Glimepiride Reduces the Expression of PrP_C, Prevents PrP_{Sc} Formation and Protects against Prion Mediated Neurotoxicity

Clive Bate¹*, Mourad Tayebi¹, Luisa Diomede², Mario Salmona², Alun Williams¹

¹Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, United Kingdom, ²Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri,” Milan, Italy

Abstract

Background: A hallmark of the prion diseases is the conversion of the host-encoded cellular prion protein (PrP^C) into a disease related, alternatively folded isoform (PrP^{Sc}). The accumulation of PrP^{Sc} within the brain is associated with synapse loss and ultimately neuronal death. Novel therapeutics are desperately required to treat neurodegenerative diseases including the prion diseases.

Principal Findings: Treatment with glimepiride, a sulphonylurea approved for the treatment of diabetes mellitus, induced the release of PrP^C from the surface of prion-infected neuronal cells. The cell surface is a site where PrP^C molecules may be converted to PrP^{Sc} and glimepiride treatment reduced PrP^{Sc} formation in three prion infected neuronal cell lines (ScN2a, SMB and ScGT1 cells). Glimepiride also protected cortical and hippocampal neurones against the toxic effects of the prion-derived peptide PrP_{82–146}. Glimepiride treatment significantly reduce both the amount of PrP_{82–146} that bound to neurones and PrP_{82–146} induced activation of cytoplasmic phospholipase A₂ (cPLA₂) and the production of prostaglandin E₂ that is associated with neuronal injury in prion diseases. Our results are consistent with reports that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI)-phospholipase C which reduced PrP^C expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC) and were reversed by co-incubation with p-chloromercuriophenylsulphonate, an inhibitor of endogenous GPI-PLC.

Conclusions: Collectively, these results indicate that glimepiride may be a novel treatment to reduce PrP^{Sc} formation and neuronal damage in prion diseases.

Introduction

The transmissible spongiform encephalopathies, otherwise known as prion diseases include Creutzfeldt-Jakob disease and kuru in humans, as well as important livestock diseases such as scrapie in sheep and goats and bovine spongiform encephalopathy in cattle. The central event in these diseases is the conversion of a host encoded cellular prion protein (PrP^C) into abnormally folded, disease-associated isoforms (PrP^{Sc}) in the brains of infected animals [1]. Although the primary amino acid sequence remains the same, during the conversion process a portion of the a-helix and random coil structure in PrP^C is refolded into a b-pleated sheet in PrP^{Sc} [2]. This change in secondary structure is accompanied by changes in the biological and biochemical properties of the PrP^{Sc} protein, including reduced solubility and an increased resistance to proteases [3]. Consequently, aggregates of PrP^{Sc} accumulate in association with neurones in affected brain areas [4], a process which is thought to lead to synapse degeneration and ultimately neuronal death. PrP^{Sc} is believed to constitute the major and perhaps only component of the infectious particle [5]. While the correlation between PrP^{Sc} and infectivity is not completely clear [6], cell based studies routinely measure the amount of PrP^{Sc} as an indicator of infectivity.

The production of PrP^{Sc} and the progression of prion diseases are dependent upon the presence of PrP^C [7,8,9]. PrP^C is linked to the membrane by a glycosylphosphatidylinositol (GPI) anchor [10] and can be released from the surface of cells by treatment with phosphatidylinositol-phospholipase C (PI-PLC) [11]. Treatment of prion-infected neuronal cells with PI-PLC reduced PrP^{Sc} formation [12,13] indicating that PrP^{Sc} is formed from PrP^C expressed at the cell surface, or from PrP^C that had been expressed at the cell surface. This conclusion is supported by observations that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI)-phospholipase C which reduced PrP^C expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC) and were reversed by co-incubation with p-chloromercuriophenylsulphonate, an inhibitor of endogenous GPI-PLC.
membranes [18,19] and caused the redistribution of other GPI-anchored proteins [20]. We therefore investigated the effect of glimepiride treatment on the amount of PrP\(^{Sc}\) at the surface of primary cortical neurones and prion-infected neuronal cell lines. Glimepiride treatment reduced the amount of PrP\(^{Sc}\) at the surface of neuronal cell lines and primary cortical neurones. The effects of glimepiride were similar to the effects of PI-PLC; both caused the release of a soluble, deacylated PrP\(^{Sc}\). Treatment with glimepiride also reduced PrP\(^{Sc}\) formation in 3 prion-infected neuronal cell lines (ScGT1, SMB and ScN2a cells). In addition, the effects of glimepiride treatment on prion neurotoxicity were examined. PrP\(^{Sc}\) is required for the neurotoxicity of PrP\(^{Sc}\) [21] and the process of prion-induced neurodegeneration is commonly examined by incubating neurones with either recombinant PrP or specific PrP-derived peptides. A synthetic peptide containing amino acids 82 to 146 of the human PrP protein (PrP82–146) corresponding to a major PrP fragment isolated from the brains of patients with Gerstmann-Sträussler-Scheinker disease (GSS) [22], was toxic to cultured cortical neurones [23,24]. Here we report the effects of glimepiride on PrP82–146 induced activation of cytoplasmic phospholipase A\(_2\) (cPLA\(_2\)) and neuronal survival.

Methods

Cell lines

Prion-infected neuronal cell lines (ScGT1, ScN2a and SMB cells) [25,26,27] were grown in Ham’s F12 medium supplemented with 2 mM glutamine, 2% foetal calf serum (FCS) and standard antibiotics (100 U/ml penicillin and 100 \(\mu\)g/ml streptomycin). Cells were plated in 6 well plates (1\(^{\text{st}}\) cells/well) and allowed to adhere overnight before the addition of test compounds. The medium was changed twice daily and the amount of cell-associated PrP\(^{Sc}\) measured after 7 days. Cells were washed twice in phosphate buffered saline (PBS) and homogenised at 10\(^{6}\) cells/ml in an extraction buffer containing 10 mM Tris-HCl, 100 mM NaCl, 10 mM EDTA, 0.5\% Nonidet P-40 and 0.5\% sodium deoxycholate. Nuclei and large fragments were removed by centrifugation (300 \(\times\)g for 5 minutes) and the supernatant digested with 5 \(\mu\)g/ml protease K for 1 hour at 37\(^\circ\)C, digestion was stopped using mixed protease inhibitors (AEBSF, Aprotinin, Leupeptin, Bestain, Pepstatin A and E-46) (Sigma, Poole, UK). Culture supernatants were also collected to see if PrP\(^{Sc}\) was released from cells, they were digested with 5 \(\mu\)g/ml protease K for 1 hour at 37\(^\circ\)C and stopped with mixed protease inhibitors (as above). In some studies cell extracts/supernatants were digested with 50 \(\mu\)g/ml thermolysin, which is reported to digest PrP\(^{Sc}\) without affecting protease sensitive PrP\(^{Sc}\) [28,29].

Measurement of cell surface PrP\(^{C}\)

The amount of PrP\(^{C}\) expressed at the cell surface was determined by two methods. In the first, 10\(^{6}\) treated neurones were subsequently pulsed with PBS containing 50 \(\mu\)g/ml of membrane-impermeable sulfo-biotin-X-NHS (Pierce, Cramlington, UK) for 10 minutes. Cells were then washed 4 times with ice cold PBS containing 10% FCS to remove unbound biotin and the amount of biotinylated PrP\(^{C}\) measured in a modified ELISA. Maxisorb Immunoplates (Nunc, Roskilde, Denmark) were pre-coated with 10 \(\mu\)g/ml streptavidin (Sigma) and blocked with 10% milk powder. Samples were added for 1 hour and the amount of bound biotinylated PrP\(^{C}\) was determined by incubation with the PrP-specific mAb ICSM18, anti-mouse IgG-alkaline phosphate (Prionics, Zurich, Switzerland). The second method involved incubating treated cells with 0.2 units of PI-PLC/10\(^{5}\) cells for 1 hour at 37\(^\circ\)C. PI-PLC acts on the GPI anchored proteins including PrP\(^{C}\) at the cell surface. The amount of PrP\(^{C}\) released into the supernatant following PI-PLC digestion was measured by PrP ELISA.

Reverse phase chromatography of PrP\(^{C}\)

Supernatants from glimepiride treated primary cortical neurones were applied to C18 columns (Waters, Elstree, UK). For comparison, PrP\(^{C}\) from cell extracts and PrP\(^{C}\) that had been digested with PI-PLC (0.2 units/ml for 1 hour at 37\(^\circ\)C) were also added to C18 columns. Proteins were eluted by reverse phase chromatography under a gradient of acetonitrile in water and
0.1% trifluoroacetic acid (TFA). Fractions were collected, lyophilised, solubilised in extraction buffer and tested in a PrP ELISA.

PrP ELISA

The amount of PrP in cell extracts/supernatants was measured by ELISA as described [31,32]. Maxisorb Immunoplates were coated with a PrP-specific mAb (ICSM10) which recognises amino acids 146 to 159 of murine PrP. Samples were applied and detected with biotinylated mAb ICSM35 (which recognises a region between amino acids 91 and 110). This was detected using extravidin-alkaline phosphatase and 1 mg/ml 4-nitrophenyl phosphate. Absorbance at 450 nm was measured on a microplate reader and the amount of PrP calculated by reference to a standard curve of recombinant murine PrP (Prionics); its limit of detection was 0.05 ng/ml.

The amount of PrP0–146 in cell extracts was also determined by ELISA. Maxisorb Immunoplates were coated with 0.5 μg/ml of mouse mAb 3F4 (reactive with residues 109–112 of human PrP (Abcam, Chandler’s Ford, UK). This mAb does not bind to murine PrP [33]. Samples were applied and detected with biotinylated ICSM35 (D-gen), followed by extravidin-alkaline phosphatase and 1 mg/ml 4-nitrophenyl phosphate. Absorbance was measured on a microplate reader at 450 nm and the amount of PrP0–146 calculated by reference to a standard curve of PrP0–146.

Activated cPLA2 ELISA

The activation of cPLA2 is accompanied by phosphorylation of the 505 serine residue, which can be measured by phospho-specific antibodies. The amount of activated cPLA2 in cell extracts was measured by ELISA as described [32]. Nunc Maxisorb Immunoplates were coated with 0.5 μg/ml of mouse mAb anti-cPLA2, clone CH-7 (Upstate, Milton Keynes, UK) for 1 hour and blocked with 10% FCS. Samples were incubated for 1 hour and the amount of activated cPLA2 was detected using a rabbit polyclonal anti-phospho-cPLA2 (Cell Signalling Technology). Bound antibodies were then detected using biotinylated anti-rabbit IgG (Dako), extravidin-alkaline phosphatase and 1 mg/ml 4-nitrophenyl phosphate. Absorbance was measured at 450 nm and the amount of activated cPLA2 present calculated by reference to a standard curve, using nonlinear regression. Samples were expressed as “units cPLA2”, 100 units being defined as the amount of cPLA2 in 10⁶ untreated cortical neurones. A standard curve ranging from 100 to 1.56 units/well was prepared from this sample using doubling dilutions.

PGE₂ assay

The amount of PGE₂ produced by cells was determined by using an enzyme-immunoassay kit (Amersham Biotech, Amersham, UK). The detection limit of this assay is 20 pg/ml.

Peptides

Peptides containing amino acids 82 to 146 of the human PrP protein (PrP0–146) corresponding to a PrP fragment found in certain prion-infected human brains [22], and a control peptide (PrP0–146 scrambled) were synthesised by solid-phase chemistry and purified by reverse-phase HPLC. Stock solutions were thawed on the day of the experiment and sonicated for 10 minutes before addition to cells.

Statistical Analysis

Comparison of treatment effects was carried out using one and two way analysis of variance techniques as appropriate.

Results

Glimepiride reduced PrP⁰ at the surface of neurones

Since glimepiride has been reported to stimulate the release or redistribution of GPI-anchored proteins in adipocytes [17,20], its effect on PrP⁰ in cortical neurones was examined. Treatment of neurones for 1 hour with glimepiride reduced the amount of PrP⁰ in cell extracts in a dose-dependent manner (Figure 1). This effect of glimepiride was not shared by glibenclamide or glipizide, two other sulphonylureas used to treat diabetes mellitus, which did not alter the PrP⁰ content of neurones. The reduction in the PrP⁰ content of neurones achieved following treatment with 5 μM glimepiride (19.6 ng/10⁶ cells±1.7 compared with 28.5±3.4, n = 12, P<0.01) was similar in magnitude to that observed in neurones treated with 0.2 units PI-PLC/ml (19.2 ng/10⁶ cells±2.8 compared with 28.5±3.4, n = 12, P<0.01), results consistent with the hypothesis that glimepiride activates an endogenous GPI-PLC. Higher concentrations of glimepiride or PI-PLC, or prolongation of treatment to 4 hours, did not cause any further reduction in the neuronal PrP⁰ content. Neither glimepiride nor PI-PLC affected the survival of neurones as measured by thiazyl blue tetrazolium.

Cortical neurones treated with glimepiride for 1 hour were subsequently pulsed with a membrane-impermeable biotin ester to determine whether glimepiride affects the amount of PrP⁰ expressed at the cell surface. Treatment with glimepiride, but not glipizide or glibenclamide, reduced the amount of biotinylated PrP⁰ in cell membranes (Figure 2A). Treatment with 0.2 units PI-PLC/ml also reduced the amount of biotinylated PrP⁰ in cell membranes (0.6 ng/10⁶ cells±0.2 compared to 7.4±1.1, n = 9, P<0.01). Time course studies showed that the effect of glimepiride on the expression of PrP⁰ on the surface of cortical neurones was transient. Thus the amount of PrP⁰ labelled with cell-impermeable biotin in neurones pulsed with 5 μM glimepiride for 1 hour remained low for 2 hours after the cessation of glimepiride treatment and only returned to the levels seen in untreated cells after 12 hours (Figure 2B). When these experiments were conducted in the presence of 20 μg/ml cycloheximide, the amount of PrP⁰ reduced by glimepiride was markedly reduced.
imide, which inhibits the synthesis of proteins, the return of PrPC to the cell surface was delayed, indicating that the PrPC that appeared at the surface of glimepiride treated cells had been newly synthesised rather than rerouted from an existing intracellular pool.

Glimepiride stimulated the release of PrPC from neurones

Next we sought to determine if glimepiride stimulated the release of PrPC from the cell by measuring the amount of PrPC in the supernatants of cultured neurones. The addition of glimepiride alone or a mixture containing 5 μM glimepiride and 20 μg/ml cycloheximide as shown. Values shown are the mean average amount of soluble PrPC in cell extracts (ng/10^6 cells) ± SD, n=9. doi:10.1371/journal.pone.0008221.g003

PrPC can be released from cells by different mechanisms [11,34,35,36,37]. Therefore we sought evidence that the PrPC in the supernatant of glimepiride treated cells was released following its digestion by a GPI-PLC. When cell-associated PrPC containing an intact GPI anchor was bound to a C18 column and exposed to acetonitrile in water containing 0.1% TFA, fractions eluted from C18 columns loaded with whole cell extracts or with supernatants from cortical neurones treated with 5 μM glimepiride did not bind to C18 columns. The PrPC molecules that had been digested by 0.2 units PI-PLC/ml did not bind to C18 columns. The PrPC in supernatants from glimepiride treated neurones did not bind to C18 columns indicating that these PrPC molecules had lost their hydrophobic acyl chains, consistent with the view that they had been digested by GPI-PLC (Figure 3B). Next we sought to determine if the effect of glimepiride could be reversed by the addition of p-CMPS, which inhibited GPI-PLC [38]. Whereas treatment with as much as 500 μM p-CMPS alone had no detectable effect on cell surface PrPC (not shown), addition of p-CMPS to cortical neurones treated with 5 μM glimepiride increased the amount of PrPC at their surface to control levels (Figure 4), confirming that glimepiride activates an endogenous GPI-PLC.
Glimepiride reduced the PrPSc content of prion infected neuronal cells

Since the cell surface is a possible site of the conversion of PrPC to PrPSc [12,13] the effect of glimepiride on the PrPSc content of ScGT1 cells was determined. Treatment with 5 \textmu M glimepiride for 1 hour released PrP molecules from ScGT1 cells into the supernatant (8.4 ng/106 cells). These PrP molecules were sensitive to digestion with 5 \textmu g/ml proteinase K which reduced the PrP content to less than 0.05 ng/106 cells, indicating that the PrP released was PrPC or protease-sensitive PrPSc. The PrP molecules were also sensitive to digestion with 50 \textmu g/ml thermolysin (following digestion the PrP content of supernatants was reduced to less than 0.05 ng/106 cells) indicating that the PrP released was PrPC rather than protease-sensitive PrPSc [29]. Next, the effect of longer term treatment was examined. Twice daily treatment for 7 days with glimepiride, but not glibenclamide, caused a dose-dependent reduction in the amount of PrPSc in ScGT1 cells (Figure 5A). We were unable to detect PrPSc in ScGT1 cells treated with 5 \textmu M glimepiride for 7 days. Moreover, these cells remained free of PrPSc when grown for a further month after the cessation of treatment. The amount of PrPSc in ScGT1 cells treated for 7 days with increasing concentrations of glimepiride showed a significant correlation with the amount of PrPC released from the surface of glimepiride treated ScGT1 cells 1 hour after treatment, Pearson’s coefficient = 0.868, P<0.001 (Figure 5B). This effect of glimepiride was not cell line specific as similar dose-dependent reductions in PrPSc content were observed in both ScN2a and SMB cells (Figure 6A and B).

Recent studies showed that glimepiride treatment of adipocytes released GPI anchored proteins in exosomes [19,39]. Since PrPSc can also be released from prion-infected rabbit kidney cells in exosomes [34], the possibility that glimepiride might also stimulate exosome formation and the release of PrPSc from prion-infected neuronal cells was examined. The amount of PrPSc present in supernatants from ScGT1, ScN2a or SMB cells treated with 5 \textmu M glimepiride for 7 days, was measured by ELISA. Treatment with glimepiride significantly reduced the amount of PrPSc in supernatants collected from ScGT1 cells (0.4 ng PrPSc/106 cells ± 0.3 compared with 1.97 ng ± 0.58, n = 9, P<0.01), SMB cells (0.3 ng PrPSc/106 cells ± 0.4 compared with 1.21 ng ± 0.28, n = 9, P<0.01) and ScN2a cells (0 ng PrPSc/106 cells compared with 0.45 ng ± 0.01, n = 9, P<0.01). These data indicated that the reduction of cell associated PrPSc observed after glimepiride treatment was not related to a stimulation of PrPSc release.

Glimepiride treated neurones are resistant to PrP82–146 toxicity

The addition of PrP82–146 reduced the survival of cortical neurones [23,24]. Pre-treatment with 5 \textmu M glimepiride protected cortical neurones against the toxic effect of PrP82–146 (Figure 7A). The concentration of PrP82–146 required to kill 50% of neurones (LD\textsubscript{50}) was at least 20 times greater, from 10 \textmu M in mock-treated neurones to more than 200 \textmu M PrP82–146 in glimepiride treated cells. The protective effect of glimepiride was dose-dependent (Figure 7B) and was not observed with glipizide. This effect of glimepiride was not specific for cortical neurones, the survival of hippocampal neurones incubated with 5 \textmu M PrP82–146 was also significantly increased by pre-treatment with 5 \textmu M glimepiride.
Glimepiride treated neurones were not resistant to all neurotoxins and did not protect against staurosporine (data not shown). The protective effect of glimepiride was dependent on pre-treatment and was not observed when 5 mM glimepiride was added 1 hour after addition of 20 mM PrP82–146 (41% cell survival ±7 compared with 38%±5, n = 10, P = 0.4). It was also transient and was lost after 12 hours (Figure 8). The return of sensitivity to the toxic action of PrP82–146 coincided with the return of PrPC to the surface of the neurones as shown in Figure 2. Since glimepiride activates an endogenous GPI-PLC [16,17] the effects of PI-PLC on neuronal responses to PrP82–146 were also examined. Pre-treatment with 0.2 units PI-PLC/ml was found to increase the survival of cortical neurones subsequently incubated with PrP82–146 (Figure 9A). Next we tested the hypothesis that the protective effect of glimepiride was due to activation of an endogenous GPI-PLC. First we showed that pre-treatment with a GPI-PLC inhibitor (500 µM p-CMPS) did not affect the survival of neurones subsequently incubated with PrP82–146. Next, we showed that the protective effect of 5 µM glimepiride was reversed by the inclusion of 500 µM p-CMPS indicating that protection was dependent upon activation of an endogenous GPI-PLC (Figure 9B).

Glimepiride reduced the binding of PrP82–146 by neurones

Since PrPSc acts as a receptor for PrP peptides [40], the effect of glimepiride on the binding of 10 µM PrP82–146 to cortical neurones was examined. The amount of PrP82–146 bound was time-dependent over 60 minutes. Neurones pre-treated with 5 µM glimepiride bound significantly less PrP82–146 than mock-treated neurones (Figure 10). It was noted that glimepiride treatment did not completely block the binding of PrP82–146 to neurones. Thus, 60 minutes after the addition of 10 µM PrP82–146, glimepiride treated neurones bound 6.2 nM PrP82–146 compared to 9.9 nM PrP82–146 ±0.8 in controls (n = 8). Similar results were obtained when neurones were pre-treated with 0.2 units PI-PLC/ml, which after 60 minutes had bound 5.3 nM PrP82–146 ±0.7, n = 8.

Glimepiride reduced activation of cPLA2 by PrP82–146

Unregulated activation of cPLA2 is recognized as a key event in some neurodegenerative diseases [41,42,43]. The activation of cPLA2 is the first step in the production of eicosanoids, docosanoids and platelet activating factors, high concentrations of which cause...
glial cell activation, synapse degeneration and neuronal death. The addition of PrP82–146 increased the amount of activated cPLA2 in neurones. Treatment with 5 μM glimepiride alone did not alter the amount of activated cPLA2 in cortical neurones (100 units compared to 97 ± 8, n = 9, P = 0.4), but greatly reduced the activation of cPLA2 induced by PrP82–146 (Figure 11A); treatment with 5 μM glibenclamide or 5 μM glipizide had no effect. Digestion of neurones with PI-PLC also reduced activation of cPLA2 induced by PrP82–146. To confirm the effect of glimepiride on PrP82–146 induced PLA2 activation, neuronal PGE2 production was also measured. As would be predicted, PGE2 production from neurones pre-treated with 5 μM glimepiride, or with PI-PLC, was significantly lower than that of untreated neurones after incubation with 10 μM PrP82–146 for 24 hours (Figure 11B).

Discussion

In this study we report that treatment with glimepiride reduced the amount of PrPC expressed at the surface of primary cortical neurones, neuronal cells and prion-infected neuronal cells. Subsequently, glimepiride treatment significantly reduced the amount of PrPSc within 3 prion-infected neuronal cell lines (ScGT1, SMB and ScN2a cells) and glimepiride treated cortical neurones showed increased resistance to the toxic effects of PrP82–146. The protective effect of glimepiride was accompanied by reduced binding of PrP82–146 to neurones, reduced activation of cPLA2 and PGE2 production. These effects of glimepiride were observed at physiological concentrations [44], however they were not shared by 2 other sulphonylureas used to treat diabetes, glibenclamide or glipizide.

The cellular location of PrPSc is controversial and although PrPSc is expressed at the cell surface, it is also found within cells [45,46]. Our findings support the view that a proportion of the PrPSc in cortical neurones is in an intracellular pool, since it resisted both digestion with PI-PLC and biotinylation with a cell impermeable biotin-conjugate. Treatment of cortical neurones, neuronal cells and prion-infected neuronal cells with glimepiride reduced the amount of PrPSc expressed at the cell surface and caused its release into the supernatant whereas the amount present in cell extracts was reduced by about a third. The release of PrPSc into supernatants may occur as a consequence of exosome formation, or following digestion by phospholipases and proteases [11,34,35,36,37]. Glimepiride activates an endogenous GPI-PLC in adipocytes [18] and many of its effects on neurones were replicated by the addition of PI-PLC. In addition, glimepiride induced release of PrPSc was reversed by the inclusion of p-CMPS, an inhibitor of GPI-PLC. Whereas PrPSc bound to C18 columns, PrPSc released from glimepiride treated cells did not bind, consistent with the loss of hydrophobic acyl chains. Why glimepiride affects PrPSc at the surface of neurones, but not intracellular PrPSc, is unclear. It is possible that glimepiride does not penetrate the cell, an alternative explanation may be that GPI-PLC is associated with cell surface PrPSc, but is absent from intracellular stores of PrPSc.

Glimepiride treatment did not affect all GPI-anchored proteins. Thus, while digestion of neurones with PI-PLC released several GPI-anchored proteins into the supernatant, including PrPSc and Thy-1, glimepiride treatment released PrPSc but not Thy-1 (unpublished data). This specific effect of glimepiride may be due to the activation of an endogenous GPI-PLC that is closely
associated with specific GPI-anchored proteins such as PrP^C, but not with others including Thy-1 or CD55 which occupy separate domains upon the cell surface [47]. An alternative explanation is that CD55 and Thy-1 may contain GPI anchors that are resistant to endogenous GPI-PLC.

The precise cellular location in which PrP^C is converted to PrP^Sc remains controversial with advocates for the endosomal recycling compartment [48,49]. However, anti-PrP antibodies reduced PrP^Sc formation, suggesting that conversion occurs either at the cell surface, or after PrP^C has been internalised from the cell surface [13,15,50]. Such observations indicate that surface expression of PrP^C is a prerequisite for PrP^Sc formation and that glimepiride reduced PrP^Sc formation by shedding PrP^C from the cell surface. Our finding that glimepiride treatment released PrP molecules from ScGT1 cells raised concerns that glimepiride might cause the release of PrP^Sc and facilitate its spread throughout the brain. However, all PrP released from cells within 1 hour of treatment was sensitive to digestion with proteinase K. Although the presence of proteinase K sensitive PrP^Sc is well documented [51], the released PrP was also sensitive to digestion with thermolysin which has been reported to digest PrP^C but not PrP^Sc [29]. Collectively these results indicate that the PrP released from ScGT1 cells was PrP^C. The longer term effects of glimepiride treatment showed that twice daily treatment for 7 days caused a dose-dependent reduction in the PrP^Sc content of ScGT1, ScN2a and SMB cells. It also reduced the amount of PrP^Sc released into supernatants over this period, excluding the possibility that the reduction in cell-associated PrP^Sc was due to glimepiride inducing the release of PrP^Sc from cells. Our findings are consistent with the hypothesis that glimepiride acts by limiting the supply of PrP^C to cellular sites that are essential for PrP^Sc formation.

Glimepiride treatment of cortical neurones affected cell surface PrP^C but not intracellular PrP^C. Similar results were obtained with GT1 and ScGT1 cells in which approximately 70% of PrP^C molecules remained after treatment with glimepiride or PI-PLC and about the same amount resisted labelling by membrane impermeable biotin. These results suggest that PrP^Sc is formed from a subset of PrP^C molecules that recycle to and from the cell surface. Perhaps more significantly they indicate that the intracellular PrP^C molecules were poor substrates for conversion to PrP^Sc. In addition, the repopulation of surface PrP^C in glimepiride treated cells was from newly synthesised PrP^C rather than from the intracellular pool, as it was delayed by the inclusion of the protein synthesis inhibitor cycloheximide. We conclude that there are at least 2 pools of PrP^C: one that consists of PrP^C molecules that recycle to and from the cell surface and are susceptible to conversion to PrP^Sc and another pool of PrP^C molecules that are mostly intracellular and are not readily converted to PrP^Sc suggesting that they follow different trafficking pathways. Such results are consistent with reports that altering the trafficking of PrP^C alters PrP^Sc formation [52,53].

Pre-treatment with glimepiride protected cortical and hippocampal neurones against the toxic action of PrP82–146; it increased the LD_{50} of PrP82–146 by more than 20 fold, from 10 μM to over 200 μM. However, glimepiride treated neurones remained sensitive to staurosporine (data not shown). The protective effect of glimepiride required pre-treatment; glimepiride did not rescue neurones that had been incubated with PrP82–146.

Figure 10. Glimepiride reduced the binding of PrP82–146 to neurones. The amount of PrP82–146 in cell extracts from cortical neurones pre-treated for 1 hour with a vehicle control (□) or with 5 μM glimepiride (■) and exposed to 10 μM PrP82–146 for different times periods as shown. Values shown are the mean average amount of PrP82–146 (μM) ± SD, n = 9. doi:10.1371/journal.pone.0008221.g010

Figure 11. Glimepiride reduced the activation of cPLA2 by PrP82–146. The amount of activated cPLA2 in cell extracts from cortical neurones pre-treated for 1 hour with a vehicle control (□), 5 μM glimepiride (■) or PI-PLC (■) and incubated with varying concentrations of PrP82–146 for 24 hours. Values shown are the mean average amount of activated cPLA2 (units) ± SD, n = 12. (B) The amount of PGE2 in cell extracts from cortical neurones pre-treated for 1 hour with control medium (□), 5 μM glimepiride (■) or PI-PLC (striped bars) and incubated with control medium or 10 μM PrP82–146. Values shown are the mean average amount of PGE2 (pg/ml) ± SD, n = 9. doi:10.1371/journal.pone.0008221.g011
for 30 minutes indicating that it affected an early event in PrP82–146 induced toxicity. Moreover, the protective effect of glimepiride was transient. Restoration of PrPβ2 to the surface of neurons following glimepiride treatment was associated with their increased reactivity of neurons to PrP82–146. Neurons treated with 10 μM of glimepiride were also protected against PrP82–146 suggesting that glimepiride-mediated neuroprotection was due to activation of GPI-PLC. This hypothesis was strengthened by the finding that the protection induced by glimepiride was reversed following the addition of the GPI-PLC inhibitor p-CMPS.

Glimepiride has been proposed as a receptor for PrP peptides [40] and glimepiride reduced the binding of PrP82–146 to neurones. It is worth noting that although treatment with glimepiride or PI-PLC significantly reduced the binding of PrP82–146 to neurones, these cells still bound significant amounts of PrP82–146 (about 50% of the binding of untreated cells) indicating that PrP82–146 can bind to neurones via a PrPβ2 independent mechanism. Many proteins have been proposed to be prion receptors [34] and it seems likely that glimepiride treated cells express some of them, or that PrP82–146 binds to cells independently of specific protein interactions. Since the reduction in PrP82–146 binding alone did not fully explain the protective effects of glimepiride, the effects of glimepiride on PrP82–146 induced cell signalling were examined. The unregulated activation of PLAr2 is recognized as a key event in some neurodegenerative diseases [41,42] and is the first step in the production of eicosanoids, docosanoids and platelet activating factors, high concentrations of which can cause glial activation, synapse damage and neuronal death. Furthermore, PLAr2 plays a critical role in neurotoxicity caused by PrP peptides [55]. Our experiments showed that PrP82–146 activated cPLAr2 in neurones and increased PGE2 production, a marker of PLAr2 activation that is increased in scrapie infected mice [56,57] and in the cerebrospinal fluid of patients with CJD [58,59]. Pre-treatment with glimepiride significantly reduced PrP82–146 induced activation of cPLAr2 and the production of PGE2. Although the precise mechanism is not clear, the activation of cPLAr2 occurs in cholesterol-sensitive lipid rafts [60,61]. Since glimepiride induced digestion of GPI anchored proteins affects membrane cholesterol in adipocytes [62] our results are consistent with the hypothesis that glimepiride modifies lipid rafts required for cPLAr2 activation.

Other studies suggest that the neurotoxicity of PrP peptides is through the amplification of PrPβ2 associated signalling pathways [63] which may be downregulated following glimepiride treatment.

Prior infection increased cholesterol in cell membranes [32]. Since the insulin receptor is found within lipid rafts [64] and insulin signalling is cholesterol dependent [65,66], prion infection induced changes in cell cholesterol may modify insulin signalling. This is consistent with observations that prion infection affects insulin and insulin-like growth factor receptors in cell lines [67,68] and that scrapie infection induced diabetes mellitus in hamsters is directly damaging the central nervous system, without affecting the pancreas [69]. Thus, glimepiride treatment may also reverse prion-induced effects on insulin signalling.

One important consequence of the effect of glimepiride on PrPβ2 may be of relevance to the treatment of Alzheimer’s disease. PrPβ2 was identified as a receptor that mediated the impairment of synaptic plasticity induced by amyloid-β oligomers [70]. Thus, the pharmacological regulation of PrPβ2 by glimepiride could provide a new approach to the inhibition of amyloid-β mediated synapse damage in Alzheimer’s disease patients.

New approaches to the treatment of neurodegenerative conditions including prion diseases are urgently required. We have demonstrated that treatment of neurones with glimepiride caused the shedding of PrPβ2 from the cell surface through activation of an endogenous GPI-PLC. Treatment reduced the formation of PrPSc in prion-infected neuronal cell lines and increased the survival of neurones incubated with PrP82–146. Glimepiride treatment reduced both the amount of PrP82–146 ingested by neurones and PrP82–146 induced activation of cPLAr2. Our results suggest that glimepiride could prove beneficial in the treatment of prion diseases.

Author Contributions
Conceived and designed the experiments: CB MS AW. Performed the experiments: CB. Analyzed the data: CB MT LD MS AW. Contributed reagents/materials/analysis tools: MT MS. Wrote the paper: CB MT LD AW.

References
1. Prusiner SB (1998) Prions. ProcNatlAcadSciUSA 95: 13363–13383.
2. Pan KM, Baldwin M, Nguyen J, Gaset M, Serhan A, et al. (1995) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. ProcNatlAcadSciUSA 90: 10962–10966.
3. Prusiner SB, McKinley MP, Bosman KA, Bolton DC, Bendheim PE, et al. (1983) Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35: 349–358.
4. Jeffrey M, Hilliday WG, Bell J, Johnston AR, MacLeod NK, et al. (2000) Synapse loss associated with abnormal αP2 preceeds neuronal degeneration in the scrapie-infected murine hippocampus. Neuropsychopharmacology 26: 41–54.
5. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144.
6. Barron RM, Campbell SL, King D, Bellon A, Chapman KE, et al. (2007) High dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegeneration 3: 331–340.
7. Stahl N, Borchehl DR, Hsu K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51: 229–240.
8. Stahl N, Borchehl DR, Prusiner SB (1990) Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 29: 5405–5412.
9. 11. Stahl N, Borchelt DR, Hsu K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51: 229–240.
10. Stahl N, Borchehl DR, Prusiner SB (1990) Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 29: 5405–5412.
11. Stahl N, Borchelt DR, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51: 229–240.
Lipid Droplets in Rat Adipocytes Is Induced by Palmitate, H2O2, and the Sulfonurylurea Drug Glimepiride. Mol Pharmacol 73: 1513–1529.

18. Brandner S, Isemann S, Raaber A, Fischer M, Sailer A, et al. (1996) New model of epithelial dystrophy for the study of insulin-like growth factor signaling. Nature 384: 549–553.

19. Salama A, Morbin M, Massignan T, Morban M, Aouad A, et al. (2007) Neuritogenic and Glial-Trophic Activity of a Synthetic Peptide Homologous to Gerstmann-Straussler-Scheinker Disease Amyloid Protein. J Biol Chem 282: 20387–20394.

20. Bate C, Salmona M, Williams A (2004) The role of platelet activating factor in rat adipocytes. Biochemical Pharmacology 69: 761–780.

21. Brown DR, Herms J, Krezschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5: 2057–2060.

22. Faresqui AA, Ong W-Y, Horrocks LA (2006) Inhibitors of Brain Phospholipase A2 reduction ameliorate cognitive deficits in a mouse model of Alzheimer’s disease. Nat Neurosci 11: 1311–1318.

23. Becker ML, Vaisser L, Tiencken PH, Hofman A, van Schaik RHN, et al. (2007) Cytchrome P450 2C9 *2 and *3 Polymorphisms and the Dose and Effect of Sulfonurylurea in Type II Diabetes Mellitus. Clin Pharmacol Ther 82: 203–213.

24. Sanchez-Mejia RO, Newman JW, Toh S, Yu G-Q, Zhou Y, et al. (2008) Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat Neurosci 11: 1311–1318.

25. Becker ML, Vaisser L, Tiencken PH, Hofman A, van Schaik RHN, et al. (2007) Cytochrome P450 2C9 *2 and *3 Polymorphisms and the Dose and Effect of Sulfonurylurea in Type II Diabetes Mellitus. Clin Pharmacol Ther 82: 203–213.

26. Magdalhaes AC, Silva JA, Lee KS, Martins VR, Prado VF, et al. (2002) Endocytic proteins involved with the intracellular trafficking of a fluorescent cellular prion protein. J Biol Chem 277: 33311–33318.

27. Prado MA, Alvés-Silva J, Magalhães AG, Prado VF, Lindau R, et al. (2004) PrP on the road: trafficking of the cellular prion protein. JNeurochem 88: 769–781.

28. Madore N, Smith KL, Graham CH, Jen A, Brady K, et al. (1999) Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 18: 6917–6927.

29. Marijnissen JZ, Banu A, Camps V, Zurzolo C (2009) Identification of an intracellular site of prion conversion. PLoS Pathog 5: e1000426.

30. Godber SE, Wille H, Kajula P, Latieswic D, DeArmond SJ, et al. (2006) Cryo-Immunogold Electron Microscopy: Toward Identification of a Conversion Site. J Neurosci 26: 12489–12499.

31. Lee KS, Lindau R, Prado MAM, Bentrami RR, Martins VR (2003) Towards cellular receptors for prions. Reviews in Medical Virology 13: 399–408.

32. Bate C, Salmona M, Williams A (2004) The role of platelet activating factor in rat adipocytes. Biochemical Pharmacology 69: 761–780.

33. Bate C, Salmona M, Williams A (2004) The role of platelet activating factor in rat adipocytes. Biochemical Pharmacology 69: 761–780.

34. Gilch S, Winkhofker GF, Groshopp MH, Nunziate M, Lucassen R, et al. (2001) Intracellular re-routing of prion protein prevents propagation of PrPSc and delays onset of prion disease. EMBO J 20: 3957–3966.

35. Bate C, Williams A (2007) Squalatin protects neurons and reduces the activation of caspase-6-like protease by PrPSc. J Biol Chem 282: 10538–10545.

36. Gilch S, Winkhofker GF, Groshopp MH, Nunziate M, Lucassen R, et al. (2001) Intracellular re-routing of prion protein prevents propagation of PrPSc and delays onset of prion disease. EMBO J 20: 3957–3966.

37. Bate C, Williams A (2007) Squalatin protects neurons and reduces the activation of caspase-6-like protease by PrPSc. J Biol Chem 282: 10538–10545.
