Serotonin 5-HT\textsubscript{1A} receptor binding and self-transcendence in healthy control subjects - a replication study using Bayesian hypothesis testing

Gina Griffioen Corresp., 1, 2, Granville J Matheson 1, Simon Cervenka 1, Lars Farde 1, 3, Jacqueline Borg 1

1 Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
2 Capio Psykiatri Stockholm, Stockholm, Sweden
3 Personalised Healthcare and Biomarkers, AstraZeneca PET Science Centre, Karolinska Institutet, Sweden

Corresponding Author: Gina Griffioen
Email address: gina.griffioen@stud.ki.se

Objective: A putative relationship between markers for the serotonin system and the personality scale self-transcendence (ST) and its subscale spiritual acceptance (SA) has been demonstrated in a previous PET study of 5-HT\textsubscript{1A} receptor binding in healthy control subjects. The results could however not be replicated in a subsequent PET study at an independent centre. In this study, we performed a replication of our original study in a larger sample using Bayesian hypothesis testing to evaluate relative evidence both for and against this hypothesis.

Methods: Regional 5-HT\textsubscript{1A} receptor binding potential (BP\textsubscript{ND}) was examined in 50 healthy male subjects using PET with the radioligand 11CWAY100635. 5-HT\textsubscript{1A} availability was calculated using the simplified reference tissue model (SRTM) yielding regional BP\textsubscript{ND}. ST and SA were measured using the Temperament and Character Inventory (TCI) questionnaire. Correlations between ST/SA scores and 5-HT\textsubscript{1A} BP\textsubscript{ND} in frontal cortex, hippocampus and raphe nuclei were examined by calculation of default correlation Bayes factors (BFs) and replication BFs.

Results: There were no significant correlations between 5-HT\textsubscript{1A} receptor binding and ST/SA scores. Rather, five of six replication BFs provided moderate to strong evidence for no association between 5-HT\textsubscript{1A} availability and ST/SA, while the remaining BF provided only weak evidence.

Conclusion: We could not replicate our previous findings of an association between 5-HT\textsubscript{1A} availability and the personality trait ST/SA. Rather, the Bayesian analysis provided evidence for a lack of correlation. Further research should focus on whether other components of the serotonin system may be related to ST or SA. This study also illustrates how Bayesian hypothesis testing allows for greater flexibility and more informative conclusions than traditional p-values, suggesting that this approach may be advantageous for analysis of molecular imaging data.
Serotonin 5-HT$_{1A}$ receptor binding and self-transcendence in healthy control subjects - a replication study using Bayesian hypothesis testing

Gina Griffioen1,2, Granville James Matheson1, Simon Cervenka1, Lars Farde1,3, Jacqueline Borg1

1 Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
2 Capio Psykiatri Stockholm, Stockholm, Sweden
3 Personalised Healthcare and Biomarkers, AstraZeneca PET Science Centre, Karolinska Institutet, Sweden

* corresponding author: gina.griffioen@stud.ki.se

ABSTRACT

Objective. A putative relationship between markers for the serotonin system and the personality scale self-transcendence (ST) and its subscale spiritual acceptance (SA) has been demonstrated in a previous PET study of 5-HT$_{1A}$ receptor binding in healthy control subjects. The results could however not be replicated in a subsequent PET study at an independent centre. In this study, we performed a replication of our original study in a larger sample using Bayesian hypothesis testing to evaluate relative evidence both for and against this hypothesis.

Methods. Regional 5-HT$_{1A}$ receptor binding potential (BP$_{ND}$) was examined in 50 healthy male subjects using PET with the radioligand [¹¹C]WAY100635. 5-HT$_{1A}$ availability was calculated using the simplified reference tissue model (SRTM) yielding regional BP$_{ND}$. ST and SA were measured using the Temperament and Character Inventory (TCI) questionnaire. Correlations between ST/SA scores and 5-HT$_{1A}$ BP$_{ND}$ in frontal cortex, hippocampus and raphe nuclei were examined by calculation of default correlation Bayes factors (BFs) and replication BFs.
Results. There were no significant correlations between 5-HT$_{1A}$ receptor binding and ST/SA scores. Rather, five of six replication BFs provided moderate to strong evidence for no association between 5-HT$_{1A}$ availability and ST/SA, while the remaining BF provided only weak evidence.

Conclusion. We could not replicate our previous findings of an association between 5-HT$_{1A}$ availability and the personality trait ST/SA. Rather, the Bayesian analysis provided evidence for a lack of correlation. Further research should focus on whether other components of the serotonin system may be related to ST or SA. This study also illustrates how Bayesian hypothesis testing allows for greater flexibility and more informative conclusions than traditional p-values, suggesting that this approach may be advantageous for analysis of molecular imaging data.

Introduction

The serotonin system is involved in a wide range of fundamental physiological functions like regulation of mood, sleep and appetite (Filip & Bader, 2009). Furthermore, serotonergic neurotransmission is implicated in higher brain functions such as cognitive performance (Jenkins et al., 2016) and in several psychiatric disorders, including depression, autism, anxiety disorders and schizophrenia (Filip & Bader, 2009; Fidalgo, Ivanov & Wood, 2013).

With regard to personality, the serotonin system has been linked to the trait self-transcendence (ST) in both Positron Emission Tomography (PET) and genetic studies (Borg et al., 2003; Ham et al., 2004; Lorenzi et al., 2005; Nilsson et al., 2007; Aoki et al., 2010; Saiz et al., 2010; Kim et al., 2015). ST refers to the degree to which an individual feels part of nature and the universe at large, and to extraordinary experiences such as extra sensory perception and sense of a transcendent being or presence (Gillespie et al., 2003). The association has been interpreted as evidence for a role for the serotonin system in spiritual experiences, as well as providing a putative mechanism for the involvement of serotonin in psychosis, since high scores in ST has been linked to the schizophrenia spectrum disorders (Nitzburg, Malhotra & DeRosse, 2014).
Our group previously reported a negative correlation between 5-HT\textsubscript{1A} receptor binding potential (BP\textsubscript{ND}), as measured with PET and the radioligand [11C]WAY-100635, and ST as measured using Temperament and Character Inventory (TCI). The association was strongest for the subscale spiritual acceptance (SA) (Borg et al., 2003). However, the results could not be replicated in a subsequent PET study at an independent centre (Karlsson et al., 2011). These studies contained 15 and 20 healthy participants, respectively, and therefore, a replication study in a larger sample is required.

Aims of the study

The aim of the present study was to perform a replication of our original finding of a negative correlation between 5-HT\textsubscript{1A} receptor BP\textsubscript{ND} and ST/SA in a larger sample. In addition to traditional frequentist statistics, we made use of Bayesian hypothesis testing, which allows us not only to test a hypothesis, but also to quantify the relative probability of the observed data under competing hypotheses. Recently replication Bayes factors (BF) have been introduced (Verhagen & Wagenmakers, 2014; Wagenmakers, Verhagen & Ly, 2016), allowing researchers to evaluate replication success by taking the outcome of the previous study fully into account. In this way, we aimed to evaluate the relationship between 5-HT\textsubscript{1A} receptor binding and ST/SA from the perspective both of hypothesis testing without consideration of the magnitude of previous results, and of replication success.

Material and methods

Subjects

The sample consisted of 50 healthy men: 12 were enrolled as control subjects in a series of different pharmacological studies (for details see Matheson et al. (2015)); 38 in a twin study (Borg et al., 2016). Age ranged from 21 to 55 (Mean=30, SD=5 years). The studies were approved by the Regional Ethics Committee in Stockholm and the Radiation Safety Committee of the Karolinska Hospital, and all subjects provided written informed consent prior to their participation in the studies (IRB 2008/60-31/3; for serotonin markers 2013/136-32).

MR and PET data acquisition (5-HT\textsubscript{1A} binding potential)
Magnetic Resonance Imaging (MRI) images were acquired using a 1.5TGE Signa system (Milwaukee, WI). T1- and T2-weighted MRI images were acquired for all subjects. The PET system used was Siemens ECAT Exact HR 47 (CTI/Siemens, Knoxville, TN, USA). All subjects were examined using $[^{11}\text{C}]\text{WAY-100635}$; The injected radioactivity was $276 \pm 35 \text{ MBq}$ (mean;SD). BP$_{\text{ND}}$ values were calculated for the same regions as examined in the original study (Borg et al., 2003): frontal cortex, hippocampus (using the simplified reference tissue model - SRTM) and dorsal raphe nucleus (using a wavelet-based method using the non-invasive Logan plot in order to reduce the noise in this small region). For detailed description see Matheson and co-authors (2015). Other regions were not included in the analysis as they were not part of the original study. However, since $[^{11}\text{C}]\text{WAY100635}$ BP$_{\text{ND}}$ is highly correlated between regions, the inclusion of more regions would therefore be unlikely to provide unique information from the three included regions (Bose et al., 2011).

Personality assessment

The Swedish translation of the TCI self-report questionnaire was used (Brändström et al., 1998). It consists of 238 true/false items covering four temperament dimensions (novelty seeking, harm avoidance, reward dependence, and persistence) and three character dimensions (self-directedness, cooperativeness, and self-transcendence). Individual scores were calculated for ST and its subscale SA.

Statistical analysis

Pearson’s correlation coefficients and their corresponding p-values were calculated for the correlation between ST/SA and 5-HT$_{1A}$ BP$_{\text{ND}}$ in the frontal cortex, hippocampus and dorsal raphe nucleus. Two BF tests were performed for each comparison. Firstly, we calculated a default correlation BF for the association between BP$_{\text{ND}}$ and the ST/SA scores in frontal cortex, hippocampus and dorsal raphe nucleus respectively. Since we specifically wanted to test a negative correlation, we choose a one-sided default Bayes factor test, with a negative Beta prior of width 1 (i.e. flat between -1 and 0) using JASP (JASP Team, 2017). This test compares the predictive adequacy of the null hypothesis H_0 (i.e. no correlation) with an alternative hypothesis H. (i.e. a negative correlation) (for more details on Bayes factors, see (Ly, Verhagen & Wagenmakers, 2016; Wagenmakers, Morey & Lee, 2016). Second, we calculated a replication.
BF for the correlations for each region as a measure of replication success. This test compares
the predictive adequacy of the null hypothesis H_0 (i.e. no correlation) with an alternative
hypothesis H_r. The alternative hypothesis is defined as the posterior distribution of the
correlation coefficient derived from the original study, assuming a uniform prior before seeing
the data of the original study (Wagenmakers, Verhagen & Ly, 2016). We slightly modified of the
following source code http://www.josineverhagen.com/wp-
content/uploads/2013/07/Repfunctions_correlationFINAL1.txt (for plotting purposes) to the code
which can be found online at the following address: https://osf.io/x9gji/. This code was executed
using RStudio (Version 1.0.136) with R 3.3.2 (R Core Team, 2015). We also reanalysed the
results of Karlsson et al. (2011) with these methods. Bayes factors assess the relative likelihood
of the observed data under competing hypotheses, yielding a ratio of the relative evidence for
one hypothesis over the other. For instance, a BF_{01} below 3 indicates weak or anecdotal
evidence, a $BF_{01} > 3$ moderate and a $BF_{01} > 10$ strong evidence in favour of the null against the
alternative (Jeffreys, 1961). In this paper, all BFs are presented as the likelihood of the null
hypothesis relative to the alternative hypothesis (i.e. BF_0, specifying a negative correlation as
alternative; BF_{0r} specifying the posterior probability distribution of the original correlation as
alternative). The differences between the default and the replication BF tests can be expressed as
follows: the default test addresses the question of whether an effect was present or absent given
relatively little prior knowledge of the effect size, while the replication test asks whether the
effect was similar to what was found before, or absent (Wagenmakers, Verhagen & Ly, 2016).
Two potential sources of bias for this analysis were the inclusion of twin pairs, and the use of
cerebellar grey matter as the reference region (Hirvonen et al., 2007). We therefore performed
two additional analyses by 1) randomly excluding one twin from each twin pair (using
www.random.org), resulting in a sample size of 31, and 2) using the white matter as a reference
region for hippocampus and frontal cortex.

Results

In the present sample of 50 subjects, the BPND of $[^{11}C]$WAY100635 varied about 4-fold between
individuals (Table 1). ST scores ranged from 2 to 24 (mean 9.7, SD 5.8); the SA scores ranged
from 0 to 12 (mean 3.9, SD 3.1) (Table 1). There were no significant correlations between
regional 5-HT_{1A} receptor binding and scores on ST or SA (Fig. 1, Table 2).

All BF favoured the null over the alternative hypotheses. Default correlation BFs ranged from 2.5 to 5.6 in favour of the null (Table 2), meaning that the null hypothesis of no correlation is 2.5 to 5.6 times more likely than the alternative hypothesis for a negative correlation, given the data.

For the results of Karlsson et al. (2011), default correlation BFs ranged from 1.8 to 6.0. 9 out of 12 default BFs provided moderate evidence in favour of the null hypothesis; the remaining 3 provided only weak evidence (Table 2).

The replication BFs ranged from 2.3 to 31.5 in favour of the null hypothesis (Table 2); replication BFs for Karlsson et al. (2011) ranged from 2.4 to 33.8. 10 out of 12 replication BFs provided moderate to strong evidence in favour of the null hypothesis. The remaining 2 replication BFs provided only weak evidence (Table 2).

Figure 2 illustrates the replication BF, showing how the data from the replication study shifts the distribution from the original study towards a correlation coefficient close to zero.

The results did not greatly differ after repeating the analysis to account for biases, either by randomly excluding one twin from each twin pair, or by using white matter as reference region (see Supplementary Information).

Discussion

The aim of the present study was to perform a replication of our previous study (Borg et al., 2003) in a larger sample. We were not able to find any significant relationships between 5-HT_{1A} receptor availability and ST/SA for any of the three regions. This is in line with the results of Karlsson and co-authors in an earlier replication study (Karlsson et al., 2011). Instead, in both this study and in our reanalysis of the results of Karlsson et al. (2011), Bayesian analysis provided more support for the null-hypothesis i.e. that 5-HT1A receptor is not related to the propensity for extraordinary or transcendental experiences.

Despite the present results, the serotonin system remains of interest in research on the biological underpinning of personality traits associated with extraordinary experiences. 5-HTT (serotonin...
transporter) has been linked to ST in both a PET study (Kim et al., 2015), and in genetic studies – though results are conflicting (Nilsson et al., 2007; Aoki et al., 2010; Saiz et al., 2010).

Furthermore, 5-HT\textsubscript{1A}, 5-HT\textsubscript{2A} and 5-HT6 receptor gene polymorphisms have been shown to be correlated to ST (Ham et al., 2004; Lorenzi et al., 2005).

Pharmacological research shows that the serotonin system plays a key role in the effects of hallucinogens, which produce psychosis-like symptoms (comparable to some of the items in the SA scale) (Vollenweider et al., 1999; Geyer & Vollenweider, 2008). Moreover, treatment with SSRI in depressed patients lowered ST scores (Hruby et al., 2009).

Hence, although we failed to replicate the association between 5-HT\textsubscript{1A} and ST/SA, these lines of evidence motivate further research to clarify the role of serotonin neurotransmission and ST/SA in the healthy population as well as in patients.

The present study was performed on an independent sample of healthy male individuals. Compared to our original study, the sample exhibited less variance in age, and 38 of the 50 subjects were twin pairs. TCI scores and BP\textsubscript{ND} values were however similar to the original study, therefore the more homogenous age range and genetic background of the present sample are unlikely to fully explain the difference in results. Furthermore, we used more advanced image processing methods than in our original study (although many of these, such as automated region of interest (ROI) definition and frame-by-frame realignment of the PET images, were also used in the study by Karlsson and colleagues (Hirvonen et al., 2008; Karlsson et al., 2011)). We were not able to reanalyse the data of the original study using these methods, since T1 weighted MR images were not collected in this sample. However, automated ROIs have been shown to exhibit similar reliability compared to manual (Johansson et al., 2016), suggesting that methodological factors are unlikely to explain the discrepancies.

Replication failure is a common problem in science: in clinical trials and psychology studies replication rates range from 11 to 39%, respectively (Begley & Ellis, 2012; Open Science Collaboration, 2015). Both previous studies on 5-HT\textsubscript{1A} and ST/SA had low power due to small sample sizes and multiple comparisons without correction, possibly leading to incorrect inferences. According to our calculations using PPV (positive predictive value; the probability that a ‘positive’ research finding reflects a true effect) (Button et al., 2013) the probability that
our original finding was true was only around 9%, even before consideration of the two
replication studies (see Supplementary Information for the assumptions and the calculation).

Limitations

Our data consisted of males only. We excluded women from the analysis since the literature is
conflicting about the effect of gender and menstrual cycles on 5-HT$_{1A}$ receptor binding (Palego
et al., 1997; Tauscher et al., 2001; Cidis Meltzer et al., 2001; Parsey et al., 2002; Costes et al.,
2005; Jovanovic et al., 2008; Stein et al., 2008; Moses-kolko et al., 2011) and gender influences
ST scores on TCI (Brändström, Richter & Przybeck, 2001; Garcia-Romeu, 2010). Additionally,
we wanted to replicate our original study, which contained only males, as closely as possible.
Therefore, caution must be exercised when generalizing the present finding in male subjects to
the female population. Karlsson and co-authors studied a gender mixed sample (11 males/9
females) in their previous negative study (Karlsson et al., 2011), and in genetic studies the
association between serotonin genes and ST/SA has in some studies been reported to differ
between gender (Nilsson et al., 2007; Aoki et al., 2010) whereas others found no difference
(Lorenzi et al., 2005; Saiz et al., 2010).

The same is true for age: we had a similar sample to the original study, with limited range, and
age might influence both ST scores and 5-HT$_{1A}$ binding (Kirk, Eaves & Martin, 1999;
Brändström, Richter & Przybeck, 2001; Moses-kolko et al., 2011).

As in the original study, we used the cerebellar grey matter as a reference region, which is not
considered the gold standard due to small levels of specific binding in this region (Shrestha et al.,
2012). However, using arterial plasma to calculate BP$_{P}$ and BP$_{ND}$ using cerebellar white matter
as reference, Karlsson and co-authors could not replicate the original findings either (Karlsson et
al., 2011). In addition, our analysis using cerebellar white matter showed similar results (see
Supplementary Information).

Strengths

Where Karlsson and co-authors could only conclude that they did not find a significant
correlation between ST/SA and 5-HT$_{1A}$ receptor binding (Karlsson et al., 2011), using Bayesian
hypothesis testing, we were able to conclude that the data supplied more evidence in favour of
the null hypothesis (i.e. no correlation) for both our data and for that of Karlsson et al. (2011).
Furthermore, the replication BF allowed us to take the magnitude of our previous results and its uncertainty fully into account. In this way, using the current data, the replication BF results suggest that the effect reported by the original study was likely either to be overestimated or a false positive. As such, these results support the conclusion that there is little to no association between ST/SA and 5-HT$_{1A}$ receptor binding.

Of wider interest in the field of molecular imaging is that Bayesian hypothesis testing provides more informative conclusions than traditional p-values, thus offering pragmatic advantages for analysis of expensive neuroimaging studies, where limited sample sizes are common. For instance, Bayesian hypothesis testing allows for collecting data until the evidence is sufficiently strong to make a conclusion for one or the other hypothesis without requiring correction for multiple comparisons with sequential analyses. In this way, both costs and radiation exposure can be decreased.

Conclusions

In conclusion, we failed to replicate our previous finding of a negative association between ST/SA and 5-HT$_{1A}$ receptor binding. Rather, our Bayesian analysis found more evidence for a lack of correlation. Further research should focus on whether other components of the serotonin system may be related to ST/SA.

Acknowledgements

We gratefully thank the members of the PET group at the Karolinska Institutet, for assistance over the course of the investigation.

References

Aoki J., Ikeda K., Murayama O., Yoshihara E., Ogai Y., Iwahashi K. 2010. The association between personality, pain threshold and a single nucleotide polymorphism (rs3813034) in the 3’-untranslated region of the serotonin transporter gene (SLC6A4). Journal of Clinical
Neuroscience 17:574–578. DOI: 10.1016/j.jocn.2009.08.020.

Begley CG., Ellis LM. 2012. Drug development: Raise standards for preclinical cancer research. Nature 483:531–3. DOI: 10.1038/483531a.

Borg J., Andrée B., Soderstrom H., Farde L. 2003. The serotonin system and spiritual experiences. American Journal of Psychiatry 160:1965–1969. DOI: 10.1176/appi.ajp.160.11.1965.

Borg J., Cervenka S., Kuja-Halkola R., Matheson GJ., Jönsson EG., Lichtenstein P., Hennigsson S., Ichimiya T., Larsson H., Stenkrona P., Halldin C., Farde L. 2016. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain. Molecular Psychiatry 21:1077–1084. DOI: 10.1038/mp.2015.147.

Bose SK., Mehta MA., Selvaraj S., Howes OD., Hinz R., Rabiner EA., Grasby PM., Turkheimer FE., Murthy V. 2011. Presynaptic 5-HT1A is Related to 5-HTT Receptor Density in the Human Brain. Neuropsychopharmacology 36:2258–2265. DOI: 10.1038/npp.2011.113.

Brändström S., Richter J., Przybeck T. 2001. Distributions by age and sex of the dimensions of temperament and character inventory in a cross-cultural perspective among Sweden, Germany, and the USA. Psychological reports 89:747–758.

Brändström S., Schlette P., Przybeck TR., Lundberg M., Forsgren T., Sigvardsson S., Nylander P., Nilsson L-G., Cloninger RC., Adolfsson R. 1998. Swedish Normative Data on Personality Using the Temperament and Character Inventory. Comprehensive Psychiatry 39:122–128.

Button KS., Ioannidis JPA., Mokrysz C., Nosek BA., Flint J., Robinson ESJ., Munafò MR. 2013. Power failure: why small sample size undermines the reliability of neuroscience. Nature reviews. Neuroscience 14:365–76. DOI: 10.1038/nrn3475.

Cidis Meltzer C., Drevets WC., Price JC., Mathis CA., Lopresti B., Greer PJ., Villemagne VL., Holt D., Mason NS., Houck PR., Reynolds III CF., DeKosky ST. 2001. Gender-specific aging effects on the serotonin 1A receptor. Brain Ress Mar 23:9–17.

Costes N., Merlet I., Ostrowsky K., Faillenot I., Lavenne F., Zimmer L., Ryvlin P., Le Bars D. 2005. A 18F-MPPF PET normative database of 5-HT1A receptor binding in men and women over aging. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 46:1980–9.

Fidalgo S., Ivanov DK., Wood SH. 2013. Serotonin: from top to bottom. Biogerontology 14:21–
Filip M., Bader M. 2009. Overview on 5-HT receptors and their role in physiology and pathology of the central nervous system. *Pharmacological reports : PR* 61:761–77.

Garcia-Romeu A. 2010. Self-Transcendence as a Measurable Transpersonal Construct. *Journal of Transpersonal Psychology* 42:26–47.

Geyer MA., Vollenweider FX. 2008. Serotonin research : contributions to understanding psychoses. :445–453. DOI: 10.1016/j.tips.2008.06.006.

Gillespie NA., Cloninger CR., Heath AC., Martin NG. 2003. The genetic and environmental relationship between Cloninger’s dimensions of temperament and character. *Pers Individ Dif* 35:1931–1946. DOI: 10.1530/ERC-14-0411.Persistent.

Ham BJ., Kim YH., Choi MJ., Cha JH., Choi YK., Lee MS. 2004. Serotonergic genes and personality traits in the Korean population. *Neuroscience Letters* 354:2–5. DOI: 10.1016/S0304-3940(03)00753-5.

Hirvonen J., Kajander J., Allonen T., Oikonen V., Någren K., Hietala J. 2007. Measurement of serotonin 5-HT1A receptor binding using positron emission tomography and [carbonyl-(11)C]WAY-100635-considerations on the validity of cerebellum as a reference region. *Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism* 27:185–95. DOI: 10.1038/sj.jcbfm.9600326.

Hirvonen J., Karlsson H., Kajander J., Lepola A., Markkula J., Rasi-Hakala H., Någren K., Salminen JK., Hietala J. 2008. Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in-vivo imaging study using PET and [carbonyl-11C]WAY-100635. *The International Journal of Neuropsychopharmacology* 11:465–476. DOI: 10.1017/S1461145707008140.

Hruby R., Nosalova G., Ondrejka I., Preiss M. 2009. Personality changes during antidepressant treatment. *Psychiatria Danubina* 21:25–32.

Jeffreys H. 1961. *Theory of Probability*.

Jenkins TA., Nguyen JCD., Polglaze KE., Bertrand PP. 2016. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. *Nutrients* 8. DOI: 10.3390/nu8010056.

Johansson J., Alakurtti K., Joutsa J., Tohka J., Ruotsalainen U., Rinne JO. 2016. Comparison of manual and automatic techniques for substriatal segmentation in 11C-raclopride high-
resolution PET studies. *Nuclear Medicine Communications* 37:1074–1087. DOI: 10.1097/MNM.0000000000000559.

Jovanovic H., Lundberg J., Karlsson P., Cerin A., Saijo T., Varrone A., Halldin C., Nordström A-L. 2008. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. *NeuroImage* 39:1408–19. DOI: 10.1016/j.neuroimage.2007.10.016.

Karlsson H., Hirvonen J., Salminen J., Hietala J. 2011. No association between serotonin 5-HT1A receptors and spirituality among patients with major depressive disorders or healthy volunteers. *Molecular Psychiatry* 16:282–285. DOI: 10.1038/mp.2009.126.

Kim JH., Son YD., Kim JH., Choi EJ., Lee SY., Joo YH., Kim YB., Cho ZH. 2015. Self-transcendence trait and its relationship with in vivo serotonin transporter availability in brainstem raphe nuclei: An ultra-high resolution PET-MRI study. *Brain Research* 1629:63–71. DOI: 10.1016/j.brainres.2015.10.006.

Kirk KM., Eaves LJ., Martin NG. 1999. Self-transcendence as a measure of spirituality in a sample of older Australian twins. *Twin research : the official journal of the International Society for Twin Studies* 2:81–7.

Lorenzi C., Serretti A., Mandelli L., Tubazio V., Ploia C., Smeraldi E. 2005. 5-HT 1A polymorphism and self-transcendence in mood disorders. *American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics* 137B:33–5. DOI: 10.1002/ajmg.b.30111.

Ly A., Verhagen J., Wagenmakers EJ. 2016. Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. *Journal of Mathematical Psychology* 72:19–32. DOI: 10.1016/j.jmp.2015.06.004.

Matheson GJ., Schain M., Almeida R., Lundberg J., Cselényi Z., Borg J., Varrone A., Farde L., Cervenka S. 2015. Diurnal and seasonal variation of the brain serotonin system in healthy male subjects. *NeuroImage* 112:225–231. DOI: 10.1016/j.neuroimage.2015.03.007.

Moses-kolko EL., Price JC., Shah N., Berga S., Sereika SM., Fisher PM., Coleman R., Becker C., Mason NS., Loucks T., Meltzer CC. 2011. Age, Sex, and Reproductive Hormone Effects on Brain Serotonin-1A and Serotonin-2A Receptor Binding in a Healthy Population. *Neuropsychopharmacology* 36:2729–2740. DOI: 10.1038/npp.2011.163.

Nilsson KW., Damberg M., Ohrvik J., Leppert J., Lindström L., Anckarsäter H., Oreland L.
2007. Genes encoding for AP-2 β and the Serotonin Transporter are associated with the Personality Character Spiritual Acceptance. 411:233–237. DOI: 10.1016/j.neulet.2006.10.051.

Nitzburg GC., Malhotra AK., DeRosse P. 2014. The relationship between temperament and character and subclinical psychotic-like experiences in healthy adults. *European Psychiatry* 29:352–357. DOI: 10.1016/j.eurpsy.2013.11.006.

Open Science Collaboration. 2015. PSYCHOLOGY. Estimating the reproducibility of psychological science. *Science (New York, N.Y.)* 349:aac4716. DOI: 10.1126/science.aac4716.

Palego L., Marazziti D., Rossi A., Giannaccini G., Naccarato AG., Lucachini A., Cassano GB. 1997. Apparent absence of aging and gender effects on serotonin 1A receptors in human neocortex and hippocampus. *Brain research* 758:26–32.

Parsey R V., Oquendo MA., Simpson NR., Ogden RT., Van Heertum R., Arango V., Mann JJ. 2002. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. *Brain research* 954:173–82.

Saiz PA., Garcia-Portilla MP., Herrero R., Arango C., Corcoran P., Morales B., Bascarán M-T., Alvarez V., Coto E., Paredes B., Fernández JM., Bobes J. 2010. Interactions between functional serotonergic polymorphisms and demographic factors influence personality traits in healthy Spanish Caucasians. *Psychiatric genetics* 20:171–8. DOI: 10.1097/YPG.0b013e32833a20b9.

Shrestha S., Hirvonen J., Hines CS., Henter ID., Svenningsson P., Pike VW., Innis RB. 2012. Serotonin-1A receptors in major depression quantified using PET: Controversies, confounds, and recommendations. *NeuroImage* 59:3243–3251. DOI: 10.1016/j.neuroimage.2011.11.029.

Stein P., Savli M., Wadsak W., Mitterhauser M., Fink M., Spindelegger C., Mien L-K., Moser U., Dudeczak R., Kletter K., Kasper S., Lanzenberger R. 2008. The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-11C]WAY-100635. *European Journal of Nuclear Medicine and Molecular Imaging* 35:2159–2168. DOI: 10.1007/s00259-008-0850-x.

Tauscher J., Paul N., Verhoeff LG., Christensen BK., Hussey D., Meyer JH., Kecojevic A.,
Javanmard M., Kasper S., Kapur S. 2001. Serotonin 5-HT 1A Receptor Binding Potential Declines with Age as Measured by [11 C]WAY-100635 and PET. NEUROPSYCHOPHARMACOLOGY 24.

Verhagen J., Wagenmakers E-J. 2014. Bayesian tests to quantify the result of a replication attempt. Journal of experimental psychology. General 143:1457–75. DOI: 10.1037/a0036731.

Vollenweider FX., Vontobel P., Hell D., Leenders KL. 1999. 5-HT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man--a PET study with [11C]raclopride. Neuropsychopharmacology 20:424–433.

Wagenmakers E-J., Morey RD., Lee MD. 2016. Baysian Benefits for the pragmatic researcher. Current Directions in Psychological Science 25:169–176. DOI: 10.1177/0963721416643289.

Wagenmakers E-J., Verhagen J., Ly A. 2016. How to quantify the evidence for the absence of a correlation. Behavior research methods 48:413–26. DOI: 10.3758/s13428-015-0593-0.
Table 1 (on next page)

TCI scores and B_{ND} in the original study (Borg et al., 2003) and the present replication study.

Abbreviations: TCI, Temperament and Character Inventory; ST, self-transcendence; SA, spiritual acceptance; B_{ND}, binding potential.
	Original study	Replication		
	Mean (SD)	Range	Mean (SD)	Range
TCI scores				
ST	9.4 (3.8)	3-15	9.7 (5.8)	2-24
SA	4.7 (3.0)	0-9	3.9 (3.1)	0-12
BP_{ND} values				
Dorsal raphe nuclei	2.2 (0.87)	0.81 - 4.11	1.7 (0.48)	0.64 - 2.88
Hippocampus	4.7 (1.49)	1.91 - 7.15	5.1 (1.41)	2.27 - 8.14
Frontal cortex	3.2 (0.90)	1.60 - 4.55	3.3 (0.73)	1.21 - 4.61
Table 2 (on next page)

Pearson’s r, default BF and replication BF for 5-HT$_{1A}$ BN$_{ND}$ and self-transcendence/spiritual acceptance for frontal cortex, hippocampus and dorsal raphe nuclei for present & Karlsson's replication.

Abbreviations: TCI, Temperament and Character Inventory; r, Pearson’s correlation efficient; BF$_{0 \text{r}}$, the default BF representing the relative likelihood of the null hypothesis (H$_{0}$: no correlation) compared to the alternative hypothesis (H$_{r}$: negative correlation), given the data; BF$_{0 \text{r}}$, replication BF representing the relative likelihood of the null hypothesis (H$_{0}$: no correlation) compared to the alternative hypothesis H$_{r}$ obtained from the original study (H$_{r}$: posterior of ρ given the original study), given the data.
	Pearson’s r	P-value	Present Replication	Karlsson Replication		
			BF_{0r}	BF_{0r}	BF_{0r}	BF_{0r}
Self-transcendence (ST)						
- frontal cortex	-0.06	0.70	5.3	8.1	4.8	7.6
- hippocampus	-0.19	0.20	2.5	2.3	5.0	9.0
- dorsal raphe nuclei	-0.11	0.46	4.3	6.4	1.8	2.4
Spiritual acceptance vs material rationalism (SA)						
- frontal cortex	-0.03	0.86	5.6	12.8	6.0	12.3
- hippocampus	-0.12	0.41	4.1	31.5	4.0	33.8
- dorsal raphe nuclei	-0.16	0.27	3.1	21.2	2.6	17.8
Figure 1

Correlation between self-transcendence (ST) and spiritual acceptance (SA) scales on TCI and 5-HT\textsubscript{1A} receptor binding potential (BP\textsubscript{ND}) in frontal cortex, dorsal raphe nuclei and hippocampus in 50 healthy men.

(A) Self-transcendence in frontal cortex. (B) Self-transcendence in hippocampus. (C) Self-transcendence in dorsal raphe nuclei. (D) Spiritual acceptance in frontal cortex. (E) Spiritual acceptance in hippocampus. (F) Spiritual acceptance in dorsal raphe nuclei. **Abbreviations:** TCI, Temperament and Character Inventory.
Figure 2

Prior and posterior probability distributions for the correlation coefficient for the Bayesian test for replication of the correlation between self-transcendence/spiritual acceptance and 5-HT$_{1A}$ BP$_{ND}$.

(A) Self-transcendence in frontal cortex. (B) Self-transcendence in hippocampus. (C) Self-transcendence in dorsal raphe nuclei. (D) Spiritual acceptance in frontal cortex. (E) Spiritual acceptance in hippocampus. (F) Spiritual acceptance in dorsal raphe nuclei. The curves represent conditional probability distributions, π, of the correlation coefficient (ρ), given the data (d) for the original (ori), replication (rep) and both studies together (all). $\pi(\rho)$ represents the uniform prior distribution assumed for the original study (Borg et al., 2003). $\pi(\rho|d_{ori})$ represents the posterior distribution of the original study. $\pi(\rho|d_{rep})$ represents the posterior distribution of the replication study, assuming a uniform prior (i.e. without taking the results of the original study into consideration – the posterior based on a uniform prior on ρ). $\pi(\rho|d_{all})$ represents the posterior distribution of the replication study using the posterior distribution of the original study as prior (i.e. the posterior distribution taking the results of both studies into consideration). The grey points indicate the height of the prior and posterior distributions at the sceptic’s null hypothesis that the effect size is zero. The ratio of these two points is the replication BF. Abbreviations: BF$_{or}$, replication BF representing the relative likelihood of the null hypothesis (H_0: no correlation) compared to the alternative hypothesis H_r, obtained from the original study (H_r: posterior of ρ given the original study), given the data.
