Galaxy Pairs in the Local Group

Azadeh Fattahi1*, Julio F. Navarro1, Else Starkenburg1, Christopher R. Barber1, and Alan W. McConnachie2

1Department of Physics and Astronomy, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada
2NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7, Canada

5 May 2014

ABSTRACT

Current models of galaxy formation predict that galaxy pairs of comparable magnitudes should become increasingly rare with decreasing luminosity. This seems at odds with the relatively high frequency of pairings among dwarf galaxies in the Local Group. We use literature data to show that \(\sim 30\%\) of all satellites of the Milky Way and Andromeda galaxies brighter than \(M_V = -8\) are found in likely physical pairs of comparable luminosity. Besides the previously recognised pairings of the Magellanic Clouds and of NGC 147/NGC 185, other candidate pairs include the Ursa Minor and Draco dwarf spheroidals, as well as the And I/And III satellites of M31. These pairs are much closer than expected by chance if the radial and angular distributions of satellites were uncorrelated; in addition, they have very similar line-of-sight velocities and luminosities that differ by less than three magnitudes. In contrast, the same criteria pair fewer than 4\% of satellites in N-body/semi-analytic models that match the radial distribution and luminosity function of Local Group satellites. If confirmed in studies of larger samples, the high frequency of dwarf galaxy pairings may provide interesting clues to the formation of faint galaxies in the current cosmological paradigm.

Key words: galaxies: dwarf - galaxies: formation - galaxies: evolution - Local Group

1 INTRODUCTION

The shapes of the galaxy and dark halo mass functions differ substantially in the \(\Lambda\)CDM paradigm (see, e.g., Benson et al. 2003). This is usually interpreted to imply that the “efficiency” of galaxy formation, as measured by the ratio between the stellar mass of a galaxy \(M_{\text{gal}}\) and the virial mass of its host halo \(M_{200}\), varies strongly with virial mass. In particular, \(M_{\text{gal}}/M_{200}\) should decrease steeply toward low halo masses in order to match the shallow faint end of the galaxy luminosity function (see, e.g., Moster et al. 2010; Behroozi et al. 2010; Guo et al. 2011).

On the scale of dwarf galaxies, which we define conventionally here as those with \(M_{\text{gal}} < 10^{9.5} M_\odot\), simple abundance-matching models suggest a dependence nearly as steep as \(M_{\text{gal}} \propto M_{200}^{3}\) in the dwarf galaxy regime (Guo et al. 2011). Such steep scaling would imply that dwarfs spanning several decades in stellar mass should nevertheless inhabit halos of similar virial mass. In addition, extrapolating such models to the faintest galaxies known indicate that few, if any, galaxies more massive than a few million solar masses are expected to form in halos with virial mass below \(10^{10} M_\odot\).

Recent work has highlighted potential disagreements between these model predictions and observations, including the lack of a characteristic velocity at the faint-end of blind HI surveys (Zwaan et al. 2010); and the low virial mass (substantially below \(10^{10} M_\odot\)) inferred from dynamical data for the dwarf spheroidal companions of the Milky Way (Boylan-Kolchin et al. 2012) and for nearby dwarf irregulars (Ferrero et al. 2012). It could be argued, however, that the evidence for substantial disagreement is unconvincing, given that the inferences are either indirect (in the case of the HI velocity function) or based on small and heterogeneous samples (in the case of the nearby dwarfs; see Wang et al. 2012; Vera-Ciro et al. 2012).

It is therefore important to consider further tests of the model predictions. We explore here how the steep \(M_{\text{gal}}-M_{200}\) relation predicted for dwarfs affects the frequency of galaxy pairs of comparable luminosity. Such pairs, when close enough to inhabit the same dark matter halo (referred to hereafter as “physical pairs”), are expected to be rare at
all luminosities, but especially so in the scale of dwarfs. This is because the fainter companions in physical pairs trace the halo substructure, and subhalos are, by and large, far less massive than the main halo: the most massive subhalo typically has a mass only one hundredth that of the main system (see, e.g., Springel et al. 2008; Wang et al. 2012).

Pairs of comparable luminosity are therefore more likely to form in fairly massive halos, where galaxy formation efficiency decreases with increasing halo mass, partly compensating the mass difference between the main halo and its most massive subhalo. On dwarf galaxy scales the situation is reversed, and the precipitous decline in galaxy formation efficiency with decreasing halo mass should curb the formation of physical pairs of comparable luminosity. More generally speaking, isolated associations of dwarf galaxies should be rare. They are known to exist (e.g., Tully et al. 2006; Soares 2007), but their cosmological abundance and dependence on luminosity have not yet been adequately established (see Sales et al. 2012 for a recent attempt).

The Local Group offers an interesting environment to test these ideas. Advantages include the fact that, away from the “zone of avoidance” caused by Galactic dust, the census of Milky Way (MW) satellites brighter than $M_V \sim -8$ is complete (see, e.g., Whiting et al. 2007), and that accurate magnitudes, positions, distances, and line-of-sight velocities are known for all. Many fainter systems in the Local Group still remain undiscovered, as demonstrated by recent discoveries both by the Sloan Digital Sky Survey in the Milky Way (Koposov et al. 2008), and by the Pan-Andromeda Archaeological Survey around M31 (PAndAS; Kroupa et al. 2005; Zentner et al. 2005; Libeskind et al. 2001; van den Bergh 1998). If these pairs are bound, their vicinity to their primary galaxy suggests that we are observing them just before they are separated by the tidal field of the main galaxy (Besla et al. 2007; Sales et al. 2011). This implies very recent accretion and indicates that their occurrence should not be uncommon amongst isolated systems.

Further, we know that at least some of the satellites of the Milky Way and M31 are very likely physically associated and bound to each other. An obvious pairing is that of the Magellanic Clouds (see, e.g., Kallivayalil et al. 2004; and references therein). Around M31, there have been suggestions that NGC 147 and NGC 185 also form a bound pair (van den Bergh 1998). If these pairs are bound, their vicinity to their primary galaxy suggests that we are observing them just before they are separated by the tidal field of the main galaxy (Besla et al. 2007; Sales et al. 2011). This implies very recent accretion and indicates that their occurrence should not be uncommon amongst isolated systems.

Taken at face value, the existence of these two pairs of dwarfs seems at odds with the expected rarity of such associations. We use this as motivation to search, using literature data, for other dwarf galaxy pairs in the Local Group. We describe in Sec. 2 the observational dataset and the simulated satellite dataset we use for comparison. In Sec. 3 we introduce the pairing procedure we have adopted and compare the results with those obtained when the same procedure is applied to a hybrid N-body/semi-analytic model of satellite galaxy formation applied to N-body simulations from the Aquarius Project. We conclude with a brief summary in Sec. 4.

2 DATASETS

We use the recent compilation by McConnachie (2012) as the source of the positions, distances, line-of-sight velocities, and magnitudes of Local Group dwarfs that we use in our analysis. All velocities are heliocentric and corrected to the rest frame of the Galaxy. In order to prevent biases due to incompleteness, we consider only satellites brighter than $M_V = -8$ located within 300 kpc of the Milky Way or Andromeda (M31) galaxies. The sample consists of 29 dwarfs, 17 of which orbit around M31; the rest are satellites of the Milky Way.

For comparison, we have identified analogous samples of simulated satellites in the six $\sim 10^{12} M_\odot$ halos of the Aquarius Project (Springel et al. 2008) using the model of Starkenburg et al. (2012). This is a semi-analytic model grafted onto the level-2 Aquarius runs, which simulate each halo with several hundred million particles, thus ensuring a high enough resolution to track the formation of all halos and subhalos that might plausibly host the dwarf galaxies brighter than $M_V = -8$ we use in our analysis. The model satellites of each Aquarius halo have luminosity and radial distributions that are broadly consistent with the Milky Way and M31 and therefore provide a useful testbed of the significance of our results for ΛCDM dwarf galaxy formation models.

There are a total of 175 simulated satellites brighter than $M_V = -8$ within 300 kpc of the primary galaxies of all six Aquarius halos (on average 29 per halo). The model provides not only the full 3D position and velocity information for all of them, but also allows us to track their evolution. Our simulated sample does not include satellites whose dark matter halos have been fully disrupted by tides, since their fate is uncertain. We refer the interested reader to Starkenburg et al. (2012) for details on the semi-analytic model.

3 ANALYSIS AND RESULTS

It has long been noticed that the spatial distribution of Milky Way satellites is highly anisotropic (Lynden-Bell 1979), and is often described as a polar plane whose significance has been the matter of much recent debate (see, e.g., Kroupa et al. 2005; Zentner et al. 2003; Libeskind et al. 2004; Metz et al. 2003). Around M31, 14 out of 17 satellites in our sample are in the hemisphere nearer the Milky Way (McConnachie & Irwin 2006). Further, several have recently been shown to delineate a flattened structure that in total comprises at least half of all known M31 satellites (Thata et al. 2013). These are unlikely configurations for a virialized population and hint strongly at recent accretion.

Our pairing procedure begins by identifying satellites whose nearest neighbour is unusually close when compared with the probability distribution of nearest-neighbour distances, d_{nn}, obtained by Monte Carlo sampling a random isotropic population of satellites with the same total number and radial distribution. We illustrate this in Fig. 1 where we show the d_{nn} distribution expected for two satellites of the Milky Way (Draco and Sagittarius), and two of M31 (And III and And IX).

The bottom left panel of Fig. 1 shows that the nearest satellite to Sagittarius (the LMC, 52 kpc away) is about
Figure 1. Distribution of nearest-neighbour distances, d_{nn}, to two Milky Way satellites (panels on the left) and two M31 satellites (panels on the right) expected if satellites were distributed isotropically about each primary with a radial distribution consistent with the observed one. The probability, P, that a satellite’s nearest neighbour lies, by chance, as close as or closer than observed is highlighted by the shaded region of each histogram and quoted in each panel’s legend. A downward arrow indicates the distance to the primary galaxy. The top panels illustrate cases where the probability is rather small, indicative of a potential physical association. The bottom panels, on the other hand, illustrate two cases where the nearest neighbours are not significantly closer than expected at random.

Figure 2. Distribution of the probability, P, of having a nearest neighbour as close as or closer than observed if the satellites were isotropically distributed around each primary and had the same radial distribution as that of the Milky Way (solid thick line) and M31 (solid dashed line). Only 20% of satellites are expected to have $P < 0.2$, with a very weak dependence on the number of satellites and the shape of the radial profile. The probability distribution obtained for a semi-analytic model applied to the six Galaxy-sized halos of the Aquarius Project is shown by the dashed blue histogram; 48 out of 175 satellites have $P < 0.2$, or 27% of the total. The corresponding distribution for Local Group satellites is shown by the solid red histogram (the contribution of Milky Way satellites is highlighted by the shaded area of the histogram). In the Local Group, more than 40% of satellites have $P < 0.2$, a result expected to happen by chance in fewer than one in 100 random realizations. The angular and radial distributions of satellites thus seem highly correlated and suggest the presence of physically-associated pairs.

twice as far as the distance at which the probability distribution of nearest-neighbour distances peaks. If the radial and angular distribution of Milky Way satellites were uncorrelated then Sagittarius would be expected to have a nearest neighbour as close or closer than observed in 99 out of 100 random realizations ($P = 0.99$). Sagittarius is thus relatively isolated and unlikely to be a member of a physical pair.

The situation reverses for Draco: its nearest neighbour, Ursa Minor, lies only 23 kpc away. This is much closer than expected at random; a nearest neighbour that close occurs in fewer than 1 out of 100 cases ($P = 0.04$). The right-hand panels of Fig. 1 show as well two analogous examples for the M31 satellite population. In this case, And IX is unlikely to be a member of a pair ($P = 0.90$), whereas And III is unusually close to And I ($P = 0.10$), hinting at a possible physical association.

The distribution of the probability, P, that d_{nn} is as small or smaller than observed if the radial and angular distribution of Milky Way satellites were uncorrelated is shown by the solid and dotted lines in Fig. 2 for the Milky Way and M31 satellites, respectively. Both curves are rather similar, indicating that the P distribution is insensitive to the total number of satellites or their radial distribution. It is also insensitive to assuming that the satellite distribution is isotropic. Indeed, the solid and dotted curves in Fig. 2 change almost imperceptibly if we confine the Monte Carlo samples to a three-dimensional structure as flat as observed for the Milky Way, i.e., roughly 3:1 in its major-to-minor axis ratio.

On the other hand, these distributions differ markedly from the results for the Milky Way (shaded histogram in Fig. 2) or the combined M31+MW satellites (labelled “Local Group” in Fig. 2). A K-S test yields a probability of less than 0.3% that the Local Group P distribution is statistically consistent with that of the random samples. There is a clear excess of smaller-than-expected nearest-neighbour distances in the Local Group that is difficult to account just by chance. For example, 45% of Local Group satellites have $P < 0.2$ compared with the 20% expected if the distribution was isotropic.

Our pairing procedure therefore retains all $P < 0.2$ pairs (listed horizontally in the labels of Fig. 2) for further scrutiny. A true physical pair must also differ little in velocity, so we impose a maximum difference of 75 km/s in the line-of-sight velocity difference of the likely members. This threshold is motivated by the velocity difference of the Magellanic Clouds, where there is little doubt about their physical association. We assume for simplicity that the same threshold applies regardless of the luminosity of the pair;
Figure 3. Left panel: Galactocentric velocity versus distance for Local Group satellites brighter than $M_V = -8$. Distances are measured from the center of each primary: MW satellites are shown as magenta squares; M31’s as green triangles. Velocities for the former are Galactocentric radial velocities; for the latter they refer to line-of-sight velocities relative to the systemic velocity of M31. Dotted curves indicate, for reference, the escape velocity from an NFW halo with virial velocity $V_{200} = 250$ km/s and concentration $c = 10$ (Navarro et al. 1997). Filled symbols highlight satellites with a nearest neighbour much closer than expected by chance ($P < 0.2$, see Fig. 2). Pairs satisfying additional proximity criteria in velocity ($\Delta V < 75$ km/s) and magnitude ($\Delta M_V < 3$) are joined together by ellipses to indicate that they are likely physical pairs. These constitute 28% of the total and include (i) the Magellanic Clouds; (ii) NGC 147 and NGC 185; (iii) Ursa Minor and Draco; and (iv) And I and And III.

Right panel: Same as left panel, but for the semi-analytic satellite population of the six Aquarius halos. Different colors correspond to different halos. Note that the same criteria that pair 28% of Local Group satellites link only six satellites in the Aquarius simulations, or just 3% of the total.

The blue dotted histogram in Fig. 2 shows that the P distribution for Aquarius satellites differs little from that expected from an isotropic distribution. Only 27% of the 175 satellites have $P < 0.2$; of those only 3 pairs (i.e., fewer than 4%) pass as well the velocity and magnitude criteria. The three Aquarius pairs (out of six halos) singled out by the analysis are shown in the right-hand panel of Fig. 3. Tracking their orbits back in time reveals that none of them are actually physically related but that they result simply from chance, transient associations in position and velocity space. Note that this does not imply that all satellites have been accreted in isolation. As discussed by Wang et al. (2012), a few of the bright satellites in Aquarius were accreted in groups, but the accretion happened early and the groups have long been disrupted by the tidal field of the main halo. This confirms the model expectation that physical associations amongst satellites should be extremely rare. The relatively high frequency of satellite pairings in the Local Group indicates that the radial and angular distributions of satellites are correlated, a fact that is not easily accounted for by current dwarf galaxy formation models in the ΛCDM paradigm.

This analysis suggests that nearly 30% of Local Group satellites are in likely pairs (8 out of 29). Of the four pairs, two are almost indisputably associated (the Magellanic Clouds and NGC 147/NGC 185; see, however, Geha et al. 2011 for an alternate view of the latter) but the other two might in principle result from chance close encounters between unrelated satellites where projection effects reduce the line-of-sight velocity difference. In order to quantify these effects we have applied the same pairing procedure to the satellite populations of the six Aquarius halos, as identified by the semi-analytic model of Starkenburg et al. (2012).
4 SUMMARY AND CONCLUSIONS

We have studied possible pairings amongst the satellites of the Milky Way and of M31. Our procedure, which identifies unusually close associations in position and velocity space, suggests that 8 out of the 29 satellites brighter than \(M_V = -8 \) (i.e., nearly 30\%) form 4 likely pairs of comparable luminosity (\(\Delta M_V < 3 \)). These include the Magellanic Clouds; Ursa Minor and Draco; NGC 147 and NGC 185; as well as And I and And III.

The same pairing procedure applied to a semi-analytic model of the satellite population in the six halos of the Aquarius Project yields a likely pair fraction of fewer than 4\%, even though the model satellites have luminosity and radial distributions that match closely that of the Local Group spirals. As expected, none of the Aquarius pairs correspond to true binary systems; rather, they result from transient associations between otherwise unrelated satellites. The high pair frequency of the Local Group is unlikely to be just a statistical fluke: the likely pair fraction of Aquarius satellites never exceeds 12\% in thousands of random trials where their magnitudes, angular directions and velocities are reshuffled.

We interpret these results as indicative of significant clustering in the dwarf galaxy population of the Local Group. Although our analysis only considers satellites brighter than \(M_V = -8 \) due to incompleteness concerns and in order to allow comparison with simulations, there have also been suggestions that some of the fainter Galactic satellites are found in associations. In particular, Belokurov et al. (2008) show that Leo IV and Leo V are close to each other spatially and differ little in their line-of-sight velocities remain once the full 6D transition and line-of-sight velocities are included. The interactions of dwarf galaxies with the cosmic web (Benítez-Llambay et al. 2012). However, the effects of these models on dwarf galaxies have yet to be developed fully and as a consequence the importance of such effects on the dwarf galaxy population at large is still unknown.

It is therefore important to firm up these findings (i) by extending the analysis to fainter satellites, which should be possible once photometric surveys of the northern and southern sky extend the complete catalog of Milky Way satellites to fainter magnitudes; (ii) by verifying, through accurate proper motion studies, that the associations in position and line-of-sight velocities remain once the full 6D phase space information is considered; (iii) by searching for relic evidence of past interactions between likely pairs (such as the Magellanic Stream for the LMC/SMC (see, e.g., Mathewson et al. 1974; Putman et al. 1998); and, finally, (iv) by extending this kind of analysis to a volume-limited survey of dwarf galaxy associations in the local universe (see, e.g., Karachentsev & Makarov 2008). If confirmed, the enhanced clustering of dwarfs may offer important clues to the formation of faint galaxies that have yet to be identified and fully incorporated into galaxy formation models.

ACKNOWLEDGMENTS

We are very grateful to Gabriella De Lucia, Amina Helmi and Yang-Shyang Li for their role in developing the semi-analytic model of galaxy formation used in this paper. We would like to thank the anonymous referee for comments which led to the improvement of the manuscript. ES is supported by the Canadian Institute for Advanced Research (CIfAR) Junior Academy and by a Canadian Institute for Theoretical Astrophysics (CTITA) National Fellowship.

REFERENCES

Alvarez M. A., Busha M., Abel T., Wechsler R. H., 2009, ApJ, 703, L167
Barnes D. G., de Blok W. J. G., 2001, AJ, 122, 825
Behroozi P. S., Conroy C., Wechsler R. H., 2010, ApJ, 717, 379
Bell E. F., Slater C. T., Martin N. F., 2011, ApJ, 742, L15
Belokurov V., Walker M. G., Evans N. W., Faria D. C., Gilmore G., Irwin M. J., Koposov S., Mateo M., Olszewski E., Zucker D. B., 2008, ApJ, 686, L83
Benítez-Llambay A., NAVARRO J. F., ABADI M. G., GOTTLOBER S., YEPES G., HOFFMAN Y., STEINMETZ M., 2012, ArXiv e-prints
Benson A. J., Bower R. G., Frenk C. S., Lacey C. G., Baugh C. M., Cole S., 2003, ApJ, 599, 38
Besla G., Kallivayalil N., Hernquist L., Robertson B., Cox T. J., van der Marel R. P., Alcock C., 2007, ApJ, 668, 949
Boylan-Kolchin M., Bullock J. S., Kaplinghat M., 2012, MNRAS, 422, 1203
Busha M. T., Alvarez M. A., Wechsler R. H., Abel T., Strigari L. E., 2010, ApJ, 710, 408
Ferrero I., Abadi M. G., NAVARRO J. F., SALES L. V., Gurovich V., 2012, MNRAS, 425, 2817
Font A. S., Benson A. J., Bower R. G., Frenk C. S., Cooper A., De Lucia G., Helly J. C., Helmi A., Li Y.-S., McCarthy I. G., NAVARRO J. F., Springel V., Starkenburg E., Wang J., White S. D. M., 2011, MNRAS, 417, 1260
Geha M., van der Marel R. P., Guhathakurta P., Gilbert K. M., Kalirai J., Kirby E. N., 2010, ApJ, 711, 361
Guo Q., Cole S., Eke V., Frenk C., 2011, MNRAS, 417, 370
Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111
Ibata R. A., Lewis G. F., Conn A. R., IRWIN M. J., McNamara A. W., Chapman S. C., Collins M. L., Fardal M., Ferguson A. M. N., Ibata N. G., Mackey A. D., Martin F. N., NAVARRO J., Rich M. P., Valls-Gabaud D., Widrow L. M., 2013, Nature, 493, 62
Kallivayalil N., van der Marel R. P., Alcock C., 2006, ApJ, 652, 1213
Karachentsev I. D., Makarov D. I., 2008, Astrophysical Bulletin, 63, 299
Koposov S., Belokurov V., Evans N. W., Hewett P. C., Irwin M. J., Gilmore G., Zucker D. B., Rix H.-W., Fallhauer M., Bell E. F., Glushkova E. V., 2008, ApJ, 686, 279
Kroupa P., Theis C., Boily C. M., 2005, A&A, 431, 517
Libeskind N. I., Frenk C. S., Cole S., Helly J. C., Jenkins A., Navarro J. F., Power C., 2005, MNRAS, 363, 146
Lunnan R., Vogelsberger M., Frebel A., Hernquist L., Lidz A., Boylan-Kolchin M., 2012, ApJ, 746, 109
Lynden-Bell D., 1976, MNRAS, 174, 695
Mathewson D. S., Cleary M. N., Murray J. D., 1974, ApJ, 190, 291
McConnachie A. W., 2012, AJ, 144, 4
McConnachie A. W., Irwin M. J., 2006, MNRAS, 365, 902
McConnachie et al. 2009, Nature, 461, 66
Metz M., Kroupa P., Jerjen H., 2007, MNRAS, 374, 1125
Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Macciò A. V., Naab T., Oser L., 2010, ApJ, 710, 903
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Putman M. E., Gibson B. K., et al. 1998, Nature, 394, 752
Sales L. V., Navarro J. F., Cooper A. P., White S. D. M., Frenk C. S., Helmi A., 2011, MNRAS, 418, 648
Sales L. V., Wang W., White S. D. M., Navarro J. F., 2012, MNRAS, p. 31
Slater C. T., Bell E. F., Martin N. F., 2011, ApJ, 742, L14
Soares D. S. L., 2007, AJ, 134, 71
Springel V., Wang J., Vogelsberger M., Ludlow A., Jenkins A., Helmi A., Navarro J. F., Frenk C. S., White S. D. M., 2008, MNRAS, 391, 1685
Starkenburg E., Helmi A., De Lucia G., Li Y.-S., Navarro J. F., Font A. S., Frenk C. S., Springel V., Vera-Ciro C. A., White S. D. M., 2012, ArXiv e-prints
Tully R. B., Rizzi L., Dolphin A. E., Karachentsev I. D., Karachentseva V. E., Makarov D. I., Makarova L., Sakai S., Shaya E. J., 2006, AJ, 132, 729
van den Bergh S., 1998, AJ, 116, 1688
van den Bergh S., 1999, ApJ, 517, L97
Vera-Ciro C. A., Helmi A., Starkenburg E., Breddels M. A., 2012, MNRAS, p. 125
Wang J., Frenk C. S., Cooper A. P., 2012, MNRAS, p. 366
Wang J., Frenk C. S., Navarro J. F., Gao L., Sawala T., 2012, MNRAS, 424, 2715
Whiting A. B., Hau G. K. T., Irwin M., Verdugo M., 2007, AJ, 133, 715
Zentner A. R., Kravtsov A. V., Gnedin O. Y., Klypin A. A., 2005, ApJ, 629, 219
Zwaan M. A., Meyer M. J., Staveley-Smith L., 2010, MNRAS, 403, 1969

This paper has been typeset from a TeX/\LaTeX file prepared by the author.