Solving the Fermi paradox without assumptions*

Berezin Alexander

Abstract—This paper suggests that a universal solution to the Fermi paradox exists and can be derived directly from the definition of life and/or intelligence, therefore eliminating the need for any questionable assumptions and even for the anthropic principle. The proposed solution\footnote{1A more colloquial name for this solution emerged during its discussion: “the Black attractor”.} puts an upper limit on growth of civilizations that is independent of resource availability or biological factors.

I. INTRODUCTION

It is commonly understood that infinite growth is physically impossible on a finite planet \cite{1}. However, at first glance, the known laws of physics suggest no hard limits to growth for civilizations that have the capability of interstellar travel, barring the speed of light and the total amount of accessible energy in the Universe. This is where the Fermi paradox appears.

Given even the most conservative estimations of growth rate, a civilization moderately older than humanity should have already left easily detectable traces, or even populated the entire galaxy \cite{2}. The lack of such observations is usually explained by suggesting that either the odds of a capable enough civilization to appear are extremely low \cite{3}, or that they necessarily destroy themselves or each other \cite{4}.

This paper argues that there is, indeed, a universal internal limit to growth of civilizations, even without any external limiting factors. Another way of putting this conclusion is to say that any technology that permits any civilization to leave a noticeable signature on a stellar scale inherently presents an existential risk in the sense that it can (and inevitably will) be used to permanently and drastically curtail the potential of said civilization \cite{5}.

\footnote{1This work was not supported by any organization.}

II. MODEL

In order to discuss the Fermi paradox, at least one definition has to be agreed upon: usually it is either life, intelligence or civilization. However, making distinctions between these concepts may in itself be an unwarranted assumption. In principle, it is possible that some forms of life could evolve the capability of interplanetary, or even interstellar travel without evolving civilization, or even intelligence, first. The distinction between unintelligent and intelligent organisms does not have to be discrete. Even the concept of an organism does not have to retain its meaning for alien life.

In order to discourage the reader from making assumptions based on colloquial definitions of these terms, this paper will be referring to “agents” as a generalization of all entities to which the Fermi paradox is applicable.

At least three attempts at such a generalization have been published. One is Erwin Schrodinger’s “What Is Life?” \cite{6}, the second is “Equation of intelligence” by Alexander Wissner-Gross \cite{7}, and the third is “Free energy principle” by Karl Friston \cite{8}.

\textbf{Definition 2.1}: \cite{6} A system is considered alive if it can decrease or maintain its internal entropy by increasing the entropy of its surroundings.

\textbf{Definition 2.2}: \cite{7} A system is considered intelligent if its actions aim at maximizing its future freedom of action.

\textbf{Definition 2.3}: \cite{8} A living system aims to minimize the dispersion of its sensed states, while using those sensations to infer external states of the world.

\textbf{Proposition 2.4}: The three definitions above are equivalent at scales relevant to the Fermi paradox.

\textbf{Proof}: First, let us consider a system that aims to maximize its future freedom of action. As described in \cite{7}, when presented with a set of possible action paths, such system will choose the path that maximizes an average of short-
term directions weighted by the diversity of long-
term paths that they make reachable. However,
precise integration over long-term paths requires
full information about all factors that can possibly
affect the system, i.e. zero dispersion of sensed
states. As the dispersion increases, the precision
of path integration can only decrease. Therefore,
2.3 follows from 2.2.

Second, maintaining or decreasing the internal
entropy of a system requires continuous increase
in its external entropy. Hence, the system either
crases being alive once its energy reservoir is
exhausted or seeks more energy in the external en-
vironment. And since any action increases entropy,
seeking more energy over long enough time is
equivalent to maximizing future freedom of action.
Therefore, 2.2 follows from 2.1.

Finally, as noted by Friston himself in [8],
“Under ergodic assumptions, the long-term aver-
age of surprise (a.k.a. “free energy”) is entropy”,
where “ergodicity means that the time average of
any measurable function of the system converges (almost surely) over a sufficient amount of time”. Considering the timescales relevant to the Fermi
paradox, we may conclude that 2.1 follows from
2.3.

Let agent be an entity that conforms to any one
of the equivalent definitions; and let \(A \) be the set
of all possible agents. A civilization is then defined
as an arbitrary nonempty subset of \(A \).

III. SOLUTION

Proposition 3.1: Maximizing future freedom of
action is equivalent to hoarding the greatest
amount of resources.

Proof: Any action can be described as a combi-
nation of movements. Movements from lower
to higher energy states\(^2\) expend energy. Any theo-
retically possible process of energy generation
expends some material resource as fuel. There-
fore, any action expends some fuel material, and
maximizing the amount of fuel also maximizes the
space of available actions.

Obviously, materials have more uses than just
fuel; they are required to sustain any type of
growth. However, if the most efficient reactor
possible converts any matter into energy with no

\(^2 \)The “energy state” here is used in the general sense and does
not imply the states are discrete.

waste products and any fuel can be converted
into some construction material, then the terms
“fuel” and “matter” can be used interchange-
ably. Consequently, as the efficiency of technology
approaches its theoretical maximum, correlation
between the value of resources and their physical
mass becomes more linear, meaning that value is
also interchangeable with mass.

At this point, a few more definitions should be
added for readability purposes.

Definition 3.2: An agent’s weight is the cumu-
lative value of resources that agent controls.

Definition 3.3: An \(\alpha \)-agent is the one that has
the greatest weight in a civilization.

Proposition 3.4: Given long enough time, all
available value will be controlled by the \(\alpha \)-agent.

Proof: Consider \(N \) agents each starting with
weight \(w(n) = s - n \varepsilon \), where \(s > 0 \) is an arbitrary
constant and \(\varepsilon \) is a minor perturbation: \(0 < \varepsilon << s \).
Assume they invest all weight into obtaining more
value from space and their technological solutions
are equally efficient.

Reaching resources in space requires to change
one’s energy state. Since energy is equivalent to
value, the \(\alpha \)-agent (with corresponding \(n = 0 \)) will
be able to perform the greatest change of energy
state, and therefore gain access to the greatest
amount of new value. The \(\alpha \)-agent now has a
weight proportional to \(s^2 \), while other agents have
weight \(w(n) \propto (s - n \varepsilon)^2 \). Repeating the same process
will result in agent \(n \) on step \(t \) having weight \(w(n) \propto
(s - n \varepsilon)^t \).

\[
\lim_{t \to \infty} \frac{s^t}{\sum_{n = 0}^{\infty} (s - n \varepsilon)^t} = 1
\]

As \(t \to \infty \), the fraction of value held by the \(\alpha \)-
agent approaches 1, even assuming completely fair
competition. This means that all the available value
will at some point belong to the \(\alpha \)-agent.

Proposition 3.5: If the number of agents in a
civilization is greater than one, they will be incenti-
vized to centralize storage of their value.

Proof: Since the definition of agents \(2.2 \) does
not forbid them to steal from each other, such
behaviour is preferable when the value obtained
surpasses the value lost in the conflict (according
to \(3.1 \)). Knowing this, agents will attempt to
maximize the value that any other agent will lose
by attacking them while minimizing their own

\(^{\varepsilon} \)
expenditures on that task. Considering that the value spent on defence of a region of space is proportional to its surface area, while the value that can be stored inside that region is proportional to its volume, it now follows from basic geometry that the optimal way to store value is within a single spherical region.

Whether a civilization consisting of a single agent can evolve to a scale significant to the Fermi paradox is unclear. This paper does not cover such a possibility.

Proposition 3.6: For every civilization of more than one agent there exists an upper bound to the amount of resources it can accumulate. Attempted growth past that bound will result in a collapse into a black hole.

Proof: According to 3.4, a disproportionate amount of resources is controlled by a single agent. According to 3.5, all these resources are packed very closely. From here the problem is obvious. A huge mass packed densely enough produces a black hole.

IV. Testability

Usually testing a Fermi paradox solution proposal would require observations of alien life (or lack thereof), which makes the proposals essentially untestable at present.

However, if 3.6 is true and extraterrestrial civilizations had existed at some point in our galaxy, we should be able to observe black holes left by their collapse. Problem is, attributes of those black holes depend on other unknown quantities, so telling whether a specific body is a remnant of a past civilization or a natural formation depends entirely on context.

Basically, observing multiple black holes that do not fit accepted astronomical models of star/galaxy formation might be considered as weak evidence for this hypothesis, and vice versa. Although observing black holes without prior knowledge of their location is extremely difficult, it is suggested in [9] that gravitational astronomy may change that in near future.

V. Discussion

A. How does this explain the absence of von Neumann probes?

Definition 5.1: A von Neumann probe (VNP) is an entity that aims to place at least one copy of itself at the greatest number of stars in the shortest time period.

Proposition 5.2: VNPs are agents.

Proof: It is fairly obvious that reducing the time of interstellar flights requires increasing the amount of resources spent by probes. Considering that resource extraction and replication are relatively fast processes compared to interstellar flights, VNPs are incentivized to gather as much resources as possible before departing for the next star. According to 3.1 this proves their agency.

Therefore, VNPs face the same problem as civilizations, if they are not the same thing to begin with. Whether VNPs are manned or autonomous is irrelevant as long as they inherit the 2.2 property.

B. How does one even move such amounts of mass for such distances in order to create a black hole?

We might not know yet what technologies are going to be used for such large-scale projects; what we can say definitively, though, is that the laws of physics as we understand them are not the limitation.

C. But if the collapse is so easy to predict, and there is a sentient entity in control, that entity will not allow it.

The key point is that no agent is actually in control. Rather, the established system is in control of the agents. A more intuitive example of such a situation is the Prisoners’ dilemma [10]. The same description can be applied to governments accumulating advanced weapons that can never be used, bankers’ behaviour preceding a financial crash and the global response to climate change. Generally speaking, there is no basis to claim that systems consisting of rational agents also act rationally.

D. But if the collapse is so easy to predict, surely most individuals should be able to escape it?

Problem is, escaping the collapse requires escaping the gravity of the collapsing structure, which would require exponentially more energy as its mass increases; at the same time, the total energy stored within it only grows linearly, and the vast majority of individuals inhabiting it will not
possess any meaningful fraction of it according to Proposition 3.4.

On the other hand, some individuals might be able to escape by sheer chance, and some will not be caught in the collapsing region at all. However, all wealth the civilization had accumulated is irreversibly destroyed. Survivors have to start from scratch. And when they finally manage to recreate what was lost, history will simply repeat itself.

E. In a civilization consisting of billions or trillions of individual agents, how can one of them exercise so much power without the help of others?

If the agents on whom that one relies organize and stage a revolt, they should be able to divide the resources and avoid a collapse, shouldn’t they?

Proposition 5.3: The probability of successful revolt against the α-agent decreases as the size of civilization (in terms of cumulative value) increases.

Proof: An ideal revolt is a conflict between the α-agent and the sum of all other agents in a given civilization. Assuming the defensive and offensive systems do not need their own agency to function, the outcome of a conflict is only determined by the value that each side is able to spend on it. According to Proposition 3.4 the fraction of value held by the α-agent increases as civilization grows. Eventually its weight will surpass that of all other agents put together, at which point a successful revolt is impossible.

It is, indeed, possible until then, but, once the growth resumes, the same dynamic from Proposition 3.4 also continues, eventually returning the value distribution to the same shape.

F. If agents are meant to maximize their future freedom of action (2.2), why wouldn’t they factor in the probability of a collapse?

Even if they do, this should not affect their behavior. If they choose to suspend growth for safety, another agent will exploit that, as explained in Proposition 3.5. The risk will grow with time no matter what they do. And, given the time scale that an interstellar civilization needs for development, that risk accumulates to a near certainty of collapse.

G. What if the civilization is forced to constantly spend the resources they acquire?

That would protect the civilization itself from a collapse. However, the only feasible condition that ensures such spending is a war with another civilization. Whether this is a better alternative to collapse is up to the reader to decide.

H. Can the black holes resulting from collapsed civilizations explain dark matter?

No. The idea of dark matter consisting of black holes is currently not considered viable [11].

VI. IMPLICATIONS

A. Assuming this solution is correct, what predictions can it make concerning the future of humanity?

In the near future, private space industry should grow dramatically. As already predicted in [12], just the mining of near-Earth asteroids can bring unprecedented profit in minerals that are rare in Earth’s crust, but abundant in smaller celestial bodies. That capital can then be invested into even more ambitious projects requiring permanent settlements in outer space, such as building solar reflectors in Earth’s L1 point to decrease temperature and mitigate climate change; setting up high-powered lasers to propel interstellar spacecraft [13] or even curing aging as an indirect result of modifying humans for long-term exposure to microgravity and radiation [14]. Slowly but inevitably, engineering challenges that seem insurmountable today will become real targets; challenges such as gathering enough resources to collapse into a black hole.

B. How can a civilization prevent its collapse?

Two ways have been suggested in V-E and V-G. The third solution might come from the fact that it is theoretically possible for few civilizations to overcome their economic incentives. Even if they themselves survive, other uncontrollably expanding civilizations would still endanger their existence. That should incentivize forcibly constraining younger civilizations, implementing “the Zoo hypothesis” [15] in practice. Such scenario does not permit unconstrained expansion either, thus remaining an equally viable solution to the Fermi paradox.
REFERENCES

[1] Donella H. Meadows, Jrgen Randers, and Dennis L. Meadows. *The limits to growth: the 30-year update*. Chelsea Green Publishing Company, White River Junction, Vt, 2004.

[2] F. Valdes and R. A. Freitas, Jr. Comparison of reproducing and nonreproducing starprobe strategies for galactic exploration. *Journal of the British Interplanetary Society*, 33:402–406, November 1980.

[3] Peter Ward. *Rare earth : why complex life is uncommon in the universe*. Copernicus, New York, 2000.

[4] G. D. Brin. The Great Silence - the controversy concerning Extraterrestrial Intelligent Life. *Quarterly Journal of the Royal Astronomical Society*, 24:283–309, September 1983.

[5] Nick Bostrom. Existential risks: Analyzing human extinction scenarios and related hazards. 2002.

[6] Erwin Schrdinger. *What is life? the physical aspect of the living cell ; with, Mind and matter ; & Autobiographical sketches*. Cambridge University Press, Cambridge ; New York, 1992.

[7] A. D. Wissner-Gross and C. E. Freer. Causal Entropic Forces. *Physical Review Letters*, 110(16), April 2013.

[8] Karl Friston. Life as we know it. *Journal of The Royal Society Interface*, 10(86), 2013.

[9] B.P. Abbott et al. and LIGO Scientific Collaboration and Virgo Collaboration. Observation of Gravitational Waves from a Binary Black Hole Merger. *Physical Review Letters*, 116(6), February 2016.

[10] W. Poundstone. *Prisoner’s Dilemma*. Oxford paperbacks. Oxford University Press, 1993.

[11] Miguel Zumalacarregui and Uro Seljak. Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae. *Physical Review Letters*, 121(14), October 2018.

[12] J.S. Lewis. *Mining the Sky: Untold Riches from the Asteroids, Comets, and Planets*. Helix books. Addison-Wesley Publishing Company, 1996.

[13] Philip Lubin. A roadmap to interstellar flight. *arXiv preprint arXiv:1604.01356*, 2016.

[14] Gianni Biolo, Martina Heer, Marco Narici, and Felice Strollo. Microgravity as a model of ageing. *Current Opinion in Clinical Nutrition & Metabolic Care*, 6(1):31–40, 2003.

[15] John A. Ball. The zoo hypothesis. *Icarus*, 19(3):347 – 349, 1973.