Supplement of

Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO₂ level

Shihansun et al.

Correspondence to: Amos P. K. Tai (amostai@cuhk.edu.hk)

The copyright of individual parts of the supplement might differ from the article licence.
In this study, we use four long-term measurement sites with hourly observations:

1. The Harvard Forest Environmental Measurement Site (referred to as Harvard Forest) located in central Massachusetts. We use a O_3 EC flux dataset together with ambient O_3 concentrations (Munger and Wofsy, 1999) from year 1992 to 2006 to derive v_d. Observed ozone flux data was measured at a height of 29m at the EMS site since 1991 (dataset id: HF004). We use air density at 25°C and 1010hPa to compute v_d when temperature measurements are missing. Observed hourly v_d values are removed if they are: (a) from days with more than 30% of missing hourly measurements are removed; (b) not fall within mean ± 3 standard deviations.

2. The Borden Forest Research Station (referred to as Borden Forest) is located in southern Ontario, Canada. We use a database of hourly v_d from year 2008 to 2013 (Wu et al., 2016). G_s was computed using flux data from FLUXNET-Canada Dataset (TEAM, 2016). v_d values were derived with a modified gradient method (MGM) which have been proved to agree well with eddy covariance measurements. Negative v_d values and the same portion of positive v_d values with highest ranking were removed.

3. The Blodgett Ameriflux site (referred to as Blodgett Forest) is located near Georgetown, California, US. The site is dominated by ponderosa pine, characterized by a Mediterranean climate. We use the dataset from Fare et al. (2010), which includes observed v_d and G_s from year 2001 to 2007.

4. The SMEAR II field measurement station (System for Measuring Forest Ecosystem-Atmosphere Relationships II) is located in Hyytiälä Forest, southern Finland. We use quality-checked hourly O_3 flux and concentrations for Hyytiälä Forest from year 2007 to 2010. The height of trees near measurement tower was about 14-18m from 2000 to 2010. We use O_3 concentrations averaged from measurements at height 33.6m and 16.8m.
Text S2

The stomatal resistance parameterization for W89 is calculated as described in Wesely (1989) and Wang et al. (1998). The bulk canopy resistance is represented as:

\[
R_s = r_s \left\{ 1 + \frac{1}{[200(G+0.1)]^2} \right\} \left\{ \frac{400}{(T_s(40-T_s))} \right\} D_i/D_v,
\]

where \(G \) is solar radiation, \(T_s \) is surface air temperature. \(D_i \) and \(D_v \) are molecular diffusivities for water and the pollutant gas respectively.

The stomatal resistance parameterization for Z03 is calculated as described in Zhang et al. (2003) and Zhang et al. (2002). The expressions to calculate stomatal conductance implemented in TEMIR are also represented here.

\[
R_s = 1/[G_s (PAR)f(T)f(VPD)f(\psi)D_i/D_v],
\]

where \(f(T), f(\text{VPD}) \) and \(f(\psi) \) are dimensionless stress functions for temperature (\(T \)), vapor pressure deficit (\(\text{VPD} \)), and water stress (\(\psi \)) respectively as described in Brook et al. (1999). \(G_s (\text{PAR}) \) is the unstressed canopy stomatal conductance. \(G_s \) is calculated as weighted sum of sunlit and shaded leaves.

\[
G_s (\text{LAI}, \text{PAR}) = L_{\text{sun}}/r_s (\text{PAR}_{\text{sun}}) + L_{\text{sha}}/r_s (\text{PAR}_{\text{sha}}).
\]

\[
r_s (\text{PAR}) = r_{s\text{min}}(1 + b_{rs}/\text{PAR}),
\]

where \(L_{\text{sun}} \) and \(L_{\text{sha}} \) are total sunlit and shaded leaf area index (LAI), \(\text{PAR}_{\text{sun}} \) and \(\text{PAR}_{\text{sha}} \) are absorbed \(\text{PAR} \) averaged over sunlit and shaded leaves, \(r_{s\text{min}} \) and \(b_{rs} \) are minimum stomatal resistance and empirical light response constant for stomatal resistance. The expression for \(\text{PAR}_{\text{sun}} \) and \(\text{PAR}_{\text{sha}} \) as expressed follows. For \(\text{LAI} < 2.5 \) or solar radiation < 200 Wm^{-2}:

\[
\text{PAR}_{\text{sha}} = R_{\text{diff}}e^{-0.5\text{LAI}^{0.7}} + 0.07R_{\text{dir}} \times (1.1 - 0.1\text{LAI})e^{-\cos \theta},
\]

\[
\text{PAR}_{\text{sun}} = \text{PAR}_{\text{sha}} + R_{\text{dir}} \cos \alpha/\cos \theta,
\]

For the other conditions:

\[
\text{PAR}_{\text{sha}} = R_{\text{diff}}e^{-0.5\text{LAI}^{0.8}} + 0.07R_{\text{dir}} \times (1.1 - 0.1\text{LAI})e^{-\cos \theta},
\]

\[
\text{PAR}_{\text{sun}} = \text{PAR}_{\text{sha}} + R_{\text{dir}}^{0.8} \cos \alpha/\cos \theta,
\]

where \(\alpha \) is the angle between the leaf and the sun, \(\theta \) is the solar zenith angle, \(R_{\text{diff}} \) and \(R_{\text{dir}} \) are the downward visible radiation fluxes from diffuse and direct-beam radiation above the canopy.

\[
f(T) = [(T - T_{\text{min}})/(T_{\text{opt}} - T_{\text{min}})] \times [(T_{\text{max}} - T)/(T_{\text{max}} - T_{\text{opt}})]^{bt},
\]

\[
bt = [(T_{\text{max}} - T_{\text{opt}})/(T_{\text{opt}} - T_{\text{min}})],
\]

where \(T_{\text{min}}, T_{\text{max}}, T_{\text{opt}} \) are minimum, maximum and optimum temperature respectively.

\[
f(D) = 1 - b_{\text{vpd}} D,
\]

where \(b_{\text{vpd}} \) and \(D \) are vapour pressure constant and vapour pressure deficit.

\[
f(\psi) = (\psi - \psi_{c2})/(\psi_{c1} - \psi_{c2}),
\]

\[
\psi = -0.72 - 0.0013SR,
\]

3
where ψ_{c1} and ψ_{c2} are parameters that specify leaf water potential dependency, SR is solar radiation.

For the photosynthesis-stomatal conductance module in TEMIR, we follow the description by the Community Land Model 4.5 (CLM4.5) (Oleson et al., 2013). A brief summary is also represented here. Photosynthesis in C3 and C4 plants is computed as follows based on Collatz et al. (1992):

$$A_n = \min(A_c, A_j, A_p) - R_d,$$

The Rubisco-limited photosynthetic rate (A_c, μmol m$^{-2}$s$^{-1}$) is:

$$A_c = \begin{cases}
V_{\text{cmax}} \frac{c_i - \Gamma_*}{c_i + K_c \left(1 + \frac{\phi}{K_o}\right)} & \text{for C3 plants} \\
V_{\text{cmax}} & \text{for C4 plants}
\end{cases},$$

The RuBP-limited photosynthetic rate (A_j, μmol m$^{-2}$s$^{-1}$) is:

$$A_j = \begin{cases}
\frac{J \cdot c_i - \Gamma_*}{c_i + 2 \Gamma_*} & \text{for C3 plants} \\
2.3 \times \phi & \text{for C4 plants}
\end{cases},$$

The product-limited photosynthetic rate (A_p, μmol m$^{-2}$s$^{-1}$) is:

$$A_p = \begin{cases}
3 \times T_p & \text{for C3 plants} \\
k_p \frac{c_i}{P_{\text{atm}}} & \text{for C4 plants}
\end{cases},$$

The dark respiration (R_d, μmol m$^{-2}$s$^{-1}$), which is adjusted by the water stress factor β_t, is given by:

$$R_d = \begin{cases}
0.015 \times V_{\text{cmax}} \times \beta_t & \text{for C3 plants} \\
0.025 \times V_{\text{cmax}} \times \beta_t & \text{for C4 plants}
\end{cases},$$

In the equations above, c_i is the intercellular CO$_2$ partial pressure (Pa). K_c and K_o are the Michaelis–Menten constants for carboxylation and oxygenation (Pa). ϕ is the intercellular oxygen partial pressure (Pa). Γ_* is the CO$_2$ compensation point (Pa). V_{cmax} is the maximum rate of carboxylation (μmol m$^{-2}$ s$^{-1}$). J is the electron transport rate (μmol m$^{-2}$s$^{-1}$). T_p is the triose phosphate utilization rate (μmol m$^{-2}$ s$^{-1}$). P_{atm} is the ambient atmospheric pressure (Pa), k_p is the initial slope of CO$_2$ response curve for C4 plants (Pa / Pa). The function β_t ranges from one when soil is wet and to zero when soil is dry.

The stomatal conductance of water g_s (μmol m$^{-2}$s$^{-1}$) for FBB and MED is then calculated as in Eq. (4) and Eq. (5) in the main text.
We use evaporative-resistance form of Penman-Monteith method to keep consistent with SynFlux stomatal conductance. The leaf stomatal conductance is:

\[
g_w^{-1} = \frac{\varepsilon p (e_s(T_f) - e)}{p E} - (r_a + r_{b,w}),
\]

where \(\varepsilon\) is mass ratio between water and dry air, \(p\) is air pressure, \(E\) is surface moisture flux, \(T_f\) is leaf temperature, \(e_s(T_f)\) is the saturation vapor pressure at leaf surface. \(r_a\) is aerodynamic resistance, \(r_{b,w}\) is quasi-laminar layer resistance to water vapor. \(T_f\) is estimated as follows:

\[
T_f = T + \frac{H(r_a + r_{b,H})}{c_p \rho},
\]

where \(T\) is air temperature, \(H\) is sensitive heat, \(c_p\) is specific heat of air, \(\rho\) is the mass density of air, \(r_{b,H}\) is quasi-laminar layer resistance to heat.

Stomatal conductance of \(O_3\) is calculated with molecular diffusion coefficient ratio 0.6 between \(O_3\) and water vapor:

\[
g_s = 0.6 g_w,
\]
Table S1. References of observational datasets.

Land type group	Lat	Lon	Site	LAI	Canopy Height (m)	Sampling Period	Reference
Deciduous Forest	42.7°N	72.2°W	Harvard Forest	3.4	24	Jan 1991–Dec 1994	Munger et al. (1996)
	42.7°N	72.2°W	Harvard Forest	3.4	24	Jun-Nov, 2000	Wu et al. (2011)
	41.56°N	78.77°W	Kane Experimental Forest, Pennsylvania	1-7	22-23	Apr 29, 1997–Oct 23, 1997	Finkelstein et al. (2000)
	44.3°N	79.9°W	Borden Forest, Ontario, Canada	2.3-4.5	22	01 May, 2008-30 Apr, 2013	Wu et al. (2018)
	44.3°N	80.9°W	Borden Forest, Ontario, Canada	6	18	Aug 2-3, 1988	Padro et al. (1991)
	44.3°N	80.9°W	Borden Forest, Ontario, Canada	0.5	18	Mar 17–Apr 26, 1990	Padro et al. (1992)
	18.3°N	99.7°E	Teak forest in Mea Moh, Thailand	\	12	Jan-Aug, 2004	Matsuda et al. (2005)
	18.3°N	99.7°E	Teak forest in Mea Moh, Thailand	\	12	Jul 16 – Aug 18, 2005	Fowler et al. (2009)
	51.17°N	0.84°W	Alice Holt, England	\	13	2012-2013	Fares et al. (2014)
	41.7°N	12.35°E	Castelporziano, Italy	3.7	19.7	2012-2013	Fowler et al. (2014)
	38.9°N	120.6°W	Blodgett Forest, California	3.6	5	Jun 1999–Jun 2000	Kurpius et al. (2002)
	56.3°N	8.4°E	Ulborg Forest, Denmark	8	12	Jun 1994, Sep 1995	Mikkel森 et al. (2000)
	56.3°N	8.4°E	Ulborg Forest, Denmark	8	12	Jan 1996–Dec 2000	Mikkel森 et al. (2004)
	54.8°N	66.9°W	Schefferville, Canada	\	5-6	Jun-Aug 1990	Munger et al. (1996)
	40.0°N	105.5°W	Niwot Ridge AmeriFlux site, Colorado	4.2	11.4	Jun-Aug 2002; May-Sep, 2003; May-Aug, 2005	Turnipseed et al. (2009)
Coniferous Forest	55.3°N	-3.4°W	Rivox Forest, Scotland	10.2	13	May 23-27, 1992	Coe et al. (1995)
	61.85°N	24.28°E	Hyytiälä, Southern Finland	6	14-18	Aug 2001-Sep 2010	Rannik et al. (2012)
	35.97°N	79.13°W	Blackwood division of Duke forest	3.1	14	Apr 15-May 1 1996	Finkelstein et al. (2000)
	60.4°N	11.1°E	Hurdal, South-East Norway	3.4-4.5	13	Jul 1, 2000-Mar 31, 2003	Hole et al. (2004)
	38.9°N	120.6°W	Blodgett Forest	1.2-2.9	4-7.6	2001-2006	Fares et al. (2010)
	44.2°N	0.7°W	Pine forest in southwestern France	3	15	Jun 9-22, 1992	Lamaud et al. (1994)
	44.2°N	0.7°W	Pine forest in southwestern France	2.1	16-24	Jun 21-Jul 3, 1994-Feb 21-Mar 24, 1997	Lamaud et al. (2002)
Grass	55.79°N	3.24°W	Auchencorth Moss	\	1	Jan 1995–Dec 1998	Fowler et al. (2001)
Latitude	Longitude	Location	T	pH	Dates	Authors	
---------	-----------	----------	---	----	------------------------------	--------------------------	
40.7ºN	8.6ºW	Polder Pioalto de Sarrazola	2.5-4.5	0.1-0.8	Nov 1994–Oct 1995	Pio et al. (2000)	
37ºN	119.8ºW	Fresno, California	1	0.2	Jul 8–Aug 6, 1991	Padro et al. (1994)	
10.75ºS	62.37ºW	Rondonia, Brazil	3.9	\	Jan-Feb, 1999	Sigler et al. (2002)	
45.8ºN	8.63ºE	Ispra, Italy	\	0.25	Sep 16–23, 1997	Cieslik (2004)	
48.17ºN	8.75ºE	Klippeneck, Germany	\	0.2	Sep 10-22, 1992	Cieslik (2004)	
40.1ºN	88.2ºW	Champaign, Illinois	\	0.25-0.3	Jun 26–27, 1982	Droppo et al. (1985)	
34.29ºN	85.97ºW	Crossvile, Alabama	1-2.3	0.1-0.3	Apr 15-Jun 13, 1995	Meyers et al. (1998)	
36.8ºN	120.7ºW	Fresno, California	1.8-2.7	0.4-0.9	Jul 8–Aug 6, 1991	Padro et al. (1994)	
48.7ºN	8ºE	Scherzheim, Denmark	\	\	Sep 11-22, 1992	Pilegaard et al. (1998)	
48.85ºN	1.97ºE	Grignon, France	5.2	2.2	Apr 28, 2008–Sep 9, 2008	Stella et al. (2011)	
44.4ºN	0.63ºW	La Cape Sud, France	5.1	2.5	Jul 2007–Oct 2007	Stella et al. (2011)	
43.82ºN	1.38ºE	Lamasquere, France	3.2	2.5	May 2008–Sep 2008	Stella et al. (2011)	
40.05ºN	88.37ºW	Bondville, Illinois	2.5-3.3	1.8-2.4	Aug 18-Oct 1, 1994	Meyers et al. (1998)	
36.65ºN	87.03ºW	Nashville, Tennessee	1–6	1.2	Jun 22–Oct 11, 1995	Meyers et al. (1998)	
55.9ºN	2.8ºW	Gilchriston Farm, Scotland	3	0.3	Jul, 2006	Coyle et al. (2009)	
4.97ºN	117.85ºE	Bukit Atur near Danum Valley	6	30	Apr-Jul, 2008	Fowler et al. (2011)	
10.08ºS	61.93ºW	Reserva Biologica Juru, Brazil	5.6	40	May 4-22, Sep 21-Oct 20, 1999	Rummel et al. (2007)	
3ºS	59.9ºW	Reserva Florestal Ducke	7	30	Apr 22-May 8, 1987	Fan et al. (1990)	
	Harvard Forest	Blodgett Forest	Hyytiälä Forest	Borden Forest			
---------	----------------	-----------------	-----------------	--------------			
Season	DJF	JJA	DJF	JJA			
Precip	0.06	0.05	0.07	0.00			
	0.01	0.01	0.00	0.00			
Temp	-2.3	18.6	4.3	19.6			
	-5.1	15.3	-4.4	19.9			
GWR	0.58	0.38	0.42	0.26			
	0.62	0.60	0.669	0.50			
SWGDN	72	225	97	343			
	11	191	64	273			
RH	0.82	0.84	0.66	0.42			
	0.91	0.74	0.92	0.75			
VPD	0.09	0.38	0.29	1.39			
	0.04	0.49	0.04	0.67			

Table S2. Statistic summary of meteorological variables at long-term sites. Precip: liquid precipitation (kg m\(^{-2}\) s\(^{-1}\)); Temp: surface temperature (°C); GWR: root zone soil wetness; SWGDN: short wave radiation (W m\(^{-2}\)); VPD: vapor pressure deficit (kPa); RH: relative humidity.
Table S3. PFT and land category mapping among CLM, Z03 and W89.

CLM PFT	Z03 surface type	W89 surface type
Needleleaf evergreen tree - temperate	Evergreen needleleaf trees	Coniferous forest
Needleleaf evergreen tree - boreal		
Needleleaf deciduous tree - boreal	Deciduous needleleaf trees	
Broadleaf evergreen tree - tropical	Tropical broadleaf trees	Amazon forest
Broadleaf deciduous tree - tropical	Deciduous broadleaf trees	Deciduous forest
Broadleaf deciduous tree - temperate		
Broadleaf deciduous tree - boreal		
Broadleaf evergreen shrub - temperate	Thorn shrubs	Shrub/grassland
Broadleaf deciduous shrub - temperate	Deciduous shrubs	
Broadleaf deciduous shrub - boreal		
C3 arctic grass	Tundra	Tundra
C3 non-arctic grass	Short grass	Shrub/grassland
C4 grass	Corn	
C3 crop	Crops	Agricultural land
C3 irrigated		
Symbol	Description	
--------	-------------	
A_n	leaf net CO$_2$ assimilation rate	
BVOC	biogenic volatile organic compounds	
CLM	Community Land Model	
CRO	Crop	
C_s	CO$_2$ concentration at the leaf surface	
CTMs	chemical transport models	
DBF	Deciduous Broadleaf Forest	
D_i	molecular diffusivities for water	
DO$_3$SE	The Deposition of O$_3$ for Stomatal Exchange	
D_v	molecular diffusivities for pollutant gas	
ENF	Evergreen Needleleaf Forest	
ESMs	Earth system models	
FBB	Farquhar-Ball-Berry stomatal scheme	
g_0	PFT-dependent minimum stomatal conductance	
g_{1B}	fitted slope parameter for Ball-Berry model	
g_{1M}	fitted slope parameter for Medlyn model	
GRA	Grass	
G_c	Canopy conductance	
G_s	Canopy stomatal conductance	
h_s	leaf surface relative humidity	
L	Obukhov length	
LAI	leaf area index	
L_{sha}	shaded LAI	
LSMs	land surface models	
L_{sun}	sunlit LAI	
MAP	mean annual precipitation	
MED	Medlyn stomatal scheme	
MERRA-2	Modern-Era Respective analysis for Research and Applications version 2	
MODIS	Moderate Resolution Imaging Spectroradiometer	
NMAEF	normalized mean absolute error factor	
NMBF	normalized mean bias factor	
NO	nitric oxide	
O$_3$	ozone	
Symbol	Description	
--------	-------------	
P-M	Penman-Monteith	
PAR	photosynthetically active radiation	
PFTs	plant functional types	
P_r	the Prandtl number for air	
R^2	R-squared value	
R_a	aerodynamic resistance	
R_{ac}	in-canopy aerodynamic resistance	
R_{adc}	lower canopy aerodynamic resistance	
R_{ag}	ground aerodynamic resistance	
R_b	quasi-laminar sublayer resistance	
r_b	leaf boundary resistance	
R_c	bulk surface resistance	
R_c	canopy resistance	
R_{cles}	lower canopy resistance	
R_{cut}	cuticular resistance	
R_{cutd0}	reference cuticular resistance for dry condition	
R_{cutw0}	reference cuticular resistance for wet condition	
R_g	ground resistance	
RH	relative humidity	
R_s	stomatal resistance	
r_{smin}	minimum stomatal resistance	
r_s^{sha}	shaded stomatal resistance	
r_s^{sun}	sunlit stomatal resistance	
RuBP	ribulose 1,5-bisphosphate	
S_r	the Schmidt number	
SRAD	incoming shortwave solar radiation	
SW	soil wetness	
T	surface temperature	
TEMIR	Terrestrial Ecosystem Model in R	
TRF	Tropical Rainforest	
u^*	friction velocity	
v_d	dry deposition velocity of O$_3$	
VPD	vapor pressure deficit	
W89	Wesely deposition scheme	
W89FBB	Wesely deposition scheme replaced with Faquhar-Ball-Berry stomatal scheme	
W89MED	Wesely deposition scheme replaced with Medlyn stomatal scheme	
----------------	---	
W_{st}	stomatal blocking factor	
z	reference height	
z_0	roughness height	
Z03	Zhang et al. (2003) deposition scheme	
Z03FBB	Zhang et al. (2003) deposition scheme replaced with Faquhar-Ball-Berry stomatal scheme	
Z03MED	Zhang et al. (2003) deposition scheme replaced with Medlyn stomatal scheme	
κ	von Kármán constant	
ψ	water stress	
Figure S1. Average nighttime (LT 22:00pm~4:00am) observed-simulated dry deposition velocities for five land types. Colours indicate dominant seasons during field measurements, except that for crops different colours indicate crop types (C3 and C4 crops).
Figure S2. Average JJA diurnal aerodynamic resistance (R_a) and boundary layer resistance (R_b) at long-term measurement sites.

References in the Supplementary

Cieslik, S. A.: Ozone uptake by various surface types: a comparison between dose and exposure, Atmos. Environ., 38, 2409-2420, https://doi.org/10.1016/j.atmosenv.2003.10.063, 2004.

Coe, H., Gallagher, M. W., Choularton, T. W., and Dore, C.: Canopy Scale Measurements of Stomatal and Cuticular O3 Uptake by Sitka Spruce, Atmos. Environ., 29, 1413-1423, https://doi.org/10.1016/1352-2310(95)00034-V, 1995.

Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants, Aust. J. Plant Physiol., 19, 519-538, https://doi.org/10.1071/Pp9920519, 1992.

Coyle, M., Nemitz, E., Storeton-West, R., Fowler, D., and Cape, J. N.: Measurements of ozone deposition to a potato canopy, Agr. Forest Meteorol., 149, 655-666, https://doi.org/10.1016/j.agrformet.2008.10.020, 2009.

Fan, S. M., Wofsy, S. C., Bakwin, P. S., Jacob, D. J., and Fitzjarrald, D. R.: Atmosphere-Biosphere Exchange of CO2 and O3 in the Central Amazon Forest, J. Geophys. Res.-Atmos., 95, 16851-16864, https://doi.org/10.1029/JD095iD10p16851, 1990.

Finkelstein, P. L., Ellestad, T. G., Clarke, J. F., Meyers, T. P., Schwede, D. B., Hebert, E. O., and Neal, J. A.: Ozone and sulfur dioxide dry deposition to forests: Observations and model evaluation, J. Geophys. Res.-Atmos., 105, 15365-15377, https://doi.org/10.1029/2000jd900185, 2000.

Fowler, D., Flechard, C., Cape, J. N., Storeton-West, R. L., and Coyle, M.: Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components, Water Air Soil Poll., 130, 63-74, https://doi.org/10.1023/A:1012243317471, 2001.
Fowler, D., Nemitz, E., Misztal, P., Di Marco, C., Skiba, U., Ryder, J., Helfter, C., Cape, J. N., Owen, S., Dorsey, J., Gallagher, M. W., Coyle, M., Phillips, G., Davison, B., Langford, B., MacKenzie, R., Muller, J., Siong, J., Dari-Salisburgo, C., Di Carlo, P., Aruffo, E., Giammaria, F., Pyle, J. A., and Hewitt, C. N.: Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest, Philos. T. R. Soc. B., 366, 3196-3209, https://doi.org/10.1098/rstb.2011.0055, 2011.

Kurpius, M. R., McKay, M., and Goldstein, A. H.: Annual ozone deposition to a Sierra Nevada ponderosa pine plantation, Atmos. Environ., 36, 4503-4515, https://doi.org/10.1016/S1352-2310(02)00423-5, 2002.

Lamaud, E., Brunet, Y., Labatut, A., Lopez, A., Fontan, J., Druilhet, A.: The Landes experiment: biosphere–atmosphere exchanges of ozone and aerosol particles above a pine forest. J. Geophys. Res., 99, 16511–16521, https://doi.org/10.1029/94JD00668, 1994.

Lamaud, E., Carrara, A., Brunet, Y., López, A., & Druilhet, A.: Ozone fluxes above and within a pine forest canopy in dry and wet conditions. Atmos. Environ., 36, 77–88, https://doi.org/10.1016/S1352-2310(01)00468-X, 2002.

Meyers, T. P., Finkelstein, P., Clarke, J., Ellestad, T. G., and Sims, P. F.: A multilayer model for inferring dry deposition using standard meteorological measurements, J. Geophys. Res.-Atmos., 103, 22645-22661, https://doi.org/10.1029/98jd01564, 1998.

Mikkelsen, T. N., Ro-Poulsen, H., Pilegaard, K., Hovmand, M. F., Jensen, N. O., Christensen, C. S., and Hummelshøj, P.: Ozone uptake by an evergreen forest canopy: temporal variation and possible mechanisms, Environ. Pollut., 109, 423-429, https://doi.org/10.1016/S0269-7491(00)00045-2, 2000.

Munger, J. W., Wofsy, S. C., Bakwin, P. S., Fan, S. M., Goulden, M. L., Daube, B. C., Goldstein, A. H., Moore, K. E., and Fitzjarrald, D. R.: Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest and a subarctic woodland. I. Measurements and mechanisms, J. Geophys. Res.-Atmos., 101, 12639-12657, https://doi.org/10.1029/96jd00230, 1996.

Munger, W., and Wofsy, S.: Canopy-atmosphere exchange of carbon, water and energy at Harvard Forest EMS Tower since 1991, Harvard Forest Data Archive: HF004, 1999.

Oleson, K., Lawrence, D., Bonan, G., Drewniak, B., Huang, M., Koven, C., Levis, S., Li, F., Riley, W., and Subin, Z.: Technical description of version 4.5 of the Community Land Model (CLM), NCAR Technical Note: NCAR/TN-503+ STR, National Center for Atmospheric Research (NCAR), Boulder, CO, USA, https://doi.org/10.5065/D6RR1W7M, 2013.

Padro, J., Massman, W. J., Shaw, R. H., Delany, A., and Oncley, S. P.: A Comparison of Some Aerodynamic Resistance Methods Using Measurements over Cotton and Grass from the 1991 California Ozone Deposition Experiment, Bound.-Lay. Meteorol., 71, 327-339, https://doi.org/10.1007/Bf00712174, 1994.

Pilegaard, K., Hummelshøj, P., and Jensen, N. O.: Fluxes of ozone and nitrogen dioxide measured by eddy correlation over a harvested wheat field, Atmos. Environ., 32, 1167-1177, https://doi.org/10.1016/S1352-2310(97)00194-5, 1998.

Pio, C. A., Feliciano, M. S., Vermeulen, A. T., and Sousa, E. C.: Seasonal variability of ozone dry deposition under southern European climate conditions, in Portugal, Atmos. Environ., 34, 195-205, https://doi.org/10.1016/S1352-2310(99)00276-9, 2000.

Rannik, U., Altimir, N., Mammarella, I., Back, J., Rinne, J., Ruuskanen, T. M., Hari, P., Vesala, T., and Kulmala, M.: Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables, Atmos. Chem. Phys., 12, 12165-12182, https://doi.org/10.5194/acp-12-12165-2012, 2012.
Rummel, U., Ammann, C., Kirkman, G. A., Moura, M. A. L., Foken, T., Andreae, M. O., and Meixner, F. X.: Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia, Atmos. Chem. Phys., 7, 5415-5435, https://doi.org/10.5194/acp-7-5415-2007, 2007.

Sigler, J. M., Fuentes, J. D., Heitz, R. C., Garstang, M., and Fisch, G.: Ozone dynamics and deposition processes at a deforested site in the Amazon Basin, Ambio, 31, 21-27, https://doi.org/10.1579/0044-7447-31.1.21, 2002.

Stella, P., Personne, E., Loubet, B., Lamaud, E., Ceschia, E., Beziat, P., Bonnefond, J. M., Irvine, M., Keravec, P., Mascher, N., and Cellier, P.: Predicting and partitioning ozone fluxes to maize crops from sowing to harvest: the Surfatem-O3 model, Biogeosciences, 8, 2869-2886, https://doi.org/10.5194/bg-8-2869-2011, 2011.

TEAM, F. C.: FLUXNET Canada Research Network-Canadian Carbon Program Data Collection, 1993-2014, ORNL DAAC, 2016.

Turnipseed, A. A., Burns, S. P., Moore, D. J. P., Hu, J., Guenther, A. B., and Monson, R. K.: Controls over ozone deposition to a high elevation subalpine forest, Agr. Forest Meteorol., 149, 1447-1459, https://doi.org/10.1016/j.agrformet.2009.04.001, 2009.

Wu, Z. Y., Wang, X. M., Chen, F., Turnipseed, A. A., Guenther, A. B., Niyogi, D., Charusombat, U., Xia, B. C., Munger, J. W., and Alapaty, K.: Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest, Atmos. Environ., 45, 2663-2674, https://doi.org/10.1016/j.atmosenv.2011.02.063, 2011.

Wu, Z. Y., Staebler, R., Vet, R., and Zhang, L. M.: Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest, Environ. Pollut., 210, 202-210, https://doi.org/10.1016/j.envpol.2015.11.052, 2016.

Wu, Z. Y., Schwede, D. B., Vet, R., Walker, J. T., Shaw, M., Staebler, R., and Zhang, L. M.: Evaluation and Intercomparison of Five North American Dry Deposition Algorithms at a Mixed Forest Site, J. Adv. Model Earth Sy., 10, 1571-1586, https://doi.org/10.1029/2017ms001231, 2018.

Zhang, L. M., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S. L.: Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system, Atmos. Environ., 36, 537-560, https://doi.org/10.1016/S1352-2310(01)00447-2, 2002.

Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067-2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.