Differentiation of human induced pluripotent stem cells into erythroid cells

Mohsen Ebrahimi, Mehdi Forouzesh, Setareh Raoufi, Mohammad Ramazii, Farhoodeh Ghaedrahmati and Maryam Farzaneh

Abstract

During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.

Keywords: Induced pluripotent stem cells, Erythrocytes, Reprogramming, Differentiation, Large-scale, Blood disorders

Introduction

Blood transfusion is the main therapeutic option and a crucial part of modern medicine for patients with severe anemia [1, 2]. A limited resource of blood, blood group compatibility (ABO and Rh antigens), and the risks of infection can present great challenges for blood transfusion [2, 3]. Therefore, any alternative solution methods would be most helpful for patients with rare blood groups [4]. Mature red blood cells (RBCs) or erythrocytes/erythroid cells in a complex process called erythropoiesis are produced from hematopoietic stem cells (HSCs) [5–7]. Erythroblasts (precursors of RBCs) are difficult to proliferate in vitro [2, 8, 9]. In past decades, several groups have generated erythrocytes from umbilical cord blood (UCB)-derived HSCs [2, 10]. Although multipotent HSCs have the capacity for self-renewal, the large-scale in vitro/ex vivo HSCs expansion and differentiation into RBCs is a difficult task [2, 11, 12]. Ex vivo cultured RBCs can also be obtained from immortalized erythroid precursors and pluripotent stem cells (PSCs) [13, 14]. Human PSCs including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to proliferate indefinitely in culture and give rise to lineages of ectoderm, mesoderm, and endoderm [15–17]. Therefore, much attention has focused on human PSCs to replace current transfusion banking [18, 19].
Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes with normal function [18, 20, 21]. Unfortunately, the ex vivo expansion of human ESC-derived RBC is ethically and politically controversial [22, 23]. In contrast, human iPSCs have less ethical and social issues compared to human ESCs [24, 25]. Human iPSCs are produced by the manipulation of differentiated somatic cells [26–29]. Reprogramming of human somatic cells through the ectopic expression of transcription factors has provided a new avenue for disease modeling and regenerative medicine [16, 30]. As human iPSCs have similar properties with human ESCs, these cells can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs to eliminate blood supply shortages [31, 32]. Various techniques have been developed to generate enucleated RBCs from human iPSCs [31, 33, 34]. Genome editing and human iPSCs technology has greatly accelerated the use of autologous transfusion therapies [35–38]. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.

In vivo and in vitro erythropoiesis
Erythropoiesis is a complex process in the bone marrow in which HSCs proliferate and give rise to erythroid committed progenitors (EPC) and mature RBCs [39, 40]. Following differentiation toward the erythroid lineage, HSCs lose their self-renewal properties and become restricted to generate burst-forming unit (BFU-E), colony-forming unit-erythroid (CFU-E), basophilic (BasoE), polychromatophilic (PolyE), orthochromatic erythroblasts (OrthoE), reticulocytes (Retic), and RBCs [8] (Fig. 1). This developmental procedure is controlled by cell-cell/cell-matrix interactions along with several cytokines and growth factors including IL-3, IL-6, erythropoietin (EPO) (the main erythropoietic stimulating hormone), EPO-receptor, members of the transforming growth factor-β (TGF-β), activin A, activin receptor-II, Flt3 ligand (Flt3-L), vascular endothelial growth factor (VEGF), stem cell factor (SCF), thrombopoietin (TPO), and granulocyte colony-stimulating factor (G-CSF) [26, 41, 42]. Erythropoiesis is controlled and characterized via multiple transcriptional regulators, including myb, Sox6, Bcl11A, Gata1, and Klf1 [43, 44].

Up to date, several culture systems have been established to obtain a sufficient number of mature and functional RBCs in vitro [8]. Three culture systems including erythroid cells lines (the murine erythroleukemia cell line and the human K562 cell line), HSCs derived from peripheral blood (PB) and UCB, and stem cells (human ESCs, neonatal cord blood (CB), mesenchymal stem cells (MSCs), and human iPSCs) have been evaluated to obtain RBCs [26, 45]. An immortalized or continuous cell lines have a homogenous karyotype that can be altered following continuous cell culture, which might not be the most appropriate for pre-clinical studies or clinical applications [46]. In contrast, human PSCs-derived RBCs can be achieved in larger scale cultures [47, 48]. Many attempts have been made previously to establish all blood lineages, including lymphocytes, megakaryocytes, neutrophils, and RBCs from human ESCs [49–52]. Kaufman et al. for the first time revealed that human ESCs on the murine bone marrow cell line or a yolk sac endothelial cell line could give rise to erythrocytes [53]. Similar results were investigated by other lab using human fetal liver cells to improve the yield of human ESCs-derived erythroid cells [54]. However, the use of human ESCs has faced several challenges, including the host immune response toward ESCs and the ethical issues associated with the destruction of human embryos [55]. Differentiation of mouse iPSCs to blood cells has been investigated less intensively compared to the ESCs [56, 57]. Recently, human iPSCs have been studied as one of the potential sources for HSCs and RBCs [58–60].

In vitro culture of human iPSC-derived RBCs
In 2006, murine iPSCs for the first time were obtained from somatic cells by using four transcription factors, Oct4/Klf4/Sox2/c-Myc [61]. In 2007, human iPSCs were generated from primary human fibroblasts using Oct4/ Klf4/Sox2/LIN28 [62]. Human iPSCs enable researchers to generate PSCs using well-defined and highly reproducible protocols [63–65].

Although HSCs can be used for the treatment of hematological disorders [66, 67], the bone marrow biopsy is an invasive procedure with chronic graft-versus-host diseases (GVHD), morbidity, and mortality in patients who received allogeneic HSC therapy [68, 69]. Autologous HSCs are an alternative option with a lower mortality rate, though in some cases, genetic correction is necessary before autologous HSCs transplantation [70–72]. However, in vitro expansion of HSCs is one of the main hurdles of autologous HSCs [73, 74]. These limitations can be solved with a renewable source of cells. Human iPSCs as unlimited supplies of autologous cells can be an ideal candidate for genetic correction, differentiation to healthy HSCs, and autologous transplantation [67, 75].

More recently, established iPSCs from human fibroblast cells represent a powerful tool for the investigation of early hematopoiesis [59, 76, 77]. One of the promising strategies for the use of iPSC is their capacity to differentiate into RBCs and to eliminate the allogeneic blood shortages [78, 79]. Two approaches including embryoid body (EB) formation (feeder-free culture) and co-culture...
of human iPSCs with feeder cells have been employed for the generation of HSCs from human iPSCs. Many studies have aimed to differentiate human iPSCs into RBCs using EB formation [31, 33, 34]. In general, there are three steps for differentiation of iPSCs into RBCs, including the generation of iPSCs, HSCs, and mature RBCs [33, 80] (Fig. 2). Many attempts have been made previously to achieve human iPSC-derived RBCs under conventional culture methods with SCF, EPO, VEGF, insulin-like growth factor I (IGF-1), dexamethasone (glucocorticoid receptor agonist), ITS (insulin, transferrin, and selenium), TPO, FLT3, BMP4, IL-3, IL-6, and EPO (Table 1). However, an ideal culture condition for human iPSC-derived RBCs should be able to generate large numbers of functional enucleated erythrocytes [31, 86]. Feeder cells as a major cellular component have been found to enhance hematopoiesis from human iPSCs [81, 82]. It has been shown that OP9 feeder cells as a mouse bone marrow stromal cell line may enhance the hematopoietic differentiation of human iPSCs [86]. Also, C3H10T1/2 feeder cells have the capacity to stimulate the hematopoietic differentiation of human iPSCs [38, 87]. Increasing in vitro evidence indicates that the cell type of origin and an epigenetic memory for iPSCs may influence on the hematopoietic differentiation of human iPSCs [34, 88, 89]. Compared with iPSC-derived fibroblast cells, the human CD34+ hematopoietic population with the features of MSCs might be more suitable for the hematopoietic differentiation of iPSCs [81]. Following differentiation, HSCs lose their repopulation capacity. Hence, CD34+ HPCs must be purified before starting the differentiation [38]. Human iPSC-derived CD43+ hematopoietic cells have a strongly glycosylated transmembrane sialomucin that can be a suitable option for in vitro erythropoiesis [79]. In HSCs, reactive oxygen species (ROS) can modulate a balance between proliferation and differentiation. In the early stage of hematopoietic differentiation, mitochondria and NADPH oxidases (NOX) are the main sources of ROS [90, 91]. NOX4 as the major NOX enzyme have been shown to play a significant role in the early stages of hematopoietic
differentiation from iPSCs [85]. UM171 is a potent small molecule (HSC self-renewal agonist) that increases the derivation of HSPCs from human iPSCs in vitro [84, 92]. Choi et al. found some variations in the efficiency of human iPSCs differentiation into RBCs. While the pattern of hematopoietic differentiation was similar in seven tested lines [81], Dorn et al. reported that all human iPSCs could give rise to enucleated reticulocytes. But, the growth rate of erythroid cells from iPSC-derived CD34+ HSCs was slightly higher [34]. Uchida et al. demonstrated that compared to the yield of erythroid cells from PB erythroid progenitor-derived iPSCs, MSC-derived iPSCs produced more efficient definitive erythroid cells with higher b-globin expression [48]. Lapillonne et al. for the first time reported the complete differentiation of human iPSCs into definitive erythrocytes and RBCs with fetal hemoglobin [33]. Dias et al. revealed that the episomal reprogramming or transgene-free human iPSCs can be used for large-scale expansion of human iPSC-derived RBCs [82]. Olivier et al.
| Human iPSC cell source | Reprogramming transcription factors | Cluster of differentiation (CD) markers | iPSC culture condition | Results | Refs. |
|------------------------|------------------------------------|--------------------------------------|-----------------------|---------|-------|
| IMR90                  | POU5F1, SOX2, and NANOG            | CD34+ and CD43+ (hematopoietic progenitors), CD31+ and CD43− (endothelial cells), CD43+, CD235α+, and CD41α+/- (erythromegakaryopoietic) | α-MEM with 20% defined FBS, 100 ng/mL bFGF, OP9 feeder layer | Seven human iPSC lines could differentiate into RBCs with the similar pattern of differentiation | [81] |
| Fetal and newborn foreskin fibroblasts | POU5F1, SOX2, NANOG, and LIN28 | CD34- and CD45- (hematopoietic progenitors), CD36 and CD235α (erythroid cells), CD71 (transferrin receptor), CD45, CD34, and CD71 (hematopoietic and erythroid cells) | EB formation on a cellular stroma | The complete differentiation of human iPSCs into definitive erythrocytes and RBCs with fetal hemoglobin | [33] |
| Adult skin fibroblasts  | POU5F1, SOX2, and NANOG            | CD235α+ and CD45− (leukocyte-free RBCs), CD34+ or CD31+ (erythroid cells) | 100 ng/mL ZbFGF, OP9 feeder layer, serum free medium, SCF, G-CSF, GM-CSF, IL3, IL6 | The epistemal reprogramming or transgene-free human iPSCs for large-scale expansion of RBCs | [82] |
| IMR90 and FD-136       | pSin-EF2-Oct4-Pur, pSin-EF2-Sox2-Pur, pSin-EF2-Nanog-Pur and pSin-EF2-Lin28-Pur13 | CD34+ (iPSCs), CD45+/-CD34+ (HSCs), CD45+/CD34− (myeloid precursors), GPA+/CD45− (erythroid cells), CD36 and CD71 (primitive erythroid cells) | 10% human plasma, 10 μg/mL human holtotransferrin, 100 ng/mL SCF, 100 ng/mL BMP4, 5 ng/mL VEGF, 5 ng/mL IL-3, 5 ng/mL IL-6, 3 U/mL Epo, 10 μg/mL insulin, 3 U/mL heparin | The growth rate of erythrocyte cells from iPSC-derived CD34+ HSCs was slightly higher | [34] |
| Human adult and fetal fibroblasts | POU5F1, SOX2, and NANOG | CD34+ (CD34+ CD31+ CD45- CD43-) (endothelial cells), CD31, CD34, CD36, CD41α, CD43, CD44, CD45, CD71, and CD235a | Stemline II medium, 20 ng/mL bFGF, 20 ng/mL recombinant vitronectin, 1 mM StemRegenin (SR1), 1 mM hydrocortisone, 30–50 ng/mL SCF, 16.7 ng/mL Flt3-ligand, 10 ng/mL Wnt3A, 2 mM GSK3b inhibitor VIII or A-A014418, 6.7–20 ng/mL BMP4, 6.7 ng/mL IL-3, 6.7 ng/mL IL-11, 50 mM IBMX, 1.3 U/mL EPO, 30 ng/mL VEGF, 10 ng/mL FGFα, 10 ng/mL IGF, 10 ng/mL TPO, 5 mg/mL heparin, 50 mM IBMX, 0.4 ng/mL b-estradiol | The large-scale expansion of human iPSC-derived erythroid cells under feeder-free and serum-free culture condition | [83] |
| Neonatal fibroblasts    | Episomal vectors that express OCT4, SOX2, NANOG, LIN28, MYC, KLF4, and LT | CD144+/CD31+ (endothelial cells), CD31, CD34, CD36, CD41α, CD43, CD44, CD45, CD71, and CD235a | VEGF, BMP4, Flt3-ligand, IL-3, IL-6, SCF, TPO, EPO | Human iPSC-derived CD34+-expressing hematopoietic cells are a suitable option for in vitro erythropoiesis | [79] |
| Human cord blood        | OCT4 and SOX2 alone (CD34-2F-iPSC) or expressing OCT4, SOX2, KLF4, and c-MYC (CD34-4F-iPSC) | CD34+ (hematopoietic progenitors), CD36, CD235α, and CD45, CD71 (hematopoietic and erythroid cells) | IDMEM medium, 0.2 mg/mL insulin, 0.11 mg/mL transferrin, 0.1 μg/mL sodium selenite, 0.45 mM a-mono-thioglycerol, 50 μg/mL AA, 20 ng/mL VEGF, 50 ng/mL SCF, 50 ng/mL fms-related tyrosine kinase 3 ligand, 50 ng/mL TPO, 5 μg/mL IL-3, 10 ng/mL BMP4, 5 U/mL EPO | MSc-derived iPSCs produced more efficient definitive erythroid cells with higher b-globin expression | [48] |
| Human urine             | OCT4, SOX2, KLF4, and MYC | CD34, CD43, CD45, CD31, CD144, CD235α, CD11b, CD14, CD3, CD4, CD5, CD7, CD8α | Matrigel, mTeSR1 medium, stemline II, IT5, 20 ng/mL BMP4, 5 ng/mL Activin A, 5 ng/mL bFGF, 40 ng/mL VEGF, 50 ng/mL SCF, 50 ng/mL Flt3-ligand, 10 ng/mL P17 improved in vitro derivation of HSCs from human iPSCs | [84] |
illustrated the large-scale expansion of human iPSC-derived erythroid cells under feeder-free and serum-free culture conditions [83]. They used several small molecules such as StemRegenin (SR1, a dual RasGAP and ERK1/2 inhibitor), BIO (archetypal GSK3b inhibitor), CHIR99021 (GSK3b inhibitor), IBMX (nonspecific inhibitor of cAMP and cGMP phosphodiesterases), and A-A014418 (GSK3b inhibitor VIII) to promote erythroid differentiation of human iPSCs [83]. Recently, Bernecker et al. described a simplified cell culture system with low cytokine support (SCF, EPO, and IL-3) to generate prolonged human iPSC-derived RBCs [31]. Tursky et al. compared four serum and feeder-free iPSC hematopoietic differentiation protocols and investigated that two-dimensional (2D)-multistep protocol was simple and time- and cost-effective with the most efficient CD34+ progenitor cells [93].

**Primary technical challenges for the clinical application of iPSC-derived RBCs**

The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders [94]. Many attempts have been examined to differentiate iPSCs into RBCs, but no clinical trials using iPSC-derived RBCs transfusion have been conducted [60]. Table 2 shows patient-specific iPSCs models of hematological disorders.

---

**Table 1** In vitro differentiation of human induced pluripotent stem cells (iPSCs) into red blood cells (RBCs) (Continued)

| Human iPSC cell source | Reprogramming transcription factors | Cluster of differentiation (CD) markers | iPSC culture condition | Results | Refs. |
|------------------------|------------------------------------|----------------------------------------|------------------------|---------|-------|
| Cord blood CD34+ cells and CD36+ erythroblasts | OCT4, SOX2, KLF4, and c-MYC | CD34+/CD45+ (hematopoietic progenitors), CD36+/CD45+ (erythroid precursor) | mTeSR1 media, Matrigel, IMDM, C3H10T1/2 feeder cells, 1% ITS, 50 ng/mL AA, 0.45 mM α-MgCl₂, 50 mg/mL AA, 0.56 mg/mL transferrin, 1.0 μg/mL insulin, 100 μg/mL human holo transferrin | Prolonged human iPSC-derived RBCs in a simplified cell culture system with low cytokine support | [31] |
| WT-iPSC line | CD34, CD38, CD45, CD90, CD117, CD133 | Vitronecin, OP9 feeder layer, MEM medium with 10% FBS, 100 μM MTG, 50 μg/mL AA | NOX4 has a significant role in the early stages of hematopoietic differentiation from iPSCs | Serum-free iPSC sac-derived erythroid differentiation | [38] |
| Bone marrow stromal cells from a SCD patient | CD31, CD34, CD36, CD38, CD41a, CD43, CD45, CD45RA, CD49f, CD71, CD73, CD90, CD144, CD184 | mTeSR1 media, Matrigel, IMDM, C3H10T1/2 feeder cells, 1% ITS, 50 mg/mL AA, 0.45 mM α-MgCl₂, 50 mg/mL human VEGF, 15% FBS or 20% KSR, OP9 feeder cells, 50 ng/mL FL, 50 ng/mL TPO, 5 ng/mL IL3, 50 ng/mL SCF, 5 U/mL EPO, and 10 ng/mL BMP4, 1.0 μM estradiol, 1.0 μM dexamethasone, 2% BSA, 0.056 mg/mL transferrin | Transient expression of human HbS and HbC | Serum-free iPSC sac-derived erythroid differentiation | [38] |

**EB190** human fetal lung fibroblasts, PBMCs peripheral blood mononuclear cells, IMDM Iscove's modified Dulbecco's medium, SCD sickle cell disease, FD-136 skin primary fibroblast cell line, OP9 mouse bone marrow stromal cell line, EB embryoid body, SCF stem cell factor, TPO thrombopoietin, FLT3 Fms-related tyrosine kinase 3 ligand, FL FLT3 ligand, BMP4 bone morphogenetic protein 4, VEGF vascular endothelial growth factor, IL-3 interleukin-3, EPO erythropoietin, ZbFGF zebrafish basic fibroblast growth factor, HSCs hematopoietic stem cells, IGF insulin-like growth factor, IBMX isobutyryl methyl xanthine, MTG monoiodothyglicol, AA ascorbic acid, KSR knockdown serum replacement, BSA bovine serum albumin, ITS insulin, transferrin, selenium

Before iPSC-derived RBCs derivatives can be used in the clinic, it is essential to found the risks and process-related challenges associated with the generation of late-stage maturity RBCs in vitro [132, 133]. The technology of manufacturing functional erythroid cells from iPSCs needs a sufficient number of functional RBCs in a serum-free-liquid culture system or chemically defined media, which is necessary for any potential clinical trials [134, 135]. Human iPSCs may be considered as an unlimited source of RBCs than HSCs, but generating mature RBCs from iPSCs is still an inefficient process and less strict experiment protocols using low-cost media and reagents are needed [136]. Thus, the challenge for large-scale expansion of iPSC-derived erythroid cells needs to be overcome [8, 60].

The use of small molecules as substitutes for growth factors or various cytokines can reduce side effects and media costs [137, 138]. Further studies are necessary to understand which genetic or epigenetic alternations improve the terminal differentiation of iPSC-derived erythroid cells [139]. Recent studies have shown that histone deacetylases such as histone deacetylase 2 (HDAC2) are the critical regulator for chromatin condensation in mouse erythroblasts [140]. Administration of HDAC2 inhibitors can suppress the terminal differentiation of human erythroid precursors [139]. It is
| Authors            | Disorder                      | iPSC cell source                                      | Ref. |
|--------------------|-------------------------------|-------------------------------------------------------|------|
| Ye et al. 2009     | Myeloproliferative disorders (MPDs) | iPSCs from peripheral blood CD34+ cells of patients with MPDs | [95] |
| Zou et al. 2011    | Chronic granulomatous disease (CGD) | iPSCs from patient with X-linked CGD                    | [96] |
| Kumano et al. 2012 | Chronic myelogenous leukemia (CML) | iPSCs from imatinib-sensitive CML patient              | [97] |
| Chang et al. 2012  | α-Thalassemia (α-Thal)         | iPSCs from α-Thal fibroblasts                          | [98] |
| Garçon et al. 2013 | Diamond Blackfan anemia (DBA)  | iPSCs from fibroblasts of DBA patient                  | [99] |
| Bedel et al. 2013  | CML                           | iPSCs from CD34+ blood cells isolated from CML patients | [100]|
| Yuan et al. 2013   | Paroxysmal nocturnal hemoglobinuria (PNH) | iPSCs from adult male dermal fibroblasts               | [101]|
| Saliba et al. 2013 | Polycythemia vera (PV)        | iPSCs from 2 polycythemia vera patients carrying a heterozygous and a homozygous mutated JAK2 JAK2V617F | [102]|
| Sakurai et al. 2014| Familial platelet disorder (FPD)/AML | iPSCs from three distinct FPD/AML pedigrees             | [103]|
| Sun et al. 2014    | Sickle cell disease (SCD)      | iPSCs from patient with SCD mutation                   | [104]|
| Ye et al. 2014     | PV                            | iPSCs from PV patient blood                           | [105]|
| Xie et al. 2014    | β-Thalassemia (β-Thal)         | iPSCs from patient with β-Thal                         | [106]|
| Amabile et al. 2015| CML                           | Primary bone marrow cells obtained from a BCR-ABL-positive CML patient | [107]|
| Ge et al. 2015     | DBA                           | iPSCs from DBA patients carrying RPS19 or RPLS mutations | [108]|
| Park et al. 2015   | Hemophilia A (HA)             | iPSCs from patients with chromosomal inversions that involve introns 1 and 22 of the F8 gene | [109]|
| Kotini et al. 2015 | Myelodysplastic syndromes (MDS) | iPSCs from hematopoietic cells of MDS patients         | [110]|
| Huang et al. 2015  | SCD                           | iPSCs from adult patients of SCD, which harbor the homozygous β^i mutation in the HBB gene | [111]|
| Chang et al. 2015  | Severe combined immunodeficiency (SCID) | iPSCs from SCID patients with Janus family kinase (JAK3)-deficient cells | [112]|
| Menon et al. 2015  | X-linked severe SCID (SCID-X1) | iPSCs from SCID-X1 patients                           | [113]|
| Ingrunruanglert et al. 2015 | Wiskott-Aldrich syndrome (WAS) | iPSCs from patients with mutations in WAS               | [114]|
| Wu et al. 2016     | HA                            | iPSCs from peripheral blood from severe HA patients    | [115]|
| Pang et al. 2016   | HA                            | iPSCs from patients with severe HA                     | [116]|
| Niu et al. 2016    | β-Thal                        | iPSCs from patient with β-Thal                         | [117]|
| Laskowski et al. 2016 | WAS                        | iPSCs from CD34+ hematopoietic progenitor cells of a WAS patient | [118]|
| Doulatov et al. 2017 | DBA                        | iPSCs from skin fibroblasts from DBA patient           | [119]|
| He et al. 2017     | Hemophilia B (HB)             | iPSCs from HB patient                                 | [120]|
| Chao et al. 2017   | Acute myeloid leukemia (AML)  | iPSCs from AML patient                                | [121]|
| Kotini et al. 2017 | AML                           | iPSCs from patients with low-risk MDS (refractory anemia [RA]), high-risk MDS (RA with excess blasts [RAEB]) and secondary AML (sAML or MDS/AML from preexisting MDS) | [122]|
| Miyauchi et al. 2018 | CML                        | iPSCs from the bone marrow of two CML-CP patients      | [123]|
| Olgasi et al. 2018 | HA                            | iPSCs from peripheral blood (PB) CD34+ cells of HA patient | [124]|
| Ramaswamy et al. 2018 | HB                        | iPSCs from HB patients                                | [125]|
| Lyu et al. 2018    | HB                            | iPSCs from peripheral blood mononuclear cells (PBMCs)  | [126]|
| Cai et al. 2018    | β-Thal                        | iPSCs from patient with β-Thal                         | [127]|
| Wattanapanitch et al. 2018 | HbE/β-Thal                     | iPSCs from Skin cells of HbE/β-Thal patients           | [128]|
Table 2  Patient-specific iPSC models of hematological disorders (Continued)

| Authors             | Disorder                                      | iPSC cell source                                                | Ref.  |
|---------------------|-----------------------------------------------|-----------------------------------------------------------------|-------|
| Sfougataki et al.   | β-Thal, SCD, DBA, severe aplastic anemia (SAA), | iPSCs from human bone marrow-derived mesenchymal stromal cells  | [129] |
| 2019                | dedicator of cytokinesis 8 (DOCK8) immunodeficiency | (BM-MSCs)                                                       |       |
| Kohara et al.       | Type IV congenital dyserythropoietic anemia   | iPSCs from CDA patient carrying the KLF1 E325K mutation          | [130] |
| 2019                | (CDA)                                         |                                                                 |       |
| Hoffmann et al.     | Severe congenital neutropenia (SCN)           | iPSCs from a SCN patient with a nonsense mutation in the glucose-6-| [131] |
| 2020                |                                               | phosphatase catalytic subunit 3 (G6PC3) gene                     |       |

Fig. 3  New technologies toward the large-scale expansion of human iPSC-derived erythroid cells. Conventional differentiation methods compared with the novel growth factor- and serum-free culture approaches for erythroid differentiation of human iPSCs.
therefore conceivable that HDAC2 activators may enhance chromatin condensation of iPSC-derived erythroid cells [141]. MicroRNAs are important regulators that downregulate the expression of target genes [142, 143] and improve the maintenance of immature hematopoietic cells and terminal erythroid differentiation [58, 143]. Therefore, different combinations of microRNAs may increase the numbers of iPSC-derived mature RBCs [139]. In addition to microRNAs, long noncoding RNAs (lncRNAs) have recently been reported that can determine the fate of stem cells [144]. A recent study has shown that long intergenic noncoding RNA erythroid prosurvival (lincRNA-EPS) can suppress apoptosis and facilitate erythropoiesis [145–147]. In this regard, lncRNAs might allow the generation of functional and mature RBCs from iPSCs [148, 149]. Several groups have recently shown that 3D scaffolds such as poly (D, L-lactide-co-glycolide), polyurethane, collagen type I, and porous polyvinyl fluoride resin can mimic the bone marrow niche and improve maintenance of immature hematopoietic cells [150–154]. Although the in vitro maturation of iPSC-derived RBCs still presents several barriers, the cultured erythroid cells from iPSCs provide an important step toward fully defined and animal-free cultivation protocols that can be applied for transfusion medicine [67]. Figure 3 shows new technologies toward the large-scale expansion of human iPSC-derived erythroid cells.

Conclusion

Reprogramming of somatic cells to the pluripotent state has been suggested as an alternative source and a novel opportunity for patient-specific stem cell-based therapies, modeling of RBCs diseases, and drug testing [155]. Previous studies have shown that human iPSCs can give rise to erythroid cells, while in vitro derivation and maintenance of enucleated erythrocytes have still been challenging [86]. Also, many hurdles such as reprogramming without retroviruses, large scale and cost-effective production of iPSC-derived enucleated RBCs, and defined xenogenic-free conditions remain to be improved before human iPSC-based therapy [156, 157]. According to good manufacturing practice (GMP) guidelines, the establishment of iPSC-derived RBCs using a reproducible, defined, and simple method will ease the translation of iPSCs into the clinic [93, 158, 159].

Abbreviations

AA: Ascorbic acid; BMP4: Bone morphogenetic protein 4; ESA: Bovine serum albumin; EB: Embryoid body; EScs: Embryonic stem cells; EPO: Erythropoietin; FGd3: Skin primary fibroblast cell line; GHD: Graft-versus-host diseases; FLT3: Flms-related tyrosine kinase 3 ligand; FL: FLT3 ligand; GMP: Good manufacturing practice; HDAC2: Histone deacetylase 2; HSCs: Hematopoietic stem cells; iBMX: Isobutyl methyl xanthine; IGF: Insulin-like growth factor; IDMEM: Icici’s modified Dulbecco’s medium; MiR90: Human fetal lung fibroblasts; IL-3: Interleukin-3; ITS: Insulin, transferrin, selenium; iPSCs: Induced pluripotent stem cells; LncRNAs: Long noncoding RNAs; LincRNA-EPS: Long intergenic noncoding RNA erythroid prosurvival; KSR: Knockout serum replacement; MTG: Monothioglycerol; OP9: Mouse bone marrow stromal cell line; PBMCs: Peripheral blood mononuclear cells; PSCs: Human pluripotent stem cells; SCF: Stem cell factor; SCID: Sickle cell disease; RBC: Red blood cells; TPO: Thrombopoietin; UCB: Umbilical cord blood; VEGF: Vascular endothelial growth factor; ZbFGF: Zebrafish basic fibroblast growth factor

Acknowledgements

Not applicable.

Authors’ contributions

Mohsen Ebrahimi and Mehdi Forouzesh have made substantial contributions to the writing of the manuscript. Setareh Raoufi has made a substantial contribution to the design of the table. Mohammad Ramazi and Farhoodesh Ghaedrahmati contributed to the revision of the manuscript and the figures. Maryam Farzaneh has made a substantial contribution to the final revision of the manuscript. All authors have approved the submitted version of the article and have agreed to be personally accountable for the author’s contributions and to ensure that questions related to the accuracy or integrity of any part of the work.

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Author details

1Neonatal and Children’s Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran. 2Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran. 3Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran. 4Kerman University of Medical Sciences, University of Kerman, Kerman, Iran. 5Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. 6Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Received: 22 September 2020 Accepted: 25 October 2020

Published online: 16 November 2020

References

1. Focosi D, Amabile G. Induced pluripotent stem cell-derived red blood cells and platelet concentrates from bench to bedside. Cells. 2018;7:2.
2. Shah S, Huang X, Cheng L. Concise review: stem cell-based approaches to red blood cell production for transfusion. Stem Cells Transl Med. 2014;3: 346–55.
3. Sahu S, Hemlata, Verma A. Adverse events related to blood transfusion. Indian J Anaesth. 2014;58:543–551.
4. Mujahid A, Dickert FL. Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting. Sensors (Basel). 2015;15:1651.
5. Moras M, Lefever SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol. 2017;8:1076.
6. Xi J, Li Y, Wang R, Wang Y, Nan X, He L, Zhang J, Chen L, Yue W, Pei X. In vitro large scale production of human mature red blood cells from hematopoietic stem cells by coculturing with human fetal liver stromal cells. Biomed Res Int. 2013;2013:1–12.
7. Giaratana M-C, Kobari L, Lapillonne H, Chalmers D, Kiger L, Cynober T, Marden MC, Wajcman H, Douay L. Ex vivo generation of fully mature
human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005; 23:69–74.

8. Seo Y, Shin K-H, Kim HH, Kim H-S. Current advances in red blood cell generation using stem cells from diverse sources. Stem Cells Int. 2019;2019: 9281329.

9. Sun S, Peng Y, Liu J. Research advances in erythocyte regeneration sources and methods in vitro. Cell Regeneration. 2018;7:45–9.

10. Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, Vassilopoulos G. Ex vivo generation of transfusable red blood cells from various stem cell sources: a concise review of where we are now. Transfus Apher Sci. 2019;58:108–12.

11. Wilkinson AC, Igarashi K, Nakachi H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet. 2020;21:541–54.

12. Anstee DJ. Production of erythoid cells from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC). Transfus Clin Biol. 2010;17:104–9.

13. Bouhassira EE. Concise review: production of cultured red blood cells from stem cells. Stem Cells Transl Med. 2012;1:927–33.

14. Trakarnsang K, Giffiths RE, Wilison MC, Blair A, Satchwell TJ, Meinders M, Cogan N, Kupatg S, Kutira R, Nakamura Y, Toye AM, Anstee DJ, Frayne J. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8:14750.

15. Wang G, Farzaneh M. Mini review: differentiation of human pluripotent stem cells into oocytes. Curr Stem Cell Res Ther. 2020;15:301–7.

16. Zhao N, Sheng M, Wang X, Li Y, Farzaneh M. Differentiation of human induced pluripotent stem cells into male germ cells. Curr Stem Cell Res Ther. 2020.

17. Kolagar TA, Farzaneh M, Nikki R, Khothnane SM. Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Current Stem Cell Res Therapy. 2020;15:102–10.

18. Lu S-J, Feng Q, Park J, S, Vida L, Lee B-S, Strausbaugh M, Wettstein P, Ji, Honig G R, Lanza R, Biologic properties and nuclelease of red blood cells from human embryonic stem cells. Blood J Am Soc Hematol 2008; 112:4475–4484.

19. Elcheva I, Brok-Volchkanska V, Kumar A, Liu P, Ji J-H, Tong L, Yodyanik M, Swanson S, Stewart R, Kamba H. Direct induction of haematopoietical programs in human pluripotent stem cells by transcriptional regulators. Nat Commun. 2014;5:1–11.

20. Acosta ND, Golub SH. The new federalism: state policies regarding embryonic stem cell research. J Law Med Ethics. 2016;44:419–36.

21. Ma F, Ebihara Y, Umeda K, Sakai H, Hanada S, Zhang H, Zaike Y, Tsuchida E, Nakahata T, Nakachi H, Tsuji K. Generation of functional erythrocytes from human embryonic stem cells. Blood J Am Soc Hematol 2008; 112:4475–4484.

22. Ebrahimi et al. Stem Cell Research & Therapy (2020) 11:483
coclure with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol. 2005;33:1450–8.

55. Ohnuki M, Takahashi K. Present and future challenges of induced pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences. 2015;370(1664):20150043.

56. Hansen M, Takahashi K, von Lindern M, van den Akker E, Varga E, Hoffmann D, Klimenko O, Lütteke D, Buchegger T. Large-scale hematopoietic differentiation of human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Reports. 2015;4:282–90.

57. Schenke-Layland K, Rhodes KE, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Ackermann M, Lachmann N. Concise review: towards the clinical translation of induced pluripotent stem cells for hematopoietic progenitors from human induced pluripotent stem cells. Transfus Med Hemother. 2017;44:143–50.

58. Rowe RG, Mandelbaum J, Zon LI, Daley QG. Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell. 2016;18:707–20.

59. Kessel KL, Bluemke A, Scholer HR, Zaehehs E, Schlenke P, Dorn L. Emergence of CD43-expressing hematopoietic progenitors from human induced pluripotent stem cells. Transfus Med Hemother. 2014;37:133–41.

60. Ruiz JP, Chen G, Mora JJH, Keyvanfar K, Liu C, Zou J, Beers J, Bloomer H, Horton PD, Sandeep D, Wenzel PL. Mechanoregulation in hematopoiesis of human induced pluripotent stem cells and culture system. Stem Cell Res. 2019;41:101600.

61. Allsopp TE, Ebneth A, Cabrera-Socorro A. Deploying human pluripotent stem cells in the treatment of hemopoietic and hematologic disorders. Current Stem Cell Reports. 2020;6:86–95.

62. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

63. Volpato V, Smith J, Sandor C, Ried JS, Baud A, Handel A, Newey SE, Wessely JM. iPSCs-based generation of vascular cells: reprogramming human dermal fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells. 2008;26:1527–36.

64. Allsopp TE, Ebneth A, Cabrera-Socorro A. iPSCs-based generation of vascular cells: reprogramming human dermal fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells. 2008;26:1527–36.

65. Klein D. iPSCs-based generation of vascular cells: reprogramming human dermal fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells. 2008;26:1527–36.

66. Shono Y, Shiratori S, Kosugi-Kanaya M, Ueha S, Sugita J, Shigematsu A, Englund S, Podskakov GM, Gadue P, French DL, Mason PJ, Bessler M, Weiss MJ. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients. Blood. 2013;122:912–21.
100. Bedel A, Pasquet J-M, Lippert E, Taillierre M, Lagarde V, Dabernat S, Dubus P, Charaf L, Beliveau F, de Verneuil H. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation. PLoS One. 2013;8:e71596.

101. Yuan X, Braunstein EM, Ye Z, Liu CF, Chen G, Zou J, Cheng L, Brodsky RA. Generation of glycophosphatidylinositol anchor protein-deficient blood cells from human induced pluripotent stem cells. Stem Cells Transl Med. 2013;2:819–29.

102. Saliba J, Hamidi S, Lenglet G, Langlois T, Yin J, Cabagnols X, Secardin L, Legrand C, Galy A, Opolot P. Heterozygous and homozygous JAK2 V617F states modeled by induced pluripotent stem cells from myeloproliferative neoplasm patients. PLoS One. 2013;8:e74257.

103. Sakurai M, Kurimoto H, Watanebe N, Fukuchi Y, Yusa S, Yamazaki S, Nishimura T, Sadahira K, Fukuda K, Okano H. Improved hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia. 2014;28:344–54.

104. Sun N, Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng. 2014;111:1048–53.

105. Ye Z, Liu CF, Lanikova L, Dowey SN, He C, Huang X, Brodsky RA, Spivak JL, Plicht J, Cheng L. Differential sensitivity to JAX inhibitory drugs by isogenic human erythroblasts and hematopoietic progenitors generated from patient-specific induced pluripotent stem cells. Stem Cells. 2014;32:269–78.

106. Xie F, Ye L, Chang JC, Beyer AL, Wang J, Muench MD, Kan YY. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–33.

107. Amabile G, Di Russo A, Müller F, Welner RS, Yang H, Ebralidze AK, Zhang H, Levantini E, QL L, Martinelli G. Dissecting the role of aberrant DNA methylation in human leukemia. Nat Commun. 2015;6:1–10.

108. Ge J, Aicellia M, Mills JA, Garçon L, French DL, Weiss MJ, Bessler M, Mason J. Disregulation of the transforming growth factor β pathway in induced pluripotent stem cells generated from patients with Diamond Blackfan anemia. PLoS One. 2015;10:e0134878.

109. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, Kim J-H, Kim D-W, Kim J-S. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR/Cas9. Cell Stem Cell. 2015; 17:212–20.

110. Kotini AG, Chang C-J, Boussaad I, Delovio DJ, Dolezal EK, Nagulapally AB, Perna F, Fishbein GA, Klimek VM, Hawkins RD. Functional analysis of a chromosomal translocation and proplatelet formation. Thromb Haemost. 2015;113:792–800.

111. Huang C, Wang Y, Yan W, Smith C, Ye Z, Wang J, Gao Y, Mendelsohn L, Cheng L. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPS cells after genome editing of the sickle point mutation. Stem Cells. 2015;33:1470–9.

112. Chang C-W, Westin E, Khodadadi-Jamayran A, Pawlik KM, Lamb LS Jr, Goldman FD, Towes NM. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep. 2015;12:1686–77.

113. Menon T, Firth AL, Scripture-Adams DM, Galicz Z, Qualls X, Gilmore WB, Ke E, Singer G, Anderson LS, Bornzin AR. Lymphoid regeneration from gene-targeting. Cell Rep. 2015;12:1668–80.

114. Ingnum Krouge P, Amarnathnukrow P, Rungswat W, Maneesri-le Grand S, Menon T, Firth AL, Scripture-Adams DD, Galicz Z, Qualls SJ, Gilmore WB, Ke E, Haag D, Chanda S, Human AML-iPSCs reacquire leukemic properties after differentiation and model clonal variation of disease. Cell Stem Cell. 2017; 20: 329–344. e327.

115. Kotini AG, Chang C-J, Chow A, Yuan H, Ho TC, Wang T, Vora S, Solovyov A, Huesser C, Olzewski M, Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell stem cell. 2017; 20: 315–328. e317.

116. Miyazaki M, Koya Y, Arai S, Yamazaki S, Honda A, Kataoka K, Yoshimi A, Taoka K, Kumanou K, Kurokawa M. ADAMB is an antigen of tyrosine kinase inhibitor-resistant chronic myeloid leukemia cells identified by patient-derived induced pluripotent stem cells. Stem cell reports. 2018;10:1115–30.

117. Olgasi C, Talmor M, Merlin S, Cucci A, Richard-Fatini Y, Ranaldo G, Colangelo D, Di Scipio F, Berta GN, Borsotti C. Patient-specific iPSC-derived endothelial cells provide long-term phenotypic correction of hemophilia A. Stem cell reports. 2018;11:4391–406.

118. Ramaswamy S, Tonnue N, Menon T, Lewis BM, Green KT, Wampler D, Monahan PE, Verma IM. Autologous and heterologous cell therapy for hemophilia B toward functional restoration of factor IX. Cell Rep. 2018;23:5165–80.

119. Liu C, Shen J, Wang R, Gu H, Zhang J, Xue F, Liu X, Liu W, Fu R, Zhang L, Li H, Zhang X, Cheng T, Yang R, Zhang L. Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR/Cas9 system. Stem cell Res Ther. 2018;9:92.

120. Cai L, Bai H, Mairakvi V, Gao Y, He C, Wen Y, Yin YC, Wang Y, Pan RL, Qasba A. A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med. 2018;7:87–97.

121. Watanapannitch M, Damkhram N, Potratz P, Trakarnsanga K, Janan M, Yawalulak U, Klic蚯meh P, Issaragrisil S. One-step genetic correction of hemoglobin E/β-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system. Stem Cell Res Ther. 2018;9:11–1.

122. Sfougataki I, Grafacos I, Varela I, Mirakos A, Karagiannidou A, Tzannoudaki M, Poulou M, Mertzanis A, Roubalakis GM, Stefanaki K, Traeger-Synodinos J, Kanavakis E, Kita V, Tziris M, Goussetis E. Reprogramming of bone marrow derived mesenchymal stromal cells to human induced pluripotent stem cells from pediatric patients with hematological diseases using a commercial mRNA kit. Blood Cell Mol Dis. 2019;67:632–9.

123. Kohen H, Utsugisawa T, Sakamoto C, Hirose L, Ogawa Y, Ogura H, Sugawara A, Liao J, Aoki T, Isawaki T, Asai T, Dosaki S, Okuno T, Muramatsu H, Abe T, Kuri T, Miyamoto S, Sakamoto T, Shiba M, Yamamoto T, Ogha S, Yoshida K, Ogawa S, Te E, Kojima S, Kanno H, Tani K. KLF1 mutation E325K induces cell cycle arrest in erythroid cells differentiated from congenital dyserythropoietic anemia patient-specific induced pluripotent stem cells. Exp Hematol. 2019;73:25–37 e28.

124. Hoffmann D, Kuehle J, Lenz D, Philipp F, Zychlinski D, Lachmann N, Motz T, Steinemann D, Morgan M, Skokowa J, Steinemann D, Morgan M, Skokowa J. Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells. Chin Med Sci J. 2017;32:315–26.

125. Kim SH, Lee EM, Han SY, Choi HS, Ryu KY, Baek EJ. Improvement of red blood cells in vitro: monitoring the process for improved efficiency. Cytotherapy. 2013;15:1043–5.

126. Zhou P, Douchi M, Xue Y, Yin Q. In vitro generation of red blood cells from stem cell and targeted therapy. Cell Transplant. 2020;29:0916369720946658.

127. Kim SH, Lee EM, Han SY, Choi HS, Ryu KY, Baek EJ. Improvement of red blood cell maturation in vitro by serum-free medium optimization. Tissue Engineering Part C. Methods. 2019;25:232–42.

128. Singh V, Kaini A, Tsuij K, Sharma P B, Chandra R, Manufacturing blood elements in vitro: a futuristic approach to deal with the supply and safety concerns, in: Front Cell Dev Biol. 2014. 26.

129. Park YI, Jeon SH, Kim HK, Suh EJ, Choi SJ, Kim S, Kim HO. Human induced pluripotent stem cell line banking for the production of rare blood type erythrocytes. Transf Med Rev. 2020;18:236.

130. Feng YL, Chen DQ, Vaziri ND, Guo Y, Zhao YY. Small molecule inhibitors of epithelial-mesenchymal transition for the treatment of cancer and fibrosis. Med Res Rev. 2020;40:574–8.
138. Farzaneh M, Zare M, Hassani SN, Baharvand H. Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. J Cell Biochem. 2018;119:6325–36.

139. Li X, Wu Z, Fu X, Han W. How far are stem-cell-derived erythrocytes from the clinical arena? BioScience. 2013;63:632–43.

140. Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: an update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev. 2020;100:740:1–10.

141. Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 2020;19:5.

142. Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. Current Stem Cell Res Therap. 2019;14:278–89.

143. Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica. 2012;97:160–7.

144. Chen J, Wang Y, Wang C, Hu J-F, Li W. LncRNA functions as a new emerging epigenetic factor in determining the fate of stem cells. Front Genet. 2020;11:277.

145. Paralkar VR, Weiss MJ. A new ‘Linc’ between noncoding RNAs and blood development. Genes Dev. 2011;25:2555–8.

146. Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25:2573–8.

147. Adilkhah M. Hematopoietic development from adult human embryonic stem cells and induced pluripotent stem cells. 2012.

148. Wahlster L, Daley GQ. Progress towards generation of human hematopoietic stem cells. Nat Cell Biol. 2016;18:1111–7.

149. Dalby AL. Forward programming of human pluripotent stem cells to a megakaryocyte-erythrocyte bi-potent progenitor population: an in vitro system for the production of platelets and red blood cells for transfusion medicine. In: University of Cambridge; 2018.

150. Shen Y, Nilsson SK. Bone, microenvironment and hematopoiesis. Curr Opin Hematol. 2012;19:250–5.

151. Jozaki T, Aoki K, Mizunoto H, Kajiwara T. In vitro reconstruction of a three-dimensional mouse hematopoietic microenvironment in the pore of polyurethane foam. Cytotechnology. 2010;62:531–7.

152. Man-Blumel L, Marx C, Weise F, Frey J, Penner B, Schlingloff G, Lindig N, Hampel J, Sonnemann J, Bauer D. Biomimetic reconstruction of the hematopoietic stem cell niche for in vitro amplification of human hematopoietic stem cells. PLoS One. 2020;15:e0234638.

153. Zhou D, Chen L, Ding J, Zhang X, Nie Z, Li X, Yang B, Xu T. A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro. Sci Rep. 2020;10:1–11.

154. Severn CE, Macedo H, Eagle MJ, Rooney P, Mantalaris A, Toye AM. Polyurethane scaffolds seeded with CD34+ cells maintain early stem cells whilst also facilitating prolonged egress of hematopoietic progenitors. Sci Rep. 2016;6:1–12.

155. Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20:377–88.

156. Harding J, Mirochnitchenko O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem. 2014;289:4588–93.

157. Bayley R, Ahmed F, Glen K, McCall M, Stacey A, Thomas R. The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors. J Tissue Eng Regen Med. 2018;12:e368–78.

158. Doss MX, Sachindidis A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells. 2019;8:403.

159. Volarevic V, Markovic BS, Gazzic M, Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako M, Stojkovic M. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15:36.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.