Bright sink-type localized states in exciton-polariton condensates

Michal Kulczykowski, Nataliya Bobrovskaya, and Michał Matuszewski
Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

The family of one-dimensional localized solutions to dissipative nonlinear equations includes a variety of objects such as sources, sinks, shocks (kinks), and pulses. These states are in general accompanied by nontrivial density currents, which are not necessarily related to the movement of the object itself. We investigate the existence and physical properties of sink-type solutions in non-resonantly pumped exciton-polariton condensates modeled by an open-dissipative Gross-Pitaevskii equation. While sinks possess density profiles similar to bright solitons, they are qualitatively different objects as they exist in the case of repulsive interactions and represent a heteroclinic solution. We show that sinks can be created in realistic systems with appropriately designed pumping profiles. We also conclude that in two-dimensional configurations, due to the proliferation of vortices, sinks do not appear.

PACS numbers: 71.36.+c, 03.75.Lm, 42.65.Tg, 78.67.-n

I. INTRODUCTION

Strong coupling of semiconductor excitons to microcavity photons results in the appearance of spectral resonances associated with mixed quantum quasiparticles called exciton-polaritons. These particles exhibit extremely light effective masses, few orders of magnitude smaller than the mass of electron, which allows for the observation of physical phenomena related to Bose-Einstein condensation already at room temperatures. At the same time, exciton-mediated strong interparticle interactions and picosecond photonic lifetime result in polariton properties that are of great interest from the point of view of fundamental interest and potential applications.

In recent years, great attention has been devoted to the study of nonlinear self-localized states of superfluid polaritons, such as dark and bright solitons and nonlinear wavepackets which preserve their shape thanks to the balance between dispersion and nonlinearity. They have been applied to long-distance optical fiber communication as well as description of numerous physical systems. Polariton solitons have been demonstrated both in the cases of resonant and non-resonant pumping. To date, no bright states were shown to exist in the nonresonant case with homogeneous pumping.

Polariton superfluids are inherently nonequilibrium systems in which the balance between pumping and loss is an essential factor. In many of the previous studies, this aspect was treated as an unwanted complication of the theory. Standard models, such as the conservative Gross-Pitaevskii equation, were frequently used to describe solitons. However, it is well known that self-localized solutions in dissipative systems have qualitatively different properties than their conservative counterparts. In the case of repulsive interactions, only one type of one-dimensional solution exists in the conservative theory – dark or bright solitons, depending on the sign of the effective mass. In the dissipative case, a family of qualitatively different localized states exists, including sources, sinks, shocks and pulses. In general, they exhibit nontrivial internal density currents and may undergo complicated, sometimes even chaotic dynamics.

In this paper, we demonstrate the existence and stability of bright self-localized solutions of the open-dissipative polariton model. These solutions are classified as sinks and, the name reflecting that their structure corresponds to terminating lines of incoming density currents, with a local increase of loss. While sink-type solutions possess density profiles similar to bright solitons embedded in a finite background, they are qualitatively different objects. In contrast to bright solitons, they exist in the case of repulsive interactions and represent a heteroclinic solution connecting two counterpropagating plane waves. We demonstrate the dynamics of sink formation and their stability in a realistic model with appropriately chosen pumping profile. We investigate systematically properties of sinks and provide an approximate analytical formula for their shape. In the two-dimensional case, we show that sinks cannot be created due to the spontaneous proliferation of vortices, which destroy the supercurrents necessary for the existence of a symmetric sink solution.

II. MODEL

We consider a polariton condensate in a one-dimensional (1D) setting, e.g. trapped in a microwire. We model the system with the generalized open-dissipative Gross-Pitaevskii equation for the condensate wavefunction \(\psi(x,t) \) coupled to the rate equation for the polariton reservoir density, \(n_R(x,t) \).

\[
\begin{align*}
\frac{i\hbar}{\partial t} \psi &= -\frac{\hbar^2 D}{2m^*} \frac{\partial^2 \psi}{\partial x^2} + g_{\text{C}} |\psi|^2 \psi + g_{\text{R}} n_R \psi \\
&\quad + \frac{\hbar}{2} \left(R^{1D} n_R - \gamma_C \right) \psi, \\
\frac{\partial n_R}{\partial t} &= P(x) - (\gamma_R + R^{1D} |\psi|^2) n_R
\end{align*}
\]
where \(P(x) \) is the exciton creation rate determined by the pumping profile, \(m^* \) is the effective mass of lower polaritons, \(\gamma_C \) and \(\gamma_R \) are the polariton and exciton loss rates, and \((R_{1D}^1, g_{1D}^1) = (R_{2D}^1, g_{2D}^1)/\sqrt{2\pi d^2} \) are the rates of stimulated scattering into the condensate and the interaction coefficients, rescaled in the one-dimensional case. Here, we assumed a Gaussian transverse profile of \(|\psi|^2\) and \(n_R \) of width \(d \). In the case of a one-dimensional microwire\(^{26} \), the profile width \(d \) is of the order of the microwire thickness. We also introduced \(D = 1 - iA \) with \(A \) being a small constant accounting for the energy relaxation in the condensate\(^{20-29} \).

To obtain a system of dimensionless evolution equations, it is possible to rescale time, space, wavefunction amplitude and material coefficients according to \(t = \tau \tau, x = \xi \xi, \psi = (\xi \beta)^{-1/2} \psi, n_R = (\xi \beta)^{-1} n_R R_{1D} = (\xi \beta/\tau)R, (R_{1D}^1, g_{1D}^1) = (\xi \beta/\tau)(\tilde{\gamma}_C, \tilde{\gamma}_R), (\gamma_C, \gamma_R) = \tau^{-1}(\tilde{\gamma}_C, \tilde{\gamma}_R), P(x) = (1/\xi \beta \tau)P(x), \)\(\xi = \sqrt{\hbar \tau/2m^*}, \) while \(\tau \) and \(\beta \) are arbitrary scaling parameters. We rewrite the above equation in the dimensionless form (we omit the tildes for convenience)

\[
\begin{align*}
\frac{i}{\partial t} \psi & = \left[-D \frac{\partial^2}{\partial x^2} + g_C |\psi|^2 + g_R n_R + i \left(R_{1D} - \gamma_C \right) \right] \psi, \\
\frac{\partial n_R}{\partial t} & = P(x) - (\gamma_R + R|\psi|^2) n_R.
\end{align*}
\]

In the above transformations the norms of both fields \(N_\psi = \int |\psi|^2 dx \) and \(N_R = \int n_R dx \) are multiplied by the factor of \(\beta \).

III. SINK-TYPE SOLUTIONS

A. Description of sinks solutions

The structure of sink solutions can be understood most easily as a result of interaction of two counterpropagating nonlinear waves. In the linear case two waves emitted by distant sources give rise to a standard interference pattern, as shown in Fig. 1(a). In the case of a dissipative model with nonlinear gain or loss coefficients, the interference pattern can be replaced by a localized density peak, sometimes exhibiting oscillating features, as depicted in Fig. 1(b). Sink is a heteroclinic solution connecting two plane waves emitted by the sources at each side. The two waves collide at the sink position, where the incoming density currents are dissipated\(^{22} \).

The sink density pattern is a result of the ability of the dissipative medium to smoothen out density “dips” and “peaks”, which are present in the interference pattern. When one of the incoming waves reaches the area occupied by the other, the resulting interference leads to decay of waves. Let us consider one of the simplest dissipative nonlinear wave equations, the complex Ginzburg-Landau equation\(^{21,22} \) (CGLE)

\[
\frac{\partial \psi}{\partial t} = \left[iD \frac{\partial^2}{\partial x^2} + iC |\psi|^2 - iB \right] \psi.
\]

This equation can be obtained from the system of equations \((2)\) in the limit of fast \(n_R \) dynamics which are “slaved” by the slower \(\psi \) dynamics, and in the linearized approximation \(|\psi|^2 \approx n_0 \equiv \text{Im} B/\text{Im} C = (P - P_{th})/\gamma_C \) \((n_0 \) is the dynamical equilibrium density when the loss and gain are balanced). Here, we assumed a homogeneous pumping \(P(x) = \text{const} > P_{th} \) and introduced the threshold power \(P_{th} = \gamma_R \gamma_C / R \). The CGLE parameters are \(B = i\gamma_C / 2 - (g_R + iR/2)(1 + Rn_0/\gamma_A)P/\gamma_A \) and \(C = (g_R + iR/2)PR/\gamma_A^2 - 9C \) with \(\gamma_A = Rn_0 + \gamma_R \). It is clear that existence and stability of the homogeneous steady state with \(n_0 > 0 \) (which in general can be also a plane wave solution) requires \(\text{Im} B > 0 \) and \(\text{Im} C > 0 \). Under these conditions, perturbations of the steady state with density \(n_0 \) exponentially decay, which is the reason for the above mentioned smoothening. Any areas of density higher than \(n_0 \) correspond to net loss, and those with density lower than \(n_0 \) to net gain in Eq. \((3)\). Nevertheless, nontrivial (non-plane wave) stationary solutions can still exist\(^{15,21,22} \).

One can formulate another necessary condition for stability of sinks based on the modulational (or Benjamin-Feir) stability of the incoming plane waves\(^{21} \). In the case of CGLE with real \(D > 0 \), this is assured by the condition \(\text{Re} C < 0 \), which in terms of Eq. \((2)\) translates into \(P/P_{th} > (\gamma_C g_R/\gamma_R \gamma_C) \), as shown recently in\(^{27} \). We note that this is a necessary condition for stability, and an actual domain of stability of plane waves may be smaller\(^{27} \).

It may seem natural to treat sinks as dissipative analogues of bright solitons embedded in a finite background. Bright solitons exist in the conservative limit of the CGLE \((3)\) with \(\text{Im} (C, B, D) = 0 \), which is the celebrated
Nonlinear Schrödinger equation (or Gross-Pitaevskii equation in the context of degenerate bosons[11])}. Density profiles of sinks are similar to profiles of bright solitons. These states are, however, qualitatively different from each other. Sinks require non-zero incoming currents for their existence[21] and exist in the case of a stable background, \(\text{Re} (CD) < 0\), while bright solitons exist only in the self-focusing (modulationally unstable) case with \(CD > 0\).

B. Sinks in the exciton-polariton model

To create sink solutions in the model described by (2), one has to provide sources of counterpropagating waves as described above. We consider the following pumping profile created by a pumping beam with spatially varying intensity

\[
P(x) = \begin{cases}
P_0 & \text{for } |x| < x_1, \\ P_{\text{max}} & \text{for } x_1 < |x| < x_2, \\ 0 & \text{for } |x| > x_2,
\end{cases}
\]

as shown in Fig. 2. While the profile exhibits sharp jumps of \(P(x)\) in space, similar results could be obtained equally well with smooth pumping profiles.

The sink is created in the central area with pumping intensity \(P = P_0\). The side areas with \(P = P_{\text{max}}\) are the sources of polariton waves. This flow is obtained thanks to the repulsive polariton-polariton and reservoir-polariton interactions \(g_C, g_R > 0\), which create an effective potential hill in the areas with high pumping density \(P = P_{\text{max}}\). In result of interaction of the two nonlinear waves propagating towards the center, depending on the parameters of the system, interference or localized sink patterns can appear, as shown in Fig. 2(a) and 2(b), respectively. We obtained also different, more complicated nonlinear patterns for other values of parameters, especially in the case when the two sources were relatively close to each other. These patterns did not have a localized character such as the one shown in Fig. 2(b). We note that a small value of relaxation coefficient \(A = 0.1\) was in some cases necessary to attenuate high-momentum modes in simulations and obtain physically relevant solutions.

Figure 3 shows the dynamics of the sink creation process. Initially, we assumed zero density of excitons and a small white noise in the polariton field, but we checked that the final stationary state is practically independent of the form of the initial condition. First, in the area between the sources condensate is created with approximately zero momentum. The wave fronts generated by the sources gradually move towards the center, where they collide creating the stable sink structure. The waves are “stopped” by the sink due to the nonlinear character

![FIG. 2](image1.png)

FIG. 2: Patterns created by polariton waves emitted by high-intensity sources on the two sides with pumping profiles as in (4) (dashed lines). Panel (a) presents a stationary interference pattern obtained by integration of (2) in time for parameters \(A = 0.01, R = 0.96, g_C = 0.63, g_R = 1.91, \gamma_C = 1, \gamma_R = 0.6\) at low pumping powers. (b) With a stronger pumping \(P_0\) a nonlinear sink-type solution is created. Corresponding parameters in physical units are: time unit \(\tau = \gamma C^{-1} = 3\text{ ps}\), length unit \(\xi = 1.9 \mu\text{m}\), \(g = 3.9 \mu\text{eV}\mu\text{m}^2\), \(R = 9 \times 10^{-3} \mu\text{m}^2\text{ ps}^{-1}\) for \(d = 2 \mu\text{m}\), \(m^* = 5 \times 10^{-5} m_e\), and \(\beta = 0.003\).

![FIG. 3](image2.png)

FIG. 3: Evolution towards a stationary sink state from a small initial noise. Parameters are as in Fig. 2(b).
of the gain and dissipation. It is important to note that the sinks are in general not completely stationary, as in Fig. 3, but may be put in motion by the imbalance of momenta of the waves emitted by the two sources. In this case the sink moves with a constant velocity proportional to the mismatch between the two wavevectors. If the balance is restored after some period of time, the sink stops at the new position.

IV. Domain of Existence and Properties of Sinks

In this section we describe a systematic investigation of stationary sink solutions of the exciton-polariton model with homogeneous pumping, \(P(x) = \text{const.} \) We substitute \(\psi(x,t) = \phi(x)e^{-i\mu t} \) and \(n_R(x,t) = n_R(x) \) the equations (2) to obtain a single ordinary differential equation for the profile of the stationary state

\[
\frac{d^2\phi}{dx^2} = -\mu\phi + gC|\phi|^2\phi + gR\frac{P}{\gamma_R + R|\phi|^2}\phi + \frac{i}{2}\gamma_R \phi \tag{5}
\]

We complement the above equation with boundary conditions. At \(x = 0 \), which we chose to be the symmetry point without loss of generality, the first derivative is equal to zero, \(d\phi/dx = 0 \). At \(x = +\infty \) the solution tends to the plane wave with the norm equal to \(|\phi|^2 = n_0 \) (in practice we impose this condition on the last point of the computational mesh).

We solve the boundary problem with the shooting method using the Newton minimization algorithm. We keep \(d\phi/dx|_{x=0} = 0 \) and change the value of \(\phi(0) \) while solving (5) with the Runge-Kutta algorithm on a certain interval \(0 < x < x_{\text{max}} \). The Newton method is then used to find a solution that satisfies boundary condition \(|\phi|^2 = n_0 \) at \(x = x_{\text{max}} \) within a given tolerance. We then extend the interval boundary \(x_{\text{max}} \) slightly and repeat our procedure. This method proved to be an effective way to obtain a localized state on a large \(x \) domain.

Figure 4 presents a phase diagram showing the domain of existence of sink-type solutions in the parameter space of \(P \) and \(\mu \) with values of other parameters fixed. The shaded area, corresponding to parameters for which the algorithm converged to a sink solution, is limited from below by the natural minimum given by the chemical potential of the steady state

\[
\mu_{\text{min}} = gCn_0^2 + \frac{P gR}{(\gamma_R + R|\phi|^2 n_0)}. \tag{6}
\]

The range of \(\mu \) for which the sink solution exists turned out to be the largest for moderate pumping intensities \(P \approx 1.5P_{\text{th}} \). Although the range of \(\mu \) appears to be small, it corresponds in fact to a broad range of wavenumbers of incoming waves, from approximately zero to around 6, as shown in Fig. 5(a) with a dash-dotted line.

FIG. 4: Phase diagram depicting parameters for which a sink solution was obtained with (5) (gray area). Parameters are \(R = 0.76, g_C = 0.38, g_R = 0.76, \gamma_C = 0.75, \gamma_R = 1 \).

FIG. 5: Panels show the values of \(|\psi_{\text{min}}(x)|^2, |\psi_{\text{max}}(x)|^2, x_1 \) and the wave vector \(k \) (see Fig. 1 for descriptions). On panel (a) we keep a constant value of \(P = 1.45 \) but vary the chemical potential \(\mu \). The value of \(x_{\text{min}} \) quickly decreases indicating that at higher \(\mu \) the sink is more densely undulating. The dependence of \(|\psi_{\text{min}}(x)|^2 \) and \(|\psi_{\text{max}}(x)|^2 \) shows that the sink “height” is increased at higher \(\mu \). In panel (b) we change the value of \(P \) while \(\mu \) is chosen slightly higher than the lower threshold \(\mu_{\text{min}} \) for which a sink solution occurs. The dependence of \(|\psi_{\text{min}}(x)|^2 \) and \(|\psi_{\text{max}}(x)|^2 \) on \(P \) indicates that sink height is approximately constant while the background density \(n_0 \) grows with \(P \).
Imaginary analysis leads to the steady state density,

\[\psi(x, t) = a(x)e^{i(\varphi(x) - \mu t)}, \]

\[n_R(x, t) = n_R(x), \]

where \(a(x) \) is the amplitude, \(\varphi(x) \) is the phase and \(\mu \) is the chemical potential of the condensate. Neglecting the spatial derivatives of \(a(x) \), Eq. (2) can be rewritten as

\[i\mu = \left[ga^2(x) + g_Rn_R(x) + \left(\frac{d}{dx}\varphi(x) \right)^2 \right] + \frac{1}{2} \left(Rn_R(x) - \gamma_C \right) - \frac{d^2}{dx^2}\varphi(x) \]

(8)

The real part of Eq. (8), which can be interpreted as the continuity equation, gives

\[n_R(x) = \frac{2}{\gamma_C} \frac{d^2}{dx^2}\varphi(x) + \frac{\gamma_C}{R} \]

(9)

On the other hand, solving the equation for reservoir density (2) in the steady state we get

\[n_R(x) = \frac{P}{\gamma_C^2 x^2 + \gamma_R}. \]

(10)

We expand this formula into Taylor series of degree two around \(a^2(x) = n_0 = (\gamma_C/R) - (\gamma_R/R) \)

\[n_R(x) = -\frac{\gamma_C}{P} \left(\frac{a^2(x)R\gamma_C - 2PR + \gamma_C\gamma_R}{PR^2} \right) \]

(11)

Comparing Eqs. (9) and (11) we obtain

\[a^2(x) = -\frac{2PR^2}{\gamma_C^2} \frac{\left(\frac{d^2}{dx^2}\varphi(x) \right) - PR\gamma_C + \gamma_C\gamma_R}{R^2} \]

(12)

From the imaginary part of Eq. (8), using (9) and (12) we get

\[\mu = -\frac{g}{\gamma_C^2} \left[2PR \left(\frac{d^2}{dx^2}\varphi(x) \right) - PR\gamma_C + \gamma_C^2\gamma_R \right] + \frac{gR}{\gamma_C} \left[\frac{2}{R} \left(\frac{d^2}{dx^2}\varphi(x) \right) + \gamma_C \right] + \frac{1}{2} \left(\frac{d}{dx}\varphi(x) \right)^2. \]

(13)

With the definition \(\xi(x) = \frac{d}{dx}\varphi(x) \) we obtain the first order differential equation

\[2 \left(\frac{g_R}{R} - \frac{gP}{\gamma_C} \right) \frac{d}{dx}\xi(x) + \xi^2(x) + \frac{gR\gamma_C}{R} = 0 \]

(14)

(15)

With the solution

\[\xi(x) = \frac{\sqrt{\delta}}{R\gamma_C} \tan \left(\frac{1}{\sqrt{\delta}} \frac{2}{\alpha} \right), \]

(16)

V. ANALYTICAL SOLUTION

If the “height” of the sink is relatively small compared to the steady state density, \(|\psi(x, t)| - n_0| \ll n_0 \), and the amplitude \(|\psi(x, t)| \) is slowly varying in space, an approximate analytical solution can be found. We rewrite the steady-state solution in a homogeneously pumped condensate applying the Madelung transformation for \(\psi(x, t) \)

\[\psi(x, t) = a(x)e^{i(\varphi(x) - \mu t)}, \]

\[n_R(x, t) = n_R(x), \]

where \(a(x) \) is the amplitude, \(\varphi(x) \) is the phase and \(\mu \) is the chemical potential of the condensate. Neglecting the spatial derivatives of \(a(x) \), Eq. (2) can be rewritten as

\[i\mu = \left[ga^2(x) + g_Rn_R(x) + \left(\frac{d}{dx}\varphi(x) \right)^2 \right] + \frac{1}{2} \left(Rn_R(x) - \gamma_C \right) - \frac{d^2}{dx^2}\varphi(x) \]

(8)

The real part of Eq. (8), which can be interpreted as the continuity equation, gives

\[n_R(x) = \frac{2}{\gamma_C^2} \frac{d^2}{dx^2}\varphi(x) + \frac{\gamma_C}{R} \]

(9)

On the other hand, solving the equation for reservoir density (2) in the steady state we get

\[n_R(x) = \frac{P}{\gamma_C^2 x^2 + \gamma_R}. \]

(10)

We expand this formula into Taylor series of degree two around \(a^2(x) = n_0 = (\gamma_C/R) - (\gamma_R/R) \)

\[n_R(x) = -\frac{\gamma_C}{P} \left(\frac{a^2(x)R\gamma_C - 2PR + \gamma_C\gamma_R}{PR^2} \right) \]

(11)

Comparing Eqs. (9) and (11) we obtain

\[a^2(x) = -\frac{2PR^2}{\gamma_C^2} \frac{\left(\frac{d^2}{dx^2}\varphi(x) \right) - PR\gamma_C + \gamma_C\gamma_R}{R^2} \]

(12)

From the imaginary part of Eq. (8), using (9) and (12) we get

\[\mu = -\frac{g}{\gamma_C^2} \left[2PR \left(\frac{d^2}{dx^2}\varphi(x) \right) - PR\gamma_C + \gamma_C^2\gamma_R \right] + \frac{gR}{\gamma_C} \left[\frac{2}{R} \left(\frac{d^2}{dx^2}\varphi(x) \right) + \gamma_C \right] + \frac{1}{2} \left(\frac{d}{dx}\varphi(x) \right)^2. \]

(13)

With the definition \(\xi(x) = \frac{d}{dx}\varphi(x) \) we obtain the first order differential equation

\[2 \left(\frac{g_R}{R} - \frac{gP}{\gamma_C} \right) \frac{d}{dx}\xi(x) + \xi^2(x) + \frac{gR\gamma_C}{R} = 0 \]

(14)

(15)

With the solution

\[\xi(x) = \frac{\sqrt{\delta}}{R\gamma_C} \tan \left(\frac{1}{\sqrt{\delta}} \frac{2}{\alpha} \right), \]

(16)

V. ANALYTICAL SOLUTION

If the “height” of the sink is relatively small compared to the steady state density, \(|\psi(x, t)| - n_0| \ll n_0 \), and the amplitude \(|\psi(x, t)| \) is slowly varying in space, an approximate analytical solution can be found. We rewrite the steady-state solution in a homogeneously pumped condensate applying the Madelung transformation for \(\psi(x, t) \)
where $\delta = R(PRg\gamma_C - R\mu\gamma_C - gR\gamma_C\gamma_R + gR\gamma_C^2)$ and $\alpha = gPR - gR\gamma_C^2$. Calculating the amplitude with (12) we finally obtain

$$a^2(x) = -\frac{1}{R\gamma_C^2} \left[\frac{\delta P}{\alpha} \left\{ 1 + \tan^2 \left(\frac{1}{2} \frac{\gamma_C \sqrt{\delta}}{\alpha} \right) \right\} + PR\gamma_C + \gamma_C^2 \gamma_R \right]$$

(17)

Comparison between the analytical and numerical solution obtained with the shooting method is shown in Fig. 6. In general, very good agreement is obtained for small k, when the sink profile is flat and broad, with no oscillating tails. The tails obviously cannot be reproduced by the approximate solution (17), which is visible in the (b) panel of Fig. 6.

VI. TWO-DIMENSIONAL CASE

Additionally, we performed a series of simulations to investigate whether sink creation is possible in the two-dimensional (2D) version of the exciton-polariton model, described by the equations

$$i\frac{\partial \psi}{\partial t} = \left[-D \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + g_C|\psi|^2 + g_R n_R + \frac{i}{2} \left(R n_R - \gamma_C \right) \right] \psi,$$

$$\frac{\partial n_R}{\partial t} = P(x, y) - (\gamma_R + R|\psi|^2) n_R,$$

(18)

(19)

where $g_{R,C}$, $\gamma_{R,C}$, R, and $P(x, y)$ are dimensionless parameters obtained from physical ones in an analogous way as in the 1D case. The pumping profile was chosen analogously as in the one-dimensional case, i.e. we assumed a constant $P = P_0$ pumping intensity on a circle of radius r_1, surrounded by a ring of $P = P_{\text{max}}$ with inner and outer radius r_1 and r_2, respectively.

In Figure 7 we show one of typical states obtained with an evolution from a small initial noise. In general, after a certain time of evolution, smaller or larger number of vortices are spontaneously created, and often a stationary state could never be reached even with a very long integration time. Vortices may appear spontaneously during condensation in a process analogous to the Kibble-Zurek mechanism as well as due to the emergence of supercurrents in an inhomogeneous system. Despite using various combinations of system parameters, as well as asymmetric ring pumping profiles, we were not able to obtain any stable structures that would resemble one-dimensional sinks of the previous sections. Therefore we conclude that it is unlikely to observe sinks in a simple two-dimensional configuration.

VII. CONCLUSIONS

We demonstrated the existence and stability of a family of bright sink solutions of the open-dissipative polaron model. In contrast to bright solitons of conservative models, sinks exist in the case of repulsive interactions and are created in a collision of counter-propagating waves. We studied the dynamics of sink formation in a realistic one-dimensional polariton model with appropriately chosen pumping profile. We studied the domain of existence of sinks in parameter space and their physical properties. An approximate analytical formula for the sink shape, valid in the case where sinks do not possess oscillating tails, was determined. In the two-dimensional case, sinks could not be created due to the appearance of vortices.
Acknowledgments

We acknowledge support from the National Science Center grant DEC-2011/01/D/ST3/00482.
32 O. Stiller, S. Popp, and L. Kramer, Physica D 84, 424 (1995).
33 T. W. B. Kibble, J. Phys. A 9, 1387 (1976); W. H. Żurek, Nature (London) 317, 505 (1985).
34 K. G. Lagoudakis, F. Manni, B. Pietka, M. Wouters, T. C. H. Liew, V. Savona, A. V. Kavokin, R. André, and B. Deveaud-Plédran, Phys. Rev. Lett. 106, 115301 (2011).
35 M. Matuszewski and E. Witkowska, Phys. Rev. B. 89, 155318 (2014).
36 J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401 (2008).