A note on damped wave equations with a nonlinear dissipation in non-cylindrical domains *

Lingyang Liu†

Abstract

In this paper, we study the large time behavior of a class of wave equation with a nonlinear dissipation in non-cylindrical domains. The result we obtained here relaxes the conditions for the nonlinear term coefficients (in precise, that is $\beta(t)|u|^\rho u$) in [1] and [3] (which require $\beta(t)$ to be a constant or $\beta(t)$ to be decreasing with time t) and has less restriction for the defined regions.

Key words: Wave equation; stabilization; dissipative nonlinearity; non-cylindrical domain.

1 Introduction and main results

Fix $t \geq 0$. Let Ω_t be a bounded domain in \mathbb{R}. Given $T > 0$. Set $\hat{Q}_T = \Omega_t \times (0, T)$ and denote by $\hat{\Sigma}_T$ the lateral boundary of \hat{Q}_T. Consider the following wave equation with a nonlinear dissipation in the non-cylindrical domain \hat{Q}_T:

$$
\begin{cases}
 u'' - \Delta u + au' + bu + \beta(t)|u|^\rho u = 0 & (x, t) \in \hat{Q}_T, \\
 u = 0 & (x, t) \in \hat{\Sigma}_T, \\
 u(x, 0) = u_0(x), \ u'(x, 0) = u_1(x) & x \in \Omega_0,
\end{cases}
$$

where (u_0, u_1) is any given initial couple, (u, u') is the state variable and $a, b > 0$.

In order to study the qualitative theory of (1.1), we need the following assumptions on the domain \hat{Q}_T:

(A1) $\alpha \in C^2[0, T]$ such that $\alpha(0) = 1$, $\alpha'(t) \geq 0$ and $\sup_{t \in [0, T]} \alpha'(t) < 1$.

(A2) $\beta(t), \beta'(t) \geq 0$, $t \in [0, T]$ and $\beta' \in L^\infty(0, T)$.

(A3) if $n > 2$, then $0 < \rho \leq \frac{2}{n-2}$; if $n = 1$ or $n = 2$, then $0 < \rho < \infty$.

The wellposedness result for (1.1) is stated as follows:

*This work is supported by the NSF of China under grants 11471070, 11771074 and 11371084.

†School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China. E-mail address: liuly938@nenu.edu.cn.
Theorem 1.1 Let \(u_0 \in H^2_0(0,1) \) and \(u_1 \in H^1_0(0,1) \). If assumptions (A1)-(A3) hold, then there exists a unique strong solution \(u \) of problem (1.1) such that \(u \in L^\infty(0,T;H^1(\Omega_t)) \), \(u_t \in L^\infty(0,T;H^2(\Omega_t)) \), and \(u(0) = u_0, u_t(0) = u_1 \).

The proof of Theorem 1.1 is quite similar to the proof of wellposedness results in [2], so we omit it (but what we need to point out is that since the assumption (A2) is different from \(\beta' \leq 0 \), the result we obtained here just admits the solution to belong to \(L^\infty(0,T;H^1_0(\Omega_t) \cap H^2(\Omega_t)) \), not to \(L^\infty(0,\infty;H^1_0(\Omega_t) \cap H^2(\Omega_t)) \).

Lemma 1.1 ([4]) Suppose that \(\tilde{Q}_T \) has a regular lateral boundary \(\tilde{\Sigma}_T \). If \(u \in C^1(\mathbb{R};L^2(\Omega_t)) \), then we have

\[
\frac{d}{dt} \int_{\Omega_t} u(x,t) dx = \int_{\Omega_t} \frac{d}{dt} u(x,t) dx + \int_{\Gamma_t} u(x,t) \hat{x} n_x d\sigma
\]

where \(\Gamma_t \) is the boundary of \(\Omega_t \), \(\hat{x} \) is the velocity of \(x \in \Gamma_t \), and \(n = (n_x,n_t) \) is the unit exterior normal to \(\tilde{\Sigma}_T \). Moreover, it was observed that for \(u \in H^1(\tilde{Q}_T) \) with \(u = 0 \) on \(\tilde{\Sigma}_T \) (all tangential derivative of \(u \) also vanishes on \(\tilde{\Sigma}_T \)), consequently the full gradient of \(u \) satisfies \(\nabla_{x,t} u = (\partial_n u)n \) which implies that

\[
uu = (\partial_n u)n_t \quad \text{and} \quad \nabla_x u = (\partial_n u)n_x.
\]

The energy of system (1.1) \(\mathcal{E}(t) \) is given by

\[
\mathcal{E}(t) = \int_{\Omega_t} \left[\frac{1}{2} u_t^2(t) + \frac{1}{2} u_x^2(t) + \frac{1}{2} u^2(t) + \beta(t) \frac{1}{\rho + 2} |u(t)|^{\rho + 2} \right] dx.
\]

Then the main result of this paper is stated as follows.

Theorem 1.2 One can find \(\lambda > 0 \) and \(\beta(t) \) satisfying \(\lambda(\rho + 1)\beta(t) \geq \beta'(t) \), such that the inequality

\[
\mathcal{E}(t) \leq C\mathcal{E}(0)\varphi^{-1}(t), \quad (1.2)
\]

hold, where \(\varphi(t) \) is chosen by \(\varphi(t) = e^{\lambda t} \), \(C \) is some positive constant.

Proof. Firstly, let \(\varphi \) be a unknown continuous function. Secondly, multiplying both sides of the first equation in (1.1) by \((u_t + \lambda u)\varphi(t) \), where \(\lambda > 0 \), and then integrating it on \((0,T) \times \Omega_t \), we get

\[
\int_0^T \int_{\Omega_t} (u'' - \Delta u + au' + bu + \beta(t)|u|^\rho u)(u_t + \lambda u)\varphi(t) dxdt = 0.
\]
Calculating the above equality, we have

\[
\int_0^T \int_{\Omega_t} u''(u_t + \lambda u) \varphi(t) dx dt
\]

\[
= \int_0^T \int_{\Omega_t} \left[\frac{1}{2} u_t^2 \varphi(t) \right]_t + (\lambda \varphi(t) u_t)_t - \lambda \varphi(t) u_t^2 - \lambda \varphi'(t) u_t - \frac{1}{2} \varphi'(t) u_t^2 \right] dx dt
\]

\[
= \int_{\Omega_T} \int_{\Omega_t} \left[\frac{1}{2} u_t^2(T) \varphi(T) + \lambda \varphi(T) u(T) u_t(T) \right] dx - \int_{\Omega_0} \int_{\Omega_t} \left[\frac{1}{2} u_t^2(0) \varphi(0) + \lambda \varphi(0) u(0) u_t(0) \right] dx
\]

\[
+ \int_0^T \int_{\Gamma_t} \frac{1}{2} u_t^2 \varphi(t) n_t \sigma dt - \int_0^T \int_{\Omega_t} \left[\lambda \varphi(t) u_t^2 + \lambda \varphi'(t) u_t + \frac{1}{2} \varphi'(t) u_t^2 \right] dx dt,
\]

\[
\int_0^T \int_{\Omega_t} -\Delta u(u_t + \lambda u) \varphi(t) dx dt
\]

\[
= \int_0^T \int_{\Omega_t} \left[(-u_x u_t \varphi(t))_x + u_x u_t \varphi(t) - (u_x \lambda u \varphi(t))_x - \lambda \varphi(t) u_x^2 \right] dx dt
\]

\[
= \int_0^T \int_{\Omega_t} \left[(-u_x u_t \varphi(t))_x + \frac{1}{2} u_x^2 \varphi(t) - \frac{1}{2} \varphi'(t) u_x^2 - (\lambda \varphi(t) u u_x)_x + \lambda \varphi(t) u_x^2 \right] dx dt
\]

\[
= \int_0^T \int_{\Omega_t} (-u_x u_t \varphi(t))_x dx dt + \int_{\Omega_T} \frac{1}{2} u_x^2(T) \varphi(T) dx - \int_{\Omega_0} \frac{1}{2} u_x^2(0) \varphi(0) dx
\]

\[
+ \int_0^T \int_{\Gamma_t} \frac{1}{2} u_x^2 \varphi(t) n_t \sigma dt - \int_0^T \int_{\Omega_t} \left[\frac{1}{2} \varphi'(t) u_x^2 - \lambda \varphi(t) u_x^2 \right] dx dt,
\]

\[
\int_0^T \int_{\Omega_t} a u'(u_t + \lambda u) \varphi(t) dx dt = \int_0^T \int_{\Omega_t} \left[a \varphi(t) u_t^2 + a \lambda uu_t \varphi(t) \right] dx dt,
\]

\[
\int_0^T \int_{\Omega_t} b u(u_t + \lambda u) \varphi(t) dx dt
\]

\[
= \int_0^T \int_{\Omega_t} \left[b u u_t \varphi(t) + b \lambda \varphi(t) u_t^2 \right] dx dt
\]

\[
= \int_0^T \int_{\Omega_t} \left[\frac{1}{2} b u^2 \varphi(t) \right]_t - \frac{b}{2} \varphi'(t) u_t^2 + b \lambda \varphi(t) u_t^2 \right] dx dt
\]

\[
= \int_{\Omega_T} \int_{\Omega_t} \left[\frac{1}{2} b \varphi(T) u^2(T) - \int_{\Omega_0} \frac{1}{2} b \varphi(0) u^2(0) dx - \int_0^T \int_{\Omega_t} \left[\frac{b}{2} \varphi'(t) u_t^2 - b \lambda \varphi(t) u_t^2 \right] dx dt,
\]

\[
\int_0^T \int_{\Omega_t} \beta(t) |u|\rho u(u_t + \lambda u) \varphi(t) dx dt
\]
\[
= \int_0^T \int_{\Omega_t} \left[\beta(t) \left(\frac{1}{\rho + 2} |u|^{\rho+2} \right)_t \varphi(t) + \lambda \beta(t) |u|^{\rho+2} \varphi(t) \right] \, dx \, dt
\]
\[
= \int_0^T \int_{\Omega_t} \left(\frac{1}{\rho + 2} |u|^{\rho+2} \beta(t) \varphi(t) \right)_t - \beta'(t) \varphi(t) \frac{1}{\rho + 2} |u|^{\rho+2} \beta(t) \varphi(t) \left(\frac{1}{\rho + 2} |u|^{\rho+2} \right) \, dx \, dt
\]
\[
+ \int_0^T \int_{\Omega_t} \lambda \beta(t) |u|^{\rho+2} \varphi(t) \, dx \, dt
\]
\[
= \int_{\Omega_T} \beta(T) \varphi(T) \frac{1}{\rho + 2} |u(T)|^{\rho+2} \, dx - \int_{\Omega_0} \beta(0) \varphi(0) \frac{1}{\rho + 2} |u(0)|^{\rho+2} \, dx
\]
\[
+ \int_0^T \int_{\Omega_t} \left[\beta'(t) \varphi(t) \frac{1}{\rho + 2} |u|^{\rho+2} + \beta(t) \varphi'(t) \frac{1}{\rho + 2} |u|^{\rho+2} - \lambda \beta(t) |u|^{\rho+2} \varphi(t) \right] \, dx \, dt
\]

Adding (1.3) to (1.7), we obtain
\[
0 = \int_{\Omega_T} \frac{1}{2} u_x^2(T) \varphi(T) + \lambda \varphi(T) u(T) u_t(T) \, dx - \int_{\Omega_0} \frac{1}{2} u_t^2(0) \varphi(0) + \lambda \varphi(0) u(0) u_t(0) \, dx
\]
\[
+ \int_0^T \int_{\Gamma_t} \frac{1}{2} u_x^2(t) n_t \, d\sigma \, dt - \int_0^T \int_{\Omega_t} \left[\lambda \varphi(t) u_t^2 + \lambda \varphi'(t) uu_t + \frac{1}{2} \varphi'(t) u_t^2 \right] \, dx \, dt
\]
\[
- \int_0^T \int_{\Omega_t} (u_x u_t \varphi(t))_x \, dx \, dt + \int_{\Omega_T} \frac{1}{2} u_x^2(T) \varphi(T) \, dx - \int_{\Omega_0} \frac{1}{2} u_x^2(0) \varphi(0) \, dx
\]
\[
+ \int_0^T \int_{\Gamma_t} \frac{1}{2} u_x^2(t) n_t \, d\sigma \, dt - \int_0^T \int_{\Omega_t} \left[\frac{1}{2} \varphi'(t) u_x^2 - \lambda \varphi(t) u_x^2 \right] \, dx \, dt
\]
\[
+ \int_0^T \int_{\Omega_t} [a \varphi(t) u_x^2 + a \lambda uu_t \varphi(t)] \, dx \, dt
\]
\[
+ \int_{\Omega_T} \frac{1}{2} b \varphi(T) u_x^2(T) \, dx - \int_{\Omega_0} \frac{1}{2} b \varphi(0) u_x^2(0) \, dx - \int_0^T \int_{\Omega_t} \frac{1}{2} \varphi'(t) u_x^2 - b \lambda \varphi(t) u_x^2 \, dx \, dt
\]
\[
+ \int_{\Omega_T} \beta(T) \varphi(T) \frac{1}{\rho + 2} |u(T)|^{\rho+2} \, dx - \int_{\Omega_0} \beta(0) \varphi(0) \frac{1}{\rho + 2} |u(0)|^{\rho+2} \, dx
\]
\[
+ \int_0^T \int_{\Omega_t} \left[- \beta'(t) \varphi(t) \frac{1}{\rho + 2} |u|^{\rho+2} - \beta(t) \varphi'(t) \frac{1}{\rho + 2} |u|^{\rho+2} + \lambda \beta(t) |u|^{\rho+2} \varphi(t) \right] \, dx \, dt.
\]

Since the assumption (A1) means that

(H1) The domain \(\hat{Q}_T \) is time-like, i.e., \(|n_t| < |n_x| \).

(H2) \(\hat{Q}_T \) is monotone increasing, i.e., \(\Omega_t \) is expanding with respect to \(t \) or \(n_t \leq 0 \).

\[
\int_0^T \int_{\Gamma_t} \left[\frac{1}{2} u_t^2 \varphi(t) n_t + \frac{1}{2} u_x^2 \varphi(t) n_t \right] \, d\sigma \, dt - \int_0^T \int_{\Omega_t} (u_x u_t \varphi(t))_x \, dx \, dt
\]
Furthermore, (1.8) yields
\[
\int_{\Omega_T} \left[\frac{1}{2} u_t^2(T) + \lambda u(T) u_t(T) + \frac{1}{2} u_x^2(T) + \frac{1}{2} b u^2(T) + \beta(T) \frac{1}{\rho + 2} |u(T)|^{\rho + 2} \right] \phi(T) dx
\]
\[
\leq \int_{\Omega_0} \left[\frac{1}{2} u_t^2(0) + \lambda u(0) u_t(0) + \frac{1}{2} u_x^2(0) + \frac{1}{2} b u^2(0) + \beta(0) \frac{1}{\rho + 2} |u(0)|^{\rho + 2} \right] \phi(0) dx
\]
\[
+ \int_0^T \int_{\Omega_t} \left[\lambda \phi(t) u_t^2 + \lambda \phi(t) u u_t + \frac{1}{2} \phi'(t) u_t^2 \right] dx dt + \int_0^T \int_{\Omega_t} \left[\frac{1}{2} \phi'(t) u_x^2 - \lambda \phi(t) u_x^2 \right] dx dt
\]
\[
- \int_0^T \int_{\Omega_t} \left[a \phi(t) u_t^2 + a \lambda u u \phi(t) \right] dx dt + \int_0^T \int_{\Omega_t} \left[\frac{b}{2} \phi'(t) u^2 - b \lambda \phi(t) u^2 \right] dx dt
\]
\[
+ \int_0^T \int_{\Omega_t} \left[\beta'(t) \phi(t) \frac{1}{\rho + 2} |u|^{\rho + 2} + \beta(t) \phi'(t) \frac{1}{\rho + 2} |u|^{\rho + 2} - \lambda \beta(t) |u|^{\rho + 2} \phi(t) \right] dx dt. \tag{1.9}
\]

We can choose \(\phi(t) = e^{st}, s > 0 \). In particular, let \(\phi(t) = e^{\lambda t} \) (\(\lambda \) be small) and
\[
\lambda (\rho + 1) \beta(t) \geq \beta'(t). \tag{1.10}
\]

We can put
\[
\beta(t) = e^{\mu t} \quad \text{with} \quad \mu \leq \lambda (\rho + 1),
\]
or
\[
\beta(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0,
\]
with \(a_i > 0 (i = 0, \cdots, n) \) such that (1.10) holds.

Then the last three terms of inequality (1.9) are negative. Hence, we deduce
\[
\int_{\Omega_T} \left[\frac{1}{2} u_t^2(T) + \lambda u(T) u_t(T) + \frac{1}{2} u_x^2(T) + \frac{1}{2} b u^2(T) + \beta(T) \frac{1}{\rho + 2} |u(T)|^{\rho + 2} \right] \phi(T) dx
\]
\[
\leq \int_{\Omega_0} \left[\frac{1}{2} u_t^2(0) + \lambda u(0) u_t(0) + \frac{1}{2} u_x^2(0) + \frac{1}{2} b u^2(0) + \beta(0) \frac{1}{\rho + 2} |u(0)|^{\rho + 2} \right] \phi(0) dx.
\]

From the above inequality, we finally derive
\[
\mathcal{E}(t) \leq C \mathcal{E}(0) \phi^{-1}(t),
\]
for some constant \(C > 0 \).
Remark 1.1 If $b = 0$ in (1.7), then use the method before, (1.9) becomes

$$
\int_{\Omega_t} \left[\frac{1}{2} u_t^2(T) + \lambda u(T) u_t(T) + \frac{1}{2} u_x^2(T) + \frac{1}{2} T \frac{1}{\rho + 2} |u(T)|^{\rho+2} \right] \varphi(T) dx
\leq \int_{\Omega_0} \left[\frac{1}{2} u_t^2(0) + \lambda u(0) u_t(0) + \frac{1}{2} u_x^2(0) + \frac{1}{2} T \frac{1}{\rho + 2} |u(0)|^{\rho+2} \right] \varphi(0) dx
$$

$$+
\int_0^T \int_{\Omega_t} \left[\lambda \varphi(t) u_t^2 + \lambda \varphi'(t) u u_t + \frac{1}{2} \varphi'(t) u_x^2 \right] dx dt + \int_0^T \int_{\Omega_t} \left[\frac{1}{2} \varphi'(t) u_x^2 - \lambda \varphi(t) u_x^2 \right] dx dt
\leq \int_0^T \int_{\Omega_t} \left[a \varphi(t) u_t^2 + a \lambda u u_t \varphi(t) \right] dx dt
$$

$$+
\int_0^T \int_{\Omega_t} \left[\beta'(t) \varphi(t) \frac{1}{\rho + 2} |u|^{\rho+2} + \beta(t) \varphi'(t) \frac{1}{\rho + 2} |u|^{\rho+2} - \lambda \beta(t) |u|^{\rho+2} \varphi(t) \right] dx dt.
$$

In this case, in order to absorb the mixed term $\int_0^T \int_{\Omega_t} a \lambda u u_t \varphi(t) dx dt$, we must use Poincaré inequality whose coefficients depend on geometry of the domain. That is

$$\int_{\Omega_t} u^2(x, t) dx \leq |\Omega_t|^2 \int_{\Omega_t} u_x^2(x, t) dx.$$

Thus

$$\int_0^T \int_{\Omega_t} a \lambda u u_t \varphi(t) dx dt \leq \int_0^T \int_{\Omega_t} \frac{1}{2} a \lambda^2 \varphi(t) u^2 dx dt + \int_0^T \int_{\Omega_t} \frac{1}{2} a \varphi(t) u_t^2 dx dt
\leq \int_0^T \int_{\Omega_t} \frac{1}{2} a \lambda^2 |\Omega_t|^2 \varphi(t) u_x^2 dx dt + \int_0^T \int_{\Omega_t} \frac{1}{2} a \varphi(t) u_t^2 dx dt.$$

When $\alpha \in L^\infty(0, \infty)$, and there exist two bounded domains $\Omega_*, \Omega^* \subset \mathbb{R}^1$ such that $\Omega_* \subset \Omega_t \subset \Omega^*, \forall t < t$. Then we have $|\Omega_t| \leq |\Omega^*|, \forall t > 0$. Let $a \lambda |\Omega^*|^2 < 1$. With a similar argument as before, we get

$$\mathcal{E}(t) \leq C \mathcal{E}(0) \varphi^{-1}(t), \quad t > 0,$$

for some constant $C > 0$.

If non-cylindrical domains become unbounded in some X_1-direction of space, as the time t goes to infinite, and are bounded in other X_2-direction of space. Since the projection of it in X_2-direction is a bounded open set, written as w, then the Poincaré inequality in X_2-direction turns out

$$\int_{\Omega_t} u^2(x, t) dx \leq C_w^2 \int_{\Omega_t} |\nabla u(x, t)|^2 dx \leq C_w^2 \int_{\Omega_t} |\nabla u(x, t)|^2 dx,$$

where C_w is the Poincaré constant.

Therefore, the above conclusion is still valid for this case.
Remark 1.2 For the case of domains becoming unbounded in every spatial direction, as the time t goes to infinite, the condition $b \neq 0$ is needed to make (1.2) true. Otherwise, for any given $T > 0$, let $\lambda = \lambda(T)$ (depending on time T) be small and then it follows that

$$E(t) \leq C E(0) \varphi_T^{-1}(t), \quad 0 < t < T,$$

where $\varphi_T^{-1}(t) = e^{-\lambda(T)t}$.

Since Poincaré inequality does not hold for a fixed number in any totally unbounded area, it seems difficult for us to get an estimate (1.2) without compensation ($b = 0$) and this is also an open problem that has been mentioned in some literature such as [3].

References

[1] A. Albeche, S. Hadi, A. Sengouga, Asymptotic behaviour of nonlinear wave equations in a noncylindrical domain becoming unbounded, Electron. J. Differential Equations 288 (2017) 1–15.

[2] J. Ferreira, N. A. Lar’kin, Global solvability of a mixed problem for a nonlinear hyperbolic-parabolic equation in noncylindrical domains, Portugal. Math. 53 (4)(1996) 381–395.

[3] T. G. Ha, J. Y. Park, Global existence and uniform decay of a damped Klein-Gordon equation in a noncylindrical domain, Nonlinear Anal. 74 (2)(2011) 577–584.

[4] T. F. Ma, P. Marin-Rubio, C. M. Surco Chuño, Dynamics of wave equations with moving boundary, J. Differential Equations 262 (5)(2017) 3317–3342.