Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences

Jason D. Hoeksema
University of Mississippi

Colin Averill
ETH Zurich

Jennifer M. Bhatnagar
Boston University

Edward Brzostek
West Virginia University

Erika Buscardo
University of Brasilia

See next page for additional authors

Follow this and additional works at: https://egrove.olemiss.edu/biology_facpubs

Part of the [Forest Biology Commons](https://egrove.olemiss.edu/biology_facpubs)

Recommended Citation

Hoeksema, Jason D.; Averill, Colin; Bhatnagar, Jennifer M.; Brzostek, Edward; Buscardo, Erika; Chen, Ko-Hsuan; Liao, Hui-Ling; Nagy, Laszlo; Policelli, Nahuel; Ridgeway, Joanna; Rojas, J. Alejandro; and Vilgalys, Rytas, "Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences" (2020). *Faculty and Student Publications*. 5.
https://egrove.olemiss.edu/biology_facpubs/5

This Article is brought to you for free and open access by the Biology at eGrove. It has been accepted for inclusion in Faculty and Student Publications by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.
Authors
Jason D. Hoeksema, Colin Averill, Jennifer M. Bhatnagar, Edward Brzostek, Erika Buscardo, Ko-Hsuan Chen, Hui-Ling Liao, Laszlo Nagy, Nahuel Policelli, Joanna Ridgeway, J. Alejandro Rojas, and Rytas Vilgalys

This article is available at eGrove: https://egrove.olemiss.edu/biology_facpubs/5
Ectomycorrhizal Plant-Fungal Co-invasions as Natural Experiments for Connecting Plant and Fungal Traits to Their Ecosystem Consequences

Jason D. Hoeksema1*, Colin Averill2, Jennifer M. Bhatnagar3, Edward Brzostek4, Erika Buscardo5, Ko-Hsuan Chen6,7, Hui-Ling Liao6, Laszlo Nagy8, Nahuel Policelli3, Joanna Ridgeway4, J. Alejandro Rojas9 and Rytas Vilgalys10

1 Department of Biology, University of Mississippi, Oxford, MS, United States, 2 Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland, 3 Department of Biology, Boston University, Boston, MA, United States, 4 Department of Biology, West Virginia University, Morgantown, WV, United States, 5 University of Brasília, Brasília, Brazil, 6 Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States, 7 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 8 Biologia Vegetal Department, University of Campinas, Campinas, Brazil, 9 Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, United States, 10 Department of Biology, Duke University, Durham, NC, United States

Introductions and invasions by fungi, especially pathogens and mycorrhizal fungi, are widespread and potentially highly consequential for native ecosystems, but may also offer opportunities for linking microbial traits to their ecosystem functions. In particular, treating ectomycorrhizal (EM) invasions, i.e., co-invasions by EM fungi and their EM host plants, as natural experiments may offer a powerful approach for testing how microbial traits influence ecosystem functions. Forests dominated by EM symbiosis have unique biogeochemistry whereby the secretions of EM plants and fungi affect carbon (C) and nutrient cycling; moreover, particular lineages of EM fungi have unique functional traits. EM invasions may therefore alter the biogeochemistry of the native ecosystems they invade, especially nitrogen (N) and C cycling. By identifying “response traits” that favor the success of fungi in introductions and invasions (e.g., spore dispersal and germination) and their correlations with “effect traits” (e.g., nutrient-cycling enzymes) that can alter N and C cycling (and affect other coupled elemental cycles), one may be able to predict the functional consequences for ecosystems of fungal invasions using biogeochemistry models that incorporate fungal traits. Here, we review what is already known about how EM fungal community composition, traits, and ecosystem functions differ between native and exotic populations, focusing on the example of EM fungi associated with species of Pinus introduced from the Northern into the Southern Hemisphere. We develop hypotheses on how effects of introduced and invasive EM fungi may depend on interactions between soil N availability in the exotic range and EM fungal traits. We discuss how such hypotheses could be tested by utilizing Pinus introductions and invasions as a model system, especially when combined with...
controlled laboratory experiments. Finally, we illustrate how ecosystem modeling can be used to link fungal traits to their consequences for ecosystem N and C cycling in the context of biological invasions, and we highlight exciting avenues for future directions in understanding EM invasion.

Keywords: ectomycorrhizal fungi, *Pinus* (pine), invasive species, introduced species impacts, carbon and nitrogen cycling

INTRODUCTION

Invasive exotic species may greatly modify local biodiversity and ecosystem services worldwide (Vilà et al., 2011; Pyšek et al., 2012). Specifically, invasive species have the potential to (1) reduce biodiversity, (2) disrupt important co-evolved mutualisms and species coexistence (Bever et al., 2010), (3) alter ecosystem processes and the potential of ecosystem to provide services (Jackson et al., 2002), and (4) produce alternative ecosystem states that are resistant to ecological restoration (Suding et al., 2004). It is thus critical to understand the eco-evolutionary dynamics of invasions, and their consequences for biodiversity and ecosystem functions (Pecl et al., 2017; Bonebrake et al., 2018).

The roles of fungi in invasions have been relatively overlooked compared to the attention that plants and animals have received, despite the enormous scale of the occurrence and potential impacts of fungi (Desprez-Loustau et al., 2007; Gladieux et al., 2015). The well-known exceptions involve invasive pathogens, such as Dutch elm disease (*Ophiostoma* spp.) (Brasier and Buck, 2001) and chestnut blight (*Cryphonectria parasitica*) (Anagnostakis, 2001; Dutech et al., 2012), which have caused dieback of host trees in their exotic range. Non-pathogenic fungi such as mycorrhizal fungi associated with plant roots have been introduced extensively around the globe (Schwartz et al., 2006; Vellinga et al., 2009). In the case of ectomycorrhizal (EM) fungi, these introductions have typically been co-introductions with their host plants (Vellinga et al., 2009), and have frequently resulted in co-invasion by these fungi and their host plants into native ecosystems (Nuñez and Dickie, 2014), and occasionally separate invasion by the fungi via colonization of novel hosts among the native flora of the exotic range (Vellinga et al., 2009; Dickie et al., 2017). Although recent studies have begun to elucidate the consequences of some of these EM fungal invasions for the population dynamics of their invasive host plants (Nuñez et al., 2009; Hayward et al., 2015), we still understand very little about their consequences for the population and evolutionary dynamics of the fungi themselves, or for native communities and ecosystem functions. Here, we argue that introductions and invasions of non-pathogenic fungi such as EM fungi present opportunities for answering fundamental questions about biological invasions, as well as questions on the functional consequences of microbial composition, diversity, and traits.

Although ecologists have for decades been exploring links between diversity and function in ecological communities (Tilman et al., 1997; Loreau et al., 2001; Hooper et al., 2005), microbial ecologists increasingly highlight the value of microbial functional traits, rather than species composition or diversity *per se*, to predict ecosystem function (Nielsen et al., 2011; Crowther et al., 2014; Fierer et al., 2014; Krause et al., 2014; Talbot et al., 2014; Treseder and Lennon, 2015) and EM fungal invasions may offer a powerful way to test how soil fungal traits can explain critical ecosystem functions of microbial communities. In particular, the response-and-effect trait framework (Lavorel and Garnier, 2002; Suding et al., 2008) advocates identifying two groups of traits in communities: traits that determine the response of the community to environmental change (so-called “response traits,” often related to fecundity, regeneration, or dispersal), and traits that determine the effect of the community on ecosystem functions (so-called “effect traits,” often related to nutrient cycling or storage). Although this response-effect trait framework was largely developed around plant communities, it is hypothesized to apply well to soil fungi (Koide et al., 2014; Treseder and Lennon, 2015). To predict the ecosystem consequences of shifts in fungal community composition and diversity during biological invasions, we need to ask specifically how “response traits” that may favor success during introductions and invasions (e.g., traits related to spore dispersal and germination, or stress tolerance) may be linked to “effect traits” (e.g., production of unique nutrient-cycling enzymes) that may determine their impacts on native communities and ecosystem processes. For example, there may be tradeoffs among species in stress tolerance (affecting ability to survive transport during introduction) to the quality of litter produced [affecting resulting contributions to stable soil carbon (C)] (Crowther et al., 2015). Such tradeoffs may lead to introduced, exotic EM fungal communities having different suites of functional traits compared to those in their native source communities.

Rapid evolution is increasingly being recognized as a key driving force of ecological processes (Thompson, 2013; Hendry, 2016), but may be particularly important when microbial species are introduced into novel environments. Invaders may experience or exert particularly strong direct selection pressures (Palumbi, 2001; Colautti and Lau, 2015), not only due to a lack of coevolutionary history with species encountered in the introduced range (Callaway et al., 2005), but also owing to their escape from the evolutionary constraint of community complexity in their native environment (de Mazancourt et al., 2008; Strauss, 2014). Indeed, traits of invasive fungal pathogens, such as virulence and host compatibility, have been demonstrated to evolve rapidly in exotic populations, despite moderate levels of genetic diversity (Gladieux et al., 2015). Trait evolution in introduced and invading populations of mutualistic fungi (such as EM fungi), however, has not yet been demonstrated, even though such evolutionary shifts could substantially alter effects of these fungi on invaded communities and ecosystems. Studies of evolution in these exotic mycorrhizal fungal communities...
could teach us a great deal about fungal population biology and plant-microbe coevolution.

Co-introduction of Pines and EM Fungi Results in Unique, Low-Diversity Exotic Assemblages of EM Fungi

Pines (plant species in the genus *Pinus*) are largely native to the Northern Hemisphere, but exotic pine plantations now cover more than 5 million ha south of the Equator (Simberloff et al., 2010; Figure 1). After early attempts to establish pine plantations in the Southern Hemisphere in the 1800s and early 1900s failed, it was quickly discovered that pines, which are obligately associated with symbiotic EM fungi, cannot survive without soil inoculum from previously established nurseries or pine forests (Richardson et al., 1994). The introduction and inoculation process, in most cases, has greatly reduced diversity in the EM fungal community associated with pines, and only rarely are exotic pines in the Southern Hemisphere colonized by native species of *Pinus* as hosts.

As a result, pine plantations in the Southern Hemisphere possess significantly impoverished assemblages of EM fungi, often fewer than 20 species (and as few as four, or even one for pine trees at the invasion front) at a single site (Chu-Chou and Grace, 1988; Walbert et al., 2010; Hynson et al., 2013; Hayward et al., 2015; Policelli et al., 2018), compared to native and managed populations of those same pines in the Northern Hemisphere, where they often associate with 100 or more species of EM fungi (Horton and Bruns, 2001). Thus, the enormous expansion of pine plantation forestry in the Southern Hemisphere has resulted in the global spread of a limited number of highly successful EM fungi species across the entire planet, far beyond their original native ranges (Figure 2). Moreover, the EM fungi that are co-introduced with exotic pines often represent fungal lineages novel to their new habitat. For example, conversion of grasslands to pine plantations may result in a shift in dominance among soil fungi from arbuscular mycorrhizal (AM) fungi (subphylum Glomeromycotina) to EM fungi (predominantly Basidiomycota), but pine-specific EM fungal lineages such as the Suilloid genera *Suillus* and *Rhizopogon* may still be novel when the recipient community is a non-pine EM-dominated forest, such as the *Eucalyptus* forests of southeastern Australia.

With the aid of particular EM fungi, some pine species often invade from plantations into nearby native habitats, while a lack of suitable EM fungal inoculum outside plantations hinders pine invasions at some sites (Nuñez et al., 2009). Specifically, it has been shown that certain lineages of EM fungi that facilitate early succession of pines in their native range, especially Suilloid fungi in the genera *Suillus* and *Rhizopogon*, seem uniquely suited to facilitate invasion of pines out of plantations in their exotic

FIGURE 1 | Native range of pines, and distribution of pine plantations in the Southern Hemisphere [map from Lantschner et al. (2017), used with permission from John Wiley and Sons (RightsLink License # 4847761041822)].
range (Hayward et al., 2015; Urcelay et al., 2017; Policelli et al., 2018). While in the native range Suilloid fungi typically represent less than 5% of observations of EM fungi on roots (Danielson, 1984; Gardes and Bruns, 1996), in the invasive range pines are sometimes able to invade out of plantations with no other fungi besides Suilloid species (Hayward et al., 2015; Policelli et al., 2018). These taxa have particular suites of response traits that are associated with their success during invasions: they produce abundant spores, which are effectively dispersed through biotic and abiotic vectors and which persist in soil and readily colonize invading pine seedlings outside of forests/plantations (Ashkannejhad and Horton, 2006; Urcelay et al., 2017; Policelli et al., 2018). In contrast, many EM fungi colonize plant roots mainly via mycelial growth from existing colonized roots, and as a result, they are rarely found on the roots of individual seedlings colonizing new habitat zones away from established plantations or forests (Horton and Bruns, 2001).

Within the species-poor fungal communities of pine plantations and invasions, fruiting body (“mushroom”) production by EM fungi is also dominated by a very small number of species, which often fruit much more abundantly than in their home range. A well-known example is *Suillus luteus*, which was estimated to produce hundreds of kilograms of dry mass per hectare in *Pinus radiata* plantations of Ecuador (Chapela et al., 2001), far exceeding the total fruiting biomass in many native pine habitats of the Northern Hemisphere. Indeed, *S. luteus* is one of the most abundant exotic EM mushrooms found under pines across the Southern Hemisphere (Nuñez et al., 2009). These instances of exceptional dominance may result from some combination of enemy release, competitive release due to reduced diversity of co-occurring EM fungi, plastic responses to novel environments, or rapid evolution. To our knowledge, none of these mechanisms have been tested. Regardless, the introduction and subsequent invasion of particular low-diversity suites of EM fungi may lead to cascading consequences at multiple scales, due to the effect traits of those particular fungi (Figure 3).

When pines and EM fungi are co-introduced and subsequently a subset co-invade into native habitats, the plants and EM fungi will affect each other’s population dynamics, including effects on invasion dynamics (Nuñez and Dickie, 2014; Dickie et al., 2017) and on populations of native species (Brewer et al., 2018). In addition, introduced and invading pines and EM fungi may each have direct effects on ecosystem functions, such as the coupled cycling of C, nitrogen (N), and phosphorus (P) (Townsend et al., 2011). Net ecosystem consequences of pine-EM fungal introductions and invasions have been explored (Scholes and Nowicki, 1998; Wilcke and Lilienfein, 2002; Simberloff et al., 2010; Dickie et al., 2014), but not yet using approaches that allow distinguishing direct effects of the pines themselves from effects of the co-introduced EM fungi. Here, we focus on the substantial consequences that plant-EM fungal co-introductions and co-invasions may have for ecosystem processes and show how these large-scale natural experiments can be opportunities to link fungal traits to their cascading consequences for ecosystem biogeochemical cycling.
Potential Effects of Ectomycorrhizal Introductions and Invasions on Biogeochemical Cycling

The cycling of C and nutrients such as N and P are often intimately coupled in ecosystems (Townsend et al., 2011), and previous work has demonstrated substantial effects of pine plantations and invasions on various soil and ecosystem functions, including C, N, and P cycling (Scholes and Nowicki, 1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus caribaea (1998; Simberloff et al., 2010). For example, the conversion of cerrado vegetation in Brazil to Pinus carrib...
key effect traits that have consequences for C and nutrient cycling in systems where these organisms are introduced. First, root secretions produced by different forest plant species may favor different mycorrhizal fungi and saprophytes (Ali and Jackson, 1988; Sun and Fries, 1992), which may contribute to the enrichment of specific EM fungi at plantation and invasion sites. For example, the flavonoid and phenolglycoside from Eucalyptus root exudates favor growth of S. bovinus but not Paxillus involutus (Jones et al., 2004), which could consequently amplify effects of secretion by the selected EM fungi.

Another potentially important effect trait of invasive EM fungi is their affinity or aversion to soil mineral N. Indeed, some Suillus species exhibit relatively high protease and peptidase activity compared to other EM fungi, and some polyphenol oxidase/peroxidase activity (Talbot and Treseder, 2010; Talbot et al., 2015), suggesting that they may compete with free-living saprobes in decomposition of SOM. However, Suillloid fungi (e.g., Suillus and Rhizopogon spp.) grow relatively poorly under low C:N conditions (Hatakeyama and Ohmasa, 2004) and are more sensitive to changes in C:N ratio than other EM fungi (Fransson et al., 2007). As a result, it may be that Suillloid fungi especially thrive and compete with free-living saprobes, suppressing the decomposition of soil C by free-living saprobes and stimulating productivity of their co-invading host plants, when exotic soil mineral N availability is low relative to soil C (i.e., high soil C:N) (Figure 4). In contrast, some other EM fungi commonly co-introduced with trees, such as P. involutus (Lilleskov et al., 2002), Theltephora terrestris (Lilleskov et al., 2002; Cox et al., 2010) and Sceroderma citrinum (van der Linde et al., 2018) appear to be nitrogenophilic, specialized to thrive under low C:N conditions or responding positively to atmospheric N deposition, and having more limited capabilities to access N in organic matter.

These previous studies lead us to hypothesize that EM fungi may have invasion-biogeochemistry trait “syndromes” where species trade off soil organic N acquisition capabilities for tolerance to high soil mineral N (i.e., being “nitrophobic”). If so, soil conditions in the exotic range may interact with the response trait of nitrophobicity to alter the composition of the EM fungal community during introduction and invasion, which may in turn drive effects of the EM fungi on C and N cycling, due to the effect trait of organic N acquisition ability. As a result, the Slow-decay hypothesis would predict the “Gadgil effect” of EM fungal suppression of decomposition by free-living saprobes to especially predominate in surface organic soil layers and in particulate organic matter, at sites where Suillloid EM fungi are favored by conditions of low soil mineral N availability, however, the MEMS hypothesis would additionally predict reduced C storage in underlying mineral soils due to reduced production of mineral-protected microbial residues (Figure 4). The balance between these two processes happening in different soil layers would determine the net effect of introduced and invasive EM fungi on soil C and N cycling.

Compared with N cycling in temperate forest soils, less is known about EM fungal control over P cycling, although there is evidence that EM and AM associations may differ in their consequences for P dynamics in soils (Jansa et al., 2011; Rosling et al., 2016), with EM fungi capable of short-circuiting the soil P cycle by facilitating direct access by plants to organic P (bypassing saprobic organisms; Carleton and Read, 1991). As EM fungal species and genotypes differ in their P uptake patterns and efficiency (Jansa et al., 2011), changes in EM fungal species composition, richness, and diversity might also have impacts on P uptake efficiency for the plant hosts (Cairney, 2011). For example, P uptake efficiency has been found to decrease as a consequence of decreased EM fungal diversity under drought conditions (Köhler et al., 2018). EM fungal contributions to host P supply vary according to the relative ability of EM fungi to enhance host P acquisition, the availability of P in its different forms, edaphic conditions, and host P status (Cairney, 2011). When soil P is limiting, reductions in EM fungal hyphal growth and biomass might further negatively impact P acquisition by forest tree hosts (Teste et al., 2016). EM fungal species able to reach adsorbed P sources via abundant external mycelium growth and soil exploration capacity may have a competitive advantage in limited P conditions (Köhler et al., 2018). The extent and mechanisms to which EM fungal invasions may influence P acquisition by tree hosts in forest ecosystems, however, remains largely speculative. Even when P limitations could be counterbalanced by morphological and physiological responses of the plant hosts (Vance et al., 2003), replacing one mycorrhizal community by another might strongly affect soil P cycling with unknown consequences for the ecosystem.

Although EM fungal species in their native range may be classified based on their traits, such as nitrophobicity and ability to access organic N or P, rapid evolution of introduced and invading populations of EM fungi may modify their traits and resulting effects on ecosystem functions. For example, in species-rich native communities, stabilizing selection on foraging niches may prevent expansion of foraging niches. But if invading species experience a loss of competitors in their ecological guild, this stabilizing selection may be relaxed (Ackerly, 2003), resulting in evolution of expanded resource foraging niches in the exotic range (de Mazancourt et al., 2008). Moreover, admixture in the introduced range among historically isolated populations may provide novel genetic material that facilitates rapid adaptive evolution (Colautti and Lau, 2015). For EM fungi, novel selection pressures may include reduced diversity of natural enemies, reduced diversity of competing EM fungi, novel microbial enemies or competitors, different pine host species than in their native population, and novel soil properties. Some combination of these selection pressures may modify the effect traits of EM fungi, modifying their consequences for communities and ecosystem functions in recipient exotic habitats (Figure 3).

Using Plant-Fungal Introductions and Invasions to Test Hypotheses on the Ecosystem Consequences of EM Fungal Traits

Widespread biological introductions of plants and associated microbial communities, such as pines and their EM fungi, present an opportunity to answer a fundamental question in microbial ecology: To what extent do the traits of soil fungi predict their effects on C, N, and P cycling in novel ecosystems? A key
Hypothesized trade-off between soil organic N decomposition capability (an effect trait) and tolerance to high soil mineral N (i.e., being “nitrophilic,” a “response trait”), resulting in stronger predicted “Gadgil effect” of EM fungal suppression of decomposition by free-living saprobes (in surface organic soil layers) at sites where Suilloid EM fungi are favored by conditions of low soil mineral N availability, along with reduced C storage in mineral layers due to reduced production of mineral protected microbial residues.

The factorial combinations of soil mineral N availability and EM fungal composition could allow testing of the prediction of a stronger “Gadgil effect” in surface organic soil layers at sites where Suilloid EM fungi dominate, and reduced production of mineral-protected microbial residues and C storage in mineral soils at those sites. In general, comparison of plantation and invasion sites that vary in EM fungal diversity and composition would facilitate exploration of the effects of EM fungal traits, holding the presence of pines constant. Sites where EM-dominated habitats are being invaded by introduced EM fungi would potentially reveal effects of pines per se and/or effects of particular lineages of EM fungi (when comparing sites varying in EM fungal composition), holding the presence of EM fungi.
constant across the sites compared. Pine invasions into AM-dominated conifer habitats, such as Araucaria forest, would hold constant the presence of conifers (although different conifer species may have important trait differences). Inclusion of native pine sites in the Northern Hemisphere would allow comparison with high EM fungal diversity sites and would serve as a baseline for asking how the functions of EM fungal communities change when diversity is reduced and/or particular lineages are lost.

Inferences from observational field studies would be correlative, so ideally they would be combined with manipulative laboratory experiments. These experiments could include nitrophilic and nitrophobic EM fungal species observed to dominate at different exotic field sites, synthesized on pine hosts (Riffle, 1973; Richter and Bruhn, 1989; Dunabeitia et al., 1996; Baxter and Dighton, 2001), and grown in mineral vs. organic soils with high or low mineral N availability. In both laboratory and field studies, C, N, and P pools and cycling processes would be measured and linked with EM fungal traits and plant traits. EM fungal traits would include expression of key fungal functional genes controlling soil C, N, and P cycling (Table 1). Plant traits would include root morphology, turnover, and foraging patterns. This approach would allow determination of the genome-wide molecular function of the specific fungal species that dominate soil nutrient cycling, and their consequences for C, N, and P cycling. Such results could also inform a new generation of ecosystem models that incorporate variation in key microbial traits.

Ecosystem Modeling as a Tool for Linking Microbial Traits to Ecosystem Function

Despite evidence that microorganisms vary widely in key traits [e.g., C use efficiency (CUE), organic acid production, enzyme production] (Zak et al., 2019), the current generation of ecosystem biogeochemistry models mostly assumes that all soil microbes are the same; i.e., most models have a single microbial class and those that include microbial diversity are poorly parameterized due to data limitations (see Wang et al., 2013; Sulman et al., 2014; Wieder et al., 2015). Moreover, the latter are extremely sensitive to estimates of these traits (Allison et al., 2010), such that their lack of diversity in microbial traits calls into question their ability to predict the biogeochemical consequences of major shifts in geographic range that are occurring in dominant microbial communities. Empirical data from field and laboratory experiments could inform ecosystem modeling to predict how: (1) shifts in EM introductions and invasions and associated changes in functional traits of fungi, and (2) competitive suppression of saprobic fungi by EM fungi, alter C and N cycling from their characteristic state in native habitats. While this proposed modeling exercise is ambitious, it is feasible, as demonstrated by a recent success in aquatic ecosystems, which integrated transcriptomics data into larger biogeochemical models (Coles et al., 2017).

For example, new mycorrhizal functions have been added to the “Fixation and Uptake of Nitrogen” (FUN) model, which optimally allocates C to the mycorrhizal strategy (i.e., AM, EM, or non-mycorrhizal) that has the greatest nutrient return on plant C investment (Brzostek et al., 2014; Shi et al., 2016). The FUN model has recently been coupled with a microbial decomposition model, CORPSE (Sulman et al., 2014, 2017; Figure 5). There is also now a version of the FUN model that incorporates P (Allen et al., 2020), but it has not yet been fully coupled with CORPSE. The FUN-CORPSE model takes into account plant root traits, such as differences in fine root morphology between AM and EM systems, when calculating the size of the rhizosphere. The model also considers variation in root turnover rates, as the calculated size of the rhizosphere varies as a function of fine root production and mortality. Variation in root foraging traits is not considered explicitly, but is incorporated implicitly because AM roots are modeled as better at scavenging in high N environments and EM roots are better at mining in low N environments. Soil mineralogy is considered to some degree in the model, as clay content is modeled as a factor that controls the protection of SOM.

The coupled FUN-CORPSE model has been extensively validated and has been able to predict root exudation and the resulting stimulation of C and N mineralization in the

Protein name	Ecosystem process	Molecular process
β-glucosidase; β-glucuronidase; β-xylosidase;exo-β-1,4-glucanase; exo-β-glucosaminidase; β-N-acetylhexosaminidase;cellulose β-1,4-cellobiosidase;cellulobiohydrolase; reducing-end-xylene releasing exo-oligoxylanase;oligo-α-glucosidase; α-glucosidase (GH63);glucoamylase;galactose oxidase;gluco-oligosaccharide oxidases;cellulobio dehydrogenase	C cycle	Plant cellulose, starch decomposition
Chitinase;N-acetyl-glucosaminidase;β-hexosaminidase;ferrooxidase;laccase-like multicopper oxidase;aryl-alcohol oxidase;alcohol oxidase;pyranose oxidase;vanillyl alcohol oxidase;Fe(II)-reducing glycoproteins;1,4-benzoquinone reductase;Dye-decolorizing peroxidases;heme-thiolate peroxidases; manganese peroxidase; lignin peroxidase;versatile peroxidase;polyphenol oxidases;leucine-aminopeptidase	C and N cycles	Lignin, soil organic matter decomposition, amino acids
Amino acid permease; ammonium transporter; nitrate transporter	N cycle	Uptake of ammonium and nitrate
Acid/alkaline phosphatase; phosphate transporter	P cycle	Decomposition of organic P compounds, uptake of phosphates

Curated from Kohler et al. (2015) and Treseder and Lennon (2015).
FIGURE 5 | FUN optimally allocates C to gain N through roots and symbionts and CORPSE predicts the impacts of the C on soil processes. EM or AM invasion leads to sustained shifts in the trajectories of (A) C and (B) N cycling over time. Figure created using data from Sulman et al. (2017).
rhizosphere across 45 forested plots in the USA that varied in the abundance of AM and EM trees. Importantly, the coupled model linked litter and substrate chemistry feedbacks on microbial CUE with the ability of plant-associated microbes to prime the decomposition of SOM from mineral-bound and energetically protected pools (Sulman et al., 2017). FUN and CORPSE are coupled into larger terrestrial biosphere models (e.g., Community Land Model, Geophysical Fluid Dynamics Lab Model).

FUN-CORPSE has been used to examine the extent to which AM or EM dominance may alter soil C and N cycling (Sulman et al., 2017). In contrast to AM invasion, EM invasion enhanced soil C storage and reduced the availability of inorganic N to plants (Figure 5). This simulation suggests that the conversion of AM systems to EM systems may alter ecosystem-level C and N cycling, as predicted by the Slow-decay hypothesis. However, FUN currently assumes that all fungi have the same traits, which omits important trait diversity among EM fungi and saprobes, preventing a test of our prediction that C storage and N cycling will be altered at exotic sites where Suillus EM fungi are favored by conditions of low soil mineral N availability. This limitation could be addressed by integrating phyllogenetic variation in effect traits (such as CUE and organic N decomposition ability) among EM fungi, and variation in the allocation of plant C to different enzyme systems, across invasion chronosequences, informed by data generated from field and laboratory studies as described above.

Specifically, it would be feasible to integrate empirical data into the model using stepwise increases in complexity, by leveraging empirical linkages between soil processes (i.e., enzyme activities, N mineralization) and “omics” (e.g., metagenomics, metatranscriptomics, metabolomics) data. For example, one could use the relative abundances of transcripts that code for growth vs. energy expenditure in EM fungi to parameterize CUE, the enzymes that degrade SOM, and the fraction of assimilated C expended on enzyme synthesis. To provide an additional estimate of CUE in fungal species, one could use metagenomic data on fungal communities to classify gene abundance based on those that code for metabolic processes, resource acquisition (Table 1), and growth using Kbase, a novel computational – omics platform (as in Saifuddin et al., 2019). To complement and calibrate these omics approaches, one could also perform laboratory incubations with subsets of soils from each site in which isotopically labeled substrates (e.g., glucose, glycine) are added to provide an additional empirical estimate of CUE and microbial turnover. In addition, one could add functional diversity of EM fungi, AM fungi, and saprobes to the model using data on metabolic dominance data coupled with transcript data to parameterize differences between these functional groups in their energy expenditures on enzyme systems that carry out the molecular processes outlined in Table 1.

CONCLUSION
Despite the substantial negative ecological consequences of the world’s most widespread biological introductions, we suggest that some of them – such as pines and their symbiotic EM fungi in the Southern Hemisphere – can be leveraged as model systems for understanding how the functional traits of soil microbial communities affect coupled soil C and nutrient cycling in ecosystems. Accomplishing this objective would require using an integrative approach – including ecosystem modeling informed by field studies and laboratory experimentation – with the goal of connecting the genes and functional traits of soil fungi to their above- and belowground functional consequences in ecosystem models. The resulting outcomes could significantly improve the predictive ability of ecosystem models of C and N cycling by integrating the functional traits of soil microbial assemblages.

AUTHOR CONTRIBUTIONS
EBr, JH, JR, and RV designed the figures. All authors contributed to the article and approved the submitted version.

FUNDING
JH was supported by the United States National Science Foundation award 1953299. CA was supported by the Ambizione Grant No. PZ00P3_17990 from the Swiss National Science Foundation. JB, CA, EBr, H-LL, NP, and RV were supported by the United States Department of Energy (DOE) Systems Biology of Microbiomes in Nutrient Cycling award (DE-FOA-0002059). JB was supported by a DOE Bioimaging Research award (DE-SC0012704). LN and EBu were supported by the Brazilian CNPq award (Grant No. 441561/2016-0) and Brazilian FAPESP award (Grant No. 2016-50481-3). RV and JAR were funded by the United States National Science Foundation award DEB 1554181.

REFERENCES
Ackerly, D. D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165–S184.
Ali, N. A., and Jackson, R. M. (1988). Effects of plant roots and their exudates on germination of spores of ectomycorrhizal fungi. Trans. Br. Mycol. Soc. 91, 253–260. doi: 10.1016/s0007-1536(88)80212-2
Allen, K. E., Fisher, J. B., Phillips, R. P., Powers, J., and Brzostek, E. R. (2020). Modeling the carbon cost of plant nitrogen and phosphorus uptake across temperate and tropical forests. Front. For. Glob. Change 3:43. doi: 10.3389/ffgc.2020.00043
Allison, S. D., Wallenstein, M. D., and Bradford, M. A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340. doi: 10.1038/ngeo846
Anagnostakis, S. L. (2001). The effect of multiple importations of pests and pathogens on a native tree. Biol. Invasions 3, 245–254.
Ashkannejhad, S., and Horton, T. R. (2006). Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suillusoid fungi and deer. New Phytol. 169, 345–354. doi: 10.1111/j.1469-8137.2005.01593.x
Averill, C., Dietze, M. C., and Bhatnagar, J. M. (2018). Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553. doi: 10.1111/gcb.14368

Ecosystem Consequences of Ectomycorrhizal Invasions

Hoekstra et al.

July 2020 | Volume 3 | Article 84

Frontiers in Forests and Global Change | www.frontiersin.org
Averill, C., Turner, B. L., and Finzi, A. C. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545. doi: 10.1038/nature12901

Baxter, J. W., and Dighton, J. (2001). Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol. 152, 139–149. doi: 10.1046/j.0028-646x.2001.00245.x

Bever, J. D., Dickie, I. A., Facelli, E., Facelli, J. M., Kirisomos, J., Moora, M., et al. (2010). Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25, 468–478. doi: 10.1016/j.tree.2010.05.004

Bonebrake, T. C., Brown, C. J., Bell, J. D., Blanchard, J. L., Chauvenet, A., Champion, C., et al. (2018). Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol. Rev. Camb. Philos. Soc. 93, 284–305. doi: 10.1111/brv.12344

Brasier, C. M., and Buck, K. W. (2001). Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol. Invasions 3, 223–233. doi: 10.1023/A:1015248819864

Brewer, J. S., Souza, F. M., Callaway, R. M., and Durigan, G. (2018). Impact of invasive slash pine (Pinus elliottii) on groundcover vegetation at home and abroad. Biol. Invasions 20, 2807–2820. doi: 10.1007/s10530-018-1734-z

Brzostek, E. R., Fisher, J. B., and Phillips, R. P. (2014). Modeling the carbon cost of plant nitrogen acquisition: mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. J. Geophys. Res. Biogeosci. 119, 1684–1697. doi: 10.1002/2014jg002660

Cairney, J. W. (2011). Ectomycorrhizal fungi: the symbiotic route to the root for plants and decomposers drives soil carbon storage. Nature 476, 2001.00245.x

Champion, C., et al. (2018). Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol. Rev. Camb. Philos. Soc. 93, 284–305. doi: 10.1111/brv.12344

Chapela, I. H., Osher, L. J., Horton, T. R., and Henn, M. R. (2001). Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Ecol. Appl. 11, 380–388. doi: 10.1111/j.1461-0248.2001.01152.x

Crowther, T. W., Averill, C. L., Robin, C., Bueé, M., Courtecuisse, R., Garbaye, J., Suffert, F., et al. (2007). The fungal dimension of biological invasions. Trends Ecol. Evol. 22, 472–480. doi: 10.1016/j.tree.2007.04.005

Dickie, I. A., Bufford, J. L., Cobb, R. C., Desprez-Loustau, M.-L., Grelet, G., Hulme, P. E., et al. (2017). The emerging science of linked plant-fungal invasions. New Phytol. 214, 1314–1332. doi: 10.1111/nph.14657

Dickie, I. A., Ament, B. G. W., St John, R. A., Turner, B. L., Liang, C., Clay, K., Johnson, D. J., and Phillips, R. P. (2017). Belowground legacies of Pinus contorta invasion and removal result in multiple mechanisms of invasion meltdown. AoB Plants 6:plp056.

Dickie, I. A., Yeates, G. W., St John, R. A., Bonner, K. I., Orwin, K., et al. (2014). Belowground legacies of Pinus contorta invasion and removal result in multiple mechanisms of invasion meltdown. AoB Plants 6:plp056.
Teste, F. P., Laliberté, E., Lambers, H., Auer, Y., Kramer, S., and Kandeler, E. (2016). Mycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogression. Soil Biol. Biochem. 92, 119–132. doi: 10.1016/j.soilbio.2015.09.021

Thompson, J. N. (2013). Relentless Evolution. Chicago, IL: University of Chicago Press.

Tilman, D., Knops, J., Wedin, D., Reich, P., Ritchie, M., and Siemann, E. (1997). The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302. doi: 10.1126/science.277.5330.1300

Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B., and White, J. W. (2011). Multi-element regulation of the tropical forest carbon cycle. Front. Ecol. Environ. 9, 9–17. doi: 10.1890/100047

Treseder, K. K., and Lennon, J. T. (2015). Fungal traits that drive ecosystem dynamics on land. Microbiol. Mol. Biol. Rev. 79, 243–262. doi: 10.1128/mmbr.00001-15

Urcelay, C., Longo, S., Geml, J., Tecco, P. A., and Nouhra, E. (2017). Co-invasive exotic pines and their ectomycorrhizal symbionts show capabilities for wide distance and altitudinal range expansion. Fungal Ecol. 25, 50–58. doi: 10.1016/j.funeco.2016.11.002

van der Linde, S., Suz, L. M., Orme, C. D. L., Cox, F., Andreae, H., Asi, E., et al. (2018). Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248.

Vance, C. P., Uhde-Stone, C., and Allan, D. L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447.

Vellinga, E. C., Wolfe, B. E., and Pringle, A. (2009). Global patterns of ectomycorrhizal introductions. New Phytol. 181, 960–973.

Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarosik, V., Maron, J. L., et al. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708.

Walbert, K., Ramsfield, T. D., Ridgway, H. J., and Jones, E. E. (2010). Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel associations determined by molecular analysis. Mycorrhiza 20, 209–215.

Wang, G., Post, W. M., and Mayes, M. A. (2013). Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl. 23, 255–272.

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and Bonan, G. B. (2015). Representing life in the Earth system with soil microbial functional traits in the MIMICS model. Geosci. Model. Dev. 8, 1789–1808.

Wülcke, W., and Lilienfein, J. (2002). Biogeochemical consequences of the transformation of native Cerrado into Pinus caribaea plantations in Brazil. Plant Soil 238, 175–189.

Zak, D. R., Pellitteri, P. T., Argirioff, W. A., Castillo, B., James, T. Y., Nave, L. E., et al. (2019). Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 223, 33–39.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor declared a past co-authorship with one of the authors CA.

Copyright © 2020 Hoeksema, Averill, Bhatnagar, Brzostek, Buscardo, Chen, Liao, Nagy, Policelli, Ridgeway, Rojas and Vilgalys. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.