Supporting Information for

Tracking the evolution of magmas from heterogeneous mantle sources to eruption

A. Mallik†, S. Lambart‡, and E.J. Chin§

1Department of Geosciences, University of Rhode Island.
2Department of Geology and Geophysics, University of Utah.
3Scripps Institution of Oceanography, University of California, San Diego.
Contents of this file

Text S1
Figure S1
Table S5

Additional Supporting Information (Files uploaded separately)

Tables S1 to S4 and S6 to S9

Introduction

The supporting information complements the main text by:

• Providing additional detailed descriptions and references to Figure 9 (Text S1)

• Complementing Fig. 6 with additional oxide vs MgO diagrams (Fig. S1)

• Providing the solid phase compositions from Lambart et al. (2009) used in Fig. 4 (Tables S1-S4)

• Providing the complete compilation of data of used in Fig. 6 (Tables S5-S8)

• Providing the full results of the calculations used section 4.2.1 and in Figs. 7 & 8 (Table S9)

Text S1. Caption to Figure 9 with references.

(a) Experimentally produced peridotite partial melts without H$_2$O, with H$_2$O but no co-existing aqueous vapor, and co-existing with aqueous vapor plotted in SiO$_2$ versus total alkali space (Takahashi, 1986; Falloon et al., 1988; Falloon and Green, 1988; Kinzler and Grove, 1992; Hirose and Kushiro, 1993; Hirose and Kawamoto, 1995; Hirose, 1997; Gaetani and Grove, 1998; Kogiso et al., 1998; Walter, 1998; Parman and Grove, 2004; Grove et al., 2006; Tenner et al., 2012; Till et al., 2012; Mitchell and Grove, 2015). Partial melts of peridotite metasomatized by hydrous crustal partial melts are also plotted (Rapp et al., 1999; Prouteau et al., 2001; Mallik et al., 2015; Mallik et al., 2016). The partial melts of olivine metasomatized by hydrous silicic melt at 3.5 GPa (Pirard and Hermann, 2015) are likely vapor-saturated.

(b) H$_2$O versus SiO$_2$ concentrations of experimentally derived partial melts in equilibrium with olivine and orthopyroxene. This subplot is a modification of Figure 7 in Mallik et al. (2016). Melt compositions in Figure 9a that co-exist with olivine and orthopyroxene are plotted here. All compositions plotted in the subplots have been normalized to a volatile-free basis. (c) Pressure-temperature space showing the solidi of nominally anhydrous peridotite (He00 - Herzberg et al., 2000; Hi00 - Hirschmann, 2000), peridotite with 50 and 200 ppm H$_2$O (O’Leary et al., 2010), wet but vapor absent peridotite solidi (MG89 - Mengel and Green, 1989; CG04 - Conceição and Green, 2004; CM14 - Condamine and Médard, 2014; M15 -
Mallik et al., 2015; Condamine et al., 2016) wet but vapor present peridotite solidi (G06 - Grove et al., 2006; G10 - Green et al., 2010; T12 - Till et al., 2012; G14 - Green et al., 2014), nominally anhydrous oceanic crust or basalt (Y94 - Yasuda et al., 1994; PH03 - Pertermann and Hirschmann, 2003; S08 - Spandler et al., 2008), vapor present basalt (LW72 - Lambert and Wyllie, 1972), wet but vapor absent basalt (WW93 - Wyllie and Wolf, 1993), nominally anhydrous sediments (S10 - Spandler et al., 2010) and wet sediments (Johnson and Plank, 2000; Hermann and Green, 2001; Schmidt et al., 2004; Auzanneau et al., 2006; Hermann and Spandler, 2008; Thomsen and Schmidt, 2008; Tsuno and Dasgupta, 2012). The ridge and plume adiabats as well as the hot, intermediate and cold subduction geotherms are the same as in Figure 5. Primary arc magma compositions were compiled from melt inclusions that were trapped by olivine hosts with Mg# ≥ 85 (Cervantes and Wallace, 2003; Benjamin et al., 2007; Auer et al., 2008; Johnson et al., 2008; Portnyagin et al., 2008; Sadofsky et al., 2008; Shaw et al., 2008; Vigouroux et al., 2008; Roberge et al., 2009; Johnson et al., 2009; Ruscitto et al., 2010; Zimmer et al., 2010; Cooper et al., 2010; Ruscitto et al., 2011). These melt inclusion compositions were already corrected to be in equilibrium with their host olivine composition. Melt inclusions hosted by olivines with Mg# < 90 were corrected to be in equilibrium with olivine of Mg# 91 (primary mantle olivine composition) using $K_D^{Fe-Mg} = ([\text{FeO}]/[\text{MgO}])_{\text{olivine}}/([\text{FeO}]/[\text{MgO}])_{\text{melt}} = 0.3$. The pressure-temperatures of formation of primary arc magmas were calculated using the thermo-barometer of Lee et al., (2009). Melt inclusions almost never preserve the H$_2$O contents at their time of formation due to diffusive loss of H$_2$O through the host olivines (Gaetani et al., 2012). Hence, H$_2$O concentrations of high H$_2$O melt inclusions only show a minimum estimate of primary H$_2$O. We have estimated pressure-temperatures of the formation of primary magmas with 7 and 13 wt.% H$_2$O. 7 wt.% H$_2$O represents the highest H$_2$O content measured in olivine-hosted melt inclusions (Auer et al., 2008; Zimmer et al., 2010) while 13 wt.% is the highest H$_2$O content of peridotite partial melt produced in the experiments performed by Grove et al., (2006). It is interesting to note that temperatures of magma formation decrease with increasing H$_2$O contents. (d) SiO$_2$ versus total alkali (Na$_2$O + K$_2$O) space with partial melts of sediments and altered oceanic crust (Rapp and Watson, 1995; Johnson and Plank, 2000; Hermann and Green, 2001; Schmidt et al., 2004; Auzanneau et al., 2006; Hermann and Spandler, 2008; Spandler et al., 2010; Tsuno and Dasgupta, 2012) produced in experiments, primary arc magmas (same as plotted in Figure 9a), and naturally occurring peridotites, mid-ocean ridge basalts (GEOROC database; http://georoc.mpch-mainz.gwdg.de/georoc/) and subducting sediments (Plank and Langmuir, 1998) are plotted. The classifications of rock types in the figure are based on Le Bas et al., (1986).
Figure S1. CaO, K$_2$O and total FeO (wt.%) vs. Mg# for lavas (gray circles), cumulates (black circles), and melt inclusions (magenta symbols, from volcanic arcs only). Colored curves show the density contours (10%) for volcanic rocks.
Table S5. Number of samples and references for data plotted in Figures 6 and S1.

	# samples	source
arc lavas	38,496	GEOROC\(^a\) (Table S6)
arc cumulates	387	compilation of Chin et al., 2018 (Table S6)
arc melt inclusions	205	Auer et al., 2008; Benjamin et al., 2007; Cervantes and Wallace, 2003; Cooper et al., 2010; Johnson et al., 2008; Johnson et al., 2009; Portnyagin et al., 2008; Roberge et al., 2009; Ruscitto et al., 2010; Ruscitto et al., 2011; Sadofsky et al., 2008; Shaw et al., 2008; Vigouroux et al., 2008; Zimmer et al., 2010 (Table S6)
MORBs	14,788	Gale et al., 2013 (Table S7)
MORB cumulates	236	compilation of Chin et al., 2018 (Table S7)
OIBs	4865	GEOROC\(^b\) (Table S8)
OIB cumulates	148	Neumann et al., 2000; Schmincke et al., 1998; Hari et al., 2011; Peters et al., 2016; Shamberger and Hammer, 2006; Jackson et al., 1981; Ishikawa et al. 2007 (Table S8)

\(^a\) data downloaded in 2018 were filtered for samples with oxide totals between 98 and 101 wt.%.
\(^b\) data downloaded in 2011. No filter used. Only whole rock and glass data were taken.

References

1. Auer, S., Bindeman, I., Wallace, P., Ponomareva, V., Portnyagin, M., 2008. The origin of hydrous, high-\(^{18}O\) voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contributions to Mineralogy and Petrology 157, 209-209.

2. Auzanneau E., Vielzeuf D., Schmidt M. W., 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib. to Mineral. Petrol. 152, 125-148.

3. Benjamin, E.R., Plank, T., Wade, J.A., Kelley, K.A., Hauri, E.H., Alvarado, G.E., 2007. High water contents in basaltic magmas from Irazú Volcano, Costa Rica. Journal of Volcanology and Geothermal Research 168, 68-92.

4. Cervantes, P., Wallace, P.J., 2003. Role of H2O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31, 235-238.

5. Chin, E.J., Shimizu, K., Bybee, G.M., Erdman, M.E., 2018. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective. Earth and Planetary Science Letters 482, 277-287.

6. Conceiçao R. V. and Green D. H., 2004. Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite+pargasite lherzolite. Lithos 72, 209–229.
7. Condamine P. and Médard E., 2014. Experimental melting of phlogopite-bearing mantle at 1 GPa: Implications for potassic magmatism. Earth Planet. Sci. Lett. 397, 80–92.
8. Condamine P., Médard E., Devidal J. L., 2016. Experimental melting of phlogopite-peridotite in the garnet stability field. Contrib. to Mineral. Petrol. 171, 95.
9. Cooper, L.B., Plank, T., Arculus, R.J., Hauri, E.H., Hall, P.S., Parman, S.W., 2010. High-Ca boninites from the active Tonga Arc. Journal of Geophysical Research: Solid Earth 115.
10. Dasgupta, R., Jackson, M.G., Lee, C.-T.A., 2010. Major element chemistry of ocean island basalts -- Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters 289, 377-392.
11. Falloon T. J., Green D. H., 1988. Anhydrous partial melting of peridotite from 8 to 35 kb and the petrogenesis of MORB. J. Petrol. Special_Volume, 379–414.
12. Falloon T. J., Green D. H., Hatton C. J., Harris K. L., 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J. Petrol. 29, 1257–1282.
13. Gaetani, G.A., Grove, T.L., 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology 131, 323-346.
14. Gaetani, G.A., O’Leary, J.A., Shimizu, N., Bucholz, C.E., Newville, M., 2012. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40, 915-918.
15. Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., Schilling, J.G., 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems 14, 489-518.
16. Green D. H., Hibberson W. O., Kovács I., Rosenthal A., 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature 467, 448–451.
17. Green D. H., Hibberson W. O., Rosenthal A., Kovács I., Yaxley G. M., Falloon T., Brink F., 2014. Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J. Petrol. 55, 2067–2096.
18. Grove, T.L., Chatterjee, N., Parman, S.W., Médard, E., 2006. The influence of H2O on mantle wedge melting. Earth and Planetary Science Letters 249, 74-89.
19. Hari, K., N. C. Rao, and V. Swarnkar (2011), Petrogenesis of gabbro and orthopyroxene gabbro from the Phenai Mata Igneous Complex, Deccan volcanic province: Products of concurrent assimilation and fractional crystallization, Journal of the Geological Society of India, 78(6), 501-509.
20. Hermann J. and Green D. H., 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett. 188, 149–168.
21. Hermann, J., Spandler, C.J., 2008. Sediment Melts at Sub-arc Depths: an Experimental Study. Journal of Petrology 49, 717-740.
22. Herzberg C., Raterron P., Zhang J., 2000. New experimental observations on the anhydrous solidus for peridotite KLB-1. Geochemistry, Geophys. Geosystems 1.10.1029/2000GC000089.
23. Herzberg, C., Asimow, P.D., 2015. PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus. Geochemistry, Geophysics, Geosystems. doi: 10.1002/2014GC005631

24. Hirose, K., 1997. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25, 42-44.

25. Hirose, K., Kawamoto, T., 1995. Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters 133, 463-473.

26. Hirose, K., Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114, 477-489.

27. Hirschmann, M.M., 2000. Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst. 1.

28. Hirschmann, M.M., Kogiso, T., Baker, M.B., Stolper, E.M., 2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481-484.

29. Ishikawa, A., T. Kuritani, A. Makishima, and E. Nakamura (2007), Ancient recycled crust beneath the Ontong Java Plateau: Isotopic evidence from the garnet clinopyroxenite xenoliths, Malaita, Solomon Islands, Earth and Planetary Science Letters, 259(1-2), 134-148.

30. Jackson, E., D. Clague, E. Engleman, W. Friesen, and D. Norton (1981), Xenoliths in the alkaline basalt flows from Hualalai volcano, HawaiiRep. 2331-1258, US Geological Survey.

31. Johnson M. C. and Plank T., 2000. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophys. Geosystems 1, 1007.

32. Johnson, E.R., Wallace, P.J., Cashman, K.V., Granados, H.D., Kent, A.J.R., 2008. Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: Implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth and Planetary Science Letters 269, 478-487.

33. Johnson, E.R., Wallace, P.J., Delgado Granados, H., Manea, V.C., Kent, A.J.R., Bindeman, I.N., Donegan, C.S., 2009. Subduction-related Volatile Recycling and Magma Generation beneath Central Mexico: Insights from Melt Inclusions, Oxygen Isotopes and Geodynamic Models. Journal of Petrology 50, 1729-1764.

34. Kinzler, R.J., Grove, T.L., 1992. Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. Journal of Geophysical Research: Solid Earth 97, 6885-6906.

35. Kogiso, T., Hirose, K., Takahashi, E., 1998. Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth and Planetary Science Letters 162, 45-61.

36. Lambart, S., Baker, M.B., Stolper, E.M., 2016. The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. Journal of Geophysical Research: Solid Earth, 121(8), 5708-5735.

37. Lambart, S., Laporte, D., Schiano, P., 2009. An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: Implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth and Planetary Science Letters 288, 335-347.
38. Lambert I. B. and Wyllie P. J., 1972. Melting of Gabbro (Quartz Eclogite) with Excess Water to 35 Kilobars, with Geological Applications. *J. Geol.* **80**, 693–708.

39. Le Bas M. J., Maitre R. W. L., Streckeisen A., Zanettin B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. *J. Petrol.* **27**, 745–750.

40. Lee C. T. A., Luffi P., Plank T., Dalton H., Leeman W. P., 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. *Earth Planet. Sci. Lett.* **279**, 20–33.

41. Mallik, A., Dasgupta, R., Tsuno, K., Nelson, J., 2016. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones. *Geochimica et Cosmochimica Acta* **195**, 226-243.

42. Mallik, A., Nelson, J., Dasgupta, R., 2015. Partial melting of fertile peridotite fluxed by hydrous rhyolitic melt at 2–3 GPa: implications for mantle wedge hybridization by sediment melt and generation of ultrapotassic magmas in convergent margins. Contributions to Mineralogy and Petrology **169**, 1-24.

43. Mallik, A., Dasgupta, R., 2014. Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa: Implications for mantle source characteristics of alkaline ocean island basalts. *Geochemistry, Geophysics, Geosystems* **15**, 1533-1557.

44. Mengel K. and Green D. H., 1989. Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. *Fourth Int. Kimberl. Conf.* **14**, 571–581.

45. Mitchell, A., Grove, T., 2015. Melting the hydrous, subarc mantle: the origin of primitive andesites. Contributions to Mineralogy and Petrology **170**, 1-23.

46. Neumann, E.-R., V. Sørensen, S. Simonsen, and K. Johnsen, 2000, Gabbroic xenoliths from La Palma, Tenerife and Lanzarote, Canary Islands: evidence for reactions between mafic alkaline Canary Islands melts and old oceanic crust, *Journal of Volcanology and Geothermal Research*, **103**(1), 313-342.

47. O’Leary J. A., Gaetani G. A., Hauri E. H., 2010. The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. *Earth Planet. Sci. Lett.* **297**, 111–120.

48. Parman, S.W., Grove, T.L., 2004. Harzburgite melting with and without H2O: Experimental data and predictive modeling. *Journal of Geophysical Research: Solid Earth* **109**, B02201-B02201.

49. Pertermann, M., Hirschmann, M.M., 2003. Anhydrous partial melting experiments on a MORB-like eclogite: phase relations, phase compositions and mineral-melt partitioning of major elements at 2-3 GPa. *Journal of Petrology* **44**:2173-2201.

50. Peters, B. J., J. M. Day, L. A. Taylor., 2016. Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths, *Earth and Planetary Science Letters*, **448**, 150-160.

51. Pirard, C., Hermann, J., 2015. Focused fluid transfer through the mantle above subduction zones. *Geology* **43**, 915-918.
52. Plank T. and Langmuir C. H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394.
53. Portnyagin, M., Almeev, R., Matveev, S., Holtz, F., 2008. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth and Planetary Science Letters 272, 541-552.
54. Prouteau, G., Scaillet, B., Pichavant, M., Maury, R., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197-200.
55. Rapp, R., Shimizu, N., Norman, M., Applegate, G., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335-356.
56. Rapp, R.P., Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891-931.
57. Roberge, J., Delgado-Granados, H., Wallace, P.J., 2009. Mafic magma recharge supplies high CO₂ and SO₂ gas fluxes from Popocatépetl volcano, Mexico. Geology 37, 107-110.
58. Ruscitto, D.M., Wallace, P.J., Johnson, E.R., Kent, A.J.R., Bindeman, I.N., 2010. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: Implications for magma formation and mantle conditions in a hot arc. Earth and Planetary Science Letters 298, 153-161.
59. Ruscitto, D.M., Wallace, P.J., Kent, A.J.R., 2011. Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites. Contributions to Mineralogy and Petrology 162, 335-356.
60. Sadofsky, S.J., Portnyagin, M., Hoernle, K., van den Bogaard, P., 2008. Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contributions to Mineralogy and Petrology 155, 433-456.
61. Schmidt M. W., Vielzeuf D. and Auzanneau E., 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet. Sci. Lett. 228, 65–84.
62. Schmincke, H.-U., A. Klügel, T. H. Hansteen, K. Hoernle, and P. van den Bogaard, 1998, Samples from the Jurassic ocean crust beneath Gran Canaria, La Palma and Lanzarote (Canary Islands), Earth and Planetary Science Letters, 163(1), 343-360.
63. Shamberger, P. J., and J. E. Hammer (2006), Leucocratic and gabbroic xenoliths from Hualalai Volcano, Hawai‘i, Journal of Petrology, 47(9), 1785-1808.
64. Shaw, A.M., Hauri, E.H., Fischer, T.P., Hilton, D.R., Kelley, K.A., 2008. Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle. Earth and Planetary Science Letters 275, 138-145.
65. Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G., Arndt, N., Chung, S.L., Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O. and Gurenko, A.A., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412-412.
66. Spandler, C., Yaxley, G., Green, D., Scott, D., 2010. Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contributions to Mineralogy and Petrology 160, 569-589.

67. Spandler, C., Yaxley, G., Green, D.H., Rosenthal, A., 2008. Phase Relations and Melting of Anhydrous K-bearing Eclogite from 1200 to 1600°C and 3 to 5 GPa. J. Petrology 49, 771-795.

68. Takahashi E., 1986. Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the Origin of peridotitic upper mantle. J. Geophys. Res. 91, 9367.

69. Tenner, T.J., Hirschmann, M.M., Humayun, M., 2012. The effect of H2O on partial melting of garnet peridotite at 3.5 GPa. Geochem. Geophys. Geosyst. 13, Q03016-Q03016.

70. Thomsen, T.B., Schmidt, M.W., 2008. Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth and Planetary Science Letters 267, 17-31.

71. Till, C.B., Grove, T.L., Withers, A.C., 2012. The beginnings of hydrous mantle wedge melting. Contributions to Mineralogy and Petrology 163, 669-688.

72. Tsuno, K., Dasgupta, R., 2012. The effect of carbonates on near-solidus melting of pelite at 3 GPa: Relative efficiency of H2O and CO2 subduction. Earth and Planetary Science Letters 319-320, 185-196.

73. Vigouroux, N., Wallace, P.J., Kent, A.J.R., 2008. Volatiles in High-K Magmas from the Western Trans-Mexican Volcanic Belt: Evidence for Fluid Fluxing and Extreme Enrichment of the Mantle Wedge by Subduction Processes. Journal of Petrology 49, 1589-1618.

74. Walter, M.J., 1998. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. J. Petrology 39, 29-60.

75. Wyllie P. J. and Wolf M. B., 1993. Amphibolite dehydration-melting: Sorting out the solidus. Geol. Soc. Spec. Publ. 76, 405–416.

76. Yang, Z. F., Zhou, J. H., 2013. Can we identify source lithology of basalt? Scientific Reports, 3, 1856.

77. Yasuda, A., Fujii, T., Kurita, K., 1994. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle. J. Geophys. Res. 99, 9401-9414.

78. Zimmer, M.M., Plank, T., Hauri, E.H., Yogodzinski, G.M., Stelling, P., Larsen, J., Singer, B., Jicha, B., Mandeville, C., Nye, C.J., 2010. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. Journal of Petrology 51, 2411-2444.