Assurance of Mobility in MANETS using Ensemble Route Recovery Process

Venu Manne, Adimulam Yesu Babu

Abstract: Manet’s are also called as mobile ad hoc networks. In Manet’s, most of the link breakages are happen frequently because of the nature of the network. This may cause the path failures and route discoveries. The basic feature of the manet is the overhead of a route discovery cannot be neglected. In the discovery of route, broadcasting plays a major role in basic and efficient data distribution techniques, because of manet’s node unseeingly shows the route which is received firstly to request packets when the route has the destination, this may cause the broadcast storm problem (BSP). In this paper, the Ensemble Route Recovery Process (ERRP) for reducing routing overhead in MANETs. Obtaining the routes dynamically for the nodes to transfer the data is done with this ERRP. The improvement of route overhead is more compare with various existing systems. The parameters shown in this system are accuracy and time taken for the data transfer and route discovery.

Keywords: Manet’s, routing, rebroadcast.

I. INTRODUCTION

These days, in perspective of energetic movement of remote correspondence field, a period of Ad-hoc forms, Mobile Ad-hoc network (MANETs) has extended developing idea of the experts. MANETs is a remote system, seriously binding a correspondence plan with no concentrated control and past structure foundation [1]. Figure 1 shows an advantageous mobile ad hoc network with 8 nodes.

Figure: 1. Network setup

It is very difficult in MANET’s to find the route of the nodes because of the unpredictable nature of the network. Then again some captivating character of such system like dynamic changes in topology, flexibility designs, moving thickness after some time, channel darkening, and insecure correspondence conditions present different exceptional research inconveniences for controlling customs being utilized in MANETs. From the previous references, many of the techniques, algorithms and other types of methods are proposed as the alternative route to overcome the issues in the MANET’s.

II. RELATED WORK

In this section various manet’s protocols are discussed with the performance of existing algorithms are described. The author [3] introduces the new protocol which make changes to the broken or failed node. Many routing protocols are has the high data transfer rate such as AODV and DSR. Many comparative terms such as data delivery rate, overhead control under the heavy and very less traffic environment and this will improve the data delivery packets and maintenance of the route. The author [4] explains about the various physical properties of manets are fast and unpredictable. The disadvantage of this is has very low overhead. In this system, to overcome the low overhead the itural grid architecture (VGA) for multiple networks are introduced in manets [6] [7].

Static Approach: The routing is the most important role in this system which have only static route to maintain the communication between the nodes [5]. The effective mechanism for the route recovery is broadcasting. The main issue in this network is routing overhead for the high dimensional networks and this is also time taking process.

Static Route-Path-1 Node [1, 2, 5, 8, 12, 14, 16]

Ensemble Route Recovery Process (ERRP)

After the network setup with the no of nodes. Various issues can be seen in the network to transfer the data from source node to destination node. The proposed system calculates the rebroadcast delay and rebroadcast probability for the node network [6]. Computation time for route discovery is calculated.

Figure: 2, the communication between the nodes

Revised Manuscript Received on February 06, 2020.

Venu Manne, Research Scholar, Bharathiar University, Coimbatore, Tamil Nadu, India.

Dr. Adimulam Yesu Babu, Professor, Department of CSE & HOD, C.R.Reddy College of Engineering, Eluru, Andhra Pradesh, India.
The rebroadcast delay $T_d(n_i)$ of node n_i is defined as follows:

$$T_d(n_i) = H_d \times T_p(n_i)$$

Where $T_p(n_i)$ is the delay ratio of node n_i.

For the dynamic approach there are four routes:

Path-1: Node [1, 2, 5, 8, 12, 14, 10]
Path-2: Node [1, 3, 6, 9, 13, 15, 16]
Path-3: Node [1, 2, 5, 9, 12, 15, 10]
Path-4: Node [1, 2, 4, 8, 12, 14, 16]
The path discovery is done by the ERRP which utilized the random approach for the path selection [8]. Total number of paths p. Consider the path ‘a’ in an array of p paths.

Input: An array of p≥2 elements, in which half are ‘a’s and the other half are ‘b’s.
Output: Find path ‘a’ in the array.

findingB_Path(array P, p)
begin
 repeat
 Randomly select one path out of p paths.
 until ‘pn’ is discovered
end

III. RESULTS ANALYSIS

The experiments are conducted on NS3 simulation with 100-200 nodes approximately with the system configuration is 4 GB Ram and 1 Tb hard disk. Especially the comparative results are done on the performance of the existing and proposed system. The proposed system ANC-PRP will have the advanced features to improve the performance of accuracy based on the dynamic route.

Table: 1 Parameters for Simulation

Parameter	Value
Simulator	NS 3
Type of MAC	802.11
Routing Protocol	ANC-PRP
Channel Type	Wireless Channel
Total No of Nodes	100-200

Performance Evaluation

To show the improved result, the NS3 is used for simulation results. The proposed algorithm the Amalgamate Neighbor Coverage-based Probabilistic Rebroadcast Protocol (ANC-PRP) is dynamic network. The calculations are done based on dividing the normal and malicious nodes with dynamic route with immediate selection of data.

Accuracy: This will calculate the overall accuracy of the route recovery.

\[\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \]

Table: 2 Show the performance for time and accuracy

	Static	Dynamic
Time (Sec)	20.121	11.231
Accuracy	56%	89%

Time (Sec)

Accuracy

IV. CONCLUSION

In this paper, the proposed system focuses on providing a dynamic route with better broadcasting nodes that are displayed in this network and also the other parameters are such as simulation model, size of the network, various traffic network connections and the nodes in the static and dynamic. The proposed routing protocol used to improve the alternative route with the different types of evaluation metrics for different traffic types, namely, throughput, End-to-end delay, average jitter, the average time in queue, page request time, and energy consumption.
REFERENCES

1. Al-Maashri, Ahmed and Mohamed Ould-Khaoua, “Performance Analysis of MANET Routing Protocols In Presence Of Self-Similar Traffic” – Dept. of ECE – Sultan Qaboos University, Sultanate of Oman, 2006, IEEE.

2. Samir R. Das, Robert Castaneda and Jiangtao Yan; “Simulation based Performance Evaluation of Routing Protocols for Mobile Ad Hoc Networks” Baltzer Science Publishers BV. IC3N, Lafayette, LA, October 1998.

3. Qasim Nadia, Said Fatin & Aghvami Hamid – “Mobile Ad Hoc Networking Protocol’s Evaluation through Simulation for Quality of Service.” - IAENG, 36:1, ICS_36_1_10, 17 February, 2009.

4. Parul Aggarwal, Himanshu Aggarwal, “Comparative Analysis of Routing Protocols in Mobile Ad-Hoc Networks (MANETs)” IJCA (0975 – 8887) Volume 95- No.4, June 2014.

5. S. Neelakandan and J. Gokul Anand, “Trust based optimal routing in MANET’s,” 2011 ICETECT, Nagercoil, 2011, pp. 1150-1156.

6. S. Linfoot, H. Y. Adarbah, B. Arafeh and A. Duffy, "Impact of physical and virtual carrier sensing on the route discovery mechanism in noisy MANETs," in IEEE Transactions on CE, vol. 59, no. 3, pp. 515-520, August 2013.

7. X. Li, T. Liu, Y. Liu and Y. Tang, "Optimized multicast routing algorithm based on tree structure in MANETs," in China Communications, vol. 11, no. 2, pp. 90-99, Feb 2014.

8. B. Yang, Y. Chen, Y. Cai and X. Jiang, “Packet Delivery Ratio/Cost in MANETs With Erasure Coding and Packet Replication,” in IEEE TVT, vol. 64, no. 5, pp. 2062-2070, May 2015.