Visual Impairment and Risk of Dementia in 2 Population-Based Prospective Cohorts: UK Biobank and EPIC-Norfolk

Thomas J. Littlejohns, PhD, Shabina Hayat, PhD, Robert Luben, PhD, Carol Brayne, PhD, Megan Conroy, MSc, Paul J. Foster, PhD, Anthony P. Khawaja, PhD, and Elżbieta Kuźma, PhD

Abstract

Visual impairment has emerged as a potential modifiable risk factor for dementia. However, there is a lack of large studies with objective measures of vision and with more than 10 years of follow-up. We investigated whether visual impairment is associated with an increased risk of incident dementia in UK Biobank and European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk). In both cohorts, visual acuity was measured using a “logarithm of the minimum angle of resolution” (LogMAR) chart and categorized as no (≤0.30 LogMAR), mild (>0.3 to ≤0.50 LogMAR), and moderate to severe (>0.50 LogMAR) impairment. Dementia was ascertained through linkage to electronic medical records. After restricting to those aged ≥60 years, without prevalent dementia and with eye measures available, the analytic samples consisted of 62,206 UK Biobank and 7,337 EPIC-Norfolk participants, respectively. In UK Biobank and EPIC-Norfolk, respectively, 1,113 and 517 participants developed dementia over 11 and 15 years of follow-up. Using multivariable Cox proportional-hazards models, the hazard ratios for mild and moderate to severe visual impairment were 1.26 (95% confidence interval [CI]: 0.92–1.72) and 2.16 (95% CI: 1.37–3.40), in UK Biobank, and 1.05 (95% CI: 0.72–1.53) and 1.93 (95% CI: 1.05–3.56) in EPIC-Norfolk, compared to no visual impairment. When excluding participants censored within 3 years of follow-up or with prevalent poor or fair self-reported health, the direction of the associations remained similar for moderate impairment but was not statistically significant. Our findings suggest visual impairment might be a promising target for dementia prevention; however, the possibility of reverse causation cannot be excluded.

Keywords: Epidemiology, Longitudinal, Prevention, Visual acuity
This is the clinical standard and underpins international taxonomies of visual impairment (11). Interpreting previous findings is further complicated by the heterogeneity of different study designs, methodological approaches, and exposure/outcome definitions. This could be addressed by replicating analyses in different populations, with similar exposure, covariate, and outcome ascertainment.

To address these limitations, we investigated the association between objectively measured visual impairment and the risk of incident dementia in 2 large population-based cohorts over 11 and 15 years of follow-up, respectively. We hypothesized that visual impairment would be associated with an increased risk of developing dementia compared to no visual impairment. We also hypothesized that there would be a dose–response effect, with increasing severity of visual impairment associated with greater dementia risk.

Method

UK Biobank

UK Biobank is a population-based prospective cohort study that recruited 503,317 women and men aged 40–69 from England, Scotland, and Wales between 2006 and 2010 (5.5% response rate) (12,13). At baseline, all participants provided electronic signed consent, answered questions on sociodemographic, lifestyle, and health-related factors, and completed a range of physical examinations. Eye measures were incorporated into the physical examinations at baseline assessment between 2009 and 2010 and were completed by approximately 117,252 participants. A further 16,016 participants who did not undergo the eye examination at baseline had eye measures collected during a repeat of baseline assessment between 2012 and 2013 (14). For the current study, date of first eye examination is defined as “baseline,” whether 2009–2010 or 2012–2013. UK Biobank received ethical approval from the National Health Service North West Centre for Research Ethics Committee (Ref: 11/NW/0382).

European Prospective Investigation into Cancer in Norfolk

The European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) is a population-based prospective cohort study of 25,639 women and men aged 40–79 years recruited between 1993 and 1997 (33% response rate) (15,16). Additional participants also joined the study at follow-up waves. Eye measures were introduced as part of a third health examination (EPIC-Norfolk 3—baseline for current study) between 2006 and 2011, including data from a pilot phase 2004–2006 (15,17). At examination, all participants provided written informed consent and completed a questionnaire on sociodemographic, lifestyle, and health-related factors. Ethical approval for EPIC-Norfolk core study was provided by the Norwich District Health Authority ethics committee (Rec Ref: 98NC01). EPIC-Norfolk 3 was approved by the Norwich Local Research Ethics Committee (05/Q0101/191) and East Norfolk and Waveney National Health Service (NHS) Research Governance Committee (2005EC07L).

Visual Function

The eye examinations in UK Biobank and EPIC-Norfolk included visual acuity, the most common clinical measurement of visual function. Visual acuity was measured in both eyes using “logarithm of the minimum angle of resolution” (LogMAR) characters (Precision Vision, LaSalle, IL), displayed on a computer screen in UK Biobank and on a light box in EPIC-Norfolk, both under standard illumination (17,18). The test in both cohorts was carried out with participants wearing usual, available, correction at 4 m, or at 1 m if participants were unable to read any letters. Participants were asked to read each letter from the end of each line going from top to bottom, until hesitation. In UK Biobank the test was terminated when ≥2 letters were incorrect. In EPIC-Norfolk the test was terminated when the participant was able to read ≤3 letters on a line and testing was repeated using pinhole-correction if participants were unable to read 3 letters on the 0.3 line. Standard letter by letter scoring was used to derive LogMAR visual acuity.

Dementia

In UK Biobank, dementia status was recorded using hospital in-patient records obtained from Hospital Episode Statistics for England, Scottish Morbidity Record for Scotland, and Patient Episode Database for Wales as well as death registry records obtained from NHS Digital for England and Wales and Information and Statistics Division for Scotland. In EPIC-Norfolk, dementia was ascertained using hospital in-patient records obtained from Hospital Episode Statistics, death registry records as well as the following mental health care data sets which capture information on individuals in contact with mental health services and memory clinics; Mental Health Minimum Data Set, Mental Health and Learning Disabilities Data Set, and the Mental Health Services Data Set. All diagnoses were recorded using the International Classification of Diseases (ICD) coding system (see Supplementary Table 1 for list of ICD codes).

Covariates

In both cohorts, Townsend deprivation score was used as an indicator of material deprivation and was assigned to each participant corresponding to the output area of their residential postcode at recruitment (19). Educational qualifications, ethnicity, smoking status, alcohol consumption, diabetes, and cardiovascular disease were collected via paper questionnaire in EPIC-Norfolk. The same variables were collected via the touch screen questionnaire in UK Biobank, except diabetes and cardiovascular disease, which were captured during a verbal interview conducted by a trained nurse. In both cohorts, body mass index (kg/m²) was derived from weight (kg) using scales and standing height (m) measured during the physical examinations (see Supplementary Table 2 for more information on covariate collection). In UK Biobank, the covariates were collected at both baseline (2009–2010) and repeat assessment (2012–2013). Covariates collected at the time of first eye measure were used in all analyses.

Statistical Analysis

Person-years were calculated from the date of visual acuity measure until the first incident diagnosis of dementia, date of death, date lost-to follow-up, or end of follow-up, whichever came first. End of follow-up was based on the last possible date of electronic medical record availability. For UK Biobank this was November 30, 2020 for England, October 31, 2020 for Scotland, February 28, 2018 for Wales; for EPIC-Norfolk this was March 31, 2019. Cox proportional-hazards models were used to assess the association between visual impairment and risk of incident dementia. Visual impairment was categorized using the World Health Organization classification based on visual acuity in the better eye of “no impairment” (≥0.30 LogMAR), “mild impairment” (>0.3 to ≤0.50 LogMAR), “moderate impairment” (>0.50 to ≤0.80 LogMAR), “severe impairment” (>0.80 LogMAR to ≤1.0 LogMAR), and “visual impairment” (≥1.0 LogMAR).
LogMAR), and “moderate to severe impairment” (>0.50 LogMAR) (20). All models were assessed for the proportionality of hazards assumption using Schoenfeld residuals. In basic adjusted models we controlled for age in years, sex, ethnicity (White, non-White), and educational qualifications (no qualifications, lower secondary [ie, CSE/O-Level/GCSE or equivalent], upper secondary [ie, AS/A-Level or equivalent], higher education, or other equivalent professional qualification). In fully adjusted models we additionally controlled for socioeconomic status using Townsend deprivation score (quintiles), smoking status (never, former, current), alcohol intake (never, former, current), body mass index (<25, ≥25 to <30, ≥30 kg/m²), diabetes (no, yes), and cardiovascular disease (no, yes). Multiple imputation by chained equations with 100 imputations was used to impute missing values and values where participants responded “prefer not to answer” or “do not know,” for any covariates. The main exposure, outcome, and covariates were entered into the imputation model.

In a sensitivity analysis, the main models were repeated using a Fine–Gray subdistribution hazard model with death considered as a competing event (21).

Two separate sensitivity analyses were performed to explore reverse causation due to preclinical dementia potentially influencing visual and other health-related factors. These included (i) excluding participants with less than 5 years of follow-up and (ii) excluding participants who reported their health as poor or fair at baseline assessment.

In secondary analyses, the main analysis was repeated with visual acuity entered as a continuous variable to investigate the association with incident dementia per 0.10 LogMAR unit, which is equivalent to 5 letters or 1 line on a LogMAR chart. We also repeated the main model using a complete case analysis to investigate whether the results differed compared to using multiple imputation. Stratification by age was performed in UK Biobank to investigate effect modification by late-middle age (60–64 years) or early-older age (≥65 years). This analyses was not performed in EPIC-Norfolk due to the older age structure of the cohort. Furthermore, because the UK Biobank outcome adjudication working group’s recommended definition of dementia includes additional ICD codes compared to EPIC-Norfolk (Supplementary Table 1) (22), the UK Biobank analyses were repeated with the same ICD codes used to define dementia as EPIC-Norfolk. Due to the availability of genetic data in UK Biobank, the main analyses were repeated with additional adjustment for apolipoprotein ε4 carrier status (absence of ε4 alleles, presence of 1 or 2 ε4 alleles), a strong risk factor for dementia (23,24).

All p values were 2-sided, and the type I error rate for statistical significance was set at .05. Analyses were performed using Stata SE version 15.1 (StataCorp LLC, College Station, TX).

Results

Of 502,506 UK Biobank and 30,445 EPIC-Norfolk participants, 130,218 and 8,380 participants had complete visual acuity data, respectively. After excluding participants less than 60 years old at baseline or with prevalent dementia, the final sample size in UK Biobank and EPIC-Norfolk was 62,206 and 7,337 participants, respectively (Figure 1).

In UK Biobank, a total of 1,113 newly recorded hospital inpatient dementia cases or dementia-registered deaths were captured over 616,117 person-years of follow-up (mean = 9.4 years, standard deviation = 2.5). In UK Biobank and EPIC-Norfolk, respectively, 1,549 (2.5%) and 216 (2.9%) participants had mild visual impairment, and 463 (0.7%) and 49 (0.7%) participants had moderate to severe visual impairment. Baseline characteristics by visual impairment status for both cohorts are provided in Table 1.

A Nelson–Aalen cumulative hazards plot of dementia demonstrates clear differences in risk by visual impairment status after 1–2 years of follow-up in both cohorts (Figure 2). In basic adjusted models, the risk of dementia increased monotonically by visual impairment status in both cohorts, although the association between mild visual impairment and incident dementia was not statistically significant in either cohort (Table 2, see Supplementary Table 3 for effect of each additional covariate on the model estimates). The observed associations remained similar in fully adjusted models. Compared to those with no visual impairment, the hazard ratios (HRs) in UK Biobank and EPIC-Norfolk, respectively, were 1.26 (95% confidence interval [CI]: 0.92–1.72) and 1.05 (95% CI: 0.72–1.53) for mild impairment, and 2.16 (95% CI: 1.37–3.40) and 1.93 (95% CI: 1.05–3.56) for moderate to severe impairment. The direction of the associations remained similar when repeating the fully adjusted models with death as a competing event, although the effect sizes were attenuated for those with moderate impairment in both cohorts (Supplementary Table 4).

In sensitivity analyses, the main findings were attenuated in both cohorts when excluding participants with less than 5 years follow-up (Table 3). For instance, the HRs for moderate to severe impairment were 1.51 (95% CI: 0.83–2.74) and 1.51 (95% CI: 0.71–3.24) in UK Biobank and EPIC-Norfolk, respectively, compared to no impairment. After excluding participants with poor or fair self-reported health in UK Biobank, compared to no impairment, the
Characteristic, N (%)	UK Biobank	EPIC-Norfolk				
	None (≤0.3)	Mild (>0.3 to ≤0.5)	Moderate to severe (>0.5)	None (≤0.3)	Mild (>0.3 to ≤0.5)	Moderate to severe (>0.5)
Age in years, mean (SD)	64.5 (3.1)	65.0 (3.1)	64.7 (3.1)	70.2 (6.9)	76.0 (7.2)	76.1 (7.8)
Townsend deprivation score, quintiles						
1 (least deprived)	12,143 (20.2)	249 (16.1)	65 (14.0)	1,806 (25.5)	48 (22.2)	10 (20.4)
2	12,100 (20.1)	238 (15.4)	76 (16.4)	1,453 (20.5)	41 (19.0)	10 (20.4)
3	12,049 (20.0)	299 (19.3)	81 (17.5)	1,408 (19.9)	37 (17.1)	7 (14.3)
4	12,015 (20.0)	316 (20.4)	103 (22.3)	1,218 (17.2)	48 (22.2)	10 (20.4)
5 (most deprived)	11,845 (19.7)	445 (28.7)	138 (29.8)	1,168 (16.5)	42 (19.4)	12 (24.3)
Education						
No qualifications	12,656 (21.0)	483 (31.2)	143 (30.9)	1,935 (27.4)	68 (31.5)	19 (0.3)
Lower secondary	9,536 (15.8)	232 (15.0)	79 (17.1)	804 (11.4)	26 (12.0)	0 (0)
Upper secondary	2,907 (4.8)	75 (4.8)	17 (3.7)	3,159 (44.7)	94 (43.5)	7 (14.3)
Higher education or other professional qualification or equivalent	34,373 (57.1)	716 (46.2)	213 (46.0)	5,517 (78.5)	127 (58.0)	7 (14.3)
Missing/prefer not to answer	722 (1.2)	43 (2.8)	11 (2.4)	1 (0)	1 (0)	0 (0)
Ethnic background						
White	56,936 (94.6)	1,369 (88.4)	402 (86.8)	7,033 (99.4)	214 (99.1)	47 (95.9)
Non-White	2,885 (4.8)	153 (9.9)	54 (11.7)	20 (0.3)	0 (0)	1 (2.0)
Missing/prefer not to answer/do not know	373 (0.6)	27 (1.7)	7 (1.5)	19 (0.3)	2 (0.9)	1 (2.0)
Alcohol intake frequency						
Never	2,821 (4.7)	118 (7.6)	42 (9.1)	358 (5.1)	7 (3.2)	3 (6.1)
Former	2,177 (3.6)	76 (4.9)	12 (2.6)	790 (11.2)	29 (13.4)	5 (10.2)
Current	55,045 (91.5)	1,339 (86.4)	405 (87.5)	5,551 (78.5)	165 (76.4)	33 (67.3)
Missing/prefer not to answer	151 (0.3)	16 (1.0)	6 (0.9)	173 (25.6)	27 (12.5)	7 (14.3)
Smoking status						
Never	30,919 (51.4)	787 (50.8)	240 (51.8)	3,410 (48.2)	99 (45.8)	15 (30.6)
Former	24,681 (41.0)	588 (38.0)	173 (37.4)	3,294 (46.6)	102 (47.2)	28 (57.1)
Current	4,236 (7.0)	152 (9.8)	44 (9.5)	264 (3.7)	11 (5.1)	3 (6.1)
Missing/prefer not to answer	358 (0.6)	22 (1.4)	6 (1.3)	104 (1.5)	4 (1.9)	3 (6.1)
BMI						
<25	18,712 (31.1)	448 (28.9)	150 (32.4)	2,444 (34.6)	81 (37.5)	21 (42.9)
25–29.9	26,694 (44.4)	666 (43.0)	196 (42.3)	3,258 (46.1)	95 (44.0)	22 (44.9)
≥30	14,517 (24.1)	410 (26.5)	108 (23.3)	1,358 (19.2)	38 (17.6)	6 (12.2)
Diabetes						
Cardiovascular disease						
Poor/fair	15,776 (26.2)	1,054 (68.0)	307 (66.3)	1,090 (15.4)	34 (15.7)	16 (32.7)
Good/excellent	44,130 (73.3)	479 (30.9)	150 (32.4)	5,825 (82.4)	178 (82.4)	29 (59.2)
Overall health rating						
Poor/fair	288 (0.5)	16 (1.0)	6 (1.3)	157 (2.2)	4 (1.9)	4 (8.2)

Notes: BMI = body mass index; EPIC-Norfolk = European Prospective Investigation into Cancer in Norfolk; LogMAR = logarithm of the minimum angle of resolution; SD = standard deviation.
associations remained similar to the main findings for mild impairment (HR = 1.44, 95% CI: 0.97–2.16) but was weaker for moderate to severe impairment (HR = 1.29, 95% CI: 0.58–2.88; Table 3). Whereas after excluding participants with poor or fair self-reported health in EPIC-Norfolk, the strength of the association for moderate to severe impairment was similar to the main findings, albeit attenuated (HR = 2.01, 95% CI: 0.89–4.57), compared to no impairment.

In fully adjusted models, the risk of dementia increased by 15% (HR = 1.15, 95% CI: 1.11–1.19) and 6% (HR = 1.06, 95% CI: 1.01–1.13) per 0.1 increase in LogMAR in UK Biobank and EPIC-Norfolk, respectively. In complete cases analyses, the direction of the associations remained similar to the main findings, although the strength was attenuated, in particular for those with moderate visual impairment (Supplementary Table 5). In analyses stratified by age in UK Biobank, the associations were stronger in late-middle-aged participants (60–64 years) and weaker in early-older-aged participants (≥65 years, Supplementary Table 6). In UK Biobank, when restricting to the same ICD codes used to ascertain dementia as EPIC-Norfolk there were 959 incident cases, and the HRs were 1.23 (95% CI: 0.90–1.69) and 2.05 (95% CI: 1.29–3.28) for mild and moderate to severe impairment, respectively, compared to no impairment in a fully adjusted model. In UK Biobank, the findings remained similar when additionally adjusted for apolipoprotein E-ε4 carrier status (HR = 1.29, 95% CI: 0.93–1.78 and HR = 2.12, 95% CI: 1.35–3.35 for mild and moderate impairment, respectively).

Discussion

In 2 large cohorts of middle- to older-aged women and men recruited from the general population, moderate to severe visual impairment was associated with double the risk of incident dementia compared to normal vision. Mild visual impairment was associated with approximately 25% increased risk of dementia in UK Biobank, although the association was not statistically significant. There was limited evidence for an association between mild visual impairment and dementia in EPIC-Norfolk. In both cohorts, the main findings were attenuated when excluding those with less than 5 years of follow-up. In complete cases analyses, the direction of the associations remained similar to the main findings, although the strength was attenuated, in particular for those with moderate visual impairment (Supplementary Table 5). In analyses stratified by age in UK Biobank, the associations were stronger in late-middle-aged participants (60–64 years) and weaker in early-older-aged participants (≥65 years, Supplementary Table 6). In UK Biobank, when restricting to the same ICD codes used to ascertain dementia as EPIC-Norfolk there were 959 incident cases, and the HRs were 1.23 (95% CI: 0.90–1.69) and 2.05 (95% CI: 1.29–3.28) for mild and moderate to severe impairment, respectively, compared to no impairment in a fully adjusted model. In UK Biobank, the findings remained similar when additionally adjusted for apolipoprotein E-ε4 carrier status (HR = 1.29, 95% CI: 0.93–1.78 and HR = 2.12, 95% CI: 1.35–3.35 for mild and moderate impairment, respectively).

Table 2. Cox Proportional-Hazards Models for the Association Between Visual Impairment and Incident Dementia

Visual Impairment (LogMAR)	None (≤0.3)	Mild (>0.3 to ≤0.5)	Moderate to Severe (>0.5)				
Cohort	**Cases/Population**	**N**	**HR (95% CI)**	**N**	**HR (95% CI)**	**N**	**HR (95% CI)**
UK Biobank Model A*	1 113/62 206	61 194	1 (reference)	1 549	1.32 (0.96–1.80)	463	2.17 (1.38–3.41)
UK Biobank Model B†	1 113/62 206	61 194	1 (reference)	1 549	1.26 (0.92–1.72)	463	2.16 (1.37–3.40)
EPIC-Norfolk Model A*	517/7 337	7 072	1 (reference)	216	1.10 (0.76–1.59)	49	1.86 (1.02–3.39)
EPIC-Norfolk Model B†	517/7 337	7 072	1 (reference)	216	1.05 (0.72–1.53)	49	1.93 (1.05–3.56)

Notes: CI = confidence interval; EPIC-Norfolk = European Prospective Investigation into Cancer in Norfolk; HR = hazard ratio; LogMAR = logarithm of the minimum angle of resolution.

*Adjusted for age, sex, ethnicity, and education.
†Adjusted for age, sex, ethnicity, education, Townsend deprivation score, alcohol, smoking, body mass index, diabetes, and cardiovascular disease.

Table 3. Cox Proportional-Hazards Models for the Association of Visual Impairment and Incident Dementia Accounting for Reverse Causation

Visual Impairment (LogMAR)	None (≤0.3)	Mild (>0.3 to ≤0.5)	Moderate to Severe (>0.5)				
Cohort	**Cases/Population**	**N**	**HR (95% CI)**	**N**	**HR (95% CI)**	**N**	**HR (95% CI)**
Excluding participants with <5 years follow-up							
UK Biobank	915/60 384	58 466	1 (reference)	1 489	1.18 (0.83–1.68)	429	1.51 (0.83–2.74)
EPIC-Norfolk	411/6 827	6 609	1 (reference)	180	0.82 (0.51–1.30)	38	1.51 (0.71–3.24)
Excluding participants with poor/fair self-reported health							
UK Biobank	627/45 801	44 418	1 (reference)	1 070	1.44 (0.97–2.16)	313	1.29 (0.58–2.88)
EPIC-Norfolk	379/6 032	5 825	1 (reference)	178	1.00 (0.65–1.55)	29	2.01 (0.89–4.57)

Notes: CI = confidence interval; EPIC-Norfolk = European Prospective Investigation into Cancer in Norfolk; HR = hazard ratio; LogMAR = logarithm of the minimum angle of resolution.

*Adjusted for age, sex, ethnicity, education, Townsend deprivation score, alcohol, smoking, body mass index, diabetes, and cardiovascular disease.
near visual impairment were significantly associated with dementia risk before, but not after, 4 years of follow-up (38).

There are several other potential explanations for the observed associations between visual impairment and dementia. Visual impairment is related to a poorer quality of life, a decline in physical and functional activities, social isolation, and an increased risk of depression (6–9,39,40), and these factors could lead to an increased risk of dementia (3,38,41). Impaired visual processing could adversely affect cognitive functioning directly through various mechanisms, such as sensory deprivation, increased perceptual load, or information degradation (42–44). Alternatively, visual and cognitive impairment and dementia risk could be linked by a “common cause” (43). In this scenario, impaired visual acuity could represent a promising predictive marker for dementia risk rather than a target for prevention. Certain visual conditions have been previously proposed as biomarkers for dementia, such as retinal nerve fiber layer thinning, abnormal pupillary response, and contrast sensitivity (45,46). An additional noncausal explanation is potential detection bias, where individuals with visual impairment perform worse on visually based cognitive tests or have increased utilization of healthcare services.

In addition to visual impairment, studies have explored the link between specific eye diseases and risk of dementia, although the evidence is mixed. A meta-analysis of prospective studies found that cataracts and diabetic retinopathy, but not glaucoma or age-related macular degeneration, were associated with dementia risk (47). Similar associations have been observed in UK Biobank, although in contrast, age-related macular degeneration was weakly associated with dementia risk (48). The potential mechanisms underlying the associations between eye diseases and dementia are complex; for instance, they could increase the risk of dementia via visual impairment, be confounded by other factors (ie, diabetes in the case of diabetic retinopathy) or share similar neurodegenerative pathways as dementia (ie, glaucoma) (49). Due to this complexity, we investigated visual impairment independently of eye diseases in the current study. Studies which explore whether associations between certain eye diseases and dementia are mediated by visual impairment or driven by other factors are warranted.

Our study has several strengths. Both cohorts utilized a similar eye assessment protocol, measured the same covariates, and captured dementia using longitudinal hospital and death registry records. This enabled us to replicate the analysis using standardized criteria in 2 separate populations with different age structures and different population characteristics. Both studies captured dementia through ongoing linkage to cohort-wide electronic medical records minimizing loss to follow-up. Participants were assessed with habitual correction (ie, glasses or contact lenses) which should provide an accurate measure of usual day-to-day visual function.

Our study also has several limitations. Despite the large sample size in both cohorts, the proportion of individuals with moderate visual impairment was small. This limited the potential for additional analyses due to lack of statistical power, such as investigating whether the associations were mediated through other factors. As there was no information on how long participants have been visually impaired or repeat visual acuity measures we were unable to investigate whether the results were affected by time impaired or account for exposure change over time.

We did not investigate specific dementias, such as Alzheimer’s disease or vascular dementia, due to the poor positive predictive value of the hospital inpatient and death records for ascertaining subtypes (50). However, validation studies have found that these are reliable for ascertaining all-cause dementia, with a positive predictive value of 84.5% in UK Biobank when compared with expert clinical adjudication (50,51). Nevertheless, the hospital inpatient and death
records are likely to capture dementia cases in the later stages. For instance, I study found that dementia cases originally diagnosed in primary care are captured in hospital records an average of 1.6 years later (52). A degree of misclassification bias is likely whereby dementia cases not captured in the available medical records are treated as controls, which could bias the effect sizes toward the null.

Both cohorts were volunteer-based, with strong evidence of a “healthy volunteer effect” in UK Biobank (13,15). A recent study found that similar exposure–outcome associations were observed in UK Biobank compared to a representative cohort for cause-specific deaths; nevertheless, selection bias could remain (53,54). Due to the observational design, a degree of residual confounding is likely and causality cannot be inferred.

Mild and moderate to severe visual impairment was monotonically associated with an increased likelihood of developing dementia. Visual impairment has a high prevalence, especially in middle-later life, but is often treatable or preventable and consequently could be a promising target for dementia prevention. However, further research is needed to establish whether visual impairment is a dementia risk factor, an early sign of dementia, or whether the age at onset of visual impairment or its duration plays a differential role.

Supplementary Material
Supplementary data are available at The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences online.

Funding
A.P.K. was funded by a UKRI Future Leaders Fellowship. E.K. was supported by the Nicolaus and Margritt Langbehn Foundation. The EPIC-Norfolk study (doi:10.220252/2019.10.103.0004) has received funding from the Medical Research Council (MR/N003284/1 and MC-UE_12015/1) and Cancer Research UK (C864/A14136). The funding sources had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Conflict of Interest
A.P.K. has performed consultancy work for Aerie, Allergan, Google Health, Novartis, Reichter, Santen, and Thea. The other authors declare no conflict of interest.

Acknowledgments
We are grateful to all the participants who have been part of both projects and to the many members of the study teams at UK Biobank as well as the University of Cambridge for EPIC-Norfolk who have enabled this research. This research has been conducted using the UK Biobank Resource under Application Number 41115. Ethics: UK Biobank received ethical approval from the National Health Service North West Centre for Research Ethics Committee (Ref: 11/NW/0382). Ethical approval for EPIC-Norfolk core study was provided by the Norwich District Health Authority ethics committee (Rec Ref: 98NCO1). EPIC-Norfolk 3 was approved by the Norfolk Local Research Ethics Committee (05/ Q0101/191) and East Norfolk and Waveney National Health Service (NHS) Research Governance Committee (2003EC07L).

Author Contributions
T.J.L., S.H., R.L., A.P.K. and E.K. conceived and designed the study. T.J.L. analyzed the UK Biobank data. S.H. and R.L. analyzed the EPIC-Norfolk data. T.J.L. wrote the manuscript. All authors were involved interpreting the data, critically revising the manuscript, and providing final approval for the work to be published.

References
1. Bourne R, Steinmetz JD, Flaxman S, et al. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study. Lancet Glob Heal. 2021;9(2):e130–e143. doi:10.1016/S2214-109X(20)30425-3
2. Bourne RRA, Flaxman SR, Braithwaite T, et al.; Vision Loss Expert Group. Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Heal. 2017;5(9):e888–e897. doi:10.1016/S2214-109X(17)30293-0
3. GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Heal. 2021;9(2):e144–e160. doi:10.1016/S2214-109X(20)30489-7
4. Livingston G, Sommerlad A, Ogera V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–2734. doi:10.1016/S0140-6736(17)31363-6
5. Livingston G, Sommerlad A, Ogera V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673–2734. doi:10.1016/S0140-6736(17)31363-6
6. Choi HG, Lee MJ, Lee SM. Visual impairment and risk of depression: a longitudinal follow-up study using a national sample cohort. Sci Rep. 2018;8(1):2083. doi:10.1038/s41598-018-20174-5
7. Brunes A, Hansen MB, Heir T. Loneliness among adults with visual impairment: prevalence, associated factors, and relationship to life satisfaction. Health Qual Life Outcomes. 2019;17(1):24. doi:10.1186/s12955-019-1096-y
8. Ong SR, Crowson JG, Loprinzi PD, Ramulu PY. Physical activity, visual impairment, and eye disease. Eye (Lond). 2018;32(8):1296–1303. doi:10.1038/s41433-018-0081-8
9. Wayne RV, Johnsrude IS. A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Res Rev. 2015;23(Pt B):154–166. doi:10.1016/j.arr.2015.06.002
10. Zhang X, Zhu Z, Wang W, Ho J, He M. The association between vision impairment and incidence of dementia and cognitive impairment: a systematic review and meta-analysis. Ophthalmology. 2021;128(8):1135–1149. doi:10.1016/j.ophtha.2020.12.029
11. World Health Organization. Universal Eye Health: A Global Action Plan 2014–2019. Geneva: World Health Organization; 2013.
12. Sudlow C, Gallacher J, Allen N, et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779
13. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186(9):1026–1034. doi:10.1093/aje/kww246
14. Repeat Assessment: Participant Characteristics of Responders vs. Non-responders. https://biobank.ndph.ox.ac.uk:8080/home. Published 2014. Accessed March 1, 2021.
15. Hayat SA, Luben R, Keevil VL, et al. Cohort profile: a prospective cohort study of objective physical and cognitive capability and visual health in an ageing population of men and women in Norfolk (EPIC-Norfolk 3). Int J Epidemiol. 2014;43(4):1063–1072. doi:10.1093/ije/dyt086
16. Day N, Oakes S, Luben R, et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer. 1999;80(suppl 1):95–103. https://pubmed.ncbi.nlm.nih.gov/10466767/
17. Khawaja AP, Chan MPY, Hayat S, et al. The EPIC-Norfolk eye study: rationale, methods and a cross-sectional analysis of visual impairment in a population-based cohort. BMJ Open. 2013;3(3):1–10. doi:10.1136/bmjopen-2013-002684.
18. Chua SYL, Thomas D, Allen N, et al.; UK Biobank Eye & Vision Consortium. Cohort profile: design and methods in the eye and vision consortium of UK Biobank. BMJ Open. 2019;9(2):e025077. doi:10.1136/bmjopen-2018-025077

19. Townsend P, Philimore P, Beattie A. Health and Deprivation: Inequality and the North. London: Croom Helm; 1988.

20. World Health Organization. World Report on Vision. Geneva: World Health Organization; 2019.

21. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509. doi:10.1080/102604719.1999.10474144

22. Definitions of Dementia and the Major Diagnostic Pathologies, UK Biobank Phase 1 Outcomes Adjudication. http://biobank.ndph.ox.ac.uk/showcase/showcase/docs/alg_outcome_dementia.pdf. Published 2018. Accessed July 17, 2020.

23. Bycroft C, Freeman C, Perkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–209. doi:10.1038/s41588-018-0379-z

24. Loy CT, Schofield PR, Turner AM, Kwok JB. Genetics of dementia. J Am Med Dir Assoc. 2018;19(1):91–99. doi:10.1016/j.jamda.2016.10.014

25. Rogers MA, Langa KM. Untreated poor vision: a contributing factor to late-life dementia. Am J Epidemiol. 2010;171(6):728–735. doi:10.1093/aje/kwp453

26. Davies HR, Cadar D, Herbert A, Orrell M, Steptoe A. Hearing impairment and incident dementia: findings from the English Longitudinal Study of Ageing. J Am Geriatr Soc. 2017;65(9):2074–2081. doi:10.1111/jgs.14986

27. Lipnicki DM, Crawford J, Kochan NA, et al.; Sydney Memory and Ageing Study Team. Risk factors for mild cognitive impairment, dementia and mortality: the Sydney memory and ageing study. J Am Med Dir Assoc. 2017;18(5):388–395. doi:10.1016/j.jamda.2016.10.004

28. Hwang PH, Longstreth WT Jr, Brenowitz WD, et al. Dual sensory impairment with risk of incident dementia in a women’s health initiative cohort study. J Gerontol A Biol Sci Med Sci. 2018;73(9):178–186. doi:10.1016/jgera.2018.05.036

29. Maruta M, Tabira T, Sagari A, et al. Impact of sensory impairments in people with dementia on characteristics associated with functional decline in older women. J Alzheimers Dis. 2018;62(7):203–209. doi:10.3233/JAD-160630

30. Wilkinson T, Ly A, Schnier C, et al. Identifying dementia cases with routine collected health data: a systematic review. Alzheimers Dement. 2018;14(8):1038–1051. doi:10.1016/j.jalz.2018.02.016

31. Wilkinson T, Schnier C, Bush K, et al. Identifying dementia outcomes in primary care: a systematic review of automated electronic health record data. BMJ Open. 2019;9(1):104741. doi:10.1136/bmjopen-2018-025077

32. Bycroft C, Freeman C, Perkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–209. doi:10.1038/s41588-018-0379-z

33. Lee ATC, Richards N, Phillips W, Pichora-Fuller MK, Mick P. Sensory-cognitive associations are only weakly mediated or moderated by social factors in the Canadian Longitudinal Study on Aging. Soc Sci Med. 2019;233:19660. doi:10.1016/j.socscimed.2019.10474144

34. Monge ZA, Madden DJ. Linking cognitive and visual perceptual decline in healthy aging: the information degradation hypothesis. Neurosci Biobehav Rev. 2016;69:166–173. doi:10.1016/j.neubiorev.2016.07.031

35. Baltes PB, Lindenberger U. Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging. 1997;12(1):12–21. doi:10.1037/0882-7974.12.1.12

36. Lindenberger U, Baltes PB. Sensory functioning and intelligence in old age: a strong connection. Psychol Aging. 1994;9(3):339–355. doi:10.1037/0882-7974.9.3.339

37. Murphy C. Olfactory and other sensory impairments in Alzheimer’s disease. Nat Rev Neurol. 2018;15(1):11–24. doi:10.1038/s41585-018-0097-5

38. Albers MW, Gilmore GC, Kaye J, et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement. 2015;11(1):70–98. doi:10.1016/j.jalz.2014.04.014

39. Kužma E, Ljubković T, Hlavac AP, Llewellyn DJ, Ukoumunne OC, Them U. Visual impairment, eye diseases, and dementia risk: a systematic review and meta-analysis. J Alzheimers Dis. 2021;83(3):1073–1087. doi:10.3233/JAD-210250

40. Shang X, Zha Z, Huang Y, et al. Associations of ophthalmic and systemic conditions with incident dementia in the UK Biobank. Br J Ophthalmol. 2021;biojophthalmol-2021-319508. doi:10.1136/bjophthalmol-2021-319508. https://pubmed.ncbi.nlm.nih.gov/34518160/

41. Mancino R, Martucci A, Cesareo M, et al. Glaucoma and Alzheimer disease: one age-related neurodegenerative disease of the brain. Curr Neuropharmacol. 2018;16(7):971–977. doi:10.2174/1570159X1666617021612044045

42. Wilkinson T, Schnier C, Bush K, et al. Identifying dementia outcomes in UK Biobank: a validation study of primary care, hospital admissions and mortality data. Eur J Epidemiol. 2019;34(6):557–565. doi:10.1007/s10654-019-00499-1

43. Wilkinson T, Ly A, Schnier C, et al. Identifying dementia cases with routinely collected health data: a systematic review. Alzheimers Dement. 2018;14(8):1038–1051. doi:10.1016/j.jalz.2018.02.016

44. Brown A, Kirichek O, Balkwill A, et al. Comparison of dementia recorded in routinely collected hospital admission data in England with dementia recorded in primary care. Emerg Themes Epidemiol. 2016;13:11. doi:10.1186/s12982-016-0053-z

45. Batty GD, Gale CR, Kivimaki M, Deary IJ, Bell S. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ. 2020;368:m131. doi:10.1136/bmj.m131

46. Munafő MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Cardinal scope: when selection bias can substantially influence observed associations. Int J Epidemiol. 2018;47(1):226–235. doi:10.1093/ije/dyx206