Dense Label Encoding for Boundary Discontinuity Free Rotation Detection

Xue Yang - Shanghai Jiao Tong University

X. Yang, et al. “Dense Label Encoding for Boundary Discontinuity Free Rotation Detection.” In CVPR21.

Virtual. 2021
Limitations of CSL

- **Issue 1:** Thick prediction layer
 \[Th_{reg.} = A \]
 \[Th_{onehot} = Th_{csl} = A \times AR/\omega \]

- **Issue 2:** Unfriendliness to small aspect ratio objects

Case 3

Square-Like Problem

The smaller the aspect ratio, the less sensitive the loss function is to angle.

Long Edge Definition

- Anchor/Proposal: (0,0,45,44,0°)
- Ground-Truth: (0,0,45,43,−60°)
- Predict box: (0,0,45,44,−60°)

\[w \approx w \approx h \approx h, |\theta - 0| = 0° \]
\[IoU < G, P > \approx 1 \]
\[Smooth-L1 \text{ Loss} < G, P \approx 0 \]

- Anchor/Proposal: (0,0,45,44,0°)
- Ground-Truth: (0,0,45,43,−60°)
- Predict box: (0,0,45,44,30°)

\[w \approx w \approx h \approx h, |\theta - 0| = 90° \]
\[IoU < G, P > \approx 1 \]
\[Smooth-L1 \text{ Loss} < G, P > \approx 0 \]
Densely Coded Label (DCL)

- Use Densely Coded Label (DCL) instead of Sparsely Coded Label (SCL) (for Issus 1)

\[
\begin{align*}
\text{Th}_{bcl} &= \text{Th}_{gcl} = A \times \left\lceil \log_2 \left(\frac{AR}{W} \right) \right\rceil \\
\text{Th}_{dcl} &=
\end{align*}
\]

where A indicates the number of anchors. AR represents angle range. W indicates the angle discretization granularity.

- Example: A=21, AR=180, w=1

\[
\begin{align*}
\text{Th}_{\text{reg}} &= 21, \\
\text{Th}_{\text{onehot}} &= \text{Th}_{\text{csl}} = 3780, \\
\text{Th}_{\text{dcl}} &= 168
\end{align*}
\]

Base Model	ω	GFlops	∆GFlops	Params (M)	∆Params	Training Time
RetinaNet-Reg	-	139.35	-	36.97	-	-
RetinaNet-CSL	1	254.96	+82.96%	45.63	+23.42%	~3x
RetinaNet-BCL	1	143.87	+3.24%	37.31	+0.92%	~1x
RetinaNet-GCL	1	143.87	+3.24%	37.31	+0.92%	~1x
Densely Coded Label (DCL)

- Use Densely Coded Label (DCL) instead of Sparsely Coded Label (SCL) (for Issue 1)
Densely Coded Label (DCL)

- Use Densely Coded Label (DCL) instead of Sparsely Coded Label (SCL) (for Issus 1)
Angle Distance and Aspect Ratio Sensitive Weighting (for Issus 2)

\[W_{ADARSW}(\Delta \theta) = | \sin(\alpha(\Delta \theta)) | = | \sin(\alpha(\theta_{gt} - \theta_{pred})) | \]

\[\alpha = \begin{cases}
1, & (h_{gt}/w_{gt}) > r \\
2, & \text{otherwise}
\end{cases} \]

(a) Ground Truth
(b) Prediction after using ADARSW
Ablation Experiments

- When angle discretization granularity w is too small, too many angle categories, then classification affects performance.
- When angle discretization granularity w is too large, the theoretical error is too large, thus the upper limit of performance is low.

Method	ω	BR	SV	LV	SH	HA	5-mAP	mAP50	mAP60	mAP75	mAP70:95
Reg	-	34.52	51.42	50.32	73.37	55.93	53.12	62.21	26.07	31.49	
CSL	180/180	35.94	53.42	61.06	81.81	62.14	58.87	64.40	32.58	35.04	
	180/64	30.74	40.54	50.98	72.07	59.54	50.77	62.38	24.88	31.01	
	180/8	36.65	52.58	60.46	82.24	61.60	58.71	66.17	33.14	35.77	
	180/32	39.83	54.41	60.62	80.81	60.32	59.20	65.93	35.66	36.71	
	180/64	38.22	54.70	60.16	80.75	60.11	58.79	65.00	34.31	36.00	
	180/128	36.76	53.73	61.35	82.52	58.42	58.56	65.14	34.28	35.69	
	180/180	37.42	53.72	58.70	80.73	63.31	58.91	65.83	33.94	36.35	
	180/256	37.66	53.83	60.66	80.43	60.74	58.66	64.97	33.52	35.21	
	180/512	37.93	53.85	58.52	80.04	60.87	58.24	64.88	33.09	34.99	
BCL	180/4	30.90	41.20	48.30	72.93	60.16	50.70	62.98	23.83	30.81	
	180/8	36.88	51.10	59.81	82.40	61.57	58.35	65.23	33.92	35.29	
	180/32	38.04	54.77	60.88	82.75	61.24	59.54	65.11	34.67	36.15	
	180/64	**38.05**	54.36	60.59	81.84	60.39	59.05	64.78	33.23	35.67	
	180/128	37.74	54.36	59.43	81.15	60.51	58.64	66.13	33.65	36.34	
	180/256	35.81	53.78	58.35	81.45	59.84	57.85	64.87	33.77	35.97	
	180/512	37.99	54.23	**61.61**	80.84	**62.13**	59.36	64.34	34.08	35.92	
Ablation Experiments

(a) $\omega = 180/4$

(b) $\omega = 180/32$

(c) $\omega = 180/128$

(d) $\omega = 180/256$
Ablation Experiments

- Angle Distance and Aspect Ratio Sensitive Weighting

Method	ADARSW	PL	BD	GTF	TC	BC	ST	SBF	RA	SP	HC	10-mAP$_{50}$	mAP$_{50}$
BCL	88.63	71.62	65.18	90.70	76.32	78.47	52.26	60.25	66.61	49.15		69.92	66.53
	✓											**72.22**	**67.39**
GCL	88.52	73.58	64.38	90.80	77.66	76.38	50.84	59.46	65.83	48.42		69.59	66.27
	✓											**71.72**	**67.02**

- Verification on different datasets

Method	ICDAR2015	UCAS-AOD	MLT				
	Recall	Precision	Hmean	Recall	Precision	Hmean	
RetinaNet-Reg	81.49	83.29	82.38				
	car(07/12)	plane(07/12)	mAP$_{50}$ (07)	mAP$_{50}$ (12)	Recall	Precision	Hmean
RetinaNet-CSL	80.50	**87.40**	83.81 (+1.43)				
RetinaNet-BCL	**81.61**	84.79	83.17 (+0.79)				
	88.15/92.35	90.57/97.86	**89.36 (+0.51)**	95.10 (+0.94)			
Ablation Experiments

- Visualization

(a) $\omega = 180/4$

(b) $\omega = 180/8$
Thank You!

- Paper: https://arxiv.org/abs/2011.09670
- Code: https://github.com/yangxue0827/RotationDetection
- Contact:
 - Xue Yang: yangxue-2019-sjtu@sjtu.edu.cn
 - Junchi Yan: yanjunchi@sjtu.edu.cn
- Homepage of our Lab:
 - http://thinklab.sjtu.edu.cn/