Management of lepidopteran insect pests through entomopathogenic nematodes: An overview

Abstract: Lepidopteran pest cause significant loss in quantity and quality of produced in many agricultural and horticultural crops. Therefore management strategies should aim to reduce their population below threshold level. Though chemical pesticides are recommended for controlling these insect pests, biocontrol agents are mostly recommended in IPM programme. The most important bio-control agent is the entomopathogenic nematodes (EPNs). This review discusses the bioefficacy of some of important species of entomopathogenic nematodes against various lepidopteran insect pests.

Key words: Entomopathogenic nematodes (EPNs), biocontrol agent, lepidopteran insect, Steinernema spp., Heterorhabditis spp.

INTRODUCTION

Insect pest cause significant yield loss and reduction in quality of produced in many agricultural and horticultural crops. Lepidopteran insects are one of the most widely distributed and destructive insect pests in the world, comprise about 180,000 species with 126 families and 46 super families (Heppner, 2008; Jim, 2011). The female may produce eggs as high as 30,000 eggs per day which may create substantial problems for agricultural crops (Denlinger, 2009). This necessitates the development of management strategies to reduce their population below threshold level. Chemical control is recommended to reduce their population. But biocontrol agents are alternate strategy which provides good health and pollution free environment and mostly recommended in IPM programme. The most important biological control agent is the Entomopathogenic nematodes (EPNs) which have significant potential in management of many insect pests (Dutky & Hough, 1955; Georgis & Gaugler, 1991). EPNs have many positive characteristics like wide host range, host searching ability, short life cycles, easy mass culture and application, and good persistence etc. (Bari and Kaya, 1984; Kaya and Gaugler, 1993; Lacey et al., 2000; Grewal et al., 2005; Shapiro-Ilan & Gaugler, 2019).

Bioefficacy of entomopathogenic nematodes (EPNs) against some of the important lepidopteran insect pests:

The greater wax moth (Galleria mellonella L.) is an important pest of beekeeping industry (Anwar et al., 2014), but it is used as a standard host for observations on virulence of many biological control agents like EPNs (De Doucet et al., 1999; Hendrichs et al., 2009; Kulkarni et al., 2012).

The tomato leafminer (Tuta absoluta) is one of the most important pests associated with tomato. Damage produced by this insect is focused on the larval galleries made on the leaves, the terminal buds, the flowers and the fruits of the tomato crops. Tomato leafminer larvae produce tunnels generating big entry holes to the galleries that can be effortless used by nematodes to penetrate and avoid desiccation and ultraviolet light and finally infect the larvae.

Potato tuber moth (PTM) (Phthorimaea operculella) is a pest of solanaceae crops which contributes to potato loss in field and storage. PTM larvae attack leaves, petioles and stems and infest tubers during plant senescence. Severe damage (up to 100% in some cases) can occur in storage. The susceptibility of PTM to EPN infection depended on different factors such as the developmental stage of insect, the age of the host insect within a given stage, soil type, EPN species/strain and IJ concentration as well as foraging behavior. The overlap between generations
of PTM result in high populations providing suitable conditions for use of EPNs (*S. carpocapsae* and *H. bacteriophora*) against larval and prepupal stages of PTM during the growing season (Yathom 1986; Gaugler 2002).

The diamondback moth (DBM) (*Plutella xylostella*) attacks and damages cruciferous. Enhanced control of insect larvae by entomopathogenic nematodes on leaves can be obtained by use of anti-desiccants (Glazer et al., 1992; Mason & Wright, 1997) and optical brighteners (Ratnasinghe, 1996).

The fall armyworm (FAW), (*Spodoptera frugiperda*) is a polyphagous pest of maize and other Poaceae crops. When *S. frugiperda* larvae are lodged inside the corn whorl the deposition of the leaves prevents the direct contact with other organisms and reduces the larval control. Caccia et al., (2014) reported the FAW’s susceptibility to EPNs. Acharya *et al.*, (2020) investigated the effectiveness of *H.indica*, *S. carpocapsae*, *S. arenarium* and *S. longicaudum* against various stages of the FAW larvae. They found that younger larvae (e.g., first, second and third-instar larvae) of the FAW were more susceptible to *H.indica* and *S. carpocapsae*, while elder larvae (e.g., 4th, 5th and 6th larval instars) were susceptible to *S. arenarium* and *S. longicaudum*.

Corn earworm, (*Helicoverpa zea*) attacks corn and other cultivated and wild host plants. *H. zea* causes damage primarily by tunneling into the ear in corn. This insect feeds primarily on the fruit of its hosts and, in corn, usually feeds first on the silks and then channels downward into the ear. Once larvae enter the silk channel of the corn fruit, they are well protected, allowing high survival. Control strategy should be focused on the prepupal and pupal stages of corn earworm populations in the soil, for preventing adult emergence and subsequent migration. Cabanillas and Raulston (1995) observed that timing soil applications of *S. riobravis* with the life cycle of the target insect is a key efficacy factor. *H. zea* mortality was obtained (100 and 95%) by applying the nematodes when 50% of the larvae were late instars and still in the maize ears, and when 10% of the larvae had left the ears to pupate in the soil. Cabanillas and Raulston (1996) demonstrated that irrigation method, timing and nematode concentration were important factors in the success of the nematode. Application of *S. riobrave* (2 lakhs IJs/m²) resulted in 95% insect mortality when applied via in-furrow irrigation compared with 84 and 56 % mortality when applied after or before surface irrigation, respectively.

Brinjal shoot and fruit borer, (*Leucinodes orbonalis*) the damage is observed initially on the plant shoots prior to flowering and later on the fruits. Timing of application of EPNs with the lifecycle of the target insect is a key factor to increase efficacy. Larvae infesting flowers and those that have fallen onto the soil prior to pupation are targeted for control by EPNs. Factors such as temperature and sunlight are reported to affect the activity of IJs (Gaugler and Bousch,1978; Gaugler et al.,1992; Grewal et al.,1994).Spraying of IJs at dusk is reported to reduce the negative effects of sunlight by maintaining high RH(Lello et al.,1996).

Pink bollworm (PBW), (*Pectinophora gossypiella*) is one of the most serious pests of cotton. *P. gossypiella* is excellent target for the use of EPNs in cotton. Although pink bollworm pupae are not susceptible to EPNs (Henne berry et al.,1995), the diapausing larvae in soil during the winter are susceptible (Gouge et al.,1999).Due to lower temperature during winter, *H.bacteriophora* has been found to be more effective than *S.riobraive* for the control of pink bollworm (Gouge et al.1999).

Codling moth (CM), (*Cydia pomonella*) a serious pest of apple and pear.CM overwinters in cryptic habitats as cocooned diapausing larvae. Their elimination or significant reduction at this stage would provide complete or substantial protection to fruit early in the following growing season. Studies by Kaya et al. (1984), and Unruh and Lacey (2001) elucidated the importance of
moisture for control of CM by *Steinernema carpocapsae*. Cryptic habitats, such as those used by CM for their overwintering sites (under loose bark, in litter at the base of trees, in nearby woodpiles, fruit bins and the like) may also provide favorable environmental conditions for entomopathogenic nematodes (EPNs) (Begley, 1990; Koppenhofer et al., 2020). Used under optimal conditions of warm temperatures and available free water, EPNs can be effective control agents of cocooned CM larvae in orchards (Kaya et al., 1984; Lacey et al., 2000; Nachtigall & Dickler, 1992; Sledzevskaya, 1987; Unruh & Lacey, 2001) and fruit bins (Cossentine et al., 2002; Lacey and Chauvin, 1999; Lacey et al., 2005). Navaneethan et al., 2010 reported that efficacy of *S. feltiae* against the diapausing CM larvae by using a surfactant-polymer formulation.

Factors affecting efficacy of entomopathogenic nematodes

The efficacy of EPNs is governed by their virulence and their capability to find out their hosts. Nematode strains differ in virulence to insect host and that various ages and stages of host insects differ in susceptibility (Kaya, 1985). EPNs can effectively control several lepidopteran species (Kaya 1985; Siegel et al., 2004; Batalla-Carrera et al., 2010; Negrisoli et al., 2010) but matching the most suitable nematode with the target host is a critical component for success in any biocontrol programme (Shapiro-Ilan and Cottrell, 2006).

Factors such as temperature and sunlight are reported to affect the activity of IJs (Gaugler and Bousch, 1978; Gaugler et al., 1992; Grewal et al., 1994). Spraying of IJs at dusk is reported to reduce the negative effects of sunlight by maintaining high RH (Lello et al., 1996). The use of local isolates, which are adapted to local temperatures, was reported to give a high level of efficacy against the target pest (Mason and Wright, 1997).

Timing of application of entomopathogenic nematodes with the life cycle of the target insect is a key factor to increase efficacy (Hussaini and Singh, 1998). Pre and post application irrigation is essential for nematode movement, persistence, and infection (Koppenhofer et al., 2020). These factors and the irrigation of the field before and after spraying contributed to the effectiveness of EPNs against target pests. Application volume vary with soil type, compaction, structure, crop, target insect, target insect behavior, formulation and plant architecture. Berg et al. (1987) suggested application volumes between 935 L ha⁻¹ and 2800 L ha⁻¹ with entomopathogenic nematodes to pasture for controlling subterranean insect pests. The quantity of infective juveniles (IJ) for application in the field varies according to the crop, target insect, formulation and application technology (up to 2.5 billion infective juveniles ha⁻¹) (Garcia et al., 2008).

Entomopathogenic nematodes can be applied with equipment developed for pesticides, including backpack, boom (with or without air assistance), aerial, and electrostatic sprayers (Georgis, 1990).

Entomopathogenic nematodes have been used with variable success against lepidopteran pests, including those found in the soil, in cryptic habitats, on foliage (Batalla-Carrera et al., 2010). Sensitivity to low moisture, high temperature and ultraviolet radiation has limited nematode use against foliage-feeding insects. However, most success has been achieved in insect pests that spend some stages in the soil or those in cryptic habitats such as galleries in plants where infective juveniles (IJ) are protected from environmental extremes (Shapiro-Ilan et al., 2002; Almeida et al., 2007). *S. feltiae* and some other steinernematids have far better potential for insect control in soil and other cryptic habitats because of their dependence on moisture, their ability to search for a host over short distances, and their ability to invade the host through body openings without having to be ingested (Gaugler, 1981).

The stage of insect development has a significant effect on vulnerability to EPNs (Kaya & Hara, 1980; Kaya & Grieve 1982; Kaya, 1985). *Spodoptera exigua* (Hubner), prepupa was the most
susceptible stage, showing the highest mortality across all EPNs concentrations. It seems that developmental events during the pupal stage might influence infective juvenile penetration rates (Dolinski et al., 2006). Acharya et al. (2020) reported that younger larvae (e.g., first-, second- and third-instar larvae) of the Fall armyworm (FAW) were more susceptible to *H. indica* and *S. carpocapsae*, while elder larvae (e.g., 4th, 5th and 6th larval instars) were susceptible to *S. arenarium* and *S. longicaudum*.

Conclusion

Various successful field studies advocate the potential of entomopathogenic nematodes against lepidopteran insect pests and their widespread uptake on the biocontrol market. The effectiveness of EPNs can also be improved by genetic improvement through selection and transgenic methods, time and method of application.

Table.1. Bioefficacy of entomopathogenic nematodes against lepidopteran insect pests.

Pest	Nematode	Laboratory/field experiment	Efficacy	Reference	
Wax moth (*Galleria mellonella*)	*Heterorhabditis bacteriophora* *Steinernema glaseri* *S. scarabaei* *S. feltiae* *H. megidis* *S. carpocapsae* *H. heliothidis* *S. glaseri* *S. surkhetense* *S. feltiae DDKB-17* *H. bacteriophora AVB-15* *H. indica*	Lab	87%-100%	Hyrs1,2011; Rahoo et al.,2018 Saunders & Webster, 1999 Zervos et al.,1991 Trinh et al.,2021 Yuksel & Canhilal, 2019	
Galleria mellonella, *Helicoverpa armigera* *Spodoptera litura*	*S. abbasi* CS38	Lab	100%	Heena et al.,2021	
Galleria mellonella, *Corcyra cephalonica* *Helicoverpa armigera* *Spodoptera litura* *Scirpophaga excerptalis* *Sesamia inferens* *Chilo sacchariphagus indicus*	*S. glaseri* *S. feltiae* *H. indicus*	Lab		Karunakar et al.,1999	
Spodoptera litura, *S. siamkayai*	Lab			Adiroubane et al.,	
Plutella xylostella, Leucinodes orbonalis, Earais vitella, Cnaphalocrocis medinalis.	S.carpocapsae	Lab	2010		
---	---	---	---		
Galleria mellonella Spodoptera litura	S.carpocapsae	Lab	Fuchi et al.,2016		
Spodoptera exigua Harrisinia brillians pupae	N.carpocapsae	Lab	Kaya & Hara, 1980;1981		
Wax moth (Galleria mellonella), Pink bollworm (Pectinophora gossypiella), Eggplant fruit borer (Leucinodes orbonalis) Armyworm (Spodoptera litura)	S.kraussei	Lab	Khan et al.,2020		
Cabbageworm (Artogeia rapae) Diamondback moth (Plutella xylostella) Cabbage looper (Trichoplusia ni)	S. carpocapsae All S.feltiae UK S. feltiae 27 S. riobrave 335	Lab	Belair et al.,2003		
Tomato leafminer (Tuta absoluta)	S.carpocapsae All	Lab, greenhouse	Sabry et al.,2016		
	S.carpocapsae S. feltiae H.bacteriophora		Van Damme et al., 2016		
	S. feltiae	Field	Williams &Walters, 1999		
Heterorhabdities sp. S. karii	Lab	Mutegei et al.,2017			
S. yirgalemense 157-C S.jeffreyense	Lab	Dlamini et al.,2020			
S.carpocapsae, B14 S. feltiae Bpa H.bacteriophora DG46	Lab, greenhouse	Batalla-Carrera et al., 2010			
S.affine 46 S. carpocapsae 1133,	Field	Gozel & Kasap ,2015			
Insect	Species/Strain	Reduction of plant damage	Reference		
--------------------------------	---	---------------------------	--		
Stem borer (Sesamia calamistis)	H. bacteriophora S. feltiae	4%-57%	Claudius-Cole, 2018		
Turnip moth (Agrotis segetum	H. indica H. bacteriophora	93.33%	Vashisth et al., 2018		
Red-backed cutworm (Euxoa ochrogaster)	S. feltiae H. bacteriophora	33%-70%	Morris, 1985		
Army cutworm (Euxoa auxiliaries)	S. carpcapsae H. bacteriophora	100%	Hussaini et al., 2000		
Pale western cutworm (Agrotis orthogonia)	S. carpcapsae H. bacteriophora	33%-70%	Mathasoliya et al., 2004; Yuksel & Canhilal, 2018; Hassan et al., 2016; Shairra et al., 2016		
Black army cutworm (Actebia fennica)	S. carpcapsae H. bacteriophora	33%-70%	Yuksel et al., 2018		
Bertha armyworm (Mamestra configurata)	S. carpcapsae H. bacteriophora	33%-70%	Hussaini et al., 2000		
Oriental fruit moth (Grapholita molesta)	S. rarum RS69 H. bacteriophora RS33	94% - 97.0%	Negrisolli et al., 2013		
Peachtree borer, (Synanthedon exitiosa) (S. pictipes)	H. heliothidis S. carpcapsae H. bacteriophora	80%	Cossentine et al., 1990; Cottrell & Shapiro-Ilan, 2006; Shapiro-Ilan et al., 2009-2010; 2015; 2016; 2016a		
Currant borer moth, (Synanthedon)	N. bibionis Steinernema sp.	90%	Deseo & Miller, 1985; Kaya		
Insect/Plant Pathogen	Trichogramma Species	Location	Efficiency	Reference	
-----------------------	----------------------	----------	------------	-----------	
Grape root borer (Vitacea polistiformis)	H. indica	Lab Greenhouse	82.73%	Williams et al., 2002	
Grape root borer (Vitacea polistiformis)	S. glaseri	Lab			
Rice meal moth (C. cephalonica), Spodoptera litura, Helicoverpa armigera, Plutella xylostella, Leucinodes orbonalis, Earias vittella, Orthaga exvinascea, Eublemma versicolor, Papilio polytes, Exelastis atomosa, Hymenia recurvalis	H. indica, S. glaseri	Lab	82.73%	Kamaliya et al., 2019	
S. litura (3rd, 4th, 5th instar larvae)	H. indica	Lab	82.73%	Kamaliya et al., 2019	
S. litura (3rd, 4th, 5th instar larvae)	H. indica PBCB	Lab	88.67%	Caoili et al., 2018	
S. litura (3rd, 4th, 5th instar larvae)	Steinernema sp. 64-2, S. carpocapsae A24, S. carpocapsae All, S. carpocapsae G-R3a-2, S. longicaudum X-7, H. indica 212-2	Lab	100%	Yan et al., 2020	
Rice moth (Corcyra cephalonica) (5th instar larvae) Black cutworm (Agrotis ipsilon) (4th instar larvae) Silkworm (Bombyx mori) (5th instar larvae)	H. bacteriophora, S. carpocapsae	Lab	100%	Zaki et al., 2000	
Brinjal shoot and fruit borer, (Leucinodes)	S. carpocapsae PDBC -11	Field		Ganga Visalakshy et al., 2009	
Insect Species	Steinernema Species	Cultivation Method	Mortality Rate		
---	---------------------	--------------------	------------------------		
orbonalis)	Steinernema sp. H.indica		Hussaini et al.,2002		
Spodoptera frugiperda, Helicoverpa gelotopoeon	S.diaepresi	Lab	Milena et al.,2014		
Fall armyworm (Spodoptera frugiperda) (1st,3rd,5th instar, pupa)	S.feltiae All, Mexican (DD-136 x Breton) S. bibionis.	Lab	7%-20% Fuxa et al.,1988		
Spodoptera litura (pre pupa, pupa ,adult)	S.feltiae		Narayan & Gopalkrishna, 1987.		
S. litura	H. indica	Lab	Acharya et al.,2020		
S. glaseri	H. bacteriophora		Kondo & Ishibashi , 1986;1986a;1987;1988		
S. carpocapsae	S. bibionis		Gouge et al.,1996;1999		
S. longicaudum	S. glaseri		Umamaheswari et al. 2006.		
Spodoptera litura, Galleria mellonella	S. feltiae (DD-136) (=N. carpocapsae) S. bibionis S. glaseri	Lab	50.6%-75.6% Sezhian et al.,1996		
Pectinophora gossypiella (Late instars), Heliothis virescens, Trichoplusia ni, Spodoptera exigua	S. riobrave S. carpocapsae Kapow H.bacteriophora Cruiser	Lab	92%-100% Atwa & Hassan, 2014		
Spodoptera litura	H.indica	Glasshouse Microplot	50.6%-75.6% Umamaheswari et al. 2006.		
Spodoptera litura (4th instar larvae)	S.carpocapsae	Field	95% Sezhian et al.,1996		
Spodoptera litura	H.indica	Lab	50% Dichusa et al.,2021		
H. armigera	S. glaseri	Greenhouse	Patel & Vyas, 1995		
Spodoptera litura (3rd instar larvae)	S.carpocapsae		Raveendranath et al., 2007		
Armyworm, (Spodoptera litura)	S.pakistanense	Lab	74%-95% Javed et al.,2022		
Spodoptera littoralis (3rd instar larvae)	H.bacteriophora HP88 S.glaseri NJ	Lab	92%-100% Atwa & Hassan, 2014		
Insect	Nematode	Location	Percentage	References	
--------------------------------	-----------------------------------	----------	------------	--------------------------------------	
Spodoptera littoralis	H. taysearai	Lab	60%-90%	Abd El Azim, 2022	
S. littoralis G. mellonella	Heterorhabditis sp. ELG	Lab	61.4%-100%	Abdel-Razek & Abdelgawad, 2007	
Spodoptera littoralis (2nd, 3rd, 4th, 5th, 6th instar larvae), Plutella xylostella (2nd, 3rd, 4th instar larvae), Pieris rapae (2nd, 5th instar larvae)	S. carpocapsae All S. carpocapsae S2 H. indicus SAA2 H. bacteriophora HP88	Lab		Salem et al., 2007	
Cabbage worm (Pieris rapae)	H. taysearai	Lab	55-100%	Saleh, 1995	
Cabbage butterfly, (Pieris brassicae)	H. pakistanensis	Field	61.16%	Askary & Ahmad, 2020	
	S. feltiae HR1 H. bacteriophora HR2	Lab	12% - 72.08%	Kasi et al., 2021	
Spodoptera littoralis, Agrotis ipson	H. bacteriophora BA1 S. carpocapsae BA2	Lab	100%	Saleh & Ragab, 1999; Saleh et al., 2015.	
Spodoptera littoralis, Agrotis ipson	S. monticulum H. bacteriophora	Lab	97.77%-100%	Sobhy et al., 2020	
Black cutworm (Agrotis ipson)	Steinernema feltiae (= Neoaplectana carpocapsae) Mexican Kapow, S. bionis, H. heliothis	Field	50% reductio n in plant damage	Capinera et al., 1988	
Turnip moth (Agrotis segetum)	S. carpocapsae	Lab		Ebrahimi et al., 2019	
Agrotis ipson Galleria mellonella	S. carpocapsae HB310	Lab	90.48% 82.33%	Nangong et al., 2021	
Cotton leafworm, (Spodoptera littoralis) Black cutworm, (Agrotis ipson)	Heterorhabditis sp. TAN5	Lab	24 %-100% 18%-96%	Nouh, 2021	
Insect Species	Species of Parasite	Test Condition	Percentage	Publication	
---------------	---------------------	----------------	------------	-------------	
Black cutworm (*Agrotis ipsilon*)	*S. carpocapsae*	Field	Levine & Oloumi-Sadeghi, 1993		
Tobacco cutworm, (*Spodoptera litura*)	*S. carpocapsae* PC, *H. bacteriophora* HY, *S. monticola* CR	Lab	100%	Park et al., 2001	
Spodoptera litura	*H. bacteriophora*	Lab	Baweja & Sehgal, 1997		
Spodoptera litura, Spodoptera frugiperda	*H. indica*, *S. carpocapsae*	Lab	Acharya et al., 2020; 2020a		
Spodoptera frugiperda, *Heliothis zea*	*S. feltiae*	Lab	Richter and Fuxa, 1990		
Indianmeal moth (*Plodia interpunctella*)	*H. bacteriophora* HP88, Lewiston, Oswego, *H. indica* Homl, *H. marelatus* Point Reyes, *H. megidis* UK211, *H. zelandica* NZH3	Lab	44%	Mbata & Shapiro-Ilan, 2005	
European corn borer, (*Ostrinia nubilalis*)	*N. carpocapsae* DD-136	Lab, Field	Lewis & Raun, 1978		
Corn earworm (*Helicoverpa zea*), Fall armyworm (*Spodoptera frugiperda*) (prepupae and pupae)	*S. sp.*	Field	49.4 - 46.1% parasitization	Raulston et al., 1992	
Fall armyworm (*Spodoptera frugiperda*)	*S. carpocapsae*	Lab	28%	Espky & Capinera, 1993; 1994	
Spodoptera frugiperda	*S. arenarium* All *Heterorhabditis* sp., RSC02, *S. sp*. IBCP-n6, *H. indica*	Lab, Greenhouse, Field	77.5 and 87.5%	Garcia et al., 2008; Andalo et al. 2010	
Fall armyworm (*Spodoptera frugiperda*) (2nd and 5th larval instars)	*H. indica* AUT 13.2, *S. siamkayai* APL 12.3	Lab, Greenhouse, Field	33%-83%	Wattanachaiyingsroen, 2021	
Fall armyworm (*Spodoptera frugiperda*)	*S. carpocapsae*	Lab	35%	Viteri et al., 2018	
S. frugiperda	*H. indica*, *S. carpocapsae*, *S. glaseri*	Field	Negrisol et al., 2010		
Common Name	Species	Life Stage	Area	Efficiency	References
-------------	---------	------------	------	------------	------------
Spodoptera frugiperda, Helicoverpa gelotopoeon	*S. diaprepesi*	Lab			Caccia et al., 2014
Cotton bollworm (Helicoverpa armigera)	*S. feltiae*	Lab, Glasshouse	75%-90%	Glazer & Navon, 1990; Glazer 1997; Navon et al., 2002; Shahina et al., 2014; Ebrahimi et al., 2018	
Corn earworm, Helicoverpa (=Heliothis) zeae	*S. riobravis*, *S. carpocapsae*	Field	90%	Cabanillas & Raulston, 1994; 1995; 1996; 1996a; 1996	
Corn earworm, (Heliothis zeae)	*N. carpocapsae DD-136*	Field	58%-88%	Bong & Sikorowski, 1983; Bong 1986	
Pink bollworm (Pectinophora gossypiella)	*S. carpocapsae*			Lindegren et al., 1993	
	S. riobrave, *H. bacteriophora HP88*	Lab	76.43%-86.45%	Shairra & Nouh, 2014; Shairra et al., 2016	
Pink bollworm, (Pectinophora gossypiella) Cabbage looper (Trichoplusia ni) Beet army worm (Spodoptera exigua)	*S. carpocapsae*, *S. riobravis*	Lab, Field	92.5%-100%	Henneberry et al., 1995; 1995a; 1996; 1996a	
Pink bollworm, (Pectinophora gossypiella)	*S. riobravis*	Field	25.7%-92.4%	Jech & Henneberry, 1997	
Codling moth (Cydia pomonella) (diapausing larvae)	*S. carpocapsae Sal*, *S. feltiae Umea*, *S. riobrave*	Lab, Field	94.4%-94.7%	Dutky and Hough, 1955; Kaya et al., 1984; Nachtigall & Dickler, 1992; Lacey & Unruh, 1998; Lacey & Chauvin, 1999; Vega et al., 2000; Unruh, & Lacey, 2001; Lacey et al., 2005; 2006; De Waal et al., 2017; 2018	
Codling moth (Cydia pomonella)	*S. feltiae*, *S. carpocapsae*, *S. yirgalemense*			Sledzevskaya, 1987; Cossentine et al., 2002	
Species/Host	Effectiveness	Method	Reference		
-------------	---------------	--------	-----------		
H. zealandica	Field	43.85 - 86.27%	Lacey *et al.*, 2000; 2006a; Malan *et al.*, 2011; DeWaal, 2008; De Waal *et al.*, 2010, 2011a, b, 2013; Odendaal *et al.*, 2015; 2016; Ahmad *et al.*, 2020		
H. pakistanensis	Field	43.85 - 86.27%	Lacey *et al.*, 2000; 2006a; Malan *et al.*, 2011; DeWaal, 2008; De Waal *et al.*, 2010, 2011a, b, 2013; Odendaal *et al.*, 2015; 2016; Ahmad *et al.*, 2020		
S. carpocapsae Bakişli	Lab	71.5% - 82.63%	Yagci *et al.*, 2021		
H. bacteriophora TOK20	Lab	71.5% - 82.63%	Yagci *et al.*, 2021		
H. bacteriophora 11-KG	Lab	71.5% - 82.63%	Yagci *et al.*, 2021		
Filbertworm, (*Cydia latiferreana*)	*S. carpocapsae*	Lab, Field	65% - 92%	Chambers *et al.*, 2010	
Carob moth (*Ectomyelois ceratoniae*)	*S. carpocapsae* *S. feltiae*	Lab	76.5% - 79.75%	Memari *et al.*, 2016	
Diamond backmoth (*Plutella xylostella*)	*S. carpocapsae* All *S. riobravis*	Lab, greenhouse, Field	79.1%	Baur *et al.*, 1997; 1998; Shinde & Singh, 2000; Singh & Shinde, 2002	
S. carpocapsae	Lab	Ratnasinghe & Hague, 1997; Schroer & Ehlers, 2005; Schroer *et al.*, 2005			
H. indica	Lab	86.7% - 96.0%	Nyasani *et al.*, 2008; 2008a		
S. karii	Lab	86.7% - 96.0%	Nyasani *et al.*, 2008; 2008a		
S. wesieri	Lab	86.7% - 96.0%	Nyasani *et al.*, 2008; 2008a		
S. carpocapsae	Lab	72.6% - 96%	Zolfagharian *et al.*, 2016		
H. bacteriophora	Lab	72.6% - 96%	Zolfagharian *et al.*, 2016		
H. bacteriophora BA1	Lab	72.6% - 96%	Zolfagharian *et al.*, 2016		
S. carpocapsae BA2	Greenhouse	64.4% - 79.8%	Hussein *et al.*, 2015		
Potato tuber moth, (*Phthorimaea operculella*) (second, fourth instar larvae, prepupa)	*S. carpocapsae* *S. feltiae* *S. glaseri* *S. bibionis* *H. bacteriophora*	Lab	Ivanova *et al.*, 1994; Hassani-Kakhki *et al.*, 2013.		
Insect Species	Species Used	Location	Effectiveness	Reference(s)	
--	---	----------	---------------------	---------------------------------------	
Potato tuber moth, *Phthorimaea operculella*	S. carpocapsae, S. feltiae, H. bacteriophora	Lab	40%-100%	Lacey & Kroschel, 2009; Kepenekci et al., 2013	
Squash vine borer, *Melittia cucurbitae*	Steinernema riobrave TX S. feltiae SN S. carpocapsae All S. carpocapsae Sal H. bacteriophora Hb H. sp. Hbl	Field	19%-61%	Canhila & Carner, 2006	
Red hairy caterpillar, *Amsacta albistriga*	Steinernema sp. H. indica	Lab Microplot	80% 42%	Prabhu & Sudheer, 2008	
False codling moth, *Thaumatotibia Leucotreta*	S. yirgalemense S. khoisanae H. zealandica H. bacteriophora	Lab Field	93.5%-100%	Steyn et al., 2017	
False codling moth, *Thaumatotibia Leucotreta*	S. yirgalemense H. zealandica S. litchii	Lab	93.5%-100%	Steyn et al., 2017	
Dalaca pallens	S. australis QU N3 S. unicornum QU N13	Lab	95%-100%	Maldonado et al., 2012	
Sugarcane early shoot borer, *Chilo infuscatus*	H. indica LN2 H. bacteriophora LN8 Heterorhabditis sp. HII S. carpocapsae S. glaseri S. riobravis S. feltiae	Lab	85%-95%	Sankaranarayanan et al., 2011	
Earias insulana Heliothis armiger Spodoptera littoralis	S. carpocapsae Mexican	Field	85%-95%	Glazer & Navon, 1989;1990 Glazer et al., 1991; 1992	
Mexican rice borer, *Eoreuma loftini*	S. riobravis	Lab Field	100%	Legaspi et al., 2000	
Brazilian apple leafroller, *Bonagota Salubricola*	H. bacteriophora RS107 H. bacteriophora RS57	Lab Field	61.1%-70.2%	Negrisoli et al., 2010	
Mocis latipes	H. bacteriophora			Gonzalez-Ramirez et al., 2000	
Ostrinia furnacalis H. armiger S. litura	S. abbasi MBLB S. minutum S. tami H. indica PBCB	Lab	28.15%-100%	Caoili et al., 2018	
wax moth, Galleria mellonella	S. carpocapsae S. glaseri	Lab		Caroli et al., 1996	
Specie	Nematode isolate	Location	Efficacy	Reference	
--	------------------	----------	----------	------------------------------------	
yellow meal worm, *(Tenebrio molitor)*	*S. feltiae*	Lab	68%-100%	Kaya, 1985	
beet armyworm, *(Spodoptera exigua)*	*S. riobravis*				
black cutworm, *(Agrotis ipsilon)*	*H. bacteriophora*				
European corn borer, *(Ostrinia nubilalis)*					
Spodoptera exigua	*S. feltiae*	Lab	68%-100%	Kaya & Grieve, 1982	
Pseudaletia unipuncta	*N. carpocapsae*	Lab	4-57%	Claudius-Cole, 2018	
Stem borer of maize *(Sesamia calamistis)*	*H. sp.*	Lab			
Fall armyworm *(Spodoptera frugiperda)*	*S. carpocapsae*	All	1%-28%	Espky & Capinera, 1994	
greater wax moth *(Galleria mellonella)*					
black cutworm *(Agrotis ipsilon)*					
Pseudaletia unipuncta	*H. bacteriophora*	Lab		Rosa et al., 2002	
N. carpocapsae DD-136		Lab		Srinivas & Prasad, 1991	
Rice leaf folder, *(Cnaphalocrosis medinalis)*					
Ghost moth *(Hepialus californicus)*	*H. hepialus*		72%	Strong et al., 1996	
Navel orange worm *(Amyelois transitella)*	*S. carpocapsae*	Field	72%	Siegel et al., 2004	
European corn borer, *(Ostrinia nubilalis)*	*N. carpocapsae* DD-136	Lab, Field		Lewis & Raun, 1978	
Melonworm, *(Diaphania hyalinata)*	*S. carpocapsae*			Shannag & Capinera, 1995	

REFERENCES

Abd El Azim AM. Efficacy of the entomopathogenic nematode isolate *Heterorhabditis taysearai* to control the cotton leafworm, *Spodoptera littoralis* (Boisd.) (Lepidoptera:
Abd-Elgawad MMM. Towards optimization of entomopathogenic nematodes for more service in the biological control of insect pests. Egypt J Biol Pest Control. 2019; 29:77. https://doi.org/10.1186/s41938-019-0181-1

Abdel-Razek AS, Abd-Elgawad MM. Investigations on the efficacy of entomopathogenic nematodes against Spodoptera littoralis (Biosd.) and Galleria mellonella (L.). Arch Phytopath Plant Protect 2007; 40:414-422. https://doi.org/10.1080/03235400600627874

Acharya R, Hwang HS, Mostafiz MM, Yu YS, Lee KY. Susceptibility of various developmental stages of the Fall Armyworm, Spodoptera frugiperda, to entomopathogenic Nematodes. Insects. 2020a; 11:1-13

Acharya R, Yu YS, Shim JK, Lee KY. Virulence of four entomopathogenic nematodes against the tobacco cutworm Spodoptera litura Fabricius. Biol Control 2020; 150:104348. https://doi.org/10.1016/j.biocontrol.2020.104348

Adiourbane D, Tamilselvi R, Ramesh V. Efficacy of Steinernema siamkayai against certain crop pests. J Biopest 2014; 7(2):104-109.

Batalla-Carrera L, Morton A, Garcia-del-Pino F. Efficacy of Entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions, BioControl, 2010; 55:523-530.

Baur ME, Kaya HK, Tabashnik BE, Chilcutt CF. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. J Econ Entomol. 1998; 91(5):1089-1095.
Baur ME, Kaya HK, Gaugler R, Tabashnik B. Effects of adjuvants on entomopathogenic nematode persistence and efficacy against *Plutella xylostella*. Biocontrol Science and Technology. DOI: 10.1080/09583159730587

Baweja V, Sehgal SS. 1997. Potential of *Heterorhabditis bacteriophora* Poinar (Nematoda; Heterorhabditidae) in parasitizing *Spodoptera litura* (F.) in response to malathion treatment. *Acta Parasitologica*, 1997;42(3): 168-172

Beattie GAC, Somsook V, Watson DM, Clift AD, Jiang I. Field evaluation of *Steinernema carpocapsae* (Rhabditida: Steinernematidae) and selected pesticides and enhancers for control of *Phyllocnistis citrella* (Lepidoptera: Gracillariidae). J.Aust.Entomol Soc. 1995;34:335-342.

Bedding RA, Molyneaux AS, Akhurst RJ. *Heterorhabditis* spp., *Neaplectana* spp., and *Steinernema kraussei*: Interspecific and intraspecific differences in infectivity for insects. Experimental Parasitology 1983;55:249-257.

Begley JW. Efficacy against insects in habitats other than soil. In: Gaugler R., Kaya HK, editors. Entomopathogenic nematodes in biological control. Boca Raton, FL: CRC Press. 1990.

Belair G, Fournier Y, Dauphinais N. Efficacy of steinernematid nematodes against three insect pests of crucifers in Quebec. J Nematol. 2003. 35(3):259-265

Berg GN, Willian P, Bedding RA, Akhurst RJ. A commercial method of application of entomopathogenic nematodes to pasture for controlling subterranean insect pests. Plant Prot. 1987. 4:174-178.

Bong CFJ, Sikorowski PP. Use of the DD-136 strain of *Neaplectana carpocapsae* Weiser (Rhabditida: Steinernematidae) for control of corn earworm (Lepidoptera:Noctuidae).J.Econ.Entomol. 1983.76(3):590-593.

Bong CFJ.1986.Field control of *Heliothis zea* (Boddie) (Lepidoptera:Noctuidae) using a parasitic nematode. Insect Sci.Appllic.7:23-25.

Cabanillas HE, Raulston JR. Effects of furrow irrigation and distribution and infectivity of Steinernema riobravis against corn earworm. Fundamental and Applied Nematology 1996. 19(3):273-281

Cabanillas HE, Raulston JR. Evaluation of *Steinernema riobravis, S. carpocapsae*, and irrigation timing for the control of corn earworm, *Helicoverpa zea*. J Nematol. 1996a. 28(1):75-82.

Cabanillas HE, Raulston JR. Pathogenicity of *Steinernema riobravis* against corn earworm, Helicoverpa zea (Boddie). Fundamental and Applied Nematology 1994. 17:219-223.

Cabanillas HE, Raulston JR. Impact of *Steinernema riobravis* (Rhabditida:Steinernematidae) on the control of Helicoverpa zea (Lepidoptera:Noctuidae) in corn. J Econ Entomol. 1995.88:58-64.

Caccia MG, Del Valle E, Doucet ME, Lax P. Susceptibility of *Spodoptera frugiperda* and *Helicoverpa gelotopoeon* (Lepidoptera: Noctuidae) to the entomopathogenic nematode *Steinernema diaprepsi* (Rhabditida: Steinernematidae) under laboratory conditions. Chil J Agric Res. 2014.74(1):123–126. https://doi.org/10.4067/S0718-5839201400019

Canhila R, Carner GR. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the squash vine borer, *Melittia cucurbitae* (Lepidoptera: Sesiidae) in South Carolina. J Agric Urban Entomol. 2006.23(1):27-39

Caoili BL, Latina RA, Sandoval RF, Orajay JI. Molecular identification of entomopathogenic nematode isolates from the Philippines and their biological control potential against lepidopteran pests of corn. J Nematol. 2018.50(2):99-110.
Capinera JL, Pelissier D, Menout GS, Epsky ND. Control of black cutworm, *Agrotis ipsilon* (Lepidoptera: Noctuidae), with entomogenous nematodes (Nematoda: Steinernematidae, Heterorhabditidae). J. Invertebr. Pathol. 1988;52: 427-435.

Carol L, Glazer I, Gaugler R. Entomopathogenic nematode infectivity assay: comparison of penetration rate into different hosts. Biocontrol Sci Technol. 1996;6(2):227-234. https://doi.org/10.1080/09583159650039412.

Chambers U, Bruck DJ, Olsen J, Walton VM. Control of overwintering filbertworm (Lepidoptera: Tortricidae) larvae with *Steinernema carpocapsae*. J. Econ. Entomol. 2010. 103(2): 416-422 DOI: 10.1603/EC09255.

Claudius-Cole AO. Potential of Entomopathogenic Nematodes for the management of *Sesamia calamistis* in Nigeria. IOSR J Agri Vet Sci. 2018;11(6): 48-53.

Cossentine JE, Banham FL, Jensen LB. Efficacy of the nematode, *Heterorhabditis heliothidis* (Rhabditida: Heterorhabditidae) against the peachtree borer, *Synanthedon exitiosa* (Lepidoptera: Sesiidae) in peach trees. Journal Entomological Society of British Columbia 1990;87:82-84.

Cossentine JE, Jensen LB, Moys L. Fruit bins washed with *Steinernema carpocapsae* (Rhabditida: Steinernematidae) to control *Cydia pomonella* (Lepidoptera: Tortricidae). Biocontrol Sci. Techn. 2002; 12: 251-258.

Cottrell TE, Shapiro-Ilan DI. Susceptibility of the peachtree borer, *Synanthedon exitiosa*, to *Steinernema carpocapsae* and *Steinernema riobrave* in laboratory and field trials. J Invertebr Pathol.2006; 92:85–88.

Cutler GC, Webster J. Host-finding ability of three entomopathogenic nematode isolates in the presence of plant roots. Nematology. 2003;5:601-608.

De Doucet MMA, Bertolotti MA, Giayetto AL, Miranda MB. Host range, specificity, and virulence of *Steinernema feltiae*, *Steinernema rarum* and *Heterorhabditis bacteriophora* (Steinernematidae and Heterorhabditidae) from Argentina. J Invertebr Pathol. 1999;73:237-242.

De Waal JY. Entomopathogenic Nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) for the Control of Codling Moth, *Cydia pomonella* (L.) under South African Conditions. MSc Dissertation Department of Conservation Ecology and Entomology, University of Stellenbosch, South Africa. 2008.

De Waal JY, Addition MF, Malan AP. Potential of *Heterorhabditis zealandica* (Rhabditida: Heterorhabditidae) for the control of codling moth, *Cydia pomonella* (Lepidoptera: Tortricidae) in semi-field trials under South African conditions. International Journal of Pest Management 2017;64(2):102-109.

De Waal, JY, Malan AP, Addison MF. Efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) against codling moth, *Cydia pomonella* (Lepidoptera: Tortricidae) in temperate regions. Biocontrol Sci. Technol. 2011b; 21: 489-502. doi: 10.1080/09583157.2011.607922.

De Waal JY, Malan AP, Addison MF. Effect of humidity and a super absorbent polymer formulation on the efficacy of *Heterorhabditis zealandica* (Rhabditida: Heterorhabditidae) to control codling moth, *Cydia pomonella* (L.) (Lepidoptera: Tortricidae). Biocontrol Sci Technol. 2013;23:62-78.

De Waal JY, Malan AP, Levings J, Addison MF. Key elements in the successful control of diapausing codling moth, *Cydia pomonella* (Lepidoptera: Tortricidae) in wooden fruit bins with as South African isolate of *Heterorhabditis zealandica* (Rhabditida:...
DeWaal JY, Malan AP, Addison MF. Evaluating mulches together with *Heterorhabditis zealandica* (Rhabditida: Heterorhabditidae) for the control of diapausing codling moth larvae, *Cydia pomonella* (L.) (Lepidoptera: Tortricidae). Biocontrol Sci Technol. 2011a; 20: 255-271.

De Waal JY, Addison MF, Malan AP. Potential of *Heterorhabditis zealandica* (Rhabditida: Heterorhabditidae) for the control of codling moth, *Cydia pomonella* (Lepidoptera: Tortricidae) in semi-field trials under South African conditions. International Journal of Pest Management. 2018; 64 (2) : 102-109.

Denlinger DL. Diapause. Volume Ӏ: Encyclopedia of Insects: 2nd edn. pp. 267-271. Academic Press. 2009 https://doi.org/10.1016/B978-0-12-374144-8.00081-3.

Deseo KV, Miller LA. Efficacy of entomogenous nematodes, *Steinernema* spp., against clearwing moths, *Synanthedon* spp., in north Italian apple orchards. Nematologica. 1985; 31:100-108.

Dichusa CA, Ramos Jr.R, Aryal S, Sumaya NPD, Sumaya NH. Survey and identification of entomopathogenic nematodes in the province of Cotabato, Philippines, for biocontrol potential against the tobacco cutworm, *Spodoptera litura* (Fabricius)(Lepidoptera: Noctuidae). Egypt J Biol Pest Control. 2021; 31:60 https://doi.org/10.1186/s41938-021-00390-w

Dlamini BE, Dlamini N, Masarirambi MT, Kwanele AN. Control of the tomato leaf miner, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) larvae in laboratory using entomopathogenic nematodes from subtropical environment. J Nematol. 2020. 52: e2020-13. DOI: 10.21307/jofnem-2020-013.

Dolinski C, Del Valle E, Stuart RJ. Virulence of entomopathogenic nematodes to larvae of the guava weevil, *Conotrachelus psidii* (Coleoptera: Curculionidae), in laboratory and greenhouse experiments. Biological Control, 2006;38:422-427.

Dutky SR, Hough WS. Note on parasitic nematode from codling moth larvae, *Carpocapsa pomonella*. Proc. Entomol. Soc. Wash. 57, 244. 1955.

Ebrahimi L, Shiri M, Dunphy GB. Effect of entomopathogenic nematode, *Steinernema feltiae*, on survival and plasma phenoloxidase activity of *Helicoverpa armigera* (Hb) (Lepidoptera: Noctuidae) in laboratory conditions. Egypt J Biol Pest Contol. 2018; 28:12. https://doi.org/10.1186/s41938-017-0016-x

Ebrahimi L, TanhaMaafi Z, Sharifi P. First report of the entomopathogenic nematode, *Steinernema carpocapsae*, from Moghan region of Iran and its efficacy against the turnip moth, *Agrotis segetum* Denis and Schiffermuller (Lepidoptera: Noctuidae), larvae. Egypt J Biol Pest Contol. 2019; 29(1):66. DOI: 10.1186/s41938-019-0168-y.

Epsky ND, Capinera JL. Quantification of invasion of two strains of *Steinernema carpocapsae* (Weiser) into three lepidopteran larvae. J. Nematol. 1993; 25: 173-180.

Epsky ND, Capinera JL. Invasion efficiency as a measure of efficacy of the entomogenous nematode *Steinernema carpocapsae* (Rhabditida: Steinernematidae).J Econ Entomol.1994; 87(2): 366-370. https://doi.org/10.1093/jee/87.2.366

Fuchi M, Ono M, Kondo E, Yoshiga T. Pathogenicity of the axenic entomopathogenic nematode *Steinernema carpocapsae* against *Galleria mellonella* and *Spodoptera litura* larvae. Nematol. Res. 2016; 46(2):39-44.
Fuxa JR, Richter AR, Agudelo-Silva F. Effect of host age and nematode strain on susceptibility of *Spodoptera frugiperda* to *Steinernema feltiae*. J Nematol.1988; 20: 91-95

Ganga Visalakshy PN, Krishnamoorthy A, Hussaini SS. 2009. Field efficacy of the entomopathogenic nematode *Steinernema carpocapsae* (Weiser, 1955) against brinjal shoot and fruit borer. *Leucinodes orbonalis* Guenee. *Nematol. medit.* 2009; 37: 133-137.

Garcia LC, Raetano CG, Leite LG. Application technology for the entomopathogenic nematodes *Heterorhabditis indica* and *Steinernema* sp. (Rhabditida: Heterorhabditidae and Steinernematidae) to control *Spodoptera frugiperda* (Smith) (Lepidoptera: Noctuidae) in corn. Neotrop Entomol 2008;37(3):305–311. https://doi.org/ 10.1590/ s1519-566x2008003000010

Gaugler R, Campbell JF, Selvan S, Lewis EE. Large-scale inoculative releases of the entomopathogenic nematode *Steinernema glaseri*: Assessment 50 years later. *Biological Control.* 1992;2:181-187.

Gaugler R. Biological control potential of neoaplectanid nematodes. J.Nematol. 1981;13:241-249.

Gaugler R. (editor) Entomopathogenic Nematology. Wallingford: CABI. 388 pp. 2002.

Gaugler R, Boush GM. Effects of ultraviolet radiation and sunlight on the entomogenous nematode *Neoaplectana carpocapsae*. J.Invertebr. Pathol. 1978;32:291-296.

Georgis R. Formulation and application technology. In: R. Gaugler, H. K. Kaya. editors. Entomopathogenic Nematodes in Biological Control. Boca Raton, FL: CRC Press. 1990.

Georgis R, Gaugler R. Predictability in biological control using entomopathogenic nematodes. J. Econ. Entomol. 84: 713-720. 1991.

Glazer I, Klein M, Navon A, Nakache Y. Comparison of efficacy of entomopathogenic nematodes combined with anti-desiccant applied by canopy sprays against three cotton pests (Lepidoptera: Noctuidae). J Econ Entomol. 1992;85:1636-1641.DOI: 10.1093/JEE/85.5.1636

Glazer I, Galper S, Sharon E. Virulence of the nematode (steinernematids and heterorhabditids)-bacteria (*Xenorhabdus* spp.) complex to the Egyptian cotton leafworm, *Spodoptera littoralis* (Lepidoptera: Noctuidae). J.Invertebr Pathol.1991. 57: 94-100

Glazer I, Navon A. Activity and persistence of entomopathogenic nematodes tested against *Heliothis armigera* (Lepidoptera: Noctuidae). J.Econ. Ent., 1989; 83: 1795-1800. https://doi.org/10.1093/jee/83.5.1795.

Glazer I, Salame L, Segal D. Genetic enhancement of nematicide resistance in entomopathogenic nematodes. Biocontrol Sci Technol.1997;7:499-512.

Gonzalez-Ramirez M, Lezama-Gutierrez R, Molina-Ochoa J, Rebolledo-Dominguez O, Lopez-Edwards M, Pescador-Rubio. A. Susceptibility of *Mocis latipes* (Lepidoptera: Noctuidae) to *Heterorhabditis bacteriophora* (Rhabditida: Heterorhabditidae). J Econ Entomol.2000; 93: 1105-1108.

Gouge DH, Lee LL, Henneberry TJ. Effect of temperature and lepidopteran host species on entomopathogenic nematode (Steinernematidae : Heterorhabditidae) infection. *Environmental Entomology,* 1999;28(5): 876-883

Gouge DH, Reaves LL, Stoltman MM, Van Berkum JR, Burke RA, Forlow Jech LJ, Henneberry TJ. Control of pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) larvae in Arizona and Texas cotton fields using the entomopathogenic nematode Steinernema riobravis (Cabanillas, Poinar, & Raulston)
(Rhabditida: Steinernematidae). In Proceedings Beltwide Cotton Conference. National Cotton Council, Memphis, TN. pp. 1078–1082.

Gozel C, Kasap I. Efficacy of entomopathogenic nematodes against the Tomato leafminer, *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) in tomato field. Türk. entomol. derg., 2015; 39 (3): 229-237. DOI: http://dx.doi.org/10.16970/ted.84972

Grewal PS, Ehlers RU, Shapiro-Ilan DI (editors) Nematodes as biocontrol agents. CABI Publishing, Oxon, UK. p 528. 2005.

Grewal PS, Selvan S, Gaugler R. Thermal adaptation of entomopathogenic nematodes- niche breadth for infection, establishment and reproduction. J Thermal Biol. 1994. 19:245-253.

Hassan HA, Shairra SA, Ibrahim SS. Virulence of Entomopathogenic nematodes *Steinernema glaseri* and *Heterorhabditis bacteriophora* Poinar (HP88 strain) against the Black Cutworm, *Agrotis ipsilon*. Egypt. Acad. J. Biolog.Sci. 2016; 9 (1): 33-48.

Hassani-Kakhki M, Karimi J, Hosseini M. Efficacy of entomopathogenic nematodes against potato tuber moth, *Phthorimaea operculella* (Lepidoptera: Gelechiidae) under laboratory conditions. Biocontrol Sci Technol. 2013; 23(2):146-159. http://dx.doi.org/ 10.1080/09583157.2012.745481.

Heena, Rana A, Bhat AH, ChaubeyAK. Morpho-taxometrical and molecular characterization of *Steinernema abbaasi* (Nematoda: Steinernematidae) and its pathogenicity and generative potential against lepidopteran pests Egypt J Biol Pest Control. 2021; 31:21 https://doi.org/10.1186/s41938-020-00359-1.

Hendrichsa J, Bloem K, Hoch G, Carpenter JE, Greany P, Alan S, Robinson AS. Improving the cost-effectiveness, trade and safety of biological control for agricultural insect pests using nuclear techniques. Biocontrol Sci Technol. 2009;19(S1): 3-22

Henneberry TJ, Forlow JL, Burke RA. Pink bollworm adult and larvae susceptibility to steinernematid nematodes and nematode persistence in the soil laboratory and field test in Arizona. Southwest Entomol. 1996;21:357-368

Henneberry TJ, Lindegren, JE., Forlow JL, Burke RA. Pink bollworm (Lepidoptera: Gelechiidae), cabbage looper, and beet armyworm (Lepidoptera: Noctuidae) pupal susceptibility to steinernematid nematodes (Rhabditida: Steinernematidae). J Econ Entomol. 1995 ; 88(4):835-839. https://doi.org/10.1093/jee/88.4.835

Henneberry TJ, Jech LF, Burke RA, Lindegren JE. Temperature effects on infection and mortality of *Pectinophora gossypiella* (Lepidoptera:Gelechiidae) larvae by two entomopathogenic nematode species.Environ.Entomol. 1996a; 25:179-183.

Henneberry TJ, Lindegren JE , Jech LF, Burke RA. Pink bollworm (Lepidoptera: Gelechiidae): Effect of steinernematid nematodes on larval mortality. Southwestern Entomologist 1995a;20:25-31.

Heppner JB. Butterflies and Moths (Lepidoptera).In: Capinera JL(ed.) Encyclopedia of Entomology. Springer, Dordrecht. 2008; https://doi.org/ 10.1007/ 978-1-4020-6359-6_498

Hussaini SS, Singh SP, Nagesh M. *In vitro* and field evaluation of some indigenous isolates of *Steinernema* and *Heterorhabditis indica* against shoot and fruit borer, *Leucinodes orbonalis*. Indian J Nematol. 2002;32:63-65.

Hussaini SS, Singh SP. Entomophilic nematodes for control of insect pests In: Biological Suppression of Plant Diseases, Phytoparasitic Nematodes and Weeds. National Seminar on ‘Biological Control of Plant Diseases, Phytoparasitic Nematodes and Weeds - Present Scenario and Future Thrusts’, Golden Jubilee Celebrations of India’s Independence
Hussaini SS, Singh SP, Parthasarathy R, Shakeela V. Virulence of native entomopathogenic nematodes against black cutworms, *Agrotis ipsilon* (Hufnagel) and *A. segetum* (Noctuidae : Lepidoptera). Indian J. Nematol. 2000; 30 (1) : 86-110

Hussein MA, Metwally HM, Elraouf MA. Foliar application of native bio-formulated entomopathogenic nematodes against diamondback moth in aquaponic agriculture. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(6):1030-1035

Hyrl P. Pathogenicity of four entomopathogenic nematodes species to *G.mellonella* larvae. Karaelmas Science and Engineering Journal. 2011;1(1):1-6.

Ivanova TS, Borovaya VP, Danilov LG. A biological method of controlling the potato moth. Zashchita Rastenii Moskva, 1994; 2: 39.

Javed S, Khanum TA, Ali A. Storage and efficacy of entomopathogenic nematode species as a biocontrol agent against the armyworm, *Spodoptera litura* (Fabricius) (Lepidoptera: Noctuidae).Egypt J Biol Pest Control. 2022; 32:6 .https://doi.org/10.1186/s41938-022-00505-x

Jech LF, Henneberry TJ. Pink bollworm larval mortality following application of *Steinernema riobravis* entomopathogenic nematodes in cotton furrow irrigation. *Proceedings of the Beltwide Cotton Conference*, 2:1192-1194, National Cotton Council, Memphis TN. 1997.

Jim M. Taxonomy of Lepidoptera: the scale of the problem. The Lepidoptera Taxome Project. University College, London. Retrieved, 8. 2011.

Kamaliya RP, Jethva DM, Kachhadiya NM, BhuJ, Ahir VR. Bio-efficacy of entomopathogenic nematode *Heterorhabditis indica* against *Spodoptera litura* (Fabricius).Journal of Pharmacognosy and Phytochemistry 2019; 8(2): 1563-1567.

Karunakar G, Easwaramoorthy S, David H. Susceptibility of nine lepidopteran insects to *Steinernema glaseri*, *S. feltiae* and *Heterorhabditis indicus* infection. International J Nematol.1999; 9(1): 68-71.

Kasi IK, Singh M, Waiba KM, MonikaS, Waseem MA, Archie D, Gilhotra H. Bio-efficacy of entomopathogenic nematodes, *Steinernema feltiae* and *Heterorhabditis bacteriophora* against the Cabbage butterfly (*Pieris brassicae*[L.]) under laboratory conditions. Egypt J Biol Pest Control. 2021; 31:125. https://doi.org/10.1186/s41938-021-00469-4

Kaya HK, GauglerR. Entomopathogenic nematodes. Annu. Rev. Entomol. 1993;38:181-206.

Kaya HK, Brown LR. Field application of entomogenous nematodes for biological control of clear-wing moth borers of alder and sycamore trees. J. Arboriculture 1986;12: 150-154.

Kaya HK, Joos JL, Falcon LA, BerlowitzA. Suppression of the codling moth (Lepidoptera: Olethreutidae) with the entomogenous nematode, *Steinernema feltiae* (Rhabditida: Steinernematidae). J Econ. Entomol. 1984; 77: 1240-1244.

Kaya HK, Hara AH. Susceptibility of various species of lepidopterous pupae to the entomogenous nematode *Neoaplectana carpopcapsae*.J Nematol. 1981;13(3):291-294.

Kaya HK. Susceptibility of early larval stages of *Pseudaelatia unipuncta* and *Spodoptera exigua* (Lepidoptera: Noctuidae) to the entomogenous nematode *Steinernema feltiae* (Rhabditida: Steinernematidae). J Invertebr Pathol.1985;46: 58-62.

Kaya HK, Hara AH. 1980. Differential susceptibility of lepidopterous pupae to infection by the nematode *Neoaplectana carpopcapsae*. J Invertebr Pathol. 36: 389-393.
Kaya HK, Grieve BJ. The nematode *Neoaplectana carpocapsae* and the beet army worm *Spodoptera exigua* infectivity of prepupae and pupae in soil and of adults during emergence from soil. J Invertebr Pathol. 1982;39:192-197. https://doi.org/10.1016/0022-2011(85)90129-6

Kepenekci I, Tulek A, Alkan M, Hazir S. Biological control potential of native entomopathogenic nematodes against the potato tuber moth, *Phthorimaea operculella* (Zeller) (Lepidoptera: Gelechiidae) in Turkey. Pakistan J. Zool., 2013;45(5): 1415-1422

Khan B, Javed N, Khan S A, Rajput N A, Atiq M, Jabbar A, Rehman A, Moosa A, Ali M A. Potential of Entomopathogenic Nematode (*Steinernema kraussei*) against last instar larvae of different lepidopteran insect pests. Pakistan J. Zool. 2020; 52(4):1275-1281.

Khashaba E H K, Moghaieb R E A, Amany M A A, Ibrahim S A M. Isolation, identification of entomopathogenic nematodes, and preliminary study of their virulence against the great wax moth, *Galleria mellonella* L. (Lepidoptera: Pyralidae). Egypt J Biol Pest Control. 2020;30:55 https://doi.org/10.1186/s41938-020-00257-6

Kondo E, Ishibashi N. Comparative infectivity and development of the entomopathogenic nematodes *Steinernema* spp. on the lepidopterous insect larvae, *Spodoptera litura* (Noctuidae) and *Galleria mellonella* (Galleridae). Jpn J Nematol 1987; 17(12):35–41. https://doi.org/10.14855/jjn1972.17.35

Kondo E, Ishibashi N. Infection efficiency of *Steinernema feltiae* (DD-136) to the common cutworm, *Spodoptera litura* (Lepidoptera: Noctuidae) on the soil surface. Applied Entomology and Zoology, 1986; 21:553-560.

Kondo E, Ishibashi N. Infectivity and propagation of entomogenous nematodes, *Steinernema* spp., on the common cutworm, *Spodoptera litura* (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 1986a; 21: 95-108.

Kondo E, Ishibashi N. Histological and SEM observations on succeeding growth of the entomopathogenic nematode *Steinernema feltiae* (Str. DD-136) in *Spodoptera litura* (Lepidoptera: Noctuidae) larvae. Appl. Entomol. Zool., 1988;23: 88-96.

Koppenhofer AM, Shapiro-Ilan DI, Hiltpold I. Advances in the use of entomopathogenic nematode biopesticides in suppressing crop insect pests, In: *Biopesticides for Sustainable Agriculture*, eds N. Birch and T. Glare (Cambridge: Burleigh Dodds Science Publishing), 1–38. doi: 10.19103/AS.2020.0073.1 0. 2020.

Kulkarni N, Kushwaha DK, Mishra V K , Paunikar S. Effect of economical modification in artificial diet of greater wax moth *Galleria mellonella* (Lepidoptera: Pyralidae). Indian J Entomol.2012;74(4):369-74.

Lacey LA, Unruh TR. Entomopathogenic nematodes for control of codling moth, *Cydia pomonella* (Lepidoptera: Tortricidae): Effect of nematode species, concentration, temperature, and humidity. *Biological Control*. 1998; 13(3):190-197

Lacey LA, Arthurs SP, Unruh TR, Headrick H, Fritts Jr. R. Entomopathogenic nematodes for control of codling moth (Lepidoptera: Tortricidae) in apple and pear orchards: Effect of nematode species and seasonal temperatures, adjuvants, application equipment, and post-application irrigation. Biological Control 2006; 37:214-223. doi:10.1016/ j.biockontrol.2005.09.015

Lacey LA, Chauvin RL. Entomopathogenic nematodes for control of codling moth in fruit bins. J. Econ. Entomol. 1999; 92: 104-109.
Lacey LA, Granatstein D, Arthurs SP, Headrick HL, Fritts Jr. R. Use of entomopathogenic nematodes (Steinernematidae) in conjunction with mulches for control of overwintering codling moth (Lepidoptera: Tortricidae). J. Entomol. Sci. 2006a; 41(2):107-119.

Lacey LA, Knight A, Huber J. Microbial control of lepidopteran pests of apple orchards. In: Lacey, L.A., Kaya, H.K. (Eds.), Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pests. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 557-576. 2000.

Lacey LA, Neven LG, Headrick HL, Fritts R. Factors affecting entomopathogenic nematodes (Steinernematidae) for control of overwintering codling moth (Lepidoptera: Tortricidae) in fruit bins. Journal of Economic Entomology. 2005; 98(6):1863-1869.

Lacey LA, Kroschel J. Microbial control of the potato tuber moth (Lepidoptera: Gelechiidae). Fruit, Vegetable and Cereal Science and Biotechnology, 2009; 3: 46-54.

Legaspi CA, Legaspi CB, Saldana RR. Evaluation of Steinernema riobravis (Nematoda: Steinernematidae) against the Mexican rice borer (Lepidoptera: Pyralidae). J Entomol Sci. 2000; 35(2):141-149. https://doi.org/10.18474/0749-8004-35.2.141.

Lello ER, Patel MN, Mathews GA, Wright DJ. 1996. Application technology for entomopathogenic nematodes against foliar pests. Crop Protection, 15: 567-574.

Levine E, Oloumi-Sadeghi H. Field evaluation of Steinernema carpocapsae (Rhabditida: Steinernematidae) against black cutworm (Lepidoptera: Noctuidae) larvae in field corn. J. Entomol. Sci. 1993; 27: 427-435.

Lewis LC, Raun ES. Laboratory and field evaluation of the DD-136 strain of Neoaplectana carpocapsae for control of the European corn borer, Ostrinia nubilalis. Iowa State J. Res. 1978; 52: 391-396.

Lindegren JE, Meyer KF, Henneberry TJ, Vail PV, Forlow Jech LJ, Valero KA. Susceptibility of pink bollworm (Lepidoptera: Gelechiidae) soil associated stages to the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae). The Southwest Entomologist. 1993; 18:113-120.

Malan AP, von Diest JI, Moore SD, Addison P. Control options for false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in South Africa, with emphasis on the potential use of entomopathogenic nematodes and fungi. African Entomology. 2018; 26(1):14-29. DOI: https://doi.org/10.4001/003.026.0014

Malan AP, Moore SD. Evaluation of local entomopathogenic nematodes for the control of false codling moth, Thaumatotibia leucotreta (Meyrick, 1913) in a South African citrus orchard. African Entomology 2016.;24: 489-501.

MalanAP, KnoetzeR, MooreSD. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. J Invertebr Pathol. 2011;108: 115-125

Maldonado A, Merino L, France A. Selection of entomopathogenic nematodes against Dalaca pallens (Lepidoptera: Hepialidae). Chilean Journal of Agricultural Research 2012;72(2):201-205.

Manrakhan A, Daneel JH, Moore SD. The impact of naturally occurring entomopathogenic nematodes on false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in citrus orchards. Biocontrol Sci Technol. 2013; 24:241-245. https://doi.org /10.1080/09583157. 2013.854316

Mason JM, Wright DJ. Potential for the control of Plutella xylostella larvae with Entomopathogenic Nematodes. J Invertebr Pathol. 1997;70(3): 234-242.
Mathasoliya JB, Maghodia AB, Vyas RV. Efficacy of *Steinernema riobrave* against *Agrotis ipsilon* Hufnagel (Lepidoptera: Noctuidae) on Potato. Indian J Nematol. 2004; 34 (2) : 177-179

Mbata GN, Shapiro-Ilan DI. Laboratory evaluation of virulence of heterorhabditid nematodes to *Plodia interpunctella* Hubner (Lepidoptera: Pyralidae). Environ Entomol 2005; 34(3):676-682. https://doi.org/10.1603/0046-225X-34.3.676

Memari Z, Karimi J, Kamali S, Goldansaz SH, Hosseini M. Are Entomopathogenic Nematodes effective biological control agents against the Carob Moth, *Ectomyelois ceratoniae*? J Nematol. 2016;48(4):261-267

Milena G, Caccia, Eleodoro DV, Marcelo ED, Paola L. Susceptibility of *Spodoptera frugiperda* and *Helicoverpa gelotopoeon* (Lepidoptera: Noctuidae) to the entomopathogenic nematode, *Steinernema diaprepesi* (Rhabditida : Steinernematidae) under laboratory conditions. Chilean Journal of Agricultural Research. 2014;74(1):123-126.

Miller LA, Bedding RA. 1982. Field testing of the insect parasitic nematode, *Neoaplectana bibionis* [Nematoda: Steinernematidae] against currant borer moth, *Synanthedon tipuliformis* [Lep.:Sesiidae] in blackcurrants. Entomophaga 27 (1): 109-114

Miller RW. Novel pathogenicity assessment technique for *Steinernema* and *Heterorhabditis* entomopathogenic nematodes. J. Nematol. 1989; 21: 574

Morris ON. Susceptibility of 31 species of Agricultural insect pests to the entomogenous nematodes *Steinernema feltiae* and *Heterorhabditis bacteriophora*. Canadian Entomologists, 1985;117: 401-407.

Mutegi DM, Kilalo D, Kimenju JW, Waturu C. Pathogenicity of selected native entomopathogenic nematodes against tomato leaf miner (*Tuta absoluta*) in Kenya. World Journal of Agricultural Research 2017;5(4):233-9, doi: 10.12691/wjar-5-4-5.

Nachtingall G, Dickler E. Experiences with field applications of entomopathogenic nematodes for biological control of cryptic living insects in orchards. Act. Phytopathol. Entomol. Hung. 1992; 27: 485-490.

NanGong Z, Li T, Zhang W, Ping S, Wang Q. Capsule-C: an improved *Steinernema carpocapsae* capsule formulation for controlling *Agrotis ipsilon* Hufnagel (Lepidoptera:Noctuidae). Egypt J Biol Pest Control 2021; 31:148. https://doi.org/10.1186/s41938-021-00492-5

Narayan K, Gopalkrishna C. Effect of entomopathogenic nematodes, *Steinernema feltiae* to the pre pupa, pupa and adult of *Spodoptera litura* (Noctuidae : Lepidoptera). Indian J Nematol. 1987; 17:273-276.

Navaneethan T, Strauch O, Besse S, Bonhomme A, EhlersRU. Influence of humidity and a surfactant-polymer-formulation on the control potential of the entomopathogenic nematode *Steinernema feltiae* against diapausing codling moth larvae (*Cydia pomonella* L.) (Lepidoptera: Tortricidae). BioControl .2010; 55:777–788. DOI 10.1007/s10526-010-9299-5

Navon A, Nagalakshmi VK, Levski S, Salame L, Glazer I. Effectiveness of entomopathogenic nematodes in an alginate gel formulation against Lepidopterous pests. Biocont. Sci. Technol. 2002; 12: 737-746. https://doi. org/10.1080/0958315021000039914

Negrisoli AS, Garcia MS, Barbosa CRC, Bernardi D, da Silva A. Efficacy of entomopathogenic nematodes (Nematoda: Rhabditida) and insecticide mixtures to control *Spodoptera frugiperda* (Smith, 1797) (Lepidoptera: Noctuidae) in corn crops. Crop Protection 2010; 29: 677-683. DOI:10.1016/J.CROPRO.2010.02.002
Negrisol CRC, Negrisol A, Dolinski C, Bernardi D. Efficacy of entomopathogenic nematodes (Nemata: Rhabditida) to control brazilian apple leafroller *Bonagota Salubrica* (Meyrick, 1937) (Lepidoptera: Tortricidae). Crop Protection, 2010; 29(11):1274-1279. DOI: 10.1016/j.cropro.2010.07.001

Negrisol CR, Negrisol AS Jr, Garcia MS, Dolinski C, Bernardi D. Control of *Grapholita molesta* (Busck, 1916) (Lepidoptera: Tortricidae) with entomopathogenic nematodes (Rhabditida: Heterorhabditidae, Steinernematidae) in peach orchards. Exp Parasitol. 2013; 135(2):466-70. doi: 10.1016/j.exppara.2013.08.016

Nouh GM. Efficacy of the entomopathogenic nematode isolates against *Spodoptera littoralis* (Boisdual) and *Agrotis ipsilon* (Hufnagel) (Lepidoptera: Noctuidae). Egypt J Biol Pest Control. 2021; 31:34. https://doi.org/10.1186/s41938-021-00374-w.

Nyasani JO, Kimenju JW, Olubayo FM, Wilson MJ. Laboratory and field investigations using indigenous entomopathogenic nematodes for biological control of *Plutella xylostella* in Kenya. International Journal of Pest Management, 2008;54:355-361.

Nyasani JO, Kimenju JW, Olubayo FM, Shibairo SI, Mutua GK. Occurrence of entomopathogenic nematodes and their potential in the management of diamondback moth in kale. Asian Journal of Plant Sciences 2008a; 7(3):314-318.

Odendaal D, Addison MF, Malan AP. Control of codling moth (*Cydia pomonella*) (Lepidoptera: Tortricidae) in South Africa with special emphasis on using entomopathogenic nematodes. African Entomology 2015; 23(2): 259-274

Odendaal D, Addison MF, Malan AP. Evaluation of above-ground application of entomopathogenic nematodes for the control of diapausing codling moth (*Cydia pomonella* L.) under natural conditions. African Entomology 2016; 24(1): 61-74

Park SH, Yu YS, Park JS ,Choo HY, Bae SD, Nam MH. Biological Control of Tobacco Cutworm, *Spodoptera litura* Fabricius with Entomopathogenic Nematodes. Biotechnol. Bioprocess Eng. 2001; 6: 139-143

Patel MC, Vyas RV. Efficacy of *S. glaseri* against *H. armigera* on chickpea in pots. International chickpea News Letter. 1995;2:39-40.

Prabhu S, Sudheer MJ. Evaluation of two native isolates of entomopathogenic nematodes *Steinernema* sp. and *Heterorhabditis Indica* from Andhra Pradesh against *Amsacta albistriga* walk in groundnut. J Biopest.2008;1(2):140 -142

Rahoo AM, Mukhtar T, Abro SI, Bughio BA, Rahoo RK. Comparing the productivity of five entomopathogenic nematodes in *Galleria mellonella*. Pakistan J. Zool. 2018;50: 679-684.

Ratnasinghe G, Hague NGM. The invasion, development and reproduction of *Steinernema carpocapsae* (Rhabditiida: Steinernematidae) in the diamondback moth, *Plutella xylostella* (Lepidoptera:Yponomeutidae). Nematropica. 1997; 28: 1-6.

Ratnasinghe G. Biological control of diamondbackmoth,*Plutella xylostella* (Lepidoptera: Yponomeutidae) with entomopathogenic nematodes (Nematoda: Rhabditida) .Ph.D.Thesis. The University of Reading ,Reading,UK. 1996

Raulston JR, Pair SD, Loera J, Cabanillas HE. Prepupal and pupal parasitism of *Helicoverpa zea* and *Spodoptera fragiperda* (Lepidoptera: Noctuidae) by *Steinernema* sp. in cornfields in the Lower Rio Grande Valley. J Econ Entomol.1992; 85:1666-1670.

Raveendranath S, Krishnayya PV, Arjuna Rao P, Krishna Murthy KVM, Hussaini SS. Bioefficacy of Entomopathogenic Nematodes, *Steinernema carpocapsae* and *Heterorhabditis indica* against third instar larvae of *Spodoptera litura*. Indian J Plant Protection. 2007; 36(2):288.
Richter AR, Fuxa JR. Effect of *Steinernema feltiae* on *Spodoptera frugiperda* and *Heliothis zea* (Lepidoptera: Noctuidae) in Corn. J Econ Entomol. 1990;83(4):1286-1291.

Rosa JS, Cabral C, Simoes N. Differences between the pathogenic processes induced by *Steinernema* and *Heterorhabditis* (Nematida: Rhabditida) in *Pseudalezia unipuncta* (Insecta: Lepidoptera). J Invertebr Pathol. 2002; 80: 46-54.

Sabrya AH, Metwallya HM, Abolmaaty SM. Compatibility and efficacy of entomopathogenic nematode, *Steinernema carpocapsae* all alone and in combination with some insecticides against *Tuta absoluta*. Der Pharmacia Lettre, 2016; 8(13): 311-315. http://scholarsresearchlibrary.com/archive.html.

Saleh MME, Ragab ZA. Susceptibility of *Spodoptera littoralis* (Boisd) and *Agrotis ipsilon* (Hufn.) larvae to Egyptian and imported entomopathogenic nematodes. Egypt J Applied Sciences, 1999;14: 213-223.

Saleh MME, Hussein MA, Hafez GA, Hussein MA, Salem HA, Metwally HMS. Foliar application of entomopathogenic nematodes for controlling *Spodoptera littoralis* and *Agrotis ipsilon* (Lepidoptera: Noctuidae) on corn plants. Advances in Applied Agricultural Science. 2015;03(01):51-61

Saleh MME. Efficiency of the Egyptian entomopathogenic nematode *Heterorhabditis tayserae* (Nematoda: Heterorhabditidae) in controlling the cabbage worm, *Pieris rapae* (L.) Lepidoptera: Pieridae). Egypt. J. Biol. Pest Control, 1995; 5 (2): 103-105.

Salem SA, Abdel-Rahman HA, Zebitz CPW, Saleh MME, Fawkia I, El-Kholy MY. Evaluation of entomopathogenic nematodes in controlling some cabbage pests. Journal of Applied Sciences Research, 2007;3(4): 323-328

Sankaranarayanan C, Singaravelu B, Somasekhar N, Santhalakshmi G. Penetration and pathogenicity of entomopathogenic nematodes to sugarcane early shoot borer, *Chilo infuscatus* Snellen (Lepidoptera: Crambidae). J Biological Control. 2011;25 (1): 1-4

Saunders JE, Webster JM. Temperature effects on *Heterorhabditis megidis* and *Steinernema carpocapsae* infectivity to *Galleria mellonella*. J Nematology, 1999;31: 299-304.

Schroer S, Ehlers RU. Foliar application of the entomopathogenic nematode *Steinernema carpocapsae* for biological control of diamondback moth larvae (*Plutella xylostella*). Biological Control, 2005; 33: 81-86.

Schroer S, Ziermann D, Ehlers RU. Mode of action of a surfactant-polymer formulation to support performance of the entomopathogenic nematode *Steinernema carpocapsae* for control of diamondback moth larva (*Plutella xylostella*). Bioc.Sci.Tec. 2005;15:601-613.

Sezhian N, Sivakumar CV, Venugopal MS. Alteration of effectiveness of *Steinernema carpocapsae* Weiser (Steinernematidae: Rhabditida) against *Spodoptera litura* (F.) (Noctuidae: Lepidoptera) larvae on sunflower by addition of an insect phagostimulant. Indian J. Nematol. 1996;26 (1) : 77-81

Shahina F, Tabassum KA, Habib MA. Potential of EPN in management of cotton bollworms in Pakistan. Pak. J. Nematol., 2014; 32: 85-90

Shairra SA, Hassan HA, Ibrahim SS. Efficacy of entomopathogenic nematodes as biocontrol agents for *Agrotis ipsilon* larvae. Bull. ent. Soc.Egypt, Econ. Ser., 2016;42: 1-12.

Shairra SA, Nouh GM. Efficacy of Entomopathogenic nematodes and Fungi as biological control agent against the cotton leafworm, *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2014;24 (1): 247-253.
Shairra SA, El-Sharkawy Manal AA, Hassan KA, Ahmed DA. The Efficacy of Entomopathogenic Nematodes on the Pink Bollworm, *Pectinophora gossypiella*. Egypt. Acad. J. Biolog. Sci., 2016;8(2): 103-113

Shanag HK, Capinera JL. Evaluation of entomopathogenic nematode species for the control of melon worm (Lepidoptera: Pyralidae). Environ Entomol, 1995;24: 143-148.

Shapiro-Ilan DI, Gaugler R. Nematodes: Rhabditidae & Heterorhabditidae. In: Biological control: a guide to natural enemies in North America. A. Shelton (Editor), Cornell University. 2019.

Shapiro-Ilan DI, Cottrell TE, Mizell RF III, Horton DL, Davis J. A novel approach to biological control with entomopathogenic nematodes: Prophylactic control of the peachtree borer, *Synanthedon exitiosa*. Biological Control 2009;48:259-263.

Shapiro-Ilan DI, Cottrell TE, Mizell RF III, Horton DL, Abdo Z. Field suppression of the peachtree borer, *Synanthedon exitiosa*, using *Steinernema carpocapsae*: Effects of irrigation, a sprayable gel and application method. Biological Control 2015; 82:7-12.

Shapiro-Ilan DI, Cottrell TE. Susceptibility of the lesser peachtree borer (Lepidoptera: Sesiidae) to entomopathogenic nematodes under laboratory conditions. Environmental Entomology 2006;35: 358-365.

Shapiro-Ilan DI, Cottrell TE, Mizell RF III, Horton DL, Behle B, Dunlap C. Efficacy of *Steinernema carpocapsae* for control of the lesser peachtree borer. *Synanthedon pictipes*: Improved aboveground suppression with a novel gel application. Biological Control 2010;54:23-28.

Shapiro-Ilan DI, Cottrell TE, Mizell RF III, Horton DL. Efficacy of *Steinernema carpocapsae* plus fire gel applied as a single spray for control of the lesser peachtree borer, *Synanthedon pictipes*. Biological Control 2016a; 94:33-36.

Shapiro-Ilan DI, Mizell RF, Campbell JF. Susceptibility of the Plum Curculio, Conotrachelus nenuphar, to Entomopathogenic Nematodes, Journal of Nematology, 2002; 34:246-249.

Shapiro-Ilan DI, Cottrell TE, Mizell RF, Horton DL. Curative control of the peachtree borer using entomopathogenic nematodes. Journal of Nematology. 2016; 48(3):170-176.

Sharmila R, Subramanian S, Poornima K. Host range of entomopathogenic nematodes. Journal of Entomology and Zoology Studies. 2018. 6(3): 1310-1312.

Shinde S, Singh NP. Susceptibility of diamondback moth, *Plutella xylostella* (L.) to entomopathogenic nematodes. Indian Journal of Experimental Biology, 2000;38: 956-959.

Siegel J, Lacey LA., Fritts R Jr., Higbee BS, Noble P. Use of steinernematid nematodes for post-harvest control of navel orange worm (Lepidoptera: Pyralidae, *Amyelois transitella*) in fallen pistachios. Biological Control 2004; 30:410-417.

Singh NP, Shinde S. Relative susceptibility of different life stages of *Plutella xylostella* (L.) to entomopathogenic nematode, *Heterorhabditis bacteriophora* Poinar. Entomon, 2002; 27(3): 281-285

Sledzevskaya ER. Study of the factors determining the activity of the nematode *Neoaplectana carpocapsae* and its efficacy against orchard insect pests. In: Sonin, M.D. (Ed.), Helminths of Insects. Amerind Pub. Co., New Delhi, India, pp. 152–155. 1987.

Sobhy HM, Abdel-Bary NA, Harras FA, Faragalla FH, Husseinen HI. Efficacy of entomopathogenic nematodes against *Spodoptera littoralis* (Boisd.) and *Agrotis ipsilon* (H.) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control. 2020; 30:73 https://doi.org/10.1186/s41938-020-00265-6.
Srinivas PR, Prasad JS. Record of DD-136 nematode infection on rice leaf folder, *Cnaphalocrosis medinalis*. Indian Journal of Agricultural Science, 1991; 61:348-349.

Steyn WP, Malan AP, Daneel MS., Slabbert RM. Entomopathogenic nematodes from northeastern South Africa and their virulence against false codling moth, *Thaumatotibia leucotreta* (Lepidoptera:Tortricidae). Biocontrol Science and Technology. 2017. DOI: 10.1080 /09583157. 2017. 1391174

Strong DR, Kaya HK, Whipple AV, Child AL, Kraig S, Bondonno M, Dyer K, Maron JL. Entomopathogenic nematodes: Natural enemies of root-feeding caterpillars on bush lupine. Oecologia 1996;104:85-92.

Trinh PQ, Nguyen DT, Mai Le LT, Nguyen TH. First report of entomopathogenic nematode *Steinernema surkhetense* and its pathogenic potential to larvae of the Greater Wax Moth (*Galleria mellonella* L.) in Vietnam. Egyptian Journal of Biological Pest Control. 2021; 31:147. https://doi.org/10.1186/s41938-021-00496-1

Umamaheswari R, Sivakumar M. Subramanian S. Biocontrol efficacy of entomopathogenic nematodes on *Spodoptera litura* (Lepidoptera: Noctuidae) in blackgram Indian J Nematol. 2006; 36(1): 19-22.

Unruh TR, LaceyLA. Control of codling moth, *Cydia pomonella* (Lepidoptera: Tortricidae) with *Steinernema carpocapsae*: effects of supplemental wetting and pupation site on infection rate. Biol. Control 2001;20: 48-56.

Van Damme V, Beck B, Berckmoes E., Moerkens, R., Wittemans, L., De Vis, R., Nuyttens, D., Casteels, H.F., Maes, M., Tirry, L., and De Clercq, P. Efficacy of entomopathogenic nematodes against larvae of *Tuta absoluta* in the laboratory. Pest Management Science 2016; 72(9):1702-9, doi: 10.1002/ps.4195.

Vashisth S, Chandel YS, Chandel RS. Biological control potential of North-West Himalayan strains of heterorhabditid nematodes against the turnip moth, *Agrotis segetum* (Denis & Schiffermuller) (Lepidoptera: Noctuidae).Egyptian Journal of Biological Pest Control.2018;28:37. https://doi.org/10.1186/s41938-018-0040-5

Vega FE, Lacey LA, Reid AP, Herard F, Pilarsa D, Danova E, Tomov R, Kaya HK. Infectivity of a Bulgarian and an American strain of *Steinernema carpocapsae* (Nematoda: Steinernematidae) against codling moth. BioControl 2000; 45, 337-343.

Viteri DM, Linares AM, Flores L. Use of the entomopathogenic nematode *Steinernema carpocapsae* in combination with low-toxicity insecticides to control fall armyworm (Lepidoptera: Noctuidae) larvae. Florida Entomologist, 2018;101(2):327-328.

Wattanachaiyingcharoen W, LepchaO, VittaA, WattanachaiyingcharoenD. Efficacy of Thai indigenous entomopathogenic nematodes for controlling fall armyworm (*Spodoptera frugiperda*) (J. E.Smith) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 2021; 31:149. https://doi.org/10.1186/s41938-021-00497-0

Williams EC, Walters KFA. Foliar application of entomopathogenic nematode *Steinernema feltiae* against leafminers on vegetables. Biocontrol Sci Technol. 2000;10(1):61-70.DOI: 10.1080/09583150029396.

Williams RN, Fickle DS, Grewal PS, Meyer JR. Assessing the potential of entomopathogenic nematodes to control the grape root borer *Viteace polistiformis* (Lepidoptera: Sesiidae) through laboratory and greenhouse bioassays. Biocontrol Science andTechnology 2002;12:35-42.

Yagci M, Ozdem, Dolunay AF, Ayan E.. Efficiency of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) on the codling moth (*Cydia
Yan X, Arain MS, Lin Y, Gu X, Zhang L, Li J, Han R. Efficacy of Entomopathogenic Nematodes against the Tobacco Cutworm, *Spodoptera litura* (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2020; 113(1):64-72.

Yathom S. Phenology of the potato tuber moth (*Phthorimaea operculella*), a pest of potatoes and of processing tomatoes in Israel. Phytoparasitica, 1986; 14: 313-318.

Yuksel E, Canhilal R. Evaluation of local isolates of entomopathogenic nematodes for the management of black cutworm, *Agrotis ipsilon* Hufnagel (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 2018;28:82. https://doi.org/10.1186/s41938-018-0087-3

Yuksel E, Canhilal R. Isolation, identification, and pathogenicity of entomopathogenic nematodes occurring in Cappadocia Region, Central Turkey. Egyptian Journal of Biological Pest Control. 2019; 29:40 https://doi.org/10.1186/s41938-019-0141-9

Yuksel E, Taskesen YE, Erarslan D, Canhilal R. Effectiveness of different entomopathogenic nematode species against the variegated cutworm *Peridroma saucia* (Hubner) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control 2018;28:8 DOI 10.1186/s41938-017-0019-7.

Zaki FA, Mantoo MA, Gul S. *In vivo* culturing of entomopathogenic nematodes *Heterorhabditis bacteriophora* and *Steinernema carpocapsae* on silkworm (*Bombyx mori*) and their effect on some lepidopterous insects. Indian J. Nematol. 2000; 30 (1): 1-4

Zervos S, Johnson SC, Webster JM. Effect of temperature and inoculum size on reproduction and development of *Heterorhabditis heliothidis* and *Steinernema glaseri* (Nematodea: Rhabditioidea) in *Galleria mellonella*. Canadian Journal of Zoology, 1991; 69: 1261-1264.

Zolfagharian M, Ayatollah Saeedizadeh A, Abbasipour H. Efficacy of two entomopathogenic nematode species as potential biocontrol agents against the diamondback moth, *Plutella xylostella* (L.). Journal of Biological Control. 2016; 30(2):78-83. DOI: 10.18311/jbc/30/2/14919.