NEUROPROTECTIVE EFFECT OF ARTOCARPUS LAKOOCHA EXTRACT AND OXYRESVERATROL AGAINST HYDROGEN PEROXIDE-INDUCED TOXICITY IN SH-SY5Y CELLS

HASRIADI, MATUSORN WONG-ON, PHAKHAMON LAPPANICHAYAKKOL, NANTEETIP LIMPEANCHAYAKOOL

ABSTRACT

Objective: Artocarpus lakoocha Roxb. is a traditional medical plant native to Southeast Asia and used as a dried aqueous extract so-called puaghaad. Its role (and its major ingredient, oxyresveratrol) as an antioxidant neuroprotectant were explored.

Methods: Differentiated SH-SY5Y neuroblastoma cells in 96-well plates were challenged with 200 µM H₂O₂ for 4h and either Trolox (100 µM), oxyresveratrol (5-100 µM), or puaghaad (1.2-25 µg/ml) applied 2h before H₂O₂ or for 20 h after H₂O₂ washout. Cell viability, mitochondrial function, intracellular ROS, and lipid peroxidation were assessed.

Results: Continuous presence of both H₂O₂ and antioxidant reduced mitochondrial function by ~50% but only by 30% with antioxidant. Sustained 24 h H₂O₂ showed no recovery with antioxidants. Cell viability was modestly restored when antioxidants accompanied H₂O₂ for 4 h and both washed for another 20 h, but little recovery of mitochondrial function even though antioxidants removed ROS and prevent lipid peroxidation. Antioxidants added for 20 h after H₂O₂ marginally improve mitochondria and modestly restore cell viability, but lipid peroxidation was completely reversed.

Conclusion: These results show that mitochondrial protection was illusive, yet both tested compounds, puaghaad and oxyresveratrol, improved cell viability and especially ROS levels and lipid peroxidation. The potency oxyresveratrol on the redox-sensitive expression of antioxidant enzymes and its pharmacokinetics suggests that oral puaghaad could provide effective protection in transient neurodegenerative disease.

Keywords: Neuroprotection, Oxidative stress, Hydrogen peroxide, Oxyresveratrol, Artocarpus lakoocha

INTRODUCTION

Oxidative stress is one of the causal factors in neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemia, and especially amyotrophic lateral sclerosis (ALS) which are characterized by excessive ROSs (superoxide, peroxide, hydrogen peroxide and hydroxyl radicals) generated by superoxide dismutase (SOD). These ROSs disrupt cell function by peroxidation of lipids and proteins and DNA/RNA oxidation. Furthermore, high rates of oxidative metabolism in neurons and that peroxidation of lipids and protein s and DNA/RNA oxidation.

INTRODUCTION

Puaghaad is a complex mix of potentially bioactive compounds which collectively may modulate the oxyresveratrol action. Therefore, we sought to compare actions of puaghaad against oxyresveratrol in neuroblastoma cells using H₂O₂ as the oxidative challenge.

MATERIALS AND METHODS

Materials

The following materials were purchased from Sigma (St. Louis, MO): Dulbecco’s modified Eagle’s medium (DMEM)/F12, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,4,6-tripyridyl-s-trizine (TPTZ), retinoic acid, trichloroacetic acid, thiobarbituric acid, 2′,7′-dichlorofluorescein diacetate (DCFH-DA). Fetal bovine serum (FBS), trypsin, and penicillin/streptomycin were purchased from Gibco (Grand Island, NY). Hydrogen peroxide (H₂O₂) was purchased from Merck KGaA (Darmstadt, Germany). 2,3-Bis(2-methoxy-4-nitro-5-sulphonylphenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay kit was purchased from Roche Diagnostics (Mannheim, Germany).

Hardwood aqueous extract of A. lakoocha was called puaghaad (PH) was obtained from Origin Plant Co., Ltd (Bangkok, Thailand).

Puag-haadoxyresveratrol content

A 20 µl sample of puaghaad (1 mg/ml in DMSO) was injected into a Shimadzu LC-20AT liquid chromatograph equipped with an SPD-20A UV detector, a Ultra HPLC column (250 × 4.60 mm) with C18 column packing, 5 µm particle size; isoaromatic elution by methanol/H₂O (35:65, flow rate 0.8 ml/min. Peaks were integrated at 254 nm. Puaghaad was assigned by retention time of oxyresveratrol 17 min and calibrated using 2.5–250 µg/ml oxyresveratrol.

ABSTRACT

Objective: Artocarpus lakoocha Roxb. is a traditional medical plant native to Southeast Asia and used as a dried aqueous extract so-called puaghaad. Its role (and its major ingredient, oxyresveratrol) as an antioxidant neuroprotectant were explored.

Methods: Differentiated SH-SY5Y neuroblastoma cells in 96-well plates were challenged with 200 µM H₂O₂ for 4h and either Trolox (100 µM), oxyresveratrol (5-100 µM), or puaghaad (1.2-25 µg/ml) applied 2h before H₂O₂ or for 20 h after H₂O₂ washout. Cell viability, mitochondrial function, intracellular ROS, and lipid peroxidation were assessed.

Results: Continuous presence of both H₂O₂ and antioxidant reduced mitochondrial function by ~50% but only by 30% with antioxidant. Sustained 24 h H₂O₂ showed no recovery with antioxidants. Cell viability was modestly restored when antioxidants accompanied H₂O₂ for 4 h and both washed for another 20 h, but little recovery of mitochondrial function even though antioxidants removed ROS and prevent lipid peroxidation. Antioxidants added for 20 h after H₂O₂ marginally improve mitochondria and modestly restore cell viability, but lipid peroxidation was completely reversed.

Conclusion: These results show that mitochondrial protection was illusive, yet both tested compounds, puaghaad and oxyresveratrol, improved cell viability and especially ROS levels and lipid peroxidation. The potency oxyresveratrol on the redox-sensitive expression of antioxidant enzymes and its pharmacokinetics suggests that oral puaghaad could provide effective protection in transient neurodegenerative disease.

Keywords: Neuroprotection, Oxidative stress, Hydrogen peroxide, Oxyresveratrol, Artocarpus lakoocha

INTRODUCTION

Oxidative stress is one of the causal factors in neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemia, and especially amyotrophic lateral sclerosis (ALS) which are characterized by excessive ROSs (superoxide, peroxide, hydrogen peroxide and hydroxyl radicals) generated by superoxide dismutase (SOD). These ROSs disrupt cell function by peroxidation of lipids and proteins and DNA/RNA oxidation.

MATERIALS AND METHODS

Materials

The following materials were purchased from Sigma (St. Louis, MO): Dulbecco’s modified Eagle’s medium (DMEM)/F12, 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,4,6-tripyridyl-s-trizine (TPTZ), retinoic acid, trichloroacetic acid, thiobarbituric acid, 2′,7′-dichlorofluorescein diacetate (DCFH-DA). Fetal bovine serum (FBS), trypsin, and penicillin/streptomycin were purchased from Gibco (Grand Island, NY). Hydrogen peroxide (H₂O₂) was purchased from Merck KGaA (Darmstadt, Germany). 2,3-Bis(2-methoxy-4-nitro-5-sulphonylphenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay kit was purchased from Roche Diagnostics (Mannheim, Germany).

Hardwood aqueous extract of A. lakoocha was called puaghaad (PH) was obtained from Origin Plant Co., Ltd (Bangkok, Thailand).

Puag-haadoxyresveratrol content

A 20 µl sample of puaghaad (1 mg/ml in DMSO) was injected into a Shimadzu LC-20AT liquid chromatograph equipped with an SPD-20A UV detector, a Ultra HPLC column (250 × 4.60 mm) with C18 column packing, 5 µm particle size; isoaromatic elution by methanol/H₂O (35:65, flow rate 0.8 ml/min. Peaks were integrated at 254 nm. Puaghaad was assigned by retention time of oxyresveratrol 17 min and calibrated using 2.5–250 µg/ml oxyresveratrol.
SH-SY5Y cell culture preparation

SH-SY5Y cells were cultured in DMEM/F-12 containing L-glutamine, 10% FBS, 0.01% penicillin-streptomycin. Cells (3-10 passage) stored in liquid N₂ and plated out at 1×10⁶ cells/cm² into 75 cm² flasks and grown to confluence at 37 °C in a huminified atmosphere of 95% air and 5% CO₂. Cells were passaged 30 times to ensure cell uniformity and reproducibility then re-seeded into 96-well plates at 20,000 cells/well for 24 h at 37 °C. They were differentiated with low serum culture medium (2% FBS) containing retinoic acid (10µM) for 6 days before use. The medium (100µl) was refreshed at days 3 and 6[23].

H₂O₂-induced oxidative stress in SH-SY5Y cells

The experiments used H₂O₂ (200µM) as the oxidizing agent and cell protection examined using Trolox (100µM), oxyresveratrol (5-100µM) and puag haad (1.25-25 µg/ml) all added in 100% DMSO before use. The medium (100µl) was refreshed at days 3 and 6[23].

Cell viability measured by lactate dehydrogenase (LDH) activity

After treatment, 50 µl of the medium was aspirated and placed into a new 96-well plate and 0.3mmol NADH and 3mmol pyruvates added. The absorbance was then measured at 340 nm at 0, 5, 10, 15 and 20 min[23].

Determination of mitochondrial metabolic activity

According to the kit instructions, XTT solution was added to the remaining culture cells and the orange formazan measured by absorbance at 460 nm produced by the mitochondrial enzyme. This gives an estimate of mitochondrial respiratory chain function.

Determination of intracellular ROS

Other differentiated SH-SY5Y neuroblastoma cells in a 96-well black plate were treated with DCFH-DA (5µM) for 30 min. The culture medium was removed, and cells washed with PBS prior. DCFH-DA penetrates cells, then hydrolyzed by intracellular esterases to DCFH which is oxidized to fluorescent dicrofluorescein in the presence of ROS. The fluorescence was excited at 485 nm excitation and emission measured at 530 nm in a microplate reader[23].

Lipid peroxidation by thiobarbituric acid reactive substances (TBARs) assay

For other cells, the end of treatment, 100 µl of TBARs reagent containing 0.4% TBA, 1.4% TCA, and 8% HCl (1:2:1) were added to each well and cells resuspended. The mixtures were incubated at 90 °C for 1 h, cooled to room temperature, and fluorescence was measured at excitation at 535 nm and emission at 595 nm wavelength[24].

DPPH scavenging assay

Free radical scavenging activity was measured by mixing 0.2mmol DPPH assay and test compounds at various concentrations, incubated at room temperature for 30 min in the dark, and absorbance measured at 515 nm wavelength[24].

Reduction by ferric reducing antioxidant power (FRAP) assay

This assay depends on Fe³⁺ reduction to Fe²⁺. FRAP reagent (comprising 10:1:1 of 3mol acetate buffer (pH 3.6), 10mmol TPTZ/40mmolHCl, 20mmol FeCl₃) was mixed with the test compounds and absorbance measured at 595 nm[24].

Statistical analysis

Data from all assays are expressed as the mean±SEM (standard error of the mean). The data were analyzed by analysis of variance (ANOVA) and the Prism program (GraphPad Software Inc). Differences were considered to be significant when p value ≤ 0.05.

RESULTS AND DISCUSSION

Oxyresveratrol content in puag-haad

Hardwood aqueous extract of A. lakoocha (puag haad) used in this study contained 64.68% oxyresveratrol by HPLC (fig 1).

![Oxyresveratrol and Puag haad](image)

Fig.1: HPLC chromatogram of oxyresveratrol and A. lakoocha extract (puag haad) at RT=17 min with detector response at 254 nm

Acute and chronic H₂O₂ action

Differentiated SH-SY5Y neuroblastoma cells were exposed to 200 µM H₂O₂ for 4 h to emulate acute oxidative stress, and 24 h representing a chronic challenge (fig.2A).

Acutely, H₂O₂ clearly depressed formazan production (XTT assay) indicative of compromised mitochondrial energy feed through the electron transport chain and oxidative phosphorylation (fig.2C). This depression was manifest at 4 h and continued through to 24 h.

With the continued presence of Trolox, oxyresveratrol, or puag haad (containing 100 µM oxyresveratrol by analysis) could partially rescue mitochondrial function (at 4 h) but failed to do so after 24 h of chronic H₂O₂ treatment (fig.2C).

Cell viability measured by LDH release into the medium appeared preserved after 4 h of H₂O₂ but succumbed to 24 h of exposure (fig.2B). None of the anti-oxidant treatments was able to rescue the cells. H₂O₂-induced oxidative stress reduced glutathione level [25], induced DNA damage and apoptosis in cultured cells [26]. H₂O₂ action is accompanied by mitochondrial depolarization, aggregation, and cytochrome C release [27], and increased MAPK and p38 [28] in other cells and SH-SY5Y cells[29].

Our proposition that electron transport chain is disrupted is confirmed by inhibition of NADH-Co Q reductase and ATP synthase [30]. All these factors are associated with apoptosis confirmed in our experiments with 24 h exposures but most authors confined protocols to short treatments and unable to assess long-term consequences.
Fig.2: (A) Protocol showing interventions, either nothing, trolox, oxyresveratrol (Oxy), or puaghaad added to cultured SH-SY5Y cells for 2h followed by addition of H$_2$O$_2$ for a further 24 h. The arrows denote measurement times. (B) Changes in cell integrity using LDH leakage into the culture medium. (C) Effects on cell mitochondrial metabolism indicated by the XTT assay. Values are expressed as means±SEM of 5 (B) or 6 samples (C). The p-values refer to differences compared to H$_2$O$_2$ treatment alone. No neuroprotection by oxyresveratrol and puaghaad.

To show whether the late (24h) cellular demise is already set in train by the early H$_2$O$_2$ challenge, we used a protocol where both the challenge and interventions were removed after 4h (fig.3A). Now, cell viability was poor even though at 4h exposure to H$_2$O$_2$ (fig.2B) it had been fully intact. This implies that following 4h pathological changes had already begun which only became manifest after a further 20 h. Trolox, oxyresveratrol, and puaghaad could partly prevent this demise, although dose-response of both tested compounds were not clearly demonstrated (fig.3B).

The 4 h H$_2$O$_2$ exposure left mitochondrial function depressed (fig.2C) and with 20 h of washout, this dysfunctional state had persisted (fig.3C). Furthermore, this state could not be rescued by antioxidant treatments.

Oxidative stress

To verify that oxidative species were present 20 h after 4 h in H$_2$O$_2$ treatment, we measured ROSs by probing with DCFH. There were clearly elevated oxidizing species present that was completely neutralized by Trolox, and dose-dependently by oxyresveratrol and puaghaad (fig.3D). Since H$_2$O$_2$ is highly diffusible across the plasma membrane, it would have rapidly washed out of cells. But clearly, oxidizing species remained such as OOH, O$^-$, and ONOO whose charge would keep them trapped in the cytosol, or that sustained damage has activated peroxisomal enzymes [31], and disrupted the mitochondrial electron transport chain generating O$^-$ [32].

Important victims of ROSs are polyunsaturated fatty acids which form multiple reactive intermediates and fragments including dialdehydes. H$_2$O$_2$ modestly increased levels of reactive malonyldialdehyde and Trolox, oxyresveratrol, and puaghaad suppressed this lipid peroxidation levels lower than the baseline (fig. 3E). This suggests that control cells are already oxidatively stressed/auto-oxidized, commensurate with low antioxidant capacity and high glucose concentrations of serum-free media.

All concentrations of oxyresveratrol and puaghaad were equally effective as Trolox.

Fig.3: (A) Protocol showing SH-SY5Y cells treated with Trolox, oxyresveratrol, or puaghaad (2h) followed by H$_2$O$_2$ for another 4h. Then antioxidants and H$_2$O$_2$ were washed out for another 20 h and the following measures made: (B) Cell viability measured as LDH activity, (C) Mitochondrial function, (D) Intracellular ROS generation, (E) Cell lipid peroxidation by malonyldialdehyde production. Values are expressed as means±SEM of 6 experiments. The p-values compared to H$_2$O$_2$ alone (black bar)
Post-treatment with antioxidants

In the next series of experiments, antioxidants were added during 20 h washout period following the 4 h H2O2 challenge (fig.4A). For both LDH leakage and mitochondrial hypofunction, none of the antioxidant interventions had much influence on recovery (fig.4B,C). But for malondialdehydes all three anti-oxidants were highly effective (fig.4D).

Mitochondrial function showed little restoration by any protocols specially for Trolox which was designed for mitochondrial function. However, our protocol had 20% oxygen and 20 mmol glucose present to feed into an uncoupled electron transport chain thereby generating excessive superoxide. Even in normally perfused brain oxygen and substrate would be more limiting. All the antioxidants were effective reducing agents for normally perfused brain oxygen and substrate would be more limiting. Trolox easily partitions into membranes while resveratrol at least two concentrations have less influence on the function as reflected by binds onto membranes and their extracellular and cytosolic peroxidated lipids irrespective of protocol and concentration.

Limiting. All the antioxidants were effective reducing agents for normally perfused brain oxygen and substrate would be more limiting. Trolox easily partitions into membranes while resveratrol at least two concentrations have less influence on the function as reflected by binds onto membranes and their extracellular and cytosolic peroxidated lipids irrespective of protocol and concentration. Thus, the antioxidants are well placed to efficiently scavenge peroxidated fragments before running riot in the cytosol.

For polyphenols, oral oxyresveratrol bioavailability is relatively high achieving 2 µM in rat plasma [33] which in humans would need an oral dose ~500mg by allometric scaling. This is within the range of our lowest dose (5 µM) that produced antioxidation. While blood-brain barrier permeability to oxyresveratrol is very low, this is greatly increased during ischemic brain damage achieving ~1 µM [22] and fostering repair [18]. However, 5 µM would have little impact compared to the total plasma antioxidant capacity of ~0.5 mmol [34]. Furthermore, it is below the IC50 by the DPPH assay (table 1). At these lower concentrations, a more plausible mechanism of oxyresveratrol antioxidant action is through increased expression of endogenous antioxidant enzymes via their transcription factors, Nrf-2 [35], and FOXO3a [36]. Ultimately, these enzymes are trafficked to sources of particular ROSs where they are most effective. In contrast, Trolox appears to need higher concentrations than used here thus likely to be a directly acting antioxidant against H2O2 and other ROSs [37].

Fig.4: (A) Cells were treated with 200 µM H2O2 for 4 h and the medium changed for trolox, oxyresveratrol or puaghaad for 20 h. (B–D) the measurements were as in fig. 3. The p-values compared with H2O2 without anti-oxidant post treatment

Table 1: Antioxidant activities of oxyresveratrol and puaghaad

Compounds	DPPH scavenging capacity (IC50) µM	FRAP Fe2+ concentration µM
Oxyresveratrol	38.1 µM	11.2 µM (at 100 µM oxyresveratrol)
Puaghaad	9.3 µg/ml	12.8 µM (at 37.78 µg/ml puaghaad)
Trolox	55.3 µM	8.2 µM (at 100 µM Trolox)

Note: 37.78 µg/ml puaghaad contains oxyresveratrol equivalent to 100 µM.

CONCLUSION

These results suggest that both oxyresveratrol and oxyresveratrol-containing puaghaad provides protection of SH-SYSY neuroblastoma cells against H2O2 oxidant toxicity and that oxyresveratrol pharmacokinetics suggests that it may offer protection against neuroprotective diseases.

ACKNOWLEDGEMENT

The authors thank Dr. Norman Scholfield for help in manuscript preparation. Hasriadi was supported by a Naresuan University ASEAN Scholarships.

AUTHOR CONTRIBUTION

Matusorn Wong-On developed and analyzed oxyresveratrol content in puaghaad.
Phakhamon Lapphanichayakool developed a test method of H2O2-induced neuronal toxicity.
Nanteetip Limpeanchob supervised, evaluated, and summarized overall results.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004; 10 Suppl:S18-25.
2. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 2015; 24:325-40.
3. Granold M, Moosmann B, Staub-Lazarzik I, Arendt T, del Rey A, Engelhard K, et al. High membrane protein oxidation in the human cerebral cortex. Redox Biol 2015; 4:200-7.
4. Monteijn TJ, Neely MD, Quinn JJ, Beal MF, Markesbery WR, Roberts LJ, et al. Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radical Biol Med 2002; 33:620-6.
5. Mulhaart E, Boerrigter MET, David R, Sweid DF, Vlij D. Increased levels of DNA breaks in the cerebellar cortex of Alzheimer’s disease patients. Neurobiol Aging 1990; 11:169-73.
Lovescy WR. Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 2008;29:169-75.

7. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Sрафac J, et al. Increased peroxygenase and reduced antioxidant enzyme activity in Alzheimer's disease. Exp Neurol 1998;15:649-4.

8. Rhee SG. Redox signalling: hydrogen peroxide as an intracellular messenger. Exp Mol Med 1999;31:5-9.

9. Park HR, Lee H, Park H, Jeon JW, Cho WK, Ma JY. Neuroprotective effects of Liriopoe platyphyllla extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. J Mol Neurobiol 2010;40:311-20.

10. Gupta S, Sharma SS. Neuroprotective effects of trolox in global cerebral ischemia in gerbils. Biopharm Bull 2006;29:957-61.

11. Sharma SS, Gupta S. Neuroprotective effect of MnTMPyP, a superoxide dismutase/catalase mimetic in global cerebral ischemia is mediated through reduction of oxidative stress and DNA fragmentation. Eur J Pharmacol 2007;561:72-9.

12. Akhondzadeh S. Herbal medicines in the treatment of psychiatric and neurological disorders. In: L'Abate L, editor. Psychiatric and neurological disorders. New York; 2007. p. 119-38.

13. Mathew J, Schinazi RF. Phenolics with antiviral activity from Smilacis chinae. Phytother Res 2010;45:1019-26.

14. Limpeanchob N, Lapphanichayakool P, Ingkaninan K. Neuroprotective effect of Bacopa monnieri extract on oxidized low-density lipoprotein-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Thai J Pharm Sci 2017;40:35-38.

15. Lovescy WR. Oxidatively modified RNA in mild cognitive impairment. Neurobiol Dis 2008;29:169-75.

16. Marcus DL, Thomas C, Rodriguez C, Simberkoff K, Tsai JS, Sрафac J, et al. Increased peroxygenase and reduced antioxidant enzyme activity in Alzheimer's disease. Exp Neurol 1998;15:649-4.

17. Rhee SG. Redox signalling: hydrogen peroxide as an intracellular messenger. Exp Mol Med 1999;31:5-9.

18. Park HR, Lee H, Park H, Jeon JW, Cho WK, Ma JY. Neuroprotective effects of Liriopoe platyphyllla extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. J Mol Neurobiol 2010;40:311-20.

19. Gupta S, Sharma SS. Neuroprotective effects of trolox in global cerebral ischemia in gerbils. Biopharm Bull 2006;29:957-61.

20. Sharma SS, Gupta S. Neuroprotective effect of MnTMPyP, a superoxide dismutase/catalase mimetic in global cerebral ischemia is mediated through reduction of oxidative stress and DNA fragmentation. Eur J Pharmacol 2007;561:72-9.

21. Akhondzadeh S. Herbal medicines in the treatment of psychiatric and neurological disorders. In: L'Abate L, editor. Psychiatric and neurological disorders. New York; 2007. p. 119-38.

22. Povichit N, Phrutivorapongkul A, Suttajit M, Leelapornpisid P. Neuroprotective effect of oxyresveratrol from Smilax rhizoma. Int J Pharm PharmSci, Vol9, Issue 11, 229-233

23. Chao J, Yu MS, Ho YS, Wang M, Chang RC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radical Biol Med 2008;45:1019-26.

24. Jeon SY, Kwon SH, Seong YH, Bae K, Hur JM, Lee YY, et al. Beta-secretase (BACE1)-inhibiting stilbenoids from Similax rhizoma. Phytochemistry 2007;14:403-8.