Commentary

Gel and cells: A promising reparative strategy for degenerated intervertebral discs

Rocky S. Tuan

Institute for Tissue Engineering and Regenerative Medicine, University Administration Building, The Chinese University of Hong Kong, Shatin Hong Kong SAR China

A R T I C L E I N F O

Article History:
Received 30 March 2020
Accepted 30 March 2020
Available online xxx

One of the most common causes of physical disability is lower back pain, which affects overall well-being and work performance, with recent reports indicating a lifetime prevalence as high as 85% in industrialized countries [1]. The recent Global Burden of Disease study states that lower back pain is the most common musculoskeletal disorder and imposes the highest disability burden of all specific conditions in developed countries [2]. There are currently no disease-modifying therapies for lower back pain and, although there are several known risk factors, such as obesity, psychological factors, age and sex, and genetic variants, the underlying cellular and molecular cause(s) of back pain remain unclear [3].

While the exact etiology of lower back pain is unknown, a frequently associated pathology is the degeneration of the intervertebral disc (IVD), a specialized joint of the axial skeleton that serves to absorb and disperse compressive forces, to confer tensile and torsional strength, and to provide flexibility to the spine [4]. The mature IVD is a multi-component structure consisting of three distinct, yet interdependent specialized tissues: a gelatinous central nucleus pulposus (NP), encaised by the outer fibrous annulus fibrosus (AF), that together are sandwiched between the cartilage endplates that anchor the IVD to the adjacent, rostral and caudal vertebral bodies. IVD herniation is a common pathology of sciatica and is often treated by discectomy. While there have been previous reports on the application of BMSCs in various hydrogel biomaterial scaffolds for IVD repair [e.g., 10], a particularly intriguing finding reported here is the apparent, mutually enhancing interaction between BMSCs and NPCs, resulting in both BMSC differentiation into NPCs and activation of NPCs. Notochordal cells, which are developmental precursors of NPCs have previously been shown to stimulate BMSC differentiation towards a young NPC phenotype [9], thought to be mediated by secreted factors. However, it is not known that BMSCs have a reciprocal stimulatory effect on NPCs. The

DOI of original article: http://dx.doi.org/10.1016/j.ebiom.2020.102698.
E-mail addresses: tuans@cuhk.edu.hk, rst13@pitt.edu

https://doi.org/10.1016/j.ebiom.2020.102756
2352-3964/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
encapsulation of BMSCs by Ukeba et al. [6] likely enhanced the retention of BMSC-secreted factors, resulting in enhancement of NPC bioactivity observed in the 3D in vitro cultures, as well as activation of resident NPCs in the site of IVD degeneration in vivo. The absence of osteophyte formation also indicated that the rapid curing of the UPAL hydrogel prevented leakage of BMSCs. In this manner, the “Gel-Cells” approach may function as a means to efficiently capture the trophic activity of the BMSCs, although it is unknown whether the immunomodulatory activity of the BMSCs also played a role in the observed effects.

There are, however, some remaining hurdles for successful and practicable translation of the technology described by Ukeba et al. [6]. These include: (1) effective repair of the AF, the outer fibrous structure of the IVD, which is often compromised in degenerative disc diseases; (2) achieving material properties in the regenerated tissue that are comparable to those of the native NP, a critical requirement for its mechanical function; and (3) functional integration of the regenerated NP with the other components of the IVD, i.e., the AF and the cartilage endplates, for structural integrity and mechanical stability. Finally, given the continuous mechanically “pressing” need of the loaded environment of the IVD, it is essential that production of the new ECM in the “regenerated” IVD must be optimally matched, in time and scale, to biodegradation of the non-native alginate hydrogel scaffold, to achieve biocompatible and structural stability.

Disclosure

None

References

[1] Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet 2017;389(10070):736–47.
[2] Blyth FM, Briggs AM, Schneider CH, Hoy DG, March LM. The global burden of musculoskeletal pain – Where to from here? Am J Public Health 2019;109(1):35–40.
[3] Gorth DJ, Shapiro JM, Rishud MV. Discovery of the drivers of inflammation induced chronic low back pain: from bacteria to diabetes. Discov Med 2015;20(110):177–84.
[4] Smith LJ, Neururkar NL, Choi KS, Harfe BD, Elliott DM. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech 2011;4(1):31–41.
[5] Bailey A, Araghi A, Blumenthal S, Huffman GV. Prospective, multicenter, randomized, controlled study of annular repair in lumbar discectomy: two-year follow-up. Spine 2013;38:1161–9.
[6] Ukeba D, Sudo H, Tsujimoto T, Ura K, Yamada K, Iwasaki N. Bone marrow mesenchymal stem cells combined with ultra-purified alginate gel as a regenerative therapeutic strategy after discectomy for degenerated intervertebral discs. EBioMedicine 2020;53:102698.
[7] Andrzejewska A, Lukomska B, Janowski M. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells 2019;37(7):855–64.
[8] Tsujimoto T, Sudo H, Todor M, Yamada K, Iwasaki K, Ohnishi T, Hirohama N, Nonoyama T, Ukeba D, Ura K, Ito YM, Iwasaki N. An acellular bioresorbable ultra-purified alginate gel promotes intervertebral disc repair: a preclinical proof-of-concept study. EBioMedicine 2018;37:521–34.
[9] Korecki CL, Taboa JM, Tuan RS, latriss JCD. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype. Stem Cell Res Ther 2010;1(2):18.
[10] Nesti LJ, Li WJ, Shanti RM, Jiang YJ, Jackson W, Freedman BA, Kuklo TR, Giuliani JR, Tuan RS. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HAFS) amalgam. Tissue Eng Part A 2008;14(9):1527–37.