Integrated multi-omics framework of the plant response to jasmonic acid

Mark Zander, Mathew G. Lewsey, Natalie M. Clark, Lingling Yin, Anna Bartlett, J. Paola Saldierna Guzmán, Elizabeth Hann, Amber E. Langford, Bruce Jow, Aaron Wise, Joseph R. Nery, Huaming Chen, Ziv Bar-Joseph, Justin W. Walley, Roberto Solano and Joseph R. Ecker

Understanding the systems-level actions of transcriptional responses to hormones provides insight into how the genome is reprogrammed in response to environmental stimuli. Here, we investigated the signalling pathway of the hormone jasmonic acid (JA), which controls a plethora of critically important processes in plants and is orchestrated by the transcription factor MYC2 and its closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to JA, which spans from the activity of master and secondary regulatory transcription factors, through gene expression outputs and alternative splicing, to protein abundance changes, protein phosphorylation and chromatin remodelling. We integrated time-series transcriptome analysis with (phospho)proteomic data to reconstruct gene regulatory network models. These enabled us to predict previously unknown points of crosstalk of JA to other signalling pathways and to identify new components of the JA regulatory mechanism, which we validated through targeted mutant analysis. These results provide a comprehensive understanding of how a plant hormone remodells cellular functions and plant behaviour, the general principles of which provide a framework for analyses of cross-regulation between other hormone and stress signalling pathways.

Plant hormones are structurally unrelated, small signalling molecules that play pivotal roles in a wide range of fundamental processes of plants, including growth, development and responses to environmental stimuli. Hormone perception by plants stimulates a cascade of transcriptional reprogramming that ultimately modifies cellular function and plant behaviour. This is initiated by one or a family of high-affinity receptors, followed by signal transduction through protein–protein interactions, post-translational modification events and regulation of transcription factor (TF) activity that ultimately drive changes in gene expression.

One of the key plant hormones is jasmonic acid (JA), which regulates crucial processes, including fertility, seedling emergence, the response to wounding and the growth–defence balance. Jasmonates are perceived as jasmonoyl-isoleucine by a complex comprising the co-receptors CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins. COI1 is an F-box protein and part of a Skp–Cullin–F-box E3 ubiquitin ligase complex (SCF(COI1)) that targets JAZ proteins for proteasomal degradation after JA perception. JAZ proteins are transcriptional repressors that inhibit the activity of key TFs of the JA pathway such as the basic helix–loop–helix (bHLH) TF MYC2 and its closest homologues MYC3, MYC4 and MYC5 in the absence of JA. The SCF(COI1)_JAZ complex tightly controls the level of free non-repressed MYGs in a JA-dependent manner, thereby determining the transcriptional output of the entire JA response. The key regulatory step in the JA pathway is the hormone-triggered formation of a complex between the E3 ligase SCF(COI1) and JAZ repressors that are bound to the master regulatory TF MYC2. This results in the degradation of JAZ repressors and permits the activity of MYC2, accompanied by MYC3, MYC4, MYC5 and numerous other TFs, all of which have distinct but overlapping roles in driving JA-responsive gene expression.

The result is a cascade of JA-induced genome reprogramming to modulate plant behaviour such as plant immune responses. However, our knowledge of the JA-responsive genome regulatory programme and, more broadly, in the general response of plants to environmental stimuli is currently limited by assessments of only one or a small number of components.

Here, we aimed to decipher the MYC2–MYC3-driven regulatory network using a multi-omics analysis that includes the direct targets of key TFs, chromatin modifications, global protein abundance and protein phosphorylation. Our analysis was conducted with etiolated seedlings, for which the JA regulatory network is poorly characterized even though MYC2 is active. We discovered that MYC2 and MYC3 directly target hundreds of TFs, resulting in a large gene regulatory network that not only amplifies the transcriptional JA response but also facilitates extensive crosstalk with other signalling pathways. Furthermore, we found that MYC2 has a profound impact on the JA-dependent epigenome, proteome and phosphoproteome. We also generated a network model that predicted new components of the JA signalling pathway, which we validated.
by targeted genetic analyses, thus demonstrating the power of our integrated multi-omics approach to yield fundamental biological insight into plant hormone responses.

Results

MYC2 and MYC3 target a large proportion of JA-responsive genes. To decipher the JA-governed regulatory network with its high degree of dynamic interconnectivity with other signalling pathways, we applied a multi-omics network approach that comprised five newly generated high-quality large-scale datasets (Fig. 1a,b; Extended Data Figs. 1a–i and 2a–d; Supplementary Tables 1 and 2). MYC2 is the master regulatory TF of JA responses, and plants with a null mutation of this TF have a clear decrease in JA sensitivity12. Thus, we included the myc2 (jin1-8 SALK_061267) mutant13 in our analyses (Fig. 1b). MYC2 is responsible for strong JA-responsive gene activation and acts additively with MYC3 and MYC4 (refs. 12,13-15). myc3 and myc4 single mutants behave like wild-type (WT) plants with regards to JA-induced root growth inhibition. However, in combination with the myc2 mutant, myc2 myc3 double mutants exhibit an increased JA hyposensitivity, almost as pronounced as in myc2 myc3 myc4 triple mutants16. We consequently selected MYC3 for an in-depth analysis. To better understand how the master TFs MYC2 and MYC3 control the JA-induced transcriptional cascade, we determined their genome-wide binding sites using chromatin immunoprecipitation (ChIP) with sequencing (ChIP-seq). Four biological replicates of JA-treated (2h) 3-day-old etiolated Arabidopsis seedlings that express a native promoter-driven and epitope (YPet)-tagged version of MYC2 and three biological replicates of MYC3 (Col-0 MYC2::MYC2-YPet, Col-0 MYC3::MYC3-YPet) were used17. The rationale behind dissecting jasmonate signalling in etiolated seedlings is that although MYC2 is highly expressed in etiolated seedlings and regulates important processes such as photomorphogenesis and apical hook formation18-20, a comprehensive characterization of this special developmental stage is still missing.

We identified 6,736 MYC2 and 3,982 MYC3 high-confidence binding sites (P ≤ 1 × 10^-15 and conserved in at least two independent biological replicates), equating to 6,178 MYC2 and 4,092 MYC3 target genes (within 500 nucleotides of a binding site centre or nearest neighbouring gene) (Fig. 1c,d; Supplementary Table 1). Of the target genes identified, 3,847 were shared, meaning that almost all MYC3 target genes are also bound by MYC2 (Fig. 1c,d). Their target genes were enriched for JA-related gene ontology (GO) terms and for terms related to other hormones (Extended Data Fig. 3a). Target genes shared between MYC2 and MYC3 were significantly enriched (P < 0.05) for more JA-related GO terms than for target genes unique to either TF (Extended Data Fig. 3b). Proteins encoded by shared MYC2 and MYC3 target genes were enriched for DNA binding and transcriptional regulatory domains; in contrast, proteins encoded by MYC2-only target genes were enriched for kinase domains (Supplementary Table 3). No significant protein domain or GO term enrichment was detected among the small number of MYC3-only targets (Supplementary Table 3). Collectively, these data indicate that MYC2 and MYC3 have the potential to regulate 23.2% of genes in the Arabidopsis genome (27,655 coding genes). However, binding events are not necessarily regulatory21-23. Using RNA sequencing (RNA-seq), we determined that 2,522 genes were differently expressed (false discovery rate (FDR) < 0.05) after 2h of JA treatment. One-third (843 genes) of JA-modulated genes were directly bound by MYC2 or MYC3 (Fig. 1d; Supplementary Table 4). This is consistent with the important role of MYC2 and MYC3 in JA-responsive gene expression14,15,17,19,20. The majority of JA-responsive genes that are directly targeted by MYC2 and MYC3 were transcriptionally upregulated after JA application, which indicates that MYC2 and MYC3 predominantly act as transcriptional activators (Extended Data Fig. 3c).

The G-box (CA[GT][GT][GT][GT]) motif was the most common DNA sequence motif found at MYC2 or MYC3 binding sites, which is concordant with the observation that they shared a large proportion of their binding sites (Fig. 1e,f). This motif was also similar to a motif sequence bound by MYC2 that was determined in vitro21. The majority of MYC2 and MYC3 binding sites contained the G-box motif (4,240 out of 6,736 for MYC2, and 3,072 out of 3,982 for MYC3) (Fig. 1e,f; Supplementary Table 5). However, the absence of the motif from a substantial number of MYC2 and MYC3 binding sites suggests that the TFs may bind indirectly to some sites through a partner protein (or proteins). We identified putative partner TFs by determining DNA motif enrichments in MYC2 binding sites that did not contain a G-box motif. The most strongly enriched motifs were CACG[A][C][G] (286 sites, statistical significance estimate of a motif (E) = 2 × 10^-25), which may correspond to the TFs CAMTA1 (also known as AT5G09410) or FAR1 (also known as AT4G15090), and AT[A/T][A/T][A/T][A/T][A/T][A/T][A/T][A/T][A/T][A/T][A/T][A/T] (714 sites, E = 8.9 × 10^-25), which may correspond to the ARID family TFs AT2G17410 and AT1G04880 (Extended Data Fig. 3d,e). Molecular investigations of these TFs would be required to determine whether they bind cooperatively with MYC2 to DNA.

Master TFs directly target the majority of signalling components in their respective pathway, a phenomenon that has already been observed for the ethylene, abscisic acid (ABA) and cytokinin signalling pathways21-22. This pattern also holds true for the JA signalling pathway. Our MYC2 and MYC3 ChIP-seq analyses determined that approximately two-thirds of the genes encoding for known JA pathway components (112 out of 168 genes for MYC2, and 96 out of 168 genes for MYC3) were bound by MYC2 and MYC3 (Extended Data Fig. 4a,b; Supplementary Table 6). Interestingly, the majority of all known JA genes that were differentially expressed following JA treatment were bound by MYC2 or MYC3, whereas fewer non-differentially expressed known JA genes were directly targeted (Extended Data Fig. 4b; Supplementary Table 6). MYCs initiate various feedforward loops that enable rapid activation of the transcriptional JA response21-22. Our ChIP-seq approach revealed that beyond the autoregulation of MYC2 and MYC3, these TFs also regulate JA biosynthesis either directly by targeting the JA biosynthesis genes LOX2, LOX3, LOX4, LOX6 and AOS or indirectly through binding to the AP2-ERF TF gene ORE47 (Supplementary Tables 1 and 6). In addition, MYCs simultaneously target various negative regulators, enabling MYCs to efficiently dampen the JA response pattern (Extended Data Fig. 4c). Key negative regulators of JA signalling are the JAZ repressors, a gene family of 13 members in Arabidopsis, which can interact with the adaptor protein NINJA to confer TOPLESS-mediated gene repression23. Strikingly, all JAZ members and NINJA are directly bound by MYC2 and MYC3 (Extended Data Fig. 4c), which probably leads to a dampening of the JA response and thereby preventing excessive activation of JA signalling.

MYC2 and MYC3 activate the JA response through a large TF network. To study the MYC2 and MYC3-governed transcriptional regulatory network in more detail, we investigated the relationship between MYC2-bound and MYC3-bound TF-encoding genes and their transcriptional responsiveness to JA treatment. We conducted a JA time-course experiment (time points of 0, 0.25, 0.5, 1, 2, 4, 8, 12 and 24h post JA treatment) and identified a total of 7,377 differentially expressed genes at one or more time points within 24h of JA treatment (Supplementary Table 4). Differentially expressed genes were categorized into clusters with similar expression trends over time to facilitate the visualization of complex expression dynamics and enriched functional annotations (Extended Data Fig. 5a; Supplementary Table 7). The largest upregulated cluster was the “JA cluster”, which was enriched for GO terms associated with JA responses (Fig. 2a). In contrast, the “Cell wall cluster” was the largest cluster of downregulated genes and enriched for GO terms...
associated with cell wall organization, development and differentiation (Fig. 2b). These two main clusters illustrate the defence–growth trade-off when defence pathways are activated31.

Our MYC2 and MYC3 ChIP-seq dataset derived from a 2-h-long JA treatment revealed that up to 63% (0.5 h JA treatment) of differentially expressed genes at any given time point were potentially directly bound by MYC2 and/or MYC3 (Fig. 2c), which highlights the important role of MYCs in transcriptionally regulating JA responses. Our analysis also determined that 522 out of 1,717 known or predicted TFs were differentially expressed within 24 h of JA treatment (Extended Data Fig. 5b). Half of these (268), representing 36 out of 58 TF families, were also direct MYC2 or MYC3 targets (Fig. 2d; Extended Data Fig. 5b), which indicates that MYC2 and MYC3 cooperatively control a massive TF network. The three most numerous families (ERFs, bHLHs and MYBs) in the Arabidopsis genome had the most JA-responsive members targeting MYC2 or MYC3, which is concordant with their previously annotated roles in JA responses32 (Fig. 2d). Plant hormone crosstalk is critical for deploying an appropriate cellular response to environmental stimuli, and numerous reports describe that MYC2 connects the JA pathway to other major plant hormone pathways23,33. To investigate this crosstalk function of MYC2 and MYC3 in more detail, we utilized our ChIP-seq data to determine the number of plant hormone TFs that are bound by MYC2 and MYC3. We found that 37–59% of annotated hormone pathway genes are bound by MYC2 and MYC3 and that their expression changes in response to 24 h of JA treatment (Extended Data Fig. 5c). In addition, we discovered 122 annotated hormone TFs, with representatives from all hormone pathways, that are bound by MYC2 and MYC3, and 118 of these were differentially expressed (Extended Data Fig. 5d; Supplementary Table 1).

We next set out to better understand the target genes of the network of TFs downstream of MYC2 and MYC3. To do so we conducted ChIP-seq or DNA affinity purification (DAP) with sequencing (DAP-seq) on a subset of TFs (DREB2B (also known as AT3G11020), ATAF2, HY5 (also known as AT5G11260), RVE2 (also known as AT5G37260) and ZAT18 (also known as AT3G53600)) that were direct MYC2 or MYC3 targets and rapidly upregulated (within 0.5 h) by JA treatment (Fig. 2e) or were members of the upregulated “JA cluster” (TCP23 (also known as AT1G35560) (Fig. 2a). We also included the following TFs with known roles in JA signalling: ERF1 (also known as AT3G23240, ERF1B and AtERF092); ORA59 (also known as AT1G06160); ANAC055 (also known as NAC3); WRKY51 (also known as AT5G64810); and STZ (also known as ZAT10)34–38. These TFs formed a highly connected network, with all TFs except
Fig. 2 | MYC2 and MYC3 target a large proportion of JA-responsive genes that encode TFs. a, b, A cluster analysis revealed two main clusters in the JA time-course experiment. The JA cluster (a), with 796 genes, reflects the majority of JA-induced genes and the cell wall cluster (b), with 647 genes, represents the largest cluster of JA-repressed genes. Clusters visualize the log₂-fold-change (log₂[FC]) expression dynamics over the indicated 24-h time period. The three strongest enriched GO terms for each cluster are also shown. Clusters were identified by STEM clustering (Pearson’s correlation, minimum correlation of 0.7, and up to 50 permutations; significant clusters were Bonferroni-corrected at \(P < 0.05 \)). For each of the indicated time points, the expression of three independent samples (\(n=3 \)) was measured using RNA-seq. c, Bar plots illustrating the potential of MYC2 and/or MYC3 (MYC2/3) to bind to a portion of JA DEGs at the indicated time points. JA DEGs for all time points were identified by RNA-seq. MYC2 and MYC3 targets were derived from ChIP-seq analysis using Col-0 MYC2::MYC2-YPet and Col-0 MYC3::MYC3-YPet seedlings that were treated for 2 h with JA. d, MYC2 and MYC3 target genes from a wide range of TF families. TF families are classified into the following four different groups: MYC2 and MYC3 targets and differentially expressed after JA treatment; MYC2 and MYC3 targets and not differentially expressed; not bound by MYC2 or MYC3 but differentially expressed; and not bound by MYC2 or MYC3 but not differentially expressed. e, Nodes represent JA TFs for which direct binding data were generated. ChIP-seq data are indicated by asterisks; all other data are DAP-seq. Edges represent binding events and are directed. Self-loops indicate that the TF binds to its own locus, which is indicative of potential autoregulation. Expression of the TF at 0.5 h after JA treatment is represented by the coloured scale. f, Pearson’s correlation of TF target sets of genes. Numerals in parentheses indicate the total number of target genes. ChIP-seq data are indicated by asterisks, all other data were generated by DAP-seq. ChIP-seq data were derived from at least three independent experiments: MYC2 (JA, \(n=4 \)), MYC3 (JA, \(n=3 \)), STZ (air, \(n=3 \); JA, \(n=2 \)), ANAC055 (JA, \(n=3 \)). DAP-seq data were derived from a single experiment (\(n=1 \)).
DREB2B targeting at least two TFs in the network and these two in turn targeted by two TFs (Fig. 2e; Supplementary Table 8). Autoregulation was common, with seven TFs targeting their own loci (Fig. 2e). The target genes of STZ, ANAC055 and ATAF2 were most similar to those of MYC2 and MYC3 (Fig. 2f). Consistent with this, their target genes shared several significantly enriched GO terms (adjusted \(P < 0.05 \)), which suggests that there are related functions in jasmonate signalling (Extended Data Fig. 6a). ORA59 and ERF1, along with DREB2B, formed a distinct group that targeted a related set of genes (Extended Data Fig. 6a). Notably, ERF1 and ORA59 also shared significant enrichment of a separate set of GO terms with one another, but these were not enriched among MYC2 and MYC3 targets (Extended Data Fig. 6a). This is consistent with the joint role of ERF1 and ORA59 in controlling a pathogen defence arm of JA signalling\(^{40,41}\). No GO terms were enriched among the targets of DREB2B. WRKY51 and RVE2 had relatively few enriched GO terms but shared most of these with one another (Extended Data Fig. 6a). Most of the terms related to anti-insect defence and were a subset of the enriched MYC2 and MYC3–STZ–ANAC055–ATAF2 GO terms (Extended Data Fig. 6a). STZ and ANAC055 are known regulators of anti-insect defence and our results suggest that WRKY51 and RVE2 may also be involved in this component of jasmonate responses\(^{36}\). Interestingly, STZ belongs to a group of genes that is inducible by the JA precursor 12-oxo-phytodienoic acid (OPDA) and not by JA\(^{46}\). We found that approximately one-third of OPDA-specific response genes (45 genes) are targeted by MYC2 (Supplementary Table 3). Taken together, our analyses determine that MYC2 and MYC3 shape the dynamic JA response through the activation of a large TF network that includes various potentially coupled feedforward and feedback loops and allows extensive cross-communication with other signalling pathways.

We examined the effect of removing MYC2 activity on JA-responsive transcriptional regulation by generating transcriptionalomes from a myc2 null mutant (jin1-8) in an early JA response time-series experiment (0, 0.5, 1 and 4 h). The response of myc2 mutants to JA differed from that of WT plants. There were 2,905 unique genes differentially expressed between myc2 and WT plants across the time-series (pairwise comparisons between genotypes at each time point; Supplementary Table 9). JA-responsive gene expression occurred in myc2 plants, which is consistent with the partially redundant function of MYC2, MYC3 and MYC4 (ref. \(^{11}\)). However, JA-responsive genes were upregulated more highly in WT than myc2 plants (Supplementary Table 9). The JAZ genes illustrate this, with 9 out of the 12 genes upregulated more highly in WT than myc2 plants, as well as reaching peak expression at earlier time points in WT plants (0.5 or 1 h; (Extended Data Fig. 7a). Overall, a majority of the MYC2 target genes differentially expressed between myc2 and WT plants were more highly expressed in WT, which indicates that loss of MYC2 function reduces the JA responsiveness of these genes (Extended Data Fig. 7b). A total of 130 TFs targeted by MYC2 were differentially expressed in myc2 mutants compared with WT seedlings, including the TFs ATAF2, ERF1, ANAC055 and STZ, whose targets we had determined by DAP-seq or ChiP-seq (Supplementary Table 10). The myc2 mutation also affected the expression of secondary, indirect MYC2 target genes (that is, genes targeted by MYC2-regulated TFs, but not by MYC2 itself). Between 23.6% and 26.3% of the genes each targeted by ATAF2, ERF1, ANAC055 or STZ, and not by MYC2, were differentially expressed in myc2 plants compared with WT (Extended Data Fig. 7c; Supplementary Table 11). Taken together, these data demonstrate that MYC2 regulates gene expression through a large network of downstream TFs during responses to a JA stimulus.

MYC2 controls JA-induced epigenomic reprogramming. Reprogramming of the epigenome is an integral part of developmental and environmental stimulus-induced gene expression\(^{38}\). For example, activation of the transcriptional JA response requires the formation of MYC2–MED25-mediated chromatin looping\(^{42}\). To investigate the extent of JA-induced changes in chromatin architecture and the regulatory importance of MYC2 in this response, we conducted ChiP-seq assays to profile the genome-wide occupancy of the histone modification H3K4me3 (trimethylation of lysine 4 on histone H3) and the histone variant H2A.Z in untreated and in JA-treated (4 h) WT and myc2 seedlings. H3K4me3 marks active and poised genes whereas the histone variant H2A.Z confers gene responsiveness to environmental stimuli\(^{43,44}\). mRNA expression was monitored in parallel using RNA-seq. JA treatment led to a programmed chromatin landscape, with several thousand differentially enriched H3K4me3 and H2A.Z domains (Extended Data Fig. 8a–c; Supplementary Table 12). We identified 826 differentially expressed genes (675 induced, 151 repressed; WT control versus JA treated) in that experiment. In line with the predominantly activating function of MYC2 (Extended Data Fig. 3c), the JA-induced genes had a stronger promoter enrichment of MYC2 than the JA-repressed genes (Fig. 3a). H3K4me3 levels were increased in JA-induced genes, whereas JA-repressed genes did not exhibit any dynamic change in H3K4me3 levels (Fig. 3b,d). Strikingly, myc2 mutants only displayed a compromised increase in H3K4me3 levels after JA treatment, which suggests that the JA-induced H3K4me3 depends on functional MYC2 (Fig. 3b–d; Extended Data Fig. 8a). The impact of the myc2 mutation on JA-induced H3K4me3 changes was also observed in JA-induced genes that are not directly targeted by MYC2 (Extended Data Fig. 8e,f), which is potentially caused by the decreased expression of MYC2-targeted TFs. The scenario of a direct MYC2 regulation network is illustrated by two JA-induced genes, JAZ2 and GRX480, which are directly targeted by MYC2. Their expression depends on MYC2, and their JA-induced increase in gene-body-localized H3K4me3 partially depended on MYC2 (Fig. 3d; Extended Data Fig. 8d). However, whether the MYC2-dependent changes in H3K4me3 levels precede transcription or rather reflect increased transcriptional activity cannot be addressed by these experiments. In contrast, JA-induced changes in H2A.Z occupancy were only slightly affected in myc2 mutants (Extended Data Fig. 8g,h), which suggests that JA-induced H2A.Z dynamics are either independent of MYC2 or precede MYC2 binding. Alternatively, other MYCs such as MYC3, MYC4 and MYC5 are functionally redundant in regulating H2A.Z dynamics.

JA extensively remodels the (phospho)proteome. We next explored how JA remodels the proteome and phosphoproteome of etiolated seedlings. Hormone signal transduction typically modifies the phosphorylation of downstream proteins, changing their activity independent of transcript abundance\(^{38}\). Transcript abundance is also frequently weakly correlated with protein abundance\(^{45,46}\). Consequently, proteomic and phosphoproteomic analyses yield additional insight into gene regulatory networks. We determined that the loss of MYC2 caused substantial changes to the JA-responsive proteome and phosphoproteome: 1,432 proteins and 939 phosphopeptides (corresponding to 567 genes) were significantly differentially abundant in WT seedlings relative to myc2 seedlings after 2 h of JA treatment (\(q < 0.1 \); Fig. 4a; Supplementary Tables 13 and 14). WT seedlings responded to JA (161 proteins, 443 phosphopeptides, WT JA versus WT air), and the response was smaller without functional MYC2 (79 proteins, 93 phosphopeptides, myc2 JA versus myc2 air) (Fig. 4a). These extensive changes in phosphopeptide abundance are consistent with the observation that 118 genes encoding protein kinases were differentially expressed between WT and myc2 seedlings in our transcriptome experiments (Supplementary Table 9).

Some direct overlap existed between proteins or phosphoproteins and transcripts responsive to JA treatment (Fig. 4b). Both transcripts and proteins encoded by 28 genes were differentially
Alternative splicing can rapidly occur in response to environmental stimuli, contributing to transcriptome reprogramming and potentially fine-tuning physiological responses. It is central to the JA-mediated regulation of transcription, with an alternative isoform of the repressor JAZ10 creating a negative feedback loop that desensitizes cells to a JA stimulus. However, the extent of alternative splicing in JA signalling beyond the JAZ repressors is poorly characterized. We observed that phosphorylation of proteins involved in RNA recognition and nucleotide binding was disrupted in JA-treated myc2 mutants compared with WT seedlings. The spliceosome was the only pathway significantly enriched among these differentially phosphorylated proteins, which suggests that MYC2 may influence JA-responsive alternative splicing. Furthermore, 18 genes with splicing-related annotations were differentially expressed between myc2 and WT seedlings in our transcriptome experiments (Supplementary Table 9). None of the differentially phosphorylated spliceosome components was differentially expressed.

We examined isoform-switch events across our JA transcriptome time-series, for which the most abundant of two isoforms from a single gene changes, to determine the extent of JA-responsive alternative splicing. We identified 151 switch events, corresponding to 137 isoform pairs from 120 genes, within 24 h of JA treatment. These were identified from 30,547 total individual transcripts detected (average transcript per million (TPM) > 1; Supplementary Table 15). Two of the genes exhibiting isoform switches had prior JA annotations (RVE8 (also known as AT3G09960) and SEN1 (also known as AT4G35770); Supplementary Table 15), and others were annotated to a variety of processes (including auxin, ABA, light signalling, disease response, among many others), but there was no significant enrichment of any GO terms or pathways. This indicates that MYC2 influences alternative splicing that diversifies the transcriptome in response to a JA stimulus.

Multi-omics modelling of the JA-response regulatory programme. We then wanted to characterize the broader JA-response genome regulatory programme so that we could increase our understanding of the roles of known JA TFs within this and to identify new potential regulatory interactions. To do so, we generated a gene regulatory network model encompassing the
Articles
NATUrE PlANTs
Articles NATUrE PlANTs

(phospho)proteomic and time-series transcriptomics data (Extended Data Fig. 9a; Supplementary Table 17). Inclusion of the (phospho)proteomic data expanded the network by an additional 957 nodes (genes) compared with a transcript-only network (3,409 versus 4,366 nodes, 28% larger) (Supplementary Table 17). The (phospho)proteomics and transcript data shared 217 nodes within the network, a relatively small proportion, which indicates that these datasets complement one another when attempting to characterize the JA-response genome regulatory programme.

Many known JA signalling components were present in the 100 most important predicted components of the network (for example, MYC2, ERF1, JAZ1, JAZ2, JAZ5, JAZ10 and ATAF2, among others, within the top 100 of 4,366 components assessed using a normalized motif score) (Supplementary Table 17). MYC2 was predicted to regulate a subnetwork of 26 components, 23 of which were validated as directly bound by MYC2 in ChIP-seq assays (88.5%; Extended Data Fig. 10a; Supplementary Tables 1 and 17). We further validated the network by comparing the ChIP-seq and DAP-seq data.

Fig. 4 | Loss of functional MYC2 affects the global proteome and phosphoproteome.

a, Total number of significantly differentially abundant (FDR q < 0.1; estimated using a modified permutation plug-in method) proteins and phosphopeptides detected in comparisons between JA-treated (2 h) WT and myc2 seedlings and air controls. Three independent experiments (with or without 2 h of JA treatment; n = 3) were conducted for WT and myc2 seedlings. For the third experiment, only the JA treatment was conducted. b, Venn diagram showing the overlap between significantly differentially (Diff.) abundant proteins, transcripts and differentially phosphorylated proteins (Diff. phospho) in JA-treated WT seedlings compared with mock-treated WT controls. Also shown is the overlap with MYC2/3 target genes. c, Correlation between rank-normalized log fragments per kilobase of transcript per million (FPKM) values of detected proteins and transcripts in WT seedlings treated with JA for 2 h (P value cut-off was <0.05 using paired Student’s t-tests). Scatter plot of log_{FC} in WT JA-regulated transcript levels versus log_{FC} in levels of corresponding proteins. Protein and transcript data were derived from three independent experiments (n = 3) using WT and myc2 seedlings. d, Heatmap representing the relative TPM of 137 isoform pairs exhibiting isoform-switch events. Ratio calculated as log[TPM (isoform 1/isoform 2)]. e, Plot showing an example of a transcript pair originating from AT2G43680 that had isoform-switch events following JA treatment. Expression data were derived from a JA time-course experiment. For each of the indicated time points, the expression of three independent samples (n = 3) was measured using RNA-seq. Shaded regions indicate the standard error of these data.
which establishes a negative feedback loop in which AIB negatively regulates MYC2, leading to the repression of JAZ10 in establishing negative feedback to attenuate JA signalling. MYC2 was also predicted to activate ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR (AIB; also known as JAM1, bHLH017 and AT2G46510) (Extended Data Fig. 10a,b), which establishes a negative feedback loop in which AIB negatively regulates MYC2. This is in line with previous studies, which established that AIB is dependent on and antagonistic to MYC2, thereby repressing JA signalling and MYC2 activation of JAZ10. Confirmation by both genetic data from the literature and our DAP-seq and ChiP-seq experiments indicates that our gene regulatory network modelling approach is a useful tool to identify new regulatory interactions within JA signalling and to better understand known regulatory interactions.

Crosstalk between hormone response pathways permits fine-tuning of plant growth and development in response to diverse environmental signals. We examined the potential points at which MYC2 may interface directly with other hormone signalling pathways, since MYC2 is the master regulator of JA responses and one of the first TFs activated by JA. The MYC2 subnetwork identified a potential route for JA signalling to cross-regulate auxin hormone signalling. MYC2 activated ARF18, and ARF18 reciprocally activated MYC2. This is in line with previous studies, which established that ARF18 negatively regulates MYC2. Previous genetic studies have determined that MKK9 induces ethylene production, but not examined a possible link with JA signalling. Positive crosstalk exists between JA and auxin signalling, however, the mechanism is not clearly determined. RGL3, a regulator of gibberellin acid (GA) signalling previously associated with JA–GA crosstalk, was also present within the MYC2 subnetwork (Extended Data Fig. 10a) and predicted to inhibit MYC2 but not to be reciprocally regulated by MYC2. These three interactions are potential points at which crosstalk can rapidly occur during a JA response with auxin, gibberellin and ethylene.

We next examined the broader gene regulatory network to identify additional predicted points of crosstalk between JA and other signalling pathways. The model predicted that STZ is a key early hub through which JA signalling is prioritized over several other hormone and stress response pathways (Fig. 5a; Supplementary Table 17). Genetic studies have shown that STZ is a transcriptional repressor, and, consistent with this, our model predicted that it inhibited the majority of genes it regulates (25 out of 34 genes). WRKY40, WRKY70, DDF and ERF6 were all predicted to be inhibited by STZ within 0.25 h of a JA stimulus and GRX480 within 1 h. Direct binding of STZ to ERF6 was detected in ChIP-seq assays (Supplementary Table 11). WRKY40 and WRKY70 are both early brassinosteroid response components that repress defence responses. DDF1 promotes resistance to drought, cold, heat and salinity stress by reducing endogenous gibberellin abundance. ERF6 similarly promotes drought resistance by reducing gibberellin abundance. GRX480 regulates the negative crosstalk between salicylic acid and both JA and ethylene signalling through direct interactions with TGA TFs.

Large-scale data-mediated identification of new JA regulators.

We next utilized our regulatory network and large-scale datasets to identify novel regulators of the JA pathway using the JA root-growth inhibition assay as our experimental readout. First, we focused on ABA overly sensitive 3 (ABO3), which is directly targeted by MYC2 and MYC3 (Supplementary Table 1) and whose subnetwork is composed of 26 predicted regulated genes, the majority of which are positively regulated (22 out of 26 genes; Fig. 5b). ABO3 encodes the Arabidopsis WRKY TF gene WRKY63, which is involved in stress gene expression and drought tolerance. To investigate the importance of the ABO3 subnetwork in JA signalling, we tested abo3 T-DNA mutant seedlings (SALK_075986C) in a JA-induced root-growth inhibition assay. We found that abo3 mutants show a weak JA hyposensitive root-growth inhibition phenotype (Fig. 5c–e), which indicates that ABO3 is positive regulator of JA signalling and that our network approach is able to identify new pathway components.

Next, we expanded our phenotyping analysis to T-DNA lines of genes that display the strongest binding of MYC2 and MYC3 in their promoters (Supplementary Tables 1 and 18). The rationale behind this approach is that master TFs target the majority of key signalling components in their regulated respective pathways and that these are often the most strongly bound targets. Of the 99 genes tested (194 T-DNA lines in total; Supplementary Table 19), we discovered six genes that, when mutated, display mild JA root-growth phenotypes (Extended Data Fig. 10c; Supplementary Table 19). Mild phenotypes and their low frequency were not surprising, since gene redundancy is very common in the Arabidopsis genome, and even the mutation of the master TF MYC2 only causes a mild JA hyposensitive root-growth phenotype. Among these genes was the cytochrome P450 enzyme CYP708A2, from which both tested T-DNA mutant alleles exhibited a JA hypersensitive root phenotype (Fig. 5f–h). Interestingly, our network analysis also discovered CYP708A2 as a regulatory hub (Extended Data Figs. 9a and 10d). CYP708A2 is involved in triterpene synthesis, which is stimulated by JA; future studies are, however, needed to further decipher the role of CYP708A2 in JA signalling. Another interesting uncharacterized gene that we discovered to cause a JA phenotype is a Sec14p-like phosphatidylinositol transfer family protein (AT5G47730; Extended Data Fig. 10c; Supplementary Table 19). Phosphatidylinositol transfer proteins are crucial for maintaining phosphatidylinositol homeostasis in plants, and inositol polyphosphates are implicated in CO11-mediated JA perception. Taken together, these data show that our multi-omics approach goes beyond network description, ultimately enabling the identification of novel JA pathway regulators.

Discussion

An important unanswered question in plant biology is how multiple signalling pathways interact to coordinate the control of growth and development. In this study, we comprehensively characterized cellular responses to the plant hormone JA and generated a network-level understanding of the MYC2 and MYC3-regulated JA signalling pathway. We used this approach to identify several new points at which JA signalling may have cross-regulation with other hormone and stress response pathways to prioritize itself. The results increase our knowledge of how JA functions in the etiolated seedling, a less well-characterized model of JA responses. Moreover, the general principles described here provide a framework for analyses of
cross-regulation between hormone and stress signalling pathways. We provide our data in a web-based genome and in network browsers to encourage deeper exploration (http://signal.salk.edu/interactome/JA.php and http://neomorph.salk.edu/MYC2).

A major insight provided by our study is that multiple points of crosstalk probably exist between JA signalling and other pathways. This was evident from the interactions within the genome regulatory network model and supported by our observation that many (37–59%) genes from other hormone signalling pathways are bound by MYC2 and MYC3 and are regulated by JA. The WRKY family TF ABO3 was identified as a candidate JA response regulator, and genetic analyses determined a mutant of the gene was JA hyposensitive. ABO3 is also a regulator of ABA responses 62, which suggests that ABO3 functions in cross-communication between the JA and ABA pathway. The repressive zinc-finger family TF STZ, working with JAZ8, emerged as a potentially important point of contact with salt and drought stress, as well as the salicylic acid, brassinosteroid and gibberellin hormone signalling pathways. Combined, these
results illustrate the importance of transcriptional cross-regulation during a JA response in modulating the correct cellular output for the stimuli a plant perceives.

Our multi-omics analysis determined that the master TF MYC2 and its relative MYC3 directly target thousands of JA-responsive genes, including hundreds of JA-responsive TFs, thereby enabling a robust cascade of transcriptional reprogramming. Secondary TFs downstream of MYC2 and MYC3 directly targeted overlapping but distinct cohorts of genes, indicating that they have distinct roles within the JA response. This illustrates the complexity of hormone-response genome regulatory programmes; we assayed only a fraction of the JA-responsive TFs and found that any individual JA-responsive gene may be bound by multiple TFs. How the final quantitative output of any individual gene is determined by combinatorial binding of TFs remains a major challenge to address. Achieving this will require analyses at cell-type resolution, resolving differences in TF activity between tissues that would be obscured by our bulk-tissue analyses. We further demonstrated the importance of MYC2 and MYC3 target genes in JA responses by analysing JA root-growth phenotypes in mutants of 99 genes strongly targeted by MYC2 or MYC3. Mutations in six genes caused clear disruptions in JA responses, both hypersensitivity and hyposensitivity. It is probable that genetic redundancy accounts for a proportion of the mutants not causing phenotype changes. The structure of hormone-response genome regulatory programmes will probably differ between cells and tissues and, while our findings can be translated between etiolated seedlings and seedlings grown in light, exploration of other developmental stage-specific regulatory programmes is needed to generalize these findings.

Our study also highlighted that many different regulatory mechanisms are utilized by JA to exert its effects on the cell. Expression of a large number of protein kinases was regulated by MYC2. Consistent with this, substantial MYC2-dependent changes in phosphopeptide abundance occurred in JA-treated seedlings. It is also probable that JA modulates alternative splicing through MYC2. Genes encoding splicing factors were differentially expressed between myc2 and WT plants, and the splicesome pathway was enriched among myc2-dependent JA-regulated phosphopeptides. Accordingly, isoform-switch events occurred following JA treatment. Collectively, these findings indicate that investigation of post-transcriptional and post-translational layers of regulation are required to better understand the complexity of JA signalling. The targets of JA-regulated protein kinases are a notable prospect.

Another layer of regulatory complexity within the JA signalling pathway, and within signalling pathways in general, is the presence of multiple feedforward and feedback loops that are simultaneously activated. The interactions between these subnetworks through their kinetics and the strength of their regulatory impact on the broader network is not well understood. For example, we discovered that MYC2 and MYC3 stimulate JA biosynthesis and target the entire JAZ repressor family from which the majority of members are also transcriptionally activated. Uncoupling these subnetworks would be an effective way to determine how they interact to drive very robust activation of the JA pathway. The combination of our multi-omics framework approach coupled with powerful genetic approaches, such as the generation of the jaz decuple mutant29, should significantly contribute to a better understanding of JA response pathways.

Methods

Plant material and growth conditions. The myc2 mutant jin1-8 (SALK_061267)37 was obtained from the Arabidopsis Biological Resource Center. Col-0 MYC2-YPet and Col-0 MYC3-YPet, generated by recombineering, have been previously described38. For the generation of all large-scale datasets, 3-day-old etiolated seedlings were used (Col-0 WT), myc2, MYC2-YPet and MYC3-YPet). Seedlings were grown in the dark in closed lightproof containers. Gaseous methyl jasmonate treatments for the respective times were performed in these containers, as previously described39, with 1 µl of methyl jasmonate (95% purity; Sigma-Aldrich) per 1 litre of container volume dropped onto Whatman paper. For the JA-induced root-growth inhibition assay, surface-sterilized WT, myc2 and T-DNA mutant seeds (Supplementary Table 19) were grown on agar plates containing Linsmaier and Skoog (LS) medium supplemented with or without 20 µM methyl jasmonate (392707, Millipore Sigma) for 9 days. Plates were scanned afterwards and root lengths were measured using ImageJ.

ChIP-seq. Three-day-old etiolated Col-0 MYC2-YPet, Col-0 MYC3-YPet, MYC2::MYC2-YPet, Col-0 and myc2 seedlings were used for ChIP-seq experiments. ChIP assays were performed as previously described40. ChIP-seq assays were conducted with antibodies against H2A.Z (39647, Active Motif), H3K4me3 (04–745, Millipore Sigma) and green fluorescent protein (GFP; 11814460001, Millipore Sigma or goat-anti-GFP supplied by D. Dreschel, Max Planck Institute of Molecular Cell Biology and Genetics). As a negative control, mouse IgG (39008 or 000–003–000, Jackson ImmunoResearch) was used. The respective antibodies or IgG were coupled for 4–6 h to Protein G Dynabeads (50 µl, 10004D, Thermo Fisher Scientific) and subsequently incubated overnight with equal amounts of sonicated chromatin. Beads were washed twice with high-salt buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM EDTA, 0.5% Triton X-100), low-salt buffer (50 mM Tris-HCl pH 7.4, 500 mM NaCl, 2 mM EDTA, 0.5% Triton X-100) and wash buffer (50 mM Tris-HCl pH 7.4, 50 mM NaCl, 2 mM EDTA) before samples were decrosslinked, digested with protease K and DNA precipitated. Sequencing libraries were generated following the manufacturer’s instructions (Illumina). Libraries were sequenced on an Illumina HiSeq 2500 and HiSeq 4000 Sequencing System and sequencing reads were aligned to the TAIR10 genome assembly using Bowtie2 (ref. 41).

DAP-seq. DAP-seq assays were carried out as previously described42 using recombinantly expressed ERFl, ORSA9, ATAF1 (also known as AT1G01720), DREB2B, ZAT18, RVE2, WKRX51, HYS and TCP23.

RNA-seq. Three-day-old etiolated seedlings were used for expression analyses. Total RNA was extracted using a RNeasy Plant Mini kit (74903, Qiagen). Complementary DNA library preparation and subsequent single-read sequencing were carried as previously described43.

RNA-seq analyses. Sequencing reads were quality trimmed using TrimGalore 0.4.5 (https://github.com/FelixKrueger/TrimGalore) then aligned to the TAIR10 genome assembly using TopHat 2.1.1 (ref. 44). Reads within gene models were counted using HTSeq45. Differentially expressed genes in time-series RNA-seq were identified using EdgeR46 with a likelihood ratio test (using the functions glmFit and glmLRT), and batch correction using Benjamini–Hochberg correction was used for multiple tests47. Differentially expressed genes in the Col-0 versus myc2 mutant RNA-seq data were determined using EdgeR38.1.8 and quasi likelihood-F-tests (using the function glmQLFit48). Temporal co-regulation of transcripts was determined using Short Time-Series Expression Miner (STEM)49. A minimum correlation coefficient of 0.7 was applied, and up to 50 permutations were permitted to identify correct cluster/gene matches. Significant clusters were those having a Bonferroni-corrected P ≤0.05. Full STEM model parameters are given in Supplementary Table 7. Known A. thaliana TFs were identified by reference to PlantTFDB 4.0 (ref. 50).

ChIP-seq and DAP-seq analyses. ChIP-seq and DAP-seq sequence reads were mapped to the TAIR10 reference genome using Bowtie2 v2.2.0.5 with default parameters51. For TF and histone ChIP-seq, we first assessed the quality of the ChIP data by using PhantomPeakQualTools v2.0 to calculate normalized expression scores, relative strand correlation and shift size52. Enriched binding sites were then identified using MACS2 v2.1.1 (options -p 99e–2–nomodel –shiftsize–downsample–call-summits) against sequence reads from whole IgG control samples53. Subsequent analyses used summits only. Summit lists were filtered with a cut-off of P ≤2 × 10^{-25}, and remaining summits expanded from single nucleotides to 150 nt. Only summits with at least 10% nucleotide overlap between at least two biological replicates were retained. These overlapping summits were merged between replicates using BEDTools v2.17.0 to give the final set of high-confidence binding sites, which were then annotated using ChIPpeakAnno v.2.2.0 to any gene within 500 nt of the centre of the summit or, alternatively, the nearest neighbour if there was no gene within 500 nt54,55. Venn diagrams were drawn using Venny and Intervene (http://bioinfogp.cnb.csic.es/tools/venny/index.html). Top-ranked MYC2 and MYC3 binding sites were identified by applying irreproducible discovery rate to the summits from the two biological replicates that had the greatest number of summits above the MACS2 cut-off of P ≤2 × 10^{-25}. TF binding motifs were identified using the MEME-Chip webserver with default parameters on the sequences of the high-stringency MYC2 summits56. To identify potential partner TFs that may enable indirect MYC2 binding, we removed all MYC2 high-stringency summits that contained the MYC2 motif (CACTGG, CATCTG or CACCTG). This was done by scanning them with FIMO set to default parameters (http://meme-suite.org/tools/fimo) against the position weight matrix for the MYC2 motif we previously identified by MEME-Chip. We then conducted MEME-Chip analyses on the remaining high-stringency summits as described above.
The Genome wide Event finding and Motif discovery (GEM) tool\(^2\) was used to identify the target summits in DAP-seq data. Significant enrichments of histone modifications and histone variants were identified with the software SCICER\(^4\) using the TAIR10 genome assembly. The Interactool tool from BEDtools\(^6\) was used to identify the genes in the histone ChIP-seq datasets most proximal to the binding sites. The fraction of reads in peak score was calculated for DAP-seq and histone ChIP-seq data using BEDTools and SAMTools\(^8\). For both ChIP-seq and DAP-seq, GO enrichment was assessed using clusterProfiler with default parameters\(^9\). Protein domain enrichment was assessed using Thalemine (https://apps.araport.org/thalemine/) with default parameters\(^9\).

Mass spectrometry analysis. Untreated and JA-treated Col-0 and mny2 seedling tissue samples were ground and lysed in YeastBuster (71186, Millipore Sigma). Proteins (100 µg per sample) were precipitated using methanol–chloroform. Dried proteins were dissolved in 8 M urea, 100 mM triethylammonium bicarbonate (TEAB), reduced with 5 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) and alkylated with 50 mM chloroacetamide. Proteins were then trypsin digested overnight at 37°C. The digested peptides were labelled using TMT10plex Isobaric Label Reagent set (90309, Thermo Fisher Scientific, lot no. TE64412) and combined. One hundred microliters of the (pre-enriched sample) was fractionated using a basic reverse phase kit (84868, Thermo Fisher Scientific). Phospho-peptides were enriched from the remaining sample (900 µg) using a High-Select Fe-NTA Phospho-peptide Enrichment kit (A32992, Thermo Fisher Scientific). The TMT labelled samples were analysed on a Fusion Lumos mass spectrometer (Thermo Fisher Scientific). Samples were injected directly onto a 23-cm, 100-µm inner diameter column packed with BEH 1.7 µm C18 (186002350, Waters) and subsequently separated at a flow rate of 300 nl/min on a nLC 1200 (LC140, Thermo Fisher Scientific). Buffer A and B were 0.1% formic acid in water and 90% acetonitrile, respectively. A gradient of 1–20% B over 30 min, an increase to 40% B over 30 min, an increase to 100% B over another 20 min at a rate of 2% B/min was used. A final 10 min was used for washing the column. The column was re-equilibrated with 20 µl of buffer A before the injection of sample. Peptides were eluted directly from the tip of the column and nano sprayed directly into the mass spectrometer by application of 2.8 kV voltage at the back of the column. The Lumos was operated in the data-dependent mode. Full MS1 scans were collected in the Orbitrap at 120,000 resolution. The cycle time was set to 3 s, and within this 3 s, the most abundant ions per scan were selected for tandem mass spectrometry with collision-induced dissociation in the ion trap. MS3 analysis with multitonl isolation (SPS) was utilized for detection of TMT reporter ions at 60,000 resolution. Monoisotopic precursor selection was enabled and dynamic exclusion was used with an exclusion duration of 10 s. The raw data were analysed using MaxQuant (v.1.6.3.3)\(^9\) against the TAIR10 proteome file (https://www.arabidopsis.org/download/indexauto.jsp?dir=%2FProteome%2F%2FTAIR10_protein_lists) and was complemented with reverse modifications and histone variants were identified with the software SICER\(^8\) using an auxiliary k-mer hash over using an auxiliary k-mer hash over k-mer hash over 15. Lorenzo, O., Chico, J. M., Sanchez-Serrano, J. J. & Solano, R. Arabidopsis COI1: rescue of jasmonate signaling defects with Arabidopsis COI1+JA. Plant Cell 16, 1752–1763 (2004).

References

1. Vanstraelen, M. & Benkova, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 28, 463–487 (2012).
2. Zhang, F. et al. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525, 269–273 (2015).
3. Schweizer, F. et al. Arabidopsis basic helix-loop–helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25, 3117–3132 (2013).
4. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1)+JAS complex during jasmonate signalling. Nature 448, 661–665 (2007).
5. Pauwels, L. et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc. Natl Acad. Sci. USA 105, 1380–1385 (2008).
6. Wang, C., Liu, Y., Li, S. S. & Han, G. Z. Insights into the origin and evolution of the plant hormone signalling machinery. Plant Physiol. 167, 872–886 (2015).
7. Huang, H., Liu, B., Liu, L. & Song, S. Jasmonate action in plant growth and development. J. Exp. Bot. 68, 1349–1359 (2017).

Data availability

All described lines can be requested from the corresponding authors. Sequence data can be downloaded from the Gene Expression Omnibus repository (GSE133408). Proteomics data are deposited at the ProteomeXchange under the accession ID PXD013592. Visualized data can be found at https://neomorph.salk.edu/MYC2 and http://signal.salk.edu/interactome/IA.php. Source data for Figs. 1–5 and Extended Data Figs. 1–10 are provided with the paper.
18. Bao, S. et al. Molecular basis of natural variation in photoperiodic flowering responses. Dev. Cell 50, 90–101 (2019).
19. Du, M. et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29, 1883–1906 (2017).
20. Dombret, B. et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225–2245 (2007).
21. Yadav, V. et al. A basic helix–loop–helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17, 1953–1966 (2005).
22. Gangappa, S. N. & Chattopadhyay, S. MYC2, a bHLH transcription factor, modulates the adult phenotype of SPA1. Plant Signal. Behav. 5, 1650–1652 (2010).
23. Zhang, X. et al. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26, 1105–1117 (2014).
24. Gimenez-Ibanez, S. et al. JAZ controls stomata dynamics during bacterial invasion. New Physiol. 213, 1378–1392 (2017).
25. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).
26. Godoy, M. et al. Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. Plant J. 66, 700–711 (2011).
27. Xie, M. et al. A B-ARL-mediated cytokinin transcription network regulates hormone cross-regulation and shoot development. Nat. Commun. 9, 1604 (2018).
28. Liu, Y. et al. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31, 106–127 (2019).
29. Guo, Q. et al. JAZ repressors of metabolic defense promote growth and reproductive fitness in Arabidopsis. Proc. Natl. Acad. Sci. USA 115, 10768–E10777 (2018).
30. Pauwels, L. et al. NINJA connects the co-repressor TOPLESS to jasmonate signaling. Plant J. 955–965 (2005).
31. Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth-defense tradeoffs in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 106, 1006–1017 (2013).
32. Chen, X. et al. New perspective of the bHLH–MYB complex in plant development. Plant Signal. Behav. 5, 700–711 (2010).
33. Alonso, J. M. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Nature 406, 814–818 (2000).
34. Lorenzo, O., Piqueras, R., Sanchez-Serrano, J. J. & Solano, R. ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26, 1105–1117 (2014).
35. Godoy, M. et al. Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. Plant J. 66, 700–711 (2011).
36. Xu, J. et al. Activation of MAPK kinase 9 involves inositol 1,4,5-triphosphate receptor signaling. Nature 464, 582–586 (2009).
37. Fonfría, A. et al. Hormone cross-talk and hormone signalling in plants. Plant Signal. Behav. 107, 1953–1966 (2011).
38. Mittler, R. et al. Gain- and loss-of-function mutations in AtZIP10 enhance the tolerance of plants to abiotic stress. FEBs Lett. 580, 6537–6542 (2006).
39. Lozano-Duran, R. et al. The transcriptional regulator BZR1 mediates jasmonate response and growth. Plant Cell 24, 536–550 (2012).
40. Wild, M. et al. Arabidopsis DELLLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24, 3307–3319 (2012).
41. Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Cell Res. 24, 1268–1283 (2015).
42. Chen, X. et al. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26, 1105–1117 (2014).
43. Maldonado, E. G. & Gmitter, F. G. Growth-defense tradeoff between plant innate immunity and growth. eLife 8, e00983 (2013).
44. Magome, H. et al. The DDEF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56, 613–626 (2008).
45. Dubois, M. et al. The ETHYLENE RESPONSE FACTORS ERF1 and ERF11 antagonistically regulate mannosil-induced growth inhibition in Arabidopsis. Plant Physiol. 169, 166–179 (2015).
46. Zander, M. et al. Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol. Plant 5, 831–840 (2012).
47. Ndamukong, I. et al. SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J. 59, 128–139 (2007).
48. Shyu, C. et al. JAZ8 lacks a canonical degron and has an EAR motif that directs hormone cross-regulation and shoot development. Plant Cell 24, 1105–1117 (2012).
49. Alonso, J. M. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).
50. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 795–815 (2000).
51. Magome, H. et al. The DDEF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56, 613–626 (2008).
52. Zander, M. et al. Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol. Plant 5, 831–840 (2012).
53. Alonso, J. M. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).
54. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 795–815 (2000).
55. Hwang, J., Ghosh, R. & Bankaitis, V. A. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim. Biophys. Acta 1861, 1352–1364 (2016).
56. Mosblech, A. et al. Jasmonic acid perception by COI1 involves inositol 1,4,5-triphosphate receptor signaling. Nature 464, 582–586 (2009).
57. Schnable, P. S. et al. The B3 Domain Containing Transcription Factor PDF1.2 Represses JA-Responsive Gene Expression. Plant Physiol. 169, 166–179 (2015).
58. Zhou, R., Benavente, L. M., Stepanova, A. N. & Alonso, J. M. A recombineering-based gene tagging system for Arabidopsis. Plant J. 66, 712–723 (2011).
59. Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (CHIP–CHIP). Nat. Protoc. 5, 457–472 (2010).
60. Langmead, B. Aligning short sequencing reads with Bowtie. Nat. Protoc. 5, 457–472 (2010).
61. Bartlett, A. et al. Mapping genome-wide transcription-factor binding sites in plants. Nature 493, 457–472 (2010).
62. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
63. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 165–169 (2015).
64. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
65. Lu, A. et al. Arabidopsis gene expression data. BMC Genomics 7, 19 (2006).
66. Ernst, J. & Bar-Joseph, Z. STEM: a tool for the analysis of short time series gene expression datasets. BMC Bioinformatics 11, 139 (2010).
67. Jin, J. et al. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 45, D1040–D1045 (2017).
97. Shibata, M. et al. GTL1 and DF1 regulate root hair growth through regulation of stem-cell-specific gene networks. *Nat. Commun.* 10, 3574 (2019).

98. Zhang, R. et al. AtRTD—a comprehensive reference transcript dataset for *Arabidopsis* transcript expression. *Nat. Methods* 298, 824–827 (2002).

99. Ingram, P. J., Stumpf, M. P. & Stark, J. Network motifs: structure does not determine function. *BMC Genomics* 7, 108 (2006).

Acknowledgements

M.Z. was supported by a Deutsche Forschungsgemeinschaft (DFG) research fellowship (Za-730/1-1) and by the Salk Pioneer Postdoctoral Endowment Fund. M.G.L. was supported by an EU Marie Curie FP7 International Outgoing Fellowship (252475). In addition, this work was supported by the Mass Spectrometry Core of the Salk Institute with funding from NIH-NIGMS (P30 014195) and the Helmsley Center for Genomic Medicine. This work was supported by grants from the National Science Foundation (NSF) (MCB-1818160 and IOS-1759023 to J.WW., MCB-1024999 to J.R.E.), the National Institutes of Health (R01GM120316), the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences of the US Department of Energy (DE-FG02-04ER15517), and the Gordon and Betty Moore Foundation (GBMF3034). Research in the lab of R.S. was supported by grant BIO2016-77216-R (MINECO/FEDER) from the Ministry of Economy, Industry and Competitiveness. J.WW. is supported as a Faculty Scholar of the ISU Plant Sciences Institute. J.R.E. is an Investigator of the Howard Hughes Medical Institute. We thank the following postdocs, undergraduates and technicians who contributed technical assistance to the project: M. Xie, L. Song, R. Carlos Serrano, C. Sy, L. Tames, J. Park, O. Romero, R. Luong, W. Ho, Y. Koga, S. Hazleton, M. Uriach and T. Dabi. We thank S.-c. Huang for computational assistance and J. Moresco and J. Diedrich for proteomics support.

Author contributions

M.Z., M.G.L., R.S. and J.R.E. designed the research. M.Z., M.G.L., A.E.L. and B.J. performed the phenotype screening. M.Z., M.G.L. and J.P.S.G. carried out the RNA-seq and ChIP-seq experiments. M.G.L., E.H. and J.P.S.G. performed the cloning and generation of transgenic constructs. M.G.L., J.R.N., H.C., M.Z. and L.Y. analysed the sequencing data and performed bioinformatics analyses. A.B. carried out DAP-seq experiments. N.M.C. and J.WW. analysed the proteome and phosphoproteome data. N.M.C., J.WW., A.W. and Z.B.-J. performed regulatory network analyses. M.Z., M.G.L. and J.P.S.G. carried out the RNA-seq and ChIP-seq experiments. M.G.L., E.H. and J.P.S.G. performed the cloning and generation of transgenic constructs. M.G.L., J.R.N., H.C., M.Z. and L.Y. analysed the sequencing data and performed bioinformatics analyses. A.B. carried out DAP-seq experiments. N.M.C. and J.WW. analysed the proteome and phosphoproteome data. N.M.C., J.WW., A.W. and Z.B.-J. performed regulatory network analyses. M.Z., M.G.L. and J.R.E. prepared the figures and wrote the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41477-020-0605-7.

Supplementary information is available for this paper at https://doi.org/10.1038/s41477-020-0605-7.

Correspondence and requests for materials should be addressed to M.G.L. or J.R.E.

Peer review information *Nature Plants* thanks Pingtao Ding, Jonathan Jones, Chuanyou Li and the other, anonymous, reviewer for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020.
Extended Data Fig. 1 | Overview of quality metrics of generated ChIP-seq datasets. a–c, Correlation plot of the respective TF ChIP-seq samples is shown. The MYC2 and MYC3 ChIP-seq replicates are shown together in (a). Clustering is determined by the degree of correlation (Pearson correlation). ChIP-seq data is derived from at least three independent experiments: MYC2 (JA, n = 4), MYC3 (JA, n = 3), ZAT10 (air, n = 3; JA, n = 2), ANAC055 (JA, n = 3).

d–i, Cross-correlation (Pearson correlation) plot for the respective TF and histone ChIP-Seq sample is shown. NSC means normalized strand cross-correlation coefficient and RSC means relative strand cross-correlation coefficient. Qtag means quality tag based on thresholded RSC (codes = −2: very low, −1: low, 0: medium, 1: high, 2: very high). All shown TF ChIP-seq replicates are derived from independent experiments: MYC2 (JA, n = 4), MYC3 (JA, n = 3), ZAT10 (air, n = 3; JA, n = 2), ANAC055 (JA, n = 3). Histone ChIP-seq data is derived from a single experiment (n = 1).
Extended Data Fig. 2 | Overview of quality metrics of generated RNA-seq and proteome data. **a, b**, Multidimensional scaling (MDS) plots of replicate samples of the 24 h JA treatment RNA-seq time-series in WT (a) and the 4 h JA-treatment RNA-seq time-series in WT and myc2 seedlings (b) are shown. Both JA treatment time series consist of three independent samples (n = 3) for each time point and genotype. **c, d**, Principal component analysis (PCA) plots of independent biological replicate samples analyzed by proteomics (c) and phosphoproteomics (d).
Extended Data Fig. 3 | MYC2 and MYC3 act predominantly as activators for a functionally diverse range of target genes. a, b, Gene ontology (GO) analyses using a hypergeometric distribution of all MYC2 and MYC3 targets (a) as well as MYC2 only and MYC2/MYC3 shared targets (b) are shown. Data is derived from four independent MYC2 (n = 4) and three independent MYC3 (n = 3) ChIP-seq samples. Analyses were conducted using clusterProfiler. c, Bar plots shows the portion of JA-induced and JA-repressed genes that are bound by MYC2 and MYC3. d, e, The CACG[A/C]G motif (286 sites, E = 2*10^{-52}) (d) and the AT[A/T][A/T] [A/T]ATA motif (714 sites, E = 8.9*10^{-35}) (e) were enriched in MYC2 high-confidence target regions that do not contain a G-box or the degenerate G-box motifs CATGTG or CACGTT.
Extended Data Fig. 4 | MYC2 and MYC3 regulate the majority of JA signaling pathway components. a, Schematic overview of known MYC2/MYC3-targeted JA pathway components. Genes that are directly targeted by MYC2/MYC3 are highlighted in orange. b, Binding behavior of MYC2 and MYC3 at known JA genes (Supplementary Table 6) is shown. Known JA genes are grouped into non-differentially expressed and JA differentially expressed genes. c, AnnoJ genome browser screenshot visualizes MYC2 and MYC3 binding at all 13.
Extended Data Fig. 5 | MYC2 and MYC3 target a large number of TFs. a, Cluster analysis revealed the 5 other main clusters in the JA time course experiment. Clusters visualize the log2 fold change expression dynamics over the indicated 24 hours’ time period. The three strongest enriched gene ontology terms for each cluster are shown as well. b, Pie chart indicates the proportions of TFs that are transcriptionally induced by JA, bound by MYC2/MYC3, or both. c-d, Overview of MYC2/MYC3-bound plant hormone genes (c) and TFs (d) is shown. Plant hormones are abbreviated (ET (ethylene), BR (brassinosteroids), GA (gibberellic acid), ABA (abscisic acid), SA (salicylic acid), CK (cytokinin), AUX (Auxin), K (karrikin), SL (strigolactones)).
Extended Data Fig. 6 | Overview of MYC-controlled TF network. a. Significantly enriched (adjusted $p < 0.05$) gene ontology terms amongst the target of each TF. For each TF the 4 terms with the lowest p-value are shown, some of which are redundant between TFs. No enriched terms were detected for DREB2B targets. ChIP-seq data is indicated by presence of *, all other data was generated by DAP-seq. ChIP-seq data is derived from at least three independent experiments: MYC2 (JA, $n = 4$), MYC3 (JA, $n = 3$), ZAT10 (air, $n = 3$; JA, $n = 2$), ANAC055 (JA, $n = 3$). DAP-seq data is derived from a single experiment ($n = 1$).
Extended Data Fig. 7 | MYC2 partially controls expression of JAZ repressors. **a**, Individual plots show expression of all JAZ/TIFYs and NINJA in WT (blue) and myc2 (orange) seedlings following JA treatment. log2 fold change (FC) was calculated relative to their respective 0 h (i.e. non-treated) control samples. **b**, Bar chart shows the number of differentially expressed (DE) genes at each time point after JA treatment between WT and myc2 seedlings. The bar chart also indicates how many of these DE genes were direct binding targets of MYC2 (in ChIP-seq assays) and whether they were more highly expressed in WT (blue) or myc2 (orange) seedlings. **c**, Charts indicates of how MYC2 indirectly affects the expression of downstream genes through secondary TFs. The expression of genes in pairwise comparisons of WT and myc2 transcriptomes at 0, 0.5, 1 and 4 h was assessed. Only genes that were direct targets of the TFs ATAF2, ZAT10, ANAC055 and ERF1, and not direct targets of MYC2, were analyzed which are termed “non-MYC2 target genes”. ATAF2, ZAT10, ANAC055 and ERF1 are themselves direct targets of MYC2 and their expression levels were decreased in myc2 relative to WT, indicating they are directly regulated by MYC2. DE indicates differentially expressed genes.
Extended Data Fig. 8 | JA shapes the local chromatin architecture. a, Bar plot shows the impact of two hours JA treatment on the genome-wide distribution of H3K4me3 and H2A.Z domains. Occupancy was determined in untreated/JA-treated WT and myc2 seedlings using ChIP-seq. SICER was used to identify the number of histone domains that show an increase (blue) or decrease (orange) of enrichment in response to JA. b, c, Heatmaps show the occupancy of H3K4me3 and H2A.Z from 1 kb upstream to 2 kb downstream of the transcriptional start site (TSS) at all Arabidopsis genes (TAIR10). Heatmaps are shown for H3K4me3 (b) and H2A.Z (c) in untreated and JA-treated (4 h) WT and myc2 seedlings. d, Quantification of H3K4me3 occupancy at JAZ2 and GRX480 is shown. It was calculated as the ratio between the respective ChIP-seq sample and the WT IgG control. e, f, Aggregated profiles show the log2 fold change enrichment of H3K4me3 at JA DEGs that are directly (e) and not directly targeted (f) by MYC2 from 2 kb upstream to 2 kb downstream of the transcriptional start site (TSS). g, h, Plot profiles show the log2 fold change enrichment of H2A.Z in WT (g) and myc2 mutants (h) from 2 kb upstream to 2 kb downstream of the transcriptional start site (TSS) at JA-induced and JA-repressed genes.
Extended Data Fig. 9 | The JA gene regulatory network. a. Illustration of JA gene regulatory network for 1, 2 and 4 h time points. Edges were predicted using phosphoproteome (green), proteome (orange) and transcriptome (blue) data. Node sizes are scaled by normalized motif score, with larger nodes indicating greater scores and likely greater importance within the network. Edges predicted early in the time-series transcriptomic data are red (0.25–2 h), edges predicted late are blue (4–24 h). Proteome and phosphoproteome-data-predicted edges are grey and green, respectively.
Extended Data Fig. 10 | Gene regulatory network validation against ChIP/DAP-seq data. **a**, The MYC2 subnetwork is shown. Edges are directional and red edges exist at early time points (0.25–2 h), blue only at late time points (4–24 h). Thicker edges with chevrons indicate that MYC2 were directly bound to that gene in our ChIP-seq experiments. **b**, Validated edges are those between TFs and first neighbors in the JA gene regulatory network for which the first neighbor was also a direct target of the TF in ChIP/DAP-seq assays. These edges are indicated by chevrons. Early time-series transcriptome-predicted edges (0.25–2 h) are red and later edges (4–24 h) are blue. Edges detected in the proteomic data are grey and those detected in the phosphoproteomic data are green. **c**, Bar plot shows quantification of JA-induced root growth inhibition in the indicated T-DNA alleles. Seedlings were grown on LS media with or without 20 μM MeJA. WT seedlings serve as independent controls for each tested T-DNA line. Sample size number n is shown within the respective bars. Samples are derived from three independent experiments. Asterisks represent significant differences between WT (−/− JA) and indicated T-DNA lines (+/ JA) (two-way ANOVA with Bonferroni post test, ns (not significant) p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001). **d**, Subnetwork of CYP708A2 is shown.
Corresponding author(s): Joseph R. Ecker, Mathew G. Lewsey
Last updated by author(s): Jan 14, 2020

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Sequencing data was generated and collected on the Illumina HiSeq 2500, HiSeq 4000 and MiSeq Sequencing systems. Proteomics data was collected on a Fusion Lumos mass spectrometer (Thermo Fisher Scientific). Root length was measured using ImageJ.

Data analysis Genomics: TopHat 2.1.1, HTSeq, EdgeR 3.6.2, EdgeR 3.18.1, PlantTFDB 4.0, Bowtie 2 v.2-2.0.5, MACS2 v.2.1, PhantomPeakQualTools v.2.0, BEDtools v.2.17.0, ChiPeakAnno v.2.2.0, SICER, BEDtools, clusterProfiler, Salmon v0.8.1, TSIS R package, SAMtools and Thalemine Proteomics: MaxQuant version 1.6.3.3, PoissonSeq

Gene regulatory network (GRN) inference: RTP-STAR (https://github.com/nmclark2/RTP-STAR), Dynamic Time Warping (DTW)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All described lines can be requested from the corresponding author. Sequence data can be downloaded from GEO (GSE133408, reviewer password ‘efinogygbanghi’). Proteomics data are deposited at Proteome Exchange under the accession ID PXD0013592 (Reviewer Access: Username: “reviewer72788@ebi.ac.uk” and password: “Dwq1vRe!”). Visualized sequencing data can be found under http://neomorph.salk.edu/MYC2.
Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☒ Life sciences ☐ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

The sample sizes in our study were chosen based on accepted sample sizes in relevant published reports within this field. (2-3 biological replicates for genomics and proteomic analyses were used).

Data exclusions

No data was excluded.

Replication

All of the experiments were repeated more than two times, and were reproduced successfully. A completely independent pool of side-by-side grown plants is considered as a biological replicate.

Randomization

Different genotypes were grown on individual plates and were allocated randomly in the growth and treatment chamber.

Blinding

Not applicable since no group allocation was conducted in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	n/a
☒☐ Antibodies	☒☐ ChIP-seq
☒☐ Eukaryotic cell lines	☒☐ Flow cytometry
☒☐ Palaeontology	☒☐ MRI-based neuroimaging
☒☐ Animals and other organisms	
☒☐ Human research participants	
☒☐ Clinical data	

Antibodies

Antibodies used

Htz1 / Histone H2A.Z antibody (pAb), Rabbit polyclonal (Active Motif Cat# 39647, RRID:AB_2793289), Lot 29018003, 10μl per reaction
Anti-trimethyl-Histone H3 (Lys4), clone 15-10C-E4, Recombinant antibody, Rabbit monoclonal (Millipore Cat# 05-745R, RRID:AB_1587134), Lot 2420405, 4μl per reaction
Anti-GFP antibody, Clones 7.1 and 13.1, Mouse monoclonal, (Sigma-Aldrich Cat# 11814460001, RRID:AB_390913), 5μl per reaction
ChromPure Mouse IgG, whole molecule, Jackson ImmunoResearch, (Jackson ImmunoResearch Labs Cat# 015-000-003, RRID:AB_2337188), Lot 99413, 2μl per reaction
goat anti-GFP supplied by David Dreschel, Max Planck Institute of Molecular Cell Biology and Genetics

Validation

All used antibodies were previously published in plant science-related studies (Htz1 / Histone H2A.Z antibody PMID:31418686), (Anti-trimethyl-Histone H3 (Lys4) PMID:31418686, PMID:30657772, anti-GFP PMID:28943086). Specificity of the Htz1 / Histone H2A.Z antibody was tested in Arabidopsis thaliana (PMID:31418686). The Anti-trimethyl-Histone H3 (Lys4) antibody has a broad species cross-reactivity expected and is used in various organism (PMID:30955888, PMID:24341414, PMID:22763441). Detailed antibody information can be found on the Antibody registry website (https://antibodyregistry.org) (Htz1 / Histone H2A.Z antibody, AB_2793289), (Anti-trimethyl-Histone H3 (Lys4), RRID:AB_1587134), (Anti-GFP antibody, RRID:AB_390913), (ChromPure Mouse IgG, RRID:AB_2337188).
ChIP-seq

Data deposition

- Confirm that both raw and final processed data have been deposited in a public database such as GEO.
- Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

May remain private before publication.

Reviewer password 'efinoygdbanzgh' for GEO deposition GSE133408

Files in database submission

- ChIP-seq_Col-0_4hJA_H3K4me3.fastq.gz
- ChIP-seq_Col-0_4hJA_H2A.Z.fastq.gz
- ChIP-seq_Col-0_air_H3K4me3.fastq.gz
- ChIP-seq_Col-0_air_H2A.Z.fastq.gz
- ChIP-seq_Col-0_air_H3K4me3.fastq.gz
- ChIP-seq_Col-0_air_H2A.Z.fastq.gz
- ChIP-seq_myc2_4hJA_H3K4me3.fastq.gz
- ChIP-seq_myc2_air_H3K4me3.fastq.gz
- ChIP-seq_myc2_air_H2A.Z.fastq.gz
- ChIP-seq_myc2_4hJA_H2A.Z.fastq.gz
- ChIP-seq_Col-0_air_H3K4me3.fastq.gz
- ChIP-seq_Col-0_air_H2A.Z.fastq.gz
- ChIP-seq_Col-0_4hJA_H3K4me3.fastq.gz
- ChIP-seq_Col-0_4hJA_H2A.Z.fastq.gz
- ChIP-seq_myc2_myc2_air_H3K4me3.fastq.gz
- ChIP-seq_myc2_myc2_4hJA_H3K4me3.fastq.gz

Genome browser session

(e.g. UCSC)

http://neomorph.salk.edu/MYC2

Methodology

Replicates

- MYC2 ChIP-seq - 4 biological replicates
- MYC3 ChIP-seq - 3 biological replicates
- ANAC055 ChIP-seq - 3 biological replicates
- ZAT10 air ChIP-seq - 3 biological replicates
ZAT10 JA ChIP-seq - 2 biological replicates
H3K4me3 and H2A.Z ChIP-seq - 1 biological replicate

Sequencing depth

Listed by file below - total reads, uniquely mapped reads. All TF ChIP-seq samples were 100 bp single-read sequencing. Histone ChIP-seq samples were 130bp single-read sequencing.

- **ANAC055 JA 2hr ChIP_rep1.fastq.gz**
 - Total reads: 21579630
 - Uniquely mapped reads: 15584500

- **ANAC055 JA 2hr ChIP_rep2.fastq.gz**
 - Total reads: 10130742
 - Uniquely mapped reads: 7224047

- **ANAC055 JA 2hr ChIP_rep3.fastq.gz**
 - Total reads: 49536769
 - Uniquely mapped reads: 32819761

- **MYC2 JA 2hr ChIP_rep1.fastq.gz**
 - Total reads: 34003716
 - Uniquely mapped reads: 25391190

- **MYC2 JA 2hr ChIP_rep2.fastq.gz**
 - Total reads: 20608966
 - Uniquely mapped reads: 15047692

- **MYC2 JA 2hr ChIP_rep3.fastq.gz**
 - Total reads: 51803765
 - Uniquely mapped reads: 38110692

- **MYC2 JA 2hr ChIP_rep4.fastq.gz**
 - Total reads: 38302426
 - Uniquely mapped reads: 32517237

- **MYC3 JA 2hr ChIP_rep1.fastq.gz**
 - Total reads: 30128545
 - Uniquely mapped reads: 22198075

- **MYC3 JA 2hr ChIP_rep2.fastq.gz**
 - Total reads: 50956817
 - Uniquely mapped reads: 38186708

- **MYC3 JA 2hr ChIP_rep3.fastq.gz**
 - Total reads: 30155159
 - Uniquely mapped reads: 21448372

- **ZAT10 AIR 2hr ChIP_rep1.fastq.gz**
 - Total reads: 42120531
 - Uniquely mapped reads: 31505002

- **ZAT10 AIR 2hr ChIP_rep2.fastq.gz**
 - Total reads: 38712323
 - Uniquely mapped reads: 27326200

- **ZAT10 AIR 2hr ChIP_rep3.fastq.gz**
 - Total reads: 37810305
 - Uniquely mapped reads: 23967198

- **ZAT10 AIR 2hr ChIP_rep2.fastq.gz**
 - Total reads: 48383504
 - Uniquely mapped reads: 34173250

- **HAL_1205_controlreads.fastq.gz**
 - Total reads: 40354104
 - Uniquely mapped reads: 27796842

- **JONAS_2093_controlreads.fastq.gz**
 - Total reads: 9011923
 - Uniquely mapped reads: 4912769

- **MISEQ_5018_controlreads.fastq.gz**
 - Total reads: 3767246
 - Uniquely mapped reads: 2642492

- **JONAS_2096_controlreads_1.fastq.gz**
 - Total reads: 4000000
 - Uniquely mapped reads: 2699412

- **JONAS_2096_controlreads_2.fastq.gz**
 - Total reads: 3011044
 - Uniquely mapped reads: 2033072

- **ChIP-seq_Col-O IgG.fastq.gz**
 - Total reads: 13653415
 - Uniquely mapped reads: 10880857

- **ChIP-seq_Col-O_H3K4me3.fastq.gz**
 - Total reads: 24758457
 - Uniquely mapped reads: 17103736

- **ChIP-seq_myc2_H3K4me3.fastq.gz**
 - Total reads: 18261319
 - Uniquely mapped reads: 12038858

- **ChIP-seq_myc2_H2A.Z.fastq.gz**
 - Total reads: 26945152
 - Uniquely mapped reads: 26945152

Antibodies

- Htz1 / Histone H2A.Z antibody (pAb), Rabbit polyclonal (Active Motif Cat# 39647, RRID:AB_2793289), Lot 29018003, 10 μl per reaction
- Anti-trimethyl-Histone H3 (Lys4), clone 15-10C-E4, Recombinant antibody, Rabbit monoclonal (Millipore Cat# 05-745R, RRID:AB_1587134), Lot 2420405, 4 μl per reaction
- Anti-GFP antibody, Clones 7.1 and 13.1, Mouse monoclonal, (Sigma-Aldrich Cat# 11814460001, RRID:AB_390913), 5 μl per reaction
- ChromPure Mouse IgG, whole molecule, Jackson ImmunoResearch, (Jackson ImmunoResearch Labs Cat# 015-000-003, RRID:AB_2337188), Lot 99413, 2 μl per reaction
- goat anti-GFP supplied by David Dreschel, Max Planck Institute of Molecular Cell Biology and Genetics

Peak calling parameters

For TF ChIP-seq, enriched binding sites were identified using MACS2 v.2.1 (options -p 99e-2 --nomodel --shiftsize --downsample --call-summits) against sequence reads from whole IgG control samples (Zhang et al., 2008). The shift size was calculated using PhantomPeakQualTools v.2.0 (Kharchenko et al., 2008). Significant enrichments of histone modifications and histone variants were identified with the SICER software (Zang et al., 2009) using the TAIR10 genome assembly.

Data quality

Transcription factor summit lists were filtered with a lower cut-off of -log10(25) and remaining summits expanded from single nucleotides to 150 nt. Only summits with at least 10% nt overlap between at least two biological replicates were retained. These overlapping summits were merged between replicates using BEDtools v.2.17.0 to give the final set of high-stringency summits, which were then annotated using ChiPpeakAnno v.2.2.0 to any gene within 500 nt of the center of the summit or, alternatively, the nearest neighbor if there was no gene within 500 nt.

Software

- Bowtie 2 v.2-2.0.5, MACS2 v.2.1, PhantomPeakQualTools v.2.0, BEDtools v.2.17.0, ChiPpeakAnno v.2.2.0, SICER