Aboveground Biomass Production of *Rhizophora apiculata* Blume in Sarawak Mangrove Forest

I.A. Chandra, G. Seca and M.K. Abu Hena

Department of Forestry, University Putra Malaysia Bintulu Sarawak Campus, Nyabau Road, Box No. 396, 97008 Bintulu, Sarawak, Malaysia

Abstract: Problem statement: Mangrove forests are found in tropical and subtropical coastal tidal regions. *Rhizophora apiculata* Blume is one of the most important species in mangrove forest. It is also one of the commercial mangrove timber species in the Asia-Pacific region which dominates large areas of mangrove in this region. In order to understand forest ecosystem characteristics and to establish the proper management system, a precise estimation of biomass is necessary. The objective of this study is to quantify the aboveground biomass production and stem volume of *R. apiculata* in Awat-Awat mangrove forest, Sarawak. Approach: Seven representative trees were used in this study for sampling from February 2011 to March 2011. Allometric relationships were examined using either independent variable Diameter (D) or combination of quadratic of D and Height (D^2H). Results: The best fit of allometric equations were developed from the combination of quadratic of D and H (y = 0.055×0.948, R^2 = 0.98) which is more recommended to estimate biomass and stem volume of *R. apiculata* in Awat-Awat mangrove forest, Sarawak. Total aboveground biomass and stem volume of *R. apiculata* were 116.79 t h⁻¹ and 65.55 m³ h⁻¹, respectively. Conclusion: Aboveground biomass and stem volume is closely related with tree diameter and height which indicates that aboveground biomass and stem volume will increase with increasing diameter and height of *R. apiculata*.

Key words: Aboveground biomass, allometric equation, *Rhizophora apiculata*, mangrove forest, commercial mangrove, timber species, expensive since, forest ecosystem, aboveground biomass

INTRODUCTION

Mangroves are coastal forests that affects by tides, soil texture and marine salinity. This forest is found in tropical and subtropical coastal tidal regions. As a component of wetlands, mangroves has also been recognized as one of the most productive ecosystem which grow on sheltered shores and estuaries in the tropics and sub-tropical area (Gandaseca *et al*., 2011). Mangroves are very well adapted to grow in sea and brackish water. They have roots that typically grow in anaerobic sediment and receive oxygen through aerating tissue which communicates to the air through lenticels on the aerial roots and trunks (Lai *et al*., 1993).

The species *R. apiculata* Blume is one of the most important species in mangrove forest. It is also one of the commercial mangrove timber species in the Asia-Pacific region which dominate large areas of mangrove in the region and often grows as pure stand (Ong *et al*., 2004). Mangrove forests in Malaysia, especially in Sarawak is about 175,153 ha which are found along the coastline (Bennet and Reynold, 1993). The values of mangroves consist of both monetary and non-monetary such as forest industry, fisheries industry, wildlife conservation, tourism and environment protection (Bennet and Reynold, 1993; Lai *et al*., 1993).
Studies found that quantification of tree biomass can be very difficult and expensive since it involves tree felling, unearthing root systems, weighing and drying samples. Such activities are very expensive for any other purpose than research (Specht and West, 2003). Therefore, attention has been paid to develop techniques to estimate tree biomass from easily measured tree characteristics known as ‘allometry’. Allometry is a powerful tool for estimating biomass production from easily measured tree characteristic such as stem diameter and height that are quantifiable in the field (Komiyama et al., 2005). Common allometric equations have been reported for aboveground biomass (Brown et al., 1989; Brown, 1997; Ketterings et al., 2001) and also for mangroves biomass (Komiyama et al., 2002; Ong et al., 2004; Nguyen and Ninomiya, 2007) elsewhere.

The estimation of aboveground biomass of mangrove is not only provides increasingly valuable means for making comparisons among ecosystems but could also use to evaluate the productivity pattern, nutrient cycle and energy flow (Kusmana et al., 1992). Furthermore, in order to understand the forest ecosystem characteristics, the measurement of tree biomass is important. The main objective of this study is to assess the biomass production of _R. apiculata_ in Awat-Awat mangrove forest, Sarawak, Malaysia.

MATERIALS AND METHODS

Study site: This study site is situated in Awat-Awat mangrove forest, Lawas Sarawak, Malaysia Fig. 1 and all of _R. apiculata_ are 15 years old. Forest inventory and sampling were done from February 2011 to March 2011. Within sample plot (100×50 m), all tree heights and diameters were measured. The Diameter (D) of trees was measured using diameter tape at 30 cm above the highest prop-roots while tree Height (H) was measured using hypsometer (Komiyama et al., 2005). To estimate the aboveground tree biomass in this forest, seven tree samples were selected for sampling (2 small, 3 medium and 2 big size trees). In order to choose the representative trees for sampling, D and H data for all trees inside tree plot was sorted from the lowest to the highest value then divided into three classes namely small (0-12 cm), medium (12-24 cm) and big (24-36 cm). The mean values of each class were selected for calculation.

All selected trees were harvested and each sample tree was divided into several components named (1) stem, (2) branch and twig and (3) leaf.

After each tree sample was completely felled, its main stem were separated into each component as 0-2, 2-4, 4-6 m log to the top. All tree components were weighted to acquire the total fresh weight. About±10 cm disc stem sample was taken from each part together with plant sample such as branches and leaves and brought to the laboratory. The sample was oven dried for two days. Total dry weight of those plant parts (stem, branch and leaf) were estimated as dry/fresh weight ratios (Brown, 1997). Allometric relationships were examined using independent variable D or combination of quadratic of D and H. The relationship between independent variable and components biomass and stem volume was described by a power function, \(Y_i = aD^b \) or \(Y_i = a(D^2H)^b \), where a and b are regression constant, D is tree diameter (cm), H is total height (m) and \(Y_i \) is the dry biomass (kg) of a tree component i.e., stem, branch and leaf (Heryati et al., 2011). To choose the most appropriate biomass prediction of _R. apiculata_, both methods for stand biomass prediction were compared. The aboveground biomass was determined summing of the biomass of stem, branch and leaf. The total aboveground biomass of _R. apiculata_ was calculated from the summation of tree biomass found from sampling plot. All data for biomass and stem volume were converted into hectares.

RESULTS

The percent of aboveground biomass of _R. apiculata_ was found 62.55% for stem, 31.89% for branch and 5.57% for leaf in the Awat-Awat mangrove forest. Biomass production of stem was higher than the leaf and branch biomass of _R. apiculata_ Table 1.
Fig. 2: Graphic relationship between (A) Diameter and stem volume; (B) Diameter and stem biomass; (C) Diameter and branch biomass; (D) Diameter and leaf biomass; (E) Diameter and aboveground biomass; (F) Combination of square of D and Height (D^2H) and stem volume; (G) D^2H and stem biomass; (H) D^2H and branch biomass; (I) D^2H and leaf biomass and (J) D^2H and aboveground biomass of *R. apiculata*

Table 1: Stem volume and biomass for different classes of diameter of *R. apiculata* in Awat-Awat mangrove forest, Lawas, Sarawak, Malaysia

Tree class	Stand density (trees h⁻¹)	Mean ± SE	Stem volume (m³ h⁻¹)	Stem biomass (kg)	Branch biomass (kg)	Leaf biomass (kg)	Above ground biomass (kg)	
Small (0-12)	364	7.95±0.1730	8.10±0.115	3.940	4.67	2.41	0.47	7.54
Medium (12-24)	376	16.65±0.254	14.43±0.227	30.71	34.62	17.10	3.14	55.45
Big (24-36)	100	29.81±0.679	18.37±0.265	30.90	33.76	17.14	2.89	53.80
Total	840	14.45±0.375	12.16±0.217	65.55	73.05	37.24	6.50	116.79
Regression coefficients using tree diameter (D) were found 0.97, 0.96, 0.95, 0.91 and 0.98 with stem volume, stem biomass, branch biomass, leaf biomass and aboveground biomass, respectively Fig. 2. The regression models using combination of quadratic of D and H with stem volume, stem biomass, branch biomass, leaf biomass and aboveground biomass were 0.99, 0.99, 0.93, 0.86 and 0.98, respectively. Comparatively, these r-squares values were higher than those were found for D and tree components and almost of the r-square values were closed to 1. Therefore, quadratic of D and H was used to estimate the aboveground biomass of *R. apiculata*.

The average diameter of *R. apiculata* was 14.45±0.375 cm with the average height of 12.16±0.217 m in the sample plot of Awat-Awat mangrove forest. Medium class (12-24 cm diameter) trees was the dominate species of *R. apiculata* in this forest plot with the density of 376 trees h⁻¹ while the lower (100 trees h⁻¹) was found for big class (24-36 diameters) of trees. Stem volume was found higher for big class (30.90 m³ h⁻¹) of mangrove followed by medium class (30.71 m³ h⁻¹) and small class (3.94 m³ h⁻¹). The estimated total aboveground biomass was found higher (55.45 ton h⁻¹) for medium class trees followed by big class (53.80 t h⁻¹) and small class (7.54 t h⁻¹) of mangroves in this mangrove forest.

DISCUSSION

Biomass studies of mangroves have been done in many places of the world with many species i.e., *Avicennia marina*, *Bruguiera gymnorrhiza*, *Ceriops tagal*, *Kandelia obovata*, *Rhizophora mucronata* and *R. apiculata*. In present study, *R. apiculata* shows comparatively higher aboveground biomass than mixed mangroves (*R. apiculata*, *R. mucronata*, *B. gymnorrhiza*, *B. parviflora*, *C. tagal*, *Xylocarpus granatum*) in Langkawi Island, Malaysia (Norhayati and Latiff, 2001), *C. tagal* in Satun, Thailand (Komiyama et al., 2000) and *K. obovata* in Okinawa, Japan (Khan et al., 2009). Moreover, the biomass value of *R. apiculata* was comparable with the values recorded elsewhere Table 2. Studies revealed that the variation in above ground biomass depends on species but also on ecological circumstances and geographical location (Komiyama et al., 2008). Furthermore, Komiyama et al. (2008) noted that total aboveground biomass of *Rhizophora* sp. in the Pacific and Australia region ranges from 40.7-460 t h⁻¹. Norhayati and Latiff (2001) also reported 115.56 t ha⁻¹ of biomass for mixed mangrove (*R. apiculata*, *R. mucronata*, *B. gymnorrhiza*, *B. parviflora*, *C. tagal*, *X. granatum*) forests in Langkawi Island, Malaysia. In this present study, the level of aboveground biomass *R. apiculata* was lower compared to those reported by Christensen (1978); Gong and Ong (1990); Hossain et al. (2008) and Norhayati and Latiff (2001) globally (Table 2).
Table 3: Comparison of biomass proportion in different components of mangrove forest species at different places

Location	Species	Total Above ground components (%)	Root (%)	Stem (%)	Branch (%)	Leaves (%)	Reproductive components (%)	Sources
Matang, Malaysia (4°50' N, 100°36' E)	*R. apiculata*	75.50	24.50	55.00	12.00	8.50	-	Gong and Ong (1990)
Satun, Thailand (6°40' N, 100°01' E)	*Ceriops tagal*	50.20	49.80	29.68	13.13	7.39	-	Komiyama et al. (2000)
Pulau langkawi, Malaysia (6°22' N, 99°48' E)	*B. parviflora*	-	90.00	9.10	0.90	-	-	Norhayati and Latiff (2001)
Kuala selangor, Malaysia (3°19' N, 101°14' E)	*B. parviflora*	88.82	11.18	58.26	23.20	6.80	0.57	Hossain et al. (2008)
Okinawa, Japan (26°11' N, 127°40' E)	*K. obovata*	52.88	47.20	30.30	18.90	3.68	-	Khan et al. (2009)
Lawas, Malaysia (4°56' N, 115°14' E)	*R. apiculata*	-	57.30	35.09	7.61	-	-	Present study

The proportions of biomass in this present study are unlikely among all components of *R. apiculata*. *R. apiculata* shows comparatively higher percentage of stem biomass (62.55%) compared to branch (31.89%) and leaf (5.57%). However, Heryati et al. (2011) mentioned that the amount of the stem biomass is closely related to the production of trees obtained through photosynthesis which is generally stored in the trunk. Similarly, Hossain et al. (2008) reported the same proportions of biomass stem>branch>leaf>reproductive components for *B. parviflora* in Kuala Selangor, Malaysia Table 3. All biomass proportion values found for *R. apiculata* in this present study are comparable with other studies elsewhere Table 3. The variation in biomass may be related to the ecology, species, plant density, growing season, plant age and global positioning of mangrove forests.

CONCLUSION

The combination of quadratic of D and H is recommended as variables for stem volume and biomass quantification of *R. apiculata* in Awat-Awat mangrove forest, Lawas, Sarawak. In addition the aboveground biomass and stem volume is related with tree diameter and height which indicates that aboveground biomass and stem volume will increase if diameter and height also increase. Total Aboveground Biomass in Awat-Awat mangrove forest Lawas is 116.79 t h⁻¹.

ACKNOWLEDGEMENT

We wish to thank University Putra Malaysia for funding this research funding project. We also have greatly appreciated to Sarawak Forestry Department, Mori Forestry Department and all the staff of Department of Forest Science and Department of Crop Science UPMKMB for their help.

REFERENCES

Bennet, E.L. and C.J. Reynold, 1993. The value of a mangrove area in sarawak. Biodiversity Conservation, 2: 359-375. DOI: 10.1007/BF00114040

Brown, S., 1997. Estimating Biomass and Biomass Change of Tropical Forests: A Primer. 1st Edn., Food and Agriculture Org., Rome, ISBN: 9789251039557, pp: 55.

Brown, S., A.J.R. Gillespie and A.E. Lugo, 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Sci., 35: 881-902.

Christensen, B., 1978. Biomass and primary production of *Rhizophora apiculata* Bl. in a mangrove in southern Thailand. J. Aquatic Botany, 4: 43-52. DOI: 10.1016/0304-3770(78)90005-0

Gandaseca, S., N. Rosli, J. Ngayop and C.I. Arianto, 2011. Status of water quality based on the physico-chemical assessment on river water at wildlife sanctuary Sibuti mangrove forest, Miri Sarawak. Am. J. Environ. Sci., 7: 269-275. DOI: 10.3844/ajessp.2011.269.275

Gong, W.K. and J.E. Ong, 1990. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuarine, Coastal Shelf Sci., 31: 519-530. DOI: 10.1016/0272-7714(90)90010-O

Heryati, Y., D. Belawan, A. Abdu, M.N. Mahat and H.A. Hamid et al., 2011. Growth performance and biomass accumulation of a *Khaya ivorensis* plantation in three soil series of Ultisols. Am. J. Agric. Biol. Sci., 6: 33-44. DOI: 10.3844/ajabssp.2011.33.44

Hossain, M., S. Othman, J.S. Bujang and M. Kusnan, 2008. Net primary productivity of Bruguiera parviflora (Wight & Arn.) dominated mangrove forest at Kuala Selangor, Malaysia. J. Forest Ecol. Manage., 255: 179-182. DOI: 10.1016/j.foreco.2007.09.011
Ketterings, Q.M., R. Coe, M. Van, Y. Nordwijk and C.A. Ambagau, 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. J. Forest Ecol. Manage., 146: 199-209. DOI: 10.1016/S0378-1127(00)00460-6

Khan, M.N.I., R. Suwa and A. Hagihara, 2009. Biomass and aboveground net primary production in a subtropical mangrove stand of *Kandelia obovata* (S., L.) Yong at Manko Wetland, Okinawa, Japan. J. Wetlands Ecol. Manage., 17: 585-599. DOI: 10.1007/s11273-009-9136-8

Komiyama, A., J.E. Ong and S. Poungparn, 2008. Allometry, biomass and productivity of mangrove forests: A review. J. Aquatic Botany, 89: 128-137. DOI: 10.1016/j.aquabot.2007.12.006

Komiyama, A., S. Havanond, W. Srisawatt, Y. Mochida and K. Fujimoto et al., 2000. Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. Forest Ecol. Manage., 139: 127-134. DOI: 10.1016/S0378-1127(99)00339-4

Komiyama, A., S. Poungparn and S. Kato, 2005. Common allometric equations for estimating the tree weight of mangroves. J. Tropical Ecol., 21: 471-477. DOI: 10.1017/S0266467405002476

Komiyama, A., V. Jintana, T. Sangtiean and S. Kato. 2002. A common allometric equation for predicting stem weight of mangroves growing in secondary forests. J. Ecol. Res., 17: 415-418. DOI: 10.1046/j.1440-1703.2002.00500.x

Kusmana, C., S. Sabiham, K. Abe and H. Watanabe, 1992. An estimation of above ground tree biomass of a mangrove forest in East Sumatra, Indonesia. Tropics, 1: 243-257.

Lai, H.C., H.J. Teas, F. Pannier and J.M. Baker, 1993. Biological impact of oil pollution: Mangrove. International Petroleum Industry Environmental Conservation Association (IPIECA).

Nguyen, T.K.C. and I. Ninomiya, 2007. Allometric relations for young *Kandelia candel* (L.) Blanco plantation in northern Vietnam. J. Biol. Sci., 7: 539-543.

Norhayati, A. and A. Latiff, 2001. Biomass and species composition of a mangrove forest in Pulau Langkawi, Malaysia. Malaysia Applied Biol., 30: 75-80.

Ong, J.E., W.K. Gong and C.H. Wong, 2004. Allometry and partitioning of the mangrove, *Rhizophora apiculata*. J. Forest Ecol. Manag., 188: 395-408. DOI: 10.1016/j.foreco.2003.08.002

Specht, A. and P.W. West, 2003. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales, Australia. Biomass Bioenergy, 25: 363-379. DOI: 10.1016/S0961-9534(03)00050-3