Submersed micropatterned structures control active nematic flow, topology, and concentration

Kristian Thijssen*bc1, Dimitrius A. Khaladjc1, S. Ali Aghvami12, Mohamed Amine Gharbic, Seth Fraded, Julia M. Yeomans1, Linda S. Hirst2d1, and Tyler N. Shendruke2d

*The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; 1Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; 2Department of Physics, University of California, Merced, CA 95343; 3Physics Department, Brandeis University, Waltham, MA 02453; 4Department of Molecular Metabolism, Harvard University, Boston, MA 02115; 5Department of Physics, University of Massachusetts, Boston, MA 02125; and 6School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

Edited by Nikita Fakhri, Massachusetts Institute of Technology, Cambridge, MA, and accepted by Editorial Board Member Mehran Kardar July 24, 2021 (received for review March 29, 2021)

Coupling between flows and material properties imbues rheological matter with its wide-ranging applicability, hence the excitement for harnessing the rheology of active fluids for which internal structure and continuous energy injection lead to spontaneous flows and complex, out-of-equilibrium dynamics. We propose and demonstrate a convenient, highly tunable method for controlling flow, topology, and composition within active films. Our approach establishes rheological coupling via the indirect presence of fully submersed micropatterned structures within a thin, underlying oil layer. Simulations reveal that micropatterned structures produce effective virtual boundaries within the superjacent active nematic film due to differences in viscous dissipation as a function of depth. This accessible method of applying position-dependent, effective dissipation to the active films presents a noninvasive pathway for engineering active microfluidic systems.

active matter | micropatterned control | topological defects | nematic film | active depletion

Active fluids are inherently out of equilibrium; they locally transform internal energy into material stresses that can result in spontaneous hydrodynamic motion. An increasing number of biophysical systems, including colonies of bacilliform microbes (1–4), cellular monolayers (5–9), and subcellular filaments (10–12), display such collective active motion, orientational order, and topological singularities. Controlling active dynamics is essential not only to fully understanding how such biological systems employ self-generated stresses but also, in order to develop active microfluidic devices.

To this end, recent work considers how confining walls (13–15), arrangements of obstacles (16, 17), and the dynamics of topological defects (18) dictate active nematic flow. Control of active material concentration has been studied from the perspective of coexistence of phases in self-propelled rods (19–21) and motility-induced phase separation (22–24). Controlled accumulation and depletion of active matter have been engineered in bacterial systems to concentrate cells (25, 26) and to drive bacterial-ratchet motors (27–29). Similarly, substrate gradients modify cellular motility, driving density variation (30) and directed migration (31, 32).

In addition to varying concentration and flow, topology has been controlled by including externally driven flows (33–35) and curvature (36, 37). Recent work shows that locally altering activity modifies defect populations (38–41), and anisotropic smectic sublayers below active nematic sheets can constrain orientation (42). Such studies demonstrate how underlying sublayer properties have pronounced effects on active dynamics and suggest approaches for engineering control of active matter.

We propose a micropattern-based method for controlling active nematic dynamics without contiguous contact with active films. By patterning oil-submersed solid substrates below two-dimensional (2D) active nematic films with geometrical structures of differing height, we achieve effective virtual boundaries within active films that control topological defect populations, collective flow, and concentration of active nematic material without penetrating the film. By implementing underlying submersed patterned microstructures, we tune the depth of the oil layer to adjust dissipation within the superjacent film and thereby, generate a highly tunable technique for controlling the active dynamics. Presently, we introduce four initial submersed structures: micropatterned trenches (Fig. 1A–C), undulated substrates (Fig. S1), stairways (Fig. 1D–F), and pillars (Fig. 1G–I).

Trench
To investigate how structures fully submersed in a layer of oil influence defect dynamics in the superjacent active film, we consider the trench geometry depicted in Fig. 1A. An active nematic microtubule network is generated at an oil–water interface above a micropatterned trench of depth $\Delta a = 18 \pm 1 \mu m$ and width $w_0 = 327 \pm 2 \mu m$ fabricated using photolithography (Materials and Methods). We observe that flows in the active nematic layer

Significance

Methods to manipulate and control the dynamics of spontaneously flowing active materials are vital if these fluids are to lead to technological applications. We report the development of an easy-to-implement technique to achieve tunable, local control over active nematic films, the preeminent example of active fluids. We establish that micropatterns, fully submersed below active films, have a pronounced impact on dynamics. To showcase the adaptability of our technique, we present four proof-of-concept microstructures: trenches, undulated sinusoids, stairways, and pillars. Each illustrates a particular strength of our approach, including enacting abrupt virtual boundaries to trap topological defects, separating distinct flow states at constant levels of biochemical fuel, gently guiding self-propelled defects, and modifying local active nematic composition.
Fig. 1. Submersed micropatterns control active nematic dynamics. (A–C) Trench setup. An active film resides at the oil–water interface above different substrate depths. The active flows drag the underlying oil layer, but viscous dissipation is depth dependent, affecting active nematic film dynamics. (B) Fluorescence microscope image of the active nematic bundled microtubule film above a submersed trench. (Scale bar: 250 µm.) (C) Simulation results for the vorticity field within the superjacent active nematic layer. The flow behaviors within the low-friction region (between the dashed lines) are distinct from the behavior in the high friction region (beyond the dashed lines). Plus-half (minus-half) defects denoted by dark green (magenta) symbols behave differently in the two regions. (D–F) Stairway setup. (E) Fluorescence microscope image of the micromilled stairway and the superjacent bundled microtubule film. Step location is indicated by dashed lines. The oil depth increases from left to right. The differences in oil depth alter the length scale of the active turbulence above each step. (Scale bar: 250 µm.) (F) Simulations results for discrete steps in the effective friction (dashed lines). The effective friction coefficient decreases from left to right. The color bar is shared with C. (G–I) Pillar setup. (H) Fluorescence microscope image of the bundled microtubule film above the SU-8 micropillar. (Scale bar: 100 µm.) (I) Simulation results show that the active nematic concentration ϕ is depleted within the high-friction region encircled by the pillar perimeter (dashed line).

exhibit coexistence of two distinct regions: one directly above the trench and another in the shallows surrounding the trench (Fig. 1B). These regions are separated by well-defined virtual boundary lines located directly above the trench edges. The trench edges are visible as a pair of parallel white lines due to stress-induced autofluorescence of the micropatterned photoresist in regions of precipitous height change. Beyond the trench boundaries, the active nematic retains the chaotic nature of active turbulence; however, within the boundaries, the trench width establishes a local confining length scale within the superjacent active nematic film (Movie S1). These virtual walls trap defects in the trench region and produce active flow behaviors comparable with those observed in confining channels (14, 43–46). This result illustrates how such effective virtual boundaries can be used to define areas of orderly flows and areas of active turbulence without penetrating the active film.

The $\pm 1/2$ topological defect distributions across the trench (Materials and Methods) demonstrate that $-1/2$ defects tend to be located in the vicinity of the virtual boundary (Fig. 2A). Experimental observations of $-1/2$ defect trajectories near the boundary reveal that they tend to linger over long intervals, contributing to peaks (Movie S1). In contrast, $+1/2$ defects
tend to be depleted from the vicinity of the trench boundary and are confined within the trench region, moving along oscillatory trajectories that do not typically approach the boundaries (Movie S1). In the exterior region, far from the virtual trench, the defect density profile approaches a homogeneous distribution of positive and negative defects.

The effective virtual boundaries arise from abrupt steps in fluid depth $h(r)$ between the film and the underlying substrate at each point r. The fluid depth h increases from h_i in the surrounding shallows to a trench depth $h_t = h_i + \Delta h$ (Fig. 1A). As activity drives flows within the nematic film, the underlying oil layer viscously dissipates momentum due to the subjacent no-slip substrate, which can be described as a local effective friction $\gamma(r)$ acting on each point within the superjacent active film (47). Following from the lubrication limit, the effective friction coefficient scales as $\gamma \sim \eta'/h(r)$ where η' is an effective viscosity of the film and surrounding fluids. The abrupt height change across the trench boundaries results in sharp, virtual boundaries.

We replicate the observed experimental phenomena with 2D active nematic-hydrodynamic simulations, in which the submersed micropatterns are incorporated via an effective friction field (Materials and Methods). Numerical results demonstrate that a step in effective friction can reproduce the experimentally observed active flows (Fig. 1C) and introduce virtual boundaries in the active layer, which repel $+1/2$ defects (Fig. 2A and B). Integrating the defect density across the channel in Fig. 2B gives net zero charge; however, it is more challenging to accurately identify minus defects than positive in experiments. As a result, this labeling bias causes a slight net positive charge in Fig. 2A.

The qualitative agreement in behavior between experimental and numerical defect distributions demonstrates how effective friction is the mechanism by which micropatterned structures create virtual planar boundaries and introduce a confinement length scale to the active nematic without penetrating the film. The $-1/2$ defect density peak at the virtual boundary (Fig. 2A) is consistent with work (14, 46) showing that walls can act as catalysts for pair creation and unbinding; while newly created $+1/2$ defects move away due to self-propulsion, the $-1/2$ defects remain near the boundary.

While the experimental $-1/2$ defect density peaks sharply in the vicinity of the virtual boundaries (Fig. 2A), it is broadened and peaked outside the trench region in simulations (Fig. 2B). To understand this difference, we consider the time-averaged director orientation across the trench (Fig. 2C and Materials and Methods), which reveals that the virtual boundaries introduce an effective alignment of the director as the probability of aligning to the interface becomes different from the bulk, similar to that seen for impermeable boundaries (14, 46). This is because any orthogonal bundle midway over the boundary is subject to a large axial laminar flow inside and slow disorderly flows outside, which compete to produce an aligning torque. The model captures this behavior, showing that the probability declines to a uniform distribution far from the trench (Fig. 2D). Experiments exhibit stronger planar alignment at the virtual boundaries than simulations. This is likely related to the model’s assumption of a continuous fluid (Materials and Methods), which is in contrast to the network of finite-sized microtubule bundles that act as material lines preventing defects from crossing (14), resulting in an accumulation. This is reminiscent of simulation studies of passive nematic tactoids where defects travel outside the interface and become virtual unless an anchoring term is included (48). Future research is needed to more fully understand if an effective term can be devised to account for this effect in continuum models that do not contain sharp ϕ interfaces. The stronger alignment in the experiments constrains the $-1/2$ defects to the region inside the trench, while in simulations, they are pushed to the outside of the boundaries (Fig. 2A and B). In both experiments and simulations, $+1/2$ defects are trapped between the virtual boundaries.

The submersed trench not only impacts the nematic field but also, generates a virtual boundary for the velocity field (Fig. 2 E and F). Superjacent to the trench, velocities are lower in the
proximity of the trench boundary and maximum at the trench center. Since activity varies slightly between experimental realizations, we normalize the flow profiles (Fig. 2E) and compare with the decrease predicted by the model (Fig. 2F). The virtual boundaries do not impose no-slip conditions but decrease the speed to the slower value of the surrounding active turbulence, which can be seen explicitly for an experimental instance (blue dots in Fig. 2E) and in simulations (Fig. 2F). The decreasing flow profile explains the preferential alignment of the microtubule bundles in the vicinity of the virtual boundaries (Fig. 2C and D). Any orthogonal bundle midway over the boundary is subject to a large axial, laminar flow inside and slow disorderly flows outside, which compete to produce an aligning torque.

Comparing the faster flow profile above the trench with the slower, disorderly active turbulence in the exterior region calls attention to the fact that active turbulence is a low–Reynolds number phenomenon (49). Confinement screens chaotic flows that would otherwise develop on scales larger than the trench width, while the low friction allows the rapid but steady flow profiles superjacent to the trench (Fig. 1B and C). On the other hand, the higher friction produces a smaller characteristic length scale (50) but also, slower speeds in the shallows. Thus, the submersed micropatterned trench segregates rapid laminar flow above the trench and slow but disorderly active turbulence outside.

Because the submersed micropatterned trench produces virtual boundaries that introduce a confining length scale, the competition between confinement and intrinsic active nematic length scale can be probed. Fig. 3A and Movie S1 experimentally demonstrate that a recurrent vorticity structure is established between the virtual boundaries when active and confining scales coincide (14, 17, 43), and simulations underscore the periodicity of counterrotating vortices (Fig. 3B and Movie S2). Examining the velocity autocorrelation functions quantifies the different flow profiles above the trench (Fig. 3E and F, blue curve). The correlation function exhibits repetition between correlated and anticorrelated regions due to repeating clockwise and anticlockwise vortices. Active turbulence exists outside of the virtual channel, as characterized by an immediate initial drop in the correlation (Fig. 3F, dashed curve).

In narrower or wider confinements, the flow transitions to other states (Fig. 3C–F). In simulations of the narrow trench

![Fig. 3](https://doi.org/10.1073/pnas.2106038118)

Submersed micropatterned structures control active nematic flow, topology, and concentration

Thijssen et al.
the nematic ordered lanes (SI Appendix, Fig. S1B), this produces a cross-hatched trajectory pattern. These dynamics are not nearly as pronounced in sinusoid systems with a larger wavelength ($\lambda_u = 500 \, \mu m$) (Movie S4). Positive defects that are partially oriented along the friction gradient exhibit the same deflected motion as in the smaller wavelength system; so, the motile defects show some alignment along the troughs, but the cross-hatched dynamics are indiscernible. The sinusoid geometry demonstrates that submersed micropatterned structures can fine tune the active flow and nematic structure, thereby offering a means to guide and control defect dynamics.

Stairs

We now present a substrate patterned as a submersed stairway (Fig. 1D) designed to simultaneously observe active turbulence and gradations in the characteristic length scales (Movie S5). Individual steps are micromilled to possess horizontal width $w_x = 500 \pm 2 \, \mu m$ and height of $\Delta_\lambda = 10 \pm 1 \, \mu m$ (Materials and Methods). The fluid depth is $h_0 = h_0 + \Delta_\lambda (x/R)$ for step number n and initial fluid depth $h_0 = 12 \pm 3 \, \mu m$, determined through confocal microscopy (Materials and Methods and SI Appendix, Fig. S2). We focus on steps $7 \leq n \leq 9$ for which the microtubule network forms a well-defined continuous nematic field (Fig. 1E and Movie S5). As the depth increases with n, the effective dissipation within the oil layer decreases, which we simulate via discrete steps in effective friction in the superjacent active film (Fig. 1F and Materials and Methods).

Above the step pattern, the active length scales increase with decreasing friction, as characterized by the defect distribution (Figs. 1E and F and 4A and Movie S5). Within each step, the

Sinusoid Substrates

While the trench geometry demonstrates that micropatterns with precipitous edges can actualize abrupt boundaries within superjacent active films, the ability to gradually tune the effective friction through gradients in oil-layer thickness allows our technique to gently guide defect dynamics. To demonstrate this, an undulating effective friction is produced by fully submersing a micropatterned one-dimensional sinusoidal substrate (Materials and Methods) characterized by amplitude $\Delta_\mu = 40 \pm 2 \, \mu m$ and wavelength $\lambda_\mu = 150 \pm 2 \, \mu m$. Unlike the trench geometry, the sinusoid system does not separate into distinct coexisting flow states (Movie S3). Rather, the resulting anisotropic friction gradients present a means of orientation control of motile defects. Self-propelled +1/2 defects orient and travel in trains above the troughs (SI Appendix, Fig. S1A). Motile defects move through the system subject to friction gradients when they have components perpendicular to the troughs, such that trajectories coaligned with the troughs minimize dissipation, causing the observed parallel/antiparallel leaning of +1/2 defects. Similar trains have been observed in active nematic layers above smectics (52), but since the spacing between smectic layers is significantly smaller, the defect trains in that configuration are not caused by gradients in effective friction; rather, they are due to uniform anisotropic friction.

However, such trains of +1/2 defects do not persist indefinitely since the trains produce nematically ordered regions, which are susceptible to the extensile-active nematic hydrodynamic bend instability (53–55), causing pair creation events that inevitably destabilize the flow (Movie S3). Since initially unbound +1/2 defects are typically oriented perpendicular to

Sinusoid Substrates

While the trench geometry demonstrates that micropatterns with precipitous edges can actualize abrupt boundaries within superjacent active films, the ability to gradually tune the effective friction through gradients in oil-layer thickness allows our technique to gently guide defect dynamics. To demonstrate this, an undulating effective friction is produced by fully submersing a micropatterned one-dimensional sinusoidal substrate (Materials and Methods) characterized by amplitude $\Delta_\mu = 40 \pm 2 \, \mu m$ and wavelength $\lambda_\mu = 150 \pm 2 \, \mu m$. Unlike the trench geometry, the sinusoid system does not separate into distinct coexisting flow states (Movie S3). Rather, the resulting anisotropic friction gradients present a means of orientation control of motile defects. Self-propelled +1/2 defects orient and travel in trains above the troughs (SI Appendix, Fig. S1A). Motile defects move through the system subject to friction gradients when they have components perpendicular to the troughs, such that trajectories coaligned with the troughs minimize dissipation, causing the observed parallel/antiparallel leaning of +1/2 defects. Similar trains have been observed in active nematic layers above smectics (52), but since the spacing between smectic layers is significantly smaller, the defect trains in that configuration are not caused by gradients in effective friction; rather, they are due to uniform anisotropic friction.

However, such trains of +1/2 defects do not persist indefinitely since the trains produce nematically ordered regions, which are susceptible to the extensile-active nematic hydrodynamic bend instability (53–55), causing pair creation events that inevitably destabilize the flow (Movie S3). Since initially unbound +1/2 defects are typically oriented perpendicular to
distribution is flat. However, at each edge, the number density of $-1/2$ defects peaks, while the density of $+1/2$ defects plummets. This is consistent with defect densities at the edges of the trench (Fig. 2A and B). Although the simulated edge peaks are less pronounced than in experiments, numerical results show more clearly the decrease in defect density across multiple steps. The change in defect density is modest, consistent with studies demonstrating that increasing oil viscosity five orders of magnitude only increases defect density by a factor of order unity (56, 57), which highlights the potential tunability of our method. Because the effective friction is inversely proportional to oil depth, changes to the defect density become less pronounced with step number, and in the large oil-depth limit, substrate features become indiscernible within the nematic flows.

Interestingly, we only observe a continuously well-defined nematic field for oil depths that are much greater than h_0 in both experiments and simulations (Fig. 1E). We could reliably resolve the nematic order and measure defect density with low experimental uncertainty for steps $n \geq 7$. For small n, the active film exhibits disorderly nonhomogeneous textures akin to those observed in experiments utilizing high-viscosity oils (56). This suggests that submersed micropatterned structures can do more than impact flow and orientational state; we observe a greater frequency of $-1/2$ defects behind (Fig. 5F) and Movie S9), we test if the curvature of the virtual barriers impacts depletion by simulating a rectangular pillar (SI Appendix, Fig. S4). We observe a comparable depletion of ϕ from the enclosed area as in the circular pillar and so, conclude that curvature is not the critical difference. Second, we consider a circular pit where the friction is zero for radius $r < R$ and $\gamma = 0.1$ for $r > R$. We find that the active forces point inward and observe an accumulation of ϕ (SI Appendix, Fig. S5). These inward active forces can even be used to trap two $+1/2$ defects for small radii, resulting in circulatory motion reminiscent of an active nematic in circular confinement (SI Appendix, Fig. S6) (14).

We conclude that accumulation or depletion of active material using submersed micropatterned structures relies principally on two attributes. 1) The oil layer must be thin (high effective friction) to suppress the active flows necessary to exhibit nematic order. 2) An enclosed area must be circumscribed by a virtual boundary to prohibit longitudinal active streams through the incompressibility constraint. Hence, we only find minute changes in ϕ to occur in the trench and stair geometries. Lastly, we point out that material does not deplete from the pillar center in simulations on timescales investigated when a pillar radius is much larger since the material does not diffuse to the interface where it could be selectively depleted.

In addition to controlling concentration, submersed pillars interact with defects. We observe a greater frequency of $-1/2$ defects in the vicinity of the virtual boundary in our simulations (Fig. 5F and G). The planar alignment of the director field explains the distribution of defects at the pillar boundary (Fig. 1H and I). The resulting bend deformation around the perimeter drives hydrodynamic instabilities to continually generate defect pairs, with newly created self-motile $+1/2$ defects typically oriented radially away from the center such that they swiftly move away from the interface (Movie S9), leaving unbound immotile $-1/2$ defects behind (Fig. 5F and G).

Submersed pillars can also serve as a virtual obstacle for defect trajectories (Movie S9). Positive defects that approach the pillars from the surrounding turbulence stall or are deflected when in proximity to the pillar (Fig. 5H–J). In Fig. 5H and J, we exhibit 9 representative trajectories of the 38 analyzed, and we show 4 from a total of 360 in Fig. 5I to illustrate the observed interactions. Deflected $+1/2$ defects first slow as they approach the pillar, then scatter, and regain speed as they move away from the submersed structure (Fig. 5H and I). Positive defects that stall
Fig. 5. Pillars cause local high-friction regions, which result in active matter depletion. (A) Due to the higher friction, the flow in the active nematic film remains low. (B) The nematic is highly ordered far from the pillar but disordered above it because the speed is lower in the higher-friction region. (C) The difference in nematic order at the friction interface results in a radial active force. (D) This radial active force pushes the active material concentration outward, resulting in depletion effects. A–E, G, and I show numerical results, while F, H, and J show experimental measurements. (E) The schematic of A–D, (F and G) +1/2 (dark green) and −1/2 (magenta) defect distributions as a function of radial distance from a submersed pillar from experiments (F) and simulations (G). Dark green and magenta lines denote +1/2 and −1/2 defects, respectively. (H–J) The xy trajectories of example ±1/2 defect dynamics in the vicinity of the pillar. Time along the trajectory is displayed as circular markers colored blue at the initial time and changing to red at the final instant. (H and I) +1/2 defects deflecting from the pillar: experiments (H) and simulations (I). (J) Experimental xy trajectories of ±1/2 defects absorbing to the pillar boundary through defect annihilation with −1/2 residing in the vicinity of the perimeter.

Conclusions

Using a combined experimental and simulation approach, we have demonstrated that micropatterns fully submersed in an underlying oil layer can guide the flow, topology, and even concentration of active material in superjacint nematic films without direct contact. By imposing changes in substrate depth, viscous dissipation in the oil layer enacts a position-dependent effective friction coefficient on the active material. Abrupt substrate height steps can constitute sharp virtual boundaries in the active matter layer, which can control flow and defect behavior. As proof-of-concept systems, we presented virtual channels exhibiting coexisting flow states, sinusoid substrates that gently guide defects, stairways separating active turbulence with differing characteristic length, and a virtual enclosure depleted of active material that acts as an obstacle scattering nearby defects.

The proposed technique of fully submersed micropatterned structures facilitates approaches for fabricating complex active topological microfluidic devices. For example, complications associated with infiltration of active nematics into confined spaces could be avoided, and active dynamics in various geometries at the same activity could be compared directly. Furthermore, locally concentrating or depleting active material could regulate activity at constant levels of adenosine triphosphate (ATP) or rheological properties such as film viscosity or nematic elastic coefficient through this approach.

Materials and Methods

Formation of the Active Nematic Network. An active nematic microtubule network is generated following the protocol previously reported by Sanchez et al. (59) at an oil–water interface. Prior to experiments, active premixtures are prepared in 3.73-µL aliquots containing biotin-labeled K401 kinesin motors, streptavidin, pyruvate kinase/lactic dehydrogenase (PKLDH), phosphoenol pyruvate (used for ATP regeneration), 4 mg/mL glucose, 0.27 mg/mL glucose oxidase, 47 µg/mL catalase, 2 mM Trolox, and 6%
We note that some local residual SU-8 is present at the base of the pillar \(B\). This accounts for the gap in data at the trench edge in Fig. 2.

Data Processing. To investigate how defect dynamics in the active layer are influenced by submersed structures, labeled microtubule bundles are imaged using fluorescence microscopy. Four hundred-frame videos are collected at 1 frame per second and processed using Fiji/ImageJ version 1.52a software. To acquire defect distributions, active nematic microtubule defects are identified and counted manually every 100 frames for each video. The 2D Cartesian components for both \(x\) and \(y\) axes are acquired from both +1/2 and −1/2 defects across the channel. Defects are organized and binned in 10-μm horizontal increments across the field of view.

For the stairway geometry and pillar geometries, we apply the same counting procedure to obtain −1/2 and −1/2 defect positional frequencies across all frames. In the stairway geometry, we apply the counting procedure sequentially to each step, and for the pillar, the videos are processed by centering the pillar in a 400 × 400-μm² window. Similar to the analysis done with the submersed trench, we use MATLAB to generate a 2D histogram to represent the frequency of the +1/2 and −1/2 defects, positionally distributed in a 2D plane. Defects are organized and binned every 13.4 μm in both horizontal and vertical increments.

The nematic director field inside the channel was calculated using a Fourier transform-based method reported recently by our group (18). To measure the director orientation directly above the microtubules, the imaged active layer is oriented with the axis of the channel parallel to the \(x\) axis. Each pixel is converted to micrometers (0.9434 μm per pixel). Each pixel from each frame containing an \(x\) component, \(y\) component, and angle of the bundled-microtubule director is represented on a 2D grid and determined using MATLAB. Our process uses a nested loop and a conditional statement to determine if the angle is between 80° and 90°; if a director satisfied this condition along the \(x\) axis for the specified \(y\) position, the total is summed and then divided by the total number of angles checked by the loop. This probability is adjusted to a new horizontal array for each probability in the \(x\) position. The result is a time-averaged director orientation mapped across the trench, averaging over all \(y\) values.

Simulations. To complement the experiments, we simulate the active nematic thin film using a 2D hybrid lattice Boltzmann/molecular dynamics (LBM/MD) simulation. The nematic director field, with velocity \((r,t)\), have long-range orientational order described by the tensor order parameter \(Q(r,t)\) and varying concentrations of active material, which we take to be a phase field \(\phi(r,t)\) varying from zero to one, coarsely describing the local amount of active materials (microtubules, kinesin complexes, and ATP). The total free energy includes nematic bulk (\(L_d\)) and deformation (\(F_{\text{def}}\)) contributions as a binary mixture, and microtubules are represented by a liquid-crystal fluid term, \(F'_{\text{L}}\).

\[
\langle \dot{\phi} \rangle = \nabla \cdot \nabla \phi - S = \gamma \alpha H.
\]

\([1]\)
The corotation term \(S = (Q + \Omega Q + \frac{1}{2} \Omega^2) \) determines the alignment of the microtubules in response to gradients in the velocity field, with \(\Omega \) the rotational part, and \(D \) is the extensional part of the velocity gradient tensor \(\mathbf{W} = \nabla \mathbf{v} + \mathbf{I} \). The alignment parameter \(\zeta \) is taken to be in the flow aligning regime and set to \(\zeta = 0.5 \).

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi \\
&= \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The free energy density \(f \) depends on phase concentration \(\phi \), activity-induced flows, in agreement with experiments. The Gennes contribution, free energy density \(\theta \)

\[
\begin{align*}
\theta &= \frac{1}{2} \kappa^2 \left(\kappa^2 - \kappa^2 \right) - \mu_c \left(\phi - \phi_c \right)^2 - \frac{1}{2} \kappa^2 \kappa^2 \frac{\phi}{Q}.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi \\
&= \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

Here, we have taken the local activity

\[
\zeta \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]

The resulting Leslie angle (60, 61) is

\[
\begin{align*}
\gamma &= \frac{1}{2} \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \Gamma_c \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi.
\end{align*}
\]
