Na/K-ATPase beta1-subunit associates with neuronal growth regulator 1 (NEGR1) to participate in intercellular interactions

Yeongmi Cheon1,2, Ara Yoo1, Hyunseok Seo1, Seo-Young Yun1, Hyeonhee Lee1, Heeji Lim1, Youngho Kim1, Lihua Che1 & Soojin Lee1,*

1Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, 2Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea

INTRODUCTION

Sodium-potassium adenosine triphosphatase (Na/K-ATPase) is a member of the P-type family of active ion pumps that is found in the plasma membrane of all animal cells. Na/K-ATPase maintains the membrane voltage potential that is critical for many cellular processes (1). It has an oligomeric structure composed of essential α and β subunits and an additional tissue-specific regulator belonging to the FXYD protein family (2). The α-subunit possesses ten transmembrane (TM) domains, while the β and FXYD subunits each contain a single TM domain. Mammalian cells express multiple isoforms of each subunit:

*Corresponding author. Tel: +82-42-821-6414; Fax: +82-42-822-7367; E-mail: leesoojin@cnu.ac.kr

https://doi.org/10.5483/BMBRep.2021.54.3.116

Received 28 May 2020, Revised 7 July 2020, Accepted 9 September 2020

Keywords: Cancer, Cell adhesion molecule, Lipid rafts, Na/K-ATPase beta1-subunit, Neuronal growth regulator 1, Yeast two-hybrid

RESULTS

ATP1B1 is a NEGR1-interacting protein
To identify novel NEGR1-binding partner proteins, we performed yeast two-hybrid screening using a human fetal testis cDNA library. Because the full-length NEGR1 showed self-activation
in the Gal4-based system, we used a truncated N-terminal region of NEGR1 (residues 40-215) as bait. Among the positive clones obtained in the screen, we identified a clone containing approximately two-thirds (residues 93-303) of the Na/K-ATPase beta1-subunit (ATP1B1) (Supplementary Fig. S1A).

To validate the interaction between NEGR1 and ATP1B1, we obtained the human ATP1B1 gene by PCR from a human fetal stomach cDNA library. The large extracellular domain (residues 51-303) of ATP1B1 (∆50, also see Fig. 1F) was subcloned into the pcDNA3-3FLAG plasmid (11). Next, pcDNA3-3FLAG-ATP1B1 was transfected into 293T cells together with pEBG-NEGR1 (12) expressing three C2 domains (D1-3). After GST-pulldown, we could observe that FLAG-ATP1B1 was co-isolated with GST-NEGR1, but not with GST control (Fig. 1A). Reciprocally, GST-ATP1B1 (∆50) was constructed and GST-pulldown was performed with FLAG-NEGR1. NEGR1 was present in the ATP1B1-enriched fraction (Supplementary Fig. S1B), suggesting an in vivo interaction between these two proteins.

To show the interaction between NEGR1 and ATP1B1 at an endogenous level, we performed immunoprecipitation (IP) using anti-NEGR1 antibody with HEK293 whole cell lysates and found that ATP1B1 co-fractionated with NEGR1 (Fig. 1B). Moreover, reciprocal IP using anti-ATP1B1 antibody also pulled down endogenous NEGR1 (Fig. 1C and Supplementary Fig. S1C), again consistent with an in vivo interaction between the two proteins.

NEGR1-ATP1B1 interaction is mediated by the C-termini of both proteins

To determine the domains critical for NEGR1-ATP1B1 interaction, we performed domain mapping with multiple domain constructs. In our previous study, we generated multiple GST-fused NEGR1 deletion constructs (12). We named three C2 domains D1, D2, and D3 from the N-terminal and designed constructs containing one or two C2 domains (Fig. 1D). Along with the positive control containing three domains (D1-3) of NEGR1, D2-3 and D3 constructs also exhibited high affinity for FLAG-ATP1B1 in GST-pulldown binding assay (Fig. 1E), suggesting that the C-terminal C2 domain (D3) may be important in ATP1B1 binding.

In addition to the previous FLAG-ATP1B1 construct containing the large extracellular compartment (∆50, residues 51-303) described above, we generated two more mutants that contained serially-deleted C-terminal region (residues 51-212 and 51-157), considering the location of putative disulfide bonds (Fig. 1F). GST pulldowns were then carried out after 293T cells were co-transfected with pEBG-NEGR1. Contrary to the positive control (ATP1B1 ∆50), two deletion mutants (residues 51-212 and 51-157) lacking the C-terminus failed to bind to NEGR1 (Fig. 1G). We then made an additional construct with only the C-terminal 94 residues from the C-terminus (210-303), and observed high-affinity binding to NEGR1 in GST pulldowns (Fig. 1G). Taken together, these data suggest that the C-terminus of each of these proteins is required for their interaction.

NEGR1 may form a complex with ATP1B1

To demonstrate that NEGR1 and ATP1B1 are present in a complex in vivo, we performed size-exclusion chromatography on a SKOV-3-NEGR1-FLAG stable cell lysate. Some NEGR1 proteins appeared in early eluents, possibly as components of large complexes. However, most cellular NEGR1-FLAG was detected in fractions 19-21, overlapping with the peak of endogenous ATP1B1 (Fig. 2A).

To validate the in vivo interaction between NEGR1 and ATP1B1, we performed an in situ proximity ligation assay (PLA) in Neuro-2a cells using Duolink PLA technology. After incubation with anti-NEGR1 and anti-ATP1B1, cells were further incubated with the PLA probes (anti-mouse MINUS and anti-rabbit PLUS) to produce signals when these two proteins were in close proximity. While no signals were observed in control samples in the presence of only one antibody (anti-NEGR1 or anti-ATP1B1), clear PLA signals were present in cells incubated...
ATP1B1 is a new binding partner of NEGR1
Yeongmi Cheon, et al.

Fig. 2. NEGR1 may form a stable complex with ATP1B1 in vivo. (A) Gel filtration chromatography of a SKOV-3-NEGR1-FLAG stable cell lysate. Each fraction was used for immunoblotting with anti-FLAG and anti-ATP1B1 antibodies to visualize NEGR1 and ATP1B1, respectively. (B) In situ proximity ligation assay (PLA) performed on fixed Neuro-2a cells using Duolink PLA technology. Cells were incubated with a mouse anti-ATP1B1 antibody and/or a rabbit anti-NEGR1 antibody for 2 h, followed by incubation with PLA probes (anti-mouse MinUS and anti-rabbit Plus). Cells were mounted with mounting solution containing DAPI. Bar = 10 μm.

Fig. 3. NEGR1 co-localizes with ATP1B1 in the plasma membrane. (A) ATP1B1-MYC plasmid was co-transfected into 293T cells with pEGFP-NEGR1 (right) or pEGFP control (left). Membrane rafts were obtained by density-gradient centrifugation. The ganglioside GM1 was used as a marker for lipid rafts. When GFP-NEGR1 was co-expressed with ATP1B1, NEGR1 was mostly found in these raft fractions, with small amounts of ATP1B1 (Fig. 3A, right). Although the amount of raft-associated ATP1B1 was not affected by NEGR1 co-transfection, this result suggests that NEGR1 and ATP1B1 are co-localized in lipid rafts.

To visualize co-localization in cells, we performed immunofluorescence microscopy on U178-MG human astrocytoma cell. Upon permeabilization with Triton X-100, intracellular signals of both proteins were found to be strong and dispersed from the nucleus (top panel, Fig. 3B), suggesting that substantial fractions of NEGR1 and ATP1B1 are localized in ER/Golgi and endosomal compartments. Without permeabilization, both NEGR1 and ATP1B1 appeared as weak small dots with partial overlap (second and third rows, also see Supplementary Fig. S2), suggesting their co-localization in the plasma membrane.

To clearly demonstrate their co-localization in membrane rafts, Flotillin-1, a conserved raft marker protein, was also visualized. When cells were immunostained with anti-NEGR1, anti-ATP1B1, and anti-Flotillin-1 antibodies, we could observe overlap in several puncta (lower two panels, Fig. 3B). Collectively, these results suggest that NEGR1 and ATP1B1 are co-localized in the membrane lipid rafts.

NEGR1 and ATP1B1 participate in intercellular interaction
To assess the contributions of NEGR1 and ATP1B1 to cell-cell interaction, we performed IP after co-culturing SKOV-3-NEGR1-FLAG and SKOV-3-ATP1B1-MYC stable cells (Mix1) at high

with both antibodies (Fig. 2B). Overall, our data suggest that NEGR1 and ATP1B1 form a complex in cells.

NEGR1 co-localizes with ATP1B1 in membrane rafts
Since NEGR1 was identified as a novel raft-associated protein in rat brain (6) as well as ATP1B1 in many raft proteome analyses (13), we tested for their co-localization in membrane rafts. 293T cells were transfected with a plasmid expressing ATP1B1-MYC together with pEGFP-NEGR1 or pEGFP control vector. Then, floating lipid raft fractions were obtained by discontinuous density gradient centrifugation. The ganglioside GM1 was used as a marker for lipid rafts. When GFP-NEGR1 was co-expressed with ATP1B1, NEGR1 was mostly found in these raft fractions, with small amounts of ATP1B1 (Fig. 3A, right). Although the amount of raft-associated ATP1B1 was not affected by NEGR1 co-transfection, this result suggests that NEGR1 and ATP1B1 are co-localized in lipid rafts.

To visualize co-localization in cells, we performed immunofluorescence microscopy on U178-MG human astrocytoma cell. Upon permeabilization with Triton X-100, intracellular signals of both proteins were found to be strong and dispersed from the nucleus (top panel, Fig. 3B), suggesting that substantial fractions of NEGR1 and ATP1B1 are localized in ER/Golgi and endosomal compartments. Without permeabilization, both NEGR1 and ATP1B1 appeared as weak small dots with partial overlap (second and third rows, also see Supplementary Fig. S2), suggesting their co-localization in the plasma membrane.

To clearly demonstrate their co-localization in membrane rafts, Flotillin-1, a conserved raft marker protein, was also visualized. When cells were immunostained with anti-NEGR1, anti-ATP1B1, and anti-Flotillin-1 antibodies, we could observe overlap in several puncta (lower two panels, Fig. 3B). Collectively, these results suggest that NEGR1 and ATP1B1 are co-localized in the membrane lipid rafts.

NEGR1 and ATP1B1 participate in intercellular interaction
To assess the contributions of NEGR1 and ATP1B1 to cell-cell interaction, we performed IP after co-culturing SKOV-3-NEGR1-FLAG and SKOV-3-ATP1B1-MYC stable cells (Mix1) at high
Next, we examined the effect of N-glycan moieties on this interaction using co-cultured SKOV-3-NEGR1 and SKOV-3-ATP1B1 cells. During co-culture, cells were incubated with deoxymannojirimycin (DMJ) and swainsonine (Sw) for 48 h to suppress the synthesis of hybrid- and complex-type glycans, respectively (Fig. 4C). For more accurate quantification, we treated the immunoprecipitated samples with peptide N-glycosidase F (PNGase F) prior to immunoblotting. Although not dramatic, a slight decrease in NEGR1-ATP1B1 interaction was observed in Sw-treated cells (Fig. 4D & 4E).

To demonstrate the above results more clearly, we generated mutants at potential N-glycosylation sites. Since the C-termini of both NEGR1 and ATP1B1 are important for their binding (Fig. 1E & 1G), we focused on this region of each protein. To measure intercellular interactions, HEK293 cells separately transfected with each NEGR1 mutant construct and ATP1B1-MYC plasmid, mixed, and co-cultured with high confluency. Among the four putative N-glycosylation sites (N275, N286, N294, and N307) residing in the D3 domain of NEGR1, only the N307Q mutant protein had decreased binding to ATP1B1 (Fig. 4F). In case of ATP1B1, only one putative N-glycosylation site (N265) was identified in the C-terminal region, while N265Q mutant showed reduced binding to NEGR1 (Fig. 4G). Collectively, these results suggest that NEGR1-ATP1B1 association is partially influenced by their glycosylation status.

DISCUSSION

In the nervous system, cell adhesion plays a crucial role in the formation of functional neural networks, including axon guidance and synapse formation. Therefore, defects in cell adhesion molecules in the central nervous system are closely linked to many neurological conditions in humans (14). Although this study revealed the in vivo interaction between ATP1B1 and NEGR1 using diverse ways including endogenous IP and PLA assay, we were still unsure whether this interaction mainly occurs inside the intracellular compartments such as ER and secretory vesicles. To differentially assess the intercellular binding, we used the co-cultured stable cell lines that separately express NEGR1-FLAG and ATP1B1-MYC plasmid, mixed, and co-cultured with high confluency. Among the four putative N-glycosylation sites (N275, N286, N294, and N307) residing in the D3 domain of NEGR1, only the N307Q mutant protein had decreased binding to ATP1B1 (Fig. 4F). In case of ATP1B1, only one putative N-glycosylation site (N265) was identified in the C-terminal region, while N265Q mutant showed reduced binding to NEGR1 (Fig. 4G). Collectively, these results suggest that NEGR1-ATP1B1 association is partially influenced by their glycosylation status.
absence of glycosyl moiety on N307 of NEGR1 highly decreased affinity to ATP1B1 (Fig. 4F). Since the membrane trafficking is not impaired by this mutation (unpublished data), this potential membrane-proximal N-glycan may be critical for ATP1B1 binding.

The beta subunit of Na/K-ATPase shows a self-adhesive property and has the structure of a typical cell adhesion molecule with its long extracellular domain (17). Interestingly, the majority of the beta ectodomain is not absolutely required for its binding with alpha subunit and its membrane targeting (18). The C-terminus of the beta ectodomain contains an immunoglobulin-like fold that is important for beta-beta interaction. A previous study showed that the residues 198-207 are critical for the beta-beta interaction (19). Another study identified that residues 222-229 were also important for the beta homodimer (18). In this study, we showed that ATP1B1 mutants devoid of their C-termini (51-212 and 51-157) completely lost the ability to bind NEGR1, while the C-terminal 64 residues (210-303) were sufficient for NEGR1 binding (Fig. 1G). The previously identified regions important for beta-beta interaction (residues 198-207 and 222-229) did not completely overlap with the region for NEGR1 binding. However, since binding is commonly mediated by the C-terminus, there is a possibility that NEGR1 influences the beta-beta interaction.

The beta subunit is also essential for Na/K-ATPase function as it facilitates a proper folding of the alpha subunit in ER and escorts it to the plasma membrane (20). The activity of Na/K-ATPase seems to be tightly regulated; its dysregulation has been linked to diverse neurological diseases, including depression, learning deficits, amnesia, and Alzheimer’s disease (21). Furthermore, the function of Na/K-ATPase has linked to other clinical disorders, including cancer, cardiovascular diseases, and obesity (22). Recently, we reported that NEGR1 mice had highly increased fat mass and muscle atrophy (12), in addition to a depression-like affective behavior (23). These studies collectively indicate that NEGR1 and ATP1B1 have roles in diverse biological and clinical aspects, which may imply a substantial overlapping of their cellular functions. Overall, we report that human NEGR1 is a novel binding partner of Na/K-ATPase beta subunit in the cell membrane, which may provide valuable insights in understanding the roles of both proteins in normal cell function and in several human disorders.

MATERIALS AND METHODS

Cell culture, transfection, and cloning

The cell lines HEK293, U178-MG, and Neuro-2a were maintained in DMEM (Welgene) supplemented with 10% FBS (Invitrogen), while SKOV-3 cells were cultured in RPMI 1640 medium. Transient transfections were performed using Effectene (Qiagen) or polyethyleneimine (PEI, Millipore Sigma). The cDNA clone of ATP1B1 was obtained by PCR amplification from a human fetal stomach Marathon-ready cDNA library (Clontech). The ORF of ATP1B1 was subcloned into the pCS3-MYC vector (11) using BamH1 and Clal. To perform in vivo binding assays, the extracellular region (residues 51-303) of ATP1B1 was subcloned into pcDNA3-FLAG or pEBG (11) to generate 3FLAG- or GST-fused expression constructs, respectively.

Yeast two-hybrid screening, protein binding, and antibodies

Screening was performed using the GAL4-based Matchmaker Two-Hybrid System on a pre-transformed human fetal testis library (Clontech) (12). The truncated N-terminal region containing two C2 domains (D1-2) of NEGR1 (residues 40-215) was inserted into pGBKT7 vector (Clontech) to produce a GAL4 DNA-binding domain (BD)-fused NEGR1 bait. Positive clones were isolated using the selective medium (SD-Leu-Trp-His-Ade) containing 40 μg/ml X-a-gal.

Immunoprecipitation and GST pulldown assays were carried out as previously described (12) using 1 μg of appropriate antibody or glutathione-Sepharose 4B beads (GE Healthcare). Antibodies for MYC, FLAG, GST, and NEGR1 were purchased from Millipore Sigma. Anti-GFP, anti-Flot1, and anti-ATP1B1 antibodies were purchased from Santa Cruz Biotechnology. Anti-NEGR1 antiserum was obtained by immunizing rats with recombinant NEGR1 protein (8).

Rafts fractionation and size exclusion chromatography

Fractionation was performed using OptiPrep iodixanol (Sigma) as previously described (8). Briefly, cell lysates, which were adjusted to 32% OptiPrep (in 1.5 ml), were loaded into centrifuge tubes and overlaid with iodixanol solution (2 ml of 24% and 1.5 ml of 20% OptiPrep). After centrifugation at 76,000 × g for 18 h at 4°C, fractions were collected from the upper layer and designated as No. 1. Gel-filtration chromatography was performed using a Sephacryl S-400 HR column (GE Healthcare, 1.0 × 30 cm) with a size-exclusion buffer (25 mM HEPES, pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.1 mM PMSF, 0.1 mM Na3VO4, 1 mM NaF, and 0.3% CHAPS) as described previously (24).

Immunofluorescence microscopy

Cells were grown on cover slips and fixed with 4% paraformaldehyde for 15 min, then were either not treated or permeabilized with 0.1% Triton X-100 in PBS for 10 min. After blocking with 10% CAS-Block (Invitrogen) in PBS, cells were incubated with appropriate primary antibodies. Next, cells were incubated with Alexa Fluor 568 anti-rat, Alexa Fluor 488 anti-mouse, or Alexa Fluor 594 anti-human IgG antibody (Invitrogen). Imaging was performed using an Olympus IX70 fluorescence microscope or Leica TCS SPS AOBS confocal microscope equipped with 63× inverted NX oil lens, located at Gwangju Center, Korea Basic Science Institute.

In situ proximity ligation assay (PLA)

Assays were performed on fixed Neuro-2a cells using Duolink PLA technology probes and reagents (Merck). Briefly, cells were fixed and permeabilized with 0.1% Triton-X 100 in PBS
for 10 min, followed by incubation with anti-ATP1B1 and anti-NEGR1 antibodies for 2 h. After two washes, the cells were incubated with PLA probes (anti-mouse MINUS and anti-rabbit PLUS for ATP1B1 and NEGR1, respectively) for 1 h. Next, cells were treated with a ligation solution for 30 min and an amplification solution for 2 h. After two washes of 10 min, the cells were mounted with a mounting solution containing DAPI.

ACKNOWLEDGEMENTS

This work was supported by National Research Foundation of Korea grants, NRF-2020R1A2C201128811 and NRF-2020R1A5A8017671, funded by the Korean government (MSIT).

CONFLICTS OF INTEREST

The authors have no conflicting interests.

REFERENCES

1. Tokhtaeva E, Clifford RJ, Kaplan JH, Sachs G and Vagin O (2012) Subunit isoform selectivity in assembly of Na,K-ATPase alpha-beta heterodimers. J Biol Chem 287, 26115-26125
2. Li C, Capendeguy O, Geering K and Horisberger JD (2005) A third Na+-binding site in the sodium pump. Proc Natl Acad Sci U S A 102, 12706-12711
3. Clausen MV, Hilbers F and Poulsen H (2017) The Structure and function of the Na,K-ATPase isoforms in health and disease. Front Physiol 8, 371
4. Antonick H, Persohn E and Schachner M (1987) Biochemical and functional characterization of a novel neuron-glia adhesion molecule that is involved in neuronal migration. J Cell Biol 104, 1587-1595
5. Rajasekaran SA, Huynh TP, Wolle DG et al (2010) Na,K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis. Mol Cancer Ther 9, 1515-1524
6. Funatsu N, Miyata S, Kumanogoh H et al (1999) Characterization of a novel rat brain glycosylphosphatidylinositol-anchored protein (Kilon), a member of the IgLON cell adhesion molecule family. J Biol Chem 274, 8224-8230
7. Hashimoto T, Maekawa S and Miyata S (2009) IgLON cell adhesion molecules regulate synaptogenesis in hippocampal neurons. Cell Biochem Funct 27, 496-498
8. Kim H, Hwang JS, Lee B, Hong J and Lee S (2014) Newly identified cancer-associated role of human neuronal growth regulator 1 (NEGR1). J Cancer 5, 598-608
9. Ni H, Xu M, Zhan GL et al (2018) The GWAS risk genes for depression may be actively involved in Alzheimer’s disease. J Alzheimers Dis 64, 1149-1161
10. Willer CJ, Speliotes EK, Loos RJ et al (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41, 25-34
11. Chun Y, Park B, Koh W et al (2011) New centromeric component CENP-W is an RNA-associated nuclear matrix protein that interacts with nucleophosmin/B23 protein. J Biol Chem 286, 42738-42769
12. Kim H, Chun Y, Che L, Kim J, Lee S and Lee S (2017) The new obesity-associated protein, neuronal growth regulator 1 (NEGR1), is implicated in Niemann-Pick disease Type C (NPC2)-mediated cholesterol trafficking. Biochem Biophys Res Commun 482, 1367-1374
13. Kalinowska M, Castillo C and Francesconi A (2015) Quantitative profiling of brain lipid raft proteome in a mouse model of fragile X syndrome. PLoS One 10, e0121464
14. Liu G, Jiang Y, Wang P et al (2012) Cell adhesion molecules contribute to Alzheimer’s disease: multiple pathway analyses of two genome-wide association studies. J Neurochem 120, 190-198
15. Rek A, Krenn E and Kungl AJ (2009) Therapeutically targeting protein-glycan interactions. Br J Pharmacol 157, 686-694
16. Jayaprakash NG and Surolia A (2017) Role of glycosylation in regulating protein folding and stability. Biochem J 474, 2333-2347
17. Cereijido M, Contreras RG, Shoshani L and Larre I (2012) The Na+-K+-ATPase as self-adhesion molecule and hormone receptor. Am J Physiol Cell Physiol 302, C473-481
18. Paez O, Martinez-Archundia M, Villegas-Sepulveda N, Roldan ML, Correa-Basurto J and Shoshani L (2019) A model for the homotypic interaction between Na(+),K(+)-ATPase beta1 subunits reveals the role of extracellular residues 221-229 in Its Ig-like domain. Int J Mol Sci 20, 4538
19. Lee SJ, Litan A, Li Z et al (2015) Na,K-ATPase beta1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. Mol Cancer 14, 159
20. Geering K (2008) Functional roles of Na,K-ATPase subunits. Curr Opin Neurol 17, 526-532
21. de Lores Arnaiz GR and Ordieres MG (2014) Brain Na(+),K(+)-ATPase beta1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. Mol Cancer 14, 159
22. Srikanthan K, Shapiro Jl and Dodhi K (2016) The role of Na,K-ATPase signaling in oxidative stress related to obesity and cardiovascular disease. Molecules 21, 1172
23. Noh K, Lee H, Choi TY et al (2019) NEGR1 controls adult hippocampal neurogenesis and affective behaviors. Mol Psychiatry 24, 1189-1205
24. Cheon Y and Lee S (2018) CENP-W inhibits CDC25A degradation by destabilizing the SCF(beta-TrCP-1) complex at G2/M. FASEB J 32, 6051-6065