A possible observational evidence for θ^{-2} angular distribution of opening half-angle of GRB jets

Daisuke Yonetoku1, Ryo Yamazaki2, Takashi Nakamura3, and Toshio Murakami1

1Department of Physics, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
2Department of Earth and Space Science, Osaka University, Toyonaka 560-0043, Japan
3Department of Physics, Kyoto University, Kyoto 606-8502, Japan

ABSTRACT

We propose a method to estimate the pseudo jet opening half-angle of GRBs using the spectral peak energy (E_p)-peak luminosity relation (so called Yonetoku relation) as well as the E_p-collimation-corrected γ-ray energy relation (so called Ghirlanda relation). For bursts with known jet break times and redshifts, we compared the pseudo jet opening half-angle with the standard one and found that the differences are within a factor 2. We apply the method to 689 long GRBS. We found that the distribution function of the pseudo jet opening half-angle obeys $f(\theta_j) \propto \theta_j^{-2.2\pm0.2}$ with possible cutoffs for $\theta_j < 0.04$ and $\theta_j > 0.3$ although the log-normal fit is also possible. θ^{-2} distribution is compatible with the structured jet model. From the distribution function we found that the beaming correction for the rate of GRBs is ~ 340, which means $\sim 10^{-5}$ yr$^{-1}$ galaxy$^{-1}$ or only one in 10^2 type Ib/c supernovae. We also found the evolution of the distribution function as a function of the redshift.

Key words: gamma rays: bursts — gamma rays: observations — gamma rays: theory.

1 INTRODUCTION

Gamma-ray bursts (GRBs) arise from relativistic jets (e.g., Mészáros 2002; Zhang & Mészáros 2003). Relativistic motion, with Lorentz factor of greater than $\sim 10^{2}$ is necessary in order to resolve the “Compactness problem”. On the other hand, the evidence of the jet collimation has been derived by the wave-length-independent achromatic break in the observed afterglow light curve. The jet opening half-angle has been actually measured in this context for bursts with successfully measured redshifts and jet break times. However, the small number of samples prevents us from discussing the statistical properties of the opening angle distribution. We have not yet known the maximum and minimum value of the opening angle as well as the slope of the distribution function well (Frail et al. 2001). These quantities are very important to argue the GRB rate, the energetics, the nature of progenitors, and so on.

There is a correlation between the rest-frame spectral peak energy E_p and the isotropic equivalent γ-ray energy E_{iso} of GRBs called the Amati relation (Amati et al. 2002; Atteia 2003; Lamb et al. 2004; Sakamoto et al. 2004). Several authors have argued theoretical interpretations of the relation (Yamazaki et al. 2004; Eichler & Levinson 2004; Lamb et al. 2005). While Nakar & Piran (2004) argued against the Amati relation because $\sim 40\%$ of 751 BATSE GRBs do not have the solution to the undetermined redshift under the Amati relation and clear outliers such as GRB 980425 and GRB 031203 exist. A similar argument against the Amati relation has also been made by Band & Preece (2005). Ghirlanda et al. (2005a) argued against Nakar & Piran (2004) as well as Band & Preece (2005). They used 442 bright BATSE GRBs with good statistics and pseudo redshift from the lag-luminosity relation (Band, Norris & Bonné 2004) and obtained the Amati relation with the slightly different power law index and the larger scatter than the original one. They found that the chance probability of the revised Amati relation is 2.1×10^{-65}. Similar analysis can be also seen in Bosnjak et al. (2003).

As for outliers, Yamazaki, Yonetoku & Nakamura (2003) argued that if the intrinsic E_p of GRB 980425 is 2-4 MeV similar to GRB990123 and the viewing angle is $\sim \theta_j + 10\gamma^{-1}$ with θ_j and γ being the jet opening half-angle and the gamma factor of the jet, the observed E_{iso} and E_p of GRB 980425 can be reproduced. If we locate GRB 980425 at the distance larger than 800 Mpc, the event is not observed. Hence, GRB 980425-like events are not included in the bright BATSE GRBs. Similar arguments have been also done for GRB 031203 (Ramirez-Ruiz et al. 2004). Note here that in the classification of HETE-2, GRB 980425 and GRB 031203 are X-ray rich GRBs.
Recently, similar relations to the Amati one with the tighter correlation have been found. Yonetoku et al. (2004) have shown that for 16 GRBs with known redshifts detected by BATSE and BeppoSAX, there is a tight positive correlation between E_{p} and the peak luminosity (E_{p}-L_{p} relation). The chance probability is extremely low 5.3×10^{-5}. Ghirlanda et al. (2005) called the relation as the Yonetoku relation and checked the validity of the relation using 442 bright GRBs with the pseudo redshift and confirmed the relation with the same power law index within the error in the original Yonetoku relation. They found that the chance probability of the Yonetoku relation is 1.6×10^{-49}. Yonetoku et al. (2004) used the Yonetoku relation as the redshift indicator for 689 GRB samples without known redshift, and derived the GRB formation rate. On the other hand, for 15 GRBs detected by BATSE, BeppoSAX and HETE-2 with measured redshift and opening half-angle θ_{j}, Ghirlanda et al. (2004) found that E_{p} correlates with the collimation-corrected γ-ray energy E_{γ}. We call the relation as the Ghirlanda relation.

The E_{p}-L_{p} diagram of GRBs may correspond to the Hertzsprung-Russell (HR) diagram of stars. Then the Yonetoku as well as the Ghirlanda relations correspond to the main-sequence where stars cluster around a single curve determined by the mass of the star. This suggests the existence of a certain parameter that controls GRBs like the mass of the star in the HR diagram. In the HR diagram the outliers of the main sequence exist such as red giants and white dwarfs. We know the physical reasons for the existence of these outliers so that they do not refute the main sequence relation. In the Yonetoku and the Ghirlanda relations also outliers exist for which we will know the physical reasons in future as suggested in Yamazaki, Yonetoku & Nakamura (2003) and Ramirez-Ruiz et al. (2004).

In this letter, we show that the Yonetoku and the Ghirlanda relations can be used to estimate the opening half-angle of the relativistic jet of GRBs. Main advantage of our jet opening half-angle estimator is that the opening angle can be calculated only from the information of the prompt emission. This letter is organized as follows. In section 2, using the Yonetoku and Ghirlanda relations, we derive an empirical formula to estimate the opening half-angle and discuss its validity. Using the estimator, we derive the distribution of opening half-angle of BATSE-triggered bursts in section 3. Section 4 is devoted to discussions.

2 JET OPENING ANGLE INFERRED FROM TH YONETOKU AND THE GHIRLANDA RELATIONS

Usually the jet opening half-angle is estimated only when both the redshift and the achronic break time in the afterglow light curve are measured. Under the simple assumption of a uniform ambient matter distribution of number density n_{0}, the jet opening half-angle is estimated as

$$\theta_{j, \text{break}} = 0.12 \left(\frac{\tau_{\text{jet}, d}}{(1+z)}\right)^{1/8} \left(\frac{n_{0} \gamma_{r}}{E_{\text{iso}}/53}\right)^{1/8},$$

where $E_{\text{iso}}/53 = E_{\text{iso}}/10^{53}$ erg, and $\tau_{\text{jet}, d}$ and γ_{r} are the jet break time in days and the efficiency of the fireball in converting the energy in the ejecta into γ-rays, respectively (Sari et al. 1998). However continuous follow-up observations are required to measure the achronic jet-break time, and moreover these kinds of observations are realized only for the bright afterglows so that it is hard to measure the opening half-angle for large amount of GRBs in this method.

We propose here a different method to estimate the opening half-angle using only informations of the prompt gamma-ray emission. Let us assume that the rest-frame spectral peak energy E_{p}, the peak luminosity L_{p}, the isotropic equivalent γ-ray energy E_{iso}, the jet opening-half angle θ_{j}, and the collimation-corrected energy E_{γ} satisfy the Yonetoku and the Ghirlanda relations as

$$E_{p} = 2.1 \times 10^{2} L_{p,52}^{0.50} \text{ keV},$$

$$E_{p} = 4.8 \times 10^{2} E_{\gamma,51}^{0.71} \text{ keV},$$

$$E_{\gamma} = (1 - \cos \theta_{j}) E_{\text{iso}},$$

where Q_{γ} denotes $Q/10^{j}$ in cgs units (Yonetoku et al. 2003). Ghirlanda et al. (2004). From equations (2), (3) and (4), we have,

$$\Omega_{j} = 1 - \cos \theta_{j} = 0.30 \frac{L_{p,52}^{0.50/0.71}}{E_{\text{iso},51}}.$$

From the observed E_{p} and L_{p}, we can determine the redshift under the Yonetoku relation and the given cosmological parameter as in Yonetoku et al. (2004). Then E_{iso} can be computed using the observed fluence. Therefore, only from the information of the prompt gamma-ray emission, we can estimate the jet opening half-angle for each GRB. This method has a strong advantage compared with the jet-break measurement in afterglows since we can use the large number of BATSE GRBs data.

To show the validity of our method, in figure 1 we compare $\theta_{j, \text{break}}$ estimated by Eq. (1) with θ_{j} by Eq. (5) for GRBs with measured redshift and jet break time. It is found that there exists a positive correlation with the linear correlation coefficient including weighting factor is 0.760 with 13 degree of freedom (excluding the lower and upper limit samples), which corresponds to the chance probability of 9.63×10^{-4}. Their differences from the linear function (equivalent line) are within a factor of 2. Although we had better use the word “the pseudo jet opening half-angle” for the half-angle from equation (4), we simply use the opening half-angle in this letter for convenience.

3 JET OPENING ANGLE DISTRIBUTION OF BATSE BURSTS

We used the same data set of 689 long GRBs published in Yonetoku et al. (2004) to measure the distribution function, $f(\theta_{j})$. Here θ_{j} is the jet opening half-angle and $f(\theta_{j})d\theta_{j}$ is the relative number of the jet with the opening half-angle between θ_{j} and $\theta_{j} + d\theta_{j}$. In order to have a better signal-to-noise ratio in our analyses, we selected 605 GRBs with the flux greater than 1×10^{-6} erg cm$^{-2}$s$^{-1}$. Having obtained the observed peak flux and the spectral indices as well as the E_{p}, the redshift is estimated using the Yonetoku relation for each event (Yonetoku et al. 2004). Then, we can estimate L_{p} and E_{iso}. Hence θ_{j} is also calculated by equation (5). The empirical θ_{j} estimator shown in equation (5) depends on two parameters; L_{p} and E_{iso}. This fact means that the two different types of selection effects are mixed. To avoid such doubly truncation effects, we manually set a truncation.
Figure 1. Comparison between jet opening half-angle \(\theta_j \) estimated by Eq. (3) and \(\theta_{j, \text{break}} \) estimated by Eq. (4). The solid line is an equivalent line.

Figure 2. Distribution of the jet opening half-angle \(\theta_j \) estimated by Eq. (3) vs. redshift derived from the \(E_p \)-\(L_p \) relation. The solid line shows the truncation of the upper bound of \(\theta_j \) that is caused by the flux limit of \(F_{\text{lim}} = 2 \times 10^{-7} \) erg cm\(^{-2}\)s\(^{-1}\). The cross points are the \(\theta_j \) measured in the present work. The opening angles measured from the jet-break time in the optical afterglow are also plotted on the same figure as squares and arrows.

Figure 3. The best index of the jet opening angle evolution as a function of the redshift. The data correlation degree for each value.

as the \(E_{\text{iso}} > 10^{52} \) ergs at the rest frame of GRBs. In this case, both \(L_p \) and \(E_{\text{iso}} \) are limited only by the peak flux, so we can deal with the data as the simply truncated one.

Figure 2 shows the distribution of the derived jet opening half-angle as a function of the redshift. The \(\theta_j \) distributes within the range of \(0.04 < \theta_j < 0.3 \) radian. Using the flux limited samples explained above, we can estimate the opening half-angle evolution and the true distribution of \(\theta_j \) following the detailed mathematical descriptions (e.g., Lynden-Bell 1971; Petrosian 1993; Maloney & Petrosian 1999; Yonetoku et al. 2004).

First, we estimate the opening half-angle evolution, which is the redshift dependence of \(f(\theta_j) \), from the \((1+z, \theta_j)\) distribution shown in figure 2. The data correlation degree in the flux limited samples are calculated by so called \(\tau \)-statistical method which is very similar to the Kendall’s \(\tau \) statistics. To refer to the previous works (Lloyd-Ronning et al. 2002; Yonetoku et al. 2004), we assume the functional form of \(f(\theta_j) \) evolution as \((1+z)^k\), and calculate the data correlation degree for each \(k \) value.

In figure 3 we show the \((1+z, \theta_j)\) correlation as a function of index \(k \). No \(\theta_j \) evolution is rejected about 6 sigma confidence level. When we assume the case of \(k = -0.45 \), \(\theta_j \) becomes independent of the redshift. In other words, \(\theta_j \) evolution of \((1+z)^{-0.45}\) is hidden in the \((1+z, \theta_j)\) plane.

Next, we derive the opening half-angle distribution. One possible method (non-parametric method) developed by Lynden-Bell (1971) is applied in this analysis. We define \(\theta'_j \equiv \theta_j/(1+z)^{+0.45} \) which is equivalent to the evolution-removed opening half-angle. Then the observed data randomly distributes in the \((1+z, \theta'_j)\) plane, so we can easily assume the missing data caused by the flux limit. Strictly speaking, for high-redshift GRBs (e.g., \(z \gtrsim 5 \)), the observed fluence may be estimated as the lower value because there may be missing photons behind the background level. On the other hand, the peak flux may be correctly estimated. Hence derived opening half-angles for high-z events may be larger than the actual values. In order to avoid such confusion, we consider 430 events within the estimated redshifts of less than 4.5. Additional merit is that the \(k \)-correction factor can be neglected. The differential \(\theta'_j \) distribution \(f(\theta'_j) \) which corresponds to one at \(z = 1 \), is shown in figure 4. If one would like to obtain the \(\theta_j \) distribution at each redshift, it is roughly estimated as \(f(\theta_j) = f(\theta'_j)((1+z)/2)^{-0.45} \).

The opening half-angle distribution \(f(\theta'_j) \) is based on the number of event detected by BATSE. The chance probability to observe narrowly collimated events are much lower than that of the wide opening half-angle events due to the geometrical effect. Therefore, we have to take into account the correction of \(f(\theta'_j)/\Omega_j \) when we argue the true probability density function. In figure 5 we show the true opening half-angle distribution. It can be fitted by the power-law
observed with BATSE detector. True opening angle distribution at

The differential θ_j distribution at $z = 1$ of the GRBs observed with BATSE detector.

Form in the range $\theta'_j > 0.05$ radian as $\theta'_j^{-2.2\pm0.2}$ with 90 % confidence level. Clear cut off at ~ 0.04 rad can be seen.

Ghirlanda et al. (2005a) obtained the opening half-angle distribution using the Ghirlanda relation and the Amati relation. The result looks like a log-normal one. We also tried to fit a log-normal one. We obtained acceptable results with the mean log $\mu = -1.15$ (0.07 radian) and the standard deviation log $\sigma = 0.24$ (0.04–0.12 radian). However the data distribution is asymmetric in the logarithmic horizontal scale as shown in Figure 4. To say the power law distribution with cut-offs is better than the log-normal one, we have to confirm that the cut-off at $\theta_j = 0.04$ exists. However we can not conclude the existence because of the large errors in the small θ_j region.

From the distribution function we found the beamung correction for the rate of GRBs ~ 340 at $z = 1$ by computing $\langle \Omega^{-1} \rangle = \int f(\theta_j')\Omega^{-1}d\theta_j'/\int f(\theta_j')d\theta_j'$. This rate is about factor of 4 larger than that obtained by Guetta, Piran & Waxman (2004) using a different method, while Frail et al. (2001) obtained this correction ~ 520 using the same method with smaller number of samples. Since the lower cut-off of the distribution $\theta'_j \sim 0.04$ are similar for both cases, the difference comes from the higher power law index ~ -4.54 of Frail et al. (2001). Since the number of GRBs is much smaller in their analysis, observational biases of the smaller samples of larger opening half-angle causes the steeper power law. Adopting the local GRB rate of ~ 0.5 Gpc$^{-3}$ yr$^{-1}$ Schmidt (2001), we obtain the true rate of GRB as ~ 170 Gpc$^{-3}$ yr$^{-1}$ which means $\sim 10^{-3}$ yr$^{-1}$ galaxy$^{-1}$ with the number density of the galaxy being $\sim 10^{-2}$ galaxy Mpc$^{-3}$. Since the rate of type Ib/c supernovae is $\sim 10^{-3}$ yr$^{-1}$ galaxy$^{-1}$ Cappellaro et al. (2003), only one in 10^2 type Ib/c supernovae becomes GRB if GRB is the peculiar type Ib/c supernova.

4 DISCUSSIONS

We present an empirical opening half-angle estimator that is inferred from the Yonetoku and the Ghirlanda relations. Our method requires only the data of prompt emission, which is different from the standard method using the break in the afterglow light curve and the redshift. Using the empirical opening angle estimator, we have derived the opening angle distribution of GRBs. The distribution can be fitted by the power-law form in the range $\theta_j > 0.07$ rad as $\theta_j^{-2.2\pm0.2}$. The cut-off at ~ 0.04 rad can be seen. In the uniform jet model of GRBs, this means that the distribution function happens to be $\sim \theta^{-2}$.

The other possibility is the structured jet model. In the original version of the universal structured jet model Rossi, Lazzati & Rec (2002) Zhang & Mészáros (2002), the energy per unit solid angle is in proportion to $\sim \theta^{-2}$. The lower and upper angle cutoff exist and the jet structure is essentially the same between the lower and the upper cutoff, which is the origin of the name “structured” jet. The viewing angle corresponds to the jet opening angle in the structured jet model so that we need to argue observationally what will be the opening angle distribution of the structured jet Perna, Sari & Frail (2003). If all bursts were observable, the distribution would be uniform per unit solid angle and $f(\theta) \propto \theta$. However, E_{iso} for the smaller viewing angle is brighter by a factor of θ^{-2} so that the maximum observable distance is larger by a factor of θ^{-3} which contains a volume larger than θ^{-3}. Then we have $f(\theta) \propto \theta^{-2}$ which is compatible with the result in the present paper. Especially our Fig. 5 looks like Fig. 3 of Perna, Sari & Frail (2003) with appropriate parameters.

The evolution effect found in the present paper means that the jet opening half-angle becomes narrower for larger redshift. One possible qualitative explanation is that this is due to the metal dependence of the progenitors. Since the metallicity of the star decreases as a function of the redshift, it is expected that the mass loss of the stars decreases as a function of the redshift if the mass loss is derived by the line absorption of photons in the atmosphere of the stars. This suggests that for high redshift progenitors of GRBs, the mass of the envelope is larger so that only the sharper jet can punch a hole in the envelope of the progenitor star.

In this paper, when we calculate the true opening half-angle distribution, we implicitly assumed that the jet emission can be seen only when the jet is seen on-axis. In re-
Opening Angle Distribution of GRBs might be important (Yamazaki et al. 2002, 2003, 2004). When the contributions of off-axis emission is considered, true distribution may be modified. However, the beaming correction from off-axis effects is important only for $z \lesssim 1.5$ because of the relativistic beaming effect (Yamazaki et al. 2004).

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid for for the 21st Century COE “Center for Diversity and Universality in Physics” and also supported by Grant-in-Aid for Scientific Research of the Japanese Ministry of Education, Culture, Sports, Science and Technology, No.15740149 (DY), No.05008 (RY), No.14047212 (TN), and No.14204024 (TN).

REFERENCES

Amati, L., et al., 2002, A&A, 390, 81
Atteia, J.-L. 2003, A&A, 407, L1
Band, D. L., Norris, J. P., Bonnel, J. T., 2004, ApJ, 613, 484
Band, D. L., Preece, R. D., 2005, astro-ph/0501559
Bloom, J. S, Frail, D. A., Kulkarni, S. R., 2003, ApJ, 594, 674
Bosnjak, Z. et al., 2005, astro-ph/0502185
Cappellaro, E., Barbon, R., Turatto, M., 2003, astro-ph/0310859
Eichler, D. Levinson, A., 2004, ApJL, 614, L13
Frail, D. A. et al., 2001, ApJ, 562, L55
Ghirlanda, G., Ghisellini, G., Firmani, C., 2005a, astro-ph/0502186
Ghirlanda, G. et al., 2005b, astro-ph/0502488
Ghirlanda, G., Ghisellini, G., Lazzati, D., 2004, ApJ, 616, 331
Guetta, D., Piran, T., Waxman, E., 2004, astro-ph/0311488
Ioka, K., Nakamura, T., 2002, ApJ, 570, L21
Lamb, D. Q. et al., 2004, New Astron.Rev. 48, 423 (astro-ph/0309462)
Lamb, D. Q., Donahy, T. Q., Graziani, C., 2005, ApJ, 620, 355
Lloyd-Ronning, N. M., Fryer, C. L. Ramirez-Ruiz, E., 2002, ApJ, 574, 554
Lynden-Bell, D., 1971, MNRAS, 155, 95
Maloney, A., Petrosian, V., 1999, ApJ, 518, 32
Mészáros, P., 2002, ARA&A, 40, 137
Nakar, E., Piran, T. 2004, astro-ph/0412232
Perna, R., Sari, R., Frail, D., 2003, ApJ, 594, 379
Petrosian, V., 1993, ApJ, 402, L33
Ramirez-Ruiz, E. et al., 2004, astro-ph/0412145
Rossi, E., Lazzati, D., Rees, M. J., 2002, MNRAS, 332, 945
Schmidt, M., 2001, ApJ, 552, 36
Sakamoto, T. et al., 2004, ApJ, 602, 875
Sari, R., Piran, T., Halpern, J. P., 1999, ApJ 524, L43
Yamazaki, R., Ioka, K., Nakamura, T., 2002, ApJ, 571, L31
Yamazaki, R., Ioka, K., Nakamura, T., 2003, ApJ, 593, 941
Yamazaki, R., Ioka, K., Nakamura, T., 2004, ApJ, 606, L33
Yamazaki, R., Yonetoku, D., Nakamura, T., 2003, ApJ, 594, L79
Zhang, B., Mészáros, P., 2002, ApJ, 571, 876
Zhang, B., Mészáros, P., 2003, Int. J. Mod. Phys. A19, 2385 (astro-ph/0311321)