Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review)

QING ZHANG1*, SHOUSHENG LIU2,3*, JIE ZHANG1, XUEFENG MA1, MENGZHEN DONG1, BAOKAI SUN1 and YONGNING XIN1,3,4

1Department of Infectious Disease, 2Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011; 3Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071; 4Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China

Received January 16, 2020; Accepted August 26, 2020

DOI: 10.3892/etm.2020.9475

Abstract. MicroRNAs (miRNAs) are non-coding RNAs 21-23 nucleotides in length that regulate gene expression, and thereby modulate signaling pathways and protein synthesis in both physiological and pathogenic processes. miR-30b inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transformation in multiple types of cancer. In addition to its role in several types of neoplasias, miR-30b has been shown to exhibit essential roles in cardiovascular and metabolic diseases. In the present review, an overview of the biological functions of miR-30b and its role in the pathogenesis of neoplastic, cardiovascular and metabolic diseases is provided. miR-30b is a potential candidate for clinical development as a diagnostic and prognostic biomarker, therapeutic agent and drug target. However, further research is required to elucidate its role in health and disease and to harness its potential clinical utility.

Contents

1. Introduction
2. Biological function of miR-30b
3. Role of miR-30b in cancer
4. Role of miR-30b in cardiovascular disease
5. Role of miR-30b in metabolic disease
6. Conclusions

1. Introduction

MicroRNAs (miRNAs) are endogenous short-chain RNAs 21-23 nucleotides in length that regulate posttranscriptional gene expression (1). A series of biogenetic processes convert transcripts into mature miRNAs (2). Briefly, miRNA-encoding genes are first transcribed into pri-miRNAs that are digested by Drosha and Dicer enzymes to produce mature miRNAs (3,4). Subsequently, mature miRNAs are assembled into RNA-induced silencing complexes (RISC) (5). RISC recognize complementary bases, and either degrade the target miRNAs or inhibit their expression depending upon the degree of complementarity (6,7). miRNAs regulate translation through both direct and indirect mechanisms (8).

miRNAs serve important roles in cell proliferation, differentiation, apoptosis and other biological processes (2,9). Furthermore, miRNAs affect various metabolic pathways, including lipid, glucose and bone metabolism (10-12), and pathophysiological dysregulation of miRNAs may result in oncogenesis and tumor progression (13). miR-30b, a member of the miR-30 family, has been implicated in the pathogenesis of multiple diseases, including various types of cancer, diabetes, and cardiovascular, renal and neurological disorders (14-19). In the present review, the current body of literature regarding the role of miR-30b in diverse range of diseases, particularly cancer, cardiovascular diseases and metabolic disorders is summarized.

2. Biological function of miR-30b

In this section, the biological function of miR-30b in the physiology of cell differentiation and development, autophagy and inflammation is summarized. miR-30b is an important modulator of cell differentiation and development. miR-30b was shown to downregulate chondrogenic differentiation induced by TGF-β3 in murine embryonic stem cells (C3H10T1/2)
by targeting SOX9 (20) and promoted the growth of retinal ganglion axons by inhibiting the expression of Semaphorin3A in a murine model of optic nerve injury (21). During angiogenesis, miR-30b overexpression stimulated the TGF-β2 signaling pathway, thus inhibiting capillary formation; whereas miR-30b inhibition promoted angiogenesis (22).

Autophagy is a cellular recycling process that is highly conserved amongst eukaryotes (23). Vesicles transport cargos to lysosomes for degradation and recycling (24). The role of miR-30b in autophagy has been investigated in several studies. In a murine model of hepatic ischemia reperfusion injury (IRI), miR-30b inhibited autophagy and attenuated the consequent severity of IRI by reducing Atg12-Atg5 conjugates (25). miR-30b was also shown to regulate autophagy in vascular smooth muscle cells; overexpression reduced the expression of autophagy-related genes such as BECN1, ATG5 and LC3b, whereas miR-30b downregulation increased their expression (26). In an in vitro model of TNF-α-induced chondrocyte injury, miR-30b directly inhibited the expression of autophagy-related genes BECN1 and ATG5, whereas its reduced expression increased cell survival and attenuated cartilage degradation (27). In summary, miR-30b possesses significant functions in the physiology of autophagy that should be explored in additional diseases.

miR-30b also serves a critical role in inflammation. This includes regulation of the physiological function of macrophages/dendritic cells, Fc receptor-mediated phagocytosis, antigen processing, cytokine production and related innate immune responses (28-30); as well as the regulation of cell-mediated responses by mediating T cell expression of IL-10 and Toll-like receptor 4 (31); and the control of humoral immunity by inhibiting B cell expression of kynurenine-regulated lipopolysaccharide by targeting the Bach2 gene (32). In a rat model, the upregulation of miR-30b was shown to directly impact peritoneal fibrosis through a BMP7-mediated pathway (33). Although miR-30b function has been studied in multiple immune effector cell subtypes as described above, its role in the regulation of immune response is only partially understood and requires further study.

3. Role of miR-30b in cancer

The role of miR-30b has been studied in various malignancies, including pancreatic, gastric, and lung cancer; where it is involved in the regulation of multiple processes such as cell proliferation, differentiation, apoptosis, invasion and metastasis (Fig. 1). In addition, miR-30b serves a pivotal role in epithelial-mesenchymal transition (EMT), a phenotypic conversion that is characterized by reduced expression of epithelial markers and upregulation of mesenchymal markers in cancer stem-like cells during carcinogenesis. miR-30b inhibits Snail-mediated EMT and the consequent migratory and invasive capacity of pancreatic cancer stem cells and hepatoma cells (34,35). Paradoxically, miR-30b can function as either an oncogene or tumor suppressor gene dependent on the type of cancer, as discussed in detail in further chapters (Table I).

Role of miR-30b in gastric cancer. Gastric cancer is one of the most common malignancies and is the second leading cause of cancer-related death worldwide (36). Invasion and metastasis are major causes of mortality (37). In a 2014 study, decreased expression of miR-30b-5p was observed in gastric cancer tissue and in 4 gastric cancer cell lines, and was shown to be correlated with lymph node metastasis (38). Zhu et al (15) suggested that miR-30b promoted apoptosis and inhibited tumorigenesis by downregulating plasminogen activator inhibitor-1 (PAI-1). Tian et al (39) showed that miR-30b inhibited tumor migration and invasion in AGS and MGC803 cells, two gastric cancer cell lines, by targeting the synthesis of EIF5A2, an oncogenic protein that serves a fundamental role in EMT. Xi et al (40) reported that upstream regulator of miR-30b, lncRNA MALAT1, enhanced autophagy and cisplatin resistance in the gastric cancer cell line AGS/CDDP by inhibiting the miR-30b/ATG5 axis. In summary, miR-30b may act as a tumor suppressor gene in gastric cancer.

Role of miR-30b in hepatocellular carcinoma. Numerous studies have shown an association between dysregulated miR-30b expression and hepatocellular carcinoma (HCC). Huang et al (41) demonstrated that miR-30b expression was significantly lower in HCC compared with the para-cancerous tissue. miR-30b was also shown to regulate the expression of CD90, resulting in inhibition of HCC progression. Sun et al (35) found that miR-30b inhibited EMT and metastasis in HCC. Qin et al (42) reported that miR-30b-5p inhibited proliferation and slowed cell cycle progression of HCC by targeting DNMT3A and USP37. In addition, miR-30b influenced HCC recurrence and prognosis. Huang et al (41) showed there was an association between high expression of miR-30b and relapse-free survival. miR-30b expression was shown to affect hepatic metastasis; Hur et al (43) reported that miR-30b was upregulated in liver metastases compared with primary tumors. In addition, miR-30b may serve as a prognostic biomarker (44). miR-30b expression can accurately predict metastasis-free and hepatic metastasis-free survival (45) and the risk of recurrence (46).

miR-30b may also mediate drug resistance in HCC, although its specific role is contested (47,48). Moreover, miR-30b-mediated pathways may serve as potential novel therapeutic targets. Yeh and Huang (49) used two methods (jetPEI/anti-miR-30b complexes and a miR-30b antagonist) to deliver anti-sense miR-30b in a murine J7 tumor xenograft model of HCC and found that both methods inhibited tumor growth when compared with the controls. However, the specific roles of miR-30b in oncogenesis and drug resistance require further study.

Role of miR-30b in colorectal cancer. Colorectal cancer (CRC) is one of the most prevalent types of cancer of the digestive system in western countries and is the third leading cause of cancer-related death worldwide (50). Yilmaz et al (51) found that miR-30b expression was decreased in CRC tissues, and Yoon et al (52) showed that miR-30b suppressed the invasiveness of CRC cell lines. The inhibitory role of miR-30b in CRC may be due to targeting of KITENIN, KRAS, PIK3CD, BCL2, SIX1 and Snail (43,53-56). Although these findings suggest a suppressor role of miR-30b in CRC, to the best of our knowledge, no studies have addressed the potential therapeutic value of miR-30b in CRC. Thus, studies investigating its therapeutic utility in CRC are required.
Role of miR-30b in non-small cell lung cancer (NSCLC). Lung cancer is the leading cause of cancer death worldwide (57). Previous studies have suggested that miR-30b expression is downregulated in non-small cell lung cancer primary tumors (58) and that it inhibits proliferation, invasion and migration of NSCLC cells by targeting Cthrc1, Rab18 and EGFR (59,60). These findings suggest that miR-30b upregulation may serve as a therapeutic strategy, and this has been attempted using radiation therapy; low-dose pretreatment was used to increase miR-30b expression, thereby inhibiting PAI-1 activity and improving the clinical response to full-dose radiation (61).

In contrast to its reduced expression in lung tumors, miR-30b levels are increased in circulating extracellular vesicles in patients with NSCLC (62), highlighting its potential use as a diagnostic and prognostic biomarker. High serum concentrations of miR-30b and miR-30c are associated with a reduction in both progression-free and overall survival (63). In addition, miR-30b expression is a useful predictor of a patient's response to first-line tyrosine-kinase inhibitors (TKIs) (64).

The role of miR-30b in drug resistance in patients with lung cancer is less clear. The targeting of the epidermal growth factor receptor (EGFR) pathway by miR-30b enhanced the in vitro sensitivity of NSCLC cells to EGFR-TKIs (65). However, Garofalo et al (66) showed an association between increased expression of EGFR and hepatocyte growth factor receptors with upregulated miR-30b expression and resistance to the EGFR-TKI gefitinib. Silencing of Dicer downregulated miR-30b/c and miR-221/222 expression, increased capase-3 expression and restored gefitinib sensitivity (67). miR-30 also serves a fundamental role in cisplatin resistance. miR-30 inhibition reduces the clonogenic survival of CisR cells in vitro when treated with cisplatin (68).

Role of miR-30b in breast cancer. Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer-related death in women (77). The expression of miR-30b is lower in breast cancer tissues than in normal tissues (78). However, Zhang et al (79) found that miR-30b levels were upregulated in the blood of patients with breast cancer, even during the very early-stages of the disease. In 2015, Ribas et al (80) studied 1,302 subjects from the European genomic archives and found that miR-30b expression was lower in younger patients (<35 years old) compared with the older group. miR-30b may also inhibit bone metastasis by targeting numerous genes related to osteoclast stimulation (such as IL-8 and IL-11), osteoblast inhibition (DDK-1), tumor cell osteogenesis (RUNX2 and CDH11) and invasion (CTGF, ITGAS and ITGB3) (81).
Table I. Function of miR-30b in different types of tumors and the possible target genes.

First author/year	Tumor type	Target gene	Expression and function of miRNA (Refs.)
Xiong et al., 2018	Pancreatic cancer	Snail	Inhibits EMT (34)
Guo et al., 2019		-	Reverses EMT, reduces migration and invasion, and inhibits the tumorigenicity (85)
Zhu et al., 2014	Gastric cancer	PAI1	Promotes apoptosis (15)
Tian et al., 2015		EIF5A2	Inhibits migration and invasion (39)
Qiao et al., 2014		-	Inhibits migration (38)
Li et al., 2017	Esophageal cancer	HOXA1	Inhibits growth, migration and invasion (86)
Xu et al., 2019		ITGA5, PDGFRB, PI3K/Akt	Inhibits migration and invasion (87)
Liu et al., 2017	Renal cell carcinoma	GNA13	Inhibits proliferation, invasion, migration and EMT (88)
Reddemann et al., 2015	Malignant lymphoma	-	Downregulated (89)
Oduor et al., 2017		-	Upregulated (90)
Croset et al., 2018	Breast cancer	-	Inhibits bone metastasis (81)
Zhang et al., 2017		-	Upregulated (79)
Luo et al., 2014		-	Downregulated (82)
Hafez et al., 2012	Bladder cancer	-	Upregulated (71)
Mahdavinezhad et al., 2015	Renal cell carcinoma	GNA13	Inhibits proliferation, invasion, migration and EMT (88)
Park et al., 2014	Colorectal cancer	KITENIN	Inhibits migration and invasion (53)
Liao et al., 2014		KRAS, PIK3CD and BCL2	Inhibits proliferation in vitro and tumor growth in vivo (54)
Zhao et al., 2014		SIX1	Inhibits migration and invasion (55)
Wu et al., 2014		Snail	Inhibits invasion and migration (56)
Xu and Li, 2016	Malignant glioma	EFGR	Related to microvascular proliferation (91)
Li et al., 2018		PRRT2	Promotes proliferation, migration and invasion (92)
Zhang et al., 2018		MTDH	Inhibits proliferation (93)
Jian et al., 2019		RECK	Inhibits proliferation, invasion and migration (94)
Hu et al., 2018	Parathyroid carcinoma	-	Downregulated (95)
Li and Wang, 2014	Laryngeal carcinoma	p53	Promotes apoptosis (96)
Sun et al., 2017	Liver cancer	Snail	Inhibits EMT, migration and invasion (35)
Qin et al., 2017		DNMT3A, USP37	Inhibits proliferation and cell cycle (42)
Yeh and Huang, 2016	Malignant glioma	TIA1	Promotes growth in tumor models (49)
Li et al., 2018	Non-small cell lung cancer	-	Upregulated (62)
Hu et al., 2016		-	Downregulated (58)
Zhong et al., 2014		Rab18	Inhibits proliferation (59)
Chen et al., 2015		Cthrc1	Inhibits invasion and migration (60)
Qi et al., 2018		EGFR	Inhibits proliferation, migration and invasion, induces apoptosis (65)
Park et al., 2019		PAI-1	Reduces phosphorylation of downstream survival signals Akt and ERK (61)
Wang et al., 2018	Gallbladder carcinoma	NT5E	Inhibits proliferation, invasion and migration (97)

EGFR, epidermal growth factor receptor; PAI-1, plasminogen activator inhibitor-1; -, unknown.
Luo et al (82) developed an assay for the early diagnosis of breast cancer that measured levels of four downregulated miRNAs (miR-451, miR-148a, miR-27a and mi-R-30b) and was able to distinguish patients with breast cancer from the healthy controls based on the expression of these four miRNAs.

A miRNA-mediated PI3K pathway serves a central role in trastuzumab resistance (83). PI3K pathway inhibitors resulted in reduced miR30b expression and re-sensitization to trastuzumab in the trastuzumab resistant HCC1954 cells (84).

Role of miR-30b in other types of cancer. miR-30b has been shown to serve as a regulatory factor in other malignancies, including pancreatic (85), esophageal (86,87) and renal cell carcinomas (88), lymphoma (89,90), glioma (91-94) and parathyroid (95), laryngeal (96) and gallbladder carcinoma (97). The role of miR-30b in these types of cancer has been evaluated in a relatively small number of studies, and the results are summarized in Table I.

4. Role of miR-30b in cardiovascular disease

Cardiovascular disease remains the leading cause of morbidity and mortality worldwide (98). In rat models, miR-30b expression was shown to be downregulated in myocardial IRI, whereas upregulation attenuated cardiomyocyte apoptosis (14,99) by targeting KRAS and activating the Ras/Akt pathway (14). Li et al (100) suggested that miR-30b reduced homocysteine-induced apoptosis in coronary endothelial cells by downregulating the expression of caspase-3. miR-30b expression was decreased in the peripheral blood of patients with acute myocardial ischemia (AMI) and in the peripheral blood and myocardial tissue in an AMI murine model (99). Based on the murine model, it was also suggested that miR-30b exerted a myocardial protective effect by targeting PAI-1 (101).

By contrast, Shen et al (102) reported that miR-30b expression was upregulated in a murine model of myocardial infarction and primary cardiomyocyte hypoxia models and was associated with ischemic injury. A study in the USA reported that miR-30b may promote cardiomyocyte death by targeting Bcl-2, and that inhibiting miR-30b reduced Ang II-induced myocardial cell apoptosis (103). A role for miR-30b in atherosclerosis was suggested based on the levels of miR-30b in the blood of patients with coronary artery disease (92). miR-30b may inhibit the proliferation and apoptosis of human coronary endothelial cells by targeting ITGA4 (104).

5. Role of miR-30b in metabolic disease

Numerous studies have shown an association between miR-30b and several metabolic diseases, such as obesity, diabetes and non-alcoholic fatty liver disease (NAFLD). Kim et al (105) found that miR-30b levels were reduced in the serum and visceral adipose tissue of obese subjects. miR-30b was downregulated in subcutaneous adipose tissue of subjects with insulin resistance (106). Stepien et al (107) found that miR-30b was upregulated in circulating exosomes of patients with type 2 diabetes mellitus (T2DM). Zang et al (108) showed reduced expression of miR-30b in the urinary exosomes of patients with T2DM and diabetic kidney disease (DKD) compared with subjects with T2DM without DKD (108). miR-30b wasshown to regulate insulin sensitivity in a rat model of NAFLD by targeting SERCA2b and the serum levels of miR-30b were also positively correlated with hepatic steatosis and insulin resistance in a cohort of 165 Chinese individuals (109). A Spanish study found that hepatic miR-30b levels were upregulated in obese patients with NAFLD compared with patients with uncomplicated obesity (110). Further research is required to clarify the roles and mechanisms of miR30b in metabolic diseases, and to explore its potential clinical utility as a diagnostic analyte and drug target.

6. Conclusion

A growing body of research has shown that a range of functions are mediated by miR-30b in the pathogenesis of numerous diseases, including cancer, cardiovascular disease and metabolic disorders. These include the modulation of cell proliferation, autophagy, invasion, migration and EMT in cancer; apoptosis in myocardial ischemia, and NAFLD in insulin insensitivity. Although progress has been made, the current state of knowledge of the functions of miR-30b is still incomplete. Studies of the roles of miR-30b have yielded inconsistent results that may be related to different sample types and the demographics of the study subjects. The current body of literature suggests that miR-30b offers significant clinical potential as a diagnostic and/or prognostic biomarker, therapeutic agent and drug target. Further research is required to elucidate its role in health and disease and to harness its potential clinical utility.

Acknowledgements

The authors thank Ms Jie Tan of Weifang Medical University, Weifang, China for her assistance with literature collection for this study.

Funding

This study was supported by a grant from the National Natural Science Foundation of China (grant no. 31770837).

Availability of data and materials

Not applicable.

Authors' contributions

Study concept and design: YNX. Acquisition and analysis of data: QZ, SSL, JZ, XFM, MZD and BKS. The drafting and writing of the manuscript: QZ and SSL. The revision of the manuscript: YNX. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.
Identification of miR-30b regulates chondrogenic differentiation of signature in human
22.
21.
20.
19.
18.
17.
16.
15.
14.
13.
12.
11.
10.
9.
8.
7.
6.
5.
4.
3.
2.
1.

References

1. Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10: 126-139, 2009.
2. Hammond SM: An overview of microRNAs. Adv Drug Deliv Rev 87: 3-14, 2015.
3. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Râdmâr O, Kim S and Kim VN: The nuclear RNAse III Drosha initiates microRNA processing. Nature 425: 415-419, 2003.
4. Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I and Pârola F: Pârola K, Minden M, Matichuk K and Hoffert NJ: Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 15: 902-909, 2008.
5. Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Sipek AC, Chen KC and Lai EC: Widespread regulatory activity of vertebrate microRNA species. RNA 17: 312-326, 2011.
6. Fabian MR and Sonenberg N: The mechanics of miRNA-mediated gene silencing. A look under the hood of miRISC. Nat Struct Mol Biol 19: 586-593, 2012.
7. Pârola J and Meister G: Argonaute and GW182 proteins: An effective alliance in gene silencing. Biochem Soc Trans 41: 855-860, 2013.
8. Selbach M, Schwannhauser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58-63, 2008.
9. Yates LA, Norbury CJ and Gilbert RJ: The long and short of microRNAs. Nature 455: 58‑63, 2008.
10. Fordham JB, Kazda K and Addison CL: MicroRNA-30b controls Semaphorin3A expression. Brain Res 1611: 65‑73, 2015.
11. Howe GA, Kazda K and Addison CL: MicroRNA-30b controls endothelial cell capillary morphogenesis through regulation of transforming growth factor beta 2. PLoS One 12: e0185619, 2017.
12. Batista PV and Rajewsky N: Widespread regulatory activity of vertebrate microRNA species. RNA 17: 312-326, 2011.
13. Baldwin TA and Johnson MD: Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9: 513‑521, 2013.
14. Guay C and Regazzi R: Circulating microRNAs as novel biomarkers of blood microRNAs 103a, 30b, and 29a in L‑dopa‑treated patients with Parkinson's disease. Mov Disord 24: 2399‑2404, 2009.
15. Lichtblau EM, Young MR, St Louis G, Garg S, Usenyuk E, Zhao H, Weir MR and Erusalimsky JD: MicroRNA-30b in early phase of rat myocardial ischemia‑reperfusion injury model. J Cell Biochem 116: 2610‑2619, 2015.
16. Song CL, Liu B, Wang JP, Zhang BL, Zhang JC, Zhao LY, Shen H, Li X, Zhu J, Hong S, Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T and Zhang Y: MicroRNA control of bone formation and homeostasis. Adv Drug Deliv Rev 81: 75‑93, 2015.
17. Fordham JB, Naqvi AR and Nares S: Regulation of miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells. J Immunol 194: 1916‑1927, 2015.
18. Fordham JB, Naqvi AR and Nares S: Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol 98: 195‑207, 2015.
19. Sun Y, Guo D, Liu B, Liu X, Wei H, Tang K and Bi H: Regulatory role of nco-miR-30b-5p in IL-10 and Toll-like receptor 4 expressions of T lymphocytes in transplanted renal allografts in vivo. PLoS One 10: e0132582, 2015.
20. Duan QJ, Jin DW, He NBA, Hu NZ and Hu YZ: Influence of miR-30b regulating humoral immune response by genetic differences. Immunol Res 64: 191‑206, 2016.
21. Liu H, Zhang N and Tian D: miR-30b is involved in methylation‑xoyal‑induced epithelial‑mesenchymal transition of peritoneal mesothelial cells in rats. Cell Mol Bio Lett 19: 315‑329, 2014.
22. Li X, Yang W, Wang L, Huang Y, Xu X, Xu L, Guo Y, Lu J, Li X, Zhu M and Qian H: MicroRNA-30b targets Snail to impede epithelial‑mesenchymal transition in pancreatic cancer stem cells. J Cancer 9: 2147‑2159, 2018.
23. Sun X, Zhao S, Li H, Chang H, Huang Z, Ding Z, Dong L, Chen J, Zang Y and Zhang J: MicroRNA-30b suppresses epithelial‑mesenchymal transition and metastasis of hepatoma cells. J Cell Physiol 232: 625‑634, 2017.
24. Van Cutsem E, Szalay A, Topal B, Hustermans K and Prens H: Gastric cancer. Lancet 388: 2654‑2666, 2016.
25. Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin 69: 7‑34, 2019.
26. Qiao F, Zhang K, Gong P, Wang L, Hu J, Lu S and Fan H: Decreased miR-30b-5p expression by DNMT1 methylation regulation involved in gastric cancer metastasis. Mol Biol Rep 41: 5693‑5700, 2014.
27. Tian SB, Yu JC, Liu YQ, Kang WM, Ma ZQ, Ye X and Nan J: miR-30b suppresses tumor migration and invasion by targeting ELF5A2 in gastric cancer. World J Gastroenterol 21: 9337‑9347, 2015.
28. Xi Z, Si J and Nan J: LncRNA MALAT1 potentiates autophagy‑associated cisplatin resistance by regulating the microRNA30b/autophagy‑related gene 5 axis in gastric cancer. Int J Oncol 54: 239‑248, 2019.
29. Huang YH, Lin KH, Chen HC, Chang ML, Hsu CW, Lai MW, Chen TC, Lee WC, Tseng YH and Yeh CT: Identification of postoperative prognostic microRNA predictors in hepatocellular carcinoma. PLoS One 7: e371188, 2012.
30. Qin X, Chen J, Wu L and Liu Z: miR-30b-5p acts as a tumor suppressor, repressing cell proliferation and cell cycle in human hepatocellular carcinoma. Biomed Pharmacother 89: 395‑400, 2017.
31. Hur K, Toiyama Y, Boland CR and Goel A: Identification of a novel metastasis‑specific microRNA signature in human colorectal cancer. Gastroenterology 142: S525‑S526, 2012.
32. Perez-Villamil B, Paz-Cabezas M, Calvo-Lopez T, Ogando-Castro J, Sastre J, Mañes S and Díaz-Rubio E: microRNA-30b signature: correlates with colorectal cancer(CRC) molecular subtypes: Validation of miR-30b interaction with genes up‑regulated in the high‑stroma subtype. Ann Oncol 28 (Suppl 5): v194‑v195, 2017.
45. van den Braak RRC, Siewerturs AM, Lalmahomed ZS, Smid M, de Weerd V, van der Vlugt-Daane M, van Galen A, Xiang S, Biermann K, Foekens JA, et al.: Validation and pathway analysis of a novel metastasis-specific microRNA signature in primary colon cancer. Cancer Res 77 (13 Suppl): S5230, 2017.

46. Cobergh van den Braak RJJ, Siewerturs AM, Lalmahomed ZS, Smid M, Wilting SM, Bril SI, Xiang S, van der Vlugt-Daane M, de Weerd V, van Galen A, et al.: Confirmation of a metastasis-specific microRNA signature in primary colon cancer. Sci Rep 8: 5230, 2018.

47. Tryndyk V, Kindrat I, McDonnell B, Beland FA and Pogrinyi IB: A microRNA signature panel predicts differential sensitivity of liver cancer cells to chemotherapeutic drugs. Cancer Res 78 (13 Suppl): S5887, 2018.

48. Zhang L, Li H, Chen W, Wu MX, Gao MQ, Chen SP and Huang AM: Morphology and microRNA expression profiles of drug-resistant cells in hepatocellular carcinoma. Zhonghua Bing Li Xue Za Zhi 42: 604-608, 2013 (In Chinese).

49. Yeh CT and Huang YH: Extraneous delivery of anti-miR-30b by polyethyleneimine or antagonist-based strategies inhibits hepatoma growth in a xenograft model. J Gastroenterol Hepatol (Australia) 31 (Suppl 3): S419, 2016.

50. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebbeck TR, et al.: Cancers of the liver and intrahepatic bile ducts. In: Global burden of disease 2013 study. Lancet 389: 2277-2306, 2017.

51. Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY, Cui YM, Qi L, Li Y, et al.: A novel miR-30b inhibits cell invasion and migration through targeting collagen triple helix repeat. Chin J Cancer 34: 217, 2014.

52. Qi Z, Zhang B, Zhang J, Hu Q, Xu F, Chen B and Zhu C: MicroRNA-30b inhibits non-small cell lung cancer cell growth by targeting the epidermal growth factor receptor. Neoplasma 65: 192-200, 2018.

53. Garofalo M, Romano G, Di Leva G, Nuovo G, Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Cordelloni G, et al.: EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med 18: 74-82, 2012.

54. Chen J, Su YH, Chen CF, Chang YW, Yu YH, Tseng CF, Chen HA and Su JL: Suppression of Dicer increases sensitivity to gefitinib in human lung cancer cells. Ann Surg Oncol 21 (Suppl 4): S555-S563, 2014.

55. Donagh LM, Gray S, Cuffie S, Finn S, Fitzgerald N, Young V, Ryan R, Nicholson S, Leontidou F, O’Byrne K and Barr M: MA02.02 A novel 5-miR signature shows promise as a diagnostic tool and as a predictor of cisplatin response in NSCLC. J Thorac Oncol 12 (1 Suppl): S348-S349, 2017.

56. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jamal A and Bray F: Bladder cancer incidence and mortality: A global overview and recent trends, Eur Urol 71: 96-108, 2016.

57. Wszolek MF, Gould JJ, Kenney PA, Rieger-Christ KM, Neto BS, LaVoie AK, Libertino JA, Lavoie K, Libertino JA and Summerhayes IC: A microRNA expression profile involved in the invasive bladder tumor phenotype. J Urol 181: 347, 2009.

58. Mahdavinezhad A, Mousavi-Bahar SH, Poorolajal J, Yadegarazari R, Jafari M, Shabab N and Saidjima M: Association between tissue miR-141, miR-200c and miR-30b and bladder cancer: A matched case-control study. Urol J 12: 2010-2013, 2016.

59. Mahdavinezhad A, Mousavi-Bahar SH, Poorolajal J, Yadegarazari R, Jafari M, Shabab N and Saidjima M: Evaluation of miR-141, miR-200c, miR-30b expression and clinicopathological features of bladder cancer. Int J Mol Cell Med 4: 32-39, 2015.

60. Wei S, Yao Y, Gupta PK and Bing Z: miRNA expression in lower urinary tract and the potential clinical application. Lab Investigation 93: A257, 2013.

61. Brisuda A, Pospíšilová Š, Soukup V, Hrbáček V, Capoun O, Mareš J, Pazourková E, Korabčená M, Hofrínk T, Hanus T and Babjuk M: C221: The differences in expression of microRNA in urine of bladder cancer patients and healthy controls. Eur Urol Suppl 13: e1385-e1385a, 2014.

62. Wszolek MF, Rieger-Christ KM, Kenney PA, Gould JJ, Silva Neto B, LaVoie AK, Logvinenko T and Summerhayes IC: A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urol Oncol 38: 604-608, 2013.

63. Pospíšilová S, Pazzourková E, Horínek A, Brisuda A, Svobodova I, Soukup V, Hrbáček V, Capoun O, Hanus T, Mares J, et al.: MicroRNAs in urine of patients as potential markers of bladder cancer detection. Neoplasma 63: 799-808, 2016.

64. Tanero L, Islama F, Siegel RL, Ward EM and Jemal A: Global cancer in women: Burden and trends. Cancer Epidemiol Biomarkers Prev 26: 444-457, 2017.

65. Hafez MM, Hassani ZK, Zekri AR, Gabeer AA, Al Rejasse SA, Sayed-Ahmed MM and Al Shabanah O: MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev 16: 591-598, 2015.

66. Zhang K, Wang YW, Wang YY, Song Y, Zhu J, Si PC and Ma R: Identification of microRNA biomarkers in the blood of breast cancer patients based on microRNA profiling. Gene 619: 10-20, 2017.

67. Bulous M, Peña-Chilet M, Sanchis SO, Martinez MT, Lluch A and Ayala G: Differential microRNA expression in breast cancer patients aged 35 years or younger. Ann Oncol 26 (Suppl 3): iii12, 2015.

68. Croset M, Pantano F, Kan CWS, Bennely E, Descotes F, Aix-Fanabières C, Lecellier CH, Bachelier K, Alliot N, Hong SS, et al.: miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res 78: 5259-5273, 2018.

69. Luo J, Zhao Q, Zhang W, Zhang Z, Gao Z, Jiang C, Li Y and Tian Y: A novel panel of microRNAs provides a sensitive and specific tool for the diagnosis of breast cancer. Mol Med Rep 10: 785-791, 2014.

70. Costa B, Amorim I, Gärtnert F and Vale N: Understanding breast cancer: From conventional therapies to repurposed drugs. Eur J Pharm Sci 151: 105401, 2020.
84. Espin E, Perez-Fidalgo JA, Tormo E, Pineda B, Cejalvo JM, Sabbagh MA, Alfonso E, Rovira A, Rojo F, Albanell J, et al: Effect of trastuzumab on the antiproliferative effects of PI3K inhibitors in HER2+ breast cancer cells with de novo resistance to trastuzumab. J Clin Oncol 33 (Suppl 15): e11592, 2015.

85. Guo QS, Wang P, Huang Y, Guo YB, Zhu MY and Xiong YC: Regulatory effect of miR-30b on migration and invasion of pancreatic cancer stem cells. Zhonghua Yi Xue Za Zhi 99: 3015-3023, 2019 (In Chinese).

86. Li Q, Zhang X, Li N, Liu Q and Chen D: miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer. Biochem Biophys Res Commun 485: 506-512, 2017.

87. Xu J, Lv H, Zhang B, Xu F, Zhu H, Chen B, Zhu C and Shen J: miR-30b-5p acts as a tumor suppressor microRNA in esophageal squamous cell carcinoma. J Thorac Dis 11: 3015-3029, 2019.

88. Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J and Chi R: miR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis and epithelial-to-mesenchymal transition by targeting G-protein subunit α-13 in renal cell carcinoma. Gene 626: 275-281, 2017.

89. Reddemann K, Gola D, Schillert A, Knief J, Kuemper C, Ribbat-Idel J, Ber S, Schemme J, Bernard V, Gebauer N, et al: Dysregulation of microRNAs in angioimmunoblastic T-cell lymphoma. Anticancer Res 35: 2055-2061, 2015.

90. Ödau C, Kaymaz Y, Chelimo K, Otieno JA, Ong'echa JM, Moormann AM and Bailey JA: Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer 15: 1761, 2015.

91. Xu G and Li KY: Differential expression of PDGFRB and EGFR in microvascular proliferation in glioblastoma. Tumour Biol 37: 10577-10586, 2016.

92. Li Z, Guo J, Ma Y, Zhang L and Lin Z: Oncogenic role of MicroRNA-30a-3p in glioblastoma through targeting proline-rich transmembrane protein 2. Oncol Res 26: 219-230, 2018.

93. Zhang D, Liu Z, Zheng N, Wu H, Zhang Z and Xu F: miR-30b-5p modulates glioma cell proliferation by direct targeting MTDH. Saud J Biol Sci 26: 201-207, 2019.

94. Jian Y, Xu CH, Li YP, Tang B, Xie SH and Zeng EM: Down-regulated microRNA-30b-3p inhibits proliferation, invasion and migration of glioma cells via inactivation of the AKT signaling pathway by up-regulating RECK. Biosci Rep 39: BSR20182276, 2019.

95. Hu Y, Zhang X, Cui M, Su Z, Wang M, Liao Q and Zhao Y: Verification of candidate microRNA markers for parathyroid carcinoma. Endocrine 60: 246-254, 2018.

96. Li L and Wang B: Overexpression of microRNA-30b improves adenovirus-mediated p53 cancer gene therapy for laryngeal carcinoma. Int J Mol Sci 15: 19729-19740, 2014.

97. Wang N, Xiang X, Chen K, Liu P and Zhu A: Targeting of NTSΕ by miR-30b and miR-340 attenuates proliferation, invasion and migration of gallbladder carcinoma. Biochemie 146: 56-67, 2018.

98. Cui H, Miao S, Eswoorthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M and Zhang LG: 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 132: 252-269, 2018.

99. Li T, Sun ZL and Xie QY: Protective effect of microRNA-30b on hypoxia/reoxygenation-induced apoptosis in H9C2 cardiomyocytes. Gene 561: 268-275, 2015.

100. Li F, Chen Q, Song X, Zhou L and Zhang J: miR-30b is involved in the homocysteine-induced apoptosis in human coronary artery endothelial cells by regulating the expression of caspase 3. Int J Mol Sci 16: 17682-17695, 2015.

101. Li B, Hu J and Chen X: MicroRNA-30b protects myocardial cell function in patients with acute myocardial ischemia by targeting plasminogen activator inhibitor-1. Exp Ther Med 15: 5125-5132, 2018.

102. Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W and Zhu YZ: miRNA-30 family inhibition protects against cardiac ischemic injury by regulating cystathionine-γ-lyase expression. Antioxid Redox Signal 22: 224-240, 2015.

103. Wei C, Li L and Gupta S: NF-κB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2. Mol Cell Biochem 387: 135-141, 2014.

104. Ma F, Li T, Zhang H and Wu G: miR-30s family inhibit the proliferation and apoptosis in human coronary artery endothelial cells through targeting the 3’UTR region of ITGA4 and PLCG1. J Cardiovasc Pharmacol 68: 327-333, 2016.

105. Kim NH, Ahn J, Choi YM, Son HJ, Choi WH, Cho HJ, Yu JH, Seo JA, Jang YJ, Jung CH and Ha TY: Differential circulating and visceral fat microRNA expression of non-obese and obese subjects. Clin Nutr 39: 910-916, 2020.

106. Kirby TJ, Walton RG, Finlin B, Zhu B, Unal R, Rasouli N, Peterson CA and Kern PA: Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue. Physiol Genomics 48: 145-153, 2016.

107. Stepens EL, Durak-Kozuca M, Kaminska A, Targosz-Korecka M, Libera M, Tylko G, Opalinska A, Kapusta M, Solnica B, Georgescu A, et al: Circulating exosomes: Determination of angiogenic microRNAs in type 2 diabetes. Theranostics 8: 3874-3890, 2018.

108. Zang J, Maxwell AP, Simpson DA and McKay GJ: Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci Rep 9: 10900, 2019.

109. Dai LL, Li SD, Ma YC, Tang JR, Lv JY, Zhang YQ, Miu YL, Ma YQ, Li CM, Chu YY, et al: MicroRNA-30b regulates insulin sensitivity by targeting SERCA2b in non-alcoholic fatty liver disease. Liver Int 39: 1504-1513, 2019.

110. Latorre J, Moreno-Navarrete JM, Mercader JM, Sabater M, Rovira O, Girones J, Ricart W, Pineda B, Cejalvo JM, Ortega FJ: Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD. Int J Obes (Lond) 41: 620-630, 2017.