LETTER

Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations

Zhen Qu1,2, Daniel J Jacob1, Yuzhong Zhang1, Lu Shen1, Daniel J Varon1, Xiao Lu4, Tia Scarpelli2,5, Anthony Bloom1, John Worden1 and Robert J Parker6

1 School of Engineering and Applied Science, Harvard University, Cambridge, MA, United States of America
2 Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou, Zhejiang, People’s Republic of China
3 Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, People’s Republic of China
4 School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, Guangdong Province, People’s Republic of China
5 Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States of America
6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States of America
7 National Centre for Earth Observation, University of Leicester, Leicester, United Kingdom
8 Earth Observation Science, School of Physics and Astronomy, University of Leicester, Leicester, United Kingdom

* Author to whom any correspondence should be addressed.

E-mail: zhenqu@g.harvard.edu

Keywords: inverse modeling, methane surge, wetland emissions

Supplementary material for this article is available online

Abstract

Atmospheric methane mixing ratio rose by 15 ppbv between 2019 and 2020, the fastest growth rate on record. We conduct a global inverse analysis of 2019–2020 Greenhouse Gases Observing Satellite observations of atmospheric methane to analyze the combination of sources and sinks driving this surge. The imbalance between sources and sinks of atmospheric methane increased by 31 Tg a$^{-1}$ from 2019 to 2020, representing a 36 Tg a$^{-1}$ forcing (direct changes in methane emissions and OH concentrations) on the methane budget away from steady state. 86% of the forcing in the base inversion is from increasing emissions (82 ± 18% in the nine-member inversion ensemble), and only 14% is from decrease in tropospheric OH. Half of the increase in emissions is from Africa (15 Tg a$^{-1}$) and appears to be driven by wetland inundation. There is also a large relative increase in emissions from Canada and Alaska (4.8 Tg a$^{-1}$, 24%) that could be driven by temperature sensitivity of boreal wetland emissions.

1. Introduction

Methane (CH$_4$) is a potent greenhouse gas. Its atmospheric concentration has almost tripled since preindustrial time, resulting in a 1.2 W m$^{-2}$ radiative forcing and a 0.6 °C increase in global mean surface air temperature (Szopa et al. 2021). The concentration plateaued in 2000–2007 but has since resumed its increase with acceleration in recent years (Nisbet et al. 2019). The annual rise in methane in 2020 was a record high of 13 ppbv, 50% larger than the 10 ppbv a$^{-1}$ growth rate between 2015 and 2019 (Blunden and Boyer 2020, NOAA 2021a, 2021b). Here we use an inversion of Greenhouse Gases Observing Satellite (GOSAT) observations of atmospheric methane to analyze the factors driving the 2020 surge.

Major anthropogenic sources of atmospheric methane include fossil fuels (oil, gas, and coal), livestock farming, rice cultivation, and waste management (Saunois et al. 2020). Other sources include wetlands, wildfires, and termites. Both wetlands and open fires have large interannual variability and may respond strongly to climate change (Ciais et al. 2013, Saunois et al. 2020). Loss of methane is mainly by atmospheric oxidation by the hydroxyl radical (OH) in the troposphere, which is determined by complex chemistry and is also subject to interannual variability (Holmes 2018). COVID-19 shutdowns in 2020 were a major perturbation to economic activity but the effect on methane is unclear. Oil/gas production declined which would be expected to decrease methane emission in some regions (Lyon et al. 2021), but reduced maintenance of infrastructure could have
caused increases (Laughner et al. 2021). Decreases in emissions of nitrogen oxides (\(NO_x \equiv NO + NO_2\)) from fuel combustion led to decreases in free tropospheric ozone (Bouarar et al. 2021, Steinbrecht et al. 2021), which would decrease OH concentrations (Miyazaki et al. 2021) and hence the methane sink (Laughner et al. 2021).

Satellite observations of column-averaged dry methane mixing ratios \(X_{CH4}\) by solar backscatter in the shortwave infrared offer a unique resource to investigate the global changes in methane sources and sinks through inverse analysis (Jacob et al. 2016). The GOSAT has been providing stable high-quality data since 2009 (Kuze et al. 2009, 2016, Buchwitz et al. 2015, Parker et al. 2020) and has been used extensively in inversions (Monteil et al. 2013, Cressot et al. 2014, Alexe et al. 2015, Pandey et al. 2016, Janardanan et al. 2020, Stanевич et al. 2021). The recently launched TROPOSpheric Monitoring Instrument (TROPOMI) provides a much higher data density of atmospheric methane (Hu et al. 2018, Lorente et al. 2021) but regional biases in the retrieval still limit its capability for global inversions (Qu et al. 2021). In this work, we use the GOSAT \(X_{CH4}\) retrieval in a Bayesian analytical inversion to quantify the methane emissions and OH concentrations in 2019 and 2020, and their differences, in order to explain the 2020 surge.

2. Methods

2.1. Observations and model

We use the University of Leicester version 9.0 GOSAT methane retrieval (Parker and Boesch 2020). This product shows good consistency (3.9 ppbv regional bias) with ground-based methane column measurements from the total carbon column observing network (TCCON) (Parker et al. 2020) and good consistency with surface data in estimating global methane sources through inversions (Lu et al. 2021, 2022). We use observations over both land and ocean, the latter in glint mode (Parker et al. 2020). We only include high-quality retrievals that pass the cloud-screening and post-retrieval quality filtering (‘\(xch4_quality_flag\) = 0’) (Parker et al. 2020).

We use the GEOS-Chem chemical transport model version 12.5.0 (10.5281/zenodo.3403111) at 2° \(\times\) 2.5° grid resolution to relate methane emissions to \(X_{CH4}\) as retrieved by GOSAT. Model transport is driven by NASA MERRA-2 archived meteorological fields. The model is essentially linear except for a small nonlinearity from the optimization of OH concentrations (Maasakkers et al. 2019).

We use the same prior emission estimates for 2019 and 2020 in the simulations, including the Global Fuel Exploitation Inventory version 2.0 (Scarpelli et al. 2022) for oil, gas, and coal exploitation; the EDGAR v4.3.2 inventory (Janssens-Maenhout et al. 2019) for other anthropogenic sources; and monthly mean 2019 wetland and lake emissions from the nine highest-performance members of the WetCHARTs v1.3.2 inventory ensemble (Ma et al. 2021). Other natural sources include open fire emissions in 2019 from the Global Fire Emissions Database version 4 (van der Werf et al. 2017), termite emissions from Fung et al. (1991), and geological seepage from Etiope et al. (2019) scaled to a global magnitude of 2 Tg a\(^{-1}\) from Hmiel et al. (2020). Loss of methane from oxidation by tropospheric OH is calculated with archived 3D climatological monthly fields of OH concentrations from a GEOS-Chem full-chemistry simulation (Wecht et al. 2014), with a corresponding methane lifetime of 10.5 years. Other minor sinks from oxidation by tropospheric Cl and in the stratosphere, and from uptake by soils, are the same as in Qu et al. (2021). Initial model concentrations of methane on 1 January 2019 and 1 January 2020 are obtained from a standard GEOS-Chem simulation using the prior emissions and a ten year spin-up and are adjusted by a global scaling factor of 0.97 and 1.01 respectively to match GOSAT \(X_{CH4}\). This scaling ensures consistent atmospheric concentrations between the model and observations at the beginning of each one-year simulation, and subsequent deviation of the model from the observations over the course of simulation year can then be attributed to errors in emissions and/or OH concentrations for that year. We use the quadratic regression in Turner et al. (2015) to remove high-latitude biases between GEOS-Chem and GOSAT.

2.2. Inverse analysis

We perform two independent Bayesian analytical inversions to estimate the sources and sinks of methane for 2019 and 2020. The inversions draw on GOSAT observations \(y\) together with the above prior estimates for emissions and OH concentrations. Because these prior estimates are the same for 2019 and 2020, and we do not update the prior error covariance matrix from one year to the next (see below), the differences in 2019 and 2020 inversion results are solely driven by observations. For each year, the inversion optimizes a state vector \(x\) consisting of (a) annual mean non-wetland methane emissions for land-containing 2° \(\times\) 2.5° grid cells (4020 elements), (b) monthly wetland methane emissions for 14 subcontinental regions (168 elements), and (c) annual methane loss frequency against oxidation by tropospheric OH (1 element). Previous work has shown that inversion of GOSAT observations can provide independent information on global emissions and OH concentrations as indicated by inspection of the posterior error correlation matrix (Maasakkers et al. 2019, Zhang et al. 2021) and can constrain the global tropospheric OH concentration with an accuracy of 3% (Zhang et al. 2018).

For each year, we perturb each of the state vector elements in 4189 GEOS-Chem simulations to construct the full Jacobian matrix \(K\). Since the relationship between \(x\) and \(y\) is approximately linear, \(K\)
describes the sensitivity of the methane observations to the state vector as simulated by GEOS-Chem. The posterior estimate with Gaussian error statistics is obtained by minimizing the scalar cost function $J(x)$:

$$J(x) = (x - x_a)^T S_a^{-1} (x - x_a) + \gamma (y - Kx)^T S_o^{-1} (y - Kx),$$ \hspace{1cm} (1)

where x_a is the prior estimate of the state vector, S_a is the prior error covariance matrix, S_o is the observational error covariance matrix assumed to be diagonal, and γ is a regularization parameter that accounts for the effect of unresolved correlation in the observational error. S_o is constructed assuming a 10% error standard deviation for annual mean OH concentrations and a 50% error standard deviation for all emissions. Prior error correlations for monthly wetland emissions in the 14 subcontinental regions follow the calculation using the WetCHARTs model ensemble as described in Bloom et al (2017) and Zhang et al (2021). We do not allow results from the 2019 inversion to inform the 2020 inversion, so that the same S_a applies to both years. Diagonal elements of S_o are calculated using the residual error method (Heald et al 2004), resulting in a mean observational error standard deviation of 14 ppb. γ is chosen to be 0.5 based on the L-curve test (figure S1).

The best posterior estimate of x is given by (Rodgers 2000):

$$\hat{x} = x_a + (\gamma K^T S_o^{-1} K + S_a^{-1})^{-1} \gamma K^T S_o^{-1} (y - Kx_a),$$ \hspace{1cm} (2)

with posterior error covariance matrix \hat{S}:

$$\hat{S} = (\gamma K^T S_o^{-1} K + S_a^{-1})^{-1},$$ \hspace{1cm} (3)

The posterior solution can also be presented in reduced aggregated form for emission sectors and regions with a matrix W to represent the linear transformation from the full state vector to the reduced state vector. The posterior estimate of the reduced state vector (\hat{x}_{red}) is computed as

$$\hat{x}_{red} = W \hat{x},$$ \hspace{1cm} (4)

and its posterior error covariance is given by

$$\hat{S}_{red} = W S W^T.$$ \hspace{1cm} (5)

The posterior error covariance matrix estimates error statistics under the assumption that the prior error covariance and other inversion parameters are correct, but there is uncertainty in these parameters. The assumption that prior errors on anthropogenic emissions are spatially uncorrelated can lead to an underestimate of posterior errors when aggregating emissions. As a complementary approach to estimate errors, we conducted an inversion ensemble varying parameters from our base inversion one at a time, including prior error standard deviations for anthropogenic emissions (30% and 60%), wetland emissions (20% and 60%), and OH concentrations (5% and 20%), and different regularization parameters ($\gamma = 0.1$ and 1). This results in a nine-member inversion ensemble including the base inversion, as listed in table S1. We take the standard deviation of results for that ensemble as a better estimate of the error on our posterior estimates.

3. Results

Figure 1 shows the global distribution of GOSAT annual mean X_{CH4} differences between 2019 and 2020. The global mean increase from 2019 to 2020 is 13.4 ppbv. Some continental regions show particularly large increases including Central Africa, Europe, northern Brazil, and North America. China, the largest anthropogenic methane source (Janssens-Maenhout et al 2019), shows weaker increases. However, such year-to-year comparisons in methane concentrations may have sampling bias and not necessarily relate to changes in emissions because atmospheric transport also drives interannual variability (Bruhwiler et al 2017, Feng et al 2021). The inversion allows us to correct for the effect of transport and isolate the contributions from changes in sources and sinks.

Table 1 summarizes our inversion results. GEOS-Chem simulations using posterior emission and OH estimates show a 42 Tg increase (0.8%) in the atmospheric mass of methane from 2019 to 2020, corresponding to a global mean 13.7 ppbv increase in X_{CH4} as would be sampled by GOSAT. Methane emissions increase by 31 Tg a$^{-1}$ from 2019 to 2020 in the base inversion while the sink from oxidation by tropospheric OH decreases by 1.0 Tg a$^{-1}$. \hat{S}_{red} (equation (5)) shows that 2019–2020 changes in methane sources and sinks have a strong error correlation ($r = 0.97$) but that the posterior errors are small, with 90% confidence that the increase of methane emission is in the range of 25–37 Tg a$^{-1}$ and that the change in the methane sink due to changes in OH is in the range of −6–4 Tg a$^{-1}$. As pointed out above, this could underestimate the actual uncertainty in the solution. Analysis of the inversion ensemble as individual realizations of the solution, shown in tables 1 and S1, confirms the dominance of increase in methane emissions (mean ± standard deviation: 30 ± 5.5 Tg a$^{-1}$) as a principal driver for the 2019–2020 rise in methane concentrations, while finding that the change in the methane sink is a minor contributor (−2.6 ± 6.7 Tg a$^{-1}$).

The results from the inversion can be interpreted with a simple mass balance analysis. The global growth rate of tropospheric methane mass dmn/dt is
Table 1. Global 2019–2020 methane budget from inverse analysis of GOSAT data.

Component	2019	2020	2020–2019a
Atmospheric mass (Tg)	5197	5238	41 (42 ± 0.67)
Total sources (Tg a$^{-1}$)	572	603	31 (30 ± 5.5)
Total sinks (Tg a$^{-1}$)	544	544	−0.2 (−1.8 ± 6.7)
Tropospheric OH	469	468	−1.0 (−2.6 ± 6.7)
Othersb	75	76	0.8
Growth rate (Tg a$^{-1}$)	28	59	31 (31 ± 1.2)
Lifetime (OH) (a)d	11.06	11.21	0.15 (0.20 ± 0.17)

a Difference between 2020 and 2019. Values are from the base inversion, with means and standard deviations from the nine-member inversion ensemble in parentheses.

b Including oxidation in the stratosphere and by tropospheric Cl, and uptake by soils. These minor sinks are not optimized in the inversion and their small increase from 2019 to 2020 (same for all inversion ensemble members) is due solely to the increase in methane mass driving an increase in the oxidation loss rate.

c Growth rate in atmospheric methane as determined by the imbalance between sources and sinks.

d Lifetime of total atmospheric methane against oxidation by tropospheric OH.

determined by a balance between methane emission E, oxidation by tropospheric OH (loss frequency k), and other minor losses L not optimized in the inversion:

$$\frac{dm}{dt} = E - km - L. \tag{6}$$

The change in imbalance or acceleration of methane growth (d^2m/dt^2) between 2019 and 2020 can be expressed as:

$$\frac{d^2m}{dt^2} = \frac{dE}{dt} - m\frac{dk}{dt} - k\frac{dm}{dt} - \frac{dL}{dt}, \tag{7}$$

where $dE/dt = E_{2020} - E_{2019}$ is the change in methane emissions, $dm/dt = m_{2020} - m_{2019}$ is the change in methane mass, $dk/dt = k_{2020} - k_{2019}$ is the change driven by OH, and $dL/dt = L_{2020} - L_{2019}$ is the change due to other minor sinks. We define the first two terms in equation (7) as the forcing on the methane budget:

$$F = \frac{dE}{dt} - m\frac{dk}{dt}, \tag{8}$$

which describes the changes in methane emissions and OH concentrations that force the methane concentration away from first-order relaxation to steady state. F can be largely derived from observations since it is given equivalently by $F = \frac{d^2m}{dt^2} + kdm/dt + dL/dt$. The other two terms in equation (7) represent the changes in methane loss due simply to changes in methane mass.

The base inversion results as given in table 1 show a 5.4% increase in global methane emissions (dE/dt) from 2019 to 2020 and a 1.2% decrease in area-weighted global mean tropospheric OH concentrations, which accounts for adjustments from both meteorological factors and emissions. The decrease in OH drives a 5Tg a^{-1} ($−mdk/dt$) forcing of the methane budget to offset the increase in methane mass, which for constant OH would cause an increase in the sink of 4Tg a^{-1} (km/dt). The dL/dt term for other methane losses is small (1Tg a^{-1}) and is in the model solely determined by increase in methane mass (no forcing). The forcing on the methane budget from 2019 to 2020 is thus 36Tg a^{-1}, of which 31Tg a^{-1} (86%) is from emissions and 5Tg a^{-1} (14%) is from the decrease in tropospheric OH in our base inversion. Changes in methane mass offset the forcing by 5Tg a^{-1} and lead

Figure 1. Methane changes from 2019 to 2020 measured by the GOSAT satellite instrument as the difference in annual mean dry column mixing ratio (X_{CH4}) mapped on a $4^\circ \times 5^\circ$ grid. The global mean increase is 13.4 ppbv. 5% of the $4^\circ \times 5^\circ$ grid cells show decreases from 2019 to 2020. Areas in grey do not have observations in either 2019 or 2020.
to a methane growth rate of 31 Tg a\(^{-1}\). For our nine-member inversion ensemble, the contribution to the 36 Tg a\(^{-1}\) forcing from emissions is 30 ± 5.5 Tg a\(^{-1}\) (82 ± 18%), with OH contributing the remainder.

The 1.2% OH decrease from 2019 to 2020 in our base inversion (1.6 ± 1.5% in the nine-member inversion ensemble) is lower than the 2%–4% decrease inferred by Miyazaki \textit{et al} (2021) for the first half of 2020 based on chemical data assimilation of satellite observations and attributed to NO\(_x\) emission decreases from COVID-19 lockdowns. These lockdowns relaxed in the second half of 2020 and OH could have recovered. Laughner \textit{et al} (2021) found in a box model analysis that a 3% reduction in global mean OH concentration in 2020 could account for only half of the observed methane increase, which is consistent with our results that OH changes cannot explain most of the 2020 methane surge. Stevenson \textit{et al} (2021) argue that most of the methane increase from 2019 to 2020 is due to a 15% reduction in global NO\(_x\) emissions, based on model sensitivities of methane to NO\(_x\), but they did not consider the offsetting impact of reductions in CO emissions (Fry \textit{et al} 2012). In addition, a 15% reduction applied to global annual NO\(_x\) emissions in 2020 is likely excessive.

We went on to further analyze the GOSAT inversion results in terms of the sources contributing to the global 2019–2020 change in methane emissions. We find from the posterior error correlations and the spread of results in the inversion ensemble that we cannot robustly quantify the changes in the spatial distribution of emissions on the 2° × 2.5° model grid resolution, nor can we separate the contributions from different emission sectors including anthropogenic versus wetlands. However, we can separate the contributions from individual continental regions. Figure 2 and table 2 show those results. \(S_{red}\) for the base inversion finds only moderate error correlation between different regions (figure 2(a)) and the inversion ensemble also indicates consistent results for the major regions driving the change (table 2).

Figure 2(b) shows that Africa is the largest single contributor to the 2020 surge. It accounts for 48% of the global increase in methane emissions from 2019 to 2020 with the rest spread across other continental regions. Some regions show a decrease including China, the Contiguous United States (CONUS), South America, and Russia. These results are consistent across the inversion ensemble (table 2). Africa shows an increase of 15 Tg a\(^{-1}\) in methane emissions from 2019 to 2020, consistent with the 13 Tg a\(^{-1}\) increase reported in another inverse analysis of GOSAT observations (Feng \textit{et al} 2022). We attribute most of the increase to wetland emissions in East Africa (30° E–50° E, 15° S–10° N) due to the increases in rainfall by 20% (46 mm) in the first three seasons from 2019 to 2020 according to the tropical applications of meteorology using SATEllite and ground based observations (TAMSAT) (www.tamsat.org.uk/index.php/data). Consistent with the increase in rainfall, the water flows of the Congo-Oubangui River, which goes through wetlands in the Congo Basin, were much higher in 2020 than in previous years (World Meteorological Organization 2021). Flooding in 2020 was widespread, affecting 50% more East Africans than in 2019 (BBC 2020). Wetland methane emission in the tropics is dominantly controlled by water table depth, and interannual variability is primarily driven by precipitation and inundation (Bloom \textit{et al} 2010, Lunt \textit{et al} 2019). The rapid increase in livestock emissions in East Africa (Zhang \textit{et al} 2021) could also contribute to the surge.

Other regions also show significant changes from 2019 to 2020. The large relative increase of methane...
Table 2. Regional methane emissions and 2020–2019 differences.

Region	Prior (Tg a⁻¹)	2019 (Tg a⁻¹)	2020 (Tg a⁻¹)	2020–2019 (Tg a⁻¹)	(%)
South America	92	120	117	−0.7 (−2.8 ± 0.98)	−2.3 (−2.4 ± 0.87)
Africa	81	80	95	15 (14 ± 1.6)	18 (18 ± 1.9)
Oceania	26	32	35	3.2 (2.7 ± 1.7)	10 (8.6 ± 5.4)
Europe	34	32	37	4.6 (4.4 ± 0.68)	14 (14 ± 2.1)
Russia	32	39	38	−1.1 (−1.1 ± 0.39)	−2.9 (−2.7 ± 1.0)
China	64	51	47	−3.9 (−3.7 ± 0.47)	−7.8 (−7.3 ± 1.0)
India + Pakistan	38	47	50	3.5 (3.5 ± 0.53)	7.4 (7.4 ± 1.1)
CONUS	34	44	42	−2.0 (−1.8 ± 0.29)	−4.6 (−4.2 ± 0.57)
S + SE Asia	22	29	31	2.0 (1.9 ± 0.40)	6.7 (6.5 ± 1.3)
Canada + Alaska	19	20	25	4.8 (4.9 ± 0.16)	24 (24 ± 0.81)
Middle East	17	21	24	2.5 (2.5 ± 0.13)	12 (12 ± 0.64)
Mexico + Central America	14	19	19	−0.49 (−0.54 ± 0.34)	−2.6 (−2.8 ± 1.8)
Central Asia	11	16	18	2.5 (2.3 ± 0.35)	16 (15 ± 1.9)
Rest of the world	23	24	25	1.7 (1.4 ± 1.1)	7.3 (6.0 ± 4.5)

*Values from the base inversion, with means and standard deviations from the nine-member inversion ensemble in parentheses. Prior and posterior emissions include both anthropogenic and natural sources.

emissions in Canada and Alaska (4.8 Tg a⁻¹ or 24%) can be attributed to a temperature-driven increase in wetland emissions as shown by WetCHARTs (figure S2). The decrease in China could reflect the continued decline of emissions from coal mines (Zhang et al 2021) and rice (Zhang et al 2020). The decrease in CONUS could reflect the continued decline of emissions from the oil/gas sector (Lu et al 2022). Although surface temperature increased in Siberia in 2020, which would lead to an increase in wetland emissions (figure S2), the posterior methane emissions show a slight decrease, consistent with Feng et al (2022). This could possibly be explained by a decrease of anthropogenic emissions. The increase in Europe could be explained by oil and gas leakage due to the lack of maintenance during the COVID-19 shutdown (S&P Global Commodity Insights 2020, Clean Air Task Force 2021).

4. Conclusions

We conducted a global inverse analysis of 2019–2020 GOASAT observations to analyze the factors driving the 2020 surge in atmospheric methane concentrations. The inversion shows an increase in the methane growth rate from 28 Tg a⁻¹ in 2019 to 59 Tg a⁻¹ in 2020, consistent with observations. This implies a forcing on the methane budget away from a steady state by 36 Tg a⁻¹ from 2019 to 2020, 86% (82 ± 18% in the nine-member inversion ensemble) of which is from the increase in emissions between the two years and the rest is from the decrease in tropospheric OH. Changes in methane mass offset the forcing by 5 Tg a⁻¹. The global mean OH concentration decreases by 1.2% (1.6 ± 1.5%) from 2019 to 2020, which could be due to reduced NOx emissions from COVID-19 decreases in economic activity but accounts for only a small fraction of the methane surge. We find that half of the increase in methane emissions from 2019 to 2020 is due to Africa. High precipitation and flooding in East Africa leading to increased wetland methane emissions could explain the increase. We also find a large relative increase in Canadian emissions, also apparently driven by wetlands. Our finding of wetlands as the principal driver for the 2020 surge could be a harbinger for the response of atmospheric methane to climate change.

Data availability statement

The GOSAT methane retrieval is available at www.leos.le.ac.uk/data/GHG/GOSAT/v9.0/CH4_GOS_OCP_R_v9.0_final_nceo_2009_2020.tar.gz (last accessed 3 May 2022).

The data that support the findings of this study are openly available at the following URL/DOI: https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb.

Acknowledgments

This work was funded by the NASA Carbon Monitoring System under NASA Award Number 80NSSC18K0178 to Harvard University. RJP is funded via the UK National Centre for Earth Observation (NE/N018079/1). We thank the Japanese Aerospace Exploration Agency, National Institute for Environmental Studies, and the Ministry of Environment (NE/N018079/1). We thank the Japanese Aerospace Exploration Agency, National Institute for Environmental Studies, and the Ministry of Environment (NE/N018079/1). We thank the Japanese Environmental Studies, and the Ministry of Environment (NE/N018079/1). We thank the Japanese Environmental Studies, and the Ministry of Environment (NE/N018079/1). We thank the Japanese Environmental Studies, and the Ministry of Environment (NE/N018079/1). We thank the Japanese Environmental Studies, and the Ministry of Environment (NE/N018079/1).
ORCID iDs

Zhen Qu https://orcid.org/0000-0002-3766-9838
Lu Shen https://orcid.org/0000-0003-2787-7016
Tia Scarpelli https://orcid.org/0000-0001-5544-8732
Robert J Parker https://orcid.org/0000-0002-0801-0831

References

Alexe M et al 2015 Inverse modelling of CH₄ emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY Atmos. Chem. Phys. 15 113–33

BBC 2020 Flooding hits six million people in East Africa (available at: www.bbc.com/news/world-africa-54433904)

Bloom A A, Bowman K W, Lee M, Turner A J, Schroeder R, Worden J R, Weidner R, McDonald K C and Jacob D J 2017 A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARI's version 1.0) Geosci. Model Dev. 10 2141–56

Bloom A A, Palmer P I, Fraser A, Reay D S and Frankenberg C 2010 Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data Science 327 322–5

Blunden J and Boyer T (eds) 2020 State of the climate in 2020 Bull. Am. Meteorol. Soc. 102 51–5475

Bouarar I et al 2015 The greenhouse gas climate change initiative (GHG-CCI): comparison and quality assessment of near-surface-sensitive satellite-derived CO₂ and CH₄ global data sets Remote Sens. Environ. 162 344–62

Ciais P et al 2013 Carbon and other biogeochemical cycles Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed T F Stocker, D Qin, G K Plattner, M Tignor, S K Allen, J Boschung, A Nauels, Y Xia, V Bex and P M Midgley (Cambridge: Cambridge University Press) p 1353

Clean Air Task Force 2021 It happens here too: methane pollution in Europe’s oil and gas network (available at: www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-5P/Monitoring_methane_emissions_from_gas_pipelines)

Cressot C et al 2014 On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements Atmos. Chem. Phys. 14 577–952

Etiope G, Ciotoli G, Schwietzke S and Scholl M 2019 Gridded maps of geological methane emissions and their isotopic signature Earth Syst. Sci. Data 11 1–22

Feng L, Palmer P I, Parker R J, Lunt M F and Boesch H 2022 Methane emissions responsible for record-breaking atmospheric methane growth rates in 2020 and 2021 Atmos. Chem. Phys. Discuss. 2022 1–23

Feng L, Tavakoli S, Jordaan S, Andrews A, Benmergui J S and Miller S M 2021 Ambiguity in recent changes to US methane emissions AGU Fall Meeting

Fry M M et al 2012 The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing J. Geophys. Res. 117 D07306

Fung I, John J, Lerner J, Matthews E, Prather M, Steele L P and Fraser P J 1991 Three-dimensional model synthesis of the global methane cycle J. Geophys. Res. 96 13033–65

Heald C L et al 2004 Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide J. Geophys. Res. 109 D23306

Hmiel B et al 2020 Preindustrial αCH₄ indicates greater anthropogenic fossil CH₄ emissions Nature 578 609–12

 Holmes C D 2018 Methane feedback on atmospheric chemistry: methods, models, and mechanisms J. Adv. Model. Earth Syst. 10 1087–99

Hu H, Landgraf J, Detmers R, Borsdorf T, Aan de Brugh J, Aben I, Butz A and Hasekamp O 2018 Toward global mapping of methane with TROPOMI: first results and intercomparison to GOSAT Geophys. Res. Lett. 45 3682–9

Jacob D J, Turner A J, Maasakkers J D, Sheng J, Sun K, Liu X, Chance K, Aben I, McKeever J and Frankenberg C 2016 Satellite observations of atmospheric methane and their value for quantifying methane emissions Atmos. Chem. Phys. 16 14371–96

Janardanan R et al 2020 Country-scale analysis of methane emissions with a high-resolution inverse model using GOSAT and surface observations Remote Sens. 12 375

Janssens-Maenhout G et al 2019 EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012 Earth Syst. Sci. Data 11 939–1002

Kuze A et al 2016 Update on GOSAT TANSO-FTS performance, operations, and data products after more than 6 years in space Atmos. Meas. Tech. 9 2445–61

Kuze A, Suto H, Nakajima M and Hamazaki T 2009 Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring Appl. Opt. 48 6716–33

Laughner J L et al 2021 Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change Proc. Natl Acad. Sci. 118 e2109481118

Lorente A et al 2021 Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements Atmos. Meas. Tech. 14 665–84

Lu X et al 2021 Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH₄ ObsPack) and satellite (GOSAT) observations Atmos. Chem. Phys. 21 4637–57

Lu X et al 2022 Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH₄ ObsPack) and satellite (GOSAT) atmospheric observations Atmos. Chem. Phys. 22 1235–1113

Lunt M F, Palmer P I, Feng L, Taylor C M, Boesch H and Parker R J 2019 An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data Atmos. Chem. Phys. 19 14721–40

Lyon D R et al 2021 Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic Atmos. Chem. Phys. 21 6605–20

Ma S et al 2021 Satellite constraints on the latitudinal distribution and temperature sensitivity of wetland methane emissions AGU Adv. 2 e2021A000408

Maasakkers J D et al 2019 Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015 Atmos. Chem. Phys. 19 7859–81

Miyazaki K, Bowman K, Sekiya T, Takigawa M, Neu J L, Sudo K, Osterman G and Eskees H 2021 Global tropospheric ozone responses to reduced NOₓ emissions linked to the COVID-19 worldwide lockdowns Sci. Adv. 7 eab77460

Monteil G, Houweling S, Butz A, Guerlet S, Schepers D, Hasekamp O, Frankenberg C, Scheepmaker R, Aben I and Röckmann T 2013 Comparison of CH₄ inversions based on 15 months of GOSAT and SCIAMACHY observations J. Geophys. Res. 118 8107–8113,823
Nisbet E G et al 2019 Very strong atmospheric methane growth in the 4 years 2014–2017: implications for the Paris Agreement Glob. Biogeochem. Cycles 33 318–42
NOAA 2021a The NOAA Annual Greenhouse Gas Index (available at: https://gml.noaa.gov/aggi/aggi.html)
NOAA 2021b Despite pandemic shutdowns, carbon dioxide and methane surged in 2020 (available at: https://research.noaa.gov/article/ArtMID/587/ArticleID/2742/Despite-pandemic-shutdowns-carbon-dioxide-and-methane-surged-in-2020)
Pandey S et al 2016 Inverse modeling of GOSAT-retrieved ratios of total column CH\textsubscript{4} and CO\textsubscript{2} for 2009 and 2010 Atmos. Chem. Phys. 16 5043–62
Parker R J et al 2020 A decade of GOSAT proxy satellite CH\textsubscript{4} observations Earth Syst. Sci. Data 12 3383–412
Parker R J and Boesch H 2020 University of Leicester GOSAT Proxy XCH\textsubscript{4} V9.0, Centre For Environmental Data Analysis (https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb) (Accessed 7 May 2020)
Qu Z et al 2021 Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments Atmos. Chem. Phys. 21 14159–75
Rodgers C D 2000 Inverse Methods for Atmospheric Sounding: Theory and Practice (River Edge, NJ: (World Scientific)
S&P Global Commodity Insights 2020 Refinery news roundup: some European refiners halt amid COVID-19, certain plants restart (available at: www.spglobal.com/commodity-insights/en/market-insights/latest-news/oil/062520-refinery-news-roundup-some-european-refiners-halt-amid-covid-19-certain-plants-restart)
Saunois M et al 2020 The global methane budget 2000–2017 Earth Syst. Sci. Data 12 1561–623
Scarpelli T R, Jacob D J, Grossman S, Lu X, Qu Z, Sulprizio M P, Zhang Y, Reuland J, Gordon D and Worden J R 2022 Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations Atmos. Chem. Phys. 22 3235–49
Stanovich I et al 2021 Characterizing model errors in chemical transport modeling of methane: using GOSAT XCH\textsubscript{4} data with weak-constraint four-dimensional variational data assimilation Atmos. Chem. Phys. 21 9545–72
Steinbrecht W et al 2021 COVID-19 crisis reduces free tropospheric ozone across the Northern Hemisphere Geophys. Res. Lett. 48 e2020GL091987
Stevenson D, Derwent R, Wild O and Collins W 2021 COVID-19 lockdown NOx emission reductions can explain most of the coincident increase in global atmospheric methane Atmos. Chem. Phys. Discus. 2021 1–8
Szopa S et al 2021 Short-lived climate forcers Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ed V Masson-Delmotte et al (Cambridge: Cambridge University Press) pp 817–922
Turner A J et al 2015 Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data Atmos. Chem. Phys. 15 7049–69
van der Werf G R et al 2017 Global fire emissions estimates during 1997–2016 Earth Syst. Sci. Data 9 697–720
Wecht K J, Jacob D J, Frankenberg C, Jiang Z and Blake D R 2014 Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data J. Geophys. Res. 119 7741–59
World Meteorological Organization 2021 State of the Climate in Africa 2020 (available at: https://storymaps.arcgis.com/stories/f7f88788f4c6463f96d228c07937310f) (Accessed 18 April 2022)
Zhang G, Xiao X, Dong J, Xin F, Zhang Y, Qin Y, Doughty R B and Moore B 2020 Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia Nat. Commun. 11 554
Zhang Y et al 2021 Attribution of the accelerating increase in atmospheric methane concentration during 2010–2018 by inverse analysis of GOSAT observations Atmos. Chem. Phys. 21 3643–66
Zhang Y, Jacob D J, Maasakkers J D, Sulprizio M P, Sheng J X, Gautam R and Worden J 2018 Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane Atmos. Chem. Phys. 18 15959–73