MiR-221/222 Ameliorates Deoxynivalenol-Induced Apoptosis and Proliferation Inhibition in Intestinal Epithelial Cells by Targeting PTEN

Lianjie Hou1†, Xiong Tong2†, Shuyun Lin1, Mingfang Yu1, Wen-Chu Ye1* and Meiying Xie3*

1 Qingyuan City People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China, 2 State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China, 3 Collaborative Innovation Center of Plant Pest Management and Bioenvironmental Health Application Technology, Guangdong Eco-Engineering Polytechnic, Guangzhou, China

Intestinal epithelial cells are critical for nutrient absorption and defending against pathogen infection. Deoxynivalenol (Don), the most common mycotoxin, contaminates cereals and food throughout the world, causes serious damage to mammal intestinal mucosa, and appears as intestinal epithelial cell apoptosis and proliferation inhibition. Our previous study has found that milk-derived exosome ameliorates Don-induced intestinal damage, but the mechanism is still not fully understood. In this study, we demonstrated that Don downregulated the expression of miR-221/222 in intestinal epithelial cells, and exosome treatment reversed the inhibitory effect of Don on miR-221/222. Through immunofluorescence and flow cytometry analysis, we identified that miR-221/222 ameliorates Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells. Through bioinformatics analyses and RNA immunoprecipitation analysis, we identified Phosphatase and tensin homolog (PTEN) is the target of miR-221/222. Through the PTEN interfering experiment, we found Don-induced apoptosis and proliferation inhibition relied on PTEN. Finally, through adenovirus to overexpress miR-221/222 in mice intestinal epithelial cells specifically, our results showed that miR-221/222 ameliorated Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells by targeting PTEN. This study not only expands our understanding of how miR-221/222 and the host gene PTEN regulate intestinal epithelial cells defending against Don-induced damage, but also provides a new way to protect the development of the intestine.

Keywords: miR-221/222, PTEN, deoxynivalenol, intestinal epithelial cells, proliferation, apoptosis

INTRODUCTION

Deoxynivalenol (Don), the most common mycotoxin, is produced by various Fusarium that grow on grains in the field and storage frequently (Khaneghah et al., 2019). Don contaminates staple food crops and is often detected in wheat, corn, barley, and other cereals throughout the world. Don detection rate was up to 87.5% (12.5–1,920.4 μg/kg) in 200 cereal-based food
products collected by Chinese e-commerce stores, and 10.5% of the tested samples exceeded the legal Don limitation in China (1,000 μg/kg) (Ji et al., 2018). Don contamination in cereals not only contributes to substantial economic losses but also poses a significant risk to human health (Mishra et al., 2020). Since cereals are the most important energy source worldwide, Don is easily ingested by humans and animals through food. Dietary intake of low doses of Don causes nausea, vomiting, gastroenteritis, and diarrhea. In addition, Don can also bind to the 60S ribosomal subunit and inhibit its translation, leading to ribotoxic stress (Herrera et al., 2019). In addition, Don has excellent thermal stability and withstands high cooking and baking conditions, making it a severe health hazard.

The small intestine is not only an important organ for food digestion and nutrient absorption, it is also the first defensive barrier to prevent the passage of foreign antigens, microorganisms, and toxins (Ahern and Maloy, 2020). As the exerciser of intestinal defensive barrier function, the intestinal epithelium is often exposed to Don in food. Don induces inflammation and oxidative stress, thereby accelerating cell apoptosis and inhibiting intestinal epithelial cell growth (Zhou et al., 2019). Therefore, it is critical to provide a novel solution to improve Don-induced injury in intestinal epithelial cell.

The exosome is a small lipid membrane vesicle that carries bioactive cytokines, RNAs, and proteins to recipient cells by membrane fusion. These bioactive molecules alter the gene expression and biological process of the recipient cells (Valadi et al., 2007). Exosome derived from milk can pass through the gastrointestinal tract and enter into circulation and into various organs of mice (Manca et al., 2018). Milk exosome mediates intestinal epithelium cell viability, proliferation, and renewal in the neonatal intestine after birth (Yu et al., 2017). Our previous study has demonstrated that milk exosomal miR-181a, miR-365-5p, miR-30c, and miR-769-3p protect the intestine against Don damage (Xie et al., 2020). Since milk-derived exosome contains many miRNAs, the other milk-derived exosomal miRNAs' function in regulating intestinal epithelial cells defending against Don-induced injury is still unclear.

In this study, we evaluated the other exosomal miRNAs' function in protecting intestinal epithelial cells against Don-induced damage through in vitro and in vivo experiments. Our results will not only expand our understanding of how miRNAs and the host gene regulate intestinal epithelial cells to defend against Don-induced damage, but also provides a new way to protect the development of the intestine.

MATERIALS AND METHODS

IPEC-J2 Cell Culture

The method of IPEC-J2 cell culture has been described previously (Xie et al., 2019). In brief, IPEC-J2 cells were seeded in cell plates at a density of 2.5 × 10^5/cm². Twelve hours after the cells were seeded, the cells were assigned to

MiR-221/222 Transfection and PTEN Interference

IPEC-J2 cells were seeded in six-well plates at a density of 3.5 × 10^5 cells per well. IPEC-J2 cells were transfected with miR-221/222 NC (negative control), miR-221/222 mimics, or si-PTEN by Lipofectamine 3000, according to the manufacturer’s instructions. We transfected the IPEC-J2 with nucleic acid fragment when the IPEC-J2 cells reach approximately 70% confluency. MiR-221/222 mimics and si-PTEN products were purchased from GENEWIZ (Suzhou, China).

Immunofluorescence

IPEC-J2 cells were seeded in a six-well cell culture plate at 3.5 × 10^5 cells per well. After treatment, the cells were incubated with 4% paraformaldehyde for 20 min. The cells were treated with 0.5% Triton X-100 for 15 min and 10% FBS for 1 h at room temperature. The cells were incubated with cleaved caspase-3 antibody at 4°C overnight. The cells were treated with Cy3-labeled secondary antibody at room temperature for 1 h. The cell nuclei were stained by DAPI. The fluorescence was observed by Nikon Eclipse Ti-S microscopy.

RNA Extraction and Quantitative Polymerase Chain Reaction

The methods used for RNA extraction and quantitative polymerase chain reaction (qPCR) have been described in our previous study (Hou et al., 2017). The relative level of miRNAs was normalized by the level of β-actin using the 2^(-ΔΔCt) method (Shu et al., 2014). Primers were designed using Primer Premier 5. All the primers used in this study are shown in Table 1.

Flow Cytometry Analysis of the Cell Apoptosis

IPEC-J2 cells were seeded in a six-well cell culture plate at 3.5 × 10^5 cells per well. With different treatments for 24 h, we collect cells for apoptosis analysis by Annexin V-APC/7AAD apoptosis detection kit (Multisciences Biotech, Hangzhou, Zhejiang, China) according to the manufacturer’s instructions. Apoptosis analysis was performed using BD AccuriC6 flow cytometer (BD Biosciences, San Jose, CA, United States) and FlowJo 7.6 software (Tree Star Inc.).
TABLE 1 | The primers used in this study.

Gene name	Forward primer sequence (5′−3′)	Reversed primer sequence (5′−3′)
β-actin	TCGTACCACCTGGCACTTGGTAT	CAAAGTCTAAGGGCAACATAQ
PTEN	GACATCCAAAGAACCAGCTGGT	GAAAGCATGCAAGCCAGTTGG
P21	ACGACAGAAGAAGACAGTTGG	GACGATGAGAAGATTGGCATGAT
AKT	GCCCGCTCTATGGTGCT	CTTCTGGCTCTGGTTGTA
Bcl2	GCACCTGATCTCCCTCAACC	CATCCCCAGGCTGGTATGCC
BAX	TGGATAGAAGCTGAAGCAGCA	AGTTGCCGCGTACGAAACATT
Caspase-3	GGAATGGCATGTCGACTGG	TTCTACAGCAGTCCCCTGTA

Bioinformatics Analysis and Dual-Luciferase Reporter Assay

The miR-221/222 target gene prediction was conducted using the mirTargets 1.2 software in conjunction with TargetScan, miRDB databases, and MicroCosm.

RNA Immunoprecipitation

RNA immunoprecipitation (RIP) was performed through the Magna RIP™ RNA-binding Protein Immunoprecipitation Kit (Millipore, Burlington, MA, United States), according to the manufacturer's protocol. In brief, AGO or normal IgG antibodies were incubated with IPEC-J2 cell lysates overnight at 4°C. The protein–RNA immunoprecipitation complexes were treated with proteinase K buffer. The precipitated RNA was purified by phenol:chloroform:isoamyl alcohol and used to analyze the enrichment of miR-221/222 and PTEN by qPCR.

Luciferase Reporter Assay

PTEN 3′UTR sequence (wild and mutation) was amplified and inserted into the pmirGLO Vector (Ambion, Carlsbad, CA, United States). In luciferase reporter assay, pmirGLO-PTEN-3′UTR plus either miR-221/222 mimics or control was co-transfected in HEK-293T cells for 48 h. Either pmirGLO-PTEN-3′UTR-mut or pmirGLO was used to the control for pmirGLO-PTEN-3′UTR. The value of Renilla and firefly luciferases was measured by the Dual-Luciferase Reporter Assay System. The firefly luciferase value was normalized by the Renilla luciferase value.

Western Blot Assay

The method used for Western blot (WB) analysis has been described in our previous study (Hou et al., 2017). The antibodies used in this study are shown in Table 2.

In vivo Experiment

Thirty 5-week-old C57/BL6 male mice were obtained from the Animal Experimental Center of Guangdong Province (Foshan, China). Mice were adapted to the new environment for 1 week. Mice received humanistic care according to the Guide of Laboratory Animals of Institutional Animal Care and Use Committee of Qingyuan People's Hospital. The mice were divided into the control group (gavage Don + injected adenovirus–CDX2 promoter–miR-221/222 negative control), and Don + miR-221/222 group (gavage Don + injected adenovirus–CDX2 promoter–miR-221/222) randomly. The CDX2 promoter is a specific promoter of intestinal epithelial cells, which can ensure the expression of miR-221/222 in intestinal epithelial cells, so as to observe the resistance effect of miR-221/222 to Don toxicity. Adenovirus (1 × 10⁶ PFU in 10 μl of PBS; RayBiotech, Guangzhou, China) was injected through the tail vein at 10:00 am every Monday. The Don (dissolved in 100 μl PBS according to the dosage of 2.5 mg/kg body weight) was gavage at 9:00 am every day. After 4 weeks, mice were sacrificed to collect blood samples and intestinal tissues for further examinations.

Hematoxylin and Eosin Staining and Immunofluorescence

Jejunum and ileum samples were fixed in 4% polyformaldehyde for 24 h and then used for sectioning and staining. The procedure of hematoxylin and eosin (H&E) was performed in our previous study (Xie et al., 2019), and the pathological changes in the jejunum and ileum were evaluated under a light microscope. In addition, the sections were incubated with PTEN antibody overnight, followed by incubation with goat anti-rabbit IgG (H + L) followed by Alexa Fluor 647 (Bios-0295G-AD647) to detect PTEN expression. The sections were then observed under a confocal microscope.

TABLE 2	The details of antibodies used in this study.			
Primary antibody	Clone	Company	Catalog no.	Dilution
PTEN	Monoclonal	CST	#9188	1:2,000
P21	Monoclonal	CST	#2947	1:1,000
AKT	Monoclonal	CST	#9272S	1:2,000
p-AKT	Monoclonal	CST	#4058S	1:2,000
Bcl2	Monoclonal	CST	#15071	1:1,000
BAX	Monoclonal	CST	#2774	1:2,000
Caspase-3	Polyclonal	CST	#9662	1:1,000
Cleaved caspase-3	Polyclonal	CST	#9662	1:1,000
β-actin	Monoclonal	Bioworld	BS6007M	1:5,000
Secondary antibody	Conjugate used	Company	Catalog no.	Dilution
Goat anti-rabbit IgG	HRP	Bios	BS0295G	1:5,000
Goat anti-rabbit IgG (H + L)	HRP	Bioworld	BS13278	1:50,000
Goat anti-mouse IgG (H + L)	HRP	Bioworld	BS12478	1:50,000
Goat anti-mouse IgG (H + L)	Cy3	Bioworld	BS10006	1:200
Goat anti-rabbit IgG	Alexa Fluor 647	Bios	bs-0295G-AD647	1:200
by incubation with Cy3-labeled secondary antibody at room temperature for 1 h. The sections were stained by DAPI. Fluorescence was observed through Nikon Eclipse Ti-S microscopy.

Statistical Analysis
Through the SPSS analysis, our data are in a normal distribution, and the homogeneity of data between each treatment group is equal. All data are expressed as the mean ± standard error of the mean (SEM) of three independent experiments. In Figures 5G,H, the unpaired Student's t-test was used for p-value calculations, where ** represents p < 0.01. Significant differences in the other results were determined by one-way ANOVA (SPSS 22, IBM Knowledge Center, Chicago, IL, United States). Bars with different letter indicate statistically significant difference (p < 0.05).

RESULTS
Exosome Attenuated Don-Induced Intestinal Epithelial Cell Apoptosis
We first investigated the role of exosome on Don-induced intestinal epithelial cell apoptosis. Compared with the control group, Don increased (p < 0.05) the percentage of apoptosis cells through flow cytometry analysis (Figures 1A,B). Compared with the Don group, exosome decreased (p < 0.05) the percentage of apoptosis cells through flow cytometry analysis (Figures 1A,B). Compared with the control group, Don reduced (p < 0.05) the mRNA level of Bcl2 and promoted (p < 0.05) the mRNA level of BAX2 and caspase-3 through qPCR analysis (Figure 1C). Compared with Don exposure, exosome promoted (p < 0.05) the mRNA level of Bcl2 and reduced (p < 0.05) the mRNA level of BAX2 and caspase-3 through qPCR analysis (Figure 1C). Compared with the control group, Don decreased (p < 0.05) the protein level of Bcl2 and promoted (p < 0.05) the protein level of BAX2 and cleaved caspase-3 through WB analysis (Figures 1D,E). Compared with Don exposure, exosome increased (p < 0.05) the protein level of Bcl2 and decreased (p < 0.05) the protein level of BAX2 and cleaved caspase-3 through WB analysis (Figures 1D,E). Compared with the control group, Don increased (p < 0.05) the percentage of apoptosis cells through immunofluorescence staining of cleaved caspase-3 (Figure 1F). Compared with the Don group, exosome decreased (p < 0.05) the percentage of apoptosis cells through immunofluorescence staining of cleaved caspase-3 (Figure 1F). The results indicated exosome attenuated Don-induced intestinal epithelial cell apoptosis.

Exosome Reversed the Inhibitory Effect of Don on Intestinal Epithelial Cell Proliferation
Then we investigated the role of exosome on Don-induced intestinal epithelial cell proliferation. Compared with the control group, Don reduced (p < 0.05) the percentage of EdU-positive cells through EdU labeling analysis (Figures 2A,B). Compared with the Don group, exosome increased (p < 0.05) the percentage of EdU-positive cells through EdU labeling analysis (Figures 2A,B). Compared with the control group, Don promoted (p < 0.05) the mRNA level of P21, an inhibitor of cyclin-dependent kinases, through qPCR analysis (Figure 2C). Compared with Don exposure, exosome decreased (p < 0.05) the mRNA level of P21 through qPCR analysis (Figure 2C). Compared with the control group, Don decreased (p < 0.05) the protein level of p-AKT and promoted (p < 0.05) the protein level of P21 through WB analysis (Figures 2D,E). Compared with Don exposure, exosome promoted (p < 0.05) the protein level of p-AKT and lowered (p < 0.05) the protein level of P21 through WB analysis (Figures 2D,E). The results indicated exosome reversed the inhibitory effect of Don on intestinal epithelial cell proliferation.

MiR-221/222 Attenuated Don-Induced Intestinal Epithelial Cell Apoptosis
To investigate which exosomal miRNAs mediated the protection effect of exosome, we examined the miRNA levels, highly expressed in exosome and related to apoptosis and proliferation, in intestinal epithelial cells. Compared with the control group, Don increased (p < 0.05) the miRNA level of miR-185 and decreased (p < 0.05) the miRNA level of miR-92a, miR-221, miR-148a, and miR-222 (Figure 3A). Compared with the Don group, exosome increased (p < 0.05) the miRNA level of miR-191, miR-92a, miR-221, miR-27a, miR-148a, and miR-222 (Figure 3A). Since miR-221 and miR-222 had the same seed sequence and the level of miR-221 and miR-222 was downregulated in the Don group and upregulated after exosome treatment, we investigated whether the protection effect of exosome was mediated by miR-221 and miR-222.

Compared with the Don group, miR-221/222 decreased (p < 0.05) the percentage of apoptosis cells through flow cytometry analysis (Figures 3B,C). Compared with Don exposure, miR-221/222 promoted (p < 0.05) the mRNA level of Bcl2 and decreased (p < 0.05) the mRNA level of BAX2 and caspase-3 through qPCR analysis (Figure 3D). Compared with Don exposure, miR-221/222 promoted (p < 0.05) the protein level of Bcl2 and lowered (p < 0.05) the protein level of BAX2 and cleaved caspase-3 through WB analysis (Figures 3E,F). MiR-221/222 decreased (p < 0.05) the percentage of apoptosis cells through immunofluorescence staining of cleaved caspase-3 (Figure 3G). The results indicated miR-221/222 attenuated Don-induced intestinal epithelial cell apoptosis.

MiR-221/222 Reversed the Inhibitory Effect of Don on Intestinal Epithelial Cell Proliferation
Then we investigated the role of miR-221/222 on Don-induced intestinal epithelial cell proliferation. Compared with the Don group, miR-221/222 increased (p < 0.05) the percentage of
Exosome attenuated deoxynivalenol (Don)-induced intestinal epithelial cell apoptosis. (A) Representative images of apoptosis assay for intestinal epithelial cells by using the apoptosis detection kit. Cells localized in Q4 displayed Annexin V-APC-negative/7AAD-negative viable cells. The cells gated in Q2 and Q3 quadrant displayed Annexin V-APC-positive apoptotic cells. (B) The quantitative result of (A). (C) qPCR results indicated that exosome attenuated Don-induced intestinal epithelial cell apoptosis. (D) Western blot results showed exosome-attenuated Don-induced intestinal epithelial cell apoptosis. (E) The relative protein levels obtained by Western blot (WB) band gray scanning. (F) Representative images of the caspase-3 immunofluorescent staining for apoptotic intestinal epithelial cells. Cleaved caspase-3: red, a molecular marker of apoptosis; DAPI: blue, cell nucleus; Merge: the apoptotic cells. The results were presented as mean ± SEM of triplicate independent experiments for each group. Bars with different letters indicate they are significantly different (p < 0.05). In (F), magnification = × 100; the scale bar on the photomicrographs represents 100 μm. Don, IPEC-J2 cells were exposed to 1.6 μg/ml Don for 12 h. Don + Exo, IPEC-J2 cells were incubated with 2 mg/ml exosome for 24 h, then exposed to 1.6 μg/ml Don for 12 h.

EdU-positive cells through EdU labeling analysis (Figures 4A,B). Compared with Don exposure, miR-221/222 reduced (p < 0.05) the mRNA level of P21 through qPCR analysis (Figure 4C). Compared with Don exposure, miR-221/222 promoted (p < 0.05) the protein level of p-AKT and decreased (p < 0.05) the protein level of P21 through WB analysis (Figures 4D,E). The results indicated miR-221/222 reversed the inhibitory effect of Don on intestinal epithelial cell proliferation.
PTEN Was the Target Gene of MiR-221/222

To further investigate the potential mechanism by which miR-221/222 regulates the intestinal epithelial cell proliferation and apoptosis, we need to identify the target gene of miR-221/222. Through sequence alignment, we found that the miR-221/222 seed sequence is highly conserved (Figure 5A). Then we predicted the target gene of miR-221/222 using the TargetScan, PicTar, and miRDB databases. Among the predicted target genes, PTEN may be closely related to proliferation and apoptosis (Figure 5B). Through sequence alignment, we also found that the complementary seed sequence of miR-221/222 is also highly conserved (Figure 5C), so there may be a potential target relationship between PTEN and miR-221/222 (Figure 5D).

To verify the targeted relationship between miR-221/222 and PTEN, we first measured the expression of PTEN through qPCR and Western blot in the intestinal epithelial cells. Compared with the control group, the miR-221/222 inhibitor increased ($p < 0.01$) the mRNA level of PTEN and miR-221/222 mimics inhibited ($p < 0.01$) the mRNA level of PTEN (Figure 5E). Compared with the control group, the miR-221/222 inhibitor increased ($p < 0.01$) the protein level of PTEN and miR-221/222 mimics inhibited ($p < 0.01$) the protein level of PTEN (Figure 5F). Subsequently, we verified whether miR-221/222 and PTEN interacted in RNA-induced silencing complexes through RNA immunoprecipitation. Compared with the IgG group, miR-221/222 and PTEN were enriched ($p < 0.01$) by AGO (Figure 5G). Finally, we found that relative luciferase activity was decreased ($p < 0.01$) when miR-221/222 mimics and pmirGLO-PTEN-3′UTR were co-transfected in HEK-293T cells (Figure 5H). However, miR-221/222 mimics do not affect mutated pmirGLO-PTEN-3′UTR relative luciferase activity.
FIGURE 3 | MIR-221/222 attenuated Don-induced intestinal epithelial cell apoptosis. (A) qPCR was used to examine the miRNA, highly expressed in exosome and related to apoptosis and proliferation, levels in intestinal epithelial cells. (B) Representative images of apoptosis assay for intestinal epithelial cells by using the apoptosis detection kit. Cells localized in Q4 displayed Annexin V-APC-negative/7AAD-negative viable cells. The cells gated in Q2 and Q3 quadrant displayed Annexin V-APC-positive apoptotic cells. (C) The quantitative result of (A). (D) qPCR results indicated that exosome attenuated Don-induced intestinal epithelial cell apoptosis. (E) Western blot results showed exosome attenuated Don-induced intestinal epithelial cell apoptosis. (F) The relative protein levels obtained by WB band gray scanning. (G) Representative images of the caspase-3 immunofluorescent staining for apoptotic intestinal epithelial cells. Cleaved caspase-3; red, a molecular marker of apoptosis; DAPI; blue, cell nucleus; Merge: the apoptotic cells. Our results were presented as mean ± SEM of triplicate independent experiments for each group. Bars with different letters indicate they are significantly different (p < 0.05). In (G), magnification = ×100; the scale bar on the photomicrographs represents 100 μm. Don, IPEC-J2 cells were exposed to 1.6 μg/ml Don for 12 h. Don + miR-221/222, IPEC-J2 cells were transfected with 80 nM miR-221/222 mimics for 24 h, then exposed to 1.6 μg/ml Don for 12 h.
MiR-221/222 Ameliorates Deoxynivalenol-Induced Intestine Damage

FIGURE 4 MiR-221/222 reversed the inhibitory effect of Don on intestinal epithelial cell proliferation. (A) Representative images of the EdU staining for proliferating intestinal epithelial cells are shown. The cell nucleus was stained with DAPI, blue. Proliferating intestinal epithelial cells were labeled with EdU fluorescent dye (red). (B) The quantitative result of (A). (C) qPCR results indicated that miR-221/222 reversed the inhibitory effect of Don on intestinal epithelial cell proliferation. (D) Western blot results showed miR-221/222 reversed the inhibitory effect of Don on intestinal epithelial cell proliferation. (E) The relative protein levels obtained by WB band gray scanning. Our results were presented as mean ± SEM of triplicate independent experiments for each group. Bars with different letters indicate they are significantly different (p < 0.05). In (A), magnification = × 100; the scale bar on the photomicrographs represents 100 µm. Don, IPEC-J2 cells were exposed to 1.6 µg/ml Don for 12 h. Don + miR-221/222, IPEC-J2 cells were transfected with 80 nM miR-221/222 mimics for 24 h, then exposed to 1.6 µg/ml Don for 12 h. (Figure 5H). This result indicated that PTEN was the direct target gene of miR-221/222.

Don-Induced Apoptosis in Intestinal Epithelial Cells Relied on PTEN

Since PTEN was the direct target gene of miR-221/222 and upregulated (p < 0.05) in Don-treated apoptosis in intestinal epithelial cells (Figures 6C,D), we then explored the role of PTEN in Don-induced apoptosis. Compared with the Don group, si-PTEN decreased (p < 0.05) the percentage of apoptosis cells through flow cytometry analysis (Figures 6A,B). Compared with Don exposure, si-PTEN increased (p < 0.05) the mRNA level of Bcl2 and decreased (p < 0.05) the mRNA level of BAX2 and caspase-3 through qPCR analysis (Figure 6C). Compared with Don exposure, si-PTEN promoted (p < 0.05) the protein level of Bcl2 and lowered (p < 0.05) the protein level of BAX2 and cleaved caspase-3 through WB analysis (Figures 6D,E). Compared with the Don group, miR-221/222 decreased (p < 0.05) the percentage of apoptosis cells through immunofluorescence staining of cleaved caspase-3 (Figure 6F). The results indicated Don-induced apoptosis in intestinal epithelial cells relied on PTEN.

The Proliferation Inhibition of Don on Intestinal Epithelial Cells Relied on PTEN

Then we investigated the role of PTEN on Don-induced intestinal epithelial cell proliferation. Compared with the Don group, si-PTEN increased (p < 0.05) the percentage of EdU-positive cells through EdU labeling analysis (Figures 7A,B). Compared with Don exposure, si-PTEN decreased (p < 0.05) the mRNA level of P21 through qPCR analysis (Figure 7C). Compared with Don exposure, si-PTEN increased (p < 0.05) the protein level of p-AKT and reduced (p < 0.05) the protein level of P21 through WB analysis (Figures 7D,E). The results indicated
FIGURE 5 | PTEN was the target gene of miR-221/222. (A) The mature miR-221/222 sequence in different species. (B) Venn diagram showed the target genes of miR-221/222 obtained from different databases. (C) The alignment result of PTEN 3′UTR sequence from different species. Red represented the complete complementary sequence of the PTEN 3′UTR. (D) The complementary pairing of the target gene PTEN 3′UTR and miR-221/222. (E) qRT-PCR result confirmed PTEN mRNA level was negatively correlated with miR-221/222 level. (F) WB result confirmed PTEN protein level was negatively correlated with miR-221/222 level. (G) The interaction of miR-221/222 and PTEN in RNA-induced silencing complexes through RNA immunoprecipitation. (H) Luciferase reporters were transfected into HEK-293T cells with either miR-221/222 NC or miR-221/222 mimics, respectively. Luciferase value was measured 24 h after transfection. The results were presented as mean ± SEM of triplicate independent experiments for each group. Bars with different letters indicate they are significantly different (p < 0.05); **p < 0.01.
FIGURE 6 | Don-induced apoptosis in intestinal epithelial cells relied on PTEN. (A) Representative images of apoptosis assay for intestinal epithelial cells by using the apoptosis detection kit. Cells localized in Q4 displayed Annexin V-APC-negative/7AAD-negative viable cells. The cells gated in Q2 and Q3 quadrant displayed Annexin V-APC-positive apoptotic cells. (B) The quantitative result of (A). (C) qPCR results indicated that Don-induced apoptosis in intestinal epithelial cells relied on PTEN. (D) Western blot results showed Don-induced apoptosis in intestinal epithelial cells relied on PTEN. (E) The relative protein levels obtained by WB band gray scanning. (F) Representative images of the caspase-3 immunofluorescent staining for apoptotic intestinal epithelial cells. Cleaved caspase-3: red, a molecular marker of apoptosis; DAPI: blue, cell nucleus; Merge: the apoptotic cells. Our results were presented as mean ± SEM of triplicate independent experiments for each group. Bars with different letters indicate they are significantly different (p < 0.05). In (F), magnification = ×100; the scale bar on the photomicrographs represents 100 µm. Don, IPEC-J2 cells were exposed to 1.6 µg/ml Don for 12 h. Don + si-PTEN, IPEC-J2 cells were transfected with 80 nM si-PTEN mimics for 24 h, then exposed to 1.6 µg/ml Don for 12 h.
that proliferation inhibition of Don on intestinal epithelial cells relied on PTEN.

MiR-221/222 Protects Intestinal Epithelial Cells Against Don-Induced Apoptosis and Proliferation Inhibition by Targeting PTEN

Since PTEN was the target gene of miR-221/222, we transfected miR-221/222 or miR-221/222 + PTEN in Don-treated intestinal epithelial cells to clarify the protection effect of miR-221/222 by targeting PTEN. Compared with Don exposure, Don + miR-221/222 decreased \(p < 0.05 \) the percentage of apoptosis cells through immunofluorescence staining of cleaved caspase-3 (Figures 8A,B). Compared with Don + miR-221/222, Don + miR-221/222 + PTEN decreased \(p < 0.05 \) the percentage of EdU-positive cells through EdU labeling analysis (Figures 8C,D). The results indicated miR-221/222 protects intestinal epithelial cells against Don-induced apoptosis and proliferation inhibition by targeting PTEN.

MiR-221/222 Attenuated Don-Induced Intestinal Mucosa Damage by Targeting PTEN

We used adenovirus to specifically overexpress miR-221/222 in intestinal epithelial cells to verify the protection effect of miRNA in resisting Don-induced intestinal epithelial cell
FIGURE 8 | MiR-221/222 protects intestinal epithelial cells against Don-induced apoptosis and proliferation inhibition by targeting PTEN. (A) Representative images of the caspase-3 immunofluorescent staining for apoptotic intestinal epithelial cells. Cleaved caspase-3: red, a molecular marker of apoptosis; DAPI: blue, cell nucleus; Merge: the apoptotic cells. (B) The quantitative result of (A). (C) Representative images of the EdU staining for proliferating intestinal epithelial cells are shown. The cell nucleus was stained with DAPI, blue. Proliferating intestinal epithelial cells were labeled with EdU fluorescent dye (red). (D) The quantitative result of (C). Our results were presented as mean ± SEM of triplicate independent experiments for each group. Bars with different letters indicate they are significantly different (p < 0.05). In (A), magnification = ×100; the scale bar on the photomicrographs represents 100 µm. In (B), magnification = × 100; the scale bar on the photomicrographs represents 100 µm. Don, IPEC-J2 cells were exposed to 1.6 µg/ml Don for 12 h. Don + miR-221/222, IPEC-J2 cells were transfected with 80 nM miR-221/222 mimics for 24 h, then exposed to 1.6 µg/ml Don for 12 h. Don + miR-221/222 + PTEN, IPEC-J2 cells were transfected with 80 nM miR-221/222 mimics and 1.5 µg/ml pcDNA3.1-PTEN for 24 h, then exposed to 1.6 µg/ml Don for 12 h.

damage in vivo. Compared with the control group, Don exposure decreased (p < 0.05) the miR-221/222 level in intestinal mucosa through qPCR analysis (Figure 9A). Compared with the Don group, adenovirus increased (p < 0.05) the miR-221/222 level in intestinal mucosa, and adenovirus did not change the miR-221/222 level in the tissue of intestinal submucosa, skeletal muscle, and adipose tissue through qPCR analysis (Figure 9A). Compared with the control group, Don induced intestinal villi damage through morphological observation (Figure 9B). Compared with the Don group, miR-221/222 attenuated Don-induced intestinal villi damage through morphological observation (Figure 9B). Compared with the control group, Don increased the protein level of PTEN in intestinal villi through immunofluorescence staining (Figure 9C). Compared with the Don group, miR-221/222 lowered the protein level of PTEN in intestinal villi through immunofluorescence staining (Figure 9C). Compared with the control group, Don lowered (p < 0.05) the protein level of p-AKT and Bcl2 and promoted (p < 0.05) the protein level of PTEN, P21, BAX2, and cleaved caspase-3 in intestinal mucosa through WB analysis (Figures 9D–E). Compared with Don exposure, miR-221/222 promoted (p < 0.05) the
FIGURE 9 | MiR-221/222 attenuated Don-induced intestinal mucosa damage by targeting PTEN. (A) qPCR results indicated that miR-221/222 was specifically overexpressed in intestinal epithelial cells by adenovirus. (B) Morphological observation of small intestinal villi by H&E staining. (C) Representative images of the PTEN immunofluorescent staining for apoptotic intestinal epithelial cells. PTEN: red, the target gene of miR-221/222; DAPI: blue, cell nucleus; Merge: the apoptotic cells. (D) Western blot results showed Don-induced apoptosis in intestinal epithelial cells relied on PTEN. (E) The relative protein levels obtained by WB band gray scanning. (F) qPCR results indicated that miR-221/222 attenuated Don-induced intestinal mucosa damage by targeting PTEN. Our results were presented as mean ± SEM of triplicate independent experiments for each group. Bars with different letters indicate they are significantly different (p < 0.05). In (B), magnification = × 40; the scale bar on the photomicrographs represents 500 µm. In (C), magnification = × 400; the scale bar on the photomicrographs represents 100 µm. Don, gavage mice with Don (2.5 mg/kg body weight) and injected adenovirus–CDX2 promoter–miR-221/222 negative control. Don + miR-221/222, gavage mice with Don (2.5 mg/kg body weight) and injected adenovirus–CDX2 promoter–miR-221/222.

DISCUSSION

Deoxynivalenol is the most common mycotoxin produced by various *Fusarium* that often grows on wheat, rice, corn, and other grains in the field and storage (Guo et al., 2020). Ma et al., found that the occurrence rate of Don was over 74.5% in foodstuffs from different provinces in China between 2016 and 2017. The average Don concentration ranges from 450 to 4,381 µg/kg, suggesting that Don is a prevalent contaminant in China (Ma et al., 2018). The consumption of Don-contaminated food is considered a major health risk for human (Mishra et al., 2020). Since the gastrointestinal tract is the primary target organ often exposed to high levels of Don, Don is rapidly absorbed.
MiR-221/222 ameliorated the Don-induced apoptosis and proliferation inhibition in intestinal epithelial cells by targeting PTEN.

FIGURE 10

PTEN localizes on chromosome 10q23 and encodes a 403 amino acid protein. Loss of PTEN increases the amount of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) (Haddadi et al., 2018). PIP3 activates phosphoinositide-dependent kinase 1 (PDK1) and AKT (Masson and Williams, 2020). As a serine/threonine protein kinase, AKT plays an important role in various cellular activities, including cell proliferation and apoptosis (Nitulescu et al., 2018). FAM46C inhibits cell cycle progression and cell proliferation and promotes apoptosis via promoting PTEN expression and inhibiting AKT signal (Ma et al., 2020). Morin attenuates phosphorylated AKT level and inhibits AKT signaling by upregulating PTEN expression (Nie et al., 2019). MiR-130a regulates the expression of Bcl2/Bax and caspase-3 and alleviates neuronal apoptosis through the PTEN/AKT signaling pathway (Wang et al., 2020). In this study, our results showed that miR-221/222 inhibit apoptosis and promote proliferation by targeting PTEN.

CONCLUSION

Deoxynivalenol downregulates the expression of miR-221/222 in intestinal epithelial cells, leading to upregulation of the miR-221/222 target gene PTEN. PTEN induces intestinal epithelial cell apoptosis and proliferation inhibition by inhibiting AKT and activating caspase-3. Milk-derived exosomal miR-221/222 ameliorated the Don-induced apoptosis and proliferation in intestinal epithelial cells by targeting PTEN (Figure 10).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

ETHICS STATEMENT

The animal study was reviewed and approved by the Medical Ethics Committee of Qingyuan People's Hospital.
AUTHOR CONTRIBUTIONS

Haddadi, N., Lin, Y., Travis, G., Simpson, A. M., McGowan, E. M., and Nassif, N. T. LH and MX designed the research and wrote the manuscript. XT and MY performed the experiments, analyzed the data, and wrote the manuscript. SL analyzed the data and performed the experiments. W-CY contributed new reagents or analytic tools. All authors have read and approved the final manuscript.

REFERENCES

Ahern, P. P., and Maloy, K. J. (2020). Understanding immune-microbiota interactions in the intestine. Immunology 159, 4–14. doi: 10.1111/imn.13150

Chen, T., Xie, M.-Y., Sun, J.-J., Ye, R.-S., Cheng, X., Sun, R.-P., et al. (2016). Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells. Sci. Rep. 6:33862.

Cheng, W., Wang, K., Zhao, Z., Mao, Q., Wang, G., Li, Q., et al. (2020). Exosomes-mediated transfer of miR-125a/b in cell-to-cell communication: a novel mechanism of genetic exchange in the intestinal microenvironment. Theranostics 10, 7561–7580. doi: 10.7150/thno.41802

Garcia, A., Dunoyer-Geindre, S., Fish, R. J., Neerman-Arbez, M., Reny, J.-L., and Fontana, P. (2020). Methods to investigate miRNA function: focus on platelet reactivity. Thromb. Haemost. 121, 409–421.

Guo, H., Ji, J., Wang, J., and Sun, X. (2020). Deoxynivalenol: masked forms, fate during food processing, and potential biological remedies. Compr. Rev. Food Sci. Food Saf. 19, 895–926. doi: 10.1111/1541-4337.12545

Haddadi, N., Lin, Y., Travis, G., Simpson, A. M., McGowan, E. M., and Nassif, N. T. (2018). PTEN/PTENP1: regulating the regulator of RTK-dependent PI3K/Akt signalling, new targets for cancer therapy. Mol. Cancer 17:36.

Herrera, M., Bervis, N., Jose Carraminana, J., Juan, T., Herrera, A., Arino, A., et al. (2019). Occurrence and exposure assessment of aflatoxins and deoxynivalenol in cereal-based baby foods for infants. Toxins 11:150. doi: 10.3390/toxins11030150

Hock, A., Miyake, H., Li, B., Lee, C., Ermini, L., Koike, Y., et al. (2017). Breast milk-derived exosomes promote intestinal epithelial cell growth. J. Pediatr. Surg. 52, 755–759. doi: 10.1016/j.jpedsurg.2017.01.032

Hou, L., Shi, J., Cao, L., Xu, G., Hu, C., and Wang, C. (2017). Pig has no uncoupling protein 1. Biochem. Biophys. Res. Commun. 487, 795–800. doi: 10.1016/j.bbrc.2017.04.118

Ji, X., Yang, H., Wang, J., Li, R., Zhao, H., Xu, J., et al. (2018). Occurrence of deoxynivalenol (DON) in cereal-based food products marketed through e-commerce stores and an assessment of dietary exposure of Chinese consumers to DON. Food Control 92, 391–398. doi: 10.1016/j.foodcont.2018.05.020

Khaneghah, A. M., Kamani, M. H., Fakhri, Y., Sengling Cebin Coppa, C. F., Vignal, C., Djouina, M., Pichavant, M., Caboche, S., Waxin, C., Beury, D., et al. (2018). Chronic ingestion of deoxynivalenol at human dietary levels impairs intestinal homeostasis and gut microbiota in mice. Arch. Toxicol. 92, 2327–2338. doi: 10.1007/s00204-018-2228-6

Le Doare, K., Holder, B., Basset, A., and Pannaraj, P. S. (2018). Mother’s milk: a purposeful Contribution to the development of the infant microbiota and immunity. Front. Immunol. 9:361. doi: 10.3389/fimmu.2018.00361

Liao, Y., Du, X., Li, J., and Lonnerdal, B. (2017). Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res. 61, 1700082–1700087.

Lyons, K. E., Ryan, C. A., Dempsey, E. M., Ross, R. P., and Stanton, C. (2020). Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 12:1039. doi: 10.3390/nu12041039

Ma, L., He, H., Jiang, K., Jiang, P., He, H., Feng, S., et al. (2020). FAM46C inhibits cell proliferation and cell cycle progression and promotes apoptosis through PTEN/ATK signaling pathway and is associated with chemosensitivity in prostate cancer. Aging 12, 6352–6369. doi: 10.18632/aging.103030

Ma, R., Zhang, L., Liu, M., Su, Y.-T., Xie, W.-M., Zhang, N.-Y., et al. (2018). Individual and combined occurrence of miRNAs in milk ingredients and complete feeds in China. Toxins 10:113. doi: 10.3390/toxins10030113

MANUSCRIPT REVIEW

This work was supported by the Guangzhou Science and Technology Plan Basic and Applied Basic Research Project, Guangdong Modern Agro-Industry Technology Research System (2019KJ114), National Natural Science Foundation of China (82000407), and Guangdong Natural Sciences Foundation (2019A1515110080).

FUNDING

Hou et al. MIR-221/222 Ameliorates Deoxynivalenol-Induced Intestinal Damage

MIR-221/222 Ameliorates Deoxynivalenol-Induced Intestinal Damage
Zempleni, J., Sukreet, S., Zhou, F., Wu, D., and Mutai, E. (2019). "Milk-derived exosomes and metabolic regulation," in Annual Review of Animal Biosciences, Vol. 7, eds H. A. Lewin and R. M. Roberts 245–262. Palo Alto, CA: Annual Reviews. doi: 10.1146/annurev-animal-020518-115300

Zhou, J.-Y., Zhang, S.-W., Lin, H.-L., Gao, C.-Q., Yan, H.-C., and Wang, X.-Q. (2019). Hydrolyzed wheat gluten alleviates deoxynivalenol-induced intestinal injury by promoting intestinal stem cell proliferation and differentiation via upregulation of Wnt/beta-catenin signaling in mice. Food Chem. Toxicol. 131:110579. doi: 10.1016/j.fct.2019.110579

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Hou, Tong, Lin, Yu, Ye and Xie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.