Effect of wearing a surgical mask on short-term pulmonary gas exchange in patients immediately after anaesthesia

Sir,

During the novel coronavirus disease 2019 (COVID-19) pandemic, the universal application of surgical masks on patients may help prevent exposure to healthcare workers.\(^{[1,2]}\) After tracheal intubation under general anaesthesia, the production of airway secretions increases, and patients are more likely to develop a cough during recovery. Some reports recommend that a surgical mask must be applied to the patients in the operating room.\(^{[3,4]}\) In this study, we aimed to investigate changes in arterial blood gases in patients wearing a surgical mask immediately post-extubation after general anaesthesia.

This retrospective study was approved by the hospital ethics committee (#2021-006). The need for informed consent was waived by the committee, and the research content was made publicly accessible. Based on the data available from medical records, 56 patients (30 who wore a surgical mask and 26 who did not) who underwent surgery under general anaesthesia with invasive arterial line insertion and tracheal intubation between 25 January 2021 and 6 September 2021 were enrolled in the study. The study followed the principles of the Declaration of Helsinki and was conducted in a tertiary-level emergency medical centre. Patients with severe respiratory illness were excluded.

Variables such as age, gender, body weight, body mass index, the American Society of Anesthesiologists physical status, details of the surgery, anaesthesia time, operation time and blood gas values were collected.

After extubation following general anaesthesia, 3 L/min of oxygen therapy by a nasal cannula was used for the patients. After confirming that the patients were awake and their respiratory condition was stable, an arterial blood gas analysis was performed. Then, a surgical mask was placed over the nasal cannula, and after 5 min, a repeat blood gas analysis was performed. If no significant abnormalities were found, the patients were released from the operating room at the discretion of the anaesthesiologist.

Patients who underwent repeated blood gas analysis using the same oxygenation procedure without a surgical mask, before the COVID-19 pandemic, were selected as the controls.

The Wilcoxon signed-rank test was performed to investigate whether there was a difference in the partial pressures of oxygen (\(\text{PaO}_2\)) and carbon dioxide (\(\text{PaCO}_2\)) in patients before and after wearing a surgical mask. Statistical Package for Social Sciences software version 25 (International Business Machine Corporation., Armonk, New York) was used for analysis, and \(P\) values < 0.05 indicated significance.

There were no statistically significant differences in demographics between the groups, except for surgical details [Table 1]. Arterial \(\text{PaO}_2\) increased significantly from 109.5 (99.2–148.5) mmHg to 183.0 (145.5–204.0) mmHg \((P < 0.001)\), whereas the \(\text{PaCO}_2\) showed no statistically significant change [from 42.9 \([38.6–45.8]\) mmHg to 41.8 \([38.3–45.1]\) mmHg \((P = 0.665)\) before and after wearing a surgical mask] [Figure 1a and b].

There were no statistically significant changes in \(\text{PaO}_2\) [from 103.5 \([92.7–131.5]\) mm Hg to 108.0 \([91.2–135.8]\) mm Hg \((P = 0.839)\)] or \(\text{PaCO}_2\) [from 42.9 \([38.6–45.8]\) mm Hg to 44.1 \([42.0–46.4]\) mm Hg \((P = 0.186)\)] in patients without a mask [Figure 1c and d].

Table 1: General characteristics of patients
Characteristic
Age, median (IQR), years
Male gender, n (%)
Height, median (IQR), cm
Weight, median (IQR), kg
Body mass index, median (IQR) kg/m\(^2\)
ASA-PS, median (IQR)
Anaesthesia time, median (IQR), min
Surgical time, median (IQR), min

\(\text{IQR}=\text{interquartile range, ASA-PS=American Society of Anesthesiologists physical status, n=number}\)
The study showed that wearing a surgical mask over the nasal cannula significantly increased PaO\(_2\). This result is consistent with that reported in a previous study showing that oxygenation could be improved by wearing a surgical mask while wearing a high-flow nasal cannula and that wearing a surgical mask over an oxygen mask caused a greater increase in oxygen concentrations than wearing it under an oxygen mask.\(^{[5,6]}\)

This study has some limitations. It was a single-centre study with a retrospective design and a small number of cases. The hypothesis drawn from this study should be confirmed in a randomised study.

In conclusion, wearing a surgical mask over a nasal cannula after general anaesthesia to prevent droplet infection might also help improve oxygenation without increasing PaCO\(_2\) levels.

Ethics approval

This study was approved by the Clinical Research Ethics Committee of the Nagahama Red Cross Hospital (approval number: 2021-006).

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Masashi Fujii, Emi Fujii\(^1\), Nobuaki Shime\(^2\), Yasuyo Kawabata

Department of Anaesthesia, Nagahama Red Cross Hospital, Nagahama, Shiga, \(^1\)Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Otsu, Shiga, \(^2\)Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan

Address for correspondence:
Dr. Masashi Fujii,
Department of Anaesthesia, Nagahama Red Cross Hospital, 14-7 Miyamae, Nagahama, Shiga 526-8585, Japan.
E-mail: manutarou@yahoo.co.jp

Submitted: 21-Mar-2022
Revised: 01-Aug-2022
Accepted: 04-Aug-2022
Published: 22-Aug-2022

REFERENCES

1. Camargo MC, Martinez-Silveira MS, Lima AA, Bastos BP, Santos DLD, Mota SEC, et al. Effectiveness of the use of non-woven face mask to prevent coronavirus infections in the general population: A rapid systematic review. Cien Saude Colet 2020;25:3365-76.
2. Feng S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med 2020;8:434-6.
3. Bajwa SJS, Sarna R, Bawa C, Mehdiratta L. Peri-operative and critical care concerns in coronavirus pandemic. Indian J Anaesth 2020;64:267-74.
4. Malhotra N, Joshi M, Datta R, Bajwa SJS, Mehdiratta L. Indian society of anaesthesiologists (ISA National) advisory and position statement regarding COVID-19. Indian J Anaesth 2020;64:259-63.
5. Montiel V, Robert A, Robert A, Nabaoumi A, Marie T, Mestre NM, et al. Surgical mask on top of high-flow nasal cannula improves oxygenation.
Letters to Editor

oxygenation in critically ill COVID-19 patients with hypoxemic respiratory failure. Ann Intensive Care 2020;10:125.

6. Binks AC, Parkinson SM, Sabbouh V. Oxygen: Under or over a surgical facemask for COVID-19 patients? Anaesthesia 2020;75:1691-2.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Access this article online
Quick response code
Website:
www.ijaweb.org
DOI:
10.4103/ija.ija_275_22

How to cite this article: Fujii M, Fujii E, Shime N, Kawabata Y. Effect of wearing a surgical mask on short-term pulmonary gas exchange in patients immediately after anaesthesia. Indian J Anaesth 2022;66:617-9.

© 2022 Indian Journal of Anaesthesia | Published by Wolters Kluwer - Medknow