Reflections on a Community Engagement Strategy for Mass Antimalarial Drug Administration in Cambodia

Thomas J. Peto,1,2* Rupam Trijura,1,3 Chan Davoeung,4 Chea Nguon,5 Sanann Nou,1 Chhouen Heng,1 Pich Kunthea,1 Bipin Adhikari,1,2 Renly Lim,6 Nicola James,7 Christopher Pell,8,9 and Phaik Yeong Cheah1,2,10

1Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; 2Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom; 3Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 4Department of Provincial Health, Battambang, Cambodia; 5National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia; 6School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia; 7Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom; 8Centre for Social Science and Global Health, University of Amsterdam, The Netherlands; 9Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands; 10The Ethox Centre, University of Oxford, Oxford, United Kingdom

Abstract. Mass drug administration (MDA) to interrupt malaria transmission requires the participation of entire communities. As part of a clinical trial in western Cambodia, four villages received MDA in 2015–2016. Before approaching study communities, a collaboration was established with the local health authorities, village leaders, and village malaria workers. Formative research guided the development of engagement strategies. In each village, a team of volunteers was formed to explain MDA to their neighbors and provide support during implementation. Public mobilization events featuring drama and music were used to introduce MDA. Villages comprised groups with different levels of understanding and interests; therefore, multiple tailored engagement strategies were required. The main challenges were explaining malaria transmission, managing perceptions of drug side effects, and reaching mobile populations. It was important that local leaders took a central role in community engagement. Coverage during each round of MDA averaged 84%, which met the target for the trial.

The spread of drug-resistant parasites poses a serious threat to malaria control in Southeast Asia.1 In response, strategies to interrupt local malaria transmission, including mass drug administration (MDA), have been proposed.2 The success of this approach, currently under pilot across the region, depends upon high uptake in target communities.3,4 For past MDAs, this has been challenging5 because of misconceptions about drug regimens, inadequate explanations of the rationale for MDA, and limited awareness of disease risk and asymptomatic malaria.6 To overcome these challenges, a range of community engagement (CE) activities are undertaken alongside MDA.7 In the global health literature, CE has various definitions, for example, promoting ethical conduct of research, or “working collaboratively” with communities “to address issues affecting the well-being of those people.”8,9 In this article, we focus on CE as a range of activities with the primary aim of promoting MDA coverage.

Battambang Province, an area of unstable malaria transmission in western Cambodia, has seen a decline in clinical Plasmodium falciparum malaria over the past decade.10 Recently, P. falciparum parasites in the area have become resistant to artemisinins and partner drugs used in artemisinin combination therapy.11–13 Village malaria workers (VMWs), present in most villages, are trained to diagnose and treat clinical malaria. Asymptomatic malaria infections go untreated and contribute to transmission, and are associated with travel to forests and a history of clinical malaria.14–16 In neighboring Pailin Province, prevalence surveys (2013–2014) revealed a reservoir of asymptomatic malaria.17

As part of a clinical trial, two villages received MDA in 2015 and two in 2016. MDA consisted of three, monthly rounds of treatment with dihydroartemisinin–piperaquine (Figure 1). Participants were followed over one year to observe clinical malaria and cross-sectional surveys were conducted quarterly to determine the prevalence of asymptomatic malaria. This article describes the process of developing and implementing a CE strategy for MDA, outcomes, challenges, and lessons learned. To this end, we sought the views of study staff from all levels: policymakers, scientists, and field-workers. The first step entailed the field team compiling a summary of the process of CE, describing the preparatory work, listing activities, and adding the lessons learned. Local staff (who are fluent in Khmer and familiar with the local population) made key contributions to this report.

* Address correspondence to Thomas J. Peto, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchithi Road, Bangkok 10400 Thailand. E-mail: tom@tropmedres.ac

FIGURE 1. Participation in mass drug administration supervised by a village malaria worker and health center nurse with village leaders in the background. This figure appears in color at www.ajtmh.org.
Before approaching study communities, a series of meetings with provincial and local health authorities, village leaders, and VMWs enabled the study team to understand local political and social structures. Guided by local collaborators, the team spent several months conducting prevalence surveys to identify submicroscopic malaria and communities that would be suitable for MDA. Formative research was conducted in 12 selected villages to guide the CE strategy. Village leaders were interviewed using a semi-structured guide. The framework approach was used to identify themes to prioritize for engagement activities. This entailed developing a matrix of summarized responses according to the research themes for each respondent. Respondents recommended involving all political groups, VMWs, and government/private health staff in activities. Study-specific and general malaria education was recommended in light of villagers’ limited knowledge about malaria transmission. Preferred CE activities included video shows, quizzes with prizes, art and games, and musical concerts.

In 2015, local volunteers, VMWs, and village leaders joined the study team to conduct CE activities and MDA. Before MDA, research staff met with different groups, such as mothers, school children, forest workers, and monks (Table 1). In every village, the major mobilization activity was a public concert where health information was presented. These were very popular and well-attended. To keep people informed and address issues as they arose, meetings and other activities continued during the three rounds of MDA. After the final round, the CE team continued to make weekly village visits to provide information about malaria and receive feedback. Before MDA in 2016, the engagement strategies were reviewed and lessons learned from 2015. An excess of detail about the study had reportedly confused people and staff worked with local leaders to simplify the messages. A drama-based event replaced the concert. This enabled local people to be involved as actors and communicate the scripted health education messages. In addition, health messages were given by the local health authorities known to the villagers instead of members of the research team.

All four invited villages agreed to participate in the study. Events such as meetings were well-attended and village malaria teams and volunteers were actively involved. For example, attendance for the drama performances ranged from 67% (350/522) to 86% (250/291). During each MDA round, coverage averaged 84%—exceeding the trial target.

There were several challenges when designing and implementing MDA. The rationale for MDA is difficult to convey, particularly explaining 1) asymptomatic malaria; 2) that asymptomatic infections contribute to transmission; 3) that to remove these infections people need to take drugs when they do not feel ill; and 4) that everyone in the village needs to participate for MDA to work. Within villages, education levels varied widely, and this had to be taken into account when framing the rationale for MDA and key messages and tailoring engagement strategies (Table 2).

Before, during and after MDA, concerns from communities and staff emerged about perceived side effects of antimalarials. We gave directly observed treatment during MDA and then monitored participants actively for a week and passively for a month. Post-MDA, minor side effects such as dizziness, tiredness, and cold-like symptoms were reported in all sites. Local nurses and village volunteers visited participants to assist and reassure them as needed. Side effects were discussed directly in public meetings. Moreover, MDA was conducted as part of a clinical trial, and communities were generally unaware of medical research.

Another challenge was reaching migrants and forest workers, who are a group at higher risk of malaria infection but are more difficult to engage with as they often move in and out of the villages. Targeted meetings were held with these groups at times when they were not busy and MDA was provided when they returned from traveling if they were away during scheduled rounds of MDA. In one village, most people belonged to an ethnic minority, which meant the translation of messages into the local language. Their leader was bilingual and after being formally asked he joined the local MDA team to translate and successfully mobilized people from his community.

The experiences highlighted how understanding the concerns and attitudes of local communities and addressing them through various engagement activities are integral to the success of MDA. From our experience over two years, public events, such as concerts and drama, were important and ensured everybody received the same information at the same time. The events had to be entertaining to attract large audiences, which also built relationships and generated trust between the research team and communities.

As challenges often arose over time, a process of ongoing contact through meetings and regular visits with families was important. This highlights that multiple complementary engagement strategies were required. Participating in the MDA depended also on people’s trust, and local leaders were able to advise on the language and methods to communicate the rationale as well as taking a leading role in community mobilization.

MDA that takes place under non-trial “real-life” conditions will face additional challenges because it will need to be organized largely by communities themselves, and probably with fewer resources. At scale, effective community mobilization and local ownership will be essential if MDA is to be successful and sustainable over several years. CE will need to build upon existing local social structures: community leaders, government health staff, and village health workers, and other representatives of the local community, such as women’s leaders and forest workers. Without a large outside team to organize MDAs, local villages will need to create their own teams to mobilize their communities and educate them about malaria transmission and the rationale for MDA, including visits and follow-up of every household to ensure people participate during each round. Local capacity will need to be developed to enable villagers to lead MDAs. Well-designed education materials and support from local authorities and health workers will be needed, including training of village MDA teams to increase health literacy, support the organization of MDA, and keep accurate records. Motivated local MDA teams, with appropriate support, would be well placed to understand the concerns of their own communities and plan how to implement MDA in a locally adapted way to reach all parts of their community.

In Southeast Asia, mass antimalarial administration for malaria elimination may be targeted at villages with proven
reservoirs of asymptomatic malaria rather than over wider areas, requiring the engagement of individual communities. In Cambodia, a pilot MDA achieved good coverage and this may be attributable to close collaboration with national and local authorities and a community-directed engagement strategy.

Received June 1, 2017. Accepted for publication October 1, 2017.

Acknowledgments: We thank the study participants and communities, village malaria workers, Ta Toek Commune, and Samlout District and Battambang Province authorities. We thank Mark Debackere, Bunhoeuth Thou, Gabriele Rossi, Jean Philippe Dousset, Lieven

Table 1

Activity	Description	Aim
Leaders and influential people	Meetings were held with village leaders and influential people to introduce the project and plans for the year, and to obtain agreement for the whole village to work together.	Formal introduction of study, build relationships
Village volunteers	Volunteers were selected to cover a group of households within the village and were responsible for helping communicate with the community and also lead invitations and assist during survey days.	Capacity building, mobilizing participants, identifying problems
Involve village malaria workers	In groups and one-to-one, explain objectives again and to conduct participant selection and invitation process.	Ensure aims are understood, identify groups affected by malaria
Outreach activities with forest goers and migrants	Small meetings, visits to forest: teaching, health education, contacting them for surveys, encouraging participation in drug administration. Include migrants at risk of malaria who are professionals, such as soldiers and mine clearance teams.	Build knowledge among high-risk and hard-to-reach groups
Outreach to local opinion formers	Small group meetings with local political leaders, teachers, shopkeepers, private sector health-care providers, traditional healers.	Build relationships, avoid organized opposition to MDA
Outreach to monks	Visit pagoda, arrange day for monks to come for blessings, and talk on communities working together and the importance of health.	Collaborate with existing authorities, build relationships
Outreach to women/mothers	In small groups, teach, listen to, and address concerns about women or children taking medicine. Explain exclusion of pregnant and lactating women during MDA.	Build relationships, solicit views on MDA
Local school activities	Outdoor games, coloring in games, and prizes. Involving children in public performances ensures the parents will attend the event.	Fun activities, encourage participation, avoid fear
Post-MDA follow-up	Daily follow-up during drug administration to record and assist with any reports of real or perceived adverse events.	To identify any adverse events, ensure participant safety, avoid negative perceptions
Community concert (2015)	Band, quiz, prizes, invited speakers, household gift packs, and snacks (main mobilization event before MDA)	Provide information about MDA, build relationships trust
Community theater and art workshops (2016)	Video performance, drama workshops, singing competition, public drama performance (main mobilization event before MDA)	Provide information about MDA, build relationships trust
Incentives	Compensation was provided when individuals attended surveys or participated in MDA. For each event, participants received snacks and a reimbursement for their time of USD 2.5. In 2016 (after the clinical trial ended), no compensation was provided as MDA was conducted house-to-house and participation rates remained constant.	To reimburse time away from work and motivate continuous participation
Complimentary health care	A field clinic was conducted during each survey and round of MDA to provide free treatment to villagers.	Supporting healthcare in the community
Informed consent	Participants were gathered to explain malaria, MDA, and blood collection, through group presentations, and information was given using handouts, pictures, photos, and videos. Following this, written consent was obtained on an individual basis.	Clinical trial specific: provide information to support the consent process and obtain community approval
Monitoring and evaluation	Census of villages and major CE meetings: meeting with household heads and village leaders, review of population list, house-to-house follow-up, record keeping.	Collect feedback to adapt the CE strategy

CE = community engagement; MDA = mass drug administration.
Vernaeve, and Gregoire Falq from Medecins Sans Frontieres. Special thanks to the field team and colleagues: Bora Chan, Thida Chhuon, Lim Darav, Mark Droogleever, Sabine Klopopgro, Moninh Moeun, Rouen Sary, Im Sambo, Ma Sareth, Coco Snethladge, Phan Sophan, Kem Sovann, and Christianne Vegenue.

Ethical approval: Approval was obtained from the National Ethics Committee for Health Research Cambodia (NECHR 0042 & 0051) and the Oxford Tropical Research Ethics Committee (OXTREC; 1017-13, and 1015-13), and registered on clinicaltrials.gov (NCT01872702).

Human subjects: The procedures followed were in accordance with the ethical standards of the Helsinki Declaration (1964, and amended 2013) of the World Medical Association. The approved protocol contains a section on community engagement and its evaluation, and on assessing the acceptability of mass drug administration. Patients’ written consent was obtained for participation in the studies, recorded verbal consent was obtained for interviews, and information has been de-identified.

Financial support: This work was supported by the Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research Programme is funded by the Wellcome Trust of Great Britain (reference 101148/Z/13/2), and also by the Bill and Melinda Gates Foundation BMGF OPP1081420. The authors are also supported by the generous support of the Bill and Melinda Gates Foundation, the Wellcome Trust, and the Oxford Martin School. The MADEMEX project contains a section on community engagement and its evaluation, and on assessing the acceptability of mass drug administration. Patients’ written consent was obtained for participation in the studies, recorded verbal consent was obtained for interviews, and information has been de-identified.

Financial support: This work was supported by the Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research Programme which is funded by the Wellcome Trust of Great Britain (reference 101148/Z/13/2), and also by the Bill and Melinda Gates Foundation BMGF OPP1081420. The authors are also supported by the generous support of the Bill and Melinda Gates Foundation, the Wellcome Trust, and the Oxford Martin School. The MADEMEX project contains a section on community engagement and its evaluation, and on assessing the acceptability of mass drug administration. Patients’ written consent was obtained for participation in the studies, recorded verbal consent was obtained for interviews, and information has been de-identified.

Authors’ addresses: Thomas J. Peto and Bipin Adhikari, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, and Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, E-mails: tomi@tropmedres.ac and bipin@tropmedres.ac. Rupam Tripura, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mail: rupam@tropmedres.ac. Chan Davoeung, Provincial Health Department, Battambang, Cambodia, E-mail: davoeng@yahoo.com. Chea Nguon, National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia, E-mail: cheangnuoncm@gmail.com. Sanann Nou, Chhouen Heng, and Pich Kunthear, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mails: sanannnou@yahoo.com, bdfpho@gmail.com, and kuntheaich2015@gmail.com. Renly Lim, School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, Australia, E-mail: renly.lim@unisa.edu.au.

Nicola James, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom, E-mail: nikola.h.james@gmail.com. Christopher Pell, Centre for Social Science and Global Health, University of Amsterdam, The Netherlands, E-mail: c.pell@uva.nl. Phaik Yeong Cheah, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mail: phaikyeong@tropmedres.ac.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. Ashley EA et al., 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411–423.
2. Dondorp AM, Smithuis FM, Woodrow C, Seidelin LV, 2017. How to contain artemisinin- and multidrug-resistant falciparum malaria. Trends Parasitol 33: 353–363.
3. World Health Organization, 2014. Accelerating Malaria Elimination in the Greater Mekong Subregion. Available at: http://www.who.int/malaria/areas/greatermekong/overview/en/. Accessed July 13, 2017.
4. World Health Organization, 2015. Strategy for Malaria Elimination in the Greater Mekong Subregion (2015–2030). Available at: http://iris.wpro.who.int/bitstream/handle/10965/10945/9789290617181_eng.pdf?sequence=1. Accessed July 14, 2017.
5. Sturrock HJ, Hsiang MS, Cohen JM, Smith DL, Greenhouse B, Bouseta T, Gosling RD, 2013. Targeting asymptomatic malaria infections: active surveillance in control and elimination. PLoS Med 10: e1001467.
6. Cantey PT, Rout J, Rao G, Williamson J, Fox LM, 2010. Increasing compliance with mass drug administration programs for lymphatic filariasis in India through education and lymphedema management programs. PLoS Negl Tiffany 4: e728.
7. Adhikari B, James N, Newby G, van Seidelberg L, White NJ, Day NP, Dondorp AM, Pell C, Cheah PY, 2016. Community engagement and population coverage in mass anti-malarial administrations: a systematic literature review. Malar J 15: 523.
8. Clinical and Translational Science Awards (CTSA), 2011. Principles of Community Engagement. NIH Publication No. 11-7782; second edition.
9. Tindana PO, Singh JA, Tracy CS, Upshur RE, Daar AS, Singer PA, Frohlich J, Lavery JV, 2007. Grand challenges in global health: community engagement in research in developing countries. PLoS Med 4: e273.
10. Maude RJ et al., 2014. Spatial and temporal epidemiology of clinical malaria in Cambodia 2004–2013. Malar J 13: 385.
11. Phyo AP et al., 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 1960–1966.
12. WHO, 2010. Global Report on Antimalarial Drug Efficacy and Drug Resistance: 2000–2010. Geneva, Switzerland: World Health Organization.
13. Dondorp AM et al., 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467.
14. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM; Artemisinin Resistance in Cambodia 1 Study Consortium, 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 2619–2620.
15. Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M, 2013. Outdoor malaria transmission in forested villages of Cambodia. Malar J 12: 329.
16. Peto TJ et al., 2016. History of malaria treatment as a predictor of subclinical parasitaemia: a cross-sectional survey and malaria case records from three villages in Pailin, western Cambodia. Malar J 15: 240.
17. Peto TJ et al., 2016. Association between subclinical malaria infection and inflammatory host response in a pre-elimination setting. PLoS One 11: e0158656.
18. Imwong M et al., 2013. The epidemiology of subclinical malaria infections in South-East Asia: findings from cross-sectional surveys in Thailand–Myanmar border areas, Cambodia, and Vietnam. Malar J 14: 381.
19. Imwong M et al., 2016. Numerical distributions of parasite densities during asymptomatic malaria. J Infect Dis 213: 1322–1329.
20. Tripura R et al., 2016. Persistent Plasmodium falciparum and Plasmodium vivax infections in a western Cambodian population: implications for prevention, treatment and elimination strategies. Malar J 15: 1–12.
21. Tripura R et al., 2017. Submicroscopic Plasmodium prevalence in relation to malaria incidence in 20 villages in western Cambodia. Malar J 16: 56.
22. Gale NK, Heath G, Cameron E, Rashid S, Redwood S, 2013. Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med Res Methodol 13: 117.