On a conjecture of Matsushita

Bert van Geemen and Claire Voisin*

September 16, 2018

0 Introduction

Let \(X \) be a smooth projective hyper-Kähler manifold of dimension \(2n \) admitting a Lagrangian fibration \(f : X \to B \). The smooth fibers \(X_b \) of \(f \) are thus abelian varieties of dimension \(n \). When \(B \) is smooth, it is known (see [12]) that the restriction map

\[
H^2(X, \mathbb{Z}) \to H^2(X_b, \mathbb{Z})
\]

has rank 1, so that the fibers \(X_b \) are in fact canonically polarized by the restriction of any ample line bundle on \(X \). Denoting by \(\alpha \) the type of the polarization, we thus have a moduli morphism

\[
m : B^0 \to \mathcal{A}_{n,\alpha}
\]

where \(B^0 \subset B \) is the open set parameterizing smooth fibers and \(\mathcal{A}_{n,\alpha} \) is the moduli space of \(n \)-dimensional abelian varieties with a polarization of type \(\alpha \). It has been conjectured by Matsushita that \(m \) is either generically finite on its image or constant (the second case being the case of isotrivial fibrations). This conjecture was communicated to us by Ljudmila Kamenova and Misha Verbitsky. Our goal in this note is to prove the following weakened form of Matsushita’s conjecture. Let \(P \subset H^2(X, \mathbb{Z}) \) be the Néron-Severi group of \(X \). One can construct the universal family \(\mathcal{M}_P \) of marked deformations of \(X \) with fixed Picard group \(P \), that is deformations \(X_t \) for which all the classes in \(P \) remain Hodge on \(X_t \). It follows from [15] that such deformations locally preserve the Lagrangian fibrations on \(X \).

So deformations parameterized by \(\mathcal{M}_P \) automatically induce a deformation of the triple \((X, f, B)\), at least on a dense Zariski open set of \(\mathcal{M}_P \).

Theorem 1. Let \(X \) be a projective hyper-Kähler manifold of dimension \(2n \) admitting a Lagrangian fibration \(f : X \to B \), where \(B \) is smooth. Assume \(b_{2,1}(X) := b_2(X) - \rho(X) \geq 5 \). Then the deformation \((X', f', B')\) of the triple \((X, f, B)\) parameterized by a very general point of \(\mathcal{M}_P \) satisfies Matsushita’s conjecture, that is the moduli map \(m' : B' \to \mathcal{A}_{n,\alpha} \) is either constant or generically of maximal rank \(n \).

Corollary 2. In the space \(\mathcal{M}_P \) of deformations of \(X \) with constant Néron-Severi group, either there is a dense Zariski open set of points parameterizing triples \((X', f', B')\) for which the moduli map has maximal rank \(n \), or for any point of \(\mathcal{M}_P \), the moduli map is constant.

This follows indeed from the fact that the condition that \(m \) is generically of maximal rank is Zariski open.

Remark 3. The assumption \(b_2(X) - \rho(X) \geq 5 \) in Theorem 1 is presumably not essential here, but some more arguments would be needed otherwise. It is related to the simplicity of the orthogonal groups. Note also that no compact hyper-Kähler manifold with \(b_2 < 5 \) is known, so in practice, this does not seem to be very restrictive.

*This research has been supported by The Charles Simonyi Fund and The Fernholz Foundation.
Remark 4. Concerning the assumption that B is smooth, it is believed that it always holds. Matsushita [8], [9] proved a number of results on the geometry and topology of the base B suggesting that it must be isomorphic to \mathbb{P}^n, and Hwang proved this is the case if it is smooth.

Our proof will use the fact that the very general point of \mathcal{M}_P parameterizes a deformation X' of X for which the Mumford-Tate group of the Hodge structure on $H^2(X', \mathbb{Q})$ is the full special orthogonal group of the \mathbb{Q}-vector space $H^2(X', \mathbb{Q})$ equipped with the Beauville-Bogomolov intersection form (see Section 1). Theorem 1 will be then a consequence of the following more precise result:

Theorem 5. Let X be a projective hyper-Kähler manifold of dimension $2n$ admitting a Lagrangian fibration $f : X \to B$ with B smooth. Assume $b_{2, tr}(X) := b_2(X) - \rho(X) \geq 5$ and the Mumford-Tate group of the Hodge structure on $H^2(X, \mathbb{Q})$ is the group $SO(H^2(X, \mathbb{Q})_{tr}, q)$. Then the pair (X, f) satisfies Matsushita’s conjecture.

The proof of Theorem 5 will be obtained as a consequence of the following proposition (cf. Proposition 12) establishing a universal property of the Kuga-Satake construction (see [7], [3], [4]):

Proposition 6. Let $(H, q, H^{p,q})$ be a weight 2 polarized Hodge structure of $K3$ type, that is, such that $h^{2,0} = 1$. Assume that $\dim H \geq 5$ and the Mumford-Tate group of $(H, H^{p,q})$ is the special orthogonal group of (H, q). Then for any irreducible weight 1 Hodge structure such that, for some weight 1 Hodge structure H_2, there is an embedding of weight 2 Hodge structures

$$H \subset H_1 \otimes H_2,$$

H_1 is isomorphic to an irreducible weight 1 sub-Hodge structure of $H^1(A_{KS}(H), \mathbb{Q})$, where $A_{KS}(H)$ is the Kuga-Satake variety of $(H, q, H^{p,q})$.

Remark 7. This implies that there is a finite and in particular discrete set of such Hodge structures H_1. The condition on the Mumford-Tate group of H is quite essential here. We will give in the last section an example of a $K3$ type polarized Hodge structure H for which there is a continuous family of irreducible weight 1 Hodge structures H_1 satisfying the conditions above.

Thanks. The second author would like to thank Ljudmila Kamenova for bringing Matsushita’s conjecture to her attention and also for interesting discussions and useful comments on a version of this note.

1 Mumford-Tate groups and the Kuga-Satake construction

Let $(H, H^{p,q})$ be a rational Hodge structure of weight k. The group S^1 acts on $H_{\mathbb{R}}$ by the following rule: $z \cdot \alpha^{p,q} = z^{\ast} \tau(z) \alpha^{p,q}$ for $z \in S^1$ and $\alpha^{p,q} \in H^{p,q} \subset H_{\mathbb{C}}$.

Definition 8. The Mumford-Tate group of H is the smallest algebraic subgroup of $Gl(H)$ which is defined over \mathbb{Q} and contains the image of S^1.

Let X be a compact hyper-Kähler manifold. Consider the Hodge structure of weight 2 on $H^2(X, \mathbb{Q})$. It is compatible with the Beauville-Bogomolov intersection form q (by the first Hodge-Riemann bilinear relations), so that its Mumford-Tate group is contained in $SO(q)$. We now have:
Lemma 9. Let $P \subset \text{NS}(X) \subset H^2(X, \mathbb{Q})$ be a subspace which contains an ample class (so that the Beauville-Bogomolov form is nondegenerate of signature $(1,1)$ on P). Then for a very general marked deformation X' of X for which $P \subset \text{NS}(X')$, the Mumford-Tate group of the Hodge structure on $H^2(X', \mathbb{Q})_{tr}$ is the whole special orthogonal group $SO(H^2(X', \mathbb{Q})_{tr}, q)$.

Remark 10. Note that the fact that the period map for hyper-Kähler manifolds is open implies that for X' as above, $H^2(X', \mathbb{Q})_{tr}$ is nothing but the orthogonal complement of P in $H^2(X', \mathbb{Q})$ with respect to q.

Proof of lemma. Via the period map, the marked deformations X_t of X for which $P \subset \text{NS}(X_t)$ are parameterized by an open set D_P^0 in the period domain

$$D_P = \{ \sigma_t \in \mathbb{P}(H^2(X, \mathbb{C})^{1,P}), q(\eta_t) = 0, q(\eta_t, \overline{\eta_t}) > 0 \}.$$

For such a period point σ_t, the Mumford-Tate group $MT(H^2(X_t, \mathbb{Q}))$ is the subgroup leaving invariant all the Hodge classes in the induced Hodge structures on the tensor powers $\otimes H^2(X_t, \mathbb{Q})$. For each such class α, either α remains a Hodge class everywhere on the family, or the locus where it is a Hodge class is a closed proper analytic subset of the period domain. As there are countably many such Hodge classes, it follows that the Mumford-Tate group for the very general fiber X' of the family contains the Mumford-Tate groups of $H^2(X_t, \mathbb{Q})$ for all $t \in D_P^0$. We then argue by induction on $\dim H^2(X, \mathbb{Q})^{1,P}$. If $\dim H^2(X, \mathbb{Q})^{1,P} = 2$, then it is immediate to check that $MT(H^2(X, \mathbb{Q}))$ is the Deligne torus itself, which is equal to $SO(H^2(X, \mathbb{Q})^{1,P})$. Suppose now that we proved the result for $\dim H^2(X, \mathbb{Q})^{1,P} = k - 1$ and assume $\dim H^2(X, \mathbb{Q})^{1,P} = k \geq 3$. First of all, we easily see that the strong form of Green’s theorem on the density of the Noether-Lefschetz locus holds, by which we mean the following statement:

There exists a non-empty open set $V \subset H^2(X, \mathbb{R})^{1,P}$ such that for any $\lambda \in V \cap H^2(X, \mathbb{Q})^{1,P}$, the Noether-Lefschetz locus

$$NL_\lambda \cap D_P^0 =: \{ t \in D_P^0, \lambda \in H^{1,1}(X_t) \} = \{ t \in D_P^0, q(\sigma_t, \lambda) = 0 \}$$

is nonempty.

This is of course a consequence of the Green density theorem (see [10], 17.3.4), but in our case where the period map is open, this is immediate, since letting $\sigma \in D_P^0$ be the period point of X, for any open set $U \subset D_P^0$ containing σ and contained in the image of the period map, and for any $\lambda \in H^2(X, \mathbb{Q})^{1,P}$, one has $U \cap NL_\lambda = \{ \sigma_t \in U, q(\sigma_t, \lambda) = 0 \}$, which means equivalently that $\lambda \in H^2(X, \mathbb{Q})^{1,P,\sigma_t}$ and by taking complex conjugates,

$$\lambda \in H^2(X, \mathbb{Q})^{1,P,\sigma_t,\overline{\sigma_t}}.$$

But clearly, $\cup_{\sigma_t \in U} H^2(X, \mathbb{Q})^{1,P,\sigma_t,\overline{\sigma_t}}$ is an open subset of $H^2(X, \mathbb{R})$. We thus can take for V this open set.

For any $t \in NL_\lambda \cap D_P^0$, the rational subspace $<P, \lambda> \subset H^2(X_t, \mathbb{Q})$ is contained in $\text{NS}(X_t)_{\mathbb{Q}}$ and applying the induction hypothesis, we conclude that for the very general point X'_λ of $NL_\lambda \cap D_P^0$, the Mumford-Tate group of $H^2(X'_\lambda, \mathbb{Q})$ is equal to $SO(H^2(X'_\lambda, \mathbb{Q})^{1,P,\lambda,\sigma_t}, q)$ (and acts as the identity on $<\lambda, P>$).

By the previous argument, we then conclude that for the very general point X' of D_P^0, the Mumford-Tate group $MT(H^2(X', \mathbb{Q}))$ contains the orthogonal groups $SO(H^2(X'_\lambda, \mathbb{Q})^{1,P,\lambda,\sigma_t}, q)$ for any $\lambda \in V \cap H^2(X, \mathbb{Q})^{1,P}$. As V is open in $H^2(X, \mathbb{R})^{1,P}$, it immediately follows that $MT(H^2(X', \mathbb{Q}))$ is equal to the orthogonal group $SO(H^2(X', \mathbb{Q})^{1,P}, q)$.

Let now X be a hyper-Kähler manifold admitting a Lagrangian fibration $X \to B$. Let $P := \text{NS}(X)$. We get the following:

Corollary 11. There exists a (small) deformation X' of X which is projective with Néron-Severi group P, admits a Lagrangian fibration $X' \to B'$ deforming the Lagrangian fibration of X, and such that the Mumford-Tate group of $H^2(X', \mathbb{Q})$ is equal to $SO(H^2(X', \mathbb{Q})^{1,P}, q)$.

3
Proof. By Lemma\[12] the very general \(X^\prime\) in the family \(\mathcal{M}_P\) of deformations of \(X\) with Néron-Severi group containing \(P\) has Mumford-Tate group \(SO(H^2(X^\prime,\mathbb{Q})^\perp_P, q)\). Furthermore, \(X^\prime\) is also projective, at least on a dense open set of the deformation family. On the other hand, it follows from the stability result of [15] that deformations of \(X\) preserving \(\text{NS}(X)\) locally preserve any Lagrangian fibration on \(X\). So if the deformation is small enough, \(X^\prime\) admits a Lagrangian fibration deforming the one of \(X\).

Recall [2], [7], [4] that a polarized integral Hodge structure \(H\) of weight 2 with \(h^{2,0} = 1\) has an associated Kuga-Satake variety \(A_{KS}(H)\), which is an abelian variety with the property that the Hodge structure \(H\) can be realized (up to a shift) as a sub-Hodge structure of the weight 0 Hodge structure on \(\text{End}(H^1(A_{KS}(H),\mathbb{Z}))\). If \(H\) is a rational polarized Hodge structure, \(A_{KS}(H)\) is defined only up to isogeny. The Kuga-Satake variety is essentially constructed by putting, using the Hodge structure on \(H\), a complex structure on the underlying vector space of the Clifford algebra \(C(H_q,q)\), which provides a complex structure on the real torus \(C(H_q,q)/C(H)\). In general, the Kuga-Satake is not a simple abelian variety, because it has a big endomorphism algebra given by right Clifford multiplication of \(C(H)\) on this torus. The main ingredient in our proof of Theorem\[5\] will be the following result:

Proposition 12. Let \((H,q)\) be a weight 2 polarized Hodge structure with Mumford-Tate group equal to \(SO(q)\). Let \(A, B\) be polarized weight 1 rational Hodge structures such that \(H \subset A \otimes B\) as weight 2 Hodge structures. Then if \(A\) is simple (as a Hodge structure) and \(\dim H \geq 5\), \(A\) is isomorphic as a rational Hodge structure to \(H^1(M,\mathbb{Q})\), where \(M\) is an abelian subvariety of the Kuga-Satake variety of \(H\).

Proof. The Mumford-Tate group \(MT(A \otimes B)\) maps onto \(MT(H)\). As \(\dim H \geq 5\), the Lie algebra \(mt(H) = so(q)\) is simple, so it is a summand of \(mt(A \otimes B)\). As \(MT(A \otimes B) \subset MT(A) \times MT(B)\), the Lie algebra \(mt(A \otimes B)\) is contained in \(mt(A) \times mt(B)\) and the projection of the simple Lie algebra \(mt(H) = so(q)\) to \(mt(A)\) and to \(mt(B)\) is injective.

If \(mt(A \otimes B)\) contains both copies of \(so(q)\) then the Mumford Tate group of the tensor product of the corresponding weight one sub-Hodge structures of \(A\) and \(B\) has \(so(q) \times so(q)\) as Lie algebra. This contradicts that \(A \otimes B\) has a sub-Hodge structure with \(h^{2,0} = 1\). Using Proposition 1.7 of [2], one concludes that \(mt(A \otimes B)\) contains one copy of \(so(q)\) which maps onto \(mt(H)\) and whose projections to \(mt(A)\) and to \(mt(B)\) are injective. The Hodge structures on \(H\) and the sub-Hodge structures of \(A\) and \(B\) defined by this copy of \(so(q)\) in \(mt(A) \times mt(B)\) are obtained from one map of the Lie algebra of \(S^1\) to \(so(q)\).

Now one considers the classification of the cases where the complex Lie algebra \(so(q)_\mathbb{C}\) is a (simple) factor of the complexified Lie algebra of the Mumford-Tate group of a weight 1 polarized Hodge structure of \(A\) and then one finds all the possible representations of \(so(q)_\mathbb{C}\) on \(A_\mathbb{C}\). This was done by Deligne [3].

The case where \(\dim H\) is odd is the easiest one: in that case the Lie algebra \(so(q)_\mathbb{C}\) has a unique such representation, which is the spin representation. This spin representation also occurs on \(H^1(A_{KS}(H),\mathbb{C})\), with the same map of the Lie algebra of \(S^1\) to \(so(q)_\mathbb{R}\). Thus there is a trivial \(so(q)_\mathbb{C}\)-equivariant map, respecting the Hodge structures, from \(A_\mathbb{C}\) to \(H^1(A_{KS}(H),\mathbb{C})\). As the complex vector space of such maps is the complexification of the rational vector space of \(so(q)_\mathbb{R}\)-equivariant maps from \(A\) to \(H^1(A_{KS}(H),\mathbb{Q})\), there is such a map from \(A\) to \(H^1(A_{KS}(H),\mathbb{Q})\). It follows that \(A\) is a simple factor of the Hodge structure on \(H^1(A_{KS}(H),\mathbb{Q})\).

In the case where \(\dim H\) is even, the representations of \(so(q)_\mathbb{C}\) that can occur are the standard representation and the two half spin representations. However, the tensor product of the standard representation with any of these three cannot have a subrepresentation which is again the standard representation. Thus \(H\) cannot be a summand of \(A \otimes B\) if \(A_\mathbb{C}\) is the standard representation of \(so(q)_\mathbb{C}\). Therefore \(A_\mathbb{C}\) must have a half-spin representation of \(so(q)_\mathbb{C}\) as summand. As before, it follows that \(A\) is a summand of the \(H^1\) of the Kuga-Satake variety of \(H\).
2 Proof of the theorems

We first prove that Theorem 1 is a consequence of Theorem 5. Let \(X\) be a projective hyper-Kähler manifold of dimension \(2n\) with a Lagrangian fibration \(f : X \to B\). Then by Lemma 1 there exists a point (in fact many!) in the space \(\mathcal{M}_0\) of deformations of \(X\) with constant Picard group which parameterizes a projective hyper-Kähler manifold \(X'\) such that \(\text{NS}(X') = \text{NS}(X)\) and the Mumford-Tate group of the Hodge structure on \(H^2(X', \mathbb{Q})\) is the orthogonal group of \((H^2(X', \mathbb{Q})_{tr}, q) = (H^2(X, \mathbb{Q})_{tr}, q)\). As we assumed that \(\dim_{2 \times tr}(X) \geq 5\), the same holds for \(X'\). Hence Theorem 5 applies to \(X'\), which proves Theorem 1.

We now assume that \(X = X'\) satisfies the assumption in Theorem 5 and turn to the proof of Theorem 5.

Proof of Theorem 5. Let \(f : X \to B\) be a Lagrangian fibration with \(\dim H^2(X, \mathbb{Q})_{tr} \geq 5\), \(B\) smooth and \(\text{MT}(H^2(X, \mathbb{Q})_{tr}) = \text{SO}(H^2(X, \mathbb{Q})_{tr}, q)\). We have to prove that \(f\) satisfies Matsushita’s conjecture, that is, if the general fiber of the moduli map \(m\) is positive dimensional, then the moduli map is constant. Let \(b \in B\) be a general point and assume the fiber \(F_b\) of the moduli map \(m\) passing through \(b\) is positive dimensional. Over the Zariski open set \(U = F_b \cap B'\) of \(F_b\), the Lagrangian fibration restricts to an isotrivial fibration \(X_U \to U\). As we are in the projective setting, it follows that after passing to a generically finite cover \(U'\) of \(U\), the base-changed family \(X_{U'} \to U'\) splits as a product \(J_b \times U'\), where the abelian variety \(J_b\) is the typical fiber \(f^{-1}(b)\), for \(b \in U\). Let \(F'_b\) be a smooth projective completion of \(U'\) and \(X_{F'_b}\) be a smooth projective completion of \(X_{U'}\). The natural rational map \(X_{F'_b} \to X\) induces a rational map \(f_b : J_b \times F'_b \to X\). Consider the induced morphism of Hodge structures

\[
f^*_b : H^2(X, \mathbb{Q}) \to H^2(J_b \times F'_b, \mathbb{Q}).
\]

We claim that the composite map

\[
\alpha : H^2(X, \mathbb{Q}) \to H^2(J_b \times F'_b, \mathbb{Q}) \to H^1(J_b, \mathbb{Q}) \otimes H^1(F'_b, \mathbb{Q}),
\]

where the second map is given by Künneth decomposition, has an injective restriction to \(H^2(X, \mathbb{Q})_{tr}\).

This indeed follows from the following facts:

a) The Hodge structure on \(H^2(X, \mathbb{Q})_{tr}\) is simple. Indeed, it is polarized with \(h^{2,0}\)-number equal to 1 and it does not contain nonzero Hodge classes. Hence if there is a nontrivial sub-Hodge structure \(H \subset H^2(X, \mathbb{Q})_{tr}\), it must have \(H^{2,0} \neq 0\). But then the orthogonal complement \(H^\perp \subset H^2(X, \mathbb{Q})_{tr}\) is either trivial or with nonzero \((2,0)\)-part, which contradicts the fact that \(H^2(X, \mathbb{Q})_{tr}\) is of dimension 1.

b) The \((2,0)\)-form \(\sigma\) on \(X\) has a nonzero image in \(H^0(\Omega_{J_b}) \otimes H^0(\Omega_{F'_b})\). To see this last point, we recall that \(J_b\) is Lagrangian, that is, the form \(\sigma\) restricts to zero on \(J_b\). If it vanished also in \(H^0(\Omega_{J_b}) \otimes H^0(\Omega_{F'_b})\), its pull-back to \(J_b \times F'_b\) would lie in \(H^0(\Omega_{F'_b})\). But as \(\dim F_b > 0\), this contradicts the fact that \(\sigma\) is nondegenerate and \(\dim J_b = n = \frac{1}{2} \dim X\). This proves the claim since by b), the map \(\alpha\) is nonzero and thus by a) it is injective.

The abelian variety \(J_b\) might not be a simple abelian variety, (or equivalently, the weight 1 Hodge structure on \(H^1(J_b, \mathbb{Q})\) might not be simple), but the (polarized) Hodge structure on \(H^1(J_b, \mathbb{Q})\) is a direct sum of simple weight 1 Hodge structures

\[
H^1(J_b, \mathbb{Q}) \cong A_1 \oplus \ldots \oplus A_s,
\]

and for some \(i \in \{1, \ldots, s\}\) the induced morphism of Hodge structures

\[
\beta : H^2(X, \mathbb{Q})_{tr} \xrightarrow{\alpha} H^1(J_b, \mathbb{Q}) \otimes H^1(F'_b, \mathbb{Q}) \to A_i \otimes H^1(F'_b, \mathbb{Q})
\]

must be nonzero, hence again injective by the simplicity of the Hodge structure on \(H^2(X, \mathbb{Q})_{tr}\).
We are now in position to apply Proposition 12 because A_i is simple. We thus conclude that A_i is isomorphic to a direct summand of $H^1(A_{KS}(X), \mathbb{Q})$, where $A_{KS}(X)$ is the Kuga-Satake variety built on the Hodge structure on $H^2(X, \mathbb{Q})_{tr}$. Equivalently, the abelian variety J_b contains a nontrivial abelian variety T_b which is isogenous to an abelian subvariety of $K(X)$. As there are finitely many isogeny classes of abelian subvarieties of $A_{KS}(X)$, we conclude that T_b in fact does not depend on the general point b. Let us call T this abelian subvariety of $A_{KS}(X)$. We now do the following: for the general point $b \in B$, let $J'_b \subset J_b$ be the sum of the abelian subvarieties of J_b which are isogenous to T. (We are allowed to do this because X is projective, hence admits a multisection, hence is isogenous to the associated Jacobian fibration.) Over a Zariski open set V of B, the subvarieties J'_b vary nicely in family, providing a sub-abelian fibration $\mathcal{T} \subset X_V$. Using an ample line bundle on X, the fibers J_b, $b \in V$, then split canonically up to isogeny as a direct sum

$$J_b^{iso} \cong J'_b \oplus J''_b,$$

and again the subvarieties J''_b vary nicely in family, providing a sub-abelian fibration $S \subset X_V$. We then have an isogeny

$$\mu : X_V \rightarrow S \times_V \mathcal{T}.$$

We know that $\dim \mathcal{T}/V > 0$. If $\dim S/V > 0$, then we get a contradiction as follows: We know by Proposition 12 that $\text{NS}(X_V/V) = \mathbb{Z}$. But if L is an ample line bundle on X, the pull-backs $\mu^*L|_{\mathcal{T}}$ and $\mu^*L|_{S}$ provide two linearly independent divisor classes in $\text{NS}(X_V/V)$. Hence we proved that $\dim S/V = 0$, or equivalently $X_V = \mathcal{T}$. By construction, $\mathcal{T} \rightarrow V$ is an isotrivial fibration, so we proved that if the moduli map m has positive dimensional general fibers, then the fibration is isotrivial.

\[\square\]

Remark 13. One may wonder if the hypothesis that X is projective has really been used in the proof of Theorem 5. Indeed, even if X is not projective, one knows that the fibers of a Lagrangian fibration are abelian varieties, and even canonically polarized abelian varieties. One has to be prudent however, because if the relative polarizations do not come from a line bundle on the total space X but just form an integral degree 2 cohomology class which is of type $(1,1)$ along the fibers, they do not allow us to construct holomorphic multisections (which extends analytically over the singular fibers), and similarly for the relative splitting of the fibration. In the Kähler case, one can easily make X projective by a small deformation preserving a given Lagrangian fibration, so it seems much safer to work with this assumption.

3 An example

We construct in this section an example of a projective $K3$ surface S, such that the Hodge structure H on $H^2(S, \mathbb{Q})_{tr}$ can be realized as a sub-Hodge structure of a tensor product $H_1 \otimes H_2$, with H_1 and H_2 of weight 1, for a continuous family of weight 1 polarized Hodge structures H_1.

We start with a projective $K3$ surface S admitting a non-symplectic automorphism ϕ of prime order $p \geq 5$ (see [1], [13] for construction and classification). Let $H = H^2(S, \mathbb{Q})_{prim}$.

Proposition 14. There is a continuous family of polarized Hodge structures H_1 of weight 1 such that for some weight 1 Hodge structure H_2, one has

$$H \subset H_1 \otimes H_2$$

as Hodge structures.

Proof. Let $\lambda \neq 1$ be the eigenvalue of $\psi = \phi^*$ acting on $H^{2,0}(S)$. Let H_1 be any weight 1 polarized Hodge structure admitting an automorphism ψ' of order p such that

1. λ^{-1} is not an eigenvalue of ψ' acting on $H_1^{1,0}$.
2. \(\lambda^{-1} \) is an eigenvalue of \(\psi' \) acting on \(H_{1,1}^{0} \).

For such \(H_{1} \), we find that the weight 3 Hodge structure

\[H_{2} := (H_{1} \otimes H)^{G}, \]

where \(G \) is \(\mathbb{Z}/p\mathbb{Z} \) acting on \(H \otimes H_{1} \) via \(\psi \otimes \psi' \), is the Tate twist of a weight 1 Hodge structure \(H_{2} \), since we have

\[((H_{1} \otimes H)^{G})^{3,0} = (H_{1}^{1,0} \otimes H^{2,0})^{G} = (H_{1}^{1,0})^{\lambda^{-1}} \otimes H^{2,0} = 0. \]

On the other hand, \(H_{2} \) is nonzero, since \(\lambda^{-1} \) is an eigenvalue of \(\psi' \) acting on \(H_{1,1}^{0} \), which by the same argument as above provides a nonzero element in \((H_{1}^{0,1} \otimes H_{2}^{2,0})^{G} \).

By composing the inclusion \(H_{1}^{*} \otimes H_{2} \hookrightarrow H_{1}^{*} \otimes H_{1} \otimes H \) with the contraction map \(H_{1}^{*} \otimes H_{1} \rightarrow \mathbb{Q} \), we get a map \(H_{1}^{*} \otimes H_{2} \rightarrow H \). This map is non-trivial, since choosing nonzero \(\sigma \in (H_{1}^{0,1})^{\lambda^{-1}} \) and \(\eta \in H^{2,0} \) we have \(\sigma \otimes \eta = i(\omega) \) for some \(\omega \in H_{2} \). Next we choose \(u \in H_{1}^{*} \) such that \(u(\sigma) \neq 0 \), then we see that, after tensoring with \(\mathbb{C} \), \(u \otimes \omega \mapsto u \otimes \sigma \otimes \eta \mapsto u(\sigma) \eta \neq 0 \).

Since these Hodge structures are polarized, they are isomorphic to their duals up to Tate twists. Thus there is a non-trivial morphism of Hodge structures

\[H \rightarrow H_{1}^{*} \otimes H_{2} \]

that is injective by the simplicity of the Hodge structure \(H \).

We conclude observing that by the assumption \(p \geq 5 \), the family of weight 1 polarized Hodge structures \(H_{1} \) satisfying conditions 1 and 2 above has positive dimension. \(\square \)

References

[1] M. Artebani, A. Sarti, S. Taki. \(K3 \) surfaces with non-symplectic automorphisms of prime order, Math. Z., (2011), 268, 507-533.

[2] P. Deligne. La conjecture de Weil pour les surfaces \(K3 \), Inventiones Math. 15 (1972) 206–226.

[3] P. Deligne. Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, in Automorphic forms, representations and L-functions, pp. 247-289, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979.

[4] B. van Geemen. Kuga-Satake varieties and the Hodge conjecture, in The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 51–82.

[5] F. Hazama, Algebraic cycles on nonsimple abelian varieties. Duke Math. J. 58 (1989) 31–37.

[6] J.-M. Hwang. Base manifolds for fibrations of projective irreducible symplectic manifolds. Invent. math. 174, 625644 (2008).

[7] M. Kuga, I. Satake. Abelian varieties attached to polarized \(K3 \) surfaces, Math. Annalen 169 (1967) 239–242.

[8] D. Matsushita. On fibre space structures of a projective irreducible symplectic manifold, Topology 38, 79-83 (1999); addendum: Topology 40, 431-432 (2001).

[9] D. Matsushita. Equidimensionality of Lagrangian fibrations on holomorphic symplectic manifolds. Math. Res. Lett. 7, 389-391 (2000).

[10] D. Matsushita. Higher direct images of dualizing sheaves of Lagrangian fibrations, Amer. J. Math. 127 (2005) 243–259.
[11] D. Matsushita. On deformations of Lagrangian fibrations. arXiv:0903.2098

[12] K. Oguiso. Picard number of the generic fiber of an abelian fibered hyperkähler manifold. Math. Ann. 344 (2009) 929–937.

[13] K. Oguiso, D-Q. Zhang. $K3$ surfaces with order five automorphisms. J. Math. Kyoto Univ. (1998) 419-438.

[14] J. Sawon. Deformations of holomorphic Lagrangian fibrations, Proc. Amer. Math. Soc. 137 (2009) 279–285.

[15] C. Voisin. Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, in Complex projective geometry (Trieste, 1989/Bergen, 1989), 294-303, London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992.

[16] C. Voisin. Théorie de Hodge et géométrie algébrique complexe. Cours Spécialisés 10. Société Mathématique de France, Paris, 2002.

Bert van Geemen
Dipartimento di Matematica
Università di Milano
Via Saldini 50
20133 Milano
Italia
lambertus.vangeemen@unimi.it

Claire Voisin
Institut de Mathématiques de Jussieu
4 place Jussieu
Case 247
75252 Paris Cedex 05
France
claire.voisin@imj-prg.fr