The Chloroplast ATP Synthase in Chlamydomonas reinhardtii
Claire Lemaire, Francis-André Wollman

To cite this version:
Claire Lemaire, Francis-André Wollman. The Chloroplast ATP Synthase in Chlamydomonas reinhardtii: I. Characterization of its nine constitutive subunits. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 1989, 264 (17), pp.10228-10234. cea-02474816

HAL Id: cea-02474816
https://hal-cea.archives-ouvertes.fr/cea-02474816
Submitted on 11 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The Chloroplast ATP Synthase in *Chlamydomonas reinhardtii*

I. CHARACTERIZATION OF ITS NINE CONSTITUTIVE SUBUNITS*

Claire Lemaire and Francis-André Wollman§

From the Service de Photosynthèse, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France

(Received for publication, October 27, 1988)

We have characterized the subunit composition of the chloroplast ATP synthase from *Chlamydomonas reinhardtii* by means of a comparison of the polypeptide deficiencies in a mutant defective in photophosphorylation, with the polypeptide content in purified coupling factor (CF1) and CF1-CF0 complexes. We could distinguish nine subunits in the enzyme, four of which were CF1 subunits. Further characterization of these subunits was undertaken by immunoblotting experiments, [14C]dicyclohexylcarbodiimide binding and analysis of their site of translation. In particular, we were able to show the presence of an as yet unidentified δ subunit in CF1 from *C. reinhardtii*.

We have identified a 70-kDa peripheral membrane protein in the thylakoid membranes of *C. reinhardtii*, which is immunologically related to the δ subunit of CF1. We discuss its conceivable ATPase function with respect to the Ca2+-dependent ATPase activity previously reported in the thylakoid membranes from *C. reinhardtii* (Piccioni, R. G., Bennoun, P., and Chua, N. H. (1981) Eur. J. Biochem. 117, 93–102).

Energy transducing membranes in bacteria, mitochondria, and chloroplasts contain a H+-dependent ATP synthase. The functional properties of the enzyme result from the association of a catalytic extrinsic sector (CF), containing nucleotide binding sites, with an intrinsic sector (CF0), responsible for proton translocation across the membranes (for a review, see Ref. 1).

The enzymes from the three sources show large similarities, but significant differences nevertheless exist between CF0 from mitochondria and, for instance, CF1-CF0 from higher plant chloroplasts. Whereas the chloroplast ATP synthase is comprised of five CF1 subunits, αδβεδ and three to four CF0 subunits, numbered 1–IV (2, 3), mitochondrial ATP synthases contain at least three additional subunits, OSCP, Fε and IF1, which are loosely bound to F0.

The current terminology is somewhat confusing since sequence analysis of the different subunits has shown the δ subunit from CF1 to be more similar to the OSCP than to the δ subunit from F0, which in turn is homologous to α from CF1 (4). Subunit δ from CF1 differs, however, from the OSCP subunit in that it does not confer oligomycin sensitivity to the membrane-bound enzyme. In addition, it is retained on CF1, whereas OSCP is not found in F0, after extraction of the extrinsic moiety of the complex.

Characterization of the chloroplast ATP synthase from *Chlamydomonas reinhardtii* was of particular interest for several reasons. First, detailed knowledge of the subunit composition of the complex was a prerequisite to study its assembly in several mutants defective in photophosphorylation (see accompanying paper, 28). In this respect, since CF1-CF0 complexes had never been extensively purified from this algae, the exact number of subunits, particularly in CF0, remained largely unknown. In addition, although CF1 from *C. reinhardtii* had been extensively studied, there was little, if any, evidence for the presence of a δ subunit and positive identification of the catalytic subunit β remained controversial (5, 6). Second, some differences in the properties of CF1 from *C. reinhardtii* and from higher plants suggested structural differences: at variance with spinach CF1, the enzyme from *C. reinhardtii* was reported (7) not to be activated by heat or proteolysis. Therefore, a detailed biochemical analysis of the chloroplast ATP synthase from *C. reinhardtii* was required in order to understand how it compared with its counterparts from mitochondria and higher plant chloroplast.

MATERIALS AND METHODS

Chloroplast mutant FUD50 altered in the ATP synthase was isolated by P. Bennoun (Centre National de la Recherche Scientifique, Paris) and characterized by Woesner et al. (5).

BP25/FUD50 double mutant was obtained by crossing the BF25 nuclear mutant m+ from the FUD50 chloroplast mutant m+ according to Levine and Ebersold (9). The nuclear BF25 mutant was previously described as altered in the oxygen evolving system due to the absence of a 20-kDa protein associated with PSII (10, 11).

All strains were grown at 25 °C in Tris acetate/phosphates medium (12) at a light intensity of 300 lux. Cells were harvested in late exponential phase (4.10⁶ cells/ml), except for pulse labeling experiments (2.10⁶ cells/ml) which were carried out according to Deleyrolle (13). In these experiments cells were incubated in the presence of an inhibitor of cytoplasmic translation/cycloheximide (8 μg/ml) for 10 min before incubation with [3H]acetate (74 kBq/ml) for 45 min at a light intensity of 400 lux. It was stopped by the addition of an excess of unlabeled acetate. Purified thylakoids were prepared according to Chua and Bennoun (14).

CF1 was released from the thylakoid membranes by chlorform extraction as described by Piccioni et al. (5). CF1-CF0 was purified using the procedure of Pick and Racker (2), slightly modified as in Refs. 15 and 16: thylakoid membranes were solubilized in the presence of 1% octylglucoside, 0.5% cholate, the 100,000 × g supernatant was then subjected to ammonium sulfate fractionation and the 37–48% fraction was subjected to sucrose gradient centrifugation in the presence of 0.1% Triton X-100.
DCCD labeling was performed either on isolated ATP synthases according to Pick and Racker (2) or on purified thylakoids of *C. reinhardtii* by incubating the membranes (0.1 mg of chlorophyll/ml) with 20 μM \[^{14}C\]DCCD in a Tricine buffer, pH 8, at 0 °C for 30 min.

ATP hydrolysis was measured *in vitro* according to Lien and Racker (17).

Non-denaturing gel electrophoresis and revelation of ATPase activity on gels were performed as described by Piccioni et al. (5). Denaturing gel electrophoresis, immunoblotting experiments, and autoradiographies were performed as described in Ref. 15.

Molecular weights of the polypeptides were estimated using high and low molecular weight calibration kits from Pharmacia LKB Biotechnology, Inc. Protein concentrations were determined using the procedure of Bensadoun and Weinstein (18).

Antibodies against ATP synthase subunits from *C. reinhardtii*, spinach, yeast mitochondria, and beef heart mitochondria were obtained by courtesy of N-H. Chua (Rockefeller University, New York, NY), J. M. Galmiche and G. Girault (Centre d’Etudes Nucleaires, Saclay), C. Leaver (University of Edinburgh), J. Lunardi and A. Dupuis (Centre d’Etudes Nucleaires, Grenoble), respectively. CF₁, and CF₁CF₀ from spinach and FoF₁-enriched fractions from beef heart mitochondria were kindly supplied by J. M. Galmiche and G. Girault and by J. Lunardi, respectively.

RESULTS

Number of Subunits in the Chloroplast ATP Synthase from *C. reinhardtii*—In order to characterize the subunits constitutive of the chloroplast ATP synthase from *C. reinhardtii*, we first isolated the extrinsic part of the enzyme by a chloroform treatment of the thylakoid membranes. CF₁, was then further purified from the crude extract either by DEAE-cellulose chromatography or by non-denaturing electrophoresis. In the two cases we obtained a protein complex consisting of two bands of higher molecular weight comigrated as one band of 20 kDa as deduced from their electrophoretic mobility on 12–18% polyacrylamide gels run in the presence of SDS and urea (Fig. 1A). Also visible is a 57-kDa polypeptide, the amount of which changes from one preparation to another. It migrates in the position of the large RBUₚ Case subunit which is an expected contaminant since it is a major extrinsic-like component of the thylakoid membranes. In the absence of urea, the two bands of higher molecular weight comigrated as one band of 82 kDa (not shown). These observations are consistent with previous reports in which the four bands were attributed to the αβγε subunits of CF₁ (5, 7). Negligible amounts of CF₁ were extracted by EDTA washing of the thylakoid membranes from *C. reinhardtii* (not shown), in contrast with the case of CF₁ from spinach. The polypeptide content of the latter complex is shown for comparison on Fig. 1A. Besides the presence of a fifth subunit in spinach, the putative δ subunit, there was a shift in electrophoretic mobility of the bands of higher molecular weight.

CF₁, CF₁CF₀ complexes from *C. reinhardtii* were purified after octylglucoside/cholate solubilization of the thylakoid membranes (for details see "Materials and Methods"). After checking the distribution of ATPase activity among the fractions of the sucrose gradient we analyzed the polypeptide content in the fraction of maximal specific activity (2–5 μmol of P₀/min/mg of protein, corresponding to Ca²⁺-ATPase assay in the presence of 0.5 mg/ml trypsin (17)) in comparison with that in CF₁ CF₀ from spinach purified by the same procedure (Fig. 1B). The latter complex displays the nine subunits already characterized by several groups (2, 3), namely five CF₁ subunits (α, β, r, δ, and ε) and four additional polypeptides constitutive of CF₀ (I, II, III, and IV). Coomassie Blue staining in four subunits of apparent molecular masses, 55, 50, 42, and 18 kDa as deduced from their electrophoretic mobility on 12–18% polyacrylamide gels containing 8 M urea. Subunits in the complexes from spinach are identified by their name and apparent *M*ₘ. Subunits in the complexes from *C. reinhardtii* are indicated by their apparent *M*, only. A 20-kDa subunit is observed in CF₁, CF₀ from \[^{14}C\]acetate stationary labeled cells of *C. reinhardtii* after autoradiography (a) but not by Coomassie Blue staining (g). The inset corresponds to the 18–16 kDa region after two-dimensional gel electrophoresis (first dimension, 12–18% acrylamide with 8 M urea; second dimension, 7.5–15% acrylamide) of CF₀, CF₁ preparations.

Fig. 1. Subunit composition of CF₁ (A) and CF₁CF₀ (B) preparations from spinach and *C. reinhardtii* analyzed on 12–18% acrylamide gels containing 8 M urea. Subunits in the complexes from spinach are identified by their name and apparent *M*ₘ. Subunits in the complexes from *C. reinhardtii* are indicated by their apparent *M*, only. A 20-kDa subunit is observed in CF₁, CF₀ from \[^{14}C\]acetate stationary labeled cells of *C. reinhardtii* after autoradiography (a) but not by Coomassie Blue staining (g). The inset corresponds to the 18–16 kDa region after two-dimensional gel electrophoresis (first dimension, 12–18% acrylamide with 8 M urea; second dimension, 7.5–15% acrylamide) of CF₀, CF₁ preparations.
Subunits of the Chloroplast ATP Synthase

TABLE I

Subunit	Apparent Mr.	Site of translation	Presence in	Accumulation in FUD50 cells	Membrane association in FUD50	DCDD binding in wild type	Immunological cross-reactivity
	kDa		CF₁	CF₁-CF₆			
β	55 (65)	CHL	+	+	-	ND'	+
α	50 (65)	CHL	+	+	-	ND	+
τ	42 (38)	CYT	+	+	-	ND	-
δ	20 (20)	CYT	-	+	+	ND	+
ε	18 (16)	CHL	+	+	-	ND	+
IV	18 (18.5)	CHL	-	-	+	ND	-
II	17 (17)	CYT	-	+	ND	ND	-
I	16 (18)	CHL	-	-	+	ND	-
III	5.5 (5.5)	CHL	-	+	ND	ND	-

* Detected as [14C]-pulse-labeled polypeptides in thylakoid membranes.
* Corresponding Mr. in spinach given in parentheses.
* CHL, translated in the chloroplast; CYT, translated in the cytoplasm.
* With antibodies against the corresponding spinach subunits.
* ND, not done.

(g) of the polypeptides in CF₁-CF₆ complexes from *C. reinhardtii* resolved the four CF₁ subunits already identified on Fig. 1A and only three other subunits of 17, 16, and 5.5 kDa, most likely CF₂ subunits. However, two-dimensional gel electrophoresis of the CF₁-CF₆ complex resolved an additional subunit comigrating with the 18-kDa CF₆ polypeptide (see inset in Fig. 1B). Autoradiography (a) of a similar preparation purified from cells grown in the presence of [14C]acetate allowed us to detect another additional band of 20 kDa (Fig. 1B). We note that contamination by the large RBU₉ Case subunit is also visible in this preparation. Thus, we could distinguish nine subunits in the ATP synthase from *C. reinhardtii* as it was the case for the chloroplast ATP synthase from spinach.

Since CF₁-CF₆ preparations might be either depoited in some genuine subunits of the complex or contaminated by co-purifying polypeptides, we looked for an independent estimate of the subunit composition of CF₁-CF₆. This was achieved by the analysis of the pattern of polypeptide deficiencies in the thylakoid membranes of the FUD50 mutant (Fig. 2A) which bears a deletion in the chloroplast atpB gene coding for the β subunit and is therefore devoid of chloroplast ATP synthase (8, 19). Consistent with our identification of the subunits enriched in purified CF₁-CF₆, they were the absence of five bands of 55, 42, 17, 16, and 5.5 kDa (indicated by (*) in Fig. 2A) and the deficiencies in the 50-, 20-, and the 18-kDa regions (indicated by ▲ in Fig. 2A), where comigrations are known to occur (29). Two-dimensional gel electrophoresis of the FUD50 thylakoids allowed us to observe the absence of the 50-kDa polypeptide (data not shown) and of two polypeptides, after silver staining, in the 18-kDa region (see Fig. 2B). Also visible in Fig. 2B are the absences of the 17- and 16-kDa polypeptides in the FUD50 mutant. Therefore, out of the nine subunits found in purified CF₁-CF₆ complexes, all but one, in the 20-kDa region, could be identified independently as part of the chloroplast ATP synthase. The latter subunit was expected to migrate in the same 20-kDa region as compared to that in the WT or the FUD50. However, a 20-kDa polypeptide was still visible. In contrast, the double mutant FUD50/BF25 was totally lacking in 20-kDa polypeptides. This comparison demonstrates that the 20-kDa band observed in the WT resulted from the conigration of two polypeptides, a PSII subunit lacking in the BF25 mutant and an ATP synthase subunit lacking in the FUD50 mutant. Thus the analysis of both the polypeptide content in CF₁-CF₆ preparations from *C. reinhardtii* and the polypeptide deficiencies in ATP synthase mutants are in good agreement and lead to the identification of nine subunits constitutive of the protein complex.

In order to further correlate these nine subunits with those which have been identified in ATP synthases from other sources, we studied their immunological cross-reactivity with well-defined antibodies, their site of translation, and their pattern of DCCD labeling. These results are described below and summarized in Table I.

Immunological Cross-reactivity—We have used several distinct antibodies raised against the β subunit of the ATP synthase from different sources (yeast mitochondria, beef heart mitochondria, and spinach chloroplast) in order to assign the CF₁ subunits of 55 and 50 kDa in *C. reinhardtii* to either the α or β subunit. On Fig. 3A are compared immunoblots using antibodies against the β subunit from beef heart mitochondria and against the α and β subunits from *C. reinhardtii* chloroplast. The anti-β antibody recognized the 55-kDa band in the WT strain of *C. reinhardtii* which was absent in the β-less mutant FUD50. In addition, a 70-kDa polypeptide was recognized in the two strains. Its significance will be discussed in a separate section. The same observation was made with anti-β antibodies from yeast mitochondria and from spinach (data not shown), thereby indicating that the α subunit of *C. reinhardtii* CF₁, migrated ahead of the β subunit in urea gels. In contrast, the α subunits had lower electrophoretic mobilities than the β subunits in (CF₁ from spinach chloroplast or from beef heart mitochondria. Using the antibody against the (α + β) subunits in (CF₁ from spinach chloroplast or from beef heart mitochondria, F₁ and F₂. However, the two-dimensional gel system did not resolve two polypeptides in this molecular weight region. Therefore we constructed a double mutant by crossing the FUD50 mutant with the BF25 mutant specifically lacking in the OEE₂ subunit. A comparison of the 18-26-kDa region in the polypeptide patterns of the thylakoid membranes from the WT, FUD50, BF25, and FUD50/BF25 strains is shown on Fig. 2C. The BF25 mutant showed a much lower staining in the 20-kDa region as compared to that in the WT or the
Subunits of the Chloroplast ATP Synthase

FIG. 3. A, ATP synthases from various sources and thylakoid membranes from WT and FUD50 after urea/SDS electrophoresis and Coomassie Blue staining or subjected to immunoblotting and probed with antibodies directed against α/β or β subunits. Antibody recognition patterns of the 55-kDa bands in the different samples (-----) indicate that they correspond to the β subunit in chloroplasts from spinach and C. reinhardtii but to the α subunit in beef heart mitochondria. Indicated by a asterisk (*) is the 70-kDa polypeptide from C. reinhardtii which is present in CFo·CF1 preparations and in the WT and FUD50 thylakoids. B, ATP synthases from various sources and thylakoid membranes from spinach, WT, FUD50, BF25, and BF25/FUD50 after urea/SDS electrophoresis, subjected to immunoblotting, and probed with antibodies directed against the OSCP or δ subunits. A cross-reaction between 20-kDa polypeptides in spinach and C. reinhardtii is observed in purified complexes in WT and BF25 thylakoid membranes, but is absent in the FUD50 and BF25/FUD50 thylakoid membranes which lack the ATP synthase. Also visible is a cross-reaction with a 41-kDa polypeptide of unknown origin, the presence of which is not related to the presence of the ATP synthase in C. reinhardtii.

FIG. 4. Autoradiogram of chloroplast translates in thylakoid membranes from the WT and F mutant. Cells were pulse-labeled for 45 min with [14C]acetate in the presence of cycloheximide. Molecular weights are indicated in positions corresponding to ATP synthase subunits of chloroplast origin (*). Polypeptides are named after Delepelaire (13). L2, L3, and L9 correspond respectively, to subunits IV, I, and III.

Chloroplast Translates—Previous work on the chloroplast ATP synthase from higher plants have shown that the αβε subunits of CF1 and subunits I, III, and IV of CFo are encoded in the chloroplast genome (3) and therefore translated on chloroplast ribosomes. Fig. 4 shows the chloroplast translates associated with the thylakoid membranes in the FUD50 and WT strains of C. reinhardtii. The FUD50 thylakoids lacked a 55-kDa band which was immunodetected as the β subunit (indicated by ● on Fig. 4) and were deficient in 50- and 18-kDa bands (indicated by ▲ in Fig. 4). Two-dimensional gel electrophoresis (Fig. 5) showed that comigration occurred in the 50-kDa region in the WT: one spot being the PSII core subunit “5” (20) also of chloroplast origin and the other the ATP synthase subunit lacking in the FUD50 thylakoids and mitochondria (see left side of Fig. 3B). In contrast, we observed a weak but significant cross-reaction of a 20-kDa polypeptide with the antibody against the δ subunit from spinach CFo. This was visible either in the CFo·CF1 complex or in the thylakoid membranes from WT and BF25 strains. In contrast, no cross-reaction was detected in the FUD50 and BF25/FUD50 mutants, both of which lack the ATP synthase. The anti-δ antibody also recognized a polypeptide of higher molecular weight both in spinach and in C. reinhardtii. This polypeptide is not an ATP synthase polypeptide since recognition still occurred in the mutants lacking ATP synthase. Thus, the ATP synthase subunit of 20 kDa, which comigrates with the OEEε subunit upon electrophoresis of thylakoid membranes from C. reinhardtii on urea gels (see Fig. 2C), is the δ subunit of CF1.
identified as the α subunit of CF₁ by immunological experiments (see above). These observations are consistent with the localization of the genes of α and β subunits on the chloroplast genome in C. reinhardtii (8, 21). As previously described by Delepelaire (20), three polypeptides of chloroplast origin (namely L2.1, L2.2, and L2.3) comigrated in the 18-kDa band, one of which L2.3 being an ATP synthase subunit since it was lacking in the FUD50 thylakoids (see Fig. 5). Therefore, as CF₁ complexes contained such a 18-kDa polypeptide, we assigned this one to the α subunit. The complexity of the pattern of polypeptides synthesized on cytoplasm ribosomes prevented us from identifying directly the nuclear-encoded ATP synthase subunits. However, as no chloroplast translates were observed in the 20- and 42-kDa positions, we conclude that the former identified by immunological reaction (see Fig. 3B, left) as δ, is nuclear-encoded as it is the case in spinach, whereas the latter corresponded to the nuclear-encoded τ subunit.

We did not expect that chloroplast translates corresponding to CF₀ subunits would be necessarily missing from FUD50 thylakoid membranes since these subunits belong to an integral membrane-protein complex and may be inserted in the membrane even though they would not accumulate in the absence of the peripheral part of the enzyme. Out of the four polypeptides of 18, 16, 17, and 5.5 kDa, which were possible CF₀ subunits (Fig. 1) and did not accumulate in the FUD50 thylakoids (Fig. 2), only the 17-kDa polypeptide did not migrate in the position of a chloroplast translate and was then attributed to subunit II of CF₀. The others migrated in the same position as three chloroplast translates, L2.1, L3, and L9, respectively (Figs. 4 and 5).

\[^{14}C\]DCCD Labeling—As has been previously reported for ATP synthases from spinach chloroplast and beef heart mitochondria (2, 22), subunit III of (CF)₀ can be identified by \[^{14}C\]DCCD labeling (see Fig. 6). Among the half-dozen polypeptides labeled in the WT thylakoid membranes, only the 5.5-kDa one was present in purified CF₁. CF₀ and missing from the thylakoid membranes of the FUD50 mutant (Fig. 6). Therefore the chloroplast translate L9 (5.5 kDa) corresponded to subunit III of CF₀. The chloroplast translates L2.1 (18 kDa) and L3 (16 kDa) were attributed to the two remaining CF₀ subunits which are chloroplast encoded in spinach (3) and were arbitrarily named subunit IV and I, respectively.

The 70-kDa Protein—Most of the CF₁, CF₀ preparations in C. reinhardtii contained an additional polypeptide of apparent molecular mass, 70 kDa, which cross-reacted with antibodies directed against the β subunit (indicated by * on Fig. 3). This polypeptide was found together with CF₁ in the crude extract from WT thylakoid membranes when treated with chloroform or subjected to an alkaline shock (not shown), and was still present in FUD50 thylakoid membranes (Fig. 3, right, *).

Piccioni et al. (5) have described in C. reinhardtii the presence of an additional latent ATPase activity on the thylakoid membranes of a mutant lacking ATP synthase activity. This activity could be recovered in the soluble phase after chloroform treatment of thylakoid membranes. In order to understand if the 70-kDa protein was responsible for this activity, crude extracts released by chloroform treatment of WT and FUD50 thylakoid membranes, were analyzed by nondenaturing gel electrophoresis according to Piccioni et al. (5). Silver staining revealed three bands in the WT extract (Fig. 7), indicated by 1, 2, and 3 in order of increasing

![Fig. 5. Same as Fig. 4 using two-dimensional SDS-gel electrophoresis. First dimension, 12-18% acrylamide gel with 8 M urea. Second dimension, 7.5-15% acrylamide gel. Note the absence (arrows) of bands 4.1 and 4.2 (α and β) and L2.3 (δ) in the FUD50 thylakoids. In contrast, CF₁ subunits IV (L2.1) and I (L3) are clearly visible.](image-url)
electrophoretic mobility. Only one band, in the position of band 3, was found in the FUD50 extract (Fig. 7). An additional diffuse band was occasionally observed (∗ on Fig. 7A).

Immunoblotting experiments were performed on these non-denaturing gels using anti-β antibodies. All three bands were labeled (Fig. 7, see bands 1 and 2 in the WT extract and band 3 in the FUD50 extract). Polypeptide composition in each band was analyzed by carrying out a second electrophoresis in the presence of urea/SDS (Fig. 7C). Silver staining reveals that bands 1 and 2 were made of CF1 subunits. Band 3 contained only the 70-kDa polypeptide. Finally, bands 1 and 2 showed Ca"²⁺-dependent ATPase activity on non-denaturing gels, whereas band 3 did not (not shown).

DISCUSSION

We were able to resolve nine subunits in the chloroplast ATP synthase from *C. reinhardtii*. That these polypeptides are genuine ATP synthase subunits is supported by the perfect complementarity between the polypeptide deficiencies observed in thylakoid membranes in an ATP synthase mutant and the enrichment in these polypeptides in purified fractions showing ATPase activity.

The experimental evidence supporting the identification of each ATP synthase subunit is summarized in Table 1. Comparison with the chloroplast ATP synthase from spinach shows that despite some differences in apparent molecular weights, particularly between the α subunits, the subunits in the two cases were very similar. In particular, our study using site-specific inhibitors of translation, indicated that the origin of synthesis of the chloroplast ATP synthase subunits is conserved between *C. reinhardtii* and higher plants (3).

We note that CF2 subunits were inserted in the membranes of the FUD50 mutant independent from the presence of CF1 subunits. However, their accumulation was prevented in the mutant. Such insight on the biogenesis of the chloroplast ATP synthase in *C. reinhardtii* is further developed in the accompanying paper (28) where eight ATP synthase mutants were analyzed.

On the basis of immunological cross-reactions, we concluded that the α subunit of *C. reinhardtii* CF1 had a lower apparent molecular weight than the β subunit in urea gels. This is at variance with the behavior of the α and β subunits from spinach CF1 or yeast and beef heart F1, when probed with the same set of antibodies. Our conclusion is in agreement with that of Piccioni et al. (5) and argues for either differences in molecular weights or covalent modification between the α subunits of CF1 in spinach and *C. reinhardtii*. The conflicting observation reported by Merchant and Selman (6) was likely to arise from the use of a gel system lacking urea. We observed that whereas the β subunits from several chloroplast and mitochondrial ATP synthases showed similar apparent molecular weights and cross-reacted with β antibodies from all sources, the α subunits from CF1 and F1 showed no immunological cross-reaction. This is consistent with the higher sequence conservation of β than α subunits in the ATP synthase from different sources (23). Complete sequence of the α subunit from CF1 in *C. reinhardtii*, when available, will help clarifying the possible differences with its counterpart from spinach CF1.

We were able to get a positive identification of the δ subunit of CF1 from *C. reinhardtii* by comparing thylakoid membranes from several mutant strains as well as by immunological cross-reaction with an anti-δ antibody from spinach, using purified CF1-CF2 complexes and thylakoid membranes when they contained the ATP synthase. As previously reported by others.

Fig. 6. Autoradiogram of a urea-SDS gel loaded with [14C] DCCD-labeled ATP synthases from various sources and thylakoid membranes from WT and FUD50 strains. Note the presence of a 5.5-kDa labeled band purified complexes and in WT thylakoid membranes, but its absence in FUD50 thylakoid membranes. Asterisk (∗) points to several labeled membrane polypeptides of unknown function present in the WT and FUD50 strains.

Fig. 7. Nondenaturing electrophoresis (6% acrylamide gels) of proteins extracted by a chloroform shock from WT and FUD50 thylakoid membranes. A, silver staining; B, immunoblots with antibodies against the β subunit of CF1. Three bands, 1–3, are recovered from WT, whereas only the region of band 3 remains visible in the case of FUD50. Asterisk (∗) indicates a band occasionally observed after silver staining in these experiments. C, urea/SDS electrophoresis of bands 1–3 (silver staining). Bands 1 and 2 contain CF1 subunits, but band 3 contains a single 70-kDa polypeptide.
(5, 7), the δ subunit was never found in CF₁ extracted from chloroform-treated thylakoid membranes from C. reinhardtii. This treatment, when applied to higher plant thylakoids, is known to produce a CF₁ complex largely depleted in δ subunit (24). However, the lability of δ does not totally prevent its detection in the chloroform crude extract from higher plant thylakoids (24). This difference in detection of δ between CF₁ from higher plants and that from C. reinhardtii, together with the lower EDTA sensitivity of CF₁₁ extraction in the latter, could be indicative of some modified CF₁₁-CF₁ interaction in the algal thylakoid membranes. It resembled that of F₁, which cannot be released by EDTA treatment of mitochondrial particles (25). In the latter case, the OSCP subunit, which is the subunit of CF₁, was found in the WT thylakoid membranes. These results may be related to the plast ATP synthase since it was still present in normal plants and C. reinhardtii from higher plants and that from C. reinhardtii. It resembled that of F₁ which did not show oligomycin sensitivity when assayed in intact chloroform-treated thylakoid membranes from either the WT or the third band migrated faster and not to a minor ATPase of unknown physiological role. We note that the 70-kDa polypeptide could correspond to one of the constitutive subunits. Using a similar experimental procedure we detected the two CF₁-containing bands obtained by octylglucoside/cholate solubilization of the algal thylakoid membranes. It resembled that of F₁ which we have studied. These results may be related to the previous report of Piccioni et al. (5). These authors detected a Ca²⁺-dependent ATPase activity in the crude extract of chloroform-treated thylakoid membranes from either the WT of C. reinhardtii or the thm24 mutant lacking in CF₁₁. In addition, when detected directly on gels after non-denaturing electrophoresis, such Ca²⁺-ATPase activity was found in three distinct bands, the one of lower mobility corresponding to this non-CF₁ ATPase. However, Piccioni et al. (5) were not able to identify its constitutive subunits. Using a similar experimental procedure we detected the two CF₁-containing bands showing ATPase activity as described in Ref. 5. At variance with Piccioni et al. (5), the third band migrated faster and not slower than the CF₁ bands. This band showed no Ca²⁺-ATPase activity but contained a single polypeptide of 70 kDa, which cross-reacted with δ antibodies. These two sets of data can be reconciled if one considers that the difference in mobility of the non-CF₁ band between our work and that of Piccioni et al. (5) reflects a different extent of denaturation and inactivation of the Ca²⁺-ATPase, perhaps due to the dissociation of an oligomer of 70-kDa subunits.

These hypothesis are now under study and should open the way to an understanding of the physiological function of this enzyme in C. reinhardtii.

Acknowledgments—We are indebted to J. Girard-Bascou for her advice and help in the isolation of the BF25/FUD50 double mutant. We thank J. M. Galmiche and P. Delepelaire for stimulating discussions, D. Drapier, C. de Vitré, and J. L. Popot for critical reading of a previous version of the manuscript, and H. Courtier for the high quality of the micrographs.

REFERENCES

1. Vignais, P. V. & Satre, M. (1984) Mol. Cell. Biochem. 69, 33–70
2. Pick, U. & Racker, E. (1979) J. Biol. Chem. 254, 2793–2799
3. Hennig, J. & Hermann, R. G. (1986) Mol. Gen. Genet. 203, 117–128
4. Walker, J. E., Runswick, M. J. & Saraste, M. (1982) FEBS Lett. 148, 390–396
5. Piccioni, R. G., Bennoun, P. & Chua, N. H. (1981) Eur. J. Biochem. 117, 93–102
6. Merchant, S. & Selman, B. R. (1983) Eur. J. Biochem. 137, 373–376
7. Selman-Reimer, S., Merchant, S. & Selman, B. R. (1981) Biochim. Biophys. Acta 643, 5476–5482
8. Woessner, J. F., Masson, A., Harris, E. H., Bennoun, P., Gillham, N. W. & Boynton, J. E. (1984) Plant Mol. Biol. 3, 177–190
9. Levine, R. P. & Ebersold, W. T. (1960) Ann. Rev. Microbiol. 14, 931–934
10. Bennoun, P., Diner, B. A., Wollman, F.-A., Chua, N. H. (1981) in Photosynthesis II: Structure and Molecular Organization of the Photosynthetic Apparatus (Akoyunoglou, G., ed) pp. 839–849, Balaban, Phiadelphia
11. Mayfield, S., Rahire, M., Frank, G., Zuber, H. & Rocheix, J.-D. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 749–753
12. Gorman, D. S. & Levine, R. F. (1986) Proc. Natl. Acad. Sci. U. S. A. 79, 4352–4356
13. Delepelaire, P. (1983) Photochem. Photobiophys. 6, 279–291
14. Chua, N. H. & Bennoun, P. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 2175–2179
15. Lemaire, C., Girard-Bascou, J., Wollman, F.-A. & Bennoun, P. (1986) Biochim. Biophys. Acta 851, 229–238
16. Wollman, F.-A. & Lemaire, C. (1988) Biochim. Biophys. Acta 933, 85–94
17. Lien, S. & Racker, E. (1971) Methods Enzymol. 23, 547–555
18. Bensadoun, A. & Weinstein, D. (1976) Anal. Biochem. 70, 241–250
19. Lemaire, C., Wollman, F.-A. & Bennoun, P. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 1344–1348
20. Delepelaire, P. (1984) EMBO J. 3, 701–706
21. Hallick, R. B. (1984) Fems Lett. 177, 274–276
22. Pougeois, R., Satre, M. & Vignais, P. V. (1980) FEBS Lett. 117, 344–348
23. Walker, J. E., Fearnley, I. M., Gay, N. J., Gibson, B. W., Northrop, F. D., Powell, S. J., Runswick, M. J., Saraste, M. & Tybulewicz, V. L. J. (1985) J. Mol. Biol. 184, 677–701
24. Younis, H. M., Winget, G. D. & Racker, E. (1977) J. Biol. Chem. 252, 1814–1815
25. Evert, A., Huala, T., Norling, B., Sandri, G., Wojtczak, Grinkievich, V. A., Modyanov, N. N. & Ovchinnikov, Y. U. (1986) Chern. Scr. 26B, 273–279
26. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. (1982) EMBO J. 1, 845–851
27. Wollman, F.-A. & Lemaire, C. (1988) in Photosynthetic Production of Energy Rich Compounds (Hall, D., Grassi, G., eds) Elsevier Scientific Publishing Co., Amsterdam
28. Lemaire, C. & Wollman, F.-A. (1989) J. Biol. Chem. 264, 10235–10242

*J. M. Galmiche, personal communication.