Polystyrene microplastics induce an immunometabolic active state in macrophages

Seth D. Merkley · Harrison C. Moss · Samuel M. Goodfellow · Christina L. Ling · Jewel L. Meyer-Hagen · John Weaver · Matthew J. Campen · Eliseo F. Castillo

© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Anti-inflammatory and proinflammatory responses in macrophages are influenced by cellular metabolism. Macrophages are the primary phagocyte in mucosal environments (i.e., intestinal tract and lungs) acting as first-line defense against microorganisms and environmental pollutants. Given the extensive contamination of our food and water sources with microplastics, we aimed to examine the metabolic response in macrophages to microplastic particles (MPs). Utilizing murine macrophages, we assessed the metabolic response of macrophages after polystyrene MP phagocytosis. The phagocytosis of MP by macrophages induced a metabolic shift toward glycolysis and a reduction in mitochondrial respiration that was associated with an increase of cell surface markers CD80 and CD86 and cytokine gene expression associated with glycolysis. The gastrointestinal consequences of this metabolic switch in the context of an immune response remain uncertain, but the global rise of plastic pollution and MP ingestion potentially poses an unappreciated health risk.

Keywords Microplastics · Macrophage · Metabolism · Inflammation · Particulates

Introduction

Alarmingly, industrial microplastic particles (MPs) have permeated global aquatic and terrestrial ecosystems (Wright and Kelly 2017). The contamination of ingestible items such as food and water raises both ecological and public health concerns (Cox et al. 2019). Human consumption of MP through our diet, although believed to be underestimated, is up to 142,000 particles annually; estimates increase to 211,000 particles when inhalation is considered (Cox et al. 2019; Koelmans et al. 2019; Novotna et al. 2019). Notably, these calculations are based on only 15% of the average Americans’ caloric intake and do not account for numerous other sources of MP contamination including major food groups and food
preparation, which can further contribute plastics to the diet (Cox et al. 2019). Polystyrene (PS), polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) make up more that 50% of microplastics found in the environment and the majority of the types of MP found in food (Catarino et al. 2018; Cau et al. 2019; Cheung et al. 2018; Cho et al. 2019; Doyen et al. 2019; Feng et al. 2019; Jahan et al. 2019; Karami et al. 2017a, b; Kim et al. 2018; Li et al. 2015; Nan et al. 2020; Rummel et al. 2016; Tanaka and Takada 2016; Wu et al. 2020). Thus, there is no debate that we are ingesting and inhaling MP at increasing rates, but the human health impact remains unclear.

Several reports have shown that MPs accumulate in the gut and liver of mice after ingestion (Deng et al. 2017; Jin et al. 2019). Although the mechanism is unclear, MP exposure leads to gut dysbiosis, decreased mucin production, and localized liver inflammation (Deng et al. 2017; Jin et al. 2019; Lu et al. 2018). More recently, it was shown that environmentally exposed MP enhances the uptake by macrophages (Ramsperger et al. 2020). Macrophages are the major phagocytic cell in both the liver and the intestinal tract and upon activation can contribute to inflammation-induced pathologies (Bain and Schridde 2018; Bain et al. 2013; Wang et al. 2020). This cellular localization in mucosal environments allows macrophages to directly eliminate microbes upon barrier breakdown and to support the uptake of apoptotic barrier cells. Furthermore, macrophages as well as myeloid-derived dendritic cells in the lamina propria can sample the luminal content despite residing outside the lumen (Mazzini et al. 2014; Niess et al. 2005). Through phagocytosis and macroautophagy (herein, referred to as autophagy), macrophages connect the intake of foreign materials to host immunity (Wu and Lu 2019). Autophagy is a conserved catabolic process that degrades protein aggregates, damaged organelles, and numerous pathogens (Galluzzi et al. 2017; Gatica et al. 2018; Mizushima et al. 1998). The activation of autophagy has proven critical for macrophage function in response to stress and infection as well as providing energy during these functional states (Martinez et al. 2013).

Intestinal macrophages exhibit an anti-inflammatory phenotype under homeostatic conditions that allows them to function as highly phagocytic and bactericidal cells without initiating an inflammatory response (Bain and Schridde 2018). A functional autophagic pathway in macrophages is critical for this anti-inflammatory phenotype (Lee et al. 2016; Merkley et al. 2020; Zhang et al. 2017). It is suggested that anti-inflammatory macrophages rely mainly on mitochondrial metabolism such as the oxidative phosphorylation (OXPHOS) and fatty acid oxidation for energy production (Diskin and Palsson-McDermott 2018; Shanmugam et al. 2003). During inflammation, the macrophage niche changes — infiltrating monocytes differentiate into inflammatory macrophages capable of producing proinflammatory cytokines and promoting inflammation (Bain et al. 2013). This inflammatory phenotype is partly attributed to a glycolytic metabolic phenotype, which is called an immunometabolic active state (Diskin and Palsson-McDermott 2018; Shanmugam et al. 2003). Glycolysis is also increased during phagocytosis (Newsholme et al. 1987; Schnyder and Baggiolini 1978; Viola et al. 2019). During this metabolic switch, macrophages upregulate cell surface markers such as CD80 and CD86 as well as cytokines such as IL-23 (Bain and Schridde 2018; Diskin and Palsson-McDermott 2018; Jha et al. 2015; Mogilenko et al. 2019). Thus, alterations in macrophage metabolism could have a significant impact on immunity and inflammation. In this brief report, we assessed the cellular response of macrophages to MP.

Methods

Cell culture and stimulation

Primary murine macrophages derived from C57BL/6 mice or Atg5ΔLysM mice (Atg5-deficiency in myeloid cells) were generated as previously described (Castillo et al. 2012). Macrophages were stimulated with 10-µm polystyrene microplastics (Phosphorex, Cat# 118, 1 µg/mL).

Confocal microscopy

Slide-adhered macrophages were treated with green fluorescent 10-µm polystyrene MP (Phosphorex, 2106G) for 4 h in the presence or absence of Bafilomycin A1 (10 nM) or pp242 (5 µM). Slides were stained with LC3 (MBL Int.) and mounted with EMS ImmunoMount DAPI Mounting media (Cat#
17,989–97). One to three-micrometer Z-stack images were obtained using immunofluorescence at 1.6 zoom by a × 63 oil immersion objective. Images were processed using the Zen Software and Adobe Photoshop (version CC 2019), and ImageJ was used for MFI analysis.

Flow cytometry

Macrophages were pretreated with Stain FcX (anti-CD16/32) (Biolegend) before being stained for CD80 (Invitrogen) and CD86 (ThermoFisher). Mitochondria were stained with 100 nM MitoTracker Green (Thermo, M7514) and 200 nM MitoTracker Red CMXRos (Thermo, M22425) as previously reported (Castillo et al. 2012). Cell surface markers and mitotracker dyes were assessed on the LSR Fortessa (BD Biosciences) and analyzed using the FlowJo software (TreeStar).

Glycolytic rate assay

Mitochondrial oxygen consumption rate (mitoOCR) and extracellular acidification rate (ECAR) were assayed in basal and MP groups via addition of Rotenone/Antimycin (Rot/AA, 0.5 µM), inhibiting mitochondrial electron transport chain complexes I and III, respectively, followed by 2-DG (50 mM), inhibiting hexokinase. mitoOCR and ECAR measurements were calculated via the GRA (Agilent #103,344–100), and basal glycolysis, % proton efflux rate due to glycolysis (glycoPER), and mitoOCR/glycoPER ratios were obtained from the Seahorse XF Extracellular Flux Analyzer (Agilent Bioscience Inc.).

RNA isolation, quantification, and RT-qPCR

RNA isolation was performed on cells stored in RNA-Later (Invitrogen) using the RNA Purelink Minikit (Invitrogen) protocol. The Nanodrop2000 was used to quantify RNA, and all samples yielded a 260/280 of 2 ± 0.15. cDNA synthesis was performed using Oligo(dT) Primer and SSIV Reverse Transcriptase in the presence of Cloned Ribonuclease Inhibitor (all ThermoFisher). Reverse transcription reaction and RT-qPCR runs utilized Taqman MasterMix (ThermoFisher) using QuantStudio 7. RT-qPCR primers and reagents used are listed in Table S1.

Statistical analysis

Description of statistics is found in the figure legends. Graphs generated display mean (± SD) using the Prism software. Pearson’s correlation coefficient was acquired from macrophage confocal images using Huygen’s Deconvolution Scientific Volume Image Software (UNM Fluorescence Microscopy and Cell Imaging shared resource). All data were analyzed using two-tailed unpaired Student’s t test (Prism) or one-way ANOVA.

Results

Internalization of MP by macrophages does not result in MP degradation

Utilizing fluorescently labeled polystyrene MP (Fig. 1A), we investigated the uptake of MP by murine macrophages. Consistent with recent reports (Ramsperger et al. 2020; Stock et al. 2019), confocal microscopy revealed a clear uptake of green fluorescent MP by macrophages (Fig. 1B). These internalized MPs (green fluorescence) colocalized with the microtubule-associated proteins 1A/1B light chain 3 B (LC3, red fluorescence) (Fig. 1C, D top row, insets display enlarged puncta). LC3 is a key protein involved in internal cargo shuttling to autophagosomes in the autophagic pathway (Gatica et al. 2018; Mizushima et al. 1998) and LC3-associated phagocytosis (LAP) (Martinez et al. 2015; Sanjuan et al. 2007). LAP is a phagocytic immune-activating mechanism that utilizes LC3 to phagocytose extracellular cargo. To determine if the autophagy pathway could degrade the internalized MP, we activated autophagy in macrophages after MP internalization with the mTOR inhibitor, Torkinib (pp242) (Zeng et al. 2012). Interestingly, LC3 (red) and MP (green) still colocalized (Fig. 1C, D middle row) in macrophages after the induction of autophagy albeit at a significantly lower level than in unstimulated macrophages. The presence of colocalized LC3 and MP after autophagy induction suggests that macrophage autophagy cannot completely clear MP.
Macrophages utilize LC3-associated phagocytosis to uptake MP. One to three-micrometer Z-stack images were seen on macrophages using immunofluorescence at 1.6 Zoom by a ×63 oil immersion objective. A Ten-micron MP were visualized and measured pre-exposure to macrophages. Representative from 5 images. Scale bar: 50 µm. B Macrophages were visualized for fluorescent MP using confocal (CF) and brightfield (BF) imaging. Representative from 20 images from 4 slides. C Macrophages were visualized for fluorescent MP colocalization with LC3 in the absence or presence of Baf. A1 (10 nM) or pp242 (5 µM). Arrows indicate puncta displaying colocalization Insets. Representative from 15 images from 4 slides. Scale bars: 10 µm. D Quantification of MP/LC3 colocalization using Pearson’s correlation coefficient (colocalization) and unpaired Student’s t-test. Graph indicates mean *** indicates a P-value < 0.001 (t-test). E Graph displaying the mean fluorescence intensity (MFI) of MP fluorescence and uptake in macrophages. Each dot represents an image with a total of 20 images for each condition. F Atg5KO macrophages with or without Baf. A1 were visualized for MP uptake using confocal (CF) and brightfield (BF) imaging. Representative from 20 images from 5 slides. Scale bars: 10 µm

To determine if autophagy or LAP is required for MP internalization, we utilized Bafilomycin A1 (Baf.A1), a specific inhibitor of the vacuolar-type H+-ATPase (Florey et al. 2015; Yoshimori et al. 1991). Baf.A1 can prevent LAP (Florey et al. 2015; Gao et al. 2016; Jacquin et al. 2017) as well as block the final step of autophagy (preventing degradation of the autophagosomal contents and allowing accumulation of LC3-bound cargo) (Yoshimori et al. 1991). Upon Baf. A1 stimulation, there was minimal to no colocalization of MP (green) and LC3 (red) (Fig. 1C, D bottom row) compared to autophagy induction (Fig. 1D). Interestingly, MPs were still internalized by macrophages (Fig. 1C bottom row). Utilizing macrophages from mice with an Atg5 deficiency in myeloid cells (Castillo et al. 2012; Zhao et al. 2008), we examined if Atg5-deficient macrophages could still phagocytose MP. Atg5 is involved in multiple steps in the autophagic process (Hanada et al. 2007; Mizushima et al. 1998; Noda et al. 2013; Sakoh-Nakatogawa et al. 2013) as well as LAP (Heckmann et al. 2019). In comparison to wild-type macrophages, the fluorescence intensity of intracellular MP was not significantly different compared to that of Atg5-deficient macrophages suggesting no change in the amount of MP internalization (Fig. 1E). In the absence or presence of Baf.A1, Atg5-deficient macrophages were still capable of MP phagocytosis (Fig. 1F). Overall, our results suggest macrophages can phagocytose MP in both LAP-dependent and independent mechanisms; however, neither mechanism can completely degrade MP.

MP phagocytosis by macrophages biases them toward a less oxidative, more glycolytic metabolic profile

The phagocytosis of external cargo by macrophages can have profound effects on immune activation (Schnyder and Baggiolini 1978). Currently, it is unclear how macrophages respond to MP, and as MPs are not completely degraded by autophagy, they may provide an extended challenge to macrophage homeostasis. Therefore, we examined the cellular response of macrophages to MP. Interestingly, MP internalization significantly increased cell surface expression of two major co-stimulatory molecules, CD80 (Fig. 2A, B) and CD86 (Fig. 2C, D) relative to unstimulated macrophages. Furthermore, Il23p19 (Fig. 2E), a subunit of the proinflammatory cytokine IL-23, also showed elevated expression after MP internalization. Il12b (i.e., IL-12(p40) (Fig. 2F); the other subunit of IL-23 was elevated but this increase was not significant. No change was observed for anti-inflammatory cytokines Il10 (Fig. 2G) or Tgfb1 (Fig. 2H).

Phagocytosis can lead to the upregulation of co-stimulatory molecules. During phagocytosis, the glycolytic pathway is upregulated which is crucial for CD80 and CD86 upregulation (Bain and Schridde 2018; Diskin and Palsson-McDermot 2018; Jha et al. 2015; Mogilenko et al. 2019; Newsholme et al. 1987; Schnyder and Baggiolini 1978; Viola et al. 2019). As mentioned above, glycolysis is closely linked to an inflammatory state in macrophages, as many glycolytic enzymes serve to directly enhance inflammation (Millet et al. 2016; Palsson-McDermott et al. 2017; Xie et al. 2016). Thus, we examined the extracellular acidification rate (ECAR) and proton efflux rate (PER) as measurements of glycolysis and mitochondrial/TCA cycle activity in macrophages at a basal state, stimulated with MP as well as low-dose lipopolysaccharide (LPS, 100 pg/mL) stimulation and MP plus LPS stimulation. The kinetics for oxygen consumption rate (OCR), PER, and ECAR of basal and MP-stimulated macrophages (Fig. 2L–K) are shown for simplification. Basal state and low-dose LPS stimulated macrophages were highly oxidative (Fig. 2L–O), but all treatments showed indistinguishable compensatory glycolysis responses.
upon mitochondrial inhibition (Fig. 2M). After the phagocytosis of MP in the absence or presence of LPS, macrophages showed a more glycolytic biased phenotype, indicated by higher basal glycolysis (Fig. 2L), reduced mitochondrial metabolism as shown by a lower mitoOCR/glyoPER ratio (Fig. 2O),
and the majority of PER due to glycolysis (Fig. 2N). Further analysis of MP-stimulated macrophages revealed a decrease in mitochondrial membrane potential as determined by decreased Mitotracker Red CMXRos staining in MP-stimulated macrophages (Fig. 2P, Q). Collectively, our data suggest the phagocytosis of MP by macrophages can induce an immunometabolic active state.

Discussion

In summary, we found that macrophages could phagocytose 10-micron sized PS MP, and this internalization induces an immunometabolically active phenotype in macrophages. Interestingly, these MP could not be fully degraded in the observed timescale (4–72 h). Confocal microscopy revealed these MP colocalized with LC3, a marker commonly used to identify autophagosomes as well as LC3-associated phagosomes (LAP). Intracellular cargo associated with LC3 is usually degraded through the autophagic pathway or LAP. The colocalization of LC3-MP (in the absence of stimulators and inhibitors of autophagy) suggested that (1) MPs are in a LC3-associated phagosome, and (2) autophagy may be blocked upon MP phagocytosis allowing MP to accumulate intracellularly. However, when autophagy was chemically induced with the mTOR inhibitor, Torkinib, there was still MP-LC3 colocalization albeit significantly reduced as well as intracellular MP that did not colocalize with LC3. These results suggested that MPs are not completely degraded by autophagy and that MP-LC3 puncta may be associated with LAP given LAP activation stems from external engulfment of cargo. Utilizing Baf.A1 to prevent LAP (Florey et al. 2015; Gao et al. 2016; Jacquin et al. 2017), we found that MPs no longer associated with LC3 but were still detected in macrophages suggesting MP internalization occurs in both LAP-dependent and independent mechanisms.

Furthermore, macrophages that lacked Atg5, which is also required for LAP (and autophagy), also internalized MP further supporting the idea that MP are internalized in both LAP-dependent and independent mechanisms. Both autophagy and LAP are major pathways involved in the cells ability to degrade, clear, and recycle cargo. The accumulation of MP in macrophages even after the activation of autophagy or inhibition of LAP could be detrimental to cellular function and survival, and our data shows that MPs alter the cellular metabolism of macrophages. Specifically, resting macrophages in a metabolic oxidative state became more glycolytic after MP phagocytosis. Although, an increase in glycolysis does not always result in a reduction in mitochondrial metabolism (Hu et al. 2020); in our system, when macrophages engulf MP, the shift towards glycolysis came at the expense of maintaining mitochondrial respiration. Ultimately, this switch in cellular metabolism coincided with an increase in cell surface co-stimulatory molecules CD80 and CD86 and upregulated proinflammatory cytokine genes. Overall, our data suggest the phagocytosis of MP by macrophages could be priming these immune cells for cellular activation.

The in vivo consequence of macrophages phagocytosing MP is unclear. MPs have been found in human feces, suggesting that humans are ingesting MP (Schwabl et al. 2019). Autophagy and phagocytosis are crucial immunological functions utilized by macrophages to remove pathogens, apoptotic
cells, or cellular debris to maintain cellular and tissue homeostasis. Intestinal macrophages could likely uptake MPs at numerous sites in the GI tract including sampling the lumen (Mazzini et al. 2014), paracellular persorption at the gut epithelium (for particles <130 µm) (Wright and Kelly 2017), and trafficking through ileal Peyer’s patches via M-cells (Knoop et al. 2013). While the presence of MP alone may not be enough to induce substantial inflammatory activation, the daily introduction of MP into the human GI tract exposes MP to a plethora of microorganisms which could contribute to the gut and liver inflammation observed in animals ingesting MP. The uptake of MP laden with microorganisms by lamina propria phagocytes could introduce a bias toward low-grade inflammation and likely exacerbates pre-existing pathologies in the gut and surrounding tissues.

The exposure of MP to the GI tract puts barrier cells in contact with these environmental pollutants. Phagocytosis can also occur in barrier cells such as intestinal and respiratory epithelial cells, and MPs have been shown to be phagocytosed by colonoocytes (Stock et al. 2019). Given the high consumption of MP in industrialized nations, it is concerning that the phagocytosis of MP altered macrophage metabolism. An oxidative metabolic state in differentiated intestinal epithelial cells (IEC) is crucial for intestinal homeostasis (Litvak et al. 2018). IEC rely on OXPHOS and fatty acid oxidation for the highly energy-dependent regulation of tight junction proteins that are critical for maintaining the barrier and reducing intestinal permeability (Litvak et al. 2018). Inhibitors of the H⁺ gradient, dinitrophenol and sodium azide, have been shown to induce IP (Litvak et al. 2018; Ma et al. 1999). Additionally, IEC sequester oxygen during mitochondrial metabolism (Litvak et al. 2018). This prevents oxygen from crossing the barrier and subsequently preserves an obligate anaerobic microbial community. Thus, MP-induced changes in IEC metabolism could have a significant impact on gut health. Notably, the incidence of inflammatory bowel disease (IBD), a chronic and remitting disease of the GI tract, in western countries rose rapidly in the latter part of the twentieth century, in parallel with plastic pollution, and is now becoming a global epidemic (Ng et al. 2018). Although the incidence of IBD in North America and Europe have begun to stabilize, the prevalence of IBD in these western nations has increased dramatically; the cause of which remains unknown. Moreover, most models do not account for environmental impact on IBD, and no studies have been specifically conducted to confirm a role for MP in inducing or exacerbating IBD (Zhao and Burisch 2019). Given the parallels with the rates of MP ingestion, there is ample justification to study whether MPs contribute to this global epidemic.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10565-021-09616-x.

Author contribution SDM participated in writing the manuscript and performed all experiments with help from HCM, JMH, CLL, and JW. SMG performed confocal microscopy. MJC provided critical reagents and helped design the study. EFC designed the study, analyzed data, and wrote the paper. All authors approved the final version of the manuscript.

Funding This work was supported in part by the National Center for Research Resources and the National Center for Advancing Translational Sciences of the National Institutes of Health (NIH) through grant no. UL1TR001449 (EFC), in part by NIH grant 1R56ES032037-01 (E.F.C.), in part by NIH grant P20GM121176 (EFC), P20GM130422 (MJC), and New Mexico Medical Trust C-2446-RAC (EFC). SMG was supported in part by the Infectious Disease and Inflammation Program Predoctoral T32 training grant, NIH/NIAID grant T32AI007538.

Data availability ‘Not applicable’.

Code availability ‘Not applicable’.

Declarations

Ethics approval All experiments were approved by the Institutional Animal Care and Use Committee of the University of New Mexico Health Sciences Center, in accordance with the National Institutes of Health guidelines for use of live animals. The University of New Mexico Health Sciences Center is accredited by the American Association for Accreditation of Laboratory Animal Care.

Consent to participate ‘Not applicable’.

Consent for publication ‘Not applicable’.

Competing interests The authors declare no competing interests.
References

Bain CC, Schridde A. Origin, differentiation, and function of intestinal macrophages. Front Immunol. 2018;9:2733.

Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Janson O, Grip O, Williams M, Malissen B, Agace WW, Mowat AM. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6:498–510.

Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, Delgado-Vargas M, Timmins GS, Bhattacharya D, Yang H, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci U S A. 2012;109:E3168–3176.

Catarino AI, Macchia V, Sanderson WG, Thompson RC, Henry TB. Low levels of microplastics (MP) in wild muskels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environ Pollut. 2018;237:675–84.

Cau A, Avio CG, Desi C, Follesa MC, Moccia D, Regoli F, Pusceddu A. Microplastics in the crustaceans Nephrops norvegicus and Aristaeus antennatus: flagship species for deep-sea environments? Environ Pollut. 2019;255:113107.

Cheung LTO, Lui CY, Fok L. Microplastic contamination of wild and captive flathead grey mullet (Mugil cephalus). Int J Environ Res Public Health. 2018;15(4):597. https://doi.org/10.3390/ijerph15040597.

Cho Y, Shim WJ, Jang M, Han GM, Hong SH. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ Pollut. 2019;245:1107–16.

Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. Human consumption of microplastics. Environ Sci Technol. 2019;53:7068–74.

Deng Y, Zhang Y, Lemos B, Ren H. Tissue accumulation of Cux KD, Covernton GA, Davies HL, Dower JF, Juanes F, Cho Y, Shim WJ, Jang M, Han GM, Hong SH. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ Pollut. 2019;245:1107–16.

Doyen P, Hermabessiere L, Dehaut A, Himber C, Decodts Diskin C, Palsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270.

Doyen P, Hermabessiere L, Dehaut A, Himber C, Decodts Diskin C, Palsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270.

Doyen P, Hermabessiere L, Dehaut A, Himber C, Decodts Diskin C, Palsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270.

Doyen P, Hermabessiere L, Dehaut A, Himber C, Decodts Diskin C, Palsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270.

Doyen P, Hermabessiere L, Dehaut A, Himber C, Decodts Diskin C, Palsson-McDermott EM. Metabolic modulation in macrophage effector function. Front Immunol. 2018;9:270.
Littvak Y, Byndloss MX, Bäumler AJ. Colonicoyte metabolism shapes the gut microbiota. Science. 2018;362(6418):eaat9076. https://doi.org/10.1126/science.aat9076.

Lu L, Wan Z, Luo T, Fu Z, Jin Y. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ. 2018;631–632:449–58.

Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N. Ethanol modulation of intestinal epithelial tight junction barrier. Am J Physiol. 1999;276:G965-974.

Martinez J, Verbizt K, Wang R, Green DR. The relationship between metabolism and the autophagy machinery during the innate immune response. Cell Metab. 2013;17:893–900.

Martinez J, Mailreid DK, Lu Q, Cunha LD, Pelletier S, Ginsas S, Orchard R, Guan JL, Tan H, Peng J, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol. 2015;17:893–906.

Mazzini E, Massimiliano L, Penna G, Rescigno M. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity. 2014;40:248–61.

Merkley SD, Goodfellow SM, Guo Y, Wilton ZER, Byrum JR, Schwalm KC, Dinwiddie DL, Gullapalli RR, Deretic V, Jimenez Hernandez A, Bradfute SB, In JG, Castillo EF. Non-autophagy role of Atg5 and NBR1 in unconventional secretion of IL-12 prevents gut dysbiosis and inflammation bioRxiv 2020. https://doi.org/10.1101.2020.12.07.414227.

Millet P, Vachharajani V, McPhail L, Yozza B, McCall CE. GAPDH Binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism. J Immunol. 2016;196:2541–51.

Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii J, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature. 1998;395:395–8.

Mogilenko DA, Haas JT, L’Homme L, Fleury S, Quemener S, Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose metabolism disorder in mice. Sci Total Environ. 2020;716:135865.

Mogilenko DA, Haas JT, ’L’Homme L, Fleury S, Quemener S, Levavasseur M, Beccari C, Wartelle J, Bogomolova A, Pineau L, et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell. 2019;178:263.

Nan B, Su L, Kellar C, Craig NJ, Keough MJ, Pettigrove V. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria Australia. Environ Pollut. 2020;259:113865.

Newsholme P, Gordon S, Newsholme EA. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J. 1987;242:631–6.

Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390:2769–79.

Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307:254–8.

Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 2013:14:206–11.

Novotna K, Cermakova L, Pivokonska L, Cajthaml T, Pivokonsky M. Microplastics in drinking water treatment - current knowledge and research needs. Sci Total Environ. 2019;667:730–40.

Palsson-McDermott EM, Dyck L, Zaslona Z, Menon D, McGettrick AF, Mills KHG, O’Neill LA. Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol. 2017;8:1300.

Ramsperger AFRM, Narayana VKB, Gross W, Mohanraj J, Thelakkat M, Greiner A, Schmalz H, Kress H, Laforsch C. Environmental exposure enhances the internalization of microplastic particles into cells. Sci Adv. 2020;6(50):eaabd1211. https://doi.org/10.1126/sciadv.abd1211.

Rummel CD, Loder MG, Fricke NF, Lang T, Griebeler EM, Janke M, Gerds T. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102:134–41.

Sakoh-Nakatogawa M, Matoba K, Asai E, Kiritsako H, Ishii J, Noda NN, Inagaki F, Nakatogawa H, Ohsumi Y. Atg2-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat Struct Mol Biol. 2013;20:433–9.

Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007;450:1253–7.

Schnyder J, Baggiohini M. Role of phagocytosis in the activation of macrophages. J Exp Med. 1978;148:1449–57.

Schwabl P, Kopp S, Koningshofer P, Bucics T, Trauner M, Reiberger T, Liebmann B. Detection of various microplastics in human stool: a prospective case series. Ann Intern Med. 2019;171:453–7.

Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in mononctic cells. Diabetes. 2003;52:1256–64.

Stock V, Bohmert L, Lisicki E, Block R, Cara-Carmona J, Pack LK, Selb R, Lichtenstein D, Voss L, Henderson CJ, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol. 2019;93:1817–33.

Tanaka K, Takada H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci Rep. 2016;6:34351.

Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019;10:1462.

Wright SL, Kelly FJ. Plastic and human health: a micro issue? Environ Sci Technol. 2017;51:6634–47.

Wu F, Wang Y, Leung JYS, Huang W, Zeng J, Tang Y, Chen J, Shi A, Xu X, Xu X, et al. Accumulation of microplastics...
in typical commercial aquatic species: a case study at a productive aquaculture site in China. Sci Total Environ. 2020;708:135432.

Wu MY, Lu JH. Autophagy and Macrophage Functions: Inflammatory Response and Phagocytosis. Cells. 2019;9(1):70. https://doi.org/10.3390/cells9010070.

Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, Sun X, Yang M, Billiar TR, Wang H, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun. 2016;7:13280.

Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991;266:17707–12.

Zeng Z, Shi YX, Tsao T, Qiu Y, Kornblau SM, Baggerly KA, Liu W, Jessen K, Liu Y, Kantarjian H, et al. Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood. 2012;120:2679–89.

Zhao M, Burisch J. Impact of genes and the environment on the pathogenesis and disease course of inflammatory bowel disease. Dig Dis Sci. 2019;64:1759–69.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.