Beware of Bureaucrats: A commentary on Lustick and Tetlock (2021)

Heiko A. von der Gracht

School of International Business and Entrepreneurship (SIBE), Steinbeis University, Herrenberg, Germany

Correspondence: Prof. Dr. Heiko A. von der Gracht, Professor and chairholder, School of International Business and Entrepreneurship (SIBE), Steinbeis University, Kalkofenstr. 53, Herrenberg, Germany. Email: vondergracht@steinbeis-sibe.de

Funding information
Open Access funding enabled and organized by Projekt DEAL. WOA Institution: Steinbeis Hochschule Berlin School of International Business and Entrepreneurship. Blended DEAL: Projekt DEAL.

The article by Lustick and Tetlock (2021) impressively embeds the need for reliable foresight in concrete historical events and, based on this, makes a strong appeal for significantly improved foresight and decision-making groundwork, through the use of theory-guided computer simulations such as the mentioned Virtual Strategic Analysis and Forecasting Tool (VSAFT). It goes without saying that theory-guided computer simulations improve the status quo of foresight, which is why they should complement the method portfolio of any strategist, risk manager, analyst, or policy maker. However, it is doubtful whether future pandemics, terrorist attacks, international conflicts, or even social upheavals can be regularly anticipated and, above all, whether appropriate preventive measures can be implemented consistently or even only to a predominant extent.

1 | A VOICE CRYING IN THE WILDERNESS

In fact, even much improved foresight still falls under the caveat of a voice of one crying in the wilderness: who hears him or her? Foresight managers and planning teams are an essential, but just a single link in the network. Further up in key positions in all the countries and institutions around the world have been and still are sitting bureaucrats or, to put it neutrally, decision-makers. Systems like VSAFT could therefore, exaggeratedly formulated, possess an almost divine foresight in certain contexts (see Table 1, Lustick & Tetlock, 2021, p. 3). Nevertheless, this would fizzle out without making a mark, when or if the responsible decision-maker simply favors other, competitive, erroneously prioritized strategic hypotheses. No existing or conceivable machine simulation system can protect against this human bias in decision-making—except in a literal “rule of the machines.” As long as this does not happen, a truism of professional practice applies: Foresight is a craft, but so is persuasion. What good is the best foresight if it is impossible to convince anyone of it or only the very few? Persuasive foresight is a very powerful necessity in the age of our attention economy, which treats a potential consumer’s attention as a scarce resource (Davenport & Beck, 2001; Goldhaber, 1997). From this perspective, theory-guided computer simulations are a prerequisite for more reliable foresight. But their competence for actually achieving improved decision-making depends on the effectiveness of their presentation.

This is by no means intended as a call for guerrilla bureaucracy, in which futurists use all sorts of sleight of hand and political games to manipulate die-hard bureaucrats out of their well-worn groove. However, it is an appeal to better understand those decision-making hierarchies, systems and mechanisms and to equip them more effectively with bureaucracy-appropriate decision-making tools. This requires not only a deeper understanding of political and other decision-making systems, but also an in-depth knowledge of personality traits, perception types of recipients, and representation systems (Koch, 2011; Lotto, 2017; Yamagata, 2007). These profiles should be taken into account when presenting the established scenarios: For example, a recipient who is a numbers person expects a different presentation and reasoning than the narrative guy, the visual type, or the model person. Or to modify a well-known motto of the trade: Non-personalized scenarios are boring.
Another aspect that could supplement the analysis of Lustick and Tetlock (2021) is the so-called Skynet effect, also known as algocracy: the rule of algorithms (see, e.g., theory of algocracy by Sociologist A. Aneesh, 2016). Systems like VSAFT may deliver impressively illustrative simulations and reliable results, which are nevertheless not or not sufficiently taken into consideration by the relevant authorities, because they simply cannot comprehend how these results were generated and how the algorithm produced them. There is a reason why many players in science, business and politics now have a new buzzword on their agenda: XAI—Explainable Artificial Intelligence (Rai, 2020; Shin, 2021). What good is the best algorithm if humans can no longer comprehend its findings and therefore refuse to trust them? Or the other, far more serious alternative: the very question of comprehensibility is no longer pondered and resolved by the decision-makers and recipients of these systems, because they prefer to rely comfortably on the data and the conclusions of the systems in accordance with the doctrine of papal and legal infallibility: Roma locuta, causa finita. Skynet has spoken—so what is the point of even questioning it? We are already experiencing the potentially serious consequences of this in the case of investments made after following the advice of so-called robo advisors: the investor transfers a substantial amount of money to a depot that is managed autonomously by the robo advisor, the share price falls unexpectedly and unforeseen by the algorithm, the money is gone, the customer chalks it up to bad luck and switches to the next robo advisor; however, this must not become the modus operandi in the fight against terrorism or in predicting international conflicts.

Apart from the extent to which they are actually integrated into decision-making: No political apparatus, government, bureaucratic institution or company will be able to afford to operate without such systems in the future. A new “arms race” is emerging, a battle of systems. If the neighboring country or the industry competitor uses such a system—how can I do without it? It would mean putting myself at a potentially significant strategic competitive disadvantage. No serious political or economic decision-maker could want that. So the answer to the question about the future of foresight and the foresight of the future can only be: A big “yes” to systems (see complementary debates on Foresight Support Systems in Technological Forecasting & Social Change: von der Gracht et al., 2015)! Especially when game-changers like quantum computing will be available to a wide range of actors. Then, nothing will stand in the way of a benevolent or dictatorial algocracy.

5 | CONCLUDING THOUGHTS

Unless, of course, we revisit a central hypothesis of the two authors: Human thinking might be just too noisy, disturbed by inconsistencies and collectively distorted by interference to be suitable as a basis for reliable foresight (Lustick & Tetlock, 2021, p. 6). Machines, on the other hand, think rationally, consistently, and without interference. Humans do not. Humans are known to think and act erratically, irrationally and emotionally. Question: How could rationally thinking machines even approximately predict the actions of erratically thinking humans? For example, in 2016, how many campaign forecasting systems could predict Donald J. Trump’s victory—ex ante (Lohr & Singer, 2016)? Only a marginal minority. The vast majority still suffers from their highly embarrassing error. As long as humans continue to think and remain erratic, simulative systems may not be the predictive tool of choice (alone). Unless they learn to think as chaotically as humans do. That, however, would be a very peculiar type of “progress.”

ORCID
Heiko A. von der Gracht https://orcid.org/0000-0002-7376-1236

REFERENCES
Aneesh, A. (2016). Technologically coded authority: The post-industrial decline in bureaucratic hierarchies. Retrieved from https://web.stanford.edu/class/sts175/NewFiles/Algocratic%20Governance.pdf
Davenport, T. H., & Beck J. C. (2001). The Attention economy. Ubiquity, 2001(May), 1. https://doi.org/10.1145/376625.376626
Goldhaber, M. H. (1997). The attention economy and the Net. First Monday, 2(4), https://doi.org/10.5210/fm.v2i4.519
Koch, C. (2011). Think Different: How Perception Reveals Brain Differences. Scientific American Mind, 21(6), 16–17. https://doi.org/10.1038/scientificamericanmind0111-16
Lohr, S., & Singer, N. (2016). How Data Failed Us in Calling an Election. Retrieved from www.nytimes.com/2016/11/10/technology/the-data-said-clinton-would-win-why-you-shouldnt-have-believed-it.html
Lotto, B. (2017). Deviate: The science of seeing differently. Hachette Books.
Lustick, I. S., & Tetlock, P. E. (2021). The simulation manifesto: The limits of brute-force empiricism in geopolitical forecasting. FUTURES & FORESIGHT SCIENCE, Early view(n/a), e64. https://doi.org/10.1002/ffo2.64
Rai, A. (2020). Explainable AI: from black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137-141. https://doi.org/10.1007/s11747-019-00710-5
Shin, D. (2021). The effects of explainability and causability on perception, trust, and acceptance: Implications for explainable AI. International Journal of Human-Computer Studies, 146, 102551. https://doi.org/10.1016/j.ijhcs.2020.102551
von der Gracht, H. A., Bañuls, V. A., Turoff, M., Skulimowski, A. M. J., & Gordon, T. J. (2015). Foresight support systems: The future role of ICT for foresight. Technological Forecasting and Social Change, 97, 1–6. https://doi.org/10.1016/j.techfore.2014.08.010
Yamagata, K. (2007). Differential emergence of representational systems: Drawings, letters, and numerals. Cognitive Development, 22(2), 244–257. https://doi.org/10.1016/j.cogdev.2006.10.006

How to cite this article: von der Gracht HA. Beware of Bureaucrats: A commentary on Lustick and Tetlock (2021). Futures & Foresight Sci. 2021;3:e89. https://doi.org/10.1002/ffo2.89