Abstract

In this report, in the framework of an analytical approach and with help of the generalized version of the Hurwitz transformation the five–dimensional $SU(2)$–monopole model is constructed from the eight–dimensional quantum oscillator. The $SU(2)$–monopole fields, the Clebsch–Gordan expansion stimulated by the space–gauge coupling, the hyperangle and the radial parts of the total wave function, the energy spectrum of the charge–monopole bound system and the corresponding degeneracy are calculated.

1. Introduction.

This paper deals with the problem of monopole generation from oscillator–like systems, i.e. systems with a potential chosen as ”oscillator + anything”. In turn, the mentioned problem is connected with the search for the electromagnetic duality (ED) in the structure of Quantum Mechanics (QM). The existence of QM–duality seems important for two reasons. First, QM is a mathematically more simple theory than the gauge theories, so we have an excellent polygon for experience in ED. Second, there appears a wide range of applications because of ED pretentions to realize accurate calculations outside perturbation theory: according to ED, strongly coupled gauge theories can be formulated in the form of weakly coupled magnetic monopoles [1].

During the last years, the following machinery has been developed for a monopole generation: Hurwitz–like transformations applied to 2D, 4D and 8D quantum oscillators transfer them into the charge–monopole bound systems in R^2, R^3 and R^5, respectively [2-4]. In two space dimensions the oscillator model was also constructed which can be transformed into a charge–monopole bound system with fractional statistics, interpolating the bosonic and fermionic limits [5]. Thus, the important extension of ED to the world of anyons is achieved.

Recently, the algebraic approach has been developed to clarify the relation between the 8D quantum oscillator and the charge–dyon bound system with the $SU(2)$–monopole [6]\(^4\). This approach is exhaustive but rather abstract. We make

\(^1\)E-mail: mardoyan@thsun1.jinr.dubna.su
\(^2\)E-mail: sisakian@jinr.dubna.su
\(^3\)E-mail: terant@thsun1.jinr.dubna.su
\(^4\)The particular version of the problem was previously considered in [7].
here an attempt to fulfill this gap\(^5\) by presenting the analytical approach that is more explicit and hence more acceptable for understanding. Special attention is given to the SU(2)–monopole fields, the space–gauge coupling and to the spectroscopy of the charge–dyon bound system.

2. U(1)–Monopole.

Let us recall the way used for passage from the 4D oscillator to the 3D U(1)–monopole. The initial system is governed by the equation

\[
\frac{\partial^2 \psi}{\partial u^2} + \frac{2M}{\hbar^2} \left(E - \frac{M\omega^2 u^2}{2} \right) \psi = 0, \tag{1}
\]

where \(u_\mu \in \mathbb{R}^4, \mu = 0, 1, 2, 3; u^2 = u_\mu u_\mu\).

With the help of the special transformation\(^6\)

\[
x_1 &= 2(u_0 u_2 + u_1 u_3) \\
x_2 &= 2(u_0 u_3 - u_1 u_2) \\
x_3 &= u_0^2 + u_1^2 - u_2^2 - u_3^2 \\
\gamma &= i \ln \frac{u_0 - i u_1}{u_0 + i u_1}
\]

we present \(\mathbb{R}^4\) as a direct product \(\mathbb{R}^3 \otimes S^{1}_{4\pi}\) of the new configuration space \(\mathbb{R}^3\) with the Cartesian coordinates \(x_j \in (-\infty, \infty)\) and the intrinsic space \(S_{4\pi}^{1}\) with the coordinate \(\gamma \in [0, 4\pi)\). In the new coordinates, Eq.(1) can be led to the form

\[
\frac{1}{2M} \left(-i \hbar \frac{\partial}{\partial x_j} - \hbar A_j \hat{S} \right)^2 \psi + \frac{\hbar^2}{2Mr^2} \hat{S}^2 \psi - \frac{e^2}{r} \psi = \epsilon \psi
\]

Here \(r = \sqrt{x_1^2 + x_2^2 + x_3^2}, \hat{S} = -i \partial / \partial \gamma, \epsilon = -M\omega^2 / 8, e^2 = E / 4, \) \(\)\(, \)

and

\[
\vec{A} = \frac{1}{r(r + x_3)}(-x_2, x_1, 0)
\]

As we can to see, Eq.(1) describes the charge–dyon system with the U(1)–monopole\(^7\).

\(^5\)See also \[2\] where the analytical approach to the same problem was presented more concisely.

\(^6\)Notice that the three lines of (2) are the KS–transformation well known from the Celestial Mechanics \[8\].

\(^7\)The successive theory for the charge–dyon system with the U(1)–monopole and its dynamic symmetry was initially constructed by Zwanziger \[9\].
3. SU(2)–Monopole.

The described scheme can be generalized to the 8D isotropic quantum oscillator in the following way. Let u_μ is the Cartesian coordinates of R^8, $u^2 = u_\mu u_\mu$ and $\mu = 0, 1, \ldots 7$.

$$\frac{\partial^2 \psi}{\partial u_\mu^2} + \frac{2M}{\hbar^2} \left(E - \frac{M\omega^2 u^2}{2} \right) \psi = 0, \quad u_\mu \in R^8$$ (4)

Consider the transformation\(^8\)

\begin{align*}
x_0 &= u_0^2 + u_1^2 + u_2^2 + u_3^2 - u_4^2 - u_5^2 - u_6^2 - u_7^2 \\
x_1 &= 2(u_0 u_4 + u_1 u_5 - u_2 u_6 - u_3 u_7) \\
x_2 &= 2(u_0 u_5 - u_6 u_4 + u_2 u_7 - u_3 u_6) \\
x_3 &= 2(u_0 u_6 + u_1 u_7 + u_2 u_4 + u_3 u_5) \\
x_4 &= 2(u_0 u_7 - u_1 u_6 - u_2 u_5 + u_3 u_4)
\end{align*} (5)

\begin{align*}
\alpha_T &= \frac{i}{2} \ln \frac{(u_0 + i u_1)(u_2 - i u_3)}{(u_0 - i u_1)(u_2 + i u_3)} \in [0, 2\pi) \\
\beta_T &= 2 \arctan \left(\frac{u_2^2 + u_3^2}{u_0^2 + u_1^2} \right)^{1/2} \in [0, \pi] \\
\gamma_T &= \frac{i}{2} \ln \frac{(u_0 + i u_1)(u_2 + i u_3)}{(u_0 - i u_1)(u_2 - i u_3)} \in [0, 4\pi)
\end{align*} (6)

It follows from (5) and (6) that

$$\Delta_8 = 4r \left(\Delta_5 - 2i \hat{T}_j \frac{\partial}{\partial x_j} \frac{2}{r(r + x_0)} \hat{T}^2 \right)$$

Here $r = (x_j x_j)^{1/2}$, $\Delta_8 = \partial^2 / \partial u_\mu^2$, $\Delta_5 = \partial^2 / \partial x_j^2$,

\begin{align*}
\hat{T}_1 &= i \left(\cos \alpha_T \cot \beta_T \frac{\partial}{\partial \alpha_T} + \sin \alpha_T \frac{\partial}{\partial \beta_T} \right) - \frac{\cos \alpha_T}{\sin \beta_T} \frac{\partial}{\partial \gamma_T} \\
\hat{T}_2 &= i \left(\sin \alpha_T \cot \beta_T \frac{\partial}{\partial \alpha_T} - \cos \alpha_T \frac{\partial}{\partial \beta_T} \right) - \frac{\sin \alpha_T}{\sin \beta_T} \frac{\partial}{\partial \gamma_T} \\
\hat{T}_3 &= -i \frac{\partial}{\partial \alpha_T}
\end{align*} (7)

\(^8\)Formulae (5) is known as the Hurwitz transformation \([10]\); (6) is copied from \([11]\).
and

\[\tilde{A}^1 = \frac{1}{r(r + x_0)}(0, -x_4, -x_3, x_2, x_1) \]

\[\tilde{A}^2 = \frac{1}{r(r + x_0)}(0, x_3, -x_4, -x_1, x_2) \]

\[\tilde{A}^3 = \frac{1}{r(r + x_0)}(0, -x_2, -x_1, x_4, -x_3) \]

Every term of the triplet \(A^a_j \) coincides with the vector potential of 5D Dirac monopole\(^9\) with a unit topological charge and the line of singularity along the non-positive part of the \(x_0 \)-axis. The vectors \(A^a_j \) are orthogonal to each other,

\[A^a_j A^b_j = \frac{1}{r^2 (r + x_0)} \delta_{ab} \]

and also to the vector \(\vec{x} = (x_0, x_1, x_2, x_3, x_4) \).

Returning to Eq.(4) we obtain

\[\left(\Delta_5 - 2i A^a_j \hat{T}_a \frac{\partial}{\partial x_j} - \frac{2}{r(r + x_0)} \hat{T}^2 \right) \psi + \frac{2M}{\hbar^2} \left(\epsilon + \frac{e^2}{r} \right) \psi = 0 \tag{8} \]

or in a more informative form

\[\frac{1}{2M} \left(-i \hbar \frac{\partial}{\partial x_j} - \hbar A^a_j \hat{T}_a \right)^2 \psi + \frac{\hbar^2}{2Mr^2} \hat{T}^2 \psi - \frac{e^2}{r} \psi = \epsilon \psi \tag{9} \]

We see that Eq.(9) describes the charge–dyon bound system with the \(SU(2) \)-monopole.

4. The Field Tensor.

Consider now the field tensor

\[F^a_{ik} = \partial_i A^a_k - \partial_k A^a_i + i \epsilon_{abc} A^b_i A^c_k \]

Since \(A^a_0 \equiv 0 \), we have \((\mu, \nu = 1, 2, 3, 4) \)

\[A^a_{\mu} = \frac{2i}{r(r + x_0)} \tau^a_{\mu \nu} x_\nu \]

where

\[\tau^1 = \frac{1}{2} \begin{pmatrix} 0 & i \sigma^1 \\ -i \sigma^1 & 0 \end{pmatrix}, \quad \tau^2 = \frac{1}{2} \begin{pmatrix} 0 & -i \sigma^3 \\ i \sigma^3 & 0 \end{pmatrix}, \quad \tau^3 = \frac{1}{2} \begin{pmatrix} i \sigma^2 & 0 \\ 0 & -i \sigma^2 \end{pmatrix} \]

\(^9\)The \(SU(2) \)-monopole theory in \(\mathbb{R}^5 \) was constructed by Yang [12].

4
and \(\sigma^a \) are the Pauli matrices

\[
\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

With the help of these formulae we find that

\[
F^a_{0\mu} = -\frac{2i}{r^3} \rho^a_{\mu\nu} x_{\nu} = -\frac{r + x_0}{r^2} A^a_{\mu}
\]

\[
F^a_{\mu\nu} = \frac{2r + x_0}{r^2(r + x_0)} \left(x_{\nu} A^a_{\mu} - x_{\mu} A^a_{\nu} \right) - \frac{4i}{r(r + x_0)} \epsilon^a_{\mu\nu} + \epsilon_{abc} A^b_{\mu} A^c_{\nu}
\]

It is straightforward to verify that

\[
\left[\tau^a, \tau^b \right] = i \epsilon_{abc} \tau^c
\]

\[
\epsilon_{\mu\nu}^a \tau^b_{\alpha\beta} = \frac{1}{4} \delta_{ab} \delta_{\mu\nu} + \frac{i}{2} \epsilon_{abc} \tau^c_{\mu\nu}
\]

Since \(\epsilon_{\alpha\beta\gamma} \tau^b_{\mu\nu} \) is a pseudovector in \(S^3 \) and a tensor in \(R^4 \), we can construct the general expansion

\[
\epsilon_{\alpha\beta\gamma} \tau^b_{\mu\nu} = A \delta_{\alpha\mu} \tau^a_{\beta\nu} + B \delta_{\alpha\nu} \tau^a_{\mu\beta} + C \delta_{\beta\nu} \tau^a_{\mu\alpha} + D \delta_{\beta\mu} \tau^a_{\nu\alpha} + E \delta_{\alpha\beta} \tau^a_{\mu\nu} + F \delta_{\mu\nu} \tau^a_{\alpha\beta}
\]

Here, the l.h.s. is symmetric under indices \(\alpha, \beta \) and \(\mu, \nu \), respectively. Hence, \(E = F = 0 \), \(D = -A \), \(C = -B \) and

\[
\epsilon_{\alpha\beta\gamma} \tau^b_{\mu\nu} = A \left(\delta_{\alpha\mu} \tau^a_{\beta\nu} - \delta_{\beta\mu} \tau^a_{\alpha\nu} \right) + B \left(\delta_{\alpha\nu} \tau^a_{\mu\beta} - \delta_{\beta\nu} \tau^a_{\mu\alpha} \right)
\]

Further, \(B = -A \), because after \(\alpha \leftrightarrow \mu \) and \(\beta \leftrightarrow \nu \) the l.h.s. changes the sign but the r.h.s. changes its brackets

\[
\epsilon_{\alpha\beta\gamma} \tau^b_{\mu\nu} = A \left(\delta_{\alpha\nu} \tau^a_{\mu\beta} - \delta_{\beta\nu} \tau^a_{\mu\alpha} + \delta_{\mu\nu} \tau^a_{\alpha\beta} \right)
\]

Summing under \(\beta \) and \(\mu \) and taking into account Eq.(11), we conclude that \(A = i/2 \); and therefore

\[
\epsilon_{\alpha\beta\gamma} \tau^b_{\mu\nu} = \frac{i}{2} \left(\delta_{\alpha\nu} \tau^a_{\mu\beta} - \delta_{\beta\nu} \tau^a_{\mu\alpha} + \delta_{\mu\nu} \tau^a_{\alpha\beta} \right)
\]

Using this formula one can easily show that

\[
\epsilon_{abc} A^b_{\alpha} A^c_{\mu} = \frac{1}{r(r + x_0)} \left(x_{\alpha} A^a_{\mu} - x_{\mu} A^a_{\alpha} + 2i \frac{r - x_0}{r} \tau^a_{\alpha\mu} \right)
\]

which leads to

\[
F^a_{\mu\nu} = \frac{1}{r^2} \left(x_{\nu} A^a_{\mu} - x_{\mu} A^a_{\nu} - 2i \tau^a_{\mu\nu} \right)
\]
It follows from (10), (12) and the explicit form of A_j^a that

$$x_i F_{ij}^a = 0$$

Thus, both A_j^a and F_{jk}^a are orthogonal to the vector x_j.

5. LT–Coupling.

Let us note that

$$i A_j^a \frac{\partial}{\partial x_j} = \frac{2}{r(r + x_0)} \hat{L}_a,$$

where

$$\hat{L}_1 = \frac{i}{2} [D_{41}(x) + D_{32}(x)]$$
$$\hat{L}_2 = \frac{i}{2} [D_{13}(x) + D_{42}(x)]$$
$$\hat{L}_3 = \frac{i}{2} [D_{12}(x) + D_{34}(x)]$$

and

$$D_{ij}(x) = -x_i \frac{\partial}{\partial x_j} + x_j \frac{\partial}{\partial x_i}$$

Using these formulae we can transform Eq.(8) into

$$\left(\Delta_5 - \frac{4}{r(r + x_0)} \hat{L} \hat{T} - \frac{2}{r(r + x_0)} \hat{T}^2 \right) \psi + \frac{2M}{\hbar^2} \left(\epsilon + \frac{e^2}{r} \right) \psi = 0 \quad (13)$$

We see that Eq.(13) contains the LT–coupling term demonstrating that we have no way to separate the wave function dependence on R^5 and S^3.

Let us introduce in R^5 the hyperspherical coordinates $r \in [0, \infty)$, $\theta \in [0, \pi]$, $\alpha \in [0, 2\pi)$, $\beta \in [0, \pi]$, $\gamma \in [0, 4\pi)$ according to

$$x_0 = r \cos \theta$$
$$x_1 + ix_2 = r \sin \theta \cos \frac{\beta}{2} e^{i\alpha+\gamma}$$
$$x_3 + ix_4 = r \sin \theta \sin \frac{\beta}{2} e^{i\alpha-\gamma}$$

In these coordinates

$$\Delta_5 = \frac{1}{r^4} \frac{\partial}{\partial r} \left(r^4 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin^3 \theta} \frac{\partial}{\partial \theta} \left(\sin^3 \theta \frac{\partial}{\partial \theta} \right) - \frac{4}{r^2 \sin^2 \theta} \hat{L}^2$$

6
where
\[
\hat{L}_1 = i \left(\cos \alpha \cot \beta \frac{\partial}{\partial \alpha} + \sin \alpha \frac{\partial}{\partial \beta} - \cos \alpha \frac{\partial}{\sin \beta \partial \gamma} \right)
\]
\[
\hat{L}_2 = i \left(\sin \alpha \cot \beta \frac{\partial}{\partial \alpha} - \cos \alpha \frac{\partial}{\sin \beta \partial \gamma} - \sin \alpha \frac{\partial}{\sin \beta \partial \gamma} \right)
\]
\[
\hat{L}_3 = -i \frac{\partial}{\partial \alpha}
\]
and
\[
\hat{L}^2 = -\left[\frac{\partial^2}{\partial \beta^2} + \cot \beta \frac{\partial}{\partial \beta} + \frac{1}{\sin^2 \beta} \left(\frac{\partial^2}{\partial \alpha^2} - 2 \cos \beta \frac{\partial}{\partial \alpha \partial \gamma} + \frac{\partial^2}{\partial \gamma^2} \right) \right]
\]
Let us introduce \(\hat{J}_a = \hat{L}_a + \hat{T}_a \). Since \(\hat{J}^2 = \hat{L}^2 + \hat{T}^2 + 2 \hat{L}_a \hat{T}_a \), Eq.(13) can be rewritten as
\[
\left(\Delta_{r \theta} - \frac{\hat{L}^2}{r^2 \sin^2 \theta / 2} - \frac{\hat{J}^2}{r^2 \cos^2 \theta / 2} \right) \psi + \frac{2M}{\hbar^2} \left(\epsilon + \frac{\epsilon^2}{r} \right) \psi = 0 \quad (14)
\]
where
\[
\Delta_{r \theta} = \frac{1}{r^4} \frac{\partial}{\partial r} \left(r^4 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin^3 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right)
\]
Emphasize that
\[
[\hat{L}_a, \hat{L}_b] = i\epsilon_{abc} \hat{L}_c, \quad [\hat{T}_a, \hat{T}_b] = i\epsilon_{abc} \hat{T}_c, \quad [\hat{J}_a, \hat{J}_b] = i\epsilon_{abc} \hat{J}_c
\]
Introduce the separation ansatz
\[
\psi = \Phi(r, \theta) G(\alpha, \beta, \gamma; \alpha_T, \beta_T, \gamma_T)
\]
where \(G \) are the eigenfunctions of \(\hat{L}^2, \hat{T}^2 \) and \(\hat{J}^2 \) with the eigenvalues \(L(L + 1), T(T + 1) \) and \(J(J + 1) \). If this is substituted into Eq.(14), the differential equation for the function \(\Phi(r, \theta) \) immediately follows
\[
\left(\Delta_{r \theta} - \frac{L(L + 1)}{r^2 \sin^2 \theta / 2} - \frac{J(J + 1)}{r^2 \cos^2 \theta / 2} \right) \Phi + \frac{2M}{\hbar^2} \left(\epsilon + \frac{\epsilon^2}{r} \right) \Phi = 0 \quad (15)
\]
Because of an \(LT \)–interaction, we look for the function \(G \) in the form
\[
G = \sum_{M=m+t} (JM|L, m'; T, t') D_{mm'}^L(\alpha, \beta, \gamma) D_{tt'}^T(\alpha_T, \beta_T, \gamma_T)
\]
where \((JM|L, m'; T, t') \) are the Clebsh–Gordan coefficients and \(D_{mm'}^L \) and \(D_{tt'}^T \) are the Wigner functions.
6. Hypermomentum.

Pick up the function \(\Phi(r, \theta) \) of the form

\[
\Phi(r, \theta) = R(r)Z(\theta)
\]

Then, equation (15) is separated into

\[
\frac{1}{\sin^3 \theta} \frac{d}{d\theta} \left(\sin^3 \theta \frac{dZ}{d\theta} \right) - \frac{2L(L+1)}{1-\cos \theta} Z - \frac{2J(J+1)}{1+\cos \theta} Z + \lambda(\lambda+3)Z = 0 \quad (16)
\]

and a purely radial equation

\[
\frac{1}{r^4} \frac{d}{dr} \left(r^4 \frac{dR}{dr} \right) - \frac{\lambda(\lambda+3)}{r^2} R + \frac{2M}{\hbar^2} \left(\epsilon + \frac{e^2}{r} \right) R = 0 \quad (17)
\]

with the separation constant \(\lambda(\lambda+3) \) equal to the nonnegative eigenvalues of the hypermomentum operator.

It is convenient to make in Eq.(16) a change of variables, \(y = (1 - \cos \theta)/2 \) and write

\[
Z(y) = y^L(1-y)^J W(y)
\]

Substituting this into Eq.(16), we obtain the hypergeometric equation

\[
y(1-y) \frac{d^2W}{dy^2} + [c - (a + b + 1)y] \frac{dW}{dy} - abW = 0
\]

with \(a = -\lambda + L + J, \ b = \lambda + L + J + 3, \ c = 2L + 2 \).

Thus, we find that

\[
Z(\theta) = (1 - \cos \theta)^L(1 + \cos \theta)^J \
2F_1 \left(-\lambda + J + L, \lambda + J + L + 3; 2L + 2; \frac{1 - \cos \theta}{2} \right)
\]

This solution is well behaved at \(\theta = \pi \) if the series \(2F_1 \) terminates, i.e.

\[
-\lambda + J + L = -n_\theta
\]

where \(n_\theta = 0, 1, 2, \ldots \).

7. Energy Levels.

Let us now turn to the radial equation and introduce the function

\[
f(r) = e^{kr} r^{-\lambda} R(r)
\]
It is easy to verify that the equation for \(f(r) \) has the form of the confluent hypergeometric equation

\[
zd^2 f \left(\frac{d}{dz} \right) + (c - z) \frac{df}{dz} - af = 0
\]

where \(z = 2\kappa r, \kappa = \sqrt{-2M\epsilon/h^2}, c = 2\lambda + 4, a = \lambda + 2 - 1/\kappa r_0 \) and \(r_0 = h^2/Me^2 \). For the bound state solutions (\(\epsilon < 0 \))

\[
\lambda + 2 - 1/\kappa r_0 = -n_r = 0, -1, -2, ...
\]

and therefore

\[
\epsilon_N^T = -\frac{Me^4}{2h^2(\frac{N}{2} + 2)^2}
\]

where

\[
N = 2(n_r + \lambda) = 2(n_r + n_\theta + J + L)
\]

8. Degeneracy.

For fixed \(T \), the energy levels \(\epsilon_N^T \) do not depend on \(L, J \) and \(\lambda \), i.e. are degenerate. The total degeneracy is

\[
g_N^T = (2T + 1) \sum \lambda \sum L (2L + 1) \sum J (2J + 1)
\]

Since \(\lambda = n_\theta + J + L \) and \(N = 2(n_r + \lambda) \), it follows that (for fixed \(N \) and \(T \)) \(\lambda = T, T + 1, ..., N/2 \). Then, \(L_{\text{max}} = \lambda - J_{\text{min}} \) (\(L_{\text{max}} \) is fixed) and therefore \(L_{\text{max}} = \lambda - (L_{\text{max}} - T) \) or \(L_{\text{max}} = (\lambda + T)/2 \). Thus,

\[
g_N^T = (2T + 1) \sum_{\lambda=T}^{N/2} \sum_{L=0,1/2}^{\lambda-T} (2L + 1) \sum J (2J + 1)
\]

Now, comparing \(|L - T| \leq J \leq L + T \) and \(J \leq \lambda - L \) we conclude that

(a) \(J = |L - T|, |L - T| + 1, ..., L + T \), for \(L = 0, \frac{1}{2}, ..., \frac{\lambda-T}{2} \)

(b) \(J = |L - T|, |L - T| + 1, ..., \lambda - L \), for \(L = \frac{\lambda-T+1}{2}, ..., \frac{\lambda+T}{2} \)

and rewrite the formula for \(g_N^T \) in a more explicit form

\[
g_N^T = (2T + 1) \sum_{\lambda=T}^{N/2} \sum_{L=0,1/2}^{\lambda-T} (2L + 1) \sum_{J=|L-T|}^{L+T} (2J + 1) + \sum_{L=\frac{\lambda-T+1}{2}}^{\frac{\lambda+T}{2}} (2L + 1) \sum_{J=|L-T|}^{\lambda-L} (2J + 1)
\]
Finally, after some tedious calculations we obtain the following result:

\[g_N^T = \frac{1}{12} (2T + 1)^2 \left(\frac{N}{2} - T + 1 \right) \left(\frac{N}{2} - T + 2 \right) \]

\[\left\{ \left(\frac{N}{2} - T + 2 \right) \left(\frac{N}{2} - T + 3 \right) + 2T(N+5) \right\} \]

For \(T = 0 \) and \(N = 2n \) (even) the r.h.s. of the last formula is equal to \((n + 1)(n + 2)^2(n+3)/12 \), i.e. to the degeneracy of pure Coulomb levels. Further, \(T = 0, 1, \ldots N/2 \) and \(T = 1/2, 3/2, \ldots N/2 \) for even and odd \(N \), respectively. Therefore,

\[g_N = \sum_{T=0,1/2}^{N/2} g_N^T = \frac{(N+7)!}{7!N!} \]

i.e. we obtain the degeneracy of the energy levels for the 8D isotropic quantum oscillator.

9. Conclusions.

Formulae (5) and (6) together with the ansatz (3) form the duality transformation mapping of the 8D quantum oscillator into the charge–dyon system with the \(SU(2) \)–monopole. Let us stress the meaning we use for the term duality. Both Eq.(4) and Eq.(9) contain two quantities, \(\omega \) and \(E \). For Eq.(4) \(\omega \) is the fixed parameter (coupling constant) and \(E \) is the quantity to be quantized (energy of the 8D oscillator). On the contrary, as it easy to see from (3), for Eq.(9) \(E \) is a fixed parameter (Coulomb coupling constant) and \(\omega \) is the quantity to be quantized (\(\omega^2 \)–energy of the final system). Thus, the 8D quantum oscillator and the charge–dyon bound system with the \(SU(2) \)–monopole are not identical, but dual to each other.

This type duality is valid not only for the 8D, 4D and 2D oscillators, but also for oscillator–like systems with the potentials

\[V(u^2) = c_0 + c_1 u^2 + W(u^2) \]

where \(W(u^2) \) has a polynomial form

\[W(u^2) = \sum_{n=2}^{\infty} c_n u^{2n} \]

For such modified potentials, the ansatz (3) can be rewritten as

\[\epsilon = \frac{c_1}{4}, \quad e^2 = \frac{E - c_0}{4} \]

Thus, the value of the function \(V(u^2) \) at \(u^2 = 0 \) contributes to the Coulomb coupling constant \(e^2 \). It is also easy to verify that the l.h.s. of Eq.(9) acquires the additional term \((-W(r)/4r)\).
9. Appendix.

Consider the normalization of the wave function \(\psi(\vec{x}, \alpha_T, \beta_T, \gamma_T) \). A standard calculation shows that the radial wave function \(R(r) \) normalized by the condition
\[
\int_0^\infty r^4 [R_{n,\lambda}(r)] \, dr = 1
\]
has the form
\[
R_{n,\lambda}(r) = \frac{4}{r_0^{5/2}(n_r + \lambda + 2)^6 (2\lambda + 3)!} \sqrt{\frac{(n_r + 2\lambda + 3)!}{(n_r)!}} (2\kappa r)^\lambda e^{-\kappa r} F(-n_r; 2\lambda + 4; 2\kappa r)
\] (18)
The full wave function
\[
\psi = C_{LTJ}^\lambda R_{n,\lambda}(r) Z_{\lambda L J}(\theta) G_{LTm\nu}^{JM}(\alpha, \beta, \gamma; \alpha_T, \beta_T, \gamma_T)
\]
is normalized by the condition
\[
\int |\psi|^2 \, dv = 1
\]
where
\[
dv = r^4 \sin^3 \theta dr d\theta d\Omega d\Omega_T
\]
and
\[
d\Omega = \frac{1}{8} \sin \beta d\beta d\alpha d\gamma, \quad d\Omega_T = \frac{1}{8} \sin \beta_T d\beta_T d\alpha_T d\gamma_T
\]
Using the formula
\[
\int_{-1}^{1} (1 - y)^a (1 + y)^b \{P_n^{(a,b)}(y)\}^2 dy = \frac{n! \Gamma(a + 1)}{\Gamma(n + a + 1)} P_n^{(a,b)}(y)
\]
where \(P_n^{(a,b)}(y) \) are the Jacobi polynomials, and taking into account that
\[
\int D_{m_2m_2'}^{j_2}(\alpha, \beta, \gamma) D_{m_1m_1'}^{j_1}(\alpha, \beta, \gamma) d\Omega = \frac{2\pi^2}{2j_1 + 1} \delta_{j_1j_2} \delta_{m_1m_2} \delta_{m_1'm_2'}
\]
it is easy to obtain that

\[C^{\lambda}_{LJT} = \sqrt{\frac{(2L + 1)(2T + 1)(2\lambda + 3)(\lambda - J - L)!\Gamma(\lambda + J + L + 3)}{2^{2J+2L+5}\pi^4\Gamma(\lambda + J - L + 2)\Gamma(\lambda - J + L + 2)}} \]

11. Acknowledgement.

We are grateful to Yeranuy Hakobyan, Armen Nersessian and George Pogosyan for many discussions on the subject of dyon–oscillator duality.

References

[1] N.Seiberg, E.Witten. Nucl.Phys. B, 1994, vol. 431, p. 484.
[2] L.G.Mardoyan, A.N.Sissakian, V.M.Ter–Antonyan.
Oscillator as a Hidden Non–Abelian Monopole. Preprint JINR E2-96-24,
Dubna, 1996. [hep-th/9601093]
[3] V.Ter–Antonyan, A.Nersessian. Mod.Phys.Lett. A, 1995, vol. 10, p. 2623.
[4] A.Nersessian, V.Ter–Antonyan, M.Tsulaya.
Mod.Phys.Lett. A, 1996, vol. 11, p. 1605.
[5] A.Magkakian, A.N.Sissakian, V.M.Ter–Antonyan.
Phys.Lett. A, 1997, in press.
[6] T.Iwai, T.Sunako. J.Geom.Phys., 1996, vol. 20, p. 250.
[7] L.S.Davtyan, L.G.Mardoyan, G.S.Pogosyan, A.N.Sissakian,
V.M.Ter–Antonyan. J.Phys. A, 1987, vol. 20, p. 6121.
[8] P.Kustaanheimo, E.Stiefel. J.Reine Angew. Math., 1965, vol. 218, p. 204.
[9] D.Zwanziger. Phys.Rev., 1968, vol. 176, p. 1480.
[10] D.Lambert, M.Kibler. J.Phys. A, 1988, vol. 21, p. 307.
[11] Le Van Hoang, Tony J.Viloria, Le anh Thu. J.Phys. A, 1991, vol. 24, p. 3021.
[12] C.N.Yang. J.Math.Phys., 1978, vol. 19, p. 320.