SOME REMARKS ON STABLE ALMOST COMPLEX STRUCTURES ON MANIFOLDS

HUIJUN YANG

Abstract. Let X be an $(8k + i)$-dimensional pathwise connected CW-complex with $i = 1$ or 2 and $k \geq 0$, ξ be a real vector bundle over X. Suppose that ξ admits a stable complex structure over the $8k$-skeleton of X. Then we get that ξ admits a stable complex structure over X if the Steenrod square

$$\text{Sq}^2 : H^{8k-1}(X; \mathbb{Z}/2) \rightarrow H^{8k+1}(X; \mathbb{Z}/2)$$

is surjective. As an application, let M be a 10-dimensional manifold with no 2-torsion in $H^i(M; \mathbb{Z})$ for $i = 1, 2, 3$, and no 3-torsion in $H_1(M; \mathbb{Z})$. Suppose that the Steenrod square

$$\text{Sq}^2 : H^7(M; \mathbb{Z}/2) \rightarrow H^9(M; \mathbb{Z}/2)$$

is surjective. Then the necessary and sufficient conditions for the existence of a stable almost complex structure on M are given in terms of the cohomology ring and characteristic classes of M.

Keywords. Stable almost complex structure, Obstructions, Atiyah-Hirzebruch spectral sequence, Differentiable Riemann-Roch theorem

MSC2010. 53C15, 57M50, 19L64

1. Introduction

First we introduce some notations. For a topological space X, let $\text{Vect}_\mathbb{C}(X)$ (resp. $\text{Vect}_\mathbb{R}(X)$) be the set of isomorphic classes of complex (resp. real) vector bundles on X, and let $\widetilde{K}(X)$ (resp. $\widetilde{KO}(X)$) be the reduced KU-group (resp. reduced KO-group) of X, which is the set of stable equivalent classes of complex (resp. real) vector bundles over X. For a map $f : X \rightarrow Y$ between topological spaces X and Y, denote by

$$f^*: \widetilde{K}(Y) \rightarrow \widetilde{K}(X) \quad \text{and} \quad f^*: \widetilde{KO}(Y) \rightarrow \widetilde{KO}(X)$$

the induced homomorphisms. For $\xi \in \text{Vect}_\mathbb{R}(X)$ (resp. $\eta \in \text{Vect}_\mathbb{C}(X)$), we will denote by ξ (resp. η) the stable class of ξ (resp. η). Moreover, we will denote by

$$w_i(\xi) = w_i(\xi) \quad \text{the } i\text{-th Stiefel-Whitney class of } \xi,$$
$$p_i(\xi) = p_i(\xi) \quad \text{the } i\text{-th Pontrjagin class of } \xi,$$
$$c_i(\eta) = c_i(\eta) \quad \text{the } i\text{-th Chern class of } \eta,$$
$$ch(\eta) \quad \text{the Chern character of } \eta.$$
In particular, if X is a smooth manifold, we denote by
\[
\begin{align*}
 w_i(X) &= w_i(TX) & \text{the } i\text{-th Stiefel-Whitney class of } X,\\
p_i(X) &= p_i(TX) & \text{the } i\text{-th Pontrjagin class of } X,
\end{align*}
\]
where TX is the tangent bundle of X.

It is known that there are natural homomorphisms
\[
\begin{align*}
 \tilde{r}_X &
 : \tilde{K}(X) \to \tilde{KO}(X) & \text{the real reduction},\\
 \tilde{c}_X &
 : \tilde{KO}(X) \to \tilde{K}(X) & \text{the complexification},
\end{align*}
\]
which induced from
\[
\begin{align*}
 r_X &
 : \text{Vect}_C(X) \to \text{Vect}_R(X) & \text{the real reduction},\\
 c_X &
 : \text{Vect}_R(X) \to \text{Vect}_C(X) & \text{the complexification},
\end{align*}
\]
respectively. Let $\xi \in \text{Vect}_R(X)$ be a real vector bundle over X. We say that ξ admits a stable complex structure over X if there exists a complex vector bundle η over X such that $\tilde{r}_X(\tilde{\eta}) = \tilde{\xi}$, that is $\tilde{\xi} \in \text{Im } \tilde{r}_X$. In particular, if X is a smooth manifold, we say that X admits a stable almost complex structure if T_X admits a stable complex structure.

Let $U = \lim_{n \to \infty} U(n)$ (resp. $SO = \lim_{n \to \infty} SO(n)$) be the stable unitary (resp. special orthogonal) group. Denote by $\Gamma = SO/U$. Let X^q be the q-skeleton of X, and denote by $i: X^q \to X$ the inclusion map of q-skeleton of X. Suppose that ξ admits a stable complex structure over X^q, that is there exists a complex vector bundle η over X^q such that
\[
i^*(\tilde{\xi}) = \tilde{r}_{X^q}(\tilde{\eta}).
\]
Then the obstruction to extending η over the $(q + 1)$-skeleton of X is denoted by
\[
o_{q+1}(\eta) \in H^{q+1}(X, \pi_q(\Gamma))
\]
where
\[
\pi_q(\Gamma) = \begin{cases}
\mathbb{Z}, & q \equiv 2 \mod 4, \\
\mathbb{Z}/2, & q \equiv 0, -1 \mod 8, \\
0, & \text{otherwise}.
\end{cases}
\]
(cf. Bott [4] or Massey [12] p.560]).

If $q \equiv 2 \mod 4$, that is the coefficient group $\pi_q(\Gamma) = \mathbb{Z}$, the obstructions $o_{q+1}(\eta)$ have been investigated by Massey [12] Theorem I. For example,
\[
o_3(\eta) = \beta w_2(\xi), \quad o_7(\eta) = \beta w_6(\xi),
\]
where $\beta: H^i(M; \mathbb{Z}/2) \to H^{i+1}(M; \mathbb{Z})$ is the Bockstein homomorphism. Moreover, if $q \equiv -1 \mod 8$, hence $\pi_q(\Gamma) = \mathbb{Z}/2$, the obstruction $o_8(\eta)$ has been studied by Massey [12] Theorem III, Thomas [16] Theorem 1.2, Heaps [11], M. Čadek, M. Crabb and J. Vanžura [6, Proposition 4.1 (a)], Dessai [8] Theorem 1.9 and Yang[18] Corollary 1.6, etc. Furthermore, when X is a n-dimensional closed oriented smooth manifold with $n \equiv 0 \mod 8$, the obstruction $o_n(\eta)$ is determined...
by Yang [18, Theorem 1.1]. However, in the case \(q \equiv 0 \pmod{8} \), we only known that \(o_{q+1}(\eta) = 0 \) if \(H^{8q+1}(X; \mathbb{Z}/2) = 0 \).

In this paper, the obstructions \(o_{q+1}(\eta) \) for \(q \equiv 0 \pmod{8} \) are investigated and our results can be state as follows.

Denote by \(Sq^2 : H^i(X; \mathbb{Z}/2) \to H^{i+2}(X; \mathbb{Z}) \) the Steenrod square.

Theorem 1. Let \(X \) be a \((8k + i)\)-dimensional pathwise connected CW-complex with \(i = 1 \) or \(2 \) and \(k \) the non-negative integral number; \(\xi \) be a real vector bundle over \(X \). Suppose that \(X \) satisfying the condition

\[
(*) \quad Sq^2 : H^i(X; \mathbb{Z}/2) \to H^{i+2}(X; \mathbb{Z}/2) \quad \text{is surjective.}
\]

Then \(\xi \) admits a stable complex structure over \(X \) if and only if it admits a stable complex structure over \(X^{8k} \).

Remark 1.1. This theorem tell us that the final obstruction

\[
o_{8k+1}(\eta) = 0
\]

if \(X \) satisfying the condition \((*)\). The following examples tell us that the CW-complexes which satisfying the condition \((*)\) are exists.

Example 1.2. Trivial case: the CW-complex \(X \) with \(H^{8k+1}(X; \mathbb{Z}/2) = 0 \).

Example 1.3. Denote by \(G_k(\mathbb{R}^{n+k}) \) the Grassmannian of \(k \)-planes in real \(n + k \) dimensional space \(\mathbb{R}^{n+k} \), \(\zeta_{k,n} \) the universal \(k \)-plane bundle over \(G_k(\mathbb{R}^{n+k}) \). It is known that (cf. Borel [3]) \(\dim G_k(\mathbb{R}^{n+k}) = kn \) and

\[
H^*(G_k(\mathbb{R}^{n+k}); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, \cdots, w_k, \bar{w}_1, \cdots, \bar{w}_n]/I_{k,n}
\]

where \(w_i = w_i(\zeta_{k,n}) \) and \(I_{k,n} \) is the ideal generated by the equations

\[
(1 + w_1 + \cdots + w_k)(1 + \bar{w}_1 + \cdots + \bar{w}_n) = 0.
\]

Hence we get that \(\dim G_3(\mathbb{R}^6) = 9, \dim G_2(\mathbb{R}^7) = 10 \) and

\[
H^*(G_3(\mathbb{R}^6); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, w_2, w_3]/(w_1^4 + w_1^2 w_2 + w_2^2, w_1^2 w_2 + w_1^2 w_3, w_1^2 w_3 + w_3^2),
\]

\[
H^*(G_2(\mathbb{R}^7); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, w_2]/(w_1^6 + w_1^4 w_2 + w_1^2 w_3, w_1^3 w_2).
\]

Therefore

\[
H^0(G_3(\mathbb{R}^6); \mathbb{Z}/2) \cong \mathbb{Z}/2, \quad H^0(G_2(\mathbb{R}^7); \mathbb{Z}/2) \cong \mathbb{Z}/2,
\]

are all generated by \(w_1^4 w_2^2 \) and we have

\[
Sq^2(w_1^4 w_2^2) = w_1^5 w_2^2.
\]

Example 1.4. Denote by \(\mathbb{C}P^2 \) the 2-dimensional complex projective space, \(S^l \) the \(l \)-dimensional sphere. One may easily verify that the following manifolds are all satisfying the condition \((*)\):

- \(M_1 = \mathbb{C}P^2 \times S^5 \times S^1 \),
- \(M_2 = M_1 \times S^{8k}, k > 0 \),
- \(\#_n M_i \) the connected sum of \(n \) copies of \(M_i \), \(i = 1, 2 \),
- etc.
Let M be an n-dimensional closed oriented smooth manifold. It is a classical topic in geometry and topology to determine the necessary and sufficient conditions for M to admit a stable almost complex structure. These are only known in the case $n \leq 8$ (cf. [17], [9], [12], [16], [11], [7], [6], [18], etc.). If $n = 10$, Thomas and Heaps determined these conditions in the case $H_1(M; \mathbb{Z}/2) = 0$ and $w_4(M) = 0$ (cf. [16, Theorem 1.6] and [11, Theorem 2]). Moreover, Dessai [8, Theorems 1.2, 1.9] got them in the case $H_1(M; \mathbb{Z}) = 0$ and $H_i(M; \mathbb{Z})$, $i = 2, 3$ has no 2-torsion, no assumption on $w_4(M)$ is made.

One may see from the proof of [16, Theorem 1.6] and [11, Theorem 2] that the assumption $H_1(M; \mathbb{Z}/2) = 0$ is used just to guarantee that the final obstruction $o_9(\eta) = 0$. So as an application of Theorem 1, the assumption $H_1(M; \mathbb{Z}/2) = 0$ in [16, Theorem 1.6] and [11, Theorem 2] can be replaced by the assumption that the Steenrod square $Sq^2: H^7(M; \mathbb{Z}/2) \to H^9(M; \mathbb{Z}/2)$ is surjective. That is trivial, we will not list them here.

As the second application of Theorem 1, we can get the following result.

From now on, M will be a 10-dimensional closed oriented smooth manifold with no 2-torsion in $H_i(M; \mathbb{Z})$, $i = 1, 2, 3$ and no 3-torsion in $H_1(M; \mathbb{Z})$. We may also suppose that the Steenrod square $Sq^2: H^7(M; \mathbb{Z}/2) \to H^9(M; \mathbb{Z}/2)$ is surjective.

Since $H_2(M; \mathbb{Z})$ has no 2-torsion, it follows from the universal coefficient theorem that $H^8(M; \mathbb{Z})$ has no 2-torsion. Hence the mod 2 reduction homomorphism $\rho_2: H^2(M; \mathbb{Z}) \to H^2(M; \mathbb{Z}/2)$ is surjective by using the long exact Bockstein sequence associated to the coefficient sequence $0 \to \mathbb{Z} \xrightarrow{2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$. Therefore M is spinc. We may fix an element $c \in H^2(M; \mathbb{Z})$ satisfying $\rho_2(c) = w_2(M)$.

Definition 1.5. Set

$$\mathcal{D}(M) \triangleq \{ x \in H^2(M; \mathbb{Z}) \mid x^2 + cx = 2z_x \text{ for some } z_x \in H^4(M; \mathbb{Z}) \}$$

where (uniquely determined) z_x is depending on x. One may find that $\mathcal{D}(M)$ is a subgroup of $H^2(M; \mathbb{Z})$ and it does not depend on the choice of c.

Theorem 2. Let M be a 10-dimensional closed oriented smooth manifold with no 2-torsion in $H_i(M; \mathbb{Z})$, $i = 1, 2, 3$, no 3-torsion in $H_1(M; \mathbb{Z})$. Suppose that the Steenrod square $Sq^2: H^7(M; \mathbb{Z}/2) \to H^9(M; \mathbb{Z}/2)$ is surjective. Then M admits a stable almost complex structure if and only if

(1.2) $$w_3^2(M) \cdot \rho_2(x) = (Sq^2 \rho_2(z_x)) \cdot w_4(M)$$
holds for every $x \in D(M)$.

Remark 1.6. This theorem is a generalization of Dessai [8 Theorem]. In fact, the congruence (1.2) is a simplification of the congruence (1.2) in [8 Theorem 1.2].

Remark 1.7. One may find that we only need to check the congruence (1.2) for the generators of $D(M)$.

Obviously, one can get that

Corollary 1.8. Let M be as in Theorem 2. Suppose that $w_4(M) = 0$. Then M always admits a stable almost complex structure.

Remark 1.9. Compare Thomas [16 Theorem 1.6].

For M which has "nice" cohomology, we have

Corollary 1.10. Let M be as in Theorem 2. Assume in addition that $H^2(M; \mathbb{Z})$ is generated by h and $h^2 \equiv 0 \mod 2$. Then M always admits a stable complex structure.

Remark 1.11. Compare Dessai [8 Corollary 1.3].

Example 1.12. One can deduced easily from Corollary 1.10 that the manifold $\mathbb{C}P^2 \times S^5 \times S^1$ (in Example 1.4) must admits a stable complex structure. In fact, $\mathbb{C}P^2 \times S^5 \times S^1$ is a complex manifold because both $\mathbb{C}P^2$ and $S^5 \times S^1$ are complex manifold. Moreover, it follows from Theorem 2 and the cohomology ring of $\#_n \mathbb{C}P^2 \times S^5 \times S^1, n \geq 1$ that they all admit a stable almost complex structure.

This paper is arranged as follows. Firstly, the Theorem 1 is proved in §2. Then in order to prove the Theorem 2 and the Corollary 1.10 in §4, we investigated the obstruction to extend complex vector bundles over the $(2q-1)$-skeleton of X to $(2q+1)$-skeleton in §3.

2. **The proof of Theorem 1**

Let X be a $(8k+i)$-dimensional pathwise connected CW-complex, $i = 1$ or 2. In this section, combining the Bott exact sequence with the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$, we give the proof of Theorem 1.

Let BU (resp. BO) be the classifying space of the stable unitary group U (resp. stable orthogonal group O). Since O/U is homotopy equivalent to $\Omega^6 BO$ (cf. [4]), the canonical fibering

$$O/U \hookrightarrow BU \to BO$$

gives rise to a long exact sequence of K-groups (we call it the Bott exact sequence)

$$
\cdots \to \widetilde{KO}^{q-2}(X) \to \widetilde{KO}^q(X) \to \widetilde{KO}^q(X) \to \widetilde{KO}^{q-1}(X) \to \cdots
$$
which is similar to the exact sequence given by Bott in [5, p.75].

According to Switzer [14, pp.336-341], the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ is the spectral sequence \(\{E^p_{r}, d_r\} \) with
\[
E^p_{1} \cong H^p(X; KO^r), \quad E^p_{\infty} \cong F^{p,q}/F^{p+1,q-1},
\]
where
\[
F^{p,q} = \text{Ker} [i^*_p: KO^{p+q}(X) \to KO^{p+q}(X_{p-1})],
\]
and the coefficient ring of KO-theory is (cf. Bott [5, p. 73])
\[
KO^r = \mathbb{Z}[\alpha, x, \gamma, \gamma^{-1}]/(2\alpha, \alpha^2, \alpha x, x^2 - 4\gamma)
\]
with the degrees \(|a| = -1, |x| = -4\) and \(|\gamma| = -8\).

It is well known that the differentials d_2 of the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ are given as follows (see M. Fujii [10, Formula (1.3)] for instance):
\[
d^2 = \begin{cases}
\text{Sq}^2, & q \equiv 0 \mod 8, \\
\text{Sq}^2, & q \equiv -1 \mod 8, \\
0, & \text{otherwise}.
\end{cases}
\]

Denote by $j: X \to (X, X^{8k})$ and $i: X^{8k} \to X$ the inclusions. Then we have the following commutative diagram:
\[
\begin{array}{cccccc}
K(X, X^{8k}) & \xrightarrow{f} & \tilde{K}(X) & \xrightarrow{i^*} & \tilde{K}(X^{8k}) & \xrightarrow{\delta} & K^1(X, X^{8k}) \\
\| & & \| & & \| & & \|
\end{array}
\]
\[
\begin{array}{cccccc}
\tilde{K}(X^{8k}) & \xrightarrow{\gamma} & \tilde{K}(X) & \xrightarrow{i^*} & \tilde{K}(X^{8k}) & \xrightarrow{\delta} & K^1(X, X^{8k}) \\
\| & & \| & & \| & & \|
\end{array}
\]
\[
\begin{array}{cccccc}
KO^{-1}(X, X^{8k}) & \xrightarrow{j_\gamma} & KO^{-1}(X) & \xrightarrow{i^*} & KO^{-1}(X^{8k}) & \xrightarrow{\delta} & KO(X, X^{8k}) \\
\| & & \| & & \| & & \|
\end{array}
\]
where the horizontal sequence is the long exact sequence of K and KO groups, the vertical sequence is the Bott exact sequence (2.1).

Lemma 2.1. The homomorphism $\tilde{r}: K^1(X, X^{8k}) \to KO^1(X, X^{8k})$ is injective.

Proof. Denote by $i^*: (X^{8k+1}, X^{8k}) \to (X, X^{8k})$, $j^*: (X, X^{8k}) \to (X, X^{8k+1})$ the inclusions. Then by the naturality of the long exact sequence of K theory, we got the following exact ladder
\[
\begin{array}{cccccc}
K^1(X, X^{8k+1}) & \xrightarrow{f^1} & K^1(X, X^{8k}) & \xrightarrow{i^*} & K^1(X^{8k+1}, X^{8k}) \\
\| & & \| & & \|
\end{array}
\]
\[
\begin{array}{cccccc}
KO^1(X, X^{8k+1}) & \xrightarrow{\tilde{r}} & KO^1(X, X^{8k}) & \xrightarrow{i^*} & KO^1(X^{8k+1}, X^{8k}) \\
\| & & \| & & \|
\end{array}
\]
Therefore, this lemma can be deduced easily from the facts that $K^1(X, X^{8k+1}) = 0$ and $\tilde{r} : K^1(X^{8k+1}, X^{8k}) \to KO^1(X^{8k+1}, X^{8k})$ is injective.

\textbf{Lemma 2.2.} If the Steenrod square $Sq^2 : H^{8k-1}(X; \mathbb{Z}/2) \to H^{8k+1}(X; \mathbb{Z}/2)$ is surjective, we must have

$$\text{Im } j^*_o \subseteq \text{Im } \tilde{r}_X.$$

\textit{Proof.} In the Atiyah-Hirzebruch spectral sequence, since $KO^{-1}(X, X^{8k+1}) = 0$, it follows that

$$F^{8k+2, 8k-3} = \text{Ker}[i^*_o : KO^{-1}(X) \to KO^{-1}(X^{8k+1})] = 0.$$

Hence

$$E_{\infty}^{8k+1, 8k-2} = F^{8k+1, 8k-2} / F^{8k+2, 8k-3} = F^{8k+1, 8k-2}.$$

Therefore, by the equation (2.2), the surjectivity of the Steenrod square $Sq^2 : H^{8k-1}(X; \mathbb{Z}/2) \to H^{8k+1}(X; \mathbb{Z}/2)$ implies that

$$F^{8k+1, 8k-2} = E_{\infty}^{8k+1, 8k-2} = 0.$$

That is, the homomorphism $i^*_o : KO^{-1}(X) \to KO^{-1}(X^{8k})$ is injective. Then it follows from the exactness of the diagram (2.3) that the homomorphism $j^*_o : KO^{-1}(X, X^{8k}) \to KO^{-1}(X)$ is a zero homomorphism. So the composition homomorphism

$$\gamma_X \circ j^*_o = j^*_o \circ \gamma = 0,$$

and we get that

$$\text{Im } j^*_o \subseteq \text{Im } \tilde{r}_X.$$

\textit{□}

\textit{Proof of Theorem 1.} Obviously, ξ admits a stable complex structure over X implies that ξ admits a stable complex structure over X^{8k}.

Conversely, suppose that ξ admits a stable complex structure over X^{8k}. That is there exists a stable complex vector bundle $\tilde{\eta}' \in \tilde{K}(X^{8k})$ such that

$$\tilde{r}_{X^{8k}}(\tilde{\eta}') = i^*_o(\tilde{\xi}).$$

Then it follows from the exactness of the diagram (2.3) and the Lemma 2.1 that there is a stable complex vector bundle $\tilde{\eta}_1$ such that $i^*_o(\tilde{\eta}_1) = \tilde{\eta}'$ and

$$i^*_o(\tilde{r}_X(\tilde{\eta}_1) - \tilde{\xi}) = 0.$$

That is,

$$\tilde{r}_X(\tilde{\eta}_1) - \tilde{\xi} \in \text{Im } j^*_o.$$

Therefore, by the Lemma 2.2 the surjectivity of the Steenrod Square $Sq^2 : H^{8k-1}(X; \mathbb{Z}/2) \to H^{8k+1}(X; \mathbb{Z}/2)$ implies that ξ admits a stable complex structure over X.

\textit{□}
3. The obstruction for an extension of a vector bundle over X^{2q-1} to X^{2q+1}

Let X be a pathwise connected CW-complex. In order to prove Theorem 2, in this section, we will investigate the obstruction for an extension of a complex vector bundle over the $(2q-1)$-skeleton X^{2q-1} of X to the $(2q+1)$-skeleton X^{2q+1}.

Theorem 3.1. Let X be a pathwise connected CW-complex and $\tilde{\eta} \in \tilde{K}(X^{2q-1})$ a stable complex vector bundle over X^{2q-1}. Denote by $\theta_{2q+1}(\tilde{\eta}) \in H^{2q+1}(X; \mathbb{Z})$ the obstruction to extend $\tilde{\eta}$ to X^{2q+1}. Then

$$(q - 1)! \cdot \theta_{2q+1}(\tilde{\eta}) = 0.$$

Proof. Denote by $i: X^{2q-1} \to X^{2q}$ and $j: X^{2q} \to (X^{2q}, X^{2q-1})$ the inclusions. Let $f: \bigsqcup S^{2q} \to X^{2q}$ be the attaching map such that

$$X^{2q+1} = X^{2q} \cup_f \bigsqcup^{2q+1},$$

where the symbol \bigsqcup means the disjoint union. Then it follows from $\tilde{K}(S^{2q-1}) \cong 0$ that we have the following diagram

$$
\begin{array}{cccc}
\tilde{K}(X^{2q+1}) & \to & \tilde{K}(X^{2q}, X^{2q-1}) & \to & \tilde{K}(X^{2q}) \\
\downarrow & & \downarrow f^* & & \downarrow i^* \\
\tilde{K}(X^{2q}) & \to & \tilde{K}(X^{2q-1}) & \to & 0 \\
\Delta_{2q} & \downarrow & & & \\
\tilde{K}(\bigsqcup S^{2q})
\end{array}
$$

where $\Delta_{2q} = f^* \circ j^*$ and the horizontal and vertical sequences are the long exact sequences of K groups for the pairs (X^{2q}, X^{2q-1}) and (X^{2q+1}, X^{2q}) respectively. Therefore, for any $\tilde{\eta} \in \tilde{K}(X^{2q-1})$, there must exists a stable complex vector bundle $\tilde{\eta}' \in \tilde{K}(X^{2q})$ such that $i^*(\tilde{\eta}') = \tilde{\eta}$, and $\tilde{\eta}$ can be extended to X^{2q+1} if and only if

$$f^*(\tilde{\eta}') \in \text{Im} \Delta_{2q}. $$

Denote by

$$\Sigma: H^{2q}(\bigsqcup S^{2q}; \mathbb{Z}) \to H^{2q+1}(X^{2q+1}, X^{2q}; \mathbb{Z})$$

the suspension which is a isomorphism,

$$f^*: H^{2q}(X^{2q}; \mathbb{Z}) \to H^{2q}(\bigsqcup S^{2q}; \mathbb{Z})$$

and

$$j^*: H^{2q}(X^{2q}, X^{2q-1}; \mathbb{Z}) \to H^{2q}(X^{2q}; \mathbb{Z})$$

the homomorphisms induced by the maps f and j respectively. It is known that the Chern characters

$$ch: \tilde{K}(X^{2q}, X^{2q-1}) \to H^{2q}(X^{2q}, X^{2q-1}; \mathbb{Z}),$$

$$ch: \tilde{K}(\bigsqcup S^{2q}) \to H^{2q}(\bigsqcup S^{2q}; \mathbb{Z})$$
are all isomorphisms, and the composition homomorphism
\[\Sigma \circ ch \circ \Delta_{2q} \circ ch^{-1} : H^{2q}(X^{2q}, X^{2q-1}; \mathbb{Z}) \to H^{2q+1}(X^{2q+1}, X^{2q}; \mathbb{Z}) \]
is just the cellular coboundary homomorphism
\[d_{2q} = \Sigma \circ f^* \circ j^* : H^{2q}(X^{2q}, X^{2q-1}; \mathbb{Z}) \to H^{2q+1}(X^{2q+1}, X^{2q}; \mathbb{Z}) \]
of the cellular cochain complex of \(X \) (cf. Atiyah and Hirzebruch [2, pp. 16-18]).

Hence by the equation (3.1), the obstruction \(\vartheta_{2q+1}(\tilde{\eta}) \in H^{2q+1}(X; \mathbb{Z}) \) is just the cohomology class represented by
\[\Sigma \circ ch(f_u^*(\tilde{\eta})) = \Sigma \left(\frac{c_q(f_u^*(\tilde{\eta}))}{(q-1)!} \right). \]
Therefore, it follows from the surjectivity of \(j^* \) and \(d_{2q} = \Sigma \circ f^* \circ j^* \) that
\[(q-1)! \cdot o(\tilde{\eta}) = 0. \]
\[\square \]

Corollary 3.2. Let \(X \) be a CW-complex. Suppose that \(H^{2q+1}(X; \mathbb{Z}) \) contains no \((q - 1)\)!-torsion. Then every stable complex vector bundle over \(X^{2q-1} \) can be extended to a complex vector bundle over \(X^{2q+2} \).

Proof. Note that the homomorphism \(i_u^*: \tilde{K}(X^{2q+2}) \to \tilde{K}(X^{2q+1}) \) is surjective. \(\square \)

Similarly we can get that

Theorem 3.3. Let \(X \) be a pathwise connected CW-complex and \(\tilde{\xi} \in \tilde{KO}(X^{4q-1}) \) (resp. \(\tilde{\gamma} \in \tilde{KS}(X^{4q-1}) \)) a stable real (resp. symplectic) vector bundle over \(X^{4q-1} \). Denote by \(\theta_{4q+1}(\tilde{\xi}) \in H^{4q+1}(X; \mathbb{Z}) \) (resp. \(\theta_{4q+1}(\tilde{\gamma}) \in H^{4q+1}(X; \mathbb{Z}) \)) the obstruction to extend \(\tilde{\xi} \) (resp. \(\tilde{\gamma} \)) to \(X^{4q+1} \). Then
\[(2q - 1)! \cdot a_q \cdot \theta_{4q+1}(\tilde{\xi}) = 0, \]
\[(2q - 1)! \cdot b_q \cdot \theta_{4q+1}(\tilde{\xi}) = 0, \]
where \(a_q \cdot b_q = 2 \) and \(a_q = 1 \) for \(q \) even and \(a_q = 2 \) for \(q \) odd.

4. The proof of Theorem 2

In this section, we will take Dessai’s strategy, which was used to prove [8, Theorem 1.2], to prove the Theorem 2.

Recall that \(M \) is a 10-dimensional closed oriented smooth manifold with no 2-torsion in \(H_i(M; \mathbb{Z}), i = 1, 2, 3 \) and no 3-torsion in \(H_1(M; \mathbb{Z}) \). It also satisfying that the Steenrod square
\[Sq^2 : H^7(M; \mathbb{Z}/2) \to H^8(M; \mathbb{Z}/2) \]
is surjective. Then M is spin', and we have fixed an element $c \in H^2(M; \mathbb{Z})$ satisfying $\rho_2(c) = w_2(M)$ and defined

$$\mathcal{D}(M) \doteq \{ x \in H^2(M; \mathbb{Z}) \mid x^2 + cx = 2z_8 \text{ for some } z_8 \in H^4(M; \mathbb{Z}) \}.$$

Denote by $i^*_\nu: \tilde{K}(M) \to \tilde{K}(M^7)$ and $j^*_\nu: \tilde{K}(M) \to \tilde{K}(M^8)$ the homomorphisms induced by the inclusions $i: M^7 \to M$ and $j: M^8 \to M$ respectively. Let $p_*: H^i(M; \mathbb{Z}) \to H^i(M; \mathbb{Q})$ be the homomorphism induced by the canonical inclusion $p: \mathbb{Z} \to \mathbb{Q}$. Recall that $\tilde{r}_{\nu p_*}: \tilde{K}(M^9) \to \tilde{KO}(M^9)$ is the real reduction homomorphism. Then we get that

Lemma 4.1. M has the following properties:

(a) $\rho_2: H^i(M; \mathbb{Z}) \to H^i(M; \mathbb{Z}/2)$ is surjective for $i \neq 4, 5$.
(b) $\rho_2 \circ p_*^{-1}$ is well defined on $p_*(H^8(M; \mathbb{Z}))$.
(c) The annihilator of $\text{Sq}^2 \rho_2 H^8(M; \mathbb{Z})$ with respect to the cup-product is equal to $\rho_2(\mathcal{D}(M))$.
(d) For any stable complex vector bundle $\eta' \in \tilde{K}(M^7)$, there exists a stable complex vector bundle $\eta \in \tilde{K}(M)$ such that $i^*_\nu(\eta) = \eta'$.
(e) Let $\xi \in \tilde{KO}(M)$ be a stable real vector bundle over M. Then there must exists a stable complex vector bundle $\eta \in \tilde{K}(M)$, such that $\tilde{r}_{\nu M^7}j^*_\nu(\eta) = i^*_\nu(\xi)$. Moreover, if $\tilde{r}_{\nu M^7}j^*_\nu(\eta) = i^*_\nu(\xi)$, ξ must admits a stable complex structure.

Proof. (a) Since $H^i(M; \mathbb{Z})$ has no 2-torsion for $i = 0, 1, 2, 3, 10$, the same is true for $H^i(M; \mathbb{Z}^2)$, $i \neq 5, 6$ (universal coefficient theorem and Poincaré Duality). Hence the statement is true by using the long exact Bockstein sequence.
(b) That is because the kernel of $p_*: H^8(M; \mathbb{Z}) \to H^8(M; \mathbb{Q})$ is an odd torsion which maps to zero under ρ_2.
(c) Let $y \in H^2(M; \mathbb{Z}/2)$. Note that the Wu class V_2 is $w_2(M)$. Then it follows from Cartan formula that for any $z \in H^8(M; \mathbb{Z})$

$$y \cdot \text{Sq}^2 \rho_2(z) = 0 \quad \text{iff} \quad (w_2(M) \cdot y + y^2) \cdot \rho_2(z) = 0.$$

Hence the statement is true by the statement (a) and the definition of $\mathcal{T}(M)$.
(d) Since $H^8(M; \mathbb{Z}) \approx H_1(M; \mathbb{Z})$ has no 2-torsion and 3-torsion, the statement can be deduced easily from Corollary 3.2
(e) The statements can be proved by combining the identity (4.1) and the statement (d) with the Theorem 1.

\square

Denote by $[M]$ the fundamental class of M, $\langle \cdot, \cdot \rangle$ the Kronecker product and

$$\tilde{\Phi}(M) = 1 - \frac{p_1(M)}{24} + \frac{-4p_2(M) + 7p_1^2(M)}{5760}$$

the Φ class of M. For any $x \in H^2(M; \mathbb{Z})$, we will denote by l_x the complex line bundle over M with

$$c_1(l_x) = x.$$
For any \(x \in \mathcal{D}(M) \), we may choose a class \(v_x \in H^8(M; \mathbb{Z}) \) such that
\[
\rho_2(v_x) = Sq^2 \rho_2 z_x.
\]
Since \(M \) has the properties as in Lemma 4.1, the results below can be deduced easily by applying the methods of Dessai in [8].

Lemma 4.2. Let \(\tilde{\xi} \in KO(M) \) be a stable oriented vector bundle over \(M \). Then \(\tilde{\xi} \) admits a stable complex structure if and only if
\[
\rho_2 \circ p_{x}^{-1}(ch_4(\tilde{c}_M(\tilde{\eta}) - \tilde{\xi})) \in Sq^2 \rho_2 H^6(M; \mathbb{Z})
\]
for some stable complex vector bundle \(\tilde{\eta} \in \tilde{K}(M) \) satisfying \(\tilde{r}_M i_\psi^*(\tilde{\eta}) = i^\alpha(\tilde{\xi}) \).

Lemma 4.3. Let \(c \in H^2(M; \mathbb{Z}) \) be an integral class satisfying \(\rho_2(c) = w_2(M) \). For any \(x \in \mathcal{D}(M) \) there is a stable complex vector bundle \(\tilde{\eta}_x \in \tilde{K}(M) \) trivial over the 3-skeleton such that
\[
e^{x/2} \cdot ch(\tilde{I}_x - \tilde{\eta}_x) \equiv x + \left(\frac{x^3}{6} - \frac{xc^2}{8} - \frac{v_x}{2} \right) \mod H^{28}(M; \mathbb{Q}).
\]

Lemma 4.4. Let \(M \) be a 10-dimensional closed oriented smooth manifold as in Theorem 2. Let \(\tilde{\xi} \in KO(M) \) be a stable real vector bundle over \(M \). Choose \(c \in H^2(M; \mathbb{Z}) \) (resp. \(d \in H^2(M; \mathbb{Z}) \)) satisfying \(\rho_2(c) = w_2(M) \) (resp. \(\rho_2(d) = w_2(\tilde{\xi}) \)). Then \(\tilde{\xi} \) admits a stable complex structure if and only if
\[
\langle \hat{\eta}(M) \cdot e^{x/2} \cdot ch(\tilde{I}_x - \tilde{\eta}_x) \cdot ch(\tilde{c}_M(\tilde{\xi} - \tilde{I}_d)), [M] \rangle \equiv 0 \mod 2
\]
holds for every \(x \in \mathcal{D}(M) \).

Proof of the Lemmas 4.2, 4.3 and 4.4. cf. the proves of [8] Lemmas 1.7, 1.8, Theorem 1.9. \(\square \)

Remark 4.5. Since \(M \) is spin\(^c\), it follow from the Differentiable Riemann-Roch theorem (cf. Atiyah-Hirzebruch [1, Corollary 1]) that the rational number
\[
\langle \hat{\eta}(M) \cdot e^{x/2} \cdot ch(\tilde{I}_x - \tilde{\eta}_x) \cdot ch(\tilde{c}_M(\tilde{\xi} - \tilde{I}_d)), [M] \rangle
\]
is integral, so it make sense to take congruent classes modulo 2.

In fact, the congruence (4.1) can be simplified, hence Lemma 4.4 can be restated as follows.

Theorem 4.6. Let \(M \) be a 10-dimensional closed oriented smooth manifold with no 2-torsion in \(H_i(M; \mathbb{Z}) \), \(i = 1, 2, 3 \), no 3-torsion in \(H_2(M; \mathbb{Z}) \). Suppose that the Steenrod square
\[
Sq^2 : H^7(M; \mathbb{Z}/2) \to H^9(M; \mathbb{Z}/2)
\]
is surjective. Let \(\xi \) be a real vector bundle over \(M \). Choose integral class \(d \in H^2(M; \mathbb{Z}) \) such that \(\rho_2(d) = w_2(\xi) \). Set
\[
A_{\xi,x} = \left(\frac{x}{2}, \frac{p_1(\xi) - d^2}{2}, \frac{p_1(\xi) - d^2}{2} - \frac{p_1(M) - c^2}{2} \right), [M] \).
\]
Then \(\xi \) admits a stable complex structure if and only if
\[
A_{\xi,x} \equiv (w_8(\xi) + w_2(\xi)Sq^2(w_4(\xi)) \cdot \rho_2(x) + Sq^2(z_x)w_4(\xi)) \mod 2
\]
holds for every $x \in \mathcal{D}(M)$.

Remark 4.7. One may find that the rational number $A_{\xi,x}$ is integral (see the proof of this Theorem below), so it make sense to take congruent classes modulo 2.

Proof. Let $F = \tilde{\xi} - \tilde{l}_d$. Then F is a stable spin vector bundle since $w_2(F) = 0$. Therefore, the spin characteristic classes

$$q_i(F) \in H^{d_i}(M; \mathbb{Z}), \quad i = 1, 2,$$

of F are defined, and they satisfy the following relations (cf. Thomas [15])

$$p_1(F) = 2q_1(F), \quad \rho_2(q_1(F)) = w_4(F),$$
$$p_2(F) = 2q_2(F) + q_1^2(F), \quad \rho_2(q_2(F)) = w_8(F).$$

Since we have the equations below

$$x^3 = 2xz_x - 2cz_x + c^2x,$$
$$q_1(F) = (p_1(\xi) - d^2)/2,$$
$$w_4(F) = w_4(\xi),$$
$$w_8(F) = w_8(\xi) + w_2(\xi)w_6(\xi) + w_2^2(\xi)w_4(\xi),$$
$$w_6(\xi) = \text{Sq}^2(w_4(\xi)) + w_2(\xi)w_4(\xi),$$

it follows that

$$\langle \hat{H}(M) \cdot e^{c^2/2} \cdot ch(\tilde{l}_x - \tilde{\eta}_x) \cdot ch(\tilde{c}_M(\tilde{\xi} - \tilde{l}_d)), [M] \rangle \equiv 0 \mod 2$$

iff

$$3\langle \hat{H}(M) \cdot e^{c^2/2} \cdot ch(\tilde{l}_x - \tilde{\eta}_x) \cdot ch(\tilde{c}_M(\tilde{\xi} - \tilde{l}_d)), [M] \rangle \equiv 0 \mod 2$$

iff

$$\frac{x}{2} \cdot q_1(F)[q_1(F) - \frac{p_1(M) - c^2}{2}] - q_2(F)x - v_4q_1(F) \equiv 0 \mod 2$$

iff

$$A_{\xi,x} \equiv (w_8(\xi) + w_2(\xi)\text{Sq}^2(w_4(\xi))) \cdot \rho_2(x) + \text{Sq}^2(z_x)w_4(\xi) \mod 2.$$

\square

Proof of Theorem 2. Denote by $V_i \in H^i(M; \mathbb{Z}/2)$ the Wu-class which is the unique class satisfying

$$\text{Sq}^i u = V_i \cdot u$$

for any $u \in H^{10-i}(M; \mathbb{Z})$. It is known that they satisfy (cf. [13, p. 132])

$$w_4(M) = \Sigma_{k=0}^8 \text{Sq}^k V_{k-i}.$$

Hence we get that

$$V_2 = w_2(M),$$
$$V_4 = w_4(M) + w_2^2(M),$$
$$V_5 = 0,$$
$$w_8(M) = w_4^2(M) + w_2^4(M).$$
Note that for any \(x \in \mathfrak{T}(M) \), we have
\[
\rho_2^2(x) = \rho_2(x) \cdot w_2(M).
\]
Therefore, for any \(x \in \mathfrak{T}(M) \), we can get that
\[
\rho_2(x)w_2(M)\text{Sq}^2w_4(M) = \text{Sq}^2(\rho_2(x)w_2(M)w_4(M)) = \rho_2(x)w_2^2(M)w_4(M).
\]
Hence
\[
(4.3) \quad \rho_2(x)(w_2^4(M) + w_2(M)\text{Sq}^2w_4(M)) = \rho_2(x)w_2^2(M)(w_4(M) + w_3^2(M)) = \text{Sq}^4(\rho_2(x)w_2^2(M)) = \rho_2(x)w_4^2(M) = \rho_4^2(x)w_2(M) = \text{Sq}^2(\rho_2(x)) = 0.
\]

Then Theorem 2 can be deduced easily from the Theorem 4.6 and the identity (4.3) by choosing that \(\xi = TM \) and \(d = c \).

Proof of Corollary 1.10 If \(M \) is spin, \(\mathfrak{T}(M) \) generated by \(2h \). Hence the congruence (1.2) is always true.

If \(M \) is not spin, \(\mathfrak{T}(M) \) generated by \(h \) and \(\rho_2(h) = w_2(M) \). Therefore, we only need to check the congruence (1.2) for \(x = h \). Note that the Wu class \(V_5 \) is zero. In this case, \(z_x = h^2 \),
\[
w_4^2(M)\rho_2(x) = w_2(M)w_4^2(M) = \text{Sq}^2(w_3^2(M)) = (\text{Sq}^1w_4(M))^2 = \text{Sq}^5\text{Sq}^1w_4(M) = 0,
\]
and
\[
\text{Sq}^2(z_x)w_4(M) = \text{Sq}^2(h^2)w_4(M) = 0.
\]
Hence the congruence (1.2) is always true for this case.

These prove the Corollary 1.10. \(\square \)

References

1. M. F. Atiyah and F. Hirzebruch, *Riemann-Roch theorems for differentiable manifolds*, Bull. Amer. Math. Soc. **65** (1959), 276–281.
2. ______, *Vector bundles and homogeneous spaces*, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38.
3. A. Borel, *Sur la cohomologie des espaces fibrés principaux et des espaces homogenes de groupes de lie compacts*, Ann. of Math. **57** (1953), 115–207.
4. R. Bott, *The stable homotopy of the classical groups*, Ann. of Math. (2) **70** (1959), 313–337.
5. ______, *Lectures on K(X)*, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
6. M. Čadek, M. Crabb, and J. Vanžura, *Obstruction theory on 8-manifolds*, Manuscripta Math. **127** (2008), no. 3, 167–186.
7. M. Čadek and J. Vanžura, *On complex structures in 8-dimensional vector bundles*, Manuscripta Math. 95 (1998), no. 3, 323–330.
8. A. Dessai, *Some remarks on almost and stable almost complex manifolds*, Math. Nachr. 192 (1998), 159–172.
9. C. Ehresmann, *Sur les variétés presque complexes*, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, 1952, pp. 412–419.
10. M. Fujii, *K_O-groups of projective spaces*, Osaka J. Math. 4 (1967), 141–149.
11. T. Heaps, *Almost complex structures on eight- and ten-dimensional manifolds*, Topology 9 (1970), 111–119.
12. W. S. Massey, *Obstructions to the existence of almost complex structures*, Bull. Amer. Math. Soc. 67 (1961), 559–564.
13. John W. Milnor and James D. Stasheff, *Characteristic classes*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974, Annals of Mathematics Studies, No. 76.
14. R. M. Switzer, *Algebraic topology—homotopy and homology*, Classics in Mathematics, Springer-Verlag, Berlin, 2002.
15. E. Thomas, *On the cohomology groups of the classifying space for the stable spinor groups*, Bol. Soc. Mex. (1962), 57–69.
16. , *Complex structures on real vector bundles*, Amer. J. Math. 89 (1967), 887–908.
17. W.T. Wu, *Sur les classes caractéristiques des structures fibrées sphériques*, Actualités Sci. Ind., no. 1183, Hermann & Cie, Paris, 1952.
18. Huijun Yang, *A note on stable complex structures on real vector bundles over manifolds*, Topology Appl. 189 (2015), 1–9.

School of Mathematics and Statistics, Henan University
Kaifeng 475004, Henan, China
yjj@amss.ac.cn