Genetic influences on cystic fibrosis lung disease severity

Colleen A. Weiler and Mitchell L. Drumm

1 Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
2 Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA

Understanding the causes of variation in clinical manifestations of disease should allow for design of new or improved therapeutic strategies to treat the disease. If variation is caused by genetic differences between individuals, identifying the genes involved should present therapeutic targets, either in the proteins encoded by those genes or the pathways in which they function. The technology to identify and genotype the millions of variants present in the human genome has evolved rapidly over the past two decades. Originally only a small number of polymorphisms in a small number of subjects could be studied realistically, but speed and scope have increased nearly as dramatically as cost has decreased, making it feasible to determine genotypes of hundreds of thousands of polymorphisms in thousands of subjects. The use of such genetic technology has been applied to cystic fibrosis (CF) to identify genetic variation that alters the outcome of this single gene disorder. Candidate gene strategies to identify these variants, referred to as “modifier genes,” has yielded several genes that act in pathways known to be important in CF and for these the clinical implications are relatively clear. More recently, whole-genome surveys that probe hundreds of thousands of variants have been carried out and have identified genes and chromosomal regions for which a role in CF is not at all clear. Identification of these genes is exciting, as it provides the possibility for new areas of therapeutic development.

Keywords: polymorphism, genotype, phenotype

Cystic fibrosis background

Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in Caucasians, affecting an estimated 1 in 3,300 live-born infants (Davis et al., 1996). Affected individuals have variants in both copies of the 230-kb CF transmembrane conductance regulator gene (CFTR), that result in significant reduction or absence of CFTR function. The CFTR gene is located on the long arm of chromosome 7 at position 7q31 and encodes a 1,480 amino acid protein (Riordan et al., 1989; Rommens et al., 1989) with cAMP-dependent anion channel activity (Bear et al., 1992) found in the apical membranes of epithelial cells in the lungs, olfactory sinuses, pancreas, intestines, vas deferens, and sweat ducts, as well as non-epithelial cells such as immune cells (myeloid and lymphocytes) and various muscle cell types (Yoshimura et al., 1991; Krauss et al., 1992; McDonald et al., 1992; Dong et al., 1995; Moss et al., 2000; Robert et al., 2005; Di et al., 2006; Vandebrouck et al., 2006; Divangahi et al., 2009; Lambonwah et al., 2010). Low or absent CFTR function in the airway epithelium not only results in decreased chloride permeability, but also in increased sodium absorption across the epithelium, impairing hydration of the airway mucosal surface and resulting in thick, sticky mucus and an environment for bacteria to thrive. Thus, typical clinical features of CF include chronic infection and inflammation of the airways. Accordingly, a hallmark characteristic of the CF airways is progressive bronchiectasis; this destruction and dilation of the airways is the primary cause of morbidity and mortality of CF patients. In addition to the airway manifestations, most CF patients will experience exocrine pancreatic insufficiency, male are most often sterile, and other co-morbidities such as liver disease and diabetes are common as well. Previously considered almost exclusively a pediatric disease, CF babies now have a predicted median survival of nearly 40 years (Cystic Fibrosis Foundation Patient Registry, 2009).

Heterogeneity of CFTR

To date, over 1,800 CF-associated mutations have been described1 and the effects of these mutations have been grouped into six general classes based on the consequence to CFTR message and/or protein (Zielenski, 2000). These range from complete absence of full-length, functional CFTR protein (class I), proteins that do not traffic to the membrane well due to misfolding (class II), proteins that reach the membrane but do not respond to activation stimuli such as phosphorylation (class III), proteins that reach the membrane and activate, but do not conduct anions sufficiently to prevent disease (class IV), mutations that reduce the amount of functional CFTR, such as by gene expression regulation or protein trafficking (class V), and proteins that are unstable and experience increased turnover in the plasma membrane (class VI). It should be noted that these classes are not mutually exclusive, as a single change may have multiple effects on the protein.

Given the diversity of mutations, it is perhaps not surprising that there is a wide range of phenotypic variability in CF simply due to variation in CFTR. Many reports of correlations between CFTR genotype and clinical phenotype exist (Kerem et al., 1990a; Stuhrmann et al., 1991; The Cystic Fibrosis Genotype-Phenotype Consortium, 1993; Tsui and Durie, 1997; Zielenski, 2000).

1http://www.genet.sickkids.on.ca
2000), with the most extensive catalog to date carried out as an international effort and currently includes data on over 35,000 patients. Because most CF mutations are rare, surveying such a large number of individuals makes it possible to most reliably assess the phenotypic effects associated with a genotype, rather than extrapolate from individual cases.

In addition to CFTR genotype, there is evidence that gender contributes to phenotypic variability (Davis, 1999). Females are reported to have a reduced median survival age (by approximately 3 years), an earlier average age of Pseudomonas aeruginosa infection in the lungs, greater rates of pulmonary decline, and elevated resting energy expenditure when compared to males (Demko et al., 1995; Corey et al., 1997; Allen et al., 2003). Although some current studies replicate these findings (Barr et al., 2011; Reid et al., 2011), others show no evidence of a gender gap and propose that phenotypic variability could be attributed to non-uniformity of care or the need to account for other factors such as body habitus, presence of diabetes, or the finding that females are more likely to be diagnosed later in life than males (Widerman et al., 2000; Milla et al., 2005; Rodman et al., 2005; Verma et al., 2003; Stern et al., 2008; Fogarty et al., 2012).

GENOMIC HETEROGENEITY AND CLINICAL VARIATION
Even among patients with the same CFTR genotype, there is a wide range of phenotypic variability (Kerem et al., 1990a; Tsui and Durie, 1997). Perhaps most notably, there is remarkable variation of pulmonary phenotype, with some patients maintaining normal lung function well into adolescence and adulthood while others do quite poorly even at a very young age (Kerem et al., 1990a). Understanding the causes of this variation is important, as it provides insight into developing new therapies, or improving existing ones.

Clearly environmental factors contribute to clinical variation; exposure to tobacco smoke, bacterial infections, and socioeconomic status have all been implicated as having detrimental effects on pulmonary phenotype of CF patients (Kerem et al., 1990b; Rubin, 1990; Corey and Farewell, 1996; Schechter et al., 2001; O’Connor et al., 2003) while improvement of nutritional status, through aggressive treatment, has been associated with improvements in pulmonary phenotype (Steinkamp and von der Hardt, 1994). Each of the environmental sources of clinical variation provide potential intervention points, but it is also clear that there are heritable sources (Mekus et al., 2000; Vanscoy et al., 2007) of variation as well and that may provide insight into even more therapeutic targets.

EVIDENCE OF GENETIC MODIFIERS OF DISEASE
Human twin and sibling studies have been useful in verifying the role of modifier genes, and quantifying their contribution to phenotypic variation. Mekus et al. (2000) found in a survey of 277 sibling pairs, with 29 monozygous and 12 dizygous pairs, that a combined index of lung function and body mass was more concordant among monozygous twins (sharing 100% of genetic material) than dizygous twins or other sibling pairs (sharing 50% of genetic material), pointing to a genetic etiology of variation. Similarly, Vanscoy et al. (2007) examined the pulmonary phenotype of 57 twin pairs and 231 sibling pairs with CF. Lung function measurements were significantly more concordant between monozygous twins than dizygous twins, also indicating the presence of genetic modifiers. The similarity in lung function between sibling pairs was compared to the similarity in lung function in unrelated patients, and again was found to be more similar. Heritability estimates were calculated from these data, and it was determined that non-CFTR genetic variation could account for approximately 50–80% of the pulmonary phenotypic variability in CF patients with the same CFTR genotype (homozygous F508del) (Vanscoy et al., 2007).

GENETIC APPROACHES
With a genetic component established, the next task at hand was to identify the genes responsible. There are two fundamental strategies by which to accomplish this. One requires family information and is often referred to as linkage analysis. Through this approach, one determines whether a polymorphism’s genotype is concordant in siblings with similar clinical profiles, discordant when clinical features are discordant or show no pattern. The other approach is association, determining if particular alleles of a polymorphism are distributed randomly among patients or have skewed distributions that track with clinical characteristics. These two approaches are outlined in Table 1 and the findings that these strategies have produced are listed in Table 1 with several examples described in more detail below.

The vast majority of studies have been of the association design, predominantly due to the small number of families with multiple, affected children. These studies have evolved over time; cost and time restricted most early studies to screen for potential disease-modifying genes by candidate gene approaches with later studies utilizing array-based methods and soon whole-genome sequencing will be the state of the art. These three approaches are compared in Figure 2.

PHENOTYPIC CONSIDERATIONS
As lung disease is the major source of CF-related mortality, most studies have focused on some measure of lung function as a phenotype to examine for association. As most CF care centers carry out standard pulmonary function tests, spirometry has most commonly been used. Other tests may, in fact, be more specific for particular modifying functions, such as lung clearance index, but these are not as widely used and thus less practical for multi-center studies.

CANDIDATE GENES
Candidate genes are those suspected to have a role in some aspect of CF pathophysiology and variants in those genes are then tested for association with disease manifestations. Those traits may be represented by a continuum of values (lung disease severity, for example) or discrete traits, such as the occurrence of intestinal obstruction. Candidate gene selections for study involved many areas because of the complex pathophysiology of CF, including bacterial infections, inflammation, and lung remodeling/deterioration. This approach yielded multiple reports of putative modifiers of the CF pulmonary phenotype. For example, mannose-binding lectin (MBL), a gene involved in innate
immunity, was one of the first potential modifier genes described. Low-expressing MBL alleles were found to associate with a more severe pulmonary disease course than those with higher expression (Garred et al., 1999). HLA haplotypes were also investigated as modifiers due to the role of the genes in this complex innate defense and inflammation. Carriers of the HLA II DR7 haplotype were found to have a higher incidence of P. aeruginosa colonization (Aron et al., 1999).

Polymorphisms within cytokines and other inflammatory mediators were investigated as potential modifiers of CF pulmonary disease due to their role in immune response as well. Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that is stimulated by NF-κB as a first line of defense against infection. The minor allele of a TNFα promoter polymorphism associated with worse pulmonary function in a small set of CF patients (Hull and Thomson, 1998). Interestingly, the TNFα minor allele that associated with a worse CF prognosis was also associated with an increase in mRNA expression level when measured using a reporter construct (Wilson et al., 1992). Interleukin-10 (IL-10), an anti-inflammatory cytokine was also investigated. Like TNFα, an IL-10 promoter polymorphism was also associated with differences in IL-10 expression (Turner et al., 1997). In this case, the lower expressing IL-10 allele was associated with worse CF disease. These studies supported a model in which higher levels of the pro-inflammatory cytokine TNFα, and lower levels of the anti-inflammatory cytokine IL-10 contribute to more severe CF lung disease.

CHALLENGES OF EARLY CANDIDATE GENE MODIFIER STUDIES

Early studies that attempted to identify potential modifiers were challenged by small numbers of study subjects. Typically, pulmonary function data using standard spirometry are not available on children younger than age 6, and multiple measures over time are needed to assess a subject’s trajectory, as an indicator of current and future disease severity. Nonetheless, numerous studies compared pulmonary function of subjects over a range of ages, statistically adjusting for age. Younger patients were included in order to maximize participation, but epidemiologic studies indicated that much of the pulmonary phenotypic variability was not present until after puberty (Zemel et al., 2000).

An additional constraint is that not all mutations in CFTR have the same consequences on protein function and thus it is likely to confound interpretation if CFTR genotype is not accounted for. Consequently, after limiting to patients with sufficient lung function measurements and comparable CFTR genotypes, the number of available subjects is low, making it unfeasible for any single center to carry out an association study that would have the statistical power to detect anything but a very major effect of a modifier gene.

CONSORTIUM APPROACHES

The ability to effectively carry out genetic studies is limited by numbers of subjects. As a means to increase numbers, the European CF Twin and Sibling Study mentioned earlier was conceived and compared morphometric and pulmonary function indices of sib pairs. Using lung function measurements from patients in North America and Europe, this study was the first to compare lung function using a CF population for reference (Mekus et al., 2000).

Subsequently, the CF Gene Modifier Study (GMS) was conceived in 1999 to carry out a genetic study on a large group of patients for which longitudinal lung function data were available and genotype was restricted. In its inception, the study design was to use a candidate gene approach to search for potential genetic modifiers of CF pulmonary disease. The unique study design reduced genetic heterogeneity by using only patients who were homozygous for F508del (commonly referred to as ΔF508), and maximized the number of patients available by including patients from CF centers nationwide, comparing the most mild and most
Gene/locus	Genes involved	Variant aliases	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated n (reference)
8.1AH	LTA	+252 A > G	909253	FEV₁ % pred	<0.04	404 (Corvol et al., 2012)		
	TNF	−308 G > A	1800629	Chronic *P. aeruginosa* colonization	0.99			
	HSP70-2	1267 A > G	106158					
	RAGE	−429 T > C	1800625					
8.1MHC	AGER	−429 T > C	106158	Age at onset of colonization	0.036	72 (Laki et al., 2006)		
	HSP70-2	1267 A > G	G-308A	Frequency of colonization	0.012			
	TNFA	12793173	1978 (Wright et al., 2011)					
11p13	APIP	APOC2, D19S219, D19S112 haplotype	FEV₁ % pred (adjusted)	3.34 × 10⁻⁸				
19q13	hCFM1	APOC2, D19S219, D19S112 haplotype	FEV₁ % pred	0.779				
						197 sib pairs (Zeileiski et al., 1999)		
A1AT	SERPINA1	1237 G > A	11568814	FEV₁ % pred	0.368	157 (Mahadeva et al., 1998a)		
				CXR score	0.813	716 (Frangolis et al., 2003)		
				Age at onset of *P. aeruginosa*	0.146			
		S allele	17580	FEV₁ % pred	0.043	157 (Mahadeva et al., 1998a)		
		Z allele	28929474	CXR score	0.127	157 (Mahadeva et al., 1998a)		
				Age at onset of *P. aeruginosa*	0.899			
ABCC1	MRP-1	4741 C > G	504348	Age at onset of *P. aeruginosa*	0.0644	203 (Maffioni et al., 2011)		
				Age at which FEV₁ < 60%	<0.05			
				FEV₁ % pred	0.52			
ABO	T99T	8176719	8176720	Pulmonary disease severity	No association	778 (Taylor-Cousar)		
	21404 C > A	1053878	7853989	Age at onset of *P. aeruginosa*	No association			
	R176G	8176740	8176741					
	21583 T > A	8176742	816750					
	H219H	8176742	816750					
	P227P	8176472						
	66119 G > A	8176472						

(Continued)
Table 1 | Continued

Gene/locus	Genes involved	Variant aliases	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated n (reference)
ACE	Insertion or deletion	Age of first P. aeruginosa infection	0.9	261 (Arkwright et al., 2003)	808 (Drumm et al., 2005)			
ACE	Insertion or deletion	Age at which FEV1 < 50%	0.03 (0.04)	No association				
ACE	Insertion or deletion	Age of death	No association					
ADRB2	Arg16Gly	1042713	FEV1 % pred FVC Flows at lower lung volumes 5 year decline in pulmonary function	<0.05 <0.05 <0.01 <0.01	126 (Buscher et al., 2002)	808 (Drumm et al., 2005)		
AGER	−429T>C	1800625	FEV1 Kulich CF-specific percentile z-score KNoRMA	0.02 0.03 0.03	967 (Behesher et al., 2012)			
AGTR2	1403543	FEV1 % pred (adjusted)	1.61 × 10−5	1,978 (Wright et al., 2011)	557 (Wright et al., 2011)			
AHRR	12188164	FEV1 % pred (adjusted)	5.92 × 10−4	1,978 (Wright et al., 2011)	557 (Wright et al., 2011)			
C3	4023 T>G	31778 G>A 393770 11569393 39718 G>A	FEV1 % pred	0.75 (0.05) 0.66 (0.03) 0.78 (0.52)	755 (Park et al., 2011)			
C3	4023 T>G	31778 G>A 393770 11569393 39718 G>A	FEV1 % pred	0.75 (0.05) 0.66 (0.03) 0.78 (0.52)	755 (Park et al., 2011)			
CD14	−159 C>T	Pulmonary disease severity	No association	105 (Faria et al., 2009)				
CDH8	11645366	FEV1 % pred (adjusted)	1.23 × 10−5	1,978 (Wright et al., 2011)	557 (Wright et al., 2011)			
CEACAM3	19q13	6508999–10414823	Disease severity	0.0469	37 nuclear families (Stanke et al., 2010)			
CEACAM6	19q13	1549960–11548735	Disease severity	0.0106	37 nuclear families (Stanke et al., 2010)			
Gene/locus	Genes involved	Variant alleles	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated n (reference)
------------	----------------	----------------	--------------------------	------------------	--------------------	----------------------	---------------------------	---------------------------------
CFB		7680 A > G	537160	FEV₁ % pred	0.50 (0.83^a)	755 (Park et al., 2011)		
		10858 A > G	2072633		0.68 (0.74^a)			
CLCN2 CLC-2	−693 A > G	358 G > C	0.72		0.32	71 (Blasdell et al., 2004)		
		427 A > G	0.32		0.32			
		1089 T > C	0.21					
		1909 G > C	0.22					
DCTN4		Any missense variant	11954652	Age at onset of chronic P. aeruginosa infection	0.05	91 (Emond et al., 2012)		
			35772018	Age of first P. aeruginosa infection	0.002		645 (Emond et al., 2012)¹⁰	
				Age at onset of P. aeruginosa infection	0.01		530¹⁰	
				Age at onset of mucoid P. aeruginosa infection	0.03			
				Time from first detection of P. aeruginosa infection to mucoid P. aeruginosa	0.01			
DEFB1		Frequent polymorphisms		Age of first P. aeruginosa infection	No association	210 (Segat et al., 2005)	224 (Fesse et al., 2008)	
				FEV₁ %	No association	62 (Vankeerberghen et al., 2009)		
DEFB4		Genomic copy number (2–12) of repeat unit		Pulmonary disease (mean and current FEV₁, mean and current FVC)	No association	355 (Hollox et al., 2005)		
EDNRA		6672 G > C	5335	Pulmonary function (FEV₁)	0.002	1,577 (Darrah et al., 2010)		
EEA1		4760506	6.77 × 10⁻⁶	FEV₁ % pred (adjusted)	1,978 (Wright et al., 2011)			
FCGR2 FcyRII	R131H	Chronic P. aeruginosa colonization	0.042		167 (De Rose et al., 2009)			
FUT2		G428A	601338	Impairment of lung function (FEV₁)	0.569	806 (Taylor-Cousar et al., 2009)		

(Continued)
Gene/locus	Genes involved	Variant aliases	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated n (reference)	
FUT3	T59G		28362459	Impairment of lung function (FEV$_1$)	0.544	707 (Taylor-Cousar et al., 2009)			
	T202C		812936		0.491				
	C314T		778986		0.615				
	T1067A		3894326		0.792				
GCLC		(GAG)$_n$		FEV$_1$ % pred	0.097	440 (McKone et al., 2006)			
					0.001 (mild)				
					0.533 (severe)				
GSTM1	GSTM1*0/	GSTM1*0		FEV$_1$ % pred	0.16	53 (Hull and Thomson, 1996)			
		GSTM1*0	146 (Baranov et al., 1994)	Chrispin–Norman score	0.02	194 (Baranov et al., 1996)			
					Shwachman score	0.04	60 (Korytina et al., 2004)		
					Positive for P aeruginosa	0.12		808 (Drumm et al., 2005)	
					No. of ΔF508 homozygotes	0.43			
GSTM3	GSTM3*A	GSTM3*B	1799735	FEV$_1$	0.01	146 (Flamant et al., 2004)			
					FVC	0.002			
GSTP1	1375 A > G	ITOSV	947894	Spirometry	NS	146 (Flamant et al., 2004)			
GSTT1	GSTT1*0/	GSTT1*0	1800562 and/or	Spirometry	NS	146 (Flamant et al., 2004)			
			H63D			146 (Flamant et al., 2004)			
HFE	C282Y and/or	1799945		Positive for P aeruginosa	0.81	82 (Pratap et al., 2010)			
	H63D			FEV$_1$ % pred	0.03				
				FVC % pred	0.02				
				Annual change in FEV$_1$ % pred	0.003				
				Annual change in FVC % pred	0.001				
HLA	DRA		9268905	FEV$_1$ % pred (adjusted)	1.42 x 10$^{-5}$	1,978 (Mighton et al., 2011)			
	DR4			Chronic P aeruginosa colonization	<0.03	98 (Aron et al., 1999)			
	DR7/DQA*0201			Chronic P aeruginosa colonization	<0.03		72 (Laki et al., 2006)		
HMOK1	11354 A > G	2071719		FEV$_1$ % pred	0.01 (0.29)	755 (Park et al., 2011)			
	4613 A > T	2071716			0.40 (0.03)				
IFNG	IFN$_y$			Age of first P aeruginosa infection	No association	261 (Arkwright et al., 2003)			
		+874 A > T		Age at which FEV$_1$ < 50%	0.09				
				Age of death	No association				
Gene/locus	Genes involved	Variant alleles	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated	
-----------	----------------	-----------------	--------------------------	------------------	---------------------	---------------------	-------------------------	----------------------	
IFRD1		57460 C>T	7817	Cross-sectional measures of lung function	0.004 (0.0168)^f	320 (Gu et al., 2009)			
				Longitudinal measures of lung function	0.016 (0.0187)^f				
				FEV₁ % pred (adjusted)	No association	1,978 (Hnight et al., 2011)			
		47556 G>T	3807213	Longitudinal measures of lung function	0.080				
		38923 C>T	6968084	Cross-sectional measures of lung function	0.082				
IL8			2227306	Pulmonary disease severity	0.19	737	385 (Hillian et al., 2008)		
			2227307	Pulmonary function decline	No association	727	329 (Corvol et al., 2008)		
		−251 A>T	4073	Age of first P. aeruginosa or B. cepacia infection	No association	732			
		−592 CC/-	1800872	Age of death	No association	733 (Hillian et al., 2008)⁺			
IL−10		−592 CC/TA	1800872	Pulmonary function decline	No association	261 (Arkwright et al., 2003)			
		−1082 G>A	1800896	Colonization with A. fumigatus	No association	378 (Brouard et al., 2005)			
				Development of ABPA	No association				
				Colonization with P. aeruginosa	No association				
KRT8/		1907671	4300473	Disease severity	Associates	49 (24 sib pairs)			
KRT18			8608		Associates				
		7952 T>C	2035875	Disease severity	Associates				
		1907671-4300473	2035878-2035875	Disease severity	Associates				
			2638526	Disease severity	NS				
			2070876	Disease severity	NS				
KRT19	c.90T > C	11550883	4602	Effective specific airway resistance	0.0093	95 (Gisler et al., 2012)			
	c.179G > C	11550883	4602	Effective specific airway resistance	0.0052				
		11550883-4602	11550883-4602	Effective specific airway resistance	0.0097				

(Continued)
Gene/locus	Genes involved	Variant alleles	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated n (reference)
MASP-2	Exon 3 A > G, D120G	72550870	Pulmonary function	No association	0.04	112 (Carlsson et al., 2005)	109 (Olesen et al., 2006)	No association
			Need for transplantation	No association				
			Colonization with P. aeruginosa		0.04			
			Lung function in patients colonized with S. aureus		0.04			
MBL2	X1 – B (A > G)	1800450	FEV1%	0.003	149 (Garred et al., 1999)	164 (Gaboide et al., 1999)	112 (Carlsson et al., 2005)	260 (Davies et al., 2004)
	X1 – C (A > G)	1800451	FVC%	0.03	179 (Harden et al., 2004)	47 (Frevioli et al., 2005)	808 (Drumm et al., 2005)	298 (Davies et al., 2004)
	X1 – D (C > T)	5030737	Age of onset of P. aeruginosa	0.07	7096206			
	(A/A, A/O, O/O)		−221 G > C (X/Y)					
	−550 G > C (H/L)		Lung function	No association	112 (Carlsson et al., 2005)	105 (Faria et al., 2009)	254 (Buranawutti et al., 2007)	
	−794 presence of absence of 5-CATT		Colonization	No association	112 (Carlsson et al., 2005)	105 (Faria et al., 2009)	254 (Buranawutti et al., 2007)	
MIF			Colonization with P. aeruginosa	0.004	167 (Plant et al., 2005)			
			Colonization with S. aureus	0.50				
			Colonization with Candida	0.36				
			FEV1 ≥ 80%	0.14				
NOS1	IAAT_{β-15}		Colonization with P. aeruginosa	0.0358	75 (Grasemann et al., 2003)	40 (Grasemann et al., 2002)		
	GT₁₈₋₃₆		Mean FE_{NO}	0.027				
			Colonization with A. fumigatus	0.8505	59 (Fexereau et al., 2004)			
			5 year decline of pulmonary function	0.025				

(Continued)
Gene/locus	Genes involved	Variant aliases	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated
NOS3		894 G > T		FEV₀	0.07 (0.02 in females)	70 (Grasemann et al., 2003)		
				FEV₁	0.08 (in females)			
				Colonization with P. aeruginosa	<0.05			
		T5220G	1799983	Impairment of lung function (FEV₁)	0.54	808 (Drumm et al., 2005)		
PPP2R1A		c.*465T > A	2162779	Functional residual capacity	0.0033	95 (Gisler et al., 2012)		
PPP2R4		c.−185A > C	3118625	FEV1	0.0048	95 (Gisler et al., 2012)		
				Lung clearance index	0.0059			
				Effective specific airway resistance	0.0064			
SCNN1B	ENaCβ	T313M	938 C > T	Disease severity	56 (Mei et al., 2008)			
		938 C > T	G5895		1765 G > A			
SCNN1G	ENaCγ	L481G	1442 T > A	Disease severity	56 (Mei et al., 2008)			
		1442 T > A	V546I		1636 G > A			
SERPINA3	ACT	T15A	4934	FEV₁ % pred	0.04	157 (Mahadeva et al., 2001)		
A1ACT				Radiography score	0.03			
SFTPA1		6A³ (and 6A³/1A¹ haplotype)		FEV₁ % pred	0.01	135 (Choi et al., 2009)		
				DLCO	0.10			
				ATS score	0.006			
				AMA score	0.02			
				Dyspnea score	0.20			
				Physical score	0.002			
				Severity score	0.005			

(Continued)
Gene/locus	Genes involved	Variant aliases	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated n (reference)
SFTPA2	1A (and 6A/1A haplotype)	FEV₁ % pred	0.009	135 (Choi et al., 2006)				
		DLCO	0.13					
		ATS score	0.007					
		AMA score	0.06					
		Dyspnea score	0.07					
		Physical score	0.12					
		Severity score	0.10					
SLC8A3		FEV₁ % pred (adjusted)	1.20 x 10⁻⁶	1,978 (Wright et al., 2011)				
SLC9A3	521096 C>T	Age of first P. aeruginosa infection	0.02	1,004				
		Decline of lung function (FEV₁)	0.05	752 (Dorfman et al., 2011)				
SNAP23	c.267-9T>C	FEV₅₀	0.0088	95 (Gisler et al., 2012)				
		Functional residual capacity	0.011					
		Volume of trapped gas	0.0043					
TGFB1	codon 10	Age at which FEV₁ < 50%	<0.02	171 (Arkwright et al., 2000)^a				
	C29T	Age at which FVC < 70%	<0.005	261 (Arkwright et al., 2003)				
	codon 25	Age at which FEV₁ < 50%	NS	808 (Drumm et al., 2009)^b				
	G74C	Age at which FVC < 70%	NS					
	C-509T	Impairment of lung function (FEV₁)	0.006	808 (Drumm et al., 2005)				
TLR4	D299G	Mean FEV₁ % pred	0.55	100 (Urquhart et al., 2006)				
	Mean FVC % pred	0.52						
	Age of first P. aeruginosa infection	0.78						
	Chrpsin–Norman X-ray score	0.16						
	Rate of change of FEV₁ % pred per year	0.12						
	FEV₁ % pred	0.84	755 (Park et al., 2011)					

(Continued)
Table 1 | Continued

Gene/locus	Genes involved	Variant aliases	Variant position (rs no.)	Phenotypes tested	Association p-value	Source n (reference)	Replication n (reference)	Tested, not replicated
TLR5				Mean FEV1 % pred	0.77	2219 (Blohmke et al., 2010)		
		R392X	5744168					
TNFA	TNFa	G-308A (TNF2)	1800629	Mean FEV1 % pred	0.02	53 (Hull and Thomson, 1998)		
						261 (Arkwright et al., 2003)		
				Mean Chrispin–Norman X-ray score	0.17	180 (Yarden et al., 2005)		
				Mean Shwachman score	0.17	53 (Schmitt-Grohe et al., 2006)		
				No. positive for P. aeruginosa	0.72	808 (Drumm et al., 2005)		
		C-851T		Mean FEV1 % pred	0.25			
				Age of first P. aeruginosa infection	0.60	37 (stanke et al., 2006)		
		G-238A		Mean FEV1 % pred	0.8			
				Age of first P. aeruginosa infection	0.64	37 (stanke et al., 2006)		
		+691g ins/del		Mean FEV1 % pred	0.008			
				Age of first P. aeruginosa infection	0.018	37 (stanke et al., 2006)		
TNFR1	TNFRSF1A	intron 1 haplotype		Disease severity	Associates 37 sib pairs (Istakne et al., 2006)			

1. The number in parenthesis indicates the p-value for the association found in F508del homozygotes.

2. Only multivariate p-values are reported. The number outside the parenthesis is the p-value for pediatrics and the number in parenthesis is the p-value for adults.

3. The association of missense variants with age at first P. aeruginosa positive culture and age at onset of chronic P. aeruginosa was replicated in a population of only European American patients.

4. Found that only the c.-20G>A SNP associated with disease severity.

5. The number in parenthesis indicates the p-value after a Bonferroni correction.

6. The association of MBL2 deficiency alleles with indicators of pulmonary disease severity was replicated in a population of 298 adults, but refuted in a population of 260 children.

7. The Trevisiol et al. (2005) study replicated an association of MBL2 deficiency alleles with pulmonary function, but not with PA colonization.

8. The study by Arkwright et al. (2000) found the severe variant at codon 10 to be T/T, but the study by Drumm et al. (2005) found the severe variant to be C/C at codon 10. A more detailed discussion of the TGB1 association with CF can be found in the text.
Severe patients for differences in allele or genotype frequencies of single nucleotide polymorphisms (SNPs) or other gene-associated variants as markers of potential modifier genes.

Phenotypic categories of disease severity were defined using a patient’s forced expiratory volume in 1 s (FEV1), a pulmonary function index based on age, sex, and height, and used clinically to monitor CF disease progression and therapeutic efficacy. Subjects with FEV1 values in the upper quintile were classified as “mild” and those in the lower quintile as “severe.” Those subjects surviving beyond the age of 34 were classified as mild regardless of pulmonary function, as they represented the upper quintile of their birth cohort (Schluchter, 1992; Schluchter et al., 2002). DNA was obtained from these individuals and genotyped for a variety of variants in or near genes that were considered candidate modifiers.

In the initial candidate gene approach, 1,064 SNPs were tested in over 300 genes/gene regions that were chosen in the following ways: (1) they were SNPs that had previously been reported in the literature as associating with CF phenotype, (2) they were SNPs that were reportedly associated with similar pulmonary disease phenotypes, (3) they were genes that were known to play a key role in CF pathophysiology (Drumm et al., 2005). Experience using this approach has shed light on the challenges involved in conducting modifier studies. Early studies struggled to achieve statistical power due to small sample sizes. Long and Langley (1999) calculated that the sample size must include at least 500 individuals in order to detect a causative polymorphism and for its association to be replicable. To accommodate the ability to replicate and maximize power, the GMS expanded to a North American Consortium that included a family-based genetic study at the Johns Hopkins University and a population-based study of Canadian CF patients being led by investigators at the University of Toronto and the Hospital for Sick Kids (Taylor et al., 2006). This consortium grew from the need to increase sample size and carry out replication studies and demonstrated its utility in a report that showed variants in the TGFBI gene associate with pulmonary disease (Drumm et al., 2005) (discussed in more detail below).

The union of the three large studies provided a cohort of unprecedented size for studying modifiers of a single gene disorder, but also presented logistical issues due to the nature of the designs as each group had developed their own methods for assessing pulmonary phenotypes. Kulich et al. (2005) generated CF-specific reference equations for FEV1 that compare a CF subject’s lung function to CF subjects of the same age, sex, and height, as a more appropriate reference than the non-CF population and those values, adjusted for survival, were used to develop a phenotypic index that all three designs could incorporate.

The candidate gene approach showed the effectiveness of genetic studies, but a limitation is that it does not identify genetic locations other than those suspected to influence disease. That is, it will not detect modifying genes or pathways beyond those involved in our limited understanding of the disease. Understanding the functional effects of a modifier and its protein product fuel future studies to provide mechanistic insight of disease pathophysiology and how it might be dealt with (Cutting, 2010).

ASSOCIATING GENES AND INSIGHT INTO THEIR MODIFYING MECHANISMS

One of the powerful attributes of genetics is that it allows one to identify clinically relevant genes, proteins, or pathways by virtue of the effect that variation in the gene produces on a clinical trait. However, the mechanisms by which genetic variation acts on the phenotype is not necessarily obvious. Thus, for any associating gene an obligatory step is to carry out functional studies to understand how it imparts its effect on disease presentation or outcome. Some examples are given below.

ASSOCIATING GENES: MBL

Mannose-binding lectin is a serum protein involved in innate immunity. MBL enhances phagocytosis of infectious organisms, especially during infancy, when adaptive immune response is immature (Eisen and Minchinton, 2003). Variant alleles that decrease MBL serum levels increase risk for many different infections (Garred et al., 1995, 1997; Summerfield et al., 1995, 1997) and have been shown to play a role in autoimmune diseases (Davies et al., 1995; Graudal et al., 1998). MBL has been suggested to regulate inflammatory responses, perhaps by delaying one of the first steps in inflammation or by reducing the levels of inflammatory cytokines (Jack et al., 2001). MBL is an attractive CF modifier candidate because it protects against infection and has some role in modulating inflammation.

Three amino acid substitutions in exon 1 (alleles B, C, and D) each contribute to decreased MBL plasma concentrations and are collectively referred to as 0, or null, alleles with the functional allele, containing none of the above variants, designated A. There are also variants with quantitative effects on mRNA expression, termed X, that also result in low MBL serum levels. Genotypes resulting in low MBL levels are designated low-producing or deficient alleles, but there are also genotype combinations associated with high and intermediate serum levels of MBL as well. Using the rationale that...
MBL protects against bacterial infection or somehow suppresses inflammation, then MBL deficiency alleles would be predicted to associate with a more severe CF lung disease.

In support of such a model, Garred et al. (1999) found that patients with higher expression MBL genotypes had a higher FEV1 and forced vital capacity (FVC). In other words, there was an additive effect of poor pulmonary function in the presence of an X allele. After further analysis, the cumulative adverse effects of low expression alleles were restricted to patients with chronic P. aeruginosa and were more pronounced in adults. MBL deficiency did not significantly associate with chronic colonization of P. aeruginosa. A study by Gabolde et al. found that cirrhosis of the liver was more common in CF patients carrying deficiency alleles, but other sources are conflicting about the association with CF liver disease (Gabolde et al., 2001; Bartlett et al., 2009; Tomaiuolo et al., 2009).

Several studies agree that MBL low expression alleles associate with lung function (Gabolde et al., 1999; Davies et al., 2004; Yarden et al., 2004; Trevisiol et al., 2005; Choi et al., 2006; Buranawuti et al., 2007; Dorfman et al., 2008), but there is no consensus as to whether this effect is only seen in patients colonized with P. aeruginosa, and whether a heterozygous genotype is sufficient to cause such impairment. Two studies found an association with chronic P. aeruginosa colonization (Trevisiol et al., 2005; McDougal et al., 2010), whereas others failed to detect an association between MBL alleles and colonization of any kind. Buranawuti et al. (2007) found that MBL high expression alleles predicted survival; the null genotype was underrepresented in adult populations and over represented in patients who died late in adolescence. This is consistent with multiple observations that the adverse effect of deficiency alleles is more pronounced in adults (Garred et al., 1999; Yarden et al., 2004; Buranawuti et al., 2007). In fact, a study by Davies et al. (2004) found no association between pulmonary function and MBL genotype in children. Despite replications, not all studies have detected associations between MBL alleles and lung disease severity (Carlsson et al., 2005; Drumm et al., 2005; Faria et al., 2009; McDougal et al., 2010).

ASSOCIATING GENES: TGFβ1

As alluded to above, the first significant association identified by the consortium approach demonstrated that severity of pulmonary disease tracked with variants in the TGFβ1 gene (Drumm et al., 2005). TGFβ1 encodes transforming growth factor beta-1 (TGFβ1), a protein with complex function, involved in several cellular processes from differentiation and proliferation to innate immunity, and has been studied in relation to many disorders including Alzheimer’s disease, cancer, Marfan disease, and heart disease (Waltenberger et al., 1993; Yamamoto et al., 1993; Dickson et al., 2005; Brooke et al., 2008). Interest in investigating TGFβ1 as a potential modifier of CF pulmonary disease stemmed from both its biologic plausibility, and its identification as a modifier of asthma and chronic obstructive pulmonary disease (COPD) (Pulley et al., 2001; Celedon et al., 2004; Silverman et al., 2004; Wu et al., 2004).

TGFβ1 is biologically relevant to CF for several reasons. Leukocytes secrete TGFβ1 in response to infectious agents. TGFβ1 participates in the immune process by regulating the production of cytokines, and is generally thought to be pro-inflammatory in nature (Omer et al., 2003). TGFβ1 also increases the formation of extracellular tissue during injury repair by increasing production of connective tissue by altered gene regulation (Bartram and Speer, 2004). Post-injury repair in the lung is a delicate balance; inadequate remodeling leads to poor wound healing, whereas excessive remodeling leads to pathogenic fibrosis and scarring. There is strong evidence to suggest that the difference between these outcomes is at least in part related to TGFβ1 expression levels (Bartram and Speer, 2004).

Variation in TGFβ1 has been shown to modify asthma and COPD. A variant in the promoter region (C-509T), thought to be associated with increased TGFβ1 expression, was studied as a potential contributor to asthma disease severity. In two separate studies homozygosity for the T allele (associated with increased TGFβ1 production) was found to be more common among severe asthmatics when compared to mild asthmatics or healthy controls (Pulley et al., 2001; Silverman et al., 2004). Variation in codon 10 was studied in patients with COPD. In this case, the allele associated with increased TGFβ1 production was found more commonly in control patients, suggesting a protective role for TGFβ1 in COPD (Wu et al., 2004). Contrasting with associations found in asthma patients, the T allele of -509 was more prevalent in those with mild COPD (Celedon et al., 2004).

The TGFβ1 variants that have been implicated in other airway diseases have become a source of interest in CF as well. A study by Arkwright et al. (2000) found that the T allele (high producer genotype) in codon 10 associated with more rapid deterioration in lung function, while the genotype at codon 25 did not correlate with survival or lung function. Another study confirmed the codon 10 association found by Arkwright but interestingly, it was the C allele (low producer genotype) that prevailed in severe patients. This finding, replicated in a second population of 498 patients, is counterintuitive given the protective role of TGFβ1 in COPD. The same study, by Drumm et al. found that the -509 T allele also associated with a severe pulmonary phenotype, which is the same adverse effect seen in asthma populations. There have been several attempts to resolve these conflicting data (Arkwright et al., 2000, 2003; Drumm et al., 2005; Brazova et al., 2006; Buranawuti et al., 2007; Bremer et al., 2008; Corvol et al., 2008; Faria et al., 2009), but only one study has used a relatively large cohort to accommodate the statistical power needed. It found that a haplotype of a 3’ C allele (rs8179181), -509 C, and codon 10 T associated with improved lung function to a greater degree than any SNP alone (Bremer et al., 2008). It would appear from these studies that CF more closely mimics the type of disease seen in asthma and that the same polymorphisms may be protective or adverse, depending on the genetic and environmental context.
strategy (Gu et al., 2009) and indicated that alleles of IFRD1 may contribute to pulmonary disease severity. In a subsequent study, however, IFRD1 variants did not significantly associate with lung disease (Wright et al., 2011).

The IFRD1 protein acts in a histone deacetylase (HDAC)-dependent manner to regulate gene expression (Vietor et al., 2002) and the IFRD1 gene is up-regulated during cell differentiation and regeneration in response to stress (Vietor and Huber, 2007). Previous studies found high expression in human blood cells (SymAtlas, 2008) and Gu et al. found highest expression in neutrophils, where up-regulation occurs during the final differentiation steps (Ehrnhoefer, 2009; Gu et al., 2009). The authors suggested that IFRD1 modulates CF lung disease through the regulation of neutrophil effector function, but that other explanations, involving different cell types, should not be ignored.

GENOME-WIDE ASSOCIATION STUDIES

Although the cost of large-scale genotyping had fallen more than a 1000-fold since these studies were initiated, genome sequencing was still well out of range by price and feasibility. Thus, it became feasible to think about whole genome, or genome-wide association studies (GWAS). A GWAS would rapidly interrogate hundreds of thousands of SNPs for association in large populations (Manolio, 2010) without bias imposed by pre-existing models and provide the opportunity to identify novel genes, regulatory loci, and pathways not previously considered. The disadvantage to testing so many variants is that there are statistical penalties that increase as the number of comparisons rises, and thus power is a major limitation (Cutting, 2010). This is less of a concern if the effect of a locus is large, but as common population variants are being examined in these studies, it is likely that the effects of any one locus are not large, perhaps with each accounting for only a few percent of the variation, for example (Long and Langley, 1999).

It is an important concept to understand that these studies are conceptually analogous to those designed to find disease-causing variants did not significantly associate with lung disease. Both are complex approaches or ways to optimize existing ones. Third, it opens the opportunity to identify novel disease modulators, but understanding the genetic contribution to phenotypic variation provides the opportunity to understand the mechanisms through which they act. Challenges of genetic studies. On one hand, the unbiased approach provides the opportunity to identify novel disease modulators, but on the other hand identifying the source of the modifying effect and the mechanisms through which it acts are challenging tasks.

THE IMPACT OF DISEASE-MODIFYING GENES

The implications of disease-modifying genes are multiple. First, understanding the genetic contribution to phenotypic variation has the potential to provide insight into prognosis. Second, understanding the mechanisms by which these genes and their alleles are exerting their effects will likely suggest new therapeutic approaches or ways to optimize existing ones. Third, it opens the door to personalized medicine, as a given patient’s treatment regimen could conceivably be developed around a genetic profile. Using inflammation as an example, one could imagine a patient whose modifier panel predicts a lessened inflammatory response, and another patient whose modifier panel predicts a heightened inflammatory response. Inflammation is part of the immune response that is necessary to fight infection, however its prolonged state in CF patients can cause lung damage. The patient with the heightened response may benefit from anti-inflammatory drugs earlier, and the patient with the reduced inflammatory response may benefit from increased antibiotic usage. Both are common treatments for CF, but they may be used more beneficially with the help of modifier identification and mechanistic understanding.
SUMMARY

Cystic fibrosis is a simple, Mendelian disorder with complex clinical manifestations that are consequences of CFTP genotype, environmental factors (Boyle, 2007), and heterogeneity throughout the entire genome. The discovery of genetic modifiers may help account for the broad spectrum of disease severity observed in patients, especially those with the same CFTP genotype. Modifying loci identified thus far each appear to contribute only a small percentage to overall disease profile and thus it is likely the combination of these variants in different permutations shape an individual’s outcome, an outcome that is also significantly influenced by non-genetic factors, as well as the interaction of genetic and non-genetic factors. There are few genes whose modifying effects withstand the test of replication and further studies must elucidate the role of each one in CF. Additional research about gene-environment interactions and gene–gene interactions will certainly demonstrate how complex these genetic effects are. With the careful use of candidate gene approaches and now, genome-wide scans (and soon whole-genome sequencing), it is realistic to believe that modifiers of CF disease will be identified and from which interventions tailored around an individual’s genetic profile will be developed. This fine-tuning of therapeutic strategies could contribute to better quality of life and ultimately, improved survival in CF.

REFERENCES

Allen, J. R., McCauley, J. C., Selby, A. M., Waters, D. L., Gruca, M. A., Baur, L. A., et al. (2003). Differences in resting energy expenditure between male and female children with cystic fibrosis. J. Pediatr. 142, 15–19.

Arkwright, P. D., Laurie, S., Pravica, V., Schwartz, M. J., Webb, A. K., et al. (2000). TGF-beta(1) genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax 55, 459–462.

Bartram, U., and Speer, C. P. (2004). Genetic modifiers of CF lung disease. Pediatr. Pulmonol. 34, 1224–1232.

Corey, M., and Farewell, V. (1996). Determinants of mortality from cystic fibrosis in Canada, 1970-1989. Am. J. Epidemiol. 143, 1007–1017.

DeMeo, D. L., et al. (2004). The CFTP variant, CFTP-A34G, is strongly associated with improved lung function in cystic fibrosis patients. Pediatr. Pulmonol. 43, 584–591.

Cutting, G. R. (2010). Modifier genes in Mendelian disorders: the example of cystic fibrosis. Ann. N. Y. Acad. Sci. 1214, 57–69.

Cystic Fibrosis Foundation Patient Registry. (2009). 2008 Annual Data Report, Bethesda: Cystic Fibrosis Foundation.

Darrah, R., McKone, E., O’Connor, C., Rodgers, C., Genatossio, A., McNamara, S., et al. (2010). EDNRA variants associate with smooth muscle mRNA levels, cell proliferation rates, and cystic fibrosis pulmonary disease severity. Physiol. Genomics 41, 71–77.
Weiler and Drumm

Genetic modifiers of CF lung disease

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.

Davies, J. C., Turner, M. W., and Klein, N. (2004). Impaired pulmonary status in cystic fibrosis adults with two mutated MBL2 alleles. Eur. Respir. J. 24, 798–804.

Davis, P. B. (1999). The gender gap in cystic fibrosis survival. J. Gen. Physiol. Spec. Med. 2, 47–51.

Davis, P. B., Drumm, M., and Konstan, M. W. (1996). Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1542–1543.

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.

Davies, J. C., Turner, M. W., and Klein, N. (2004). Impaired pulmonary status in cystic fibrosis adults with two mutated MBL2 alleles. Eur. Respir. J. 24, 798–804.

Davis, P. B. (1999). The gender gap in cystic fibrosis survival. J. Gen. Physiol. Spec. Med. 2, 47–51.

Davis, P. B., Drumm, M., and Konstan, M. W. (1996). Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1542–1543.

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.

Davies, J. C., Turner, M. W., and Klein, N. (2004). Impaired pulmonary status in cystic fibrosis adults with two mutated MBL2 alleles. Eur. Respir. J. 24, 798–804.

Davis, P. B. (1999). The gender gap in cystic fibrosis survival. J. Gen. Physiol. Spec. Med. 2, 47–51.

Davis, P. B., Drumm, M., and Konstan, M. W. (1996). Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1542–1543.

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.

Davies, J. C., Turner, M. W., and Klein, N. (2004). Impaired pulmonary status in cystic fibrosis adults with two mutated MBL2 alleles. Eur. Respir. J. 24, 798–804.

Davis, P. B. (1999). The gender gap in cystic fibrosis survival. J. Gen. Physiol. Spec. Med. 2, 47–51.

Davis, P. B., Drumm, M., and Konstan, M. W. (1996). Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1542–1543.

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.

Davies, J. C., Turner, M. W., and Klein, N. (2004). Impaired pulmonary status in cystic fibrosis adults with two mutated MBL2 alleles. Eur. Respir. J. 24, 798–804.

Davis, P. B. (1999). The gender gap in cystic fibrosis survival. J. Gen. Physiol. Spec. Med. 2, 47–51.

Davis, P. B., Drumm, M., and Konstan, M. W. (1996). Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1542–1543.

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.

Davies, J. C., Turner, M. W., and Klein, N. (2004). Impaired pulmonary status in cystic fibrosis adults with two mutated MBL2 alleles. Eur. Respir. J. 24, 798–804.

Davis, P. B. (1999). The gender gap in cystic fibrosis survival. J. Gen. Physiol. Spec. Med. 2, 47–51.

Davis, P. B., Drumm, M., and Konstan, M. W. (1996). Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1542–1543.

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.

Davies, J. C., Turner, M. W., and Klein, N. (2004). Impaired pulmonary status in cystic fibrosis adults with two mutated MBL2 alleles. Eur. Respir. J. 24, 798–804.

Davis, P. B. (1999). The gender gap in cystic fibrosis survival. J. Gen. Physiol. Spec. Med. 2, 47–51.

Davis, P. B., Drumm, M., and Konstan, M. W. (1996). Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1542–1543.

Davies, E. J., Snowden, N., Hillarby, M. C., Carthy, D., Grennan, D. M., Thomson, W., et al. (1995). Mannose-binding protein gene polymorphism in systemic lupus erythematosus. Arthritis Rheum. 38, 110–114.
The power of association studies to evaluate the effect of a major modifier gene (MBL2) on variation framework to evaluate the effect of a modifier gene in cystic fibrosis. J. Biol. Chem. 285, 327–327.

Meyer, P., Braun, A., and Roscher, A. A. (2002). Analysis of the two common alpha 1-antitrypsin deficiency alleles PiMS and PiMZ as modifiers of Pseudomonas aeruginosa susceptibility in cystic fibrosis. Clin. Genet. 62, 325–327.

Milla, C. E., Billings, L., and Moran, A. (2005). Diabetes is associated with dramatically decreased survival in female but not male subjects with cystic fibrosis. Diabetes Care 28, 2141–2144.

Ross, M. B., Hsu, Y. P., and Olds, L. (2000). Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin. Exp. Immunol. 120, 518–525.

O’Connor, G. T., Quinton, H. B., Knee- land, T., Kahn, R., Lever, T., Mad- dock, J., et al. (2003). Median house- hold income and mortality rate in cystic fibrosis. Pediatrics 111, e333– e339.

Olesen, H. V., Jensensius, J. C., Stef- fensen, R., Thiel, S., and Schiotz, P. O. (2006). The mannan-binding lectin pathway and lung disease in cystic fibrosis – dysfunction of mannan- binding lectin-associated serine pro- tease 2 (MASP-2) may be a major modifier. Clin. Immunol. 121, 324–331.

Omer, F. M., de Souza, J. B., and Riley, E. M. (2003). Differential induction of TGF-beta regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections. J. Immunol. 171, 5430–5436.

Park, J. E., Yung, R., Stefanowicz, D., Shumansky, K., Akhabir, L., Durie, P. J., et al. (2011). Cystic fibrosis mod- ifier genes related to Pseudomonas aeruginosa infection. Genes Immun. 12, 370–377.

Plant, B. J., Gallagher, C. G., Bucala, R., Baugh, J. A., Chappell, S., Morgan, L., et al. (2005). Cystic fibrosis, disease severity, and a macrophage migration inhibitory factor poly- morphism. Am. J. Respir. Crit. Care Med. 172, 1412–1415.

Pratap, U., Quinn, S., Blizzard, L. B., and Reid, D. W. (2010). Population-based study of cystic fibrosis disease severity and haemochro- matosis gene mutations. Respir. Physiol. Nicole 175, 141–149.

Pulley, L. J., Newton, R., Adcock, I. M., and Barnes, P. J. (2001). TGFbeta1 allele association with asthma severity. Hum. Genot. 109, 623–627.

Reid, D. W., Blizzard, C. L., Shugg, D. M., Flowers, C., Cash, C., and Gre- ville, H. M. (2011). Changes in cystic fibrosis mortality in Australia, 1979- 2005. Med. J. Aust. 195, 392–395.

Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rommahel, R., Greel- czak, Z., et al. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.

Robert, B., Noirez, C., and Becq, F. (2005). Disruption of CFPTR chlo- ride channel alters mechanical prop- erties and camp-dependent c-transport of mouse aortic smooth muscle cells. J. Physiol. (Lond.) 568, 483–495.

Rodman, D. M., Polia, J. M., Heltshs, L. S., Sontag, M. K., Chacon, C., Rod- man, R. V., et al. (2005). Late diagno- sis defines a unique population of long-term survivors of cystic fibros- is. Am. J. Respir. Crit. Care Med. 171, 621–626.

Rommens, J. M., Iannuzzi, M. C., Kerem, B., Drummond, M. L., Melmer, G., Dean, M., et al. (1989). Identifi- cation of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065.

Rubin, B. K. (1990). Exposure of chil- dren with cystic fibrosis to environ- mental tobacco smoke. N. Engl. J. Med. 325, 782–788.

Schechter, M. S., Shelton, B. J., Mar- golis, P. A., and Fitzsimmons, S. C. (2001). The association of socioeco- nomic status with outcomes in cystic fibrosis patients in the United States. Am. J. Respir. Crit. Care Med. 163, 1331–1337.

Schlueter, M. D. (1992). Methods for the analysis of informatively cen- sored longitudinal data. Stat. Med. 11, 1861–1870.

Schlueter, M. D., Konst, M. W., and Davis, P. B. (2002). Jointly modeling the relationship between sur- vival and pulmonary function in cystic fibrosis patients. Stat. Med. 21, 1271–1287.

Schlueter, M. D., Grobe, S., Stuber, E., Book, M., Bargon, J., Wagner, T. O., Naujoks, C., et al. (2006). TNF-alpha pro- moter polymorphism in relation to TNF-alpha production and clinical status in cystic fibrosis. Lung 184, 99–104.

Segat, L., Morgutti, M., Athanasakis, E., Tresiviss, C., Amaddeo, A., Poli, E., et al. (2010). Analysis of DEFB1 regulatory SNPs in cys- tic fibrosis patients from North- Eastern Italy. Int. J. Immunogenet. 37, 169–175.

Silverman, E. S., Palmer, L. J., Subra- manian, V., Hallack, A., Mathew, S., Vallone, J. et al. (2004). Transforming growth factor-beta1 promoter polymorphism C-509T is associated with asthma. Am. J. Respir. Crit. Care Med. 169, 214–219.

Stanke, F., Becker, T., Hoffstedt, S., Tamm, S., Winkel, T. F., and Tumm- ler, B. (2010). Hierarchical fine map- ping of the cystic fibrosis modifier locus on 19q13 identifies an asso- ciation with two elements near the genes CEACAM3 and CEACAM6. Hum. Genot. 127, 383–394.

Stanke, F., Hoffstedt, S., Becker, T., and Tummler, B. (2011). An association study on contrasting cystic fibrosis endophenotypes recognizes KRT8 but not KRT18 as a modifier of cystic fibrosis disease severity and CFPTR mediated residual chloride secretion. BMC Med. Genot. 12.62. doi:10.1186/1471-2350-12-62

Steinkamp, G., and von der Harlt, H. (1994). Improvement of nutritional status and lung function after long- term nocturnal gastrostomy feed- ings in cystic fibrosis. J. Pediatr. 124, 244–249.

Stem, M., Wiedemann, B., Wenzlaff, P., German Cystic Fibrosis Quality and Assessment Group. (2008). From registry to quality management: the German cystic fibrosis quality assess- ment project 1995 2006. Eur. Respir. J. 31, 29–35.

Stehrs, M., Ratafia, P., Wenzlaff, P., German Cystic Fibrosis Quality and Assessment Group. (2008). From registry to quality management: the German cystic fibrosis quality assess- ment project 1995 2006. Eur. Respir. J. 31, 29–35.

Stuhrmann, M., Dork, T., Krawczak, M., Dueck, M., Banholzer, U., Domagk, J., et al. (1991). Genotype- phenotype correlations in cystic fibrosis patients. Adv. Exp. Med. Biol. 290, 97–101; discussion 102–103.

Summerfield, J. A., Ryder, S., Sumiya, M., Thrusz, M., Gorchein, A., Mon- teil, M. A., et al. (1995). Mannose binding protein gene muta- tions in cystic fibrosis patients. Adv. Exp. Med. Biol. 345, 886–889.

Summerfield, J. A., Sumiya, M., Levin, M., and Turner, M. W. (1997). Associa- tion of mutations in mannos binding protein gene with childhood
infection in consecutive hospital series. BMJ 314, 1229–1232.
SymAtlas. G. (2008). Available at: http://symatlas.gnf.org.
Taylor, C., Commander, C. W., Collaco, J. M., Strug, L. I., Li, W., Wright, F. A., et al. (2011). A novel lung disease phenotype adjusted for mortality attrition for cystic fibrosis genetic modifier studies. Pediatr. Pulmonol. 46, 857–869.
Taylor, C., Corey, M., Breaton, J., VanSpall, H., Christofi, M., Frangioni, V., et al. (2008). The Canadian CF Modifier Gene Project: a nationally representative DNA and phenotype resource. Pediatr. Pulmonol. 41, 362.
Taylor-Cousar, J. L., Zarivala, M. A., Burch, L. H., Pace, R. G., Drumm, M. L., Calloway, H., et al. (2009). Histo-blood group gene polymorphisms as potential genetic modifiers of infection and cystic fibrosis lung disease severity. FLoC ONE 4:e4270. doi:10.1371/journal.pone.0004270.
Tese, R., Cardinala, F., Santostasi, T., Polizzi, A., Manca, A., Mappa, L., et al. (2008). Association of beta-defensin-1 gene polymorphisms with Pseudomonas aeruginosa airway colonization in cystic fibrosis. Genes Immun. 9, 57–60.
Texereau, J., Marullo, S., Hubert, D., Coste, J., Dusser, D. I., D’AllaVasa-Santucci, J., et al. (2004). Nitric oxide synthase 1 as a potential modifier gene of decline in lung function in patients with cystic fibrosis. Thorax 59, 156–158.
The Cystic Fibrosis Genotype-Phenotype Consortium. (1993). Correlation between genotype and phenotype in patients with cystic fibrosis. N. Engl. J. Med. 329, 1308–1313.
Tomaiulo, R., Degiorgio, D., Covello, D. A., Baccarella, A., Elce, A., Raia, V., et al. (2009). An MBL2 haplotype and ABCB4 variants modulate the risk of liver disease in cystic fibrosis patients: a multicentre study. Dig. Liver Dis. 41, 817–822.
Trevisiol, C., Boniotti, M., Giglio, L., Poli, F., Morgatti, M., and Corvella, S. (2005). MBL2 polymorphisms screening in a regional Italian CF Center. J. Cyst. Fibros. 4, 189–191.
Tsui, L. C., and Durie, P. (1997). Genotype and phenotype in cystic fibrosis. Hosp. Pract. (Off. Ed.) 32, 115–118.
Tugores, A., Le, I., Sorokina, I., Sniiders, A. J., Duyao, M., Reddy, P. S., et al. (2001). The epithelium-specific ETS protein EHF/ESF-3 is a context-dependent transcriptional repressor downstream of MAPK signaling cascades. J. Biol. Chem. 276, 20397–20406.
Turner, D. M., Williams, D. M., Sankaran, D., Lazarus, M., Sinnott, P. J., and Hutchinson, I. V. (1997). An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet. 24, 1–8.
Urquhart, D. S., Allen, J., Elrayess, M., Fulder, K., Klein, N., and Iaffle, A. (2006). Modifier effect of the Toll-like receptor 4 D299G polymorphism in children with cystic fibrosis. Arch. Immunol. Ther. Exp. (Warsz.) 54, 271–276.
Vandebroucke, C., Melin, P., Norez, C., Robert, R., Guibert, C., Metrey, Y., et al. (2006). Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation. Respir. Res. 7, 113.
Vanekerbeerghen, A., Scudiero, O., De Boeck, K., Macke, M. Jr., Pignatti, P. F., Van Hul, N., et al. (2005). Distribution of human beta-defensin polymorphisms in various control and cystic fibrosis populations. Genomics 85, 574–581.
Vanscoy, L. L., Blackman, S. M., Collaco, J. M., Bowers, L., Lai, T., Naughton, K., et al. (2007). Heritability of lung disease severity in cystic fibrosis. Am. J. Respir. Crit. Care Med. 175, 1036–1043.
Verma, N., Bubh, A., and Buichadbl, R. (2005). Is there still a gender gap in cystic fibrosis? Chest 128, 2824–2834.
Viel, M., Leroy, C., Hubert, D., Fajac, I., and Bienvenu, T. (2008). ENaCbeta and gamma genes as modifier genes in cystic fibrosis. J. Cyst. Fibros. 7, 23–29.
Vietor, L., and Huber, L. A. (2007). Role of TIS7 family of transcriptional regulators in differentiation and regeneration. Differentiation 75, 891–897.
Vietor, L., Vadivelu, S. K., Wick, N., Hoffmann, R., Cotten, M., Seiser, C., et al. (2002). TIS7 interacts with the mammalian SIN3 histone deacetylase complex in epithelial cells. EMBO J. 21, 4621–4631.
Waltenberger, J., Lundin, L., Oberk, G., Wilander, E., Miyazono, K., Heldin, C. H., et al. (1993). Involvement of transforming growth factor-beta in the formation of fibrotic lesions in carcinoid heart disease. Am. J. Pathol. 142, 71–78.
Widmer, E., Million, L., Sexauer, W., and Fiel, S. (2000). Health status and sociodemographic characteristics of adults receiving a cystic fibrosis diagnosis after age 18 years. Chest 118, 427–433.
Wilson, A. G., di Giovine, F. S., Blake, J., K., and Duff, G. W. (1992). Single base polymorphism in the human tumour necrosis factor alpha (TNF alpha) gene detectable by NcoI restriction of PCR product. Hum. Mol. Genet. 1, 353.
Wright, F. A., Strug, L. J., Dosho, V. K., Commander, C. W., Blackman, S. M., Sun, L., et al. (2011). Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. Nat. Genet. 43, 539–546.
Wu, L., Chau, J., Young, R. P., Pokorny, V., Mills, G. D., Hopkins, R., et al. (2004). Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease. Thorax 59, 126–129.
Yamamoto, T., Nakamura, T., Noble, N. A., Ruoslahti, E., and Border, W. A. (1993). Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc. Natl. Acad. Sci. U.S.A. 90, 1814–1818.
Yarden, J., Radojkovic, D., De Boeck, K., Macke, M. Jr., Zemkova, D., Vavrova, J., et al. (2004). Polymorphisms in the mannose binding lectin gene affect the cystic fibrosis pulmonary phenotype. J. Med. Genet. 41, 629–635.
Yarden, J., Radojkovic, D., De Boeck, K., Macke, M. Jr., Zemkova, D., Vavrova, V., et al. (2005). Association of tumour necrosis factor alpha variants with the CF pulmonary phenotype. Thorax 60, 320–325.
Yoshimura, K., Nakamura, H., Trapnell, B. C., Chu, C. S., Dalemans, W., Pavirani, A., et al. (1991). Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin. Nucleic Acids Res. 19, 5417–5423.
Zebel, B. S., Jawad, A. E., FitzSimmons, S., and Stallings, V. A. (2000). Longitudinal relationship among growth, nutritional status, and pulmonary function in children with cystic fibrosis: analysis of the cystic fibrosis foundation national CF patient registry. J. Pediatr. 137, 374–380.
Zielenski, J. (2000). Genotype and phenotype in cystic fibrosis. Respiration 67, 117–133.
Zielenski, J., Corey, M., Rozmahel, R., Markiewicz, D., Arzamaz, L., Casals, T., et al. (1999). Detection of a cystic fibrosis modifier locus for meconium ileus on human chromosome 19q13. Nat. Genet. 22, 128–129.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 01 November 2012; paper pending published: 15 January 2013; accepted: 21 March 2013; published online: 23 April 2013.

Citation: Weiler CA and Drumm ML (2013) Genetic influences on cystic fibrosis lung disease severity. Front. Pharmacol. 4:40. doi: 10.3389/fphar.2013.00040

This article was submitted to Frontiers in Pharmacology of Ion Channels and Channelopathies, a specialty of Frontiers in Pharmacology.

Copyright © 2013 Weiler and Drumm. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided that the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.