The BiTE (Bispecific T-Cell Engager) Platform: Development and Future Potential of a Targeted Immuno-Oncology Therapy Across Tumor Types

Hermann Einsele, MD; Hossein Borghaei, DO; Robert Z. Orlowski, MD; Marion Subklewe, MD; Gail J. Roboz, MD; Gerhard Zugmaier, MD; Peter Kufer, MD; Karim Iskander, MD; and Hagop M. Kantarjian, MD

Immuno-oncology therapies engage the immune system to treat cancer. BiTE (bispecific T-cell engager) technology is a targeted immuno-oncology platform that connects patients’ own T cells to malignant cells. The modular nature of BiTE technology facilitates the generation of molecules against tumor-specific antigens, allowing off-the-shelf immuno-oncotherapy. Blinatumomab was the first approved canonical BiTE molecule and targets CD19 surface antigens on B cells, making blinatumomab largely independent of genetic alterations or intracellular escape mechanisms. Additional BiTE molecules in development target other hematologic malignancies (eg, multiple myeloma, acute myeloid leukemia, and B-cell non-Hodgkin lymphoma) and solid tumors (eg, prostate cancer, glioblastoma, gastric cancer, and small-cell lung cancer). BiTE molecules with an extended half-life relative to the canonical BiTE molecules are also being developed. Advances in immuno-oncology made with BiTE technology could substantially improve the treatment of hematologic and solid tumors and offer enhanced activity in combination with other treatments. Cancer 2020;126:3192-3201. © 2020 The Authors.

KEYWORDS: B cell, blinatumomab, hematologic malignancies, T cell, tumor-specific antigen.

INTRODUCTION
Immuno-oncology therapies are clinically validated methods of treating various blood cancers and solid tumors. Hematologic cancers are particularly well suited for immune-targeting therapies, as malignant blood cells circulate with immune cells. Several immuno-oncology therapies are in development.

Monoclonal antibody checkpoint inhibitors that block binding of checkpoint proteins (eg, programmed cell death protein 1 [PD-1] and cytotoxic T-lymphocyte–associated protein 4 [CTLA-4]) are effective in many types of cancer. They demonstrate good efficacy and safety in several solid tumors, particularly when targeting PD-1, with successful treatment in non–small-cell lung, kidney, and bladder cancers. However, many patients do not respond to, or relapse after, treatment with checkpoint inhibitors. Except in non-Hodgkin lymphoma, data from hematologic malignancies have been mostly disappointing, particularly in myeloma and leukemia, with overall response rates of 12.0% to 48.5% in approved indications. By comparison, response rates are higher with other immuno-oncology therapies. Chimeric antigen-receptor (CAR) T-cell therapies reprogram a patient’s T cells to attack a specific cellular antigen, such as CD19 in the treatment of B-cell malignancies and B-cell maturation antigen (BCMA) in multiple myeloma (MM). CAR T-cell therapies have demonstrated promising efficacy in treating hematologic cancers; although their use in solid tumors has not been as successful, there have been some positive results in neuroblastoma, human epidermal growth factor receptor 2 tumors, and non–small-cell lung cancer. The genetic modification and in vitro proliferation of T cells require a lengthy, complex manufacturing process, which is a drawback of this therapy, limiting broad and timely availability for patients. Another disadvantage is the current requirement for lymphodepletion by prior conditioning chemotherapy as a prerequisite for enhanced efficacy.
BiTE (bispecific T-cell engager) therapies link endogenous T cells to tumor-expressed antigens, activating the cytotoxic potential of a patient’s own T cells to eliminate cancer without genetic alteration of the T cells or need for ex vivo expansion/manipulation. BiTE molecules can be used as monotherapies and offer enhanced activity in combination with other treatments.

BiTE MECHANISM OF ACTION AND NOVEL CONSTRUCTS AIMED AT NEW TUMOR-EXPRESSED ANTIGENS

BiTE molecules are antibody constructs with 2 binding domains: 1 recognizing tumor-expressed antigens (eg, BCMA, CD19, δ-like protein 3 [DLL3]), and another, CD3, recognizing T cells (Fig. 1). The binding domains are 2 single-chain variable fragment (scFv) regions from monoclonal antibodies, joined by a flexible peptide linker. The first scFv binding domain can be modified to target any surface antigen, providing off-the-shelf, immediate therapies against various tumors and allowing retreatment. The second scFv binding domain is always specific for CD3, the invariable part of the T-cell receptor complex. When a BiTE molecule engages both a cytotoxic T cell and a tumor cell, the T cells start to proliferate, increasing overall numbers of effector cells and strengthening the potency of BiTE therapy.
cell lysis is then triggered. Because this happens without
the need for co-stimulation or typical major histocompat-
ability complex mechanisms, BiTE molecules can engage
any T cells.24,25

Blinatumomab, the first and currently only ap-
proved BiTE therapy, targets the CD19 receptor on
both normal and malignant B cells, and is a highly
potent molecule with cytotoxic effects observed at low
exposures (10-100 pg/mL)26; in its presence, T cells can
perform serial-target lysis, rapidly binding and killing
many cells.27 This mechanism of action is the hallmark
of BiTE therapies and is observed in other BiTE mol-
ecules under development.24 The efficacy and safety of
blinatumomab is established in acute lymphoblastic
leukemia (ALL), having received US Food and Drug
Administration-accelerated approval in 2014 and full
approval for relapsed or refractory (R/R) B-cell pre-
cursor (BCP) ALL in 2017. Blinatumomab gained ac-
celerated approval for the treatment of BCP-ALL with
minimal residual disease (MRD) in 2018, the first ap-
proval for this indication. It was also approved by the
European Medicines Agency for Philadelphia chromo-
some (Ph)-negative, R/R BCP-ALL in November 2015.
Blinatumomab has approval in 57 countries, including
Japan, all member countries of the European Union,
Canada, and Australia for R/R BCP-ALL in adults and
children.28

BLINATUMOMAB FOR THE TREATMENT OF
PATIENTS WITH BCP-ALL
Blinatumomab has revolutionized the treatment of
BCP-ALL, increasing overall survival (OS) and reduc-
ing the incidence of selected adverse events (AEs) ver-
sus standard-of-care (SOC) chemotherapy. The safety
and efficacy of blinatumomab for BCP-ALL in adults
and children were demonstrated by several pivotal tri-
als, including randomized controlled trials (Table 1).29

32 Only data from 2 single-arm studies (clinicaltrials.
gov identifiers NCT01626495 and NCT01029366)
are available for CAR T-cell therapy, in which 25 pedi-
atriic patients (aged 5-22 years) and 5 older patients
(aged 26-60 years) with R/R BCP-ALL and T-cell ALL
were treated. However, the results are encouraging (a
complete response [CR] in 90%, sustained remission
with 6-month event-free survival in 67%, and an OS
rate of 78% [median follow-up, 7 months; range,
1-24 months]).33

The TOWER study (A Phase 3, Randomized,
Open Label Study Investigating the Efficacy of the
BiTE Antibody Blinatumomab Versus Standard of
Care Chemotherapy in Adult Subjects With Relapsed/
Refractory B-Precursor ALL; clinicaltrials.gov identifier
NCT02013167) compared the effects of blinatumomab
monotherapy against SOC chemotherapy in heavily pre-
treated adults with Ph-negative, R/R BCP-ALL.29 The
trial was stopped early because of the survival benefit
observed. AEs in the blinatumomab group were con-
sistent with those observed in previous studies, and ex-
posure-adjusted AE rates were lower for blinatumomab
versus SOC.34 Blinatumomab is also effective in adults
with Ph-positive, R/R BCP-ALL and in children with Ph-
negative, R/R BCP-ALL.30,32

Some 30% to 50% of adults with BCP-ALL in
complete hematologic remission exhibit persistent
MRD. Blinatumomab was evaluated in the single-arm,
phase 2 BLAST study (A Confirmatory Multicenter,
Single-Arm Study to Assess the Efficacy, Safety, and
Tolerability of the BiTE Antibody Blinatumomab
in Adult Patients With MRD of B-Precursor Acute
Lymphoblastic Leukemia; clinicaltrials.gov identifier
NCT01207388) of patients with BCP-ALL in first or
later complete remission with MRD, inducing a com-
plete MRD response in most patients, with significantly
longer relapse-free survival and OS. Seventy-eight per-
cent of MRD-positive patients achieved MRD negativ-
ity after blinatumomab therapy (Table 1). The 5-year
OS analysis showed a median OS of 36.5 months, and
more than one-half of those who achieved a complete
MRD response after the first cycle of blinatumomab
were alive at 5 years, suggesting that the treatment
might be curative in some patients.35 Cytokine release
syndrome (CRS)-associated AEs were observed infre-
cently.31 Additional studies evaluating blinatumomab
in frontline settings and combination therapies are on-
going (eg, NCT03023878 and NCT03340766).

CD19-targeted therapies have been associated with
failure because of CD19 antigen loss after treatment,
with rates ranging from 8% to 35% for blinatumomab
and from 39% to 65% for CAR T-cell therapies.36-40 The
mechanisms leading to therapy failure are poorly under-
stood but may include immunoediting, whereby antigen
loss is caused by a T-cell–dependent immunoselection
process that allows escape of tumor cells.41 Lineage switch
and epitope loss under therapy pressure have also been
suggested as mechanisms of tumor escape, although, with
regard to epitope loss, a recent study found that some
CD19 isoforms contributing to CAR T-cell escape preex-
isted at diagnosis; this finding suggests that the applica-
tion of combined treatment approaches might be benefi-
cial.38,42 Inhibitory T-cell signaling is another mechanism
Study	Patients	Study Design	Outcome	Adverse Events
TOWER (NCT02013167; Kantarjian 2017)^a	Heavily pretreated adults with Ph[−], R/R BCP-ALL	Phase 3, prospective, randomized (2:1 blinatumomab [n = 271] or SOC chemotherapy [n = 134]) Primary outcome, OS	- Median OS, 7.7 mo (95% CI, 5.6-9.6 mo) blinatumomab vs 4 mo (95% CI, 2.9-5.3 mo) SOC	
- Prespecified stopping boundary was reached; hazard ratio of death, 0.71 (95% CI, 0.55-0.93; P = .01)
- Remission rates ≤12 wk after treatment significantly higher in blinatumomab vs SOC; CR, 34% vs 16%, respectively (P < .001); CR, CRh, or Cri, 44% vs 25%, respectively (P < .001)
- Median duration of remission in patients with CR, CRh, or Cri: 7.3 mo (95% CI, 5.8-9.9 mo) blinatumomab vs 4.6 mo (95% CI, 1.8-19.0 mo) SOC
- MRD negativity achieved 78% blinatumomab vs 48% SOC (treatment difference, 28%; 95% CI, 9%-47%) among patients with CR, CRh, or Cri
- 6-mo EFS, 31% blinatumomab vs 12% SOC
| AEs: 99% occurrence in each group
| SAEs: 62% blinatumomab vs 45% SOC
| SAE rate adjusted for treatment exposure: 349.4 per 100 patient-y blinatumomab vs 641.9 per 100 patient-y SOC
| AEs grade ≥3: 87% blinatumomab vs 92% SOC
| CRS grade ≥3: 4.9% blinatumomab vs 0% SOC
| Neurologic AEs grade ≥3: 9.4% blinatumomab vs 8.3% SOC
| Fatal AEs: 19% blinatumomab vs 17% SOC; overall EAE rate adjusted for treatment exposure time significantly lower for blinatumomab versus SOC:
| Any grade AEs: 46.16 vs 137.64 events per patient-y (P < .001)
| Grade 3 AEs: 10.73 vs 45.27 events per patient-y (P < .001)
| Fatal AEs: 0.57 vs 1.28 events per patient-y (P < .005)
| EAE rate of grade ≥3 CRS higher for blinatumomab than for SOC (0.16 vs 0 events per patient-y; P = .038)
| Grade ≥3 TEAEs, 82%
| 44% Of TEAEs thought blinatumomab-related; most common were febrile neutropenia (11%) and increased ALT (11%)
| 11% Had fatal AEs, 1 (septic shock) considered treatment related
| CRS (grade 1 or 2), 7%
| 47% Experienced neurologic symptoms, most common paresthesia (13%)
| Grade 3 neurologic events in 7%
| Two fatal AEs reported in the first cycle, 1 considered treatment related (atypical pneumonitis with H1N1 influenza) |
| **ALCANTARA (NCT02000427; Martinelli 2017)**^b | Adults with Ph⁺, R/R BCP-ALL who failed ≥1 second-generation or later TKI or were intolerant to second-generation or later TKIs and intolerant to imatinib (N = 45) | Phase 2, open-label, single-arm Primary endpoint, CR or CRh within first 2 cycles | 36% (95% CI, 22%-51%) achieved CR/CRh in first 2 cycles
| 86% Of CR/CRh responders achieved complete MRD
| Median RFS: 6.7 mo (95% CI, 4.4 mo to NE); median OS: 7.1 mo (95% CI, 5.6 mo to NE)
| | AEs: 99% occurrence in each group
| SAEs: 62% blinatumomab vs 45% SOC
| SAE rate adjusted for treatment exposure: 349.4 per 100 patient-y blinatumomab vs 641.9 per 100 patient-y SOC
| AEs grade ≥3: 87% blinatumomab vs 92% SOC
| CRS grade ≥3: 4.9% blinatumomab vs 0% SOC
| Neurologic AEs grade ≥3: 9.4% blinatumomab vs 8.3% SOC
| Fatal AEs: 19% blinatumomab vs 17% SOC; overall EAE rate adjusted for treatment exposure time significantly lower for blinatumomab versus SOC:
| Any grade AEs: 46.16 vs 137.64 events per patient-y (P < .001)
| Grade 3 AEs: 10.73 vs 45.27 events per patient-y (P < .001)
| Fatal AEs: 0.57 vs 1.28 events per patient-y (P < .005)
| EAE rate of grade ≥3 CRS higher for blinatumomab than for SOC (0.16 vs 0 events per patient-y; P = .038)
| Grade ≥3 TEAEs, 82%
| 44% Of TEAEs thought blinatumomab-related; most common were febrile neutropenia (11%) and increased ALT (11%)
| 11% Had fatal AEs, 1 (septic shock) considered treatment related
| CRS (grade 1 or 2), 7%
| 47% Experienced neurologic symptoms, most common paresthesia (13%)
| Grade 3 neurologic events in 7%
| Two fatal AEs reported in the first cycle, 1 considered treatment related (atypical pneumonitis with H1N1 influenza) |
| **BLAST (NCT01207388; Gokbuget 2018)**^c | Adults with BCP-ALL in first or later hematologic CR with persistent or recurrent MRD (≥10^{−3}; N = 116) | Phase 2, open-label, single-arm Primary endpoint, complete MRD response after 1 cycle | 78% Of evaluable patients achieved complete MRD in cycle 1, 80% after 2 cycles; median OS, 36.5 mo
| | Landmark analyses by complete MRD response
| Median RFS: 23.6 mo with complete MRD vs 5.7 mo without complete MRD (P = .002)
| Median OS: 38.9 vs 12.5 mo, respectively (P = .002)
| Rate of AEs was similar to other blinatumomab studies; all patients experienced ≥1 AE
| 33% Grade 3, 27% grade 4
| 3% Had grade ≥3 CRS, all during cycle 1
| 53% Any grade neurologic events
| Grade 3, 10%; grade 4, 3%
| Two fatal AEs reported in the first cycle, 1 considered treatment related (atypical pneumonitis with H1N1 influenza) |
TABLE 1. Continued

Study	Patients	Study Design	Outcome	Adverse Events
Pediatric Registrational Study (NCT01471782; von Stackelberg 2016)	Pediatric and adolescent patients with R/R BCP-ALL	Open-label, phase 1/2 study; phase 1 investigated dose escalation (n = 49), and phase 2 was an extended cohort efficiency study (n = 44)	The MTD was 15 µg/m²/d; recommended dosage 5 µg/m²/d for the first 7 d, followed by 15 µg/m²/d thereafter	8% Had DLT in cycle 1 (phase 1); most frequent grade ≥ 3 AEs: anemia (36%), thrombocytopenia (21%), febrile neutropenia (17%), and hypokalemia (17%)
Primary endpoints: MTD (phase 1) and CR rate within the first 2 cycles (phase 2)	Median RFS for those who achieved CR: 4.4 mo (95% CI, 2.3-7.6 mo)			9% Had fatal AEs
	Median OS for all patients: 7.5 mo (95% CI, 4.0-11.8 mo)			11% Treated with recommended dose had any grade CRS; grade 3, 4%, grade 4, 1%
				3% Interrupted treatment after grade 2 seizures

Abbreviations: −, negative; +, positive; AE, adverse event; ALL, acute lymphoblastic leukemia; ALT, alanine aminotransferase; BCP, B-cell precursor; CR, complete remission; CRh, complete remission with partial hematologic recovery; CRi, incomplete hematologic recovery; CRS, cytokine release syndrome; DLT, dose-limiting toxicity; EAE, exposure-adjusted event; EFS, event-free survival; MRD, minimal residual disease; MTD, maximum tolerated dose; NE, not estimable; OS, overall survival; Ph−, Philadelphia chromosome-negative; Ph+, Philadelphia chromosome-positive; R/R, relapsed or refractory; RFS, relapse-free survival; SAE, serious adverse event; SOC, standard of care; TEAEs, treatment-emergent adverse events; TKI, tyrosine kinase inhibitor.

*33 TOWER: A Phase 3, Randomized, Open Label Study Investigating the Efficacy of the BITE Antibody Blinatumomab Versus Standard of Care Chemotherapy in Adult Subjects With Relapsed/Refractory B-Precurso Acute Lymphoblastic Leukemia (ALL) (clinicaltrials.gov identifier NCT02013167). |
*45,50 Full-length monoclonal antibodies have a longer half-life because of neonatal crystallizable fragment (Fc) receptor-mediated (Rn) recycling. |
*43 This preclinical observation has also been clinically used in the clinic to manage CRS. |

Half-Life-Extended BITE Molecules

One characteristic of canonical BiTE molecules is their short half-life of 2 to 4 hours, which necessitates administration every 2 hours. In patients treated with continuous intravenous infusion 28,50, this is typically administered using 2-day, 4-day, or 7-day infusions. In patients treated with biweekly subcutaneous injections of BiTE, the half-life of the drug is 2.5 to 4 days, which is significantly longer than the half-life of a single dose. In contrast, full-length monoclonal antibodies have a longer half-life because of neonatal crystallizable fragment (Fc) receptor-mediated (Rn) recycling.

The results of an ongoing phase 1/1b study are promising. The phase 1 results showed that the MTD was 15 µg/m²/d; recommended dosage 5 µg/m²/d for the first 7 d, followed by 15 µg/m²/d thereafter. The most common AEs in blinatumomab clinical trials were fever, neutropenia, and thrombocytopenia. The CRS response was 3% in grade 2, 3% in grade 3, and 7% in grade 4. The most frequent grade ≥ 3 AEs were anemia (36%), thrombocytopenia (21%), febrile neutropenia (17%), and hypokalemia (17%). The median RFS for those who achieved CR was 4.4 mo (95% CI, 2.3-7.6 mo), and the median OS for all patients was 7.5 mo (95% CI, 4.0-11.8 mo). 8% had DLT in cycle 1 (phase 1); most frequent grade ≥ 3 AEs: anemia (36%), thrombocytopenia (21%), febrile neutropenia (17%), and hypokalemia (17%). 9% had fatal AEs. 11% treated with recommended dose had any grade CRS; grade 3, 4%, grade 4, 1%. 4% had grade 3 neurologic events; 3% interrupted treatment after grade 2 seizures. 5% had grade 3 neurologic events; 3% interrupted treatment after grade 2 seizures.

AcS and mediations

The most common AEs in the blinatumomab clinical trials were fever, neutropenia, and thrombocytopenia. The CRS response was 3% in grade 2, 3% in grade 3, and 7% in grade 4. The most frequent grade ≥ 3 AEs were anemia (36%), thrombocytopenia (21%), febrile neutropenia (17%), and hypokalemia (17%). The median RFS for those who achieved CR was 4.4 mo (95% CI, 2.3-7.6 mo), and the median OS for all patients was 7.5 mo (95% CI, 4.0-11.8 mo). 8% had DLT in cycle 1 (phase 1); most frequent grade ≥ 3 AEs: anemia (36%), thrombocytopenia (21%), febrile neutropenia (17%), and hypokalemia (17%). 9% had fatal AEs. 11% treated with recommended dose had any grade CRS; grade 3, 4%, grade 4, 1%. 4% had grade 3 neurologic events; 3% interrupted treatment after grade 2 seizures. 5% had grade 3 neurologic events; 3% interrupted treatment after grade 2 seizures.
Canonical BiTE molecules lack the Fc portion responsible for FcRn binding and are not expected to undergo FcRn recycling; this likely contributes to their short half-lives (Fig. 2). Although continuous intravenous infusions can be burdensome for patients, a short half-life is beneficial in the event of serious AEs, because stopping infusion reduces serum levels quickly, generally leading to faster resolution of the AE.

The extension of serum half-life potentially will make administration easier for patients; therefore, half-life–extended (HLE) BiTE molecules (a canonical BiTE molecule fused to an Fc domain) (Fig. 2) have been developed. Comparative studies in nonhuman primates indicate that HLE BiTE molecules retain in vivo and in vitro activity similar to canonical BiTE molecules and have demonstrated that fusing a CD19 BiTE molecule to the Fc domain resulted in a half-life of 210 hours after a single intravenous dose, potentially allowing once-weekly dosing. Work on an anti-BCMA HLE BiTE molecule has indicated suitability for once-weekly dosing in patients with MM. Several HLE BiTE molecules are in development, including AMG 160 (antiprostate-specific membrane antigen [anti-PSMA]), AMG 199 (antimucin 17 [anti-MUC17]), AMG 562 (anti-CD33), AMG 701 (anti-BCMA), AMG 910 (anti-CLDN18.2), and AMG 757 (anti-DLL3) (Table 2).

TUMOR-SPECIFIC BITE ANTIGEN TARGETS

Hematologic Malignancies

CD19

Because CD19 is broadly and consistently expressed throughout B-cell development, it is an attractive target across all B-cell malignancies. Blinatumomab is being investigated in additional B-cell malignancies, including non-Hodgkin lymphoma, as both monotherapy and combination therapy (eg, NCT03114865, NCT02910063, NCT03898053, NCT03879098, NCT03792841, NCT01723475, NCT03296696, NCT03319940, NCT04117958, NCT02180920, NCT04260191, NCT02514239, NCT03571828, NCT02920427, NCT03224819, NCT03541369, NCT02514239, NCT03938063, NCT03296696, NCT03319940, NCT04117958, NCT02180920, NCT04260191).

TABLE 2. Tumor-Antigen Targets for Investigational Bispecific T-Cell Engager (BiTE) Molecules

Target	Cancer	BiTE Molecule	Type of BiTE	Study No.
CD19	DLBCL, MCL, FL	AMG 562	HLE	NCT03571828
CD33	AML	AMG 330	Canonical	NCT02520427
		AMG 673	HLE	NCT03224819
FLT3	AML	AMG 427	HLE	NCT03541369
BCMA	MM	AMG 420 (formerly Bi 836909)	Canonical	NCT02514239
		AMG 701	HLE	NCT03296696
		AMG 160	HLE	NCT03792841
		AMG 212	Canonical	NCT01723475
PSMA	Prostate	AMG 596	Canonical	NCT03296696
EGFRvIII	Giblioblastoma	AMG 757	HLE	NCT03319940
DLL3	Small-cell lung	AMG 199	HLE	NCT04117958
MUC17	Gastric	AMG 910	HLE	NCT04260191
CLDN18.2	Gastric	AMG 160	HLE	NCT03898063

Abbreviations: AMG, Amgen identification number; AML, acute myeloid leukemia; BCMA, B-cell maturation antigen; CLDN18.2, claudin-18 isoform 2; DLBCL, diffuse large B-cell lymphoma; DLL3, δ-like protein 3; EGFRvIII, epidermal growth factor receptor vili; FL, follicular lymphoma; FLT3, FMS-like tyrosine kinase 3; HLE, half-life extended; MCL, mantle cell lymphoma; MM, multiple myeloma; MUC17, mucin 17; NCT, clinicaltrials.gov national clinical trials identification number; PSMA, prostate-specific membrane antigen.
and NCT03072771). As an alternative to continuous intravenous dosing, subcutaneous delivery is being investigated in a phase 1b study (NCT02961881). The first-in-human study of the CD19 HLE BiTE molecule AMG 562 in patients with R/R diffuse large B-cell lymphoma, mantle cell lymphoma, and follicular lymphoma is recruiting (NCT03571828) (Table 2).

B-cell maturation antigen

B-cell maturation factor, also known as tumor necrosis factor receptor superfamily 17 or CD269, is a promising target expressed on the malignant cells of most patients with MM. A phase 1 study of CAR T-cell therapy targeting BCMA, involving patients with R/R MM (N = 33), showed an objective response rate of 85%, with a 45% CR rate and a median progression-free survival of 11.8 months. However, that study was not randomized, thus potentially confounding the results. It also produced a relatively high rate of AEs, with 97% of patients having grade ≥3 AEs, including hematologic and neurologic toxicity and CRS.55

AMG 420 (formerly BI 836909) is a BiTE molecule that, in preclinical studies, triggered the lysis of BCMA-expressing cells.56 The AMG 420 first-in-human phase 1 dose-escalation study treated patients with R/R MM who had received ≥2 prior treatment lines. The maximum tolerated dose was 400 µg daily; at that dose, the overall response rate was 70% (7 of 10 patients), and 5 of the 7 patients achieved an MRD-negative CR. Grade 3 peripheral neuropathy was a dose-limiting toxicity in 1 patient (2.5%) at 400 µg daily but resolved with intravenous immunoglobulin and corticosteroids.57 AMG 701 is an anti-BCMA HLE BiTE molecule that has shown promising in vitro antmyeloma activity as a monotherapy in an ongoing phase 1 trial (NCT03287908).58

CD33

The CD33 antigen is expressed in acute myeloid leukemia (AML), myelodysplastic syndrome, and chronic myeloid leukemia.59 The suitability of CD33 as an antigen target for BiTE technology was confirmed in a study assessing its expression in patients with AML, and the cytotoxicity of the CD33 BiTE molecule AMG 330, using primary AML blasts and AML cell lines, also was established.60,61 An ongoing phase 1 dose-escalation study of AMG 330 in patients with R/R AML is assessing the safety, pharmacokinetics, pharmacodynamics, and maximum tolerated dose. Preliminary data are encouraging; AMG 330 dosed at up to 480 µg daily is tolerable and has antileukemic activity in heavily pretreated patients. Also under development is the CD33 HLE BiTE molecule AMG 673.54,62

FMS-like tyrosine kinase 3

The FMS-like tyrosine kinase 3 (FLT3) antigen has been detected in most AML blasts and leukemic stem cells, whereas cell surface expression on nonmalignant cells is limited to immature hematopoietic progenitor cells. The oral FLT3/receptor tyrosine kinase AXL inhibitor gilteritinib has shown benefit in treating adults with FLT3-mutated, R/R AML (approximately 25% of patients with AML carry the FLT3-internal tandem duplication mutation), but the need remains for a therapy targeting FLT3 regardless of mutational status. AMG 427 is an FLT3 HLE BiTE molecule with potent activity in vitro, ex vivo, and in vivo in animal models. It recognizes an extracellular portion of FLT3 that is present regardless of mutation status and is currently being evaluated as monotherapy in a phase 1 study (NCT03541369) in patients with R/R AML.

Solid Tumors

Prostate-specific membrane antigen

PSMA is highly expressed in poorly differentiated, metastatic, and castration-resistant prostate cancer (mCRPC). Pasotuxizumab (AMG 212/BAY2010112) is an anti-PSMA canonical BiTE molecule.63 In a phase 1 study using continuous intravenous pasotuxizumab to treat 16 patients with mCRPC who were refractory SOC therapy (NCT01723475), antitumor activity was dose-dependent, with 2 patients achieving a durable prostate-specific antigen response beyond 1 year.64 Serious AEs were consistent with other BiTE therapies.64,65 This is the first study showing that a BiTE therapy can be efficacious in solid tumors. AMG 160 is an anti-PSMA HLE BiTE molecule also being investigated for the treatment of mCRPC (NCT03792841) and should allow more convenient dosing, with short-term infusion every 2 weeks.66

Epidermal growth factor receptor vIII

Although brain cancers are not common, glioblastoma is the most aggressive primary malignant brain tumor (5-year survival rate: <5%).67 Therapies for glioblastoma have advanced, but the nonspecific nature of the surgery, radiation, and chemotherapeutic regimens are broadly destructive. Epidermal growth factor receptor vIII (EGFRvIII) is a tumor-specific mutant of the EGFR tyrosine kinase that promotes tumor-cell growth and is expressed in approximately one-third of glioblastomas; AMG 596 is a BiTE-targeting EGFRvIII and is designed for the treatment of glioblastoma. Preclinical experiments demonstrated that AMG 596 potently mediates the lysis of EGFRvIII-positive tumor cell lines with half-maximal
effective concentration values <1 pM. It also significantly prolonged the survival of tumor-bearing mice in an EGFRvIII BiTE orthotopic tumor model ($P < .001$) and caused no toxicity in a dose range-finding study in cynomolgus monkeys. A first-in-human sequential dose-escalation, dose-expansion clinical trial is taking place for patients with EGFRvIII-positive glioblastoma. The preliminary clinical data show that AMG 596 may be well tolerated and offer antitumor activity in recurrent glioblastoma, with 1 patient achieving a sustained, confirmed partial response and 4 exhibiting stable disease ($N = 19$; NCT03296696).

Delta-like protein 3
DLL3 is a Notch ligand highly expressed in small-cell lung cancer (SCLC) but not in normal lung tissue, suggesting that it is important in the tumorigenesis of SCLC. AMG 757 is an HLE BiTE molecule that targets DLL3; in preclinical studies, it showed low potency against SCLC lines in vitro, significant inhibition of tumor growth in vivo, and an excellent safety profile in nonhuman primates. This suggests that AMG 757 may offer a new therapeutic option for patients with SCLC, and it has entered phase 1 clinical trials (NCT03319940).

Mucin 17
MUC17 is a membrane-bound mucin that is overexpressed in gastric cancer and has been identified as a gastric cancer suppressor protein with therapeutic potential. The HLE BiTE molecule AMG 199 has entered a phase 1 clinical trial to evaluate its safety and tolerability in patients with MUC17-positive gastric and gastroesophageal junction cancers (NCT04117958).

Claudin-18 isoform 2
Claudin-18 isoform 2 (CLDN18.2) is an epithelial surface marker for gastric, esophageal, pancreatic, lung, and ovarian cancers. AMG 910 is a novel HLE BiTE molecule designed to direct T cells toward CLDN18.2-expressing cells. A phase 1 study is in preparation to evaluate AMG 910 in patients with gastric and gastroesophageal junction adenocarcinomas (NCT04260191).

CONCLUSIONS
Despite advances in the field of immuno-oncology, many patients with cancer still have critical unmet needs. As demonstrated with blinatumomab, BiTE therapies have the potential to provide deep and durable responses by eliminating MRD. Their off-the-shelf use provides an innovative T-cell treatment to patients with an immediate need.

The development of HLE BiTE molecules and subcutaneous administration of blinatumomab also aim to improve the patient experience by providing dosing flexibility. To date, the BiTE immuno-oncology platform has a relatively low rate of immune-related grade ≥3 AEs, including CRS. The ability to harness the power of the T cell and direct it to tumor-antigen targets has the potential to transform cancer treatment by setting new standards, such as complete MRD response and expansion of cure fraction. The approval of blinatumomab and the emerging clinical data from BiTE pipeline molecules show the potential of this platform to provide meaningful advances in oncology.
REFERENCES

1. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73.

2. Im A, Pavletic SZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017;10:94.

3. Marshall HT, Djamgoz MBA. Immuno-oncology: emerging targets and combination therapies. Front Oncol. 2018;8:315.

4. Pennock GK, Chow QM. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist. 2015;20:812-822.

5. Liao D, Wang M, Liao Y, Li J, Niu T. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol. 2019;10:609.

6. Armand P. Immune checkpoint blockade in hematologic malignancies. Blood. 2015;125:3935-3940.

7. Costa F, Dai P, Kini Bailur J, Dhodapkar K, Dhodapkar MV. Checkpoint inhibition in myeloma: opportunities and challenges. Front Immunol. 2018;9:2204.

8. IMFINZI (durvalumab) [package insert]. AstraZeneca, AB; 2017.

9. KEYTRUDA (pembrolizumab) [package insert]. Merck Sharp & Dohme Corporation; 2014.

10. TECENTRIQ (atezolizumab) [package insert]. Genentech; 2016.

11. OPDIVO (nivolumab) [package insert]. Bristol-Myers Squibb; 2014.

12. LIBTAYO (cemiplimab-rwlc) [package insert]. Regeneron; 2018.

13. YERVOY (ipilimumab) [package insert]. Bristol-Myers Squibb; 2011.

14. Yراسزهck T, Kasichayanula S, Benjamin JE. Translation and clinical development of bispecific T-cell engaging antibodies for cancer treatment. J Immunother. 2019;42:587-601.

15. Perrinajquet C, Desbaillets N, Hottinger AF. Neurotoxicity associated with cancer immunotherapy: immune checkpoint inhibitors. J Hematol Oncol. 2018;11:94.

16. Jain T, Litzow MR. No free rides: management of toxicities of chimeric antigen receptor-T cells for acute lymphoblastic leukemia. N Engl J Med. 2013;368:1509-1518.

17. Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukaemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129:3322-3331.

18. Vesely MD, Schreiber RD. Cancer immunodetector: antigens, mechanisms, and implications to cancer immunotherapy. Annu N Y Acad Sci. 2013;1284:1-5.

19. Fischer J, Paret C, El Malki K, et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother. 2017;40:187-195.

20. Correnti CE, Laszlo GS, de van der Schueren WJ, et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome specific T-cell engagement (BiTE) resistance via CD28 co-stimulation. Leukemia. 2018;32:1259-1263.

21. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10:53.

22. Amgen Inc. Blincyto (Blinatumomab) [package insert]. Amgen Inc; 2019.

23. Stein A, Franklin JL, Chia VM, et al. Benefit-risk assessment of blinatumomab in the treatment of relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Drug Saf. 2019;42:587-601.

24. Perrinajquet C, Desbaillets N, Hottinger AF. Neurotoxicity associated with cancer immunotherapy: immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy. Curr Opin Neurol. 2019;32:500-510.

25. Diehnbach C, Assouline S, Bosch F, et al. An individualized risk mitigation approach for safety: experience from the mosunetuzumab (CD20/CD3 bispecific antibody) development program in relation to neurotoxicity risk [abstract]. Blood. 2019;134(suppl 1):4728.

26. Jain T, Litow MR. No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Blood Adv. 2018;2:3933-3943.

27. Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer. 2009;69:4941-4944.

28. Arvedson TL, Balazs M, Bogner P, et al. Abstract 55: Generation of half-life extended anti-CD33 BiTE® antibody constructs compatible with once-weekly dosing. Cancer Res. 2017;77(13 suppl):55.

29. Lorenzewske G, Friedrich M, Kischel R, et al. Generation of a half-life extended anti-CD19 BiTE® antibody construct compatible with...
once-weekly dosing for treatment of CD19-positive malignancies [abstract]. Blood. 2017;130(suppl 1):2815.
53. Goyos A, Li CM, Deegen P, et al. Generation of half-life extended anti-BCMA BiTE® antibody construct compatible with once-weekly dosing for treatment of multiple myeloma (MM) [abstract]. Blood. 2017;130(suppl 1):5389.
54. Amgen Inc. Amgen Pipeline. Accessed April 30, 2019. https://www.amgenpipeline.com/pipeline/
55. Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. *N Engl J Med*. 2019;380:1726-1737.
56. Hipp S, Tai YT, Blanset D, et al. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. *Leukemia*. 2017;31:1743-1751.
57. Topp MS, Duell J, Zugmaier G, et al. Anti-B-Cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. *J Clin Oncol*. 2020;38:775-783.
58. Lederman L. Anti-BCMA BiTE AMG 701 Shows Preclinical Promise in Multiple Myeloma. OncLive; 2019.
59. Sanford D, Garcia-Manero G, Jorgensen J, et al. CD33 is frequently expressed in cases of myelodysplastic syndrome and chronic myelomonocytic leukemia with elevated blast count. *Leuk Lymphoma*. 2016;57:1965-1968.
60. Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. *Blood*. 2014;123:356-365.
61. Laslo GS, Gudegon CJ, Harrington KH, et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. *Blood*. 2014;123:554-561.
62. Walter RB. Investigational CD33-targeted therapeutics for acute myeloid leukemia. *Expert Opin Investig Drugs*. 2018;27:339-348.
63. Friedrich M, Raum T, Lutterbuese R, et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-bispecific BiTE antibody cross-reactive with non-human primate antigens. *Mutat Cancer Ther*. 2012;11:2664-2673.
64. Hummel HD, Kufer P, Grullich C, et al. Phase I study of pasotuxizumab (BAY 2010112), a PSMA-targeting bispecific T cell engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC) [abstract]. *J Clin Oncol*. 2019;37(15 suppl):5034.
65. Hummel H-D, Kufer P, Grullich C, et al. Phase I study of pasotuxizumab (AMG 212/BAY 2010112), a PSMA-targeting BiTE (Bispecific T-cell engager) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). *J Clin Oncol*. 2020;38(6 suppl):324.
66. Ballis J, Deegen P, Thomas O, et al. Preclinical evaluation of AMG 160, a next-generation bispecific T cell engager (BiTE) targeting the prostate-specific membrane antigen PSMA for metastatic castration-resistant prostate cancer (mCRPC) [abstract]. *J Clin Oncol*. 2019;37 (15 suppl):301.
67. Dolecek TA, Propp JM, Sroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. *Neuro Oncol*. 2012;14(suppl 5):v1-v49.
68. Rosenthal MA, Balana C, van Linde ME, et al. ATIM-49 (LTBK-01). AMG 596, a novel anti-EGFRvIII bispecific T cell engager (BiTE) molecule for the treatment of glioblastoma (GBM): planned interim analysis in recurrent GBM (gGBM) [abstract]. *Neuro Oncol*. 2019;21(suppl 6):283.
69. Furuta M, Kikuchi H, Shoji T, et al. DLL3 regulates the migration and invasion of small cell lung cancer by modulating Snail. *Cancer Sci*. 2019;110:1599-1608.
70. Smit MAD, Borghaei H, Owonikoko TK, et al. Phase I study of AMG 757, a half-life extended bispecific T cell engager (BiTE) antibody construct targeting DLL3, in patients with small cell lung cancer (SCLC) [abstract]. *J Clin Oncol*. 2019;37(15 suppl):TPS577.
71. Yang B, Wu A, Hu Y, et al. Mucin 17 inhibits the progression of human gastric cancer by limiting inflammatory responses through a MYH9-p53-RhoA regulatory feedback loop. *J Exp Clin Cancer Res*. 2019;38:283.
72. Sahin U, Koslowski M, Dhaene K, et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. *Clin Cancer Res*. 2008;14:7624-7634.
73. Goyos A, Li CM, Deegen P, et al. Abstract LB-299: Cynomolgus monkey plasma cell gene signature to quantify the in vivo activity of a half-life extended anti-BCMA BiTE® for the treatment of multiple myeloma. *Cancer Res*. 2018;78(suppl):LB-299.