Background
The new European legislation on data protection, namely the GDPR, has introduced comprehensive requirements for the documentation about the processing of personal data as well as informing the data subjects of its use. GDPR’s accountability principle requires institutions, projects and data hubs to document their data processing and demonstrate compliance with the GDPR. In response to this requirement, we see the emergence of commercial data mapping tools, and institutions creating GDPR data registers with such tools. One shortcoming of this approach is the genericity of tools, and their process-based model not capturing the project-based, collaborative nature of data processing in biomedical research.

Findings
We have developed a software tool to allow research institutions to comply with the accountability requirement and map the sometimes very complex data flows in biomedical research. By analysing the transparency and record keeping obligations of each GDPR principle we observe that our tool effectively meets the accountability requirement.

Conclusions
The GDPR is bringing data protection to the center stage in research data management; necessitating dedicated tools, personnel and processes. Our tool, DAISY, is tailored specifically for biomedical research and can help institutions in tackling the documentation challenge brought about by the GDPR. DAISY is made available as a free and open-source tool on Github. DAISY is actively being used at the Luxembourg Centre for Systems Biomedicine and the ELIXIR-Luxembourg data hub.
Dear GigaScience Editors,

We uploaded the final version of our paper titled "DAISY: a Data Information System for accountability under the General Data Protection Regulation". Specifically, we made the following revisions:

1. In the authors section, we added ORCID identifiers for those authors that are registered with ORCID.

2. In the "methods" section we added "through a web application developed with the Python programming language (RRID:SCR_008394)."

3. In the "availability of source code" section, we added the following:

 Project name: Data Information System
 Project home page: https://github.com/elixir-luxembourg/daisy
 Operating system(s): Platform independent
 Programming language: Python 3.6 or higher
 Other requirements: Solr 7.x, PostgreSQL 10.x
 License: AGPL-3.0
 RRID: SCR_017472

4. We added an "availability of data" section with the following paragraph:

 "Snapshots of the code are available in the GigaScience GigaDB database [37]."

5. In the references section we added the following:

 37. Becker R, Alper P, Grouès V, Munoz S, Jarosz Y, Lebioda J, et al. Supporting data for "DAISY: a Data Information System for accountability under the General Data Protection Regulation". GigaScience Database 2019; http://dx.doi.org/10.5524/100664.

Regards

Pinar ALPER on behalf of authors

Additional Information:
Question
Are you submitting this manuscript to a special series or article collection?

Experimental design and statistics

Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available No
Have you included all the information requested in your manuscript?

Resources
Yes

Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.

Availability of data and materials
Yes

All datasets and code on which the conclusions of the paper rely must be either included in your submission or

The paper does not include a data supplement or statistical data analysis. Therefore this category is not applicable.

Resources

A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.

Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?
Yes
deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the “Availability of Data and Materials” section of your manuscript.

Have you met the above requirement as detailed in our Minimum Standards Reporting Checklist?
TECHNICAL NOTE

DAISY: a Data Information System for accountability under the General Data Protection Regulation

Regina Becker 1,*, †, Pinar Alper 1,*, †, Valentin Grouès 1, Sandrine Munoz1, Yohan Jarosz 1, Jacek Lebioda 1, Kavita Rege1, Christophe Trefois 1, Venkata Satagopam 1 and Reinhard Schneider 1

1Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval 6, Avenue du Swing L-4367, Belvaux, Luxembourg

*Corresponding authors; regina.becker@uni.lu, pinar.alper@uni.lu.
†Contributed equally.

Abstract

Background
The new European legislation on data protection, namely the GDPR, has introduced comprehensive requirements for the documentation about the processing of personal data as well as informing the data subjects of its use. GDPR’s accountability principle requires institutions, projects and data hubs to document their data processings and demonstrate compliance with the GDPR. In response to this requirement, we see the emergence of commercial data mapping tools, and institutions creating GDPR data registers with such tools. One shortcoming of this approach is the genericity of tools, and their process-based model not capturing the project-based, collaborative nature of data processing in biomedical research.

Findings
We have developed a software tool to allow research institutions to comply with the accountability requirement and map the sometimes very complex data flows in biomedical research. By analysing the transparency and record keeping obligations of each GDPR principle we observe that our tool effectively meets the accountability requirement.

Conclusions
The GDPR is bringing data protection to the center stage in research data management; necessitating dedicated tools, personnel and processes. Our tool, DAISY, is tailored specifically for biomedical research and can help institutions in tackling the documentation challenge brought about by the GDPR. DAISY is made available as a free and open-source tool on Github. DAISY is actively being used at the Luxembourg Centre for Systems Biomedicine and the ELIXIR-Luxembourg data hub.

Key words: GDPR; Accountability; Data mapping

Background and Motivation

The General Data Protection Regulation (GDPR) [1] is a European Union (EU) regulation on data protection that is a directly applicable law in all EU member states since 25th May 2018. In addition, the GDPR has been incorporated into the European Economic Area (EEA) agreement and is therefore applicable to the member states of the European Free Trade Association (EFTA) as of 6th July 2018 [2]. In practice, however, the reach of the GDPR spans the whole world; where services or goods are being offered to citizens in the EU, the corresponding institution needs to comply with the GDPR, independent of where it is located. Furthermore, there is an obligation for data controllers in the EU to ensure that recipients outside the EU adhere to GDPR equivalent data protection standards wherever
possible. Due to its global impact, the GDPR affects the international research community and it has consequences for the way research data will be handled in the future [3].

One important new principle introduced by the GDPR in Article 5 is “accountability”. Accountability requires the demonstration, and thus documentation, of the compliance with all data protection principles: lawfulness, fairness, transparency, purpose limitation, data minimisation, accuracy, storage limitation, integrity and confidentiality. While these principles were already the basis of the previous data protection directive [4], the necessity to record compliance is new. The documentation of the legitimacy of the processing including supporting information as well as of the processing are important requirements under the GDPR. Article 6 and Article 30 are key for these aspects. GDPR Article 6 outlines six possible “lawful bases” for processing personal data. Research institutions need to document under which basis their processings fall. For particular bases, such as “legitimate interest”, institutions need to perform assessments justifying this legal ground with “balancing tests” or “data protection impact assessments” [5][6]. Article 30 of the GDPR outlines that institutions should record “data processings” and the records should at a minimum contain the following:

- Stakeholders, their roles (controller, processor) and contact information;
- Purposes of data processing;
- Categorical descriptions of data subjects and the data held on subjects;
- Categorical descriptions of recipients of data, particularly those in non-EU countries and international organisations;
- Logs of data transfers to identified recipients and a description of safeguards put in place;
- Where possible, time limits for keeping different categories of personal data;
- Where possible, descriptions of organisational and technical data protection measures.

GDPR requires that records of data processing should be auditable by supervisory authorities. Some countries such as Slovakia or Spain can even impose fines if these records are not in a suitable form for auditing [7] [8].

In biomedical research, data collected from human subjects and their biological specimens fall under the GDPR when such data is not anonymous. While GDPR’s accountability principle is often mentioned in biomedical literature, we see that only few publications discuss its implications, and then only briefly [9] [10] [11].

In response to the documentation requirement, we see the emergence of commercial “data mapping” tools, and academic institutions creating GDPR data registers with such tools [12] [13]. We observe that emerging approaches typically have three particular shortcomings for documenting the processing of personal data in biomedical research.

i. Documentation is typically done on a per process basis. An institution’s activities, such as personnel administration or teaching, are recorded in terms of the processes involved, such as staff recruitment or student registration etc. When it comes to documenting research, however, the process-based approach falls short. Research is undertaken via projects, and each project represents a distinct report-worthy configuration in terms of, what are the GDPR roles of research collaborators, what types of data are used, their de-identification status and for how long the respective data can be kept.

ii. Categorical descriptions of data subjects and data recipients do not provide sufficient transparency when handling data subjects’ requests for information. For example, Article 30 requires only the listing of categories of recipients with whom personal data has been shared, whereas Article 15 states that the data subject has the right to know the individual recipients or, if this is not possible, the categories of recipients. In addition, the source of the data needs to be provided on request as well as criteria for the retention of the data if no specific time limit is given.

iii. A distinct characteristic of personal data processing in biomedical research is the separation of the collection of data from its continued processing. It is common to collect data from a cohort with a broad consent, as – due to the nature of research – possible uses cannot always be fully enumerated at the time of collection. In such cases, projects that collect, process or further process data may be operating under different legal grounds (consent, public interest, legitimate interest), which need to be recorded to demonstrate the compliance with Article 6 of the GDPR.

In this paper we describe a software tool, named the Data Information System (DAISY), which can be used to meet the data documentation requirement that the GDPR imposes on biomedical research. The remainder of the paper is organised as follows. We first introduce our method for data documentation and the target users of DAISY. Afterwards we discuss DAISY’s information model in detail and typical ways of inquiring this model. In findings, we discuss how DAISY supports compliance with GDPR’s accountability principle. We conclude the paper with final remarks and pointers to DAISY source code.

Method

DAISY has been developed to serve as a registry for research data processing that supports compliance with the GDPR and can serve for both auditing by the supervisory authorities and fulfillment of requests by data subjects.

During a GDPR audit, institutions need to provide information about what data they have, the lawful basis for data processing, as well as an appropriate record of the processing itself. In order to satisfy these requirements, one needs to pull together information from both human and machine sources (see Figure 1).

Research Principal Investigators (PIs) have expert knowledge about the projects, the human bio–samples and data used
with the Python programming language (54x406).

The next phase of development will focus on plugins that can automatically harvest evidential data processing logs from IT infrastructure. In the following section, we outline the DAISY information model, and the possible inquiries that can be made over this model.

DAISY Information Model

At its core, DAISY is focused on recording research studies, the use of personal data of study participants, the sources of data and the legal grounds for processing data. DAISY’s key entities are summarised in Table 1 for quick reference, the detailed model is given as a UML class diagram (14) in Figure 2.

Figure 1. DAISY Target users and information flow.

Projects represent a research activity occurring over a certain period of time. Projects can be organised in hierarchies; the long-term research programme of a laboratory can be recorded as an umbrella project and individual researchers’ work can be recorded as its sub-projects. DAISY allows Projects to be tagged with controlled vocabulary terms to denote study features, as well as the study focus, such as diseases, genes or phenotype attributes. The terms build, where possible, on standards, by default DAISY incorporates EDDA Study Designs Taxonomy [15], Human Phenotype Ontology (HPO) [16], Human Disease Ontology (HDO) [17] and Human Gene Nomenclature Symbols (HGNC) [18]. These can be replaced with ontologies of choice for a particular DAISY deployment.

Projects have one or more attached Documents. Documents are typically produced during the ethical, legal and administrative procedures followed during Project implementation. Documents can either be stored in DAISY, or they can also be linked to when they are archived in external document management systems. DAISY uses flags to track a project’s status on meeting national and institutional ethics requirements. In case of an absence of approvals, the user is expected to provide justifications. As per GDPR Article 22, it is necessary to track activities involving automated profiling of human subjects. An example of profiling in biomedical research is the calculation of disease ratings or scores from clinical attributes. DAISY flags such projects to enable reporting during audits. All stakeholders of a project including Principal Investigators, research and administrative personnel can be recorded in DAISY. These could either be Contacts in Partner institutes or local personnel, which are recorded as Users in DAISY. The primary responsible person for the GDPR documentation of human data used in research is the Principal Investigator, and these users are marked as local custodians of projects and data.

Contract is another key category in DAISY utilised for data provenance tracking of incoming or outgoing data. A Contract is a legal agreement with one or more signing Partners, and it is typically associated with one or more legal Documents.

A Project’s data is recorded as a Dataset containing one or more Data Declarations. A Dataset is a physical or logical unit of data, which is typically treated as a resource (e.g. a folder of files, a database or a lab book) with an associated storage endpoint and access control policy. Meanwhile, a Data Declaration represents the smallest unit of data that is traceable to a distinct data source. Data can be declared in the following three ways, depending on its source:

- Data that is being obtained from a Partner (collaborator or repository) for the purposes of a project. These declarations will point to the source Contract with the Partner.
- Data that has been obtained in an earlier project, and is being re-used in a follow-on project. These declarations will point to an existing Data Declaration as their source.
- Data that has not been obtained from a collaboration Partner or an earlier Project, such as data downloaded from community repositories. These declarations will have a source description in free text.

In addition to the above information on the data’s source, DAISY facilitates the maintenance of a list of Cohorts, and links Data Declarations with source Cohorts. A Cohort represents a study that collects data and/or biosamples from a group of participants (e.g. longitudinal case–control or family studies). With Cohort annotations on Data Declarations, one can refer to all data that was generated around a group of data subjects. This is especially useful for the effective handling of a subject’s requests. For instance, when a subject withdraws consent or exercises his/her right of access, the affected projects and data can be easily identified using Cohort annotations.
Project is a time-limited research activity with associated documentation on the ethical, legal and administrative procedures carrying out its implementation.

Partner is a research collaborator that is the source and/or recipient of human data. Partners are also legal entities with whom contracts are signed. Clinical entities that run longitudinal cohorts, research institutes, or data hubs are examples of Partners.

Contract is a legal agreement with one or more partners. Contracts are established by one or more mutually-signed documents, data sharing agreements, consortium agreements, material transfer agreements are examples of contracts.

Dataset is a physical/logical unit of data, which is typically treated as a resource with an associated location and access control policy.

Data Declaration is a sub-unit of data, which is traceable to a particular source, which could be the provider partner and source cohort, or another data declaration.

Cohort is a study that collects data and/or bio-samples from a group of participants (e.g. longitudinal case-control or family studies). A cohort is linked to the creation of data and is considered its ultimate source.

Table 1. Overview of key DAISY entities

DAISY tracks **Legal Bases** of “data processing” and **Use Restrictions** per data declaration. Each data declaration can be associated with one or more legal bases definitions, which in turn is a combination of lawful basis category, out of six as defined by the GDPR, and personal data category i.e. health, genetic, standard personal data etc, as outlined by the GDPR. Even where consent is not chosen as the legal basis, in most cases ethical consent for the research itself is sought and determines use conditions that should be seen as much as possible as binding for the continued processing.

Within one cohort, subject consents and the resulting data processing permissions given by each subject may differ. We model this using a consent status flag on Data Declarations. This field denotes whether subject consents are heterogeneous or homogeneous. **Data Declarations** with homogeneous consent would have a single **Use Restriction** configuration, meanwhile those with heterogeneous consent have multiple **Use Restriction** configurations. The **Use Restriction** entity in DAISY models a restriction using a combination of the machine readable “consent code” established by the Global Alliance for Genomics and Health (GA4GH) [19] and free-text descriptions. Examples of consent codes are project or disease or research area specific restrictions on data use. DAISY actively monitors time-dependent restrictions such as embargo periods or storage durations, and sends date expiry notifications to responsible users. GDPR puts special emphasis on data of “special subjects” such as minors or those unable to give consent. DAISY also allows the flagging of special subjects and documenting subject categories (cases, controls, etc.). For each Data Declaration, DAISY requires the recording of data types received e.g. biosamples received, or metabolomics and whole exome data generated.

DAISY records “data processings”, such as data access, storage and third-party transfer, at the level of **Datasets**. For Stor-
A sample depiction of relations among DAISY entities is given from three perspectives, based on Datasets in Figure 3. DAISY allows for defining data sensitivity classes that such data can be a particular focus. In order to support such inquiries, DAISY allows for defining data sensitivity classes that can flag data of higher sensitivity requiring additional safeguards and the tagging of Datasets with those classes.

Inquiring DAISY

A sample depiction of relations among DAISY entities is given in Figure 3. DAISY information space is commonly explored through those made accessible from other Projects. Projects also link to Contracts and associated Partners that have sent or received data.

i. Datasets can be located on host storage platforms based on Cohorts covered or the types of data contained. From here the user can navigate to the Projects that (re)use this data as well as its sources and the Contracts and Documents ensuring its data’s legal and ethical processing.

ii. Projects are indexed with their responsible Principal Investigators, and are classified with respect to subject areas and study methods. From a Project, one can navigate to Datasets that are used in the scope of this project, including those made accessible from other Projects. Projects also link to Contracts and associated Partners that have sent or received data.

iii. Partners are indexed according to their geographic location, sector and activity e.g. as a healthcare institution. It is possible to get an overview of Contracts signed with designated Partners. From one Contract, e.g. a consortium agreement, one can navigate to the encompassing Project and then to other Contracts such as material transfer or data sharing agreements.

All inquiries start by locating records of interest and navigating to other related records. DAISY provides faceted search pages for all major entities and allows the traversal of links between entities. A screenshot of the Partner search interface given in Figure 4.

Findings

At its core, DAISY needs to provide all the information required to fulfill the transparency and record keeping obligations of Articles 15 (right of access) and 30 (records of processing activities). However, for accountability, by following Article 5, further documentation is needed as described below. This combined information fulfills the requirements for accountability in the following way.

Lawfulness

The legal basis for the processing is a mandatory field in DAISY. Additional entries enable either a reference to be made to external files or the upload of files that can further corroborate the chosen legal basis. In the case of legitimate interest, the balancing exercise will be needed. For consent as legal basis, the consent template is relevant. When the public interest basis is used, the reference to the respective law required following the GDPR Article 6(3) should be provided. The legal basis is not a mandatory element of the record keeping in Article 30, however, it is crucial to document it to properly comply with the GDPR.

Fairness

Documenting the fairness is a challenging undertaking. As an example, the UK Data Protection Act [21] states in Article 19(2) that the research must not cause substantial damage or substantial distress to a data subject. Within DAISY, the fairness principle for a clinical study is covered by the reference to, or the upload of, the participant information sheet and the corresponding consent form. These documents demonstrate the agreement of the study participants with the intended research. In addition, the ethics approval documents give an independent assessment that the purposes of the research do not override the interests of the study participants in an unfair way. The approach to prove fairness through an ethics approval is in some countries even part of the legislation, e.g. in the UK [21] or in Sweden [22].

Where data is imported from repositories and collaborators, the confirmation of the existence, and the coverage of, the ethics approval is obtained as part of the data sharing agreement. This document also determines the purposes for which the data can be used in compliance with the fairness principle. In this case, no consent forms are needed and the ethics approval documents uploaded in DAISY will cover only the research project using the data.

Transparency

The fields in DAISY cover all information requirements about the processing towards the data subject according to Articles 13, 14 and 15. The purpose of the field "project description is to provide a lay summary that is understandable for the data subject. In addition, the record keeping following Article 30 is addressed within DAISY when the information is specific for the particular project. The more generic information on the technical and organisational security measures has to be documented outside DAISY (see below under confidentiality).

Purpose limitation

The overall purpose of processing data for research is inherent for all research projects using the data. However, often the data has been collected for more specific reasons. Here, the scope of the consent of the study participants is the guiding principle, even if the chosen legal basis is not consent but e.g. public interest or legitimate interest. Data collection in the medical research context requires a consent, wherever possible, from the ethics point of view, independent of data protection law [23][24][25][26]. Therefore, each dataset has a purpose limitation field that follows the machine readable GA&GH codification [19]. This enables automated consent management to be done at the study level. In addition, the Consent Status field specifies if the obtained consent has been homogeneous or heterogeneous. As the GDPR re-
Figure 3. Example DAISY records and the relationships between them. Projects and Datasets create a matrix of associations. A Project may involve several Datasets with (sub)DataDeclarations coming from different source Cohorts and covered by different Contracts with various Partners, which may have been signed at different times. Additionally, data/biosamples obtained for one Project may be re-used in another Project (biosamples in Dataset 3 of Project Y are re-used in Project Z Dataset 4). Furthermore, a Project may access data of other projects (Project Y and Dataset 2). Typically, Cohort data is collected for an open number of projects. Therefore, biosamples and data of one cohort may end up in several datasets within an institution; we denote this with colours, data from a specific Cohort is tainted with the colour of that Cohort. Also, note that researchers may generate different data types using biosamples/data obtained from a Cohort e.g. generate genomics data from samples. DAISY ensures that Cohort annotations are propagated to newly generated (derivative) data.

Figure 4. Screenshot of Partner search page in DAISY.
quires the consent to be given for each purpose individu-
ally [27], studies often offer a selective option to consent
to the specific study in which context the data is collected
as well as additional future research projects, thus giv-
ing a broad consent for the data use in research. DAISY
has a field to store the column(s) in the tabular clinical
information that specifies the different consent options.
With this, information about the position in the clinical
data of the participants' consent can be found and used
for subject level consent management. This enables an
implementation of the purpose limitation at the level of
individual subjects.

Data minimisation

Data minimisation needs to be implemented on two levels,
the administrative data within DAISY and the research
data administered by DAISY. On the administrative side,
DAISY foresees a role definition of different stakeholders
with corresponding access rights (profile based). To allow
data minimisation of research data, DAISY lists the differ-
ent types of data available in the datasets. This list gives
input for the data analysis plan that should be uploaded
as part of the project description and thus can provide the
basis for a selective access provision.

Accuracy

Information related to the data accuracy for the research
data can be provided by linking to a metadata file or a
management system that contains additional information
on the data collected and standard operating procedures
(SOPs) used. The metadata link can be found in the source
project that describes the study or origin that led to the
creation of the dataset. The accuracy of the administra-
tive data of DAISY is to be achieved by the different ac-
cess rights of the stakeholders editing DAISY. Some in-
formation, e.g. relevant legal data, can only be edited or
changed by a legal administrator to avoid erroneous en-
tries. In addition, record updates in DAISY are logged; the
timestamp of updates and the user performing the oper-
ation are recorded.

Storage limitation

The retention time for a dataset is an entry in DAISY. An
active alerting system informs the responsible PI as well
as the legal team and the data steward before the foreseen
data removal comes to an end.

Integrity

The data integrity can be followed up through the
creation of the checksum [28][29] value that stays with
the dataset during its lifetime from the ingestion into the
IT infrastructure until its deletion. While the checksum
is usually kept together with the respective dataset, it
also be saved within DAISY to keep track of it. The
checksum value can be repeatedly tested to avoid silent
corruption of the data and can be transmitted with each
data transfer to ensure that no data is corrupted during
transit.

In addition to data, another important aspect is the in-
tegrity and trustworthiness of metadata, i.e. the records
in DAISY. Currently DAISY logs all database queries and
manipulations, and enforces access control on those oper-
ations; but for its records to be used in compliance assess-
ment, more assurances, similar to those provided by Code
of Federal Regulation (CFR) 21 Part 11 complaint software
would be necessary [30]. The GDPR is yet to be translated
into concrete industry guidance similar to CFR 21 Part 11,
nevertheless in DAISY we plan to implement queryable
audit trails of records and record fixity and signing fea-
tures. DAISY’s source code and user manual is tracked in
Github, any changes to DAISY source goes through a pro-
cess of peer reviewed, approval source changes are fully
recorded and source build and test procedures are auto-
mated. DAISY should be deployed, tested and managed
in protected environments respecting, where applicable,
systems support standards and industry best practices, as
those in the financial or the pharmaceutical sectors.

Confidentiality

Both data controller and processor are obliged to imple-
ment appropriate technical and organisational measures
to ensure the privacy of the data subjects (GDPR Articles
24, 25, 26 and 32). The organisational and technical se-
curity measures need to be documented following Arti-
cle 30 of the GDPR. Rather than documenting all secu-
ity measures directly in DAISY, a link to such external
documentation is foreseen. Likewise, part of each project
characterisation in DAISY is a link to a data protection im-
pact assessment (DPIA) that is performed externally. Cur-
cently DAISY stores URL links to external documents with-
out checking for erasure or update of those documents.
The linking feature is intentional as DAISY is typically
co–deployed with document management systems dedi-
cated to the storage of legal documents. We consider such
external document management systems to be primarily
responsible for preservation of documents and their revi-
sion tracking.

National differences

Ultimately, full compliance with data protection law
within the EEA may be subject to national or regional
differences depending on the interpretation by the data
protection authorities and the GDPR implementations in
the different countries through local laws. In particular in
the areas of research and health or genetic data, the GDPR
leaves considerable scope for national provisions, see for ex-
ample [31]. Here, not only data protection law may be
relevant but also subsequent sector laws regulating areas
like healthcare, biobanking or research where additional
requirements can be defined. Therefore, it is necessary
for all data controllers to be aware of the relevant legisla-
tion in their countries. Data protection officers in the in-
stitutions can help in this quest. Where the requirements
are not clear, the relevant data protection authority can
be requested to provide clarification.

Conclusion

DAISY can assist research institutions with a guidance on their
documentation obligations and can serve as a knowledge base
about the data existing in the institution. DAISY not only sup-
ports documentation towards accountability but also helps to
comply with the responsibility principle as it warns, for in-
stance, about the expiry of data retention times. It also gives
indications about what further research is compatible with the
existing consent by matching information on potential future
projects with the consent codes stored for the data.

While the extensive documentation required may seem ex-
cessive, the GDPR actually puts in place what has already been
postulated many years ago for health databases from an ethi-
cal point of view, such as the World Medical Association (WMA)
declaration on ethical considerations on health databases and
biobanks [32]. With audits and the corresponding fines for non-
compliance, the GDPR now enforces such ethical principles.

As the documentation obligations described above are a new
requirement under the GDPR, not many research institutions
are ready for this administrative challenge. A particular hurdle is
that for all personal data acquired prior to 25 May 2018, the
same documentation is needed if the data are still being pro-
cessed. This includes the mere storage of personal data. Sub-
stantial catching up will be needed. The GDPR is leading to new positions in the research environment: as per Article 37, all public institutions as well as institutions processing sensitive data on a large scale are required to have a data protection officer. The administrative and documentation efforts around the data processing may also lead to increased employment of data stewards who ensure the proper ingestion and registration of data in systems such as DAISY. Such developments driven by data protection law may, however, also improve the quality of the data as the support given by data stewards can also lead to better documentation of scientific metadata and better structuring of databases. Data protection will ultimately become part of a research institution strategy in their efforts to make data FAIR: findable, accessible, interoperable and reusable [33]. DAISY was developed as a tool to support this work.

Availability of source code and requirements

DAISY has been developed as a Python web application. Bootstrap and jQuery are used for the front-end (HTML, CSS, Javascript). PostgreSQL is used as the database backend, and Solr is used as the full-text search engine. The DAISY source code is available online [34] with a GNU Affero General Public License (AGPL). DAISY installation has primarily been tested on Linux CentOS 7 servers; DAISY also has a simpler Docker-based deployment, which can be used for demo deployments and software evaluation. Instructions for both deployments can be found in our source repository [34].

DAISY has interfaces to allow the upload of JSON or Excel files to import relevant data from other information systems or following the independent collection of information. Also, a planned feature is to have exports of data provenance information in DAISY. Such exports can support requests for information during data protection audits or when responding to study participants’ requests.

DAISY has been registered in bio.tools [35] with the identifier biotools:Data_Information_System_DAISY, and in SciCrunch [36] with the identifier RRID:SCR_017472.

Project name: Data Information System
Project home page: https://github.com/elixir-luxembourg/daisy
Operating system(s): Platform independent
Programming language: Python 3.6 or higher
Other requirements: Solr 7.x, PostgreSQL 10.x
License: AGPL-3.0
RRID: SCR_017472

Availability of supporting data

Snapshots of the code are available in the GigaScience GigaDB database [37].

Declarations

List of abbreviations

AGPL – Affero General Public License
CSS – Cascading Style Sheets
DAISY – Data Information System
EDDA – Evidence in Documents, Discovery, and Analytics
EEA – European Economic Area
EFTA – European Free Trade Association
EU – European Union
FAIR – Findable Accessible Interoperable Reusable
GA4GH – Global Alliance for Genomics and Health
GDPR – General Data Protection Regulation
HDO – Human Disease Ontology
HGNC – HUGO (Human Genome Organisation) Gene Nomenclature Committee
HPO – Human Phenotype Ontology
HTML – Hypertext Markup Language
UML – Unified Modeling Language
WMA – World Medical Association

Ethical Approval

Not applicable.

Consent for publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was (partially) funded by the contribution of the Luxembourg Ministry of Higher Education and Research towards the Luxembourg ELIXIR Node.

Authors’ Contributions

Regina Becker designed the DAISY information model, wrote parts of the paper and supervised the work. Pinar Alper contributed to the information model and software development and wrote parts of the paper. Valentin Grouès, Yohan Jarosz, Jacek Lebioda, Kavita Rege and Christophe Trefois contributed to the information model and software development and reviewed drafts of the paper. Sandrine Munoz, Venkata Satagopam and Reinhard Schneider contributed to the information model and reviewed drafts of the paper.

Acknowledgements

Authors would like to acknowledge the Reproducible Research Results (R3) team of the Luxembourg Centre for Systems Biomedicine for support of the project and for promoting reproducible research.

References

1. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation); 2016. http://data.europa.eu/eli/reg/2016/679/2016-05-04.
2. Decision of the EEA Joint Committee No 154/2018 of 6 July 2018 amending Annex XI and Protocol 37 to the EEA Agreement [2018/1022]; 2018. http://data.europa.eu/eli/doc/2018/1022/0j.
3. Shabani M, Borry P. Rules for processing genetic data for research purposes in view of the new EU General
Data Protection Regulation. European Journal of Human Genetics 2018;26(2):149–156. https://doi.org/10.1038/s41431-017-0065-7.

4. Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data; 1995. http://data.europa.eu/eli/dir/1995/46/ee.

5. Guide to the General Data Protection Regulation: Legitimate Interests. UK Information Commissioner’s Office; 2018. https://ico.org.uk/for-organisations/guide-to-the-general-data-protection-regulation-gdpr/lawful-basis-for-processing/legitimate-interests/.

6. Article 29 Working Party Opinion 06/2014 on the notion of legitimate interests of the data controller under Article 7 of Directive 95/46/EC. EC Data Protection Working Party; 2014. https://ec.europa.eu/justice/article-29/press-material/public-consultation/notion-legitimate-interests/files/20141128_overviewrelating_to_consultation_on_opinion_legitimate_interest_pdf.pdf.

7. Act No. 122/2013 Coll. on Protection of Personal Data and on Changing and Amending of other acts, resulting from amendments and additions executed by the Act. No. 84/2014 Coll. National Council of the Slovak Republic; 2014. https://www.dataprotection.gov.sk/uoou/sites/default/files/xcfinder/files/Act_122-2013_84-2014_en.pdf.

8. The Organic Law 3/2018 of 5 December on the Protection of Personal Data and the Guarantee of Digital Rights Act 74(12). Parliament of Spain Cortes Generales; 2018. https://www.boe.es/boe/dias/2018/12/06/pdfs/BOE-A-2018-16673.pdf.

9. Morrison M, Bell J, George C, Harmon S, Munnsie M, Kaye J. The European General Data Protection Regulation: challenges and considerations for iPSC researchers and biobanks. Regenerative Medicine 2017;12(6):693–701. https://doi.org/10.2217/rme-2017-0068, PMID: 28976812.

10. Gauthier C. The impact of the EU general data protection regulation on scientific research. eancer 2017 01;11(7):099. PMID: 28144283.

11. Dove ES. The EU General Data Protection Regulation: Implications for International Scientific Research in the Digital Era. The Journal of Law, Medicine & Ethics 2018;46(4):1033–1030. https://doi.org/10.1177/107311681904600403.

12. Vigilant Software Dataflow Mapping Tool; 2019. https://www.vigilantsoftware.co.uk/topic/data-flow-mapping-tool.

13. OneTrust Data Mapping Automation; 2019. https://www.onetrust.com/products/data-mapping.

14. Rumbaugh J, Jacobson I, Booch G. Unified Modeling Language Reference Manual, The (2Nd Edition). Pearson Higher Education; 2004.

15. Belkhuys T, Tseytlin E. EDDA Study Designs Taxonomy (version 2.0). Pittsburgh: University of Pittsburgh School of Medicine; 2016.

16. Kohler S, Doelken SC, Mungall CJ, Bauer S, Firth HV, Baillie–Forestier I, et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res 2014 Jan;42(Database issue):D966–74.

17. Schriml LM, Mitrauk E, Munro J, Tauber B, Schor M, Nickle L, et al. Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res 2019 Jan;47(D1):D955–D962.

18. Braschi B, Denny P, Gray K, Jones T, Seal R, Tweedie S, et al. Genenames.org: the HGNC and VGNC resources in 2019. Nucleic Acids Research 2018 10;47(D1):D786–D792. https://doi.org/10.1093/nar/gky930.

19. Dyke SOM, Philipakis AA, Rambil De Argila J, Palotto DN, Luetskemeier ES, Knoppers BM, et al. Consent Codes: Up- holding Standard Data Use Conditions. PLOS Genetics 2016 01;12(1):1–9. https://doi.org/10.1371/journal.pgen.1005772.

20. Tang H, Jiang X, Wang X, Wang S, Sofia H, Fox D, et al. Protecting genomic data analytics in the cloud: state of the art and opportunities. BMC Med Genomics 2016 Oct;9(1):63.

21. UK Data Protection Act. Information Commissioner’s Office; 2018. http://www.legislation.gov.uk/ukpga/2018/12/pdfs/ukpga_20180012_en.pdf.

22. SFS 2003:460. Law on ethics testing of human-related research. Stockholm Social Department; 2018. https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/lag-2003460-on-etikprovning-av-forskning-som_sfs-2003-460.

23. Association WM. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013 11;310(20):2191–2194. https://doi.org/10.1001/jama.2013.281053.

24. The NuGO Bioethics Guidelines on Human Studies. European Nutrigenomics Organisation; 2007. http://nugo.diebot/index.php.

25. Data storage and DNA banking for biomedical research: technical, social and ethical issues. European Journal of Human Genetics 2003;11(2):S8–S10. https://doi.org/10.1038/sj.ejhg.5201115.

26. van Delden JJM, van der Graaf R. Revised CIOMS International Ethical Guidelines for Health–Related Research Involving Humans. JAMA 2017 01;317(2):135–136.

27. Article 29 Working Party Guidelines on consent under Regulation 2016/679. EC Data Protection Working Party; 2017. https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=623051.

28. Smoak CG, Widel M, Truong S. The use of checksums to ensure data integrity in the healthcare industry. Pharmaceutical Programming 2012;1(1–2):38–41. https://doi.org/10.1177/1757092122.000000006.

29. Recommendation for File Integrity - version 1.0. Electronic Standards for the Transfer of Regulatory Information; 2010. http://estri.ich.org/recommendations/MS1_V1_0.pdf.

30. Guidance for Industry: 21 CFR Part 11; Electronic Records; Electronic Signatures. US Food and Drug Administration; 2014. https://www.fda.gov/media/75414/download.

31. Townsend D. Conclusion: harmonisation in genomic and health data sharing for research: an impossible dream? Hum Genet 2018 Aug;137(8):657–664.

32. WMA declaration of Taipei on ethical considerations regarding health databases and biobanks. World Medical Association; 2016. https://www.wma.net/policies-post/wma-declaration-of-taipei-on-ethical-considerations-regarding-health-databases-and-biobanks/.

33. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Nature Scientific Data 2016 03;3.

34. ELIXIR–Luxembourg Github repository; 2017. https://github.com/elixir-luxembourg/daisy.

35. Ison J, Rapacki K, Ménager H, Kalaš M, Rydza E, Chmura P, et al. Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Research 2015 11;44(D1):D38–D47. https://doi.org/10.1093/nar/gkv1116.

36. Bandrowski A, Brush M, Grethe J, Haendel M, Kennedy D, Hill S, et al. The Resource Identification Initiative: A cul-
tural shift in publishing. F1000Research 2015;4(134).
37. Becker R, Alper P, Grouès V, Munoz S, Jarosz Y, Lebioda J, et al. Supporting data for "DAISY: a Data Information System for accountability under the General Data Protection Regulation". GigaScience Database 2019;http://dx.doi.org/10.5524/100664.
Dear GigaScience Editors,

We uploaded the final version of our paper titled “DAISY: a Data Information System for accountability under the General Data Protection Regulation”. Specifically, we made the following revisions:

1. In the authors section, we added ORCID identifiers for those authors that are registered with ORCID.

2. In the “methods” section we added “through a web application developed with the Python programming language (RRID:SCR_008394).”

3. In the “availability of source code” section, we added the following:

 Project name: Data Information System
 Project home page: https://github.com/elixir-luxembourg/daisy
 Operating system(s): Platform independent
 Programming language: Python 3.6 or higher
 Other requirements: Solr 7.x, PostgreSQL 10.x
 License: AGPL-3.0
 RRID: SCR_017472

4. We added an “availability of data” section with the following paragraph:

 “Snapshots of the code are available in the GigaScience GigaDB database [37].”

5. In the references section we added the following:

 37. Becker R, Alper P, Grouès V, Munoz S, Jarosz Y, Lebioda J, et al. Supporting data for "DAISY: a Data Information System for accountability under the General Data Protection Regulation». GigaScience Database 2019; http://dx.doi.org/10.5524/100664.

Regards

Pinar ALPER on behalf of authors