Off-Diagonal Decay of Toric Bergman Kernels

Dedicated to the memory of Louis Boutet de Monvel

STEVE ZELDITCH
Department of Mathematics, Northwestern University, Evanston, IL 60208 USA.
e-mail: zelditch@math.northwestern.edu

Received: 11 November 2015 / Revised: 7 October 2016 / Accepted: 7 October 2016
Published online: 18 October 2016 – © Springer Science+Business Media Dordrecht 2016

Abstract. We study the off-diagonal decay of Bergman kernels $\Pi_{hk}(z, w)$ and Berezin kernels $P_{hk}(z, w)$ for ample invariant line bundles over compact toric projective Kähler manifolds of dimension m. When the metric is real analytic, $P_{hk}(z, w) \simeq k^m \exp(-kD(z, w))$ where $D(z, w)$ is the diastasis. When the metric is only C^∞ this asymptotic cannot hold for all (z, w) since the diastasis is not even defined for all (z, w) close to the diagonal. Our main result is that for general toric C^∞ metrics, $P_{hk}(z, w) \simeq k^m \exp(-kD(z, w))$ as long as w lies on the R_m^+-orbit of z, and for general (z, w), $\limsup_{k \to \infty} \frac{1}{k} \log P_{hk}(z, w) \leq -D(z^*, w^*)$ where $D(z, w^*)$ is the diastasis between z and the translate of w by $(S^1)_m$ to the R_m^+ orbit of z. These results are complementary to Mike Christ’s negative results showing that $P_{hk}(z, w)$ does not have off-diagonal exponential decay at “speed” k if (z, w) lies on the same $(S^1)_m$-orbit.

Mathematics Subject Classification 32A25, 14M25.

Keywords. toric Kähler manifold, line bundle, Bergman kernel.

1. Introduction

The problem we are concerned with in this note is to find conditions on a positive Hermitian line bundle $(L, h) \to (M, \omega)$ over a Kähler manifold so that the Szegö kernel $\Pi_{hk}(z, w)$ for $H^0(M, L^k)$ has exponential decay at speed k. We denote the Berezin kernel or normalized Szegö kernel by

$$P_{hk}(z, w) := \frac{||\Pi_{hk}(z, w)||}{\Pi_{hk}(z, z)^{1/2} \Pi_{hk}(w, w)^{1/2}}.$$ \hfill (1)

Problem Let $D_h^*(z, w)$ be the upper semi-continuous regularization of

$$\limsup_{k \to \infty} \frac{1}{k} (-\log P_{hk}(z, w)).$$ \hfill (2)

Determine $D_h^*(z, w)$ and in particular determine when it is non-zero.

Research partially supported by NSF Grant DMS-1541126.
The minus sign is due to the fact that (1) is pluri-superharmonic in z and we prefer to deal with pluri-subharmonic functions. It is known that for real analytic metrics, $P_{h^k}(z, w) \leq C k^m e^{-kD(z, w)}$ for points (z, w) sufficiently close to the diagonal, where $D(z, w)$ is the so-called Calabi diastasis (Section 2.1). Near the diagonal, $D(z, w) \sim |z - w|^2$. For general smooth metrics, the sharpest general result is that $P_{h^k}(z, w) \leq C e^{-A \sqrt{k} \log k}$ for all $A < \infty$ [2,3]. This raises the question of whether, for C^∞ but not real analytic metrics, $D_h^*(z, w)$ can be strictly negative off the diagonal.

A stronger condition which arises in several problems (see [6]) is whether there exists a pointwise limit

$$
\frac{1}{k} \log P_{h^k}(z, w) \rightarrow -\tilde{D}(z, w) \tag{3}
$$

for some function $\tilde{D}(z, w)$ defined near the diagonal in $M \times \bar{M}$. If the metric is real analytic, then such a limit does exist and $\tilde{D}(z, w) = D(z, w)$ is the Calabi diastasis of the metric (see Section 2.1). The diastasis is the real part of the off-diagonal analytic continuation of a local Kähler potential of ω [1]. Existence of regular pointwise limit near the diagonal would be surprising if the metric is C^∞ but not real analytic, since it would define a Calabi diastasis even though the Kähler potential admits no analytic continuation. One might, therefore, expect the neighborhood of z in which the limit (3) exists to be the largest neighborhood of z in which the Kähler potential ϕ admits an analytic continuation.

In this note, we study these questions in the case of a positive Hermitian holomorphic toric line bundle $(L, h) \rightarrow (M, \omega_h)$ with C^∞ metric h. As recalled in Section 3, a toric Kähler manifold is a Kähler manifold on which the complex torus $(\mathbb{C}^*)^m$ acts holomorphically with an open-orbit M^α. We denote by T^m the underlying real torus and by \mathbb{R}^m_+ the real subgroup of $(\mathbb{C}^*)^m$. We denote a point by $z = e^{\rho/2 + i\theta} m_0$ where $e^{\rho/2}$ denotes the \mathbb{R}^m_+ action and $e^{i\theta}$ denotes the T^m action. Let $h = e^{-\phi}$ in a toric holomorphic frame over M^α. As recalled in Section 3.3, $\phi(e^{\rho/2}) = \tilde{\phi}(\rho)$ on the open orbit, where $\tilde{\phi}$ is convex.

Given two points $z = e^{\rho_1/2 + i\theta_1}, w = e^{\rho_2/2 + i\theta_2}$ we denote by $z^* = e^{\rho_1/2}$, resp. $w^* = e^{\rho_2/2}$ the unique point on the \mathbb{R}^m_+ orbit of m_0 which lie on the same T^m orbit as z, resp. w. Our main result is that $D_h^*(z, w) \leq -D(z^*, w^*)$ where $D(z, w)$ is the Calabi diastasis (see Sections 2.1, 3.3).

THEOREM 1. Let $(L, h) \rightarrow (M, \omega)$ be a positive Hermitian toric line bundle over a toric Kähler manifold. Then if $z, w \in M^\alpha$,

$$
\limsup_{k \rightarrow \infty} \frac{1}{k} \log P_{h^k}(z, w) \leq -D(z^*, w^*) \leq 0,
$$

with $D(z^*, w^*) = 0$ if and only if $z^* = w^*$. Furthermore, if $z = e^{\rho_1/2 + i\theta}, w = e^{\rho_2/2 + i\theta}$ lie on the same \mathbb{R}^m_+ orbit, then one has the pointwise limit (3).