Loss of nonsense mediated decay suppresses mutations in Saccharomyces cerevisiae TRA1

Stephanie Kvas, Gregory B Gloor and Christopher J Brandl*

Abstract

Background: Tra1 is an essential protein in Saccharomyces cerevisiae. It was first identified in the SAGA and NuA4 complexes, both with functions in multiple aspects of gene regulation and DNA repair, and recently found in the ASTRA complex. Tra1 belongs to the PIKK family of proteins with a C-terminal PI3K domain followed by a FATC domain. Previously we found that mutation of leucine to alanine at position 3733 in the FATC domain of Tra1 (tra1-L3733A) results in transcriptional changes and slow growth under conditions of stress. To further define the regulatory interactions of Tra1 we isolated extragenic suppressors of the tra1-L3733A allele.

Results: We screened for suppressors of the ethanol sensitivity caused by tra1-L3733A. Eleven extragenic recessive mutations, belonging to three complementation groups, were identified that partially suppressed a subset of the phenotypes caused by tra1-L3733A. Using whole genome sequencing we identified one of the mutations as an opal mutation at tryptophan 165 of UPF1/NAM7. Partial suppression of the transcriptional defect resulting from tra1-L3733A was observed at GAL10, but not at PHO5. Suppression was due to loss of nonsense mediated decay (NMD) since deletion of any one of the three NMD surveillance components (upf1/nam7, upf2/nmd2, or upf3) mediated the effect. Deletion of upf1 suppressed a second FATC domain mutation, tra1-F3744A, as well as a mutation to the PIK3 domain. In contrast, deletions of SAGA or NuA4 components were not suppressed.

Conclusions: We have demonstrated a genetic interaction between TRA1 and genes of the NMD pathway. The suppression is specific for mutations in TRA1. Since NMD and Tra1 generally act reciprocally to control gene expression, and the FATC domain mutations do not directly affect NMD, we suggest that suppression occurs as the result of overlap and/or crosstalk in these two broad regulatory networks.

Keywords: Tra1, Yeast, Nonsense mediated decay, Upf1, Gene expression, Second-site suppression

Background

Tra1 is a 3744 amino acid residue protein, essential for viability in Saccharomyces cerevisiae. It is a major constituent of the SAGA and NuA4 transcriptional regulatory complexes [1-3], both with significant roles in gene regulation and DNA repair [4-6]. More recently a putative complex based on mutual associations termed ASTRA, was also found to contain Tra1 [7]. Tra1’s mammalian homolog TRRAP was identified because of its interactions with the transcription factors c-myc and E2F [8]. Similarly Tra1 interacts with yeast transcriptional activators to target SAGA and NuA4 to promoters [9-12]. Interestingly, Helmlinger et al. [13] have recently provided evidence that Tra1 also acts independently of SAGA and NuA4 to regulate gene expression. Tra1/TRRAP are members of the PIKK (phosphoinositide three-kinase-related kinase) family of proteins, a group that in yeast includes Tor1, Tor2, Tel1 and Mec1 [14,15]. The latter two are structurally and functionally related to ATM and ATR of multicellular eucaryotes. Two additional family members not found in yeast, are the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and SMG-1, with key roles in DNA repair and nonsense mediated decay of RNA, respectively. The PIKK family members are all large proteins characterized by a common arrangement of C-terminal domains [16], including a domain that resembles the phosphatidylinositol-3-kinases (PI3K). Unlike the other PIKK molecules, which are protein kinases, Tra1/TRRAP lacks kinase activity [2,8]. Nonetheless, altering residues that parallel...
key regions of the kinase members of the family affect Tra1 function [17]. On the N-terminal side of the kinase domain is the HEAT and TPR repeat-rich FAT (FRAP-ATM-TRRAP) domain [18-21]. C-terminal to the PI3K domain is the less highly conserved PRD (PIKK regulatory domain), identified in ATM as the site of acetylation by Tip60 [22].

The ~35-residue FATC domain is at the extreme C-terminus of the PIKK proteins [18]. The critical role of the FATC domain is evident from the finding that addition of a single glycine to the C-terminus of Tra1 abolishes function, and mutations of L3733 or F3744 to alanine result in slow growth in a number of stress conditions [23]. The FATC domain is similarly important for the other PIKK family members; for example, the parallel mutation to L3733A of Tra1 results in a dramatic loss in the kinase activity of SMG-1 [24]. Dames et al. [25] determined the structure of the isolated FATC domain of S. cerevisiae Tor1. It is predominately helical with a loop at the extreme C-terminus held in place by a disulphide linkage. The helical structure is likely conserved in the family, but not the loop because the two cysteines are only found in the Tor proteins. FATC domains are proposed to be a target for interacting proteins. In a two-hybrid analysis the FATC domain of Mec1 was required for association with the RPA components Rfa1 and Rfa2 [26]. In vivo, the FATC domain of ATM and Tip60 (the mammalian homolog of the NuA4 component Esa1) interact, though this may be indirect [22,27]. Consistent with the mutagenesis analysis of Moritia et al. [24], Leppäniemi and Halazonetis [16] suggest the FATC domain interacts with and regulates the activity of the kinase domain.

Nonsense mediated decay (NMD) is a cellular surveillance mechanism present in all eucaryotes that scans for premature stop codons on mRNAs [28,29]. The process is coupled to translation, and results in degradation of potentially deleterious transcripts [30-32]. Premature stop codons can arise through errors in transcription by RNA Polymerase II, failure or inaccurate removal of introns, inaccurate translational starts, ribosomal frameshifting, RNA editing, or errors within the genomic DNA. The mechanism of NMD varies in different organisms, with the molecular details still being determined [33]. In yeast, one model suggests that NMD is triggered if the mRNA binding protein Hrp1 is bound to a downstream sequence element(s) (DSE) when the ribosome encounters a stop codon [34-36]. The DSE is 5’ of the native stop codon, with Hrp1 normally being displaced by the passing ribosome. A second model, the faux (false) 3’ UTR model, postulates that the length of the 3’ untranslated region resulting from a premature stop codon prevents the normal interactions that occur between the ribosome and poly (A) binding protein during the termination of translation. In the absence of these interactions the NMD factors associate with the ribosome, which in turn results in mRNA decay [37].

The yeast NMD surveillance complex consists of three proteins, Upf1/Nam7, Upf2/Nmd2, and Upf3 (for simplicity referred to as Upf1, Upf2 and Upf3, respectively). Mutations in any of the NMD proteins increase translational read-through and stabilize mRNA containing premature stop codons [30,38-43]. Upf1, an ATP dependent RNA helicase [41,44] is the central component of the pathway, whereas Upf2 and Upf3 regulate Upf1 [42,45]. In metazoans, Upf1 is further regulated by phosphorylation/dephosphorylation [28]. The kinase involved is the PIKK family member SMG-1 [45,46].

In addition to removing aberrant transcripts, the NMD pathway plays a significant role in the control of gene expression [47]. Microarray analyses indicate that approximately 10% of yeast genes are affected by loss of NMD; most showing increased levels [48-50]. Approximately half of the changes are the result of direct regulation by NMD [50]. Some of the effects on translational readthrough are due to increased expression of the magnesium transporter Alr1p and the elevated cellular magnesium [51]. Other regulatory functions may arise through programmed ribosomal frameshifting, and altered translational start site selection [52-55].

To identify the genetic network in which Tra1 is involved, we selected for second site suppressors that allow growth of strains with the tra1-L3733A allele on media containing ethanol. An opal mutation at codon 165 of upf1 was identified. Suppression was likely the result of loss of NMD since deletion of upf1, upf2 or upf3 conferred growth of strains containing tra1-L3733A. Suppression was specific for mutations to TRA1; phenotypes arising from deletions of SAGA or NuA4 components were not suppressed. Since deletion of upf1 only reversed the transcriptional defects of the tra1 alleles at a subset of affected promoters, and these same tra1 alleles did not affect NMD, we conclude that loss of NMD suppresses the TRA1 mutations through crosstalk and/or partial overlap of their regulatory networks.

Results

The FATC domain of Tra1 is critical to the protein’s function. Mutation of leucine 3733 to alanine results in temperature sensitivity and slow growth in media containing ethanol, Calcofluor white or rapamycin [23]. These phenotypes provide a tool to probe the genetic network in which TRA1 is connected. We selected for extragenic suppressors of the ethanol sensitivity of CY4018, a strain disrupted for the genomic tra1 but viable due to tra1-L3733A on a URA3 centromeric plasmid. Approximately 10^8 cells were plated onto YPD plates containing 4% ethanol. Forty-three colonies were
isolated for further analysis. Each was retested for the suppression after colony isolation, and then examined for whether the mutation was located on the \textit{tra1-L3733A} containing-plasmid by plasmid shuffling. Eleven strains with extragenic mutations that partially suppressed the slow growth due to \textit{tra1-L3733A} were identified. The growth of these strains on YPD media and YPD containing 4\% ethanol is shown in Figure 1a. The strains with the \textit{tra1-L3733A} suppressor alleles (tentatively termed \textit{es2}, \textit{es12}, \textit{es35} etc.) were mated with the MAT\textit{a} \textit{tra1-L3733A} strain CY5522 to determine if the suppressor mutations were dominant or recessive. Figure 1b shows the analysis for CY5579 (\textit{es2}), CY5580 (\textit{es38}), and CY5587 (\textit{es41}). The diploid strains grew slowly under selective conditions, indicating that the suppressor alleles act recessively. Similarly each of the additional \textit{es} alleles was recessive. Complementation groups were analyzed through crosses of the \textit{es} containing strains. As shown in Figure 1c, the diploid crosses of \textit{es2} with \textit{es38}, and \textit{es41}, grew poorly on media containing 4\% ethanol, in contrast to the homozygous diploid containing \textit{es2}. In this way three complementation groups were identified amongst the eleven strains isolated in the screen. One complementation group contained uniquely \textit{es2}; a second group contained uniquely \textit{es35}. The third complementation group contained the remaining nine alleles, including \textit{es38} and \textit{es41}. A random spore analysis indicated that the ethanol resistance for the \textit{es2}, \textit{es35} and \textit{es38} strains (representing each complementation group) segregated 2:2 suggesting that a single gene was the cause of suppression.

To determine the identity of the suppressor alleles for the \textit{es2} and \textit{es38/es41} complementation groups, we compared the genome sequence for each of the three strains.
relative to the parent CY4018. (The third complementation group was not analyzed.) Libraries were prepared and genomic sequencing performed using the ABI SOLiD 4.0 platform at the Centre for Applied Genomics at The Hospital for Sick Children (Toronto, Canada). Approximately 50 million reads were obtained for each sample of which 60% mapped to the reference genome from the Saccharomyces Genome Database. Polymorphisms not found in CY4018 or the other complementation group, were analyzed by visual inspection of the sequencing reads. A causative mutation could not be identified within coding or noncoding sequences for the es38/es41 complementation group. The es2 strain contained an opal mutation at tryptophan codon 165 of UPF1, truncating the 971-residue protein. To confirm that this allele, now designated upf11-164, was responsible for the suppression of tra1-L3733A, CY5579 (upf11-164 tra1-L3733A) was mated with CY4018 (tra1-L3733A), sporulated, and the UPF1 alleles in 8 unrelated spore colonies, four exhibiting slow growth and four fast growth, were isolated by PCR and sequenced. The four spore colonies growing slowly on 4% ethanol contained wild-type UPF1, whereas the fast growing spore colonies contained upf11-164.

In S. cerevisiae, Upf1 is one of three proteins acting in the NMD surveillance complex, the others being Upf2 and Upf3. To determine if loss of this process was responsible for suppression of tra1-L3733A, we analyzed the growth of strains deleted for upf1, upf2 or upf3 in media containing 6% ethanol and at 37°C. As shown in Figure 2A, deletion of any of the components of the NMD surveillance complex partially suppressed the slow growth due to tra1-L3733A. Though not documented as a target of NMD, it is possible that loss of NMD suppresses the tra1-L3733A allele by increasing the cellular concentration of the protein. We therefore constructed strains that contain an integrated copy of Flag5-tagged Tra1 or Tra1-L3733A, and examined expression in the presence or absence of upf1 by Western blotting of cell extracts (Figure 2B). The expression of the integrated Flag5-Tra1-L3733A is similar to the wild-type protein (compare lanes 1 and 3). Disruption of upf1 slightly increased expression of Tra1-L3733A (compare lanes 3 and 6). We estimate this increase to be less than 10%, and suggest that it is not sufficient to account for the suppression.

We next addressed the allele specificity of the suppression. Alteration of the terminal phenylalanine of tra1 to alanine results in slow growth in media containing ethanol. A strain deleted for upf1 and containing tra1-F3744A was constructed and its growth compared to the single mutant strains (Figure 3a). Deletion of upf1 suppressed the slow growth due to tra1-F3744A, at least to the same extent as for tra1-L3733A. Deletion of upf1 also suppressed slow growth at 37°C and on media containing 6% ethanol caused by tra1-SRR3413, a triple alanine scanning mutation to residues 3,413-3,415 within the PI3K domain ([17]; Figure 3b).Deletions of other components of the SAGA and NuA4 complexes were then examined (Figure 3c and 3d). Deletion of ada2Δ results in slow growth on media containing ethanol; however, unlike the tra1 mutations, the slow growth caused by ada2Δ was not suppressed by upf1Δ (Figure 3c). Disrupting the NuA4 components Eaf3 or Eaf7 results in slow growth at 35°C in media containing 6% ethanol. Deletion

![Figure 2 Deletions of components of the NMD pathway suppress tra1-L3733A](http://www.biomedcentral.com/1471-2156/13/19/)

A. Haploid strains CY4353 (tra1-1 UPF1), CY4103 (tra1-L3733A UPF1), CY5932 (tra1-1 upf1Δ), CY5972 (tra1-L3733A upf1Δ), CY5936 (tra1-1 upf3Δ), CY5983 (tra1-L3733A upf3Δ), CY5934 (tra1 upf2Δ), and CY5996 (tra1-L3733A upf2Δ) were grown in YPD media to stationary phase, and 10-fold serial dilutions plated onto YPD, YPD containing 6% ethanol, or YPD grown at 37°C. B. Expression of Flag5-Tra1-L3733A. Yeast strains CY5940 (Flag5-TRA1; lane 1), CY6004 (Flag5-TRA1-L3733A, lanes 2-4), CY6005 (Flag5-tra1-L3733A upf1Δ, lanes 5-7) and BY4741 (tra1, not applicable; lane 8) were grown to stationary phase then diluted 1:20 into YPD and grown for 8 hours at 30°C. Protein extracts were prepared by lysis with glass beads. The indicated amount of protein was separated by SDS-PAGE (5%) and either Western blotted with anti-Flag antibody or stained with Coomassie Brilliant Blue (CBB).
Figure 3 Suppression by upf1Δ is specific for mutations within the FATC domain of Tra1. A. upf1Δ suppression of tra1-F3744A. Serial dilutions of CY4353 (TRA1 UPF1), CY4350 (tra1-F3744A UPF1), CY5932 (TRA1 upf1Δ), and CY6030 (tra1-F3744A upf1Δ) were spotted onto YPD at 30°C or 37°C, or YPD containing 6% ethanol at 30°C. B. upf1Δ suppression of tra1-SRR3413. Serial dilutions of BY4742 (TRA1 UPF1), CY5932 (TRA1 upf1Δ), CY2200 (tra1-SRR3413 UPF1), and CY6111 (tra1-SRR3413 upf1Δ) were spotted onto YPD at 30°C or 37°C, or YPD containing 6% ethanol at 30°C. C. upf1Δ does not suppress ada2Δ. Serial dilutions of CY4353 (ADA2 UPF1), BY4282 (ada2Δ UPF1), CY5932 (ADA2 upf1Δ), and CY5979 (ada2Δ upf1Δ) haploids were spotted onto the indicated YPD plates. D. upf1Δ does not suppress eaf3Δ or eaf7Δ. Serial dilutions of CY4353 (WT), CY5932 (upf1Δ), BY7143 (eaf3Δ UPF1), CY5980 (eaf3Δ upf1Δ), BY2940 (eaf7Δ UPF1), and CY5976 (eaf7Δ upf1Δ) haploids were spotted onto YPD at 30°C or YPD containing 6% at 35°C.
of upf1 did not suppress this phenotype for either the eaf3Δ or eaf7Δ strains (Figure 3d). In fact synthetic slow growth was observed on plates containing 6% ethanol for the double mutant strains. This latter result agrees with the synthetic slow growth reported for mutations of esa1 and eaf7 with upf1 and upf3, respectively [56,57].

Alterations to the FATC domain cause slow growth in a number of conditions [23]. We analyzed which of these in addition to the suppression of ethanol and temperature sensitivity are suppressed by upf1Δ. As shown in Figure 4, deletion of upf1 suppressed the slow growth resulting from tra1-F3744A when galactose is the carbon source, when phosphate is depleted, and when phleomycin (a DNA damaging agent) is present in the media. In contrast deletion of upf1 did not suppress slow growth due to tra1-F3744A in the presence of the cell wall destabilizing agent Calcofluor white, and only had a modest effect with rapamycin. The latter was particularly interestingly, given that deletion of upf1 in the wild-type TRA1 background decreased sensitivity to rapamycin (compare TRA1 UPF1 with TRA1 upf1Δ).

We next addressed whether disruption of upf1 would reverse the transcriptional defects caused by the TRA1 mutations. Expression of two lacZ promoter fusions was examined: PHOS-lacZ and GAL10-lacZ. tra1-L3733A and tra1-F3744A decreased activated expression of PHOS-lacZ to approximately one-third of the wild-type level (Figure 5a). Interestingly, the strain containing a disruption of upf1 in the context of wild-type TRA1 also showed decreased expression (approximately 2-fold). Furthermore, disruption of upf1 in the context of either tra1-L3733A or tra1-F3744A did not restore transcription. As shown in Figure 5b expression of GAL10-lacZ was also reduced by tra1-L3733A and tra1-F3744A, but in contrast to PHOS-lacZ not by deletion of upf1. In addition, at GAL10 the transcriptional defect due to the tra1 alleles was partially reversed by upf1Δ. Together these results suggest that in some, but not all, cases disruption of upf1 may suppress tra1-induced phenotypes by regulating transcription (most likely indirectly) of common genes.

Our previous studies with TRA1 have linked phenotypes resulting from its mutation with transcriptional change [17,23]. The observation that disrupting upf1 did not restore transcription in all cases, suggested two models for how loss of NMD might suppress the FATC domain mutations. The first predicts a direct link between NMD and Tra1. If Tra1 is a negative regulator of NMD, Tra1-L3733A might increase NMD, decreasing the level of certain mRNA transcripts, which in turn could cause growth-related phenotypes. Loss of the NMD pathway would reverse the effect. The interaction between SAGA component Sgf29 and Upf1 [58], and the phosphorylation of Upf1 by the PIKK member SMG-1 in metazoans [45,46,59], are consistent with the possibility of direct regulation. The second model predicts a less specific interaction between Tra1 and NMD. The tra1 mutations through its action in SAGA, NuA4 or independently [13] alter expression of a set of genes. Some of these genes, or genes with epistatic relationships, may be regulated through mRNA turnover and/or translational readthrough by processes involving NMD. This possibility is enhanced by the scope of both networks and their generally reciprocal nature. By eliminating NMD the expression of genes that directly or indirectly intersect in the pathways may return to near normal, effectively compensating for diminished Tra1 activity. To differentiate between these models, we analyzed whether tra1-L3733A alters NMD. We constructed a PGK1-lacZ fusion (PGK1-lacZ; Figure 6a) frameshifted at codon 166 and including those sequences required for NMD, -544 to 891 [34,60]. Previous mRNA-seq experiments have indicated that PGK1 expression in YPD media is relatively unaffected by mutations within the FATC domain of Tra1 [23]. Deletion of upf1 results in a 5-fold increase in expression of β-galactosidase from the PGK1-lacZ fusion in comparison to a wild-type UPF1 strain (Figure 6b), verifying the use of this construct to monitor NMD. Indicative of Tra1 not having a direct role.

![Figure 4 Phenotypes of TRA1-F3744A suppressed by upf1Δ](Image)

Figure 4 Phenotypes of TRA1-F3744A suppressed by upf1Δ. Serial dilutions of yeast strains CY4353 (TRA1 UPF1), CY4350 (tra1-F3744A UPF1), CY952 (TRA1 upf1Δ), and CY6030 (tra1-F3744A upf1Δ) haploids were spotted onto YPD, YP plus 2% galactose, YPD depleted of phosphate, or YPD containing 1 μg/mL phleomycin, 10 μg/mL Calcofluor white, or 2 mM rapamycin.
in NMD, expression of PGK1_{fs}-lacZ was unaffected by tra1-L3733A. In light of this result and the broad role for NMD in gene expression, we thus favor a model whereby deletion of NMD suppresses the tra1 alleles through its reciprocal action on an overlapping set of genes.

Discussion

We have identified a genetic interaction between components of the nonsense mediated decay pathway and tra1, through random selection for mutations that suppress the ethanol sensitivity of a tra1-L3733A strain. Our initial selection identified a nonsense mutation at codon 165 of UPF1. Similar suppression was found with deletions of upf1, upf2 and upf3 indicating that loss of nonsense mediated decay was the likely cause. Our study demonstrates a relationship between the Tra1 and NMD regulatory networks, and further emphasizes the general importance of NMD in gene expression.

The suppression mediated by deletion of upf1Δ was specific for certain phenotypes arising from tra1 mutations. Slow growth due to high temperature, ethanol, low phosphate, galactose as the primary carbon source, and phleomycin was suppressed. Slow growth due to rapamycin or Calcofluor white was not. The suppression mediated by upf1Δ was also specific for mutations within TRA1, not suppressing deletions of the SAGA component Ada2 or the NuA4 components Eaf3 or Eaf7. In the case of the latter two disruptions, synthetic slow growth was observed.

We propose the suppression of tra1-L3733A and tra1-F3744A caused by loss of NMD is the result of crosstalk and/or direct overlap in the networks regulated by these genes. In this model, altered (most often decreased)
expression resulting from the _tra1_ mutations would be partially reversed by reducing mRNA turnover (or enhancing translational readthrough) in the NMD deficient backgrounds. Also along this line, a gene regulated by NMD may encode a protein that directly or indirectly regulates some of the functions of Tra1. Our reasons for preferring this indirect mechanism for suppression are the following. First, consistent with this model nonsense mediated decay has a broad role in gene regulation. Some of NMD’s roles relate to the removal of aberrant transcripts that have acquired nonsense codons. Other roles relate to control mechanisms that utilize the pathway to remove mRNAs that would otherwise be functional. As such NMD influences approximately 10% of yeast genes [48,49]–likely an underestimate of the extent of its control as this is in rich media. Clearly the breadth of the NMD effect indicates that NMD is of global importance in yeast regulatory pathways, not only affecting aberrant transcripts. The majority of genes are upregulated in response to loss of NMD; this contrasts to the generally more prevalent decreased expression observed upon mutation of _tra1_ [17,23]. Thus the prevalence of genes affected and reciprocal nature of loss of NMD and Tra1 could result in their neutralization in a double mutant background. Indeed, it is the scope of NMD that likely explains why its loss can also suppress mutations of other globally important yet functionally diverse factors required for gene expression (for example: _TAF6, TAF9_ and _RAP1_ [57], _PAF1_ [61], and _BRE1_ [62]).

This indirect model for suppression accommodates the finding that only a subset of _tra1-L3733A_ phenotypes is suppressed by loss of NMD. Suppression would require that Tra1 and NMD regulate key genes responsible for the phenotype (also see below). Similarly, specificity for _TRA1_ mutations may be accounted for if other NuA4 and/or SAGA components influence genes to an extent that is not sufficiently reversed by NMD. Finally, the finding that loss of NMD affects promoter-dependent events of some _tra1_-effected genes (for example _GAL10_) but not others (for example, _PHO5_) is more consistent with an indirect mechanism for suppression that could act through distinct genes and/or steps in gene expression, rather than by restoring Tra1 function.

Alternative models for suppression by _upf1Δ_ are possible if _Tra1_ were involved in NMD. The finding that _tra1-L3733A_ and _tra1-F3744A_ did not alter expression of an internally frame-shifted _PGK1_ reporter plasmid, suggests that _Tra1_ is not directly involved in NMD. The lack of direct relationship between _Tra1_ and NMD is consistent with _Tra1_ acting in the nucleus, whereas in _S. cerevisiae_ NMD is primarily a cytoplasmic process regulating post-transcriptional events [63].

We have not pinpointed the genes whose regulation by NMD allows suppression of the phenotypes caused by _tra1-L3733A_. Because of epistatic relationships, the key genes affected by _tra1-L3733A_ and NMD may not be identical. It is also possible that small changes in multiple target genes could cause suppression; this would make identification of relevant targets difficult. Expression screening of mRNAs to detect changes in profiles may be complicated because the genes are likely stress induced, and will differ from condition to condition. Moreover, some aspects of NMD relate specifically to translation, and will not be seen by RNA profiling. Nonetheless, we have compared gene expression profiles in YPD media for _tra1-L3733A_ [23] and _upf1Δ_ [49] strains. Of the 79 genes with reduced expression due to _tra1-L3733A_ (twofold or greater), six display increased expression of twofold or greater with _upf1Δ_ (one has decreased expression). This ratio, given that it approximates the 10% of the genome regulated by NMD, does not support a specific overlap in the pathways, however it does emphasize the generally reciprocal nature of Tra1 and NMD. The six genes with reciprocal changes in expression are YBL107C, YER187W, _MIP6_ (YHR015W), _JMN1_ (YMR294W), YNR071C and YOL014W. Of these only _MIP6_ and _JMN1_ have characterized functions. _MIP6_ is of potential relevance since it encodes a protein with putative RNA binding motifs, and was identified in a two-hybrid analysis as interacting with the Mex67, an mRNA export factor [64].

When expressed on a centromeric plasmid from the _DED1_ promoter, _Tra1-L3733A_ is less abundant than the wild type protein [23]. We do not observe this decrease when FATC mutations are integrated into the genome. For this reason the functional experiments performed in this analysis were with genomically encoded _tra1-L3733A_ and _tra1-F3744A_. Based on the recent results of Stirling et al. [65], who show a link between chromosome instability and components of the ASTRA complex, we believe that the plasmid versions may be less well expressed due to decreased stability of the plasmid for the mutant versions of _tra1_.

In a recent independent selection for suppressors of _tra1-F3744A_, we identified two alleles of the ASTRA component _Tit2_ (Genereaux et al. Genetics, in press). The _tit2_ alleles also suppress _tra1-L3733A_, but not deletions of components of SAGA or NuA4 components. The _tit2_ alleles, unlike _upf1_1,16A acted dominantly. This as well as complementation experiments with _TTI2_ (not shown) suggests that _es38/41_ and _es35_ represent additional independent suppressor alleles.

Conclusion

We have demonstrated a genetic interaction between _TRA1_ and genes of the nonsense mediated decay pathway. In a recessive manner, deletion of _upf1_ partially suppressed the growth related defects of _tra1-L3733A_,
tral-F3744A and tral-SRR3413, mutations within the FATC and PI3K domains. The suppression was specific for TRA1 mutations; no effect was seen for deletions of other SAGA or NuA4 components. A subset of phenotypes attributable to the FATC mutations was suppressed; furthermore, not all transcriptional defects were reversed by deletion of upf1. We suggest that the suppression relates to the breadth and overlapping, yet generally reciprocal nature of the gene regulatory pathways in which Tra1 and the NMD components are involved.

Methods

Yeast strains and growth

Strains for selection of suppressor mutations are derivatives of KY320 [66]; see Table 1) and the isogenic MATα strain CY4413. CY1021 contains a genomic disruption of tral and is maintained by a plasmid copy of myc-tagged TRA1 expressed from the DED1 promoter [2]. CY3003 [23] and CY4018 were obtained from CY1021 by plasmid shuffling and contain myc-tagged tral-L3733A expressed from the DED1 promoter on YCplac22 [67] or a URA3 centromeric plasmid (YCplac22a) derived from YCplac22 by switching TRP1 to URA3, respectively [68]. CY5522 is the MATα equivalent of CY4018 and was generated by mating CY4413 with CY4018. After sporulation, a MATα spore colony was isolated that required the plasmid copy of tral-L3733A for growth. Strains carrying tral-L3733A and extragenic suppressors (hereafter defined as es alleles) es2 (CY5579), es12 (CY5580), es35 (CY5581), es36 (CY5582), es37 (CY5583), es38 (CY5584), es39 (CY5585), es40 (CY5586), es41 (CY5587), es42 (CY5588), and es43 (CY5750) were derived from CY4018 using the selection scheme described below. CY5666 (es2), CY5758 (es38), and CY5603 (es41) are MATα equivalents of CY5579, CY5584, and CY5587, respectively, and were made after mating with CY5522. MATα spore colonies carrying the suppressor were selected based on their ability to grow at high temperature and on plates containing 4% ethanol.

Yeast strains deleted for suppressor mutations are derivatives of KY320 (66); see Table 1) and the isogenic MATα strain CY4413. CY1021 contains a genomic disruption of tral and is maintained by a plasmid copy of myc-tagged TRA1 expressed from the DED1 promoter [2]. CY3003 [23] and CY4018 were obtained from CY1021 by plasmid shuffling and contain myc-tagged tral-L3733A expressed from the DED1 promoter on YCplac22 [67] or a URA3 centromeric plasmid (YCplac22a) derived from YCplac22 by switching TRP1 to URA3, respectively [68]. CY5522 is the MATα equivalent of CY4018 and was generated by mating CY4413 with CY4018. After sporulation, a MATα spore colony was isolated that required the plasmid copy of tral-L3733A for growth. Strains carrying tral-L3733A and extragenic suppressors (hereafter defined as es alleles) es2 (CY5579), es12 (CY5580), es35 (CY5581), es36 (CY5582), es37 (CY5583), es38 (CY5584), es39 (CY5585), es40 (CY5586), es41 (CY5587), es42 (CY5588), and es43 (CY5750) were derived from CY4018 using the selection scheme described below. CY5666 (es2), CY5758 (es38), and CY5603 (es41) are MATα equivalents of CY5579, CY5584, and CY5587, respectively, and were made after mating with CY5522. MATα spore colonies carrying the suppressor were selected based on their ability to grow at high temperature and on plates containing 4% ethanol.

Yeast strains deleted for suppressor mutations are derivatives of KY320 (66); see Table 1) and the isogenic MATα strain CY4413. CY1021 contains a genomic disruption of tral and is maintained by a plasmid copy of myc-tagged TRA1 expressed from the DED1 promoter [2]. CY3003 [23] and CY4018 were obtained from CY1021 by plasmid shuffling and contain myc-tagged tral-L3733A expressed from the DED1 promoter on YCplac22 [67] or a URA3 centromeric plasmid (YCplac22a) derived from YCplac22 by switching TRP1 to URA3, respectively [68]. CY5522 is the MATα equivalent of CY4018 and was generated by mating CY4413 with CY4018. After sporulation, a MATα spore colony was isolated that required the plasmid copy of tral-L3733A for growth. Strains carrying tral-L3733A and extragenic suppressors (hereafter defined as es alleles) es2 (CY5579), es12 (CY5580), es35 (CY5581), es36 (CY5582), es37 (CY5583), es38 (CY5584), es39 (CY5585), es40 (CY5586), es41 (CY5587), es42 (CY5588), and es43 (CY5750) were derived from CY4018 using the selection scheme described below. CY5666 (es2), CY5758 (es38), and CY5603 (es41) are MATα equivalents of CY5579, CY5584, and CY5587, respectively, and were made after mating with CY5522. MATα spore colonies carrying the suppressor were selected based on their ability to grow at high temperature and on plates containing 4% ethanol.

Yeast strains deleted for suppressor mutations are derivatives of KY320 (66); see Table 1) and the isogenic MATα strain CY4413. CY1021 contains a genomic disruption of tral and is maintained by a plasmid copy of myc-tagged TRA1 expressed from the DED1 promoter [2]. CY3003 [23] and CY4018 were obtained from CY1021 by plasmid shuffling and contain myc-tagged tral-L3733A expressed from the DED1 promoter on YCplac22 [67] or a URA3 centromeric plasmid (YCplac22a) derived from YCplac22 by switching TRP1 to URA3, respectively [68]. CY5522 is the MATα equivalent of CY4018 and was generated by mating CY4413 with CY4018. After sporulation, a MATα spore colony was isolated that required the plasmid copy of tral-L3733A for growth. Strains carrying tral-L3733A and extragenic suppressors (hereafter defined as es alleles) es2 (CY5579), es12 (CY5580), es35 (CY5581), es36 (CY5582), es37 (CY5583), es38 (CY5584), es39 (CY5585), es40 (CY5586), es41 (CY5587), es42 (CY5588), and es43 (CY5750) were derived from CY4018 using the selection scheme described below. CY5666 (es2), CY5758 (es38), and CY5603 (es41) are MATα equivalents of CY5579, CY5584, and CY5587, respectively, and were made after mating with CY5522. MATα spore colonies carrying the suppressor were selected based on their ability to grow at high temperature and on plates containing 4% ethanol.

DNA molecules

Myc-tagged tral alleles on the centromeric TRP1 (YCplac22) or URA3 (YCplac33) plasmids have been described [17,23]. PHO5 (-452 to +247) and GAL110 (-595 to -245) promoter-lacZ fusions in the LEI12 centromeric plasmid YCp87 have been described [17,72]. The PGK1-lacZ fusion with a frameshift mutation (PGK1fs-lacZ) was constructed by synthesizing the gene from -544 to +891 by PCR using oligonucleotides 5′-GCCGATCCACGTGGCCTTATCGAG-3′ and 5′-CTCAAGCTTCTTGGTTGTGGCATTGCACGAG-3′, digesting the gene with Asp718, creating blunt ends with the Klenow fragment of DNA polymerase and religation.

Isolation of suppressor strains

Six cultures of CY4018 were grown overnight in YPD. Approximately 100 million cells were plated onto 200 YPD plates containing 4% ethanol and incubated at 30°C for 5 days. Fast growing colonies were colony purified and retested. YCplac22-tral-L3733A was transformed into each potential suppressor strain and YCplac22-myc-tral-L3733A shuffled out on -fluoroacetic acid. Strains that retained their ability to grow on 4% ethanol were defined as containing extragenic suppressors.

Genomic sequence analysis

Genomic DNA was prepared from10 mL of lyticase treated cells [73]. Approximately 5 μg of DNA from each sample was sent to the Centre for Applied Genomics (Toronto, Ontario). DNA library construction and next-generation sequencing using paired-end reads was performed at the Centre. Samples were sequenced using the Applied Biosystems SOLiD 4.0 next-generation sequencing platform. The sequencing was performed in a single lane with multiplexing that included 11 additional unrelated samples. The Saccharomyces cerevisiae genome sequence was downloaded from the Saccharomyces Genome Database (SGD; [74]) on March 24, 2011. Custom Shell and Perl scripts were
Strain number	Description	TRA1 plasmid	Reference
CY1021	Isogenic to KY320 except tra1Δ	YCplac22-myc-TRA1	[2]
CY2706	Isogenic to CY1021	YCplac22-myc9-TRA1	[23]
CY3003	Isogenic to CY1021	YCplac22-myc9-tra1-L3733A	[23]
CY4018	Isogenic to CY1021	YCplac22u-myc9-tra1-L3733A	This study
CY5522	Isogenic to CY3003 except MATα	YCplac22-myc9-tra1-L3733A	This study
CY5557	Diploid cross of CY2706 and CY4413	YCplac22-myc9-TRA1	This study
CY5558	Diploid cross of CY4018 and CY5522	YCplac22-myc9-tra1-L3733A	This study
CY5579	Isogenic to CY4018 except es2 (upf1-164)	YCplac22u-myc9-tra1-L3733A	This study
CY5580	Isogenic to CY4018 except es12	YCplac22u-myc9-tra1-L3733A	This study
CY5581	Isogenic to CY4018 except es35	YCplac22u-myc9-tra1-L3733A	This study
CY5582	Isogenic to CY4018 except es36	YCplac22u-myc9-tra1-L3733A	This study
CY5583	Isogenic to CY4018 except es37	YCplac22u-myc9-tra1-L3733A	This study
CY5584	Isogenic to CY4018 except es38	YCplac22u-myc9-tra1-L3733A	This study
CY5585	Isogenic to CY4018 except es39	YCplac22u-myc9-tra1-L3733A	This study
CY5586	Isogenic to CY4018 except es40	YCplac22u-myc9-tra1-L3733A	This study
CY5587	Isogenic to CY4018 except es41	YCplac22u-myc9-tra1-L3733A	This study
CY5588	Isogenic to CY4018 except es42	YCplac22u-myc9-tra1-L3733A	This study
CY5589	Isogenic to CY4018 except es43	YCplac22u-myc9-tra1-L3733A	This study
CY5603	Isogenic to CY4018 except es41	YCplac22u-myc9-tra1-L3733A	This study
CY5666	Isogenic to CY5522 except es2 (upf1-164)	YCplac22u-myc9-tra1-L3733A	This study
CY5678	Isogenic to CY5522 except es38	YCplac22u-myc9-tra1-L3733A	This study
CY5690	Isogenic to CY2706 except es38	YCplac22u-myc9-tra1-L3733A	This study
CY5691	Isogenic to CY2706 except es41	YCplac22u-myc9-tra1-L3733A	This study
KY320	MATα ura3-52 ade2-101 trp1-Δ1 lys2-801 his3-Δ200 leu2-PET56	[66]	
CY4413	MATα ura3-52 ade2-101 trp1-Δ1 lys2-801 his3-Δ200 leu2-PET56	[69]	
CY2222	MATα can1Δ5STE2pr-SphHIS5 lys1Δ his3Δ 1 leu2Δ0 ura3Δ0 met10 LYS2+ TRA1-SRR3413-URA3	[70]	
BY4741	MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	[70]	
BY4742	MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0	[70]	
BY2940	MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 eat7::KanMX	[70]	
BY4282	MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ada2::KanMX	[70]	
BY7143	MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 eat3::KanMX	[70]	
BY41905	MATα his3Δ1/his3Δ1 leu2Δ0 lys2Δ0/lys2Δ0 LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0 + can1Δ1:LEU2 + -MFA1pr-HIS3/CAN1+ upf1Δ:KanMX	[71]	
BY44702	MATα his3Δ1/his3Δ1 leu2Δ0 lys2Δ0/lys2Δ0 LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0 can1Δ1:LEU2 + -MFA1pr-HIS3/CAN1+ upf1Δ:KanMX	[71]	
BY46214	MATα his3Δ1/his3Δ1 leu2Δ0 lys2Δ0/lys2Δ0 LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0 can1Δ1:LEU2 + -MFA1pr-HIS3/CAN1+ upf1Δ:KanMX	[71]	
written for the sequencing analysis. The program Bowtie [75], allowing up to three mismatches per read, was used to map the colorspace reads to each chromosome of the yeast genome and obtain mapped reads in SAM format (Sequence Alignment/Map; [76]). The VCF (variant call format) from SAMtools [76] was used to obtain a raw list of polymorphisms from themapped reads. Those reads with a Phred quality score below 20 were eliminated to obtain a filtered list of polymorphisms. A custom Perl script was written to eliminate the background polymorphisms found in wild-type samples.

β-galactosidase assays

Yeast strains containing lacZ-promoter fusions were grown to stationary phase in media lacking leucine. Assays with PHOS-lacZ in media depleted of phosphate and GAL10-lacZ in media containing galactose as the sole carbon source were performed as described in Mutiu et al. [17] and Brandl et al. [72], respectively, with o-nitrophenol-β-D-galactosidase as substrate and normalizing values to cell density. Assay of PGK1-lacZ was performed similarly in YPD media. Results presented are from a minimum of four replicates with the standard errors indicated.

Western blotting

Western blotting was performed using PVDF membranes and anti-Flag (M2; Sigma-Aldrich) antibody as described previously [17].

Acknowledgements

We would like to thank Megan Davey and Stephen Hoke for critically reading the manuscript, Julie Genereaux for technical assistance, Ivan Sadovski for sharing sequencing lanes, and Joe Mymryk for plasmids. This work was supported by CIHR grant MOP10845 to CJB. SK was supported by a National Science and Engineering Research Council of Canada Studentship.

Authors’ contributions

SK and CJB performed the experiments and co-wrote the manuscript. GBG approved the manuscript. SK and CJB performed the experiments and co-wrote the manuscript. GBG approved the manuscript.

Published: 22 March 2012

Received: 6 January 2012 Accepted: 22 March 2012

References

1. Grant PA, Schieltz D, Pray-Grant M, Yates JR, Workman JL. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell 1998, 2:863-867.
2. Saleh A, Schieltz D, Ting N, McMahon SB, Litchfield DW, Yates JR, Lees-Miller S, Cole MD, Brandl CJ. Tra1p is a component of the yeast Ada.Spt transcriptional regulatory complexes. J Biol Chem 1998, 273:26559-26565.
3. Allard S, Utley PT, Savid C, Clarke A, Grant P, Brandl CJ, Pillus L, Workman JL, Côté J. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J 1999, 18:5108-5119.
4. Doyon Y, Selleck W, Lane WS, Tan S, Côté J. Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 2004, 24:1884-1896.
5. Rodriguez-Navarro S. Insights into SAGA function during gene expression. EMBO Rep 2009, 10:843-850.
6. Koutelou E, Hirsch CL, Dent SY. Multiple faces of the SAGA complex. Curr Opin Cell Biol 2010, 22:374-382.
7. Shvchenko A, Rogove A, Schaff D, Buchanan L, Habermann B, Saklar C, Thomas H, Kroger N, Shvchenko A, Stewart AF. Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment. Genome Biol 2008, 9:R167.

Table 1 Yeast strains (Continued)

CY4350	MATα ura3Δ his3Δ2 leu2Δ2 tra1Δ-F3744A-HIS3	[23]
CY4353	MATα ura3Δ his3Δ2 leu2Δ2 tra1Δ-HIS3	[23]
CY4103	MATα ura3Δ his3Δ2 leu2Δ2 tra1Δ-L3733A-HIS3	[23]
CY5932	MATα his3Δ1 leu2Δ2 ura3Δ2 upf1Δ-KanMX	This study
CY5934	MATα his3Δ1 leu2Δ2 ura3Δ2 upf2Δ-KanMX	This study
CY5936	MATα his3Δ1 leu2Δ2 ura3Δ2 upf3Δ-KanMX	This study
CY5937	MATα his3Δ1 leu2Δ2 ura3Δ2 upf3Δ-KanMX	This study
CY5938	MATα his3Δ1 leu2Δ2 ura3Δ2 upf1Δ::nat1	This study
CY5939	MATα his3Δ1 leu2Δ2 ura3Δ2 upf1Δ::nat1	This study
CY5940	MATα his3Δ1 leu2Δ2 ura3Δ2 URA3-Flag5-TRA1	This study
CY5967	MATα his3Δ1 leu2Δ2 ura3Δ2 tra1Δ-L3733A-HIS3	This study
CY5968	MATα his3Δ1 leu2Δ2 ura3Δ2 upf1Δ-KanMX	This study
CY5972	MATα his3Δ1 leu2Δ2 tra1Δ-L3733A-HIS3 upf1Δ-KanMX	This study
CY5976	MATα his3Δ1 leu2Δ2 met15Δ0 ura3Δ2 eaf7Δ-KanMX upf1Δ::nat1	This study
CY5979	MATα his3Δ1 leu2Δ2 met15Δ0 ura3Δ2 ada2Δ-KanMX upf1Δ::nat1	This study
CY5980	MATα his3Δ1 leu2Δ2 met15Δ0 ura3Δ2 eaf3Δ-KanMX upf1Δ::nat1	This study
CY5983	MATα his3Δ1 leu2Δ2 tra1Δ-L3733A-HIS3 upf3Δ-KanMX	This study
CY5996	MATα his3Δ1 leu2Δ2 tra1Δ-L3733A-HIS3 upf2Δ-KanMX	This study
CY6004	MATα his3Δ1 leu2Δ2 URA3-Flag5-tra1Δ-L3733A-HIS3 upf1Δ::KanMX	This study
CY6005	MATα his3Δ1 leu2Δ2 URA3-Flag5-tra1Δ-L3733A-HIS3 upf1Δ::KanMX	This study
CY6030	MATα his3Δ1 leu2Δ2 tra1Δ-L3744A-HIS3 upf1Δ::KanMX	This study
CY6102	MATα his3Δ1 leu2Δ2 tra1Δ-SRR3413-URA3 upf1Δ::KanMX	This study
8. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD: The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and EZF oncoproteins. Cell 1998, 94:363-374.
9. Bhaurik SR, Raha T, Arello DP, Green MR: In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Gene Dev 2004, 18:3334-3343.
10. Brown CE, Howle L, Sousa K, Alley SC, Carozza MJ, Tan S, Workman JL: Recruitment of HAT complexes by direct activator interactions with the ATM-related Tral subunit. Science 2001, 292:2333-2337.
11. Fihrub Majhoebullah N, Hahn S: Function of a eukaryotic transcription activator during the transcription cycle. Mol Cell 2005, 18:369-378.
12. Reeves WM, Hahn S: Targets of the G4L transcription activator in functional transcription complexes. Mol Cell Biol 2005, 25:9092-9102.
13. Helminger D, Marguerat S, Villen J, Swaney DL, Gygi SP, Bähler J, Winston F: Tral has specific regulatory roles, rather than global functions, within the SAGA co-activator complex. EMBO J 2011, 30:2643-2652.
14. Abraham RT: PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 2004, 3:883-887.
15. Lovejoy CA, Cortez D: Common mechanisms of PIKK regulation. DNA Repair (Amst) 2009, 8:1004-1008.
16. Lempiainen H, Halazonetis TD: Emerging common themes in regulation of PIKKs and PIKKs. EMBO J 2005, 24:3806-3815.
17. Mutu AI, Hoke SM, Genereaux J, Hannam M, MacKenzie K, Jobin-Robitaille O, Guzzo J, Côté J, Andrews B, Hanford DB, Brandl CJ: Structure/function analysis of the phosphatidylinositol-3-kinase domain of yeast tra1. Genetics 2007, 177:151-166.
18. Bosotti R, Isacchi A, Sonnhammer EL: FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 2000, 25:225-227.
19. Perry J, Hedden P: The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 2003, 112:151-155.
20. Sibanda BL, Chirgadze DY, Blundell TL: Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Trends Biochem Sci 2000, 25:818-831.
21. Kwon M, Hahn S: Domains of TRAI important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Mol Cell Biol 2011, 31:818-831.
22. Sun Y, Jiang X, Chen S, Fernandes N, Price BD: A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Pio Nat Acad Sci USA 2005, 102:13182-13187.
23. Hoke SM, Mutu AI, Genereaux J, Kvas S, Buck M, Yu M, Gloor GW, Brandl CJ: Mutational analysis of the C-terminal FATAC domain of Saccharomyces cerevisiae Tra1.Curr Genet 2010, 56:447-465.
24. Monta T, Yamashita K, Kashima O, Kishara S, Ohno S: Distant N- and C-terminal domains are required for intrinsic kinase activity of SMG-1, a critical component of nonsense-mediated mRNA decay. J Biol Chem 2007, 282:7965-7973.
25. Damer SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Gzaszek S: The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 2005, 280:20538-20546.
26. Nakada D, Hirano Y, Tanaka Y, Sugimoto K: Role of the C terminus of Mec1 checkpoint kinase in its localization to sites of DNA damage. Mol Biol Cell 2005, 16:2527-2535.
27. Sun Y, Jiang X, Price BD: Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 2010, 9:930-936.
28. Chang YF, Imam JS, Wilkinson MF: The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 2007, 76:51-74.
29. Muhlmann O, Eberle AB, Stalder L, Zanrudio Orozco R: Recognition and elimination of nonsense mRNA. Biochim Biphys Acta 2008, 1779:538-540.
30. Wang W, Czaplinski K, Yao R, Peltz SW: The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 2001, 20:880-890.
31. Amrani N, Sachs MS, Jacobson A: Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006, 7:415-426.
32. Liu W, Petzold C, Coller J, Baker KE: Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae. Nature 2008, 453:244-247.
33. Brogna S, Wen J: Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Rev Mol Cell Biol 2009, 10:107-113.
57. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Maknevych T, Vieczourac FM, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuterjik E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houy WD, Brudno M, Ragibzadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gngnas AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C. The genetic landscape of a cell. Science 2010, 327:425-431.

58. Gavin AC, Aloy P, Grandi P, Hauser R, Boche R, Marzoch M, Rau C, Jensen LJ, Bastuck S, Jungblut PR, Mewes HW, Krupp S, Huttner WB, Dürr S, Büttner M, Carl F, Wagemann M, Leipner D, Brik A, Krüger R, Morris JH, Vingron M, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440:631-636.

59. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

60. Gonzalez CL, Bhattacharya A, Wang W, Peltz SW. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 2001, 274:15-25.

61. Penheiter KL, Wachburn TM, Porter SE, Hoffman MG, Jaehning JA. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

62. Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Penheiter KL, Washburn TM, Porter SE, Hoffman MG, Jaehning JA. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

63. Kuperwasser N, Brogna S, Dower K, Rosbash M, Ruddle FH, Chuang E, Fuchs E, Spradling AC. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

64. Segref A, Sharma K, Doye V, Hellwig A, Huber J, Ruddle FH, Chuang E, Spradling AC. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

65. Stirling PC, Bloom MS, Solanki-Patil T, Smith S, Sipahimalani P, Li Z, Kofoed M, Ben-Aroya S, Myung K, Hieter P. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

66. Chen W, Struhl K. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

67. Gietz RD, Sugino A. Construction of yeast-Escherichia coli shuttle vectors. Nucleic Acids Res 1988, 16:2367-2371.

68. Cross FR. The yeast genome: a tool for basic and applied research. Gene 1988, 69:477-493.

69. Hoke SM, Guzzo J, Andrews B, Brandl CJ. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

70. Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Gutin C, Krogan NJ. The genetic analysis of the yeast genome. Methods 1988, 10:2078-2079.

71. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Pagé N, Robinson M, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440:631-636.

72. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

73. Einsele H, Erlacher D, Pagnac C, Busch J, Kurz A, Fricke M, Stitz J, Hengartner H, Hettwer C, Klein K, Hudec M, Michon AM, Schäfrer M, Schürer M, Remor M, Rieder C, Roeder S, Huber J, Li S, Hengartner H, Hettwer C, Klein K, Hudec M, Michon AM, Schäfrer M, Schürer M, Remor M, Rieder C, Roeder S, Huber J, Li S. The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 2011, 7:e1002057.

74. Chen W, Struhl K. Saturation mutagenesis of a yeast his3 TATA element: genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci USA 1988, 85:2691-2695.

75. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

76. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

77. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

78. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

79. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

80. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

81. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

82. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

83. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

84. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.

85. Denning G, Jameson L, Macquet LE, Thompson EA, Fields AP. Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 2001, 276:22709-22714.