Reduced dietary nitrogen with a high Lys:CP ratio restricted dietary N excretion without negatively affecting weaned piglets

Hongnan Liua, b, Li Wu a, c, Hui Han a, d, Yuying Li a, c, Lijian Wang a, c, Jie Yin a, c, Wenjun Fan e, Miaomiao Bai a, Jiming Yao c, *, Xingguo Huang b, d, *, Tiejun Lia b, c, d, e, *

a Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
b Hunan Co-Innovation Center of Animal Production Safety, Changsha, 410128, China
c University of Chinese Academy of Sciences, Beijing, 100039, China
d Department of Animal Science, Hunan Agriculture University, Changsha, 410128, China
e Guangdong Wangda Group Academician Workstation for Clean Feed Technology Research and Development in Swine, Guangdong Wangda Group Co., Ltd., Guangzhou, 510663, China

A R T I C L E I N F O
Article history:
Received 20 June 2018
Received in revised form 2 November 2018
Accepted 17 January 2019
Available online 2 February 2019

Keywords:
Protein
Lysine
Feeding
Digestion
Nutrition
Genetic mapping

A B S T R A C T
We hypothesized that balancing the content of exogenous amino acids, especially lysine, to reduce protein content in swine diets could reduce nitrogen (N) pollution associated with animal husbandry. Two experiments (45 d each experiment) were performed on weaned piglets (Duroc × Landrace × Yorkshire, 28 d of age) to test this and to determine the optimal lysine to crude protein (Lys:CP) ratio in diet. In Exp. 1, 12 piglets (6 replicates [n = 6]) were fed diets containing different levels of CP (17% and 20%) but the same level of Lys. Increased CP content resulted in significant increases (P < 0.05) of average daily gain (ADG), average daily feed intake (ADFI), and body weight (BW), but did not affect the feed to gain ratio. In Exp. 2, 24 piglets (8 replicates [n = 8]) were fed 1 of 3 diets as follows: 1) 20% CP with a regular Lys:CP ratio (6.23%, control); 2) 17% CP with a reduced Lys:CP ratio (6.14%, LL); or 3) 17% CP with a standard Lys:CP ratio (7.32%, SL). The ADG, final BW, serum concentrations of growth hormone and insulin-like growth factor-1, villus height in the jejunum, and villus height to crypt depth ratio were the lowest in piglets fed LL diet, whereas blood urea N concentration was the lowest and the value of lipase activity was the highest in the piglets fed SL diet. The SL diet did not affect growth performance, intestinal morphology, or serum hormone concentrations, indicating that reduced dietary N with a high Lys:CP ratio can efficiently reduce dietary N excretion without negatively affecting weaned piglets.

© 2019, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The shortage of protein resources has become a major global concern, with one billion people suffering from starvation, undernutrition, and malnutrition (Schade and Pimentel, 2010). Feed represents 70% of the total cost of production in the swine industry, of which 35% is attributed to the cost of protein ingredients. The progress and expansion of the industrial production of amino acids (AA) contribute to yearly decreases in the costs of exogenous AA. This makes it possible to reduce dietary protein content by balancing exogenous AA in swine diets. In addition, pollution from livestock and poultry restricts the development of...
animal husbandry, as nitrogen (N) emission in feces is approximately 25% of total N emissions, but that in urine is 75% (Bathurst, 1952). It has been shown that a 1% protein decrease in diets may lead to an 8% decrease in N emissions (Kerr and Easter, 1995; Heo et al., 2008; Swiech et al., 2010). However, decreasing the protein content in diets may also restrict pig growth and health (Rist et al., 2013). A reduction in dietary protein levels may result in changes in the intestinal structure and function (Wang et al., 2008). The underlying molecular and cellular mechanisms regarding such changes are, however, largely unknown. Investigations into optimal diet formulations, therefore, not only aim to improve protein utilization efficiency, but also to reduce N emissions to the environment, as well as ensure sufficient growth and health of animal.

The theory of optimal AA supplementation for pigs was proposed in the 1970s (Fuller and Boyne, 1971; Fuller, 1977; Fuller and Crofts, 1977). Nowadays, researchers use synthetic AA to balance the limiting AA in swine diets and improve N utilization. The present study aimed to investigate the impact of reducing dietary protein in weaned piglets, using corn–soybean meals balanced with exogenous lysine (Lys), methionine (Met), threonine (Thr), and tryptophan (Trp). Specifically, this study evaluated the effects of reduced dietary protein on weaned piglets, and aimed to determine the optimal lysine to crude protein (Lys:CP) ratio for weaned piglets based on growth performance, gastrointestinal hormone, jejunal morphology analysis, and mucosal digestive enzymes activities.

2. Material and methods

The experiments were performed following the guidelines for animal welfare. The protocol was reviewed and approved by the Institute of Subtropical Agriculture (ISA), the Chinese Academy of Sciences (CSC, 201505).

2.1. Animals and experimental design

Duroc × Landrace × Yorkshire piglets (weaned at 28 d of age) were used in this study. After an adaptation period of 7 d, piglets were fed experimental feeds for 45 d. The initial body weight (BW) was determined (9.51 ± 0.62 kg, 12 piglets for Exp. 1; 9.51 ± 0.13 kg, 24 piglets for Exp. 2). All diets were corn-soybean meal-based supplemented with the limiting Lys, Met, Thr, and Trp to meet the nutrient requirements for piglets with BW of 11 to 30 kg (NRC, 2012). The ingredients of each diet are shown in Table 1 (Exp. 1) and Table 2 (Exp. 2). The nutritional composition of the diets is shown in Table 3.

The piglets in each replicate were housed in a nursery facility (1.98 m × 1.98 m) with plastic and slatted flooring, and given free access to water and diets during the 45 d of the experiments. Body weight and feed intake were recorded weekly. Average daily gain (ADG), average daily feed intake (ADFI), and feed to gain ratio (F:G) were calculated.

2.1.1. Experiment 1

Twelve piglets were randomly assigned to 1 of 2 treatments (n = 6 per treatment): regular diet containing 20% CP (control diet, CP20), or a test diet containing 27% CP (CP17). The control diet was formulated as recommended by the National Research Council (NRC, 2012).

Sample collection. At the end of the trial period, the piglets were sacrificed and sampled. Approximately 20 cm of intestinal segments were aseptically isolated from the middle sections of the jejunum. The isolated intestinal segments were used for mucosal sampling (Wu et al., 2012). Immediately after collection, the jejunum mucosal samples were frozen in liquid N and stored.

Item	Diets1	
	CP17	CP20
Ingredients		
Corn	66.50	63.70
Soybean	18.80	19.80
Whey powder	4.30	4.30
Fishmeal	4.00	9.00
Soybean oil	2.60	0.80
Lysine	0.62	0.38
Hydroxy methionine	0.19	0.10
L-threonine	0.21	0.09
L-tryptophan	0.04	0.01
Monocalcium phosphate	0.74	0.00
Limestone	0.70	0.52
Sodium chloride	0.30	0.30
Premix vitamins 2	1.00	1.00
Total	100.00	100.00

Nutrients and energy:

Item	Diets1	
	CP17	CP20
DE, MJ/kg	14.60	14.62
Crude fat	4.31	4.33
Total calcium	0.59	0.58
Total phosphorus	0.49	0.50
CP	17.09	20.05
Lysine	1.23	1.23
Methionine + Cystine	0.67	0.68
Threonine	0.74	0.73
Lys:CP ratio	7.20	6.13

Table 1 Ingredients and nutritional composition of the diets fed to piglets (10 to 30 kg BW) in Exp. 1 (as-fed basis, %).

2.1.2. Experiment 2

Twelve piglets were randomly assigned to 1 of 2 treatments (n = 6 per treatment): regular diet containing 20% CP (control diet, CP20), or a test diet containing 27% CP (CP17). The control diet was formulated as recommended by the National Research Council (NRC, 2012).

Sample collection. At the end of the trial period, the piglets were sacrificed and sampled. Approximately 20 cm of intestinal segments were aseptically isolated from the middle sections of the jejunum. The isolated intestinal segments were used for mucosal sampling (Wu et al., 2012). Immediately after collection, the jejunum mucosal samples were frozen in liquid N and stored.
at −80 °C until further analysis, including RNA microarray and gene expression analysis.

Gene microarray analysis. Total RNA was isolated from the jejunum samples using TRIzol reagent (Invitrogen, Carlsbad, CA), according to the manufacturer's instructions. The quality and quantity of RNA were assessed by OD260/OD280. Five micrograms of total RNA was converted to double-stranded complementary DNA (cDNA) using a reverse transcription (RT) kit (QIAGEN, Shanghai, China) with an oligo (dT) primer containing a T7 RNA polymerase promoter. Biotin-labeled complementary RNA (cRNA) was synthesized from purified double-stranded cDNA using a bioarray high-yield RNA transcript labeling kit (QIAGEN). Approximately 20 μg cRNA was fragmented to 50 to 300 bases and hybridized to Porcine Oligo Microarray chips (Agilent, Santa Clara, CA). A total of 6 chips were used here: 3 replicates for piglets containing 17% CP; SL, a standard ratio of Lys to CP diet containing 17% CP.

Item	Diets¹	LL	SL	
CP	19.90	16.94	16.93	19.50
DE	3.488	3.434	3.424	3.400 to 3.450
ME	3.338	3.303	3.294	3.280 to 3.400
NE	2.501	2.508	2.507	2.412
Ca	0.55	0.54	0.53	0.68 to 0.70
TP	0.59	0.60	0.60	0.55 to 0.60
Lysine	1.35	1.14	1.33	1.40
Methionine + Cysteine	0.78	0.66	0.80	0.79
Tyrosine	0.84	0.72	0.83	0.87
Tryptophan	0.22	0.19	0.21	0.23
SID M+C	0.68	0.57	0.69	0.68
SID Threonine	0.73	0.62	0.74	0.73
SID Tryptophan	0.21	0.18	0.20	0.20
SID Lysine	1.24	1.04	1.24	1.23
Lysine:CP	0.63	0.64	0.72	0.65

DE = digestible energy; **ME** = metabolizable energy; **NE** = net energy; **SID** = standard ileal digestible; **TP** = total phosphorus; **M+C** = methionine and cysteine; **CP** = crude protein.

¹ Control, a normal protein containing 20% CP; LL, a low ratio of Lys to CP diet containing 17% CP; SL, a standard ratio of Lys to CP diet containing 17% CP.

Table 3: Nutritional composition of piglet diets used in Exp. 2 (%).

2.2. Blood biochemistry

Serum concentrations of albumin (ALB), total protein (TP), triacylglyceride (TG), glucose (GLU) and urea N (BUN) were quantified using a CK4 automatic biochemical analyzer (Beckman Coulter, Inc.) and commercial kits (Leadman Biochemistry Technology Company, Beijing, China), according to the manufacturers' instructions.

Blood hormone concentrations. Serum samples from all the piglets in each group were collected and analyzed to determine concentrations of growth hormone (GH), insulin (INS), insulin-like growth factor (IGF-1), glucagon, cholecystokinin (CCK), leptin and ghrelin using a hormone ELISA kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

Jejunum morphology analysis. The fixed jejunum samples were embedded using a paraffin wax. Jejunum segments (5 μm in thickness) were stained with hematoxylin and eosin (H&E). Villus height (VH) and crypt depth (CD) of each jejunal segment were measured at 40 × magnification using an image processing and analysis system (Version 1, Leica Imaging Systems Ltd., Cambridge, UK). At least 10 well-oriented intact villi and their associated crypts were examined per piglet. The mean VH and CD of each section were calculated and the VH:CD ratio was determined for each piglet (Tan et al., 2009).

2.3. Activities of mucosal digestive enzymes in small intestine

Trypsinogen and chymotrypsinogen in mucous of jejenum were activated as previously described (Hedemann et al., 2006). N-Benzoyl-DL-arginine-4-nitroanilide hydrochloride and N-succinyl-Ala-Ala-Pro-Phep-nitroanilide were the substrates used to determine trypsin and chymotrypsin, respectively. One unit of trypsin or chymotrypsin activity was defined as the hydrolysis of 1 μmol of substrate per minute. Amylase activity was determined using cornstarch as the substrate, and one activity unit was defined as the amount of amylase that caused formation of reducing power equivalent to 1 mg of glucose in 1 h at room temperature (Somogyi, 1960). Lipase activity was assayed using olive oil as the substrate by the method previously described by Tietz and Fiereck (1966). One unit of lipase activity was defined as the volume (in milliliters) of 0.05 mol/L NaOH required to neutralize the fatty acid liberated during 2 h of incubation at 37 °C. A hormone ELISA kit (R&D Systems) was used to measure dipeptidyl peptidase 4 (DPP4). Hormone-sensitive lipase (HSL) activity was determined using [14C]-
cholesteryl oleate (PerkinElmer) as a substrate, according to the procedures previously described by Fredrikson et al. (1980).

2.4. Statistical analysis

Results were statistically analyzed by one-way ANOVA using SPSS version 19.0. Duncan’s multiple range test was used to compare differences among the groups. The differences were declared significant at P < 0.05 and a trend at 0.05 < P < 0.1 in all analyses.

3. Results

3.1. Experiment 1

3.1.1. Growth performance

None of the piglets experienced diarrhea throughout the experimental period. The ADG (P = 0.003) and final BW (P = 0.039) increased with increasing dietary CP levels, while ADFI (P = 0.089) showed an increasing trend. However, only the ADG and final BW differed significantly (P < 0.05) between piglets (11 to 30 kg BW) in the CP17 and CP20 treatments (Table 4). Dietary CP did not affect F:G ratio and final BW.

3.1.2. Microarray analysis of jejunum

To better understand the mechanism of the effect of dietary protein content on intestinal development of the piglets, the jejunum mucosal samples of Exp.1 were examined by microarrays and SAS analysis with thresholds for low probability values (FDR) set at P < 0.05 and log-fold change > 1. Principal component analysis revealed differences among piglets fed diets with different levels of protein. The expression of 52 gene sets in piglets fed the CP17 diet differed significantly from that in piglets fed the CP20 diet (Fig. 1A, P < 0.05, fold change >2 or <0.5); 12 gene sets were up-regulated, and 40 gene sets were down-regulated (Table 5). The heatmap plot (Fig. 1B) shows that most of these genes were down-regulated in piglets fed the 17% CP diet compared with those fed the control diet (20% CP).

3.1.3. Functional annotation

Among the genes that were reported to be differentially expressed between diets with high or low CP content. Gene ontology (GO) terms are widely used for global interpretation of the functions of genes revealed by differential microarray analysis. According to GO, genes that were differentially expressed between piglets fed CP17 and CP20 diets participate in several biological functions that play crucial roles in regulating: 1) the respiratory chain (NADH dehydrogenase [ND] 4, ND3, cytochrome b [CYTB]); 2) oxidoreductase activity (ND4, ND3, dual oxidase [DUOX] 2); 3) immune response (colony-stimulating factor [CSF] 1, CSF2, colony-stimulating factor [CCL] 2, flcino 2 [FCN2], CCL28, swine

Table 4

Item	Diets	SEM	P-value	
	CP17	CP20		
Initial BW, kg	9.36	9.48	0.142	0.972
ADG, g	446.6	505.4	18.5	0.003
ADFI, g	766.8	837.6	27.6	0.089
F:G ratio	1.71	1.65	0.0290	0.793
Final BW, kg	29.64	32.23	0.799	0.039

BW = body weight; ADG = average daily gain; ADFI = average daily feed intake; F:G ratio = feed to gain ratio.

2.2. Experiment 2

2.2.1. Growth performance

As shown in Table 7, diets with different Lys:CP ratios changed final BW (P = 0.015), ADG (P = 0.20), and F:G ratios (P = 0.002) in pigs. Piglets fed the LL diet had lower final BW (P = 0.036) and ADG (P = 0.011), and higher F:G ratios (P = 0.010) than piglets fed the control and SL diets. The final BW, ADG, ADFI, and F:G ratios of piglets fed the SL diet were not significantly different from those of piglets fed the control diet.

2.2.2. Jejunum morphology analysis

The LL diet decreased jejunum VH and VH:CD ratio in relation to the control diet (P < 0.05), whereas the SL diet had no significant effect on these indices (Table 8).

2.2.3. Blood biochemistry

Piglets fed the SL diet had significantly lower concentrations of BUN and GLU compared to the pigs fed control diet (P < 0.05; Table 9). There were no differences in concentrations of ALB, TG, and TP among piglets in the 3 treatment groups.

2.2.4. Blood hormone concentrations

Serum GH and IGF-1 concentrations were affected in the same trend by the diets, i.e., SL concentrations > control concentrations > LL concentrations (Table 10). However, the trend in GH affected by diets was significant (P = 0.018), and that shown in IGF-1 was not significant (P = 0.071). No significant effects were observed for insulin among treatment groups.

2.2.5. Activities of small intestinal mucosal digestive enzymes

Piglets fed LL and SL diets had significantly lower trypsin and chymotrypsin activities (Table 11, P < 0.05). Lipase activity tended to be affected by the treatments, although this effect was not significant (P = 0.0599). There were no differences in the activities of amylase, DPP4, and HSL in the jejunum mucosa of weaned piglets fed the 3 different diets.

4. Discussion

Reducing dietary protein is an effective way to decrease N emissions in the swine industry. However, a reduction in dietary protein level results in a concomitant decrease in the intake of AA and N (Portejezie et al., 2003). A previous investigation in our laboratory showed that a reduction of dietary CP by 6% limited growth performance (unpublished data). Moreover, a low-protein diet supplemented with deficient AA reduced the excretion of N into the environment without affecting weight gain in pigs with the BW of 60 to 90 kg (unpublished data). Weaned piglets are sensitive to AA diet contents and requiring more CP intake. Thus, based on the net energy system of weaned piglets, the diets used in the present study were formulated using fishmeal, soybean meal, and corn to adjust protein and energy levels and eliminate differences in dietary energy and flavor.

Strategies to alleviate the detrimental effects of reduced dietary protein on intestinal integrity are of great significance for the health of pigs. In this study, only 52 genes observed in the jejunum showed differences between groups supplemented with 20% or 17% CP. Expression of 40 genes was reduced in the small intestine of piglets in response to reduced dietary protein. These genes encode proteins that play crucial roles in regulating: 1) the respiratory chain (NADH dehydrogenase [ND] 4, ND3, cytochrome b [CYTB]); 2) oxidoreductase activity (ND4, ND3, dual oxidase [DUOX] 2); 3) immune response (colony-stimulating factor [CSF] 1, CSF2, colony-stimulating factor [CCL] 2, flcino 2 [FCN2], CCL28, swine
leukocyte antigen [SLA-6]); 4) electron transport chain (ND4, ND3, CYTB); and 5) sugar binding (regenerating gene family 4 [REG4], FCN2, regenerating islet-derived gene γ [REG3G]).

The Agricultural Research Council (ARC, 1981) concluded that pigs fed diets including 7 g Lys per 100 g CP achieved the best growth performance. According to Wang and Fuller (1989), the optimal Lys:CP ratio was 6.5, which was lower than that recommended by ARC. However, the ratio of other AA to CP recommended by Wang and Fuller (1989) was higher than that recommended by the ARC. Henry et al. (1992) indicated that the ideal Lys:CP ratio should be approximately 6.5% to 6.8%. To reduce N emissions in the swine industry, dietary AA, especially Lys, Met, Thr, and Trp, have to be efficiently balanced in diets. However, it was previously unclear what ratios of limited AA are required to optimize CP proportions in the diet of weaned piglets. Piglets fed the SL diet (i.e. the standard Lys to CP ratio) achieved the best growth performance, and had the highest weight gain and lowest F:G ratio, whereas the diet with the reduced Lys:CP ratio (the LL diet), resulted in the highest ADFI. This may be due to an insufficient content of essential AA in this diet, resulting in a higher food intake to meet nutritional demand. The imbalanced AA in the diet with the reduced Lys:CP ratio also led to an increase in the F:G ratio, and to a

Fig. 1. Visualization of differentially expressed genes (DEG). (A) total number of DEG, including those up- and down-regulated in the piglets in the CP17 compared to the CP20 group. (B) Heatmap of normalized expression level of the 900 DEG for each sample, represented as z-scores. CP20 – pigs fed the regular diet containing 20% crude protein; CP17 – pigs fed a diet containing 17% crude protein. Dendrograms represent relationships between samples (columns) and genes (rows) based on complete linkage clustering.
Table 5
Microarray analysis of jejunum in piglets fed diets with different proportions of crude protein.

Item	Regulation Gene symbol	Genbank accession	Gene name	P-value1
1 up	HTR1D	NM_214158	5-hydroxytryptamine (serotonin) receptor 1D, G protein-coupled	0.0015
2 up	BMP3	NM_001206388	bone morphogenetic protein 3	0.0423
3 up	HM3X			0.0454
4 up	IHT3	NM_001204395	interferon-induced protein with tetract panicpetide repeats 3	0.0475
5 up	MMP11	XM_001295455	matrix metalloproteinase 11 (stromelysin 3)	0.0485
6 up	SLA-6	NM_001133704	MHC class I antigen 6	0.0281
7 up	OBFC1	NM_001243685	oligonucleotide/oligosaccharide -binding domain containing 1	0.0425
8 up	PGLYRFM	NM_001244284	peptidoglycan recognition protein 4	0.0392
9 up	LOCC10154160	AK235490	phosphosine aminotransferase	0.0437
10 up	LOCC10154160	AK235490	phosphosine aminotransferase	0.0499
11 up	RUNXT11	AK396951	runt-related transcription factor 1; translocated to 1 (cyclin D-related)	0.0230
12 up	SEM46D	XM_00121524	sema domain, transmembrane domain (TM), and ctysplasmatic domain (semaphorin) 6D	0.0498

1 Parametric P-value of the univariate test.

Table 6
Relevant gene ontology identified from the annotation analysis.1

Category	Item	P-value	Molecules
Respiratory chain		0.009	ND4, ND3, CYTB
Oxidoreductase activity		0.009	ND4, ND3, DUOX2
Immune response		0.017	CSF2, CCL2, FCN2, CCL28, SLA-6
Electron transport chain		0.025	ND4, ND3, CYTB
Sugar binding		0.050	REG4, FCN2, REG3G

ND = NADH dehydrogenase; CYTB = cytochrome b; DUOX2 = dual oxidase 2; CSF2 = colony-stimulating factor 2; CCL2 = chemokines chemokine ligand 2; FCN2 = -collin 2; SLA-6 = -swine leukocyte antigen 6; REG4 = -regenerating gene family 4; REG3G = -regenerating islet-derived gene 3.

1 The biological interpretation of expressional data was performed using GeneSpring (12.5, Agilent). The genes included in the analysis were shown by microarray.

Table 7
Effects of diets on the growth performance of pigs.

Item	Diets1	SEM	P-value		
	Control	LL	SL		
Initial BW, kg	9.60	9.42	9.53	0.64	0.893
Final BW, kg	31.83a	29.42b	32.02a	1.86	0.015
ADG, g	635.25a	571.45b	642.38a	51.56	0.020
F/G ratio	1.0695	1.0866	1.0550	78.3	0.802
F:G ratio	1.69b	1.80b	1.64b	0.12	0.002

SEM = standard error of the mean.

1 Different letters within a row indicate significant differences at P < 0.05.
2 Control, a normal protein containing 20% CP; LL, a low ratio of Lys to CP diet containing 6% CP; number of observation is 8.
Table 8
Effects of diets on jejunum morphology.

Item	Diets 1	SEM	P-value		
	Control	LL	SL		
Villus height (VH), μm	813.6a	703.4ab	793.1abc	33.8	0.050
Crypt depth (CD), μm	291.3a	281.3c	287.1b	2.9	0.831
VH:CD ratio	2.78a	2.51b	2.77a	0.09	0.043

SEM = standard error of the mean.
A b Different letters within a row indicate significant differences at P < 0.05.
A Control, a normal protein containing 20% CP; LL, a low ratio of Lys to CP diet containing 17% CP; SL, a standard ratio of Lys to CP diet containing 17% CP; number of observation is 8.

Table 9
Effects of diets on parameters of blood serum.

Item	Diets 1	SEM	P-value		
	Control	LL	SL		
ALB, g/L	34.57	34.17	37.16	0.937	0.384
BUN, mmol/L	8.03a	7.40ab	7.14b	0.264	0.096
GLU, mmol/L	5.50a	5.72	4.88	0.025	0.628
TP, g/L	48.86	49.25	44.74	1.443	0.209

SEM = standard error of the mean; ALB = albumin; BUN = blood urea nitrogen; GLU = glucose; TG = triglyceride; TP = Total phosphorus.
A b Different letters within a row indicate significant differences at P < 0.05.
A Control, a normal protein containing 20% CP; LL, a low ratio of Lys to CP diet containing 17% CP; SL, a standard ratio of Lys to CP diet containing 17% CP; number of observation is 8.

Table 10
Effects of diets on concentrations of serum hormone.

Item	Diets 1	SEM	P-value		
	Control	LL	SL		
GH, ng/ml	1.25a	1.05a	1.41b	0.104	0.018
Insulin, mIU/L	7.42	7.46	7.59	0.051	0.943
IGF-1, U/mL	8.22ab	7.37a	8.66b	0.379	0.071
Glucagon, pg/ml	132.3	138.3	136.3	3.521	0.972
CCK, ng/L	144.7a	101.4ab	136.2b	23.60	0.029
Leptin, ng/ml	13.25a	9.04b	13.19a	2.031	0.034
Ghrelin, pg/mL	237.7	263.3	257.6	17.81	0.079

SEM = standard error of the mean; GH = growth hormone; IGF-1 = insulin-like growth factors-1; CCK = cholecystokinin.
A b Different letters within a row indicate significant differences at P < 0.05.
A Control, a normal protein containing 20% CP; LL, a low ratio of Lys to CP diet containing 17% CP; SL, a standard ratio of Lys to CP diet containing 17% CP; number of observation is 8.

Table 11
Effects of diets on digestive enzyme activities in the jejunum mucosa (U/mg protein).

Item	Diets 1	SEM	P-value		
	Control	LL	SL		
Trypsin	139.8a	104.5b	103.5b	11.949	0.0077
Chymotrypsin	0.753a	0.495ab	0.337b	0.121	0.0025
Lipase	94.886	85.77	108.414	5.562	0.0599
Amylase	0.894a	0.581	0.706	0.091	0.5563
DPP4	1.561	1.507	1.55	0.031	0.808
HSL	0.415	0.558	0.507	0.028	0.288

SEM = standard error of the mean; DPP4 = dipeptidyl peptidase 4; HSL = hormone-sensitive lipase.
A b Different letters within a row indicate significant differences at P < 0.05.
A Control, a normal protein containing 20% CP; LL, a low ratio of Lys to CP diet containing 17% CP; SL, a standard ratio of Lys to CP diet containing 17% CP; number of observation is 8.

In general, reducing the CP content in diets decreases intestinal VH in piglets (Pluske et al., 1996; Guay et al., 2006) due to AA deficiency. In the current study, a 3% reduction in dietary CP using a standard Lys:CP ratio (the SL diet) did not change VH and CD in piglets, and did not affect intestinal morphology, as long as dietary Lys was sufficient. Ben et al. (2014) found that a protein-restricted diet (17.32% CP) did not affect VH because sufficient essential AA were provided in the diets fed to weaning piglets. Further studies are still required to determine the relationship between dietary essential AA and the development of intestinal villi.

Urea N is the final product of protein metabolism in animals. A reduced supply of dietary CP balanced by AA can significantly decrease the concentration of urea N and increase the AA utilization rate during protein synthesis in the body (Heo et al., 2008; Lopez et al., 1994; Shriver, 2003). Thus, urea N was used to estimate the balance of dietary AA (Kerr and Easter, 1995). In the present study, a decreased BUN concentration in piglets fed the SL feed indicated that the Lys:CP ratio (7.23%) used in this diet was optimal for protein synthesis in weaned piglets, and the lower N to urea conversion indicated that the protein utilization improved. On the other hand, the LL diet did not supply a sufficient amount of dietary Lys, leading to an imbalanced AA intake, which resulted in increasing BUN concentrations in the serum. These results corroborate the importance of dietary AA balance in the improvement of protein utilization and N emission.

Concentrations of insulin and IGF-1 were not significantly affected by LL or SL diets, indicating that the effects of dietary Lys:CP ratio on the secretion of these serum hormones were very small, but the inhibitory effects of dietary Lys:CP ratio on the secretion of digestive enzymes were not mediated by hormones. Lipase and DPP4 activities were positively correlated with insulin concentration. Increasing blood glucose stimulates the expression of lipase upstream of the stimulatory factor in the liver, and hepatic lipase transcription (Botma et al., 2001), and GH could increase lipase activity in vitro (Oscarsson et al., 1999). Although the HSL enzyme catalyzes intracellular triacylglycerol to release non-esterified fatty acids (Krakty, 2014; Morak et al., 2012), in the present study, changes in Lys:CP ratio were found to affect GH secretion without affecting insulin concentration and lipase activity. Thus, appropriate reductions in diet protein and Lys supply are likely to have no effect on lipid digestion ability.

Similarly, amylase activity was not significantly different between the treatment groups. The pancreas is able to adapt secretion of digestive enzymes to changes in dietary nutrients, especially in starch. Piglets fed diets containing 31% starch was found to show lower amylase activity (approximately 26.9%) than piglets fed diets containing 17% starch. Increasing blood glucose stimulates the expression of amylase. Increasing blood glucose stimulates the expression of amylase in pigs.
containing 51% starch (Mourot et al., 1995). In addition, amylase activity in pigs fed a high-starch diet (80.8%) was 2.3 times as high as that in pigs fed a low-starch diet (21.8%) (Corring and Chavvialle, 1987). Pancreatic amylase activity was found to be positively related to blood insulin concentration (Ahrén et al., 1990). In our experiment, neither the amylase activity in jejunal mucosa nor serum insulin concentration were affected, indicating a consistent relationship between enzyme activity and insulin secretion.

Most protein is hydrolyzed to peptides and free AA by trypsin and chymotrypsin in the intestine. The secretion of these enzymes is influenced by the intake of protein and AA composition (Debray et al., 2003). A previous study showed that the activity of intestinal protease in piglets fed a 18% CP did not significantly differ from that of piglets fed a 20% CP diet (Hou et al., 1999). In the present study, both trypsin and chymotrypsin activities were reduced by low CP diets, but the activities of these proteases did not differ between piglets fed LL and SL diets. This indicates that the Lys:CP ratio has little impact on the secretion of trypsin and chymotrypsin, and that the secretion of both proteases depends on the protein content of the diet, not on the ratio of Lys to CP. Therefore, dietary protein level was positively correlated with the activities of these proteases.

5. Conclusions

Overall, the present study indicates that low CP diets with a reduced Lys:CP ratio promoted feed intake in weaned piglets, but decreased the N utilization and feed conversion. On the other hand, a reduced CP diet with a standard Lys:CP ratio improved gastrointestinal development. The results of the present study corroborate that a 17% CP diet supplemented with the standard Lys:CP ratio (7.23%) can reduce dietary N excretion without negative effects in weaned piglets, and could, therefore, be used to reduce N pollution associated with pig husbandry. The conversion efficiency of essential AA in a low CP diet could be studied further based on the results of the experiments performed here.

Conflict of interest

The authors declare that they have no conflict of interests.

Acknowledgements

This study was jointly supported by the China Basic Research Program (#2013CB127301); National Natural Science Foundation of China (31472106, 31501964), Natural Science Foundation of Hunan Province of China (2018J3579), Ministry of Science and Technology of the People’s Republic of China (2013BAD21B04), Key Programs of frontier scientific research of the Chinese Academy of Sciences (QYZDY-SSW-SMC008), Youth Innovation Team Project of ISA, CAS (2017QNCXTD_TBE), China Agriculture Research System (CARS-35) and the Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences.

References

Ahrén B, Pierzynowski SG, Weström B, Karlsson B. Pancreatinact inhibits insulin secretion and exocrine pancreatic secretion in the pig. Diabetes Res 1990;14:93, ARC. In: Agric C, editor. The nutrient requirements of pigs. Slough, UK: Bureaux; 1981.

Bathurst N. The amino-acids of sheep and cow urine. J Agric Sci 1952;42:476–8.

Botna G, Verhoeven AJ, Jansen H. Hepatic lipase promoter activity is reduced by the C-480T and G-216A substitutions present in the common LIPC gene variant, and is increased by Upstream Stimulatory Factor. Atherosclerosis 2001;154:625–32.

Corring T, Chavvialle JA. Diet composition and the plasma levels of some peptides regulating pancreatic secretion in the pig. Reprod Nutr Dev 1987;27:967–77.

Debray L, Le Hli, Gideranne T, Fortun-Lamothe L. Digestive tract development in rabbit according to the dietary energetic source: correlation between whole tract digestion, pancreatic and intestinal enzymatic activities. Comp Biochem Physiol Part A Mol Integr Physiol 2003;135:443.

Easter RA, Baker DH. Lysine and protein levels in corn-soybean meal diets for growing-finishing swine. J Anim Sci 1980;50:467–71.

Fredrickson G, Strålfors P, Nordin CF, Hjalmarson P. Hormone-sensitive lipase from adipose tissue of rat. Methods Enzymol 1980;71:636–46.

Fuller MF, Boyne AW. The effects of environmental temperature on the growth and metabolism of pigs given different amounts of food. 1. Nitrogen metabolism, growth and body composition. Br J Nutr 1971;28:373–84.

Hedemann MS, Jensen BR, Poulsen HD. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. J Anim Sci 2006;84:3316–20.

Henry Y, Colleaux Y, Seve B. Effects of dietary level of lysine and of level and source of protein on feed intake, growth performance, and plasma amino acid pattern in the finishing pig. J Anim Sci 1992;70:188–95.

Heo J-M, Kim J-C, Hansen CF, Mullan BP, Hampson DJ, Pluske JR. Effects of low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch Anim Nutr 2003;57:331–43.

Hou Y, Yu M, Zhou Y, Ji C, Liang D. A study of the optimum dietary level of protein and lysine for early-weaned piglets. Chinese J Anim Nutr 1999;11:38–44.

Kerr BJ, Easter RA. Effect of feeding reduced protein, amino acid-supplemented diets on nitrogen and energy balance in grower pigs. J Anim Sci 1995;73:3000.

Kratky D. Pleiotropic regulation of mitochondrial function by adipose triglyceride lipase-mediated lipolysis. Biochimie 2014;96:106.

Lopez J, Goodband R, Allen G, Jesse G, Nelsen J, Tokach M, et al. The effects of diets formulated on an ideal protein basis on growth performance, carcass characteristics, and thermal balance of finishing gilts housed in a hot, diurnal environment. J Anim Sci 1994;72:367–79.

Manzanal E, Nofrarias M, Anguita M, Castillo M, Perez J, Martin-O"ruce S, et al. Effects of butyrate, alamylvacin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J Anim Sci 2006;84:2743–51.

Montagne L, Pluske JR, Hampson DJ, A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals [Review]. Anim Feed Sci Technol 2003;108:95–117.

Morak S, Schimidting H, Riesenberg G, Rechberger G, Kollosler M, Haemmerle G, et al. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Mol Cell Proteomics 2012;11:1777–89.

Mourot J, Camara M, Février C. Effects of dietary fats of vegetable and animal origin on lipid synthesis in pigs. C R Acad Sci Ser III Sci Vie 1995;318:963.

NRC. Nutrient requirements of swine. 12th ed. Washington, DC: Natl Acad. Press; 2012.

Oscarsson J, Ottosson M, Edén S. Effects of growth hormone on lipoprotein lipase and hepatic lipase. J Endocrinol Invest 1999;12:2–9.

Pluske JR, Thompson M, Wood S, Bird PH, Williams H, Hartmann PE. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows whole milk after weaning. Br J Nutr 1999;81:609–22.

Portejoie S, Martinez J, Guzman R, Escude F, Coche CM. Effect of covering pig slurry stores on the ammonia emission processes. Biosorv Technol 2003;87:199–207.

Ren M, Liu C, Zeng X, Yue L, Mao X, Qiao S, et al. Amino acids modulates the intestinal proteome associated with immune and stress response in weaning pig. Mol Biol Rep 2014;41:3631–20.

Rist V, Weiss E, Eklund M, Mosenthin R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal 2013;7:1067–78.

Schade C, Pimentel D. Population crash: prospects for famine in the twenty-first century. Environ Dev Sustain 2010;12:245–62.

Shriver JA. Effects of adding fiber sources to low crude protein, amino acid supplemented diets on nitrogen excretion, performance, and carcass traits of finishing pigs. J Anim Sci 2003;81:492–502.

Somogyi M. Modifications of two methods for the assay of amylase. Clin Chim Acta 1960;6:23–35.

Świąciak E, Buraczewska L, Tuzino A, Taciak M. The effects of supplementing a low-protein threonine-deficient diet with different sources of non-essential amino acids on nitrogen retention and gut structure in young pigs. Arch Anim Nutr 2010;64:22.

Tang B, Ying L, Liu Z, Xi X, Hu K, Xiong H, Huang R, Tang W, Shinzato I, Smith SB. Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino acids 2009;37:169–75.

Tietz NW, Fireck EA. A specific method for serum lipase* determination. Clin Chim Acta 1965;13:352–8.

Van Keulen J, Young B. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies 1, 2. J Anim Sci 1977;44:282–7.
Wang J, Chen L, Li P, Li X, Zhou H, Wang F, Li D, Yin Y, Wu G. Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 2008;138:1025–32.

Wang TC, Fuller MF. The optimum dietary amino acid pattern for growing pigs: 1. Experiments by amino acid deletion. Br J Nutr 1989;62:77–89.

Wu X, Zhang Y, Liu Z, Li T, Yin Y. Effects of oral supplementation with glutamate or combination of glutamate and N-carbamylglutamate on intestinal mucosa morphology and epithelium cell proliferation in weaning piglets. J Anim Sci 2012;90:337–9.