Physical, functional, nutritional and antioxidant properties of foxtail millet in Bangladesh

Md. Jaynal Abedin, Abu Tareq Mohammad Abdullah, Mohammed Abdus Satter, Tasnim Farzana

Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh

1. Introduction

Millet is a cereal crop that is grown widely in Africa and Asia. It is considered a staple food in these regions due to its adaptability to a wide range of soils and climatic conditions. Foxtail millet (Setaria italica) is one of the major millets grown in Bangladesh, particularly in the semi-arid and tropical regions of the country. It is an important crop for food security and nutritional health, especially in rural areas where other crops may not grow well.

The nutritional and phytochemical content of foxtail millet (Setaria italica) makes it a viable food grain. In this study, we looked at foxtail millet in Bangladesh and analyzed its nutritional value, functional and physical characteristics. In addition, methanol, ethanol, and acetone extracts of foxtail millet flour (FMF) were analyzed for their antioxidant properties (total phenolic and flavonoid content, total antioxidant capacity, ferric reducing antioxidant power (FRAP) assay, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity). According to this study, foxtail millet has favorable physiological and functional properties. FMF had protein at 11.65 ± 0.45 g/100 g, fat at 3.48 ± 0.04 g/100 g, carbohydrates at 75.33 ± 0.53 g/100 g, and crude fiber at 2.21 ± 0.03 g/100 g. Calcium was found at 47 ± 0.48 mg/100 g, iron at 4.59 ± 0.14 mg/100 g, potassium at 393 ± 15.87 g, sodium at 27.4 ± 1.21 mg, magnesium at 45.40 ± 2.22 mg, manganese at 0.71 ± 0.02 mg, copper at 0.58 ± 0.04 mg, and zinc at 2.30 ± 0.18 mg/100 g. The total flavonoid content (TFC) of the methanolic extract (68.26 ± 1.51 mg quercetin equivalents (QE)/100 g) was significantly (p < 0.05) higher than the extract of acetone: water: methanol. In the ferric reducing antioxidant power (FRAP) test, the reducing power of FMF extracts increased with the rise in sample concentration. Foxtail millet has potential as a functional food that could influence rural residents' diets and health.

ABSTRACT

The nutritional and phytochemical content of foxtail millet (Setaria italica) makes it a viable food grain. In this study, we looked at foxtail millet in Bangladesh and analyzed its nutritional value, functional and physical characteristics. In addition, methanol, ethanol, and acetone extracts of foxtail millet flour (FMF) were analyzed for their antioxidant properties (total phenolic and flavonoid content, total antioxidant capacity, ferric reducing antioxidant power (FRAP) assay, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity). According to this study, foxtail millet has favorable physiological and functional properties. FMF had protein at 11.65 ± 0.45 g/100 g, fat at 3.48 ± 0.04 g/100 g, carbohydrates at 75.33 ± 0.53 g/100 g, and crude fiber at 2.21 ± 0.03 g/100 g. Calcium was found at 47 ± 0.48 mg/100 g, iron at 4.59 ± 0.14 mg/100 g, potassium at 393 ± 15.87 mg, sodium at 27.4 ± 1.21 mg, magnesium at 45.40 ± 2.22 mg, manganese at 0.71 ± 0.02 mg, copper at 0.58 ± 0.04 mg, and zinc at 2.30 ± 0.18 mg/100 g. The total flavonoid content (TFC) of the methanolic extract (68.26 ± 1.51 mg quercetin equivalents (QE)/100 g) was significantly (p < 0.05) higher than the extract of acetone: water: methanol. In the ferric reducing antioxidant power (FRAP) test, the reducing power of FMF extracts increased with the rise in sample concentration. Foxtail millet has potential as a functional food that could influence rural residents' diets and health.
phytochemicals, phenolic acids, flavonoids, essential amino acids, vitamin B, and minerals like iron, potassium, phosphorus, calcium, and zinc (Bandyopadhyay et al., 2017; Saleh et al., 2013; Singh et al., 2012). Foxtail millet contains crude fiber, which aids digestion and helps to promote bowel movement (Sharma & Niranjan, 2018). Due to its nutritional value, foxtail millet has become an important ingredient in biscuits, noodles, soups, drinks and cakes (Yang et al., 2013). Additionally, foxtail millet has several health advantages, such as cancer and cardiovascular disease prevention, reducing heart attack risk, helping in weight loss, and reducing the level of lipids in the blood (Gupta et al., 2012; A. Zhang et al., 2015). Geographical location can affect millets’ chemical composition with some functional ingredients (Kitta et al., 2005; Wen et al., 2014). The type of extraction solvent has an impact on the yield of phenolic constituents from plant material. Researchers are currently attempting to generate data on the optimal extraction conditions for various plant matrices based on their polarity (polar, non-polar) and chemical structural properties (hydrophilic and hydrophobic) (Shaheen et al., 2012; Zlotek et al., 2016). The distribution and amount of these bioactive compounds vary according to millet type and species (Akanbi et al., 2019; Banerjee et al., 2012; Shahidi and Chandrasekara, 2013). This study was conducted by the extraction of compounds from foxtail millets using three different solvents in the same experiment. Although foxtail millet has been well studied in different countries, limited study exists with exploring Bangladeshi foxtail millet. This study aims to assess the nutritional, functional, physical, and antioxidant characteristics of foxtail millet.

2. Materials and methods

2.1. Chemicals and reagents

Purchased from Sigma–Aldrich were the following chemicals: Folin–(FC) Ciocalteu’s reagent, DPPH (1,1-diphenyl-2-picryl-hydrazyl), ascorbic acid, quercetin, and gallic acid (USA). The following chemicals were supplied by Merck (Germany): acetic acid, acetone, aluminium nitrate, ammonium molybdate, disodium hydrogen phosphate, ethanol, iron (III) chloride, methanol, potassium acetate, potassium ferricyanide, sodium carbonate, sodium nitrite, sulfuric acid, sodium dihydrogen phosphate, toluene, and trichloroacetic acid.

2.2. Preparation of foxtail millet flour (FMF)

Foxtail millet (variety: Bari Kaon-2) was collected from the Pancharaghr district of Bangladesh. The coordinates of Pancharaghr are 26° 20’ 7.3572” North and 88° 33’ 6.1092” East. First, the grain of foxtail millet is cleaned and rinsed. They were then dried in an oven at 60°C for 8 h before being processed into flour using an electric grinder. Finally, sieves with a 60 micron (m) opening were used to pass the powder through the flour. In accordance with the flowchart in Figure 1, foxtail millet flour (FMF) was prepared. The FM flours were stored in sealed containers for further researches.

2.3. Physical properties

By weighing the sample on a 4 digit electronic balance (ViBRA, Japan), and manually counting the number of grains, the weight per thousand grains was calculated (Balasubramanian and Viswanathan, 2010). The bulk density of foxtail millet grain was measured by the Appiah et al. (2011) method. The true density was measured using the toluene displacement method (Sunil et al., 2016). The following formula (equation-1) was used to determine the porosity (Balasubramanian and Viswanathan, 2010).

$$\text{Porosity (%) } = \frac{\text{True density} - \text{bulk density}}{\text{True density}} \times 100$$

2.4. Functional properties

According to the method of Yousf et al. (2017) the water solubility index (WSI) and water absorption index (WAI) of FMF were measured. The methods of Siroha et al. (2016) were used to calculate the water absorption capacity (WAC) and oil absorption capacity (OAC) of FMF with minor modifications. Yasumatsu et al. (1972) methods were used to measure emulsion activity (EA) and emulsion stability (ES) of FMF. The Narayana and Narasinga Rao (1982) methods were used to measure the foaming capacity (FC) and foaming stability (FS) of FMF, with some minor modification. The method of Chandra et al. (2015) with some modification was used to calculate the swelling capacity (SC) of FMF.

2.5. Nutritional analysis

2.5.1. Proximate

The proximate composition of FMF, including moisture, ash, protein, fat, and crude fiber was calculated using the AOAC (2005) standard analytical method. Drying the material at 105°C until a consistent mass was produced allowed us to determine the moisture content. After burning the sample for 8 h at 650 – 700°C, the ash was quantified by weighing the remaining residue. The Soxhlet technique was used to extract crude fat using petroleum ether and the standard AOAC (2005) method was used to assess crude fiber. The Micro-Kjeldahl method (N × 6.25) was used to calculate the crude protein. According to AOAC (2005) the quantity of carbohydrates in a food may be calculated by taking the total percentage of other ingredients, like moisture, ash, crude fiber, fat, and protein, and deducting that number from 100. Carbohydrate (%) = 100 – (% moisture + % fat + % crude fiber + % protein + % ash). Using the following formula, we were able to determine the total energy value of the samples: total energy (Kcal/100 g) = (% carbs + % protein) X 4 + (% fat x 9) (Farzana & Mohajan, 2015).

2.5.2. Mineral content

Mineral samples of the FMF were prepared by standard analytical methods according to AOAC (2005). A flame photometer (JENWAY, Model: PP77, Germany) was used to measure sodium, calcium, and potassium, while an atomic absorption spectrophotometer (Thermo, Model:}

Figure 1. Flow diagram for the preparation of foxtail millet flour (FMF).
ICS-3000, USA) was used to measure iron, magnesium, manganese, copper, and zinc. Each mineral was diluted from standard stock solutions (1000 μg/mL) to prepare working solutions. In this process, approximately 2 g of FMF are placed in a crucible and burned in a muffle furnace at 650 – 700°C to form greyish ash. After cooling, the ash was dissolved in 3 mL of concentrated HCl and dried at a low temperature in a water bath. The remaining parts of the crucible were washed multiple times with de-ionized water to evaporate until the liquid became colorless. The solution was then filtered using ashless Whatman filter paper, and the total volume was made up to 100 mL with de-ionized water. To measure the concentrations of the different minerals, aliquots of this solution were used.

2.6. Antioxidant properties

2.6.1. Extraction procedure

For FMF (20 g) extraction, different solvents like methanol, ethanol, and acetone: water: acetic acid (70:29:5:0.5) were used. The mixture was shaken on a mechanical shaker for 48 h, then filtered and dried on a rotary evaporator (Stuart, UK) under reduced pressure (Khan et al., 2020; Shaheen et al., 2012; Zlotek et al., 2016). The concentrated foxtail millet extract was stored at 4°C. The antioxidant properties of methanolic (FMME), ethanolic (FMEE), and acetone: water: acetic acid (FMAE) extracts were tested by dissolving them in methanol at a 10 mg/mL concentration.

2.6.2. Determination of total phenolic content

A slightly modified folin-ciocalteu colorimetric method (Salar et al., 2012) was used to measure the total phenolic content (TPC). In brief, 1 mL of folin-ciocalteu reagent, 0.5 mL of extract (10 mg/mL), and 4.5 mL of distilled water were mixed together and incubated for 10 min at room temperature. After that, a 2.0 mL solution of 35% Na2CO3 was added, and the mixture was left to stand at room temperature for half an hour. Using a spectrophotometer (Specord 205, Analytik Jena, UK), absorbance at 765 nm was measured against a blank. Using a similar technique, a standard curve of gallic acid solutions at concentrations of 20, 40, 60, 80, and 100 mg/mL was prepared. Using the calibration curve, the total phenolic content of the sample extracts was calculated. The results were presented as mg of gallic acid equivalent per 100 g of sample (mg GAE/100 g).

2.6.3. Determination of total flavonoid content

The total flavonoid content (TFC) was measured using a slightly modified Eom et al. (2008) method. In brief, 0.1 mL of 1 M potassium acetate and 0.1 mL of 10% aluminum nitrate were mixed with an aliquot of 1 mL of the sample (10 mg/mL). The volume of the resulting solution was adjusted to 5 mL by adding 3.8 mL of methanol. After 30 min, absorbance at 430 nm was measured against a blank using a spectrophotometer. A standard curve of quercetin solutions (at concentrations of 20, 40, 60, 80, and 100 mg/mL) was prepared using a similar method. The calibration curve was used to calculate the total flavonoid content of the sample extracts. The results were represented as mg of quercetin equivalent per 100 g of sample (mg QE/100 g).

2.6.4. Determination of total antioxidant capacity

The method of Prieto et al. (1999), with a few changes, was used to measure the total antioxidant capacity (TAC). To sum up, 5 mL of the reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate, and 4 mM ammonium molybdate) was added to 0.5 mL of the extract (10 mg/mL). The tubes were covered and incubated at 95°C for 90 min. After cooling the sample, the absorbance was measured at 695 nm against a blank using a spectrophotometer. A standard curve for ascorbic acid solutions of 20, 40, 60, 80, and 100 mg/mL was prepared using a similar procedure. The calibration curve was used to calculate the total antioxidant capacity of the sample extracts. The antioxidant capacity was represented as mg of ascorbic acid equivalent per 100 g of sample (mg AAE/100 g).

2.6.5. DPPH radical scavenging activity

The FMF extract was tested for 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity as published by Pushparaj and Urooj (2014), with modifications. In a nutshell, 0.1 mM methanolic DPPH solution (4 mL) was combined with 1 mL of different doses of sample solution. The mixture was vortexed and left for 30 min at room temperature in the dark. The absorbance of the solutions was measured at 517 nm using a spectrophotometer and an appropriate blank. The activity was calculated using the following formula (eq. (2)):

\[
\text{DPPH scavenging activity (\%) } = \frac{(A_0 - A_1)}{A_0} \times 100
\]

where, \(A_0 = \) Absorbance of control, and \(A_1 = \) Absorbance of sample.

Instead of sample extract, 1.0 mL of ascorbic acid solutions (1–100 μg/mL) was used for standard testing. The IC50 (Half Inhibitory Concentration) value in the DPPH free radical scavenging method is the sample concentration that scavenged 50% of the DPPH free radical and was calculating using logarithmic regression.

2.6.6. Ferric reducing antioxidant power (FRAP) assay

We used the method developed by Wu et al. (2003) to determine the ferric reducing antioxidant power (FRAP) of FMF extract. In a nutshell, a 0.2 M phosphate buffer (pH 6.6) and 1% (w/v) potassium ferricyanide were added to a 2.5 mL extract. A total of 20 min were spent in a 50°C incubator with the mixture. After cooling the solution, trichloroacetic acid (2.5 mL, 10% w/v) was added. For 10 min, the mixture was centrifuged at 3000 rpm. The supernatant was then combined with 2.5 ml of deionized water and 0.5 mL of a 0.1% (w/v) FeCl3 solution. After 10 min, the spectrophotometer reading for absorbance at 700 nm was taken. The high reducing power of the sample extracts was evidenced by the high absorbance of the reaction mixture.

2.7. Statistical analysis

Data were reported as mean ± SD (standard deviation) for three replications. To determine significant differences between the mean values, analysis of variance (one-way ANOVA) was performed using SPSS software (version 22.0).

3. Results and discussions

3.1. Physical properties of foxtail millet

The physical properties of the thousand grain weight, thousand grain volume, true density, bulk density, and porosity of foxtail millet grain were observed in 1.46 ± 0.06 g, 1.70 ± 0.03 mL, 1.37 ± 0.01 g/cm³, 0.85 ± 0.01 g/cm³, and 38.00 ± 0.01% respectively (Table 1). According to Sunil et al. (2016) the thousand grain weight, true density, bulk density, and porosity of foxtail millet were observed 2.45 g. 1.26 g/cm³, 0.737 g/cm³; and 41.47 % respectively. Gouda et al. (2019) observed that thousand grain weight, true density, bulk density, and porosity of foxtail millet were 2.36 g. 1.196 g/cm³, 0.724 g/cm³, and 39.46 ± 2.20% respectively. The differences in the physical parameters of the study might be due to variations in the geographical location, environmental, and climate conditions (Wen et al., 2014).

3.2. Functional properties of FMF

The functional properties of flour are important in the manufacture, flavor, taste, texture, stability, storage, and, transportation of food items. These characteristics depend on the chemical composition, variety, type, and particle size of flour. Functional properties are important physico-chemical properties that indicate the intricate interactions between the molecular conformation, composition, and structure of food components (Awuchi et al., 2019).
WSI and WAI are important characteristics for cereal flours used in beverage preparation. WAI indicates the portion of water absorbed by the flour, whereas WSI indicates water soluble ingredients in the flour. The WAI and WSI of FMF were observed at 7.16 ± 0.17 g/100 g, and 3.05 ± 0.18 g/100 g, respectively (Table 2). According to Devisseti et al. (2014) the WSI of FM is in the range of 2.55 – 3.92 g/100 g.

The flour's water absorption capacity was 152.35 ± 2.81 g/100 g (Table 2). According to Devisseti et al. (2014) the WAC of foxtail millet ranged from 139.4 – 168.8 g/100 g. In food formulations, especially in the case of dough and finished products, water absorption capacity is an important functional property (Awuchi et al., 2019). Due to the high content of hydrophilic polysaccharides and proteins, especially polar amino acid residues in the flour, water absorption capacity may be higher. The quality of food products can be negatively impacted by very low or excessive water absorption.

The oil absorption capacity is an important functional characteristic that improves the feeling in the mouth while maintaining the taste of food (Awuchi et al., 2019). The oil absorption capacity of the flour was 79.38 ± 0.63 mL/100 g (Table 2). Devisseti et al. (2014) reported that the WAC of foxtail millet was in the range of 69.6 – 91.1 mL/100 mL. Kamara et al. (2009) observed that the WAC of two FMF varieties was 78 and 50 mL/100 g. The water and oil absorption capacities of flour are influenced by surface polarity, amino acid composition, and protein conformation (Chandra, 2013). The flour’s high water and oil absorption capacity can improve the flavor, moisture, and fat content of food.

Foaming properties are desirable in bakery food products to maintain their texture and structure during processing and storage. Protein is an important functional property (Awuchi et al., 2019). Due to the high surface polarity, amino acid composition, and protein conformation, protein is considered more suitable for the preparation of bakery products.

3.3. Proximate and mineral analysis of FMF

The proximate composition of FMF were moisture (5.94 ± 0.12 g/100 g), ash (1.39 ± 0.03 g/100 g), protein (11.65 ± 0.45 g/100 g), fat (3.48 ± 0.04 g/100 g), crude fiber (2.21 ± 0.03 g/100 g), carbohydrates (75.33 ± 0.53 g/100 g), and energy (379.23 ± 0.59 kcal/100 g) (Table 3). Liang et al. (2018) reported that the values of ash (1.39 g/100 g), protein (10.28 g/100 g), fat (3.40 g/100 g), dietary fiber (2.37 g/100 g) for FMF. According to Sharma and Niranjan (2018) the proximate composition were protein (12.3 g/100 g), fat (4.3 g/100 g), crude fiber (8 g/100 g), carbohydrates (60.90 g/100 g), and energy (351 kcal/100 g) for FMF. Whereas, according to Chen et al. (2013) the protein, carbohydrate, and crude fat contents of the various foxtail millet cultivars ranged from 9.5 – 18.9 g/100 g, 71.5 – 83.8 g/100 g, and 4.4 – 7.3 g/100 g, respectively. Mohamed et al. (2009) showed that the proximate composition were protein (11.41 ± 0.15 g/100 g), fat (2.91 ± 0.35 g/100 g), crude fiber (1.92 ± 0.02 g/100 g), and carbohydrates (73.00 ± 0.14 g/100 g) for FMF. The mineral content of FMF viz., sodium, calcium, potassium, iron, manganese, magnesium, zinc, and copper were 27.4 ± 1.21, 47 ± 0.48, respectively. Meherunnahar et al. (2018) pointed out that a protein’s solubility, concentration, and other factors affect the protein’s ability to foam and its stability.

An emulsion is a fluid system in which one liquid (dispersed phase) is dispersed into another liquid (continuous phase), and the stability of emulsion is the ability of a food emulsion to resist any change in its properties over time (Yasumatsu et al., 1972). The EA and ES of FMF were 45.01 ± 0.24 mL/100 mL and 37.27 ± 0.22 mL/100 mL, respectively (Table 2). According to Meherunnahar et al. (2018), the EA and ES of foxtail millet were 40.01% and 41.41%, respectively. Devisseti et al. (2014) observed that the ES of foxtail millets is in the range of 32.4 – 53.4 mL/100 mL. Protein hydrophobicity has been related to their emulsifying characteristic. These characteristics are influenced by a variety of factors, such as concentration, pH, and solubility. The ability of proteins to enhance the composition and stability of emulsions is important for many food products applications, such as frozen desserts, coffee, whiteners, and cakes.

The SC of FMF was 7.98 ± 0.30% (Table 2). Ushakumari et al. (2004) found that the SC of FMF was 7.1 ± 0.01. Swelling capacity indicates the presence of non-covalent interactions between the starch molecules. The swelling capacities of flours are affected by the variety of species, processing method and particle size. The high swelling capacity of the floor is considered more suitable for the preparation of bakery products.

Table 1. Physical properties of foxtail millet grain.

Parameters	Quantity
Thousand grain weight (g)	1.46 ± 0.06
Thousand grain volume (mL)	1.70 ± 0.03
Bulk density (g/cm³)	0.85 ± 0.01
True density (g/cm³)	1.37 ± 0.01
Porosity (%)	38.00 ± 0.01

*Each value represents the average of three determinations ± SD.

Table 2. Functional properties of FMF.

Parameters	Quantity
WAC (g/100 g)	152.35 ± 2.81
OAC (mL/100 g)	79.38 ± 0.63
WAI (g/100 g)	7.16 ± 0.17
WSI (g/100 g)	3.05 ± 0.18
EA (mL/100 mL)	45.01 ± 0.24
ES (mL/mL)	37.27 ± 0.22
FC (mL/mL)	7.11 ± 0.11
FS (mL/mL)	46.90 ± 1.25
SC (%)	7.98 ± 0.31

*Each value represents the average of three determinations ± SD. Here, WAI = Water absorption index, WSI = Water solubility index, WAC = Water absorption capacity, OAC = Oil absorption capacity, EA = Emulsion activity, ES = Emulsion stability, FC = Foaming capacity, FS = Foaming stability, SC = Swelling capacity.

Table 3. Proximate and mineral composition of FMF.

Nutrient	% Mean Value
Macronutrients	
Moisture (g/100 g)	5.94 ± 0.12
Ash (g/100 g)	1.39 ± 0.03
Protein (g/100 g)	11.65 ± 0.45
Fat (g/100 g)	3.48 ± 0.04
Crude fiber (g/100 g)	2.21 ± 0.03
Carbohydrate (g/100 g)	75.33 ± 0.53
Energy (Kcal/100 g)	379.23 ± 0.59
Micronutrients	
Sodium (mg/100 g)	27.4 ± 1.21
Potassium (mg/100 g)	393 ± 15.87
Calcium (mg/100 g)	47 ± 0.48
Iron (mg/100 g)	4.59 ± 0.14
Copper (mg/100 g)	0.58 ± 0.04
Magnesium (mg/100 g)	45.40 ± 2.22
Manganese (mg/100 g)	0.71 ± 0.02
Zinc (mg/100 g)	2.30 ± 0.18

* Each value represents the average of three determinations ± SD.
of the methanolic extract was significantly higher than the others. It was observed that the methanolic extract had the highest TPC (51.35 ± 1.35 mg GAE/100 g) compared to the ethanol (39.55 ± 1.16 mg GAE/100 g) and acetone: acetic acid extract (41.81 ± 1.84 mg GAE/100 g) (Figure 2). According to L. Z. Zhang and Liu (2015) two varieties of foxtail millet the TPC were 78.79 ± 1.19 and 114.22 ± 4.63 mg GAE/100 g respectively. Devisetti et al. (2014) reported that two varieties of foxtail millet the TPC were 81, and 79 mg GAE/100 g respectively. The TPC of the methanolic extract was significantly higher than acetone: water: acetic acid extracts. The methanolic extract had the highest TPC (68.26 ± 1.51 mg QE/100 g) compared to the ethanol (62.82 ± 2.54 mg QE/100 g) and acetone: water: acetic acid extract (53.29 ± 2.28 mg QE/100 g) (Figure 2).

3.4. Total phenolic content, flavonoid content and antioxidant capacity of FMF extracts

In this study, the TPC of the methanolic extract was significantly higher than others. It was observed that the methanolic extract had the highest TPC (51.35 ± 1.35 mg GAE/100 g) compared to the ethanol (39.55 ± 1.16 mg GAE/100 g) and acetone: acetic acid extract (41.81 ± 1.84 mg GAE/100 g) (Figure 2). According to L. Z. Zhang and Liu (2015) two varieties of foxtail millet the TPC were 78.79 ± 1.19 and 114.22 ± 4.63 mg GAE/100 g respectively. Devisetti et al. (2014) reported that two varieties of foxtail millet the TPC were 81, and 79 mg GAE/100 g respectively. The TPC of the methanolic extract was significantly higher than acetone: water: acetic acid extracts. The methanolic extract had the highest TPC (68.26 ± 1.51 mg QE/100 g) compared to the ethanol (62.82 ± 2.54 mg QE/100 g) and acetone: water: acetic acid extract (53.29 ± 2.28 mg QE/100 g) (Figure 2). The ferric reducing antioxidant power (FRAP) of various extracts (10 mg/mL) of FMF is shown in Fig. 4. In this method, the ferric-ferricyanide complex was reduced to the ferrous form due to the presence of antioxidants (Amarowicz et al., 2004). The methanolic, ethanolic, and acetone: water: acetic acid extracts in the FMF showed higher reducing power (A700 = 0.3456, 0.3289, and 0.2082) at a concentration of 500 μg/mL (Figure 4). The reducing power of the FMF extracts increased with increasing sample concentration. The FRAP potency of the FMF sample was compared with that of ascorbic acid. In this study, the FRAP activity of different extracts varied significantly (p < 0.05), and the order of FRAP activity was: methanol > ethanol > acetone: water: acetic acid extracts. Choi et al. (2007) reported that the reducing power of the methanolic extract of foxtail millet was 0.2 (absorbance) at a concentration of 4000 μM of trolox equiv/g sample.

3.5. DPPH scavenging activity of FMF extracts

Significant different values (p < 0.05) were found that the free radical scavenging activity of various solvent extracts from FMF at different concentrations were measured by the DPPH. The IC50 value (μg/mL) is the concentration of antioxidants at which 50% inhibition of free radical activity is observed. The IC50 value of the methanolic extract was significantly higher (p < 0.05) than others. The IC50 value of methanol, ethanol, and acetone: water: acetic acid extracts were 2238.00 ± 19.46, 2293.66 ± 11.67, and 2311.67 ± 15.82 μg/mL respectively (Figure 3). Whereas, the IC50 value of standard ascorbic acid was 14.28 μg/mL. Amadou et al. (2011) noted that the IC50 value of different solvents of foxtail millet bran extracts were 131–3118 μg/mL. Jayawardana et al. (2018) reported that the IC50 value of different varieties of foxtail millet extracts were 3900–5230 μg/mL.

3.6. Ferric reducing antioxidant power (FRAP) assay of FMF extracts

In this study, the TPC of the methanolic extract was significantly higher than the others. It was observed that the methanolic extract had the highest TPC (51.35 ± 1.35 mg GAE/100 g) compared to the ethanol (39.55 ± 1.16 mg GAE/100 g) and acetone: acetic acid extract (41.81 ± 1.84 mg GAE/100 g) (Figure 2). According to L. Z. Zhang and Liu (2015) two varieties of foxtail millet the TPC were 78.79 ± 1.19 and 114.22 ± 4.63 mg GAE/100 g respectively. Devisetti et al. (2014) reported that two varieties of foxtail millet the TPC were 81, and 79 mg GAE/100 g respectively. The TPC of the methanolic extract was significantly higher than acetone: water: acetic acid extracts. The methanolic extract had the highest TPC (68.26 ± 1.51 mg QE/100 g) compared to the ethanol (62.82 ± 2.54 mg QE/100 g) and acetone: water: acetic acid extract (53.29 ± 2.28 mg QE/100 g) (Figure 2). Devisetti et al. (2014) reported that two varieties of FM the TFC were 75 ± 0.06 and 65 ± 0.04 mg catechin equivalents/100 g respectively. The TAC of the methanolic extract was significantly higher than others.

![Figure 2](image-url)
μg/mL. The reducing power of ethanolic extract was similar to the previous findings on foxtail millet at a concentration of 500 μg/mL (Kim et al., 2010).

4. Conclusions

Millet has both potential nutritional and health benefits. Foxtail millet is rich in protein, fiber, and minerals but low in fat content. It also contains phenolics and flavonoids as antioxidant constituents. Millets are generally not used in commercial foods and they remain underutilized cereals owing to the lack of product development technologies and consumer awareness of their health advantages. The present results highlight the utility and importance of foxtail millet as a food ingredient, with remarkable levels of nutrients and antioxidants. This study explored the potential use of foxtail millet grains in food product formulations, especially as a functional ingredient that can contribute to the development of health status and consumption behaviors.

Declarations

Author contribution statement

Md. Jaynal Abedin: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Wrote the paper.
Abu Tareq Mohammad Abdullah: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data.
Mohammed Abdus Satter: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data.
Tasmin Farzana: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement
Data included in article/supp. material/referenced in article.

Declaration of interest’s statement
The authors declare no conflict of interest.

Additional information
No additional information is available for this paper.

Acknowledgements
The study was conducted the Research and Development (R&D) work under Bangladesh Council of Scientific and Industrial Research (BCSIR), Ministry of Science and Technology, Bangladesh.

References
Adekunle, A.A., Ellis-Jones, J., Ajibefun, L., Nyikal, R.A., Bangali, S., Fatunbi, O., Auge, A., 2012. Agricultural innovation in sub-Saharan Africa: experiences from multiple-stakeholder approaches. In: Forum for Agricultural Research in Africa (FARA). Accra.

Akbabi, T.O., Timilseena, Y., Dhital, S., 2019. Bioactive from millet: properties and effects of processing on bioavailability. In: Wang, J., Sun, B., Tsao, R. (Eds.), Bioactive Factors and Processing Technology for Cereal Foods. Springer, Singapore, pp. 171–183.

Amadou, I., Amza, T., Shi, Y.-H., Le, G.-W., 2011. Chemical analysis and antioxidant properties of foxtail millet bran extracts. Songklanakarin J. Sci. Technol. 33 (5), 509–515.

Amarewicz, R., Pegg, R., Rahimi-Moghaddam, P., Barl, B., Weil, J., 2004. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 84 (4), 551–562.

AOAC. 2005. Official Methods of Analysis, eighteenth ed. Association of Official Analytical Chemists, Gaithersburg, MD, USA.

Appiah, E., Ailshu, J., Kumah, P., 2011. Physicochemical and functional properties of bean flour of three cowpeas (Vigna unguiculata (L.) Walp) varieties in Ghana. Afr. J. Food Sci. 5 (2), 100–104.

Austen, D.F., 2006. Fox-tail millets (Setaria poaecea)—abandoned food in two hemispheres. Econ. Bot. 60 (2), 143–158.

Awuchi, C.G., Igwe, V.S., Echeta, C.K., 2019. The functional properties of foods and the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Vali Pasha, K., Ratnavathi, C.V., Ajani, J., Raju, D., Manoj Kumar, S., Beedu, S.R., 2018. Proximate, mineral composition and antioxidant activity of traditional small millets cultivated and consumed in Rayalaseema region of south India. J. Sci. Food Agric. 98 (2), 652–660.

Vetriventhan, M., Upadhyaya, H., Anandakumar, C., Senthilvel, S., Parzies, H., Bharathi, A., Gowda, C., 2012. Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT foxtail millet core collection. Plant Genet. Resour. 10 (3), 214–223.

Wen, Y., Liu, J., Meng, X., Zhang, D., Zhao, G., 2014. Characterization of proso millet starches from different geographical origins of China. Food Sci. Biotechnol. 23 (5), 1371–1377.

Wu, H.-C., Chen, H.-M., Shiau, C.-Y., 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber australasicus). Food Res. Int. 36 (9-10), 949–957.

Yang, X.-S., Wang, L.-L., Zhou, X.-R., Shuang, S.-M., Zhu, Z.-H., Li, N., Lu, P., 2013. Determination of protein, fat, starch, and amino acids in foxtail millet [Setaria italica (L.) Beauv.] by Fourier transform near-infrared reflectance spectroscopy. Food Sci. Biotechnol. 22 (6), 1495–1500.

Zhang, A., Liu, X., Wang, G., Wang, H., Liu, J., Zhao, W., Zhang, Y., 2015. Crude fat content and fatty acid profile and their correlations in foxtail millet. Cereal Chem. 92 (5), 455–459.

Zhang, L.Z., Liu, R.H., 2015. Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chem. 174, 495–501.

Zhtoek, U., Miloška, S., Nagyek, M., Švicea, M., 2016. The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J. Biol. Sci. 23 (5), 628–633.