Thermodynamics of the frustrated ferromagnetic spin-1/2 Heisenberg chain

J. Richter, M. Härtel, D. Ihle and S.-L. Drechsler

1 Institut für Theoretische Physik, Universität Magdeburg, D-39016 Magdeburg, Germany
2 Institut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany
3 Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, D-01171 Dresden, Germany

E-mail: johannes.richter@physik.uni-magdeburg.de

Abstract. We studied the thermodynamics of the one-dimensional J_1-J_2 spin-1/2 Heisenberg chain for ferromagnetic nearest-neighbor bonds $J_1 < 0$ and frustrating antiferromagnetic next-nearest-neighbor bonds $J_2 > 0$ using full diagonalization of finite rings and a second-order Green-function formalism. Thereby we focus on $J_2 < |J_1|/4$ where the ground state is still ferromagnetic, but the frustration influences the thermodynamic properties. We found that their critical indices are not changed by J_2. The analysis of the low-temperature behavior of the susceptibility χ leads to the conclusion that this behavior changes from $\chi \propto T^{-2}$ at $J_2 < |J_1|/4$ to $\chi \propto T^{-3/2}$ at the quantum-critical point $J_2 = |J_1|/4$. Another effect of the frustration is the appearance of an extra low-T maximum in the specific heat $C_v(T)$ for $J_2 \gtrsim |J_1|/8$, indicating its strong influence on the low-energy spectrum.

Introduction: In low-dimensional frustrated quantum magnets thermal and quantum fluctuations strongly influence the low-temperature physics [1,2]. Special attention has been paid to one-dimensional (1D) J_1-J_2 quantum Heisenberg magnets, see Ref. [3] and references therein. Recent experimental studies have shown that edge-shared chain cuprates, such as LiVCuO$_4$, Li(Na)Cu$_2$O$_2$, Li$_2$ZrCuO$_4$, and Li$_2$CuO$_2$ [4–13], represent a family of quantum magnets for which the 1D J_1-J_2 Heisenberg model is a good starting point for a theoretical description. The above listed compounds are quasi-1D frustrated spin-1/2 magnets with a ferromagnetic (FM) nearest-neighbor (NN) in-chain coupling $J_1 < 0$ and an antiferromagnetic (AFM) next-nearest-neighbor (NNN) in-chain coupling $J_2 > 0$.

The model: The Hamiltonian of the 1D J_1-J_2 Heisenberg ferromagnet is given by

$$H = J_1 \sum_{\langle i,j \rangle} S_i S_j + J_2 \sum_{\langle i,j \rangle} S_i S_j,$$

where the first sum runs over the NN bonds and the second sum over the NNN bonds. Henceforth we set $J_1 = -1$. For the model (1) a quantum critical point at $J_2 = 0.25$ exists where the FM ground state (GS) gives way for a singlet GS with spiral correlations for $J_2 > 0.25$ [14–16]. For most of the edge-shared chain cuprates J_2 is large enough to realize such a spiral GS. However, several materials considered as model systems for 1D spin-1/2 ferromagnets, such as TMCuCl$_2$[(CH$_3$)$_4$NCuCl$_3$] [17] and p-NPNN (C$_{13}$H$_{16}$N$_3$O$_4$) [18], might have also a weak frustrating NNN interaction $J_2 < 0.25$. Moreover, recent studies [13] lead to the conclusion that Li$_2$CuO$_2$ is a quasi-1D spin-1/2 system with a dominant FM J_1 and weak frustrating AFM

© 2009 IOP Publishing Ltd
\(J_2 \approx 0.2|J_1| \). Here we focus on the parameter region \(J_2 \leq 0.25 \), i.e. the GS is ferromagnetic. Only at \(J_2 = 0.25 \) the FM GS multiplet is degenerate with a spiral singlet GS [14–16]. On the other hand, the frustrating \(J_2 \) influences the low-energy excitations, in particular, if \(J_2 \) is close to the quantum critical point. Hence, the frustration may have a strong effect on the low-\(T \) thermodynamics. We mention that previous studies [19, 20] of the thermodynamics of the 1D J1-J2 model did not consider values of \(J_2 \) near the quantum critical point \(J_2 \lesssim 0.25 \).

Results: To study the thermodynamic properties we use the full exact diagonalization (ED) of finite rings of up to \(N = 22 \) lattice sites, complemented by data obtained by a spin-rotation-invariant second-order Green-function method (RGM) [21–24]. Note that by contrast to ED the RGM is limited to values \(J_2 \leq 0.2 \) [24] but yields results for \(N \to \infty \), that allows the calculation of the correlation length by the RGM. Here we will present data for the spin-spin correlation functions \(\langle S_0 S_n \rangle \), the uniform static spin susceptibility \(\chi \) and the specific heat \(C_v \). For the discussion of the correlation length of the model (1), see Ref. [24]. For the unfrustrated model we will compare our results with available Bethe-ansatz data [25] and transfer-matrix renormalization group (TMRG) results [19].

The temperature dependence of the spin correlation functions \(\langle S_0 S_n \rangle \) is shown for \(n = 1 \) (NN) and \(n = 10 \) for various \(J_2 \) in Fig. 1. With increasing frustration the correlation functions decrease, where the further-distance correlators decay much stronger than the NN correlator. Near and at the quantum critical point the large-distance correlator \(\langle S_0 S_{10} \rangle \) vanishes already at \(T \gtrsim 0.05 \). Interestingly, for \(J_2 = 0.2, 0.24 \), and 0.25 the correlator \(\langle S_0 S_{10} \rangle \) changes the sign and goes through a minimum. This behavior is not affected by finite-size effects, e.g., the correlators \(\langle S_0 S_8 \rangle \) for \(N = 16, 20 \) and \(\langle S_0 S_6 \rangle \) for \(N = 12, 16, 20 \) also change the sign and go through a minimum for \(J_2 = 0.2, 0.24 \), and 0.25.

Next we discuss the low-temperature properties of the susceptibility \(\chi = \lim_{h \to 0} d\langle S_z \rangle/dh \). Due to the FM GS \(\chi \) diverges at \(T \to 0 \). Using Bethe-ansatz for \(J_2 = 0 \) the critical behavior has been determined as \(\chi \propto T^{-2} \) [25]. Using the RGM, recently it has been confirmed that the critical indices for the susceptibility and the correlation length, \(\gamma = 2 \) and \(\nu = 1 \), respectively, are not changed by frustration for \(J_2 < 0.25 \). However, at the quantum critical point \(J_2 = 0.25 \) a change of the low-temperature physics is expected [1]. To study that question we consider the

![Figure 1](image1.png)

Figure 1. Spin correlation function \(\langle S_0 S_1 \rangle \) (NN) and \(\langle S_0 S_{10} \rangle \) calculated by ED for \(N = 20 \) sites.

![Figure 2](image2.png)

Figure 2. \(\chi T^2 \) versus \(\sqrt{T} \) calculated by ED for \(N = 22 \) (thick lines – calculated data, thin lines – extrapolation to \(T \to 0 \), see Eq. (2) and text) and RGM (circles) as well as Bethe-ansatz data (squares) for \(J_2 = 0 \) from Ref. [25]. The inset shows the coefficient \(y_0 = \lim_{T \to 0} \chi T^2 \) versus \(J_2 \).
related to the existence of the FM critical point at $T = 0$. It has been derived for $J_2 = 0$ in Ref. [25]. For the frustrated system (1) the coefficients y_0, y_1, and y_2 depend on J_2. In Fig. 2 we plot χT^2 versus \sqrt{T}. We find a good agreement of the ED data for χT^2 with Bethe-ansatz results down to quite low temperature T. The RGM results for χT^2 deviate slightly from the Bethe-ansatz results for finite T, but approach the Bethe-ansatz data for $T \to 0$, see also Ref. [22]. The behavior of the leading coefficient y_0 and the next-order coefficient y_1 can be extracted from the results for χT^2 by fitting them to Eq. (2). For the RGM we use data points up to a cut-off temperature $T = T_{cut} = 0.005$. To deal with finite-size effects in the ED data at very low T, we use the specific heat per site $C_v(T)$, see below, to determine that temperature T_{ED} down to which the first four digits of $C_v(T)$ for $N = 20$ and $N = 22$ coincide. Then we fit the ED data in the interval $T_{ED} \leq T \leq T_{ED} + T_{cut}$ to Eq. (2). Note that T_{ED} becomes smaller for increasing J_2, we find e.g., $T_{ED} = 0.22, 0.13, 0.09, 0.04, 0.03, 0.02$ at $J_2 = 0.0, 0.1, 0.15, 0.2, 0.24, 0.25$, respectively. For $J_2 = 0$ we found $y_0 = 1/24$ ($y_0 = 0.0418$) for the RGM (ED), which agrees with the Bethe-ansatz results of Ref. [25]. [Note the different definitions of χ in our paper and in Ref. [25].] Including frustration $J_2 > 0$ we observe a linear decrease of y_0 with J_2 down to zero at $J_2 = 0.25$ given by

$$y_0 = (1 - 4J_2)/24,$$

(3)

cf. the inset of Fig. 2. The vanishing of y_0 at $J_2 = 0.25$ indicates the change of the low-T behavior of the physical quantities at the quantum critical point [1]. Indeed, a polynomial fit according to $y_1 = a_y + b_y J_2 + c_y J_2^2$ yields the finite value $y_1 \approx 0.05 (0.04)$ for RGM (ED). Hence, our data provide evidence for a change of the low-T behavior of χ from $\chi \propto T^{-2}$ at $J_2 < 0.25$ to $\chi \propto T^{-3/2}$ at the quantum critical point $J_2 = 0.25$. For a a similar discussion of the correlation length ξ, see Ref. [24], where it was found that the low-T behavior of ξ changes from $\xi \propto T^{-1}$ at $J_2 < 0.25$ to $\xi \propto T^{-1/2}$ at $J_2 = 0.25$.

In Fig. 3 we present ED results for the specific heat C_v. For $J_2 = 0$ we found a broad maximum at $T \approx 0.332$ and a steep decay to zero starting at about $T = 0.05$ in accord with the TMRG [19]. For $J_2 \geq 0.125$ the specific heat exhibits a minimum located at around $T = 0.2$, and two maxima, namely a high-T maximum at around $T = 0.6$ and an additional low-T maximum at $T < 0.1$. If J_2 approaches $J_2 = 0.25$, a further quite sharp peak at very low T appears,
that is, however, strongly size dependent, see Fig. 4. From Fig. 4 it is obvious that the extra low-T finite-size peak behaves monotonously with N. Hence, we have performed a finite-size extrapolation to $N \to \infty$ of the height $C\nu$ and the position $T\nu$ of the peak in $C\nu(T)$ using the formula $a(N) = a_{\infty} + a_1/N^2 + a_2/N^4$. The extrapolated values $C\nu_{\infty}$ and $T\nu_{\infty}$ are shown in the insets of Fig. 4. Obviously, $C\nu_{\infty}$ > 0 even near the quantum critical point $J_1 = 0.25$, where $C\nu_{\infty} \approx 0.05$. On the other hand, $T\nu_{\infty}$ decreases with J_2 and becomes very small near $J_2 = 0.25$. This behavior suggests that a characteristic steep decay of $C\nu(T)$ down to zero starts at very low T when approaching $J_2 = 0.25$.

Summary: We discussed the thermodynamics of frustrated FM spin-1/2 J_1-J_2 Heisenberg chains and found as prominent features (i) a change of the low-T critical behavior at the quantum critical point $J_2 = |J_1|/4$, (ii) and an additional low-T maximum in the specific heat for $|J_1|/4 > J_2 > |J_1|/8$.

Acknowledgments

This work was supported by the DFG (projects RI615/16-1 and DR269/3-1). One of us (S.-L. D.) is indebted to V. Ya. Krivnov for useful discussions.

References

[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge University Press, Cambridge)

[2] Quantum Magnetism ed Schollwöck U, Richter J, Farnell D J and Bishop R F, Lecture Notes in Physics 645 (Springer-Verlag, Berlin, 2004).

[3] Mikeska H-J and Kolezhuk A K 2004 in Quantum Magnetism ed Schollwöck U, Richter J, Farnell D J and Bishop R F, Lecture Notes in Physics 645 (Springer, Berlin) p. 1.

[4] Gibson B J, Kremer R K, Prokofiev A V, Assmus W and McIntyre G J 2004 *Physica B: Cond. Mat.* **350** E253

[5] Matsuda T, Zheludev A, Bush A, Markina M and Vasiliev A 2004 *Phys. Rev. Lett.* **92** 177201

[6] Gippius A A, Morozova EN, Moskvin A S, Zalessky A V, Bush A A, Baenitz M, Rosner H and Drechsler S-L 2004 *Phys. Rev. B* **70** 020406(R)

[7] M. Enderle et al. 2005 *Europhys. Lett.* **70** 237

[8] Drechsler S-L, Málek J, Richter J, Moskvin A S, Gippius A A and Rosner H. 2005 *Phys. Rev. Lett.* **94** 039705

[9] Drechsler S-L, Richter J, Gippius A A, Vasiliev A, Moskvin A S, Málek J, Prots Y, Schnelle W and Rosner H 2006 *Europhys. Lett.* **73** 83

[10] Drechsler S-L et al. 2007 *J. Magn. Magn. Mater.* **316** 306

[11] Park S, Choi Y J, Zhang C L and Cheong S-W. 2007 *Phys. Rev. Lett.* **98** 057601

[12] Drechsler S-L et al. 2007 *Phys. Rev. Lett.* **98** 077202

[13] Málek J, Drechsler S-L, Nitzsche U, Rosner H and Eschrig H 2008 *Phys. Rev. B* Rapid. Com. in press

[14] Bader H P and Schilling R 1979 *Phys. Rev. B* **19** 3556

[15] Hamada T, Kane J, Nakagawa S and Natsume Y 1989 J. Phys. Soc. Jpn. **57** 1891; 1989 **58** 3869.

[16] Dmitriev D V, Krivnov V Ya and Richter J 2007 *Phys. Rev. B* **75** 014424

[17] Landee C P and Willett R D 1979 *Phys. Rev. Lett.* **43** 463; Dupas C, Renard J P, Seiden J and Cheikh-Rouhou A 1982 *Phys. Rev. B* **25** 3261

[18] Takahashi M, Turek P, Nakazawa Y, Tamura M, Nozawa K, Shiomi D, Ishikawa M and Kinoshita M 1991 *Phys. Rev. Lett.* **67** 746

[19] Lu H T, Wang Y J, Qin Shaojin and Xiang T 2006 *Phys. Rev. B* **74** 134425

[20] Heidrich-Meisner F, Honecker A and Vekua T 2006 *Phys. Rev. B* **74** 020403(R)

[21] Kondo J and Yamaji K 1972 *Prog. Theor. Phys.* **47** 807; Shimahara H and Takada S 1991 *J. Phys. Soc. Jpn.* **60** 2394; Winterfeldt S and Ihle D 1997 *Phys. Rev. B* **56** 5535

[22] Suzuki F, Shibata N and Ishi C 1994 *J. Phys. Soc. Jpn.* **63** 1539

[23] Yu W and Feng S 2000 *Eur. Phys. J. B* **13** 265; Bernhard B H, Canals B and Lacroix C 2002 *Phys. Rev. B* **66** 024422; Schmalfuß D, Richter J and Ihle D 2004 *Phys. Rev. B* **70** 184412; Junger J, Ihle D, Richter J and Klimper A 2004 ibid. 104419; Schmalfuß D, Darradi R, Richter J, Schulenburg J and Ihle D 2006 *Phys. Rev. Lett.* **97** 157201; Antsygina T N, Poltavskaya M I, Poltavsky I I and Chishko K A 2008 *Phys. Rev. B* **77** 024407; Juhasz J, Junger J, Ihle D, Bogacz L and Janke W 2008 ibid. 174411

[24] Härte M, Richter J, Ihle D and Drechsler S-L 2008 preprint arxiv:0807.1391

[25] Yamada M and Takahashi M 1986 *J. Phys. Soc. Jpn.* **55** 2024