Complete Genome Sequences of Zika Virus Strains Used for the Formulation of CBER/FDA RNA Reference Reagents and Lot Release Panels for Nucleic Acid Technology Testing

Evgeniya Volkova,a Andriyan Grinev,a Rafaelle Fares-Gusmao,a Caren Chancey,a Maria Riosa

Division of Emerging and Transfusion Transmitted Diseases, Laboratory of Emerging Pathogens, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA

ABSTRACT We report here the complete genome sequences of two Zika virus strains (FSS13025 and PRVABC59) used for formulation of CBER/FDA RNA reference reagents and lot release panels for use with nucleic acid technology (NAT) testing.

Zika virus (ZIKV) is a positive-stranded RNA virus (genus Flavivirus, family Flaviviridae) (1) spread by Aedes sp. mosquitoes (2), and it can also be transmitted from human to human by sexual contact during pregnancy, and by blood transfusion (3–10).

Most human ZIKV infections are asymptomatic (>80%), and clinical cases present mild symptoms or influenza-like illness accompanied by conjunctivitis, skin rash, fatigue, and joint pain (11). ZIKV infection can cause Guillain-Barré syndrome in adults, and infection during pregnancy may cause fetal congenital Zika syndrome, characterized by microcephaly and other brain anomalies, ocular defects, loss of hearing, and muscle and joint issues (3–5, 12–20).

Discovered in Africa in 1947, ZIKV spread to Asia (21–25), the Pacific Islands (26–29), and in 2015 to the Americas (30–32). Zikadisease became a U.S. national threat in 2016, with 4,897 travel-related cases, 224 local mosquito-transmitted cases, and 47 cases acquired through other routes, including sexual transmission (33).

In 2016, a panel of CBER/FDA reference reagents was prepared using two ZIKV strains, FSS13025 and PRVABC59. This material has been used to assist in the development of nucleic acid technology (NAT) assays for blood screening and to support the regulatory evaluation and lot release of licensed and investigational ZIKV NAT assays. Currently, there is one FDA-approved NAT blood screening assay for ZIKV (34).

We report here the complete genome sequences of the following two strains used to produce the CBER/FDA ZIKV RNA reference reagents: FSS13025 (Cambodia, 2010, kindly provided by N. Vasilakis, University of Texas Medical Branch) and PRVABC59 (Puerto Rico, 2015, kindly provided by B. Johnson, CDC). Both strains were provided as supernatants from passage 3 in Vero cell culture and subjected to an additional passage in Vero cells at a multiplicity of infection (MOI) of 0.01, and clarified supernatants were used for total RNA extraction using the QIAamp viral RNA minikit (Qiagen). Overlapping PCR amplicons covering the entire genome were produced with the Qiagen OneStep kit using a set of ZIKV-specific primers (primer sequences are available upon request). A genome cyclization technique was employed to amplify noncoding regions (NCRs) of the viral genome. The assembly and sequence analyses were performed using Vector NTI version 11.5 (Invitrogen) and the Sequencher software (Gene Codes).

The full-length genomes of the FSS13025 and PRVABC59 strains are 10,807 nucleotides (nt) each and contain a single 10,272-nt open reading frame (ORF) flanked by a 107-nt 5′ NCR and a 429-nt 3′ NCR. The ORF encodes a 3,423-amino-acid (aa) polypro-
tein cleaved into the following 10 proteins by the viral and cellular proteases (35): C (122 aa), prM (168 aa), E (504 aa), NS1 (352 aa), NS2A (226 aa), NS2B (130 aa), NS3 (617 aa), NS4A (150 aa), NS4B (251 aa), and NS5 (903 aa). We found no differences between the nucleotide and amino acid sequences of the original isolates (GenBank accession numbers KU955593 and KX377337) and those of the FSS13025 and PRVABC59 isolates cultivated and sequenced in our laboratory.

Accession number(s). The complete sequences of the ZIKV FSS13025 and PRVABC59 strains used for the formulation of CBER/FDA RNA reference reagents and lot release panels have been submitted to GenBank under the accession numbers MH158236 and MH158237, respectively.

ACKNOWLEDGMENTS

This work was supported by the FDA Medical Countermeasure Initiative Funding (MCMI) Intramural Research Program. This project was supported in part by an appointment to the Research Participation Program at the OBR/CBER, U.S. Food and Drug Administration, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and the FDA.

The findings and conclusions in this article are an informal communication and represent the authors’ own best judgment. These comments do not bind or obligate the FDA.

REFERENCES

1. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT, ICTV Report Consoru M. 2017. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98:2–3.

2. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi P-Y, Vasilakis N. 2016. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res 130:69–80. https://doi.org/10.1016/j.antiviral.2016.03.010.

3. Besnard M, Lastère S, Teissier A, Cao-Lormeau V, Musso D. 2014. Evidence of perinatal transmission of Zika virus, French Polynesia, December 2013 and February 2014. Euro Surveill 19 pii:20751. https://www.eurosurveillance.org/images/dynamic/EE/V19N13/art20751.pdf.

4. European Centre for Disease Prevention and Control. 2016. Rapid risk assessment. Zika virus disease epidemic: sixth update. European Centre for Disease Prevention and Control, Stockholm, Sweden.

5. Pan American Health Organization. 2015. Epidemiological alert. Neurological syndrome, congenital malformations, and Zika virus infection. Implications for public health in the Americas. Pan American Health Organization, Washington, DC.

6. Calvet G, Aguilar RS, Melo ASO, de Filippis I, Fabri A, Araujo ESM, de Sequeira PC, de Mendonça MCL, de Oliveira L, Tschoeke DA, Schrago CG, Thompson FL, Brasil P, Dos Santos FB, Nogueira RMR, Tanuri V, de Filippis AMB. 2016. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16:653–660. https://doi.org/10.1016/S1473-3099(16)00095-5.

7. Mlakar J, Kova M, Tul N, Popović M, Polják-Prijatelj M, Mraz J, Kolec M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodusek V, Vžigaj A, Pižem J, Petrovec M, Avšič Županc T. 2016. Zika virus infection and microcephaly—first update. European Centre for Disease Prevention and Control, Stockholm, Sweden.

8. Boyd K, Koblischke KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB. 2011. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17:880–882. https://doi.org/10.3201/eid1705.101393.

9. Musso D, Nhan T, Robin E, Roche C, Bierlaire D, Zisou K, Shan Yan A, Cao-Lormeau VM, Brotz J. 2014. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill 19 pii:20761. https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.14.20761.

10. Musso D, Roche C, Robin E, Nhan T, Lastère S, Valour F, Bierlaire D, Leparc-Goffart I, Mallet H, Mok discharged. 2014. Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro Surveill 19 pii:20730. https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.20720.

11. Lazear HM, Diamond MS. 2016. Zika virus: new clinical syndromes and its emergence in the Western Hemisphere. J Virol 90:4864–4875. https://doi.org/10.1128/JVI.00252-16.

12. Deen Y, Watrin L, Leparc-Goffart I, Lastère S, Valour F, Bierlaire D, Leparc-Goffart I, Mok discharged. 2014. Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro Surveill 19 pii:20720. https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.20720.

13. Schuler-Faccini L, Ribeiro EM, Feitosa IML, Horovitz DDG, Cavalcanti DP, Pessoa A, Doniqui MJR, Neri JI, Neto JMDP, Wanderley HYG, Cernach M, El-Husny AS, Pone MVS, Serao CLC, Sanseverino MTV. 2016. Possible transmission of Zika virus from microcephaly—Brazil, 2015. MMWR Mortal Mortal Wkly Rep 65:35–62. https://doi.org/10.15585/mmwr.mm6503e2.

14. Centers for Disease Control and Prevention. 2016. Health advisory. Recognizing, managing, and reporting Zika virus infections in travelers returning from Central America, South America, the Caribbean, and Mexico. Centers for Disease Control and Prevention, Atlanta, GA. https://emergency.cdc.gov/han/han00385.asp.

15. Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Fonseca EB, Ribeiro EM, Venture LO, Neto NN, Arena JF, Rasmussen SA. 2017. Characterizing the pattern of anomalies in congenital Zika syndrome for pediatric clinicians. JAMA Pediatr 171:288–295. https://doi.org/10.1001/jamapediatrics.2016.3982.

16. Leal MC, Muniz LF, Ferreira TS, Santos CM, Almeida LC, Van Der Linden V, Ramos RC, Rodrigues LC, Neto SS. 2016. Hearing loss in infants with microcephaly and evidence of congenital Zika virus infection—Brazil, November 2015–May 2016. MMWR Mortal Mortal Wkly Rep 65:917–919. https://doi.org/10.15585/mmwr.mm6534e3.

17. van der Linden V, Filho ELR, Lins OG, van der Linden A, Aragão MF, Brainer-Lima AM, Cruz DDCS, Rocha MAW, Sobral da Silva PF, Carvalho MDGC, do Amaral FJ, Gomes JA, Ribeiro de Medeiros IC, Ventura CV, Ramos RC. 2016. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ 354:j3899. https://doi.org/10.1136/bmj.j3899.

18. van der Linden V, Pessoa A, Dobyns W, Barkovich AJ, Júnior HV, Filho EL, Ribeiro EM, Leal MC, Coimbra PP, Aragão MF, Verçosa I, Ventura C, Ramos RC, Cruz DD, Cordeiro MT, Mota VM, Dott M, Hillard C, Moore CA. 2016. Description of 13 infants born during October 2015–January 2016 with congenital Zika virus infection without microcephaly at birth—Brazil. MMWR Mortal Mortal Wkly Rep 65:1343–1348. https://doi.org/10.15585/mmwr.mm6547e2.

19. de Paula Freitas B, de Oliveira Dias JR, Prazeres J, Sacramento GA, Ko AI, 19.14.20761.
Maia M, Belfort R, Jr. 2016. Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. JAMA Ophthalmol https://doi.org/10.1001/jamaophthalmol.2016.0267.

20. Ventura CV, Maia M, Bravo-Filho V, Góis AL, Belfort R, Jr. 2016. Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 387:228. https://doi.org/10.1016/S0140-6736(16)00006-4.

21. Marchette NJ, Garcia R, Rudnick A. 1969. Isolation of Zika virus from *Aedes aegypti* mosquitoes in Malaysia. Am J Trop Med Hyg 18:411–415. https://doi.org/10.4269/ajtmh.1969.18.411.

22. Olson JG, Ksiazek TG, Suhandiman, Triwibowo. 1981. Zika virus, a cause of fever in Central Java, Indonesia. Trans R Soc Trop Med Hyg 75:389–393. https://doi.org/10.1016/0035-9203(81)90100-0.

23. Heang V, Yasuda CY, Sovann L, Haddow AD, Travassos da Rosa AP, Tesh RB, Kasper MR. 2012. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477. https://doi.org/10.1371/journal.pntd.0001477.

24. Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC. 2012. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6:e1477. https://doi.org/10.1371/journal.pntd.0001477.

25. Chambers TJ, Hahn CS, Galler R, Rice CM. 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688. https://doi.org/10.1146/annurev.mi.44.100190.003245.