Diversity, Phylogeny, and Host-Specialization of Hyaloperonospora Species in Korea

Jae Sung Lee1, Hyang Burm Lee2, Hyeon-Dong Shin3 and Young-Joon Choi1,*

1Department of Biology, Kunsan National University, Gunsan 54150, Korea
2Division of Food Technology, Biotechnology & Agrochemistry, Chonnam National University, Gwangju 61186, Korea
3Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea

Abstract The genus Hyaloperonospora (Peronosporaceae; Oomycota) is an obligate biotrophic group that causes downy mildew disease on the Brassicaceae and allied families of Brassicales, including many economically relevant crops, such as broccoli, cabbage, radish, rape, and wasabi. To investigate the diversity of Hyaloperonospora species in northeast Asia, we performed a morphological analysis for the dried herbarium specimens collected in Korea, along with molecular phylogenetic inferences based on internal transcribed spacer rDNA and cox2 mtDNA sequences. It was confirmed that 14 species of Hyaloperonospora exist in Korea. Of these, three species, previously classified under the genus Peronospora, were combined to Hyaloperonospora: H. arabidis-glabrae comb. nov. (ex Arabis glabra), H. nasturtii-montani comb. nov. (ex Rorippa indica), and H. nasturtii-palustris comb. nov. (ex Rorippa palustris). In addition, finding two potentially new species specific to northeast Asian plants is noteworthy in support of the view that the species abundance of Hyaloperonospora has been underestimated hitherto.

Keywords Barcoding, Brassicaceae, cox2, Downy mildew, Emerging disease, Peronospora

The Peronosporaceae is the largest obligate biotrophic family of the phylum Oomycota. They cause downy mildew disease on a wide range of mono-and dicotyledonous plants [1], among which the Brassicaceae and allied families of Brassicales are the most common host plants. A total of 140 names have been introduced to accommodate the Peronospora species infecting the brassicaceous plants [2], more than half of which have been described by Gäumann [3, 4], who discriminated them mainly using subtle morphological difference and host specialization. In addition to the establishment of the new genus Hyaloperonospora for the brassicolous downy mildews (BDMs) [5], recent phylogenetic studies revealed a high level of species diversity and host-specialization of this genus [6-12]. The collective results support the view that the narrow species circumscription [3, 4] better reflects the natural taxonomic system for BDMs. The results refute the broad species concept of Yerkes and Shaw [13], who attributed the disease to a single species, H. parasitica, although for the last 50 years this concept has been more widely applied to plant pathology and related fields.

Downy mildew is an important disease for many economically relevant brassicaceous crops, particularly species or varieties of Brassica, e.g., the flowerhead types (cauliflower, broccoli), the leaf brassicas (cabbage, Brussels sprouts), the root brassicas (turnips, swedes), oil brassicas (rape), and the horticultural variety (B. oleracea var. acephala). In Korea, commercial crops, including brassicas and radishes, have experienced ongoing severe economic losses [14]. Furthermore, the active importation and cultivation of various overseas crops have led to the emergence of new diseases affecting broccoli [15], tatsoi [16], and spider flower [17]. Previously, Choi et al. [18] described a high phylogenetic diversity for Hyaloperonospora specimens collected in Korea, but the discovered lineages could not be assigned at the species level because of the lack of morphological data and the broad species concept, which prevailed at that time in the taxonomy of downy mildews. The concept has continued to the first monographic studies for the Peronosporaceae in Korea [19]. However, in keeping with the aforementioned taxonomic system for downy...
mildews, recent studies have certainly reflected the narrow species concept for *Hyaloperonospora* species parasitic to *Cardamine* [12] and *Draba* [11] in Korea (Table 1).

This study evaluated the species diversity of BDMs in Eastern Asia using the herbarium specimens collected in Korea, for which mycological characteristics, phylogeny, and host-specialization of *Hyaloperonospora* species were investigated. We report the presence of eight interesting species, including three new combinations, two new species candidates, and three species that have been previously unrecorded in Korea (Table 1).

MATERIALS AND METHODS

Oomycete samples. Brassicaceous plants with downy mildew infections were collected from different sites of Korea for the past 15 years. Information on the dried herbarium samples selected for morphological and molecular phylogenetic analyses is provided in Table 2.

Morphological analysis. Conidiophores and conidia formed from the underneath of infected leaves or stems were transferred to a drop of lactic acid on a slide glass, covered with a cover slip, and briefly heated using an alcohol lamp. Slides were examined and photographed using a model BX53F microscope (Olympus, Tokyo, Japan) equipped with a DigiRetina 16M digital camera (Tucsen, Fuzhou, China). Measurements are reported as maxima and minima in parentheses and the mean plus and minus the standard deviation of a number of measurements given in parentheses.

DNA extraction, PCR, and sequencing. Genomic DNA was extracted from the infected dry host tissue using the DNeasy Plant Mini kit (Qiagen, Hilden, Germany). The ribosomal internal transcribed spacer (ITS) regions were amplified using primers ITS1-O [24] and LR0 [25]. For the mitochondrial cytochrome c oxidase subunit II (cox2) sequences, primers cox2-F [26] and cox2-RC4 [27] were used for amplification and sequencing. PCR conditions for ITS and cox2 amplifications were identical as outlined in Choi et al. [28]. The PCR products were purified and sequenced by a DNA sequencing service (Macrogen Inc., Seoul, Korea), with the same primers used for amplification.

Phylogenetic analysis. The ITS rDNA and the cox2 mtDNA sequences were edited using the DNAStar software package ver. 5.05 (DNAStar, Inc., Madison, WI, USA). Alignments of each locus were performed using MAFFT 7 [29] and the Q-INS-i algorithm [30], in addition to the previously published reference sequences of *Hyaloperonospora* and an outgroup taxon, *Perofascia lepidii*. Minimum evolution (ME) and maximum likelihood (ML) methods were used to construct two different trees. ME analysis was done using MEGA 7.0 [31] with the default settings of the program, except for replacement with the Tamura-Nei model. ML analysis, 1,000 rounds of random addition of sequences as well as 500 fast bootstrap replicates were performed with RAxML 7.0.3 [32] using the GTRCAT model.

RESULTS

Phylogenetic analyses. After the exclusion of excessive gap regions and large insertions present in the ITS rDNA regions of some *Hyaloperonospora* species, e.g., *H. parasitica* s.s. ex *Capsella bursa-pastoris*, 1,222 characters were included in analyses, of which 379 were parsimony informative. The cox2 matrix contained 509 characters, from which 150...
Oomycete species	Host plant	Geographic origin	Herb. No.	ITS	cox2
H. arabidis-alpinae	Arabis alpina	Austria, Niederösterreich	HV408-409 (WU)	AY531466	-
H. arabidis-glabra	Arabis glabra	Korea, Hoengseong	KUS-F21788	MF784703	MF784663
H. arabidis-glabra	Arabis glabra	Korea, Yangpyeong	KUS-F25778	MF784704	MF784664
H. parasitica s. lat.	Arabis soweri	Austria, Kärnten, Flattach	HV508-510 (WU)	AY531392	-
H. arabidis-turritae	Arabis turrita	Austria, Niederösterreich, Giefhühl	HV2121 (WU)	EU049223	-
H. brassicae	Armoracia rusticana	Austria, Oberösterreich, Raab	HV1006-1008 (WU)	AY531406	-
H. brassicae	Brassica campestris	Korea, Gangneung	KUS-F13731	AY210985	MF784665
H. brassicae	Brassica campestris	Korea, Seoul	KUS-F16040	AY210986	MF784666
H. brassicae	Brassica campestris	Korea, Sacheon	KUS-F19538	MF784705	MF784667
H. brassicae	Brassica napus	Germany, Sachsen-Anhalt, Libbesdorf	J1106/01 (TUB12465)	EU049254	-
H. brassicae	Brassica napus	Germany, Sachsen-Anhalt, Unterrissdorf	J904/01 (TUB12441)	EU049216	-
H. brassicae	Brassica napus	Korea, Pyeongtaek	KUS-F26445	KX01055	-
H. brassicae	Brassica oleracea var. italica	Korea, Jeju	KUS-F22524	EU137726	-
H. parasitica	Capsella bursa-pastoris	Korea, Seoul	KUS-F15691	AY210987	MF784668
H. parasitica	Capsella bursa-pastoris	Korea, Hongcheon	KUS-F18835	AY210988	MF784669
H. parasitica	Capsella bursa-pastoris	China, Yantai, Maoping	KUS-F22302	MF784706	MF784670
H. parasitica	Capsella bursa-pastoris	Korea, Gunsan	KNUH17	MF784707	MF784671
H. dentariae	Cardamine bulbifera	Austria, Niederösterreich, Giefhühl	HV2029 (WU)	KC49997	KC499957
H. cardamines-laciniatae	Cardamine diphylla	USA, Tennessee, Knoxville	HV-PA10 (WU)	KC49994	KC499953
H. cardamines-enneaphyllos	Cardamine enneaphyllos	Austria, Niederösterreich, Mannersdorf/Leithaged	HV2099 (WU)	KC4995018	KC499978
H. cardamines-enneaphyllos	Cardamine enneaphyllos	Austria, Niederösterreich, Giefhühl	HV2105 (WU)	KC4995019	KC499979
H. malyi	Cardamine graeca	Greece, Korfos, Episkopi	HV2895 (WU)	KC4995022	KC499982
H. dentariae	Cardamine heptaphylla	Italy, Lombardia, Lecco, Canzo, Gajum	HV2935 (WU)	KC4995005	KC4994956
H. nasturtii-aquatici	Cardamine hirsuta	Austria, Wien, Landstrasse, Botanischer Garten	HV2030 (WU)	KC4995026	KC499486
H. dentariae	Cardamine impatiens	Korea, Hongcheon	KUS-F20166	MF784708	MF784672
H. dentariae	Cardamine impatiens	Korea, Hoengseong	KUS-F21782	MF784709	MF784673
H. dentariae	Cardamine impatiens	Korea, Hongcheon	KUS-F21377	MF784710	MF784674
H. dentariae	Cardamine impatiens	Korea, Hoengseong	KUS-F21908	MF784711	MF784675
H. dentariae	Cardamine impatiens	Korea, Pyeongchang	KUS-F20305	MF784712	-
H. dentariae	Cardamine impatiens	Korea, Cheorwon	KUS-F23320	MF784713	MF784676
H. dentariae	Cardamine impatiens	Austria, Niederösterreich, Giefhühl	HV2289 (WU)	KC4995009	KC4994970
H. cardamines-laciniatae	Cardamine lacinia	USA, Maryland, Beltsville	HV2949 (WU)	KC499496	KC4994955
H. dentariae-macrophyllae	Cardamine leucantha	Korea, Chuncheon	KUS-F17273	AY210990	KC4994974
H. dentariae-macrophyllae	Cardamine leucantha	Korea, Hongcheon	KUS-F17298	AY210992	KC4994976
H. dentariae	Cardamine pentaphylla	Austria, Kärnten, Flattach, Tschepasschlucht	HV2334 (WU)	KC4995010	KC499971
H. nasturtii-aquatici	Cardamine pratensis	Austria, Niederösterreich, Mariensee	HV2400 (WU)	KC4995031	KC4994992
Hyaloperonospora sp.	Cardamine scutata	Korea, Chuncheon	KUS-F18833	AY210994	D099=D420
Hyaloperonospora sp.	Cardamine scutata	Korea, Pyeongchang	KUS-F19563	MF784714	MF784678
Hyaloperonospora sp.	Catolobus cf. pendulifolius	Korea, Samcheok	KUS-F18194	AY210108	MF784679
Oomycete species	Host plant	Geographic origin	Herb. No.	ITS	cox2
------------------	------------	-------------------	-----------	-------	--------
Hyaloperonospora sp.	*Catolobus cf. pendulus* (= *Arabis pendula*)	Korea, Samcheok	KUS-F18892	MF784715	MF784680
H. drabae	*Draba nemorosa*	Korea, Chuncheon	KUS-F15718	GU189409	MF784681
H. norvegica	*Draba nemorosa*	Korea, Muju, Mt. Dugyu	KUS-F21277	GU189411	MF784683
H. norvegica	*Draba nemorosa*	Korea, Muju, Mt. Dugyu	KUS-F21275	GU189412	MF784684
Hyaloperonospora sp.	*Eruca sativa*	Korea, Icheon	KUS-F24009	GQ919015	MF784685
H. thlaspeos-perfoliati	*Microthalmapi perfoliatum*	Germany, Baden-Württemberg, Öschingen	MG1879 (TUB12275)	AY531432	-
H. thlaspeos-perfoliati	*Microthalmapi perfoliatum*	Austria, Niederösterreich	HV2079 (WU)	EU049219	-
H. brassicaceae	*Raphanus sativus*	Spain, Avila, nearby Navalosa	GG253 (MA-Fungi72986)	EU049277	-
H. narcissi-montani	*Rorippa indica*	Korea, Busan	KUS-F23202	MF784718	MF784690
H. narcissi-palustris	*Rorippa palustris*	Korea, Gangneung	KUS-F11409	MF784692	-
H. narcissi-palustris	*Rorippa palustris*	Korea, Namyangju, Deokso	KUS-F18713	MF784693	-
H. nassurtii-montani	*Rorippa indica*	Korea, Chuncheon	KUS-F18834	MF784694	-
H. nassurtii-montani	*Rorippa indica*	Korea, Namyangju, Deokso	KUS-F18859	MF784695	-
H. nassurtii-palustris	*Rorippa indica*	Korea, Gangneung	KUS-F23202	MF784718	MF784690
H. nassurtii-palustris	*Rorippa palustris*	Korea, Namyangju, Deokso	KUS-F23409	MF784720	MF784696
H. rorippae-palustris	*Rorippa palustris*	Austria, Tiral, Steeg	GLM46904	EU049235	-
H. rorippae-palustris	*Rorippa palustris*	Austria, Tiral, Steeg	GLM46879	EU049234	-
H. brassicaceae	*Sinapis alba*	Germany, Rheinland-Pfalz, Kastellaun	J2247/01 (TUB12435)	EU049211	-
H. brassicaceae	*Sinapis alba*	Germany, Baden-Württemberg, Tübingen	MG1866	AY531403	-
H. brassicaceae	*Sinapis arvensis*	Germany, Sachsen, Wollenstein/Streckenwalde	D19/7/97	EU049218	-
Hyaloperonospora sp.	*Tarenaya hassleriana* (= *Cleome spinosa*)	Korea, Ganghwa	KUS-F25462	JQ301468	MF784697
Hyaloperonospora sp.	*Tarenaya hassleriana* (= *Cleome spinosa*)	Korea, Ganghwa	KUS-F25462	MF784721	MF784697
H. thlaspeos-avensis	*Thlaspi arvense*	Korea, Chuncheon	KUS-F17271	AY211009	MF784698
H. thlaspeos-avensis	*Thlaspi arvense*	Korea, Chuncheon	KUS-F18832	AY211010	MF784699
H. thlaspeos-avensis	*Thlaspi arvense*	Korea, Muju, Mt. Dugyu	KUS-F21272	MF784722	MF784700
H. thlaspeos-avensis	*Thlaspi arvense*	Austria, Oberösterreich, St. Willibald	HV762/HV764 (WU)	AY531445	-
Peroferasia lepidii	*Lepidium virginicum*	Korea, Gangneung	KUS-F17311	MF784723	-
Pf. lepidii	*Lepidium virginicum*	Korea, Changwon	KNUH33	MF784724	MF784702
Pf. lepidii	*Lepidium virginicum*	Korea, Seoul	KUS-F17250	AY211013	MF784701

Table 2. Continued
Hyaloperonospora Species in Korea

were parsimony informative. As tree topologies of ME and ML inferences were fully compatible (data not shown), only each ME tree is shown for each locus (Fig. 1 for ITS, Fig. 2 for cox2), with ME and ML bootstrap values above 60% at first and second position above/below the branches.

In phylogenetic investigations (Figs. 1 and 2), the accessions from different species of Arabis were divided into four
Lee et al. distant lineages: one representing *H. arabidis-alpinae* parasitic on *Arabis alpina*, a second lineage of *H. arabidis-turritae* on *Arabis turrita*, a third lineage on *Arabis soyeri* previously described by Göker et al. [7], and a fourth clade with two Korean accessions on *Arabis glabra*, representing a new combination, *H. arabidis-glabrae*. An unknown lineage of *Hyaloperonospora* originating from *Catolobus pendulus* (= *Arabis pendula*) was supported by high supporting values in both ME/ML analyses of ITS and *cox2*. It further clustered together with *H. arabidis-turritae*, *H. mayli*, and *H. thlaspeos-perfoliati*. There has been no prior report of downy mildew on this plant, but, considering the phylogenetic divergence, it could be an unknown species.

The accessions from *Rorippa* species were contained in two major clades (Fig. 1). The first monophyletic clade represented *H. nasturtii-montani*. The second clade consisted of *H. nasturtii-islandicae* and *H. nasturtii-palustris*. The grouping of the latter two species, which are parasitic to only a single plant *Rorippa palustris*, was highly supported with the values of 91/98%, but each combination harbored only a distinct *Hyaloperonospora* species.

In the ITS tree, the accessions of the *H. brassiccae* complex were contained in four closely related clades, as suggested by Göker et al. [7]: a first highly supported monophyletic clade consisting of the specimens parasitic on *B. campestris*, *B. narinosa*, and *B. oleracea*, a second on *Sinapis alba*, a third on *Sinapis arvense*, and a fourth on *Raphanus sativus* and *R. raphanistrum*. Interestingly, the accessions from

Fig. 2. Minimum evolution trees based on the *cox2* mtDNA sequences, with support values in Bayesian inference. Bootstrapping support values (minimum evolution/maximum likelihood) higher than 60% are given above/below the branches. The specimens collected in Korea are shown in bold, and previously unknown species in Korea were highlighted in the colored boxes. The scale bar equals the number of nucleotide substitutions per site.
spider flower, Tarenaya hasleriana (= Cleome spinosa), were placed within the first clade of H. brassicae (Figs. 1 and 2), with no nucleotide differences in the ITS sequences and only one difference in the cox2 sequences, hinting at their close genetic relationship.

The Korean accessions collected from Cardamine impatiens fell within the H. dentariae clade, with weak supporting values in ITS dataset and the maximum value in cox2 mtDNA. In the cox2 dataset, they further formed their own well-supported subclade with the maximum supporting value in both analyses, as shown by Voglmayr et al. [12], who observed the presence of host-specific structures within the H. dentariae clade. Interestingly, there was a phylogenetic divergence between European and Korean accessions originating from the same plant, C. impatiens. An unknown lineage of Hyaloperonospora originated from Cardamine scutata. It was closest to H. sp. ex Arabis soyeri, but could be a hitherto overlooked species. The Korean accessions collected from Thlaspi arvense grouped with the GenBank sequences of H. thaalspeos-arvensis, with the maximum support in the ITS sequences. This is the first report of H. dentariae and H. thaalspeos-arvensis in Korea.

Taxonomy. Based on the molecular phylogenetic and morphological data, we combined three names of *Peronospora* to Hyaloperonospora: *H. arabidis-glabrae* comb. nov., *H. nasturtii-montani* comb. nov., and *H. nasturtii-palustris* comb. nov. Along with H. dentariae, H. thaalspeos-arvensis, and Hyaloperonospora sp. [*Peronospora* *cf*. *cleomes*], they were previously unknown to Korea.

Hyaloperonospora arabidis-glabrae (Gäum.) Jae S. Lee & Y. J. Choi, comb. nov. (MB#821809)

Basionym: *Peronospora arabidis-glabrae* Gäum., Beih. Bot. Zbl. 35: 520 (1918) (MB#231470).

Description: Down hypophyllous, whitish to yellowish, dense, felt-like. Haustoria filling the host cell partly to almost completely, lobate. Conidiophores emerging through stomata, 20–30 in a fascicle, hyaline, somewhat stout, straight, (250–)330–500 (µm) long, (8–)10–16 (µm) wide (n = 30). Ultimate branchlets mostly in pairs, curved to sigmoid, (8–)10–16 (µm) long, (1.1–)1.2–1.7 (µm) wide at the base; tip obtuse or subtruncate (n = 30). Conidia hyaline, subglobose, (19–)24.0–30.0 (µm) long (av. 24), a length to width ratio of (1.05–)1.09–1.19 (µm) (av. 1.14, n = 30), the greatest width at median, with a rounded tip and base; pedicel mostly absent, but rarely present as a scar. Resting organs not seen.

Habitat: On living leaves of *Rorippa indica* (= *Nasturtium montanum*) (Brassicaceae).

Specimen examined: KZITFG0000000024 (KUS-F22396), Korea, Pyeongchang, Jinbu-myeon (35°08′9″ N, 128°57′19″ E), 28 Oct 2006, H. D. Shin & Y. J. Choi.

Hyaloperonospora nasturtii-montani (Gäum.) Jae S. Lee & Y. J. Choi, comb. nov. (MB#821810)

Basionym: *Peronospora nasturtii-montani* Gäum., Beih. Bot. Zbl. 35: 528 (1918) (MB#150102).

Description: Down hypophyllous, whitish, dense, felt-like. Haustoria filling the host cell partly to almost completely, lobate. Conidiophores emerging through stomata, 20–30 in a fascicle, hyaline, somewhat stout, straight, (250–)330–500 (µm) long; trunk straight, (200–)250–350 (µm) long, (8–)10–16 (µm) wide at the base; pedicel mostly present as a scar. Resting organs not seen.

Habitat: On living leaves and stems of *Arabis glabra* (Brassicaceae).

Specimen examined: KZITFG0000000009 (KUS-F25778), Korea, Yangpyeong, Jungmisan Recreational Forest (37°34′53″ N, 127°27′29″ E), 10 Jun 2011, H. D. Shin & Y. J. Choi.

Note: On *Arabis glabra*, two species of *Peronospora*, *Peronospora arabidis-glabrae* and *P. arabidis-turritae* (now under *Hyaloperonospora*), were introduced by Gäumann [3], who discriminated between them by the height of conidiophores; 300–400 µm in the former species and 200–250 µm in the latter. The Korean sample was mostly more than 300 µm, well consistent with *P. arabidis-glabrae*. The conidia of the Korean specimen were slightly smaller than *P. arabidis-glabrae* [3] (av. 21.14 × 19.14 µm vs. 23.8 × 21.9 µm), but still larger than *P. arabidis-turritae* (av. 18.9 × 16.4 µm). In addition, these two species were phylogenetically distant (Fig. 1).
Habitat: On living leaves and stems of *Rorippa palustris* (Brassicaceae).

Specimen examined: KZITFG0000000006 (KUS-F23085), Korea, Namyangju, Deokso Experiment Farm of Korea University (37°35'03" N, 127°14'11" E), 22 Oct 2007, H. D. Shin & Y. J. Choi.

Note: *Peronospora rorippae-islandicae* (now, under *Hyaloperonospora*) has been introduced to accommodate the downy mildew pathogen on *Rorippa palustris* [3]. From the same host plant, the second species, *P. nasturtii-palustris*, was described by Ito and Tomakage [33]. As these two species slightly differed by the size of conidia (av. 16.62 × 13.79 µm vs. av. 18.05 × 14.71 µm), Gustavsson [34] synonymized the latter species under the former species. The Korean accession (av. 18.82 × 14.07 µm), with a typical morphology of *Hyaloperonospora*, is closer to *P. nasturtii-palustris*.

Hyaloperonospora sp. [Peronospora cf. cleomes]

Reference: *Peronospora cleomes* Hansf., E. African Agric. J. Kenya 8: 250 (1943) (Nom. inval. Article 39).

Description: Down hypophyllous, whitish to yellowish, dense, felt-like. Haustoria filling the host cell partly to almost completely, lobate. Conidiophores emerging through stomata, up to 30 in a fascicle, hyaline, somewhat stout, straight, (250–)300–450–450(–590) µm; trunk straight, (100–)200–350–400(–400) µm long, (9–)10–13–17(–17) µm wide (n = 30). Ultimate branchlets mostly in pairs, curved to sigmoid, (5–)17–13–17 µm long, (1.2–)1.5–2.2(–2.5) µm wide at the base; tip obtuse or subtruncate (n = 30). Conidia hyaline, broadly ellipsoidal to subglobose, (12.5–)14.0–18.0(–19) µm long (av. 16.0), (10–)11.3–15.5–17 µm wide (av. 12.4), a length to width ratio of (1.05–)1.11–1.29(–1.35) (av. 1.2, n = 30), the greatest width median, rarely sub- or supra-median, tip and base rounded; pedicel mostly present as a scar. Resting organs rarely present and visible as yellow to brown spot on leaves. Oogonia irregular in shape, 36–57 µm diameter (n = 30); wall wrinkled, yellowish, 2–5(–7) µm thick. Oospores plerotic to aplerotic, globose, (22–25–30) µm diameter, yellowish, 2–3.5 µm thick wall (n = 30).

Habitat: On living leaves and stems of *Cardamine impatiens* (Brassicaceae).

Specimen examined: KZITFG0000000011 (KUS-F23320), Korea, Cheorwon, Bokjusan Natural Recreation Forest (38°08’40” N, 127°28’23” E), 16 May 2008, H. D. Shin & Y. J. Choi.

Note: This cosmopolitan species is parasitic to four different species of *Cardamine*, including *C. impatiens*. The morphotype fits well with the description of *H. dentariae* collected from *C. heptaphylla* [3, 12], except for minor differences in the conidial size. In the *cox2* tree, as suggested by Voglmayr et al. [12], there were a few subclades within "*H. dentariae complex", among which the Korean samples formed a well-supported group (Fig. 2), somewhat apart from other isolates of the complex. Further study is necessary to determine whether it may actually represent taxonomically separable entity at the species or the subspecific level.

Hyaloperonospora thlaspeos-arvensis (Gäum.) Göker, Riethm., Voglmayr, M. Weiss & Oberw., Mycol. Prog. 3: 89 (2004) (MB#371143)

Description: Down hypophyllous, whitish, dense, felt-like. Haustoria filling the host cell partly to almost completely, mostly only a haustorium but rarely two in a host cell, vesicle-like or lobate, variable in size (up to 30 µm), with stalk surrounded by thick sheath at the part of entry into the host cell. Conidiophores emerging through stomata, 10–30 in a fascicle, hyaline, somewhat stout, straight, (250–)300–450–550(–590) µm; trunk straight, (180–)200–350–450(–490) µm long, (10–)13–16–18(–18) µm wide (n = 30). Ultimate branchlets mostly in pairs, curved to sigmoid, (12–)18–28(–33) µm long, (1.5–)1.8–2.4(–2.6) µm wide at the base; tip obtuse or subtruncate (n = 30). Conidia hyaline, broadly ellipsoidal to subglobose, (25–)26.5–30.5(–33) µm long (av. 28.04), (18–)20.5–24.0(–25) µm wide (av. 22.1), a length to
width ratio of (1.1–)1.28–1.35 (–1.5) (av. 1.31, n = 30), the greatest width median, rarely sub- or supra-median, tip and base rounded; pedicel mostly present as a scar. Resting organs not seen.

Habitat: On living leaves and stems of *Thlaspi arvense* (Brassicaceae).

Specimen examined: KZITFG0000000009 (KUS-F25778) for *H. arabidis-glabrae*, KZITFG0000000024 (KUS-F22396) for *H. nasturtii-montani*, KZITFG0000000006 (KUS-F23085) for *H. nasturtii-palustris*, and KZITFG0000000010 (KUS-F25462) for *H. sp.* [Peronospora cf. cleomes] (scale bars: A–D = 100 µm, E–P = 10 µm).

Fig. 3. Morphological characteristics of four *Hyaloperonospora* species; *H. arabidis-glabrae* ex *Arabis glabra* (in the first column or the left), *H. nasturtii-montani* ex *Rorippa indica* (second), *H. nasturtii-palustris* ex *Rorippa palustris* (third), and *Hyaloperonospora* sp. [Peronospora cf. cleomes] ex *Tarenaya hassleriana* (fourth). A‒D, Conidiophores; E–H, Ultimate branchlets; I–P, Conidia. Sources: KZITFG0000000009 (KUS-F25778) for *H. arabidis-glabrae*, KZITFG0000000024 (KUS-F22396) for *H. nasturtii-montani*, KZITFG0000000006 (KUS-F23085) for *H. nasturtii-palustris*, and KZITFG0000000010 (KUS-F25462) for *H. sp.* [Peronospora cf. cleomes] (scale bars: A–D = 100 µm, E–P = 10 µm).

DISCUSSION

The species abundance of the genus *Hyaloperonospora* remains underestimated in northeast Asia. Two monographs have been published for the family Peronosporaceae in China [37] and Korea [19]. Both studies regarded BDMs as only a species, *H. parasitica* (= *Peronospora parasitica*), or a few species, undoubtedly according to the “one host family-one pathogen” concept of Yerkes and Shaw [13]. The recent phylogenetic investigations, however, clearly favor the narrow species circumscription of Gäumann [3, 4] that a species of *Hyaloperonospora* parasitize a particular genus or species of plants of Brassicaceae [6-12, 38]. The studies highlight the necessity of re-evaluating the species diversity of *Hyaloperonospora* in this region. In the present study, we confirm the presence of 14 species of this genus, of which six species have been unknown in Korea: *H. arabidis-glabrae*, *H. dentariae*, *H. nasturtii-montani*, *H. nasturtii-palustris*, *H. thlaspeos-arvensis*, and *H. sp.*
[Peronospora cf. cleomes]. Although the number of species still seems lower, compared with other European countries, interestingly we discovered two unknown lineages of Hyaloperonospora, specific to two Asian indigenous plants, Cardamine scutata Thunb. and Catolobus pendulus L. (= Arabis pendula). Cardamine scutata is a common herb distributed in northeast Asia, including China [39], Japan [40], Korea [41], and Far Eastern Russia [42]. Similarly, C. pendulus is mainly distributed in northeast Asia, but has also been rarely reported in Europe [43, 44]. To date, there has been no report of downy mildew on these two plants worldwide. However, considering the phylogenetic divergence and the narrow host specialization previously known for Hyaloperonospora species, they are considered two new species. Finding two potentially new species on northeast Asian plants is noteworthy in support of our argument that the diversity of Hyaloperonospora species present in Asia has been underestimated.

ACKNOWLEDGEMENTS

This study was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE), and the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (2016R1C1B2008013), Republic of Korea.

REFERENCES

1. Thines M, Choi YJ. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 2016;106:6-18.
2. Constantinescu O. An annotated list of Peronospora names. Thunbergia 1991;15:1-110.
3. Gäumann EA. Über die formen der Peronospora parasitica (Pers.) Fries. Ein Beitrag zur speziesfrage bei den parasitischen pilzen. Beih Bot Centralbl 1918:395-533.
4. Gäumann EA. Beiträge zur einer Monographie der Gattung Peronospora Corda. Beih Kryptogamenfl Schweiz 1923:5:1-360.
5. Constantinescu O, Fatehi J. Peronospora-like fungi (Chromista, Peronosporales) parasitic on Brassicaceae and related hosts. Nova Hedwigia 2002;74:291-338.
6. Göker M, Riethmüller A, Voglmayr H, Weiβ M, Oberwinkler F. Phylogeny of Hyaloperonospora based on nuclear ribosomal internal transcribed spacer sequences. Mycol Prog 2004;3:83-94.
7. Göker M, Voglmayr H, García-Blázquez G, Oberwinkler F. Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res 2009;113(3):308-25.
8. Göker M, Voglmayr H, Riethmüller A, Weiβ M, Oberwinkler F. Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can J Bot 2003;81:672-83.
9. Riethmüller A, Voglmayr H, Göker M, Weiβ M, Oberwinkler F. Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 2002;94:834-49.
10. Voglmayr H. Phylogenetic relationships of Peronospora and related genera based on nuclear ribosomal ITS sequences. Mycol Res 2003;107(1):1132-42.
11. Choi YJ, Shin HD, Voglmayr H. Reclassification of two Peronospora species parasitic on Draba in Hyaloperonospora based on morphological and molecular phylogenetic data. Mycopathologia 2011;171:151-9.
12. Voglmayr H, Choi YJ, Shin HD. Multigene phylogeny, taxonomy and reclassification of Hyaloperonospora on Cardamine. Mycol Prog 2014;13:131-44.
13. Yerkes WD, Shaw CG. Taxonomy of the Peronospora species on Cruciferae and Chenopodiaceae. Phytopathology 1959;49:499-507.
14. Cho WD, Shin HD. List of plant diseases in Korea. 4th ed. Suwon: Korean Society of Plant Pathology; 2004.
15. Hong SY, Lee HJ, Choi YJ, Shin HD. First confirmed report of downy mildew caused by Hyaloperonospora parasitica on broccoli in Korea. Plant Pathol 2008;57:777.
16. Choi YJ, Kim JY, Park JH, Shin HD. First report of tatsoi downy mildew caused by Hyaloperonospora brassicae in Korea. Plant Dis 2012;96:1703.
17. Choi YJ, Mulenko W, Park JH, Shin HD. First report of downy mildew of spider flower caused by a Hyaloperonospora sp. in Korea. Plant Dis 2012;96:588.
18. Choi YJ, Hong SB, Shin HD. Diversity of the Hyaloperonospora parasitica complex from core brassicaceous hosts based on ITS rDNA sequences. Mycol Res 2003;107:1314-22.
19. Shin HD, Choi YJ. Peronosporaceae of Korea. Suwon: National Institute of Agricultural Science and Technology; 2006.
20. Nakata K, Takimoto K. List of diseases of cultivated plants in Korea. Bull Chosen Agric Exp Stn 1928:15:1-140.
21. Shin HD, Kim WB. Fungal diseases of Capsella bursa-pastoris in Korea. Korean J Plant Resour 1997;10:360-8.
22. Choi YJ, Park MJ, Kim JY, Shin HD. An unnamed Hyaloperonospora sp. causing downy mildew on arugula (rocket) in Korea. Plant Pathol 2010;59:1165.
23. Choi YJ, Thines M, Choi YI, Shin HD. Peropfascia is not monotypic: the description of the second taxon affecting the South American crop maca (Lepidium meyenii). Mycol Prog 2017;16:857-64.
24. Bacoher M. Molekularbiologische Populationstudien an Plasmopara halstedii, dem Falschen Mehltau der Sonnenblume. Stuttgart: University of Hohenheim; 2004.
25. Moncalvo JM, Wang HH, Hseu RS. Phylogenetic relationships in Ganoderma Inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia 1995;87:223-38.
26. Hudsonspeth DS, Nadler SA, Hudspeth ME. A cox2 molecular phylogeny of the Peronosporomycetes. Mycologia 2000;92:674-84.
27. Choi YJ, Beakes G, Glockling S, Kruse J, Nam B, Nigrelli L, Ploch S, Shin HD, Shivas RG, Telle S, et al. Towards a universal barcode of oomycetes: a comparison of the cox1 and cox2 loci. Mol Ecol Resour 2015;15:1275-88.
28. Choi YJ, Klosterman SJ, Kummer V, Voglmayr H, Shin HD,
Thines M. Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach. Mol Phylogenet Evol 2015;86:24-34.

29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 2013;30:772-80.

30. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 2008;9:212.

31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4.

32. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688-90.

33. Ito S, Tokunaga Y. Notae mycologicae Asiae orientalis. I. Trans Sapporo Nat Hist Soc 1935;14: 11-33.

34. Gustavsson A. Studies on nordic peronosporas. I. Taxonomic revision. Opera Bot 1959;3:1-271.

35. Hansford CG. Host list of the parasitic fungi of Uganda. Part I. East Afr Agric J 1943;8:248-52.

36. Chardon CE. Adiciones a la Flora Micologica de Venezuela. Bol Soc Venez Cienc Nat 1939;40:325-68.

37. Yin G, Yang Z. Peronospora. In: Yu Y, editor. Flora fungorum sinicum. Vol. 6. Peronosporales. Beijing: Science Press; 1998. p. 247-328.

38. Voglmayr H, Göker M. Morphology and phylogeny of Hyaloperonospora erophilae and H. praecox sp. nov., two downy mildew species co-occurring on Draba verna sensu lato. Mycol Prog 2011;10:283-92.

39. Zhou T, Lu L, Yang G, Al-Shehbaz IA. Brassicaceae (Cruciferae). In: Wu ZY, Raven PH, editors. Flora of China. Beijing: Science Press; 2001. p. 1-193.

40. Al-Shehbaz IA, Arai K, Ohba H. Cardamine. In: iwatsuki K, Boufford D, Ohba H, editors. Flora of Japan. Tokyo: Kodansha Ltd.; 2006. p. 482-90.

41. Lee YN. Flora of Korea. Seoul: Kyo-Hak Publishing Co.; 2002.

42. Berkutenko AN. Rod 21. Serdechnik - Cardamine L. In: Kharkевич SS, editor. Sosudistye rasteniya sovetskogo Dal’nego Vostoka. Vol. 3. Leningrad: Izdatel’stvo Nauka; 1988. p. 65-77.

43. Lee WT. Coloured standard illustrations of Korean plants. Seoul: Academy; 1996.

44. Shin SL, Lim YK, Kwon HJ, Kim YR, Kim SY. Morphological characteristics and germination conditions of seeds in Arabis pendula L. Korean J Plant Resour 2017;30:50-7.