On transcendental numbers

Florin F. Nichita 1,*

1 Institute of Mathematics of the Romanian Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania, Romania

* Author to whom correspondence should be addressed; E-Mail: florin.nichita@imar.ro; Tel: (+40) (0) 21 319 65 06; Fax: (+40) (0) 21 319 65 05

Abstract: Transcendental numbers play an important role in many areas of science. This paper contains a short survey on transcendental numbers and some relations among them. New inequalities for transcendental numbers are stated in Section 2 and proved in Section 4. Also, in relationship with these topics, we study the exponential function axioms related to the Yang-Baxter equation.

Keywords: transcendental numbers; Yang-Baxter equation; inequalities; exponential function; computational methods; standard distribution

Classification: MSC 16T25; 11D09; 11D25; 11N45; 33B10; 60A05; 65L70

1. Introduction

In [1], the author considers two types of scientists, and mathematics needs both of them. Birds fly high, and, therefore, they can see the whole landscape; they resemble scientists who try to unify theories, who obtain important results, and who have a broad understanding. As an example, among others, the author considers Chen Ning (Frank) Yang. On the other hand, the scientists who resembles frogs work on problems which are less influential; the author of this article considers himself a “frog”. Mathematics is rich and beautiful because birds give it broad visions and frogs give it intricate details.

In a similar manner, Solomon Marcus ([2]) used the terms “bees” versus “ants” in his talks, describing mathematicians who are involved in many different areas of research versus the mathematicians who work on a restricted domain.
A transdisciplinary approach (see [3,4]) attempts to discover what is between disciplines, across different disciplines, and beyond all disciplines. The algebraic model for transdisciplinarity from [5] explains how disciplinarity, interdisciplinarity, pluridisciplinarity and transdisciplinarity are related. Because there is a huge number of new disciplines, it is important to have a transdisciplinary understanding of the world.

Our paper is written in transdisciplinary fashion, because important transcendental numbers play a role in many areas of science. We use results and concepts from algebra, mathematical analysis, probability and statistics, computer science, numerical analysis, etc. The next section is a short survey on transcendental numbers and some relations among them; new inequalities are stated. In Section 3, we study the exponential function axioms related to the Yang-Baxter equation. Section 4 deals with proofs and approximations of the number π (see also [6,7]); also, we argue that computer science plays an important role in the development of the modern mathematics.

2. Transcendental numbers, famous relations and new inequalities

It is well-known the relation which contains the numbers e, π and i:

$$e^{\pi i} = -1.$$ (1)

It follows that: $e^{\pi i} + 1 = 0$; $e^{\pi} = (e^{i\pi})^{-i} = (-1)^{-i}$; $i^i = (e^{\frac{i\pi}{2}})^{2} = e^{-\frac{\pi}{2}}$.

Another famous relation between e and π is the following:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$$ (2)

The above formula plays an important role in probability and statistics: it can be read as the expected value of the standard distribution. The proof of the above formula follows from using some double integrals and a change of variables.

The inequality for real numbers

$$x^2 + e > \pi x \quad \forall x$$ (3)

provides a new relation between the transcendental numbers e and π. It can be restated as an approximation for π. Also, it is related to a more complicated inequality for real numbers:

$$x^2 > \frac{\sqrt{2x} - \sqrt{3}}{x^2 - \pi x + e} \quad \forall x.$$ (4)

Of course, one has to prove our first inequality in order to make sure that the denominator of the fraction appearing in our second inequality is different from zero.

Several inequalities emerge right away:

$$\cos (e) < \sin (\frac{6\pi}{5})$$
\[4 \log e + e \ln \pi > 2\pi \]
\[|e^{1-z} + e^z| > \pi \quad \forall z \in \mathbb{C} \]

in the last inequality if \(z = -i \), we have: \(|e^i + e^{1+i}| > \pi \).

Also, the following approximation holds: \(|e^i - \pi| > e \).

These inequalities will be studied in our last section.

3. The Yang-Baxter equation

In our special issues on Hopf algebras, quantum groups and Yang-Baxter equations, several papers [8–15], as well the feature paper [16], covered many topics related to the Yang-Baxter equation. The Yang-Baxter equation was solved only in dimension 2, using computational methods.

The terminology of this section is compatible with the above cited papers, and the constructions which follow are related to the paper [17], and to the formula (1). To our knowledge this point of view (and construction) is new.

Let \(V \) be a complex vector space, and \(I_j : V \otimes j \rightarrow V \otimes j \quad \forall j \in \{1, 2\} \) identity maps.

We consider \(J : V^{\otimes 2} \rightarrow V^{\otimes 2} \) a linear map which satisfies
\[J \circ J = -I_2; \quad J^{12} \circ J^{23} = J^{23} \circ J^{12}, \text{ where } J^{12} = J \otimes I_1, \quad J^{23} = I_1 \otimes J. \]

Then, \(R(x) = \cos x I_2 + \sin x J \) satisfies the colored Yang-Baxter equation:
\[R^{12}(x) \circ R^{23}(x + y) \circ R^{12}(y) = R^{23}(y) \circ R^{12}(x + y) \circ R^{23}(x) \quad (5) \]

The proof of (5) could be done directly. Another way to prove it is to write \(R(x) = e^x J \) (it makes sense!), and to check that (5) reduces to
\[x J^{12} + (x + y) J^{23} + y J^{12} = y J^{23} + (x + y) J^{12} + x J^{23} \]

For example, in dimension two, the matrix of \(J \) could be:
\[
\begin{pmatrix}
0 & 0 & \frac{1}{\alpha} i \\
0 & 0 & i \\
0 & i & 0 \\
\alpha i & 0 & 0
\end{pmatrix}
\]

(6)

In this case, the matrix form of \(R(x) \) is the following:
\[
\begin{pmatrix}
\cos x & 0 & 0 & \frac{1}{\alpha} \sin x \\
0 & \cos x & i \sin x & 0 \\
0 & i \sin x & \cos x & 0 \\
\alpha i \sin x & 0 & 0 & \cos x
\end{pmatrix}
\]

(7)
4. Proofs for our inequalities and further comments

Our approach to prove the inequalities from Section 2 is to consider the associated equations, and to prove that they have no real solutions. (My students at AUK University used the graphing calculators to solve some of them.)

Exercises. Find the real solutions for the following equations:
1. \(x^2 - \pi x + e = 0 \)
2. \(1234 \, 5678 \, x^2 + 9999 \, 9999 \, x + 8765 \, 4321 = 0 \)
3. \(x^4 - \pi x^3 + e x^2 - \sqrt{2} x + \sqrt{3} = 0 \)
4. \(x^6 - \pi x^5 + e x^4 - \sqrt{2} x^3 + \sqrt{3} x^2 - \sqrt{5} x + \sqrt{13} = 0 \)

Solutions and comments.
1. There are no real solutions. One could use the quadratic formula and two digit approximations for \(e \) and \(\pi \) to prove that \(\Delta = \pi^2 - 4e < 0 \). The inequality
 \[\pi < 2\sqrt{e} \]
 is an approximation of \(\pi \) (see also, [6]).

 Some applications of this exercise could be in probability and statistics. (See formula (2).) Thus, one can find an upper bound for the expected value of the standard distribution over a certain interval \([a, b]\). If \(\frac{\pi}{2} \) is an interior point (this idea could be developed further) of \([a, b]\), then our approximation is efficient:
 \[\int_{a}^{b} e^{-x^2} \, dx < \frac{1}{\pi} e - \pi a \cdot e - \pi b . \]

2. Solving this equation by using the quadratic formula and the graphing calculator is almost impossible. However, one can use the formula \(Ax^2 + (A+C)x + C = (Ax+C)(x+1) \), for \(A = 1234 \, 5678 \) and \(C = 8765 \, 4321 \). The solution \(x = -1 \) could be observed directly. The other solution has to be expressed as a fraction in the simplest form (which is a tricky problem again).

3. and 4. These equations have no real solutions. This can be checked on a graphing calculator. (What kind of computational methods could be considered for solving these equations?) The first of these equations can be stated as (4).

 Is it possible to solve these equations algebraically? Recall that for equations of degree 6 there are no formulas for their solutions. We leave this questions as open problems.

Finally, we restate the last equation as an inequality for real numbers, which could lead to approximations for \(\pi \):

\[x + \frac{e}{x} - \frac{\sqrt{2}}{x^2} + \frac{\sqrt{3}}{x^3} - \frac{\sqrt{5}}{x^4} + \frac{\sqrt{13}}{x^5} > \pi \quad \forall x > 0 . \]
Remark 4.1 We think that the new problems presented in this paper could lead to other challenging ideas and questions. Are they pointing out to the fact that modern mathematics and computer science are dependent on each other? Are they leading to some kind of transdisciplinary approach? For what kind of problems from pure mathematics the computational methods are essential? Why pure mathematics cannot give solutions for those problems?

References

1. F. Dysson, *Birds and Frogs*, Notices of the AMS, Vol. 56, No. 2, 2009, 212-223.
2. L. Spandonide and G. Paun (Editors), *Meetings with Solomon Marcus*, Editura Spandugino, 2010.
3. Basarab Nicolescu, *Manifesto of Transdisciplinarity*, State University of New York (SUNY) Press, New York, 2002, translation in English by Karen-Claire Voss.
4. Basarab Nicolescu, *Transdisciplinarity - past, present and future*, in Moving Worldviews - Reshaping sciences, policies and practices for endogenous sustainable development, COMPAS Editions, Holland, 2006, edited by Bertus Haverkort and Coen Reijntjes, p. 142-166.
5. Florin F. Nichita, *On Models for Transdisciplinarity*, Transdisciplinary Journal of Engineering and Science, Vol. 2011, 42-46.
6. *Pi Approximations*, http://mathworld.wolfram.com/PiApproximations.html
7. Hari M. Srivastava (Editor), Special Issue *q-Series and Related Topics in Special Functions and Analytic Number Theory*, Axioms (ISSN 2075-1680), 2012.
8. Kanakoglou, K. *Gradings, Braiding, Representations, Paraparticles: Some Open Problems*. Axioms 2012, 1(1), 74-98.
9. Underwood, R.G. *Quasi-triangular Structure of Myhill-Nerode Bialgebras*. Axioms. 2012; 1(2):155-172.
10. Schmidt, J.R. *From Coalgebra to Bialgebra for the Six-Vertex Model: The Star-Triangle Relation as a Necessary Condition for Commuting Transfer Matrices*. Axioms 2012, 1(2), 186-200.
11. Nichita, F.F.; Zielinski, B. *The Duality between Corings and Ring Extensions*. Axioms 2012, 1(2), 173-185.
12. Links, J. *Hopf Algebra Symmetries of an Integrable Hamiltonian for Anionic Pairing*. Axioms 2012, 1(2), 226-237.
13. Hoffnung, A.E. *The Hecke Bicategory*. Axioms 2012, 1(3), 291-323.
14. Nichita, F.F. *Yang-Baxter systems, algebra factorizations and braided categories*. Axioms 2013, 2(3), 437-442.
15. Lebed, V. *R-Matrices, Yetter-Drinfel’d Modules and Yang-Baxter Equation*, Axioms 2013, 2(3), 443-476.
16. Nichita, F.F. *Introduction to the Yang-Baxter Equation with Open Problems*. Axioms 2012, 1(1), 33-37.
17. Wang, G., Xue, K., Sun, C., Du, G. *Yang-Baxter R matrix, Entanglement and Yangian*, arXiv: 1012.1519.
