Synchronous incidental gastrointestinal stromal and epithelial malignant tumors

Yan-Jun Liu, Zhou Yang, Lang-Song Hao, Lin Xia, Qian-Bin Jia, Xiao-Ting Wu

AIM: To investigate the incidence of incidental gastrointestinal stromal tumor (GIST) and its etiopathogenesis.

METHODS: From January 1, 2000 to December 31, 2007, 13,804 cases of gastrointestinal epithelial malignant tumor (EMT) and 521 cases of pancreatic adenocarcinoma (PAC) were successfully treated with surgery at the Department of General Surgery and the Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China. The clinical and pathologic data of 311 cases of primary GIST, including 257 cases with clinical GIST and 54 cases of incidental GIST were analyzed.

RESULTS: Of the 311 patients, 54 had incidental GIST, accounting for 17.4%. Of these tumors, 27 were found in 1.13% patients with esophageal squamous cell carcinoma (ESCC), 22 in 0.53% patients with gastric adenocarcinoma (GAC), 2 in 0.38% patients with PAC, 2 in 0.03% patients with colorectal adenocarcinoma, and 1 in one patient with GAC accompanying ESCC, respectively. Patients with incidental GIST presented symptoms indistinguishable from those with EMT. All incidental GIST lesions were small in size, and the majority had a low mitotic activity while only 1.9% (5/257) of clinical GIST lesions had a high risk.

CONCLUSION: Incidental GIST may occur synchronously with other tumors and has a high prevalence in males. Surgery is its best treatment modality.

Key words: Gastrointestinal stromal tumor; Multitumor; Synchronous tumor

INTRODUCTION

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of gastrointestinal (GI) tract, probably arising from precursor interstitial cells of Cajal. Significant advances have been made in symptomatic GIST in the last two decades.[1,2] However, little is known about the incidental GIST detected during examinations or surgery for other reasons. Its clinicopathologic characteristics are unclear. Many cases of synchronous or asynchronous GIST with other tumors have been reported as single cases.[3-6] We discovered 54 cases of incidental gastrointestinal stromal and epithelial malignant tumors. World J Gastroenterol 2009; 15(16): 2027-2031 Available from: URL: http://www.wjgnet.com/1007-9327/15/2027.asp DOI: http://dx.doi.org/10.3748/wjg.15.2027

MATERIALS AND METHODS

Patients
From January 1, 2000 to December 31, 2007, 13,804 cases of gastrointestinal EMT and 521 cases of pancreatic adenocarcinoma (PAC) were successfully treated with surgery at the Department of General
Surgery and the Department of Thoracic Surgery, West China Hospital, Sichuan University, China. Gastrointestinal EMT cases included 2382 cases of esophageal squamous cell carcinoma (ESCC), 35 cases of esophageal adenocarcinoma (EAC), 4168 cases of gastric adenocarcinoma (GAC), 329 cases of small intestinal adenocarcinoma (SAC), and 6890 cases of colorectal adenocarcinoma (CRA). During this period, 311 cases of primary GIST (121 females, 190 males) were identified in our center, including 257 cases of clinical GIST and 54 cases of incidental GIST.

Methods

Hospital records of patients with incidental GIST were reviewed. Each patient was followed up by telephone or mail. Histopathologic features of primary GIST were evaluated by two experienced pathologists, blinded to their respective findings and patient outcomes, at the Department of Pathology, West China Hospital. The largest diameter of tumor was recorded. In patients with multiple GIST lesions, only the largest GIST lesion was included in pathological analysis. The risk category for GIST was defined by assessing the tumor size and mitotic count following the consensus guidelines of the National Institutes of Health-(NIH-NCI) workshop[1]. In addition to the assessment of CD117 in tumor cells, reactions with CD34, SMA, and S-100 proteins were also studied. Immunohistochemical examination of these proteins was performed on tumor tissues embedded in paraffin with Dako (Glostrup, Denmark) antibodies according to the manufacturer’s instructions.

Statistical analysis

Categorical variables were compared by \(\chi^2 \) test or by Fisher's exact test where applicable. Survival analysis was performed using the Kaplan-Meier method. \(P < 0.05 \) was considered statistically significant. Statistical analysis was performed using SPSS version 13.0 (SPSS Inc., Chicago, IL, USA).

RESULTS

Of the 311 patients, 54 had incidental GIST, accounting for 17.4%. Among these tumors, 27 were found in 1.13% patients with ESCC, 22 in 0.53% patients with GAC, 2 in 0.38% patients with PAC, and 1 in one patient with GAC accompanying ESCC, respectively.

The median age of the 54 cases of incidental GIST was 63 years (range, 44-79 years). Interestingly, 48 of them (88.9%) were males, and 6 (11.1%) were females (\(P < 0.001 \)). The patients presented symptoms of EMT without specific clinical manifestations indicative of GIST. Among the 54 patients, only a submucous lesion in gastric fundus, 2.5 cm in diameter, was preoperatively detected in 1 patient with GAC by gastroscopy, and a single-lesion was postoperatively detected in 4 patients by specimen examination. A total of 58 incidental GIST lesions were discovered in the 54 patients, including 51 single-lesions, 2 double-lesions, and 1 triple-lesion. A total of 90.7% incidental GIST lesions occurred in stomach, 3.6% in esophagus, 1.9% in terminal ileum, 1.9% in colon and 1.9% in omentum, respectively. The most common sites were the gastric fundus and body. In our series, 4 cases with a unique coexistence style (esophageal GIST + ESCC, 2, gastric GIST + ESCC + GAC: 1, colonic GIST + CRA: 1) have not been reported previously. The location of 54 incidental GIST lesions and their corresponding EMT lesions are shown in Table 1.

Table 1 Location of 54 incidental GIST lesions and their corresponding EMT

EMT	Patients (n)	Median age (M/F)	Incidental GIST site (No. of patients)
GAC	22	64.5 (45-79)	Gastric fundus: 1, Gastric body: 1
			Gastric antrum: 1, Esophagus: 1
			Terminal ileum: 1, Colon: 1, Omentum: 1
ESCC	27	63 (44-77)	Gastric cardia: 1, Gastric fundus: 3
			Gastric body: 1, Gastric antrum: 1
			Esophagus: 1, Terminal ileum: 1
			Colon: 1, Omentum: 1
GAC + ESCC	1	79	Gastric cardia: 0, Gastric fundus: 1
			Gastric body: 0, Gastric antrum: 1
			Esophagus: 0, Terminal ileum: 1
			Colon: 0, Omentum: 0
CRA	2	57.5 (54-61)	Gastric cardia: 1, Gastric fundus: 2
			Gastric body: 0, Gastric antrum: 1
			Esophagus: 0, Terminal ileum: 1
			Colon: 1, Omentum: 0
PAC	2	67.5 (65-70)	Gastric cardia: 1, Gastric fundus: 2
			Gastric body: 0, Gastric antrum: 1
			Esophagus: 0, Terminal ileum: 1
			Colon: 0, Omentum: 0
Total	54	63 (44-79)	Gastric cardia: 2, Gastric fundus: 11
			Gastric body: 3, Gastric antrum: 2
			Esophagus: 2, Terminal ileum: 1
			Colon: 2, Omentum: 1

GIST: Gastrointestinal stromal tumor; EMT: Epithelial malignant tumor; GAC: Gastric adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; CRA: Colorectal adenocarcinoma; PAC: Pancreatic adenocarcinoma.
In our series, incidental GIST occurred simultaneously with EMT in 17.4% (54/311) of the GIST patients, which is higher than the reported incidence (14%)\(^\text{[8]}\). However, assessment of the actual incidence of incidental GIST with EMT is difficult, because the data are only based on patients who have been surgically treated, whereas EMT patients managed with non-surgical measures are unaccounted for. Moreover, during examination or surgery, identification of GIST is incidental rather than intentional, and many lesions are missed as a result.

Notably, in addition to those with EMT, many synchronous and asynchronous cases of GIST with non-epithelial tumors have been reported, such as osteosarcoma, Burkitt’s lymphoma, plasmacytoma, neuroblastoma, somatostatinoma, chronic lymphatic leukemia, lipoma and ectopic pancreas\(^\text{[4,9-13]}\). Synchronous incidental GIST and non-tumorous diseases have been reported, such as ulcerative colitis, Meckel’s diverticulum, rapidly progressiv glomerulonephritis, HIV carriers, and Crohn’s disease\(^\text{[5,14-17]}\). Sanchez et al\(^\text{[18]}\) reported that incidental gastric GIST is found in 0.8% of patients undergoing laparoscopic Roux-en-Y gastric bypass surgery for obesity. Kawanowa et al\(^\text{[19]}\) showed that microscopic GIST can be found in 35% of stomach-resected patients with gastric cancer. It has been shown that microscopic GIST can be found in 10% of patients undergoing surgery for esophageal carcinoma\(^\text{[20]}\). Especially, incidental GIST has also been detected in 0.2% of all autopsies, accounting for 10% of all patients with primary GIST\(^\text{[21]}\). These findings suggest that incidental GIST may occur synchronously with other diseases more frequently than expected, and the incidence of incidental GIST might be much higher than that of clinical GIST.

Notably, in addition to those with EMT, many synchronous and asynchronous cases of GIST with non-epithelial tumors have been reported, such as osteosarcoma, Burkitt’s lymphoma, plasmacytoma, neuroblastoma, somatostatinoma, chronic lymphatic leukemia, lipoma and ectopic pancreas\(^\text{[4,9-13]}\). Synchronous incidental GIST and non-tumorous diseases have been reported, such as ulcerative colitis, Meckel’s diverticulum, rapidly progressive glomerulonephritis, HIV carriers, and Crohn’s disease\(^\text{[5,14-17]}\). Sanchez et al\(^\text{[18]}\) reported that incidental gastric GIST is found in 0.8% of patients undergoing laparoscopic Roux-en-Y gastric bypass surgery for obesity. Kawanowa et al\(^\text{[19]}\) showed that microscopic GIST can be found in 35% of stomach-resected patients with gastric cancer. It has been shown that microscopic GIST can be found in 10% of patients undergoing surgery for esophageal carcinoma\(^\text{[20]}\). Especially, incidental GIST has also been detected in 0.2% of all autopsies, accounting for 10% of all patients with primary GIST\(^\text{[21]}\). These findings suggest that incidental GIST may occur synchronously with other diseases more frequently than expected, and the incidence of incidental GIST might be much higher than that of clinical GIST.

Particular attention has been paid to clinical GIST because of its striking symptoms such as gastrointestinal bleeding, pain, dyspepsia, abdominal mass and obstruction\(^\text{[22,23]}\). On the contrary, incidental GIST may emerge asymptptomatically, and even if symptomatically, the symptoms may often be vague and nonspecific\(^\text{[18]}\). In our study, all the 54 patients presented symptoms

Table 2 Distribution of gender, age, tumor site, tumor size, and risk in 311 patients with GIST

GIST	Patients (n)	Gender (M/F)	Median age in yr (range)	Tumor site (No. of patients)	Tumor size (cm)	Risk patients, n (%)
Incidental GISTs	54	48/6	63 (44-79)	Gastric (49), esophagus(2), ileum(1), colon(1), omentum (1)	0.8	VL: 49 (90.7); L: 5 (9.3)
Clinical GISTs	257	142/115	57 (22-87)	Gastric (147), duodenum (10), jejunum-ileum (57), colon (25), rectum (3), anal canal (3), mesenterium (6), omentum (4), pancreatic (2)	7.5	VL: 5 (1.9); L: 86 (33.5); Int: 67 (26.1); H: 99 (38.5)
Total	311	190/121	61 (22-87)	Gastric (196), esophagus(2), duodenum (10), jejunum-ileum (58), colon (26), rectum (3) anal canal (3), mesenterium (6), omentum (5), pancreas (2)	6.3	VL: 54 (17.4); L: 91 (29.3); Int: 67 (21.5); H: 99 (31.8)

Risk was determined as previously described\(^\text{[7]}\). VL: Very low risk; L: Low risk; Int: Intermediate risk; H: High risk.
Gastrointestinal stromal tumor (GIST) is one of the most common tumors in gastrointestinal (GI) tract, probably arising from precursor cells that serve as a pacemaker to trigger gut contraction. GI epithelial malignant tumors (EMT) refer to a tumor arising from the surface cells of the GI tract. The incidence of incidental GIST coexisting with other GI tumors is much higher than expected. Surgeons are advised to be alert against possible primary GIST accompanying other tumors.

In conclusion, incidental GIST coexists with EMT at a higher incidence than expected. Surgeons are advised to be alert against possible primary GIST accompanying other tumors.

ACKNOWLEDGMENTS

The authors thank Dr. Ping Yu and Jing Gong for their expert analysis of the lesions, and Dr. Jun-Ping Xin for his assistance with the manuscript revision.

COMMENTS

Background

Gastrointestinal stromal tumor (GIST) is one of the most common tumors in gastrointestinal (GI) tract, probably arising from precursor cells that serve as a pacemaker to trigger gut contraction. It may exist alone with clinical manifestations or coexist with other diseases. The former is usually diagnosed by its clinical presentations and called clinical GIST, while the latter is usually found during examination or surgery for other diseases and called incidental GIST.

Research frontiers

Clinical GIST has been extensively studied in the past twenty years. Many cases of GIST existing alone or coexisting with other diseases have been reported, but GIST coexisting with other GI tumors has only been reported as single cases. It is necessary to conduct a comprehensive study with a large sample size to determine its incidence and features.

Innovations and breakthroughs

For the first time, the authors report an extensive study on incidental GIST coexisting with other GI tumors. This study revealed some important and interesting information regarding incidental GIST coexisting with other GI tumors. Firstly, they found that incidental GIST coexisted most frequently with colorectal tumor (0.03%). Secondly, the majority of clinical GISTs had a moderate or a high risk. In contrast, the majority of incidental GISTs had a very low risk. Thirdly, the incidence of incidental GIST was significantly higher in males than in female patients (88.9% vs 11.1%). Finally, this study also provided the statistics for age, survival time and prognosis of studied patients and outlined the other features of incidental GIST, such as the number of lesions, lesion location and cellular morphology, etc.

Applications

The incidence of incidental GIST coexisting with other GI tumors is much higher than expected. However, without specific manifestations, preoperative detection of incidental GIST is difficult. Residual GIST lesions may progress to invasive diseases, cause intestinal obstruction and/or life-threatening gastrointestinal hemorrhage. In addition, residual incidental GIST may be mistaken for the relapse or metastasis of previously removed neoplasm, which may result in inappropriate treatment of patients in follow-up after operation. Therefore, an en bloc resection with other tumors or an additional local resection with adequate margins has been recommended by surgeons.

Common carcinogenic agents, which result in a simultaneous proliferation of different cell lines (epithelial and stromal cells), may be involved in the development of incidental GIST as a mere coincidence. In this study, males with primary GIST were more likely to have a synchronous tumor than females (P < 0.001). Synchronous tumors may have a high prevalence in males. Simultaneous neoplastic proliferation of epithelial and stromal cells might be stimulated by the same carcinogenic factors, such as Helicobacter pylori infections, germine mutations, and exposure to ionizing radiation. To clarify possible common carcinogenic agents against synchronous tumors, further studies are needed.

In conclusion, incidental GIST coexists with EMT at a higher incidence than expected. Surgeons are advised to be alert against possible primary GIST accompanying other tumors.
incidental GIST and its clinical significances. The title of the paper reflects the major contents of the article. The abstract gives a clear delineation of the research background. Results and discussion are well organized. The conclusion is reliable and valuable.

REFERENCES

1. Miettinen M, Lasota J. Gastrointestinal stromal tumors—definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 2001; 438: 1-12

2. Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006; 130: 1466-1478

3. Liu SW, Chen GH, Hsieh PP. Collision tumor of the stomach: a case report of mixed gastrointestinal stromal tumor and adenocarcinoma. J Clin Gastroenterol 2002; 35: 332-334

4. Au WY, Wong WM, Khoo US, Liang R. Challenging and unusual cases: Case 2. Concurrent gastrointestinal stromal tumor and Burkitt’s lymphoma. J Clin Oncol 2003; 21: 1417-1418

5. Pfiefel F, Steigbauer W, Depisch D, Oberhuber G, Raderer M, Scheithauer W. Coincidence of Crohn’s disease and a high-risk gastrointestinal stromal tumor of the terminal ileum. Digestion 1999; 60: 363-366

6. Lin YL, Tzeng JE, Wei CK, Lin CW. Small gastrointestinal stromal tumor concomitant with early gastric cancer: a case report. World J Gastroenterol 2006; 12: 815-817

7. Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, Miettinen M, O’Leary TJ, Remotti H, Rubin BP, Shmookler B, Sobin LH, Weiss SW. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002; 33: 459-465

8. Wronski M, Ziarkiewicz-Wrobleska B, Gornicka B, Cebulska W, Slodkowski M, Wasiutynski A, Krasnodebski W, Rownski M. Synchronous occurrence of gastrointestinal stromal tumors and other primary gastrointestinal neoplasms. World J Gastroenterol 2006; 12: 5360-5362

9. Ruka W, Rutkowski P, Nowecki Z, Nasiereowska-Guttmejer A, Debiec-Rychter M. Other malignant neoplasms in patients with primary gastrointestinal stromal tumors (GIST). Med Sci Monit 2004; 10: LE13-LE14

10. Johnston DL, Olson JM, Benjamin DR. Gastrointestinal stromal tumor in a patient with previous neuroblastoma. J Pediatr Hematol Oncol 2001; 23: 255-256

11. Usui M, Matsuda S, Suzuki H, Hirata K, Ogura Y, Shiraishi T. Somatostatinoma of the papilla of Vater with multiple gastrointestinal stromal tumors in a patient with von Recklinghausen’s disease. J Gastroenterol 2002; 37: 947-953

12. Agaimy A, Wuenisch PH. Gastrointestinal stromal tumours in patients with other-type cancer: a mere coincidence or an etiological association? A study of 97 GIST cases. Z Gastroenterol 2005; 43: 1025-1030

13. Teke Z, Kabay B, Kelten C, Yilmaz M, Duçcan E. Ectopic pancreas of the gastric antrum contiguous to a gastrointestinal stromal tumor manifesting as upper gastrointestinal bleeding: report of a case. Surg Today 2007; 37: 74-77

14. Greico A, Cavallaro A, Potenza AE, Mule A, Tarquini E, Miele L, Gasbarrini G. Gastrointestinal stromal tumor (GIST) and ulcerative colitis. J Exp Clin Cancer Res 2002; 21: 617-620

15. de la Morena López F, Fernández-Salazar L, Velayos B, Aller R, Juárez M, González JM. [Mecelk’s diverticulum and gastrointestinal stromal tumor: an unusual association] Gastroenterol Hepatol 2007; 30: 534-537

16. Nakaya I, Iwata Y, Abe T, Yokoyama H, Oda Y, Nomura G. Malignant gastrointestinal stromal tumor originating in the lesser omentum, complicated by rapidly progressive glomerulonephritis and gastric carcinoma. Intern Med 2004; 43: 102-105

17. Padula A, Chin NW, Azeze S, Resetkova E, Andriko JA, Miettinen M. Primary gastrointestinal stromal tumor of the esophageus in an HIV-positive patient. Ann Diag Pathol 2005; 9: 49-53

18. Sanchez BR, Morton JM, Curet MJ, Alami RS, Safadi BY. Incidental finding of gastrointestinal stromal tumors (GISTs) during laparoscopic gastric bypass. Obes Surg 2005; 15: 1384-1388

19. Kawanowa K, Sakuma Y, Sakurai S, Hishima T, Iwasaki Y, Saito K, Hosoya Y, Nakajima T, Funata N. High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum Pathol 2006; 37: 1527-1535

20. Abraham SC, Kransinskas AM, Hofstetter WL, Swisher SG, Wu TT. “Seedling” mesenchymal tumors (gastrointestinal stromal tumors and leiomyomas) are common incidental tumors of the esophagogastric junction. Am J Surg Pathol 2007; 31: 1629-1635

21. Nilsson B, Bümmling P, Meis-Kindblom JM, Ödén A, Dörtok A, Gustavsson B, Sablinska K, Kindblom LG. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib premlate era—a population-based study in western Sweden. Cancer 2005; 103: 821-829

22. de Francisco R, Díaz G, Cadahia V, Velázquez RF, Giganto F, González O, Rodrigo L. Lower GI bleeding secondary to a stromal rectal tumor (rectal GIST). Rev Esp Enferm Dig 2006; 98: 387-389

23. Nowain A, Bhakta H, Pais S, Kanel G, Verma S. Gastrointestinal stromal tumors: clinical profile, pathogenesis, treatment strategies and prognosis. J Gastroenterol Hepatol 2005; 20: 818-824

24. Aksoy NH, Cevikol C, Ogüs M, Elpek GO, Gelen T. Adenocarcinoma arising in villous adenoma of the ampulla of Vater with synchronous malignant gastrointestinal stromal tumour of the duodenum: a case report. J Clin Pathol 2004; 57: 1118-1119

25. Maiorana A, Fante R, Maria Cesinaro A, Adriana Fano R. Synchronous occurrence of epithelial and stromal tumors in the stomach: a report of 6 cases. Arch Pathol Lab Med 2000; 124: 682-686

26. Kaffes A, Hughes L, Hollinshead J, Katelaris P. Synchronous primary adenocarcinoma, mucosa-associated lymphoid tissue lymphoma and a stromal tumor in a Helicobacter pylori-infected stomach. J Gastroenterol Hepatol 2002; 17: 1033-1036

27. Miller PR, Jackson SL, Pineau BC, Levine EA. Radiation-induced gastrointestinal stromal sarcoma of the esophagus. Ann Thorac Surg 2000; 70: 660-662

S-Editor Tian L E-Editor Wang XL E-Editor Lin YP