A note on a walk-based inequality for the index of a signed graph

https://doi.org/10.1515/spma-2020-0120
Received October 6, 2020; accepted December 6, 2020

Abstract: We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.

Keywords: Signed graph; walk; adjacency matrix; index; upper bound

MSC: 05C22; 05C50

1 Introduction

A signed graph \hat{G} is a pair (G, σ), where $G = (V, E)$ is an unsigned graph, called the underlying graph, and $\sigma : E \rightarrow \{-1, +1\}$ is the sign function. We denote the number of vertices of a signed graph by n. The edge set of a signed graph is composed of subsets of positive and negative edges. Throughout the paper we interpret an unsigned graph as a signed graph with all the edges being positive.

The $n \times n$ adjacency matrix $A_{\hat{G}}$ of \hat{G} is obtained from the standard $(0, 1)$-adjacency matrix of G by reversing the sign of all 1s which correspond to negative edges. The largest eigenvalue of $A_{\hat{G}}$ is called the index of \hat{G} and denoted by λ_1. A detailed introduction to spectra of signed graphs can be found in [3].

Spectra of signed graph have received a great deal of attention in the recent years. In particular, some upper bounds for λ_1 appeared in our previous works [1, 2]. In this note we generalize the result of [2] concerning an upper bound for λ_1 in terms of certain standard invariants. Additional terminology and notation are given in Section 2. Our contribution and some consequences are given in Section 3.

2 Terminology and notation

If the vertices i and j are adjacent, then we write $i \sim j$. In particular, the existence of a positive (resp. negative) edge between these vertices is designated by $i \sim^+ j$ (resp. $i \sim^- j$). We use d_i to denote the degree of a vertex $i \in V(\hat{G})$; in particular, we write d_i^+ and d_i^- for the positive and negative vertex degree (i.e., the number of positive and negative edges incident with i), respectively. For (not necessary distinct) vertices i and j, we use c_{ij}^{++} to denote the number of their common neighbours joined to both of them by a positive edge, c_{ij}^{--} to denote the the number of their common neighbours joined to i by a positive edge and to j by any edge. We also use the similar notation for all the remaining possibilities.

The definition of a walk in a signed graph does not deviate from the same definition in the case of graphs. So, a walk is a sequence of alternate vertices and edges such that consecutive vertices are incident with the corresponding edge. A walk in a signed graph is positive if the number of its negative edges (counted with

*Corresponding Author: Zoran Stanić: Faculty of Mathematics, University of Belgrade Studentski trg 16, 11 000 Belgrade, Serbia, E-mail: zstanic@math.rs

© 2021 Zoran Stanić, published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License.
their multiplicity if there are repeated edges) is not odd; otherwise, it is negative. In the same way we decide whether a cycle in a signed graph is positive or negative. We use \(w^+_i(i, j) \) and \(w^-_i(i) \) to denote the number of positive walks of length \(k \) starting at \(i \) and terminating at \(j \) and the number of positive walks of length \(k \) starting at \(i \), respectively, and similarly for the numbers of negative ones.

3 Results

Our main result reads as follows.

Theorem 3.1. For the index \(\lambda_1 \) of signed graph \(\hat{G} \),

\[
\lambda_1 (n_i^- + n_i^+ + \lambda_1^{-1}) \leq (n_i^- + n_i^+)d_i + \sum_{j=1}^{n}(w^+ + w^-)d_j - 2\left(\sum_{j: w^+_j \neq 0} (c_{ij}^- + c_{ij}^+) + \sum_{j: w^-_j \neq 0} (c_{ij}^- + c_{ij}^-) \right),
\]

where \(i \) is a vertex that corresponds to the largest absolute value of the coordinates of an eigenvector afforded by \(\lambda_1 \), \(r \) (\(r \geq 2 \)) is an integer, \(w^+ = w_{r-1}^+(i, j) \), \(w^- = w_{r-1}^-(i, j) \) and \(n_j^- \) (resp. \(n_j^+ \)) is the number of vertices \(j \) such that \(w^+ \neq 0 \) (resp. \(w^- \neq 0 \)).

Proof. Let \(x = (x_1, x_2, \ldots, x_n)^T \) be an eigenvector associated with \(\lambda_1 \) and let \(x_i \) be the coordinate that is largest in absolute value. Without loss of generality, we may assume that \(x_i = 1 \). Considering the \(i \)th and the \(j \)th equality of \(\lambda_1 x = A \hat{G} x \), we get

\[
\lambda_1 = \sum_{k \sim i} x_k - \sum_{k \sim j} x_k,
\]

and

\[
\lambda_1 x_j = \sum_{k \sim j} x_k - \sum_{k \sim i} x_k.
\]

By multiplying the equality (2) by \(w^+ = w_{r-1}^+(i, j) \) and adding to (1), we get

\[
\lambda_1 (1 + w^+ x_j) = \sum_{k \sim j} x_k - \sum_{k \sim i} x_k + w^+ \left(\sum_{k \sim j} x_k - \sum_{k \sim j} x_k \right)
\]

\[
= (1 + w^+) \left(\sum_{k \sim j} x_k - \sum_{k \sim i} x_k \right) + (1 - w^+) \left(\sum_{k \sim j} x_k - \sum_{k \sim j} x_k \right)
\]

\[
+ \sum_{k \sim j} x_k - \sum_{k \sim i} x_k + w^+ \left(\sum_{k \sim j} x_k - \sum_{k \sim j} x_k \right)
\]

\[
\leq (1 + w^+) (c_{ij}^+ + c_{ij}^-) + |1 - w^+| (c_{ij}^- + c_{ij}^-) + d_j - c_{ij}^+ + d_i - c_{ij}^- + w^+(d_j^- - c_{ij}^- + d_j^- - c_{ij}^-)
\]

\[
= d_j + w^+ d_j - (1 + w^- - |1 - w^-|) (c_{ij}^- + c_{ij}^-).
\]

Observe that, for \(w^+ \neq 0 \), the previous inequality reduces to

\[
\lambda_1 (1 + w^+ x_j) \leq d_j + w^+ d_j - 2(c_{ij}^- + c_{ij}^-).
\]

Taking the summation over all \(j \) such that \(w^+ \neq 0 \), we get

\[
\lambda_1 \left(n_i^- + \sum_{j: w^+_j \neq 0} w^+ x_j \right) \leq n_i d_i + \sum_{j: w^-_j \neq 0} (w^+ d_j - 2(c_{ij}^- + c_{ij}^-)). \tag{3}
\]

Similarly, by multiplying the equality (2) by \(w^- = w_{r-1}^-(i, j) \) and subtracting it from (1), we get

\[
\lambda_1 (1 - w^- x_j) \leq d_i + w^- d_j - (1 + w^- - |1 - w^-|) (c_{ij}^+ + c_{ij}^-),
\]
which, after taking the summation over all j such that $w^- \neq 0$, leads to
\[
\lambda_1 \left(n_i^- - \sum_{j : w^- \neq 0} n_i^- w^- x_j \right) \leq \sum_{j : w^- \neq 0} n_i^- d_j + \sum_{j : w^- \neq 0} \left(w^- d_j - 2(c_{ij}^+ + c_{ij}^-) \right).
\tag{4}
\]

Since
\[
\lambda_1^{-1} A_1^{-1} x_i = \sum_{j=1}^{n}(w^+ - w^-) x_j = \sum_{j : w^+ \neq 0} x_j - \sum_{j : w^- \neq 0} x_j,
\]
by summing (3) and (4), we obtain
\[
\lambda_1 \left(n_i^+ + n_i^- + \lambda_1^{-1} \right) \leq \left(n_i^+ + n_i^- \right) d_i + \sum_{j=1}^{n}(w^+ + w^-) d_j - 2 \left(\sum_{j : w^+ \neq 0} (c_{ij}^+ + c_{ij}^+) + \sum_{j : w^- \neq 0} (c_{ij}^- + c_{ij}^-) \right),
\]
which completes the proof. \qed

The Laplacian matrix L_G is defined as $L_G = D_G - A_G$, where D_G is the diagonal matrix of vertex degrees. Observe that the counterparts to (1) and (2) in the case of the Laplacian matrix L_G are given by $\mu_1 = d_i + \sum_{k \prec i} x_k - \sum_{k \succ i} x_k$ and $\mu_1 x_i = d_i x_i + \sum_{k \prec i} x_k - \sum_{k \succ i} x_k$ (μ_1 being the largest eigenvalue of L_G). Now, with slight modifications in the previous proof, we get the following.

Theorem 3.2. For the Laplacian index μ_1 of signed graph \hat{G},
\[
\mu_1 \left(n_i^+ + n_i^- + \mu_1^{-1} \right) \leq \left(n_i^+ + n_i^- \right) d_i + \sum_{j=1}^{n}(w^+ + w^-) d_j - \sum_{j : w^+ \neq 0} (c_{ij}^+ + c_{ij}^+) - \sum_{j : w^- \neq 0} (c_{ij}^- + c_{ij}^-),
\]
with the notations of Theorem 3.1.

For $r = 2$, we have $n_i^+ = w^+ = d_i^+$, $n_i^- = w^- = d_i^-$, while $\sum_{j : w^+ \neq 0}(c_{ij}^+ + c_{ij}^+) + \sum_{j : w^- \neq 0}(c_{ij}^- + c_{ij}^-) = 2T_i$, i.e., this is twice the sum of negative triangles passing through i. Thus Theorem 3.1 gives $\lambda_1 (d_i^+ + \lambda_1) \leq d_i^2 + d_i m_i - 4T_i$, where m_i is the average degree of the neighbours of i. This quadratic equation leads to
\[
\lambda_i^2 \leq \max_{1 \leq i \leq n} \left\{ \frac{1}{2} \left(\sqrt{5d_i^2 + 4(d_i m_i - 4T_i)} - d_i \right) \right\},
\]
the upper bound obtained in [2].

For $r = 3$, we get
\[
\lambda_1 \left(n_i^+ + n_i^- + \lambda_1^2 \right) \leq \left(n_i^+ + n_i^- \right) d_i + \sum_{j : w^+ \neq 0} (w^+ d_j - 2w^-) + \sum_{j : w^- \neq 0} (w^- d_j - 2w^+),
\]
as $c_{ij}^+ + c_{ij}^- = w^+$, $c_{ij}^+ + c_{ij}^- = w^-$. In particular case of graphs, the latter inequality reduces to
\[
\lambda_1 \left(d_2(i) + 1 + \lambda_1^2 \right) \leq (d_2(i) + 1)d_i + w_3(i),
\]
where $d_2(i)$ denotes the number of vertices at distance 2 from i (and then $n_i^+ = d_2(i) + 1$) and $w_3(i)$ denotes the number of walks of length 3 starting at i.

Acknowledgements: Research is partially supported by Serbian Ministry of Education via Faculty of Mathematics, University of Belgrade.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

[1] Z. Stanić, Bounding the largest eigenvalue of signed graphs, Linear Algebra Appl., 573 (2019), 80–89.
[2] Z. Stanić, Some bounds for the largest eigenvalue of a signed graph, Bull. Math. Soc. Sci. Math. Roumanie, 62(110) (2019), 183–189.
[3] T. Zaslavsky, Matrices in the theory of signed simple graphs, in B.D. Acharya, G.O.H. Katona, J. Nešetřil (Eds.), Advances in Discrete Mathematics and Applications: Mysore 2008, Ramanujan Math. Soc., Mysore, 2010, pp. 207–229.