 Associations of Renal Vascular Resistance With Albuminuria and Other Macroangiopathy in Type 2 Diabetic Patients

KUMIKO HAMANO, MD1
AI NITTA, MD1
TAKAYASU OHTAKE, MD, PHD2
SHUZO KOBAYASHI, MD, PHD2

OBJECTIVE — Albuminuria can be caused by endothelial dysfunction as a result of ischemic nephropathy rather than classic diabetic nephropathy. We studied whether renal vascular resistance (resistive index [RI]) of the main renal arteries could be associated with albuminuria and further assessed the relationship between RI and aorta stiffness measured by brachial-ankle pulse-wave velocity (baPWV).

RESEARCH DESIGN AND METHODS — We consecutively studied 150 patients with type 2 diabetes and the absence of clinically overt renal artery stenosis. Renal function expressed as the estimated glomerular filtration rate (eGFR) was calculated using the modified formula of modification of diet in renal disease (MDRD). The RI [(peak systolic velocity – end-diastolic velocity)/peak systolic velocity] was measured with duplex Doppler ultrasonography.

RESULTS — When the presence of albuminuria (uAlb) was defined as urinary albumin-to-creatinine ratio (µg/mg: creatinine) >30, mean RI (left RI + right RI/2) was significantly higher in uAlb, compared with that in patients without uAlb. RI had significant associations with age (r = 0.398, P < 0.0001), diastolic blood pressure (r = −0.398, P < 0.0001), eGFR (r = −0.373, P < 0.0001), and baPWV (r = 0.223, P < 0.05), respectively. Multivariate logistic regression analysis showed that increased RI when defined as RI >0.72 (median) was significantly associated with age (P < 0.01, 95%CI 1.02–1.19), diastolic blood pressure (P < 0.01, 0.86–0.97), and uAlb (P < 0.01, 1.53–15.46), respectively. Moreover, RI was an independent risk factor for uAlb after adjustment of both diastolic blood pressure and eGFR.

CONCLUSIONS — Renal vascular resistance was associated with albuminuria and aorta stiffness. Increased RI may imply the presence of any type of underlying renal damage, including ischemic nephropathy.

Diabetes Care 31:1853–1857, 2008

From the 1Department of Diabetology and Endocrinology, Shonan Kamakura General Hospital, Kanagawa, Japan; and the 2Department of Nephrology, Shonan Kamakura General Hospital, Kanagawa, Japan. Corresponding author: Shuzo Kobayashi, shuzo@shonankamakura.or.jp.

Received 29 January 2008 and accepted 9 June 2008.

Published ahead of print at http://care.diabetesjournals.org on 19 June 2008. DOI: 10.2337/dc08-0168 © 2008 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Peripheral arterial disease was defined as the presence or any history of bypass surgery or percutaneous peripheral intervention or limb ischemia as evidenced by symptoms of intermittent claudication, resting pain, or gangrene.

Duplex Doppler ultrasonography

All measurements were made after an overnight fast in a supine position and during suspended respiration at the end of inspiration. Images were obtained with a duplex Doppler apparatus (Aloka SSD 2000; Aloka, Tokyo, Japan) with a 5-MHz convex array probe in both real-time/color-coded Doppler and pulse Doppler modes. The ultrasound probe was positioned gently on the flank in oblique projection, and the kidney was visualized as a longitudinal image. A Doppler beam was placed on the main tract of the renal arteries. RI was calculated by the built-in software as follows: RI = (peak systolic velocity – end-diastolic velocity)/peak systolic velocity.

The use of antihypertensive agents was not suspended before the resistive index measurement. Although the patients were not specifically screened for the presence of undiagnosed renal artery stenosis, we nevertheless measured the size of the nephrogram and blood flow at the hilum of each kidney. None of the patients who were included in the study had a hilar acceleration time >100 cm/s or had evidence of kidney atrophy <8 cm. The average of right RI and left RI with the difference between the two kidneys not <15% was used as a marker of renal artery resistance in each individual.

Measurements were performed by well-trained staff unaware of any information concerning the patients. Regarding reproducibility of measurements, interobserver and intraobserver variances were 4.0 and 5.1%, respectively (7).

Aorta stiffness expressed as baPWV, ABI, and carotid IMT

Aortic stiffness can be assessed noninvasively by measurement of baPWV (18). Recently, a new and simple device to measure baPWV has been developed. The device measures baPWV using an oscillometric method (19). In this study, the baPWV was automatically calculated with the use of a Colin Waveform Analyzer (form PWV/ABI; Colin, Komaki, Japan). The instrument records baPWV, blood pressure, electrocardiogram, heart sounds, and ABI simultaneously. Validity, reproducibility, and clinical significance of noninvasive baPWV measurement have been reported elsewhere (19). ABI was estimated by ankle systolic blood pressure/brachial systolic blood pressure.

According to our previous report (20), both carotid arteries were examined using a 7.5-MHz linear array transducer with high-resolution B-mode ultrasonography (Aloka, Tokyo, Japan). The IMT was defined as the distance between the leading edge of the lumen-intima echo of the near wall and the leading edge of the media-adventitia echo. The maximum IMT was recorded in the right and left carotid arteries, respectively. In addition to RI, baPWV, IMT, and ABI were expressed as an average of right and left measurements, respectively.

Statistical analysis

All the data are expressed as means ± SD. Differences between the two groups were analyzed by an unpaired Student’s t test. One-way ANOVA was used for multiple comparisons of more than three groups followed by Scheffe’s test. Logistic multiple regression analysis was performed to determine more related variables for RI. Increased RI when defined as RI >0.72 (median) was used for logistic regression analysis. The F value for a candidate’s entrance or removal from the discriminate function test was set at >0.05. The level of statistical significance was defined as P < 0.05. All the statistical analysis was performed with SAS/Windows (Statview version 5.0).

RESULTS

—Basic characteristics of the 150 patients are shown in Table 1. Mean age ± SD was 66.1 ± 10.2 years, and A1C was 8.01 ± 1.81%. Serum creatinine and eGFR were 0.94 ± 0.43 mg/dl and 77.6 ± 22.0 ml/min per 1.73 m², respectively. Systolic blood pressure (sBP) and diastolic blood pressure (dBP) were both relatively well controlled (sBP 139 ± 21 mmHg and dBP 79 ± 14 mmHg). Morbidity and co-current use of drugs are also shown in Table 1. The median of urinary albumin excretion was 22.8 µg/mg·Cr. The RI of all patients was 0.720 ± 0.071. The baPWV, IMT, and ABI values were 1,894 ± 519 cm/s, 0.943 ± 0.123 mm, and 1.11 ± 0.12, respectively (Table 1).

RI was significantly higher in patients with macroalbuminuria (0.745 ± 0.077), compared with that in patients with normoalbuminuria (0.707 ± 0.067) (P < 0.01), as shown in Fig. 1. Univariate regression analysis showed that RI had sig-
significant associations with age ($r = 0.398$, $P < 0.0001$), dBP ($r = -0.398$, $P < 0.0001$), eGFR ($r = -0.373$, $P < 0.0001$), and baPWV ($r = 0.223$, $P < 0.05$) (Table 2), respectively. Urinary albumin excretion, as a continuous variable, was not correlated with RI. Multivariate logistic regression analysis showed that independent of eGFR, RI was significantly associated with age ($P < 0.01$, 95% CI 1.02–1.18), dBP ($P < 0.01$, 0.86–0.97), and uAlb (when the presence of albuminuria was defined as urinary albumin-to-creatinine ratio >30 μg/mg uAlb) ($P < 0.01$, 1.53–15.46) (Table 3), respectively. However, baPWV, IMT, and ABI as well as eGFR were not identified as independent risk factors for increased RI. Also, when uAlb was considered as a dependent variable, RI ($P < 0.05$) as well as dBP ($P < 0.05$) and eGFR ($P < 0.01$) remained significant as independent risk factors.

CONCLUSIONS—In the present study, we showed that renal vascular resistance was higher in patients with macroalbuminuria. After an adjustment of eGFR, RI remained significant and was an independent risk factor for the presence of albuminuria. Therefore, RI is a useful marker for the presence of any type of diabetic nephropathy found in type 2 diabetes. When we consider the stages of diabetic nephropathy, it is plausible that there is a stage in which albuminuria and GFR do not always correspond to each other. Recent results regarding the pathophysiology of renal disease in type 2 diabetes have challenged the concept that a decline in renal function in patients with diabetes is always accompanied by increased albuminuria. MacIsaac et al. (11) have suggested that Renal insufficiency, without albuminuria, is common in type 2 diabetes.

Increased RI is known to be correlated with renal dysfunction or urinary albumin excretion in hypertensive patients under treatment with ACE inhibitors (6). We showed that RI was correlated with macroalbuminuria. Recently, Nosadini et al. (21) showed that increased renal arterial resistance predicts the course of renal function in type 2 diabetics with microalbuminuria. The patients with RI >0.8 showed a significant deterioration in GFR. However, albumin excretion rate was similar in both the patients with RI above or below 0.8 at baseline, although overt proteinuria tended to develop more frequently in patients with RI >0.8. Therefore, the present study may indicate that RI was significantly correlated with albuminuria except in normoalbuminuric patients. Considering the finding that RI was not correlated with proteinuria in patients with idiopathic chronic glomerulonephritis (7), the results of the present study may also suggest the difference in the pathophysiological significance of albuminuria between both groups: those with chronic glomerulonephritis and those with diabetes. In diabetic patients, polyvascular disease based

Table 1—Basic characteristics of the patients

n	150
Sex (M/F)	102/48
Age (years)	66.1 ± 10.2
A1C (%)	8.01 ± 1.81
sBP (mmHg)	139 ± 21
dBP (mmHg)	79 ± 14
Total cholesterol (mg/dl)	207 ± 40
Triglycerids (mg/dl)	170 ± 176
HDL (mg/dl)	54 ± 17
Creatine (mg/dl)	0.94 ± 0.43
eGFR (ml/min per 1.73 m²)	77.6 ± 22.0
RI	0.720 ± 0.006
baPWV (cm/s)	1,894 ± 510
IMT (mm)	0.94 ± 0.23
Urinary albumin excretion (μg/mg·creatinine)	215.1 ± 640
Comorbidity	
Hypertension (%)	72.0
Hyperlipidemia (%)	64.0
Ischemic heart disease (%)	35.3
Cardiovascular disease (%)	8.7
Peripheral arterial disease (%)	12.7
Drugs	
Angiotensin receptor blockade (%)	50.7
ACE inhibitors (%)	14.0
Calcium-channel blockers (%)	38.7

Data are means ± SD.

Table 2—Univariate regression analysis associated with RI

	R	P
Age	0.398	<0.0001
sBP	0.136	0.126
dBP	-0.398	<0.0001
A1C	0.064	0.460
eGFR	0.0616	0.882
Urinary albumin excretion		
eGFR	-0.373	<0.0001
baPWV	0.223	0.015
IMT	0.142	0.154
ABI	0.167	0.065

Figure 1—RI was significantly higher in patients with macroalbuminuria (DN) ($0.745 ± 0.077$) compared with that in patients with normoalbuminuria (NA) ($0.707 ± 0.067$) ($P < 0.01$). MA, microalbuminuria.
on systemic atherosclerotic disorders could affect renal injury through long-term intrarenal ischemia. Indeed, increased urinary albumin excretion can be a marker of coexisting coronary artery disease in patients with peripheral arterial disease (22). Atherosclerosis affects different vascular systems resulting in polyvascular disease. Recently, the REACH (Reduction of Atherothrombosis for Continued Health) study revealed that coronary, cerebral, and peripheral arterial diseases are superimposed on one another (23). In the patients with diabetes, endothelial cells of the renal or intrarenal artery, in addition to glomeruli, would be more affected by atherosclerosis than those in the patients with chronic glomerulonephritis. The other hand, albuminuria in the patients with chronic glomerulonephritis may be more likely derived from glomerular capillary damage alone without (or with less) damage to the main renal artery. This may be the reason why RI was not correlated with proteinuria in the patients with chronic glomerulonephritis.

Renal injury in diabetic patients includes various pathophysiological disorders. In this regard, we need to be aware of ischemic nephropathy resulting from diminished renal blood perfusion, even if clinically overt renal artery stenosis is absent. Ischemic nephropathy originally refers to the reduction of GFR that is caused by hemodynamically significant renal artery obstruction (24). However, the major clinical questions confronting the nephrologist in considering the diagnosis of ischemic nephropathy include, “Which clinical or laboratory features are most useful in its detection?” The finding that increased RI of renal arteries is significantly correlated with albuminuria would provide a clue to study the clinical progression of less severe but long-term ischemic nephropathy. Endothelial cells in glomerular capillary could be easily injured by mechanical stress including ischemia. It has been recently reported that even in proteimurious subjects without diabetes, there is evidence of macrovascular endothelial dysfunction remote from the kidney and of low-grade inflammation that is associated with microvascular endothelial dysfunction (25).

In conclusion, increased RI may imply the presence of any type of underlying renal damage, including ischemic nephropathy resulting in endothelial dysfunction in type 2 diabetes.

References

1. Rifkin MD, Needleman L, Pasto ME: Evaluation of renal transplant rejection by duplex Doppler examination. *Am J Roentgenol* 148:759–762, 1987

2. Platt JF, Rubin JM, Ellis JH, DiPietro MA: Duplex Doppler US of the kidney: differentiation of obstructive from nonobstructive dilatation. *Radiology* 171:515–517, 1989

3. Platt JF, Ellis JH, Rubin JM, DiPietro MA: Intrarenal arterial Doppler sonography in the detection of renal vein thrombosis of the native kidney. *Am J Roentgenol* 162:1367–1370, 1994

4. Platt JF, Ellis JH, Rubin JM, DiPietro MA, Sedman AB: Intrarenal arterial Doppler sonography in patients with nonobstructive renal disease. *Am J Roentgenol* 154:1223–1227, 1990

5. Patriquin HB, O’Regan S, Robitaille P, Patiello H: Hemolytic-uremic syndrome: intrarenal arterial Doppler patterns as a useful guide to therapy. *Radiology* 172:625–628, 1989

6. Leoncini G, Martiniol C, Viasi F: Changes in renal resistive index and urinary albumin excretion in hypertensive patients under long-term treatment with lisinopril or nifedipine GITS. *Nephron* 90:169–173, 2002

7. Ike R, Kobayashi S, Hemmi N, Imakiire T, Kikuchi Y, Moriya H, Suzuki S, Miura S: Correlation between the resistive index by Doppler ultrasound and kidney function and histology. *Am J Kidney Dis* 46:603–609, 2005

8. Japanese Society for Dialysis Therapy: Report of the annual statistical survey of the Japanese Society for Dialysis Therapy in 2006. *JSDT* 12:1–86, 2007

9. Gambara V, Mecca G, Remuzzi G, Bertani T: Heterologous nature of renal lesions in type II diabetes. *J Am Soc Nephrol* 3:1498–1460, 1993

10. Matsumoto N, Ishimura E, Taniwaki H, Emoto M, Shoji T, Kawaguchi T, Inaba M, Nishizawa Y: Diabetes mellitus worsens intrarenal hemodynamic abnormalities in nondiabetic patients with chronic renal failure. *Nephron* 86:44–51, 2000

11. Maclsaac RJ, Panagiotopoulos S, McNeil KJ, Smith TJ, Tsalamandris C, Hao H, Matthews PG, Thomas MC, Power DA, Jerums G: Nonalbuminuric renal insufficiency in type II diabetes related to an increase in intrarenal vascular disease. *Diabetes Care* 29:1560–1566, 2006

12. Ishimura E, Nishizawa Y, Kawagishi T, Okuno Y, Kogawa K, Fukumoto S, Maekawa K, Hosoi M, Inaba H, Emoto M, Morii H: Intrarenal hemodynamic abnormalities in diabetic nephropathy measured by duplex Doppler sonography. *Kidney Int* 51:1920–1927, 1997

13. Maclsaac RJ, Tsalamandris C, Panagiotopoulos S, Smith TJ, McNeil KJ, Jerums G: Nonalbuminuric renal insufficiency in type 2 diabetes. *Diabetes Care* 27:195–200, 2004

14. Ohta Y, Fuji K, Arima H, Matsumura K, Tsuchihashi T, Tokumoto M, Tsurraya K, Kanai H, Iwase M, Hirakata H, Iida M: Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. *J Hypertens* 23:1905–1911, 2005

15. Hillege HL, Janssen WMT, Bak AAA, Diekx GFF, Grobbe DE, Crijns HJG, Van Gilst WH, DeZeeuw D, Jong PE: Microalbuminuria is common, also in non-diabetic, non-hypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. *J Intern Med* 249:519–526, 2001

16. World Health Organization: Diabetes Mellitus: Report of a WHO Study Group. Geneva, World Health Org., 1985 (Tech. Rep. Ser., no. 727)

17. Levy AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation: Modification of Diet in Renal Disease Study Group. *Ann Intern Med* 130:461–470, 1999

18. Lehmann ED: Pulse wave velocity as a
marker of vascular disease. *Lancet* 348: 741–744, 1996

19. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, Koji Y, Horii S, Yamamoto Y: Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. *Hypertens Res* 25:359–364, 2002

20. Kobayashi S, Moriya H, Aso Kuniko, Ohtake T: Vitamin E-bonded hemodialyzer improves atherosclerosis associated with a rheological improvement of circulating red blood cells. *Kidney Int* 63:1881–1887, 2003

21. Nosadini R, Velussi M, Brocco E, Abaterusso C, Carraro A, Piarulli F, Morgia G, Satta A, Faedda R, Abhyankar A, Luthman H, Tonolo G: Increased renal arterial resistance predicts the course of renal function in type 2 diabetes with microalbuminuria. *Diabetes* 55:234–238, 2006

22. Sonmez K, Eskisar AO, Demir D, Yazioglu MV, Mutlu B, Dogan Y, Izgi A, Mansuroglu D, Bakal RB, Elonu OH, Turan F: Increased urinary albumin excretion rates can be a marker of coexisting coronary artery disease in patients with peripheral arterial disease. *Angiology* 57:15–20, 2006

23. Ohman EM, Bhatt DL, Steg PG, Goto S, Hirsch AT, Lian CS, Mas JL, Richard AJ, Rother J, Wilson PW, REACH Registry Investigators: The Reduction of Atherothrombosis for Continued Health (REACH) registry: an international, prospective, observational investigation in subjects at risk for atherothrombotic events-study design. *Am Heart J* 151:786.e1–786.e10, 2006

24. Jacobson H: Ischemic renal disease. *Kidney Int* 34:729–743, 1988

25. Paisley KE, Beaman M, Tooke JE, Mohamed-Ali V, Lowe GDO, Shore AC: Endothelial dysfunction and inflammation in asymptomatic proteinuria. *Kidney Int* 63:624–633, 2003