IDENTITY CONVERSION FOR EMOTIONAL SPEAKERS: A STUDY FOR DISENTANGLEMENT OF EMOTION STYLE AND SPEAKER IDENTITY

Zongyang Du1,2, Berrak Sisman1, Kun Zhou2, Haizhou Li2

1Singapore University of Technology and Design, Singapore
2National University of Singapore, Singapore

ABSTRACT

Expressive voice conversion performs identity conversion for emotional speakers by jointly converting speaker identity and speaker-dependent emotion style. Due to the hierarchical structure of speech emotion, it is challenging to disentangle the speaker-dependent emotional style for expressive voice conversion. Motivated by the recent success on speaker disentanglement with variational autoencoder (VAE), we propose an expressive voice conversion framework which can effectively disentangle linguistic content, speaker identity, pitch, and emotional style information. We study the use of emotion encoder to model emotional style explicitly, and introduce mutual information (MI) losses to reduce the irrelevant information from the disentangled emotion representations. At run-time, our proposed framework can convert both speaker identity and speaker-dependent emotional style without the need for parallel data. Experimental results validate the effectiveness of our proposed framework in both objective and subjective evaluations.

\textbf{Index Terms}— Expressive voice conversion, speaker identity, speaker-dependent emotional style, disentanglement, VQMIVC

1. INTRODUCTION

Traditional voice conversion (VC) aims to convert the speaker identity while preserving the linguistic content \cite{1}. Earlier studies include Gaussian mixture model (GMM) \cite{2}, exemplar methods \cite{3} and sparse representation \cite{4}. Deep learning methods, such as deep neural network (DNN) \cite{5} and recurrent neural network (RNN) \cite{6} have significantly improved the performance. However, these frameworks require parallel training data, which limits their scope of applications. To enable non-parallel training, domain translation models such as CycleGAN \cite{7} or StarGAN \cite{8} are proposed. We note that these models mostly rely on the cycle-consistency mechanism and introduce a strict pixel-level constraint \cite{9}. As a result, they carry forward the source speech style into the converted voices, which is not suitable for expressive voice conversion.

Another way of non-parallel VC is to learn the disentangled speech representations with VAE \cite{10}. VAE allows us to separately manipulate different disentangled features to achieve speaker identity conversion \cite{11,13} or emotion conversion \cite{14,16}. Other techniques to obtain a better disentangled representation include information bottleneck \cite{17,18}, instance normalization \cite{19,20}, and vector quantization (VQ) \cite{21,22}. Recent studies, such as vector quantization and mutual information-based voice conversion (VQMIVC) \cite{23}, show the effectiveness of mutual information (MI) loss in reducing the dependencies between different representations, which inspires this study.

A related technique is emotional voice conversion, which aims to convert the emotional state of the speaker while keeping the speaker identity unchanged \cite{24}. We note that one expresses emotions in an unique way. In other words, the emotional style of an utterance is speaker-dependent \cite{25,26}. Unlike emotional voice conversion, expressive voice conversion seeks to jointly convert speaker identity and speaker-dependent emotional style for emotional speakers \cite{27}. As speaker-dependent emotional style is an interplay among various speech elements \cite{14,28}, such as speech content, speaker identity, speaking style and pitch, it is advantageous to disentangle the elements for effective expressive voice conversion. For example, such disentanglement allows us to carry over the speech content from the source to the target, but project the target speaker identity and speaker-dependent speaking style into the target speech.

Our main contributions include: 1) we study the disentanglement of speaker identity and speaker-dependent emotional style for expressive voice conversion; 2) we introduce a style encoder to explicitly model emotional speech style across different speakers, and further employ MI loss between speaker and emotional style embeddings to reduce the inter-dependency of speaker-dependent features; 3) considering the pitch variants over different speakers, we study to use pitch information as a frame-level condition to achieve a better disentanglement of different speech representations; 4) our proposed framework can effectively convert both speaker identity and speaker-dependent emotional style with multi-speaker emotional speech data at run-time.

The rest of this paper is organized as follows: In Section
2. RELATED WORK

The prosodic style and speaker identity are two important components of human speech. In traditional VC, the focus is on either the conversion of prosodic style or the speaker identity [1]. In expressive voice conversion, we are converting both speaker identity and speaker-dependent emotional style [27]. In this paper, we study a novel expressive voice conversion framework that performs the conversion by effectively disentangling between speaker identity and speaker-dependent emotional style.

Disentanglement is one of the common techniques in representation learning. VQMIVC [23] is an unsupervised speaker disentanglement voice conversion framework based on VAE [10]. VQMIVC aims to achieve a better disentanglement of speech content, speaker and pitch information. VQMIVC consists of a content encoder, a speaker encoder, a pitch extractor and a decoder. During the training, the speaker encoder learns to encode the input features into a fixed-length speaker representation. The content encoder learns the linguistic information from the speech, and produces a frame-level content representation. The pitch extractor extracts fundamental frequency (F0) to represent the intonation variations. The decoder reconstructs the input features through a combination of source F0 contour, content and speaker representations. MI losses [29–31] are further applied to reduce the inter-dependencies of these internal representations. At run-time, VQMIVC is able to disentangle the input speech into speech content, speaker and pitch information.

Motivated by the success of VQMIVC in speaker disentanglement, we extend the idea and propose a framework that can effectively disentangle the speaker identity and the speaker-dependent emotional style, which will be further introduced in Section 3.

3. PROPOSED FRAMEWORK

The proposed expressive voice conversion framework consists of a speaker encoder, a style encoder, a content encoder and a decoder. During the training, our framework effectively learns the disentanglement of speaker identity, emotional style, content and pitch information. At run-time, it allows us to convert both speaker identity and emotional style by manipulating the disentangled speech representations.

3.1. Training Phase

Given an utterance, we first extract Mel-spectrograms $X = \{x_1, x_2, ... x_T\}$ and fundamental frequency F_0 for T frames. The style encoder E^s learns to encode the Mel-spectrograms into a fixed representation $Z^s = E^s(X)$. The Z^s represents the emotional style in the utterance level. The content encoder E^c extract content $Z^c = \{z^c_1, z^c_2, ..., z^c_{T/2}\}$ from X. The speaker encoder E^p learns to embed the Mel-spectrograms into a fixed-length speaker embedding: $Z^p = E^p(X)$. To represent the intonation, F_0 is extracted from the speech waveform and log normalized into zero mean and unit variance. Since the F_0 varies over different speakers, we take the log normalized F_0 as the pitch embedding Z^f, and study it separately.

We note that the speaker embedding Z^p and the emotional style embedding Z^s represent the speaker identity and the emotional style information at an utterance level. To align with the pitch embedding Z^f, we up-sample speaker embedding Z^p, the emotional style embedding Z^s, and the content embedding Z^c to T frames. The decoder D aims to reconstruct acoustic features X from pitch embedding Z^f and the upsampled speech embedding. A reconstruction loss is calculated between the reconstructed Mel-spectrogram and the ground-truth.

To achieve a better disentanglement, we incorporate mutual information minimization to the training process. The correlation among different speech representations can be de-
creased by minimizing the MI loss as follows:

\[L_{MI} = \lambda_{sp} \hat{I}(Z^s, Z^p) + \lambda_{sc} \hat{I}(Z^s, Z^c) \]
\[+ \lambda_{sf} \hat{I}(Z^s, Z^f) + \lambda_{pc} \hat{I}(Z^p, Z^c) \]
\[+ \lambda_{pf} \hat{I}(Z^p, Z^f) + \lambda_{cf} \hat{I}(Z^c, Z^f) \]

where \(\hat{I} \) represents the unbiased estimation for CLUB as described in [23], and \(\lambda_{sp}, \lambda_{sc}, \lambda_{sf}, \lambda_{pc}, \lambda_{pf}, \lambda_{cf} \) represent the trade-off factors between different speech representations.

During the training, the proposed framework effectively learns the disentanglement between content, pitch, speaker identity and emotional style, as shown in Fig. 1. Through the MI losses, the framework learns to reduce the mutual information shared between different speech representations.

3.2. Run-time Conversion

At run-time, the content encoder generates the source content embedding from the source utterance. Given a reference emotional utterance from the target speaker, we use the speaker encoder and style encoder to generate speaker and emotional style embedding respectively. We expect that the emotional style embedding can capture the speaker-dependent emotional style that is related to the target speaker. We then convert the F0 with the mean and standard variance calculated from the validation set of target speaker. The decoder learns to generate the converted Mel-spectrograms with the source content embedding, the speaker and emotional style embedding from the reference, and the converted F0. The speech waveform is reconstructed with Parallel WaveGAN vocoder [32].

3.3. Discussion

To validate the effectiveness of our proposed framework on representation learning, we visualize the generated speaker embedding with T-SNE [33] in Fig. 2. We observe that each speaker forms a well-differentiated cluster for each emotion. These results suggest that the proposed framework can generate effective speaker embedding, which is crucial for expressive voice conversion.

4. EXPERIMENTS

We conduct both objective and subjective evaluations to assess the performance of our proposed framework in terms of the speaker identity and emotional style conversion. We use ESD [24], a multi-speaker emotional speech database with five different emotions, that are neutral, happy, sad, angry and surprise. We choose 8 different speakers (4 male and 4 female) and all 5 emotions to conduct all the experiments. For each speaker and each emotion, we follow the data partition described in ESD, and use 300 utterances for training, 30 utterances for validation, and 20 utterances for evaluation. As a comparative study, we adopt VQMVC [23] as our baseline.

4.1. Experimental Setup

All the speech data is sampled at 16 kHz and saved in 16 bits. We extract 80-dimensional Mel-spectrograms and one-dimensional F0 as the acoustic features. At run-time, F0 is converted through the logarithm Gaussian (LG) normalized transformation [2]. The style encoder consists of a 6-layer stack of 2D convolutions with batch normalization (BN) and ReLu activation, a GRU layer, and two fully connected (FC) layers followed by ReLU. The content encoder contains a CNN layer with the stride of 2, 512-dimensional LC layer, a codebook with 512 64-dimensional learnable vectors and a 256-dimensional RNN layer. The speaker encoder consists of 8 ConvBank layers, 12 CNN layers and 4 linear layers. The decoder has an LSTM layer with 1024 nodes, 3 CNN layers, 2 1024-dimensional LSTM layers and an 80-dimensional linear layer. The whole framework is optimized with Adam with 15-epoch warm-up. We set the learning rate to 1e-3, and half it every 100 epochs. The total number of epochs is 500 with a batch size of 128. We use a publicly available version\(^1\) of Parallel WaveGAN as the vocoder, and train it with ESD dataset [24].

4.2. Objective Evaluation

We calculate Mel-cepstral distortion (MCD) to measure the spectral distortion in Table 1. We observe that our proposed framework...
Table 1. The objective evaluation results with intra-gender and inter-gender settings.

	MCD [dB]	Speaker Verification	Prosody Evaluation						
	VQMIVC [23]	Proposed	VQMIVC [23]	Proposed	Target	VQMIVC [23]	Proposed	VQMIVC [23]	Proposed
Intra-gender									
Neutral	5.29	5.29	0.88	0.91	0.95	36.04	36.00	121.19	120.77
Happy	6.24	6.25	0.85	0.87	0.96	42.43	39.38	111.95	106.68
Surprise	6.64	6.63	0.81	0.85	0.96	60.84	59.91	109.77	106.00
Angry	6.78	6.74	0.84	0.87	0.94	46.48	44.22	100.35	97.57
Inter-gender									
Neutral	5.82	5.79	0.92	0.91	0.96	36.31	34.69	103.42	102.53
Happy	6.28	6.08	0.86	0.85	0.94	51.01	50.28	133.58	130.16
Sad	5.62	5.58	0.85	0.89	0.94	43.39	40.81	118.09	116.23
Surprise	6.48	6.33	0.81	0.86	0.94	47.83	43.51	161.26	160.72
Angry	6.98	6.77	0.91	0.92	0.94	54.36	49.66	115.05	110.71

Table 2. MOS scores for speech quality by 14 listeners.

Framework	MOS
VQMIVC [23]	3.45±0.26
Proposed Framework	3.54±0.27

framework consistently outperforms the baseline for inter-gender setting, and still achieves remarkable performance for intra-gender setting.

We then calculate F0-RMSE and F0-Distance to evaluate the prosody conversion performance. From Table 1, we observe that our proposed framework always achieves a better performance than the baseline for all the emotions. This observation validates the effectiveness of our proposed framework in terms of the prosody conversion.

We further conduct speaker verification experiments with a pre-trained speaker verification model [2]. We report the speaker verification results for the target, VQMIVC, and our proposed framework in Table 1. We observe that our proposed framework consistently achieves the best verification results for intra-gender setting, which is encouraging. For inter-gender setting, we note that our proposed framework still can achieve comparable results with the baseline. These results indicate the superior performance of our proposed framework in terms of the speaker identity conversion.

4.3. Subjective Evaluation

We conduct 3 listening experiments to assess the speech quality, speaker similarity and emotional style similarity. 14 subjects participate in all the experiments, and each of them listens to 90 converted utterances in total.

We first report the mean opinion scores (MOS) in Table 2 where a higher MOS score indicates a better speech quality. As shown in Table 2, our proposed framework outperforms the baseline in terms of speech quality.

We then conduct an ABX preference test to evaluate the speaker similarity, where all the listeners are asked to listen to the reference and the converted utterances respectively, and choose the one that sounds closer to the reference in terms of the speaker identity. As shown in Fig. 3, our proposed frame-

Fig. 3. ABX preference results for speaker similarity with 95% confidence interval.

work achieves a better result than the baseline. This observation validates the effectiveness of our proposed framework on speaker identity conversion.

We further conduct another ABX preference test to evaluate the emotional style similarity. From Fig. 4, we observe that our proposed framework significantly outperforms the baseline framework in terms of emotional style similarity. This suggests that our proposed framework achieves a better performance on converting the speaker-dependent emotional style, which further validates our idea on emotional style disentanglement.

Fig. 4. ABX preference results for emotional style similarity with 95% confidence interval.

5. CONCLUSION

In this paper, we study the disentanglement of speaker identity and emotional speech style for expressive voice conversion. We propose a framework based on VQMIVC to jointly convert the speaker identity and speaker-dependent emotional style. We introduce a style encoder to explicitly model the emotional style, and use MI losses to eliminate the shared information between different speech representations. Experimental results show that our proposed framework outperforms the baseline. Future directions include the study of duration modeling for expressive voice conversion.

[2]https://github.com/resemble-ai/Resemblyzer
6. REFERENCES

[1] Berrak Sisman, Junichi Yamagishi, Simon King, and Haizhou Li, “An overview of voice conversion and its challenges: From statistical modeling to deep learning,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020.

[2] Tomoki Toda, Alan W Black, and Keiichi Tokuda, “Voice conversion based on maximum-likelihood estimation of spectral parameter trajectory,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2222–2235, 2007.

[3] Ryoochi Takashima, Tetsuya Takiguchi, and Yasuo Ariki, “Exemplar-based voice conversion in noisy environment,” in 2012 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2012, pp. 313–317.

[4] Berrak Sisman, Mingyang Zhang, and Haizhou Li, “Group sparse representation with wavenet vocoder adaptation for spectrum and prosody conversion,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 6, pp. 1085–1097, 2019.

[5] Feng-Long Xie, Frank K Soong, and Haifeng Li, “A kl divergence and dnn-based approach to voice conversion without parallel training sentences,” in Interspeech, 2016, pp. 287–291.

[6] Toru Nakashika, Tetsuya Takiguchi, and Yasuo Ariki, “High-order sequence modeling using speaker-dependent recurrent temporal restricted boltzmann machines for voice conversion,” in Fifteenth annual conference of the international speech communication association, 2014.

[7] Takuhiro Kaneko and Hirokazu Kameoka, “Cyclegan-vc: Non-parallel voice conversion using cycle-consistent adversarial networks,” in 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018, pp. 2100–2104.

[8] Hirokazu Kameoka, Takuhiro Kaneko, Kou Tanaka, and Nobukatsu Hojo, “Stargan-vc: Non-parallel many-to-many voice conversion using star generative adversarial networks,” in 2018 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2018, pp. 266–273.

[9] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2223–2232.

[10] Diederek P Kingma and Max Welling, “Auto-encoding variational bayes,” stat, vol. 1050, pp. 1, 2014.

[11] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and Hsin-Min Wang, “Voice conversion from non-paralle Corporation using variational auto-encoder,” in 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2016, pp. 1–6.

[12] Chin-Cheng Hsu, Hsin-Te Hwang, Yi-Chiao Wu, Yu Tsao, and Hsin-Min Wang, “Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks,” arXiv preprint arXiv:1704.00849, 2017.

[13] Wen-Chin Huang, Hsin-Te Hwang, Yu-Huai Peng, Yu Tsao, and Hsin-Min Wang, “Voice conversion based on cross-domain features using variational auto-encoders,” in 2018 11th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2018, pp. 51–55.

[14] Kun Zhou, Berrak Sisman, Mingyang Zhang, and Haizhou Li, “Converting anyone’s emotion: Towards speaker-independent emotional voice conversion,” Proc. Interspeech 2020, pp. 3416–3420, 2020.

[15] Kun Zhou, Berrak Sisman, and Haizhou Li, “Yav-gan for disentanglement and reconstruction of emotional elements in speech,” in 2021 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2021, pp. 415–422.

[16] Kun Zhou, Berrak Sisman, Rui Liu, and Haizhou Li, “Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 920–924.

[17] Kaizhi Qian, Yang Zhang, Shiyu Chang, Xuesong Yang, and Mark Hasegawa-Johnson, “Autovc: Zero-shot voice style transfer with only autoencoder loss,” in International Conference on Machine Learning. PMLR, 2019, pp. 5210–5219.

[18] Kaizhi Qian, Yang Zhang, Shiyu Chang, Mark Hasegawa-Johnson, and David Cox, “Unsupervised speech decomposition via triple information bottleneck,” in International Conference on Machine Learning. PMLR, 2020, pp. 7836–7846.

[19] Ju-chieh Chou, Cheng-chieh Yeh, and Hung-yi Lee, “One-shot voice conversion by separating speaker and content representations with instance normalization,” arXiv preprint arXiv:1904.05742, 2019.

[20] Yen-Hao Chen, Da-Yi Wu, Tsung-Han Wu, and Hung-yi Lee, “Gain-vc: A one-shot voice conversion using activation guidance and adaptive instance normalization,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 5954–5958.

[21] Da-Yi Wu, Yun-Hao Chen, and Hung-Yi Lee, “Vqvc+: One-shot voice conversion by vector quantization and u-net architecture,” arXiv preprint arXiv:2006.04154, 2020.

[22] Andros Tjandra, Berrak Sisman, Mingyang Zhang, Sakriani Sakti, Haizhou Li, and Satoshi Nakamura, “Vqvae unsupervised unit discovery and multi-scale code2spec inverter for zerospeech challenge 2019,” arXiv preprint arXiv:1905.11449, 2019.

[23] Disong Wang, Liqun Deng, Yu Ting Yeung, Xiao Chen, Xunying Liu, and Helen Meng, “Vqmvct: Vector quantization and mutual information-based unsupervised speech representation disentanglement for one-shot voice conversion,” arXiv preprint arXiv:2106.10132, 2021.

[24] Kun Zhou, Berrak Sisman, Rui Liu, and Haizhou Li, “Emotional voice conversion: Theory, databases and esd,” arXiv preprint arXiv:2105.14762, 2021.

[25] Vidhyasaharan Sethu, Eliathamby Ambikairajah, and Julien Epps, “Phonetic and speaker variations in automatic emotion classification,” in Ninth Annual Conference of the International Speech Communication Association, 2008.

[26] Jan Rybka and Artur Janicki, “Comparison of speaker dependent and speaker independent emotion recognition,” International Journal of Applied Mathematics and Computer Science, vol. 23, no. 4, pp. 797–808, 2013.

[27] Zongyang Du, Berrak Sisman, Kun Zhou, and Haizhou Li, “Expressive voice conversion: A joint framework for speaker identity and emotional style transfer,” arXiv preprint arXiv:2107.03748, 2021.

[28] Björn Schuller and Anton Batliner, Computational paralinguistics: emotion, affect and personality in speech and language processing, John Wiley & Sons, 2013.

[29] Mirco Ravaneli and Yoshua Bengio, “Learning speaker representations with mutual information,” arXiv preprint arXiv:1812.00271, 2018.

[30] Ting-Yao Hu, Ashish Shrivastava, Oncel Tuzel, and Chandra Dhiri, “Unsupervised style and content separation by minimizing mutual information for speech synthesis,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 3267–3271.

[31] Yoo-hwan Kwon, Soo-Whan Chung, and Hong-Goo Kang, “Intra-class variation reduction of speaker representation in disentanglement framework,” arXiv preprint arXiv:2008.01348, 2020.

[32] Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim, “Parallel wave-gan: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 6199–6203.

[33] Laurens Van der Maaten and Geoffrey Hinton, “Visualizing data using t-sne,” Journal of machine learning research, vol. 9, no. 11, 2008.