Modulation of steroid hormone synthesis by alcoholic extract of Asparagus racemosus on MCF-7 cells

Dhanusha Gowda, Sujith Samraj*, Nisha Aynikattil Ravindran, Bibu John Kariyil, Raji Kanakkaparambil, Aathira Kadakkaparambil Krishnan, Haima Jumailathu Shahjahan

ABSTRACT

The objective of the study was to elucidate the effect of alcoholic extract of A. racemosus on oestrogen and progesterone synthesis from MCF-7 cells. The root tubers of A. racemosus was collected dried, extracted in soxhlet, solvent evaporated and dried and was used for study. Qualitative phytochemical analysis of the extract was done. The IC_{50} was determined by doing MTT assay in MCF-7 cell lines. MCF-7 cells cultured in RPMI-1640 were exposed to IC_{50}, half and double the doses of IC_{50} for 96 hours and the media collected every 48 hours to determine the concentration of oestrogen and progesterone using ELISA. The qualitative phytochemical analysis of the extract revealed the presence of steroids, alkaloids, diterpenes, triterpenes, tannins, glycosides and saponins The IC_{50} was found to be 267 µg/mL. The extract of A. racemosus caused an increase in the concentration of oestrogen and progesterone secreted by MCF-7 cells in a dose and time dependent fashion. There was an increase in the secretion of progesterone in a dose dependent fashion compared to untreated cells, whereas the secretion decreased at 96 hours compared to 48 hours. From the study, it could be concluded that alcoholic extract of A. racemosus caused a positive modulation of steroid hormone synthesis.

Keywords: Asparagus racemosus, MCF-7, Oestrogen, Progesterone.

INTRODUCTION

The oestrogens and progestogens are the major reproductive hormones in females, that act through the nuclear receptors and bring about ligand induced transcription of key genes associated with reproduction. The role of oestrogen in growth and differentiation of various bodily targets especially those associated with reproduction, maintenance of bone mass, cardiovascular protection and brain integrity has been clearly understood [1]. The role of these female reproductive steroid hormones in the pathogenesis of different cancers has been elucidated long back. Moreover, these hormones and their modulators are used as therapeutic agents in these conditions. Research on plants that can modulate the synthesis or action of these hormones in various target tissues is gaining significance. Various phytochemicals like coumestrol, genistein, daidzein, resveratrol [2] naringenin [3], have been shown to have oestrogenic or antioestrogenic properties depending up on their concentrations or site of action. Bioflavonoids are a part of the diet and many of them are characterised as phytooestrogens as they bind and activate oestrogen receptors [4]. Hence the effect of such flavonoids can be regarded as selective modulation of oestrogen receptors.

Asparagus racemosus belongs to family Asparagaceae; Liliaceae and is commonly as called Satavari, among the 22 species of Asparagus recorded in India; Asparagus racemosus is the most commonly used one in traditional medicine [5]. The roots of A. racemosus were used in diabetes [6, 7] nervous disorders, dyspepsia [8], diarrhoea, dysentery [9], tumours [10], inflammations, hyperdipsia, neuropathy, urolithiasis [11] hepatic tumors [12] hepatotoxicity [13] cough, bronchitis [14], hyperacidity, gastric ulcers [15] and also as a galactagogue [16] The present study aimed to investigate the effect of alcoholic extract of root tubers of Asparagus racemosus on the synthesis of oestrogen and progesterone.

MATERIALS AND METHODS

Plant Extraction

The tubers of A. racemosus were collected locally, from Mannuthy and was dried in shade until they were dry. The tubers were coarsely powdered using an electric pulveriser and the powder obtained was extracted using a Soxhlet extraction apparatus with methanol. The methanol extract was then concentrated using a rotary vacuum evaporator under reduced pressure and temperature (40°C). The

Correspondence: Dr. Sujith Samraj
Assistant Professor, Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Kerala 680651
Email: sujith@kvau.ac.in
yield of the extract was calculated and kept under refrigeration in an airtight container after complete evaporation of the solvent until further use.

Phytochemical analysis

The qualitative phytochemical analysis was performed \(^{[17]}\).

Assessment of effect of extracts on viability of MCF-7 cells and Calculation of IC\textsubscript{50}

The MTT assay was done using methanolic extracts of tubers of *A. racemosus* in MCF-7 cells as per \(^{[18]}\). The T25 flask with MCF-7 cells on attaining 70-80 per cent confluency was trypsinized and seeded in a 96 well plate and exposed to 1280, 640, 320, 160, 80, 40, 20 and 10 µg/mL concentrations of the extract. After 24 hours of incubation with the extract, the media were carefully pipetted out and ten microliters of MTT (5 µg/mL, prepared in DPBS) was added to all wells including blanks and covered with aluminium foil and incubated at 37°C for 4 hours, in CO\textsubscript{2} incubator. After incubation, the media containing MTT was removed. Added 200 µL of DMSO to all the wells to dissolve to formazan crystals formed. The plates were gently agitated on orbital shaker for 10 minutes. The absorbance was measured using microplate reader (Varioskan Flash, Thermofischer Scientific, Finland) at a wavelength of 570 nm. Per cent cell viability was found out using the formulae and IC\textsubscript{50} was calculated using online software My curvefit.com.

Culture of cells for steroid analysis

Adherent human breast adenocarcinoma cell line, MCF-7 received as a gift from Amala Cancer Research Centre, Thrissur was used for *in vitro* hormone assays. Cells were adapted to grow in Rosewells Park Memorial Institute (RPMI-1640) media supplemented with 10 per cent foetal bovine serum and 1 per cent gentamicin (50 mg/mL). The cells were maintained in a humidified incubator at 37°C with five per cent foetal bovine serum and 1 per cent gentamicin (50 mg/mL). The Journal of Phytopharmacology

Assessment of effect of extracts on viability of MCF-7 cells and Calculation of IC\textsubscript{50}

The qualitative phytochemical analysis revealed the presence of steroids, alkaloids, diterpenes, triterpenes, tannins, glycosides and saponins.

Phytochemical Analysis

The per cent inhibition of cell proliferation as evaluated by MTT assay 24 hours post treatment with methanolic extract of *A. racemosus* (MAR) in MCF-7 cell line is presented in table 1. Maximum inhibition was shown when cells were exposed to 160 µg/mL of MAR with values of 47.23±3.83 per cent whereas the inhibition of the cells exposed to 5 µg/mL was 14.11±4.63 per cent. The viability of cells at 10, 20, 40 and 80 µg/mL were 26.29±2.66, 24.91±3.45, 22.85±4.08 and 39.91±4.71 respectively.

The IC\textsubscript{50} of *A. racemosus* was calculated by using the per cent cell inhibition obtained from MTT Assay. A curve was plotted using the values in AAT Bioquest and the graph obtained is represented in the table1. The IC\textsubscript{50} value was found to be 267 µg/mL (Figure 1).
Effect on methanolic extract of A. racemosus on Oestrogen concentration

The maximum oestrogen concentration after 48 hours of treatment was observed when MCF-7 cells were treated with MAR at the dose of 534 and 267 µg/mL which was 20.21±0.63 and 19.69±0.26 ng/mL respectively (Figure 2). At the dose of 133.5 µg/mL, the oestrogen concentration was 14.99±0.15 ng/mL. There was an increase in the oestrogen concentration when cells were exposed to MAR at both time intervals and maximum concentration was at 96 hours. At 96 hours, the oestrogen concentration were 38.74±0.55, 21.62±0.40 and 17.87±0.24 ng/mL at the doses of 534, 267 and 133.5 µg/mL respectively.

![Figure 2: The effect of methanolic extract of A. racemosus on oestrogen secretion by MCF-7 cells](image1)

There was a dose dependent increase in the concentration of progesterone secreted from the MCF-7 cells that were treated with 267 and 534 µg/mL of the methanolic extract of A. racemosus. The increase was relevant during the first 48 hours of treatment as compared to the total 96 hours of treatment (Figure 3). After 96 hours of treatment, there was a decrease in the concentration of progesterone, at each dose, as compared to the concentrations at 48 hours, but there was an increased secretion compared to the untreated cells.

![Figure 3: The effect of methanolic extract of A. racemosus on progesterone secretion by MCF-7 cells](image2)

DISCUSSION

Oestrogens and progestins are the endogenous hormones concerned with numerous physiological functions in the body including developmental effects, maintenance of fertility, pregnancy, lactation and metabolism of minerals, carbohydrates, protein and lipids. The concentrations of oestrogen and progesterone are important in maintaining the fertility status of an individual. The clinical uses of these hormones and their antagonists or selective receptor modulators differ in different clinical situations, which find their clinical efficacy even in cancers. Both the hormones arise from the same precursor, cholesterol, whose transport from cytoplasm to mitochondria is the rate limiting step in the synthesis. Cholesterol is converted to pregnenolone, then progesterone which gets converted to testosterone and then to oestrogen, which is mediated by the enzyme aromatase.

These hormones acts through nuclear receptors, which act as ligand activated transcription factors, which regulate the activity of target genes. Oestrogen act via other mechanism also like the G-protein coupled receptor, GPR 30 which is thought to mediate the rapid effects of oestrogen. There are many reports on the association of GPR 30 and many of the oestrogen dependent cancers.

In the present study, the methanolic extract of tubers of A. racemosus caused a dose and time dependent increase in the secretion of oestrogen from MCF-7 cells whereas the secretion of progesterone was enhanced only in the higher doses. There was also a time dependent decrease in the secretion of progesterone, which indicated that the effect on estrogen secretion was more pronounced as compared to progesterone. The effect in the case of progesterone was significant, as the secretion from control cells remained unchanged even after 96 hours of culture. The decrease in the secretion of progesterone was evident in the IC50 dose compared to all other treatments whereas there was a significant increase in the secretion of oestrogen at the higher dose. These results indicated that the extract of A. racemosus modulated the activity of both oestrogen and progesterone.

The phytochemical analysis of the extract showed presence of steroids, saponins and glycosides, the activity of which might have contributed to the effect on the steroidogenesis. There are various reports on the activity of bioflavonoids and carboxylic acids acting as weak progestins or antiprogestins [19]. It was reported that certain phytoestrogens like biochanin A and genistein significantly increased the synthesis of progesterone at lower concentrations whereas the synthesis was inhibited at higher concentrations [20], which was seen in the present study also. The decrease in the synthesis of progesterone at higher concentrations over time can be due to the enhanced metabolism of the hormone or enhanced synthesis of oestrogen. It has already been proven that phytochemicals like flavones and isoflavones especially apigenin, chrysin, biochanin A are oestrogenic and cause cell proliferation in invitro systems [21].

There are various reports on the biphasic response of phytochemicals on oestrogen secretion. Genistein was shown to have oestrogenic properties at concentrations below 1µM, but antagonist activity is seen at concentrations above 10 µM [22]. The biphasic effect on daidzein on cultured cells were thought to be associated with influence on cell cycle regulatory protein [23]. The phytoestrogens can be used as alternatives to oestrogen replacement therapy as they show oestrogenic effects. Many of the biological effects of oestrogen like regulation of cell growth, migration, apoptosis and regulation of cardiac and vascular hypertrophy in response to ischaemia are mediated through GPER [24]. Recently, it was elucidated that genistein is an agonist of both GPER and ERα and can induce arterial vasodilation in humans, pigs and rats [25].

In conclusion, the potential oestrogenic and progestogenic activity of Asparagus racemosus was elucidated in the human breast cancer cell lines. The alcoholic extract of A. racemosus caused a dose and time dependent increase in the secretion of oestrogen where as a dose dependent increase in progesterone synthesis was noticed which
decreased over time. Since the oestrogenic and progestogenic activities, are beneficial not only on reproductive aspects, but also on the other tissues bearing oestrogen receptors, identification of the potent molecule is warranted.

Acknowledgements

The authors are thankful to the College of Veterinary and Animal Sciences, Mannuthy, under Kerala Veterinary and Animal Sciences University for providing the facilities financial assistance provided. The authors are also thankful to Dr Achuthan, Scientist, Amala Cancer Institute, Thrissur for aiding in lending the MCF-7 cells which was used for the study.

Conflict of Interest

None of the authors have any potential conflict of interest associated with this research.

Financial Support

None declared.

REFERENCES

1. Kima IG, Kang SC, Kima KC, Choung ES, Zee OP. Screening of estrogenic and antiestrogenic activities from medicinal plants. Environ. Toxicol Pharmacol, 2008; 25:75–82.
2. Bowers JL, Tyulmenkov VV, Jerucais GC, Kline CM. Resveratrol acts as a mixed agonist/antagonist for estrogen receptors α and β. Endocrinology, 2000; 141:3657-3667.
3. Guerreiro S, Monteiro R, Calhau C, Azevedo I, Soares R. Naringenin inhibits cell growth and migration in human breast cancer cell lines. Fed. Am. Soc. Exp. Biol. 2007; 21:1094-1095.
4. Lu R, Serrero G. Resveratrol, a Natural Product Derived From Grape. Exhibits Antiestrogenic Activity and Inhibits the Growth of Human Breast Cancer Cells. J. Cell. Physiol, 1999; 179:297–304.
5. Bopana N, Saxena S. Asparagus racemosus—Ethnopharmacological evaluation and conservation needs. J. Ethnopharmacol, 2007; 110:1-15.
6. Kar A, Choudhary BK, Bandypadyhay NG. Preliminary studies on the inorganic constituents of some indigenous hypoglycaemic herbs on oral glucose tolerance test. J. Ethnopharmacol, 1999; 64:179-184.
7. Hanan JMA, Marenah L, Ali L, Rokeya B, Flatt PR, et al. Insulin secretory actions of extracts of Asparagus racemosus root in perfused pancreas, isolated islets and clonal pancreatic β cells. J. Endocrinol, 2007; 192:159-168.
8. Bhattacharya SK, Bhattacharya A, Chakrabarti A. Adaptogenic activity of sotome, a polyherbal formulation of ayurvedic nasayanas. Indian J. Exp. Med. 2000; 38:119-128.
9. Venkatessen N, Thiyagarajan V, Narayanan S, Anil A, Raja S, et al. Anti-diarrhoeal potential of Asparagus racemosus wild root extracts in laboratory animals. J. Pharm. Pharm. Sci. 2005; 8:39-46.
10. Rao AR. Inhibitory action of Asparagus racemosus on DMBA-induced mammary carcinogenesis in rats. Int. J. Cancer, 1981; 28:607-610.
11. Christina AJM, Ashok K, Packialakshmi M, Tobin GC, Preethi J, et al. Anti-lithiatic effect of Asparagus racemosus Willdnon ethylene glycol-induced lithiasis in male albino Wistar rats. Methods Find. Exp. Clin. Pharmacol, 2005; 27:633-638.
12. Agrawal A, Sharma M, Rai SK, Singh B, Tiwari M, et al. The effect of the aqueous extract of the roots of Asparagus racemosus on hepatocarcinogenesis initiated by diethylnitrosamine. Phytother. Res. 2008; 22:1175-1182.
13. El-Senousy YA, Ahmed SA, Farid AS. Hepatoprotective effect of Asparagus racemosus in paracetamol induced hepatotoxicity in rats. Benha Vet. Med. J. 2015; 28:133-137.
14. Mandal SC, Kumar CKA, Lakshmi SM, Sinha S, Murugesan T, et al. Endothelium-dependent relaxation of rat aorta and main pulmonary artery by the phytoestrogens genistein and daidzein. Cardiovasc. Res. 2000; 46:539–546.
15. Sairam K, Priyambada S, Aryya NC Goel RK. Gastroduodenal ulcer protective activity of Asparagus racemosus: An experimental, biochemical and histological study. J. Ethnopharmacol, 2003; 86:1-10.
16. Narendranath KA, Mahalingam S, Anuradha V, Rao IS. Effect of herbal galactagogue (Lactare) a pharmacological and clinical observation. Med. Surg. 1986; 26:19-22.
17. Harborne AJ. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. (3rd Ed.), Chapman and Hall, London, UK, 1998.
18. Riss T, Moravec R. Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin and plating density in cell-based cytokotoxicity assays. Assay Drug Dev. Technol. 2004; 2:51-62.
19. Rosenberg BS, Grass L, Jenkins DJA, Kendall CWC, Diamandis EP. Modulation of Androgen and Progesterone Receptors by Phytochemicals in Breast Cancer Cell Lines Biochem. Biophys. Res. Commun. 1998; 248:935-939.
20. Kaplanski O, Shemesh M, Berman A. Effects of phyto-oestrogens on progesterone synthesis by isolated bovine granulosa cells. J. Endocrionol., 1981; 89:343-348.
21. Van Meeuwen JA, N. Korthagen PC, de Jong Piersma AH, van den Berg M. (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol Appl. Pharmacol. 2007; 221:372–383.
22. Limer JL., Parkes AT, Speirs V. Differential response to phytoestrogens in endocrine sensitive and resistant breast cancer cells in vitro. Int. J. Cancer. 2006; 119:515–521.
23. Yang C, Hsu JT, Hung HC, Lin DH, Chen LF, et al. Growth and cell cycle regulation by isoflavones in human breast carcinoma cells. Reprod. Nutr. Dev. 2002; 42:55–64.
24. Feldman RD, Limbird LE. GPER (GPR30): A Nongenomic Receptor (GPCR) for Steroid Hormones with Implications for Cardiovascular Disease and Cancer. Annu. Rev. Pharmacol. Toxicol. 2017; 57:24.1–24.18.
25. Mishra S, Abott, S, Choudhury Z, Cheng M, Khabaz N, et al. Endothelium-dependent relaxation of rat aorta and main pulmonary artery by the phytoestrogens genistein and daidzein. Cardiovasc. Res. 2000; 46:539-546.

HOW TO CITE THIS ARTICLE

Gowda D, Samraj S, Ravindran NK, Kariyil BJ, Kanakaparambil R, Krishnan AK, Shahjahan HJ. Modulation of steroid hormone synthesis by alcoholic extract of Asparagus racemosus on MCF-7 cells. J Phytopharmacol 2021; 10(6):429–432. doi: 10.31254/phyto.2021.10601

Creative Commons (CC) License-

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. (http://creativecommons.org/licenses/by/4.0/).