Producing Renewable Energies
Swiss Innovation at EXPO 2017 in Astana

Elsbeth Heinzelmann, Journalist science + technology

Keywords: Expo · Future energy · International · Microbial Fuel Cell · Workshop

It was a daring venture when Professor Fabian Fischer, lecturer in chemistry and biotechnology at HES-SO Valais/Wallis, organized a Microbial Fuel Cell Workshop at EXPO 2017 in Astana, the capital of Kazakhstan. This first world exhibition to be held in Central Asia (from 10 June to 1 September) is dedicated to ‘Future Energy’ and showcased Switzerland as an innovative country for energy efficiency, renewable energies and global water management.

When Fabian Fischer touched down on Kazakh soil at 4 o’clock on a summer morning, the city on the banks of the Ishim River was still asleep. While Almaty is still the country’s commercial and cultural heart with its 1.7 million inhabitants, Astana is a 25-year-old planned town with striking modern architecture set in a flat, semi-arid steppe region with only 18,000 residents, of whom 66% are Kazakhs and 21% Russians.

A lot done, a lot more to do

It is not a coincidence that EXPO 2017 in Astana is dedicated to future energy resources. Kazakhstan depends heavily on oil: since the turn of the millennium, its gross domestic product has grown more strongly than at any time in the past due to earnings from crude oil and gas extraction. With output at 81.8 million tons per year (2013), Kazakhstan is one of the 20 leading oil producers. The country is also the world’s largest uranium producer, is among the 20 largest gold producing countries and also has a large copper mining industry with an output of 493,000 tons p.a. (2013). In recent years, coal extraction has been the subject of targeted development. The output of 120 million tons per year is destined mainly for domestic use. Electricity is primarily generated by fossil fuels (89%, compared with only 1% by renewable energies). Therefore Kazakhstan has a justified interest in opening up new sources of energy.

“Corresponding competencies have to be established at universities, like the L. N. Gumilyov Eurasian National University in Astana, one of the leading universities in Kazakhstan”, says Prof. Fabian Fischer, lecturer at HES-SO Valais Wallis in Sion. His special areas of research are microbial fuel cells (MFC) for power production from biomass, a subject of growing importance at an international level. The production of methane, recovery of CO₂ and other useful applications are also envisioned for MFCs. Moreover, the biofuel cell concept has been applied to microbial activity sensing, which makes it possible to assay the metabolic activity of microbes.

The ‘Heat Power Engineers’ roll up their sleeves

On July 28, Fabian Fischer opened the doors at the Swiss Pavilion. Teaching staff and students of the L. N. Gumilyov Eurasian National University (ENU) took part in a workshop on microbial fuel cells, despite it being held during the vacation period. The expert first gave a brief introduction to MFC – a future source of energy that converts wastewater, food waste and other organic substances into bioelectricity and generates purified water at the same time. He spoke about laboratory work done at HES-SO in Sion, where stacked microbial fuel cells are currently under investigation. A 12-litre MFC was recently constructed. This reactor has been operated under various parameters to yield information on how to prevent and resolve voltage reversals, on charging lithium batteries, and on its potential for simultaneously purifying wastewater (see Bioresource Technology 2017, 238, 519–527). Work is also being conducted with real wastewater on a pilot scale in collaboration with several wastewater treatment plants in Switzerland.

He then handed out a MFC kit for small-scale experiments so that the participants could explore their knowledge and demonstrate to themselves the basic functioning of a MFC. At the end, each participant left the event as the happy owner of a workshop certificate and a small microbial fuel cell. “The workshop was supported by Swissnex Lab”, says Fabian Fischer. “It is targeting thematic immersion and networking to facilitate bilateral cooperation and academic exchange between Switzerland and Kazakhstan. The event also allows visitors to conduct experiments and slip into the shoes of an energy scientist.” Further exchanges with Swiss researchers include a seminar with the University of Applied Sciences of Lucerne on ‘An Entire CO₂ Neutral Region’ as well as a joint Kazakh-Swiss seminar with the University of Zurich on the issue of ‘Future livelihoods in Kazakhstan: Current developments, problems and perspectives’.

View from the central globe towards buildings hosting countries pavilions. Photo Fabian Fischer.
The first step towards effective cooperation

“The in-depth training of specialists in this field is of great importance for Kazakhstan, as many technical challenges need to be resolved by engineers”, Fabian Fischer recalls. “They need wastewater treatment, a more efficient use of water in industry, waste management, recovery of energy to produce less heat, heating technology and a better energy supply.” In fact, he has the – not entirely unselfish – ambition of working with colleagues from Astana on specific microbial fuel cells in extreme weather conditions: the new city lies at the heart of Kazakhstan’s desert region, where night-time temperatures can fall to 40 degrees below zero – perfect conditions for his test series! He has a very positive outlook on the future: “Wherever you go, people in Astana are open and honest, and very hospitable!” And, as Fabian Fischer says with a smile: “You’d better not trust the buses here, but the indigenous drivers are really nice: Stand at the side of the road and extend your index and middle fingers towards the street. A car will stop immediately and the driver will take you wherever you wish – good value for money!” Astana is also a place where different cultures and ways of life meet. “I’d never been to Kazakhstan before, so the encounters with different people and their personal experiences was greatly enriching”, is Fabian Fischer’s positive verdict. In his spare time he met people from all over the world while visiting other pavilions.

EXPO 2017 in Astana

The Swiss pavilion at the EXPO 2017 in Astana was organized by the Federal Department of Foreign Affairs FDFA with a budget for construction and operation of the pavilion of CHF 4.2 million. The exhibition includes an interactive Swiss ‘Flower Power’ pavilion with examples of Swiss innovation in energy efficiency and renewable energies. There are four themes: solar power, a ‘potato power house’, water management, and Swiss innovation. In the solar power house, visitors can experience the Swiss pioneering spirit in the field of energy and building technology. An example of a structure that is largely energy self-sufficient is the Monte Rosa Hut on the Gorner Glacier. It illustrates the sun’s potential as an energy source. In a second house, a rösti cooking demonstration shows how the daily consumption of energy affects our environment and what we can do in our daily lives to use energy more efficiently. The third house, designed in collaboration with the Swiss Agency for Development and Cooperation (SDC), focuses on water as a natural resource and source of energy. And finally the fourth house demonstrates Swiss innovation through SolarStratos, a solar aircraft flown by the Swiss eco-adventurer Raphaël Domjan to the stratosphere – the edge of space and at the boundary of what is technically feasible.

http://houseofswitzerland.org/events/expo-astana-2017
Advanced Cell Culture Systems: Exactly what Academia and Industry Need!

Elsbeth Heinzelmann, Journalist science + technology

Keywords: Cell culture systems

After many years in pharmaceutical research and five years at the FHNW, Professor Laura Suter-Dick combines crucial skills in both basic and applied research. Her recent appointment as President of biotechnet Switzerland places her in an excellent position to strengthen research interactions between the private sector and academia in Switzerland. Let’s take a peek behind the scenes of her work at the School of Life Sciences.

Advanced cell cultures for the future: mimicking tissue architecture

Most cell culture systems are based on two-dimensional (2D) monolayers on plastic dishes. These systems can be useful but differ substantially from the reality of a tissue or organ in a patient. The Molecular Toxicology Group at the School of Life Sciences (FHNW) focuses primarily on advanced in vitro systems that could provide alternatives to animal experimentation. Prof. Laura Suter-Dick, a European Registered Toxicologist (ERT), is an active and convinced promoter of the 3Rs (Replace, Reduce and Refine animal experimentation) in drug discovery research. “Complex, fit-for-purpose cell culture systems are definitely the biological system of the future, but these systems can also already be applied here and now”, she says.

Entering the third dimension in oncology research

Conventional methods to test cytostatic agents use cultured adherent 2D cell monolayers. However, tumours naturally grow in 3D, and the spatial distribution of cells affects their mutual interactions. In the context of a student exchange programme with the Università degli Studi di Palermo, the group headed by Laura Suter-Dick made use of alginate to generate 3D, spherical cell cultures containing cancer cells. “As alginate is well suited for cell encapsulation, we developed 3D microparticles for the culture of MCF-7, a breast adenocarcinoma cancer cell line”, explains Laura Suter-Dick. “Our goal was to implement 3D cell culture systems to evaluate cell proliferation, viability and response to treatment.” The first step was the production and characterisation of cell aggregates generated in high-throughput. They showed homogeneous size and distribution of cells, as well as cell proliferation within the aggregates. The scientists subsequently observed that Epithelial to Mesenchymal Transition (EMT), a mechanism whereby cells lose their epithelial characteristics and acquire migratory properties, was influenced by the cell culture architecture: MCF-7 cells in monolayers display an epithelial phenotype, while 3D cultures promote a mesenchymal phenotype. The differences in cellular phenotype also resulted in differences in the responses to cytostatic agents, a key finding in terms of using the system for assessing potential new anticancer drugs. “As our data show, the proliferation rate of MCF-7 cells in 3D cultures was lower than in monolayers”, says a visibly happy Laura Suter-Dick. “This was probably due to the differentiation process occurring in 3D cell culture. Immunofluorescence and western blot analysis revealed that E-cadherin, a protein that plays a key role in cellular adhesion, was expressed to a lesser extent in 3D cultures than in monolayers. Loss of this function has been associated with a greater potential for tumour metastasis. In addition, analysis of the cell defence factor NRF2 shows that MCF-7 grown in 3D cultures display a higher chemo-resistance capability compared to monolayer MCF-7 cultures”. In fact, the data show that the response of MCF-7 to the anticancer drug doxorubicin is stronger in 2D than in the more realistic 3D alginate aggregate. “This finding is key, as it indicates that the less physiological 2D systems might lead to an overestimation of the anticancer efficacy of drugs”, Suter-Dick concludes.[1]

The human kidney on a chip: combining 3D and fluidics

Our kidneys play an important role in the elimination of drugs and their metabolites. Consequently, they are exposed to high concentrations of xenobiotics and are therefore a common target...
Pathway (AOP) and the involvement of the antioxidant response in the activation of the stellate cells. Laura Suter-Dick concludes: “The application of such a system would be a great contribution for the further understanding of the mechanisms of liver fibrosis and for the study of potential anti-fibrotic treatments”.\[3\]

Mimicking Alzheimer’s disease in a dish

Around the globe, about 44 million people suffer from Alzheimer’s disease (AD) or a related dementia. According to the Alzheimer’s Association, the global cost is estimated to be $236 billion in 2016. Therefore, Laura Suter-Dick is also investigating the mechanisms leading to neuronal death in AD. “We started this project in collaboration with F. Hoffmann-La Roche. Within my group, Dr Carine Gaiser applied a human 3D in vitro system based on neural precursor cells engineered to carry mutations that are common in familial AD”, says Laura Suter-Dick. The cells carry mutations on APP (amyloid precursor protein) and PSEN (presenilin) and can be differentiated into neurons and astrocytes. In patients, these mutations affect the deposition of Abeta peptides, the main component of the amyloid plaques found in the brains of AD patients. They also lead to hyper-phosphorylation of the cytoskeletal protein tau and the formation of intracellular tangles, hallmarks of the disease.\[4\] Long-term maintenance of these engineered cells in 3D culture systems leads to the development of AD pathology in vitro. The researchers were able to detect increased Abeta secretion, Abeta deposition and tau hyper-phosphorylation. Suter-Dick’s group is currently pioneering research on additional factors that modulate AD. For example, the addition of macrophages to mimic neuro-inflammation represents a novel approach that takes this in vitro system to an additional level of complexity by including immune cells. THP-1 cells, a human monocytic cell line, are co-cultured with the differentiated neurons and astrocytes by means of bio-printing technologies. Over several days these immune cells proliferate and release immune-inflammatory signals – cytokines – that affect the neuronal cells. This is a step in the right direction for AD research, as several aspects of the disease can be reproduced in vitro, including the phenotype of mutations of familial AD and the influence of neuro-inflammation. Although there is still a long way to go, this opens up an unparalleled opportunity to study the mechanisms underlying Alzheimer’s disease and the effects of pharmacological interven-
It needs to be kept in mind that, as of today, there are no successful treatments for AD, and that its incidence is increasing due to the rising life expectancy of the population. In addition, animal models are not suitable for addressing certain major, clinically relevant, aspects. So Laura Suter-Dick is delighted to have a tool at hand that can help test potential cures for such a devastating disease, and is open to explore new horizons. “Based on our current knowledge, we are looking for industrial partners to pursue this research and help them generate and assess new pharmacological interventions in AD, therefore directly benefiting the patients” [5].

Prof. Laura Suter-Dick
Fachhochschule Nordwestschweiz (FHNW)
Hochschule für Life Sciences
President of biotechnet Switzerland

Please contact: laura.suterdick@fhnw.ch / www.fhnw.ch

Received: August 11, 2017

[1] ‘3D-cultures of MCF-7 cells resemble tumor phenotype’, S. Mannino, L. Suter-Dick, Poster presentation at TEDD Annual meeting 2016, Wädenswil, Switzerland.
[2] M. J. Wilmer, C. PingNg, H. L. Lanz, P Vulto, L. Suter-Dick, R. Masereeuw, Trends Biotechnol. 2016, 34, 156.
[3] V. Prestigiacomo, A. Weston, S. Messner, F. Lampart, L. Suter-Dick, PLOS One 2017, 12, e0179995.
[4] S. H. Choi, Y. H. Kim, M. Hebisch, C. Sliwinski, S. Lee, C. D’Avanzo, H. Chen, B. Hooli, C. Asselin, J. Mufi, J. B. Klee, C. Zhang, B. J. Wainger, M. Peitz, D. M. Kovacs, C. J. Woolf, S. L. Wagner, R. E. Tanzi, D. Y. Kim, Nature 2014, 515, 274.
[5] ‘A three-dimensional, human co-culture model for the study of mechanisms in Alzheimer’s disease’, Selected oral presentation, L. Suter-Dick, C. Gaiser, AD/PD 2017, Vienna, Austria.