2D-NMR reveals different populations of exposed lysine residues in the apoB-100 protein of electronegative and electropositive fractions of LDL particles

Francisco J. Blanco,1,2,5 Sandra Villegas,1,8 Sònia Benítez,3 Cristina Bancelles,3,4 Tammo Diercks,1 Jordi Ordóñez-Llanos,3,4 and José L. Sánchez-Quesada2,5

CIC bioGUNE,6 Parque Tecnológico de Bizkaia, 48160 Derio, Spain; IKERBASQUE,7 Basque Foundation for Science, 48011, Bilbao, Spain; Departament de Bioquímica i Biologia Molecular,8 Universitat Autònoma de Barcelona, 08195 Cerdanyola del Vallés, Spain; and Departamento de Bioquímica,9 Instituto de Investigación, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain

Abstract Several potentially atherogenic LDL subfractions present low affinity for the LDL receptor, which result in impaired plasma clearance. Electronegative LDL (LDL(–)) is one of these minor subfractions and the molecular basis for its reduced receptor affinity is not well understood. In the present study, high-resolution 2D-NMR spectroscopy has been employed to characterize the surface-exposed lysine residues of the apolipoprotein (apo)B-100 protein in both LDL(–) and LDL(+) subfractions. LDL(+) showed two populations of lysine residues, similar to those previously described in total LDL. “Normal” Lys have a \(pK_a \) of 10.4 whereas “active” Lys have a \(pK_a \) of 8.8 and have been suggested to be involved in receptor binding. In contrast to LDL(+), the LDL(–) subtraction presented a third type of Lys, named as “intermediate” Lys, with a different microenvironment and higher basicity (\(pK_a \) 10.7). These intermediate Lys cannot be reliably identified by 1D-NMR. Because the abundance of normal Lys is similar in LDL(+) and LDL(–), the intermediate Lys in the apoB-100 molecule of LDL(–) should come from a group of active Lys in LDL(+) particles that have a less basic microenvironment in the LDL(–) particle. These differences between LDL(+) and LDL(–) are indicative of a distinct conformation of apoB-100 that could be related to loss of affinity of LDL(–) for the LDL receptor.—Blanco, F. J., S. Villegas, S. Benítez, C. Bancelles, T. Diercks, J. Ordóñez-Llanos, and J. L. Sánchez-Quesada. 2D-NMR reveals different populations of exposed lysine residues in the apoB-100 protein of electronegative and electropositive fractions of LDL particles. J. Lipid Res. 2010. 51: 1560–1565.

Supplementary key words electronegative low density lipoprotein • apolipoprotein B-100 • two-dimensional-nuclear magnetic resonance

LDL is the main transporter of the cholesterol in blood and its endothelial transmigration is the main factor responsible for the accumulation of plasma cholesterol in the sub-endothelial space (1). LDL consists of one molecule of apolipoprotein B-100 (apoB-100) (550 KDa) and a variable number of lipids (2500–3500 molecules/particle). As a consequence, LDL is a heterogeneous group of particles that vary in density, size, electric charge, and composition, depending on the relative lipid content (2). Several minor modified forms of LDL with increased atherogenicity have been described in blood and include small, dense LDL (sdLDL) (3), oxidized LDL (oxLDL) (4), and electronegative LDL [LDL(–)] (5, 6).

LDL(–) is a minor subfraction of LDL with atherogenic, apoptotic, and inflammatory properties whose proportion in plasma is increased in patients with high cardiovascular risk, such as those with hyperlipidemia and diabetes (5). LDL(–) differs from LDL(+) in its higher susceptibility to aggregation (7), its capability to form lipid clusters (8), its secondary structure content of apoB-100 (9), and in the propensity of apoB-100 to form amyloid-like structures (10). Another atherogenic property of LDL(–) is its low affinity for the LDL receptor (LDLr) (6). This results in

Abbreviations: apoB-100, apolipoprotein B-100; BHT, butylated hydroxytoluene; DSS, 2,2-Dimethyl-2-silapentane-5-sulfonic acid; HSQC, heteronuclear single quantum correlation spectra; LDL(–), electronegative LDL; LDL(+), native LDL; LDLr, LDL receptor; MDA, malondialdehyde; NEFA, nonesterified fatty acid; oxLDL, oxidized LDL; sdLDL, small, dense LDL; TNBS, trinitrobenzene sulfonic acid.

F. J. Blanco and S. Villegas contributed equally to this work.

To whom correspondence should be addressed.

e-mail: jsanchezq@santpau.cat

The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of a figure.

Copyright © 2010 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org

DOI 10.1194/jlr.D002642

Published, JLR Papers in Press, January 20, 2010

1560 Journal of Lipid Research Volume 51, 2010

This work was supported by grants from the Ministerio de Sanidad/Instituto de Salud Carlos III/FIS PI060500 and PI070148. S.V. acknowledges a grant from Fundación Mutua Madrileña (FMM-08). S.B. and J.L.S-Q. are recipients of personal grants CP040110 and CP060220 from Ministerio de Sanidad. C.B. is recipient of a personal grant from the Ministerio de Educación y Ciencia of Science, 48011, Bilbao, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08195 Cerdanyola del Vallés, Spain; and Departamento de Bioquímica, Instituto de Investigación, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain

Manuscript received 25 September 2009 and in revised form 20 January 2010.

1 F. J. Blanco and S. Villegas contributed equally to this work.

2 To whom correspondence should be addressed.

3 e-mail: jsanchezq@santpau.cat

4 The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of a figure.

5 A. J. L. Quesada.

6 CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08195 Cerdanyola del Vallés, Spain; and Departamento de Bioquímica, Instituto de Investigación, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain

7 F. J. Blanco and S. Villegas contributed equally to this work.

8 To whom correspondence should be addressed.

9 e-mail: jsanchezq@santpau.cat

10 The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of a figure.

11 To whom correspondence should be addressed.

12 e-mail: jsanchezq@santpau.cat

13 The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of a figure.

14 To whom correspondence should be addressed.

15 e-mail: jsanchezq@santpau.cat

16 The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of a figure.
increased time of residence in plasma that could favor further atherogenic modifications. However, the mechanism underlying such low affinity is not well understood. It has been suggested that lysines in apoB-100 of LDL(-) involved in receptor binding could be either chemically modified in LDL(-) or not available for recognition by the LDL receptor due to conformation differences (6).

NMR has proved to be a powerful tool for studying the physicochemical characteristics of modified LDL. Particle size, particle aggregation and fusion, phospholipid degradation, and other structural features of apoB-100 have been studied by different NMR approaches. Reductive methylation of the amino groups of lysine residues with [13C]formaldehyde allows selective observation of the exposed lysine residues in LDL by means of 13C-NMR spectroscopy (11). Using one-dimensional (1D) NMR methods, two classes of exposed lysines have been detected in total LDL and in LDL fractions of different densities (12, 13).

We report here two-dimensional (2D) NMR measurements on isolated LDL(+) and LDL(−) particles that show a third group of lysines in LDL(−) with a different pK_a that could be involved in their different atherogenic properties.

MATERIALS AND METHODS

Materials

All reagents were purchased from Sigma (Madrid, Spain) unless otherwise stated.

Isolation of LDL subfractions

Total LDL was isolated by sequential ultracentrifugation from pooled plasma from healthy volunteers, as described (14). The study was approved by the institutional Ethics Committee and subjects gave their written informed consent. Three independent pools were used to obtain the amount of LDL necessary for NMR analysis. To avoid the possibility of contamination with lipoprotein(a) (a density range was 1.019–1.050 g/ml). All steps were performed at 4°C in the presence of 1 mM EDTA and 2 μM BHT. The concentration of LDL was expressed as g/L of apoB-100 measured by immunoturbidimetry (Roche Diagnostics). Total LDL was fractionated in LDL(+) and LDL(−) fractions by preparative anion exchange chromatography in an AKTA-FPLC system (GE Healthcare) using a High Load 26/10 Q-Sepharose HP column, as described (15). LDL fractions were collected and concentrated using Amicon Ultra-4 (10 kDa) concentrators (Millipore). LDL subfractions of each pool were characterized by measuring composition including apoB-100, total cholesterol, triglycerides (Roche Diagnostics), phospholipids, and nonesterified fatty acids (NEFAs) (Wako Chemicals) and by agarose gel electrophoresis (Midigel, Biomidi), as described (15). Malondialdehyde (MDA)-Lys reactivity (LDLs at 0.5 g apoB-100/L) was measured by immunoturbidimetry (Roche Diagnostics). To-
intensities should be much less biased from possible differential T1 relaxation than 13C spectra. The uncertainty in the signal intensity was evaluated by integration of three regions containing only noise, and was smaller than 1% of the sum of the intensities of all the signals observed in the corresponding amino-methyl regions of the spectra shown in Fig. 1.

RESULTS

LDL composition

The composition of LDL subfractions isolated from each pool is shown in Table 1. Composition results and TNBS reactivity agreed with previously reported data (7, 14). LDL(–) contained more triglyceride, more NEFA, and less apoB-100 proportion. MDA-Lys and TNBS reactivity showed that Lys in both LDL subfractions were not differentially modified. NEFA-LDL had the same composition than LDL(+) (data not shown), except for the NEFA content, which was similar to that of LDL(–) (36.1 ± 0.5 mol NEFA/mol apoB, n = 5).

Isotopic labeling

Fig. 1 shows a representative agarose gel of LDL subfractions [upper gel, LDL(+); lower gel, LDL(–)] labeled with different formaldehyde/Lys ratio. The percentage of labeled Lys residues was quantified isotopically and is indicated in the figure. Increased formaldehyde/Lys ratio resulted in more extensive labeling and increased electrophoretic mobility, indicative of changes in the secondary structure of apoB (11). Samples used for 2D-NMR spectroscopy had less than 12% of labeled Lys, as recommended by Lund-Katz et al. (11), and both fractions were labeled to a similar extent [LDL(+) 8.9 ± 1.9%; LDL(–) 8.8 ± 2.2%, 13C counts measured in triplicate]. No increase of electrophoretic mobility (Fig. 1) and no change in LDL composition (data not shown) were observed after labeling with a formaldehyde/Lys ratio of 0.25.

2D-NMR spectroscopy

The 2D-1H-13C HSQC spectra of the LDL particles showed a number of cross-peaks with different intensities. Most of them can be attributed to protons bound to the 1% natural abundance 13C carbons of the most mobile parts of the abundant lipid chains. The cross-peaks belonging to the fraction of 13C-methylated exposed lysines of the apo-B100 protein were identified based on the expected 1H and 13C chemical shifts (around 2.9 and 43.0 ppm, respectively) considering its chemical structure and the previously reported carbon chemical shifts in 13C-methylated LDL particles (11). The spectrum of the LDL(+) subfraction (Fig. 2, left panel) shows a major peak in the amino-methyl region, with 13C chemical shift and pK_a value (Fig. 3, Table 2) almost identical to the signal previously assigned to “active” lysines in the 1D spectra of LDL particles (11). A pair of signals with the 13C chemical shift of the “normal” lysines is clearly resolved in the 1H dimension of the 2D spectrum. The pK_a of the signal with the largest 1H chemical shift is the same as reported for normal lysines, whereas the other signal changes frequencies with pH such that it overlaps and becomes indistinguishable from the former one. The relative proportion of each group of Lys differs from those measured by Lund-Katz.

![Table 1. LDL subfraction composition](image)

	LDL(+)	LDL(–)
Cholesterol (%)	41.3 ± 1.8	41.5 ± 2.3
Triglyceride (%)	6.9 ± 1.6	9.8 ± 1.3
Phospholipid (%)	27.8 ± 2.1	26.9 ± 2.1
NEFA (mol/mol apoB)	12.6 ± 3.0	34.1 ± 5.0
ApoB-100 (%)	24.9 ± 2.0	23.1 ± 2.6
TNBS reactivity [% vs LDL(+)]	100	
MDA-Lys reactivity (mU/L)	15.9 ± 2.3	17.0 ± 6.4

Data are the mean ± SD of three independent samples used for 2D-NMR analysis.

![Fig. 1. Representative electrophoresis in agarose gels of LDL subfractions [upper gel LDL(+); lower gel LDL(–)] labeled with increasing formaldehyde/lysine (FA/Lys) ratio. LDLs were labeled as indicated in Material and Methods. Electrophoresis was performed using commercial gels (Midigel, Biomidi) at 90 V for 90 min in a cold room with 5 μL of labeled LDLs (0.5 g apoB-100/L). Samples were stained with Sudan Black according to the manufacturer’s instructions.](image)

![Fig. 2. Contour plots of the amino-methyl regions of the 1H-13C HSQC NMR spectra of LDL(+) and LDL(–) subfractions. Left: LDL(+); right: LDL(–). The assignment to the Lys types and the pK_a values (in parenthesis) are indicated for each signal. The two spectra are plotted just above the overall noise level.](image)
et al. (11) on 1D spectra of total LDL. In the 2D spectra of LDL(–) we measured 11 and 89% of normal and active Lys, respectively. Assuming that only 9% of the exposed Lys were labeled (32 Lys, see Fig. 1), this corresponds to 4 normal Lys and 23 active Lys (Table 1). This is different from the published data where, at a similar labeling level, 14 normal and 10 active Lys were observed (11). This difference is not due to the LDL fractionation, as total LDL contains around 95% of LDL(+) component. Rather, these differences are probably due to the higher sensitivity, resolution, and reliability of the signal intensity measurement in the HSQC spectra as compared with the 1D-13C direct detection ones.

Interestingly, the spectrum of LDL(–) shows a third cross-peak corresponding to a different type of Lys (Fig. 2, right panel). This group accounts for 15% of the total amino-methyl signal intensity and has a pk a 10.7 (Fig. 3, Table 1). Because its cross-peak is between those for previously described Lys groups (Fig. 1), we call this type “intermediate” Lys. The other signals behave like the corresponding ones of LDL(+) subfraction but have different relative proportions (11% and 74% for active and normal Lysines, respectively). The measured populations in LDL(–) correspond to 4 normal Lys, 23 active Lys, and 5 intermediate Lys. A summary of chemical shifts, pk a values, populations, and number of Lys is shown in Table 2. It is worth mentioning that the pk a values obtained from both 1H and 13C chemical shifts upon pH titration are identical within the experimental error. A very weak signal with chemical shifts similar to the intermediate Lys is observed in the spectrum of LDL(+), which could be a small population of this kind of lysine (less than 1%).

Because LDL(–) has a higher content of NEFA than LDL(+), the appearance of intermediate Lys in LDL(–) could be due to the presence of the carboxyl groups of NEFA in the vicinity of some of the exposed amino groups, changing their chemical environment and basicity. This possibility was evaluated by NMR analysis of NEFA-loaded LDL(+) with a content of NEFA similar to that of LDL(–). The spectrum of NEFA-LDL is, within error, the same as the spectrum of LDL(+) (supplementary Fig. I), with 87% active Lys, 12% normal Lys, and 1% intermediate Lys.

TABLE 2. Summary of chemical shifts (ppm), pk a values and number of labeled Lys of the three types identified in the 1H–13C-HSQC spectra of LDL subfractions after reductive methylation

Lys Type	13C	1H	13C	1H	13C	1H
LDL(+	43.09	2.90	43.74	2.83	42.90	2.87
LDL(–	43.05	2.91	42.74	2.83	42.90	2.87
LDL(+)	8.8	8.8	10.4	10.3	10.7	10.7

- The estimated error in the chemical shifts is smaller than 0.006 ppm for protons and 0.009 ppm for carbons.
- The errors in the pH measurements, and in the fitting of the curves are both smaller than 0.1 unit.
- The uncertainty in signal intensity is estimated to be smaller than 1%.

Fig. 3. pH titrations of the different Lys types measured by the change in their corresponding 13C (left) and 1H (right) chemical shifts. pH titration was performed by adding 1–5 µl of 0.5 N NaOH directly into the NMR tube, and the pH was measured with a thin electrode. Data were fitted to a four-parameter sigmoid equation using SigmaPlot 8.0.

DISCUSSION

Lys residues in apoB-100 are involved in LDL recognition by its receptor (17) and their chemical modification by different mechanisms abolishes their binding. Acetylation, oxidation, or nonenzymatic glycosylation promote derivatization of Lys by acetate, MDA, or glucose, inducing a progressive loss of affinity between LDL and its receptor (18–20). Based on 1D-13C-NMR measurements of methylated LDL particles, Lund-Katz et al. (11) described two types of exposed Lys in apoB-100. These two types differed in their 13C-methyl resonance frequencies (42.8 ppm and 43.2 ppm), relative populations (70 and 30%) and basicity (with pk a values of 10.5 and 8.9, respectively). The lower pk a indicated a more basic microenvironment within the apoB-100 molecule. This group was termed active Lys, the other being normal Lys, and was suggested to be involved in LDLr recognition (11, 12). These authors demonstrated that plasma LDL subspecies with low affinity toward the LDL receptor, such as small, dense, or large, buoyant LDL subfractions (21), have altered ionization of basic amino acids with a reduced proportion of active Lys (13). Hence, a decrease in the number of active Lys in LDL would imply a loss of binding affinity toward LDLr. LDL(–) is a heterogeneous population of LDL particles that distributes mainly in the most dense and most buoyant fractions of LDL.
total LDL (22, 23); thus, current results suggest that a similar mechanism underlies the poor binding affinity of LDL(–) to the LDLr.

Because the abundance of normal Lys is similar in LDL(+) and LDL(–), we hypothesize that the intermediate Lys in the apoB-100 molecule of LDL(–) come from a group of active Lys in LDL(+) particles that has a different microenvironment in the LDL(–) particle as a result of conformational differences. The higher \(p_k \) value of this population of Lys indicates a stabilization of the \(-N^+H_3\) group, reflecting a less basic microenvironment (11). It has been reported that active Lys are clustered in basic microenvironments, some of them being involved in LDLr recognition (11–13). These conformational differences between LDL(+) and LDL(–) agree with the observation of misfolded apoB-100 in LDL(–) (9), a property that increases its overall amyloidogenic propensity (10) and could also be involved in its higher susceptibility to particle aggregation (7, 8).

The fact that the new intermediate Lys type observed in this work has not been previously reported in small, dense LDL or large, buoyant LDL (12, 13) is probably due to the lower sensitivity and resolution, and could be used to unravel other hidden molecular signatures of LDL particles that might be relevant for their atherogenic properties.

REFERENCES

1. Tabas, I., K. J. Williams, J. Bören. 2007. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation, 116: 1832–1844.
2. Segrest, J. P., M. K. Jones, H. De Loof, and N. Dashii. 2001. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42: 1346–1367.
3. Krauss, R. M. 1995. Dense low density lipoproteins and coronary artery disease. Am. J. Clin. Nutr. 53B: 53B–57B.
4. Hofvoet, P. 2004. Oxidized LDL and coronary heart disease. Acta Cardiol. 59: 479–484.
5. Sánchez-Quesada, J. L., S. Benítez, and J. Ordóñez-Llanos. 2004. Electronegative low-density lipoprotein. Curr. Opin. Lipidol. 15: 329–335.
6. Benítez, S., V. Villegas, C. Bancel, O. Jorba, F. González-Sastre, J. Ordóñez-Llanos, and J. L. Sánchez-Quesada. 2004. Impaired binding affinity of electrophoretic low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content. Biochemistry, 43: 15863–15872.
7. Bancel, C., S. Benítez, V. Villegas, O. Jorba, J. Ordóñez-Llanos, and J. L. Sánchez-Quesada. 2008. Novel phospholipolytic activities associated with electrophoretic low-density lipoprotein are involved in increased self-aggregation. Biochemistry, 47: 8186–8194.
8. De Spirito, M., R. Brunelli, G. Mei, F. R. Bertani, G. Ciasca, G. Greco, M. Mapi, G. Arcovito, F. Ursini, and T. Parassaci. 2006. Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites. Biophys. J. 90: 4239–4247.
9. Parassaci, T., G. Bittolo-Bon, R. Brunelli, G. Cazzolato, E. K. Krasnowska, G. Mei, A. Sevanian, and F. Ursini. 2001. Loss of apoB-100 secondary structure and conformation in hydperoxide rich, electrophoretic LDL(–). Free Radic. Biol. Med. 31: 82–89.
10. Parassaci, T., M. De Spirito, G. Mei, R. Brunelli, G. Greco, L. Lenzi, G. Mauccoli, E. Nicolai, M. Mapi, G. Arcovito, et al. 2008. Low density lipoprotein misfolding and amyloidogenesis. FASEB J. 22: 2530–2536.
11. Lund-Katz, S., J. A. Ibdah, J. Y. Letizia, M. T. Thomas, and M. C. Phillips. 1988. A 13C NMR characterization of lysine residues in apolipoprotein B and their role in binding to the low density lipoprotein receptor. J. Biol. Chem. 263: 13831–13838.
12. Aviram, M., S. Lund-Katz, M. C. Phillips, and A. Chait. 1988. The influence of the triglyceride content of low density lipoprotein on the interaction of apolipoprotein B-100 with cells. J. Biol. Chem. 263: 16842–16848.
13. Lund-Katz, S., P. M. Laplaud, M. C. Phillips, and M. J. Chapman. 1998. Apolipoprotein B-100 conformation and particle surface charge in human LDL subtypes: implication for LDL receptor interaction. Biochemistry, 37: 12867–12874.
14. Havel, R. J., H. A. Eder, and J. H. Bragdon. 1955. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34: 1345–1353.
15. Sánchez-Quesada, J. L., M. Camacho, R. Antón, S. Benítez, L. Vila, and J. Ordóñez-Llanos. 2005. Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells. Atherosclerosis, 166: 261–270.
16. Wishart, D. S., C. G. Bigman, J. Yao, F. Abildgaard, H. J. Dyson, E. Oldfield, J. L. Markley, and B. D. Sykes. 1995. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR. 6: 135–140.
17. Weisgraber, K. H., T. L. Innerarity, and R. W. Mahley. 1978. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J. Biol. Chem. 253: 9053–9062.
18. Mahley, R. W., T. L. Innerarity, and K. H. Weisgraber. 1980. Alterations in metabolic activity of plasma lipoproteins following selective chemical modification of the apoproteins. Ann. N. Y. Acad. Sci. 348: 265–280.
19. Henriksen, T., E. M. Mahoney, and D. Steinberg. 1983. Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis, 3: 149–159.
20. Klein, R. L., M. Laimins, and M. F. Lopes-Virella. 1988. Isolation, characterization, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type 1 diabetic patients and nondiabetic subjects. Diabetes, 44: 1093–1098.
21. Nigon, F., P. Lesnik, M. Rouix, and M. J. Chapman. 1991. Discrete subtypes of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. J. Lipid Res. 32: 1741–1753.
22. Sánchez-Quesada, J. L., S. Benítez, C. Otaí, M. Franco, F. Blanco-Vaca, and J. Ordóñez-Llanos. 2002. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. *J. Lipid Res.* **43**: 699–705.

23. Chen, H. H., B. D. Hosken, M. Huang, J. W. Gaubatz, C. L. Myers, R. D. Macfarlane, H. J. Pownall, and C. Y. Yang. 2007. Electronegative LDLs from familial hypercholesterolemic patients are physico-chemically heterogeneous but uniformly proapoptotic. *J. Lipid Res.* **48**: 177–184.

24. Chen, C. H., T. Jiang, J. H. Yang, W. Jiang, J. Lu, G. K. Marathe, H. J. Pownall, C. M. Ballantyne, T. M. McIntyre, P. D. Henry, et al. 2003. Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. *Circulation.* **107**: 2102–2108.

25. Damasceno, N. R., A. Sevanian, E. Apolinário, J. M. Oliveira, I. Fernandes, and D. S. Abdalla. 2006. Detection of electronegative low density lipoprotein (LDLc) in plasma and atherosclerotic lesions by monoclonal antibody-based immunoassays. *Clin. Biochem.* **39**: 28–38.

26. Demuth, K., I. Myara, B. Chappey, B. Vedie, M. A. Pech-Amsellem, M. E. Haberland, and N. Moatti. 1996. A cytotoxic electronegative LDL subfraction is present in human plasma. *Arterioscler. Thromb. Vasc. Biol.* **16**: 773–783.