Hadron yields from thermalized minijets at RHIC and LHC

N. Hammon1, H. Stöcker1, W. Greiner1 and A. Dumitru2

1 Institut Für Theoretische Physik, Robert-Mayer Str. 10, 60054 Frankfurt am Main, Germany
2 Physics Dept., Columbia University, 704 Pupin Hall, Mail Code 9318, 538W 120th Street, New York, NY 10027, USA

Abstract

We calculate the yields of pions, kaons, and φ-mesons for RHIC and LHC energies assuming thermodynamical equilibration of the produced minijets, and using as input results from pQCD for the energy densities at midrapidity. In the calculation of the production of partons and of transverse energy one has to account for nuclear shadowing. By using two parametrizations for the gluon shadowing one derives energy densities differing strongly in magnitude. In this publication we link those perturbatively calculated energy densities of partons via entropy conservation in an ideal fluid to the hadron multiplicities at chemical freeze-out.

1. Introduction

Particle production in high-energy heavy-ion reactions at the BNL-RHIC and CERN-LHC colliders will soon provide interesting insight into nuclear modifications of semi-hard processes \cite{1}. This is because pQCD processes involving gluons in the initial state may dominate the inelastic AA cross-section at collider energies. In particular, they might lead to a better understanding of the gluon distribution in large nuclei, which is not accessible in DIS.

In \cite{2} we calculated the initial conditions at midrapidity. We calculate the first moment \(E_T\) at midrapidity. We calculate the first moment \(E_T\) of flavor \(f = p, q, q\) in the minijet approach. We employed two different parametrizations for the shadowing effect accounting for weak and strong gluon shadowing, respectively, \cite{3,4}. A direct consequence of the shadowing effect is the decrease in the production of partons of given momentum \(p_T\), i.e. a decrease of transverse energy production at midrapidity. We calculate the first \(E_T\) moment with and without shadowed pdf's and with a cut-off function \(\epsilon(y)\) ensuring that we only count scatterings into the central rapidity region (\(|y| \leq 0.5\)):

\[
\sigma\text{hard} \langle E_T\rangle_{\text{hard}} = \int dE_T \frac{d\sigma}{dE_T}(E_T) \quad (1)
\]

\[
= \int dp_T^2 dy_1 dy_2 \sum_{ij,kl} x_1 f_i(x_1, Q^2) x_2 f_j(x_2, Q^2) \left[\delta_{jk} \frac{d\hat{\sigma}^{ij\rightarrow kl}}{dt}(\hat{t}, \hat{u}) + \delta_{fi} \frac{d\hat{\sigma}^{ij\rightarrow kl}}{dt}(\hat{u}, \hat{t}) \right] \frac{p_T \epsilon(y)}{1 + \delta_{kl}}
\]

Motivated by the factorization in QCD one can assume that the production of transverse energy in AA collisions can be split up into a hard and a soft contribution as

\[
E_T(b) = T_{AA}(b) [\sigma_{\text{hard}}^{pp} \langle E_T\rangle_{\text{hard}} + \sigma_{\text{soft}}^{pp} \langle E_T\rangle_{\text{soft}}].
\]

With an energy independent value of \(\sigma_{\text{soft}}^{pp} = 32\) mb one derives \(\sigma_{\text{soft}}^{pp} \langle E_T\rangle_{\text{soft}} = 15\) mb GeV.
With $T_{AuAu} = 29/\text{mb}$ one can derive the soft contribution (i.e. the one for $p_T \leq 2 \text{ GeV}$) to the energy density for RHIC as $\varepsilon_{\text{soft}} = 33.7 \text{ GeV/fm}^3$. When comparing to the soft contributions one finds with $\sigma_{\text{hard}}(E_T)_h = (\sigma^q + \sigma^\bar{q} + \sigma^g)_{\text{hard}}(E_T)_h$ the ratio of soft to hard contribution

$$R_{sh} = \frac{\sigma_{\text{soft}}(E_T)_s}{\sigma_{\text{hard}}(E_T)_h}$$

is $R_{sh} = 0.47$ for no, $R_{sh} = 0.77$ for strong, and $R_{sh} = 0.47$ for weak shadowing, respectively, since $\varepsilon = 71.5 \text{ GeV/fm}^3$ for no, $\varepsilon = 43.6 \text{ GeV/fm}^3$ for strong, and $\varepsilon = 71.9 \text{ GeV/fm}^3$ for weak gluon shadowing. This implies that at RHIC the soft component could even dominate if it were energy independent and also unaffected by the shadowing effect.

For LHC we only calculated the contribution of the gluons that strongly dominate all partonic processes due to the large distribution function at small momentum fractions. The results for the energy densities for no, strong, and weak gluon shadowing, then are $\varepsilon_g = 1229.7 \text{ GeV/fm}^3$, $\varepsilon_g = 144.8 \text{ GeV/fm}^3$, and $\varepsilon_g = 678.6 \text{ GeV/fm}^3$. With $T_{PbPb} = 32/\text{mb}$ one can derive the energy density from the soft part and has $\varepsilon_{\text{soft}} = 35.8 \text{ GeV/fm}^3$ which is slightly larger than at RHIC due to the larger nuclear overlap function, i.e. the larger number of effective scatterings in the Glauber picture leading to the transverse energy production. The relative weight

$$R_{sh} = \frac{\sigma_{\text{soft}}(E_T)_s}{\sigma_{\text{hard}}(E_T)_h}$$

between soft and hard contributions therefore changes and becomes $R_{sh} = 0.029$ for no, $R_{sh} = 0.25$ for strong, and $R_{sh} = 0.052$ for weak shadowing, respectively. Therefore the soft contributions gain much more weight in this naive picture due to the strong effect of shadowing on the small-x gluons (for further details of the calculation, the shadowing parametrizations, etc. see [3]).

2. Hadron Multiplicities at Chemical Freeze-Out

Having calculated the energy densities at midrapidity for RHIC and LHC in pQCD we connect ε_i to the number of hadrons at midrapidity by assuming an ideal fluid that is characterized by entropy conservation from the quark-gluon plasma to the hadron gas, $dS_i/dy = dS_f/dy$ [3]. We relate the energy density of the quark-gluon plasma to its entropy density via the bag model equation of state [3]. We account for u, d, s quarks (with masses $m_u = m_d = 0$, $m_s = 150 \text{ MeV}$), the antiquarks, and gluons. The total produced entropy dS_i/dy is obtained from the entropy density at midrapidity as $dS_i/dy = V_i\varepsilon_i$ with the initial volume of the central region $V_i = \pi R_0^2 \tau_i$, which is numerically $V_i = 12.9 \text{ fm}^3$ for $Au + Au$ and $V_i = 13.4 \text{ fm}^3$ for $Pb + Pb$ at $b = 0$ with $\tau = 0.1 \text{ fm/c}$. Since we assumed an ideal fluid the total entropy is conserved throughout the expansion until freeze-out which is chosen here to happen at a temperature $T_{FO} = 160 \text{ MeV}$. For simplicity we furthermore assume vanishing chemical potentials in the central rapidity region, i.e. that all conserved currents are identically zero. If this were not true one would have to multiply by factors exp(μ_i/T) (in Boltzmann approximation). The entropy density of the hadronic fluid is calculated assuming an ideal gas composed of all hadrons up to a rest-mass of 2 GeV. Their respective occupation numbers are given by Fermi-Dirac or Bose-Einstein distribution functions, respectively. Thus, T_{FO} and $dS_i/dy = dS_f/dy$ determine the multiplicity of each hadron species uniquely [3]. Feeding from post freeze-out decays of heavier resonances is also taken into account.

3. Results

With the model outlined above and the energy densities derived above we calculated the number of a variety of hadrons at midrapidity. We also include the multiplicities due to the soft contributions and quote the initial temperatures for a QGP of three flavors. For LHC we derived the yields shown in table 1 and for RHIC the ones in table 2.

LHC	π^\pm	K	ϕ	T_i
no shad.	2680	478	32.1	881
weak shad.	1720	306	20.6	760
strong shad.	538	95.9	6.5	510
soft contrib.	187	33	2	

Table 1. Hadron yields at freeze-out with initial conditions from pQCD for LHC. The initial temperatures are calculated from the energy densities produced via hard processes and are for a three flavor quark-gluon plasma with $m_u = m_d = 0 \text{ MeV}$ and $m_s = 150 \text{ MeV}$, respectively.
4. Conclusions and outlook

We computed the rapidity densities of a variety of hadrons based on the assumption of entropy conservation of an ideal fluid. The entropy densities were derived from the energy densities which in turn were calculated by means of pQCD. We find that in the limit that the minijets equilibrate locally the effect of shadowing on the hadron yield is not as large as on the pure partonic degrees of freedom. This can be seen e.g. in the ratio of energy densities between unshadowed and strongly shadowed gluons at LHC, which is about a factor of 9, while the ratio of the hadron yields is only a factor of 5. Since vanishing net baryon and strangeness densities were assumed, the relative depletion of shadowed to unshadowed gluon distribution is independent of the particle species. For RHIC, even without shadowing we only get about 300 pions since the perturbative calculation, entering via the energy densities, was performed with the cut-off $p_T = 2$ GeV. Therefore, the soft contribution constitutes a significant part of the transverse energy and therefore of the particle multiplicities.

Acknowledgements

This work was supported by BMBF, DFG, and GSI.

References

[1] A.H. Mueller, J. Qiu, Nucl. Phys. B268 (1986) 427
 L. Frankfurt, M. Strikman, Phys. Rep. 160 (1988) 236
 F.E. Close, J. Qiu, R.G. Roberts, Phys. Rev. D40 (1989) 2820
 K.J. Eskola, J. Qiu, X. Wang, Phys. Rev. Lett. 72 (1994) 36
[2] K.J. Eskola, Z. Phys. C 51 (1991) 633
 M. Gyulassy, M. Plümmer, M. Thoma, X.N. Wang, Nucl. Phys. A358 (1992) 37c
 X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 68 (1992) 1480
 A. Capella, A. Kaidalov, J. Tran Thanh Van, Heavy Ion Phys. 9 (1999) 169
[3] N. Hammon, H. Stöcker, W. Greiner, hep-ph/9903527, submitted to Phys. Rev. C
[4] K.J. Eskola, V.J. Kolhinen and C.A. Salgado, JYFL-8/98, US-FT/14-98, hep-ph/9807297
 K.J. Eskola, V.J. Kolhinen and P.V. Ruuskanen, Scale evolution of nuclear parton distributions CERN-TH/95-345, JYFL-2/98, hep-ph/9802350
[5] K.J. Eskola, K. Kajantie, J. Lindfors, Nucl. Phys. B323 (1989) 37
 X.N. Wang, Phys. Rep. 280 (1997) 287
[6] J.D. Bjorken, Phys. Rev. D27 (1983) 140
 R.C. Hwa, K. Kajantie, Phys. Rev. D32 (1985) 1109
[7] A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V. Weisskopf, Phys. Rev. D9 (1974) 3471
[8] P. Braun-Munzinger, J. Stachel, J. P. Wessels, N. Xu, Phys. Lett. B365 (1996) 1
 J. Sollfrank, J. Phys. G23 (1997) 1903
[9] A. Dumitru, C. Spieles, H. Stöcker, C. Greiner, Phys. Rev. C56 (1997) 2202