Pollen morphology of *Ellisiophyllum* and *Sibthorpia* (Plantaginaceae, tribe Sibthorpieae) and phylogenetics of the tribe

Dirk C. Albach · Zoya M. Tsymbalyuk · Sergei L. Mosyakin

Received: 16 May 2021 / Accepted: 1 October 2021 / Published online: 15 November 2021
© The Author(s) 2021

Abstract
Pollen morphology of six species belonging to genera *Ellisiophyllum* and *Sibthorpia* (Plantaginaceae tribe Sibthorpieae) was studied using light and scanning electron microscopy. The data were analyzed in the light of the first phylogenetic analysis including all but one species of the tribe using DNA sequence data from nuclear ribosomal (ITS) and plastid *trnL*-F region. Pollen grains in representatives of this tribe are 3-colpate, occasionally 3-porate, suboblate to prolate; mainly medium-sized, rarely small. One major pollen type (3-colpate) is recognized in the tribe. Within this pollen type, six subtypes are distinguished based on their exine sculpture, pollen grain size, length of the apertures, and exine thickness. The obtained results confirm that pollen characters are useful for species identification. Palynomorphological data are consistent with the results of the molecular phylogenetic analyses. All studies support a sister relationship of the widespread European *Sibthorpia europaea* with the widespread South American *Sibthorpia repens* and a sister relationship of two insular species, the Balearic *Sibthorpia africana* and the Madeiran *Sibthorpia peregrina*. Pollen grains in the tribe Sibthorpieae have both reticulate exine sculpture characteristic for representatives of the Russelieae–Cheloneae–Antirrhineae clades of Plantaginaceae, and also nanoechinate sculpture, which is typical for the Veroniceae and Plantagineae clades of that family. Also, in *Sibthorpia repens*, we observe a possible transition from the colpate type to the porate type typical for taxa of *Plantago* and *Littorella*.

Keywords *Ellisiophyllum* · Evolution · Palynology · Phylogenetics · *Sibthorpia*

Introduction

The circumscription of the family Scrophulariaceae has greatly changed since the first report of its polyphyly (Olmstead and Reeves 1995), and members of the traditional Scrophulariaceae are now split among at least eight families representing monophyletic lineages. Polyphyly extends also to traditional subfamilies and tribes of the family, and thus, reevaluation of the importance of characters in genera of traditional Scrophulariaceae is necessary. The tribe Sibthorpieae Benth. was established by Bentham (1846) with eleven genera, two now belonging to Phrymaceae, three to Scrophulariaceae, and seven to Plantaginaceae. However, later systems combined these genera with *Digitalis* L., *Veronica* L., and related genera, placing them in Digitaliidae (Wettstein 1891–1893), or subsumed *Sibthorpia* (with *Hemiphragma* Wall., *Scoparia* L. and *Capraria* L., the latter now in Scrophulariaceae sensu stricto) under Hemiphragmeae (Rouy 1909). Wettstein’s system was followed by most authors, for example by Takhtajan (1987, 1997), who included them in the tribe Veroniceae. Fischer (2004) restricted Sibthorpieae to only two genera, *Ellisiophyllum* Maxim. and *Sibthorpia* L. and placed the tribe in subfamily Digitalidoideae. Molecular phylogenetic studies of *Ellisiophyllum* and *Sibthorpia* were first conducted by Albach et al. (2005) who confirmed that they are phylogenetically closely related to each other and unrelated to genera previously considered close to them. Sibthorpieae, as outlined now, thus includes only the genera *Ellisiophyllum* and *Sibthorpia*.
and *Sibthorpi*a (Albach et al. 2005; Tank et al. 2006; Reveal 2012; Olmstead 2016).

The genus *Sibthorpi*a includes five currently recognized species that occur in tropical America, the Azores, Madeira, Europe (two species), and African mountains (Hedberg 1955, 1975; Diaz-Miranda 1988; Mabberley 1997, 2017; Fischer 2004; Albach et al. 2005; Tank et al. 2006; Olmstead 2016). A comprehensive taxonomic treatment of *Sibthorpi*a was published by Hedberg (1955). The morphological features of flowers, fruits, seeds, and chromosome numbers of the genus in general (Hedberg 1975) and in *Sibthorpi*a *europaea* L. in particular (Juan et al. 1999) were investigated. Based on his investigations, Hedberg (1955) suggested that the Balearic *Sibthorpi*a *africana* L. and the Madeiran *Sibthorpi*a *peregrina* L. are sister species, which was supported by the same chromosome number (Hedberg 1975). In turn, he hypothesized that the Neotropical *Sibthorpi*a *repens* (L.) Kuntze and the closely related *S. conspicua* Diels are tetraploid derivatives of the diploid European-African *S. europaea* L. (Hedberg 1955, 1975). To date, this phylogenetic hypothesis has not been tested in a phylogenetic analysis.

The genus *Ellisiophyllum* is represented by the only species, *E. pinnatum* (Benth.) Makino, which is distributed from India to Japan and Taiwan, and to eastern New Guinea (Hedberg 1975; Mabberley 1997, 2017; Fischer 2004; Olmstead 2016). The species was originally described by Bentham (1846) based on the specimen(s) collected by Wallich in Nepal or adjacent regions of India and listed in his handwritten catalog under No. 3915.

Earlier opinions on the proper phylogenetic position and relationships of *Ellisiophyllum* varied greatly. Wallich provisionally listed the species under the name *Mazus pinnatus* Wall. (nom. inval., nom. nudum), in a genus now placed in Phrymaceae, but Bentham validly published it as *Ourisia pinnata* Benth. (Bentham 1835; see also Hayata 1911; Meudt 2006, etc.). Later, Bentham (1846) described the genus *Hornemannia* Benth. for it, an illegitimate later homonym of *Hornemannia* Willd., and put the species in his order close to *Sibthorpi*a. Maximowicz (1871) established the new genus *Ellisiophyllum* with one species, *E. reptans* Maxim. The names of the genus and its only species were simultaneously validated by one description (*descripicio generico-specifica*, Art. 38.5 of the ICN; Turland et al. 2018). Most probably Maximowicz was unaware of the identity (or at least similarity) of his newly described species with the species earlier described by Bentham as *Ourisia pinnata*, which is understandable, partly because these taxa were described from distant territories: Japan and Nepal (or India), respectively. Maximowicz (1871: 223) characterized his genus as being intermediate “inter Hydrophyllaceas et Polemoniaceas.” It was consequently included in the family Hydrophyllaceae by Peter (1897). Hooker (1885), however, considered *Ellisiophyllum* to be a synonym of *Sibthorpi*a.

Hemsley (1899) disagreed with that generic placement and, being aware of the illegitimacy of Bentham’s generic name *Hornemannia* but evidently not knowing about the availability of the name *Ellisiophyllum*, coined the replacement name *Mosleya* Hems. (to replace *Hornemannia* Benth.) and validated the combination *M. pinnata* (Benth.) Hems. Evidently, *Ellisiophyllum* has priority over *Mosleya* at the genus rank. Brand (1913: 185–186) definitely excluded *Ellisiophyllum* from Hydrophyllaceae and confirmed instead its placement in Scrophulariaceae (“Genus Scrophulariaeis attribuendum”). Recent molecular and other findings (see an overview above) firmly placed *Ellisiophyllum* and *Sibthorpi*a in the extended and re-circumscribed Plantaginaceae.

With the gained certainty in the familial relationships and phylogenetic hypotheses available, it is timely to reinterpret trends in character evolution and investigate poorly known pollen characters in a phylogenetic framework. For example, very little information is available on pollen grains of representatives of *Sibthorpi*eae. The morphological features of pollen grains of *S. europaea* (Juan et al. 1999) have been described. However, as far as we know, pollen grains of the monotypic (monospecific) genus *Ellisiophyllum* and the other species of *Sibthorpi*a have not been investigated before.

The purpose of the present research was to study and analyze the phylogenetic relationships among members of the tribe *Sibthorpi*eae using DNA sequence data and to compare them with data on morphological features of pollen grains of these taxa.

Materials and methods

DNA-based phylogenetic analysis

For the DNA-based part of the study, we have sampled four of the five species of *Sibthorpi*a and the only species of *Ellisiophyllum*, with two or three samples of three of the species (Table 1). Only samples of *S. conspicua* were not available for DNA sequencing. Outgroups were chosen based on the analysis of Plantaginaceae by Albach et al. (2005) to ensure a wide variety of taxa and sufficient representation of the family (Table 1). DNA was isolated from about 20 mg of tissue from either living material, silica gel-dried or herbarium material with the NucleoSpin Plant II (Macherey and Nagel, Düren, Germany) or the DNeasy plant Mini Kit (Qiagen, Hilden Germany) following the provided protocol. The quality of the extracted DNA was checked on a 0.8% TBE-agarose-gel and the concentration measured spectrophotometrically with a GeneQuant RNA/DNA calculator (Pharmacia, Cambridge, UK).
Table 1 Vouchers and GenBank accession numbers for the sequences used in the phylogenetic study

Species	Voucher	Locality	ITS	trnL-F
Scrophulariaceae				
Buddleja asiatica	unknown	unknown	AF380858	
Buddleja marrubifolium	Freeh and Johnson s.n., ARIZ	unknown	AF363671	
Oreosolen wattii	Dickoree 5182, GOET	China	AF509817	AF513357
Scrophularia californica	Thulin and Gifri 8633, UPS	USA	AF118802	
Scrophularia peregrina	Wolfe s.n., OS	USA	AF375146	
Plantaginaceae—Gratioloidae				
Gratiola officinalis	Albach 490, WU	Bulgaria	AY492106	AY608591
Scoparia dulcis	Carr 10834, TEX	USA	AY492119	AY492190
Ootacanthus sp.	Albach s.n., WU	Cult. BG Bonn	AY492115	AY492189
Stemodia durantifolia	Reina et al. 98-198, TEX	Mexico	AY492120	
Stemodia florulenta	Nordenstam and Anderberg 967, S	Australia	AY608566	
Mecardonia procumbens	Denny and Harvey 449, TEX	USA	AY492110	AY492184
Ourisia microphylla	Meudt and López 036, TEX	Chle	AY492116	AY492189
Basistememon silvaticus	Nee 38032, TEX	Bolivia	AY492096	AY492171
Melosperma andicola	Arroyo and Humana 206607, TEX	Chile	AY492112	AY492185
Plantaginaceae—Plantaginoideae				
Russelia equisetiformis	Albach s.n., WU	Cult. BG Bonn	AY492118	AY492190
Tetranema roseum	Smith College s.n., UCONN	Cult. Univ. Connecticut	AY492121	AY492192
Penstemon whippleanus	Albach 661, WU	Cult. BG Bonn	AY492117	AF034866
Keckiella breviflora	Wilson 3487, OS (ITS); Erter and Strachan 5011, TEX (trnL-F)	USA	AY492179	
Lafauntea rotundifolia	Martinez Ortega 889, SALA	Spain	AF509816	AF513356
Antirrhinum majus	Wolfe s.n. OS (ITS); Olmstead 846, NY (trnL-F)	Cult	AY375150	AY482607
Callitriches cf. bratia	Albach 491, WU	Bulgaria: Rhodopes Mts	AY492097	AY492172
Callitriches japonica	Murata 80198, TNS	Japan	LC177722	
Callitriches muelleri	Aspin s.n., AK288885	New Zealand	LC177728	
Hippurus vulgaris	Albach s.n., WU	Cult. BG Bonn	AY492098	AY492178
Globularia salicina	Chase 2547, K	Cult. RBG Kew	AF313039	AF513358
Campylanthus salisoloides	Panero and Ortega 6910, TEX	Spain	AY492099	AY492171
Hemiphragma heterophylla	Greasen and Long 2512, K	India: Tenerife	AY492107	
Erinus alpinus	Albach 158, WU	France: near Evian	AF313032	AF486417
Digitalis purpurea	Meudt and Lopez 005, TEX (ITS); UTEP54185 (trnL-F)	Chle (ITS); USA (trnL-F)	AY492102	AF034871
Plantago coronopus	Ronsted 8, C (ITS); Chase 2763, K (trnL-F)	Denmark(ITS); Great Britain (trnL-F)	AY101882	AF486419
Aregoa abietina	Gonzalez 3807, COL	Colombia	AJ459404	MN709773
Veronica montana	Albach 151, WU	Germany	AF313014	AF486388
Picrorhiza kurrooa	McBeath 2214, K	Pakistan	AF509813	AF486414
Ellisiophyllum pinnatum	Meudt s.n., TEX	Cult. U Texas ex Taiwan	AY492103	AY492176
Sibthorpia africana	Albach s.n., WU	Cult. BG Bonn	–	OK073646
Sibthorpia europaea	Kew 1948-41901, K	Cult. RBG Kew	AF313035	AF513355
Sibthorpia europaea	Pearson 28.4.2009, MIG	England: near Mabe, Penryn	OK070754	OK073647
Sibthorpia europaea	Böhling 10069, B (DNA 3597)	Greece: Crete, Sembronas	OK070755	
Sibthorpia repens	Cazalet and Pennington 5309, B (DNA 3595)	Ecuador: Imbubara	OK070756	
Sibthorpia repens	Beaman 3955, B (DNA 3594)	Guatemala	OK070757	OK073650
Sibthorpia peregrina	Rustan and Sunding 18124, B (DNA 3609)	Cult. BG Berlin ex Madeira	OK070758	OK073649
Sibthorpia peregrina	Albach s.n., WU	Cult. BG Bonn	OK070759	OK073648
The nuclear ribosomal ITS region (hereafter ITS) and the plastid trnL intron, trnL 3’ exon and trnL-F spacer (hereafter trnL-F region) were amplified using primers ITS A (Blattner 1999) and ITS4 (White et al. 1990) for ITS, and the trnL-F region with primers c and f and sometimes including internal primers d and e (Taberlet et al. 1991). PCR reactions included 2–2.5 mM MgCl₂, 8 mM bovine serum albumin, 0.4 µM primer, 0.2 mM dNTP, 1U/µl Taq polymerase (New England Biolabs, Ipswich, MA, USA), 1 × polymerase buffer and 1–5 µl DNA for a final volume of 25 µl. ITS sequences were amplified with a program consisting of 2 min at 95 °C followed by 36 cycles of 1 min at 95 °C, 1 min at 50–55 °C, and 1.5–2 min at 72 °C with a final extension of 5 min at 72 °C on either a Mastercycler gradient (Eppendorf) or TProfessional Standard thermocycler (Biometra). The trnL-F region was amplified after 1 min denaturation at 95 °C followed by 35 cycles with 30 s at 95 °C, 30 s at 52 °C and 1 min at 72°C with a final extension of 8 min at 72 °C. PCR products were cleaned using QIAquick PCR purification kits (Qiagen, Hilden, Germany) following the provided protocol. Sequencing reactions of 10 µl were carried out using 1 µl of the Taq DyeDeoxy Terminator Cycle Sequencing mix (Applied Biosystems, Foster City, CA, USA) and the same primers as for PCR. Sequences were generated by Sanger sequencing at commercial sequencing companies. All sequences are available from GenBank (Table 1). The data matrices are available at http://purl.org/phylo/treebase/phylows/study/TB2:S25825.

Sequences were manually aligned in Phyde v.0.9971 (Müller et al. 2010) and evaluated for the best model of evolution in jModeltest2 (Darriba et al. 2012). No indel coding was conducted due to the high variability of the ITS region across Plantaginaceae. Phylogenetic analyses were conducted in IQ-TREE (Trifinopoulos et al. 2016) using the GTR + Γ + I for ITS and GTR + Γ for trnL-F with 8 different rates and 1000 ultrafast bootstrap replicates.

Pollen analysis

Pollen grains of two species belonging to two genera of Sibthorpiae (Ellisophyllum and Sibthorbia) were sampled in the herbarium of the Missouri Botanical Garden (MO; St. Louis, Missouri, U.S.A.). Pollen grains of four species of Sibthorbia were sampled in the herbarium of the Conservatoire et Jardin botaniques de la Ville de Genève (G. Genève, Switzerland). Pollen grains of two species of Sibthorbia were sampled in the National Herbarium of Ukraine (KW—herbarium of the M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine). The specimens examined are listed in “Appendix” section. Herbarium acronyms are given following Index Herbariorum (Thiers 2008–onward).

The methods used in the present study are essentially the same as we used earlier (Mosyakin and Tsymbalyuk 2015a, b, 2017). Pollen morphology was studied using light microscopy and scanning electron microscopy. For light microscopy (LM) studies (Biolar, ×700), the pollen was acetolyzed following Erdtman (1952), mounted on slides with glycerinated gelatin and analyzed and photomicrographed using light microscopy. Pollen morphometric features of 20 properly developed pollen grains from each specimen were measured on the acetolyzed pollen grains, and the measurements included the following parameters: polar axis (P), equatorial diameter (E), mesocolpium diameter, exine thickness, and 10 measurements of the apocolpium diameter, the width and length of apertures were performed. The PIE ratio was calculated in order to determine pollen shape. For all the quantitative characters, descriptive statistics was applied and the range (minimum and maximum values), arithmetic mean and standard deviation were calculated (Tables 2 and 3). The slides were deposited in the Palynotheca (reference pollen collection) at the National Herbarium of Ukraine (KW) (Bezusko and Tsymbalyuk 2011).

For scanning electron microscopy (SEM) studies (JEOL JSM-6060LA), dry pollen grains were treated with 96%-ethanol; then, these samples were sputter-coated with gold and investigated at the Center of Electron Microscopy of the M.G. Kholodny Institute of Botany. Terminology used in descriptions of pollen grains mainly follows the glossaries by Punt et al. (2007) and Halbritter et al. (2018).

Evolution of pollen characters was analyzed with the ancestral character state model using the package phytools (Revell 2012) in RStudio v. 1.4 (RStudio Team 2021) and R version 4.0.3 (R Development Core Team 2020) using the ITS species tree restricted to Sibthorpieae.

Results

DNA-based phylogenetic analysis

The ITS dataset included 38 sequences with a final alignment of 832 characters with 352 potentially parsimony informative, whereas the trnL-F region included 34 sequences with 1137 characters with 254 potentially parsimony informative. The optimal tree from the maximum likelihood analyses of each dataset separate are shown in Figs. 1 and 2. Analyses of ITS and trnL-F region were congruent for relationships within the Sibthorpieae. Relationships among the outgroups are inconclusive because of incongruence among markers. Noteworthy is the difference among both datasets regarding the closest relatives of Sibthorpieae. However, in both cases Sibthorpieae branch deeply within Plantaginaceae. In turn, the Sibthorpieae clade itself is strongly supported to
be monophyletic by analyses of both ITS and trnL-F region (Figs. 1, 2; 100% and 99% bootstrap support (BS), respectively) with *Ellisiophyllum pinnatum* sister to *Sibthorpia* in both analyses (100% BS). Within *Sibthorpia*, all species sampled by multiple individuals are monophyletic. Amplification of *S. africana* was unsuccessful for ITS but is sister to *S. peregrina* in the analysis of the trnL-F region (99% BS). *Sibthorpia europaea* and *S. repens* are sisters (100% BS).

General description of pollen grains of *Ellisiophyllum*

Pollen grains are monads, radially symmetrical, isopolar, tricolpate. *Ellisiophyllum* pollen is medium-sized ($P = 30.59–42.56 \mu m$, $E = 25.27–34.58 \mu m$). According to P/E ratio, pollen grains are oblate-spheroidal to prolate ($P/E = 0.96–1.63$) in shape. Outline of pollen grains in equatorial view is elliptic. Outline of pollen

Table 2 Pollen morphometric characters (all measurements given as \(\mu m \); mean ± standard deviation, range min–max)

Taxon	Polar axis	Equatorial diameter	P/E	Mesocolpium	Apocolpium	Colpi/pores length	Colpi/pores width	Exine thickness
Ellisiophyllum pinnatum	37.50 ± 3.43	28.79 ± 2.86	1.31 ± 0.18	20.21 ± 0.99	5.98 ± 0.66	30.98 ± 3.62	3.96 ± 1.48	2.28 ± 0.31
Sibthorpia peregrina	30.59–42.56	25.27–34.58	0.96–1.63	18.62–22.61	5.32–6.65	26.60–37.24	2.39–6.65	1.59–2.66
Sibthorpia africana	31.50 ± 3.88	27.84 ± 3.72	1.14 ± 0.19	22.14 ± 1.84	6.31 ± 1.50	26.79 ± 5.10	3.72 ± 0.86	1.40 ± 0.14
Sibthorpia conspicua	23.94–42.56	21.28–37.24	0.87–1.56	19.95–26.60	3.99–9.31	18.62–37.24	2.66–5.32	1.06–1.59
Sibthorpia europaea	40.56 ± 1.99	34.31 ± 2.93	1.19 ± 0.11	25.73 ± 1.64	7.71 ± 0.99	29.52 ± 3.35	5.18 ± 1.56	2.46 ± 0.23
Sibthorpia repens	37.24–45.22	26.60–39.90	0.96–1.40	21.28–29.26	6.65–9.31	26.60–35.91	2.66–7.98	1.99–2.66

Table 3 Pollen morphological characters

Taxon	Apertures	Polar view	Equatorial view	Colpi/pores	Colpus membrane	Exine sculpture	Columellae
Ellisiophyllum pinnatum	3-colpate	Trilobate	Elliptic	Long, acute or blunt ends	Rugulate-nanoechinate	Rugulate-nanoechinate	Distinct
Sibthorpia peregrina	3-colpate	Slightly trilobate, circular-triangular	Elliptic	Long, acute or indistinct ends	Granulate-nanoechinate	Nanoechinate-perforate, nanoechinate	Indistinct
Sibthorpia africana	3-colpate	Circular-triangular, slightly trilobate	Elliptic	Long, acute ends	Granulate	Rugulate-perforate	Distinct
Sibthorpia conspicua	3-colpate	Slightly trilobate, circular-triangular	Elliptic, circular	Medium-length, acute ends	Psilate-granulate	Reticulate	Distinct
Sibthorpia europaea	3-colpate	Slightly trilobate, tricolpate	Elliptic, circular	Medium-length, acute or indistinct ends	Granulate	Perforate, microreticulate	Distinct
Sibthorpia repens	3-colpate and 3-porate	Circular, circular-triangular	Elliptic, circular	Brevicolpi, indistinct ends, pores lolongate	Psilate-granulate	Microreticulate	Distinct
grains in polar view is trilobate (Table 3). Colpi are long (26.60–37.24 µm), with distinct, more or less straight, sometimes thickened margins (Tables 2 and 3). Colpus membranes are rugulate-nanoechinate (Fig. 3c). Exine is 1.59–2.66 µm thick (Table 2). Sexine is thicker than nexine. Tectum is nearly equal to infratectum, columellae distinct. Exine sculpture is rugulate-nanoechinate, nanoechinate (Fig. 3b, c).
General description of pollen grains of *Sibthoria*

Pollen grains are monads, radially symmetrical, isopolar, tricolpate, and rarely triporate. *Sibthoria* pollen grains are small to medium-sized (P = 18.62–45.22 µm, E = 18.62–39.90 µm). According to PIE ratio, pollen grains are suboblate to prolate (P/E = 0.77–1.56) in shape. The smallest pollen grains were found in *S. conspicua*, *S. europaea* and *S. repens*, and the largest ones, in *S. peregrina* and *S. africana* (Table 2). Outline of pollen grains in equatorial view is elliptic and circular. Outline of pollen grains in polar view is slightly trilobate, trilobate, circular or circular-triangular. Colpi are long (18.62–37.24 µm), medium-length (10.64–14.63 µm) or short (6.65–13.30 µm), with distinct (in *S. africana* and *S. conspicua*), indistinct or distinct (S. peregrina), pollen exine, columellae, f nanoechinuate-perforate sculpture. g–i *Sibthoria africana*: g equatorial view, h rugulate-perforate sculpture, i colpus membrane granulate

Fig. 3 Pollen grains of *Ellisiophyllum* and *Sibthoria* (SEM). a–c *Ellisiophyllum pinnatum*: a equatorial view, b rugulate-nanoechinuate sculpture, c colpus membrane rugulate-nanoechinuate. d–f *Sibthoria peregrina*: d equatorial view, e nanoechinuate sculpture and broken pollen exine, columellae, f nanoechinuate-perforate sculpture. g–i *Sibthoria africana*: g equatorial view, h rugulate-perforate sculpture, i colpus membrane granulate

Sibthoria peregrina has columellae short, simple, and indistinct (S. europaea and S. repens), uneven, rarely thickened (S. africana and S. peregrina) margins (Tables 2 and 3). Pores are lalongate, with indistinct, irregular margins (S. repens). Aperture membranes in the investigated species are psilate-granulate (in *S. conspicua* and S. repens), granulate (S. africana and S. europaea), or granulate-nanoechinuate (S. peregrina). Exine thickness varies between 1.06 and 2.66 µm (Table 2). Sexine is thicker than nexine. Tectum is nearly equal to infratectum. Columellae are distinct in *S. africana*, *S. conspicua*, *S. europaea* and *S. repens*, or indistinct in *S. peregrina*. *Sibthoria peregrina* has columellae short, simple, and densely arranged in mesocolpium (Fig. 3e). Exine sculpture is nanoechinuate-perforate, nanoechinuate, rugulate-perforate, perforate, microreticulate and reticulate (Table 3 and Figs. 3, 4).
The data obtained demonstrated that the pollen grains of Sibthorpiaceae differ in their shape, outline, and size, length and width of the colpi, exine thickness, exine sculpture, and aperture membranes between species. This confirms that pollen grain characteristics are useful for species identification. Pollen grains of the studied species can be included in one type (3-colpate). This type in Sibthorpiaceae contains six subtypes segregated according to the exine sculpture, grain size, length of apertures, and thickness of the exine (Table 4).

Fig. 4 Pollen grains of Sibthorpiaceae (SEM). a–c Sibthorpiaceae: a equatorial view, b, c reticulate sculpture. d–f Sibthorpiaceae: d equatorial view, e perforate sculpture, f microreticulate sculpture and colpus membrane granulate. g–i Sibthorpiaceae: g polar view, h, i microreticulate sculpture, i pore membrane psilate-granulate.

Taxon	Subtypes	P	E	Colpi	Exine sculpture	Exine thickness	Figures
E. pinnatum	I	30.59–42.56	25.27–34.58	Long	Rugulate-nanoechinate, nanoechinate	1.59–2.66	3b, c
S. peregrina	II	23.94–42.56	21.28–37.24	Long	Nanoechinate-perforate, nanoechinate	1.06–1.59	3f
S. africana	III	37.24–45.22	26.60–39.90	Long	Rugulate-perforate	1.99–2.66	3h, i
S. conspicua	IV	18.62–25.27	18.62–23.94	Medium-length	Reticulate	1.06–1.99	4b, c
S. europaea	V	18.62–21.28	17.29–21.28	Medium-length	Perforate, microreticulate	1.33–1.99	4e, f
S. repens	VI	18.62–26.60	19.95–26.60	Short	Microreticulate	1.33–1.99	4h, i
Discussion

The phylogenetic analyses based on both ITS (Fig. 1) and plastid trnL-F region (Fig. 2) are congruent with the hypothesis of Hedberg (1955) that *S. europaea* is sister to *S. repens* while *S. africana* is sister to *S. peregrina*. Hedberg (1955) hypothesized these relationships based on marked difference in seed and pollen size between the two species pairs, and later (Hedberg 1975) also added base chromosome numbers and crossability between the species as the characters supporting that phylogenetic scheme, which agrees with our analyses (Fig. 6). Species of *S. africana* and *S. peregrina* have the basic chromosome number *x* = 10 and larger pollen grains (Table 2; Fig. 6), while in *S. europaea*, *S. repens* and *S. conspicua* the basic chromosome number is *x* = 9. The pollen grains of these three species have smaller sizes as compared to pollen of *S. africana* and *S. peregrina* (Hedberg 1955; Juan et al. 1999; Table 2). Also, pollen grains of *S. europaea*, *S. repens* and *S. conspicua* all have perforate to reticulate exine ornamentation (Fig. 4) and also agree in their general shape and outline despite that *S. repens* is tetra- to octoploid compared to *S. europaea* based on known chromosome numbers (Hedberg 1975).

These results suggest that a long-distance dispersal event occurred across the Atlantic Ocean relatively recently, and that migration was unidirectional, from Europe to America. Thus, *Sibthorpsia* adds to the known examples of Mediterranean–American disjunctions (Raven 1973). Similar to most other examples, in that case, the phylogenetic relationships suggest a Mediterranean origin of the group. However, the *Sibthorpsia* case has notable differences as compared to other examples of similar disjunctions. A number of studies have demonstrated a Miocene origin of the Madran–Tethyan type of disjunctions between California and the Mediterranean region (e.g., Wen and Ickert-Bond 2009; Vargas et al. 2014) contributing to the evolution of the typical Mediterranean floras in both regions. Others have shown even more recent origins (within the last 500,000 years) of disjunctions between both regions in plants living in deserts (e.g., Coleman et al. 2003; Meyers and Liston 2008; Martín-Bravo et al. 2009). *Sibthorpsia europaea* and *S. repens*, however, do not occur in typical Mediterranean, at least seasonally arid environments but instead are mostly confined to moist and shady places of montane forests (Hedberg 1955). Additionally, they differ from other examples in their more widespread occurrence in the New World, from Mexico southward to Argentina. The timing of the disjunctions is uncertain since molecular dating in Sibthorpieae is problematic due to the scarcity of fossils in the predominantly herbaceous family, the nucleotide substitution rate heterogeneity among species, and the incongruence among the outgroup taxa (Albach et al. 2005).

The sister-group relationship previously found between *Sibthorpsia* and *Ellisiophyllum* (Albach et al. 2005) has been supported here with increased taxon sampling in *Sibthorpsia* and is also supported by such pollen characters as the type of apertures, exine sculpture, shape, outline, size, and exine thickness (Tables 2, 3; Figs. 3, 4, and 5). Whereas comparison with *Ellisiophyllum* may help in explaining evolutionary trends in phenotypic characters, it adds even more complexity to the biogeographic scenario in the tribe. *Ellisiophyllum* shares with *S. europaea*/*S. repens* the base chromosome number of *x* = 9 (Borgmann 1964) and with the former the white color of the flower. It shares, however, with *S. africana*/*S. peregrina* the larger pollen (Table 2) and also the larger seeds (Hong et al. 1998). Also, pollen grains of *Ellisiophyllum* are similar to those in *S. africana* and *S. peregrina* by the type of apertures, shape, and outline. The exine sculpture is rugulate-nanoechinate, nanoechinate in *Ellisiophyllum* (Fig. 3b, c), nanoechinate-perforate, nanoechinate in *S. peregrina* (Fig. 3f), and rugulate-perforate in *S. africana* (Fig. 3h, i). Biogeographically, the Himalayan-to-East Asian distribution area suggests either another case of long-distance dispersal or, in this case more likely, a Himalayan–Mediterranean vicariance event similar to the one seen in the related Veroniceae (Surina et al. 2014). Based on ancestral character estimation, the larger pollen and seeds seem to be the ancestral condition (Figs. 6 and 7) and suggest an ancient Tethyan distribution of early evolved (ancestral) Sibthorpieae. However, this character evolution needs to be considered in the light of character evolution in the family.

Pollen grains in taxa of Sibthorpieae are characterized by a perforate to reticulate exine sculpture that is common in most of species of the Russelieae–Cheloneae–Antirrhineae clades of Plantaginaceae (Tsybalyuk 2013, 2016; Tsybalyuk and Mosyakin 2013, 2014). Also, in *Ellisiophyllum pinatum* and *Sibthorpsia peregrina*, the types of exine sculpture were observed (such as rugulate-nanoechinate, nanoechinate, nanoechinate-perforate), which are more typical for the Veroniceae–Plantaginaceae clade of the family (Hong 1984; Fernández et al. 1997; Martínez-Ortega et al. 2000; Saedi-Mehrvarz and Zarrei 2006; Tsybalyuk 2008; Mosyakin and Tsybalyuk 2008; Sánchez-Agudo et al. 2009; Tsybalyuk et al. 2011; Tsybalyuk and Mosyakin 2013; Tsybalyuk 2016; Halbritter 2015, 2016; Halbritter and Svojtka 2016a, b). In species of *Sibthorpsia*, we observed a transition from the colpate type to the porate type; the latter is also typical for representatives of some taxa of *Veronica* L., and especially for *Littorella* Asch. and *Plantago* L., but this seems to be a parallel trend. Furthermore, pollen with a perforate and reticulate exine sculpture is hypothesized to be
Pollen and phylogenetics of Sibthorpieae

A plesiomorphic condition within Plantaginaceae. The porate pollen probably represents an apomorphy in this tribe. However, this requires a more robust phylogenetic hypothesis for relationships within the family.

We noted that there is not just a topological difference between DNA regions analyzed but also between our analysis and that of Albach et al. (2005) as well as between different types of analyses (preliminary parsimony and neighbor-joining analyses and maximum likelihood analyses). Based on our experience with the dataset, we especially assume that different alignments of highly variable regions of the ITS region are prone to cause different relationships. Plantaginaceae are congruently divided into two clades, Plantaginoideae and Gratioloideae, with Sibthorpieae being one of ten tribes in the former. The five tribes, Plantaginoideae, Veroniceae, Digitaliae, Globulariae and Hemiaphragmeae, consistently form clades in phylogenetic analyses (Albach et al. 2005; Figs. 1 and 2) but the relationship between this PVDGH-clade and the other tribes, Cheloneae, Antirrhineae, Callitricheae, Russelieae, and Sibthorpieae, differs considerably between analyses. In the analyses of ITS and the plastid rps16 intron of Albach et al. (2005), Sibthorpieae

Fig. 5 Pollen grains of Ellisophyllum and Sibthorpi (LM): a–d E. pinnatum, e–h S. peregrina, i–l S. africana, m–p S. conspicua, q–t S. europaea, u–x S. repens. a, b, e, f, i, j, m, n, q, r, u, v Equatorial view; c, d, g, h, k, l, o, p, s, t, w, x Polar view. Scale bars: a–x = 10 µm

Fig. 6 Overview of relationships among species of Sibthorpieae and major innovations written on the branches on which they occurred based on phylogenetic analysis of character evolution. Photos of Ellisophyllum pinnatum by Liu Jim Foo, Sibthorpiia africana by Miquel Capó Servera, Sibthorpiia peregrina by Tim Waters, Sibthorpiia europaea by Fotis Samaritakis, Sibthorpiia repens by Armando Villegas

Ellisiophyllum pinnatum

Sibthorpiia repens

reddish flowers
4-8X polyplid

eLLiptic-circular pollen
microreticulate exine
reduction in pollen size
reduction in colpi size
reduction in seed size

Sibthorpiia europaea

Sibthorpiia peregrina

white flowers
elliptic pollen
Colpi long

Sibthorpiia africana

Ellisiophyllum pinnatum

x=9
x=10
yellow flowers
are even sister to Gratioloideae but this was not confirmed here, although in ITS it is sister to all Plantaginoideae. Based on the uncertainty in relationships between tribes of Plantaginaceae and the large variation of pollen and seed characters in the family, we will await a more robust phylogenetic hypothesis for relationships in the family to conduct a family wide analysis of pollen and seed characters.

Conclusions

The present study provides the first characterization of pollen grains of *Ellisiophyllum*. Images using scanning electron microscopy (SEM) were obtained for the first time for *Ellisiophyllum*, *S. africana*, *S. conspicua*, and *S. repens*, which allowed more detailed descriptions of pollen characters in this group. We found variation in pollen grains morphology in Sibthorpieae, confirming its eurypalynous nature. Palynomorphological data support the placement of *Ellisiophyllum* and *Sibthorbia* in the well-defined tribe Sibthorpieae based on shared peculiarities such as shape, outline, size, exine thickness, exine sculpture, and the tricolpate type of pollen grains. The results of the current study expand the palynomorphological data for Sibthorpieae in particular and Plantaginaceae in general and will also contribute to future phylogenetic and taxonomic studies in this group.

Appendix

Ellisiophyllum pinnatum (Benth.) Makino – [China], 19 Jun 1997, *C.H. Li* [Li Cehong] 500 (MO).

Sibthorbia conspicua Diels – [Argentina] Prov. de Salta, Dpto. Capital. Filo de cerros between Castellanos and San Lorenzo, 6–10 km to the east of Quebrada S. Lorenzo, 2000–2400 m a. s. l., in shady, humid forest, *L. Novara*, *S. Bruno* and *V. Novara* 10143 (G).

Sibthorbia peregrina L. – [Portugal, Autonomous Region of Madeira] Pico das Pedras, 900 m a. s. l., 27 Aug 1992, *Walter Strasser* s.n. (G). [Ukraine, Ternopil Region], Culta Crem. [cultivated in Kremenots Botanical Garden by W.S.J.G. Besser] Herb. *W. Besser* s.n. (KW-BESS: Besser historical herbarium).

Sibthorbia repens (L.) Kuntze – [Mexico] Las Cruces 3350 m a. s. l., Temascaltepec, fir forest by the water, 9.21.32 [21 Aug 1932], *Hinton et al.* 1717 (MO). [Venezuela] Estado Merida: Paramo El Batallon [Páramo del Batallón], 2800–2900 m a. s. l., in humid places, 18 Nov 1976, *L. Bernardi*, A. *Charpin* and F. *Jacquemoud* 232582 (G).

Acknowledgements The authors express their gratitude to James C. Solomon, Head Curator of the Missouri Botanical Garden Herbarium (MO; St. Louis, Missouri, USA), Tatyana V. Shulkina, and other staff members of MO, for their cooperation and assistance in extracting pollen samples from herbarium specimens. We are grateful to Laurent Gautier and Nicolas Fumeaux (Conservatoire et Jardin botaniques, Genève, Switzerland) for providing pollen samples of *Sibthorbia* from herbarium specimens during the visit of Sergei Mosyakin to G in August 2017. We are further grateful to Wolfram Lobin (Botanical Garden Bonn, Germany), Joachim Kadereit (Univ. Mainz, Germany) and the DNA Bank of the Botanical Garden Berlin for provision of material and DNA. Kind help and cooperation of Dmytro O. Klymchuk, Head of the Center of Electron Microscopy, and Vitaliy I. Sapsay, SEM operator (M.G. Khodolny Institute of Botany, National Academy of Sciences of Ukraine), are greatly appreciated. Support in sequencing by Marion Kever (Johannes Gutenberg-University Mainz, Germany) is thankfully acknowledged. The authors are grateful to anonymous reviewers for their detailed review of the manuscript, valuable comments, and suggestions, and to the subject editor for editorial improvements of the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. Funding was provided by the Project of the M.G. Khodolny Institute of Botany No. III-77-16.443 (state registration No. 0116U002031) supported by the National Academy of Sciences of Ukraine: Micromorphological, phylogenetic and palaeobotanical analysis of critical groups of asterids in the flora of Ukraine (taxa of orders Dipsacales and Lamiales).

Availability of data and material All DNA sequence data are freely available from GenBank after publication. All other data are included in the manuscript.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Albach DC, Meudt HM, Oxelman B (2005) Piecing together the “new” Plantaginaceae. Amer J Bot 92:297–315. https://doi.org/10.3732/ajb.92.2.297

Bentham G (1835) Scrophulariaceae Indicae: a synopsis of the East Indian Scrophulariaceae contained in the collections presented by the East India Company to the Linnaean Society of London, and in those of Mr. Royle and others; with some general observations on the affinities and sub-divisions of the order. J. Ridgway Sons, London. https://doi.org/10.5962/bhl.title.50876

Bentham G (1846) Scrophulariaceae. In: de Candolle AP (ed) Prodrumum Systematis Naturalis Regni Vegetabilis, vol. 10. Victor Masson, Paris, pp 488–491

Bezusko LG, Tsymbalyuk ZM (2011) Palynotheca of the M. G. Kholodny Institute of Botany, NAS of Ukraine. In: Shiyan NM (ed) Herbaria of Ukraine. Index Herbariorum Ucrainicum. Alter-press, Kyiv, pp 138–141 (in Ukrainian)

Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27:1180–1186

Borgmann E (1964) Anteil der Polyploiden in der Flora des Bismarckgebirges von Ostneuguinea. Z Bot 52:118–117

Brand A (1913) Hydrophyllaceae. In: Engler A (ed) Das Pflanzenreich: regni vegetabilis conspectus, vol. 4, Heft 59, fam. 251. Wilhelm Engelmann, Leipzig, pp 1–210

Coleman M, Liston A, Kadereit JW, Abbott RJ (2003) Repeat intercontinental dispersal and Pleistocene speciation in disjunct Mediterranean and desert Senecio (Asteraceae). Amer J Bot 90:1446–1454. https://doi.org/10.3732/ajb.90.10.1446

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Meth 9:772. https://doi.org/10.1038/nmeth.2109

Diaz-Miranda D (1988) Genera of Scrophulariaceae in the paramos of the Venezuelan Andes. Brittonia 40:235–239

Erdtman G (1952) Pollen morphology and plant taxonomy. Angio-sperms. Almquist & Wiksell, Stockholm

Fernández I, Juan R, Pastor J (1997) Morfología polínica de Veronica L. (Scrophulariaceae) en el suroeste de España. Acta Bot Malac 22:65–72

Fischer E (2004) Scrophulariaceae. In: Kubitza K (ed) The families and genera of vascular plants, vol. 7, Springer, Berlin, pp 333–432

Halbritter H (2015) Veronica praecox. In: PalDat—a palynological database. Available at: https://www.paldat.org/pub/Veronica_praecox/300215. Accessed 8 July 2020

Halbritter H (2016) Veronica triloba. In: PalDat—a palynological database. Available at: https://www.paldat.org/pub/Veronica_triloba/301573. Accessed 8 July 2020

Halbritter H, Svojtoka M (2016a) Veronica hederifolia. In: PalDat—a palynological database. Available at: https://www.paldat.org/pub/Veronica_hederifolia/302246. Accessed 8 July 2020

Halbritter H, Svojtoka N (2016b) Veronica sublobata. In: PalDat—a palynological database. Available at: https://www.paldat.org/pub/Veronica_sublobata/301564. Accessed 8 July 2020

Hong DY (1984) Taxonomy and evolution of the Veronicaceae (Scrophulariaceae) with special reference to palynology. Opera Bot 75:1–60

Hong DY, Yang HB, Jin CL, Fischer MA, Holmgren NH, Mill RR (1998) Scrophulariaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol. 18. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, pp 1–212

Hooker J (1885) The flora of British India, vol. 4. L. Reeve & Co., London

Juan R, Fernández I, Pastor J (1999) Estudio de microcaracteres en frutos, semillas y polen de Sibthorpa europaea L. (Scrophulariaceae). Lagascalia 21:53–60

Mabberley DJ (1997) The plant-book: a portable dictionary of the vascular plants, 2nd edn. Cambridge University Press, Cambridge

Mabberley DJ (2017) Mabberley’s plant-book: a portable dictionary of the vascular plants, their classification and uses, 4th edn. Cambridge University Press, Cambridge

Martín-Bravo S, Vargas P, Luceño M (2009) Is Oligomeris (Resedaceae) indigenous to North America? Molecular evidence for a natural colonization from the Old World. Amer J Bot 96:507–518. https://doi.org/10.3732/ajb.0800216

Martínez-Ortega MM, Sánchez JS, Rico E (2000) Palynological study of Veronica sect. Veronica and sect. Veronicastrum (Scrophulariaceae) and its taxonomic significance. Grana 39:21–31. https://doi.org/10.1080/01731301.2000.10800614

Maximowicz CJ (1871) Diagnoses breves plantarum novarum Japoniae in Russian. Shanghai Medical and Scientific Works of the XII All-Russian palynological conference (29 September–4 October 2008, St. Petersburg), vol. 1. VNIGRI, St. Petersburg, pp 9–108. https://doi.org/10.1086/589699

Meudt HM (2006) Monograph of Ourisia (Plantaginaceae). Syst Bot Monogr 77:1–188

Mosyakin SL, Tsymbalyuk ZM (2008) Peculiarities of pollen grains of genus Veronica L. section Pseudolysimachium W.D.J. Koch. In: Palynology: stratigraphy and geocology. Collection of scientific works of the XII All-Russian palynological conference (29 September–4 October 2008, St. Petersburg), vol. 1. VNIGRI, St. Petersburg, pp 92–98 (in Russian)

Mosyakin SL, Tsymbalyuk ZM (2015a) Pollen morphology of the southern African tribe Teedieae, an early-branching lineage of crown Scrophulariaceae. Willdenowia 45:65–75. https://doi.org/10.1080/00071419.1975.10796615

Mosyakin SL, Tsymbalyuk ZM (2015b) Pollen morphology of the tribes Aptsionaceae and Myoporaceae supports the phylogenetic pattern in early-branching Scrophulariaceae revealed by molecular studies. Willdenowia 45:209–222. https://doi.org/10.3732/wi.45.45207
Pollen and phylogenetics of Sibthorpieae

Olmstead R (with the help of: Albach D, Beardsley P, Bedigian D
Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the
Müller KF, Quandt D, Müller J (2010) Phylo. Published by the authors
RStudio Team (2021) RStudio: integrated development environment
Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glos-
Peter A (1897) Hydrophyllaceae. In: Engler A (ed) Die natürlichen
R Core Team (2020) R: a language and environment for statistical com-
Tank DC, Beardsley PM, Kelchner SA, Olmstead RG (2006) Review of the systematics of Scrophulariaceae s. l. and their current disposition. Austral Syst Bot 19:289–307. https://doi.org/10.1071/SB05009
Thiers B (2008–onward) Index Herbariorum. A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at: http://sweetgum.nybg.org/scien ce/ih/. Accessed 8 July 2020
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl Acids Res 44:W232–W235

Tsyban'yl'uk ZM (2017) Pollen morphology of the tribe Hemimeridae: possible evidence of ancestral pollen types and parallel evolution in the basalmost clade of Scrophulariaceae s. str. Willdenowia 47:15–27. https://doi.org/10.3372/wi.47.47102 Müeller KF, Quandt D, Müller J (2010) Phylo. Published by the authors
Olmstead R (with the help of: Albach D, Beardsley P, Bedigian D et al.) (2016) A synoptical classification of the Lamiales. Version 2.6.2 [updated 12 April, 2016]. Available at: http://depts.washi ngton.edu/phylo/Classification.pdf. Accessed 3 Oct 2018
Peter A (1897) Hydrophyllaceae. In: Engler A (ed) Die natürlichen Pflan zenfamilien, vol. 4, (3a) [IV, Teil. 3. Abteilung a], Wilhelm Engelmann, Leipzig, pp 54–71
Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81. https://doi.org/10.1016/j.revpalbo.2006.06.008
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
RStudio Team (2021) RStudio: integrated development environment for R. RStudio, PBC, Boston. http://www.rstudio.com/
Raven PH (1973) The evolution of mediterranean floras. In: di Castri F, Mooney HA (eds) Mediterranean type ecosystems: origin and structure [Ecological Studies, vol. 7]. Springer, New York, Berlin, Heidelberg, pp 213–224
Reve JLI (2012) An outline of a classification scheme for extant flowering plants. Phytoneuron 2012–37:1–221
Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Meth Ecol Evol 3:217–223
Rouy G (1909) Conspectus des tribus et des genres de la famille des Scrophulariaceae. Rev Gén Bot 21:194–207
Saeidi-Mehrvarz S, Zarrei M (2006) Pollen morphology of some species of the genus Veronica (Scrophulariaceae) in Iran. Wulfenia 13:1–9
Sánchez-Agudo JÁ, Rico E, Sánchez JS, Martínez-Ortega MM (2009) Pollen morphology in the genus Veronica L. (Plantaginaceae) and its systematic significance. Grana 48:239–257
Surina B, Pfanzelt S, Einzmann HJR, Albach DC (2014) Bridging the Alps and the Middle East: evolution, phylogeny and systematics of the genus Wulfenia (Plantaginaceae). Taxon 63:843–858
Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109. https://doi.org/10.1007/BF00037152
Takhtajan AL (1997) Diversity and classification of flowering plants. Columbia University Press, New York
Tank DC, Beardsley PM, Kelchner SA, Olmstead RG (2006) Review of the systematics of Scrophulariaceae s. l. and their current disposition. Austral Syst Bot 19:289–307. https://doi.org/10.1071/SB05009
Thiers B (2008–onward) Index Herbariorum. A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at: http://sweetgum.nybg.org/science/ih/. Accessed 8 July 2020
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucl Acids Res 44:W232–W235
Tsyban'yl'uk ZM (2008) Pollen morphology of species of Veronica L. (Scrophulariaceae) sect. Pseudolysimachium W.D.J. Koch in the flora of Ukraine. Ukrain Bot J 65:823–835 (in Ukrainian)
Tsyban'yl'uk ZM (2013) Comparative palynomorphological investigation of the representatives of the tribe Antirrhineae Dumort. (Veronicaeaeae Durande). Mod Phytomorphol 3:189–194 (in Russian)
Tsyban'yl'uk ZM (2016) Palynomorphological peculiarities of representatives of the order Lamiales s. I: phylogenetic significance and main trends of evolution. Dr. Sci. Thesis, M.G. Kholodny Institute of Botany NAS of Ukraine, Kyiv. https://doi.org/10.13140/RG.2.2.17133.79843 (in Ukrainian)
Tsyban'yl'uk ZM, Mosyakin SL (2013) Atlas of pollen grains of representatives of Plantaginaceae and Scrophulariaceae. Nash Format, Kyiv. https://doi.org/10.13140/RG.2.2.16968.11527 (in Ukrainian)
Tsyban'yl'uk ZM, Mosyakin SL (2014) Evolutionary-palynomorphological analysis of some tribes of the family Plantaginaceae. Ukrain Bot J 71:442–448. https://doi.org/10.15407/ukrbotj71.04.442 (in Ukrainian)
Tsyban'yl'uk ZM, Mosyakin SL, Severova EE (2011) Palynomorphological peculiarities of the genus Veronica L. sect. Veronicastrum, Serpyllifoliae, Peregrinae, Subracemoseae, Alsideae, Polcilla, Cochlidiosperma. Byull Moskovsk Obsch Isp Prir, Otd Biol 116:34–43 (in Russian)
Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kubera WH, Li DZ, Marhold K, May TW, McNeill J, Monaco AM, Prado J, Price MJ, Smith GF (eds) (2018) International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017 [Regnum Vegetabile, vol. 159]. Koeltz Botanical Books, Glashütten. https://doi.org/10.12705/Code.2018
Vargas P, Valente LM, Blanco-Pastor JL, Liberal I, Guzmán B, Cano E, Forrest A, Fernández-Mazuecos M (2014) Testing the biogeographical congruence of palaeofloras using molecular phylogenetics: snapdragons and the Madrean-Tethyan flora. J Biogeogr 41:932–943. https://doi.org/10.1111/jbi.12253
White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: A guide to methods and applications, vol. 3. Academic Press, San Diego, pp 15–22
Wen J, Ickert-Bond SM (2009) Evolution of the Madrean-Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. J Syst Evol 47:331–348. https://doi.org/10.1111/j.1759-6831.2009.00054.x
Wettstein R (1891–1893) Scrophulariaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol. 4(3b) [IV, Teil. 3. Abteilung b], Wilhelm Engelmann, Leipzig, pp 39–107
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.