Multiple accurate-cubic optical solitons to the kerr-law and power-law nonlinear Schrödinger equation without the chromatic dispersion

Emad H. M. Zahran1 · Ahmet Bekir2

Received: 16 March 2021 / Accepted: 6 November 2021 / Published online: 26 November 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The main target of this work is implementing multiple accurate cubic optical solitons for the nonlinear Schrödinger equation in the presence of third-order dispersion effects, absence of the chromatic dispersion. The emergence cubic optical solitons of the proposed model are extracted for the Kerr-Law and Power-Law nonlinearity in the framework of two distinct techniques, the first one is the extended simple equation method (ESEM), while the other is the solitary wave ansatz method (SWAM). These cubic optical solitons for the Kerr-Law and Power-Law nonlinearity have been extracted successfully at the same time and parallel via these two different techniques. A good comparison not only between our achieved results by these two manners but also with that achieved previously has been extracted.

Keywords The cubic-nonlinear Schrödinger equation · The extended simple equation method · The solitary wave ansatz method · The multiple accurate cubic optical solitons

1 Introduction
Nonlinear optics explains nonlinear response of properties such as frequency, polarization, phase or path of incident light. These nonlinear interactions give rise to a host of optical phenomena. Recently, many new paths have been suggested for enhanced nonlinearity and light manipulation, including twisted chromospheres, combining rich density of states with bond alternation, microscopic cascading of second-order nonlinearity, etc. Consequently, molecular nonlinear optics has been widely used in the biophotonics field, containing bio-imaging, phototherapy, biosensing, etc.

* Ahmet Bekir
bekirahmet@gmail.com

Emad H. M. Zahran
emad.zahran@feng.bu.edu.eg

1 Department of Mathematical and Physical Engineering, Faculty of Engineering, Benha University, Shubra, Egypt
2 Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030 Eskisehir, Turkey
In this study, we will implement the multiple accurate optical solitons for this kindly NLSE which plays principal role in telecommunications engineering in the framework of the ESEM (Bekir and Zahran 2020a) and the SWAM (Biswas 2008; Triki and Wazwaz 2009, 2011). The two proposed methods have been applied perfectly to achieve impressive accurate cubic optical solitons to this model with its Kerr-Law and Power- Law nonlinearity. The telecommunications engineering splits into wired communications that make use of underground communications cables and wireless communications that involve the transmission of information over a distance without help of wires. The arising problem for pure-quartic soliton related to the governing nonlinear Schrödinger equation can be non-integrable one, for this reason we will propose the concept of cubic-quartic solitons in which the chromatic dispersion is replaced by the third order dispersion and fourth order dispersion together (Liu 2005; Xiao and Liang 2009; El-Ganaini 2013; Mirzazadeh et al. 2014; Blanco-Redondo et al. 2016; Bekir and Zahran 2021a; Das et al. 2019). Specially, many studies in terms of various methods have been demonstrated through significant published articles that were extracted via many authors who discussed various forms of the cubic-quartic NLSE (Das et al. 2019; Bansal et al. 2018; Biswas et al. 2017a, b; Biswas and Arshed 2018; Gonzalez-Gaxiola et al. 2020; Kohl et al. 2019; Yıldırım et al. 2020a, 2020b; Wazwaz and Xu 2020). In the last few decades the dynamics of optical soliton cause surprise development in the telecommunications engineering (Huang et al. 2007; Kudryashov 2020a, b, c, d; Li et al. 2019; Bekir and Zahran 2020b, 2021a, b; Bekir et al. in press; Shehata et al. 2021). Recently, few studies have been implemented to discuss the NLSE in the presence of the third order dispersion and absence of the chromatic dispersion (Xiao and Liang 2009; El-Ganaini 2013; Mirzazadeh et al. 2014; Hosseini et al. 2020; Yıldırım et al. 2020), while in the absence of third order dispersion and the chromatic dispersion this equation doesn’t integrable (Kodama and Hasegawa 1995).

According to Yıldırım et al. (2020a), the suggested model can be proposed in the form,

\[iQ_t + L[Q^2]Q + i\alpha Q_{xxx} = i \left(\nu |Q^{2m}|Q_x + \lambda \left(|Q^{2m}|Q \right)_x + \mu \left(|Q^{2m}| \right)_{xx} \right) \quad (1) \]

where \(Q(x, t)\) is the complex function that related to wave profile, \(i = \sqrt{-1}\), and the other remaining constants appearing in this equation will be terminated to the following definitions \(\phi\), \(\sigma\) are the spatial and temporal coordinates, \(\alpha\) denotes to the index of the third order dispersion, \(\lambda\) is the index of self-gradient nonlinearity, \(\nu\), \(\mu\) related to profile of the higher-order dispersion effects, \(m\) is the full nonlinearity variable and \(F\) determines the nonlinear forms of refractive coefficient, where

\[F \left(|Q^2| \right) Q \in \bigcup_{m,n=1}^{\infty} C^k((-n,n) \times (-m,m); R^2) \]

The main target of this paper is to find multiple accurate cubic solitons for Kerr-Law and Power-Law of the NLSE in the framework of the ESEM and SWAM respectively.

2 Mathematical analysis of the ESEM

Any nonlinear evolution equation can be written in the form,

\[R(h, h_x, h_t, h_{xx}, h_{tt}, \ldots) = 0. \quad (2) \]
where R is a function of $h(x,t)$ and its partial derivatives that involve the highest order derivatives and nonlinear terms, according to the transformation $h(x,t) = h(\zeta)$, $\zeta = kx + wt$. Eq. (2) can be reduced to the following ODE:

$$S(h, h', h'' \ldots)$$

where S is a function in $h(\zeta)$ and its total derivatives, while $t = \frac{d}{d\zeta}$. The constructed solution according to this method is:

$$\psi(\zeta) = \sum_{i=-m}^{m} A_i \phi^i(\zeta).$$

where the positive integer m in Eq. (4) can be located by balancing the highest order derivative term and the nonlinear term, while the arbitrary constants A_i can be calculated later, the function $\phi(\zeta)$ satisfies the following new ansatz equation

$$\phi'(\zeta) = a_0 + a_1 \phi + a_2 \phi^2.$$

While a_0, a_1 and a_2 admit the following two cases:

1. If $a_1 = a_3 = 0$, Eq. (5) will be transformed to the Riccati equation (Shehata et al. 2021; Bekir and Zahran 2020b), which has the following solutions:

$$\phi(\zeta) = \frac{\sqrt{a_0 a_2}}{a_2} \tan \left(\sqrt{a_0 a_2} (\zeta + \zeta_0) \right), \quad a_0 a_2 > 0$$

$$\phi(\zeta) = \frac{-\sqrt{-a_0 a_2}}{a_2} \tanh \left(\sqrt{-a_0 a_2} \zeta - \frac{\rho \ln \zeta_0}{2} \right), \quad a_0 a_2 < 0, \quad \zeta > 0, \quad \rho = \pm 1$$

2. If $a_0 = a_3 = 0$, Eq. (5) will be transformed to the Bernoulli equation (Bekir and Zahran 2020b), which has the following solutions:

$$\phi(\zeta) = \frac{a_1 \exp[a_1 (\zeta + \zeta_0)]}{1 - a_2 \exp[a_1 (\zeta + \zeta_0)]}, \quad a_1 > 0$$

$$\phi(\zeta) = \frac{-a_1 \exp[a_1 (\zeta + \zeta_0)]}{1 + a_2 \exp[a_1 (\zeta + \zeta_0)]}, \quad a_1 < 0$$

And the general solution to ansatz Eq. (5) is as follows:

$$\phi(\zeta) = -\frac{1}{a_2^2} \left(a_1 - \sqrt{4a_1 a_2 - a_1^2} \tan \left(\frac{\sqrt{4a_1 a_2 - a_1^2}}{2} (\zeta + \zeta_0) \right) \right), \quad 4a_1 a_2 > a_1^2, \quad a_2 > 0,$$

$$\phi(\zeta) = \frac{1}{a_2^2} \left(a_1 + \sqrt{4a_1 a_2 - a_1^2} \tanh \left(\frac{\sqrt{4a_1 a_2 - a_1^2}}{2} (\zeta + \zeta_0) \right) \right), \quad 4a_1 a_2 > a_1^2, \quad a_2 < 0.$$

}\otimes Springer
where ζ_0 is the constancy of integration.

Finally, via inserting Eq. (4) into Eq. (5) and equating the coefficients of different powers of φ' to zero, we get a system of algebraic equations, by solving it we obtain the values of the unknown variable mentioned in these equations. Moreover, inserting these achieved variables into Eq. (5) then the aimed solutions will be extracted.

3 The cubic optical solitons in the framework of the ESEM

In this section, we will implement the ESEM to construct the cubic optical solitons for the Kerr-Law and Power-Law nonlinearity of the suggested Eq. (1) mentioned above,

3.1 The cubic optical solitons to the Kerr-Law nonlinearity

For the Kerr-Law nonlinearity Eq. (1) takes the form

$$iQ_t + |Q|^2 Q + iaQ_{xxx} = i \left(\nu |Q|^2 Q_x + \lambda \left(|Q|^2 \right)_x + \mu \left(|Q|^2 \right)_x Q \right).$$ \hspace{1cm} (12)

According to the suggested method, the solution is

$$Q(x, t) = \psi(\zeta) e^{i\eta(x,t)}, \quad \zeta = kx + wt, \quad \eta = qx + \delta t.$$

Hence,

$$Q_t = i\delta \psi' e^{i\eta} + w\psi' e^{i\eta},$$ \hspace{1cm} (14)

$$Q_x = iq\psi e^{i\eta} + k\psi' e^{i\eta},$$ \hspace{1cm} (15)

$$Q_{xx} = -q^2 \psi e^{i\eta} + 2ikq\psi' e^{i\eta} + k^2 \psi'' e^{i\eta},$$ \hspace{1cm} (16)

$$Q_{xxx} = -iq^3 \psi e^{i\eta} - 3kq^2 \psi' e^{i\eta} + 3iqk^2 \psi'' e^{i\eta} + k^3 \psi''' e^{i\eta},$$ \hspace{1cm} (17)

$$|Q|^2 = \psi^2, \quad \left(|Q|^2 \right)_x = 2k\psi^2 \psi', \quad Q\left(|Q|^2 \right)_x = 2k\psi^2 \psi' e^{i\eta},$$ \hspace{1cm} (18)

$$\left(|Q|^2 \right)_x = 3k \psi^2 \psi' e^{i\eta} + iq\psi^3 e^{i\eta}.$$ \hspace{1cm} (19)

Via inserting the above relations into Eq. (12) we get the following real and imaginary parts respectively,

$$\text{Re} \quad -3aqk^2 \psi'' + (\lambda q + qv + 1)\psi^3 + (aq^3 - \delta)\psi = 0.$$ \hspace{1cm} (20)

$$\text{Im} \quad ak^3 \psi''' - k(3\lambda + 2\mu - \nu)\psi^2 \psi' + (w - 3akq^2)\psi' = 0.$$ \hspace{1cm} (21)

Now, via integrating the imaginary part Eq. (21) with respect to ζ, then it becomes approximately the same as Eq. (20) which represents the real part. For this reason we will implement the suggested method only for the real part which is
\[-3aq^2 \psi'' + (\lambda q + qv + 1) \psi^3 + (aq^3 - \delta) \psi = 0. \quad (22)\]

Via balancing ψ'', ψ^3 in Eq. (22) leads to $3m = 2m + 1$ which implies $m = 1$, hence the solution is

\[
\psi(\zeta) = \frac{A_{-1}}{\varphi} + A_0 + A_1 \varphi
\]

where $\varphi' = a_0 + a_1 \varphi + a_2 \varphi^2 + a_3 \varphi^3$.

Case 1: For the first family in which $a_1 = a_3 = 0 \Rightarrow \varphi' = a_0 + a_2 \varphi^2$ the solution is

\[
\psi' = -\frac{a_0 A_{-1}}{\varphi^2} + A_1 a_0 + A_1 a_2 \varphi^2 - a_2 A_{-1} \quad (24)
\]

\[
\psi'' = \frac{2a_0^2 A_{-1}}{\varphi^3} + \frac{2a_0 a_2 A_{-1}}{\varphi} + 2A_1 a_0 a_2 \varphi + 2A_1 a_2^2 \varphi^3
\]

\[
\psi^2 = A_1^2 \varphi^2 + 2A_0 A_1 \varphi + (A_0^2 + 2A_{-1} A_1) + \frac{A_{-1}^2}{\varphi^2} + \frac{2A_{-1} A_0}{\varphi}, \quad (26)
\]

\[
\psi^3 = A_1^3 \varphi^3 + 3A_0 A_1^2 \varphi^2 + (3A_1 A_0^2 + 3A_{-1} A_1^2) \varphi + (A_0^3 + 6A_{-1} A_0 A_1) + \frac{A_{-1}^3}{\varphi^3} + \frac{3A_0 A_{-1}^2}{\varphi^2} + \frac{3A_{-1} A_0^2 + 3A_1 A_{-1}^2}{\varphi}. \quad (27)
\]

Via inserting the relations (23–27) into Eq. (22) and collecting and equating the coefficients of different powers of φ' to zero, lead to a system of algebraic equations and by solving this system the following results will be extracted,

\[
(1) \quad a_0 = -\frac{(\lambda q + qv + 1)A_{-1}^2}{6aqk^2}, \quad a_2 = -\frac{aq^3 + \delta}{(\lambda q + qv + 1)A_{-1}^2}, \quad A_0 = 0, A_1 = 0, \quad (28)
\]

\[
(2) \quad a_0 = \frac{-aq^3 + \delta}{kA_1 \sqrt{6aqk^2}}, \quad a_2 = -\frac{A_1 \sqrt{\lambda q + qv + 1}}{k \sqrt{6aq}}, \quad A_0 = 0, A_{-1} = 0, \quad (29)
\]

\[
(3) \quad a_0 = \frac{aq^3 - \delta}{kA_1 \sqrt{6aqk^2}}, \quad a_2 = \frac{A_1 \sqrt{\lambda q + qv + 1}}{k \sqrt{6aq}}, \quad A_0 = 0, A_{-1} = 0, \quad (30)
\]
\[a_0 = \begin{cases}
2\sqrt{6}(aq^3 - \delta) - 6A_1
\frac{9k\sqrt{aq(\lambda q + qv + 1)}}{(1 + q + \lambda q)} \sqrt{\frac{6k\sqrt{6}(\lambda q + qv + 1)(aq^3 - \delta) + 81aqA_1k^2(\lambda q + qv + 1)}{(\lambda q + qv + 1)^2A_1}}
\end{cases} \]

\[a_z = \frac{A_1\sqrt{\lambda q + qv + 1}}{k\sqrt{6aq}}, \quad A_{-1} = \frac{-k\sqrt{aq}}{\sqrt{\lambda q + qv + 1}} - \frac{1}{2} \sqrt{\frac{4k\sqrt{6aq(aq^3 - \delta) + 54aqk^2A_1\sqrt{\lambda q + qv + 1}}}{(\lambda q + qv + 1)^2A_1}}, \quad A_0 = 0, \]

\[a_0 = \begin{cases}
\sqrt{6}(aq^3 - \delta) + 3A_1
\frac{-9k\sqrt{aq(\lambda q + qv + 1)}}{(\lambda q + qv + 1)}
\frac{6k\sqrt{6aq(\lambda q + qv + 1)(aq^3 - \delta) + 81aqA_1k^2(\lambda q + qv + 1)}}{(\lambda q + qv + 1)^2A_1}
\end{cases} \]

\[a_z = \frac{A_1\sqrt{\lambda q + qv + 1}}{k\sqrt{6aq}}, \quad A_{-1} = \frac{-3k\sqrt{6aq} + \sqrt{\lambda q + qv + 1}}{2\sqrt{\lambda q + qv + 1}} - \frac{1}{2} \sqrt{\frac{4k\sqrt{6aq(aq^3 - \delta) + 54aqk^2A_1\sqrt{\lambda q + qv + 1}}}{(\lambda q + qv + 1)^2A_1}}, \quad A_0 = 0, \]

\[a_0 = \begin{cases}
\sqrt{6}(aq^3 - \delta) + 3A_1
\frac{-9k\sqrt{aq(\lambda q + qv + 1)}}{(\lambda q + qv + 1)}
\frac{6k\sqrt{6aq(\lambda q + qv + 1)(aq^3 - \delta) + 81aqA_1k^2(\lambda q + qv + 1)}}{(\lambda q + qv + 1)^2A_1}
\end{cases} \]

\[a_z = \frac{-A_1\sqrt{\lambda q + qv + 1}}{k\sqrt{6aq}}, \quad A_{-1} = \frac{3k\sqrt{aq} \sqrt{\frac{1}{2}}}{\sqrt{\lambda q + qv + 1}} - \frac{1}{2} \sqrt{\frac{4k\sqrt{6aq(aq^3 - \delta) + 54aqk^2A_1\sqrt{\lambda q + qv + 1}}}{(\lambda q + qv + 1)^2A_1}}, \quad A_0 = 0, \]

\[a_0 = \begin{cases}
\sqrt{6}(aq^3 - \delta) + 3A_1
\frac{-9k\sqrt{aq(\lambda q + qv + 1)}}{(\lambda q + qv + 1)}
\frac{6k\sqrt{6aq(\lambda q + qv + 1)(aq^3 - \delta) + 81aqA_1k^2(\lambda q + qv + 1)}}{(\lambda q + qv + 1)^2A_1}
\end{cases} \]

\[a_z = \frac{-A_1\sqrt{\lambda q + qv + 1}}{k\sqrt{6aq}}, \quad A_{-1} = \frac{3k\sqrt{aq} \sqrt{\frac{1}{2}}}{\sqrt{\lambda q + qv + 1}} + \frac{1}{2} \sqrt{\frac{4k\sqrt{6aq(aq^3 - \delta) + 54aqk^2A_1\sqrt{\lambda q + qv + 1}}}{(\lambda q + qv + 1)^2A_1}}, \quad A_0 = 0. \]
These results imply 7-different solutions, for simplicity we will extract the solutions corresponding to the first and the second result and plot them, (3.1.1) for the first result which is

\[a_0 = \frac{-(\lambda q + qv + 1)A_{-1}^2}{6aqk^2}, \quad a_2 = \frac{-aq^3 + \delta}{(\lambda q + qv + 1)A_{-1}^2}, \quad A_0 = 0, A_1 = 0 \]

This solution can be simplified to be

\[A_{-1} = 1, A_0 = 0, A_1 = 0, a_0 = -\frac{5}{12}, a_2 = -\frac{q}{5}, q = 2, a = k = v = \lambda = \mu = \delta = 1, \zeta_0 = 1 \]

According to the proposed method the solution is

\[\varphi(\zeta) = \frac{\sqrt{a_0a_2}}{a_2} \tan(\sqrt{a_0a_2}(\zeta + \zeta_0)), \quad a_0a_2 > 0 \]

\[\varphi(\zeta) = -1.1 \tan[0.8(x + t + 1)] \tag{35} \]

\[\psi(\zeta) = \frac{A_{-1}}{\varphi} + A_0 + A_1 \varphi \]

\[\psi(\zeta) = -0.9 \cot[0.8(x + t + 1)] \tag{36} \]

\[Q(x, t) = \psi(\zeta) e^{\eta(x, t)}, \quad \zeta = kx + wt, \quad \eta = qx + \delta t \]

\[Q(x, t) = -0.9 \cot[0.8(x + t + 1)] e^{i(2x+t)} \tag{37} \]

\[\text{Re} \ Q(x, t) = -0.9 \cot[0.8(x + t + 1)] \times \cos(2x + t) \tag{38} \]

\[\text{Im} \ Q(x, t) = -0.9 \cot[0.8(x + t + 1)] \times \sin(2x + t) \tag{39} \]

(3.1.2) for the second result which is

\[a_0 = \frac{-aq^3 + \delta}{kA_1 \sqrt{6aq} \sqrt{\lambda q + qv + 1}}, \quad a_2 = \frac{-A_1 \sqrt{\lambda q + qv + 1}}{k \sqrt{6aq}}, \quad A_0 = 0, A_{-1} = 0 \]

This solution can be simplified to be

\[A_{-1} = 0, A_0 = 0, A_1 = 1, a_0 = -0.9, a_2 = -0.7, q = 2, a = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1 \]

According to the proposed method the solution is

\[\varphi(\zeta) = \frac{\sqrt{a_0a_2}}{a_2} \tan(\sqrt{a_0a_2}(\zeta + \zeta_0)), \quad a_0a_2 > 0 \]

\[\varphi(\zeta) = -1.1 \tan[0.8(x + t + 1)] \tag{40} \]
\[\psi(\zeta) = \frac{A_{-1}}{\varphi} + A_0 + A_1 \varphi \]

\[\psi(\zeta) = -1.1 \tan[0.8(x + t + 1)] \quad (41) \]

\[Q(x, t) = \psi(\zeta) e^{i\eta(x,t)}, \; \zeta = kx + wt, \; \eta = qx + \delta t \]

\[Q(x, t) = -1.1 \tan[0.8(x + t + 1)] e^{i(2x+t)} \quad (42) \]

\[\text{Re } Q(x, t) = -1.1 \tan[0.8(x + t + 1)] \times \cos(2x + t) \quad (43) \]

\[\text{Im } Q(x, t) = -1.1 \tan[0.8(x + t + 1)] \times \sin(2x + t) \quad (44) \]

By the same manner, we can plot the other cases.

Case 2: For the second family, in which \(a_0 = a_3 = 0 \Rightarrow \varphi' = a_1 \varphi + a_2 \varphi^2 \) the solution is

\[\varphi' = A_1 a_2 \varphi^2 + a_1 A_1 \varphi - \frac{A_{-1} a_1}{\varphi} - A_{-1} a_2, \quad (45) \]

\[\varphi'' = 2A_1 a_2^2 \varphi^3 + 3A_1 a_1 a_2 \varphi^2 + A_1 a_1^2 \varphi + A_{-1} a_1 a_2 + \frac{a_1^2 A_{-1}}{\varphi}, \quad (46) \]

\[\varphi^2 = A_1^2 \varphi^2 + 2A_0 A_1 \varphi + (A_0^2 + 2A_{-1} A_1) + \frac{A_{-1} A_1}{\varphi^2} + \frac{2A_{-1} A_0}{\varphi}, \quad (47) \]

\[\varphi^3 = A_1^3 \varphi^3 + 3A_0 A_1^2 \varphi^2 + (3A_1^2 + 3A_{-1} A_1^2) \varphi + (A_0^3 + 6A_{-1} A_0 A_1) + \frac{A_{-1}^3}{\varphi^3} \]

\[+ \frac{3A_0 A_1^2}{\varphi^2} + \frac{3A_{-1} A_1^2 + 3A_1 A_{-1}^2}{\varphi}. \quad (48) \]

Via inserting the Eqs. (45–48) into Eq. (22), hence collecting and equating the coefficients of different powers of \(\varphi' \) to zero, we obtain system of algebraic equations, by solving it we get these results.
(1) \(q = \frac{-aq^3 + \delta - (1 + \lambda q)A_0^2}{A_0^2}, a_1 = \frac{-\sqrt{\frac{2}{3}} \sqrt{-aq^3 + \delta}}{k \sqrt{aq}}, a_2 = \frac{-A_i \sqrt{-aq^3 + \delta}}{k A_0 \sqrt{aq}}, A_{-1} = 0, \)

(2) \(q = \frac{-aq^3 + \delta - (1 + \lambda q)A_0^2}{A_0^2}, a_1 = \frac{\sqrt{\frac{2}{3}} \sqrt{-aq^3 + \delta}}{k \sqrt{aq}}, a_2 = \frac{A_1 \sqrt{-aq^3 + \delta}}{k A_0 \sqrt{aq}}, A_{-1} = 0, \)

(3) \(q = -1 - \lambda q, a_1 = \frac{-i \sqrt{-aq^3 + \delta}}{k \sqrt{3 a q}}, a_2 = \frac{-i A_0 \sqrt{-aq^3 + \delta}}{k A_{-1} \sqrt{3 a q}}, A_{1} = 0, \)

(4) \(q = -1 - \lambda q, a_1 = \frac{i \sqrt{-aq^3 + \delta}}{k \sqrt{3 a q}}, a_2 = \frac{i A_0 \sqrt{-aq^3 + \delta}}{k A_{-1} \sqrt{3 a q}}, A_{1} = 0. \)

(49)

From which we can get 4-various solutions, we will extract the solutions corresponding to the first and third results and plot them.

(3.2.1) for the first case which is

\[q = \frac{-aq^3 + \delta - (1 + \lambda q)A_0^2}{A_0^2}, a_1 = \frac{-\sqrt{\frac{2}{3}} \sqrt{-aq^3 + \delta}}{k \sqrt{aq}}, a_2 = \frac{-A_i \sqrt{-aq^3 + \delta}}{k A_0 \sqrt{aq}}, A_{-1} = 0 \]

This result can be simplified to be

\[A_{-1} = 0, A_0 = \pm 1.2 i, A_1 = 1, a_1 = -4 i, a_2 = \pm 0.6 i, q = 2, a = k = \lambda = \mu = \delta = 1, \zeta_0 = 1. \]

Which admits the following two different solutions.

(3.2.1.1) when \(A_{-1} = 0, A_0 = 1.2 i, A_1 = 1, a_1 = -4 i, a_2 = 0.6 i, q = 2, a = k = \lambda = \mu = \delta = 1, \zeta_0 = 1. \)

\[
\varphi(\zeta) = \sqrt{a_0 a_2} a_2 \tan(\sqrt{a_0 a_2}(\zeta + \zeta_0)) + A_0 a_2 > 0
\]

\[
\varphi(\zeta) = -2.5 i \tan[1.8 x + 1.8 t + 1.8]
\]

(50)

\[
\psi(\zeta) = \frac{A_{-1}}{\varphi} + A_0 + A_1 \varphi
\]

\[
\psi(\zeta) = i(1.2 - 2.5 \tan[1.8 x + 1.8 t + 1.8])
\]

(51)

\[
Q(x, t) = e^{i [x + \eta x + \delta t]}
\]

(52)

\[
\text{Re} \ Q(x, t) = -(1.2 - 2.5 \tan[1.8 x + 1.8 t + 1.8]) \times \sin(2 x + t)
\]

(53)

\[
\text{Im} \ Q(x, t) = (1.2 - 2.5 \tan[1.8 x + 1.8 t + 1.8]) \times \cos(2 x + t)
\]

(54)

(3.2.1.2) when \(A_{-1} = 0, A_0 = 1.2 i, A_1 = 1, a_1 = -4 i, a_2 = -0.6 i, q = 2, a = k = \lambda = \mu = \delta = 1, \zeta_0 = 1. \)
\[\varphi(\zeta) = \frac{-a_1 \exp[a_1(\zeta + \zeta_0)]}{1 + a_2 \exp[a_1(\zeta + \zeta_0)]}, \quad a_1 < 0 \]

\[\varphi(\zeta) = \frac{0.4i \exp[-0.4i(x + t + 1)]}{1 - 0.6i \exp[-0.4i(x + t + 1)]} \] \hspace{1cm} (55)

\[\psi(\zeta) = \frac{A_0}{\varphi} + A_0 + A_1 \varphi \]

\[\psi(\zeta) = 1.2i + \frac{0.4i \exp[-0.4i(x + t + 1)]}{1 - 0.6i \exp[-0.4i(x + t + 1)]} \] \hspace{1cm} (56)

\[Q(x, t) = \psi(\zeta) e^{i\eta(x,t)} \cdot \zeta = kx + \omega t, \quad \eta = qx + \delta t \]

\[Q(x, t) = \left(1.2i + \frac{0.4i \exp[-0.4i(x + t + 1)]}{1 - 0.6i \exp[-0.4i(x + t + 1)]} \right) e^{i(2x + t)} \] \hspace{1cm} (57)

\[\text{Re } Q(x, t) = \left(\frac{0.4 \sin 0.4(x + t + 1) - 0.24}{1.36 - 1.2 \sin 0.4(x + t + 1)} \right) \times \cos(2x + t) - \left(1.2 + \frac{0.4 \cos 0.4(x + t + 1)}{1.36 - 1.2 \sin 0.4(x + t + 1)} \right) \times \sin(2x + t) \] \hspace{1cm} (58)

\[\text{Im } Q(x, t) = \left(\frac{0.4 \sin 0.4(x + t + 1) - 0.24}{1.36 - 1.2 \sin 0.4(x + t + 1)} \right) \times \sin(2x + t) + \left(1.2 + \frac{0.4 \cos 0.4(x + t + 1)}{1.36 - 1.2 \sin 0.4(x + t + 1)} \right) \times \cos(2x + t) \] \hspace{1cm} (59)

(3.2.2) for the third case which is

\[q = -1 - \lambda q, \quad a_1 = \frac{-i \sqrt{-aq^3 + \delta}}{3aq}, \quad a_2 = \frac{-i A_0 \sqrt{-aq^3 + \delta}}{k A_1 \sqrt{3aq}}, \quad A_1 = 0, \]

This result can be simplified to be

\[A_{-1} = 1, A_0 = 1, A_1 = 0, a_1 = 1.1, a_2 = 1.1, \quad q = 2, \quad a = k = \mu = \delta = \zeta_0 = 1, \lambda = -1.5. \]

\[\varphi(\zeta) = \frac{\sqrt{a_0 a_2}}{a_2} \tan(\sqrt{a_0 a_2}(\zeta + \zeta_0)), \quad a_0 a_2 > 0 \]

\[\varphi(\zeta) = 0.9 \tan[1.02x + 1.02t + 1.02] \] \hspace{1cm} (60)

\[\psi(\zeta) = \frac{A_{-1}}{\varphi} + A_0 + A_1 \varphi \]
\[\psi(\zeta) = 1 + 1.1 \cot[1.02x + 1.02t + 1.02] \]

\[Q(x, t) = \psi(\zeta) e^{i\eta(x,t)}, \quad \zeta = kx + wt, \quad \eta = qx + \delta t \]

\[Q(x, t) = (1 + 1.1 \cot[1.02x + 1.02t + 1.02]) \times e^{i(2x+t)} \]

\[\text{Re} \ Q(x, t) = (1 + 1.1 \cot[1.02x + 1.02t + 1.02]) \times \cos(2x + t) \]

\[\text{Im} \ Q(x, t) = (1 + 1.1 \cot[1.02x + 1.02t + 1.02]) \times \sin(2x + t) \]

By the same manner, we can plot the other cases.

By the same manner we can implement the first and second family of the suggested method for the imaginary part of the Kerr-Law nonlinearity Eq. (21) to extract the cubic-solitons.

3.2 The cubic optical soliton to the Power-Law nonlinearity

For the Power-Law nonlinearity Eq. (1) takes the form

\[iQ_t + \left[Q^{2m} \right] Q + i aQ_{xxx} = i \left(\nu \left[Q^{2m} \right] Q_x + \lambda \left[Q^{2m} \right] Q_{xx} + \mu \left[Q^{2m} \right] Q_x \right) \]

Via inserting the relations (13–19) into Eq. (65), then it will be transformed to the following real and imaginary equations respectively

\[\text{Re} \ -3aqk^2\psi'' + (aq^3 - \delta)\psi + (\lambda q + qv + 1)\psi^{2m+1} = 0. \]

\[\text{Im} \ ak^3\psi''' + (w - 3akq^2)\psi' - \frac{k[\nu - \lambda(2m + 1)]}{2m + 1} \psi^{2m+1} - \frac{\mu(2m + 1)}{2m + 2} \psi^{2m+2} = 0. \]

Firstly, we will implement the suggested method for the real part Eq. (66) which is

\[-3aqk^2\psi'' + (aq^3 - \delta)\psi + (\lambda q + qv + 1)\psi^{2m+1} = 0 \]

Via applying the homogeneous balance between \(\phi'' \) and \(\phi^{2m+1} \) leads to \(N + 2 = (2m + 1)N \) which implies that \(N = \frac{1}{2m} \), consequently let us take the new transformation \(\psi = V^\frac{1}{2m} \) via which this equation will be transformed to

\[-3aqk^2 \frac{1}{2m} V\psi'' + (aq^3 - \delta)V^2 + (\lambda q + qv + 1)V^3 - \frac{3aqk^2(1 - 2m)}{4m^2} = 0 \]

Now, by applying the homogeneous balance between \(V\psi'' \) and \(V^3 \) it will lead to \(N = 2 \), hence the solution in the framework of the proposed method must be in the form

\[V(\zeta) = \frac{A_{-2}}{\phi^2} + \frac{A_{-1}}{\phi} + A_0 + A_1 \phi + A_2 \phi^2 \]

Case 1: The first family, in which \(a_1 = a_3 = 0 \) \(\Rightarrow \phi' = a_0 + a_2 \phi^2 \) the solution is
\[V' = -\frac{2a_0A_{-2}}{\varphi^3} - \frac{a_0A_{-1}}{\varphi^2} - \frac{2a_2A_{-2}}{\varphi} + (A_1a_0 - a_2A_{-1}) + 2A_2a_0\varphi + (A_1a_2 + 2a_2A_2)\varphi^2. \]
(70)

\[V'' = \frac{6a_0^2A_{-2}}{\varphi^4} + \frac{2a_0^2A_{-1}}{\varphi^3} + \frac{8a_0a_2A_{-2}}{\varphi^2} + \frac{2a_0a_2A_1}{\varphi} + 2(2a_2a_0 - A_{-2}a_2^2) + 2a_0a_2A_2\varphi^2 + 2a_2a_2(A_1 + A_2)\varphi + 2a_2^2(A_1 + A_2)\varphi^3. \]
(71)

By inserting \(VV''\), \(V^3\) and \(V^2\) into Eq. (66), by substituting the same values of parameters used above and solving the extracted system we obtain a set of results from which only two are suitable and the others will be refused because either \(a_0 = 0\) or \(a_2 = 0\) or both.

The two suitable results are

\begin{align*}
(1) & \ A_{-2} = \frac{36a_0^2}{5}, a_2 = -\frac{7}{24a_0^2}, A_0 = -2.1, A_{-1} = A_1 = A_2 = 0, m = 0.5 \\
(2) & \ A_{-2} = \frac{36a_0^2}{5}, a_2 = \frac{7}{24a_0^2}, A_0 = 0.7, A_{-1} = A_1 = A_2 = 0, m = 0.5
\end{align*}
(72)

Now we will plot only one of these two similar results, say the first result which is

\[A_{-2} = \frac{36a_0^2}{5}, a_2 = -\frac{7}{24a_0^2}, A_0 = -2.1, A_{-1} = A_1 = A_2 = 0, m = 0.5 \]
(73)

This solution can be simplified to be

\[a_0 = \pm 0.4, a_2 = \pm 0.1, A_0 = -2.1, A_{-2} = 1, A_{-1} = A_1 = A_2 = 0, m = 0.5 \]
(74)

From which we get four solutions, for similarity we will choose only two of them

(1) when \(a_0 = 0.4, a_2 = 0.1, A_0 = -2.1, A_{-2} = 1, A_{-1} = A_1 = A_2 = 0, m = 0.5\)

In the framework of the suggested method the solution is

\[\varphi(\zeta) = \frac{a_0a_2}{a_2} \tan(\sqrt{a_0a_2}(\zeta + \zeta_0), a_0a_2 > 0 \]
\[\varphi(\zeta) = 2 \tan(0.2x + 0.2t + 0.2) \]
(75)

\[V(\zeta) = \frac{A_{-2}}{\varphi^2} + \frac{A_{-1}}{\varphi} + A_0 + A_1\varphi + A_2\varphi^2 \]
\[V(\zeta) = \frac{1}{4}(\cot(0.2x + 0.2t + 0.2))^2 - 2.1 \]
(76)

\[\psi(\zeta) = \left(\frac{1}{4}(\cot(0.2x + 0.2t + 0.2))^2 - 2.1 \right)^{\frac{1}{2}} \]
(77)
\[Q(x, t) = \left(\frac{1}{4} \cot[0.2x + 0.2t + 0.2] \right)^2 - 2.1 \right)^{\frac{1}{3m}} e^{i(2x+t)} \] (78)

\[\text{Re } Q(x, t) = \left(\frac{1}{4} \cot[0.2x + 0.2t + 0.2] \right)^2 - 2.1 \right)^{\frac{1}{3m}} \cos(2x + t) \] (79)

\[\text{Im } Q(x, t) = \left(\frac{1}{4} \cot[0.2x + 0.2t + 0.2] \right)^2 - 2.1 \right)^{\frac{1}{3m}} \sin(2x + t) \] (80)

(2) when \(a_0 = -0.4, a_2 = 0.1, A_0 = -2.1, A_{-2} = 1, A_{-1} = A_1 = A_2 = 0, m = 0.5 \)

In the framework of the suggested method the solution is

\[\varphi(\zeta) = \frac{-a_0 a_2}{a_2} \tanh(\sqrt{-a_0 a_2} \zeta - \rho \ln \zeta_0) - \frac{\rho}{2}, a_0 a_2 < 0, \zeta > 0, \rho = \pm 1 \]

\[\varphi(\zeta) = 2 \tanh[0.2x + 0.2t + 0.3]. \] (81)

\[V(\zeta) = \frac{A_{-2}}{\varphi^2} + \frac{A_{-1}}{\varphi} + A_0 + A_1 \varphi + A_2 \varphi^2 \]

\[V(\zeta) = \frac{1}{4} \left(\coth[0.2x + 0.2t + 0.3] \right)^2 - 2.1 \] (82)

\[\psi(\zeta) = \left(\frac{1}{4} \left(\coth[0.2x + 0.2t + 0.3] \right)^2 - 2.1 \right)^{\frac{1}{3m}} \] (83)

\[Q(x, t) = \left(\frac{1}{4} \left(\coth[0.2x + 0.2t + 0.3] \right)^2 - 2.1 \right)^{\frac{1}{3m}} e^{i(2x+t)} \] (84)

\[\text{Re } Q(x, t) = \left(\frac{1}{4} \left(\coth[0.2x + 0.2t + 0.3] \right)^2 - 2.1 \right)^{\frac{1}{3m}} \cos(2x + t) \] (85)

\[\text{Im } Q(x, t) = \left(\frac{1}{4} \left(\coth[0.2x + 0.2t + 0.3] \right)^2 - 2.1 \right)^{\frac{1}{3m}} \sin(2x + t) \] (86)

Case 2: The second family, in which \(a_0 = a_3 = 0 \) \(\Rightarrow \varphi' = a_1 \varphi + a_2 \varphi^2 \) the solution is

\[V' = -\frac{2a_1 A_{-2}}{\varphi^2} - \frac{2a_2 A_{-2} + a_1 A_{-1}}{\varphi} - a_2 A_{-1} + A_1 a_1 \varphi + \left(A_1 a_2 + 2a_1 A_2 \right) \varphi^2 + 2a_2 A_2 \varphi^3 \] (87)

\[V'' = \frac{4a_1 A_{-2}}{\varphi^3} + \frac{2a_2 A_{-2} + a_1 A_{-1}}{\varphi^2} + A_1 a_1^2 \varphi + \left(3a_1 a_2 A_1 + 4A_2 a_1^2 \right) \varphi^2 + \left(2a_2^2 A_1 + 6a_1 a_2 A_2 \right) \varphi^3 + 3a_2^2 A_2 \varphi^4. \] (88)
Via inserting $V V''$, V^3 and V^2 into Eq. (66) and using the same values of parameters used above we get system of equations in which the first equation implies that $A_{-2} = 0$, by inserting about it in the other remaining equations and solving them we get big number of similar complicated results, for similarity we will study only one of these results which is

$$
a_1 = 2, \ a_2 = \frac{1}{3}(9 + \sqrt{21}),
$$

$$
A_{-1} = \frac{7 \left\{ \sqrt{6} \left(23 + 7 \sqrt{21} \right)^{1.5} - 46 \sqrt{6} \left(23 + 7 \sqrt{21} \right) \right\}}{10000}, \ A_0 = -0.7,
$$

$$
A_1 = \frac{7 \sqrt{\frac{1}{6} \left(23 + 7 \sqrt{21} \right)}}{10},
$$

$$
A_2 = \frac{\left\{ \sqrt{6} \left(23 + 7 \sqrt{21} \right)^{1.5} - 30 \sqrt{6} \left(23 + 7 \sqrt{21} \right) \right\}}{360},
$$

$$
m = \frac{4}{7} \sqrt{6 \left(23 + 7 \sqrt{21} \right)}.
$$

This solution can be simplified to be

$$
A_{-2} = 0, A_{-1} = 0.1, A_0 = -0.7, a_1 = 2, a_2 = 4.5, A_1 = 2.1, A_2 = 1.3, m = 10.4
$$

In the framework of the suggested method the solution is

$$
\varphi(\zeta) = \frac{a_1 \exp[a_1(\zeta + \zeta_0)]}{1 - a_2 \exp[a_1(\zeta + \zeta_0)]}, a_1 > 0
$$

$$
\varphi(\zeta) = \frac{2 \exp[2x + 2t + 2]}{1 - 4.5 \exp[2x + 2t + 2]}
$$

$$
V(\zeta) = \frac{A_{-2}}{\varphi^2} + \frac{A_{-1}}{\varphi} + A_0 + A_1 \varphi + A_2 \varphi^2
$$

$$
V(\zeta) = \frac{0.1(1 - 4.5 \exp[2x + 2t + 2])}{2 \exp[2x + 2t + 2]} + \frac{3.4 \exp[2x + 2t + 2]}{1 - 4.5 \exp[2x + 2t + 2]} - 0.7
$$

$$
\psi(\zeta) = \left(\frac{0.1(1 - 4.5 \exp[2x + 2t + 2])}{2 \exp[2x + 2t + 2]} + \frac{3.4 \exp[2x + 2t + 2]}{1 - 4.5 \exp[2x + 2t + 2]} - 0.7 \right)^{\frac{1}{2m}}
$$

$$
Q(\zeta) = \left(\frac{0.1(1 - 4.5 \exp[2x + 2t + 2])}{2 \exp[2x + 2t + 2]} + \frac{3.4 \exp[2x + 2t + 2]}{1 - 4.5 \exp[2x + 2t + 2]} - 0.7 \right)^{\frac{1}{2m}} e^{i(2x + t)}
$$
Multiple accurate-cubic optical solitons to the kerr-law and…

By the same manners we can plot the other solutions after simplifying it. Moreover, we can implement the first and the second family of the proposed method for the imaginary part of the power-low nonlinearity Eq. (67) to extract the cubic-solitons.

4 Description of the SWAM

To construct the solution in the framework of the SWAM (Bekir and Zahran 2021d; Yıldırım et al. 2020), let us admit this wave transformation,

\[Q(x, t) = \psi(x, t)e^{iR(x, t)} \]

(97)

where \(\psi(x, t) \) is the portion amplitude, while \(R(x, t) \) is the phase portion of soliton. Via simple calculations we can extract the following relations,

\[Q_t = (\psi_t + i\psi R_x)e^{iR} \]

(98)

\[Q_x = (\psi_x + i\psi R_x)e^{iR} \]

(99)

\[Q_{xx} = (\psi_{xx} + 2i\psi_x R_x + i\psi R_{xx} - \psi R_x^2)e^{iR} \]

(100)

\[Q_{xxx} = (\psi_{xxx} + 3iR_x \psi_{xx} + 3iR_{xx} \psi_x + iR_{xxx} \psi - iR_x^3 \psi - 3R_x R_{xx} \psi)e^{iR} \]

(101)

The bright and dark cubic-soliton solutions can be constructed as follows,

(I) The bright cubic-soliton solutions

\[\psi(x, t) = A_1 \text{sech}^{R_1}(t_1), \text{ where } t_1 = B(x - w_1 t) \text{ and } R_1(x, t) = kx - \Omega t \]

(102)

\[\psi_t = -A_1 Bw_1 R_1 \text{sech}^{R_1}(t_1) \tanh(t_1) \]

(103)

\[\psi_x = A_1 BR_1 \text{sech}^{R_1}(t_1) \tanh(t_1) \]

(104)

\[\psi_{xx} = A_1 B^2 R_1 (1 + R_1) \text{sech}^{R_1+2}(t_1) - A_1 B^2 R_1^2 \text{sech}^{R_1}(t_1) \]

(105)

\[\psi_{xxx} = A_1 B^3 R_1 (R_1 + 1)(R_1 + 2) \text{sech}^{R_1+2}(t_1) \tanh(t_1) - A_1 B^3 R_1^3 \text{sech}^{R_1}(t_1) \tanh(t_1) \]

(106)

(II) The dark soliton solutions

\[\text{Re}Q(\zeta) = \left(\frac{(1 - 4.5 \exp[2x + 2t + 2])}{20 \exp[2x + 2t + 2]} + \frac{3.4 \exp[2x + 2t + 2]}{1 - 4.5 \exp[2x + 2t + 2]} - 0.7 \right) \frac{i}{\sqrt{n}} \cos(2x + t) \]

(95)

\[\text{Im}Q(\zeta) = \left(\frac{(1 - 4.5 \exp[2x + 2t + 2])}{20 \exp[2x + 2t + 2]} + \frac{3.4 \exp[2x + 2t + 2]}{1 - 4.5 \exp[2x + 2t + 2]} - 0.7 \right) \frac{i}{\sqrt{n}} \sin(2x + t) \]

(96)
\[\psi(x, t) = A_2 \tanh^{R_2}(t_2), \text{ where } t_2 = B(x - w_2 t) \text{ and } R_2(x, t) = kx - \Omega t \]
(107)

\[\psi_t = -A_2B^2R_2w_2[\tanh^{R_2-1}(t_2) - \tanh^{R_2+1}(t_2)] \]
(108)

\[\psi_x = A_2B^2R_2[\tanh^{R_2-1}(t_2) - \tanh^{R_2+1}(t_2)] \]
(109)

\[\psi_{xx} = A_2R_2(R_2 - 1)B^2 \tanh^{R_2-2}(t_2) - 2A_2R_2^2B^2 \tanh^{R_2}(t_2) + A_2R_2(R_2 + 1)B^2 \tanh^{R_2+2}(t_2) \]
(110)

\[\psi_{xxx} = A_2B^3R_2(R_2 - 1)(R_2 - 2) \tanh^{R_2-3}(t_2) \]

\[- [A_2B^3R_2(R_2 - 1)(R_2 - 2) + 2A_2R_2^3B^3] \tanh^{R_2-1}(t_2) \]

\[+ [A_2B^3R_2(R_2 + 1)(R_2 + 2) + 2A_2R_2^3B^3] \tanh^{R_2+1}(t_2) - A_2B^3R_2(R_2 + 1)(R_2 + 2) \tanh^{R_2+3}(t_2) \]
(111)

5 The bright and dark cubic-solitons for Kerr-Law nonlinearity

5.1 The bright cubic-solitons for Kerr-Law nonlinearity

Via substituting the relations (97–101) into Eq. (12) mentioned above we obtain

\[i(\psi_t - i\Omega \psi)e^{iR_1} + \psi^3 e^{iR_1} + i\alpha(\psi_{xxx} - 3i k^3 \psi)e^{iR_1} \]

\[= i[\nu \psi^2(\psi_x + ik \psi) + \lambda(3k^2 \psi^2 \psi_x + ik^3 \psi) + 2\mu k \psi_x \psi^2]e^{iR_1} \]
(112)

This equation will be divided into the following real and imaginary parts respectively

\[3ak \psi_{xx} - (1 + k^3 + k)\psi^3 - (\Omega + ak^3)\psi = 0, \]
(113)

\[a\psi_{xxx} - (3k + 2\mu k + \nu)\psi^2 \psi_x + \psi_t = 0. \]
(114)

Now, via inserting the relations (102–106) in the real and imaginary parts Eqs. (113) and (114), we get

\[3akA_1B^2R_1(1 + R_1)\text{sech}^{R_1+2}(t_1) - A_1(B^2R_1^2 + \Omega + ak^3)\text{sech}^{R_1}(t_1) - (1 + k + k\lambda)A_1^3\text{sech}^{3R_1}(t_1) = 0, \]
(115)

\[a(A_1B^3R_1(1 + R_1 + 2)\text{sech}^{R_1+2}(t_1) \tanh(t_1) - A_1B^3R_1^2\text{sech}^{R_1}(t_1) \tanh(t_1)) \]

\[- (3k + 2\mu + \nu)A_1^3BR_1\text{sech}^{R_1+2}(t_1) \tanh(t_1) - A_1Bw_1R_1\text{sech}^{R_1}(t_1) \tanh(t_1) = 0. \]
(116)

Via equating the highest order powers \text{sech}'(t_1) of the real part we get \(R_1 = 1 \) and hence, \(A_1 = \pm \sqrt{\frac{\nu k B^2}{1 + k + k\lambda}} \), by substituting at the imaginary part we get \(\Omega = -2, B = \pm i \sqrt{w_1} \).

Now, according to these obtained constants the solution in the framework of the proposed method is
Multiple accurate-cubic optical solitons to the kerr-law and…

\[Q = \pm \sqrt{\frac{6akB^2}{1 + kv + \lambda k}} \text{sech}(x - w_1) e^{i(kx - \Omega t)} \]
\[Q = \pm 2i \text{sech} \pm i(x - t) e^{i(x + 2t)} \]

This admits these four solutions which are

1. \(Q = 2i (\text{sech}[i(x - t)]) e^{i(x + 2t)} \)
2. \(Q = -2i (\text{sech}[-i(x - t)]) e^{i(x + 2t)} \)
3. \(Q = 2i (\text{sech}[-i(x - t)]) e^{i(x + 2t)} \)
4. \(Q = -2i (\text{sech}[i(x - t)]) e^{i(x + 2t)} \)

Now, let us plot only two of them, say the first and the fourth.

(1) in which is \(Q = 2i (\text{sech}[i(x - t)]) e^{i(x + 2t)} \)

\[\begin{align*}
\text{Re}Q &= \frac{-2 \cos(x + 2t)}{\cos(x - t)}
\text{Im}Q &= \frac{-2 \sin(x + 2t)}{\cos(x - t)}
\end{align*} \]

(2) in which is \(Q = -2i (\text{sech}[i(x - t)]) e^{i(x + 2t)} \)

\[\begin{align*}
\text{Re}Q &= \frac{2 \cos(x + 2t)}{\cos(x - t)}
\text{Im}Q &= \frac{2 \sin(x + 2t)}{\cos(x - t)}
\end{align*} \]

By the same method we can plot the other two solutions.

5.2 The dark cubic solitons for Kerr-Law nonlinearity

Now, via inserting the relations (107–111) into the real and imaginary parts Eqs. (113), (114) we obtain

\[3akA_2R_2(R_2 - 1)B^2 \tanh^{R_2-2}(t_2) - [6akA_2R_2^2B^2 + (\Omega + ak^3)A_2] \]
\[\tanh^{R_2}(t_2) + 3akA_2R_2(R_2 + 1)B^2 \tanh^{R_2+2}(t_2) - (1 + kv + k\lambda)A_2^3 \tanh^{3R_2}(t_2) = 0, \]
\[(124) \]
\[
a A_2 B^3 R_2 (R_2 - 1) (R_2 - 2) \tanh^{R_2 + 1} (t_2) - a A_2 B^3 R_2 (R_2 + 1) (R_2 + 2) \tanh^{R_2 + 3} (t_2) - \left\{ A_2 B R_2 w_2 + a A_2 B^3 R_2 (R_2 - 1) (R_2 - 2) + 2 a A_2 R_2 B^3 \right\} \tanh^{R_2 - 1} (t_2) + \left\{ A_2 B R_2 w_2 + a A_2 B^3 R_2 (R_2 + 1) (R_2 + 2) + 2 a A_2 R_2 B^3 \right\} \tanh^{R_2 + 1} (t_2) + (3 k \lambda + 2 \mu k + \nu) A_2 B R_2 \tan \h(t_2) = 0.
\]

Via equating the highest order powers \(\tanh^i (t_1) \) of the real part we get \(R_2 = 1 \) and hence, \(A_2 = \pm \sqrt{\frac{-2 w_2}{1 + k v + k \lambda} } \), by substituting at the imaginary part we get \(\Omega = -0.75, B = \pm 0.5 i, \mu = -0.5 \).

Now, according to these obtained constants the solution in the framework of the proposed method is

\[
Q = \pm \sqrt{\frac{-2 w_2}{1 + k v + k \lambda} } \tanh B(x - w_2 t) e^{i (k x - \Omega t)}
\]

(126)

\[
Q = \pm \sqrt{\frac{1}{3} } \tanh \pm i(x + 0.5 t) e^{i(x + 0.75 t)}
\]

(127)

\[
Q = \pm 0.6 i \tan(x + 0.5 t)[\cos(x + 0.75) + i \sin(x + 0.75)]
\]

(128)

\[
\text{Re} \ Q = \pm 0.6 \tan(x + 0.5 t) \times \sin(x + 0.75)
\]

(129)

\[
\text{Im} \ Q = \pm 0.6 \tan(x + 0.5 t) \times \cos(x + 0.75)
\]

For similarity we will plot only one solution to each part.
By the same manner we can plot the other solutions.

6 The bright and dark cubic-solitons for Power-Law nonlinearity

6.1 The bright cubic-solitons for Power-Law nonlinearity

Via inserting the relations (97–101) into Eq. (65) mentioned above we obtain,

\[
\text{Re} \ - 3 a k \psi_{xx} + (\Omega + a k^2) \psi + (1 + k v + k \lambda) \psi^{2m + 1} = 0.
\]

(130)

\[
\text{Im} \ a \psi_{xxx} - [\nu + (2 m + 1) \lambda + 2 m \mu] \psi^{2m} \psi_x + \psi_t = 0.
\]

(131)

\[
-3 a A_1 B^2 R_1 (1 + R_1) \text{sech}^{R_1 - 2} (t_1) + ((\Omega + a k^3) A_1 + 3 a k A_1 B^2 R_1^2) \text{sech}^{R_1} (t_1) + (1 + k v + k \lambda) A_1^{2m + 1} \text{sech}^{(2m + 1) R_1} (t_1) = 0.
\]

(132)
Via equating the highest order powers sech(i(t)) of the real part we get
\[R_1 = \frac{1}{m} \] hence,
\[A_1 = \pm \frac{1}{m} \sqrt{-\frac{a(1+m)(2m+1)}{(v+2m+1)k+2m\mu}} \] and by substituting at the imaginary part we get
\[B = \pm i \sqrt{\frac{w_1}{a}}. \]

Now, according to the previous values of constants for the Kerr-Law which are
\[B = \pm i, \quad A_1 = A_1 = \pm \frac{1}{m} \sqrt{\frac{(1+m)}{2}} \] for the power-low constants.

Hence,
\[\Omega = -\frac{3+m^2}{m^2}, \quad B = \pm i, \quad A_1 = A_1 = \pm \frac{1}{m} \sqrt{\frac{(1+m)}{2}} \]
\[a = k = w_1 = v = \lambda = \mu = 1. \]

Consequently, the solution in the framework of the proposed method is
\[Q = \pm \frac{1}{m} \sqrt{\frac{(1+m)}{2}} \sech \pm i(x-t)e^{i(x+\frac{3am^2}{m^2}t)} \]
Fig. 3 The cubic soliton of the real part Eq. (43) in 2D and 3D with values:
$A_{-1} = 0, A_0 = 0, A_1 = 1, a_0 = -0.9, a_2 = -0.7, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$

Fig. 4 The cubic soliton the imaginary part Eq. (44) in 2D and 3D with values:
$A_{-1} = 0, A_0 = 0, A_1 = 1, a_0 = -0.9, a_2 = -0.7, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$

Fig. 5 The cubic soliton for the real part Eq. (53) in 2D and 3D with values:
$A_{-1} = 0, A_0 = 1.2i, A_1 = 1, a_1 = -4i, a_2 = 0.6i, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$
Fig. 6 The cubic soliton for the imaginary part Eq. (54) in 2D and 3D with values: $A_{-1} = 0, A_0 = 1.2i, A_1 = 1, a_1 = -4i, a_2 = 0.6i, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$

Fig. 7 The cubic soliton for the real part Eq. (58) in 2D and 3D with values: $A_{-1} = 0, A_0 = 1.2i, A_1 = 1, a_1 = -4i, a_2 = -0.6i, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$

Fig. 8 The cubic soliton for the imaginary part Eq. (59) in 2D and 3D with values: $A_{-1} = 0, A_0 = 1.2i, A_1 = 1, a_1 = -4i, a_2 = -0.6i, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$
Fig. 9 The cubic soliton for the real part Eq. (63) in 2D and 3D with values: $A_{-1} = 0, A_0 = 1.2i, A_1 = 1, a_1 = -4i, a_2 = 0.6i, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$

Fig. 10 The cubic soliton for the imaginary part Eq. (64) in 2D and 3D with values: $A_{-1} = 0, A_0 = 1.2i, A_1 = 1, a_1 = -4i, a_2 = 0.6i, q = 2, a = w = v = k = \lambda = \mu = \delta = 1, \zeta_0 = 1$

Fig. 11 The cubic-soliton of the real part Eq. (79) in 2D and 3D with values: $\zeta_0 = 1$ $a_0 = 0.4, a_2 = 0.1, A_0 = -2.1, A_{-2} = 1, A_{-1} = A_1 = A_2 = 0, m = 0.5$
Fig. 12 The cubic-soliton of the imaginary part Eq. (80) in 2D and 3D with values: $\xi_0 = 1$, $a_0 = 0.4, a_2 = 0.1, A_0 = -2.1, A_{-2} = 1, A_{-1} = A_1 = A_2 = 0, m = 0.5$

Fig. 13 The cubic-soliton of the real part Eq. (85) in 2D and 3D with values: $\xi_0 = 2, \rho = -1$, $a_0 = -0.4, a_2 = 0.1, A_0 = -2.1, A_{-2} = 1, A_{-1} = A_1 = A_2 = 0, m = 0.5$

Fig. 14 The cubic-soliton of the imaginary part Eq. (86) in 2D and 3D with values: $\xi_0 = 2, \rho = -1$, $a_0 = -0.4, a_2 = 0.1, A_0 = -2.1, A_{-2} = 1, A_{-1} = A_1 = A_2 = 0, m = 0.5$

\[
\text{Re} Q = \pm \frac{\sin(x + 1.3t)}{2 \cos(x - t)}, \quad m = 3. \quad (135)
\]

\[
\text{Im} Q = \pm \frac{\cos(x + 1.3t)}{2 \cos(x - t)}, \quad m = 3. \quad (136)
\]
6.2 The dark cubic solitons for Power-Law nonlinearity

Via inserting the relations (107–111) into Eq. (130) and Eq. (131) mentioned above we get,

\[-3akA_2R_2(R_2 - 1)B^2 \tanh^{R_2-2}(t_2) + \left(\Omega + ak^3 \right) A_2 + 6akA_2R_2^2B^2 \]
\[\tanh^{R_2}(t_2) - 3akA_2R_2(R_2 + 1)B^2 \tanh^{R_2+2}(t_2) + (1 + k\nu + k\lambda)A_2^{2m+1} \tanh^{(2m+1)R_2}(t_2) = 0.\]

Fig. 15 The cubic-soliton of the real part Eq. (95) in 2D and 3D with values: \(\zeta_0 = 1\)
\(A_{-2} = 0, A_{-1} = 0.1, A_{0} = -0.7, a_1 = 2, a_2 = 4.5, A_1 = 2.1, A_2 = 1.3, m = 10.4\)

Fig. 16 The cubic-soliton of the imaginary part Eq. (96) in 2D and 3D with values: \(\zeta_0 = 1\)
\(A_{-2} = 0, A_{-1} = 0.1, A_{0} = -0.7, a_1 = 2, a_2 = 4.5, A_1 = 2.1, A_2 = 1.3, m = 10.4\)

Fig. 17 The bright cubic-soliton of the real part Eq. (120) in 2D and 3D with values:
\(A_1 = 2i, B = i\sqrt{w_1}, R_1 = 1, \Omega = -2, a = k = w_1 = \nu = \lambda = \mu = 1, t = .5\) for 2D
Multiple accurate-cubic optical solitons to the kerr-law and...

Via equating the highest order powers \(\tanh \) of the real part we get

\[
R_2^2 = m \quad \text{and hence,}
\]

\[
a A_2 B^3 R_2 (R_2 - 1) (R_2 - 2) \tanh^{R_2-3}(t_2) - a A_2 B^3 R_2 (R_2 + 1) (R_2 + 2) \\
\tanh^{R_2+3}(t_2) - [a A_2 B^3 R_2 (R_2 - 1) (R_2 - 2) + 2a A_2 R_2^3 B^3 - A_2 B R_2] \\
\tanh^{R_2-1}(t_2) + [a A_2 B^3 R_2 (R_2 + 1) (R_2 + 2) + a 2 A_2 R_2^3 B^3 + A_2 B R_2] \\
(\tanh^{2m+1}R_2-1(t_2) - \tanh^{(2m+1)R_2+1}(t_2)) = 0.
\]

Fig. 18 The bright cubic-soliton of the imaginary part Eq. (121) in 2D and 3D with values:
\[A_1 = 2i, B = i \sqrt{w_1}, R_1 = 1, \Omega = -2, a = k = w_1 = v = \lambda = \mu = 1, t = .5\] for 2D

Fig. 19 The bright cubic-soliton of the real part Eq. (122) in 3D and 2D with values:
\[A_1 = -2i, B = i \sqrt{w_1}, R_1 = 1, \Omega = -2, a = k = w_1 = v = \lambda = \mu = 1, t = .5\] for 2D

Fig. 20 The bright cubic-soliton of the imaginary part Eq. (123) in 2D and 3D with values:
\[A_1 = -2i, B = i \sqrt{w_1}, R_1 = 1, \Omega = -2, a = k = w_1 = v = \lambda = \mu = 1, t = .5\] for 2D

Via equating the highest order powers \(\tanh \) of the real part we get \(R_2 = \frac{1}{m} \) and hence,
Fig. 21 The dark cubic-soliton of the real part Eq. (128) in 3D and 2D with values:
\[A_1 = 0.6i, B = 0.5i, R_2 = 1, \Omega = -0.75, a = k = w_1 = v = \lambda = 1, \mu = -0.5 \]

Fig. 22 The dark cubic-soliton of the imaginary part Eq. (129) in 2D and 3D with values:
\[A_1 = 0.6i, B = 0.5i, R_2 = 1, \Omega = -0.75, a = k = w_1 = v = \lambda = 1, \mu = -0.5 \]

Fig. 23 The bright cubic-soliton of the real part Eq. (135) in 3D and 2D with values:
\[\Omega = -1.3, B = \pm i, A_1 = \pm 0.5, R_1 = 0.3, m = 3, a = k = w_1 = v = \lambda = \mu = 1, t = 0.5 \text{ for 2D} \]
Fig. 24 The bright cubic-soliton of the imaginary part Eq. (136) in 3D and 2D with values: \(\Omega = -1.3, B = \pm i, A_1 = \pm 0.5, R_1 = 0.3, m = 3, a = k = w_1 = v = \lambda = \mu = 1, t = 0.5 \) for 2D

Fig. 25 The dark cubic-solitons of the real part Eq. (140) in 3D and 2D with values: \(\Omega = -7, B = 1, A_1 = \pm 0.02, R_1 = 0.3, m = 3, a = k = w_1 = v = \lambda = \mu = 1, t = 0.5 \) for 2D
\[\Omega + a k^3 = \frac{-6a k B^2}{m^2}, \]

by substituting at the imaginary part we get,
\[A_2^m = \frac{3 a k B (1 + m)}{m^2 (1 + k \nu + k \lambda)} \]

Now, according to the same values of constants of the bright solutions \(a = k = w_1 = \nu = \lambda = \mu = 1, m = 3 \), the above constants of the dark solutions become \(\Omega = -7, A_1 = \pm \sqrt{\frac{4}{9}}, B = 1 \), hence the dark solutions in the framework of the proposed method are

\[Q = \pm 0.02 \tanh(x - t) e^{i(x - 7t)} \tag{139} \]

\[\text{Re} Q = \pm 0.02 \tanh(x - t) \times \cos(x - 7t) \tag{140} \]

\[\text{Im} Q = \pm 0.02 \tanh(x - t) \times \sin(x - 7t) \tag{141} \]

7 Conclusion

From the power point of view for two important and powerful distinct techniques new accurate cubic-solitons for the Kerr-Law and Power-Law NLSE in the presence of third-order dispersion effects, absence of the chromatic dispersion have been extracted. The two techniques have been implemented in the same vein and parallel. The first one is the ESEM which has a successful history in extracting the optical soliton solutions for many nonlinear phenomenas arising in different branches of science. This schema is applied perfectly to introduce new impressive and accurate visions of the cubic solitons for the Kerr-Law and Power-Law NLSE that involve the third-order dispersion effect and exclude the chromatic dispersion effect, which are obviously through Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16. In related subject the SWAM has been applied effectively to establish other new accurate perceptions of the cubic solitons.
for the Kerr-Law and Power-Law nonlinearity mentioned before, which are obviously through Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26. Our new achieved pictures of the accurate cubic soliton solutions in the framework of these two various manners which weren’t achieved before by any other authors denote to the novelty of these results, especially compared with that achieved previously by Xiao and Liang (2009), El-Ganaini (2013), Mirzazadeh et al. (2014), Hosseini et al. (2020) and Yıldırım et al. (2020) who applied different techniques to study these two cases significantly. Consequently, new distinct and impressive visions to the cubic solitons of these two different versions of this model have been demonstrated. Moreover, the achieved cubic solitons via these two different algorithms will add good future studies not only for this model but also for all related phenomena.

References

Bansal, A., Biswas, A., Zhou, Q., Babatin, M.M.: Lie symmetry analysis for cubic-quartic nonlinear Schrödinger’s equation. Optik 169, 12–15 (2018)
Bekir, A., Zahran, E.H.M.: Painleve approach and its applications to get new exact solutions of three biological models instead of its numerical solutions. Int. J. Mod. Phys. B 34, 2050270 (2020)
Bekir, A., Zahran, E.H.M.: Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach. Opt. Quantum Electron. 53, 118 (2021)
Bekir, A., Zahran, E.H.M.: New vision for the soliton solutions to the complex Hirota-dynamical model. Physica Scripta 96, 055212 (2021)
Bekir, A., Zahran, E.H.M.: Bright and dark soliton solutions for the complex Kundu-Eckhaus equation. Optik-Int. J. Light Electron Opt. 223, 165233 (2020)
Bekir, A., Zahran, E.H.M.: Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrödinger equation. Opt.—Int. J. Light Electron Opt. 228, 166157 (2021)
Bekir, A., Zahran, E.H.M.: New visions of the soliton solutions to the modified nonlinear Schrödinger equation; Optik 232, 166539 (2021)
Bekir, A., Shehata, M.S.M., Zahran, E.H.M: Comparison between the new exact and numerical solutions of the Mikhailov-Novikov-Wang equation, Numerical Method of Partial Differential Equation journal (in press)
Biswas, A.: 1-Soliton solution of the K(m; n) equation with generalized evolution. Phys. Lett. A 372, 4601–4602 (2008)
Biswas, A., Arshed, S.: Application of semi-inverse variational principle to cubic-quartic optical solitons with Kerr and power law nonlinearity. Optik 172, 847–850 (2018)
Biswas, A., Triki, H., Zhou, Q., Moshokoa, S.P., Ullah, M.Z., Belic, M.: Cubic-quartic optical solitons in Kerr and power law media. Optik 144, 357–362 (2017a)
Biswas, A., Kara, A.H., Ullah, M.Z., Zhou, Q., Triki, H., Belic, M.: Conservation laws for cubic-quartic optical solitons in Kerr and power law media. Optik 145, 650–654 (2017b)
Blanco-Redondo, A., Sterke, C.M.d., Sipe, J.E., Krauss, T.F., Eggleton, B.J., Husko, C.: Pure-quartic solitons. Nat. Commun. 7, 10427 (2016)
Das, A., Biswas, A., Ekici, M., Khan, S., Zhou, Q., Moshokoa, S.P.: Suppressing internet bottleneck with fractional temporal evolution of cubic-quartic optical solitons. Optik 182, 303–307 (2019)
El-Ganaini, S.I.A.: The first integral method to the nonlinear Schrödinger equations in higher dimensions. Abst. Appl. Anal. 10, 349173 (2013)
Gonzalez-Gaxiola, O., Biswas, A., Mallawi, F., Belic, M.: Cubic–quartic bright optical solitons by improved Adomian decomposition method. J. Adv. Res. 21, 161–167 (2020)
Hosseini, K., Osman, M.S., Mirzazadeh, M., Rabiei, F.: Investigation of different wave structures to the generalized third-order nonlinear Schrödinger equation. Optik 206, 164259 (2020)
Huang, D.J., Li, D.S., Zhang, H.Q.: Explicit and exact travelling wave solutions for the generalized derivative Schrödinger equation. Chaos Solitons Fract. 31, 586–593 (2007)
Kodama, Y., Hasegawa, A.: Solitons in Optical Communications. Oxford University Press, Oxford (1995)
Kohl, R.W., Biswas, A., Ekici, M., Zhou, Q., Moshokoa, S.P., Belic, M.R.: Cubic-quartic optical soliton perturbation by semi-inverse variational principle. Optik 185, 45–49 (2019)
Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)
Kudryashov, N.A.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)
Kudryashov, N.A.: Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 206, 164335 (2020)
Kudryashov, N.A.: Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik 212, 164750 (2020)
Liu, C.: Exact solutions for the higher-order nonlinear Schrödinger equation in nonlinear optical fibres. Chaos Solitons Fract. 23, 949–955 (2005)
Li, B., Zhao, J., Pan, A., Mirzazadeh, M., Ekici, M., Zhou, Q., Liu, W.: Stable propagation of optical solitons in fiber lasers by using symbolic computation. Optik 178, 142–145 (2019)
Mirzazadeh, M., Eslami, M., Biswas, A.: Dispersive optical solitons by Kudryashov’s method. Optik 125(23), 6874–6880 (2014)
Shehata, M.S.M., Rezazadeh, H., Jawad, A.J.M., Zahran, E.H.M., Bekir, A.: Optical solitons to a perturbed Gerdjikov-Ivanov equation using two different techniques. Revista Mexicana de Fisica 67, 050704 (2021)
Triki, H., Wazwaz, A.M.: Bright and dark soliton solutions for a K(m; n) equation with t-dependent coefficients. Phys. Lett. A 373, 2162–2165 (2009)
Triki, H., Wazwaz, A.M.: Bright and dark solitons for a generalized Korteweg–de Vries-modified Korteweg–de Vries equation with high-order nonlinear terms and time-dependent coefficients. Can. J. Phys. 89, 253–259 (2011)
Wazwaz, A.M., Xu, G.Q.: Bright, dark, and Gaussons optical solutions for fourth order Schrödinger equation with cubic-quantic and logarithmic nonlinearities. Optik 202, 163564 (2020)
Xiao, L.L., Liang, W.M.: The (G'/G)-Expansion Method and travelling wave solutions for a higher-order nonlinear Schrödinger equation. Appl. Math. Comput. 208, 440–445 (2009)
Yıldırım, Y., Biswas, A., Jawad, A.J.M., Ekici, M., Zhou, Q., Khan, S., Alzahrani, A.K., Belic, M.R.: Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results Phys. 16, 102913 (2020)
Yıldırım, Y., Biswas, A., Guggilla, P., Mallawi, F., Belic, M.R.: Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index. Opt. 203, 163885 (2020)
Yıldırım, Y., Biswas, A., Asma, M., Guggilla, P., Khan, S., Ekici, M., Alzahrani, A.K., Belic, M.R.: Pure-cubic optical soliton perturbation with full nonlinearity. Opt.—Int. J. Light Electron Opt. 222, 165394 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.