Potential development of poultry feather waste resources as raw material in industry: A review

M I Said
Head of Laboratory of Technology of Animal Waste Processing and By-products, Faculty of Animal Science, Hasanuddin University, Jl. Perintis Kemerdekaan Km.10 Makassar 90245

E-mail: irfanunhas@gmail.com; irfan.said@unhas.ac.id

Abstract. Feather waste is a type of livestock by-product which is quite abundant. Feather waste production is influenced by the amount of poultry slaughter. In Indonesia, the poultry population occupies the highest number compared to other livestock populations. The large amount of feather waste production will also trigger livestock waste production. Various attempts have been made by researchers and industry to process and utilize this waste. Increasing the added value of feather waste is expected to be able to contribute to reducing the rate of waste production. Feather waste has been widely used in the poultry industry as animal feeds ingredients. In addition, Feather waste has also been used as a medium in sports activities and furniture raw materials through the production of home industries. Currently, the development of research by scientists related to alternatives to the use of feather waste has been growing rapidly. Various challenges to reduce the production of feather waste have been carried out to create environmentally friendly products. The purpose of this review was aims to evaluate the development of the latest research technology related to the potential and use of poultry feather waste as raw material in the industrial field.

1. Introduction
Globally, feathers are a type of waste that is quite abundant and has a very low economic value. This waste has been used as animal feeds ingredients. Feathers are processed into feather meal by using autoclaves [1,2]. The poultry industry disposes billions of tons of feather waste every year. Most of the substrate in the form of keratinization is thrown into landfills or burned. This causes the use of energy consumption to be high and environmental pollution. Keratin waste has a high protein content, but is very difficult to degrade. This waste is very detrimental and not environmentally friendly. The physical and chemical treatment given in treating keratin waste can cause damage to essential amino acid components. This can reduce the quality and digestibility of the protein.

The use of keratinolytic microorganisms are very important to degrading the insoluble keratin of feathers to produce nutritious and cost-effective animal feed ingredients. Microbial degradation by keratinase which plays a major role in the process of biodegradation of hairy waste [3]. In India, around 350 million tons of fur waste has been produced from the poultry industry every year. The resulting keratin becomes a serious problem and is a concern as one of the causes of environmental pollution [4,5]. Each bird has around 125g feathers. Around the world, every week approximately 400 million chickens are processed, so the potential waste produced can reach 5 million tons [6].
2. Potential production of feather waste
Globally, feather waste is obtained from poultry which is the main consumption ingredient of the community [7]. A number of 5-7% from the total mass of adult chickens is a feather component. This amount is removed as a by-product. Feather waste consists of 90% of the components that are very difficult to degrade. Base on the high protein content, this waste needs to have a great opportunity to be developed [8-10]. Based on the type of poultry, chicken has ranks first as a producer of feather waste, although meat from turkey and duck is consumed the most [11]. Every year millions of tons of feather waste is produced worldwide by the poultry industry. This number has been increasing continuously along with the increase in poultry meat production. This will certainly be an environmental burden. Pollution will increase which will affect human health [12,13]. Research to produce the latest products related to reuse and utilization of feather waste has become very important and has been growing rapidly [14-16]. In England, management of feather waste into feather meal is still carried out conventionally using autoclaves. The proceeds from the production of feather meal have been exported to Eastern Europe and Russia. Feather meal is animal feed material with low economic value but has high protein content [17]. In addition to feather, by-products from livestock urine waste have also been developed as liquid fertilizer [18].

3. Tissue structure of feather
The tissue structure that makes up the feathers is presented in figure 1 [19]. The rachis is the core of the structure in feathers. The rachis is rigid and on the side resembles a propeller and comb. Feathers have strong, insoluble structures and their proteins form filaments. Protein in feathers is keratin which has similarities with proteins in horns and nails. Keratin protein is dominated by \(\alpha\)-keratin [20]. In addition, feathers also have \(\beta\)-keratin groups which are easily degraded at low temperatures but have high strength [21]. The results of the analysis using Thermal Gravimetric Analysis (TGA) showed that the degradation process in atmospheric \(\text{N}_2\) can occur at a temperature of 180 \(\degree\)C [22].

![Figure 1. Tissue structure of a feather [19]](image)

The development of the economic cycle is a critical point. The human population in the world is increasing and there is an unsustainable use of natural resources. Therefore, continuous production of waste materials is needed [23]. Keratin can be extracted from all parts of chicken feather waste using sodium disulfide and l-cysteine. The yield that can be extracted from each ingredient is 88% and 66%. The ratio between the mass of the hair processed with a reducing agent is 1:20. The reaction temperature applied was 40 \(\degree\)C for 6 hours (figure 2) [24]. Keratin is a type of small protein with a relatively more uniform size. This protein has a molecular mass of 10-36 kg/mol [25-27].
Keratin is a type of fibrous protein and the amount is very abundant in the environment. Keratin is the main constituent component in hair, feathers, nails, wool and horns in mammals, reptiles and birds. Keratin is the third largest polymer type after cellulose and chitin. Keratin has biodegradability and biocompatibility properties that are quite unique and have non-toxic properties. Structurally, keratin can be modified and developed into several forms such as gels, films and nano and micro particles. This stability is caused by a large number of intra and intermolecular disulfide crosslinking. This greatly influences the level of strength and stiffness caused by the high proportion of cysteine residues in the polypeptide and is bound together by disulfide bonds [28]. Therefore, keratin can be used as a

![Figure 2. Chart of the process of extracting keratin from chicken feathers [24]](image_url)

Table 1. Characteristics of board fiber that produced from feather waste in various pressurized heating conditions [1].

Pressing Conditions	Properties						
Temperature °C	Pressure MPa	Time (s)	Density (g.cm⁻³)	Porosity %	Tensile Strength (MPa)	Young’s Modulus (GPa)	Elongation at fracture (%)
13	6	6	0.66	41.1	8.0	0.50	1
14	6	6	0.71	36.6	14.5	1.28	7
15	6	6	0.73	34.8	17.3	1.44	9
16	6	6	0.74	33.9	16.8	1.52	6
17	6	6	0.68	39.3	14.0	1.40	5
18	6	6	0.67	40.2	12.3	1.36	2
19	6	6	0.72	35.7	11.9	1.46	1
15	2	6	0.70	37.5	14.0	1.13	7
15	4	6	0.73	34.8	15.4	1.37	5
15	6	6	0.77	31.3	17.9	1.74	5
15	8	6	0.77	31.3	15.2	1.73	5
15	1	6	0.79	29.5	16.0	1.66	7
source of the latest and sustainable raw materials to meet human needs [29]. Keratin has been widely applied in many industries, such as: chemical, animal feed, pharmaceutical, biomedical, cosmetic and composite material industries [30]. These properties cause keratin to have insoluble properties in polar solutions such as water, weak acids and weak bases [31]. However, cysteine units can be reduced, oxidized and hydrolyzed [32,33].

4. Application of microorganisms in the processing of feather waste
Keratin is a type of structural protein that is insoluble, resistant to microbial degradation and proteolytic enzymes. The stability is caused by the presence of cross bonds from disulfide bonds, hydrogen bonds, and hydrophobic interactions. Keratin molecules have two forms of helical bonds, namely α-keratin (hair, nails, horns) and β-keratin (feathers, scales, beaks, claws) [34,35]. Keratin is insoluble, mechanically stable and generally resistant to proteolytic enzymes and chemical compounds [36]. Slaughterhouse waste is the largest producer of keratin ingredients obtained from feather waste. The amount reaches 91% β-keratin [37,38]. Around the world, the amount of feather waste reaches five million tons per day. The waste is generally disposed of in a landfill and burned in an incinerator. This condition causes a very large amount of environmental pollution [39,40].

Keratinase is a type of proteolytic enzyme that can be used to degrade keratin proteins. This enzyme received great attention for scientists because it can reduce the level of environmental pollution caused by feather waste. One type of bacteria that has potential as a producer of the enzyme keratinase is *Bacillus licheniformis ALW1*. The optimization results showed that this bacterium was able to increase the biosynthesis of keratinase to 72.2U/ml (2.9-fold). The coarse extracellular keratinase enzyme that is produced is optimally active at pH 8.0 and temperature 65 °C with the amount of soluble keratin production 0.7%. The resulting crude enzyme can degrade up to 63% [41]. The bacterium *Bacillus subtilis FNCC 0059* can increase the digestibility of broiler feather meal by up to 68% [42].

Figure 3. Comparison of the keratin response of several types of material in the production of keratinase by the bacterial activity of *B. licheniformis ALW1* (A); Effect of differences in feather concentration (%) on the production of the enzyme keratinase (B); Effect of temperature differences on the production of the enzyme keratinase (C)
Based on figure 3A, it can be seen that feather is the best substrate for *B. licheniformis ALW1* to produce keratinase of 25.3U/mL compared to other materials (wool, hair, nails and horns). Some of them can also produce keratinase up to (17.4U/mL) in the hair. This shows that *Bacillus licheniformis ALW1* is able to utilize α-keratin and β-keratin to produce the enzyme keratinase. Figure 3B shows that the feather concentration of 1%, *Bacillus licheniformis ALW1* is able to produce the highest keratinase enzyme (Figure 3B). Based on the effect of temperature, it can be seen that the application of a temperature of 42 ºC is the optimum temperature for *Bacillus licheniformis ALW1* to produce the enzyme keratinase (figure 3C).

5. Development of feather waste for industry

Processing feather using high pressure steam and chemical processes has required considerable cost and energy. In addition, it can reduce the nutritional value of the product. This process can damage the amino acid components found in feather. The concept of applying biotechnology as an environmentally friendly technology by using microorganisms and their enzymes in feather processing is one of the appropriate solutions [43,44]. The resulting feather waste is very difficult to recycle and is rarely utilized. Waste disposal is a global environmental problem. This waste is responsible for pollution of underground and air water resources [45]. In addition to feather waste, bone waste has also been widely used. One of them is as a raw material for gelatin for industry [46,47]. Keratin protein in hairs causes hair to be resistant to most protease enzymes such as trypsin, pepsin, and papain [37,48]. Based on economic considerations and their impact on the environment, the main focus in waste management is the keratin component. The keratin component can be hydrolyzed through chemical processes [49]. Keratin has been developed into raw material for animal feed, fertilizer and soil moisturizers. [50] The keratin degradation process shows that most pure keratinase cannot dissolve original keratin. This process is a challenge for a number of researchers to uncover further [51]. However, in fact that keratinase which has been produced in nature will regularly destroy large amounts of waste from keratin [52]. Besides bacteria, the use of thermophilic actinomycetes fungi has also been developed to degrade hairy waste. The results showed that as many as twenty thermophilic actinomycetes selected were able to degrade feather waste (87-91%). Increased proteolytic and lipolytic activity and exopolysaccharide production of fungi tested in feathers show a role in the process of degradation of feather components [40]. Actinomycetes are saprophytic bacteria that have the ability to undergo degradation of many complex chemical compounds. This fungus is also capable in the process of mineralization of organic matter and in improving soil structure [53] [54].

6. Conclusion

Feather waste is very rich in keratin protein. Keratin arranges organs in hair, feathers, nails, wool and horns in mammals, reptiles and birds. Keratin is an important type of protein that makes up waste hair. Keratin can be degraded by bacteria and chemical compounds. An important enzyme that plays a role in degrading keratin is keratinase. Keratin has been used extensively in various industries. The use of feather waste is an effort to reduce the environmental burden.

Acknowledgements

The author would like to thanks the Rector of Hasanuddin University and the Dean of the Faculty of Animal Science of Hasanuddin University for the facilities provided to searching various references in this article. In addition, the authors also thanks to the committee of ICAST 2019 international conference at the Faculty of Animal Science who were willing to publish this article.

References

[1] Dieckmann E, Eleftheriou K, Audic T, Koon-Yang Lee K Y, Sheldrick L and Cheeseman C 2019 New sustainable materials from waste feathers: Properties of hot-pressed feather/cotton/bi-component fibre boards *Sustain. Mat. Tech.* 20. e00107
[2] Said M I, Abustam E, Pakiding W, Mide M Z and Sukma M 2018 Synthesis of feather concentrate from broiler feather waste using different chemical hydrolysis process and effect on its properties OnLine J Biol. Sci 8(3) 270-76

[3] Pandey S C, Pande V, Satl D, Gangola S, Kumar S, Pandey A and Samant M 2019 Microbial keratinase: a tool for bioremediation of feather waste, Editor(s): Pankaj Bhatt Smart Bioremediation Technologies, Chapter 13 (Cambridge: Academic Press) pp 217-253

[4] Strasser B, Miltz V, Hermann M, Tschachler E and Eckhart L 2015 Convergent evolution of cysteine-rich proteins in feathers and hair BMC Evolutionary Biology 15 82

[5] Pandey S C, Pande A, Joshi T, Pande V, Satl D and Samant M 2019 Microbiological monitoring in the biodegradation of food waste Global Initiatives for Waste Reduction and Cutting Food Loss 116 140

[6] Han M, Luo W, Gu Q and Yu X 2012 Isolation and characterization of a keratinolytic protease from a feather-degrading bacterium Pseudomonas aeruginosa C11 African J Microb. Res 6 2211-22

[7] DEFRA 2018 Poultry and Poultry Meat Statistics (UK: Department for Environment)

[8] Barone J R and Schmidt W 2006 Effect of formic acid exposure on keratin fiber derived from poultry feather biomass Biores. Tech 97 233-42

[9] Onifade A A, Al-Sane N A, Al-Mussallam A A and Al-Zarban S 1998 Potential for biotechnological application of keratin-degrading microorganims and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources Biores. Tech. 66 1-11

[10] Gupta R and Ramnani P 2006 Microbial keratinases and their prospective applications: an overview Appl. Microbiol. Biotech. 70 21–33

[11] The Poultry Site 2014 Slowing of asian population growth to impact chicken consumption. Global Poultry Trends, 1–7. http://www.thepoultrysite.com/articles/3324/global-poultry-trends-2014-growth-in-chickenconsumption-in-americas-slow

[12] Endo R, Kamei K, Iida H and Kawahara Y 2008 Dimensional stability of waterlogged wood treated with hydrolyzed feather keratin J. Arc. Sci 35(5) 1240-46

[13] Poole A J and Church J S 2015 The effects of physical and chemical treatments on Na2S produced feather keratin films Intern. J. Biol. Macro 73 99-108

[14] Tesfaye T, Sithole B, Ramjugernath D and Chunilall V 2017 Valorisation of chicken feathers: Application in paper production J.Clean. Prod. 164 1324–31

[15] Ahn H K, Huda M S, Smith M C, Mulry W, Schmidt W F and Reeves J B 2011 Biodegradability of injection molded bioplastic pots containing polyactic acid and poultry feather fiber Biores. Technol 102 4930–33

[16] Senoz E and Wool R P 2011 Hydrogen storage on pyrolyzed chicken feather fibers Int.J. Hydrogen Energy 36 7122–27

[17] Kharlamov K V, Kulikov N E and Kulikov V N 2014 Feather Meal as a Promising Component of Complete Feeds for Fur-Bearing Animals 1–2

[18] Said M I, Abustam E, Wahab A W, Taba P, Gani A and Wahid A M 2019 Effect of ethanol used in a degreasing process on Bali cattle bones on the physicochemical properties of extracted collagen Bulg. J Agric. Sci 25(2) 418–23

[19] Sullivan T N, Wang B, Espinosa H D and Meyers M A 2017 Extreme lightweight structures: avian feathers and bones Mater. Today 20 377–91

[20] Wang B, Yang W, McKittrick J and Meyers M A 2016 Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration Prog. Mater. Sci. 76 229-18

[21] Sawyer R, Salvatore B, Potylicki T T F, French J, Glenn T and Knapp L W 2003 Origin of feathers: feather beta (β) keratins are expressed in discrete epidermal cell populations of embryonic scutate scales J. Exp Zool. B Mol. Dev. Evol. 295(1) 12-24
[22] Reddy N, Chen L and Yang Y 2013 Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers. Mater. Sci. Eng. C. 33(3) 1203-08
[23] Pardo R and Schweitzer J P 2018 A long-term strategy for a European circular economy – setting the course for success’. Policy Paper produced for the Think 2030 project. Brussels, A long-term strategy for a European circular economy – setting the course for success. 1-33
[24] Pourjavaheri F, Pour S O, Jones O A H, Smooker P M, Brkljača R, Sherkat F, Blanch E W, Gupta A and Shanks R A 2019 Extraction of keratin from waste chicken feathers using sodium sulfide and l-cysteine Process Biochem. 82 205-14
[25] Arai, K M, Takahashi R, Yokote Y and Akahane K 1983 Amino-acid sequence of feather keratin from fowl Eur. J Biochem 132(3) 501-07
[26] Ullah A, Vasanthan T, Bressler D, Elias A L and Wu J 2011 Bioplastics from feather quill Biomacromolecules 12(10) 3826-32
[27] Ayutthaya S I N, Tanpichai S, and Woottikhankkhan J 2015 Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electropsuns J. Polymers and the Env. 23(4) 506-16
[28] Khosa, M and Ullah A 2013 A sustainable role of keratin biopolymer in green chemistry: a review J. Food Process. Bev. 1 1-8
[29] Wang K, Li R, Ma J H, Jian Y K and Che J N 2016 Extracting keratin from wool by using L-cysteine Green Chem 18(2) 476-81
[30] Ma B, Qiao X, Hou X and Yan Y 2016 Pure keratin membrane and fibers from chicken feather. Intern. J. Bio. Macromolecules 89 614-21
[31] Zhao W, Yang R, Zhang Y and Wu L 2012 Sustainable and practical utilization of feather keratin by an innovative physicochemical pretreatment: high density steam flash-explosion Green Chem 14(12) 3352-60
[32] Wang Y-X and Cao X-J 2012 Extracting keratin from chicken feathers by using a hydrophobic ionic liquid Process Biochem 47(5) 896-99
[33] Thannhauser, T W, Konishi Y and Scheraga H A 1984 Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins Analytical Biochem. 138(1) 181-88
[34] Mazotto A, de-Melo A, Macrae A, Rosado A, Peixoto R and Cedrola S 2011 Biodegradation of feather waste by extracellular keratinases and gelatinases from Bacillus spp World J. Microb. Biotech. 27 1355-65
[35] Ire F S and Onyenama A C 2017 Effects of some cultural conditions on keratinase production by Bacillus licheniformis Strain NBRC 14206 J.Adv. Biol. and Biotech. 13 1-13
[36] Parry D A and North A 1998 Hard α-keratin intermediate filament chains: substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains J. Struct. Bio. 122(1) 67-75
[37] Mabrouk M E 2008 Feather degradation by a new keratinolytic Streptomyces sp. MS-2 World J. Microb. Biotech. 24 2331-38
[38] Cedrola S, De-Melo A, Mazotto A, Lins U, Zingali R and Rosado A 2012 Keratinases and sulfide from Bacillus subtilis SLC to recycle feather waste World J. Microb. Biotech. 28 1259-69
[39] Tonkova V V, Gousterova A and Neshev G 2009 Ecologically safe method for improved feather wastes biodegradation Intern. Biodeter. Biodegrad. 63(8) 1008-12
[40] Mohamad N, Phang L-y and Suraini Abd-Aziz S 2017 Optimization of metallo-keratinase production by Pseudomonas sp. LM19 as a potential enzyme for feather waste conversion Biocatalysis and Biotransformation 35(1) 41-50
[41] Abdel-Fattah A M, El-Gamal M S, Ismail S A, Emran A A and Hashem A M 2018 Biodegradation of feather waste by keratinase produced from newly isolated Bacillus licheniformis ALW1 J. Genetic Eng. Biotech. 16(2) 311-18
[42] Said M I, Abustam E, Yuliati F N and Mide M Z 2018 Characteristics of feather protein concentrates hydrolyzed using *Bacillus subtilis* FNCC 0059 *OnLine J. Biol. Sci.* 18(2) 138-46

[43] Wang X and Parsons C M 1997 Effect of processing systems on protein quality of feather meals and hog hair meals *Poult. Sci.* 76(3) 491–96

[44] Okoroma E A, Garelick H, Abiola O O and Purchase D 2012 Identification and characterisation of a *Bacillus licheniformis* strain with profound keratinase activity for degradation of melanised feather *Int. Biodeter. Biodegrad.* 74 54–60

[45] Samant M, Pandey S C and Pandey A 2018 Impact of Hazardous Waste material on environment and their management strategies *Microbial Biotech. in Env. Monitoring and Cleanup* 17 192

[46] Said M I, Abustam E, Wahab A W, Sartini and Hifizah A 2015 Chemical characteristics of collagen extract from scapula of Bali cattle (*os scapula*) produced using different extractant *Pak. J. Nut.* 14(3) 174-79

[47] Said M I, Asriany A, Sirajuddin S N, Abustam E and Rasyid R 2018 Evaluation of the quality of liquid organic fertilizer from rabbit’s urine waste fermented using local microorganisms as decomposers *Iraqi J. Agric. Sci.* 49(6) 990-1003

[48] Latshaw J D, Musharaf N and Retrum R 1994 Processing of feather meal to maximize its nutritional-value for poultry *Anim. Feed Sci. and Tech.* 47(3-4) 179-88

[49] Williams C M, Grimes J L and Mikkelsen R L 1999 The use of poultry litter as co-substrate and source of inorganic nutrients and microorganisms for the ex situ biodegradation of petroleum compounds *Poult. Sci.* 78(7) 956-64

[50] Ramnani P, Singh R and Gupta R 2005 Keratinolytic potential of *Bacillus licheniformis* RG1: Structural and biochemical mechanism of feather degradation *Canadian J. Microb.* 51 191-96

[51] Farag A and Hassan M 2004 Purification, characterization and immobilization of a keratinase from *Aspergillus oryzae* *Enzyme and Microbial Tech* 34 85-93

[52] Miyadoh S 1997 *Atlas of Actinomycetes* (Asakura, Japan: Society for Actinomycetes)

[53] Ryckeboer J, Mergaert J, Coosemans J, Deprins K and Swings J 2003 Microbiological aspects of biowaste during composting in monitored compost bin *J. Appl. Microb.* 94 127–37

[54] Said M I, Erwanto Y and Abustam E 2016 Properties of edible film produced using combination of collagen extracts of bligon goatskin with glycerol *Am. J. Anim. Vet. Sci.* 11(4) 151-59