Janus and RG interfaces in three-dimensional gauged supergravity II: General α

Michael Gutperle and Charlie Hultgreen-Mena

Mani L. Bhaumik Institute for Theoretical Physics
Department of Physics and Astronomy
University of California, Los Angeles, CA 90095, USA

Abstract

In this paper, we continue the study of Janus and RG-flow interfaces in three dimensional supergravity continuing the work presented in [1]. We consider $\mathcal{N} = 8$ gauged supergravity theories which have a $\mathcal{N} = (4, 4)$ AdS_3 vacuum with $D^1(2, 1; \alpha) \times D^1(2, 1; \alpha)$ symmetry for general α. We derive the BPS flow equations and find numerical solutions. Some holographic quantities such as the entanglement entropy are calculated.
1 Introduction

Janus solutions provide a holographic description of interface conformal field theories. Generally, the solutions are constructed by considering an AdS$_d$ slicing of a higher dimensional space where the other fields depend non-trivially on the slicing coordinate(s). For example the original Janus solution [2], deforms the AdS$_5$ × S5 vacuum of type IIB and is given by an AdS$_4$ slicing where the dilation depends non-trivially on a single slicing coordinate and approaches two different values on the two boundary components. The solution is dual to an interface of $N = 4$ super Yang-Mills theory where the coupling g_{YM} jumps across a co-dimension one interface [3]. More general Janus solutions preserving supersymmetry were constructed as AdS$_4$ × S2 × S2 space warped over a Riemann surface [4]. These solutions are dual to supersymmetric interface theories in $N = 4$ SYM [5–7]. For other Janus solutions in ten and eleven dimensions, see e.g. [8–11]. In general, constructing such solutions is quite difficult due to the fact that the supersymmetry variations, as well the equations of motion, depend on more than one warping coordinate and the resulting equations are nonlinear partial differential equations. A useful approach is to construct Janus solutions in lower dimensional gauged supergravities (see for example [12–22]). Such solutions are often easier to obtain, can be uplifted to ten or eleven dimensions or can be used to explore qualitative features of Janus solution in a bottom-up approach.

In lower dimensional gauged supergravities it is often the case that in addition to a maximally supersymmetric AdS vacuum there are extrema with a reduced amount of supersymmetry. One of the aims of the present paper is to construct holographic Janus solutions which correspond to RG interfaces [23], between different AdS vacua1. This paper is a continuation of the work presented [1], which considered three-dimensional $\mathcal{N} = 8$ gauged supergravity with $n = 4$ vector multiplets, first discussed in [27]. This theory has an AdS$_3$ vacuum with maximal $\mathcal{N} = (4, 4)$ supersymmetry as well as two families of AdS$_3$ vacua with $\mathcal{N} = (1, 1)$ supersymmetry [28]. The gauged supergravity has a parameter α on which the embedding tensor for the gauged supergravity depends. For this theory the dual superconformal algebra of the $\mathcal{N} = (4, 4)$ vacuum is given by the “large” superconformal algebra $D^1(2, 1; \alpha) \times D^1(2, 1; \alpha)$, and the three-dimensional supergravity is believed to be a truncation of M-theory on AdS$_3$ × S3 × S3 × S1 [29–32]. In the previous paper we considered the special case of $\alpha = 1$ for which the explicit expressions become simpler. Here we will analyze the case for general α, using both analytical and numerical methods.

The structure of this paper is as follows: In section 2 we review the three dimensional gauged supergravity with $n = 4$ vector multiplets used here. We consider three truncations where the gauge fields as well as some scalars can consistently be set to zero and fix the $\mathcal{N} = (1, 1)$ vacua for general α. In section 3 we derive the BPS flow equations for an AdS$_2$ sliced Janus ansatz, this generalizes and streamlines the discussion of [1]. In section 4 we present the flow equations for the three truncations and integrate them numerically for the

1See [24–26] for other examples of holographic RG-flow interfaces.
three truncations. For the second and third truncations where $\mathcal{N} = (1, 1)$ AdS vacua exists we present examples of RG-flow interfaces. In section 5 we use the solutions to calculate some holographic observables. In particular we determine the masses of the fluctuating scalars around the $\mathcal{N} = (1, 1)$ vacua. The mass squared of the scalar fluctuations is positive and quite large, which means that the scalar fluctuations around the fixed point are repulsive in the UV. This implies that the initial conditions have to be fine tuned in order to reach the fixed point. We discuss our results and possible directions for future research in section 6.

2 Three-dimensional $\mathcal{N} = 8$ gauged supergravity

In this section, we review the $\mathcal{N} = 8$ gauged supergravity first constructed in [27] mainly following the conventions of [1]. The bosonic field content consists of a graviton $g_{\mu\nu}$, Chern-Simons gauge fields B^M_μ, and scalars fields living in a $G/H = SO(8,n)/SO(8) \times SO(n)$ coset, which has $8n$ degrees of freedom before gauging. The scalar fields are parametrized by a G-valued matrix $L(x)$ in the vector representation, which transforms under H and the gauge group $G_0 \subseteq G$ by right and left multiplication of group elements respectively.

$$L(x) \rightarrow g_0(x)L(x)h^{-1}(x) \quad (2.1)$$

for $g_0 \in G_0$ and $h \in H$. The Lagrangian is invariant under such transformations. In this paper we use the following index conventions:

- $I, J, \ldots = 1, 2, \ldots, 8$ for SO(8).
- $r, s, \ldots = 9, 10, \ldots, n + 8$ for SO(n).
- $\bar{I}, \bar{J}, \ldots = 1, 2, \ldots, n + 8$ for SO(8, n).
- M, N, \ldots for generators of SO(8, n).

Let the generators of G be $\{t^M\} = \{t^{IJ}\} = \{X^{IJ}, X^{rs}, Y^{Ir}\}$, where Y^{Ir} are the noncompact generators. Explicitly, the generators of the vector representation are given by

$$(t^{IJ})^K_L = \eta^{IR}_{\delta^J_L} - \eta^{JR}_{\delta^I_L} \quad (2.2)$$

where $\eta^{IJ} = \text{diag}(+ + + + + + + + \cdots)$ is an SO(8, n)-invariant tensor. These generators satisfy the typical SO(8, n) commutation relations,

$$[t^{IJ}, t^{KL}] = 2\left(\eta^{IR}_{\delta^J_K} - \eta^{JR}_{\delta^I_K}\right) \quad (2.3)$$

The gauging of the supergravity is characterized by an embedding tensor Θ_{MN} (which has to satisfy various identities [33] in order to define a consistent theory) that determines which isometries are gauged, the coupling to the Chern-Simons fields, and additional terms in the
supersymmetry transformations and action depending on the gauge coupling g. We will look at the particular case in [28] where $n \geq 4$ and the gauged subgroup is the $G_0 = \text{SO}(4) \times \text{SO}(4)$ subset of the $\text{SO}(8) \subset \text{SO}(8, n)$. The embedding tensor has the non vanishing entries,2

$$\Theta_{\bar{I}, \bar{J}, \bar{K}, \bar{L}} = \begin{cases}
\alpha \varepsilon_{\bar{I} \bar{J} \bar{K} \bar{L}} & \text{if } \bar{I}, \bar{J}, \bar{K}, \bar{L} \in \{1, 2, 3, 4\} \\
\varepsilon_{\bar{I} \bar{J} \bar{K} \bar{L}} & \text{if } \bar{I}, \bar{J}, \bar{K}, \bar{L} \in \{5, 6, 7, 8\} \\
0 & \text{otherwise}
\end{cases} \quad (2.4)$$

Note that the gauging depends on a real parameter α. As discussed in [28], the maximally supersymmetric AdS$_3$ vacuum has an isometry group,

$$D^1(2, 1; \alpha) \times D^1(2, 1; \alpha) \quad (2.5)$$

which corresponds to the family of “large” superconformal algebras of the dual SCFT. In this paper we generalize the analysis of [1] where the case $\alpha = 1$ was considered to the case of general α. Note that in the special case $\alpha = 1$ the super algebra becomes more familiar $D^1(2, 1; 1) = \text{OSp}(4|2)$.

From the embedding tensor, the G_0-covariant currents can be obtained,

$$L^{-1}(\partial_\mu + g \Theta_{MN} B_\mu^M t^N)L = \frac{1}{2} Q_\mu^{IJ} X^{IJ} + \frac{1}{2} Q_\mu^{rs} X^{rs} + P_\mu^{Ir} Y^{Ir} \quad (2.6)$$

It is convenient to define the V^M_A tensors,

$$L^{-1} t^M L = V^M_A t^A = \frac{1}{2} V^M_{IJ} X^{IJ} + \frac{1}{2} V^M_{rs} X^{rs} + V^M_{Ir} Y^{Ir} \quad (2.7)$$

and the T-tensor,

$$T_{A|B} = \Theta_{MN} V^M_A V^N_B \quad (2.8)$$

The T-tensor is used to construct the tensors $A_{1,2,3}$ which will appear in the scalar potential and the supersymmetry transformations,

$$A_{1}^{AB} = -\frac{1}{48} \Gamma^{IJKL}_{AB} T_{IJ|KL}$$

$$A_{2}^{A\dot{r}} = -\frac{1}{12} \Gamma^{IJK}_{A\dot{A}} T_{IJ|Kr}$$

$$A_{3}^{\dot{A}r\dot{B}s} = \frac{1}{48} \delta^{rs} \Gamma^{IJKL}_{A\dot{B}} T_{IJ|KL} + \frac{1}{2} \Gamma^{IJ}_{AB} T_{IJ|rs} \quad (2.9)$$

where A, B and \dot{A}, \dot{B} are SO(8)-spinor indices. Our conventions for the SO(8) Gamma matrices are presented in appendix A.

2We use the conventions $\varepsilon_{1234} = \varepsilon_{5678} = 1$.

Here we choose the spacetime signature $\eta^{\ab} = \text{diag}(+--)$ as mostly negative. The bosonic Lagrangian and scalar potential are given by

$$e^{-1} \mathcal{L}_{\text{bos}} = -\frac{1}{4} R + \frac{1}{4} p_{\mu}^{Ir} p_{\mu}^{Ir} + V - \frac{1}{4} e^{-1} \varepsilon^{\mu \nu \rho} g \Theta_{MN} B_{\mu}^{M} \left(B_{\rho}^{N} + \frac{1}{3} g \Theta_{KLM} f^{NK} \rho B_{\nu}^{L} B_{\mu}^{P} \right)$$

$$V = \frac{1}{4} g^{2} \left(A_{1}^{AB} A_{1}^{AB} - \frac{1}{2} A_{2}^{A\bar{A}r} A_{2}^{A\bar{A}r} \right)$$ (2.10)

The supersymmetry variations take the following form

$$\delta \chi^{A} = \frac{1}{2} i \Gamma_{A}^{I} \gamma_{\mu}^{A} p_{\mu}^{Ir} + g A_{2}^{A\bar{A}r} \varepsilon^{A}$$

$$\delta \psi^{A} = \left(\partial_{\mu} \varepsilon^{A} + \frac{1}{4} \omega_{\mu}^{ab} \gamma_{ab}^{A} + \frac{1}{4} Q_{1J}^{IJ} \Gamma_{AB}^{J} \varepsilon^{B} \right) + ig A_{1}^{AB} \gamma_{\mu}^{B} \varepsilon^{B}$$ (2.11)

The Einstein equations of motion are

$$R_{\mu \nu} - p_{\mu}^{Ir} p_{\nu}^{Ir} - 4V g_{\mu \nu} = 0$$ (2.12)

and the gauge field equations of motion are

$$e p_{\mu}^{Ir} \Theta_{Q}^{MN} \nu_{I}^{MN} = \varepsilon^{\lambda \mu \nu} \left(\Theta_{Q}^{MN} \partial_{\nu} B_{\mu}^{M} + \frac{1}{6} g B_{\mu}^{M} B_{\nu}^{K} \left(\Theta_{MN} \Theta_{KLM} f^{NLQ} + 2 \Theta_{MN} f^{LN} \Theta_{Q} \right) \right)$$ (2.13)

2.1 The $n = 4$ case

The smallest number of matter multiplets where multiple supersymmetric vacua exist is $n = 4$. The symmetries of the theory are a local $G_{0} = \text{SO}(4) \times \text{SO}(4)$ and a global $\text{SO}(n)$ with $n = 4$. Consequently, the scalar potential only depends on $8 \cdot 4 - 3 \cdot 6 = 14$ fields out of the original 32. Moreover, a further consistent truncation outlined in [28] is performed where the coset representative depends only on eight of the fourteen scalars.

$$L = \begin{pmatrix} \cos A & \sin A \cosh B & \sin A \sinh B \\
-\sin A & \cos A \cosh B & \cos A \sinh B \\
0 & \sinh B & \cosh B \end{pmatrix}$$

$$A = \text{diag}(p_{1}, p_{2}, p_{3}, p_{4}) , \quad B = \text{diag}(q_{1}, q_{2}, q_{3}, q_{4})$$ (2.14)

We will not display the general form of the tensors A_{1} and A_{2} defined in (2.9) here. The scalar potential has terms up to order α^{2}.

$$g^{-2} V = \frac{1}{2} + \frac{1}{4} \sum_{i} x_{i}^{2} - \frac{1}{4} \sum_{i<j<k} x_{i}^{2} x_{j}^{2} x_{k}^{2} - \frac{1}{2} \prod_{i} x_{i}^{2} + \alpha \left(-\prod_{i} x_{iy_{i}} + \prod_{i} \sqrt{1 + x_{i}^{2} + y_{i}^{2}} \right)$$

$$+ \alpha^{2} \left(\frac{1}{2} + \frac{1}{4} \sum_{i} y_{i}^{2} - \frac{1}{4} \sum_{i<j<k} y_{i}^{2} y_{j}^{2} y_{k}^{2} - \frac{1}{2} \prod_{i} y_{i}^{2} \right)$$ (2.15)
where all indices run from 1 to 4 unless otherwise indicated and we used the following definition of scalar fields

\[x_i = \cos p_i \sinh q_i , \quad y_i = \sin p_i \sinh q_i \]

(2.16)

The \(Q_\mu \) and \(P_\mu \) currents do not depend on \(\alpha \), excluding the \(g \Theta_{MN} B_\mu^M \chi^N \) term, they are given by

\[
 Q^{IJ}_\mu = \begin{pmatrix}
 0 & 0 & 0 & 0 & \cosh q_1 \partial_\mu p_1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & \cosh q_2 \partial_\mu p_2 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & \cosh q_3 \partial_\mu p_3 & 0 \\
 -\cosh q_1 \partial_\mu p_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & -\cosh q_2 \partial_\mu p_2 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & -\cosh q_3 \partial_\mu p_3 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & -\cosh q_4 \partial_\mu p_4 & 0 & 0 & 0 \\
 \end{pmatrix}_{IJ}
\]

\[
 P^{Ir}_\mu = \begin{pmatrix}
 \sinh q_1 \partial_\mu p_1 & 0 & 0 & 0 \\
 0 & \sinh q_2 \partial_\mu p_2 & 0 & 0 \\
 0 & 0 & \sinh q_3 \partial_\mu p_3 & 0 \\
 \partial_\mu q_1 & 0 & 0 & 0 \\
 0 & \partial_\mu q_2 & 0 & 0 \\
 0 & 0 & \partial_\mu q_3 & 0 \\
 0 & 0 & 0 & \partial_\mu q_4 \\
 \end{pmatrix}_{Ir}
\]

(2.17)

Using these matrices, we can check that the combination \(P^{Ir} \gamma^{JK} P^{Ir} \) vanishes whenever the indices \(J, K \in \{1, 2, 3, 4\} \) or \(J, K \in \{5, 6, 7, 8\} \). This implies that there is no source for \(B_\mu^M \) in the gauge field equation of motion (2.13), so it is consistent to set \(B_\mu^M = 0 \). We will make this choice from now on.

The kinetic term for the scalars in the action (2.10) can be expressed in terms of the \(x_i \) and \(y_i \) using the relations (2.16) and takes the form

\[
 \frac{1}{4} P^{Ir}_\mu P^{Ir} = -\frac{1}{4} \sum_{i=1}^{4} \frac{1}{1 + x_i^2 + y_i^2} \left((1 + y_i^2)(\partial_\mu \partial^\mu x_i - 2 x_i y_i \partial_\mu x_i \partial^\mu y_i + (1 + x_i^2) \partial y_i \partial^\mu y_i) \right)
\]

(2.18)

This expression will be needed for determining masses of the fluctuations of the scalar fields around the supersymmetric vacua.

2.2 Truncations and supersymmetric AdS\(_3\) vacua

In order to make our analysis more tractable, we make further truncations to reduce the number of independent scalar fields. Below we consider three consistent truncations, which together explore the AdS\(_3\) vacua with \(\mathcal{N} = (4, 4) \) and \(\mathcal{N} = (1, 1) \) supersymmetry. All of the results are generalizations of the \(\alpha = 1 \) case discussed in [1].
2.2.1 Truncation 1

The first truncation is given by denoting $q_1 = q$, $p_1 = p$ and setting all remaining $q_i = p_i = 0$ for $i = 2, 3, 4$. The scalar potential is

$$V = \frac{g^2}{4} \left(2(1 + \alpha^2) + 4\alpha \cosh q + (\cos^2 p + \alpha^2 \sin^2 p) \sinh^2 q \right)$$ \hspace{1cm} (2.19)

The $\mathcal{N} = (4, 4)$ vacuum is given by setting $q = 0$ and the vacuum potential is $V_0 = \frac{1}{2} g^2 (1 + \alpha)^2$. In the x, y coordinates the $\mathcal{N} = (4, 4)$ vacuum is given by $x_i = y_i = 0$. This is the only supersymmetric vacuum for this truncation. We note that for the choice $\alpha = 1$ the potential is independent of the scalar field p. We note we will chose $g = 1/(1 + \alpha)$ in order to set the potential at the $\mathcal{N} = (4, 4)$ vacuum to be $V_0 = \frac{1}{2}$, which corresponds to a unit radius AdS$_3$.

2.2.2 Truncation 2

The second truncation is given by setting all the q and p equal, i.e. $q_i = q$, $p_i = p$ for $i = 1, 2, 3, 4$. The scalar potential becomes

$$V = \frac{g^2}{2} \left\{ (1 - \cos^2 p \sinh^2 q)(1 + \cos^2 p \sinh^2 q)^3 + \alpha^2 (1 - \sin^2 p \sinh^2 q)(1 + \sin^2 p \sinh^2 q)^3
+ \alpha (2 + 4 \sinh^2 q + 2 \sinh^4 q - 2 \sin^4 p \cos^4 p \sinh^8 q) \right\}$$ \hspace{1cm} (2.20)

or in terms of the x, y fields, the potential will take the following form

$$V = \frac{g^2}{2} \left\{ (x^2 - 1)(x^2 + 1)^3 + \alpha^2 (y^2 - 1)(y^2 + 1)^3 + 2\alpha \left(2x^2(1 + y^2) + (1 + y^2)^2 - x^4(y^4 - 1) \right) \right\}$$ \hspace{1cm} (2.21)

As before the $\mathcal{N} = (4, 4)$ vacuum is given by $q = 0$ or $x = y = 0$. There are $\mathcal{N} = (1, 1)$ vacua which are located at

$$x = \pm \frac{1}{6\sqrt{3}\alpha} \left(-12\alpha^2 - \frac{2\frac{3}{2}Y^\frac{1}{2}(Y + 2\alpha^2(-3 + 8\alpha))}{(3 + 2\alpha)} - \frac{2\frac{3}{2}Y^\frac{1}{2}(Y + 2\alpha(-18 + \alpha(-15 + 8\alpha)))}{(3 + 2\alpha)^2} \right)^\frac{1}{2}$$

$$y = \pm \frac{1}{3} \left(-1 + \frac{2\frac{3}{2}Y^\frac{1}{2} \alpha}{Y^{\frac{1}{2}}} + \frac{4\frac{3}{2}(3 + 2\alpha)}{Y^{\frac{1}{2}}} \right)^\frac{1}{2}$$ \hspace{1cm} (2.22)

where Y is given by

$$Y = 3i\alpha^2 \sqrt{96 + 3\alpha(61 + 32\alpha) - \alpha^2(9 + 16\alpha)}$$ \hspace{1cm} (2.23)

The central charge of the dual CFT is related to the AdS radius and the value of the potential V_0 at its minimum

$$c = \frac{3R_{AdS}}{2G_N} = \frac{3}{\sqrt{2V_0}} \frac{1}{2G_N}$$ \hspace{1cm} (2.24)
Choosing $g = 1/(1 + \alpha)$ sets the AdS radius of the $\mathcal{N} = (4, 4)$ vacuum to one and the ratio of the central charge of the $\mathcal{N} = (4, 4)$ to the $\mathcal{N} = (1, 1)$ vacuum as a function of α becomes

$$
\frac{C_{\mathcal{N} = (1, 1)}}{C_{\mathcal{N} = (4, 4)}} = \frac{1}{\sqrt{2V_0^{\mathcal{N} = (1, 1)}(\alpha)}}
$$

The expressions derived in (2.22) are not very illuminating and we present a plot of the ratio of the central charges for the two vacua in the figure 1. It is interesting to note that the ratio of central charges is minimized for the special value $\alpha = 1$.

2.2.3 Truncation 3

The third truncation is given by setting the first three q and p equal, i.e. $q_i = q$, $p_i = p$ for $i = 1, 2, 3$, and setting the remaining $q_4 = p_4 = 0$. The scalar potential is

$$
V = \frac{g^2}{4} \left(2 + 3 \cos^2 p \sinh^2 q - \cos^6 p \sinh^6 q + 4\alpha \cosh^3 q + \alpha^2 (2 + 3 \sin^2 p \sinh^2 q - \sin^6 p \sinh^6 q) \right)
$$

or in the x, y variables

$$
V = \frac{g^2}{4} \left((2 + 3x^2 - x^6) + 4\alpha (1 + x^2 + y^2) + \alpha^2 (2 + 3y^2 - y^6) \right)
$$

The $\mathcal{N} = (4, 4)$ vacuum is given by $q = 0$ or $x = y = 0$ as before, and $\mathcal{N} = (1, 1)$ vacua can be determined by finding the extrema for the potential (2.27) away from the origin.

$$
y = \pm \sqrt{\frac{1}{2} \left(1 + \varepsilon(\alpha) \sqrt{1 - \frac{4}{X^3} + \frac{2X^{4/3}}{3\alpha^2} + \left[2 + \frac{4}{X^{4/3}} - \frac{2X^{4/3}}{3\alpha^2} + \frac{2(\alpha^2 - 4)}{\alpha^2} \frac{1}{1 - \frac{4}{X^3} + \frac{2X^{4/3}}{3\alpha^2}} \right]} \right)^{\frac{1}{2}}}
$$

$$
x = \pm \left(\frac{\alpha^2}{4} (y^4 - 1)^4 - 1 - y^2 \right)^{\frac{1}{2}}
$$
where we used the abbreviation
\[X = 3\alpha^2(9 - 9\alpha^2 + \sqrt{81 - 138\alpha^2 + 81\alpha^4}) \] (2.29)

The \(\varepsilon(\alpha) \) is a sign which selects a branch of the solutions which gives real \(x, y \) depending on \(\alpha \) and we have \(\varepsilon(\alpha) = +1 \) for \(\alpha < 2 \) and \(\varepsilon(\alpha) = -1 \) for \(\alpha > 2 \). We can plot the ratio of the central charges which is given by (2.25), determined from the potential (2.27). We note that the qualitative behavior of the ratio for truncation 2 and 3 is very similar, in particular the central charge for the \(\mathcal{N} = (1, 1) \) vacuum is minimized at \(\alpha = 1 \).

3 Janus flow equations

In this section we will derive the BPS flow equations, expanding on the construction in our previous paper [1]. The Janus ansatz for the bosonic fields is give by
\[
\mathrm{d}s^2 = e^{2B(u)} \left(\frac{\mathrm{d}t^2 - \mathrm{d}z^2}{z^2} \right) - \mathrm{d}u^2 , \quad q_i = q_i(u) , \quad p_i = p_i(u) \quad (3.1)
\]
The Chern-Simons gauge fields is set to zero \(B^M_\mu = 0 \). We will check that the source term on the right hand side of the gauge field equation of motion (2.13) is zero for the solutions considered in this paper.

The gravitino supersymmetry variation \(\delta\psi^A_\mu = 0 \) is
\[
0 = \partial_t \varepsilon + \frac{1}{2\varepsilon} \gamma_0(\gamma_1 - B'e^B \gamma_2 + 2ige^B A_1)\varepsilon
\]
\[
0 = \partial_z \varepsilon + \frac{1}{2\varepsilon} \gamma_1(-B'e^B \gamma_2 + 2ige^B A_1)\varepsilon
\]
\[
0 = \partial_u \varepsilon + \frac{1}{4} Q^I u_\Gamma^I J^J \varepsilon + ig\gamma_2 A_1 \varepsilon \quad (3.2)
\]
where we have suppressed the SO(8)-spinor indices of \(\varepsilon^A \) and \(A_1^{AB} \). The spin-\(\frac{1}{2} \) variation \(\delta\chi^{Ar} = 0 \) is
\[
\left(-\frac{i}{2} \Gamma^I \mathcal{P}_u^{I\gamma_2} + ga^I_2 \right) A_{\bar{A}}^{\bar{A}} \varepsilon^\bar{A} = 0 , \quad r = 9, 10, \ldots, 8 + n \quad (3.3)
\]
The matrix A_1 defined in (2.9) has eigenvectors

$$A_1^{AB} n^{(i)B} = \pm w_i n^{(i)A}, \quad i = 1, 2, 3, 4$$

(3.4)

For a supersymmetric AdS_3 vacuum the eigenvalue w_i is related to the value of the potential evaluated at the vacuum via

$$w_{\text{vac}}^2 = \frac{V_{\text{vac}}}{2g^2}$$

(3.5)

and the associated eigenvectors $n_{\pm}^{(i)}$ determine the supersymmetries of the vacuum. For the $\mathcal{N} = (4,4)$ vacuum the $w_i, i = 1, \cdots 4$ all satisfy (3.5) and hence the vacuum preserves eight supersymmetries. For the $\mathcal{N} = (1,1)$ vacuum only one of the four $n_{\pm}^{(i)}$ and w_i satisfies (3.5). In the following we drop the index (i) to denote the supersymmetric eigenvalue w and the eigenvector n_{\pm}^{A}.

The general ansatz for unbroken supersymmetry ϵ^A for the Janus solution is given by

$$\epsilon^A = (f_+ n_+^A + f_- n_-^A) \zeta_+ + (g_+ n_+^A + g_- n_-^A) \zeta_-$$

(3.6)

where ζ_{\pm} are Killing spinors for a unit radius AdS_2

$$D_\mu \zeta_\eta = i \frac{\eta}{2} \gamma_\mu \zeta_\eta, \quad \mu = t, z, \quad \eta = \pm 1$$

(3.7)

3.1 Gravitino variation

The t,z components of the gravitino variation can be expressed as follows by using the properties of the AdS_2 Killing spinors,

$$0 = i \left\{ (f_+ n_+^A + f_- n_-^A) \zeta_+ - (g_+ n_+^A + g_- n_-^A) \zeta_- \right\}$$

$$+ iB' e^B i \gamma_2 \left\{ (f_+ n_+^A + f_- n_-^A) \zeta_+ + (g_+ n_+^A + g_- n_-^A) \zeta_- \right\}$$

$$+ 2igw e^B \left\{ (f_+ n_+^A - f_- n_-^A) \zeta_+ + (g_+ n_+^A - g_- n_-^A) \zeta_- \right\}$$

(3.8)

Using $i \gamma_2 \zeta_\eta = \zeta_{-\eta}$ and the linear independence of the n_{\pm} and ζ_{\pm}, one obtains a set of equations,

$$f_+ + B' e^B g_+ + 2gw e^B f_+ = 0$$

$$-g_+ + B' e^B f_+ + 2gw e^B g_+ = 0$$

$$f_- + B' e^B g_- - 2gw e^B f_- = 0$$

$$-g_- + B' e^B f_- - 2gw e^B g_- = 0$$

(3.9)

(3.10)

It is convenient to define the following expressions

$$\gamma(u) = \sqrt{1 - \frac{e^{-2B}}{4g^2 w^2}}, \quad \sqrt{1 - \gamma^2(u)} = \frac{e^{-B}}{2gw}$$

(3.11)
The equations (3.10) can then be solved by
\[
f_+ = \sqrt{1 - \gamma^2} \frac{1}{\gamma} g_+ , \quad f_- = \sqrt{1 - \gamma^2} \frac{1}{\gamma} g_-
\] (3.12)

if the integrability condition
\[
B' = \pm \sqrt{4g^2w^2 - e^{-2B}}
\]
\[
= \pm 2gw\gamma
\] (3.13)
is satisfied. This equation provides us with a differential equation for the metric factor \(B\).

3.2 Spin \(\frac{1}{2}\) variation

The spin-\(\frac{1}{2}\) variation (3.3) takes the following form of a projector
\[
\left(M^{(r)AB} i\gamma_2 + \delta^{AB} \right) \varpi^B = 0
\] (3.14)
where
\[
M^{(r)}_{AB} = -\frac{1}{2g} \left(\Gamma^T p^T_u (A^r_2)^{-1} \right)^T_{AB}
\] (3.15)

Note that there is a projector for each \(r\), which all have to be satisfied and the resulting flow equations are mutually consistent for a supersymmetric Janus solution to exist. This analysis will be performed for the particular truncations presented in section 2.2.

Inserting \(\varpi^A\) given by (3.6) into the spin \(\frac{1}{2}\) projector gives
\[
0 = \left(f_+ n^A_+ + f_- n^A_- \right) \zeta_+ + \left(g_+ n^A_+ + g_- n^A_- \right) \zeta_-
\]
\[
+ M^{AB} i\gamma_2 \left\{ \left(f_+ n^B_+ + f_- n^B_- \right) \zeta_+ + \left(g_+ n^B_+ + g_- n^B_- \right) \zeta_- \right\}
\] (3.16)

We have dropped the index \(r\) for notational convenience. Using the fact that the two-dimensional Killing spinors are orthogonal we can project (3.16) onto the \(n_\pm\) and \(\zeta_\pm\) components. This produces four equations
\[
f_+ n^2_+ + M_{++} g_+ + M_{+-} g_- = 0
\]
\[
g_+ n^2_+ + M_{++} f_+ + M_{+-} f_- = 0
\]
\[
f_- n^2_- + M_{+-} g_+ + M_{--} g_- = 0
\]
\[
g_+ n^2_- + M_{+-} f_+ + M_{--} f_- = 0
\] (3.17)

where we denoted \(n^2_\pm = n^A_\pm n^A_\pm\) and we define
\[
M_{++} = n^A_+ M^{AB} n^B_+, \quad M_{--} = n^A_- M^{AB} n^B_-, \quad M_{+-} = M_{-+} = n^A_+ M^{AB} n^B_-
\] (3.18)
If there is more than one \(n_\pm \) (as in truncation 1) one has to choose linear combinations for which \(M_{\pm\pm}, M_{\pm\mp} \) take the same form for all \(n_\pm^{(i)} \), which is a consistency condition. Using (3.12) it can be shown that equations (3.17) can only be satisfied if we have

\[
M_{++} = \gamma n_+^2, \quad M_{--} = -\gamma n_-^2, \quad M_{+-} = M_{-+} = \sqrt{1 - \gamma^2} \sqrt{n_+^2 n_-^2} \quad (3.19)
\]

In all cases we consider, the \(M_{--} \) equation is automatically satisfied if the \(M_{++} \) equation is satisfied. Hence (3.19) provides two independent equations. It follows from (3.15) that these equations are linear in the first derivatives of the scalar fields and provide the BPS flow equations for the scalars. The complete set of flow equations is given by these equations and the flow equation for the metric factor (3.13), coming from the gravitino variation.

4 Janus and RG-flow solutions

In this section we obtain the flow equations and solve them numerically for the three truncations considered in this paper. Since the first truncation does not have \(N = (1, 1) \) vacua the BPS flows will correspond to Janus solutions interpolating between \(N = (4, 4) \) vacua. For the two other truncations we find Janus as well as RG-flow interface solutions.

4.1 Truncation 1

The matrix \(A_1 \) for this truncation is given by

\[
A_1 = \begin{pmatrix}
0 & 0 & 0 & a & 0 & 0 & b & 0 \\
0 & 0 & -a & 0 & 0 & 0 & 0 & b \\
0 & -a & 0 & 0 & -b & 0 & 0 & 0 \\
a & 0 & 0 & 0 & 0 & -b & 0 & 0 \\
0 & 0 & b & 0 & 0 & 0 & 0 & -a \\
0 & 0 & 0 & -b & 0 & 0 & a & 0 \\
b & 0 & 0 & 0 & 0 & a & 0 & 0 \\
0 & b & 0 & 0 & -a & 0 & 0 & 0
\end{pmatrix} \quad (4.1)
\]

where

\[
a = \frac{1}{2} \cos p(\alpha + \cosh q), \quad b = \frac{1}{2} \sin p(1 + \alpha \cosh q) \quad (4.2)
\]

The eigenvalue of \(A_1 \) are \(\pm w_0 \) which is given by

\[
w_0 = \sqrt{a^2 + b^2} = \frac{1}{2} \sqrt{\cos^2 p(\alpha + \cosh q)^2 + \sin^2 p(1 + \alpha \cosh q)^2} \quad (4.3)
\]
The eigenvectors are given by

\[
n_{\pm}^{(1)} = \begin{pmatrix} 0 & \frac{a\pm w_0}{b} & 0 & 0 \\ \frac{a\pm w_0}{b} & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad n_{\mp}^{(2)} = \begin{pmatrix} 0 & -\frac{a\pm w_0}{b} & 0 & 0 \\ -\frac{a\pm w_0}{b} & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}, \quad n_{\pm}^{(3)} = \begin{pmatrix} 0 & \frac{a\pm w_0}{b} & 0 & 0 \\ \frac{a\pm w_0}{b} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \quad n_{\mp}^{(4)} = \begin{pmatrix} 0 & 0 & \frac{a\pm w_0}{b} & 0 \\ 0 & 0 & \frac{a\pm w_0}{b} & 0 \\ \frac{a\pm w_0}{b} & 0 & 0 & 0 \\ \frac{a\pm w_0}{b} & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix},
\]

(4.4)

The matrix \(M^{AB}\) defined in (3.15) takes the following form for the truncation 1

\[
M = \begin{pmatrix} 0 & 0 & 0 & m_1 & 0 & 0 & -m_2 & 0 \\ 0 & 0 & -m_1 & 0 & 0 & 0 & 0 & -m_2 \\ 0 & -m_1 & 0 & 0 & m_2 & 0 & 0 & 0 \\ m_1 & 0 & 0 & 0 & 0 & m_2 & 0 & 0 \\ 0 & 0 & m_2 & 0 & 0 & 0 & 0 & -m_1 \\ 0 & 0 & 0 & m_2 & 0 & 0 & -m_1 & 0 \\ -m_2 & 0 & 0 & 0 & 0 & m_1 & 0 & 0 \\ 0 & -m_2 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\]

(4.5)

with

\[
m_1 = \frac{\alpha \sin p \, p' + \cos p \, \text{csch} \, q \, q'}{g(\cos^2 p + \alpha^2 \sin^2 p)}, \quad m_2 = \frac{\cos p \, p' - \alpha \sin p \, \text{csch} \, q \, q'}{g(\cos^2 p + \alpha^2 \sin^2 p)},
\]

(4.6)

Using the definitions (4.2) and (4.3) the flow equations (3.19) for the scalars \(p, q\) and the metric function \(B\) (3.13) can be written relatively compactly

\[
p' = \frac{g}{w_0} \left(\alpha (a\gamma - b\sqrt{1-\gamma^2}) \sin p - (b\gamma + a\sqrt{1-\gamma^2}) \cos p \right)
\]

\[
q' = \frac{g \sinh q}{w_0} \left(\alpha (b\gamma + a\sqrt{1-\gamma^2}) \sin p + (a\gamma - b\sqrt{1-\gamma^2}) \cos p \right)
\]

\[
B' = \pm \sqrt{4g^2w_0^2 - e^{-2B}}
\]

(4.7)

This system of ordinary differential equations can only be integrated numerically. We will choose the coordinate \(u\) such that the turning point of the metric function where \(B'(u) = 0\) is located at \(u = 0\). We then use the BPS equations (4.7) to determine \(p'(0), q'(0)\) and \(B(0)\) for a given \(q(0)\) and \(p(0)\). We then integrate the equations of motion following from the variation of the Lagrangian (2.10). This means that all our solutions depend on two initial conditions \(q(0)\) and \(p(0)\). We have given an illustrative example of the flows we can obtain in figure 3.
Figure 3: (a)-(c) plots of q, p, B respectively, (d) parametric plot of the Janus flow in the x, y variables. The initial conditions are $q(0) = 1.0$ and $p(0) = 1.5$ and $\alpha = 2.3$.

4.2 Truncation 2

The matrix A_1 for this truncation is given by

$$A_1 = \begin{pmatrix}
0 & 0 & 0 & \frac{a+c}{4} & 0 & 0 & 0 & 0 \\
0 & -\frac{c}{2} & -\frac{a+c}{4} & 0 & b & 0 & 0 & b \\
0 & -\frac{a+c}{4} & -\frac{c}{2} & 0 & -b & 0 & 0 & -b \\
\frac{a+c}{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & b & -b & 0 & \frac{c}{2} & 0 & 0 & -\frac{a+c}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{a+c}{4} & 0 \\
0 & 0 & 0 & 0 & \frac{a+c}{4} & 0 & 0 & \frac{c}{2} \\
0 & b & -b & 0 & -\frac{a+c}{4} & 0 & 0 & \frac{c}{2}
\end{pmatrix} \quad (4.8)$$

where

$$a = 2 \cos^4 p(\alpha \cosh^4 q) + 2 \sin^4 p(1 + \alpha \cosh^4 q)$$

$$b = \sin p \cos p \cosh q \left(\cos^2 p(\alpha + \cosh^2 q) - \sin^2 p(1 + \alpha \cosh^2 q) \right)$$

$$c = (1 + \alpha) \cosh^2 q \sin^2 2p \quad (4.9)$$
Figure 4: Truncation 2: (a)-(c) plots of p, q, B respectively, (d) parametric plot of the Janus flow in the x, y variables, the $\mathcal{N} = (4, 4)$ vacuum is at the origin and the dots denote the locations of the $\mathcal{N} = (1, 1)$ vacua. Blue: Janus between $\mathcal{N} = (4, 4)$ vacua, red: Janus between $\mathcal{N} = (1, 1)$ vacua, green: RG-Janus between $\mathcal{N} = (4, 4)$ and $\mathcal{N} = (1, 1)$. We have set $\alpha = 1.2$ for these examples.

The eigenvectors $n^{(1)}_{\pm}$ of A_1 with eigenvalues $\pm w_0$ corresponding to the unbroken $\mathcal{N} = (1, 1)$ supersymmetries are given by

$$n^{(1)}_{\pm} = \begin{pmatrix} 0 & \frac{a-3c \pm 4w_0 b}{-a-3c \pm 4w_0} \\ \frac{a-3c \pm 4w_0 b}{-a-3c \pm 4w_0} & 0 \\ 0 & 1 \\ 0 & 0 \\ 1 & 1 \end{pmatrix}, \quad w_0 = \frac{1}{4} \sqrt{64b^2 + (3c - a)^2} \quad (4.10)$$

We have checked that the extremum (2.22) does satisfy the supersymmetry condition (3.5) for the w_0 defined above and hence corresponds to an AdS vacuum with $\mathcal{N} = (1, 1)$ supersymmetry. The rest of the eigenvectors of A_1 do not have eigenvalues which satisfy the supersymmetry condition (3.5) for the $\mathcal{N} = (1, 1)$ vacuum. We chose the initial conditions the same way as in section 4.1.

In figure 4 we display examples of solutions to the flow equations representing Janus flows between $\mathcal{N} = (4, 4)$ vacua, $\mathcal{N} = (1, 1)$ vacua and RG-flow Janus solutions between $\mathcal{N} = (4, 4)$ and $\mathcal{N} = (1, 1)$ vacua. We note that the flows involving the $\mathcal{N} = (1, 1)$ vacua are a new feature of the truncation. As discussed in section 5.1 the $\mathcal{N} = (1, 1)$ is a repulsive fixed point of the flow and to obtain the numerical solutions one has to fine tune the initial conditions at
the turning point to approach the $\mathcal{N} = (1, 1)$ vacuum. This implies that choosing an initial $p(0)$, the initial $q(0)$ for which an RG-flow solution exists, is fixed. A third kind of flow solution corresponds to a Janus solution interpolating between $\mathcal{N} = (1, 1)$ vacua, since both vacua are repulsive such solutions only exist for a discrete set of initial conditions. Note that the asymptotic value of p when the $\mathcal{N} = (4, 4)$ vacuum is obtained can take any value and determines the angle with which the point $(x, y) = (0, 0)$ is approached in the parametric x, y plot.

4.3 Truncation 3

The matrix A_1 for this truncation is given by

$$A_1 = \begin{pmatrix}
0 & 0 & 0 & \frac{b+c}{2} & 0 & \frac{a+d}{2} & 0 & 0 \\
-\frac{b+c}{2} & 0 & -\frac{a+d}{2} & 0 & 0 & d \\
0 & -\frac{a+d}{2} & -d & 0 & -\frac{a-d}{2} & 0 \\
\frac{b+c}{2} & 0 & 0 & 0 & 0 & \frac{b+c}{2} \\
\frac{a+d}{2} & 0 & 0 & 0 & 0 & \frac{b+c}{2} \\
0 & 0 & 0 & -\frac{a-d}{2} & 0 & b+c \\
0 & d & \frac{a-d}{2} & 0 & -\frac{b+c}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & c
\end{pmatrix}$$

(4.11)

where

$$a = \sin^3 p(1 + \alpha \cosh^3 q)$$
$$b = \cos^3 p(\alpha + \cosh^3 q)$$
$$c = \sin^2 p \cos p \cosh q(1 + \alpha \cosh q)$$
$$d = \cos^2 p \sin p \cosh q(\alpha + \cosh q)$$

(4.12)

The eigenvectors $n^{(1)}_{\pm}$ of A_1 with eigenvalues $\pm w_0$ corresponding to the unbroken $\mathcal{N} = (1, 1)$ supersymmetries are given by

$$n^{(1)}_{\pm} = \begin{pmatrix}
0 \\
-\frac{b-3c \pm 2w_0}{b-3c \pm 2w_0} \\
\frac{a-3d \pm 2w_0}{a-3d \\
0 \\
1 \\
0 \\
0 \\
1
\end{pmatrix}, \quad w_0 = \frac{1}{2} \sqrt{(a-3d)^2 + (b-3c)^2}$$

(4.13)

The rest of the eigenvectors of A_1 do not have eigenvalues which satisfy the supersymmetry condition (3.5) for the $\mathcal{N} = (1, 1)$ vacuum. Note that all of them reduce to the ones of truncation 1 for the $\mathcal{N} = (4, 4)$ vacuum.

In figure 5 we display a sample of solutions to the flow equations representing Janus flows between $\mathcal{N} = (4, 4)$ vacua, $\mathcal{N} = (1, 1)$ vacua and RG-flow Janus solutions between an
Figure 5: Truncation 3: (a)-(c) plots of p, q, B respectively, (d) parametric plot of the Janus flow in the x, y variables, the $\mathcal{N} = (4, 4)$ vacuum is at the origin and the dots denote the locations of the $\mathcal{N} = (1, 1)$ vacua. Blue: Janus between $\mathcal{N} = (4, 4)$ vacua, red: Janus between $\mathcal{N} = (1, 1)$ vacua, green: RG-Janus between $\mathcal{N} = (4, 4)$ and $\mathcal{N} = (1, 1)$. We have set $\alpha = 1.2$ for these examples.

$\mathcal{N} = (4, 4)$ and $\mathcal{N} = (1, 1)$ vacuum. We note that the solutions behave qualitatively similar to the ones displayed for truncation 2.

5 Holographic calculations

In this section we will perform some holographic calculations for the solutions obtained in the section 4. In particular we will calculate the masses for the fluctuations of the scalar fields around the $\mathcal{N} = (4, 4)$ and $\mathcal{N} = (1, 1)$ vacua. This will allow us to identify the dimensions of the dual operators which are turned on in the flows. One of the results is that for truncation 2 and 3 the mass squared of the fluctuations are positive, corresponding to operators with scaling dimensions $\Delta > 2$. Since the behavior near the AdS vacuum is given by

$$\lim_{\varepsilon \to 0} \phi \sim \bar{\phi} + c_1 \varepsilon^{\Delta} + c_2 \varepsilon^{2-\Delta} + \cdots$$

where $\varepsilon \to 0$ corresponds to approaching the AdS boundary, the initial conditions have to be fine tuned in order to make the repulsive term $c_2 \varepsilon^{2-\Delta}$ very small. In addition we consider the entanglement entropy of a symmetric region around the defect [34–38] and give a prescription to obtain the defect entropy (or g-factor) [39].
5.1 Operator spectrum

The $\mathcal{N} = (4,4)$ vacuum has $q_i = 0, i = 1, 2, 3, 4$. Since the kinetic terms for p_i are vanishing the x_i, y_i defined in (2.16) are better suited to analyze the fluctuations. Expanding around the $x_i = y_i = 0$ vacuum one finds for the quadratic term of the fluctuations,

$$\frac{1}{e} \mathcal{L}^{(2)} = \frac{1}{4} \sum_i \left(\partial_\mu \delta x_i \partial^\mu \delta x_i + \partial_\mu \delta y_i \partial^\mu \delta y_i \right) + \frac{\beta^2}{4} \sum_i \left((1 + 2\alpha) \delta x_i^2 + \alpha(\alpha + 2) \delta y_i^2 \right)$$

from which we can read off the masses of the scalar fluctuations. Then the masses determine the conformal scaling dimensions

$$\Delta_\pm = 1 \pm \sqrt{1 + m^2 R^2}$$

where R is the AdS radius of the vacuum. Setting $g_c = 1/(1+\alpha)$ to obtain a unit radius AdS_3 for the $\mathcal{N} = (4,4)$ vacuum and the standard AdS/CFT relation the conformal dimensions of the dual operators are displayed in table 1. Note that Δ_+ gives the scaling dimension of the dual operator in the standard quantization which takes values between $1 < \Delta_+ < 2$ for $\alpha > 0$, whereas Δ_- corresponds to the alternative quantization and $0 < \Delta_- < 1$ for $\alpha > 0$. Supersymmetric flows are related to the standard quantization which we will adapt in the following [40]. We note that the $\mathcal{N} = (4,4)$ vacuum is attractive since both x and y are dual to operators with $\Delta < 2$ and the initial conditions do not have to be fine tuned for (5.1) to approach the vacuum value.

For truncations 2 and 3 we can determine the scaling dimensions of the operators at the $\mathcal{N} = (1,1)$ vacuum by expanding the scalar action around the vacuum to second order and diagonalizing the resulting scalar Lagrangian. The resulting expressions are quite unwieldy and we present the plots of the scaling dimensions of the two modes as a function of α in figure 6. We note that the scaling dimensions are larger than 2 and hence the $\mathcal{N} = (1,1)$ corresponds to a repulsive fixed point and the initial conditions have to be fine-tuned.

5.2 Holographic entanglement entropy

The Ryu-Takayanagi prescription [41] relates holographic entanglement entropy to the area of a minimal surface in the bulk which when approaching the AdS boundary ends at the border of the entangling surface. For a three dimensional static bulk spacetime this corresponds to a geodesic in the bulk which terminates at the ends of the entangling interval on the boundary.
Figure 6: (a) Conformal dimension of operator dual to scalar fluctuations around the $\mathcal{N} = (1,1)$ vacuum for truncation 2, (b) same for truncation 3.

For the AdS_2 sliced metric (3.1) and an entangling surface which is symmetric about the defect and of length $2L$, such a geodesic is simply parameterized by u and constant $z = L$. The entanglement entropy is then given by

$$S_{EE}(L) = \frac{1}{4G_N} \int_{-\infty}^{\infty} du = \frac{1}{4G_N} (u_{-\infty} - u_{+\infty})$$

(5.4)

where $u_{\pm\infty}$ will be related to an UV Fefferman-Graham cutoff in the following. We will generalize the derivation of [34,35] to the case of an RG-flow interface where the AdS radius and hence the central charge take different values on both sides of the interface. The asymptotic behavior of the metric is determined by the metric function $B(u)$ as $u \to \pm \infty$

$$\lim_{u \to \pm \infty} B(u) = \pm \frac{u}{R_{\pm}} + \ln \lambda_{\pm} - \ln 2 + o\left(\frac{1}{u}\right)$$

(5.5)

In the two asymptotic regions we can define a Fefferman-Graham coordinate system by defining a new coordinates \hat{u}_{\pm}

$$u \to \pm \infty : \quad u = R_{\pm} \hat{u}_{\pm} \mp R_{\pm} \ln \lambda_{\pm} + o\left(\frac{1}{u}\right)$$

(5.6)

and then the coordinates ζ_{\pm}, η

$$u \to +\infty : \quad e^{-2\hat{u}_{+}} = \frac{1}{4} \frac{\zeta_+^2}{\eta^2} + o(\zeta_+^4), \quad z = \eta \left(1 + \frac{1}{2} \frac{\zeta_+^2}{\eta^2}\right) + o(\zeta_+^4)$$

$$u \to -\infty : \quad e^{2\hat{u}_{-}} = \frac{1}{4} \frac{\zeta_-^2}{\eta^2} + o(\zeta_-^4), \quad z = -\eta \left(1 + \frac{1}{2} \frac{\zeta_-^2}{\eta^2}\right) + o(\zeta_-^4)$$

(5.7)

This expansion is valid for $\eta >> \zeta_{\pm}$, i.e. if we consider an entanglement interval which is far away from the interface. In this limit the metric becomes

$$\zeta_{\pm} \to 0 \quad ds^2 = R_{\pm}^2 \left(\frac{-d\zeta_{\pm}^2 - d\eta^2 + dt^2}{\zeta_{\pm}^2}\right) + o(1)$$

(5.8)
Figure 7: (a) Plot of boundary entropy for RG-flow interface for truncation 2, as a function of initial condition p_0 at the turning point for $\alpha = 1.4$. (b) Illustration of RG-flows for some initial values of p_0.

It follows that R_{\pm} defined in (5.5), corresponds to the asymptotic AdS radius and the left and right side of the interface respectively and a Fefferman-Graham cutoff is given by setting $\zeta_{\pm} = \varepsilon$. For the entanglement region located at $z = L$ in follows from (5.8) that the FG cutoff is related to the u_{\pm} cutoff as follows

$$u_{\pm} = \mp R_{\pm\infty} \ln \left(\frac{\varepsilon}{2L} \right) \mp R_{\pm} \ln \lambda_{\pm}$$

(5.9)

Plugging this into (5.4) gives the entanglement entropy

$$S_{EE} = \frac{1}{4G_N} \left((R_+ + R_-) \ln \frac{L}{2\varepsilon} - R_+ \ln \lambda_+ - R_- \ln \lambda_- \right)$$

$$= \frac{c_+ + c_-}{6} \ln \frac{L}{2\varepsilon} - \frac{c_+}{6} \ln \lambda_+ - \frac{c_-}{6} \ln \lambda_- + o(\varepsilon)$$

(5.10)

the constant term gives the boundary entropy

$$g = -\frac{c_+}{6} \ln \lambda_+ - \frac{c_-}{6} \ln \lambda_-$$

(5.11)

Where c_{\pm} is the central charge for the two CFTs on either side of the RG interface. The g-factor is given by the second and third term in (5.10). For a Janus interface we have $c_+ = c_- = c$, whereas the central charges differ on both sides of the interface for a RG-flow interface. It is straightforward to determine the R_{\pm} and $\ln \lambda_{\pm}$ by numerically fitting the metric functions (see plot (c) in figures 4 and 5) to determine the slope and the intercept (5.5) in the limit of large $|u|$. We will give an example of numerical results by presenting the g-factors as for the RG-interface between the $\mathcal{N} = (4,4)$ vacuum and a $\mathcal{N} = (1,1)$ vacuum in truncation 2. As discussed in section 4.2 there exists a unique RG-flow interface for a choice on initial condition p_0. In figure 7 we present the g-factor as a function of the initial condition for a particular value of $\alpha = 1.4$.

20
6 Discussion

In this paper we found holographic interface solutions in three dimensional gauged supergravity theories. An important feature of these theories is that they have AdS vacua which preserve $\mathcal{N} = (1, 1)$ supersymmetry in addition to the $\mathcal{N} = (4, 4)$ AdS vacuum. This feature allows us to find solutions which correspond to interfaces between two $\mathcal{N} = (4, 4)$ vacua on both side, $\mathcal{N} = (1, 1)$ on both sides, as well as RG-flow interfaces which have a $\mathcal{N} = (4, 4)$ on one side and $\mathcal{N} = (1, 1)$ vacuum on the other. We derived BPS flow equations which are three first order nonlinear differential equations for the two scalars p, q which are non zero in the truncations as well as the warp factor B of the AdS_2 slicing. By using the freedom to shift the warping coordinate u by a constant we can choose the initial conditions for the flow as the value of p and q at the turning point of the warp factor, where $B' = 0$. In fact we use the BPS equations to determine the initial conditions for the second order equation motion following from the variation of the action. The numerical accuracy of the solution is tested by checking the BPS equations away from the point where the initial conditions were fixed.

The $\mathcal{N} = (1, 1)$ extrema are repulsive fixed points of the flow and hence the initial condition have to be fine tuned using a shooting method. This is possible by fixing one scalar initial condition and varying the other in order to come closer and closer to the $\mathcal{N} = (1, 1)$ vacuum in the flow. Our results indicate that the qualitative behavior of the solutions for general α is quite similar to the behavior of the $\alpha = 1$ solutions obtained in [1]. In addition we have considered the entanglement entropy for the Janus and RG-flow solutions. Since for the RG-flow solutions the central charges and hence AdS radii are different on both sides of the interface one has to carefully consider the UV cut-off. It is possible to determine the g-function or interface entropy from the numerical solution by a linear fit of the warp factor B.

We have considered truncations of the scalars to two nonzero scalars q and p (or x and y), it would be interesting to generalize this since it would then be possible to consider more complicated flows between different $\mathcal{N} = (1, 1)$ vacua. It would also be interesting to investigate the solutions we have found can be lifted and have a representation in $AdS_3 \times S^3 \times S^3 \times S^1$ holography. It would also be interesting to see whether the prescription for the interface entropy can be applied to other examples of RG-flow interfaces. We leave these interesting questions for future work.

Acknowledgements

The work of M. G. was supported, in part, by the National Science Foundation under grant PHY-19-14412. The authors are grateful to Kevin Chen for initial collaboration. The authors are grateful to the Mani L. Bhaumik Institute for Theoretical Physics for support.
A \textbf{SO}(8) Gamma matrices}

The formulation of the $N = 8$ three dimensional gauged supergravity utilizes with 8×8 Gamma matrices $\Gamma^I_{\dot{A}A}$ and their transposes $\Gamma^I_{AA\dot{A}}$, they satisfy the Clifford algebra,

$$\Gamma^I_{\dot{A}A}\Gamma^J_{\dot{A}B} + \Gamma^J_{\dot{A}A}\Gamma^I_{\dot{A}B} = 2\delta^{IJ}\delta_{AB} \quad (A.1)$$

Explicitly, we use the basis as given in Green-Schwarz-Witten [42],

$$
\begin{align*}
\Gamma^8_{\dot{A}A} &= 1 \otimes 1 \otimes 1 , & \Gamma^1_{\dot{A}A} &= i\sigma_2 \otimes i\sigma_2 \otimes i\sigma_2 \\
\Gamma^2_{\dot{A}A} &= 1 \otimes \sigma_1 \otimes i\sigma_2 , & \Gamma^3_{\dot{A}A} &= 1 \otimes \sigma_3 \otimes i\sigma_2 \\
\Gamma^4_{\dot{A}A} &= \sigma_1 \otimes i\sigma_2 \otimes 1 , & \Gamma^5_{\dot{A}A} &= \sigma_3 \otimes i\sigma_2 \otimes 1 \\
\Gamma^6_{\dot{A}A} &= i\sigma_2 \otimes 1 \otimes \sigma_1 , & \Gamma^7_{\dot{A}A} &= i\sigma_2 \otimes 1 \otimes \sigma_3
\end{align*}
\quad (A.2)$$

The matrices Γ^{IJ}_{AB}, $\Gamma^{IJ}_{\dot{A}B}$ and similar are defined as antisymmetrized products of Γs with the appropriate indices contracted. For example,

$$\Gamma^{IJ}_{AB} \equiv \frac{1}{2}(\Gamma^I_{\dot{A}A}\Gamma^J_{\dot{A}B} - \Gamma^J_{\dot{A}A}\Gamma^I_{\dot{A}B}) \quad (A.3)$$
References

[1] K. Chen, M. Gutperle and C. Hultgreen-Mena, “Janus and RG-flow interfaces in three-dimensional gauged supergravity,” JHEP 03 (2022), 057 [arXiv:2111.01839 [hep-th]].

[2] D. Bak, M. Gutperle and S. Hirano, “A Dilatonic deformation of AdS(5) and its field theory dual,” JHEP 05 (2003), 072 [arXiv:hep-th/0304129 [hep-th]].

[3] A. B. Clark, D. Z. Freedman, A. Karch and M. Schnabl, “Dual of the Janus solution: An interface conformal field theory,” Phys. Rev. D 71 (2005), 066003 [arXiv:hep-th/0407073 [hep-th]].

[4] E. D’Hoker, J. Estes and M. Gutperle, “Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus,” JHEP 06 (2007), 021 [arXiv:0705.0022 [hep-th]].

[5] E. D’Hoker, J. Estes and M. Gutperle, “Interface Yang-Mills, supersymmetry, and Janus,” Nucl. Phys. B 753 (2006), 16-41 [arXiv:hep-th/0603013 [hep-th]].

[6] D. Gaiotto and E. Witten, “S-Duality of Boundary Conditions In N=4 Super Yang-Mills Theory,” Adv. Theor. Math. Phys. 13 (2009) no.3, 721-896 [arXiv:0807.3720 [hep-th]].

[7] D. Gaiotto and E. Witten, “Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N=4 Super Yang-Mills Theory,” JHEP 06 (2010), 097 [arXiv:0804.2907 [hep-th]].

[8] E. D’Hoker, J. Estes and M. Gutperle, “Ten-dimensional supersymmetric Janus solutions,” Nucl. Phys. B 757 (2006), 79-116 [arXiv:hep-th/0603012 [hep-th]].

[9] E. D’Hoker, J. Estes, M. Gutperle and D. Krym, “Janus solutions in M-theory,” JHEP 06 (2009), 018 [arXiv:0904.3313 [hep-th]].

[10] E. D’Hoker, J. Estes and M. Gutperle, “Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus,” JHEP 06 (2007), 022 [arXiv:0705.0024 [hep-th]].

[11] C. Bachas, E. D’Hoker, J. Estes and D. Krym, “M-theory Solutions Invariant under $D(2, 1; \gamma) \oplus D(2, 1; \gamma)$,” Fortsch. Phys. 62 (2014), 207-254 [arXiv:1312.5477 [hep-th]].

[12] K. Pilch, A. Tyukov and N. P. Warner, “$\mathcal{N} = 2$ Supersymmetric Janus Solutions and Flows: From Gauged Supergravity to M Theory,” JHEP 05 (2016), 005 [arXiv:1510.08090 [hep-th]].

[13] M. Gutperle, J. Kaidi and H. Raj, “Janus solutions in six-dimensional gauged supergravity,” JHEP 12 (2017), 018 [arXiv:1709.09204 [hep-th]].
[14] M. Suh, “Supersymmetric Janus solutions in five and ten dimensions,” JHEP 09 (2011), 064 [arXiv:1107.2796 [hep-th]].

[15] N. Bobev, K. Pilch and N. P. Warner, “Supersymmetric Janus Solutions in Four Dimensions,” JHEP 06 (2014), 058 [arXiv:1311.4883 [hep-th]].

[16] A. Clark and A. Karch, “Super Janus,” JHEP 10 (2005), 094 [arXiv:hep-th/0506265 [hep-th]].

[17] M. Suh, “Supersymmetric Janus solutions of dyonic ISO(7)-gauged \(N = 8 \) supergravity,” JHEP 04 (2018), 109 [arXiv:1803.00041 [hep-th]].

[18] P. Karndumri, “Supersymmetric Janus solutions in four-dimensional \(N=3 \) gauged supergravity,” Phys. Rev. D 93 (2016) no.12, 125012 [arXiv:1604.06007 [hep-th]].

[19] P. Karndumri and C. Maneerat, “Supersymmetric Janus solutions in \(\omega \)-deformed \(N = 8 \) gauged supergravity,” Eur. Phys. J. C 81 (2021) no.9, 801 [arXiv:2012.15763 [hep-th]].

[20] M. Chiodaroli, M. Gutperle and D. Krym, “Half-BPS Solutions locally asymptotic to \(AdS_3 \times S^*^3 \) and interface conformal field theories,” JHEP 02 (2010), 066 [arXiv:0910.0466 [hep-th]].

[21] T. Assawasowan and P. Karndumri, “New supersymmetric Janus solutions from \(N=4 \) gauged supergravity,” Phys. Rev. D 105 (2022), 106004 [arXiv:2203.03413 [hep-th]].

[22] P. Karndumri and C. Maneerat, “Janus solutions from dyonic ISO(7) maximal gauged supergravity,” JHEP 10 (2021), 117 [arXiv:2108.13398 [hep-th]].

[23] D. Gaiotto, “Domain Walls for Two-Dimensional Renormalization Group Flows,” JHEP 12 (2012), 103 [arXiv:1201.0767 [hep-th]].

[24] M. Gutperle and J. Samani, “Holographic RG-flows and Boundary CFTs,” Phys. Rev. D 86 (2012), 106007 [arXiv:1207.7325 [hep-th]].

[25] I. Arav, K. C. M. Cheung, J. P. Gauntlett, M. M. Roberts and C. Rosen, “Superconformal RG interfaces in holography,” JHEP 11 (2020), 168 [arXiv:2007.07891 [hep-th]].

[26] Y. Korovin, “First order formalism for the holographic duals of defect CFTs,” JHEP 04 (2014), 152 [arXiv:1312.0089 [hep-th]].

[27] H. Nicolai and H. Samtleben, “\(N=8 \) matter coupled \(AdS(3) \) supergravities,” Phys. Lett. B 514 (2001), 165-172 [arXiv:hep-th/0106153 [hep-th]].
[28] M. Berg and H. Samtleben, “An Exact holographic RG flow between 2-d conformal fixed points,” JHEP 05 (2002), 006 [arXiv:hep-th/0112154 [hep-th]].

[29] H. J. Boonstra, B. Peeters and K. Skenderis, “Brane intersections, anti-de Sitter space-times and dual superconformal theories,” Nucl. Phys. B 533 (1998), 127-162 [arXiv:hep-th/9803231 [hep-th]].

[30] S. Elitzur, O. Feinerman, A. Giveon and D. Tsabar, “String theory on AdS(3) x S**3 x S**3 x S**1,” Phys. Lett. B 449 (1999), 180-186 [arXiv:hep-th/9811245 [hep-th]].

[31] J. de Boer, A. Pasquinucci and K. Skenderis, “AdS / CFT dualities involving large 2-D N=4 superconformal symmetry,” Adv. Theor. Math. Phys. 3 (1999), 577-614 [arXiv:hep-th/9904073 [hep-th]].

[32] S. Gukov, E. Martinec, G. W. Moore and A. Strominger, “The Search for a holographic dual to AdS(3) x S**3 x S**3 x S**1,” Adv. Theor. Math. Phys. 9 (2005), 435-525 [arXiv:hep-th/0403090 [hep-th]].

[33] B. de Wit, I. Herger and H. Samtleben, “Gauged locally supersymmetric D = 3 nonlinear sigma models,” Nucl. Phys. B 671 (2003), 175-216 [arXiv:hep-th/0307006 [hep-th]].

[34] T. Azeyanagi, A. Karch, T. Takayanagi and E. G. Thompson, “Holographic calculation of boundary entropy,” JHEP 03 (2008), 054 [arXiv:0712.1850 [hep-th]].

[35] M. Chiodaroli, M. Gutperle and L. Y. Hung, “Boundary entropy of supersymmetric Janus solutions,” JHEP 09 (2010), 082 [arXiv:1005.4433 [hep-th]].

[36] M. Gutperle and J. D. Miller, “Entanglement entropy at holographic interfaces,” Phys. Rev. D 93 (2016) no.2, 026006 [arXiv:1511.08955 [hep-th]].

[37] K. Jensen and A. O’Bannon, “Holography, Entanglement Entropy, and Conformal Field Theories with Boundaries or Defects,” Phys. Rev. D 88 (2013) no.10, 106006 [arXiv:1309.4523 [hep-th]].

[38] J. Estes, K. Jensen, A. O’Bannon, E. Tsatis and T. Wrase, “On Holographic Defect Entropy,” JHEP 05 (2014), 084 [arXiv:1403.6475 [hep-th]].

[39] I. Affleck and A. W. W. Ludwig, “Universal noninteger ’ground state degeneracy’ in critical quantum systems,” Phys. Rev. Lett. 67 (1991), 161-164

[40] M. Bianchi, D. Z. Freedman and K. Skenderis, “How to go with an RG flow,” JHEP 08 (2001), 041 [arXiv:hep-th/0105276 [hep-th]].

[41] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006), 181602 [arXiv:hep-th/0603001 [hep-th]].
[42] M. B. Green, J. H. Schwarz and E. Witten, “SUPERSTRING THEORY. VOL. 1: INTRODUCTION,” Cambridge, 1987