Onset of asymptotic scaling in deuteron photodisintegration

P. Rossi,1 M. Mirazita,1 F. Ronchetti,1,2 E. De Sanctis,1 G. Adams,29 P. Ambrozevich,12 E. Anciant,4 M. Anghinolfi,16 B. Asavapibhop,22 G. Audit,4 H. Ayakian,1,34 H. Bagdasaryan,27 J.P. Ball,3 S. Barrow,13 M. Battaglieri,16 K. Beard,19 M. Bektasoglu,27 M. Bellis,29 N. Bennouna,4 B.L. Berman,14 W. Bertozzi,21 N. Bianchi,1 A.S. Biselli,28 S. Boarini,34,18 E.B. Bonner,30 S. Bouchigny,17,34 R. Bradford,9 D. Branford,11 W.J. Briscoe,14 W.K. Brooks,34 V.D. Burket,34 C. Butuceanu,38 J.R. Calarco,24 D.S. Carman,26 B. Carnahan,7 S. Chen,13 P.L. Cole,33 D. Cords,34 P. Corvisiero,16 D. Crab,37 H. Cramnell,7 J.P. Cummings,29 R. De Vita,16 P.V. Detyavenko,34 H. Denizli,28 L. Dennis,13 A. Deppman,1 K.V. Dharmawardane,27 K.S. Dhuga,14 C. Djalali,32 G.E. Dodge,27 D. Doughty,8,34 P. Dragovich,13 M. Dugger,3 S. Dyttman,28 O.P. Dzyubak,32 H. Egiyan,38,34 K.S. Egiyan,39 L. Elouadrhiri,34 A. Empi,29 P. Eugenio,13 R. Fatemi,37 R.J. Feuerbach,6 J. Ficenc,36 T.A. Forest,27 H. Funsten,38 M. Gai,9 G. Gavalian,24 S. Gilad,21 G.P. Gilfoyle,31 K.L. Giovanetti,19 C.I.O. Gordon,15 K. Griffioen,38 M. Guidal,17 M. Guillo,32 L. Guo,34 V. Gyurjian,34 C. Hadraldakis,17 R.S. Hakobyan,7 J. Hardie,8,34 D. Hedde,8,34 F.W. Hersman,24 K. Hicks,26 R.S. Hicks,22 M. Holtrip,24 J. Hu,29 C.E. Hyde-Wright,27 Y. Iliev,14 M.M. Ito,34 D. Jenkins,36 H.S. Jo,17 K. Joo,34,37 J.D. Kellie,15 M. Khandaker,25 K.Y. Kim,28 K. Kim,20 W. Kim,20 A. Klein,27 F.J. Klein,7,34 A.V. Klimenko,27 M. Klusman,29 M. Kossov,18 L.H. Kramer,12,34 J. Kuhn,6 S.E. Kuhn,27 J. Lachniet,6 J.M. Laget,4 D. Lawrence,22 Ji Li,29 A.C.S. Lima,14 K. Livingston,15 K. Lukashin,34 J.J. Manak,34 C. Marchand,4 S. McAlieer,13 J. McCarthy,37 J.W.C. McNabb,6 B.A. Mecking,34 S. Mehrabian,28 J.J. Melone,15 M.D. Mestayer,34 C.A. Meyer,6 K. Mikhailov,18 R. Miskimen,22 V. Mokeev,23 L. Morand,34 L.A. Morrow,17 V. Mucifora,4 J. Mueller,28 G.S. Mustcher,30 J. Napolitano,29 R. Nassaripour,12 S. Niccolai,14 G. Niculescu,26 I. Niculescu,14 B.B. Niczyporuk,34 R.A. Niayaz,34 M. Nozar,34 J.T. O’Brien,7 G.V. O’Rielly,14 M. Osipenko,23 A. Ostrovidov,13 K. Park,20 E. Pasyuk,3 G. Peters,22 S.A. Phillips,18 N. Pivnyuk,18 D. Pocanic,37 O. Pogorelov,18 E. Polli,5 S. Pouzdinak,18 B.M. Preedom,32 J.W. Price,5 Y. Prok,37 D. Protopopescu,24 L.M. Qin,27 B.A. Raue,32,4,34 G. Riccardi,13 G. Ricco,16 M. Ripani,16 B.G. Ritchie,3 G. Rosner,15 D. Rowntree,21 P.D. Rubin,31 F. Sabatié,4,27 C. Salgado,25 J.P. Santoro,36 V. Sapunenko,16 R.A. Schumacher,6 V.S. Serov,18 Y.G. Sharabian,34,39 J. Shaw,22 S. Simonatto,4 A.V. Skabelin,21 E.S. Smith,34 L.C. Smith,37 D.I. Sober,7 M. Spraker,10 A. Stavinsky,18 S. Stepanyan,27,39 B. Stokes,13 P. Stoler,29 I.I. Strakovsky,14 S. Strauch,14 M. Taiuti,16 S. Taylor,30 D.J. Tedeschi,22 U. Thoma,34 R. Thompson,28 A. Tkabladze,34 K. Wann,29 H. Wellar,10 D.P. Weygand,34 C.S. Whisnant,32 E. Wolin,34 M.H. Wood,32 A. Yegneswaran,34 J. Yun,27 B. Zhang,21 Z. Zhou,21

(The CLAS collaboration)

1 Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, PO 13, 00044 Frascati, Italy
2 Università di ROMA III, 00146 Roma, Italy
3 Arizona State University, Tempe, Arizona 85287
4 CEA-Saclay, Service de Physique Nucléaire, F91191 Gif-sur-Yvette, Cedex, France
5 University of California at Los Angeles, Los Angeles, California 90095
6 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
7 Catholic University of America, Washington, D.C. 20064
8 Christopher Newport University, Newport News, Virginia 23606
9 University of Connecticut, Storrs, Connecticut 06269
10 Duke University, Durham, North Carolina 27708
11 Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
12 Florida International University, Miami, Florida 33199
13 Florida State University, Tallahassee, Florida 32306
14 The George Washington University, Washington, DC 20052
15 University of Glasgow, Glasgow G12 8QQ, United Kingdom
16 Istituto Nazionale di Fisica Nucleare, Sezione di Genova, 16146 Genova, Italy
17 Institut de Physique Nucléaire ORSAY, IN2P3 BP 1, 91406 Orsay, France
18 Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
19 James Madison University, Harrisonburg, Virginia 22807
20 Kyungpook National University, Taegu 702-701, South Korea
21 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
22 University of Massachusetts, Amherst, Massachusetts 01003
23 Moscow State University, 119899 Moscow, Russia
24 University of New Hampshire, Durham, New Hampshire 03824
25 Norfolk State University, Norfolk, Virginia 23504
We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the $d(\gamma, pn)$ differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 30° and 150°. A possible signature for this transition is the onset of cross section $s^{-11}$ scaling with the total energy squared, $s$, at some proton transverse momentum, $P_T$. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.

PACS numbers: 24.85.+p, 25.20.-x, 21.45.+v

Keywords: Quarks, gluons and QCD in nuclei and nuclear processes, Few-body systems, Photonnuclear reactions

The interplay between the nucleonic and partonic pictures of the strong interaction represents one of the major issues in contemporary nuclear physics. Although standard nuclear models are successful in describing the interactions between hadrons at large distances, and Quantum Chromodynamics (QCD) accounts well for the quark interactions at short distances, the physics connecting the two regimes remains unclear. In fact, the classical nucleonic description must break down once the probing distances become comparable to those separating the quarks. The challenge is to study this transition region by looking for the onset of some experimentally accessible phenomena naturally predicted by perturbative QCD (pQCD). The simplest is the constituent counting rule (CCR) for high energy exclusive reactions (1), in which $d\sigma/dt \propto s^{-n+2}$, with $n$ the total number of pointlike particles and gauge fields in the initial plus final states. Here $s$ and $t$ are the invariant Mandelstam variables for the total energy squared and the four-momentum transfer squared, respectively.

Deuteron photodisintegration is especially suited for this study, because a relatively large amount of momentum is transferred to the nucleons for a relatively low incident photon energy (2, 3). This reaction received renewed interest after an apparent onset of the expected asymptotic $s^{-11}$ scaling of the cross-section was observed at SLAC (4, 5) at center-of-mass proton scattering angle $\vartheta_p^{CM} = 90^\circ$ and at about $E_\gamma = 1$ GeV photon energy. (For this reaction $n = 13$, as there is one photon and 6+6=12 quarks). Following this initial result, additional measurements were performed at SLAC (6) and more recently at Thomas Jefferson National Accelerator Facility (TJNAF) (7, 11, 12, 13, 14) using different experimental techniques. These data cover only a few proton angles. They show that a transition to QCD scaling seems to exist, but its boundaries are not well-defined. Scaling seems to be confirmed for center-of-mass proton angles $\vartheta_p^{CM} = 69^\circ$ and $90^\circ$ already at $E_\gamma = 1$ GeV photon energies, while at the forward angles $\vartheta_p^{CM} = 52^\circ$ and $36^\circ$, the cross section falls off more slowly than $s^{-11}$ until about 3 and 4 GeV beam energies, respectively (14).

The recent, extensive cross section data obtained at the TJNAF by CLAS experiment E93-017 between 0.5 and 3.0 GeV with nearly complete proton angular coverage offer the unique opportunity for a detailed study of the energy dependence of the $d(\gamma, pn)$ differential cross section at fixed angles. A detailed description of the measurement and results has been reported in a separate paper (12). Here we only point out that these data are consistent with previous measurements, and systematically cover the whole photon energy regime of interest.

In this paper we present the results of a detailed study of the behavior of $d\sigma/dt$ at fixed proton angle, $\vartheta_p^{CM}$, made to check the CCR $s^{-11}$ prediction as a function of the center-of-mass proton transverse momentum

$$P_T = \sqrt{\frac{1}{2}E_\gamma M_d \sin^2(\vartheta_p^{CM})},$$

in which $M_d$ is the deuteron mass. $P_T$ is the correct kinematical variable for determining the onset of scaling.

Differential cross sections $d\sigma/dt$ obtained above 0.5 GeV for fixed $\vartheta_p^{CM}$ from all existing high-energy $\gamma d \rightarrow pn$ experiments (7, 11, 12, 13) have been grouped in $10^\circ$ wide bins and then fit to a power law $s^{-11}$...
considered without any renormalization to each other, and with their statistical and systematic errors added in quadrature. In order to determine whether, and at which proton transverse momentum threshold, $P_T^{th}$, data start to follow the power law $s^{-11}$, fits were performed for partial samples of the data about 1.2 GeV wide windows in $E_\gamma$. These energy windows correspond to $P_T$ intervals of 200 – 400 MeV/c, depending on the photon energy and the proton angle. (For fixed $\vartheta_p^{CM}$, $P_T$, $E_\gamma$ and $s$ are directly related, and each variable can be used interchangeably.) The window in $E_\gamma$ was then shifted by 100 MeV, and another fit made. The process was repeated up to the highest $E_\gamma$ window.

Figure 1 shows the reduced $\chi^2$ values of the fits versus the related transverse momentum $P_T$ corresponding to the lower $E_\gamma$-value of each interval for $\vartheta_p^{CM}$ between 30° and 150°. We limited the study to these angles because the data at more forward and backward angles lack the statistics for fits over a significant $P_T$ interval. These results are not changed significantly by the size of the $E_\gamma$ window, which if too large makes the fit insensitive to deviations from $s^{-11}$ at low $s$, and if too small makes it not reliable.

Apart from 45°, where the $\chi^2$ is approximately constant around unity over the full $P_T$ range, at all other angles, the $\chi^2$ decreases from values $\geq 10$ at low $P_T$ towards unity at some $P_T^{th}$, and then remains approximately flat up to the highest $P_T$. Clearly, $P_T^{th}$ is the value above which the cross sections have a reliable $s^{-11}$ dependence.

The 10° wide angular bins, the 100 MeV wide shifts among the $E_\gamma$ windows over which the fits are done, and the slow variation in $\chi^2$ do not allow the extraction of a precise $P_T^{th}$ for this transition. Nevertheless, one can evaluate an approximate value of $P_T^{th}$ by using a statistical criterion. Specifically, for each angle a $\chi^2/\nu$ (90%) ($\approx 1.4–1.6$, depending on the number of data points) has been fixed, corresponding to a 90% confidence level for the fit; the transverse momentum threshold for scaling, $P_T^{th}$, has been chosen where $\chi^2$ of the fit becomes less or equal to the value $\chi^2/\nu$ (90%). The values of $P_T^{th}$ are shown by the vertical arrows in Fig. 1. They range between 1.00 and 1.27 GeV/c (average value 1.13 GeV/c) at 35° and in the angular bins between 50° and 130°, and are about 0.6–0.7 GeV/c, at 45°, 135° and 145°. The uncertainties on $P_T$ values, estimated by changing the confidence level of the fits by ±5%, are up to 80 MeV/c. However, this would seem to be an underestimate of the uncertainty given a visual inspection of Fig. 1. In particular, the uncertainty on $P_T$ is larger for the extreme angles (35°, 45°, 135° and 145°), where the derivative of $\sin(\vartheta_p^{CM})$ over the 10° width of the angular bin is larger. (From Eq. 1 it results that $P_T$ is proportional to $\vartheta_p^{CM}$. Overall, we believe that a reasonable uncertainty is larger than 100 MeV/c.

Then, to further check the consistency of data to the CCR prediction, we have fit all cross section data at fixed proton angle between 55° and 125° and $P_T \geq 1.1$ GeV/c to $s^{-11}$. We limited the fit to these angles, because at $\vartheta_p^{CM} = 35°, 45°, 135°$, and 145° there are not enough data above $P_T = 1.1$ GeV/c to make a reliable fit. These fits are shown in Fig. 2 together with the data from all the high-energy $\gamma d \rightarrow pn$ experiments [5, 6, 7, 8, 9, 11, 12, 15] used in this study. For a sake of clearness, data have been multiplied by $s^{11}$. The $\chi^2$ of the fits are given in the plots. The vertical arrows indicate the $s$ value corresponding to $P_T = 1.1$ GeV/c. It is worth noticing that for $\vartheta_p^{CM} = 35°$ the last three points show a clear flat behaviour well consistent with an $s^{-11}$-dependence, as it is proven by the very low value $\chi^2 = 0.03$ of the last $P_T$ bin (1.10-1.30 GeV/c) in the first panel of Fig. 1.

For all but two of the fits, $\chi^2 \leq 1.34$. At 55°, and in particular at 75° the worse $\chi^2$ could be due to discrepancies in the absolute values of data from various experiments. As an example, the fit for 75° with the data sets [11, 12] renormalized to each other gives a $\chi^2 = 2.51$. This shows that the $s^{-11}$ dependence of the cross section is established for $P_T \geq 1.1$ GeV/c. This is a necessary condition for the transition to the QCD scaling. Then, one might argue that the quark-gluon regime is reached for the proton transverse momenta above about 1.1 GeV/c.

In conclusion, the new, nearly complete angular distributions of two-body deuteron photodisintegration—obtained by CLAS at TJNAF for photon energies between 0.5 and 3.0 GeV—have been used, together with all previous data, for a detailed study of the power law $s$-dependence of the differential cross section. The results show that the $s^{-11}$ scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.

TABLE I: Photon energies and center-of-mass proton angles of the $\gamma d \rightarrow pn$ experiments whose data are used in the present work.

| Exp. | $E_\gamma$ (GeV) | $\vartheta_p^{CM}$ (deg) |
|------|-----------------|------------------------|
| [15] | 0.5 – 0.78      | 40 – 160                |
| [12] | 0.5 – 3.0       | 10 – 160                |
| [5]  | 0.8, 1.1, 1.3, 1.6 | 90                     |
| [6]  | 0.8, 1.0, 1.2   | 52, 66, 78, 90, 113, 126, 142 |
| [8]  | 1.4, 1.6, 1.8   | 90, 113, 142            |
| [7]  | 0.8, 1.5, 2.4, 3.2, 4.0 | 36, 52, 69, 89       |
| [9]  | 1.5, 1.9, 2.3, 2.7 | 37, 53, 89             |
| [11] | 1.6, 1.9, 2.4   | 30, 36, 52, 70, 90, 110, 127, 142 |
| [9]  | 5.0, 5.5        | 37, 53, 70              |
4

FIG. 1: Values of the reduced $\chi^2$ of the fits of the differential cross sections $d\sigma/dt$ in $\approx 1.2$ GeV $E_\gamma$ intervals with a power law $s^{-11}$, versus the related minimum proton transverse momentum $P_T$ for proton angles between $30^\circ$ and $150^\circ$. The vertical arrows indicate the transverse momentum thresholds for scaling.

This work was supported in part by the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique and the Commission à l’Energie Atomique, the U.S. Department of Energy and the National Science Foundation, and the Korea Science and Engineering Foundation.

[1] V.A. Matveev, R.M. Muradyan and A.N. Tavkhelidze, Lett. Nuovo Cimento 7, 719 (1973).

[2] S. J. Brodsky and G. Farrar, Phys. Rev. Lett. 31, 1153 (1973).
FIG. 2: Deuteron photodisintegration cross section, $s^{11}d\sigma/dt$, as a function of $s$ for the given proton scattering angles. Dashed lines are the fits of the data to $s^{11}$ for $P_T \geq 1.1$ GeV/c. The vertical arrows indicate the $s$ value corresponding to $P_T = 1.1$ GeV/c. Fits are not shown for $\vartheta_{CM} = 35^\circ, 45^\circ, 135^\circ$, and $145^\circ$ where there are not enough data above 1.1 GeV/c. Also shown in each panel is the $\chi^2$ value of the fit. Data are from CLAS [12] (full/red circles), Mainz [15] (open/black squares), SLAC [5, 6, 7] (full-down/green triangles), JLab Hall A [11] (full/blue squares) and Hall C [8, 9] (full-up/black triangles).

[3] R. J. Holt, Phys. Rev. C 41, 2400 (1990).
[4] R. Gilman and F. Gross, J. Phys. G28, R37 (2002).
[5] J. Napolitano et al., Phys. Rev. Lett. 61, 2530 (1988).
[6] S. J. Freedman et al., Phys. Rev. C 48, 1864 (1993).
[7] J. E. Belz et al., Phys. Rev. Lett. 74, 646 (1995).
[8] C. Bochna et al., Phys. Rev. Lett. 81, 4576 (1998).
[9] E. C. Schulte et al., Phys. Rev. Lett. 87, 102302-1 (2001).
[10] K. Wijesooriya et al., Phys. Rev. Lett. 86, 2975 (2001).
[11] E. C. Schulte et al., Phys. Rev. C 66, 042201R (2002).
[12] M. Mirazita et al., Phys. Rev. C 70, 014005 (2004).
[13] S. J. Brodsky and J. R. Hiller, Phys. Rev. C 28, 475 (1983).
[14] C. E. Carlson, J. R. Hiller, and R. J. Holt, Ann. Rev. Nucl. Part. Sci. 47, 395 (1997).
[15] R. Crawford et al., Nucl. Phys. A 603, 303 (1996).