Shalgar, Shashank; Tamborra, Irene

Dispelling a myth on dense neutrino media: fast pairwise conversions depend on energy.

(English) Zbl 07467993 J. Cosmol. Astropart. Phys. 2021, No. 1, Paper No. 14, 17 p. (2021)

MSC:

85A15 Galactic and stellar structure
83F05 Relativistic cosmology
81V15 Weak interaction in quantum theory

Keywords:

neutrino astronomy; neutrino theory; supernova neutrinos

Full Text: DOI arXiv

References:

[1] A. Mirizzi et al., 2016 Supernova Neutrinos: Production, Oscillations and Detection, https://doi.org/10.1393/nrc/i2016-10120-8 Riv. Nuovo Cim.39 1 [1508.00785] doi:10.1393/nrc/i2016-10120-8

[2] S. Horisuchi and J.P. Kneller, 2018 What can be learned from a future supernova neutrino detection?, https://doi.org/10.1088/1361-6471/aa90a J. Phys. G45 040002 [1709.01515] doi:10.1088/1361-6471/aa90a

[3] S. Chakraborty, R. Hansen, I. Izaguirre and G. Raffelt, 2016 Collective neutrino flavor conversion: recent developments, https://doi.org/10.1016/j.nuclphysb.2016.02.012 Nucl. Phys. B908 366 [1602.02766] doi:10.1016/j.nuclphysb.2016.02.012

[4] H. Duan, G.M. Fuller and Y.-Z. Qian, 2010 Collective neutrino oscillations, https://doi.org/10.1146/annurev.nucl.012809.104524 Ann. Rev. Nucl. Part. Sci.60 569 [1508.00785] doi:10.1146/annurev.nucl.012809.104524

[5] M.-R. Wu and I. Tamborra, 2017 Fast neutrino conversions: Ubiquitous in compact binary merger remnants, https://doi.org/10.1103/PhysRevD.95.103007 Phys. Rev. D95 103007 [1701.06580] doi:10.1103/PhysRevD.95.103007

[6] L. Johns, M. Mina, V. Cirigliano, M.W. Paris and G.M. Fuller, 2016 Neutrino flavor transformation in the lepton-asymmetric universe, https://doi.org/10.1103/PhysRevD.94.083505 Phys. Rev. D94 083505 [1608.01336] doi:10.1103/PhysRevD.94.083505

[7] S.P. Mikheyev and A. Smirnov, 1985 Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos Sov J. Nucl. Phys.42 913

[8] L. Wolfenstein, 1978 Neutrino oscillations in matter, https://doi.org/10.1103/PhysRevD.17.2369 Phys. Rev. D17 2369 doi:10.1103/PhysRevD.17.2369

[9] G. Sigl and G. Raffelt, 1993 General kinetic description of relativistic mixed neutrinos, https://doi.org/10.1016/0550-3213(93)90175-O Nucl. Phys. B406 423 doi:10.1016/0550-3213(93)90175-O

[10] S. Hannestad, G.G. Raffelt, G. Sigl and Y.Y.Y. Wong, 2006 Self-induced conversion in dense neutrino gases: pendulum in flavour space, https://doi.org/10.1103/PhysRevD.74.105010 Phys. Rev. D74 105010 [Erratum ibid 76 (2007) 029901] doi:10.1103/PhysRevD.74.105010

[11] G.L. Fogli, E. Lisi, A. Marrone and A. Mirizzi, 2007 Collective neutrino flavor transitions in supernovae and the role of trajectory averaging J. Cosmol. Astropart. Phys.2007 12 010 [0707.1998]

[12] H. Duan, G.M. Fuller and Y.-Z. Qian, 2006 Collective neutrino flavor transformation in supernovae, https://doi.org/10.1103/PhysRevD.74.123004 Phys. Rev. D74 123004 [astro-ph/0606159] doi:10.1103/PhysRevD.74.123004

[13] H. Duan, G.M. Fuller, J. Carlson and Y.-Z. Qian, 2006 Coherent development of neutrino flavor in the supernova environment, https://doi.org/10.1103/PhysRevLett.97.241101 Phys. Rev. Lett.97 241101 doi:10.1103/PhysRevLett.97.241101

[14] H. Duan, G.M. Fuller, J. Carlson and Y.-Z. Qian, 2006 Simulation of coherent non-linear neutrino flavor transformation in the supernova environment. 1. Correlated neutrino trajectories, https://doi.org/10.1103/PhysRevD.74.105014 Phys. Rev. D74 105014 [astro-ph/0606616] doi:10.1103/PhysRevD.74.105014

[15] A. Banerjee, A. Dighe and G. Raffelt, 2011 Linearized flavor-stability analysis of dense neutrino streams, https://doi.org/10.1103/PhysRevD.84.053013 Phys. Rev. D84 053013 [1107.2308] doi:10.1103/PhysRevD.84.053013

[16] R.F. Sawyer, 2016 Neutrino cloud instabilities just above the neutrino sphere of a supernova, https://doi.org/10.1103/PhysRevLett.116.081101 Phys. Rev. Lett.116 081101 [1509.03323] doi:10.1103/PhysRevLett.116.081101

[17] R.F. Sawyer, 2005 Speed-up of neutrino transformations in a supernova environment, https://doi.org/10.1103/PhysRevD.72.045003 Phys. Rev. D72 045003 [hep-ph/0509031] doi:10.1103/PhysRevD.72.045003

[18] R.F. Sawyer, 2009 The multi-angle instability in dense neutrino systems, https://doi.org/10.1103/PhysRevD.79.105003 Phys. Rev. D79 105003 [0803.4319] doi:10.1103/PhysRevD.79.105003
S. Chakraborty, R.S. Hansen, I. Lagaurre and G. Raffelt, 2016 Self-induced neutrino flavor conversion without flavor mixing J. Cosmol. Astropart. Phys.2016 03 042 [1602.00698]

B. Dasgupta, A. Mirizzi and M. Sen, 2017 Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions J. Cosmol. Astropart. Phys.2017 02 019 [1609.00528]

I. Lagaurre, G. Raffelt and I. Tamborra, 2017 Fast pairwise conversion of supernova neutrinos: a dispersion-relation approach, https://doi.org/10.1103/PhysRevLett.118.021101 Phys. Rev. Lett.118 021101 [1610.01612] doi:10.1103/PhysRevLett.118.021101

I. Tamborra, L. Huedepohl, G. Raffelt and H.-T. Janka, 2017 Flavor-dependent neutrino angular distribution in core-collapse supernovae, https://doi.org/10.3847/1538-4357/aaea18 Astrophys. J.839 132 [1702.00060] doi:10.3847/1538-4357/aaea18

S. Shalgar and I. Tamborra, 2019 On the occurrence of crossings between the angular distributions of electron neutrinos and antineutrinos in the supernova core, https://doi.org/10.3847/1538-4357/ab38ba Astrophys. J.883 80 [1904.07236] doi:10.3847/1538-4357/ab38ba

S. Abbar, H. Duan, K. Sumiyoshi, T. Takikawa and M.C. Volpe, 2020 Fast neutrino flavor conversion modes in multidimensional core-collapse supernova models: the role of the asymmetric neutrino distributions, https://doi.org/10.1103/PhysRevD.101.043016 Phys. Rev. D101 043016 [1911.01983] doi:10.1103/PhysRevD.101.043016

S. Shalgar, H. Duan, K. Sumiyoshi, T. Takikawa and M.C. Volpe, 2019 On the occurrence of fast neutrino flavor conversions in multidimensional supernova models, https://doi.org/10.1103/PhysRevD.100.043004 Phys. Rev. D100 043004 [1812.06883] doi:10.1103/PhysRevD.100.043004

M. Delfan Azari et al., 2020 Fast collective neutrino oscillations inside the neutrino sphere in core-collapse supernovae, https://doi.org/10.1103/PhysRevD.101.023018 Phys. Rev. D101 023018 [1910.02308] doi:10.1103/PhysRevD.101.023018

H. Nagakura, T. Morinaga, C. Kato and S. Yamada, 2020 Fast-pairwise collective neutrino oscillations associated with asymmetric neutrino emissions in core-collapse supernova, [1910.04288]

T. Morinaga, H. Nagakura, C. Kato and S. Yamada, 2020 Fast neutrino flavor conversion in the preshock region of core-collapse supernovae, https://doi.org/10.1103/PhysRevResearch.2.012046 Phys. Rev. Res.2 012046 [1909.13131] doi:10.1103/PhysRevResearch.2.012046

M.-R. Wu, I. Tamborra, O. Just and H.-T. Janka, 2017 Imprints of neutrino-pair flavor conversions on nucleosynthesis in ejecta from neutron-star merger remnants, https://doi.org/10.1103/PhysRevD.96.123015 Phys. Rev. D96 123015 [1711.00477] doi:10.1103/PhysRevD.96.123015

Z. Xiong, A. Sieverding, M. Sen and Y.-Z. Qian, 2020 Potential impact of fast flavor oscillations on neutrino-driven winds and their nucleosynthesis, https://doi.org/10.3847/1538-4357/abac5e Astrophys. J.900 144 [2006.11414] doi:10.3847/1538-4357/abac5e

S. Bhattacharyya and B. Dasgupta, 2020 Late-time behavior of fast neutrino oscillations, https://doi.org/10.1103/PhysRevD.102.063018 Phys. Rev. D102 063018 [2005.00459] doi:10.1103/PhysRevD.102.063018

S. Abbar and H. Duan, 2018 Fast neutrino flavor conversion: roles of dense matter and spectrum crossing, https://doi.org/10.1103/PhysRevD.98.043014 Phys. Rev. D98 043014 [1712.07013] doi:10.1103/PhysRevD.98.043014

S. Abbar, 2020 Searching for fast neutrino flavor conversion modes in core-collapse supernova simulations J. Cosmol. Astropart. Phys.2020 05 027 [2003.00969]

B. Dasgupta, A. Mirizzi and M. Sen, 2018 Simple method of diagnosing fast flavor conversions of supernova neutrinos, https://doi.org/10.1103/PhysRevD.98.103001 Phys. Rev. D98 103001 [1807.03322] doi:10.1103/PhysRevD.98.103001

L. Johns, H. Nagakura, G.M. Fuller and A. Burrows, 2020 Neutrino oscillations in supernovae: angular moments and fast instabilities, https://doi.org/10.1103/PhysRevResearch.2.013009 Phys. Rev. D101 013009 [1910.05682] doi:10.1103/PhysRevResearch.2.013009

J.D. Martin, C. Yi and H. Duan, 2020 Dynamic fast flavor oscillation waves in dense neutrino gases, https://doi.org/10.1016/j.physletb.2019.135088 Phys. Lett. B800 135088 [1909.02253] doi:10.1016/j.physletb.2019.135088

C. Yi, L. Ma, J.D. Martin and H. Duan, 2019 Dispersion relation of the fast neutrino oscillation wave, https://doi.org/10.1103/PhysRevD.99.063005 Phys. Rev. D99 063005 [1901.01546] doi:10.1103/PhysRevD.99.063005

F. Capozzi, B. Dasgupta, E. Lisi, A. Marrone and A. Mirizzi, 2017 Fast flavor conversions of supernova neutrinos: classifying instabilities via dispersion relations, https://doi.org/10.1103/PhysRevD.96.043016 Phys. Rev. D96 043016 [1706.03360] doi:10.1103/PhysRevD.96.043016

S. Shalgar, I. Padilla-Gay and I. Tamborra, 2020 Neutrino propagation hinders fast pairwise flavor conversions J. Cosmol. Astropart. Phys.2020 06 048 [1911.09110]

B. Dasgupta and M. Sen, 2018 Fast neutrino flavor conversion as oscillations in a quartic potential, https://doi.org/10.1103/PhysRevD.97.023017 Phys. Rev. D97 023017 [1709.08671] doi:10.1103/PhysRevD.97.023017

A. Esteban-Pretel et al., 2008 Role of dense matter in collective supernova neutrino transformations, https://doi.org/10.1103/PhysRevD.78.085012 Phys. Rev. D78 085012 [0807.0659] doi:10.1103/PhysRevD.78.085012

S. Airen, F. Capozzi, S. Chakraborty, B. Dasgupta, G. Raffelt and T. Stirner, 2018 Normal-mode analysis for collective neutrino oscillations J. Cosmol. Astropart. Phys.2018 12 019 [1809.09137]

S. Abbar and M.C. Volpe, 2019 On fast neutrino flavor conversion modes in the nonlinear regime, https://doi.org/10.1016/j.physletb.2019.02.002 Phys. Lett. B790 545 [1811.04215] doi:10.1016/j.physletb.2019.02.002

M.T. Keil, G.G. Raffelt and H.-T. Janka, 2003 Monte Carlo study of supernova neutrino spectra formation, https://doi.org/10.1086/375130 Astrophys. J.590 971 [astro-ph/0208035] doi:10.1086/375130

H. Duan and S. Shalgar, 2015 Flavor instabilities in the neutrino line model, https://doi.org/10.1016/j.physletb.2015.05.057 Phys. Lett. B747 139 [1412.7097] doi:10.1016/j.physletb.2015.05.057

V. Cirigliano, M.W. Paris and S. Shalgar, 2017 Effect of collisions on neutrino flavor inhomogeneity in a dense neutrino gas,
[47] G. Raffelt, S. Sarikas and D. de Sousa Seixas, 2013 Axial symmetry breaking in self-induced flavor conversion of supernova neutrino fluxes, https://doi.org/10.1103/PhysRevLett.111.091101 Phys. Rev. Lett.111 091101 [Erratum ibid 113 (2014) 239903] [1305.7140]- doi:10.1103/PhysRevLett.111.091101

[48] S. Shalgar and I. Tamborra, Supplemental material for Dispelling a myth on dense neutrino media: fast pairwise conversions depend on energy, https://sid.erda.dk/share_redirect/DuI6O4k9Py/index.html

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.