Detection of a historic reservoir of bedaquiline / clofazimine resistance associated variants in *Mycobacterium tuberculosis*

Running title: Emergence of bedaquiline resistance in tuberculosis

Camus Nimmo¹,²,³, Arturo Torres Ortiz¹,⁴, Juanita Pang¹,², Mislav Acman¹, Cedric C.S. Tan¹, James Millard³,⁵,⁶, Nesri Padayatchi⁷, Alison Grant³,⁸, Max O’Donnell⁷,⁹, Alex Pym³, Ola B Brynildsrud¹⁰, Vegard Eldholm¹⁰, Louis Grandjean²,¹¹,¹², Xavier Didelot¹³, François Balloux¹*¹, Lucy van Dorp¹*¹

*These authors contributed equally.

Correspondence: Camus Nimmo (camus.nimmo@crick.ac.uk), François Balloux (f.balloux@ucl.ac.uk) and Lucy van Dorp (lucy.dorp.12@ucl.ac.uk)

1. UCL Genetics Institute, University College London, London, UK
2. Division of Infection and Immunity, University College London, London, UK
3. Africa Health Research Institute, Durban, South Africa
4. Department of Medicine, Imperial College, London, UK
5. Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Liverpool, UK
6. Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
7. CAPRISA MRC-HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
8. TB Centre, London School of Hygiene & Tropical Medicine, London, UK
9. Department of Medicine & Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
10. Division of Infectious Diseases and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
11. Laboratorio de Investigacion y Enfermedades Infecciosas/Universidad Peruana Cayetano Heredia, Lima, Peru
12. Department of Infection, Immunity and Inflammation, Institute of Child Health, University College London, London, UK
13. School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK

Keywords: Tuberculosis, phylogenetics, bedaquiline, drug resistance, AMR
Abstract

Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of *Mycobacterium tuberculosis* (*Mtb*) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the *mmpR5* gene (*Rv0678*), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. We compiled a dataset of 3,682 *Mtb* genomes, including 150 carrying variants in *mmpR5* that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in *mmpR5*, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade of isolates where the RAV Ile67fs is estimated to have emerged prior to the antibiotic era, co-occurrence of mutations in *mmpL5* are found to neutralise bedaquiline resistance. The presence of a pre-existing reservoir of *Mtb* strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control.
Introduction

Drug-resistant tuberculosis (DR-TB) currently accounts for 450,000 of the 10 million new tuberculosis (TB) cases reported annually\(^1\). Treatment outcomes for multidrug-resistant TB (MDR-TB), resistant to at least rifampicin and isoniazid, have historically been poor, with treatment success rates of only 50-60\% in routine programmatic settings\(^2,3\). The discovery of bedaquiline, a diarylquinoline antimycobacterial active against ATP synthase, which is highly effective against *Mycobacterium tuberculosis* (*Mtb*)\(^4\), was reported in 2004. Following clinical trials, which confirmed reduced time to culture conversion in patients with DR-TB\(^5\), in 2012 bedaquiline received an accelerated Food and Drug Administration (FDA) licence for use in DR-TB\(^6\).

Cohort studies of patients treated with bedaquiline-containing regimens against MDR-TB report success rates of 70-80\%\(^7,8\). Similar results have been achieved for extensively drug-resistant TB (XDR-TB, traditionally defined as MDR-TB strains with additional resistance to fluoroquinolones and injectables), where treatment outcomes without bedaquiline are even worse\(^9,10\). In light of these promising results, the World Health Organization (WHO) now recommends that bedaquiline be included in all MDR-TB regimens\(^11\). It has played a central role in the highly successful ZeNix\(^12\) and TB-PRACTECAL\(^13\) trials of bedaquiline, pretomanid and linezolid (+/− moxifloxacin) six-month all-oral regimens for DR-TB. These are now incorporated in WHO guidance. In addition, bedaquiline is positioned as a key drug in multiple phase III clinical trials for drug-susceptible TB (SimpliciTB, ClinicalTrials.gov NCT03338621; TRUNCATE-TB\(^14\)).

Resistance in *Mtb* is typically reported shortly after the introduction of a novel TB drug and often appears sequentially\(^15,16\). For example, mutations conferring resistance to isoniazid – one of the first antimycobacterials – tend to emerge prior to resistance to rifampicin, the other major first-line drug. These also predate resistance mutations to second-line drugs, so termed because they are used clinically to treat patients infected with strains already resistant to first-line drugs. This was observed, for example, in KwaZulu-Natal, South Africa, where resistance-associated mutations accumulated over
decades prior to their identification, leading to a major outbreak of extensively drug-resistant TB (XDR-TB)16. Unlike other major drug-resistant bacteria, \textit{Mtb} reproduces strictly clonally and systematically acquires resistance by chromosomal mutations rather than via horizontal gene transfer or recombination17. This allows phylogenetic reconstructions, based on whole genome sequencing data, to be used to infer the timings of emergence and subsequent spread of variants in \textit{Mtb} that have been suggested to reduce drug susceptibility, termed resistance-associated variants (RAVs).

A number of mechanisms have been implicated in conferring bedaquiline resistance. For example, mutations conferring resistance have been selected \textit{in vitro}, located in the \textit{atpE} gene encoding the F1F0 ATP synthase, the target of bedaquiline18. Off-target resistance-conferring mutations have also been found in \textit{pepQ} in a murine model and potentially in a small number of patients19. However, the primary mechanism of resistance observed in clinical isolates has been identified in the context of off-target resistance-associated variants (RAVs) in the \textit{mmpR5} (Rv0678) gene, a negative repressor of expression of the MmpL5 efflux pump. Loss of function of \textit{mmpR5} leads to pump overexpression20 and increased minimum inhibitory concentrations (MIC) to bedaquiline, along with the recently repurposed antimycobacterial clofazimine, fusidic acid, the azole class of antifungal drugs (which also have antimycobacterial activity), as well as to the novel therapeutic class of DprE1 inhibitors in clinical trials21,22. Aligned with this mechanism of resistance, coincident mutations leading to loss of function of the MmpL5 efflux pump can negate the resistance-inducing effect of MmpR5 loss of function23.

A range of single nucleotide polymorphisms (SNPs) and frameshift \textit{mmpR5} mutations have been associated with resistance to bedaquiline and are often present as heteroresistant alleles in patients24-34. In contrast to most other RAVs in \textit{Mtb}, which often cause many-fold increases in MIC and clear-cut resistance, \textit{mmpR5} variants may be associated with normal MICs or subtle increases in bedaquiline MIC, although they may still be clinically important35. These increases may not cross the current WHO critical concentrations used to classify resistant versus susceptible strains (0.25\(\mu\)g/mL on Middlebrook 7H11 agar, or 1\(\mu\)g/mL in Mycobacteria Growth Indicator Tube [MGIT] liquid media). The first version of the WHO tuberculosis drug resistance catalogue does not contain any bedaquiline RAVs, although a
subsequent meta-analysis identified two RAVs (atpE Ala63Pro and mmpR5 Ile67fs)34. Bedaquiline has a long terminal half-life of up to 5.5 months6, leading to the possibility of subtherapeutic concentrations where adherence is suboptimal or treatment is interrupted, which could act as a further driver of resistance.

Bedaquiline and clofazimine cross-resistance has now been reported across three continents following the rapid expansion in usage of both drugs25,30,36,37, and is associated in some cases with poor adherence to therapy and inadequate regimens. However, baseline isolates in 8/347 (2.3%) patients from phase IIb bedaquiline trials demonstrated mmpR5 RAVs and high bedaquiline MICs in the absence of prior documented use of bedaquiline or clofazimine38. This suggests that bedaquiline RAVs may have been in circulation prior to the usage of either of these drugs, which may be expected in the case of mutations which do not have major fitness consequences39. While there have been isolated clinical reports from multiple geographical regions, the global extent of bedaquiline resistance emergence and spread has not yet been investigated.

In this study, we characterise and date the emergence of variants in mmpR5, including those implicated as bedaquiline RAVs, in the two global Mtb lineage 2 (L2) and lineage 4 (L4) lineages, which include the majority of drug resistance strains15. Phylogenetic analyses of two datasets comprising 1,514 Mtb L2 and 2,168 L4 whole genome sequences revealed the emergence and spread of multiple mmpR5 variants associated to resistance or borderline (intermediate) resistance to bedaquiline prior to its first clinical use. This pre-existing reservoir of bedaquiline/clofazimine-resistant Mtb strains suggests mmpR5 RAVs exert a relatively low fitness cost which could be rapidly selected for as bedaquiline and clofazimine are more widely used in the treatment of TB.
Results

The global diversity of *Mtb* lineage L2 and L4

To investigate the global distribution of *Mtb* isolates with variants in *mmpR5*, we curated two large datasets of whole genomes from the two dominant global lineages L2 and L4. Both datasets were enriched for samples with variants in *mmpR5* following a screen for variants in public sequencing repositories (see Methods) and retaining those samples uploaded with accompanying full metadata for geolocation and time of sampling (Figure 1, Supplementary Table S1-S2, Supplementary Figure S1). The final L2 dataset included 1,514 isolates collected over 24.5 years (between 1994 and 2019) yielding 29,205 SNPs. The final L4 dataset comprised 2,168 sequences collected over 232 years, including three samples from 18th century Hungarian mummies, encompassing 67,585 SNPs. Both datasets included recently generated data from South Africa (155 L2, 243 L4) and new whole genome sequencing data from Peru (9 L2, 154 L4).

Consistent with previous studies, both datasets are highly diverse and exhibit strong geographic structure (Figure 2). As a nonrecombining clonal organism, identification of mutations in *Mtb* can provide a mechanism to predict phenotypic resistance from a known panel of genotypes. Based on genotypic profiling, 911 strains within the L2 dataset were classified as MDR-TB (60%) and 295 (20%) as XDR-TB. Within the L4 dataset, 911 isolates were classified as MDR-TB (42%) and 115 as XDR-TB (5%). The full phylogenetic distribution of resistance profiles is provided in Supplementary Figure S2. As is commonplace with genomic datasets, the proportion of drug-resistant strains exceeds their actual prevalence, due to the overrepresentation of drug-resistant isolates in public sequencing repositories.

Both the L2 and L4 phylogenetic trees displayed a significant temporal signal following date randomisation (Supplementary Figure S3), making them suitable for time-calibrated phylogenetic inference. We estimated the time to the Most Recent Common Ancestor (tMRCA) of both datasets using a Bayesian tip-dating analysis (BEAST2) run on a representative subset of genomes from each
dataset (see Methods, Supplementary Table 3, Supplementary Figure S4). For the final temporal calibration of the L2 dataset we applied an estimated clock rate of 7.7×10^{-8} ($4.9 \times 10^{-8} - 1.03 \times 10^{-7}$) substitutions per site per year, obtained from the subsampled BEAST2 analysis, to the global maximum likelihood phylogenetic tree. This resulted in an estimated tMRCA of 1332CE (945CE-1503CE). Using the same approach for the L4 dataset we estimated a clock rate of 7.1×10^{-8} ($6.2 \times 10^{-8} - 7.9 \times 10^{-8}$) substitutions per site per year resulting in an estimated tMRCA of 853CE (685CE – 967CE) (Figure 2). We observed a slightly higher, yet statistically not significant, clock rate in L2 compared to L4 (Supplementary Table S3), with all estimated substitution rates falling largely in line with previously published estimates.

Identification of variants in \textit{mmpR5}

Since \textit{atpE} and \textit{pepQ} bedaquiline RAVs are found at low prevalence (1 L2 isolate [0.03%] and 18 L4 isolates [0.49%]), we focused on characterising mutations in \textit{mmpR5}. In total we identified the presence of non-synonymous and promoter \textit{mmpR5} variants in 437 sequences (193 L2 [12.8%], 244 L4 [11.3%]). We classified all identified non-synonymous and promoter mutations in \textit{mmpR5}, based on an evaluation of their phenotypic impact through review of published literature, into six phenotypic categories for bedaquiline susceptibility: wild type, hypersusceptible, susceptible, intermediate, resistant, and unknown (full references available in Supplementary Table S4, Supplementary Figures S5-S7).

Across both lineages, 148 sequences were considered as bedaquiline resistant (i.e., classified as intermediate or resistant). The most frequently observed variants are listed in Table 1.

We identified a significant relationship between the presence of \textit{mmpR5} variants and drug resistance status in both the L2 and L4 datasets (Supplementary Figure S8-S9), though in both cases we identified otherwise fully phenotypically susceptible isolates carrying \textit{mmpR5} RAVs. Notably we identified 24 sequenced isolates carrying nonsynonymous/frameshift variants in \textit{mmpR5} uploaded with collection dates prior to the first clinical trials for bedaquiline in 2007. This comprised ten L2 isolates collected before 2007, of which eight harboured variants previously associated to phenotypic bedaquiline resistance (RAVs). For L4 we identified 15 sequences with \textit{mmpR5} variants predating
2007, of which six have been previously classified as carrying mutations conferring a bedaquiline resistance phenotype above wild-type ('intermediate') (Figure 1c-d, Supplementary Table S5).

Within the datasets, we identified one L2 isolate (ERR2677436 sampled in Germany in 2016) which already had two mmpR5 RAVs at low allele frequency – Val7fs (11%) and Val20Phe (20%) – and also contained two low frequency atpE RAVs: Glu61Asp (3.2%) and Alal63Pro (3.7%)50. We also identified three isolates obtained in 2007-08 from separate but neighbouring Chinese provinces carrying the \textit{Rv1979c} Val52Gly RAV, which has been suggested to be associated with clofazimine resistance in a study from China25 but was associated with a normal MIC in another39, with its role in resistance remaining unclear31. Furthermore, frameshift and premature stop mutations in pepQ have been previously associated with bedaquiline and clofazimine resistance. In this dataset, we identified 18 frameshift mutations in \textit{pepQ} across 11 patients, one of which also had a mmpR5 frameshift mutation.

In one isolate the \textit{pepQ} frameshift occurred at the Arg271 position previously reported to be associated with bedaquiline resistance19.

Sixty-three genomes harboured nonsynonymous mmpR5 variants of unknown phenotypic effect (12 L2, 28 L4), corresponding to 23 unique mutations or combinations of mutations. To assess properties associated to RAVs which may be useful predictors of the phenotypic effect of these unknown variants we employed a machine learning approach, providing a foundation for further exploration of genomic features associated to RAV status (see Supplementary Note 1).

The time to emergence of mmpR5 variants

To estimate the age of the emergence of different mmpR5 non-synonymous variants, we identified all nodes in each of the L2 and L4 global time calibrated phylogenies delineating clades of isolates carrying a particular mmpR5 variant (Figure 3, Supplementary Table S6, Supplementary Table S7). For the L2 dataset we identified 58 unique phylogenetic nodes where mmpR5 RAVs emerged, of which 40 were represented by a single genome. The point estimates for these nodes ranged from March 1845 to November 2018. Eight nonsynonymous/frameshift variants in mmpR5, including four bedaquiline
RAVs (Met139Ile, Cys46fs, Ala59Val, Asn98fs) and one case expected to lead to an intermediate phenotype (Arg90Cys), were estimated to have emergence dates (point estimates) predating the first bedaquiline clinical trial in 2007 (Supplementary Figure S10).

For the L4 dataset we identified 85 unique nodes where mmpR5 RAVs emerged, of which 59 were represented by a single isolate in the dataset. The point estimates for these nodes ranged from September 1701 to January 2019 (Figure 3, Supplementary Figure S11). Nineteen mmpR5 mutations, including six unique bedaquiline RAVs (Gln22Arg, Asn98Asp, Ile67fs x2, Arg96Gly, Met146Thr, Asn98Asp) and two predicted to have an intermediate phenotype (Arg90Cys, Ser53Leu), were estimated to have emerged prior to 2007. Arg90Cys, in particular was estimated to emerge between 1930-1947, suggesting the likely circulation of variants which lead to a response to bedaquiline above wild-type pre-existed the first clinical trials for clofazimine in the 1960s. While we identified no nodes with a second emergence of mmpR5 nonsynonymous/frameshift mutations across the L4 dataset, eight nodes were identified in the L2 dataset where a clade already carrying a nonsynonymous/frameshift variant in mmpR5 subsequently acquired a second nonsynonymous/frameshift mutation.

In the L4 dataset, we noted one large clade of 66 samples, predominantly collected in Peru (henceforth Peruvian clade), which all carry the Ile67fs mmpR5 resistance associated mutation36,50,51. While it is not inconceivable that multiple independent emergences of Ile67fs occurred in this clade, the more parsimonious scenario is a single ancestral emergence. We estimate the time of this emergence to 1702 (1657-1732) (Figure 3, Supplementary Figure S11-S12). Of significance, we identified a frameshift mutation in the adjacent MmpL5 efflux pump (Arg202fs) in isolates from this Peruvian clade, the protein whose overexpression mediates bedaquiline resistance following loss-of-function of the MmpR5 regulatory protein. This frameshift, which leads to a premature stop codon at amino acid 206, is expected to counteract the otherwise resistance-conferring mutation. This epistatic interaction restoring bedaquiline susceptibility has recently been described elsewhere23,39. The mmpL5 frameshift mutation was present in all isolates in the Peruvian clade bar one (ERR7339051) which had mmpL5 Arg202Leu. This event of reading-frame restoration is likely explained by a recent secondary
duplication of a T downstream of the initial deletion (777876 GGCA T > GGAT, GGAT > GGATT).

We considered the phenotype of this strain as unknown. No other mmpL5 mutations were found in any isolate containing mmpR5 mutations within this study though we did identify a low prevalence of variants in mmpL5 and mmpS5 independent of mmpR5 mutations across both lineages (Supplementary Figures S13 and S14).

We also noted a tendency for mmpR5 mutations to emerge in clades that also displayed genetic markers of rifampicin resistance. This was more common in mutations emerging after 2007 (77.2%) than before 2007 (58.3%). Most of the oldest Ile67fs Peruvian clade was rifampicin resistant (58/66 samples), with the remaining samples demonstrating only isoniazid resistance.

Phenotypic validation of mmpR5 variants

Given documented epistasis as a modulator of bedaquiline resistance phenotype, we performed MIC testing on a selection of available isolates and identified further MICs that have been recently published as part of the Cryptic consortium using microtitre plates (Supplementary Table S7)52,53. The epidemiological cut-off (ECOFF, defined as MIC of 95-99% of wild-type isolates) for bedaquiline has been proposed to be 0.12 or 0.25 \(\mu \)g/mL depending on the method used, although the final decision was to use an ECOFF of 0.25 \(\mu \)g/mL53.

We were able to identify 30 L4 isolates from Peru (including the aforementioned Peruvian clade) for MIC testing, and a further 9 MICs for L4 that had recently been published by the Cryptic consortium52. For the oldest dated mmpR5 mutation emergence – the L4 Ile67fs mutation in Peruvian isolates with an associated MRCA estimated to 1701 - 10/11 (90.9%) had an MIC below the lower proposed ECOFF of 0.12 \(\mu \)g/mL, presumably due to the co-existing mmpL5 loss of function mutation. Hence, we denote isolates from this clade as having a hypersusceptible phenotype. The second oldest predicted resistance mutation (Arg90Cys, dated to 1940) was however associated with MICs \(\geq \)0.12 \(\mu \)g/mL in 6/7 (85.7%) instances, and in 3/4 (75%) instances for the third oldest predicted resistance associated mutation for
which data were available (Asn98Asp, dated to 1987). These MICs are above the wild-type range, if
not formally classified as resistant. Clades with associated MIC confirmation are highlighted in Figure
3b.

Table 1: Frequency of all *mmpR5* variants occurring ≥ 5 times in dataset and associated resistance
classification. *Where co-existing *mmpL5* mutations were identified this is indicated – only one
mutation was found (*mmpL5* Arg202fs) and it was in the presence of *mmpR5* Ile67fs mutations only,
with no other co-existing *mmpR5* variants.

Variant	Associated phenotype	L2	L4	Total
C-11A	Hypersusceptible	93		93
Ile67fs + mmpL5 Arg202fs	Hypersusceptible		66	66
Asp5Gly	Susceptible	20	3	23
Met146Thr	Resistant	2	20	22
Ile67fs	Resistant	5	17	22
Leu40Val	Susceptible		19	19
Arg90Cys	Intermediate	2	9	11
Glu49fs	Resistant	2	8	10
Val20Ala	Intermediate	1	6	7
Ala59Val	Resistant	7		7
Val1Ala	Resistant	6		6
Gly121Arg	Resistant	5		6
Asp141fs	Unknown		6	6
Asn98Asp	Resistant		6	6
Arg96Gly	Resistant		5	5
Arg109Leu + Arg156fs	Resistant		5	5
Discussion

Our work establishes that the emergence of variants in *mmpR5*, including bedaquiline RAVs, is not solely driven by the use of bedaquiline. We identified up to 11 cases where RAVs have emerged prior to the first clinical trials of bedaquiline in 2007 and a further four cases of variants emerging prior to the clinical use of bedaquiline which are expected to give rise to an intermediate phenotype. These are highlighted red and orange respectively in Supplementary Table S7, not including the oldest emergence of Ile67fs as its resistant phenotype is negated by the epistatic interaction. Phylogenetic inference estimated the oldest clade containing *mmpR5* mutations, composed mostly of samples from Peru carrying the Ile67fs RAV, to have emerged around 1702 (1657-1732). We identify two further early emergences of *mmpR5* mutations, estimated to 1871 and 1940 (Asp141fs and Arg90Cys; point estimates), with samples from the latter clade confirmed to have MICs above the wild-type range justifying classification of an intermediate phenotype. The phenotypic implications of Asp141fs remains unclear. However, together this suggests the likely circulation of variants exhibiting borderline resistance even prior to the first clinical trials for clofazimine. Our phylogenetic inference method, which points to multiple emergences of *mmpR5* nonsynonymous/frameshift variants predating the use of bedaquiline, is also confirmed by the direct observation of eight *Mtb* genomes carrying *mmpR5* RAVs sampled prior to 2007. We also identified, within the aforementioned Peruvian clade, a consistent frameshift mutation in *mmpL5*, which seemed to counteract the resistance phenotypic through an epistatic interaction (MIC <0.12 µg/mL). While Ile67fs is central for bedaquiline resistance in *Mtb*, and this mutation has clearly emerged well prior to the use of bedaquiline and clofazimine in this clade, its phenotypic impact is influenced by the strain genetic background.

We identified other localised clusters with *mmpR5* mutations, reinforcing the need for concern even in situations where such mutations are globally rare. This included 19 isolates with a Met146Thr mutation found in lineage 4 isolates from Eswatini. Met146Thr mutations have been previously associated with a clade that has a rifampicin-resistance conferring mutation located outside of the canonical rifampicin-resistance determining region, and these isolates exhibit elevated bedaquiline MICs. The emergence
of the Met146Thr mutation has previously been dated to have emerged in approximately 200323,39,54.

This is in reasonable agreement with our analysis on a much larger dataset which inferred an emergence
in 2005.6 (95% confidence intervals 2004.8 – 2006.0). The long-standing presence of variants
implicated in resistance and borderline resistance to bedaquiline predating the use of the drug and at
high prevalence in geographically notable cases is of concern, as it suggests that non-synonymous
mutations in \textit{mmp}R5 exert little fitness cost.

Together, our work suggests the existence of pre-existent reservoirs of bedaquiline resistant \textit{Mtb}. These
may have been selected for through historic clofazimine use, though we note at least one case of
intermediate resistance to bedaquiline emerging as early as 1930-1947. We also note that detected
variants in \textit{mmp}R5 tend to exist in strains already displaying rifampicin-resistance, although also
include otherwise fully susceptible strains (\textbf{Supplementary Table S7}). Together this suggests the
important role of prior drug exposure in selecting for strains with pre-existing (cross-)resistance
potential. This reservoir of putatively adaptive variants is expected to expand under drug pressure with
the increasing use of bedaquiline and clofazimine in TB treatment. Further, these reservoirs may also
pose a threat for other candidate TB agents from different drug classes that are also exported by \textit{mmp}S5
and \textit{mmp}L519,22,55.

The identification of resistance variants occurring before the clinical use of a drug is not limited to \textit{M.}
tuberculosis and \textit{mmp}R5 alone. To illustrate, within \textit{M. bovis}, there is evidence indicating that the \textit{pnc}A
H57D mutation, which is associated with resistance to pyrazinamide (PZA), emerged approximately
900 years ago, providing inherent resistance to PZA in \textit{M. bovis}56. Similarly, variations in intrinsic
susceptibility to pretomanid have been observed across the MTBC, including \textit{Mtb} lineages, even
without prior exposure to nitroimidazoles57. It is likely that there are numerous other instances of such
loss of function mutations with minimal or no impact on fitness, similar to the case of \textit{mmp}R5.

Furthermore, the existence of antimicrobial resistance (AMR) in different forms has persisted
throughout the natural history of various bacteria58.
Nevertheless, it is crucial to determine the age and diversity of variants that have been implicated in drug resistance to gain a better understanding of the potential for widespread resistance as a contemporary challenge. We identified a large number of different mmpR5 nonsynonymous/frameshift variants across both of our Mtb lineage cohorts; 46 in L2 and 67 in L4. This suggests the mutational target leading to bedaquiline resistance is wider than for most other current TB drugs and raises concerns about the ease with which bedaquiline resistance can emerge during treatment. It is further concerning that resistance to the new class of nitroimidazole drugs, such as pretomanid and delamanid, is also conferred by loss of function mutations in any of at least six genes, suggesting that they may also have a low barrier to resistance\(^5\).

While we identified many non-synonymous variants in mmpR5, only one (Ile67fs) has been previously definitively linked to resistance. We acknowledge that several of our detected variants have no associated MIC values available in the literature and are thus currently not fully phenotypically validated. We hope by presenting these as ‘unknown’ our work, estimating the age of emergence of non-synonymous mutations, can be of value as further variants are phenotyped in the future. It is however true that determining the phenotypic consequences of mmpR5 variants that have previously been described is challenging as there are often only limited reports correlating MICs to genotypes. Moreover, at least four different methods are used to determine MICs, some of which do not have associated critical concentrations. Even where critical concentrations have been set, there is an overlap in MICs of isolates that are genetically wild type and those that have mutations likely to cause resistance\(^5\). We also note that as we purposefully enriched our dataset for mmpR5 mutations, the sampling precludes estimation of the overall prevalence of these mutations in genome sequencing databases.

Prediction of phenotypic bedaquiline resistance from genomic data is further complicated by the existence of hypersusceptibility variants. For example, the c-11a variant located in the promoter of mmpR5, which appears to increase susceptibility to bedaquiline\(^3\), was observed to be fixed throughout a large clade within L2. The early emergence of this variant and its geographical concentration in South
Africa and Eswatini may suggest the role of non-pharmacological influences on mmpR5 which regulates multiple MmpL efflux systems. Further, analysis of hypersusceptibility is limited by the truncated lower MIC range of the UKMYC microtitre plates, with many isolates giving MICs below the lower end of the measured range. While large-scale genotype/phenotype analyses will likely support the development of rapid molecular diagnostics, targeted or whole genome sequencing, at reasonable depths, may provide the only opportunity to detect all possible mmpR5 RAVs, and possible co-occurring mutations, in clinical settings.

Bedaquiline resistance can also be conferred by other RAVs including in pepQ (bedaquiline and clofazimine), atpE (bedaquiline only) and Rv1979c (clofazimine only). We only found atpE RAVs at low allele frequency in one patient who also had mmpR5 variants (sample accession ERR2677436), which is in line with other evidence suggesting they rarely occur in clinical isolates, likely due to a high fitness cost. Likewise, we only identified Rv1979c RAVs in three patients in China, although there were other variants in Rv1979c for which ability to cause phenotypic resistance has not been previously assessed. Frameshift pepQ mutations that are potentially causative of resistance were identified in 11 cases, in keeping with its possible role as an additional rare resistance mechanism.

Our findings, of reservoirs of mmpR5 RAVs predating the therapeutic use of bedaquiline, are of high clinical relevance as the presence of mmpR5 variants during therapy in clinical strains has been associated with substantially worse outcomes in patients treated with drug regimens including bedaquiline. Although it is uncertain what the impact of mmpR5 RAVs are on outcomes when present prior to treatment, it is imperative to monitor and prevent the wider transmission of bedaquiline resistant clones, particularly in high MDR/XDR-TB settings. Early evaluation of new TB drug candidates entering clinical trials will also be vital given early data suggesting possible cross-resistance for DprE1 inhibitors such as macozinone. The large and disparate set of mutations in mmpR5 we identified, with differing phenotypes and some having been in circulation historically, adds further urgency to the development of rapid drug susceptibility testing for bedaquiline to inform effective treatment choices and mitigate the further spread of DR-TB.
Materials and methods

Sample collection

In this study we curated large representative datasets of *Mtb* whole genome sequences encompassing the global genetic and geographic distribution of lineages 2 (L2) and L4 (Figure 1, Supplementary Tables S1-S2). The dataset was enriched to include all available sequenced isolates with mmpR5 variants, which in some cases included isolates with no, or limited, published metadata. In all other cases samples for which metadata on the geographic location and date of collection was available were retained. To ensure high quality consensus alignments we required that all samples mapped with a minimum percentage cover of 96% and a mean coverage of 30x to the H37Rv reference genome (NC_000962.3). We excluded any samples with evidence of mixed strain infection as identified by the presence of lineage-specific SNPs to more than one sublineage or the presence of a high proportion of heterozygous alleles. The total number of samples included in these datasets, and their source is shown in Supplementary Table S2. An index of all samples is available in Supplementary Table S1.

A large global dataset of 1,669 L4 *Mtb* sequences has been constructed, which we used as the basis for curating our L4 dataset. We refer to this as the ‘base dataset’ for L4. For L2, we constructed a ‘base dataset’ by screening the Sequence Read Archive (SRA) and European Nucleotide Archive (ENA) using BIGSI for the *rpsA* gene sequence containing the L2 defining variant *rpsA a636c* with a 100% match. This search returned 6,307 *Mtb* genomes, of which 1,272 represented unique samples that had the minimum required metadata. Metadata from three studies were also added manually as they were not included in their respective SRA submissions but were available within published studies.

For isolates with only information on the year of sample collection, we set the date to be equal to the middle of the year. For those with information on the month but not the date of collection we set the date of collection to the first of the month. For sequenced samples which were missing associated metadata (32 L2 genomes and 19 L4 genomes) we attempted to estimate an average time of sample
collection in order to impute a sampling date. To do so we computed the average time between date of
collection and sequence upload date for all samples with associated dates separately in each of the L2
and L4 datasets (Supplementary Figure S1). For L2 we estimated a mean lag time of 4.7 years (0.5–
12.6 years 95% CI). For L4, having excluded three sequences obtained from 18th Century mummies
from Hungary40, we estimated a mean lag time of 6.9 years (0.6-19.1 years 95% CI). The estimated
dates, where required, are provided in Supplementary Table S1.

To enrich the datasets for isolates with \textit{mmpR5} variants, we included further sequences from our own
studies in KwaZulu-Natal, South Africa41,42, other studies of drug-resistant TB in southern Africa16,44,68–
71, and Peru72,73. We additionally supplement the Peruvian data with 163 previously unpublished
isolates. In these cases, and to facilitate the most accurate possible estimation of the date of resistance
emergence, we included samples with \textit{mmpR5} variants as well as genetically related sequences without
\textit{mmpR5} variants.

To identify further published raw sequencing data with \textit{mmpR5} variants from studies where
bedaquiline/clofazimine resistance may have been previously unidentified, we screened the NCBI
Sequencing Read Archive (SRA) for sequence data containing 85 previously published \textit{mmpR5}
variants28-30,41,42,74,75 with BIGSI64. BIGSI was employed against a publicly available indexed database
of complete SRA/ENA bacterial and viral whole genome sequences current to December 2016
(available here: \url{http://ftp.ebi.ac.uk/pub/software/bigsie/nat_biotech_2018/all-microbial-index-v03/}),
and also employed locally against an updated in-house database which additionally indexed SRA
samples from January 2017 until January 2019. Samples added using this approach are flagged ‘BIGSI’
in Supplementary Table S1. We also used the PYGSI tool76 to interrogate BIGSI with the \textit{mmpR5}
sequence adjusted to include every possible single nucleotide substitution. In each instance we included
30 bases upstream and downstream of the gene as annotated on the H37Rv \textit{Mtb} reference genome. For
the purpose of this study we only considered coding region, non-synonymous substitutions and
insertions and deletions. Samples added following the PYGSI screen are flagged ‘PYGSI’ in
Supplementary Table S1. A breakdown of the different datasets used is provided in Supplementary Table S2.

Reference mapping and variant calling

Original fastq files for all included sequences were downloaded and paired reads mapped to the H37Rv reference genome with bwa mem v0.7.17. Mapped reads were sorted and de-duplicated using Picard Tools v2.20 followed by indel realignment with GATK v3.8. Alignment quality and coverage was recorded with Qualimap v2.21. Variant calling was performed using bcftools v1.9, based on reads mapping with a minimum mapping quality of 20, base quality of 20, no evidence of strand or position bias, a minimum coverage depth of 10 reads, and a minimum of four reads supporting the alternate allele, with at least two of them on each strand. Moreover, SNPs that were less than 2bp away from an indel were excluded from the analysis. Similarly, only indels 3bp apart of other indels were kept.

All sites with insufficient coverage to identify a site as variant or reference were excluded (marked as ‘N’), as were those in or within 100 bases of PE/PPE genes, or in insertion sequences or phages. SNPs present in the alignment with at least 90% frequency were used to generate a pseudoalignment of equal length to the H37Rv. Samples with more than 10% of the alignment represented by ambiguous bases were excluded. Those positions with more than 10% of ambiguous bases across all the samples were also removed. In order to avoid bias on the tree structure, positions known to be associated with drug resistance were not included.

A more permissive variant calling pipeline was used to identify mmpR5 variants, as they are often present at <100% frequency with a high incidence of frameshift mutations. Here we instead employed FreeBayes v1.2 to call all variants present in the mmpR5 gene (or up to 100 bases upstream) that were present at ≥5% frequency (alternate allele fraction -F 0.05) and supported by at least four reads including one on each strand. Using this more permissive variant calling strategy we also systematically
screened for all mutations in the efflux pump proteins mmpS5-mmpL5 operon (Supplementary Figures S13 and S14).

Classification of resistance variants

All raw fastq files were screened using the rapid resistance profiling tool TBProfiler against a curated whole genome drug resistance mutations library. This allowed rapid assignment of polymorphisms associated with resistance to different antimycobacterial drugs and categorisation of MDR and XDR Mtb status (Supplementary Figure S2, Supplementary Figures S5-S9). Resistance profiles of sequences containing mmpR5 variants are listed in Supplementary Table S7 as either “S” for susceptible, “RR” for rifampicin-resistant and “preXDR” for fluoroquinolone-resistant.

Classification of mmpR5 variants

The diverse range of mmpR5 variants and paucity of widespread MIC testing means that there are limited data from which to infer the phenotypic consequences of identified mmpR5 variants. This was true aside from a subset of data sampled in Peru for which 30 L4 isolates from Peru were subjected to MIC testing using the UKMYC6 plate and a further nine were evaluated for MICs reported by the Cryptic consortium. The approach we used was to assign whether nonsynonymous variants confer a normal or raised MIC based on published phenotypic tests for strains carrying that variant. A full list of the literature reports used for each mutation is provided in Supplementary Table S4. We also introduced an intermediate category to describe isolates with MICs at the critical concentration (e.g., 0.25 µg/mL on Middlebrook 7H11 agar), where there is an overlap of the MIC distributions of mmpR5 mutated and wild type isolates with uncertain clinical implications. We assumed that all other disruptive frameshift and stop mutations would confer resistance in light of the role of mmpR5 as a negative repressor, where loss of function should lead to efflux pump overexpression, unless evidence exists in the literature to suggest otherwise. This allowed us to identify two frameshifts of currently unclear effect (Supplementary Table S4). All other promoter and previously unreported missense mutations were categorised as unknown (Supplementary Table S4). Where mmpR5 mutations were
accompanied by an mmpS5 or mmpL5 loss of function mutation, we assumed that would confer susceptibility (or hypersusceptibility) to bedaquiline23.

Global phylogenetic inference

The alignments for phylogenetic inference were masked for the mmpR5 region using bedtools v2.25.0. All variant positions were extracted from the resulting global phylogenetic alignments using snp-sites v2.4.181, including a L4 outgroup for the L2 alignment (NC_000962.3) and a lineage 3 (L3) outgroup for the L4 alignment (SRR1188186). This resulted in a 67,585 SNP alignment for the L4 dataset and 29,205 SNP alignment for the L2 dataset. A maximum likelihood phylogenetic tree was constructed for both SNP alignments using RAxML-NG v0.9.082 specifying a GTR+G substitution model, correcting for the number of invariant sites using the ascertainment flag (ASC_STAM) and specifying a minimum branch length of 1×10^{-9} reporting 12 decimal places (\textit{--precision 12}).

Estimating the age of emergence of mmpR5 variants

To test whether the resulting phylogenies can be time-calibrated we first dropped the outgroups from the phylogeny and rescaled the trees so that branches were measured in unit of substitutions per genome. We then computed a linear regression between root-to-tip distance and the time of sample collection using BactDating83, which additionally assesses the significance of the regression based on 10,000 date randomisations. We obtained a significant temporal correlation for both the L2 and L4 phylogenies, both with and without imputation of dates for samples with missing metadata (\textit{Supplementary Figure 3}).

We employed the Bayesian method BactDating v1.0183, run without updating the root (updateRoot=F), a mixed relaxed gamma clock model and otherwise default parameters to both global datasets. The MCMC chain was run for 1×10^7 iterations and 3×10^7 iterations. BactDating results were considered only when MCMC chains converged with an Effective Sample Space (ESS) of at least 100. The analysis was applied to the datasets both with and without considering imputed and non-imputed collection dates (\textit{Supplementary Table 3}).
To independently infer the evolutionary rates associated with each of our datasets, we sub-sampled both the L4 and L2 datasets to 200 isolates, selected so as to retain the maximal diversity of the tree using Treemmer v0.3. As before, we excluded all variants currently implicated in drug resistance from the alignments. This resulted in a dataset for L4 comprising 25,104 SNPs and spanning 232 years of sampling and for L2 comprising 8,221 SNPs and spanning 24 years of sampling. In both cases the L3 sample SRR1188186 was used as an out-group given this has an associated collection date. Maximum likelihood trees were constructed using RaXML-NG v0.9.0, as previously described, and a significant temporal regression was obtained for both sub-sampled datasets (Supplementary Figure S4).

BEAST2 v2.6.0 was run on both subsampled SNP alignments allowing for model averaging over possible choices of substitution models. All models were run with either a relaxed or a strict prior on the evolutionary clock rate for three possible coalescent demographic models: exponential, constant and skyline. To speed up the convergence, the prior on the evolutionary clock rate was given as a uniform distribution (limits 0 to 10) with a starting value set to 10^{-7}. In each case, the MCMC chain was run for 500,000,000 iterations, with the first 10% discarded as burn-in and sampling trees every 10,000 chains. The convergence of the chain was inspected in Tracer 1.7 and through consideration of the ESS for all parameters (ESS>200). The best-fit model to the data for these runs was assessed through a path sampling analysis specifying 100 steps, 4 million generations per step, alpha = 0.3, pre-burn-in = 1 million generations, burn-in for each step = 40%. For both datasets, the best supported strict clock model was a coalescent Bayesian skyline analysis. The rates (mean and 95% HPD) estimated under these subsampled analyses (L2 $7.7 \times 10^{-8} [4.9 \times 10^{-8} - 1.03 \times 10^{-7}]$ substitutions per site per year; L4 7.1×10^{-8} [6.2$ \times 10^{-8}$ - 7.9$ \times 10^{-8}$] substitutions per site per year) were used to rescale the maximum likelihood phylogenetic trees generated across the entire L2 and L4 datasets, by transforming all branch lengths of the tree from per unit substitution to per unit substitutions per site per year using the R package Ape v5.3. This resulted in an estimated tMRCA of 1332CE (945CE-1503CE) for L2 and 853CE (685CE – 967CE) for L4 (Figure 2).
The resulting phylogenetic trees were visualised and annotated for place of geographic sampling and mmpR5 variant status using ggtree v1.14.6. All nonsynonymous/frameshift mutations in mmpR5 were considered, with the phenotypic status assigned in Supplementary Table S4. For the purpose of this analysis, and to be conservative, ‘unknown’ variants classified using XGBoost were still considered ‘unknown’ (Supplementary Note 1). Clades carrying shared variants in mmpR5 were identified and the distributions around the age of the node (point estimates – mean - and 95% HPDs) were extracted from the time-stamped phylogeny. For isolated samples (single emergences) exhibiting variants in mmpR5, the time of sample collection was extracted together with the date associated with the upper bound on the age of the next closest node of the tree, allowing for the mutation to have occurred anywhere over the length of the terminal branch (Figure 3, Supplementary Figures S11-S12). For the Peruvian clade Bayesian skyline analysis was implemented through the skylineplot analysis functionality available in Ape v5.3.

Data availability
Raw sequence data and full metadata for all newly generated isolates are available on NCBI Sequencing Read Archive under BioProject ID: PRJEB39837.

Footnotes

Author Contributions
LvD, CN and FB conceived and designed the study. JM, NP, AG, MO, AP, OBB, VE and LG provided sequence data. ATO, JP, MA, CCST and XD performed and advised on computational analyses. LvD, CN and FB wrote the manuscript with input from all co-authors. All authors read and approved the final manuscript.

Acknowledgments
CN and JM are supported by the Wellcome Trust (203583/Z/16/Z and 203919/Z/16/Z, respectively). LvD is supported by a UCL Excellence Fellowship. F.B. acknowledges support from the BBSRC.
FB additionally acknowledges the National Institute for Health Research University College London Hospitals Biomedical Research Centre. M.A. was supported by a Ph.D. scholarship from University College London. All authors acknowledge UCL Biosciences Big Data equipment grant from BBSRC (BB/R01356X/1).

Competing interests

The authors declare no competing financial interests. AP is currently employed by Janssen. Dr Pym’s involvement with the research described herein precedes his employment at Janssen.
Figures

Figure 1: Compiled global *Mtb* genomic datasets.

Panels a) and b) provide the geographic location of isolates included in the lineage 2 and lineage 4 datasets respectively. Pies are scaled by the number of samples per country (raw data available in Supplementary Table S1) with the colours providing the fraction of genomes with any nonsynonymous/frameshift variants detected in *mmpR5* (coloured as per the legend). Countries comprising samples with known RAVs are highlighted with a red asterisk. Genomic data for which no associated metadata on the geographic location of sampling was available are shown in the Pacific Ocean. Panels c) and d) provide the collection dates associated to each genome in the lineage 2 and lineage 4 datasets respectively highlighting those with any variants in *mmpR5* (colour, as per legend). Lineage 4 *Mtb* obtained from 18th century mummies are excluded from this plot but included in all analyses. The vertical dashed lines indicate the dates of the first clinical trials for clofazimine, bedaquiline and FDA approval of bedaquiline for clinical use.
Figure 2: Global time calibrated *Mtb* phylogenies.

Inferred dated phylogenies (x-axis) for the a) lineage 2 and b) lineage 4 datasets. Tips are coloured by the geographic region of sampling as given in the legend. The bar provides the assessed phenotype (colour) based on assignment of nonsynonymous/frameshift variants in *mmpR5*.
Figure 3: Estimated age of emergence of *mmpR5* nonsynonymous/frameshift variants.

Inferred point estimates for the age of emergence of clades with *mmpR5* variants for the lineage 2 (a) and lineage 4 (b) datasets, including a zoomed in reproduction of the period from 2007-2020. Y-axis provides the absolute number of sequences descending from the identified and dated nodes. The *mmpR5* RAV status is given by the colour as defined in the legend at bottom. * indicates phenotypic data available for considered isolates that are supportive of MIC classification (see text). The full mutation timelines are provided in Supplementary Figures 11-12 and Supplementary Table S7.
References

1. Organization, W. H. Global Tuberculosis Report 2022. (WHO, 2022).
2. Cegieński, J. P. et al. Multidrug-Resistant Tuberculosis Treatment Outcomes in Relation to Treatment and Initial Versus Acquired Second-Line Drug Resistance. Clin Infect Dis 62, 418-430 (2016). https://doi.org:10.1093/cid/civ910
3. Organization, W. H. Global Tuberculosis Report 2019. (2019).
4. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223-227 (2005). https://doi.org:10.1126/science.1106753
5. Diacon, A. H. et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med 371, 723-732 (2014). https://doi.org:10.1056/NEJMoa1313865
6. Spring, S. Sirturo (bedaquiline).
7. Borisov, S. E. et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J 49 (2017). https://doi.org:10.1183/13993003.00387-2017
8. Guglielmetti, L. et al. Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J 49 (2017). https://doi.org:10.1183/13993003.01799-2016
9. Olayanju, O. et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J 51 (2018). https://doi.org:10.1183/13993003.00544-2018
10. Ndjeka, N. et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur Respir J 52 (2018). https://doi.org:10.1183/13993003.01528-2018
11. Organization, W. H. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. (2022).
12. Conradie, F. et al. Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis. N Engl J Med 387, 810-823 (2022). https://doi.org:10.1056/NEJMoa2119430
13. Berry, C. et al. TB-PRACTICAL: study protocol for a randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis. Trials 23, 484 (2022). https://doi.org:10.1186/s13063-022-06331-8
14. Paton, N. I., Cousins, C. & Suresh, C. Treatment Strategy for Rifampin-Susceptible Tuberculosis. Reply. N Engl J Med 388, 2298 (2023). https://doi.org:10.1056/NEJMc2304776
15. Manson, A. L. et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet 49, 395-402 (2017). https://doi.org:10.1038/ng.3767
16. Cohen, K. A. et al. Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal. PLoS Med 12, e1001880 (2015). https://doi.org:10.1371/journal.pmed.1001880
17. Eldholm, V. & Balloux, F. Antimicrobial Resistance in Mycobacterium tuberculosis: The Odd One Out. Trends Microbiol 24, 637-648 (2016). https://doi.org:10.1016/j.tim.2016.03.007
Huitric, E. et al. Rates and mechanisms of resistance development in *Mycobacterium tuberculosis* to a novel diarylquinoline ATP synthase inhibitor. *Antimicrob Agents Chemother* **54**, 1022-1028 (2010). https://doi.org/10.1128/AAC.01611-09

Almeida, D. et al. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* **60**, 4590-4599 (2016). https://doi.org/10.1128/AAC.00753-16

Andries, K. et al. Acquired resistance to bedaquiline and clofazimine in *Mycobacterium tuberculosis* complex. *Antimicrob Agents Chemother* **58**, 2979-2981 (2014). https://doi.org/10.1128/AAC.00037-14

Vargas, R., Jr. et al. Role of epistasis in amikacin, kanamycin, bedaquiline, and clofazimine resistance in *Mycobacterium tuberculosis* complex. *Antimicrob Agents Chemother* **65**, e0116421 (2021). https://doi.org/10.1128/AAC.01164-21

Bloemberg, G. V. et al. Examination of bedaquiline- and linezolid-resistant *Mycobacterium tuberculosis* isolates from the Moscow region. *J Antimicrob Chemother* **72**, 1901-1906 (2017). https://doi.org/10.1093/jac/dkx094

de Vos, M. et al. Bedaquiline microheteroresistance after cessation of tuberculosis treatment. *N Engl J Med* **380**, 2178-2180 (2019). https://doi.org/10.1056/NEJMc1815121

Ghodousi, A. et al. Acquisition of cross-resistance to bedaquiline and clofazimine following treatment for tuberculosis in Pakistan. *Antimicrob Agents Chemother* **63** (2019). https://doi.org/10.1128/AAC.00915-19

Polfsuss, S. et al. Emergence of low-level delamanid and bedaquiline resistance during extremely drug-resistant tuberculosis treatment. *Clin Infect Dis* **69**, 1229-1231 (2019). https://doi.org/10.1093/cid/ciz074

Mokrousov, I., Akhmedova, G., Polev, D., Molchanov, V. & Vyazovaya, A. Acquisition of bedaquiline resistance by extensively drug-resistant *Mycobacterium tuberculosis* strain of Central Asian outbreak clade. *Clin Microbiol Infect* **25**, 1295-1297 (2019). https://doi.org/10.1016/j.cmi.2019.06.014

Kadura, S. et al. Systematic review of mutations associated with resistance to the new and repurposed *Mycobacterium tuberculosis* drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. *J Antimicrob Chemother* **75**, 2031-2043 (2020). https://doi.org/10.1093/jac/dkaa136

Roberts, L. W. et al. Repeated evolution of bedaquiline resistance in *Mycobacterium tuberculosis* is driven by truncation of *mmpR5*. *bioRxiv*, 2022.2012.2008.519610 (2022). https://doi.org/10.1101/2022.12.08.519610
Sonnenkalb, L. et al. Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis. *Lancet Microbe* 4, e358-e368 (2023). https://doi.org:10.1016/S2666-5247(23)00002-2

Ismail, N. et al. Genetic variants and their association with phenotypic resistance to bedaquiline in *Mycobacterium tuberculosis*: a systematic review and individual isolate data analysis. *Lancet Microbe* 2, E604-E616 (2021). https://doi.org:10.1016/S2666-5247(21)00175-0

Organization, W. H. Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB., (2018).

Nimmo, C. et al. Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients. *Eur Respir J* 55 (2020). https://doi.org:10.1183/13993003.02383-2019

Martinez, E. et al. Mutations associated with in vitro resistance to bedaquiline in *Mycobacterium tuberculosis* isolates in Australia. *Tuberculosis (Edinb)* 111, 31-34 (2018). https://doi.org:10.1016/j.tube.2018.04.007

Villellas, C. et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. *J Antimicrob Chemother* 72, 684-690 (2017). https://doi.org:10.1093/jac/dkw502

Merker, M. et al. Phylogenetically informative mutations in genes implicated in antibiotic resistance in *Mycobacterium tuberculosis* complex. *Genome Med* 12, 27 (2020). https://doi.org:10.1186/s13073-020-00726-5

Kay, G. L. et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. *Nat Commun* 6, 6717 (2015). https://doi.org:10.1038/ncomms7717

Nimmo, C. et al. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. *Lancet Microbe* 1, e165-e174 (2020). https://doi.org:10.1016/S2666-5247(20)30031-8

Nimmo, C. et al. Dynamics of within-host *Mycobacterium tuberculosis* diversity and heteroresistance during treatment, *EBioMedicine* 55, 102747 (2020). https://doi.org:10.1016/j.ebiom.2020.102747

O’Neill, M. B. et al. Lineage specific histories of *Mycobacterium tuberculosis* dispersal in Africa and Eurasia. *Mol Ecol* 28, 3241-3256 (2019). https://doi.org:10.1111/mec.15120

Brynildsrud, O. B. et al. Global expansion of *Mycobacterium tuberculosis* lineage 4 shaped by colonial migration and local adaptation. *Sci Adv* 4, eaat5869 (2018). https://doi.org:10.1126/sciadv.aat5869

Rutaihwa, L. K. et al. Multiple Introductions of *Mycobacterium tuberculosis* Lineage 2-Beijing Into Africa Over Centuries. *Front Ecol Evol* 7 (2019). https://doi.org:ARTN 112

Bradley, P. et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. *Nat Commun* 6, 10063 (2015). https://doi.org:10.1038/ncomms10063

Phelan, J. E. et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. *Genome Med* 11, 41 (2019). https://doi.org:10.1186/s13073-019-0650-x

Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLoS Comput Biol* 15, e1006650 (2019). https://doi.org:10.1371/journal.pcbi.1006650
Menardo, F., Duchene, S., Brites, D. & Gagneux, S. The molecular clock of *Mycobacterium tuberculosis*. *PLoS Pathog* **15**, e1008067 (2019). https://doi.org:10.1371/journal.ppat.1008067

Ismail, N., Peters, R. P. H., Ismail, N. A. & Omar, S. V. Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance. *Antimicrob Agents Chemother* **63** (2019). https://doi.org:10.1128/AAC.02141-18

Andres, S. et al. Bedaquiline-Resistant Tuberculosis: Dark Clouds on the Horizon. *Am J Respir Crit Care Med* **201**, 1564-1568 (2020). https://doi.org:10.1164/rccm.201909-1819LE

The, C. C. A data compendium associating the genomes of 12,289 *Mycobacterium tuberculosis* isolates with quantitative resistance phenotypes to 13 antibiotics. *PLOS Biology* **20**, e3001721 (2022). https://doi.org:10.1371/journal.pbio.3001721

The, C. C. Epidemiological cutoff values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of *M. tuberculosis*. *European Respiratory Journal*, 2200239 (2022). https://doi.org:10.1183/13993003.00239-2022

Beckert, P. et al. MDR *M. tuberculosis* outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. *Genome Med* **12**, 104 (2020). https://doi.org:10.1186/s13073-020-00793-8

Hariguchi, N. et al. OPC-167832, a Novel Carbostyril Derivative with Potent Antituberculosis Activity as a DprE1 Inhibitor. *Antimicrob Agents Chemother* **64** (2020). https://doi.org:10.1128/AAC.02020-19

Loiseau, C. et al. An African origin for *Mycobacterium bovis*. *Evol Med Public Health* **2020**, 49-59 (2020). https://doi.org:10.1093/emph/eaoo05

Bateson, A. et al. Ancient and recent differences in the intrinsic susceptibility of *Mycobacterium tuberculosis* complex to pretomanid. *J Antimicrob Chemother* **77**, 1685-1693 (2022). https://doi.org:10.1093/jac/dkac070

D’Costa, V. M. et al. Antibiotic resistance is ancient. *Nature* **477**, 457-461 (2011). https://doi.org:10.1038/nature10388

Rifat, D. et al. Mutations in fbiD (Rv2983) as a Novel Determinant of Resistance to Pretomanid and Delamanid in *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* **65** (2021). https://doi.org:ARTN e01948-20

Liu, Y. et al. Reduced Susceptibility of *Mycobacterium tuberculosis* to Bedaquiline During Antituberculosis Treatment and Its Correlation With Clinical Outcomes in China. *Clin Infect Dis* **73**, e3391-e3397 (2021). https://doi.org:10.1093/cid/ciaa1002

Pym, A. S. et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. *Eur Respir J* **47**, 564-574 (2016). https://doi.org:10.1183/13993003.00724-2015

Coll, F. et al. A robust SNP barcode for typing *Mycobacterium tuberculosis* complex strains. *Nat Commun* **5**, 4812 (2014). https://doi.org:10.1038/ncomms5812

Sobkowiak, B. et al. Identifying mixed *Mycobacterium tuberculosis* infections from whole genome sequence data. *BMCGenomics* **19**, 613 (2018). https://doi.org:10.1186/s12864-018-4988-z

Bradley, P., den Bakker, H. C., Rocha, E. P. C., McVean, G. & Iqbal, Z. Ultrafast search of all deposited bacterial and viral genomic data. *Nat Biotechnol* **37**, 152-159 (2019). https://doi.org:10.1038/s41587-018-0010-1

Merker, M. et al. Evolutionary history and global spread of the *Mycobacterium tuberculosis* Beijing lineage. *Nat Genet* **47**, 242-249 (2015). https://doi.org:10.1038/ng.3195
Luo, T. et al. Southern East Asian origin and coexpansion of *Mycobacterium tuberculosis* Beijing family with Han Chinese. *Proc Natl Acad Sci U S A* **112**, 8136-8141 (2015). https://doi.org/10.1073/pnas.1424063112

Norheim, G. et al. Tuberculosis Outbreak in an Educational Institution in Norway. *J Clin Microbiol* **55**, 1327-1333 (2017). https://doi.org/10.1128/JCM.01152-16

Nimmo, C. et al. Whole genome sequencing *Mycobacterium tuberculosis* directly from sputum spurs more genetic diversity than sequencing from culture. *BMC Genomics* **20**, 389 (2019). https://doi.org/10.1186/s12864-019-5782-2

Dheda, K. et al. Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. *Lancet Respir Med* **5**, 269-281 (2017). https://doi.org/10.1016/S2213-2600(16)30433-7

Streicher, E. M. et al. Molecular Epidemiological Interpretation of the Epidemic of Extensively Drug-Resistant Tuberculosis in South Africa. *J Clin Microbiol* **53**, 3650-3653 (2015). https://doi.org/10.1128/JCM.01414-15

Guerra-Assuncao, J. A. et al. Large-scale whole genome sequencing of *M. tuberculosis* provides insights into transmission in a high prevalence area. *Elife* **4** (2015). https://doi.org/10.7554/eLife.05166

Grandjean, L. et al. Transmission of Multidrug-Resistant and Drug-Susceptible Tuberculosis within Households: A Prospective Cohort Study. *PLoS Med* **12**, e1001843; discussion e1001843 (2015). https://doi.org/10.1371/journal.pmed.1001843

Grandjean, L. et al. Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. *PLoS One* **12**, e0189838 (2017). https://doi.org/10.1371/journal.pone.0189838

Ismail, N., Omar, S. V., Ismail, N. A. & Peters, R. P. H. Collated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in *Mycobacterium tuberculosis*. *Data Brief* **20**, 1975-1983 (2018). https://doi.org/10.1016/j.dib.2018.09.057

Ghajavand, H. et al. High Prevalence of Bedaquiline Resistance in Treatment-Naive Tuberculosis Patients and Verapamil Effectiveness. *Antimicrob Agents Chemother* **63** (2019). https://doi.org/10.1128/AAC.02530-18

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv* (2013). https://doi.org/arXiv:1303.3997

van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics* **43**, 11 10 11-11 10 33 (2013). https://doi.org/10.1002/0471250953.bi1110s43

Okonechnikov, K., Conesa, A. & Garcia-Alcalde, F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. *Bioinformatics* **32**, 292-294 (2016). https://doi.org/10.1093/bioinformatics/btv566

Coll, F. et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. *Genome Med* **7**, 51 (2015). https://doi.org/10.1186/s13073-015-0164-0

Page, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. *Microb Genom* **2**, e000056 (2016). https://doi.org/10.1099/mgen.0.000056

Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* **35**, 4453-4455 (2019). https://doi.org/10.1093/bioinformatics/btz305
Didelot, X., Croucher, N. J., Bentley, S. D., Harris, S. R. & Wilson, D. J. Bayesian inference of ancestral dates on bacterial phylogenetic trees. *Nucleic Acids Res* **46**, e134 (2018). https://doi.org/10.1093/nar/gky783

Menardo, F. *et al*. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. *BMC Bioinformatics* **19**, 164 (2018). https://doi.org/10.1186/s12859-018-2164-8

Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. *BMC Evol Biol* **17**, 42 (2017). https://doi.org/10.1186/s12862-017-0890-6

Baele, G. *et al*. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. *Mol Biol Evol* **29**, 2157-2167 (2012). https://doi.org/10.1093/molbev/mss084

Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* **35**, 526-528 (2019). https://doi.org/10.1093/bioinformatics/bty633

Yu, G. C., Smith, D. K., Zhu, H. C., Guan, Y. & Lam, T. T. Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. *Methods Ecol Evol* **8**, 28-36 (2017). https://doi.org/10.1111/2041-210x.12628