Hyper-Kähler geometries and nonlinear supermultiplets

Č. Burdík1, S. Krivonos2, A. Shcherbakov2

1 Department of Mathematics, Czech Technical University, Trojanova 13, 120 00 Prague 2, Czech Republic
2 Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia

Abstract

It is presented a method of construction of sigma-models with target space geometries different from conformally flat ones. The method is based on a treating of a constancy of a coupling constant as a dynamical constraint following as an equation of motion. In this way we build $N = 4$ and $N = 8$ supersymmetric four-dimensional sigma-models in $d = 1$ with hyper-Kähler target space possessing one isometry, which commutes with supersymmetry.

Introduction

One-dimensional theories (i.e. mechanics) with four and eight supercharges stand out among all one-dimensional theories with extended supersymmetry. This is due to existence of linear $N = 4$ and $N = 8$ irreducible representations having no auxiliary fields \cite{11}. Construction of sigma-model actions corresponding to these models turns out to be quite easy task to do. A detailed analysis of sigma-model geometries of arising bosonic manifolds was performed in papers \cite{2, 3} and revealed an interesting fact: under quite general assumptions concerning the structure of sigma-model actions arising bosonic manifolds are to be conformally flat. This is a direct evidence that those considerations seem to overlook some points relating to other possible geometries, because a dimensional reduction of four-dimensional $N = 2$ sigma-models \cite{12} down to $d = 1$ is known to lead to hyper-Kähler bosonic manifolds. It is quite easy to understand what was missed: in one dimension there exists a wide class of nonlinear off-shell supermultiplets. These are the very supermultiplets that play a crucial role in constructing supersymmetric sigma-models.
with different type of target space geometry \cite{5,6,8,9}. Unlike to linear supermultiplets, construction and classification of nonlinear off-shell ones are much more difficult problem which is complicated by their absence in higher dimensions.

In this paper we describe a dualization of a coupling constant procedure to construct a nonlinear realization of supersymmetry that allows us to build the most general $N = 4,8$ supersymmetric four-dimensional sigma-models with one triholomorphic isometry.

The idea of the coupling constant dualization can be most easily demonstrated by an example of a conformal mechanics which is governed by the action

$$S = \int dt \left[\dot{x}^2 - \frac{g^2}{x^2} \right],$$

with a bosonic field $x(t)$ depending on time t only and g being a coupling constant. The constraint $g = \text{const}$ can obviously be interpreted as a solution to a differential equation

$$\frac{dg}{dt} = 0.$$ \hspace{1cm} (2)

Thus in such an approach we have got a system (1) with a constraint (2). Alternative to solving the constraint (2) is including it into the action (1) with a Lagrange multiplier $\phi(t)$

$$S = \int dt \left[\dot{x}^2 - \frac{g^2}{x^2} - 2\dot{\phi} \right],$$

with a quantity $g(t)$ being no more a constant but some function of t. Varying (3) over ϕ we will get just (2), while the “equation of motion” for g reads

$$g = x^2 \dot{\phi}.$$ \hspace{1cm} (4)

Eliminating the “coupling constant” g we get the following action

$$S = \int dt \left[\dot{x}^2 + x^2 \dot{\phi}^2 \right],$$

which is easily recognized as the action of a $D = 2$ free particle written in the polar coordinates.

1 Constructing $N = 4$ hyper-Kähler σ-manifold

In this section we construct an $N = 4$ supersymmetric σ-model with a hyper-Kähler geometry of its scalar manifold using dualization of a coupling constant in a way described above. Since the coupling constant dualization increases the number of the physical scalars...
by one, therefore we should start from a model with at least a three-dimensional target space to have a four-dimensional one as a result. Appropriate three-dimensional model is based on a linear $(3, 4, 1)$ supermultiplet with four scalars (three physical and one auxiliary) and four fermions [10] [11] [12].

We consider a supersymmetry algebra with four odd generators. Appropriate superspace $\mathbb{R}^{1|2}$ may be equipped with covariant spinor derivatives which satisfy the following relations
\[
\{ D, \bar{D} \} = 2i \frac{d}{dt}, \quad \{ D, D \} = \{ \bar{D}, \bar{D} \} = 0.
\]
In terms of $N = 2$ superfields the supermultiplet $(3, 4, 1)$ is given by a real $N = 2$ superfield $V(t, \theta, \bar{\theta})$, a chiral $N = 2$ one $\Phi(t, \theta, \bar{\theta})$ and its conjugated $\bar{\Phi}(t, \theta, \bar{\theta})$
\[
\bar{V} = V, \quad D\Phi = \bar{D}\Phi = 0. \quad (6)
\]
To maintain $N = 4$ supersymmetry this $N = 2$ formulation has to be augmented by an extra $N = 2$ supersymmetry transformation which mixes the superfields V and Φ
\[
\delta V = -\epsilon \bar{D}\Phi - \bar{\epsilon} D\Phi, \quad \delta \Phi = \epsilon \bar{D}V, \quad \delta \bar{\Phi} = \bar{\epsilon} DV. \quad (7)
\]
The standard $N = 4$ supersymmetric σ-model action for the supermultiplet $(3, 4, 1)$ looks like [10]
\[
S_1 = \int dt d^2 \theta G \left(DV \bar{D}V + D\Phi \bar{D}\Phi \right), \quad (8)
\]
with a metric G being an arbitrary function of the superfields $V, \Phi, \bar{\Phi}$. The action (8) is invariant with respect to the additional $N = 4$ supersymmetry transformations (7). To apply the above mentioned dualization one should have a constant, but we still miss it. To overcome this problem we just add a potential term
\[
S_2 = g \int dt d^2 \theta H(V, \Phi, \bar{\Phi}), \quad g = \text{const} \quad (9)
\]
to the σ-model action S_1. The potential term contains a dimensional constant g and is invariant under manifest $N = 2$ supersymmetry. To enlarge it to the $N = 4$ one, we should require the invariance of S_2 under the transformations (7). This results in restriction on the function H to be a harmonic one
\[
H_{VV} + H_{\Phi\bar{\Phi}} = 0. \quad (10)
\]
Therefore, $N = 4$ $d = 1$ supersymmetric action we will deal with acquires the following form
\[
S = S_1 + S_2 = \int dt d^2 \theta \left[G \left(DV \bar{D}V + D\Phi \bar{D}\Phi \right) + gH \right] \quad (11)
\]
with the function H satisfying Laplace equation (10). After integration over the Grassmann coordinates we get the component form of the action

$$S = \int dt \left[- (G_{\dot{v}v} + G_{v\dot{v}}) \psi \bar{\psi} \xi \bar{\xi} + i \bar{\psi} (G_{\dot{v}\phi} \xi \bar{\psi} + G_{v\dot{\phi}} \bar{\xi} \psi) + g (H_{\dot{v}v} \xi \bar{\psi} + H_{v\dot{v}} \psi \bar{\xi}) - A (G_{\dot{v}v} (\psi \bar{\psi} - \xi \bar{\xi}) + G_{v\dot{v}} \xi \bar{\psi} - G_{v\dot{v}} \bar{\xi} \psi + g H_{v\dot{v}} (\psi \bar{\psi} - \xi \bar{\xi})) - i \dot{\phi} (G_{\phi} (\psi \bar{\psi} - \xi \bar{\xi}) - 2 G_{\dot{v}v} \psi \bar{\xi}) + i \dot{\bar{\phi}} (G_{\bar{\phi}} (\psi \bar{\psi} - \xi \bar{\xi}) - 2 G_{v\dot{v}} \bar{\xi} \psi) + G (\dot{\psi}^2 + 4 \dot{\phi} \bar{\phi} + A^2 + i \dot{\psi} \bar{\psi} - i \psi \bar{\psi} + i \dot{\phi} \bar{\phi} - i \xi \bar{\xi} + i \xi \bar{\xi} - 4 i \xi \bar{\xi} - i g (H_{\phi} \dot{\bar{\phi}} - H_{\bar{\phi}} \dot{\phi}) \right].$$

(12)

Here the components of the superfields V and Φ are defined as follows

$$v(t) = V, \quad \dot{v}(t) = DV, \quad \bar{\psi}(t) = -\bar{D}V, \quad A(t) = \frac{1}{2} [D, \bar{D}] V,$$

$$\phi(t) = \Phi, \quad \dot{\phi}(t) = \bar{\Phi}, \quad \xi(t) = D\Phi, \quad \bar{\xi}(t) = -\bar{D}\Phi$$

with the right hand sides being evaluated at $\theta = \bar{\theta} = 0$. As it was previously described, to dualize the constant g we just add a term, which provides the constancy of g, to the action (13)

$$S \rightarrow S - \int dt y(t) \dot{y}.$$

(13)

In contrast to the previously considered example with a conformal mechanics, now the coupling constant g is involved into the action S only linearly. Thus, its interpretation now is as a Lagrange multiplier for the some constraint on the field content of our theory which includes now one additional bosonic field $y(t)$. It is easy to see that this additional constraint expresses the auxiliary field A in terms of the $y(t)$

$$A = \frac{1}{H_{\dot{v}v}} \left[H_{v\dot{v}} (\psi \bar{\psi} - \xi \bar{\xi}) - i (H_{\phi} \dot{\bar{\phi}} - H_{\bar{\phi}} \dot{\phi}) - \dot{y} + H_{v\phi} \xi \bar{\psi} + H_{v\bar{\phi}} \psi \bar{\xi} \right].$$

(14)

Therefore, the number of the physical scalars is increased and we arrived at a supermultiplet $(4, 4, 0)$. It consists of the for physical bosons $v, \phi, \bar{\phi}$ and y and four fermions $\psi, \bar{\psi}$ and $\xi, \bar{\xi}$. With respect to the full $N = 4$ supersymmetry they transform as follows

$$\delta v = \eta \bar{\psi} - \bar{\eta} \psi + \epsilon \xi - \bar{\epsilon} \bar{\xi}, \quad \delta \phi = -\bar{\eta} \xi - \epsilon \bar{\psi}, \quad \delta \bar{\phi} = \eta \xi + \epsilon \bar{\psi},$$

$$\delta y = -i\eta (H_{v\phi} \bar{\psi} + H_{\phi \bar{\psi}} \bar{\xi} - i\bar{\eta} (H_{v\phi} \psi + H_{\phi \bar{\psi}} \xi) + i\epsilon (H_{v\phi} \xi - H_{\phi \bar{\psi}} \bar{\psi}) + i\bar{\epsilon} (H_{v\phi} \bar{\xi} - H_{\bar{\phi}} \bar{\psi}),$$

$$\delta \psi = -i \eta \bar{\psi} + \epsilon A + 2i \eta \bar{\phi}, \quad \delta \bar{\psi} = i \bar{\eta} \psi + \epsilon A - 2i \bar{\eta} \bar{\phi},$$

$$\delta \xi = -i \epsilon \bar{\psi} - \bar{\epsilon} A - 2i \eta \bar{\phi}, \quad \delta \bar{\xi} = i \bar{\epsilon} \psi - \bar{\epsilon} A + 2i \eta \bar{\phi},$$

(15)

where η and ϵ are the supersymmetry parameters and expression for A is given by formula (14).
Now we see the main distinction of this new \((4,4,0)\) supermultiplet from the known ones: transformations \((15)\) are highly nonlinear and involve an arbitrary harmonic function \(H\). As well as the known ones, the constructed nonlinear supermultiplet is defined off-shell.

Substituting the expression for the auxiliary field \(A\) back into the action \((13)\) we get

\[
S = \int dt \left[G \left(\dot{v}^2 + 4 \dot{\phi} \dot{\bar{\phi}} \right) + \frac{G}{H^2_v} \left(\dot{y} - iH_v \dot{\phi} + iH_v \dot{\bar{\phi}} \right)^2 + \text{fermions} \right].
\]

Kinetic part of this action describes a metric of a \(\sigma\)-model manifold

\[
d_{s^2} = G \left(dv^2 + 4 d\phi d\bar{\phi} \right) + \frac{G}{H^2_v} \left(dy - iH_v d\phi + iH_v d\bar{\phi} \right)^2.
\]

The Weyl tensor constructed for this metric is different from zero, so that this manifold is genuinely not conformally-flat. Moreover, imposing an additional requirement

\[
G = H_v
\]

we get a Ricci-flat bosonic manifold with a general Gibbons–Hawking metric for a hyper-Kähler manifold with one triholomorphic isometry \((15)\). Under the condition \((17)\) the action gets the form

\[
S = \int dt \left[H_v \left(\dot{v}^2 + 4 \dot{\phi} \dot{\bar{\phi}} \right) + \frac{1}{H_v} \left(\dot{y} - iH_v \dot{\phi} + iH_v \dot{\bar{\phi}} \right)^2 \right.
\]

\[
+ \psi \bar{\xi} \left(iH_v \dot{v} - 2iH_v \dot{\phi} - i \frac{H_v \dot{\phi} - H_{\bar{v}} \dot{\bar{\phi}}}{H_v} + \dot{y} \frac{H_{\bar{v}}}{H_v} \right)
\]

\[
+ \xi \bar{\psi} \left(-iH_v \dot{\phi} - 2iH_v \dot{\bar{\phi}} - i \frac{H_v \dot{\bar{\phi}} - H_{\bar{v}} \dot{\phi}}{H_v} + \dot{y} \frac{H_{\bar{v}}}{H_v} \right)
\]

\[
+ \left(\psi \bar{\psi} - \xi \bar{\xi} \right) \left(i\dot{v} \left(H_{\bar{v}} - \frac{H_{vv} H_{\bar{v}}}{H_v} \right) - i\dot{\bar{\phi}} \left(H_v - \frac{H_{vv} H_v}{H_{\bar{v}}} \right) + \dot{y} \frac{H_{vv}}{H_v} \right)
\]

with four-fermionic terms disappearing, as it should be for Ricci-flat \(\sigma\)-model manifolds.

Thus, presented method of dualization allowed us to construct a nonlinear supermultiplet with component structure \((4,4,0)\) and find the action based on this supermultiplet. The latter corresponds to a not conformally flat manifold and becomes a hyper-Kähler one if condition \((17)\) holds.

Let us add that the expression for the auxiliary field \(A\) \((13)\) coincides (up to a total time-derivative term) with that one previously found in \((6)\), while the idea of construction of an auxiliary field through a general superspace potential term was firstly proposed by E. Ivanov \((7)\).
Constructing $N = 8$ hyper-Kähler σ-manifold

This section is based on an $N = 4$ superfield formalism therefore we first introduce notations. A superspace $\mathbb{R}^{1|4}$ we are dealing with is parameterized by one even coordinate t and four odd coordinates θ^i and $\bar{\theta}^i$ with the index i being $SU(2)$ one running $i = 1, 2$. All superfields to be considered are supposed to live in this superspace. To single out an irreducible representation from a general superfield we make use of covariant spinor derivatives D^i and \bar{D}^i defined on $\mathbb{R}^{1|4}$ and satisfying the following relations

$$\{D^i, \bar{D}^j\} = 2i \delta^i_j \frac{d}{dt}, \quad \{D^i, D^j\} = \{\bar{D}^i, \bar{D}^j\} = 0.$$

In a full analogy with $N = 4$ supersymmetric case we will start from an irreducible $N = 8$ supermultiplet with three physical bosons, eight fermions and five auxiliary bosons, i.e. $(3, 8, 5)$ multiplet. Such a representation is described [13] in $\mathbb{R}^{1|4}$ by a real $N = 4$ superfield $V(t, \theta, \bar{\theta})$ and a chiral $N = 4$ superfield $\Phi(t, \theta, \bar{\theta})$

$$D^i \Phi = \bar{D}^i \bar{\Phi} = 0, \quad D^i D_i V = \bar{D}^i \bar{D}_i V = 0. \quad (18)$$

The constraints (18) leave among the components of the superfields V and Φ the following independent ones:

$$v(t) = V, \quad \psi_i(t) = -i \bar{D}_i V, \quad \bar{\psi}^i(t) = -i D^i V, \quad A_{ij}(t) = i [\bar{D}_i, D_j] V, \quad \varphi(t) = \Phi, \quad \xi_i(t) = -i \bar{D}_i \Phi, \quad \bar{\xi}^i(t) = -i D^i \bar{\Phi}, \quad B(t) = D^i D_i \bar{\Phi}. \quad (19)$$

The right hand sides of the above expressions are supposed to be taken with vanishing θ_i and $\bar{\theta}^i$.

One should note that the constraints (18) impose the following restrictions on the superfield V [14]

$$\frac{\partial}{\partial t}[D^i, \bar{D}_i] V = 0 \quad \Rightarrow \quad [D^i, \bar{D}_i] V = 2g, \quad g = \text{const.} \quad (19)$$

If $g \neq 0$ it appears in the θ’s decomposition of the superfield V

$$V(t, \theta, \bar{\theta}) = v(t) + i \theta_i \bar{\psi}^i(t) + i \bar{\theta}^i \psi_i(t) + \frac{1}{2} \theta^i \bar{\theta}^j (i A_{ij}(t) - \varepsilon_{ij} g) + \ldots \quad (20)$$

Having these $N = 4$ superfields one can easily build a supersymmetric action as an integral of a real superfunction over the whole superspace

$$S = \int dt L = - \int dt d^2 \theta d^2 \bar{\theta} F(V, \Phi, \bar{\Phi}). \quad (21)$$
Being constructed in terms of manifest \(N = 4 \) superfields the action \((21) \) is just \(N = 4 \) supersymmetric, not \(N = 8 \). To promote it to \(N = 8 \) one should require the action to be invariant with respect to an additional \(N = 4 \) supersymmetry

\[
\delta V = \eta_i D_i \Phi + \bar{\eta} \bar{D}_i \Phi, \quad \delta \Phi = -\eta_i D^i V, \quad \delta \bar{\Phi} = -\bar{\eta}^i \bar{D}_i V. \tag{22}
\]

This additional \(N = 4 \) supersymmetry commutes with the manifest one and extends it to \(N = 8 \). The invariance of the action \((21) \) with respect \((22) \) puts the restricting the prepotential \(F \) to be a harmonic function

\[
\frac{\partial^2 F}{\partial V \partial \bar{V}} + \frac{\partial^2 F}{\partial \Phi \partial \bar{\Phi}} = 0. \tag{23}
\]

Finally, after performing Grassmann integration in eq. \((21) \) one gets the following expression for the Lagrangian

\[
L = F,_{\psi \bar{\psi}} \left(\bar{\psi}^2 + 4 \bar{\psi} \bar{\psi} \dot{\bar{\psi}} - i \bar{\psi} \bar{\psi} \dot{\bar{\psi}} + i \bar{\psi} \bar{\psi} \dot{\bar{\psi}} + i \bar{\psi} \bar{\psi} \dot{\bar{\psi}} + i \bar{\psi} \bar{\psi} \dot{\bar{\psi}} \right) + F,_{\psi \bar{\psi}} \left(\psi^2 \bar{\psi}^2 + 4 \psi \bar{\psi} \psi \bar{\psi} - i \psi \bar{\psi} \psi \bar{\psi} - i \psi \bar{\psi} \psi \bar{\psi} \right) + F,_{\psi \bar{\psi}} \left(\psi^2 \bar{\psi}^2 - \psi \bar{\psi} \psi \bar{\psi} + i \psi \bar{\psi} \psi \bar{\psi} \right) + F,_{\psi \bar{\psi}} \left(\psi^2 \bar{\psi}^2 - \psi \bar{\psi} \psi \bar{\psi} + i \psi \bar{\psi} \psi \bar{\psi} \right) + F,_{\psi \bar{\psi}} \left(\psi^2 \bar{\psi}^2 - \psi \bar{\psi} \psi \bar{\psi} + i \psi \bar{\psi} \psi \bar{\psi} \right) + F,_{\psi \bar{\psi}} \left(\psi^2 \bar{\psi}^2 - \psi \bar{\psi} \psi \bar{\psi} + i \psi \bar{\psi} \psi \bar{\psi} \right)
\]

\[
L = \int dt \ y(t) \dot{y}(t) \quad \tag{25}
\]

with the help of a Lagrange multiplier \(y(t) \). Now we are ready to eliminate the all set of auxiliary fields \(A_{ij}(t) \), \(B(t) \) and \(g(t) \) from the modified action \((25) \) using their equations of motion. This results in the action written in terms of physical fields only

\[
S = \int dt \ [K - U] \quad \tag{26}
\]

\[1\] The bilinear products \(\psi^2 \) and \(\bar{\psi}^2 \) stands for \(\psi^i \psi_i \) and \(\bar{\psi}^i \bar{\psi}_i \) respectively.
with the kinetic term equal to

\[K = F_{vv} \left(\dot{\psi}^2 + 4 \dot{\phi} \dot{\bar{\phi}} - i \psi^i \dot{\bar{\psi}}_i + i \psi^i \dot{\psi}_i - i \dot{\xi}^i \dot{\bar{\xi}}_i + i \xi^i \dot{\bar{\xi}}_i \right) + \frac{(y - i F_{v \psi} \dot{\phi} + i F_{v \bar{\psi}} \dot{\bar{\phi}})^2}{F_{vv}} \]

and potential one

\[
U = \frac{1}{4} \left(\psi^2 \bar{\psi}^2 + \xi^2 \bar{\xi}^2 - 4 \xi^i \bar{\psi}_i \bar{\bar{\psi}}^i \right) \left(F_{vvvv} + \frac{F_{vvvF_{v \psi \bar{\bar{\psi}}}} - 2 F_{v \psi \bar{\bar{\psi}}}}{F_{vv}} \right) \\
+ \frac{1}{2} \xi^2 \bar{\xi}^2 \left(F_{v \psi \bar{\bar{\psi}}} - \frac{3 F_{v \bar{\bar{\psi}}}}{F_{v \psi}} \right) + \frac{1}{2} \bar{\xi}^2 \bar{\bar{\psi}}^2 \left(F_{v v \bar{\bar{\psi}}} - \frac{3 F_{v \psi \bar{\bar{\psi}}}}{F_{vv}} \right) \\
+ \frac{1}{2} \left(\psi^2 \bar{\xi}^i \bar{\psi}_i - \xi^2 \bar{\bar{\psi}}^i \right) \left(F_{v v \psi \bar{\bar{\psi}}} - \frac{3 F_{v \psi \bar{\bar{\psi}}}}{F_{vv}} \right) - 2 i F_{v \psi} \left(\dot{\phi} \bar{\xi} \psi^i - \dot{\bar{\phi}} \xi \bar{\psi}^i \right) \\
+ i \left(F_{v \psi \bar{\bar{\psi}}} \dot{\bar{\psi}}_i - F_{v \psi \bar{\bar{\psi}}} \dot{\psi}^i \right) - i \left(F_{v \psi \bar{\bar{\psi}}} - F_{v \bar{\psi} \psi} \right) \left(\psi^i \bar{\psi}_i - \xi^i \bar{\xi}_i \right) \\
- \frac{y - i F_{v \psi \bar{\bar{\psi}}} + i F_{v \bar{\psi} \psi}}{F_{vv}} \left(\psi^i \bar{\psi}_i - \xi^i \bar{\xi}_i \right) + F_{v \psi \bar{\bar{\psi}}} \xi^i \bar{\psi}_i + F_{vv \psi \bar{\bar{\psi}}} \xi^i \bar{\xi}_i. \]

The kinetic term defines the following metric of the bosonic manifold

\[ds^2 = F_{vv} \left(d\psi^2 + 4 d\phi d\bar{\phi} \right) + \frac{1}{F_{vv}} \left(dy - i F_{v \psi} d\phi + i F_{v \bar{\psi}} d\bar{\phi} \right)^2. \tag{27} \]

The metric (27) is of Gibbons–Hawking form \[15\] corresponding to the most general four-dimensional hyper-Kähler manifold with one triholomorphic isometry, which is realized as a shift along the coordinate \(y \).

Thus, in a such simple manner we construct \(N = 8 \) supersymmetric hyper-Kähler \(\sigma \)-model.

Conclusion

In the paper we presented a simple idea for constructing \(N = 4 \) and \(N = 8 \) supersymmetric hyper-Kähler \(\sigma \)-models by dualizing a coupling constant, which may either be present in the superfield decomposition or serve as an coupling constant for the potential term.

The idea of such a dualization is based on an ambivalent interpretation of coupling constants in one dimensions: on the one hand it is just a constant, on the other hand – it may be interpreted as some constant values of angular momenta. Dualized system contains one additional scalar field and describes a mechanics with an arbitrary value of such momenta. In particular, dualization turns the tensor supermultiplet into the nonlinear
hypermultiplet for the case of $N = 4$. The most essential point is that transformation properties of constructed hypermultiplet is nonlinear. Moreover, in the case of $N = 4$ dualization includes one additional harmonic function and gives a nonlinear hypermultiplet defined off-shell whose transformations properties under supersymmetry crucially depend on this function. The case of $N = 8$ is a little bit different and the question whether the hypermultiplet is off-shell requires more detailed study.

There are some questions yet to be solved: it unclear dualization of what constants is essential, when constructed nonlinear supermultiplets are defined off-shell or on-shell, how to describe such supermultiplets in terms of superfield approach, etc.

The authors are grateful to E. Ivanov, D. Sorokin and M. Vasiliev for valuable and useful discussions. This work was partially supported by grants RFBR-06-02-16684, DFG 436 Rus 113/669/0-3 and GACR 201/05/0857.

References

[1] S. J. Gates, Jr., L. Rana: Phys.Lett. B 342 (1995), 132–137, A. Pashnev, F. Toppan: J. Math. Phys. 42 (2001), 5257–5271.

[2] G. W. Gibbons, G. Papadopoulos, K. S. Stelle: Nucl. Phys. B 508 (1997), 623–658.

[3] C. M. Hull: “The Geometry of Supersymmetric Quantum Mechanics,” hep-th/9910028.
 G. Papadopoulos: Class. Quant. Grav. 17 (2000), 3715–37141,
 J. Michelson, A. Strominger: Commun. Math. Phys. 213 (2000), 1–17,
 J. Michelson, A. Strominger: JHEP 9909 (1999), 005,
 R. A. Coles: G. Papadopoulos Class. Quantum Grav. (7), 1990427–438.

[4] L. Alvarez-Gaumé, D. Freedman: Phys. Lett. B 94 (1980), 171–173.

[5] Č. Burdík, S. Krivonos, A. Shcherbakov: Czechoslovak Journal of Physics 55 (2005), 1357–1364.

[6] S. Krivonos, A. Shcherbakov: Phys. Lett. B 637 (2006), 119–122.

[7] E. Ivanov, private communication.

[8] S. Bellucci, S. Krivonos, A. Shcherbakov: Phys. Rev. D 73 (2006), 085014.

[9] F. Delduc, E. Ivanov: “Gauging $N = 4$ Supersymmetric Mechanics,” hep-th/0605211.
[10] Ivanov E., Smilga A.: Phys.Lett. B. 257 (1991), 79-82.

[11] Berezovoi V., Pashnev A.: Class. Quant. Grav. 8 (1991), 19.

[12] Ivanov E., Krivonos S., Lechtenfeld O.: Class. Quant. Grav. 21 (2004), 1031-1050.

[13] S. Bellucci, E. Ivanov, S. Krivonos, O. Lechtenfeld: Nucl. Phys. B 699 (2004), 226–252.

[14] E. Ivanov, S. Krivonos, V. Leviant: J. Phys. A 22 (1989), 4201.

[15] Gibbons, S. W. Hawking: Phys. Lett. B 78 (1978), 430–432.