Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N$_2$-diazirine molecular tags

Thomas Theis,1*,† Gerardo X. Ortiz Jr.,1*,‡ Angus W. J. Logan,1 Kevin E. Claytor,2 Yesu Feng,1*, William P. Huhn,3 Volker Blum,3 Steven J. Malcolmson,1 Eduard Y. Chekmenev,4 Qiu Wang,1*, Warren S. Warren1,2,5*

Conventional magnetic resonance (MR) faces serious sensitivity limitations which can be overcome by hyperpolarization methods, but the most common method (dynamic nuclear polarization) is complex and expensive, and applications are limited by short spin lifetimes (typically seconds) of biologically relevant molecules. We use a recently developed method, SABRE-SHEATH, to directly hyperpolarize 15N$_2$ magnetization and long-lived 15N$_2$ singlet spin order, with signal decay time constants of 5.8 and 23 min, respectively. We find >10,000-fold enhancements generating detectable nuclear MR signals that last for over an hour. 15N$_2$-diazirines represent a class of particularly promising and versatile molecular tags, and can be incorporated into a wide range of biomolecules without significantly altering molecular function.

INTRODUCTION

Hyperpolarization enables real-time monitoring of in vitro and in vivo biochemistry

Conventional magnetic resonance (MR) is an unmatched tool for determining molecular structures and monitoring structural transformations. However, even very large magnetic fields only slightly magnetize samples at room temperature and sensitivity remains a fundamental challenge; for example, virtually all MR images of water because it is the molecule at the highest concentration in vivo. Nuclear spin hyperpolarization significantly alters this perspective by boosting nuclear MR (NMR) sensitivity by four to nine orders of magnitude (1–3), giving access to detailed chemical information at low concentrations. These advances are beginning to transform biomedical in vivo applications (4–9) and structural in vitro studies (10–16).

Current hyperpolarization technology is expensive and associated with short signal lifetimes

Still, two important challenges remain. First, hyperpolarized MR is associated with high cost for the most widespread hyperpolarization technology [dissolution dynamic nuclear polarization (d-DNP), $2 million to $3 million for commercial hyperpolarizers]. Second, hyperpolarized markers typically have short signal lifetimes: typically, hyperpolarized signals may only be tracked for 1 to 2 min in the most favorable cases (6), greatly limiting this method as a probe for slower biological processes.

The presented approach is inexpensive and produces long-lived signals

Here, we demonstrate that both of these challenges can be overcome simultaneously, setting the stage for hour-long tracking of molecular markers with inexpensive equipment. Specifically, we illustrate the potential of 15N$_2$-diazirines as uniquely powerful storage vessels for hyperpolarization. We show that diazirine can be hyperpolarized efficiently and rapidly (literally orders of magnitude cheaper and quicker than d-DNP), and that this hyperpolarization can be induced in states that maintain hyperpolarization for more than an hour.

Our approach uses parahydrogen (p-H$_2$) to directly polarize long-lived nuclear spin states. The first demonstration of parahydrogen-induced polarization (PHIP) was performed in the late 1980s (17–19). Then, PHIP was used to rely on the addition of p-H$_2$ to a carbon double or triple bond, incorporating highly polarized hydrogen atoms into molecules. This approach generally requires specific catalyst-substrate pairs; in addition, hydrogen atoms usually have short relaxation times (T_2) that cause signal decay within a few seconds. A more recent variant, SABRE (signal amplification by reversible exchange) (20, 21), uses p-H$_2$ to polarize 1H atoms on a substrate without hydrogenation. In SABRE, both p-H$_2$ and substrate reversibly bind to an iridium catalyst and the hyperpolarization is transferred from p-H$_2$ to the substrate through J-couplings established on the catalytic intermediate. Recently, we extended this method to SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to Heteronuclei) for direct hyperpolarization of 15N$_2$ molecular sites (22–24). This method has several notable features. Low-γ nuclei (13C, 15N) tend to have long relaxation times, particularly if a proton is not attached. In addition, conventional SABRE relies on small differences between four-bond proton-proton J-couplings (detailed in the Supplementary Materials), whereas SABRE-SHEATH uses larger two-bond heteronuclear J-couplings. It is extremely simple: SABRE-SHEATH requires nothing but p-H$_2$, the catalyst, and a shield to reduce Earth’s field by about 99%. After 1 to 5 min of bubbling p-H$_2$ into the sample in the shield, we commonly achieve 10% nitrogen polarization, many thousands
of times stronger than thermal signals (22). In contrast, d-DNP typically produces such polarization levels in an hour, at much higher cost.

Diazirines are small and versatile molecular tags

A general strategy for many types of molecular imaging is the creation of molecular tags, which ideally do not alter biochemical pathways but provide background-free signatures for localization. This strategy has not been very successful in MR because of sensitivity issues. Here, we demonstrate that SABRE-SHEATH enables a MR molecular beacon strategy using diazirines \(^15 \text{N}_2 \) (three-membered rings containing a nitrogen-nitrogen double bond). They are highly attractive as molecular tags, primarily because of their small size. Diazirines have already been established as biocompatible molecular tags for photoaffinity labeling (25). They can be incorporated into many small molecules, metabolites, and biomolecules without drastically altering biological function. Diazirines share similarities with methylene (\(\text{CH}_2 \)) groups in terms of electronic and steric properties such that they can replace methylene groups without drastically distorting biochemical behavior. Furthermore, diazirines are stable at room temperature, are resistant to nucleophiles, and do not degrade under either acidic or alkaline conditions (25). With these attractive properties, diazirines have been used for the study of many signaling pathways. For example, they have been incorporated into hormones (26), epileptic drugs (27), antibiotics (28), hyperthermic drugs (29), anticancer agents (30), anesthetics (31), nucleic acids (32), amino acids (33), and lipids (34). They also have been introduced into specific molecular reporters to probe enzyme function and their binding sites such as in kinases (35), aspartic proteases (36), or metalloproteases (37), to name a few. The nitrogen-nitrogen moiety is also intrinsically interesting, because the two atoms are usually very close in chemical shift and strongly coupled, thus suited to support a long-lived singlet state as described below.

RESULTS AND DISCUSSION

Our first target molecule was 2-cyano-3-(D3-methyl-D2-diazirine)-propanoic acid in methanol-d4, depicted in Fig. 1 along with the catalyst. To establish this hyperpolarization mode, we developed a new catalyst for this SABRE-SHEATH process. We synthesized \([\text{Ir(COD)(IMes)(Py)})[\text{PF}_6]\) [COD, cyclooctadiene; IMes, 1,3-bis(2,4,6-trimethylphenyl)-imidazolium; Py, pyridine] as depicted in Fig. 1A. This precursor is dissolved in a diazirine-containing methanol solution and activated by bubbling...
hydrogen through this solution for ~20 min. This produces the catalytically active $[\text{Ir(IMes)(H}_2\text{(Py)(Diaz)})^+]$ species depicted in Fig. 1B.

Density functional theory calculations shed light on polarization transfer catalyst

The Ir complex conformation shown in Fig. 1B was determined by all-electron density functional theory (DFT) calculations (semilocal Perdew-Burke-Ernzerhof (PBE) functional (38), corrected for long-range many-body dispersion interactions (39), in the FHI-aims software package ($40, 41$); see the Supplementary Materials for details). The calculations indicate a η^1 single-sided N attachment rather than η^2-N=N attachment of the diazirines. In the Ir complex, hyperpolarization is transferred from p-H_2 gas (~92% para-state, 7.5 atm) to the $^{15}N_2$-diazirine. Both p-H_2 and substrate are in reversible exchange with the central complex, which results in continuous pumping of hyperpolarization: p-H_2 is continually refreshed and hyperpolarization accumulated on the diazirine substrate.

An alternate polarization transfer catalyst is introduced

As opposed to the traditional $[\text{Ir(COD)(IMes)(Cl)}]$ catalyst (18), the synthesized $[\text{Ir(COD)(IMes)(Py)}][\text{PF}_6]$ results in a pyridine ligand trans to IMes, improving our hyperpolarization levels by a factor of ~3 (see the Supplementary Materials). We have found that this new approach, which avoids competition from added pyridine, makes it possible to directly hyperpolarize a wide variety of different types of ^{15}N-containing molecules (and even ^{13}C). However, diazirines represent a particularly general and interesting class of ligands for molecular tags and are the focus here.

As depicted in Fig. 2A, the hyperpolarization proceeds outside the high-field NMR magnet at low magnetic fields, enabling SABRE-SHEATH directly targeting ^{15}N nuclei (22). To establish the hyperpolarization, we...
bubble p-H_2 for \sim5 min at the adequate field. Then, the sample is transferred into the NMR magnet within \sim10 s, and 15N$_2$ signal detection is performed with a simple 90° pulse followed by data acquisition.

Two types of hyperpolarized states can be created: Magnetization and singlet order

We create two different types of hyperpolarization on the 15N$_2$-diazirine. We can hyperpolarize traditional z-magnetization, which corresponds to nuclear spins aligned with the applied magnetic field and is associated with pure in-phase signal as illustrated with the black trace in Fig. 2B. Alternatively, we can hyperpolarize singlet order on the 15N$_2$-diazirine, which corresponds to an anti-aligned spin state, with both spins pointing in opposite directions, entangled in a quantum mechanically “hidden” state. This hidden singlet order is converted into a detectable state when transferred to a high magnetic field and associated with the anti-phase signal illustrated by the blue trace in Fig. 2B (see the Supplementary Materials for details). The difference in symmetry of z-magnetization and singlet order leads to differences in signal decay rates; z-magnetization is directly exposed to all NMR relaxation mechanisms and is often associated with shorter signal lifetimes, which may impede molecular tracking on biologically relevant time scales. Singlet order, on the other hand, is protected from many relaxation mechanisms because it has

Fig. 4. Maximum enhancement levels and decay time constants observed for magnetization and singlet order. (A) Single-shot SABRE-SHEATH spectra obtained from a methanol-d_4 solution containing 3 mM 15N$_2$-diazirine, 0.125 mM [Ir(COD)(IMes)(Py)][PF$_6$], and 240 mM D$_2$O. Enhancements are obtained by comparison to the displayed thermal reference spectrum of the 15N$_2$-diazirine [2-cyano-3-(D$_3$-methyl-15N$_2$-diazirine)-propanoic acid] in D$_2$O. (In D$_2$O, the chemical shift difference between the 15N nuclei is smaller than that in MeOH, and therefore, only one peak is observed.) (B) Representative T_1 and T_S decay measurements. T_1 is measured at 120 G (12 mT) from a methanol-d_4 solution containing 12 mM 15N$_2$-diazirine, 0.125 mM [Ir(COD)(IMes)], 1 mM Py, and 960 mM D$_2$O. T_S is measured at 3 G (0.3 mT) from a solution containing 12 mM 15N$_2$-diazirine, 0.05 mM [Ir(COD)(IMes)], and 0.4 mM Py. (C) The z-magnetization and singlet-order components are extracted from the data sets in (B) and fit to a single exponential (see the Supplementary Materials for further details).
no angular momentum (42–52) and can therefore exhibit much longer lifetimes, enabling hour-long molecular tracking.

The type of hyperpolarized state is selected by the magnetic field

We can control which type of hyperpolarization we create by choosing the appropriate magnetic fields for the bubbling process. Z-magnetization is created in the SABRE-SHEATH mode at low magnetic fields inside a magnetic shield (22–24, 53, 54). This behavior is explained by resonance conditions for hyperpolarizing magnetization versus singlet order that we derive in the Supplementary Materials. The condition for creating magnetization, $v_H - v_N = |J_{HH} + J_{NN}|$, is field-dependent in the NMR frequencies, v_H and v_N, and field-independent in the J-couplings. Accordingly, hyperpolarized magnetization is created at a magnetic field where the frequency difference matches the J-couplings. This magnetic field is ~6 mG, which is obtained by using $J_{HH} = -10$ Hz, $J_{NN} = 17.3$ Hz, $γ_H = 4.2576$ kHz/G, and $γ_N = -0.4316$ kHz/G (see the Supplementary Materials). The theoretical prediction of 6 mG matches the experimental maximum for hyperpolarized z-magnetization illustrated by the blue data in Fig. 3A.

The condition for creating singlet order, on the other hand, $J_{HH} = \pm J_{NN}$, is not dependent on the magnetic field and, for the system at hand, is fulfilled closely (with $J_{HH} ~ 10$ Hz, $J_{NN} ~ 17.3$ Hz) such that singlet order can be induced virtually at any magnetic field, under the condition that the singlet state remains close to an eigenstate of the Hamiltonian, which is true for fields up to ~1 kG. As illustrated in Fig. 3C, the singlet buildup is indeed slightly slower and less efficient, as expected for an imperfectly matched resonance condition. Accordingly, the optimal magnetic field for hyperpolarizing singlet order is not tied to specific magnetic fields. Instead, the optimal magnetic field to produce singlet order is the field associated with the longest singlet lifetime, allowing for accumulation over a long time span. We find well-suited lifetimes at fields between ~0.5 and ~200 G.

Central results: 5% polarization for magnetization with 6-min decay constant, 3% singlet polarization with 23-min decay constant

For z-magnetization, we observe up to 15,000-fold signal enhancements over thermal control experiments at 8.5 T displayed in Fig. 4A. This corresponds to ~5% polarization. For singlet order, up to 5000-fold signal enhancements are observed, corresponding to ~3% singlet polarization. Notice that the singlet polarization level is not much lower than the polarization of magnetization despite the signal enhancement being three times lower. This mismatch between enhancements and polarization is attributed to the singlet readout being ~60% as efficient as the magnetization readout in our current setup (see the Supplementary Materials). Figure 4 (B and C) displays typical the magnetization readout in our current setup (see the Supplementary Materials). Figure 4 (B and C) displays typical

CONCLUSION

The demonstrated hyperpolarization lifetimes, combined with the ease of hyperpolarization in these broadly applicable biomolecular tags, may establish a paradigm shift for biomolecular sensing and reporting in optically opaque tissue. The demonstrated lifetimes even exceed lifetimes of some common radioactive tracers used in positron emission tomography (PET) (for example, 11C, 20.3 min). However, unlike PET, MR is exquisitely sensitive to chemical transformations and does not use ionizing radiation (such that, for example, daily progression monitoring of disease is easily possible). The presented work may allow direct access to biochemical mechanisms and kinetics in optically opaque media. We therefore envision tracking subtle biochemical processes in vitro with unprecedented NMR sensitivities as well as real-time in vivo biomolecular imaging with hyperpolarized diazirines.

MATERIALS AND METHODS

Samples hyperpolarized with [Ir(COD)(IMes)(Py)][PF$_6$] as precursor

We prepared a stock solution of 0.5 M [Ir(COD)(IMes)(Py)][PF$_6$] in CD$_3$OD. Subsequently, an appropriate aliquot of this stock solution was added into the NMR tube containing CD$_3$OD such that a volume of 600 μl of the targeted concentration was obtained. To this solution, we then added an aliquot of a 700 mM solution of the diazirine in D$_2$O to achieve the desired diazirine concentration.

Samples hyperpolarized with [Ir(COD)(IMes)Cl] as precursor

We prepared a stock solution of 0.5 M [Ir(COD)(IMes)Cl] plus 8 eq of pyridine, that is, 4 M in CD$_3$OD. Subsequently, an appropriate aliquot of this stock solution was added into the NMR tube containing CD$_3$OD such that a volume of 600 μl at the targeted concentration was obtained. To this solution, we then added an aliquot of a 700 mM solution of the diazirine in D$_2$O to achieve the desired diazirine concentration.

Parahydrogen production

Parahydrogen (p-H$_2$) gas (~92% para-state, 8.2 atm) was created in a Bruker parahydrogen generator (slightly modified to access higher pressures) and bubbled through the solution prepared above. For catalyst activation, bubbling was performed for 20 min before starting any experiments.

Experimental setup to obtain well-controlled milligauss fields

A set of three layers of magnetic shielding was used to obtain a low-magnetic field environment (MuMETAL Zero Gauss Chambers; product ZG-206, Magnetic Shield Corp.) The shields are degaussed with a degaussing coil wrapped around the innermost shield. In the center of the shields, we placed a solenoid with length $L = 47.5$ cm and $N = 165$ turns (see the Supplementary Materials for further details and a picture).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/2/3/e1501438/DC1

Synthesis of 15N$_2$-diazirine and iridium catalyst
Theoretical derivation of resonance conditions for hyperpolarization transfer
Spin dynamics during low- to high-field sample transfer
MD simulations of possible transitions states for hyperpolarization transfer
Sample preparation and setup to obtain well-controlled milligauss fields
Hyperpolarization buildup dynamics, lifetimes, and enhancements in detail

Fig. S1. Synthesis of 2-cyano-3-(3′-(methyl-d3)-3H-diazirine-3′-yl)-1′,2′-15N3-panproionic acid using modified literature procedures.
Fig. S2. Spin system for polarization transfer.
Fig. S3. Eigenstates of a J-coupled two-spin system as a function of magnetic field.
Fig. S4. Simulated spectra for magnetization and singlet order.
Fig. S5. Three candidate conformations of 2-cyano-3-(D3-methyl-15N2-diazirine)-propanoic acid as identified by DFT PBE + TS calculations, as used to construct likely catalytically active structures producing hyperpolarization attached to the SABRE catalyst.
Fig. S6. First-principles derived candidate conformations of catalytic species that drive hyperpolarization transfer.
Fig. S7. Experimental SABRE-SHEATH setup.
Fig. S8. Decay time constants, buildup constants, and enhancements as a function of magnetic field and concentrations.
Fig. S9. The effect of continued singlet-polarization buildup after stopping p-H2 bubbling.
Table S1. Relative energies of the diazirine attachment modes tested in this work for the case of two different ligands that are simultaneously present: two equatorial hydrides, axial IMes, axial pyridine, one equatorial pyridine, and diazirine in an equatorial position.
Table S2. Relative energies of the diazirine attachment modes tested in this work for the case of two diazirine molecules that are simultaneously present.
Table S3. Magnetization lifetimes, T_m, under varying catalyst concentrations and holding fields.
Table S4. Singlet lifetimes, τ_s, under varying catalyst concentrations and holding fields.
Table S5. Magnetization buildup times, T_b, at 6 mG under varying catalyst concentrations.
Table S6. Singlet buildup times, T_b, under varying catalyst concentrations and magnetic fields.
Table S7. Enhancements, r, under varying concentrations of catalyst [Ir(III)(COD)(IMes)] (1a), [Ir(III)(IMes)(PF$_6$)] (1b), diazirine substrate (2), pyridine (3), and D$_2$O (4).

REFERENCES AND NOTES

J. H. Ardenkjaer-Larsen, B. Friedlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning, K. Golman, Increase in signal-to-noise ratio of $>10,000$ times in liquid-state NMR. Proc. Natl. Acad. Sci. USA. 100, 10158–10161 (2003).
A. Gottberg, M. Satchura, M. Kowalska, M. L. Bisell, V. Arcauskaite, K. Blaum, A. Helmeke, K. Johnston, K. Kreim, F. H. Larsen, R. Neugart, G. Neyens, R. F. Garcia Ruiz, D. Szunyogh, P. W. Thulstrup, D. T. Yordanov, L. Hemmingsen, Billion-fold enhancement in sensitivity of nuclear magnetic resonance spectroscopy for magnesium ions in solution. Chem. Rev. 15, 3929–3932 (2014).
R. V. Shchepin, A. M. Coffey, K. W. Waddell, E. Y. Chekmenev, Parahydrogen induced polarization of 1-13C-phospholactate-D_2 for biomedical imaging with $>30,000,000$-fold NMR signal enhancement in water. Anal. Chem. 86, 5601–5605 (2014).
T. B. Rodrigues, E. M. Sereno, B. W. C. Kennedy, D. -E. Hu, M. I. Kettunen, K. M. Brindle, Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat. Med. 20, 93–97 (2014).
K. R. Keshari, D. M. Wilson, Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem. Rev. 43, 1627–1659 (2014).
S. J. Nelson, J. Kurhanewicz, D. B. Vigneron, P. E. Z. Larson, A. L. Hartzkarp, M. Ferrone, M. van Kriekinge, J. W. Chang, R. Bok, I. Park, G. Reed, L. Carvajal, E. J. Small, P. Munster, V. K. Weinberg, J. H. Ardenkjaer-Larsen, A. P. Chen, R. E. Hurld, L.-I. Odedgardstuen, F. J. Robb, J. Tropp, J. A. Murray, Metabolic imaging of tumors using parahydrogen induced polarization (13C)-pyruvate. Sci. Transl. Med. 5, 198ra108 (2013).
J. Kurhanewicz, D. B. Vigneron, K. Brindle, E. Y. Chekmenev, A. Comment, C. H. Cunningham, R. J. DeBerardinis, G. G. Green, M. O. Leach, S. S. Rajan, R. R. Rizi, B. D. Ross, W. S. Warren, C. R. Malloy, Analysis of cancer metabolism by imaging hyperpolarized nuclei: Prospects for translation to clinical research. Neoplasia 13, 81–97 (2011).
R. Aggarwal, J. Kurhanewicz, Prostate cancer in 2013: The changing role of imaging in clinical care. Nat. Rev. Urol. 11, 75–77 (2014).
Y. Li, I. Park, S. J. Nelson, Imaging tumor metabolism using in vivo magnetic resonance spectroscopy. Cancer J. 21, 123–128 (2015).
K. G. Valentian, G. Mathies, S. Bédard, N. V.ucci, I. Dodesvski, M. A. Stetz, T. V. Can, R. G. Griffin, A. J. Wand, Reverse micelles as a platform for dynamic nuclear polarization in solution NMR of proteins. J. Am. Chem. Soc. 136, 2800–2807 (2014).
H. -Y. Chen, M. Ragavan, C. Hilty, Protein folding studied by dissolution dynamic nuclear polarization. Angew. Chem. Int. Ed. 52, 9192–9195 (2013).
36. H. Fuwa, Y. Takahashi, Y. Konno, N. Watanabe, H. Miyashita, M. Sasaki, H. Natsuagui, T. Kan, T. Fukuyama, T. Tomita, T. Iwatsubo, Divergent synthesis of multifunctional molecular probes to elucidate the enzyme specificity of dipeptidyl γ-secretase inhibitors. ACS Chem. Biol. 2, 408–418 (2007).

37. E. W. S. Chan, S. Chattopadhaya, R. C. Panicker, X. Huang, S. Q. Yao, Developing photoactive affinity probes for proteomic profiling: Hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–14446 (2004).

38. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

39. A. Ambrosetti, A. M. Reilly, R. A. DiStasio Jr., A. Tkatchenko, Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18A508 (2014).

40. V. Blum, R. Gehre, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

41. V. Havu, V. Blum, P. Havu, M. Scheffler, Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 228, 8367–8379 (2009).

42. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, V. Blum, Exploring the conformational preferences of 20-residue peptides in isolation: Ac-Ala19-Lys + H+ and in solution: An experimental and computational study. J. Am. Chem. Soc. 130, 12582–12583 (2008).

43. M. H. Levitt, Singlet nuclear magnetic resonance. Annu. Rev. Phys. Chem. 63, 89–105 (2012).

44. V. V. Zhivonitko, K. V. Koutovou, P. L. Chapovskiy, I. V. Kopytug, Nuclear spin isomers of ethylene: Enrichment by chemical synthesis and application for NMR signal enhancement. Angew. Chem. Int. Ed. 52, 12351–12355 (2013).

45. M. B. Franzoni, L. Bulbjabich, H. W. Spiess, K. Munnenmann, Long-lived singlet spin states originating from para-hydrogen in Cs-symmetric molecules stored for minutes in high magnetic fields. J. Am. Chem. Soc. 134, 10393–10396 (2012).

46. W. S. Warren, E. Jenista, R. T. Branca, X. Chen, Increasing hyperpolarized spin lifetimes through true singlet eigenstates. Science 323, 1711–1714 (2009).

47. G. Pileio, M. Caravatta, E. Hughes, M. H. Levitt, The long-lived nuclear singlet state of 15N-nitrous oxide in solution. J. Am. Chem. Soc. 130, 12582–12583 (2008).

48. M. H. Levitt, Singlet nuclear magnetic resonance. Annu. Rev. Phys. Chem. 63, 89–105 (2012).

49. V. V. Zhivonitko, K. V. Koutovou, P. L. Chapovskiy, I. V. Kopytug, Nuclear spin isomers of ethylene: Enrichment by chemical synthesis and application for NMR signal enhancement. Angew. Chem. Int. Ed. 52, 12351–12355 (2013).

50. M. B. Franzoni, L. Bulbjabich, H. W. Spiess, K. Munnenmann, Long-lived singlet spin states originating from para-hydrogen in Cs-symmetric molecules stored for minutes in high magnetic fields. J. Am. Chem. Soc. 134, 10393–10396 (2012).

51. B. D. Feske, Synthetic strategy toward asymmetric β-lactones. Synthesis 45, 2171–2178 (2013).

52. F. Burel, J-P. Couveccelle, C. Buneil, I-M. Saiter, Poly-(n-alkyl acrylic derivatives: Synthesis, influence of molecule weight and n-alkyl group length on physical and physicochemical properties. J. Macromol. Sci. Part A 32, 1091–1102 (1995).

53. A. C. Hillier, H. M. Lee, E. D. Stevens, S. P. Nolan, Cationic iridium complexes bearing imidazol-2-ylidene ligands as transfer hydrogenation catalysts. Organometalics 20, 4246–4252 (2001).

54. T. Theis, Y. Feng, T. Wu, W. S. Warren, Composite and shaped pulses for efficient and robust pumping of disconnected eigenstates in magnetic resonance. J. Chem. Phys. 140, 014201 (2014).

55. S. Chutia, M. Rossi, V. Blum, Water adsorption at two unsolvated peptides with a protonated lysine residue: From self-solvation to solvation. J. Phys. Chem. B 116, 14788–14802 (2012).

56. M. Rossi, S. Chutia, M. Scheffler, V. Blum, Validation challenge of density-functional theory for peptides—Example of Ac-Phe-Ala-Lys∗H+. J. Chem. Phys. 119, 7349–7359 (2004).

57. E. W. S. Chan, S. Chattopadhaya, R. C. Panicker, X. Huang, S. Q. Yao, Developing photoactive affinity probes for proteomic profiling: Hydroxamate-based probes for metalloproteases. J. Am. Chem. Soc. 126, 14435–14446 (2004).

58. T. Theis, Y. Feng, T. Wu, W. S. Warren, Composite and shaped pulses for efficient and robust pumping of disconnected eigenstates in magnetic resonance. J. Chem. Phys. 140, 014201 (2014).

59. S. Chutia, M. Rossi, V. Blum, Water adsorption at two unsolvated peptides with a protonated lysine residue: From self-solvation to solvation. J. Phys. Chem. B 116, 14788–14802 (2012).

60. M. Rossi, S. Chutia, M. Scheffler, V. Blum, Validation challenge of density-functional theory for peptides—Example of Ac-Phe-Ala-Lys∗H+. J. Chem. Phys. 119, 7349–7359 (2004).

61. J. Antonio Jimenez, R. M. Claramunt, O. Mó, M. Yáñez, F. Wehrmann, G. Buntkowsky, H.-H. Limbach, R. Goddard, J. Elguero, The structure of N-aminoxyproline in the solid state and in solution: An Experimental and computational study. Phys. Chem. Chem. Phys. 1, 5113–5120 (1999).

Funding: This work was supported by NSF grants CHE-1058727, CHE-1363008, and CHE-1416268; NIH grant 1R21EB018014; and Department of Defense Congressionally Directed Medical Research Programs Breast Cancer grant W81XWH-12-1-0159/BC112431. W.P.H., T.T., V.B., and M.S. also acknowledge funding from a Pratt School of Engineering Research Innovation Seed Fund Grant. Q.W. and S.J.M. acknowledge support from Duke University. G.X.O. also acknowledges support from the Burroughs Wellcome Fellowship. Furthermore, acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research. Author contributions: T.T. envisioned direct hyperpolarization of long-lived states with SABRE, designed experiments, conducted experiments, analyzed data, developed spin dynamics theory, and wrote the manuscript. G.X.O. designed and synthesized 15N2-diazirine molecules, conducted initial characterization, and edited the manuscript. A.P.J.L. conceived and synthesized SABRE catalysts, edited the manuscript, and conducted most of the experiments. K.E.C. analyzed data, developed spin dynamics theory, and assisted with experiments. Y.F. envisioned 15N2-diazirine as storage vessels for long-lived hyperpolarization and conducted initial characterization. W.P.H. designed and conducted all-electron DFT simulations. V.B. designed and advised on the all-electron DFT simulations. S.J.M. conceived and advised on the synthesis of the SABRE precatalysts and edited the manuscript. E.Y.C. advised on the experimental design and development of spin dynamics theory, and edited the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or in the Supplementary Materials. Additional data are available from the authors upon request.

Submitted 12 October 2015
Accepted 5 February 2016
Published 25 March 2016
10.1126/sciadv.1501438

Citation: T. Theis, G. X. Ortiz Jr., A. W. J. Logan, K. E. Claytor, Y. Feng, W. P. Huh, V. Blum, S. J. Malcolmson, E. Y. Chekmenev, Q. Wang, W. S. Warren, Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags. Sci. Adv. 2, e1501438 (2016).