SUPPORTING INFORMATION

Membrane protein channels equipped with a cleavable linker for inducing catalysis inside nanocompartments

Luisa Zartnera, Viviana Maffeisa,b, Cora-Ann Schoenenbergera,b, Ionel Adrian Dinua,b, Cornelia G. Palivana,b,*

aDepartment of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, 4058 Basel, Switzerland

bNCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
Figure S1. 1H-NMR spectrum of Compound 2 in CDCl$_3$ at 500 MHz.
Figure S2. 13C-NMR spectrum of Compound 2 in CDCl$_3$ at 126 MHz.
Figure S3. 1H-NMR spectrum of the bismaleimide linker in CDCl$_3$ at 500 MHz.
Figure S4. 13C-NMR spectrum of the bismaleimide linker in CDCl$_3$ at 126 MHz and the image of the corresponding dissolved linker in the NMR tube.
Figure S5. SDS PAGE of OmpF-M (*left*, fluorogram; *right*, Coomassie-stained): L: Protein ladder; 1, 2: unlabeled OmpF-M, at 1/1 (1) and 2/1 (2) ratio (v/v) with loading buffer; 3, 4: OmpF-M labelled with the linker comprising fluorescent cyanine3 ($\lambda_{ex} = 550$ nm / $\lambda_{em} = 580$ nm). M_W of OmpF around 40 kDa.

Table S1. Fluorescence correlation parameters of the free fluorophore cyanine3 maleimide, free linker, CNCs with OmpF-M-linker inserted in the membrane, stand-alone OmpF-M-linker, and OmpF-M-linker added to empty polymersomes before and after staining the polymersomes with BODIPY 630/650-X.

	Counts per molecule (kHz)	Diffusion time (µs)
Cyanine3 maleimide	1.7	61
Linker	2.3	70
OmpF-M-Linker CNCs	28.3	4530
Linker-OmpF-M	3.1	452
CNCs AND linker-OmpF-M without BODIPY	7.0	452
CNCs AND linker-OmpF-M with BODIPY	138.3	6000
Figure S6. 1H-NMR spectrum of poly(2-methyl-2-oxazoline)-b-poly(dimethylsiloxane)-b-poly(2-methyl-2-oxazoline) triblock copolymer (PMOXA$_{11}$-b-PDMS$_{104}$-b-PMOXA$_{11}$) in CDCl$_3$ at 500 MHz.

Figure S7. Elugram (GPC) of PMOXA$_{11}$-b-PDMS$_{104}$-b-PMOXA$_{11}$ in DMF.
Table S2. Data from NTA measurements of CNC-noOmpF, CNC-linker-OmpF-M, CNC-OmpF-M, and CNC-OmpF-WT samples diluted 1:1000 in PBS.

	CNC-noOmpF	CNC-linker-OmpF-M	CNC-OmpF-M	CNC-OmpF-WT
diameter (nm)	202 ± 47	192 ± 42	182 ± 42	215 ± 49
concentration	2.6 × 10^8 ± 1.6 × 10^7	1.8 × 10^8 ± 4.5 × 10^6	3.1 × 10^8 ± 1.7 × 10^7	3.8 × 10^8 ± 2.4 × 10^7

Figure S8. Laccase activity of CNCs in response to NaIO₄. Measurements were carried out in triplicate at pH 7.4, over 9 h at RT: ABTS in PBS with CNC-OmpF-WT (black), ABTS in PBS with CNC-OmpF-M (red), ABTS in PBS with CNC-linker-OmpF-M in the presence (green) and absence of NaIO₄ (blue), CNC-noOmpF without (purple) and with NaIO₄ (yellow), and ATBS in PBS (turquoise). (A-C) represent 3 independent CNC preparations (each with standard deviation).
Figure S9. Cryo-TEM micrographs of polymersomes self-assembled from PMOXA$_{11}$-b-PDMS$_{104}$-b-PMOXA$_{11}$. Scale bars: 100 nm

Figure S10. FCS autocorrelation curves (solid line) and raw data (dots) of PBS solutions of cyanine3 maleimide (pink), OmpF-M-linker in 1% OG added to empty polymersomes without BODIPY 630/650-X (blue) and stained with BODIPY 630/650-X (red).
Figure S11. SDS PAGE of fungal laccase from Agaricus bisporus: L: Protein ladder; Lac1: 10 µg laccase; Lac2: 5 µg laccase.

Figure S12. Calibration curve for BCA assay performed according to the supplier’s protocol (Thermo Fisher Scientific, U.S.A.)