ANN VERDOODT

The construction of normal bases for the space of continuous functions on V_q, with the aid of operators

Annales mathématiques Blaise Pascal, tome 2, n° 1 (1995), p. 299-305

<http://www.numdam.org/item?id=AMBP_1995__2_1_299_0>
THE CONSTRUCTION OF NORMAL BASES FOR THE SPACE OF
CONTINUOUS FUNCTIONS ON V_q, WITH THE AID OF OPERATORS

Ann Verdoordt

Abstract. Let a and q be two units of \mathbb{Z}_p, q not a root of unity, and let V_q be the closure of the set $\{aq^n \mid n = 0, 1, 2, \ldots \}$. K is a non-archimedean valued field, K contains \mathbb{Q}_p, and K is complete for the valuation $| \cdot |$, which extends the p-adic valuation. $C(V_q \to K)$ is the Banach space of continuous functions from V_q to K, equipped with the supremum norm.

Let \mathcal{E} and D_q be the operators on $C(V_q \to K)$ defined by $(\mathcal{E}f)(x) = f(qx)$ and $(D_qf)(x) = (f(qx) - f(x))/(x(q-1))$. We will find all linear and continuous operators that commute with \mathcal{E} (resp. with D_q), and we use these operators to find normal bases $(r_n(x))$ for $C(V_q \to K)$. If f is an element of $C(V_q \to K)$, then there exist elements α_n of K such that $f(x) = \sum_{n=0}^{\infty} \alpha_n r_n(x)$ where the series on the right-hand-side is uniformly convergent. In some cases it is possible to give an expression for the coefficients α_n.

1991 Mathematics subject classification : 46S10

1. Introduction

Let p be a prime, \mathbb{Z}_p the ring of the p-adic integers, \mathbb{Q}_p the field of the p-adic numbers. K is a non-archimedean valued field, $K \supset \mathbb{Q}_p$, and we suppose that K is complete for the valuation $| \cdot |$, which extends the p-adic valuation. Let a and q be two units of \mathbb{Z}_p (i.e. $|a| = |q| = 1$), q not a root of unity. Let V_q be the closure of the set $\{aq^n \mid n = 0, 1, 2, \ldots \}$.

We denote by $C(V_q \to K)$ (resp. $C(\mathbb{Z}_p \to K)$) the set of all continuous functions $f : V_q \to K$ (resp. $f : \mathbb{Z}_p \to K$) equipped with the supremum norm. If f is an element of $C(V_q \to K)$ then we define the operators \mathcal{E} and D_q as follows:

$(\mathcal{E}f)(x) = f(qx)$
(\text{D}_q f)(x) = \frac{f(qx) - f(x)}{x(q - 1)}

We remark that the operator E does not commute with D_q. Furthermore, the operator D_q lowers the degree of a polynomial with one, whereas the operator E does not.

If \mathcal{L} is a non-archimedean Banach space over a non-archimedean valued field \mathbb{L}, and e_1, e_2, \ldots is a finite or infinite sequence of elements of \mathcal{L}, then we say that this sequence is orthogonal if $||e_1 + \cdots + e_k|| = \max\{||e_i|| : i = 1, \ldots, k\}$ for all k in \mathbb{N} (or for all k that do not exceed the length of the sequence) and for all e_1, \ldots, e_k in \mathcal{L}. An orthogonal sequence e_1, e_2, \ldots is called orthonormal if $||e_i|| = 1$ for all i. A family (e_i) of elements of \mathcal{L} forms a (orthonormal) basis of \mathcal{L} if the family (e_i) is orthonormal and also a basis. We will call a sequence of polynomials $(p_n(x))$ a polynomial sequence if p_n is exactly of degree n for all natural numbers n.

The aim here is to find normal bases for $C(V_q \rightarrow K)$, which consist of polynomial sequences. Therefore we will use linear, continuous operators which commute with D_q or with E. If $(r_n(x))$ is such a polynomial sequence, and if f is an element of $C(V_q \rightarrow K)$, there exist coefficients α_n in K such that $f(x) = \sum_{n=0}^{\infty} \alpha_n r_n(x)$ where the series on the right-hand-side is uniformly convergent. In some cases it is possible to give an expression for the coefficients α_n.

We remark that all the results (with proofs) in this paper can be found in [5], except for theorem 5.

2. Notations.

Let V_q, K and $C(V_q \rightarrow K)$ be as in the introduction. The supremum norm on $C(V_q \rightarrow K)$ will be denoted by $|| \cdot ||$. We introduce the following:

$A_0(x) = 1$, $A_n(x) = (x - aq^{n-1})A_{n-1}(x)$ ($n \geq 1$),

$B_n(x) = A_n(x)/A_n(aq^n)$, $C_n(x) = a^{-n}q^{n(n-1)/2}(q - 1)^n B_n(x)$

It is clear that $(A_n(x)), (B_n(x))$ and $(C_n(x))$ are polynomial sequences. The sequence $(C_n(x))$ forms a basis for $C(V_q \rightarrow K)$ and the sequence $(B_n(x))$ forms a normal basis for $C(V_q \rightarrow K)$. From this it follows that $||B_n|| = 1$ and $||C_n|| = |(q - 1)^n|$. Let E and D_q be as in the introduction. Then we introduce the following:

Definition. Let f be a function from V_q to K. We define the following operators:

$(D_q^n f)(x) = (D_q(D_q^{n-1} f))(x)$

$(E^n f)(x) = f(q^n x)$

$D f(x) = D^{(1)} f(x) = f(qx) - f(x) = ((E - 1)f)(x)$

$D^{(n)} f(x) = ((E - 1) . . . (E - q^{n-1})f)(x)$, $D^{(0)} f(x) = f(x)$

The operator D_q does not commute with D. The following properties are easily verified:

$D_q j C_k(x) = C_{k-j}(x)$ if $k \geq j$, $D_q j C_k(x) = 0$ if $j > k$. So $D_q j$ lowers the degree of a polynomial with j.\n
\n
A. Verdoodt
\[D^{(j)}B_k(x) = (x/a)^jq^{(j-k)}B_{k-j}(x) \] if \(j \leq k \), \[D^{(j)}B_k(x) = 0 \] if \(j > k \)

If \(p(x) \) is a polynomial of degree \(n \), then \((D^{(j)}p)(x) \) is a polynomial of degree \(n \) if \(n \) is at least \(j \), and \((D^{(j)}p)(x) \) is the zero-polynomial if \(n \) is strictly smaller than \(j \).

If \(f \) is an element of \(C(V_q \rightarrow K) \), then we also have

i) \((D_n f)(x) = x^n q^{n(n-1)/2}(q-1)^n(D_q^n f)(x) \)

ii) \((q-1)^n D_q^n f(x) \rightarrow 0 \) uniformly

iii) \(D_n f(x) \rightarrow 0 \) uniformly

(i) can be found in [1], p. 60, ii) can be found in [3], p. 124-125, iii) follows from i) and ii).

3. Linear Continuous Operators which Commute with \(E \) or with \(D_q \)

Let us start this section with the following known result:

If \(f \) is an element of \(C(\mathbb{Z}_p \rightarrow K) \), then the translation operator \(E \) on \(C(\mathbb{Z}_p \rightarrow K) \) is the operator defined by \(Ef(x) = f(x+1) \).

If we put \(G_n(x) = \binom{x}{n} \) (the binomial polynomials), then L. Van Hamme ([4]) proved the following theorem:

A linear, continuous operator \(Q \) on \(C(\mathbb{Z}_p \rightarrow K) \) commutes with the translation operator \(E \) if and only if the sequence \((g_n) \) is bounded, where \(g_n = QG_n(0) \).

Such an operator \(Q \) can be written in the following way:

\[Q = \sum_{i=0}^{\infty} g_i \Delta^i \]

where \(\Delta \) is the operator defined as follows:

\((\Delta f)(x) = f(x+1) - f(x) \)

We can prove analogous theorems for the operators \(E \) and \(D_q \) on \(C(V_q \rightarrow K) \):

Theorem 1 An operator \(Q \) on \(C(V_q \rightarrow K) \) is continuous, linear and commutes with \(E \) if and only if the sequence \((b_n) \) is bounded, where \(b_n = (QB_n)(a) \).

From the proof of the theorem it follows that \(Q \) can be written in the form \(Q = \sum_{i=0}^{\infty} b_i D^{(i)} \).

If \(f \) is an element of \(C(V_q \rightarrow K) \), then \((Qf)(x) = \sum_{i=0}^{\infty} b_i (D^{(i)}f)(x) \) and the series on the right-hand-side is uniformly convergent (since \(D^{(n)}f(x) \rightarrow 0 \) uniformly). Clearly we have

\(b_n = (QB_n)(a) \), since \((QB_n)(a) = \sum_{i=0}^{\infty} b_i D^{(i)}B_n)(a) = \sum_{i=0}^{n} b_i (x/a)^i q^{(i-n)}B_{n-i}(a) = b_n \).

Furthermore, \(Qx^n \) is a \(K \)-multiple of \(x^n \).

If \(b_0 = \ldots = b_{N-1} = 0 \), \(b_N \neq 0 \), and if \(p(x) \) is a polynomial, then \(x^N \) divides \((Qp)(x) \).

Some examples

1) For the operator \(E \) we have: \((EB_n)(x) = B_n(qx) \), so \((EB_0)(a) = 1 \), \((EB_1)(a) = 1 \), and \((EB_n)(a) = 0 \) if \(n \geq 2 \). This gives us \(E = \sum_{i=0}^{n} D^{(i)} \).
2) The operator $\mathcal{E} \circ D = \mathcal{E}D$ clearly commutes with \mathcal{E}. We have $((\mathcal{E}D)B_0)(a) = 0$, and since $(n > 1) ((\mathcal{E}D)B_n)(x) = (\mathcal{E} (q^{1-n}B_{n-1}))(x) = \frac{q^n}{a}q^{1-n}B_{n-1}(qx)$, we find $((\mathcal{E}D)B_1)(a) = q$, $(\mathcal{E}D)B_2)(a) = 1$ and $((\mathcal{E}D)B_n)(a) = 0$ if $n \geq 3$. We conclude that $\mathcal{E}D = q^{D(1)} + D(2)$.

Analogous to theorem 1 we have:

Theorem 2 An operator Q on $C(V_q \rightarrow K)$ is continuous, linear and commutes with D_q if and only if the sequence $(c_n/(q-1)^n)$ is bounded, where $c_n = (QC_n)(a)$.

Such an operator Q can be written in the form $Q = \sum_{i=0}^{\infty} c_i D_q^i$, and if f is an element of $C(V_q \rightarrow K)$ it follows that $(Qf)(x) = \sum_{i=0}^{\infty} c_i (D_q^i f)(x)$, where the series on the right-hand-side converges uniformly (since $(q-1)^n D_q^n f(x) \rightarrow 0$ uniformly). Furthermore, we have $c_n = (QC_n)(a)$ since

$$ (QC_n)(a) = (\sum_{i=0}^{\infty} c_i D_q^i C_n)(a) = \sum_{i=0}^{n} c_i C_{n-i}(a) = c_n. $$

Remarks

1) Let R and Q be linear, continuous operators on $C(V_q \rightarrow K)$, with R of the form $R = \sum_{i=1}^{\infty} b_i D_q^{(i)}$ (i.e. R commutes with \mathcal{E}, $b_0 = 0$), and Q of the form $Q = \sum_{i=1}^{\infty} c_i D_q^i$ (i.e. Q commutes with D_q, $c_n - 0$). The main difference between the operators Q and R is that Q lowers the degree of each polynomial with at least one, where R does not necessarily lowers the degree of a polynomial.

2) If Q_1 and Q_2 both commute with D_q and if $Q_1 = \sum_{i=0}^{\infty} c_{1;i} D_q^i$, then $Q_2 = \sum_{i=0}^{\infty} c_{2;i} D_q^i$, then $(Q_1 o Q_2)(f) = (Q_2 o Q_1)(f) = \sum_{k=0}^{\infty} D_q^k f \left(\sum_{j=0}^{k} c_{1;j} c_{2;k-j} \right)$.

If we take two formal power series $q_1(t) = \sum_{i=0}^{\infty} c_{1;i} t^i$, $q_2(t) = \sum_{i=0}^{\infty} c_{2;i} t^i$, then

$$ q_1(t) \cdot q_2(t) = \sum_{k=0}^{\infty} t^k \left(\sum_{j=0}^{k} c_{1;j} c_{2;k-j} \right), $$

so the composition of two operators which commute with D_q, corresponds with multiplication of power series.
This is not the case if we take two operators which commute with \mathcal{E}: Take e.g. $\mathcal{E} = D^{(0)} + D^{(1)}$ and $D^{(1)}$, then $\mathcal{E} o D^{(1)} = \mathcal{E} D^{(1)} = q D^{(1)} + D^{(2)}$, whereas for power series this gives $q_1(t) = 1 + t$, $q_2(t) = t$ and $q_1(t) \cdot q_2(t) = t + t^2$.

4. Normal bases for $C(V_q \rightarrow K)$

We use the operators of theorems 1 and 2 to make polynomials sequences $(p_n(x))$ which form normal bases for $C(V_q \rightarrow K)$. If Q is an operator as found in theorem 1, with b_0 equal to zero, we associate a (unique) polynomial sequence $(p_n(x))$ with Q. We remark that the operator $R = \sum_{i=0}^{\infty} b_i D(i)$ does not necessarily lowers the degree of a polynomial.

Proposition 1 Let $Q = \sum_{i=N}^{\infty} b_i D(i) \ (N \geq 1)$ with $|b_N| > |b_n|$ if $n > N$. There exists a unique polynomial sequence $(p_n(x))$ such that $(Qp_n)(x) = x^N p_{n-N}(x)$ if $n \geq N$, $p_n(aq^i) = 0$ if $n \geq N$, $0 \leq i < N$ and $p_n(x) = B_n(x)$ if $n < N$.

In the same way as in proposition 1 we have.

Proposition 2 Let $Q = \sum_{i=N}^{\infty} c_i D_q^i \ (N \geq 1)$, $c_N \neq 0$, $(c_n/(q-1)^n)$ bounded. Then there exists a unique polynomial sequence $(p_n(x))$ such that $(Qp_n)(x) = p_{n-N}(x)$ if $n \geq N$, $p_n(aq^i) = 0$ if $n \geq N$, $0 \leq i < N$ and $p_n(x) = B_n(x)$ if $n < N$.

We use the operators of theorems 1 and 2 to make polynomials sequences $(p_n(x))$ which form normal bases for $C(V_q \rightarrow K)$. If f is an element of $C(V_q \rightarrow K)$, there exist coefficients α_n such that $f(x) = \sum_{n=0}^{\infty} \alpha_n p_n(x)$ where the series on the right-hand-side is uniformly convergent. In some cases, it is also possible to give an expression for the coefficients α_n.

Theorem 3 Let $Q = \sum_{i=N}^{\infty} b_i D(i) \ (N \geq 1)$ with $|b_n| < |b_N| = 1$ if $n > N$

1) There exists a unique polynomial sequence $(p_n(x))$ such that $(Qp_n)(x) = x^N p_{n-N}(x)$ if $n \geq N$, $p_n(aq^i) = 0$ if $n \geq N$, $0 \leq i < N$ and $p_n(x) = B_n(x)$ if $n < N$. This sequence forms a normal basis for $C(V_q \rightarrow K)$ and the norm of Q equals one.

2) If f is an element of $C(V_q \rightarrow K)$, then f can be written as a uniformly convergent series $f(x) = \sum_{n=0}^{\infty} \beta_n p_n(x)$, $\beta_n = ((D(i)(x^{-N}Q)^k)f)(a)$ if $n = i + kN \ (0 \leq i < N)$, with $\|f\| = \max_{0 \leq k, 0 \leq i < N} \|((D(i)(x^{-N}Q)^k)f)(a)\|$, where $x^{-N}Q$ is a linear continuous operator with norm equal to one.
And analogous to theorem 3 we have

Theorem 4 Let \(Q = \sum_{i=N}^{\infty} c_i D_i^q \) \((N \geq 1)\) with \(|c_N| = \left| (q-1)^N \right| \), \(|c_n| \leq \left| (q-1)^n \right| \) if \(n > N \).

1) There exists a unique polynomial sequence \((p_n(x))\) such that \((Q p_n)(x) = p_{n-N}(x)\) if \(n \geq N \), \(p_n(a q^i) = 0 \) if \(n \geq N \), \(0 \leq i < N \) and \(p_n(x) = B_n(x) \) if \(n < N \). This sequence forms a normal basis for \(C(V_q \to K) \) and the norm of \(Q \) equals one.

2) If \(f \) is an element of \(C(V_q \to K) \), there exists a unique uniformly convergent expansion of the form \(f(x) = \sum_{n=0}^{\infty} \gamma_n p_n(x) \), where \(\gamma_n = a^i (q-1)^i q^{i(i-1)/2} D_i^q f(a) \) if \(n = i + kN \) \((0 \leq i < N)\), with \(\|f\| = \max_{0 \leq k, 0 \leq i < N} \{ \| (q-1)^i D_i^q f(a) \| \} \).

Remark. Here we have \(|c_n| \leq |c_N| \), in contrast with theorem 3, where we need \(|b_n| < |b_N| \) \((n > N)\).

An example
Let us consider the following operator \(Q = (q-1) D_q \). Then \(c_1 = (q-1) \) and \(c_k = 0 \) if \(k \neq 1 \).
The polynomials \(p_k(x) \) are given by \(p_k(x) = C_k(x)/(q-1)^k \), and they form a normal basis for \(C(V_q \to K) \). The expansion \(f(x) = \sum_{k=0}^{\infty} ((q-1)^k D_k^q f(a)) p_k(x) = \sum_{k=0}^{\infty} (D_k^q f(a)) C_k(x) \) is known as Jackson's interpolation formula \((2),(3)\).

If \(Q \) is an operator as found in theorem 4, with \(N \) equal to one, then we can prove a theorem analogous to theorem 2:

Theorem 5 Let \(Q \) be an operator such that \(Q = \sum_{i=1}^{\infty} c_i D_i^q \), with \(|c_1| = \left| (q-1) \right| \), \(|c_n| \leq \left| (q-1)^n \right| \) if \(n > 1 \), and let \(p_n(x) \) be the polynomial sequence as found in theorem 4.

An operator \(T \) on \(C(V_q \to K) \) is continuous, linear and commutes with \(D_q \) if and only if \(T \) is of the form \(T = \sum_{i=0}^{\infty} d_i Q^i \), where the sequence \((d_n)\) is bounded, where \(d_n = (Tp_n)(a) \).

Remark. In theorem 2 the sequence \((c_n/(q-1)^n)\) must be bounded, whereas here the sequence \((d_n)\) must be bounded. This follows from the fact that the norm of the operator \(D_q \) equals \(|q-1|^{-1} \), whereas the norm of the operator \(Q \) equals 1.

5. More Normal Bases
We want to make more normal bases, using the ones we found in theorems 3 and 4. For operators which commute with \(E \) we can prove the following theorem:
Theorem 6 \[\text{Let } (p_n(x)) \text{ be a polynomial sequence which forms a normal basis for } C(V_q \rightarrow K), \]
and let \(Q = \sum_{i=N}^{\infty} b_i D^{(i)} \) \((N \geq 0)\) with \(1 = |b_N| > |b_k| \) if \(k > N \). If \(Qp_n(x) = x^N r_{n-N}(x) \) \((n \geq N)\), then the polynomial sequence \((r_k(x))\) forms a normal basis for \(C(V_q \rightarrow K) \).

And analogous for operators which commute with the operator \(D_q \) we have:

Theorem 7 \[\text{Let } (p_n(x)) \text{ be a polynomial sequence which forms a normal basis for } C(V_q \rightarrow K), \]
and let \(Q = \sum_{i=N}^{\infty} c_i D_q^i \) \((N \geq 0)\) with \(|c_N| = |(q-1)^N| \), \(|c_n| \leq |(q-1)^n| \) if \(n > N \).
If \((Qp_n)(x) = r_{n-N}(x) \) \((n \geq N)\), then the polynomial sequence \((r_k(x))\) forms a normal basis for \(C(V_q \rightarrow K) \).

We remark that analogous results can be found on the space \(C(\mathbb{Z}_p \rightarrow K) \) for linear continuous operators which commute with the translation operator \(E \). The result analogous to theorems 3 and 4 for the case \(N \) equal to one, was found by L. Van Hamme (see [4]), and the extensive version of theorems 3 and 4, and the analogons of theorems 5, 6 and 7 can be found with proofs similar to the proofs of the theorems in this paper.

REFERENCES

[1] F.H. Jackson, \textit{Generalization of the Differential Operative Symbol with an Extended Form of Boole's Equation}, Messenger of Mathematics, vol. 38, 1909, p. 57-61.
[2] F.H. Jackson, \textit{q-form of Taylor's Theorem}, Messenger of Mathematics, vol 38, (1909) p. 62-64.
[3] L. Van Hamme, \textit{Jackson's Interpolation Formula in p-adic Analysis} Proceedings of the Conference on p-adic Analysis, report nr. 7806, Nijmegen, June 1978, p. 119-125.
[4] L. Van Hamme, \textit{Continuous Operators which commute with Translations, on the Space of Continuous Functions on } \(\mathbb{Z}_p \text{, in "p-adic Functional Analysis"}, \text{ Bayod / Martinez-Maurica / De Grande - De Kimpe (Editors)}, \text{ p. 75-88, Marcel Dekker, 1992.}
[5] A. Verdoodt, \textit{The Use of Operators for the Construction of Normal Bases for the Space of Continuous Functions on } \(V_q \), Bulletin of the Belgian Mathematical Society - Simon Stevin, vol 1, 1994, p.685-699.