Research Article

Identification of Differentially Expressed Genes Associated with the Prognosis and Diagnosis of Hepatocellular Carcinoma by Integrated Bioinformatics Analysis

Mohib Ullah Kakar,1,2 Muhammad Zubair Mehboob,3,4 Muhammad Akram,5 Muddaser Shah,6,7 Yasmeen Shakir,8 Hafza Wajeeha Ijaz,3 Ubair Aziz,9 Zahid Ullah,10 Sajjad Ahmad,11 Sikandar Ali,12 and Yongxiang Yin13

1Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of life Sciences, Beijing Institute of Technology (BIT), Beijing 100081, China
2Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
3CAS Centre for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing 100049, China
4Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
5School of Science, Department of Life sciences, University of Management and Technology, Johar Town, Lahore 54770, Pakistan
6Department of Botany, Abdul Wali Khan University, Mardan 23200, Pakistan
7Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mauz, P.O. Box 33, Nizwa 616, Oman
8Department of Biochemistry, Hazara University, Mansehra, Pakistan
9Research Centre of Molecular Simulation, National University of Science and Technology, Islamabad, Pakistan
10School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
11Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, LUAWMS, Uthal, 90150 Balochistan, Pakistan
12Dow Institute for Advanced Biological and Animal Research, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
13Department of Pathology, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, China

Correspondence should be addressed to Yongxiang Yin; yinyrh@sina.com

Received 6 July 2022; Accepted 29 September 2022; Published 22 October 2022

Copyright © 2022 Mohib Ullah Kakar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. The goal of this study was to understand the possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. Methods. GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased and healthy/control patients. The GSE62232 dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC and 10 healthy samples as control. GSE62232 was analysed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting the interacting genes. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analysed using GEPIA to estimate the effect of their differential expression on cancer progression. Results. We identified the top 10 hub genes through CytoHubba plugin. These included BUB1, BUB1B, CCNB1, CCNA2, CCNB2, CDC20, CDK1 and MAD2L1, NCAPG, and NDC80. NCAPG and NDC80 reported for the first time in this study while the remaining from a recently reported literature. The pathogenesis of HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed recommendations for future prognostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.
1. Introduction

Cancer, also known as malignancy, is characterized by the irregular cellular growth. More than 100 different types of cancers exist, in which most common are breast, skin, prostate, lungs, colon, and lymphoma [1]. Cancer is present in human as the most considerable public health concern worldwide, and liver cancer adds greatly to the morbidity and mortality in cancer [2]. Liver cancer (hepaticcellular carcinoma) is the fourth leading cause of cancer-related death globally, ranking sixth in prevalence [3, 4]. Hepatocellular carcinoma (HCC) constitutes about 85–90% of all primary malignant liver tumors. Chronic hepatitis B virus (HBV) infection, hepatitis C virus (HCV), smoking, aflatoxin, obesity, chronic liver disease, and type 2 diabetes are the main risk factors [3, 5–7]. Of these variables, recurrent liver disease is the primary cause of liver cancer [8].

The prevalence of viral infection in HCC cases varies from developed to developing nations, where HBV reflects 60% in developing nations and 23% in developed nations, while HCV infection is responsible for 23% in emerging nations and 20% of patients in developed nations [9]. Moreover, the highest incidence of HBV is in sub-Saharan Africa, South-eastern Asia, and East Asia, while HCV is high in the USA, Europe, and Japan [8]. The prevalence of nonalcoholic fatty liver disease (NAFLD) also adversely affects individual health, causing increased obesity and other metabolic disorders [10]. Around 25-30% of patients having a western lifestyle possess more fats in their liver, 2-5% of which have NAFLD, and 1-2% suffer from non-alcoholic steatohepatitis cirrhosis [11].

The World Health Organization (WHO) estimates that in 2030 over one million people are going to die of liver cancer [12]. The key factor that affects HCC mortality is the poor diagnosis, which results in just 18% survival rate [13] less than the cancers of the breast (77.1%), renal pelvic (74.8%), and myeloma (52.2%). The high risk of recurrence and metastasis of the HCCs also contribute to a shorter life span and poor survival after hepatectomy [14]. Different variables participate in the HCC diagnoses, such as cell proliferation, apoptosis, and genes linked to the mTOR pathway. Different variables participate [15]. HCC is on a global increase, but early detection and therapy of HCC remain a concern [8]. In developing countries, the HCC prevalence is growing as a consequence of low levels of health and treatment, with a global rate of liver cancer per 100000 people approximately at 9.3 in 2018 [16], as well as poor prognosis [17].

The diverse factors implicated in liver cancer are cellular tumor antigen p53 (TP53), axin-1 (AXIN1), catenin β-1 (CTNNB1), and telomerase reverse transcriptase (TERT) promoters as well as other primary genes for mutation generation, p53 cell cycle system, WNT/β-catenin, oxidative stress, RAS/RAF/MAPK, and PI3K/AKT/MTOR pathways along with other main primary signaling pathways. Liu et al. used highly efficient microarray technology to screen molecular indicators across all human cancerous tumors, especially for liver cancer, by using Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) RNA-sequence, and analysed with the help of bioinformatics methods [18–22]. Gene chip technology can also reliably represent the molecular expression profile and detect genetic variants correlated with HCC in liver cancer studies [23, 24]. The data, information, knowledge, and wisdom (DIKW) model is widely used in life science, including medicine [25–27]. Recently, genome-wide screening has significantly improved the knowledge of the genetic context and pathways that lead to the HCC [28–31].

Four core genes and two essential pathways of developing HCC from cirrhosis have been established by GEO dataset using a bioinformatics methodology, including DEG screening and networking of protein–protein interactions (PPIs) [32]. Zhang et al. screened the genes and pathways associated with HCC development and prevalence through a series of bioinformatics observations, such as DEG recognition, functional enrichment analysis, PPI network and module analysis, and weighted network correlation analysis [24]. Zhou et al. identified HCC critical genes and micro-RNAs through raw data processing by using Gene Ontology (GO), GEO2R, and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment processing and PPI network creation [33, 34]. Li et al. identified 89 out of 320 consistent differentially expressed genes in HCC patients. The five most expressed genes include Collagen alpha-2(I) chain (COLIA2), osteopontin (SPP1), lipoprotein A (LPA), Insulin-like growth factor 1 (IGF1), and Galectin-3 (LGALS3) [35]. Another study characterized the 247 upregulated and 516 downregulated DEGs which were predominately enhanced in the oxidation-reduction process, epoxidease P450 pathway, and metabolism-related pathways. Investigations have shown that CDC20, CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2 are linked to the poor overall survival of HCC patients [36]. Meng et al. identified 11 hub genes as closely connected to pathogenesis and HCC prognosis (CCNB2, CDK1, CCNB1, CDC20, CCNA2, TOP2A, MELK, TPX2, PBK, KIF20A, and AURKA) [37]. Yan and Liu identified five hub genes CCNA2, PLK1, CDC20, UBE2C, and AURKA of hepatic cancer, which were dramatically elevated in the Cancer Genome Atlas [19]. Zhang et al. screened 293 frequent DEGs, comprising 103 upregulated and 190 downregulated genes. CDK1, TPX2, AURKA, CCNA2, KIF11, HMMR, BUB1, TOP2A, TPX2, and CDC45 were the top 10 hub genes found in HCC of Chinese population [20]. The methylation role in gene expression was identified from 162 hypermethylated genes (downregulated) and 190 hypomethylated genes (upregulated). In biological processes, such as keratinocyte growth and calcium homeostasis, over-regulated genes with poor methylation were identified [38]. PT2, ITGA2, and VWF were found as highly expressing hypomethylated hub genes detected in the PPI network [38]. Three gene methylation levels, KPNA2, MCM3, and LRRCL1, were linked to HCC clinical characteristics [39].

Applied bioinformatics research with the current genomic evidence offers an in-depth insight into therapeutic resistance and disease progression processes. This study focuses on the expression profiling of HCC patients compared to healthy ones. The GSE62232 dataset (GEO:
hhttps://www.ncbi.nlm.nih.gov/geo/) has been chosen. GSE62232 was analysed through GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2R) [40] to evaluate and recalculate the genes that are differentially expressed in healthy and diseased samples. However, new prognostic biomarkers are needed to improve HCC diagnosis and treatment.

2. Results

2.1. DEG Identification. Expression profile of genes for GSE62232, titled in NCBI as "Large-Scale Gene Expression Profiling of 81 Hepatocellular Carcinomas" was obtained from the GEO dataset, which was generated on the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array). After getting data of 91 liver samples (81 HCC patients and 10 control) of GSE62232 study, the data was analysed through GEO2R to identify the DEGs of both upregulated and downregulated genes using a value of <0.05 and log FC > 1.5 as selection criteria. Overall, 598 genes out of a total 19982 were differentially expressed in HCC samples with 233 upregulated and 365 downregulated genes (Supplementary Table 1). The DEGs are represented by a volcano plot constructed using Prism (http://www.graphpad.com/scientific-software/prism) for a better graphical representation of overall genes (Figure 1).

2.2. Enrichment Analysis of DEGs. In order to explore GO terms and cellular mechanisms affected by these DEGs, both over- and downregulated genes were imported into an online DAVID server to conduct the annotation process. The annotated GO terms were divided into MF, BP, and CC ontologies (p value < 0.05, FDR < 0.05). The GO BP analysis revealed that the majority of DEGs were enriched into oxidation-reduction (GO:0042493), and p450 pathways (GO:0097267). For the phan, cell division (GO:0051301), response to the drug, and xenobiotic) and catabolic (exogenous drug, tryptophan carrier activity (GO:0009055). Concerning the GO CC enrichment, oxygen (GO:0019825) and iron (GO:0005506) were also markedly enriched by DEGs. The complete list of GO terms and KEGG pathways is enlisted in Supplementary Table 2.

2.3. STRING PPI Network Analysis and Interrelation between Pathways. For a better understanding the role of the DEGs in HCC development, we constructed coexpression protein networks. The insertion of DEGs list into STRING and application of confidence score of >0.70 established a PPI network containing 1715 edges and 322 nodes, with each node connected with 11.6 other proteins on average. Different topological parameters for PPI network included network density of 0.040, network heterogeneity of 1.335, network centralization of 0.180, clustering coefficient of 0.523, and characteristic path length of 4.689. A complete interaction network is shown in Figure 2(a), in which degree and betweenness of topological features were calculated to distribute genes into different size circles and colors. The higher the value of these quantitative terms, the greater the importance in the network [41]. Through this PPI network, top clusters were sorted using Cytoscape plugin MCODE with score > 4 and nodes > 4. Cluster 1 was the densest interaction network showing MCODE score of 40.53, followed by cluster 2 and cluster 3 with scores 10.72 and 8.0, respectively (Figure 2(b)). Subsequently, several crucial hub genes including cyclin-dependent kinase (CDK1), cyclins (CCNA2, CCNB1, and CCNB2), serine/threonine-protein kinase (BUB1), NDC80, BUB1B, NCAPG, MAD2L1, and CDC20 were determined by CytoHubba plugin (Figure 2(b)). These selected hub genes were either involved in the cell cycle and its regulation or the main components of kinetochore-microtubule interaction.

Protein clusters were processed through ClueGO plugin of Cytoscape which suggested that cluster genes were mostly associated with nuclear and cellular division during meiosis and mitosis, chromosome reorganization, deoxyribonucleotide biosynthetic processes, and regulation of ubiquitin-protein ligase activity (Figure 3).

2.4. Survival Analysis through GEPIA and Expression Level of Hub Genes. GEPIA servers provide a platform for integrated
information of gene expression from TCGA and GTEx databases regarding multiple cancer types [42]. To evaluate the overall prognostic importance of hub genes in this study, Kaplan-Meier survival analysis was performed to examine the association between different expression levels of genes and survival time of patients with HCC. The logrank \(p \) value was estimated, where \(p \) value smaller than 0.05 indicates a statistically significant difference in mortality between the high-level and low-level groups. These high and low-level groups of patients were separated based on the median level of expression. The high expression level of CCNB2 (logrank \(p = 0.052 \)) and NDC80 (logrank \(p = 0.013 \)) demonstrated poor prognosis, while HCC patients showing high level of BUB1 (logrank \(p = 0.001 \)), CDK1 (logrank \(p = 0.00017 \)), NCAPG (logrank \(p = 0.00097 \)), BUB1B (logrank \(p = 0.0028 \)), CCNB1 (logrank \(p = 0.00015 \)), CDC20 (logrank \(p = 3.8e - 06 \)), and MAD2L1 (logrank \(p = 0.0047 \)) had a higher risk of mortality (Figure 4). Furthermore, GEPIA boxplot

Table 1: Top 10 GO terms regarding biological process, molecular function, and cellular components after applying \(p \) value < 0.05 and FDR < 0.05 filter.

GO terms	Count	\(p \) value	FDR
Biological process (BP)			
GO:0055114--oxidation-reduction process	60	9.88E - 16	1.78E - 12
GO:0019373--epoxygenase P450 pathway	12	5.33E - 13	9.45E - 10
GO:0042738--exogenous drug catabolic process	8	1.70E - 08	3.01E - 05
GO:0008202--steroid metabolic process	12	4.80E - 08	8.52E - 05
GO:0017144--drug metabolic process	10	6.14E - 08	1.14E - 04
GO:0006805--xenobiotic metabolic process	15	9.23E - 08	1.64E - 04
GO:0097267--omega-hydroxylase P450 pathway	6	3.03E - 06	0.00537
GO:0006569--tryptophan catabolic process	6	3.03E - 06	0.00537
GO:0042493--response to drug	26	8.00E - 06	0.0142
GO:0051301--cell division	28	1.13E - 05	0.02011
Molecular function (MF)			
GO:0019825--oxygen binding	16	3.59E - 12	5.58E - 09
GO:0005506--iron ion binding	25	2.89E - 11	4.50E - 08
GO:0016705--oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen	16	7.99E - 11	1.24E - 07
GO:0004497--monooxygenase activity	16	1.05E - 10	1.63E - 07
GO:0020037--heme binding	22	7.83E - 10	1.22E - 06
GO:0008392--arachidonic acid epoxygenase activity	9	3.30E - 09	5.14E - 06
GO:0008395--steroid hydroxylase activity	10	3.61E - 08	5.62E - 05
GO:0016491--oxidoreductase activity	23	1.56E - 07	2.43E - 04
GO:0070330--aromatase activity	9	8.28E - 07	0.00129
GO:0009055--electron carrier activity	14	2.70E - 06	0.0042
GO:0016712--oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen	7	2.80E - 06	0.00436
GO:0015171--amino acid transmembrane transporter activity	10	8.99E - 06	0.01399
Cellular components (CC)			
GO:0070062--extracellular exosome	152	1.98E - 14	2.72E - 11
GO:0031090--organelle membrane	21	6.51E - 13	8.96E - 10
GO:0005615--extracellular space	80	2.68E - 09	3.68E - 06
GO:0000777--condensed chromosome kinetochore	13	9.00E - 06	0.01238
GO:0072562--blood microparticle	17	1.16E - 05	0.01514
GO:0005829--cytosol	138	1.16E - 05	0.01594
GO:0005576--extracellular region	78	1.45E - 05	0.01989
GO:0030496--midbody	15	2.75E - 05	0.03775
Table 2: Top 10 pathways in which most of the DEGs enriched at p value < 0.05 and FDR < 0.05 filter.

Pathways ids	Pathways	p value	FDR
hsa01100	Metabolic pathways	$9.19E - 10$	$1.19E - 06$
hsa05204	Chemical carcinogenesis	$6.68E - 08$	$8.63E - 05$
hsa00830	Retinol metabolism	$1.39E - 07$	$1.79E - 04$
hsa04110	Cell cycle	$3.38E - 07$	$4.37E - 04$
hsa04115	p53 signalling pathway	$1.69E - 06$	0.002182762
hsa01130	Biosynthesis of antibiotics	$2.94E - 06$	0.003797444
hsa00980	Metabolism of xenobiotics by cytochrome P450	$5.43E - 06$	0.007016019
hsa03220	PPAR signalling pathway	$1.02E - 05$	0.01318125
hsa00982	Drug metabolism - cytochrome P450	$1.20E - 05$	0.01544763
hsa00260	Glycine, serine and threonine metabolism	$1.59E - 05$	0.020548859
hsa01230	Biosynthesis of amino acids	$2.19E - 05$	0.028277953

String interaction with confidence score of 0.70 summary statistics:

- Number of nodes: 322
- Number of edges: 1715
- Avg. number of neighbors: 11,647
- Network diameter: 12
- Network radius: 6
- Characteristic path length: 4.689
- Clustering coefficient: 0.523
- Network density: 0.040
- Network heterogeneity: 1.335
- Network centralization: 0.180
- Connected components: 13

Figure 2: Protein-protein interaction and protein cluster formation. (a) Using the online STRING tool, a PPI network was developed which was further visualized by Cytoscape software. The size and color map nodes are determined by the degree value, which renders a gradual setting in small size with low degree in blue, large size with a high degree in yellow. (b) Top clusters determined by MCODE with score > 4 and node > 4. The top 10 genes derived from the MMC method were chosen using the CytoHubba plugin.
representation of hub genes expression in 369 HCC patients and 160 normal/healthy persons described considerable increase in the level for all hub genes (Figure 5). These hub genes with high expression and low survival rate in patients suggested their association with the pathophysiology of liver cancer to varying extents, and these could be potential biomarkers for HCC prognosis to monitor the severity of liver cancer or a therapeutic target.

3. Discussion

Over recent years, tumor initiation and progression in HCC have been extensively researched; still, early diagnosis of HCC is truly a big challenge, because the exact mechanism of the induction of HCC needs a full understanding. Also, incidence and cancer-specific mortality worldwide are increasing due to limited therapeutic strategies; therefore, there is an urgent need to identify the potential key genes and mechanisms to precisely predict the HCC onset and progression and to develop novel therapeutic agents. Bioinformatics has become increasingly popular to evaluate changes in the gene expression profiles during the initiation and progression of diseases by the integrated microarray analysis, it helps to investigate the screened hub genes for cancer diagnosis and therapy.

In this study, we identified a total of 598 DGEs comprising 233 upregulated and 365 downregulated genes between HCC patients in comparison to healthy ones chosen from the GSE62232 expression profile datasets. Using the DAVID software, GO functional, and KEGG pathway enrichment analyses of the DEGs were performed. The results revealed that the identified DEGs were closely related to various biological processes and pathways such as metabolic, heme binding, drug detoxification, cell cycle, meiosis, and mitosis. We had also screened out ten hub genes, including cell cycle regulatory cyclins and cyclin-dependent proteins CCNA2, CCNB1, and CDK1. Besides, a PPI network was constructed to analyse the interactional relationships between the DGEs, and survival analyses of hub genes were performed using the GEPIA. These hub genes have been extensively researched in recent years.

Recent genetic evidence has revealed interphase cyclin-dependent kinases (CDKs) are essential for the proliferation of tumor cells. CDK1 belongs to the CDK family, a member of the Ser/Thr protein kinases necessary for cell-cycle progression, triggering cell cycle transitions, namely, G1/S and G2/M [43]. Clinical implications of deregulated CDK1 are closely related to HCC tumorigenesis. Research has found that overexpression of CDK1 in HCC is significantly negatively correlated with HCC patients’ survival. Zhang et al. [44] suggested that miR-582-5p regulated the progression of HCC by directly targeting the CDK1. Elevated levels of CDK1 were also shown to be directly associated with advanced stage portal vein invasion, increased AFP levels, and poor patient survival in HCC [45]. Wu et al. [43] revealed higher levels of CDK1 in HCC patients than healthy individuals, which was in agreement with the present study’s findings.

CCNA2, CCNB1, and CCNB2 genes are all members of the highly conserved cyclin family. In this study, high expression of CCNA2 was closely associated with poor prognosis in HCC patients. CCNA2 protein functions as regulators of the cell cycle by activating cyclin-dependent kinases, and CCNA2 expression in the cell cycle was driven mostly by E2Fs [46]. CCNA2 overexpression has been observed in several types of cancers; also, a study has demonstrated that inhibition of CCNA2 led to the suppression of HCC, cell proliferation, and tumorigenesis [47]. The aberrant expression of CCNA2 is related to reduce survival in patients with HCC and breast cancer [46, 48]. Chai et al. [49] revealed that CCNB1 is highly expressed and associated with the unfavorable prognosis for patients with HCC, consistent with our findings. This suggested the plausibility of CCNB1 as a potential therapeutic target for the treatment of HCC. This
conclusion is further proved by a study that CCNB1 knockdown by miR-144 inhibited HCC cell migration, invasion, and proliferation [50]. Previous research [51] has shown that CCNB1 inhibits the growth of cells by inducing cell cycle arrest at the G2/M phase suggesting CCNB1 may be an effective anticancer agent in future therapy. Furthermore, CCNB2 was found to be overexpressed in several malignant tumors, and high expression of CCNB2 is associated with poor prognosis in HCC and invasive breast carcinoma [52, 53].

Figure 4: Kaplan-Meier survival analysis curve of the hub genes expressed in the HCC. The survival curves were plotted using the GEPIA web server. The gene candidates with high expression in the cohorts are shown in red, and the blue line indicates the low-expression cohort; the survival curve is represented in a dotted line, whereas the solid line is the 95% confidence interval. The logrank p value represents the overall significance of analysis, and HR stands for hazard ration; patient number (n) = 182.
In the case of BUB1, several studies have found high expression of the BUB1 in a variety of human tumors. Serine/threonine-protein kinase BUB1 binds centromeres during mitosis [54] and has been involved in apoptosis and cell cycle [55], as well as in reducing the overall survival (OS) rate of HCC patients. BUB1B was reported to be involved in tumor cell cycle regulation, and overexpression of BUB1B is related to the progression and recurrence of HCC [56]. NDC80 is highly conserved, a core component of the kinetochore-microtubule interaction machinery which is identified as a requirement for proper chromosome segregation. NDC80 has also been associated with the HCC progression [57], and NDC80-knockdown in pancreatic cancer inhibited cell cycle and cell proliferation [58]. NCAPG organizes the coiling topology of individual chromatids. Liu et al. [59] demonstrated NCAPG functioning as an oncogene in the development of HCC.

CDC20 is an essential cell-cycle regulator, which plays an important role in promoting the onset of anaphase and mitotic exit. The increased expression levels of CDC20 have been linked with the development and progression of HCC [60]. Additionally, research has shown that silencing CDC20 and HPSE expression activated cell apoptosis; thus, targeting inhibition of both CDC20 and HPSE expression is an ideal therapeutic option of HCC [61]. As for MAD2L1, Yun et al. [62] demonstrated that MiR-200c-5p inhibits HCC cell proliferation, migration, and invasion by targeted suppression of MAD2L1, suggesting that the high expression levels of MAD2L1 are associated with poor prognosis of patients with HCC. Moreover, MAD2L1 may potentially be used as a prognostic and therapeutic target in HCC patients.

4. Material and Methods

4.1. Data Collection and Expression Profiling of DEGs. GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased and healthy/control patients [63]. This study was focused on the expression profiling of HCC patients in comparison to healthy ones. A total of 91 samples were collected, including 81 HCC samples and 10 healthy samples as control [64]. GSE62232 was analysed through GEO2R [43] to evaluate and recalculate genes expressed uniquely in healthy and unhealthy samples. Analysis provided a lot of genes whose expression differed in both samples. To minimize the background noise, statistical filters of p value and fold-change value were used.

4.2. Functional Enrichment Annotation of DEGs. Functional enrichment analysis was performed to extract rational information from a set of DEGs. This provided us with the most prominent pathways being affected by the change of gene expression in diseased samples. The database named Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://david.ncifcrf.gov) has been used to perform functional enrichment analysis.
DAVID annotates the provided set of genes into the most affected processes such as Biological Processes (BP), Molecular Functions (MF), and Cellular Components (CC) [65]. We used GO and KEGG datasets in DAVID to annotate the most affected processes. KEGG is a database of molecular pathways containing detailed information about functional and biological systems [66]. The p value filtering ≤ 0.05 was used to exclude the results with a low confidence level.

4.3. Protein-Protein Interaction Network Backbone Analysis. Search Tool for the Retrieval of Interacting Genes (STRING; http://string-db.org) has been used to establish PPI network [67]. A confidence score of ≥0.07 was used to scrutinize statistically significant results. The PPIs network was visualized using Cytoscape (open-source platform), in which the most considerable module with a Molecular Complex Detection (MCODE) score of >5 and node score-cut-off of 0.02 was scanned with the Cytoscape plug-in MCODE.

4.4. Hub Gene Identification, Expression, and Survival Analysis. CytotHubba is a Cytoscape module that has been used in the PPI network for identifying primary hub genes. The MCC method was used to calculate the top 10 genes according to their importance in the system because it is comparatively recent and is highly recommended [68]. These top 10 genes having the highest MCC score were considered as hub genes. However, the Gene Expression Profiling Interactive Analysis (GEPIA) server provided a correlation of gene expression and their effect on the survival chances in specific cancer types [42]. Hub genes were analysed using GEPIA to calculate the impact of their differential expression on cancer progression.

4.5. Functional Annotation of MCODE Cluster Genes. ClueGO plugin was utilized to functionally annotate the top 3 MCODE Cluster genes into the biological process. It classified gene products into crucial biological processes using GO datasets as the reference [69]. This paper is published as preprint previously with the title “Identification of Novel Potential Biomarkers in Hepatocellular Carcinoma; A Transcriptionome Analysis” [70].

5. Conclusion

In summary, the purpose of the present study was to screen and verify hub genes that may provide new insights into the development, prognosis, and treatment of HCC. In total, 598 DEGs were identified via integrated bioinformatics analysis, of which ten were identified as hub genes that may be used as biomarkers for the diagnostic and prognostic evaluation of HCC. However, because the results of this study were based on data analysis only, further experimental verification via animal experiments and clinical trials are required to confirm these results.

Data Availability

We collected raw data of GSE62232 from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62232. It is an online repository, and data can be accessed directly from the study.

Conflicts of Interest

There is no conflict of interest among the authors regarding the publication of this manuscript.

Authors’ Contributions

Mohib Ullah Kakar, Muhammad Zubair Mehboob, and Muhammad Akram generated the idea. Muddase Shah and Yasmeen Shakir generated the data. Hafza Wajeeha Ijaz and Ubair Aziz performed the analysis. Zaheer Ullah, Sikan Dar Ali, Sajjad Ahmad, and Mohib Ullah Kakar wrote the original draft. Yongxiang Yin provided the resources and supervised the study. All co-authors are willing to publish the article in Data in Brief.

Acknowledgments

This study was supported by the High-Level Talent Training Project of Wuxi Taihu Talent Plan (reference number BJ2020072 to YY).

Supplementary Materials

Supplementary Table 1: overall, 598 genes out of a total 19982 were differentially expressed in HCC samples with 233 upregulated and 365 downregulated genes. (Supplementary Materials)

References

[1] G. L A Ghebreyesus and J. Al-Ansary, "World Health Organization global health observatory statistic," Geneva, vol. 2018, pp. 1–100, 2018.
[2] R. M. Feng, Y. N. Zong, S. M. Cao, and R. H. Xu, "Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics," Cancer Communications, vol. 39, no. 1, pp. 1–12, 2019.
[3] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA. a Cancer Journal for Clinicians, vol. 68, no. 6, pp. 394–424, 2018.
[4] S. Kondo, H. Ueno, C. Morizane, and T. Okusaka, “Hepatocellular carcinoma,” Japanese Journal of Cancer Chemotherapy, vol. 36, no. 3, pp. 1219–1223, 2010.
[5] A. Marengo, C. Rosso, and E. Bugianesi, “Liver cancer: connections with obesity, fatty liver, and cirrhosis,” Annual Review of Medicine, vol. 67, no. 1, pp. 103–117, 2016.
[6] R. K. Phukan, B. J. Borkakoty, S. K. Phukan et al., “Association of processed food, synergistic effect of alcohol and HBV with hepatocellular carcinoma in a high incidence region of India,” Cancer Epidemiology, vol. 53, pp. 35–41, 2018.
[7] Y. Tang, Y. Zhang, and X. Hu, “Identification of potential hub genes related to diagnosis and prognosis of hepatitis B virus-related hepatocellular carcinoma via integrated bioinformatics analysis. Biomedical research,” International, vol. 2020, article 4251761, 19 pages, 2020.
[8] A. Forner, M. Reig, and J. Bruix, "Hepatocellular carcinoma," *Lancet*, vol. 391, no. 10127, pp. 1301–1314, 2018.

[9] D. M. Parkin, "The global health burden of infection-associated cancers in the year 2002," *Internation Journal of Cancer*, vol. 118, no. 12, pp. 3030–3044, 2006.

[10] M. E. Rinella, "Nonalcoholic fatty liver disease," *JAMA-Journal of American Medical Association*, vol. 313, no. 22, pp. 2263–2273, 2015.

[11] A. Mirizzi, I. Franco, C. M. Leone et al., "Effects of some food components on non-alcoholic fatty liver disease severity: results from a cross-sectional study," *Nutrients*, vol. 11, no. 11, p. 2744, 2019.

[12] C. D. Mathers and D. Loncar, "Projections of global mortality and burden of disease from 2002 to 2030," *PLoS Medicine*, vol. 3, pp. 2011–2030, 2006.

[13] A. Jemal, E. M. Ward, C. J. Johnson et al., "Annual report to the nation on the status of cancer, 1975–2014, featuring survival," *Journal of the National Cancer Institute*, vol. 109, no. 9, 2017.

[14] M. Taskinen, M. L. Karjalainen-Lindsberg, H. Nyman, L. M. Eerola, and S. Leppä, "A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide: doxorubicin-vincristine-prednisone," *Clinical Cancer Research*, vol. 13, no. 19, pp. 5784–5789, 2007.

[15] L. Zhou, Y. Huang, J. Li, and Z. Wang, "The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma," *Medical Oncology*, vol. 27, no. 2, pp. 255–261, 2010.

[16] L. Kulik and H. B. El-Serag, "Epidemiology and management of hepatocellular carcinoma," *Gastroenterology*, vol. 156, no. 2, pp. 477–491.e1, 2019.

[17] D. Dimitroulis, C. Damaskos, S. Valsami et al., "From diagnosis to treatment of hepatocellular carcinoma: an epidemic problem for both developed and developing world," *World Journal of Gastroenterology*, vol. 23, no. 29, pp. 5282–5294, 2017.

[18] S. Liu, X. Yao, D. Zhang et al., "Analysis of transcription factor-related regulatory networks based on bioinformatics analysis and validation in hepatocellular carcinoma. Biomedical research," *International*, vol. 2018, article 1431396, 16 pages, 2018.

[19] G. Yan and Z. Liu, "Identification of differentially expressed genes in hepatocellular carcinoma by integrated bioinformatic analysis," *Oncology Letters*, vol. 18, pp. 916–926, 2019.

[20] P. Zhang, J. Feng, X. Wu, W. Chu, Y. Zhang, and P. Li, "Bioinformatics analysis of candidate genes and pathways related to hepatocellular carcinoma in China: a study based on public databases," *Pathology Oncology Research*, vol. 27, pp. 1–14, 2021.

[21] L. Teng, K. Wang, Y. Liu, Y. Ma, W. Chen, and L. Bi, "Based on integrated bioinformatics analysis identification of biomarkers in hepatocellular carcinoma patients from different regions," *BioMed Research International*, vol. 2019, Article ID 1742341, 17 pages, 2019.

[22] X. Meng, L. Wang, B. Zhu et al., "Integrated bioinformatics analysis of the clinical value and biological function of ATAD2 in hepatocellular carcinoma," *Biomedical Research*, vol. 2020, article 8657468, 18 pages, 2020.

[23] L. Li, Q. Lei, S. Zhang, L. Kong, and B. Qin, "Screening and identification of key biomarkers in hepatocellular carcinoma: evidence from bioinformatic analysis," *Oncology Report*, vol. 38, no. 5, pp. 2607–2618, 2017.

[24] C. Zhang, L. Peng, Y. Zhang et al., "The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data," *Medical Oncology*, vol. 34, no. 6, pp. 1–13, 2017.

[25] Z. Song, Y. Duan, S. Wan et al., "Processing optimization of typed resources with synchronized storage and computation adaptation in fog computing," *Wireless Communications and Mobile Computing*, vol. 2018, Article ID 3794175, 13 pages, 2018.

[26] M. Song, Y. Duan, T. Huang, and L. Zhan, "Inter-edge and cloud conversion accelerated user-generated content for virtual brand community," *EURASIP Journal on Wireless Communications and Networking*, vol. 2020, no. 1, 2020.

[27] Y. Duan, Z. Lu, Z. Zhou, X. Sun, and J. Wu, "Data privacy protection for edge computing of Smart City in a DIKW architecture," *Engineering Applications of Artificial Intelligence*, vol. 81, pp. 323–335, 2019.

[28] Y. Totoki, K. Tatsuno, K. R. Covington et al., "Trans-ancestry mutational landscape of hepatocellular carcinoma genomes," *Nature Genetics*, vol. 46, no. 12, pp. 1267–1273, 2014.

[29] A. Ally, M. Balasundaram, R. Carlsen et al., "Comprehensive and integrative genomic characterization of hepatocellular carcinoma," *Cell*, vol. 169, no. 7, pp. 1327–1341.e23, 2017.

[30] L. S. E. P. W. Castro, T. de Sousa Pinheiro, A. J. G. Castro, M. da Silva Nascimento Santos, E. M. Soriano, and E. L. Leite, "Potential anti-angiogenic, antiproliferative, antioxidant, and anticoagulant activity of anionic polysaccharides, fucans, extracted from brown algae Lobophora variegata," *Journal of Applied Phycology*, vol. 27, no. 3, pp. 1315–1325, 2015.

[31] J. Zucman-Rossi, A. Villanueva, J. C. Nault, and J. M. Llovet, "Genetic landscape and biomarkers of hepatocellular carcinoma," *Gastroenterology*, vol. 149, no. 5, pp. 1226–1239.e4, 2015.

[32] B. He, J. Yin, S. Gong et al., "Bioinformatics analysis of key genes and pathways for hepatocellular carcinoma transformed from cirrhosis," *Medicine (United States)*, vol. 96, no. 25, p. e6938, 2017.

[33] L. Zhou, Y. Du, L. Kong, X. Zhang, and Q. Chen, "Identification of molecular target genes and key pathways in hepatocellular carcinoma by bioinformatics analysis," *Oncology Targets Therapy*, vol. 11, pp. 1861–1869, 2018.

[34] Q. Zhao, Y. Zhang, S. Shao, Y. Sun, and Z. Lin, "Identification of hub genes and biological pathways in hepatocellular carcinoma by integrated bioinformatics analysis," *PeerJ*, vol. 9, pp. 1–24, 2021.

[35] Y. Li, R. Chen, J. Yang et al., "Integrated bioinformatics analysis reveals key candidate genes and pathways associated with clinical outcome in hepatocellular carcinoma," *Frontiers in Genetics*, vol. 11, p. 814, 2020.

[36] Z. Li, Y. Lin, B. Cheng, Q. Zhang, and Y. Cai, "Identification and analysis of potential key genes associated with hepatocellular carcinoma based on integrated bioinformatics methods," *Frontiers in Genetics*, vol. 12, p. 571231, 2021.

[37] Z. Meng, J. Wu, X. Liu et al., "Identification of potential hub genes associated with the pathogenesis and prognosis of hepatocellular carcinoma via integrated bioinformatics analysis," *Journal of International Medical Research*, vol. 48, no. 7, p. 0300060520910019, 2020.
Loss of Cdk2 and cyclin A2 overexpression in human hepatocellular carcinoma is associated with poor prognosis.

Cyclin B2 overexpression in human hepatocellular carcinoma is associated with unfavorable clinical outcome.

The clinicopathological significance of BUBR1 overexpression in hepatocellular carcinoma.

Blocking CDK1/β-catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting can-

NDC80 is correlated with prognosis of pancreatic cancer and(NCC.

The gene expression omnibus database,

The clinicopathological significance of NDC80 in human hepatocellular carcinoma,

Non-smc chromosome-associated polypeptide g inhibits proliferation and induces apoptosis in hepatocellular carcinoma cells.

Cancer Biotherapy and Radiopharmaceuticals, vol. 30, no. 6, pp. 233–239, 2015.

Increased CDC20 expression is associated with development and pro-

Cancer Research, vol. 25, no. 1, pp. 25–29, 2000.

Biotherapy and Radiopharmaceuticals, vol. 92, pp. 1038–1044, 2017.

The KEGG resource for deciphering the genome,

Cancer Research, vol. 32, no. 90001, pp. 277D–2280, 2004.

STRING v10: protein-protein interaction networks, integrated over the tree of life,

Biochemical and Biophysical Research Communications, vol. 500, no. 4, pp. 924–929, 2018.

Foxm1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1,

Increasing the expression of cyclin D1 in G2/M phase cells using a lentiviral vector system,

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 93, no. 2, pp. 283–287, 2001.

FOXM1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1,

Biochemical and Biophysical Research Communications, vol. 500, no. 4, pp. 924–929, 2018.

Foxm1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1,

Biochemical and Biophysical Research Communications, vol. 500, no. 4, pp. 924–929, 2018.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.

Cancer Research, vol. 74, no. 14, pp. 3870–3879, 2014.
networks from complex interactome,” *BMC Systems Biology*, vol. 8, no. S4, pp. 1–7, 2014.

[69] G. Bindea, B. Mlecnik, H. Hackl et al., “ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks,” *Bioinformatics*, vol. 25, no. 8, pp. 1091–1093, 2009.

[70] M. Mehboob, M. Akram, I. Iqbal et al., “Identification of novel potential biomarkers in hepatocarcinoma cancer; a transcriptome analysis,” 2021.