Shell structure from nuclear observables

I. Bentley1,2, Y. Colón Rodríguez2, S. Cunningham1, and A. Aprahamian2

1Dept. of Chemistry and Physics, Saint Mary’s College, Notre Dame, IN 46556 and
2Dept. of Physics, University of Notre Dame, Notre Dame, IN 46556

(Dated: April 28, 2016)

The appearance and disappearance of shells and sub-shells has been at the forefront of recent nuclear theory and experimental efforts, see e.g. \cite{11-7}. Additionally, the occurrence of astrophysical events, such as the r-process, see e.g. \cite{8}, depend on nuclear shell structure to determine the location of waiting points. Observations of shell structure near stability guide our intuition far from stability. The goal of this work is to make use of experimental observations of shell structure near stability to improve the predictive power further.

New measurements at the frontiers of the nuclear landscape indicate a scene with evolving shells beyond the canonical magic numbers \(2, 8, 20, 28, 50, 82, 126\) for neutrons \(N\) and protons \(Z\) \cite{9}. Various approaches using nucleon-nucleon interactions \cite{10}, three-nucleon interactions \cite{11}, tensor forces \cite{12}, super deformations \cite{13} and other exotic shapes, e.g. tetrahedral deformations \cite{14}, are capable of providing explanations of the emerging structure and new magic numbers that have been observed experimentally.

One of the most straightforward measures of a shell closure comes from the first excited state in even-even nuclei. The first excited state is typically high in energy for a nuclide with a magic number. Additionally, the transition probability is typically low at and near the magic numbers. Magic numbers are also associated with enhanced stability, therefore, corresponding nuclides have more binding energy and there is a corresponding “kink” in the two particle separation energy. All of these features are consequences of substantial shell gaps as discussed in Ref. \cite{15}.

Using these metrics, new neutron shell closures such as those which occur at \(N = 14\), and 16 in \(^{22}\text{O}\) and \(^{40}\text{O}\) have been observed \cite{16, 17} and a possible closure at \(N = 34\) in \(^{54}\text{Ca}\) \cite{18} has been proposed. Additionally, several shell features are known to be diminished or missing for nuclei with a canonical magic number, e.g. at \(N = 28\) the \(^{42}\text{Si}\) nucleus has a particularly low first excited state at 770 keV \cite{15, 19}.

In the work by Cakirli, Casten, and Blaum, five observables and their derivatives are used to indicate neutron shell closures in regions of interest \cite{20}. The feature indicative of a shell closure for the mean-square charge radius, \(\langle r^2 \rangle\), is a flattening of values before a shell closure and a sharp rise after. In the energies of the \(2^+_1\) state a local maximum indicates a shell closure. For the energy ratio \(4^+_1\) over \(2^+_1\) and \(B(E2)\) values a local minimum indicates a shell closure. Finite differences of adjacent data points were used to approximate the derivative of each of these quantities which further verify the critical points. The use of derivatives is essential when determining shell structure from two neutron separation energies, \(S_{2n}\), because they exhibit a rapid decline after crossing a shell closure. Therefore, a minimum in the derivative of the two neutron separation energy is the characteristic feature of a neutron shell closure.

The work discussed in this manuscript utilizes a derivatives technique similar to that in Ref. \cite{20} and extends the approach. Our goal is to extend the range and scope of the shell structure determinations and to provide new metrics for further shell structure determinations. For simplicity, we define the derivative in the same way for each observable. In this investigation, experimental data are examined for extrema to determine both proton and neutron shell closures across the entire chart of the nuclides. We have also tested the approach with a number of new observables. Our investigations involve determining extrema in mass related quantities: \(S_{2n}\), two proton separation energies \(S_{2p}\), and binding energy \(B\) minus a smooth liquid drop energy \(B_{L-D}\). Additionally, the ground-state band energies of even-even nuclei from \(E(2^+_1)\) up to \(E(10^+_1)\), \(B(E2:2^+_1 \rightarrow 0^+_1)\) and \(\langle r^2 \rangle\) values are discussed. Other quantities such as one neutron and one proton separation energies, three point pairing gap...
formulas, $E(0^+_2)$, $E(2^+_2)$, and various ratios of energies were also investigated, but are not included in this manuscript due to the paucity of data and redundancy in the results.

A discussion of the methodology has been included in Sec. [II]. Section [III] demonstrates how mass related quantities, specifically, two particle separation energies and binding energies can be used to determine the location of shell features. Section [IV] includes the results determined from using the low-lying excited states in the ground state band of even-even nuclei. Section [V] contains a summary of the technique and the scope of its application.

II. DETERMINING SHELL FEATURES

Extrema are used to define primary and secondary signatures of shell features for various observables. Each experimental dataset was analyzed for extrema among groups of three consecutive even-even nuclides along isotopic and isotonic chains to identify neutron and proton shell features. Additionally, the differences in adjacent data points were used to determine differential observables using the following definitions:

$$\delta_p O(N, Z) = O(N, Z + 1) - O(N, Z - 1),$$

and

$$\delta_n O(N, Z) = O(N + 1, Z) - O(N - 1, Z),$$

where $O(N, Z)$ represents an experimental observable, such as $E(2^+_1)$, $B(E2)$ and so on, for the nuclide with the corresponding number of neutrons and protons.

The resulting $\delta_n O(N, Z)$ and $\delta_p O(N, Z)$ values are also analyzed for extrema among three consecutive points. In the case of S_{2n} and S_{2p}, the primary shell feature comes from the differences using Eqs. [1] and [2] and there is no secondary feature. For all other observables, extrema in the observable determines the primary shell feature and the derivatives before and after constitute the secondary feature. Our procedure requires that $O(N, Z)$ be known for five consecutive nuclei so that extrema in the observable and its derivatives can be determined before and after the point of interest.

Figure [Ia] contains the energies of the first 2^+ state for isotopes ranging from tin to samarium in which the $N = 82$ shell closure can be seen as a local maximum. The $E(2^+_1)$ values for all tin isotopes are higher than those of the other chains shown as a result of the proton shell closure at $Z = 50$. Fig. [Ib] contains the corresponding differential observables where the shell closure corresponds to a large positive slope before and a large negative slope afterward. In the case of doubly magic ^{132}Sn, the derivatives at the neutron shell closure are considerably larger than the singly magic neighbors. The shell closure at $N = 82$, can be seen in both the maximum of the energies as well as the maximum in $\delta_n E(2^+_1)$ one step before and minimum one step afterward.

In Fig. [Ia] the primary shell signature of a maximum at $N = 62$ for tellurium is far less pronounced than that of the $N = 82$ closure. Additionally, for this chain the secondary feature of a drop in $\delta_n E(2^+_1)$ at $N = 62$ can be seen in the inset of Fig. [Ib], but it doesn’t consist of the signature maximum followed by a minimum. In cases like these the extrema in the primary feature are noted despite the lack of supporting evidence in the secondary feature. This means that some unrealistic shell features may appear in the results discussed below. Consequently, the results from multiple observables are compared to verify that each shell feature observed actually corresponds to a robustly reoccurring shell or sub-shell closure. Furthermore, the results are inconclusive when either there are insufficient adjacent data points before or after the point of interest or if the experimental uncertainties of adjacent extrema overlap.

III. SHELLS BASED ON NUCLEAR MASSES

The experimentally measured binding energies, $\delta_n S_{2n}$ and $\delta_p S_{2p}$, were taken from and calculated using data in the 2012 Atomic Mass Evaluation (AME) [21]. Extrapolated masses were not included in the comparisons and the electron binding energy contribution was removed from all observables using Eq. (A4) from Ref. [22].

$\delta_n S_{2n}$ and $\delta_p S_{2p}$ are used to indicate the neutron and proton shells, respectively. As a result of the definitions provided by Eqs. [1] and [2], the minimum in the differential observable of S_{2p} and S_{2n}, will occur just after a shell closure. This occurs because the valence nucleons occupy less bound orbits in a newly open shell and the separation energy drops as a consequence.

Additionally, binding energies with a liquid drop component removed can also be used to indicate shell closures, as has been known for many years, see e.g. [23]. Peaks occur at magic numbers in this second comparison because magic nuclei are more tightly bound than those that are mid-shell. The smooth liquid drop binding energy (B_{LD}) that will be removed from the experimental binding energy is of the following form:

$$B_{LD} = (a_v A + a_s A^{2/3}) (1 + \kappa T_Z (T_Z + 1) A^{-2}) + (a_c Z (Z - 1) + \Delta) A^{-1/3},$$

where $A = N + Z$ and $T_Z = (N - Z)/2$. The coefficients corresponding to a best fit are $a_v = 15.79$ MeV, $a_s = -18.12$ MeV, $\kappa = -7.18$, $a_c = -0.7147$ MeV, and $\Delta = +5.49$ MeV (for even-even nuclei). This fit corresponds to a root mean squared standard deviation of $\sigma = 2.65$ MeV for 2353 nuclides with $N, Z > 8$ in the 2012 AME [21].
Figure 2 contains mass related shell features around $N = 50$ that correspond to extrema in the derivative of the two neutron separation energy and the binding energy minus liquid drop. Figures 2(a) and 2(b) illustrate the sharp decline in two neutron separation energies and the corresponding minimum in δE_{2n} after $N = 50$ and to a lesser extent after $N = 56$ for strontium and zirconium. These $N = 56$ primary features are not seen in the binding energy minus liquid drop, but a secondary feature of a maximum followed by a minimum does occur in its derivative.

Overall, the primary signature results generated using separation energies and binding energies were largely consistent with each other though more extrema were found using the derivatives of the separation energies. Combining the results from both of these mass related observables yields some observations of new shell features at multiple locations as can be seen in Tables I-IV. Furthermore, the primary shell closure features are missing from both quantities for neutrons in 12Be, 14C, 32Mg, 34Si, and 38Ar and for protons in 18O and 42Ca.

A local maximum in neutrons is observed in the binding energy minus liquid drop for $N = Z$ nuclei, namely, 12C, 16O, 28Si, 32S, 36Ar, and 40Ca and for protons in 28Si. Similarly, a minimum in $\delta_n S_{2n}$ along an isotopic chain can also be seen for all even-even $N = Z$ nuclei from 12C to 44Ti. These results are in agreement with the findings from [20] that $N = Z$ nuclei exhibit neutron shell features in S_{2n} in the $A \sim 35$ region. Additionally, every even-even nuclide from 12C to 36Ar was found to have a minimum in $\delta_p S_{2p}$ at $N = Z$. The enhanced binding energy and drop in separation energy at $N = Z$ is likely due to enhanced proton-neutron pairing as discussed in Refs. [24]-[28] and should not be considered true shell features if it doesn’t persist in the other observables.

IV. SHELLS FROM THE LOW-LYING SPECTRA OF EVEN-EVEN NUCLEI

Energy ratios such as $R_{4/2} = E(4^+_1)/E(2^+_1)$ can be used to investigate shell closures. However, as opposed to using ratios, the experimental energies for 2^+_1, 4^+_1, 6^+_1, 8^+_1 and 10^+_1 have been analyzed individually to provide a more complete picture of the evolving nature of shell structure in the ground-state band of even-even nuclei. In each case, a local maximum is the feature corresponding to a shell closure.

Local maxima in $E(2^+_1)$ provide a list of shell closures that are similar to those determined using mass related quantities with the exception of the $N = Z$ nucleides which often do not contain extrema in $E(2^+_1)$. Some neutron shell closures not based on the canonical magic numbers have been found to occur in 14C, 26Mg, 26Ne, 62Fe, 70Se, 68Ni, 94Sr, 96Zr, 110Cd, 114Te, 114Sn, 194Hg, and 198Pb. In the case of 110Cd, for example, it is believed that shape coexistence with a deformed 2p-4h proton excitation forms an intruder band consisting of slightly deformed states cause shell closure-like features [29]. Many of the closures listed above, such as in 68Ni at $N = 40$ correspond to known, see Refs. [19] and [30], localized sub-shell closures based on experimental data. Additionally, the local maxima in $E(2^+_1)$ indicate that proton shell closures at 14C, 30Si, 34Si, 42Ar, 52Ti, 80Kr, 84Sr, 86Sr, 146Gd, and 150Gd have also been found.

Proton shell closures near $Z = 20$, 40 and 64 are discussed in further detail in Sec. VI though it is worth stating that the sub-shell closure at $Z = 40$ is robust, existing in five zirconium isotopes, specifically, 90,92,94,96,98Zr. The average 2^+_1 energy of these five isotopes is more than three and a half times larger than the average known energy of all other zirconium isotopes [19].
The majority of the shell closures indicated using $E(2^+_1)$ are also found in $E(4^+_1)$, though the data set in the latter is smaller. Figures (3a) and (3b) demonstrate the peaks in these energies which occur at the $N = 82$ shell closure. In the higher spin data, shell closures sometimes occur at a slightly smaller proton or neutron number than before. For example, in $E(6^+_1)$ the $N = 82$ shell closure feature has in most cases moved to $N = 78$ or $N = 80$. Additionally, there is an overall flattening of the peak near $N = 82$ as the spin increases, as can be seen in Fig. 3.

The apparent breakdown of the $N = 82$ shell at higher spin states shown in Figs. (3c) and (3d) is another good example of where the origin of a shell feature signature is probably caused by something other than an actual shell closure. At $N = 82$, higher spin states like the 6^+ can be made by exciting nucleons into the higher spin neutron orbits, specifically the $f_{7/2}$ or $h_{9/2}$ orbitals. Below $N = 82$, the 6^+ state can’t be made in the same way because only low spin neutron orbits are available. Higher orbits can be reached above the shell gap at the cost of requiring more energy. In contrast, the lower spin states 2^+ and 4^+ can easily be made by the available orbits 31. Therefore, the primary shell features for $E(6^+_1)$ and above should considered with caution and the observations of features in $E(6^+_1)$ and above have been omitted from further discussion in Sec. VI.

V. SHELLS IN OTHER OBSERVABLES

The small deformations associated with a shell closure often occur gradually. Consequently, the $B(E2;2^+_1 \rightarrow 0^+_1)$
FIG. 3. (Color on-line) Energies of the a) 2^+_1, b) 4^+_1, c) 6^+_1, and d) 8^+_1 states from [19] for $A \sim 140$.

values are typically low for several nuclei near the shell closure and a local minimum corresponding to a magic number doesn’t always stand out. Additionally, the data for B(E2) values found in Ref. [32] are somewhat sparse compared to the previously used observables. For these reasons, only 11 shell closure features were identified and three shell closure features were determined to be missing. The only nuclides missing any evidence of an expected closure in this observable and its derivative occur for 14C at $N = 8$, 16O at $Z = 8$, and 62Ni at $Z = 28$. Seemingly unexpected neutron closures found are 68Ge, 68Zn, and 172Hf at $N = 36$, $N = 38$ and $N = 100$, respectively.

Though there is some additional evidence for the neutron shell closures in 68Ge, 68Zn, the closure in 172Hf is not justified elsewhere. The B(E2) values used in this analysis were the most recent measurements at the time of the analysis from Refs. [33]-[37]. An investigating of B(E2) values was performed for 172Hf and neighboring nuclides based on prior data from Refs. [38]-[45] and newer measurements from Refs. [46]-[47]. Subsequently, most of the measurements, including the most recent of the B(E2: $2^+_1 \rightarrow 0^+_1$) values for 172,174,176Hf indicate that there is not a substantial low point at $N = 100$ [47] and therefore there is really no shell closure feature at that location. In cases where the B(E2) value is the lone observable indicating a shell closure, the result should be considered with caution and in the case of 172Hf the shell closure simply does not exist in the newest measurements.

The mean square charge radii, $\langle r^2 \rangle$, values from Ref. [48] are also used, though this data set is even more sparse. A shell closure in $\langle r^2 \rangle$ corresponds to a local minimum and a sharp rise afterward. These minima are often very shallow and after accounting for the experimental uncertainties possible peaks seen using $\delta_n \langle r^2 \rangle$ and $\delta_p \langle r^2 \rangle$ are common place. As a result, no nuclides conclusively indicate a proton shell feature and only four nuclides contain neutron shell closure features using the minimum of $\langle r^2 \rangle$ itself. Those are 24Ne and 26Mg at $N = 14$, and 80Kr and 88Sr at $N = 50$. Shell closures are distinctly missing for a few high-mass nuclei including 136Xe at $N = 82$, 208Pb at $N = 126$, 114Sn at $Z = 50$ and 198,200,202Pb at $Z = 82$, but the previously discussed evidence indicates that these shells are present. Therefore, these discrepancies from the expected shell closures may indicate that our local extrema determination method is not well suited for use with $\langle r^2 \rangle$ values.

VI. RESULTS

Extrema in experimental observables and the corresponding differential observables were determined by comparing groups of adjacent even-even nuclei along isotopic and isotonic chains. The extrema indicative of neutron and proton shell structure were then used to identify nuclides of interest. Figs. [10] illustrate how these shell
FIG. 4. (Color on-line) a) Derivative in the two proton separation energy and b) binding energy minus liquid drop from [21] for $A \sim 50$. Energies of the first excited c) 2^+ and d) 4^+ from [19]. e) Mean squared charge radius from [18] and f) $B(E2)$ values from [22].
FIG. 5. (Color on-line) a) Derivative in the two proton separation energy and b) binding energy minus liquid drop from [21] for $A \sim 90$. Energies of the first excited c) 2^+ and d) 4^+ from [19]. e) Mean squared charge radius from [48] and f) B(E2) values from [52].
FIG. 6. (Color on-line) a) Derivative in the two proton separation energy and b) binding energy minus liquid drop from [21] for $A \sim 150$. Energies of the first excited c) 2^+ and d) 4^+ from [19]. e) Mean squared charge radius from [48] and f) $B(E2)$ values from [32].
closure features occur among the six preferred observables near shell and sub-shell closures at $Z = 20$, $Z = 40$ and $Z = 64$, respectively.

Figures 4(a) and 3(b) can be used to examine the $Z = 20$ shell closure in some of the isotones shown, as well as features associated with enhanced pairing at $N = Z$. In Fig. 4(b) the rapid decrease in $\delta_p S_{2p}$ can be seen for the $N = Z$ which is similar to observations made along isotopic chains in Ref. [20]. Figure 3(b) illustrates that the closure at $Z = 20$ is only clearly present in the $N = 20$ chain. Figs. 3(b) and 3(d) contain many expected and unexpected local extrema, though the scale varies greatly among them. Figure 4(b) in particular illustrates the enhancement of sub-shell features at $Z = 14$ and $Z = 16$ when the companion particle is closed shell for the $N = 20$ chain. In Fig. 4(d) the sharp rise in $(r^2)_{2p}$ values after 50Ca provides part of the required shell feature but the flattening of values before is missing. In Fig. 4(b) the $Z = 20$ shell closure can be clearly seen in some nuclei though it often appears to be less distinct than the next shell closure at $Z = 28$. Additionally, in the $N = 20$ isotopes the B(E2) values are consistently small from $Z = 14$ through $Z = 20$ indicating that these nuclides are all spherical. The proton shell closure is distinctly missing for 44Ca across all observables. Overall, the $Z = 20$ shell is a mixture of some features associated with shell closures and some features which are missing. This closure is believed to evolve as a result of tensor forces between the respective protons and neutrons [17].

Figure 5(b) illustrates some unexpected features at $Z = 38$, as well as expected sub-shell features at $Z = 40$ and shell features at $Z = 50$. The sharp distinct drop in two proton separation energies can be seen at either $Z = 38$ or $Z = 40$ in the $N = 48$ through $N = 56$ chains depending on the isotope. Figure 5(b) only indicates the $Z = 50$ closure. It should be noted that in for both the $N = 50$ and $N = 56$ chains the 2^+ energies shown in Figure 5(b) are higher at the sub-shell closure at $Z = 40$ than at the shell closure $Z = 50$, though the shell closure at $Z = 50$ is more persistent. In Figs. 5(b) and 5(d) the peak in the $N = 50$ chain shifts from $Z = 40$ in $E(2^+_2)$ to $Z = 38$ in $E(4^+_1)$. The sharp rise in charge radius values at $Z = 36$ in Figure 5(b) for the $N = 60$ chain and others, are inconclusive because of the lack of data at lower neutron numbers. Similarly, the flattening out and then increase as seen in the $N = 60$ chain near $Z = 40$ is inconclusive as a result of the considerable experimental uncertainties. Figure 5(d) shows that many of the B(E2) values in the $Z = 30–40$ region are small. Figures 5(b)-5(d) also demonstrate the consequences for various observables as the deformation decreases along the $N = 60$ chain.

A distinct drop in two proton separation energies can be seen in Fig. 6(b) at $Z = 64$ for 146,148,150Gd. The isotones shown in Fig. 6(b) only indicate the shell closure at $Z = 50$. Figures 6(c) and 6(d), show peaks at $Z = 50$ for two of the chains. Additionally, 146Gd contains a distinct peak for both $E(2^+_1)$ and $E(4^+_1)$, while the peaks in these two quantities at 150Gd are more modest. Figure 6(c) includes a slight upward kink at $Z = 64$ for the chains shown, though the flattening feature before was missing. For these isotones the B(E2) data is sparse. However, the low values near $Z = 64$ among the $N = 82$, 84 and 86 chains, resulting from the $N = 82$ shell closure, reinforce the notion of a sub-shell closure corresponding to a small deformation as can be seen in Fig. 6(c).

In summary, the proton sub-shell closures at $Z = 40$ are in agreement with calculations by Otsuka et al., which indicate that the substantial gap between the $g_{9/2}$ and $d_{5/2}$ proton orbitals is caused by tensor forces [4]. This shell closure and another at $Z = 64$ are both detected using signatures in extrema as it is indicated by $\delta_p S_{2p}$, and across the low-lying spectra. Additionally, a neutron sub-shell closure at $N = 56$ for 94Sr, 96Zr and 98Mo is similarly indicated by $\delta_n S_{2n}$, and spectra.

Interestingly, all of these more persistent sub-shell cases occur at or near nuclei with a shell closure in the companion particle, $N = 50$, $N = 82$, or the sub-shell closure at $Z = 40$, respectively. These observations indicate that the two critical criteria needed for the creation of a sub-shell structure are (i) a shell closure in the companion particle and (ii) a change in spin and parity. Take for example, the proton sub-shell closure at $Z = 64$ observed in 146Gd and 150Gd. The companion neutrons are at or near closed shells with $N = 82$ and $N = 86$, respectively, and the odd-proton spin-parity changed in the neighboring europium and terbium isotones from 5/2$^+$ to 1/2$^+$. Though the change around $Z = 64$ in spin and parity is not as drastic as the more prototypical change around $Z = 40$, from 1/2$^-$ to 9/2$^+$ for $^{88–98}$Zr, it appears to have had a sufficient effect.

One can think of the first criterion as being conducive for enhancing features because a nearby shell closure in the companion particles often results in small deformations, causing large gaps in the single particle spectra, which enhance stability and cause the ground state band to be higher in energy. A prescription based on these observations can be used to predict new sub-shell features in emerging data further from stability. But it appears that the rules for both shells and sub-shells may be more stringent further from stability, where for example, doubly magic 132Sn doesn’t exhibit neutron shell quenching but neighboring nuclei do [50].

A handful of nuclides with a magic neutron number are missing shell features across multiple observables including 14C and 32Mg. Nucleon-nucleon interactions may be responsible for the disappearance of shells and the emergence of others in 14C and other low mass nuclides [10]. For 32Mg, a two particle-two hole configuration occurs eliminating the $N = 20$ shell as discussed in Refs. [2], [3] and references therein. As a consequence, the deformed ground-state of this nuclide results in a comparatively low 2$^+$ state.

Tables I-IV summarize all nuclei where the primary signature of a shell closure, i.e. a maximum or minimum, has been identified across the nine observables used. It should be noted that the features included have not been
separated by their relative magnitude. Instead the table simply indicates that the extremum of interest has been identified.

Tables V-VII contain the list of all nuclides with canonical magic numbers that contain neither primary nor secondary shell features. Nuclides have not been included in any of the tables if a secondary feature has been found even when the primary feature is missing and they have not been included if there was insufficient data. For example, if an extrema is indicated in the derivative but not \(E(2^+_{1})\) itself, then it will not be labeled as found. Similarly, the extrema are not labeled if the experimental uncertainties at that point and an adjacent point overlap.

Many of the new shell features are distinctly different than the canonical shells. These features often occur in just a few observables and often last for just a few nuclides. Occasionally, the new shells migrate to a new location such as the \(N = 14\) and \(N = 16\) sub-shells seen in oxygen as discussed in Ref. [51] and citations therein.

Figure 7 summarizes the shell features results based on the combined information from all of the observables discussed in this text excluding the ground-state band energies above \(4\hbar\omega\), \(B(E2)\) and \(\langle r^2 \rangle\) values. Figure 7(b) includes the neutron shell features detected while Fig. 7(d) indicates the same for protons. The solid squares, diamonds, circles, and stars denote all nuclides with two or more shell features that are found and/or missing.

In Fig. 7(b) the \(Z = 8\) shell is less obvious when examining the amalgamated data than the \(Z = 20\) shell. The only observation indicating a shell closure at \(Z = 8\) came in \(^{16}\text{O}\) as a slight kink in the \(S_{2p}\). In general, missing shell features in low to mid-mass nuclei may all result from the underlying single particle structure. The expected shell closures become more consistent at and above the \(N = 28\) and \(Z = 28\) shell closures and many interesting shell features occur in mid-shell regions.

Many of the “new” features occur in at most a few adjacent nuclides. The neutron closures at \(N = 36, 38,\) and \(40\) and \(N = 62,\) and \(64\) are similar in that they occur at a slightly different location for the “doubly magic” nuclei than they do for the surrounding nuclides. This may be the result of the difference in tensor force interactions of completely closed shells and nearly closed shells. The multiple \(N = Z\) nuclides with indicated neutron shell closures below \(N = 20\) should be interpreted with caution as they only occur in the mass related quantities and are likely solely a result of enhanced pairing. Back-to-back shell closures were found at \(N = 14\) and \(N = 16\) in \(^{28}\text{Mg}\) and \(^{28}\text{Mg}\), and at \(Z = 38\) and \(Z = 40\) in \(^{90}\text{Sr}\) and \(^{92}\text{Zr}\), which both resulted from two or more shell features detected in different groups of observables.

The new and missing shell determinations from many complementary works [11, 13, 32, 57] which were often beyond the scope of our analysis, have been included Fig. 7. These are denoted by open symbols. In some cases closures weren’t found in our examination even though the nuclide was within the range of nuclides examined. One such case is the \(Z = 16\) closure in \(^{36}\text{S}\) that wasn’t detected because the \(Z = 14\) closure in \(^{34}\text{Si}\) was slightly more pronounced and was detected instead. By combining these results, shell structure for protons and neutrons has been evaluated across the chart of the nuclides.

The spin and parity in odd-A systems can also be indicative of shell structure. Figure 8 has been included to allow for comparison of shell features with the ground-state spin and parities of the adjacent odd-A nuclides. Take for example the before mentioned \(Z = 40\) sub-shell closure, which corresponds to the transition from a \(1/2^-\) state to a \(9/2^+\) state in the adjacent nuclides as can be seen in Fig. 8(b). Similarly, the transition between the \(5/2^+\) state and \(1/2^+\) state of the nuclides near \(^{96}\text{Zr}\) correlate with the sub-shell closure at \(N = 56\) as can be seen in Fig. 8(c).

The ground-state spin and parity in odd-A nuclides do not always provide sufficient information to allow one to consistently predict where a shell closure will occur. For example, the exact same spin and parity transition that is seen at the \(Z = 40\) shell closure also occurs for several nuclides at \(Z = 48\). In the latter case, only some of the high spin states show any indication of a shell closure at \(Z = 48\) because the \(Z = 50\) shell closure is dominant.

VII. SUMMARY AND OUTLOOK

This work consists of an analysis of existing information such as \(E(2^+_{1})\), and \(S_{2n}\), to make robust predictions on the appearance and disappearance of nuclear shells. The disappearance of a shell can be produced by particle-hole excitations within the shell model and through the restoration of broken symmetries in mean-field approaches [17]. Additionally, alternative magic numbers can be produced in a variety of ways. For example, highly deformed nuclei and super deformed nuclei result in a different set of magic numbers than the canonical ones [58]. Although the corresponding nuclides are nominally magic, with enhanced stability caused by considerable gaps in the single particle spectrum, they will, by definition, not be spherical and will likely miss some spectral features, such as a high \(E(2^+_{1})\) value and a low \(B(E2)\) value that are expected and looked for in this work. Alternative approaches such as those involving nucleon-nucleon and three nucleon interactions can explain the emergence and disappearance of some shell features for spherical nuclei.

In principle, every shell closure should contain measurable features, but this does not mean that every feature detected, substantial or minor, corresponds with a shell closure. We have used a differential observable approach similar to that of Ref. [20] to determine the location of shell closure features at a greater scale than was previously achieved. Among the observables used to determine shell closures \(E(2^+_{1})\) and the \(\delta_{S}S_{2n}\) or \(\delta_{p}S_{2p}\) are among the most straightforward indicators. Results from the binding energy minus liquid drop supplement
FIG. 7. (Color on-line) a) Neutron and b) proton shell features from S_{2n} or S_{2p}, $B_{E2p} - B_{LD}$, $E(2^+_1)$, and $E(4^+_1)$. Blue diamonds indicate unexpected shell features and black squares indicate expected shell features found in at least two of the observables. Red circles indicate two or more expected shell features that are missing, and orange stars indicate a combination of both found and missing shell features. Symbols with a hollow center represent additional determinations of shell structure for 22O from [52], 24O from [53], 54Ca from [5], 130Cd from [54], 12O from [55], 36S from [56], $^{186-188}$Pb from [57], and otherwise from [1]-[4]. For reference, dark gray squares indicate stable nuclides with half-lives greater than 10^{24} yr based on data from Ref. [19] and the light gray squares indicate all nuclides included in the 2012 AME [21].
FIG. 8. (Color on-line) Odd-A ground-state spin and parity indicated by color and symbol for a) odd neutron and b) odd proton nuclides with data from [19].
those from separation energies and both detect the consequences of enhanced pairing of $N = Z$ nuclei. The energies of higher spin states can also be used, and we show that by 67 or higher, the peaks begin to move away from established magic numbers, especially in the case of $N = 82$. Other observables such as the mean square charge radii and B(E2) values can also be powerful indicators of shell structure, but the indicative features are often not “sharp” enough to register as an extrema when using local comparisons.

Our local extrema determination approach is somewhat limited due to the fact that it requires an observable to be measured in multiple adjacent nuclei. Many results, such as missing neutron closures in 42Si and new neutron closures in 54Ca do not appear in Tables as a result of the lack of data in the neighboring nuclei away from stability. Despite of the paucity of data, we show a number of regions where new shell features are identified based on two or more experimental observations. Additionally in this work, we establish two criteria (closure in the companion particle and change in spin and parity) by which sub-shell features appear.

As experimental results continue to come in from around the world, this approach can be repeated so that shell evolution in nuclear matter further from stability toward the extremes of the chart of the nuclides can be better understood. In the meantime, our approach, used in conjunction with other observations, provides the most complete picture yet of shell structure across the entire chart of nuclides.

ACKNOWLEDGMENTS

We would like to express our gratitude to R. Caste for helpful discussions. This work was supported by the National Science Foundation under Grants No. PHY1419765 and No. PHY0822648.

[1] R. Kanungo, Phys. Scr. T152, 014002 (2013).
[2] O. Sorlin and M.G. Porquet, Phys. Scr. T152, 014003 (2013).
[3] R.V.F. Janssens, Phys. Scr. T152, 014005 (2013).
[4] T. Otsuka, Phys. Scr. T152, 014007 (2013).
[5] D. Steppenbeck, et al., Nature 502, pp. 207-210 (2013).
[6] M. Rosenbusch, et al., Phys. Rev. Lett. 114, 202501 (2015).
[7] K. Hebeler, et al., Ann. Rev. of Nucl. and Part. Sci. 65, pp. 457-484 (2015).
[8] S.E. Woosley, et al., Rev. Mod. Phys. 74, 1015 (2002).
[9] A. Gade, Nuclear Physics News 23, pp. 10-16 (2013).
[10] T. Otsuka, et al., Phys. Rev. Lett. 87, 082502 (2001).
[11] T. Otsuka, et al., Phys. Rev. Lett. 105, 032501 (2010).
[12] T. Otsuka, et al., Phys. Rev. Lett. 95, 232502 (2005).
[13] N. Sharma, et al., Phys. Rev. C 87, 024322 (2013).
[14] J. Dudek, et al., Phys. Rev. Lett. 88, 252502 (2002).
[15] B. Bastin, et al., Phys. Rev. Lett. 99, 022503 (2007).
[16] A. Ozawa, et al., Phys. Rev. Lett. 84, 5493 (2000).
[17] O. Sorlin and M.G. Porquet, Prog. Part. Nucl. Phys. 61, pp. 602673 (2008).
[18] A. Gade and T. Glasmacher, Prog. Part. Nucl. Phys. 60, pp. 161-224 (2008).
[19] J. Tuli, National Nuclear Data Center: Evaluated Nuclear Structure Data File. http://www.nndc.bnl.gov/ensdf/, accessed June 2014.
[20] R.B. Cakirli, et al., Phys. Rev. C 82, 061306R (2010).
[21] G. Audi, et al., Chin. Phys. C 36, p. 1287 (2012).
[22] D. Lunney, et al., Rev. of Mod. Phys. 75, p. 1021 (2003).
[23] W.D. Myers and W.J. Swiatecki, Nucl. Phys. 81, p. 1 (1966).
[24] J.Y. Zhang, R. F. Casten, and D. S. Brenner, Phys. Lett. B 227, pp. 1-5 (1989).
[25] P. Van Isacker, D. Warner, and D. Brenner, Phys. Rev. Lett. 74, 4607 (1995).
[26] J. Jänecke, T. W. O’Donnell and V. I. Goldanski, Phys. Rev. C 66, 024327 (2002).
[27] R.R. Chasman, Phys. Rev. Lett. 99, 082501 (2007).
[28] I. Bentley, and S. Frauendorf, Phys. Rev. C 88, 014322 (2013).
[29] P. Garrett, et al., Phys. Rev. C 86, 044304 (2012).
[30] C. Guénaut, et al., Phys. Rev. C75, 044303 (2007).
[31] R. Casten private communication in Oct. 2015.
[32] B. Pirtychenko, National Nuclear Data Center: Reduced Transition Probabilities. http://www.nndc.bnl.gov/be2/, accessed June 2014.
[33] V. Werner, et al., J. Phys. Conf. Ser. 312, 092062 (2011).
[34] A. Costin, et al., Phys. Rev. C 74, 067301 (2006).
[35] V. Werner, et al., J. Phys. Conf. Ser. 205, 012025 (2010).
[36] H. Ejiri, and G.B. Hagemann, Nucl. Phys. A161, 449 (1971).
[37] Y. Tanaka, et al., Phys. Rev. C 30, 350 (1984).
[38] B. Bochev, et al., Nucl. Phys. A282, 159 (1977).
[39] H. Abou-Leila, Ann. Phys. (Paris) 2, 181 (1967).
[40] A. Charvet, et al., J. Phys. (Paris) 32, 350 (1971).
[41] H. Abou-Leila, N.N. Perrin, and J. Valentin, Arkiv Fysik 29, 53 (1965).
[42] J. Bjørregaard, et al., Nucl. Phys. 44, 280 (1963).
[43] R.M. Ronningen, et al., Phys. Rev. C 15, 1671 (1977).
[44] T. Hammer, H. Ejiri, and G.B. Hagemann, Nucl. Phys. A202, 321 (1973).
[45] D.B. Fossan, and B. Herskind, Nucl. Phys. 40, 24 (1963).
[46] J.M. Regis, Univ. Cologne (2011).
[47] M. Rudigier, et al., Phys. Rev. C 91, 044301 (2015).
[48] I. Angeli and K.P. Marinova, At. Data Nucl. Data Tables 99, pp. 69-95 (2013) and updated via private communication in Feb. 2014.
[49] T. Otsuka, et al., Phys. Rev. Lett. 104, 012501 (2010).
[50] J. Hakala, et al. Phys. Rev. Lett.109, 032501 (2012).
[51] M. Stanciu et al., Phys. Rev. C 69, 034312 (2004).
[52] E. Becheva, et al., Phys. Rev. Lett. 96, 012501 (2006).
[53] K. Tshoo, et al., Phys. Rev. Lett. 109, 022501 (2012).
[54] I. Dillmann, et al., Phys. Rev. Lett. 91, 162503 (2003).
[55] D. Suzuki, et al., Phys. Rev. Lett. 103, 152503 (2009).
[56] P.D. Cottle and K.W. Kemper, Phys. Rev. C 66, 061301 (2002).
TABLE I. Nuclides with identified signature neutron shell closure features.

N	δ_n, S_{2n}	B-B.L.D	E(2^+_1)	E(4^+_1)	E(6^+_1)	E(8^+_1)	E(10^+_1)	< r^2 >	B(E2)
6	^{12}C	^{12}C							
8	^{16}O	^{16}O	^{14}C						
10	^{20}Ne								
12	^{24}Mg								
14	^{28}Si	^{28}Si	^{26}Mg	^{26}Mg				^{24}Ne,^{26}Mg	
16	^{28}Mg, ^{32}S	^{28}Mg, ^{32}S	^{26}Ne						
18	^{32}Si, ^{36}Ar	^{32}Si, ^{36}Ar							
20	^{36}S, ^{40}Ca	^{40}Ca	^{34}Si, ^{36}S, ^{38}Ar, ^{40}Ca	^{36}S				^{36}S, ^{38}Ar	
22	^{44}Ti								
24	^{44}Ca								
28	^{48}Ca, ^{50}Ti, ^{52}Cr	^{50}Ti, ^{52}Cr, ^{54}Fe	^{48}Ca, ^{50}Ti, ^{52}Cr, ^{54}Fe, ^{56}Ni	^{50}Ti, ^{54}Fe	^{50}Ti, ^{54}Fe	^{54}Fe			
32		^{56}Cr	^{58}Fe	^{58}Fe					
34								^{64}Zn	
36		^{62}Fe, ^{70}Se	^{62}Fe, ^{66}Zn, ^{68}Ge	^{66}Zn, ^{68}Ge	^{68}Ge				
38		^{68}Zn, ^{70}Ge	^{68}Ni						
40	^{68}Ni							^{68}Zn	
44	^{76}Ge								
46	^{76}Zn								
48								^{90}Mo, ^{92}Ru	^{98}Ru
50	^{84}Sr, ^{86}Kr, ^{88}Sr, ^{90}Zr, ^{92}Mo, ^{94}Ru	^{82}Ge, ^{84}Sr, ^{86}Kr, ^{88}Sr, ^{90}Zr, ^{92}Mo, ^{94}Ru, ^{96}Pd	^{86}Kr, ^{88}Sr, ^{90}Zr, ^{92}Mo, ^{94}Ru, ^{96}Pd	^{88}Sr, ^{90}Zr, ^{92}Mo, ^{94}Ru, ^{96}Pd	^{90}Zr	^{92}Zr, ^{90}Kr, ^{88}Sr			
54	^{90}Kr, ^{102}Cd								^{98}Ru
56	^{94}Sr, ^{96}Zr, ^{98}Mo								^{104}Cd
58									^{104}Cd
60								^{108}Cd, ^{112}Te	^{112}Te
62									^{112}Te
64	^{110}Mo, ^{108}Ru, ^{114}Sn							^{110}Cd, ^{114}Sn	^{110}Cd, ^{112}Sn
66								^{114}Sn	^{116}Sn
68								^{116}Sn	^{118}Sn
72								^{120}Cd	^{126}Xe
74								^{126}Te	^{130}Ba
76	^{136}Nd								
78	^{128}Sn							^{132}Te, ^{134}Ba	^{130}Te, ^{134}Ba
80								^{134}Te, ^{136}Ba	^{134}Te, ^{136}Ba
TABLE II. Nuclides with identified signature neutron shell closure features (Continued).

N	δ, δ_B	δ_B-LD	E(2^+)	E(4^+)	E(6^+)	E(8^+)	E(10^+)	< r^2 >	B(E2)
82	134Te, 134Xe, 118Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	132Sm, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	134Te, 134Xe, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	134Te, 134Xe, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	134Te, 134Xe, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	134Te, 134Xe, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	134Te, 134Xe, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	134Te, 134Xe, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er	134Te, 134Xe, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 158Er
86	140Xe, 144Ce, 146Nd	140Xe, 144Ce, 146Nd							
88	144Ba	144Ba							
90	166W	166W							
92	156Sm, 164Dy, 162Er	156Sm, 164Dy, 162Er							
94	164Dy, 168Yb	164Dy, 168Yb							
98	168Er, 182Pb	168Er, 182Pb							
100	180Pt	180Pt							
102	174Yb, 178Hf	180Os, 180Os							
104	184Pt	180Os, 180Os							
106	180Hf, 184W, 184Os, 193Po	180Hf, 184Hg, 184Hg							
108	190Hg, 190Hg								
110	196Pt, 194Hg, 196Po, 196Pt								
112	196Pt, 196Pt								
114	194Hg, 194Hg, 196Pb								
116	196Pb, 200Po, 200Po, 202Rn								
118	196Pb, 204Rn								
120	200Hg	200Pb							
122	208Pb, 210Po, 212Rn, 214Ra, 216Th	208Pb, 210Po, 212Rn, 214Ra, 216Th							
126	208Pb, 210Po, 212Rn, 214Ra, 216Th	208Pb, 210Po, 212Rn, 214Ra, 216Th							
130	214Po	214Po							
132	218Rn	218Rn							
134	220Rn	220Rn							
136	226Ra, 226Th, 228Th, 230U	226Ra, 226Th, 228Th, 230U							
138	232Th, 234U	234U, 236Pu							
140	240Cm	240Cm							
142	250Cf, 252Fm	252Fm							

[57] J. Heese, et al., Phys. Lett. B 302, p. 390 (1993).
[58] T. Bengtsson et al., Phys. Scr. 24, pp. 200-214 (1981).
[59] J. Fridmann, et al., Nature 435, pp. 922-924 (2005).
Z	δS_{p}	B-B_{LD}	E(2$^+_1$)	E(4$^+_1$)	E(6$^+_1$)	E(8$^+_1$)	E(10$^+_1$)	$< r^2 >$	B(E2)
6	12C		14C						
8	16O								
10	20Ne								
12	24Mg								
14	28Si, 32Si, 34Si	28Si	30Si, 34Si	32Si	36Si, 38Si	40Si, 42Si	44Si, 46Si	48Si, 50Si	52Si, 54Si
16	32S, 40S								
18	36Ar								
20	40Ca, 48Ca	42Ca	44Ca, 46Ca, 48Ca	50Ca	52Ca, 54Ca	56Ca	58Ca, 60Ca	62Ca	64Ca
22									
24									
28	56Ni, 62Ni, 64Ni, 66Ni, 68Ni	60Ni, 62Ni, 64Ni, 66Ni, 68Ni, 70Ni	62Ni, 64Ni, 66Ni, 68Ni	64Ni, 66Ni, 68Ni, 70Ni	66Ni, 68Ni, 70Ni	68Ni, 70Ni, 72Ni	72Ni, 74Ni	74Ni	
32	72Ge								
34									
36									
38	80Kr, 82Kr, 84Kr, 86Kr, 88Kr, 90Kr	82Kr	84Kr	86Kr	88Kr	90Kr	92Kr	94Kr	96Kr
40	90Zr, 92Zr, 94Zr, 96Zr, 98Zr	92Zr	94Zr	96Zr	98Zr	100Zr	102Zr	104Zr	
44	96Ru, 102Ru, 104Ru	102Ru	104Ru	106Ru	108Ru	110Ru	112Ru	114Ru	
46	106Pd, 108Pd								
48									
50	106Sn, 108Sn, 110Sn, 112Sn, 114Sn, 116Sn, 118Sn, 120Sn, 122Sn, 124Sn, 126Sn	106Sn	110Sn	114Sn	118Sn	122Sn	126Sn	130Sn	132Sn
52									
54	122Xe, 124Xe, 126Xe, 128Xe, 130Xe, 132Xe, 134Xe	122Xe	124Xe	126Xe	128Xe	130Xe	132Xe	134Xe	
56	144Ba								
58									
60	152Nd								
TABLE IV. Nuclides with identified signature proton shell closure features (Continued).

Z	δ_pS_{2p}	B-B_{LD}	E(2^+_1)	E(4^+_1)	E(6^+_1)	E(8^+_1)	E(10^+_1)	<r^2>	B(E2)
62	146Gd, 148Gd, 150Gd	146Gd, 150Gd	146Gd	146Gd	146Gd	146Gd	146Gd, 146Gd	146Gd, 146Gd	
66	162Dy, 164Dy	164Dy	164Dy	164Dy	164Dy				
68	156Er								
70	172Yb								
72	162Hf								
74	168W, 170W, 182W								
76	178Os, 180Os, 186Os, 188Os, 190Os								
80									
82	190Pb, 192Pb, 194Pb, 196Pb, 198Pb, 200Pb, 202Pb, 204Pb, 206Pb	190Pb, 192Pb, 194Pb, 196Pb, 198Pb, 200Pb, 202Pb, 204Pb, 206Pb	190Pb, 192Pb, 194Pb, 196Pb, 198Pb, 200Pb, 202Pb, 204Pb, 206Pb	190Pb, 192Pb, 194Pb, 196Pb, 198Pb, 200Pb, 202Pb, 204Pb, 206Pb	190Pb, 192Pb, 194Pb, 196Pb, 198Pb, 200Pb, 202Pb, 204Pb, 206Pb				
86	216Rn								
88	220Ra, 222Ra, 224Ra, 226Ra								
92	230U, 232U, 234U, 236U								
98	248Cf								
100	252Fm, 254Fm								

TABLE V. Nuclides in which experimental data shows no indication of a neutron shell feature.

N	δ_nS_{2n}	B-B_{LD}	E(2^+_1)	E(4^+_1)	E(6^+_1)	E(8^+_1)	E(10^+_1)	<r^2>	B(E2)
8	12Be, 14C	12Be, 14C	12Be, 14C	12Be, 14C	12Be, 14C	12Be, 14C	12Be, 14C	12Be, 14C	12Be, 14C
20	12Mg, 13Mg, 20Si, 20Si, 38Ar, 38Ar	40Ca, 40Ca, 40Ca, 50Cr, 50Cr, 50Cr							
28	54Fe	92Mo, 94Ru							
50	134Te, 136Xe								
126	212Rn	208Pb							
Z	δy, S2p	B-BLD	E(2⁺)	E(4⁺)	E(6⁺)	E(8⁺)	E(10⁺)	< r² >	B(E2)
---	--------	-------	-------	-------	-------	-------	-------	-------	-------
8	¹⁸⁰, S₂⁰								¹⁶⁰
20	⁴²Ca, ⁴⁴Ca, ⁴⁶Ca	⁴⁴Ca, ⁵⁰Ca, ⁴²Ca, ⁴⁴Ca	⁴²Ca						
28									⁶²Ni
50								¹⁰⁶Sn, ¹¹⁰Sn, ¹²⁴Sn, ¹²⁶Sn	
82						¹⁹⁴Pb	¹⁹⁴Pb, ¹⁹⁸Pb, ²⁰⁰Pb, ²⁰²Pb		