Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle

Philip J.M. Brouwer, Aleksandar Antanasijevic, Zachary Berndsen, Anila Yasmeen, Brooke Fiala, Tom P.L. Bijl, Ilja Bontjer, Jacob B. Bale, William Sheffler, Joel D. Allen, Anna Schorcht, Judith A. Burger, Miguel Camacho, Daniel Ellis, Christopher A. Cottrell, Anna-Janina Behrens, Marco Catalano, Iván del Moral-Sánchez, Thomas J. Ketas, Celia LaBranche, Marit J. van Gils, Kwinten Sliepen, Lance J. Stewart, Max Crispin, David C. Montefiori, David Baker, John P. Moore, Per Johan Klasse, Andrew B. Ward, Neil P. King & Rogier W. Sanders

The development of native-like HIV-1 envelope (Env) trimer antigens has enabled the induction of neutralizing antibody (NAb) responses against neutralization-resistant HIV-1 strains in animal models. However, NAb responses are relatively weak and narrow in specificity. Displaying antigens in a multivalent fashion on nanoparticles (NPs) is an established strategy to increase their immunogenicity. Here we present the design and characterization of two-component protein NPs displaying 20 stabilized SOSIP trimers from various HIV-1 strains. The two-component nature permits the incorporation of exclusively well-folded, native-like Env trimers into NPs that self-assemble in vitro with high efficiency. Immunization studies show that the NPs are particularly efficacious as priming immunogens, improve the quality of the Ab response over a conventional one-component nanoparticle system, and are most effective when SOSIP trimers with an apex-proximate neutralizing epitope are displayed. Their ability to enhance and shape the immunogenicity of SOSIP trimers make these NPs a promising immunogen platform.
To counter the extensive sequence diversity of HIV-1, it is widely accepted that a successful vaccine will need to induce broadly neutralizing antibodies (bNabs)1,3. Immunogens intended to induce bNabs are all based on the viral envelope glycoproteins (Env) and an increasingly commonly used design platform involves SOSIP trimers, which are recombinant, soluble mimics of Env3–5. However, despite their ability to elicit autologous NABs against resistant (Tier-2) HIV-1 strains in animal models, further improvements to the design and delivery of SOSIP trimers are required to increase the potency, longevity, and breadth of NAB responses6–9.

Displaying antigens in a particulate array on synthetic nanoparticles (NPs) or, alternatively, virus-like particles (VLPs) is an established strategy to increase their immunogenicity9–12. Multivalent antigens that can mimic the repetitive and well-ordered antigenic structures found on many pathogens cross-link B-cell receptors (BCRs) and activate B cells more efficiently than their monovalent counterparts10–12. In addition, they can be taken up by antigen-presenting cells and trafficked to lymph nodes more efficiently, leading to improved formation of germinal centers13–16. This category of immunogen may be particularly valuable for priming responses, because the avidity advantage conferred by multivalent presentation may compensate for interactions with the BCRs of naive B cells, which tend to be of low affinity.

Self-assembling proteins are attractive as scaffolds for multivalent antigen presentation, as they form well-defined materials that seamlessly integrate the displayed antigen via genetic fusion, enabling large-scale production by standard methods for producing biologics9. Env trimers have previously been presented in multivalent form on ferritin NPs17–20. However, these NPs assemble intracellularly; a process that can lead to the presence of misfolded and non-native trimers on the secreted particles, and hence the presentation of unwanted epitopes for non-neutralizing antibodies (non-NABs)17,21,22. In addition, furin-mediated cleavage of Env is inefficient on ferritin particles17,18. Perhaps in consequence, Env-ferritin particles induced NAB responses that were skewed towards neutralization-sensitive Tier-1 viruses17,18,22. Env trimers have also been expressed on enveloped VLPs. However, the same issue surrounding intracellular assembly applies here as well, and HIV-1 Env VLPs are difficult to produce in large amounts and to an appropriate degree of homogeneity and purity23–25.

Alternatively, purified, recombinant soluble Env proteins, including native-like trimers, can be non-covalently or covalently attached to liposomes or, as recently demonstrated, covalently attached to ready-formed VLPs to make particulate antigens15,16,26–29. The practicalities of producing liposome-based immunogens on a large scale for human trials remain to be addressed.

We recently reported the computational design of self-assembling protein NPs constructed from two distinct oligomeric protein components30. This property makes it possible to express and purify each component separately; when mixed, they assemble efficiently into highly ordered, homogenous icosahedral particles ranging from 24 to 40 nm in diameter. The enhanced control offered by designed two-component NPs could be useful for the production of NP immunogens displaying exclusively well-folded, native-like HIV-1 Env trimers at high density. Such immunogens would circumvent the conformational heterogeneity and low density of Env on the viral membrane, both of which are proposed immune evasion mechanisms of HIV-131,32. Here we describe the computational design, production, and in vitro properties of self-assembling, two-component NP immunogens that present native-like SOSIP trimers of several genotypes. We also report on the immunogenicity in rabbits of NP immunogens that present BG505 SOSIP.v5.2 or ConM SOSIP.v7 trimer.

Results

BG505 SOSIP-I53-50A.1NT1 comprises native-like trimers. We recently described the computational design of two-component self-assembling nanomaterials that can be assembled in vitro from independently purified subunits30,33. To generate building blocks capable of displaying native-like Env trimers, we computationally docked the crystal structure of BG505 SOSIP.I6434 to a set of trimeric NP components with exterior-facing N termini (see Methods). An early screen for the expression of several of our designed nanoparticle components fused to BG505 SOSIP revealed that the trimeric component of the recently described NP I53-5030, designated I53-50A, secreted at higher levels than any other scaffold when fused to BG505 SOSIP. Selecting this scaffold for experimental evaluation was further supported by the observation that I53-50A is extremely stable and capable of scaffolding viral glycoprotein antigens35. I53-50NP is a 120-subunit assembly with icosahedral symmetry comprising 20 trimeric (I53-50A) and 12 pentameric (I53-50B) building blocks; a NP immunogen constructed from a SOSIP-I53-50A trimeric fusion protein (Fig. 1a) should present 20 SOSIP trimers in a dense array on the NP exterior.

We genetically fused the previously described BG505 SOSIP.v5.2 sequence36 to the prototypical I53-50A and three variants of this component: I53-50A.1NT1, I53-50A.1NT2, and I53-50A.1PT1 (see Supplementary Note 1 for amino acid sequences), which were designed as part of a previous effort to drive encapsulation of biomolecules in the I53-50 interior30. The constructs were expressed in 293F cells and the products purified via the SOSIP trimer moieties using PGT145 bNAb-affinity chromatography. Of the four variants tested, the I53-50A.1NT1 variant had the greatest yield (~0.9 mg L−1), showed the highest proportion of trimers, and was fully cleaved (Fig. 1b and Supplementary Fig. 1a). A considerable proportion (~40%) of the fusion proteins formed aggregates during purification (Fig. 1c), but size-exclusion chromatography (SEC)-purified, aggregate-free trimer fractions were 100% native-like when imaged by negative-stain electron microscopy (NS-EM) (Fig. 1d). Furthermore, the glycosylation profiles of BG505 SOSIP-I53-50A.1NT1 and the BG505 SOSIP trimer were highly similar as determined by hydrophilic interaction ultra-performance liquid (HILIC-UPLC) (Fig. 1e). Overall, we conclude that the purified trimer components of the BG505 SOSIP-I53-50A.1NT1 fusion protein are fully cleaved and native-like.

BG505 SOSIP-I53-50NPs assemble with high efficiency. Purified BG505 SOSIP-I53-50A.1NT1 was then mixed with a pentameric I53-50B variant, designated I53-50B.4PT130, to drive assembly of the icosahedral NP immunogen. SEC purification of the SOSIP-I53-50A.1NT1 and I53-50B.4PT1 mixture revealed a peak at an elution volume of 8.5–11.5 mL, indicating formation of a high-molecular-weight complex (Fig. 2a). The SEC fractions corresponding to this peak were pooled and analyzed by reducing SDS-PAGE and NS-EM. Bands corresponding to the gp120 (~120 kDa), gp41-153-50A.1NT1 (~48 kDa), and I53-50B.4PT1 (~18 kDa) components were all visible on the gels (Fig. 2a). When separating the peak into three pools, pools #1 (~8.5–9.5 mL) and #2 (~9.5–10.5 mL) contained primarily fully assembled icosahedral NPs with a diameter of ~40–50 nm, with a minor population of partially assembled particles also visible (Fig. 2b and Supplementary Fig. 1b). Pool #3 (~10.5–11.5 mL), accounting for <10% of the total peak area, contained more distorted particles and free SOSIP-I53-50A.1NT1 components (Supplementary Fig. 1b). Hence, fractions corresponding to pool #3 were not included when producing SEC-purified BG505 SOSIP-I53-50NPs.
We then used differential scanning fluorimetry (nanoDSF) to assess the stability of the NPs. A comparative study with the corresponding trimer showed that neither the presence of the I53-50A.1NT1 component nor presentation on the I53-50NP affected the thermostability of the Env component. Two discrete unfolding events were apparent in the thermal melting profiles for BG505 SOSIP-I53-50NPs; the SOSIP trimer components unfolded at a lower temperature than the I53-50NP core (72.5 vs. 82.0 °C, respectively; Table 1 and Supplementary Fig. 3a). Interestingly, we were unable to determine a T_m for the hyperstable unmodified I53-50NP, suggesting that the presence of the SOSIP trimers may slightly decrease the thermostability of the NPs. Finally, we used Dynamic Light Scattering (DLS), NS-EM, and SEC to show that the assembled BG505 SOSIP-I53-50NPs can withstand a freeze–thaw cycle at −80 °C (Table 1 and Supplementary Fig. 3b, c).

High-resolution structure of BG505 SOSIP-I53-50NPs. To further assess assembly efficiency and structural integrity, we performed single-particle cryo-EM analysis on BG505 SOSIP-I53-50NPs. After several rounds of two-dimensional (2D) and three-dimensional (3D) classification, a final set of ~3600 projections was retained and reconstructed with icosahedral symmetry to a global resolution of ~4.5 Å as determined by Fourier shell correlation (Supplementary Fig. 1c–g and Table 2). The 3D reconstruction both confirmed the predicted architecture of the I53-50A.1NT1.
scaffold and the presence of BG505 SOSIP trimers attached to each I53-50A.1NT1 moiety. However, because of flexibility in the linker between the two domains (Fig. 1a), the SOSIP trimers are poorly resolved; they appear only as diffuse densities surrounding the well-resolved I53-50NP core (Fig. 2c and Supplementary Fig. 1f). At these resolutions we were able to refine an atomic model of the I53-50NP core into the cryo-EM map; the outcome revealed only minor adjustments from the computationally designed structure, primarily in the I53-50A.1NT1 moiety and at the interface between I53-50A.1NT1 and I53-50B.4PT1 (Fig. 2d).

Finally, low-pass filtering of the 4.5 Å map revealed visible density for both the BG505 SOSIP trimers and the genetic linker (Fig. 2e).

Fig. 2 Characterization of BG505 SOSIP-I53-50NP assembly and cryo-EM structure. a Representative SEC chromatogram (left) of assembled BG505 SOSIP-I53-50NP (red) overlaid with BG505 SOSIP-I53-50A.1NT1 (gray) and reducing SDS-PAGE (right) of pooled BG505 SOSIP-I53-50NP fractions. b Raw NS-EM micrograph of pooled fractions corresponding to BG505 SOSIP-I53-50NPs. The white bar corresponds to 200 nm. c Segmentation of the sharpened cryo-EM map at high contour level showing details of NP core (left) and Gaussian filtered map at low contour levels showing poorly resolved SOSIP trimers (right). d Details of I53-50A.1NT1 (left) and I53-50B.4PT1 (right) showing the predicted model (top) and cryo-EM map (bottom). Root-mean-square deviation (RMSD) are shown below each component. e Low-pass-filtered cryo-EM map and pseudo-atomic model of BG505 SOSIP-I53-50NP with detail of the linker separating I53-50A.1NT1 and BG505 SOSIP. Source data are provided as a Source Data file.

SOSIP-I53-50NPs of other Env genotypes assemble efficiently.

To explore the generalizability of the SOSIP-I53-50NP design, we expressed I53-50A fusion proteins bearing SOSIP trimers based on the AMC011 (Clade B), ZM197M (Clade C), or ConM SOSIP (consensus of Group M) genotypes. The previously described ConM SOSIP.v7 trimer could be fused to the prototypical I53-50A component and produced in good yield (~2 mg L^{-1}). For the
Table 1 Morphology and thermostability of SOSIP-I53-50NPs

Morphology (DLS)	Thermostability (nanoDSF)			
	R_h (nm)a	Pd (%)b	T_{m1} (°C)c	T_{m2} (°C)c
BG505 SOSIP	6.7d	4.4d	72.4 (±1.3)	–
BG505 SOSIP-I53-50A.1NT1	n.d.	n.d.	72.6 (±0.6)	–
BG505 SOSIP-I53-50NP	22.6	5.2	72.5 (±0.2)	82.0 (±0.2)
ConM SOSIP	6.4e	12.5e	65.7 (±0.1)	–
ConM SOSIP-I53-50A	n.d.	n.d.	67.8 (±0.1)	–
ConM SOSIP-I53-50NP	22.6	7.1	67.8 (±0.1)	–
ZM197M SOSIP-I53-50NP	24.6	13.8	69.1 (±0.1)	84.4 (±0.2)f
AMC011 SOSIP-I53-50NP	23.8	11.0	72.6 (±0.6)	83.9 (±0.6)f

All samples have been subjected to a freeze-thaw cycle at –80 °C prior to experiments. All SOSIP-I53-50NPs have the expected R_h of an intact NP and are monodisperse after a freeze-thaw cycle at –80 °C. For BG505 and ConM, corresponding SOSIP trimers and SOSIP fusion proteins are included for comparison. The AMC011 SOSIP-I53-50NP solution was mixed 3:1 with Protein Stabilizing Cocktail (ThermoScientific) prior to freezing. NanoDSF experiments were performed three times. Shown are the means of three measurements with SDs between brackets. See also Supplementary Fig. 3.

aHydrodynamic radius
bPolydispersity, a sample with a Pd < 14% is considered monodisperse
cMelting temperature
dValues adopted from ref. 36
eValues adopted from ref. 22

Table 2 Cryo-EM data collection, refinement, and validation statistics

BG505 SOSIP-I53-50NP (EMDB-20261) (PDB 6P6F)
Data collection and processing
Magnification
Voltage (kV)
Electron exposure ($e^-/Å^2$)
Defocus range (µm)
Pixel size (Å)
Symmetry imposed
Initial particle images (no.)
Final particle images (no.)
Map resolution (Å)
FSC threshold
Map resolution range (Å)
Refinement
Initial model used (PDB code)
Model resolution (Å)
FSC threshold
Model resolution range (Å)
Map sharpening B factor (Å²)
Model composition
Non-hydrogen atoms
Protein residues
Ligands
B factors (Å²)
Protein
Ligand
R.m.s. deviations
Bond lengths (Å)
Bond angles (°)
Validation
MolProbity score
Clashscore
Poor rotamers (%)
EMRinger score
Ramachandran plot
Favored (%)
Allowed (%)
Disallowed (%)

SOSIP trimers on I53-50NPs maintain their antigenicity. We used surface plasmon resonance (SPR) to determine whether the antigenicity of the SOSIP trimers was altered by their presentation on the surface of the I53-50NPs. BG505 or ConM SOSIP trimers and the corresponding SOSIP-I53-50NPs were captured onto chips by their His-tags (for SOSIP trimers on the C terminus, for SOSIP-I53-50NPs on the exterior-facing C terminus of the I53-50B.4PT1 pentamer) and the association and dissociation of various bNabs and non-NAbs was monitored. The PGT145 and PG9 bNabs against trimer-dependent apical epitopes bound similarly to the SOSIP trimers in the two contexts (Supplementary Fig. 4a). However, bNabs directed to epitopes further down from the apex bound less well to SOSIP-I53-50NP than the corresponding trimers, and this difference increased when the epitope was located closer to the base. Various non-NAbs against
the CD4bs (b6), the CD4-induced epitope (17b), and the gp120-V3 region (14e, 19b, and 39F) were similarly non-reactive with the BG505 and ConM SOSIP trimers alone and on I53-50NPs (Supplementary Fig. 4a). We observed similarly strong binding by bNAbs and weak or absent binding by non-NAbs to ZM197M and AMC011 SOSIP alone and on I53-50NPs (Supplementary Fig. 4b).

Fabs of seven bNAbs to different epitope clusters bound with similar kinetics and stoichiometry to the trimers presented in the two contexts, with small variations in both directions (Table 3 and Supplementary Figs. 4c and 5b). Specifically, the stoichiometric values for PGT145, PGT151, and 3BNC117 Fabs, close to 1, 2, and 3 per trimer, respectively, confirmed that the SOSIP-I53-50NPs present 20 antigenically intact trimers per particle (Table 3).

Comparing IgGs and Fabs suggested that the lower binding by some IgGs to SOSIP-I53-50NPs is a result of bivalent binding by IgG to its epitope (such as for PGT130, PGT151, and ACS202) or steric clashes due to the bulk of the IgG (see Supplementary Fig. 4 for further analyses and explanations). Overall, these findings demonstrate that SOSIP trimers maintain their native-like trimeric antigenicity when presented on I53-50NPs.

To investigate avidity and accessibility effects of the multivalent display of trimers on I53-50NPs, IgG mAbs were immobilized on the chip. We observed a high binding signal for BG505 and ConM SOSIP-I53-50NPs to the bNAbs VRC01 (CD4bs), PGT122 (V3-base and -glycan), and PGT145 (apex) in comparison with the corresponding SOSIP trimers. In contrast, the interface bNAbs PGT151 and VRC34.01, and the gp41-directed 3BC315, all displayed a lower binding signal to SOSIP-I53-50NPs than SOSIP trimers (Fig. 4a and Supplementary Fig. 5c). However, it is hard to draw conclusions on the binding signal alone, as the greater mass of the SOSIP-I53-50NPs magnifies the signal caused by each binding event (see Supplementary Methods for further explanation). Thus, to obtain a more quantitative measure of bNAb binding and accessibility, the number of molecules of SOSIP trimer or NPs binding to the bNAbs was calculated from an experiment with 2 nM trimers or particles (see Supplementary Methods for calculation). Whereas a similar number of molecules bound to PGT145, PGT122, and VRC01, markedly fewer molecules of SOSIP-I53-50NP than SOSIP trimers bound to VRC34.01, PGT151, and 3BC315 (Fig. 4b). Finally, we also observed a markedly lower binding of BG505 SOSIP-I53-50NP than their corresponding trimers to BG505-specific mAbs targeting the immunodominant 241/289 glycan hole (RM19P, RM19A1, RM20F; Cottrell et al., manusciption in preparation) and trimer base (12N) (Supplementary Fig. 5a)40. Thus, bNAb epitopes on the SOSIP-I53-50NPs from the apex down to the CD4bs are highly accessible for multivalent interactions, but this...

Fig. 3 Characterization of ConM, ZM197M, and AMC011 SOSIP-I53-50NP assembly. a SEC chromatograms of assembled ConM, ZM197, and AMC011 SOSIP-I53-50NPs (from top to bottom). b Raw NS-EM micrographs and 2D-class averages of the pooled SOSIP-I53-50NP fractions corresponding to the SEC chromatogram to the direct left. Particles were subjected to a freeze–thaw cycle prior to NS-EM analysis. The AMC011 SOSIP-I53-50NP solution was mixed 3:1 with Protein Stabilizing Cocktail (ThermoScientific) prior to freezing. The white bar corresponds to 200 nm. Source data are provided as a Source Data file.
is not the case for some epitopes further down the trimer near gp41 and epitopes at the trimer base.

SOSIP-I53-50NPs increase B-cell activation in vitro. Next, we compared the abilities of equimolar BG505 or ConM SOSIP trimers and their SOSIP-I53-50NP counterparts to activate Env-specific B cells in vitro. In control experiments, unmodified I53-50NPs lacking the SOSIP trimers had no effect on any of the B-cell lines. The corresponding BG505 and ConM SOSIP trimers did not activate the VIRC01- or PGT145-expressing B cells, at the concentration used, but an equimolar amount of trimers presented on I53-50NPs induced Ca²⁺ flux signals very efficiently (Fig. 4c). For the PGT121 cell line, the BG505 and ConM SOSIP-I53-50NPs were again more efficient activators than the trimers, although the differences were less dramatic for the other two lines (Fig. 4c). In addition, ConM SOSIP-I53-50NPs activated the B cells more efficiently than ConM SOSIP-ferritin (homomeric NPs presenting eight SOSIP trimers)⁶, consistent with a previous study showing a positive correlation between SOSIP density and B-cell activation⁴⁷.

Immunogenicity of ConM and BG505 SOSIP-I53-50NPs in rabbits. ConM and BG505 SOSIP trimers elicit autologous NABs that target different immunodominant sites when they are used as immunogens. In BG505 SOSIP trimer-immunized rabbits, the most commonly immunogenic NAB epitope involves a hole in the glycan shield at positions 241 and 289. This glycan hole epitope is located nearer the base of the SOSIP trimer than its apex⁴⁰,⁴¹. In contrast, ConM SOSIP trimer-immunized rabbits generate autologous NABs that primarily target a V1V2 epitope near the apex of the trimer²⁲. For AMC011 and ZM197M, it remains unknown where the immunodominant epitope is located. By selecting ConM and BG505 SOSIP-I53-50NPs for immunization, we aimed to evaluate whether immunodominant epitope location affects the performance of SOSIP-I53-50NPs as immunogens. Rabbits were immunized at weeks 0, 4, and 20 with 30 μg of BG505 or ConM SOSIP, or the equimolar amount presented on I53-50NPs, formulated in GLA-LSQ adjuvant (liposomes containing glucopyranosyl lipid adjuvant (GLA) and saponin (QS21)), which we found did not influence trimer or NP integrity (Fig. 5a, f and Supplementary Fig. 6a). BG505 immunogen recipient animals were given an additional vaccination at week 8 (Fig. 5f). To directly compare the two-component NP platform with an existing homologous NP platform, one group of rabbits received ConM SOSIP-ferritin NPs (Fig. 5a).

In comparison with ConM SOSIP-ferritin, rabbits immunized with ConM SOSIP-I53-50NP induced ConM SOSIP-binding titers that were significantly lower at week 2 but higher at week 8 and 20. ConM SOSIP trimers also induced significantly higher binding titers than ConM SOSIP-ferritin at week 20. We did not observe significant differences in binding titers when comparing ConM SOSIP trimers and ConM SOSIP-I53-50NPs (Fig. 5b). However, ConM SOSIP-I53-50NPs induced significantly higher NAB titers against autologous ConM virus than the corresponding trimer at all time points (Fig. 5c, d and Supplementary Table 2). In particular, the ConM SOSIP-I53-50NPs induced
Fig. 4 SPR and B-cell activation analysis of BG505 and ConM SOSIP-I53-50NP. a Each pair of senorgrams shows the binding of SOSIP trimer (left) and SOSIP-I53-50NPs (right) to immobilized IgG of the bNAbs indicated above the sensorgrams. Trimmers and NPs were titrated at a constant ratio of concentrations corresponding to equal amounts of SOSIP per volume as indicated in the color code to the right. Langmuir model fits in black are overlaid on the colored binding curves for each concentration. Please note that although Langmuir curves were fitted, no kinetic modeling was performed due to severe mass-transport limitations (for further explanation, see SOSIP trimer and SOSIP-I53-50NP binding to immobilized mAbs by SPR in Supplementary Methods). b The difference in macromolecules of SOSIP trimer or SOSIP-I53-50NP bound to several immobilized bNAbs plotted as a ratio (left) and a model of SOSIP (gray) presented on the I53-50NP (I53-50A in beige, I53-50B.4PT1 in light blue) with the corresponding bNAb footprints shown. c Activation of PGT145, VRC01, and PGT121-expressing B cells, measured by Ca2+ flux over 210 seconds for BG505 and ConM SOSIP-I53-50NPs (purple), ConM SOSIP-ferritin (orange), and the corresponding trimer (green). Unmodified I53-50NPs (red) were included to determine nonspecific activation by the I53-50NP core. Blanc, for which PBS was used, functioned as an additional negative control (blue). Source data are provided as a Source Data file.
remarkably higher NAb responses after one immunization (~41-fold), but the differences between the NP and trimer groups became less pronounced after multiple immunizations (~7- and ~4-fold after the first and second boost, respectively), suggesting that the NPs are particularly effective at priming a NAb response. ConM SOSIP-I53-50NP also induced higher median autologous NAb titers than ConM SOSIP-ferritin at week 6, week 8, and week 12. At weeks 4, 20, and 22, we did not observe a significant difference in median autologous NAb titers, although particularly at week 4 and 20 a trend towards higher NAb titers was observed for ConM SOSIP-I53-50NP recipients (Fig. 5c, d and Supplementary Table 2). The ConM virus is a neutralization-sensitive Tier-1A virus, but ConM SOSIP has been shown to also induce NAbs against the sequence-related ConS virus. ConM SOSIP-I53-50NP induced higher median ConS NAb titers than trimers at week 6 but no significant differences were observed at week 4 or 22 (Fig. 5d and Supplementary Table 2). The ConN NAb titers elicited by ConM SOSIP-I53-50NP also tended to be higher than those elicited by ConM SOSIP-ferritin at week 6 and 22, although the differences were not statistically significant.

We assessed the ability of the rabbit sera to neutralize several Tier-1A viruses, which can be indicative of the elicitation of non-NAbs (for Tier-2 viruses) that target the V3 loop, a cluster of epitopes that is inaccessible on closed, native-like trimers. NAb titers against SF162, MW965, and MN3 were relatively low and very similar for sera from animals that received SOSIP-I53-50NPs or SOSIP trimers. In contrast, SOSIP-ferritin NPs induced significantly higher NAb responses against SF162 and MW965 than did SOSIP-I53-50NPs, which we suggest represents a response to a proportion of misfolded trimers on the SOSIP-ferritin NPs (Fig. 5e). A similar but less pronounced trend was observed with MN3. We did not detect strong NAb responses against heterologous Tier-2 viruses (Supplementary Table 2).

Whereas presentation of ConM SOSIP trimers on I53-50NPs clearly enhanced their immunogenicity, this was not the case for BG505 SOSIP trimers. Rabbits immunized with BG505 SOSIP-I53-50NPs induced significantly lower binding Ab titers to the corresponding trimer in comparison with BG505 SOSIP recipients at all time points, except week 20. In addition, BG505 SOSIP-I53-50NPs showed a trend towards poorer autologous NAb responses at all time points, although the differences were not statistically significant (Fig. 5h and Supplementary Table 3).

To test whether the I53-50 core of the SOSIP-I53-50NPs was immunogenic, we measured Ab binding titers against I53-50NPs devoid of SOSIP trimers. Both ConM and BG505 SOSIP-I53-50NPs elicited strong binding Ab responses after the prime that were boosted by subsequent immunizations (Supplementary Fig. 6b). However, in comparison with SOSIP trimmer-binding titers, the I53-50NP-binding titers increased significantly less after the boost immunizations, suggesting that primarily SOSIP-specific responses are boosted after subsequent SOSIP-I53-50NP immunizations (Supplementary Fig. 6c).

Epitope location influences the immunogenicity of SOSIP-153-50NPs. The serological data, viewed in the context of the antigenic characterization by SPR, suggested that restricted accessibility to the immunodominant 241/289 glycan hole on BG505 SOSIP-I53-50NPs might explain the inability of these NPs to enhance autologous NAb responses. To test this hypothesis, we used neutralization assays with mutant viruses and depletion reagents, as well as competition ELISAs to compare the epitope specificities of the polyclonal responses induced by the BG505 and ConM immunogens.

Knocking in both glycans at positions 241 and 289 in the BG505 virus dramatically reduced the neutralization sensitivity to sera from BG505 SOSIP trimers, but had significantly less effect when sera from BG505 SOSIP-I53-50NP recipient animals were used. Similar trends were apparent when the single glycan knock-in viruses were used (Fig. 6a, b and Supplementary Table 3). BG505 SOSIP trimers are also known to induce NAb responses against the area involving the N611 glycan, located on gp41. Removing the N611 glycan affected BG505 neutralization in six out of the eight animal immunized with SOSIP trimers. However, this had almost no effect for sera from the BG505 SOSIP-I53-50NP group (Fig. 6b and Supplementary Table 3). These results indicate that presentation of BG505 SOSIP on I53-50NPs reduces NAb responses directed against the region surrounding the 241/289 glycan hole as well as the 611 glycan, consistent with the reduced accessibility of this epitope we observed using SPR. In this context, one might expect that the Ab response would shift towards more apex-proximal epitopes. However, although neutralization by two rabbits (2171 and 2176) in the BG505 SOSIP-I53-50NP group showed a distinctly strong dependency on the previously described C3 region/residue 465 epitope, we observed a significantly lower dependency on the V1V2 region for the BG505 SOSIP-I53-50NP than for the BG505 SOSIP trimer recipients (Supplementary Table 3). Thus, no clear sign of immune-focusing to apex-proximal epitopes was observed concomitant with the lower 241/289 glycan hole immunogenicity.

To corroborate the findings from the neutralization assays with viral mutants, we performed neutralization depletion experiments. Sera were pre-incubated either with BG505 SOSIP or BG505 SOSIP with glycans knocked in at positions 241 and 289, prior to measuring the autologous neutralization. Pre-incubation with BG505 SOSIP blocked BG505 neutralization in all cases. However, incubation with BG505 SOSIP that had the 241 and 289 glycan knocked in had almost no effect on the neutralization in the sera of the BG505 SOSIP trimer recipients, with the exception of rabbit 2170, which showed a strong NAb response towards the V1V2 region (Supplementary Fig. 7a). In contrast, only one animal from the BG505 SOSIP-I53-50NP group showed strong NAb responses directed to the 241/289 glycan hole, as illustrated by the loss in neutralization depletion when the serum was pre-incubated with BG505 SOSIP with glycans knocked in at positions 241 and 289. All other BG505 SOSIP-I53-50NP recipients either did not develop strong BG505 neutralization or developed BG505 neutralization that was not dramatically affected by the absence or presence of the 241/289 glycan hole.

To further gauge the differences between the immunogenicity of epitopes on BG505 SOSIP trimers and NPs, we performed competition ELISAs using bNAb with specificity ranging from the trimer apex to the trimer gp120-gp41 interface. Sera from BG505 SOSIP-I53-50NPs recipients competed significantly less efficiently than BG505 trimer recipients with bNAb 8ANC195, ACS202, and 35022 targeting the gp120-gp41 interface near the 241/289 glycan hole (Fig. 6a, c), and this competition correlated significantly with BG505 neutralization (Supplementary Fig. 7b, left). In contrast, we observed no significant difference in competition of sera from BG505 SOSIP trimer or BG505 SOSIP-I53-50NP recipients to apex-targeting bNAb (CH01, PGT128, and VRC01) (Fig. 6c). Nor did we observe a significant correlation between serum competition and BG505 neutralization (Supplementary Fig. 7b, right). Furthermore, we performed a competition ELISA with RM19R, a non-NAb targeting the highly immunodominant peptidic epitope on the exposed base of the trimer (Cottrell et al., manuscript in preparation). RM19R competed significantly less with sera from BG505 SOSIP-I53-50NP recipients than sera from rabbits that received BG505 SOSIP, indicating that presenting SOSIPs on I53-50NPs reduces the immunogenicity of the trimer base (Fig. 6c).
Fig. 5 Immunogenicity of ConM and BG505 SOSIP-I53-50NPs. a, f Schematic representation of the immunization schedule and color coding for the immunogens tested. b–e, g, h Statistical differences between two groups (n = 5 individual rabbits for (b–e); n = 8 individual rabbits for (g, h)) were determined using unpaired two-tailed Mann–Whitney U-tests (*p < 0.05; **p < 0.01). b, ConM SOSIP endpoint binding titers over time as measured by Ni-NTA enzyme-linked immunosorbent assay (ELISA). Blue stars indicate significant differences for ConM SOSIP-ferritin vs. ConM SOSIP-I53-50NP. Brown stars indicate significant differences for ConM SOSIP vs. ConM SOSIP-ferritin. Shown are medians with interquartile range. c ConM midpoint neutralization titers over time. Blue and black stars indicate significant differences for ConM SOSIP-ferritin vs. ConM SOSIP-I53-50NP and ConM SOSIP vs. ConM SOSIP-I53-50NP, respectively. Shown are medians with interquartile range. d ConM and ConS midpoint neutralization titers at week 4 (left), week 6 (middle), and week 22 (right). Horizontal bars indicate the median. For replicate neutralization data from Duke UMC, see also Supplementary Table 2. e SF162, MW965, and MN.3 midpoint neutralization titers at week 22. Horizontal bars indicate the median. See also Supplementary Table 2. f, g BG505 SOSIP endpoint binding titers over time as measured by Ni-NTA ELISA. Shown are medians with interquartile range. h BG505 midpoint neutralization titers over time. Shown are medians with interquartile range. See also Supplementary Table 3. Source data are provided as a Source Data file.
To map the immunodominant epitope of ConM, we tested whether the autologous ConM NAb responses in rabbit sera could be blocked by pre-incubation with either ConM SOSIP trimers or ConM SOSIP trimers in which the V1V2 region was swapped with that of BG505. Whereas the ConM SOSIP trimer completely blocked the autologous ConM NAb responses, the ConM SOSIP trimer with the BG505 V1V2 region had almost no effect in the majority of animals, confirming that the trimer apex is critical for ConM NAb responses (Fig. 6d). To support this finding, competition ELISA was performed with the apex-proximate bNAb PGT128, CH01, PG16, gp-L-PG9, and VRC01. Consistent with a V1V2-directed response, we observed strong competition of PGT128, CH01, PG16, and gp-L-PG9 with the sera from all groups that, in the case of PGT128, CH01, PG16, and gp-L-PG9, correlated significantly with ConM neutralization midpoint titers (Fig. 6e and Supplementary Fig. 7c). Epitope mapping of ConS neutralization showed a strong dependency on amino acid residues at position 173 and 324 located in the V2 loop and at the V3-base, respectively (Supplementary Table 4). The neutralization-reducing effect of the G324A mutation was significantly stronger with sera from the I53-50NP group than in the corresponding trimer group (Supplementary Fig. 7d).

Thus, competition ELISAs, neutralization-blocking, and relative neutralization of mutant viruses, all supported the hypothesis that the location of the immunodominant neutralizing epitopes on SOSIP trimers determine whether they benefit from presentation at high density on I53-50NPs.

Discussion

In this study, we describe the computational design, production, in vitro and in vivo characterization of a self-assembling two-component NP system presenting native-like Env trimers. We used several techniques to show that we have produced monodisperse, icosahedral NPs that assemble in vitro and present 20 component NP system presenting native-like Env trimers. We in vitro and in vivo characterization of a self-assembling two-component system presenting at high density on I53-50NPs.

The SOSIP-I53-50NPs have several interesting physical features that may contribute to their potential to enhance SOSIP immunogenicity. First, the overall size of the NP immunogens is in accordance with that suggested to be optimal for uptake into the lymphatic system (40–50 nm)44–46. Second, the SPR experiments showed that the spacing between SOSIP trimers on the I53-50NPs enables bivalent interactions between certain mAbs and their epitopes (presumably on neighboring SOSIP trimers), providing another potential layer of avidity to BCR binding in addition to particulate display. Third, although not exploited in this study, the fact that these particles assemble in vitro and have a hollow interior may allow controllable encapsulation of adjuvants or TRL agonists. Indeed, recent studies have shown that proteins and RNA can be efficiently encapsulated into the I53-50NP lumen30,47.

The two-component SOSIP-I53-50NP system offers several considerable advantages over previously described Env-presenting NPs such as enveloped VLPs and ferritin NPs17,18,20,22,25. In contrast to VLPs, SOSIP-I53-50NPs are produced in good yield and can be scaled up using standard methods for biologics production in a good manufacturing practice setting. In contrast to enveloped VLPs and ferritin NPs, SOSIP components are efficiently cleaved and can be purified by PGT145-affinity chromatography prior to particle assembly, ensuring that only native-like trimers are presented on the NP. The intrinsic inability of SOSIP-ferritin NPs to present a homogeneous array of native-like fully cleaved trimers is likely to explain the strong V3-mediated non-NAb responses (Tier-1 neutralization) observed in ferritin immunization studies18,22,48. As high-affinity non-neutralizing B-cell lineages such as those targeting the V3 loop may outcompete neutralizing B-cell lineages, it is advantageous to have a NP platform that minimizes the elicitation of non-neutralizing Abs43. Indeed, compared with the homomeric ferritin immunogen, the two-component SOSIP-153-50NPs improved the quality of Env-specific Ab responses as illustrated by the significantly lower neutralization of the Tier-1 viruses SF162 and MW965.25.

With ~40- and 10-fold higher median autologous neutralization after a single immunization than ConM SOSIP and ConM SOSIP-ferritin, respectively, ConM SOSIP-I53-50NP was particularly effective at priming the immune response. However, this difference declined after multiple immunizations. One potential explanation for this phenomenon is that after priming, antigen-specific B cells may have already undergone enough affinity maturation that the higher avidity provided by multivalent presentation is no longer necessary during boosting. This hypothesis is consistent with a recent study clearly demonstrating that the benefits of multivalent antigen presentation are most evident in the context of low-affinity antigen-BCR interactions49. Alternatively, or concurrently, the induction of I53-50NP-specific antibodies may have a negative effect on the boosting potential of SOSIP-specific Ab responses, although our data showed that SOSIP-targeting Ab responses were boosted much more strongly than anti-I53-50NP responses. In either case, priming with NPs and boosting with trimers may further improve Env immunogenicity beyond the enhancements reported here. Additional immunization studies will be necessary to determine how SOSIP-I53-50NPs can be optimally employed.

Epitope mapping of the antibody responses to BG505 SOSIP suggested reduced targeting of the gp120-gp41 interface epitopes when SOSIP is presented on I53-50NPs. Because of its immunodominant epitope located close to the gp120-gp41 interface, antibodies may have a negative effect on the boosting potential of SOSIP-specific Ab responses, although our data showed that SOSIP-targeting Ab responses were boosted much more strongly than anti-I53-50NP responses. In either case, priming with SOSIP and boosting with trimers may further improve Env immunogenicity beyond the enhancements reported here. Additional immunization studies will be necessary to determine how SOSIP-I53-50NPs can be optimally employed.

Taken together, the results from the immunization studies with BG505 and ConM immunogens and the epitope mapping performed here suggest that the I53-50NP appears to be ideal for displaying SOSIP trimers that harbor an immunodominant epitope near the trimer apex. The key concept our data highlight is that the detailed geometry of epitope presentation—the structural context of the epitope with respect to neighboring antigen molecules and the nanoparticle core—matters. For a given immunogen, obtaining maximal immune responses may require optimizing the geometry of epitope presentation. Ideally, knowledge of the most potent neutralizing epitope locations on the antigen would inform this optimization. In this way, the ability to accurately design new NP scaffolds with custom structures (e.g., shapes, sizes, and symmetries) using Rosetta30,33,31,55 may open up new avenues to the structure-based design of potent NP immunogens.
In conclusion, we have developed a NP platform that has the potential to enhance and shape the induction of antibodies targeting neutralizing epitopes, while decreasing the stimulation of non-neutralizing lineages, through the presentation of homogeneous arrays of native-like HIV-1 Env trimers. SOSIP-I53-50NPs are a promising priming immunogen for immunization strategies aiming to increase and broaden neutralizing antibody responses against HIV-1.

Methods

Computational design of SOSIP-I53-50A. A recently described docking protocol, sic_axle35 was used to dock the crystal structure of BG505 SOSIP.664 (PDB ID 4TVP)34 to various scaffolds with exterior-facing termini from a set of self-assembling protein nanomaterials. The protocol was based on the previously described two-component docking protocol33. The protocol minimizes the distance between the two trimeric proteins and optionally the distance between user-specified termini, while preventing clashes, defined as interatomic distances below a user-defined distance threshold. The degrees of freedom searched during docking.

Fig. 6 Epitope mapping of BG505 and ConM SOSIP-I53-50NP-induced (N)Ab responses. a Color coding for b-e. b-e Statistical differences between two groups were determined using unpaired two-tailed Mann–Whitney U-tests (*p < 0.05; **p < 0.01; ***p < 0.001). b Ratio of midpoint neutralization titers of several BG505 virus mutants relative to the parental BG505 virus is plotted (RID50). Mutants shown are BG505 with glycans knocked in at position 241 and 289 (BG505 241KI + 289KI), position 241 (BG505 241KI), position 289 (BG505 289KI), or a glycan knocked out at position 611 (BG505 611KO). Epitope mapping was only performed for sera from rabbits that had an ID50 > 100 (n = 7 individual rabbits, for BG505 SOSIP recipients; n = 4 individual rabbits for BG505 SOSIP-I53-50NP recipients). See also Supplementary Table 3. Horizontal bars indicate the median. c Residual binding of bNAbs CH01, PGT128, VRC01, 8ANC195, ACS202, 35O22, and non-NAb RM19R after incubation of sera (n = 8 individual rabbits) with immobilized BG505 SOSIP in ELISA (left) and surface model of BG505 SOSIP (gray) with the corresponding Ab footprints highlighted. Bars indicate the median. d Midpoint autologous ConM neutralization in the absence of a blocking agent (no blocking), with ConM SOSIP added (+ConM SOSIP) or with ConM SOSIP that has the V1V2-loop of BG505 (+ConM SOSIP (V1V2 BG505)). Statistical differences between the three groups (n = 5 individual rabbits) was determined using a Friedman test followed by a Dunn’s multiple comparisons test (**p < 0.01; ***p < 0.0001). e Residual binding of bNAbs VRC01, PGT128, CH01, PG16, and gl-PG9 after incubation of sera with immobilized ConM SOSIP in ELISA. Bars indicate the median (n = 5 individual rabbits). Source data are provided as a Source Data file.
are the displacement along the shared symmetry axis of one of the two proteins (r) and its rotation about the threefold symmetry axis (ω). In this case, the docking protocol defines this distance as the shortest distance between the C termini of each NP trimer and the N termini of each NP trimer. Docking results were inspected manually and flexible genetic linkers were designed for the resulting fusion proteins.

Construct design. To create the BG505 SOSIP.v5.2-I53-50A construct, a modified I53-50A sequence (see below) was ordered (Integrated DNA Technologies) and cloned by Gibson assembly into a BamHI site of the BG505 SOSIP.v5.2 sequence.25,26 The BamHI site (amino acids 53–50) is located at the final codon of the SOSIP trimeric component (that is, residue-664) and the first I53-50A codon. The modification to the I53-50A sequence comprised the replacement of the first two amino acids (MK) with a GGSGGSGGSGSGSGS and a helical C-terminal section (EKAAPPV) that remained for the purpose of incorporating the N-terminal helix of the I53-50A subunit towards the exterior surface of the nanoparticle. The flexible GGS linker was chosen to warrant the independent folding of the two components that make up SOSIP.v5.2-I53-50A and covers the distance between the termini of the docked SOSIP and I53-50A trimmers (including the I53-50A helical extension). In our docked model this distance was 16 Å. Considering the heuristics of 1 Å to 2 Å linear distance, a 12- residue linker was chosen. The same cloning procedure and linker were used to produce the 530-A,1NT1, 530-A,1NT2, and 530-A,1PT1 variants. The SOSIP 530-A constructs based on other Env genotypes (AMC011, ZM197M, and ConM) were produced by replacing the SOSIP trimeric component of the BG505 SOSIP.v5.2-I53-50A plasmid with the relevant Env sequence, using PstI–BamHI digestion followed by ligation or Gibson assembly. The ConM SOSIP.v7 and ConM SOSIP.v7-ferritin sequences have been described elsewhere.27 The ZM197M SOSIP.v5.2 plasmids (5195s, 5687s, 570H, 585H) construction was produced by replacing the ZM197M SOSIP.v5.2 sequence that has been described elsewhere6 by Gibson assembly with a gBlock Gene fragment (Integrated DNA Technologies) of ZM197M SOSIP.v5.2 sequence that has previously described I5195s, L5687, V570H, R585H substitutions introduced.28 To generate the AMC011 SOSIP.v8.1 sequence, the previously described AMC011 SOSIP.v8.2 plasmid was replaced by Gibson assembly with a gBlock Gene fragment (Integrated DNA Technologies) of AMC011 SOSIP.v8.2, which contained the following mutations: v5.2 substitutions A73C and A561C;29 the trimer-stabilizing substitutions, E47D, T49E, V65K, E106T, M165L, E429R, K432Q, K500R;30 and four additional gp41-stabilizing changes, F519S, L568D, V570H, R585H.31 For sequences of these constructs see Supplementary Methods. For Ni-NTA ELISAs, competition ELISAs and SPR experiments, His-tagged versions of the corresponding SOSIP trimer constructs without the I53-50A extension were used. Each was generated by addition of a GGSGGSGGSGSGGS and a helical C-terminal section immediately after the C-terminal residue-664 of the trimer. For competition ELISAs, D7234-tagged trimeric tags were also used, which were generated by adding the sequence GSAPTAKKKRVQREKR after residue-664. The underlined GS sequence contains a BamHI site. For neutralization depletion experiments, various ConM and BG505 SOSIP variants were produced. All constructs had the D368W mutation introduced. The ConM SOSIP.v7-x sequence was produced by cloning in an I53-50A sequence that contained the V12 region of BG505 (residue 131–196, HxB2 numbering) in the ConM SOSIP.v7 x plasmid by Gibson assembly.27 To make the BG505 SOSIP construct that had the 241 and 289 glican knocked in, the following mutations were introduced into a stabilized BG505 SOSIP.v5.2: P210T, S241N, M271I, T290E, and P291S.27

Env protein expression and purification. All Env constructs described above were expressed in transiently transfected HEK293F cells (Invitrogen, catalog number R79009) essentially as reported previously,22 but with the following modifications for SOSIP-I53-50A constructs and variants. Specifically, to ensure optimal furin-mediated cleavage of the Env component, the cells were transfected with 250 µg of the SOSIP-I53-50A plasmid and 83.3 µg of a furin plasmid, pCI-neo in a 1:4 molar ratio to the standard SOSIP plasmid vector. All SOSIP fusion proteins and ConM SOSIP.v7-ferritin were purified from filtered media (0.2 µm filters) transfection supernatants by PGT145 bNAb-affinity chromatography as described for ConM SOSIP-ferritin NPs elsewhere.22 Protein concentrations were determined by the Nanodrop method using the proteins guiding E. coli cells (New England Biolabs, catalog number C2566). The following steps were essentially as described of 530-A,1NT1 above. The only modification was the supplementation of 0.75% CHAPS to the equilibration buffer for the HisTrap HP column.

In order to remove endotoxin, purified 530-B,4PT1 was immobilized on Ni2+–NTA resin in a 5 µL HisTrap HP column (GE Healthcare) equilibrated with the following buffer: 25 mM Tris pH 8, 500 mM NaCl, 0.75% CHAPS. Immobilized 530-B,4PT1 was then washed twice with 100 µL of the same buffer and subsequently eluted by gradient elution. The protein was eluted over gradient to 500 mM imidazole in equilibration buffer. Fractions containing 530-B,4PT1, which elutes around ~175 mM imidazole, were concentrated in a Vivaspin filter with a 10kDa molecular weight cutoff (GE Healthcare) before further purification on a Superdex200 Increase 10/300 GL column (GE Healthcare) using 25 mM Tris pH 8, 500 mM NaCl, 0.75% CHAPS, 1 mM DTT buffer. To produce 530-B,4PT1, a pET29b plasmid containing the 530-B,4PT1 gene was transformed into T7 Express E. coli cells (New England Biolabs, catalog number C2566). The following steps were essentially as described of 530-A,1NT1 above. The only modification was the supplementation of 0.75% CHAPS to the equilibration buffer for the HisTrap HP column.

SOSIP-530-NP assembly. Concentrations of purified individual nanoparticle components were determined by measuring absorbance at 280 nm using a UV-Vis spectrophotometer (Cary 4845, Agilent Technologies) and extinction coefficients (obtained by inserting the sequence in the online Exasy software (ProtParam tool). The following assembly steps were performed on ice: 530-A,1NT1 was washed with 300 µL of a stabilized BG505 SOSIPv5.2 plasmid containing the relevant Env sequence, using a Superase 6 Increase 10/300 GL column (GE Healthcare). The protein was eluted over gradient to 500 mM imidazole in equilibration buffer. Fractions containing 530-B,4PT1, which elutes around ~175 mM imidazole, were concentrated in a Vivaspin filter with a 10kDa molecular weight cutoff and subsequently dialyzed twice against equilibration buffer (GE Healthcare).

530-NP assembly. Concentrations of purified individual nanoparticle components were determined by measuring absorbance at 280 nm using a UV-Vis spectrophotometer (Cary 4845, Agilent Technologies) and extinction coefficients (obtained by inserting the sequence in the online Exasy software (ProtParam tool). The following assembly steps were performed on ice: 530-A,1NT1 was washed with 300 µL of a stabilized BG505 SOSIPv5.2 plasmid containing the relevant Env sequence, using a Superase 6 Increase 10/300 GL column (GE Healthcare). The protein was eluted over gradient to 500 mM imidazole in equilibration buffer. Fractions containing 530-B,4PT1, which elutes around ~175 mM imidazole, were concentrated in a Vivaspin filter with a 10kDa molecular weight cutoff and subsequently dialyzed twice against equilibration buffer (GE Healthcare).
สบายו!
Calcium (Ca²⁺) signals were recorded on a LSr Fortessa (BD Biosciences) by measuring for 210 s the 454 nm emission ratio of Indo-1 fluorescence upon UV excitation. Kinetic analyses were performed using FlowJo v10.

Rabbit immunizations. For all immunization studies described here, female and naive New Zealand White rabbits of 2.5–3 kg, from multiple litters, were arbitrarily distributed among groups. Rabbits were sourced and housed at Covance Research Products, Inc. (Denver, PA, USA) and immunization were performed under permits with approval number C0135-016 and C0171-017. All immunization protocols complied with all relevant ethical regulations and protocols of the Covance Institutional Animal Care and Use Committee. For ConM immunogens, groups of five female New Zealand White Rabbits were given two intramuscular immunizations in each quadriceps at weeks 0, 4, and 20. The immunization mixture involved 10 µg of SOSIP trimers or an equimolar amount presented as ferritin-NPs (38 µg) or as SOSIP-153-50NPs (48 µg) formulated in GLA-LSQ adjuvant (25 µg GLA and 10 µg QS21 per dose, IDRI). The coating concentration of the peptide molecular weight of the proteins (thus disregarding glycans), which were obtained essentially as described above in Env protein expression and purification, and SOSIP-153-50NP assembly. The rabbits were bled on the day of immunization and then at weeks 2, 6, 8, 12, 16, and 20. For BG505 immunogens, the same protocol was used, except that the rabbit group size was 8 and the schedule involved immunizations at weeks 0, 4, 8, and 20. Instead of a bleed at week 12, a bleed was taken at week 10.

Serum antibody ELISA. A 6.5 nM concentration of His-tagged versions of the BG505 or ConM SOSIP trimers in TBS was added to a 96-well Ni-NTA plate (Qiagen) for 2 h at RT. The plates were blocked for 30 min with TBS + 2% skimmed milk. Threefold serial dilutions of BG505-immunized rabbit sera, starting from a minimum of 1:200 dilution, were added in TBS + 2% skimmed milk + 0.05% Tween-20, developing solution (1% 3,3'-diaminobenzidine (Sigma-Aldrich), 0.01% H₂O₂, 100 mM sodium acetate, and 100 mM citric acid) was described in Serum antibody ELISA above. Briefly, general procedures (i.e., wash steps, blocking, and colorimetric detection) are involved in the same manner as described previously. Residual binding was determined by:

\[
\%\text{Residual binding} = \frac{OD_{450\text{pos}} - OD_{450\text{neg}}}{OD_{450\text{pos}}} \times 100
\]

where OD₄₅₀neg is the signal of the wells where no mAb was added (negative control) and OD₄₅₀pos the signal of the wells where no serum was added (positive control).

Neutralization assay. Neutralization assays based on the use of Env pseudotyped viruses and TZM-bl cells were performed as described elsewhere. In general, sera were diluted 1:20 and then serially by threefold before mixing with Env-pseudotyped virus. However, for sera from ConM SOSIP-153-50NP-immunized rabbits taken at weeks 6, 8, 12, 16, 20, and 22, the initial dilution was 1:100. Neutralization assays were performed at Amsterdam University Medical Center in Amsterdam, The Netherlands (as described in ref. 9) and at Duke University Medical Center in Durham, NC, USA (as described in ref. 9). Midpoint neutralization titers (ID₅₀-values) were determined as the serum dilution at which 50% inhibition was achieved in % binding. The neutralization depletion experiments were performed as described previously. Briefly, rabbit sera were incubated for 1 h with 40 µg mL⁻¹ of ConM SOSIP.v7 or ConM SOSIP.v7 (V1V2 BG505), or in the case of BG505 immunogen-recipients BG505 SOSIP or BG505 SOSIP 241 + 289K. The following were used as the same as a neutralization assay (described above). All depletion constructions were PGT145-purified and contained a D368R mutation to abrogate binding to CD4 on the TZM-bl cells.

Statistical analysis. Comparisons between two rabbit groups were performed with an unpaired two-tailed Mann–Whitney test. In one instance, where three paired groups were compared, a Fieldman test with Dunn’s post test was used. Correlations were analyzed by calculating Spearman’s rank correlation coefficients. Graphpad Prism 7.0 was used for statistical analyses.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
A reconstructed density map and refined coordinates of the 53-50NP core of BG505 SOSIP-153-50NP have been deposited in the Electron Microscopy Database (EMD-20261) and the Protein Databank (6WOF). All other data supporting the findings in this manuscript is available from the corresponding authors (R.W.S. and N.P.K.) upon reasonable request. The source data underlying Figs. 1–6 and Supplementary Figs. 1, 2, 3, 6 and 7 are provided as a Source Data file.

Code availability
A static executable of the sic_axle program used to dock SOSIP to 153-50A is available upon request (neilking@uw.edu).

Received: 20 January 2019 Accepted: 16 August 2019
Published online: 19 September 2019

References
1. Burton, D. R. & Hangartner, L. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 34, 635–659 (2016).
2. Haynes, B. F. & Burton, D. R. Developing an HIV vaccine. Science 355, 1129–1130 (2017).
3. Sanders, R. W. & Moore, J. P. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 275, 161–182 (2017).
4. Ward, A. B. & Wilson, I. A. The HIV-1 envelope glycoprotein structure: Induced fit and conformational priming of the Env trimer. Cell 80, 2515–2528 (2000).
5. de Taeye, S. W. et al. Immunogenicity of stabilized HIV-1 envelope trimers with reduced exposure of non-neutralizing epitopes. Cell 163, 1702–1715 (2015).
6. Cirilli, K. M. et al. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 177, 1153–1171.e28 (2019).
7. Lopez-Sagasta, J., Malito, E., Rappuoli, R. & Portley, M. J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J. 14, 58–68 (2016).
8. Moyer, T. J., Zmolek, A. C. & Irvine, D. J. Beyond antigens and adjuvants: Formulating future vaccines. J. Clin. Invest. 126, 799–808 (2016).
9. Guise, K. T. et al. Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano 11, 54–68 (2017).
10. Bachmann, M. F. & Jennings, G. T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).
11. Tokatlian, T. et al. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers. Science 363, 649–654 (2019).
12. Moon, J. J. et al. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand Tfh cells and promote germinal center induction. Proc. Natl Acad. Sci. USA 109, 1080–1085 (2012).
13. Bale, S. et al. Covalent linkage of HIV-1 trimers to synthetic liposomes elicits improved B cell and antibody responses. J. Virol. 91, pii: e04433-17 (2017).
14. Ingale, J. et al. High-density array of well-ordered HIV-1 spikes on synthetic liposomal nanoparticles efficiently activate B cells. Cell Rep. 15, 1996–1999 (2016).
15. Shenep, K. et al. Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology 12, 82 (2015).
16. Georgiev, I. S. et al. Two-component ferritin nanoparticles for multimerization of diverse trimeric antigens. ACS Infect. Dis. 4, 788–796 (2018).
17. He, L. et al. Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nat. Commun. 7, 12041 (2016).
18. McGuire, A. T. et al. Specifically modified Env immunogens activate B-cell precursors of broadly neutralizing HIV-1 antibodies in transgenic mice. Nat. Commun. 7, 10618 (2016).
19. Moore, P. L. et al. Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol. 80, 2513–2528 (2006).
22. Sliepen, K. et al. Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nat. Commun. 10, 2355 (2019).
23. Tong, T., Crooks, E. T., Osawa, K. & Binley, J. M. HIV-1 virus-like particles bearing pure env trimers expose neutralizing epitopes but occlude nonneutralizing epitopes. J. Virol. 86, 3574–3587 (2012).
24. Crooks, E. T., Tong, T., Osawa, K. & Binley, J. M. Enzyme digests eliminate non-neutralizing Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J. Virol. 85, 5825–5839 (2011).
25. Crooks, E. T. et al. Vaccine-elicited tier 2 HIV-1 neutralizing antibodies bind to quaternary epitopes involving glycan-deficient patches proximal to the CD4 binding site. PLoS Pathog. 11, e1004932 (2015).
26. Steinchen, J. M. et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45, 483–496 (2016).
27. Tokatlian, T. et al. Enhancing humoral responses against HIV envelope trimers via nanoparticle delivery with stabilized synthetic liposomes. Sci. Rep. 8, 16527 (2018).
28. Martinez-Murillo, P. et al. Particulate array of well-ordered HIV clade C Env trimers elicit neutralizing antibodies that display a unique V2 cap approach. Immunity 46, 804–817.e7 (2017).
29. Escolano, A. et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature 570, 468–473 (2019).
30. Bale, J. B. et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389–394 (2016).
31. Klein, J. S. & Bjorkman, P. J. Few and far between: how HIV may be evading antibody avidity. PLoS Pathog. 6, e1000980 (2010).
32. Schiller, J., Connors, J. M. & Why, H. I. V. virions have low numbers of envelope spikes: implications for vaccine development. PLoS Pathog. 10, e1004254 (2014).
33. Koonin, N. P. et al. Accurate design of co-assembling multi-component protein nanomaterials. Nature 510, 103–108 (2014).
34. Pancera, M. et al. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 516, 455–461 (2014).
35. Marcondalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420–1431.e7 (2019).
36. Torres de la Peña, A. et al. Improving the immunogenicity of native-like HIV-1 envelope trimers by hyperstabilization. Cell Rep. 20, 1805–1817 (2017).
37. van Gils, M. J. et al. An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nat. Microbiol. 2, 16199 (2016).
38. Julien, J. P. et al. Design and structure of two HIV-1 clade C SOSIP.644 trimers that increase the arsenal of native-like Env immunogens. Proc. Natl Acad. Sci. USA 112, 11947–11952 (2015).
39. Guenaga, J. et al. Structure-guided redesign increases the propensity of HIV Env to generate highly stable soluble trimers. J. Virol. 90, 2806–2817 (2015).
40. McCoy, I. E. et al. Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies. Cell Rep. 16, 2327–2338 (2016).
41. Klasse, P. J. et al. Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathog. 14, e1006913 (2018).
42. Bianchi, M. et al. Electron-microscopy-based epitope mapping determines glycan-dependent broadly neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Acta Crystallogr. D Biol. Crystallogr. 75, 1431.e17 (2019).
43. Ringo, A. P. et al. Epitope density influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc. Natl Acad. Sci. USA 110, 18256–18261 (2013).
44. Abbott, R. K. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48, 133–146.e6 (2018).
45. Medina-Ramirez, M. et al. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody monoclonal antibodies. J. Exp. Med. 214, 2573–2590 (2017).
46. Psathakos, A. et al. Design of a hyperstable 60-subunit protein dendrachemin [corrected]. Nature 535, 136–139 (2016).
47. Ringe, A. et al. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc. Natl Acad. Sci. USA 110, 18256–18261 (2013).
48. Psathakos, A. et al. Precursor frequency and affinity determine B cell competitive fitness in germinal centers, tested with germline-targeting HIV vaccine immunogens. Immunity 48, 133–146.e6 (2018).
49. Medina-Ramirez, M. et al. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody monoclonal antibodies. J. Exp. Med. 214, 2573–2590 (2017).
50. Psathakos, A. et al. Design of a hyperstable 60-subunit protein dendrachemin [corrected]. Nature 535, 136–139 (2016).
51. King, N. P. et al. Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336, 1171–1174 (2012).
52. Vazquez, A. et al. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology 11, 41 (2014).
53. Lee, J. H. et al. Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nat. Commun. 6, 8167 (2015).
54. Oronoz-Gonzalez, G. et al. Effects of adjuvants on HIV-1 envelope glycoprotein SOSIP trimers in vitro. J. Virol. 92, e0381–18 (2018).
55. Poehr, C. S. et al. Legionin: a system for fully automated acquisition of 1000 electron micrographs a day. Ultramicroscopy 77, 153–161 (1999).
56. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
57. Zhang, K. Gete: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
58. Kimanius, D., Forsberg, B. O., Scheres, S. H. & Lindahl, E. Accelerated cryo structure determination with parallelisation using GPUs in RELION-2. Elife 5, e18722 (2016).
59. Potters, F. E. et al. UCIF: Chimera—a visualization system for exploratory data analysis and chemical analysis. J. Comput. Chem. 25, 1695–1612 (2004).
60. DiMaio, F., Tyka, M. D., Baker, M. L., Chiu, W. & Baker, D. Refinement of protein structures into low-resolution density maps using rosetta. J. Mol. Biol. 392, 181–190 (2009).
61. Barad, B. A. et al. EMRinger: side-chain-directed model and map validation in cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).
62. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
63. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 1213–1221 (2010).
64. Ota, T. et al. Anti-HIV-B Cell lines as candidate vaccine biosensors. J. Immunol. 189, 4816–4824 (2012).
65. Montefiori, D. C. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol. Biol. 485, 395–405 (2009).
Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-12080-1.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information Nature Communications thanks Haoqing Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.