The IL-1 type II receptor (decoy RII) is a nonsignaling molecule the only established function of which is to capture IL-1 and prevent it from interacting with signaling receptor. The decoy RII is released in a regulated way from the cell surface. Here, we reported that hydroxamic acid inhibitors of matrix metalloproteases inhibit different pathways of decoy RII release, including the following: (a) the slow (18 h) gene expression-dependent release from monocytes and polymorphonuclear cells exposed to dexamethasone; (b) rapid release (minutes) from myelomonocytic cells exposed to tumor necrosis factor, chemoattractants, or phorbol myristate acetate; (c) phorbol myristate acetate-induced release from decoy RII-transfected fibroblasts and B cells. Inhibition of release was associated with increased surface expression of decoy RII. Inhibitors of other protease classes did not substantially affect release. However, serine protease inhibitors increased the molecular mass of the decoy RII released from polymorphonuclear cells from 45 to 60 kDa. Thus, irrespective of the pathway responsible for release and of the cellular context, matrix metalloproteases, rather than differential splicing, play a key role in production of soluble decoy RII.

IL-1 is the name of two polypeptide mediators (IL-1α and IL-1β) that are among the most potent and multifunctional cell activators described in immunology and cell biology literature. The spectrum of action of IL-1 encompasses cells of hematopoietic origin, from immature precursors to differentiated leukocytes, vessel wall elements, and cells of mesenchymal, nervous, and epithelial origin (1, 2). The production and action of IL-1 are regulated by multiple control pathways, some of which unique to this cytokine. This complexity and uniqueness is best represented by the term “IL-1 system” (3). The IL-1 system consists of two agonists, IL-1α and IL-1β, a specific activation system (IL-1-converting enzyme), a receptor antagonist produced in different isoforms (4, 5), and two high affinity surface binding molecules (3).

Two receptors for IL-1, termed type I and type II (RI and RII, respectively), usually coexpressed in different cell types, have been identified and cloned (6–8). An accessory protein, which increases the binding affinity of RI for IL-1β, has recently been identified (9). IL-1 signaling activity appears to be mediated exclusively via the RI and the accessory protein (9, 10–12), whereas the IL-1RII has no signaling property and acts in myelomonocytic cells as a decoy for IL-1 (decoy RII), inhibiting its activity by preventing IL-1 from binding to the signaling RI (3, 13).

The decoy RII is released in vitro and is found in biological fluids in a variety of pathophysiological condition (14–17). Two main pathways of regulation of decoy RII release have been identified. Anti-inflammatory signals (e.g. glucocorticoid hormones) augment decoy RII gene expression and eventually release in myelomonocytic cells (18, 19). Over a period of 18 h, dexamethasone increases the number of monocyte surface RII from 171 to 3742 receptors/cell, and about 150 × 10^6 molecules are released in the culture medium over the same period of time by 20 × 10^6 monocytes (19). A second pathway of regulation of the decoy RII involves the rapid (5 min) shedding from the cell surface. This rapid pathway of release is activated by chemoattractants, reactive oxygen intermediates, phorbol myristate acetate (PMA), and TNF (20–22). The present study was designed to assess whether proteolytic enzymes are involved in the gene expression-dependent and -independent pathways of decoy RII. The identification of an mRNA transcript encoding a released version of decoy RII (23) raised the issue of the relative contribution of proteolytic shedding versus differential splicing in production of soluble decoy RII. The results presented here show that metalloprotease inhibitors block all pathways of soluble decoy RII production and, by implication, that proteolytic shedding is a dominant mechanism for generation of soluble decoy RII.

EXPERIMENTAL PROCEDURES

Cells—Human PMNs were separated from the peripheral blood of healthy donors by Percoll gradient centrifugation (24). Briefly, whole blood was fractionated by Ficoll gradient centrifugation (Seromed-Biochem KG, Berlin, Germany), and PMNs, collected from the pellet, were layered on top of 62% Percoll (Pharmacia & Upjohn Research Center Dompe` Spa, 1-67100 L’Aquila, Italy; **Department of Immunology, Pharmacia & Upjohn Research Center Dompe` Spa, 1-67100 L’Aquila, Italy; and §§Department of Immunology and Cell Biology, Istituto di Ricercare Farmacologiche “Mario Negri,” Via Eritrea 62, 20157 Milano, Italy) after a centrifugation at 1500 rpm for 20 min at room temperature. PMN pellets (≥98% pure as assessed by morphology) were resuspended at 10^6 cells/ml in RPMI 1640 medium (Seromed-Biochem KG) with 2 mM glutamine (Seromed-Biochem KG). Human monocytes were separated from the peripheral blood of human healthy donors by Percoll gradient centrifugation (24). Briefly, whole blood was fractionated by Ficoll-Hypaque gradient centrifugation (Seromed-Biochem KG).
Metalloprotease-mediated Release of IL-1 Decoy Receptor

G. Peri, unpublished data.
of PMNs with \(\alpha_1 \)-AT, a serine protease inhibitor, did not cause inhibition of TNF action but shifted the size of the released decoy RII from 45 to 60 kDa, the same molecular mass observed in monocytes and IL-1 decoy RII-transfected cells (19, 25). L,680833, a specific elastase inhibitor, also caused the shift in the released decoy RII from 45 to 60 kDa (data not shown).

Chemoattractant molecules, such as fMLP and PMA, induced rapid release of decoy RII in PMNs (20, 22). We tested the effect of BB-94 on release of IL-1 decoy RII induced by these two stimuli. As shown in Fig. 3, fMLP and PMA induced rapid release of decoy RII in PMNs (20, 22). We tested the effect of BB-94 on release of IL-1 decoy RII induced by these two stimuli. As shown in Fig. 3, fMLP and PMA induced rapid release of decoy RII as reflected by decrease in binding to cells (32 ± 7% and 48 ± 4% for fMLP and PMA, respectively). As expected, BB-94 inhibited the release induced by fMLP and PMA (81 ± 11% and 83 ± 2% of control values, respectively).

Effect of Protease Inhibitors on Rapid Release of IL-1 Decoy RII in Monocytes—Monocytes also express high quantities of surface decoy RII (19). TNF induces rapid (10 min) release of IL-1 decoy RII (22). When we tested the effects of different protease inhibitors (Fig. 4A), we found that only metalloprotease inhibitors, such as BB-94, CT1418, and Ro31,9790, inhibited the action of TNF. In particular, BB-94 restored the IL-1 binding capacity of TNF-treated cells to 93 ± 12% of control, compared with 26 ± 10% of cells treated with TNF alone; CT1418 and Ro31,9790 also caused a significant inhibition of TNF action (92 ± 8% for CT 1418 and 81 ± 9% for Ro 31,9790). Other protease inhibitors, such as L,680833 and E-64, had no effect on IL-1 decoy RII release. As shown in Fig. 4B, TNF-stimulated monocytes released a 60-kDa soluble IL-1 decoy RII, and BB-94 inhibited the shedding of soluble receptor.

Effect of Protease Inhibitors on Dexamethasone-induced IL-1 Decoy RII Release in PMNs and Monocytes—In agreement with previous reports (18, 19), dexamethasone augmented the sur-
face expression of the decoy RII (reflected by increased specific binding) in both monocytes and PMNs (Fig. 5, A and C). Concomitantly, dexamethasone augmented the release of soluble versions of decoy RII of 45 and 60 kDa for PMNs and monocytes, respectively (Fig. 5, B and D). BB-94 blocked release of the decoy RII from dexamethasone-treated myelomonocytic cells and concomitantly augmented binding on the cell surface.

Effects of Protease Inhibitors on Release from a B Lymphoma and IL-1 Decoy RII Transfected Fibroblasts—The results discussed so far were obtained with myelomonocytic cells. It was important to assess whether metalloproteases play a central role in decoy RII release in a different cellular context as well. We therefore examined the effect of metalloprotease inhibitors on decoy RII release from B cells (cell line 1H7, a subline of an Epstein-Barr virus-positive Burkitt lymphoma line Raji, selected for high expression of IL-1 decoy RII (26)) and transfected fibroblasts (transfected cell line 8387). Both of these cell lines released large amounts of soluble decoy RII spontaneously and after stimulation with PMA. As shown in Figs. 6A, 6C, and 7B, BB-94 inhibited the spontaneous and PMA-induced release of the decoy RII in transfected fibroblast cells and 1H7 cells. Concomitantly, BB-94 blocked the PMA-induced reduction of IL-1 binding in these nonmyeloid cellular contexts (Figs. 6A and 7A). The capacity of BB-94 to block decoy RII release from transfected fibroblasts was observed by both cross-linking and Western analysis.

DISCUSSION

The results presented here show that one or more enzyme of the metalloprotease class play a key role in the production of soluble versions of the decoy RII. Different inhibitors of metalloproteases inhibited release of decoy RII, whereas agents which act on serine proteases or cysteine proteases had little or no effect. Metalloprotease inhibitors did not affect various functions of the cells used in the present study, including PMN chemotaxis, lipopolysaccharide-induced cytokine production in monocytes, and PMA-activated cytokine production in transfected fibroblasts. It is therefore unlikely that the capacity of different metalloprotease inhibitors to block decoy RII release is related to effects other than target enzyme inhibition.

The decoy RII is present in biological fluids, with augmented levels in inflammatory conditions (16, 17) and in culture supernatants (18, 19). Previous studies had identified two general pathways through which environmental signals activate release of the decoy RII in myelomonocytic cells. Several molecules with anti-inflammatory activity (glucocorticoids, IL-4, and IL-13) augmented gene expression and subsequently surface levels of decoy RII: an increased surface expression is
Metalloprotease-mediated Release of IL-1 Decoy Receptor

A

B

FIG. 7. Effect of protease inhibitors on PMA-induced release of the IL-1 decoy RII in IHT cell line. **A**, effect on surface binding: 3×10^6 IHT cells were incubated with α-AT (100 ng/ml), BB-94 (1 μg/ml), or E-64 (10 μg/ml), with or without PMA (50 ng/ml) for 20 min at 37 °C in serum-free RPMI 1640 medium and then examined for IL-1 binding. Data are shown as percentage of control (mean with range of two different experiments). **B**, effect on release in the supernatant: 10^6 cells were cultured with or without PMA (50 ng/ml) in the presence or absence of BB-94 (1 μg/ml) for 20 min at 37 °C in serum-free RPMI 1640 medium. Supernatants were then recovered, concentrated, mixed with 125I-labeled IL-1, and then analyzed by SDS-PAGE.

REFERENCES

1. Dinarello, C. A. (1989) Adv. Immunol. 44, 153–191
2. Dinarello, C. A. (1996) Blood 87, 2095–2147
3. Colotta, F., Dower, S. K., Sims, J. E., and Mantovani, A. (1994) Immunol. Today 15, 562–566
4. Arend, W. P. (1993) Adv. Immunol. 54, 167–227
5. Muzio, M., Polentarutti, N., Sironi, M., Poli, G., De Gioia, L., Intron, M., and Colotta, F. (1995) J. Exp. Med. 182, 625–628
6. Sims, J. E., March, C. J., Cosman, D., Widmer, M. B., MacDonald, H. R., McMahan, C. J., Grubin, C. E., Wignall, J. M., Jackson, J. L., Call, S. M., Friend, D., Alpert, A. R., Gillis, S., Urdal, D. L., and Dower, S. K. (1998) Science 281, 585–589
7. McMahan, C. J., Slack, J. L., Mosley, B., Cosman, D., Lupton, S. D., Brunten, L. L., Grubin, C. E., Wignall, J. M., Jenkins, N. A., and Brannan, C. I. (1991) EMBO J. 10, 2621–2622
8. Chizzonite, R., Truit, T., Kiliain, P. L., Stern, A. S., Nunes, P., Parker, K. P., Kaffka, K. L., Chua, A. O., Ligg, K. D., and Gubler, U. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8029–8033
9. Greenfelder, S. A., Nunes, P., Kwee, L., Labow, M., Chizzonite, R., and Ju, G. (1995) J. Biol. Chem. 270, 13573–13576
10. Sims, J. E., Gayle, M. A., Slack, J. L., Alderson, M. R., Bird, T. A., Giri, J. G., Colotta, F., Re, F., Mantovani, A., Shanbech, K., Grabstein, K. H., and Dower, S. K. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 6155–6159
11. Keenan, D. J., Podzorski, R. P., Bell, M. P., Nilsen, A. E., Huntto, C. J., Slack, J., Dower, S. K., and Sims, J. E. (1993) J. Immunol. 151, 3500–3510
12. Stylianou, E., O’Neill, L. A., Rawlinson, L., Edbrooke, M. R., Woo, P., and Saklatvala, J. (1992) J. Biol. Chem. 267, 15836–15841
13. Colotta, F., Re, F., Muzio, M., Bertini, R., Polentarutti, N., Sironi, M., Giri, J. G., Dower, S. K., Sims, J. E., and Mantovani, A. (1993) Science 261, 472–475
14. Symons, J. A., Eastgate, J. A., and Duff, G. W. (1990) Cytokine 2, 190–198
15. Symons, J. A., Eastgate, J. A., and Duff, G. W. (1991) J. Exp. Med. 174, 1251–1254
16. Giri, J. G., Wills, J., Dower, S. K., McCall, C. E., Guzman, R. N., Slack, J., Bird, T. A., Shanbeck, K., Grabstein, K. H., Sims, J. E., and Alderson, M. R. (1994) J. Immunol. 153, 5862–5869
17. Pruit, J. H., Weblour, B. M., Edwards, P. D., Harward, T. R., Seegter, J. W., Martin, T. D., Smith, C., Kenney, J. A., Wendorf, R. L., Meijer, S., Cuesta, M. A., Abushanane, A., Copeland, E. M., Giri, J. G., Moldave, L. L., and Oldenburg, H. S. (1996) Blood 87, 3282–3288
18. Re, F., Muzio, M., De Rossi, M., Polentarutti, N., Giri, J. G., Mantovani, A., and Colotta, F. (1994) J. Exp. Med. 178, 739–743
19. Colotta, F., Sacani, S., Giri, J. G., Dower, S. K., Sims, J. E., Intron, M., and Mantovani, A. (1996) J. Immunol. 156, 2534–2541
20. Colotta, F., Orlando, S., Fadlon, E. J., Sozzani, S., Matteucci, C., and Mantovani, A. (1995) J. Exp. Med. 181, 2181–2188
21. Sambo, P., Fadlon, E. J., Sironi, M., Matteucci, C., Intron, M., Mantovani, A., and Colotta, F. (1996) Blood 87, 1682–1686
22. Orlando, S., Matteucci, C., Fadlon, E. J., Buurman, W. A., Barbella, M. T., Colotta, F., Intron, M., and Mantovani, A. (1997) J. Immunol. 159, 3861–3868
23. Liu, C., Hart, R. P., Liu, X.-J., Clevenger, W., Maki, R. A., and Souza, E. B. (1996) J. Biol. Chem. 271, 20965–20972

associated with increased release (18, 19). A second pathway is gene expression- and protein synthesis-independent: decoy RII release is activated in about 5 min by chemoattractants, reactive oxygen intermediates, and TNF (20–22). In the present study, metalloprotease inhibitors blocked decoy RII release irrespective of the pathway of induction and the cellular context.

The soluble decoy RII present in biological fluids was classically described as a 45-kDa molecule (16–18). In vitro, we have described two forms of released decoy RII, a 45-kDa molecule released from PMNs (18, 20, 22) and a 60-kDa form released from monocytes and transfected fibroblasts (19, 25). Intriguingly, given the central role of monocytes in inflammation, the 60-kDa version of decoy RII had not previously been described in biological fluids. The results reported here may provide a reasonable explanation for this apparent discrepancy. Serine protease inhibitors had little or no effect on decoy RII release. However, serine protease inhibitors modified the size of decoy RII released from PMNs. In the presence of the inhibitors, PMNs released a 60-kDa, rather than 45-kDa, form of the decoy RII. Thus one could speculate that all cell types release primarily a 60-kDa version of the decoy RII via metalloproteases, and then extracellular serine proteases produced by PMNs and possibly other cellular elements process it to the 45-kDa form found in vitro. The extracellular domains of different membrane proteins, including p55 TNF receptor, IL-6-receptor, Fas-ligand, L-selectin, pro-transforming growth factor α, and thyrotrpin receptor are shed in the supernatant in different cell type, by one or more metalloproteases (30–38). A mutant Chinese hamster ovary cell line, defective in the shedding of several unrelated membrane pro-teins, was recently described, suggesting a common system for membrane protein shedding (39). On the other hand, no sequence similarity can be found in the cleavage site of released proteins (39). Studies based on mutational analysis of the cleavage site of L-selectin, p55 TNF receptor, and pro-TNFα (40–42) showed that the proteolytic processing of molecules might depend on the secondary structural characteristics of the cleavage domain and might not require strict sequence specificity. The observation that the juxtamembrane region of the decoy RII shows no primary sequence similarity to other released receptors does not necessarily imply the involvement of different enzyme systems.

Soluble receptors of different cytokines fulfill different functions (43, 44). For instance, soluble IL-6 receptor allows interaction of IL-6 with the signal-transducing gp130 chain (45, 46), whereas soluble TNF receptor usually blocks TNF (47) and is currently undergoing clinical evaluation (48). The released IL-1 decoy RII does not facilitate signal transduction (10) and presumably acts as a systemic buffering system for IL-1 (3, 13). A splice variant of the decoy RII mRNA, encoding a molecule without a transmembrane segment, has been identified (23). The results reported here show that metalloprotease inhibitors block release and augment surface expression of the decoy RII, irrespective of the inducing agent and the cellular context. Therefore, these observations suggest that proteolytic shedding, rather than differential RNA splicing, is the dominant pathway for generation of soluble decoy RII.
24. Coletta, F., Peri, G., Villa, A., and Mantovani, A. (1984) J. Immunol. **132**, 936–944
25. Re, F., Sironi, M., Muzio, M., Matteucci, C., Introna, M., Orlando, S., Penton-Rol, G., Dower, S. K., Sims, J. E., Coletta, F., and Mantovani, A. (1996) J. Exp. Med. **183**, 1841–1850
26. Stoppani, A., Bonu, P., Ghiara, P., Ruco, L. P., Censini, S., Scapigliati, G., Nuti, S., Tagliabue, A., Baroni, C. D., and Boraschi, D. (1991) J. Immunol. **147**, 1561–1566
27. Sozzani, S., Luini, W., Molino, M., Jilek, P., Bottazzi, B., Cerletti, C., Matsushima, K., and Mantovani, A. (1991) J. Immunol. **147**, 1561–1566
28. Falk, W., Goodwin, R. H., Jr., and Leonard, E. J. (1980) J. Immunol. Methods **33**, 239–245
29. Peri, G., Milanese, C., Matteucci, C., Ruco, L., Zhou, D., Sozzani, S., Coletta, I., and Mantovani, A. (1994) J. Immunol. Methods. **174**, 249–257
30. McGeehan, G. M., Becherer, J. D., Bast, R. C., Jr., Boyer, C. M., Champion, B., Connolly, K. M., Convway, J. G., Furdon, P., Karp, S., Kidau, S., McElroy, A. B., Nichols, J., Pryzwansky, K. M., Schoen, P., Sekut, L., Truesdale, A., Verghese, M., Warner, J., and Ways, J. P. (1994) Nature **370**, 555–557
31. Mullberg, J., Durie, F. H., Otten-Evans, C. O., Alderson, M. R., Rose-John, S., Cosman, D., Black, R. A., and Mohler, K. M. (1995) J. Immunol. **155**, 5198–5205
32. Williams, L. M., Gibbons, D. L., Gearing, A., Maini, R. N., Feldmann, M., and Brennan, P. M. (1996) J. Clin. Invest. **97**, 2833–2841
33. Kayagaki, N., Kawasaki, A., Ebata, T., Okamoto, H., Ikeda, S., Inoue, S., Yoshino, K., Okumura, K., and Yagita, H. (1995) J. Exp. Med. **182**, 1777–1783
34. Feskan, C., Darlak, K., Kahn, J., Walcheck, B., Spatola, A. F., and Kishimoto, T. K. (1996) J. Biol. Chem. **271**, 7019–7024
35. Pandiella, A., and Massague, J. (1991) Proc. Natl. Acad. Sci. U. S. A. **88**, 1726–1730
36. Crouzet, J., Sar, S., Jolivet, A., Hai, M. T. V., Milgrom, E., and Misrahi, M. (1996) J. Biol. Chem. **271**, 4545–4552
37. Arillas, J., Coddly, L., Vollmer, P., Kishimoto, T. K., Rose-John, S., and Massague, J. (1996) J. Biol. Chem. **271**, 11376–11382
38. Migaki, G. I., Kahn, J., and Kishimoto, T. K. (1995) J. Exp. Med. **182**, 549–557
39. Brackebusch, C., Farolomee, E. E., Batkin, M., and Wallach, D. (1994) J. Biol. Chem. **269**, 32488–32496
40. Perez, C., Albert, I., DeFay, K., Zachariades, N., Gooding, L., and Kriegler, M. (1990) Cell **63**, 251–258
41. Bazil, V. (1995) Immunol. Today **16**, 135–140
42. Heaney, M. L., and Golde, D. W. (1996) Blood **87**, 847–857
43. Peters, M., Jacobs, S., Ehlers, M., Vollmer, P., Mullberg, J., Wolf, E., Brem, G., Buschenfeld, K. H., and Rose-John, S. (1996) J. Exp. Med. **183**, 1399–1406
44. Romano, M., Sironi, M., Toniatti, C., Polentarutti, N., Fruscolini, P., Ghezzi, P., Paggiaro, R., Luini, W., Van Hinsbergh, V., Sozzani, S., Bussolino, F., Poli, V., Ciliberto, G., and Mantovani, M. (1997) Immunity **6**, 315–325