Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts (*Hyporthodus spp.*), one from the Mediterranean Sea and two from the western Atlantic.

Amira Chaabane Correspond., 1, Jean-Lou Justine 2, Delphine Gey 3, Micah D Bakenhaster 4, Lassad Neifar 1

1. Faculté des Sciences de Sfax, University of Sfax, Sfax, Tunisia
2. ISYEB, Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
3. UMS 2700 Service de Systématique moléculaire, Muséum national d’Histoire naturelle, Paris, France
4. Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, États-Unis

Corresponding Author: Amira Chaabane
Email address: amirachaabene@hotmail.fr

Little is known of the diversity of the monogenean parasites infesting deep-sea groupers and there is even less information available about their geographic distributions within the ranges of their hosts. To improve our understanding of these host-parasite relationships we conducted parasitological evaluations of the deep-water Haifa grouper *Hyporthodus haifensis* from the southern Mediterranean off Tunisia and Libya. We collected more than one species of diplectanid monogeneans from this host, but among these only one dominant species was abundant. This proved to be morphologically very similar to *Pseudorhabdosynochus sulamericanus* Santos, Buchmann & Gibson, 2000, a species originally described from the congeneric host *H. niveatus* off Brazil and also recorded from *H. niveatus* and *H. nigritus* off Florida. Here, we conducted a morphological comparison between newly collected specimens and those previously deposited in museum collections by other authors. Further, we used COI barcoding to ascertain the specific identity of the three host species to better elucidate the circumstances that might explain the unexpectedly broad distribution of *P. sulamericanus*. We assigned our specimens from *H. haifensis* to *P. sulamericanus* primarily on the basis of morphological characteristics of the sclerotized vagina. We also noted morphological characteristics of eastern and western Atlantic specimens that are not clearly described or not given in previous descriptions and so prepared a redescription of the species. We confirmed, by COI barcoding, that no sister-species relationships were evident among the three hosts of *P. sulamericanus*. Our observation that *P. sulamericanus* infects unrelated host species with putatively allopatric distributions was unexpected given the very limited dispersive capabilities and the high...
degree of host specificity common to members of *Pseudorhabdosynochus*. This transatlantic distribution raises questions with regard to phylogeography and assumptions about the allopatry of Atlantic grouper species from the Americas and Afro-Eurasia. Here, we propose some hypothetical explanations for our findings.
Pseudorhabdosynochus sulamericanus (Monogenea, Diplectanidae), a parasite of deep-sea groupers (Serranidae) occurs transatlantically on three congeneric hosts (Hyporthodus spp.), one from the Mediterranean Sea and two from the western Atlantic.

Amira Chaabane ¹*, Jean-Lou Justine ², Delphine Gey ³, Micah Bakenhaster ⁴, Lassad Neifar ¹

¹Laboratoire de Biodiversité et Écosystèmes Aquatiques, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3038, Sfax, Tunisia

²ISYE, Institut Systématique, Évolution, Biodiversité, UMR7205 (CNRS, EPHE, MNHN, UPMC), Muséum National d'Histoire Naturelle, Sorbonne Universités, CP51, 55 Rue Buffon, 75231 Paris cedex 05, France

³UMS 2700 Service de Systématique moléculaire, Muséum National d'Histoire Naturelle, CP 26, 57 Rue Cuvier, 75231 Paris cedex 05, France

⁴Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 Eighth Avenue Southeast, St. Petersburg, Florida 33701-5020, USA

* Corresponding author:

Amira Chaabane
Laboratoire de Biodiversité et Écosystèmes Aquatiques
Faculté des Sciences de Sfax
Université de Sfax
BP 1171
3038 Sfax
Tunisia
Abstract

Little is known of the diversity of the monogenean parasites infesting deep-sea groupers and there is even less information available about their geographic distributions within the ranges of their hosts. To improve our understanding of these host-parasite relationships we conducted parasitological evaluations of the deep-water Haifa grouper Hyporthodus haifensis from the southern Mediterranean off Tunisia and Libya. We collected more than one species of diplectanid monogeneans from this host, but among these only one dominant species was abundant. This proved to be morphologically very similar to Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000, a species originally described from the congeneric host H. niveatus off Brazil and also recorded from H. niveatus and H. nigritus off Florida. Here, we conducted a morphological comparison between newly collected specimens and those previously deposited in museum collections by other authors. Further, we used COI barcoding to ascertain the specific identity of the three host species to better elucidate the circumstances that might explain the unexpectedly broad distribution of P. sulamericanus. We assigned our specimens from H. haifensis to P. sulamericanus primarily on the basis of morphological characteristics of the sclerotized vagina. We also noted morphological characteristics of eastern and western Atlantic specimens that are not clearly described or not given in previous descriptions and so prepared a redescription of the species. We confirmed, by COI barcoding, that no sister-species relationships were evident among the three hosts of P. sulamericanus. Our observation that P. sulamericanus infects unrelated host species with putatively allopatric distributions was unexpected given the very limited dispersive capabilities and the high degree of host specificity common to members of Pseudorhabdosynochus. This transatlantic distribution raises questions with regard to phylogeography and assumptions about the allopatry of Atlantic grouper species from the Americas and Afro-Eurasia. Here, we propose some hypothetical explanations for our findings.
Introduction

Groupers (Serranidae, Epinephelinae) are known to harbour rich parasitic fauna (Cribb et al. 2002; Justine et al. 2010), including an exceptionally high number of diplectanid monogenean species belonging to the genus *Pseudorhabdosynochus* Yamaguti, 1958 (Hinsinger & Justine 2006; Justine 2005a; 2005b; 2007a; 2007b; 2008c; 2010; Justine et al. 2009; 2010; Justine & Sigura 2007; Kritsky et al. 2015; Neifar & Euzet 2007; Schoelinck & Justine 2011; Zeng & Yang 2007) and some species from other genera (Journo & Justine 2006; Justine 2007a; 2008a; Justine & Euzet 2006; Justine & Henry 2010; Sigura & Justine 2008). Most grouper species live in tropical seas, particularly in coral reefs, and are thus shallow-water species. In these coral reef groupers, extremely high biodiversity of monogeneans has been reported and most monogenean parasites are strictly specific, being found in only one species of grouper (Justine 2007a; Justine et al. 2010; Justine & Sigura 2007). Some groupers, however, are deep-sea fish (Heemstra & Randall 1993) and the parasites of these are poorly known. Recently, it was shown that two groupers from off New Caledonia shared the same species of *Pseudorhabdosynochus*. This was interpreted as the result of adaptation to deep sea by the monogenean because lower specificity helps transmission of the parasites in the deep-sea environment, where hosts are rarer than in coral seas (Schoelinck et al. 2012). This finding echoed previous results of lower biodiversity of monogeneans in deep-sea fish compared to surface fish (Rohde 1988). However, depth gradients of diversity of parasites are not well known (Rohde 2016).

In this paper, as part of a parasitological survey of groupers from the Mediterranean and the African Atlantic coast (Chaabane et al. 2015; Moravec et al. 2016a; 2016b; Neifar & Euzet 2007), we studied the monogenean fauna of a deep-sea grouper from the Mediterranean Sea that had not previously been examined for parasites, the Haifa grouper, *Hyporthodus haifensis* (Ben Tuvia). We expected to recover previously unreported or undescribed species of *Pseudorhabdosynochus* from this fish, which is uncommon and poorly studied (Craig et al. 2012). The single abundant species of
Pseudorhabdosynochus found on H. haifensis revealed unexpected similarities to published descriptions of a species from the American coast of the Atlantic Ocean. We examined museum specimens, and conclude herein, from a comparative morphological study, that the grouper H. haifensis harbours P. sulamericanus Santos, Buchmann & Gibson, 2000 in the Mediterranean, a species reported only from the coast off Brazil and Florida (Kritsky et al. 2015; Santos et al. 2000) on two other congeneric fish species, namely the snowy grouper H. niveatus (Valenciennes) and the Warsaw grouper H. nigritus (Holbrook). In contrast to these two species, H. haifensis is not known to occur in the western Atlantic (Froese & Pauly 2016; Heemstra & Randall 1993).

To interpret this unexpected finding, we ascertained that the three hosts H. haifensis, H. niveatus and H. nigritus were distinct species. To do this, we sequenced the COI gene, usually used for barcoding, of specimens of the two latter species from off the USA and of H. haifensis from the Mediterranean Sea off Tunisia and Libya. We tried to obtain specimens of the monogenean P. sulamericanus from the western Atlantic for a molecular analysis. Unfortunately, this was not possible and we could therefore not compare sequences with our COI sequences obtained from Mediterranean specimens. We also searched the monogenean literature for similar cases of transatlantic parasites. The present finding of the same monogenean species on different species of deep-sea fish on both sides of the Atlantic (South America vs Africa and the Mediterranean Sea) seems to be the first.

We propose hypotheses to explain this finding, some of which outline our very limited knowledge of the biology of deep-sea groupers.
Materials and Methods

Fish

Hyporthodus haifensis is a relatively rarely collected fish, and morphological differentiation from seemingly similar groupers is difficult (Craig et al. 2012; Heemstra & Randall 1993). Specimens of *Hyporthodus haifensis* were obtained from the fish markets of Sfax, Tunisia and Tripoli, Libya (Table 1). Field identifications of these specimens were made by the authors (AC & LN) with usual keys (Craig et al. 2012; Heemstra & Randall 1993; Louisy 2015). One of our fish (Hh4; Table 1) was transported frozen from Tunisia to Paris where its identification was confirmed by thorough morphological analysis (Dr. Bernard Séret, MNHN-IRD, personal communication), and it was deposited as a voucher specimen in the ichthyological collection of the MNHN (registration number MNHN 2015-0242). For nine specimens of *H. nigritus* and eight specimens of *H. niveatus* (Table 2), tissue samples (fin clips) were collected from Gulf of Mexico commercial or recreational fisheries catches during routine fish population monitoring surveys conducted by the Florida Fish and Wildlife Conservation Commission (FWC); IDs in Table 2 correspond to collection numbers of FWC. Morphological identifications of Florida specimens were made by trained FWC fisheries biologists. Fish nomenclature follows FishBase (Froese & Pauly 2016).

Molecular barcoding of fish

We used the QIAamp DNA Mini Kit (Qiagen), per the manufacturer’s instructions, to perform DNA extraction. The 5’ region of the cytochrome oxidase I (COI) mitochondrial gene was amplified with the primers FishF1 (5’-TCAACCAACCACAAAGACATTGGCAC-3’) and FishR1 (5’-TAGACTTCTGGGTGCAAGAATCTGAC-3’) (Ward et al. 2005). PCR reactions were performed in 20 μl, containing 1 ng of DNA, 1× CoralLoad PCR buffer, 3 mM MgCl₂, 66 μM of each dNTP, 0.15 μM of each
primer, and 0.5 units of Taq DNA polymerase (Qiagen). The amplification protocol was 4 min at 94°C, followed by 40 cycles at 94°C for 30 sec, 48°C for 40 sec, and 72°C for 50 sec, with a final extension at 72°C for 7 min. PCR products were purified (Ampure XP Kit, Beckman Coulter) and sequenced in both directions on a 3730x1 DNA Analyzer 96-capillary sequencer (Applied Biosystems). We used CodonCode Aligner version 3.7.1 software (CodonCode Corporation, Dedham, MA, USA) to edit sequences, which were 670 bp in length, compared them to the GenBank database content with BLAST, and deposited them in GenBank under accession numbers KT023566–KT023568 and KU739501–KU739517. Species identification was confirmed with the BOLD identification engine (Ratnasingham & Hebert 2007).

Monogeneans

The host specimens of *H. haifensis* were not in a perfect state of freshness and the monogeneans were not alive when they were collected. We used seawater to rinse parasites from host gills into Petri dishes, and we further isolated them under a stereomicroscope with incident lighting to prepare them for additional microscopic evaluation. The majority of specimens were mounted in Berlese fluid (hereafter designated ‘b’), a technique which flattens the specimens. A few unflattened monogeneans were dehydrated in an ethanol series, stained with carmine, cleared with clove oil and mounted in Canada balsam (hereafter ‘uc’).

Most monogeneans collected from *H. haifensis* belonged to a single, abundant, species of *Pseudorhabdosynochus* (Table 1); the very few specimens from other species are noted but not otherwise considered here.

For illustration of parasites we used an Olympus BH2 microscope equipped with drawing apparatus and differential interference contrast (DIC) optics. The measurements of sclerotised parts, all in micrometres, were taken with the help of a custom-made transparent ruler and are expressed as the range followed in parentheses by the mean, the standard deviation when n≥29, and (n) the number of
observations; measurements were taken as in Figure 1 in Chaabane et al. 2015; for V-shaped ventral bars, measurements were taken as in Figure 5D. The measurements of the right-hand haptoral hard-parts and left-hand equivalents were pooled. Because measured lengths may vary as a function of how specimens are prepared and the degree to which they are flattened (Justine 2005b), here they are given separately for specimens prepared, respectively, in Berlese (b) and carmine (uc). The terminology for different parts of the male quadriloculate organ and the vagina is that of Justine (2007a). We scanned drawings and used Adobe Illustrator software (version CS5) to refine lines and in some cases to add colour fill to better graphically differentiate structural elements. Museum abbreviations used are as follows: MNHN, Muséum National d’Histoire Naturelle, Paris; BMNH, Natural History Museum, London.

COI sequences of monogeneans

We used a QIAmp DNA Micro Kit (Qiagen) to extract DNA from a whole monogenean specimen (from fish Hh4; Table 1). The specific primers JB3 (=COI-ASmit1) (forward 5′-TTTTTTGGGCATCCTGAGGTTTAT-3′) and JB4.5 (=COI-ASmit2) (reverse 5′-TAAAGAAAGAACATAATGAAAATG-3′) were used to amplify a fragment of 424 bp of the COI gene (Bowles et al. 1995; Littlewood et al. 1997). PCR reaction was performed in 20 μl, containing 1 ng of DNA, 1× CoralLoad PCR buffer, 3 mM MgCl₂, 0.25 mM dNTP, 0.15 μM of each primer, and 0.5 units of Taq DNA polymerase (Qiagen). Thermocycles consisted of an initial denaturation step at 94°C for 2 min, followed by 37 cycles of denaturation at 94°C for 30 sec, annealing at 48°C for 40 sec, and extension at 72°C for 50 sec. The final extension was conducted at 72°C for 5 min. Sequences were edited with CodonCode Aligner software version 3.7.1 (CodonCode Corporation, Dedham, MA, USA), compared to the GenBank database content with BLAST, and deposited in GenBank under accession number KT023569.
Trees and distances

A tree was constructed from all available COI sequences of species of the genus *Hyporthodus*, including sequences already available in GenBank and our new sequences. The tree was inferred using Maximum Likelihood method. The best evolutionary model for the data set was estimated in MEGA7 (Kumar et al. 2016) under the Bayesian Information Criterion (BIC) to be Hasegawa-Kishino-Yano model (Hasegawa et al. 1985) with a discrete Gamma distribution (HKY+G). The tree was computed in MEGA7, with 100 bootstrap replications. A tree inferred from the same data, using the Neighbour-Joining method (Saitou & Nei 1987) and evolutionary distances computed using the Kimura-2 parameter (Kimura 1980) with 1000 bootstrap replicates, was also constructed with MEGA7. Genetic distances (Kimura-2 parameter distance) were estimated with MEGA7. All codon positions were used.
Results

Identification of fish hosts, Haifa grouper

When we began our study, no sequence of *H. haifensis* was available in GenBank, and identification of our first COI sequences via BOLD yielded confusing results, probably because of sequences in the database derived from misidentified specimens. We obtained COI sequences for one specimen from Tunisia (now deposited in the MNHN collections) and two additional specimens from Libya, and the three sequences were identical or very similar (1 bp difference); sequences were also identical or very similar (1 bp difference) to three sequences of *H. haifensis* (KJ709537, KJ709538 and KJ709539) recently added to GenBank (Landi et al. 2014), from off Sicily, i.e. geographically close to Tunisia and Western Libya. We conclude with certainty, from identical COI sequences and convergent morphological identification, that our fish specimens belong to the species *H. haifensis*.

Comparison of barcode sequences from *Hyporthodus* species

We obtained 8 and 9 COI new sequences from *H. niveatus* and *H. nigritus*, respectively. In both cases, these sequences were similar to or identical with sequences deposited under the same names in GenBank. A ML analysis (Figure 1) produced distinct branches for the species *H. octofasciatus*, *H. haifensis*, *H. acanthistius*, *H. niveatus*, *H. nigritus* and *H. flavolimbatus; H. ergastularius* and *H. septemfasciatus* were not well resolved, but this might be due to misidentification of some sequences, as previously suggested (Schoelinck et al. 2014); a NJ bootstrap analysis produced the same tree topology (Figure 1). With the exception of the two latter species, all species, and especially *H. haifensis*, *H. nigritus* and *H. niveatus*, were each in separate clades with high support (100%). Specimens of *H. nigritus* and of *H. niveatus* were grouped with specimens previously identified under the same names (a single sequence in the case of *H. nigritus*, 6 sequences in the case of *H. niveatus*). *Hyporthodus haifensis*
was not closely related neither to *H. niveatus* (5.6-6% distance) nor to *H. nigritus* (6.8-7% distance), and the three species were not sister-species (Figure 1); however, precise phylogenetic relationships between the three species could not be determined because of very low support of several nodes in the phylogenetic analysis.

Morphology of monogeneans: *Pseudorhabdosynochus sulamericanus* Santos, Buchmann & Gibson, 2000

- **Taxonomic summary**
 - Synonym: *Pseudorhabdosynochus* sp. of Chaabane et al., 2015.
 - Type-host: *Hyporthodus niveatus* (Valenciennes, 1828).
 - Type-locality: Off Brazil (Santos et al. 2000).
 - Other hosts: *Hyporthodus nigritus* (Holbrook, 1855) (Kritsky et al. 2015); *Hyporthodus haifensis* (Ben-Tuvia, 1953) (this paper).
 - Other localities: Off Florida (Kritsky et al. 2015); off Sfax, Tunisia, and Tripoli, Libya (this paper).
 - Infection site: Gill lamellae.
 - Prevalence: In our specimens from Tunisia and Libya, 4/4 (100 %), see Table 1.
 - Material examined: 343 voucher specimens from *H. haifensis* from off Tunisia and Libya (Table 1), MNHN HEL555; 2 paratypes from *H. niveatus* off Brazil (BMNH 1999.1.6.1-3); 2 voucher specimens from *H. niveatus* off Florida (MNHN HEL459, HEL460).

- **Redescription (Figures 2-6)**
 - Redescription (based on 36 specimens in Berlese and 18 unflattened specimens in carmine from *H. haifensis* from off Tunisia and Libya; for measurements of other specimens, see Table 3). Adult length uc
634 (500–800, n=14), b 727 (350–980, n=16) long, including haptor; maximum width uc 182 (100–270, n=14), b 230 (115–310, n=16) at level of ovary (Fig. 2A). Tegument scaly in posterior region (Fig. 6F). Anterior region with 3 pairs of head organs and 2 pairs of dorsal eye-spots, distance between outer margins of anterior eye-spots uc 26 (20–29, n=7), b 30 (25–38, n=5), of posterior eye-spots uc 31 (18–39, n=12), b 34 (28–42, n=7). Pharynx medial, subspherical. Oesophagus very short or absent. Two simple lateral intestinal caeca not united posteriorly. Haptoral peduncle present. Haptor trapezoidal, width uc 181 (150–200, n=8), b 208 (180–240, n=6). Dorsal squamodisc, length uc 84 (75–100, n=10), b 99 (85–120, n=13), width uc 75 (59–90, n=10), b 104 (70–122, n=13) (Fig. 6D). Ventral squamodisc, length uc 89 (73–150, n=11), width uc 89 (73–150, n=11), b 100 (78–120, n=15) (Figs 5F, 6C). Squamodiscs with 15–16 concentric rows of rodlets; 1 innermost row u-shaped. Rodlets with visible spurs (‘éperons’) (Figs 6C, D). Ventral anchors with handle and distinct guard, outer length uc 44 (40–48, n=6), b 49±3.1 (40–54, n=58), inner length uc 41 (30–47, n=4), b 44±3.1 (32–50, n=54) (Fig. 5B, 6E). Dorsal anchors with indistinct guard, outer length uc 41 (35–45, n=7), b 44±2.6 (36–48, n=51), inner length uc 29 (25–31, n=3), b 29±2.8 (24–36, n=33) (Fig. 5C, 6E). Lateral dorsal bars, with flattened medial end, length uc 60±2.3 (55–65, n=29), b 82±9.3 (60–115, n=67), maximum width uc 22 ±3.2 (15–28, n=29), b 30±4.4 (18–38, n=67) (Figs 5E, 6E). Ventral bar long, sometimes V-shaped, with constricted median portion, length uc 93 (82–120, n=12), b 118±11 (88–135, n=29), maximum width, uc 17 (13–28, n=12), b 20±4.2 (13–26, n=30) (Figs 5A, D, 6E). Testis subspherical, posterior, intercaecal. Male copulatory organ quadriloculate, first (anterior) chamber as sclerotised as the three others; fourth chamber forming short cone, prolonged by thin sclerotised tube and filament (Figs 2B, C, 6A, B). Inner length uc 49 (45–59, n=17), b 71±6.5 (56–82, n=32). Cone length uc 5 (5–7, n=17), b 5±1.1 (4–10, n=31). Tube length uc 13 (10–17, n=16), b 14±1.1 (12–17, n=30); tube diameter uc 4 (3–4, n=16), b 4±0.6 (3–5, n=31). Filament with extremity often bifid, length uc 3 (2.5–5, n=15), b 4±1.7 (0–7, n=29).
Vitelline follicles lateral, coextensive with intestinal caeca and contiguous posteriorly to testis. Ovary on right side, looping dorsoventrally around right intestinal caecum. Eggs observed within genital ducts reniform, with thickest shell at proximal pole, polar filament absent, length b 120–128 (n=2), width b 40–43 (n=2).

Sclerotized vagina consists of slightly sclerotised funnel-shaped trumpet, followed by short primary canal with thick wall (Fig. 2D, 3, 4). Primary canal surrounded by additional sclerotised material in its proximal part, which obscures internal relationships. Posterior end of primary canal directed to primary chamber, junction between two structures visible (in specimens from *H. niveatus*) or not (in specimens from *H. haifensis*). Primary chamber small, pear-shaped. Secondary canal (junction between primary chamber and secondary chamber) not seen. Secondary chamber spherical, heavily sclerotised. Accessory structure with internal canal, looping twice, inserted on secondary chamber. Total length of sclerotised vagina uc 28 (23–31, n=4), b 35±2.9 (30–42, n=35). Diameter of secondary chamber uc 6 (6–7, n=4), b 5±0.5 (4–6, n=36). In specimens from *Hyporthodus niveatus*, the structure is identical but the continuity from the primary canal to the primary chamber could be followed, in contrast with specimens from *H. haifensis*.

Remarks on morphology

Most authors have emphasized the importance of the morphological structure of the sclerotised vagina for *Pseudorhabdosynochus* species identification (Chaabane et al. 2015; Justine 2005a; 2005b; 2007a; 2007b; 2008c; 2010; Justine & Sigura 2007; Knoff et al. 2015; Mendoza-Franco et al. 2011; Neifar & Euzet 2007), although the quadriloculate organ and the hard parts of the host attachment apparatus (haptor) including the squamodisc are additional characters for species diagnosis. Several *Pseudorhabdosynochus* species have in common with *P. sulamericanus* the following vaginal characters: a wide and visible trumpet; diameter of secondary chamber clearly larger than that
of primary chamber. These species are: *P. dolicocolpos* Neifar & Euzet, 2007, *P. enitsuji* Neifar & Euzet, 2007, *P. morrhua* Justine, 2008, and *P. firmicoleatus* Kritsky, Bakenhaster & Adams, 2015,

- *P. dolicocolpos* (from *Mycteroperca costae* off Tunisia and Senegal) has a long, coiled thin-walled primary canal (vs short, straight and sclerotised in *P. sulamericanus*); although the structure is similar, the general shape of the sclerotised vagina is very different. In addition, its male copulatory organ has a long tube (35-45 vs 10-17) (Neifar & Euzet 2007).

- *P. enitsuji* (from *M. costae* off Tunisia and Senegal) has a less conspicuous trumpet and a well-visible primary canal. In addition, its male copulatory organ has a long tube (55-70 vs 10-17) (Neifar & Euzet 2007).

- *P. morrhua* Justine, 2008 (from *M. morrhua* off New Caledonia) has a less conspicuous trumpet and a thin-walled primary canal (vs sclerotised). In addition, the anterior chamber of its male copulatory organ has a very thin wall (vs as sclerotised as other chambers in *P. sulamericanus*) (Justine 2008c).

- *P. firmicoleatus* (from *H. flavolimbatus*, type-host, and *H. niveatus*, both off Florida) was considered as closely resembling *P. sulamericanus* (Kritsky et al. 2015). However, Kritsky et al. (2015) enumerated several morphological differences between the two species: absence of additional structure around the sclerotised vagina in *P. firmicoleatus* (vs present in *P. sulamericanus*), anchor morphology, tegumental scales (lacking in *P. firmicoleatus*) and number of rows of rodlets in the squamodisc (12 (11-13) in *P. firmicoleatus* vs 15 (14-17) in *P. sulamericanus*).

In none of these three species is there additional sclerotised material around the primary canal of the sclerotised vagina, as in *P. sulamericanus*. In *P. sulamericanus*, the male quadriloculate organ has the usual structure found in species of *Pseudorhabdosynochus*, but a minor difference can be detected at its distal extremity, i.e. a thin and short filament with bifid extremity. However, this detail itself could not be considered alone as a differential character for the species because it is variable; it was not mentioned in the original description or redescription (Kritsky et al. 2015; Santos et al. 2000).
Pseudorhabdosynochus sulamericanus has an exceptional vaginal structure. In most *Pseudorhabdosynochus* species, there is a general pattern in which the continuity of the lumen can be followed from trumpet to secondary chamber through primary canal, primary chamber and secondary chamber (Justine 2007a). This continuity is likely to correspond to the complex journey of inseminated sperm through the female organ, from the entrance (trumpet) to the secondary chamber which exits into a soft tube connected to the oötype (Justine 2009). In specimens of *P. sulamericanus* from *H.* *haifensis*, we could discern neither the continuity between the primary canal and the primary chamber, nor the continuity from the primary chamber to the secondary chamber through the secondary canal. This is probably due to the presence of the additional sclerotised material which obscures vision. However, in specimens from *H. niveatus*, the primary canal – primary chamber continuity could be seen, but we evaluated far fewer of these specimens and so cannot be sure about the range of morphological variability in this structure. The additional sclerotised material is visible in the drawings of the original description and probably mentioned as “enclosed in muscular, funnel-shaped organ” (Santos et al. 2000); it is mentioned in its redescription as “surrounded by variable small sclerites” (Kritsky et al. 2015); none of these authors used a DIC microscope which provides a better resolution of the hollow sclerotised organs.

The only other species of *Pseudorhabdosynochus* found on species of *Hyporthodus* are *P. querni* (Yamaguti, 1968) Kritsky & Beverley-Burton, 1986 from *H. quernus* off Hawaii, and *P. firmicoleatus* from *H. flavolimbatus* and *H. niveatus*, both off Florida. *Pseudorhabdosynochus querni* has a vaginal structure very different from that of *P. sulamericanus* (Yamaguti 1968; Yang et al. 2005); *P. firmicoleatus* has a somewhat similar vaginal structure (Kritsky et al. 2015) but can also be distinguished by other characteristics (see above).
We obtained COI sequences of *P. sulamericanus* from *H. haifensis* from off Tunisia and Libya. The closest sequence in GenBank according to BLAST was from *P. cyanopodus* Sigura & Justine, 2008 (Schoelinck et al. 2012), a parasite from *Epinephelus* spp. in the South Pacific. The sequences differed by 17.6% (Kimura-2 parameter distance). Since no sequence of *P. sulamericanus* from the Americas was available, no further comparison was possible.
Discussion

Based on our observations on specimens collected in the Mediterranean and museum specimens, the same species, *P. sulamericanus*, is found on different species of groupers, one, *Hyporthodus haifensis*, in the eastern Atlantic (including the Mediterranean Sea) and two, *H. niveatus* and *H. nigritus*, in the western Atlantic (including the Gulf of Mexico) (Figure 7). These congeneric fishes are all considered deep-water species, and as adults none of them typically ranges into water shallower than 55 m (Froese & Pauly 2016), a trait making them logistically difficult to observe and collect. *Hyporthodus* Gill is a genus that was recently resurrected on the basis of molecular data (Craig & Hastings 2007), for a monophyletic group of deep-groupers previously classified within *Epinephelus* Bloch; morphological differentiation of this genus is possible from a unique arrangement of the coracoid and cleithrum and position of pelvic fins (Craig et al. 2012) and the monophyly of the genus was confirmed in a recent molecular study (Schoelinck et al. 2014). Our phylogenetic analysis, based on COI sequences showed that the three species *H. haifensis*, *H. niveatus* and *H. nigritus* are distinct, with distances between species ranging 5.6-7%, whereas intraspecific COI distances in groupers are reported as 0.7-4% (Alcantara & Yambot 2014). In our analysis, *H. haifensis* is not closely related to *H. niveatus* and *H. nigritus*, and, in the context of available COI sequences and low support for several nodes in our analysis, none of the three species is sister-species of one of the others (Figure 1), so phylogenetic similarity does not explain why they would share a putatively host-specific parasite.

It is intriguing that the same species of *Pseudorhabdosynochus* was found in different species of fish from two sides of the Atlantic. More than 80 species of *Pseudorhabdosynochus* are known; they are generally extremely species-specific, i.e. a species is found only on one species of host (Justine 2005a; 2005b; 2007a; 2007b; 2008b; 2008c; Justine et al. 2010; Justine & Sigura 2007; Sigura & Justine 2008); however, Schoelinck et al. (2012) recently demonstrated, on morphological and molecular bases, that *P. cyanopodus* occurs on two sympatric species of deep-sea groupers that inhabit the outer slope off the
barrier reef of New Caledonia, South Pacific. These are *Epinephelus cyanopodus* and *E. chlorostigma* (Schoelinck et al. 2012). Those authors hypothesized that low specificity was an adaptation of *P. cyanopodus* to deep-sea conditions, where hosts are rare and separated by wide areas, and that infesting two species of hosts helps in perpetuating the parasite species (Schoelinck et al. 2012). This hypothesis was coherent with the observation that the species richness of gill monogeneans is five times higher in surface fish than in deep-sea fish (Rohde 1988). For *P. sulamericanus*, which parasitizes three species of *Hyporthodus* that are deep-sea, demersal groupers, the same hypothesis could be proposed for the origin of its low specificity. However, a striking difference between *P. sulamericanus* and *P. cyanopodus* is that the hosts of the former are not sympatric, but widely separated by the Atlantic Ocean.

Two other cases of trans-Atlantic species of *Pseudorhabdosynochus* are found in the literature: they are *P. americanus* (Price, 1937) Kritsky & Beverley-Burton, 1986 and *P. beverleyburtonae* (Oliver, 1984) Kritsky & Beverley-Burton, 1986.

In the case of *P. americanus*, Kritsky et al. (2015) unambiguously demonstrated that previous records on the Eastern side were erroneous and/or based on inadequate synonymies, and concluded that *P. americanus* was found only on its type-host, the atlantic goliath grouper *E. itajara*, on the Western side of the Atlantic. Although this grouper is a trans-Atlantic species, no record of *P. americanus* is known from fish caught on the Eastern side.

Pseudorhabdosynochus beverleyburtonae (Oliver 1984; 1987; 1992; Santos et al. 2000) was first recorded from the Mediterranean Sea (under various synonymous names, see Kritsky et al., 2015) on its type-host the dusky grouper *Mycteroperca marginata* (synonym *Epinephelus marginatus*), found in several localities in the Mediterranean (references in Kritsky et al., 2015) on the same host, then found off Brazil (Kritsky et al. 2015; Roumbedakis et al. 2013; Santos et al. 2000), each time on the same host species. Kritsky et al., 2015 compared specimens from both sides of the Atlantic, did not find any
morphological features that distinguished specimens from these localities, and concluded, as did Santos et al. (2000), that the specimens were conspecific. In contrast to our findings for *P. sulamericanus*, in that case the hosts were also conspecific (*M. marginata*). Including *E. itajara* and *M. marginata*, there are four species of grouper with trans-Atlantic distribution; the others being the rock hind, *E. adscensionis*, and the Atlantic creolefish, *Paranthias furcifer*. *Epinephelus adscensionis* harbours *P. monaensis* Dyer et al., 1994 and *P. williamsi* Kritsky, Bakenhaster & Adams, 2015, both described from specimens collected off Puerto Rico (Dyer et al. 1994; Kritsky et al. 2015); no record of these species is known from the Atlantic coast of Afro-Eurasia. Kritsky et al. (2015) pointed out that the type-host of *P. bocquetae* (Oliver & Paperna, 1984) Kritsky & Beverley-Burton, 1986, a species described from the Red Sea and allegedly from this fish, could not be *E. adscensionis*. Therefore, there is no valid record of *Pseudorhabdosynochus* species from *E. adscensionis* on the Eastern side of the Atlantic. The Atlantic creolefish, *Paranthias furcifer* is not known as a host of any *Pseudorhabdosynochus* species (Kritsky et al. 2015).

We searched the literature for records of the same species of monogeneans on both sides of the Atlantic in tropical and warm temperate waters (Table 4). Basically, we used the recent and comprehensive list of monogeneans from South American (Cohen et al. 2013) and searched the literature for mentions of the same species on the Eurafrican coast. We did not consider fish from subpolar or polar waters because they represent distinct northern and southern populations that are each, respectively, circumglobally homogenous (Froese & Pauly 2016). Curiously, we found no more than a dozen species, although more than 600 fish monogenean species were listed from South America alone (Cohen et al. 2013). We noted that no molecular work was undertaken for any of these cases of trans-Atlantic monogeneans. As could be expected, most cases (8 species) concern parasites of pelagic fish with wide distribution, such as Scombridae (tunas) and Clupeidae (sardines); some of these monogeneans were found, not only on both sides of the Atlantic, but also in the Pacific (Table 4). Of
these cases, 7 are polyopisthocotylean monogeneans, a group of large species associated with these fish families, and which often show wide host specificity; but in at least two of these polyopisthocotylean species, the conspecificity of the American and European forms have been questioned (notes under Table 4). One case is a capsalid (monopisthocotylean) from tunas. Three cases concern sparid fish (Sparidae); two are polyopisthocotylean species for which specimens from both sides of the Atlantic have been comparatively studied (Santos et al. 1996). The third case is a diplodanid, Lamellodiscus baeri Oliver, 1974, from Pagrus pagrus in the Mediterranean; since no morphological data are available for its mention in South America (Soares et al. 2014), we consider that this needs verification. Finally, two cases are diplodanids from groupers: P. beverleyburtonae, which, based on comparative morphological studies, seems be present on both sides of the Atlantic on the same fish, the Dusky grouper (see above); the other is P. sulamericanus, the subject of our study. P sulamericanus is thus unique in that it is the single monopisthocotylean monogenean found on both sides of the Atlantic (The Americas and central Afro-Eurasia) on different species of fish.

It thus appears, rather logically, that the South Atlantic Ocean acts as a barrier to monogenean parasites of demersal fish; this barrier should not concern pelagic fish, which might cross the Ocean, but even these cases are not numerous.

The question remains how the same species of parasite, P. sulamericanus, with very low dispersion abilities as most monogeneans, can be found on different species of fish separated by a wide ocean. We considered several hypotheses. (Hypothesis a) Pseudorhabdosynochus sulamericanus was a parasite of the common ancestor of the three grouper species, and the descending parasite species underwent little or no morphological differentiation since the host species were separated; this hypothesis is hampered by the fact that the three groupers, H. haifensis, H. nigritus and H. niveatus, are not sister-species in our phylogenetic analysis. It might be argued, however, that this analysis was based only on COI sequences and that low support was found for several nodes. (Hypothesis b) The three
species of *Hyporthodus* from the American (*H. nigritus* and *H. niveatus*) and African (*H. haifensis*) sides of the Atlantic, currently have unexpected opportunities to exchange parasites, in an unknown zone of sympatry, or had such opportunities in a recent past. Studies of coral reef groupers have shown that infection of adult fish and exchange of monogeneans between different host species occur during spawning aggregations (Sigura & Justine 2008). We do not suggest that such spawning aggregations, uniting species from both sides of the Ocean, exist for the Atlantic species of *Hyporthodus*, but we remark that our knowledge of the behaviour and precise distribution of rare deep-sea groupers is certainly far from exhaustive, thus making the second hypothesis at least plausible.

It did not escape our attention that a molecular study of parasites would provide additional data valuable to this study; unfortunately, fresh specimens of *P. sulamericanus* from the western side of the Atlantic were not available, in spite of our efforts to obtain them from colleagues, thus molecular comparisons of American and Afro-Eurasian material were not possible. A possibility thus remains (Hypothesis c) that *P. sulamericanus* is in fact a cryptic species, with one species in the Mediterranean, on *H. haifensis*, and one (or more) species in the western Atlantic on *H. niveatus* and *H. nigritus*. We could not eliminate this hypothesis; however, we are reasonably confident that morphological similarities of material from both sides of the Atlantic, particularly the shared characteristic structure of the sclerotised vagina, provide strong enough evidence to support our conclusion that all specimens reported here belong to *P. sulamericanus*.

Acknowledgements

Bernard Séret (IRD-MNHN) kindly examined a fish specimen and prepared it for deposition in the MNHN collections, and provided valuable advice. Eileen Harris (NHM, London) kindly helped with NHM specimens. Wiem Boussellaa (FSS, Tunisia) provided a fish specimen. Delane Kritsky (Idaho State University, USA) kindly authorised us to use data from a paper when it was in press. Tissue samples from
Gulf of Mexico groupers were collected by fisheries biologists of the Florida Fish and Wildlife Conservation Commission (FWC), and of them we are particularly grateful to Lew Bullock and Chris Bradshaw. Samantha Gray (FWC) initially processed and catalogued Florida tissue samples and data. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US government or any of its agencies.
References

Alcantara SG, and Yambot AV. 2014. DNA barcoding of commercially important grouper species (Perciformes, Serranidae) in the Philippines. *Mitochondrial DNA*:1-9.

Amine F, and Euzet L. 2005. Deux espèces nouvelles du genre Lamellodiscus Johnston & Tiegs, 1922 (Monogenea: Diplectanidae) parasites de Sparidae (Teleostei) des côtes de l’Algérie. *Systematic Parasitology* 60:187-196.

Amant J, Blair D, and McManus DP. 1995. A molecular phylogeny of the human schistosomes. *Molecular Phylogenetics and Evolution* 4:103-109.

Bowles J, Neifar L, and Justine J-L. 2015. *Pseudorhabdosynochus regius* n. sp. (Monogenea, Diplectanidae) from the mottled grouper Mycteroperca rubra (Teleostei) in the Mediterranean Sea and Eastern Atlantic. *Parasite* 22:9.

Cohen SC, Justo MCN, and Kohn A. 2013. *South American Monogenoidea parasites of Fishes, Amphibians and Reptiles*: Published by the Authors.

Craig MT, Sadovy de Mitcheson YJ, and Heemstra PC. 2012. *Groupers of the world: a field and market guide*. Grahamstown: NISC.

Cribb TH, Bray RA, Wright T, and Pichelin S. 2002. The trematodes of groupers (Serranidae: Epinephelinae): knowledge, nature and evolution. *Parasitology* 124:S23-S42.

Dyer WG, Williams EH, and Bunkley-Williams L. 1994. *Pseudorhabdosynochus monaensis* n. sp. (Monogenea: Diplectanidae) on Rock Hind from Mona Island, Puerto Rico. *Journal of Aquatic Animal Health* 6:59-63.

Euzet L, and Oliver G. 1965. Diplectanidae (Monogenea) de Téléostéens de la Méditerranée occidentale. II. Parasites d’*Epinephelus gigas* (Brünnich, 1768). *Annales de Parasitologie Humaine et Comparee* 40:517-523.

Froese R, and Pauly D. 2016. FishBase. World Wide Web electronic publication. www.fishbase.org.
474 Gibson DI. 2016. Monogenea. Accessed through: World Register of Marine Species at
475 http://www.marinespecies.org/aphia.php?p=taxdetails&id=798 (accessed 2013-05-14.
476 Hasegawa M, Kishino H, and Yano T-a. 1985. Dating of the human-ape splitting by a molecular clock of
477 mitochondrial DNA. Journal of Molecular Evolution 22:160-174.
478 Hayward CJ, and Rohde K. 1999a. Revision of the monogenean family Gotocotylidae
479 (Polyopisthocotylea). Invertebrate Systematics 13:425-460.
480 Hayward CJ, and Rohde K. 1999b. Revision of the monogenean subfamily Neothoracocotylinae Lebedev,
481 1969 (Polyopisthocotylea: Thoracocotylidae). Systematic Parasitology 44:183-191.
482 Heemstra PC, and Randall JE. 1993. FAO Species Catalogue. Vol. 16. Groupers of the world (Family
483 Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper,
484 rockcod, hind, coral grouper and lyretail species known to date. Rome: FAO.
485 Hinsinger DD, and Justine J-L. 2006. The 'Pseudorhabdosynochus cupatus group' (Monogenea:
486 Diplectanidae) on Epinephelus fasciatus, E. howlandi, E. rivulatus and E. merra (Perciformes:
487 Serranidae) off New Caledonia, with descriptions of Pseudorhabdosynochus cyathus n. sp. and P.
488 calathus n. sp. Systematic Parasitology 64:69-90.
489 Journo C, and Justine J-L. 2006. Laticola dae n. sp (Monogenea: Diplectanidae) from Epinephelus
490 maculatus (Perciformes: Serranidae) off New Caledonia. Systematic Parasitology 64:173-180.
491 Justine J-L. 2005a. Pseudorhabdosynochus hirundineus n. sp. (Monogenea: Diplectanidae) from Variola
492 louti (Perciformes: Serranidae) off New Caledonia. Systematic Parasitology 62:39-45.
493 Justine J-L. 2005b. Species of Pseudorhabdosynochus Yamaguti, 1958 (Monogenea: Diplectanidae) from
494 Epinephelus fasciatus and E. merra (Perciformes: Serranidae) off New Caledonia and other parts
495 of the Indo-Pacific Ocean, with a comparison of measurements of specimens prepared using
496 different methods, and a description of P. caledonicus n. sp. Systematic Parasitology 62:1-37.
497 Justine J-L. 2007a. Parasite biodiversity in a coral reef fish: twelve species of monogeneans on the gills of
498 the grouper Epinephelus maculatus (Perciformes: Serranidae) off New Caledonia, with a
499 description of eight new species of Pseudorhabdosynochus (Monogenea: Diplectanidae).
500 Systematic Parasitology 66:81-129.
501 Justine J-L. 2007b. Pseudorhabdosynochus argus n. sp. (Monogenea: Diplectanidae) from Cephalopholis
502 argus, P. minutus n. sp. and Diplectanum nanus n. sp. from C. sonnerati and other monogeneans
from *Cephalopholis* spp. (Perciformes: Serranidae) off Australia and New Caledonia. *Systematic Parasitology* 68:195-215.

Justine J-L. 2008a. *Diplectanum parvus* sp. nov. (Monogenea, Diplectanidae) from *Cephalopholis urodeta* (Perciformes, Serranidae) off New Caledonia. *Acta Parasitologica* 53:127-132.

Justine J-L. 2008b. *Pseudorhabdosynochus inversus* sp. nov. (Monogenea, Diplectanidae) from the halfmoon grouper *Epinephelus rivulatus* (Perciformes, Serranidae) off New Caledonia. *Acta Parasitologica* 53:339-343.

Justine J-L. 2008c. Two new species of *Pseudorhabdosynochus* Yamaguti, 1958 (Monogenea: Diplectanidae) from the deep-sea grouper *Epinephelus morrhua* (Val.) (Perciformes: Serranidae) off New Caledonia. *Systematic Parasitology* 71:145-158.

Justine J-L. 2009. A redescription of *Pseudorhabdosynochus epinepheli* (Yamaguti, 1938), the type-species of *Pseudorhabdosynochus* Yamaguti, 1958 (Monogenea: Diplectanidae), and the description of *P. satyui* n. sp. from *Epinephelus akaara* off Japan. *Systematic Parasitology* 72:27-55.

Justine J-L. 2010. Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia. *Belgian Journal of Zoology* 140 (Suppl.):155-190.

Justine J-L, Beveridge I, Boxshall GA, Bray RA, Moravec F, Trilles J-P, and Whittington ID. 2010. An annotated list of parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected in groupers (Serranidae, Epinephelinae) in New Caledonia emphasizes parasite biodiversity in coral reef fish. *Folia Parasitologica* 57:237-262.

Justine J-L, Dupoux C, and Cribb TH. 2009. Resolution of the discrepant host-specificity of *Pseudorhabdosynochus* species (Monogenea, Diplectanidae) from serranid fishes in the tropical Indo-Pacific. *Acta Parasitologica* 54:119-130.

Justine J-L, and Euzet L. 2006. Diplectanids (Monogenea) parasitic on the gills of the coralgroupers *Plectropomus laevis* and *P. leopardus* (Perciformes, Serranidae) off New Caledonia, with the description of five new species and the erection of *Echinoplectanum* n. g. *Systematic Parasitology* 64:147-172.
Justine J-L, and Henry É. 2010. Monogeneans from *Epinephelus chlorostigma* (Val.) (Perciformes: Serranidae) off New Caledonia, with the description of three new species of diplectanids. *Systematic Parasitology* 77:81-105.

Justine J-L, and Sigura A. 2007. Monogeneans of the malabar grouper *Epinephelus malabaricus* (Perciformes, Serranidae) off New Caledonia, with a description of six new species of *Pseudorhabdosynochus* (Monogenea: Diplectanidae). *Zootaxa* 1543:1-44.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution* 16:111-120.

Knoff M, Cohen SC, Cárdenas MQ, Cárdenas-Callirgos JM, and Gomes DC. 2015. A new species of diplectanid (Monogenoidea) from *Paranthias colonus* (Perciformes, Serranidae) off Peru. *Parasite* 22:11.

Kritsky DC, Bakenhaster M, and Adams D. 2015. *Pseudorhabdosynochus* species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species. *Parasite* 22:24.

Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*: in press. doi: 10.1093/molbev/msw054

Landi M, Dimech M, Arculeo M, Biondo G, Martins R, Carneiro M, Carvalho GR, Brutto SL, and Costa FO. 2014. DNA barcoding for species assignment: The case of Mediterranean marine fishes. *PLoS ONE* 9:e106135.

Littlewood DTJ, Rohde K, and Clough KA. 1997. Parasite speciation within or between host species? - Phylogenetic evidence from site-specific polystome monogeneans. *International Journal for Parasitology* 27:1289-1297.

Louisy P. 2015. *Guide d'identification des poissons marins Europe et Méditerranée. Third Edition*. Paris: Ulmer.

Mendoza-Franco EF, Violante-González J, and Rojas Herrera AA. 2011. Six new and one previously described species of *Pseudorhabdosynochus* (Monogenoidea, Diplectanidae) infecting the gills of groupers (Perciformes, Serranidae) from the Pacific coasts of Mexico and Panama. *Journal of Parasitology* 97:20-35.
Moravec F, Chaabane A, Justine J-L, and Neifar L. 2016a. Two gonad-infecting species of Philometra (Nematoda: Philometridae) from groupers (Serranidae) off Tunisia, with a key to Philometra species infecting serranid gonads. Parasite 23:8.

Moravec F, Chaabane A, Neifar L, Gey D, and Justine JL. 2016b. Descriptions of Philometra aenei n. sp. and P. tunisiensis n. sp. (Nematoda: Philometridae) from Epinephelus spp. off Tunisia confirm a high degree of host specificity of gonad-infecting species of Philometra in groupers (Serranidae). Systematic Parasitology 93:115-128.

Neifar L, and Euzet L. 2007. Five new species of Pseudorhabdosynochus (Monogenea: Diplectanidae) from the gills of Epinephelus costae (Teleostei: Serranidae). Folia Parasitologica 54:117-128.

Oliver G. 1968. Recherches sur les Diplectanidae (Monogenea) parasites de téléostéens du Golfe du Lion. I. Diplectaninae Monticelli, 1903. Vie et Milieu Série A, 19:95-138.

Oliver G. 1974. Nouveaux aspects du parasitisme des Diplectanidae Bychowsky 1957 (Monogenea, Monopisthocotylea) chez les Téléostéens Perciformes des côtes de France. Comptes Rendus de l'Académie des Sciences 279:803-805.

Oliver G. 1984. Description de deux nouvelles espèces du genre Cycloplectanum Oliver, 1968 (Monogenea, Monopisthocotylea, Diplectanidae). Annales de Parasitologie Humaine et Comparee 59:31-39.

Oliver G. 1987. Les Diplectanidae Bychowsky, 1957 (Monogenea, Monopisthocotylea, Dactylogyridea). Systématique. Biologie. Ontogénie. Écologie. Essai de phylogenèse. Thèse d’État. Académie de Montpellier, Université des Sciences et Techniques du Languedoc.

Oliver G. 1992. Ectoparasites branchiaux du mérou, Epinephelus guaza (Linnaeus, 1758) (Pisces, Serranidae), des côtes de Corse (Méditerranée occidentale). Travaux Scientifiques du Parc National Régional de la Réserve Naturelle de Corse, France 37:101-112.

Rahimian H, Longshaw M, MacKenzie K, and Thulin J. 1999. Pseudanthocotyloides heterocotyle (van Beneden, 1871) Euzet & Prost, 1969 (Monogenea: Polyopisthocotylea: Mazocraeidae), a parasite of herring Clupea harengus L. and sprat Sprattus sprattus L. (Teleostei: Clupeidae). Systematic Parasitology 42:193-201.

Ratnasingham S, and Hebert PDN. 2007. BOLD: The Barcode of Life Data System (www. barcodinglife. org). Molecular Ecology Notes 7:355-364.
Rohde K. 1988. Gill Monogenea of deepwater and surface fish in southeastern Australia. *Hydrobiologia* 160:271-283.

Rohde K. 2016. Ecology and biogeography, future perspectives: examples marine parasites. *Geoinformatics & Geostatistics: An Overview* 4:2.

Rohde K, and Hayward CJ. 1999. Revision of the monogenean subfamily Priceinae Chauhan, 1953 (Polyopisthocotylea: Thoracocotylidae). *Systematic Parasitology* 44:171-182.

Roumbedakis K, Marchiori NC, Paseto A, Goncalves EL, Luque JL, Cepeda PB, Sanches EG, and Martins ML. 2013. Parasite fauna of wild and cultured dusky grouper *Epinephelus marginatus* (Lowe, 1834) from Ubatuba, southeastern Brazil. *Brazilian Journal of Biology* 73:871-878.

Saitou N, and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 4:406-425.

Santos CP, Buchmann K, and Gibson DI. 2000. *Pseudorhabdosynochus* spp. (Monogenea: Diplectanidae) from the gills of *Epinephelus* spp. in Brazilian waters. *Systematic Parasitology* 45:145-153.

Santos CP, Souto-Padrón T, and Lanfredi RM. 1996. *Atriaster heterodus* (Lebedev and Paruchin, 1969) and *Polylabris tubicirrus* (Paperna and Kohn, 1964) (Monogenea) from *Diplodus argenteus* (Val., 1830) (Teleostei: Sparidae) from Brazil. *Journal of the Helminthological Society of Washington* 63:181-187.

Schoelinck C, Cruaud C, and Justine J-L. 2012. Are all species of *Pseudorhabdosynochus* strictly host specific? – a molecular study. *Parasitology International* 61:356-359.

Schoelinck C, Hinsinger DD, Dettaï A, Cruaud C, and Justine J-L. 2014. A phylogenetic re-analysis of groupers with applications for ciguatera fish poisoning. *PLoS ONE* 9:e98198.

Schoelinck C, and Justine J-L. 2011. Four species of *Pseudorhabdosynochus* (Monogenea: Diplectanidae) from the camouflage grouper *Epinephelus polyplekadiion* (Perciformes: Serranidae) off New Caledonia. *Systematic Parasitology* 79:41-61.

Sigura A, and Justine J-L. 2008. Monogeneans of the speckled blue grouper, *Epinephelus cyanopodus* (Perciformes, Serranidae), from off New Caledonia, with a description of four new species of *Pseudorhabdosynochus* and one new species of *Laticola* (Monogenea: Diplectanidae), and evidence of monogenean faunal changes according to the size of fish. *Zootaxa* 1695:1-44.
Soares IA, Vieira FM, and Luque JL. 2014. Parasite community of Pagrus pagrus (Sparidae) from Rio de Janeiro, Brazil: evidence of temporal stability. Revista Brasileira de Parasitologia Veterinaria 23:216-223.

Ward RD, Zemlak TS, Innes BH, Last PR, and Hebert PD. 2005. DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society of London B Biological Sciences 360:1847-1857.

Yamaguti S. 1963. Systema Helminthum Volume IV Monogenea and Aspidocotylea: John Wiley & Sons.

Yamaguti S. 1968. Monogenetic Trematodes of Hawaiian Fishes. Honolulu: University of Hawaii Press.

Yang TB, Gibson DI, and Zeng BJ. 2005. Pseudorhabdosynochus summanoides n. sp (Monogenea: Diplectanidae) from Epinephelus coioides in Dapeng Bay, South China Sea, with observations on several similar species of Pseudorhabdosynochus Yamaguti, 1958. Systematic Parasitology 62:221-239.

Zeng B, and Yang T. 2007. Description of Pseudorhabdosynochus justinei n. sp. (Monogenea: Diplectanidae) and redescription of P. vagampullum (Young, 1969) Kritsky & Beverley-Burton, 1986 from the gills of the longfin grouper Epinephelus quoyanus (Valenciennes) (Perciformes: Serranidae) in Dapeng Bay, South China Sea. Systematic Parasitology 66:223-235.
Table 1 (on next page)

Haifa grouper, *Hyporthodus haifensis*.

Fish examined, barcode sequences and diplectanid monogeneans collected.
Fish Id	Date	Locality	COI	Fish state	Standard Length (cm)	Pseudorhabdosynochus sulamericanus, number of specimens	Specimens of other, unidentified, Pseudorhabdosynochus species
Hh1	27-04-2012	Tunisia	KT023566	Whole	55	71	1
Hh2	01-06-2013	Libya	KT023567	Whole	70	90	3
Hh3	03-06-2013	Libya	-	Gills	-	59	1
Hh4	11-07-2014	Libya	KT023568	Whole *	76	123	0

Total: 343 Total: 5

1 * Fish specimen deposited in MNHN as MNHN 2015-0242.

2
Table 2 (on next page)

Snowy grouper *H. niveatus* and Warsaw grouper *H. nigritus*.

Origin of fish used for barcoding.
Id	Species	Locality	Collection Date	GenBank
Hnig_12Nov2015-01	Hyporthodus nigritus	Gulf of Mexico (GOM), off southern Florida, USA	11-11-2015	KU739508
Hnig_CK133220	Hyporthodus nigritus	GOM, off central Florida, USA	12-12-2013	KU739507
Hnig_037-01	Hyporthodus nigritus	GOM, off southern Florida, USA	24-07-2015	KU739504
Hnig_076-01	Hyporthodus nigritus	GOM, off southern Florida, USA	unknown	KU739501
Hnig_CK1303221	Hyporthodus nigritus	GOM, off central Florida, USA	12-12-2013	KU739502
Hnig_CK1303222	Hyporthodus nigritus	GOM, off central Florida, USA	12-12-2013	KU739506
Hnig_CK1303223	Hyporthodus nigritus	GOM, off central Florida, USA	12-12-2013	KU739509
Hnig_13Nov2015-01	Hyporthodus nigritus	GOM, off Florida Keys, USA	13-11-2015	KU739505
Hnig_30Oct2015-01	Hyporthodus nigritus	GOM, off southern Florida, USA	30-10-2015	KU739503
Hniv_PE1400561	Hyporthodus niveatus	GOM, off Alabama, USA	20-02-2014	KU739511
Hniv_079-01	Hyporthodus niveatus	GOM, off southern Florida, USA	XX-11-2015	KU739513
Hniv_087-01	Hyporthodus niveatus	GOM, off southern Florida, USA	XX-11-2015	KU739517
Hniv_097-01	Hyporthodus niveatus	GOM, off southern Florida, USA	XX-11-2015	KU739512
Hniv_101-01	Hyporthodus niveatus	GOM, off southern Florida, USA	XX-11-2015	KU739514
Hniv_103-01	Hyporthodus niveatus	GOM, off southern Florida, USA	XX-05-2012	KU739516
Hniv_May2012-02	Hyporthodus niveatus	GOM, off northern Florida, USA	XX-05-2012	KU739510
Hniv_May2012-03	Hyporthodus niveatus	GOM, off northern Florida, USA	XX-05-2012	KU739515
Table 3 (on next page)

Pseudorhabdosynochus sulamericanus.

Comparison of measurements and counts taken from specimens of various origins.
Source	Santos, Buchmann et Gibson, 2000	Kritsky, Bakenhaster et Adams, 2015	Paratypes	Vouchers	Present study
			BMNHN Slides1999.1.6.1	MNHN SlidesHEL460	MNHN slidesHEL555
			Slides999.1.6.1.3	HEL460	
				HEL459	
Hosts	H. niveatus	H. nigritus	H. niveatus	H. niveatus	H. haifensis
					new host record
Locality	Off Ilhas Cagarras, Rio de Janeiro, Brazil	Off Florida	Off Ilhas Cagarras, Rio de Janeiro, Brazil	Off Florida	Sfax, Tunisia
					Tripoli, Libya
Method	Gomori’s trichrome, Mayer’s pararcarmine	Gomori’s trichrome, Grey and Wess medium	Gomori’s trichrome, Grey and Wess medium	Mayer’s pararcarmine	Gomori’s trichrome, Berlese
					Grey and Wess medium, Carmine
Measurements					
Body Length	598–1100 (n=11)	879–880 (n=11)	542 (460–649, n=21)	900 (n=2)	560 (350–980, n=16)
	169–228 (n=11)	179–180 (n=11)	170 (137–201; n=22)	190 (180–200, n=2)	205 (115–310, n=16)
	195 (190–200, n=2)			205 (180–240, n=4)	208 (150–200, n=8)
Haptor Width	34–52 (n=11)	45–46 (n=1)	38 (34–43, n=22)	52 (48–56, n=2)	30 (27–45, n=15)
	63 (61–65, n=2)			55 (56–82, n=32)	49 (45–59, n=17)
Pharynx Length	29–43 (n=11)	45–46 (n=1)	38 (34–43, n=22)	52 (48–56, n=2)	30 (27–45, n=15)
	6 (5–6, n=2)			8 (5–7, n=17)	5 (5–7, n=17)
Penis Internal Length	-	-	4 (4–5, n=2)	4 (3–4, n=16)	-
Penis Cone Length	-	-	2 (0–3, n=2)	5 (3–5, n=15)	-
Penis Tube Length	-	-	2 (0–3, n=2)	5 (3–5, n=15)	-
Penis Tube Diameter	-	-	2 (0–3, n=2)	5 (3–5, n=15)	-
Penile Filament Length	-	-	2 (0–3, n=2)	5 (3–5, n=15)	-
Penile (chamber + cone) Length	48–71 (n=11)	74–75 (n=1)	71 (65–79, n=28)	-	-
Sclerotised Vagina Total Length	23–27 (n=11)	47–48 (n=1)	72 (61–79, n=18)	-	-
Squamodisc Length	76–96 (n=11)	80–81 (n=1)	71 (63–81, n=21)	87 (86–88, n=2)	-
Squamodisc, Number of Rows	15–16 (n=11)	-	14–17 (usually 15)	-	-
Squamodisc, Number of Closed Rows	1	1	1	1	1
Ventral Anchor Outer Length	18 (15–17, n=2)	26 (15–16, n=2)	-	-	-
Dorsal Anchor Outer Length	101 (70–120, n=27)	87 (73–150, n=20)	-	-	-
Dorsal Anchor Inner Length	150 (14–17, n=30)	80 (59–90, n=20)	-	-	-
Ventral Bar Length	83 (80–87, n=5)	88 (82–97, n=14)	98 (94–102, n=2)	-	-
Ventral Bar Length	80–96 (n=11)	88 (82–97, n=14)	98 (94–102, n=2)	-	-
Lateral Bar Length	80–96 (n=11)	88 (82–97, n=14)	98 (94–102, n=2)	-	-
Lateral Bar Width	50–71 (n=11)	65 (58–69, n=6)	60 (52–65, n=18)	64 (63–65, n=4)	-
	62 (6–63, n=2)	62 (6–63, n=2)	53 (n=2)	53 (n=2)	53 (n=2)
	23 (12–23, n=2)	23 (12–23, n=2)	23 (n=2)	23 (n=2)	23 (n=2)
	18 (13–23, n=4)	23 (12–23, n=2)	23 (n=2)	30±4.4 (18–38, n=7)	22±3.2 (15–28, n=29)

Gomori’s trichrome, Off Ilhas Cagarras, Rio de Janeiro, Brazil, Gomori’s trichrome, Off Florida

Paratypes BMNHN Slides1999.1.6.1.3

Vouchers MNHN Slides HEL460 HEL459

Present study MNHN slides HEL555

New host record

Gray and Wess medium

Off Ilhas Cagarras, Rio de Janeiro, Brazil

Paratypes BMNHN Slides1999.1.6.1.3

Vouchers MNHN Slides HEL460 HEL459

Present study MNHN slides HEL555

New host record

Gray and Wess medium

Off Florida
Table 4 (on next page)

Species of monogeneans recorded on both sides of the Atlantic.
Parasites of Scombridae (Tunas, Mackerels): pelagic fish, often with wide distribution or circumglobal

Group, Family	Species	Western side, South America: Locality, Hosts, references	Eastern side: Locality, Hosts, references	Comments
Monop.; Capsalidae	*Nasicola klawei* (Stunkard, 1962)	Brazil; *Thunnus albacares* (Cohen et al. 2013)	European waters; *Thunnus albacares* (Gibson 2016)	Same fish on both sides - Pelagic fish
Polyop.; Gotocotylidae	*Gotocotyla acanthura* (Parona & Perugia, 1896)	Brazil; *Cynoscion leiarchus*, *Pomatomus saltatrix* (Cohen et al. 2013)	Many localities, many hosts (Hayward & Rohde 1999a)	Different fish on both sides of the Atlantic, also in Pacific - Pelagic circumglobal fishes
Polyop.; Hexostomatidae	*Hexostoma auxisi* Palombi, 1943	Brazil; *Auxis thazard* (Cohen et al. 2013)	Mediterranean Sea; *Auxis thazard* (Yamaguti 1963)	Same fish on both sides - Pelagic fish
Polyop.; Mazocraeidae	*Grubea cochlar* Diesing, 1858	Brazil, Venezuela; *Scomber colias* (Cohen et al. 2013)	Europe, Mediterranean; *Scomber scombrus*, *S. colias* (Yamaguti 1963)	Various fish of genus *Scomber* on both sides - Pelagic fish (1)
Polyop.; Mazocraeidae	*Kuhnia scombri* (Kuhn, 1829)	Argentina, Brazil, Venezuela; *Scomber colias* (Cohen et al. 2013)	Atlantic, Mediterranean, Pacific; various *Scomber* spp (Yamaguti 1963)	Various fish of genus *Scomber* on both sides - Pelagic fish
Polyop.; Mazocraeidae	*Pseudanthocotyloides heterocotyle* (van Beneden, 1871)	Brazil, Uruguay; *Cetengraulis edentulus*, *Decapterus punctatus*, *Anchoa marini*, *Engraulis anchoita* (Cohen et al. 2013)	Mediterranean, North Atlantic; *Sprattus sprattus*, *Clupea harengus* (Rahimian et al. 1999)	Various fish on both sides - Pelagic fish (2)
Polyop.; Thoracocotylidae	*Scomberocotyle scomberomori* (Koratha, 1955)	Brazil; *Scomberomorus cavalla* (Cohen et al. 2013)	Western Africa; Various fish of genus *Scomberomorus* (Hayward & Rohde 1999b)	Various fish of genus *Scomberomorus*, records from both sides of the Atlantic and eastern Pacific - circumglobal pelagic fish species
Polyop.; Thoracocotylidae	*Mexicotyle mexicana* (Meserve, 1938)	United States to Brazil, many localities; *Scomberomorus* spp.	Ghana; *Scomberomorus tritor* (Rohde & Hayward 1999)	Various fish of the genus *Scomberomorus*, many records on Western Side, 1 record on Eastern side, also in Eastern Pacific; circumglobal pelagic fish species

Parasites of Sparidae (sea breams and porgies): Coastal fish

Group, Family	Species	Western side, South America: Locality, Hosts, references	Eastern side: Locality, Hosts, references	Comments
Polyop.; Microcotylidae	*Atriaster heterodus* Lebedev & Parukhin, 1968	Brazil; *Diplodus argenteus* (Santos et al. 1996)	Namibia, Mediterranean Sea, Canary Islands; several *Diplodus* species (Santos et al. 1996)	Fishes of genus *Diplodus* on both sides – coastal fish (3)
Polyop.; Microcotylidae	*Polylabris tubicirrus* (Paperna & Kohn, 1964)	Brazil; *Diplodus argenteus* (Santos et al. 1996)	Mediterranean Sea; various *Diplodus* species, *Sparus aurata* (Santos et al. 1996)	Fishes of genus *Diplodus* on both sides – coastal fish (3)
Monop.; Diplectanidae	*Lamellodiscus baeri* Oliver, 1974	Brazil; *Pagrus pagrus* (Soares et al. 2014)	Mediterranean Sea, *Pagrus pagrus* (Oliver 1974; Amine & Euzet 2005)	Same fish on both sides - coastal fish – American record needs verification; see text for comments

Parasites of Epinephelidae (groupers): Coastal or Deep-Sea fish

Group, Family	Species	Western side, South America: Locality, Hosts, references	Eastern side: Locality, Hosts, references	Comments
Monop.; Diplectanidae	*Pseudorhabdosynochus beverleyburtonae* (Oliver, 1984)	Brazil; *Mycteroperca marginata* (Roumedakis et al. 2013; Santos et al. 2014)	Mediterranean Sea; *Mycteroperca marginata* (Euzet & Oliver 1966); Mediterranean Sea; *Pagrus pagrus*	Same fish on both sides - coastal fish – see text for comments
Monop.; Monopisthocotylea; Polyop.: Polyopisthocotylea.

Names of fish were updated according to FishBase (Froese & Pauly 2016).

(1) Yamaguti (1963) noted: owing to the incomplete description by Linton it is not possible to determine the conspecificity of the American and European forms.

(2) Rahimian et al. (1999) commented that the specimens from off South America were different, therefore suggesting that species identification needed verification.

(3) Santos et al. (1996) compared specimens from both sides and the Atlantic.
Figure 1 (on next page)

Tree of *Hyporthodus* spp. based on COI sequences.

The tree was constructed using the Maximum Likelihood method (100 replicates); a tree constructed using the Neighbour-Joining method (1000 bootstrap replicates) showed the same topology except for some minor differences in the basal, non-*Hyporthodus*, branches; the NJ tree is shown. Support for major nodes is indicated for the two methods (as: ML / NJ). The scale bar indicates the number of substitutions per site (ML). The three species involved in our study, namely *Hyporthodus haifensis*, *H. niveatus* and *H. nigritus*, showed independent clades with 100 / 100 support. However, some higher nodes have low support.
Figure 2 (on next page)

Pseudorhabdosynochus sulamericanus from *Hyporthodus haifensis*.

A, composite, ventral view; tegumental scales not drawn. B, C, male quadriloculate organ. D, sclerotised vagina. A, C, carmine; B, D, Berlese.
Figure 3 (on next page)

Pseudorhabdosynochus sulamericanus from various hosts, structure of sclerotised vaginae.

A, F, specimens from _H. niveatus_, Brazil, paratypes, BMNH 1999.1.6.1-3. C, specimen from _H. niveatus_, Florida, voucher MNHN HEL460. B, D, E, G, specimens from _Hyporthodus haifensis_, Libya, vouchers MNHN HEL555. Flattening and staining: B, E, G, Berlese; D, carmine; A, F, trichrome-carmine; C, Gray and Wess medium.
Homologies of various parts of the sclerotised vagina of *Pseudorhabdosynochus sulamericanus* compared to a general diagram.

Colours are similar in homologous parts. The junction between primary canal and primary chamber was not visible in specimens from *Hyporthodus haifensis* but was seen in specimens from *H. niveatus*. The secondary canal (junction between primary chamber and secondary chamber) was not visible in any specimen. General diagram adapted from Justine (2007a).
General diagram

- **Trumpet (Tr)**
- **Primary Canal (Ca1)**
- **Primary Chamber (Ch1)**
- **Secondary Canal (Ca2)**
- **Secondary Chamber (Ch2)**
- **Accessory Structure (AS)**

Pseudorhabdosynochus sulamericanus

ex Hyporthodus haifensis

Pseudorhabdosynochus sulamericanus

ex Hyporthodus niveatus
Figure 5 (on next page)

Pseudorhabdosynochus sulamericanus from *Hyporthodus haifensis*, haptor hard parts and squamodisc.

A, D, ventral bar, with method of measurement of length; B, ventral anchor; C, dorsal anchor; E, lateral (dorsal) bar; F, ventral squamodisc. All Berlese.
Figure 6 (on next page)

Pseudorhabdosynochus sulamericanus from *Hyporthodus niveatus*, male copulatory organ, haptor hard parts, squamodiscs.

A, B, male copulatory organ; C, D, squamodiscs (C, ventral; D, dorsal); E, haptoral parts, E, tegumental scales. A, MNHN HEL459, from Florida, Gomori, unflattened; B, BMNH 1999.1.6.1-3, from Brazil, trichrome carmine; C, D, E, F, MNHN HEL460, from Florida, Gray and Wess medium.
Geographical distribution of three species of *Hyporthodus* in the Atlantic Ocean and Mediterranean Sea, and localities where specimens of *Pseudorhabdosynochus sulamericanus* were collected.

Hyporthodus haifensis is only known from the Mediterranean Sea and African coasts of the Eastern Atlantic; *H. niveatus* and *H. nigritus* are American species. The distributions of the American and African species do not overlap, and are separated by the span of the Atlantic Ocean (Heemstra & Randall 1993).
