SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

SEUNGYUN SEO AND HEESUNG SHIN

Abstract. Recently, Choi and Park introduced an invariant of a finite simple graph, called signed a-number, arising from computing certain topological invariants of some specific kinds of real toric manifolds. They also found the signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs.

We introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph G is related to the Poincaré polynomial \(P_{M(G)}(z) \), which is the generating function for the Betti numbers of the real toric manifold \(M(G) \). We give the generating functions for the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs and complete multipartite graphs. As a consequence, we find the Euler characteristic number and the Betti numbers of the real toric manifold \(M(G) \) for complete multipartite graphs \(G \).

1. Introduction

In algebraic topology, Choi and Park \[CP12\] recently introduced a graph invariant, called signed a-number of finite simple graphs \(G \), denote by \(sa(G) \) as follows:

- \(sa(\emptyset) = 1 \).
- \(sa(G) \) is the product of signed a-numbers of connected components of \(G \).
- \(sa(G) = 0 \) if \(G \) is a connected graph with odd vertices.
- If \(G \) is connected with even vertices, then \(sa(G) \) is given by the negative of the sum of signed a-numbers of all induced subgraphs \(G' \) of \(G \) except itself \(G \).

Let the a-number \(a(G) \) be the absolute value of the signed a-number of \(G \), the b-number \(b(G) \) the sum of signed a-numbers induced subgraphs of \(G \), and the c-numbers \(c_i(G) \) the sum of a-numbers of induced subgraphs of \(G \) with \(i \) vertices.

These numbers arise from computing certain topological invariants of some specific kinds of real toric manifolds which are important objects in toric topology. For a finite simple graph \(G \), the real toric manifold \(M(G) \) is the set of real points in the toric manifold associated to the graph associahedron \(P_{B(G)} \) which is the nestohedron as the Minkowski sum of simplices obtained from connected induced subgraphs of \(G \). For further information, see \[De88, DJ91, Pos09, PRW08\].

Recently, Choi and Park \[CP12, Theorem 1.1\] showed that the Euler characteristic \(\chi(M(G)) \) is equal to \(b(G) \) and the (rational) Betti number \(\beta_i(M(G)) \) is equal to \(c_2(G) \). We remark that \(c_2(G) \) is the same with \(a_2(G) \) in \[CP12\]. They also computed these numbers of path graphs \(P_{2n} \), cycle graphs \(C_{2n} \), complete graphs \(K_{2n} \), and star graphs \(K_{1,2n-1} \).

In this paper, we introduce a signed a-polynomial which is a generalization of the signed a-number and gives a-, b-, and c-numbers. The signed a-polynomial of a graph \(G \) is related
to the Poincaré polynomial $P_{M(G)}(z)$, which is the generating function for the Betti numbers of the real toric manifold $M(G)$. The relation will be shown in the equation (7). We give the signed a-polynomials of not only path graphs, cycle graphs, complete graphs, and star graphs, but also complete bipartite graphs $K_{p,q}$ and complete multipartite graphs K_{p_1,\ldots,p_m}. As a consequence, we find $\chi(M(G))$ and $\beta_i(M(G))$ for $G = K_{p,q}$ and $G = K_{p_1,\ldots,p_m}$.

2. Preliminaries

From now on, we assume that a graph is finite, undirected, and simple. We rewrite a formal definition of a signed a-number $sa(G)$ of a graph $G = (V, E)$ in the previous section by

$$sa(G) = \begin{cases}
1 & \text{if } G \text{ is the empty graph;} \\
0 & \text{if } G \text{ is connected and } |V| \text{ is odd;} \\
-\sum_{V' \subseteq V} sa(G|_{V'}) & \text{if } G \text{ is connected and } |V| \text{ is even } \geq 2; \\
\prod_{G' \in \text{comp}(G)} sa(G') & \text{if } G \text{ is disconnected},
\end{cases}$$

where $G|_{V'}$ is the induced subgraph of G by a vertex subset V' and comp(G) is the set of connected components of G. From above definition, it is easy to check $sa(G) = 0$ for every graph G with at least one connected component on odd vertices; and $\sum_{V' \subseteq V} sa(G|_{V'}) = 0$ for every nonempty graph G on V with every connected component on even vertices. Thus, we find a simpler equivalent definition of a signed a-number as follows.

Definition 1. A signed a-number $sa(G)$ of a graph $G = (V, E)$ is defined by

$$sa(G) = \begin{cases}
1, & \text{if } G \text{ is the empty graph;} \\
0, & \text{if } G \text{ has a connected component on odd vertices;} \\
-\sum_{V' \subseteq V} sa(G|_{V'}), & \text{otherwise}.
\end{cases} \tag{1}$$

Consequently, we define a-, b-, and c-numbers of a graph with the signed a-numbers.

Definition 2. The a-, b-, and c-numbers of a graph G, denoted by $a(G)$, $b(G)$, and $c_i(G)$, are defined by

$$a(G) = (-1)^{|V|/2} sa(G), \tag{2}$$
$$b(G) = \sum_{V' \subseteq V} sa(G|_{V'}), \tag{3}$$
$$c_i(G) = \sum_{V' \subseteq V} a(G|_{V'}) = (-1)^{|V'|/2} \sum_{V' \subseteq V} sa(G|_{V'}). \tag{4}$$

By definition, for any graph G, it hold that $c_i(G) = 0$ if i is odd, and $c_n(G) = a(G)$ if n is the number of vertices of G. In topological viewpoint [CP12, Remark 2.2], it is obvious that $a(G)$ and $c_i(G)$ are nonnegative integers.

3. On signed a-polynomials

Now, we introduce a generalization of a-, b-, and c-numbers of graphs.
Definition 3 (Signed a-polynomial). The signed a-polynomial $sa(G; t)$ of a graph G is defined by

$$ sa(G; t) = \sum_{V' \subseteq V(G)} sa(G|_{V'}) t^{|V'\setminus V'|}. $$

(5)

From the equations (11) – (13), for $|V(G)| = n$, it holds that

$$ sa(G) = sa(G; 0), \quad a(G) = (-1)^{n/2} sa(G; 0), \quad b(G) = sa(G; 1), \quad c_1(G) = (-1)^{i/2} t^{n-1} sa(G; t). $$

Thus, $sa(G; t)$ is represented as the sum of $c_i(G)$’s by

$$ sa(G; t) = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j c_{2j}(G) t^{n-2j}. $$

(6)

For example, if $G = \{ \{A, B, C, D\}, \{\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \{B, D\}\}\}$, then

$$ sa(G) = a(G) = 4, \quad b(G) = 0, \quad \text{and} \quad \{c_i(G)\}_{i=0}^{4} = 1, 0, 5, 0, 4. $$

Remark. The Poincaré polynomial $P_{M(G)}(z) = \sum_{i \geq 0} \beta_i(M(G)) z^i$ is the generating function for the Betti numbers $\beta_i(M(G))$ of the real toric manifold $M(G)$. Since $\beta_i(M(G)) = c_{2i}(G)$ in [CP12, Theorem 1.1], it holds that

$$ P_{M(G)}(z) = (\sqrt{-z})^{|V(G)|} \sum_{i=0}^{n} \frac{1}{\sqrt{1-x}}. $$

(7)

In the rest of the section, we compute the generating functions for signed a-polynomials of path graphs, cycle graphs, complete graphs, and star graphs.

Theorem 1. Let P_n be the path graph with n vertices, which is a tree with exactly $n-2$ vertices of degree 2. Then the generating function for signed a-polynomials of P_n is given by

$$ \sum_{n \geq 0} sa(P_n; t) x^n = \frac{-1 + 2tx + \sqrt{1 + 4x^2}}{2tx - 2(t^2 - 1)x^2}. $$

(8)

Proof. From Theorem 2.5 in [CP12], it is known that

$$ c_{2i}(P_n) = \binom{n}{i} - \binom{n}{i-1} = \text{Cat}_{n-i,i}, $$

with Catalan triangle numbers $\text{Cat}_{n,k} = \binom{n+k}{k} - \binom{n+k}{k-1}$. Using the formula (6), we have

$$ sa(P_n; t) = \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \text{Cat}_{n-j,j} t^{n-2j}. $$

Thus, we obtain

$$ \sum_{n \geq 0} sa(P_n; t) x^n = \sum_{n \geq 0} \sum_{j=0}^{\lfloor n/2 \rfloor} (-1)^j \text{Cat}_{n-j,j} t^{n-2j} x^n = \sum_{k \geq 0} \sum_{j \geq 0} \text{Cat}_{k,j} (-x/t)^j (tx)^k. $$

(9)
Since the generating function for Catalan triangle numbers is

$$\sum_{n \geq 0} \sum_{i \geq 0} Cat_{n,i} w^i z^n = \frac{Cat(wz)}{1 - z Cat(wz)},$$

where $Cat(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$, therefore the formula (9) becomes the formula (8).

Remark. For two given sequences $\sigma = (s_0, s_1, s_2, \ldots)$ and $\tau = (t_1, t_2, t_3, \ldots)$, define the generalized Catalan number B_n by the sum of weighted Motzkin paths from $(0,0)$ to $(n,0)$ with up steps $(1,1)$, horizontal steps $(1,0)$, and down steps $(1,-1)$ where we associate weight 1 to each up step, weight s_k to each horizontal step on the line $y = k$, and weight t_k to each down step between two lines $y = k - 1$ and $y = k$. For example, if $\sigma \equiv 0$ and $\tau \equiv 1$, then $B_{2n} = Cat_n$. In Section 7.4 in [Aig07], the generating function $B(z) = \sum_{n \geq 0} B_n z^n$ of the generalized Catalan number B_n with $\sigma = (a,s,s,\ldots)$ and $\tau = (b,u,u,\ldots)$ is equal to

$$B(z) = \frac{(2u-b)+(bs-2au)z-b\sqrt{1-2sx+(s^2-4u)z^2}}{2(u-b)+2(bs-2au+ab)z+2(a^2u-2abs+b^2)z^2}. \tag{10}$$

For $(a,s,b,u,z) = (t,0,-1,-1,x)$, the formula (10) gives a combinatorial interpretation of the following formula

$$\sum_{n \geq 0} sa(P_n;t)x^n = \frac{-1+2tx+\sqrt{1+4x^2}}{2tx-2(t^2-1)x^2},$$

and for $(a,s,b,u,z) = (0,0,-1,t^2-1,x)$, the formula (10) gives a combinatorial interpretation of the following formula

$$\sum_{n \geq 0} sa(P_{2n};t)x^{2n} = \frac{-(t^2+1)-(t^2-1)\sqrt{1+4x^2}}{-2t^2+2(t^2-1)x^2}.$$

Theorem 2. Let C_n be the cycle graph with n vertices, which is a connected graph with all vertices of degree 2. Then the generating function for signed a-polynomials of C_n is given by

$$\sum_{n \geq 0} sa(C_n;t)x^n = \frac{1}{2} + \frac{1}{2\sqrt{1+4x^2}} \cdot \frac{(t^2+1)x + t\sqrt{1+4x^2}}{t - (t^2-1)x}. \tag{11}$$
SIGNED A-POLYNOMIALS OF GRAPHS AND POINCARÉ POLYNOMIALS OF REAL TORIC MANIFOLDS

\[
\begin{array}{c|ccc}
G & C_0 & C_{2n} & C_{2n+1} \\
\hline
\text{sa}(G) & 1 & (-1)^n \binom{2n}{n} & 0 \\
a(G) & 1 & \frac{1}{2} \binom{2n}{n} & 0 \\
b(G) & 1 & 0 & (-1)^n \binom{2n}{n} \\
c_{2i}(G) & \delta_{i,0} \left\{ \begin{array}{cl}
\frac{1}{2} \binom{n}{i}, & \text{if } i = n \\
\binom{2n}{i}, & \text{if } i < n
\end{array} \right.
\end{array}
\]

g.f. for $\text{sa}(G; t)$

\[
\sum_{n \geq 0} \text{sa}(C_n; t) x^n = \frac{1}{2} + \frac{1}{2\sqrt{1 + 4x^2}} \cdot \frac{(t^2 + 1)x + t \sqrt{1 + 4x^2}}{t - (t^2 - 1)x}
\]

Table 2. Numbers for cycle graphs C_n.

Proof. From Theorem 2.6 in [CP12], it is known that

\[
c_{2i}(C_n) = \left\{ \begin{array}{cl}
1, & \text{if } i = n = 0, \\
\frac{1}{2} \binom{n}{i/2}, & \text{if } 2i = n > 0, \\
\binom{2n}{i}, & \text{if } 2i < n.
\end{array} \right.
\]

Using the formula (6), we obtain

\[
\sum_{n \geq 0} \text{sa}(C_n; t) x^n = \frac{1}{2} - \frac{1}{2} \sum_{j \geq 0} \binom{2j}{j} (-x^2)^j + \sum_{k \geq 0} \sum_{j \geq 0} \binom{2j + k}{j} (tx)^k (-x^2)^j.
\]

(12)

From $\sum_{n \geq 0} \binom{2n}{n} z^n = \frac{1}{1 - \sqrt{1 - 4z}}$, we have two generating functions:

\[
\sum_{n \geq 0} \binom{2n}{n} z^n = \frac{1}{1 - \sqrt{1 - 4z}},
\]

\[
\sum_{n \geq 0} \sum_{k \geq 0} \binom{2n + k}{n} w^k z^n = \frac{1}{1 - \sqrt{1 - 4z}} \cdot \frac{1}{1 - w \left(1 - \sqrt{1 - 4z}\right)}.
\]

Using above two generating functions, the formula (12) becomes the formula (11). \qed

Let A_n be the n-th Euler zigzag number for which the exponential generating function is

\[
\sum_{n \geq 0} A_n \frac{z^n}{n!} = \sec z + \tan z.
\]

(13)

Theorem 3. Let K_n be the complete graph with n vertices. Then the exponential generating function for signed a-polynomials of K_n is given by

\[
\sum_{n \geq 0} \text{sa}(K_n; t) \frac{z^n}{n!} = e^{tx} \text{sech } x.
\]

(14)
\[
G \quad \quad \quad K_0 \quad K_{2n} \quad K_{2n+1}
\]
\[
\begin{array}{c|c|c|c}
\text{sa}(G) & 1 & (-1)^n A_{2n} & 0 \\
a(G) & 1 & A_{2n} & 0 \\
b(G) & 1 & 0 & (-1)^n A_{2n+1} \\
c_{2i}(G) & \delta_{i,0} & \left(\frac{2n}{2i}\right) A_{2i} & \left(\frac{2n+1}{2i}\right) A_{2i}
\end{array}
\]

\[
e.g.f. \text{ for } sa(G; t) \quad \sum_{n=0}^{\infty} \text{sa}(K_n; t) \frac{x^n}{n!} = e^{tx} \text{sech}(x)
\]

Table 3. Numbers for complete graphs \(K_n\), where \(\sum_{n=0}^{\infty} A_n \frac{x^n}{n!} = \sec z + \tan z\).

\textbf{Proof.} From Theorem 2.8 in [CP12], it is known that
\[
\text{sa}(K_{2n}) = (-1)^n A_{2n}.
\]

Using the formula (15), we obtain
\[
\sum_{n=0}^{\infty} \text{sa}(K_n; t) \frac{x^n}{n!} = \sum_{n=0}^{\infty} \sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} \text{sa}(K_{2j}) t^{n-2j} \frac{x^n}{n!} \\
= \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \binom{k+2j}{2j} (-1)^j A_{2j} t^k \frac{x^{k+2j}}{(k+2j)!} \\
= \left(\sum_{k=0}^{\infty} \frac{(tx)^k}{k!} \right) \left(\sum_{j=0}^{\infty} A_{2j} \frac{(ix)^{2j}}{(2j)!} \right)
\]

By (13), the formula (15) becomes the formula (14). \(\Box\)

\textbf{Remark.} The Euler polynomials \(E_n(t)\) is defined by the exponential generating function
\[
\sum_{n=0}^{\infty} E_n(t) \frac{x^n}{n!} = \left(\frac{2}{e^{2x}+1} \right) e^{tx}. \text{ See [Com74, pp. 48]. Then it follows}
\]
\[
\text{sa}(K_n; t) = E_n(t + \frac{1}{2}) 2^n
\]

from \(\sum_{n=0}^{\infty} \text{sa}(K_n; t) \frac{x^n}{n!} = e^{tx} \text{sech} x = \left(\frac{2}{e^{2x}+1} \right) e^{2x} \left(\frac{ix}{2} \right)^n = \sum_{n=0}^{\infty} E_n \left(\frac{t+1}{2} \right) \frac{(2x)^n}{n!} \).

\textbf{Theorem 4.} Let \(K_{1,n}\) be the star graph with \(n+1\) vertices, which is a tree with at least one vertex of degree \(n\). Then the exponential generating function for signed \(a\)-polynomials of \(K_{1,n}\) is given by
\[
\sum_{n=0}^{\infty} \text{sa}(K_{1,n}; t) \frac{x^n}{n!} = e^{tx} (t - \tanh x).
\]

\textbf{Proof.} From Theorem 2.9 in [CP12], it is known that
\[
\text{sa}(K_{1,2n+1}) = (-1)^{n+1} A_{2n+1}.
\]
Using the formula (5), we obtain

\[y = \sum_{n \geq 0} \frac{sa(K_{1,n};t)}{n!} x^n = e^{tx}(t - \tanh x) \]

Table 4. Numbers for star graphs \(K_{1,n} \), where \(\sum_{n \geq 0} A_n \frac{x^n}{n!} = \sec z + \tan z. \)

Using the formula (6), we obtain

\[
\sum_{n \geq 0} \frac{sa(K_{1,n};t)}{n!} x^n = \sum_{n \geq 0} \left(sa(0)t^{n+1} + \sum_{j=0}^{[n/2]} \binom{n}{2j+1} sa(K_{1,2j+1}) t^{n-(2j+1)} \right) \frac{x^n}{n!}
\]

\[
= \sum_{n \geq 0} t^{n+1} \frac{x^n}{n!} + \sum_{k \geq 0} \sum_{j \geq 0} \binom{k+2j+1}{2j+1} (-1)^{j+1} A_{2j+1} t^k \frac{x^{k+2j+1}}{(k+2j+1)!}
\]

\[
= t \left(\sum_{n \geq 0} \frac{(tx)^n}{n!} \right) + \left(\sum_{k \geq 0} \frac{(tx)^k}{k!} \right) \left(t \sum_{j \geq 0} A_{2j+1} \frac{(tx)^{2j+1}}{(2j+1)!} \right)
\]

(17)

By (13), it follows

\[
\sum_{j \geq 0} A_{2j+1} \frac{(tx)^{2j+1}}{(2j+1)!} = \tan(tx) = t \tanh x
\]

and the formula (17) becomes the formula (16). □

Since \(sa(G) = sa(G; 0) \), putting \(t = 0 \) in the generating functions \(8, 11, 14 \), and (16) yields the generating functions for signed a-numbers of path graphs, cycle graphs, complete graphs, and star graphs as follows:

\[
\sum_{n \geq 0} \frac{sa(P_n)x^n}{n!} = -1 + \sqrt{1 + 4x^2} = \sum_{m \geq 0} (-1)^m \text{Cat}_m x^{2m},
\]

\[
\sum_{n \geq 0} \frac{sa(C_n)x^n}{n!} = \frac{1}{2} + \frac{1}{2\sqrt{1 + 4x^2}} = 1 + \sum_{m \geq 1} \frac{(-1)^m}{2} \binom{2m}{m} x^{2m},
\]

\[
\sum_{n \geq 0} \frac{sa(K_n)x^n}{n!} = \text{sech} x = \sum_{m \geq 0} (-1)^m A_{2m} \frac{x^{2m}}{(2m)!},
\]

\[
\sum_{n \geq 0} \frac{sa(K_{1,n})x^n}{n!} = -\tanh x = \sum_{m \geq 1} (-1)^m A_{2m-1} \frac{x^{2m-1}}{(2m-1)!},
\]

Similarly, since \(b(G) = sa(G; 1) \), putting \(t = 1 \) in the generating functions \(8, 11, 14 \), and (16) yields the generating functions for b-numbers of path graphs, cycle graphs, complete
graphs, and star graphs as follows:

\[
\sum_{n \geq 0} b(P_n) x^n = 1 + \frac{-1 + \sqrt{1 + 4x^2}}{2x} = 1 + \sum_{m \geq 0} (-1)^m \text{Cat}_m x^{2m+1},
\]

\[
\sum_{n \geq 0} b(C_n) x^n = 1 + \frac{x}{\sqrt{1 + 4x^2}} = 1 + \sum_{m \geq 0} (-1)^m \binom{2m}{m} x^{2m+1},
\]

\[
\sum_{n \geq 0} \frac{b(K_n)}{n!} = 1 + \tanh x = 1 + \sum_{m \geq 0} (-1)^m A_{2m+1} \frac{x^{2m+1}}{(2m+1)!},
\]

\[
\sum_{n \geq 0} \frac{b(K_{1,n})}{n!} = \text{sech } x = \sum_{m \geq 0} (-1)^m A_{2m} \frac{x^{2m}}{(2m)!}.
\]

According to (7), putting \(t \leftarrow \frac{1}{\sqrt{1 - z}} \) and \(x \leftarrow x \sqrt{1 - z} \) in the generating functions (8), (11), (14), and (16) yields the next result.

Corollary 5. Let \(P_M(G)(z) \) denote the Poincaré polynomials of the real toric manifolds \(M(G) \) associated to the graph \(G \). Then the generating functions for Poincaré polynomials of the real toric manifolds associated to path graphs \(P_n \), cycle graphs \(C_n \), complete graphs \(K_n \), and star graphs \(K_{1,n} \) are as follows:

\[
\sum_{n \geq 0} P_M(P_n)(z) x^n = \frac{-1 + 2x + \sqrt{1 - 4zx^2}}{2x - 2(1 + z)x^2},
\]

\[
\sum_{n \geq 0} P_M(C_n)(z) x^n = \frac{1}{2} + \frac{1}{2\sqrt{1 - 4zx^2}} \cdot \frac{(1 - z)x + \sqrt{1 - 4zx^2}}{1 - (1 + z)x},
\]

\[
\sum_{n \geq 0} \frac{P_M(K_n)(z)}{n!} x^n = e^x \sec(x\sqrt{z})
\]

\[
\sum_{n \geq 0} \frac{P_M(K_{1,n})(z)}{n!} x^n = e^x \left(1 + \sqrt{z} \tan(x\sqrt{z}) \right).
\]

4. **Signed a-number of complete multipartite graphs**

Firstly, we consider the exponential generating function for signed a-numbers of complete bipartite graphs. Denote by \(K_{p,q} \) the complete bipartite graph with \(p \)-set and \(q \)-set.

Theorem 6. The exponential generating function for signed a-numbers of complete bipartite graphs is

\[
\sum_{p \geq 0} \sum_{q \geq 0} \text{sa}(K_{p,q}) \frac{x^p y^q}{p! q!} = \frac{\cosh x + \cosh y - 1}{\cosh(x + y)}.
\]

Proof. For two nonnegative integers \(p \) and \(q \) whose sum is even, there is the recurrence

\[
\sum_{i,j \geq 0} \binom{p}{i} \binom{q}{j} \text{sa}(K_{i,j}) = \begin{cases}
0 & \text{if } p \text{ and } q \text{ are positive}, \\
1 & \text{if } p \text{ or } q \text{ is zero}.
\end{cases}
\]
The exponential generating function for right-hand side of (19) is
\[
\sum_{p, q \geq 0} (RHS) \frac{x^p y^q}{p! q!} = 1 + (\cosh x - 1) + (\cosh y - 1).
\] (20)

The exponential generating function for left-hand side of (19) is
\[
\sum_{p, q \geq 0} (LHS) \frac{x^p y^q}{p! q!} = \sum_{p, q \geq 0} \sum_{0 \leq i \leq p, 0 \leq j \leq q, i + j \text{ even}} \left(\frac{x^{p-i} y^{q-j}}{(p-i)! (q-j)!} \right)
\]
\[
= \left(\sum_{i, j \geq 0} \text{sa}(i, j) \frac{x^i y^j}{i! j!} \right) \left(\sum_{i, j \geq 0} \frac{x^i y^j}{i! j!} \right)
\]
\[
= \left(\sum_{p, q \geq 0} \text{sa}(K_{p, q}) \frac{x^p y^q}{p! q!} \right) \cosh(x + y).
\] (21)

Thus, by (20) and (21), we are done. \qed

The generating function \(S_A_q(x) \) is defined by \(S_A_q(x) = \sum_{p \geq 0} \text{sa}(K_{p, q}) \frac{x^p}{p!} \), which is the coefficient of \(y^q/q! \) in \(\frac{\cosh(x + \cosh y - 1)}{\cosh(x + y)} \). Given a fixed nonnegative \(q \), we can induce the detailed formula \(S_A_q(x) \) by
\[
S_A_q(x) = \frac{\partial^q}{\partial y^q} \left(\frac{\cosh(x + \cosh y - 1)}{\cosh(x + y)} \right) \bigg|_{y=0}.
\]

For example, the initial generating functions \(A_q(x) \) are listed as follows:
\begin{align*}
S_A_0(x) &= 1, \\
S_A_1(x) &= -\tanh x, \\
S_A_2(x) &= -2 \sech^2 x + \sech x + 1, \\
S_A_3(x) &= (6 \sech^2 x - 3 \sech x - 1) \tanh x, \\
S_A_4(x) &= 24 \sech^4 x - 12 \sech^3 x - 20 \sech^2 x + 7 \sech x + 1.
\end{align*}

Next, we generalize the generating function (18) for complete multipartite graphs. Denote by \(K_{p_1, \ldots, p_m} \) the complete \(m \)-partite graph with \(p_1 \)-set, \ldots, \(p_m \)-set.

Theorem 7. The exponential generating function for signed \(a \)-numbers of complete \(m \)-partite graphs is
\[
\sum_{p_1, \ldots, p_m \geq 0} \text{sa}(K_{p_1, \ldots, p_m}) \frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} = \frac{(1 - m) + \cosh x_1 + \cdots + \cosh x_m}{\cosh(x_1 + \cdots + x_m)}.
\] (22)

Proof. For \(m \) nonnegative integers \(p_1, \ldots, p_m \) whose sum is even, there is the recurrence
\[
\sum_{i_1, \ldots, i_m \geq 0} \binom{p_1}{i_1} \cdots \binom{p_m}{i_m} \text{sa}(K_{i_1, \ldots, i_m}) = \begin{cases} 0 & \text{if at least two } p_i \text{'s are positive}, \\ 1 & \text{if all } p_i \text{'s are zeros, but at most one}. \end{cases}
\] (23)
Using both sides of (23), we have the generalized formulae of (20) and (21) as follows:

\[
\sum_{p_1 \geq 0} \cdots \frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} = 1 + (\cosh x_1 - 1) + \cdots + (\cosh x_m - 1)
\]

and

\[
\sum_{p_1 \geq 0} \cdots \frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} = \left(\sum_{p_1, \ldots, p_m \geq 0} sa(K_{p_1, \ldots, p_m}) \frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} \right) \cosh(x_1 + \cdots + x_m),
\]

which completes the proof.

\[\square\]

Remark. Obviously, the exponential generating functions for a-numbers of complete bipartite graphs and complete m-partite graphs are equal to

\[
\sum_{p \geq 0} \sum_{q \geq 0} a(K_{p, q}) \frac{x^p y^q}{p! q!} = \frac{\cos x + \cos y - 1}{\cos(x + y)},
\]

\[
\sum_{p_1, \ldots, p_m \geq 0} a(K_{p_1, \ldots, p_m}) \frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} = \frac{(1 - m) + \cos x_1 + \cdots + \cos x_m}{\cos(x_1 + \cdots + x_m)}.
\]

5. Signed a-polynomial of complete multipartite graphs

Firstly, we consider the exponential generating function for signed a-polynomials of complete bipartite graphs.

Theorem 8. Let \(K_{p, q} \) be the complete bipartite graph with \(p \)-set and \(q \)-set. Then the exponential generating function for signed a-polynomials of \(K_{p, q} \) is given by

\[
\sum_{p \geq 0} \sum_{q \geq 0} sa(K_{p, q}) \frac{x^p y^q}{p! q!} = e^{(x+y)} \left(\frac{\cosh x + \cosh y - 1}{\cosh(x + y)} \right),
\]

(24)

Proof. By definition, we have

\[
\sum_{p \geq 0} \sum_{q \geq 0} sa(K_{p, q}) \frac{x^p y^q}{p! q!} = \sum_{p \geq 0} \sum_{q \geq 0} \left(\sum_{0 \leq p' \leq p, 0 \leq q' \leq q} \binom{p}{p'} \binom{q}{q'} sa(K_{p', q'}) t^{p' - p + q' - q} \right) \frac{x^p y^q}{p! q!}.
\]

(25)

Substituting \(p'' = p - p' \) and \(q'' = q - q' \), the right-hand side of (25) becomes

\[
\sum_{p'' \geq 0} \sum_{q'' \geq 0} \left(\sum_{p' \geq 0} \sum_{q' \geq 0} \binom{p'}{p''} \binom{q'}{q''} sa(K_{p', q'}) t^{p' - p'' + q''} \right) \frac{x^{p'} y^{q'}}{(p' + p'')!(q' + q'')!},
\]

\[= \left(\sum_{p' \geq 0} \sum_{q' \geq 0} sa(K_{p', q'}) \frac{x^{p'} y^{q'}}{p'! q'!} \right) \left(\sum_{p'' \geq 0} \frac{(tx)^{p''}}{p''!} \right) \left(\sum_{q'' \geq 0} \frac{(ty)^{q''}}{q''!} \right).
\]

The formula (18) completes the proof. \[\square\]
Remark. Since the coefficient of \(\frac{y^q}{q!} \) in the formula (24) is equal to \(\sum_{n \geq 0} sa(K_{q,n}; t) \frac{x^n}{n!} \), it holds that

\[
\sum_{n \geq 0} sa(K_{q,n}; t) \frac{x^n}{n!} = \frac{\partial^q}{\partial y^q} e^{t(x+y)} \left(\frac{\cosh x + \cosh y - 1}{\cosh(x + y)} \right) \bigg|_{y=0} .
\]

In case of \(q = 1 \), we have the exponential generating function (16) for signed a-polynomials of star graphs again.

Similarity, we can deduce the next theorem by the same above method.

Theorem 9. Let \(K_{p_1, \ldots, p_m} \) be the complete \(m \)-partite graph with \(p_1 \)-set, \(\ldots, p_m \)-set. Then the exponential generating function for signed a-polynomials of \(K_{p_1, \ldots, p_m} \) is given by

\[
\sum_{\sum p_i \geq 0} \frac{b(K_{p_1, \ldots, p_m})}{p_1! \cdots p_m!} \left(\frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} \right) = e^{(x_1 + \cdots + x_m)} \left(\frac{(1 - m) + \cosh x_1 + \cdots + \cosh x_m}{\cosh(x_1 + \cdots + x_m)} \right).
\]

Since \(sa(G) = sa(G; 0) \), putting \(t = 0 \) in the generating functions (24) and (26) gives the two formula (13) and (22), respectively. Also, since \(b(G) = sa(G; 1) \), putting \(t = 1 \) in the generating functions (24) and (26) yields the generating functions for b-numbers of complete bipartite graphs and complete multipartite graphs as follows:

\[
\sum_{p \geq 0} \sum_{q \geq 0} b(K_{p,q}) \frac{x^p y^q}{p! q!} = e^{x+y} \left(\frac{\cosh x + \cosh y - 1}{\cosh(x + y)} \right),
\]

\[
\sum_{p_1, \ldots, p_m \geq 0} \frac{b(K_{p_1, \ldots, p_m})}{p_1! \cdots p_m!} \left(\frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} \right) = e^{x_1 + \cdots + x_m} \left(\frac{(1 - m) + \cosh x_1 + \cdots + \cosh x_m}{\cosh(x_1 + \cdots + x_m)} \right).
\]

The next result follows from two generating functions (24) and (26) by plugging in (7).

Corollary 10. Let \(P_{M(K_{p,q})}(z) \) and \(P_{M(K_{p_1, \ldots, p_m})}(z) \) denote the Poincaré polynomials of the real toric manifolds associated to the complete bipartite graph \(K_{p,q} \) and the complete \(m \)-partite graph \(K_{p_1, \ldots, p_m} \). Then the generating functions for Poincaré polynomials \(P_{M(K_{p,q})}(z) \) and \(P_{M(K_{p_1, \ldots, p_m})}(z) \) are equal to

\[
\sum_{n \geq 0} P_{M(K_{p,q})}(z) \frac{x^n}{n!} = e^{x+y} \left(\frac{\cos(x \sqrt{z}) + \cos(y \sqrt{z}) - 1}{\cos(x \sqrt{z} + y \sqrt{z})} \right),
\]

\[
\sum_{n \geq 0} P_{M(K_{p_1, \ldots, p_m})}(z) \frac{x_1^{p_1}}{p_1!} \cdots \frac{x_m^{p_m}}{p_m!} = e^{x_1 + \cdots + x_m} \left(\frac{(1 - m) + \cos(x_1 \sqrt{z}) + \cdots + \cos(x_m \sqrt{z})}{\cos(x_1 \sqrt{z} + \cdots + x_m \sqrt{z})} \right).
\]

Table 5 shows the Poincaré polynomials \(P_{M(K_{p,q})}(z) \) for \(p \leq 6 \) and \(q \leq 3 \).

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0004476, 2012R1A1A1014154) and INHA UNIVERSITY Research Grant.
\[\begin{array}{c|ccc}
 p \backslash q & 0 & 1 & 2 \\
 \hline
 0 & 1 & 1 & 1 \\
 1 & 1 & 1 + z & 1 + 2z \\
 2 & 1 & 1 + 2z & 1 + 4z + 3z^2 \\
 3 & 1 & 1 + 3z + 2z^2 & 1 + 6z + 13z^2 \\
 4 & 1 & 1 + 4z + 8z^2 & 1 + 8z + 34z^2 + 27z^3 \\
 5 & 1 & 1 + 5z + 20z^2 + 16z^3 & 1 + 10z + 70z^2 + 167z^3 \\
 6 & 1 & 1 + 6z + 40z^2 + 96z^3 & 1 + 12z + 125z^2 + 597z^3 + 483z^4 \\
 \end{array} \]

Table 5. Table for \(P_{M(K_{p,q})}(z) \)

References

[Aig07] M. Aigner, *A course in enumeration*, Graduate Texts in Mathematics, vol. 238, Springer, Berlin, 2007.

[Com74] L. Comtet, *Advanced combinatorics*, enlarged ed., D. Reidel Publishing Co., Dordrecht, 1974, The art of finite and infinite expansions.

[CP12] S. Choi and H. Park, *A new graph invariant arises in toric topology*, ArXiv e-prints (2012).

[Del88] T. Delzant, *Hamiltoniens périodiques et images convexes de l’application moment*, Bull. Soc. Math. France 116 (1988), no. 3, 315–339.

[DJ91] M. W. Davis and T. Januszkiewicz, *Convex polytopes, Coxeter orbifolds and torus actions*, Duke Math. J. 62 (1991), no. 2, 417–451.

[Pos09] A. Postnikov, *Permutohedra, associahedra, and beyond*, Int. Math. Res. Not. IMRN (2009), no. 6, 1026–1106.

[PRW08] A. Postnikov, V. Reiner, and L. Williams, *Faces of generalized permutohedra*, Doc. Math. 13 (2008), 207–273.

(Seunghyun Seo) Department of Mathematics Education, Kangwon National University, Chuncheon 200-701, Korea

E-mail address: shyunseo@kangwon.ac.kr

(Heesung Shin) Department of Mathematics, Inha University, Incheon 402-751, Korea

E-mail address: shin@inha.ac.kr