Lexical Substitution for Evaluating Compositional Distributional Models

M. Buljan1 S. Padó1 J. Šnajder2

1IMS
University of Stuttgart

2TakeLab
University of Zagreb

February 2, 2018
Distributional Semantics

A brief summary

Distributional Hypothesis

You shall know a word by the company it keeps (J.R. Firth)

- Semantic similarity \rightarrow distributional similarity
- Algebraic representation
 - co-occurrence statistics
 - linear algebra, vector and tensor representation
Distributional Semantics
Vector space model

- Co-occurrence matrix
- Weighting
- Dimensionality reduction

	blue	good	cute
car	5	3	1
dog	0	7	4
cat	0	1	9
Distributional Semantics
Moving beyond individual words

Bag-of-words approach

Problem:
▶ Longer phrases and sentences?
 ▶ Higher-order tensor representation – computational issues
▶ Modelling syntactic relations?
 ▶ BoW insufficient to model dependencies
Compositional DS Models

Modelling phrase meaning; e.g. "fluffy cat sees big dog"

Phrase – function of constituents

CDSMs

- Algebraic vector operations
 \[
 \text{fluffy} + \text{cat} + \text{sees} + \text{big} + \text{dog}
 \]
 - Issue: "cat sees dog" vs. "dog sees cat"

- Higher-order tensor representation
 \[
 \text{sees}^{□}(\text{fluffy cat}_S, \text{big dog}_O)
 \]
 - Issue: computational complexity and data sparsity
CDSMs

Additive and Multiplicative model
\[p = u \odot v \]; component-wise addition/multiplication

Practical Lexical Function (PLF)
Predicate: function over argument

- adjective and noun: \(A \odot \cdot \vec{N} \)
 \[\text{fluffy} \odot \cdot \text{cat} \]
- transitive verb and subject/object: \(V_S \odot \cdot \vec{S} + V_O \odot \cdot \vec{O} + \vec{V} \)
 \[\text{sees}_S \odot \cdot \text{cat} + \text{sees}_O + \text{sees}_O \odot \cdot \text{dog} \]
- matrix representation of semantic roles
 – simpler to train, compute
CDSMs

Training the PLF

Composition: \(V_S \cdot \overrightarrow{AN} + V_O \cdot \overrightarrow{AN} + \overrightarrow{V} = \overrightarrow{ANVA\bar{N}} \)

- Learning values of function matrices
 - Corpus-observed bigrams (\(\overrightarrow{AN}, \overrightarrow{VN_S}, \overrightarrow{VN_O} \))
 - Regression learning; \(V_S \cdot \overrightarrow{N} = \overrightarrow{VN_S} \)
 - Function matrices: \(A, V_S, V_O \)

PLF: train- vs. test-time discrepancy

- \(\text{PLF}_{\text{Paperno}}: \overrightarrow{V} \cdot \overrightarrow{AN} + \overrightarrow{V} = \overrightarrow{ANV} \)
- \(\text{PLF}_{\text{Gupta}}: \overrightarrow{V} \cdot \overrightarrow{AN} = \overrightarrow{ANV} \)
Experimental Setup

So far, CDSMs tested on bi- and trigram similarity tasks

RQs:
- Performance with more complex phrases? → natural text
- What is n-gram similarity, anyway? → real-world task
- How do CDSMs compare? → algebraic vs. functional
- Test-vs-train discrepancy? → composition variants
Experimental Setup
LexSub dataset

- ColnCo corpus – manually annotated substitutes
- Extraction of ANVAN sentences/ clauses
 \[(\text{Adjective} + \text{Noun} + \text{Verb} + \text{Adjective} + \text{Noun})\]
- 165 phrases → 732 substitution targets

target	substitute\textsubscript{1}	substitute\textsubscript{2}	confounder\textsubscript{1}	confounder\textsubscript{2}	
construction	construction	arm	build	large	airfield
construction	construction	branch	build	large	airfield
construction	construction	part	build	large	airfield
construction	construction	back	build	large	airfield
construction	construction	hand	build	large	airfield
Experimental Setup

Tested Models

Phrase similarity; 4-way ranking task; MAP

Baselines

▷ Random baseline
▷ Lemma-level similarity

Algebraic models

▷ Additive
▷ Multiplicative

PLF

▷ PLF_{\text{Paperno}}
▷ PLF_{\text{Gupta}}

Comparison

▷ Word-embeddings lexical substitution model; context2vec
Evaluation Results

	BL_{Rnd}	BL_{Lem}	Add	Mult	PLF$_P$	PLF$_G$	C2V$_{\text{Phr}}$	C2V$_{\text{Sent}}$
overall	.680	.599	.656	.669	.681	**.706**	**.702**	**.731**
Anvan	.680	.680	.716	.715	.730	.727	.694	.707
aNvan	.680	.575	.652	.633	.695	.688	.708	.744
anVan	.680	.537	.618	.670	**.536**	**.680**	.697	.723
anvAn	.680	.625	.668	.668	.721	.715	.690	.710
anvaN	.680	.580	.633	.666	.725	.723	.723	.772

- Lemma similarity worst overall – importance of context
- Only PLF beats baseline – BoW vs. semantic roles
- Trouble with verbs – saliency or composition?
- PLF$_{\text{Gupta}}$ > PLF$_{\text{Paperno}}$ – composition and training concerns
Ongoing Work
Expanding the PLF

- PLF: more train- vs. test-time discrepancy
 - training: $V \triangleleft \cdot \overrightarrow{N} = \overrightarrow{NV}$
 - composition: $V \triangleleft \cdot \overrightarrow{AN} = \overrightarrow{ANV}$

- Heuristic composition
 - $\overrightarrow{A} + (V \triangleleft \overrightarrow{N}) + \overrightarrow{V}$
Ongoing Work

Evaluation Results

	NVN	A + (NV) + (VN)	(AN) + (NV) + (VN)						
	Add	Mult	PLFₚ	PLF₇	PLFₚ	PLF₇	PLFₚ,AVA	PLFₚ,V	PLFₗ
overall	.618	.643	.694	.730	.690	.709	.725	.718	.742
Anvan	−	−	−	−	.683	.686	−	−	−
aNvan	.613	.617	.705	.681	.721	.714	.724	.730	.712
anVan	.616	.653	.639	.778	.650	.755	.767	.645	.774
anvAn	−	−	−	−	.641	.647	−	−	−
anvaN	.625	.658	.734	.734	.744	.735	.753	.748	.743

- performance improves with heuristic composition
- the trouble with verbs – overpowering predicate vectors
Summary

- Simpler vs. more complex compositional models
- Performance comparable to state-of-the-art on LexSub
- More context → better disambiguation

Next steps
- Adjusting the composition
- Modelling more functions – adverbs, quantifiers
- Expanding the dataset – more natural syntax
- PhD tie-in: DS + (non-)compositional MWEs
