WELL-POSEDNESS FOR WEAK AND STRONG SOLUTIONS OF NON-HOMOGENEOUS INITIAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFUSION EQUATIONS

YAVAR KIAN1, AND MASAHIRO YAMAMOTO2,3,4

\textbf{Abstract.} We study the well-posedness for initial boundary value problems associated with time fractional diffusion equations with non-homogenous boundary and initial values. We consider both weak and strong solutions for the problems. For weak solutions, we introduce a new definition of solutions which allows to prove the existence of solution to the initial boundary value problems with non-zero initial and boundary values and non-homogeneous terms lying in some arbitrary negative-order Sobolev spaces. For strong solutions, we introduce an optimal compatibility condition and prove the existence of the solutions. We introduce also some sharp conditions guaranteeing the existence of solutions with more regularity in time and space.

\textbf{Keywords:} Fractional diffusion equation, initial boundary value problem, well-posedness, weak and strong solutions.

\textbf{Mathematics subject classification 2010 :} 35R11, 35B30, 35R05.

1. \textbf{Introduction}

1.1. \textbf{Settings.} Let Ω be a bounded and connected open subset of \mathbb{R}^d, $d \geq 2$, with C^2 boundary $\partial \Omega$. Let $a := (a_{i,j})_{1 \leq i,j \leq d} \in C^1(\Omega; \mathbb{R}^{d^2})$ be symmetric, that is

$$a_{i,j}(x) = a_{j,i}(x), \ x \in \Omega, \ i,j = 1, \ldots, d,$$

1Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France; Email: yavar.kian@univ-amu.fr

2Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan;

3Honorary Member of Academy of Romanian Scientists, Splaiul Independentei Street, no 54, 050094 Bucharest Romania;

4Peoples’ Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St, Moscow, 117198, Russia; E-mail: myama@next.odn.ne.jp
and fulfill the ellipticity condition: there exists a constant $c > 0$ such that
\[
\sum_{i,j=1}^{d} a_{i,j}(x) \xi_i \xi_j \geq c|\xi|^2, \quad \text{for each } x \in \overline{\Omega}, \ \xi = (\xi_1, \ldots, \xi_d) \in \mathbb{R}^d.
\] (1.1)

Assume that $q \in L^\infty(\Omega)$ satisfies
\[
\text{there exists a constant } q_0 > 0 \text{ such that } q(x) \geq q_0 \text{ for } x \in \Omega,
\] (1.2)

and define the operator A by
\[
A u(x) := -\sum_{i,j=1}^{d} \partial_{x_i} \left(a_{i,j}(x) \partial_{x_j} u(x) \right) + q(x) u(x), \ \text{for each} \ x \in \Omega.
\]

Throughout the article, we set
\[
Q := (0, T) \times \Omega, \ \Sigma := (0, T) \times \partial \Omega.
\]

Next, for $\alpha \in (0, 1) \cup (1, 2)$, $T \in (0, +\infty)$ and $\rho \in L^\infty(\Omega)$ obeying
\[
0 < \rho_0 \leq \rho(x) \leq \rho_M < +\infty, \ \text{for each} \ x \in \Omega,
\] (1.3)

we consider the following initial boundary value problem (IBVP):
\[
\begin{cases}
(\rho(x) \partial_{t}^{\alpha} + A) u(t, x) = F(t, x), & (t, x) \in Q, \\
\tau_{\chi} u(t, x) = f(t, x), & (t, x) \in \Sigma, \\
\partial_{t}^{k} u(0, x) = u_k, & x \in \Omega, \ k = 0, \ldots, [\alpha] - 1,
\end{cases}
\] (1.4)

where $\chi = 0, 1$, $[\cdot]$ denotes the ceiling function:
\[
[\alpha] = \begin{cases}
1 \text{ if } 0 < \alpha < 1, \\
2 \text{ if } 1 < \alpha < 2,
\end{cases}
\]

and ∂_{t}^{α} denotes the fractional Caputo derivative of order α with respect to t, defined by
\[
\partial_{t}^{\alpha} u(t, x) := \frac{1}{\Gamma([\alpha] - \alpha)} \int_{0}^{t} (t - s)^{[\alpha] - 1 - \alpha} \partial_{s}^{[\alpha]} u(s, x) \, ds, \ (t, x) \in Q.
\] (1.5)

Here the boundary operators τ_{χ}, $\chi = 0, 1$, are defined by:

(a) $\tau_{0} u := u$,

(b) $\tau_{1} u := \partial_{\nu_{A}} u$, where $\partial_{\nu_{A}}$ stands for the normal derivative with respect to $a = (a_{i,j})_{1 \leq i,j \leq d}$, and is given by
\[
\partial_{\nu_{A}} h(x) := \sum_{i,j=1}^{d} a_{i,j}(x) \partial_{x_i} h(x) \nu_i(x), \ x \in \partial \Omega,
\]

and $\nu = (\nu_1, \ldots, \nu_d)$ is the outward unit normal vector to $\partial \Omega$.

Remark 1. We can omit the condition (1.2) but for simplicity, we assume it. All the results of this article can be easily extended to Robin boundary conditions. Moreover, applying the fixed point argument, one can extend our results to a more general equation:

$$\partial_t^\alpha u + Au + B(t, x) \cdot \nabla_x u + V(t, x) u = 0,$$

where some suitable assumptions are imposed on the coefficients $B \in L^\infty(Q)^d$, $V \in L^\infty(Q)$. However, in this article, in order to avoid the inadequate expense of the size of descriptions, we do not consider such extensions of our results.

In the present article, we study the well-posedness for problem (1.4) in a strong and a weak senses. In the weak sense we will prove the well-posedness of (1.4) when data f and u_0, $u_{[\alpha]}-1$ are lying in some negative-order Sobolev spaces. The strong solution of (1.4) corresponds to smooth solutions of this problem in time and space.

1.2. Motivations and a short bibliographical review. Recall that the initial boundary value problem (1.4) is often used for describing anomalous diffusion for several physical phenomenon such as diffusion of substances in heterogeneous media, diffusion of fluid flow in inhomogeneous anisotropic porous media, diffusion of carriers in amorphous photoconductors, diffusion in a turbulent flow (see e.g., [2]). The case $\alpha \in (0, 1)$ corresponds to a subdiffusive model, while the case $\alpha \in (1, 2)$ corresponds to a super diffusive case.

The well-posdness for the problem (1.4) has been intensively studied these last decades. Many authors considered problem (1.4) for $\alpha \in (0, 1)$ with $f = 0$ or $\Omega = \mathbb{R}^d$. For $\Omega = \mathbb{R}^d$, one can refer to [5] where the existence of classical solutions of (1.4) is proved by mean of a representation formula involving the Green functions for (1.4). This formulation of the problem has been extended by [28], who proposed a variational formulation of (1.4) in some abstract framework allowing to consider elliptic operators A depending on $t \in (0, T)$. Note that the result of [28] can be applied to a bounded domain and the full space \mathbb{R}^d. For the case $\Omega = \mathbb{R}^d$ or the half space, in some L^p-space, the works [3, 4] proved the existence of strong solutions of (1.4) with zero initial data and non-zero source terms for elliptic operators A whose coefficients depend on time. For $\Omega = \mathbb{R}^d$, the article [1] proved that given u_0 and bounded F, the solutions to (1.4) is Hölder continuous in time and space. Similar results were proved in [29] in a bounded domain with both non-zero source term and initial condition. We refer also to [20] as for (1.4) with a time dependent elliptic operators A, where the authors applied the approach of [28] to establish the existence of strong solutions under suitable assumptions. In [17, 25], the authors
proved the existence of solutions to (1.4) in a bounded domain by mean of an eigenfunction representation involving the Mittag-Leffter functions. The definition of solutions of [17] can be formulated in terms of Laplace transform in time of the solutions. On the basis of this last definition, the works [16, 21] proved the existence of solutions of more complex equations than (1.4), including fractional diffusion equation with distributed and variable order. Moreover, we can refer to the monograph [19].

All the above mentioned results considered (1.4) with the homogenous boundary conditions or \(\Omega = \mathbb{R}^d \). These results can be classified into two categories: the existence of solutions of (1.4) in a weak sense and a strong sense, according to the cases where data belong to some negative-order Sobolev spaces and to smoother spaces respectively. We can refer to the series of works [11, 13] where the authors proved the existence of solutions to (1.4) for \(u_0 = u_{[\alpha]-1} = 0 \) and \(f \) lying in some negative-order Sobolev space in time and space, when \(A = -\Delta \) and \(\chi = 0 \) (i.e., the Dirichlet boundary condition). The proof is based on a single layer representation of solutions, and an application of some results (e.g., [5, 20]) concerning the Green functions for fractional diffusion equations with constant coefficients. In [12], the author extended this approach to (1.4) for \(\alpha \in (0,1) \) with non-homogeneous Robin boundary condition and non-vanishing initial condition lying in some Hölder spaces. The article [27] proved the unique existence of weak solution to (1.4) by the transposition (e.g., Lions and Magenes [22]) when \(u_0 = 0, F = 0, \alpha \in (0,1) \) and \(f \in L^2(0,T;H^{-\theta}(\partial \Omega)) \) with \(\theta > 0 \). As for strong solutions, we refer to the work [9] where the author proved the existence of strong solution \(u \) to (1.4) such that \(u \) is continuous in time, belongs to a class \(C^2 \) in space and \(\partial_t^\chi u \) is Hölder continuous in time and space.

We remark that the well-posdness for problem (1.4) with non-homogenous boundary conditions is meaningful also for other mathematical problems such as optimal control problems (see e.g., [27]) or inverse problems (see e.g., [6, 10, 14, 15]).

1.3. Definition of solutions. In this subsection we introduce a definition of solutions of (1.4) for \(f \in L^1(0,T;H^{-\theta}(\partial \Omega)) \) with \(\theta \in \left[\frac{1}{2}, +\infty\right) \) and \((u_0, u_{[\alpha]-1}, F) \) in some negative-order Sobolev spaces. To give a suitable definition of such solutions, we define the operators \(A_\chi \), \(\chi = 0,1 \), in \(L^2(\Omega;\rho dx) \) by

\[
A_\chi u = \rho^{-1} A u, \quad D(A_\chi) = \{ g \in H^1(\Omega) : \rho^{-1} A g \in L^2(\Omega), \tau_\chi g |_{\partial \Omega} = 0 \}.
\]
In view of our assumptions, we have \(D(A_\chi) = \{ g \in H^2(\Omega) : \tau_\chi g|_{\partial\Omega} = 0 \} \). Recall that the operators \(A_\chi, \chi = 0, 1 \) are strictly positive self-adjoint operators with compact resolvent. Therefore, for \(\chi = 0, 1 \), the spectrum of \(A_\chi \) consists of a non-decreasing sequence of strictly positive eigenvalues \((\lambda_{\chi,n})_{n \geq 1} \). Here and henceforth we number \(\lambda_{\chi,n} \) with the multiplicities for \(\chi = 0, 1 \). In the Hilbert space \(L^2(\Omega; \rho dx) \), we introduce an orthonormal basis of eigenfunctions \((\varphi_{\chi,n})_{n \geq 1} \) of \(A_\chi \) associated with the eigenvalues \((\lambda_{\chi,n})_{n \geq 1} \). From now on, by \(\langle \cdot, \cdot \rangle \) we denote the scalar product in \(L^2(\Omega; \rho dx) \) and we set \(\mathbb{N} = \{1, 2, \ldots\} \). Let us observe that according to the condition imposed on \(\rho \), we have \(L^2(\Omega; \rho dx) = L^2(\Omega) \) with the equivalent norms. For all \(s \geq 0 \), we denote by \(A_\chi^s \) the operator defined by

\[
A_\chi^s g = \sum_{n=1}^{+\infty} \langle g, \varphi_n \rangle \lambda_{\chi,n}^s \varphi_n, \quad g \in D(A_\chi^s) = \left\{ h \in L^2(\Omega) : \sum_{n=1}^{+\infty} |\langle g, \varphi_n \rangle|^2 \lambda_{\chi,n}^{2s} < \infty \right\}
\]

and in \(D(A_\chi^s) \) we introduce the norm

\[
\|g\|_{D(A_\chi^s)} = \left(\sum_{n=1}^{+\infty} |\langle g, \varphi_n \rangle|^2 \lambda_{\chi,n}^{2s} \right)^{\frac{1}{2}}, \quad g \in D(A_\chi^s).
\]

We define \(D(A_\chi^{-s}) = D(A_\chi^s)' \) by the dual space to \(D(A_\chi^s) \), which is a Hilbert space with the norm

\[
\|g\|_{D(A_\chi^{-s})} = \left(\sum_{n=1}^{\infty} \left| \langle g, \varphi_{\chi,n} \rangle \right|^2 \lambda_{\chi,n}^{-2s} \right)^{\frac{1}{2}}.
\]

Here \(\langle \cdot, \cdot \rangle_{-\chi} \) denotes the duality bracket between \(D(A_\chi^{-s}) \) and \(D(A_\chi^s) \). By the duality, we see that \(D(A_\chi^s) \) is embedded continuously into \(H^{-1}(\Omega) \), because \(H_0^1(\Omega) \) is embedded continuously into \(D(A_\chi^\frac{1}{2}) \).

For any \(k \in \mathbb{N} \), we consider the following condition \((H_k) \):

\[
\rho, \quad a_{i,j} \in C^{2(k-1)+1}(\Omega), \quad i, j = 1, \ldots, d, \quad q \in W^{2(k-1),\infty}(\Omega), \quad \partial\Omega \text{ is of } C^{2k}. \quad (H_k)
\]

In view of \cite{3} Theorem 2.5.1.1] (see also \cite{4} Theorem 8.13), for any \(k \in \mathbb{N} \), condition \((H_k) \) implies that the space \(D(A_\chi^s) \) is embedded continuously into \(H^{2\ell}(\Omega) \) for any \(\ell = 0, \ldots, k \) and \(\chi = 0, 1 \). Therefore, by the interpolation, we deduce that condition \((H_k) \) implies that the space \(D(A_\chi^s) \) is embedded continuously into \(H^{2s}(\Omega) \) for any \(s \in [0, k] \).

Let us fix \(\theta \in \left[\frac{3}{2}, +\infty\right), \quad \kappa = \frac{\theta}{2} - \frac{1}{4} \) and \(k = 1 + \lceil \kappa \rceil \). Using the above properties and assuming that \((H_k) \) is fulfilled, for \(\mu \geq 0 \), \(h \in H^{-\theta-\chi}(\partial\Omega) \) and \(\Phi \in D(A_\chi^{-\kappa}) \), we define the
solution \(y \in D(A^\kappa_x) \) to the following boundary value problem:

\[
\begin{align*}
\rho(x)^{-1}Ax(x) + \mu y(x) &= \Phi(x), \quad x \in \Omega, \\
\tau y(x) &= h(x), \quad x \in \partial \Omega,
\end{align*}
\]

(1.6)

in the transposition sense:

\[
\langle y, G \rangle - \kappa = -(-1)^\chi \langle h, \tau^* (A_x + \mu)^{-1}G \rangle_{H^{-\theta-x}(\partial \Omega),H^\theta+x(\partial \Omega)} + \langle \Phi, (A_x + \mu)^{-1}G \rangle_{-1-\kappa}
\]

(1.7)

for all \(G \in D(A^\kappa_x) \). Here \(\tau^* \) denotes the formal adjoint operator to \(\tau \), and we have \(\tau^*_0 = \tau_1 \) and \(\tau_1 = \tau_0 \). Then, we define the solution to \((1.4) \) in the following way.

Definition 1.1. Fix \(\theta \in \left[\frac{1}{2}, +\infty \right) \), \(\kappa = \frac{2\theta - 1}{4} \), \(k = 1 + [\kappa] \) and assume that condition \((H_k) \) is fulfilled. Let \(f \in L^1(0,T;H^{-\theta-x}(\partial \Omega)) \), \(F \in L^1(0,T;\rho D(A^{-\kappa-1}_x)) \), \(u_0, u_{[\alpha]-1} \in D(A^{-\kappa-1}_x) \).

We say that \(u \) is a weak solution to \((1.4) \) if there exist \(\varepsilon > 0 \) and \(v \in L^1_{loc}(0, +\infty; D(A^{-\kappa-\varepsilon}_x)) \) satisfying \(u = v|_Q \) and the following properties:

(i) \(\inf \{ \lambda > 0 : \ t \mapsto e^{-\lambda v(t, \cdot)} \in L^1(0, +\infty; D(A^{-\kappa-\varepsilon}_x)) \} = 0 \),

(ii) for all \(p > 0 \), the Laplace transform

\[
\mathcal{L}v(t, \cdot) := \int_0^{+\infty} e^{-pt}v(t, \cdot)dt
\]

of \(v \) is lying in \(D(A^{-\kappa}_x) \) and it solves the boundary value problem

\[
\begin{align*}
\rho(x)^{-1}A\mathcal{L}v(p, x) + \rho^p \mathcal{L}v(p, x) &= \int_0^T e^{-pt}p^{-1}F(t,x)dt + \sum_{m=0}^{[\alpha]-1} \rho^{\alpha-1-m}u_m(x), \quad x \in \Omega, \\
\tau \mathcal{L}v(p, x)(x) &= \int_0^T e^{-pt}f(t, x)dt, \quad x \in \partial \Omega.
\end{align*}
\]

(1.8)

We give also the following definition of strong solutions to \((1.4) \).

Definition 1.2. We say that \((1.4) \) admits a strong solution if there exists a weak solution \(u \) to \((1.4) \) lying in \(W^{[\alpha],1}(0, T; H^{-1}(\Omega)) \cap L^1(0, T; H^2(\Omega)) \) such that

\[
\rho(x)\partial^\alpha u + Au = F
\]

(1.9)

holds true in \(L^1(0, T; L^2(\Omega)) \) and

\[
\begin{align*}
\tau u(t, x) &= f(t, x), \quad (t, x) \in \Sigma, \\
\partial^k u(0, x) &= u_k(x), \quad x \in \Omega, \quad k = 0, \ldots, [\alpha] - 1.
\end{align*}
\]

(1.10)

Remark 2. Let us observe that for any function \(v \in W^{[\alpha],1}_{loc}(0, +\infty; H^{-1}(\Omega)) \cap L^1_{loc}(0, +\infty; H^2(\Omega)) \) satisfying

\[
e^{-pt}v(t, \cdot) \in W^{[\alpha],1}(0, +\infty; H^{-1}(\Omega)) \cap L^1(0, +\infty; H^2(\Omega)), \quad p > 0,
\]

(1.11)
we have

\[L(\rho \partial^\alpha_t v + Av)(p, \cdot) = ALv(p, \cdot) + \rho \left(p^\alpha Lv(p, \cdot) - \sum_{m=0}^{[\alpha]-1} p^{\alpha-1-m} v(0, \cdot) \right). \]

Our choice for the definition of weak solutions of (1.4) is based on the above identity. Moreover, from this identity and the property of weak solutions stated in Remark 3 (see below), one can verify that any strong solution in the sense of Definition 1.2, which can be extended to a function \(v \in W^{[\alpha], 1}_{loc}(0, +\infty; H^{-1}(\Omega)) \cap L^1_{loc}(0, +\infty; H^2(\Omega)) \) satisfying (1.11), will be a weak solution in the sense of Definition 1.1.

1.4. Well-posedness for weak solutions. In this subsection, we state our results of well-posedness of (1.4) when \(f \in L^1(0, T; H^{-\theta-\chi}(\partial\Omega)), u_0, u_{[\alpha]-1} \in \rho D(A^{-\kappa-1}_\alpha) \) for some \(\theta \in \left[\frac{1}{2}, +\infty \right) \) and \(\kappa = \frac{2\theta-1}{4} \). More precisely, we consider the existence of weak solutions in the sense of Definition 1.1. Our first main result can be stated as follows.

Theorem 1.3. Let \(\alpha \in (0, 1) \cup (0, 2), \chi = 0, 1, \theta \in \left[\frac{1}{2}, +\infty \right), \kappa = \frac{\theta}{2} - \frac{1}{4}, k = 1 + [\kappa] \) and let \((H_k)\) be fulfilled. Let \(r \in [1, +\infty), \beta \) be given by

\[\beta = \begin{cases}
1 & \text{if } r < \alpha^{-1} \\
\alpha^{-1} r^{-1} & \text{if } r \geq \alpha^{-1}
\end{cases} \]

and let \(f \in L^r(0, T; H^{-\theta-\chi}(\partial\Omega)), F \in L^r(0, T; \rho D(A^{-\theta-\frac{3}{4}}_\alpha)). \) Consider also

\[
\begin{align*}
&u_0 \in D(A^{-\alpha^{-1}\frac{r^{-1}}{2}}_\alpha),
&u_1 \in D(A^{-\alpha^{-1}(1+r^{-1})+\frac{\theta}{4}}_\alpha)
\end{align*}
\]

for \(\alpha \in (0, 1), \) and

\[
\begin{align*}
&u_0 \in D(A^{-\alpha^{-1}\frac{r^{-1}}{2}}_\alpha),
&u_1 \in D(A^{-\alpha^{-1}(1+r^{-1})+\frac{\theta}{4}}_\alpha)
\end{align*}
\]

for \(\alpha \in (1, 2). \)

Then problem (1.4) admits a unique solution \(u \) lying in

\[L^r(0, T; D(A^{-\alpha^{-1}\frac{r^{-1}}{2}}_\alpha)). \]

Moreover, for any \(\varepsilon > 0, \) we have estimates:

Case \(\alpha \in (0, 1): \)

\[||u||_{L^r(0, T; D(A^{-\alpha^{-1}\frac{r^{-1}}{2}}_\alpha))} \leq C_\varepsilon \left(||\int_{L^r(0, T; H^{-\theta-\chi}(\partial\Omega))} + ||\rho^{-1} F||_{L^r(0, T; D(A^{-\theta-\frac{3}{4}}_\alpha))} + ||u_0||_{D(A^{-\beta+\frac{1}{4}\frac{\theta}{2}}_\alpha)} \right). \]

(1.12)
Case $\alpha \in (1, 2)$:

$$
\|u\|_{L^r(0,T;D(A_\chi^{-\frac{1}{4}-\frac{\theta}{2}}))} \\
\leq C_\varepsilon \left(\|f\|_{L^r(0,T;H^{-\theta-\chi}(\partial\Omega))} + \|\rho^{-1} F\|_{L^r(0,T;D(A_\chi^{-1-\alpha}))} + \|u_0\|_{D(A_\chi^{-\frac{1}{4}-\frac{\theta}{2}})} + \|u_1\|_{D(A_\chi^{-(1+\varepsilon-\alpha)-\frac{\theta}{2}})} \right).
(1.13)
$$

In both cases, the constant C_ε depends on $\varepsilon, r, \rho, \alpha, \theta, A, \Omega$ and T.

Remark 3. Note that even if the Definition 1.1 of weak solutions depends on the final time T, the solution that we obtain in Theorem 1.3 is independent of T. Namely, fix $T_1, T_2 \in (0 + \infty)$ with $T_1 < T_2$ and consider $f \in L^r(0, T_2; H^{-\theta-\chi}(\partial\Omega)), \rho^{-1} F \in L^r(0, T_2; D(A_\chi^{-\frac{1}{4}-\frac{\theta}{2}}))$. Consider the unique weak solutions $u_\ell, \ell = 1, 2$ to (1.4) for $T = T_\ell$, which are given by Theorem 1.3. According to the expression of the weak solution given in the proof of Theorem 1.3 in terms of Fourier series, we can verify that the restriction of u_2 to $(0, T_1) \times \Omega$ coincides with u_1.

In a special case of $r = 2$ and zero initial values, we can improve Theorem 1.3.

Theorem 1.4. Let the condition of Theorem 1.3 be fulfilled with $r = 2$, $\rho = 1$ and $u_0 = u_{[\alpha]-1} = 0$, and $\theta \geq \frac{1}{2}$. Then the unique weak solution u of (1.4) is lying in $L^2(0, T; D(A_\chi^{\frac{1}{4}-\frac{\theta}{2}}))$ with $\partial_t^\alpha u \in L^2(0, T; D(A_\chi^{\frac{1}{4}-\frac{\theta}{2}}))$. Moreover, we have

$$
\|u\|_{L^2(0,T;D(A_\chi^{\frac{1}{4}-\frac{\theta}{2}}))} + \|\partial_t^\alpha u\|_{L^2(0,T;D(A_\chi^{\frac{1}{4}-\frac{\theta}{2}}))} \leq C \left(\|f\|_{L^2(0,T;H^{-\theta-\chi}(\partial\Omega))} + \|F\|_{L^2(0,T;D(A_\chi^{\frac{1}{4}-\frac{\theta}{2}}))} \right).
(1.14)
$$

Under the assumption $F \equiv 0$, Theorem 4.1 in [27] established the same conclusion in the case of $0 < \alpha < 1$ and arbitrary $\theta > 0$. On the other hand, this theorem holds for $\alpha \in (0, 1) \cup (1, 2)$ and non-zero F but requires that $\theta \geq \frac{1}{2}$.

1.5. **Well-posedness for strong solutions.** In this subsection, we state our results related to the well-posedness of strong solutions of (1.4). We treat separately the case $\alpha \in (0, 1)$ and $\alpha \in (1, 2)$. Let us start with $\alpha \in (0, 1)$. For this purpose, we introduce a compatibility condition on data $f \in W^{1,1}(0, T; H^{-\frac{1}{2}-\chi}(\partial\Omega)), F \in W^{1,1}(0, T; \rho D(A_\chi^{-1}))$, and $u_0 \in L^2(\Omega)$ which requires that u_0 solves the boundary value problem in the transposition sense:

$$
\begin{align*}
\mathcal{A} u_0(x) &= F(0, x), \quad x \in \Omega, \\
\tau_\chi u_0(x) &= f(0, x), \quad x \in \partial\Omega, \quad \chi = 0, 1.
\end{align*}
(1.15)
$$

We can now state our result for $\alpha \in (0, 1)$.
Theorem 1.5. Let \(\alpha \in (0, 1) \), \(\chi = 0, 1 \), \(\rho \in C^2(\Omega) \) and \(m \in \mathbb{N} \) be fixed. Assume also that condition \((H_m)\) is fulfilled. Let \(u_0 \in L^2(\Omega) \), \(r \in [1, +\infty) \) and

\[
 f \in \bigcap_{k=0}^{m} W^{m-k,r}(0, T; H^{2k- \frac{1}{2}}(\partial \Omega)), \quad F \in \bigcap_{k=1}^{m} W^{m-k,r}(0, T; H^{2(k-1)}(\Omega)) \cap W^{m,r}(0, T; \rho D(A^{-1}_\chi)).
\]

For \(m \geq 2 \), we assume that

\[
 \partial_t^k f(0, \cdot) = 0, \quad \partial_t^k F(0, \cdot) = 0, \quad k = 1, \ldots, m - 1. \tag{1.16}
\]

If \(u_0 \) satisfies the compatibility condition \((1.15)\), then the unique weak solution \(u \) to \((1.4)\) is a strong solution lying in

\[
 \bigcap_{k=1}^{m} W^{m-k,r}(0, T; H^{2k}(\Omega)) \cap W^{m,r}(0, T; H^{-\varepsilon}(\Omega)),
\]

where \(\varepsilon > 0 \) is arbitrary. Moreover, for any \(\varepsilon > 0 \), we have

\[
 \|u\|_{W^{m,r}(0, T; H^{-\varepsilon}(\Omega))} + \sum_{k=1}^{m} \|u\|_{W^{m-k,r}(0, T; H^{2k}(\Omega))} \leq C \varepsilon \sum_{k=1}^{m} \left(\|f\|_{W^{m-k,r}(0, T; H^{2k- \frac{1}{2}}(\partial \Omega))} + \|F\|_{W^{m-k,r}(0, T; H^{2(k-1)}(\Omega))} \right) + C \varepsilon \left(\|f\|_{W^{m,r}(0, T; H^{\frac{1}{2}}(\partial \Omega))} + \|\rho^{-1} F\|_{W^{m,r}(0, T; D(A^{-1}_\chi))} \right), \tag{1.17}
\]

with \(C \varepsilon \) depending on \(\varepsilon, r, \rho, \alpha, A, \Omega \) and \(T \).

Remark 4. We recall that the compatibility condition \((1.15)\) and an a priori estimate of \(u_0 \) yield

\[
 \|u_0\|_{H^k(\Omega)} \leq C \left(\|f(0, \cdot)\|_{H^{k- \frac{1}{2}}(\partial \Omega)} + \|\rho^{-1} F(0, \cdot)\|_{D(A^{-1}_\chi^{k-\frac{1}{2}})} \right), \quad k = 0, 2.
\]

Thanks to this estimate, in terms of only \(f \) and \(F \), we can estimate the right-hand sides of \((1.17)\), and \((1.19), (1.22)\) which are stated below.

For \(\alpha \in (0, 1) \), the compatibility condition \((1.15)\) corresponds to an optimal condition guaranteeing the existence of smooth solutions as described in Theorem 1.5. Similarly the additional condition \((1.16)\) is an optimal condition guaranteeing the existence of solutions with higher regularity. Indeed we can prove

Proposition 1.6. For \(f \in C^\infty(\overline{\Omega}) \), \(F \in C^\infty(\overline{\Omega}) \) and \(u_0 \in C^\infty(\overline{\Omega}) \), if the compatibility condition \((1.15)\) is not fulfilled, then the solution \(u \) of \((1.4)\) does not belong to \(W^{1,(1-\alpha)^{-1}}(0, T; D(A^{-\frac{1}{2}}_\chi)) \). Moreover, if there exists \(m \geq 2 \) such that \((1.16)\) fails, then \(u \notin W^{m,(1-\alpha)^{-1}}(0, T; D(A^{-\frac{1}{2}}_\chi)) \).
For $\alpha \in (1,2)$, we consider two different situations. In the first case, we state a result with a weaker regularity assumption and the compatibility condition (1.15). In the second result, we consider smoother data under more compatibility conditions.

We start with our first result with only the compatibility condition (1.15).

Theorem 1.7. Let $\alpha \in (1,2)$, $\chi = 0, 1$ and let $\delta \in (0, 1/4)$, $r \in [1, +\infty)$ satisfy\[r < \frac{1}{1 - \alpha \delta}. \] (1.18)
Assume $u_0 \in H^1(\Omega)$, $u_1 \in H^{2\delta}(\Omega)$ and
\[f \in W^{2,r}(0, T; H^{\frac{1}{2} - \chi}(\partial \Omega)) \cap L^r(0, T; H^{\frac{3}{2} - \chi}(\partial \Omega)), \]
\[F \in W^{2,r}(0, T; D(A_{\chi}^{-\frac{1}{2}})) \cap L^r(0, T; L^2(\Omega)). \]
If u_0 satisfies (1.15), then the unique weak solution u to (1.4) is a strong solution lying in
\[L^r(0, T; H^2(\Omega)) \cap W^{1,r}(0, T; H^1(\Omega)) \cap W^{2,r}(0, T; L^2(\Omega)). \]
Moreover, we have
\[\|u\|_{W^{2,r}(0, T; L^2(\Omega))} + \|u\|_{W^{1,r}(0, T; H^1(\Omega))} + \|u\|_{L^r(0, T; H^2(\Omega))} \leq C \left(\|f\|_{W^{2,r}(0, T; H^{\frac{1}{2} - \chi}(\partial \Omega))} + \|f\|_{L^r(0, T; H^{\frac{3}{2} - \chi}(\partial \Omega))} + \|u_1\|_{H^{2\delta}(\Omega)} \right) \]
\[+ C \left(\|F\|_{W^{2,r}(0, T; D(A_{\chi}^{-\frac{1}{2}}))} + \|F\|_{L^r(0, T; L^2(\Omega))} \right), \] (1.19)
where the constant $C > 0$ depends on $r, \rho, \alpha, A, \Omega$ and T.

Next we discuss a solutions with higher regularity requiring the two compatibility conditions (1.15) and (1.20): we assume that u_1 satisfies
\[
\begin{cases}
Au_1(x) = \partial_t F(0, x), & x \in \Omega, \\
\tau_\chi u_1(x) = \partial_t f(0, x), & x \in \partial \Omega.
\end{cases} \] (1.20)

Theorem 1.8. Let $\alpha \in (1,2)$, $\chi = 0, 1$ and $m_1 \in \mathbb{N}$ be fixed. Assume also that condition (H$_{m_1+1}$) is fulfilled and fix $3 \leq m \leq 2m_1 + 2$. Let $u_0 \in H^2(\Omega)$, $u_1 \in H^1(\Omega)$, $r \in [1, +\infty)$ and consider
\[f \in \bigcap_{k=2}^{m} W^{m-k,r}(0, T; H^{k-\frac{1}{2} - \chi}(\partial \Omega)) \cap W^{m,r}(0, T; H^{\frac{3}{2} - \chi}(\partial \Omega)), \]
\[F \in \bigcap_{k=2}^{m} W^{m-k,r}(0, T; H^{k-2}(\Omega)) \cap W^{m,r}(0, T; D(A_{\chi}^{-\frac{1}{2}})). \]
For $m \geq 4$, we assume also that

$$\partial_tf(0, \cdot) = 0, \quad \partial_k F(0, \cdot) = 0, \quad k = 3, \ldots, m - 1. \quad (1.21)$$

If u_0 and u_1 satisfy the compatibility conditions (1.15) and (1.20), then the unique weak solution u of (1.4) is a strong solution lying in

$$\bigcap_{k=0}^{m} W^{m-k,r}(0, T; H^k(\Omega)).$$

Moreover, we have

$$\sum_{k=0}^{m} \|u\|_{W^{m-k,r}(0, T; H^k(\Omega))} \leq C \left(\sum_{k=2}^{m} \|f\|_{W^{m-k,r}(0, T; H^{k-\frac{1}{2}-\chi(\partial\Omega)})} + \|F\|_{W^{m-k,r}(0, T; H^{k-2}(\Omega))} \right) + C \left(\|f\|_{W^{m,r}(0, T; H^{\frac{1}{2}-\chi(\partial\Omega)})} + \|F\|_{W^{m,r}(0, T; D(A^{-\frac{1}{2}}))} \right),$$

where the constant $C > 0$ depends on $\rho, r, \alpha, A, \Omega$ and T.

For $\alpha \in (1, 2)$, the compatibility condition (1.15) corresponds to an optimal condition guaranteeing the existence of solutions with the smoothness of Theorem 1.7, while both conditions (1.15) and (1.20) are required for the existence of smooth solution as stated in Theorem 1.8. In the same way, the additional condition (1.21) is an optimal condition guaranteeing existence of solutions with higher regularity. Indeed we can prove

Proposition 1.9. For $f \in C^\infty(\Sigma)$ and $u_0, u_1 \in C^\infty(\overline{\Sigma})$, if compatibility condition (1.15) is not fulfilled, then the solution u to (1.4) does not belong to $W^{2,(2-\alpha)^{-1}}(0, T; D(A^{\frac{1}{2}}))$. Moreover if (1.15) is fulfilled but not (1.20), then $u \in W^{3,(2-\alpha)^{-1}}(0, T; D(A^{\frac{1}{2}}))$ does not hold. Finally, if there exists $m \geq 4$ such that (1.21) is not fulfilled, then $u \not\in W^{m,(2-\alpha)^{-1}}(0, T; D(A^{\frac{1}{2}}))$.

1.6. Comments about our results. To the best of our knowledge, Theorem 1.3 is the first result of well-posedness of (1.4) with such weak assumptions imposed on the boundary value f, the initial values $u_0, u_{[\alpha]-1}$ and the source term F, as long as the elliptic part A is t-independent and symmetric. Indeed, all other comparable results have been stated with less general equations and smoother data (see for instance [11, 12, 13]) or with zero initial value (see [27]). In addition, we state these well-posedness for solutions lying in L^r in time with $r \in [1, +\infty]$, while other comparable results are restricted to solutions lying in L^2 in time.

Theorems 1.5, 1.7 and 1.8 are concerned with the well-posedness in the strong sense of (1.4). Our aim is to obtain an optimal condition guaranteeing the existence of smooth
solutions to (1.4) in time and space. It is known that there exist even smooth data satisfying a usual compatibility conditions, but that the regularity in time of the solution to (1.4) cannot exceed $W^{1, ([\alpha]-\alpha)^{-1}}$ (see Propositions 1.6 and 1.9 and Section 6 for more details). Moreover, most of results concerning the existence of smooth solutions to (1.4) have mainly established some Hölder continuity in time of the solutions (e.g. [9, 29]) or the regularity which is weaker than H^α in time (e.g. [20]). In Theorems 1.5 and 1.8 we prove the existence of solutions lying $W^{m,r}$ in time with arbitrary $m \in \mathbb{N}$ and $r \in [1, +\infty]$ by assuming some compatibility conditions (1.15) and (1.16) (respectively (1.15), (1.20), and (1.21)) for $\alpha \in (0, 1)$ (respectively $\alpha \in (1, 2)$).

We have obtained Theorem 1.3 by means of the representation of the solutions which explicitly involves the boundary value f. In the same way, we derive and prove an optimality of the compatibility conditions (1.15), (1.16), (1.20) and (1.21) by using the Fourier series representation of the solution to (1.4). The representation of solutions to (1.4) which we used for the proof of Theorem 1.3 is the key ingredient for the well-posedness of (1.4).

Indeed, in order to reach the regularity stated in Theorems 1.5, 1.7 and 1.8 we do not know whether we can use a classical lifting arguments with results on the existence of the solutions with homogeneous boundary conditions like [17, 20, 25, 28, 29].

1.7. Outline. This paper is organized as follows. Section 2 is devoted to the proof of Theorems 1.3 and 1.4. In Section 3 we prove Theorem 1.5. Sections 4 and 5 are devoted respectively to the proof of Theorems 1.7 and 1.8 while Section 6 is devoted to the proofs of Propositions 1.6 and 1.9 emphasizing the optimality of the compatibility conditions (1.15), (1.16), (1.20) and (1.21).

2. Proof of Theorems 1.3 and 1.4

We start with a lemma. Then we prove Theorem 1.3 for $\alpha \in (0, 1)$, and then for the case $\alpha \in (1, 2)$. Finally, we prove Theorem 1.4.

2.1. Preliminary lemma. Henceforth $C > 0$ denotes generic constants which depend on A, ρ, θ and r, α, T and Ω, and C may change from line to line.

We prove
Lemma 2.1. Let $\chi = 0,1$, $\theta \in \left[\frac{1}{2},+\infty\right)$, $\kappa = \frac{2\theta-1}{4}$, $k = 1 + \lceil \kappa \rceil$ and let condition (H_k) be fulfilled. Then, for any $h \in H^{-\theta-\chi}(\partial \Omega)$, we have
\[
\sum_{n=1}^{\infty} \left| \lambda_{\chi,n}^{1-\kappa} \langle h, \tau_{\chi}^n \varphi_{\chi,n} \rangle_{H^{-\theta-\chi}(\partial \Omega), H^{\theta+\chi}(\partial \Omega)} \right|^2 \leq C^2 \| h \|_{H^{-\theta-\chi}(\partial \Omega)}^2 . \tag{2.1}
\]

Proof. Let $y \in D(A^{-\kappa}_\chi)$ be the solution in the transposition sense to (1.6) with $\mu = 0$ and $\Phi = 0$. Since $A_{\chi} \varphi_{\chi,n} = \lambda_{\chi,n} \varphi_{\chi,n}$, we have
\[
\langle y, \lambda_{\chi,n} \varphi_{\chi,n} \rangle_{-\kappa} = -(-1)^X \langle h, \tau_{\chi}^n \varphi_{\chi,n} \rangle_{H^{-\theta-\chi}(\partial \Omega), H^{\theta+\chi}(\partial \Omega)} , \quad n \in \mathbb{N}.
\]
Therefore
\[
\langle y, \varphi_{\chi,n} \rangle_{-\kappa} = -(-1)^X \lambda_{\chi,n}^{1-\kappa} \langle h, \tau_{\chi}^n \varphi_{\chi,n} \rangle_{H^{-\theta-\chi}(\partial \Omega), H^{\theta+\chi}(\partial \Omega)}
\]
and
\[
\sum_{n=1}^{\infty} \left| \lambda_{\chi,n}^{1-\kappa} \langle h, \tau_{\chi}^n \varphi_{\chi,n} \rangle_{H^{-\theta-\chi}(\partial \Omega), H^{\theta+\chi}(\partial \Omega)} \right|^2 = \| y \|_{D(A^{-\kappa}_\chi)}^2 . \tag{2.2}
\]
Furthermore, for any $G \in D(\mathcal{A}_\chi^k)$, we have
\[
\| \langle y, G \rangle_{-\kappa} \| = \| \langle h, \tau_{\chi}^n A^{-1}_\chi G \rangle_{H^{-\theta-\chi}(\partial \Omega), H^{\theta+\chi}(\partial \Omega)} \| \\
\leq \| h \|_{H^{-\theta-\chi}(\partial \Omega)} \| \tau_{\chi}^n A^{-1}_\chi G \|_{H^{\theta+\chi}(\partial \Omega)} \\
\leq C \| h \|_{H^{-\theta-\chi}(\partial \Omega)} \| A^{-1}_\chi G \|_{H^{2(1+\kappa)}(\Omega)} \\
\leq C \| h \|_{H^{-\theta-\chi}(\partial \Omega)} \| A^{-1}_\chi G \|_{D(A^{-1}_\chi)} \\
\leq C \| h \|_{H^{-\theta-\chi}(\partial \Omega)} \| G \|_{D(\mathcal{A}_\chi^k)} .
\]
Therefore, we obtain
\[
\| y \|_{D(A^{-\kappa}_\chi)} \leq C \| h \|_{H^{-\theta-\chi}(\partial \Omega)}
\]
and combining this with (2.2), we deduce (2.1). \qed

By this lemma, we are now in position to complete the proof of Theorem 1.3.

2.2. Proof of Theorem 1.3 for $\alpha \in (0,1)$. For all $n \in \mathbb{N}$, we set
\[
u_{1,n}(t) := (-1)^X \int_0^t (t-s)^{\alpha-1} E_{\alpha, \alpha}(-\lambda_{\chi,n}(t-s)^\alpha) 1_{(0,T)}(s) \langle f(s, \cdot), \tau_{\chi}^n \varphi_{\chi,n} \rangle_{H^{-\theta-\chi}(\partial \Omega), H^{\theta+\chi}(\partial \Omega)} ds,
\]
\[
u_{2,n}(t) := E_{\alpha, \alpha}(-\lambda_{\chi,n} t^{\alpha}) \langle u_0, \varphi_{\chi,n} \rangle_{-1-\kappa},
\]
\[
u_{3,n}(t) := \int_0^t (t-s)^{\alpha-1} E_{\alpha, \alpha}(-\lambda_{\chi,n}(t-s)^\alpha) 1_{(0,T)}(s) \langle \rho^{-1} F(s, \cdot), \varphi_{\chi,n} \rangle_{-\kappa-1} ds,
\]
and
\[
u_n(t) := \nu_{1,n}(t) + \nu_{2,n}(t) + \nu_{3,n}(t),
\]
where \(\mathbb{I}_{(0,T)} \) denotes the characteristic function of \((0,T)\). Here, for \(\beta_1, \beta_2 > 0 \), \(E_{\beta_1, \beta_2} \) denotes the Mittag-Leffler function given by
\[
E_{\beta_1, \beta_2}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta_1 k + \beta_2)}, \quad z \in \mathbb{C}.
\]

We will divide the proof of Theorem 1.3 into three steps: In the first step, we will prove that for any \(\varepsilon > 0 \), the sequence
\[
\sum_{n=1}^{N} u_n(t) \varphi_{\chi,n}, \quad N \in \mathbb{N},
\]
converges to \(u \) in \(L^r(0,T; D(A_{\chi}^{-\varepsilon-\kappa})) \) as \(N \to \infty \). In the second step, we prove that the same sequence converges in \(L^r_{\text{loc}}(0, +\infty; D(A_{\chi}^{-\varepsilon-\kappa})) \) to a function \(v \) satisfying the conditions (i) and (ii) of Definition 1.1. In the third step, we complete the proof of the theorem.

In addition to the generic constant \(C > 0 \), for all \(\varepsilon > 0 \) by \(C_{\varepsilon} > 0 \) we denote generic constants depending also on \(\varepsilon \).

Step 1. Fix \(\varepsilon > 0 \). Let us show that the sequence
\[
\sum_{n=1}^{N} u_n(t) \varphi_{\chi,n}, \quad N \in \mathbb{N}
\]
converges in \(L^r(0,T; D(A_{\chi}^{-\varepsilon-\kappa})) \). For this purpose, it suffices to prove that the sequences
\[
\sum_{n=1}^{N} u_{i,n}(t) \varphi_{\chi,n}, \quad i = 1, 2, 3, \quad N \in \mathbb{N},
\]
converge in \(L^r(0,T; D(A_{\chi}^{-\varepsilon-\kappa})) \). First we prove this result for the case \(i = 1 \). For \(m < n \) and almost all \(t \in (0,T) \), we have
\[
\left\| \sum_{\ell=m}^{n} u_{1,\ell}(t) \varphi_{\chi,\ell} \right\|_{D(A_{\chi}^{-\varepsilon-\kappa})} = \left\| \sum_{\ell=m}^{n} \left(\int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,\ell}(t-s)^{\alpha}) \left(f(s, \cdot), \tau_{\chi}^{*} \varphi_{\chi,\ell} \right)_{H_{-\theta-\chi}(\partial \Omega), H_{\theta+\chi}(\partial \Omega)} ds \right) \varphi_{\chi,\ell} \right\|_{D(A_{\chi}^{-\varepsilon-\kappa})} \leq \int_{0}^{t} \left\| \sum_{\ell=m}^{n} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,\ell}(t-s)^{\alpha}) \left(f(s, \cdot), \tau_{\chi}^{*} \varphi_{\chi,\ell} \right)_{H_{-\theta-\chi}(\partial \Omega), H_{\theta+\chi}(\partial \Omega)} \varphi_{\chi,\ell} \right\|_{D(A_{\chi}^{-\varepsilon-\kappa})} ds.
\]
In view of formula (1.148) of [24, Theorem 1.6], for almost all \(s \in (0, t) \), we find
\[
\left\| \sum_{\ell=m}^{n} (t-s)^{\alpha-1} E_{\alpha,\alpha} (-\lambda_{\chi,\ell}(t-s)^{\alpha}) \left\langle f(s, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \varphi_{\chi,\ell} \right\|_{D(A_{\chi}^{-\kappa})}^2 \\
\leq \sum_{\ell=m}^{n} \left| \lambda_{\chi,\ell}^{-\kappa}(t-s)^{\alpha-1} E_{\alpha,\alpha} (-\lambda_{\chi,\ell}(t-s)^{\alpha}) \left\langle f(s, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \right|^2 \\
\leq C(t-s)^{2(\alpha-1)} \sum_{\ell=m}^{n} \left| \lambda_{\chi,\ell}^{-\kappa} \left\langle f(s, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \right|^2.
\]
Hence
\[
\left\| \sum_{\ell=m}^{n} u_{1,\ell}(t) \varphi_{\chi,\ell} \right\|_{D(A_{\chi}^{-\kappa})} \\
\leq C \int_{0}^{t} (t-s)^{\alpha-1} \left(\sum_{\ell=m}^{n} \left| \lambda_{\chi,\ell}^{-\kappa} \left\langle f(s, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \right|^2 \right)^{\frac{1}{2}} ds.
\]
Applying the young inequality for convolution, we obtain
\[
\left\| \sum_{\ell=m}^{n} u_{1,\ell}(t) \varphi_{\chi,\ell} \right\|_{L^\infty(0,T; D(A_{\chi}^{-\kappa}))} \\
\leq C(\varepsilon\alpha)^{-1} T^{\varepsilon\alpha} \sum_{\ell=1}^{n} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle \varphi_{\chi,\ell} - \sum_{\ell=1}^{m} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle \varphi_{\chi,\ell} \right\|_{L^\infty(0,T; L^2(\Omega))}.
\]
Using Lemma 2.71, for almost all \(t \in (0, T) \) and all \(N \in \mathbb{N} \), we obtain
\[
\left\| \sum_{\ell=1}^{N} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle \varphi_{\chi,\ell} \right\|_{L^2(\Omega)} \\
\leq \left(\sum_{\ell=1}^{\infty} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \right)^2 \frac{1}{2}
\leq C \| f(t, \cdot) \|_{H^{-\theta-x}(\partial \Omega)}
\]
and the limit
\[
\lim_{N \to \infty} \sum_{\ell=1}^{N} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \varphi_{\chi,\ell},
\]
exists in \(L^2(\Omega) \) for almost all \(t \in (0, T) \). In the same way, by \(f \in L^\infty(0,T; H^{-\theta-x}(\partial \Omega)) \), applying the Lebesgue dominate convergence theorem for functions taking values in \(L^2(\Omega) \), we deduce that the limit
\[
\lim_{N \to \infty} \sum_{\ell=1}^{N} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \varphi_{\chi,\ell},
\]
exists in \(L^\infty(0,T; L^2(\Omega)) \). In particular, it is a Cauchy sequence and so we have
\[
\lim_{m,n \to \infty} \left\| \sum_{\ell=1}^{n} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle \varphi_{\chi,\ell} - \sum_{\ell=1}^{m} \lambda_{\chi,\ell}^{-1-\kappa} \left\langle f(t, \cdot), \tau_{\chi}^x \varphi_{\chi,\ell} \right\rangle \varphi_{\chi,\ell} \right\|_{L^\infty(0,T; L^2(\Omega))} = 0.
\]
which implies that
\[
\lim_{m,n \to \infty} \left\| \sum_{\ell=m}^{n} u_{1,\ell}(t) \varphi_{\chi,\ell} \right\|_{L^r(0,T; D(A^{\varepsilon-\kappa}_\chi))} = 0.
\]
Thus the sequence
\[
\sum_{n=1}^{N} u_{1,n}(t) \varphi_{\chi,n}, \quad N \in \mathbb{N}
\]
is a Cauchy sequence in \(L^r(0, T; D(A^{\varepsilon-\kappa}_\chi)) \), which yields the convergence in \(L^r(0, T; D(A^{\varepsilon-\kappa}_\chi)) \).
Similarly we can show that the sequence
\[
\sum_{n=1}^{N} u_{3,n}(t) \varphi_{\chi,n}, \quad N \in \mathbb{N},
\]
converges in \(L^r(0, T; D(A^{\varepsilon-\kappa}_\chi)) \). Moreover formula (1.148) of [24, Theorem 1.6] yields
\[
\sum_{n=1}^{\infty} \left| \lambda_{\chi,n}^{-\varepsilon-\kappa} u_{2,n}(t) \right|^2 \leq C t^{2(\varepsilon-\beta)\alpha} \sum_{n=1}^{\infty} \left| \lambda_{\chi,n}^{-\varepsilon-\kappa} \langle u_0, \varphi_{\chi,n} \rangle \right|^2 \leq C t^{2(\varepsilon-\beta)\alpha} \|u_0\|^2_{D(A^{\varepsilon-\kappa}_\chi)}
\]
and, combining this with the fact that \(r\beta\alpha = 1 \), we can conclude that the limit
\[
\lim_{N \to \infty} \sum_{n=1}^{N} u_{2,n}(t) \varphi_{\chi,n},
\]
exists in \(L^r(0, T; D(A^{\varepsilon-\kappa}_\chi)) \). These results prove that the sequence
\[
\sum_{n=1}^{N} u_{n}(t) \varphi_{\chi,n}, \quad N \in \mathbb{N},
\]
converges in \(L^r(0, T; D(A^{\varepsilon-\kappa}_\chi)) \).

Step 2. Fix \(\varepsilon > 0 \). Using the arguments of Step 1, we can define \(v \in L^r_{\text{loc}}(0, +\infty; D(A^{\varepsilon-\kappa}_\chi)) \) by
\[
v(t, \cdot) := \sum_{n=1}^{\infty} u_{n}(t) \varphi_{\chi,n}.
\]
In this step, we will show that \(v \) fulfills conditions (i) and (ii) of Definition 1.11. Fixing \(p > 0 \) and repeating the arguments of Step 1, we deduce that, for almost all \(t > 0 \), we have
\[
\left\| e^{-pt} \sum_{n=1}^{\infty} u_{1,n}(t) \varphi_{\chi,n} \right\|_{D(A^{\varepsilon-\kappa}_\chi)} \leq C \int_{0}^{t} e^{-p(t-s)} (t-s)^{\varepsilon\alpha-1} e^{-ps} \left\| f(s, \cdot) \right\|_{L^r(0,T)} \left(\sum_{n=1}^{\infty} \left| \lambda_{\chi,n}^{-\varepsilon-\kappa} \langle f(s, \cdot), \tau_{\chi,n}^* \varphi_{\chi,n} \rangle_{H^{-\theta-x}(\partial \Omega), H^{\theta+x}(\partial \Omega)} \right|^2 \right)^{\frac{1}{2}} ds.
\]
Combining this with (2.1) and applying Young's inequality, we obtain

\[
\left\| e^{-pt} \sum_{n=1}^{\infty} u_{1,n}(t) \varphi_{\chi,n} \right\|_{L^1(0, +\infty; D(A^{-\epsilon_\kappa}_\chi))} \\
\leq C \left\| (e^{-pt \frac{\epsilon_\alpha}{\alpha-1}} 1_{(0, +\infty)}(t)) * \left(1_{(0,T)}(t) \| f(t, \cdot) \|_{H^{-\theta_{-\chi}}(\partial \Omega)} \right) \right\|_{L^1(0, +\infty)} \\
\leq C \left(\int_0^{+\infty} e^{-pt \frac{\epsilon_\alpha}{\alpha-1}} dt \right) \| f \|_{L^r(0,T; H^{-\theta_{-\chi}}(\partial \Omega))} < \infty.
\]

Therefore, we have

\[
e^{-pt} \sum_{n=1}^{\infty} u_{1,n}(t) \varphi_{\chi,n} \in L^1(0, +\infty; D(A^{-\epsilon_\kappa}_\chi)), \quad p > 0.
\]

In the same way, one can verify that

\[
e^{-pt} \sum_{n=1}^{\infty} u_{i,n}(t) \varphi_{\chi,n} \in L^1(0, +\infty; D(A^{-\epsilon_\kappa}_\chi)), \quad p > 0, \quad i = 2, 3
\]

and conclude that condition (i) of Definition 1.1 is fulfilled.

Now let us consider condition (ii) of Definition 1.1. Applying the properties of Mittag-Leffler functions (see for instance [24]), we see that the Laplace transform \(\mathcal{L}v(p, \cdot) \) of \(v \) satisfies

\[
\mathcal{L}v(p, \cdot) = \sum_{n=1}^{\infty} \mathcal{L}u_n(p) \varphi_{\chi,n} \in D(A^{-\epsilon_\kappa}_\chi),
\]

where

\[
\mathcal{L}u_n(p) = \int_0^{+\infty} e^{-pt} u_n(t) dt \\
= \frac{\left< p^{a-1}u_0 + \int_0^T e^{-pt} \rho^{-1} F(t, \cdot) dt, \varphi_{\chi,n} \right>_{-\kappa-1}}{p^a + \lambda_{\chi,n}} - \frac{(-1)^\chi \left< \int_0^T e^{-pt} f(t, \cdot) dt, \tau^{\kappa}_{\chi} \varphi_{\chi,n} \right>_{H^{-\theta_{-\chi}}(\mathbb{R}^{\theta+\chi})}}{p^a + \lambda_{\chi,n}}.
\]

Now let \(V(p) \) be the solution in the transposition sense of the boundary value problem

\[
\begin{cases}
\rho(x)^{-1} A V(p, x) + p^a V(p, x) = \int_0^T e^{-pt} \rho^{-1} F(t, x) dt + p^{a-1} u_0(x), \quad x \in \Omega, \\
\tau_{\chi} V(p, x)(x) = \int_0^T e^{-pt} f(t, x) dt, \quad x \in \partial \Omega.
\end{cases}
\]
By the definition of the transposition, setting $G = \varphi_{\chi,n}$ in (1.7) and applying $(A + p^\alpha)\varphi_{\chi,n} = (\lambda_{\chi,n} + p^\alpha)\varphi_{\chi,n}$, we obtain
\[
\begin{align*}
(\lambda_{\chi,n} + p^\alpha) \left(\langle V(p, \cdot), \varphi_{\chi,n} \rangle \right) \\
= -(-1)^X \left(\int_0^T e^{-pt} f(t, \cdot) dt, \tau_{\chi,n} \varphi_{\chi,n} \right)_{H^{-\theta-\chi}(\partial\Omega), H^{\theta+\chi}(\partial\Omega)} \\
+ \left(p^\alpha - 1 u_0 + \int_0^T e^{-pt} F(t, \cdot) dt, \varphi_{\chi,n} \right)_{-\kappa-1} \\
= (\lambda_{\chi,n} + p^\alpha) \mathcal{L}u_n(p).
\end{align*}
\]
Therefore $\mathcal{L}v(p, x) = V(p, x)$ for $p > 0$ and $x \in \Omega$, and so we can verify condition (ii) of Definition 1.1.

Step 3. In this step we complete the proof of Theorem 1.3. The above argument shows that u is a weak solution to (1.4) in the sense of Definition 1.1. Moreover, the uniqueness of this solution is guaranteed by the uniqueness of the Laplace transform of a function and the uniqueness of the solutions of the boundary value problem (1.8). Therefore, the proof of the theorem will be completed if we show that for all $\varepsilon > 0$, estimate (1.12) holds true. For this purpose, let use first consider
\[
\sum_{n=1}^{\infty} u_{1,n} \varphi_{\chi,n} \in L^r(0, T; D(A_{\chi-\varepsilon}))
\]
Repeating the arguments of Step 1 and Lemma 2.1, we deduce that
\[
\sum_{n=1}^{\infty} u_{1,n} \varphi_{\chi,n} \leq C \left\| \int_0^t (t-s)^{\varepsilon \alpha - 1} \| f(s, \cdot) \|_{H^{-\theta-\chi}(\partial\Omega)} ds \right\|_{L^r(0, T)}.
\]
Therefore Young’s inequality for convolution yields
\[
\sum_{n=1}^{\infty} u_{1,n} \varphi_{\chi,n} \leq C \varepsilon \| f \|_{L^r(0, T; H^{-\theta-\chi}(\partial\Omega))}.
\]
In the same way, we obtain
\[
\sum_{n=1}^{\infty} u_{i,n} \varphi_{\chi,n} \leq C \varepsilon \left(\| u_0 \|_{D(A_{\chi-\varepsilon})} + \| \rho^{-1} F \|_{L^r(0, T; D(A_{\chi-\varepsilon-1}))} \right), i = 2, 3.
\]
Combining these estimates, we deduce (1.12). This completes the proof of Theorem 1.3 for $\alpha \in (0, 1)$.

18
2.3. **Proof of Theorem 1.3** for $\alpha \in (1, 2)$. For this purpose we fix $\varepsilon \in (0, \alpha^{-1})$. For all $n \in \mathbb{N}$, we set

$$u_{1,n}(t) := \frac{(-1)^{n}}{\lambda_{\alpha,n}} \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\alpha,n}(t-s)^{\alpha}) \mathbf{1}_{(0,T)}(s) \langle f(s, \cdot), \tau^{\ast}_{\chi} \varphi_{\chi,n} \rangle_{H^{-\theta+x}(\partial\Omega), H^{\theta+x}(\partial\Omega)} ds,$$

and

$$u_{2,n}(t) := E_{\alpha,1}(-\lambda_{\alpha,n} t^{\alpha}) \langle u_{0}, \varphi_{\chi,n} \rangle_{H^{-\alpha-1} - \alpha},$$

$$u_{3,n}(t) := t E_{\alpha,2}(-\lambda_{\alpha,n} t^{\alpha}) \langle u_{1}, \varphi_{\chi,n} \rangle_{H^{-\alpha-1}((1+r^{-1})-\alpha)},$$

$$u_{4,n}(t) := \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\alpha,n}(t-s)^{\alpha}) \mathbf{1}_{(0,T)}(s) \langle \rho^{-1} F(s, \cdot), \varphi_{\chi,n} \rangle_{H^{-\alpha-1} - \alpha} ds.$$

and

$$u_{n} := u_{1,n} + u_{2,n} + u_{3,n} + u_{4,n}.$$

We will show that the sequence

$$\sum_{n=1}^{N} u_{n}(t) \varphi_{\chi,n}, \quad N \in \mathbb{N},$$

converges in $L^{r}(0, T; D(A_{\chi}^{\varepsilon-n}))$ to the unique solution u to (1.4). For this purpose, we remark that formula (1.148) of [21] Theorem 1.6 implies that

$$|u_{2,n}(t)| \leq Ct^{\varepsilon r-\alpha} \lambda_{\chi,n}^{\varepsilon-\alpha-1} \left| \langle u_{0}, \varphi_{\chi,n} \rangle_{H^{-\alpha-1} - \alpha} \right|$$

and

$$|u_{3,n}(t)| \leq Ct^{\varepsilon r-\alpha} \lambda_{\chi,n}^{\varepsilon-\alpha-1} \left(1-r^{-1}\right) \left| \langle u_{1}, \varphi_{\chi,n} \rangle_{H^{-\alpha-1}((1+r^{-1})-\alpha)} \right|.$$

Therefore, repeating the arguments for the case $\alpha \in (0,1)$, we can complete the proof of Theorem 1.3 for $\alpha \in (1, 2)$.

2.4. **Proof of Theorem 1.4.** Since $u_{0} = u_{[\alpha]-1} = 0$ and $\rho = 1$, the unique weak solution u to (1.4) is given by

$$u(t, \cdot) = \sum_{n=1}^{\infty} u_{n}(t) \varphi_{\chi,n}, \quad t \in (0, T),$$

where

$$u_{n}(t) := \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n}(t-s)^{\alpha}) \lambda_{\chi,n}^{\kappa+1} G_{n}(s) ds,$$

and

$$G_{n}(t) := \frac{(-1)^{n+1} \langle f(t, \cdot), \tau^{\ast}_{\chi} \varphi_{\chi,n} \rangle_{H^{-\theta+x}(\partial\Omega), H^{\theta+x}(\partial\Omega)} + \langle F(t, \cdot), \varphi_{\chi,n} \rangle_{H^{-\alpha-1} - \alpha}}{\lambda_{\chi,n}^{\kappa+1}}, \quad n \in \mathbb{N}, \quad t \in (0, T).$$

Here we notice that

$$\langle A_{\chi}^{-\kappa} u(t, \cdot), \varphi_{\chi,n} \rangle = \lambda_{\chi,n}^{-\kappa} u_{n}(t) = \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n}(t-s)^{\alpha}) G_{n}(s) ds.$$
Applying Lemma 2.1 we see
\[
G(t, \cdot) = \sum_{n=1}^{\infty} G_n(t) \varphi_{\lambda,n} \in L^2((0, T) \times \Omega),
\]
and
\[
\|G\|_{L^2((0,T) \times \Omega)} \leq C \left(\|f\|_{L^2(0,T; H^{-\alpha}(\partial \Omega))} + \|F\|_{L^2(0,T; D(A_{-\alpha}^{-1})^\infty)} \right).
\]
(2.3)
On the other hand, in view of [17, Lemma A.2] (see also [25, Theorem 2.2]), we have \(A_{-\alpha}^{-1} \varphi \in L^2(0, T; D(A_{\lambda}^{-1}))\), \(A_{-\alpha}^{-1} \varphi = \partial_t^\alpha A_{-\alpha}^{-1} \varphi \in L^2((0, T) \times \Omega)\) and
\[
\|A_{-\alpha}^{-1} \varphi\|_{L^2(0,T;D(A_{\lambda}^{-1}))} + \|\partial_t^\alpha A_{-\alpha}^{-1} \varphi\|_{L^2((0,T) \times \Omega)} \leq C \|G\|_{L^2((0,T) \times \Omega)}.
\]
(2.4)
From these results, one can easily verify that \(u \in L^2(0, T; D(A_{-\alpha}^{-1}))\), \(\partial_t^\alpha u \in L^2(0, T; D(A_{-\alpha}^{-1}))\) and estimates (2.3), (2.4) imply (1.14). This completes the proof of the theorem.

3. PROOF OF THEOREM 1.5

3.1. For \(m = 1\). Let us start with the case \(m = 1\). For this purpose, we fix \(\varepsilon \in (0, 1/4)\). In view of Theorem 1.3 the solution \(u \in L^2(0, T; D(A_{\lambda}^{-\alpha}))\) is given by
\[
u(t, \cdot) = \sum_{n=1}^{\infty} u_n(t) \varphi_{\lambda,n},
\]
where we set
\[
u_{1,n}(t) := -(-1)^\lambda \int_0^t (t-s)^{-\alpha} E_{\alpha,\alpha}(-\lambda \varphi_{\lambda,n}(t-s)^{\alpha}) \left\{ f(s, \cdot), \tau^n_{\lambda} \varphi_{\lambda,n} \right\}_{L^2(\partial \Omega)} \, ds,
\]
\[
u_{2,n}(t) := E_{\alpha,1}(-\lambda \varphi_{\lambda,n} t^{\alpha}) \langle u_0, \varphi_{\lambda,n} \rangle,
\]
\[
u_{3,n}(t) = \int_0^t (t-s)^{-\alpha} E_{\alpha,\alpha}(-\lambda \varphi_{\lambda,n}(t-s)^{\alpha}) \mathbb{I}_{(0,T)}(s) \left\{ \rho^{-1} F(s, \cdot), \varphi_{\lambda,n} \right\} \, ds
\]
and
\[
u_n(t) = \nu_{1,n}(t) + \nu_{2,n}(t) + \nu_{3,n}(t), \quad n \in \mathbb{N}.
\]
First we see that \(u_{1,n} \in W^{1,1}(0, T)\) and
\[
\frac{du_{1,n}}{dt}(t) = u'_{1,n}(t) = -(-1)^\lambda \partial_t \left(\int_0^t s^{-\alpha} E_{\alpha,\alpha}(-\lambda \varphi_{\lambda,n} s^{\alpha}) \left\{ f(t-s, \cdot), \tau^n_{\lambda} \varphi_{\lambda,n} \right\}_{L^2(\partial \Omega)} \, ds \right)
\]
\[
= -(-1)^\lambda \left\{ f(0, \cdot), \tau^n_{\lambda} \varphi_{\lambda,n} \right\}_{L^2(\partial \Omega)} H^{-\frac{\alpha}{2} - \chi(\partial \Omega), H^{\frac{\alpha}{2} + \chi(\partial \Omega)}} t^{\alpha-1} E_{\alpha,\alpha}(-\lambda \varphi_{\lambda,n} t^{\alpha})
\]
\[
-\left(-1\right)^{\lambda} \int_0^t s^{-\alpha} E_{\alpha,\alpha}(-\lambda \varphi_{\lambda,n} s^{\alpha}) \left\{ \partial_t f(t-s, \cdot), \tau^n_{\lambda} \varphi_{\lambda,n} \right\}_{H^{-\frac{\alpha}{2} - \chi(\partial \Omega), H^{\frac{\alpha}{2} + \chi(\partial \Omega)}}} \, ds.
\]
(3.1)
Similarly, using [25, Lemma 3.2], we deduce that \(u_{i,n} \in W^{1,1}(0, T), i = 2, 3\), where
\[
u_{2,n}(t) = -\lambda \varphi_{\lambda,n} \langle u_0, \varphi_{\lambda,n} \rangle t^{\alpha-1} E_{\alpha,\alpha}(-\lambda \varphi_{\lambda,n} t^{\alpha}),
\]
\begin{align*}
u_{3,n}'(t) &= \langle \rho^{-1} F(0, \cdot), \varphi_{\chi,n} \rangle \big|_{-1} t^{\alpha-1} E_{\alpha,\alpha} (-\lambda_{\chi,n} t^{\alpha}) \\
&+ \int_0^t s^{\alpha-1} E_{\alpha,\alpha} (-\lambda_{\chi,n} s^{\alpha}) \langle \rho^{-1} \partial_t F(t-s, \cdot), \varphi_{\chi,n} \rangle \big|_{-1} ds.
\end{align*}

On the other hand, the compatibility condition \[\text{(1.15)}\] and the representation \[\text{(1.7)}\] of the solution in the transposition sense to the elliptic problem \[\text{(1.6)}\], imply that
\[
\lambda_{\chi,n} \langle u_0, \varphi_{\chi,n} \rangle = (-1)^X \langle f(0, \cdot), \tau_{\chi}^\ast \varphi_{\chi,n} \rangle_{H^{-\frac{1}{2}-\chi}(\partial \Omega), H^{\frac{3}{2}+\chi}(\partial \Omega)} + \langle \rho^{-1} F(0, \cdot), \varphi_{\chi,n} \rangle \big|_{-1}.
\]

Therefore, we have
\[
u_{2,n}'(t) = \left((-1)^X \langle f(0, \cdot), \tau_{\chi}^\ast \varphi_{\chi,n} \rangle_{H^{-\frac{1}{2}-\chi}(\partial \Omega), H^{\frac{3}{2}+\chi}(\partial \Omega)} - \langle \rho^{-1} F(0, \cdot), \varphi_{\chi,n} \rangle \big|_{-1} \right) t^{\alpha-1} E_{\alpha,\alpha} (-\lambda_{\chi,n} t^{\alpha})
\]
and, combining this with \[\text{(3.1)}\], we obtain
\[
\begin{align*}
u_n'(t) &= -(-1)^X \int_0^t (t-s)^{\alpha-1} E_{\alpha,\alpha} (-\lambda_{\chi,n}(t-s)^{\alpha}) \langle \partial_s f(s, \cdot), \tau_{\chi}^\ast \varphi_{\chi,n} \rangle_{H^{-\frac{1}{2}-\chi}(\partial \Omega), H^{\frac{3}{2}+\chi}(\partial \Omega)} ds \\
&+ \int_0^t s^{\alpha-1} E_{\alpha,\alpha} (-\lambda_{\chi,n} s^{\alpha}) \langle \rho^{-1} \partial_t F(t-s, \cdot), \varphi_{\chi,n} \rangle \big|_{-1} ds.
\end{align*}
\]

Thus, repeating the arguments in the proof of Theorem \[\text{1.3}\] we deduce that
\[
\sum_{k=1}^n \nu_k'(t) \varphi_{\chi,k}, \quad n \in \mathbb{N}
\]
converges in \(L'(0, T; D(A_{\chi}^{-\varepsilon}))\) and
\[
\left\| \sum_{k=1}^n \nu_k' \varphi_{\chi,k} \right\|_{L'(0, T; D(A_{\chi}^{-\varepsilon}))} \leq C_{\varepsilon} (\|\partial_t f\|_{L'(0, T; H^{-\frac{1}{2}-\chi}(\partial \Omega))} + \|\rho^{-1} \partial_t F\|_{L'(0, T; D(A_{\chi}^{-1}))}).
\]

Therefore \(u \in W^{1,r}(0, T; D(A_{\chi}^{-\varepsilon}))\) and
\[
\|u\|_{W^{1,r}(0, T; D(A_{\chi}^{-\varepsilon}))} \leq C_{\varepsilon} \left(\|f\|_{W^{1,r}(0, T; H^{-\frac{1}{2}-\chi}(\partial \Omega))} + \|\rho^{-1} F\|_{W^{1,r}(0, T; D(A_{\chi}^{-1}))} \right).
\]

Moreover, in view of \[\text{[22] Theorem 11.1, Chapter 1}\] since \(D(A_{\chi}^\varepsilon) = H^{2\varepsilon}_0(\Omega)\) for \(\varepsilon \in (0, 1/4)\) with the equivalent norms, the duality yields \(H^{-2\varepsilon}(\Omega) = D(A_{\chi}^{-\varepsilon})\). Thus, the last inequality can be rewritten as
\[
\|u\|_{W^{1,r}(0, T; H^{-2\varepsilon}(\Omega))} \leq C_{\varepsilon} \left(\|f\|_{W^{1,r}(0, T; H^{-\frac{1}{2}-\chi}(\partial \Omega))} + \|\rho^{-1} F\|_{W^{1,r}(0, T; D(A_{\chi}^{-1}))} \right). \tag{3.2}
\]

In order to complete the proof for \(m = 1\), we need to prove that \(u \in L'(0, T; H^2(\Omega))\) satisfies
\[
\|u\|_{L'(0, T; H^2(\Omega))} \leq C (\sum_{k=0}^1 \|f\|_{W^{1-k,r}(0, T; H^{2k-\frac{1}{2}-\chi}(\partial \Omega))} + \|\rho^{-1} F\|_{W^{1-k,r}(0, T; D(A_{\chi}^{-1}))}). \tag{3.3}
\]
Similarly we find

\[u_{1,n}(t) = -(-1)^{x} \int_{0}^{t} s^{\alpha-1} E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha}) \left\langle f(t-s, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{L^{2}(\partial\Omega)} \, ds \]

\[= (-1)^{x} \int_{0}^{t} \partial_{s} \left(\frac{E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha})}{\lambda_{\lambda,n}} \left\langle f(t-s, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{L^{2}(\partial\Omega)} \right) \, ds \]

\[= (-1)^{x} \int_{0}^{t} \frac{E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha})}{\lambda_{\lambda,n}} \left\langle \partial_{t} f(t-s, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{H^{-\frac{1}{2}}-x(\partial\Omega),H^{\frac{1}{2}}+x(\partial\Omega)} \, ds \]

\[+ (-1)^{x} E_{\alpha,1}(\lambda_{\lambda,n} t^{\alpha}) \left\langle f(0, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{H^{-\frac{1}{2}}-x(\partial\Omega),H^{\frac{1}{2}}+x(\partial\Omega)} \]

\[- (-1)^{x} \frac{\left\langle f(t, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{L^{2}(\partial\Omega)}}{\lambda_{\lambda,n}}. \]

Similarly we find

\[u_{3,n}(t) = \int_{0}^{t} \frac{E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha})}{\lambda_{\lambda,n}} \left\langle \rho^{-1} \partial_{t} F(t-s, \cdot), \varphi_{\lambda,n} \right\rangle_{-1} \, ds \]

\[- E_{\alpha,1}(\lambda_{\lambda,n} t^{\alpha}) \left\langle \rho^{-1} F(0, \cdot), \varphi_{\lambda,n} \right\rangle_{-1} + \frac{\left\langle \rho^{-1} F(t, \cdot), \varphi_{\lambda,n} \right\rangle}{\lambda_{\lambda,n}}. \]

Thus, applying again the compatibility condition \([1,15]\), we find

\[u_{n}(t) = (-1)^{x} \int_{0}^{t} \frac{E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha})}{\lambda_{\lambda,n}} \left\langle \partial_{t} f(t-s, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{H^{-\frac{1}{2}}-x(\partial\Omega),H^{\frac{1}{2}}+x(\partial\Omega)} \, ds \]

\[+ \int_{0}^{t} E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha}) \left\langle \rho^{-1} \partial_{t} F(t-s, \cdot), \varphi_{\lambda,n} \right\rangle_{-1} \, ds \]

\[+ (-1)^{x+1} \frac{\left\langle f(t, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{L^{2}(\partial\Omega)}}{\lambda_{\lambda,n}} + \left\langle \rho^{-1} F(t, \cdot), \varphi_{\lambda,n} \right\rangle \] \hspace{1cm} \text{(3.4)}

We set

\[w_{1,n}(t) := (-1)^{x} \int_{0}^{t} E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha}) \left\langle \partial_{t} f(t-s, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{H^{-\frac{1}{2}}-x(\partial\Omega),H^{\frac{1}{2}}+x(\partial\Omega)} \, ds, \]

\[w_{2,n}(t) := \int_{0}^{t} E_{\alpha,1}(\lambda_{\lambda,n} s^{\alpha}) \left\langle \rho^{-1} \partial_{t} F(t-s, \cdot), \varphi_{\lambda,n} \right\rangle_{-1} \, ds, \]

and

\[w_{3,n}(t) := \frac{(-1)^{x+1} \left\langle f(t, \cdot), \varsigma_{\lambda,n}^{*} \varphi_{\lambda,n} \right\rangle_{H^{-\frac{1}{2}}-x(\partial\Omega),H^{\frac{1}{2}}+x(\partial\Omega)} + \left\langle \rho^{-1} F(t, \cdot), \varphi_{\lambda,n} \right\rangle}{\lambda_{\lambda,n}}. \]

In view of \((3.4)\), the condition

\[\sum_{n=1}^{\infty} w_{i,n} \varphi_{\lambda,n} \in L^{r}(0, T; H^{2}(\Omega)), \quad i = 1, 2, 3, \] \hspace{1cm} \text{(3.5)}
implies that \(u \in L^r(0, T; H^2(\Omega)) \). Moreover the estimate

\[
\left\| \sum_{n=1}^{\infty} w_{i,n} \varphi_{\lambda,n} \right\|_{L^r(0,T;H^2(\Omega))} \leq C \left(\sum_{k=0}^{1} \left\| f \right\|_{W^{1-k,r}(0,T;H^{2k+1/2-x}(\partial\Omega))} + \left\| \rho^{-1} F \right\|_{W^{1-k,r}(0,T;D(A_k^{2-1}))} \right), \quad i = 1, 2, 3,
\]

yields \((3.3)\). In order to complete the proof of our result for \(m = 1 \), we have to prove \((3.5)\) and \((3.6)\). Applying formula (1.148) of [24, Theorem 1.6], similarly to the proof of Theorem 1.3 for \(m < n \) we have

\[
\left\| \sum_{\ell=m}^{n} w_{1,\ell} \varphi_{\lambda,\ell} \right\|_{L^r(0,T;D(A_\lambda))} \leq C \int_0^t s^{-\alpha} \left\| \sum_{\ell=m}^{n} \frac{\partial_t f(t-s, \cdot)}{\lambda_{\lambda,\ell}} \tau^*_{\lambda,\ell} \varphi_{\lambda,\ell} \right\|_{L^2(\Omega)} ds \left\| \varphi_{\lambda,\ell} \right\|_{L^r(0,T;L^2(\Omega))}. \]

On the other hand, in view of Lemma 2.1 and \(\partial_t f \in L^r(0, T; H^{-1/2-x}(\partial\Omega)) \), the sequence

\[
\sum_{\ell=1}^{N} \frac{\partial_t f(t-s, \cdot)}{\lambda_{\lambda,\ell}} \tau^*_{\lambda,\ell} \varphi_{\lambda,\ell} \left|_{H^{-1/2-x}(\partial\Omega), H^{1/2+(x)}(\partial\Omega)} \right|, \quad N \in \mathbb{N}
\]

converges in \(L^r(0, T; L^2(\Omega)) \). Therefore we have

\[
\lim_{m,n\to \infty} \left\| \sum_{\ell=m}^{n} \frac{\partial_t f(t-s, \cdot)}{\lambda_{\lambda,\ell}} \tau^*_{\lambda,\ell} \varphi_{\lambda,\ell} \left|_{H^{-1/2-x}(\partial\Omega), H^{1/2+(x)}(\partial\Omega)} \right| \right\|_{L^r(0,T;L^2(\Omega))} = 0,
\]

which implies that the sequence \((3.5)\) with \(i = 1 \) converges in \(L^r(0, T; D(A_\lambda)) \). Moreover, since \(D(A_\lambda) \) is embedded continuously into \(H^2(\Omega) \), it follows that \((3.5)\) with \(i = 1 \) holds true. The proof for \((3.5)\) with \(i = 2 \) is similar and so omitted.

Using similar arguments again, we obtain estimate \((3.6)\) for \(i = 1, 2 \). Now let \(y \) satisfy \(y(t, \cdot) \in H^1(\Omega) \) for almost all \(t \in (0, T) \) and satisfy

\[
\begin{align*}
\mathcal{A} y(t, x) &= F(t, x), \quad x \in \Omega, \\
\tau_{\lambda} y(t, x) &= f(t, \cdot), \quad x \in \partial\Omega.
\end{align*}
\]

(3.7)
Combining \(f \in L^r(0, T; H^{\frac{1}{2}+\chi}(\partial \Omega)) \) and \(F \in L^r(0, T; L^2(\Omega)) \) with the elliptic regularity of the operator \(\mathcal{A} \), we have that \(y \in L^r(0, T; H^2(\Omega)) \) and

\[
\|y\|_{L^r(0,T;H^2(\Omega))} \leq C(\|f\|_{L^r(0,T;H^{\frac{1}{2}+\chi}(\partial \Omega))} + \|F\|_{L^r(0,T;L^2(\Omega))}).
\] (3.8)

Moreover, following the proof of Lemma 2.1 one can verify that

\[
\langle y(t, \cdot), \varphi_{\chi,n} \rangle = \frac{(-1)^{\chi+1} \langle f(t, \cdot), \tau^s_{\chi,n} \varphi_{\chi,n} \rangle_{H^{\frac{1}{2}+\chi}(\Omega),H^{\frac{1}{2}+\chi}(\Omega)} + \langle \rho^{-1}F(t, \cdot), \varphi_{\chi,n} \rangle}{\lambda_{\chi,n}} = w_{3,n}(t).
\] (3.9)

Thus, we have

\[
\sum_{n=1}^{\infty} w_{3,n}(t) \varphi_{\chi,n} = y(t, \cdot)
\]

and by \(y \in L^r(0, T; H^2(\Omega)) \), we deduce (3.5) with \(i = 3 \). In addition, we obtain (3.6) for \(i = 3 \) from estimate (3.8). This proves that \(u \in L^r(0, T; H^2(\Omega)) \). Therefore we prove that

\(u \in W^{1,r}(0, T; H^{-\epsilon}(\Omega)) \cap L^r(0, T; H^2(\Omega)) \) for all \(\epsilon \in (0, 1/2) \) and \(u \) satisfies (1.17). In order to complete the proof of Theorem 1.5, it suffices to verify that \(u \) is a strong solution to (1.4) in the sense of Definition 1.2. For this purpose, let

\[
\tilde{f} \in W^{1,r}(0, +\infty; H^{\frac{1}{2}+\chi}(\partial \Omega)) \cap L^r(0, +\infty; H^{\frac{1}{2}+\chi}(\partial \Omega)),
\]

\[
\tilde{F} \in W^{1,r}(0, +\infty; \rho D(A^{-1}_{\chi})) \cap L^r(0, +\infty; L^2(\Omega)),
\]

satisfy \(\text{supp} \tilde{f} \subset [0, T + 1) \times \partial \Omega \), \(\text{supp} \tilde{F} \subset [0, T + 1) \times \Omega \) and

\[
\tilde{f}|_{\Sigma} = f, \quad \tilde{F}|_{Q} = F.
\] (3.10)

Now we set

\[
\overline{v}(t, \cdot) := \sum_{n=1}^{\infty} \overline{v}_{n}(t) \varphi_{\chi,n}
\]

with

\[
\overline{v}_{n}(t) := (-1)^{\chi} \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n}(t-s)^{\alpha}) \left\langle \tilde{f}(s, \cdot), \tau^s_{\chi,n} \varphi_{\chi,n} \right\rangle_{L^2(\Omega)} ds
\]

\[
+ \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n}(t-s)^{\alpha}) \left\langle \tilde{F}(s, \cdot), \varphi_{\chi,n} \right\rangle_{L^2(\Omega)} ds
\]

\[
+ E_{\alpha,1}(-\lambda_{\chi,n} \rho \alpha) \langle u_0, \varphi_{\chi,n} \rangle.
\]

From the above arguments, one can verify that \(\overline{v} \in W^{1,r}_{loc}(0, +\infty; H^{-\epsilon}(\Omega)) \cap L^{r}_{loc}(0, +\infty; H^2(\Omega)) \) and

\[
e^{-\rho t} \overline{v}(t, \cdot) \in W^{1,1}(0, +\infty; H^{-\epsilon}(\Omega)) \cap L^{1}(0, +\infty; H^2(\Omega))
\] (3.11)
for $p > 0$. Moreover, following the proof of Theorem 1.5 we see that the Laplace transform $L\tilde{v}(p, x)$ of \tilde{v} satisfies

$$p^\alpha (L\tilde{v}(p, x) - p^{-1}u_0(x)) + p^{-1} A L\tilde{v}(p, x) = \int_0^{T+1} e^{-pt} \rho^{-1} \tilde{F}(t, x) dt, \quad (p, x) \in (0, +\infty) \times \Omega.$$

Henceforth we write $D'(\Omega) = C^\infty_0(\Omega)'$. In view of (3.11), this identity implies that, for all $p > 0$ and all $\psi \in C^\infty_0(\Omega)$, we have

$$L \left[\langle (\rho \partial_t^\alpha \tilde{v} + A \tilde{v})(t, \cdot), \psi \rangle_{D'(\Omega), C^\infty_0(\Omega)} \right] (p) = \langle L[(\rho \partial_t^\alpha \tilde{v} + A \tilde{v})](p, \cdot), \psi \rangle_{D'(\Omega), C^\infty_0(\Omega)} = \langle pp^\alpha (L\tilde{v}(p, \cdot) - u_0) + A L\tilde{v}(p, \cdot), \psi \rangle_{D'(\Omega), C^\infty_0(\Omega)} = \left\langle \int_0^{T+1} e^{-pt} \tilde{F}(t, \cdot) dt, \psi \right\rangle_{D'(\Omega), C^\infty_0(\Omega)}$$

Therefore, for almost all $t > 0$, we have

$$\left\langle (\rho \partial_t^\alpha \tilde{v} + A \tilde{v})(t, \cdot) - \tilde{F}(t, \cdot), \psi \right\rangle_{D'(\Omega), C^\infty_0(\Omega)} = 0.$$

On the other hand, in view of (3.10) one can easily verify that $\tilde{v} = u$ in $(0, T) \times \Omega$. Hence for almost all $t \in (0, T)$ we have

$$\left\langle (\rho \partial_t^\alpha u + Au)(t, \cdot) - F(t, \cdot), \psi \right\rangle_{D'(\Omega), C^\infty_0(\Omega)} = 0, \quad \psi \in C^\infty_0(\Omega).$$

Furthermore, by $u \in L^r(0, T; H^2(\Omega))$, we have $\partial_t^\alpha u = -\rho^{-1}Au + F \in L^r(0, T; L^2(\Omega))$. Therefore (1.9) holds true in $L^r(0, T; L^2(\Omega))$. In the same way, applying (3.11), one can verify that condition (1.10) is also fulfilled and u is a strong solution to (1.4). This completes the proof of Theorem 1.5 for $m = 1$.

3.2. For $m \geq 2$. We will consider only the case $m = 2$. The case $m \geq 3$ can be deduced in a similar way by an iteration argument. Applying the result for $m = 1$, for all $\varepsilon \in (0, 1/2)$, we obtain that $u \in W^{1, r}(0, T; H^{-\varepsilon}(\Omega)) \cap L^r(0, T; H^2(\Omega))$ and

$$\partial_t u(t, \cdot) = \sum_{n=1}^{\infty} u'_n(t) \varphi_{\chi,n},$$

where

$$u'_n(t) = -(-1)^k \int_0^t (t - s)^{\alpha - 1} E_{\alpha, \alpha}(-\lambda_{\chi,n}(t-s)^\alpha) \langle \partial_s f(s, \cdot), \varphi_{\chi,n} \rangle_{L^2(\partial\Omega)} ds + \int_0^t (t-s)^{\alpha - 1} E_{\alpha, \alpha}(-\lambda_{\chi,n}(t-s)^\alpha) \langle \rho^{-1} \partial_s F(s, \cdot), \varphi_{\chi,n} \rangle ds,$$ (3.12)
Applying (1.16), we obtain
\[u''_n(t) = -(-1)^k \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda x, s^\alpha) \langle \partial_s^2 f(s, \cdot), \tau_x^\alpha \varphi_x, n \rangle_{H^{-\frac{1}{2},x}(\partial \Omega), H^\frac{1}{2},x(\partial \Omega)} ds \]
\[+ \int_0^t (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda x, (t-s)^\alpha) \langle \rho^{-1} \partial_s^2 F(s, \cdot), \varphi_x, n \rangle_{-1} ds \]
and, following the proof for \(m = 1 \), we reach \(u \in W^{2,r}(0, T; H^{-\varepsilon}(\Omega)) \) and
\[\|u\|_{W^{2,r}(0, T; H^{-\varepsilon}(\Omega))} \leq C \left(\|f\|_{W^{2,r}(0, T; H^{-\frac{1}{2},-\varepsilon}(\Omega))} + \|F\|_{W^{2,r}(0, T; D(\alpha^{-1}_x \chi))} \right). \] (3.13)

Now let us prove that \(\partial_t u \in L^r(0, T; H^2(\Omega)) \). For this purpose, in view of (3.12), applying the arguments for the proof of Theorem 1.3, we see that \(v = \partial_t u \) is the weak solution to
\[\begin{cases}
(\rho(x) \partial_t^\alpha + A) v(t, x) = \partial_t F(t, x), & (t, x) \in Q, \\
\tau_x v(t, x) = \partial_t f(t, x), & (t, x) \in \Sigma, \\
v(0, x) = 0, & x \in \Omega.
\end{cases} \]
Since
\[\partial_t f \in L^r(0, T; H^{2,\frac{1}{2},-\chi}(\partial \Omega)) \cap W^{1,r}(0, T; H^{-\frac{1}{2},-\chi}(\partial \Omega)), \quad \partial_t F \in L^r(0, T; L^2(\Omega)) \cap W^{1,r}(0, T; \rho D(\alpha^{-1}_x \chi)) \]
and (1.16) is fulfilled, applying the result of the theorem for \(m = 1 \), we obtain \(\partial_t u \in L^r(0, T; H^2(\Omega)) \) and \(W^{1,r}(0, T; H^{-\varepsilon}(\Omega)) \) and
\[\|u\|_{W^{1,r}(0, T; H^4(\Omega))} + \|u\|_{W^{2,r}(0, T; H^{-\varepsilon}(\Omega))} \leq C \left(\sum_{k=1}^2 \|f\|_{W^{2-k,\infty}(0, T; H^{2-k,\chi} \Omega))} + \|F\|_{W^{2-k,\infty}(0, T; D(\alpha^{-1}_x \chi))} \right) \] (3.14)
Recalling that \(u \) is a strong solution to (1.4), we see that \(u(t, \cdot) \) solves the boundary value problem
\[\begin{cases}
Au(t, x) = -\rho(x) \partial_t^\alpha u(t, x) + F(t, x), & x \in \Omega, \\
\tau_x u(t, x) = f(t, x), & x \in \partial \Omega
\end{cases} \]
for almost all \(t \in (0, T) \). On the other hand, since \(u \in W^{1,r}(0, T; H^2(\Omega)) \), Young’s inequality for convolution yields \(\partial_t^\alpha u \in L^r(0, T; H^2(\Omega)) \). Therefore, by \(f \in L^r(0, T; H^{2,\frac{3}{2},\chi}(\partial \Omega)) \) and \(F \in L^r(0, T; H^2(\Omega)) \), applying the elliptic regularity of the operator \(A \) guaranteed by condition \((H_2)\), we see that \(u \in L^r(0, T; H^4(\Omega)) \) and
\[\|u\|_{L^r(0, T; H^4(\Omega))} \leq C \left(\|u\|_{W^{1,r}(0, T; H^2(\Omega))} + \|f\|_{L^r(0, T; H^{2,\frac{3}{2},\chi}(\partial \Omega))} + \|F\|_{L^r(0, T; H^2(\Omega))} \right). \]
Combining this with (3.14), we find
\[
\|u\|_{W^{1,r}(0,T;H^2(\Omega))} + \|u\|_{W^{2,r}(0,T;H^{-\epsilon}(\Omega))} + \|u\|_{L^r(0,T;H^4(\Omega))} \\
\leq C\varepsilon \sum_{k=1}^{2} \left(\|f\|_{W^{2-k,r}(0,T;H^{2k-\frac{1}{2}}(\partial\Omega))} + \|F\|_{W^{2-k,r}(0,T;H^{2(k-1)}(\Omega))} \right) \\
+ C\varepsilon \left(\|f\|_{W^{2,r}(0,T;H^{-\frac{1}{2}}(\partial\Omega))} + \|\rho^{-1}F\|_{W^{2,r}(0,T;D(A_{\frac{1}{4}}^{-1}))} \right).
\]
This completes the proof of Theorem 1.5.

4. Proof of Theorem 1.7

For all \(n \in \mathbb{N} \), we set
\[
u_{1,n}(t) := -(-1)^{\chi} \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n}(t-s)^{\alpha}) \langle f(s, \cdot), \tau_{\chi}^* \varphi_{\chi,n} \rangle_{L^2(\partial\Omega)} ds,
\]
\[
u_{2,n}(t) := E_{\alpha,1}(-\lambda_{\chi,n} t^{\alpha}) \langle u_0, \varphi_{\chi,n} \rangle,
\]
\[
u_{3,n}(t) := tE_{\alpha,2}(-\lambda_{\chi,n} t^{\alpha}) \langle u_1, \varphi_{\chi,n} \rangle,
\]
\[
u_{4,n}(t) := \int_{0}^{t} (t-s)^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n}(t-s)^{\alpha}) 1_{(0,T)}(s) \langle \rho^{-1}F(s, \cdot), \varphi_{\chi,n} \rangle ds
\]
and
\[
u_n := \nu_{1,n} + \nu_{2,n} + \nu_{3,n} + \nu_{4,n}.
\]
Let \(\varepsilon > 0 \). By means of Theorem 1.3, we know that the sequence
\[
\sum_{n=1}^{N} \nu_n \varphi_{\chi,n}, \quad N \in \mathbb{N},
\]
converges in \(L^r(0,T;D(A_{\frac{1}{4}}^{-\varepsilon})) \) to the unique solution \(u \) to (1.4). Let us show that \(u \in L^r(0,T;L^2(\Omega)) \cap W^{2,r}(0,T;L^2(\Omega)) \) and
\[
\|u\|_{W^{2,r}(0,T;L^2(\Omega))} \leq C \left(\|f\|_{W^{2,r}(0,T;H^{\frac{1}{2}}(\partial\Omega))} + \|F\|_{W^{2,r}(0,T;D(A_{\frac{1}{4}}^{-1}))} + \|u_1\|_{H^{2\varepsilon}(\Omega)} \right). \quad (4.1)
\]
Let us first prove that
\[
\lim_{N \to \infty} \sum_{n=1}^{N} \nu_n \varphi_{\chi,n}, \quad (4.2)
\]
converges in \(L^r(0,T;L^2(\Omega)) \) to \(u \). Since \(\rho^{-1} \in C^1(\overline{\Omega}) \), one sees that \(\rho^{-1}F \in W^{2,r}(0,T;D(A_{\frac{1}{4}}^{-\varepsilon})) \) and
\[
\|\rho^{-1}F\|_{W^{2,r}(0,T;D(A_{\frac{1}{4}}^{-\varepsilon}))} \leq C \left(\|F\|_{W^{2,r}(0,T;D(A_{\frac{1}{4}}^{-\varepsilon}))} \right), \quad k = 0, 1, 2. \quad (4.3)
\]
In view of [22, Theorem 11.1, Chapter 1], we have

\[\text{The same arguments yield} \]

Thus, the sequence

\[\text{Combining this with (3.9) implies} \]

Therefore, by formula (1.148) in [24, Theorem 1.6] and (4.4), we have

In view of [22, Theorem 11.1, Chapter 1], we have \(H^{\frac{1}{2}}(\Omega) = H^{\frac{1}{2}}_0(\Omega) = D(A^{\frac{1}{2}}_\chi). \) Combination of this with [3.9] implies

Therefore, by formula (1.148) in [24, Theorem 1.6] and (4.4), we have

Thus, the sequence

is a Cauchy sequence and so a convergent sequence in \(L^r(0, T; L^2(\Omega)) \). Therefore, we have \(u \in L^r(0, T; L^2(\Omega)) \). On the other hand, thanks to [1.15], we have

\[\|u_0\|_{H^1(\Omega)} \leq C(\|f(0, \cdot)\|_{H^{\frac{1}{2}}(\partial\Omega)} + \|p^{-1}F(0, \cdot)\|_{H^{-1}(\Omega)}) \]

\[\leq C \left(\|f\|_{W^{2,r}(0, T; H^{\frac{1}{2}}(\partial\Omega))} + \|F\|_{W^{1,r}(0, T; D(A^{\frac{1}{2}}_\chi))} \right). \]
Hence, from (4.3) and (4.4) we obtain
\[\|u\|_{L^r(0,T;L^2(\Omega))} \leq C \left(\|f\|_{W^{2,r}(0,T;H^{\frac{1}{2}-\chi}(\partial \Omega))} + \|F\|_{W^{2,r}(0,T;D(A^{-\frac{1}{2}}_\chi))} + \|u_1\|_{H^2(\Omega)} \right). \quad (4.5) \]

Here we notice that since \(D(A^{-\frac{1}{2}}_\chi) \) is embedded continuously into \(H^{-1}(\Omega) \) by the duality, because \(H^1_0(\Omega) \) is embedded continuously into \(D(A^{\frac{1}{2}}_\chi) \).

Now let us show that \(u \in W^{1,r}(0,T;L^2(\Omega)) \) and
\[\|u\|_{W^{1,r}(0,T;L^2(\Omega))} \leq C \left(\|f\|_{W^{2,r}(0,T;H^{\frac{1}{2}-\chi}(\partial \Omega))} + \|F\|_{W^{2,r}(0,T;H^{-1}(\Omega))} + \|u_1\|_{H^2(\Omega)} \right). \quad (4.6) \]

By [25] Lemma 3.2, we have
\[
u_1^\prime(t) = -(-1)^x \int_0^t s^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}s^\alpha) \langle \partial_t f(t-s,\cdot), \tau_{\chi}^* \varphi_{\chi,n} \rangle_{L^2(\partial \Omega)} \, ds \
- (-1)^x \left(\langle f(0,\cdot), \tau_{\chi}^* \varphi_{\chi,n} \rangle_{H^{\frac{1}{2}-\chi}(\partial \Omega),H^{\frac{1}{2}+\chi}(\partial \Omega)} t^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}t^\alpha), \right) \]
\[
u_2^\prime(t) = -\lambda_{\chi,n} \langle u_0, \varphi_{\chi,n} \rangle t^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}t^\alpha), \]
\[
u_3^\prime(t) = E_{\alpha,1}(-\lambda_{\chi,n}t^\alpha) \langle u_1, \varphi_{\chi,n} \rangle \]
and
\[
u_4^\prime(t) = \int_0^t s^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}s^\alpha) \langle \rho^{-1} \partial_t F(t-s,\cdot), \varphi_{\chi,n} \rangle_{-\frac{1}{2}} \, ds \
+ \langle \rho^{-1} F(0,\cdot), \varphi_{\chi,n} \rangle_{-\frac{1}{2}} t^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}t^\alpha) \]
for almost all \(t \in (0,T) \). In a similar way to the proof of Theorem 1.5, we deduce that
\[
u_2(t) = \left[(-1)^x \langle f(0,\cdot), \tau_{\chi}^* \varphi_{\chi,n} \rangle_{H^{\frac{1}{2}-\chi}(\partial \Omega),H^{\frac{1}{2}+\chi}(\partial \Omega)} - \langle \rho^{-1} F(0,\cdot), \varphi_{\chi,n} \rangle_{-\frac{1}{2}} \right] t^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}t^\alpha) \]
and so
\[
u_1(t) = -(-1)^x \int_0^t s^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}s^\alpha) \langle \partial_t f(t-s,\cdot), \tau_{\chi}^* \varphi_{\chi,n} \rangle_{H^{\frac{1}{2}-\chi}(\partial \Omega),H^{\frac{1}{2}+\chi}(\partial \Omega)} \, ds \
+ \int_0^t s^{\alpha-1} E_{\alpha,a}(-\lambda_{\chi,n}s^\alpha) \langle \rho^{-1} \partial_t F(t-s,\cdot), \varphi_{\chi,n} \rangle_{-\frac{1}{2}} \, ds \
+ E_{\alpha,1}(-\lambda_{\chi,n}t^\alpha) \langle u_1, \varphi_{\chi,n} \rangle. \]

Therefore, in view of \(\partial_t f \in L^r(0,T;H^{\frac{1}{2}-\chi}(\partial \Omega)) \) and \(\partial_tF \in L^r(0,T;D(A^{-\frac{1}{2}}_\chi)) \), repeating the arguments used for proving that \(u \in L^r(0,T;L^2(\Omega)) \), we see that \(u \in W^{1,r}(0,T;L^2(\Omega)) \) fulfills (4.6).

Next let us prove that \(u \in W^{2,r}(0,T;L^2(\Omega)) \) and
\[\|u\|_{W^{2,r}(0,T;L^2(\Omega))} \leq C \left(\|f\|_{W^{2,r}(0,T;H^{\frac{1}{2}-\chi}(\partial \Omega))} + \|F\|_{W^{2,r}(0,T;D(A^{-\frac{1}{2}}_\chi))} + \|u_1\|_{H^2(\Omega)} \right). \quad (4.7) \]
For this purpose, repeating the above arguments, we find
\[
u_n''(t) = -(1)^x \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n} s^\alpha) \left\langle \partial_t^2 f(t - s, \cdot), \tau_{\chi,n}^* \varphi_{\chi,n} \right\rangle_{L^2(\partial \Omega)} ds
+ \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n} s^\alpha) \left\langle \rho^{-1} \partial_t^2 F(t - s, \cdot), \varphi_{\chi,n} \right\rangle_{L^2(\partial \Omega)} \frac{1}{2} ds + a_n t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n} t^\alpha)
\] (4.8)
for almost all \(t \in (0,T) \), where
\[
a_n := -(1)^x \left\langle \partial_t f(0, \cdot), \tau_{\chi,n}^* \varphi_{\chi,n} \right\rangle_{H^{-\frac{1}{2}} - \chi(\partial \Omega),H^{\frac{1}{2}} + \chi(\partial \Omega)} + \left\langle \rho^{-1} \partial_t F(0, \cdot), \varphi_{\chi,n} \right\rangle_{H^{\frac{1}{2}} - \chi(\partial \Omega)} \frac{1}{2} - \lambda_{\chi,n} \left\langle u_1, \varphi_{\chi,n} \right\rangle.
\]

Following the above arguments, we have
\[
\left\| \sum_{n=1}^{\infty} \left\langle \frac{(-1)^x \chi^{+1} \left\langle \partial_t f(0, \cdot), \tau_{\chi,n}^* \varphi_{\chi,n} \right\rangle_{L^2(\partial \Omega)} + \left\langle \rho^{-1} \partial_t F(0, \cdot), \varphi_{\chi,n} \right\rangle_{L^2(\partial \Omega)} \frac{1}{2} \right\| \varphi_{\chi,n} \right\|_{H^1(\Omega)}
\leq C \left\| \partial_t f(0, \cdot) \right\|_{H^{\frac{1}{2}} - \chi(\partial \Omega)} + \left\| \partial_t F(0, \cdot) \right\|_{D(A_{\chi}^{\frac{1}{2}})}
\leq C \left(\left\| f \right\|_{W^{2,r}(0,T;H^{\frac{1}{2}} - \chi(\partial \Omega))} + \left\| F \right\|_{W^{2,r}(0,T;D(A_{\chi}^{\frac{1}{2}}))} \right).
\]

By \(H^{2\delta}(\Omega) = H^{2\delta}_0(\Omega) = D(A^{\delta}_\chi) \), we see that
\[
\left\| \sum_{n=1}^{\infty} \left\langle \frac{(-1)^x \chi^{+1} \left\langle \partial_t f(0, \cdot), \tau_{\chi,n}^* \varphi_{\chi,n} \right\rangle_{L^2(\partial \Omega)} + \left\langle \rho^{-1} \partial_t F(0, \cdot), \varphi_{\chi,n} \right\rangle_{L^2(\partial \Omega)} \frac{1}{2} \right\| \varphi_{\chi,n} \right\|_{L^2(\Omega)}
\leq C \left(\left\| f \right\|_{W^{2,r}(0,T;H^{\frac{1}{2}} - \chi(\partial \Omega))} + \left\| F \right\|_{W^{2,r}(0,T;D(A_{\chi}^{\frac{1}{2}}))} \right).
\]

Therefore, using (1.148) of [24] Theorem 1.6], we deduce that
\[
\left\| \sum_{n=1}^{\infty} \left[a_n t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n} t^\alpha) \right] \varphi_{\chi,n} \right\|_{L^2(\Omega)}
\leq C \left(\left\| f \right\|_{W^{2,r}(0,T;H^{\frac{1}{2}} - \chi(\partial \Omega))} + \left\| F \right\|_{W^{2,r}(0,T;D(A_{\chi}^{\frac{1}{2}}))} + \left\| u_1 \right\|_{H^{2\delta}(\Omega)} \right) t^{\delta \alpha - 1}
\]
for almost all \(t \in (0,T) \). Taking into account condition (1.18), we obtain
\[
\left\| \sum_{n=1}^{\infty} \left[a_n t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n} t^\alpha) \right] \varphi_{\chi,n} \right\|_{L^r(0,T;L^2(\Omega))}
\leq C T^{\delta \alpha - 1 + \frac{1}{r}} \left(\left\| f \right\|_{W^{2,r}(0,T;H^{\frac{1}{2}} - \chi(\partial \Omega))} + \left\| F \right\|_{W^{2,r}(0,T;D(A_{\chi}^{\frac{1}{2}}))} + \left\| u_1 \right\|_{H^{2\delta}(\Omega)} \right).
\]

Repeating the arguments used for proving \(u \in L^r(0,T;L^2(\Omega)) \), we see that the sequences in \(N \):
\[
\sum_{n=1}^{N} \left(\int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n} s^\alpha) \left\langle \partial_t^2 f(t - s, \cdot), \tau_{\chi,n}^* \varphi_{\chi,n} \right\rangle_{L^2(\partial \Omega)} ds \right) \varphi_{\chi,n}
\]
and
\[
\sum_{n=1}^{\infty} \left(\int_0^t s^{\alpha-1} E_{a,\alpha}(-\lambda_{\chi,n} s^\alpha) \langle \rho^{-1} \partial_t^2 F(t-s, \cdot), \varphi_{\chi,n} \rangle_{L^2(\Omega)} \, ds \right) \varphi_{\chi,n},
\]
converge in \(L^r(0, T; L^2(\Omega)) \) and we have
\[
\parallel \sum_{n=1}^{\infty} (-1)^n \left(\int_0^t s^{\alpha-1} E_{a,\alpha}(-\lambda_{\chi,n} s^\alpha) \langle \partial_t^2 f(t-s, \cdot), \varphi_{\chi,n} \rangle_{L^2(\Omega)} \, ds \right) \varphi_{\chi,n} \parallel_{L^r(0, T; L^2(\Omega))}
\]
\[
+ \parallel \sum_{n=1}^{\infty} \left(\int_0^t s^{\alpha-1} E_{a,\alpha}(-\lambda_{\chi,n} s^\alpha) \langle \rho^{-1} \partial_t^2 F(t-s, \cdot), \varphi_{\chi,n} \rangle_{L^2(\Omega)} \, ds \right) \varphi_{\chi,n} \parallel_{L^r(0, T; L^2(\Omega))}
\]
\[
\leq C \left(\|f\|_{W^{2,r}(0, T; H^{1/2-(1/2\alpha)}(\partial\Omega))} + \|F\|_{W^{2,r}(0, T; D(A^{1/2}_{\chi})))} \right).
\]
Therefore, we have \(u \in W^{2,r}(0, T; L^2(\Omega)) \) and combining these two last estimates with \((4.6) \) and \((4.8) \), we reach \((4.7) \).

Next we prove that \(u \in L^r(0, T; H^2(\Omega)) \) is a strong solution to \((1.4) \) and
\[
\|u\|_{L^r(0, T; H^2(\Omega))}
\]
\[
\leq C \left(\|f\|_{W^{2,r}(0, T; H^{1/2-(1/2\alpha)}(\partial\Omega))} + \|F\|_{W^{2,r}(0, T; D(A^{1/2}_{\chi})))} + \|u_1\|_{H^{2n}(\Omega)} \right) \tag{4.9}
\]
\[
+ C \left(\|f\|_{L^r(0, T; H^{1/2-(1/2\alpha)}(\partial\Omega))} + \|F\|_{L^r(0, T; L^2(\Omega))} \right).
\]
For this purpose, in a similar way to Theorem \((1.5) \) let \(\tilde{f} \in W^{2,r}(0, +\infty; H^{1/2-(1/2\alpha)}(\partial\Omega)) \cap L^r(0, +\infty; H^{1/2-(1/2\alpha)}(\partial\Omega)) \)
and
\[
\tilde{F} \in W^{2,r}(0, +\infty; D(A^{1/2}_{\chi}))) \cap L^r(0, +\infty; L^2(\Omega))
\]
satisfy \(\text{supp} \tilde{f} \subset [0, T+1) \times \partial\Omega, \text{supp} \tilde{F} \subset [0, T+1) \times \partial\Omega \) and \((3.10) \). We set
\[
\tilde{v}(t, \cdot) := \sum_{n=1}^{\infty} \tilde{v}_n(t) \varphi_{\chi,n}
\]
where
\[
\tilde{v}_n(t) = - (-1)^n \int_0^t (t-s)^{\alpha-1} E_{a,\alpha}(-\lambda_{\chi,n} (t-s)^\alpha) \left\langle \tilde{f}(s, \cdot), \varphi_{\chi,n} \right\rangle_{L^2(\partial\Omega)} \, ds
\]
\[
+ \int_0^t (t-s)^{\alpha-1} E_{a,\alpha}(-\lambda_{\chi,n} (t-s)^\alpha) \left\langle \rho^{-1} \tilde{F}(s, \cdot), \varphi_{\chi,n} \right\rangle \, ds + u_{2,n}(t) + u_{3,n}(t), \quad t > 0.
\]
From the above arguments, one can verify that \(\tilde{v} \in W^{2,r}_{\text{loc}}(0, +\infty; L^2(\Omega)) \) and
\[
e^{-pt} \tilde{v}(t, \cdot) \in W^{2,1}_{\text{loc}}(0, +\infty; L^2(\Omega)) \tag{4.10}
\]
for $p > 0$. We assert

$$e^{-pt\tilde{v}(t, \cdot)} \in L^1(0, +\infty; H^1(\Omega)), \quad p > 0.$$ (4.11)

Proof of (4.11). In a similar way to the proof of Theorem 1.5 integrating by parts and using the compatibility condition (1.15), we obtain

$$\tilde{v}_n(t) = (-1)^x \int_0^t E_{\alpha,1}(-\lambda_{\chi,n}s^\alpha) \frac{\langle \partial_t \tilde{f}(t - s, \cdot), \tau^*_\chi \varphi_{\chi,n} \rangle_{H^{-\frac{1}{2}} - \chi(\partial \Omega), H^{\frac{1}{2}} + \chi(\partial \Omega)}}{\lambda_{\chi,n}} ds$$

$$- (-1)^x \frac{\langle \tilde{f}(t, \cdot), \tau^*_\chi \varphi_{\chi,n} \rangle_{L^2(\partial \Omega)}}{\lambda_{\chi,n}} + u_{3,n}(t)$$

$$- \int_0^t E_{\alpha,1}(-\lambda_{\chi,n}s^\alpha) \frac{\langle p^{-1}\partial_t \tilde{F}(t - s, \cdot), \varphi_{\chi,n} \rangle_{L^\infty(\partial \Omega)}}{\lambda_{\chi,n}} ds + \frac{\langle p^{-1}\tilde{F}(t, \cdot), \varphi_{\chi,n} \rangle}{\lambda_{\chi,n}}.$$

Since $\tilde{f} \in L^1(0, +\infty; H^{\frac{1}{2} - \chi}(\partial \Omega)), \tilde{F} \in L^1(0, +\infty; L^2(\Omega))$ and $u_0 \in L^2(\Omega)$, one can verify

$$\left\| e^{-pt} \sum_{n=1}^{\infty} \left((-1)^x \frac{\langle \tilde{f}(t, \cdot), \tau^*_\chi \varphi_{\chi,n} \rangle_{L^2(\partial \Omega)}}{\lambda_{\chi,n}} + u_{3,n}(t) \right) \varphi_{\chi,n} \right\|_{L^1(0, +\infty; H^1(\Omega))}$$

$$+ \left\| e^{-pt} \frac{\langle p^{-1}\tilde{F}(t, \cdot), \varphi_{\chi,n} \rangle}{\lambda_{\chi,n}} \right\|_{L^1(0, +\infty; H^1(\Omega))}$$

$$\leq C \left(\left\| \tilde{f} \right\|_{L^1(0, +\infty; H^{\frac{1}{2} - \chi}(\partial \Omega))} + \left\| \tilde{F} \right\|_{L^1(0, +\infty; L^2(\Omega))} + \left(\int_0^\infty e^{-pt} t^{1-\alpha} dt \right) \left\| u_1 \right\|_{L^2(\Omega)} \right) < \infty$$

for all $p > 0$. Therefore, (4.11) will be proved if we show

$$\left\| e^{-pt} \sum_{n=1}^{\infty} (-1)^x \left(\int_0^t E_{\alpha,1}(-\lambda_{\chi,n}s^\alpha) \frac{\langle \partial_t \tilde{f}(t - s, \cdot), \tau^*_\chi \varphi_{\chi,n} \rangle}{\lambda_{\chi,n}} ds \right) \varphi_{\chi,n} \right\|_{L^1(0, +\infty; H^1(\Omega))} < \infty$$ (4.12)

and

$$\left\| e^{-pt} \sum_{n=1}^{\infty} (-1)^x \left(\int_0^t E_{\alpha,1}(-\lambda_{\chi,n}s^\alpha) \frac{\langle p^{-1}\partial_t \tilde{F}(t - s, \cdot), \varphi_{\chi,n} \rangle_{L^\infty(\partial \Omega)}}{\lambda_{\chi,n}} ds \right) \varphi_{\chi,n} \right\|_{L^1(0, +\infty; H^1(\Omega))} < \infty$$ (4.13)
for all $p > 0$. Applying formula (1.148) in [24, Theorem 1.6], we obtain
\[
\left\| \sum_{n=1}^{\infty} (-1)^{n} \left(\int_{0}^{t} E_{\alpha,1}(\lambda_{n} s^{-\alpha}) \frac{\left\langle \partial_{t} f(t, s, \cdot), \tilde{\tau}_{X} \varphi_{X,n} \right\rangle_{L^{2}(\Omega)}}{\lambda_{n}} ds \right) \varphi_{X,n} \right\|_{H^{1}(\Omega)}
\leq C \left\| \sum_{n=1}^{\infty} (-1)^{n} \left(\int_{0}^{t} E_{\alpha,1}(\lambda_{n} s^{-\alpha}) \frac{\left\langle \partial_{t} f(t, s, \cdot), \tilde{\tau}_{X} \varphi_{X,n} \right\rangle_{L^{2}(\Omega)}}{\lambda_{n}} ds \right) \varphi_{X,n} \right\|_{D\left(A_{X}^{\frac{1}{2}} \right)}
\leq C \int_{0}^{t} (t-s)^{-\frac{\alpha}{2}} \left\| \partial_{t} f(s, \cdot) \right\|_{H^{\frac{1}{2}-\epsilon}(\partial\Omega)} ds
\leq C \int_{0}^{t} (t-s)^{-\frac{\alpha}{2}} \left\| \partial_{t} f(s, \cdot) \right\|_{H^{\frac{1}{2}-\epsilon}(\partial\Omega)} ds
\]
for almost all $t > 0$. It follows that
\[
\left\| e^{-pt} \sum_{n=1}^{\infty} (-1)^{n} \left(\int_{0}^{t} E_{\alpha,1}(\lambda_{n} s^{-\alpha}) \frac{\left\langle \partial_{t} f(t, s, \cdot), \tilde{\tau}_{X} \varphi_{X,n} \right\rangle_{L^{2}(\Omega)}}{\lambda_{n}} ds \right) \varphi_{X,n} \right\|_{L^{1}(0,\infty;H^{1}(\Omega))}
\leq C \left\| \left(e^{-pt} t^{-\frac{\alpha}{2}} I_{(0,\infty)} \right) \ast \left(\left\| \partial_{t} f(t, \cdot) \right\|_{H^{\frac{1}{2}-\epsilon}(\partial\Omega)} I_{(0,\infty)} \right) \right\|_{L^{1}(0,\infty)}
\leq C_{p} \left\| \tilde{f} \right\|_{W^{1,\infty}(0,\infty;H^{\frac{1}{2}-\epsilon}(\partial\Omega))} < \infty
\]
for all $p > 0$. This proves (4.12). Moreover we can verify (4.13) in the same way. Thus the proof of (4.11) is complete. □

By (4.10) and (4.11), the Laplace transform $L \tilde{v}(p, \cdot)$ of \tilde{v} satisfies
\[
p^{\alpha}(L \tilde{v}(p, x) - p^{-1} u_{0}(x) - p^{-2} u_{1}(x)) + \rho^{-1} A L \tilde{v}(p, x) = \int_{0}^{T+1} e^{-pt} \rho^{-1} F(t, x) dt
\]
for $(p, x) \in (0,\infty) \times \Omega$.

Repeating the corresponding arguments for Theorem 1.5 we deduce that
\[
\left\langle \left(\rho \partial_{t}^{p} \tilde{v} + A \tilde{v} \right)(t, \cdot) - F(t, \cdot), \psi \right\rangle_{D'(\Omega), C_{c}^{\infty}(\Omega)} = 0
\]
for almost all $t \in (0,\infty)$. On the other hand, in view of (3.10) one can easily verify that $\tilde{v} = u$ in $(0, T) \times \Omega$, which implies that
\[
\left\langle \left(\rho \partial_{t}^{p} u + A u \right)(t, \cdot) - F(t, \cdot), \psi \right\rangle_{D'(\Omega), C_{c}^{\infty}(\Omega)} = 0, \quad \psi \in C_{c}^{\infty}(\Omega)
\]
for almost all $t \in (0, T)$.

33
Hence, since $\mathcal{L}\tilde{v}(p, \cdot)$ satisfies

$$\mathcal{L}\tilde{v}(p, x) = \mathcal{L}\tilde{f}(p, x), \quad x \in \partial \Omega$$

for all $p > 0$, it follows from (4.11) that $u(t, \cdot)$ solves the boundary value problem

$$
\begin{cases}
\rho(x)u(t, x) = -\partial_t^\alpha u(t, x) + F(t, x), & x \in \Omega, \\
\tau_x u(t, x) = f(t, x), & x \in \partial \Omega
\end{cases}
$$

for almost all $t \in (0, T)$. Therefore, by $u \in W^{2,r}(0, T; L^2(\Omega))$, we obtain $\partial_t^\alpha u \in L^r(0, T; L^2(\Omega))$ and, combining this with $f \in L^r(0, T; H^{1/2-\chi}(\partial \Omega))$ and $F \in L^r(0, T; L^2(\Omega))$, we see that $u \in L^r(0, T; H^2(\Omega))$. From the above properties, one can easily verify that u is a strong solution to (1.4) in the sense of Definition 1.2. Moreover, applying Young’s inequality, we see that u satisfies

$$
\|u\|_{L^r(0, T; H^2(\Omega))} \leq C (\|f\|_{L^r(0, T; H^{1/2-\chi}(\partial \Omega))} + \|F\|_{L^r(0, T; L^2(\Omega))} + \|\partial_t^\alpha u\|_{L^r(0, T; L^2(\Omega))}).
$$

Combining this with (4.7), we obtain (4.9). Finally, using arguments similar to those used for proving (4.7), we deduce that $u \in W^{1,r}(0, T; H^1(\Omega))$ satisfies

$$
\|u\|_{W^{1,r}(0, T; H^1(\Omega))} \leq C (\|f\|_{W^{2,r}(0, T; H^{1/2-\chi}(\partial \Omega))} + \|F\|_{W^{2,r}(0, T; D(A^{-1}_{1/2}))} + \|u_1\|_{H^{2\delta}(\Omega)}).
$$

Combining (4.7) and (4.9) with the above estimate, we reach (1.19). Thus this completes the proof of Theorem 1.7.

5. Proof of Theorem 1.8

We will consider only the case $m = 3$, because the case $m \geq 4$ can be proved by an iteration argument. Let u be the weak solution to (1.4). Similarly to the previous section, one can verify that $u \in W^{1,r}(0, T; H^1(\Omega))$ and

$$
\|u\|_{W^{1,r}(0, T; H^1(\Omega))} \leq C (\|f\|_{W^{2,r}(0, T; H^{1/2-\chi}(\partial \Omega))} + \|F\|_{W^{2,r}(0, T; D(A^{-1}_{1/2}))}).
$$

Moreover, condition (1.20) implies that

$$
\lambda_{\chi, n} \langle u_1, \varphi_{\chi, n} \rangle = -(-1)^\chi \langle \partial_t f(0, \cdot), \tau_x^* \varphi_{\chi, n} \rangle_{L^2(\partial \Omega)} + \langle \rho^{-1} \partial_t F(0, \cdot), \varphi_{\chi, n} \rangle.
$$
Combining this with (1.8), for almost all $t \in (0, T)$, we obtain

$$u^n(t) = -(1)^x \int_0^t s^{\alpha - 1} E_{\alpha, \alpha}(-\lambda \chi_n s^\alpha) \langle \partial^2_t f(t - s, \cdot), \tau^*_\chi \varphi_{\chi, n} \rangle_{L^2(\partial \Omega)} ds$$

$$+ \int_0^t s^{\alpha - 1} E_{\alpha, \alpha}(-\lambda \chi_n s^\alpha) \langle \rho^{-1} \partial^2_t F(t - s, \cdot), \varphi_{\chi, n} \rangle ds. \quad (5.1)$$

Similarly to the proof of Theorem 1.3, we can see that $w = \partial^2_t u$ is the unique weak solution to

$$\left\{ \begin{array}{ll}
(\rho(x) \partial^2_t + \mathcal{A}) w(t, x) &= \partial^2_t F(t, x), \quad (t, x) \in (0, T) \times \Omega, \\
\tau \chi w(t, x) &= \partial^2_t f(t, x), \quad (t, x) \in (0, T) \times \partial \Omega, \\
\partial^2_t w(0, x) &= 0, \quad x \in \Omega, \quad k = 0, 1.
\end{array} \right.$$

Since $\partial^2_t F \in L^r(0, T; L^2(\Omega)) \cap W^{1,r}(0, T; D(A^{1/2})^*)$ and $\partial^2_t f \in W^{1,r}(0, T; H^{1/2-\chi}(\partial \Omega))$, following the proof of Theorem 1.7, we can prove that $\partial^2_t u \in L^r(0, T; H^1(\Omega))$ and

$$\|\partial^2_t u\|_{L^r(0,T;H^1(\Omega))} \leq C \left(\|\partial^2_t f\|_{W^{1,r}(0,T;H^{1/2-\chi}(\partial \Omega))} + \|\partial^2_t F\|_{L^r(0,T;L^2(\Omega))} \right)$$

$$+ C \|\partial^2_t F\|_{W^{1,r}(0,T;D(A^{1/2})^*)}. \quad (5.2)$$

It follows that $u \in W^{2,r}(0, T; H^1(\Omega))$ satisfies

$$\|u\|_{W^{2,r}(0,T;H^1(\Omega))} \leq C \left(\sum_{k=2}^3 \|f\|_{W^{3-k,r}(0,T;H^{k-1/2-\chi}(\partial \Omega))} + \|F\|_{W^{3-k,r}(0,T;H^{k-2}(\Omega))} \right)$$

$$+ C \left(\|f\|_{W^{3,r}(0,T;H^{1/2-\chi}(\partial \Omega))} + \|F\|_{W^{3,r}(0,T;D(A^{1/2})^*)} \right). \quad (5.2)$$

Repeating the arguments used for Theorem 1.4, from these properties we obtain that u is a strong solution to (1.4) and $u(t, \cdot)$ solves the boundary value problem

$$\left\{ \begin{array}{ll}
\rho(x)^{-1} A u(t, x) &= -\partial^2_t u(t, x), \quad x \in \Omega, \\
\tau \chi u(t, x) &= f(t, x), \quad x \in \partial \Omega
\end{array} \right.$$

for almost all $t \in (0, T)$. Therefore, by means of $u \in W^{2,r}(0, T; H^1(\Omega))$, we deduce that $\partial^2_t u \in L^r(0, T; H^1(\Omega))$ and, combining this with $f \in L^r(0, T; H^{1/2-\chi}(\partial \Omega))$ and $F \in L^r(0, T; H^1(\Omega))$, we see that $u \in L^r(0, T; H^3(\Omega))$. Furthermore u satisfies

$$\|u\|_{L^r(0,T;H^3(\Omega))} \leq C \left(\|f\|_{L^r(0,T;H^{1/2-\chi}(\partial \Omega))} + \|F\|_{L^r(0,T;H^1(\Omega))} + \|\partial^2_t u\|_{L^r(0,T;H^1(\Omega))} \right)$$

$$\leq C \left(\|f\|_{L^r(0,T;H^{1/2-\chi}(\partial \Omega))} + \|F\|_{L^r(0,T;H^1(\Omega))} + \|u\|_{W^{2,r}(0,T;H^1(\Omega))} \right)$$
and, applying (5.2), we obtain
\[
\|u\|_{L^r(0,T;H^3(\Omega))} \leq C \left(\sum_{k=2}^{3} \|f\|_{W^{3-k,r}(0,T;H^{k-\frac{1}{2}}(\partial \Omega))} + \|F\|_{W^{3-r}(0,T;H^{k-2}(\Omega))} \right)
+ C \left(\|f\|_{W^{3-r}(0,T;H^{\frac{1}{2}}(\partial \Omega))} + \|F\|_{W^{3-r}(0,T;D(A^{\frac{1}{2}}_\chi))} \right).
\]

In the same way, we prove that \(u \in W^{3,r}(0,T;L^2(\Omega)) \cap W^{2,r}(0,T;H^1(\Omega)) \cap W^{1,r}(0,T;H^2(\Omega))\) and \(u\) satisfies (1.22). Thus this completes the proof of Theorem 1.8.

6. PROOF OF PROPOSITIONS 1.6 AND 1.9

Proof of Proposition 1.6. We start with the first statement of Proposition 1.6. For this purpose, we fix \(f \in C^\infty([0,T] \times \partial \Omega), \ F \in C^\infty([0,T] \times \overline{\Omega})\) and \(u_0 \in C^\infty(\Omega)\) which do not satisfy (1.15). We assume also that (1.4) admits a unique solution \(u \in W^{1,1}(0,T;D(A^{\frac{1}{2}}_\chi))\).

In view of (3.9), there exists \(n_0 \in \mathbb{N}\) such that
\[
b_0 := -(-1)^{\chi} \left\langle f(0, \cdot), \tau^*_\chi \varphi_{\chi,n_0} \right\rangle_{L^2(\partial \Omega)} + \left\langle \rho^{-1} F(0, \cdot), \varphi_{\chi,n_0} \right\rangle - \lambda_{\chi,n_0} \left\langle u_0, \varphi_{\chi,n_0} \right\rangle \neq 0. \tag{6.1}\]

We will prove that \(u \notin W^{1,(1-\alpha)^{-1}}(0,T;D(A^{\frac{1}{2}}_\chi))\). Following the argumentation of Theorem 1.5 we can show that
\[
\langle \partial_t u(t, \cdot), \varphi_{\chi,n_0} \rangle - \frac{1}{2}
= -(-1)^{\chi} \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n_0} s^{\alpha}) \left\langle \partial_t f(t-s, \cdot), \tau^*_\chi \varphi_{\chi,n_0} \right\rangle_{L^2(\partial \Omega)} ds
+ \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n_0} s^{\alpha}) \left\langle \rho^{-1} \partial_t F(t-s, \cdot), \varphi_{\chi,n_0} \right\rangle ds
+ b_0 t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n_0} t^{\alpha}).
\]

On the other hand, since \(E_{\alpha,\alpha}(-\lambda_{\chi,n_0} t^{\alpha}) \in C[0,T]\) and \(E_{\alpha,\alpha}(0) = \frac{1}{\Gamma(\alpha)} > 0\), we see that there exists \(t_0 \in (0,T)\) and \(c_0 > 0\) such that
\[
\inf_{t \in [0,t_0]} |E_{\alpha,\alpha}(-\lambda_{\chi,n_0} t^{\alpha})| = c_0.
\]

Therefore, for almost all \(t \in (0,t_0)\), we have
\[
| \langle \partial_t u(t, \cdot), \varphi_{\chi,n_0} \rangle - \frac{1}{2} |
\geq c_0 |b_0| t^{\alpha-1} - (-1)^{\chi} \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n_0} s^{\alpha}) \left\langle \partial_t f(t-s, \cdot), \tau^*_\chi \varphi_{\chi,n_0} \right\rangle_{L^2(\partial \Omega)} ds
- \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\chi,n_0} s^{\alpha}) \left\langle \rho^{-1} \partial_t F(t-s, \cdot), \varphi_{\chi,n_0} \right\rangle ds.
\]
Moreover, since \(f \in C^\infty([0, T] \times \partial \Omega), \) \(F \in C^\infty([0, T] \times \overline{\Omega}), \) it is clear that

\[
c_1 := \left\| \frac{(-1)^{\lambda}}{\lambda} \int_0^t s^{\lambda-1} E_{\alpha, \alpha} \left(-\lambda \chi, n_0 s^{\alpha} \right) \left(\partial_t f(t-s, \cdot), \tau^{*}_{\chi, n_0} \right)_{L^2(\partial \Omega)} ds \right\|_{L^\infty(0,T)} + \left\| \int_0^t s^{\lambda-1} E_{\alpha, \alpha} \left(-\lambda \chi, n_0 s^{\alpha} \right) \left(\rho^{-1} \partial_t F(t-s, \cdot), \varphi_{\chi, n_0} \right) ds \right\|_{L^\infty(0,T)} < \infty.
\]

Thus, for almost all \(t \in (0, t_0), \) we have

\[
| \langle \partial_t u(t, \cdot), \varphi_{\chi, n_0} \rangle_{\frac{1}{2}} | \geq c_0 |b_0| t^{\alpha-1} - c_1
\]

and condition (6.1) clearly implies that

\[
| \langle \partial_t u(t, \cdot), \varphi_{\chi, n_0} \rangle | \notin L^{(1-\alpha)^{-1}}(0,T).
\]

Thus, we have \(u \notin W^{1,(1-\alpha)^{-1}}(0,T; D(A_{\chi}^{-\frac{1}{2}})), \) which completes the proof of the first statement of Proposition [1.6].

For the second statement of Proposition [1.6], let us consider \(f \in C^\infty([0, T] \times \partial \Omega), \) \(u_0 \in C^\infty(\overline{\Omega}) \) satisfying (1.15) and let (1.4) admit a unique solution \(u \in W^{2,1}(0,T; D(A_{\chi}^{-\frac{1}{2}})). \) Assume also that (1.16) is not fulfilled for \(m = 2. \) Then we first show that there exists \(n_1 \in \mathbb{N} \) such that

\[
-(-1)^{\lambda} \left\langle \partial_t f(0, \cdot), \tau^{*}_{\chi, n_1} \right\rangle_{L^2(\partial \Omega)} + \left\langle \rho^{-1} \partial_t F(0, \cdot), \varphi_{\chi, n_1} \right\rangle \neq 0. \tag{6.2}
\]

Indeed, assuming the contrary, we deduce that

\[
\lambda_{\chi,k} \left\langle A_{\chi}^{-1} \rho^{-1} \partial_t F(0, \cdot), \varphi_{\chi,k} \right\rangle = -(-1)^{\lambda} \left\langle -\partial_t f(0, \cdot), \tau^{*}_{\chi} \varphi_{\chi,k} \right\rangle_{L^2(\partial \Omega)}, \quad k \in \mathbb{N}.
\]

Then, following formula (3.9), we deduce that \(G = A_{\chi}^{-1} \rho^{-1} \partial_t F(0, \cdot) \) solves the boundary value problem

\[
\begin{cases}
AG(x) = 0, & x \in \Omega, \\
\tau_\chi G(x) = -\partial_t f(0, x), & x \in \partial \Omega.
\end{cases}
\]

On the other hand, since \(\rho^{-1} \partial_t F(0, \cdot) \in L^2(\Omega) \) and \(G = A_{\chi}^{-1} \rho^{-1} \partial_t F(0, \cdot), \) we obtain \(\partial_t F(0, \cdot) = \rho A_{\chi} G = AG = 0 \) and \(\partial_t f(0, \cdot) = -\tau_\chi G = 0. \) This contradicts that (1.16) is not fulfilled for \(m = 2. \) Thus, there exists \(n_1 \in \mathbb{N} \) such that (6.2) holds true. Repeating the arguments for
Therefore, similarly to the proof of the first statement of Proposition \ref{prop1.6}, by (6.2) we deduce that \[\langle \partial_t^2 u(t, \cdot), \varphi_{\lambda,n} \rangle_{\frac{1}{2}} \]

\[= -(-1)^X \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\lambda,n} t^{\alpha}) \langle \partial_t^2 f(t-s, \cdot), \tau^*_{\lambda,n} \varphi_{\lambda,n} \rangle_{L^2(\partial\Omega)} ds \]

\[+ \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\lambda,n} t^{\alpha}) \langle \rho^{-1} \partial_t^2 F(t-s, \cdot), \varphi_{\lambda,n} \rangle ds \]

\[+ [-(-1)^X \langle \delta_t f(0, \cdot), \tau^*_{\lambda,n} \varphi_{\lambda,n} \rangle_{L^2(\partial\Omega)} + \langle \rho^{-1} \partial_t F(0, \cdot), \varphi_{\lambda,n} \rangle] t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\lambda,n} t^{\alpha}). \]

Therefore, similarly to the proof of the first statement of Proposition \ref{prop1.6} by (6.2) we deduce that \[\langle \partial_t^2 u(t, \cdot), \varphi_{\lambda,n} \rangle_{\frac{1}{2}} \notin L^{(\alpha-1)-1}(0, T), \] which implies that \[\partial_t^2 u \notin L^{(\alpha-1)-1}(0, T; D(A_{\frac{1}{2}}^\frac{1}{2})). \]

Thus the proof of the proposition is completed. \hfill \Box

Proof of Proposition \ref{prop1.9}. We start with the proof of the first statement. For this purpose, we fix \(f \in C^\infty([0, T] \times \partial\Omega), F \in C^\infty([0, T] \times \overline{\Omega}) \) and \(u_0, u_1 \in C^\infty(\overline{\Omega}) \) such that (1.15) is not fulfilled. Then, there exists \(n_0 \in \mathbb{N} \) such that (6.1) is not fulfilled.

Let us assume that the solution \(u \) to (1.4) is lying in \(W^{2,1}(0, T; D(A_{\frac{1}{2}}^\frac{1}{2})) \). We will prove that \(u \notin W^{2,(2-\alpha)-1}(0, T; D(A_{\frac{1}{2}}^\frac{1}{2})) \). Combining \[25\] Lemma 3.2 with Proposition \ref{prop1.6} we deduce that

\[\langle \partial_t^2 u(t, \cdot), \varphi_{\lambda,n_0} \rangle_{\frac{1}{2}} \]

\[= -(-1)^X \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\lambda,n_0} s^{\alpha}) \langle \partial_t^2 f(t-s, \cdot), \tau^*_{\lambda,n_0} \varphi_{\lambda,n_0} \rangle_{L^2(\partial\Omega)} ds \]

\[+ \int_0^t s^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\lambda,n_0} s^{\alpha}) \langle \rho^{-1} \partial_t^2 F(t-s, \cdot), \varphi_{\lambda,n_0} \rangle ds \]

\[+ d_0 t^{\alpha-2} E_{\alpha,\alpha-1}(-\lambda_{\lambda,n_0} t^{\alpha}) + e_0 t^{\alpha-1} E_{\alpha,\alpha}(-\lambda_{\lambda,n_0} t^{\alpha}), \]

where

\[d_0 = -(-1)^X \langle f(0, \cdot), \tau^*_{\lambda,n_0} \varphi_{\lambda,n_0} \rangle_{L^2(\partial\Omega)} + \langle \rho^{-1} F(0, \cdot), \varphi_{\lambda,n_0} \rangle - \lambda_{\lambda,n_0} \langle u_0, \varphi_{\lambda,n_0} \rangle \]

and

\[e_0 = -(-1)^X \langle \delta_t f(0, \cdot), \tau^*_{\lambda,n_0} \varphi_{\lambda,n_0} \rangle_{L^2(\partial\Omega)} + \langle \rho^{-1} \delta_t F(0, \cdot), \varphi_{\lambda,n_0} \rangle - \lambda_{\lambda,n_0} \langle u_1, \varphi_{\lambda,n_0} \rangle \].

Therefore, in a similar way to Proposition \ref{prop1.6} one can show that there exists \(t_1 \in (0, T), c_2, c_3 > 0 \) such that

\[\left| \langle \partial_t^2 u(t, \cdot), \varphi_{\lambda,n_0} \rangle_{\frac{1}{2}} \right| \geq c_3 |d_0| t^{\alpha-2} - c_2, \quad t \in (0, t_1), \]
which proves that $u \notin W^{2,(2-\alpha)^{-1}}(0,T;D(A^{\frac{1}{2}})).$ The rest part of the proposition can be proved similarly and is omitted.

\[\Box\]

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (S) The first author is partially supported by the French National Research Agency ANR (project MultiOnde) grant ANR-17-CE40-0029. The second author is partly supported by by The National Natural Science Foundation of China (no. 11771270, 91730303). This work was prepared with the support of the "RUDN University Program 5-100”.

References

[1] M. Allen, L. Caffarelli and A. Vasseur, *A parabolic problem with a fractional time derivative*, Arch. Ration. Mech. Anal. **221** (2016), 603-630.

[2] J. Carcione, F. Sanchez-Sesma, F. Luzón and J. Perez Gavilán, *Theory and simulation of time-fractional fluid diffusion in porous media*, Journal of Physics A: Mathematical and Theoretical **46** (2013), 345501.

[3] H. Donga, D. Kimb, L_p-estimates for time fractional parabolic equations with coefficients measurable in time, Advances in Mathematics, **345** (2019), 289-345.

[4] H. Donga, D. Kimb, L_p-estimates for time fractional parabolic equations in divergence form with measurable coefficients, Journal of Functional Analysis, **278** (2020), 108338.

[5] S. D. Eidelman and A. N. Kochubei, *Cauchy problem for fractional diffusion equations*, J. Differential Equations, **199**, (2004) 211-255.

[6] K. Fujishiro and Y. Kian, *Determination of time dependent factors of coefficients in fractional diffusion equations*, Math. Control Related Fields, **6** (2016), 251-269.

[7] D. Gilbarg and N.S. Trudinger, *Elliptic partial differential equations of second order*, Springer, Berlin, 2001.

[8] P. Grisvard, *Elliptic problems in nonsmooth domains*, Pitman, London, 1985.

[9] D. Guidetti, *On maximal regularity for the Cauchy-Dirichlet parabolic problem with fractional time derivative*, J. Math.Anal.Appl., **476** (2019) 637-664.

[10] B. Jin and W. Rundell, *A tutorial on inverse problems for anomalous diffusion processes*, Inverse problems, **31** (2015), 035003.

[11] J. Kemppainen, *Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains*, Fractional Calculus and Applied Analysis, **15** (2011), 195-206.

[12] J. Kemppainen, *Existence and uniqueness of the solution for a time-fractional diffusion equation with Robin boundary condition*, Abstract and Applied Analysis, **2011** (2011), https://doi.org/10.1155/2011/321903.

[13] J. Kemppainen and K. Ruotsalainen, *Boundary integral solution of the time-fractional diffusion equation*, Integr. Equ. Oper. Theory, **64** (2009), 239-249.
[14] Y. Kian, Z. Li, Y. Liu, M. Yamamoto, Unique determination of several coefficients in a fractional diffusion(-wave) equation by a single measurement, preprint, arXiv:1907.02430.
[15] Y. Kian, L. Oksanen, É. Soccorsi, and M. Yamamoto, Global uniqueness in an inverse problem for time-fractional diffusion equations, J. Diff. Equat., 264 (2018), 1146-1170.
[16] Y. Kian, É. Soccorsi, M. Yamamoto, On time-fractional diffusion equations with space-dependent variable order, Ann. H. Poincaré 19 (2018), no. 12, 3855-3881.
[17] Y. Kian and M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations, Fractional Calculus and Applied Analysis, 20 (2018), 1146-1170.
[18] Y. Kian, M. Yamamoto, Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations, Inverse Problems, 35 (2019), 115006.
[19] A. Kubica, K. Ryszewska, and M. Yamamoto, Introduction to a theory of time-fractional differential equations, Springer, Tokyo, 2020.
[20] A. Kubica and M. Yamamoto, Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fractional Calculus and Applied Analysis, 21 (2018), 276-311.
[21] Z. Li, Y. Kian, and É. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations, Asymptotic Analysis, 115 (2019), 95-126.
[22] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I, Springer-Verlag, New York, 1972.
[23] J. Nakagawa, K. Sakamoto, M. Yamamoto, Overview to mathematical analysis for fractional diffusion equations- new mathematical aspects motivated by industrial collaboration, Journal of Math-for-Industry, Vol.2 (2010A-10), 99-108.
[24] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
[25] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), 426-447.
[26] W. R. Schneider, Fractional diffusion and wave equations, Journal of Mathematical Physics, 30 (1989), 134-144.
[27] M. Yamamoto, Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations, J. Math.Anal.Appl., 460 (2018), 365-381.
[28] R. Zacher, Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funkcialaj Ekvacioj, 52 (2009), 1-18.
[29] R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations, Math. Ann. 356 (2013), 99-146.