An alternative estimator for estimating the finite population mean in presence of measurement errors

Rajesh Singh, Sachin Malik

Department of Statistics, Banaras Hindu University

Varanasi-221005, India

Abstract

This article presents the problem of estimating the population mean using auxiliary information in the presence of measurement errors. A numerical study is made among the proposed estimator, the exponential ratio estimator, Singh and Solanki (2012) estimator and the mean per unit estimator in the presence of measurement errors.

Key words: Population mean, Study variate, Auxiliary variates, Mean squared error, Measurement errors, Efficiency.

1. Introduction

In survey sampling, the properties of the estimators based on data usually presuppose that the observations are the correct measurements on characteristics being studied. Unfortunately, this ideal is not met in practice for a variety of reasons, such as non response errors, reporting errors, and computing errors. When the measurement errors are negligible small, the statistical inferences based on observed data continue to remain valid. on the contrary when they are not appreciably small and negligible, the inferences may not be simply invalid and inaccurate but may often lead to unexpected, undesirable and unfortunate consequences (See Srivastava and Shalabh, 2001). Some authors including Allen et al. (2003), Manisha and Singh (2001, 2002), Shalabh (1997) and Singh and Karpe (2008, 2009) have paid their attention towards the estimation of population mean μ_y of the study variable y using auxiliary information in the presence of measurement errors.

For a simple random sampling scheme, let (x_i, y_i) be observed values instead of the true values (X_i, Y_i) on two characteristics (x, y) respectively for the i^{th} ($i=1, 2, \ldots, n$) unit in the sample of size n.
Let the measurement errors be

\[u_i = y_i - Y_i \quad (1.1) \]

\[v_i = x_i - X_i \quad (1.2) \]

Which are stochastic in nature with mean zero and variances \(\sigma_u^2 \) and \(\sigma_v^2 \) respectively, and are independent. Further, let the population means of \((x, y)\) be \((\mu_x, \mu_y)\), population variances of \((x, y)\) be \((\sigma_x^2, \sigma_y^2)\) and \(\sigma_{xy}\) and \(\rho\) be the population covariance and the population correlation coefficient between \(x\) and \(y\) respectively. (See Manisha and Singh (2002)).

In this chapter we have studied the behaviour of some estimators in presence of measurement error.

2. Exponential ratio–type estimator under measurement error

Bahl and Tuteja (1991), suggested an exponential ratio type estimator for estimating \(\bar{y} \) as

\[t_1 = \bar{y} \exp \left(\frac{\mu_x - \bar{x}}{\mu_x + \bar{x}} \right) \quad (2.1) \]

Let \(w_u = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} u_i \), \(w_y = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (y_i - \mu_y) \)

\[w_v = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} v_i \], \(w_x = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (x_i - \mu_x) \)

\[C_x = \frac{\sigma_x}{\mu_x} \quad \text{and} \quad C_y = \frac{\sigma_y}{\mu_y} \]

Expression (2.1) can be written as

\[t_1 = [\mu_y + (\bar{y} - \mu_y)] \exp \left[\frac{\mu_x - (\mu_x + \bar{x} - \mu_x)}{\mu_x + (\mu_x + \bar{x} - \mu_x)} \right] \]
\[(\mu_y + k_1) \exp \left[-\frac{k_2}{2 \mu_x + k_2} \right] \] \hspace{1cm} (2.2)

where,

\[k_1 = \bar{y} - \mu_y = \frac{1}{\sqrt{n}} (w_y - w_u) \]

and \[k_2 = \bar{x} - \mu_x = \frac{1}{\sqrt{n}} (w_x - w_v) \]

var(\bar{y}) = \frac{\sigma_y^2}{n} \left[1 + \frac{\sigma_u^2}{\sigma_y^2} \right]

On simplifying expression (2.2), we have

\[(t_1 - \mu_y) = \mu_y \left[-\frac{1}{2} \left(\frac{k_2}{\mu_x} \right) + \frac{3}{8} \left(\frac{k_2}{\mu_x} \right)^2 + .. \right] + k_i \left[-\frac{1}{2} \left(\frac{k_2}{\mu_x} \right) + \frac{3}{8} \left(\frac{k_2}{\mu_x} \right)^2 + .. \right] \] \hspace{1cm} (2.3)

On taking the expectations and using the results as

\[\text{E}(k_1) = \text{E}(k_2) = 0 \]

\[\text{E}(k_1^2) = \frac{\sigma_y^2}{n} \left(1 + \frac{\sigma_u^2}{\sigma_y^2} \right) = V_{ym} \]

\[\text{E}(k_2^2) = \frac{\sigma_x^2}{n} \left(1 + \frac{\sigma_u^2}{\sigma_x^2} \right) = V_{xm} \]

\[\text{E}(k_1k_2) = \frac{\rho \sigma_y \sigma_x}{n} = V_{yxm} \]

Taking expectation on both side of (2.3) the bias of \(t_1 \), to first order of approximation is

\[\text{Bias}(t_1) = \frac{1}{\mu_x} \left(\frac{3}{8} R_m V_{xm} - \frac{1}{2} V_{yxm} \right) \] \hspace{1cm} (2.4)

where \(R_m = \frac{\mu_y}{\mu_x} \)
Squaring of both side of (7.2.3) and taking expectation, the mean square error of t_1 up to first order of approximation, is

$$\text{MSE}(t_1) = E[(t_1 - \mu_y)^2]$$

$$= \frac{\mu_y^2}{4\mu_x^2} E(k_2^2) + E(k_1^2) - \frac{\mu_y}{\mu_x} E(k_1 k_2)$$

$$= \frac{1}{4} R_m^2 \left[\frac{\sigma_x^2}{n} \left(1 + \frac{\sigma_y^2}{\sigma_x^2} \right) \right] + \frac{\sigma_x^2}{n} \left(1 + \frac{\sigma_u^2}{\sigma_y^2} \right) - \frac{\rho \sigma_y \sigma_x}{n} R_m$$

$$\text{MSE}(t_1) = \frac{\sigma_y^2}{n} \left[1 - \frac{C_x}{C_y} \left(\rho - \frac{C_x}{4C_y} \right) \right] + \frac{1}{n} \left[\frac{\mu_y^2}{4\mu_x^2} \sigma_y^2 + \sigma_u^2 \right]$$

(2.5)

$$\text{MSE}(t_1) = M_{t_1}^* + M_{t_1}$$

where,

$$M_{t_1}^* = \frac{\sigma_y^2}{n} \left[1 - \frac{C_x}{C_y} \left(\rho - \frac{C_x}{4C_y} \right) \right]$$

is the mean squared error of t_1 without measurement error.

and

$$M_{t_1} = \frac{1}{n} \left[\frac{\mu_y^2}{4\mu_x^2} \sigma_y^2 + \sigma_u^2 \right]$$

is the contribution of measurement errors in t_1.

3. Another estimator under measurement error

Koyuncu and Kadilar (2010), suggested a regression type estimator t_2 as-

$$t_2 = \omega_1 \bar{y} + \omega_2 (\mu_x - \bar{x})$$

(3.1)

where ω_1 and ω_2 are constants that have no restriction.

Expression (3.1) can be written as

$$t_2 - \mu_y = \omega_1 k_1 + \mu_y (\omega_1 - 1) - \omega_2 k_2$$

(3.2)
Taking both side expectation of (3.2), we get the bias of the estimator \(t_2 \) to order \(O(n^{-1}) \)

\[
\text{Bias}(t_2) = \mu_y(\omega_1 - 1)
\]

Squaring both side of (3.2) and taking expectation, the MSE of \(t_2 \) to the to order \(O(n^{-1}) \) is

\[
\text{MSE}(t_2) = \mu_y^2(\omega_1 - 1)^2 + \frac{2}{n}\omega_1^2\sigma_y^2 + \frac{1}{n}\omega_2^2\sigma_x^2 - \frac{2}{n}\omega_1\omega_2\rho\sigma_y\sigma_x + \frac{1}{n}\left(\omega_1\sigma_u^2 + \omega_2\sigma_v^2\right) \quad (7.2.14)
\]

\[
= M_{t_2}^* + M_{t_2}
\] \quad (3.3)

where,

\[
M_{t_2}^* = \mu_y^2(\omega_1 - 1)^2 + \frac{2}{n}\omega_1^2\sigma_y^2 + \frac{1}{n}\omega_2^2\sigma_x^2 - \frac{2}{n}\omega_1\omega_2\rho\sigma_y\sigma_x, \text{ is the MSE of } t_2 \text{ without measurement error and}
\]

\[
M_{t_2} = \frac{1}{n}\left(\omega_1\sigma_u^2 + \omega_2\sigma_v^2\right) \text{ is the contribution of measurement error in } t_2.
\]

Writing MSE of \(t_2 \) as

\[
\text{MSE}(t_2) = (\omega_1 - 1)^2\mu_y^2 + \omega_1^2(a_1) + \omega_2^2(a_2) + 2\omega_1\omega_2(-a_3)
\] \quad (3.4)

where,

\[
a_1 = (V_{ym}), \quad a_2 = (V_{xm}), \quad \text{and} \quad a_3 = (V_{ym})
\]

Now, optimising MSE of the estimator \(t_2 \) with respect to \(\omega_1 \) and \(\omega_2 \), we get

\[
\omega_1^* = -\frac{b_3b_4}{b_1b_3 - b_2^2} \quad \text{and} \quad \omega_2^* = -\frac{b_2b_4}{b_1b_3 - b_2^2}
\] \quad (3.5)

where,

\[
b_1 = \mu_y^2 + a_1, \quad b_2 = -a_3, \quad b_3 = a_2, \quad \text{and} \quad b_4 = \mu_y^2.
\]

Using the values of \(\omega_1^* \) and \(\omega_2^* \) from equation (3.5) into equation (3.4) we get the minimum MSE of the estimator \(t_2 \) as
\[\text{MSE}(t_2)_{\min} = \left[\mu_y^2 - \frac{b_3b_4^2}{b_1b_3-b_2^2} \right] \]

(3.6)

Singh and Solanki suggested an estimator \(t_3 \) as

\[t_3 = y \left\{ 2 - \left(\frac{\bar{x}}{\mu_x} \right)^\alpha \exp \left[\beta(\bar{x} - \mu_x) \right] \right\} \]

(3.7)

Expanding equation (3.7) and subtracting \(\mu_y \) from both sides

\[(t_3 - \mu_y) = -\mu_y \left[\frac{V_{ym}}{\mu_x^2} \left(\alpha (\alpha - 1) + \frac{\beta(\beta - 2)}{8} + \frac{\alpha \beta}{2} \right) \right] - \frac{V_{ym}}{\mu_x} \left(\alpha + \frac{\beta}{2} \right) \]

(3.8)

On taking expectation of both sides of (3.8) we get the bias of the estimator \(t_3 \) to the order \(O(n^{-1}) \)

\[\text{Bias}(t_3) = \mu_y \left\{ \frac{V_{ym}A}{\mu_x^2} \right\} - \left\{ \frac{B}{\mu_x} V_{ym} \right\} \]

(3.9)

where,

\[A = \left[\alpha (\alpha - 1) + \frac{\beta(\beta - 2)}{8} + \frac{\alpha \beta}{2} \right], \quad \text{and} \quad B = \left(\alpha + \frac{\beta}{2} \right) \]

Squaring both sides of (3.8) and taking expectations, the MSE of \(t_3 \) to the order \(O(n^{-1}) \) is

\[\text{MSE}(t_3) = E\left(t_3 - \mu_y \right)^2 = V_{ym} + V_{ym} R_m B^2 - 2R_m V_{ym} B \]

(3.10)

4. A general class of estimators

Following Singh and Solanki, we propose a general class of estimator \(t_3 \) as

\[t_4 = \left[m_1 \bar{y} + m_2 (\mu_x - \bar{x}) \right] \left\{ 2 - \left(\frac{\bar{x}}{\mu_x} \right)^\alpha \exp \left[\beta(\bar{x} - \mu_x) \right] \right\} \]

(4.1)
Expanding equation (4.1) and subtracting μ_y from both side

$$\left(t_4 - \mu_y\right) = \left((m_1 - 1)\mu_y - m_1 \mu_y \left\{B \frac{k_2}{\mu_x^2} + \frac{k_2}{\mu_x^2} A \right\} + m_1 k_1 \left\{1 - B k_2 \frac{1}{\mu_x} \right\} - m_2 k_2 \left\{1 - B k_2 \frac{1}{\mu_x} \right\}\right)$$

(4.2)

On taking expectation of both side of (4.2) we get the bias of the estimator t_4 to the order $O(n^{-1})$

$$\text{Bias}(t_4) = (m_1 - 1)\mu_y - m_1 \mu_y \left\{V_{ym} A \right\} + m_1 \left\{B \frac{V_{ym}}{\mu_x} \right\} + m_2 \left\{B \frac{V_{ym}}{\mu_x} \right\}$$

(4.3)

Squaring both side of (4.2) and taking expectation, the MSE of t_4 to the order $O(n^{-1})$ is

$$\text{MSE}(t_4) = E\left(\left(t_4 - \mu_y\right)^2\right)$$

$$= (m_1 - 1)^2 \mu_y^2 + m_1^2 R_m^2 B^2 V_{ym} + m_1^2 V_{ym} - 2 m_1 R_m B V_{ym} - 2 \mu_y - (m_1 - 1) R_m^2 A V_{ym} + m_2^2 V_{ym}$$

$$+ 2 m_2 (m_1 - 1) B R_m V_{ym} + m_2 R_m V_{ym} - m_1 R_m V_{ym} + m_1 (m_1 - 1) B R_m V_{ym}$$

The MSE of the estimator t_3 can also be written as

$$\text{MSE}(t_4) = (m_1 - 1)^2 \mu_y^2 + m_1^2 P_1 + m_2^2 P_2 + 2 m_1 m_2 P_3 - 2 m_1 P_3 - 2 m_2 P_4$$

(4.4)

where,

$$P_1 = \left(V_{ym} + B^2 R_m^2 V_{ym} - 2 R_m^2 A V_{ym}\right) \quad P_2 = \left(V_{ym}\right)$$

$$P_3 = \left(2 R_m V_{ym} - X_{ym}\right) \quad P_4 = \left(R_m B V_{ym} - A V_{ym} R_m^2\right)$$

$$P_5 = \left(B R_m V_{ym}\right)$$

Now optimising MSE t_4 with respect to m_1 and m_2, we get the optimum values -

$$m_1^* = \frac{B P_3 - B P_5}{B^2 P_2 - P_5} \quad m_2^* = \frac{B P_2 - B P_4}{B^2 P_1 - P_4}$$
where,

\[B_1 = \mu_y^2 + P_4 \quad B_2 = \mu_y^2 + P_1 \]

5. Theoretical Efficiency Comparisons:

The MSE of the proposed estimator \(t_1 \) proposed in (2.1) will be smaller than usual estimator under measurement error case if the following condition is satisfied by the data set

\[
\frac{\sigma_y^2}{n} \left[1 - \frac{C_x}{C_y} \left(\rho - \frac{C_x}{4C_y} \right) \right] + \frac{1}{n} \left[\frac{\mu_y^2}{4\mu_x^2} \sigma_x^2 + \sigma_u^2 \right] \leq \frac{\sigma_y^2}{n} \left(1 + \frac{\sigma_u^2}{\sigma_y^2} \right)
\]

or

\[
\sqrt{\frac{V_{yxm}}{V_{ym}} \leq 4} \quad (5.1)
\]

As we know that the estimators \(t_2 \) defined in (3.1) is the particular members of the generalised estimator \(t_3 \) so, if the above condition is satisfied for different values of \(\alpha, \beta, \) and \(m_1, m_2 \) the estimator \(t_3 \) or \(t_2 \) will be better than usual estimator under measurement errors.

\[
\text{MSE}(t_4)_{min} \leq V(\bar{y}_m) \quad (5.2)
\]

6. Empirical Studies:

Data statistics: The data used for empirical study has been taken from Gujrati and Sangeetha (2007) -pg, 539.

Where, \(Y_i = \) True consumption expenditure,

\(X_i = \) True income,

\(y_i = \) Measured consumption expenditure,

\(x_i = \) Measured income.

From the data given we get the following parameter values
Table 1:

n	μ_y	μ_y	σ_y^2	σ_x^2	ρ	σ_u^2	σ_v^2
10	127	170	1278	3300	0.964	36.00	36.00

Estimators	Values of α and β	PRE	
\bar{y}_m	-	100.00	
t_1	-	437.59	
t_{regm}	$\alpha = 1, \beta = \frac{V_{ym} / \sqrt{V_{xm} V_{ym}}}{\sqrt{V_{xm} V_{ym}}}$	946.54	
t_{2min}	$\alpha = 0, \beta = 0$	944.94	
t_{3min}	$\alpha = 1, \beta = 1$	123.23	603.01
	$\alpha = 1, \beta = 0$	437.27	
	$\alpha = 0, \beta = 1$	437.27	
	$\alpha = 1, \beta = -1$		
t_{4min}	$\alpha = 1, \beta = 0$	1012.77	
	$\alpha = 0, \beta = 1$	1031.13	
	$\alpha = 1, \beta = 1$	948.35	
	$\alpha = 1, \beta = -1$	**1031.11**	
Table (5.3): Showing the MSE of the estimators with and without measurement errors

Estimators	MSE without meas. Error	Contribution of meas. Error in MSE	MSE with meas. Error
y_m	127.800	3.600	131.400
t_1	25.925	4.102	30.028
treg	9.000	4.896	13.882
$t_{2\min}$ ($\alpha = 0, \beta = 0$)	8.995	4.910	13.905
$t_{3\min}$ ($\alpha = 1, \beta = 0$)	17.203	4.587	21.790
($\alpha = 0, \beta = 1$)	25.798	4.252	30.050
($\alpha = 1, \beta = 1$)	101.874	4.747	106.621
($\alpha = 1, \beta = -1$)	25.772	4.278	30.050
$t_{4\min}$ ($\alpha = 1, \beta = 0$)	8.397	4.577	12.974
($\alpha = 0, \beta = 1$)	8.536	4.207	12.743
($\alpha = 1, \beta = 1$)	8.990	4.865	13.855
($\alpha = 1, \beta = -1$)	7.868	4.874	**12.742**

Conclusion:
From the Table 5.3, we conclude that the effect due to measurement error on the exponential ratio type and other proposed estimators is less than the effect on the t_2 and regression estimators while it is more serious than usual estimator under measurement error for this data set.

References

Allen, J., Singh, H. P. and Smarandache, F. (2003): A family of estimators of population mean using multiauxiliary information in presence of measurement errors. International Journal of Social Economics 30(7), 837–849.

Bahl, S. and Tuteja, R. K. (1991): Ratio and product type exponential estimator. Information and optimization sciences12 (1), 159-163.

Gujarati, D. N. and Sangeetha (2007): Basic econometrics. Tata McGraw – Hill.

Koyuncu, N. and Kadilar, C. (2010): On the family of estimators of population mean in stratified sampling. Pakistan Journal of Statistics (to be published).

Manisha and Singh, R. K. (2001): An estimation of population mean in the presence of measurement errors. Journal of Indian Society of Agricultural Statistics 54(1), 13–18.

Manisha and Singh, R. K. (2002): Role of regression estimator involving measurement errors. Brazilian journal of probability Statistics 16, 39-46.

Shalabh (1997): Ratio method of estimation in the presence of measurement errors. Journal of Indian Society of Agricultural Statistics 50(2):150–155.

Singh, H. P. and Karpe, N. (2008): Ratio-product estimator for population mean in presence of measurement errors. Journal of Applied Statistical Sciences 16, 49–64.

Singh, H. P. and Karpe, N. (2009): On the estimation of ratio and product of two populations means using supplementary information in presence of measurement errors. Department of Statistics, University of Bologna, 69(1), 27-47.

Solanki R., Singh H.P., Rathour A. (2012): An alternative estimator for estimating the finite population mean using auxiliary information in sample surveys.
