Entanglement–Preserving Limit Cycles
from Sequential Quantum Measurements and Feedback

Philippe Lewalle,1,2,* Cyril Elouard,1,2 and Andrew N. Jordan1,2,3

1Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
2Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY 14627, USA
3Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
(Dated: March 9, 2020)

Entanglement generation and preservation is a key task in quantum information processing, and a variety of protocols exist to entangle remote qubits via measurement of their spontaneous emission. We here propose feedback methods, based on monitoring the fluorescence of two qubits and using only local \( \pi \)–pulses for control, to increase the yield and/or lifetime of entangled two–qubit states. Specifically, we describe a protocol based on photodetection of spontaneous emission (i.e. using quantum jump trajectories) which allows for entanglement preservation via measurement undoing, creating a limit cycle around a Bell states. We then demonstrate that a similar modification can be made to a recent feedback scheme based on homodyne measurement (i.e. using diffusive quantum trajectories) [L. S. Martin and K. B. Whaley, arXiv:1912.00067], in order to increase the lifetime of the entanglement it creates. Our schemes are most effective for high measurement efficiencies, and the impact of less-than-ideal measurement efficiency is quantified.

I. INTRODUCTION

Entanglement is one of the key features of quantum systems which allows for potential information–processing advantages, over those possible in purely classical systems. An unmonitored spontaneous emission process leads to decoherence and loss of entanglement [1]. On the other hand, measurement of such decay channels via photodetection has been proven to be an effective means of generating entanglement [2–15]. Such processes can be realized with more general time–continuous measurements [5, 16–25], in which the entanglement generation is tracked by the same process that generates it. Advances in continuous quantum measurement (stochastic quantum trajectories) in general [26–34], have been consistently connected to the development of Hamiltonian feedback protocols, conditioned on the real–time measurement record, which aim to implement useful quantum control tasks [25, 35–54]. It is no surprise then, that there has been considerable theory work aimed at devising feedback protocols based on the quantum trajectories obtained by monitoring a pair of emitters, with the goal of generating entanglement or combatting its loss [5, 19, 25]. Our proposal here involves supplementing existing measurement and feedback schemes [24, 25], based on monitoring two qubits via their natural decay channel, with fast \( \pi \)–pulses. We will show that this will allow us to trap the two–qubit state in limit cycles around Bell states. It is worth noting that we consider “continuous” measurement that relies on finite time-steps \( \Delta t \) (i.e. finite detector integration time leading the measurement record at each step), such that fast operations can be interjected so as to effectively take place “between” measurements. While this is a reasonable regime to consider on real devices, it marks a mathematical departure from approaches to continuous measurements and feedback that are defined strictly in the time–continuum limit (where \( \Delta t \) becomes an infinitesimal \( dt \)). We also point out that most existing schemes which address the task of interest rely on additional resources, such as ancillary qubits or additional transitions for storing quantum information; while there are potential advantages to such approaches, ours requires only the two qubits and feedback based on local operations and classical communication (LOCC). The use of LOCC for feedback implies that the measurements are the only non–local element in our scheme, and must therefore be entirely responsible for entanglement generation; operations local to each qubit cannot increase the concurrence of the two–qubit state at all. The role of the feedback is then largely to perform operations which allow subsequent measurements to better generate entanglement, or prevent subsequent measurements from decreasing the entanglement.

Our proposed scheme bears conceptual similarity to a number of existing quantum control protocols. First, the use of fast \( \pi \)–pulses to effectively reverse decoherence processes has its roots in spin–echo techniques [55]; more recently this has been generalized into “bang–bang” (BB) type control schemes (which may themselves be viewed as a subset of dynamical decoupling protocols) [56–73]. While there has been work which combines dynamical decoupling or BB control with other quantum error correction methods [60, 62, 64], or with measurement via the quantum Zeno effect [65, 66], we are unaware of past works which aim to interject fast BB–like controls in-between steps of Hamiltonian feedback. Second, we will see that the way we use our BB–like feedback, especially in conjunction with photodetection, is effectively equivalent to a measurement reversal procedure [74–80].

We will proceed as follows: We first consider jump trajectories from ideal photodetection measurements in Sec. II. We demonstrate a simple feedback procedure
based on fast $\pi$–pulses, which allows us to preserve virtually all concurrence generated by our measurements for arbitrarily long times. Next we develop the corresponding procedure in the homodyne case [18, 24], building on the recent scheme by Martin and Whaley [25] (which is, in turn, connected to our recent works [23, 24, 81]). The existing scheme implements local unitary feedback operations, and allows for deterministic generation of a Bell state based on ideal operation in the time–continuum limit. We exit the time–continuum assumption, and add $\pi$–pulse based BB–like control atop the local feedback rotations derived in Ref. [25]. This is shown to again lead to a stable limit cycle about a Bell state, which may preserve the entanglement generated by the Hamiltonian control indefinitely. In Sec. IV we re-consider each of the above schemes, assuming that we have inefficient measurements (but still an otherwise ideal setup). We perform a numerical analysis to quantify how the performance of our schemes degrade when state purity is gradually lost due to accumulated inefficient measurements. Conclusions and outlook are presented in Sec. V.

II. PHOTODETECTION–BASED FEEDBACK: CONCURRENCE PRESERVATION VIA MEASUREMENT UNDOING

We begin with the case of jump trajectories, obtained from photodetection of two qubits’ spontaneous emission, as per the device illustrated in Fig. 1(a). It will be helpful to recapitulate a few of our previous results [24], which will prove key to the scheme we now construct. Firstly, with the two–qubit state initialized in $|ee\rangle$, two clicks are expected over the course of an experiment, absent any re–excitation of either qubit after it decays; the first click heralds the generation of a Bell state $|\Phi^\pm \rangle = (|eg\rangle \pm |ge\rangle)/\sqrt{2}$ between the emitters, while the second click eliminates the entanglement, generating the state $|gg\rangle$. Secondly, Bell states of the form $|\Phi^\pm \rangle = (|ee\rangle \pm |gg\rangle)/\sqrt{2}$ hold their entanglement longer on average than the states $|\Psi^\pm \rangle$ under fluorescence and photodetection; this is because one click heralds complete disentanglement for a state $|\Psi^\pm \rangle$, whereas a state $|\Phi^\pm \rangle$ requires either two clicks or a long (compared to $T_1$) wait time to asymptotically disentangle the qubits.

While these even and odd parity Bell states behave differently, a $\pi$–rotation on a single qubit is all that is required to change from one type to the other. Mathematically, we say that flipping qubit A and leaving qubit B alone can be represented by the unitary operation $F_A = i\sigma^z_A \otimes 1^B$, such that $F_A |\Phi^\pm \rangle \propto |\Phi^\mp \rangle$ up to a global phase factor. A feedback scheme for entanglement creation is thus easily identified: Starting from $|ee\rangle$ we wait for a click which heralds the creation of a state $|\Psi^\pm \rangle$; when that happens, we immediately flip one of the two qubits (e.g. by the operation $F_A$) to obtain the more–robust $|\Phi^\mp \rangle$ state instead. If we measure a single photon emission after obtaining a state of the type $|\Phi^\pm \rangle$, this subsequent click just takes us back to $|\Psi^\pm \rangle$ (which can again be immediately reset to $|\Phi^\mp \rangle$ by flipping one qubit).

Between two clicks, the evolution of the two qubit system still degrades entanglement, such that additional pulses are needed to fully preserve state $|\Phi^\pm \rangle$. Consider evolution of a state of form $\ket{ee} + \alpha \ket{gg}$ under measure-
null measurement is described by $M$ and understood in terms of a measurement reversal; if the effect of $F$ is understood as introducing limit cycle in the concurrence $\mathcal{C}$, we consequently flip qubit $A$ immediately after the first click heralds $|\Psi^\pm\rangle$ Bell states. As described in the main text and in our previous work, the $|\Phi^\pm\rangle$ Bell states are more robust against disentanglement, however; we consequently flip qubit $A$ with a $\pi$-pulse ($F_A$) immediately after the first click heralds $|\psi^\uparrow\rangle$, which is the same as $|\psi^\uparrow\rangle$ except that the amplitudes on $|ee\rangle$ and $|gg\rangle$ are swapped. This change is substantial, because the next no-click measurement then undoes the first, $|\psi^\uparrow\rangle \rightarrow |\Phi^\pm\rangle$, thereby resetting the state in a way that traps the concurrence in a cycle near $\mathcal{C} = 1$. The net effect of this scheme is that once we are in the cycle about $|\Phi^\pm\rangle$ state, only a double-click $C^2$, in which both qubits emit in the same timestep, can completely disentangle them. In the event of such a rare double-click, we flip both qubits ($F_{AB}$), and thereby restart the whole scheme from $|ee\rangle$. The concurrence yield of this scheme is shown in Fig. 3.

moment dynamics for a step of duration $\Delta t$, in which neither detector receives a photon (the result of the majority of the individual measurements, for $\Delta t \ll T_1$). The Kraus operator implementing the resulting state update [24] is $\mathcal{M}_{00} =$

$$
\begin{pmatrix}
1 - \epsilon & 0 & 0 & 0 \\
0 & \sqrt{1-\epsilon} & 0 & 0 \\
0 & 0 & \sqrt{1-\epsilon} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad (1)
$$

where $\epsilon \equiv \gamma \Delta t$, and $\epsilon$ should be assumed small (i.e. measurements are performed on timescale which is fast compared to $T_1$). Repeated evolution of this type gradually causes the concurrence to decay, as the amplitude in $|gg\rangle$ grows relative to that in $|ee\rangle$ (with every step $\Delta t$ in which no photons are received, our supposed probability of ultimately getting the outcome $|gg\rangle$ instead of $|ee\rangle$ increases). Suppose however that upon receiving a no-click result, we flip both qubits, according to the operation

$$
F_{AB} = (i\sigma_y^A \otimes \mathbb{I}_B) \cdot (i\mathbb{I}_A \otimes \sigma_y^B) = F_A \cdot F_B. \quad (2)
$$

We find that

$$
\frac{\mathcal{M}_{00} F_{AB} \mathcal{M}_{00} |\Phi^\pm\rangle}{|\mathcal{M}_{00} F_{AB} \mathcal{M}_{00} |\Phi^\pm\rangle|} \propto |\Phi^\pm\rangle, \quad (3)
$$

up to a global phase factor. Effectively, if we flip the slightly larger amplitude from $|gg\rangle$ back to $|ee\rangle$, the next step of no-click evolution will simply undo the previous one; thus we can effectively “recycle” the $|\Phi^\pm\rangle$ states indefinitely during a stretch of no-click measurement outcomes by quickly flipping both qubits after every other such measurement. In the language of measurement reversal (or measurement undoing) [74–80], controlling each qubit with fast double flips ensures that each measurement $\mathcal{M}_{00}$ undoes or reverses the previous one. The measurement reversal succeeds most of the time, because the outcome corresponding to $\mathcal{M}_{00}$ occurs with probability $O(1)$, whereas results involving one or two clicks occur.

FIG. 2. We lay out a flowchart (a) describing our feedback procedure. We begin with the separable state $|ee\rangle$, and see a rapid rise in concurrence as the first clicks (either at port 3 or 4, denoted by $C_3$ or $C_4$, respectively) put our qubits in the $|\Psi^\pm\rangle$ Bell states. As described in the main text and in our previous work, the $|\Phi^\pm\rangle$ Bell states are more robust against disentanglement, however; we consequently flip qubit $A$ with a $\pi$-pulse ($F_A$) immediately after the first click heralds entanglement, such that we take $|\Psi^\pm\rangle \rightarrow |\Phi^\pm\rangle$ (neglecting any global phase factors). Single clicks then send us back to the $|\Psi^\pm\rangle$ Bell states, rather than to the separable state $|gg\rangle$. When no detector click is received, $|\Phi^\pm\rangle$ gradually lose concurrence as amplitude shifts from $|ee\rangle$ to $|gg\rangle$. By flipping both qubits between these no-click measurements, $(F_{AB})$ we implement a state-recycling scheme, however. This may be understood as introducing limit cycle in the concurrence $\mathcal{C}$, using the fast $\pi$-pulses $F_{AB}$, as illustrated in (b). It can also be understood in terms of a measurement reversal; if the effect of the null measurement is described by $\mathcal{M}_{00} |\Phi^\pm\rangle \rightarrow |\psi_i\rangle$, then flipping both qubits (i.e. $F_{AB} |\psi_i\rangle = |\psi^\uparrow\rangle$) leads to a state $|\psi^\uparrow\rangle$, which is the same as $|\psi^\uparrow\rangle$ except that the amplitudes on $|ee\rangle$ and $|gg\rangle$ are swapped. This change is substantial, because the next no-click measurement then undoes the first, i.e. $\mathcal{M}_{00} |\psi^\uparrow\rangle \rightarrow |\Phi^\pm\rangle$, thereby resetting the state in a way that traps the concurrence in a cycle near $\mathcal{C} = 1$. The net effect of this scheme is that once we are in the cycle about the $|\Phi^\pm\rangle$ state, only a double-click $C^2$, in which both qubits emit in the same timestep, can completely disentangle them. In the event of such a rare double-click, we flip both qubits ($F_{AB}$), and thereby restart the whole scheme from $|ee\rangle$. The concurrence yield of this scheme is shown in Fig. 3.

FIG. 3. We show the concurrence $\mathcal{C}$ as a function of time, obtained via the feedback scheme described in Fig. 2 and the main text. The concurrence of individual jump trajectories are shown (background, multiple colors), as is the average concurrence over an ensemble of trajectories (dark blue, surrounded by a pale envelope of $\pm$ one standard deviation). Idealizations implicit in this simulation include 1) capture and detection efficiency are perfect, 2) no environmental channels apart from the decay channel we measure exist, and that our $\pi$-pulses are 3) free of errors and 4) implemented instantaneously after a timestep completes and the measurement result is acquired. We see that within 2–3 $T_1$, we are able to drive the average concurrence to $\mathcal{C} \gtrsim 0.99$ and maintain it there indefinitely with our protocol. We approach $\mathcal{C} \approx 1$ asymptotically, and the evolution in individual trajectories is stochastic (since the timing of jumps is random).
with probabilities $O(\epsilon)$ or $O(\epsilon^2)$, respectively [24]. Only the double click, which is the rarest of these options, disentangles the qubits. The recycling operation we have described actually works on any state, because applying the recycling operation twice, i.e.

$$M_{00}F_{AB}M_{00}M_{00}F_{AB}M_{00} \propto \mathbb{1},$$

amounts to an identity operation. Therefore, the procedure can be seen as a measurement reversal, analogous to the superconducting phase experimental results [79]. Our procedure can effectively freeze the state evolution between click events into a small limit cycle (of size $\sim \Delta t$) around any desired state; the application of primary interest here is stabilization of the Bell states $|\Phi^\pm\rangle$, but one could imagine other uses as well. A flowchart in Fig. 2 represents the entire feedback process we have just described, and the behavior of the concurrence, obtained from numerical simulation of trajectories under the measurement and feedback protocol, is shown in Fig. 3.

We may more formally frame the state evolution of the recycling scheme between clicks as an iterative map, such that

$$|\psi_{k+1}\rangle = \frac{M_{00}F_{AB}M_{00}}{|M_{00}F_{AB}M_{00}|} |\psi_k\rangle.$$

It is then straightforward to verify that to $O(\Delta t)$, the concurrence $C$ is unchanged over one step of the recycling (which covers a total evolution time of $2\Delta t$), i.e.

$$\dot{C} \approx \frac{C_{k+1} - C_k}{2\Delta t} = 0.$$

This implies that all states are at a fixed point in this iterative mapping of the concurrence, and that therefore the preservation sits at the border between stability and instability [82, 83]; in other words, any errors which occur as the scheme progresses are simply preserved, without being either suppressed or amplified.

**III. ADAPTING THE RECYCLING SCHEME TO HOMODYNE–BASED FEEDBACK**

There has been considerable work on the entangling properties of continuous homodyne measurements as well [17, 18, 20, 24]. Martin and Whaley recently derived a feedback scheme based on such measurements which deterministically generates a Bell state in a finite time [25]. We will summarize their scheme using the notation of our previous works [24], and then show that the same principles used above can be applied to this case too, i.e. we will demonstrate that adding fast $\pi$–pulses into the continuous measurement [24] and Hamiltonian feedback protocol [25] will allow us to stabilize the entangled state once it is created, instead of having it decay away.

Homodyne detection of fluorescence monitoring quadratures 90$^\circ$ out of phase, instead of photodetection,
generates diffusive quantum trajectories and entangles the emitting qubits to the same degree as photodetection, on average [18, 20, 24]. The Kraus operator representing a measurement of the quadrature \( \phi = 0 \) at port 3, and \( \varphi = 90^\circ \) at port 4 may be written \( \mathcal{M}_{34} \times \)

\[
\begin{pmatrix}
\sqrt{(1-\varepsilon)}(X - iY) & 0 & 0 & 0 \\
0 & \sqrt{1-\varepsilon} & 0 & 0 \\
\varepsilon(X^2 + Y^2 - 1) & 0 & \sqrt{\varepsilon(X + iY)} & \sqrt{\varepsilon(X - iY)} \\
\sqrt{(1-\varepsilon)}(X + iY) & 0 & \sqrt{1-\varepsilon} & 0
\end{pmatrix},
\]

where \( X = r_3\sqrt{\Delta t/2} \) is the outcome of the measurement at port 3, \( Y = r_4\sqrt{\Delta t/2} \) is the outcome of the measurement at port 4, and \( \varepsilon = \gamma \Delta t \) [23, 24]. Martin and Whaley have recently shown that immediately applying the local/separable unitary feedback operation

\[
U = \exp \left[ i\Delta t \sqrt{\frac{\gamma}{2}} \frac{a}{a + \sqrt{1 - a^2}} \right]
\]

to a state of the type

\[
|\psi\rangle = a |ee\rangle - \text{sgn}(a) \sqrt{1 - a^2} |gg\rangle,
\]

(9)

(for real \( a \)) completely cancels the measurement noise, generating deterministic dynamics that are optimal (within continuously–applied Hamiltonian protocols using LOCC, and restricted to states of the type (9)) for driving the system towards an entangled state \( |\Psi^+\rangle \).

Note that for the choice \( \phi = 0 \) and \( \varphi = 90^\circ \), the measurement records may be written in terms of a signal, and noise term modeled with a Wiener increment \( dW \), according to

\[
r_3 = \sqrt{\frac{2}{3}} ( \sigma_y^A + \sigma_y^B ) + \frac{dW_3}{dt}, \quad (10a)
\]

\[
r_4 = \sqrt{\frac{2}{3}} ( \sigma_y^A - \sigma_y^B ) + \frac{dW_4}{dt}. \quad (10b)
\]

For a state of the type (9), we find that \( \langle \sigma_y^A + \sigma_y^B \rangle = 0 = \langle \sigma_y^A - \sigma_y^B \rangle \), such that the measurements are effectively of the “no–knowledge” type, which are generally useful for cancelling noise (see [46]). This implies a number of useful things: first, the feedback protocol (ideally executed) ensures that \( r_3 \) and \( r_4 \) are pure noise, which is closely related to the feedback ensuring the state remains of the form (9); second, the readouts \( r \) scale like \( dW/dt \) in the time–continuum limit. An equation of motion can then be obtained by writing \( |\psi(t + \Delta t)\rangle = U|\mathcal{M}_{34}|\psi(t)\rangle / |\mathcal{M}_{34}|\psi(t)\rangle \) for \( |\psi\rangle \) as in (9) and expanding the RHS (written in terms of \( r_3 \) and \( r_4 \)) to \( O(\Delta t) \), remembering to apply Itô’s rules for stochastic calculus \( r^2 \rightarrow 1/\Delta t \).

The result can be written as an iterative update

\[
a_{k+1} = a_k - \epsilon \frac{a_k \text{sgn}(a_k) \sqrt{1 - a^2_k}}{a_k + \text{sgn}(a_k) \sqrt{1 - a^2_k}}, \quad (11)
\]

\[
d_{k+1} = d_k - \epsilon \frac{a_k^2}{a_k - d_k}, \quad (12)
\]

where the latter uses \( -\text{sgn}(a_k) \sqrt{1 - a_k} \rightarrow d_k \). In the time–continuum limit, these can be written instead as differential equations

\[
\frac{da}{dt} = -\gamma \frac{a \text{sgn}(a) \sqrt{1 - a^2}}{a + \text{sgn}(a) \sqrt{1 - a^2}}, \quad (13)
\]

\[
\frac{dd}{dt} = -\gamma \frac{a^2}{a - d}, \quad (14)
\]

The expression (13) or (14) is entirely equivalent to the equation derived in [25], there written instead in terms of the concurrence \( C \), according to

\[
\frac{dC}{dt} = \begin{cases} 
\gamma (1 - C + \sqrt{1 - C^2}) & \text{for } |a| > |d| \\
\gamma (1 - C - \sqrt{1 - C^2}) & \text{for } |a| < |d|. 
\end{cases} \quad (15)
\]

The solution for the case \( |a| > |d| \) leads to a concurrence which rises to \( C = 1 \) (the state is \( |\Phi^-\rangle \), with \( a = 1/\sqrt{2} = -d \)), which then switches over to the other decaying solution, as amplitude continues to shift from \( |ee\rangle \) to \( |gg\rangle \).

We are now in a position to formally consider our proposed modification, where we again interject fast flips \( F_{AB} \) of both qubits in between the measurements and Hamiltonian feedback just described. In the photodetection case, we saw that the addition of operations \( F_{AB} \) allowed us to turn decay of the concurrence into a limit cycle in which successive measurements undid each other. The idea now is similar: in order to stabilize the concurrence, we wish to trap the system in a limit cycle which alternates between the solution of growing concurrence and that of decaying concurrence (15), instead of having the \( |a| < |d| \) solution take over and eat away at the entanglement the moment we have generated a Bell state.

Interjecting a flipping operation between every detector timestep may be described by the state update

\[
|\psi(t + \Delta t)\rangle = \frac{F_{AB} U|\mathcal{M}_{34}|\psi(t)}{|\mathcal{M}_{34}|\psi(t)}, \quad (16)
\]

and we will assume \( |\psi\rangle \) is of the form \( a |ee\rangle + d |gg\rangle \), where \( a \) and \( d \) are assumed to be real and to have opposite signs (as above). The addition of \( F_{AB} \) interchanges the amplitudes on \( |ee\rangle \) and \( |gg\rangle \), such that we may make a slight modification to (12), which now reads

\[
a_{k+1} = a_k + \epsilon \frac{a_k d_k}{a_k - d_k}, \quad d_{k+1} = d_k - \epsilon \frac{a_k^2}{a_k - d_k}, \quad (17)
\]

The concurrence is defined as \( C_k = -2a_k d_k \). We reiterate that interjecting \( F_{AB} \) causes alternation between the cases \( |a| > |d| \) or \( |a| < |d| \) every \( \Delta t \); thus the concurrence will rise in one step, and then fall the next. Concatenating two steps of evolution in the concurrence allows us
FIG. 5. We generate cobweb plots for the mapping (16), expressed as one–dimensional mappings either in terms of the coefficient on $|ee\rangle$, i.e. $a_{k+1} = f(a_k)$ (see (a) and (c)), or in terms of the concurrence, i.e. $C_{k+1} = g(C_k)$ (see (b) and (d)). All of the plots shown are initialized at $a_0 = 1$ (and therefore $C_0 = 0$). We use $\epsilon = 0.1$ in plots (a) and (b); this is about the largest $\epsilon$ can get before our approximations to $O(\epsilon)$ fall apart entirely; they are included here because it is easier to visualize how the mapping works when simplified to this coarse–grained level. We reduce $\epsilon$ to $0.02$ in plots (c) and (d), in order to show how the plots scale into the regime where our scheme is actually intended to operate, and our approximations are more appropriate. The dotted green box in plots (a) and (c) show the Bell state to which the scheme converges, where $a$ and $d$ simply alternate between $1/\sqrt{2}$ and $-1/\sqrt{2}$ (the state there is always $|\Phi^\mp\rangle$, up to a global sign).

to quantify the net effect of our scheme. We find that to $O(\epsilon)$, we have

$$C_{k+1} = -2a_{k+1}d_{k+1} = C_k(1 - \epsilon) + 2\epsilon a_k^2,$$  \hspace{1cm} (18)

which may be repeated to find

$$C_{k+2} = C_k - 2\epsilon C_k + 2\epsilon.$$  \hspace{1cm} (19)

The aggregate evolution across many cycles of this process is well–described by

$$\dot{C} \approx \frac{C_{k+2} - C_k}{2\Delta t} \rightarrow \dot{C} = \gamma(1 - C);$$  \hspace{1cm} (20)

The solution to the continuous version of this equation, e.g. for the least favorable case $C_0 = 0$ (no initial concurrence), is

$$C(t) = 1 - e^{-\gamma t}.$$  \hspace{1cm} (21)

The actual process matches this idealized solution up to small “teeth”, reflecting the individual steps of alternating growth and decay for finite $\Delta t$. This is illustrated Fig. 4; note that in simulation to generate this figure, we use the operator $F_{AB}$ after every other application of $UM_{34}$, rather than between every cycle of measurement and Hamiltonian feedback. Using the flips half as often doubles the size of the “teeth”, but they remain bound about the idealized solution we have just derived. We do this following the same logic as in the photodetection case; there we applied flips after every other null measurement to make successive measurements undo each other. While, near $|\Phi^\pm\rangle$, there is no harm in applying flips every cycle rather than every other, it is not strictly necessary either. We have done our homodyne derivations above with the flips every cycle for mathematical simplicity, but performing flips half as often is adequate. Strictly speaking, the flips can be spaced many more steps apart in either scheme; this comes at the cost of increasing the size of the limit cycle about the Bell state, but with little other change to how our system functions.

Many of the properties of (20) are highly desirable. First we see that the mapping of interest has a single stable fixed point at $C = 1$; this arises because solutions to (15) grow faster than they decay for $C < 1$, such that the mapping (19) always yields a net gain in entanglement. That net gain is greater when the entanglement...
is smaller. Ideally, one does not begin to interject joint pi-pulses $F_{AB}$ while $|a| > |d|$, but rather waits for the Bell state to be created by scheme of [25] alone, and only then turns on the extra controls (see Fig. 4(a)). In other words, our proposed scheme is ideally suited to preserving concurrence, although it can be used to make it. The stability of our modified scheme means that it is ultimately quite robust against errors in timing the start of flipping operations; indeed, the worst case solution (21) we have for high-fidelity measurements and high-fidelity feedback operations asymptotically approaches $C = 1$ for long times. See Fig. 4(b) for a direct comparison and further comments. The use of a finite time-step means that the Hamiltonian portion of the feedback (8) from [25] does not operate perfectly, and small deviations from deterministic dynamics occur; however the scheme is still stable, as evidenced by the numerical simulations in Fig. 4. All of the properties of the discrete mappings incorporating our flipping operations can be visualized in the cobweb plots Fig. 5. These require that we recast our equations into one-dimensional mappings, which can be obtained from (17) and (18) using the substitutions $\delta_k \to -\text{sgn}(a_k)\sqrt{1 - a_k^2}$, or $a_k^2 \to \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - C_k^2}$, respectively; the operation $F_{AB}$ in each cycle causes the sign in the latter expression to alternate with every iteration, which is effectively averaged over in obtaining (19).

It is possible to recast the derivation above in terms of a different parameterization of the two-qubit state. Let us define $(a, d) = (\cos \theta, -\sin \theta)$, with $\theta \in [0, \pi/2]$. In the case of continuous feedback only, we find the equation for $\theta$ given by,

$$\dot{\theta} = \gamma \frac{\cos \theta}{\cos \theta + \sin \theta},$$

(22)

Starting at $\theta = 0$, this equation has a solution of

$$e^{-\theta} \cos \theta = e^{-\gamma t},$$

(23)

which is transcendental. In the case of adding the fast pi-pulses, we find the equation for $\theta$ given by,

$$\dot{\theta} = \gamma \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}.$$

(24)

This equation has a solution

$$\cos \theta - \sin \theta = e^{-\gamma t/2},$$

(25)

which can equivalently be expressed by

$$\cos^2 \theta = \frac{1}{2} + \frac{1}{2} \sqrt{1 - (1 - e^{-\gamma t})^2},$$

(26)

with $\sin^2 \theta = 1 - \cos^2 \theta$, and consistent with the statement $a_k^2 \to \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - C_k^2}$ in conjunction with the solution (21).

We may then briefly summarize what has been presented so far: we have demonstrated that feedback based on qubit flips, as in similar BB control protocols, and utilized in conjunction with measurements of qubits’ spontaneous emission, is able to protect the qubits’ concurrence against the monitored $T_1$ decay processes. The regime in which we operate is one where the measurement intervals (detector integration intervals) are much shorter (perhaps 2 orders of magnitude smaller) than the $T_1$ time of the qubits, and the qubit flips are executed at least one order of magnitude faster than that. For example, in superconducting qubits, $T_1 \approx 50 \mu$s, $\Delta t \approx 20$ ns, while $t_s \approx 5$ ns.

We have shown that fast pi-pulses form the basis of a good control strategy for entanglement preservation in such scenarios, either in conjunction with photodetection, or as a supplement to existing Hamiltonian feedback [25] based on homodyne detection instead; in either case, the addition of fast BB-like pi-pulses allows us to trap the two-qubit dynamics in an arbitrarily small limit cycle about a fixed point at a Bell state.

IV. IMPACT OF MEASUREMENT INEFFICIENCY

Our discussion so far has focused on establishing the utility and dynamical properties of our proposed scheme with an ideal apparatus. Several of the assumptions implicit in the idealized analysis are however never fully achieved in practice. For example, it is difficult to make measurements with near-unit efficiency, to implement feedback operations without some processing delay time, and to implement feedback operations with perfect fidelity. Any of these factors should be expected to degrade the performance of any feedback control protocol relative to the ideal case. We will here focus on analyzing the impact of one of the most important of these factors, namely measurement inefficiency. Including finite detector efficiency generically introduces mixed states as some of the signal is lost; this will add enough complexity to any dynamical equations that analytical solutions will either not be attainable, or be so complex as to lack a clear interpretation in what follows. As such, our program now is to study the inefficient case, for both the photodetection– and homodyne–based schemes discussed above, using numerical simulation. Our aim here is not to find the best possible modification to our feedback scheme for the more realistic case of inefficient measurements, but simply to quantify the effect of inefficiency on the simple pi-pulse–based strategies we have proposed above.

Measurement inefficiency may be modeled by using an ideal detector, but with a lossy channel in front of it. In other words, it is possible to model measurement inefficiency by introducing some finite probability that photons arriving at the ideal detector are instead diverted into some lost channel. This is illustrated in Fig. 1(a) by the unbalanced (purple) beam-splitters in channels 3 and 4, which allow photons to transmit to the detector with probability $\eta_3$ or $\eta_4$, but otherwise reflect them into a channel in which they are irretrievably lost. We briefly review the formal model of such a situation to Appendix B, and discuss it in much greater detail in [24]. The ideal
FIG. 6. We plot the evolution of the concurrence $C$ for trajectories arising from inefficient photodetection, and including BB–like feedback and measurement reversal as described in the main text; these plots should be compared with Fig. 3, which illustrates the corresponding process under ideal circumstances. We here use symmetric ($\eta_3 = \eta = \eta_4$) measurement efficiencies $\eta = 0.98$ (a), $\eta = 0.90$ (b), and $\eta = 0.50$ (c). We see that for measurement efficiencies close to the ideal, e.g. as in (a) and (b), the average concurrence with feedback always exceeds that without (well approximated by $\bar{C}(t) = 2\eta e^{-\gamma t} (1 - e^{-\gamma t})$ [24], shown in dotted red). Even in (c), where this is no longer true, the ability to maintain any concurrence at long times is still advantageous compared with doing nothing. The upper bound (27) on the concurrence derived in [24] and shown in dashed black, for the case without feedback, shows the extent to which degradation in the measurement efficiency affects the ability to generate entanglement to begin with, and provides another useful reference against which our feedback may be compared.

A. Inefficient Photodetection

We begin with inefficient photodetection; simulations of our feedback scheme with symmetric ($\eta_3 = \eta = \eta_4$) and less than ideal $\eta < 1$ photon counting measurements, and subsequent feedback, are shown in Fig. 6. We find that, without additional modifications to our feedback scheme, the addition of measurement inefficiency leads to substantial degradation of the preserved concurrence. This is not especially surprising, since the maximum concurrence achievable by the bare measurement before feedback is bounded by a decaying solution [24]

$$\bar{C}^\eta_{\text{max}}(t) = \frac{1}{(1 - \eta) e^{\gamma t} + \eta},$$

(27)

where $\eta_3 = \eta = \eta_4$. In the long time limit, our modified scheme does still achieve some steady–state concurrence, which is still an advantage over the case without feedback, in the longer–time limit. It is possible that a more complex feedback protocol may be able to further mitigate the undesirable effects of measurement inefficiency, but ultimately, if too much information is lost to the environment without being measured, other schemes which demand additional resources (e.g. extra long-lived energy levels) for storing entanglement [5, 22, 25] are likely to be more successful. As our scheme does not use e.g. additional transitions to effectively turn off the decay interaction with the environment after it has allowed us to generate entanglement, it is most effective when that lone transition is monitored efficiently.

B. Inefficient Homodyne Detection

We may perform the comparable test for the homodyne–based variant on the scheme of [25]. The only modification we make to the operator (8), which was optimal in the ideal case, is to scale the readouts by a factor $\sqrt{\eta}$, such that $\mathcal{U}_\eta =$

$$\exp \left[ i \Delta t \sqrt{\frac{2}{3}} \frac{a \left( \sqrt{\eta_3 r_3 (\sigma^A_y + \sigma^B_y)} + \sqrt{\eta_4 r_4 (\sigma^B_x - \sigma^A_x)} \right)}{a + \sqrt{1 - a^2}} \right].$$

(28)

We have already shown elsewhere [24] that the homodyne measurement under consideration (without feedback) is unable to generate entanglement for $\eta \leq 50\%$. Since local unitary operations cannot change the concurrence of the two–qubit state, it not possible for any local feedback protocol to remedy this. In Fig. 7, we simulate the effect of measurement and feedback (28) for efficiencies (with $\eta_3 = \eta = \eta_4$) $\eta = 98\%$, $\eta = 95\%$, and $\eta = 75\%$, both without and then with the interjection of qubit flips,
FIG. 7. We simulate inefficient measurements with the feedback process (28), both alone (a,c,e), and with added $\pi$-pulses on both qubits every $\Delta t$ (b,d,f). We use $\Delta t = 0.01T_1$ in all cases. The measurement inefficiencies are symmetric ($\eta_3 = \eta = \eta_4$), and are $\eta = 98\%$ (a,b), $\eta = 95\%$ (c,d), and $\eta = 75\%$ (e,f). The ability of this homodyne measurement to generate any entanglement at all is contingent on having $\eta > 50\%$ [24, 25]. Below $\eta = 50\%$, no feedback based on LOCC can remedy the fact that measurement is incapable of generating entanglement. We see the pronounced degrading effect of the measurement inefficiency on both feedback schemes, and that the quasi-deterministic dynamics of the ideal case (see Fig. 4) are lost. The curves for the ideal case without $\pi$-pulses (dash-dotted green), and with flips (dashed magenta) are shown for reference. We additionally show curves representing the average concurrence from the case without any feedback in dotted red (which follow $\bar{C}(t) = 2(2\eta - 1)e^{-\gamma t}(1 - e^{-\gamma t})$, [24]). By comparing the average concurrence from the present simulation (solid blue) to these other references we see that our modified scheme outperforms both the no-feedback average for the comparable efficiency (dotted red), and the ideal Hamiltonian feedback without the extra flips we have introduced (dash-dotted green), after longer evolution times $t \gtrsim 3T_1$. 
as in previous sections. We use $\Delta t = 0.01T_1$ in all instances there. In broad strokes, we see that the quasi-deterministic nature of the dynamics we had in the ideal case is eroded by the measurement inefficiency. The average entanglement yield suffers from this as expected (consistent with Martin and Whaley’s results [25]). The stability of the scheme, at the level of individual trajectories, is quite adversely affected by the measurement inefficiency and the return of some stochasticity to the dynamics. We do see however, that the net effect of our qubit flips on the concurrence is still a net positive at longer times, allowing us to stabilize a large fraction of the entanglement generated by the measurement, on average.

V. CONCLUSIONS

We have proposed a pair of feedback protocols which involve interjecting $\pi$–pulses between measurements (or supplementing an existing feedback control protocol [25] with such operations). Our schemes are based on the devices illustrated in Fig. 1, with which we obtain quantum trajectories from continuously measuring the spontaneous emission of two qubits, and then implement local control operations in response to the real–time measurement outcomes. The devices we consider are set up such that the joint measurements of the qubits may generate entanglement between them [24], and the aim of our feedback protocols is to increase the yield and/or lifetime of the entanglement generated by the device. We have shown that $\pi$–pulse–based control, in conjunction with continuous photodetection, allows us to implement a measurement reversal procedure, which can protect any two–qubit state against the $T_1$ decay dynamics. Combining the same methods with a Hamiltonian control protocol [25], for the case of homodyne detection and diffusive quantum trajectories, allows us to create a stable limit cycle about a Bell state, again protecting concurrence from the qubits’ natural decay channel. Although both schemes are negatively affected by measurement inefficiency, we are able to demonstrate that carrying them out still results in some net gain in entanglement yield and/or lifetime, compared with not carrying them out, across a wide variety of situations.

Entanglement is an important part of many emerging applications drawing broad scientific interest, such as quantum computing or quantum communication, and is also of foundational interest (e.g. in connection with Bell tests [14]). Decay due to spontaneous emission is, in many quantum–information systems, one of the important sources of errors. Protecting entanglement against such errors is consequently of great practical interest. The protocols we describe above offer a novel approach to this task, based on tools which are realistic extensions of existing devices and experiments.

FIG. 8. We repeat Fig. 4 with $\Delta t$ one order of magnitude smaller ($\epsilon = 10^{-3}$ here). While interjecting $\pi$–pulses that fast may no longer be realistic, by comparing to Fig. 4 we see that deviations from deterministic dynamics are suppressed as we take a step towards the time–continuum limit. As in Fig. 4, we begin adding $\pi$–pulses after maximal concurrence is generated at $t_e = 1.13T_1$ in (a), while in (b) we see that we asymptotically approach maximal concurrence if we run the $\pi$–pulses over the entire duration; this serves to confirm that the coarser time–step of Fig. 4 was adequate to capture the main features of the dynamics, despite the more pronounced stochasticity we had there, on account of operating further from the time–continuum limit.

ACKNOWLEDGMENTS

We are grateful to Leigh S. Martin for helpful correspondence and discussion regarding his work [25]. We acknowledge funding from NSF grant no. DMR-1809343, and US Army Research Office grant no. W911NF-18-10178. PL acknowledges support from the US Department of Education grant No. GR506598 as a GAANN fellow.
Appendix A: Additional Plots

We include some additional figures which further support some of the secondary claims we make in the main text. In Fig. 8 we essentially reproduce the simulation of Fig. 4, but this time with a smaller timestep. While spacing π–pulses so closely (every $T_1/1000$) may no longer be realistic in practice, Fig. 8 serves to confirm that as we approach the time–continuum limit $\epsilon \to 0$, we recover the deterministic dynamics described by Martin and Whaley [25]; we see that deviations from deterministic dynamics are suppressed in Fig. 8 as compared with the more realistic Fig. 4. Together, these two figures illustrate that 1) there is a tradeoff between the practical necessity of having a modest $\Delta t$, and achieving exact deterministic evolution from (8) promised in the continuum limit, but 2) that this tradeoff is not a limiting factor for the overall effectiveness of our scheme.

In Fig. 9 we plot the density of stochastic trajectories in the simulated ensemble of Fig. 4, represted with selected elements of the density matrix. The symbolic / color scheme for notating density matrix elements goes like

$$\rho = \begin{pmatrix} 1 & \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0 \\ \sqrt{\frac{1}{2}} & 0 & 0 & 0 \\ \sqrt{\frac{1}{2}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

where the basis is such that e.g. ▲ represents the population in $|ee\rangle$, ■ represents the population in $|gg\rangle$, and ▼ represents the real part of the coherence $|ee\rangle$ $(gg\rangle$) between them. The full basis, used here and elsewhere in the manuscript assumes pure states notated according to

$$|\psi\rangle = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \sim \begin{pmatrix} |ee\rangle \\ |eg\rangle \\ |ge\rangle \\ |gg\rangle \end{pmatrix}.$$  \hspace{0.5cm} (A2)

Appendix B: Review of Fluorescence Measurement Formalism

We review our Kraus operators, used throughout the main text, for completeness. Everything included in this section in brief is explained in far greater detail in [23] (the one–qubit case), and [24] (the two–qubit case). Refer to Fig. 1 for a sketch of the relevant apparatus. We begin with the matrix

$$\mathcal{M} = \begin{pmatrix} 1 - \epsilon & \sqrt{\epsilon} \eta_1 & 0 & 0 \\ \sqrt{\epsilon} \eta_2 & \sqrt{1 - \epsilon} & 0 & 0 \\ \sqrt{\epsilon} \eta_3 & 0 & \sqrt{1 - \epsilon} & 0 \\ \sqrt{\epsilon} \eta_4 & 0 & 0 & \sqrt{1 - \epsilon} \end{pmatrix},$$

which may be used to update the joint state of the qubits and optical modes 1 & 2 they emit into, over a short time $\Delta t \ll T_1$ (equivalently, $\epsilon = \gamma \Delta t \ll 1$). We assume that both qubit–cavity systems have the same emission rate $\gamma = 1/T_1$ for simplicity. The operators $\hat{a}_i^\dagger$ and $\hat{a}_i$ are creation operators for photons in ports (modes) 1 and 2, respectively. The effect of the beamsplitter may be modeled by the unitary transformation

$$\hat{a}_1^\dagger = \frac{1}{\sqrt{2}} \left( \hat{a}_3^\dagger e^{i\phi} + \hat{a}_4^\dagger e^{-i\phi} \right), \quad \hat{a}_2^\dagger = \frac{1}{\sqrt{2}} \left( \hat{a}_3^\dagger e^{i\varphi} - \hat{a}_4^\dagger e^{-i\varphi} \right),$$

which mixes the modes 1 & 2 in order to obtain the measured modes 3 & 4. This 50/50 beamsplitter plays an important role in concealing information about which qubit emitted a signal; erasure of this which–path information is a key condition in allowing subsequent measurements to be entangling.

In order to obtain a Kraus operator which acts on the quibits alone, it is necessary to select the initial and final states of the optical modes. We will assume that the modes are in vacuum at the start of each measurement interval $\Delta t$, such that the initial state of modes 3 & 4 is $|0_{34}\rangle$ (which implies the same for 1 & 2). The final state of the output modes is determined by the type of measurement that is performed. For example, photodetection at outputs 3 and 4 leads to outcomes in the Fock basis, and a Kraus operator

$$\mathcal{M}_{n_3,n_4} = \langle n_3 n_4 | \mathcal{M} | 0_{34}\rangle;$$

This generates a set of five operators, one for each of the five outcomes $\{n_3,n_4\} = \{0,0\}, \{1,0\}, \{0,1\}, \{2,0\}, \{0,2\}$ allowed in any step $\Delta t$ (which form a complete set of POVM elements). Likewise, homodyne detection at both outputs leads to projection onto eigenstates of a quadrature operator, i.e. for $|X\rangle$ an eigenstate of $X = (\hat{a}_3^\dagger + \hat{a}_3)/\sqrt{2}$ and $|Y\rangle$ an eigenstate of $Y = (\hat{a}_4^\dagger + \hat{a}_4)/\sqrt{2}$, the Kraus operator is obtained from

$$\mathcal{M}_{XY} = \langle XY | \mathcal{M} | 0_{34}\rangle,$$

which reduces to (7) for the phase choices $\phi = 0$ and $\varphi = 90^\circ$.

Measurement inefficiency is most–straightforwardly modeled with an additional set of unbalanced beamsplitters, as shown in Fig. 1. The effect of these is to split modes 3 and 4 into a “signal portion”, which goes to the relevant (otherwise still ideal) detector with probability $\eta_1$, and a “lost portion”. Algebraically, this is expressed the transformations

$$\hat{a}_3^\dagger \rightarrow \sqrt{\eta_3} \hat{a}_3^\dagger + \sqrt{1 - \eta_3} \hat{a}_3^\dagger$$

$$\hat{a}_4^\dagger \rightarrow \sqrt{\eta_4} \hat{a}_4^\dagger + \sqrt{1 - \eta_4} \hat{a}_4^\dagger,$$

which can be carried out inside of $\mathcal{M}$ to obtain $\mathcal{M}_\eta$. While this could be used to model a situation in which four measurements are made, our interest is to use measurement outcomes at the signal ports only, while tracing out all of the possible (but unknown) outcomes which could have occurred in the lost ports. For example, for
inefficient photodetection with the outcome \{0,0\} at the signal ports, we would have a four–output Kraus operator

\begin{equation}
\mathcal{M}_{00n_3n_4} = \langle 0\beta n_3\beta n_4 | \mathcal{M}_n | 0000 \rangle
\end{equation}

(assuming that the paired extra input modes, required by the unitarity of the transformation, are in vacuum), and the state update equation

\begin{equation}
\rho(t + \Delta t) = \frac{\mathcal{M}_{0000}\rho(t)\mathcal{M}_{0000}^\dagger + \mathcal{M}_{0010}\rho(t)\mathcal{M}_{0010}^\dagger + \mathcal{M}_{0001}\rho(t)\mathcal{M}_{0001}^\dagger + \mathcal{M}_{0020}\rho(t)\mathcal{M}_{0020}^\dagger + \mathcal{M}_{0002}\rho(t)\mathcal{M}_{0002}^\dagger}{\text{tr} \left( \mathcal{M}_{0000}\rho(t)\mathcal{M}_{0000}^\dagger + \mathcal{M}_{0010}\rho(t)\mathcal{M}_{0010}^\dagger + \mathcal{M}_{0001}\rho(t)\mathcal{M}_{0001}^\dagger + \mathcal{M}_{0020}\rho(t)\mathcal{M}_{0020}^\dagger + \mathcal{M}_{0002}\rho(t)\mathcal{M}_{0002}^\dagger \right)},
\end{equation}

which includes the trace over all possible lost–mode states that are consistent with having retrieved the outcome \{0,0\}. Inefficient homodyne detection is best–modeled by a set of operators

\begin{equation}
\mathcal{M}_{XYn_3n_4} = \langle XYn_3\beta n_4 | \mathcal{M}_n | 0000 \rangle,
\end{equation}

that are used to update the state according to

\begin{equation}
\rho' = \frac{\mathcal{M}_{XY00}\rho\mathcal{M}_{XY00}^\dagger + \mathcal{M}_{XY10}\rho\mathcal{M}_{XY10}^\dagger + \mathcal{M}_{XY01}\rho\mathcal{M}_{XY01}^\dagger + \mathcal{M}_{XY20}\rho\mathcal{M}_{XY20}^\dagger + \mathcal{M}_{XY02}\rho\mathcal{M}_{XY02}^\dagger}{\text{tr} \left( \mathcal{M}_{XY00}\rho\mathcal{M}_{XY00}^\dagger + \mathcal{M}_{XY10}\rho\mathcal{M}_{XY10}^\dagger + \mathcal{M}_{XY01}\rho\mathcal{M}_{XY01}^\dagger + \mathcal{M}_{XY20}\rho\mathcal{M}_{XY20}^\dagger + \mathcal{M}_{XY02}\rho\mathcal{M}_{XY02}^\dagger \right)},
\end{equation}

for \(\rho' = \rho(t + \Delta t)\) and \(\rho = \rho(t)\): we sum over the lost modes in the discrete Fock basis, rather than integrating out another pair of continuous–valued homodyne (quadrature basis) outcomes, for simplicity (it is correct to sum or integrate out using any complete basis of outcomes in the lost channels).

## Appendix C: Parameterization of the Two–Qubit Density Matrix

It is always possible to decompose an \(n \times n\) density matrix according to

\begin{equation}
\rho = \frac{\mathbb{I}_n}{n} + \mathbf{q} \cdot \hat{\Gamma}.
\end{equation}

Here \(\mathbf{q}\) is a generalized Bloch vector, and \(\hat{\Gamma}\) is the vector of generalized Gell–Mann matrices. There are \(n^2 - 1 = \text{dim}(\mathbf{q})\) coordinates and matrices. In the two–dimensional case, \(\mathbf{q}\) are the usual Bloch coordinates, and \(\hat{\Gamma}\) are the Pauli matrices.
Parameterizing a $4 \times 4$ density matrix, as is required for a general (possibly impure and non-separable) two-qubit state, requires 15 coordinates.

We use the same parameterization we used in [24] for our two-qubit density matrix, adapted from [84]. The diagonal matrices read

$$
\hat{\Gamma}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_3 = \frac{1}{\sqrt{15}} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -3
\end{pmatrix}.
$$

(C2)

Next we list the six symmetric matrices of the set

$$
\hat{\Gamma}_4 = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_5 = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_6 = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_7 = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_8 = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_9 = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}.
$$

(C3)

We conclude with the remaining six anti-symmetric matrices of the set

$$
\hat{\Gamma}_{10} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_{11} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & -i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_{12} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & i & 0 \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_{13} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \hat{\Gamma}_{14} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & 0 & 0 \\
0 & 0 & i & 0
\end{pmatrix}, \quad \hat{\Gamma}_{15} = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{pmatrix}.
$$

(C4)

Using (C1), we may write an arbitrary $4 \times 4$ density matrix in terms of the 15 generalized Bloch coordinates $q$. This yields

$$
\rho = \frac{1}{\sqrt{2}} \begin{pmatrix}
\frac{\sqrt{2}}{4} + q_1 + \frac{1}{\sqrt{3}} q_2 + \frac{1}{\sqrt{6}} q_3 & q_5 - i q_{11} & q_6 - i q_{12} & q_7 - i q_{13} \\
q_5 + i q_{11} & \frac{\sqrt{2}}{4} + \frac{1}{\sqrt{3}} q_2 + \frac{1}{\sqrt{6}} q_3 - q_1 & q_4 - i q_{10} & q_8 - i q_{14} \\
q_6 + i q_{12} & q_4 + i q_{10} & \frac{\sqrt{2}}{4} + \frac{1}{\sqrt{6}} q_3 - \frac{2}{\sqrt{3}} q_2 & q_9 - i q_{15} \\
q_7 + i q_{13} & q_8 + i q_{14} & q_9 + i q_{15} & \frac{\sqrt{2}}{4} - \frac{3}{\sqrt{6}} q_3
\end{pmatrix}.
$$

(C5)

We see that the populations are described by coordinates 1–3 (corresponding to matrices (C2)), and that the coherences are described by the remaining coordinates, with real parts corresponding to (C3) and the imaginary parts to (C4). In terms of the above coordinates, the purity of the state is described by

$$
\text{tr}(\rho^2) = \frac{1}{4} + \sum_{i} q_{i}^2.
$$

(C6)

[1] Ting Yu and J. H. Eberly, “Finite-time disentanglement via spontaneous emission,” Phys. Rev. Lett. 93, 140404 (2004).
[2] C. Cabrillo, J. I. Cirac, P. García-Fernández, and P. Zoller, “Creation of entangled states of distant atoms by interference,” Phys. Rev. A 59, 1025–1033 (1999).
[3] S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, “Proposal for teleportation of an atomic state via cavity decay,” Phys. Rev. Lett. 83, 5158–5161 (1999).
[4] M. B. Plenio, S. F. Huelga, A. Beige, and P. L. Knight, “Cavity-loss-induced generation of entangled atoms,” Phys. Rev. A 59, 2468–2475 (1999).
[5] Sean D. Barrett and Pieter Kok, “Efficient high-fidelity quantum computation using matter qubits and linear optics,” Phys. Rev. A 71, 060310 (2005).
[6] L.-M. Duan and H. J. Kimble, “Efficient engineering
of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).

[7] Daniel E. Browne, Martin B. Plenio, and Susana F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).

[8] Christoph Simon and William T. M. Irvine, “Robust long-distance entanglement and a loophole-free bell test with ions and photons,” Phys. Rev. Lett. 91, 110405 (2003).

[9] Yuan Liang Lim, Almut Beige, and Leong Chuan Kwek, “Repeat-until-success linear optics distributed quantum computing,” Phys. Rev. Lett. 95, 030505 (2005).

[10] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Young, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68 (2007).

[11] P. Maunz, S. Olmschenk, D. Hayes, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Heralded quantum gate between remote quantum memories,” Phys. Rev. Lett. 102, 250502 (2009).

[12] Julian Hofmann, Michael Krug, Norbert Ortega, Lea Gérard, Markus Weber, Benjamin Rosenfeld, and Harald Weinfurter, “Heralded entanglement between widely separated atoms,” Science 337, 72–75 (2012).

[13] H. Bernien, B. Hensen, W. Pfaff, G. Kooistra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 86 (2013).

[14] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682 (2015).

[15] Christoph Ohm and Fabian Hassler, “Measurement-induced entanglement of two transmon qubits by a single photon,” New Journal of Physics 19, 053018 (2017).

[16] Florian Mintert, André R. R. Carvalho, Marek Kuś, and Andreas Buchleitner, “Measures and dynamics of entangled states,” Physics Reports 415, 207 – 259 (2005).

[17] André R. R. Carvalho, Marc Busse, Olivier Brodier, Carlos Viviescas, and Andreas Buchleitner, “Optimal dynamical characterization of entanglement,” Phys. Rev. Lett. 98, 190501 (2007).

[18] Carlos Viviescas, Ivonne Guevara, André R. R. Carvalho, Marc Busse, and Andreas Buchleitner, “Entanglement dynamics in open two-qubit systems via diffusive quantum trajectories,” Phys. Rev. Lett. 105, 210502 (2010).

[19] Eduardo Mascarenhas, Breno Marques, Marcelo Terra Cunha, and Marcelo França Santos, “Continuous quantum error correction through local operations,” Phys. Rev. A 82, 032327 (2010).

[20] Eduardo Mascarenhas, Daniel Cavalcanti, Vlatko Vedral, and Marcelo França Santos, “Physically realizable entanglement by local continuous measurements,” Phys. Rev. A 83, 022311 (2011).

[21] André R. R. Carvalho and Marcelo França Santos, “Distant entanglement protected through artificially increased local temperature,” New Journal of Physics 13, 013010 (2011).

[22] M. F. Santos, M. Terra Cunha, R. Chaves, and A. R. R. Carvalho, “Quantum computing with incoherent resources and quantum jumps,” Phys. Rev. Lett. 108, 170501 (2012).

[23] Philippe Lewalle, Sreenath K. Manikanadan, Cyril Elouard, and Andrew N. Jordan, “Measuring fluorescence to track a quantum emitter’s state: A theory review,” arXiv:1908.04720 (2019).

[24] Philippe Lewalle, Cyril Elouard, Sreenath K. Manikanadan, Xiao-Feng Qian, Joseph H. Eberly, and Andrew N. Jordan, “Entanglement of a pair of quantum emitters under continuous fluorescence measurements,” arXiv:1910.01206 (2019).

[25] Leigh S. Martin and K. Birgitta Whaley, “Single-shot deterministic entanglement between non-interacting systems with linear optics,” arXiv:1912.00067 (2019).

[26] H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).

[27] I. C. Percival, Quantum State Diffusion (Cambridge University Press, 1998).

[28] C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer, 2004).

[29] H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge University Press, 2010).

[30] A. Barchielli and M. Gregoratti, Quantum trajectories and measurements in continuous time (Springer-Verlag Berlin Heidelberg, 2009).

[31] Kurt Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, 2014).

[32] H. M. Wiseman, “Quantum trajectories and quantum measurement theory,” Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, 205–222 (1996).

[33] Todd A. Brun, “A simple model of quantum trajectories,” American Journal of Physics 70, 719 (2002).

[34] Kurt Jacobs and Daniel A. Steck, “A straightforward introduction to continuous quantum measurement,” Contemporary Physics 47, 279–303 (2006).

[35] Jing Zhang, Yu xi Liu, Re-Bing Wu, Kurt Jacobs, and Franco Nori, “Quantum feedback: Theory, experiments, and applications,” Physics Reports 679, 1 – 60 (2017).

[36] H. M. Wiseman, “Quantum theory of continuous feedback,” Phys. Rev. A 49, 2133–2150 (1994).

[37] Charlene Ahn, Andrew C. Doberty, and Andrew J. Landahl, “Continuous quantum error correction via quantum feedback control,” Phys. Rev. A 65, 042301 (2002); C. Ahn, H. M. Wiseman, and G. J. Milburn, “Quantum error correction for continuously detected errors,” in 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775), Vol. 3 (2003) pp. 834–839 vol.3; C. Ahn, H.M. Wiseman, and G.J. Milburn, “Quantum control and quantum entanglement,” European Journal of Control 9, 279 – 284 (2003); Charlene Ahn, H. M. Wiseman, and G. J. Milburn, “Quantum error correction for continuously detected errors,” Phys. Rev. A 67, 052310 (2003).

[38] Mohan Sarovar, Charlene Ahn, Kurt Jacobs, and Gerard J. Milburn, “Practical scheme for error control using feedback,” Phys. Rev. A 69, 052324 (2004).

[39] Stefano Mancini and Howard M. Wiseman, “Optimal control of entanglement via quantum feedback,” Phys. Rev. A 75, 012330 (2007).

[40] A. R. R. Carvalho and J. J. Hope, “Stabilizing entangle-
ment by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007).

[41] A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008).

[42] Alessio Serafini and Stefano Mancini, “Determination of maximal gaussian entanglement achievable by feedback-controlled dynamics,” Phys. Rev. Lett. 104, 220501 (2010).

[43] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch, R. Naik, A. N. Korotkov, and I. Siddiqi, “Stabilizing rabi oscillations in a superconducting qubit using quantum feedback,” Nature 490, 77 (2012).

[44] Ashkan Balouchi and Kurt Jacobs, “Optimal measurement-based feedback control for a single qubit: a candidate protocol,” New Journal of Physics 16, 093059 (2014).

[45] Clemens Meyer zu Rheda, G´ eraldine Haack, and Alessandro Romito, “On-demand maximally entangled states with a parity meter and continuous feedback,” Phys. Rev. B 90, 155438 (2014).

[46] Stuart S. Szigeti, Andre R. R. Carvalho, James G. Morley, and Michael R. Hush, “Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback,” Phys. Rev. Lett. 113, 020407 (2014).

[47] Kung-Chuan Hsu and Todd A. Brun, “Method for quantum-jump continuous-time quantum error correction,” Phys. Rev. A 93, 022321 (2016).

[48] L Magazzù, J. D. Jaramillo, P. Talkner, and P. Hänggi, “Generation and stabilization of Bell states via repeated projective measurements on a driven ancilla qubit,” Physica Scripta 93, 064001 (2018).

[49] Song Zhang, Leigh S. Martin, and K. Birgitta Whaley, “Locally optimal measurement-based quantum feedback with application to multi-qubit entanglement generation,” arXiv:1807.02029 (2018).

[50] S. Hacohen-Gourgy, L. P. García-Pintos, L. S. Martin, J. Dressel, and I. Siddiqi, “Incoherent Qubit Control Using the Quantum Zeno Effect,” Phys. Rev. Lett. 120, 020505 (2018).

[51] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutierrez-Jauregui, R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret, “To catch and reverse a quantum jump mid-flight,” Nature 570, 200 (2019).

[52] Leigh S. Martin, William P. Livingston, Shay Hacohen-Gourgy, Howard M. Wiseman, and Irfan Siddiqi, “Implementation of a canonical phase measurement with quantum feedback,” arXiv:1906.07274 (2019).

[53] Gerardo Cardona, Alain Sarlette, and Pierre Rouchon, “Continuous–time quantum error correction with noise-assisted quantum feedback,” arXiv:1902.00115 (2019).

[54] Razieh Mohseninia, Jing Yang, Irfan Siddiqi, Andrew N. Jordan, and Justin Dressel, “Always-on quantum error tracking with continuous parity measurements,” arXiv:1907.08882 (2019).

[55] E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950).

[56] Lorenza Viola and Seth Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58, 2733–2744 (1998).

[57] Lorenza Viola, Emanuel Knill, and Seth Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82, 2417–2421 (1999).

[58] Lorenza Viola, Seth Lloyd, and Emanuel Knill, “Universal control of decoupled quantum systems,” Phys. Rev. Lett. 83, 4888–4891 (1999).

[59] Lorenza Viola, Emanuel Knill, and Seth Lloyd, “Dynamical generation of noiseless quantum subsystems,” Phys. Rev. Lett. 85, 3520–3523 (2000).

[60] Mark S. Byrd and Daniel A. Lidar, “Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing,” Phys. Rev. Lett. 89, 047901 (2002).

[61] Lorenza Viola and Emanuel Knill, “Robust dynamical decoupling of quantum systems with bounded controls,” Phys. Rev. Lett. 90, 037901 (2003).

[62] Mark S. Byrd and Daniel A. Lidar, “Combined error correction techniques for quantum computing architectures,” Journal of Modern Optics 50, 1285–1297 (2003).

[63] Lorenza Viola, “Advances in decoherence control,” Journal of Modern Optics 51, 2357–2367 (2004).

[64] Mark S. Byrd, Lian-Ao Wu, and Daniel A. Lidar, “Overview of quantum error prevention and leakage elimination,” Journal of Modern Optics 51, 2449–2460 (2004).

[65] P. Facchi, D. A. Lidar, and S. Pascazio, “Unification of dynamical decoupling and the quantum Zeno effect,” Phys. Rev. A 69, 023214 (2004).

[66] P. Facchi, S. Tasaki, S. Pascazio, H. Nakazato, A. Tokuse, and D. A. Lidar, “Control of decoherence: Analysis and comparison of three different strategies,” Phys. Rev. A 71, 022302 (2005).

[67] K. Khodjasteh and D. A. Lidar, “Fault-tolerant quantum dynamical decoupling,” Phys. Rev. Lett. 95, 180501 (2005).

[68] John L. Morton, Alexei M. Tyryshkin, Arzhang Ardavan, Simon C. Benjamin, Kyriakos Porfyrrakis, S. A. Lyon, and G. Andrew D. Briggs, “Bangbang control of fullere qubits using ultrafast phase gates,” Nature Physics 2, 40 (2006).

[69] Leonid P. Pryadko and Gregory Quiroz, “Soft-pulse dynamical decoupling with Markovian decoherence,” Phys. Rev. A 80, 042317 (2009).

[70] S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Experimental inhibition of decoherence on flying qubits via “bang-bang” control,” Phys. Rev. Lett. 103, 040502 (2009).

[71] Zhi-Hui Wang, Wenxian Zhang, A. M. Tyryshkin, S. A. Lyon, J. W. Ager, E. E. Haller, and V. V. Dobrovitski, “Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon,” Phys. Rev. B 85, 085206 (2012).

[72] Hang-Shi Xu and Jing bo Xu, “Protecting quantum correlations of two qubits in independent non-Markovian environments by bang-bang pulses,” J. Opt. Soc. Am. B 29, 2074–2079 (2012).

[73] Gaurav Bhole, V. S. Anjusha, and T. S. Mahesh, “Steering quantum dynamics via bang-bang control: Implementing optimal fixed-point quantum search algorithm,” Phys. Rev. A 93, 042339 (2016).

[74] Alexander N. Korotkov and Andrew N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97, 166805 (2006).

[75] Andrew N. Jordan and Alexander N. Korotkov, “Uncollapsing the wavefunction by undoing quantum measurements,” Contemporary Physics 51, 125–147 (2010).

[76] Nadav Katz, Matthew Neeley, M. Ansmann, Radoslaw C.
Bialczak, M. Hofheinz, Erik Lucero, A. O’Connell, H. Wang, A. N. Cleland, John M. Martinis, and Alexander N. Korotkov, “Reversal of the weak measurement of a quantum state in a superconducting phase qubit,” Phys. Rev. Lett. 101, 200401 (2008).

[77] Yong-Su Kim, Young-Wook Cho, Young-Sik Ra, and Yoon-Ho Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17, 11978–11985 (2009).

[78] Alexander N. Korotkov and Kyle Keane, “Decoherence suppression by quantum measurement reversal,” Phys. Rev. A 81, 040103 (2010).

[79] Yong-Su Kim, Jong-Chan Lee, Osung Kwon, and Yoon-Ho Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nature Physics 8, 117 (2012).

[80] Alexander N. Korotkov, “The Sleeping Beauty approach,” Nature Physics 8, 107 (2012).

[81] Philippe Lewalle, Cyril Elouard, Sreenath K. Manikandan, Xiao-Feng Qian, Joseph H. Eberly, and Andrew N. Jordan, “Diffusive entanglement generation by continuous homodyne monitoring of spontaneous emission,” arXiv:1910.01204 (2019).

[82] E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge UK, 2002).

[83] S. H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press / Perseus Books, Cambridge MA, 1994).

[84] Reinhold A. Bertlmann and Philipp Krammer, “Bloch vectors for qudits,” Journal of Physics A: Mathematical and Theoretical 41, 235303 (2008).