Uranium and radium activities measurements and calculation of effective doses in some drinking water samples in Morocco

Oum Keltoum Hakam1, Abdelmajid Choukri1, Aicha Abbad2, Ahmed Elharfi3

1Department of Physics, University of Ibn Tofail, Faculty of Sciences, Kenitra, Morocco
2Department of Geography, University of Ibn Tofail, Faculty of Human Sciences and Letters, Kenitra, Morocco
3Department of Chemistry, University of Ibn Tofail, Faculty of Sciences, Kenitra, Morocco

[Presented at the 4th African Regional IRPA congress (AFRIRPA04), which was held from September 13-17, 2014 in Rabat, Morocco. This paper was reviewed and accepted by the scientific committee of the 4th African Regional IRPA congress]

Conference Proceeding

Abstract

Purpose: As a way of prevention, we have measured the activities of uranium and radium isotopes (234U, 238U, 226Ra, 228Ra) for 30 drinking water samples collected from 11 wells, 9 springs (6 hot and 3 cold), 3 commercialised mineral water, and 7 tap water samples. Methods: Activities of the Ra isotopes were measured by ultra-gamma spectrometry using a low background and high efficiency well type germanium detector. The U isotopes were counted in an alpha spectrometer. Results: The measured Uranium and radium activities are similar to those published for other non-polluting regions of the world. Except in one commercialised gaseous water sample, and in two hot spring water samples, the calculated effective doses during one year are inferior to the reference level of 0.1 mSv/year recommended by the International Commission on Radiological Protection. Conclusion: These activities don’t present any risk for public health in Morocco. The sparkling water of Oulmes is occasionally consumed as tablet water and waters of warm springs are not used as main sources of drinking water.

Keywords: Uranium; Radium; Public Health; Radioprotection; Effective Doses

Introduction

The natural radioactivity comes mainly from the primordial radio-nuclides in soils (40K and the 4n and 4n+2 series). Further, some cosmogenic radionuclides and/or radionuclides originated from pollution can be found in natural waters used for drinking. The natural polluting radio-elements can arise from industrial wastes, geological erosion of U-bearing rocks or excessive utilization of agricultural fertilizers. Concentrations of natural radio-elements in water depend on the physico-chemical conditions and on the geological, geographical and socio-economical environment.

The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has estimated that exposure to natural sources contributes more than 98% of the radiation dose to the population (excluding medical exposure). There is only a very small contribution from nuclear power production and nuclear weapons testing. The global average human exposure from natural sources is 2.4 mSv/year. There are large local variations in this exposure depending on a number of factors, such as height above sea level, the amount and type of radionuclides in the soil, and the amount taken into the body in air, food, and water. The contribution of drinking-water to the total exposure is very small and is due largely to naturally occurring radionuclides in the uranium and thorium decay series. Levels of natural radionuclides in drinking-water may be increased by a number of human activities.

Because different types of radiation have different biological effectiveness and different organs and tissues in the body have different sensitivities to radiation, the ICRP has introduced radiation and tissue-weighting factors to provide a measure of equal effect. The sum of the doubly weighted dose received by all the tissues and organs of the body gives a measure of the total harm and is referred to as the effective dose. Moreover, radionuclides taken into the body may persist, and, in some cases, the resulting exposure may extend over many months or years. The effective dose is a measure of the total dose incurred over a lifetime following the intake of a radionuclide.

The recommended reference level of the effective dose is 0.1 mSv from 1 year’s consumption of drinking-water. This reference level of dose represents less than 5% of the average effective dose attributable annually to natural background radiation. Below this reference level of dose, the drinking-water is acceptable for human consumption, and any action to reduce the radioactivity is not necessary. This recommendation does not differentiate between natural and man-made radionuclides.
The natural radioactivity of groundwater varies greatly.1-6 High concentrations of natural radioactive elements have been found not only in water from U mines, but also in mineral water and in some drilled wells. The knowledge of U and Ra concentrations in drinking water is important because an appreciable fraction of the absorbed U and Ra is deposited in human bone, with the corresponding contribution to the internal dose.

In this work, we describe the techniques applied for measuring U (alpha spectrometry) and Ra (gamma spectrometry) isotopes in natural water samples.7,8 Some results obtained from drinking water samples collected from different sources (springs, wells and tap water) are given and equivalent effective doses are calculated and compared to the recommended reference level for adult persons.

Methods and Materials

Sampling sites

The analyzed water samples belong to 3 different water sources: wells, springs (hot springs, cold springs, commercialised mineral waters), and Tap waters. Figure 1 shows the sites of sampling. This study was undertaken in order to establish a radioactivity distribution map in various natural waters in Morocco. The regions of the cities of Fes and Errachidia are rich in warm thermal springs. Regions situated inward by the country are often affected by the drought, what explains the considerable number of wells in these regions (Khouribga, Beni Mellal and Fkih Ben Salah)

Sample preparation

Twenty liters of water are collected in a polyethylene tank and immediately slightly acidified to pH 2-3 with concentrated HNO\textsubscript{3}. After filtration, an iron carrier (FeCl\textsubscript{3}) (50-80 mg) and a known amount of 232U,239Th equilibrated spike solution are added. U and Th are coprecipitated with Fe (OH\textsubscript{3}) by addition of NH\textsubscript{4}OH to pH 8 to 9 as described by Choukri and Hakam.7,8 A known quantity of barium in BaCl\textsubscript{2} form is then added. Ra isotopes are co-precipitated with BaSO\textsubscript{4} formed by addition of H\textsubscript{2}SO\textsubscript{4} drops in the medium without significant changing of pH. Precipitation of hydroxides is achieved before the Ba and H\textsubscript{2}SO\textsubscript{4} addition step to avoid co-precipitation of Th with H\textsubscript{2}SO\textsubscript{4}. The two precipitates are recovered by centrifugation and/or filtration.

Hydroxides containing U and Th are soluble in acid medium whereas BaSO\textsubscript{4} coprecipitated with Ra is not soluble in this medium. The two fractions are separated by filtration or centrifugation.

Measure of uranium

Complete mixing and oxidation are achieved by evaporating the solution to dryness. The dry residue is dissolved in 8N HCl and the hydroxides are precipitated at pH 8 to 9 with ammonium hydroxide. In this step, Th and U are precipitated together with iron hydroxides, aluminium and other impurities. After dissolution in 8N HCl, the sample is filtered and is ready for the ion exchange procedure.7,8

A single resin exchange column is used twice: (1) In the first step, U and Fe are fixed on the resin in a 8N HCl medium while Th and other impurities are collected with the effluent. Fe is then eluted with 15 ml of 8N HNO\textsubscript{3}. U is eluted with 30 ml of 0.1N HCl and evaporated to dryness, and (2) In the second step, Th is loaded on the resin bed in 30 to 40 ml of 8N HNO\textsubscript{3} to ensure solely the fixation of Th. The latter is eluted with 8N HCl and evaporated to dryness. The ion exchange procedure is identical to that used by Choukri et al.7,8 and Ku et al.9 for U and Th separation in carbonate samples with minor modifications. [Figure 1]

After these anionic exchange steps, Th is ready for deposition while U must be separated from residual iron. Its purification is performed by di-isopropyl ether extraction, followed by evaporation of the aqueous fraction containing U. In the last step, U and Th are extracted separately with TTA (1-(2-thenoyl)-3, 3, 3-trifluoroacetone) in toluene in a nitric media at pH 3 and 1, respectively. The two organic phases containing U and Th are evaporated onto aluminium foils and flamed to remove any trace of carbon. The thin sources are, at the end, ready for alpha spectrometry.

Determination of radium

Radium is extracted from the water samples by precipitation with BaSO\textsubscript{4} after removal of U and Th as described above. Schmidt and Reyss reported that this method is essentially quantitative for Ra removal.10 The (Ba-Ra) SO\textsubscript{4} is dried at room temperature. The obtained powder is sealed into a plastic ferrule whose form is compatible with the dimensions.
of the used well Germanium detector. The gamma spectrum is measured after 20 days which is necessary to ensure radioactive equilibrium between Ra isotopes and their daughters. The efficiency of Ra extraction by BaSO4 precipitation is obtained by calculating the weight of recovered BaSO4 to introduced BaCl2 (corrected by a mass factor of 1.16). Extraction efficiencies are, in most cases, in the range 75-100%. Ra activity is measured by gamma spectrometry using a 220 cm3 low-background well type gamma ray detector in the Laboratoire Souterrain de Modane (LSM-Centre National de la Recherche Scientifique (CNRS-France)/Commissariat à l’Energie Atomique).

Results and Discussion

The activities of uranium isotopes (234U, 238U) and radium isotopes (226Ra, 228Ra) and the calculated committed effective doses during one year for all analyzed samples, are given in Table 1. The errors quoted in this table are one sigma uncertainties due to counting statistics.

In hot springs, the activities vary between 4.92 and 173 with a mean value about 56 mBqL-1 for 234U, 5.07 and 107 with a mean value about 29.6 mBqL-1 for 238U, 9.10 and 122 with a mean value of 47 mBqL-1 for 226Ra and between 2.84 and 16.2 with a mean value of about 7 mBqL-1 for 228Ra. In well water samples 238U activities vary between 4.37 and 273 with a mean value of 85.3 mBqL-1 for 234U, 4.46 and 164.8 with a mean value of 58.4 mBqL-1 for 238U, 1 and 114 with a mean value of about 27 for 228Ra and between 0.6 and 51.5 with a mean value of 11.3 for 226Ra.

In Tap water samples, the activities vary between 2.85 and 58 with a mean value about 25 mBqL-1 for 234U, 2.5 and 34 with a mean value about 16.24 mBqL-1 for 238U, 0.46 and 45.8 with a mean value of 28.94 mBqL-1 for 226Ra and between 0.4 and 30.5 with a mean value of about 10.22 mBqL-1 for 228Ra. Results obtained for tap water samples did not present any anomalous value of U and Ra activity. Radioactivity in tap water depends on its source that could be rivers, dams, wells or springs.

| Table 1: 234U, 238U, 226Ra and 228Ra activities and calculated total effective doses during one year in analyzed drinking water samples. |
|---|---|---|---|---|---|
| n° | Site | location | 234U (mBq L-1) | 238U (mBq L-1) | 226Ra (mBq L-1) | 228Ra (mBq L-1) | Total Committed Effective dose (mSV/year) |
|---|---|---|---|---|---|---|
| 1 | Midelt | Moulouya | 173 ± 11 | 107 ± 7 | 12.7 ± 0.1 | 2.84 ± 0.12 | 0.031 |
| 2 | Mibladen | Moulouya | 55 ± 5 | 37 ± 3 | 19.3 ± 0.4 | 6.6 ± 0.6 | 0.037 |
| 3 | Sidi Harazem | Fez | 36.02 ± 2.56 | 5.19 ± 0.52 | 89.10 ± 1.20 | 16.20 ± 1.10 | 0.151 |
| 4 | Ain Allah | Fez | 25.70 ± 2.38 | 5.40 ± 0.58 | 30.00 ± 0.60 | 3.10 ± 0.10 | 0.050 |
| 5 | Sidi Ali | Oulmes | 4.92 ± 0.74 | 5.07 ± 0.76 | 9.10 ± 0.60 | 3.30 ± 0.60 | 0.016 |
| 6 | Ouled Reguia | FB Salah | 41.12 ± 2.29 | 17.88 ± 1.17 | 122.00 ± 2.10 | 9.60 ± 1.60 | 0.200 |
| 7 | Sidi Harazem | bottle | 36 ± 2.6 | 5.19 ± 0.5 | 51.9 ± 1.3 | 9.1 ± 1.1 | 0.088 |
| 8 | Sidi Ali | bottle | 4.9 ± 0.7 | 5.07 ± 0.8 | 9.1 ± 0.6 | 3.3 ± 0.6 | 0.016 |
| 9 | Oulmès | bottle | 2.4 ± 0.3 | 0.59 ± 0.1 | 1248 ± 3 | 66.5 ± 1.9 | 2.011 |
| 10 | Foun Anser | Beni Mellal | 10.62 ± 1.20 | 2.19 ± 0.36 | 10.50 ± 0.47 | 3.30 ± 0.60 | 0.019 |
| 11 | Ain Asserdoun | Beni Mellal | 15.13 ± 1.23 | 2.85 ± 0.32 | 2.45 ± 0.25 | 0.75 ± 0.19 | 0.005 |
| 12 | Tirhhoula | Beni Mellal | 22.41 ± 1.37 | 2.70 ± 0.24 | 9.05 ± 0.49 | 2.40 ± 0.50 | 0.016 |
| 13 | Mibladen | Moulouya | 273 ± 25 | 97 ± 9 | 22.7 ± 0.3 | 8.7 ± 0.4 | 0.053 |
| 14 | Moulouya | Moulouya | 98 ± 9 | 57 ± 5 | 12.9 ± 0.2 | 3 ± 0.2 | 0.027 |
| 15 | F. Echegag | Es Smara | 181 ± 16 | 114 ± 10 | 80 ± 0.5 | 26.6 ± 0.6 | 0.037 |
| 16 | 7 km-Tarifya | Layoune | 42 ± 4 | 44 ± 4 | 114 ± 0.8 | 51.5 ± 1.1 | 0.009 |
| 17 | Settat | Settat | 166.45 ± 27.10 | 164.80 ± 26.80 | 10.83 ± 0.50 | 17.26 ± 1.26 | 0.044 |
| 18 | Beni Yakhlef | Khouribga | 4.37 ± 0.28 | 4.46 ± 0.32 | 5.10 ± 0.30 | 1.00 ± 0.20 | 0.026 |
| 19 | Ourghida | Khouribga | 24.33 ± 1.98 | 22.53 ± 1.84 | 25.00 ± 1.00 | 5 ± 1 | 0.003 |
| 20 | Lahmina | Khouribga | 30.39 ± 2.27 | 26.20 ± 1.98 | 15.10 ± 1.40 | 0.60 ± 0.40 | 0.017 |
| 21 | Beni Mellal | Beni Mellal | 13.19 ± 0.99 | 6.25 ± 0.53 | 1.00 ± 0.20 | 1.20 ± 0.30 | 0.014 |
| 22 | Ouled Reguia | FB Salah | 61.21 ± 4.17 | 60.60 ± 4.13 | 6.31 ± 0.32 | 4.80 ± 0.50 | 0.037 |
| 23 | Beni Amir | FB Salah | 44.12 ± 3.64 | 45.48 ± 3.75 | 5.42 ± 0.38 | 4.90 ± 0.60 | 0.009 |
| 24 | Layoune | Layoune | 41 ± 4 | 34 ± 3 | 34.0 ± 0.5 | 14.4 ± 0.6 | 0.064 |
| 25 | Gwaissene | Es Smara | 58 ± 5 | 33 ± 3 | 45 ± 0.7 | 30.5 ± 0.9 | 0.090 |
| 26 | Kenitra | Kenitra | 2.85 ± 0.32 | 2.50 ± 0.30 | 0.46 ± 0.06 | 0.77 ± 0.04 | 0.001 |
| 27 | Khouribga | Khouribga | 21.67 ± 1.90 | 15.70 ± 1.41 | 34.60 ± 1.50 | 7.70 ± 1.40 | 0.060 |
| 28 | K Tadla | K Tadla | 15.06 ± 1.06 | 7.24 ± 0.56 | 40.60 ± 1.70 | 5.40 ± 2.20 | 0.068 |
| 29 | FB Salah | FB Salah | 24.68 ± 1.76 | 12.92 ± 0.98 | 45.80 ± 0.90 | 12.40 ± 1.00 | 0.080 |
| 30 | Beni Mellal | Beni Mellal | 12.80 ± 1.67 | 8.31 ± 1.24 | 2.12 ± 0.29 | <0.40 | 0.004 |
In cold springs, the activities are low than in hot springs. In springs, both Ra and U distributions are affected by temperature, salinity, and redox condition. High temperature tends to decrease U but to increase Ra concentrations. The aqueous chemistry of Ra may also be greatly influenced by redox state of the environment, but the effect is opposite to that for U. In geothermal sources where the temperature and the concentration of the chloride are very elevated and the reducing potential is very weak, the 226Ra/238U activity ratios are often very large. Zukić et al. and Herczeg et al. have found in samples of geothermal origin, the ratios in the order of 10^3 to 10^4. Indeed, in a reducing medium where U is much less mobile than Ra, the disappearance of sulphates allows more important concentrations of Ra in solution.13

In the 3 analysed commercialised mineral water samples, the measured activities are low except in the gaseous mineral water of Oulmes where a high value of 1248 mBqL$^{-1}$ was reached.

The risks due to the contamination of the water are essentially risks of internal irradiation as a result of ingestion of natural radionuclides. To demonstrate that the annual limit of 0.1 mSv recommended for the drinking water is respected, we calculated the engaged doses which would receive the consumers from different water sources in Morocco. The dose supplied for one person via the water consumption depends not only on the quantity of radionuclides ingested during one year, but also the coefficients of effective dose engaged by unity of incorporation (DPUI) recommended by the ICRP.14 (Table 2). These coefficients allow converting the activities expressed in becquerels (Bq) to dose expressed in sieverts (Sv). These values of DPUI were also taken back by the European directive.15-17

The calculation of the effective dose was made in our work supposing that the total quantity of ingested radioactive substances results from the consumption about 2 liters of water by a day, that is approximately 730 liters by year. The formula used for the calculation of the engaged effective dose is the following one:

$$E_r = \sum e_j I_j$$

where, e_j is the dose per unit intake by ingestion for adult members of the public (DPUI in Sv/Bq) by ingestion of the radionuclide j; I_j is the incorporation by ingestion of the radionuclide j during the year (that is the volumic activities in becquerels by liter multiplied by 730 L).

These calculations do not consider 4K, because its content in the human body is regulated and unchanging whatever is the contribution by ingestion.18 The activities of isotopes 208Pb and 209Po were not calculated, but estimated at a maximal equivalent activity to that of the 228Ra. Considering its strong affinity for the solid phases, the thorium was not retained in the calculation of dose.19,20

The basic formula is finally the following shape:

$$E_r = 730 \times (4.5 \times 10^4 \times ^{238}U + 4.9 \times 10^4 \times ^{234}U + 2.8 \times 10^7 \times ^{226}Ra + 6.9 \times 10^7 \times ^{228}Ra + 1.2 \times 10^6 \times ^{210}Po + 6.9 \times 10^7 \times ^{210}Pb)$$

In radioprotection, the effect of the ingestion of radionuclides is not the same as it is about a child or about an adult.21 The annual water consumption as well as the coefficients of effective dose engaged by unity of incorporation (DPUI) recommended by the ICRP differ according to the age of the public considered (Table 2).

TABLE 2: Dose per unit intake by ingestion for adult members of the public (DPUI).14

Category	Radionuclide	Adult DPUI (Sv/Bq)	Infant DPUI (Sv/Bq)
Natural uranium series	Uranium-238	4.5 x 104	8.0 x 104
	Uranium-234	4.9 x 104	8.8 x 104
	Radium-226	2.8 x 107	6.2 x 107
	Lead-210	6.9 x 107	2.2 x 106
	Polonium-210	1.2 x 106	4.4 x 106
Natural thorium series	Thorium-232	2.3 x 107	3.5 x 107
	Radium-228	6.9 x 107	3.4 x 106
	Thorium-228	7.2 x 108	2.2 x 107

The calculated total effective doses during one year are lower than the recommended value of 0.1 mSv by the WHO for drinking water except in two hot springs and in gaseous commercialised mineral water.21 In spite of that, these waters do not present any sanitary danger for the population. The sparkling water of Oulmes is occasionally consumed as table water and waters of warm springs are not used as main sources of drinking water. Higher values were measured in China, in France, in Tunisia, in Germany and in Italy.23,25

Conclusion

Radiochemical analyses of 30 drinking water samples taken from 11 wells, 6 hot springs, 3 cold springs, 3 commercialised mineral water and 7 tap water show, for each source, comparable results (234U, 238U, 226Ra and 228Ra activities) to those reported in previous works for different regions in the world. The measured activities covered wide ranges. The calculated total effective doses during one year are lower than the recommended value of 0.1 mSv by the WHO for drinking water except in two hot springs and in gaseous commercialised mineral water. In spite of that, these waters do not present any sanitary danger for the population. The sparkling water of Oulmes is occasionally consumed table water and waters of warm springs are not used as main sources of drinking water.

We cannot generalize the obtained results for all drinking waters in Morocco because of the limited analyzed samples number. Although, they could give a general idea of U and Ra

© Hakam et al.
ISSN 2330-4049
radio-isotopes activity repartition in wells, springs and tap water samples which could be used to orient the next samplings in order to establish a global distribution map of radio-elements in drinking waters of Morocco.

Conflict of interest

The authors declare that they have no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

1. Asikainen M, Kahols H. Anomalously high concentrations of uranium, radium and radon in water from drilled wells in the Helsinki region. *Geochim Cosmochim Acta* 1979; 43: 1681-6.
2. Kahn B, Rosson R, Cantrell J. Analysis of 228Ra and 226Ra in public water supplies by a gamma-ray spectrometer. *Health Phys* 1990; 59:125-31.
3. Key R. Distribution and flux of 226Ra and 228Ra in the Amazon River estuary. *J Geophys Res* 1985; 90: 6995-7004.
4. Ivanovich M, Harmon R. Uranium series disequilibrium: Applications to problems in earth sciences (1st edition) Clarendon Press, Oxford 1982.
5. Ivanovich M., Harmon R. Uranium series disequilibrium: Applications to earth, marine, and environmental sciences (2nd edition) Clarendon Press Oxford 1992.
6. Franz S. Determination of Radon-222 and Ra-226 in Mineral water and drinking water – a survey in Austria. *Analyt* 1989; 144: 1345-7.
7. Choukri A, Reyss J-L, Turpin L, Berrada M. Radiochemical separation of U and Th isotopes in phosphate rich samples for age determination. *Radiochim Acta* 1994; 65: 137-9.
8. Hakam O-K, Choukri A, Reyss J-L, Lferde M. Activities and activity ratios of U and Ra radio-isotopes in drinking wells. springs and tap water samples in Morocco. *Journal of Radiochemistry Acta* 2000; 88: 55-60.
9. Ku TL. An Evaluation of the U234/U238 Method as a Tool for Dating Pelagic Sediments. *Journ Phys Res* 1965; 70: 3457-74.
10. Smidt S, Reyss J-L. Radium as internal tracer of Mediterranean Outflow Water. *Journ Geophys Res* 1996; 101: 3589-96.
11. Zukin J, Harmond D, Ku TL, *et al*. Uranium-thorium series isotopes in brines and reservoir rocks from two deep well holes in the Salton Sea geothermal field, Southeastern California. *Geochim Cosmochim Acta* 1987; 51: 2719-31.
12. Herczeg A, Simpson H, Anderson R, *et al*. Uranium and radium mobility in groundwaters and brines within the delaware basin, Southeastern New Mexico, U.S.A. *Chem Geol* 1988; 72: 181-96.
13. Beauchaire C, Toulhoat P. Redox chemistry of uranium and iron radium geochemistry, and uranium isotopes in the groundwaters of the Lodève basin, Massif Central France. *Appl Geochem* 1987; 2: 417-26.
14. Age-dependent doses to members of the public from intake of radionuclides: Part 5. Compilation of ingestion and inhalation dose coefficients. *Ann ICRP* 1996; 26:1-91.
15. Directive Europeenne 96/70/CE du Parlement européen et du Conseil du 28 octobre 1996 modifiant la directive 80/777/CEE du Conseil relative au rapprochement des législations des états membres concernant l’exploitation et la mise dans le commerce des eaux minérales naturelles. JOCE 1996, L 299 (1996).
16. Directive Europeenne 96/29 Euratom du Conseil du 13 mai 1996 fixant les normes de base relatives à la protection sanitaire de la population et des travailleurs contre les dangers résultant des rayonnements ionisants. JOCE 1996, L 159 (1996).
17. Directive Europeenne 98/83/CE du Conseil de l’Union européenne du 3 novembre 1998 relative à la qualité des eaux destinées à la consommation humaine, JOCE 1998, L 330.
18. Charpak G, Garwin R. Le DARI unité de mesure adapté à l’évaluation de l’effet des faibles doses d’irradiation Le Médecin Radiologique de France 2002; 369: 2-8.
19. Bacon MP, Anderson RF. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea. *J Geophys Res* 1982; 87: 2045-56.
20. Chen J, Lawrence Edwards R, Wasserburg GJ, 234U, 238U and 232Th in seawater. *Earth Planet Sci Lett* 1986; 80: 241-51.
21. United Nations Scientific Committe on the Effects of Atomic Radiation (UNSCEAR). Sources, effects and risks of ionizing radiation: report to the General Assembly, with annexes. New York: United Nations Publications, Annexe A; 1988: 49-134.
22. OMS. Directives de qualité pour l’eau de boisson: recommandations 2e édition. Genève: Organisation Mondiale de la Santé 1994:127-34.
23. Metivier H, Roy M. Dose efficace liée à la consommation d’eau minérale naturelle par l’adulte et le nourrisson. Revue de la Société Française de Radioprotection 1997; 32: 491-9.
24. Remy M, Lemaître N. Eaux minérales et radioactivité. *Hydrogéologie* 1990; 4: 267-78.
25. Cigna A, Talenti M. La radioattività naturale di alcune acqua minerale Italiane, Minerva. *Nuclear* 1965; 9:248-50.