Heat pulse propagation in chaotic three-dimensional magnetic fields

Diego del-Castillo-Negrete1 and Daniel Blazevski2

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831-8071, USA
2 Institute for Mechanical Systems, ETH Zurich, 8092 Zurich, Switzerland

Received 23 September 2013, revised 13 December 2013
Accepted for publication 10 January 2014
Published 23 May 2014

Abstract

Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by solving numerically the parallel heat transport equation using a Lagrangian Green’s function (LG) method. The LG method provides an efficient and accurate technique that circumvents known limitations of finite elements and finite difference methods. The main two problems addressed are (i) the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ϵ), and (ii) the role of reversed shear magnetic field configurations on heat pulse propagation. In all the cases considered there are no magnetic flux surfaces. However, the radial transport of heat pulses is observed to depend strongly on ϵ due to the presence of high-order magnetic islands and Cantori. These structures act as quasi-transport barriers which can actually preclude the radial penetration of heat pulses within physically relevant time scales. The dependence of the magnetic field connection length, ℓ_B, on ϵ is studied in detail. Regions where ℓ_B is large, correlate with regions where the radial propagation of the heat pulse slows down or stops. The decay rate of the temperature maximum, $\langle T_{\text{max}}(t) \rangle$, the time delay of the temperature response as function of the radius, τ, and the radial heat flux $\langle q \cdot \hat{e}_\rho \rangle$, are also studied as functions of the magnetic field stochasticity and ℓ_B. In all cases it is observed that the scaling of $\langle T_{\text{max}} \rangle$ with t transitions from sub-diffusive, $\langle T_{\text{max}} \rangle \sim t^{-1/4}$, at short times ($\chi_\parallel t < 10^3$) to a significantly slower, almost flat scaling at longer times ($\chi_\parallel t > 10^3$). A strong dependence on ϵ is also observed on τ and $\langle q \cdot \hat{e}_\rho \rangle$. Even in the case when there are no flux surfaces nor magnetic field islands, reversed shear magnetic field configurations exhibit unique transport properties. The radial propagation of heat pulses in fully chaotic fields considerably slows down in the shear reversal region and, as a result, the delay time of the temperature response in reversed shear configurations is about an order of magnitude longer than the one observed in monotonic q-profiles. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.

Keywords: transport, chaotic magnetic fields, reversed shear configurations, Cantori, magnetic field connection length

(Some figures may appear in colour only in the online journal)

1. Introduction

The use of magnetic fields to confine high-temperature plasmas is considered the most promising mechanism for achieving controlled nuclear fusion. Ideally, magnetic field configurations should consist of nested flux surfaces. However, in practice, external coils or dynamical processes in the plasma can create magnetic perturbations that lead to chaotic magnetic fields and the eventual destruction of flux surfaces. In some cases these perturbations can be beneficial. For example, resonant magnetic perturbations are regularly used to control and suppress edge-localized modes (ELMs) [1]. The interplay between magnetic field chaos and transport is also critical in the control of heat fluxes at the divertor [2]. Because of this, it is of significant interest to understand at a quantitative level the effect of magnetic field stochasticity on heat transport. Our goal in this paper is to address this problem in the context of radial propagation of heat pulses in weakly chaotic and fully chaotic magnetic fields with monotonic and reversed shear configurations.

Heat transport in magnetized plasmas typically exhibits a strong anisotropy due to the disparity between the parallel (i.e. along the magnetic field) conductivity, χ_\parallel, and the perpendicular conductivity, χ_\perp. In particular, in fusion plasmas, the ratio, $\chi_\parallel/\chi_\perp$, might exceed 10^3. Motivated by the need to understand transport in this extreme anisotropic regime, we focus on the study of purely parallel transport, i.e. we assume $\chi_\perp = 0$.

It is well recognized that this extreme anisotropic regime presents highly nontrivial numerical challenges [3]. In particular, when the magnetic field is not aligned with the numerical mesh (which is the generic case, specially in the study of three-dimensional chaotic magnetic fields) discrete spatial representations of the parallel transport equation typically suffer from numerical pollution. Another issue is the development of non-physical negative temperatures from
positive definite initial conditions due to the accumulation of numerical errors. A related limitation faced by grid-based methods in the extreme anisotropy regime is the unavoidable eventual lack of spatial resolution due to filamentation. This is a particularly pervasive issue in the case of chaotic magnetic fields in which, by definition, nearby points in the temperature initial condition field separate exponentially due to parallel transport at the rate dictated by the corresponding Lyapunov exponent.

To circumvent these problems, [3, 4] proposed a Lagrangian Green’s function (LG) method as an alternative to the widely used, but limited, Eulerian grid-based approaches for the solution of the anisotropic heat transport equation. The numerical study presented here is based on this method. The LG method, which will be briefly reviewed in section 2, is particularly well suited to the problem of transport in highly chaotic three-dimensional magnetic fields which play a central role in the present study. In particular, the LG method provides an accurate and efficient algorithm that, by construction, preserves the positivity of the temperature evolution, avoids completely the pollution issues encountered in grid-based methods, and can cope with the temperature filamentation at any scale. Another advantage of the LG method is the relative ease with which different parallel heat flux closure models can be incorporated. In the strong collisional limit, parallel transport is diffusive and the heat flux closure is the well-known Fourier-type prescription according to which the flux depends on the local properties of the temperature gradient. However, in the case of low collisionality plasmas, the closure is non-local and the parallel transport equation involves an inteuro-differential operator which is expensive to evaluate using Eulerian methods. In the LG method the difference between local and non-local closures only reflects in the specific functional form of the Green’s function. Because of this (except for convergence issues related to the specific asymptotic behaviour of the Green’s function) in the LG method the computation of the temperature evolution is algorithmically the same for any type of closure for which the Green’s function is known analytically or numerically.

The main goal of this paper is to study the role of magnetic field stochasticity on the radial propagation of localized heat pulses. We limit attention to parallel transport and compute the temperature evolution using the LG method assuming a diffusive, local parallel flux closure. In addition to the level of stochasticity, we study the dependence of the radial propagation of heat pulses on the q-profile. Of particular interest is to compare transport in monotonic q-profiles with transport of reversed shear configurations in which the q-profiles are non-monotonic. Reversed shear configurations are interesting from a practical perspective because they typically exhibit very robust transport barriers in toroidal plasma confinement devices [5, 6]. At a more fundamental level, the study of transport and magnetic field stochasticity in reversed shear configurations is interesting because the destruction of magnetic flux surfaces in the regions where the magnetic shear vanishes is fundamentally different from what happens in regions where the magnetic shear is finite. This result, which goes beyond plasma physics application, was originally discussed in the general context of Hamiltonian chaos theory and fluid mechanics in [7, 8] where the resilience of shearless Kolmogorov–Arnold–Moser (KAM) curves was numerically found and the transition to chaos was shown to belong to a new universality class. Previous application of this generic Hamiltonian dynamics result to magnetically confined plasmas includes the early works in [9–11], and the later studies reported in [12, 13]. More recently, in [14] a study, also based on the LG method, was presented addressing the role of separatrix reconnection and the resilience of shearless barriers (two key signatures of reversed shear magnetic field configurations) on heat transport. The study presented here focuses on following the spatio-temporal evolution of localized heat pulses introduced in the edge of the computational domain. In this sense, the setting of the numerical simulations resembles the rationale adopted in experimental perturbative transport studies where the evolution of the plasma temperature response to edge-localized pulses is measured. For example, in [15], the changes in the radial propagation speed of heat pulses were used as a diagnostic to characterize the level of the magnetic field stochasticity in the Large Helical Device (LHD) experiment. Going beyond previous works, here we present the first study of the detailed dependence of the radial propagation of heat pulses on the level of stochasticity and on the q-profile based on the direct numerical solution of the time-dependent parallel heat transport equation in three-dimensional magnetic fields.

The rest of this article is organized as follows. The next section contains a brief review of the LG method. Section 3 presents the magnetic field models used in the solution of the parallel heat transport equation. The core of the numerical results on heat pulse propagation in monotonic q-profile and reversed shear chaotic fields are presented in section 4. Section 5 contains the conclusions.

2. LG method

In this section we review the method to solve the parallel heat transport equation developed in [3, 4]. The starting point is the heat transport equation,

\[\partial_s T = -\nabla \cdot q + S, \]

(1)

where S is a source, and q is the heat flux consisting of a parallel (along the magnetic field) and a perpendicular component, \(q = q_\parallel \hat{b} + q_\perp \), where \(\hat{b} = B/|B| \) is the unit magnetic field vector. We will limit attention to parallel heat transport in the extreme anisotropic regime, i.e. we will assume \(q_\perp = 0 \). This assumption is motivated by the strong anisotropy typically encountered in magnetized fusion plasmas in which the ratio \(\chi_\perp/\chi_\parallel \) can be of the order of \(10^{10} \), where \(\chi_\parallel \) and \(\chi_\perp \) denote the parallel and perpendicular conductivities. Writing the parallel heat flux as

\[q_\parallel = \chi_\parallel (Q[T]), \]

(2)

where \(Q \) denotes a general differential or integro-differential, possibly non-linear, operator, equation (1) becomes

\[\partial_s T + \chi_\parallel (\nabla \cdot \hat{b}) Q = -\chi_\parallel \partial_s Q + S, \]

(3)

where \(\nabla \cdot \hat{b} = -\nabla (\nabla \cdot B)/B, \chi_\parallel = \hat{b} \cdot \nabla \) denotes the directional derivative along the magnetic field line with s the arc-length.
The operator $\partial_t T = -\chi_1 \partial_\perp T + S$. \hspace{1cm} (4)

This toroidal ordering approximation is commonly used in the study of magnetically confined plasmas in the presence of a strong guiding field. In particular, it is a good approximation in cylindrical geometry with $B = B_0 + \epsilon B_1$, where B_0 is a helical field, for which $\partial_\perp B_0 = 0$, and the perturbation satisfies, $\epsilon B_1 \ll B_0$, which is the case of interest in the present paper.

For high collisionality plasmas, parallel transport is typically dominated by diffusion and a Fourier–Fick’s type local flux-gradient relation of the form

$$Q[T] = -\partial_t T$$ \hspace{1cm} (5)

is assumed. Substituting equation (5) into equation (4), leads to the standard parallel diffusion equation,

$$\partial_t T = \chi_1 \partial_\perp^2 T + S,$$ \hspace{1cm} (6)

for collisional transport along magnetic field lines. On the other hand, in the case of low-collisionality plasmas, the parallel flux closure is in general non-local \cite{16}. That is, the heat flux at a point depends on the temperature distribution along the whole magnetic field line. An example is the non-local closure

$$Q[T] = -\frac{\lambda_\perp}{\pi} \int_0^\infty T(s + z) - T(s - z) \, dz,$$ \hspace{1cm} (7)

where $\lambda_\perp = -\pi (\alpha - 1)/(2\Gamma(2 - \alpha) \cos(\pi\alpha/2))$, and $1 \leq \alpha < 2$. For $\alpha = 1$, $\lambda = 1$, equation (7) reduces to the free streaming closure \cite{16}. In the more general case, $1 \leq \alpha < 2$, equation (7) describes super-diffusive transport along the magnetic field lines governed by the parallel fractional diffusion equation

$$\partial_t T = \chi_1 \partial_\perp^\alpha T,$$ \hspace{1cm} (8)

resulting from substituting equation (7) into equation (4) \cite{17}. The operator ∂_\perp^α denotes the symmetric fractional derivative of order α defined in Fourier space by the relation

$$\mathcal{F}[\partial_\perp^\alpha T] = -|k|^\alpha \hat{T},$$ \hspace{1cm} (9)

where $\mathcal{F}[T] = \hat{T}(k) = \int_{-\infty}^{\infty} e^{ikx} T(x) \, dx$ denotes the Fourier transform.

The basic idea behind the LG method for the solution of the anisotropic heat transport equation for a time-independent magnetic field in the limit $q_\perp = 0$ is illustrated in figure 1. Given an initial temperature distribution $T_0(r) = T(r, t = 0)$, and a source $S(r, t)$, the temperature at a given point in space r_0, at time t, is obtained by summing all the contributions of the initial condition and the source along the magnetic field line path $r = r(s)$. That is,

$$T(r_0, t) = \int_{-\infty}^\infty T_0(r(s')) \mathcal{G}_\perp(s', t) \, ds' + \int_0^t \, ds' \int_{-\infty}^\infty d'r S[r(s'), t'] \mathcal{G}_\perp(s', t - t'),$$ \hspace{1cm} (10)

where

$$\mathcal{G}_\perp(s, t) = \frac{1}{\sqrt{2\pi} (\chi(t)^{-1/2} \exp \left(-\frac{s^2}{4\chi(t)} \right).$$ \hspace{1cm} (12)

For general α, \mathcal{G}_\perp is given by the Green’s function of the fractional diffusion equation (8),

$$\mathcal{G}_\perp(s, t) = \frac{1}{(\chi(t)^{1/2} L_\alpha \left[\frac{s}{\chi(t)^{1/2}} \right].$$ \hspace{1cm} (13)

where

$$L_\alpha(\eta) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-|k|^\alpha - i\eta k} \, dk$$ \hspace{1cm} (14)

is the symmetric α-stable Levy distribution. The case $\alpha = 1$, which corresponds to the commonly used non-local free streaming closure, has the analytically simple expression

$$\mathcal{G}_\perp(s, t) = \frac{(\chi(t)^{-1}}{\pi} \frac{1}{1 + (s/\chi(t)^2)}.$$ \hspace{1cm} (15)

More details on fractional diffusion and its applications to non-diffusive transport in plasmas can be found in \cite{17, 18} and
references therein. Throughout the present paper we will limit attention to the case of local parallel diffusive closures.

The implementation of the LG method requires three elements: an ODE integrator for solving the field line trajectories in equation (11), an interpolation procedure of the function \(T_0(r) \) on the field line and a numerical quadrature to evaluate the Green’s function integrals in equation (10). These elements are relatively straightforward to implement numerically, making the LG algorithm a versatile, efficient and accurate method for the computation of heat transport in magnetized plasmas. By construction, the LG method preserves the positivity of the temperature evolution, and avoids completely the pollution issues encountered in finite difference and finite elements algorithms. Also, because of the parallel nature of the Lagrangian calculation, the formulation naturally leads to a massively parallel implementation. In particular, the computation of \(T \) at \(r_0 \) at time \(t \) does not require the computation of \(T \) in the neighbourhood of \(r_0 \) or the computation of \(T \) at previous times, as is the case in finite different methods. Further details on the method and the numerical implementation can be found in [3, 4].

In this brief summary we have limited attention to purely parallel transport. However, in the recent paper in [19], the LG method has been extended to include finite perpendicular transport, i.e. \(\chi_L \neq 0 \). The key idea behind this extension is to formally include the perpendicular transport channel as part of an effective ‘source’, \(S' = S + \chi_L \nabla_\perp^2 T \), in equation (10), and use the formal LG solution in equation (10) to transform the heat transport equation into an integro-differential equation. The numerical solution of the integro-differential equation is based on an asymptotic-preserving semi-Lagrangian operator-splitting algorithm consisting of two steps. The first step is the Eulerian solution of the perpendicular transport equation, and the second step is the solution of the parallel transport equation with a source using the LG method.

3. Magnetic field models

We assume a periodic straight cylindrical domain with period \(L = 2\pi R \), and use cylindrical coordinates \((r, \theta, z)\). The magnetic field is given by

\[
B(r, \theta, z) = B_0(r) + B_1(r, \theta, z),
\]

where \(B_0(r) \) is a helical field of the form,

\[
B_0 = B_0 \hat{e}_\theta + B_1 \hat{e}_z,
\]

with \(B_1 \) constant, \(B_0 = B_0(r) \), and \(B_1(r, \theta, z) \) is a perturbation. In all the calculations we assume \(K = S \) and \(B_1 = 1 \). The shear of the helical magnetic field, i.e. the dependence of the azimuthal rotation of the field as function of the radius, is determined by the \(q \)-profile, \(q(r) = r B_1^2 / (R B_0) \).

We consider two cases: magnetic field configurations with monotonic \(q \)-profiles, and reversed shear magnetic fields in which the derivative of the \(q \)-profile vanishes at a finite radius. In both cases it is assumed that the perturbation, \(B_1 \), has no \(z \)-component and is given by

\[
B_1 = \nabla \times [A_1(r, \theta, z) \hat{e}_z],
\]

where the magnetic potential consists of the superposition of normal modes of the form

\[
A_\epsilon = \sum_{m,n} A_{mn}(r) \cos (m\theta - nz/R + \xi_{mn}),
\]

where \(\xi_{mn} \) are constant phases.

3.1. Monotonic \(q \)-profile

In the monotonic \(q \)-profile case we assume

\[
B_0(r) = \frac{B(r/\lambda)}{1 + (r/\lambda)^2},
\]

which implies

\[
q(r) = q_0 \left(1 - \frac{r^2}{\lambda^2} \right).
\]

In terms of the flux variable,

\[
\psi = \frac{r^2}{2R^2},
\]

\(q \) is a linear function of \(\psi \). The mode amplitude functions are given by

\[
A_{mn}(r) = \epsilon a(r) \left(\frac{r}{r_o} \right)^m \exp \left[\frac{(r - r_0)^2}{\sigma} - \frac{(r - r_0)^2}{2\sigma} \right],
\]

with

\[
r_s = \lambda \sqrt{\frac{m}{n}} \frac{BR}{B_0 \lambda} - 1, \quad r_0 = r_s - \frac{m\sigma^2}{r_s}.
\]

By construction, \(r = r_s \) corresponds to the location of the \((m, n)\) resonance, i.e. \(q(r = r_s) = r_s B_1^2 / (R B_0(r_s)) = m/n \).

The value of \(r_0 \) is chosen to guarantee that at the resonance, the perturbation reaches a maximum, \(dA_{mn}/dr (r = r_0) = 0 \), given by \(A_{mn}(r_s) = \epsilon \).

The prefactor \((r/r_s)^m\) is included to guarantee the regularity of the radial eigenfunction near the origin, \(r \sim 0 \) for the given \(m \). The function,

\[
a(r) = \frac{1}{2} \left[1 - \tanh \left(\frac{r - 1}{\ell} \right) \right],
\]

is introduced to guarantee the vanishing of the perturbation for \(r = 1 \). In all calculations \(\epsilon \sim \mathcal{O}(10^{-4}) \), which, consistent with the tokamak ordering approximation, implies that the variation of the field amplitude along the field line is of the order of \(|\partial \mathbf{B} / |\mathbf{B}| \sim 10^{-3} \).

3.2. Reversed shear configuration

To study the role of magnetic field chaos on heat transport in reversed shear configurations, we use the magnetic field model in [14]. In this case, the \(q \)-profile is given by

\[
q(r) = q_0 \left[1 + \lambda^2 \left(r - \frac{1}{\sqrt{2}} \right)^2 \right],
\]

which is non-monotonic in \(r \) with a minimum at \(r = r_{cl} = \frac{1}{\sqrt{2}} \).

This implies a reversal of the magnetic field shear, \(q' \) which
is negative for \(r < r_{sl} \), positive for \(r > r_{sl} \), and vanishes at the shearless point \(r = r_{sl} \). The perturbation has the same structure as in the monotonic \(q \)-profile case. That is, like in equation (18), \(B_1 \) has no \(z \)-component, and it is determined in terms of the magnetic potential according to equations (19).

For each \((m, n)\) the function \(A_{mn}(\psi) \) is peaked at the resonance(s), \(r^* \), defined by the condition \(q(r^*) = m/n \). Due to the non-monotonicity of the \(q \)-profile, it is possible to have two, one or no resonances depending on the value of \(m/n \). In the case when there are two resonances for a given \((m, n)\), we take

\[
A_{mn}(r) = \epsilon a(r) \left[A_{mn,1} + A_{mn,2} \right],
\]

where

\[
A_{mn,i} = C_{mn,i} r^m \exp \left[-\frac{\left(r - r_{sl} \right)}{\sqrt{2} \sigma} \right],
\]

for \(i = 1, 2 \). For the function \(a(r) \), defined in equation (25), we choose \(\ell = 0.05 \). The constants,

\[
r_{sl} = r_{ls} - m \sigma^2, \\
C_{mn,i} = \left(\frac{1}{r_{sl}} \right)^m \exp \left[\frac{r_{sl} - r_{0l}}{\sqrt{2} \sigma} \right],
\]

for \(i = 1, 2 \), are chosen so that \(A_{mn,1} \) has a maximum with unit amplitude at the location of the resonance, \(r = r_{ls} \). In the case when there is only one resonance for a given \((m, n)\), we take

\[
A_{mn}(r) = \epsilon a(r) A_{mn,1},
\]

where \(A_{mn,1} \) is given in equation (28) with \(i = 1 \). Finally, in the case when there are no resonances for \((m, n)\), \(A_{mn} = 0 \).

4. Heat pulse propagation in monotonic \(q \) and reversed shear chaotic magnetic fields

In this section we present the numerical results on the propagation of heat pulses in the magnetic field configurations discussed in the previous section. In all the calculations the initial condition for the temperature, \(T_0(\psi) \), consisted of a narrow heat pulse localized near the edge of the domain \(R^2 \psi \in (0, 0.5) \),

\[
T_0(\psi) = \exp \left[-\frac{R^2(\psi - \psi_0)^2}{\sigma_p^2} \right],
\]

with \(R^2 \psi_0 = 0.325 \) and \(\sigma_p = 0.008 \). The temperature field was computed at different times on a three-dimensional grid consisting of 50 points in \(R^2 \psi \in (0, 0.5) \), 45 points in \(\theta \in (0, 2\pi) \) and 2 points in the \(z \in (0, 2\pi R) \) with \(R = 5 \). The computation at each grid point was performed by solving the parallel heat transport equation along the field line going through the point using the LG method discussed in section 2. The numerical code used in the computations was originally developed in [3, 4]. The main object of study is the dependence on \(\psi \) and \(t \) of the temperature field averaged on \(\theta \) and \(z \), denoted as \(\langle T(\psi, t) \rangle \). Throughout the present paper we limit attention to the case of parallel diffusive closure in equation (5). Independently of the strength or type of perturbation, we will refer to the cases when the unperturbed axisymmetric system has a \(q \)-profile of the form in equation (21) as ‘Monotonic’ and when the \(q \)-profile is of the form in equation (26) as ‘Reversed Shear’. 4.1. Weakly chaotic fields in monotonic \(q \)-profile

To study the role of weak magnetic field stochasticity on transport, we considered an equilibrium with monotonic \(q \)-profile in equation (21), perturbed by four overlapping modes with

\[
(m, n) = \{(11, 6), (5, 2), (9, 2), (4, 1)\},
\]

and performed numerical simulations with increasing values of \(\epsilon \), namely \(\epsilon = 1.5 \times 10^{-4}, \epsilon = 2.0 \times 10^{-4}, \epsilon = 2.5 \times 10^{-4} \) and \(\epsilon = 3.0 \times 10^{-4} \). In all these calculations, \(B_s = 1, B = 0.09, R = 5 \) and \(\lambda = 0.57 \), and \(q_0 = 1.23 \). The set of modes in equation (32) was selected so that the magnetic field exhibits weak stochasticity for the chosen values of \(\epsilon \). This perturbation is interesting due to the absence of magnetic flux surfaces, and the presence of high-order resonances in the middle of the domain which, as we will study below, has a non-trivial effect on heat transport. Figures 2–5 show the corresponding Poincaré plots, indicating the spatial location of the resonances, obtained from the numerical integration of a single magnetic field initial condition for a large number of crossings. Note that in the Poincaré plots, as well as in all the subsequent plots, we use \(\psi \) defined in equation (22), as the radial coordinate. It is observed that in all cases there are no flux surfaces, i.e. there are no barriers to radial transport in the interval \(\psi \in (0.075, 0.45) \). However, there are a significant number of high-order islands. We refer to this regime as ‘weakly chaotic’ to distinguish it from the fully chaotic regime in which there are no islands. As expected, increasing \(\epsilon \) leads to the growth of the chaotic region and the shrinking of the stability islands. The Poincaré plots in figures 2–5 are colour coded by the magnetic field connection length, \(\ell_B \), which will be discussed below.

Figure 6 shows the spatio-temporal evolution of \(\langle T(\psi) \rangle \). As the Poincaré sections in figures 2–5 show, the level of stochasticity of the magnetic field varies with \(\epsilon \), and this reflects on the radial propagation and penetration of the heat pulse. In all cases the propagation of the pulse in the edge region, \(R^2 \psi = 0.325, 0.5 \), exhibits a similar behaviour. This is consistent with the Poincaré plots that show a similar level of stochasticity in that region for the four values of \(\epsilon \) considered. However, the inward propagation of the pulse shows a strong dependence on \(\epsilon \). For the smallest value, \(\epsilon = 1.5 \times 10^{-4} \), figure 6(a) shows that the pulse practically does not penetrate beyond \(R^2 \psi \sim 0.275 \). This is again consistent with the Poincaré plot in figure 2 that shows a significant number of stability islands located near \(R^2 \psi \sim 0.25 \). On the hand, the reduction of the integrability regions with increasing \(\epsilon \) shown in the Poincaré plots explains the increase of the penetration depth of the heat pulse as well as the increase of \(\langle T(\psi) \rangle \) near the core for large values of \(\epsilon \).

To gain further understanding on the role of magnetic field stochasticity on heat transport, we compare the connection length of the magnetic field with the radial penetration of the heat pulse. Given a region, \(R \), in the \((\psi, \theta) \) plane and a point, \(P_t \), in the Poincaré section, the connection length, \(\ell_B \), is determined by the number of iterations to go from \(P_t \) to \(R \) and from \(R \) to \(P_t \). More precisely, given a point \((\psi_0, \theta_0) \) in the Poincaré section \(\{(\psi_0, \theta_0), (\psi_1, \theta_1), \ldots, (\psi_N, \theta_N)\} \) (where \((\psi_k, \theta_k) \) for \(k = 1, \ldots, N \) denotes the \(k \)th crossing starting from the initial condition \((\psi_0, \theta_0) \)) we search for the smallest
where $\psi \in (\psi_1, \psi_2)$ is the region where the heat pulse is initially concentrated. According to equation (31), the initial condition is a Gaussian distribution centred at $R\psi_0 = 0.25$ with $\sigma_p = 0.008$. Based on this, we set $R\psi_1 = 0.314$ and $R\psi_2 = 0.336$ which defines an interval of width $R\psi_2 - R\psi_1 \sim 3\sigma$ centred at $R\psi_0 = 0.25$.

The top panels of figures 2–5 show the connection lengths of the weakly chaotic magnetic field with monotonic q-profile. For each value of ϵ, the plots were generated by colour-coding (using the value of ℓ_B) each point of the corresponding Poincaré section generated from a single initial condition. The black rectangular strip corresponds to the region \mathcal{R} and therefore, by definition, $\ell_B = 0$ there. It is observed that the distribution and values of the connection length in the ‘edge’ region, $R^2\psi \in (0.336, 0.45)$, is more or less similar for all the values of ϵ. However, a very strong dependence of ℓ_B on ϵ is observed elsewhere in the ‘core’ region, $R^2\psi \in (0.05, 0.225)$. This is consistent with the existence of stability islands generated by the higher order resonances of the chaotic fields for small values of ϵ. The high-order resonances around $R^2\psi \sim 0.275$, along with the potential existence of Cantori [20, 21] there, play a critical role. In fact, as shown in figure 7, in the ‘intermediate’

Figure 2. Magnetic field connection length and heat pulse propagation in a weakly chaotic magnetic field with monotonic q-profile. Top panel shows a Poincaré plot of the magnetic field with monotonic q-profile in equations (21) perturbed by the four modes in equation (32) with amplitude $\epsilon = 1.5 \times 10^{-4}$. The vertical arrows indicate the radial locations of the resonances. The points are colour coded by the value of magnetic field connection length, ℓ_B, defined in equation (33). $\ell_B < 5$ (cyan); $5 < \ell_B < 10$ (yellow); $10 < \ell_B < 10^2$ (magenta); $10^2 < \ell_B < 10^3$ (blue); $10^3 < \ell_B < 10^4$ (green); $10^4 < \ell_B$ (red). $\ell_B = 0$ (black) corresponds to the region where the pulse is introduced. The contour plot at the bottom panel shows the spatio-temporal evolution of the heat pulse. The contours correspond to (from red to blue) $T_0 = (0.5, 0.25, 0.10, 0.075, 0.05, 0.025, 10^{-2}, 10^{-3}, 10^{-4})$.

Figure 3. Same as figure 2 but for $\epsilon = 2 \times 10^{-4}$.
Figure 4. Same as figure 2 but for $\epsilon = 2.5 \times 10^{-4}$.

Figure 5. Same as figure 2 but for $\epsilon = 3 \times 10^{-4}$.

region $R^2\psi \in (0.225, 0.314)$ the averaged in θ connection length, $\langle \ell_B \rangle$, exhibits its sharpest gradient. This figure also indicates that $\langle \ell_B \rangle$ is approximately constant in the 'core' region $R^2\psi \in (0.05, 0.225)$. The key issue is the close to exponential growth of the average connection length in the core region, $\langle \ell_B \rangle = \{285, 594, 3387, 52513\}$, resulting from the moderate decrease of the magnetic field perturbation, $\epsilon = \{3.0 \times 10^{-4}, 2.5 \times 10^{-4}, 2.0 \times 10^{-4}, 1.5 \times 10^{-4}\}$.

There is a close relationship between the magnetic field connection length, $\langle \ell_B \rangle$, and the transport properties of localized heat pulses in the LG method. In particular, as discussed in section 2, according to equation (10) the value of T at a time t at r_0 is obtained by summing the contributions of the initial condition T_0 along the corresponding magnetic field line path $r = r(s)$ with $r(s = 0) = r_0$. In the case of a localized pulse initial condition, the magnetic field line going though r_0 will in general pierce the region R in equation (34) one or several times, and each intersection will add a contribution to the temperature at r_0. Due to the rapid decay of the diffusive Green’s function in equation (12) the largest contribution to the temperature will come from the closest intersection with R, and the strength of the contribution will depend on the distance along the field line between r_0 and R, which is directly related to the magnetic field connection length as defined in equation (33). From this it follows that the temperature response at a point r_0 is a monotonically increasing function of the magnetic field connection length at r_0.

The relationship between $\langle \ell_B \rangle$ and the temperature response provides valuable insights in the understanding of the dependence of the radial penetration depth of heat pulses on the level of stochasticity of the magnetic field. In particular, as figure 2 shows, for $\epsilon = 1.5 \times 10^{-4}$ the level of stochasticity is relatively small and as a result the connection length in the core region is quite large, $\ell_B \sim 5 \times 10^4$. This explains why, as shown in the bottom panel of figure 2, the heat pulse evolves as if there is a transport barrier around $R^2\psi \sim 0.25$ at it does not penetrate to the core. The contour plots shown for successively increasing values of ϵ in figures 3–5, show how an increase of ϵ leads to a decrease of ℓ_B and a larger radial penetration of the heat pulse.

A commonly used set of diagnostics in the study of perturbative transport are the temperature traces as functions of time at different radial locations. Of particular interest is the delay time, τ, of the temperature response. For a given temperature threshold, T_*, the delay time τ at a radial
Figure 6. Dependence of heat pulse propagation on magnetic field stochasticity. The magnetic field has the monotonic q-profile in equations (21), and the perturbation in equation (23) includes the four modes in equation (32). The four panels show the results for different values of perturbation amplitude ϵ. The initial condition corresponds to the temperature distribution in equation (31).

Figure 7. Magnetic field connection length averaged on θ, $\langle \ell_B \rangle$, as a function of ψ for different levels of magnetic field stochasticity, and different q-profile configurations. The results labelled as $\epsilon = 1.5 \times 10^{-4}$, 2.0×10^{-4}, 2.5×10^{-4} and 3.0×10^{-4} correspond to the weakly chaotic, monotonic q runs in figures 2, 3, 4 and 5 respectively. The result labelled 'Monotonic' corresponds to the fully chaotic, monotonic q case in figure 11. The two reversed shear cases, 'Reversed 1' and 'Reversed 2', correspond to the fully chaotic, reversed shear cases in figures 17 and 19 respectively. The interval $\psi \in (0.31, 0.34)$ denotes the region where the heat pulse is introduced.

location ψ is defined by the condition $\langle T \rangle (\psi, \tau) = T_\ast$. Figure 8 shows τ for a threshold $T_\ast = 10^{-2}$ as function of ψ for all the magnetic field configurations considered. In the weakly chaotic cases, τ decreases when ϵ increases, and for $\epsilon = 1.5 \times 10^{-4}$ and $\epsilon = 2.0 \times 10^{-4}$ there is no response for $R^2 \psi < 0.225$ consistent with the fact that as shown in figures 2 and 3 in these cases the $T = T_\ast$ contours do not penetrate the core. The strongest gradient in the delay time occurs around $R^2 \psi \sim 0.25$, the same region where the connection length changes most rapidly and where the radial penetration of the pulse slows down.

The dependence of the radial heat flux, $\langle q \cdot \hat{e}_\psi \rangle$, on the level of magnetic field stochasticity is also interesting. From the continuity equation, it follows that

$$\langle q \cdot \hat{e}_\psi \rangle = -\frac{1}{R^2} \frac{d}{d\psi} \int_0^\psi \langle T \rangle d\psi'.$$ \hspace{1cm} (35)

Figure 9 shows the fluxes as function of τ for $R^2 \psi = 0.1$ and $R^2 \psi = 0.2$ computed directly from equation (35). To ease the comparison, the flux values have been normalized in each case by the maximum of the absolute value of the flux. In all cases, the flux exhibits a single minimum at a time that increases with the decrease of the level of stochasticity. The values of the absolute value of the flux at $R^2 \psi = 0.2$ show a strong dependence on ϵ in the weakly chaotic cases. In particular the corresponding values of ϵ, and q_{max} there, are $(\epsilon, q_{\text{max}}) = (1.5 \times 10^{-4}, 1.3 \times 10^{-10}), (2.0 \times 10^{-4}, 4.0 \times 10^{-13}), (2.5 \times 10^{-4}, 1.4 \times 10^{-13})$ and $(3 \times 10^{-4}, 2.4 \times 10^{-9})$.

4.2. Strongly chaotic field in monotonic q-profile

To study the propagation of heat pulses in strongly chaotic fields, we consider the monotonic q-profile equilibrium in equation (21) perturbed by 20 overlapping modes with

$$(m, n) = \{(4, 3), (7, 5), (3, 2), (5, 3), (7, 4), (11, 6), (2, 1), (9, 4), (7, 3), (5, 2), (14, 5), (3, 1), (19, 6), (10, 3), (7, 2), (11, 3), (4, 1), (13, 3), (9, 2), (14, 3), (24, 5)\}.$$ \hspace{1cm} (36)

The location of the resonances created by these modes is shown in figure 10. As observed in the figure, the chosen values of (m, n) give rise to an approximately uniform distribution of resonances in the radial-ψ domain. To decorrelate the modes, the phases of the perturbations, ζ_{mn}, in equation (19) were chosen from a random distribution on the interval $[0, 2\pi]$. In this case the perturbation amplitude is $\epsilon = 10^{-4}$, and the width of the perturbation function in equation (23) is $\sigma = 0.5$.

Figure 11 shows the Poincaré plots obtained from the numerical integration of a single magnetic field initial condition for a large number of crossings. As expected, no flux surfaces or magnetic islands are observed in the fully chaotic Poincaré section. Like in the previously discussed weakly chaotic cases, the plot is colour coded by the magnetic field connection length, L_α. As shown in figure 7, the averaged connection length is significantly smaller than the averaged connection length in the weakly chaotic cases, and this reflects in the significantly faster and deeper radial penetration of the heat pulse as observed in the bottom panel of figure 11.

In [3, 4] it was shown that, in the case of fully stochastic magnetic fields with monotonic q-profiles, the spatio-temporal evolution of a localized temperature pulse follows the self-similar scaling

$$\langle T(\psi, t) \rangle = (\chi_t(t))^{-\gamma/2} L_\alpha(\eta),$$ \hspace{1cm} (37)

where the similarity variable is defined as

$$\eta = (\psi - \bar{\psi}) / (\chi_t(t))^{\gamma/2},$$ \hspace{1cm} (38)

γ is the scaling exponent, and L_α is the scaling function. From equation (37) it follows that the time evolution of the maximum of the temperature profile, T_{max}, and the temperature variance, σ_T^2, are

$$T_{\text{max}} = \langle T(0, t) \rangle,$$ \hspace{1cm} \sigma_T^2 = \langle (\psi - \bar{\psi})^2(t) \rangle,$$ \hspace{1cm} (39)

where $\bar{\psi} = \int f(T) d\psi$, scale as $T_{\text{max}} \sim t^{-\gamma/2}$, and $\sigma_T^2 \sim t^\gamma$.

Figure 8. Time delay of temperature response at different ψ locations. The results labelled as $\epsilon = 1.5 \times 10^{-4}$, 2.0×10^{-4}, 2.5×10^{-4} and 3.0×10^{-4} correspond to the weakly chaotic, monotonic q runs in figures 2, 3, 4 and 5 respectively. The result labelled ‘Monotonic’ corresponds to the fully chaotic, monotonic q case in figure 11. The two reversed shear cases, ‘Reversed 1’ and ‘Reversed 2’, correspond to the fully chaotic, reversed shear cases in figures 17 and 19 respectively. The two smooth solid line curves in the lower part of the plot correspond, from top to bottom, to the sub-diffusive and diffusive delay according to the self-similar model in equation (37).

Figure 9. Normalized heat flux in equation (35) at a fixed ψ, as a function of time. The top panel corresponds to $R^2 \psi = 0.2$ and the bottom panel to $R^2 \psi = 0.1$. For visualization purposes, in each case the negative of the flux, $-Q$, has been plotted, after being normalized by its maximum absolute value, q_{max}. The results labelled as $\epsilon = 1.5 \times 10^{-4}$, 2.0×10^{-4}, 2.5×10^{-4} and 3.0×10^{-4} correspond to the weakly chaotic, monotonic q runs in figures 2, 3, 4 and 5 respectively. The result labelled ‘Monotonic’ corresponds to the fully chaotic, monotonic q case in figure 11. The two reversed shear cases, ‘Reversed 1’ and ‘Reversed 2’, correspond to the fully chaotic, reversed shear cases in figures 17 and 19 respectively.
The value of the scaling exponent γ, and the form of the scaling function, L_α, depend on the physics of the parallel heat flux closure. In the case of parallel diffusive closure in equation (5), which is the one of interest in the present paper, $\alpha = 2$, the scaling function is a stretched exponential of the form

$$L_2(\eta) = A e^{-(\eta/\mu)^\nu},$$

and the scaling exponent $\gamma = 1/2$ [4]. This implies that the heat pulse exhibits the sub-diffusive scaling

$$T_{\text{max}} \sim t^{-1/4}, \quad \sigma_t^2 \sim t^{1/2},$$

i.e. the spreading of the heat pulse is slower than the one expected from a diffusive transport process.

Figure 12 compares the spatio-temporal evolution of the self-similar model in equation (37) in the case of sub-diffusive and diffusive scaling. In the sub-diffusive case, shown in panel (a), $\gamma = 1/2$ and the scaling function is the stretched exponential in equation (40) with $\nu \approx 1.6$ and $\mu \approx 0.0095$. In the diffusive case, shown in panel (b), $\gamma = 1$ and the scaling function is a Gaussian, $L_2 = A \exp(-\eta^2/\mu)$, with $\mu = 0.008$. As expected, the transport of the pulse in the diffusive case is significantly faster. Note that the isocontours shown are for the same values of those in figures 2–5 indicating good order of magnitude agreement between the sub-diffusive self-similar model and the numerical result in the case of fully chaotic fields with monotonic q-profiles. As figure 13 shows, the sub-diffusive scaling of the self-similar model in equation (41) agrees well with the scaling of the decay of the temperature maximum observed at short times in all the numerical simulations including the weakly chaotic, and the strongly chaotic cases. The transition to the significantly slower decay, $\langle T \rangle \sim t^{-1/10}$, at longer times after $\chi(t) > 10^5$ is due to the boundaries and, in the case of weakly chaotic fields, also due to the high-order magnetic islands.

Figure 8 also shows the delay according to the self-similar model in equation (37). It is observed that in all cases the delay is longer than the sub-diffusive delay and approaches this value as the magnetic field stochasticity increases. In particular, the delay in the fully chaotic monotonic q case is relatively close to the sub-diffusive delay of the self-similar model. For reference, the figure also shows the diffusive delay which, as expected, is considerably shorter than the delay found in all the cases studied. Note that, the delay at the core shown in figure 8 takes place in the $\langle T \rangle = t^{-1/16}$ time scale whereas the delay closer to the edge takes place in the $\langle T \rangle = t^{-1/4}$ time scale. The evolution of the normalized negative flux, $-\langle Q \rangle$, is shown in figure 9. It is observed that, although the
the maximum value of the flux, reaches its maximum value depends strongly on chaotic and in the weakly chaotic cases, the time when the flux self-similar model in equation (37). \(q \\text{'Monotonic'} \) corresponds to the fully chaotic, monotonic \(q \) case in figure 11. The two reversed shear cases, ‘Reversed 1’ and ‘Reversed 2’, correspond to the fully chaotic, reversed shear cases in figures 17 and 19 respectively. The steepest dashed line follows the sub-diffusive scaling in equation (41). The less steep dashed line corresponds to the scaling \(\langle T \rangle_{\text{max}} \sim r^{-1/16} \).

The scaling with the amplitude of the perturbation of the width of resonances in the reversed shear region. Separatrix reconnection is a global bifurcation that changes the topology of twin resonances in the vicinity of the reversed shear region. As shown in figure 14, because of the non-monotonicity of the \(q \)-profile, each mode of the magnetic field perturbation creates in general two, twin magnetic islands with staggered elliptic, \(\alpha \)-points. In this figure the equilibrium magnetic field had the \(q \)-profile in equation (26), and the perturbation consisted of a single mode with \(\langle m, n \rangle = (2, 3) \). When the twin resonances form relatively far from the reversed shear region, they exhibit the standard heteroclinic topology in figure 14(a). However, when the twin resonances approach each other, their stable and unstable manifolds reconnect across the reversed shear region as illustrated in figure 14(b). When the resonances get closer, the separatrices reconnect once more but in a different way that leads to the homoclinic topology of the twin resonances observed in figure 14(c). In the Poincaré plots in figure 14, the displacement of the resonances is achieved by changing the value of \(q_0 \) keeping all the other parameters fixed. In addition to separatix reconnection, the width of the resonances, \(W \), exhibits an interesting dependence on the local magnetic shear, \(S = dq/d\psi \). In particular, as can be observed by comparing figures 14(a) and (b), before reconnection, \(W \) increases as \(S \) decreases, i.e. the resonances get closer. However, after reconnection the opposite is the case and, as shown in figures 14(c) and (d), \(W \) shrinks as \(S \) decreases. The other property of twin resonances in reversed shear that we want to highlight is the dependence of the resonances’ width with the shear and the field perturbation creates in general two, twin magnetic islands with staggered elliptic, \(\alpha \)-points. In this figure the equilibrium magnetic field had the \(q \)-profile in equation (26), and the perturbation consisted of a single mode with \(\langle m, n \rangle = (2, 3) \). When the twin resonances form relatively far from the reversed shear region, they exhibit the standard heteroclinic topology in figure 14(a). However, when the twin resonances approach each other, their stable and unstable manifolds reconnect across the reversed shear region as illustrated in figure 14(b). When the resonances get closer, the separatrices reconnect once more but in a different way that leads to the homoclinic topology of the twin resonances observed in figure 14(c). In the Poincaré plots in figure 14, the displacement of the resonances is achieved by changing the value of \(q_0 \) keeping all the other parameters fixed. In addition to separatix reconnection, the width of the resonances, \(W \), exhibits an interesting dependence on the local magnetic shear, \(S = dq/d\psi \). In particular, as can be observed by comparing figures 14(a) and (b), before reconnection, \(W \) increases as \(S \) decreases, i.e. the resonances get closer. However, after reconnection the opposite is the case and, as shown in figures 14(c) and (d), \(W \) shrinks as \(S \) decreases. The other property of twin resonances in reversed shear that we want to highlight is the dependence of the resonances’ width with the shear and

Figure 12. Spatio-temporal evolution of heat pulse according to the self-similar model in equation (37). (a) corresponds to the sub-diffusive scaling case with \(y = 1/2, v = 1.6 \) and \(\mu = 0.0095 \), (b) corresponds to the diffusive scaling case with \(y = 1, v = 2 \) and \(\mu = 0.008 \). In both cases, the iso-contours correspond to the same values as those in figures 1–17, namely (from red to blue) \(T_0 = (0.5, 0.25, 0.10, 0.075, 0.05, 0.025, 10^{-2}, 10^{-3}, 10^{-4}) \).

time dependence of \(-\dot{Q} \) is qualitatively similar in the fully chaotic and in the weakly chaotic cases, the time when the flux reaches its maximum value depends strongly on \(\epsilon \). Moreover, the maximum value of the flux, \(q_{\text{max}} \approx 3.8 \times 10^{-7} \), is orders of magnitudes larger than the values observed in the weakly chaotic cases.

4.3. Strongly chaotic fields in reversed shear configurations

The goal of this subsection is to study the transport properties of heat pulses in fully chaotic magnetic fields in reversed shear configurations. Before considering the solution of the parallel heat transport equation for these configurations, we briefly discuss three unique properties of resonances in reversed shear magnetic fields that will be helpful for the interpretation of the results. The properties of interest are separatix reconnection, the dependence of the resonances’ width with the shear and

Figure 13. Decay of maximum temperature, \(\langle T \rangle_{\text{max}} \), as a function of \(\chi_0 t \) for different levels of magnetic field stochasticity and different \(q \)-profile configurations. The results labelled as \(\epsilon = 1.5 \times 10^{-4}, 2.0 \times 10^{-4}, 2.5 \times 10^{-4} \) and \(3.0 \times 10^{-4} \) correspond to the weakly chaotic, non-monotonic \(q \) runs in figures 2, 3, 4 and 5 respectively. The result labelled ‘Monotonic’ corresponds to the fully chaotic, monotonic \(q \) case in figure 11. The two reversed shear cases, ‘Reversed 1’ and ‘Reversed 2’, correspond to the fully chaotic, reversed shear cases in figures 17 and 19 respectively. The steepest dashed line follows the sub-diffusive scaling in equation (41). The less steep dashed line corresponds to the scaling \(\langle T \rangle_{\text{max}} \sim r^{-1/16} \).
and in (\psi, \lambda) equilibria. Following this criterion, here we take to two different that two perturbations have similar strengths when applied distribution of the resonances. Based on this, we will say of resonances created by the perturbation, and (iv) the radial

For the magnetic field we use the

\[\epsilon \]

In fact, in this case, the size of the trapping region of the

\[R^2 \]

\[\sigma_0 \]

\[q_0 \]

\[\ell_B \]

One of our goals is to compare the transport properties of heat pulses in reversed shear configurations with the previously discussed results in monotonic \(q \)-profiles, for the case of fully chaotic fields. To make an objective comparison it is important to guarantee that the strength of the perturbation acting in both equilibria are similar. The four independent parameters that determine the strength of the perturbation in the magnetic field model are (i) the overall amplitude of the perturbation, \(\epsilon \); (ii) the width of the perturbation, \(\sigma \); (iii) the number, \(N \), of resonances created by the perturbation, and (iv) the radial distribution of the resonances. Based on this, we will say that two perturbations have similar strengths when applied to two different \(q \)-profiles, if they have the same \(\epsilon \) and the same \(\sigma \), and if they give rise to an equal number of resonances distributed in a similar way in the radial \(\psi \) domain of the two equilibria. Following this criterion, here we take \(\epsilon = 1 \times 10^{-4} \) and \(\sigma = 0.5 \), which are the same values used in section 4.2.

For the magnetic field we use the \(q \)-profile in equation (26) with \(q_0 = 0.665 \) and \(\lambda = 3.25 \), perturbed by the following modes:

\[(m, n) = (5, 2), (4, 2), (3, 2), (12, 10), (11, 10), (1, 1), (9, 10), (5, 6), (4, 5), (3, 4), (9, 13), (2, 3). \]

Note that we are using less modes than in the monotonic \(q \) case in equation (36). This is because in the reversed shear case, typically, each mode gives rise to two resonances. In fact, comparing figures 16 and 10, it is observed that the 12 modes in equation (42) create the same number of resonances in the reversed shear profile in equation (26), than the 21 modes in equation (36) for the monotonic \(q \)-profile in equation (21). In addition, the spatial distribution of the resonances is similar in both cases, which according to the adopted criterion, implies that the magnetic perturbations acting on the two equilibria have equivalent strengths.

Figure 17 shows a Poincaré plot, colour coded according to the value of connection length, resulting from the perturbation of the non-monotonic \(q \)-profile in equation (26) by the modes in equation (42). As expected, the magnetic field is fully chaotic, i.e. there are no flux surfaces nor magnetic islands in the \(\psi \in (0, 0.425) \) domain. However, the spatial dependence of the connection length, \(\ell_B \), is different to the one of the monotonic \(q \)-profile shown in figure 11. Overall, the reversed shear connection length is larger than the connection length

\[W \sim \sqrt{\epsilon} \]. However, as shown in figure 15(b) this scaling breaks down when the resonances are close to the reversed shear region and have the homoclinic topology. In fact, in this case, the size of the trapping region of the resonances is quite small and practically insensitive to \(\epsilon \).

Figure 14. Separatrix reconnection and dependence of resonance width on local magnetic shear in reversed shear configurations. Each of the four panels shows a Poincaré plot of the \((m, n) = (2, 3)\) mode, and the corresponding \(q \)-profile indicating the location of the resonances. In all cases \(\epsilon = 10^{-4} \) and \(\lambda = 3.25 \). The only parameter varied is \(q_0 \) in equation (26). In (a) \(q_0 = 0.6 \), in (b) \(q_0 = 0.65 \), in (c) \(q_0 = 0.665 \), and in (d) \(q_0 = 0.6665 \).
As shown in \(\text{figure 17} \), in the finite shear region the width of the resonances exhibits the usual \(\sim \sqrt{\epsilon} \) dependence. However, as shown in \(\text{(b)} \), near the reversed shear region, this scaling breaks down and the width has a very weak dependence on the amplitude.

\[
\epsilon = 10^{-4}, \quad \epsilon = 4 \times 10^{-4}
\]

Figure 15. Dependence of resonance width on magnetic perturbation amplitude, \(\epsilon \), in the reversed magnetic shear configuration with \(q \)-profile in equation (26). Each of the two panels \(\text{(a)} \) and \(\text{(b)} \) shows Poincaré plots of the \((m, n) = (2, 3)\) mode for two values of \(\epsilon \), along with the corresponding \(q \)-profile indicating the location of the resonances. In \(\text{(a)} \) \(q_0 = 0.6 \) and in \(\text{(b)} \) \(q_0 = 0.665 \). In both cases, \(\lambda = 3.25 \).

As shown in \(\text{(a)} \), in the finite shear region the width of the resonances exhibits the usual \(\sim \sqrt{\epsilon} \) dependence. However, as shown in \(\text{(b)} \), near the reversed shear region, this scaling breaks down and the width has a very weak dependence on the amplitude.

\[
\epsilon = 10^{-4}, \quad \epsilon = 4 \times 10^{-4}
\]

Figure 16. \(q \)-profile and resonant modes used in the numerical study of heat transport in fully chaotic magnetic fields in the reversed shear configuration labelled as ‘Reversed 1’.

The solid line shows the \(q \)-profile in equation (26) as a function of \(R^2 \psi \). The modes are given in equation (42), and the vertical lines indicate the corresponding radial location of the resonances. The red dashed lines correspond to the \((m, n) = (9, 13)\) mode.

of the monotonic \(q \)-profile case, especially in the \(\psi \sim 0 \) neighbourhood. This can also be observed in the radial profiles of the average connection length in \(\text{figure 7} \), where the reversed shear results are labelled as ‘Reversed 1’. The difference in the connection lengths reflects in the speed and penetration depth of the heat pulse. In particular, in the non-monotonic \(q \) case, the heat pulse slows down in the reversed shear region. This can be appreciated by the stepping in the \(R^2 \psi \in (0.2, 0.3) \) region of the temperature iso-contours shown in the bottom panel of \(\text{figure 17} \). As a result, as shown in \(\text{figure 8} \), the time delay of the temperature response is approximately one order of magnitude longer in the reversed shear case labelled as ‘Reversed 1’.

There are also differences in the flux in \(\text{figure 9} \). For example, the peak maximum value of the flux in the reversed shear case, \(q_{\text{max}} = 3.5 \times 10^{-4} \), is ten times smaller than the peak maximum value in the monotonic \(q \) case, \(q_{\text{max}} = 3.8 \times 10^{-7} \). Thus, although the strength of the magnetic perturbation is similar, and despite the fact that in both cases there are no flux surfaces or stability islands, there are important differences in the transport properties of heat pulses. In the non-monotonic \(q \) case, transport is reduced in the reversed shear region.

The observation that for the same value of \(\epsilon \) and \(\sigma \), an equal number of similarly distributed resonances leads to less transport in the reversed shear case can be understood in part from the property that, as shown in \(\text{figures 14 and 15} \), the width of resonances in a non-monotonic \(q \)-profile tends to zero, and has a very weak dependence on \(\epsilon \), in the shear reversal region. As a result, resonances in this region exhibit little overlap, chaos is suppressed and the flux surfaces are not significantly affected by the perturbation. This behaviour is closely related to the typically observed robustness of flux surfaces in non-monotonic \(q \)-profiles. As discussed in \(\text{section 1} \), at a fundamental level, this is a generic property of degenerate, non-twist Hamiltonian systems that exhibit very resilient KAM invariant curves (which correspond to magnetic flux surfaces) in the vicinity of reversed shear regions as originally discussed in \([9, 7] \).

It is interesting to note that, near the reversed shear region, the distribution of the values of the connection length in \(\text{figure 17} \) exhibits a kind of ‘zig-zag’ pattern separating the cyan and magenta coloured values of \(\ell_B \). The origin of this pattern, which is not observed in the monotonic \(q \) case, can be traced to the existence of separatrix reconnection which, as discussed before, is ubiquitous in non-monotonic \(q \)-profiles. To verify this intuition, \(\text{figure 18(a)} \) shows the Poincaré plot of the \((m, n) = (9, 13)\) mode alone. This mode creates twin resonances in the vicinity of the reversed shear region (see the dashed vertical lines in \(\text{figure 16} \)), which are very close to the reconnection threshold. As observed, the zig-zag pattern
follows the \((m, n) = (9, 13)\) resonance pattern. Note that (as seen in figure 16) in this case there is an inner mode with \((m, n) = (2, 3)\). However, this mode appears to have little effect on the \((m, n) = (9, 13)\) resonance and on the level of chaos near the reversed shear region. This can be explained by the fact that, as shown in figures 14 and 15, resonances created very close the reversed shear region tend to have negligible widths.

To further study the role of separatrix reconnection on the connection length and transport, we consider the non-monotonic equilibrium magnetic field in equation (26) with \(R = 5\), \(B_0 = 1\) as before, but with \(q_0 = 0.64\) and \(\lambda = 3.0\). The perturbation in this case, which is labelled in the figures as ‘Reversed 2’, consisted of the following set of modes:

\[
(m, n) = \{(2, 3), (7, 10), (4, 5), (9, 10), (13, 15), (12, 13), (3, 4), (11, 12), (14, 15), (7, 8), (8, 9), (11, 13), (6, 7), (11, 10), (14, 17), (5, 6), (9, 11), \}
\]

with \(\epsilon = 4.1 \times 10^{-4}\), and \(\sigma = 0.05\). This case is the same as the one used in [14] to study the role of shearless Cantori on transport. Note that the strength of the perturbation is different for the monotonic \(q\)-profile and ‘Reversed 1’ cases considered above as the value of \(\sigma\) is smaller, the value of \(\epsilon\) is larger, and there are more resonances with a different radial distribution. In this case, as shown in figure 18(b), it is the \((m, n) = (2, 3)\) mode that is at the reconnection threshold, and, consistent with the previous description, the connection length shown in figure 19 exhibits a clear zig-zag pattern that follows closely the resonance pattern of this mode. As seen in figure 7, the average connection length is significantly higher than in fully chaotic monotonic and Reversed 1 configurations. In fact, (\(\ell_B\)) in the Reversed 2 case is comparable to the weakly chaotic monotonic, \(\epsilon = 3 \times 10^{-4}\), case. As expected, the time delay in figure 8 is also significantly higher, specially in the \(\psi \in (0.15, 0.225)\) region. The flux (see figure 9) is also remarkably changed. In the Reversed 2 case, \(q_{\text{max}} = 8.6 \times 10^{-6}\), is 40 times smaller than the one in the fully chaotic monotonic case, \(q_{\text{max}} = 3.8 \times 10^{-7}\). As discussed in [14], the transport properties of the Reversed 2 case can be attributed to the presence of shearless Cantori. These are partial transport barriers that form near the reversed shear region and significantly slow down transport even in the absence of flux surfaces or stability islands. It is because of these partial barriers that the temperature iso-contours in figure 19 exhibit a sharp gradient in the \(R^2 \psi\) \((0.2, 0.3)\) region. This region also plays a key role in the anomalously slow relaxation of temperature gradients [14]. To conclude, we mention that, although there is an overall shift, the scaling of the decay rate of the temperature maximum, \((T)_{\text{max}}\) in figure 13 is quite similar in all cases.

5. Summary and conclusions

We have presented a study of heat pulse propagation in three-dimensional chaotic magnetic fields. The study focused on the solution of the parallel heat transport equation. The numerical method was based on the Lagrangian Green’s function (LG) method that provides an efficient and accurate technique that circumvents known limitations of finite elements and finite difference methods. In particular, by construction, the LG method preserves the positivity of the temperature evolution and avoids completely the pollution issues encountered in grid-based methods.

The magnetic field model consisted of the superposition of an helical field perturbed by resonant modes in cylindrical geometry. The main two problems addressed were (i) the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity; and (ii) the role of reversed shear magnetic field configurations on heat transport. To address the first problem we considered a helical magnetic field with monotonic \(q\)-profile perturbed by four resonant

![Figure 17](image-url)
modes with amplitude \(\epsilon \), and solved the corresponding parallel heat transport equation for increasing values of \(\epsilon \). For the second problem we compared the propagation of heat pulses in monotonic \(q \)-profile and reversed magnetic shear configurations in fully stochastic fields.

In the study of the dependence of heat transport on the level of magnetic field stochasticity we considered four different mode amplitudes, \(\epsilon = 1.5 \times 10^{-4}, \epsilon = 2.0 \times 10^{-4}, \epsilon = 2.5 \times 10^{-4} \) and \(\epsilon = 3.0 \times 10^{-4} \). In all these cases there are no flux surfaces. That is, as shown in the Poincaré plots, a single initial condition covers the \(R^2 \psi \in (0.05, 0.45) \) radial domain. However, the radial transport of the heat pulse is observed to depend strongly on \(\epsilon \) due to the presence of magnetic islands created by high-order resonances. In particular, the resonances and Cantori around \(R^2 \psi \sim 0.25 \) act as quasi-transport barriers, which, in the case \(\epsilon = 1.5 \times 10^{-4} \), actually preclude the radial penetration of the pulse for the range of time considered. Even for the relatively larger perturbation case \(\epsilon = 3.0 \times 10^{-4} \), the temperature iso-contours exhibit a qualitative change across the \(R^2 \psi \sim 0.25 \) region. On the other hand, the period-5 islands located around \(R^2 \psi \sim 0.15 \) do not seem to play a significant role on the radial transport. As expected, in the strongly stochastic case corresponding to a monotonic \(q \)-profile perturbed by 21 strongly overlapping modes all the high-order resonances are practically gone and the radial pulse exhibits an homogeneous spreading towards the core.

To explore in further detail the role of magnetic field stochasticity on transport, we studied the dependence of the magnetic field connection length, \(\ell_B \), on \(\epsilon \). The numerical results showed a very strong, approximately exponential, dependence of \(\ell_B \) in the core on the value of \(\epsilon \). There is a close connection between \(\ell_B \) and the transport of localized perturbations in the LG method. In particular, the temperature response at a point \(r_0 \) is a monotonically increasing function of the value of \(\ell_B \) at \(r_0 \). As a result, the regions in the \((R^2 \psi, \theta) \) plane where \(\ell_B \) is large correlate with the regions where the radial propagation of the heat pulse slows down or stops. In particular, the region \(R^2 \psi \sim 0.25 \) where the temperature iso-contours exhibit a qualitative change (from almost vertical to almost horizontal) correspond to the region where the average connection length, \(\langle \ell_B \rangle \), exhibits its sharpest gradient.

In addition to the connection length, we studied the decay rate of the temperature maximum, \(\langle T \rangle_{\text{max}}(t) \), the delay of the temperature response, \(\tau \), and the radial heat flux \((q \cdot \hat{e}_\psi) \), as functions of the magnetic field stochasticity. In all cases it was observed that the scaling of \(\langle T \rangle_{\text{max}} \) with time from sub-diffusive, \(\langle T \rangle_{\text{max}} \sim t^{1/4} \), at short times \((\chi t < 10^5) \) to a significantly slower, almost flat scaling at longer times \((\chi t > 10^5) \). The time delay of the response, \(\tau \), has a strong dependence on \(\epsilon \) and it exhibits a sharp gradient in the transition region \(R^2 \psi \sim 0.25 \). The time evolution of the radial flux, \((q \cdot \hat{e}_\psi) \), also exhibited a strong dependence on \(\epsilon \), in both, the time where the flux achieves its minimum and, more importantly, in the magnitude of the flux. In particular the relative small change in \(\epsilon \) from \(\epsilon = 1.5 \times 10^{-4} \) to \(\epsilon = 3.0 \times 10^{-4} \) changes the magnitude of radial flux by several orders of magnitude.

A study was also presented comparing heat transport in fully chaotic fields with monotonic-\(q \) equilibria with heat transport in fully chaotic fields with reversed shear equilibria. By fully chaotic we mean that there are no magnetic flux surfaces nor magnetic stability islands. Even when the two equilibria configurations experience equal-strength magnetic perturbations, there are clear differences in the transport properties. The average connection length in the reversed shear case is twice as as long as the average connection length in the monotonic \(q \) case near \(R^2 \psi \sim 0 \). It was also observed that the time delay of the temperature response in the reversed shear case is approximately one order of magnitude longer than the delay in the monotonic \(q \) case. There are also differences in the fluxes. For example, the peak maximum value of the flux in the reversed shear case is ten times smaller than the peak maximum value in the monotonic \(q \) case. The culprit of these differences seems to be the presence of critical magnetic surfaces (shearless Cantori) and the reconnection of resonant modes in the shear reversal region. In particular, it was observed that the zig-zag pattern, across which the magnetic field connection length experiences a sharp gradient, is caused...
fields does not penetrate beyond $R^2\psi \sim 0.25$, for time scales up to $\chi t \sim 10^2$. The case of reversed shear equilibria is even more striking. For example, as figure 19 shows, even in fully stochastic fields with no flux surfaces nor magnetic islands, radial heat transport can slow down considerably going through reversed shear regions. Because of this, beyond the relatively simple study of the existence or destruction of magnetic flux surfaces, the study of heat transport requires a careful study of the effect of the subtle geometry and dynamics of chaotic magnetic fields. The application of the ideas and methods used in the present paper to the computation of the heat load at the divertor plate in the presence of chaotic fields in toroidal confinement devices is an important problem that will be communicated in a future publication.

Acknowledgments

This work was sponsored by the Office of Fusion Energy Sciences of the US Department of Energy at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725.

References

[1] Evans T.E. et al 2008 Nucl. Fusion 48 024002
[2] Schmitz O. et al 2008 Plasma Phys. Control. Fusion 50 124029
[3] del-Castillo-Negrete D. and Chacón L. 2011 Phys. Rev. Lett. 106 195004
[4] del-Castillo-Negrete D. and Chacon L. 2012 Phys. Plasmas 19 056112
[5] Lorenzini R. et al 2009 Nature Phys. 5 570
[6] Lorenzini R. et al 2012 Nucl. Fusion 52 062004
[7] del-Castillo-Negrete D., Greene J.M. and Morrison P.J. 1996 Physica D 91 1
[8] del-Castillo-Negrete D. and Morrison P.J. 1993 Phys. Fluids A 5 948–65
[9] del-Castillo-Negrete D. and Morrison P.J. 1992 Magnetic field line stochasticity and reconnection in a non-monotonic q-profile Bull. Am. Phys. Soc. II 37 1543
[10] Balescu R. 1998 Phys. Rev. E 58 3781–92
[11] del-Castillo-Negrete D. 2000 Phys. Plasmas 7 1702–11
[12] Firpo M.-C. and Constantinescu D. 2011 Phys. Plasmas 18 032506
[13] Martins C.G.L., Egydio de Carvalho R., Caldas I.L. and Roberto M. 2011 Physica A 390 957
[14] Blazevski D. and del-Castillo-Negrete D. 2013 Phys. Rev. E 87 063106
[15] Ida K. et al 2013 New J. Phys. 15 013061
[16] Held E.D., Callen J.D., Hegna C.C. and Sovinec C.R. 2001 Phys. Plasmas 8 1171
[17] del-Castillo-Negrete D. 2006 Phys. Plasmas 13 082308
[18] del-Castillo-Negrete D. 2008 Non-diffusive transport modeling: statistical basis and applications Proc. 1st ITER Summer School: Turbulent Transport in Fusion Plasmas ed S. Benkadda AIP Conf. Proc. 1013 207–39
[19] Chacon L., del-Castillo-Negrete D. and Hauck C.D. 2013 An asymptotic-preserving semi-Lagrangian algorithm for the time-dependent anisotropic heat transport equation J. Comput. Phys. submitted
[20] Mackay R.S. et al 1984 Physica D 13 55–81
[21] Hudson S.R. 2006 Phys. Rev. E 74 056203