Modelling hybrid \(\beta\) Cephei/SPB pulsations: \(\gamma\) Pegasi

T. Zdravkov* and A. A. Pamyatnykh*†

*Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland
†Institute of Astronomy, Russian Academy of Science, Pyatniskaya Str.48, 109017 Moscow, Russia

Abstract. Recent photometric and spectroscopic observations of the hybrid variable \(\gamma\) Pegasi [6, 5] revealed 6 frequencies of the SPB type and 8 of the \(\beta\) Cep type pulsations. Standard seismic models, which have been constructed with OPAL [7] and OP [12] opacities by fitting three frequencies (those of the radial fundamental and two dipole modes), do not reproduce the frequency range of observed pulsations and do not fit the observed individual frequencies with a satisfactory accuracy. We argue that better fitting can be achieved with opacity enhancements, over the OP data, by about 20-50 percent around the opacity bumps produced by excited ions of the iron-group elements at temperatures of about \(2 \times 10^5\) K (Z bump) and \(2 \times 10^6\) K (Deep Opacity Bump).

Keywords: stars: variables: other — stars: oscillations — stars: individual: \(\gamma\) Pegasi — stars: opacity

PACS: 97.10.Sj, 97.20.Ec

INTRODUCTION

Hybrid stars are main-sequence variables which show two different types of oscillations: (i) low-order acoustic and gravity modes of \(\beta\) Cephei type with periods of about 3 – 6 hours, and (ii) high-order gravity modes of the SPB type with periods of about 1.5 – 3 days. Pul- sations of both types of variables are driven by the iron opacity bump located at temperature of about \(2 \times 10^5\) K (Z bump). In the HR diagram, the overlapping region of the \(\beta\) Cep and SPB type variables is very sensitive to the opacity data (Figs. 3 and 4 in [10], see also [6, 5, 14]), therefore the modelling of hybrid star pulsations allows to test the opacity of the stellar matter.

It was suggested by [3] that an opacity enhancement around the Z bump could help solving the problems in seismic modelling of the hybrid variable \(\nu\) Eri. We tested this possibility in [15]. There is also another iron opacity bump, referred to as Deep Opacity Bump (DOB), at a temperature of about \(2 \times 10^6\) K, which may be responsible for the excitation of g-modes in hot massive Wolf-Rayet stars [13]. An opacity enhancement in the DOB temperature region (more exactly, at the base of the solar convection zone) was suggested recently to achieve agreement between new solar models and helioseismic inferences [2].

Here, we construct seismic models of the hybrid variable \(\gamma\) Pegasi, using the OPAL [7] and OP [12] data on stellar opacities for two heavy element mixtures: GN93 [4] and AO4 [1]. We show that some opacity enhancements around the Z bump and Deep Opacity Bump may be required to achieve a better agreement between the theoretical frequency range of unstable modes and the observed pulsations, and also to achieve a better fit of the computed individual frequencies to the observed values.

STANDARD SEISMIC MODELS

Recent photometric and spectroscopic observations of \(\gamma\) Pegasi [6, 5] revealed 6 frequencies of the SPB type and 8 of the \(\beta\) Cep type pulsations. Two modes were definitively identified: the radial fundamental mode at \(6.5897\) cd\(^{-1}\) and the dipole mode \(g_1\) at \(6.0162\) cd\(^{-1}\). Preliminary seismic model from [6] fits these two modes. In our study we suggested that the observed peak at \(6.9776\) cd\(^{-1}\) corresponds to the acoustic dipole mode \(p_1\).

Our seismic models were constructed to fit these three frequencies by a suitable choice of stellar mass, \(M\), heavy element abundance, \(Z\), and effective temperature. This method was used also in our studies of \(\nu\) Eri [11, 5, 13].

The position of the seismic models built with standard opacity data is shown on Fig. 1. Standard models don’t solve all the problems, which are similar to those encountered in the modelling of \(\nu\) Eri [3, 15]: (i) The theoretical frequency range of the unstable high-order gravity modes of lowest degrees does not fit the observed range. In OP models only quadruple modes are unstable in the observed frequency range, whereas the observed frequency spacings argue mainly in favour of dipole modes. In the OPAL case, SPB type pulsations are not excited at all. (ii) In models within the observational error box in the HRD (the OPAL model and preliminary model from [6]), the theoretical frequency of the dipole mode \(p_2\) is noticeably higher than the observed value \(9.109\) cd\(^{-1}\). OP models fit this value much better but they are located outside the observational error box in the HRD. (iii) All observed frequencies higher than \(8\) cd\(^{-1}\) are outside the theoretical frequency range of unstable modes. (iv) Observations
suggest rather low metallicity (up to $Z = 0.01$), whereas one needs much higher Z values to explain the mode excitation in the whole observed frequency range.

MODELS WITH OPACITY ENHANCEMENTS

Effect of the 50% opacity increase in the Z bump. The Z bump at a temperature of about 2×10^5 K is located in relatively low-density layers, therefore the opacity modification in this region does not change frequencies of the lowest acoustic and gravity modes that are used to construct seismic models. As a consequence, the position of the modified seismic model in the HR diagram is almost the same as that of the standard model (see Fig. 4 below). However, the opacity enhancement results in an extension of the unstable frequency range because just the Z bump is responsible for the driving of both SPB and β Cep type pulsations, see Fig. 2. Note that in the modified model the frequency of the third dipole mode (mode p_2 at 9.1 cd$^{-1}$) is somewhat smaller than that in the standard model and than the observed value.

Effect of the 20% opacity increase in the Deep Opacity Bump. The Deep Opacity Bump at a temperature of about 2×10^6 K is located in more dense layers than the Z bump. Therefore, the opacity modification influences even lowest acoustic and gravity frequencies including those used to construct the fitted seismic model. The modified seismic model noticeably differs from the standard one and its position in the HR diagram is different. The model is located within the observational error box (see Fig. 4 below). On the other hand, these deep stellar layers produce only marginal driving, therefore the instability of the modified model is almost the same as in the standard case, see Fig. 3. Contrary to the Z bump case, the frequency of the third dipole mode (mode p_2 at 9.1 cd$^{-1}$) is now somewhat higher than that in the standard model and than the observed value.

Combined effect of the opacity modifications in both regions. The modified model was constructed with an opacity enhancement (over the OP A04 data) of 50% in the Z bump and of 16% in the DOB. The second value was chosen to fit nicely the frequency of the dipole mode p_2, as well as the frequencies of the radial fundamental and two other dipole modes. The modified model is located within the observational error box, as
dial mode at 8.552 cd$^{-1}$ is not satisfactory, but this mode has the lowest observed amplitude (see [6]).

CONCLUSIONS

To explain the observed frequency spectrum of the hybrid variable γ Pegasi, the stellar matter seems to be still more opaque around the iron opacity bumps at temperatures of about 2×10^5 K (Z bump) and 2×10^6 K (DOB) than given by the standard models constructed with the OPAL or OP data. A model with an opacity enhancement (over the OP A04 data) of 50% in the Z bump region and of 16% in the DOB region nicely reproduces the β Cep frequencies. The model is also unstable in the high-order gravity modes of lowest degrees, but only quadruple modes fit the observed frequency range of the SPB type pulsations, whereas the observed frequency spacings argue mainly in favour of dipole modes [6]. Note that in all our models there is an unstable quadruple mode at 4.4 - 4.5 cd$^{-1}$ which is not detected in observations.

ACKNOWLEDGMENTS

The work was supported by the Polish MNSiW grant No. N N203 379636.

REFERENCES

1. M. Asplund, N. Grevesse, and A. J. Sauval, "The Solar Chemical Composition," in *ASP Conf. Series*, edited by T. G. Barnes III and F. N. Bash, Astronomical Society of the Pacific, San Francisco, 2005, p. 25.
2. J. Christensen-Dalsgaard, M. P. di Mauro, G. Houdek, and F. Pijpers, *A&A* 494, 205 (2009)
3. W. A. Dziembowski, and A. A. Pamyatnykh, *MNRAS* 385, 2061 (2008).
4. N. Grevesse, and A. Noels, in *Origin and evolution of the elements*, edited by N. Prantzos, E. Vangioni-Flam and M. Casse, Cambridge University Press, Cambridge, England, 1993, p. 14.
5. G. Handler, *MNRAS* 398, 1339 (2009)
6. G. Handler, J. M. Matthews, J. A. Eaton, et al., *ApJ Letters* 698, L56 (2009)
7. C. A. Iglesias, and F. J. Rogers, *ApJ* 464, 943 (1996)
8. A. Miglio, J. Montálbán, and M.-A. Dupret, *MNRAS* 375, L21 (2007)
9. A. Miglio, J. Montálbán, and M.-A. Dupret, *Comm. in Asteroseismology* 150, 210 (2007)
10. A. A. Pamyatnykh, *Acta Astronomica* 49, 119 (1999)
11. A. A. Pamyatnykh, G. Handler, and W. A. Dziembowski, *MNRAS* 350, 1022 (2004)
12. M. J. Seaton, *MNRAS* 362, L1 (2005)
13. R. H. D. Townsend, and J. MacDonald, *MNRAS* 368, L57 (2006)
14. T. Zdravkov, and A. A. Pamyatnykh, *Journal of Physics: Conference Series* **118**, 012079 (2008)

15. T. Zdravkov, and A. A. Pamyatnykh, *Comm. in Asteroseismology* **157**, 385 (2008)
