Spector, Daniel; van Schaftingen, Jean
Optimal embeddings into Lorentz spaces for some vector differential operators via Gagliardo’s lemma. (English) [Zbl 1442.46027]
Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 30, No. 3, 413-436 (2019).

Summary: We prove a family of Sobolev inequalities of the form
\[\| u \|_{L^{n/(n-1)}(\mathbb{R}^n, V)} \leq C \| A(D)u \|_{L^1(\mathbb{R}^n, E)} \]
where \(A(D) : C_c^\infty(\mathbb{R}^n, V) \to C_c^\infty(\mathbb{R}^n, E) \) is a vector first-order homogeneous linear differential operator with constant coefficients, \(u \) is a vector field on \(\mathbb{R}^n \) and \(L^{n/(n-1)}(\mathbb{R}^n) \) is a Lorentz space. These new inequalities imply in particular the extension of the classical Gagliardo-Nirenberg inequality to Lorentz spaces originally due to A. Alvino [Boll. Unione Mat. Ital., V. Ser., A 14, 148–156 (1977; Zbl 0352.46020)] and a sharpening of an inequality in terms of the deformation operator by M. J. Strauss [in: Partial diff. Equ., Berkeley 1971, Proc. Sympos. Pure Math. 23, 207–214 (1973; Zbl 0259.35008)] (Korn-Sobolev inequality) on the Lorentz scale. The proof relies on a nonorthogonal application of the Loomis-Whitney inequality and Gagliardo’s lemma.

MSC:
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26D10 Inequalities involving derivatives and differential and integral operators
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals

Keywords:
Korn-Sobolev inequality; Lorentz spaces; Loomis-Whitney inequality

Full Text: DOI arXiv

References:
[1] R. A. Adams - J. J. F. Fournier, Sobolev spaces, 2nd ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Elsevier/Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[2] A. Alvino, Sulla disuguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A (5) 14 (1977), no. 1, 148-156. · Zbl 0352.46020
[3] N. Aronszajn - E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura Appl. (4) 68 (1965), 51-117. · Zbl 0195.13102
[4] J.-F. Babadjian, Traces of functions of bounded deformation, Indiana Univ. Math. J. 64 (2015), no. 4, 1271-1290, doi:10.1512/iumj.2015.64.5601. · Zbl 1339.26030
[5] A. C. Barroso - I. Fonseca - R. Toader, A relaxation theorem in the space of functions of bounded deformation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 1, 19-49. · Zbl 0960.49014
[6] J. Bourgain - H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris 338 (2004), no. 7, 539-543, doi:10.1016/j.crma.2003.12.031. · Zbl 1101.35013
[7] J. Bourgain - H. Brezis, New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 2, 277-315, doi:10.4171/JEMS/80.
[8] P. Bousquet - J. Van Schaftingen, Hardy-Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J. 63 (2014), no. 5, 1419-1445, doi:10.1512/iumj.2014.63.5395. · Zbl 1325.46037
[9] H. Brezis, Laser beams and limiting cases of Sobolev inequalities, Nonlinear partial differential equations and their applications. Colloque de France Seminar, Vol. II (Paris, 1979), Res. Notes in Math., vol. 60, Pitman, Boston, Mass.-London, 1982, pp. 86-97.
[10] H. Brezis - S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.