Duchenne muscular dystrophy–like phenotype in an LGMD2I patient with novel FKRP gene variants

Tetsuya Okazaki1, Kaori Matsuura1, Noriko Kasagi1, Kaori Adachi2, Masachika Kai3, Mariko Okubo4, Ichizo Nishino4, Eiji Nanba1,5 and Yoshihiro Maegaki1,6

Abstract
A 32-year-old man initially received a diagnosis of Duchenne muscular dystrophy (DMD). Genetic analysis revealed two novel heterozygous FKRP variants: c.169G>A (p.Glu57Lys) and c.692G>A (p.Trp231*). These results indicated that the patient had limb-girdle muscular dystrophy type 2I (LGMD2I) caused by recessive FKRP variants. Patients with LGMD2I and DMD have many overlapping phenotypes. LGMD2I should be considered in patients who have a DMD phenotype but not a DMD pathogenic variant.

Introduction
The gene FKRP on chromosome 19q13.3 encodes a fukutin-related protein, which is necessary for post-translational glycosylation of alpha-dystroglycan. In particular, the normal sugar chain contains tandem structures of ribitol-phosphate, and fukutin-related protein encodes an essential enzyme for the synthesis of this structure. FKRP-related disorders appear to result from impairment of the O-mannosyl glycosylation pathway of alpha-dystroglycan. Patients with FKRP variants have several phenotypes, including limb-girdle muscular dystrophy type 2I (LGMD2I), muscle–eye–brain disease and Walker-Warburg syndrome. Approximately 100 FKRP variants have been identified, of which 60 cause LGMD2I. LGMD2I is an autosomal recessive disorder and is clinically characterized by progressive muscle weakness with proximal-dominant muscle involvement, hyperCKemia and cardiac and respiratory failure. The c.826C>A variant (p.Leu276Ile) is most frequent among patients with LGMD2I, whose phenotype is similar to that of Duchenne muscular dystrophy (DMD). In addition, patients with LGMD2I caused by other variants have been described in previous reports as having DMD-like phenotypes. The prevalence of dystrophinopathy (DMD and Becker-type muscular dystrophy) has been reported to be ~2 per 10,000, whereas the prevalence of LGMD2I is 4.3 per million. Thus, many physicians might not be familiar with LGMD2I. We report the case of a 32-year-old man with LGMD2I who was initially diagnosed with DMD, which could provide useful information for an early diagnosis in patients.

The man had been born to nonconsanguineous parents at 40 weeks of gestation. No family history of neuromuscular diseases or motor developmental delay was reported. There was no birth asphyxia. He began to walk at 12 months of age. When he was 1 year and 1 month old, asymptomatic elevations of serum creatine kinase (6700 mg/dL) were noticed. Muscular specimens at the age of 1 year and 3 months showed dystrophic muscular phenomena. Dystrophin immunostaining was not available at that time, and the clinical diagnosis was Duchenne muscular dystrophy. At 7 years of age, he began having trouble climbing stairs. At 10 years of age, he had difficulty walking and needed a wheelchair most of the time. When he was 14 years old, cardiac hypofunction was noticed on echocardiography. When he was 17, he exhibited hypoxia and hypercapnia during sleep. At 19 years of age, β-blocker and angiotensin-converting enzyme 1 (ACE-I) treatment was initiated for cardiac
hypofunction. At 21 years of age, he exhibited hypercapnia during the daytime, and he started using noninvasive positive-pressure ventilation. At 26 years of age, he was found to have thyroid cancer, and subtotal resection of the thyroid was performed. When he was 28, thyroid cancer recurred in the cervical lymph node, and lymph node dissection was performed. A physical examination when he was 31 revealed generalized hypotonia, markedly reduced muscle power in the trunk and extremities, and absence of deep tendon reflexes.

Although the clinical diagnosis was DMD, he had an undetected deletion and duplication, which was discovered using multiplex ligation-dependent probe amplification and single nucleotide variants with Sanger sequencing in the DMD gene at 25 years of age. A second muscle biopsy was performed when he was 28. Immunostaining of the muscle specimen revealed dystrophin positivity. Haematoxylin and eosin staining of the patient’s muscle tissue showed chronic myopathic changes (Fig. 1a). On immunohistochemistry analysis, dystrophin was present, and the result of alpha-dystroglycan antibody clone 43DAG1/8D5. The immunoreactivity to the antibody was positive. d Immunohistochemical analysis by anti-beta-dystroglycan antibody, clone 43DAG1/8D5. The immunoreactivity to the antibody was positive in the patient’s muscle surface membrane. e–g Immunoblotting with the laminin overlay assay (e), anti-alpha-dystroglycan antibody clone VIA4-1 for the sugar chain of the alpha-dystroglycan (f), and anti-alpha-dystroglycan antibody clone GT20ADG for the core protein of alpha-dystroglycan (g) for normal controls (NC) and our patient (Pt). e The laminin overlay assay showed loss of laminin-binding activity in alpha-dystroglycan in our patient’s muscle. f A 156 kDa band is deficient. g Another 156 kDa band is deficient, and a 96-kDa band is faint. A selective loss of sugar chain immunoreactivity is suggested (f, g).
respectively. Neither variant was described in any other databases (Exome Sequencing Project v. 6500, 1000 Genomes Project, Exome Aggregation Consortium, Human Genetic Variation, or ClinVar) as of the end of February 2019. The c.169G>A (p.Glu57Lys) variant was predicted to damage protein function, i.e., SIFT score = 0.007, Polyphen-2 score = 0.992 and Mutation Taster score = 0.9999. Additionally, his phenotype was compatible with patients with the FKRP pathogenic variant, and the following nonsense variant was detected. Applying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines, we interpreted this missense variant as likely pathogenic. In another nonsense variant, c.692G>A (p.Trp231*), the same amino acid change (c.693G>C [p.Trp231Cys]) had already been reported.8

In our patient, the manifestations of muscle weakness, hyperCKemia and cardiac and pulmonary disorders, as well as the dystrophic muscle specimens, were compatible with those observed in DMD. Patients with LGMD2I and DMD are known to have many overlapping phenotypes.9 In other cases of limb-girdle muscular dystrophy, patients with types 2C, 2D, 2E and 2F also show DMD-like phenotypes, and these diseases are collectively known as sarcoglycanopathies. Dystrophin, alpha-dystroglycan and sarcoglycan play important roles in maintaining sarcolemma stability and muscle integrity as the dystrophin-glycoprotein complex.9 Pathogenic variants in causative genes of sarcoglycanopathy lead to loss-of-function effects in different members of the skeletal muscle sarcoglycan complex and cause LGMD 2C, 2D, 2E and 2F.10 However, pathogenic variants in FKRP lead to glycosylation defects in alpha-dystroglycan.10 Mechanisms in each disorder are different. The correlations between the proteins may explain the similarity of the phenotype, but certain mechanisms underlying the similar clinical manifestations of DMD, LGMD2I and sarcoglycanopathies are unknown.

Our patient also suffered from thyroid cancer. Alterations in levels of glycosylated alpha-dystroglycan have been reported in leukaemia cells,11 but the complication of thyroid cancer in patients with LGMD2I had not been reported previously, and previous reports about FKRP variants had not focused on thyroid cancer. The relationship between thyroid cancer in this patient and the FKRP variants could not be explained.

Our patient’s nonsense variant, c.692G>A (p.Trp231*), contained an amino acid change (c.693G>C, [p. Trp231Cys]), which has been previously reported;8 patients homozygous for this missense variant have muscle–eye–brain disease. Our patient had no intellectual disability or ocular disorders, so another variant, c.169G>A (p.Glu57Lys) may produce a milder phenotype than another nonsense variant.

In conclusion, FKRP gene analysis should be considered for patients with muscular dystrophy, who do not have pathogenic variants of the DMD gene.

HGV database
The relevant data from this Data Report are hosted at the Human Genome Variation Database at https://doi.org/10.6084/m9.figshare.hgv.2835, https://doi.org/10.6084/m9.figshare.hgv.2838.

Acknowledgements
We thank the patient and his family members for their cooperation in this study.

Author details
1Division of Clinical Genetics, Tottori University Hospital, Yonago, Japan. 2Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan. 3Technical Department, Tottori University, Yonago, Japan. 4Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. 5Research Strategy Division, Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan. 6Faculty of Medicine, Division of Child Neurology, Department of Brain and Neurosciences, Tottori University, Yonago, Japan.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 December 2019 Revised: 17 March 2020 Accepted: 18 March 2020.
Published online: 20 April 2020
References

1. Kanagawa, M. et al. Identification of a post-translational modification with ribitol-phosphate and its defect in muscular dystrophy. Cell Rep. 14, 2209–2223 (2016).

2. Xie, Z. et al. Value of muscle magnetic resonance imaging in the differential diagnosis of muscular dystrophies related to the dystrophin-glycoprotein complex. Orphanet J. Rare Dis. https://doi.org/10.1186/s13023-019-1242-y (2019). epub.

3. Alhamidi, M. et al. Limb girdle muscular dystrophy type 2I: No correlation between clinical severity, histopathology and glycosylated alpha-dystroglycan levels in patients homozygous for common FKRP mutation. Neuromuscul. Disord. 27, 619–626 (2017).

4. Lin, Y. C. et al. A novel FKRP gene mutation in a Taiwanese patient with limb-girdle muscular dystrophy 2l. Brain Dev. 29, 234–238 (2007).

5. Romitti, P. A. et al. Prevalence of Duchenne and Becker muscular dystrophies in the United States. Pediatrics 135, S13–S21 (2015).

6. Liu W., et al. Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. Genet. Med. https://doi.org/10.1038/s41436-019-0544-8 2019.

7. Okazaki, T. et al. Clinical diagnosis of mendelian disorders using a comprehensive gene-targeted panel test for next-generation sequencing. Yonago Acta Med. 59, 118–125 (2016).

8. Mercuri, E. et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology 72, 1802–1809 (2009).

9. Schwartz, M., Hertz, J. M., Sveen, M. L. & Visser, J. LGMD2I presenting with a characteristic Duchenne or Becker muscular dystrophy phenotype. Neurology 64, 1635–1637 (2005).

10. Taghzideh E., Rezaee M., Barreto G. E., Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: a review. J. Cell Physiol. https://doi.org/10.1002/jcp.27907 2019.

11. Alonso-Rangel, L. et al. A role for dystroglycan in the pathophysiology of acute leukemic cells. Life Sci. 182, 1–9 (2017).