SERUM IMMUNOGLOBULIN AND COMPLEMENT LEVELS IN PATIENTS WITH BREAST CANCER IN IRAQ

RANA HAZIM HAMMODY1, MOHAMMED QAIS AL-ANI2, FAREED ARAK TURKEY3

1Department of Basic Science, College of Dentistry, University of Anbar, Ramadi, Iraq. 2Department of Biology, College of Science, University of Anbar, Ramadi, Iraq. 3Ministry of Health, Iraq. Email: drmohammedqaish1975@gmail.com

Received: 01 February 2018, Revised and Accepted: 19 April 2018

INTRODUCTION

Breast cancer is the most widespread cancer among women worldwide [1,2]. The latest Iraqi Cancer Registry [3] revealed that it is still the most common malignancy among the general population since 1986 and the leading cause of death from female cancers in Iraq; accounting for 34% of the registered cancers among women and 23% of cancer-related mortality. The peak frequency is often observed among middle-aged women where the disease is frequently diagnosed at relatively advanced stages [4], with a likely prevalence of aggressive forms [5]. Studies conducted in the past decade have confirmed the role of immunological response in the breast cancer disease process [6,7] and the possible use of immunological parameters in the prognosis of breast cancer [8]. High serum immunoglobulin levels were found to be associated with tumor load in breast cancer patients. The obvious alteration in serum such as IgA and IgG levels in breast cancer patients reflects a disturbance in cell-mediated immunity and humoral immunity [9]. The effective role of the complement is found to be raised in breast cancer patients and increased with the progression of the disease [10]. The complement system is an integral part of the immune system. It involves more than 30 soluble and cell-bound proteins that circulate in the plasma in an inactive form [11]. These proteins can be activated by three independent pathways, namely - classical, alternative, and lectin pathway leading to generation of products that have important biologic activities including tumor cell destruction [12]. The complement components eliminate cancer cells through the binding of complement-fixing antibodies to tumor cell membrane, promote attachment of complement component that makes pores in the membrane, and resulting in cell distraction due to loss of osmotic and biochemical integrity [13]. The complement components enhance the tumor cells killing by a process involving opsonization and subsequent phagocytosis by macrophages [14].

Aim of the study

This study aims to estimate the levels of immunoglobulins (IgG, IgM, and IgA) and levels of complement component (C3 and C4) in Iraqi women with breast cancer and compared with the control group.

METHODS

This study was conducted from August 2016 to February 2017 on a total number of 100 subjects including 35 breast cancer patients (they are still not receiving adjuvant treatment), 30 treated patients, 10 worker group (working in the room, they do blending and preparer of chemotherapy for patients in the hospital), and 25 healthy women benefactor. All samples were collected from Oncology Hospital/Medical City in Baghdad exception of the control group were collected from outside the hospital. Collected blood samples 4 mL were taken from each women patients and control group, placed into Gel tubes, left around 15 min at room temperature, and it is centrifuged at 2000×g for 10 min to get the serum, to be used while in the measurement of each of serum IgG, IgA, IgM, C3, and C4 proteins were determined for 100 patients were measured by single radial immunodiffusion method, in which equal volumes of reference sera and test samples are added to wells in an agarose gel, containing monospecific antisera. Ring diameters are measured and a reference curve is constructed on graph.

Determination of serum immunoglobulin and complement component

Radial immunodiffusion test

Serum IgG, IgM, IgA, C3, and C4 proteins were determined for 100 patients were measured by single radial immunodiffusion method, in which equal volumes of reference sera and test samples are added to wells in an agarose gel, containing monospecific antisera. Ring diameters are measured and a reference curve is constructed on graph.
Inflammatory mast cells up-regulate C4 (mg/dl) 51.850** compared after three cycles of chemotherapy. It has been shown that which revealed the increase in the IgG level in pre-treatment when the pre-treatment group and the post-treatment group. The present study found a significant difference in the IgG level between the pre-treatment group and the post-treatment group; this may be the result of no interest because generally the serum IgM level between the pre-treatment group and the post-treatment group is still within the normal level [19].

Furthermore, the present study found no significant difference in the IgM level between the pre-treatment group and the post-treatment group; this may be the result of no interest because generally the serum IgM level is still within the normal level [19].

The present study found a significant difference in the IgG level between the pre-treatment group and the post-treatment group. The present study is in accordance with that of Ali et al. [19] and Alsabti [17] which revealed the increase in the IgG level in pre-treatment when compared after three cycles of chemotherapy. It has been shown that IgG expressed by cancers of epithelial origin [18] such as breast cancer and contributed to the growth and development of epithelial tumor cells, this supported the findings of IgG contribution in cancer initiation in the precancerous stage in epithelial cells [20].

**RESULTS AND DISCUSSION**

Serum immunoglobulins (IgG, IgA, and IgM)

Table 1 summarized that there were a significant p value changes in the levels of IgA, IgM, and IgG in breast cancer of patients sera in comparison with healthy controls.

The results revealed that patients with breast cancer have a higher values in concentration of IgG, IgM, and IgG which reached (390.37 ± 13.19, 292.86 ± 14.35, and 1416.66 ± 49.73 mg/dl, respectively) with highly significant differences (p<0.01) compared to that of healthy control (173.16 ± 15.46, 108.92 ± 10.10, and 1009.64 ± 64.65 mg/dl, respectively).

The results of this study are confirmed with most other studies [15], according to which the IgA levels in breast cancer patients are higher than in controls and that the levels of IgA increase with the advancement in disease stages or post-treatment. Explanation [16] the breast cancer cell line proved to secrete their own IgA, this may reflect the increase in disease stages or post-treatment. Explanation [16] the breast cancer cell line proved to secrete their own IgA, this may reflect the increase in disease stages or post-treatment.

Furthermore, the present study found no significant difference in the IgM level between the pre-treatment group and the post-treatment group; this may be the result of no interest because generally the serum IgM level is still within the normal level [19].

The present study found a significant difference in the IgG level between the pre-treatment group and the post-treatment group. The present study is in accordance with that of Ali et al. [19] and Alsabti [17] which revealed the increase in the IgG level in pre-treatment when compared after three cycles of chemotherapy. It has been shown that IgG expressed by cancers of epithelial origin [18] such as breast cancer and contributed to the growth and development of epithelial tumor cells, this supported the findings of IgG contribution in cancer initiation in the precancerous stage in epithelial cells [20].

Serum complements C3 and C4

The C3 values pre-treatment (163.26±5.98 mg/dl) were high significantly than the C3 values post-treatment (127.30±5.33 mg/dl), p<0.01, as shown in Table 2. The serum C4 levels for patients with breast cancer pre-treatment (43.71±2.10 mg/dl). It was similar to values post-treatment (47.97±4.21 mg/dl).

The presence of C3 and C4 in cancer samples, associated with C5b-9 deposits, indicates that the complement component has been activated through the classical pathway [21]. Their results are corresponding with results Vijayakumar et al. [11] No significant changes were found in the C4 levels between the pre-treatment and post-treatment groups are shown in Table 2, while, the serum C4 levels for pre-treatment or post-treatment showed insignificant difference with the control group.

Serum IgA, IgM, and IgG can use as important biomarker in the diagnosis of breast cancer, also used as predictors for breast cancer recurrence.

**REFERENCES**

1. Globocan 2012. International Agency for Research on Cancer. Lyon: IARC Press; 2013.
2. Adama AB, Mohamed S. Anti--Breast cancer from various natural sources, review. Int J Pharm Pharm Sci 2015;7:44-7.
3. Iraqi Cancer Board. Results of the Iraqi Cancer Registry 2012. Baghdad: Iraqi Cancer Registry Center, Ministry of Health, 2015.
4. Alwan NA. Breast cancer among Iraqi women: Preliminary findings from a regional comparative breast cancer research project. J Glob Oncol ASCO 2016;2:1-4.
5. Al Alwan NA. Proliferative index as a marker in Iraqi aneuploid mammary carcinoma. WHO, East. Mediterr Health J 2006;6:1062-72.
6. Ahiwuala S, Shah N. Animal venom for treating breast cancer. Int J Pharm PharmSci 2015;6:24-30.
7. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 1999;13:1382-97.
8. Yadav R, Sen R, Chauhanp ER. PR, HER2/Neu status and relation to clinicopathological factors in breast Carcinoma. Int J Pharm PharmSci 2017;8:287-90.
9. Singh B, Berry JA, Shoher A, Lucci A. COX-2 induces IL-11 production in human breast cancer cells. J Surg Res 2006;131:267-75.
10. Singh RP, Singh VP, Udap KN. E-rosette forming lymphocytes and serum immunoglobulins in breast cancer patients. Mater Med Pol (Polish Journal Of Medicine And Pharmacy) 1991;23:179-81.
11. Vijayakumar T, Ankathil R, Remani P, Beevi VM, Vijayan KK, Panicker CK, et al. Total hemolytic complement (CH50) and its fractions (C3 and C4) in the sera of patients with carcinoma of the oral cavity, uterine cervix, and breast. J Clin Immunol 1987;7:300-3.
12. Benjamin E, Leskowitz S. Immunology: A Short Course. 2nd ed. New York: John Wiley and Sons Inc.; 1991.
13. Goldsby RA, Kindt TJ, Osborene BA. Kuby Immunology. 4th ed. New York, U.S.A: W.H. Free Man and Company; 2000.
14. Shreiber H. Tumor immunology. In: Panl WE. Fundamental Immunology. 4th ed. Philadelphia, PA: Lippincott. Raven Publisher; 1999. p. 1237-70.
15. Mancini G, Carbonara AO, Heremans JF. Immuno-chemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 1965;2:235-4.
16. Springer GF, Desai PR, Scanlon EF. Blood group MN precursors as human breast carcinoma-associated antigens and “naturally” occurring human cytotoxins against them. Cancer 1976;37:169-76.
17. Alsabti EA. Serum immunoglobulins in breast cancer. J Surg Oncol 2006;11:129-33.
18. Zheng H, Li M, Ren W, Zeng L, Liu HD, Hu D, et al. Expression and secretion of immunoglobulin alpha heavy chain with diverse VDJ recombinations by human epithelial cancer cells. Mol Immunol 2007;44:2221-7.
19. Ali HQ, Mahdi NK, Al-jowher MH. Serum igand cytokinelevels in women with breast cancer before and after mastectomy. Med J Islam World Acad Sci 2012;20:121-9.
20. Chen Z, Qiu X, Gu J. Immunoglobulin expression in nonlymphoid lineage and neoplastic cells. Am J Pathol 2009;174:1139-48.
21. Niculescu F, Rus HG, Retegan M, Vlaiucu R. Persistent complement activation on tumor cells in breast cancer. Am J Pathol 1992;140:1039-43.
22. Ferda O, Ismail S, Numan N. Immunoglobulins and complement components in patients with lung cancer. Tüberkülözo Toraks Dergisi 2004;52:19-23.