Potential- and Buffer-Dependent Selectivity for the Conversion of CO₂ to CO by a Cobalt Porphyrin-Peptide Electrocatalyst in Water

Jose L. Alvarez-Hernandez,† Alison A. Salamatian,† Ji Won Han, and Kara L. Bren*

ABSTRACT: A semisynthetic electrocatalyst for carbon dioxide reduction to carbon monoxide in water is reported. Cobalt microperoxidase-11 (CoMP11-Ac) is shown to reduce CO₂ to CO with a turnover number of up to 32,000 and a selectivity of up to 88:5 CO:H₂. Higher selectivity for CO production is favored by a less cathodic applied potential and use of a higher pKₐ buffer. A mechanistic hypothesis is presented in which avoiding the formation and protonation of a formal Co(I) species favors CO production. These results demonstrate how tuning reaction conditions impact reactivity toward CO₂ reduction for a biocatalyst previously developed for H₂ production.

KEYWORDS: biocatalyst, carbon dioxide reduction, cobalt porphyrin, electrocatalysis, overpotential

INTRODUCTION
Carbon dioxide (CO₂) is an abundant and attractive feedstock for renewable fuels. Advances in catalysis are crucial for the development of systems for CO₂ utilization,¹,² therefore attracting significant interest in the chemistry community.³⁻⁵ The inertness and stability of CO₂ present both kinetic and thermodynamic barriers to its activation.⁶ The reduction of CO₂ to any stable product is a multi-proton, multi-electron process (for example, see eq 1) with high activation energy, requiring effective catalysts to drive the process at acceptable rates.⁸ Molecular catalysts have proven successful in CO₂ reduction reactions (CO₂RR) and have enabled detailed mechanistic study,⁸⁻¹⁶ providing insight into the roles of both Bronsted⁻¹⁷⁻²⁰ and Lewis acids,²¹,²² as well as the coordination of electron transfer with both proton transfer and bond breaking and formation.²³ Water is a desirable solvent to use for CO₂ reduction,⁵,²⁴⁻³⁰ yet developing and understanding CO₂RR catalysis in water brings several challenges: poor solubility of CO₂ ([CO₂] = 0.0383 M at 20 °C and 1 atm of CO₂),³¹ pH-dependent equilibria among CO₂ and its hydration products (H₂CO₃, HCOO⁻, and CO₃²⁻), and competition from the hydrogen evolution reaction (HER; eq 2).

CO₂ + 2H⁺ + 2e⁻ → CO + H₂O,

\[E^\circ = -0.53 \text{ V}, \quad \text{pH 7.0} \] (1)

2H⁺ + 2e⁻ → H₂, \quad \[E^\circ = -0.41 \text{ V}, \quad \text{pH 7.0} \] (2)

In electrocatalysis, the amount of energy beyond the thermodynamic requirements needed to drive a reaction at a given rate is described by the overpotential. Typically, lowering the overpotential for a given catalyst comes at the expense of slowing catalysis, with the log of the rate exhibiting a linear dependence on overpotential.³²⁻³⁴ The relationship between overpotential and catalyst selectivity is a less explored topic. Studies of potential-dependent product selectivity are reported for solid (nonmolecular) electrocatalysts,³⁵⁻³⁷ but studies of this nature for molecular catalysts are less common.³⁸⁻⁴⁰

This study reports on the effect of applied potential on selectivity for CO vs H₂ production from CO₂ in water by a biomolecular catalyst. We describe a cobalt porphyrin with a covalently attached peptide (CoMP11-Ac; Figure 1), previously described as a catalyst for HER,⁴¹⁻⁴⁵ as an active and selective CO₂-reduction electrocatalyst in water. CoMP11-Ac reaches a turnover number (TON) > 12,000 (at 2 h) for CO₂ reduction to CO at an applied potential of −1.2 V (all potentials here are reported vs Ag/AgCl/KCl(1M)) with 85% faradaic yield. Our report is notable as a rare demonstration of the use of applied potential to control product selectivity for CO₂RR by a molecular catalyst. Furthermore, a mechanistic proposal is put forward with the support of observed effects of potential, buffer acid pKₐ, and CO₂ partial pressure on catalysis.

Received: July 8, 2022
Revised: November 2, 2022
Published: November 16, 2022
features is significantly higher for CO$_2$-saturated vs N$_2$-saturated solutions at the same pH, suggesting that CoMP11-Ac may catalyze CO$_2$RR. An inverted peak is also observed upon switching the scanning direction, which indicates that the catalyst is partially deactivated at low potentials and reactivated upon scanning anodically. This phenomenon has been described for other molecular catalysts based on cobalt, as well as other transition metals.

To further characterize the activity of this cobalt porphyrin-peptide toward CO$_2$RR, we performed controlled potential electrolysis (CPE) experiments at both −1.2 and −1.4 V in 0.5 M NaHCO$_3$ for 2 h in solutions purged with either CO$_2$ or N$_2$ and under 1 atm of the purging gas (Tables 1 and S1, and Figure 3). Under a CO$_2$ atmosphere, the charge passed with experiments reveal that CoMP11-Ac adsorsbs to the mercury electrode, indicating that it behaves as an immobilized molecular catalyst (details in Figures S1–S4). A precedent for a system of this nature is that of Ni-cyclam, a CO$_2$ reduction catalyst also adsorbed onto a mercury electrode. Importantly, the activity of particulate cobalt in this reaction is prevented by the use of a mercury electrode, as mercury amalgamates cobalt.

The CVs of CoMP11-Ac, scanning from 0 to −1.6 V (and the opposite in the return scan), show no measurable current enhancement until −1.2 V when a broad first wave is observed, followed by a second feature of higher current with a half-wave potential (E_h) of ∼ −1.4 V. The catalytic CV current for both

![Figure 1](https://doi.org/10.1021/acscatal.2c03297)

Figure 1. CoMP11-Ac. Reproduced with permission from ref 43. Copyright 2020, American Chemical Society.

RESULTS AND DISCUSSION

Effects of Potential

The CO$_2$RR activity of CoMP11-Ac in 50 mM NaHCO$_3$ (pK$_a$ 6.4) solution saturated with CO$_2$ was evaluated by cyclic voltammetry (CV) using a hanging mercury drop electrode, as shown in Figure 2. Dip-and-stir experiments reveal that CoMP11-Ac adsorsbs to the mercury electrode, indicating that it behaves as an immobilized molecular catalyst (details in Figures S1–S4). A precedent for a system of this nature is that of Ni-cyclam, a CO$_2$ reduction catalyst also adsorbed onto a mercury electrode. Importantly, the activity of particulate cobalt in this reaction is prevented by the use of a mercury electrode, as mercury amalgamates cobalt.

The CVs of CoMP11-Ac, scanning from 0 to −1.6 V (and the opposite in the return scan), show no measurable current enhancement until −1.2 V when a broad first wave is observed, followed by a second feature of higher current with a half-wave potential (E_h) of ∼ −1.4 V. The catalytic CV current for both

![Figure 2](https://doi.org/10.1021/acscatal.2c03297)

Figure 2. CVs of 1 μM CoMP11-Ac in 50 mM NaHCO$_3$, 0.1 M KCl, pH 6.1 ± 0.1 at 100 mV/s, under 1 atm of the indicated gas. Arrows in the CV traces indicate the scanning direction.

CoMP11-Ac present is comparable at both applied potentials (Figure 3), yet the product distribution is rather different. The faradic efficiency for H$_2$ (FE(H$_2$)) decreases from 23% at −1.4 V to 4% at −1.2 V, while FE(CO) increases from 61% at −1.4 V to 83% at −1.2 V. Furthermore, the turnover number (TON) for CO production measured after 2 h of CPE increases from 2300 at −1.4 V to 3300 at −1.2 V. In N$_2$-saturated NaHCO$_3$ solution at −1.4 V, CoMP11-Ac produces H$_2$ with a 76% FE

![Figure 3](https://doi.org/10.1021/acscatal.2c03297)

Figure 3. CPE experiments run in 0.5 M NaHCO$_3$ and 1 M KCl; the concentration of CoMP11-Ac was 1 μM when present. CPE run in (a) CO$_2$-saturated solution, pH = 6.5 ± 0.1 and (b) N$_2$-saturated solution, pH = 8.7 ± 0.3. Samples were run under a pressure of 1 atm of the gas indicated (CO$_2$ or N$_2$). Potentials reported vs Ag/AgCl/KCl$_{(1M)}$.

Table 1. Summary of 2-h CPE Results for 1 μM CoMP11-Ac in 0.5 M NaHCO$_3$

	E (V)	FE(H$_2$) (%)	FE(CO) (%)	TON(H$_2$)	TON(CO)	Q$_2$ (C)
CO$_2$	−1.4	23 ± 2	61 ± 4	1000 ± 200	2600 ± 400	4.0 ± 0.7
	−1.2	4 ± 1	84 ± 13	140 ± 40	3300 ± 100	3.7 ± 0.9
N$_2$	−1.4	77 ± 5	15 ± 8	1200 ± 300	230 ± 80	1.4 ± 0.3
	−1.2	no above-background activity				

*Data corresponds to the average of at least three individual runs, and the errors correspond to the difference between the average and the replicate of greatest difference from the average. Activity is not reported if it did not exceed three times background in more than one replicate. The pH of the NaHCO$_3$ solutions after purging with CO$_2$ was 6.5 ± 0.1 and 8.7 ± 0.3 when purged with N$_2$. *Potentials reported vs Ag/AgCl/KCl$_{(1M)}$.

https://doi.org/10.1021/acscatal.2c03297
ACS Catal. 2022, 12, 14689–14697
and CO with a 16% FE; CO arises from the reduction of the CO$_2$ in equilibrium with NaHCO$_3$ buffer. There are a few reports of potential-dependent selectivity in molecular CO$_2$RR catalysts. For example, in a study of a group of Pd complexes, those complexes with more negative reduction potentials favor protonation of the metal to form a hydride (proposed to primarily lead to HER), whereas the complexes with less negative potentials favor protonation of Pd-coordinated CO$_2$ yielding CO. In a more recent study of Pd molecular catalysts, the authors sought to improve the selectivity for CO$_2$-to-CO conversion by increasing the overpotential of HER, which was achieved by installing proximal cations in the second sphere of the catalyst.

In our case, we propose that the distinct behavior of CoMP11-Ac arises from a dependence of the CO$_2$RR catalytic mechanism upon the applied potential. Because the $E_{Co(II/I)}$ of CoMP11-Ac is estimated to be -1.42 V, the catalytic reduction of CO$_2$ to CO at -1.2 V must originate from a different catalysis-initiating redox event. We propose that CO$_2$ binding to the catalyst is coupled to the electroreduction of the catalyst (Scheme 1). This phenomenon where the formation of or cleavage of a bond between heavy (non-hydrogen) atoms is coupled to electron and/or proton transfer has been invoked in electrochemical systems before. One example comes from the analysis of the rate-limiting O–O bond cleavage in the electrochemical reduction of aliphatic peroxides. When an all-coupled (coupling of the bond cleavage to both electron and proton transfer) pathway is at play, the CV feature associated with the electrochemically driven O–O bond cleavage was found to be at significantly less negative potential than when a stepwise mechanism is favored. In another example, an intermolecular concerted proton–electron transfer bond cleavage was also found to be the rate-determining step in the catalytic reduction of CO$_2$ to CO by electrogenerated Fe(0) porphyrins in an aprotic solvent. Finally, the catalytic electroreduction of alkyl cobalt porphyrins is an example where carbon–metal bond breaking/formation and proton transfer are proposed to be concerted.

Considering CO$_2$ reduction by CoMP11-Ac, if a molecule of CO$_2$ is appropriately prepositioned near the catalyst active site, it could bind the metal center in a manner concerted with electron transfer from the electrode to the Co(II) species ([M] in Scheme 1). Concerted pathways have the advantage of avoiding high-energy intermediates invoked in stepwise pathways. However, this advantage can be counterbalanced by other kinetic penalties. This is particularly likely in reactions that involve the breaking or formation of bonds between heavy atoms. The low CV current at -1.2 V, relative to the feature at -1.4 V, may be due to this additional kinetic expenditure. Prepositioning the CO$_2$ molecule prior to binding to the metal center may be enabled or enhanced by conformational changes occurring upon adsorption of the catalyst on the mercury electrode. Similar effects have been found to account for the enhanced CO$_2$RR activity of Ni-cyclam using a mercury working electrode. Adsorption of Ni(cyclam) onto the mercury electrode is proposed to cause a flattening of the ligand, leading to enhanced CO desorption kinetics (often the rate-determining step in CO$_2$ reduction to CO by molecular catalysts) and diminished catalyst deactivation via CO poisoning.

The more cathodic CV feature (at $E_h = -1.4$ V) develops at a potential near the Co(II/I) couple of CoMP11-Ac, suggesting that the dominant reaction mechanism at -1.4 V is initiated by the Co(II/I) reduction of the catalyst. Once the formal Co(I) species is formed, either CO$_2$ addition or proton transfer from a proton donor HA to the catalyst may occur. Consequently, both CO$_2$-to-CO and H$_2$-evolution catalysis take place, resulting in lower selectivity for CO$_2$ reduction at this more cathodic potential (Scheme 2).

Scheme 1. CO$_2$-to-CO Catalysis Mechanism Proposed to Operate at -1.2 V vs Ag/AgCl/KCl

Scheme 2. CO$_2$-to-CO and HER Catalysis Mechanisms Proposed to Operate at -1.4 V vs Ag/AgCl/KCl

Effects of CO$_2$ Partial Pressure (P_{CO_2}). In the mechanism outlined in Scheme 1 and proposed to be at play at -1.2 V, the catalysis-initiating redox event would entail a Nernstian equilibrium between Co(II/I)MP11-Ac (M in Scheme 1) and the CO$_2$-bound one-electron reduced species, as depicted in eq 3.

$$M + e^- + CO_2 = [M–CO_2]^+$$

Based on the Nernst equation for this process, we expect the half-wave potential (E_h) to shift anodically with increasing partial pressure of CO$_2$ (P_{CO_2}) with a slope of 59.2 mV/decade, as shown in eqs 4 and 5. In these equations, n represents the...
number of electrons transferred (i.e., 1) and E° corresponds to the thermodynamic potential under standard conditions.

$$E = E^{\circ} + \frac{0.0592}{n} \log \left(\frac{[\text{M}][\text{CO}_2]}{[\text{M}]_0} \right)$$ \quad (4)

$$E_h = E^{\circ} - 0.0592 \log(P_{\text{CO}_2})$$ \quad (5)

The CV feature near -1.2 V does not show a clear peak, hindering our ability to accurately determine E_i. Instead, we define E_i as the potential at which a constant current of 1.5 µA is reached. eq 5 can be then rewritten in terms of E_i to obtain eq 6. (Please note that with this approximation, the E° term loses any physical meaning.) This approach of using the potential at which a constant current is reached has been employed as a proxy for E_i when non-ideal voltammograms are encountered.66

$$E_i = -0.0592 \log(P_{\text{CO}_2}) + E^{\circ}$$ \quad (6)

We apply eq 6 to the voltammograms of CoMP11-Ac collected under different P_{CO_2} (Figures 4a and S5) achieved using mixtures of CO$_2$ and N$_2$ with different known compositions. To avoid deviations between P_{CO_2} and the concentration of CO$_2$ in solution, we avoided the use of NaHCO$_3$ as a buffer and instead used 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS, pK_a 10.4); more information regarding the effects of buffers is provided in the next section. In Figure 4a, we can see that as P_{CO_2} increases, the onset potential shifts anodically. A plot of E_i vs $-\log(P_{\text{CO}_2})$ (Figure 4b) shows a slope of ~ 66 mV/decade.

Effects of Proton Donor. To further test our mechanistic proposals, we varied the pK_a of the proton donor HA, which under our experimental conditions, we anticipate being the conjugate acid form of the buffer.43,44,69 It has been reported that the pK_a of the proton donor has a large impact on CO$_2$-reduction catalysis. Relatively strong Bronsted acids lead to fast metal hydride formation and subsequent protonation to yield H$_2$, as shown in the lower portion of Scheme 2; to minimize this undesirable pathway, weak Bronsted acids are preferred regardless of whether the catalyst operates in an aprotic or protic solvent.3,4,5,7,90 A particularly relevant example is the case of a water-soluble iron-porphyrin catalyst that was shown to evolve only H$_2$ when using formate (pK_a 3.7) buffer, while an equimolar mixture of CO and H$_2$ was obtained in phosphate-buffered solution (pK_a 7.2, H$_3$PO$_4$).90 In the case of CoMP11-Ac, we have previously reported that the rate of HER in water decreases with increasing buffer pK_a due to a slower proton transfer from the buffer acid donor to the formal Co(I) and that such proton transfer to the formal Co(I) species is rate-limiting for buffers of $pK_a > 7.7$.70 We have also found that the steric of the proton donor species impact the catalytic CV current arising from HER catalyzed by a cobalt porphyrin mini enzyme in water.90 When exploring the effects of buffer properties on the CO$_2$RR of a Ni(cyclam) electrocatalyst in water, the authors concluded that charge density (i.e., charge and size) of the buffer acid species was the main factor impacting the catalytic activity.71 With these precedents in mind, we chose to study the CO$_2$RR of CoMP11-Ac in the presence of three structurally related buffers as proton donors with different pK_a values: 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS, pK_a 10.4), 3-(cyclohexylamino)-1-ethanesulfonic acid (CHES, pK_a 9.3), and 3-morpholinopropane-1-sulfonic acid (MOPS, pK_a 7.2; structures shown in Figure S5).

The CVs of CoMP11-Ac in CO$_2$-saturated solutions containing either CAPS, CHES, or MOPS (Figure 5) exhibit two features, one that peaks around -1.5 V, present also in N$_2$-saturated solution, and a more anodic wave that starts developing near -1.2 V, not present under N$_2$. When the weakest Bronsted acid CAPS is present, the addition of CO$_2$ leads to a significant enhancement in the catalytic CV current (Figure 5a); as the pK_a of the buffer acid decreases, the enhancement seen under CO$_2$ relative to N$_2$ becomes less pronounced. For MOPS solutions, the catalytic peak current seen for CoMP11-Ac is similar under both CO$_2$ and N$_2$ (Figure 5c). The lower pK_a of MOPS is proposed to facilitate proton transfer to the catalyst,43 yielding a higher CV current (faster catalysis) under both CO$_2$ and N$_2$. This result indicates possible enhancement of H$_2$ and CO evolution, both of which are impacted by the availability of protons. The catalytic peak currents seen for CoMP11-Ac decrease as the pK_a of the buffer present increases. We attribute this trend to the lower acidity of the buffer acid species (i.e., higher pK_a) disfavoring the transfer of protons, thereby slowing catalysis.

To assess whether product distribution is sensitive to the proton donor pK_a and the applied potential, we performed CPE experiments at both -1.4 and -1.2 V in solutions containing CAPS, CHES, or MOPS buffers; the results are summarized in Table 2 (see Tables S2–S4 for information on individual runs). For the CPE experiments at -1.4 V under N$_2$ (Figures S6–S8), the total charge passed in the presence of MOPS buffer is significantly higher than in CHES and CAPS. The lower pK_a of the conjugate acid form of MOPS allows for...
Figure 5. CVs of 1 μM CoMP11-Ac in (a) 50 mM CAPS, pH 5.3 ± 0.1; (b) 50 mM CHES, pH 5.9 ± 0.1; and (c) 50 mM MOPS, pH 5.9 ± 0.1. For all CVs, [KCl] = 0.1 M and scan rate = 100 mV/s. Arrows in the CV traces indicate the scanning direction.

more evolved H₂, leading to a higher charge buildup, consistent with the trends seen in CV above as well as prior work.⁶³ At −1.4 V in all CAPS, CHES, and MOPS, H₂ is the sole product detected under N₂, with respective FE values of 83, 92, and 92%. The TON for H₂ is over 40-fold higher for catalysis in the presence of MOPS compared to CAPS. Overall, the charge passed decreases with increasing buffer acid pKₐ, a finding that is consistent with previous studies of buffer effects on HER by CoMP11-Ac,⁴³ as well as with similar observations made for other catalysts working in both aqueous and aprotic solvents.⁹,⁴⁴,⁶⁹,⁷₂

For CPE experiments on CoMP11-Ac conducted at −1.4 V under CO₂ (Figures S6−S8 and Tables S2−S4), both CO and H₂ are produced with appreciable yields for all three buffers. In CAPS, the FEs for CO and H₂ are 48 and 29%, respectively, while in MOPS, these quantities are 21 and 63%. Thus, the pKₐ of the buffer is found to impact the product distribution at −1.4 V, with the lowest-pKₐ buffer MOPS favoring H₂ formation the most. This finding supports the proposed mechanism (Scheme 2) and is consistent with other observations on CO₂RR in water.⁶⁻⁷⁷ We propose that the stronger the acid, the more rapidly the Co(I) species is protonated, enhancing the generation of H₂. Weaker acids (CAPS and CHES) protonate this species more slowly, allowing CO₂ binding to the formal Co(I) active species and leading to more conversion of CO₂ to CO. This model is consistent with previous work on CoMP11-Ac, in which more acidic buffers were found to promote fast HER catalysis and were proposed to protonate the formal Co(I) species more rapidly.⁴³

When CPEs of CoMP11-Ac are carried out at −1.2 V under N₂ in CAPS and CHES, activity is low, being comparable to the background in CAPS and barely above background for CHES (Figures S6−S8 and Tables S2−S4). In MOPS, at −1.2 V, H₂ is the only product and is detected with 98% FE and TON of 4,900 after 2 hours. This result indicates that −1.2 V is too anodic relative to E_(Co(II/I)) to support HER activity unless a relatively acidic proton source (here, MOPS) is present. Previous work on HER by CoMP11-Ac showed that the presence of an acidic proton donor (pKₐ < 7.7) gives rise to a kinetic shift in the CV, allowing catalysis to occur at −1.2 V.⁴³ Results under CO₂ reveal a sharp contrast. For CPEs of CoMP11-Ac at −1.2 V under CO₂, the overall activity is significantly higher than under N₂ (Figures S6−S8). FE(CO) is nearly the same for CoMP11-Ac in all three buffers: CAPS (88%), CHES (81%), and MOPS (85%), and FE(H₂) also is nearly the same in CAPS (5%), CHES (6%), and MOPS (8%) (Tables 2 and S2−S4). The insensitivity of the product

Table 2. Summary of 2-h CPE Results for 1 μM CoMP11-Ac in 0.5 M of the Specified Buffer*

Buffer	E (V)	FE(CO) (%)	TON(CO)	FE(H₂) (%)	TON(H₂)	Qₑ (C)
CO₂	−1.4	29 ± 6	48 ± 10	280 ± 10	470 ± 10	0.9 ± 0.2
	−1.2	5 ± 1	88 ± 11	80 ± 20	1500 ± 300	1.7 ± 0.6
CHES	−1.4	43 ± 9	57 ± 4	940 ± 30	1300 ± 300	2.2 ± 0.3
	−1.2	6 ± 1	81 ± 2	250 ± 30	3500 ± 300	4.2 ± 0.4
MOPS	−1.4	63 ± 13	21 ± 5	4100 ± 500	1400 ± 500	6.4 ± 0.8
	−1.2	8 ± 2	85 ± 2	1200 ± 100	12,000 ± 1000	14.1 ± 1.4
N₂	−1.4	83 ± 16	~0	500 ± 90	~0	0.6 ± 0.2
	−1.2	no below-background activity				
CHES	−1.4	92 ± 11	~0	2800 ± 100	~0	3.0 ± 1.1
	−1.2	67 ± 5	~0	590 ± 100	~0	0.8 (0.1)
MOPS	−1.4	92 ± 6	~0	23,000 ± 2000	~0	24.9 ± 4.8
	−1.2	98 ± 3	~0	5000 ± 900	~0	4.7 ± 0.6

*Data shown corresponds to the average of at least three individual runs, and the errors correspond to the difference between the average and the replicate with the greatest difference from the average. Activity is not reported if it did not exceed three times background in more than one replicate. The pH of all MOPS, CHES, and CAPS solutions after purging with CO₂ was 6.5 ± 0.2, and 7.2 ± 0.2 when purged with N₂. *Potentials reported vs Ag/AgCl/KCl(1M).
distribution at -1.2 V to buffer pK_a supports our proposal that in the presence of CO_2, catalysis is initiated by CO_2 binding coupled to catalyst reduction, which avoids the accumulation of a formal Co(1) species, leading to almost exclusive CO formation regardless of the acidic strength of the proton donor (Scheme 1). In other words, the selectivity-determining step precedes any proton transfer from the buffer acids, favoring the formation of CO irrespective of the proton donor pK_a. Also worth highlighting is the $TON_{(CO)}$ of 12,000 achieved at -1.2 V after 2 h CPE in MOPS under CO_2, which compares well with other molecular electrocatalysts operating in water.

An interesting trend seen in the CPEs of CoMP11-Ac in the presence of CO_2 in all four buffers (CAPS, CHES, MOPS, and NaHCO$_3$) is that the catalyst is not only more selective for CO_2 reduction at the less cathodic potential of -1.2 V but also exhibits similar or higher $TON_{(CO)}$ (Tables 1 and 2). We have previously reported that CoMP11-Ac experiences partial deactivation during electrocatalytic HER.4,5 This is consistent with the lower FE seen in CPE at the more negative potential (-1.4 V) and with the shape of the CV in which the current rapidly drops after reaching its maximum value between -1.4 and -1.5 V, as well as the inverse peak feature seen in the return scan, which is consistent with reactivation.51 We propose that enhanced catalyst deactivation is responsible, at least in part, for the lower total charge passed and overall FE at -1.4 V, (particularly when compared to -1.2 V under CO_2).

The coupled mechanism outlined in Scheme 1 would allow for CO_2 reduction catalysis to occur at potentials at which catalyst deactivation is minimal, yielding the higher charge passed for CoMP11-Ac at -1.2 V under CO_2. Indeed, the CPE traces of CoMP11-Ac at -1.2 V after 2 hours remain linear, indicating that the catalyst is still active (Figures S6–S8). Furthermore, CoMP11-Ac under CO_2 in CAPS displays minimal deviation from linearity in the charge vs time CPE trace in a 24-h CPE at -1.2 V, yielding a $TON_{(CO)}$ of 9300. The 24-h CPE of CoMP11-Ac under CO_2 in MOPS reveals some loss of activity after ~ 6 h, as the CPE trace levels off, yet this more acidic proton donor yields a $TON_{(CO)}$ of 32,000 in 24 hs (Table S5 and Figures S9–S13).

To determine whether the enhanced catalyst deactivation at -1.4 V is responsible for the lower selectivity for CO at this potential, we performed CPE experiments on CoMP11-Ac under CO_2 at -1.4 V for 24 hours (Figure S11 and Table S5) and compared FE$_{(HL)}$ and FE$_{(CO)}$ to the results obtained after the 2-hour CPE under otherwise identical conditions (Tables 2 and S2). The overall FE is lower at 24 h (69%), as expected for a longer bulk electrolysis experiment (attributed to more catalyst degradation), but FE$_{(CO)}$ is similar at 24 h ($58 \pm 6 \%$) and 2 h ($48 \pm 10 \%$). Interestingly, FE$_{(HL)}$ is lower at 24 h ($11 \pm 6 \%$) vs 2 h ($29 \pm 6 \%$), which suggests that the CoMP11-Ac deactivation product is not a more active HER catalyst. Instead, this data suggests that the deactivation product may be generated within the HER mechanism of CoMP11-Ac.

CONCLUSIONS

CoMP11-Ac catalyzes the reduction of CO_2 to CO in water with FE$_{(CO)}$ up to 88%, with better selectivity at -1.2 V compared to -1.4 V. The high faradic efficiency for CO production seen in CPE at -1.2 V is proposed to originate from a distinct mechanism initiated by CO_2 addition coupled to the reduction of the catalyst, avoiding accumulation of a formal Co(1) species. The lower selectivity found at -1.4 V is proposed to arise from the Co(II/I) reduction initiating catalysis, as the formal Co(1) species can undergo either CO_2 addition or protonation, where the latter enables HER. Altogether, at the lower applied overpotential, CoMP11-Ac shows higher selectivity toward CO_2-to-CO conversion as well as enhanced catalyst longevity. These results demonstrate how applied potential and proton donor pK_a act together to determine catalyst selectivity. An implication is that these factors may contribute to system selectivity in complex ways, requiring codesign when developing and optimizing catalytic systems.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.2c03297.

Experimental details, additional electrochemical data, tables of CPE results (Tables S1–S5) (Figures S1–S19) (PDF)

AUTHOR INFORMATION

Corresponding Author

Kara L. Bren – Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States; orcid.org/0000-0002-8082-3634; Email: bren@chem.rochester.edu

Authors

Jose L. Alvarez-Hernandez – Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States; Present Address: Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States

Alison A. Salamian – Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States; orcid.org/0000-0003-2935-3160

Ji Won Han – Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States

Author Contributions

‡J.L.A.-H. and A.A.S. contributed equally to this paper.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0002106. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE-1939268). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

(1) National Academies of Sciences, Engineering, and Medicine. Gaseous Carbon Waste Streams Utilization: Status and Research Needs; The National Academies Press: Washington, DC, 2019; pp 63–96.
(2) Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catal. 2019, 9, 7937–7956.

(3) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocataytic and homogeneous approaches to conversion of CO₂ to liquid fuels. Chem. Soc. Rev. 2009, 38, 89–99.

(4) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobhek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujiita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO₂ Fixation. Chem. Rev. 2013, 113, 6621–6658.

(5) Costentin, C.; Robert, M.; Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 2013, 42, 2423–2436.

(6) Saha, P.; Dey, A.; Amanullah, S.; Roldan Cuenya, B. Transition metal-based catalysts for the electrochemical CO₂ reduction: from atoms and molecules to nanostructured materials. Chem. Soc. Rev. 2020, 49, 6884–6946.

(7) Chen, L.; Guo, Z.; Wei, X.; Gallenkamp, C.; Bonin, J.; Anzolabéhé-Mallart, E.; Lau, K.-C.; Lau, T. C.; Robert, M. Molecular Catalysis of the Electrochemical and Photocatalytic Reduction of CO₂ with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Centre. J. Am. Chem. Soc. 2015, 137, 10918–10921.

(8) Takeda, H.; Cometto, C.; Ishitani, O.; Marc Robert, M.; Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO₂ Reduction. ACS Catal. 2017, 7, 70–88.

(9) Francke, R.; Schille, B.; Roemelt, M. Homogeneously Catalyzed Electroreduction of Carbon Dioxide: Methods, Mechanisms, and Catalysts. Chem. Rev. 2018, 118, 4631–4701.

(10) Fukuzumi, S.; Lee, Y.-M.; Ahn, H. S.; Nam, W. Mechanisms of catalytic reduction of CO₂ with heme and nonheme metal complexes. Chem. Sci. 2018, 9, 6017–6034.

(11) Zhang, B.; Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysis. Chem. Soc. Rev. 2019, 48, 2216–2264.

(12) Jiang, C.; Nichols, A. W.; Machan, C. W. A look at periodic trends in d-block molecular electrocatalysts for CO₂ reduction. Dalton Trans. 2019, 48, 9454–9468.

(13) Lide, D. R. Handbook of Chemistry and Physics, 81st ed.; CRC Press, 2000; Vol. 122, pp 8–29.

(14) Le, J. M.; Bren, K. L. Engineered Enzymes and Bioinspired Catalysts for Energy Conversion. ACS Energy Lett. 2019, 4, 2168–2180.

(15) Saha, P.; Amanullah, S.; Dey, A. Selectivity in Electrochemical CO₂ Reduction. Acc. Chem. Res. 2022, 55, 134–144.

(16) Bhugun, I.; Lexa, D.; Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: Synergistic effect of weak Brönsted acids. J. Am. Chem. Soc. 1996, 118, 1769–1777.

(17) Bhugun, I.; Lexa, D.; Savéant, J.-M. Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron(0) porphyrin associated with a weak Brönsted acid co-catalyst. J. Am. Chem. Soc. 1994, 116, 5015–5016.

(18) Rountree, E. S.; Martin, D. J.; McCarthy, B. D.; Dempsey, J. L. Linear Free Energy Relationships in the Hydrogen Evolution Reaction: Kinetic Analysis of a Cobaloxime Catalyst. ACS Catal. 2016, 6, 3326–3335.

(19) Amanullah, S.; Saha, P.; Dey, A. Activating the Fe(III) State of Iron Porphyrinoid with Second-Sphere Proton Transfer Residues for Selective Reduction of CO₂ to HCOOH via Fe(III/II)–COOH Intermediate(s). J. Am. Chem. Soc. 2021, 143, 13579–13592.

(20) Bhugun, I.; Lexa, D.; Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations. J. Phys. Chem. A 1996, 100, 19981–19985.

(21) Bernskoetter, W. H.; Hazari, N. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts. Acc. Chem. Res. 2017, 50, 1049–1058.

(22) Costentin, C.; Robert, M.; Savéant, J.-M.; Tard, C. Breaking Bonds with Electrons and Protons. Models and Examples. Acc. Chem. Res. 2014, 47, 271–280.

(23) Le, J. M.; Bren, K. L. Engineered Enzymes and Bioinspired Catalysts for Energy Conversion. ACS Energy Lett. 2019, 4, 2168–2180.
Impacts the Mechanism of Hydrogen Evolution Catalyzed by a Manganese Catalyst with Bulky Labile Ligand, and Brønsted Acid on Electrocatalytic CO Reduction by a Cobalt Tripeptide in Water. ACS Energy Lett. 2021, 6, 2256−2261.

Balazs, G. B.; Anson, F. C. The adsorption of Ni(cyclam)⁺ at mercury electrodes and its relation to the electrocatalytic reduction of CO₂. J. Electroanal. Chem. 1992, 322, 325−345.

Rheingold, A. L.; Kubiak, C. P. Manganese as a Substitute for Rhodium in the Electrochemical Oxidation of Glutathione Mediated by [IrCl₆]²⁻. J. Am. Chem. Soc. 2013, 135, 9023−9031.

Costentin, C.; Passard, G.; Robert, M.; Savéant, J.-M. Concertedness in proton-coupled electron transfer clevages of carbon−metal bonds illustrated by the reduction of an alkyl cobalt porphyrin. Chem. Sci. 2013, 4, 819−823.

Mayer, J. M. Proton-Coupled Electron Transfer: A Reaction Chemist’s View. Annu. Rev. Phys. Chem. 2004, 55, 363−390.

Hammes-Schiffer, S. Proton-Coupled Electron Transfer: Moving Together and Charging Forward. J. Am. Chem. Soc. 2015, 137, 8860−8871.

Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. C.; Meyers, T. J. Proton-Coupled Electron Transfer. Chem. Rev. 2012, 112, 4016−4093.

Costentin, C.; Robert, M.; Savéant, J.-M. Update 1 of: Electrochemical Approach to the Mechanistic Study of Proton-Coupled Electron Transfer. Chem. Rev. 2010, 110, PR1−PR40.

Mayer, J. M. Proton Transfers Illustrated by Proton-Assisted Reductive Cleavage of an O−O Bond. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 15929−15934.

Costentin, C.; Drouet, S.; Passard, G.; Robert, M.; Savéant, J.-M. Proton-Coupled Electron Transfer Cleavage of Heavy-Atom Bonds in Electrocatalytic Processes. Cleavage of a C−O Bond in the Catalyzed Electrocatalytic Reduction of CO₂. J. Am. Chem. Soc. 2013, 2012, 14689−14697.

Fujihira, M.; Hirata, Y.; Suga, K. Electrocatalytic reduction of CO₂ by nickel(II) cyclam. Study of the reduction mechanism on mercury by cyclic voltammetry, polarography and electrocapillarity. J. Electroanal. Chem. 1990, 292, 199−215.

Bujno, K.; Bilewicz, R.; Siegfried, L.; Kaden, T. A. Effects of ligand structure on the adsorption of nickel tetraazamacrocyclic complexes and electrocatalytic CO₂ reduction. J. Electroanal. Chem. 1998, 445, 47−53.

Wang, D.; Groves, J. T. Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc. Natl. Acad. Sci. U.S.A. 2013, 5701−5706.
Nickel Hydrogen Evolution Reaction Electrocatalysts with Weak Acids and Low Overpotentials. *ACS Catal.* 2018, 8, 9596−9603.

(78) Kramer, W. W.; McCrory, C. C. L. Polymer coordination promotes selective CO$_2$ reduction by cobalt phthalocyanine. *Chem. Sci.* 2016, 7, 2506−2515.

(79) Smith, P. T.; Benke, B. P.; Cao, Z.; Kim, Y.; Nichols, E. M.; Kim, K.; Chang, C. J. Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO$_2$ Reduction in Water. *Angew. Chem., Int. Ed.* 2018, 57, 9688−9688.

(80) Morlanés, N.; Takanabe, K.; Rodionov, V. Simultaneous Reduction of CO$_2$ and Splitting of H$_2$O by a Single Immobilized Cobalt Phthalocyanine Electrocatalyst. *ACS Catal.* 2016, 6, 3092−3095.

(81) Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.; Liang, Y.; Wang, H. Highly selective and active CO$_2$ reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. *Nat. Comm.* 2017, 8, No. 14675.

(82) Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zho, Y.; Paris, A. R.; Kim, D.; Yang, P.; Yaghi, O. M.; Chang, C. J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO$_2$ reduction in water. *Science* 2015, 349, 1208−1213.