The Potential Roles of Redox Enzymes in Alzheimer’s Disease: Focus on Thioredoxin

Jinjing Jia¹,², Xiansi Zeng²,³*, Guangtao Xu² and Zhanqi Wang⁴

Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative diseases. Increasing studies have demonstrated the critical importance for redox proteins mediating neuronal protection in models of AD. This review briefly describes some of the risk factors contributing to AD, specifically highlighting the important roles of oxidative stress in the pathology of AD. Then this article concisely introduces the dysregulation and functions of two main redox enzymes, peroxiredoxins and glutaredoxins, in AD models. This review emphasizes the neuroprotective role of the third redox enzyme thioredoxin (Trx), an important multifunctional protein regulating cellular redox status. This commentary not only summarizes the alterations of Trx expression in AD patients and models, but also reviews the potential effects and mechanisms of Trx, Trx-related molecules and Trx-inducing compounds against AD. In conclusion, Trx has a potential neuroprotection in AD and may be very promising for clinical therapy of AD in the future.

Keywords
Alzheimer’s disease, oxidative stress, redox enzymes, thioredoxin, neuroprotection

Received November 23, 2020; Revised January 19, 2021; Accepted for publication January 21, 2021

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common neurodegenerative disease with memory decline, cognitive dysfunction and personality changes (Calabrese et al., 2006). Neuropsychiatric symptoms, including depression, apathy and hallucinations, are also frequently observed in AD patients (Fakhoury, 2018). AD is the most common cause of dementia (James et al., 2014) and is a growing global health concern with huge implications for individuals and society (Lane et al., 2018). The pathological features of AD are the density and distribution of extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs, composed of the microtubule-associated protein Tau and hyperphosphorylated Tau) in the central nervous system, both of which highly contribute to the neurodegenerative processes in AD (Grundke-Iqbal et al., 1986; Hanseeuw et al., 2019). In addition, microglial activation, associated astrogliosis, dystrophic neurites, synapse loss and cerebral amyloid angiopathy are also observed (Serrano-Pozo et al., 2011). Typical late-onset AD is likely to be driven by a complex interplay between genetic and environmental factors.

Aging and Genetic Factors of AD
AD is often divided into two types: sporadic AD and familial AD. Aging is the most important risk factor for sporadic AD (Albensi, 2019) because a great majority of patients with AD are over 65 years old (Sawda et al., 2017) and the probability of the disease increases with age (Alzheimer’s Association, 2016). A recent study demonstrated that aging processes promoted the formation of NFTs (Gant et al., 2018). Thus, sporadic AD is usually referred to as late-onset AD. The etiology of sporadic AD is not clearly understood, but it has been associated with several genetic factors (Piaceri et al., 2013). More
Oligomeric Aβ secretion of APP cleavage products may lead to more serious oxidative stress (Butterfield and inserted in the mitochondrial membranes, which will in turn be associated with amyloid-peptide oligomerization and contribute to the progression of sporadic AD (Pratico, 2008). Oxidative stress is an important pathophysiological feature of AD (Muche et al., 2017). Prior to the formation of fibril Aβ, Aβ oligomerization can occur in the presence of reactive oxygen species (ROS), which are associated with disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense, directly affecting synaptic activity and neurotransmission in neurons leading to cognitive dysfunction (Tonnies and Trushina, 2017).

Oxidative stress is an important pathophysiological change in AD. Increasing evidence indicates that oxidative stress in the brain tissue significantly contributes to the pathology of AD (Jia et al., 2017). The deposition of Aβ is clarified to occur early in the progression of AD (Gordon et al., 2018). Prior to the formation of fibril Aβ, oligomeric Aβ, the toxic species of this peptide, could induce oxidative damage. The oxidation of lipids, proteins, and nucleic acids in neurons is a common pathological feature of AD (Pratico, 2008). Oxidative stress is in turn associated with amyloid-peptide oligomerization in the mitochondrial membranes, which will lead to more serious oxidative stress (Butterfield and Boyd-Kimball, 2020). Increased levels of oxidative stress not only increase APP expression and enhance secretion of APP cleavage product sAPPβ (Muche et al., 2017), but also participate in the development of AD by promoting Aβ deposition, tau hyperphosphorylation, and the subsequent loss of synapses and neurons (Chen and Zhong, 2014). In the APP/PS1 double transgenic mouse model of AD, ROS levels in synaptosomes were dramatically increased, which resulted in synaptic dysfunction during the development of AD (Komaddi et al., 2019). Besides the oxidative stress in neurons, microglial activation-induced ROS production also play an imperative role in AD (Bhat et al., 2019). Production of ROS and MDA were significantly increased and the SOD activity was inhibited in Aβ-treated microglia (Cui et al., 2019). Accumulating evidence has demonstrated that microglia can directly mediate synapse loss and exacerbate tau pathology (Hansen et al., 2018). Moreover, activated microglia can secrete toxic factors to directly or indirectly injure neurons (Liddelow et al., 2017).

These evidences above suggest that oxidative stress is an essential part of the pathological process of AD and is closely correlated with amyloid pathology by forming serious pathophysiological cycles, inducing mitochondrial dysfunction and promoting metal toxicity (Chen and Zhong, 2014). Oxidative stress is not only an essential pathological marker of AD, but also serves as a potential treatment target.

Microglial Activation and Neuroinflammation in AD

Microglia, the resident immune cells of the brain, are critical to immunity and homeostasis in the central nervous system. Being one of the first immune cells, microglia constitute the first line of cellular defense against invading pathogens and other types of brain injury (Fakhoury, 2018). Aβ could promote microglial activation leading to secretion of proinflammatory cytokines (Mosher and Wyss-Coray, 2014). Triggering receptor expressed in myeloid cells 2 (TREM2) is a microglial cell surface receptor central to proliferation, survival, and phagocytosis of microglia (Carmona et al., 2018). The number of mitochondria and ATP levels were less in TREM2−/− microglia from 5xFAD mice, suggesting that TREM2 plays an essential role in maintaining mitochondrial function and metabolic fitness of microglia (Ulland et al., 2017). Neuroinflammation plays a significant role in the development and pathology of AD (Agrawal and Jha, 2020). APP/PS1 mice showed increased expression of NOD-like receptor protein (NLRP3), IL-1β, and cleaved caspase 1 (Fang et al., 2019). Knockout of NLRP3 and caspase 1 significantly improved the phagocytosis of microglia, suggesting that activated NLRP3 in APP/PS1 mice contributes to the pathology of AD (Heneka et al., 2013). In addition, microglial production of apoptosis-associated speck-like protein containing a CARD (ASC) binds and cross-seeds extracellular Aβ (Venegas et al., 2017). Exposure to...
ASC-Aβ composites amplified the proinflammatory response, finally resulting in pyroptotic cell death (Friker et al., 2020).

Roles of Redox Enzymes in AD

Redox enzymes in cells provide protection against oxidative damage, such as scavenging ROS, maintaining intracellular redox balance, and regulating vital signaling events caused by ROS. These enzymes mainly include peroxiredoxins (Prxs), glutaredoxins (Grxs), and thioredoxins (Trxs) (Johnson et al., 2015).

Prxs in AD

Prxs are a type of selenium independent antioxidant enzymes that can protect organisms from oxidative damage caused by ROS. Accumulating literatures have reported that the expression of the six subtypes of Prxs is changed in AD. Prx1 and Prx4 were significantly decreased in postmortem brains of AD compared to normal subjects along with higher levels of protein oxidation (Majd and Power, 2018). 2-D gel electrophoresis and mass spectrometry analysis also revealed that Prx2 exists in a more oxidized state in AD brains than in age-matched controls brains (Cumming et al., 2007). The loss of Prx3 was identified in the hippocampal mitochondria of APP/PS1 transgenic mice (Choi et al., 2014). Prx5 was increased in the N2a-APPswe cell model of AD and Prx5 showed a higher level in the brain of APP transgenic mouse than that in a nontransgenic mouse (Park et al., 2017). Changes in Prx expression are closely associated with protection from neuronal death. Overexpression of Prx1 attenuated Aβ1-42-induced cell death (Oku et al., 2017). Prx4 protected HT-22 hippocampal neurons against Aβ oligomer-mediated apoptosis by inhibiting endoplasmic reticulum stress (Kam et al., 2019). Prx5 is upregulated in both the cytoplasm and mitochondria, protecting cells from Aβ oligomer-mediated oxidative stress by eliminating intracellular and mitochondrial ROS (Park et al., 2017). Importantly, the induced Prx5 expression by the Aβ oligomer played a key role in regulating both the activation of Ca^{2+}-mediated calpain (Park et al., 2017) and ERK-Drp1-induced mitochondrial fragmentation (Kim et al., 2016). Prx6 was reported to have the potential to promote cognitive improvement in APP/PS1 double-mutant transgenic mice (Yun et al., 2016). A most recent study demonstrated that Prx6 regulated the protective response of astrocytes toward Aβ plaques (Pankiewicz et al., 2020).

Grxs in AD

Grxs, a type of small thiol/disulfide oxidoreductases, are important for the regulation of cellular protein thiol redox homeostasis through catalyzing the reduction of disulfide bonds in target proteins (Verma et al., 2020). The expression and redox state of Grxs were well studied in AD models and patients. The expression of synaptic Grx1 levels was significantly reduced in APP/PS1 double transgenic mice (Kommandi et al., 2019). Grx1 and Grx2 expression in the axonal area of hippocampus CA1 of AD patients also showed a significant decrease compared to the controls, with no difference in the neuronal cell bodies (Arodin et al., 2014). An increase of oxidized Grx1 was observed in the frontal cortex and hippocampal CA1 regions from one AD brain and Aβ treatment also resulted in the oxidation of Grx1 and the activation of ASK1 cascade in SH-SY5Y cells (Akterin et al., 2006). Grx1 overexpression rescued the decreased viability of SH-SY5Y cells treated with Aβ (Akterin et al., 2006). Overexpressing Grx1 in the brains of APP/PS1 mice also restored memory recall after contextual fear conditioning (Kommandi et al., 2019), suggesting that increasing Grx1 levels may be potential for the treatment of AD.

Trxs in AD

Trx System

Trx is an essential redox balance regulator in mammalian cells and is induced by various factors, including oxidation, radiation, ultraviolet rays, viral infections and ischemia/reperfusion (Zhou et al., 2020), as well as by both chronic and acute stress (Jia et al., 2014; Jia et al., 2016). Trx-1 and Trx-2 are the two primary forms, respectively distributing in cytoplasm and mitochondria, that associate with their respective reductases, TrxR1 and TrxR2 (McBean et al., 2017). Trx, TrxR and NADPH constitute the Trx system, which has been reported to have various biological activities. Trx can directly scavenge singlet oxygen (Das and Das, 2000) and reduce exposed protein disulfides (Masutani et al., 2004). Trx couples with Prx to scavenge ROS, such as directly converting H$_2$O$_2$ to H$_2$O (Granger and Kvietys, 2015). Our previous studies demonstrated that Trx exerted protective effects in oxidative stress, morphine and methamphetamine addiction, autoimmune disease, cerebral ischemic damage and cancers (Chen et al., 2014; Zeng, Zhou et al., 2014; Zeng et al., 2015; Jia et al., 2019; L. Yang et al., 2020; Zeng et al., 2020). Trx was reported to improve the learning and memory ability of Parkinsonism mice (X. Zhang et al., 2018) and has neuroprotective roles through inhibiting endoplasmic reticulum stress-mediated neural apoptosis in cellular and mouse models of Parkinson’s disease (Zeng, Jia, et al., 2014). Importantly, increasing evidences have demonstrated that Trx also plays neuroprotection in AD.

Expression of Trxs in AD

It has been reported that Trx-1 can be released to the cerebrospinal fluid of AD patients and that the levels
of Trx-1 in cerebrospinal fluid are significantly increased in the early stages of AD in comparison to mild cognitive impairment (MCI) (Arodin et al., 2014). Interestingly, the expression of Trx in the plasma from AD patients is also increased, which may provide a defense mechanism against oxidative stress (Cornelius et al., 2013; Arodin et al., 2014). Though Trx expression was increased in peripheral tissues, it’s clarified that Trx is reduced in the brain AD patients and animal models. Trx-1 levels are decreased in the brain in amnestic mild cognitive impairment, a transition stage between normal aging and AD (Di Domenico et al., 2010). A decrease in expression Trx-1 was observed in the frontal cortex and hippocampal CA1 regions from the brain of one AD patient (Akterin et al., 2006). Similarly, Trx-2 expression in hippocampus tissues of AD patients is also markedly reduced (Arodin et al., 2014). Though Trx expression was demonstrated a general decrease in the amygdala and hippocampus of AD brains, TrxR levels were significantly increased in these AD brain regions (Lovell et al., 2000). Interestingly, TrxR is decreased in the frontal cortex (Venkateshappa et al., 2012).

The data from animal and cellular models of AD agree with what is seen in the tissue from patient with AD. In APP/PS1 double transgenic mice, the synaptic Trx levels were also significantly reduced (Kommaddi et al., 2019). ApoE4, the major genetic risk factor for AD, disrupted lysosomal integrity and increased the release of Cathepsin D into the cytoplasm, which could decrease the Trx-1 levels both in human primary cortical neurons and neuroblastoma cells and in the hippocampus of ApoE4 targeted replacement mice and subsequently result in the activation of ASK1 pathway (Persson et al., 2017). These results suggest that the downregulation of Trx-1 is involved in the toxicity caused by ApoE4. Aβ1-42-treated mice showed a reduction of Trx, as well as its transcription factor nuclear factor-E2-related factor 2 (Nrf2) in hippocampal neurons (Duan and Si, 2019) (Table 1).

The redox status of Trx also changed in AD models. Similar to Grx1, Aβ treatment also resulted in the oxidation of Trx-1 and the activation of the ASK1 cascade in SH-SY5Y cells (Akterin et al., 2006). Wang et al. found that Aβ treatment may increase protein levels of Thioredoxin-interacting protein (TXNIP, an endogenous inhibitor of Trx), which subsequently inhibits Trx reducing capability and enhances the oxidative modification of protein cysteines in the active site of the protein, but with no change of the Trx protein levels (Y. Wang, Wang, et al., 2019). What’s more, the expression pattern of Trx-1 and Trx-2 was shown to be correspondingly altered in hippocampus tissue sections from AD patients compared to controls (Arodin et al., 2014). Immunohistochemical staining of Trx1 revealed that only cytosolic localization was observed in hippocampus CA1 of AD patients, whereas Trx-1 in the control sections was observed to translocate to the nucleus, with no difference in the expressing levels between control and AD patients. In contrast, Trx-2 expression was dramatically decreased in the AD groups (Table 1).

Based on the above proofs, it is generally acknowledged that the intracellular antioxidant defense system in AD is impaired. The changes of Trx expression and/or redox state in the brain are associated with AD progress.

Neuroprotection of Trxs in AD

Some studies have demonstrated that Trx plays neuroprotective roles in animal and cellular models of AD. An interesting study revealed that the rats with higher levels of the Trx mRNA and protein in the hippocampus acted better in the Morris water maze, suggesting that a deficit

| Table 1. The Expression Redox State of Trx in AD Models and Patients. |
|-----------------|-----------------|-----------------|
| **Subjects** | **Expression and redox status of Trx** | **References** |
| AD patients | ↑ Trx-1 in cerebrospinal fluid | Arodin et al., 2014 |
| | ↑ Trx-1 in the plasma | Arodin et al., 2014; Cornelius et al., 2013 |
| | ↑ Trx-1 in the brain | Di Domenico et al., 2010 |
| | ↑ Trx-1 in the frontal cortex and hippocampal CA1 regions | Akterin et al., 2006 |
| | ↑ Trx-2 in hippocampus tissues | Arodin et al., 2014 |
| | ↑ Synaptic Trx | Kommaddi et al., 2019 |
| | ↑ Trx-1 | Persson et al., 2017 |
| APP/PS1 mice | ↑ Trx-1 in hippocampal neurons | Duan and Si, 2019 |
| Mice expressing ApoE4, SH-SY5Y/human primary cortical neurons treated with recombinant ApoE4 | ↑ Oxidation of Trx-1 | Akterin et al., 2006 |
| Aβ1-42-treated mice | ↑ Oxidation of Trx-1 | Wang, Xu, et al., 2019 |
| SH-SY5Y cells treated with Aβ1-42 | | |
| Primary cerebral cortical neurons and HT22 hippocampal cells from Aβ1-42-treated mice | | |

Note: ↑, increase; ↓, decrease.
of Trx might play an important role in the impaired spatial learning and memory of AD rats (X. H. Yang et al., 2012). This is consistent with another report in which transgenic overexpression of Trx-1 ameliorated the learning and memory deficits in the MPTP-induced Parkinson’s disease model in mice (X. Zhang et al., 2018). Interestingly, overexpression of mitochondrial TrxR-2 markedly decreased the expression of Aβ peptide and inhibited its deposits in a transgenic elegans model of AD (Cacho-Valadez et al., 2012), which may be related to the reduction of oxidized mitochondrial Trx-2 by TrxR-2. Overexpressing Trx-1 also showed neuroprotection against Aβ1-42 accumulation in the brain and restored the life span and locomotor activity via promoting autophagosome formation (Gerenu et al., 2019). Trx-mimetic peptides, containing the canonical -Cys-X-X-Cys- or -Cys-X-Cys- motif of the Trx-active site, could mimic and enhance the cellular activity of Trx (Cohen-Kutner et al., 2013). Trx-mimetic peptides represent a new family of potent and selective redox compounds that could act as potential candidates for the prevention and treatment of oxidative stress-related diseases (Bachnoff et al., 2011). The Trx-mimetic peptide could improve cognitive function in a mouse model of mild traumatic brain injury (Baratz-Goldstein et al., 2016). Trx-mimetic peptide, Ac-Cys-Pro-Cys-amide, prevented the expression of TXNIP, inhibited the JNK/p38MAPK-mediated neuronal apoptosis and attenuated the neuro-inflammatory processes (Cohen-Kutner et al., 2014). These data suggest that Trx mimetic peptides may become beneficial for preventing neurological disorders such as AD.

Neuroprotection of Trx Inducers in AD

Besides Trx and Trx-related molecules showing neuroprotection in AD, numerous studies have demonstrated that Trx inducers also have the potential against AD, suggesting Trx inducers may be much more potential for AD treatment.

Resveratrol

It’s well-known that some polyphenolic compounds play neuroprotective effects in AD models (Masci et al., 2015). Resveratrol, a group of compounds called polyphenols extracted from plants, has been indicated its promising use clinically for oxidative-related diseases, such as diabetes, cardiovascular diseases, ischemic brain injury, neurodegenerative diseases (Bonnefont-Rousselot, 2016; Y. Gao et al., 2018; Zhao et al., 2018; Izquierdo et al., 2019). Although resveratrol at high concentrations has been reported to have a potential to diminish Trx-1 expression, promote Trx-1 oxidation and alter its subcellular location, low-dose resveratrol could significantly upregulate the expression of Trx-1 (Thirunavukkarasu et al., 2007; Feng and Zhang, 2019). It has been reported that resveratrol may be a potential therapy for AD (X. Wang et al., 2018). Resveratrol is a well-known activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Resveratrol attenuates the Aβ1-42-induced cytotoxicity by upregulating heme oxygenase-1 (HO-1) via the PI3K/Akt/Nrf2 pathway in PC12 cells (Hui et al., 2018). Under the oxidative condition, Nrf2 is critical for Trx-1 expression because the promoter of the Trx-1 gene contains an antioxidant response element.
Table 2. Studies of Representative Compounds Related to Trx Against AD.

Compound	Treatment	Species	Model	Protective mechanisms	References
Resveratrol	200 mg/kg per day for 8 weeks, oral gavage	Mice	overexpressing APP	↑ learning and memory, ↑ hUC-MSCs engraftment and neurogenesis, ↑ neural apoptosis in the hippocampus	X. Wang et al., 2018
	10, 20, 40 μM	PC12 cells	Aβ1-42	↑ cell viability of PC12 cells, ↑ the production of MDA and ROS, ↑ expression of SOD and GSH, activates PI3K/Akt/Nrf2/HO-1 signaling pathway	Hui et al., 2018
Resveratrol	10, 50 nM	BV-2 microglial cells	Aβ1-42	↑ Aβ-induced proliferation and activation of BV-2 cells, ↑ the release of proinflammatory cytokines, IL-6 and TNF-α, ↓ TXNIP/Trx/NLRP3 pathway	Feng and Zhang, 2019
Salidroside	30 mg/kg orally once daily for 3 consecutive months	Mice	APPswe/PS1ΔE9	↑ learning and memory, ↑ SOD and GSH in hippocampal tissue, ↓ MDA and nitrate in the hippocampus, and the apoptosis of hippocampal neurons, ↓ IL-6 and TNF-α	Q. Li et al., 2018
Salidroside	0.3 mg/ml with free access for 2 months	Mice	APP/PS1	↑ locomotor activity, ↓ soluble and insoluble Aβ levels, ↑ expression of PSD95, NMDAR1, and CaMK II, ↑ PI3K/Akt/mTOR signaling	H. Wang et al., 2020
Salidroside	20, 40 mg/kg orally daily for 28 days from day 15th of d-gal injection	Rats	d-galactose	↑ cognitive function, ↑ TNF-α, IL-6 and IL-1β, ↓ TXNIP, ↑ Trx, ↓ Bax and caspase-9, ↓ Bcl-2, ↓ SIRT1/NF-κB pathway	J. Gao et al., 2016
Salidroside	50 and 100 μM	SH-SY5Y cells	Aβ25-35	↓ loss of cell viability and apoptosis, ↓ Trx, HO-1 and Prxl, ↓ mitochondrial membrane potential, ↓ phosphorylation of JNK and p38 MAP kinase	L. Zhang et al., 2010
Salidroside	50 μM	PC12 cells	Aβ1-42	↑ Aβ42-induced cytotoxicity and mitochondria-mediated apoptotic pathways, ↑ ERK1/2 and AKT signaling pathways	Liao et al., 2019
Estrogen	250 nM pre-treated for 24 h	SH-SY5Y cells	Aβ1-42	↑ Aβ neurotoxicity and ASK1 activation, ↑ Trx-1 expression	Mateos et al., 2012
Estrogen	100 nM co-treated for 24 h	SH-SY5Y cells	Aβ1-42	↑ cell viability and protein level of Trx, ↑ ROS production, cell apoptosis, ΔΨm, and the protein levels of PERK, IREα, and TXNIP	Pan et al., 2020
DI-NBP	40 and 80 mg/kg orally once daily for 3 months	Mice	SAMP8	↑ cognitive function and synaptic plasticity	Lv et al., 2018
DI-NBP	20 mg/kg oral gavage once daily for 5 months	Mice	APP/PS1	↑ Trx, ↓ TXNIP/NLRP3	Wang et al., 2019
DI-NBP	20, 60 mg/kg oral gavage once daily for 5 months	Mice	APP/PS1	↑ learning and memory and synaptic plasticity, ↓ soluble Aβ and Aβ oligomer in the mouse brain, ↑ CREB and Nrf2	Wang et al., 2016
DI-NBP	1 and 10 μM	Rat primary astrocytes	Aβ1-42	↑ Aβ-induced activation of astrocytes and the upregulation of proinflammatory molecules,↓IκBα degradation and NF-κB translocation	H. M. Wang et al., 2013

Note: ↑, increase; ↓, decrease.
A growing body of evidences have demonstrated that TXNIP plays an essential role in the activation of NLRP3 inflammasome in various acute and chronic diseases (Nasoohi et al., 2018). TXNIP-NLRP3 inflammasome may contribute to the pathogenesis of AD and other age-related dementias (L. Li et al., 2019). The protection of resveratrol treatment against Aβ-induced activation of TXNIP-NLRP3 inflammasome may at least in part due to its upregulatory effect of Trx expression (Feng and Zhang, 2019) (Table 2).

Salidroside

Salidroside, an active ingredient extracted from traditional Chinese medicine (*Rhodiola rosea L.*), could protect against oxidative stress-induced cell apoptosis (L. Zhang et al., 2007). In a APPswe/PS1ΔE9 model, administration of Salidroside attenuated the memory and learning impairment of AD mice (Q. Li et al., 2018). In this study, it was demonstrated that the effects of Salidroside administration on AD mice were, at least partially, via suppression of oxidative damage, inflammation and apoptosis in hippocampal neurons (Q. Li et al., 2018). A recent study suggested that Salidroside may protect the damaged synapses of the neurons in the APP/PS1 mice via decreasing both the soluble and insoluble Aβ levels, increasing the expression of PSD95, NMDAR1, and calmodulin-dependent protein kinase II, and upregulating PI3K/Akt/mTOR signaling (H. Wang et al., 2020). The protection of Salidroside in AD models may be related to the induction of Trx after Salidroside treatment. In a d-galactose-induced rat model of AD, administration of Salidroside suppressed inflammation via inhibiting Sirt1/NF-κB signaling pathway (J. Gao et al., 2016). The treatment of Salidroside could induce Trx expression and inhibit TXNIP activation in the hippocampal neurons (J. Gao et al., 2015). What’s more, Salidroside inhibited d-galactose-induced mitochondria-mediated apoptosis. It has been reported that Salidroside upregulated Trx expression and further protected SH-SY5Y cells against Aβ25-35-induced oxidative stress and the activation of JNK/p38MAPK cascade (L. Zhang et al., 2010). Liao et al demonstrated that Salidroside prevented PC12 cells from Aβ1-42-induced neurotoxicity and apoptosis through activating the ERK1/2 and Akt signaling pathways (Liao et al., 2019) (Table 2).

Estrogen

Given that the risk for AD is associated with age-related loss of ovarian hormones in women (Marongiu, 2019; Torromino et al., 2020), estrogen replacement therapy is considered for AD treatment. It has been clarified that treatment with low dose estrogen elevated significantly the protein levels of Trx-1 (Campos et al., 2014). Estrogen-mediated protection against Aβ toxicity is dependent on the induction of Trx-1 through the cGMP/protein kinase (PKG) signaling pathway (Chiueh et al., 2003), which in turn promotes the activation of Akt and the inhibition of ASK1 (Mateos et al., 2012). Considering that Aβ increases the expression of TXNIP (Y. Wang, Wang, et al., 2019), the upregulation of Trx-1 by estrogen can further inhibit TXNIP-induced oxidative stress by Aβ and activate AMPK signaling (Table 2) (Pan et al., 2020). Prospective and case-control studies have demonstrated that estrogen replacement therapy can effectively reduce cognitive deficits in some but not all postmenopausal women (Qin et al., 2020).

Dl-3-n-butylphthalide

The antioxidant Dl-3-n-butylphthalide (Dl-NBP) is a natural antioxidant used for cerebral ischemia treatment
inflammation (TXNIP, NLRP3, NF-

administration of exogenous Trx inducers play neuroprotective
effort of endogenous Trx expression and admin-

vide a strategy to slow the progression of AD. Thus,

pro-survival signaling pathways (PI3K/Akt and ERK)

(ASK1/JNK/p38MAPK, caspase-6) and activation of

Conclusions

In conclusion, oxidative stress has been recognized as a

Aβ deposition induces oxidative stress, which in turn

Aβ deposition and the formation of fibril-

the vicious circle of Aβ deposition and oxidative

deposition induces oxidative stress, which in turn

Dl-NBP blocked the interaction between TXNIP

inflammasome, and then ameliorated neuronal apoptosis

content or loss of function of redox defenses, further neurons

Alzheimer’s disease: Role of microglia. Front Aging

Mitochondrial dysfunction and Alzheimer’s disease: Role of
do not establish treatments that slow the progression of AD.

As presented in this review, increasing studies have dem-

regulating the oxidative state in AD patients and models. In vitro

and in vivo experiments have proven that enhancement of endogenous Trx expression and admin-

administration of exogenous Trx inducers play neuroprotective

roles in AD, including inhibition of oxidative stress,

inflammation (TXNIP, NLRP3, NF-κB), and apoptosis

(ASK1/JNK/p38MAPK, caspase-6) and activation of

pro-survival signaling pathways (PI3K/Akt and ERK)

(Figure 1). These findings suggest that increasing the

expressions and enhancing the activity of Trx may pro-

vide a strategy to slow the progression of AD. Thus,

therapeutic approaches aimed at enhancing catalytic

redox activity will provide a promising and exciting

new avenue for the treatment of AD. Further studies

are needed to clarify the detailed molecular mechanisms

underlying how Trx functions in AD. In addition, the

roles of other members of the Trx system, TrxR and

TXNIP, in AD should also be further investigated deeply.

Author Contributions

X-SZ and J-JJ designed the article contents. J-JJ and X-SZ

wrote the original paper. X-SZ, G-TX and Z-QW revised the

paper. All authors reviewed the paper and approved the sub-

mitted version.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: This study was supported by the National Natural

Science Foundation of China (31600837), Natural Science

Foundation of Henan Province (20230410332) and Research

Foundation for Advanced Talents of Jiaxing University

(CD70520018).

References

Asiath, J., Buha, A., Wallace, D. R., & Bjorklund, G. (2020).

Xenobiotics, trace metals and genetics in the pathogenesis of
tauopathies. Int J Environ Res Public Health, 17, 1269.

Agrawal, I., & Jha, S. (2020). Mitochondrial dysfunction and

Alzheimer’s disease: Role of microglia. Front Aging

Neurosci, 12, 252.

Akterin, S., Cowburn, R. F., Miranda-Vizuete, A., Jimenez, A.,

Bogdanovic, N., Winblad, B., & Cedazo-Minguez, A.

(2006). Involvement of glutaredoxin-1 and thioredoxin-1 in

beta-amyloid toxicity and Alzheimer’s disease. Cell Death

Differ, 13, 1454–1465.

Albensi, B. C. (2019). Dysfunction of mitochondria:

Implications for Alzheimer’s disease. Int Rev Neurobiol, 145, 13–27.

Alzheimer’s Association, (2016). 2016 Alzheimer’s disease facts

and figures. Alzheimers Dement, 12, 459–509.

Arodin, L., Lamparter, H., Karlsson, H., Nennesmo, I.,

Bjornstedt, M., Schroder, J., & Fernandes, A. P. (2014).

Alteration of thioredoxin and glutaredoxin in the progres-

sion of Alzheimer’s disease. J Alzheimers Dis, 39, 787–797.

Bachhoff, N., Trus, M., & Atlas, D. (2011). Alleviation of oxy-

dative stress by potent and selective thioredoxin-mimetic

peptides. Free Radic Biol Med, 50, 1355–1367.
Baratz-Goldstein, R., Deselms, H., Heim, L. R., Khomsky, L., Hoffer, B. J., Atlas, D., & Pick, C. G. (2016). Thioredoxin-mimetic-peptides protect cognitive function after mild traumatic brain injury (mTBI). *PLoS One, 11*, e0157064.

Bertram, L., Lill, C. M., & Tanzi, R. E. (2010). The genetics of Alzheimer disease: back to the future. *Neuron, 68*, 270–281.

Bhat, S. A., Sood, A., Shukla, R., & Hanif, K. (2019). AT2R activation prevents microglia pro-inflammatory activation in a NOX-dependent manner: Inhibition of PKK activation and p47(phox) phosphorylation by PP2A. *Mol Neurobiol, 56*, 3005–3023.

Bonnefont-Rousselot, D. (2016). Resveratrol and cardiovascular diseases. *Nutrients, 8*, 250.

Butterfield, D. A., & Boyd-Kimball, D. (2020). Mitochondrial oxidative and nitrosative stress and Alzheimer disease. *Antioxidants (Basel), 9*, 818.

Cacho-Valadez, B., Munoz-Lobato, F., Pedrajas, J. R., Cabello, J., Fierro-Gonzalez, J. C., Navas, P., Swoboda, P., Link, C. D., & Miranda-Vizuete, A. (2012). The characterization of the *Caenorhabditis elegans* mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in beta-amyloid peptide toxicity. *Antioxid Redox Signal, 16*, 1384–1400.

Calabrese, V., Sultana, R., Scapagnini, G., Guagliano, E., Sapienza, M., Bella, R., Kanski, J., Pennisi, G., Mancuso, C., Stella, A. M., & Butterfield, D. A. (2006). Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. *Antioxid Redox Signal, 8*, 1975–1986.

Campos, C., Sartorio, C. L., Casali, K. R., Fernandes, R. O., Llesuy, S., da Rosa Araujo, A. S., Bello-Klein, A., & Rigat, K. V. (2014). Low-dose estrogen is as effective as high-dose treatment in rats with postmenopausal hypertension. *J Cardiovasc Med, 63*, 144–151.

Carmona, S., Zahs, K., Wu, E., Dakin, K., Bras, J., & Guerreiro, R. (2018). The role of TREM2 in Alzheimer’s disease and other neurodegenerative disorders. *Lancet Neurol, 17*, 721–730.

Carter, D. A., Desmarais, E., Bellis, M., Campion, D., Clerget-Darpoux, F., Brice, A., Agid, Y., Jaillard-Serradit, A., & Mallet, J. (1992). More missense in amyloid gene. *Nat Genet, 2*, 255–256.

Castano, E. M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R. A., Soto, C., & Frangione, B. (1995). Fibrillogenesis in Alzheimer’s disease of amyloid beta peptides and apolipoprotein E. *Biochem J, 306*(Pt 2), 599–604.

Chen, W., Zeng, X., Luo, F., Lv, T., Zhou, X., & Bai, J. (2014). The decreased expression of thioredoxin-1 in brain of mice with experimental autoimmune myasthenia gravis. *Neuromuscular Disord, 24*, 726–735.

Chen, Y., Jiang, M., Li, L., Ye, M., Yu, M., Zhang, L., Ge, B., Xu, W., & Wei, D. (2018). DL3nbutylphthalide reduces microglial activation in lipopolysaccharide induced Parkinson’s disease model mice. *Mol Med Rep, 17*, 3884–3890.

Chen, Z., & Zhong, C. (2014). Oxidative stress in Alzheimer’s disease. *Neurosci Bull, 30*, 271–281.

Chiueh, C., Lee, S., Andoh, T., Murphy, D. (2003) Induction of antioxidative and antiapoptotic thioredoxin supports neuroprotective hypothesis of estrogen. *Endocrine, 21*, 27–31.

Choi, K. J., Kim, M. J., Je, A. R., Jun, S., Lee, C., Lee, E., Jo, M., Huh, Y. H., & Kweon, H. S. (2014). Three-dimensional analysis of abnormal ultrastructural alteration in mitochondria of hippocampus of APP/PSEN1 transgenic mouse. *J Biosci, 39*, 97–105.

Cohen-Kutner, M., Khomsky, L., Trus, M., Aisner, Y., Niv, M. Y., Benhar, M., & Atlas, D. (2013). Thioredoxin-mimetic peptides (TXM) reverse auaranofin induced apoptosis and restore insulin secretion in insulinoma cells. *Biochem Pharmacol, 85*, 977–990.

Cohen-Kutner, M., Khomsky, L., Trus, M., Ben-Yehuda, H., Lenhard, J. M., Liang, Y., Martin, T., & Atlas, D. (2014). Thioredoxin-mimetic peptide CB3 lowers MAPKinase activity in the Zucker rat brain. *Redox Biol, 2*, 447–456.

Cornelius, C., Trovato Salinaro, A., Scuto, M., Fronte, V., Cambia, M. T., Pennisi, M., Bella, R., Milone, P., Graziano, A., Crupi, R., Cuzzocrea, S., Pennisi, G., & Calabrese, V. (2013). Cellular stress response, sirtuins and UCP proteins in Alzheimer disease: role of vitagenes. *Immun Ageing, 10*, 41.

Cui, B., Zhang, S., Wang, Y., & Guo, Y. (2019). Fattrerol attenuates beta-amyloid-induced oxidative stress and inflammation through Nrf2/Keap1 pathway in a microglia cell line. *Bioimed Pharmacother, 109*, 112–119.

Cumming, R. C., Dargusch, R., Fischer, W. H., & Schubert, D. (2007). Increase in expression levels and resistance to sulfhydryl oxidation of peroxiredoxin isoforms in amyloid beta-resistant nerve cells. *J Biol Chem, 282*, 30523–30534.

Das, K. C., & Das, C. K. (2000). Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions. *Biochem Biophys Res Commun, 277*, 443–447.

Di Domenico, F., Sultana, R., Tiu, G. F., Scheff, N. N., Perluigi, M., Cini, C., & Butterfield, D. A. (2010). Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. *Brain Res, 1333*, 72–81.

Ding, H., Gao, J., Zhu, Z., Xiong, Y., & Liu, J. (2008). Mitochondrial dysfunction enhances susceptibility to oxidative stress by down-regulation of thioredoxin in human neuroblastoma cells. *Neurochem Res, 33*, 43–50.

Dorszewska, J., Prendecki, M., Oczkowski, A., Dezor, M., & Kozubski, W. (2016). Molecular basis of familial and sporadic Alzheimer’s disease. *Curr Alzheimer Res, 13*, 952–963.

Duan, Q., & Si, E. (2019). MicroRNA-25 aggravates Abeta1-42-induced hippocampal neuron injury in Alzheimer’s disease by downregulating KLF2 via the Nrf2 signaling pathway in a mouse model. *J Cell Biochem, 120*, 15891–15905.

Fakhoury, M. (2018). Microglia and astrocytes in Alzheimer’s disease: Implications for therapy. *Curr Neuropharmacol 16*, 508–518.

Fang, E. F., Hou, Y., Palikaras, K., Adriaanse, B. A., Kerr, J. S., Yang, B., Lautrup, S., Hasan-Olive, M. M., Caponio, D., Dan, X., Rocktaschel, P., Croteau, D. L., Akbari, M., Greig, N. H., Fladby, T., Nilsen, H., Cader, M. Z., Mattson, M. P., Tavernarakis, N., & Bohr, V. A. (2019). Mitophagy inhibits amyloid-beta and tau pathology and reverses
cognitive deficits in models of Alzheimer’s disease. *Nat Neurosci*, 22, 401–412.

Feng, L., & Zhang, L. (2019). Resveratrol suppresses abeta-induced microglial activation through the TXNIP/TRX/NLRP3 signaling pathway. *DNA Cell Biol*, 38, 874–879.

Flowers, S. A., & Rebeck, G. W. (2020). APOE in the normal brain. *Neurobiol Dis* 136, 104724.

Friker, L. L., Scheiblich, H., Hochheiser, I. V., Brinkschulte, R., Riedel, D., Latz, E., Geyer, M., & Heneka, M. T. (2020). beta-Amyloid clustering around ASC fibrils boosts its toxicity in microglia. *Cell Rep*, 30, 3743–3746 e3746.

Gant, J. C., Kadish, I., Chen, K. C., Thibault, O., Blalock, E. M., Porter, N. M., & Landfield, P. W. (2018). Aging-related calcium dysregulation in rat entorhinal neurons homologous with the human entorhinal neurons in which Alzheimer’s disease neurofibrillary tangles first appear. *J Alzheimers Dis*, 66, 1371–1378.

Gao, J., He, H., Jiang, W., Chang, X., Zhu, L., Luo, F., Zhou, R., Ma, C., & Yan, T. (2015). Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer’s disease. *Behav Brain Res*, 293, 27–33.

Gao, J., Zhou, R., You, X., Luo, F., He, H., Chang, X., Zhu, L., Ding, X., & Yan, T. (2016). Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-kappaB pathway. *Metab Brain Dis*, 31, 771–778.

Gao, Y., Fu, R., Wang, J., Yang, X., Wen, L., & Feng, J. (2018). Resveratrol mitigates the oxidative stress mediated by hypoxic-ischemic brain injury in neonatal rats via Nrf2/ HO-1 pathway. *Pharm Biol*, 56, 440–449.

Gerenu, G., Persson, T., Goikolea, J., Calvo-Garrido, J., Loera-Valencia, R., Pottmeier, P., Santiago, C., Poska, H., Presto, J., & Cedazo-Minguez, A. (2019). Thioredoxin-80 protects against amyloid-beta pathology through autophagic-lysosomal pathway regulation. *Mol Psychiatry*. Advance online publication. https://doi.org/10.1038/s41380-019-0521-2

Giau, V. V., Baginszky, E., Youn, Y. C., An, S. S. A., & Kim, S. (2019). APP, PSEN1, and PSEN2 mutations in Asian patients with early-onset Alzheimer disease. *Int J Mol Sci*, 20, 178–191.

Gil-Bea, F., Akerin, S., Persson, T., Mateos, L., Sandebring, A., Avila-Carino, J., Gutierrez-Rodriguez, A., Sundstrom, E., Holmgren, A., Winblad, B., & Cedazo-Minguez, A. (2012). Thioredoxin-80 is a product of alpha-secretase cleavage that inhibits amyloid-beta aggregation and is decreased in Alzheimer’s disease brain. *EMBO Mol Med*, 4, 1097–1111.

Gordon, B. A., et al. (2018). Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: A longitudinal study. *Lancet Neurol*, 17, 241–250.

Granger, D. N., & Kvietys, P. R. (2015). Reperfusion injury and reactive oxygen species: The evolution of a concept. *Redox Biol*, 6, 524–551.

Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. *Proc Natl Acad Sci U S A*, 83, 4913–4917.

Hanseew, B. J., Betensky, R. A., Jacobs, H. I. L., Schultz, A. P., Sepulcre, J., Becker, J. A., Cosio, D. M. O., Farrell, M., Quiroz, Y. T., Mormino, E. C., Buckley, R. F., Papp, K. V., Amariglio, R. A., Dewachter, I., Ivanoiu, A., Huijbers, W., Hedden, T., Marshall, G. A., Chhatwal, J. P., Rentz, D. M., Sperling, R. A., & Johnson, K. (2019). Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study. *JAMA Neurol*, 76, 915–924.

Hansen, D. V., Hanson, J. E., & Sheng, M. (2018). Microglia in Alzheimer’s disease. *J Cell Biol*, 217, 459–472.

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griepp, A., Axt, D., Remus, A., Tzeng, T. C., Gelpi, E., Halle, A., Korte, M., Latz, E., & Golenbock, D. T. (2013). NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. *Nature*, 493, 674–678.

Hsu, S., Pimenova, A. A., Hayes, K., Villa, J. A., Rosene, M. J., Jere, M., Goate, A. M., & Karch, C. M. (2020). Systematic validation of variants of unknown significance in APP, PSEN1 and PSEN2. *Neurobiol Dis*, 139, 104817.

Hui, Y., Chengyong, T., Cheng, L., Haixia, H., Yuanda, Z., & Weihua, Y. (2018). Resveratrol attenuates the cytotoxicity induced by amyloid-beta42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pathway. *Neurochem Res* 43, 297–305.

Im, J. Y., Lee, K. W., Woo, J. M., Junn, E., & Mouradian, M. M. (2012). DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. *Hum Mol Genet*, 21, 3013–3024.

Islam, M. I., Nagakannan, P., Ongungbola, O., Djordjevic, J., Albensi, B. C., & Eftekharpour, E. (2019). Thioredoxin system as a gatekeeper in caspase-6 activation and nuclear lamina integrity: Implications for Alzheimer’s disease. *Free Radic Biol Med*, 134, 567–580.

Izquierdo, V., Palomera-Avalos, V., Lopez-Ruiz, S., Canudas, A. M., Pallas, M., & Grinan-Ferre, C. (2019). Maternal resveratrol supplementation prevents cognitive decline in senescent mice offspring. *Int J Mol Sci*, 20, 1134.

James, B. D., Leurgans, S. E., Hebert, L. E., Scherr, P. A., Yaffe, K., & Bennett, D. A. (2014). Contribution of Alzheimer disease to mortality in the United States. *Neurology*, 82, 1045–1050.

Jia, J. J., Geng, W. S., Wang, Z. Q., Chen, L., & Zeng, X. S. (2019). The role of thioredoxin system in cancer: strategy for cancer therapy. *Cancer Chemother Pharmacol*, 84, 453–470.

Jia, J. J., Zeng, X. S., Li, K., Ma, L. F., Chen, L., & Song, X. Q. (2016). The expression of thioredoxin-1 by epinephrine withdrawal stress is decreased in Alzheimer’s disease neurofibrillary tangles. *Front Pharmacol*, 7, 27–33.

Jia, J. J., Zeng, X. S., Quinlan, M., Wisniewski, H. M., & Binder, L. I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer’s disease. *Cell Cycle*, 13, 3121–3131.
Johnson, W. M., Wilson-Delfosse, A. L., Chen, S. G., & Mieyal, J. J. (2015). The roles of redox enzymes in Parkinson’s disease: Focus on glutaredoxin. *Ther Targets Neurol Dis*, 2, e790.

Ju, T. C., Chen, S. D., Liu, C. C., & Yang, D. I. (2005). Protective effects of S-nitrosogluthathione against amyloid beta-peptide neurotoxicity. *Free Radic Biol Med*, 38, 938–949.

Kam, M. K., Lee, D. G., Kim, B., Lee, H. S., Lee, S. R., Bae, Y. C., & Lee, D. S. (2019). Peroxiredoxin 4 ameliorates amyloid beta oligomer-mediated apoptosis by inhibiting ER-stress in HT-22 hippocampal neuron cells. *Cell Biol Toxicol*, 35, 573–588.

Kim, B., Park, J., Chang, K. T., & Lee, D. S. (2016). Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERK-Drp1-mediated mitochondrial fragmentation. *Free Radic Biol Med*, 90, 184–194.

King, B. C., Nowakowska, J., Karsten, C. M., Kohl, J., Renstrom, E., & Blom, A. M. (2012). Truncated and full-length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces. *J Immunol*, 188, 4103–4112.

Kommaddi, R. P., Tomar, D. S., Karunakaran, S., Bapat, D., Nanguneri, S., Ray, A., Schneider, B. L., Nair, D., & Ravindranath, V. (2019). Glutaredoxin1 diminishes amyloid beta-mediated oxidation of F-actin and reverses cognitive deficits in an Alzheimer’s disease mouse model. *Antioxid Redox Signal*, 31, 1321–1338.

Lane, C. A., Hardy, J., & Schott, J. M. (2018). Alzheimer’s disease. *Eur J Neuro*, 25, 59–70.

Li, L., Ismael, S., Nasoohi, S., Sakata, K., Liao, F. F., McDonald, M. P., & Ishrat, T. (2019). Thioredoxin-interacting protein (TXNIP) associated NLRP3 inflammasome activation in human Alzheimer’s disease brain. *J Alzheimers Dis*, 68, 255–265.

Li, Q., Wang, J., Li, Y., & Xu, X. (2018). Neuroprotective effects of salidroside administration in a mouse model of Alzheimer’s disease. *Med Mol Rep*, 17, 7287–7292.

Liao, Z. L., Su, H., Tan, Y. F., Qiu, Y. J., Zhu, J. P., Chen, Y., Lin, S. S., Wu, M. H., Mao, Y. P., Hu, J. J., & Yu, E. Y. (2019). Salidroside protects PC-12 cells against amyloid beta-induced apoptosis by activation of the ERK1/2 and AKT signaling pathways. *Int J Mol Med*, 43, 1769–1777.

Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Munch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B., & Barres, B. A. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. *Nature*, 541, 481–487.

Lin, X., Kapoor, A., Gu, Y., Chow, M. J., Peng, J., Zhao, K., & Tang, D. (2020). Contributions of DNA damage to Alzheimer’s disease. *Int J Mol Sci*, 21, 1666.

Lovell, M. A., Xie, C., Gabbita, S. P., & Markesbery, W. R. (2000). Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s disease brain. *Free Radic Biol Med*, 28, 418–427.

Lv, C., Ma, Q., Han, B., Li, J., Geng, Y., Zhang, X., & Wang, M. (2018). Long-term DL-3-n-butylphthalide treatment alleviates cognitive impairment correlate with improving synaptic plasticity in SAMP8 mice. *Front Aging Neurosci*, 10, 200.

Madore, C., Yin, Z., Leibowitz, J., & Butovskv, O. (2020). Microglia, lifestyle stress, and neurodegeneration. *Immunity*, 52, 222–240.

Majd, S., & Power, J. H. T. (2018). Oxidative stress and decreased mitochondrial superoxide dismutase 2 and peroxiredoxins 1 and 4 based mechanism of concurrent activation of AMPK and mTOR in Alzheimer’s disease. *Curr Alzheimer Res*, 15, 764–776.

Marongiu, R. (2019). Accelerated ovarian failure as a unique model to study peri-menopause influence on Alzheimer’s disease. *Front Aging Neurosci*, 11, 242.

Masci, A., Mattioli, R., Costantino, P., Baima, S., Morelli, G., Punzi, P., Giordano, C., Pinto, A., Donini, L. M., d’Erme, M., & Mosca, L. (2015). Neuroprotective effect of brassica oleracea sprouts crude juice in a cellular model of Alzheimer’s disease. *Oxid Med Cell Longev*, 2015, 781938.

Masutani, H., Bai, J., Kim, Y. C., & Yodoi, J. (2004). Thioredoxin as a neurotrophic cofactor and an important regulator of neuroprotection. *Mol Neurobiol*, 29, 229–242.

Mateos, L., Persson, T., Katoozi, S., Gil-Bea, F. J., & Cedaço-Minguez, A. (2012). Estrogen protects against amyloid-beta toxicity by estrogen receptor alpha-mediated inhibition of Daxx translocation. *Neurosci Lett*, 506, 245–250.

McBean, G. J., Lopez, M. G., & Wallner, F. K. (2017). Redox-based therapeutics in neurodegenerative disease. *Br J Pharmacol*, 174, 1750–1770.

Mosher, K. I., & Wyss-Coray, T. (2014). Microglial dysfunction in brain aging and Alzheimer’s disease. *Biochem Pharmacol*, 88, 594–604.

Muche, A., Arendt, T., & Schliebs, R. (2017). Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells. *PLoS One*, 12, e0178127.

Nagakannan, P., Iqbal, M. A., Yeung, A., Thiliveris, J. A., Rastegar, M., Ghavami, S., & Eftekharpour, E. (2016). Perturbation of redox balance after thioredoxin reductase deficiency interrupts autophagy-lysosomal degradation pathway and enhances cell death in nutritionally stressed SH-SY5Y cells. *Free Radic Biol Med*, 101, 53–70.

Nasoohi, S., Ismael, S., & Ishrat, T. (2018). Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: Regulation and implication. *Mol Neurobiol*, 55, 7900–7920.

Ooku, Y., Murakami, K., Irie, K., Hoseki, J., & Sakai, Y. (2017). Synthesized Abeta42 caused intracellular oxidative damage, leading to cell death, via lysosome rupture. *Cell Struct Funct*, 42, 71–79.

Pan, Q., Guo, K., Xue, M., & Tu, Q. (2020). Estrogen protects neuroblastoma cell from amyloid-beta 42 (Abeta42)-induced apoptosis via TXNIP/TRX axis and AMPK signaling. *Neurochem Int*, 135, 104685.

Pankiewicz, J. E., Diaz, J. R., Marta-Ariza, M., Lizardczyk, A. M., Franco, L. A., & Sadowski, M. J. (2020). Peroxiredoxin 6 mediates protective function of astrocytes in Abeta proteostasis. *Mol Neurodegener*, 15, 50.
Park, J., Kim, B., Chae, U., Lee, D. G., Kam, M. K., Lee, S. R., Lee, S., Lee, H. S., Park, J. W., & Lee, D. S. (2017). Peroxiredoxin 5 decreases beta-amyloid-mediated cyclin-dependent kinase 5 activation through regulation of Ca (2+) -mediated calpain activation. Antioxid Redox Signal, 27, 715–726.

Pekkari, K., & Holmgren, A. (2004). Truncated thioredoxin: Physiological functions and mechanism. Antioxid Redox Signal, 6, 53–61.

Persson, T., Lattanzio, F., Calvo-Garrido, J., Rimondini, R., Rubio-Rodrigo, M., Sundstrom, E., Maioli, S., Sandebringen-Matton, A., & Cedazo-Minguez, A. (2017). Apolipoprotein E4 elicits lysosomal cathepsin D release, decreased thioredoxin-1 levels, and apoptosis. J Alzheimers Dis, 56, 601–617.

Piaceri, I., Nacmias, B., & Sorbi, S. (2013). Genetics of familial and sporadic Alzheimer’s disease. Frontiers in Neurology, 4, 167–177.

Pratico, D. (2008). Oxidative stress hypothesis in Alzheimer’s disease: A reappraisal. Trends Pharmacol Sci, 29, 609–615.

Qiang, X., Li, Y., Yang, X., Luo, L., Xu, R., Zheng, Y., Cao, Z., Tan, Z., & Deng, Y. (2017). DL-3-n-butylphthalide-edaravone hybrids as novel dual inhibitors of amyloid-beta aggregation and monoamine oxidases with high antioxidant potency for Alzheimer’s therapy. Bioorg Med Chem Lett, 27, 718–722.

Qin, Y., An, D., Xu, W., Qi, X., Wang, X., Chen, L., Chen, L., & Sha, S. (2020). Estradiol replacement at the critical period protects hippocampal neural stem cells to improve cognition in APP/PS1 mice. Front Aging Neurosci, 12, 240.

Sawda, C., Moussa, C., & Turner, R. S. (2017). Resveratrol for Alzheimer’s disease. Am N Y Acad Sci, 1403, 142–149.

Serrano-Pozo, A., Frosch, M. P., Masliah, E., & Hyman, B. T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med, 1, a006189.

Shi, Y., Pilozzi, A. R., & Huang, X. (2020). Exposure of CuO nanoparticles contributes to cellular apoptosis, redox stress, and Alzheimer’s abeta amyloidosis. Int J Environ Res Public Health, 17, 1005.

Thirunavukkarasu, M., Penumathsa, S. V., Koneru, S., Juhasz, B., Zhan, L., Otani, H., Bagchi, D., Das, D. K., & Maulik, N. (2007). Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: Role of nitric oxide, thioredoxin, and heme oxygenase. Free Radic Biol Med, 43, 720–729.

Tonnies, E., & Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis, 57, 1105–1121.

Torromino, G., Maggi, A., & De Leonibus, E. (2020). Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol, 197, 101895.

Trouw, L. A., Nielsen, H. M., Minthon, L., Londos, E., Landberg, G., Veerhuis, R., Janciauskiene, S., & Blom, A. M. (2008). C4b-binding protein in Alzheimer’s disease: binding to Abeta1-42 and to dead cells. Mol Immunol, 45, 3649–3660.

Tsubuki, S., Takaki, Y., & Saido, T. C. (2003). Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Abeta to physiologically relevant proteolytic degradation. Lancet, 361, 1957–1958.

Ulland, T. K., Song, W. M., Huang, S. C., Ulrich, J. D., Sergushichev, A., Beatty, W. L., Loboda, A. A., Zhou, Y., Cairns, N. J., Kambal, A., Lognicaheva, E., Gillflian, S., Cella, M., Virgin, H. W., Unanue, E. R., Wang, Y., Artyomov, M. N., Holtzman, D. M., & Colonna, M. (2017). TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell, 170, 649 e613–663 e613.

Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecher, A., Schwartz, S., Santarelli, F., Kummer, M. P., Griep, A., Gelpi, E., Beilharz, M., Riedel, D., Golenbock, D. T., Geyer, M., Walter, J., Latz, E., & Heneka, M. T. (2017). Microglia-derived A. S.C specks cross-seed amyloid-beta in Alzheimer’s disease. Nature, 552, 355–361.

Venkateshappa, C., Harish, G., Mahadevan, A., Srinivas Bharath, M. M., & Shankar, S. K. (2012). Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res, 37, 1601–1614.

Verma, A., Ray, A., Bapat, D., Diwakar, L., Kommadri, R. P., Schneider, B. L., Hirsch, E. C., & Ravindranath, V. (2020). Glutaredoxin 1 downregulation in the substantia nigra leads to dopaminergic degeneration in mice. Mov Disord, 35, 1843–1853.

Wang, C. Y., Wang, Z. Y., Xie, J. W., Wang, T., Wang, X., Xu, Y., & Cai, J. H. (2016). DL-3-n-butylphthalide-induced upregulation of antioxidant defense is involved in the enhancement of cross talk between CREB and Nrf2 in an Alzheimer’s disease mouse model. Neurobiol Aging, 38, 32–46.

Wang, C. Y., Xu, Y., Wang, X., Guo, C., Wang, T., & Wang, Z. Y. (2019). DL-3-n-butylphthalide Inhibits NLRP3 inflammasome and mitigates Alzheimer’s-like pathology via Nrf2-TXNIP-Trx axis. Antioxid Redox Signal, 30, 1411–1431.

Wang, F., Ma, J., Han, F., Guo, X., Meng, L., Sun, Y., Jin, C., Duan, H., Li, H., & Peng, Y. (2016). DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model. Sci Rep, 6, 19396.

Wang, H., Li, Q., Sun, S., & Chen, S. (2020). Neuroprotective effects of salidroside in a mouse model of Alzheimer’s disease. Cell Mol Neurobiol, 40, 1133–1142.

Wang, H. M., Zhang, T., Huang, J. K., & Sun, X. J. (2013). 3-N-butylphthalide (NBP) attenuates the amyloid-beta-induced inflammatory responses in cultured astrocytes via the nuclear factor-kappaB signaling pathway. Cell Physiol Biochem, 32, 235–242.

Wang, X., Ma, S., Yang, B., Huang, T., Meng, N., Xu, L., Xing, Q., Zhang, Y., Zhang, K., Li, Q., Zhang, T., Wu, J., Yang, G. L., Guan, F., & Wang, J. (2018). Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behav Brain Res, 339, 297–304.

Wang, Y., Wang, Y., Bharti, V., Zhou, H., Hoi, V., Tan, H., Wu, Z., Nagakannan, P., Eftekharpour, E., & Wang, J. F. (2019). Upregulation of thioredoxin-interacting protein in
brain of amyloid-beta protein precursor/presenilin 1 transgenic mice and amyloid-beta treated neuronal cells. *J Alzheimers Dis*, 72, 139–150.

Xia, X., Jiang, Q., McDermott, J., & Han, J. J. (2018). Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. *Aging Cell*, 17, e12802.

Xiong, N., Huang, J., Chen, C., Zhao, Y., Zhang, Z., Jia, M., Zhang, Z., Hou, L., Yang, H., Cao, X., Liang, Z., Zhang, Y., Sun, S., Lin, Z., & Wang, T. (2012). Dl-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson’s disease. *Neurobiol Aging*, 33, 1777–1791.

Xu, Z. Q., Zhou, Y., Shao, B. Z., Zhang, J. J., & Liu, C. (2019). A systematic review of neuroprotective efficacy and safety of DL-3-N-butyphthalide in ischemic stroke. *Am J Chin Med*, 47, 507–525.

Yang, L., Guo, N., Fan, W., Ni, C., Huang, M., Bai, L., Zhang, L., Zhang, X., Wen, Y., Li, Y., Zhou, X., & Bai, J. (2020). Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. *Neurotoxicology*, 78, 163–169.

Yang, X. H., Liu, H. G., Liu, X., & Chen, J. N. (2012). Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia. *Chin Med J (Engl)*, 125, 3074–3080.

Yun, H. M., Jin, P., Park, K. R., Hwang, J., Jeong, H. S., Kim, E. C., Jung, J. K., Oh, K. W., Hwang, B. Y., Han, S. B., & Hong, J. T. (2016). Thiacremoneone potentiates anti-oxidant effects to improve memory dysfunction in an APP/PS1 transgenic mice model. *Mol Neurobiol*, 53, 2409–2420.

Zeng, X. S., Geng, W. S., Wang, Z. Q., & Jia, J. J. (2020). Morphine addiction and oxidative stress: The potential effects of thioredoxin-1. *Front Pharmacol*, 11, 82.

Zeng, X. S., Jia, J. J., Kwon, Y., Wang, S. D., & Bai, J. (2014). The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. *Free Radic Biol Med*, 67, 10–18.