Background: We report updated overall survival (OS) data from study NO16966, which compared capecitabine plus oxaliplatin (XELOX) vs 5-fluorouracil/folinic acid plus oxaliplatin (FOLFOX4) as first-line therapy in metastatic colorectal cancer.

Methods: NO16966 was a randomised, two-arm, non-inferiority, phase III comparison of XELOX vs FOLFOX4, which was subsequently amended to a 2 x 2 factorial design with further randomisation to bevacizumab or placebo. A planned follow-up exploratory analysis of OS was performed.

Results: The intent-to-treat (ITT) population comprised 2034 patients (two-arm portion, n = 634; 2 x 2 factorial portion, n = 1400). For the whole NO16966 study population, median OS was 19.8 months in the pooled XELOX/XELOX-placebo/XELOX-bevacizumab arms vs 19.5 months in the pooled FOLFOX4/FOLFOX4-placebo/FOLFOX4-bevacizumab arms (hazard ratio 0.95 (97.5% CI 0.83–1.09)). FOLFOX4 was associated with more grade 3/4 neutropenia/ granulocytopenia and febrile neutropenia than XELOX, and XELOX with more grade 3 diarrhoea and grade 3 hand-foot syndrome than FOLFOX4.

Conclusion: Updated survival data from study NO16966 show that XELOX is similar to FOLFOX4, confirming the primary analysis of progression-free survival. XELOX can be considered as a routine first-line treatment option for patients with metastatic colorectal cancer.

Keywords: 5-fluorouracil/folinic acid; capecitabine; colorectal cancer; overall survival; oxaliplatin

Patients and Methods

The methods of this trial have been described in detail previously (Saltz et al, 2008; Cassidy et al, 2008a). The study was performed in accordance with the Declaration of Helsinki and Good Clinical Practice Guidelines. Written informed consent was obtained from all patients participating in the study. Approval of the protocol was...
bevacizumab (7.5 mg kg\(^{-1}\) every third week) or placebo was added of day 15. The FOLFOX4 regimen has been previously described daily for 2 weeks as a 3-week cycle. The first dose of capecitabine was given in the evening of day 1 and the last dose on the morning of day 15. The FOLFOX4 regimen has been previously described (de Gramont et al, 2000). After amendment of the study protocol, bevacizumab (7.5 mg kg\(^{-1}\) every third week) or placebo was added to XELOX, and bevacizumab (5 mg kg\(^{-1}\) every second week) or placebo to FOLFOX4. Bevacizumab or placebo was given as a 30- to 90-min intravenous infusion on day 1 of each cycle before oxaliplatin. Treatment was continued until disease progression or for 48 weeks, whichever came first (study treatment phase). Patients who completed the 48-week treatment phase without disease progression were eligible to continue treatment until progression (post-study treatment phase). Patients whose tumour became operable, and for whom resection was performed, were allowed to enter the post-study treatment phase.

Assessments

Tumour assessments (CT scan, MRI) were performed within 28 days before starting study treatment and repeated after every two XELOX cycles and every three FOLFOX4 cycles (i.e., every sixth week in both arms), and at the end of treatment. After completion of study treatment, patients were followed every 3 months until disease progression and/or death.

Patients were evaluated for adverse events during therapy and until 28 days after the last study drug dose. Adverse events were graded according to National Cancer Institute Common Toxicity Criteria (NCI-CTC), version 3. Predefined adverse events of special interest for chemotherapy were: grade 3/4 neutropenia/granulocytopenia; grade 3/4 neurosensory toxicity; grade 3/4 diarrhoea; grade 3/4 vomiting/nausea; grade 3/4 stomatitis and grade 3 hand-foot syndrome.

Statistical analysis

The intent-to-treat (ITT) patient population included all patients who underwent randomisation and signed the informed consent form. The eligible patient population (EPP) was the ITT population minus patients who did not receive at least one dose of study drug, and those patients who violated major protocol inclusion/exclusion criteria. As the results for the EPP population were the same as for the ITT population, ITT data only will be presented in this paper. The safety population included all patients receiving at least one dose of study drug.

Overall survival was defined as the time from the date of randomisation to the date of death. Patients who were not reported as having died at the time of the analysis were censored using the date they were last known to be alive. Overall survival was analysed using a Cox model and presented as Kaplan–Meier estimates with hazard ratios (HRs) and 97.5% confidence intervals (CIs).

The primary analysis of NO16966 was event driven and was performed on 31 January 2006 when 1200 progression-free survival events had occurred in the EPP; this approach ensured 90% power at an \(\alpha \) level of 2.5 (Saltz et al, 2008). A further planned follow-up analysis of OS was performed at the time of the 4-month safety update.

As the study was not powered for formal testing of non-inferiority for OS, the OS analysis is exploratory and the results described by Kaplan–Meier estimates with HRs and 97.5% CIs. An additional exploratory analysis of OS was performed to control for any possible crossover effects of FOLFOX in patients who received XELOX as their first-line regimen. In this analysis, patients in the XELOX arms who received FOLFOX4 or similar regimen as second-line therapy were censored.

RESULTS

Patient population

Between July 2003 and May 2004, 634 patients were randomised in the two-arm portion of the study. Between February 2004 and February 2005, a further 1400 patients were randomised in the 2 \(\times \) 2 factorial part of the study. Overall, 2034 patients made up the ITT population (Figure 1). The baseline demographic and clinical characteristics were well balanced between treatment arms (Table 1).

Treatment exposure and second-line therapy

The median dose intensities (ratio of dose received to dose planned) of 5-FU, capecitabine, oxaliplatin and bevacizumab were \(\geq 0.89 \) in all treatment arms. The median number of cycles administered was 11 (range 1–24) in the FOLFOX4/FOLFOX4-placebo group, 12 (range 1–25) in the FOLFOX4-bevacizumab group, 7 (range 1–18) in the XELOX/XELOX-placebo group and 8 (range 1–17) in the XELOX-bevacizumab group.

There were no major imbalances between the treatment groups with respect to the use of second-line therapy: XELOX-containing arms (65%) and FOLFOX4-containing arms (70%). The agents most commonly used were: irinotecan (56% with FOLFOX4 vs 53% with XELOX); 5-FU (41% vs 34%); capecitabine (19% vs 14%); cetuximab (20% vs 18%); and bevacizumab (10% vs 10%).

Overall survival

The OS data as at 31 July 2008 in the ITT population are shown in Table 2. The corresponding Kaplan–Meier curves for OS are shown in Figure 2.

For the whole NO16966 study population, median OS was 19.8 months in the pooled XELOX/XELOX-placebo/XELOX-bevacizu-mab arms vs 19.5 months in the pooled FOLFOX4/FOLFOX4-placebo/FOLFOX4-bevacizumab arms, with a corresponding HR of 0.95 (97.5% CI 0.85–1.06).

In the pooled XELOX/XELOX-placebo arms, median OS was 19.0 vs 18.9 months in the pooled FOLFOX4/FOLFOX4-placebo arms, with a corresponding HR of 0.95 (97.5% CI 0.83–1.09).

In the XELOX-bevacizumab arm, median OS was 21.6 vs 21.0 months in the FOLFOX4-bevacizumab arm, with a corresponding HR of 0.95 (97.5% CI 0.78–1.15).
Clinical Studies

In the XELOX arm, median OS was 18.8 vs 17.7 months in the FOLFOX arm, with a corresponding HR of 0.87 (97.5% CI 0.72 – 1.05). FOLFOX or a similar regimen was given to 8% of patients in the pooled XELOX arms as second-line therapy (XELOX, n = 15, XELOX-placebo, n = 38, XELOX-bevacizumab, n = 29). After censoring these patients, the median OS was 18.9 months in the pooled XELOX/XELOX-placebo arms and 18.9 months in the pooled FOLFOX/FOLFOX-placebo arms, with a corresponding HR of 0.94 (97.5% CI 0.82 – 1.08), and 21.6 months in the XELOX-bevacizumab arm and 21.0 months in the FOLFOX-bevacizumab arm (HR = 0.93; 97.5% CI 0.76 – 1.13).

Safety

For the updated safety assessment of XELOX vs FOLFOX4, patients in the pooled XELOX/XELOX-placebo (n = 655) and pooled FOLFOX4/FOLFOX4-placebo (n = 648) arms were compared. The updated safety analysis showed that little had changed since the previous analysis (Cassidy et al, 2008a). Predefined adverse events of special interest and key events pooled by body system are presented in Table 3.

In general, XELOX and FOLFOX4 had a similar profile of adverse events. The most common adverse events were gastrointestinal (i.e., diarrhoea, nausea, vomiting and stomatitis) and neurosensory toxicities (i.e., paraesthesia and peripheral neuropathy). However, there were differences between the two regimens in the rates at which key events occurred. FOLFOX4/FOLFOX4-placebo was associated with more grade 3/4 neutropenia/granulocytopenia (44%) and febrile neutropenia (5%) than XELOX/XELOX-placebo (7 and <1%, respectively). Conversely, XELOX/XELOX-placebo was associated with more hand-foot syndrome (all-grade, 31 vs 11%; grade 3, 6 vs 1%) and diarrhoea (all-grade, 66 vs 61%; grade 3/4, 20 vs 11%) than FOLFOX4/FOLFOX4-placebo, although the rate of grade 4 diarrhoea was 1% with both regimens. Rates of grade 3/4 neurosensory toxicity were similar with both regimens (17%). Cardiac disorders were reported in 6 (1%) XELOX/XELOX-placebo recipients and 9 (1%) FOLFOX4/FOLFOX4-placebo recipients. The addition of bevacizumab did not alter the similarities and differences in safety profiles between XELOX and FOLFOX4 (Table 4).

Treatment-related mortality up to 28 days after the last treatment dose was documented in 11 (1.7%) FOLFOX4/FOLFOX4-placebo patients and in 15 (2.3%) XELOX/XELOX-placebo patients. The respective 60-day all-cause mortality rates were 2.3% (n = 15) and 3.4% (n = 22).

DISCUSSION

The primary efficacy analysis of study NO16966 showed that XELOX is non-inferior to FOLFOX4 in terms of progression-free survival, OS and overall response rate in the first-line treatment of patients with metastatic colorectal cancer (Cassidy et al, 2008a). This updated analysis of OS again demonstrates that XELOX and FOLFOX4 have similar efficacy and supports the primary efficacy findings. It is also notable that both XELOX and FOLFOX4 were similar in terms of OS after the addition of bevacizumab.

Overall survival is the most clinically meaningful and objective measure of efficacy in patients with cancer. However, potential differences between study treatments can be masked by second-line and later lines of chemotherapy when this end point is used (Di Leo et al, 2004). In study NO16966, there were no restrictions regarding crossover or salvage therapies after the completion of study treatment. It is therefore possible that crossover to the alternate study treatment was a confounding factor in the present analysis. To allow for this, we performed a separate analysis in which all patients randomised to XELOX and who received FOLFOX as second-line therapy were censored. The results were consistent with those obtained in the ITT population and again support the similar efficacy of XELOX vs FOLFOX4.

The question of whether or not capecitabine is non-inferior to 5-FU/FA when given in combination with oxaliplatin in metastatic colorectal cancer has now been addressed in six different randomised phase III trials (Diaz-Rubio et al, 2007; Porschen et al, 2007; Rothenberg et al, 2008; Cassidy et al, 2008a; Comella et al, 2009; Ducreux et al, 2011), of which NO16966 is the largest.
The other five studies, which involved 300–600 patients each, were largely supportive of NO16966. In three of the studies, the efficacy of XELOX or OXXEL was shown to be similar to that of 5-FU/FA-oxaliplatin regimens (Rothenberg et al., 2008; Comella et al., 2009; Ducreux et al., 2011), whereas the remaining two were inconclusive with regard to non-inferiority (Díaz-Rubio et al., 2007; Porschen et al., 2007). Since the completion of the phase III trials, three separate meta-analyses of relevant studies comparing capecitabine or 5-FU/FA plus oxaliplatin in patients with metastatic colorectal cancer have been performed (Arkenau et al., 2008; Cassidy et al., 2008b; Cuppone et al., 2008). Even though each meta-analysis included a different selection of phase II and III studies, the outcomes were very similar with respect to both progression-free survival (HR/relative risk 0.98–1.04) and OS (1.02–1.04). Thus, there is now strong evidence to support the non-inferiority of capecitabine when used in combination with oxaliplatin vs infusional 5-FU-based oxaliplatin regimens in the treatment of patients with metastatic colorectal cancer, both in the first- and second-line settings.

It is therefore likely that other considerations, such as tolerability profile, convenience, patient preference and cost, will assume greater importance when selecting the fluoropyrimidine backbone of a chemotherapy regimen. With regard to tolerability, both XELOX and FOLFOX have a similar profile of adverse events, but XELOX is associated with more grade 3 diarrhoea and hand-foot syndrome, whereas FOLFOX is associated with more grade

Table 1

Baseline patient characteristics (ITT population)

Characteristic	FOLFOX4 (n = 317)	FOLFOX4-placebo (n = 351)	FOLFOX4-bevacizumab (n = 349)	XELOX (n = 317)	XELOX-placebo (n = 350)	XELOX-bevacizumab (n = 350)
Gender						
Male	204 64	186 53	205 59	194 61	205 59	213 61
Female	113 36	165 47	144 41	123 39	145 41	137 39
Age, years						
Median	62	60	60	61	61	61
Range	24–83	26–83	19–82	24–84	18–83	18–86
ECOG performance status						
0	163 51	211 60	198 57	160 50	207 59	207 59
1	154 49	138 40	147 43	157 50	143 41	142 41
2	0	0	0	0	0	1<1
Primary tumour site						
Colorectal	17 5	25 7	28 8	30 9	30 9	32 9
Colon	200 63	232 66	223 64	204 64	233 67	236 67
Rectal	100 32	94 27	98 28	83 26	87 25	82 23
Stage at first diagnosis						
Local regional	144 45	141 40	128 37	133 42	138 39	122 35
Metastatic	173 55	210 60	221 63	184 58	212 61	228 65
Number of metastatic sites						
0	1	0.3	1	1	0	0
1	118 37.2	142 40.5	150 43.0	127 40.1	155 44.3	134 38.3
2	121 38.2	122 34.8	132 37.8	106 33.4	112 32.0	121 34.6
3	47	14.8	65 18.5	44 12.6	55 17.4	58 16.6
≥4	30	9.5	21 6.0	22 6.3	29 9.1	25 7.1
Alkaline phosphatase						
Abnormal	135 43	147 42	146 42	132 42	149 43	156 45
Normal	182 57	201 58	199 58	183 58	200 57	191 55
Previous adjuvant therapy						
No	234 74	266 76	261 75	229 72	259 74	274 78
Yes	83	26	85 24	88 25	88 28	91 26

Abbreviations: ITT = intent-to-treat; ECOG = Eastern Cooperative Oncology Group; FOLFOX4 = infused fluorouracil, folinic acid and oxaliplatin; XELOX = capecitabine and oxaliplatin.

Table 2

Overall survival by treatment subgroup (ITT population)

Treatment subgroup comparison	No. of events	Median time to event (months)	Hazard ratio (97.5% CI)
FOLFOX4/FOLFOX4-placebo/	847	19.5	0.95 (0.85–1.06)
FOLFOX4-bevacizumab	820	19.8	
XELOX/XELOX-placebo/	573	18.9	0.95 (0.83–1.09)
XELOX-bevacizumab	546	19.0	
FOLFOX4/FOLFOX4-placebo/	274	21.0	0.95 (0.78–1.15)
XELOX-bevacizumab	274	21.6	
FOLFOX4	284	17.7	0.87 (0.72–1.05)
XELOX	266	18.8	

Abbreviations: ITT = intent-to-treat; CI = confidence interval; FOLFOX4 = infused fluorouracil, folinic acid and oxaliplatin; XELOX = capecitabine and oxaliplatin.

The other five studies, which involved 300–600 patients each, were largely supportive of NO16966. In three of the studies, the efficacy of XELOX or OXXEL was shown to be similar to that of 5-FU/FA-oxaliplatin regimens (Rothenberg et al., 2008; Comella et al., 2009; Ducreux et al., 2011), whereas the remaining two were inconclusive with regard to non-inferiority (Díaz-Rubio et al., 2007; Porschen et al., 2007). Since the completion of the phase III trials, three separate meta-analyses of relevant studies comparing capecitabine or 5-FU/FA plus oxaliplatin in patients with metastatic colorectal cancer have been performed (Arkenau et al., 2008; Cassidy et al., 2008b; Cuppone et al., 2008). Even though each meta-analysis included a different selection of phase II and III studies, the outcomes were very similar with respect to both progression-free survival (HR/relative risk 0.98–1.04) and OS (1.02–1.04). Thus, there is now strong evidence to support the non-inferiority of capecitabine when used in combination with oxaliplatin vs infusional 5-FU-based oxaliplatin regimens in the treatment of patients with metastatic colorectal cancer, both in the first- and second-line settings.

It is therefore likely that other considerations, such as tolerability profile, convenience, patient preference and cost, will assume greater importance when selecting the fluoropyrimidine backbone of a chemotherapy regimen. With regard to tolerability, both XELOX and FOLFOX have a similar profile of adverse events, but XELOX is associated with more grade 3 diarrhoea and hand-foot syndrome, whereas FOLFOX is associated with more grade
Clinical Studies

62

62

vs FOLFOX4-placebo from NO16966 in the present paper.

et al Ducreux

et al 3/4 neutropenia and febrile neutropenia (Rothenberg et al, 2008; Ducreux et al, 2011). This is supported by the updated safety data from NO16966 in the present paper.

Table 3 Adverse events of special interest to chemotherapy and key events pooled by body system (treatment-related and unrelated)

Body system	All-grade	Grade 3/4	All-grade	Grade 3/4
	No. %	No. %	No. %	No. %
All events	644 99	506 78	649 99	468 72
Gastrointestinal disorders	603 93	167 26	606 93	216 33
Blood/lymphatic disorders	448 69	318 49	312 48	104 16
Infections/infestations	292 45	66 10	210 32	45 7
Events of special interest				
Neurosensory toxicity	515 80	107 17	534 82	114 17
Diarrhoea	394 61	74 11	429 66	133 20
Nausea/vomiting	452 70	47 7	464 71	52 8
Stomatitis	242 37	13 2	140 21	8 1
Neutropenia/ granulocytopenia	379 59	282 44	180 28	46 7
Febrile neutropenia	— —	31 5	— — 6 < 1	
Hand-foot syndrome	70 11	8<1 1b	201 31	40b 6<1

Abbreviations: FOLFOX4 = infused 5-fluorouracil, folinic acid and oxaliplatin; XELOX = capecitabine and oxaliplatin. *Pooled term that includes burning sensation, dysesthesia, hyper or hypoesthesia, neuropathic pain, neuropathy, peripheral neuropathy, neurotoxicity, paraesthesia, peripheral (sens)motor neuropathy, (chronic) polyneuropathy, sensory disturbance or loss, skin burning sensation, temperature intolerance, neuralgia, peroneal nerve palsy, autonomic neuropathy.

In terms of convenience, XELOX requires fewer planned office visits than the FOLFOX regimens because oxaliplatin is administered every 3 weeks (rather than every 2 weeks) and because

3/4 neutropenia and febrile neutropenia (Rothenberg et al, 2008; Ducreux et al, 2011). This is supported by the updated safety data from NO16966 in the present paper.

Figure 2 Overall survival for FOLFOX4/FOLFOX4-placebo/FOLFOX4-bevacizumab vs XELOX/XELOX-placebo/XELOX-bevacizumab (A), FOLFOX4/FOLFOX4-placebo vs XELOX/XELOX-placebo (B), FOLFOX4-bevacizumab vs XELOX-bevacizumab (C) and FOLFOX4 vs XELOX (D) (ITT population).

Table 4 Adverse events of special interest to chemotherapy and key events pooled by body system (treatment-related and unrelated)

Body system	All-grade	Grade 3/4	All-grade	Grade 3/4
	No. %	No. %	No. %	No. %
All events	340 99	289 85	351 99	266 75
Gastrointestinal disorders	320 94	94 28	325 92	132 37
Blood/lymphatic disorders	229 67	159 47	125 35	44 13
Infections/infestations	164 42	31 9	137 39	21 6
Events of special interest				
Neurosensory toxicity	281 82	61 18	296 84	64 18
Diarrhoea	219 64	44 13	224 64	77 22
Nausea/vomiting	235 69	25 7	252 71	38 11
Stomatitis	141 41	12 4	102 29	7 2
Neutropenia/ granulocytopenia	189 55	138 40	70 20	25 7
Febrile neutropenia	— —	15 4	— — 4	1 1
Hand-foot syndrome	47 14	6b 2b	141 40	42b 12b

Abbreviations: FOLFOX4 = infused 5-fluorouracil, folinic acid and oxaliplatin; XELOX = capecitabine and oxaliplatin. *Pooled term that includes burning sensation, dysesthesia, hyper or hypoesthesia, neuropathic pain, neuropathy, peripheral neuropathy, neurotoxicity, paraesthesia, peripheral (sens)motor neuropathy, (chronic) polyneuropathy, sensory disturbance or loss, skin burning sensation, temperature intolerance, neuralgia, peroneal nerve palsy, autonomic neuropathy.

*Grade 3 events only.
capcitabine is taken orally. This is supported by resource use data from NO16966, which showed that the need for drug administration visits, central venous access and patient travel and time were reduced with XELOX vs FOLFOX (Scheithauer et al, 2007). When costs were assigned to these data, the total direct costs of both regimens were similar, whereas the indirect costs of XELOX were considerably less than those of FOLFOX (Garrison et al, 2007). Similar observations were made in a cost comparison of capcitabine vs 5-FU± oxaliplatin based on a retrospective analysis of a US medical claims database (Chu et al, 2009).

In conclusion, updated survival data from study NO16966 show that XELOX is similar to FOLFOX, confirming the primary analysis of progression-free survival. XELOX can be considered as a routine first-line treatment option for patients with metastatic colorectal cancer.

ACKNOWLEDGEMENTS

Financial support for this research was provided by Roche. In addition to the investigators in the author list, we acknowledge the following investigators who also participated in this trial: Australia: S Begbie, I Burns, P Gibbs, D Goldstein, P Mainwaring, J McKendrick, M Michael, N Pavlakis, T Price, M Schwartz, J Shapiro, B Stein, G Van Hazel; Austria: J Thaler; Brazil: C Andrade, G Ismael, A Malzyner; Canada: J-P Ayoub, S Berry, R Burke, P Dube, B Findlay, C Fitzgerald, A Gurjal, D Jonker, L Kaizer, P Pfeiffer; Czech Republic: D Feltl, I Kocakova, M Kuta; Denmark: B Nielsen, P Pfeiffer; Finland: P Bono, P Kellokumpu-Lehtinen, S Pyrhoenen; France: F-X Caroli-Bose, B Coudert, C Debridgode, J-P Delord, G Des Guetz, J-Y Douillard, E Francois, G Freyer, C Garnier, M Gil Delgado, F Goldwasser, F Husseini, P Michel, S Negrier, X Pivot, P Rougier; Germany: M Clemens, A Hochhaus, T Hoehler, S Kanzler, S Kubicka, F Kullmann, L Mantovani, W-H Schmigiel, H-J Schmoll, R Voigtmann; Guatemala: CE Hernandez-Monroy, LM Zetina Toache; Hong Kong: A Chan; Hungary: M Dank, I Lang, T Pinter, M Szucs; Ireland: D Fennelly, M Keane, J Kennedy, S O'Reilly; Israel: A Beny, A Hubert, A Sella, S Stemmer; Italy: C Boni, S Brugnatelli, S Cascinu, FP Conte, A Contu, S Monfardini, R Rosso, S Salvagni, A Soberbo; Republic of Korea: YS Park; Mexico: G Calderillo, E Leon; New Zealand: B Robinson; Norway: L Bakstaks, T Guren, H Soerbye; Panama: E Diaz-Correa; Portugal: S Barroso, P Cortes; Russian Federation: VP Kharchenko, M Lichinitser, GM Matlibas, V Moiseenko; South Africa: G Cohen, C Kukat, J Raats, C Slabber, D Vorobiof; Spain: JE Ales-Martinez, A Anton Torres, J Aparicio, E Aranda, A Cervantes, P Escudero, J Felix, C Fernandez-Martos, R Garcia-Carbonero, P Garcia-Alfonso, E Gonzalez Flores, C Gravalos, J Maurel, M Navarro-Garcia, F Rivera, R Salazar, J Sevilla, J Taberner; Sweden: B Glimelius, H Letocha, U Loenn, D Pedersen; Switzerland: M Bornier, A Roth; Taiwan: T-Y Chao, P-M Chen, AL Cheng, T-S Yang; Thailand: S Chakrapere-Sirisuk, AN Kiattikornjathada, A Sookprasert; Turkey: G Demir, E Goker; United Kingdom: E Bessell, P Chakraborti, F Coxon, D Cunningham, S Falk, F Daniel, R Glynnes-Jones, M Hill, T Iveson, A Maraveyas, T Maughan, D Rea, L Samuel, C Topham; United States: N Abramson, B Amin, B Bhaskar, L Campos, R Castillo, V Chang, P DeSimone, P Eisenberg, JA Ellerton, T Ervin, G Frenette, J Fuloria, D Vorobiof, D Reardon, R Mena, J Neidhart, J Pennacchi, E Poplin, C Redfern, R Reiling, M Saleh, L Schwartzberg, W Sikov, A Solky, P Stella, S Thomas, R Vivacqua, R Yanagihara. Support for third-party writing assistance for this manuscript, furnished by Miller Medical Communications, was provided by F. Hoffmann-La Roche Ltd.

REFERENCES

Arkenau HT, Arnold D, Cassidy J, Diaz-Rubio E, Douillard JY, Hochster H, Martoni A, Grothey A, Hinke A, Schmieg W, Schmoll HJ, Porsch R (2008) Efficacy of oxaliplatin plus capcitabine or infusional fluorouracil/leucovorin in patients with metastatic colorectal cancer: a pooled analysis of randomized trials. J Clin Oncol 26: 5910 – 5917

Cassidy J, Clarke S, Diaz-Rubio E, Scheithauer W, Figuer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sirze´n F, Saltz L (2008a) Efficacy of oxaliplatin plus capcitabine or infusional fluorouracil/leucovorin in metastatic colorectal cancer patients: results of the MCRC. Presented at the ASCO GI Cancers Symposium: Orlando, Florida, USA, 25 – 27 January (abstract 341)

Chu E, Schumian KL, Zelt S (2009) Costs associated with complications are lower with capcitabine than with 5-fluorouracil in patients with colorectal cancer. Cancer 115: 1412 – 1423

Comella P, Massidda B, Filippelli G, Farris A, Natale D, Barberis G, Maiorino L, Palmeri S, Condemi G, Southern Italian Cooperative Oncology Group (2009) Randomised trial comparing biweekly oxapilatin plus oral capcitabine versus oxapilatin plus i.v. bolus fluorouracil/leucovorin in metastatic colorectal cancer patients: results of the Southern Italian Cooperative Oncology Study 0401. J Cancer Res Clin Oncol 135: 217 – 226

Cuppone F, Bria E, Sperduti I, Di Maio M, Carlini P, Milella M, Cognetti F, Terzoli E, Giannarelli D (2008) Capcitabine (CAF) versus 5-fluorouracil (FU) in combination with oxapilatin (OX) as 1st-line chemotherapy (CT) for advanced colorectal cancer (ACRC): meta-analysis of randomised clinical trials (RCT). J Clin Oncol 26: 192s (Suppl; abstract 4056)

de Gramont A, Figuer A, Seymour M, Homzer M, Hmisi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Le Bail N, Louvet C, Hendler D, de Braid F, Wilson G, Morvan F, Bonetti A (2000) Leucovorin and fluorouracil with or without oxapilatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18: 2938 – 2947

Diaz-Rubio E, Taberner J, Gomez-Espana A, Massuti B, Sastre J, Chaves M, Abad A, Currado A, Queralt B, Reina J, Maurel J, Gonzalez-Flores E, Aparicio J, Rivera F, Losa F, Aranda E, Spanish Cooperative Group for the Treatment of Digestive Tumors Trial (2007) Phase II study of capcitabine plus oxapilatin versus continuous infusion fluorouracil plus oxapilatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 25: 4224 – 4230

Di Leo A, Buyse M, Bleiberg H (2004) Is overall survival a realistic primary end point in advanced colorectal cancer studies? A critical assessment based on four clinical trials comparing fluorouracil plus leucovorin with the same treatment combined either with oxapilatin or with CPT-11. Ann Oncol 15: 545 – 549

Ducrux M, Benounou J, Hebrard M, Ychou M, Lede G, Conroy T, Adenis A, Simon C, Rebischung C, Bergougnoix L, Kockler L, Douillard JY, GI Group of the French Anti-Cancer Centers (2011) Capcitabine plus oxapilatin (XELOX) versus 5-fluorouracil/leucovorin plus oxapilatin (FOLFOX-6) as first-line treatment for metastatic colorectal cancer. Int J Cancer 128: 682 – 690

Garrison L, Cassidy J, Saleh M, Lee F, Mena R, Fuloria J, Chang V, Ervin T, Stella P, Saltz L (2007) Cost comparison of XELOX compared to...
FOLFOX4 with or without bevacizumab (bev) in metastatic colorectal cancer. *J Clin Oncol* 25: 18S (Suppl, abstract 4074)

Hoff PM, Ansari R, Batist G, Cox J, Kocha W, Kuperminc M, Maroun J, Walde D, Weaver C, Harrison E, Burger HU, Osterwalder B, Wong AO, Wong R (2001) Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a randomized phase III study. *J Clin Oncol* 19: 2282–2292

Porschen R, Arkenau H-T, Kubicka S, Greil R, Seufferlein T, Freier W, Kretzschmar A, Graeven U, Grothey A, Hinke A, Schmieg W, Schmoll HJ, AIO Colorectal Study Group (2007) Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. *J Clin Oncol* 25: 4217–4223

Rothenberg ML, Cox JV, Butts C, Navarro M, Bang YJ, Goel R, Gollins S, Siu LL, Laguerre S, Cunningham D (2008) Capecitabine plus oxaliplatin (XELOX) versus 5-fluorouracil/folinic acid plus oxaliplatin (FOLFOX-4) as second-line therapy in metastatic colorectal cancer: a randomized phase III noninferiority study. *Ann Oncol* 19: 1720–1726

Saltz L, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sírén F, Cassidy J (2008)

Efficacy and safety of bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. *J Clin Oncol* 26: 2013–2019

Scheithauer W, Cassidy J, Figer A, Wong R, Koski S, Lichinitser M, Yang T, Clarke S, Díaz-Rubio E, Garrison L (2007) A comparison of medical resource use for 4 chemotherapy regimens as first-line treatment for metastatic colorectal cancer (MCRC): XELOX vs. FOLFOX4 ± bevacizumab (A). *J Clin Oncol* 25: 18S (Suppl, abstract 4098)

Twelves C, Wong A, Nowacki MP, Abt M, Burris III H, Carrato A, Cassidy J, Cervantes A, Fagerberg J, Georgoulas V, Husseini F, Jodrell D, Koralewski P, Kröning H, Maroun J, Marschner N, McKendrick J, Pawlicki M, Rosso R, Schüller J, Seitz JF, Stabuc B, Tujakowski J, Van Hazel G, Zaluski J, Scheithauer W (2005) Capectabine as adjuvant treatment for stage III colon cancer. *N Engl J Med* 352: 2696–2704

Van Cutsem E, Twelves C, Cassidy J, Allman D, Bajetta E, Boyer M, Bugat R, Findlay M, Frings S, Jahn M, McKendrick J, Osterwalder B, Perez-Manga G, Rosso R, Rougier P, Schmiegel WH, Seitz JF, Thompson P, Vieitez JM, Weitzel C, Harper P, Xeloda Colorectal Cancer Study Group (2001) Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. *J Clin Oncol* 19: 4097–4106