Lanthanum Chloride Sensitizes Cisplatin Resistance of Ovarian Cancer Cells via PI3K/Akt Pathway

Shanyu Fang 1†, Ping Zhang 2†, Xinping Chen 1, Fujun Liu 1 and Fen Wang 1*

1 Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, China,
2 Department of Otorhinolaryngology Head and Neck Surgery, Jiujiang University Clinical Medical College, Jiujiang University Hospital, Jiujiang, China

Our previous study manifested that lanthanum chloride (LaCl₃) can enhance the anticancer ability of cisplatin (DDP) in ovarian cancer cells. Here, ovarian cancer cells SKOV3 and SKOV3/DDP were subjected to DDP and LaCl₃. Cell viability, apoptosis, DNA repair, and PI3K/Akt pathway were detected. LaCl₃ induced more cell death and apoptosis caused by DDP in two cell lines, accompanied by upregulation of Bax and Cleaved caspase 3 proteins, and downregulation of Bcl-2 protein. LaCl₃ also could decrease RAD51 protein by inactivation of the PI3K/Akt pathway. These data indicated that LaCl₃ could be a potential drug to modulate DDP resistance by inactivating of PI3K/Akt pathway and attenuating DNA repair in ovarian cancer.

Keywords: lanthanum chloride, cisplatin resistance, ovarian cancer, PI3K, Akt

INTRODUCTION

Ovarian cancer is the most lethal gynecologic cancer. The first-line treatment for ovarian cancer is cisplatin (DDP)-based chemotherapy after cytoreductive surgery. However, the DDP resistance of ovarian cancer during the treatment is an important reason for the treatment failure. The 5-years survival rate is <40% (1, 2). Cisplatin (DDP) often attacks DNA to cause DNA damage and lead to cell apoptosis; therefore, an enhanced DNA repair plays a key role in DDP resistance (3, 4). Survival pathways were necessary for cell survival and involved in chemoresistance. The PI3K/Akt survival pathway was a way to play an important role in cell survival and DDP resistance in ovarian cancer. Akt can activate the cyclin D1, NF-kB, mTOR, RAD51 or inhibit the caspase 9, p21, p27 to inhibit cell apoptosis (5–7). Lots of research target the DNA repair and PI3K/Akt pathway to explore new drugs to reverse the DDP resistance and improve the prognosis of ovarian cancer (8, 9). However, there are still no effective therapies due to the side effect. Therefore, it is important to explore novel drugs to conquer the resistance of DDP.

Lanthanum chloride (LaCl₃) is a complex of rare earth elements. Recent studies have reported that LaCl₃ can inhibit the proliferation and migration of cancer cells and can be an effective drug to kill cancer cells (10–12). Our previous study indicated that LaCl₃ could augment the anticancer ability of DDP (13, 14). However, the mechanisms of LaCl₃ acts on ovarian cancer remain unclear.

Research showed that LaCl₃ can downregulate the PI3K/Akt signaling pathway to cause cytotoxicity; and LaCl₃ can inactivate the Akt signaling pathway to induce autophagy (15, 16). Considering the important role of the PI3K/Akt pathway in DDP resistance. We suggest that LaCl₃ may reverse DDP resistance via PI3K/Akt pathway. Therefore, in this study, the relationship of LaCl₃ and PI3K/Akt was explored using DDP sensitive and DDP resistance ovarian cancer cells.
Preliminary data showed that LaCl₃ could inactivate the PI3K/Akt pathway to inhibit DNA repair, eventually enhancing the antitumor ability of DDP in ovarian cancer.

MATERIALS AND METHODS

Cells

Human ovarian cancer cell lines SKOV3 and SKOV3/DDP (identified by STR; Cell bank, Type Culture Collect., Chin. Sci., Shanghai, China) were cultured in RPMI-1640 (Gibco, Beijing, China) supplemented with 10% fetal bovine serum (Biological Industries, Israel), at 37°C and 5% CO₂. SKOV3/DDP was a resistance subline of SKOV3 that grew in 0.75 µg/ml of DDP (Yunnan Phytopharm., Kunming, China). Cells were cultured with a DDP-free medium for 5 days before experiments to avoid interferences caused by residual DDP (17, 18).

Cell Viability

Cells were seeded in a 96-well plate (5,000 cells per well) and exposed to DDP (0, 1, 2, 4, 8, 16, 32, and 64 µmol/L) or exposed to LaCl₃ (0, 0.5, 1, 1.5, 2, 2.5, and 3 µmol/L) for 48 h. Cell viability was determined with a CCK-8 assay (MedChemExpress, United States). The half-maximal inhibition concentration (IC₅₀) of DDP was calculated by the probit regression. The IC₅₀ of DDP and maximum unharmful concentration of LaCl₃ were used in the following experiments.

Western Blot

Proteins were extracted after cells were exposed to DDP (IC₅₀) and/or LaCl₃ (1.5 µmol/L) for 48 h using RIPA buffer (Beyotime, Chongqing, China) supplemented with phenylmethanesulfonyl fluoride. Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a polyvinylidene fluoride membrane (Merck Millipore, Billerica, MA). Primary antibodies as follow: anti-PI3K/p-PI3K (catalog numbers: bs-0128R, bs-332R) (Bioss Biotech., Beijing, China), anti-Akt/p-Akt (catalog numbers: 4691T, 4060T) (Cell Signaling Technology, USA), anti-Bcl2 (catalog numbers: 4223S) (Cell Signaling Technology), anti-RAD51 (catalog numbers: ab133534) (Abcam, UK), and anti-β-actin (catalog numbers: 66009-1-lg) (Proteintech, Wuhan, China). The secondary antibody was a goat anti-rabbit IgG antibody (catalog numbers: 7076S) (Cell Signal. Technol.), β-actin was the reference.

Cell Apoptosis

Apoptosis cells were detected using an Annexin V assay (Keygen Biotech., Nanjing, China) after Cells were treated with DDP (IC₅₀) and/or LaCl₃ (1.5 µmol/L) for 48 h.
Activated Assay
Cells were exposed to SC79 (an activator of Akt: 4 μg/mL) (MedChemExpress) co-culture with DDP (IC$_{50}$) and/or LaCl$_3$ (1.5 μmol/L) for 48 h. Then CCK8 was used to detect the survival cells, and western blot was used to detect the RAD51 protein.

Statistics
Data were processed with the software SPSS 26 (IBM, Armonk, United States). ANOVA and t-test were performed. The difference was significant if $p < 0.05$.

RESULTS
LaCl$_3$ Enhanced the Efficacy of DDP in Ovarian Cancer Cells
The IC$_{50}$ values of DDP were 5 and 15 μmol/L for SKOV3 and SKOV3/DDP cells, respectively, confirming the resistance phenotype of SKOV3/DDP (Figure 1A). The percentages of survival cells were more than 90% in SKOV3 and SKOV3/DDP cells after exposure to LaCl$_3$ (0.5, 1, and 1.5 μmol/L). However, the percentage of survival cells was <90% following exposure to higher concentrations of LaCl$_3$ (\geq 2 μmol/L), and the percentage

![Graph showing the efficacy of DDP with and without LaCl$_3$.](image)

FIGURE 2 | LaCl$_3$ promoted cell apoptosis caused by DDP in ovarian cancer cells ($n = 3$). Apoptosis was detected by the annexin V assay; the apoptotic percentage in SKOV3 cells was increased after DDP combined with LaCl$_3$ (A,B). The apoptotic percentage in SKOV3/DDP cells was increased after DDP combined with LaCl$_3$ (A,C). *$p < 0.05$.

![Bar chart showing the percentages of apoptotic cells.](image)
FIGURE 3 | LaCl$_3$ regulated apoptosis-related proteins with DDP in ovarian cancer cells (n = 3). DDP induced the expression of Bax and Cleaved-caspase 3, LaCl$_3$ further increased them; the Bcl-2 was decreased following LaCl$_3$ and DDP exposure in SKOV3 cells (A) and in SKOV3/DDP cells (B). *p < 0.05.

of dead cells in SKOV3/DDP cells was higher than in SKOV3 (p = 0.032, p = 0.001) (Figure 1B). Therefore, 1.5 µmol/L of LaCl$_3$ was used in the subsequent experiments.

The percentage of the dead cells was increased in SKOV3 cells following exposure to DDP combined with LaCl$_3$ compared with DDP alone (p = 0.001–0.025) (Figure 1C). In SKOV3/DDP cells, we observed the same results (p = 0.013–0.026) (Figure 1D). These results indicated that LaCl$_3$ enhanced the cytotoxicity of DDP.

LaCl$_3$ Enhanced Apoptosis Due to DDP

DDP caused SKOV3 and SKOV3/DDP cell apoptosis, and the combination of LaCl$_3$ and DDP led to a higher percentage of apoptotic SKOV3 and SKOV3/DDP cells (p = 0.005, p = 0.001) (Figure 2).

Subsequently, apoptosis-related proteins Bax, Bcl-2, and Cleaved-caspase 3 were determined. In SKOV3 and SKOV3/DDP cells, the levels of Bax and Cleaved-caspase 3 were increased after treatment with LaCl$_3$ and DDP (p = 0.045, p = 0.046, p = 0.001, and p = 0.002) (Figure 3); the Bcl-2 was decreased in SKOV3 and SKOV3/DDP cells after treatment with LaCl$_3$ and DDP (p = 0.043, p = 0.017) (Figure 3). These data indicated that LaCl$_3$ promoted cell apoptosis due to DDP both in SKOV3 and SKOV3/DDP cells.

LaCl$_3$ Inhibited DNA Repair by PI3K/Akt Pathway

DNA repair was assayed by detecting RAD51 since RAD51 is a key molecule for homologous recombination (HR) (19). Recent studies indicated that the PI3K/Akt can induce the expression of RAD51 (7, 20). Western blot was used to detect the expression of RAD51 and PI3K/Akt. DDP increased the RAD51 level, which means DDP not only induced DNA damage but also initiated DNA repair. However, LaCl$_3$ decreased the level of RAD51 in both cell lines (p = 0.002, p = 0.004) (Figures 4A,B). DDP induced the phosphorylation of PI3K/Akt, the levels of p-PI3K and p-Akt were decreased in two cell lines following LaCl$_3$ exposure (p = 0.04, p = 0.042, p = 0.011, p = 0.001) (Figures 4C,D).

To further demonstrate the action of PI3K/Akt on RAD51, the SC79 (an activator of Akt) was added in SKOV3 and SKOV3/DDP cells. The level of RAD51 was upregulated in both cells after exposure to SC79 (p = 0.045, p = 0.011) (Figures 5A,B). The percentages of survival cells were increased
after exposure to SC79 in SKOV3 and SKOV3/DDP cells ($p = 0.034, p = 0.035$) (Figures S5C,D). The data indicated that LaCl$_3$ could inhibit DNA repair via PI3K/Akt pathway and promote the action of DDP.

DISCUSSION

DDP resistance is a key obstacle for the treatment of ovarian cancer. Hence, it is of particular importance to explore new drugs to reverse DDP resistance. Here, we demonstrated that LaCl$_3$ (\geq2 µmol/L) caused cell death in SKOV3 and SKOV3/DDP cells. Interestingly, the percentage of dead cells in SKOV3/DDP cells was higher than in SKOV3 ($p = 0.032, p = 0.001$), and this needs further study to validate that the LaCl$_3$ was more lethal on DDP resistant cells in the future. However, the lower concentration of LaCl$_3$ (1.5 µmol/L) that was harmful to ovarian cancer cells could increase cell death due to DDP. This was consistent with our previous study that LaCl$_3$ can enhance the cytotoxicity of DDP in ovarian cancer cells (13).
Cytotoxicity of DDP was regulated by apoptosis (21, 22). Hence, enhancing cell apoptosis was the main target for drugs to reverse DDP resistance (23). The combination of DDP and LaCl$_3$ led to the highest apoptotic percentage in SKOV3 and SKOV3/DDP cells. Then, the Bax and Cleaved caspase 3 were most expressed in both cells following DDP and LaCl$_3$ exposure, and Bcl-2 was the least. These were consistent with the previous study that LaCl$_3$ can regulate the protein expressions of Akt, Bcl-2, Bcl-xl, Bax, Bad, caspase-3, and caspase-9 to promote cell apoptosis (24); and indicated that LaCl$_3$ promote cell apoptosis caused by DDP to conquer DDP resistance.

The main target of DDP is DNA, DDP attacks DNA to cause a break, and unrepair damage leads to apoptosis. RAD51 is the key protein of HR for repairing DNA damage (25, 26). In this study, the level of RAD51 was upregulated following DDP exposure, which meant DDP inducing DSB, then starting DNA repair. This possibly explains the reason that the cytotoxicity of DDP was decreased during treatment and eventually led to DDP resistance. However, the RAD51 level was decreased after LaCl$_3$ exposure. These were consistent with the results of the percentages of dead and apoptotic cells following DDP and LaCl$_3$ exposure and consistent with previous studies that conquer DDP resistance by inhibiting DNA repair (27). Our results primarily indicated that LaCl$_3$ can enhance apoptosis by inhibiting DNA repair.

The PI3K/Akt pathway is an important survival pathway that is involved in DDP resistance in ovarian cancer (28). Here, the phosphorylation of PI3K and Akt was activated by DDP, but the inductive effect of DDP was attenuated after LaCl$_3$ exposure. These results were consistent with previous studies that LaCl$_3$ can inhibit the PI3K/Akt pathway to cause cytotoxicity (15, 16). Activation of Akt can increase the expression of RAD51, while inactivation of Akt downregulates the level of RAD51 to enhance cell apoptosis caused by DNA-damaging drugs (29). Hence, the SC79 (an activator of Akt) was added to neutralize the inhibiting effect of LaCl$_3$, the level of RAD51 was increased that caused by DDP combined with LaCl$_3$ exposure, while the percentages of dead cells were deceased. The data demonstrated that LaCl$_3$ inactivated PI3K/Akt pathway to downregulate the expression of RAD51.

In conclusion, the LaCl$_3$ could attenuate the DDP resistance of ovarian cancer cells via inhibiting PI3K/Akt pathway, downregulated RAD51 to inhibit DNA repair, and eventually
promoted cell apoptosis due to DDP. Thus, LaCl₃ can be a potential drug for the treatment of ovarian cancer and DDP resistance.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

SF performed the experiments. SF and PZ drafted the manuscript. XC and FL checked the manuscript. FW designed the study and checked the manuscript. All authors have given approval to the final version of the manuscript.

FUNDING

This work was supported by the Natural Science Foundation of Science and Technology Department of Jiangxi Province (20192BAB205076) and Natural Science Foundation of Jiangxi Province (20202BAB206101).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.776876/full#supplementary-material

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. (2019) 69:7–34. doi: 10.3322/caac.21551
2. Christie EL, Bowtell DDL. Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. (2017) 28:viii13–viii15. doi: 10.1093/annonc/mdx446
3. Damia G, Broggini M. Platinum resistance in ovarian cancer: Role of DNA Repair. Cancers (Basel). (2019) 11:119. doi: 10.3390/cancers11010119
4. Helleday T. Homologous recombination in cancer development, treatment and development of drug resistance. Carcinogenesis. (2010) 31:955–60. doi: 10.1093/carcin/bgq064
5. Luo J, Yao JF, Deng XF, Zheng XD, Jia M, Wang YQ, et al. 14, 15-EET induces breast cancer cell EMT and cisplatin resistance by up-regulating integrin αvβ3 and activating FAK/Pi3K/AKT signaling. J Exp Clin Cancer Res. (2018) 37:23. doi: 10.1186/s13046-018-0694-6
6. Brasseur K, Gévy N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncother. (2017) 8:4008–42. doi: 10.18632/oncotarget.14021
7. Ko JC, Chen JC, Wang TJ, Zheng HY, Chen WC, Chang PY, et al. Natural borneol down-regulates Rad51 expression via inactivation of AKT kinase pathway. Pharm Biol. (2016) 54. doi: 10.1080/13880209.2019.1707338
8. Wang W, Hou D, Liu Q, Wu T, Gao H, Zhang X, et al. Artesunate sensitizes human glioma cells to cisplatin-induced apoptosis by triggering ROS-mediated oxidative damage and regulation of MAPKs and PI3K/AKT pathway. J Neurochem. (2020) 155:1458–56. doi: 10.1111/jnch.15073
9. Cao WQ, Zhai XQ, Ma JW, Wu T, Gao H, Zhang X, et al. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells. Biochem Pharmacol. (2016) 105:91–100. doi: 10.1016/j.bcp.2016.02.016
10. Wang B, Hou D, Liu Q, Wu T, Gao H, Zhang X, et al. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells. Biochem Pharmacol. (2016) 105:91–100. doi: 10.1016/j.bcp.2016.02.016
11. Gao X, Yang J, Li Y, Yu M, Liu S, Han Y, et al. Lanthanum chloride induces autophagy in rat hippocampus through ROS-mediated JNK and AKT/mTOR signaling pathways. Metallomics. (2019) 11:439–53. doi: 10.1039/C8MT00295A
12. Zheng L, Zhang J, Yu S, Ding Z, Song H, Wang Y, et al. Lanthanum chloride causes neurotoxicity in rats by upregulating miR-124 expression and targeting PI3KCA to regulate the PI3K/Akt signaling pathway. Biomed Res Int. (2020) 2020:5205142. doi: 10.1155/2020/5205142
13. Wang F, Zhu Y, Fang S, Li S, Liu S. Lanthanum chloride enhances cisplatin resistance in epithelial ovarian cancer cells via the GAS6/AXL/Akt pathway. Front Cell Dev Biol. (2021) 9:655235. doi: 10.3389/fcell.2021.655235
14. Wang F, Zhu Y, Fang S, Li S, Liu S. Lanthanum chloride sensitizes Cisplatin Resistance
15. Gao X, Yang J, Li Y, Yu M, Liu S, Han Y, et al. Lanthanum chloride induces autophagy in rat hippocampus through ROS-mediated JNK and AKT/mTOR signaling pathways. Metallomics. (2019) 11:439–53. doi: 10.1039/C8MT00295A
16. Zheng L, Zhang J, Yu S, Ding Z, Song H, Wang Y, et al. Lanthanum chloride causes neurotoxicity in rats by upregulating miR-124 expression and targeting PI3KCA to regulate the PI3K/Akt signaling pathway. Biomed Res Int. (2020) 2020:5205142. doi: 10.1155/2020/5205142
17. Fang S, Luo Y, Zhang Y, Wang H, Liu Q, Li X, et al. NTNG1 Modulates cisplatin resistance in epithelial ovarian cancer cells via the GAS6/AXL/Akt Pathway. Front Cell Dev Biol. (2021) 9:655235. doi: 10.3389/fcell.2021.655235
18. Liu Q, Zhang X, Zhang Y, Li X, Qian G, Yu T. Ultrasound enhances ZD7267P-carboxypeptidase G2 against chemoresistant ovarian cancer cells by altering the intracellular pharmacokinetics of ZD7267D. Mol Pharm. (2017) 14:1922–32. doi: 10.1021/acs.molpharmaceut.0c00008
19. Laurini E, Marson D, Fergamiglia A, Aulic S, Fergamiglia M, Pricl S. Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmcol Ther. (2020) 208:107492. doi: 10.1016/j.pharmthera.2020.107492
20. Philip CA, Laskov I, Beuchamp MC, Marque M, Amin O, Bitharas J, et al. Inhibition of PI3K-AKT-mTOR pathway sensitizes endometrial cancer cells line to PARP inhibitors. BMC Cancer. (2017) 17:638. doi: 10.1186/s12885-017-3639-0
21. Kong F, Liu X, Zhou Y, Hou X, He J, Li Q, et al. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol. (2020) 122:105731. doi: 10.1016/j.biocel.2020.105731
22. Ghosh S, Cisplatin: The first metal based anticancer drug. Bioorg Chem. (2019) 88:102925. doi: 10.1016/j.bioorg.2019.102925
23. Qin G, Dai L, Yu T. Thoridizine sensitizes cisplatin against chemoresistant human lung and ovary cancer cells. DNA Cell Biol. (2019) 38:718–24. doi: 10.1089/dna.2019.4715
24. Wang J, Wu T, Ma L, Gao Y, Huang Y, Zheng L. Action of akt pathway on la-induced hippocampal neuron apoptosis of rats in the growth stage. Neurotox Res. (2020) 38:434–46. doi: 10.1007/s12640-020-00206-z
25. He L, Luo L, Zhu H, et al. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer. Mol Oncol. (2017) 11:640–54. doi: 10.1002/1878-0261.12058
26. Zhang C, Chen L, Peng D, et al. METTL3 and N6-methyladenosine promote homologous recombination-mediated repair of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell. (2020) 79:425–42. doi: 10.1016/j.molcel.2020.06.017
27. Xu L, Sun Z, Wei X, et al. The inhibition of MARK2 suppresses cisplatin resistance of osteosarcoma stem cells by regulating DNA damage

Frontiers in Medicine | www.frontiersin.org 7 December 2021 | Volume 8 | Article 778876
and repair. *J Bone Oncol.* (2020) 23:100290. doi: 10.1016/j.jbo.2020.100290

28. Ma H, Cao W, Ding M. MicroRNA-31 weakens cisplatin resistance of medulloblastoma cells via NF-κB and PI3K/AKT pathways. *Biofactors.* (2020) 46:831–8. doi: 10.1002/biof.1616

29. Mohammadian Gol T, Rodemann HP, Dittmann K. Depletion of Akt1 and Akt2 impairs the repair of radiation-induced DNA double strand breaks via homologous recombination. *Int J Mol Sci.* (2019) 20:6316. doi: 10.3390/ijms20246316

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.