DESCARTES’S “RULE OF SIGNS” AND POINCARÉ’S POSITIVSTELLENSATZ

MELVYN B. NATHANSON

Abstract. This is an exposition of Poincaré’s 1883 paper, “Sur les équations algébriques,” which gives an important refinement of Descartes’s rule of signs and was a precursor of Pólya’s Positivstellensatz.

1. A refinement of Descartes rule of signs

In 1637, René Descartes [2] wrote,

An equation can have as many true roots as it contains changes of sign, from + to − or from − to +; and as many false roots as the number of times two + signs or two − signs are found in succession.

In the 17th century, a “true root” was a positive root and a “false root” was a negative root. Descartes’s “rule of signs” is the most famous result in the theory of equations. Descartes did not prove the theorem. In 1828, Gauss [3, 5] gave a beautiful elementary proof.

In this paper we consider only polynomials with real coefficients. In more modern language, Descartes’s theorem states that the number $Z(F)$ of positive roots (counting multiplicity) of a polynomial $F(x)$ is the number $V(F)$ of sign variations in the sequence of coefficients of the polynomial minus a nonnegative even integer $\nu(F)$:

$$Z(F) = V(F) - \nu(F).$$

The number of sign variations in a sequence $(a_0, a_1, a_2, \ldots, a_n)$ of real numbers is the number of pairs (j, k) with $0 \leq j < k \leq n$ such that $a_j a_k < 0$ and $a_i = 0$ if $j < i < k$. The number of sign variations of a polynomial $F(x) = \sum_{i=0}^{n} a_i x^i$ is the number of sign variations in the sequence $(a_0, a_1, a_2, \ldots, a_n)$ of coefficients of F. The sign variation function $V(F)$ gives an upper bound for the number of positive roots of $F(x)$, but only if $V(F)$ is odd does it imply that $F(x)$ has a positive root.

The polynomial may or may not have positive root if $V(F)$ is even. For example, if $F(x) = x^2 - 3x + 2$, then $V(F) = Z(F) = 2$ and $\nu(F) = 0$. If $F(x) = x^2 - 3x + 5$, then $V(F) = \nu(F) = 2$ and $Z(F) = 0$. It has been a nagging open problem in the theory of equations to understand the even integer $\nu(F)$. For example, virtual roots of polynomials [1, 4] have been introduced to interpret $\nu(F)$.

Henri Poincaré was evidently also bothered by $\nu(F)$. In a beautiful paper published in 1883, he applied an elementary argument to “remove” $\nu(F)$. Poincaré uses
only algebraic and trigonometric identities to prove the following results. Proofs of these identities are collected in Appendix A.

A polynomial has positive coefficients if all of its nonzero coefficients are positive. Sums and products of polynomials with positive coefficients are polynomials with positive coefficients. If \(G(x) \) is a polynomial with positive coefficients, then \(V(G) = 0 \) and \(G(x) \) has no positive root.

Poincaré [7] proved the following.

Theorem 1. A monic polynomial \(F(x) \) is positive for all positive \(x \) if and only if there exists a polynomial \(G(x) \) with positive coefficients such that the product polynomial \(F(x)G(x) \) has positive coefficients.

Equivalently, \(F(x) > 0 \) for all \(x > 0 \) if and only if there exists a nonzero polynomial \(G(x) \) with positive coefficients such that \(V(FG) = \nu(FG) = 0 \).

In real algebraic geometry, a Positivstellensatz is a theorem that certifies that a polynomial is positive on some subset of its domain. Theorem 1 (Poincaré’s Positivstellensatz) provides a certificate that a monic polynomial is positive on \(\Omega_1 = (0, \infty) \). Pólya [6, 8] cites this result as a precursor of his Positivstellensatz for \(n \)-ary \(m \)-adic forms that are positive on the nonzero nonnegative orthant \(\Omega_n \).

Theorem 2. Let \(F(x) \) be a monic polynomial of degree \(n \) with exactly \(p \) positive roots (counting multiplicity). Thus, \(V(F) = p + \nu(F) \) for some nonnegative even integer \(\nu(F) \). There exists a nonzero polynomial \(K(x) \) such that \(V(FK) = Z(FK) = p \) and \(\nu(FK) = 0 \).

2. Proofs

Let \(\Lambda \) be the set of real and complex roots of the polynomial \(F(x) \in \mathbb{R}[x] \). For all \(\lambda \in \Lambda \), let \(\mu_\lambda \) be the multiplicity of \(\lambda \) as a root of the polynomial \(F(x) \).

If \(\lambda = \alpha + i\gamma \) is a complex root of \(F(x) \) with \(\gamma > 0 \), then \(\overline{\lambda} = \alpha - i\gamma \) is also a complex root of \(F(x) \). We consider the quadratic polynomial \(f_\lambda(x) \in \mathbb{R}[x] \) defined by

\[
\begin{align*}
f_\lambda(x) &= (x - \lambda)(x - \overline{\lambda}) \\
&= x^2 - 2\alpha x + \alpha^2 + \gamma^2 \\
&= x^2 - 2\alpha x + \beta^2
\end{align*}
\]

where \(\beta = \sqrt{\alpha^2 + \gamma^2} > |\alpha| \).

Consider the following four subsets of \(\Lambda \):

\[
\begin{align*}
\Lambda_1 &= \{ \alpha \in \Lambda : \alpha \leq 0 \} \\
\Lambda_2 &= \{ \alpha + \gamma i \in \Lambda : \alpha \leq 0 \text{ and } \gamma > 0 \} \\
\Lambda_3 &= \{ \alpha + \gamma i \in \Lambda : \alpha > 0 \text{ and } \gamma > 0 \} \\
\Lambda_4 &= \{ \alpha \in \Lambda : \alpha > 0 \}.
\end{align*}
\]
Note that the number of positive roots of $F(x)$ (counting multiplicity) is $\sum_{\alpha \in \Lambda_4} \mu_\alpha$. Associated with these sets are the monic polynomials

$$F_1(x) = \prod_{\alpha \in \Lambda_1} (x - \alpha)^{\mu_\alpha}$$
$$F_2(x) = \prod_{\lambda \in \Lambda_2} f_{\lambda}(x)^{\mu_{\lambda}} = \prod_{\lambda = \alpha + \gamma i \in \Lambda_2} (x^2 - 2\alpha x + \beta^2)^{\mu_{\lambda}}$$
$$F_3(x) = \prod_{\lambda \in \Lambda_3} f_{\lambda}(x)^{\mu_{\lambda}} = \prod_{\lambda = \alpha + \gamma i \in \Lambda_3} (x^2 - 2\alpha x + \beta^2)^{\mu_{\lambda}}$$
$$F_4(x) = \prod_{\alpha \in \Lambda_4} (x - \alpha)^{\mu_\alpha}$$

and

$$F(x) = F_1(x)F_2(x)F_3(x)F_4(x).$$

We have $\alpha \leq 0$ for all roots in $\Lambda_1 \cup \Lambda_2$, and so $F_1(x)$ and $F_2(x)$ are polynomials with positive coefficients.

Let $\lambda = \alpha + \gamma i \in \Lambda_3$. We have $\gamma > 0$ and so $0 < \alpha < \sqrt{\alpha^2 + \gamma^2} = \beta$.

There is a unique number φ such that

$$0 < \varphi < \pi/2$$

and

$$\cos \varphi = \frac{\alpha}{\beta}.$$

There is a unique integer $n \geq 2$ such that

$$0 < \varphi < 2\varphi < \cdots < n\varphi < \pi \leq (n + 1)\varphi < 3\pi/2.$$

This inequality implies that

$$\sin(n + 1)\varphi \leq 0 < \sin k\varphi \quad \text{for all } k \in \{1, 2, \ldots, n\}$$

Define the polynomial

$$g_{\lambda}(x) = \beta^{n-1} \sin \varphi + (\beta^{n-2} \sin 2\varphi) x + (\beta^{n-3} \sin 3\varphi) x^2 + \cdots + (\sin n\varphi) x^{n-1}.$$

This is a polynomial of degree $n - 1$ with positive coefficients. From Lemma 1 in Appendix A we have the trigonometric identity

$$f_{\lambda}(x)g_{\lambda}(x) = \beta^{n+1} \sin \varphi - (\beta \sin(n + 1)\varphi) x^n + (\sin n\varphi) x^{n+1}.$$

It follows that $f_{\lambda}(x)g_{\lambda}(x)$ has positive coefficients. Let

$$G(x) = \prod_{\lambda \in \Lambda_3} g_{\lambda}(x)^{\mu_{\lambda}}.$$

The polynomial

$$F_3(x)G(x) = \left(\prod_{\lambda \in \Lambda_3} f_{\lambda}(x)^{\mu_{\lambda}} \right) \left(\prod_{\lambda \in \Lambda_3} g_{\lambda}(x)^{\mu_{\lambda}} \right) = \prod_{\lambda \in \Lambda_3} (f_{\lambda}(x)g_{\lambda}(x))^{\mu_{\lambda}}$$

is a product of polynomials with positive coefficients, and so $F_3(x)G(x)$ has positive coefficients and

$$L(x) = F_1(x)F_2(x)F_3(x)G(x)$$

also has positive coefficients.
The set \(\Lambda_4 \) is the set of positive roots of \(F(x) \). If \(\Lambda_4 = \emptyset \), that is, if \(F(x) \) has no positive root and \(F_4(x) = 1 \), then \(F(x) = F_1(x)F_2(x)F_3(x) \) and \(L(x) = F(x)G(x) \) has positive coefficients. This proves Theorem 1.

Suppose that \(\Lambda_4 \neq \emptyset \). Let \(q - 1 \) be the degree of the polynomial \(L(x) \). For \(\alpha \in \Lambda_4 \), define the polynomial

\[
h_\alpha(x) = \frac{x^q - \alpha^q}{x - \alpha} = \sum_{i=0}^{q-1} \alpha^{q-1-i}x^i.
\]

and let

\[
H(x) = \prod_{\alpha \in \Lambda_4} h_\alpha(x)^{\mu(\alpha)}.
\]

The product polynomial

\[
M(x) = F_4(x)H(x) = \prod_{\alpha \in \Lambda_4} ((x - \alpha)h_\alpha(x))^{\mu(\alpha)} = \prod_{\alpha \in \Lambda_4} (x^q - \alpha^q)^{\mu(\alpha)}
\]

is a monic polynomial of degree \(pq \) that is a sum of powers of \(x^q \). Moreover,

\[
V(M) = \sum_{\alpha \in \Lambda_4} \mu(\alpha) = p.
\]

by Lemma 2.

We have

\[
F(x)\!G(x)\!H(x) = F_1(x)\!F_2(x)\!F_3(x)\!G(x)\!F_4(x)\!H(x) = L(x)\!M(x).
\]

Setting \(K(x) = F(x)G(x) \) and applying Lemma 2 gives

\[
V(FK) = V(FG\!H) = V(L\!M) = V(M) = p.
\]

This completes the proof.

\section*{Appendix A. Proofs of the identities}

We prove the following trigonometric identity.

\begin{lemma}
Let \(f(x) = x^2 - (2\beta \cos \varphi)x + \beta^2 \)
and
\[
g(x) = \beta^{n-1}\sin \varphi + (\beta^{n-2}\sin 2\varphi)x + (\beta^{n-3}\sin 3\varphi)x^2 + \cdots + (\sin n\varphi)x^{n-1}.
\]
Then
\[
f(x)g(x) = \beta^{n+1}\sin \varphi - (\beta \sin(n+1)\varphi)x^n + (\sin n\varphi)x^{n+1}.
\]
\end{lemma}

\begin{proof}
The trigonometric identities

\[
sin(k+1)\varphi = \sin k\varphi \cos \varphi + \cos k\varphi \sin \varphi
\]
and
\[
sin(k-1)\varphi = \sin k\varphi \cos \varphi - \cos k\varphi \sin \varphi
\]
imply

\[
(1) \quad \sin(k+1)\varphi + \sin(k-1)\varphi = 2 \sin k\varphi \cos \varphi.
\]
Also,

\[
(2) \quad \sin 2\varphi = 2 \sin \varphi \cos \varphi
\]
and
\[\sin(n+1)\varphi = \sin n\varphi \cos \varphi + \cos n\varphi \sin \varphi\]
\[= 2 \sin n\varphi \cos \varphi - (\sin n\varphi \cos \varphi - \cos n\varphi \sin \varphi)\]
\[= 2 \sin n\varphi \cos \varphi - \sin(n-1)\varphi\]

Then
\[f(x)g(x) = (x^2 - (2\beta \cos \varphi) x + \beta^2) \left(\sum_{k=0}^{n-1} x^k \beta^{n-1-k} \sin(k+1)\varphi\right)\]
\[= \beta^{n+1} \sin \varphi + \beta^n (\sin(2\varphi - 2 \sin \varphi \cos \varphi) x\]
\[+ \sum_{k=2}^{n-1} \beta^{n+1-k} (\sin(k+1)\varphi - 2 \sin k \varphi \cos \varphi + \sin(k-1)\varphi) x^k\]
\[- x^n (2 \sin n\varphi \cos \varphi - \sin(n-1)\varphi) + x^{n+1} \sin n\varphi.\]

Applying identities (1), (2), and (3), we obtain
\[f(x)g(x) = \beta^{n+1} \sin \varphi - x^n \beta \sin(n+1)\varphi + x^{n+1} \sin n\varphi.\]

This completes the proof. □

Lemma 2. If \(a_i > 0\) for all \(i \in \{1, 2, \ldots, n\}\), then
\[V \left(\prod_{i=1}^{m} (x - a_i)\right) = m.\]

Proof. Because \(a_i > 0\) for all \(i \in \{1, 2, \ldots, n\}\), we obtain
\[V \left(\prod_{i=1}^{m} (x - a_i)\right) = V \left(\prod_{i=1}^{m} (x - \text{sign}(a_i))\right)\]
\[= V ((x - 1)^m) = V \left(\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} x^j\right)\]
\[= V ((-1)^m, (-1)^{m-1}, \ldots, 1, -1, 1) = m.\]

This completes the proof. □

Lemma 3. Let \(M(x) = \sum_{i=0}^{p} a_i x^i\) be a monic polynomial of degree \(pq\) in which only powers of \(x^i\) occur with nonzero coefficients. Let \(L(x) = \sum_{j=0}^{q-1} s_j x^j\) be a polynomial of degree \(q-1\) with positive coefficients. Then
\[V(LM) = V(M).\]

Proof. The sequence of length \((p+1)q\) of coefficients of the polynomial \(M(x)\) is
\[
\begin{pmatrix}
r_0, 0, 0, \ldots, 0, r_q, 0, 0, \ldots, 0, r_{2q}, \ldots, r_{(p-1)q}, 0, 0, \ldots, 0, r_{pq}, 0, 0, \ldots, 0 \cr
q - 1 \text{ roots} & q - 1 \text{ roots} & q - 1 \text{ roots} & q - 1 \text{ roots}
\end{pmatrix}.
\]

For all \(i \in \{0, 1, 2, \ldots, p\}\), we see the subsequence of coefficients of length \(q\)
\[
\begin{pmatrix}
r_{iq}, 0, 0, \ldots, 0 \cr
q - 1 \text{ roots}
\end{pmatrix}.
\]
In the sequence of coefficients of the product polynomial $L(x)M(x)$, this subsequence is replaced by
\[(r_{iq}s_0, r_{iq}s_1, r_{iq}s_2, \ldots, r_{iq}s_{q-1})\].

For all $j \in \{0, 1, 2, \ldots, q-1\}$ we have $s_j > 0$ and so $\text{sign}(r_{iq}s_j) = \text{sign}(r_{iq})$. It follows that
\[V(r_{iq}s_0, r_{iq}s_1, r_{iq}s_2, \ldots, r_{iq}s_{q-1}) = 0\]
and
\[V(LM) = V(M).\]

This completes the proof. \(\square\)

References

[1] M. Coste, T. Lajous-Loaeza, H. Lombardi, and M.-F. Roy, Generalized Budan-Fourier theorem and virtual roots, J. Complexity 21 (2005), 479–486.
[2] R. Descartes, *The Geometry of René Descartes*, Dover Publications, New York, 1954, page 373.
[3] C. F. Gauss, Beweis eines algebraischen Lehrsatzes, J. reine angew. Math. 3 (1828), 5–8.
[4] L. Gonzalez-Vega, H. Lombardi, and L. Mahé, Virtual roots of real polynomials, J. Pure Appl. Algebra 124 (1998), 147–166.
[5] M. B. Nathanson, Gauss’s proof of Descartes’s rule of signs, arXiv: 2205.04249.
[6] M. B. Nathanson, Pólya’s Positivstellensatz, preprint.
[7] H. Poincaré, Sur les équations algébriques, Comptes Rendus 97 (1883), 1418–1419.
[8] G. Pólya, Über positive Darstellung von Polynomen, Vierteljschr. Naturforsch. Ges. Zürich 73 (1928), 141–145; reprinted in G. Pólya, *Collected Papers, Vol. II: Location of Zeros*, MIT Press, Cambridge, 1974, pages 309–313.