未消失混合小塊コークスが高炉下部通気性におよぼす影響

柏原 佑介1)・岩井 祐樹1)・佐藤 健1)・石渡 夏生1)・佐藤 道貴1)

Effect of Unconsumed Mixed Small Coke on Permeability in Lower Part of Blast Furnace
Yusuke Kashihara, Yuki Iwai, Takeshi Sato, Natsuo Ishiwata and Michitaka Sato

Synopsis : Utilization of small coke in the blast furnace was carried out to improve the permeability in the lower part of the blast furnace. However, at high small coke rates, it was thought that some small coke continues to exist in the lower part of the blast furnace because the small coke charging rate is larger than the gasification reaction rate of the small coke. Therefore, the effect of the small coke rate on permeability in the lower part of the blast furnace was investigated. At high small coke rates, it was thought that some small coke continues to exist in the lower part of the blast furnace because the small coke charging rate is larger than the gasification reaction rate of the small coke. Therefore, the effect of the small coke rate on permeability in the lower part of the blast furnace was investigated. It was estimated that the increase in the pressure drop of the coke packed bed in the lower part of the blast furnace after the coke gasification reaction, and the average particle diameter of the coke and the void fraction of the coke packed bed in the lower part of the blast furnace was larger than the decrease in pressure drop in the cohesive zone, and as a result, the pressure drop in the lower part of the blast furnace increased.

Key words: blast furnace; mixed coke charging; small coke; permeability; coke gasification reaction; cohesive zone.

1. 緒言

近年の製鉄工場では、地球温暖化防止の観点からCO2発生量削減が重要課題となっており、高炉での低還元元比（低RRA）、低コース比（低CR）操作の必要性が高まっている。低RRA（低CR）操作においては炉温の制御に加え、通気性の確保が重要であり、これらを達成するための手段の一つとして小塊コースの鉄鉱層内の混合装入が行われている1-3)。コース層内に小塊コースを混合した場合、過去の設計における通気抵抗の低減4)、そして小塊コースの優先的なカーボンガス化反応（ソリューショングス反応）によるコース粒子径の低下抑制5)により通気性が改善されることが知られている。したがって鉄鉱層内の小塊コースの混合は、多数の高炉で行われている。

しかしながら近年では小塊コースの使用量は徐々に増加してきており3)、高炉内のカーボンガス化反応によつて小塊コースが高炉内に降下する際に消費されないことが懸念されている6)。小塊コースが高炉内を降下する過程でカーボンガス化反応によって消費されない場合には、小塊コースがより低粒径のコースとなって高炉下部まで降下する。そして高炉下部のコース充填層内に低粒径となった小塊コースが存在すると、コース充填層の空隙率が低下して高炉下部の通気性を悪化させると推定される。しかしながらこの現象について詳細に検討された例はない。

この現象について検討するためには、小塊コースの高炉内におけるカーボンガス化反応挙動について検討する必要がある。まず小塊コースは、コース層として高炉内に装入されるコースコースより粒径が小さく比表面積が大きいため、カーボンガス化反応が優先的に起こっていると考えられる。次に鉄鉱層内に混合されたコースは、鉄鉱と炭材との近接配置により、炭材のカーボンガス化反応が促進されることが知られている7-9)。したがって鉄鉱層内に混合されたコースは、鉄鉱層内に混合されていないコース層内のコースより、カーボンガス化反応速度が速いと考えられる。これらの2つの効果により、鉄鉱層内に混合されたコースの粒径低下速度は、コース層内のコースの粒径低下速度より大きいと考えられる。したがって高炉内で鉄鉱層内に混合されたコースの粒径変化を予測するためには、これらの影響を考慮した解析が必要である。しかしながら従来の高炉数学モデル10)では、鉄鉱層内に混合されたコースと、鉄鉱層内に混合されていないコース層内のコースの粒径変化が区別されていないため、鉄鉱層内に混合されたコースの粒径変化を推定することが困難である。そのため小塊コースの挙動を考慮した解析方法についても検討する必要がある。
2. 高炉内における混合コークスの粒径変化予測

2・1 計算方法

鉱石層内に混合されたコークスの高炉内における粒径変化を推定するため、高炉数学モデルを用いて高炉内の温度分布、ガス組成分布、還元反応、そしてガスによるカーボンガス化反応と溶融還元によるアルカリガス化反応を計算した。ガスによるカーボンガス化反応はCO₂およびH₂Oとの反応があ、H₂Oの体積分率を用いて、ここでは主な役割を果たすと考えられるCO₂との反応をガスによるカーボンガス化反応とし、溶融還元によるカーボンガス化反応は、鉱石層内に混合された小塊コークスが優先的に反応するとし、塊コークスの溶融還元によるアノンガス化反応は、混合された小塊コークスの消費後に起こるとした。

カーボンガス化反応は、微粉炭由来を生産された未燃チャー、炉頂から装入された塊コークスと小塊コークスによる反応である。まず未燃チャーは高炉内で優先的に反応する[13]とし、微粉炭の燃焼率をダブルランスの0.7[10]と仮定し、微粉炭の吹込み量と微粉炭の燃焼率から未燃チャーの発生量を計算した。そして未燃チャーは全てガスによるカーボンガス化反応で消費されたとする[12]。

ガスによるカーボンガス化反応は、粒径差および反応速度差により塊コークスと鉱石層内に混合された小塊コークスの反応に分配した。鉱石層内に混合された小塊コークスのガス化反応速度は、鉱石、炭材の近接配置により混合されていない塊コークスのガス化反応速度よりも促進されるとし、ここではIwaiら[17]によって報告されているガス化反応促進係数を用いた。一般的な高炉操作では小塊コークスの混合量は約50 kg/t[23]であることから、ガス化反応促進係数を1.25とした。

塊コークスの粒径を一定として小塊コークスの粒径を変化させた場合における、塊コークスの総括反応速度（R2L（mol/（m²·s）））に対する小塊コークスの総括反応速度（R2S（mol/（m²·s）））の比率（R2S/R2L）の計算結果をFig.1に示す。このでの総括反応速度は、Muchiらによって整理され

| 層膜 | 粒子内拡散 | そして反応速度が考慮された総括反応速度式[16]を使用した。計算条件は塊コークスの粒径0.045 m、温度1100℃、ガス組成CO₂ = 100%である。粒径、温度、ガス組成等の条件が同じであれば、小塊コークスのガス化反応速度は、塊コークスのガス化反応速度より1.25倍速い。そして粒径が小さい小塊コークスでは、R2S/R2Lはさらに大きくなる。したがって、鉱石層内に混合された小塊コークスの高炉内におけるカーボンガス化反応速度は、塊コークスの高炉内におけるカーボンガス化反応速度よりも大きくなり予測される。

最後に、計算によって得られた小塊コークスおよび塊コークスそれぞれのガスおよび溶融還元によるカーボンガス化反応速度から、小塊コークス、塊コークスの高炉内における粒径変化を計算した。本計算においては、炉内下部におけるコークスの粉化現象は影響が小さいとして無視した。

2・2 計算結果

計算の一例として、計算条件をTable 1に、層頂のストックライシン（SL）から頂上レベルまでの計算結果をFig.2に示す。小塊コークスは鉱石層内の混合装置とした。小塊コークスは塊状のガスにカーボンガス化反応により徐々に粒径が低下し、融着帯等の溶融還元によるカーボンガス化反応により大きく粒径が低下し、最終的には高炉内で消失した。塊コークスについては粒径がほとんど低下しなかった。

Table 1. Calculation conditions.

算出方法	Nm³/t	940
Blast temperature	°C	1150
Blast moisture	g/Nm³	29.0
Oxygen enrichment	%	5.6
Coke rate	kg/t	380
Small coke rate	kg/t	30
PCR	kg/t	145
O/C	–	4.27
Lump coke diameter	m	0.045
Small coke diameter	m	0.025

Fig. 1. Effect of small coke diameter on R2S/R2L.
次に小塊コーチを含む混合物の小塊コーチの合計になる場合における小塊コーチの高炉内の様子を示した。計算条件をTable 1に示す。小塊コーチの混合量が30 kg/tの条件に対して、小塊コーチの混合量を増加させ

3. Fig. 3. Effect of small coke rate on small coke diameter in blast furnace.

Fig. 4. Effect of small coke rate on residual small coke diameter in lower part of blast furnace and gasification reaction ratio of small coke.
3. 高炉下部充填層を模擬した通気性評価実験

3.1 充填層における空隙率の推定方法

高炉内でのコース充填層の空隙率の推定式は、Yamadaらにより実験式が提案されている。この式は、調合平均径と粒度分布の拡がりの大きさを示す指数I_pにより空隙率を推定する近似式である。しかしながらこの式では大粒径のコース（24〜63 mm）に適用が限られているため、小粒コースのような小粒径のコースを使用する場合には適用できない。そこで本報では小粒径のコースを用いて実験を行い、式中の調合平均径に関する項についてパラメータの再設定を行った。

充填層の空隙率εは、(1) 式に基づいて、嵩密度ρ_sと見掛密度ρ_aから求められる。

\[\varepsilon_s = 1 - \left(\frac{\rho_s}{\rho_a} \right) \]

(1)

嵩密度の測定にはFig.5に示す実験装置を使用した。内径300 mm（R）、高さ1000 mm（L）の円筒形の容器内に装入されたコースの重量（M）を測定し、次式によって嵩密度を求めた。

\[\rho_s = \frac{4M}{\pi R^2 L} \]

(2)

見掛密度は、JIS K2151の方法により測定した。

10〜15 mm、15〜20 mm、20〜25 mm、そして25〜35 mmのコースについて充填層の空隙率を測定した結果をFig.6に示す。調和平均径と空隙率との関係より、(3) 式に示すコース充填層における空隙率推定式を得た。

\[\varepsilon_s = \left(0.263 \log 10 \left(\frac{100d_p}{\rho_s} \right) + 0.317 \right) (1 - \Delta \varepsilon) \]

(3)

\[\Delta \varepsilon = 1.225 \times 10^2 \cdot \left(\frac{I_p}{I_{sp}} \right)^{0.415} \]

(4)

\[I_{sp} = 100 \sqrt{I_s \cdot I_p} \]

(5)

\[I_s = d_p^2 \cdot \sum w_i \cdot \left(1/d_i - 1/d_p \right)^2 \]

(6)

\[I_s = \left(1/d_p \right)^2 \cdot \sum w_i \cdot \left(d_i - d_p \right)^2 \]

(7)

ここでd_pは調和平均径（m）、I_pは粒度分布指数（-）である。また25〜35 mmのコース充填層に5〜25 mmの粒子を混合した多成分粒子のコース充填層について、空隙率の測定値と(3)〜(7)式による空隙率の計算値を比較した。

充填層の空隙率の測定値は、多成分粒子の嵩密度の測定値と、多成分粒子の混合比により計算された平均見掛密度を用いて(1)式により求めた。空隙率の測定値および計算値の比較をFig.7に示す。空隙率の測定値と計算値はよく一致しており、(3)〜(7)式は小粒径のコースに対する空隙率推定式として利用できると考えられる。

Fig. 5. Schematic illustration of experimental apparatus.

Fig. 6. Relationship between harmonic average diameter and voidage.

Fig. 7. Comparison of calculated voidage and voidage obtained from experiment.
Table 2. Experimental conditions.

Particle diameter	Case1	Case2	Case3	Case4
25-35 mm (mass%)	100	99	97	92
15-20 mm (mass%)	0	0	0	8
10-15 mm (mass%)	0	0	3	0
8-10 mm (mass%)	0	1	0	0

3.2 压力损失测定実験

3.2.1 実験方法および実験条件

Fig.5に示す実験装置を使用して充填層の圧力損失を測定する実験を行った。あらかじめ所定の粒度分布に配合されたコースを円筒容器内に充填し、充填層の下部から空気を160 Nm³/h流して充填層の圧力損失を測定した。

Table 2に実験条件を示す。高炉解体調査[15,16]および高炉サンプリング[20]による知見より、高炉下部のコース平均粒径を30 mmと考え、本実験では25-35 mmのコース充填層をベース条件とした。またFig.4に示されたように、小塊コース混合率が多い場合には、高炉下部に未消失の混合コースが低径径となって残存し、そして残存した小塊コース量が多いほど、混合コースの平均粒径が大きくなる。ここではこの計算結果を再現するように、25-35 mmのコース充填層内に混合される小粒子コースの粒径、混合率を設定した。

3.2.2 実験結果

混合された小粒子の比率と調和平均径、空隙率および圧力損失との関係をFig.8に示す。小粒子の比率が増加すると、調和平均径の低下および空隙率の低下により圧力損失が増加した。

次に圧力損失の増加におよぼす粒径低下および空隙率低下的影響について検討した。ここでは高炉下部の充填層の圧力損失の推定に用いられるErgun式（(8)式）[23]を使用した。

$$\frac{\Delta P}{\Delta L} = 150 \left(1 - \varphi \right) \frac{\mu u'}{\varepsilon^2} \varphi d_p' + 1.75 \frac{1 - \varepsilon}{\varepsilon^2} \frac{\rho u'^2}{\varphi d_p'}$$ (8)

Fig.8に示すように、実験条件と同じ条件下で(8)式によって計算した圧力損失は、実験によって測定された圧力損失とよく一致した。次に調和平均径を小粒子比率0%と同じ値にして、Fig.8に示された空隙率を用いて(8)式により圧力損失を計算し、圧力損失の増加におよぼす空隙率低下的影響を評価した。本計算では、形状係数（φ）は一定値（1.0）とした。小粒子比率と圧力損失の計算結果との関係をFig.9に示す。空隙率が低かった場合（Case B）における圧力損失の増加は、空隙率および調和平均径が低下した場合（Case A）における圧力損失の増加の約半分であり、圧力損失の増加におよぼす粒径低下および空隙率低下的影響は程度であった。

したがって小塊コースが高炉内でカーボンガス化反応によって消失されず、高炉下部に残存した場合には、高炉下部コース充填層の平均粒径低下および空隙率低下を引き起こし、圧力損失を増加させると考えられる。

4. 未消失混合コースが

炉下部通気性におよぼす影響解析

4.1 計算方法

未消失混合コースが炉下部通気性におよぼす影響を評価するため、ここでは高炉下部の圧力損失を融着帯の圧力損失と炉下部コース充填層の圧力損失に分割して計算した。

まず小塊コース混合量と融着帯の圧力損失との関係について検討した。コース混合無しの場合には、高炉数値モデル[23]を使用して融着帯の圧力損失（ΔP/Lₜ）を計算した。融着帯の厚み（Lₜ）は、数値モデルによる計算結果
から得られた1200℃〜1400℃の平均厚層である2.4 mとした。コークス混合の場合における融着帯での圧力損失の計算方法の概念図をFig.10に示す。融着帯付近のガス流れは主に通気抵抗が大きい融着層を経てコークススリットを通過すると考えられてきた22。しかしながら鉄石層内へのコークスの混合装入により融着層の通気性が大きく改善され、融着層内を通過するガス流れを考慮する必要があると考えられる。ここではガスはコークススリットと融着層を並列に流れるとしたWatakabeら22のモデルを参考にして融着帯の圧力損失を計算した。融着帯内の融着層を通過するガス量と、コークススリット層と鉄石層を通過するガス量は、両経路を通過するガスの圧力損失（ΔP_{soft}, ΔP_{slit}, ΔP_{ore}）が同じになるように分配されると仮定した。そしてコークス混合無しの融着帯の圧力損失値に対するコークス混合による融着帯の圧力損失値の相対値を計算し、コークス混合無しの融着帯の圧力損失の計算値からコークス混合の場合における融着帯の圧力損失を予測した。各層の圧力損失の計算には（9）式を使用した。コークス混合無しの場合には、コークススリット層の厚層は0.3 mとした。小塊コークス混合量の増加は、1段あたりの装入コークス量は一定としてコークススリット層内のコークスを減少させて、同量のコークスを鉄石層内に混合した。したがって小塊コークス混合量の増加により、コークススリット層の層厚が減少する。コークス混合による融着層の層厚変化はWatakabeらの式22によって計算し、酸素供給の鉄石層も融着層と同じ厚層であると仮定した。

次に小塊コークス混合量と炉下部コークス充填層の圧力損失との関係について検討した。コークス粒径について2章で得られた計算結果を使用する。しかしながら本計算では炉下部のコークス粒径による圧力低減を考慮していない。そこでまず混合無しの条件において、推定された未混合の炉下部コークスの平均粒径が30 mmになるように、コークス粒子の一部が5 mmの粉コークスに粉化すると仮定して、物質バランスからコークス粉化率を計算した。コークス粉化率は小塊コークス混合量に関わらず一定とした。小塊コークスが高炉内でカーボンガス化反応により消滅しなかった場合には、塊コークス、粉コークスそして未消滅の小塊コークスから炉下部平均コークス粒径を算出した。

炉下部コークス充填層の空間率（ε）については、液滴のホールドアップを考慮した（9）式によって計算した。

$$ \varepsilon = \varepsilon_0 - h $$

（9）

ε_0は、計算で得られた炉下部コークスの平均粒径、粒度分布から（3）〜（7）式を使用して計算した。hは福武らの推定式23から計算した。上記の方法によって得られた炉下部コークスの平均粒径、炉下部コークス充填層の空間率を用いて、（8）式から炉下部コークス充填層の圧力損失を計算した。炉下部コークス充填層の層厚（L）は5.0 mとした。

以上のようして得られた融着帯の圧力損失（$\Delta P_{\text{o}}/L_{\text{o}}$）と炉下部コークス充填層の圧力損失（$\Delta P_{\text{p}}/L_p$）から、（10）式によって高炉炉下部の圧力損失（$\Delta P/L$）を計算した。

$$ \Delta P/L = (\Delta P_{\text{o}} + \Delta P_{\text{p}})/(L_{\text{o}} + L_p) $$

（10）

4.2 計算結果

小塊コークス混合量が炉下部に残存する小塊コークス量、平均コークス粒径、そして空間率におよぼす影響をFig.11に、そして小塊コークス混合量が炉下部圧力損失におよぼす影響をFig.12に示す。小塊コークス混合量が少ない場合には、小塊コークス混合量が増加しても高炉内でカーボンガス化反応により小塊コークスが消滅され、その代わりに塊コークスのカーボンガス化反応量が減少して炉下部の平均コークス粒径が増大し、炉下部コークス充填層
の小塊率を増加した。摂着帯の圧力損失はし小塊コーチス混合量の増加により低下した。そして平均コーチス粒径の増大、空間率の増加によって炉下部コーチス流層の圧力損失も低下した。したがって高炉炉下部の圧力損失が低下すると推定された。

小塊コーチス混合量が多い場合には、小塊コーチス混合量が増加すると高炉内でカーボンガス化反応により消失できない小粒径の混合コーチスが炉下部に残存し、炉下部の平均コーチス粒径が低下し、炉下部コーチス流層の空間率も低下した。摂着帯の圧力損失はし小塊コーチス混合量の増加により低下した。しかし平均コーチス粒径の低下、空間率の低下によって炉下部コーチス流層の圧力損失は増加した。結果として、摂着帯の圧力損失の低下よりも炉下部コーチス流層の圧力損失の増加が大きいため、高炉炉下部の圧力損失が増加し、通気性が悪化すると推定された。

Fig.13に実高炉の操業（京浜第2高炉）における未消失小塊コーチスのカーボン量と炉下部通気抵抗指数（K_L）との関係を示す。実高炉で未消失小塊コーチスのカーボン量は、(11) 式で計算した。

\[C_a = C_{acc} - (C_a - C_F) \times R_a \]

ここで、\(C_a \) は未消失小塊コーチスのカーボン量、\(C_{acc} \) は装入された小塊コーチスのカーボン量、\(C_F \) は高炉内のソリューションのカーボン量、\(R_a \) はFig.4に示される小塊コーチスのガス化反応比率である。Fig.11, Fig.12の計算結果は、未消失小塊コーチス量が増加すると通気性が悪化すると示された。

Fig.13の実高炉の操業結果と同様の傾向を示している。

小塊コーチスを高炉で使用して炉下部通気性を改善するためには、小塊コーチスが炉内でカーボンガス化反応により消失される条件であることが重要であり、小塊コーチスの使用量には適正値が存在と考えられる。しかし高炉内でのカーボンガス化反応の経済を増加させる操業は、カーボンガス化反応が吸熱反応であるため、炉内の圧力下や還元材比の増加を引き起こす。したがって通気性や酸素レベルを維持しつつ高炉での小塊コーチス比を増加するためには、高炉内で発生するカーボンガス化反応でし小塊コーチスのカーボンガス化反応の比率を増加させることが必要である。

Fig.14に小塊コーチス混合量60 kg/tの場合における小塊コーチスのカーボンガス化反応の比率におよぼす装入コーチスの性状変化の影響について計算した結果を示す。Case 1は小塊コーチスの粒径低下（0.01 m低下）、Case 2は小塊コーチスの反応速度の上昇（2倍）である。いずれの条件においてもし小塊コーチスのカーボンガス化反応の比率は増加した。したがって小塊コーチスのカーボンガス化反応の比率を増加するには、小塊コーチスの粒径低下による小塊コーチスの比表面積の増加、そして小塊コーチスの反応速度の上昇が有効である。以上の結果より、小塊コーチスの
文 献

1) K.Okuda, H.Amano, N.Ishioka, H.Ono, K.Furukawa and T.Inoue: \textit{Tetsu-to-Hagané}, 69 (1983), S731.

2) M.Tanaka, K.Miyata, K.Shibata, R.Ono and T.Yabata: \textit{CAMP-ISIJ}, 8 (1995), 1064.

3) K.Anan, T.Nagane, M.Nagata, N.Ogata, M.Honda and M.Isobe: \textit{CAMP-ISIJ}, 12 (1999), 234.

4) H.Kokubu, K.Sato, Y.Konishi, S.Taguchi, S.Sakurai, K.Okamura and K.Ichifuji: \textit{Tetsu-to-Hagané}, 70 (1984), S50.

5) H.Hotta, H.Yanaka, R.Yamamoto and S.Kishimoto: \textit{Tetsu-to-Hagané}, 70 (1984), S814.

6) M.Sawayama, K.Miyagawa, Y.Matsui, S.Tagawa and S.Kitano: \textit{CAMP-ISIJ}, 20 (2007), 77.

7) Y.Kashiwaya, M.Kanbe and K.Ishii: \textit{ISIJ Int.}, 41 (2001), 818.

8) Y.Kashiwaya, M.Kanbe and K.Ishii: \textit{ISIJ Int.}, 46 (2006), 1610.

9) S.Watakabe, T.Nouchi, T.Hirosawa and M.Sato: \textit{CAMP-ISIJ}, 26 (2013), 21, CD-ROM.

10) T.Sato, T.Nouchi and M.Kiguchi: \textit{Kawasaki Steel Giho}, 38 (1998), 24.

11) Y.Iwanaga: \textit{Tetsu-to-Hagané}, 77 (1991), 71.

12) M.Sato, K.Fukada, T.Ariyama, S.Itagaki and R.Murai: \textit{Tetsu-to-Hagané}, 87 (2001), 365.

13) A.Murao, M.Sato, R.Murai, T.Ariyama, Y.Hayasaka and M.Kuwabara: \textit{CAMP-ISIJ}, 15 (2002), 116.

14) A.Maki, A.Sakai, N.Takagaki, K.Mori, T.Ariyama, M.Sato and R.Murai: \textit{ISIJ Int.}, 36 (1996), 650.

15) Y.Wai, Y.Kashiwara, Y.Sawa and M.Sato: \textit{CAMP-ISIJ}, 26 (2013), 745, CD-ROM.

16) I.Muchi, J.Yagi, K.Tamura and A.Moriyama: \textit{J. Jpn. Inst. Met.}, 30 (1966), 826.

17) T.Yamada, M.Sato, N.Miyazaki, H.Shimamura and S.Taguchi: \textit{Kawasaki Steel Giho}, 6 (1974), 16.

18) K.Kojima, T.Nishi, T.Yamaguchi, H.Nakama and S.Ida: \textit{Tetsu-to-Hagané}, 62 (1976), 570.

19) H.Haraguchi, T.Nishi, Y.Miura, M.Ushikubo and T.Noda: \textit{Tetsu-to-Hagané}, 70 (1984), 2216.

20) H.Shimizu, K.Sato, M.Kojima, Y.Aminaga, F.Nakamura and Y.Iwanaga: \textit{Tetsu-to-Hagané}, 72 (1986), 195.

21) S.Ergun: \textit{Chem. Eng. Prog.}, 48 (1952), 89.

22) Y.Togino, M.Sugata, I.Abe and M.Nakamura: \textit{Tetsu-to-Hagané}, 65 (1979), 1526.

23) S.Watakabe, K.Takeda, H.Nishimura, S.Goto, N.Nishimura, T.Uehida and M.Kiguchi: \textit{ISIJ Int.}, 46 (2006), 513.

24) T.Fukutake and V.Rajakumar: \textit{Tetsu-to-Hagané}, 66 (1980), 1937.