Identification of Candida haemulonii Complex Species: Use of ClinProTools™ to Overcome Limitations of the Bruker Biotyper™, VITEK MS™ IVD, and VITEK MS™ RUO Databases

Rafaela C. Grenfell1, Afonso R. da Silva Junior2, Gilda M. B. Del Negro3, Regina B. Munhoz2, Viviane M. F. Gimenes3, Diego M. Assis4, Anna C. Rockstroh5, Adriana L. Motta2, Flavia Rossi2, Luiz Juliano1, Gil Benard3 and João N. de Almeida Júnior2,3*

1 Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil,
2 Central Laboratory Division – LIM-03, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil,
3 Laboratory of Medical Mycology – LIM-53, Hospital das Clínicas FMUSP and Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil,
4 Bruker do Brasil, Atibaia, Brazil,
5 bioMérieux, São Paulo, Brazil

Candida haemulonii is now considered a complex of two species and one variety: C. haemulonii sensu stricto, Candida duobushaemulonii and the variety C. haemulonii var. vulnera. Identification (ID) of these species is relevant for epidemiological purposes and for therapeutic management, but the different phenotypic commercial systems are unable to provide correct species ID for these emergent pathogens. Hence, we evaluated the MALDI-TOF MS performance for the ID of C. haemulonii species, analyzing isolates/strains of C. haemulonii complex species, Candida pseudohaemulonii and Candida auris by two commercial platforms, their databases and softwares. To differentiate C. haemulonii sensu stricto from the variety vulnera, we used the ClinProTools™ models and a single-peak analysis with the software FlexAnalysis™. The Biotyper™ database gave 100% correct species ID for C. haemulonii sensu stricto, C. pseudohaemulonii and C. auris, with 69% of correct species ID for C. duobushaemulonii. Vitek MS™ database gave 100% correct species ID for C. haemulonii sensu stricto, C. pseudohaemulonii and C. auris, with 69% of correct species ID for C. duobushaemulonii. Vitek MS™ IVD database gave 100% correct species ID for C. haemulonii sensu stricto, misidentifying all C. duobushaemulonii and C. pseudohaemulonii as C. haemulonii, being unable to identify C. auris. The Vitek MS™ RUO database needed to be upgraded with in-house SuperSpectra to discriminate C. haemulonii sensu stricto, C. duobushaemulonii, C. pseudohaemulonii, and C. auris strains/isolates. The generic algorithm model from ClinProTools™ software showed recognition capability of 100% and cross validation of 98.02% for the discrimination of C. haemulonii sensu stricto from the variety vulnera. Single-peak analysis showed that the peaks 5670, 6878, or 13750 m/z can distinguish C. haemulonii sensu stricto from the variety vulnera.

Keywords: MALDI-TOF mass spectrometry, Candida haemulonii complex species, Microflex LT™, Vitek MS™, ClinProTools™
INTRODUCTION

The taxonomy of the pathogenic Candida species such as Candida albicans, Candida parapsilosis, and Candida glabrata has suffered significant modifications due to the description of closely related species (Turner and Butler, 2014). Likewise, the taxonomy of Candida haemulonii has changed over the years. In the early 90s, Lehmann et al. (1993), studying strains of C. haemulonii from distinct geographic origins and clinical sources, divided this species into two genetically distinct groups, named group I and II. This concept that C. haemulonii was indeed a complex of different species, was later confirmed by Cendejas-Bueno et al. (2012) that proposed a new classification: C. haemulonii (former group I), Candida duobushaemulonii (former group II) and the new variety, C. haemulonii var. vulnera. The correct identification (ID) of the C. haemulonii complex species is clinically relevant, since resistance to azole derivatives are commonly reported among the isolates of this species complex and amphotericin B has poor in vitro activity against C. duobushaemulonii isolates (Cendejas-Bueno et al., 2012; Ramos et al., 2015).

This increasing number of Candida species causing human infections has created a challenge for clinical laboratories to provide reliable and fast ID, especially for closely related species (Merseguel et al., 2015). Recently, the widespread commercial system Vitek 2™ (bioMérieux, Marcy-l’Etoile, France) was linked to mis-IDs of Candida auris as C. haemulonii (Kathuria et al., 2015). Alternatively, reliable Candida species ID can be achieved by the sequence analysis of the internal transcribed spacer (ITS) region from the ribosomal DNA (rDNA; Schoch et al., 2012). However, the whole process of molecular analysis remains time consuming and costly. Thus, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) emerges as a fast and accurate method for yeast’s ID in clinical microbiology laboratories (Bader, 2013; Jamal et al., 2014). This method produces species-specific protein fingerprints that can be compared with databases that contain reference or main mass spectra (MSP) of a great diversity of microorganisms, including yeasts (Bader, 2013). Conversely, the performance of different MALDI-TOF MS instruments in the ID of yeasts was found to vary considerably when compared to the conventional techniques as these systems often lack MSPs of cryptic Candida species in their databases (Jamal et al., 2014).

Initial evaluation using MALDI-TOF MS for the ID of C. haemulonii complex species provided promising results (Cendejas-Bueno et al., 2012), however, the discrimination of the variety vulnera from C. haemulonii sensu stricto was troublesome and the performance of the Vitek MS™ (bioMérieux) remains unevaluated. Hence, aiming to provide a more detailed evaluation of the MALDI-TOF MS performance for the ID of C. haemulonii species ID, we analyzed a set of different isolates and reference strains belonging to the C. haemulonii complex species with the two available platforms, their databases and softwares.

MATERIAL AND METHODS

Isolates and Strains

A total of 38 non-replicate clinical isolates belonging to the C. haemulonii complex species (15 C. haemulonii, sensu stricto, 12 C. haemulonii var. vulnera, 11 C. duobushaemulonii) were analyzed in this study (Table 1). Species ID was carried out by

Isolate/strain	GenBank accession no.	Species
HCFMUSP01	KT236448.1	Candida duobushaemulonii
HCFMUSP02	KT968725.1	C. duobushaemulonii
HCFMUSP03	KT236449.1	Candida haemulonii var. vulnera
HCFMUSP04	KT968726.1	C. duobushaemulonii
HCFMUSP05	KT968713.1	Candida haemulonii
HCFMUSP06	KT968733.1	C. haemulonii var. vulnera
HCFMUSP07	KT968734.1	C. haemulonii var. vulnera
HCFMUSP08	KT968735.1	C. haemulonii var. vulnera
HCFMUSP09	KT968714.1	C. haemulonii
HCFMUSP10	KT257659.1	C. haemulonii
HCFMUSP11	KT968727.1	C. duobushaemulonii
HCFMUSP12	KT968715.1	C. haemulonii
HCFMUSP13	KT968716.1	C. haemulonii
HCFMUSP14	KT968728.1	C. duobushaemulonii
HCFMUSP15	KT968729.1	C. duobushaemulonii
HCFMUSP16	KT968730.1	C. duobushaemulonii
HCFMUSP17	KT968717.1	C. haemulonii
HCFMUSP18	KT968731.1	C. duobushaemulonii
HCFMUSP19	KT968718.1	C. haemulonii
HCFMUSP20	KT968732.1	C. duobushaemulonii
HCFMUSP21	KT968719.1	C. haemulonii
HCFMUSP22	KT968720.1	C. haemulonii
HCFMUSP23	KT968721.1	C. haemulonii
HCFMUSP24	KT968736.1	C. haemulonii var. vulnera
HCFMUSP25	KT968737.1	C. haemulonii var. vulnera
HCFMUSP26	KT968722.1	C. haemulonii
HCFMUSP27	KT257660.1	C. haemulonii
HCFMUSP28	KT968723.1	C. haemulonii
HCFMUSP29	KT968736.1	C. haemulonii var. vulnera
HCFMUSP30	KT968724.1	C. haemulonii
HCFMUSP31	KT968739.1	C. haemulonii var. vulnera
HCFMUSP32	KU65080.1	C. duobushaemulonii
HCFMUSP33	KU65081.1	C. haemulonii var. vulnera
IMT-USP01	KX118598.1	C. haemulonii var. vulnera
HCFMUSP34	KX118599.1	C. haemulonii var. vulnera
HCFMUSP35	KX118600.1	C. duobushaemulonii
HCFMUSP36	KX118601.1	C. haemulonii
HCFMUSP37	KX118602.1	C. haemulonii var. vulnera
CBS5149T	AB118789.1	C. haemulonii
CBS7798T	JX459765.1	C. duobushaemulonii
CBS7799	JX459766.1	C. duobushaemulonii
CBS10004	AB118791.1	Candida pseudohaemulonii
CBS12310	JX459678.1	Candida pseudohaemulonii
CBS10913	KF89018.1	Candida auris
CBS12786	KQ92039.1	C. auris
ITS1 region sequence analysis with primers ITS1 and ITS4 and amplification parameters previously described (Luo and Mitchell, 2002). Both strands of purified ITS1 fragments were sequenced using the BigDye Terminator v.3.1 cycle sequencing kit on an ABI 3730 DNA analyzer (ABI, Foster City, EUA). Consensus sequence assembly and editing were performed using the software CondonCode Aligner, version 4.0 (CondonCode Corporation, Centerville, MA, USA), before being deposited in the GenBank database. In addition, a set of reference strains from the CBS-KNAW collection was also analyzed: *C. haemulonii* CBS5149(T), *C. duobushaemulonii* CBS7798(T), *C. duobushaemulonii* CBS7799. For specificity control, the reference strains belonging to the close related species *Candida pseudohaemulonii* (CBS10004 and CBS12370) and *C. auris* (CBS12766 and CBS10913) were also analyzed (Table 1). Phylogenetic analyses using UPGMA with 1,000 bootstrap simulations (Figure 1A) were conducted with Mega software, version 6.0 (Tamura et al., 2013).

MALDI-TOF MS: Sample Preparation for Analysis

The isolates and strains were cultured on Sabouraud’s dextrose agar (SDA) plates and incubated for 48 h at 30°C before MALDI-TOF MS analysis. One loop of yeast biomass was transferred to a microtube containing 300 µl of purified water and final protein extraction protocol with absolute ethanol (Sigma-Aldrich, St. Louis, MO, USA) was carried out according to the Bruker’s recommendations. A calibration test standard (BTS, Bruker Daltonics) was used for mass spectrum calibration (Bruker Daltonics, Bremen, Germany) instrument using the software Myla software (bioMérieux) with the manufacturer’s suggested settings. For each acquisition group, a standard (ATCC 8739) was included to calibrate the instrument and validate the run. The spectra were analyzed by the Vitek MS™ v3.2 IVD database (bioMérieux) that contains spectral profiles covering 3555 species. The software compares the spectrum obtained to the expected spectrum of each organism or organism group (e.g., bacteria or fungi) and high confidence level ID was considered when single species showed probability of ID ≥ 60%. For the RUO analysis, spectra were generated using the Launchpad v2.8 software and compared to the SARAMIS™ v.4.12 database (bioMérieux) that contains 720 SuperSpectra (each one corresponding to a spectral fingerprint with 15–20 species-specific biomarkers) of different fungal species. Peak matches that yield identification results with confidence values exceeding 75% were considered significant. For SuperSpectra and dendrogram construction, spectra of all isolates/strains were imported into the SARAMIS Premium™ software package (bioMérieux). Then, SuperSpectra were calculated using the SARAMIS™ SuperSpectrum tool (bioMérieux) according to the manufacturer’s instructions, and the specificity of the potential biomarker masses was determined by comparison against the whole SARAMIS™ spectral archive (bioMérieux). Dendrogram was created based on whole spectra, with a single-link clustering algorithm and a binary mass list with an error of 800 ppm.

Bruker Daltonics MALDI-TOF MS Analysis

Measurements were performed on a Microflex LT™ (Bruker Daltonics, Bremen, Germany) instrument using the software FlexControl™ version 3.4 (Bruker Daltonics). Bacterial test standard (BTS, Bruker Daltonics) was used for mass calibration™ instrument parameter optimization. Spectra were acquired in linear positive mode within a mass range from 2000 to 20,000 m/z with the manufacturer’s suggested settings using automated collecting spectra mode. Then, the obtained spectra were analyzed by standard pattern-matching algorithm using the MALDI Biotyper™ 3.1 software (Bruker Daltonics), which compared the raw spectra with the reference spectra of the Bruker library (database version 3.3.1, 5627 reference spectra) by using the default settings. ID criteria were used as recommended by the manufacturer: a score ≥ 2.000 indicated species level ID, a score between 1.700 and 1.999 indicated ID to the genus level and a score < 1.700 was interpreted as no ID. For MainSpectra (MSP) and dendrogram construction, flat-liners and bad quality spectra were removed and additional measurements were carried out to obtain 20 spectra from each isolate/strain. Spectra were then loaded into Biotyper™ 3.1 software (Bruker Daltonics) for MSP creation and dendrogram clustering construction with the default settings (distance measure: correlation; linkage: average; score oriented).

bioMérieux MALDI-TOF MS Analysis

Measurements were performed on a Vitek MS™ instrument (bioMérieux) equipped with both IVD and RUO (SARAMIS™) databases (bioMérieux). For the IVD analysis, spectra were obtained using the Vitek MS™ automation control and Myla software (bioMérieux) with the manufacturer’s suggested settings. For each acquisition group, a standard (*Escherichia coli* ATCC 8739) was included to calibrate the instrument and validate the run. The spectra were analyzed by the Vitek MS™ v3.2 IVD database (bioMérieux) that contains spectral profiles covering 3555 species. The software compares the spectrum obtained to the expected spectrum of each organism or organism group (e.g., bacteria or fungi) and high confidence level ID was considered when single species showed probability of ID ≥ 60%. For the RUO analysis, spectra were generated using the Launchpad v2.8 software and compared to the SARAMIS™ v.4.12 database (bioMérieux) that contains 720 SuperSpectra (each one corresponding to a spectral fingerprint with 15–20 species-specific biomarkers) of different fungal species. Peak matches that yield identification results with confidence values exceeding 75% were considered significant. For SuperSpectra and dendrogram construction, spectra of all isolates/strains were imported into the SARAMIS Premium™ software package (bioMérieux). Then, SuperSpectra were calculated using the SARAMIS™ SuperSpectrum tool (bioMérieux) according to the manufacturer’s instructions, and the specificity of the potential biomarker masses was determined by comparison against the whole SARAMIS™ spectral archive (bioMérieux). Dendrogram was created based on whole spectra, with a single-link clustering algorithm and a binary mass list with an error of 800 ppm.

Differentiation of Candida haemulonii sensu stricto from the Variety vulnera ClinProTools™ Models

The ClinProTools™ (Bruker Daltonics) generates multiple mathematical algorithms to generate pattern recognition models for classification and prediction of different classes (e.g., *C. haemulonii* sensu stricto class 1, *C. haemulonii* var. *vulnera* class 2) from mass spectrometry based profiling data. Moreover, ClinProTools™ provides a list of peaks sorted according to the statistical significance to differentiate between both classes (Ketterlinus et al., 2005). Thus, for recognition of mass spectra patterns and biomarkers between *C. haemulonii* sensu stricto and *C. haemulonii* var. *vulnera*, spectra peak analysis models with ClinProTools™ software v.3.0 (Bruker Daltonics) were created from 320 mass spectra of the 16 *C. haemulonii* sensu stricto (10 high-quality mass spectra per isolate) and 12 *C. haemulonii* var. *vulnera* (∼14 high-quality mass spectra per isolate) isolates. Spectra were pretreated with a resolution of 800 ppm, a mass range of 2000–20000 Da, a top hat baseline subtraction with 10% minimal baseline width, enabling null spectra exclusion, and
FIGURE 1 | Continued

A

Candida haemulonii HCFMUSP05
Candida haemulonii HCFMUSP30
Candida haemulonii HCFMUSP19
Candida haemulonii HCFMUSP27
Candida haemulonii HCFMUSP12
Candida haemulonii CBS5149
Candida haemulonii HCFMUSP13
Candida haemulonii HCFMUSP21
Candida haemulonii HCFMUSP23
Candida haemulonii HCFMUSP26
Candida haemulonii HCFMUSP28
Candida haemulonii HCFMUSP36
Candida haemulonii HCFMUSP09
Candida haemulonii HCFMUSP22
Candida haemulonii HCFMUSP10
Candida haemulonii HCFMUSP17
Candida haemulonii var. vulnera HCFMUSP25
Candida haemulonii var. vulnera HCFMUSP33
Candida haemulonii var. vulnera HCFMUSP07
Candida haemulonii var. vulnera HCFMUSP29
Candida haemulonii var. vulnera HCFMUSP03
Candida haemulonii var. vulnera HCFMUSP24
Candida haemulonii var. vulnera HCFMUSP34
Candida haemulonii var. vulnera HCFMUSP37
Candida haemulonii var. vulnera HCFMUSP06
Candida haemulonii var. vulnera HCFMUSP08
Candida haemulonii var. vulnera HCFMUSP31
Candida haemulonii var. vulnera IMT-USP01
Candida duobushaemulonii HCFMUSP16
Candida duobushaemulonii HCFMUSP15
Candida duobushaemulonii HCFMUSP32
Candida duobushaemulonii CBS7798
Candida duobushaemulonii HCFMUSP01
Candida duobushaemulonii HCFMUSP04
Candida duobushaemulonii CBS7799
Candida duobushaemulonii HCFMUSP02
Candida duobushaemulonii HCFMUSP18
Candida duobushaemulonii HCFMUSP14
Candida duobushaemulonii HCFMUSP20
Candida duobushaemulonii HCFMUSP11
Candida duobushaemulonii HCFMUSP35
Candida pseudohaemulonii CBS12310
Candida pseudohaemulonii CBS10004
Candida auris CBS10913
Candida auris CBS12766
recalibration with 500 ppm maximal peak shift and 30% match calibrant peaks. ClinProToolTM smodels (Bruker Daltonics) were generated using three algorithms: Genetic Algorithm (GA), Supervised Neural Network (SNN), and Quick Classifier (QC). For each model, the recognition capability (RC) and cross validation (CV) percentage were generated to demonstrate the reliability and accuracy of the model. RC and CV percentages were indicators of the model's performance and useful predictors of the model's ability to classify test isolates. The model with the highest RC and CV values were used in the analysis.

RESULTS

Bruker BiotyperTM

The Bruker BiotyperTM (Bruker Daltonics) gave correct species with scores ≥ 2.0 for all *C. haemulonii* sensu stricto isolates/strains (Table 2). For the species *C. duobushaemulonii*, correct species ID (score ≥ 2.0) was achieved for seven isolates and the two CBS strains (69%), while four isolates were assigned as *C. duobushaemulonii* with a score between 1.797 and 1.935. These isolates were analyzed at least two times and the results were confirmed. After the inclusion in the BiotyperTM (Bruker Daltonics) database of MSPs from two Brazilian isolates (HCFMUSP04 and HCFMUSP11), all mass spectra of that species had scores above 2.3. All reference strains of *C. pseudohaemulonii* and *C. auris* had correct species ID with scores ≥ 2.0. All *C. haemulonii* var. *vulnera* isolates were assigned as *C. haemulonii* sensu stricto with scores ≥ 2.0. The dendrogram generated by the BiotyperTM (Figure 1B) show the clustering of MSPs of the isolates/strains of *C. haemulonii* sensu stricto and *C. haemulonii* var. *vulnera* in the same node, exemplifying the similarity of these MSPs.
FIGURE 1 | Comparison of phylogenetic tree and MALDI-TOF dendrograms of the isolates and strains belonging to Candida haemulonii complex and close related taxa: (A) Phylogenetic tree obtained by UPGMA analyses and 1,000 bootstrap simulations based on ITS sequences; (B) Bruker Biotype™ dendrogram clustering of the MSPs with distances displayed in relative units on the x axis; (C) SARAMIS™ dendrogram clustering of representative spectra from each isolate/strain with distances displayed in % similarities on the x axis.
Vitek MS™ Species Identification

The bioMérieux Vitek MS™ IVD gave correct species with 99.9% level of ID for all C. haemulonii sensu stricto isolates/strains (Table 2). However, all C. duobushaemulonii isolates/strains and the two reference strains of C. pseudohaemulonii were misidentified as C. haemulonii with 99.9% level of ID in at least two separate experiments, while the two strains of C. auris had no species ID. The Vitek MS™ RUO (SARAMIS™) analysis gave neither genus nor species ID for all isolates and strains (Table 2). After the upgrade of the SARAMIS™ database with SuperSpectra of C. haemulonii, C. duobushaemulonii, C. pseudohaemulonii and C. auris, all isolates/strains belonging to these species had correct species assignment (Table 2). It was not possible to create a SuperSpectrum of C. haemulonii var. vulnera with at least 15 masses that would have differentiated it from C. haemulonii sensu stricto. The dendrogram generated by the SARAMIS™ (bioMérieux) software showed similar clustering results to the dendrogram generated by the Biotyper™ software, gathering C. duobushaemulonii, C. pseudohaemulonii, and C. auris into three species-specific nodes. However, C. haemulonii sensu stricto and the variety vulnera were found mixed inside the same node (Figures 1B,C).

Differentiation of Candida haemulonii sensu stricto from the Variety vulnera

The three classification models from ClinProTools™ showed values of RC above ≥90% for the discrimination of C. haemulonii

TABLE 2 | Performance of the different databases for the identification of C. haemulonii sensu stricto, C. haemulonii variety vulnera, C. duobushaemulonii, C. pseudohaemulonii, and C. auris isolates/strains.

Species/variety	Bruker Microflex LT™	VITEK MS™			
	Biotyper™ v.3.1 (%)	Biotyper™ v.3.1 with in-house MSPs (%)	IVD (%)	RUO (%)	RUO with in-house SuperSpectra (%)
	% with LS ≥ 2	% with LS ≥ 2	% with CL ≥ 60%	% with CL ≥ 75%	% with CL ≥ 75%
Candida haemulonii sensu stricto	16/16 (100)	16/16 (100)	16/16 (100)	0/16 (0)	16/16 (100)
C. haemulonii var. vulnera	0/0 (0)	0/12 (0)	0/12 (0)	0/12 (0)	0/12 (0)
C. duobushaemulonii	9/13 (69)	13/13 (100)	0/13 (0)	0/13 (0)	13/13 (100)
C. pseudohaemulonii	2/2 (100)	2/2 (100)	0/2 (0)	0/2 (0)	2/2 (100)
C. auris	2/2 (100)	2/2 (100)	0/2 (0)	0/2 (0)	2/2 (100)

1 LS, logscore values; 2 MSP, main spectrum profile; 3 CL, confidence interval for a single species; 4 misidentified as C. haemulonii sensu stricto; 5 not able to find specific masses for the creation of SuperSpectra for the var. vulnera.
sensu stricto and C. haemulonii var. vulnera. The best results were provided by the GA model, with RC and CV of 100 and 98.02%, respectively. The strain distribution maps based on the GA clearly show that C. haemulonii sensu stricto and the variety vulnera can be divided into one of two categories based on their peptide mass fingerprints (Figure 2). The peaks that had the highest AUC (>0.9) for the discrimination of the C. haemulonii sensu stricto and C. haemulonii var. vulnera by ClinProTools™ were 5106, 5670, 6878, 13750, and 14046 m/z. However, the performances of these peaks for the discrimination of the two groups using the FlexAnalysis™ software showed that only the peaks 5670, 6878, and 13750 m/z had AUC > 0.9, with sensitivity and specificity of 94.7, 92.4, 94.1%, and 77.0, 94.5, 96.1%, respectively. The SN cut-off values of the peaks 5670, 6878, and 13750 m/z for the discrimination of the C. haemulonii (below cut-off) and C. haemulonii var. vulnera (above cut-off) were 3.1, 2.86, and 6.04, respectively. The ClinProTools™ and single-peak analysis results for the differentiation of C. haemulonii sensu stricto from the variety vulnera are summarized in Table 3 and exemplified in Figure 3.

TABLE 3 | Single-peak analysis for the discrimination of C. haemulonii sensu stricto and C. haemulonii variety vulnera.

Peak (m/z)	ClinProTools™	FlexAnalysis™								
	AUC³	Dave⁵	PWKW³	PAD⁴	Ave¹	Ave²	AUC⁵	Cut-off⁶	Sensitivity (%)	Specificity (%)
5106	0.95	1.82	<0.0001	<0.0001	10.46	17.88	0.81	2.77	96.5	74.86
5670	0.93	1.94	<0.0001	<0.0001	16.65	18.85	0.90	3.01	94.77	77.05
6878	0.92	3.51	<0.0001	<0.0001	12.89	15.53	0.95	2.89	92.44	94.54
13750	0.96	1.51	<0.0001	<0.0001	5.09	59.01	0.98	6.04	94.19	96.17
14046	0.95	0.27	<0.0001	0.0035	23.37	26.06	0.77	2.01	70.35	77.60

Peaks with the best performances according to ClinProTools™ and FlexAnalysis™ softwares.

| ¹AUC, area under the curve; ²Dave, difference between the maximal and the minimal average peak area/intensity of the groups; ³PWKW, p-value of Wilcoxon/Kruskal–Wallis test (range: 0–1; 0 = good); ⁴PAD: p-value of Anderson–Darling test, <0.05 indicates data not normally distributed; gives information about normal distribution (range: 0–1; 0 = not normal distributed); ⁵Ave, area/intensity average of a group from C. haemulonii sensu stricto (1) and C. haemulonii var. vulnera (2); ⁶AUCs and signal-to-noise cutoff values were obtained from ROC curve constructed by SPSS Version 18.0 with the using of FlexAnalysis.

FIGURE 3 | Representative mass spectra of C. haemulonii sensu stricto (red) and C. haemulonii var. vulnera (purple) between 13400 and 14100 Da showing the peak intensities and peak areas of the 13750 Da peak. Horizontal dashed lines depict the signal (above) and noise (below) intensity values used to calculate the signal-to-noise ratios.
DISCUSSION

The taxonomy of the genus *Candida* has been suffered significant changes due to the description of new closely related species, with some species as *C. haemulonii* being considered as cryptic species complex (Brandt and Lockhart, 2012). The discrimination of these cryptic *Candida* species from their closest relatives is providing new information regarding their epidemiology, pathogenicity and clinical significance (Brandt and Lockhart, 2012; Cendejas-Bueno et al., 2012; Nobrega de Almeida et al., 2016).

In this context, MALDI-TOF MS has been successfully applied to discriminate cryptic species from the genus *Candida*, such as *C. parapsilosis*, *Candida orthopsilosis*, and *Candida metapsilosis* (Quiles-Melero et al., 2012; Nobrega de Almeida et al., 2014), *C. glabrata*, *Candida nivariensis*, and *Candida bravaniensis* (Pinto et al., 2011), *C. albicans* and *Candida dubliniensis* (Pinto et al., 2011; Jamal et al., 2014), and more recently, it has been evaluated for the differentiation of the *C. haemulonii* species complex and other close related taxa (Cendejas-Bueno et al., 2012; Kathuria et al., 2015).

The Bruker’s Biotyper™ v.3.1 is currently the most adapted database for the ID of *C. haemulonii* species, presenting with 08, 04, and 07 MSPs of *C. haemulonii*, *C. haemulonii* var. *vulnera* and *C. duobushaemulonii*, respectively. However, four *C. duobushaemulonii* isolates, despite showing the best match results with the MSPs of the same species, had ID values below 2.0. After the expansion of the database with in-house MSPs, all isolates had ID values above 2.0. This illustrates the need for the Bruker database expansion with local well-identified isolates to reach optimal results, as previously reported by other authors (Cassagne et al., 2011; de Almeida Júnior et al., 2014).

The IVD database from the Vitek MS™ includes only species *C. haemulonii*. Surprisingly, the different taxa *C. duobushaemulonii* and *C. pseudoaemulonii* were misidentified as *C. haemulonii*. Since these species have well-different spectra profiles, the misidentifications may be related to the inclusion of strains without updated species ID when this database was constructed. The update of the Vitek MS™ IVD database will certainly enhance its ability to correctly ascertain the different species from *C. haemulonii* complex and the close related taxa, since this system has proven to well-differentiate phylogenetically similar microorganisms, such as *Streptococcus pneumoniae* from species of the *Streptococcus mitis* group (Branda et al., 2013). The RUO database (SARAMIS™) has proven to be an auxiliary tool when the IVD database fails to provide correct yeast species ID (Chao et al., 2014). In the case of *C. haemulonii* complex species, the inclusion of SuperSpectra was necessary to optimize the performance of the Vitek MS™. Nevertheless, we demonstrated the specificity of the SARAMIS database, since no mis-IDs were reported, which was not the case of the IVD database.

The ClinProTools™ software is a biomarker analyzer that has been widely applied in bacteriology, providing rapid and cost-saving method for epidemiological clustering, strain typing (Xiao et al., 2014; Angeletti et al., 2015; Zhang et al., 2015), and for detection of staphylococcal Panton-Valentine leukocidin (Bittar et al., 2009). This software generates classification models from large numbers of spectra and detects small differences among different clusters, based on mass, signal-to-noise, intensity, peak heights and peak areas. Moreover, allying ClinProTools™ and single-peak analysis with FlexAnalysis™ has proven to provide higher discriminatory power to detect bio-marker peaks (Angeletti et al., 2015; Zhang et al., 2015). However, ClinProTools™ was until now an unexplored tool for the differentiation of close taxa in the fungi kingdom.

In conclusion, we show that the Biotyper™ database 3.1 performs relatively well for discriminating *C. haemulonii* species and close related taxa, but requires addition of MPSs representing the local diversity to achieve optimal results, while Vitek MS™ databases perform less well and need major update. Moreover, we describe here the most discriminatory peaks along with the SN cut-off values that can differentiate *C. haemulonii* and the variety *vulnera* with a simple inspection of the mass spectra profile in routine basis software such as FlexAnalysis™.

AUTHOR CONTRIBUTIONS

JA: design the study, helped with acquisition and data analysis, drafted and revised the work, approved the final work and agrees with all the aspects of the work; RG, AS, GD: helped with acquisition and data analysis, revised the work, approved the final work, and agree with all the aspects of the work; AR, AM: helped with acquisition of the data, revised the work, approved the final work and agree with all the aspects of the work; VG, RM, DA, FR, LJ: helped with data analysis, revised the work, approved the final work and agree with all the aspects of the work; GB: helped with data analysis, drafted and revised the work, approved the final work and agrees with all the aspects of the work.

FUNDING

JA was supported by grants from FAPESP (2014/10126-4).

REFERENCES

Angeletti, S., Dicuonzo, G., Lo Presti, A., Cellà, E., Crea, F., Avola, A., et al. (2015). MALDI-TOF mass spectrometry and blakpc gene phylogenetic analysis of an outbreak of carbapenem-resistant *K. pneumoniae* strains. *New Microbiol. 38*, 541–550.

Bader, O. (2013). MALDI-TOF-MS-based species identification and typing approaches in medical mycology. *Proteomics 13*, 788–799. doi: 10.1002/pmic.201200468

Bittar, F., Ouchenane, Z., Smati, F., Raoult, D., and Rolain, J.-M. (2009). MALDI-TOF-MS for rapid detection of staphylococcal Panton-Valentine leukocidin. *Int. J. Antimicrob. Agents 34*, 467–470. doi: 10.1016/j.ijantimicag.2009.03.017

Branda, J. A., Markham, R. P., Garner, C. D., Rychert, J. A., and Ferraro, M. J. (2013). Performance of the Vitek MS™ v2.0 system in distinguishing *Streptococcus pneumoniae* from nonpneumococcal species of the *Streptococcus mitis* group. *J. Clin. Microbiol. 51*, 3079–3082. doi: 10.1128/JCM.00824-13
Brandt, M. E., and Lockhart, S. R. (2012). Recent taxonomic developments with Candida and other opportunistic yeasts. *Curr. Fungal Infect. Rep.* 6, 170–177. doi: 10.1007/s12281-012-0094-x

Cassagne, C., Ranque, S., Normand, A.-C., Fourquet, P., Thiebault, S., Planard, C., et al. (2011). Mold routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. *PLoS ONE* 6:e28425. doi: 10.1371/journal.pone.0028425

Cendejas-Bueno, E., Kolecka, A., Alastuery-Izquierdo, A., Theelen, B., Groeneveld, M., Kostrzewa, M., et al. (2012). Reclassification of the *Candida haemulonii* complex as *Candida haemulonii* (C. haemulonii group I), *C. duboioshaemulonii* sp. nov. (C. haemulonii group II), and *C. haemulonii* var. vulnera var. nov.: three multiresistant human pathogenic yeasts. *J. Clin. Microbiol.* 50, 3641–3651. doi: 10.1128/JCM.02248-12

Chao, Q.-T., Lee, T.-F., Teng, S.-H., Peng, I.-Y., Chen, P.-H., Teng, L.-J., et al. (2014). Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts. *PLoS ONE* 9:e109376. doi: 10.1371/journal.pone.0109376

de Almeida Júnior, J. N., Figueiredo, D. S. Y., Toubas, D., Del Negro, G. M. B., Motta, A. L., Rossi, F., et al. (2014). Usefulness of matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry for identifying clinical *Trichosporon* isolates. *Clin. Microbiol. Infect.* 20, 784–790. doi: 10.1111/1469-0069.12502

Jamil, W. Y., Ahmad, S., Khan, Z. U., and Rotimi, V. O. (2014). Comparative evaluation of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of clinically significant yeasts. *Int. J. Infect. Dis.* 26, 167–170. doi: 10.1016/j.ijid.2014.05.031

Kathuria, S., Singh, P. K., Sharma, C., Prakash, A., Masih, A., Kumar, A., et al. (2015). Multidrug-resistant *Candida auris* misidentified as *Candida haemulonii*: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by vitek 2, CLSI broth microdilution, and eetest method. *J. Clin. Microbiol.* 53, 1823–1830. doi: 10.1128/JCM.00367-15

Ketterlinus, R., Hsieh, S.-Y., Teng, S.-H., Lee, H., and Pus, W. (2005). Fishing for biomarkers: analyzing mass spectrometry data with the new ClinProTools™ software. *BioTechniques Suppl.* 38, 37–40. doi: 10.2144/053865Scu07

Lehmann, P. F., Wu, L. C., Pruitt, W. R., Meyer, S. A., and Ahearn, D. G. (1993). Unrelatedness of groups of yeasts within the *Candida haemulonii* complex. *J. Clin. Microbiol.* 31, 1683–1687.

Luo, C., and Mitchell, T. G. (2002). Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. *J. Clin. Microbiol.* 40, 2860–2865. doi: 10.1128/JCM.40.8.2860-2865.2002

Merseguel, K. B., Nishikaku, A. S., Rodrigues, A. M., Padovan, A. C., e Ferreira, R. C., de Azevedo Melo, A. S., et al. (2015). Genetic diversity of medically important and emerging *Candida* species causing invasive infection. *BMC Infect. Dis.* 15:57. doi: 10.1186/s12879-015-0793-3

Nobrega de Almeida, J. Jr., Assy, J. G. P. L., Levin, A. S., Del Negro, G. M. B., Giudice, M. C., Tringoni, M. P., et al. (2016). *Candida haemulonii* complex species, Brazil, January 2010-March 2015. *Emerg. Infect. Dis* 22, 561–563. doi: 10.3201/eid2203.151610

Nobrega de Almeida, J. J., de Souza, L. B., Motta, A. L., Rossi, F., Romano, Di Gioia, T. S., et al. (2014). Evaluation of the MALDI-TOF VITEK MS™ system for the identification of *Candida parapsilosis*, *C. orthopsilosis* and *C. metapsilosis* from bloodstream infections. *J. Microbiol. Methods* 105, 105–108. doi: 10.1016/j.mimet.2014.07.007

Pinto, A., Halliday, C., Zahra, M., van Hal, S., Olma, T., Maszewksa, K., et al. (2011). Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. *PLoS ONE* 6:e25712. doi: 10.1371/journal.pone.0025712

Quiles-Meler, I., Garcia-Rodriguez, J., Gómez-López, A., and Minorgance, J. (2012). Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of *Candida parapsilosis*, *C. orthopsilosis* and *C. metapsilosis*. *Eur. J. Clin. Microbiol. Infect. Dis.* 31, 67–71. doi: 10.1007/s10096-011-1277-z

Ramos, L. S., Figueiredo-Carvalho, M. H. G., Barbedo, L. S., Ziccardi, M., Chaves, A. L. S., Zancopé-Oliveira, R. M., et al. (2015). *Candida haemulonii* complex: species identification and antifungal susceptibility profiles of clinical isolates from Brazil. *J. Antimicrob. Chemother.* 70, 111–115. doi: 10.1093/jac/dku321

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. *Proc. Natl. Acad. Sci. U.S.A.* 109, 6241–6246. doi: 10.1073/pnas.1117018109

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–2729. doi: 10.1093/molbev/mst197

Turner, S. A., and Butler, G. (2014). The *Candida* pathogenic species complex. *Cold Spring Harb. Perspect. Med.* 4:a019778. doi: 10.1101/cshperspect.a019778

Xiao, D., Zhao, F., Zhang, H., Meng, F., and Zhang, J. (2014). Novel strategy for typing *Mycoplasm pneumoniae* isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry coupled with ClinProTools™. *J. Clin. Microbiol.* 52, 3038–3043. doi: 10.1128/JCM.01265-14

Zhang, T., Ding, J., Rao, X., Yu, J., Chu, M., Ren, W., et al. (2015). Analysis of methicillin-resistant *Staphylococcus aureus* major clonal lineages by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). *J. Microbiol. Methods* 117, 122–127. doi: 10.1016/j.mimet.2015.08.002

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Grenfell, da Silva Junior, Del Negro, Munhoz, Gimenes, Assis, Rockstroh, Motta, Rossi, Juliano, Benard and de Almeida Júnior. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.