LETTER TO THE EDITOR

A novel CD123-targeted therapeutic peptide loaded by micellar delivery system combats refractory acute myeloid leukemia

Shilin Xu1, Meichen Zhang1, Xiaocui Fang2,3, Jie Meng1, Haiyan Xing6, Doudou Yan1, Jian Liu1, Yanlian Yang2,3, Tao Wen1, Weiqi Zhang1, Jianxiang Wang4*, Chen Wang2,3* and Haiyan Xu1*

Abstract
Acute myeloid leukemia (AML) is a common malignant heterogeneous hematopoietic disease with very low average 5-year survival rate due to the refractory feature and high rate of relapse. CD123 is highly expressed on multiple types of AML cells, especially leukemia stem cells, and is associated with a poor prognosis of AML. Aiming to meet the urgent demand for targeted therapeutics for refractory AML patients, herein we synthesized a CD123 antagonistic peptide (PO-6) loaded in nanomicelles (mPO-6), and investigated its therapeutic effect and pharmacokinetics on a lab-established refractory AML mice model (AE & CKITD816V). It is shown that PO-6 can effectively bind to the CD123+ AML cells and the micellar formulation mPO-6 increases the dissolution stability and the specific binding capacity. When injected intravenously, mPO-6 significantly prolongs the survival of the refractory AML mice by interfering CD123/IL-3 axis, evidenced by the down regulation of phosphorylation of STAT5 and PI3K/AKT and the inhibition of activated NF-κB in the nucleus, as well as by the analysis results of next generation RNA-sequencing (RNA-seq) with the bone marrow of the AML mice. The antagonistic effect leads to the significantly reduction of AML cells infiltration in the bone marrow of the AML mice. In conclusion, mPO-6 could provide a potent antagonistic therapeutic approach for targeted treatment of AML.

Keywords: Acute myeloid leukemia, CD123, Antagonistic peptide, Micelle, Targeting

To the Editor,
Acute myeloid leukemia (AML) is a common malignant heterogeneous hematopoietic disease with very low average 5-year survival of 25% due to the refractory feature and high rate of relapse [1, 2]. CD123 is a membrane protein expressed in ~80% of AMLs as well as leukemia stem cells and is closely related with the prognosis of AML patients [3, 4]. Although several anti-CD123 antibody-based medicines have shown significant therapeutic effects in animal models [5–7], yet encouraging results have not been achieved rigorously from the clinical trials [8, 9].

Antagonistic peptides provide a promising venue to develop protein-targeting therapeutics for AML treatments. In this work, a novel CD123 antagonistic peptide (PO-6) has been obtained based on screening of the cell culture from a group of de novo designed peptides targeting to various segments of the CD123 protein [10] (Table S1). The PO-6 was chemically synthesized...
and could effectively bind to the CD123+ AML cell line MOLM-13 cells in a concentration-dependent manner while weakly bind to the CD123− AML cell line HL-60 and chronic myeloid leukemia cell line K562 cells (Additional file 1: Fig. S1), showing its recognition specificity to CD123. The PO-6 was further assembled with amphiphilic polymeric molecules to form peptide-loading micelles (mPO-6) with the average diameter of 38 nm (Additional file 1: Fig. S2). The mPO-6 could bind to the MOLM-13 cells as well (Fig. 1A) and achieve a higher binding amount to the MOLM-13 cells and distribute more homogenously on the cell membrane (Fig. 1B) than PO-6 (Additional file 1: Fig. S3), because the polymeric micelles improved the dissolution stability of PO-6 in physiological conditions. To verify its antagonistic effect, mPO-6 was incubated with MOLM-13 cells in the

Fig. 1
A Affinity of mPO-6 to MOLM-13 cells incubated at 0.1 and 0.5 μM for 0.5 h.
B Images of mPO-6 bound with MOLM-13 cells at 0.1 μM for 0.5 h obtained from the laser confocal microscopy.
C Effects of mPO-6 on the cell viability in the presence of IL-3 (n = 4).
D and E Effects of mPO-6 on the cell viability of the primary AML blasts.
F The treatment of mPO-6 prolonged the refractory AML mice median survival significantly (n = 14). *P < 0.05, **P < 0.01
presence of IL-3 that is the ligand of CD123 as well as
with the primary blasts from two patients diagnosed as
refractory AML. Results showed that mPO-6 could com-
petitively bind to the extracellular N-terminal domain of
CD123 on the MOLM-13 cells, which is the IL-3 bind-
ing site (Additional file 1: Fig. S4). The IL-3 mediated
activation of MOLM-13 cells was effectively inhibited by
mPO-6 (Fig. 1C), which evidenced that mPO-6 had the
expected antagonistic function of interrupting the axis of
CD123/IL-3. Moreover, mPO-6 could bind to the primary
blasts expressing CD123 (Additional file 1: Fig. S5) and
inhibit the viability of the cells (Fig. 1D, E). For in vivo
study, a refractory AML mice model was established by
intravenously injecting AE & CKITD816V cells expressing
CD123 (Additional file 1: Fig. S6). On the model that did
not respond to cytarabine hydrochloride or homohar-
ringtonine (Additional file 1: Fig. S7), mPO-6 of 2.5 mg/
kg significantly prolonged the median survival (Fig. 1F)
in reference to the control or empty micelle group, display-
ing a very encouraging therapeutic effect.

Next generation RNA-sequencing was performed
with AML cells separated from the bone marrow (BM)
of the AML mice post three intravenous administra-
tions of mPO-6 or empty micelles. Results showed
that mPO-6 induced 1716 genes down-regulated and
1556 ones up-regulated (Fig. 2A), and the differenti-
ally expressed genes were involved in the IL-3-me-
diated signaling pathways (Fig. 2B). Furthermore, the
genes related to NF-κB, TNF, RIG-I-like and NOD-
like receptor were enriched in the negative regulation
while those linked to the signaling pathways of p53 and
apoptosis were enriched in the positive regulation
(Fig. 2C). Western blotting analysis showed that
mPO-6 could significantly inhibit the phosphorylation
of STAT5, PI3K/AKT, and NF-κB in the nucleus in the
BM (Fig. 2D), which are the downstream signaling pro-
teins of CD123/IL-3 [11, 12]. Moreover, there were less
infiltrating AML cells (Fig. 2E) observed and the lower
level of CD123 (Fig. 2F) detected in the BM and periph-
eral blood (Fig. 2G) of the AML mice received the
mPO-6 treatment compared with those received empty
micelles, clearly displaying the therapeutic effects of
mPO-6 at both molecular and histological level. When
injected to healthy mice, mPO-6 rapidly distributed to
the liver, lung and kidney (Additional file 1: Fig. S8),
and was mainly excreted through kidney (Additional
file 1: Fig. S8). Additionally, mPO-6 of 10 mg/kg did
not induce significant changes in the number of white

![Fig. 2](https://example.com/figure2.png)

A Hierarchical clustering of genes expression of the AML cells in the BM for the group of empty micelle and mPO-6 at 24 h post injection. Blue and red colors represented down-regulated or up-regulated genes respectively (n = 4). **B** Cluster of genes that were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) for identification of the affected biological processes with the treatment of mPO-6. **C** Genes were alternated significantly in the BM related to the CD123/IL-3 axis (n = 4). **D** The phosphorylation of STAT5, PI3K/AKT and the expression of NF-κB in the nucleus, cytoplasm and total protein in the group of empty micelle and mPO-6. Leukemia cells were separated from the BM of the AML mice sacrificed 24 h after the third i.v. injection of empty micelles or mPO-6. **E** Histologic sections of BM in the mice stained with H&E, the yellow arrows pointed normal cells. The expression of CD123 on AML cells in the BM **F** and PB **G** was reduced by mPO-6 (n = 4). *P < 0.05, **P < 0.01
blood cells, red blood cells and platelets of the mice at 24 h post injection (Additional file 1: Fig. S9; Additional file 2).

In summary, we report a novel and chemically synthesized peptide with antagonistic function towards CD123. The peptide in its micellar formulation displayed significant anti-leukemia activities in the refractory AML mice, providing an effective and safe therapeutics to the refractory AML treatments.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13045-021-01206-y.

Abbreviations

AML: Acute myeloid leukemia; BM: Bone marrow; PB: Peripheral blood; KEGG: Kyoto encyclopedia of genes and genomes.

Additional file 1. Supplementary material and methods. Fig. S1. Affinity of PO-6 and 19PO-6 to different leukemia cells. Fig S2. The TEM image of 19PO-6. Fig. S3. Confocal microscopy observation of PO-6 binding with MOLM-13 cells. Fig. S4. 19PO-6 inhibited the antibodies binding to CD123. Fig. S5. Affinity of 19PO-6 to the AML blasts. Fig. S6. CD123 expression on GFP* cells in BM of AE & CKITD816V mice. Fig. S7. Therapeutic efficacy of Ara-C or HHT in AE & CKITD816V mice. Fig. S8. The fluorescent representative imaging of main organs at designated time points after 19PO-6-FITC injection in healthy mice. Fig. S9. Acute toxicity evaluation of 19PO-6 in healthy mice. Table S1. Human and mouse CD123 alignment of the extracellular amino acid sequences.

Additional file 2. Materials and Methods.

Acknowledgements

We thank Dr. Ke Hu, Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China, for his kind help in the radiation to establish the AML animal model. We also appreciate Professor Hui Wei and Ms Chunhong Li, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China, for their kind help in collecting the bone marrow samples from the AML patients.

Authors' contributions

H. X. and C. W. conceptualized and designed the study. S. X., M. Z. and D. Y. performed the experiments. S. X. analyzed the data and wrote the manuscript. X. F., J. M., J. L., T. W., Z. Y., Y. H. Xing and J. W. reviewed the manuscript and discussed the results. H. X., C. W. and J. W. revised the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Key R&D Program of China (2017YFA0205504) and CAMS Innovation Fund for Medical Science (CIFMS 2016-2M-304). National Natural Science Foundation of China (Nos. 81870133, 51861135103, 21721002), the Key Research Program of Frontier Sciences, Chinese Academy of Science (QYZDJ-SSW-SLH048) are also gratefully acknowledged.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The bone marrow samples were obtained from two patients diagnosed as refractory AML, who were enrolled in the Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences. This subject was approved by the ethical committee in the Institute of Hematology and Blood Diseases Hospital and all procedures in accordance with the Declaration of Helsinki. All methods were performed in accordance with the relevant guidelines and regulations.

Consent for publication

The content of this manuscript has not been previously published and is not under consideration for publication elsewhere.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China. 2 CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center of Nanoscience and Technology, Beijing 100190, China. 3 University of the Chinese Academy of Sciences, Beijing 100190, China. 4 State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.

Received: 20 September 2021 Accepted: 29 October 2021

Published online: 13 November 2021

References

1. DeV Wolff S, Tallman MS. How I treat relapsed or refractory AML. Blood. 2020;136:1023–32.
2. Aitken MJ, Ravandi F, Patel KP, Short NJ. Prognostic and therapeutic implications of measurable residual disease in acute myeloid leukemia. J Hematol Oncol. 2021;14:1–15.
3. Lane AA. Targeting CD123 in AML. Clin Lymphoma Myeloma Leuk. 2020;20:567–8.
4. Jiang G, Atenslu E, Capo Chichi JM, Minden MD, Chang H. Prognostic relevance of CD123 expression in adult AML with normal karyotype. Brit J Haematol. 2020;188:181–4.
5. Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthridge MA, Thomas D, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB. Monodonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemia stem cells. Cell Stem Cell. 2009;5:31–42.
6. Busfield SJ, Biondo M, Wong M, Ramshaw HS, Lee EM, Ghosh S, Brelay H, Panousis C, Roberts AW, He SZ, Thomas D, Fabri L, Vairo G, Lock RB, Lopez AF, Nash AD. Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia. 2014;28:2213–21.
7. Mani R, Goswami S, Gopalakrishnan B, Ramaswamy R, Wasmuth R, Tran M, Mo X, Gordon A, Buccioni D, Lucas DM, Mims A, Brooks C, Dorance A, Walker A, Blum W, Byrd JC, Lozinski G, Vasu S, Muthusamy N. The interleukin-3 receptor CD123 targeted SL-401 mediates potent cytotoxic activity against CD34+/CD133+ cells from acute myeloid leukemia/myelodysplastic syndrome patients and healthy donors. Hæmatologica (Roma). 2018;103:1288–97.
8. Kubasch AS, Schulze F, Giagounidis A, Gotze KS, Kränke J, Sockel K, Middelke JM, Chemrat F, Gloaques S, Puttrich M, Weigt C, William D, Fenaux P, Schlenk RF, Thiede C, Starlik S, Mies A, Adés L, Deafschlager U, Plattebekker U. Single agent talacotuzumab demonstrates limited efficacy but considerable toxicity in elderly high-risk MDS or AML patients failing hypomethylating agents. Leukemia. 2020;34:1182–6.
9. Montesinos P, Roboz GJ, Bulbasoi C, Subklewe M, Plattebekker U, Ofran Y, Papayannidis C, Wierzbowiska A, Shin HJ, Doronin V, Deneberg S, Yeh S, Ozcan MA, Knapper S, Cortes J, Pollyea DA, Ossenkoppele G, Grait S, Döhner H.
10. Du H, Hu X, Duan H, Yu L, Qu F, Huang Q, Zheng W, Xie H, Peng J, Tuo R. Principles of inter-amino-acid recognition revealed by binding energies between homogeneous oligopeptides. ACS Central Sci. 2019;5:97–108.

11. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA, Frankin RA, Oberhaus SM, Steelman LS, McCubrey JA. Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia. 1999;13:1109–66.

12. Testa U, Riccioni R, Diverio D, Rossi A, Coco FL, Peschle C. Interleukin-3 receptor in acute leukemia. Leukemia. 2004;18:219–26.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.