Medium Effects in Reactions with Rare Isotopes

C.A. Bertulani(1) and M. Karakoç(1,2)

(1) Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429, USA
(2) Department of Physics, Akdeniz University, 07058, Antalya, Turkey
E-mail: carlos_bertulani@tamu-commerce.edu, mesutkarakoc@gmail.com

Abstract. We discuss medium effects in knockout reactions with rare isotopes of weakly-bound nuclei at intermediate energies. We show that the poorly known corrections may lead to sizable modifications of knockout cross sections and momentum distributions.

1. Introduction

Most practical studies of the medium corrections of nucleon-nucleon scattering are done by considering the effective two-nucleon interaction in infinite nuclear matter, or G-matrix, as a solution of the Bethe-Goldstone equation

\[\langle k | G(P,\rho_1,\rho_2) | k_0 \rangle = \langle k | v_{NN} | k_0 \rangle - \int \frac{d^3k'}{(2\pi)^3} \frac{\langle k | v_{NN} | k' \rangle Q(k',P,\rho_1,\rho_2) \langle k' | G(P,\rho_1,\rho_2) | k_0 \rangle}{E(P,k') - E_0 - i\epsilon} \]

(1)

with \(k_0, k, \) and \(k' \) the initial, final, and intermediate relative momenta of the NN pair, \(k = (k_1 - k_2)/2 \) and \(P = (k_1 + k_2)/2 \). If energy and momentum is conserved in the binary collision, \(P \) is conserved in magnitude and direction, and the magnitude of \(k \) is conserved. \(v_{NN} \) is the nucleon-nucleon potential. \(E \) is the energy of the two-nucleon system, and \(E_0 \) is the same quantity on-shell. Thus \(E(P,k) = e(P+k) + e(P-k) \), with \(e \) the single-particle energy in nuclear matter. It is also implicit in Eq. 1 that the final momenta \(k \) of the NN-pair also lie outside the range of occupied states.

We have performed a study of medium effects in knockout reactions which include different methods to treat medium effects [1]. To test the influence of the medium effects in nucleon knockout reactions, we consider the removal of the \(l = 0 \) halo neutron of \(^{15}\text{C} \), bound by 1.218 MeV, and the \(l = 0 \) neutron knockout from \(^{34}\text{Ar} \), bound by 17.06 MeV. The reaction studied is \(^9\text{Be}(^{15}\text{C},^{14}\text{C}_{gs}) \). The total cross sections as a function of the bombarding energy are shown in figures 1. The solid curve is obtained with the use of free nucleon-nucleon cross sections. The dashed curve includes the geometrical effects of Pauli blocking. The dashed-dotted curve is the result using the Brueckner theory, and the dotted curve is the phenomenological parametrization of the free cross section.

In figure 2 we plot the longitudinal momentum distributions for the reaction \(^9\text{Be}(^{11}\text{Be},^{10}\text{Be}) \), at 250 MeV/nucleon [1]. The dashed curve is the cross section calculated using the NN cross section from the Brueckner theory and the solid curve is obtained the free cross section. One sees that the momentum distributions are reduced by 10%, about the same as the total cross
Figure 1. Total knockout cross sections for removing the $l = 0$ halo neutron of ^{15}C, bound by 1.218 MeV, in the reaction $^9\text{Be}(^{15}\text{C},^{14}\text{C}_{gs})$. The solid curve is obtained with the use of free nucleon-nucleon cross sections. The dashed curve includes the geometrical effects of Pauli blocking. The dashed-dotted curve is the result using the Brueckner theory, and the dotted curve is a phenomenological parametrization.

Figure 2. Longitudinal momentum distribution for the residue in the $^9\text{Be}(^{11}\text{Be},^{10}\text{Be})$, reaction at 250 MeV/nucleon. The dashed curve is the cross section calculated using the NN cross section from the Brueckner theory and the solid curve is obtained the free cross section.

sections, but the shape remains basically unaltered. If one rescales the dashed curve to match the solid one, the differences in the width are not visible.

Projectile	Residue	nlj	$C^2S_{\text{NuShell@MSU}}$	$C^2S_{\text{Ref[4]}}$	Sn(Sp)(MeV)
^{14}O	^{13}O	0$p_{3/2}$	4.97	3.7	23.176
^{13}N	0$p_{1/2}$	1.83	1.8	4.628	
^{36}Ca	^{35}Ca	1$s_{1/2}$	2.16	19.113	
^{35}K	0$d_{3/2}$	3.54	2.559		

Table 1. Spectroscopic factors (C^2S).

Based on these results we have developed a new version of the code MOMDIS [2] in order to treat medium effects an Coulomb recoil properly. In the next sections we report a few preliminary results, for reactions which are being planned at RIKEN.
Table 2. Bound state potential parameters.

Projectile	Residue	V_0(MeV)	R_0(fm)	a(fm)
14O	13O	81.46	2.50	0.6
13N		43.10	3.00	0.8
36Ca	35Ca	63.19	3.93	0.6
35K		47.63	3.93	0.6

2. Proton and neutron knockout of numerous systems

In this work, 9Be(14O,13O), 9Be(14O,13N) at 50 and 300 AMeV, and 9Be(36Ca,35Ca), 9Be(36Ca,35K) at 70.5 and 300 AMeV cases have been analyzed. The ground state spins for nuclei 13O, 13N, 35Ca and 35K are respectively $3/2^-$, $1/2^-$, $1/2^+$ and $3/2^+$ are taken from Ref. [3], except for 35Ca. The ground state spin for 35Ca is not defined. Nevertheless, we have assumed in our calculations it has $J^\pi = 1/2^+$ ground state spin.

Table 3. Total cross-sections.

Projectile	Residue	E(MeV)	σ_{MOMDIS}(mb)	σ(mb)	σ_{exp}(mb)
14O	13O	57	9.61	51.60	13.4±1.4
		300	16.04	86.10	
13N		57	29.96	59.21	67±6
		300	31.50	62.26	
36Ca	35Ca	70.5	6.72	15.39	
		300	8.07	18.48	
35K		70.5	8.96	33.62	
		300	10.56	39.63	

A single nucleon removal cross section σ from the $J^\pi = 0^+$ the ground state (g.s.) of projectile to the g.s. of the knockout residue is given by

$$
\sigma = \left(\frac{A}{A-1}\right)^n C^2 S \sigma_{\text{MOMDIS}}
$$

(2)

where σ_{MOMDIS} is calculated using a modified version of the MOMDIS code [2]. The A-dependent term is a center-of-mass correction to the shell-model spectroscopic factors ($C^2 S$) where n is major oscillator shell number ($n = 1$ for sp shell nucleus 14O and $n = 2$ for sd shell nucleus 36Ca) [4, 5].

The spectroscopic factors which are used in the present work are calculated with the shell model code NuShell@MSU [6]. We have calculated $C^2 S$ considering the WBT interaction for 14O [7] and USDA interaction for 36Ca [8]. Our calculation is in agreement with Ref. [4] for 14O proton removal case, but the neutron removal spectroscopic factor $C^2 S$ for the present calculation is 34% bigger than in Ref. [4].

The bound state wave functions are calculated with Woods-Saxon potentials and the parameters are tabulated in Table 5. The total cross sections obtained with these parameters are shown in Table 6.
Table 4. Separation energies from [3].

Projectile (g.s.)	Residue (g.s.)	nlj	Sp (MeV)
9C, 3/2$^-$	8B	0p3/2	1.301
17F, 5/2$^+$	16O	0d5/2	0.600
27P, 1/2$^+$	26Si	1s1/2	0.860

Table 5. Bound state potential parameters.

Projectile	Residue	V_0 (MeV)	R_0 (fm)	a (fm)
9C	8B	47.69	2.50	0.6
17F	16O	71.25	2.80	0.6
27P	26Si	19.76	3.30	0.5

Table 6. Nuclear densities.

Nucleus	Model	a (fm)	α (fm)
8B	LDM		
16O	Gaussian[9]	1.833	1.544
26Si	LDM		
12C	Gaussian[9]	1.73	1.38

The 14O proton removal result is in agreement with data from Ref.[4], but for neutron removal case there is a huge difference, probably due to the very big value of $C^2S = 4.97$. This is probably the reason why 14O cases have different bound state potential parameters, which we have searched for best matching to the data of Ref. [4].

References
[1] C.A. Bertulani and C. De Conti, Phys. Rev. C 81, 064603 (2010).
[2] C. Bertulani and A. Gade, Comp. Phys. Comm. 175, 372 (2006).
[3] National Nuclear Data Center (nndc), Brookhaven National Laboratory, available at http://www.nndc.bnl.gov/nudat2/.
[4] C. Louchart, A. Obertelli, A. Boudard, and F. Flavigny, Phys. Rev. C 83, 011601 (2011).
[5] A. Gade, P. Adrich, D. Bazin, M. D. Bowen, B. A. Brown, C. M. Campbell, J. M. Cook, T. Glasmacher, P. G. Hansen, K. Hosier, et al., Phys. Rev. C 77, 044306 (2008).
[6] B. A. Brown and W. Rae (2007), private communication.
[7] E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).
[8] B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1988).
[9] H. De Vries, C. W. De Jager, and C. De Vries, Atomic Data and Nuclear Data Tables 36, 495 (1987).