Lifestyle Intervention and/or Statins for the Reduction of C-reactive Protein in Type 2 Diabetes: From the Look AHEAD Study

L. Maria Belalcazar1, Steven M. Haffner2, Wei Lang3, Ron C. Hoogeveen4, Julia Rushing5, Dawn C. Schwenke6, Russell P. Tracy6, F. Xavier Pi-Sunyer7, Andrea M. Kriska8, Christie M. Ballantyne4,9 and the Look AHEAD (Action for Health in Diabetes) Research Group

Objective: Cardiovascular risk remains high despite statin use. Overweight/obese diabetic persons usually have normal/low LDL-cholesterol but high C-reactive protein (CRP) levels. We aimed to examine the effects of intensive lifestyle intervention for weight loss (ILI) on CRP levels in overweight/obese diabetic individuals by statin use.

Design and Methods: Look AHEAD was a randomized trial in overweight/obese type 2 diabetic individuals testing whether ILI would reduce cardiovascular mortality, when compared to usual care. CRP changes in 1,431 participants with biomarker levels, who remained on or off statin treatment for 1 year, were evaluated.

Results: The reduction in CRP levels with ILI at 1 year in men and women on statins was 44.9 and 42.3%, respectively, compared to 13.7 and 21.0% for those on statins and usual care (P < 0.0001). At 1 year, median CRP levels were: 1.8 mg L⁻¹ in participants randomized to ILI on statin therapy; 2.6 mg L⁻¹ for those on statins randomized to usual care and 2.9 mg L⁻¹ for participants not on statins but randomized to ILI. Weight loss was associated with 1-year CRP reduction (P < 0.0001) in statin and nonstatin users.

Conclusions: Our findings suggest that in overweight/obese diabetic persons, ILI and statin therapy may have substantial additive anti-inflammatory benefits.

Obesity (2013) 21, 944-950. doi:10.1002/oby.20431

Introduction

Cardiovascular disease (CVD) is the major cause of morbidity and mortality in persons with type 2 diabetes. Statin therapy is standard of care in the majority of diabetic adults for the primary and secondary prevention of cardiovascular events (CVE) (1,2). However, the residual risk of a CVE remains high even after the implementation of statin therapy in those with and without diabetes (3). Atherosclerosis progresses in about a third of individuals despite use of the most aggressive statin regimens (4). Treatment strategies aimed at decreasing CVD risk with the use of a second pharmacological agent, in addition to statin therapy, are used in clinical practice and have been the subject of multiple intervention trials (5-8), with potential benefits in certain individuals (7). On the other hand, the addition of intensive lifestyle intervention to a statin regimen remains understudied in clinical care (9) and its benefits unexplored in clinical trials.

C-reactive protein (CRP) is a marker of chronic subclinical inflammation and is associated with atherosclerosis progression (10). It has been identified as a useful indicator of cardiovascular risk (11-13).
CRP levels may be particularly useful in identifying individuals at risk for CVE in whom LDL-cholesterol (LDL-C) levels are not elevated (14-17). Persons with type 2 diabetes have characteristic low/average LDL-C levels but CRP levels that are significantly increased (18-20). Lifestyle intervention for weight loss reduces CRP levels in obese persons with and without type 2 diabetes (21-23), but its effects in addition to statin therapy have not been established. In this study we hypothesized that in individuals with type 2 diabetes and obesity, a combination regimen of intensive lifestyle intervention for weight loss (ILI) and statin would result in lower levels of CRP than either ILI or statin alone and that weight loss would remain a significant determinant of CRP change, regardless of statin use.

Methods and Procedures

Study design

We evaluated a subset of 1,431 individuals, generally corresponding to the first half of Look AHEAD (Action for Health in Diabetes) participants from 15 of 16 clinic sites, who had CRP and fitness data at baseline and 1 year, and who remained on or off statin therapy for the duration of the study. (See study sample chart, online Appendix 1). Look AHEAD was a randomized clinical trial evaluating whether a behavioral lifestyle intervention for weight loss would reduce CVE in overweight/obese subjects with type 2 diabetes.

A description of Look AHEAD, its design and subject characteristics, has been published (22,23). Briefly, subjects were randomized to ILI, aiming for a 7% weight loss from baseline, or to a usual care (diabetes support and education [DSE]) arm, which served as control. ILI participants attended group and individual sessions (three-group sessions and one-individual encounter per month during the first 6 months of the study, followed by two-group sessions and one-individual appointment per month thereafter) in support of behavioral change to increase physical activity to 175 weekly minutes of moderate-intensity exercise and reduce caloric and saturated fat intake. The activity program relied on at home exercise, which for most participants consisted of brisk walking. Energy intake goal for persons <114 kg was 1,200-1,500 kcal day⁻¹ and 1,500-1,800 kcal day⁻¹ for those ≥114 kg. DSE participants received three-group health information sessions during the year. Participants in both groups continued clinical care with their primary providers. The institutional review boards of the participating centers approved Look AHEAD and this ancillary study.

Laboratory, anthropometric and fitness determinations

CRP was measured, using a high-sensitivity latex particle-enhanced immunoturbidimetric assay by Denka Seiken. Intra- and interassay coefficients of variation were 3.5 and 5.6%, respectively, as previously reported (20,24). Fitness was measured in Look AHEAD using a graded exercise treadmill test following standard criteria from the American College of Sports Medicine. At baseline, the test was terminated when individuals reached ≥85% of age-predicted maximal heart rate (if on no beta blocker therapy) or when the rating of perceived exertion (RPE) reached 18, if on a beta-blocker. At 1 year, the treadmill test was performed at the same walking speed used at baseline, and terminated when participants achieved 80% of their maximal heart rate or an RPE of 16, as appropriate. To estimate change in fitness, the change in METS (mL kg⁻¹ min⁻¹/3.5 L kg⁻¹ min⁻¹) achieved at submaximal effort (80% of maximal heart rate or an RPE of 16) from baseline to year 1 was determined (25). Procedures for obtaining anthropometric measures, hemoglobin A1c (HbA1c), glucose and lipids in Look AHEAD have been previously described (26).

Statistical analysis

Descriptive statistics, including median and inter-quartile range (IQR), were determined for CRP levels at baseline and for their change from baseline to 1 year. Differences between the ILI and DSE arms in change variables over the first year were evaluated using either the two-sample t test or the Wilcoxon rank sum test. The effects of changes in weight, waist and fitness by statin use on CRP change were evaluated in the overall group using multivariable regression analyses, with change in CRP (1 year minus baseline levels, log-transformed) as outcome. The models included a dichotomous indicator for treatment effect (ILI vs. DSE) and adjusted for baseline CRP levels, age, gender, race/ethnicity, diabetes duration, smoking, history of CVD, use of thiazolidinediones, insulin, hormone replacement therapy (HRT) in women and changes in HbA1c, HDL-cholesterol (HDL-C) and triglycerides. The effects of gender, race/ethnicity and of HRT in women on the associations under study were evaluated with the use of interaction terms (ILI × gender, ILI × Race/ethnicity and ILI × HRT). Type I error rate was fixed at 0.05 for all analyses. Analyses were performed using SAS version 9.2 (SAS Institute, Cary, NC).

Results

Baseline characteristics

Participants were middle-aged, obese and sedentary (see Table 1). CRP levels (median [IQR]) were elevated in the overall group at baseline, with significantly higher levels in nonstatin users, when compared to those on statin therapy (5.1 [2.4 to 10] and 3.1 [1.4, 7.0] mg L⁻¹, respectively). The differences in CRP levels between men and women, previously reported (20), remained despite statin use, with women having higher levels than men (2.7 [1.5 to 5.4] and 1.9 [1.0 to 4.3] mg L⁻¹, in female and male statin users, respectively). As expected, subjects on statin therapy represented a higher-risk group than those on no statin therapy, with more participants on statins having a positive history of CVD and a longer duration of diabetes than those not on statins. Participants on statin therapy were of slightly older age and included more males than those not treated with statins. There were also more Caucasians on statin therapy.

Changes in statin and nonstatin users after 1 year of intervention

ILI participants had improvements in adiposity, fitness, HDL-C, triglycerides, triglyceride/HDL-C ratio and in glucose control at 1 year, regardless of statin use, when compared to DSE (Table 2; P ≤ 0.0004 for ILI versus DSE; P ≥ 0.09 for difference in statin effects for ILI and DSE participants). A significant reduction in LDL-C levels with ILI was observed in nonstatin participants (P = 0.004), whereas changes in LDL-C did not significantly differ by treatment arm in statin users. Relative and absolute reductions in CRP levels

www.obesityjournal.org
with ILI were greater than those achieved with DSE, in men and women (Table 3; all \(P < 0.0001 \)), regardless of statin use. Relative reductions in CRP levels with ILI, of \(-30\%\) from baseline, were observed in statin and nonstatin users and in men and women (Table 3). The absolute reduction of CRP levels with ILI did not differ by statin use in men (Table 3, \(P = 0.89 \) for statin effect for ILI). However, in women, there were greater absolute reductions of CRP levels with ILI in those not on statin therapy (median [IQR]) of \(-2.1 [-5.0, -0.4] \text{ mg dL}^{-1}\), when compared to those on statins \((-1.3 [-3.0, 0.0] \text{ mg dL}^{-1}; \text{statin effect for ILI} P < 0.03)\).
CRP levels at 1-year post-randomization

Overall, only participants on statin therapy in the ILI arm reached a 1-year median CRP level under 2.0 mg L\(^{-1}\) (Figure 1). When evaluating by gender, achievement of this goal was observed mainly in men, who started at lower baseline levels than did women, reaching a 1-year median level of 1.2 mg L\(^{-1}\) on combined ILI and statin therapy. In women, the 1-year median level of CRP with combination of ILI and statin was 2.6 mg L\(^{-1}\), lower than the 1-year medians of 3.7 and 6.7 mg L\(^{-1}\), observed in the DSE group on statin and on no statin therapy, respectively (Table 4).

Association of weight loss, and changes in waist and fitness with CRP change by statin use

Multivariable regression analyses showed that, after adjusting for multiple variables including fitness change, both change in weight and change in waist were significantly associated with CRP in subjects not on statin therapy (Table 5, \(P < 0.0001\)), with weight change and waist change contributing similarly to the variance in CRP change. In participants on statins, weight change (\(P < 0.0001\)), but not change in waist circumference (\(P = 0.11\)), remained significantly associated with change in CRP. Like change in waist, change in fitness was a significant determinant of CRP change only in participants not on statin therapy (Table 5, \(P < 0.047\)). No significant interaction effects were observed for gender or race/ethnicity in any of the models tested (Table 5, Models A and B, table legend). The interaction for ILI \(\times\) HRT in women was also tested and found to be nonsignificant (Table 5, Models A: \(P = 0.83\) in statin users and 0.96 in participants not on statin therapy; Models B: \(P = 0.97\) in statin users and 0.71 in participants not on statin therapy).

Discussion

In this large sample of obese diabetic participants, ILI led to further reduction of CRP levels when added to statin therapy and usual care (DSE). The combination of statin and ILI, in the overall group, achieved a median CRP level at 1-year under 2.0 mg L\(^{-1}\); whereas statin therapy or ILI alone did not. Relative changes in CRP with ILI were similar in men and women, regardless of statin use, but absolute changes in CRP were greater in women. Women started with higher baseline levels than did men and men achieved lower absolute levels at 1 year. Weight loss was significantly associated with a reduction in CRP levels in both statin and nonstatin users, independently of demographics and medical history, baseline CRP levels and changes in other metabolic variables, including fitness.

CRP may be considered in the assessment of CVD risk and in the decision algorithm of statin initiation in individuals in the intermediate risk category (12). The indication of statin therapy in persons at increased risk is not usually questioned. However, in these individuals, CRP may provide useful information on the effectiveness of the intervention to prevent CVD events and delay atherosclerosis progression. Reductions in CRP levels with statins in persons with established coronary disease have been associated with a decrease in progression, and even with regression, of atherosclerotic disease (10). Patients with acute coronary syndrome who lowered their CRP levels with statin therapy below a median of 2.0 mg L\(^{-1}\), had a decreased incidence of recurrent cardiovascular events when compared to those in whom the CRP level remained above 2.0 mg L\(^{-1}\) (11). Almost a fifth of participants in these trials had diabetes, suggesting that the benefits of CRP reduction could apply to them.

In this study, median CRP at baseline in participants treated with statins was 3.1 mg L\(^{-1}\), with 25% of male and 50% of female statin users having CRP levels well above 4.0 mg L\(^{-1}\). Those on no statins at baseline started at much higher levels, with a median of 2.7 mg L\(^{-1}\) in men and of 7.2 mg L\(^{-1}\) in women. At 1 year, ILI led to similar weight loss and improvements in fitness and glucose control in statin and nonstatin users. The relative reduction in CRP, ~40%, was also similar in statin and nonstatin users, and in men and women. In the overall sample, the combination of statin and ILI brought the 1-year median CRP level to 1.8 mg L\(^{-1}\), whereas statin therapy and ILI alone achieved levels of 2.6 and 2.9 mg L\(^{-1}\), respectively. A quarter of men and of women on ILI and statin combination were able to decrease median CRP levels to \(\leq 1.0\) mg L\(^{-1}\).

Despite the use of the most aggressive statin regimens available, atherosclerosis progresses in about a third of individuals (4) and the relative risk of a cardiovascular event is reduced only approximately by a third (3,9). This residual risk points to the need of identifying alternative treatment approaches, targeting mechanisms independent of HMG-CoA reductase inhibition. Clinical efforts have focused on adding a second agent to a statin, aiming for further reduction of LDL-C or for an improvement in HDL-C or triglyceride levels (7,8).

TABLE 3 1-year changes in CRP levels by gender and statin use

	Participants on statin therapy		Participants not on statins	
	ILI (n = 317)	DSE (n = 285)	ILI (n = 443)	DSE (n = 386)
Sex	Relative \(\Delta\) (%)	\(P\)	Statin effect for ILI	Statin effect for DSE
Men	-44.9 (−63.0, −2.9)	<0.0001	0.29	0.09
Women	-42.3 (−63.9, 0.0)	<0.0001	0.72	0.11
Absolute \(\Delta\) (mg L\(^{-1}\))	-0.7 (−2.0, 0.0)	0.0003	0.89	0.25
Men	-1.3 (−3.0, 0.0)	0.03	0.03	0.35
Women	-0.7 (−3.0, 0.8)			

All data expressed as median (interquartile range). Abbreviations as in Tables 1 and 2. Data adjusted by age and race/ethnicity.
Modification of lifestyle behaviors to achieve moderate weight loss improves adipose tissue function and leads to a significant reduction in CRP levels (20,21,27). A decrease in CRP levels has been shown to occur in persons with type 2 diabetes in association, not only with reduced adiposity, but also with improvements in fitness, glucose and lipid control (20). The mechanisms through which lifestyle behavior change influence adipose tissue are multiple and affect tissue macrophage and lymphocyte recruitment, macrophage activation and the balance of pro and anti-inflammatory adipocytokine production (28-31). In this study we show that the association of weight loss with CRP change is present in obese individuals with diabetes, regardless of statin use and that increased fitness and waist reduction relate to CRP change, in individuals on no statin therapy.

We speculate that the greater reduction in CRP levels obtained when ILI and statin therapy are combined may be consequent to distinct and complementary effects of statins and ILI on CRP production. Although statins may have a predominant effect on hepatic production of CRP (32) and ILI a potentially greater impact on adipose-derived CRP in the setting of obesity (33,34), it is possible that statin use and ILI affect production at both sites (35-38). The fact that waist and fitness changes did not reach statistical significance in their association with CRP change in statin users does not exclude the possibility that greater changes in waist or in fitness, or similar changes in less obese individuals treated with statins, may be associated with a lowering of CRP levels. A differential effect of statins on visceral and subcutaneous adipose depots, could also contribute to the observed differences in the association of waist change and CRP change by statin use. Additional studies evaluating the effects of statins on adipose tissue function are needed.

This study is unique in that it uses a large randomized lifestyle intervention trial to address a question of clinical significance to a growing population of overweight/obese individuals with diabetes. Our results suggest that ILI and statin therapy may result in further

TABLE 4 CRP levels at 1-year in men and women by statin use
Participants on statin therapy
ILI
1-year CRP levels, mg L\(^{-1}\) (median [IQR])
Men
1.2 (0.6, 2.7)
Women
2.6 (1.0, 5.5)

Data expressed as median (interquartile range). Abbreviations as in Table 1.
improvement of subclinical inflammation, when compared to statin therapy or IIL alone. However, due to its design, certain limitations need to be addressed: Although statin use was clearly documented during the year of follow-up and was used to determine eligibility to this study, information on statin dose and/or type and on medication adherence was not available and could not be accounted for. This limitation is mitigated by the fact that Look AHEAD participants in both treatment arms (IIL and DSE) were under the care of their primary physician, with freedom to adjust statin doses, statin type and to support adherence. Furthermore, the significant changes in LDL-C from baseline to year-1 observed in statin users in the DSE arm, but not in IIL participants, suggest that statin therapy was adjusted more aggressively in statin users in the DSE arm than in the IIL arm, potentially making our observations on the added benefit of IIL on CRP change even more significant. In addition, due to sample size limitations in certain race/ethnic groups when stratifying by statin use, we are unable to confirm that the study’s results are applicable to non-Caucasian populations.

Our findings from Look AHEAD suggest that in overweight/obese diabetic persons, IIL and statin therapy may have substantial additive anti-inflammatory benefits and that weight loss is significantly associated with CRP lowering regardless of statin use. Analyses of cardiovascular outcome data from Look AHEAD by statin use will inform on the implications of our findings on incident events.

Acknowledgments

Members of the Look AHEAD Research Study Group are listed online in Appendix 2. The authors thank Charles E. Rhodes for technical support with the CRP assays.

© 2013 The Obesity Society

References

1. American Diabetes Association. Standards of medical care in diabetes—2011. Diabetes Care 2011;34:S11-S61.
2. Grundy SM, Cleeman JJ, Merz CN, et al. Implications of recent clinical trials for the national cholesterol education program adult treatment panel III guidelines. Circulation 2004;110:227-239.
3. Cholesterol Treatment Trialist’s (CTT) Collaboration, Baigent C, Blackwell L, et al. Efficacy and safety of more intense lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomized trials. Lancet 2010;376:1670-1681.
4. Nicholls SJ, Ballantyne CM, Barter PJ, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med 2011;365:2078-2087.
5. Rafter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357:2109-2122.
6. Taylor AJ, Vilines TC, Stanek EJ, et al. Extended-release niacin or ezetimibe and carotid intima-media thickness. N Engl J Med 2009;361:2113-2123.
7. ACCORD Study Group, Ginsberg HN, Elam MB, et al. Effects of combination lipid-lowering therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563-1574.
8. AIM-HIGH Investigators, Boden WE, Probstfield JL, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011;365:2255-2267.
9. Fruchart JC, Sacks F, Hermans MP, et al. The residual risk reduction initiative: a call to action to reduce residual vascular risk in patients with dyslipidemia. Am J Cardiol 2008;102:1K-34K.
10. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Statin therapy, LDL cholesterol, C-reactive protein, and coronary artery disease. N Engl J Med 2005;352:29-38.
11. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005;352:20-28.
12. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 2003;107:499-511.
13. Genest J, McPherson R, Frohlich J, et al. 2009 Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult—2009 recommendations. Can J Cardiol 2009;25:567-579.
14. Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347:1557-1565.
15. Folsom AR, Alecsic N, Catellier D, et al. C-reactive protein and incident coronary heart disease in the atherosclerosis risk in communities (ARIC) study. Am Heart J 2002;144:233-238.
16. Cushman M, Arnold AM, Patsy BM, et al. C-reactive protein and the 10-year incidence of coronary heart disease in older men and women: the cardiovascular health study. Circulation 2005;112:25-31.
17. Ridker PM, Danielson E, Fonseca FA, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008;359:2195-2207.
18. Ford ES. Body mass index, diabetes, and C-reactive protein among U.S. adults. Diabetes Care 1999;22:1971-1977.
19. Kahn SE, Zimmerman B, Haffner SM, et al. Obesity is a major determinant of the association of C-reactive protein levels and the metabolic syndrome in type 2 diabetes. Diabetes 2006;55:2357-2364.
20. Belalcazar LM, Reboussin DM, Haffner SM, et al. A one-year lifestyle intervention for weight loss in persons with type 2 diabetes reduces high C-reactive protein levels and identifies metabolic predictors of change, from the Look AHEAD (Action for Health in Diabetes) study. Diabetes Care 2010;33:2297-2303.
21. Haffner S, Temprosa M, Crandall J, et al. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes 2005;54:1566-1572.
22. Ryan DH, Espeland MA, Foster GD, et al. Look AHEAD (Action for Health in Diabetes): design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials 2003;24:610-628.

TABLE 5 Association of weight loss and fitness change with CRP change by statin use

	Participants on statin therapy		Participants not on statins								
	Δ in weight	Δ in fitness		B	SE	P value	R²	B	SE	P value	R²
Model A	0.025	-0.016	<0.0001	0.589	0.020	0.004	<0.0001	0.558	0.045	0.022	0.0471
Model B	0.006	-0.051	0.1107	0.572	0.015	0.003	<0.0001	0.558	-0.059	0.022	0.0067

<CRP log-transformed. All models adjusted for baseline CRP level, treatment arm (IIL vs. DSE), age, gender, race/ethnicity, clinic site, history of CVD, diabetes duration, current smoking; use of insulin, thiazolidinediones, hormone replacement in women; changes in HbA1c, HDL-cholesterol and triglycerides. Abbreviations as in Tables 1 and 2. For participants on statins and not on statins, respectively, the interaction effects of IIL* gender were P = 0.51and 0.58 for Model A, and P = 0.26 and 0.66 for Model B; for IIL* race/ethnicity: P = 0.41 and 0.51 for Model A, and P = 0.69 and 0.58 for Model B, in participants on and not on statins, respectively.
23. Look AHEAD Research Group, Wadden TA, West DS, et al. The look AHEAD study: a description of the lifestyle intervention and the evidence supporting it. *Obesity (Silver Spring)* 2006;14:737-752.

24. Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the atherosclerosis risk in communities (ARIC) study. *Circulation* 2004;109:837-842.

25. Jakicic JM, Jaramillo SA, Balasubramanyam A, et al. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the Look AHEAD study. *Int J Obes (Lond)* 2009;33:305-316.

26. Look AHEAD Research Group, Pi-Sunyer X, Blackburn G, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. *Diabetes Care* 2007;30:1374-1383.

27. Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. *JAMA* 2003;289:1799-1804.

28. Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. *Nat Med* 2011;17:179-188.

29. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. *J Clin Invest* 2003;112:1821-1830.

30. Wu H, Ghosh S, Perrard XD, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. *Circulation* 2007;115:1029-1038.

31. Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. *J Clin Invest* 2006;116:115-124.

32. Amin C, Burger F, Steffens S, et al. Statins reduce interleukin-6-induced C-reactive protein in human hepatocytes. New evidence for direct anti-inflammatory effects of statins. *ATVB* 2005;25:1231-1236.

33. Ouchi N, Kihara S, Funahashi T, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. *Circulation* 2003;107:671-674.

34. Anty R, Bekri S, Luciani N, et al. The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, type 2 diabetes, and NASH. *Am J Gastroenterol* 2006;101:1824-1833.

35. Takagi T, Matsuda M, Abe M, et al. Effect of pravastatin on the development of diabetes and adiponectin production. *Atherosclerosis* 2008;196:114-121.

36. Le Lay S, Krief S, Farnier C, et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. *J Biol Chem* 2001;276:16904-16910.

37. Horton JD, Shimomura I, Ikemoto S, et al. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. *J Biol Chem* 2003;278:36652-36660.

38. Lazo M, Solga SF, Horska A, et al. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes. *Diabetes Care* 2010;33:2156-2163.