研究分野：高分子合成、光化学、元素化学

キーワード：共役系分子 近赤外発光 ホウ素錯体

研究分野：高分子合成、光化学、元素化学

キーワード：共役系分子 近赤外発光 ホウ素錯体

研究分野：高分子合成、光化学、元素化学

キーワード：共役系分子 近赤外発光 ホウ素錯体

研究分野：高分子合成、光化学、元素化学

キーワード：共役系分子 近赤外発光 ホウ素錯体
1. 研究開始当初の背景

近赤外光（波長 700 nm 〜 2 μm）の高い透過性から、情報伝達や生体イメージングでの応用の可能性が示され、悪天候でも観測可能なカメラ、植物の生育抑制効果さらには効果的な農薬剤が研究対象になっている。そこで近赤外発光を得るには狭エネルギーギャップを基盤として電子求引・供与性基導入や重元素錯体化によるものである。一方、700 nm に発光極大を持たせると、π共役系を基盤に電子受容性基導入、重元素錯体化や、π共役系を基盤に電子供与性基導入、π共役系を基盤に電子求引性基導入で実現される。これにより、近赤外有機 EL 用の高分子も必要されているが、均一なフィルムを得るのは困難な場合が多い。以上、現代産業の多様なニーズに応えるには、狭エネルギーギャップを基盤とした既存の戦略では限界を迎えていた。

孤立 LUMO へアザ置換を施すことで、既存の色素を近赤外発光化し、高分子化と共に優れた物性を得るに至った。例えば、可視光領域に発光を持つ BODIPY 色素（発光極大：約 650 nm）において孤立 LUMO を量子化学計算より見出した（図 1, 2）。そこでアザ置換を施すと100 nm 以上長波長化に成功し、近赤外発光色素となった（Polym. J. 2018, 271）。得られたアザ置換 BODIPY は汎用有機溶媒に高い溶解性を示し、高分子化も可能であった。そして、塗布型有機 EL 素子（Macromolecules 2014, 2316）や近赤外発光性液体シンチレーター（Bioorg. Med. Chem. Lett. 2015, 5331）の開発に至り、これらは既存の無機材料を凌駕する物性を示した。本研究はこれらの結果を技術的に体系化し、汎用の手法として確立を目指すものである。

2. 研究の目的

本研究では、狭エネルギーギャップ構造を実現するために、従来の基本戦略である「共役系拡張」を用いない新戦略の確立を目的とする。具体的には、孤立 LUMO を有する骨格炭素をアザ置換し、LUMO のエネルギー準位を選択的に引き下げることで狭エネルギーギャップ化する機構の確立を図る。目的の実現のため①固体近赤外発光の実現とメカノクロミズム応用、②意図的な孤立 LUMO の創出と共役系基骨格の近赤外発光化を行う。本研究の達成により、π共役系拡張とは独立の電子軌道分布による理論的に狭エネルギーギャップ化する新戦略を提示できる。また、本戦略による長波長シフトが刺激応答性の鋭敏化に有効であることを示し、近赤外光の新しい有用性を提案する。さらに、低分子量近赤外発光色素、近赤外固体発光性色素、新赤外メカノクロミズム発光色素、塗布型有機 EL 用近赤外発光フィルムという従来のπ共役系拡張では合成が困難な物質の創出も図る。

3. 研究の方法

ホウ素原子は空の 2p 軌道に由来する電子受容性を有しており、ヘテロ原子と錯形成することでヘテロ原子の電子受容性を大きく高めることができている。更に、ホウ素錯体化による縮環構造を基盤として、高効率な発光特性を有する錯体が多数報告されている。スケーム 1 ホウ素錯体の合成

以上のことを本研究では、電子受容性的π共役ユニットであるピラジンを基盤とした配位子を合成し、二核ホウ素錯体化によりピラジンの電子受容性を高めることで近赤外領域での高効率発光特性を有する分子の創出を目指した。
スキーム 1 のように配位子のホウ素錯体化を行い、二核ホウ素錯体（Pz_Mes-H）を合成した。電子供与性のメトキシ基を導入したホウ素錯体（Pz_Mes-OMe）についても同様に合成し、2 種類のホウ素錯体についてトルエン溶液中での紫外・可視吸収スペクトル、発光スペクトル、発光量子収率の測定を行った。その結果から、導入した置換基が及ぼす効果についても考察した。

4. 研究成果
合成したホウ素錯体 Pz_Mes-H、Pz_Mes-OMe それぞれについて、1 × 10⁻⁵ M トルエン溶液状態で紫外・可視吸収スペクトル測定、発光スペクトル測定、量子収率測定、発光寿命測定を行なった（表1、図3）。Pz_Mes-H、Pz_Mes-OMe 共に 700 nm 以上の長波長領域での発光が観測されており、近赤外発光特性を持つ分子の合成に成功したと言える。

電子供与性のメトキシ基を導入したホウ素錯体（Pz_Mes-OMe）についても同様に合成し、2 種類のホウ素錯体についてトルエン溶液中での紫外・可視吸収スペクトル、発光スペクトル、発光量子収率の測定を行った。その結果から、導入した置換基が及ぼす効果についても考察した。

4. 研究成果
合成したホウ素錯体 Pz_Mes-H、Pz_Mes-OMe それぞれについて、1 × 10⁻⁵ M トルエン溶液状態で紫外・可視吸収スペクトル測定、発光スペクトル測定、量子収率測定、発光寿命測定を行なった（表1、図3）。Pz_Mes-H、Pz_Mes-OMe 共に 700 nm 以上の長波長領域での発光が観測されており、近赤外発光特性を持つ分子の合成に成功したと言える。

合成したホウ素錯体 Pz_Mes-H、Pz_Mes-OMe それぞれについて、1 × 10⁻⁵ M トルエン溶液状態で紫外・可視吸収スペクトル測定、発光スペクトル測定、量子収率測定、発光寿命測定を行なった（表1、図3）。Pz_Mes-H、Pz_Mes-OMe 共に 700 nm 以上の長波長領域での発光が観測されており、近赤外発光特性を持つ分子の合成に成功したと言える。

合成したホウ素錯体 Pz_Mes-H、Pz_Mes-OMe それぞれについて、1 × 10⁻⁵ M トルエン溶液状態で紫外・可視吸収スペクトル測定、発光スペクトル測定、量子収率測定、発光寿命測定を行なった（表1、図3）。Pz_Mes-H、Pz_Mes-OMe 共に 700 nm 以上の長波長領域での発光が観測されており、近赤外発光特性を持つ分子の合成に成功したと言える。

合成したホウ素錯体 Pz_Mes-H、Pz_Mes-OMe それぞれについて、1 × 10⁻⁵ M トルエン溶液状態で紫外・可視吸収スペクトル測定、発光スペクトル測定、量子収率測定、発光寿命測定を行なった（表1、図3）。Pz_Mes-H、Pz_Mes-OMe 共に 700 nm 以上の長波長領域での発光が観測されており、近赤外発光特性を持つ分子の合成に成功したと言える。
5．主な発表論文等	1．著者名	2．論文標題	3．雑誌名	4．巻
計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）
計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）	計□件（うち査読付論文 □件 / うち国際共著 □件 / うちオープンアクセス □件）

掲載論文の □□(デジタルオブジェクト識別子) | 有 | 有 | 有 | 有 |

オープンアクセス | 有 | 有 | 有 | 有 |

オープンアクセス | 有 | 有 | 有 | 有 |

オープンアクセス | 有 | 有 | 有 | 有 |

オープンアクセス | 有 | 有 | 有 | 有 |

オープンアクセス | 有 | 有 | 有 | 有 |
1. 著者名	2. 論文標題	3. 雑誌名	4. 巻	5. 発行年	6. 最初と最後の頁
Switching between intramolecular charge transfer and excimer emissions in solids based on aryl-modified ethynyl-o-carboranes	Cell Reports Physical Science	100758	2021	2022	2022
Near-infrared-emissive 1,4-conjugated polymers based on five-coordinated silicon formazanate complexes	Polymer	124463	2021	2022	2022
Development of NIR emissive fully-fused bisboron complexes with 1,4-conjugated systems including multiple azo groups	Dalton Transactions	74	2021	2022	2022
The Effect of the Substituent Positions on Self-Assembly Behaviors of Liquid-Crystalline 1,3,4,6,9b-Pentaazaphenalene Derivatives	Bulletin of the Chemical Society of Japan	1854	2021	2022	2022

オープンアクセスは、オープンアクセスではない、又はオープンアクセスが困難です。
1. 著者名	2. 論文題	3. 雑誌名	4. 巻	5. 発行年	6. 最初と最後の頁
Kazuo Tanaka	Design of Stimuli-Responsive Luminescent Materials Containing Flexible Boron Element-Blocks				
	Development of film-type sensors based on stimuli-responsive conjugated polymers containing element-blocks				
Ochi Junki, Yuhara Kazuhiro, Tanaka Kazuo, Chujo Yoshiki	Effects of Regioregularity of Conjugated Polymers Composed of Boron Diketiminate on Their StimuliResponsive Luminescence				
Ito Shunichiro, Fukuyama Misuzu, Tanaka Kazuo, Chujo Yoshiki	Controlling the Dual Emission Character of Aryl Modified Carboranes by Intramolecular CH-O Interaction Sites				

オープンアクセスは、オープンアクセスではない、又はオープンアクセスが困難のため、国际共著はありません。
1. 発表者名
Kazuo Tanaka

2. 発表標題
設計の基に固体状態で発する近赤外放射性材料に基づくアザ置换のAIEジェン

3. 学会名等
国際会議(招待講演)(国際会議)

4. 発表年
2021年

（図書）計1件

（出願）計1件

産業財産権の名称
化合物

発明者
田中一成；中條善樹；権正行；秋山誠治、他3名

権利者
同左

産業財産権の種類、番号
特許、特願 ***************

出願年
2021年

国内・外国別の別
国内

（取得）計1件

（その他）

6. 研究組織

氏名	所属研究機関・研究部・職	備考
	研究者番号	

7. 科研費を使用して開催した国際研究集会
（国際研究集会）計1件

8. 本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
