The importance of multidisciplinary care of patients with Wolfram

Rebecca A Dennison*, Adina L Feldman, Juliet A Usher-Smith
University of Pittsburgh Diabetes Institute, Cambridge, CB2 0SR, UK.

*Corresponding Author: Rebecca A Dennison, University of Pittsburgh Diabetes Institute, Cambridge, CB2 0SR, UK.
E-mail: ri423@medh1.cam.ac.uk

Received date: August 02, 2018 Accepted date: August 14, 2018; Published date: August 24, 2018.

Citation: Rebecca A Dennison, The importance of multidisciplinary care of patients with Wolfram. J Diabetes and Islet Biology.
DOI: 10.31579/2641-8975/007

Copyright: ©2018 Rebecca A Dennison. This is an open-access article distributed under the terms of The Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Wolfram syndrome is a genetic condition, which is typically inherited in autosomal recessive fashion, characterized by the combination of diabetes mellitus and optic atrophy. It is along a spectrum which encompasses DIDMOAD (Diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). Profound hypoglycemic unawareness can be seen in this condition but is not commonly described as an associated feature in the literature.

Case report: A 16 year old female with history of presumed type 1 diabetes presented to urology clinic with urinary incontinence. She was found to have profound dilatation of the bladder and was admitted for bladder decompression. During the course of admission she was found to also have diabetes insipidus and optic atrophy. She had several severe hypoglycemic episodes with profound hypoglycemia unawareness during this admission. Genetic testing for Wolfram syndrome was positive. As an outpatient she was placed on a continuous glucose monitor to help manage her hypoglycemia. Additionally, psychiatric support to manage her associated depression was an important aspect of her therapy. As her depression improved so did her ability to comply with the necessary therapies.

Conclusions: Wolfram syndrome is a rare syndrome that has been well described. However, patients with this syndrome have frequent hypoglycemia unawareness and severe hypoglycemia likely related to the neurologic deterioration that occurs at the molecular level in the pathogenesis of Wolfram syndrome. Strategies must be put in place to help prevent and quickly treat these hypoglycemic events.

Key Words: Wolfram syndrome, diabetes mellitus, neurogenic bladder, hypoglycemia, optic atrophy, diabetes insipidus, DIDMOAD, endoplasmic reticulum stress, WFS1.

Background

Wolfram syndrome is a genetic condition, which is typically inherited in autosomal recessive fashion, characterized by the combination of diabetes mellitus and optic atrophy. It is along a spectrum which encompasses DIDMOAD (Diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). The syndrome occurs in 1:770,000 individuals with a characteristic timeline for its clinical manifestations [1]. There are some key features that distinguish the diabetes associated with Wolfram syndrome from Type 1 autoimmune diabetes mellitus. This syndrome is important to recognize as there are prognostic implications for those affected.

The genetic defect is a mutation in the WFS1 gene, located on chromosome 4p16.1 [2,3,4], which encodes the protein wolframin [5]. Recently, Wolfram syndrome 2 has been described and is caused by mutation in the CISD2 gene on chromosome 4q22 [6] which encodes the protein ERIS. This protein also localizes to the endoplasmic reticulum but does not interact directly with WOLFRAMIN [7]. WS2 will not be discussed further in this article. Wolframin is a transmembrane glycoprotein that localized to the endoplasmic reticulum (ER). This protein has been characterized as part of the unfolded protein response, which is a cellular stress response induced by the accumulations of unfolded proteins within the ER lumen. This response is key to maintaining cellular homeostasis. Loss of this function by alteration of the WFS1 gene is thought to result in chronic ER stress leading to apoptosis in pancreatic beta cells, neuroendocrine cells, and neuronal cells. Together, these processes result in a progressive decline of endocrine and neuroendocrine function [8]. The WFS1 gene also plays a key role in intracellular calcium homeostasis and cAMP mediated signaling. Recent studies have suggested that WFS1 deficiency may also lead to impaired acidification of insulin secretory granules [9,10].

This WFS1 mutation and subsequent downstream effects are hypothesized to be the central defect in the constellation of symptoms described in the Wolfram syndrome [5].

The progressive loss of neuronal cell function has been implicated in the loss of ability to recognize insulin induced hypoglycemia. Severe hypoglycemia with hypoglycemic unawareness can lead to significant morbidity and mortality in diabetic patients including seizure, coma, and even death. Recognition that a particular patient is at increased risk for poor hypoglycemia recognition can result in changes in management of that patient to prevent further morbidity.

We report the case of a 16 year old female with presumed type 1 diabetes, who presented with daytime enuresis and was ultimately diagnosed with Wolfram syndrome. In the course of her evaluation she was noted to have significant hypoglycemic unawareness resulting in repeated low blood glucose <40mg/dL and one episode of unresponsiveness related to hypoglycemia during her hospital stay. We aim to review the presenting signs and symptoms of Wolfram syndrome and to highlight the significant hypoglycemia unawareness that can occur as part of this syndrome, but is not commonly considered in the evaluation of patients with such a condition.

Clinical presentation

A 16 year old Caucasian female with a history of presumed type 1 diabetes of 10 years duration presented to the urology clinic with symptoms of progressive daytime and nighttime enuresis. A bladder ultrasound performed in clinic demonstrated a profoundly enlarged bladder consistent with the size of a 20 week gravid uterus. (Figure 1) The patient had a current HbA1c of 15.3% and therefore her symptoms were presumed to be secondary to neurogenic bladder of poorly controlled diabetes mellitus.

This article is protected by copyright. All rights reserved.
She was admitted to the general pediatrics service for bladder decompression with indwelling catheter and monitored for post-obstructive diuresis [11].

Discussion

Wolfram syndrome is a disease with phenotypic variability. However, nearly all patients will have DM and this is typically the presenting feature with a peak incidence of onset at 5 years of age [13]. The average age of onset of diabetes in Wolfram syndrome has been reported to be younger than the average age of onset in Type 1 diabetes (T1DM) [15]. There are multiple differences between the presentation and course of autoimmune Type 1 diabetes and diabetes of Wolfram syndrome. Namely, patients affected with Wolfram have a low incidence of diabetic ketoacidosis at diagnosis (only 3% compared to 30% in T1DM), a much lower insulin requirement in the first several years after diagnosis, rare microvascular complications, and rare presence of diabetes antibodies [14]. The other ubiquitous finding in Wolfram syndrome is optic atrophy, which can progress to blindness, and typically presents at an age of 10 years. This finding is required to make the diagnosis [15]. Additional features include diabetes insipidus with peak onset at 14 years of age and present in 73% of patients, hearing impairment progressing to deafness (onset at 15 years, prevalence of 62%), renal and GU tract abnormalities (onset at 20 years, prevalence of 58%; a large, atomic bladder is a characteristic finding), and neurologic abnormalities, most commonly progressive ataxia (peak onset at 30 years of age with prevalence of 62-70%) [15]. Endocrine disorders that have been described in this condition include hypogonadotropic hypogonadism, hypothyroidism, and growth failure. Another common finding is depression pre-existing the diagnosis of Wolfram syndrome. Patients with this syndrome typically have early death from brain stem atrophy leading to central apnea, at a median age of 30 years. Diagnosis is made by genetic testing.

An increased frequency of hypoglycemic unawareness or severe hypoglycemia has been described in patients with Wolfram syndrome, although it is not frequently reported as a common manifestation. It is thought that the neurologic damage associated with the impaired unfolded protein response underlying the pathogenesis of Wolfram syndrome causes impairment in the body's ability to properly recognize the low blood glucose associated with insulin treatment. One study showed a prevalence of severe hypoglycemia of approximately 37% in patients with Wolfram syndrome compared to only 8% in a cohort with type 1 autoimmune diabetes [13]. While few studies comment on this potentially fatal complication of Wolfram syndrome, there is a reported case of death from hypoglycemic coma in a Wolfram patient [15].

Glucotoxicity from uncontrolled diabetic hyperglycemia has been linked to exacerbation of the unfolded protein response described above, leading to worsening of neurologic symptoms. This was hypothesized in a retrospective review of patients with Wolfram syndrome who experienced acute worsening of neurologic symptoms when their diabetes became uncontrolled [13]. Our patient had very low insulin requirements and a near normal HbA1c for many years despite reported suboptimal compliance with insulin therapy. Once her reserve beta cell function and endogenous insulin production decreased below a critical threshold, as part of the natural history of her disease, her diabetes became uncontrolled. In keeping with the above theory, the manifestations of neurogenic bladder and severe hypoglycemia with unawareness emerged after less than 2 years of poor diabetes control, in contrast with the appearance of autonomic symptoms after much longer periods of poor control in young subjects with type 1 diabetes. Thus, this rapid and substantial deterioration in glucose control was likely an important factor in the development and quick progression of her hypoglycemia unawareness [8].

Conclusions

We report a patient with classic features of a rare disease. This case reviews many important points regarding the time course and recently discovered mechanisms of disease progression, and emphasizes the need for a high index of suspicion when dealing with unusual features of presumed type 1 diabetes in a pediatric patient.
This case also emphasizes the importance of multidisciplinary care of patients with Wolfram syndrome which should include behavioral health or psychiatric care. The underlying depression begets worsened glycemic control, leading to decreased beta cell function and even worse hyperglycemia. The latter then causes ER stress and hypoglycemia unawareness all leading to worsening of depression, in a vicious cycle. It is important to put mechanisms in place early to prevent the ongoing cell damage and ultimately decrease morbidity in these delicate patients. These patients require intensive diabetes care through a diabetes specialist, diabetes educator, behavioral health provider, and open lines of communication with their diabetes team in addition to other specialists that may be involved. Additional support from ophthalmology, nephrology, audiology and urology is also necessary. Continuous glucose monitoring should be strongly considered in these patients, preferably in association with continuous subcutaneous insulin infusion, and the importance of the monitoring system and good glycemic control should be discussed at length to ensure compliance with its use. Genetic counseling should be offered to family members, and genetic testing should be recommended to putative carriers of the mutation.

Hypoglycemia unawareness is an important aspect of the morbidity and mortality associated with Wolfram syndrome and should be considered in the routine care of these patients.

References
1. Kumar S: Wolfram syndrome: important implications for pediatricians and pediatric endocrinologists. Pediatr Diabetes 2010, 11:28-37.
2. Polymeropoulos MH, Swift RG and Swift M: Linkage of the gene for Wolfram syndrome to markers on the short arm of chromosome 4. Nat Genet 1994, 8:95-7.
3. Strom TM, Hortnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W, Gerbitz KD and Meitinger T: Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 1998, 7:2021-8.
4. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D, Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y and Permutt MA: A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 1998, 20:143-8.
5. Barrett TG, Bundey SE and Macleod AF: Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 1995, 346:1458-63.
6. El-Shanti H, Lidral AC, Jarrah N, Druhan J and Ajlouni K: Homozygosity mapping identifies an additional locus for Wolfram syndrome on chromosome 4q. Am J Hum Genet 2000, 66:1229-36.
7. Rigoli L and Di Bella C: Wolfram syndrome 1 and Wolfram syndrome 2. Curr Opin Pediatr 2012, 24:512-7.
8. Rohayem J, Ehlers C, Wiedemann B, Holl R, Oexle K, Kordonouri O, Salzano G, Meissner T, Burger W, Schober E, Huebner A and Lee-Kirsch MA: Diabetes and neurodegeneration in Wolfram syndrome: a multicenter study of phenotype and genotype. Diabetes Care 2011, 34:1503-10.
9. Fonseca SG, Urano F, Weir GC, Gromada J and Burcin M: Wolfram syndrome 1 and adenylly cyclase 8 interact at the plasma membrane to regulate insulin production and secretion. Nat Cell Biol 2012, 14:1105-12.
10. Hatanaka M, Tanabe K, Yanai A, Ohta Y, Kondo M, Akiyama M, Shinoda K, Oka Y and Tanizawa Y: Wolfram syndrome 1 gene (WFS1) product localizes to secretory granules and determines granule acidification in pancreatic beta-cells. Hum Mol Genet 2011, 20:1274-84.
11. Klahr S: New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 1991, 18:689-99.
12. Smith CJ, Crock PA, King BR, Meldrum CJ and Scott RJ: Phenotype-genotype correlations in a series of wolfram syndrome families. Diabetes Care 2004, 27:2003-9.
13. Kinsley BT, Swift M, Dumont RH and Swift RG: Morbidity and mortality in the Wolfram syndrome. Diabetes Care 1995, 18:1566-70.
14. Garcia-Luna PP, Villechenous E, Leal-Cerro A, Duran S, Jorge S, Wichmann I, Nunez-Roldan A and Astorga R: Contrasting features of insulin dependent diabetes mellitus associated with neuroectodermal defects and classical insulin dependent diabetes mellitus. Acta Paediatr Scand 1988, 77:413-8.
15. Barrett TG and Bundey SE: Wolfram (DIDMOAD) syndrome. J Med Genet 1997, 34:838-41.