Volume preserving diffeomorphisms
as Poincaré maps for volume preserving flows

D.V. Treschev

All the objects below will be C^∞-smooth. Let M be a compact manifold with $\dim M = m$, and let ν be a volume form on M. Here we mean that ν is a nowhere vanishing differential m-form such that $\int_M \nu > 0$. Let $T = \mathbb{R}/\mathbb{Z} = \{ t \mod 1 \}$. Then $\omega = dt \wedge \nu$ is a volume form on the manifold $T \times M$.

Let $\pi_T: T \times M \to T$ and let $\pi_M: T \times M \to M$ be the natural projections

$$ T \times M \ni (t, x) \mapsto \pi_T(t, x) = t, \quad (t, x) \mapsto \pi_M(t, x) = x. $$

Consider a vector field v on $T \times M$. We assume that

(A) the first component of v is positive: $D\pi_T v = v_T > 0$,

(B) v preserves the form ω: $L_v \omega = 0$, where L_v is the Lie derivative.

Let g^s_v be the flow generated by the vector field v on $T \times M$. Condition (A) implies that the Poincaré map (the first-return map) $P_v: \{0\} \times M \to \{0\} \times M$ is well defined. The map P_v preserves the volume form $\lambda = \iota_v \omega|_{\{t=0\}}$ on $\{0\} \times M$.

Theorem 1. Let P_v be the diffeomorphism defined above and let $Q: \{0\} \times M \to \{0\} \times M$ be another diffeomorphism which preserves λ. Assume that Q is (smoothly) isotopic to P_v in the group of λ-preserving self-maps of $\{0\} \times M$. Then there exists an ω-preserving vector field u on $T \times M$ such that $D\pi_T u > 0$ and $Q = P_u$.

This result, probably interesting on itself, was obtained as a tool required in the proof of the main result of [1]. Now we sketch the proof of Theorem 1.

(a) Consider an s-smooth family of diffeomorphisms $T_M(s): M \to M$ of the manifold M into itself, $s \in \mathbb{R}$. We extend T_M to a family of diffeomorphisms T^s of $\mathbb{R} \times M$ by defining

$$ \mathbb{R} \times M \ni (t, x) \mapsto T^s(t, x) = (t + s, T_M(t + s) \circ T^{-1}_M(t)(x)). \quad (1) $$

A direct computation shows that T^s is a flow, that is, $T^0 = \text{id}$ and $T^{s_2} \circ T^{s_1} = T^{s_1 + s_2}$ for any $s_1, s_2 \in \mathbb{R}$. The flow T^s generates a vector field \mathcal{U} on $\mathbb{R} \times M$:

$$ \mathcal{U} = \left. \frac{d}{ds} \right|_{s=0} T^s \circ T^{-s}, \quad D\pi_\mathbb{R}(\mathcal{U}) = 1, \quad (2) $$

where $\pi_\mathbb{R}: \mathbb{R} \times M \to \mathbb{R}$ is the natural projection.

AMS 2010 Mathematics Subject Classification. Primary 37C10.
(b) We put \(\hat{v} = v/v_T \). Then \(D\pi_T \hat{v} = 1 \). Let \((t, x) \mapsto g^s_b(t, x), (t, x) \in \mathbb{T} \times M, \) be the flow of the vector field \(\hat{v} \). Then \(g^s_b \) preserves the form \(v_T \omega \). The Poincaré maps \(P_v \) and \(P_{\hat{v}} \) coincide. Hence \(g^s_b(0, x) = (1, P_v(x)) \) for any \(x \in M \).

Let \(G^s \) be the lift of the flow \(g^s_b \) to the covering space \(\mathbb{R} \times M \). We define a family \(\sigma_s: M \rightarrow M \) by \(G^s(0, x) = (s, \sigma_s(x)), s \in \mathbb{R} \).

(c) Let \(\gamma_s \) be an \(s \)-smooth isotopy from the conditions of Theorem 1: for any \(s \in [0, 1] \) the map \(\gamma_s \) is a \(\lambda \)-preserving diffeomorphism of \(M \cong \{0\} \times M \). Then \(\gamma_0 = P_v \) and \(\gamma_1 = Q \). By smoothly changing the parametrization on \(\gamma_s \) we can assume that \(\gamma_s = P_v \) if \(s \) takes values close to 0, and \(\gamma_s = Q \) if \(s \) is close to 1. We extend \(\gamma_s \) to the whole axis \(\mathbb{R} = \{s\} \), for example, by putting \(\gamma_s = P_v \) for \(s < 0 \) and \(\gamma_s = Q \) for \(s > 0 \).

(d) Consider the family of maps \(\mathcal{T}_M(s): M \rightarrow M \) with \(\mathcal{T}_M(s) = \sigma_s \circ P_{\hat{v}}^{-1} \circ \gamma_s \), \(s \in \mathbb{R} \). Then \(\mathcal{T}_M(0) = \text{id} \) and \(\mathcal{T}_M(1) = Q \), hence both \(\mathcal{T}_M(0) \) and \(\mathcal{T}_M(1) \) preserve the form \(\lambda \).

Let \(\mathcal{T}^s \) be the flow \((1) \) on \(\mathbb{R} \times M \) generated by the family \(\mathcal{T}_M(s) \), and let \(\mathcal{U} \) be the corresponding vector field on \(\mathbb{R} \times M \). Then by \((1) \)

\[
D\pi_T \mathcal{U} = 1, \quad \mathcal{U}^0 = \text{id}_{\mathbb{T} \times M}, \quad \mathcal{T}^1(0, x) = (1, Q(x)).
\]

By \((1) \) and \((2) \)

\[
\mathcal{U} = \left(1, \frac{d}{ds} \bigg|_{s=0} (\sigma_{t+s} \circ P_{\hat{v}}^{-1} \circ \gamma_{t+s}) \circ (\sigma_t \circ P_{\hat{v}}^{-1} \circ \gamma_t)^{-1} \right) = \hat{v} + \mathcal{W},
\]

\[
\hat{v} = \left(1, \left(\frac{d}{dt} \sigma_t \right) \circ \sigma_t^{-1} \right), \quad \mathcal{W} = \left(0, D(\sigma_t \circ P_{\hat{v}}^{-1}) \left(\frac{d}{dt} \gamma_t \right) \circ \gamma_t^{-1} \circ P_{\hat{v}} \circ \sigma_t^{-1} \right).
\]

Near the points \(t = 0 \) and \(t = 1 \) we have: \(d\gamma_t/dt = 0 \), and therefore \(\mathcal{U} = \hat{v} \). Hence \(\mathcal{U}|_{s \in [0, 1]} \) can be extended to an \(s \)-periodic vector field \(\mathcal{W} \) on \(\mathbb{R} \times M \). Let \(\hat{\mathcal{W}}^s \) be the corresponding flow on \(\mathbb{R} \times M \). Since \(\hat{\mathcal{W}} \) is periodic, projections of \(\hat{\mathcal{W}}^s \) and \(\hat{\mathcal{W}} \) on a flow \(\hat{\mathcal{W}}^s \) and a vector field \(U \) on \(\mathbb{T} \times M \) are well defined.

(e) Let \(\mathbf{1} \) be the vector field on \(\mathbb{R} \times M \) defined by the equalities \(D\pi_T \mathbf{1} = 1 \) and \(D\pi_M \mathbf{1} = 0 \). The flow \(\hat{\mathcal{W}}^s \) preserves some volume form \(\Omega \) on \(\mathbb{R} \times M \) which can be chosen so that \(\nu_1 \Omega|_{t=0} = \nu_1 \Omega|_{t=1} = \lambda \).

Any volume form on \(\mathbb{R} \times M \) equals \(\hat{\rho} \omega \), where \(\hat{\rho}: \mathbb{R} \times M \rightarrow \mathbb{R} \) is a positive function. Therefore, \(\Omega = \hat{\rho} \omega \), where \(\hat{\rho}|_{t=0} = \hat{\rho}|_{t=1} = \rho_0 \) and \(\lambda = \rho_0 \nu \).

These equalities and the periodicity of \(\mathcal{U} \) imply that \(\hat{\rho} \) is 1-periodic in \(t \). Hence there exists a function \(\rho: \mathbb{T} \times M \rightarrow \mathbb{R} \) such that \(\hat{\rho} = \rho \circ \pi \), where \(\pi: \mathbb{R} \times M \rightarrow \mathbb{T} \times M \) is the canonical projection. The flow \(\hat{\mathcal{W}}^s \) preserves the volume form \(\rho \omega \).

The vector field \(u = \rho U \) preserves \(\omega \). It remains to note that \(P_u = P_U = Q \).

Corollary. The vector field \(\mathbf{w} \) is small if the isotopy \(\gamma_s \) is close to the identity. Moreover, in this case \(U \) is close to \(\hat{v} \), and therefore \(\rho \) is close to \(v_T \) and then \(\mathbf{u} \) is a small perturbation of \(\mathbf{v} \).
Bibliography

[1] B. Khesin, S. Kuksin, and D. Peralta-Salas, *Global, local and dense non-mixing of the 3D Euler equation*, preprint, 2019.

Dmitrii V. Treschev
Steklov Mathematical Institute
of Russian Academy of Sciences, Moscow
E-mail: treschev@mi-ras.ru

Presented by D. O. Orlov
Accepted 25/DEC/19
Translated by THE AUTHOR