Ninety-nine independent genetic loci influencing general cognitive function include genes associated with brain health and structure (N = 280,360)

Gail Davies1,182, Max Lam2,182, Sarah E Harris1,3, Joey W Trampush4, Michelle Luciano1, W David Hill1, Saskia PHagenaars1,5, Stuart J Ritchie1, Riccardo E Marioni1,3, Chloe Fawns-Ritchie1, David CM Liewald1, Judith A Okely1, Ari V Ahola-Olli6,7, Catriona LK Barnes8, Lars Bertram9, Joshua C Bis10, Katherine E Burdick11,12,13, Andrea Christoforou14,15, Pamela DeRosse2,16, Srdjan Djurovic14,17, Thomas Espeseth18,19, Stella Giakoumaki20, Sudheer Giddaluru14,15, Daniel E Gustavson21,22, Caroline Hayward23,24, Edith Hofer25,26, M Arfan Ikram27,28,29, Robert Karlsson30, Emma Knowles31, Jari Lahti32,33, Markus Leber34, Shuo Li35, Karen A Mather36, Ingrid Melle14,18, Derek Morris37, Christopher Oldmeadow38, Teemu Palviainen39, Antony Payton40, Raha Pazoki41, Katja Petrovic25, Chandra A Reynolds42, Muralidharan Sargurupremraj43, Markus Scholz44,45, Jennifer A Smith46,47, Albert V Smith48,49, Natalie Terzikhan27,50, Anbu Thalamuthu36, Stella Trompet51, Sven J van der Lee27, Erin B Ware47, Beverly G Windham52, Margaret J Wright53,54, Jingyuan Yang55,56, Jin Yu16, David Ames57,58, Najaf Amin77, Philip Amouyel59,60,61, Ole A Andreassen18,62, Nicola Armstrong63, John R Attia64, Deborah Attix65,66, Dimitrios Avramopoulos67,68, David A Bennett55,56, Anne C Böhmer69,70, Patricia A Boyle55,71, Henry Brodaty36,72, Harry Campbell8, Tyrone D Cannon73, Elizabeth T Cirulli74, Eliza Congdon75, Emily Drabant Conley76, Janie Corley1, Simon R Cox1, Anders M Dale21,77,78,79, Abbas Dehghan80,81, Danielle Dick81, Dwight Dickinson82, Johan G Eriksson83,84,85,86, Evangelos Evangelou41,83, Jessica D Faul87, Ian Ford88, Nelson A Freimer75, He Gao41, Ina Giegling89, Nathan A Gillespie90, Scott D Gordon91, Rebecca F Gottesman92,93, Michael E Griswold94, Vilmundur Gudnason48,49, Tamara B Harris95, Alex Hatzimanolis96,97,98, Gerardo Heiss99, Elizabeth G Holliday64, Peter K Joshi8, Mika Kähönen100,101, Sharon LR Kardia46, Ida Karlsson30, Luca Kleineidam102, David S Knopman103, Nicole Kochan36,104, Bettina Konte89, John B Kwok105,106, Stephanie Le Hellard14,15, Teresa Lee36,104, Terho Lehtimäki107,108, Shu-Chen Li109,110, Tian Liu9,109, Marisa Koini25, Edythe London75, Will T Longstreth,
Jr, Oscar L Lopez, Anu Loukola, Tobias Luck, Astri J Lundervold, Anders Lundquist, Leo-Pekka Lyttikäinen, Nicholas G Martin, Grant W Montgomery, Alison D Murray, Anna C Need, Raymond Noordam, Lars Nyberg, William Ollier, Goran Papenberg, Alison Pattie, Ozren Polasek, Russell A Poldrack, Bruce M Psaty, Steffi G Riedel-Heller, Richard J Rose, Jerome I Rotter, Panos Roussos, Suvi P Rovio, Yasaman Saba, Fred W Sabb, Perminder S Sachdev, Claudia Satizabal, Matthias Schmid, Rodney J Scott, Matthew A Scult, Jeannette Simino, P Eline Slagboom, Nikolaos Smyrnis, Aïcha Soumaré, Nikos C Stefanis, David J Stott, Richard E Straub, Kjetil Sundet, Adele M Taylor, Kent D Taylor, Ioanna Tzoulaki, Christophe Tzourio, André Uitterlinden, Veronique Vitart, Aristotle N Voineskos, Eero Vuoksmaa, Michael Wagner, Holger Wagner, Leonie Weinhold, K Hoyan Wen, Elisabeth Widen, Qiong Yang, Wei Zhao, Hieab HH Adams, Dan E Arking, Robert M Bilder, Panos Bitsios, Eric Boerwinkle, Ornit Chiba-Falek, Aiden Corvin, Philip L De Jager, Stéphanie Debette, Gary Donohoe, Paul Elliott, Annette L Fitzpatrick, Michael Gill, David C Glahn, Sara Hägg, Narelle K Hansell, Ahmad R Hariri, M Kamran Ikram, J. Wouter Jukema, Jaakko Kaprio, Matthew C Keller, William S Kremen, Lenore Launer, Ulman Lindenberger, Aarno Palotie, Nancy L Pedersen, Neil Pendleton, David J Porteous, Katri Räikkönen, Olli T Raitakari, Alfredo Ramirez, Ivar Reinvang, Igor Rudan, Dan Rujescu, Reinhold Schmidt, Helena Schmidt, Peter W Schofield, Peter R Schofield, John M Starr, Vidar M Steen, Julian N Triorlo, Steven T Turner, Cornelia M Van Duijn, Arno Villringer, Daniel R Weinberger, David R Weir, James F Wilson, Anil Malhotra, Andrew M McIntosh, Catharine R Gale, Sudha Seshadri, Thomas Mosley, Jan Bressler, Todd Lencz, Ian J Deary.

1Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
2Institute of Mental Health, Singapore
3 Medical Genetics Section, Centre for Genomic & Experimental Medicine, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK.

4 BrainWorkup, LLC, Los Angeles, CA

5 MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK

6 Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland

7 Department of Internal Medicine, Satakunta Central Hospital, Pori, Finland

8 Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland.

9 Max Planck Institute for Molecular Genetics, Berlin, Germany

10 Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA

11 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA

12 Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA

13 Department of Psychiatry, Brigham and Women's Hospital; Harvard Medical School, Boston, MA USA

14 NORMENT, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen, Norway

15 Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway

16 Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA

17 Department of Medical Genetics, Oslo University Hospital, University of Bergen, Oslo, Norway

18 Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway

19 Department of Psychology, University of Oslo, Oslo, Norway

20 Department of Psychology, University of Crete, Greece

21 Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA

22 Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA

23 Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK

24 Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh

25 Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Austria

26 Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria

27 Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
28 Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
29 Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
30 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
31 Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
32 Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
33 Helsinki Collegium for Advanced Studies, University of Helsinki, Helsinki, Finland
34 Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
35 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
36 Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
37 Neuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, Ireland
38 Medical Research Institute and Faculty of Health, University of Newcastle, New South Wales, Australia
39 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
40 Centre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, The University of Manchester
41 Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
42 Department of Psychology, University of California Riverside, Riverside, CA, USA
43 University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, F-33000 Bordeaux, France
44 Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig
45 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig
46 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109
47 Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104
48 Icelandic Heart Association, Kopavogur, Iceland
49 University of Iceland, Reykjavik, Iceland
50 Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
51 Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
52 Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS
53 Queensland Brain Institute, University of Queensland, Brisbane, Australia
54 Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
55 Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
56 Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
57 National Ageing Research Institute, Royal Melbourne Hospital, Victoria, Australia
58 Academic Unit for Psychiatry of Old Age, University of Melbourne, St George’s Hospital, Kew, Australia
59 Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - LabEx DISTALZ, F-59000 Lille, France
60 Department of Epidemiology and Public Health, University Hospital of Lille, France
61 INSERM-U1167, F-59019 Lille, France
62 Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
63 School of Mathematics and Statistics, University of Sydney, Sydney, Australia
64 Hunter Medical Research Institute and Faculty of Health University of Newcastle, New South Wales, Australia
65 Department of Neurology, Bryan Alzheimer’s Disease Research Center, and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA
66 Psychiatry and Behavioral Sciences, Division of Medical Psychology, and Department of Neurology, Duke University Medical Center, Durham, NC, USA
67 Department of Psychiatry, Johns Hopkins University School of Medicine, MD, Baltimore, USA
68 Department of Psychiatry and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, MD, Baltimore, USA
69 Institute of Human Genetics, University of Bonn, Bonn, Germany
70 Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
71 Departments of Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
72 Dementia Centre for Research Collaboration, University of New South Wales, Sydney, NSW, Australia
73 Department of Psychology, Yale University, New Haven, CT, USA
74 Human Longevity Inc, Durham, NC, USA
75 UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
76 23andMe, Inc., Mountain View, CA, USA
77 Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
78. Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
79. Department of Radiology, University of California, San Diego, La Jolla, CA, USA
80. MRC-PHE Centre for Environment, School of Public Health, Imperial College London, London, W2 1PG, UK
81. Department of Psychology, Virginia Commonwealth University, VA, USA
82. Clinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
83. National Institute for Health and Welfare, Helsinki, Finland
84. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
85. Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
86. Folkhälsan Research Centre, Helsinki, Finland
87. Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
88. Robertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom
89. Department of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, Germany
90. Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
91. QIMR Berghofer Medical Research Institute, Brisbane, Australia
92. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
93. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
94. Department of Data Science, University of Mississippi Medical Center, Jackson, MS
95. Intramural Research Program National Institutes on Aging, National Institutes of Health, Bethesda, MD, USA
96. Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
97. University Mental Health Research Institute, Athens, Greece
98. Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens, Greece
99. Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC
100. Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33521, Finland
101. Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
102. Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
103 Department of Neurology, Mayo Clinic, Rochester, MN
104 Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
105 Neuroscience Research Australia, Randwick, New South Wales, Australia
106 School of Medical Sciences, University of New South Wales, Sydney, Australia
107 Department of Clinical Chemistry, Fimlab Laboratories, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
108 Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33014, Finland
109 Max Planck Institute for Human Development, Berlin, Germany
110 Technische Universität Dresden, Dresden, Germany
111 Department of Neurology, School of Medicine, University of Washington, Seattle, Washington, USA
112 Department of Epidemiology, University of Washington, Seattle, Washington, USA
113 Department of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
114 Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig
115 LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig
116 Department of Biological and Medical Psychology, University of Bergen, Norway
117 Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Sweden
118 Department of Statistics, USBE Umeå University, S-907 97 Umeå, Sweden
119 Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
120 The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK
121 Division of Brain Sciences, Department of Medicine, Imperial College, London, UK
122 Department of Radiation Sciences, Umeå University, Sweden
123 Department of Integrative Medical Biology, Umeå University, Sweden
124 Centre for Integrated Genomic Medical Research, Institute of Population Health, University of Manchester, Manchester, United Kingdom
125 Karolinska Institutet, Aging Research Center, Stockholm University, Stockholm, Sweden
126 Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh, UK
127 Faculty of Medicine, University of Split, Split, Croatia
128 Department of Psychology, Stanford University, Palo Alto, CA, USA
Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA

Department of Health Services, University of Washington, Seattle, Washington, USA

Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA

Department of Psychological and Brain Sciences, Indiana University, Indiana, USA

Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center

Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA

Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, Bronx, NY, USA

Institute of Molecular Biology and Biochemistry, Centre for Molecular Medicine, Medical University of Graz

Robert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USA

Department of Neurology, Boston University School of Medicine

Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany

Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USA

Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands

Department of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom

Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA

Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece

Department of Public Health, University Hospital of Bordeaux, France

Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands

Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada

Department of Public Health, University of Helsinki, Helsinki, Finland

German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, MD, Baltimore, USA
The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA

Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, Australia

Department of Radiology, Erasmus MC, Rotterdam, the Netherlands

Department of Neurology, Medical University Graz, Austria

These authors contributed equally.

These authors contributed equally.

Correspondence should be addressed to
Ian J. Deary, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK.
Tel. +44 131 650 3452
e-mail i.deary@ed.ac.uk

Correspondence may be sent to either i.deary@ed.ac.uk or Gail.Davies@ed.ac.uk
General cognitive function is a prominent human trait associated with many important life outcomes\(^1,2\), including longevity\(^3\). The substantial heritability of general cognitive function is known to be polygenic, but it has had little explication in terms of the contributing genetic variants\(^4,5,6\). Here, we combined cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N=280,360). We found 9,714 genome-wide significant SNPs (\(P<5\times10^{-8}\)) in 99 independent loci. Most showed clear evidence of functional importance. Among many novel genes associated with general cognitive function were \(SGCZ, ATXN1, MAPT, AUTS2,\) and \(P2RY6\). Within the novel genetic loci were variants associated with neurodegenerative disorders, neurodevelopmental disorders, physical and psychiatric illnesses, brain structure, and BMI. Gene-based analyses found 536 genes significantly associated with general cognitive function; many were highly expressed in the brain, and associated with neurogenesis and dendrite gene sets. Genetic association results predicted up to 4% of general cognitive function variance in independent samples. There was significant genetic overlap between general cognitive function and information processing speed, as well as many health variables including longevity.

Since its discovery in 1904\(^7\), hundreds of studies have replicated the finding that around 40% of the variance in people’s test scores on a diverse battery of cognitive tests can be accounted for by a single general factor\(^8\). General cognitive function is peerless among human psychological traits in terms of its empirical support and importance for life outcomes\(^1,2\). Individual differences in general cognitive function are stable across most of the life course\(^9\). Twin studies find that general cognitive function has a heritability of more than 50% from adolescence through adulthood to older age\(^4,10,11\). SNP-based estimates of heritability for general cognitive function are about 20-30%\(^5\). To date, little of this substantial heritability has been explained; only a few relevant genetic loci have been discovered (Table 1 and Fig. 1). Like other highly polygenic traits, a limitation on uncovering relevant genetic loci is sample size\(^12\); to date, there have been fewer than 100,000 individuals in studies of general cognitive function\(^5,6\).
General cognitive function, unlike height for example, is not measured the same way in all samples. Here, this was mitigated by applying a consistent method of extracting a general cognitive function component from cognitive test data in the cohorts of the CHARGE and COGENT consortia **(Supplementary Materials)**. Cohorts’ participants were required to have scores from at least three cognitive tests, each of which tested a different cognitive domain. Each cohort applied the same data reduction technique (principal component analysis) to extract a general cognitive component. Scores from the first unrotated principal component were used as the general cognitive function phenotype. The psychometric characteristics of the general cognitive component from each of the 57 cohorts in the CHARGE consortium are shown in **Supplementary Materials**. We showed that general cognitive function components extracted from different sets of cognitive tests on the same participants correlate highly⁵. The cognitive test from the large UK Biobank sample was the so-called ‘fluid’ test, a 13-item test of verbal-numerical reasoning, which has a high genetic correlation with general cognitive function¹³. With the CHARGE and COGENT samples’ general cognitive function scores and UK Biobank’s verbal-numerical reasoning scores (in two samples: assessment centre-tested, and online-tested), there were 280,360 participants included in the present study’s genome-wide association (GWA) analysis. We performed post-GWA meta-analyses separately on the CHARGE and COGENT cohorts, and on UK Biobank’s two samples. Prior to running the meta-analysis of CHARGE-COGENT with UK Biobank, the genetic correlation, calculated using linkage disequilibrium score (LDSC) regression, was estimated at 0.82 (SE=0.02), indicating very substantial overlap between the genetic variants influencing general cognitive function in these two groups. We performed an inverse-variance weighted meta-analysis of CHARGE-COGENT and UK Biobank.

Genome-wide results for general cognitive function showed 9,714 significant \((P < 5 \times 10^{-8})\) SNP associations, and 17,563 at a suggestive level \((1 \times 10^{-5} > P > 5 \times 10^{-8})\); see Fig. 2a and **Supplementary Tables 3 and 4**. There were 120 independent lead SNPs identified by FUncational MApping and
annotation of genetic associations (FUMA)14. A comparison of these lead SNPs with results from the
largest previous GWAS of cognitive function6 and educational attainment15—which included a
subsample of UK Biobank—confirmed that 4 and 12 of these, respectively, were genome-wide
significant in the previous studies (Supplementary Table 14). Five SNPs were completely novel (i.e., P
> .05 in these previous studies): rs7010173 (chromosome 8; intronic variant in SGCZ); rs179994
(chromosome 6; intronic variant in ATXN1), rs8065165 (chromosome 17; intronic variant 2KB
upstream of MAPT); rs2007481 (chromosome 7; intronic variant in AUTS2); and rs188236525
(chromosome 11; intronic variant 2KB upstream of P2RY6). The 120 lead SNPs were distributed
within 99 loci across all autosomal chromosomes. Using the GWAS catalog
(https://www.ebi.ac.uk/gwas/) to look up each locus, only 12 of these loci had been reported
previously for other GWA studies of cognitive function or educational attainment (novel loci are
indicated in Supplementary Table 16). Therefore, our study uncovered 87 novel independent loci
associated with cognitive function. Of the five completely novel loci, two of these are in/near
interesting candidate genes: MAPT gene mutations are associated with neurodegenerative disorders
such as Alzheimer’s disease and frontotemporal dementia16; and AUTS2 is a candidate gene for
neurological disorders such as autism spectrum disorder, intellectual disability, and developmental
delay17. These general cognitive function-associated genes also showed significant gene associations
in the gene-based tests (except for P2RY6); see Supplementary Table 7 and Fig. 2b for the results for
536 genes that the present study finds to be significantly associated with general cognitive function.

For the 120 lead SNPs, a summary of previous SNP associations is listed in Supplementary Table 15.
They have been associated with many physical (e.g., BMI, height, weight), medical (e.g., lung cancer,
Crohn’s disease, blood pressure), and psychiatric (e.g., bipolar disorder, schizophrenia, autism) traits,
as well as with cognitive function and educational attainment (12 loci). Of the novel SNP
associations, we highlight previous associations with autism/ADHD (3 loci), bipolar
disorder/schizophrenia (14 loci), and infant head circumference/intracranial volume/subcortical brain region volumes (2 loci).

We sought to identify lead and tagged SNPs within the 99 significant genomic risk loci associated with general cognitive function that are potentially functional, using FUMA14 (Supplementary Table 16). See online methods for further details. Seventy-nine of the genomic risk loci contained at least one SNP with a Combined Annotation Dependent Depletion (CADD) score > 12.37, indicating that they are likely to be deleterious SNPs. Sixty-five of the genomic risk loci contained at least one SNP with a RegulomeDB score < 3, indicating that they are likely to be involved in gene regulation. Ninety-seven of the loci contained at least one SNP with a minimum 15-core chromatin state score of < 8, indicating that they are located in an open chromatin state consistent with the SNP being in a regulatory region. Sixty-eight of the loci contained at least one eQTL. Of interest, rs1135840 in \textit{CYP2D6} ($P = 1.42 \times 10^{-11}$) is a non-synonymous SNP (Ser486Thr), that has previously been associated with the metabolism of several commonly used drugs18.

MAGMA gene-set analysis identified two significant gene sets associated with general cognitive function: neurogenesis ($P = 1.1 \times 10^{-7}$) and dendrite ($P = 1.6 \times 10^{-6}$) (Supplementary Table 18). Identification of these gene-sets is consistent with genes associated with cognitive function regulating the generation of cells within the nervous system, including the formation of neuronal dendrites. MAGMA gene-property analysis indicated that genes expressed in all brain regions—except the brain spinal cord and cervical c1—and genes expressed in the pituitary share a higher level of association with general cognitive function than genes not expressed in the brain or pituitary (Fig. 3 and Supplementary Tables 20 and 21). The most significant enrichments were for genes expressed in the cerebellum and the brain’s cortex.
We estimated the proportion of variance explained by all common SNPs in four of the largest individual samples, using univariate GCTA-GREML analyses: English Longitudinal Study of Ageing (ELSA: $h^2 = 0.12, \ SE = 0.06$), Understanding Society ($h^2 = 0.17, \ SE = 0.04$), UK Biobank Assessment Centre ($h^2 = 0.25, \ SE = 0.006$), and Generation Scotland ($h^2 = 0.20, \ SE = 0.05^{19}$) (Table 2). Genetic correlations for general cognitive function amongst these cohorts, estimated using bivariate GCTA-GREML, ranged from $r_g = 0.88$ to 1.0 (Table 2). There were slight differences in the test questions and the testing environment for the UK Biobank’s ‘fluid’ (verbal-numerical reasoning) test in the assessment centre versus the online version. Therefore, we investigated the genetic contribution to the stability of individual differences in people’s verbal-numerical reasoning using a bivariate GCTA-GREML analysis, including only those individuals who completed the test on both occasions (mean time gap = 4.93 years). We found a significant perfect genetic correlation of $r_g = 1.0$ ($SE = 0.02$).

We tested how well the genetic results from our CHARGE-COGENT-UK Biobank general cognitive function GWA analysis accounted for cognitive test score variance in independent samples. We re-ran the GWA analysis excluding three of the larger cohorts: ELSA, Generation Scotland, and Understanding Society. These new GWA summary results were used to create polygenic profile scores in the three cohorts. The polygenic profile score for general cognitive function explained 2.37% of the variance in ELSA ($\beta = 0.16, SE = 0.01, P = 1.40 \times 10^{-46}$), 3.96% in Generation Scotland ($\beta = 0.21, SE = 0.01, P = 3.87 \times 10^{-71}$), and 4.00% in Understanding Society ($\beta = 0.21, SE = 0.01, P = 1.31 \times 10^{-81}$). Full results for all five thresholds are shown in Supplementary Table 11.

Using the CHARGE-COGENT-UK Biobank GWA results, we tested the genetic correlations between general cognitive function and 25 health traits. Sixteen of the 25 health traits were significantly genetically correlated with general cognitive function (Supplementary Table 12). Novel genetic correlations were identified between general cognitive function and ADHD ($r_g = -0.36, SE = 0.03, P =$
3.91 × 10^{-32}), bipolar disorder (r_g = -0.09, SE = 0.04, P = 0.008), major depression (r_g = -0.30, SE = 0.05, P = 4.13 × 10^{-12}), and longevity (r_g = 0.15, SE = 0.06, P = 0.014).

Reaction time is an elementary cognitive task that assesses a person’s information processing speed. It is both phenotypically and genetically correlated with general cognitive function, and accounts for some of its association with health^{10,21}. We explored the genetic foundations of reaction time and its genetic association with general cognitive function. We note the limitation that the UK Biobank’s reaction time variable is based on only four trials per participant. Full results and methods are in Supplementary materials. There were 330,069 individuals in the UK Biobank sample with both reaction time and genetic data. GWA results for reaction time uncovered 2,022 significant SNPs in 42 independent genomic regions; 122 of these SNPs overlapped with general cognitive function, with 76 having a consistent direction of effect (sign test P = 0.008) (Supplementary Table 9). These genomic loci showed clear evidence of functionality (Supplementary Table 17). Using gene-based GWA, 191 genes attained statistical significance (Supplementary Table 8), 28 of which overlapped with general cognitive function (Supplementary Table 10). Gene-sets constructed using expression data indicated a role for genes expressed in the brain (Supplementary Tables 22 and 23; Supplementary Fig. 3). The polygenic score for reaction time explained 0.43% of the general cognitive function variance in ELSA (P = 1.42 × 10^{-9}), 0.56 % in Generation Scotland (P = 2.49 × 10^{-11}), and 0.26% in Understanding Society (P = 1.50 × 10^{-6}). There was a genetic correlation (r_g) of 0.227 (P = 4.33 × 10^{-27}) between reaction time and general cognitive function.

People with higher general cognitive function are broadly healthier^{22, 23}; here, we find overlap between genetic loci for general cognitive function and a number of physical health traits. These shared genetic associations may reflect a causal path from cognitive function to disease, cognitive consequences of disease, or pleiotropy^{24}. For psychiatric illness, conditions like schizophrenia (and, to a lesser extent, bipolar disorder) are characterised by cognitive impairments^{25}, and thus reverse
causality (i.e. from cognitive function to disease) is less likely. In terms of localising more proximal structural and functional causes of variation in cognitive function, researchers could prioritise the genetic loci uncovered here that overlap with brain-related measures.

General cognitive function has prominence and pervasiveness in the human life course, and it is important to understand the environmental and genetic origins of its variation in the population\(^4\). The unveiling here of many new genetic loci, genes, and genetic pathways that contribute to its heritability (Supplementary Tables 3, 7 and 18; Fig. 2)—which it shares with many health outcomes, longevity, brain structure, and processing speed—provides a foundation for exploring the mechanisms that bring about and sustain cognitive efficiency through life.

Acknowledgments

This research was conducted in The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, funded by the Biotechnology and Biological Sciences Research Council and Medical Research Council (MR/K026992/1). This research was conducted using the UK Biobank Resource (Application Nos. 10279 and 4844). Cohort-specific acknowledgements are in the Supplementary Materials.

Author Disclosure

Anders Dale is a Founder of and holds equity in CorTechs Labs, Inc., and serves on its Scientific Advisory Board. He is a member of the Scientific Advisory Board of Human Longevity, Inc., and receives funding through research agreements with General Electric Healthcare and Medtronic, Inc. The terms of these arrangements have been reviewed and approved by UCSD in accordance with its conflict of interest policies. Bruce Psaty serves on a DSMB for a clinical trial of a device funded by the manufacturer (Zoll LifeCor). Ian Deary is a participant in UK Biobank.
Contributions

GD and IJD drafted the manuscript with contributions from M Luciano, SEH, WDH, SJR, SPH, CF-R, and JO. GD, JWT and M Lam performed quality control of the CHARGE-COGENT data. IJD designed and overviewed the cognitive psychometric analyses in the CHARGE cohorts. GD and REM performed quality control of UK Biobank data. GD, JWT and M Lam analysed the data. SEH, WDH, SPH and M Luciano performed/assisted with downstream analysis. GD and IJD co-ordinated the CHARGE and UK Biobank work; TL, JWT and M Lam co-ordinated the COGENT work. All authors supplied phenotype data, genotype data, and GWA results, and commented on and approved the manuscript.
1. Brand, C. The importance of human intelligence. In Arthur Jensen: consensus and controversy (S. Modgil & C. Modgil, eds.) 297 (1987, Routledge).

2. Deary, I. J. Intelligence. Ann. Rev. Psychol. 63, 453-482 (2012).

3. Calvin, C., et al. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ 357, j2708 (2017).

4. Plomin, R., & Deary, I. J. Genetics and intelligence differences: five special findings. Mol. Psychiatr. 20, 98-108 (2015).

5. Davies, G., et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N = 112 151). Mol. Psychiatr. 21, 758-767 (2016).

6. Sniekers, S., et al. Genome-wide association meta-analyses of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 49, 1107-1112 (2017).

7. Spearman, C. “General Intelligence” objectively determined and measured. Am. J. Psychol. 15, 201-293 (1904).

8. Carroll, J. B. Human Cognitive Abilities: A Survey of Factor Analytic Studies. (1993, Cambridge University Press).

9. Deary, I. J. The stability of intelligence from childhood to old age. Curr. Direct. Psychol. Sci. 23, 239-245 (2014).

10. Haworth, C. M. et al. The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol. Psychiatr. 15, 1112-1120 (2010).

11. Tucker-Drob, E. M., Briley, D. A., & Harden, K. P. (2013). Genetic and environmental influences on cognition across development and context. Curr. Direct. Psychol. Sci. 22, 349-355 (2013).

12. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5-22 (2017).

13. Hill, W. D., et al. Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions. Transl. Psychiatr. 6, e980 (2016).
14. Watanabe, K., Taskesen, E., van Bochooven, A., & Posthuma, D. FUMA: Functional mapping and annotation of genetic associations. bioRxiv doi:10.1101/110023 (2017).

15. Okbay, A., et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533, 539-542 (2016).

16. Zhang, C. C. et al. Meta-analysis of the association between variants in MAPT and neurodegenerative diseases. Oncotarget 8, 44994-45007 (2017).

17. Oksenberg, N., & Ahituv, N. The role of AUTS2 in neurodevelopment and human evolution. Trends Genet. 29, 600-608 (2013).

18. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjöqvist F, Ingelman-Sundberg M. Proc. Natl. Acad. Sci. U S A. 90, 11825-11829 (1993).

19. Marioni, R. E., et al. Molecular genetic contributions to socioeconomic status and intelligence. Intelligence 44, 26-32 (2014).

20. Deary, I. J., & Der, G. Reaction time explains IQ’s association with death. Psychol. Sci. 16, 64-69 (2005).

21. Luciano, M. et al. (2001). Genetic covariance among measures of information processing speed, working memory, and IQ. Behav. Genet. 31, 581-592 (2001).

22. Der G, Batty GD, & Deary IJ. The association between IQ in adolescence and a range of health outcomes at 40 in the 1979 US National Longitudinal Study of Youth. Intelligence 37, 573-580 (2009).

23. Wrulich, M. et al. Forty years on: Childhood intelligence predicts health in middle adulthood. Health Psychol. 33, 292-296 (2014).

24. Deary, I. J. Looking for ‘system integrity’ in cognitive epidemiology. Gerontology 58, 545-553 (2012).

25. Bortolato, B., Miskowiak, K. W., Köhler, C. A., Vieta, E., & Carvalho, A. F. Cognitive dysfunction in bipolar disorder and schizophrenia: a systematic review of meta-analyses. Neuropsychiatr. Dis. Treat. 11, 3111-3125 (2015).
26. Davies, G., et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. *Mol Psychiatr.* **16**, 996-1005 (2011).

27. Lencz, T. et al. Molecular genetic evidence for genetic overlap between general cognitive ability and risk for schizophrenia: A report from the cognitive genomics consortium (COGENT). *Mol Psychiatr.* **19**, 168-174 (2014).

28. Kirkpatrick, R. M., McGue, M., Iacono, W. G., Miller, M. B., & Basu, S. (2014). Results of a “GWAS Plus:” General cognitive ability is substantially heritable and massively polygenic. *PLOS ONE* **9**, e112390.

29. Davies, G., et al. Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N= 53 949). *Mol Psychiatr* **20**, 183-192 (2015).

30. Trampush, J. W., et al. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. *Mol Psychiatr.* **22**, 336 (2017).
Online Methods

Participants and Cognitive Phenotypes

This study includes 280,360 individuals of European ancestry from 57 population-based cohorts brought together by the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), the Cognitive Genomics Consortium (COGENT) consortia and UK Biobank. All individuals were aged 16 years or older. Exclusion criteria included clinical stroke (including self-reported stroke) or prevalent dementia.

For each of the CHARGE and COGENT cohorts, a general cognitive function component phenotype was constructed from a number of cognitive tasks. Each cohort was required to have tasks that tested at least three different cognitive domains. Principal component analysis was applied to the cognitive test scores to derive a measure of general cognitive function. Principal component analyses results were checked by one author (IJD) to establish the presence of a single component. Scores on the first unrotated component were used as the cognitive phenotype (general cognitive function). UK Biobank participants were asked 13 multiple-choice questions that assessed verbal and numerical reasoning (VNR: UK Biobank calls this the ‘fluid’ test). The score was the number of questions answered correctly in two minutes. Two samples of UK Biobank participants with verbal-numerical reasoning scores were used in the current analysis. The first sample (VNR Assessment Centre) consists of UK Biobank participants who completed the verbal-numerical reasoning test at baseline in assessment centres (n = 107,586). The second sample (VNR Web-Based) consists of participants who did not complete the verbal-numerical reasoning test at baseline but did complete this test during the web-based cognitive assessment online (n = 54,021). Details of the cognitive phenotypes for all cohorts can be found in Supplementary Information Section 2.
At the baseline UK Biobank assessment, 496,790 participants completed the reaction time test. Details of the test can be found in Supplementary Information Section 2. A sample of 330,069 UK Biobank participants with both scores on the reaction time test and genotyping data was used in this study.

Genome-wide association analyses

Genotype–phenotype association analyses were performed within each cohort, using an additive model, on imputed SNP dosage scores. Adjustments for age, sex, and population stratification, if required, were included in the model. Cohort-specific covariates—for example, site or familial relationships—were also fitted as required. Cohort specific quality control procedures, imputation methods, and covariates are described in Supplementary Table S2. Quality control of the cohort-level summary statistics was performed using the EasyQC software\(^1\), which implemented the exclusion of SNPs with imputation quality < 0.6 and minor allele count < 25.

Meta-analysis

A meta-analysis of the 57 CHARGE-COGENT cohorts was performed using the METAL package with an inverse variance weighted model implemented and single genomic control applied (http://www.sph.umich.edu/csg/abecasis/Metal). The two UK Biobank groups, VNR Assessment Centre and VNR Web-Based were also meta-analysed using the same method. An inverse-variance weighted meta-analysis of the CHARGE-COGENT and UKB summary results was then performed.

Reaction Time Genome-wide association analysis
The GWA of reaction time from the UK Biobank sample was performed using the BGENIE v1.2 analysis package (https://jmarchini.org/bgenie/). A linear SNP association model was tested which accounted for genotype uncertainty. Reaction time was adjusted for the following covariates; age, sex, genotyping batch, genotyping array, assessment centre, and 40 principal components.

Gene-based analysis (MAGMA)

Gene-based analysis was conducted using MAGMA32. All SNPs that were located within protein coding genes were used to derive a P-value describing the association found with general cognitive function and reaction time. The SNP-wise model from MAGMA was used and the NCBI build 37 was used to determine the location and boundaries of 18,199 autosomal genes. Linkage disequilibrium within and between each gene was gauged using the 1000 genomes phase 3 release33. A Bonferroni correction was applied to control for multiple testing.

Estimation of SNP-based heritability

Univariate GCTA-GREML analyses34 were used to estimate the proportion of variance explained by all common SNPs in four of the largest individual cohorts: ELSA, Understanding Society, UK Biobank, and Generation Scotland. Sample sizes for all of the GCTA analyses in these cohorts will differ from the association analyses, because one individual was excluded from any pair of individuals who had an estimated coefficient of relatedness of > 0.025 to ensure that effects due to shared environment were not included. The same covariates were included in all GCTA-GREML analyses as for the SNP-based association analyses.

Univariate Linkage Disequilibrium Score Regression (LDSC)
Univariate LDSC regression was performed on the summary statistics from the GWAS on general cognitive function and reaction time. The heritability Z-score provides a measure of the polygenic signal found in each data set. Values greater than 4 indicate that the data are suitable for use with bivariate LDSC regression. The mean χ^2 statistic indicates the inflation of the GWAS test statistics that, under the null hypothesis of no association (i.e. no inflation of test statistics), would be 1. For each GWAS, an LD regression was carried out by regressing the GWA test statistics (χ^2) on each SNP’s LD score (the sum of squared correlations between the minor allele frequency count of a SNP with the minor allele frequency count of every other SNP).

Genetic correlations

Genetic correlations were estimated using two methods, bivariate GCTA-GREML and LDSC. Bivariate GCTA was used to calculate genetic correlations between phenotypes and cohorts where the genotyping data were available. This method was used to calculate the genetic correlations between different cohorts for the general cognitive function phenotype. It was also employed to investigate the genetic contribution to the stability of UK Biobank’s participants’ verbal-numerical reasoning test scores in the assessment centre and then in web-based, online testing. In cases where only GWA summary results were available, LDSC was used to estimate genetic correlations between two traits—for example, general cognitive function and longevity—in order to estimate the degree of overlap between polygenic architecture of the traits. Genetic correlations were estimated between general cognitive function and reaction time and a number of health outcomes.

Polygenic prediction

Polygenic profile score analysis was used to predict cognitive test performance in Generation Scotland, the English Longitudinal Study of Ageing, and Understanding Society. Polygenic
profiles were created in PRSice37 using results of a general cognitive function meta-analysis that excluded the Generation Scotland, the English Longitudinal Study of Ageing, and Understanding Society cohorts. Polygenic profiles were also created based on the UK Biobank GWA reaction time results.

Functional Annotation and Loci Discovery

Genomic risk loci were derived using Functional mapping and annotation of genetic associations (FUMA)14. Firstly, independent significant SNPs were identified using the SNP2GENE function and defined as SNPs with a P-value of $\leq 5 \times 10^{-8}$ and independent of other genome wide significant SNPs at $R^2 < 0.6$. Using these independent significant SNPs, candidate SNPs to be used in subsequent annotations were identified as all SNPs that had a MAF of 0.0005 and were in LD of $R^2 \geq 0.6$ with at least one of the independent significant SNPs. These candidate SNPs included those from the 1000 genomes reference panel and need not have been included in the GWAS performed in the current study. Lead SNPs were also identified using the independent significant SNPs and were defined as those that were independent from each other at $R^2 < 0.1$. Genomic risk loci that were 250kb or closer were merged into a single locus.

The lead SNPs and those in LD with the lead SNPs were then mapped to genes based on the functional consequences of genetic variation of the lead SNPs which was measured using ANNOVAR38 and the Ensembl genes build 85. Intergenic SNPs were mapped to the two closest up- and down-stream genes which can result in their being assigned to multiple genes. All SNPs found in 1000 genomes phase 3 were then annotated with a CADD score49, RegulomeDB score40, and 15-core chromatin states41-43.
The mapping of eQTLs was performed using each independent significant SNP and those in LD with it. Those SNP-gene pairs that were not significant (FDR ≤ 0.05) were omitted from the analysis.

Gene-set analysis

Gene-set analysis was conducted in MAGMA\[32\] using competitive testing, which examines if genes within the gene set are more strongly associated with each of the cognitive phenotypes than other genes. Such competitive tests have been shown to control for Type 1 error rate as well as facilitating an understanding of the underlying biology of cognitive differences\[44,45\]. A total of 10 891 gene-sets (sourced from Gene Ontology\[46\], Reactome\[47\], and SigDB\[48\]) were examined for enrichment of intelligence. A Bonferroni correction was applied to control for the multiple tests performed on the 10,891 gene sets available for analysis.

Gene property analysis

In order to indicate the role of particular tissue types that influence differences in general cognitive function and reaction time, a gene property analysis was conducted using MAGMA. The goal of this analysis was to determine if, in 30 broad tissue types and 53 specific tissues, tissue-specific differential expression levels were predictive of the association of a gene with general cognitive function and reaction time. Tissue types were taken from the GTEx v6 RNA-seq database\[49\] with expression values being log2 transformed with a pseudocount of 1 after winsorising at 50, with the average expression value being taken from each tissue. Multiple testing was controlled for using a Bonferroni correction.
31. Winkler, T.W. et al. Quality control and conduct of genome-wide association meta-analyses. *Nat. Protoc.* **9**, 1192–1212 (2014).

32. de Leeuw, C. A., Mooij, J. M., Heskes, T., & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. *PLoS Comp Biol* **11**, e1004219 (2015).

33. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. *Nature* **467**, 1061-1073 (2012).

34. Yang, J., et al. Common SNPs explain a large proportion of the heritability for human height. *Nat. Genet.* **42**, 565-569 (2010).

35. Bulik-Sullivan, B., et al. An atlas of genetic correlations across human diseases and traits. *Nat. Genet.* **47**, 1236-1241 (2015).

36. Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M., & Wray, N. R. Estimation of pleiotropy between complex diseases using SNP-derived genomic relationships and restricted maximum likelihood. *Bioinformatics* **28**, 2540-2542 (2012).

37. Euesden, J., Lewis, C. M., & O’Reilly, P. F. PRSice: Polygenic Risk Score software. *Bioinformatics* 2015; **31**, 1466–1468 (2015).

38. Wang, K., Li, M., & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* **38**, e164-e164 (2010).

39. Kircher, M., et al. A general framework for estimating the relative pathogenicity of human genetic variants. *Nat. Genet.* **46**, 310-315 (2014).

40. Boyle, A. P., et al. Annotation of functional variation in personal genomes using RegulomeDB. *Genome Res.* **22**, 1790-1797 (2012).

41. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57-74 (2012).

42. Ernst, J., & Kellis, M. ChromHMM: automating chromatin-state discovery and characterization. *Nat. Methods* **9**, 215-216 (2012).
43. Kundaje, A., et al. Integrative analysis of 111 reference human epigenomes. *Nature* **518**, 317-330 (2015).

44. Hill, W. D., et al. Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. *Transl. Psychiatr.* **4**, e341 (2014).

45. de Leeuw, C. A., Neale, B. M., Heskes, T., Posthuma, D. The statistical properties of gene-set analysis. *Nat. Rev. Genet.* **17**, 353-364 (2016).

46. Ashburner, M., et al. Gene Ontology: tool for the unification of biology. *Nat. Genet.* **25**, 4 (2012).

47. Fabregat, A. et al. The reactome pathway knowledgebase. *Nucleic Acids Res.* **44**, D481-D487 (2015).

48. Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. USA* **102**, 15545-15550 (2005).

49. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. *Science* **348**, 648-660 (2015).
Figure Captions

Figure 1 Summary of molecular genetic association studies with general cognitive function to date.

Figure 2 SNP-based (a) and gene-based (b) association results for general cognitive function in 280,360 individuals. The red line indicates the threshold for genome-wide significance: $P < 5 \times 10^{-8}$ for (a), $P < 2.75 \times 10^{-6}$ for (b); the blue line in (a) indicates the threshold for suggestive significance: $P < 1 \times 10^{-5}$.

Figure 3 Functional analyses of general cognitive function association results, lead SNPs, and all SNPs in LD with lead SNPs. Functional consequences of SNPs on genes (a) indicated by functional annotation assigned by ANNOVAR. MAGMA gene-property analysis results; results are shown for average expression of 30 general tissue types (b) and 53 specific tissue types (c). The dotted line indicates the Bonferroni-corrected α level.
Table 1. Details of GWA studies of general cognitive function to date, including the present study

Author; doi	Year	N	GWAS-sig SNP hits	GWAS-sig gene hits	SNP-based h^2
Davies et al., 2011¹¹	2011	3511	0	1 gene	0.51 (0.11)
Lencz et al., 2013²⁷	2013	5000	0	NA	NA
Kirkpatrick et al. 2014²⁹	2014	7100	0	0	0.35 (0.11)
Davies et al. 2015³⁰	2015	53,949	3 loci (13 SNPs)	1 gene	0.29 (0.05)
Davies et al. 2016⁵; results for ‘fluid’ test	2016	36,035	3 loci (149 SNPs)	7 loci 17 genes	0.31 (0.02)
Trampush et al., 2017³⁰	2017	35,298	2 loci (7 SNPs)	3 loci 7 genes	0.22 (0.01)
Sniekers et al., 2017⁶	2017	78,308	18 loci (336 SNPs)	47 genes	0.20 (0.01)
Davies et al., 2017; present study	2017	280,360	99 loci (9714 SNPs)	536 genes	0.25 (0.006)
Table 2. Genetic correlations and heritability estimates of a general cognitive function component in three United Kingdom cohorts

Cohort	ELSA	US	GS
ELSA	0.12 (0.06)		
US	1.0 (0.33)	0.17 (0.04)	
GS	1.0 (0.38)	0.88 (0.24)	0.20 (0.05)

Below the diagonal, genetic correlations (standard error) of general cognitive function amongst three cohorts are shown: English Longitudinal Study of Ageing (ELSA); Generation Scotland (GS); and Understanding Society (US). SNP-based heritability (standard error) estimates appear on the diagonal.
Sample Size

SNP loci findings

Gene findings

Study

Present study (2017)
Sniekers et al. (2017)
Trampush et al. (2017)
Davies et al. (2016)
Davies et al. (2015)
Kirkpatrick et al. (2014)
Lencz et al. (2013)
Davies et al. (2011)

Number of participants

Genome-wide significant SNP loci

Genome-wide significant genes

Study

Study

Study
