The effects of thermal acclimation on cardio-respiratory performance in an Antarctic fish (Notothenia coriiceps)

William Joyce1,*, Michael Axelsson2, Stuart Egginton3, Anthony P. Farrell4, Elizabeth L. Crockett5 and Kristin M. O’Brien6

1Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
2Department of Biological and Environmental Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
3School of Biomedical Sciences, University of Leeds, Leeds, UK
4Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
5Department of Biological Sciences, Ohio University, Athens, OH, USA
6Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA

*Corresponding author: Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark. Email: william.joyce@bios.au.dk

The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5°C for 6.0–9.5 weeks. When compared at the fish’s respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5°C-acclimated than 0°C-acclimated fish. The 2.7-fold elevation in cardiac output in 5°C-acclimated fish (17.4 vs. 6.5 ml min⁻¹ kg⁻¹) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min⁻¹). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0°C- and 5°C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12°C when cardiac output became significantly higher in 5°C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5°C) in both acclimation groups, the hearts of 5°C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0°C for 0°C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5°C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate.

Key words: Blood flow, heart rate, notothenioid fish, oxygen consumption, temperature

Editor: Dr. Nann Fangue
Received 29 June 2018; Revised 13 November 2018; Editorial Decision 15 November 2018; accepted 26 November 2018

Cite as: Joyce W, Axelsson M, Egginton S, Farrell AP, Crockett EL, O’Brien KM (2018) The effects of thermal acclimation on cardio-respiratory performance in an Antarctic fish (Notothenia coriiceps). Conserv Physiol 6(1): coy069; doi:10.1093/conphys/coy069.
Introduction

The Southern Ocean has been characterised by stable, frigid temperatures (−1.9 to +1.5°C; Littlepage, 1965; Zachos et al., 2001) for over 10 million years that may have resulted in the evolution of stenothermy in its ectothermic inhabitants (Peck et al., 2014; Beers and Jayasundara, 2015). However, some areas, particularly the Western Antarctic Peninsula region, are currently experiencing some of the most dramatic effects of climate warming in which average surface water temperatures have risen by −1°C over the past 50 years (Meredith and King, 2005; Steig et al., 2009). This rate is expected to continue over the next century (IPCC, 2014; Ashton et al. 2017). Physiological studies to assess how Antarctic marine organisms, including fishes, respond to increased temperature are therefore paramount to inform predictive models and evaluate the future fate of ecosystems in the Southern Ocean.

Tolerance to increased temperature is notoriously low in Antarctic fishes, which show the lowest upper thermal limits of any fish (e.g. Somero and DeVries, 1967). However, recent studies have suggested upper thermal tolerance can be improved following a period (days to weeks) of acclimation to a 4°C elevation from ambient temperatures (Podrabsky and Somero, 2006; Bilyk and DeVries, 2011). The previous studies measuring absolute thermal limits (e.g. Podrabsky and Somero, 2006; Bilyk and DeVries, 2011) have typically used behavioural criteria, such as loss of righting reflex, to determine upper critical thermal maxima (CTMAX). It is also clear that the robustness of cardiovascular function is a key component of thermal tolerance in fishes (e.g. Farrell et al., 2009; Casselman et al., 2012; Ferreira et al., 2014; Farrell, 2016). Indeed, in Pagophila borchgrevinki, an Antarctic teleost, 4°C acclimation resulted in the factorial scope for cardiac output being highest at elevated temperature (8°C; Seebacher et al., 2005; Franklin et al., 2007). Franklin et al. (2007), however, observed that maximum cardiac output was unchanged by warm acclimation, and that in both −1°C- and 4°C-acclimated fish, maximum cardiac output was unchanged from −1°C to 8°C. In Trematomus bernacchii, 4.5°C acclimation did not alter the temperature at which cardiac arrhythmia develops (Tarr) during acute warming (Jayasundara et al., 2013), which is in contrast to similar studies in temperate fishes such as Gillichthys mirabilis (Jayasundara and Somero, 2013), Carassius auratus (Ferreira et al., 2014) and Rutulus rutulus (Badr et al., 2016), in which warm acclimation increased Tarr.

Robinson and Davison (2008) reported that P. borchgrevinki acclimated at 4°C for 4 weeks had similar rates of oxygen consumption (M02) to those maintained at −1°C measured at the respective temperatures. However, Egginton and Campbell (2016) observed no acclimatory compensation (i.e. downregulation) of heart rate (fH) or M02 in N. coriceps acclimated at 5°C for 6 weeks when compared to individuals acutely warmed to the same temperature. Likewise, Strobel et al. (2012) observed only partial down-regulation of M02 in 7°C-acclimated Notothenia rossi after 4–5 weeks. Recently, Enzor et al. (2017) confirmed that P. borchgrevinki is capable of compensating M02 within 6 weeks of acclimation to 4°C but observed that in T. bernacchii, a more benthic species, M02 was not compensated after 8 weeks of acclimation to 4°C. Yet, Sandersfeld et al. (2015) observed a clearly down-regulated M02 in T. bernacchii after a 9-week acclimation period. Enzor et al. (2017), thus, concluded that this species requires 8–9 weeks to acclimate to increased temperature.

In the present study, we expanded upon the work of Egginton and Campbell (2016), which only measured fH and M02 after 6 weeks of acclimation, by comparing N. coriceps exposed to either 0 or 5°C for a longer period of time (6.0–9.5 weeks). Furthermore, we measured an extended suite of cardiovascular parameters, including cardiac output (Q), central venous pressure (Pcv), and haematocrit (Hct), along with M02 and fH at these two acclimation temperatures. We hypothesised that, following acclimation, the chronic increase in M02 at 5°C, in comparison to fish acclimated to 0°C, would be associated with increased Q as a result of elevated fH as opposed to changes in cardiac stroke volume (V̇S) (Egginton and Campbell, 2016). We next investigated cardio-respiratory performance during an acute thermal challenge in which temperature was increased from 0°C to well above 10°C when cardiac failure occurred. We hypothesised that increased CTMAX in 5°C-acclimated fish (Bilyk and DeVries, 2011) would be associated with increased Q to a higher critical temperature and that a higher Q would be attained at elevated temperature (below CTMAX).

Materials and methods

Experimental animals

Notothenia coriceps of both sexes were caught in baited pot traps and otter trawls deployed in Dallmann Bay (64°08’S, 62°40’W) and in the vicinity of Low Island (63°30’S, 62°42’W) from the ARSV Laurence M. Gould and maintained onboard for up to 3 days in flow-through seawater tanks. The fish were transported to the US Antarctic research base Palmer Station (Anvers Island) where they were maintained in covered, circulating seawater tanks. After 3 days of recovery from the stress of capture and transportation, the fish were randomly assigned to 700 or 1700-l tanks designated to be at 5±1°C (5°C acclimated) or 0±1°C (0°C acclimated). The tanks used for 5°C acclimation were heated from 0°C at a rate of 1°C/day and then held at 5°C for a minimum of 6.0 and up to 9.5 weeks. This acclimation period is longer than previous work on this species (Egginton and Campbell, 2016) and allowed us to gain insight into the dynamic nature of thermal acclimation in this species. The 0°C-acclimated fish were maintained in captivity for the same duration and the
experiments were conducted in parallel. The present study used seven 0°C-acclimated and six 5°C-acclimated fish. Fish were fed ad libitum chopped fish muscle every 2 days. Antarctic fish are known to exhibit a small peak specific dynamic action (the metabolic response to feeding) that is very long lasting (1–2 weeks) (Sandblom et al., 2012), so no effort was made to fast the fish immediately before the experiment. All experimental procedures were approved by the University of Alaska IACUC committee (570 217-9).

Surgery and instrumentation

Anaesthesia was induced by immersing individual fish in seawater (15 l; at acclimation temperature) containing MS-222 (250 mg l⁻¹). Once reflexes disappeared, fish were transferred to a surgical table and the gills were irrigated with seawater containing MS-222 (100 mg l⁻¹). Surgery was conducted in an environmental room maintained at 4 ± 2°C. For 0°C-acclimated fish, the anaesthetic-containing seawater was chilled to 1°C with icepacks. The ventral aorta was dissected free at the base of the fourth gill arch to implant a Transonic (Transonic Systems Inc., USA) flow probe (2.5 or 4.0 mm diameter) immediately distal to the pericardium to measure Q. In five of the six 5°C-acclimated fish, and in all 0°C-acclimated fish, the left Ductus of Cuvier was non-occlusively cannulated with a PE-50 cannula, which was advanced into the sinus venosus (e.g. Altimiras and Axelsson, 2004; Sandblom et al., 2008) allowing the measurement of Pcv, an index of cardiac preload, and permitting the withdrawal of blood samples for measuring Hct. The flow probe lead and cannulas were then secured to the skin with 4–0 Prolene sutures.

Experimental setup and data acquisition

Immediately post-surgery, fish were transferred to one of the two 12.4-L, custom-made polyethylene terephthalate respirometers (PlastKapTek Sweden, Sweden) with a triangular cross-section, which were submersed in a 700-L tank held at each of the two respective acclimation temperatures (Joyce et al., 2018; Fig. 1). Within the respirometer, the fish’s gills were flushed with seawater until spontaneous ventilation resumed.

Submersible pumps (Eheim, Germany) continually recirculated seawater in each respirometer, whilst a second pump introduced fresh seawater for 15 min during each 25 min period. For the remaining 10 min, oxygen partial pressure (PO2) was allowed to fall to permit the measurement of the rate of oxygen uptake (ṀO2). Water PO2 within the respirometer was continuously measured using a 3 mm robust FireSting optode connected to a fiberoptic O2 metre which was regularly calibrated in situ (FireSting, Aachern, Germany).

Flow probes were connected to a flow metre (Transonic; T402), and the cannulas connected to pressure transducers (Medizintechnik, Kirchseeon, Germany). Signals from the pressure transducers were pre-amplified using a Senselab 4ChAmp amplifier (Somedic sales, Hörlby, Sweden). The pressure transducers were calibrated against a static water column prior to each experiment. The outputs from recording equipment were connected to a PowerLab system (ADInstruments, Castel Hill, Australia), which was connected to a computer running LabChart Pro (version 7; ADInstruments, Bella Vista, Australia).

Experimental procedure

Cardio-respiratory measurements began after 48 h of postsurgical recovery (cf. Egginton, 1994). Resting parameters were first measured in 5°C-acclimated fish and 0°C-acclimated fish at their respective temperatures. Thereafter, the acute thermal challenge commenced. The fish acclimated at 5°C were initially cooled to 0°C over a period of 4 h. During heating, the fish were warmed at 2.6°C·h⁻¹ with a 3 kW titanium in-line heater (AquaLogic, San Diego, CA, USA) from 0°C to the temperature at which the heart failed (i.e. prolonged asystole; Joyce et al., 2018), which we define as the critical thermal maximum (CTmax). Heating was paused at 4°C increments for at least 20 minutes to measure oxygen consumption rate (ṀO2) at a steady temperature. Background respiration rate in blank respirometers was measured and was always negligible. Temperature in the holding tank was regularly measured off-line during each oxygen uptake measurement (i.e. every 20 min) and frequently (approximately every 5 min) at high temperature to allow precise logging of the temperature at which cardiac arrhythmia commenced (Tarr) and the temperature of complete cardiac failure (CTmax). In practice, complete cardiac failure occurred simultaneously with the loss of equilibrium (Joyce et al., 2018; O’Brien et al., 2018).

At the start of each experiment (at the fish’s acclimation temperature) as well as at the end (CTmax), a 100-μl blood sample was withdrawn to measure Hct (in duplicate).

At the end of the experiments, fish were killed with a sharp blow to the head, the spinal cord was severed and the brain was destroyed by pithing. The fish were then dismembered and weighed. The ventricle was also weighed in all but one fish.

Calculations and statistical analyses

Oxygen uptake (ṀO2) was calculated according to the equation:

\[
ṀO2 = (\alpha O_2 \times V) \times (\Delta O_2/\Delta t)/Mb
\]

where αO2 is the oxygen content of sea water at a given temperature, is volume of the respirometer, ΔO2/Δt is the decline (change) in oxygen concentration (%) per unit time, and Mb is the fish body mass in kilogram.
Conservation Physiology • Volume 6 2018

Heart rate (f_H) was calculated automatically from the pulsatile \dot{Q} trace.

\dot{Q}, f_H, and P_{cv} were measured simultaneously with M_{O_2} at 0, 4, 8, 12 and 16°C (the latter only applicable when fish remained viable). All of these cardiorespiratory parameters were also measured in 5°C-acclimated fish at 5°C before cooling to 0°C for comparison with 0°C-acclimated fish prior to heating. Flow probes were temperature compensated according to the manufacturer’s instructions.

Stroke volume (V_S) was calculated according to the equation:

$$V_S = \frac{Q}{f_H}$$

Arterio-venous oxygen extraction was calculated according to the Fick equation

$$\text{Oxygen extraction} = \frac{M_{O_2}}{\dot{Q}}$$

In fishes the Fick principle should be applied with caution because it does not account for cutaneous oxygen uptake, potentially leading to an overestimation of the arterio-

venous oxygen difference (Farrell et al., 2014). Nevertheless, we believe any possible error would be consistent between acclimation groups and the calculation therefore provides a valid and useful estimate.

Unpaired t-tests were used to investigate differences between experimental groups for T_{arr}, CT_{max}, body mass, ventricle mass, relative ventricular mass (RVM) and all five cardiorespiratory parameters (M_{O_2}, \dot{Q}, f_H, V_S and P_{cv}) in resting fish at acclimation temperatures prior to the acute thermal challenge. The ratio data (RVM) were arcsine transformed before analysis. To explore the effects of the variable acclimation times (6.0-9.5 weeks), linear regressions were used to investigate the relationship between duration of maintenance at 5°C and routine \dot{Q}, routine M_{O_2} and CT_{max}. Two-way repeated measures analysis of variance (ANOVA) were conducted to investigate changes in M_{O_2}, \dot{Q}, f_H, V_S and P_{cv} at temperatures between 0 and 12°C. Sidak post hoc tests were used to compare differences between acclimation groups at each temperature and changes in each variable within each group at different temperatures. The repeated measures ANOVA could not be extended to 16°C due to sample size attrition resulting in incomplete matched data. However, to compare parameters at 16°C, separate one-way ANOVA’s and Tukey’s multiple comparisons tests were employed for the five fish in the 5°C-acclimated group that reached 16°C. A two-way ANOVA followed by Sidak post-hoc test was also used to investigate changes in Hct between experimental groups and before and after the acute temperature challenge.

Statistical significance was accepted at $P < 0.05$. All analyses were conducted in GraphPad Prism 7.0. All data are presented as individual values and/or mean ± standard error of the mean (SEM), except where stated otherwise.

Results

Body mass, ventricle mass, and RVM are compared for 0°C- and 5°C-acclimated fish in Table 1. No significant differences existed for any of these parameters, although the numerically higher RVM in 5°C-acclimated fish approached significance ($t = 2.2; df = 10; P = 0.053$).

When measured at their acclimation temperature, M_{O_2} and \dot{Q} were significantly higher in 5°C-acclimated than 0°C-acclimated fish (Table 2; $t = 2.3; df = 11; P < 0.05$). The 2.7-fold higher \dot{Q} ($t = 6.3; df = 11; P < 0.05$) was primarily attributable to a 2.2-fold increase in V_S ($t = 8.3; df = 11; P < 0.05$) and partially due to a much smaller (1.2-fold) increase in f_H ($t = 3.1; df = 11; P < 0.05$). This increase in V_S was accompanied by a significantly increased P_{cv} in 5°C-acclimated fish ($t = 4.6; df = 10; P < 0.05$). Despite the 2.7-fold increase in \dot{Q}, M_{O_2} was increased by only 37% in 5°C-acclimated fish, meaning that the calculated arterio-

venous oxygen extraction was significantly lower in the 5°C-acclimated than 0°C-acclimated fish ($t = 4.7; df = 11; P < 0.05$) (Table 1).
Table 1: Body mass, ventricular mass and relative ventricular mass in 0°C-acclimated or 5°C-acclimated Notothenia coriiceps

	Body mass (g)	Ventricular mass (g)	Relative ventricular mass (%)
0°C-acclimated	939.4 ± 38.4	0.92 ± 0.05	0.10 ± 0.003
5°C-acclimated	902.8 ± 86.2	1.06 ± 0.13	0.11 ± 0.004

N = 7 for 0°C-acclimated, and N = 6 for body mass and N = 5 for ventricular mass and relative ventricular mass in 5°C-acclimated fish. Data are mean ± SEM.

Table 2: Routine oxygen consumption (M\textsubscript{O2}), cardiac output (Q), heart rate (f\textsubscript{H}), stroke volume (V\textsubscript{S}), central venous pressure (P\textsubscript{cv}) and arterio-venous oxygen extraction in 0°C- and 5°C-acclimated Notothenia prior to the acute temperature challenge.

	M\textsubscript{O2} (mg O\textsubscript{2} hour-1 kg-1)	Q (ml min-1 kg-1)	f\textsubscript{H} (beats min-1)	V\textsubscript{S} (ml kg-1)	P\textsubscript{cv} (kPa)	Oxygen extraction (mg O\textsubscript{2} ml-1)
0°C-acclimated	42.3 ± 2.1	6.5 ± 0.5	25.2 ± 1.0	0.26 ± 0.02	0.08 ± 0.01	0.11 ± 0.01
5°C-acclimated	57.8 ± 7.0	17.4 ± 1.8	29.5 ± 0.8	0.56 ± 0.03*	0.15 ± 0.01*	0.06 ± 0.01*

N = 7 for 0°C-acclimated, and N = 6 for 5°C-acclimated fish except for P\textsubscript{cv} (N = 5). Values are mean ± SEM.

*Significant differences between groups (t-test; P < 0.05).

During acute warming, M\textsubscript{O2} at equivalent test temperatures was not significantly different between the two temperature acclimation groups (Fig. 3). However, the dynamics of how M\textsubscript{O2} changed within each acclimation group during progressive warming revealed a divergence. Between 0 and 4°C, M\textsubscript{O2} did not significantly change in 5°C-acclimated fish groups (t = 0.75; df = 33; P = 0.97) but increased significantly in 0°C-acclimated fish (t = 3.1; df = 33; P < 0.05) (Fig. 3). From 4 to 8°C, M\textsubscript{O2} increased by a similar magnitude in both acclimation groups. However, M\textsubscript{O2} peaked in 0°C-acclimated fish between 8 and 12°C (i.e. M\textsubscript{O2} did not change from 8 to 12°C; t = 0.95; df = 33; P = 0.92), whereas it continued to increase in 5°C-acclimated fish (t = 4.1; df = 33; P < 0.05) before reaching a peak between 12 and 16°C. According to a separate one-way ANOVA conducted on the 5°C-acclimated fish that reached 16°C, M\textsubscript{O2} did not change significantly from 12 to 16°C (t = 0.10; df = 4; P = 0.94).

There was no significant relationship between M\textsubscript{O2} (R2 = 0.25, P = 0.31) or Q (R2 = 0.02, P = 0.77) and acclimation duration at 5°C (from 6.0 to 9.5 weeks; Fig. 4), and there was also no relationship between CT\textsubscript{max} (the most easily discernible effect of acclimation) and acclimation time at 5°C (R2 < 0.001, P = 0.99) (Fig. 5). Therefore, all data for 5°C-acclimated fish were pooled, disregarding the variable acclimation periods.

During acute warming, Q measured at equivalent temperatures was not significantly different between temperature acclimation groups, with the exception of a higher Q in 5°C-acclimated animals at 12°C (Fig. 6A; t = 5.5; df = 44, P < 0.05). This was a result of a greater V\textsubscript{S} (t = 5.2; df = 44; P < 0.05), while f\textsubscript{H} was not statistically different (t = 1.1; df = 44; P = 0.7) (Fig. 6B and C). P\textsubscript{cv} measured at equivalent temperatures was not significantly different between thermal...
acclimation groups. P_{cv} decreased significantly as temperature increased from 0 to 8°C but then increased above 8°C in both acclimation groups ($P < 0.05$ in all cases, Fig. 6D). In the 5°C-acclimated fish that reached 16°C, Q was maintained from 12°C ($t = 0.28; df = 4; P = 0.99$).

In order to illustrate inter-individual variation, the cardio-respiratory variables during acute warming are plotted from each individual in Fig. 7. In four of the five 5°C-acclimated fish (Fig. 7), the transition from 12 to 16°C was associated with bradycardia (as it occurred after T_{arr}) and an increase in V_s, although neither f_s ($t = 3.8; df = 4; P = 0.22$) nor V_s ($t = 3.5; df = 4; P = 0.27$) changed significantly due to the inter-individual variability. Arterio-venous oxygen extraction remained significantly higher in 0°C-acclimated fish than in 5°C-acclimated fish at each temperature, although it did not change significantly during warming in either group (Figs 6E and 7F).

There were no significant differences in Hct between 0°C- and 5°C-acclimated fish prior to the temperature challenge (Fig. 8; $t = 0.8; df = 20; P = 0.80$). Nevertheless, this parameter doubled in both acclimation groups by the time fish had reached their CT_{max} (0°C-acclimated fish: $t = 7.1; df = 10; P < 0.05$; 5°C-acclimated fish: $t = 3.9; df = 10; P < 0.05$).

Discussion

The ability of Antarctic fishes to tolerate rising temperatures may be key to their fate in the Southern Ocean as it continues to warm. Given the rapid nature of the present warming, phenotypic plasticity (i.e. acclimation potential) will likely be of crucial importance. Our results suggest that for the red-blooded, benthic nototheniid *N. coriiceps* some aspects of its cardio-respiratory performance (e.g. cardiac CT_{max}) are capable of changing in response to acclimation to 5°C. However, even after 9.5 weeks of exposure to 5°C, M_{O2} showed no sign of down-regulation. Thus, survival at elevated temperature comes with the cost of chronically elevated oxygen requirements (approximately a third higher than at 0°C), which would require increased food intake and likely increased costs associated with foraging behaviour. It remains plausible and unknown whether or not a longer acclimation period would result in a compensation of M_{O2}. Unfortunately, such studies may prove to be a logistical challenge given the remoteness of Antarctic field stations and the confines of limited field seasons.

The temperature at the onset of cardiac arrhythmia (T_{arr}) in *N. coriiceps* was unaffected by acclimation to 5°C for 6.0–9.5 weeks, which is consistent with data from a high latitude Antarctic notothenoid, *T. bernacchii* (Jayasundara et al., 2013; 2 weeks of warm acclimation), but in contrast to...
reports of temperate fish species (Jayasundara and Somero, 2013; Ferreira et al., 2014), which demonstrate an increase in T_{accl}, following 3–4-week acclimation regimes. Together, our data suggest that in Antarctic notothenioid fishes, the mechanisms responsible for action potential propagation and electrical conduction either are not plastic or require >9.5 weeks of acclimation. However, despite arrhythmias, the hearts of 5°C-acclimated fishes retained residual (arrhythmic) function to a higher temperature (i.e. C_{Tmax} was higher) than the animals held at 0°C. These results indicate that the thermally-sensitive mechanisms responsible for ultimately sustaining cardiac pumping are not necessarily the same as those involved in electrical conduction. In brown trout (Salmo trutta fario) it has been demonstrated that voltage-gated Na$^+$ channel function, which largely determines action potential propagation (Vormanen, 2017), is the ‘weak-link’ in thermally-stressed fish heart (Vormanen et al., 2014), which is consistent with our finding that conduction began to fail before pumping capability. Furthermore, in electrocardiogram-instrumented N. coriiceps, we clearly observed conduction failure (atrio-ventricular block) before reaching C_{Tmax} (Joyce et al., 2018). The ability to sustain Q at higher temperatures supports our hypothesis that whole animal thermal tolerance (i.e. C_{Tmax} determined by loss of righting reflex; Bilyk and DeVries, 2011) extended by warm acclimation is associated with improved thermal tolerance of cardiac function.

An important and surprising discovery of our study was that 5°C-acclimated N. coriiceps had a greater Q than 0°C-acclimated N. coriiceps at their acclimation temperatures, predominantly due to a doubling of V_S with only a small increase in f_{SI}. This is in direct contrast with the effects of acute warming in fish, in which it has been consistently demonstrated that augmented Q is achieved by an increase in f_{SI} (reviewed by Farrell, 2016, and evident during our acute warming experiment). Thus, our hypothesis that the elevated oxygen demands would also be primarily supported by increased f_{SI} is not supported by our findings.

It is unlikely that the 2-fold increase in V_S was due to the modest (10%) increase in RVM, but it is more likely associated with the increased cardiac preload (P_{cv}). The association between the increases in V_S and P_{cv} in 5°C-acclimated fish is consistent with a classic Frank–Starling mechanism, which describes the greater force generated by a more distended myocardium (Patterson and Starling, 1914; Shiels and White, 2008). The precise mechanism responsible for the elevated P_{cv} remains to be determined, but it is well-established that blood volume is a key determinant of cardiac filling in fishes (Sandblom and Axelsson, 2006; 2007; Sandblom and Gröns, 2018). In the brook trout (Salvelinus fontinalis), blood volume increased over 25% following acclimation from 2 to 5°C (Houston, DeWilde MA, 1969). Although we are not aware of equivalent work in Antarctic fishes, Petzel (2005) reported a profound (460%) increase in drinking rate in 5°C-acclimated T. bernacchii. This is primarily to compensate for the decreased serum osmolarity, which promotes water loss to hyperosmotic seawater (Petzel, 2005). Increasing V_S through P_{cv} (and presumably blood volume) may be compatible with increased osmotic water loss. For example, it has recently been demonstrated that during the freshwater to seawater transition in rainbow trout, V_S increases as a result of increased P_{cv} (Brijs et al., 2017), which is likewise coincident with increased drinking in the face of increased osmotic water loss. Thus, we predict that an increase in blood volume may be a fundamental change following thermal acclimation in N. coriiceps. The regulation of blood volume and cardiac filling in Antarctic fishes, particularly following different thermal acclimations, remains an interesting avenue for future investigation.

At all equivalent test temperatures during acute warming, M_{O2} was the same for 5°C-acclimated and 0°C-acclimated fish, a result that is consistent with reports in the same species following acute (1 day) and chronic (6 weeks) acclimation to 5°C (Egginton and Campbell, 2016). However, we discovered some aspects of oxygen uptake that were different between 5°C-acclimated and 0°C-acclimated fish. For example, in 5°C-acclimated fish, M_{O2} was thermally independent between 0 and 4°C during acute warming, in contrast with the thermal sensitivity of M_{O2} in fish 0°C-acclimated fish, which is akin to the response observed in Atlantic halibut (Hippoglossus hippoglossus) (Gröns et al., 2014). Another difference between acclimation groups is that both M_{O2} and Q peaked between 8 and 12°C in fish 0°C-acclimated, yet not in 5°C-acclimated fish. Together, these data demonstrate divergent responses to warming between acclimation groups at sub-lethal temperatures (i.e. <12°C) (e.g. Pörtner and Knust, 2007; Pörtner and Farrell, 2008).

Our measurements of resting Hct (~15%) are consistent with previous reports in N. coriiceps that were likewise instrumented with indwelling cannulae (Egginton, 1994; 1997). At their respective acclimation temperatures, we did not observe a difference in Hct between 0°C-acclimated and

![Figure 5: The relationship between acclimation duration and C_{Tmax} (defined as complete cardiac failure). As there was no significant effect of acclimation time on C_{Tmax} data for the 5°C acclimation group were pooled, irrespective of acclimation duration.](https://academic.oup.com/conphys/article-abstract/6/1/coy069/5244179)
5°C-acclimated animals. Optimal Hct represents a compromise between the advantages gained from increased oxygen carrying capacity of blood with the burden of increasing blood viscosity, which elevates peripheral resistance and requires greater cardiac work to pump blood (Gallaugh et al., 1995). Because increasing temperature increases M_{O_2} (Fig. 3) while at the same time decreases the viscosity of blood (Egginton, 1996) and water oxygen concentration falls, it could be expected that a higher Hct may be favoured at higher temperature. Indeed, Tetens et al. (1984) observed that warm acclimation of P. borchgrevinki significantly increased Hct from 15 to 22%. However, our finding that Hct did not change following warm acclimation in N. coriceps is in agreement with another study on P. borchgrevinki (Lowe and Davison, 2005) and T. bernacchii (Hudson et al., 2008). Lowe and Davison (2005) ascribed the discrepancy between their findings and those of Tetens et al. (1984) as an effect of prolonged fasting, but this does not hold true for the fish in our study that continued to feed throughout the acclimation period. Our data, rather, suggest that the increase in Q (Table 1) is sufficient to maintain the chronically increased routine M_{O_2} without an increase in Hct.

With acute warming, Hct doubled in both 5°C-acclimated and 0°C-acclimated fish, consistent with a much smaller effect observed previously in N. coriceps (Hct increased...
from ~35% at 0°C to 41% in animals at their CTMAX (Beers and Sidell, 2011). However, resting Hct of *N. coriiceps* in the previous study (Beers and Sidell, 2011) was markedly higher than our Hct value, probably due to the stress associated with capture and anaesthesia (Wells et al., 1984) prior to acutely sampling blood from the caudal vein, likely masking some of the effect of the temperature response. This suggests that *N. coriiceps* is indeed capable of significant, and previously vastly underestimated, changes in Hct during acute warming, as previously reported in other Antarctic notothenioids (*P. borchgrevinki*; and *T. bernacchii*: Franklin et al., 1991; Davison et al., 1994).

In a eurythermal temperate species, the European perch (*Perca fluviatilis*), Sandblom et al. (2016) observed that M_{O2} and Q increased approximately in parallel following chronic warm acclimation (22–23 vs. 17–18°C), suggesting that arterio-venous oxygen extraction was largely unchanged. In contrast, we observed that 5°C-acclimated fish exhibited 2-fold lower arterio-venous oxygen extraction values than 0°C-acclimated fish, both at acclimation temperature and during acute warming. Although the mechanistic basis for this was beyond the scope of our study, it is possible that the increased Q in 5°C-acclimated fish exceeded the peripheral oxygen utilization capacity and M_{O2} was limited by mitochondrial oxidative capacity (see Wagner, 2011). Limited peripheral oxygen utilization may represent a general constraint for the warm acclimation of stenothermal species, a hypothesis that deserves future exploration. We observed that arterio-venous oxygen extraction did not change in either acclimation group during acute warming, which is consistent with other teleosts such as Sockeye salmon.
Physiological studies to assess the chronic and acute responses to warming are key in predicting the effects of a changing climate on animal distribution and performance (Seebacher et al., 2014, Deutsch et al., 2015). The finding that some, but not all, components of cardio-respiratory performance are changed (i.e. CT$_{\text{max}}$ increased whereas T$_{\text{sat}}$ did not change) following warm acclimation is in-line with the previous mixed results that have typified work on acclimating Antarctic nototheniid fish to elevated temperature (e.g. Franklin et al., 2007; Jayasundara et al., 2013; Egginton and Campbell, 2016). It is probable that previously conflicting results may be accounted for by differences in species and acclimation regimes. A more comprehensive insight into the capacity for Antarctic notothenioids to adapt to a changing climate may only be achieved with interspecific investigations that adopt standardized and sufficiently long-term acclimation protocols. One of the most pertinent outcomes of our study is that, even without warm acclimation, N. coriceps is capable of robust cardiovascular performance at temperatures well in excess of current environmental temperatures, and likely in the near future temperatures (i.e. the 2°C rise above ambient predicted in the next 100 years; IPCC, 2014). This is consistent with other studies that have revealed a surprisingly broad thermal tolerance for some traits, for example, burst swimming, in Antarctic fishes (Wilson et al., 2001). However, given the need to maintain elevated M$_{\text{O2}}$, ecological factors (e.g. changes in species assemblages and food availability; Ashton et al., 2017), or food assimilation and reproductive capacity (Sandersfeld et al., 2015), may prove to be more critical considerations than intrinsic limitations of cardio-respiratory oxygen transport.

Acknowledgements

We are sincerely grateful to the Masters and crew of the ARSV Laurence M. Gould and support personnel at Palmer Station. We thank Amanda Biederman, Anna Rix and Elizabeth Evans for assistance with animal care.

Funding

This study was supported by grants from the National Science Foundation (ANT 1341663 to K.M.O. and ANT 1341602 to E.L.C.). A.P.F. holds a Canada Research Chair.

References

Altimiras J, Axelsson M (2004) Intrinsic autoregulation of cardiac output in rainbow trout (Oncorhynchus mykiss) at different heart rates. J Exp Biol 207: 195–201.

Ashton GV, Morley SA, Barnes DKA, Clark MS, Peck LS (2017) Warming by 1°C drives species and assemblage level responses in Antarctica’s marine shallows. Curr Biol 27: 2698–2705.

Badr A, el-Sayed MF, Vornanen M (2016) Effects of seasonal acclimatization on temperature dependence of cardiac excitability in the roach, Rutilus rutilus. J Exp Biol 219: 1495–1504.

Beers JM, Jayasundara N (2015) Antarctic notothenioidean fish: what are the future consequences of ‘losses’ and ‘gains’ acquired during long-term evolution at cold and stable temperatures? J Exp Biol 218: 1834–1845.

Beers JM, Sidell BD (2011) Thermal tolerance of antarctic notothenioidean fishes correlates with level of circulating hemoglobin. Physiol Biochem Zool 84: 353–362.

Blyk KT, DeVries AL (2011) Heat tolerance and its plasticity in Antarctic fishes. Comp Biochem Physiol 158A: 382–390.

Brijs J, Sandblom E, Dekens E, Näslund J, Ekström A, Axelsson M (2017) Cardiac remodeling and increased central venous pressure underlie elevated stroke volume and cardiac output of seawater-acclimated rainbow trout. Am J Physiol Regul Integr Comp Physiol 312: R31–R39.

Casselman MT, Anttila K, Farrell AP (2012) Using maximum heart rate as a rapid screening tool to determine optimum temperature for aerobic scope in Pacific salmon Oncorhynchus spp. J Fish Biol 80: 358–377.

Claësson D, Wang T, Malte H (2016) Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction. Conserv Physiol 4: cow027.
Davison W, Franklin CE, McKenzie JC (1994) Haematological changes in an Antarctic teleost, Trematomus bernacchii, following stress. *Polar Biol* 14: 463–466.

Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB (2015) Ecophysiology. Climate change tightens a metabolic constraint on marine habitats. *Science* 348: 1132–1135.

Egginton S (1994) Stress response in two Antarctic teleosts (Notothenia coriceps Richardson and Chaenocephalus aceratus Lönnberg) following capture and surgery. *J Comp Physiol B* 164: 482–491.

Egginton S (1996) Blood rheology of Antarctic fishes: viscosity adaptations at very low temperatures. *J Fish Biol* 48: 513–521.

Egginton S (1997) A comparison of the response to induced exercise in red- and white-blooded Antarctic fishes. *J Comp Physiol B* 167: 129–134.

Egginton S, Campbell HA (2016) Cardiorespiratory responses in an Antarctic fish suggest limited capacity for thermal acclimation. *J Exp Biol* 219: 1283–1286.

Enzor LA, Hunter EM, Place SP (2017) The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish. *Conserv Physiol* 5: cox019.

Farrell AP (2016) Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. *J Fish Biol* 88: 322–343.

Farrell AP, Elaison EJ, Clark TD, Steinhausen MF (2014) Oxygen removal from water versus arterial oxygen delivery: calibrating the Fick equation in Pacific salmon. *J Comp Physiol B Biochem Syst Environ Physiol* 184: 855–864.

Farrell AP, Elaison EJ, Sandblom E, Clark TD (2009) Fish cardiorespiratory physiology in an era of climate change. *Can J Zool* 87: 835–851.

Ferreira EO, Anttila K, Farrell AP (2014) Thermal optima and tolerance in the eurythermic goldfish (Carassius auratus): relationships between whole-animal aerobic capacity and maximum heart rate. *Physiol Biochem Zool* 87: 599–611.

Franklin CE, Davison W, Carey PW (1991) The stress response of an Antarctic teleost to an acute increase in temperature. *J Therm Biol* 16: 173–177.

Franklin C, Davison W, Seebacher F (2007) Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagophila eburnea. *J Exp Biol* 210: 3068–3074.

Gallagher P, Thorarinsen H, Farrell AP (1995) Hemocrit in oxygen transport and swimming in rainbow trout (Oncorhynchus mykiss). *Respir Physiol* 102: 279–292.

Gråns A, Jutfelt F, Sandblom E, Jönsson E, Wiklander K, Seth H, Olsson C, Dupont S, Ortega-Martinez O, Einarsdóttir I, et al (2014) Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. *J Exp Biol* 217: 711–717.

Houston AH, De Wilde MA (1969) Environmental temperature and the body fluid system of the fresh-water teleost—III. Hematology and blood volume of thermally acclimated brook trout, Salvelinus fontinalis. *Comp Biochem Physiol* 28: 877–885.

Hudson HA, Brauer PR, Scofield MA, Petzel DH (2008) Effects of warm acclimation on serum osmolality, cortisol and hemocrit levels in the Antarctic fish, Trematomus bernacchii. *Polar Biol* 31: 991–997.

IPCC (2014) *Climate change 2014: synthesis report*. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, RK Pachauri, LA Meyer, eds). IPCC, Geneva, Switzerland, 151 pp.

Jayasundara N, Healy TM, Somero GN (2013) Effects of temperature acclimation on cardiorespiratory performance of the Antarctic nototheniid *Trematomus bernacchii*. *Polar Biol* 36: 1047–1057.

Jayasundara N, Somero GN (2013) Physiological plasticity of cardiorespiratory function in a eurythermal marine teleost, the longjaw mudsucker, Gillichthys mirabilis. *J Exp Biol* 216: 2111–2121.

Joyce W, Egginton S, Farrell AP, Crockett EL, O’Brien KM, Axelsson M (2018) Exploring nature’s natural knockouts: *in vivo* cardiorespiratory performance of Antarctic fishes during acute warming. *J Exp Biol* 221: jeb183160.

Littlegage JL (1965) Oceanographic investigations in McMurdo Sound, Antarctica. Llano, GA (ed.). *Geophysical Union, Washington, DC*, pp 1–37.

Lowe CJ, Davison W (2005) Plasma osmolarity, glucose concentration and erythrocyte responses of two Antarctic nototheniid fishes to acute and chronic thermal change. *J Fish Biol* 67: 752–766.

Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. *Geophys Res Lett* 32: L19604–L19608.

O’Brien KM, Rix AS, Egginton S, Farrell AP, Crockett EL, Schlauch K, Woosley R, Hoffman M, Merriman S (2018) Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic nototheniid fishes. *J Exp Biol* 221: jeb177816.

Patterson SW, Starling EH (1914) On the mechanical factors which determine the output of the ventricles. *J Physiol* 48: 357–379.

Peck LS, Morley SA, Richard J, Clark MS (2014) Acclimation and thermal tolerance in Antarctic marine ectotherms. *J Exp Biol* 217: 16–22.

Petzel D (2005) Drinking in Antarctic fishes. *Polar Biol* 28: 763–768.

Podrabsky JE, Somero GN (2006) Inducible heat tolerance in Antarctic nototheniid fishes. *Polar Biol* 30: 39–43.

Pörtner H-O, Farrell AP (2008) Ecology. Physiology and climate change. *Science* 322: 690–692.

Pörtner H-O, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. *Science* 315: 95–97.
Robinson E, Davison W (2008) The Antarctic notothenioid fish Pagothenia borchgrevinki is thermally flexible: acclimation changes oxygen consumption. Polar Biol 31: 317–326.

Sandblom E, Axelsson M (2006) Adrenergic control of venous capacitance during moderate hypoxia in the rainbow trout (Oncorhynchus mykiss): role of neural and circulating catecholamines. Am J Physiol Regul Integr Comp Physiol 291: R711–R718.

Sandblom E, Axelsson M (2007) The venous circulation: a piscine perspective. Comp Biochem Physiol A Mol Integr Physiol 148: 785–801.

Sandblom E, Axelsson M, Davison W (2008) Enforced exercise, but not acute temperature elevation, decreases venous capacitance in the stenothermal Antarctic fish Pagothenia borchgrevinki. J Comp Physiol B 178: 845.

Sandblom E, Clark TD, Gränns A, Ekström A, Brijs J, Sundström LF, Odelström A, Adill A, Aho T, Jutfelt F (2016) Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat Commun 7: 11447. doi:10.1038/ncomms11447.

Sandblom E, Davison W, Axelsson M (2012) Cold physiology: postprandial blood flow dynamics and metabolism in the Antarctic fish Pagothenia borchgrevinki. PLoS One 7: e33487.

Sandblom E, Gränns A (2018) Form, function and control of the vasculature. In: Gamperl AK, Gillis TE, Farrell AP, Brauner CJ, eds. Fish Physiology: The Cardiovascular System—Morphology, Control and Function. Academic Press, Cambridge, MA, United States: pp 369–433.

Sanderson F, Davison W, Lamare MD, Knust R, Richter C (2015) Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii. J Exp Biol 218: 2373–2381.

Seebacher F, Davison W, Lowe CJ, Franklin C (2005) A falsification of the thermal specialization paradigm: compensation for elevated temperatures in Antarctic fishes. Biol Lett 1: 151–154.

Seebacher F, White CR, Franklin CE (2014) Physiological plasticity increases resilience of ectothermic animals to climate change. Nat Clim Chang 5: 61–66.

Shiels HA, White E (2008) The Frank–Starling mechanism in vertebrate cardiac myocytes. J Exp Biol 211: 2005–2013.

Somero GN, DeVries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156: 257–258.

Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457: 459–462.

Steinhausen MF, Sandblom E, Eliason EJ, Verhille C, Farrell AP (2008) The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming sockeye salmon (Oncorhynchus nerka). J Exp Biol 211: 3915–3926.

Strobel A, Bennecke S, Leo E, Mintenbeck K, Pörtner H-O, Mark FC (2012) Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO₂. Front Zool 9: 28.

Tetens V, Wells RMG, DeVries AL (1984) Antarctic fish blood: respiratory properties and the effects of thermal acclimation. J Exp Biol 109: 265–279.

Vornanen M (2017) Electrical excitability of the fish heart and its autonomic regulation. Gamperl AK, Gillis TE, Farrell AP, Brauner CJ, eds. The Cardiovascular System—Morphology, Control and Function. Elsevier Academic Press, Cambridge, MA, United States, pp 99–153.

Vornanen M, Haverinen J, Egginton S (2014) Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario). J Exp Biol 217: 299–309.

Wagner PD (2011) Modeling O₂ transport as an integrated system limiting VO₂max. Comput Methods Programs Biomed 101: 109–114.

Wells RMG, Tetens V, DeVries AL (1984) Recovery from stress following capture and anaesthesia of antarctic fish: haematology and blood chemistry. J Fish Biol 25: 567–576.

Wilson RS, Franklin CE, Davison W, Kraft P (2001) Stenotherms at sub-zero temperatures: thermal dependence of swimming performance in Antarctic fish. J Comp Physiol B 171: 263–269.

Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.