It is acknowledged that mutations in the cardiac sodium channel gene, SCN5A, are associated with various arrhythmia syndromes such as long QT syndrome type 3 (LQT3), Brugada syndrome (BrS), conduction disease, sick sinus syndrome, atrial fibrillation, atrial standstill, and sudden infant death syndrome (SIDS).

Mixed phenotypes can be frequently observed as “cardiac sodium channel overlap syndrome”. In 1999, Bezzina et al reported that a single Na+ channel mutation (SCN5A-1795insD) can lead to overlap syndrome with symptoms of LQT3 and BrS in combination. Grant et al reported another Na+ channel mutation (SCN5A-∆K1500) showing a mixed phenotype of LQT3 and BrS. In addition, Makita et al have recently reported that the E1784K mutation in SCN5A is associated with the phenotypic overlap of type LQT3 syndrome and BrS. Thus, several SCN5A mutations are reported to produce a mixed phenotype of LQT3 and BrS (Figure 1).

In this issue of the Journal, Kanters et al report that a novel mutation (L1786Q) in SCN5A is associated with a combined LQT3 and concealed BrS (Figure 1). Flecainide challenge unmasked coved ST elevation, a typical Brugada ECG pattern, in all the mutation carriers. Similar combination of LQT3 and concealed BrS, which was revealed by Na+ channel blockade with flecainide, pilsicainide or ajmaline, has been observed in patients with SCN5A-E1784K mutations. Provocation test with class Ic sodium channel blockers in LQT3 patients may be useful to unmask concealed BrS.

Kanters et al evaluated the functional changes in the mutated Na+ channel using patch-clamp techniques. They indicated a reduced peak current, associated with a negative shift of steady-state Na+ channel inactivation, and an increase in the...
pressing the mutated (L1786Q) Na⁺ channels. These changes in electrophysiological properties have been commonly observed in mutated Na⁺ channels responsible for the overlap phenotype of LQT3 and BrS.1-5 It has been assumed that a persistent (late) inward Na⁺ current during the action potential plateau phase can lead to prolongation of the QT interval whereas a reduction of the peak Na⁺ current, especially in epicardial ventricular cells, may produce coved ST elevation on the ECG (Figure 2). However, the precise electrophysiological mechanisms by which a single Na⁺ channel mutation causes a phenotype of combined LQT3 and BrS, leading to sudden cardiac death, remain to be established.

In terms of pharmacological treatment of the overlap phenotype of LQT3 and BrS, selection of an appropriate antiarrhythmic drug is difficult. According to the HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with congenital long QT syndrome, β-blocker use is recommended for the treatment of the inherited cardiac arrhythmia regardless of genotype.7 In LQT3 patients, β-blockers are less effective than in LQT1 or LQT2 patients.8 In addition, administration of a β-blocker to a patient with combined LQT3 and BrS should be avoided because treatment with a β-blocker is known to worsen the symptoms and sometimes induce ventricular fibrillation in patients with BrS.9 For the treatment of LQT3 in isolation, class lb antiarrhythmic drugs such as mexiletine are recommended. Although the drug may not unmask BrS in patients with overlap syndrome, it remains unknown whether long-term treatment with mexiletine is beneficial for these patients. Treatment with class lb antiarrhythmic drugs such as quinidine and disopyramide may produce an unfavorable outcome because the HERG channel blocking action of these drugs may lead to further prolongation of the QT interval and their Na⁺ channel blocking action may produce Brugada-type ECG changes. Kanters et al10 postulate that ranolazine may be a new alternative pharmacotherapy because the drug is reported to preferentially inhibit a late Na⁺ current without suppressing the peak current.10 However, the pharmacotherapy of overlap syndrome with LQT3 and BrS may be unreliable, and implantation of an ICD would be more appropriate treatment. Phenotypic overlap of LQT3 in BrS patients seems to be not uncommon. For the patients diagnosed as LQT3, a flecainide provocation test would be appropriate to check for concealed BrS. Clinical evaluation of phenotype in patients with sodium channelopathies would facilitate risk stratification and identification of patient-specific treatment strategies.

References

1. Remme CA, Wilde AAM, Bezzina CR. Cardiac sodium channel overlap syndromes: Different faces of SCN5A mutations. Trend Cardiovasc Med 2008; 18: 78 – 87.
2. Makita N. Phenotypic overlap of cardiac sodium channelopathies: Individual-specific or mutation-specific? Circ J 2009; 73: 810 – 817.
3. Bezzina C, Veldkamp MW, van den Berg MP, Postma AV, Rook MB, Viersma J-W, et al. A single Na⁺ channel mutation causing both long-QT and Brugada syndromes. Circ Res 1999; 85: 1206 – 1213.
4. Grant AO, Carboni MP, Neplioueva V, Starmer F, Memmi M, Napolitano C, et al. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. J Clin Invest 2002; 110: 1201 – 1209.
5. Makita N, Behr E, Shinizu W, Horie M, Sunami A, Crotti L, et al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 2008; 118: 2219 – 2229.
6. Kanters JK, Yuan L, Hedley PL, Stoeving B, Jons C, Thomsen PE, et al. Flecainide provocation reveals concealed Brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A. Circ J 2014; 78: 1136 – 1143.
7. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, et al. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace 2013; 15: 1389 – 1406.
8. Shimizu W. Update of diagnosis and management of inherited cardiac arrhythmias. Circ J 2013; 77: 2867 – 2872.
9. Veenakul G, Nademamole K. Brugada syndrome: Two decades of progress. Circ J 2012; 76: 2713 – 2722.
10. Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: Evidence for site of action. Br J Pharmacol 2006; 148: 16 – 24.