Comparative Mitochondrial Genome Analyses of Sesarmid and Other Brachyuran Crabs Reveal Gene Rearrangements and Phylogeny

Yue-Tian Li1,2,3†, Zhao-Zhe Xin1,4,5†, Ying-Yu Tang1,5†, Ting-Ting Yang1,5†, Bo-Ping Tang1*†, Yue Sun1, Dai-Zhen Zhang1, Chun-Lin Zhou1, Qiu-Ning Liu1* and Xiao-Min Yu2*†

1 Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Biomass Resources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, Yancheng, China, 2 School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China, 3 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai, China, 4 College of Life Sciences, Nankai University, Tianjin, China, 5 College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China

Mitochondrial genomes (mitogenomes) are important for understanding molecular evolution and phylogenetic relationships. The complete mitogenome of Perisesarma bidens was determined, which is 15,641 bp in length. The A + T content of P. bidens mitogenome was 74.81%. The AT skew was slightly negative (−0.021). The 22 tRNAs ranged from 65 to 73 bp and were highly A + T biased. All tRNA genes had typical cloverleaf structures, except for the trnS1 gene, which lacked a dihydrouridine (DHU) arm. The gene order within the P. bidens mitogenome was identical to the pancrustacean ground pattern, except for the translocation of the trnH. Additionally, the gene order of trnI-trnQ-trnM in pancrustacean ground pattern became trnQ-trnI-trnM in P. bidens. Phylogenetic analyses supported the inclusion of P. bidens in Sesarmidae and the promotion of Sesarminae to Sesarmidae. The results will help us to better understand the status and evolutionary history of Grapsoidea crabs.

Keywords: mitochondrial genomes, phylogeny, gene order, crustacean, Perisesarma bidens

INTRODUCTION

Decapoda is the most diverse, species-rich group of crustaceans, containing many well-known animal species, such as crayfish, lobsters, shrimps, hermit crabs, and “true” crabs (Shen et al., 2013; Basso et al., 2017). The true crabs belong to Brachyura, which is a diverse, economically important group, with about 7200 described species (De Grave et al., 2009; Ahyong et al., 2011). Brachyura is highly adaptable and can live on land and in both marine and fresh water. Therefore, crabs have become

Abbreviations: A, adenine; Atp6 and Atp8, genes for the ATPase subunits 6 and 8; BI, Bayesian inference; BP, Base pair; C, cytosine; Cox1-cox3, genes for cytochrome C oxidase subunits I–III; G, guanine; l-rRNA (large), rRNA subunit; Mitogenomes, Mitochondrial genomes; ML, maximum likelihood; mtDNA, mitochondrial DNA; Nad1–nad6 and nad4L, genes for NADH dehydrogenase subunits 1–6 and 4L; PCGs, protein-coding genes; rRNA, ribosomal RNA genes subunit; s-rRNA, (small); T, thymine; tRNAX, transfer RNA, where X is replaced by three letters amino acid code of the corresponding amino acid.
important groups for the study of evolution (Castro et al., 2015). Some Brachyura are edible and medicinal and have economic importance (Carpenter and Niem, 1998).

Most Brachyura are grouped into the Podotremata, Heterotremata, and Thoracotremata, with the latter two referred to as the Eubrachyura. However, the phylogenetic relationships within Eubrachyura remain controversial, particularly the relationships of the Sesarmidae and Varunidae, and between these two and Grapsidae (Schubart et al., 2000, 2002; Kitaura et al., 2002). The traditional classification of Grapsidae contains four subfamilies: Grapsinae, Plagusiinae, Sesarminae, and Varuninae (Schubart et al., 2000). Traditional methods place the following in the Sesarminae: Perisesarma bidens, Sesarmops sinensis, Clistocoeloma sinensis, Helice tientsinsensis, Helice latimera, Helice wuana, and Metaplax longipes. Of these, P. bidens and S. sinensis should be Sesarmops crabs; C. sinensis should be a Clistocoeloma crab; H. tientsinsensis, H. latimera, and H. wuana should be Helice crabs and M. longipes should be a Metaplax crab (Schubart et al., 2000). However, some scholars have suggested that Grapsidae should be promoted and should be a Sesarmops, i.e., Grapsidae, Varunidae, Sesarmidae and Plagusiidae. Other scholars have suggested that Grapsidae should be promoted and should be a Sesarmops, i.e., Grapsidae, Varunidae, Sesarmidae and Plagusiidae. Other scholars have suggested that Grapsidae should be promoted and should be a Sesarmops, i.e., Grapsidae, Varunidae, Sesarmidae and Plagusiidae. Other scholars have suggested that Grapsidae should be promoted and should be a Sesarmops, i.e., Grapsidae, Varunidae, Sesarmidae and Plagusiidae.

The classification of these taxa remains unresolved. Sesarmid crabs are common in mangroves and areas of the controversial taxa, Sesarmidae and Grapsidae.

Materials and Methods

Ethics Statement

We have taken a close look at the website1. We found that the species *Perisesarma bidens* is not considered endangered or protected species, the IUCN status for this species is “Not evaluated.” Similarly, the species *Perisesarma bidens* is also Not endangered or protected species in China. No special permit is required to collect crabs at selected sites in China. The sampling locations are Not privately-owned or natural protected areas, the collection of this species is legal in China. So we can use this species for experiments and subsequent analysis.

Sample Collection

Specimens of *P. bidens* were collected from the seaside of Zhangzhou City, Fujian Province, China, identified using the morphological methods of Dai (1999) and molecular identification with COI marker, and preserved in 95% ethanol at –20°C until DNA extraction. Voucher specimens of *P. bidens* were deposited in the Jiangsu Provincial Key Laboratory of Coastal Wetland Biodiversity and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng, China.

DNA Extraction, PCR, and Genome Sequencing

Total genomic DNA was extracted from muscle using a genomic DNA extraction kit (Sangon, China), following the manufacturer’s instructions, and was visualized on 1.0% agarose gels. The complete mitogenome was obtained using a combination of conventional PCR and long PCR to amplify overlapping fragments spanning the entire mitogenome. Initially, conserved sequences, such as *cox1*, *cox3*, *nad5*, *nad4*, and *rrnS*, were amplified by conventional PCR using universal primers synthesized by Beijing Sunbiotech (Tang et al., 2003, 2017, 2018; Liu et al., 2015; Xin et al., 2017a,b).

We designed species-specific primers to amplify large overlapping regions of the mitogenome based on conserved sequences using Primer Premier 5 (Supplementary Table S1). All amplifications were performed on a Mastercycler (Eppendorf) and Mastercycler gradient. The reactions were 50 µL and contained 34.65 µL ddH2O, 5 µL 10 × LA PCR buffer II (Mg2+ Plus, AIDLAB), 4 µL dNTPs (10 mM), 2 µL each primer (10 µM), 0.35 µL red *Taq* DNA Polymerase (5 U/µL, AIDLAB), and 2 µL DNA template (~30 ng).

The PCR conditions for conserved sequences followed a standard three-step protocol, with an initial denaturing at 96°C

1https://www.gbif.org/en/species/4382775
TABLE 1 | List of brachyuran species with their GenBank accession numbers.

Species	Family	Superfamily	Size (bp)	Accession No.
Sesarmops sinensis	Sesarmidae	Grapsoidea	15,905	KR336554
Clitocoleoma sinensis	Sesarmidae	Grapsoidea	15,706	KUS89292
Perisesarma bidens	Sesarmidae	Grapsoidea	15,641	KY808394
Metaplax longipes	Varunidae		16,424	MF198248
Helice latimera	Varunidae		16,246	KUS89291
Helice bientinensis	Varunidae		16,212	KR336555
Helice wuana	Varunidae		16,359	KO344898
Sesarma neglectum	Sesarmidae	Grapsoidea	15,920	KX156964
Metopaullia depressus	Sesarmidae	Grapsoidea	15,765	KX118277
Parasesarmops trpectinis	Sesarmidae	Grapsoidea	15,612	KU343209
Eriocheir japonica japonica	Varunidae		16,352	FJ455505
Eriocheir japonica sinensis	Varunidae		16,378	KMM16908
Eriocheir japonica hepuensis	Varunidae		16,335	FJ455506
Cyclograpsus granulosus	Varunidae		16,300	LN624373
Pachygrapsus crassipes	Grapsidae		15,652	KCB878511
Grapsus tenuicrastus	Grapsidae		15,858	KT787821
Xenograpsus testudinitus	Xenograpsidae		15,798	EU727203
Xenograpsus ngatama	Xenograpsidae		16,106	KYY85236
Portunus pelagicus	Portunidae	Portunoidea	16,157	KMM77882
Callinctesapidus	Portunidae		16,263	AY863392
Portunus triturcularatus	Portunidae		16,026	AB093006
Portunus sanguinolentus	Portunidae		16,024	KT438509
Charybdis japonica	Portunidae		15,738	FJ460517
Scylla paramamosain	Portunidae		15,824	JX457150
Scylla olivacea	Portunidae		15,723	FJ827760
Scylla tranquebarica	Portunidae		15,833	FJ827759
Scylla serrata	Portunidae		15,775	FJ827758
Charybdis feriata	Portunidae		15,660	KF386147
Charybdis natator	Portunidae		15,664	MF285241
Thalamita crenata	Portunidae		15,787	LK391945
Chaceon granulatus	Geryonidae		16,135	AB769383
Chaceon sp.	Geryonidae		16,126	KUS507298
Gandatus yunohana	Bythograeidae	Bythograeoida	15,567	EU647222
Gandatus puia	Bythograeidae	Bythograeoida	15,548	KRP02727
Austrograea alayseae	Bythograeidae		15,620	JQ305660
Austrograea Rodriguesensis	Bythograeidae		15,611	JQ305658
Sagonzacija mesatlantica	Bythograeidae		15,521	KYS41839
Homologenus malayensis	Homolidae	Homoloidae	15,793	KJ612407
Moloha majora	Homolidae	Homoloidae	15,903	KT182069
Geothelphusa dehaani	Potamidae	Potamoidea	18,197	AB187570
Longpotamon xiaoshuense	Potamidae		18,460	KU024041
Huananpotamon lichuanense	Potamidae		15,380	KX639824
Somannialtheplpha boyangensis	Parathelphusidae		17,032	KU024042
Pseudocarcinus gigas	Eriphidae	Xanthoidea	15,515	AY962127
Leptodius sanguineus	Xanthidae		15,480	KT986744
Myomenippe fornasinii	Menippidae	Erphoidea	15,658	LK391943
Ocypode cordimanus	Ocypodidae	Ocypodoidea	15,604	KT896743
Ocypode ceratophthalmus	Ocypodidae		15,584	LN611669
Ilyoplax deschampsi	Doliidae		15,460	JF909979
Mictyris longipenis	Mictyridae		15,548	LN611670
Macrophthalmus japonicus	Macrophthalmidae		16,170	KU343211
Umalia orientalis	Raninidae	Raninoidea	15,466	KMM35084
Lyneidus brevisfons	Raninidae		16,112	KMM38394
Ranina ranina	Raninidae		15,563	KMM189817

(Continued)
for 3 min, then 40 cycles of 94°C for 30 s, annealing at the recommended temperature for each primer for 30 s, and elongation at 72°C for 45 s, with a final 5 min extension at 72°C.

The PCR conditions for large overlapping regions followed a standard two-step protocol with 3 min at 94°C, followed by 35 cycles of 35 s at 94°C, 3–6 min at 50–56°C, and 10 min at 72°C. All PCR products were sent to General Biosystems, Anhui for Sanger sequencing.

Annotation and Alignment

The sequence was annotated using DNASTAR (DNASTAR, Madison, WI, United States). The locations of the PCGs, rRNA genes, tRNA genes, and CR were initially identified using the MITOS Web Server. The PCG coding regions were further identified using the NCBI ORF Finder. Two rRNA genes were identified by alignment with published brachyuran sequences. Codon usage and the nucleotide composition of the mitogenomes were determined using MEGA6 (Tamura et al., 2013). The nucleotide sequence of the complete P. bidens mitogenome was deposited in the NCBI database under accession no. KY808394. Gene orders in the complete mitogenome were also inferred through the MITOS Web Server.

Phylogenetic Analyses

We used nucleotide (NT) sequences for phylogenetic analyses. The sequences were aligned using MAFFT using the default settings (Katoh et al., 2002). Gaps in the sequences were removed using Gblocks (Castresana, 2000), and the saturation of the sequences was examined using DAMBE (Xia and Xie, 2001), which indicated that the sequences were not saturated and were suitable for phylogenetic analyses. Complete mitogenomes of 65 decapods (60 crabs plus 5 outgroups) were downloaded from NCBI (Table 1). The five outgroups were Cherax destructor, Cambaroides similis, Neopetrolisthes maculatus, Paralithodes camtschaticus, and Pagurus longicarpus.

Phylogenetic analyses were performed using Bayesian inference (BI) and maximum likelihood (ML) methods.

TABLE 1 Continued

Species	Family	Superfamily	Size (bp)	Accession No.
Dynomene pilumnoides	Dynomenidae	Dromioidea	16,475	KT1820200
Ashtorei lunaris	Matutidae	Calapoidea	15,807	LK931941
Maja squinado	Majidae	Majoidea	16,598	KY650652
Maja crispata	Majidae		16,592	KY650651
Chionoecetes japonicus	Majidae		15,341	AB735678
Damithrax spinosissimus	Mithracidae		15,817	KM405516
Cherax destructor	Parastacidae	Paguroidea	15,713	HG799087
Cambaroides similis	Cambaridae	Astacoidea	16,220	NC016925
Neopetrolisthes maculatus	Porcellanidae	Galatheoidea	15,324	KC107816
Paralithodes camtschaticus	Lithodiidae		16,720	NC020029
Pagurus longicarpus	Paguridae		15,630	AF150765

TABLE 2 Summary of the P. bidens mitogenome.

Gene	Direction	Location	Size (bp)	Intergenic nucleotides	
cox1	F	1–1560	1560	−25	
trnL2	F	1536–1604	69	5	
cox2	F	1610–2317	708	−20	
trnK	F	2298–2366	69	0	
trnD	F	2367–2434	68	0	
atp8	F	2435–2593	159	−7	
atp6	F	2587–3261	675	−1	
cox3	F	3261–4052	792	−1	
trnG	F	4052–4116	65	0	
nad3	F	4117–4467	351	2	
trnA	F	4470–4536	67	10	
trnR	F	4547–4612	66	2	
trnN	F	4615–4681	67	0	
trnS1	F	4682–4748	67	1	
trnE	F	4750–4815	66	4	
trnH	R	4820–4884	65	0	
trnF	R	4885–4950	66	1	
nad5	R	4962–6682	1731	41	
nad4	R	6742–8073	1250	−7	
nad4L	R	8067–8369	303	8	
trnT	F	8378–8442	66	0	
trnP	R	8444–8509	66	2	
nad6	F	8512–9015	504	−1	
cob	F	9015–10,149	1135	0	
trnS2	F	10,150–10,217	68	15	
nad1	R	10,233–11,171	939	34	
trnL1	R	11,206–11,271	66	0	
mL	R	11,272–12,612	1341	0	
trnV	R	12,613–12,685	73	0	
ms	R	12,686–13,515	830	0	
CR	—		13,516–14,193	678	0
trnQ	R	14,194–14,263	70	23	
trnL	F	14,287–14,354	68	8	
trnW	F	14,363–14,431	69	0	
nad2	F	14,432–15,439	1008	2	
trnW	F	15,442–15,511	70	−3	
trnC	R	15,509–15,573	65	0	
trnY	R	15,574–15,641	68	−	
using MrBayes v 3.2.2 (Ronquist et al., 2012) and IQ-Tree (Nguyen et al., 2014; Kalyaanamoorthy et al., 2017; Hoang et al., 2018), respectively. The GTR model was selected by MrModeltest 2.3 (Nylander, 2004). The BI analyses ran four independent chains for 10,000,000 generations, sampled every 100 generations, with a burn-in of 25,000 generations. The average standard deviation of split frequencies was < 0.01. Convergence was assessed using Tracer v1.6 and the effective sampling size for all parameters was > 200. The ML analyses were performed on 1000 bootstrap replications. The resulting phylogenetic trees were visualized using FigTree v1.4.2.

RESULTS AND DISCUSSION

Genome Structure, Organization, and Composition

The complete mitogenome of *P. bidens* was a circular of 15,641 bp (GenBank accession no. KY808394). Its size was within the

![Diagram of P. bidens mitogenome](image)

Perisesarma bidens

Complete mitochondrial genome

15,641 bp

FIGURE 1 | Map of the *P. bidens* mitogenome. Protein-coding and ribosomal genes are shown with standard abbreviations. Genes for tRNAs are abbreviated by single letters, with S1 = AGN, S2 = UCN, L1 = CUN, and L2 = UUR. CR, control region.
range observed in completely sequenced brachyuran species. The mitogenome composition (A: 36.61%, T: 38.20%, C: 15.13%, G: 10.06%) was strongly A + T biased which accounts for 74.81%, and exhibited with negative AT-skew (−0.021). The AT-skew of the mitogenomes of most crabs were negative, for example, *H. wuana* (Tang et al., 2018), *S. sinensis* (Tang et al., 2017), *H. tientsinensis* (Xin et al., 2017b), *C. sinensis* (Xin et al., 2017a), the AT-skew value of mitogenomes in other crabs had also been calculated and counted in related studies (Xin et al., 2017a,b). The genes were typical of animal mitogenomes, with 22 tRNA genes, 13 PCGs, 2 rRNA genes, and a CR (*Table 2*). Overall, 4 of the 13 PCGs (*nad5*, *nad4*, *nad4L*, and *nad1*), 8 tRNAs [*trnQ*, *trnC*, *trnY*, *trnF*, *trnP*, *trnL* (CUN), and *trnV*], and 2 rRNAs (*rrnL* and *rrnS*) were encoded by the minority strand, while the other 23 genes were encoded by the majority strand (*Table 2* and *Figure 1*). The 13 PCGs ranged from 159 to 1731 bp. Of 22 tRNA genes, 8 were encoded by the L-strand and the remaining 14 by the H-strand. All tRNAs had the typical clover-leaf secondary structures observed in mitochondrial tRNA genes, except for *trnS1* (AGN), which lacked a stable dihydrouridine (DHU) arm; this has been observed in several animals, including insect and brachyuran mitogenomes (Liu et al., 2015; Xin et al., 2017a,b). *Figure 2* shows the relative synonymous codon usage (RSCU) of *P. bidens*. The codon usage was biased with a high frequency of AT compared to GC in the third codon position. The codon usage analysis revealed that the leucine 2 (*Leu2*), isoleucine (*Ile*), phenylalanine (*Phe*) codon families were most frequently utilized, while cysteine (*Cys*) family was the least used (*Figure 3*).

Gene Order in Sesarmidae

The gene order of *P. bidens* was identical to other Sesarmidae species in our study. In contrast to the inferred ancestral gene sequences of Pancrustaceans, where *trnH* was located between *nad5* and *nad4*, here it was found between *trnE* and *trnF*. In Pancrustaceans, the tRNA gene sequences between CR and *trnM* was *trnI-trnQ*, but here was *trnQ-trnI* (*Figure 4A*).

The duplication/random loss model was used to explain the rearrangements seen in Sesarmidae (Moritz and Brown, 1987; Macey et al., 1997; Boore and Brown, 1998). The movement of *trnH* can be explained as follows. First, gene duplication occurred in *trnF*, *nad5*, and *trnH*, changing the arrangement of *trnF-nad5-trnH* to *trnF-nad5-trnH-trnF-nad5-trnH*. Then, the redundant *trnF*, *nad5*, and *trnH* genes were lost at random. Finally, the new gene order of *trnH-trnF-nad5* was formed (*Figure 4B*). The order principles of *trnQ* moving from the junction between *trnI* and *trnM* to between the CR and *trnI* could also be explained similarly (*Figure 4C*).

Gene Order of Crabs From Other Families

The gene orders of all species are shown in *Figure 5*. The gene sequences within 13 families were the same. The gene order pattern of *Macrophthalmus japonicus* (Ocypodoidea, Macrophthalmidae) was identical to that of other Varunidae. The gene orders of *Damithrax spinosissimus* (Majoidea, Mithracidae) and *Dynomene pilumnoides* (Dromioidea, Dynomenidae) were different, as were those of two Xenograpsidae crabs (*Xenograpsus testudinatus* and *X. ngatama*). However, two Majidae crabs (*Maja*...
FIGURE 3 Amino acid composition of the *P. bidens* mitogenome.

FIGURE 4 Generation of the *P. bidens* mitochondrial gene arrangement. The duplication/random loss, recombination, and duplication/non-random loss models were used to explain the principle of gene rearrangement. (A) Comparison of gene order in mitogenome of Perisesarma bidens and Pancrustacean ground pattern. tRNA genes are indicated by the singler letter IUPAC-IUB abbreviation with S1 = AGN, S2 = UCN, L1 = CUN, and L2 = UUR, where as protein and rRNA genes are labeled with three letter codes. (B) Gene duplication occurred in trnF, nad5, and trnH, changing the arrangement of trnF-nad5-trnH to trnF-nad5-trnH-trnF-nad5-trnH. Then, the redundant trnF, nad5, and trnH genes were lost at random. Finally, the new gene order of trnH-trnF-nad5 was formed. (C) Gene duplication occurred in trnI, trnQ, and trnM, changing the arrangement of trnI-trnQ-trnM to trnI-trnQ-trnM-trnI. Then, the redundant trnI, trnM, and trnQ genes were lost at random. Finally, the new gene order of trnQ-trnI-trnM was formed.

squinado and *M. crispata*) had the same gene order. Interestingly, although there were only four species of Potamoide, each showed a different gene order.

Phylogenetic Analyses

The phylogenetic trees were constructed based on 13 PCGs under ML and BI methods, which resulted in congruent tree topologies, except for minor differences within “Grapsoidea + Ocypodoidea” (Figure 6). As shown in Figure 6, *P. bidens* formed a well-supported clade with *Parasesarmops tripectinis* (BP = 100; BPP = 1). (*P. bidens + P. tripectinis*) clade, (*S. sinensis + S. neglectum*) clade, (C. sinensis + *M. depressus*) clade were well supported with each other; these results were in accordance with the information provided by the same genes orders of...
P. bidens, P. tripectinis, S. sinensis, S. neglectum, C. sinensis, and M. depressus. Moreover, S. neglectum, M. depressus, and P. tripectinis all belonged to Sesarmidae (Park et al., 2018). Therefore, P. bidens, S. sinensis, and C. sinensis should belong to Sesarmidae rather than to Sesarminae. The species originally belonging to the Sesarminae should belong to the Sesarmidae. These results agree with previous analyses using the mitogenome of one species (Tang et al., 2017; Xin et al., 2017a,b).

In our study, two families (Potamidae and Parathelphusidae) were primarily freshwater crabs and were recognized as true heterotremes (Guinot et al., 2013). The systemic status of primary freshwater crabs had stimulated interest because of their high value and diversity (Cumberlidge et al., 2009; Klaus et al., 2010). The monophyly of Potamidae and Parathelphusidae was confirmed based on morphological and molecular analyses. However, there still were uncertainties regarding the phylogenetic placement of Potamidae and Parathelphusidae (Xing et al., 2017). Von Sternberg and Cumberlidge (2001) suggested that these two families Potamidae and Parathelphusidae should be placed in Thoracotremata. Here, the Thoracotremata contained Grapsoidea and Ocypodoidea crabs. Our results showed that four heterotreme crabs (Geothelphusa dehaani, Longpotamon xiushuiense, Huananpotamon lichuanense, and Somanniathelphusa boyangensis) were actually more closely associated with thoracotreme crabs, showing that Heterotremata was not monophyletic; this result was in accordance with that inferred from 23 brachyuran crabs, in which the author use the two mitogenomes (Ji et al., 2014). Within Podotremata, the clade was monophyletic. The six crabs formed a robust clade [(Homolidae + Dynomenidae) + Raninidae]. Within Heterotremata, the phylogenetic relationships were clear, with
Li et al. Mitochondrial Genome of Perisesarma bidens

FIGURE 6 | Phylogenetic trees were constructed using BI and ML methods based on NT dataset. Bootstrap values (BP) (IQ-Tree) and Bayesian posterior probability (BPP) of each node are shown as BP based on NT dataset/BPP based on NT dataset. C. destructor, C. similis, N. maculatus, P. camtschaticus, and P. longicarpus were used as outgroups. The supermatrix underlying this figure is as a Supplementary File.

the exception of the four potamid crabs, which were outside of the heterotreme crabs.

DATA AVAILABILITY STATEMENT
The datasets generated for this study can be found in the GenBank accession no. KY808394.

AUTHOR CONTRIBUTIONS
Q-NL, B-PT, and X-MY conceived and designed the study. Z-ZX, Q-NL, Y-YT, and T-TY conducted the molecular work and data analysis. Z-ZX and Y-TL drafted the manuscript. Z-ZX, Q-NL, Y-YT, YS, D-ZZ, C-LZ, and T-TY prepared all figures and tables. Z-ZX and Q-NL performed the phylogenetic analyses. Z-ZX, Q-NL, B-PT, and X-MY contributed to drafting the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING
This work was supported by the National Natural Science Foundation of China (31672267), the Jiangsu Agriculture Science and Technology Innovation Fund (CX(18)3027), the China Postdoctoral Science Foundation (2018M642105), the Research Start-up Fund of Wenzhou Medical University (QTJ16017), the Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences (201713), the 16th Six Talents Peak Project of Jiangsu Province (NY-126), and the “Outstanding Young Talents” of YCTU for Q-NL, and sponsored by Qing Lan Project of Jiangsu Province.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2020.536640/full#supplementary-material
REFERENCES

Ahlyong, S. T., Lowry, J. K., Alonso, M., Bamber, R. N., Boxshall, G. A., Castro, P., et al. (2011). "Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness," in Zootaxa, Vol. 3146, ed. Z.-Q. Zhang (Auckland: Magnolia Press), 165–191. doi: 10.11646/zootaxa.3148.1.33

Basso, A., Massimiliano, B., Marianna, P., Emilio, R., Tomaso, P., Enrico, N., et al. (2017). The highly rearranged mitochondrial genomes of the crabs Maja crispatula and Maja squinado (Majidae) and gene order evolution in Brachyura. Sci. Rep. 7:4096.

Bergsten, J. (2005). A review of long-branch attraction. Cladistics 21, 163–193. doi: 10.1011/0160-0311-2005.00059.x

Boore, J. L., and Brown, W. M. (1998). Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr. Opin. Genet. Dev. 8, 668–674. doi: 10.1016/S0959-437X(00)00335-x

Brinkmann, H., and Philippe, H. (2008). Animal phylogeny and large-scale sequencing: progress and pitfalls. J. Syst. Evol. 46, 274–286. doi: 10.1017/978131688233.013

Carpenter, K. E., and Niem, V. H. (1998). The living marine resources of the Western Central Pacific. Cephalop. Crustac. Holothur. Sharks 2, 687–1396.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. doi: 10.1093/molbev/17.2.540

Castro, P., Davie, P. J. F., Guinot, D., Schram, F. R., von Vaupel, and Klein, J. C. (2015). The Crustacea; Complementary to the Volumes Translated from the French of the Traite de Zoologie. Leiden: Brill, 163.

Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R., and Embley, T. M. (2008). The archaebacterial origin of eukaryotes. Proc. Natl. Acad. Sci. U.S.A. 105, 20356–20361. doi: 10.1073/pnas.0810647105

Cumberlidge, N., Ng, P. K. L., Yeo, D. C. J., Magallâhes, C., Campos, M. R., Fernando, A., et al. (2009). Freshwater crabs and the biodiversity crisis: importance, threats, status, and conservation challenges. Biol. Conserv. 142, 1665–1673.

Dai, A. Y. (1999). Fauna Sinica. Arthropoda: Crustacea: Malacostraca: Decapoda: Parathelphusidae. Potamidae. Editorial Committee of Fauna Sinica, Academia Sinica. Beijing: Science Press, 501.

De Grave, S., Dean, P. N., Shane, A., Tin-Y am, C., Keith, C. A., Peter, D. C., et al. (2017). The highly rearranged mitochondrial genomes of the crabs Maja crispatula and Maja squinado (Majidae) and gene order evolution in Brachyura. Mol. Biol. Evol. 34, 494–503. doi: 10.1093/molbev/msx300

Li et al. Mitochondrial Genome of Perisesarma bidens

Tang, B. P., Xin, Z.-Z., Liu, Y., Zhang, D.-Z., Zhu, X. Y., et al. (2017). The complete mitochondrial genome of Erischeir japonica sinensis, (Decapoda: Varunidae) and its phylogenetic analysis. Biochem. Syst. Ecol. 62, 241–248. doi: 10.1016/j.bse.2015.09.008

Macey, J. R., Larson, A., Ananjeva, N. B., Fang, Z., and Papenfuss, T. J. (1997). Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol. Biol. Evol. 14, 91–104. doi: 10.1093/oxfordjournals.molbev.a025706

Moritz, C., and Brown, W. M. (1987). Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc. Natl. Acad. Sci. U.S.A. 84, 7183–7187. doi: 10.1073/pnas.84.20.7183

Ng, P. K. L., Li, J. J., and Shih, H. T. (2020). What is Sesarmops impressus (H. Milne Edwards, 1837) (Crustacea: Brachyura: Sesarmidae)? Zool. Stud. 59:27.

Nguyen, L. T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. doi: 10.1093/molbev/msv300

Nylander, J. (2004). MrModeltest v2. Program Distributed by the Author, Vol. 2. Uppsala: Evolutionary Biology Centre, Uppsala University.

Park, Y. J., Park, C., Lee, S. H., Ko, H. S., Ullah, I., Hwang, U. W., et al. (2018). The complete mitochondrial genome sequence of the intertidal crab Parasarcasem Tricentrippis (Arthropoda, Decapoda, Sesarmidae). Mitochond. DNA PART B 3, 193–194. doi: 10.1080/23802339.2018.1437804

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029

Schubart, C. D., Cuesta, J. A., Diesel, R., and Felder, D. L. (2000). Molecular phylogeny, taxonomy, and evolution of nonmarine lineages within the American grapsoid crabs (Crustacea: Brachyura). Mol. Phylogenet. Evol. 15, 179–190. doi: 10.1006/mpev.1999.0754

Shih, H., Braband, A., and Scholtz, G. (2013). Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Mol. Phylogenet. Evol. 66, 776–789. doi: 10.1016/j.ympev.2012.11.002

Shih, H. T., Hsu, P. Y., Shahadadi, A., Schubart, C. D., and Li, J. J. (2019). The synonymy of the supratidal crab species Parasesarma cognatum Rahayu & Li, 2013 with P. lio Koller, Liu & Schubart, 2010 (Decapoda: Brachyura: Sesarmidae) based on morphological and molecular evidence, with a note on P. pustulosus Rahayu & Ng. 2009. Zool. Stud. 58:21

Tang, B. P., Liu, Y., Xin, Z.-Z., Zhang, D.-Z., Wang, Z.-F., Zhu, X. Y., et al. (2018). Characterisation of the complete mitochondrial genome of Helice wuana (Grapsoidea: Varunidae) and comparison with other Brachyuran crabs. Genomics 110, 221–230. doi: 10.1016/j.genom.2017.10.001

Tang, B. P., Xin, Z.-Z., Liu, Y., Zhang, D.-Z., Wang, Z.-F., Zhang, H.-B., et al. (2017). The complete mitochondrial genome of Sesarmops sinensis reveals gene rearrangements and phylogenetic relationships in brachyura. PLoS One 12:e0179800. doi: 10.1371/journal.pone.0179800

Tang, B. P., Zhou, Y. K., Song, D. Y., Yang, G., and Dai, A. Y. (2003). Molecular systematics of the Asian mitten crabs, genus Eriocheir (Crustacea: Brachyura). Mol. Phylogenet. Evol. 29, 309–316. doi: 10.1016/s1055-7903(03)00112-x

Theuerkauff, D., Rivera-Ingraham, G. A., Roques, J. A. C., Azzopardi, L., Bertini, M., Lejeune, M., et al. (2018). Salinity variation in a mangrove ecosystem: a physiological investigation to assess potential consequences of salinity disturbances on mangrove crabs. Zool. Stud. 57:36

Von Sternberg, R., and Cumberlidge, N. (2001). On the Heterotremote-Thoracotreme distinction in the Eubrachyura de Saint Laurent, 1980 (Decapoda: Brachyura). Crustaceana 74, 321–338. doi: 10.1163/156854001300144I
Wägele, J. W., and Mayer, C. (2007). Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. *BMC Evol. Biol.* 7:147. doi: 10.1186/1471-2148-7-147

Xia, X., and Xie, Z. (2001). DAMBE: 2001. software package for data analysis in molecular biology and evolution. *J. Hered.* 92, 371–373. doi: 10.1093/jhered/92.4.371

Xin, Z. Z., Liu, Y., Zhang, D.-Z., Chai, X.-Y., Wang, Z.-F., Zhang, H.-B., et al. (2017a). Complete mitochondrial genome of *Clistoceloema sinensis* (Brachyura: Grapsoidea): gene rearrangements and higher-level phylogeny of the Brachyura. *Sci. Rep.* 7:4128.

Xin, Z. Z., Liu, Y., Zhang, D.-Z., Wang, Z. F., Zhang, H.-B., Tang, B.-P., et al. (2017b). Mitochondrial genome of *Helice tientsinensis* (Brachyura: Grapsoidea: Varunidae): gene rearrangements and higher-level phylogeny of the Brachyura. *Genes* 627, 307–314. doi: 10.1016/j.gene.2017.06.036

Xing, Y. H., Lijun, Z., Yue, H., Xiaoji, W., Chen, Z., Huilun, Z., et al. (2017). Complete mitochondrial genomes from two species of Chinese freshwater crabs of the genus *Sinopotamon* recovered using next-generation sequencing reveal a novel gene order (Brachyura, Potamidae). *ZooKeys* 705, 41–60. doi: 10.3897/zookeys.705.11852

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Li, Xin, Tang, Yang, Tang, Sun, Zhang, Zhou, Liu and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.