Dynamical Systems Theory for Causal Inference
with Application to Synthetic Control Methods

Yi Ding
University of Chicago
Department of Computer Science

Panos Toulis
University of Chicago
Booth School of Business

Abstract

In this paper, we adopt results in nonlinear time series analysis for causal inference in dynamical settings. Our motivation is policy analysis with panel data, particularly through the use of “synthetic control” methods. These methods regress pre-intervention outcomes of the treated unit to outcomes from a pool of control units, and then use the fitted regression model to estimate causal effects post-intervention. In this setting, we propose to screen out control units that have a weak dynamical relationship to the treated unit. In simulations, we show that this method can mitigate bias from “cherry-picking” of control units, which is usually an important concern. We illustrate on real-world applications, including the tobacco legislation example of Abadie et al. (2010), and Brexit.

1 Introduction

In causal inference, we compare outcomes of units who received the treatment with outcomes from units who did not. A key assumption, often made implicitly, is that the relationships of interest are static and invariant. For example, in studying the effects of schooling on later earnings, we usually consider potential outcomes \(Y_i(k) \), for some student \(i \) had the student received \(k \) years of schooling. Since only one potential outcome can be observed for each student, causal inference needs to rely on comparisons between students who received varying years of schooling. The validity of the results therefore rests upon the assumption that the relationship between years of schooling and earnings is temporally static and unidirectional.

However, in many real-world settings, different variables exhibit dynamic interdependence, sometimes showing positive correlation and sometimes negative. Such ephemeral correlations can be illustrated with a popular dynamical system shown in Figure 1, the Lorenz system (Lorenz, 1963). The trajectory resembles a butterfly shape indicating varying correlations at different times: in one wing of the shape, variables \(X \) and \(Y \) appear to be positively correlated, and in the other they are negatively correlated. Such dynamics present new methodological challenges for causal inference that have not been addressed. In relation to the schooling example, our analysis of schooling effect on earnings could occur on one wing of the system, where the correlation is, say, positive. However, crucial policy decisions, such as college subsidies, could occur on the other wing where the relationship is reversed. Such discord between data analysis and policy making is clearly detrimental to policy effectiveness.

Despite its longstanding importance in many scientific fields, dynamical systems theory has not found its way into modern causal inference (Durlauf, 2005). The main goal of this paper is to leverage key results from dynamical systems to guide causal inference in the presence of dynamics. For concreteness, we focus on synthetic control methods (Abadie et al., 2010), which are popular for policy analysis with panel data.
Our methods, however, can more generally be applied when causal inference involves some form of matching between treated and control units in the time domain.

2 Preliminaries

Here, we give a brief overview of comparative case studies with panel data to fix concepts and notation. Later, in Section 3, we describe our method.

Following standard notation, we consider $J+1$ units, with only one unit being treated. Let Y_{it}^N be the potential outcome for unit i at time t in a hypothetical world where the intervention did not occur (denoted by the exponent “N”), where $i = 1, 2, \ldots, J+1$, and $t = 1, 2, \ldots, T$; also let Y_{it}^I be the corresponding potential outcome assuming the intervention did occur. Let D_{it} be a binary indicator of whether unit i is treated at time t. By convention, and without loss of generality, only unit 1 receives the treatment, and there exists $T_0 \in (0,T)$ such that

$$D_{it} = 1, \text{ if and only if } i = 1 \text{ and } t > T_0.$$

The observed outcome for unit i at time t, denoted by Y_{it}, therefore satisfies:

$$Y_{it} = Y_{it}^N + (Y_{it}^I - Y_{it}^N)D_{it},$$

where $\tau_{it} = Y_{it}^I - Y_{it}^N$ is the causal effect of intervention on unit i at time t. Suppose there exist weights w_2, \ldots, w_{J+1} such that $\sum_{j=2}^{J+1} w_j = 1$ and $w_j \geq 0$, and $Y_{it}^N = \sum_{j=2}^{J+1} w_j Y_{jt}$, for $t = 1, \ldots, T_0$. Then, the causal effect of the intervention can be estimated through:

$$\hat{\tau}_{it} = Y_{it} - \sum_{j=2}^{J+1} w_j Y_{jt}, \text{ for every } t > T_0. \quad (2)$$

The time series defined with the term $\sum_{j=2}^{J+1} w_j Y_{jt}$ in Equation (2) is the synthetic control. This synthetic control unit can be construed to be representative of the treated unit ($i = 1$) had the treated unit not received treatment. Because of the constraints put on w_j, namely that they are nonnegative and sum to one, the fitted values of the weights reside on the edges of a polytope, and so many weights are set to 0. Such sparsity in the weights corresponds to control selection, and so only a few control units are used to model the outcomes of the treated unit.

The synthetic control methodology is an important example of comparative case studies (Angrist and Pischke, 2008; Card and Krueger, 1994), and generalizes other well-known methods, such as “difference-in-differences”. As a methodology it is simple and transparent, and so synthetic controls have become widely popular in the fields of policy analysis (Abadie et al., 2010; Kreif et al., 2016; Shaikh and Toulis, 2019), criminology (Saunders et al., 2015), politics (Abadie and Gardeazabal, 2003; Abadie et al., 2015), and economics (Billmeier and Nannicini, 2013).

Theoretically, the treatment effect estimator, $\hat{\tau}_{it}$, is asymptotically unbiased as the number of pre-intervention periods grows when the outcome model is linear in (possibly unobserved) factors and the treated unit “lives” in the convex hull of the controls (Abadie et al., 2010, Theorem 1). As such, a key assumption of model continuity is implicitly made for identification, where the weights w_j are assumed to be time-invariant. Furthermore, control selection in synthetic controls depends only on the statistical fit between treated and control outcomes in the pre-intervention period, which opens up the possibility of cherry-picking controls to bias causal inference. In the following section, we illustrate these problems with an example.

2.1 Motivation: an Adversarial Attack to the Synthetic Control Method

As a motivation, we use the example of California’s tobacco control program in 1989, as described in the original paper of synthetic controls (Abadie et al., 2010). The goal is to estimate the effect of Proposition 99, a large-scale tobacco control program passed by electorate majority in 1988 in California. The proposition took effect in 1989 through a sizeable tax hike per cigarette packet. The panel data include annual state per-capita cigarette sales from 1970 to 2000 as outcome, along with related predictors, such as state median income and %youth population. We have a pool with 38 states as potential controls, after discarding states that adopted similar programs during the 1980’s.

The synthetic control methodology proceeds by calculating a weighted combination of control unit outcomes to fit cigarette sales of California, using only pre-1989 data. In this application, the weighted combination is: Colorado (0.164), Connecticut (0.069), Montana (0.199), Nevada (0.234), and Utah (0.334), where the numbers in the parentheses are the corresponding weights. The implied model is the following:

$$\tilde{Y}_{CA,t} = 0.164 \times Y_{CO,t} + 0.069 \times Y_{CT,t} + 0.199 \times Y_{MO,t} + 0.234 \times Y_{NV,t} + 0.334 \times Y_{UT,t}, \quad (3)$$

where $Y_{CA,t}$ denotes packet sales at a particular state and time (a state is denoted by a two-letter code; e.g., CA stands for California). We note that time t in the model of Equation (3) is before intervention ($t \leq 1989$), so that all states in the data, including California, are in control for the entire period considered in the model.

The idea for causal inference through this approach is
that the same model in Equation (3) can be used to estimate the counterfactual outcomes for California, \(Y_{CA,t} \), for \(t > 1989 \), had California not been treated with the tax hike in 1989. By comparing the post-intervention data from actual California that was treated with the tobacco control program in 1989, and predictions for \textit{synthetic California} that hypothetically stayed in control in 1989, we can estimate that per-capita cigarette sales reduced by 19 packs on average by Proposition 99, suggesting a positive causal effect. This is illustrated in the left figure of Figure 2. As mentioned earlier, an implicit assumption here is that of model continuity: we assume that the same model that fits pre-intervention California can be used to predict the counterfactual outcomes of a post-intervention, non-treated California.

This model continuity assumption relies critically on the choice of control units in the model of Equation (3). Currently, this choice relies mostly on the subject-matter expert, which leaves open opportunities for cherry-picking in constructing the control pool. To illustrate this problem we can perform the following manipulation. First, we add 9 unemployment-related time series\(^1\), namely \(Y_{AD1,t}, \ldots, Y_{AD9,t} \), into the pool of potential controls, where “AD” stands for “adversarial”. Second, before adding these units to the control pool we transform the time series as follows: \(Y_{ADi,t} = Y_{ADi,t} - 50 + 90 \cdot I\{ t \leq 1989 \} \). This transformation ensures that the adversarial time series has similar scale to time series on cigarette consumption before treatment. Since the synthetic control method only relies on statistical fit, it may pick up the artificial time series from the new control pool. Indeed, the new synthetic California is now described by the following model:

\[
\begin{align*}
\hat{Y}_{CA,t} = 0.247 \times Y_{CO,t} + 0.179 \times Y_{CT,t} \\
+ 0.196 \times Y_{NV,t} + 0.06 \times Y_{NH,t} + 0.011 \times Y_{WY,t} \\
+ 0.3 \times Y_{ADs,t},
\end{align*}
\]

where \(Y_{ADs,t} \) represents that the adversarial time series was selected — the specific index is irrelevant. This produces a new synthetic California that is drastically different than before. The weight on the artificial control unit is in fact the highest compared to the weights on all other units, which is clearly undesirable. More importantly, with the new synthetic control California, we estimate a \textit{negative} causal effect of 8 packs on average (see right sub-figure in Figure 2).

To address this problem, our paper leverages fundamental results in dynamical systems theory, such as time-delay embeddings. The goal is to pre-screen control units based on how strongly related they are to treated units from a dynamical point of view. The key idea is that state cigarette consumption data evolve on the same attractor, whereas adversarial time series do not. Thus, the latter should be less dynamically related to the treated state, and so they should be removed from the control pool.

We note that our proposed method differs from recent work in synthetic controls, which has mainly focused on high-dimensional, matrix completion, or de-biasing methods (Amjad et al., 2018; Ben-Michael et al., 2018; Athey et al., 2018; Hazlett and Xu, 2018). These methods take a regression model-based approach, whereas we treat panel data as a nonlinear dynamical system. More broadly, our approach shows that dynamical systems theory can be integrated into statistical frameworks of causal inference, a goal that so far has remained elusive (Rosser, 1999; Durlauf, 2005).

3 Methods

In this section, we describe our proposed method. In Section 3.1, we present the method of convergent cross mapping (CCM), which is the fundamental building block of our method. In Section 3.2, we motivate CCM through a theoretical analysis on a simple, non-trivial time-series model. Finally, in Section 3.3, we give details on our proposed method.

3.1 Convergent Cross Mapping (CCM)

The basis of our approach is to consider the available panel data as a dynamical system. In particular, the state of the system at time \(t \) is the collection of all time series, \(\{ Y_1, Y_2, \ldots, Y_{(J+1)t} \} \), where \(J \) is the number of controls. Taken across all possible \(t \), this implies a manifold, known as the \textit{phase space}, denoted by \(M = \{ Y_{jt} : j = 1, \ldots, J + 1 \} : t \in [0, T] \}, \) where \(T \) denotes the length of time series, and is fixed. For example, when \(J = 1 \) there are two units in total and \(M \) is a curve (possibly self-intersecting) on the plane.

A seminal result in nonlinear dynamics is Takens’ theorem (Takens, 1981), which shows that the phase space of a dynamical system can be reconstructed through time-delayed observations from the system. Specifically, let us define a delay-coordinate embedding of the form

\[
\hat{Y}_{jt} = [Y_{jt}, Y_{j(t-\tau)}, \ldots, Y_{j(t-(d-1)\tau)}],
\]

where \(\tau > 0 \) is the time delay. The key theoretical result of Takens (1981) is that the manifold, \(\hat{M}_j \), defined from outcomes \(\{ \hat{Y}_{jt} \} \) is diffeomorphic (i.e., the mapping is differentiable, invertible, and smooth) to the original manifold \(M \), meaning that some important topological information is preserved, such as invariance to coordinate changes. In other words, \(\hat{M}_j \) is a reconstruction of \(M \). It follows that different reconstructions \(\hat{M}_j \), for

\(^1\)Data from the Local Area Unemployment Statistics (LAUS) program of the Bureau of Labor Statistics (Bureau of Labor Statistics, 2018). See Supplement for details.
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods

Figure 2: Trends in per-capita cigarette sales. The solid line is actual California and the dashed line is synthetic California, while the vertical line indicates time of intervention. **Left:** original setting. **Right:** adversarial setting where the synthetic California is created according to Equation (4).

Various j, are diffeomorphic to each other, including the original manifold M, which implies cross-predictability. For two different reconstructions M_j and $M_{j'}$, with their corresponding base time series $Y_{j,t}$ and $Y_{j',t}$, we could use M_j to predict $Y_{j',t}$ and use $M_{j'}$ to predict Y_j. By measuring this cross-predictability, the relative strength of dynamical relationship between any two variables in the system can be quantified (Schiff et al., 1996; Arnhold et al., 1999).

One recent method utilizing this idea is convergent cross mapping (Sugihara et al., 2012, CCM). In addition to the idea of cross-predictability, CCM also relies on a smoothness implication of Takens’ theorem, whereby neighboring points in the reconstructed manifold are close to neighboring points in the original manifold. This suggests that cross predictability will increase and stabilize as the number of data points grow. The cross predictability is quantified by a CCM score, which we will address later.

Operationally, the generic CCM algorithm considers two time series, say X_t and Y_t, and their corresponding delay-coordinate embedding vectors at time t, namely

$$\tilde{X}_t = [X_t, X_{t-(d-1)r}, \ldots, X_{t-dr+1}],$$
$$\tilde{Y}_t = [Y_t, Y_{t-(d-1)r}, \ldots, Y_{t-dr+1}],$$

where d is known as the embedding dimension and $t \in \{1, 1+(d-1)r, \ldots, T\}$. The manifold based on the phase space of \tilde{Y}_t is denoted by M_Y, and the manifold based on \tilde{X}_t is denoted by M_X, where the manifold definitions follow from Equation (5). The idea is that these manifolds are diffeomorphic to the original manifold of the dynamical system of Y and X.

An manifold from the delay embedding of one variable can be used to predict the other variable, and the quality of this prediction is an indication of which variable “drives” the other.

Such prediction proceeds in discrete steps as follows. First, we build a nonparametric model of X_t using the reconstruction manifold based on Y_t. For a given time point t, we pick the $(d+1)$-nearest neighbors from $t \in \{1 + (d-1)r, 1 + dr, \ldots, L\}$ in \tilde{Y}_t, where $L < T$ is called the library size, and denote their time indices (from closest to farthest) as $\{t_1, \ldots, t_{d+1}\}$. A linear model for X_t is as follows:

$$\hat{X}_t = \sum_{i=1}^{d+1} w(t_i, t) X_{t_i},$$ (7)

where $w(t_i, t)$ is the weight based on the Euclidean distance between \tilde{Y}_t and its i-th nearest neighbor on \tilde{Y}_{t_i}, for example, $w(t_i, t) = \exp(-d_i/d_1)/\sum_j \exp(-d_j/d_1)$ and $d_i = ||\tilde{Y}_t - \tilde{Y}_{t_i}||$, with the usual L_2 norm. The difference defined by mean absolute error (MAE) between X_t and \hat{X}_t across t is defined as the CCM score of Y_t on X_t (lower is better):

$$\text{CCM}(X_t | Y_t) = |X_t - \hat{X}_t|,$$ (8)

$$\text{CCM}(Y_t | X_t) = |Y_t - \hat{Y}_t|.$$ (9)

Intuitively, the CCM score captures how much information is in Y_t about X_t. For instance, if X_t dynamically drives Y_t, we expect \hat{X}_t to be close to X_t. Similarly, CCM($Y_t | X_t$) is obtained by repeating the above procedure symmetrically, using M_X of the values from the delay embedding \tilde{X}_t of X_t. The value of CCM($Y_t | X_t$) quantifies the information in X_t about Y_t. The two CCM scores jointly quantify the dynamic coupling between the two variables. As mentioned earlier, Takens' theorem implies that there exists a one-to-one mapping such that the nearest neighbors of Y_t identify the corresponding time indices of nearest neighbors of X_t, if X_t and Y_t are dynamically related. As the library size, L,
increases, the reconstruction manifolds M_X and M_Y become denser and the distances between the nearest neighbors shrink, and so the CCM scores will converge; see Sugihara and May (1990); Casdagli et al. (1991) for more details.

From a statistical perspective, the CCM method is a form of nonparametric time-series estimation (Härdle et al., 1997). The unique feature of CCM, and more generally of delay embedding methods, is that the nonparametric components are in fact the time indices t_1, \ldots, t_d+1 in Equation (7). This differs from, say, kernel smoothing (Hastie et al., 2001), where the target point X_t is fitted by neighboring observations to smooth estimation. Importantly, CCM is not in competition with Granger causality (Granger, 1969), but rather complements it. The key problem with Granger causality is that it requires “separability” of the effects from different causal factors. This condition generally does not hold in real-world dynamical systems that exhibit so called “weak coupling”. CCM is unique because it can work in such systems (Sugihara et al., 2012). Finally, CCM is backed up by a growing literature in the physical sciences as it is tailored to dynamical complex systems (Runge et al., 2019).

3.2 Theory of CCM on Autoregressive Model

In this section, we illustrate CCM through an AR(1) autoregression model. Of course, AR(1) is a simple model that most certainly does not capture the details of real-world time series. However, its simplicity allows us to do two things. First, we derive analytic formulas for the CCM scores in Equation (8). Due to CCM’s nonlinear nature, such formulas are not easily attainable, in general. In fact, we are unaware of any other analytic expressions for CCM in the literature, so our work here makes a broader contribution. Second, we can compare the CCM formulas with the parameters of the AR(1) model to better understand CCM as a tool; this is only possible because AR(1) is simple enough that the strength of causal relationships between variables is discernible from the model parameters.

The outcome model we consider is as follows:

$$X_t = \alpha X_{t-1} + \mu + \epsilon_t, \quad Y_t = \beta X_{t-1} + \mu + \zeta_t , \quad (9)$$

where α, β are fixed, with $|\alpha| < 1$, $\beta \geq 0$, μ is the drift, $\epsilon_t \sim N(0, \sigma^2_X)$ and $\zeta_t \sim N(0, \sigma^2_Y)$ are zero-mean and constant-variance normal errors, with $\sigma_Y > \sigma_X$. In this joint dynamical system of X and Y, it is evident that X generally drives Y since X evolves independently of Y, whereas the evolution of Y depends on X. We are interested in knowing how CCM quantifies this asymmetric dynamic relationship between X and Y, and whether it captures the dependence on parameters $\alpha, \beta, \mu, \sigma^2_X, \sigma^2_Y$.

Assumption 1. Fix t and let $L \to \infty$. Suppose that:

(a) $\min_{i=1, \ldots, d+1} \min \{t'_i, t_t\} \to \infty$;
(b) for both crossmaps, $\max_i |w_y(t_i, t) - \frac{1}{\sigma^2_{i+1}}| \to 0$, and $\max_i |w_x(t'_i, t) - \frac{1}{\sigma^2_{i+1}}| \to 0$;
(c) $\min_{i\neq j} |t_i - t_j| \to \infty$ and $\min_{i\neq j} |t'_i - t'_j| \to \infty$.

Remarks. Assumption 1(a) requires some form of smoothness for the delay-coordinate system, and is mild. Assumption 1(b) is similar to stationarity as it implies exchangeability within the sets $\{t_i : i = 1, \ldots, d+1\}$ and $\{t'_i : i = 1, \ldots, d+1\}$. Assumption 1(c) may be strict. It could fail, for instance, when the order statistics (e.g., (Y_i)) are periodic.

Theorem 1. Suppose that Assumptions 1(a)-(c) hold for the CCM scores of the autoregressive model in Equation (9), then

$$CCM(X_t \mid Y_t) \overset{d}{\rightarrow} FN\left((X_0 - \frac{\mu}{1 - \alpha}) \alpha^t, 2 - \frac{\alpha^2 t}{1 - \alpha^2} \sigma^2_X\right),$$

$$CCM(Y_t \mid X_t) \overset{d}{\rightarrow} FN\left(\beta(X_0 - \frac{\mu}{1 - \alpha}) \alpha^t, \frac{2 - \alpha^2 t}{1 - \alpha^2} \beta^2 \sigma^2_X + 2 \sigma^2_Y\right),$$

where $FN(\mu, \sigma^2) = |N(\mu, \sigma^2)|$ is the folded normal distribution with mean μ and variance σ^2.

Remarks. To unpack this theoretical result, we make the following remarks:

(a) When $\beta = 0$, the dependence of Y_t on X_t is entirely lost, and so X_t and Y_t evolve independently implying that there is no driving factor in the system. CCM captures this relationship, since $CCM(X_t \mid Y_t) = O_P(\sigma_X)$ and $CCM(Y_t \mid X_t) = O_P(\sigma_Y)$, with the two scores being independent (this is shown in the proof of the theorem in the Supplement).

(b) When β is small or moderately large, Y_t is weakly dependent on X_t. On average, we expect to see that $CCM(Y_t \mid X_t) > CCM(X_t \mid Y_t)$. CCM analysis indicates correctly that the driving factor in the system is X_t and not Y_t (recall that we are using the absolute error-CCM, and so smaller values are better).

(c) When β is very large we could sometimes have $CCM(Y_t \mid X_t) < CCM(X_t \mid Y_t)$, which leads to the wrong “causal direction”. This shows some inherent limitations of CCM, as it depends to some extent on predictive ability, and so it can fail in similar ways as Granger causality.

In conclusion, Theorem 1 is a new connection of statistics and nonlinear dynamics. As mentioned earlier, the goal is not to analyze AR(1) per se, which indeed is a simple model, but to understand CCM’s causal predictions by comparing to AR(1) coefficients. The theorem
explains how and why CCM is capturing the directions correctly, and justifies using CCM in synthetic controls. A similar analysis of CCM in more complex models would be desirable, but is generally hard since CCM is highly nonlinear. We leave this for future work.

3.3 CCM+SCM Method and Proposition 99

Here, we present CCM scores in the Proposition 99 example introduced in Section 2.1. Specifically, California (CA) is cross-mapped with five control states selected by the standard synthetic control method as shown in Equation (3). We use per-capita cigarette sales from the pre-intervention period as the outcome variable, which gives 19 data points for each unit’s time-series. The cross predictability measured by the CCM scores for each pair is shown in Figure 3. For example, the California-Colorado pair includes two CCM curves, namely, CCM(Y_{CA,t} | Y_{CO,t}) and CCM(Y_{CO,t} | Y_{CA,t}).

We see that cross predictability for all pairs roughly converge as the library size, L, grows. Furthermore, most pairs converge to the same low level of CCM score, indicating a strong and bidirectional dynamical relationship between the state pairs. The only obvious exception is the California-Connecticut pair, where a big gap occurs between the two curves exists, indicating a weak dynamical relationship between them.

In particular, we see that Connecticut is better predicted from California than the other way round. For this reason, we argue that Connecticut is not a suitable control for California and should be removed from the donor pool. If we apply an averaging transformation to smooth out the 1970-1980 trend of Connecticut, the CCM score changes and now shows a strong dynamic coupling between the two states (bottom-right plot in Figure 3). If Connecticut is removed, SCM will pick Minnesota. However, CCM will screen Minnesota as well because the cigarette price trends are similar between Minnesota and Connecticut, but distinct from California.

Our proposed method is therefore to use CCM to filter out controls that have a weak dynamical relationship with the treated unit, and then apply the standard SCM method as described in Section 2. We refer to this method as “CCM+SCM”. In practice, we propose that CCM+SCM filters out a control unit if in the two CCM plots with the treated unit, either the minimum MAE or the MAE gap exceed some thresholds. To determine the cutoff values, we may use Monte-Carlo simulations where we add noise to the original series, and then estimate the null distribution of CCM values under a hypothesis of weak dynamical relationship.

To illustrate the potential of CCM+SCM, we return to the example of Section 2.1, where we showed that adversarial units in the control pool affected the performance of synthetic controls. Figure 4 shows that CCM+SCM is able to screen the adversarial units, and is able to produce a synthetic control that is indistinguishable from the non-adversarial setting. In the following section, we explore the performance of CCM+SCM further through simulated studies and real-world data.

4 Experiments and Applications

Here, we design adversarial settings where artificial units are added to the donor pool to bias the synthetic control method. Of particular interest is whether CCM+SCM can help filter out the artificial units in all cases, without affecting the baseline performance when artificial units are not present. We also consider real-world applications.

4.1 Simulations with Artificial Units

First, we expand the tobacco legislation example of Section 2.1 by introducing a larger set of artificial units, which are created adversarially. These artificial data were created based on real-world time series macroeconomic data. The detailed generation process can be found in the Supplement. We run simulation studies in
Figure 4: Trends in per-capita cigarette sales after CCM pre-screening. The solid line is actual California and the dashed line is synthetic California, while the vertical line indicates time of intervention. Left: original setting. Right: adversarial setting where artificial units are added to the donor pool.

which the true effect is known for the treated unit. We replace the true California with the following formula:

\[
\tilde{Y}_{CA,t} = 0.164 \times Y_{CO,t} + 0.069 \times Y_{CT,t} + 0.199 \times Y_{MO,t} + 0.234 \times Y_{NV,t} + 0.334 \times Y_{UT,t} + \tau \{t \geq 1989\},
\]

where \(\tau\) is the true treatment effect and the other terms construct the synthetic California from the original data. This construction ensures that the ground truth of synthetic California in the post-intervention period is known. To illustrate that CCM is a general framework for pre-screening, we incorporate CCM to three different synthetic control methods: 1) SCM: vanilla synthetic control method by Abadie et al. (2010); 2) MC: matrix completion method for causal panel data by Athey et al. (2017); 3) RSC: robust synthetic control method by Amjad et al. (2018).

The comparisons between the ground truth and three synthetic control methods with and without CCM are visualized in Figure 5. The different methods lead to the same conclusion: with CCM pre-screening the outcome estimates, in both pre- and post-intervention periods, are closer to the ground truth than the original method alone. We note that MC works by matrix completion instead of selecting control units so CCM+MC behaves very similarly to MC. RSC alone does not work well because it uses the artificial unit to construct the synthetic control, and the denoising via singular value thresholding does not help here. The result suggests that CCM can help in synthetic control models, and is robust to the selection of the underlying outcome imputation model. Intuitively, this is because CCM is able to capture nonlinear dynamical information that is not captured by standard statistical models.

4.2 Real-World Applications

Here, we consider how many artificial units CCM is able to filter out with real-world data. To that end, we work with two real applications: one is still the California’s Tobacco Control Program studied in Abadie et al. (2010); and the other is on the economic costs of the Brexit referendum vote on UK’s GDP reported in Born et al. (2017). We only compare SCM and CCM+SCM. Our results are robust to the selection of the underlying model. As before, artificial units are created from noisy copies of real-world time series.

Figure 6 shows the number of artificial units that are selected as controls, and the corresponding average treatment effect (ATE). Clearly, CCM+SCM selects much fewer artificial units than just SCM. In addition, CCM+SCM generates more stable estimates of ATE. Specifically, in the tobacco example, the ATE reported by CCM+SCM remains stable around 20, which is close to the original ATE (\(\approx 19\) packets) estimated by SCM without artificial controls. In contrast, the ATE estimate from SCM with artificial controls is more varied in a range from 5 to 23. Another interesting phenomenon is that the ATE estimate from SCM can be negative under certain artificial controls in Brexit. This means that the effects of the Brexit vote may have been overstated in ongoing econometric work that uses synthetic control methods, as the estimates are likely to be sensitive to control pool construction.

5 Discussion

In this section, we discuss some general aspects of our work, particularly CCM as a causal inference method, and its underlying assumptions.

Our first point revolves around the use of CCM, and
related dynamical systems methods, for causal inference. In particular, due to the success of CCM in quantifying dynamical relationships illustrated here, it may be tempting to consider CCM as a general method for causal inference (Sugihara et al., 2012; Deyle et al., 2013). However, we do not advocate doing that directly, for two main reasons. First, the statistical properties of methods such as CCM are not well known. Theorem 1 in this paper is a step to this direction, but more work is needed. Second, CCM does not account for the observation model (e.g., the treatment assignment mechanism), which is crucial in causal inference (Imbens and Rubin, 2015). We also provide counterexamples and additional discussion in the Supplement.

Regarding the stationarity assumption in Theorem 1 (i.e., $|\alpha| < 1$, and Assumption 1(b)), we note that CCM assumes a deterministic (possibly chaotic) system, and so stationarity is roughly mapped to “evolution on an attractor”. Stationarity in Theorem 1 is thus not directly applicable to Takens’ theorem, and is assumed only in our effort to understand CCM vis-à-vis AR(1). In this work, we argue that CCM can strengthen the model continuity assumption (pre- and post-treatment), which is left implicit in synthetic controls. But there is much left to understand about the connection between chaotic and stochastic systems (Casdagli, 1992). We hope that this work provides a good motivation.

6 Conclusion

In this paper, we leveraged results from dynamical systems theory to quantify the strength of dynamic relationship between treated and control units in causal inference. We showed that this is useful in the context of comparative cases studies to guard against cherry-picking of potential controls, which is an important concern in practice.

More generally, our work opens up the potential for an interplay between dynamical systems theory and causal inference. In practice, interventions typically occur on complex dynamical systems, such as an auction or a labor market, which always evolve, before and after treatment. Future work could focus more on theoretical connections between embedding methods, such as CCM, and standard treatment effects in econometrics, especially if we view the filtering process described in Section 3 as a way to do treated-control matching.

Acknowledgment

We thank our anonymous reviewers for the feedback that improved this final version of the paper. We also thank Hao Ye, who provided assistance in understanding CCM. Y.D.’s work has been partially supported by the NSF (CCF-1439156, CCF-1823032, CNS-1764039).
References

Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of california’s tobacco control program. Journal of the American Statistical Association, 105(490):493–505.

Abadie, A., Diamond, A., and Hainmueller, J. (2015). Comparative politics and the synthetic control method. American Journal of Political Science, 59(2):495–510.

Abadie, A. and Gardeazabal, J. (2003). The economic costs of conflict: A case study of the basque country. American Economic Review, 93(1):113–132.

Amjad, M., Shah, D., and Shen, D. (2018). Robust synthetic control. The Journal of Machine Learning Research, 19(1):802–852.

Angrist, J. D. and Pischke, J.-S. (2008). Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton University Press.

Arnhold, J., Grassberger, P., Lehnertz, K., and Elger, C. E. (1999). A robust method for detecting interdependences: Application to intracranially recorded eeg. Phys. D, 134(4):419–430.

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and Khosravi, K. (2017). Matrix completion methods for causal panel data models.

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and Khosravi, K. (2018). Matrix completion methods for causal panel data models. Technical report, National Bureau of Economic Research.

Ben-Michael, E., Feller, A., and Rothstein, J. (2018). The augmented synthetic control method. arXiv preprint arXiv:1811.04470.

Billemeier, A. and Naemonic, T. (2013). Assessing economic liberalization episodes: A synthetic control approach. The Review of Economics and Statistics, 95(3):983–1001.

Born, B., Müller, G. J., Schularick, M., and Sedlacek, P. (2017). The Economic Consequences of the Brexit Vote. Discussion Papers 1738, Centre for Macroeconomics (CFM).

Bureau of Labor Statistics, U. D. o. L. (2018). Local Area Unemployment Statistics.

Card, D. and Krueger, A. (1994). Minimum wages and employment: A case study of the fast-food industry in new jersey and pennsylvania. American Economic Review, 84(4):772–93.

Casdagli, M. (1992). Chaos and deterministic versus stochastic non-linear modelling. Journal of the Royal Statistical Society: Series B (Methodological), 54(2):303–328.

Casdagli, M., Eubank, S., Farmer, J. D., and Gibson, J. (1991). State space reconstruction in the presence of noise. Phys. D, 51(1-3):52–98.

Deyle, E. R., Fogarty, M., Hsieh, C.-h., Kaufman, L., MacCall, A. D., Munch, S. B., Perretti, C. T., Ye, H., and Sugihara, G. (2013). Predicting climate effects on pacific sardine. Proceedings of the National Academy of Sciences, 110(16):6430–6435.

Durlauf, S. N. (2005). Complexity and empirical economics. The Economic Journal, 115(504):F225–F243.

Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3):424–438.

Härdle, W., Lütkepohl, H., and Chen, R. (1997). A review of nonparametric time series analysis. International Statistical Review, 65(1):49–72.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer.

Hazlett, C. and Xu, Y. (2018). Trajectory balancing: A general reweighting approach to causal inference with time-series cross-sectional data.

Imbens, G. W. and Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.

Kreif, N., Grieve, R., Hangartner, D., Turner, A. J., Nikolova, S., and Sutton, M. (2016). Examination of the synthetic control method for evaluating health policies with multiple treated units. Health Economics, 25(12):1514–1528.

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130–141.

Rosser, J. B. (1999). On the complexities of complex economic dynamics. The Journal of Economic Perspectives, 13(4):169–192.

Runge, J., Bathiany, S., Boltt, E., Camps-Valls, G., Coulou, D., Deyle, E., Glymour, C., Kretschmer, M., Maeha, M. D., Muñoz-Mari, J., et al. (2019). Inferring causation from time series in earth system sciences. Nature communications, 10(1):1–13.

Saunders, J., Lundyberg, R., Braga, A. A., Ridgeway, G., and Miles, J. (2015). A synthetic control approach to evaluating place-based crime interventions. Journal of Quantitative Criminology, 31(3):413–434.

Schiff, S. J., So, P., Chang, T., Burke, R. E., and Sauer, T. (1996). Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys. Rev. E, 54:6708–6724.

Shaikh, A. and Toulis, P. (2019). Randomization tests in observational studies with staggered adoption of treatment. University of Chicago, Becker Friedman Institute for Economics Working Paper, (2019-144).
Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., and Munch, S. (2012). Detecting causality in complex ecosystems. 338.

Sugihara, G. and May, R. M. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. *Nature*, 344(6268):734–741.

Takens, F. (1981). Detecting strange attractors in turbulence. *Lecture Notes in Mathematics, Berlin Springer Verlag*, 898:366.
Dynamical Systems Theory for Causal Inference with Application to Synthetic Control Methods

Supplementary Material

Yi Ding and Panos Toulis

1 Proof Theorem 1

Proposition 1. Let \(d_Y(t, t') = ||\tilde{Y}_t - \tilde{Y}_{t'}||\) and \(r_Y(t, t_i) = dy(t, t_i)/dy(t, t_1)\), where \(\tilde{Y}_t = [Y_t, Y_{t-\tau}, \ldots, Y_{t-(d-1)\tau}]\) is the delayed coordinate embedding of \(Y_t\), and \(\{\tilde{Y}_{t_i} : i = 1, \ldots, d+1\}\) are the \(d+1\) nearest neighbors to \(\tilde{Y}_t\). The CCM score of \(Y_t\) on \(X_t\) based on MAE metric is equal to:

\[
\text{CCM}(X_t \mid Y_t) = \left| \left(X_0 - \frac{\mu}{1-\alpha} \right) \left(\alpha^t - \sum_{i=1}^{d+1} w_Y(t_i, t) \alpha^{t_i} \right) + \left(E_t - \sum_{i=1}^{d+1} w_Y(t_i, t) E_{t_i} \right) \right|,
\]

where \(E_t = \sum_{s=1}^{t} \alpha^{t-s} \epsilon_s\), and \(w_Y(t_i, t) = e^{-r_Y(t, t_i)}/\sum_{j=1}^{d+1} e^{-r_Y(t, t_j)}\). Similarly, let \(d_X(t, t') = ||\tilde{X}_t - \tilde{X}_{t'}||\) and \(r_X(t, t_i') = d_X(t, t_i')/d_X(t, t_1)\), where \(\tilde{X}_t = [X_t, X_{t-\tau}, \ldots, X_{t-(d-1)\tau}]\) is the delayed coordinate embedding of \(X_t\), and \(\{\tilde{X}_{t_i'} : i = 1, \ldots, d+1\}\) are the \(d+1\) nearest neighbors to \(\tilde{X}_t\). The CCM score of \(X_t\) on \(Y_t\) based on MAE metric is equal to:

\[
\text{CCM}(Y_t \mid X_t) = \left| \beta \left(X_0 - \frac{\mu}{1-\alpha} \right) \left(\alpha^{t-1} - \sum_{i=1}^{d+1} w_X(t_i', t) \alpha^{t_i'-1} \right) + \beta \left(E_t - \sum_{i=1}^{d+1} w_X(t_i', t) E_{t_i'} \right) + \left(\zeta_t - \sum_{i=1}^{d+1} w_X(t_i', t) \zeta_{t_i'} \right) \right|,
\]

where \(w_X(t_i', t) = e^{-r_X(t_i', t)}/\sum_{j=1}^{d+1} e^{-r_X(t_i, t_j)}\).

Proof. Recall that the AR model is as follows:

\[
X_t = \alpha X_{t-1} + \mu + \epsilon_t, \quad Y_t = \beta X_{t-1} + \mu + \zeta_t,
\]

where \(\alpha, \beta\) are fixed, with \(|\alpha| < 1, \beta \geq 0, \mu\) is the drift, \(\epsilon_t \sim \mathcal{N}(0, \sigma^2_X)\) and \(\zeta_t \sim \mathcal{N}(0, \sigma^2_X)\) are zero-mean and constant-variance normal errors. We can solve the recursion to obtain:

\[
X_t = \alpha^t X_0 + P_t(\alpha) \mu + E_t, \quad Y_t = \beta \alpha^{t-1} X_0 + (\beta P_{t-1}(\alpha) + 1) \mu + \beta E_t + \zeta_t,
\]

where \(P_t(\alpha) = 1 + \alpha + \ldots + \alpha^{t-1} = (1 - \alpha^t)/(1 - \alpha)\) and \(E_t\) is the summation of weighted error terms \(E_t = \sum_{s=1}^{t} \alpha^{t-s} \epsilon_s\).
The cross estimation for X_t is

$$
\hat{X}_t = \sum_{i=1}^{d+1} w_Y(t_i, t)X_{ti} = \sum_{i=1}^{d+1} w_Y(t_i, t) \left(\alpha^t_i X_0 + P_{t_i}(\alpha)\mu + E_{t_i} \right),
$$

where $w_Y(t_i, t) = e^{-r_Y(t,t_i)}/\sum_{j=1}^{d+1} e^{-r_Y(t,t_j)}$. Then, the CCM score of Y_t on X_t based on MAE can be expressed as:

$$
|X_t - \hat{X}_t| = \left| \alpha^t X_0 + P_t(\alpha)\mu + E_t - \left(\sum_{i=1}^{d+1} w_Y(t_i, t)(\alpha^t_i X_0 + P_{t_i}(\alpha)\mu + E_{t_i}) \right) \right|
$$

$$
= \left| X_0 \left(\alpha^t - \sum_{i=1}^{d+1} w_Y(t_i, t)\alpha^{t_i} \right) + \mu \left(P_t(\alpha) - \sum_{i=1}^{d+1} w_Y(t_i, t)P_{t_i}(\alpha) \right) + \left(E_t - \sum_{i=1}^{d+1} w_Y(t_i, t)E_{t_i} \right) \right|
$$

$$
= \left| X_0 \left(\alpha^t - \sum_{i=1}^{d+1} w_Y(t_i, t)\alpha^{t_i} \right) + \mu \left(1 - \frac{\alpha^t}{1 - \alpha} - \sum_{i=1}^{d+1} w_Y(t_i, t) \frac{1 - \alpha^{t_i}}{1 - \alpha} \right) + \left(E_t - \sum_{i=1}^{d+1} w_Y(t_i, t)E_{t_i} \right) \right|
$$

$$
= \left| \left(X_0 - \frac{\mu}{1 - \alpha} \right) \left(\alpha^t - \sum_{i=1}^{d+1} w_Y(t_i, t)\alpha^{t_i} \right) + \left(E_t - \sum_{i=1}^{d+1} w_Y(t_i, t)E_{t_i} \right) \right|. \quad (1)
$$

Similarly, the cross estimation for Y_t is

$$
\hat{Y}_t = \sum_{i=1}^{d+1} w_X(t'_i, t)Y_{t'_i} = \sum_{i=1}^{d+1} w_X(t'_i, t)(\beta \alpha^{t'_i-1} X_0 + (\beta P_{t'_i-1}(\alpha) + 1)\mu + \beta E_{t'_i} + \zeta_{t'_i}) \quad (2)
$$

where $w_X(t'_i, t) = e^{-r_X(t,t'_i)}/\sum_{j=1}^{d+1} e^{-r_X(t,t'_j)}$. Then, the CCM score of X_t on Y_t based on MAE can be expressed as:

$$
|Y_t - \hat{Y}_t| = \left| \beta \alpha^{t-1} X_0 + \left(\beta P_{t-1}(\alpha) + 1 \right)\mu + \beta E_t + \zeta_t - \left(\sum_{i=1}^{d+1} w_X(t'_i, t)(\beta \alpha^{t'_i-1} X_0 + (\beta P_{t'_i-1}(\alpha) + 1)\mu + \beta E_{t'_i} + \zeta_{t'_i}) \right) \right|
$$

$$
= \left| X_0 \left(\alpha^{t-1} - \sum_{i=1}^{d+1} w_X(t'_i, t)\alpha^{t'_i-1} \right) + \mu \left(P_{t-1}(\alpha) - \sum_{i=1}^{d+1} w_X(t'_i, t)P_{t'_i-1}(\alpha) \right) + \beta \left(E_t - \sum_{i=1}^{d+1} w_X(t'_i, t)E_{t'_i} \right) \right|
$$

$$
+ \left(\zeta_t - \sum_{i=1}^{d+1} w_X(t'_i, t)\zeta_{t'_i} \right) \right|
$$

$$
= \left| X_0 \left(\alpha^{t-1} - \sum_{i=1}^{d+1} w_X(t'_i, t)\alpha^{t'_i-1} \right) + \mu \left(1 - \frac{\alpha^{t-1}}{1 - \alpha} - \sum_{i=1}^{d+1} w_X(t'_i, t) \frac{1 - \alpha^{t'_i-1}}{1 - \alpha} \right) + \beta \left(E_t - \sum_{i=1}^{d+1} w_X(t'_i, t)E_{t'_i} \right) \right|
$$

$$
+ \left(\zeta_t - \sum_{i=1}^{d+1} w_X(t'_i, t)\zeta_{t'_i} \right) \right|
$$

$$
= \left| \left(X_0 - \frac{\mu}{1 - \alpha} \right) \left(\alpha^{t-1} - \sum_{i=1}^{d+1} w_X(t'_i, t)\alpha^{t'_i-1} \right) + \beta \left(E_t - \sum_{i=1}^{d+1} w_X(t'_i, t)E_{t'_i} \right) + \left(\zeta_t - \sum_{i=1}^{d+1} w_X(t'_i, t)\zeta_{t'_i} \right) \right|. \quad (3)
$$

We now proceed to the proof of Theorem 1 using the results in Equation (1) and Equation (3). We repeat the Assumption 1 in the main paper.
Assumption 1. For the CCM scores in Proposition 1, fix t and let $L \to \infty$, and suppose that:

(a) $\min_{i=1, \ldots, d+1} \min\{t', t\} \to \infty$;
(b) $\limsup_{i=1, \ldots, d+1} |w_Y(t_i, t) - \frac{1}{\pi L^2}| = 0$, and $\limsup_{i=1, \ldots, d+1} |w_X(t_i', t) - \frac{1}{\pi L^2}| = 0$;
(c) $\min_{i \neq j} |t_i - t_j| \to \infty$ and $\min_{i \neq j} |t_i' - t_j'| \to \infty$.

Theorem 1. Suppose that Assumptions 1(a)-(c) hold for the CCM scores in Proposition 1, then

$$
CCM(X_i | Y_i) \overset{d}{\to} \text{FN} \left(\left(X_0 - \frac{\mu}{1 - \alpha} \right) \alpha^t, \frac{2 - \alpha^2}{1 - \alpha^2} \sigma_Y^2 \right),
$$

$$
CCM(Y_i | X_i) \overset{d}{\to} \text{FN} \left(\beta(X_0 - \frac{\mu}{1 - \alpha}) \alpha^{t-1}, \frac{2 - \alpha^2}{1 - \alpha^2} \beta^2 \sigma_X^2 + 2 \sigma_Y^2 \right),
$$

where $\text{FN} \left(\mu, \sigma^2 \right) = |N(\mu, \sigma^2)|$ is the folded normal distribution with mean μ and variance σ^2.

Proof. From $\alpha < 1$ and Assumption 1(a) we get:

$$
\sum_{i=1}^{d+1} w_Y(t_i, t) \alpha^t \leq \sum_{i=1}^{d+1} w_Y(t_i, t) \alpha^{\min, \min\{t, t_i\'}} \leq \alpha^{\min, \min\{t, t_i\'}} \sum_{i=1}^{d+1} w_Y(t_i, t) = \alpha^{\min, \min\{t, t_i\'}} \to 0.
$$

Since $E_t = \sum_{s=1}^{t} \alpha^{t-s} \epsilon_s = \alpha^{t-1} \epsilon_1 + \alpha^{t-2} \epsilon_1 + \cdots + \epsilon_t$ and $\epsilon_t \sim N(0, \sigma_X^2)$, we have

$$
E(E_t) = 0, \quad \text{and} \quad \text{var}(E_t) = \frac{1 - \alpha^{2t}}{1 - \alpha^2} \sigma_X^2.
$$

For $t_i \neq t_j$, it is straightforward to show that $\text{cov}(E_{t_i}, E_{t_j}) = O(\alpha^{|t_i-t_j|}) \to 0$, where the limit follows from Assumption 1(c). Similarly, the results hold for t_i', t_j'.

$$
E(E_{t_i}) \quad \text{and} \quad \text{Cov}(E_{t_i}, E_{t_i'}) = \frac{1 - \alpha^{2t_i}}{1 - \alpha^2} \sigma_X^2 \to \frac{1}{1 - \alpha^2} \sigma_X^2.
$$

From Assumption 1(b) we have:

$$
\sum_{i=1}^{d+1} w_Y(t_i, t) E_{t_i} \overset{d}{\to} \frac{1}{d+1} \sum_{i=1}^{d+1} E_{t_i} \to N(0, \frac{\sigma_X^2}{1 - \alpha^2}),
$$

from which it follows that

$$
E_t - \sum_{i=1}^{d+1} w_Y(t_i, t) E_{t_i} \sim N(0, \frac{2 - \alpha^{2t}}{1 - \alpha^2} \sigma_X^2).
$$

Hence, $CCM(X_i | Y_i)$ converges in a distribution to

$$
CCM(X_i | Y_i) \overset{d}{\to} \text{FN} \left(\left(X_0 - \frac{\mu}{1 - \alpha} \right) \alpha^t, \frac{2 - \alpha^2}{1 - \alpha^2} \sigma_X^2 \right),
$$

where $\text{FN}(\cdot, \cdot)$ is the folded normal distribution.

Similarly, since $\zeta_t \sim N(0, \sigma_Y^2)$ and $\limsup_{i=1, \ldots, d+1} |w_X(t_i', t) - \frac{1}{\pi L^2}| = 0$, we have

$$
\sum_i w_X(t_i', t) \zeta_{t_i'} = \frac{1}{d+1} \sum_{i=1}^{d+1} w_X(t_i', t) \zeta_{t_i'} + o_P(1) \overset{d}{\to} N(0, \sigma_Y^2).
$$
It follows that \(\zeta_t - \sum_{i=1}^{d+1} w_X(t'_{i},t)\zeta_{t'}_{i} \sim \mathcal{N}(0,2\sigma_{Y}^{2}) \), and that CCM(\(Y_{t} | X_{t}\)) converges in a distribution to

\[
CCM(Y_{t} | X_{t}) \overset{d}{\to} \text{FN}
\left(\beta(X_{0} - \frac{\mu}{1-\alpha})\alpha^{t-1}, \frac{2 - \alpha^{2t}}{1-\alpha^{2}}\beta^{2}\sigma_{X}^{2} + 2\sigma_{Y}^{2}\right).
\]

2 Data

2.1 California’s Tobacco Control Program

California’s tobacco control program Abadie et al. (2010) uses the annual state-level per-capita cigarette sales panel data from 1970 to 2000. Artificial control units \(A_{s,t}\) are created in our simulated study, where \(s\) denotes a hypothetical state and \(t\) indicates time, and then are added in the donor pool. Then, we perform the standard synthetic control analysis, and check whether CCM + SCM or SCM select the artificial units to construct synthetic California.

We use time series templates to generate artificial control units. In particular, we create 39 artificial states \(A_{s,t}\) (the same number of states in original study) with corresponding panel data and four predictors of the outcome variable. The panel data are generated from multiple sets of noisy copies from the template and the predictors are from original tobacco data but with permuted indices for each artificial state. We add \(A_{s,t}\) to the original pool to construct a new pool including 77 control units. We also apply moderate data transformations to ensure these adversaries sizable but unrelated to original data, and multiple sets of artificial control units are generated. We run simulations for each set of adversaries and display result distributions with box plots. The template data are described as follows.

Unemployment. The unemployed percent of US labor force data include annual average employment status of the civilian population from 1976 to 2016, giving 41 years of data for 51 states. \(^{1}\) We define artificial units as \(A_{s,t} = kU_{s,t}\), where \(k\) is a scalar, and \(U_{s,t}\) is unemployment for state \(s\) at time \(t\). To make the data sizable with the tobacco data, \(k\) is set to be 6. To generate multiple sets of artificial control units, we select the starting year between 1976 to 1986 and take the following 31 data points as 31 years of data for each state, which gives 11 sets of artificial control units. The simulation results are obtained over 11 runs.

2.2 Brexit Vote

We picked 30 OECD-member countries as controls, and UK as the treated unit. We collected quarterly real GDP data of these countries from the OECD Economic Outlook database (June 2017) from 1995Q1 to 2018Q4 \(^{2}\), where data from 2017Q4 till 2018Q4 are forecasts. The whole quarterly GDP data has 96 data points, and the first 86 points are before Brexit vote. It is assumed that the treatment took form after 2016Q2, and the countries in the donor pool are not affected by the treatment. We also collected predictors of outcome variable such as private consumption, investment, inflation rate, interest rate, and exchange rate.

We normalized the time series for each country by dividing the time series by its 1995 average and then taking logarithm of that time series to generate the approximately zero starting point in 1995. The predictors of outcome variable include:

\(^{1}\)Data collected from the Local Area Unemployment Statistics (LAUS) program of the Bureau of Labor Statistics (BLS) (Bureau of Labor Statistics, 2018) https://www.bls.gov/lau/staadata.txt

\(^{2}\)https://stats.oecd.org/index.aspx?DataSetCode=EO
(a) Real private consumption: the sum of real final consumption expenditure of both households and non-
profit institutions serving households, from 1997Q1 to 2017Q2.
(b) Real investment: total gross fixed capital formation, from 1995Q1 to 2017Q2.
(c) Net exports: the external balance of goods and services, from 1997Q1 to 2017Q2.
(d) Inflation series: the change in the Consumer Price Index (CPI), from 1998Q1 to 2017Q3.
(e) Quarterly short-term nominal interest rates: quarterly averages of monthly values, from 2002Q1 to
2017Q4.
(f) Nominal exchange rates: from 1997Q1 to 2018Q4.

The artificial control units are generated in the same way as the example of California’s tobacco control
program. We use time series template and create 31 artificial countries \(A_s, t \) (same number of control countries
in the original study) with corresponding panel data and six predictors of the outcome variable. We add
\(A_s, t \) to the original pool to construct a new pool including 61 control units. We also apply moderate data
transformations to ensure these adversaries sizable and unrelated to original panel data. The details on how
to generate the adversaries are described as follows.

Calls. We use the calls data collected from the Monthly average daily calls to directory assistance from
Jan 1962 to Dec 1976 \(^3\) as the template for our adversarial attack. We choose the first 106 data points from
this series due to its similar trend with the brexit data, which gives 11 different sets of templates by choosing
different starting points. For each template, we fit an autoregressive model and create 31 noisy copies as 31
artificial countries by adding Gaussian noise to them. The simulation results are obtained over 11 runs.

3 Discussion on CCM

Due to the success of CCM in quantifying dynamical relationships \((\text{Sugihara et al., 2012; Deyle et al., 2013}) \),
it may be tempting to consider CCM as a method for causal inference. We recommend putting more thoughts
before applying this idea. To illustrate why, we apply CCM on causal relationship detection tasks from the
benchmark dataset **CauseEffectPairs** \((\text{Mooij et al., 2016}) \), which contains time series pairs that are known
a priori to be causal or not. In practice, time series are normalized before applying CCM on them to ensure
all series have the same magnitude for comparison and avoid constructing a distorted state space \((\text{Chang}
^3\text{https://datamarket.com/data/set/22yq} \)
Figure 2: CCM results from two pairs. The number in the title of each figure corresponds to the pair index. The ground truths are: 67 ($X \rightarrow Y$), 69 ($Y \rightarrow X$).

Two cases where CCM fails to detect the true direction of causality are shown in Figure 2. Pair 67 is the financial time series about stock returns from two companies in which one stock is believed to depend on the other. We can see that the CCM score fails to visually converge as library size L increases. By inspection, the time series are close to random walks. Since CCM theory mainly applies on deterministic or chaotic dynamical systems, it is not reliable as a standalone causal inference method in systems dominated by noise. Another example is Pair 69 in the data of indoor and outdoor temperature. Here, the ground truth is that outdoor temperature variable Y drives the indoor temperature variable X, indicating that the dotted curve should converge faster than the solid curve in the right subplot of Figure 2. However, CCM gives the opposite causal direction result. A possible explanation might be that temperature is periodic since it has been suggested that strong periodicity could undermine the effectiveness of CCM (Chang et al., 2017).

Another practical aspect is that hyperparameters, such as the embedding dimension d and time delay τ, should be carefully chosen. To illustrate this, we consider Pair 68 in the data of internet connections and traffic, where X is bytes sent and Y is number of http connections. Figure 3 shows CCM results for this pair with simple data transformations and with varying the embedding dimension d.

Although CCM uncovers the correct causal detection with the original data under embedding dimension $d = 3$, the result is not strong enough. Moreover, CCM detects a wrong causal direction when the embedding dimension is set to $d = 4$. We note that the results improve with transformations, say, log transforms. Optimality of embedding methods and parameter tuning are currently active research areas (Rosenstein et al., 1994; Small and Tse, 2004; Garland and Bradley, 2015).

References

Abadie, A., Diamond, A., and Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of california’s tobacco control program. *Journal of the American Statistical Association*, 105(490):493–505.

Bureau of Labor Statistics, U. D. o. L. (2018). *Local Area Unemployment Statistics*.
Figure 3: CCM results on pair 68. The ground truth is $Y \rightarrow X$.

Chang, C.-W., Ushio, M., and Hsieh, C.-h. (2017). Empirical dynamic modeling for beginners. Ecological Research, 32(6):785–796.

Deyle, E. R., Fogarty, M., Hsieh, C.-h., Kaufman, L., MacCall, A. D., Munch, S. B., Perretti, C. T., Ye, H., and Sugihara, G. (2013). Predicting climate effects on pacific sardine. Proceedings of the National Academy of Sciences, 110(16):6430–6435.

Garland, J. and Bradley, E. (2015). Prediction in projection. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12):123108.

Mooij, J. M., Peters, J., Janzing, D., Zscheischler, J., and Schölkopf, B. (2016). Distinguishing cause from effect using observational data: Methods and benchmarks. Journal of Machine Learning Research, 17(32):1–102.

Rosenstein, M. T., Collins, J. J., and Luca, C. J. D. (1994). Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D: Nonlinear Phenomena, 73(1):82 – 98.

Small, M. and Tse, C. (2004). Optimal embedding parameters: a modelling paradigm. Physica D: Nonlinear Phenomena, 194(3):283 – 296.

Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., and Munch, S. (2012). Detecting causality in complex ecosystems. 338.