Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves

O. Lyubchyk1 · E.P. Kontar2 · Y.M. Voitenko3 · N.H. Bian2 · D.B. Melrose4

1Main Astronomical Observatory, National Academy of Sciences of Ukraine, 27 Akademika Zabolotnoho St., 03680 Kyiv, Ukraine
2School of Physics and Astronomy, University of Glasgow, G12 8QQ, Scotland, UK
3Solar-Terrestrial Centre of Excellence, Belgian Institute for Space Aeronomy, Ringlaan 3 Avenue Circulaire, 1180 Brussels, Belgium
4Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia

© Springer

\textbf{Abstract} We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the plasma/magnetic pressure ratio β is smaller than the electron/ion mass ratio m_e/m_i. The present study is motivated by the phenomenon of solar type I radio storms associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose the model with the imbalanced turbulence of kinetic-scale Alfvén waves producing an asymmetric quasilinear plateau on the upward half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo a strong Landau damping. Our model predicts 100\% polarization in the sense of the ordinary (o-) mode of type I emission.

\textbf{Keywords:} Radio Bursts, Type I; Turbulence; Waves, Alfvén; Corona
1. Introduction

Numerous observations indicate the presence of Alfvén waves throughout the solar atmosphere (see introduction in Morton, Tomczyk, and Pinto, 2015 and references therein). At small scales, where the perpendicular wavelength is close to the kinetic plasma scales (ion gyroradius \(\rho_i \) and/or electron inertial length \(d_e \)), Alfvén waves transform into dispersive Alfvén waves (DAWs) with the following dispersion relation (Hasegawa and Chen, 1975; Goertz and Boswell, 1979; Lysak and Lotko, 1996; Stasiewicz et al., 2000):

\[
\omega = k_{A\|} V_A \sqrt{\frac{1 + k_{A\perp}^2 \rho_i^2}{1 + k_{A\perp}^2 d_e^2}},
\]

where \(\omega \) is the wave frequency and \(k_{A\|} \) and \(k_{A\perp} \) are wave-vector components parallel and perpendicular to the mean magnetic field \(B_0 \); \(\rho_i = V_{Ti}/\omega_{Bi} \) is the ion gyroradius; \(V_{Ti} = \sqrt{T_i/m_i} \) is the ion thermal velocity; \(\omega_{Bi} = q_i B_0 / (m_e c) \) is the ion gyrofrequency; \(d_e = c/\omega_{pe} = c\sqrt{m_e/4\pi n_0 |q_e|} \) is the electron inertial length; \(V_A = B_0 / \sqrt{4\pi n_0 m_i} \) is the Alfvén velocity; \(n_0 \) is the plasma number density; and \(q_s, m_s, \) and \(T_s \) are the elementary charge, mass, and temperature of particles (\(s = i \) for the ions and \(s = e \) for the electrons). Note that in equations \(T_s \) is expressed in energy units. We consider a hydrogen plasma where \(q_i = |q_e| = e \), with \(e \) is the proton charge. DAWs are called inertial Alfvén waves (IAWs) when the inertial term dominates in Equation (1), and kinetic Alfvén waves (KAWs) when the kinetic term dominates in Equation (1).

The inertia of electrons plays a significant role in rarefied plasmas where the magnetic field is strong enough to make \(\beta < m_e/m_i \ll 1 \). On the other hand, in an intermediate beta plasma \((m_e/m_i \ll \beta \ll 1) \) the effects due to a finite Larmor radius become dominant in DAWs. Recent observations have clearly demonstrated that the DAW turbulence exists in both the \(\beta > m_e/m_i \) plasma environments, such as the solar wind (He et al., 2012), and in the \(\beta < m_e/m_i \) plasma environments, such as the auroral zones below 4 Earth radii (Chaston et al., 2008). DAWs cannot be observed directly in the solar corona. However, spectral line observations indicate that there are plenty of unresolved nonthermal motions implying Alfvén waves with velocity amplitudes \(\approx 30 \text{ km s}^{-1} \) and higher (Banerjee et al., 1998).

The parallel electric field of DAWs makes them efficient in Cherenkov resonant interaction with plasma particles. The ion and electron dynamics in the solar wind under the influence of KAW turbulence was examined by Rudakov et al. (2012). It was shown that the particle diffusion governed by KAWs leads to the development of a plateau in the electron distribution and a step-like distribution for the superthermal ions. These distributions are found to be unstable to electromagnetic waves due to ion cyclotron resonance. The analytic theory of proton diffusion driven by the KAW spectra observed in the solar wind was developed by Voitenko and Pierrard (2013). These authors performed kinetic simulations of the velocity-space diffusion of protons (Pierrard and Voitenko, 2013). It was shown that the presence of Alfvénic turbulence in the solar wind leads to a fast...
development of nonthermal tails in the proton velocity distribution function. The tails are already noticeable at distances about one solar radius from the simulation boundary, and they increase rapidly with radial distance and become pronounced beyond 2–3 solar radii.

Note that DAWs can resonantly exchange energy with particles in the velocity range between the Alfvén velocity \(V_A \) and the electron thermal velocity \(V_{Te} \). As in the solar atmosphere usually \(V_A < V_{Te} \), and DAWs are usually not efficient agents for resonant acceleration of coronal electrons to suprathermal energies (see however Artemyev, Zimovets, and Rankin, 2016). The favourable conditions for the suprathermal electron acceleration are in the regions with strong magnetic fields and/or low temperatures, where the electron thermal speed drops under the Alfvén speed, \(V_A > V_{Te} \). In such regions, DAW turbulence leads to the diffusive acceleration of resonant suprathermal electrons to Alfvénic velocities creating a quasi-linear plateau on the electron velocity distribution.

The purpose of this paper is to study possible effects of the IAW turbulence in the generation of solar coronal radio emission. The proposed scenario is as follows. First, the IAW turbulence produces a flat (plateau-like) velocity distribution of the electrons in the velocity range \(\sqrt{1 + T_i/T_e} V_{Te} < V_\parallel < V_A \). Such local flattening of the velocity distribution suppresses the Landau damping of the resonant Langmuir waves (LWs), making possible their spontaneous growth to high nonthermal levels. Then the resulting high-amplitude LWs can interact non-linearly with low-frequency plasma waves generating electromagnetic radiation (radio waves) close to the local plasma frequency.

Our scenario can contribute to radio emission from the coronal regions where the plasma/magnetic pressure ratio \(\beta \) is smaller than the electron/ion mass ratio \(m_e/m_i \). In particular, this mechanism can account for type I solar radio storms – the most common manifestations of solar radio emission at meter wavelengths (Elgarøy, 1977; McLean and Labrum, 1985).

The outline of the paper is as follows. The influence of the IAW turbulence on the electron velocity distribution and spectral energy density of Langmuir waves are estimated in Section 2. The theory for fundamental plasma emission by the fusion/decay processes \(L \pm S \rightarrow T \) is presented in Section 3 including the rate equations for the emission processes (Section 3.1), the saturation level of fundamental plasma emission (Section 3.2) and its absorption during propagation (Section 3.3). Possible application to type I solar radio bursts is discussed in Section 4. Our main conclusions are given in Section 5.

2. Spectral Energy Density of LWs due to IAW Turbulence

The Landau resonance with electrons is made possible by the existence of a parallel electric field which is the result of the combined effect of the electron pressure gradient and electron inertia in Ohm’s law. This parallel electric field is also the very reason for the wave dispersion (see Equation (11)) in a collisionless plasma. In the case \(\rho_T = d_e \), the wave becomes dispersionless and the wave-particle resonance reduces to a single point in velocity-space (see Appendix A for the details). Otherwise the range of Landau resonance in velocity-space is
finite. The generation of a spectrum of parallel electric field fluctuations by Alfvénic turbulence was studied in Bian, Kontar, and Brown (2010). Parallel electric field amplification and spectral formation by phase mixing of Alfvén waves were studied in Bian and Kontar (2011) and the role of this electric field in the bulk energization of electrons during solar flares was developed in Melrose and Wheatland (2014).

The Landau resonance between electrons and DAWs occurs when the electron velocity V_\parallel is equal to the wave phase speed $V_{\text{DAW}} = \omega/k_{A\perp}$, i.e.

$$V_\parallel = V_A \sqrt{\frac{1 + k_{A\perp}^2 d_e^2}{1 + k_{A\perp}^2 d_i^2}}.$$

The range of resonant velocities extends from $V_\parallel = V_T = \sqrt{1 + T_i/T_e} V_{Te}$ at $k_{A\perp} \to \infty$ to $V_\parallel = V_A$ at $k_{A\perp} \to 0$. Note that we are interested in the regions where the plasma β can be smaller than the electron to ion mass ratio m_e/m_i. In such a low-β plasma the DAWs are IAWs, and phase velocities are larger than the electron thermal velocity V_{Te}.

Starting from the initially Maxwellian velocity distribution, the quasi-linear plateau can be formed by IAWs in the resonant velocity range $\sqrt{1 + T_i/T_e} V_{Te} < |V_\parallel = V_{\text{IAW}}| < V_A$, as is sketched in Figure 1. This process is essentially the same as the quasilinear evolution of initially Maxwellian velocity distributions driven by KAWs in the solar wind, which has been studied by Rudakov et al. (2012), Voitenko and Pierrard (2013), Pierrard and Voitenko (2013). The particle beams are not needed for that. In turn, the reduced velocity-space gradient within the plateau suppresses the linear Landau damping of resonant LWs with phase velocities $\sqrt{1 + T_i/T_e} V_{Te} < V_{\text{LW}} < V_A$. As a consequence, a spontaneous growth of LW amplitudes is possible in this velocity range.

We have to note that the initial velocity distribution of the electrons does not have to be exactly Maxwellian, it can be e.g. a kappa-distribution often observed in space. However, this would not affect the IAW dispersion and polarization, which depend on the bulk plasma parameters, and the basic physical picture would be the same. First, the IAWs flatten the electron velocity distribution in the resonant velocity range, which is then followed by the spontaneous growth of the Langmuir wave amplitudes above the thermal level.

In-situ satellite observations have revealed that the MHD Alfvénic turbulence in the solar wind is dominated by the anti-sunward wave flux (Bruno and Carbone, 2013, and references therein). The corresponding wave turbulence is referred to as imbalanced. Matthaeus et al. (1999) suggested that the imbalanced turbulence of MHD Alfvén waves develops also in the solar corona, where it can reach dissipative scales and heat plasma. Voitenko and De Keyser (2016) investigated the MHD-kinetic turbulence transition and showed that the KAW turbulence is less imbalanced than the parent MHD turbulence but remains imbalanced throughout. Other possible sources for the imbalanced KAW turbulence in the solar corona include phase mixing (Voitenko and Goossens, 2000) and magnetic reconnection (Voitenko, 1998). In solar flares these KAWs can lead to impulsive plasma heating (Voitenko, 1998) and non-local electron acceleration to relativistic energies (Artemyev, Zimovets, and Rankin, 2016).
Contrary to the balanced IAW turbulence, which is symmetric with respect to $k_\parallel \to -k_\parallel$, the wave amplitudes in the imbalanced IAW turbulence are much smaller at $k_\parallel < 0$ than at $k_\parallel > 0$. The balanced IAW turbulence forms two symmetric quasilinear plateaus in the electron velocity distribution function (VDF), at $-V_A < V_\parallel < -\sqrt{1 + T_i/T_e} V_T e$ and $\sqrt{1 + T_i/T_e} V_T e < V_\parallel < V_A$. The imbalanced IAW turbulence forms the plateaus asymmetrically, preferentially in the propagation direction of the dominant IAW component, which we take as positive, i.e. at $\sqrt{1 + T_i/T_e} V_T e < V_\parallel < V_A$. The spontaneous emission of LWs can be studied independently for forward and backward plateaus.

As the origin of coronal Alfvén waves is at the coronal base, it is natural to expect that the upward wave flux in the solar corona is larger than the downward one and the corresponding turbulence is imbalanced. The turbulence imbalance has a striking consequence in our scenario. As the quasilinear plateau is formed by the IAW turbulence preferentially in the direction of the dominant upward-propagating IAW fraction, i.e. at $\sqrt{1 + T_i/T_e} V_T e < V_\parallel < V_A$, the Landau damping of upward-propagating Langmuir waves is highly reduced in
this velocity range and they can grow spontaneously to high amplitudes. On the contrary, the downward IAW flux is weaker and not so efficient in forming the plateau, in which case the Landau damping of downward Langmuir waves remains strong and prevents their spontaneous growth. In these conditions, there are no counter-propagating Langmuir waves and only fundamental radio emission can be generated by the plasma emission mechanism.

In the 1D approximation, the governing equation for the spectral energy density of LWs is (Vedenov and Velikhov, 1963; Ryutov, 1969; Hamilton and Petrosian, 1987)

\[
\frac{dW_{k}^{l}}{dt} = \frac{\pi \omega_{pe}^{3}}{n_{e}k^{2}} W_{k} \left[\frac{\partial f}{\partial V} \right]_{V=\omega_{pe}/k} + \frac{\omega_{pe}^{3}n_{e}}{4\pi n_{e}} \left[V \ln \left(\frac{V}{V_{Te}} \right) f \right]_{V=\omega_{pe}/k} - \gamma_{\text{coll}} W_{k}^{l},
\]

(2)

where \(W_{k}^{l}(k, t) \) [ergs cm\(^{-2}\)] is the spectral energy density of LWs, \(f(V, t) \) [electrons cm\(^{-3}\) (cm/s)\(^{-1}\)] is the electron distribution function, \(k \) is the LW wavenumber (we are mostly interested in parallel-propagating LWs with \(k \equiv k_{\parallel} \)), \(V \) is the parallel component of the particle velocity (\(V \equiv V_{\parallel} \)), and \(\omega_{pe} \) is the local electron plasma frequency. Here the following normalisations are used:

\[
\int_{-\infty}^{\infty} f \, dV = n_{e},
\]

where \(n_{e} \) is the density of the background plasma, in cm\(^{-3}\) and

\[
\int_{-k_{De}}^{k_{De}} W_{k}^{l} \, dk = W^{l},
\]

where \(W^{l} \) is the total energy density of the waves in ergs cm\(^{-3}\), with \(k_{De} = \omega_{pe}/V_{Te} \). The first term on the right-hand side (RHS) of Equation (2) describes the induced absorption of plasma waves by electrons (Landau damping) and the second term describes the spontaneous emission. This emission (and the corresponding absorption) is resonant, meaning an electron at velocity \(V \) interacts only with a wave at wavenumber \(k = \omega_{pe}/V \). Collisional damping of LWs is given by the third term on the RHS, where \(\gamma_{\text{coll}} = \frac{1}{4} \sqrt{\frac{2}{\pi \Gamma}} \simeq \Gamma/(4V_{Te}^{2}) \) with \(\Gamma = 4\pi e^{4}n_{e} \ln \Lambda/m_{e}^{2} \) where \(\ln \Lambda \) is the Coulomb logarithm (approximately 20 in the solar corona).

According to Equation (2), in the resonant range the spectral energy density of LWs is

\[
W_{k}^{l} = \frac{1}{\gamma_{\text{coll}}} \frac{\omega_{pe}^{3}n_{e}}{4\pi n_{e}} \left[V \ln \left(\frac{V}{V_{Te}} \right) f \right]_{V=\omega_{pe}/k}. \tag{3}
\]

The local plateau function \(f_{\text{pl}} \) can be found from conservation of resonant particles:

\[
\int_{V_{\text{min}}}^{V_{\text{max}}} [f(V, \infty) - f(V, 0)] \, dV = 0, \quad \text{and} \quad f(V, \infty) = \text{const.}
\]

Following Voitenko
Solar Radio Emission and Inertial Alfvén Turbulence

and Pierrard (2013), we express \(f_{pl} \) in terms of an error function:

\[
f_{pl} = \frac{1}{\Delta V} \int_{V_{\text{min}}}^{V_{\text{max}}} f_{M} \, dV = \frac{n_{e}}{\Delta V} \left[\text{erf} \left(\frac{V_{\text{max}}}{\sqrt{2}V_{T_{e}}} \right) - \text{erf} \left(\frac{V_{\text{min}}}{\sqrt{2}V_{T_{e}}} \right) \right],
\]

where \(\Delta V = V_{\text{max}} - V_{\text{min}} \), \(V_{\text{max}} \) (\(V_{\text{min}} \)) is the maximum (minimum) velocity of the electrons involved in the plateau, and \(f_{M} \) is the Maxwellian distribution. Since in the solar corona \(\beta \) cannot be much smaller than \(m_{e}/m_{i} \), the IAWs resonate within a narrow range of phase velocities and quasilinear diffusion should be fast enough to create the plateau from \(V_{\text{min}} \approx \sqrt{1 + T_{i}/T_{e}} V_{T_{e}} \) to \(V_{\text{max}} \approx V_{A} \).

Consequently, the normalized spectral energy of LWs takes the following form:

\[
W_{k}^l/W_{\text{th}}^l = \frac{\pi V_{T_{e}} \omega_{pe} 1}{\Delta V \gamma_{\text{coll}} k^3 \lambda_{D_{e}}^3} \left[\text{erf} \left(\frac{V_{A}}{\sqrt{2}V_{T_{e}}} \right) - \text{erf} \left(\sqrt{1 + T_{i}/T_{e}}/\sqrt{2} \right) \right],
\]

where the thermal level of LWs is given by (Kontar, Ratcliffe, and Bian, 2012; Ratcliffe and Kontar, 2014):

\[
W_{\text{th}}^l = \frac{T_{e}}{4\pi^2} \frac{k^2 \ln \left(\frac{1}{k\lambda_{D_{e}}} \right)}{1 + \frac{2\gamma_{\text{coll}}}{\omega_{pe}} \sqrt{\frac{2}{k^3 \lambda_{D_{e}}^3}} \exp \left[\frac{1}{2k^2 \lambda_{D_{e}}^2} \right]}
\approx \frac{T_{e}}{4\pi^2} k^2 \ln \left(\frac{1}{k\lambda_{D_{e}}} \right).
\]

Figure 2 shows the normalized spectral energy density of Langmuir waves in the resonant wavenumber range \(V_{T_{e}}/V_{A} < k\lambda_{D_{e}} < 0.82 \). We have considered two types of possible coronal plasma parameters for the heliocentric distances \(R/R_{\odot} \approx 1.1 \) with \(n_{0} = 2.8 \times 10^{8} \text{ cm}^{-3} \) or \(f_{pe} = 150 \text{ MHz} \) (Warmuth and Mann, 2005). The first one has \(T_{e} = 10^{6} \text{ K} \) and a stronger magnetic field in the range \(B_{0} = 150–40 \text{ G} \) (Figure 2a). The second one has a lower temperature \(T_{e} = 10^{5} \text{ K} \) and a weaker magnetic field in the range \(B_{0} = 50–13 \text{ G} \) (Figure 2b). Such values for \(B_{0} \) from 10 to 150 G and \(T_{e} \) from \(10^{5} \text{ K} \) to \(10^{6} \text{ K} \) (the temperature could be even lower, down to \(10^{4} \text{ K} \)) are supported by recent observations (see papers by Schad et al., 2016; Antolin et al., 2015) for the relevant heliocentric distances \(R/R_{\odot} \approx 1.1 \). As is seen from Figure 2, the normalized spectral energy density of LWs reaches its maximum value

\[
W_{k}^l/W_{\text{th}}^l \approx 6 \times 10^{8},
\]

for \(B_{0} = 150 \text{ G}, T_{e} = 10^{6} \text{ K} \) and

\[
W_{k}^l/W_{\text{th}}^l \approx 2 \times 10^{7},
\]

for \(B_{0} = 50 \text{ G}, T_{e} = 10^{5} \text{ K} \) and for the resonant velocities of LWs close to the upper boundary, \(V_{LW} \lesssim V_{A} \), which correspond to LW wavenumbers \(k\lambda_{D_{e}} \gtrsim \).
Figure 2. Normalized spectral energy density of Langmuir waves in the resonant wavenumber range \(V_{Te}/V_A < k\lambda_{De} < 0.82 \). The plasma parameters are \(n_0 = 2.8 \times 10^8 \text{ cm}^{-3} \); \(T_i/T_e = 0.5 \). Case (a) corresponds to \(T_e = 10^6 \text{ K} \) and three values of magnetic field strength \(B_0 = 150, 80 \) and \(40 \text{ G} \). Case (b) corresponds to \(T_e = 10^5 \text{ K} \) and three values of magnetic field strength \(B_0 = 50, 25 \) and \(13 \text{ G} \).

For lower values of magnetic field strength the normalized spectral energy density of LWs is still high, whereas the resonance wavenumber range becomes narrower.

Such a high level of LWs is obtained under the conditions that the quasilinear Landau damping of LWs (first term in the RHS of Equation 2) is weaker than their collisional damping (third term). When the slope of the plateau is large enough to make the Landau damping dominant, the spontaneous growth of LWs
is reduced. Using results by Voitenko and Goossens [2006], we estimated that this first term is smaller than the third one for realistic IAW parameters and, consequently, the state of saturation is governed by the balance between the second and third terms.

3. Fundamental Plasma Emission from the IAW Turbulent Plasma

3.1. Kinetic Equations for the Spectral Energy Density of Transverse Waves due to the Process $L \pm S \to T$

We consider the theory of fundamental plasma emission generated by the nonlinear fusion $L + S \to T$ (hereafter f-process), and/or decay $L \to T + S$ (hereafter d-process). Here L is the Langmuir wave, S is the ion sound wave (ISW) and T is the transverse radio wave. The kinetic equations for fundamental emission by the processes $L \pm S \to T$ are based on the general expressions in Melrose [1980] and Tsytovich and ter Haar [1995]

$$\frac{dW_T (k_T)}{dt} = \frac{\omega_T}{\hbar} \int \frac{dk_L \, dk_S}{(2\pi)^3} \omega_{TLS} (k_T, k_L, k_S) \times$$

$$\left[\frac{W_L}{\omega_L} \left(\frac{W_S}{\omega_S} \mp \frac{W_T}{\omega_T} \right) - \frac{W_T}{\omega_T} \frac{W_S}{\omega_S} \right],$$

with the following emission probability

$$\omega_{TLS} = C \frac{[k_T \times k_L]^2}{k_T^2 k_L^2} \delta (k_T - k_L \mp k_S) \delta (\omega_T - \omega_L \mp \omega_S),$$

where

$$C = \frac{\hbar e^2 (2\pi)^6 \omega_p^3 \omega_S^3}{8\pi m_e V_T^4 \omega_p^2 k_L^2 \omega_T},$$

and the “±” signs refer to the f- and d- processes, respectively. The delta functions lead to kinematic constraints on the frequencies and wave vectors of waves taking part in the considered processes. According to the energy and momentum conservation conditions

$$\omega_L (k_L) \pm \omega_S (k_S) = \omega_T (k_T),$$

$$k_L \pm k_S = k_T,$$

the wavenumbers of interacting waves must satisfy $k_S \simeq \mp k_L$ and the electromagnetic emission is generated approximately perpendicular to the initial LW with the wavenumber

$$k_T d_e \approx \sqrt{3} k_L \lambda_{De}. \quad (10)$$
Using an angle averaged emission model (Ratcliffe and Kontar, 2014; Ratcliffe, 2013), given in detail in Appendix B, we get the following equation for the spectral energy density of transverse waves:

\[
\frac{dW_{av}^{T±}(k_T)}{dt} = \frac{\pi \omega_p^2 V_s}{24 n_e T_e V_T^2} \left(1 + \frac{3 T_i}{T_e} \right) \sqrt{1 + k_T^2 d_e^2} \times \left[W_L^{Av}(k_L) W_S^{Av}(k_S) \omega_L \omega_T - W_T^{Av}(k_T) W_S^{Av}(k_S) \omega_T \omega_S \right],
\]

Rewriting this in terms of the brightness temperature

\[k_B T_k^T = \frac{2 \pi^2 W_T k}{\eta k^2},\]

we obtain the following basic equation for the transverse wave brightness temperature induced by \(L \pm S \rightarrow T\) processes:

\[
\frac{dT_{T±}(k_T)}{dt} = \frac{\pi \omega_p^2 V_s}{24 n_e T_e V_T^2} \left(1 + \frac{3 T_i}{T_e} \right) \sqrt{1 + k_T^2 d_e^2} \times \left[\frac{\eta}{k^2} W_L^{Av}(k_L) W_S^{Av}(k_S) \omega_L \omega_T + \frac{W_T^{Av}(k_T) T_T(k_T) T_T(k_T) - T_T(k_T) W_T^{Av}(k_S) \omega_T \omega_S}{\omega_T \omega_S} \right],
\]

where

\[\eta = \frac{(2\pi)^3}{\Delta \Omega},\]

and

\[k_S^2 = k_T^2 + k_L^2; k_L \approx \frac{k_T d_e}{\sqrt{3 \Lambda_{De}}} .\]

3.2. Saturation Level of Plasma Emission in Presence of Nonthermal Level of Langmuir and Ion-Sound Waves

The condition \(dT_{T±}(k_T) / dt = 0\) in the expression \(13\) defines the saturation of the f- and d- processes. Therefore, the saturation brightness is

\[T_{T±} = \omega_T \left(\frac{\eta W_L \omega_L W_S}{\omega_S} + \frac{W_T \omega_T}{\omega_S} \right) ,\]

for the f- process and

\[T_{T±} = \omega_T \left(\frac{\eta W_L \omega_L W_S}{\omega_S} - \frac{W_T \omega_T}{\omega_S} \right) ,\]

for the d- process.

Let us now discuss separately two cases i) \(W_S/\omega_S \ll W_L/\omega_L\) and ii) \(W_S/\omega_S \gg W_L/\omega_L\).
3.2.1. Case i): $W_S/\omega_S \ll W_L/\omega_L$

First we consider the saturation level of the processes for the non-thermal level of LWs due to the spontaneous emission Equation (5) and thermal level of ion-sound waves, which is defined by:

$$W_{S\text{th}} = T_e k^2_{De} \frac{k^2_{De}}{k^2_{De} + k^2}.$$ \hspace{1cm} (16)

Figure 3. Brightness temperature $T_T(k)$ of fundamental radio emission for the f- process (top panel), and d- process (bottom panel). Here we consider a nonthermal level of LWs, thermal ISWs and $\eta = 4\pi^2$. The plasma parameters are $n_0 = 2.8 \times 10^8$ cm$^{-3}$; $T_e = 10^6$ K; $T_i/T_e = 0.5$ and three values of magnetic field strength $B_0 = 150, 80$ and 40 G.
As in this case \(W_L \gg W_S \), then accordingly to Equation (13) \(T_{T+} \) saturates at about \(W_{Sth} \) for the \(f \)- process:

\[
T_{T+} = \omega_T \frac{\eta}{k_S^2} \frac{W_{Sth}}{\omega_S} \quad (17)
\]

The saturation level \(T_{T-} \) for the \(d \)- process \(L \rightarrow T + S \) is defined by Equation (15). Consequently, for \(W_L \gg W_S \), we should get exponential growth causing both \(T_T \) and \(W_S \) to increase until \(W_S \gg W_L \) when the process saturates at the level

\[
T_{T-} = \omega_T \frac{\eta}{k_S^2} \frac{W_L}{\omega_L}, \quad (18)
\]

with \(W_L \) defined by Equation (5).

Figures 3–4 show the brightness temperature \(T_T(k) \) of fundamental radio emission for the \(f \)- process (top panel), and for the \(d \)- process (bottom panel) for two sets of parameters: \(T_e = 10^6 \) K and \(B_0 = 150–40 \) G and \(T_e = 10^5 \) K and \(B_0 = 50–13 \) G. For both cases the values of brightness temperature \(T_T(k) \) are rather high even for the thermal level of ion-sound waves.

3.2.2. Case ii): \(W_S/\omega_S \gg W_L/\omega_L \)

In this case the \(f \) and \(d \) processes are essentially equivalent and saturate at

\[
T_{T+} = T_{T-} = \omega_T \frac{\eta}{k_S^2} \frac{W_L}{\omega_L}. \quad (19)
\]

It follows from Figures 3–4 (bottom panel) that the brightness temperature of radio emission is in the range: \(T_{T\pm} \approx 2 \times 10^{12}–10^{15} \) K for \(T_e = 10^6 \) K and \(T_{T\pm} \approx 5 \times 10^9–2 \times 10^{13} \) K for \(T_e = 10^5 \) K.

Let us specify the non-thermal level of ion-sound waves, which is required for this to be the case. The 1D spectral energy density of ISWs is related to the spectral density of electron density fluctuation as (see Appendix C for details)

\[
W_S(k) = \frac{|\delta n_e|^2}{n_e T_e} \left(1 + k_S^2 \lambda_D^2 \right). \quad (20)
\]

According to above expression the density spectrum of thermal level of ion sound waves corresponds to:

\[
\frac{|\delta n_e|^2}{n_e^2} \big|_{th} = \frac{4\pi}{n_e \lambda_D^2} \frac{k_S^2 \lambda_D^2}{1 + k_S^2 \lambda_D^2}. \quad (21)
\]

In Figure 5 we present the spectral density of the electron density fluctuation for the thermal level of ion-sound waves (dotted line) and when \(W_S/\omega_S = W_L/\omega_L \) (solid, dashed, dashed-dotted lines). Consequently, for \(T_e = 10^6 \) K the case \(W_S/\omega_S \gg W_L/\omega_L \) requires a level of the ISW that is several orders of magnitude larger then the thermal level \((|\delta n_e|^2)/|\delta n_e|^2 \big|_{th} \gtrsim 10^4 \) for \(k\lambda_D \gtrsim 0.2 \). For the lower temperature \(T_e = 10^5 \) K in the short wavelength domain, the amplitudes
mot of the ISWs approach the thermal level, but still remain larger than the thermal level.

Our model describes emission from active regions in the corona, where the relative level of density fluctuations is unknown. Chen et al. (2012) reported a measurement of the spectral index of density fluctuations between ion and electron scales in solar wind turbulence. In Figure 6 (top panel) the power spectra of electron density fluctuations in the solar wind is shown according to the Figure 2 of Chen et al. (2012).
Figure 5. Spectral density of electron density fluctuation versus $k\lambda_{De}$ for: thermal level of ion-sound waves (dotted line); when $W_s^I/\omega_s = W_L^I/\omega_L$. Here we used the following background plasma parameters $n_0 = 2.8 \times 10^8$ cm$^{-3}$; $T_i/T_e = 0.5$. Case (a) corresponds to $T_e = 10^6$ K and three values of magnetic field strength $B_0 = 150$ G (solid line), $B_0 = 80$ G (dashed line), $B_0 = 40$ G (dashed-dotted line). Case (b) corresponds to $T_e = 10^5$ K and three values of magnetic field strength $B_0 = 50$ G (solid line), $B_0 = 25$ G (dashed line), $B_0 = 13$ G (dashed-dotted line).

Assuming that the frequency–spectra are Doppler shifted k–spectra

$$P(k) = \frac{P(f)V}{2\pi},$$

with $k = 2\pi f/V$ and $V \equiv V_{SW} = 3.2 \times 10^7$ cm/s we can get the k–power spectra of solar wind electron fluctuations Figure 6 (bottom panel).
We extrapolate the k– power spectra of solar wind electron fluctuations (see Figure 7) into the short wavelength domain using $k^{-2.7}$ (dotted line) and present the spectral density of electron density fluctuation for the thermal level of solar wind ion-sound waves (dashed line).

In the relevant range $0.19 < k\lambda_{De} < 0.82$ the observed density fluctuation is of the order of thermal fluctuations. We would like to notice that the observed -2.7 spectra are attributed to the KAW turbulence (Chen et al., 2012) rather than to ISWs, however we consider this extrapolations as the upper bound. Also
Figure 7. Spectral density of electron density fluctuation versus $k\lambda_{De}$ for: the thermal level of ion-sound waves (dashed line); the density fluctuation spectrum of solar wind turbulence given by Chen et al. (2012) (solid line). Here we used the following background plasma parameters $V_{SW} = 3.2 \times 10^7$ cm/s, $n_i = 16$ cm$^{-3}$, $T_e = 10^5$ K ($\lambda_{De} = 616$cm) for solar wind.

Helios spacecraft observations at 0.3AU (Marsch and Tu, 1990) and numerical models (Reid and Kontar, 2010) suggest that the relative level of density fluctuations decreases toward the Sun. Consequently, it seems unlikely that the case $W_S/\omega_S \gg W_L/\omega_L$ is realistic.

3.3. Absorption of Emission During the Propagation

Further, we have considered the collisional absorption of radiation during propagation. Accordingly to Ratcliffe and Kontar (2014) collisional absorption (inverse bremsstrahlung) with damping rate γ_d gives an optical depth:

$$\tau = \int_0^{1AU} \frac{\gamma_d(x)}{V_g(x)} \, dx,$$

(22)

where

$$\gamma_d = \gamma_e \frac{\omega_{pe}^2}{\omega^2} = \frac{1}{3} \sqrt{\frac{2}{\pi}} \frac{\Gamma}{V_T^3} \frac{\omega_{pe}^2}{\omega^2} = \frac{1}{3} \sqrt{\frac{2}{\pi}} m_e V_T^2 \epsilon^2 \ln \Lambda \frac{\omega_{pe}^4}{\omega^2},$$

(23)

and

$$V_g^T = \frac{\partial \left(\omega_{pe}^2 + k_T^2 \epsilon^2 \right)}{\partial k_T} = \frac{\epsilon}{\omega} \left(\omega^2 - \omega_{pe}^2 \right)^{1/2}.$$
For emission at a frequency ω_0 we then have

$$\tau = \frac{1}{3} \sqrt{\frac{2}{\pi}} \frac{e^2 \ln \Lambda}{m_e V_T^2} \frac{1}{\omega_0} \int_0^{1 \Lambda U} \frac{\omega_{pe}^4(x)}{\left(\omega_0^2 - \omega_{pe}^2(x)\right)^{1/2}} \, dx. \quad (25)$$

Assuming an exponential density profile $n_e(x) = n_0 \exp(-x/H)$, where x is the distance from the region of emission at density n_0, and H is the density scale height, we found the following (slightly corrected compared with Ratcliffe and Kontar, 2014) expression for the optical depth

$$\tau = \frac{4}{9} \sqrt{\frac{2}{\pi}} \frac{e^2 \ln \Lambda H}{m_e V_T^2} \frac{1}{c} \left\{ \omega_0^2 - \frac{1}{\omega_0} \left[\omega_0^2 - \omega_{pe}^2(0) \right]^{1/2} \left[\omega_0^2 + 0.5\omega_{pe}^2(0) \right] \right\}. \quad (26)$$

As we consider a dense coronal plasma we can use the reasonable value of $H = 5 \times 10^9$ cm and find that

$$\tau \approx 2.8 \left[\frac{\overline{\omega}_0^2}{\overline{\omega}_0} - \frac{1}{\overline{\omega}_0} \left(\frac{\overline{\omega}_0^2}{\overline{\omega}_0} - 1 \right)^{1/2} \left(\overline{\omega}_0^2 + 0.5 \right) \right], \quad (27)$$

where $\overline{\omega}_0 = \omega_0 / \omega_{pe}(0)$.

As seen from Figure 8 for such a density scale height the resulting escape fraction is rather high for $f_{pe} = 0.2$ GHz. If for a different choice of parameters, we could increase τ by an order of magnitude, we would predict observable emissions due to quite high values of brightness temperature for the f- and d-processes.
4. Application to Type I Solar Radio Bursts

Type I emission in Noise storms is the most commonly observed radio phenomenon of the Sun (see review by Elgarøy, 1977; McLean and Labrum, 1985). Myriads of type I bursts, each lasting about a second, are superimposed on a continuum, which lasts from a few hours to days. Type I emission can extend from 50 to 500 MHz, peaking around 150–200 MHz. This activity occurs in active regions above sunspots, with relatively strong magnetic fields. Type I emission is strongly (∼100%) circularly polarized, and there is only fundamental emission with no harmonic component. The brightness temperature is in the range from 10^7 to 10^{10} K for continuum emissions and can exceed 10^{11} K for bursts. The sizes of the emission sources are several arcminutes for the continuum and about 1 arcminute for bursts.

Until now, the plasma emission mechanism proposed by Melrose (1980a) is the most popular interpretation for type I radio emission. The plasma emission mechanism consists of two steps: i) isotropic or loss-cone distribution of energetic electrons generates LWs; ii) these LWs generate electromagnetic radiation (radio waves) via nonlinear coupling with ion-acoustic or other low-frequency waves. In such models, the type I continuum is explained by the LWs with effective temperature $T_L \gtrsim 10^9$ K generated by a “gap electron distribution”. This implies a high level of low-frequency waves to ensure that the emission mechanism saturates at the radio brightness temperature T_T equal to the Langmuir wave temperature T_L. The increasing T_T during bursts is attributed to the local LW enhancements driven by the loss-cone instability. Theories based on the plasma emission mechanism have been developed in greater detail (Benz and Wentzel, 1981; Spicer, Benz, and Huba, 1982; Wentzel, 1986; Thejappa, 1991).

One of the weak points of such theories is that the isotropic velocity distribution of electrons should give rise to the harmonic emission as well, which was never observed in type I emission. Also, a high level of low-frequency waves is required in order that the emission mechanism saturates at a brightness temperature equal to the plasma wave temperature T_L.

We propose an alternative model for type I radio emission. The imbalanced turbulence of upward-propagating IAWs forms an asymmetric electron velocity distribution with a quasilinear plateau in its forward half at $\sqrt{1 + T_i/T_e}V_{Te} < V_\parallel < V_A$. Landau damping of LWs propagating in the same direction in this velocity range is reduced, which makes possible the spontaneous growth of their amplitudes. In previous sections, we calculated the nonthermal level of these LWs and showed that it is sufficient to generate the observed type I radio emission. As the strongest radio emission is generated by LWs with phase velocities $V_{LW} \lesssim V_A$, the full plateau extending down to $\sqrt{1 + T_i/T_e}V_{Te}$ is not required. In fact, it is sufficient that a narrower plateau is formed in the vicinity of $V_\parallel \approx V_A$.

Our estimations show that even with the thermal-level ion-acoustic waves, we get the observed brightness temperature for type I emission. The harmonic emission is never observed in type I storms; it does not occur also in our model, because the back-scattered LWs meet a strong Landau damping, $\gamma_L \approx \omega_{pe}$.

Our model works in low-beta plasmas, where the Alfvén velocity exceeds the electron thermal speed ($V_A > V_{Te}$). Such conditions can be found in the solar
corona at radial distances ≈ 1.1 solar radii, where type I storms are generated. Recent observations have demonstrated that magnetic fields above active regions at these distances can be strong enough, several 10s of G, and temperatures low, down to 10^4 K (see examples in Figure 8 by Schad et al., 2016 with instances of B_0 from 10 to 150 G, and paper by Antolin et al., 2015 with coronal T_e from 10^4 to 10^6 K).

The often observed phenomenon of coronal rain provides a well-documented example of cold plasma patches created at high coronal levels by thermal instability (see Antolin et al., 2015, and references therein). Plasma in the upper parts of long magnetic loops is especially prone to this instability. As the type I emission is generated, tentatively, at the tops of the highest magnetic loops overlapping active regions, the relatively cold plasma, produced there by thermal instability, may provide a suitable conditions for type I radio emission.

We note that Dulk and McLean (1978) and Gopalswamy et al. (1986) proposed empirical models for the coronal B based on radio observations. In the model by Dulk and McLean (1978), the magnetic field strength depends on the plasma density model and assumes a particular generation mechanism for meter-wavelength radio bursts, with type I bursts excluded from the analysis. The model by Gopalswamy et al. (1986) is based on type I radio observations but assumes a particular generation mechanism for the bursts implying numerous shocks; it also critically depends on the radial profile of coronal density. It seems that the conditions above active regions are highly variable and can hardly be described in the framework of a single model. Therefore, instead of using a model, we refer to the values of coronal magnetic field measured directly by Schad et al. (2016), which do not require assumptions of any specific plasma model or process. The measured values, several tens of gauss at relevant heliocentric distances $R/R_\odot \approx 1.1$, appeared to be larger than the values predicted in previous models. With these measured values of B, conditions for our scenario can be easily satisfied.

Additionally we have to note that current model reproduces the almost 100% polarization in the o-mode of type I bursts. The main reason is that the frequency of the emission due to the $L \pm S \rightarrow T$ processes is below the cutoff frequency of the extraordinary (x-) mode, $\omega_x = [\omega_{Be}^2 + (\omega_{Be}^2 + 4\omega_{pe}^2)^{1/2}]^2$ for the values of the ratio, ω_{Be}/ω_{pe}, required in our model. The resulting electromagnetic emission then must be 100% in the o-mode.

5. Conclusions

We investigated the influence of imbalanced small-scale IAW turbulence on the spontaneous growth of LWs. The resulting high-amplitude LWs can generate type I radio emission observed above active regions in the solar corona.

Our starting point has been that the imbalanced turbulence of forward-propagating IAWs forms an asymmetric quasilinear plateau in the forward half of the electron velocity distribution. This leads to the suppression of Landau damping for resonant LWs in the range of phase velocities $\sqrt{1 + T_i/T_e}V_{Te} < V_{LW} < V_A$. As a consequence, spontaneous excitation of high-amplitude LWs...
with \(W_L/W_{\text{therm}} \approx 10^7-10^9 \) (for \(T_e = 10^6 \) K) and \(W_L/W_{\text{therm}} \approx 10^5-10^7 \) (for \(T_e = 10^5 \) K) occurs in this velocity range. These LWs can produce strong electromagnetic radiation at the fundamental frequency close to the electron plasma frequency.

Even with the unfavorable thermal level of ion-sound waves, the brightness temperature of radio emission in our model is \(T_{T+} \approx 10^9-10^{11} \) K, \(T_{T-} \approx 10^{12}-10^{15} \) K (for \(T_e = 10^6 \) K) and \(T_{T+} \approx 10^8-10^{10} \) K, \(T_{T-} \approx 5 \times 10^9-10^{12} \) K (for \(T_e = 10^5 \) K), which is high enough to explain observations. The bursts with extremely high brightness temperatures \(\gtrsim 10^{14} \) K can be easier generated by the \(d \)-process. Moreover our theory predicts 100\% polarization in the \(o \)-mode of type I emission.

In conclusion, our model with the imbalanced IAW turbulence and spontaneously excited LWs provides a feasible explanation for solar type I radio emission. This model is also consistent with the fact that the first harmonic is never observed in type I radio emission.

Finally, we note that the 3D velocity distribution of electrons leads to a relativistic correction to the Landau damping of Langmuir waves (Melrose and Stenhouse, 1977) that may exceed the collisional damping assumed here. This effect applies to an isotropic electron distribution with a gap over some velocity range. The generalization of this gap model to the plateau model assumed here has yet to be investigated.

Acknowledgments The authors are thankful to the anonymous referee and to the Guest Editor Alexander Nindos for constructive comments. E.P.K. and N.H.B. were supported by Science and Technology Facilities Council Grant No. ST/L000741/1. Y.V. was supported by the Belgian Science Policy Office through IAP Programme, project P7/08 CHARM.

Disclosure of Potential Conflicts of Interest The authors declare that they have no conflicts of interest.

Appendix

A. The Parallel Electric Field of Dispersive Alfvén Waves

Taking as in Bian and Kontar (2011), the first moments of the linearized drift-kinetic equation for the electrons, yields the linearized continuity equation

\[
\frac{\partial n_e}{\partial t} + \nabla_\parallel n_0 u_\parallel e = 0,
\]

(28)

where \(n_e/n_0 \) is the electron density perturbation relative to a constant background \(n_0 \), \(u_\parallel e \) is the parallel (to the magnetic field) component of the electron fluid velocity and \(\nabla_\parallel \) denotes the spatial gradient along the magnetic field. The linearized parallel electron momentum equation is

\[
n_0 m_e \frac{\partial u_\parallel e}{\partial t} = -T_e \nabla_\parallel n_e - n_0 e E_\parallel,
\]

(29)
where we have used $p_e = n_e T_e$ for the pressure perturbation p_e and assumed a constant electron temperature T_e. The parallel component of the electric field $E_{\|}$ is related to the electrostatic potential ϕ and the parallel component of the magnetic vector potential $A_{\|}$ via Faraday’s law,

$$E_{\|} = -\nabla_{\|} \phi - \frac{1}{c} \frac{\partial A_{\|}}{\partial t}, \tag{30}$$

The parallel component of Ampere’s law is

$$\nabla_{\perp}^2 A_{\|} = \frac{4\pi}{c} J_{\|}, \tag{31}$$

where ∇_{\perp} is the spatial gradient perpendicular to the field and it is assumed that the parallel current,

$$J_{\|} = -en_0 u_e\parallel, \tag{32}$$

is carried only by electrons. The system is closed by the quasineutrality condition

$$n_e = (\Gamma_0 - 1)\frac{en_0}{T_i} \phi, \tag{33}$$

where Γ_0 is an integral operator which describes the average of the electrostatic potential over a ring of Larmor radius ρ_i. In Fourier space, $\Gamma(b) = e^{-b}I_0(b)$ where $b = \rho_i^2 \kappa_1^2$ and I_0 is the modified Bessel function. We will use a simple Pade approximant for the operator Γ_0 given by $\Gamma_0(b) - 1 = -b/(1+b)$. Adopting the following MHD normalization

$$(\hat{t}, \hat{\nabla}_{\perp}, \hat{A}_{\parallel}, \hat{\phi}, \hat{E}_{\parallel}) = (\frac{t}{\tau_A}, \nabla_{\perp} L, \frac{A_{\parallel}}{LB_0} \frac{\phi c}{LV_A B_0} \frac{E_{\parallel} c}{V_A B_0}), \tag{34}$$

with $\tau_A = L/V_A$, we therefore obtain

$$\partial_t n_e = \nabla_{\|} J_{\parallel} = 0, \tag{35}$$

$$\partial_t (\psi - d_e^2 J_{\parallel}) + \nabla_{\|} (\rho_i^2 n_e - \phi) = 0, \tag{36}$$

$$J_{\parallel} = \nabla_{\perp}^2 \psi, \tag{37}$$

$$(1 - \rho_i^2 \nabla_{\perp}^2) n_e = \nabla_{\perp}^2 \phi, \tag{38}$$

with $\psi = -A_{\parallel}$. This model generalizes the one already discussed in Bian and Kontar (2010) to include the effect of electron inertia, the term proportional to d_e^2 in Equation (36), which can be rewritten as

$$E_{\|} = -\rho_i^2 \nabla_{\|} n_e + d_e^2 \partial_t J_{\parallel}. \tag{39}$$

This is Ohm’s law (the parallel electron momentum equation) and there are two contributions to the parallel electric field. The first is produced by electron density fluctuations along the magnetic field and involves the ion-sound Larmor
radius ρ_s (the ion gyroradius at the electron temperature, i.e. $\rho_s^2 = (T_e/T_i)\rho_i^2$). The second is produced by electron inertia and involves the electron skin depth d_e. The Alfvén wave equation is easily obtained from Equations (35)-(38) and reads

$$\partial_t \psi - d_e^2 \nabla^2 \psi = \nabla^2 [1 - (\rho_i^2 + \rho_s^2)] \nabla^2 \psi,$$

and hence the dispersion relation is

$$\omega = \pm k_{\parallel} \sqrt{\frac{1 + k_{\perp}^2 \rho_s^2}{1 + k_{\perp}^2 \rho_i^2 d_e^2}},$$

with $\rho_i^2 = \rho_s^2 + \rho_e^2$. We notice that when $\rho_e^2 = \rho_s^2$, the dispersion relation is $\omega = \pm k_{\parallel}$: the wave becomes non-dispersive and the wave-particle resonance reduces to a single point in velocity-space. Using the following conductivity relation

$$\partial_t E_{\parallel} = (d_e^2 \partial_t - \rho_s^2 \nabla^2) J_{\parallel},$$

we observe that the parallel electric field remains finite in the non-dispersive regime, i.e. $|E_{\parallel}| = \rho_s^2 k_{\parallel} s_{\parallel} \delta B_{\perp}$ in this case, its amplitude is proportional to the ion temperature. This property should be contrasted with Hall-MHD (see Bian and Tskikauri, 2009 and references therein) which is based on a cold ion assumption and therefore lacks a parallel electric field in the parameter regime $\rho_s = d_e$.

B. An Angle-averaged Model for Fundamental Radio Emission

The kinetic Equation (9) for the processes $L \pm S \to T$ may be written in the form

$$\frac{dW_{T\pm}(k_T)}{dt} = \frac{\omega_{pe}^3}{4n_e T_e} \left(1 + 3T_i/T_e\right) \int \frac{d_k}{k} \delta (k_T - k_L \mp k_S) \delta (\omega_T - \omega_L \mp \omega_S),$$

where W_L, W_S and W_T are functions of their respective wavenumbers. First we perform the integral over k_S using $\delta (k_T - k_L \mp k_S)$ to get

$$\frac{dW_{T\pm}(k_T)}{dt} = \frac{\omega_{pe}^3}{4n_e T_e} \left(1 + 3T_i/T_e\right) \int \frac{d_k}{k} \omega_S (k_S) \times$$

$$\frac{W_L(k_L)}{\omega_L(k_L)} \left(\frac{W_S(k_S)}{\omega_S(k_S)} \mp \frac{W_T(k_T)}{\omega_T(k_T)}\right) \times \frac{W_T(k_T) W_S(k_S)}{\omega_T(k_T) \omega_S(k_S)} \times$$

$$\delta (\omega_T(k_T) - \omega_L(k_L) \mp \omega_S(k_S)).$$

Here $k_S = \pm k_T \mp k_L$, for the f- and d- processes, respectively.
Assuming that the LWs and ion sound waves have some small angular spread in wavenumber space, covering a solid angle of $\Delta \Omega$, and further assuming that they are uniform within this spread, fundamental emission is produced approximately isotropically. So we define:

$$W_{L,S}(k) = \frac{1}{\Delta \Omega k^2} W_{L,S}^{Av}(k),$$

within $\Delta \Omega$ the small solid angle occupied by the parent waves, and zero elsewhere, with $W_{L,S}^{Av}(k)$ defined by

$$W_{L,S}^{Av}(k) = \int \int k^2 \sin \theta W_{L,S}(k) \, d\theta \, d\Phi,$$

and consider isotropic transverse waves

$$W_T(k_T) = \frac{1}{4\pi k^2_T} W_T^{Av}(k_T),$$

$$W_T^{Av}(k) = \int \int k^2 \sin \theta W_T(k) \, d\theta \, d\Phi.$$

Writing $dk_L = k^2_L \sin \theta \, dk_L \, d\theta \, d\Phi$ and substituting our definitions of the angle-averaged spectral energy densities (expressions (45)–(48)), for the first term in the square brackets we find:

$$\int \int \sin^2 \theta_{LT} \frac{W_L(k_L) W_S(k_S)}{\omega_L \omega_S} k^2_L \sin \theta \, d\theta \, d\Phi$$

$$= \frac{W_L^{Av}(k_L) W_S^{Av}(k_S)}{\Delta \Omega \omega_L \Delta \Omega k^2_S \omega_S} \int \int \sin^2 \theta_{LT} \sin \theta \, d\theta \, d\Phi$$

$$= \frac{W_L^{Av}(k_L) W_S^{Av}(k_S)}{\Delta \Omega \omega_L k^2_S \omega_S} \langle \sin^2 \theta_{LT} \rangle,$$

where we assume the average value of $\sin^2 \theta_{LT}$ is well defined and given by

$$\int \int \sin^2 \theta_{LT} \sin \theta \, d\theta \, d\Phi = \Delta \Omega \langle \sin^2 \theta_{LT} \rangle. \quad (50)$$

Similarly, using expressions (45)–(48) for the second and third terms in square brackets we write

$$\int \int \sin^2 \theta_{LT} \frac{W_L(k_L) W_T(k_T)}{\omega_L \omega_T} k^2_L \sin \theta \, d\theta \, d\Phi = \frac{W_L^{Av}(k_L) W_T^{Av}(k_T)}{\omega_L 4\pi k^2_T \omega_T} \langle \sin^2 \theta_{LT} \rangle$$

$$\int \int \sin^2 \theta_{LT} \frac{W_T(k_T) W_S(k_S)}{\omega_T \omega_S} k^2_L \sin \theta \, d\theta \, d\Phi = \frac{W_T^{Av}(k_T) W_S^{Av}(k_S)}{4\pi k^2_T \omega_T \omega_S} \langle \sin^2 \theta_{LT} \rangle.$$

Finally the complete expression is:

$$\frac{dW_T^{Av}(k_T)}{dt} = \frac{\omega_{pe}^3}{4n_e T_e} \left(1 + \frac{3T_i}{T_e}\right) \langle \sin^2 \theta_{LT} \rangle \times \quad (52)$$
\[\int dk_L \omega_S \delta (\omega_T - \omega_L \mp \omega_S) \times \left[\frac{W^L_{ll} (k_L) 4 \pi k_T^2}{\omega_L} \frac{W^L_{ll} (k_S)}{\omega_S} + \frac{W^T_{ll} (k_L) W^T_{ll} (k_T)}{\omega_T} \right] \left[\frac{W^T_{ll} (k_T) W^S_{ll} (k_S)}{\omega_T} \right], \]

where \(k_S^2 = k_T^2 + 2k_L^2 \).

Now, using \(\delta (\omega_T - \omega_L \mp \omega_S) \) to integrate over \(k_L \), for \(k_T^2 d_e^2 \gg \frac{m}{4 \pi m_e} \) we get

\[\frac{dW^T_{ll} (k_T)}{dt} = \frac{\pi \omega_T^4 V_s^2}{24 n_e T_e V_e^2} \left(1 + \frac{3 T_i}{T_e} \right) \times \left[\frac{W^L_{ll} (k_L) 4 \pi k_T^2}{\omega_L} \frac{W^L_{ll} (k_S)}{\omega_S} + \frac{W^T_{ll} (k_L) W^T_{ll} (k_T)}{\omega_T} \right] \left[\frac{W^T_{ll} (k_T) W^S_{ll} (k_S)}{\omega_T} \right]. \]

Here \(k_L \approx \frac{k_T d_e}{\sqrt{3} \lambda_{De}} \) and we have evaluated the average \(\langle \sin^2 \theta_{LT} \rangle \) over a sphere, which gives a value of 1/2.

C. Spectral Density of Electron Density Fluctuation due to Ion-Sound Waves

The relationship between the electric field and density perturbation due to ion-sound waves is

\[\delta E = - \frac{T_e}{n_e e} \nabla \delta n. \quad (54) \]

We can rewrite the above expression as

\[|E_k|^2 = \frac{1}{4 \pi} \left(\frac{T_e}{n_e e} \right)^2 k^2 \delta n_e |E_k|^2. \quad (55) \]

According to Tsytovich and ter Haar (1995) the occupation number \(N_k \) is related to \(E_k \) as

\[N_k^l = \pi \left(\frac{1}{\omega^2} \frac{\partial}{\partial \omega} \omega^2 |E_k|^2 \right)_{\omega = \Omega_l (k)} \left(\frac{2}{\hbar} \right)^3 W_k^l, \quad (56) \]

where index \(l \) denotes longitudinal waves. We can rewrite this expression using that \(\varepsilon^l (\Omega_l, k) |E_k|^2 \) and

\[N_k^l = \frac{(2 \pi)^3}{\hbar^3} \left(\frac{1}{\omega^2} \frac{\partial}{\partial \omega} \omega^2 |E_k|^2 \right)_{\omega = \Omega_l (k)}. \quad (57) \]

as

\[W_k^l = \frac{1}{8 \pi} \omega \frac{\partial \varepsilon^l}{\partial \omega} \left| \frac{2}{\hbar} \right|^3 \left(\frac{2}{\omega^2} \frac{\partial}{\partial \omega} \omega^2 |E_k|^2 \right)_{\omega = \Omega_l (k)}. \quad (58) \]

For ion-sound waves

\[\varepsilon^* \approx 1 - \frac{\omega_{pi}^2}{\omega_s^2} + \frac{1}{(k_s \lambda_{De})^2}, \quad (59) \]
which give the following dispersion relations for ion-sound waves

\[
\omega_s \simeq \frac{k_s v_s}{\sqrt{1 + k_s^2 \lambda_{De}^2}}.
\]

(60)

According to expression (59)

\[
\frac{\partial \varepsilon_s}{\partial \omega_s} = 2 \omega_s^2 \pi \omega_s^3.
\]

(61)

Combining Equations (61) and (58) gives:

\[
W_k^s = \frac{\omega_s^2 |E_k^s|^2}{\omega_s^3}.
\]

(62)

or using the dispersion relation (60) we can rewrite it as

\[
W_k^s = \frac{\left(1 + k_s^2 \lambda_{De}^2\right) |E_k^s|^2}{k_s^2 \lambda_{De}^2 4\pi}.
\]

(63)

Inserting this expression in Equation (55) and noting that \(\lambda_{De}^2 = T_e/(4\pi n_e e^2) \), we get that the spectral energy density of ISWs is related to the spectral density of electron density fluctuation as

\[
\frac{W_k^s}{n_e T_e} = (1 + k_s^2 \lambda_{De}^2) \frac{|\delta n_e|^2}{n_e^2}.
\]

(64)

Here the following normalization is used

\[
\int (\delta n_e^s_k)^2 dk = (\delta n_e)^2,
\]

(65)

\[
\int W_k^s dk = W^s.
\]

(66)

Using that

\[
(\delta n_e)^2_k = \frac{(\delta n_e_k^s)^2}{4\pi k_s^2},
\]

(67)

and

\[
W_k^s = \frac{W_k^s}{4\pi k_s^2},
\]

(68)

we can rewrite Equation (64) for the one-dimensional case:

\[
\frac{W_k^s}{n_e T_e} = (1 + k_s^2 \lambda_{De}^2) \frac{|\delta n_e|^2_k}{n_e^2}.
\]

(69)
References

Antolin, P., Vissers, G., Pereira, T.M.D., Rouppe van der Voort, L., Scullion, E.: 2015, The Multithermal and Multi-stranded Nature of Coronal Rain. Astrophys. J. 806, 81. [DOI][ADS][2015ApJ...806...81A]

Artemyev, A.V., Zimovets, I.V., Rankin, R.: 2016, Electron trapping and acceleration by kinetic Alfven waves in solar flares. Astron. Astrophys. 589, A101. [DOI][ADS][2016A&A...589A.101A]

Banerjee, D., Teriaca, L., Doyle, J.G., Wilhelm, K.: 1998, Broadening of SI VIII lines observed in the solar polar coronal holes. Astron. Astrophys. 339, 208. [DOI][ADS][1998A&A...339..208B]

Benz, A.O., Wentzel, D.G.: 1981, Coronal evolution and solar type I radio bursts - an ion-acoustic wave model. Astron. Astrophys. 94, 100. [ADS][1981A&A....94..100B]

Bian, N.H., Kontar, E.P.: 2010, A gyrofluid description of Alfvenic turbulence and its parallel electric field. Physics of Plasmas 17(6), 062308. [DOI][ADS][2010PhPl..17f2308B]

Bian, N.H., Kontar, E.P.: 2011, Parallel electric field amplification by phase mixing of Alfven waves. Astron. Astrophys. 527, A130. [DOI][ADS][2011A&A...527A.130B]

Bian, N.H., Tsiklauri, D.: 2009, Compressible Hall magnetohydrodynamics in a strong magnetic field. Physics of Plasmas 16(6), 064503. [DOI][ADS][2009PhPl..16f4503B]

Bian, N.H., Kontar, E.P., Brown, J.C.: 2010, Parallel electric field generation by Alfven wave turbulence. Astron. Astrophys. 519, A114. [DOI][ADS][2010A&A...519A.114B]

Bruno, R., Carbone, V.: 2013, The Solar Wind as a Turbulence Laboratory. Living Reviews in Solar Physics 10, 2. [DOI][ADS][2013LRSP....10....2B]

Chaiston, C.C., Salem, C., Bonnell, J.W., Carlson, C.W., Ergun, R.E., Strangeway, R.J., McFadden, J.P.: 2008, The Turbulent Alfvenic Aurora. Physical Review Letters 100(17), 175003. [DOI][ADS][2008PhRvL.100m5003C]

Chaston, C.C., Salem, C.S., Bonnell, J.W., Mozer, F.S., Bale, S.D.: 2012, Density Fluctuation Spectrum of Solar Wind Turbulence between Ion and Electron Scales. Physical Review Letters 109(5), 055001. [DOI][ADS][2012PhRvL.109e5001C]

Dulk, G.A., McLean, D.J.: 1978, Coronal magnetic fields. Solar Phys. 57, 279. [DOI][ADS][1978SoPh...57..279D]

Elgasy, E.O.: 1977, Solar noise storms, Pergamon Press, Oxford. [ADS][1977ans..book.....E]

Goertz, C.K., Boswell, R.W.: 1979, Magnetosphere-ionosphere coupling. J. Geophys. Res. 84, 7219. [DOI][ADS][1979JGR....84.7219G]

Gopalakrishnan, N., Thejappa, G., Sastry, C.V., Tallmaicha, A.: 1986, Estimation of coronal magnetic fields using Type-I emission. Bulletin of the Astronomical Institutes of Czechoslovakia 37, 115. [ADS][1986IAICz...37..115G]

Hamilton, R.J., Petrosian, V.: 1987, Generation of plasma waves by thick-target electron beams, and the expected radiation signature. Astrophys. J. 321, 721. [DOI][ADS][1987ApJ...321..721H]

Hasegawa, A., Chen, L.: 1975, Kinetic process of plasma heating due to Alfven wave excitation. Physical Review Letters 35, 370. [DOI][ADS][1975PhRvL..35..370H]

He, J., Tu, C., Marsch, E., Yao, S.: 2012, Do Oblique Alfven/Ion-cyclotron or Fast-mode/Whistler Waves Dominate the Dissipation of Solar Wind Turbulence near the Proton Inertial Length? Astrophys. J. Lett. 745, L8. [DOI][ADS][2012ApJ...745L...8H]

Kontar, E.P., Ratcliffe, H., Bli, N.H.: 2012, Wave-particle interactions in non-uniform plasma and the interpretation of hard X-ray spectra in solar flares. Astron. Astrophys. 539, A43. [DOI][ADS][2012A&A...539A..43K]

Lysak, R.L., Lotko, W.: 1996, On the kinetic dispersion relation for shear Alfven waves. J. Geophys. Res. 101, 5085. [DOI][ADS][1996JGR...101.5085L]

Marsch, E., Tu, C.-Y.: 1990, Spectral and spatial evolution of compressible turbulence in the inner solar wind. J. Geophys. Res. 95, 11945. [DOI][ADS][1990JGR....9511945M]

Matthaeus, W.H., Zank, G.P., Oughton, S., Mullan, D.J., Dmitruk, P.: 1999, Coronal Heating by Magnetohydrodynamic Turbulence Driven by Reflected Low-Frequency Waves. Astrophys. J. Lett. 523, L93. [DOI][ADS][1999ApJ...523L..93M]

McLean, D.J., Labrum, N.H.: 1985, Solar radiophysics: Studies of emission from the sun at metre wavelengths, Cambridge University Press. [ADS][1985srph.book.....M]

Melrose, D.B.: 1980a, A plasma-emission mechanism for type I solar radio emission. Solar Phys. 67, 357. [DOI][ADS][1980SoPh...67..357M]
Melrose, D.B.: 1980b, *Plasma astrophysics: Nonthermal processes in diffuse magnetized plasmas. Volume 2 - Astrophysical applications*, Gordon and Breach Science Publishers, New York. [ADS](10.1007/978-94-010-8831-1) 308

Melrose, D.B., Stenhouse, J.E.: 1977, Emission and absorption of Langmuir waves by anisotropic unmagnetized particles. *Australian Journal of Physics* **30**, 481. [ADS](10.1071/PH870481)

Melrose, D.B., Wheatland, M.S.: 2014, Bulk Energization of Electrons in Solar Flares by Alfven Waves. *Solar Phys.* **289**, 881. [DOI](10.1007/s11207-013-0394-9)

Morton, R.J., Tomczyk, S., Pinto, R.: 2015, Investigating Alfvenic wave propagation in coronal open-field regions. *Nature Communications* **6**, 7813. [DOI](10.1038/ncomms8813)

Pierrard, V., Voitenko, Y.: 2013, Modification of Proton Velocity Distributions by Alfvenic Waves. *Physica D: Nonlinear Phenomena* **242**, 355. [DOI](10.1016/j.physd.2013.02.004)

Ratcliffe, H.: 2013, Electron beam evolution and radio emission in the inhomogeneous solar corona. PhD thesis, University of Glasgow (United Kingdom). [ADS](10.1007/978-3-319-69400-7)

Ratcliffe, H., Kontar, E.P.: 2014, Plasma radio emission from inhomogeneous collisional plasma of a flaring loop. *Astron. Astrophys.* **562**, A57. [DOI](10.1051/0004-6361/201423210)

Reid, H.A.S., Kontar, E.P.: 2010, Solar Wind Density Turbulence and Solar Flare Electron Transport from the Sun to the Earth. *Astrophys. J.* **721**, 864. [DOI](10.1088/0004-637X/721/2/864)

Rudakov, L., Crabtree, C., Ganguli, G., Mithaiwala, M.: 2012, Quasilinear evolution of plasma distribution functions and consequences on wave spectrum and perpendicular ion heating in the turbulent solar wind. *Physics of Plasmas* **19**(4), 042704. [DOI](10.1063/1.4706862)

Rytov, D.D.: 1969, Quasilinear Relaxation of an Electron Beam in an Inhomogeneous Plasma. *Soviet Journal of Experimental and Theoretical Physics* **30**, 131. [ADS](10.1007/BF00718344)

Schad, T.A., Penn, M.J., Lin, H., Judge, P.G.: 2016, Vector Magnetic Field Measurements along a Cooled Stereo-imaged Coronal Loop. *Astrophys. J.* **833**, 5. [DOI](10.3847/0004-637X/833/1/5)

Spicer, D.S., Benz, A.O., Huba, J.D.: 1982, Solar type I noise storms and newly emerging magnetic flux. *Astron. Astrophys.* **105**, 221. [ADS](10.1051/0004-6361:19820072)

Stasiwicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Polkhotelov, O., Seyler, C., Shukla, P., Stenflo, L., Streltsov, A., Wahlund, J.-E.: 2000, Small Scale Alfvenic Structure in the Aurora. *Space Sci. Rev.* **92**, 421. [ADS](10.1023/A:00003992.00000000)

Thejappa, G.: 1991, A self-consistent model for the storm radio emission from the sun. *Solar Phys.* **132**, 173. [DOI](10.1007/BF00189397)

Tsytovich, V.N., ter Haar, D.: 1995, *Lectures on Non-linear Plasma Kinetics*, Springer, Berlin. [ADS](10.1007/978-94-011-0218-4)

Vedenov, A.A., Velikhov, E.P.: 1963, Quasilinear Approximation in the Kinetic Theory of a Low-density Plasma. *Soviet Journal of Experimental and Theoretical Physics* **16**, 682. [ADS](10.1007/BF00718344)

Voitenko, Y., De Keyser, J.: 2016, MHD-Kinetic Transition in Imbalanced Alfvenic Turbulence. *Astrophys. J. Lett.* **832**, L20. [DOI](10.1088/2041-8205/832/2/L20)

Voitenko, Y., Goossens, M.: 2000, Nonlinear decay of phase-mixed Alfven waves in the solar corona. *Astron. Astrophys.* **357**, 1073. [ADS](10.1051/0004-6361:20000364)

Voitenko, Y., Goossens, M.: 2006, Energization of Plasma Species by Intermittent Kinetic Alfven Waves. *Space Sci. Rev.* **122**, 255. [DOI](10.1007/s11214-006-9030-4)

Voitenko, Y., Pierrard, V.: 2013, Velocity-Space Proton Diffusion in the Solar Wind Turbulence. *Solar Phys.* **288**, 369. [DOI](10.1007/s11207-013-0220-4)

Voitenko, Y.M.: 1998, Excitation of Kinetic Alfven Waves in a Flaring Loop. *Solar Phys.* **182**, 411. [DOI](10.1023/A:00014034.00000000)

Warmuth, A., Mann, G.: 2005, A model of the Alfven speed in the solar corona. *Astron. Astrophys.* **435**, 1123. [DOI](10.1051/0004-6361:20053433)

Wentzel, D.G.: 1986, A theory for the solar type-I radio continuum. *Solar Phys.* **103**, 141. [DOI](10.1007/BF00157511)