A lattice model related to the nonlinear Schrödinger equation

A. G. Izergin and V. E. Korepin
Leningrad branch of Steklov Mathematical Institute, of Academy of Sciences of the USSR

(Dated: Feb 26, 1981)

This is a historical note. In 1981 we constructed a discrete version of quantum nonlinear Schrödinger equation. This led to our discovery of quantum determinant: it appeared in construction of anti-pod (11). Later these became important in quantum groups: it describes center of Yang-Baxter algebra. Our paper was published in Doklady Akademii Nauk vol 259, page 76 (July 1981) in Russian language.

1. Inverse scattering method is used (in classical [1, 2] and quantum cases [3]) to solve evolutionary equations of completely integrable dynamical systems. In quantum case we shall abbreviate the method to qism. It is based on Lax representation

\[\partial_t L_n(\lambda) = M_{n+1}(\lambda)L_n(\lambda) - L_n(\lambda)M_n(\lambda) \]

(1)

Entries of the matrices \(L_n(\lambda) \) and \(M_n(\lambda) \) are expressed in terms of dynamical variables of the lattice system (they also depend on spectral parameter \(\lambda \)). The monodromy matrix \(T^{n,m}(\lambda) = L_n(\lambda) \cdots L_m(\lambda) \ (n \geq m) \) and transfer matrix \(\tau(\lambda) = trT^{N,1}(\lambda) \) are important for qism. Recently an effective method of construction of action-angle variables was discovered, it is based on \(R \)-matrix. In classical case [4] it provides Poisson brackets of matrix elements of the monodromy matrix, while in quantum case [5, 6] it gives commutation relations:

\[[T_c(\lambda) \otimes T_c(\mu)] = [T_c(\lambda) \otimes T_c(\mu), R_c(\lambda, \mu)] \]

(2)

\[R_q(\lambda, \mu) (T_q(\lambda) \otimes T_q(\mu)) = (I \otimes T_q(\mu)) (T_q(\lambda) \otimes I) R_q(\lambda, \mu) \]

(3)

These equations lead to commutativity of transfer matrices (we use subindex c or q to distinguish classical from quantum). Meaning that \(\partial_t \ln \tau(\mu) \) is a generating functional of Hamiltonians for completely integrable systems.

In classical case E.K. Sklyanin proved [7] that corresponding equations of motion can be represented in the Lax form [11]. Here we prove that this is true in quantum case as well. Generating functional of the operators \(M_n(\lambda) \) is a matrix \(m_n(\lambda, \mu) \):

\[m_n(\lambda, \mu) = i\tau^{-1}(\mu)\partial_\mu \tau(\mu) - iq_n^{-1}(\lambda, \mu)\partial_\mu q_n(\lambda, \mu) \]

\[q_n(\lambda, \mu) = tr_2 (I \otimes T^{N,n}(\mu)) R_q^{-1}(\lambda, \mu) (I \otimes T^{n-1,1}(\mu)) \]

\[i [\partial_\mu \ln \tau(\mu), L_n(\lambda)] = m_{n+1}(\lambda, \mu) - L_n(\lambda)m_n(\lambda, \mu) \]

2. Let consider nonlinear Schroedinger equation (nS). In continuous case it has a Hamiltonian

\[H = \int dx \left(\partial_x \psi^\dagger \partial_x \psi + \kappa \psi^\dagger \psi^\dagger \psi \right) \]

\[\{ \psi_n(x), \psi_k^\dagger(y) \} = i\delta(x - y), \quad [\psi_q(x), \psi_q^\dagger(y) = \delta(x - y)] \]

(4)

It is integrable both in classical [8] and quantum [3, 9] cases. Corresponding \(R \)- matrix can be called quasi-classical

\[R_q = I \otimes I - iR_c, \quad R_c = \frac{\kappa \Pi}{\lambda - \mu} \]

(5)

Here \(I \) is identical matrix 2X2 and \(\Pi \) is permutation matrix.

Lattice generalization of nS has long attracted attention of the experts [12, 13]. We propose a new version of lattice nS both in classical and quantum cases. It is distinguishing feature is that \(R \)-matrix is the same as in
the continuous case and basic variables χ are canonical Bose fields. We start by suggesting the following L_n operator:

$$
L_n(\lambda) = -\frac{i\lambda \Delta}{2} \sigma_3 / 2 + S_n^3 I + S_n^+ \sigma_+ + S_n^- \sigma_- ,
$$

$$
S^3 = 1 + \frac{\chi_n^\dagger}{2} \chi_n , \quad S_n^+ = -i \sqrt{\kappa} \chi_n^\dagger \sigma_+ , \quad S_n^- = i \sqrt{\kappa} \rho_n \chi_n
$$

$$
\rho_n^+ = \rho_n^\dagger (\chi_n^\dagger \chi_n) , \quad \rho_n^- = 1 + \frac{\chi_n^\dagger}{2} \chi_n
$$

$$
\{ \chi_{m}^c , \chi_{n}^c \} = i \Delta \delta_{m,n} , \quad [\chi_{m}^c , \chi_{n}^c] = \Delta \delta_{m,n}
$$

(6)

Here σ are Pauli matrices. We consider repulsive case $\kappa > 0$ and put $\rho_n^+ = \rho_n^- = \rho_n$.

3. Here we shall discuss lattice model (6) in classical case. Simple calculations lead to

$$
T(\lambda) \sigma_2 T^t(\lambda) \sigma_2 = d_{-m+1}^n (\lambda) I
$$

$$
d_c(\lambda) = \det L_n(\lambda) = 1 + \lambda^2 \Delta^2 / 4
$$

(7)

This shows that at $\lambda = \nu = -2i / \Delta$ the $L_n(\lambda)$ operator turns into one dimensional projector. This makes it possible to calculate explicitly logarithmic derivatives of $\tau(\lambda)$ at this point, which can be represented as a sum of local densities:

$$
\partial^n \ln \tau(\lambda)|_{\lambda=\nu} = \sum_{k=1}^N h_{k,n},
$$

$$
h_{k,n} = D^n \ln \text{tr} L_{k+n} (\nu) L_{k+n-1} (\nu) \ldots L_k (\nu) L_{k-1} (\nu)|_{\lambda=\nu}
$$

Here D^n is a differential operator. For small n it is:

$$
D^1 = \partial_k = \frac{d}{d \nu} , \quad D^2 = 2 \partial_{k+1} \partial_k + \partial_k^2
$$

$$
D^3 = 6 \partial_{k+2} \partial_{k+1} \partial_k + 6 \partial_{k+2}^2 \partial_{k+1} + 6 \partial_{k+1} \partial_k^2 - 6 \partial_{k+2} \partial_k^2 + \partial_k^3
$$

(9)

We use this notations to define lattice classical Hamiltonian of nS

$$
H_c = D_c(\lambda) \ln \left[(1 + \lambda / \nu)^{-N} \tau(\lambda) \right] + \text{complex conjugate}
$$

$$
D_c(\lambda) = \left(\frac{d}{d \lambda} \right)^3
$$

(10)

The explicit expression shows that this Hamiltonian describes interaction of five nearest neighbors on the lattice. In the continuous limit $[\chi_n = \psi_n \Delta; \psi_{n+1} - \psi_n = O(\Delta); \Delta \rightarrow 0, N \rightarrow \infty$ but $N \Delta = \text{const}$] it goes to the correct Hamiltonian of the continuous model and L_n operator turns into correct continuous L_n operator, see [8].

4. Here we construct quantum lattice nS model. Quantum analog of (7) is given by

$$
T(\lambda) \sigma_2 T^t(\lambda + i \kappa) \sigma_2 = d_{-m+1}^n (\lambda) I
$$

$$
d_q(\lambda) = \Delta^2 (\lambda - \nu)(\lambda - \nu + i \kappa) / 4
$$

(11)

This defines quantum determinant:

$$
\text{det}_q T(\lambda) = T_{11}(\lambda) T_{22}(\lambda + i \kappa) - T_{12}(\lambda) T_{21}(\lambda + i \kappa) = d_{-m+1}^n (\lambda)
$$

To define Hamiltonian of the model let us add quantum correction like in [3]:

$$
H_q = \left(D_c(\lambda) + \frac{i \kappa}{6} \frac{d}{d \lambda} \right) \ln \left[(1 + \lambda / \nu)^{-N} \tau(\lambda) \right] + \text{hermitian conjugate}
$$

(12)

The model can be solved by qism [3]. The pseudo-vacuum Ω is annihilated by lattice Bose fields $\chi_n \Omega = 0$. The eigenvectors are given by algebraic Bethe ansatz:

$$
\Psi(\lambda_1 \ldots \lambda_n) = B(\lambda_1) \ldots B(\lambda_n) \Omega , \quad B(\lambda) = T_{12}(\lambda)
$$

These λ_j satisfy a system of Bethe equations:

$$
\left(\frac{1 - i \lambda_j \Delta / 2}{1 + i \lambda_j \Delta / 2} \right)^N = \prod_{k \neq j} \frac{\lambda_j - \lambda_k - i \kappa}{\lambda_j - \lambda_k + i \kappa}
$$

(13)
Corresponding eigenvalue of $\tau(\lambda)$ is

$$
(1 - \frac{i\lambda\Delta}{2})^N \prod_{k=1}^{n} \frac{\lambda - \lambda_k + i\kappa}{\lambda - \lambda_k} + (1 + \frac{i\lambda\Delta}{2})^N \prod_{k=1}^{n} \frac{\lambda_k - \lambda + i\kappa}{\lambda_k - \lambda} \tag{14}
$$

From here we obtain energy levels [eigenvalues of the Hamiltonian]

$$
H_q \Psi = (\sum_{k=1}^{n} E(\lambda_k)) \Psi, \quad E(\mu) = f(\mu) + f(\bar{\mu})
$$

$$
f(\mu) = (D_c + \frac{i\kappa}{\mu - \lambda}) \ln \left(\frac{\mu - \lambda + i\kappa}{\mu - \lambda}\right) |_{\lambda = \nu}
$$

The Hamiltonian has correct continuous limit \cite{4} and $E(\mu) \rightarrow \mu^2$.

5. Quantum nS model constructed above can be considered as a generalization of XXX model with negative spin $-2/\kappa\Delta$. We can rewrite the L_n operator \cite{6} in the way similar to XXX:

$$
L_n^X = -\sigma_3 L_n = i\lambda + t_n^k \otimes \sigma_k
$$

Here t_n^k are simple linear combinations of S_n^k from \cite{3}. They form an infinite dimensional representation of $SU(2)$ algebra, see \cite{14}.

\begin{enumerate}
\item C.S. Gardner, J.M. Green, M.D. Kruskal and R. M. Miura, Phys. Rev. Lett. vol 19, page 1095, 1967
\item V.E. Zakharov and L.D. Faddeev, Functional Analyse and Applications vol 5, page 280, 1971
\item L.D. Faddeev, Preprint R-2-79, LOMI, Acad, Sc, USSR, 1979
\item E.K. Sklyanin, Preprint R-3-79, LOMI, Acad, Sc, USSR, 1979
\item R.J. Baxter. Ann. Phys. vol 70, page 1, 1973
\item A.G.Izegin and V.E. Korepin Preprint E-3-80, LOMI, Acad, Sc, USSR, 1980
\item E.K. Sklyanin, Zap. Nauch. Semin. LOMI, 1980
\item V.E. Zakharov and A.B. Shabat. Sov. Phys. JETP, vol 34, page 62, 1972
\item F.A. Berezin, G.P. Pokhil and V. M. Finkel’berg, Vestnik Mosk. Univer. Ser 1 no 1 page 21, 1964
\item E.K. Sklyanin and L.D. Faddeev, Doklady Akademii Nauk vol 243, 1978 (Sov. Phys. Dokl vol 23, page 902, 1978)
\item E.K. Sklyanin, Doklady Akademii Nauk vol 244, page 1337 (Sov. Phys. Dokl vol 24, page 107, 1979)
\item M.Ablowitz, Stud. Appl. Math. vol 58, page 17, 1978
\item P.P. Kulish, Lett Math. Phys vol 5 page 111, 1981
\item T.Holstein and H. Primakoff, Phys. Rev vol 58, page 1098, 1940
\end{enumerate}