DARPP-32 expression arises after a phase of dysplasia in oesophageal squamous cell carcinoma

Y Ebihara*,†, M Miyamoto†, A Fukunaga†, K Kato†, T Shichinohe†, Y Kawarada†, T Kurokawa†, Y Cho†, S Murakami†, H Uehara†, H Kaneko†, H Hashimoto†, Y Murakami†, T Itoh†, S Okushiba†, S Kondo† and H Katoh†

1Surgical Oncology, Cancer Medicine, Division of Cancer Medicine, Hokkaido University Graduate School of Medicine, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan; 2Department of Pathology, Hokkaido University Hospital, N14W7 Kita-ku, Sapporo, Hokkaido 060-8648, Japan

British Journal of Cancer (2004) 91, 119 – 123. doi:10.1038/sj.bjc.6601899 www.bjcancer.com
Published online 8 June 2004
© 2004 Cancer Research UK

Keywords: DARPP-32; oesophageal squamous cell carcinoma; immunohistochemistry; carcinogenesis; prognosis

Oesophageal carcinoma remains a disease with poor prognosis. Advances in surgical technique and perioperative management have improved survival to some extent. The overall 5-year survival rate, however, generally remains less than 50%, even with the use of multimodality therapy (Ando et al, 1997, 2000; Collard et al, 2001). This is despite a better understanding of the molecular basis of oesophageal carcinogenesis. Here, we examined DARPP-32 and t-DARPP expression in OSCC cell lines in archival material obtained from 122 surgical specimens of oesophageal squamous cell carcinoma (OSCC) with clinical and histopathologic factors obtained by a retrospective review of patient records.

MATERIALS AND METHODS

Cell lines and culture conditions

Human OSCC cell lines TE2, TE5, TE8, TE10 and TE13 were generously provided by Dr Nishihira (University of Tohoku, Japan). HEC46 was provided by Dr Toge (University of Hiroshima, Japan), and SGF7 was provided by Dr Saito (Toyama Medical and Pharmaceutical University, Japan). TE2, TE5, TE8, TE10, TE13 and HEC46 cells were grown in Dulbecco’s modified Eagle’s medium (D-MEM, Sigma-Aldrich Co., Ltd., Irvine, CA, USA) with 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin (p/s). SGF7 cells were maintained in RPMI-1640 medium (Sigma-Aldrich Co., Ltd.) with 10% FBS and 1% p/s. All cell lines were maintained in a humidified incubator with 5% CO₂ in air at 37°C.

(Wa’el et al, 2002). However, thus far, little is known about the role of DARPPs in carcinogenesis. Here, we examined DARPP-32 and t-DARPP expression and immunoreactivity in OSCC cell lines in archival material obtained from 122 surgical specimens of oesophageal squamous cell carcinoma (OSCC) with clinical and histopathologic factors obtained by a retrospective review of patient records.
Tissue samples
Tumour and normal tissue samples were snap-frozen and stored at −80°C. The samples were obtained in 2002 from resections directly after surgery. Frozen sections (5 μm) were stained with haematoxylin and eosin (H & E) to verify OSCC and approximately 0.1 g of the tumour block wasprocessed for RNA extraction using the TRIZOL Reagent (GIBCO BRL, Grand Island, NE, USA).

Reverse transcriptase–polymerase chain reaction (RT–PCR)
Total cellular RNA was isolated with TRIZOL Reagent (GIBCO BRL) from each cell line. Each 20 μl cDNA synthesis reaction contained 1 μg of total RNA, 1 × First Strand Buffer (GIBCO BRL); 50 mM Tris-HCL, pH 8.3, 75 mM KCL, 3 mM MgCl2), 0.5 mM of each deoxynucleotide triphosphate, 200 U of SUPERSCRIPT II (GIBCO BRL), 10 mM diithiothreitol and 0.5 μg oligo (dT) (GIBCO BRL). The reverse transcription (RT) reaction was carried out for 50 min at 42°C and inactivated by heating at 70°C for 15 min. Multiplex PCR was performed as described previously (Wong et al, 1994).

Briefly, each 25 μl reaction contained 2 μl of RT reaction products, 1 U of Taq DNA polymerase (Boehringer Mannheim), 1 × PCR buffer (Boehringer Mannheim), 160 μM of each deoxynucleotide and 20 pmol of each 3′ and 5′ primer specific for DARPP-32 (sense, 5′-gaagatccatcgctctcgg-3′; antisense 5′-ACT-TAGTGTGGCTGCTCC-3′), t-DARPP (sense, 5′-gtcgcctccagagca-3′; antisense 5′-ACTTAGTGCTGGCTTCC-3′), and β-actin (sense, 5′-AATCTGGCGTGACATTAG-3′; antisense 5′-GTCCAAGCTCACCTTCACTAG-3′). DARPP-32, t-DARPP and β-actin cDNA were amplified for 30 cycles. Conditions for DARPP-32 PCR were 94°C for 30 s, 53°C for 30 s, then 72°C for 30 s. Conditions for t-DARPP PCR were 94°C for 30 s, 55°C for 30 s, then 72°C for 30 s. Conditions for β-actin PCR were 94°C for 30 s, 51°C for 30 s, then 72°C for 30 s. All PCR products were electrophoresed in a 2.0% agarose gel and visualised by ethidium bromide staining.

As positive controls, plasmids expressing DARPP-32 or t-DARPP were generated by PCR amplification of the full-length cDNA derived from gastric cancer tissue and cloning into the BamHI and HindIII sites of pCPE4 (Invitrogen Corp., Carlsbad, CA, USA).

Western blot
Western blot analysis was performed to analyse DARPP-32 and t-DARPP expression in oesophageal cancer cell lines. Cell lysates were prepared in SDS buffer containing 62.5 mM Tris-HCL pH6.8, 2% w/v SDS, 10% glycerol, 50 mM DTT, 0.1% w/v bromphenol blue, 1 mM PMSF. Total proteins (40 μg: OSCC cell lines, 2 μg: transfected cell lines) were electrophoresed in 15% SDS-polyacrylamide gels and transferred onto nitrocellulose membranes.

Rabbit anti-DARPP polyclonal antibody (H-62; Santa Cruz Biotechnology, Santa Cruz, CA, USA) was used as the primary antibody (1:1000). Peroxidase-conjugated goat F(ab')2 anti-rabbit IgG (Jackson Immunoresearch, West Grove, PA, USA) was used as the secondary antibody (1:5000). Detection of bound antibodies was performed using the ECL system (Amersham, Aylesbury, UK).

The plasmids expressing DARPP-32 or t-DARPP were transfected into TEB cells using Lipofectamine (Invitrogen Corp.) and these lysates were used as positive controls.

Patients and oesophageal specimens
All complete OSCC surgical specimens resected from 1989 to 1999, from patients with no evidence of metastasis to other organs and without prior anticancer treatment, were examined. Cases of in-hospital death were excluded. Surgical specimens from 122 patients who had undergone radical oesophagectomy at the Department of Surgical Oncology, Hokkaido University, Hokkaido Gastroenterology Hospital, and Teine Keijinkai Hospital were included in the current study, and findings were referred to the patients’ clinical records. One of the sections from the deepest point of each tumour invasion was selected for evaluation. The specimens were examined histologically after staining with H & E, and the clinicopathologic stage was determined according to the TNM classification system of the International Union Against Cancer (Sobin and Wittekind, 2002). Specimens from 122 patients were included in the current study (105 males and 17 females). The median patient age was 62.3 years (range, 38–82 years). A relatively large number of patients had early-stage disease (78 patients, 63.9%). In total, 61 patients (50.0%) had lymph node metastases and 19 patients (16%) had distant nodal metastases. The study population had the following performance status (PS): PS0, 107 patients; PS1, 14 patients; and PS2, one patient. The median follow-up period was 29 months.

All specimens were fixed in 10% formalin and embedded in paraffin wax. One of the deepest sections from each tumour was selected for evaluation, and serial 4 μm-thick sections were examined by immunohistochemistry.

Immunohistochemistry
Unstained sections were treated with a rabbit anti-DARPP polyclonal antibody (H-62; Santa Cruz Biotechnology; 1:200 dilution), using previously described conditions (Oliver and Shenolikar, 1998). Briefly, each slide was deparaffinised by routine techniques, treated with sodium citrate buffer (Ventana-Bio Tek Solutions, Tucson, AZ, USA), and then treated with microwave heat for 20 min. After cooling for 5 min, slides were labelled with antibody using the Ventana EX system automated stainer (Ventana-Bio Tek Solutions). The anti-DARPP-32 antibody was detected by adding biotinylated secondary antibody, avidin–biotin complex and 3, 3′-diaminobenzene (Ventana DAB Universal Kit; Ventana-Bio Tek Solutions). Sections were then counterstained in haematoxylin for 1 min and mounted in Permount (Microslides; Muto-Glass, Tokyo, Japan). For a negative control, nonimmune purified rabbit serum was used for the primary antibody. The number of stained cells per 1000 was determined under a microscope (Olympus Optical Co., Ltd, Tokyo, Japan) in three visual fields, at a magnification × 200. When microscopic examination indicated that a the total number of cancer cells observed being less than 1000, all cells were counted. When over 10% cancer cell nuclei and cytoplasm were stained, the tumour was considered DARPP-32 positive. The current study was performed in a retrospective manner, while all specimens were evaluated by three investigators (YE, MM and TI), who were blinded to the patients’ clinical information. Dysplasia was defined according to the WHO classification (Stanley and Lauri, 2000).

Statistical analysis
Either the χ2 test or Fisher’s exact test were used to analyse the correlation between DARPP-32 expression and patients’ parameters, including histopathologic findings. The Kaplan–Meier method was used to generate survival curves, and survival differences were analysed with the log-rank test, based on the status of DARPP-32 expression. Univariate and multivariate analyses of DARPP immunoreactivity and clinicopathological features were performed using the Cox proportional hazard regression model. Probability values of less than 0.05 were regarded as indicating significance. All analyses were performed using statistical analysis software (Statview J version 5.0; SAS Institute Inc., Cary, NC, USA).
RESULTS

Expression of DARPPs in OSCC cell lines

DARPP-32 RT–PCR fragments were amplified from four out of seven cell lines, while t-DARPP fragments were not amplified in any cell lines (Figure 1A). Western blot analysis showed that a 32 kDa protein, corresponding to DARPP-32, was expressed strongly in TE2 and TE13, while t-DARPP protein (30 kDa) was not detectable in any cell lines, as expected based on the RT–PCR data (Figure 1B).

Detection of DARPPs in human tissues

In oesophageal sample tissues, DARPP-32 RT–PCR fragments were amplified from four out of seven tumour tissues, but not from any normal oesophageal mucosa. As in the cell lines, t-DARPP RT–PCR fragments were not amplified from any sample tissues (Figure 2).

Immunohistochemical analysis

We subsequently performed immunohistochemical analysis on the 122 OSCC specimens. This analysis provides suggestions as to the biological function of DARPP in OSCC. DARPP immunoreactivity was observed at the cancer cell membrane and cytoplasm, as seen in a previous study (Wa’el et al., 2002). DARPP was expressed in normal oesophageal gland cells (Figure 3A) and gangliocytes (Figure 3B), permitting their use as a positive internal control. No DARPP expression was detected in normal oesophageal mucous membrane (Figure 3C). In tumour cells, immunoreactivity was observed very vividly (Figure 3D), with 37 patients (30.3%) staining positive for DARPP and 85 patients (69.7%) staining negative (Figure 3E).

Dysplasias were found in 45 of 122 specimens, but DARPP expression was only observed in one of these lesions. A total of 36 patients with DARPP-positive tumours had DARPP-negative dysplasias (Figure 3F).

Statistical analyses between DARPP expression and clinicopathological data

DARPP immunoreactivity had an inverse relationship with pathologic stage, pT, pN and tumour size by the \(\chi^2 \) test (Table 1). Moreover, overall survival rate by the Kaplan–Meier method was worse in patients with DARPP-32-negative tumours than in patients with DARPP-32-positive tumours (Figure 4). Upon univariate analysis with Cox proportional hazards model, DARPP immunopositivity was inversely correlated with poor prognosis, although, multivariate analyses did not indicate that DARPP positivity was significant (data not shown).

DISCUSSION

DARPPs are frequently expressed in gastric cancer. To assess the biological significance, we screened for DARPP expression in...
Table 1 Relationship between clinicopathologic features and DARPP-32 expression in surgical specimens of oesophageal squamous cell carcinoma

Variables	DARPP-32 positive (n = 37)	DARPP-32 negative (n = 85)	P value*
Gender			
Male	32	73	0.9294
Female	5	12	
Age			
≥ 65	26	47	1
< 65	29	49	0.0284
p-Stage			
I, II	11	38	0.1209
III, IV	8	36	
Grade			
G1	11	20	0.4696
G2	13	48	
Others	26	65	
p-T classification			
T1, T2	26	43	0.0438
T3, T4	11	42	
p-N classification			
N0	24	37	0.0303
N1	13	48	
p-M classification			
M0	31	72	0.8973
M1	6	13	
Tumour size			
≥4.5 cm	13	51	0.0115
<4.5 cm	24	34	
Surgical margin			
Positive	2	6	0.7345
Negative	35	79	
Adjuvant therapy			
Yes	17	33	0.4622
No	20	52	

*The P-value was calculated by chi-square test.

Several types of cancer cell lines. Interestingly, we found that there were two types of OSCC cell lines, DARPP-expressing and non-expressing cells.

The RT–PCR results appear to accurately reflect the status of DARPP expression. Although both DARPP isoforms were frequently overexpressed in gastric cancer, 30% of OSCC samples expressed DARPP-32 alone. Based on our RT–PCR and Western blot data, we believe that DARPP immunoreactivity in OSCC specimens is specific to DARPP-32 but not t-DARPP.

In TE2 and TE13 cell lines, manual sequencing analyses were performed, but no genetic alterations of DARPP-32 were found (figure not shown). Therefore, the difference in DARPP-32 expression is not likely to be caused by mutation.

Several reports have described the pattern of progression from normal mucous to dysplasia, to carcinoma in situ (Shi et al., 1999; Saeki et al., 2002; Shirai et al., 2002). Oesophageal dysplasia is also believed to be one of the precursors for OSCC. The ratio of DARPP immunopositivity in dysplasia was significantly lower (P < 0.0001; χ² test) compared to that in tumour. These data suggest that overexpression of DARPP arises at the late phase of neoplastic progression of the oesophagus. Moreover, these features could be an advantage to distinguish between cancer and dysplasia in diagnosis of biopsy specimens (30.3% sensitivity, 97.8% specificity).

It remains unclear whether DARPP-32 is an oncogene like ras, myc and src because some normal tissue expresses DARPP-32. Overexpression of DARPP-32, however, is related to carcinogenesis in 30% of OSCC. Moreover, DARPP-32-positive tumours appear to have a less aggressive character than DARPP-32-negative tumours. This characteristic is not due to exclusion by the host immune response. We previously reported that the cooperative role of CD4⁺ and CD8⁺ T cells appears to drastically improve the prognosis of patients with OSCC (Cho et al., 2003). Despite the better prognosis in patients with DARPP-32-positive tumours, the expression of DARPP-32 in OSCC was not correlated with infiltration of CD4⁺ and/or CD8⁺ T cells (P = 0.7409; χ² test).

DARPP-32 is a known protein that acts as a PP1 inhibitor or an MAPK, CREB mediator. Protein phosphatase 1 and other protein phosphatases that reverse the action of cyclin-dependent kinases are emerging as important cell cycle regulatory enzymes (Oliver and Shenolikar, 1998; Schonthal, 2001; Wang et al., 2001). Many oncogenes have been shown to encode proteins that transmit mitogenic signals upstream of the MAPK pathway (Seger and Krebs, 1995; Seboit-Leopold, 2000). Phosphorylation of CREB generates signals that inhibit apoptosis (Jean et al., 1998; Jean and Bar-Eli, 2000). Control of phosphorylation in gastrointestinal malignancies has recently been reported as an important mechanism for some neoplasia (Saha et al., 1998; Higashi et al., 2002). To understand the potential role of DARPP-32 in human OSCC, however, additional studies and biological assays are required. We are now proceeding with further investigation to clarify the biological function of DARPP-32 in OSCC cells.

We conclude that DARPP-32 expression arises after a phase of dysplasia in OSCC. Moreover, DARPP-32-positive tumours have a less aggressive character than those that are not.

ACKNOWLEDGEMENTS

We appreciate the contributions of Mr Hiraku Shida and Ms Akiko Yagi for their technical support in immunohistochemistry, and of the many physicians who cared for patients at the affiliated hospitals of Surgical Oncology.
REFERENCES

Ando N, Iizuka T, Kakegawa T, Isozo K, Watanabe H, Ide H, Tanaka O, Sinoda M, Takiyama W, Arimori M, Ishida K, Tsugane S (1997) A randomized trial of surgery with and without chemotherapy for localized squamous carcinoma of the thoracic esophagus: the Japan Clinical Oncology Group Study. J Thorac Cardiovasc Surg 114: 205 – 209

Ando N, Ozawa S, Kitagawa Y, Shinozawa Y, Kitajima M (2000) Improvement in the results of surgical treatment of advanced squamous esophageal carcinoma during 15 consecutive years. Ann Surg 232: 225 – 252

Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, Fienberg AA, Tsai LH, Kwon YT, Girault JA, Huganir RL, Hemmings Jr HC, Nairn AC, Greengard P (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402: 669 – 671

Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada, Hida Y, Oshikiri T, Kurokawa T, Suzuki M, Nakakubo Y, Hiraoka K, Murakami S, Shinohara T, Ikoh T, Okushiba S, Kondou S, Katoh H (2003) CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63: 1555 – 1559

Collard JM, Otte JB, Fiase R, Laterre PF, De Kock M, Longueville J, Glineur D, Romagnoli R, Reynaert M, Kestens PJ (2001) Skeletonizing en bloc esophagectomy for cancer. Ann Surg 234: 25 – 32

Greengard P (2001) The neurobiology of slow synaptic transmission. Science 294: 1024 – 1030

Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori Cag A protein. Science 295: 683 – 686

Jean D, Harbison M, Ronai Z, Bar-Eli M (1998) CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 273: 24884 – 24890

Oliver CJ, Shenolikar S (1998) Physiologic importance of protein phosphatase inhibitors. Front Biosci 3: 961 – 972

Saeki H, Kimura Y, Ito S, Miyazaki M, Ohga T (2002) Biologic and clinical significance of squamous epithelial dysplasia of the esophagus. Surgery 131: 22 – 27

Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294: 1343 – 1346

Schonthal AH (2001) Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett 170: 1 – 13

Sebolt-Leopold JS (2000) Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 19: 6594 – 6599

Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9: 726 – 735

Shi ST, Yang GY, Wang LD, Xue Z, Feng B, Ding W, Xing EP, Yang CS (1999) Role of p53 gene mutations in human esophageal carcinogenesis: results from immunohistochemical and mutation analysis of carcinomas and nearby non-cancerous lesions. Carcinogenesis 20: 591 – 597

Shirai N, Tsukamoto T, Yamamoto M, Iidaka T, Sakai H, Yanai T, Masegi T, Lawrence AD, Tatematsu M (2002) Elevated susceptibility of the p53 knockout mouse esophagus to methyl-N-amynitrosamine carcinogenesis. Carcinogenesis 23: 1541 – 1547

Sobin LH, Wittekind Ch (eds) (2002) UICC TNM Classification of Malignant Tumors, 6th edn. New York: John Wiley

Stanley RH, Lauri AA (eds) (2000) Pathology and Genetics of Tumours of the Digestive System. Lyon: IARC Press

Wang RH, Liu CW, Avramis V, Berndt N (2001) Protein phosphatase 1α mediated stimulation of apoptosis is associated with dephosphorylation of the retinoblastoma protein. Oncogene 20: 4061 – 4064

Wong H, Anderson WD, Cheng T, Riabowol KT (1994) Monitoring mRNA expression by polymerase chain reaction: the ‘primer-dropping’ method. Anal Biochem 223: 251 – 258

Yan Z, Feng J, Fienberg AA, Greengard P (1999) D(2) dopamine receptors induce mitogen-activated protein kinase and camp response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 96: 11607 – 11612