Original Research Article

Self-gripping mesh versus polypropylene mesh in ventral hernia repair: an observational study

V. Om Kumar, Venkatesh Subbiah*

Department of General Surgery, Velammal Medical College, Anupanadi, Madurai, India

Received: 13 July 2020
Accepted: 07 August 2020

*Correspondence:
Dr. Venkatesh Subbiah,
E-mail: venkateshpims@gmail.com

ABSTRACT

Background: To compare clinical outcomes following sutureless Parietex ProGrip™ mesh in ventral hernia repair to traditional lightweight polypropylene mesh secured with sutures.

Methods: This was a study conducted at the Department of General Surgery in Velammal medical college from August 2019 to February 2020. This prospective observational study involved, 60 patients, 30 each undergoing ventral hernia repair with polypropylene mesh with suture fixation and Parietex ProGrip™ precut mesh (P group) without fixation. The primary outcome measure was postoperative pain using the visual analog scale were assessed prior to surgery and up to 3 months postoperatively (VAS, 0-150 mm); other outcomes (duration of surgery, wound infection and recurrence of hernia) were assessed up to 3 months postoperatively.

Results: Compared to baseline (preoperative), pain score below four on the visual analogue scale was higher in the test group at discharge (76.7%) and 24 hours (96.7%), while the pain was more in the study group at discharge (43.3%) and seven days (70%). The difference between groups was significant at both time points. In the test group, patients without fixation suffered less pain compared to those with single-suture fixation (48 hours: 100% versus 86.6%, \(p = 0.038 \); 3 months: 100% versus 100%, \(p \leq 0.001 \)). Surgery duration was significantly shorter in the test group (<60 minutes) (66.7% versus 40%; \(p < 0.038 \)). No recurrence was observed at three months in both groups.

Conclusions: A self-gripping mesh for ventral hernia repair may result in less pain in the early postoperative phase. Recurrence rates reduce as well as the patient’s quality of life improves.

Keywords: Polypropylene mesh, Self-gripping mesh, Ventral hernia, Quality of life

INTRODUCTION

Ventral hernias are one of the most common challenging problems which the general surgeons confront. The rate of incidence of ventral incisional hernia in the long term after laparotomy has been reported to be as high as 20% to 25%.\(^1\)

Prior to 1993, all ventral and incisional hernias were repaired with open exposure. Primary suture repair remains one of the oldest techniques. Still, it has been shown to have a high recurrence rate with wide variability, ranging from 8% to 63%.\(^2,3\) The invention of prosthetics has revolutionized ventral hernia repair, leading to a significant reduction in the recurrence rates, ranging as low as 1% to 14% in some studies.\(^4\) Later, randomized controlled trials of mesh-based ventral incisional hernia repair, the recurrence rate was found to be 24% with an appropriate follow-up period of 3 years.\(^3\) This gold standard repair widely reinforces or bridges the defect, with mesh placed posterior to the fascia either in retro rectus, preperitoneal, or intraperitoneal anatomic space. This takes advantage of LaPlace’s Law, distributing intra-abdominal pressure across the overlapping mesh instead of only at the hernia defect.\(^5,6\)

The downside of the use of these meshes induced by sutures for ventral hernia repair is the increase of
complications like infections, seroma, fistulas and chronic pain.⁷⁻⁹ Chronic pain, in particular, is thought to be caused by nerve entrapment or nerve irritation induced by sutures fixing the mesh.¹⁰

Because of the above mentioned mesh-related complications induced by sutures, especially chronic postoperative pain, a self-gripping mesh (Parietex ProGrip™, Medtronic, Trévoux, France) has been developed.¹¹ This ProGrip™ mesh combines the properties of a well-known lightweight polyester mesh with a surface of absorbable, polyactic acid microhooks for mesh fixation. Clinical (randomized) studies of this mesh in inguinal hernia repair have shown promising results in terms of infection, chronic pain and recurrence rates.¹²⁻¹⁵

This mesh has shown promising results in several different kinds of abdominal wall hernias.¹⁵⁻¹⁶ To date, there are very few studies which have been conducted on the use of this self-gripping mesh in ventral hernia repair cases. Hence, the aim and objectives of this study were to compare clinical outcomes (postoperative pain, duration of surgery, wound infection and recurrence of hernia at the end of 3 months) following sutureless Parietex ProGrip™ mesh in ventral hernia repair to traditional lightweight polypropylene mesh secured with sutures.

METHODS

Patients

This was a study conducted at the Department of General Surgery in Velammal medical college from August 2019 to February 2020. All research performed in this study was in strict accordance with a common, pre-defined protocol that was approved by a local institutional review board. All patients provided informed consent before any study-related procedures were performed. This prospective observational study consecutively enrolled 60 patients (above the age of 18 years) with an uncomplicated ventral hernia. The main entry criteria were adults with a ventral hernia (width or length ≤5 cm) who required primary elective repair. Exclusion criteria included patients with a recurrent or complicated hernia (obstruction and strangulation), ventral herniae defect more than 5 cm and patients less than 18 years of age.

Patients were divided into two groups, namely; the control group included 30 patients in whom polypropylene mesh was used with suture fixation for ventral hernia repair, and the study group included 30 patients in whom suture less-gripping (polyester) mesh was used for ventral hernia repair.

Procedures

Patients who met all study entry criteria underwent preoperative history and physical examination. Patients were electively treated by a single surgeon. The hernia sac was dissected. The open primary repair was first performed with as little tension as possible using a double-stranded 0-nylon continuous closure. ProGrip mesh is a large-pore knitted fabric of monofilament polyester that incorporates resorbable microgrips of polyactic acid on one side that facilitate placement and positioning by encouraging immediate tension-free fixation to surrounding tissue. The resorbable microgrips endow the mesh with self-gripping properties during the first several months after implantation and eliminate or reduce the need for fixation by suture, which may penetrate underlying tissue and damage cutaneous nerves. Mesh density is 75 g/m² at implantation and 40 g/m² after absorption. The mesh was placed using the onlay technique over the abdominal wall closure in the subcutaneous prefascial space extending 4-5 cm beyond the wound margins. The grips were placed facing down towards the fascia. To standardize mesh fixation and facilitate mesh placement, the mesh was minimally fixated in four quadrants with resorbable sutures, although this step is not required. A Jackson Pratt subcutaneous drain was placed in 15 patients. After recovery, patients were discharged that day or admitted to the hospital for 24 hour observation.

Outcomes

Patients returned for follow-up visits at 24 hours, 48 hours and three months after surgery which included a patient interview and physical examination.

Pain score

In the postoperative period, the pain was measured in both the study groups by using visual analog scale 17 were 0 (no pain) to 10 (worst pain imaginable) scale. Patients with pain score four or more as per the visual analog scale were taken as significant in the study. Other parameters analyzed were duration of surgery (less than or more than 60 minutes), wound infection and hernia recurrence.

Statistical analysis was performed by an independent biostatistician, who received all data for analysis directly from an electronic database. Continuous variables were reported as mean±standard deviation (SD), and categorical variables were presented as n (%). Longitudinal outcomes were analyzed with repeated measures analysis of variance (ANOVA). Statistical significance was set at p<0.05. Statistical analyses were performed using predictive analytics software (version 22; IBM, Inc., Armonk, New York, USA).

RESULTS

A total of 60 patients (Mean age 62±12 years) with uncomplicated ventral hernia (mean defect size: ≤5cm) were treated. Baseline patient characteristics are presented in Table 1.

Among the control group, the majority were 12 (40%) in the 41-50 years age group followed up by 51-60 years
(23.34%) and 61-70 years (16.67%). Among the study group, majority 10 (33.33%) were in 31-40 years age group and the proportion of 51-60 years and 61-70 years age group was 9 (30%) and 6 (20%) respectively (Table 1).

Table 1: Age distribution in the study between study groups (n=60).

Age groups (in years)	Control (n=30) (%)	Study group (n=30) (%)
20-30	2 (6.67)	1 (3.34)
31-40	2 (6.67)	10 (33.33)
41-50	12 (40)	2 (6.67)
51-60	7 (23.34)	9 (30)
61-70	5 (16.67)	6 (20)
71-80	2 (6.67)	0 (0)
81-90	0 (0)	2 (6.67)

Majority 18 (60%) people reported duration of surgery as >60 minutes in the control group, but in the study group, majority 20 (66.7%) reported it as <60 minutes. The difference in duration of surgery between groups as statistically significant (P value=0.038) (Figure 1).

Table 2: Comparison of pain score between the study groups.

Pain score	Study group (n=30)	Chi square	P value	
	Control group (%)	Study group (%)		
Baseline				
Less than 4	13 (43.3)	23 (76.7)	6.944	0.008
More than 4	17 (56.7)	7 (23.3)		
At 24 hours				
Less than 4	21 (70.0)	29 (96.7)	7.680	0.012
More than 4	9 (30.0)	1 (3.3)		
At 48 hours				
Less than 4	26 (86.7)	30 (100)	*	*
More than 4	4 (13.3)	0(0)		
At 3rd month				
Less than 4	30 (100)	30 (100)	*	*
More than 4	0(0)	0(0)		

*No statistical test was applied due to 0 subjects in the cell.

Figure 1: Distribution of duration of surgery between study groups (n=60).

In controls pain score was >4 in majority 17 (56.7%) people at baseline, 21 (70%) reported <4 pain score at 24 hours, 26 (86.7%) reported <4 pain score at 48 hours and all 30 (100%) reported at 3rd month. In study group pain score was >4 in majority 23 (76.7%) people at baseline, 29 (96.7%) reported <4 pain score at 24 hours and all 30 (100%) reported at 48 hours and 3rd month (Table 2).

There was no wound infection and recurrence observed in both the groups (Table 3).

Figure 2: Pain score distribution in control group (n=30).
Table 3: Comparison of diagnosis between the study groups (n=60).

Parameter	Study group (n=30)	Control group (%	Study group (%)
Wound infection			
Present	0 (0)	0 (0)	
Absent	30 (100)	30 (100)	
Recurrence			
Present	0 (0)	0 (0)	
Absent	30 (100)	30 (100)	

No statistical test was applied—due to 0 subjects in the cell.

DISCUSSION

The preliminary results of this study are promising and show advantages over the innovative self-gripping mesh. Duration of surgery is significantly shorter. The time necessary to spread out the mesh and fix it is less than 1 minute with the described technique. This short time necessary for mesh fixation reduces the time of mesh exposure and could reduce sepsis complications. This is in accordance with a study done by Wang who said that the mean operation time in for all their hernia repairs using the self-gripping mesh was only 32±8.15 minutes.17

In our study, it was noted that on post-operative day (POD) 0, a pain score of less than four was seen in 13 patients in the control group and 23 patients in the study group. A pain score of more than four was seen in 17 patients and seven patients in the control and study group, respectively. These findings are in accordance with observations done by Hopson and Miller.18

In our study, it was noted that the pain scores up to 24 hours, a pain score of less than four was seen in 21 patients in the control group and 29 patients in the study group. A pain score of more than four was seen in 9 patients and one patient in the control and study group, respectively. A similar observation was noted in a study done by Hopson and Miller.18

In our study, it was observed that the pain scores up to 48 hours, a pain score of less than four was seen in 26 patients in the control group and 30 patients in the study group. A pain score of more than four was seen in 4 patients in control, and none in the study group. Observations were noted in a study done by Hopson and Miller had a similar outcome which is in accordance with our study. In our study, the pain score after three months of surgery, all the patients in the control group and study group had the pain score less than 4. Similar observations are noted in a study done by Hopson and Miller.18

In our study, it is noted that there is no incidence of wound infection. This is in contrary to the study done by Hopson and Miller. We observed that there is no incidence of mesh rejection or foreign body sensation in our study. Similar results were noted in studies done by the same group of researchers.18

In our study, it is noted that the duration of surgery was observed to be 12 patients in the control group, and 20 patients in the study group were operated in less than 60 minutes, and 18 patients in the control group and ten patients in the study group were operated for more than 60 minutes. This shows a statistical significance of less operating time in the study.
population with a P value of 0.038. Similar observations were noted in studies done by Hopson et al. and Peter.19.

CONCLUSION

This study shows the promising use of the ProGrip™ mesh for ventral hernias. Because of the self-gripping surface of the mesh, use sutures or tackers can be omitted. This makes the mesh easy and fast to use. Furthermore, it decreases the chance of postoperative pain and discomfort. It improves the quality of life of the patients by decreasing the recurrence of hernias as well. Future long-term studies on a larger sample population can be conducted to validate further and analyze the efficacy of the ProGrip™ mesh.

ACKNOWLEDGEMENTS

Authors would like to acknowledge the technical support in data entry, analysis and manuscript editing by Evidencia Research Associates.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Singhal V, Szeto P, VanderMeer TJ, Cagir B. Ventral hernia repair: outcomes change with long-term follow-up. JSLS. 2012;16(3):373-9.
2. Jin J, Rosen MJ. Laparoscopic versus open ventral hernia repair. Surg Clin North Am. 2008;88(5):1083-100.
3. Luijendijk RW, Hop WC, van den Tol MP, de Lange DC, Braaksma MM, JN JI, et al. A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med. 2000;343(6):392-8.
4. Nguyen MT, Berger RL, Hicks SC, Davila JA, Li LT, Kao LS, et al. Comparison of outcomes of synthetic mesh vs suture repair of elective primary ventral herniorrhaphy: a systematic review and meta-analysis. JAMA Surg. 2014;149(5):415-21.
5. Cobb WS, Kercher KW, Heniford BT. Laparoscopic repair of incisional hernias. Surg Clin North Am. 2005;85(1):91-103.
6. Vorst AL, Kaoutzanis C, Carbonell AM, Franz MG. Evolution and advances in laparoscopic ventral and incisional hernia repair. World J Gastrointest Surg. 2015;7(11):293-305.
7. Eriksson A, Rosenberg J, Bisgaard T. Surgical treatment for giant incisional hernia: a qualitative systematic review. Hernia. 2014;18(1):31-8.
8. de Vries Reilingh TS, van Goor H, Charbon JA, Rosman C, Hesselinck EJ, van der Wilt G-J, et al. Repair of giant midline abdominal wall hernias: components separation technique versus prosthetic repair. World J Surg. 2007;31(4):756-63.
9. Rosen MJ. Polyester-based mesh for ventral hernia repair: is it safe? Am J Surg. 2009;197(3):353-9.
10. Abd El Makssoud WM, Abbas KS, Mohii AD. Comparison between Lichtenstein procedure using polypropylene mesh and self-fixating mesh for management of primary inguinal hernia in adult male patients in terms of chronic postoperative pain: a prospective randomized controlled trial. Egypt J Surg. 2019;38(3):597.
11. Paajanen H. Do absorbable mesh sutures cause less chronic pain than nonabsorbable sutures after Lichtenstein inguinal herniorrhaphy? Hernia. 2002;6(1):26-8.
12. Chastan P. Tension-free open hernia repair using an innovative self-grafting semi-resorbable mesh. Hernia. 2009;13(2):137-42.
13. Pedano N, Pastor C, Arredondo J, Poveda I, Ruiz J, Montón S, et al. Open tension-free hernioplasty using a novel lightweight self-gripping mesh: medium-term experience from two institutions. Langenbecks Arch Surg. 2012;397(2):291-5.
14. Muysoms FE, Vanlander A, Ceulemans R, Kyle-Leinhase I, Michiels M, Jacobs I, et al. A prospective, multicenter, observational study on quality of life after laparoscopic inguinal hernia repair with ProGrip laparoscopic, self-fixating mesh according to the European Registry for abdominal wall hernias quality of life instrument. Surgery. 2016;160(5):1344-57.
15. Rönkä K, Vironen J, Kössi J, Hulmi T, Silvasti S, Hakala T, et al. Randomized multicenter trial comparing glue fixation, self-fixating mesh, and suture fixation of mesh in Lichtenstein hernia repair (FinnMesh Study). Ann surg. 2015;262(5):714-20.
16. Khansa I, Janis JE. Abdominal wall reconstruction using retrorectus self-adhering mesh: a novel approach. Plast Reconstr Surg Glob Open. 2016;4(11).
17. Wang Y, Zhang X. Short-term results of open inguinal hernia repair with self-fixing Parietex ProGrip mesh in China: A retrospective study of 90 cases. Asian J Surg. 2016;39(4):218-24.
18. Hopson SB, Miller LE. Open ventral hernia repair using ProGrip™ self-gripping mesh. Int J Surg. 2015;23:137-40.
19. Wysocki AP. Research Article Quick repair of medium sized umbilical hernias with a self gripping preperitoneal mesh. J Surg Open Access.2015;1(2).

Cite this article as: Kumar VO, Subbiah V. Self-gripping mesh versus polypropylene mesh in ventral hernia repair: an observational study. Int Surg J. 2020;7:3036-40.