Review of Hadron Structure Calculations on a Lattice

Sergey Syritsyn
Lawrence Berkeley National Lab
Berkeley, CA, USA

LATTICE 2013
July 29-August 3, 2013, Mainz, Germany

Thanks for your material!

C. Alexandrou D. Leinweber Th. Primer
C. Aubin H. W. Lin T. D. Rae
M. Engelhardt K. F. Liu G. Schierholz
Xu Feng B. Menadue
V. Guelpers
Outline

- Lattice QCD Gold-plated Observables
 - nucleon axial charge, e/m radii, magnetic moment, quark momentum fraction and their systematic uncertainties

- Hadron Wave Functions
 - Nucleon and resonance wave functions and distribution amplitudes

- Hadron Form Factors
 - Vector & axial nucleon form factors,
 - Delta axial form factors, Lambda electric form factor
 - timelike vector and scalar pion form factors

- Decomposition of the Proton Spin
 - contributions from light & strange quarks and glue

- Parton Distributions on a Lattice
 - PDFs and TMDs
Lattice QCD Gold-Plated Observables

Isovector (u-d)
• axial charge
• Dirac & Pauli (or electric & magnetic) radii
• magnetic moment
• quark momentum fraction

✦ Best stochastic precision (forward or near-forward kinematics)
✦ No disconnected diagrams
✦ (typically) simple renormalization
✦ Well-known experimentally
Gold-plated observables

Drama of the Axial Charge

\[\langle N(p) | \bar{q} \gamma^\mu \gamma^5 q | N(p) \rangle = g_A \bar{u}_p \gamma^\mu \gamma^5 u_p , \]

Experiment (W.A.) [PDG'12] \(g_A^{\text{ave}} = 1.2701(25) \)

Many lattice calculations underestimated \(g_A \) by 10-15%
Nucleon Axial Charge: Excited State Effects?

High-statistics study
[S.Dinter et al (ETMC) arXiv:1112.2931]

$$m_\pi \approx 380 \text{ MeV}$$

Variational method
[Ben Owen, et al. (CSSM) Phys.Lett. B 723 (2013) 217]

$$m_\pi \approx 290 \text{ MeV}$$

2-state fits
[H.W.Lin et al (PNDME) arXiv:1306.5435]

“Summation”
[T.D.Rae (CLS-Mainz);
S.Capitani et al, Phys.Rev. D86 (2012) 074502]
Gold-plated observables

Nucleon Axial Charge: Lattice Size Effects?

Fig. 2: The pion mass m_π as a function of lattice size for two ensembles at $\beta = 5.29$. The solid line shows a fit of eq. (10) to the data. The dashed line shows the NLO result, eq. (7), fit to the smallest mass point.

The pion mass extrapolates indeed to a finite value in the chiral limit, in good agreement with the expected result (8). This also has an effect on m_π in the region of small, but nonvanishing, quark masses [25]. We thus expect the finite size correction to be effectively given by

$$m_\pi(L) = m_\pi(\infty) + m_\pi L (1 + \Delta_0)$$ (10)

with the parameter $c(m_\pi)$ rapidly dropping to zero at larger pion masses.

IV. EXTRAPOLATION TO INFINITE VOLUME

In the following fits we take $f_0 = 86$ MeV [26]. There is some freedom in the value of the pion mass m_π to take in eqs. (5), (6) and (10). We choose $m_\pi = m_\pi(\infty)$ in λ, $\lambda(y)$ and $c(m_\pi)$, and $m_\pi = m_\pi(L)$ otherwise.

Let us first consider the pion mass. In Fig. 2 we show the fits of eq. (10) to m_π for two of our lattice ensembles. The corrections to m_π are well described by this equation. Apart from $m_\pi(\infty)$, we have one free parameter, $c(m_\pi)$, only. Equally good fits are obtained for $\beta = 5.40$, $\kappa = 0.13660$ and 0.13640. The parameter $c(m_\pi)$ is found to vanish with a large inverse power of the pion mass.

The finite size corrections predicted by the NLO expression

$$\delta g_A(m_\pi L \approx 2.7) \approx 3(\pm 3)\%$$

Fit $g_A(L_s, L_t) = g_A^\infty + B e^{-m_\pi L_s} + C e^{-m_\pi L_t}$

At $m_\pi \approx 250$ MeV:

$$g_A(m_\pi L_s = 4) - g_A^\infty = -0.009(54)$$

$$g_A(m_\pi L_t = 4) - g_A^\infty = -0.016(39)$$

[C.Alexandrou et al, 1303.5979]

- $N_f=2$ Clover QCDSF $a=0.076, 0.071, 0.06$ fm
- $N_f=2+1$ TMF $a=0.056$ fm

[R.Horsley et al (QCDSF), 1302.2233]

- $m_\pi L \approx 2.7$
- $m_\pi \approx 250$ MeV

Multiple syst.effects?

(L_s, L_t)-dependence with Wilson fermions [J.R.Greene (LHPC), prelim.]
Gold-plated observables

Nucleon Dirac Radius

\[F^{u-d}(Q^2) \approx F(0) \left[1 - \frac{1}{6} Q^2 \langle r_1^2 \rangle^{u-d} + \mathcal{O}(Q^4) \right] \]

ChPT predicts divergence \(\sim \log m_{\pi}^2 \)

Larger \(L_S \), smaller \(Q_{\text{min}}^2 \) are desirable
Gold-plated observables

Dirac Radius: Excited States

2-state fits

[H.W.Lin et al (PNDME) arXiv:1306.5435]

\[m_\pi = 220 \text{ MeV} \]

\[m_\pi = 310 \text{ MeV} \]

Excited states problem:
Worse below 200 MeV?

[T.D.Rae (CLS-Mainz)]

[J.R.Green et al (LHPC), 1209.1687]

t_{sink} - t_{source} = 0.93, 1.16, 1.39 \text{ fm}
Radius: Finite Volume Corrections

FVE corrections to nucleon electric radius
[J.M.Hall et al, arXiv:1210.6124 (to appear in PLB)]

\[(r_1^2)^{u-d}(L_s, L_t) = (r_1^2)^{u-d}(\infty) + Be^{-m_\pi L_s} + Ce^{-m_\pi L_t} \]

\[\delta (r_1^2)^{u-d} \bigg|_{m_\pi L_s=4} = 0.008(38) \text{ fm}^2 \]
\[\delta (r_1^2)^{u-d} \bigg|_{m_\pi L_t=4} = 0.003(28) \text{ fm}^2 \]

\(m_\pi \approx 250 \text{ MeV} \)

Fit

\(m_\pi \approx 250 \text{ MeV} \)

\(\text{dependence with Wilson fermions} \) [J.R.Green (LHPC), prelim.]
Anomalous Magnetic Moment

\[\kappa_v = F_2^{u-d}(Q^2 = 0) \]

Larger \(L_S \), smaller \(Q_{\text{min}}^2 \) are desirable
Gold-plated observables

Quark Momentum Fraction

\[
\langle x \rangle_{u-d} = \int dx \ x \ (u(x) + \bar{u}(x) - d(x) - \bar{d}(x))
\]

Phenomenology:

\[
\langle x \rangle_{u-d}^{\overline{MS}(2 \ GeV)} = 0.155(5)
\]

\[
\langle N(p) | \bar{q} \gamma_{\{\mu} \bar{D}_{\nu}\} q | p \rangle = \langle x \rangle_{u-d} \bar{u}_p \gamma_{\{\mu} p_{\nu\}} u_p
\]

![Graph showing quark momentum fraction]
Quark Momentum Fraction: Excited States

Gold-plated observables

Sergey N. Syritsyn

Review of Hadron Structure
Lattice 2013, Mainz, July 29-August 3, 2013

[T.D.Rae (CLS-Mainz)]

[J.R.Green et al (LHPC) arXiv:1209.1687]

[S.Dinter et al (ETMC) arXiv:1112.2931]

[S.Collins et al (U.Regensburg), Sec.3B]
(Sub)Summary: Gold-plated observables

- (finally) Exciting developments at the physical pion mass
- Removing excited states is necessary in most cases
- Agreement is reassuring, but much more work is required to ensure quality control.
Hadron Wave Functions

• Wave functions of the Roper state and n=2 radial nucleon excitation

• LC Wave functions (distribution amplitudes) of the nucleon and negative parity excitations
Nucleon & Radial Resonance Wave Functions

Variational method in a basis of 4 nucleon operators

\[\chi_1^{(S)}(\vec{x}) = \epsilon^{abc} \left[\left(\bar{u}^{T_a}_{(S)} C \gamma_5 \bar{d}^b_{(S)} \right) \bar{u}^c_{(S)} \right] \vec{x} \]

with varying smearing radius \(S = 0.21, 0.32, 0.54 \) and 0.78 fm and find energy eigenvectors

Calculate w.f. of \(d \)-quark w.r.t. 2 \(u \) quarks:

\[\chi_1(\vec{x}, \vec{z}) = \epsilon^{abc} \left(u^{T_a}(\vec{x}) C \gamma_5 d^b(\vec{x} + \vec{z}) \right) u^c(\vec{x}) \]

\[\psi^d_\alpha(\vec{p}, t; \vec{z}) = \text{const} \cdot \sum_{\vec{x}} e^{-i\vec{p} \cdot \vec{x}} \langle \chi_1(\vec{x}, \vec{z}, t) \chi_1^{(S)}(t) \rangle \psi^{(S)}_\alpha \]

Nf=2+1 dynamical \(O(a) \)-improved Wilson fermions, \(m_\pi = 156 \text{ MeV} \)
Nucleon & Radial Resonance Wave Functions

\(m_\pi = 156 \text{ MeV} \)

- \(n = 0 \) Nucleon
- \(n = 1 \) "Roper"
- \(n = 2 \)

[D.Roberts et al (CSSM), arXiv:1304.0325 (to appear in Phys.Lett.B)]
Nucleon and N* Distribution Amplitudes

LC Fock valence state of a Baryon
\[|N^{(*)}, \uparrow\rangle = \text{const} \int \frac{[dx] \varphi^{(*)}(x_i)}{2\sqrt{24}x_1x_2x_3} \{ |u^\uparrow(x_1)u^\uparrow(x_2)d^\uparrow(x_3)\rangle - |u^\uparrow(x_1)d^\uparrow(x_2)u^\uparrow(x_3)\rangle \} \]

\[\varphi(x_i; \mu^2) = 120x_1x_2x_3 \left\{ 1 + c_{10}(x_1 - 2x_2 + x_3) \left(\frac{\alpha_S(\mu)}{\alpha_S(\mu_0)} \right)^{\frac{8}{3\beta_0}} + c_{11}(x_1 - x_3) \left(\frac{\alpha_S(\mu)}{\alpha_S(\mu_0)} \right)^{\frac{20}{9\beta_0}} + \ldots \right\} \]

Compute moments of DA on a lattice: \[\langle O_{\alpha\beta\gamma}(x)|N(0)\rangle \rightarrow \langle \Omega|O_{\alpha\beta\gamma}(x)|N\rangle \]

\{O(x)\} : local 3-quark operators with up to 2 derivatives

\[\varphi^{lmn} = \int [dx] x_1^l x_2^m x_3^n \varphi(x_1, x_2, x_3) \]

\{c_{1j}, c_{2j}\} \leftrightarrow \{\varphi^{lmn} | l + m + n = 1, 2\}

\[m_\pi = 290 \text{ MeV}, \ a = 0.072 \text{ fm} \]
Select Hadron Form Factor Results

- Vector form factors of the nucleon
- Axial form factors of the nucleon
- Strange quark contributions to the nucleon form factors
- Axial form factors of Delta(1232)
- Electric form factor of Lambda(1405)
- Timelike vector form factor of the pion
- Scalar form factor and radius of the pion
Nucleon Vector Form Factors (u-d)

\[
\langle P + q | \bar{q} \gamma^\mu q | P \rangle = \bar{U}_{P+q} \left[F_1(Q^2) \gamma^\mu + F_2(Q^2) \frac{i\sigma^{\mu\nu} q_\nu}{2M_N} \right] U_P
\]

- \(m_\pi = 354 \text{ and } 210 \text{ MeV} \)
- \(N_f=2+1+1 \) Twisted mass fermions & earlier works: QCDSF, LHP, RBC
 - [C.Alexandrou et al (ETMC), arXiv:1303.5979]
Nucleon Vector Form Factors (u-d)

\[\langle P + q | \bar{q} \gamma^\mu q | P \rangle = \bar{U}_{P+q} \left[F_1(Q^2) \gamma^\mu + \frac{F_2(Q^2)}{2M_N} i\sigma^{\mu\nu} q_\nu \right] U_P \]

\[m_\pi = 310 \text{ and } 220 \text{ MeV} \]

\[m_\pi = 354 \text{ and } 210 \text{ MeV} \]

Nf=2+1+1 Twisted mass fermions & earlier works
[C.Alexandrou et al (ETMC), arXiv:1303.5979]

Nf=2+1+1 HISQ + Clover(v) fermions
2-state fits to suppress exc.states
[T.Bhattacharya et al (PNDME)]
Nucleon Vector Form Factors (u-d)

\[\langle P + q | \bar{q} \gamma^\mu q | P \rangle = \bar{U}_{P+q} \left[F_1(Q^2) \gamma^\mu + F_2(Q^2) \frac{i \sigma^\mu\nu q_\nu}{2M_N} \right] U_P \]

- \(m_\pi = 310 \) and 220 MeV
- \(m_\pi = 149 \) MeV

\(m_\pi = 354 \) and 210 MeV

Nf=2+1+1 Twisted mass fermions & earlier works
[C.Alexandrou et al (ETMC), arXiv:1303.5979]

Nf=2+1+1 HISQ + Clover(v) fermions
2-state fits to suppress exc.states
[T.Bhattacharya et al (PNDME)]

Nf=2+1 clover-imp.Wilson, “summation” to suppress excited states
[J.R.Green et al (LHPC)]
Nucleon Axial & Pseudoscalar Form Factors

\[
\langle P + q | \bar{q} \gamma^\mu \gamma^5 q | P \rangle = \bar{U}_{P+q} \left[G_A(Q^2) \gamma^\mu \gamma^5 + G_P(Q^2) \frac{\gamma^5 q^\mu}{2M_N} \right] U_P
\]

- **G_A(Q^2)**: Axial form factor
- **G_P(Q^2)**: Pseudoscalar form factor

Dipole fit

\[
G_A(Q^2) \sim \frac{A}{(1 + \frac{1}{6}(r_A)^2Q^2)^2}
\]

Pole fit

\[
G_P(Q^2) \sim \frac{A}{(m_{pole})^2 + Q^2 + C}
\]

Data Points

- **N_f=2 TMF a=0.089 fm m_\pi=296 MeV**
- **N_f=2+1 TMF a=0.089 fm m_\pi=354 MeV**
- **N_f=2+1 Hybrid a=0.124 fm L=3.5 fm m_\pi=356 MeV**
- **N_f=2+1 Hybrid a=0.124 fm**

[C.Alexandrou (ETMC), 1303.5979]
Nucleon S-Quark Vector Form factors

\[G_s^{E,M,A}(Q^2) \]

\[m_\pi = 416 \text{ MeV} \]

-0.04
-0.02
0
0.02
0.04
0
0.05
0.1
0.15
0.2
0.25
0.3
\[a_s^2q^2 \]

\[G_s^{E,M,A}(Q^2) \]

\[m_\pi = 416 \text{ MeV} \]

-0.04
-0.02
0
0.02
0.04
0
0.05
0.1
0.15
0.2
0.25
0.3
\[a_s^2q^2 \]

\[G_s^{E,M,A}(Q^2) \]

\[m_\pi = 416 \text{ MeV} \]

-0.04
-0.02
0
0.02
0.04
0
0.05
0.1
0.15
0.2
0.25
0.3
\[a_s^2q^2 \]

Point-split current
Local current

[R. Babich et al, (DISCO Collab.) Phys.Rev.D85, 054510]

\[|G_s^{E,M,A}| \lesssim 1\% \text{ of } |G_{s u/d}^{E,M,A}| \]

[T. Doi (ChiQCD), 1010.2834]
\[\langle \Delta^+ | \bar{q} \gamma^\mu \gamma^5 \tau^3 q | \Delta^+ \rangle = -\bar{u}_\sigma \left[g_{1}(Q^2) \gamma^\mu \gamma^5 + g_{3}(Q^2) \frac{q^\mu \gamma^5}{2M_\Delta} \right] u_\tau + \frac{q^\sigma q^7}{4M_\Delta^2} \left(h_{1}(Q^2) \gamma^\mu \gamma^5 + h_{3}(Q^2) \frac{q^\mu \gamma^5}{2M_\Delta} \right) u_\tau \]
Delta(1232) Axial & Pseudoscalar Form Factors

\[\langle \Delta^+ | \bar{q} \gamma^\mu \gamma^5 \tau^3 q | \Delta^+ \rangle = -\bar{u}_\sigma \left[g^{\sigma \tau} \left(g_1(Q^2) \gamma^\mu \gamma^5 + g_3(Q^2) \frac{q^{\mu} \gamma^5}{2M_\Delta} \right) + \frac{q^{\sigma} q^{\tau}}{4M_\Delta^2} \left(h_1(Q^2) \gamma^\mu \gamma^5 + h_3(Q^2) \frac{q^{\mu} \gamma^5}{2M_\Delta} \right) \right] u_\tau \]

\[\langle \Delta^+ | \bar{q} \gamma^5 \tau^3 q | \Delta^+ \rangle = -\bar{u}_\sigma \left[g^{\sigma \tau} \tilde{g}(Q^2) \gamma^5 + \frac{q^{\sigma} q^{\tau}}{4M_\Delta^2} \tilde{h}(Q^2) \gamma^5 \right] u_\tau \]
Λ(1405) Electric Form Factor

6x6 Variational analysis: 2 octets + 1 singlet \(\otimes \) N=16,100 smearing

\[G_E(Q^2 = 0.16 \text{ GeV}^2) \]

\[m_{\pi}^2 [\text{GeV}^2] \]

In \(\Lambda(1405) \leftrightarrow \bar{K}N \), virtual cloud of \(\bar{K} = (s \bar{q}_{\text{light}}) \) enhances \(\langle r^2 \rangle^s \) and shrinks \(\langle r^2 \rangle^{u,d} \)
Timelike Pion Form Factor

$$|\langle \Omega | J_\mu | (\pi^+\pi^-)_{l=1} \rangle|^2 \longrightarrow |F_\pi(t = E_{\pi\pi}^2)|^2$$

[H.B. Meyer, PRL 107:072002(2011); arxiv:1105.1892]

2+1 dyn. Overlap fermions

Experiment

2+1 dyn. Overlap fermions

$$m_\pi = 380 \text{ MeV}$$

$$m_\pi = 290 \text{ MeV}$$

$$m_\pi = 140 \text{ MeV}$$

$$F_\pi(E)$$

$$E [\text{GeV}]$$

Vector-meson dominance fits

[Rom Feng (JLQCD); Poster sessn.]
Scalar Radius of the Pion

\[F_s(Q^2) = \langle \pi^+(p+q)|m_u\bar{u}u + m_d\bar{d}d|\pi^+(p)\rangle \]

[V.Guelpers, H.Wittig, G.von Hippel]

Nf=2 O(a)-improved Wilson Fermions

\[m_\pi = 300 \ldots 520 \text{ MeV} \]
\[a = 0.12 \text{ fm} \]

![NLO ChPT](image1)

\[m_\pi = 280 \ldots 650 \text{ MeV} \]
\[a = 0.063 \text{ fm} \]

![NNLO ChPT](image2)

Agreement with phenomenology

[Colangelo et al, Nucl.Phys.B603,125] :

\[\langle r^2 \rangle_s = 0.61(4) \text{ fm}^2 \]

Large disconnected contributions
Origin of the Nucleon Spin

Proton spin puzzle:
1989 EMC experiment finds
\[\Delta \Sigma = \sum_q (\Delta q + \Delta \bar{q}) = 0.2 \ldots 0.3 \]

Spin sum rule:
\[
J_{\text{glue}} + \sum_q J_q = \frac{1}{2}, \quad J_q = \frac{1}{2} \Delta \Sigma_q + L_q
\]

Quark Spin:
\[
\langle N(p)|\bar{q}\gamma^\mu \gamma^5 q|N(p)\rangle = (\Delta \Sigma_q) [\bar{u}_p \gamma^\mu \gamma^5 u_p]
\]

Angular momentum \((J_q)\):
\[
J_{q,\text{glue}} = \frac{1}{2} \left[A^{q,\text{glue}}_{20}(0) + B^{q,\text{glue}}_{20}(0)\right]
\]

where \(A_{20}, B_{20}\) are E.-M. tensor form factors:
\[
\langle N(p + q)| T_{\mu\nu}^{q,\text{glue}} |N(p)\rangle \rightarrow \left\{A_{20}, B_{20}, C_{20}\right\}(Q^2)
\]

\[
T^{q}_{\mu\nu} = \frac{\bar{q} \gamma\{\mu \vec{D}_\nu\} q}{4} \quad T^{\text{glue}}_{\mu\nu} = G^{a}_{\mu\lambda} G^{a}_{\nu\lambda} - \frac{1}{4} \delta_{\mu\nu} (G_{\mu\nu})^2
\]
Quark Angular Momentum and Spin (Connected)

\[J_u \approx 40 - 50\% \]
\[|J_d| \lesssim 10\% \]
\[|L_{u+d}| \lesssim \frac{1}{2} \Delta \Sigma_{u+d} \]

(*) not including disconnected diagrams!
Disconnected Quark Angular Momentum

[K.F.Liu (ChiQCD), arXiv:1203.6388]

\[T(q^2), T_2(q^2) \text{ (DI)} \]

\[\langle x \rangle_{u+d, (DI)} = 0.076(14) \]
\[2J_{u+d, (DI)} = 0.072(14) \]

(chiral extrapolation values)

\[\langle x \rangle_s = 0.024(6) \]
\[2J_s = 0.023(7) \]

\[m_\pi = 478 \ldots 650 \text{ MeV} \]

statistical error is well under control and reliable

Origin of the Nucleon Spin
Gluon Momentum and Angular Momentum

[K.F.Liu (ChiQCD), arXiv:1203.6388]
(Quenched fermions)

Suppress UV fluctuations with the overlap operator:

\[\hat{G}_{\mu\nu} = \frac{1}{c_T a^2} \text{Tr}_{\text{spin}} [\sigma_{\mu\nu} D_{ov}(x, x)] + O(a) \]

\[\langle x \rangle_{\text{glue}} = T_1(0) = 0.313(56) \]

\[2J_{\text{glue}} = T_1(0) + T_2(0) = 0.254(76) \]

[QCDSF (R. Horsley et al) Phys.Lett.B714:312]
(Quenched fermions)

Background “field”:

\[S_{\text{gauge}} \rightarrow S_{\text{gauge}} - \lambda a \cdot \left(T_{00} - \frac{1}{3} T_{ii} \right) \]
\[\frac{1}{2} \left[(E^a)^2 + (B^a)^2 \right] \]
\[\frac{1}{2} \left[- (E^a)^2 + (B^a)^2 \right] \]

\[\langle x \rangle_{\text{glue}} = - \frac{2}{3m_N} \frac{\partial m_N}{\partial \lambda} \]

\[m_\pi = 314 \ldots 555 \text{ MeV} \]
Angular momentum: Quenched studies

$2L^q = 2J^q - \Delta \Sigma ^q$

$(\Delta \Sigma)^u_{\text{disc}} = (\Delta \Sigma)^d_{\text{disc}} \approx (\Delta \Sigma)^s_{\text{disc}} \approx -0.12(1)$

$2L_{u+d} \approx 0.49 = 0.0|_{\text{conn}} + 0.49|_{\text{disc}}$
Origin of the Nucleon Spin

(Disconnected) Light Quarks Spin

S. J. Dong et al, '95
SESAM '99
QCDSF '11
ETMC '12
S. Meinel '13
ETMC '13

\[
|\Delta q_{(u,d)}^{\text{disc.}}| \lesssim 0.06
\]

\(m_\pi = 373\) MeV

[**C. Alexandrou et al (ETMC), 2013**]

LHPC preliminary

\[
m_\pi \approx 317\text{ MeV}
\]

\([S. Meinel '13 (LHPC)]\)

(Using hierarchical probing)

K. Orginos 1302.4018
Strange Quark Spin

Origin of the Nucleon Spin

\begin{align*}
\Delta m^2 &= 0.05(24) \\
\Delta s &= 0.005(24)
\end{align*}

Stochastic estimation of the quark loop

\begin{align*}
m_\pi &= 293 \ldots 495 \text{ MeV} \\
m_\pi &= 285 \text{ MeV} \\
m_\pi &= 416 \text{ MeV}
\end{align*}

\begin{align*}
\text{[M.Engelhardt, Phys.Rev.D86, 114510]} \\
\text{[G.Bali et al (QCDSF) PRL 108, 222001]} \\
\text{[R.Babich et al, (DISCO Collab.) Phys.Rev.D85, 054510]}
\end{align*}

\begin{align*}
\text{Background “field”} \\
S &= S_{\text{SLiNC}} + \lambda \sum_x [\bar{s} \gamma_3 \gamma_5 s]_x \\
\frac{\partial E_H}{\partial \lambda} &= \langle N | \bar{s} \gamma_3 \gamma_5 s | N \rangle \\
\Delta \Sigma^s &= 0.005(24)
\end{align*}

\[\text{[QCDSF, '13]}\]
(Sub)Summary: Nucleon Spin

★ Quark spin from connected contractions agrees with phenomenology

★ Total quark orbital angular momentum is consistent with zero (using only connected data for J_q and S_q) although individual L_u and L_d are not zero

★ Older quenched calculations indicate $L_{u+d} \sim 50\%$ (mostly due to disconnected contractions)

★ Newer dynamic fermion calculations yield much smaller values and imply $L_{u+d} \sim 20-30\%$

★ Need update for gluon angular momentum with dynamical fermions
Parton Distribution Functions on a Lattice

1. (TMD) PDFs = Quark-bilinear correlators separated by a light-cone shift

2. Relax the LC condition: slightly spacelike 4-vector n

3. Boost the system:
 Spatial separation is suitable for lattice QCD

4. Recover LC physics in $n \cdot P \to \infty$ limit
TMDs from Lattice: Formalism

Transverse momentum-dependent (TMD) parton distributions

\[
\tilde{\Phi}^{[\Gamma]}(x, \vec{b}_\perp; P, S, \ldots) = \int \frac{db^-}{4\pi} e^{ix(b^- P^+)} \frac{\langle P, S| \bar{q}(0) \Gamma U(C_b) q(b) | P, S \rangle}{\{\text{soft factor}\}}
\]

\[
\tilde{\Phi}^{[\Gamma]}(x, \vec{k}_\perp; P, S, \ldots) = \int \frac{d^2 b_\perp}{(2\pi)^2} \tilde{\Phi}^{[\Gamma]}(x, \vec{b}_\perp; P, S, \ldots)
\]

\[C_b \text{ is process-dependent}\]

[M. Engelhardt, B. Mush, A. Shaefe, Ph. Hagler]

Gauge link structure:

In matrix element

\[
\tilde{\Phi}^{[\Gamma]}_{\text{unsbtr.}}(b, P, S, \ldots) \equiv \frac{1}{2} \langle P, S| \bar{q}(0) \Gamma U[0, \ldots, b] q(b) | P, S \rangle
\]

Staple-shaped gauge link \(U[0, \eta v, \eta v + b, b]\)

\[l + N(P) \rightarrow l' + h(P_h) + X\]

LC limit: Collins-Soper parameter

\[\hat{\zeta} = \frac{P \cdot v}{m_N |v|} \rightarrow \infty\]

incorporates SIDIS final state effects
TMDs from Lattice: T-odd momentum shift (1)

x-integrated TMDs (moments) with finite $\overline{b}_T^2 \neq 0$ as an UV-regulator

Sivers Shift: \[
\langle k_y \rangle^{Sivers}(\overline{b}_T^2) \equiv m_N \frac{\overline{f}_1^{[1]}(\overline{b}_T^2)}{\overline{f}_1^{[1]}(0)} \overline{b}_T^2 \rightarrow 0 \int dx \int d^2 k_\perp \cdot k_y \cdot \Phi[\gamma^+](x, k_\perp) \int dx \int d^2 k_\perp \cdot 1 \cdot \Phi[\gamma^+](x, k_\perp)
\]

To compute an x-moment, specify kinematics: $\int dx \rightarrow b \cdot P = 0$

To compute a k_y-moment, select Lorentz structure [B.Mush, Phys.Rev.D85, 094510]
TMDs from Lattice: T-odd momentum shift (1)

x-integrated TMDs (moments) with finite $\vec{b}_T^2 \neq 0$ as an UV-regulator

Sivers Shift:

\[
\langle k_y \rangle^{\text{Sivers}} (\vec{b}_T^2) \equiv m_N \frac{\tilde{f}_1^{[2][1]}(\vec{b}_T^2)}{\tilde{f}_1^{[1][0]}(\vec{b}_T^2)} \xrightarrow{\vec{b}_T^2 \to 0} \frac{\int dx \int d^2k_\perp \cdot k_y \cdot \Phi[\gamma^+](x, \vec{k}_\perp)}{\int dx \int d^2k_\perp \cdot 1 \cdot \Phi[\gamma^+](x, \vec{k}_\perp)}
\]

Transverse coordinate dependence

Sivers Shift (SIDIS), u,d – quarks

$\zeta = 0.39$, $m_\pi = 518$ MeV

[M.Engelhardt, B.Mush, A.Shaefer, Ph.Hagler]
TMDs from Lattice: T-odd momentum shift (1)

x-integrated TMDs (moments) with finite $\vec{b}_T^2 \neq 0$ as an UV-regulator

Sivers Shift:

$$\langle k_y \rangle_{\text{Sivers}} (\vec{b}_T^2) \equiv m_N \frac{\tilde{f}_1^{1} (\vec{b}_T^2)}{\tilde{f}_1^{[1](0)} (\vec{b}_T^2)} \to \int dx \int d^2 k_\perp \cdot k_y \cdot \Phi^{[\gamma^+]}(x, k_\perp)$$

Transverse coordinate dependence

Light-cone limit: $\hat{\zeta} \to \infty$

[M. Engelhardt, B. Mush, A. Shaefer, Ph. Hagler]
TMDs from Lattice: T-odd momentum shift (2)

x-integrated TMDs (moments) with finite $\vec{b}_T^2 \neq 0$ as an UV-regulator

Boer-Mulders Shift:

$\langle k_y \rangle_{BM} (\vec{b}_T^2) \equiv m_N \frac{\tilde{h}_1^{[1][1]}(\vec{b}_T^2)}{\tilde{f}_1^{[1][0]}(\vec{b}_T^2)} \ \vec{b}_T^2 \to 0 \ \int dx \int d^2 \vec{k}_\perp \cdot k_y \cdot \Phi^{[\sigma^{x,0}]}(x, \vec{k}_\perp)$

$\int dx \int d^2 \vec{k}_\perp \cdot 1 \cdot \Phi^{[\gamma]}(x, \vec{k}_\perp)$

Boer–Mulders Shift

- total
- contrib. from \tilde{a}_4

- up – quarks, $\tilde{\zeta} = 0.39,$ $|b| = 0.36$ fm
- connected only
- partial statistics only

m$_\pi$$\bar{A}_{4B}/\bar{A}_{2B}$

- up-quarks
- $\tilde{\zeta} = 1.01$
- $|b| = 0.36$ fm
- $m_\pi = 518$ MeV

[Boer-Mulders Shift: avg. y-momentum of transv. polarized quarks in an unpolarized proton]

proton

pion

[S. N. Syritsyn]
TMDs from Lattice: T-odd momentum shift (2)

x-integrated TMDs (moments) with finite $\vec{b}_T^2 \neq 0$ as an UV-regulator

Boer-Mulders Shift:

$$\langle k_y \rangle^{BM} (\vec{b}_T^2) \equiv m_N \frac{\tilde{h}_1^{[1][1]} (\vec{b}_T^2)}{\tilde{f}_1^{[1][0]} (\vec{b}_T^2)} \xrightarrow{\vec{b}_T^2 \to 0} \int dx \int d^2 k_\perp \cdot k_y \cdot \Phi^{[\sigma^{x,+}]}(x, \vec{k}_\perp)$$

proton

$$\int dx \int d^2 k_\perp \cdot 1 \cdot \Phi^{[\gamma^+]}(x, \vec{k}_\perp)$$

pion

Transverse coordinate dependence

Boer–Mulders Shift (SIDIS), u–d – quarks

$\zeta = 0.39,$

$m_\pi = 518$ MeV

Results: Boer-Mulders shift

Dependence of SIDIS limit on $|\vec{b}_T|$

$\frac{\tilde{h}_1^{[1][1]} (\vec{b}_T^2)}{\tilde{f}_1^{[1][0]} (\vec{b}_T^2)}$

up-quarks

$\hat{\zeta} = 0$

$\hat{\zeta} = 1.01$

$\hat{\zeta} = 2.03$

Transverse coordinate dependence

$$m_\pi = 518 \text{ MeV}$$

[O.Engelhardt, B.Mush, A.Shaefer, Ph.Hagler]
TMDs from Lattice: T-odd momentum shift (2)

x-integrated TMDs (moments) with finite $\vec{b}_\perp^2 \neq 0$ as an UV-regulator

Boer-Mulders Shift:

$$
\langle k_y \rangle^{BM} (\vec{b}_T^2) \equiv m_N \frac{\tilde{h}_{1}^{1} (\vec{b}_T^2)}{\tilde{f}_{1}^{[1](0)} (\vec{b}_T^2)} \xrightarrow{\vec{b}_T^2 \to 0} \int dx \int d^2 k_\perp \cdot k_y \cdot \Phi[^{\sigma^x,+}] (x, \vec{k}_\perp) / \int dx \int d^2 k_\perp \cdot 1 \cdot \Phi[^{\gamma^+}] (x, \vec{k}_\perp)
$$

proton

Boer–Mulders Shift (SIDIS), $u–d$ – quarks

m_π	Value
518 MeV	20^3
369 MeV	20^3
369 MeV	28^3

$|b_T| = 0.36 \text{ fm}$

Light-cone limit: $\hat{\zeta} \to \infty$

pion

$P \sim (1, 0, 0)$

$P \sim (1, 1, 0)$

$P \sim (1, 1, 1)$

Contribution A_4 only
PDFs From Lattice: Spatial Quark Correlations

Definition of a parton distribution function:

\[
q(x, \mu) = \int \frac{dx}{4\pi} e^{ix(z-P_+)} \langle P | \bar{q}(z-) \gamma^+ \exp \left[-ig \int_0^{z-} dt A_+(t) \right] q(0) | P \rangle
\]

Instead, boost the hadron and make gauge link spatial

\[
\tilde{q}(x, \mu, P_z) = \int \frac{dx}{4\pi} e^{ix(zP_z)} \langle P | \bar{q}(z) \gamma^+ \exp \left[-ig \int_z^z dt A_z(t) \right] q(0) | P \rangle + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{P_z^2}, \frac{M^2}{P_z^2} \right)
\]

Equivalent to “static” virtual photon \(q^\mu = (0, \vec{Q}) \) and boosted hadron \(P_z = \frac{Q}{2x} \)

[X.-D. Ji, arXiv:1305.1539]
PDFs From Lattice: Preliminary Results

\[\int \frac{dx}{4\pi} e^{ix(zP_z)} \langle P | \bar{q}(z) \gamma^\gamma | q(0) | P \rangle \]

\[m_\pi = 310 \text{ MeV} \quad a = 0.12 \text{ fm} \quad P_z = \frac{2\pi}{L} \{1, 2, 3\} \]

[H.W. Lin, S. Cohen, J.-W. Chen, X. Ji]
PDFs From Lattice: Preliminary Results

\[\int \frac{dx}{4\pi} e^{ix(zPz)} \langle P|\bar{q}(z)\gamma^\mu \exp \left[-ig \int_0^z dt A_\mu(t) \right] q(0)|P\rangle \]

[H.W.Lin, S.Cohen, J.-W.Chen, X.Ji]
PDFs From Lattice: Preliminary Results

\[\int \frac{dx}{4\pi} e^{ix(zP_z)} \langle P|\bar{q}(z)\gamma^{z}\gamma^{5} \exp \left[-ig \int_{0}^{z} dt A_{z}(t) \right] q(0)|P \rangle \]

\[\frac{(\Delta u - \Delta d)}{g_{A}} \]

[H.W.Lin, S.Cohen, J.-W.Chen, X.Ji]
PDFs From Lattice: Preliminary Results

\[\int \frac{dx}{4\pi} e^{i x (z P_z)} \langle P|\bar{q}(z) \sigma^{x,y} \exp \left[-ig \int_{0}^{z} dt A_z(t) \right] q(0)|P\rangle \]

[H.W.Lin, S.Cohen, J.-W.Chen, X.Ji]
Summary

- Encouraging Hadron Structure results at the physical pion mass: axial charge, radius, vector form factors. Although clearing up systematic effects is still to be done.

- Excited states require close attention: variational methods look most promising.

- Background field methods: potential demonstrated for glue momentum fraction.

- New approach to computing parton distribution functions on a lattice: the first results look promising; theory side needs more work.