ON ORIENTED PLANAR TREES WITH THREE LEAVES

JACK MORAVA

ABSTRACT. This elementary note proposes candidates for interesting continuous piecewise-smooth ‘Riemannian’ metrics on the moduli spaces of rooted geodesic trees embedded in the Poincaré disk. A related digression observes the existence of an apparently hitherto unrecognized abelian topological group structure on the real projective line. This is an early draft. The symbol \ast indicates an illustration to be supplied in a later version.

0.1 Introduction A finite set of points on the boundary of the Poincaré unit disk can be shown to define a unique embedded geodesic not necessarily binary tree, with one point chosen as root and the rest as endpoints of its leaves. Alternatively, the dual $\mathcal{Z}(\mathbb{S})$ of such a spanning tree defines a decomposition of the disk into hyperbolic polygons, which can be imagined to be solutions of a geometric extremization problem analogous to Plateau’s 1, i.e. to find the pattern of cracks in a shattered windshield, given a collection of shocks or stresses at a finite number of boundary points. As a problem in analytic mechanics this seems to be a relatively intractable kind of free boundary problem, making a useful account of its literature problematic. The present sketch is concerned with the differential geometry of the space $\overline{M}_{0,n+1}(\mathbb{R})$ of such rooted geodesic hyperbolic trees, as providing an alternate approach to questions of this sort.

0.2 \ast The simplest nontrivial case (rooted trees with three leaves) is classical: the cross-ratio $\rho = [x_0 : x_1 : x_2 : x_3]$ maps the space $\overline{M}_{0,4}(\mathbb{R})$ (of projective equivalence classes of four labelled points on the real projective line) diffeomorphically to the circle. When $\rho \in [0,1]$, a beautiful formula

$$\rho = \frac{1}{1 + e^{-\gamma}}$$

of Devadoss equates the cross-ratio to the logistic function of the signed hyperbolic length of the generically unique internal branch.

In general $\overline{M}_{0,n+1}(\mathbb{R})$ is tesselated by $\frac{1}{2}n!$ Stasheff associahedra, which can be regarded as moduli spaces for geodesic trees with leaves in fixed order.

Date: May 2020.

1991 Mathematics Subject Classification. 14Dxx, 20Exx, 51Mxx.

1i.e. to find a minimal surface spanning a given closed space curve.
This formula then generalizes [3] (§ 6) to define a pseudometric which blows up along the associahedral faces. On the other hand the original construction of $\overline{M}_{0,n+1}(\mathbb{R})$ (as the real points of the Deligne-Mumford-Knudsen compactification of the stack of genus zero algebraic curves with marked points) makes it a smooth projective variety, which thus inherits a very nice Riemannian metric from its Kähler structure - which is however not unique, or necessarily well-behaved with respect to permutations of the marked points.

0.3 The purpose of this note is to suggest that pulling back (a variant of) the product metric along a generalized Albanese map

$\overline{M}_{0,n+1}(\mathbb{R}) \to \overline{M}_{0,3+1}(\mathbb{R})^{(n)}$

provides the moduli space with a continuous, though only piecewise smooth, Σ_n-equivariant metric; and, more generally, to suggest the relevance of the metric geometry of these spaces to the study of such generalized travelling salesman problems.

§ I The real projective line, reconsidered

1.1 The projective line $\mathbb{P}(\mathbb{F}_2) = \{0, 1, \infty\}$ over the field with two elements admits a transitive action of the symmetric group $\Sigma_3 \cong \text{Sl}_2(\mathbb{F}_2)$. The rational functions

$\tau_{01}(x) = 1 - x$, $\tau_{1\infty}(x) = (1 - x^{-1})^{-1}$

generate a group (under composition) isomorphic to Σ_3, satisfying the braid relation

$(\tau_{01} \circ \tau_{1\infty} \circ \tau_{01})(x) = (\tau_{1\infty} \circ \tau_{01} \circ \tau_{1\infty})(x) = x^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}(x)$. The element

$\sigma(x) = (\tau_{1\infty} \circ \tau_{01})(x) = (1 - x)^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}(x)$

(sending (01∞) to $(\infty01)$) generates a cyclic subgroup $C_3 = \{1, \sigma, \sigma^2\}$ of Σ_3, with

$\tau_{01} \circ \tau_{1\infty} = \sigma^2(x) = 1 - x^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}(x)$;

thus $\tau_{01} \circ \sigma \circ \tau_{01} = \sigma^{-1}$. This lifts to an action of $C_3 \times C_2 \cong \Sigma_3$ on \mathbb{C} by rational functions, which extends to a continuous (fixed-point free) action on the one-point compactification $\mathbb{R}_+ = \mathbb{R} \cup \infty = \mathbb{P}_1(\mathbb{R})$ of the real line. However $\sigma(x)$ is not differentiable at $x = 0$, and $\sigma'(x) = 0$ at $x = \infty$.

1.2 Let $(x_i) \in \mathbb{R}^4$, $0 \leq i \leq 3$, be a vector with all coordinates distinct, and define $x_{ij} = x_i - x_j \neq 0$ for $i \neq j$; then the cross-ratio

$[x_0 : x_1 : x_2 : x_3] = \frac{x_{01}}{x_{02}} \cdot \frac{x_{23}}{x_{13}}$.

extends to the compactified quotient
\[
\text{Config}^4(\mathbb{R}) / \text{PGL}_2(\mathbb{R}) \subset \overline{M}_{0,4}(\mathbb{R}) \xrightarrow{\rho \equiv} \mathbb{P}_1(\mathbb{R})
\]
defining an isomorphism of the space of four points on the line, modulo projective equivalence, with the projective line itself. Thus the fractional linear transformation
\[
x \mapsto \frac{ax + b}{cx + d}
\]
defined by
\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{PGL}_2(\mathbb{R})
\]
(i.e \(ad - bc = \det T \neq 0\)) satisfies
\[
[A](x_0) : [A](x_1) : [A](x_2) : [A](x_3) = [x_0 : x_1 : x_2 : x_3];
\]
for example
\[
\rho = [0 : \rho : 1 : \infty] = [1 : \sigma(\rho) : \infty : 0] = [\infty : \sigma^2(\rho) : 0 : 1],
\]
e.g \(\rho = \sigma(\rho)^{-1}(\sigma(\rho) - 1)\).

Remark If \(\mathbb{P}_1(\mathbb{R})\) is ordered as usual (i.e with \(x \in \mathbb{R} \Rightarrow x < \infty\)), then for any quadruple \(x_0 < x_1 < x_2 < x_3\) there is an \(A \in \text{SL}_2(\mathbb{R})\) such that
\[
[A](x_0) = 0, \quad [A](x_2) = 1, \quad [A](x_3) = \infty, \quad \text{and} \quad [A](x_1) \in (0,1).
\]
If \(x_3 \neq \infty\), then
\[
A = (x_0 x_2 x_3)^{-1/2} \begin{bmatrix} x_2 x_3 & -x_1 x_3 \\ x_0 x_2 & -x_0 x_3 \end{bmatrix}
\]
is unique.

The group
\[
\Sigma_4 \cong \mathbb{F}_2^2 \rtimes \text{SL}_2(\mathbb{F}_2)
\]
of permutations of four things acts on \(\overline{M}_{0,4}(\mathbb{R})\), but the Klein subgroup \(\mathbb{F}_2^2\) generated by the transpositions
\[
(01)(23), \quad (02)(13), \quad (12)(30)
\]
leaves the cross-ratio invariant, so the action of \(\Sigma_4\) on \(\overline{M}_{0,4}(\mathbb{R})\) reduces to the action of \(\Sigma_3\) described above.

1.3 ⋆ It will be convenient to decompose the projective line
\[
\mathbb{P}_1(\mathbb{R}) = [I] \cup [II] \cup [III]
\]

as the union of closed intervals
\[
[I] = [-\infty, 0], \quad [II] = [0, 1], \quad [III] = [1, \infty];
\]
thus \(\sigma\) maps \([I]\) bijectively to \([II]\), \([II]\) to \([III]\), and \([III]\) to \([I]\), preserving orientations, and is consistent on the boundary points
\[
[I] \cap [II] = \{0\}, \quad [II] \cap [III] = \{1\}, \quad [III] \cap [I] = \{\infty\}.
\]
Similarly, let \((X)\) denote the interior of \([X]\); then the (smooth) function
\[
k : \mathbb{R} - \{0, 1\} = (I) \cup (II) \cup (III) \to (0, 1)
\]
defined by \(k(x) = \sigma(x) = (1 - x)^{-1}\) if \(x \in (-\infty, 0) = (I)\),
\[= x \text{ if } x \in (0, 1) = (II), \text{ and} \]
\[= \sigma^{-1}(x) = 1 - x^{-1} \text{ if } x \in (-\infty, 0) = (III)\]
extends to a continuous function
\[
\kappa : \mathbb{R}_+ = \mathbb{P}_1(\mathbb{R}) \to (0, 1)_+ = \mathbb{R}/\mathbb{Z}
\]
sending \(\{0, 1, \infty\}\) to the compactification point \(0 = 1 \in (0, 1)_+\).

Lemma *The derivative \(\kappa'(x)\)*
\[
= (1 - x)^{-2}, \ x \in (I) \\
= 1, \ x \in (II) \\
= x^{-2}, \ x \in (III)
\]
exists and is continuous. Moreover,
\[
\int_{\mathbb{R}} \kappa'(x) \cdot dx = \int_{-\infty}^{0} (1 - x)^{-2} \cdot dx + \int_{0}^{1} 1 \cdot dx + \int_{1}^{\infty} x^{-2} \cdot dx = 1 + 1 + 1 = 3.
\]

Proposition \(\kappa \circ \sigma = \kappa\): thus \(\kappa\) identifies the quotient of \(\mathbb{P}_1(\mathbb{R})\) by \(C_3\) with \(\mathbb{R}/\mathbb{Z}\).

[For if \(x \in (I)\) then \(\sigma(x) \in (II)\) so \(\kappa(\sigma(x)) = \sigma(x) = \kappa(x)\); while if \(x \in (II)\) then \(\sigma(x) \in (III)\), so \(\kappa(\sigma(x)) = \sigma^{-1}(\sigma(x)) = x = \kappa(x)\). Finally, if \(x \in (III)\) then \(\sigma(x) \in (I)\) so
\[
\kappa(\sigma(x)) = (1 - \sigma(x))^{-1} = 1 - x^{-1} = \kappa(x).
\]

The resulting map is a three-fold cover, with multiplication by 3 as the induced homomorphism
\[
\pi_1(\mathbb{P}_1(\mathbb{R}), \infty) \cong \mathbb{Z} \to \mathbb{Z} \cong \pi_1(\mathbb{R}/\mathbb{Z}, 0).
\]
The action of \(\Sigma_3\) on \(\mathbb{P}_1(\mathbb{R})\) reduces to the orientation-reversing action of \(\Sigma_3/C_3 \cong \{\pm 1\}\) on \(\mathbb{P}_1(\mathbb{R})/C_3\) defined by \(\tau_{0,1}(x) = 1 - x\) on \(\mathbb{R}/\mathbb{Z}\) as in \(\S 1.2\). The composition
\[
\mathcal{M}_{0,3+1}(\mathbb{R}) \xrightarrow{\rho} \mathbb{P}_1(\mathbb{R}) \xrightarrow{\kappa} \mathbb{R}/\mathbb{Z}
\]
provides an interpretation the quotient space \(\mathcal{M}_{0,3+1}(\mathbb{R})/C_3\) as the space of configurations \(\{x_i, x_j, x_k, \infty\}\) of three cyclically ordered points on \(\mathbb{R}\). The one-form \(d \varphi \in \Omega^1(\mathbb{R}/\mathbb{Z})\) pulls back to a \(C_3\)-invariant one-form
\[
\omega = \kappa'(\rho)d\rho = \kappa^*(d\rho) \in \Omega^1(\mathcal{M}_{0,3+1}(\mathbb{R}))
\]
mapping to three times the fundamental class in \(H^1_{dr}(\mathcal{M}_{0,3+1}(\mathbb{R}))\).
1.4 ⋆ The inverse
\[D(x) = -\log |1 - x^{-1}| = -\log |\sigma^{-1}(x)| : [0, 1] \to \mathbb{P}_1(\mathbb{R}) \]
of the logistic function \((1 + e^{-x})^{-1}\) extends to the closed interval by \(D(0) = D(1) = \infty\). Thus \(\kappa(x) = (D \circ \kappa)(x)\)
\[= -\log |x| \text{ if } x \in [I], \]
\[= -\log |\sigma^{-1}(x)| \text{ if } x \in [II], \]
\[= -\log |\sigma^{-2}(x)| \text{ if } x \in [III] \]
defines a three-fold cover \(\kappa : (\mathbb{P}_1(\mathbb{R}), \{0, 1, \infty\}) \to (\mathbb{P}_1(\mathbb{R}), \infty)\) of the projective line. Its graph
\[\mathbb{P}_1(\mathbb{R}) \ni x \mapsto (x, \kappa(x)) \in \mathbb{P}_1(\mathbb{R}) \times \mathbb{P}_1(\mathbb{R}) \]
has degree one along the first factor, and degree three along the second, defining a piecewise smooth helix wrapped around a torus.

Proposition ⋆
\[\gamma = \kappa(\rho) : \overline{M}_{0,3+1}(\mathbb{R}) \to \mathbb{P}_1(\mathbb{R}) \]
extends Devadoss’s formula [2] (§6.1) for the oriented hyperbolic length of the generic internal edge of a hyperbolic rooted tree with three leaves. The square of the one-form
\[d\gamma = \kappa'(\rho)d\rho \]
defines a pseudometric on \(\overline{M}_{0,3+1}(\mathbb{R})\) which blows up at \(\rho = 0, 1, \infty\).

1.5 The rational cohomology \(H^\ast(\overline{M}_{0,n+1}(\mathbb{R}), \mathbb{Q})\) of the moduli space of \(n+1\) ordered points on the line is calculated in [4] (§2.3), [7]; in particular
\[H^1(\overline{M}_{0,n+1}(\mathbb{R}), \mathbb{Q}) \cong \Lambda^3 \mathfrak{h}_n \]
as \(\Sigma_{n+1}\)-modules, where \(\mathfrak{h}_n\) is the \(n\)-dimensional kernel of the trace homomorphism
\[\mathbb{Q}^{n+1} \ni (v_0, \ldots, v_n) \mapsto \sum v_i \in \mathbb{Q} \]
(with \(\Sigma_{n+1}\) acting on the left by permuting coordinates). A subset \(S\) of \(\{1, \ldots, n\}\) of cardinality \(3 \leq |S| \leq n\) defines a forgetful morphism \(\overline{M}_{0,n+1}(\mathbb{R}) \to \overline{M}_{0,|S|+1}(\mathbb{R})\): thus a subset \(S = \{i < j < k\}\) defines a composition
\[\overline{M}_{0,n+1}(\mathbb{R}) \xrightarrow{\nu_S} \overline{M}_{0,3+1}(\mathbb{R}) \xrightarrow{\kappa} \mathbb{R}/\mathbb{Z} . \]
and hence a one-form \(d\kappa_S \in \Omega^1(\overline{M}_{0,n+1}(\mathbb{R}))\). I will write \(d\kappa_S^\otimes 2 \in \Omega^\otimes 2(\overline{M}_{0,n+1}(\mathbb{R}))\) for the associated quadratic differential.

A basis \(v_i\) for \(\mathbb{Q}^{n+1}\) defines a basis
\[\alpha_{ijk} = (v_i - v_0) \wedge (v_j - v_0) \wedge (v_k - v_0) \]
for \(\Lambda^3 \mathfrak{h}_n\); then
\[\Lambda^3 \mathfrak{h}_n \ni \alpha_{ijk} \mapsto d\kappa_{ijk} \in \Omega^1(\overline{M}_{0,n+1}(\mathbb{R})) \]
is an injective homomorphism of Σ_n-modules.

Claim The average

$$ds_2^2 := \left(\frac{n}{3}\right)^{-1} \sum_{i<j<k} d\kappa_{ijk} \in \Omega^{\otimes 2}(\mathcal{M}_{0,n+1}(\mathbb{R}))$$

defines a continuous, piecewise smooth metric on the space of rooted hyperbolic n-leaved trees. The subgroup $\Sigma_n \subset \Sigma_{n+1}$ of permutations acts by isometries.

[Behind this lies the conjecture that the ‘Albanese’ map

$$\prod_{S \in \binom{n}{3}} \kappa_S : \mathcal{M}_{0,n+1}(\mathbb{R}) \to \mathcal{M}_{0,3+1}(\mathbb{R})^{\binom{n}{3}}$$

is an immersion.]

§II The Cayley transform, reconsidered

2.1 The fractional linear transformation

$$z = C(x) = \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} \frac{x - i}{1 - ix} : \mathbb{P}_1(\mathbb{C}) \to \mathbb{P}_1(\mathbb{C})$$

restricts to stereographic projection

$$\mathbb{P}_1(\mathbb{R}) \supset \mathbb{R} \to \mathbb{T} \subset \mathbb{C}^\times \subset \mathbb{P}_1(\mathbb{C})$$

of the real line, sending $\pm \infty \to i$ and ± 1 to ± 1. Writing $t \mapsto e(t) = \exp(2\pi it)$ for the group isomorphism $\mathbb{R}/\mathbb{Z} \to \mathbb{T}$, we have

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} (e(t)) = i \tan \pi t ,$$

so (by the addition formula for the tangent function)

$$x = C^{-1}(e(t)) = \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} (i \tan \pi t) = \begin{bmatrix} 1 - i & 1 + i \\ i - 1 & 1 - i \end{bmatrix} (i \tan \pi t)$$

$$= \frac{1 + \tan \pi t}{1 - \tan \pi t} = \tan \pi (t + \frac{1}{4})$$

defines a diffeomorphism (inverse to stereographic projection) of \mathbb{T} with $\mathbb{R}_+ = \mathbb{P}_1(\mathbb{R})$. Similarly, $(2\pi iz)^{-1}dz \in \Omega^1(\mathbb{C}^\times)$ pulls back to $(\pi(1+x^2))^{-1}dx \in \Omega^1(\mathbb{R})$.

2.2 The action of $A \in \text{SL}_2(\mathbb{R})$ on $\mathbb{P}_1(\mathbb{R})$ defines an action of

$$\tilde{A} = C^{-1}AC = (\frac{1}{2})^2 \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$$

$$= \begin{bmatrix} u & v \\ \bar{v} & \bar{u} \end{bmatrix} \in \text{SU}(1,1) ,$$
where $|u|^2 - |v|^2 = 1$, with
\[
u = \frac{1}{2}((a + d) + i(c - b)), \quad v = \frac{1}{2}((b + c) + i(d - a))\]
on \mathbb{C}. Because the complex conjugate of
\[
\begin{bmatrix}
u \\ \bar{v}
\end{bmatrix} = \frac{1}{2}
\begin{bmatrix}
1 - 2i & +i \\
-1 & 1 + 2i
\end{bmatrix}, \quad \bar{v} = \frac{1}{2}
\begin{bmatrix}
1 + 2i \\ +i
\end{bmatrix},
\]
equals its inverse
\[
\begin{bmatrix}
u e(-t) + \bar{v} \\ ve(-t) + u
\end{bmatrix} = \frac{1}{2}
\begin{bmatrix}
\bar{v} e(t) + \bar{u} \\
u e(t) + v
\end{bmatrix},
\]
this action takes the circle $T \subset \mathbb{C}^\times$ to itself.

Example ⋆
\[
\tilde{\sigma} = \frac{1}{2}
\begin{bmatrix}
1 - 2i & +i \\
-1 & 1 + 2i
\end{bmatrix}, \quad \tilde{\sigma}^2 = \frac{1}{2}
\begin{bmatrix}
1 + 2i \\ +i
\end{bmatrix},
\]
so $\{1, \pm i\}$ is an orbit of \tilde{C}_3, and $\{-1, (4 \pm 3i)/5\}$ is another. Similarly,
\[
\tilde{\tau}_{01} = \frac{i}{2}
\begin{bmatrix}
-i \\ 1 - 2i
\end{bmatrix} + \frac{1}{2}
\begin{bmatrix}
1 + 2i \\ i
\end{bmatrix}.
\]

2.3 The (renormalized) extension
\[
z \mapsto L(z) = iC(z) = \frac{1 + iz}{1 - iz} = \left[\begin{array}{cc} i & 1 \\ -i & 1 \end{array} \right](z)
\]
of C to a fractional linear transformation L of the complex projective line $\mathbb{P}_1(\mathbb{C}) \cong \mathbb{C}_+\mathbb{P}_1(\mathbb{R})$ maps $\mathbb{P}_1(\mathbb{R})$ to \mathbb{T}.

Proposition
\[
L^{-1}(L(z_0) \cdot L(z_1)) = \frac{z_0 + z_1}{1 - z_0 z_1} := z_0 + L z_1
\]
restricts near 0 to the one-dimensional formal group law with $x \mapsto \tan x$ as its exponential.

Proof
\[
L^{-1}(z) = \left[\begin{array}{cc} 1 & -1 \\ i & i \end{array} \right](z) = -i \frac{z - 1}{z + 1},
\]
so
\[
L^{-1}(L(z_0) \cdot L(z_1)) = L^{-1}\left[\frac{1 + iz_0}{1 - iz_0}, \frac{1 + iz_1}{1 - iz_1} \right] =
\]
\[
\begin{align*}
(-i) \cdot \frac{(1 + iz_0)(1 + iz_1) - (1 - iz_0)(1 - iz_1)}{(1 + iz_0)(1 + iz_1) + (1 - iz_0)(1 - iz_1)} = \\
\begin{aligned}
(-i) \frac{2i(z_0 + z_1)}{2 - 2z_0 z_1} & = z_0 + L z_1
\end{aligned}
\end{align*}
\]
as claimed. \Box
Up to a Wick rotation $x \mapsto ix$, this is the formal group law defined by Weyl and Hirzebruch’s signature genus for oriented smooth manifolds. It is odd, in the sense that $[-1]_L(z) = -z$.

Corollary ($\mathbb{P}_1(\mathbb{R}) = \mathbb{R}_+, 0, +_L$) is a group, with ∞ as (the unique nontrivial) torsion point of order two.

In particular, if $x \in \mathbb{R}^\times$, then

$$x \mapsto x + L \infty = \lim_{w \to 0} \frac{x + w^{-1}}{1 - w^{-1}x} = \lim_{w \to 0} \frac{1 + wx}{w - x} = -x^{-1}.$$

Similarly, $x +_L x = [2]_L(x) \to 0$ as $x \to \infty$, consistent with $\infty = [-1]_L(\infty)$, while

$$[3](w^{-1}) = \frac{3w^2 - 1}{w^3 - 3w} \to \infty$$

as $w \to 0$, etc.

Note also that 1 is a 4-torsion point, i.e $1 +_L 1 = \infty$. More generally, the group $\mathbb{Q}/\mathbb{Z} \subset \mathbb{T}$ of torsion points for $+_L$ maps isomorphically to the set $\{\tan \pi x \mid x \in \mathbb{Q}\}$ of (cyclotomic) algebraic numbers.

Note that since $i +_L (-i)$ is undefined, this construction fails to define a composition operation on $\mathbb{P}_1(\mathbb{C})$.

References

1. M Davis, T Januszkiewicz, R Scott, Fundamental groups of blow-ups, Adv. Math. 177 (2003) 115 – 179, https://arxiv.org/abs/math/0203127

2. S Devadoss, Tessellations of moduli spaces and the mosaic operad, in *Homotopy invariant algebraic structures* 91 - 114, Contemp. Math 239, AMS 1999, https://arxiv.org/abs/math/9807010

3. —–, J Morava, Navigation in tree spaces, Adv. in Appl. Math. 67 (2015) 75 - 95, https://arxiv.org/abs/1009.3224

4. P Etingof, A Henriques, J Kamnitzer, E Rains, The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points, Ann. of Math. 171 (2010) 731 - 777, https://arxiv.org/abs/math/0507514

5. A Henriques, J Kamnitzer, Crystals and coboundary categories, Duke Math. J. 132 (2006) 191 - 216, https://arxiv.org/abs/math/0406478

6. J Morava, Braids, trees, and operads, https://arxiv.org/abs/math/0109086

7. E Rains, The action of S_n on the cohomology of $M_{0,n}(\mathbb{R})$, Selecta Math. 15 (2009) 171 - 188, https://arxiv.org/abs/math/0610743

Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218

E-mail address: jack@math.jhu.edu