.A.; Li, N.; Roellig, D.M.; Knipe, K.; Frace, M.; Yang, C.; Feng, Y.; Xiao, L. Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genom. 2015, 16, 320. [CrossRef] [PubMed]

4. Guo, Y.; Li, N.; Lysén, C.; Frace, M.; Tang, K.; Sammons, S.; Roellig, D.M.; Feng, Y.; Xiao, L. Isolation and Enrichment of Cryptosporidium DNA and Verification of DNA Purity for Whole-Genome Sequencing. J. Clin. Microbiol. 2015, 53, 641–647. [CrossRef] [PubMed]

5. Feng, Y.; Xiao, L. Molecular Epidemiology of Cryptosporidiosis in China. Front. Microbiol. 2017, 8. [CrossRef] [PubMed]

6. Kondrashov, F.A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. B-Biol. Sci. 2012, 279, 5048–5057. [CrossRef] [PubMed]

7. Beghain, J.; Langlois, A.C.; Legrand, E.; Grange, L.; Khim, N.; Witkowski, B.; Duru, V.; Ma, L.; Bouchier, C.; Ménard, D.; et al. Plasmidium copy number variation scan: Gene copy numbers evaluation in haploid genomes. Malar. J. 2016, 15, 206. [CrossRef] [PubMed]

8. Lim, L.S.; Tay, Y.L.; Alias, H.; Wan, K.L.; Dear, P.H. Insights into the genome structure and copy-number variation of Eimeria tenella. BMC Genom. 2012, 13, 389. [CrossRef] [PubMed]

9. Liu, S.; Roellig, D.M.; Guo, Y.; Li, N.; Frace, M.A.; Tang, K.; Zhang, L.; Feng, Y.; Xiao, L. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genom. 2016, 17, 1006. [CrossRef] [PubMed]

10. Feng, Y.; Li, N.; Roellig, D.M.; Kelley, A.; Liu, G.; Amer, S.; Tang, K.; Zhang, L.; Xiao, L. Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int. J. Parasit. 2017, 47, 281–290. [CrossRef]

11. Feng, Y.; Torres, E.; Li, N.; Wang, L.; Bowman, D.; Xiao, L. Population genetic characterisation of dominant Cryptosporidium parvum subtype IIA15G2R1. Int. J. Parasit. 2013, 43, 1141–1147. [CrossRef] [PubMed]

12. Zhang, S.; Wang, Y.; Wu, H.; Li, N.; Jiang, J.; Guo, Y.; Feng, Y.; Xiao, L. Characterization of a Species-Specific Insulinase-Like Protease in Cryptosporidium parvum. Front. Microbiol. 2019, 10. [CrossRef] [PubMed]

13. Alves, M.; Xiao, L.; Sulaiman, I.; Lal, A.A.; Matos, O.; Antunes, F. Subgenotype Analysis of Cryptosporidium Isolates from Humans, Cattle, and Zoo Ruminants in Portugal. J. Clin. Microbiol. 2003, 41, 2744–2747. [CrossRef] [PubMed]

14. Bankier, A.T.;Spriggs, H.F.;Fartmann, B.;Konfortov, B.A.;Madera, M.;Vogel, C.;Teichmann, S.A.;Ivens, A.;Dear, P.H. Integrated Mapping, Chromosomal Sequencing and Sequence Analysis of Cryptosporidium parvum. Genome Res. 2003, 13, 1787–1799. [CrossRef] [PubMed]

15. Liu, X.; Zhou, X.; Zhong, Z.; Zuo, Z.; Shi, J.; Wang, Y.; Qng, B.; Feng, G. Occurrence of novel and rare subtype families of Cryptosporidium in bamboo rats (Rhizomys sinensis) in China. Vet. Parasitol. 2015, 207, 144–148. [CrossRef] [PubMed]

16. Cooper, G.M.;Nickerson, D.A.;Eichler, E.E. Mutational and selective effects on copy-number variants in the human genome. Nat. Genet. 2007, 39, S22. [CrossRef]

17. Freeman, J.L.; Perry, G.H.; Feuk, L.; Redon, R.;McCarr, S.A.; Altshuler, D.M.; Aburutani, H.; Jones, K.W.; Tyler-Smith, C.;Hurles, M.E.;et al. Copy number variation: New insights in genome diversity. Genome Res. 2006, 16, 949–961. [CrossRef] [PubMed]

18. Amer, S.;Zidan, S.;Adamu, H.; Ye, J.; Roellig, D.; Xiao, L.; Feng, Y. Prevalence and characterization of Cryptosporidium spp. in dairy cattle in Nile River delta provinces, Egypt. Exp. Parasitol. 2013, 135, 518–523. [CrossRef] [PubMed]

19. Amer, S.;Zidan, S.;Adamu, H.; Ye, J.; Roellig, D.; Xiao, L. Identity and public health potential of Cryptosporidium spp. in water buffaloes in Egypt. Vet. Parasitol. 2013, 191, 123–127. [CrossRef]

20. Nader, J.L.; Mathers, T.C.; Ward, B.J.; Pachetab, J.A.; Swain, M.T.; Robinson, G.; Chalmers, R.M.; Hunter, P.R.; van Oosterhout, C.; Tyler, K.M. Evolutionary genomics of anthroponosis in Cryptosporidium. Nat. Microbiol. 2019, 4, 826–836. [CrossRef] [PubMed]

21. Mauzy, M.J.;Enomo, S.;Lancto, C.A.;Abrahamsen, M.S.;Rutherford, M.S. The Cryptosporidium parvum transcriptome during in vitro development. PloS ONE 2012, 7, e31715. [CrossRef] [PubMed]

22. Orozco, L.D.;Cokus, S.J.; Ghazalpour, A.; Ingram-Drake, L.; Wang, S.; van Nas, A.; Che, N.; Araujo, J.A.; Pellegrini, M.; Lusis, A.J. Copy number variation influences gene expression and metabolic traits in mice. Hum. Mol. Genet. 2009, 18, 4118–4129. [CrossRef] [PubMed]

23. Mileyko, Y.;Joh, R.I.;Weitz, J.S. Small-scale copy number variation and large-scale changes in gene expression. Proc. Natl. Acad. Sci. USA 2008, 105, 16659–16664. [CrossRef] [PubMed]
24. Johnson, K.A.; Bhushan, S.; Ståhl, A.; Hallberg, B.M.; Frohn, A.; Glaser, E.; Eneqvist, T. The closed structure of presequence protease PreP forms a unique 10,000 Å³ chamber for proteolysis. *Embo J.* 2006, 25, 1977–1986. [CrossRef] [PubMed]

25. Li, P.; Kuo, W.-L.; Yousef, M.; Rosner, M.R.; Tang, W.-J. The C-terminal domain of human insulin degrading enzyme is required for dimerization and substrate recognition. *Biochem. Biophys. Res. Commun.* 2006, 343, 1032–1037. [CrossRef] [PubMed]

26. Chesneau, V.; Rosner, M.R. Functional human insulin-degrading enzyme can be expressed in bacteria. *Protein Expr. Purif.* 2000, 19, 91–98. [CrossRef]