a complex conformational epitope with contributions from both gp41 heptad repeat regions. Despite using the VH1-02 gene segment, known to contribute to some of the broadest neutralizing antibodies against HIV, members of these antibodies, termed group 76C antibodies, did not exhibit broad neutralization.

Methods. Our goal was to characterize the non-neutralizing functions of antibodies in group 76C by assessing targeting of the epitope in various clinical presentations and to assess the development of these antibodies by comparison to their predicted common ancestor. Serum samples were obtained from HIV+ clinical groups: EC, LTNF, stable CD4 counts on therapy, and those off therapy.

Results. In antibody/serum competition assays, comparison to VRC01 which also uses VH1-02, showed that antibodies targeting the 76C group epitope were enriched in LTNPs. We then show recombinant antibodies of 76C members 6F5 and 6F11 both have robust ADCC activity, despite their sequence disparity. Sequence analysis predicted the common ancestor of this clonal group would utilize the germline non-mutated variable gene. We produced a recombinant ancestor Ab (76Canc) with a heavy chain utilizing the germline variable gene sequence paired to the 6F5 light chain. 76Canc binds HIV envelope constructs near the original group C epitope. 76Canc also shows comparable ADCC to 6F5 and 6F11 on both clade B and C constructs.

Common ancestor antibodies maintain function and these types of antibodies correlate to a non-progressive clinical state.

(A) Serum from long-term non-progressors (LTNPs) compared to serum from a group of HIV infected with lower CD4 levels as a control for viral load were used to compete against biotinylated CD4 binding site (VRC01) and 76C Gp41 conformations (6F11) targeting antibodies. Serum dilutions were chosen to align means near 50%. Means with 95% confidence intervals are shown.

(B) Common ancestor antibody (76Canc) with germline VH1-02 sequence maintains robust Antibody Dependent Cell Cytotoxicity against Clade B and C targets.

1009. Biofilm Formation in Acinetobacter baumannii Clinical Isolates

Elizabeth Nowak, M.D.1; Ektta Bansal, MD2; Anthony Raffo-Bonnie, Medical Degree (MD)3; Namalwar Srinangunanath, M.B.,Bch.,Ph.D., DAC VM3; Thomas Kerkering, MD4; Jayasimha Rao, Ph.D.,MVPHA, FVPHFA5; Carillon Clinic, Roanoke, Virginia; Virginia Tech Carilion School of Medicine, Roanoke, Virginia; Carillon Clinic/VTC SOM, Roanoke, VA; Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Virginia Tech Carilion School of Medicine, Carillon Clinic, Roanoke, VA; Carillon Clinic/Virginia Tech Carilion School of Medicine, Roanoke, Virginia

Session: P-56. Microbial Pathogenesis

Background. Multidrug resistant Acinetobacter baumannii (MDR-Ab) is a Gram-negative bacterium known for causing severe nosocomial infections, attributed in part to its formation of biofilm. Siderophore is a virulence factor known to support biofilm formation by regulating iron availability. In this study, we screened 44 isolates of MDR-Ab from our Gram-negative repository to determine the strains that phenotypically form biofilm and produce siderophore. The results were compared to Pseudomonas aeruginosa PA01, which produces both biofilm and siderophore.

Methods. Isolates were grown overnight in minimal M9 medium supplemented with casamino acids and hydroxypyruvines at 37°C. Bacterial cells were normalized to OD 600=0.1 and a standard dilution 10^4 was used in the study. A 96-well plate was inoculated with 100 microliters of each isolate in quadruplicates. This process was repeated in Tygon tubes with 50 microliters of each isolate in triplicates. The plate and Tygon tubes were incubated statically for 48 hours at 30°C and then stained with crystal violet. The contents were dissolved in 33% glacial acetic acid and analyzed by spectrophotometry to measure biofilm formation. Siderophore secretion was measured in supernatants with Chrome Azul S (CAS) reagent and production was observed on CAS agar plates.

Results. High levels of biofilm formation were observed in 8 strains of MDR-Ab in the 96-well plate (3, 4, 9, 22, 61, 1010, 1012, 1022) and 6 strains in Tygon tubes (3, 4, 16, 66, 1002, 1010) (Fig. 1). There was minimal siderophore production in MDR-Ab isolates compared to PA01 in both the 96-well plate and Tygon tubes (Fig. 2). Only 4 strains lacked siderophore production on CAS agar and were inversely negative for the secretion in medium.

1010. Cross-Species Translation of Correlates of Protection for COVID-19 Vaccine Candidates Using Quantitative Tools

Anna Largacioli, PhD1; Nela Plock, PhD2; Bhargava Kandala, PhD2; Akshita Chawla, PhD2; Seth H. Robey, PhD3; Kenny Watson, PhD4; Raj Thatavarti, MS5; Sheri Dubey, PhD5; S. Y. Amy Cheung, PhD5; Bik de Greff, MSc5; Jeffrey R. Sachs, PhD5; Ceritara, Princeton, New Jersey; Merck & Co., Inc., Kenilworth, New Jersey

Session: P-56. Microbial Pathogenesis

Background. Several COVID-19 vaccines have been authorized, and the need for rapid further modification is anticipated. This work uses a Model-Based Meta-Analysis (MBMA) to relate, across species, immunogenicity to peak viral load (VL) after challenge and to clinical efficacy. Together with non-clinical and/or early clinical immunogenicity data (ECID), this enables prediction of a candidate vaccine’s clinical efficacy. The goal of this work was to enable the accelerated development of vaccine candidates by supporting...
Results. The UW Health results included more urban areas, more block groups and greater isolate geographic density (n = 44,629 E. coli, 2009-2018), compared to Fort HealthCare (n = 6,065 isolates, 2012-2018) and MCHS (50,405 isolates, 2009-2018). A positive spatially clustered pattern was identified from the UW Health data for ciprofloxacin (Moran’s I = 0.096, p = 0.005) and trimethoprim/sulfamethoxazole (TMP/SMX) susceptibility (Moran’s I = 0.180, p < 0.001; Figures 2-3). Fort HealthCare and MCHS distribution was likely random for TMP/SMX and ciprofloxacin by Moran’s I. Linear regression of ADI (scale 1-10, least to most disadvantaged) and susceptibility did not find significance, but susceptibility was lower in more disadvantaged block groups. At the local level, we identified hot and cold spots with 90%, 95%, and 99% confidence, with more hot spots in rural regions.

Figure 1. Geographic example of hot spot analysis and interpretation.

1011. Geospatial Analysis of Antibiotic Susceptibility in Wisconsin

Laurel Legenza, PharmD, MS1; Kyle McNair, MS1; James P. Lacy, MS1; Song Gao, PhD1; Warren Rose, PharmD, MPH1; University of Wisconsin-Madison, Madison, Wisconsin

Session: P-56. Microbial Pathogenesis

Background. The global threat of antimicrobial resistance (AMR) varies regionally. Regional differences may be related to socio-economic factors such as the Area Deprivation Index (ADI) score. Our hypothesis is that AMR spatial distribution is not random.

Methods. Patient-level antibiotic susceptibility data was collected from three regionally distinct Wisconsin health systems (UW Health, Fort HealthCare, Marshfield Clinic Health System [MCHS]). Patient addresses were geocoded to coordinates and joined with US Census Block Groups. For each culture source, we included the initial E. coli isolate per patient per year with a patient address in Wisconsin. Antibiotic susceptibility may be more common in rural areas. The results are limited to urban versus rural areas. Yet, the local hot spot results indicate that variations in antibiotic susceptibility may be more common in rural areas. The results are limited to data from patients with access to the health systems included.

Results. The UW Health results included more urban areas, more block groups and greater isolate geographic density (n = 44,629 E. coli, 2009-2018), compared to Fort HealthCare (n = 6,065 isolates, 2012-2018) and MCHS (50,405 isolates, 2009-2018). A positive spatially clustered pattern was identified from the UW Health data for ciprofloxacin (Moran’s I = 0.096, p = 0.005) and trimethoprim/sulfamethoxazole (TMP/SMX) susceptibility (Moran’s I = 0.180, p < 0.001; Figures 2-3). Fort HealthCare and MCHS distribution was likely random for TMP/SMX and ciprofloxacin by Moran’s I. Linear regression of ADI (scale 1-10, least to most disadvantaged) and susceptibility did not find significance, but susceptibility was lower in more disadvantaged block groups. At the local level, we identified hot and cold spots with 90%, 95%, and 99% confidence, with more hot spots in rural regions.

Figure 2. Results from Moran’s Index analysis identifying geographically clustered ciprofloxacin susceptibility results.

Conclusion. Overall, Moran’s I analysis is more able to identify a clustered pattern in urban versus rural areas. Yet, the local hot spot results indicate that variations in antibiotic susceptibility may be more common in rural areas. The results are limited to data from patients with access to the health systems included.

Disclosures. Warren Rose, PharmD, MPH, Merck (Grant/Research Support) Paratek (Grant/Research Support, Advisor or Review Panel member)