Значення експресії гена Foxp3 в Т-регуляторних клетках в патогенезі болезні «трансплантація проти хозяїна», індукованої криоконсервованим аллогенним материалом

UDC 612.44.014.086.3:616.127-002:612.649.011.87.014.3
A.N. Goltsev*, T.G. Dubrava, Yu.A. Gayevskaya, E.D. Lutsenko, M.V. Ostankov, I.Yu. Matsevitaya

Foxp3 Gene Expression Value in Regulatory T Cells in Pathogenesis of Graft-Versus-Host Disease Induced with Cryopreserved Allogeneic Material

Résumé: В работе исследованы содержание T-регуляторных клеток (T supp) и уровень экспрессии в них гена Foxp3 у реципиентов с болезнью «трансплантація проти хозяїна» (BTПХ), индуцированной введением аллогенного нативного или криоконсервированного костного мозга с клетками лимфоцитов. В экспериментальной модели BTПХ показано, что дефицит T supp играет важную роль в поддержании аутоиммунного процесса. У животных с BTПХ, индуцированной аллогенным костным мозгом (КМ), установлено почти двукратное снижение как содержания T supp, так и уровня экспрессии в них гена Foxp3 по сравнению с реципиентами синхронного КМ. Отмечено увеличение уровня экспрессии гена Foxp3 в T supp при максимальном снижении их содержания у животных с BTПХ, индуцированной аллогенным криоконсервированным КМ. Криоконсервирование аллогенного КМ, которым индуцировали BTПХ, приводило к снижению его иммунотоксичности и, как следствие, клинического проявления патологии. Результаты проведенных исследований позволяют расширить представление о механизмах развития иммунных конфликтов при BTПХ на клеточном и молекулярном уровнях.

Ключевые слова: болезнь «трансплантація проти хозяїна», T-регуляторные клетки, ген Foxp3, криоконсервированный костный мозг.

Фокусируемые аспекты: регуляторные клетки, ген Foxp3, BTПХ, криоконсервированный костный мозг.

Abstract: Content of regulatory T cells (T supp) and their Foxp3 gene expression level in the recipients with graft-versus-host disease (GVHD) induced by introduction of fresh aspirated or cryopreserved allogeneic bone marrow combined with lymph node cells were under study in this research. In GVHD experimental model the deficiency in T supp was shown to play an important role in maintaining autoimmune process. In the animals with GVHD induced with fresh aspirated allogeneic bone marrow (BM) almost twofold decrease in both T supp content and the expression level of Foxp3 gene were established as compared to the syngeneic BM recipients. An increased level of Foxp3 gene expression under the maximum reduction of their content in the animals with GVHD, induced with cryopreserved allogeneic BM introduction, was noted. Cryopreservation of allogeneic BM, used for GVHD induction, reduced its immune reactivity and, as a result, clinical evidence of pathology. Our findings enable to broaden the notion about the mechanisms of immune conflicts development in GVHD both at cellular and molecular levels.

Key words: graft-versus-host disease, regulatory T cells, Foxp3 gene, cryopreserved bone marrow.
Исследование механизмов развития и предупреждения болезни «трансплантат против хозяина» (БТПХ) обусловлено расширением области применения кроветворной ткани для лечения лучевой болезни, злокачественных новообразований, иммунодефицитных расстройств. Во всех случаях основным препятствием для успешного приживления пересаженной ткани является БТПХ, ключевую роль в патогенезе которой играют T-регуляторные клетки (Трег) [8, 17, 19]. Установлено, что главная их функция состоит в сдерживании активности аутоспецифических клонов T-лимфоцитов, что обеспечивает предотвращение аутоиммунных процессов. Поэтому принято считать, что нарушение структуры и функции Трег играет важную роль в патогенезе различных заболеваний [8, 15]. В настоящее время рассматриваются перспективы использования этих клеток в качестве адаптивной терапии при аутоиммунной патологии [13]. В экспериментальных моделях на мышах показано, что дефицит Трег, не являясь главным фактором патогенеза, играет важную роль в поддержании аутоиммунного процесса [15]. С популяцией регуляторных T-клеток связывают экспрессию гена Foxp3. Миура Ю. и соавт. [16] показали, что экспрессия Foxp3 была значительно снижена в моноклональных периферической крови пациентов при развитии БТПХ, при этом уровень его экспрессии был обратно пропорционален тяжести патологии. Известно, что FOXP3 – наиболее специфический внутриклеточный маркер для Трег, а ген Foxp3 отвечает за их развитие и супрессорную функцию. Именно поэтому необходимо изучение иммунных механизмов развития БТПХ не только на клеточном (содержание Трег), но и молекулярно-генетическом (экспрессия гена Foxp3) уровнях.

В связи с необходимостью создания запасов костного мозга для лечения лучевой болезни и других гемодисфункций состояний организма необходимо его криоконсервирование и хранение при температуре жидкого азота (−196°C). Поэтому в наших исследованиях была использована криоконсервированный аллогенный КМ для введения лечебно-объединенной животных.

Целью настоящего исследования было оценить содержание Трег и уровень экспрессии в них гена Foxp3 у реципиентов с БТПХ, индуцированной введением аллогенного нативного или криоконсервированного костного мозга с клетками лимфоидных узлов.

Материалы и методы
Исследования проводили на мышах линий CBA/H и (CBA/H×C57Bl) F1 20-недельного возраста массой 24–26 г в соответствии с «Общими принципами экспериментов на животных», одобренными Европейским конвентом по защите животных.

Studying the mechanisms of graft-versus-host disease (GVHD) progress and prevention is stipulated by the extending of application scope for hematopoietic tissue to treat radiation sickness, malignancy and immunodeficiency disorders. In all cases the main obstacle for successful engraftment of transplanted tissue is GVHD, in pathogenesis of which a key role is played by regulatory T cells (Treg) [8, 17, 19]. Their main function was established to consist in suppressing the activity of autospecific clones of T-lymphocyte, thereby preventing the autoimmune processes. Therefore, the disorder in Treg structure and function is commonly assumed to play an important role in pathogenesis of various diseases [8, 15]. Prospects of using these cells as an adaptive therapy in autoimmune diseases are currently under consideration [13]. In experimental murine models the Treg deficiency, not being the main factor of pathogenesis, was demonstrated as playing an important role in autoimmune process maintenance [15]. One associates Foxp3 gene expression with the population of regulatory T cells. Miura Yu. et al. [16] demonstrated the Foxp3 expression to be significantly reduced in peripheral blood mononuclear cells of patients during GVHD progress, wherein the level of its expression was inversely proportional to the pathology severity. FOXP3 is known to be the most specific intracellular marker for Treg, and Foxp3 gene is responsible for their development and a suppressive function. That is exactly why it is necessary to study the immune mechanisms of GVHD development not only at cellular level (Treg content), but at molecular and genetic ones as well (Foxp3 gene expression).

Due to a need in creating bone marrow stocks to treat a radiation sickness and other hemodeficits of a body, its cryopreservation and storage at liquid nitrogen temperature (−196°C) are essential. Therefore, in our studies we used the cryopreserved allogenic BM for introduction to lethally irradiated animals.

This research was aimed to assess Treg content and Foxp3 gene expression rate in the cells of recipients with GVHD induced by an introduction of fresh aspirated or cryopreserved allogenic bone marrow with lymph node cells.

Materials and methods
Research was carried out in CBA/H and (CBA/H×C57Bl) F1 mice of 20 weeks age weighing 24–26 g, according to the General Principles of Experiments in Animals approved by the 5th National Congress in Bioethics (Kyiv, 2013) and agreed to the statements of European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (Strasbourg, 1986).

To prepare cell suspensions the CBA/H mice bone marrow (BM) was washed out from femurs, and the lymph nodes and spleen were disintegrated in Potter
ренными V Национальным конгрессом по биоэтике (Кiev, 2013) и согласованными с положениями «Европейской конвенции о защите позвоночных животных, используемых для экспериментальных и других научных целей» (Страсбург, 1986).

Для приготовления клеточных суспензий костный мозг (КМ) мышей линии СВА/Н вымывали из бедренных костей, а лимфоузлы и селезенки дезинтегрировали в гомогенизаторе Поттера в среде 199 (Институт полиомиелита и вирусных энцефалитов, Россия) с добавлением 3% эмбриональной телячьей сыворотки («БиолоТ», Россия) и 2% цитрат натрия (далее в тексте – рабочая среда). Криоконсервирование КМ осуществляли под защитой 10% диметилсульфоксида (ДМСО) («Артериум», Украина) в пластиковых ампулах («Нунс», Германия) объемом 1,8 мл с концентрацией 2×10^6 клеток/мл на программном замораживателе УОП-6 (ИПКиК НАН Украины, Харьков): скорость охлаждения 1 град/мин до −25°С и последующее погружение в жидкий азот (−196°С) [1]. Хранившиеся в течение месяца клетки КМ перед введением облученных рецепентов отогревали на водяной бане при температуре 41°С до исчезновения твердой фазы. Клетки однородно отмывали от ДМСО путем медленного добавления равного объема рабочей среды и последующего 10-минутного центрифугирования (200 г). Суспензию клеток КМ, не подвергавшуюся процедуре замораживания-отогрева, далее в тексте будет называться нативной.

Индуцирование БТПХ осуществляли следующим образом. Мышьей линии (СВА/Н×C57Bl)F1 облучали на установке РУМ-17 («Мосрентген», Россия) в дозе 850 Р. Условия облучения: мощность дозы – 38,6 Р/мин; напряжение – 220 кВ; сила тока – 10 мА; фильтры – 0,5 мм Cu + 1 мм Al; фокус-дальность расстояние – 50 см. Через час после облучения животных внутривенно вводили 5×10^6 клеток/мышь нативного или криоконсервированного КМ с клетками лимфоузлов линии СВА/Н в соотношении 3:1 соответственно. В качестве контроля использовали интактных мышей линии (СВА/Н×C57Bl)F1 до и после введения 5×10^6 клеток/мышь сингеничного КМ.

Животные были разделены на следующие группы: группа 1 – сингеничный контроль (введение сингеничного КМ); группа 2 – БТПХ(нКМ+ЛУ), индукция БТПХ введением аллогенного нативного КМ вместе с клетками лимфоузлов; группа 3 – БТПХ(кКМ + ЛУ), индукция БТПХ введением аллогенного криоконсервированного КМ вместе с клетками лимфоузлов; группа 4 – интактный контроль.

Интенсивность развития БТПХ оценивали на 14-е сутки развития патологии по индексу селезенки, который был рассчитан следующим образом: индекс селезенки = объем селезенки × масса организма. Индекс селезенки у облученных животных был рассчитан по формуле: Индекс селезенки = (объем селезенки × масса организма) / 100.

ГВХД был индуцирован в облученных животных путем внутривенного введения аллогенного сухого BM или BM с фалитов соответствующего животного. Индуцирование вирусной патологии осуществляли путем внутривенных инъекций вирусных суспензий в объеме 0,5 мл в течение 5 суток. Уровень развития патологии оценивали по индексу селезенки, который был рассчитан следующим образом: индекс селезенки = объем селезенки × масса организма. Индекс селезенки у облученных животных был рассчитан по формуле: Индекс селезенки = (объем селезенки × масса организма) / 100.

ГВХД был индуцирован в облученных животных путем внутривенных инъекций вирусных суспензий в объеме 0,5 мл в течение 5 суток. Уровень развития патологии оценивали по индексу селезенки, который был рассчитан следующим образом: индекс селезенки = объем селезенки × масса организма. Индекс селезенки у облученных животных был рассчитан по формуле: Индекс селезенки = (объем селезенки × масса организма) / 100.
венки (ИС), показатель выживаемости и содер-
жанию T-регуляторных клеток. Индекс селезенки
рассчитывали как соотношение массы органа к
массе тела животного, умноженное на 100. Индекс
селезенки интактных мышей принимали за 1, индекс больше 1,3 свидетельствовал о развитии
БТПХ [7, 10].

Содержание Tₚᵣₑ (CD4⁺CD25⁺- и FOXP3⁺-кле-
ток) в селезенке реципиентов с БТПХ определяли
на проточном цитоферпилометре «FACS Calibur»
(«Becton Dickinson», США) с применением анти-
мышьих моноклональных антител («BD Pharmin-
gen», США; «Abcam», Великобритания) по протоко-
lamp фирм-производителей. В качестве контроля
использовали пробы с добавлением неиммунных
меченных FITC или PE моноклональных антител
то же изотипа, что и антител против исследуемо-
го маркера. Показатель, характеризующий
среднюю интенсивность флуоресценции (СИФ),
определяли по степени экспрессии CD25 маркера
на мембране клеток, а в случае исследования
FOXP3 – по содержанию внутриклеточного белка
скурфина. Для статистического учета данных ци-
тоферприметрического анализа использовали
программу «WinMDI 2.8» (Trotter J.).

Уровень экспрессии гена Foxp3 оценивали в
CD4⁺-фракции клеток селезенок животных с
БТПХ. Указанные клетки из селезенок реципиен-
tов выделяли методом иммуномагнитного сепа-
рирования на магнитном сортере («BD Imagnet»,
США) с помощью антимышьих CD4 магнитных
частиц – «Magnetic Particles DM» («BD Biosciences»,
США) по соответствующему протоколу. Содер-
жение транскриптов гена Foxp3 выделяли методом полимеразной цепной реакции с этапом
обратной транскрипции (OT- ПЦР). Для выделения
нуклеиновых кислот из 1×10⁶ CD4⁺-клеток исполь-
зовали наборы «Diatom RNA Prep 100» («Isogene
Lab, Россия), содержащие лизирующий реактив –
гуанидин тиоцианат. Для проведения OT-ПЦР
использовали комплект random-олigonуклеотидов
и ревертазы (M-Mlv) согласно инструкции фирмы-
производителя («Reverta L», Россия). Праймеры гена Foxp3 (NM_054039.2) и гена «домашнего хо-
зяйства» beta actin (NM_007393.3) были сконструи-
рованы на основе базы данных Национального
центра биотехнологической информации («NCBI
BLAST», США) и синтезированы в АОЗТ «Мед-
биосервис» (Кiev). Амплификацию фрагментов
ДНК осуществляли в термостате «Терцио» («ДНК-
технология», Россия), денатурацию – при 94°C в
течение 30 с, гибридизацию матрицы с праймером
при 60°C – 30 с, элонгацию при 72°C – 40 с. После
окончания ПЦР проводили элонгацию при 72°C в
течение 5 мин. Количество циклов – 40. Детекцию
антидов versus the studied marker were used as
the control. The index characterizing the mean flu-
orescence intensity (MFI) was determined by the ex-
pression rate of CD25 marker on cell membrane, and
in case of FOXP3 – by the content of intracellular
protein skurfine. The data of flow cytometry analysis
were statistically processed using WinMDI 2.8 soft-
ware (Trotter J.).

The Foxp3 gene expression level was evaluated in
CD4⁺ fraction of spleen cells in GVHD animals.
These cells from the recipient spleens were isolated
via im-mune magnetic separation with magnetic sorter
(«BD Immunet, USA») using the anti-mouse CD4
magnetic particles: Magnetic Particles – DM (BD
Biosciences, USA) by the corresponding protocol. The
content of Foxp3 gene transcripts was determined
with the rever-se transcription polymerase chain
reaction (RT-PCR). To isolate nucleic acids from 1×10⁶
CD4⁺ cells we used Diatom RNA Prep 100 sets (Is-
ogene Lab, Russia), containing the lysing reagent,
guanine thiocyanate. RT-PCR reaction was performed
using the set of random-oligonucleotides and reverse
transcriptase (M-Mlv) according to instructions of
the manufacturer (Reverta L, Russia). The primers of
Foxp3 gene (NM_054039.2) and housekeeping gene
beta actin (NM_007393.3) were designed basing on
the National Center for Biotechnology Information
(NCBI BLAST, USA) database and synthesized in
CJSC Medbioservis (Ukraine). The amplification of
DNA fragments was performed in Tercyc Conven-
tional PCR thermal cycler (DNA-Technology, Russia),
the denaturation was done at 94°C for 30 sec, matrix
hybridization with a primer was performed at 60°C
within 30 sec, and the elongation was done at 72°C
for 60 sec. After PCR completing the elongation was
done at 72°C for 5 min. Number of cycles was 40.
Transcript number of the studied genes was detected
using the capillary electrophoresis with chip-analyzer
Agilent 2100 (Agilent Technologies, USA), based on
the relative semi-quantitative assessment of amplified
products [6]. Chips were prepared according to instruc-
tions of DNA 1000 kit (Fermentas, Lithuania). The res-
ults were normalized in respect to the index of house-
keeping gene beta actin expression: internal control
for PCR.

Experimental results were statistically processed
with t-test and Excel software (Microsoft, USA). Data
are presented as the mean ± standard deviation. Diffe-
rences were considered as statistically significant at
p < 0.05.

Results and discussion
Development of GVHD, induced by introduced
either native or cryopreserved allogenic BMs with
lymph node cells is confirmed by splenomegal, which
коночества транскриптов исследуемых генов осуществлялся методом капиллярного электрофореза в чип-анализаторе «Agilent 2100» («Agilent Technologies», США) на основе относительной полуколичественной оценки продуктов амплификации [6]. Подготовку чипов осуществляли согласно инструкции набора «DNK 1000» («Fermentas», Литва). Результаты нормировали относительно показателя экспрессии гена «домашнего хозяйства» beta actin – внутреннего контроля для ПЦР.

Для статистической обработки результатов экспериментов применяли метод Стьюдента и компьютерную программу «Excel» («Microsoft», США). Данные приводили в виде среднего значения ± стандартное отклонение. Различия считали статистически значимыми при p < 0.05.

Результаты и обсуждение

Подтверждением развития БТПХ, индуцированной введением нативного или криоконсервированного аллогенного КМ с клетками лимфоузлов, является спленомегалия, характерный признак которой – это увеличение ИС (рис. 1). Так, ИС у реципиентов сингенного КМ значительно отличался от интактного контроля, а у реципиентов группы 2 (БТПХ (нКМ + ЛУ)) он был в 1,7 раза выше. У животных группы 3 (БТПХ (кКМ+ЛУ)) ИС увеличивался в меньшей степени по сравнению с группой 2, поскольку в процессе замораживания снижается иммуногенетическая аллогенный КМ [2]. Однако данный показатель у животных этой группы увекличился в 1,5 раза по сравнению с интактным контролем, что также свидетельствовало о развитии БТПХ. Следует отметить, что величина ИС, как и показатель выживаемости животных, обусловлены степенью тяжести патологического процесса (рис. 2) [1].

Действительно, было установлено, что показатель выживаемости реципиентов коррелировал с величиной ИС. Так, меньшая величина ИС у животных группы 3 по сравнению с группой 2 коррелировала с большим показателем их выживаемости.

Развитие аутоиммунных процессов, сопровождающих также БТПХ, обуславливает снижение в организме реципиентов количества и функциональной активности T_{reg}, которые супрессируют активность аутоспецифичных T-эффекторных клеток [8]. Аттестация состояния T-регуляторного звена иммунитета реципиентов с различными формами трансплантируемого материала была проведена на 14-е сутки, т. е. в тот срок, когда клинические и лабораторные показатели свидетельствовали о развитии трансплантационной болезни (см. рис. 1; рис. 2).

Поскольку селезенка – основной орган, в котором формируются зрелые элементы Т-ряда, в нем characteristic feature is an increased SI (Fig. 1). Thus, the SI in syngeneic BM recipients was not significantly different from the intact control, but for the recipients of group 2 (GVHD (nBM + ln)) it was 1.7 times higher. In group 3 animals (GVHD (cBM + ln)) the SI increased to a lesser extent than in group 2, since the immune reactivity of allogenic BM reduced during freezing [2]. However, this index in this animal group increased in 1.5 times as compared to the intact control, that also testified to the GVHD development. Of note is the fact, that both SI value and the survival rate of animals are stipulated by pathology severity (Fig. 2) [1].

Actually the survival rate in recipients was established to correlate with the SI value. Thus, a lower value of SI in group 3 animals than in group 2 correlated with higher index of their survival.

The development of autoimmune processes, also accompanying the GVHD, stipulates a decrease in a recipient body of a number and functional activity of T_{reg}, suppressing the activity of autospecific effector T cells [8]. The state of regulatory T immunity link in recipients with various forms of transplanted material was evaluated to day 14, i.e. when clinical and laboratory indices confirmed the GVHD development (see Figs. 1 and 2).

A quantitative content of T_{reg} was assessed in spleen, since it is the main organ wherein the mature elements of T-series are formed. The population of
была проведена оценка количественного содержания T_{reg}. Популяция CD4+T_{reg} является «минорной»; их содержание в периферической крови составляет около 5–10% от Т-клеток CD4+ у мышей и человека [8, 9]. По нашим данным, содержание T_{reg} в селезенке интактных мышей соответствовало этому показателю. Регуляторные Т-клетки играют ключевую роль в иммунной системе благодаря уникальной способности контролировать иммунный ответ. Вследствие их недостаточного количества развиваются аутоиммунные заболевания и снижается показатель выживаемости реципиентов [4, 14].

Известно, что БТПХ ассоциируется с появлением в организме «аутореактивного» клона Т-эффекторных клеток (CD4+), формируемого донорскими стволовыми кроветворными клетками [5], а цитокиновый «шторм», вызванный его развитием, приводит к экспрессии поверхностных маркеров как на эффекторных, так и регуляторных клетках [16]. Экспрессия CD25 маркера под действием трансформирующего фактора роста-β и интерлейкина-2 на Т-клетках CD4+CD25+ переводит их в категорию T_{reg} с умеренной активностью [19].

Исследование содержания T_{reg} в селезенках опытных животных показало, что после введения синтезированного КМ БТПХ не развивалась, исходя из величины ИС (см. рис.1), однако содержание T_{reg} в этой группе снижалось в 1,3–1,8 раза (рис. 3). При этом показатель СИФ, отражающий степень экспрессии CD25 маркера на мембране CD4+CD25+клеток, или содержание белка скурфина в FOXP3+-клетках значимо не изменялись, что может свидетельствовать об их функциональной активности, адекватной интактному контролю. У реципиентов группы 2 отмечено снижение содержания CD4+CD25+ клеток и 1,4 и 1,6 раза соответственно по сравнению с группой 1 (рис. 3). Показатель СИФ T_{reg} также снижался у реципиентов группы 2, что свидетельствует об изменении функциональной активности этих клеток. Наши данные нашли подтверждение в работе X. Chen и соавт. [12], в которой было отмечено прогрессивное снижение содержания CD4+CD25+FOXP3+-клеток в селезенках реципиентов с БТПХ, вызванной введением аллогенного КМ со спленоцитами.

В клинической практике в основном используется не аутологичный (синтезированный), а криоконсервированный аллогенный КМ, поэтому представляло интерес определить содержание T_{reg} и их СИФ при индукции БТПХ аллогенным кКМ + ЛУ (группа 3). Так, содержание исследуемых субпопуляций T_{reg} в этой группе животных снижалось еще в большей степени, чем при введении нКМ + ЛУ (группа 2), однако показатели их СИФ значительно не отличались.

CD4+CD25+FOXP3+ T_{reg} is the ‘minor’ one; their content in peripheral blood makes approximately 5–10% of CD4+ T cells in mice and humans [8, 9]. According to our data the T_{reg} content in spleen of intact mice corresponded to this index. Regulatory T cells play a key role in an immune system due to the unique capability for immune response control. Due to their insufficient number the autoimmune diseases develop and the survival rate in recipients is decreased [4, 14].

GVHD is known as associated with the appearance in a body of ‘autoreactive’ clone of effector T cells (CD4+), formed by donor stem hematopoietic cells [5], and a cytokine ‘storm’, caused by its development, induces the expression of surface markers both on effector and regulatory cells [16]. The expression of CD25 marker under the effect of transforming growth factor beta and interleukin-2 in CD4+CD25+ T cells transfers them into the T_{reg} category with suppressor activity [19].

Study of T_{reg} content in spleen of experimental animals showed that after administering syngeneic BM no GVHD was progressing, based on the SI value (see Fig. 1), but the T_{reg} content in this group was 1.3–1.8 times decreased (Fig. 3). In this case the MFI index, reflecting the expression degree of CD25 marker on membrane of CD4+CD25+ cells, or the skurfen protein

Рис. 2. Выживаемость реципиентов с БТПХ, вызванной введением нативного или криоконсервированного КМ с клетками лимфоузлов: 1 – группа 1 (синтезированный КМ); 2 – группа 2 (BTПХ(нКМ+ЛУ)); 3 – группа 3 (BTПХ (кКМ+ЛУ)).

Fig. 2. Survival of recipients with GVHD caused by administered either native or cryopreserved BM with lymph node cells: 1 – Group 1 (syngeneic BM); 2 – Group 2 (GVHD (nBM + Ln)); 3 – Group 3 (GVHD (cBM + Ln)).
Данный факт указывает на большую функциональную активность Трег при меньшем их количестве (рис. 3).

Следует отметить, что Трег играют главную роль в контроле развития БТПХ: уменьшение этой клеточной популяции и нарушение ее функционального статуса усиливают клинические симптомы патологии и, в частности, снижают показатель выживаемости животных. Для расшифровки механизмов развития БТПХ важно проведение исследований не только на клеточном, но и молекулярном уровне. Поэтому следующим этапом наших исследований была оценка уровня экспрессии гена Foxp3, определяющего супрессорную функцию Трег.

У регуляторных Т-клеток, которые играют главную роль в поддержании толерантности, экспрессируется уникальный транскрипционный регулятор Foxp3 [8, 16]. Как представлено на рис. 4, уровень его экспрессии во всех исследуемых группах был ниже интактного контроля.

Полученные нами данные соответствуют результатам исследований Yu. Miura и соавт. [16], которые установили, что экспрессия мРНК гена Foxp3 была снижена в моноклоналах периферической крови пациентов с аутоиммунной и аутоиммунной БТПХ по сравнению с пациентами, у которых БТПХ не развилась. Авторы показали, что экспрессия гена Foxp3 находилась в обратной зависимости со степенью тяжести патологии, что также подтверждает наши результаты (см. рис. 1, 2, 4).

У животных группы 2 по сравнению с группой 1 (синхронный контроль) (см. рис. 3), содержание Трег уменьшалось: CD4+CD25+ – на 28%, а FOXP3+ – content in FOXP3+ cells was not significantly changed, that might testify to their functional activity, being adequate to the intact control. In group 2 recipients there was noted a decreased content of CD4+CD25+ and FOXP3+ cells in 1.4 and 1.6 times, respectively, as compared to group 1 (Fig. 3). The MFI index of Трег was also reduced in recipients of group 2, testifying to a change in functional activity of these cells. Our findings were confirmed in the report of Chen X. et al. [12], where they noted a progressive reduction of CD4+CD25+FOXP3+ cells content in spleens of recipients with GVHD, caused by administered allogenic BM with splenocytes.

Clinical practice usually involves not autologous (syngeneic) BM, but cryopreserved allogenic one, therefore of interest was to determine the content of Трег and their MFI when inducing GVHD with allogenic cBM+ln (group 3). Thus, the content of the studied Трег subpopulations in this group of animals decreased in a greater extent than when nBM + ln (group 2) was administered, but the indices of their MFI did not significantly differ. This fact indicates the higher functional activity of Treg at their lower amount (Fig. 3).

Of note is the fact, that Трег play a major role in controlling GVHD development: a decrease in this cell population and a disorder in its functional status strengthen clinical symptoms of pathology, in particular, reduce the survival rate in animals. To decode the mechanisms of GVHD development it is important to perform studies both at cellular and molecular levels. So the next step of our research was to evaluate the Foxp3 gene expression level, determining a suppressor function of Трег.

Рис. 3. Содержание CD4+CD25+ (A), FOXP3+ -клеток (B) и их СИФ в селезенках животных с БТПХ на 14-е сутки развития патологии; *# – различия статистически значимы относительно соответствующего интактного контроля (группа 4), p <0.05.

Fig. 3. Content of CD4+CD25+ (A), FOXP3+ cells (B) and their MFI in spleens of GVHD animals to day 14 of pathology development; *# – differences are statistically significant relative to the respective intact control (group 4), \(p <0.05 \).
на 37%, при этом уровень экспрессии гена Foxp3 был снижен на 46% (рис. 4).

У животных группы 3 содержание T_{per} было еще меньше, чем в группе 2, а экспрессия исследуемого гена была выше. По-видимому, повышение уровня экспрессии гена Foxp3 в группе 3 (в отличие от группы 2) является следствием компенсации функциональной активности низкого содержания T_{per}. Исходя из данных, полученных Ю. Миура и соавт. [16], повышение экспрессии гена Foxp3 приводит к снижению степени тяжести БПХ. В нашем исследовании показатель выживаемости животных группы 3 подтверждает данный факт (см. рис. 2).

В литературе появились сообщения о том, что Foxp3 могут экспрессировать и эффекторные T-клетки после активации [11], а экспрессия Foxp3 T-хелперными клетками CD4^{+}CD25^{−} не всегда сопровождается приобретением супрессорной функции и стабильного регуляторного фенотипа [18].

Таким образом, результаты наших исследований согласуются с данными литературы [11, 16], которые показывают, что корреляция между содержанием T_{per} и уровнем экспрессии гена Foxp3 существующая.

The unique transcriptional repressor Foxp3 is expressed in regulatory T-cells, playing a major role in tolerance maintenance [8, 16]. Fig. 4 shows the level of its expression in all the studied groups to be below the intact control.

Our findings are consistent with those of Miura Yu. et al. [16], who found out that the mRNA expression of Foxp3 gene was reduced in mononuclear cells of peripheral blood of patients with allogeneic and autologous GVHD as compared to the recipients in which no GVHD was developed. The authors demonstrated the Foxp3 gene expression to be inversely related to the severity degree of pathology, also confirming our results (see Fig. 1, 2, and 4).

In group 2 animals as compared to group 1 (syngeneic control) (see Fig. 3) the T_{reg} content decreased: CD4^{+}CD25^{−} and FOXP3^{+} by 28 and 37% respectively, wherein the expression level of Foxp3 gene was reduced by 46% (Fig. 4).

In animals of group 3 the T_{reg} content was even lower than in group 2, but the expression of the studied gene was higher. An increase in the expression level of Foxp3 gene in group 3 (contrary to group 2) evidently results from the compensation of functional activity of T_{reg} low content. Proceeding from Miura Yu. et al. report [16], the augmentation of Foxp3 gene expression results in a decreased GVHD severity. In our study this fact is confirmed by the survival rate in group 3 animals (see Fig. 2).

There was reported that Foxp3 might be expressed by the effector T cells after activation [11], but the expression of Foxp3 by CD4^{+}CD25^{−} T helper cells was not always accompanied by the gaining the suppressor function and a stable regulatory phenotype [18].

Thus, our findings are consistent with the data reported [11, 16], demonstrating the correlation between the T_{reg} content and expression level of Foxp3 gene as not always existing. For example, in patients with chronic autoimmune thyroiditis on the background of a constant content of CD4^{+}CD25^{hi} cells in peripheral blood the expression level of Foxp3 gene was established to be 1.6 times lower than in healthy patients [3]. It should be noted that only in human the CD4^{+}CD25^{hi} cells in CD4^{+}CD25^{−} population are true T_{reg} [9]. The authors concluded that an increased number of CD4^{+}CD25^{hi} cells under this pathology might be a compensatory response of their functional deficiency, resulting from a reduced FOXP3 expression.

Thus, in the animals of group 3 with an introduced cryopreserved material the SI (see Fig. 1), characterizing the GVHD severity degree, was lower than when applying the native one (group 2), and a suppressor activity of FOXP3^{+} cells, determined by MFI, and the expression level of Foxp3 gene (Fig. 5) were higher.
ществует не всегда. Установлено, например, что у пациентов с хроническим аутоиммунным тиреоидитом на фоне неизменного содержания CD4+ CD25hi-клеток в периферической крови уровень экспрессии гена Foxp3 был в 1,6 раза ниже, чем у здоровых пациентов [3]. Следует отметить, что только у человека CD4+CD25hi-клетки в популяции CD4+CD25+ являются истинными Тreg [9]. Авторы пришли к выводу, что увеличение количества CD4+CD25hi-клеток при этой патологии может быть компенсаторной реакцией их функциональной неполнопроходимости, которая является следствием пониженной экспрессии Foxp3.

Таким образом, у животных группы 3 с введением криоконсервированного материала показатель ИС (см. рис. 1), характеризующий степень тяжести БТПХ, был ниже, чем при введении донорского (группа 2), а суправрессорная активность FOXP3+-клеток, определяемая по СИФ, и уровень экспрессии гена Foxp3 (рис. 5) были выше.

Возможно, криоконсервированный КМ, обладающий меньшей иммунореактивностью, чем донорский, был менее агрессивен в отношении иммунокомпетентной сферы реципиентов. Эффект подтверждался повышением интегрального клинического показателя — выживаемости животных.

Выводы

1. На модели экспериментально индуцированной БТПХ продемонстрировано участие Трег в патогенезе развития данной патологии и зависимости степени тяжести ее протекания от ее количественного содержания, функциональной активности, уровня экспрессии гена Foxp3, определяющих суправрессорную функцию данных клеток.

2. У животных с БТПХ, индуцированной аллогенным нативным костным мозгом, установлено почти двукратное снижение как содержания Трег, так и уровня экспрессии в них гена Foxp3 по сравнению с реципиентами синхронного костного мозга.

3. При БТПХ, индуцированной аллогенным криоконсервированным костным мозгом по сравнению с нативным, отмечено увеличение в 1,5 раза уровня экспрессии гена Foxp3 в Трег, которое является, по-видимому, компенсацией функциональной недостаточности Трег при максимальном снижении их содержания у животных этой группы.

4. Криоконсервированный аллогенный костный мозг, которым индуктировали БТПХ, по сравнению с нативным, вызвал повышение уровня экспрессии гена Foxp3 в Трег, что, по-видимому, обусловлено снижением его иммунореактивности и, как следствие, клинического проявления трансплантационной болезни.

Fig. 5. Content of FOXP3+-cells, their MFI, foxp3 gene expression level in them and survival rate (line) of animals; * — differences are statistically significant if compared to the intact and * — syngeneic (group 1) controls, \(p < 0.05; \) for 100% приняты показатели контрольного контрала.

Possibly the cryopreserved BM having a lower immune reactivity than the native one was less aggressive in respect to the immune competent sphere of recipients. This was confirmed by an increased integral clinical index: survival rate of animals.

Conclusions

1. The participation of Treg in pathogenesis of this pathology development and the dependencies of severity rate of its proceeding on their quantitative content, functional activity, Foxp3 gene expression level, determining a suppressor function of these cells, were demonstrated in the model of experimentally induced GVHD.

2. In the animals with GVHD induced with allogenic native bone marrow there was established almost twofold decrease in both Treg content and the expression level of Foxp3 gene, as compared to syngeneic bone marrow recipients.

3. During GVHD induced with cryopreserved allogenic bone marrow there was noted an 1.5 times increase in the expression rate of Foxp3 gene in Treg if compared to apologation of native cells, which was apparently the compensation of Treg functional failure under the maximum reduction of their content in animals of this group.
1. Гольцев А.А., Петров Р.В. Трансплантология и тканевая инженерия кроветворных стволовых клеток. Факторы, контролирующие их функции // Алергология и иммунология. – 2008. – № 6. – С. 357–361.

2. Буксунский И.А., Румянцев А.Г., Буйковская С.Н. Роль регуляторных T-клеток CD4+CD25+ и мезенхимальных стволовых клеток костного мозга в подавлении реакции трансплантат против хозяина // Онкогематология. – 2008. – № 3. – С. 45–51.

3. Ярилин А.А., Донецкова А.Д. Естественные регуляторные T-клетки и фактор ФОХП3 // Иммунология. – 2006. – Т. 27, № 3. – С. 176–188.

4. Baecher-Allan C., Brown J.A., Freeman G.J., Hafler D.A. CD4+CD25+ regulatory cells in human peripheral blood // J. Immunol. – 2001. – Vol. 167, № 2. – P. 1245–1253.

5. Ball L.M., Egeler R.M. Acute GVHD: pathogenesis and classification // Bone Marrow Transplantation. – 2008; 41(2): 58–64.

6. Белый А.Р., Рябова М.А., Большаков С.Н. Влияние регуляторных CD4+CD25+ T-клеток на течение аутоиммунных болезней // Вестник иммунологии. – 2008. – № 7. – С. 2187–2193.

7. Sakaguchi S., Sakaguchi N., Asano M. et al. Immunologic cell-loss and, as a result, in clinical manifestations of graft-versus-host disease. Blood 2004; 104(7): 2187–2193.

8. Korsunsky I.A., Rumyantsev A.G., Bykovskaya S.N. Role of regulatory T-cells of CD4+CD25+ and mesenchymal stem cells of bone marrow in suppressing graft-versus-host response. Onkogematologiya 2008; (3): 45–51.

9. Kozlov V.A., Yarin A.A., Ametov A.S. et al. Natural regulator T-cells and bound with them cytokines under chronic autoimmune thyroiditis. Immunologiya 2008; (6): 357–361.

10. Maloy K.J., Powrie F. Regulatory T cells in the control of immune thyroiditis. Immunologiya 2009; (7): 357–361.

11. Buckner J.H. Mechanisms of impaired regulation by CD4+CD25+ FOXP3+ regulatory T cells in human autoimmune diseases // Nat. Rev. Immunol. – 2010. – Vol. 10, №12. – P. 849–859.

12. Chen X., Vodanovic-Jankovic S., Johnson B. et al. Absence of T-cell control of Th1 and Th17 cells is responsible for the autoimmune-mediated pathology in chronic graft-versus-host disease. Blood 2007; 110(10): 3804–3813.

13. Herrington C., Mcgee J., editors. Molecular clinical diagnostics. Methods. Moscow: Mir; 1999.

14. Hori S., Nomura T., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3 // Science. – 2004. – Vol. 299, №5609. – P. 1057–1061.

15. Maloy K.J., Powrie F. Regulatory T-cells in the control of immune pathology // Nat. Immunol. – 2001. – Vol. 2, №9. – P. 816–822.

16. McGeachy M.J., Stephens L.A., Anderton S.M. Natural recovery and protection from autoimmune encephalomyelitis: Contribution of CD4+CD25+ regulatory cells within the central nervous system // J. Immunol. – 2005. – Vol. 175, №5. – P. 3025–3032.

17. Kozlov V.A., Yarin A.A., Ametov A.S. et al. Natural regulator T-cells and bound with them cytokines under chronic autoimmune thyroiditis. Immunologiya 2008; (6): 357–361.

18. Sakaguchi S., Miyara M., Costantino C. M., Hafler D.A. FOXP3+ regulatory T cells in the human immune system // Nat. Rev. Immunol. – 2010. – Vol. 10, № 7. – P. 490–500.

19. Sakaguchi S., Sakaguchi N., Asano M. et al. Immunologic cell-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25) // J. Immunol. – 1995. – Vol. 155, №3. – P. 1151–1164.

4. Cryopreserved allogeneic bone marrow which induced GVHD caused an increased level of Foxp3 gene expression in Treg if compared to a native one, which was apparently stipulated by a decrease in its immune reactivity and, as a result, in clinical manifestations of graft-versus-host disease.