Copolymacrolactones Grafted with L-Glutamic Acid: Synthesis, Structure, and Nanocarrier Properties

Ernesto Tinajero-Díaz, Antxon Martínez de Ilarduya and Sebastián Muñoz-Guerra*

Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028, Barcelona, Spain; ernesto.tinajero@gmail.com (E.T.-D.); antxon.martinez.de.ilarduya@upc.edu (A.M.I.)

* Correspondence: sebastian.munoz@upc.edu

Figure S1. 1H NMR (a) and 13C NMR (b) of the P(Gl$_{13}$-r-PDL$_{87}$) copolyester registered in CDCl$_3$.

Figure S2. 1H NMR (CDCl$_3$) of the P(Gl$_{x}$-r-PDL$_{y}$) copolyesters series.

Figure S3. 13C NMR spectra of Gl and PGl highlighting the characteristic peaks of the different isomers used for quantification.

Figure S4. TGA traces (a) and derivative curves (b) of the P(Gl$_{x}$-r-PDL$_{y}$) copolyesters.

Figure S5. 1H NMR (CDCl$_3$) spectra of the [P(Gl-BAET)$_{13}$-r-PDL$_{87}$] (a), and [P(Gl-NH$_2$)$_{13}$-r-PDL$_{87}$] (b).

Figure S6. GPC curves of the P[(Gl$_{x}$-r-PDL$_{y}$)-g-(LGlu)$_z$] copolymers. Peaks observed at elution times longer than 25 min (framed area) are due to salts added to the running solvent.

Figure S7. 1H NMR (CDCl$_3$/TFA) spectra of the P[(Gl$_{48}$-r-PDL$_{52}$)-g-(BLG)$_2$] (a), and P[(Gl$_{48}$-r-PDL$_{52}$)-g-(LGA)$_2$] (b).

Figure S8. TGA traces (a, b) and derivative curves (a’, b’) of the P[(Gl$_{x}$-r-PDL$_{y}$)-g-(BLG)$_z$] and P[(Gl$_{x}$-r-PDL$_{y}$)-g-(LGA)$_z$] copolymers.

Figure S9. 1,800-1,500 cm$^{-1}$ region of FTIR spectra of P[(Gl$_{13}$-r-PDL$_{87}$)-g-(BLG)$_{10}$] (a) and P[(Gl$_{48}$-r-PDL$_{52}$)-g-(BLG)$_2$] (b) at different temperatures over the 20-200 ºC range.

Figure S10. Evolution of the WAXS (a) and SAXS (b) profiles recorded from P[(Gl$_{48}$-r-PDL$_{52}$)-g-(BLG)$_2$] copolymer at heating over the 10-200 ºC range.

Figure S11. Evolution of the WAXS (a) and SAXS (b) profiles recorded from P[(Gl$_{48}$-r-PDL$_{52}$)-g-(LGA)$_2$] copolymer at heating over the 0-200 ºC range.

Figure S12. SEM images of nanoparticles made of P[(Gl$_{13}$-r-PDL$_{87}$)-g-(BLG)$_{10}$].
Figure S13. DLS profiles (a) and plot used for determining the critical concentration (b) of micelles made of P[(Gl13-r-PDL87)-g-(LGA)10].

Figure S14. Chemical structure of DOX·HCl.
Figure S1. 1H NMR (a) and 13C NMR (b) of the P(Gl$_{13}$-r-PDL$_{87}$) copolyester registered in CDCl$_3$.

Figure S2. 1H NMR (CDCl$_3$) of the P(Gl$_{r}$-PDL$_{y}$) copolyesters series.
Sample	% mol-mass isomers	oxapentadecen-12-one	oxapentadecen-13-one			
	E	Z	E	Z	E	Z
Gl	44.3	15.7	33.6	6.3	33.6	6.3
PGI	45.6	13.0	35.1	6.3	35.1	6.3

Figure S3. 13C NMR (CDCl$_3$) spectra of Gl and PGI highlighting the characteristic peaks of the different isomers used for their quantification.
Figure S4. TGA traces (a) and derivative curves (b) of the P(Gl-r-PDL) copolyesters.
Figure S5. 1H NMR (CDCl$_3$) spectra of the P[(Gl-BAET)$_{13}$-r-PDL$_{87}$] (a), and P[(Gl-NH$_2$)$_{13}$-r-PDL$_{87}$] (b).
Figure S6. GPC curves of the P[(Gl_{13-r-PDL_{87}})-g-(BLG)_{10}] and P[(Gl_{48-r-PDL_{52}})-g-(BLG)_{2}] copolymers. Peaks observed at elution times longer than 25 min (framed area) are due to the sodium trifluoroacetate salts added to the running solvent.
Figure S7. 1H NMR (CDCl$_3$/TFA) spectra of the P[(Gl$_{48}$-r-PDL$_{52}$)-γ-(BLG)$_2$] (a), and P[(Gl$_{48}$-r-PDL$_{52}$)-γ-(LGA)$_2$] (b).
Figure S8. TGA traces (a, b) and derivative curves (a’, b’) of the P[(Gl$_{13}$-r-PDL$_{87}$)-g-(BLG)$_{10}$] and P[(Gl$_{48}$-r-PDL$_{52}$)-g-(LGA)$_{2}$] copolymers.

Figure S9. 1,800-1,500 cm$^{-1}$ region of FTIR spectra of P[(Gl$_{13}$-r-PDL$_{87}$)-g-(BLG)$_{10}$] (a) and P[(Gl$_{48}$-r-PDL$_{52}$)-g-(LGA)$_{2}$] (b) at different temperatures over the 20-200 ºC range.
Figure S10. Evolution of the WAXS (a) and SAXS (b) profiles recorded from P[(Gla-r-PDL52)-g-(BLG)₃] copolymer at heating over the 0-200 °C range.

Figure S11. Evolution of the WAXS (a) and SAXS (b) profiles recorded from P[(Gla-r-PDL52)-g-(LGA)₃] copolymer at heating over the 0-200 °C range.
Figure S12. SEM images of nanoparticles made of P[(Gl13-r-PDL87)-g-(BLG)10].

Figure S13. DLS profiles (a) and plot used for determining the critical concentration (b) of micelles made of P[(Gl13-r-PDL87)-g-(LGA)10].

Figure S14. Chemical structure of DOX·HCl.