Mini-Review

The Nexus of Endocrine Signaling and Cancer: How Steroid Hormones Influence Genomic Stability

Shinjini Ganguly,1 Divya Naik,1 Andrew Muskara,1 and Omar Y. Mian1,2

1Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195; and 2Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44195

ORCiD numbers: 0000-0003-1719-3622 (S. Ganguly); 0000-0002-8133-8120 (O. Y. Mian).

Abbreviations: ADT, androgen deprivation therapy; AR, androgen receptor; ATR, Rad3-related; CDK, cyclin dependent kinase; DDR, DNA damage response; DSB, double-stranded break; E2, estradiol; ERα, estrogen receptor alpha; IR, ionizing radiation; MDC1, Mediator of DNA Damage Checkpoint 1; MPG, 3-methyladenine DNA glycosylase; NHEJ, nonhomologous end-joining; PARP, poly(ADP-ribose) polymerase; PCa, prostate adenocarcinoma; PR, progesterone receptor; RT, radiotherapy; TOP2B, topoisomerase II beta.

Received: 20 August 2020; Editorial Decision: 22 September 2020; First Published Online: 1 December 2020; Corrected and Typeset: 1 December 2020.

Abstract

Endocrine-driven malignancies, including breast and prostate cancer, are among the most common human cancers. The relationship between sex steroid hormones (eg, androgen, estrogen, and progesterone), their cognate receptors, and genomic stability lie at the center of endocrine-driven cancer development, progression, and therapeutic resistance. A variety of direct and indirect mechanisms have been described that link steroid hormone signaling to the loss of genomic integrity that drives early carcinogenesis. These effects are often enriched within endocrine receptor cistromes, accounting for the high proportion of mutations and rearrangements in the region of hormone response elements. In other cases, the effects are generalized and rely on a complex array of genetic, epigenetic, and metabolic interactions. Both androgen and estrogen receptors directly modulate the DNA damage response by trans-activating DNA damage response genes and redirecting the cellular repair machinery in the wake of genotoxic stress. Here we review the key mechanistic underpinnings of the relationship between sex steroid hormone receptors and genomic stability. In addition, we summarize emerging research in this area and discuss important implications for cancer prevention and treatment.

Keywords: Endocrine cancer, steroid hormones, prostate cancer, breast cancer, androgen receptor, estrogen receptor, genomic stability

Steroid hormones, including corticosteroids and sex steroids, are essential for homeostatic control of vital systems including metabolism, immune function, stress response, fluid balance, and development. Perturbation of canonical hormone signaling leads to a broad array of disease states and can drive cancer-related phenotypes at the cellular
level, including proliferation, migration, invasion, and metastases (1, 2). In recent years it has become increasingly clear that steroid hormone signaling has both direct and indirect influence over the stability of the genome, and therefore on cancer initiation and progression. Steroid hormone signaling alters genomic stability via several mechanisms, including increased oxidative stress (3-8), induction of DNA double-stranded breaks (DSBs), enhancement of DNA-protein adduct formation (9), and initiation of gene rearrangement events (10-13). To counteract these effects, endocrine-directed therapies have emerged as chemopreventive and therapeutic agents for a variety of common cancers, notably breast and prostate cancer (1, 14). Increasingly, contemporary hormone receptor-targeted therapies are used in conjunction with genotoxic stresses (1, 2). In recent years it has become increasingly evident that ADT and RT (26, 27), as well as ADT and chemotheraphy, underscore the importance of understanding the complex relationship between hormone receptor activity and genomic stability (15-23). In this review, we explore the mechanistic underpinnings of the relationship between steroid hormone signaling, genomic stability, and the DNA damage response and discuss its therapeutic implications.

Androgen Receptor Signaling and Genomic Stability in Prostate Cancer

Androgens, estrogens, and progestins collectively make up the class of steroid hormones known as sex steroids. The cellular target of androgens (eg, testosterone and dihydrotestosterone) is the androgen receptor (AR), which binds intracellular androgens, dimerizes, translocates to the nucleus, and activates transcription of androgen response genes. The AR is well-established as a critical driver of prostate adenocarcinoma (PCa) and the AR pathway represents an essential therapeutic target in this disease. Androgen deprivation therapy (ADT) remains the first-line treatment for advanced PCa (24, 25) and the combination of ADT and radiotherapy (RT) is a standard for locally advanced high-risk PCa. Multiple randomized prospective trials have confirmed a substantial cooperative effect between ADT and RT (26, 27), as well as between ADT and chemotherapy, leading to a significant improvement in survival with combined treatments (28-33).

A principal mechanism driving this cooperativity was established in studies showing that AR directly transactivates DNA damage response (DDR) genes (34, 35), which in turn drive resistance to DNA-damaging therapies. It was observed that suppressing androgen signaling led to an increased accumulation of DNA damage in the wake of genotoxic stress. Conversely, supplementing androgen-depleted cells with a synthetic androgen upregulated the DDR, resulting in more efficient DNA repair and increased cancer cell survival following ionizing radiation (IR) (34). This observation was directly tied to AR’s binding in upstream cis-regulatory elements of DDR genes, including PRKDc, which encodes the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). PRKDc is a critical factor required for nonhomologous end-joining (NHEJ) repair and its expression is tightly correlated with sensitivity to IR (34). Follow-up work examining the gene expression profiles of human castrate-resistant prostate cancer models treated with the second-generation anti-androgen drug apalutamide (ARN-509) pinpointed a subset of 32 DDR genes containing functional AR binding sites, mainly in enhancer elements (35). These studies again confirmed that androgen deprivation impaired resolution of ionizing radiation-induced DNA DSBs and demonstrated that the repair was primarily attributable to diminished classical NHEJ (Fig. 1, left panel).

A teleologic explanation for the coordinate activity of AR and DNA repair machinery emerges from the observation that androgen signaling creates physiologic DNA DSBs, a requirement for efficient gene transcription. Intrinsic androgen signaling in prostate cells involves the co-recruitment of AR and topoisomerase II beta (TOP2B) to the promoter of proximal androgen response elements. TOP2B mediated DSBs are known to occur at an increased frequency in the regulatory regions of AR target genes. (13) In early neoplastic and preneoplastic prostate cells, androgen-induced TOP2B mediated DSBs are recombinogenic and lead to de novo production of characteristic rearrangements such as TMPRSS2-ERG fusions in a TOP2B-dependent manner. These androgen-induced TOP2B-dependent DSBs participate in a variety of common genomic recombination events that likely drive the progression of early prostate cancer.(13) Whole-genome sequencing has identified rearrangements belonging to the ETS protein family ETV1, ETV4, and ETV5 at a high frequency in PCa (38-41). ETS rearrangements, for example, TMPRSS2-ERG, occur in nearly half of prostate cancers, resulting in the activation ERG fusion oncogenes (12, 42). Interestingly, the TMPRSS2-ERG gene fusion product blocks XRCC4-mediated NHEJ repair and sensitizes prostate cancer cells to poly(ADP-ribose) polymerase (PARP) inhibition (43, 44). Cistrome partitioning of the genome reveal enrichment of noncoding somatic single nucleotide variants in prostate tumor cistromes of master transcription regulators, including AR. (45) Large-scale
whole-genome sequencing data confirm TF binding affects somatic mutation distribution in PCa (46). In particular, AR binding causes an enrichment in regional somatic alterations surrounding AR binding sites and the pattern of persistent regional mutations that result impaired repair of abasic sites in AR/transcription factor–bound DNA (47). A parallel phenomenon has been observed at ER binding sites in breast cancer, supporting the idea of a destabilizing class effect of nuclear hormone receptors.

Nuclear hormone receptor signaling also plays an indirect role in promoting genomic instability through dysregulation of the cell cycle. Prostate epithelial cells deprived of androgen exit the cell cycle and arrest in G0 (48-50). Expression of D-type cyclins (cyclins D1 and D3) is suppressed in ADT-responsive prostate cancer cells after steroid deprivation and contributes to cell cycle arrest (50, 51). Conversely, androgen stimulation induced mTOR-dependent translation of D-cyclins, resulting in activation of cdk4/6 (51). D-cyclin mRNA levels were unchanged by ADT in prostate cancer cells, which is distinct from what is observed in breast cancer cells (52, 53). Thus, AR regulates early G1 entry primarily through translational control of D-type cyclins. AR is also reported to directly bind to DNA replication factor Cdc 6 and regulate the S phase of the cell cycle (54, 55). By obscuring the G0/G1 and G1-S checkpoints, AR signaling augments vulnerability to intrinsic and extrinsic genotoxic stressors, further driving genomic instability. These intrinsic destabilizing forces combine with exogenous genotoxic stress, and metabolic dysregulation, such as activation-induced cytidine deaminase and LINE-1 repeat-encoded ORF2 endonuclease, to establish the complex array of genomic alterations that drive prostate cancers (10).

Estrogen/Progesterone Signaling and Genomic Stability in Breast Cancer

Estrogens and progesterone are sex steroids which, similarly to androgens, have been implicated in carcinogenesis (14, 56). Estrogen receptor alpha (ERα) plays an important role in a variety of cancers, notably breast, uterine, and
ovarian carcinoma. When bound to its ligand, estradiol (E2), it drives survival, proliferation, and influences genomic stability. Anti-estrogen therapy is an important component of treatment for ERα expressing breast cancer. Similarly, progesterone receptor (PR) is a ligand-activated hormone receptor that has 2 common isoforms (A and B). The isoforms can act as heterodimers or homodimers, which bind DNA at progesterone response elements to transactivate target genes (57). ER and PR have been implicated in both the maintenance and disruption of genomic integrity through several mechanisms.

One of the first links between ERα and DNA damage repair was discovered when an interaction between ERα and the DNA repair protein 3-methyladenine DNA glycosylase (MPG) was identified (58). Through in vitro pull-down assays, a direct interaction was demonstrated between ERα and MPG via the DNA and ligand-binding domains, respectively. ERα increased MPG acetylation and enhanced MPG-catalyzed removal of mismodeled hypoxanthine from DNA (58). The Mediator of DNA Damage Checkpoint 1 (MDC1), now recognized as part of the ERα co-activator complex, was initially found to interact with γH2AX, serving to recruit the MRN complex (MRE11/RAD50/NBS1) to sites of DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62). Cells lacking MDC1 are sensitive to IR, in part due to DNA DSBs and initiating both NHEJ and HR (59-62).

Similar to AR in prostate cancer, E2 exposure in Erα-expressing breast cancer cells results in increased γH2AX foci formation. These H2AX foci require transcriptionally competent ERα and the catalytic activity of TOP2B and occur at the promoters of the E2 inducible genes (eg, TFF1) (63). Several functionally comprehensive studies initially implicated transient ERα activation and TOP2B in mediating dsDNA break formation during breast cancer pathogenesis. It was shown that TOP2B-mediated DSBs result in activation of PARP-1 enzymatic function, in turn driving a nucleosome-specific histone H1-HMGB exchange (64). This work first illustrated a recurrent theme in nuclear hormone receptor–driven genomic instability; specifically, a mechanistic link between TOP2B-dependent dsDNA breaks and components of the DNA damage and repair machinery during hormone-regulated gene transcription. E2/ERα also plays an important extranuclear role in cyclin D1 dependent DDR in human breast cancer cells. The E2-induced DDR requires extranuclear cyclin D1, which binds ERα at the cytoplasmic membrane and augments AKT phosphorylation (Ser473), driving a cascade that leads to increased intra-nuclear γH2AX foci formation, cyclin D1 recruitment by E2, and the stabilization of RAD51 (a gene necessary for homologous recombination repair). Augmentation of Akt1 phosphorylation by E2 contributes to an aberrant growth signaling and cyclin D1 dependent homolog-directed DNA repair, highlighting an important link between ER and DDR (65). In ER-positive breast cancer cells, E2 blocks ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) activity via plasma membrane-associated ERα (66). E2 delayed the assembly and prolonged the resolution of γH2AX and RAD51 nuclear foci. This finding helped to establish ER as a critical mediator of the ATR cascade required for an efficient DDR in breast cancer cells (65). The cumulative effect of ER signaling on genomic stability is complex and context-specific. For example, while ER signaling upregulates DDR in some contexts, its activity has also been linked to TOP2B mediated break formation in regulatory regions of ER target genes (64).

Progesterone receptor (PR) is highly specific for its ligand, progesterone, and the active form binds to progesterone response elements to initiate target gene transcription (67). A major factor that regulates PR levels in a variety of cells and tissues is 17β-estradiol or related estrogens bound to ER. In human breast cancer cells, the promoters controlling PR transcription contain estrogen response elements recognized by ER and its cofactors (68, 69). PARP1, known to have a role in DNA damage repair and the maintenance of genomic integrity, is one such nuclear enzyme-linked to PR (70, 71). The DNA-PK subunit Ku70, an early component of NHEJ repair, also interacts with PR in a complex that contains PARP-1. PR transcriptional activation is modulated by DNA-PK, which auto-phosphorylates and subsequently phosphorylates PR (70).

Cyclin-dependent kinase 2 (CDK2) activation has also been demonstrated following progestin treatment in breast cancer cells. Activated CDK2 phosphorylates downstream targets including PARP-1, increasing its enzymatic activity. Conversely, activation of PARP-1 via CDK2 is required to initiate the PR transcriptional program, establishing positive feedback loop (72). PR is not only an ERα target gene, but also an ERα-associated protein (73). In the presence of their respective agonists, PR associates with ERα to direct ERα-chromatin binding events in breast cancer cells. Therefore, ER and PR are capable of acting cooperatively to modulate effects on the DNA repair machinery and directly modulate the genomic stability of breast cancer cells.

Targeting Sex Steroids in Combinatorial Treatment Strategies

DNA-damaging therapies including RT and chemotherapy remain a cornerstone of cancer care. Concerning RT, technical advances such as image-guided RT or intensity-modulated RT have led to the enhancement of the
Endocrinology, 2021, Vol. 162, No. 1

therapeutic ratio (74). RT-induced cell death is primarily a consequence of unrepaired DNA damage, especially DSBs (75, 76), which lead to chromatin destabilization and mitotic catastrophe. While an established hallmark of cancer is relative vulnerability to DNA damage (77, 78), tumor cells with highly efficient DNA repair manifest a radioresistant phenotype (79), whereas deficiencies in DSB repair pathways sensitize to IR (80). DNA lesions induced by RT activate the DDR by initiating a cascade of posttranslational modifications that activate downstream signaling pathways (81). DSBs are the most lethal lesions and even a single unrepaired DSB can trigger cell death (76). Therefore, treatments that even modestly inhibit the DNA repair machinery (ideally selectively in cancer cells) have the potential to dramatically enhance therapeutic efficacy (82, 83). Targeting the dysregulated steroid hormone signaling axes in neoplastic tissues in combination with IR or chemotherapy offers an opportunity to selectively target endocrine-driven tumors with relative sparing of normal tissues (82, 84-86).

Hormonal therapy for PCa diminishes circulating gonadal androgens via suppression of the hypothalamic-pituitary-gonadal axis (LHRH analogs) and/or targets androgen receptors using competitive antagonists (antiandrogens) (17). The first attempts to combine hormonal therapy with RT were made using Shinogi murine models (with implanted PCa) (87). The study showed that hormonal therapy allows for a significant reduction in the RT dose required to eliminate 50% of tumors (TCD50—the dose required for 50% tumor control). The greatest combinatorial efficacy was observed when hormonal therapy was used before a series of exposures to radiation (neoadjuvant therapy) (87). Another study, using a Dunning rat PC model, compared the efficacy of RT in combination with 1) hormonal therapy used 14 days prior to RT; 2) hormonal therapy during RT; and 3) hormonal therapy used 14 days after RT. The maximal therapeutic effect was achieved with RT + neoadjuvant HT, confirming the results of the previous study (88). While these results show that sustained hormone suppression sensitizes cells to RT, acute androgen stimulation paradoxically further sensitizes cells to IR. An appropriately timed dose of androgens (approximately 6 hours prior to RT) can increase tumor cell death following IR and reduce prostate cancer cell survival by inducing increased DNA DSB formation (89).

In breast cancer, selective estrogen receptor modulators (SERMs) and aromatase inhibitors are the mainstays of hormonal adjuvant treatment. Adjuvant and long-term maintenance tamoxifen is associated with a significant reduction in breast cancer recurrence and improved overall survival (90). Similarly, aromatase inhibitors provide a disease-free survival benefit in postmenopausal women (91). Compared with radiation alone, the combination of radiation and letrozole produced a significant shift in cell cycle distribution which had the effect of sensitizing the cells to appropriately timed doses of radiation (92). However, in the clinical setting, retrospective studies to date have shown no difference in disease-free survival between concurrent versus sequential use of aromatase inhibitors along

Hormone Receptor	Molecular Partner	Mechanism	Disease Relevance	Reference
Androgen Receptor	TOP2B	DSB formation during transcriptional activation	Prostate Cancer	Haffner et al., Nat Gen. (2010)
Androgen Receptor	PRKDC	Binding to cis-regulatory element of PRKDC	Prostate Cancer	Goodwin et al., Cancer Discov. (2013)
Androgen Receptor	DDR genes	Binding to enhancer elements of 32 DDR genes	Prostate Cancer	Polkinghorn et al., Cancer Discov. (2013)
Androgen Receptor	Ku70	NHEJ	Prostate Cancer	Mayeur et al., J Biol Chem. (2005); Al-Ubaidi et al., Clin Cancer Res. (2013)
Androgen Receptor	Cdc 6	Regulate the S phase of cell cycle	Prostate Cancer	Jin et al., Nucleic Acids Res. (2009)
Estrogen Receptor	MDC1	Recruiting the MRN complex initiating both NHEJ and homologous repair	Breast cancer	Stewart et al., Nature (2003); Lou et al., Mol Cell. (2006); Lamarche et al., FEBS Lett. (2010); Zhou et al., Intl J Biol Sci. (2015)

| 17-beta-estradiol (E2) | ATM | Delayed the assembly and prolonged the resolution of γH2AX and RAD51 nuclear foci | Breast cancer | Pedram et al., Mol Biol Cell. (2009) |

Abbreviations: ATM, ataxia telangiectasia-mutated; ATR, Rad3-related; DDR, DNA damage response; DSB, double-stranded break; MDC1, Mediator of DNA Damage Checkpoint 1; NHEJ, nonhomologous end-joining; TOP2B, topoisomerase II beta.
with radiation therapy (93). Similar to letrozole treatment, tamoxifen showed radiosensitization properties in vitro (94); however, no difference was observed in survival or locoregional recurrence between concurrent versus sequential use of adjuvant tamoxifen in clinical studies (95-97).

Clinical trials investigating novel combinations of targeted endocrine agents with conventional antineoplastic therapies are ongoing and will ultimately shed further light on the complex interplay between hormone receptor biology and genomic stability in patients.

Conclusion

Steroid hormones modulate genomic stability in complex, context-dependent networks which in turn play a fundamental role in endocrine-driven cancer development and progression (Table 1). Efforts to characterize the relationship between the DDR and endocrine signaling have led to more effective endocrine therapy combinations. AR, an established driver of PCa, is a direct transactivator of DDR genes that mediate resistance to conventional therapies including chemotherapy and radiation. This observation explains the marked synergy between ADT and radiotherapy in primary prostate cancer. Similarly, the ER and PR modulate essential cell cycle checkpoints and repair mechanisms (eg, NHEJ) to promote breast, ovarian, and endometrial carcinogenesis. As new endocrine therapies emerge, efforts to characterize their effects on hormone receptor–driven genome instability and DNA damage will be important in guiding their clinical application, minimizing resistance, and maximizing treatment efficacy.

Acknowledgments

This work has been supported by grants from the U.S. Department of Defense (W81XWH-18-1-0177, W81XWH-19-PRCRP-TTSA to O.Y.M), American Cancer Society (134805-RSG-20-070-01-TBG to O.Y.M), U.S. National Institutes of Health/ National Cancer Institute (L30 CA220908 to O.Y.M.), VeloSano Foundation (O.Y.M), National Comprehensive Cancer Network Foundation (O.Y.M).

Author Contributions: S.G., D.N., A.M., and O.Y.M. reviewed the literature and wrote the manuscript. S.G., A.M., and O.Y.M. designed and drafted the figures. O.Y.M. approved the final version for publication.

Additional Information

Correspondence: Omar Y. Mian, MD, PhD, Department of Translational Hematology & Oncology Research (THOR), Cleveland Clinic, Taussig Cancer Center, 9500 Euclid Ave., CA50, Cleveland, OH 44195, USA. E-mail: miano@ccf.org.

Disclosure Summary: The authors declare no actual or potential competing financial interests.

Data Availability: All data analyzed during this study are included in this published article are listed in References.

References

1. Key TJ. Hormones and cancer in humans. Mutat Res - Fundam Mol Mech Mutagen. 1995;333(1-2):59-67.
2. Yen PM. Classical nuclear hormone receptor activity as a mediator of complex biological responses: a look at health and disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):517-528.
3. Ide H, Lu Y, Yu J, et al. Testosterone promotes DNA damage response under oxidative stress in prostate cancer cell lines. Prostate. 2012;72(13):1407-1411.
4. Joosten HFP, Van Acker FAA, Van Den Dobbelsteen DJ, Horbach GJM, Krajnc EI. Genotoxicity of hormonal steroids. Toxicol Lett. 2004;151(1):113-134.
5. Miyake H, Hara I, Kamidono S, Eto H. Oxidative DNA damage in patients with prostate cancer and its response to treatment. J Urol. 2004;171(4):1533-1536.
6. Sastre-Serra J, Valle A, Company MM, Garau I, Oliver J, Rocca P. Estrogen down-regulates uncoupling proteins and increases oxidative stress in breast cancer. Free Radic Biol Med. 2010;48(4):506-512.
7. Roy D, Cai Q, Feltz Y, Narayan S. Estrogen-induced generation of reactive oxygen and nitrogen species, gene damage, and estrogen-dependent cancers. J Toxicol Environ Health B Crit Rev. 2007;10(4):235-257.
8. Ho SM, Roy D. Sex hormone-induced nuclear DNA damage and lipid peroxidation in the dorsolateral prostates of Noble rats. Cancer Lett. 1994;84(2):155-162.
9. Han X, Liehr JG, Bosland MC. Induction of a DNA adduct detectable by 32P-postlabeling in the dorsolateral prostate of NBL/Cr rats treated with estradiol-17 beta and testosterone. Carcinogenesis. 1995;15(4):951-954.
10. Lin C, Yang I, Tanasa B, et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 2009;139(6):1069-1083.
11. Mani RS, Tomlins SA, Callahan K, et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science. 2009;326(5957):1230.
12. Tomlins SA, Rhodes DR, Perner S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;309(5748):644-648.
13. Haffner MC, Aryee MJ, Toubaji A, et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010;42(8):668-675.
14. Henderson BE, Ross RK, Pike MC, Casagrande JT. Endogenous hormones as a major factor in human cancer. Cancer Res. 1982;42(8):3232-3239.
15. Cagnacci A, Venier M. The controversial history of hormone replacement therapy. Med. 2019;55(9). doi:10.3390/medicina55090602
cancer: why and in which group of patients? Contemp Oncol (Pozn). 2015;19(1):1-5.
18. Lee AK. Radiation therapy combined with hormone therapy for prostate cancer. Semin Radiat Oncol. 2006;16(1):20-28.
19. Cecchini MJ, Yu E, Potvin K, D'Souza D, Lock M. Concurrent or sequential hormonal and radiation therapy in breast cancer: a literature review. Cancers. 2015;7(10):e364.
20. Nichol AM, Chan EK, Lucas S, et al. The use of hormone therapy alone versus hormone therapy and radiation therapy for breast cancer in elderly women: a population-based study. Int J Radiat Oncol Biol Phys. 2017;98(4):829-839.
21. Boccardo F, Rubagotti A, Bruzzi P, et al. Chemotherapy versus tamoxifen versus chemotherapy plus tamoxifen in node-positive, estrogen receptor-positive breast cancer patients: results of a multicentric Italian study. Breast Cancer Adjuvant Chemo-Hormone Therapy Cooperative Group. J Clin Oncol. 1990;8(8):1310-1320.
22. Recine F, Sternberg CN. Hormonal therapy and chemotherapy in hormone-naive and castration resistant prostate cancer. Transl Androl Urol. 2015;4(3):355-364.
23. Nader R, El Amm J, Aragon-Ching JB. Role of chemotherapy in prostate cancer. Asian J Androl. 2018;20(3):221-229.
24. Cornford P, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71(4):630-642.
25. Mortet N, Bellmunt J, Bolla M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71(4):618-629.
26. Roach M, Bae K, Speight J, et al. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: Long-term results of RTOG 8610. J Clin Oncol. 2008;26(4):585-591.
27. Bolla M, Van Tienhoven G, Warde P, et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 2010;11(11):1066-1073.
28. James ND, Sydes MR, Clarke NW, et al. Systemic therapy for advancing or metastatic prostate cancer (STAMPEDE): a multi-arm, multistage randomized controlled trial. BJU Int. 2009;103(4):464-469.
29. James ND, de Bono JS, Spears MR, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med. 2017;377(4):338-351.
30. Parker CC, James ND, Brawley CD, et al.; Systemic Therapy for Advanced or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) investigators. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): a randomised controlled phase 3 trial. Lancet. 2018;392(10162):2353-2366.
31. Davis ID, Martin AJ, Stockler MR, et al. Enzalutamide with standard first-line therapy in metastatic prostate cancer. N Engl J Med. 2019;381(2):121-131.
32. Nuhn P, De Bono JS, Fizazi K, et al. Update on systemic prostate cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol. 2019;75(1):88-99.
33. Zhao H, Leppert JT, Peelh DM. A protective role for androgen receptor in clear cell renal cell carcinoma based on mining TCGA data. Chai KX, ed. PLoS One. 2016;11(1):e0146505.
34. Goodwin JF, Schiewer MJ, Dean JL, et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov. 2013;3(11):1254-1271.
35. Polkinghorn WR, Parker JS, Lee MX, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013;3(11):1245-1253.
36. Mayeur GL, Kung WJ, Martinez A, Izumiya C, Chen DJ, Kung HJ. Ku is a novel transcriptional recycling coactivator of the androgen receptor in prostate cancer cells. J Biol Chem. 2005;280(11):10827-10833.
37. Al-Ubaidi FL, Schultz N, Loseva O, Egevad L, Granfors T, Helleday T. Castration therapy results in decreased Ku70 levels in prostate cancer. Clin Cancer Res. 2013;19(6):1547-1556.
38. Quigley DA, Dang HX, Zhao SG, et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(3):758-769.e9.
39. Zhang W, Liu B, Wu W, et al. Targeting the MYCN-PARP-DNA damage response pathway in neuroendocrine prostate cancer. Clin Cancer Res. 2018;24(3):696-707.
40. Chinnaiyan AM, Sawyers CL. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215-1228.
41. Barbieri CE, Baca SC, Lawrence MS, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MEDI2 mutations in prostate cancer. Nat Genet. 2012;44(6):685-689.
42. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008;8(7):497-511.
43. Chatterjee P, Choudhary GS, Alswillah T, et al. The TMPRSS2–ERG gene fusion blocks XRCC4-mediated nonhomologous end-joining repair and radiosensitizes prostate cancer cells to PARP inhibition. Mol Cancer Ther. 2015;14(8):1896-1906.
44. Chatterjee P, Choudhary GS, Sharma A, et al. PARP inhibition sensitizes to low-dose-rate radiation TMPRSS2-ERG fusion gene-expressing and PTEN-deficient prostate cancer cells. Plos One. 2013;8(4):e60408.
45. Mazrooei P, Kron KJ, Zhu Y, et al. Cistrome partitioning reveals convergence of somatic mutations and risk variants on master transcription regulators in primary prostate tumors. Cancer Cell. 2019;36(6):674-689.e6.
46. Campbell PJ, Getz G, Korbel JO, et al. Pan-cancer analysis of nonhomologous end-joining repair and radiosensitizes prostate cancer cells to PARP inhibition. Nat Genet. 2020;52(7):973-983.
47. Morova T, McNeill DR, Lallous N, et al. Androgen receptor-binding sites are highly mutated in prostate cancer. Nat Commun. 2020;11(1):832.
48. Agus DB, Cordon-Cardo C, Fox W, et al. Prostate cancer cell cycle regulators: response to androgen withdrawal and development of androgen independence. J Natl Cancer Inst. 1999;91(21):1869-1876.
49. Huggins C, Hodges CV. Studies on prostatic cancer i. the effect of castration, of estrogen and of androgen injection on serum phosphatase in metastatic carcinoma of the prostate. Cancer Res. 1941;1(4):293-297.
50. Knudsen KE, Arden KC, Cavenee WK. Multiple G1 regulatory elements control the androgen-dependent...
proliferation of prostatic carcinoma cells. *J Biol Chem.* 1998;273(32):20213-20222.

51. Xu Y, Chen SY, Ross KN, Balk SP. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. *Cancer Res.* 2006;66(15):7783-7792.

52. Comstock CE, Angello MA, Benito RP, et al. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. *Clin Cancer Res.* 2009;15(17):5338-5349.

53. Comstock CE, Angello MA, Schiewer MJ, et al. Cyclin D1 is a selective modulator of androgen-dependent signaling and androgen receptor function. *J Biol Chem.* 2011;286(10):8117-8127.

54. Jin F, Fondell JD. A novel androgen receptor-binding element modulates Cdc6 transcription in prostate cancer cells during cell-cycle progression. *Nucleic Acids Res.* 2009;37(14):4826-4838.

55. Dhawan M, Ryan CJ, Ashworth A. DNA repair deficiency is common in advanced prostate cancer: new therapeutic opportunities. *Oncologist.* 2016;21(8):940-945.

56. Henderson BE, Ross R, Bernstein L. Estrogens as a cause of human cancer: the Richard and Hinda Rosenthal Foundation award lecture. *Cancer Res.* 1988;48(2):246-253.

57. Daniel AR, Hagan CR, Lange CA. Progesterone receptor action: defining a role in breast cancer. *Expert Rev Endocrinol Metab.* 2011;6(3):359-369.

58. Likhite VS, Cass EI, Anderson SD, Yates JR, Nardulli AM. Interaction of estrogen receptor alpha with 3-methyladenine DNA glycosylase modulates transcription and DNA repair. *J Biol Chem.* 2004;279(16):16875-16882.

59. Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. *Nature.* 2003;421(6926):961-966.

60. Lou Z, Minter-Dykhouse K, Franco S, et al. MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. *Mol Cell.* 2006;21(2):187-200.

61. Lamarche BJ, Orazio NI, Weitzman MD. The MRN complex in double-strand break repair and telomere maintenance. *FEBS Lett.* 2010;584(17):3682-3695.

62. Zou R, Zhong X, Wang C, et al. MDC1 enhances estrogen receptor-mediated transactivation and contributes to breast cancer suppression. *Int J BioSci.* 2015;11(9):992-1005.

63. Williamson LM, Lees-Miller SP. Estrogen receptor α-mediated transcription induces cell cycle-dependent DNA double-strand breaks. *Carcinogenesis.* 2011;32(3):279-285.

64. Ju B-G, Lunyak VV, Perissi V, et al. At the Microbes in a Changing World meeting of the International Union of Microbiology Societies. *Crit Rev Biochem Mol Biol.* 2005;40(7):407.

65. Li Z, Chen K, Jiao X, et al. Cyclin D1 integrates estrogen-mediated DNA damage repair signaling. *Cancer Res.* 2014;74(14):3959-3970.

66. Pedram A, Randandi M, Evinger AJ, Lee E, Levin ER. Estrogen inhibits ATR signaling to cell cycle checkpoints and DNA repair. *Mol Biol Cell.* 2009;20(14):3374-3389.

67. Graham JD, Clarke CL. Physiological action of progesterone in target tissues*. 1997. *Endocr Rev.* 1997;18(4):502-519.

68. Horwitz KB, Koseki Y, McGuire WL. Estrogen control of progesterone receptor in human breast cancer: role of estradiol and antiestrogen. *Endocrinology.* 1978;103(5):1742-1751.

69. Kastner P, Krust A, Turcotte B, et al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. *Endo J.* 1990;9(5):1603-1614.

70. Sartorius CA, Takimoto GS, Richer JK, Tung L, Horwitz KB. Association of the Ku autoantigen/DNA-dependent protein kinase holoenzyme and poly(ADP-ribose) polymerase with the DNA binding domain of progesterone receptors. *J Mol Endocrinol.* 2000;24(2):165-182.

71. Kim MY, Mauro S, Gévy N, Lis JT, Kraus WL. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. *Cell.* 2004;119(6):803-814.

72. Wright RH, Castellano G, Bonet J, et al. CDK2-dependent activation of PARP-1 is required for hormonal gene regulation in breast cancer cells. *Genes Dev.* 2012;26(17):1972-1983.

73. Mohammed H, Russell IA, Stark R, et al. Corrigendum: Progesterone receptor modulates ERα action in breast cancer. *Nature.* 2015;526(7571):144.

74. Elshaikh M, Ljungman M, Ten Haken R, Lichter AS. Advances in radiation oncology. *Annu Rev Med.* 2006;57:19-31.

75. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. *Nat Genet.* 2004;27(3):247-254.

76. Radford IR. The level of induced DNA double-strand breakage correlates with cell killing after X-irradiation. *Int J Radiat Biol Relat Stud Phys Chem Med.* 1985;48(1):45-54.

77. Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. *Nature.* 2004;37(12):316-323.

78. Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. *Nat Rev Cancer.* 2012;12(12):801-817.

79. Jeggo P, Lavin MF. Cellular radiosensitivity: how much better do we understand it? *Int J Radiat Biol.* 2009;85(12):1061-1081.

80. O’Driscoll M, Jeggo PA. The role of double-strand break repair - insights from human genetics. *Nat Rev Genet.* 2006;7(1):45-54.

81. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. *Nature.* 2009;461(7267):1071-1078.

82. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. *Nat Rev Cancer.* 2008;8(3):193-204.

83. Stover EH, Konstantinopoulos PA, Matulonis UA, Swisher EM. Biomarkers of response and resistance to DNA repair targeted therapies. *Clin Cancer Res.* 2016;22(23):5651-5660.

84. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. *Nat Rev Cancer.* 2011;11(4):239-253.

85. Pilié PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. *Nat Rev Clin Oncol.* 2019;16(2):81-104.

86. Fraser M, Sabelnykova VY, Yamaguchi TN, et al. Genomic hallmarks of localized, non-indolent prostate cancer. *Nature.* 2017;541(7637):359-364.

87. Zietman AL, Prince EA, Nakafoor BM, Park JJ. Androgen deprivation and radiation therapy: sequencing studies using the Shionogi in vivo tumor system. *Int J Radiat Oncol Biol Phys.* 1997;38(5):1067-1070.

88. Kaminski JM, Hanlon AL, Joon DL, Meistrich M, Hachem P, Pollack A. Effect of sequencing of androgen deprivation and
radiotherapy on prostate cancer growth. *Int J Radiat Oncol Biol Phys.* 2003;57(1):24-28.

89. Hedayati M, Haffner MC, Coulter JB, et al. Androgen deprivation followed by acute androgen stimulation selectively sensitizes AR-positive prostate cancer cells to ionizing radiation. *Clin Cancer Res.* 2016;22(13):3310-3319.

90. Abe O, Abe R, Enomoto K, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. *Lancet.* 2011;378(9793):771-784.

91. Dowsett M, Cuzick J, Ingle J, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. *J Clin Oncol.* 2010;28(3):509-518.

92. Azria D, Larbouret C, Cunat S, et al. Letrozole sensitizes breast cancer cells to ionizing radiation. *Breast Cancer Res.* 2005;7(1):R156-R163.

93. Ishitobi M, Shiba M, Nakayama T, et al. Treatment sequence of aromatase inhibitors and radiotherapy and long-term outcomes of breast cancer patients. *Anticancer Res.* 2014;34(8):4311-4314.

94. Wazer DE, Joyce M, Chan W, et al. Effects of Tamoxifen on the Radiosensitivity of Hormonally Responsive and Unresponsive Breast Carcinoma Cells. *Rad Onco Investigations.* 1993;1(1):20-28.

95. Harris EE, Christensen VJ, Hwang WT, Fox K, Solin LJ. Impact of concurrent versus sequential tamoxifen with radiation therapy in early-stage breast cancer patients undergoing breast conservation treatment. *J Clin Oncol.* 2005;23(1):11-16.

96. Pierce LJ, Hutchins LF, Green SR, et al. Sequencing of tamoxifen and radiotherapy after breast-conserving surgery in early-stage breast cancer. *J Clin Oncol.* 2005;23(1):24-29.

97. Ahn PH, Vu HT, Lannin D, et al. Sequence of radiotherapy with tamoxifen in conservatively managed breast cancer does not affect local relapse rates. *J Clin Oncol.* 2005;23(1):17-23.