Endophytes: the novel sources for plant terpenoid biosynthesis

Yachao Chen, Bing Hu, Jianmin Xing, Chun Li

Abstract
Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in international markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid production in industry in the future.

Key points
- The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.
- Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.
- Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.

Keywords Endophyte · Terpenoid · Biosynthesis · Biotransformation · Microbial cell factory

Introduction
Terpenoids, also referred to as isoprenoids, are a large family of the most abundant natural products in nature derived from isoprene units. They exist in almost every organism, but are mainly synthesized by plants as secondary metabolites. To date, more than 80,000 terpenoids have been identified, some of which have important medicinal, physiological, metabolic, communication, and defense functions, and are widely utilized in food, cosmetics, and pharmaceutical industries (Pichersky and Raguso 2018). Especially, terpenoids exert their effects on human health including anticancer, antiviral, anti-inflammation, immune regulation, antioxidation, and other functions (Davies et al. 2015; Hill and Connolly 2020). Due to the good antiviral effects (such as SARS-CoV-2 and hepatitis C virus) (Chao et al. 2016), many terpenoids have been used in the clinical treatment of COVID-19 (Bailly and Vergoten 2020; Murck 2020).

As shown in Fig. 1, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), the fundamental structural units of all terpenoids, are synthesized through the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. IPP and DMAPP can be reversibly isomerized by isopentenyl pyrophosphate
Plant endophytes as the alternative sources for terpenoid bioproduction

Plant endophytes are a group of microorganisms that colonize in plant tissues without apparently pathogenic effects to their hosts. Researchers have indicated the presence of one or more types of endophytes in every plant studied to date (Gupta et al. 2020; Shi et al. 2015; Shi et al. 2016). The population of endophytes in a plant is highly variable and depends on various components, including plant genotype, plant growth stage, plant physiological status, the type of plant tissues, the environmental condition of the soil, and different agricultural practices (Gupta et al. 2020). Endophytes exhibit complex interactions with their hosts. For example, they are known to enhance plant growth and nutrient gain, and to improve the tolerances of plants to various types of abiotic and biotic stresses. In addition, it has been proved that endophytes were able to produce some plant-derived high-value compounds, including terpenoids or their precursors (Kharwar et al. 2011; Kusari et al. 2013; Kusari et al. 2014a; Newman 2018; Souza et al. 2011). Over the past decades, many valuable terpenoids with antioxidant, anticancer, and antimicrobial activities have been successfully identified from endophytes (Table 1).

Why could endophytes produce so many phytochemicals like terpenoids and other compounds, while the microbes isolated from other habitats were seldomly able to do so? Some studies considered that the phytochemical biosynthesis functions of endophytes were obtained through their long-term evolution in their hosts by the horizontal gene transfer between plant-associated endophytes and the hosts, as well as among the endophytes (Tiwari and Bae 2020; Zhang et al. 2019), making endophytes as important sources of diverse plant secondary metabolites. In contrast, some other studies showed that the secondary metabolite biosynthetic genes in some endophytes were not homologous with their hosts, and some genes were even absent in the host genomes (Heinig et al. 2013), indicating that the phytochemical-producing endophytes might evolve independently. Therefore, some systematic studies are needed to elucidate why endophytes could produce plant secondary metabolites.
Heterologous production of endophyte-derived terpenoids

Although various terpenoids can be synthesized by endophytes, all of these endophytes have not been suitable for commercial application due to the low yield and the weakening biosynthetic capacity upon repeated subcultivation. Development of techniques in metabolic engineering and synthetic biology promoted the idea of expressing the terpenoid biosynthetic pathway in industrial microbes (Belcher et al. 2020). Besides, system biology techniques enlarged the bank of potential genes involved in terpenoid biosynthesis from environments. For example, modern metagenomic sequencing approaches and de novo assembly of microbial genomes from metagenome data provide powerful strategies in discovering the novel microbes and genes involved in terpenoid biosynthesis from the endosphere and rhizosphere microorganisms, regardless of whether the microbes are culture-dependent or culture-independent (Carrión et al. 2019).

Here, by taking Huperzine A (HupA) as an example, we discuss the feasibility of heterologous production of endophyte-derived terpenoids. HupA is a sesquiterpene alkaloid naturally existing in members of the Huperziaceae, such as Huperzia serrata. A large number of clinical trials have shown that HupA is an effective therapeutic medicine with
minor side effects for Alzheimer’s disease (AD) due to its high anti-acetylcholinesterase activity (Zhao et al. 2013). So far, part biosynthetic pathway of HupA in the family Huperziaceae has been illustrated (Fig. 2a). The first two steps are catalyzed by lysine decarboxylase (LDC) and copper amine oxidase (CAO), which convert L-lysine to 5-amino-3-pentanal, the precursor of HupA. The genes expressing LDCs and CAOs have been identified from Lycopodium clavatum (Bunsupa et al. 2016) and H. serrata (Xu et al. 2017), but their enzymatic promiscuity activities were strong. Many other enzymes participating in the HupA biosynthetic pathway remain to be identified.

The discovery of HupA biosynthetic genes from endophytes related to family Huperziaceae is of great value for both scientific research and commercial applications. In 2010, two HupA-producing endophytic fungi Shiraia sp. Sf114 (Zhu et al. 2010) and Cladosporium cladosporioides LF70 (Zhang et al. 2011) were isolated from the leaves of H. serrata, and their yields of HupA were 142.6 μg/g and 39.61 μg/g dry mycelium, respectively. Afterwards, Zhu and colleagues sequenced the whole genome of Shiraia sp. Sf114, identified a putative HupA biosynthetic gene cluster (Yang et al. 2014), and then heterogeneously expressed the ScCAO gene of the gene cluster into Escherichia coli (Yang et al. 2016). They found that the genetically modified E. coli strain was able to convert cadaverine to 5-amino-3-pentanal. In 2014, another HupA-producing fungal endophyte Colletotrichum gloeosporioides ES026 was isolated from H. serrata with the HupA yield of 45.81 μg/g dry mycelium at most (Zhao et al. 2013). Shu and colleagues did de novo RNA sequencing of C. gloeosporioides ES026 and genes encoding LDC (CgLDC) and CAO (CgCAO) were identified (Zhang et al. 2015). Later on, they heterogeneously overexpressed CgLDC and CgCAO in E. coli, and successfully obtained 5-amino-3-pentanal in cells (Zhang et al. 2017) (Fig. 2b).

Besides HupA, the microbial-based production of some other terpenoids was supported by genetic information of endophytes. For example, John M. Gladden and colleagues discovered 26 putative terpene synthases (TPSs) derived from four endophytic fungal strains (Daldinia eschscholzii EC12, Hypoxylon sp. CO27, Hypoxylon sp. CI4A, and Hypoxylon sp. EC38), of which 12 were functionally expressed in E. coli and induced the production of a wide variety of monoterpenoids and sesquiterpenoids (Wu et al. 2016). Liu and colleagues first identified and described a chimeric diterpene synthase from the endophyte C. gloeosporioides ES026 as (5R,12R,14S)-dolasta-1(15),8-diene synthase (CgDS), the chimeric fungal clade II-D terpene synthases and catalyzes a C1-III-IV cyclization, and obtained this compound with the titer of 7.3 mg/L in S. cerevisiae (Bian et al. 2018). Zhan and colleagues isolated an endophytic bacterium Pseudomonas sp. 102515 that could produce zeaxanthin diglucoside, a promising antioxidant terpenoid that belongs to the family of carotenoids, from the leaves of Taxus chinensis, and then amplified a carotenoid biosynthetic gene cluster of this strain in Pseudomonas putida KT2440, resulting in the yield of zeaxanthin diglucoside at 121 mg/L (Fidan and Zhan 2019).

Although it is technically available to express endophyte-derived terpenoid biosynthetic genes in engineered strains, it seems that the yield of terpenoids is still short of the commercial expectations. It is expected that further improvement of terpenoid production can be achieved through metabolic engineering combined with protein engineering.

Endophytes with the ability to enhance their hosts’ terpenoid production

Endophytes could not only produce terpenoids by themselves, but also stimulate the terpenoid accumulation in their host plants. For example, tanshinones, a golden group of diterpene quinones with the pharmacological effects, like antitumor, antioxidation, anti-inflammation, cardiovascular and cerebrovascular protection, are the major lipophilic ingredients of Salvia miltiorrhiza Bunge (Danshen) (Dong et al. 2011). To date, people have identified more than 40 tanshinones from the chemical constituents of S. miltiorrhiza, such as tanshinone I-VI, cryptotanshinone, isotanshinone I-II, and danshenol A, but their biosynthetic pathways in S. miltiorrhiza are only partially elucidated (Guo et al. 2016) (Fig. 3). In 2012, a tanshinone-producing endophytic fungus Trichoderma atroviride D16 was isolated from S. miltiorrhiza root, which can produce tanshinones I and IIA in rich mycological medium (Ming et al. 2012). One year later, Qin and colleagues found that T. atroviride D16 could promote the cell growth and tanshinone production in S. miltiorrhiza hairy roots, through the transcriptional regulation by the polysaccharide fraction (PSF) secreted from T. atroviride mycelium (Ming et al. 2013). According to further analysis via infrared (IR) and nuclear magnetic resonance (NMR), the key components in PSF responding for boosting tanshinone production were mannose, glucose, and galactose (Wu et al. 2019). According to the proteomics analysis of the S. miltiorrhiza hairy roots exposed to PSF, the tanshinone biosynthesis induced by PSF in S. miltiorrhiza hairy roots may be correlated with peroxide reaction, Ca2+ triggering, jasmonic acid (JA) signal transduction, and protein phosphorylation, finally resulting in an increase of leucine-rich repeat (LRR) protein synthesis (Peng et al. 2019). Another endophytic fungus Chaetomium globosum D38 isolated from the roots of S. miltiorrhiza induced its host to produce more tanshinones, especially for dihydrotanshinone I and cryptotanshinone, through upregulating the expression of key genes involved in tanshinone biosynthetic pathway (Zhai et al. 2018).

There are some other examples to show how endophytes promote the terpenoid production in their hosts. Alok Kalra
and colleagues isolated a few nitrogen-fixing root-associated and indole-3-acetic acid (IAA)–producing endophytes from different parts of the medicinal plant *Withania somnifera*, and found that they could induce their hosts to produce more withaferin-A in roots, one of the major phytochemical triterpenoid derivatives in *W. somnifera*, by inducing IAA production and increasing the transcriptional activity of withanolide biosynthesis genes in roots, especially MEP-pathway genes (*DXS* and *DXR*) (Pandey et al. 2018). Zhang and colleagues screened out an endophytic bacteria *Bacillus pumilus* from the medicinal herb *Glycyrrhiza uralensis* Fisch. They found that *B. pumilus* can improve *G. uralensis* growth under drought stress through the modification of antioxidant accumulation and enhance glycyrrhizic acid content by the incremental expression of key enzymes, such as squalene synthase, 3-hydroxy-3-methylglutaryl CoA reductase, and beta-amyrin synthase (Xie et al. 2019).

In summary, cells or fragments of endophytes could play the role of elicitors to induce the formation of bioactive compounds, such as terpenoids, in plant or cell suspension cultures. This endophyte-induced bioactive compound synthesis in plant cells is considered through the signal transduction process, which is composed of several steps including recognition of elicitors, signal transduction, integration with transcription factors, and gene activation (Zhai et al. 2017). In detail, endophytic elicitors, such as fungal proteins, oligosaccharides, and polyunsaturated fatty acids (Wu et al. 2019), could activate the signal transduction pathways in plants, including ion fluxes and Ca^{2+} signaling pathway, nitric oxide (NO) signaling pathway, reactive oxygen species (ROS) signaling pathway, salicylic acid (SA) signaling pathway, JA signaling pathway, and their cross-talking. Then, the produced signal molecules could integrate with transcription factors which regulate the expression of bioactive compound–associated functional genes (Zhao et al. 2005), leading to the significant accumulation of bioactive compounds in plant cells (Fig. 4).

Although the outline of endophyte-induced plant terpenoid synthesis has made important progress, the detailed mechanisms are not declared yet. For example, how the various signaling molecules regulate the expression of transcription factors during the endophyte-induced accumulation of terpenoids in medical plants is scarcely investigated. Han and colleagues proved that class I TGA transcription factors combined with methyl jasmonate could increase the production of triptolide and two sesquiterpene pyridine alkaloids, but the detailed mechanism has not been revealed (Han et al. 2020). Moreover, novel endophyte-derived elicitors, signal molecules, transduction pathways, transcriptional factors linking with in situ terpenoid metabolism, and the docking

Fig. 2 The biosynthetic pathway of HupA. **a** The proposed biosynthetic pathway of HupA in members of the Huperziaceae. **b** The heterogeneous expression of HupA synthetic genes from endophytes in microbial cell factory. LDC, lysine decarboxylase; CAO, copper amine oxidase. Solid arrows indicate the established relationships, and dashed arrows indicate hypothetical relationships.
processes between elicitors and the corresponding receptors are not elaborated. Benefiting from the technological development in synthetic biology and botany, plant synthetic biology is regarded as another hot spot (Nemhauser and Torii 2016). Nonetheless, the development of plant synthetic biology is still at an initial stage due to the insufficiency of quantificationally standardized components and incompatibilities between standardized components and plant system (Patron et al. 2015). In the future, researchers should focus on the studies of the key transcription factors related to the endophytic elicitors. Only when key transcription factors screened out can they be transferred to the corresponding...
medical plants or other model plants to increase the accumulation of the secondary metabolites greatly. In addition, despite that a variety of synthetic sensors has been used in the study of plant endogenous signaling pathways, complex genetic circuits have not been realized in plants. So future plant synthetic biology development depends on a large degree of basic research breakthrough.

Biotransformation of terpenoids by endophytes

Besides the function of terpenoid biosynthesis directly or indirectly, endophytes have the potential with the function of terpenoid decoration to change their structures and bioactivities. Currently, some endophytes have been utilized to produce useful enzymes, which have significant regio- and stereo-selectivities, for the production of terpenoid derivatives (Corrêa et al. 2014).

Ginseng is an important pharmaceutical herb belonging to Araliaceae family. It has been utilized in Chinese medicine for thousands of years. Ginsenosides are the most valuable and major active triterpenoids in ginseng species with the therapeutic effects of anti-tumor, anti-age, and hepatitis therapeutic effectiveness. The biosynthetic pathway of ginsenosides has been elucidated (Wang et al. 2020) (Fig. 5a). They are composed of major ginsenosides (Rb1, Rb2, Rc, Rd, Rg1, etc.) and rare ginsenosides (Rg3, Rh1, Rh2, F2, compound K, etc.). Compared with major ginsenosides, rare ginsenosides (deglycosylated ginsenosides) are more pharmaceutically active, because they have relatively smaller sizes and are easily able to penetrate cell membranes (Xu et al. 2003). Considering that rare ginsenosides are too few to be purified from most natural ginseng plants, it is of great significance to study the conversion of major ginsenosides into rare ginsenosides (He et al. 2019). It was found that ginsenoside Rb1, the main active ingredient of *Panax Notoginseng*, could be deglycosylated to form ginsenoside F2 and compound K by the glucosidase of the endophytes *Fusarium* sp. YMF1.02670 and YMF1.02193 (Luo et al. 2013) (Fig. 5b). Yin and colleagues screened out 32 β-glucosidase-producing endophytes from *Platycodon grandiflorum*, among which *Luteibacter* sp. JG09 can effectively convert ginsenosides Rb1, Rb2, Rc, and Rd into rare ginsenosides F2 and compound K, and convert ginsenoside Rg1 into rare ginsenoside Rh1 (Cui et al. 2016) (Fig. 5b). The maximum production rate of ginsenosides F2 and compound K reached 94.53% and 66.34%, respectively. Later on, they successfully isolated another β-glucosidase-producing endophytic bacterium *Burkholderia* sp. GE 17-7 from *P. ginseng* roots with the capability of converting ginsenoside Rg3 from Rd1 (Fu et al. 2017) (Fig. 5b). Accordingly, further studies to identify and modify various β-glucosidases from endophytes have the potential to effectively increase ginsenoside bioproduction.

Endophytes have potential biotransformation activities on many other terpenoids. For example, ursolic acid is a pentacyclic triterpenoid with the anti-inflammatory, anti-

![Fig. 4](image-url)
Fig. 5 The proposed biosynthetic pathway of ginsenosides.

a Key enzymes and intermediates involved in ginsenoside biosynthesis.
- SS, squalene synthase; SE, squalene epoxidase; DDS, dammarenediol-II synthase; PPDS, protopanaxadiol synthase; PPTS, protopanaxatriol synthase; CYP450, cytochrome P450 monooxygenase; UGT, uridine diphosphate glycosyltransferase. Green compounds represent major ginsenosides; blue compounds represent rare ginsenosides.

b Examples of biotransformation of ginsenosides by endophytes.
- *Fusarium* sp. YMI 02630, *Fusarium* sp. YMI 02193, *Luteibacter* sp. JG09, *Burkholderia* sp. GE 17-7.
microbial, and antiviral activities. Some of its derivatives are very important for the structure-activity relationship study, but they are hard to be obtained through the chemical modification of ursolic acid since ursolic acid has limited active sites. Thanks to the investigation on endophytes, the fungal endophytes isolated from H. serrata, Pestalotiopsis microspera, and Umbelopsis isabellina were reported to be able to transform ursolic acid to new compounds by structural modification through maybe the cooperation of transferases and esterases (Fu et al. 2011a, b). A second example is on the gentiopicroside (GPS), a monoterpenoid glucoside whose pharmacological properties could be activated after the enzymatic or acidic hydrolysis (Zeng et al. 2014). An endophytic fungus Penicillium crustosum 2T01Y01, isolated from a medicinal plant Dendrobium candidum Wall. ex Lindl., had a high GPS-transforming ability, and could produce three known and four novel deglycosylated GPSs (Zeng et al. 2014). It was proposed that the GPS metabolic pathways in P. crustosum 2T01Y01 mainly include deglycosylation, hydrolyzation, cyclization, reduction and hydrogenation, or oxidation and decarboxylation. The authors speculated that the deglycosylation by the β-glucosidase existing in the fungus might be the initiation step, but the enzymes involved in the other steps need to be elucidated.

In summary, endophytes can be efficiently used for the biotransformation of natural compounds through their special enzymes. The biotransformation reactions mainly include hydroxylation, hydrolysis, reduction, oxidation, epoxidation, O-methylation, ring-expansion, isomerization, and methyl migration reactions. Considering that rational design and directed evolution of enzymes could accelerate the improvement of their specificities, stabilities, and/or efficiencies, these strategies could be used to ultimately improve the conversion efficiencies of biotransformational enzymes in the future.

Conclusions and future perspectives

Endophytes are a treasure trove of terpenoid biosynthesis through direct or indirect manners. Nevertheless, investigations on endophyte-related terpenoid synthesis are still in their infancy. To achieve their commercial applications in industries, several serious challenges should be overcome. Firstly, the lifestyles and genetic systems of most endophytes are poorly understood, which have hampered our in vivo genetic manipulations. Secondly, the heterologous expression of endophyte-derived genes within the normal microbial cell factories is usually in face with instability, low enzymatic activities, misfolding, incorrect post-translational modification, a mass of crosstalk between the endogenously primary metabolism and the artificial metabolic pathways, and so on (Kusari et al. 2014b). Thirdly, if the target endophytes prefer to make steady functions in plant-associated microbiomes through physical and/or metabolic interactions, their in vitro monocultures might be in face with the gradual reduction in terpenoid yields. With the development of the multi-omics approaches and bioinformatics, exploring, identifying, and characterizing the genetic and metabolic elements involved in the terpenoid synthesis in endophytes have been advancing. With further development and the combination of enzyme engineering, pathway optimization, molecular techniques, and some other modern technologies, endophytic-derived terpenoid bioproduction could be boosted furthermore.

Acknowledgements The authors would like to thank Ms. Namn Li and Ms. Zidi Liu at School of Chemistry and Chemical Engineering, Beijing Institute of Technology, for writing assistance and graphing assistance, respectively.

Author contribution Y-C C wrote the manuscript; BH, CL, and J-M X revised the manuscript.

Funding The authors acknowledge the National Key Research and Development Program of China (2018YFA0901800, 2020YFA0908300), the National Natural Science Foundation of China (No. 21736002), and Open Funding Project of the State Key Laboratory of Biochemical Engineering (No. 2020KF-05).

Code availability Not applicable.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

References

Bailly C, Vergoten G (2020) Glycyrrhizin: an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmaco Ther 214:107618. https://doi.org/10.1016/j.pharmthera.2020.107618

Belcher MS, Mohinthakumar J, Keasling JD (2020) New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Curr Opin Biotechnol 65:88–93. https://doi.org/10.1016/j.copbio.2020.02.001

Bian G, Rinkel J, Wang Z, Lauterbach L, Hou A, Yuan Y, Deng Z, Liu T, Dickschat JS (2018) A clade II-D fungal chimeric diterpene synthase from Colletotrichum gloeosporioides produces dolasta-1(15), 8-diene. Angew Chem Int Ed Eng 57:15887–15890. https://doi.org/10.1002/anie.201809954

Boghsani T, Ganjejali A, Cermava T, Müller H, Asili J, Berg G (2020) Endophytic Fungi of Native Salvia abrotanoides Plants Reveal High Taxonomic Diversity and Unique Profiles of Secondary
Metabolites. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.03013

Bunsupa S, Hanada K, Maruyama A, Aoyagi K, Komatsu K, Ueno H, Yamashita M, Sasaki R, Oikawa A, Saito K, Yamazaki M (2016) Molecular evolution and functional characterization of a bifunctional decarboxylase involved in lycopodium alkaloid biosynthesis. Plant Physiol 639-2016. doi: https://doi.org/10.1104/pp.16.00639

Carrion VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, Mendes LW, van IJcken W, Gomez-Exposito R, Elsayed SS, Mohranjan P, Arifah A, van der Oost J, Paulson JN, Mendes R, van Wezel GP, Medema MH, Raaijmakers JM (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–612. https://doi.org/10.1126/science.aaw9285

Chao C, Cheng J, Shen D, Huang H, Wu Y, Wu T (2016) Terpenoids from Flueggea virosa and their anti-hepatitis C virus activity. Phytochemistry 128:60–70. https://doi.org/10.1016/j.phytochem.2016.04.003

Corrêa RCG, Rhodes SA, Mota TR, Azevedo JL, Pamphile JA, de Souza CGM, Polizeli MDLT, Bracht A, Peralta RM (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478. https://doi.org/10.1007/s10295-014-1496-2

Cruz M, Folch M, Fernando M, Reiner G, Maria LV, Alexandre CT, Fidan O, Zhan J (2019) Discovery and engineering of an endophytic Fusarium oxysporum strain. Biotechnol Lett 42:987–995. https://doi.org/10.1007/s10529-020-02836-x

Dong LH, Fan SW, Ling QZ, Huang BB, Wei ZJ (2014) Indentification of a Huperzine A-producing endophytic fungus from Flueggea virosa. Mol Biol Rep 41:542. https://doi.org/10.1007/s10295-013-01519-6

Fidan O, Zhao J (2019) Discovery and engineering of an endophytic Pseudomonas strain from Taxus chinensis for efficient production of zeaxanthin diglucoside. J Biol Eng 13:66. https://doi.org/10.1186/s13036-019-0199-6

Fu SB, Yang JS, Cui JL, Feng X, Sun DA (2011a) Biotransformation of usnic acid by an endophytic fungus from medicinal plant Huperzia serrata. Chem Pharm Bull (Tokyo) 59:1180–1182. https://doi.org/10.1248/cpb.59.1180

Fu SB, Yang JS, Cui JL, Meng QF, Feng X, Sun DA (2011b) Multihydroxylation of usnic acid by Pestalotopsis microspora isolated from the medicinal plant Huperzia serrata. Fitoterapia 82:1057–1061. https://doi.org/10.1016/j.fitote.2011.06.009

Fu Y, Yin ZH, Yin CY (2017) Biotransformation of ginsenoside Rbl1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. J Appl Microbiol 122:1579–1585. https://doi.org/10.1111/jam.13435

Guo J, Ma X, Cai Y, Ma Y, Zhan Z, Zhou YJ, Liu W, Guan M, Yang J, Cui G, Kang L, Yang L, Shen Y, Tang J, Lin H, Ma X, Jin B, Liu Z, Peters RJ, Zhao ZK, Huang L (2016) Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanins. New Phytol 210:525–534. https://doi.org/10.1111/nph.13790

Gupta S, Chaturvedi P, Kulkami MG, Van Staden J (2020) A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 39:107462. https://doi.org/10.1016/j.biotechadv.2019.107462

Han J, Liu H, Wang S, Wang C, Miao G (2020) A class I TGA transcription factor from Tripterygium wilfordii Hook.f. modulates the biosynthesis of secondary metabolites in both native and heterologous hosts. Plant Sci 290:110293. https://doi.org/10.1016/j.plantsci.2019.110293

He Y, Hu Z, Li A, Zhu Z, Yang N, Ying Z, He J, Wang C, Yin S, Cheng S (2019) Recent advances in biotransformation of saponins. Molecules 24:2365. https://doi.org/10.3390/molecules24132365

Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170. https://doi.org/10.1007/s11274-013-0228-7

Hill RA, Connolly JD (2020) Triterpenoids. Nat Prod Rep 37:962–998. https://doi.org/10.1039/cnp00067d

Huang S, Feng X, Li C (2015) Enhanced production of β-glucuronidase from Penicillium purpurogenum Li-3 by optimizing fermentation and downstream processes. Front Chem Sci Eng 9:501–510. https://doi.org/10.1007/s11120-015-1544-0

Jian ZY, Meng L, Hu XQ (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus waliichiana var. macrophylla. Medicine 96(27):e7406. https://doi.org/10.1079/MD.2017.00041

Kasaei A, Mohsen MD, Foruzandeh M, Behnaz S (2017) Isolation of Taxol-Producing Endophytic Fungi from Iranian Yew Through Novel Molecular Approach and Their Effects on Human Breast Cancer Cell Line. Curr Microbiol 74:702–709. https://doi.org/10.1007/s00284-017-1231-0

Khanwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28:1208–1228. https://doi.org/10.1039/c1np00008j

Kirby J, Keasing JD, Joint BJ (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355. https://doi.org/10.1146/annurev.arplant.043008.091955

Kumar A, Patil D, Rajamohanaran PR, Ahmad A, Bansal V (2013) Isolation, Purification and Characterization of Vinblastine and Vincristine from Endophytic Fungus Fusarium oxysporum Isolated from Catharanthus roseus. PLoS One 8:e71805. https://doi.org/10.1371/journal.pone.0071805

Kusari S, Venka V, Lamshoef M, Spittel M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294. https://doi.org/10.1007/s11274-011-0876-2

Kusari S, Pandey SP, Spittel M (2013) Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry 91:81–87. https://doi.org/10.1016/j.phytochem.2012.07.021

Kusari S, Singh S, Jayabaskaran C (2014a) Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311. https://doi.org/10.1016/j.tibtech.2014.03.009

Kusari S, Singh S, Jayabaskaran C (2014b) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303. https://doi.org/10.1016/j.tibtech.2014.03.009

Le TT, Hoang AT, Nguyen NP, Le TT, Trinh HT, Vo TT, Quyen DV (2020) A novel huperzine A-producing endophytic fungus Fusarium sp. Rsp5.2 isolated from Huperzia serrata. Biotechnol Lett 42:987–995. https://doi.org/10.1007/s10529-020-02836-x

Luo SL, Dang LZ, Li JF, Zou CG, Zhang KQ, Li GH (2013) Isolation and purification of vinblastine and vincristine from Endophytic Fungus Fusarium oxysporum var. mairei. World J Microbiol Biotechnol 29:1294–1298. https://doi.org/10.1007/s11274-013-1519-6

Ming Q, Han T, Li W, Zhang Q, Zhang H, Zheng C, Huang F, Rahman K, Qin L (2012) Tanshinone IIA and tanshinone I production by
Trichoderma atrovire D16, an endophytic fungus in Salvia miltiorrhiza. Phytomecendia 19:330–333. https://doi.org/10.1016/j.phymed.2011.09.076

Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L (2013) Ellicitors from the endophytic fungus Trichoderma atrovire promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64:5687–5694. https://doi.org/10.1093/jxb/ert342

Murck H (2020) Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.01239

Nemhauser JL, Torii KU (2016) Plant synthetic biology for molecular engineering of signalling and development. Nat Plants 2:16010. https://doi.org/10.1038/NPLANTS.2016.10

Newman DJ (2018) Are microbial endophytes the 'actual' producers of bioactive antitumor agents? Trends in Cancer 4:662–670. https://doi.org/10.1016/j.trecan.2018.08.002

Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichak DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Homing T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhai X, Zhang Q, Rahman K, Wu S, Qin L, Han T, Sun W, Xue H, Liu H, Lv B, Yu Y, Wang W, Shu SH, Zhao XM, Wang WJ, Zong GW, Cosovceau A, Ahr Y, Wang M (2014) Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30:3101–3109. https://doi.org/10.1007/s11274-014-1737-6

Souza JJD, Vieira IJC, Rodrigues-Filho E, Braz-Filho R (2011) Terpenoids from endophytic fungi. Molecules 16:10604–10618. https://doi.org/10.3390/molecules161210604

Su JQ, Yang MH (2014) Huperzine A production by Paeclomomes tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Nat Prod Res 29:1035–1041. https://doi.org/10.1080/14786419.2014.980245

Sun W, Qin L, Xue H, Yu M, Yang Y, Wang L, Li C (2019) Novel trends for producing plant triterpenoids in yeast. Crit Rev Biotechnol 39: 618–632. https://doi.org/10.1080/07388551.2019.1685083

Sun W, Xue H, Liu H, Lv B, Yu Y, Wang Y, Huang M, Li C (2020) Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice terpenoid biosynthesis. ACS Catal 10:4253–4260. https://doi.org/10.1021/acscatal.0c00128

Thanh L, Hoang AT, Le TT, Vo T, Quyen DV, Chu HH (2019) Isolation of endophytic fungi and screening of Huperzine A-producing fungus from Huperzia serrata in Vietnam. Sci Rep 9 (1). https://doi.org/10.1038/s41598-019-1166-1

Tiwari P, Bae H (2020) Horizontal gene transfer and endophytes: an implication for the acquisition of novel traits. Plants 9:305. https://doi.org/10.3390/plants9030305

Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33:873–887. https://doi.org/10.1016/j.biotechadv.2015.07.004

Venugopalan A, Potunuru U, Dixit M, Srivastava S (2016) Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresource Technol 206:104–111. https://doi.org/10.1016/j.biortech.2016.01.079

Wang W, He P, Zhao D, Ye L, Dai L, Zhang X, Sun Y, Zheng J, Bi C (2019) Construction of Escherichia coli cell factories for crocin biosynthesis. Microb Cell Factories 18. https://doi.org/10.1186/s12934-019-1166-1

Wang D, Wang J, Shi Y, Li R, Fan F, Huang Y, Li W, Chen N, Huang L, Dai Z, Zhang X (2020) Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform. Metab Eng 61: 131–140. https://doi.org/10.1016/j.ymben.2020.05.007

Wu H, Yang HY, You XL, Li YH (2012) Isolation and Charaterization of Saponin-Producing Fungal Endophytes from Aralia elata in Northeast China. Int J Mol Sci 13:16255–16266. https://doi.org/10.3390/ijms131216255

Wu H, Yang HY, You XL, Li YH (2013) Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2:107. https://doi.org/10.1186/2193-1801-2-107
Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM (2016) Rapid discovery and functional characterization of terpene synthases from four endophytic Xylariaceae. PLoS One 11: e146983. https://doi.org/10.1371/journal.pone.0146983

Wu J, Ming Q, Zhai W, Wang S, Zhu B, Zhang Q, Xu Y, Shi S, Wang S, Zhang Q, Han T, Qin L (2019) Structure of a polysaccharide from Trichoderma atroviride and its promotion on tanshinones production in Salvia miltiorrhiza hairy roots. Carbohydr Polym 223: 115125. https://doi.org/10.1016/j.carbpol.2019.115125

Xie Z, Chu Y, Zhang W, Lang D, Zhang X (2019) Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis. Fisch. Environ Exp Bot 158:99–106. https://doi.org/10.1016/j.envexpbot.2018.11.021

Xu QF, Fang XL, Chen DF (2003) Pharmacokinetics and bioavailability of ginsenoside Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 84:187–192. https://doi.org/10.1016/j.eph.2017.01.005

Xu B, Lei L, Zhu X, Zhou Y, Xiao Y (2017) Identification and characterization of L-lysine decarboxylase from Huperzia serrata and its role in the metabolic pathway of lycopodium alkaloid. Phytochemistry 136:23–30. https://doi.org/10.1016/j.phytochem.2016.12.022

Xu Y, Feng X, Jia J, Chen X, Jiang T, Rasool A, Lv B, Qu L, Li C (2018) A novel β-glucuronidase from Talaromyces pinophilus Li-93 precisely hydrolyzes glycyrrhizin into glycyrrhetinic acid 3-O-Mono-β-D-Glucuronide. Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.00755-18

Yan HY, Jin HD, Fu Y, Yin ZX, Yin CR (2019) Production of Rare Ginsenosides Rg3 and Rh2 by Endophytic Bacteria from Panax ginseng. J Agric Food Chem 67:8493–8499. https://doi.org/10.1021/acs.jafc.9b03159

Yang H, Wang Y, Zeng G, Wang W, Zhang X, Zeng Q, Zhang Z, Ahn Y, Liu R, Guo N, Mi W, Meng Y, Leger RJS, Fang W (2019) Horizontal gene transfer allowed the emergence of broad host range Aspergillus niger AS2.009 and its promotion on tanshinone IIA production in the endophytic fungus Emericella foeniculicola by genome shuffling. Front Microbiol 10:e120809. https://doi.org/10.3389/fmicb.2017.02694

Zhang ZB, Zhang ZB, Zeng QG, Zeng QG, Yan RM, Yan RM, Wang Y, Wang Z, Zou ZR, Zou ZR, Zhu D, Zhu D (2011) Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces huperzine A. World J Microbiol Biotech 27:479–486. https://doi.org/10.1007/s11274-010-0476-6

Zhang G, Wang W, Zhang X, Xia Q, Zhao X, Ahn Y, Ahmed N, Cosoveanu A, Wang M, Wang J, Shu S (2015) De novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A. PLoS One 10:e120809. https://doi.org/10.1371/journal.pone.0120809

Zhang X, Wang Z, Jan S, Yang Q, Wang M (2017) Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026. Sci Rep 7:2766. https://doi.org/10.1038/s41598-017-02834-6

Zhang PY, Lee YT, Wei XY, Wu JL, Liu QM, Wan SN (2018) Enhanced production of tanshinone IIA in endophytic fungi Emericella foeniculicola by genome shuffling. Pharm Biol 56:357–362. https://doi.org/10.1080/13880209.2018.1481108

Zhao X, Chen X, Xu C, Zhao H, Zhang X, Zeng G, Qian Y, Liu R, Guo N, Mi W, Meng Y, Leger RJS, Fang W (2019) Horizontal gene transfer allowed the emergence of broad host range entomopathogens. P Natl Acad Sci 116:7982–7989. https://doi.org/10.1073/pnas.1816430116

Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003

Zhao X, Wang Z, Shu S, Wang W, Xu H, Ahn Y, Meng W, Hu X (2013) Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026. PLoS One 8:e61777. https://doi.org/10.1371/journal.pone.0061777

Zhu D, Wang J, Zeng Q, Zhang Z, Yan R (2010) A novel endophytic huperzine A–producing fungus, Shiria sp. Slf14, isolated from Huperzia serrata. J Appl Microbiol 109:1469–1478. https://doi.org/10.1111/j.1365-2672.2010.04777.x

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.