Onchiodoros sawaii (Ixodida: Argasidae) Larvae Collected from Hydrobates monorhis on Sogugul and Gaerin Islands, Jeollanam-do (Province), Republic of Korea

Heung-Chul Kim1**, Chang-Yong Choi2,*, Young-Soo Kwon3, Seok-Min Yun3, Won-Ja Lee3, Sung-Tae Chong1, Richard G. Robbins4, Terry A. Klein6

15th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205-5247, USA; 2Migratory Bird Research Center, Korea National Park Research Institute, Korea National Park Service, Shinan, Jeollanam-do (Province) 59863, Korea; 3Division of Arboviruses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Diseases Control and Prevention, Cheongju, Chungcheongbuk-do (Province) 28159, Korea; 4Armed Forces Pest Management Board, Office of the Deputy Under Secretary of Defense for Installations and Environment, Building 172, U.S. Army Garrison Forest Glen, Silver Spring, MD 20910-1230, USA; 5Public Health Command District-Korea (Provisional), 65th Medical Brigade, Unit 15281, APO AP 96205-5281, USA; 6Current Address: Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA

Abstract: The 65th Medical Brigade and Public Health Command District-Korea, in collaboration with the Migratory Bird Research Center, National Park Research Institute, conducted migratory bird tick surveillance at Sogugul and Gaerin Islands (small rocky bird nesting sites), Jeollanam-do (Province), Republic of Korea (ROK), on 30 July and 1 August 2009. Breeding seabirds captured by hands in their nesting burrows were banded, identified to species, and carefully examined for ticks during the nesting season. A total of 9 Onchiodoros sawaii larvae were removed from 4 adult Hydrobates monorhis (Swinhoe’s storm petrel). The identification of the larvae of O. sawaii collected from migratory seabirds were molecularly confirmed using mitochondrial 16S rDNA primer sets.

Key words: Argasidae, Onchiodoros sawaii, Hydrobates monorhis, Republic of Korea

Tick-borne disease surveillance has come to the forefront due to the reemergence of zoonotic tick-borne pathogens that pose worldwide medical and veterinary health risks to wild and domestic animals and birds and incidentally to humans over the past few decades [1,2]. The role of migratory seabirds in the transportation of exotic tick species to their summer breeding and winter feeding grounds is poorly documented, due to their isolated breeding sites on remote islands that are often protected by governments. These exotic ticks may become established along the migratory routes that lead to their introduction, including their associated pathogens, to bird sanctuaries as well as developed areas. In addition, tick-borne disease surveillance, including their identification, has been little studied.

Soft ticks, Family Argasidae, are commonly associated with remote rocky nesting grounds of seabirds and for that reason have not been thoroughly investigated [3,4]. The genus Onchiodoros consists of the largest number of described species (112 of 193) in the Family Argasidae [5] and is commonly associated with various sea bird hosts throughout the New and Old World, including Pacific Islands [6], North and South Americas [7-9], New Zealand [10-12], Australia [12], Antarctic [12], Japan [13-19], Russia [20], and Africa [3].

The Migratory Bird Research Center, National Park Research Institute, located on Heuksan Island, conducted a monitoring program on breeding seabirds at Sogugul (34’11’ N, 125’07’ E) and Gaerin Islands (34’11’ N, 125’09’ E) located 136 km southwest of Molpo, Jeollanam-do (Province), Republic of Korea on 30 July and 1 August 2009 (Fig. 1A, B). Sogugul and Gaerin Islands are remote uninhabited islands that are protected as National Monuments (Sogugul and Gaerin Islands, No. 341, 13 August 1984) with a total land mass of 18,400 m², and 49,000 m², respectively. These islands are known to host breeding colonies of several seabirds such as Hydrobates monorhis (Swinhoe’s storm petrel), Synthliboramphus antiquae (Gmelin) (ancient murrelet), S. wumizusume...
Temminck (crested murrelet), and *Calonectris leucomelas* Temminck (streaked shear-water).

Nesting seabirds were captured by hand from their nest burrows under vegetation covers. Breeding adults captured from nests were carefully removed, identified to species, and then banded with a unique identification number. Prior to release, they were examined for ticks, particularly around the head, neck, wings, and abdomen, and ticks were carefully removed with a forceps to prevent injury to the bird. After removal, ticks were placed individually in cryovials containing 70% ethanol and labeled with a unique identification number that corresponded to the migratory bird collection data. Ticks were microscopically examined, developmental stages determined, and then identified to genus and species using morphological keys [16,17,21-23]. Field data that included the unique bird identification number, species, and other pertinent information were

![Fig. 1. Collection sites and host records of Ornithodoros sawaii in Japan and Korea (closed circle (previously reported) and open circle (this survey)) (A), at Sogugul (left) and Gaerin (right) Islands, Jeollanam-do (Province), Republic of Korea (B) (HM, Hydrobates monornis; CL, Calonectris leucomelas; SA, Synthliboramphus antiquus) (image from http://map.daum.net).](image-url)
PCR was performed using mt-rs primer sets based on the mitochondrial 16S rDNA gene (mt-rs) fragment previously described by Black and Piesman [24], Ushijima et al. [25], and Kim et al. [26]. The resulting product consisted of 475 base pairs, including the primer sets. Sequencing results were assembled using the SeqMan program implemented in DNASTAR software (version 5.0.6; DNASTAR Inc., Madison, Wisconsin, USA) to determine the consensus sequences. Sequence data were analyzed using the MEGA 6.0 software (http://www.megasoftware.net) [27]. For phylogenetic analysis, the neighbor-joining (NJ) and bootstrap tests were carried out according to the Kimura’s 2-parameter distance method [28,29].

A total of 9 larvae of Ornithodoros sawaii Kitaok and Suzuki were removed from the wings and abdomen of 2 adult H. monorhis captured on 31 July and 1 August in 2009 at Sogugul Island (6 larvae) and 2 adult H. monorhis at Gaerin Island (3 larvae) (Fig. 2A, B). O. sawaii and O. capensis Neumann are closely related to each other, and morphological differentiation is based on the shape of the dorsal plate, dentition of the hypostome, and outline of the basis capituli in the ventral aspect (Fig. 2C, D). To confirm these identifications, the ticks were also identified by PCR using partial mitochondrial 16S ribonucleic acid gene primer sets designed for the identification of soft ticks, and products were cloned and sequenced, and then compared with 16S rDNA gene fragments of O. capensis and O. sawaii in Japan and other countries (Fig. 3). Ornithodoros larvae collected from H. monorhis from Gaerin (KOR-G0908-100) Island most closely aligned with O. sawaii with 0-1 base differences and 99.8-100% identity compared to female, male, and nymph stages of O. sawaii collected from Chilbal Island [26], and other collection sites of Japan (Miyazaki, Shimane, Maizuru, Kyoto, and Ishikawa).

H. monorhis breeding pairs nest in colonies among rock crevices and burrows under Carex bootiana Hook grass roots during the breeding season. H. monorhis are small blackish
seabirds with white rumps and distributed from southern Indonesia and Indian Ocean to northeast Asia, including the ROK [30,31]. Nesting populations on Gugul Islets (Sogugul, Gugul, and Gaerin Islands) make up approximately 75% of the global populations [31]. Nesting sites (e.g., Sogugul and Gaerin Islands) are remote small rocky volcanic outcroppings that are difficult to access and are therefore infrequently surveyed. Nesting soil and litter of the ancient murrelet, Synthliboramphus antiquus (Gmelin) and H. monorhis were collected at Chilbal Island, a small remote uninhabited island of south-
western Jeollanam-do Province, ROK, and ticks were collected from the nest soil and litter using the Tullgren funnel [26]. A total of 12 H. sawaii (2 females, 4 males, and 6 nymphs) were collected from 3/36 nest soil and litter samples obtained on 1 May and 30-31 May 2014 during the nesting season of S. antiquus and from 6/20 soil and litter samples collected on 14-15 September 2014 during the nesting season of H. monorhis [26]. While H. monorhis occupies the same nesting sites as S. antiquus, the breeding seasons of these 2 species do not overlap, and resident Ornithodoros larvae feed on young and adult birds of both species during their breeding season. This is the first collection report of O. sawaii larvae recovered from the wing and abdomen of H. monorhis in the ROK in this survey.

In Japan, O. sawaii was recorded from burrow nest of hosts, Calonectris leucomelas (Temminck) (streaked shear-water), and H. monorhis at Hanmya, Miyazaki, Shimane, Maizuru, Kyoto, and Ishikawa [17,19,32,33] (Fig. 1A).

Recently, Kang et al. [34] reported tick-borne pathogens belonging to the genera Anaplasma, Bartonella, and Borrelia from Ixodes spp. collected during 2008-2009 from migratory birds on Hong Island, Jeollanam-do Province. Hong Island is near Sogugul and Gaerin Islands where O. sawaii were collected from H. monorhis. These results do not conclusively identify the role of migratory birds as reservoirs, the introduction of exotic ticks in non-endemic areas, or the role of soft ticks in the potential maintenance of tick-borne pathogens, but do provide an insight into the potential role of migratory birds in the dispersal and infectious cycles of tick-borne diseases in Northeast Asia.

This report summarizes the first collection record of O. sawaii larvae, based on morphological and molecular identification, from 2 remote islands in the ROK. Further studies are needed to define the geographical distribution, host range, and pathogens present in ticks collected from nesting soil and litter, and resident and migratory seabirds inhabiting islands and coastal areas of the ROK.

ACKNOWLEDGMENTS

We thank the members of the Migratory Bird Research Center, National Park Research Institute, Korea National Park Service, on Heuksan Island, Jeollanam-do Province, Republic of Korea, for collecting nesting soil and litter during seabird conservation and breeding surveys. We also appreciate Shinan County office that issued relevant permits and supported our field works. The tick-borne disease surveillance was supported by the Response System (AFHSB-GEIS) to read: Armed Forces Health Surveillance Branch, Global Emerging Infections Surveillance and Response System (AFHSB-GEIS) and Public Health Command District- Korea (Provisional). The opinions expressed herein are those of the authors and are not to be construed as official or reflecting the views of the U.S. Departments of the Army or Defense.

CONFLICT OF INTEREST

We have no conflict of interest related to this work.

REFERENCES

1. Heath ACG, Hardwick S. The role of humans in the importation of ticks to New Zealand: a threat to public health and biosecurity. J New Zeal Med Assoc 2011; 124: 1-16.
2. Dantas-Torres F, Chomel BB. Otranto D. Ticks and tick-borne diseases: a one health perspective. Trends Parasitol 2012; 28: 437-446.
3. Hoogstraal H, Kaiser MN, Easton ER. Ornithodoros (Alectorobius) capensis Neumann (Ixodoidea: Argasidae) parasitizing a human and bird nesting on islands in East African Lakes. J Med Entomol 1976; 12: 703-704.
4. Gomez-Diaz E, Morris-Pocock JA, Gonzalez-Solis J, McCoy KD. Trans-Atlantic host dispersal explains high seabird tick diversity on Cape Verde Islands. Biol Lett 2012; 23: 616-619.
5. Guglielmone AA, Robbins RG, Apanasevich DA, Petney TN, Estrada-Pena A, Horak IG, Shao R, Barker SC. The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodidae and Acanthocephalidae) of the world: a list of valid species names. Zootaxa 2010; 2528: 1-28.
6. Vender Velde N, Vender Velde B. Known and potential ticks and tick-borne pathogens of Micronesia. Micronesica 2013; 1: 1-26.
7. Denmark HA, Clifford CM. A tick of the Ornithodoros capensis group established on bush key. dry Tortugas Florida. Florida Entomol 1962; 45: 139-142.
8. Jonkers AH, Casals J, Atken TH, Spence L. Soldado virus, a new agent from Trinidadian Ornithodoros ticks. J Med Entomol 1973; 10: 517-519.
9. Keirans JE, Hutcheson HJ, Oliver JH Jr. Ornithodoros (Alectorobius) capensis Neumann (Acari: Ixodoidea: Argasidae), a parasite of seabirds, established along the southeastern seacoast of the United States. J Med Entomol 1992; 29: 371-373.
10. Heath ACG. A review of the origin and zoogeography of tick-borne disease in New Zealand. Tuatara 1987; 29: 19-29.
11. Heath ACG. Observations on Ixodes euryptilis Maskell (Acari: Ixodidae), Ornithodoros capensis Neumann (Acari: Argasidae), and other tick parasites of sea birds in New Zealand. Syst Appl Acarol 2006; 11: 131-140.
12. Murray MD, Palma RL, Pilgrim RLC. Ectoparasites of Australian, New Zealand and Antarctic birds. In Marchant S, Higgins PI, eds, Handbook of Australian, New Zealand and Antarctic Birds. Vol. 1. Ratites to ducks. Melbourne, Oxford Auckland, New York. Oxford Univ Press. 1990, pp 1365-1374.

13. Asanuma K, Okubo K, Fukuda S. Infestation of a black-tailed gull (Larus crassirostris) with a tick, Ixodes signatus, in Kabushima, Aomori Prefecture, Japan. Mis Rep Res Inst Nat Resour 1955; 38: 85-86 (in Japanese).

14. Asanuma K. Host and distribution records of the soft tick, Ornithodoros capensis Neumann in Japan. Jpn J Sanit Zool 1960; 11: 94 (in Japanese).

15. Asanuma K. Suborder Isxodides. In Sasa M, ed, Introduction to Classification, Bionomics and Control of Acarina. Univ Tokyo Press 1965, pp 1-486 (in Japanese).

16. Yamaguti N, Tipton VJ, Keegan HL, Toshioka S. Ticks of Japan, Korea and the Ryukyu Islands. Brigham Young University Science Bulletin, Biol Series 1971; 15: 1-226.

17. Kitaoka S, Suzuki H. Ornithodoros (Alectrobius) sawaii sp. n. (Ixodoidea, Argasidae) associated with the streaked shear-water, Colomectris leucomela, from the Amami- Oshima Islands, Japan. Nat Inst Animal Health Quart 1973; 13: 142-148.

18. Tsurumi M, Kawabata H, Sato F. Present status and epidemiological investigation of Carios (Ornithodoros) capensis in the colony of the black-footed albatross Diomedeia nigropectus on Tori-shima, Izu Islands, Japan. J Yamashina Inst Ornithol 2002; 34: 250-256 (in Japanese).

19. Kawabata H, Ando S, Kishimoto T, Kurane I, Takano1 A, Nogami S, Fujita H, Tsurumi M, Nakamura N, Sato E, Takahashi M, Ushijima Y, Fukunaga M, Watanabe H. First detection of Rickettsia in soft-bodied ticks associated with seabirds, Japan. Microbiol Immunol 2006; 50: 403-406.

20. Akhundova ED, Abushev FA, Sterkova NN. Ectoparasites of some bird species in different regions of Azerbaijan SSR. Materially Simpoziuma. Itogi VI Syazan. Simpoziuma po Izukeniyu Vinusov, Ekologicheski Svyazannykh s Ptitsami, 7-9 Dekabrya 1971, Omsk, Russia. 1971, pp 128-130 (in Russian with English summary).

21. Kohls GM. Acarina: Ixodoidea. Insects of Micronesia 1957; 3: 85-104.

22. Kohls GM, Sonenshine DE, Clifford CM. The systematics of the subfamily Ornithodorinae (Acarina: Argasidae). II. Identification of the larvae of the western hemisphere and descriptions of three new species. Ann Entomol Soc Am 1965; 58: 331-364.

23. Jones EK, Clifford CM. The systematics of the subfamily Ornithodorinae (Acarina: Argasidae). V. A revision key to larval Argasidae of the Western Hemisphere and description of seven new species of Ornithodoros. Ann Entomol Soc Am 1972; 65: 730-740.

24. Black WC IV, Pierson J. Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA. Proc Nat Acad Sci USA 1994; 91: 10034-10038.

25. Ushijima Y, Oliver JH Jr, Keirans JE, Tsurumi M, Kawabata H, Watanabe H, Fukunaga M. Mitochondrial sequence variation in Carus capensis (Neumann), a parasite of seabirds, collected on Torishima Island in Japan. J Parasitol 2003; 89: 196-198.

26. Kim HC, Park CJ, Park JH, Kwon YS, Yun SM, Lee WI, Chong ST, Lee IV, Klein TA, Robbins RG. Ornithodoros sawaii Kitaoka and Suzuki (Acari: Ixodida: Argasidae) collected from nest soil and litter of Synthliboramphus antiquus and Hydrobatis monorhis, on Chilbal Island, southwestern Jeollanam Province, Republic of Korea. Syst Appl Acarol 2015; 20: 721-730.

27. Koichiro T, Glen S, Daniel P, Sudhir K. Molecular evolutionary genetics analysis. Version 6.0. Mol Biol Evol 2013; 28: 2731-2739.

28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111-120.

29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406-425.

30. Lee GK, Ko GN, Jegal GM, Park CA. Impact of introduced plants on the breeding of Swinhoe’s storm petrels (Oceanodroma monorhis) and conservation activities in Shinan-gun County, Korea. Proc 3rd Int Symp Migratory Birds (Seabirds in danger: invasive species and conservation of island ecosystem). 25 September 2009, Mokpo, Jeollanam-do Province, Korea.

31. BirdLife International. 2014. Svinhoe’s storm-petrel Hydrobates monorhis. Available at http://www.birdlife.org/datazone/speciesfact-sheet.php?id=3981. Accessed on 25 February 2015.

32. Kitaoka S, Suzuki H. Reports of medico-zoological investigations in the Nansei Islands. Part 2. Ticks and their seasonal prevalences in southern Amami-oshima. Sanit Entomol 1974; 25: 21-26 (in Japanese).

33. Takano A, Muto M, Sakata A, Ogawara Y, Ando S, Hanaoka N, Tsurumi M, Sato F, Nakamura N, Fujita H, Watanabe H, Kawabata H. Relapsing fever spirochete in seabird tick, Japan. Emerg Infect Dis 2009; 15: 1528-1530.

34. Kang JG, Kim HC, Cho Y, Nam HY, Chae HY, Klein TA, Ko SJ, Chae JS. Molecular detection of Anaplasmata, Bartonella and Borrelia in ticks collected from migratory birds from Hong-do Island, Republic of Korea. Vector-Borne Zoon Dis 2013; 13: 215-223.