ZIKA VIRUS-AN OVERVIEW

ZIKA VIRUS-GENEL BAKIŞ

1*Rumela Ghosh, 1Renita Lorina Castelino, 1Subhas G Babu, 1Kumuda Rao, 1Mithula Nair, 2Baishwanar Banerjee*

Zika virus is a flavivirus that spreads to humans by a bite from an infected Aedes mosquito. This infection is usually asymptomatic or presents with mild symptoms in infected individuals. However, if a pregnant lady gets infected with this virus, congenital brain damage associated with microcephaly is manifested in the newborn. Zika virus infection has been considered as an emergency outbreak by the WHO and hence immediate safety measures have to be adopted in curbing the disease. The paper presented here provides an overview about the Zika virus.

Keywords: microcephaly, mosquito, outbreak, Zika, virus

Introduction

Zika virus (ZIKV) disease is considered as the most deadly infectious disease emerged in the recent time. ZIKV is a member of Flaviviridae family from the Spondweni group, the same family as yellow fever, dengue, West Nile and Japanese encephalitis viruses. This disease is a mosquito borne disease, where Aedes mosquito is considered as the main vector, and in general cause maculo-papular rashes with mild febrile illness. A few outbreaks were documented in tropical Africa and some parts of South East Asia before 2007. Several islands of the Pacific region also experienced certain outbreaks after 2007. In 2015, reports of outbreaks were reported in South America also.

There is no treatment, prophylaxis or vaccine currently available to protect against Zika virus infection. Therefore, only personal preventative measures are advised to avoid mosquito bites during the daytime period.

Epidemiology

In 1947, first known case of Zika fever was identified in sentinel rhesus monkey stationed on a tree platform in the Zika forest in Uganda. In 1954, first human cases were documented in Nigeria. The serologic evidence of human ZIKV infection was reported from 1951 through 1981 from other African countries such as Uganda, Central African, Egypt Tanzania, Sierra Leone and Gabon. With further investigations the virus was isolated from the mosquitoes in Côte d’Ivoire, Aedes aegypti mosquitoes in Malaysia, and a human in Senegal. Olson et al in 1981 reported 7 patients with serological evidence of ZIKV disease in Indonesia. In the Yap Islands of the Federated States of Micronesia, the first major outbreak of the illness with 185 confirmed cases was reported in 2007.

Around 108 cases were confirmed by polymerase chain reaction and the rest additional cases were suspected. During the period of 2013 and 2014, another outbreak was reported in French Polynesia which was thought from an independent introduction of the virus from Asia than the outbreak from Yap Island. Approximately 8750 cases with ZIKV infection were reported in French Polynesia of which 383 cases were confirmed and around 72 cases reported with auto immune disease or neurological symptoms following a disease period having symptoms similar to ZIKV infection. Out of this, 42 cases were confirmed as Guillain-Barre syndrome. But the causative linkage between ZIKV and Guillain-Barre syndrome is still not established. In May 2015, Brazil documented the first confirmed case of ZIKV infected patient. Till November 2015, 17 states of Brazil had reported endemic transmission of ZIKV. According to Centers for Disease Control, 20 states of Brazil reported 2400 babies born with microcephaly and 29 infants death recorded where ZIKA virus is the suspected cause. The incidence rate of microcephaly, increased ten folds according to the epidemiological survey as of November 2015. However a causative connection between ZIKV infection during pregnancy and microcephaly in newborns is possible but yet not enough evidence is available to confirm it.

On 15th January, 2016 United States CDC, issued an interim Travel Guidance for pregnant women travelling or planning to travel to 14 countries and...
territories with local transmission in Central and South America and the Caribbean. They have been advised to avoid travelling to those countries where endemic transmission is evident and if travelling cannot be avoided they have to take adequate measures to ensure enough protections from mosquito bites 16.

Transmission

ZIKV has been isolated from various species of Aedes mosquitoes such as Ae. aegypti, Ae. africanus, Ae. luteocephalus, Ae. apicoargenteus, Ae. furcifer and Ae. vitattus mosquitoes 6,17,18.

During the outbreak in Yap Islands in 2007, the predominant mosquito species present was Ae. hensilii, however researchers were unable to detect ZIKV in any mosquito on the island during that time 11. Through several investigations, Boorman et al. demonstrated transmission of the virus to monkeys and mice through Ae. aegypti in a laboratory set up. According to their study the extrinsic incubation period of ZIKV in mosquitoes is around 10 days 19. Till date there is no concrete evidence of non primate reservoirs of ZIKV, but only one study demonstrated antibody to ZIKV in rodents 20.

The first case of perinatal transfusion of ZIKV was suspected in French Polynesia where the newborn showed maculopapular rashes after birth and the mother gave a history of ZIKV infection like syndrome two weeks before. However, various laboratory investigations were not prosecuted 21.

Increased risk of transfusion – transmitted ZIKV infection and perinatal transmission has been documented in literature 22. The reports of transmission of ZIKV virus even by sexual intercourse was suggested by Foy et al. in 2008 in a patient in the southeastern region of Senegal 23.

Clinical features

In 1964, Simpson elaborated his own occupationally acquired ZIKV illness at the age of 28 years which is considered as the first well recorded report of human ZIKV disease. Initially he experienced mild headache followed by maculo papular rashes the next day over his face, neck, trunk, and upper arms which slowly spread to his palms and soles. Later on, transient stage of fever, uneasiness, and back pain developed. On the second day evening of illness the rash was fading and he was in an afebrile state. On the third he had only rashes with no other uneasiness or pain. And eventually the rashes disappeared in the next two days.

Around 80% of the infected cases were found to be asymptomatic. The symptomatic disease is generally manifested in a milder form and is characterized by an acute onset of fever, maculo papular rashes, non-purulent conjunctivitis or arthralgia. The other manifestations comprise dizziness, anorexia, constipation, diarrhea and abdominal pain. In symptomatic patients, incubation period is around three to seven days 24. According to a report by European centre for disease prevention and control in November 2015, microcephaly have been linked potentially to endemic spread of Zika virus in Brazil 25. However further investigation and studies are required to confirm the causative link between Zika virus and microcephaly.

The clinical manifestations in immunosuppressed patients has not been evaluated or documented till date and it is not known whether there are groups of individuals at particular risk of complications. Death in a sickle cell patient infected with ZIKV has been reported 26.

Diagnosis

In order to detect the viral RNA in the acute phase in serum samples of infected individuals, diagnostic test such as PCR test are used. At the Arboviral Diagnostic and Reference Laboratory of the Centers for Disease Control and Prevention (Atlanta, GA, USA) an ELISA test has been developed to identify immunoglobulin (Ig) M to ZIKV 1. Commercially, no kits or tests are available to detect the Zika virus antibodies or nucleic acid.

ZIKV RNA can be detected in the serum of the infected individual during the first week of illness after the onset of symptoms. At the end of the first week, neutralizing antibodies and virus-specific IgM typically develops; cross-reaction with other related flavivirus such as dengue and yellow fever viruses is quite common and can propound a diagnostic challenge for the investigators 25. The ZIKV can be isolated from the saliva in acute phases of the illness and is more useful in case of children and neonates where collection of blood becomes difficult 29.

Treatment

Currently, no specific antiviral or vaccine is available as a curative measure of ZIKV infection. The treatment is only supportive and symptomatic. Adequate rest and increased fluid intake is recommended to avoid dehydration. Acetaminophen or paracetamol can be recommended to relieve fever and pain. Aspirin and non steroidal anti inflammatory drugs such as Ibuprofen should be avoided until dengue is ruled out in order to avoid hemorrhage 29.

Precautions

Control over vector borne diseases such as chikungunya, dengue, Zika and other arbovirus, can be achieved by insect bite precautions and vector control measures 30. Recently various guidelines has been issued by US Centers for Disease Control and Prevention, the European Centre for Disease Prevention and Control and other health agencies all over the world to provide guidelines for ensuring the preventive measures against ZIKV for its citizens 31,32.

Travellers travelling to affected regions have been advised to take basic precautions such as using full cover up clothing, using mosquito nets and insect repellent to protect themselves against Aedes mosquitoes which bite generally during the day time 33. With the increased concern about infection during pregnancy being the causative reason for microcephaly and congenital brain damage, Public Health England advises pregnant travellers to avoid travelling to regions where Zika transmissions are reported. It also advises female travellers who visited endemic regions to
avoid becoming pregnant for further 28 days from the time of returning to their country.

Conclusion

As ZIKV outbreak has been recently considered as an emergency declared by the WHO, necessary precautionary measures have to be taken to prevent the same. The overall goal for prevention should be to reduce the risk of exposure to Zika virus infection. Also adequate research must be undertaken at the earliest to develop pre-exposure and post-exposure prophylactic agents to prevent the spread and complications of the disease.

References

1. Lanciotti RS, Kosoy OL, Laven JL ve diğer. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 2008;14:1232–9. DOI: 10.3201/eid1408.080287
2. Kuno G, Chang GJ, Tsuchiyuka KR ve diğer. Phylogeny of the genus Flavivirus. J Virol. 1998 Jan; 72(1):73-83.
3. Heang V, Yasuda CY, Sovann L ve diğer. Zika virus infection, Cambodia, 2010. Emerg Infect Dis. 2012;18:349-51.http://dx.doi.org/10.3201/eid1802.111122.
4. Cristiane WC, Igor ADP, Mariana ve diğer. Outbreak of Exanthematous Illness Associated with Zika, Chikungunya, and Dengue Viruses, Salvador, Brazil. Emerging Infectious Disease. 2015; 21:2274.
5. Musso D, Nilles EL, Cao-Lormeau VM. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect. 2014 Oct;20:O595-6.
6. Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20.
7. Saluzzo JF, Ivanoff B, Languillat G ve diğer. Serological survey for arboviruses in the human and simian populations of the South-East of Gabon [in French]. Bull Soc Pathol Exot Filiatures. 1982;75:262–6.
8. Monlun E, Zeller H, Le Guenno B ve diğer. Surveillance of the circulation of arboviruses of medical interest in the region of eastern Senegal [in French]. Bull Soc Pathol Exot. 1993;86:21–8.
9. Akosua-Koffi C, Diarrassouba S, Béné VB ve diğer. Investigation surrounding a fatal case of yellow fever in Côte d’Ivoire in 1999 [in French]. Bull Soc Pathol Exot. 2001;94:227–30.
10. Olsson JG, Kisazeg T, Gubler DJ ve diğer. A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia. Ann Trop Med Parasitol.1983;77:131–7.
11. Duffy MR, Chen TH, Hancock WT ve diğer. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360:2356–43.
12. Moms S, Glawache F, Oehler E ve diğer. Épidémie de syndromes de Guillain-Barre durant l'épidémie de Zika en Polynésie française. Bulletin de Veille Sanitaire Antilles. 2013;5:9-14-5.
13. Mallet H, Berry A. Emergence du virus Zika en Polynésie française, novembre 2013 - avril 2014. Bulletin de Veille Sanitaire Antilles.2(9-12.
14. Guibio SC, Antonio CB, Silvia IS. Zika Virus Outbreak, Bahia, Brazil. Emerging Infectious Disease journal. 2015;21(10):1885.
15. Ministério da Saúde (Brazil). Microcefalia - Ministério da Saúde divulga boletim epidemiológico [Internet]. Brasilia: Ministério da Saúde; 2015 [cited 2015 Nov 17; cited 2015 Nov 17]. Available from: http://portaisaude.saude.gov.br/index.php?iddas=mda/assuntos/saude/20805-ministerio-da-saude-divulga-boletim-epidemiologico. 16. US Centers for Disease Control and Prevention. CDC issues interim travel guidance related to Zika virus for 14 Countries and Territories in Central and South America and the Caribbean [Internet]. 2016 [cited 2016 Jan 15]. Available from: http://www.cdc.gov/media/releases/2016/0315-zika-virus-travel.html.
17. Fagbamí AH. Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo State. J Hyg (Lond). 1979;83:213–9.DOI: 10.1017/S0022172400025997
18. McClure AW, Kiyra IG. Yellow fever and Zika virus epizootics and enzootics in Uganda. Trans R Soc Trop Med Hyg. 1982;76:552–62. DOI: 10.1016/0035-9203(82)90161-4.
19. Boorman JP, Porterfield JS. A simple technique for infection of mosquitoes with viruses; transmission of Zika virus. Trans R Soc Trop Med Hyg. 1956;50:238–42. DOI: 10.1016/0035-9203(56)90029-3.
20. Darwin MA, Hooperstahl R, Roberts TJ ve diğer. A sero-epidemiological survey for certain arboviruses (Togaviridae) in Pakistan. Trans R Soc Trop Med Hyg. 1983;77:442–5. DOI: 10.1016/0035-9203(83)90160-6.
21. Besnard M, Lastère S, Teissier A, Cao-Lormeau VM ve diğer. Evidence of perinatal transmission of Zika virus, France Polynesia, December 2013 and February 2014. Euro Surveill. 2014;19:20751.
22. Musso D, Nhan T, Robin E ve diğer. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill. 2014;19:20771.
23. Foy BD, Kobylinski KC, Chilson Foy JL ve diğer. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis. 2011;17:880–2. http://dx.doi.org/10.3201/eid1705.101939
24. CDC. Health Alert Network. Recognizing, Managing, and Reporting Zika Virus Infection in Travelers Returning from Central America, South America, the Caribbean, and Mexico. Friday, January 15, 2016, 19:45EST. CDCHAN
25. European Centre for Disease Prevention and Control. Zika virus. Trans R Soc Trop Med Hyg. 2015;51.http://dx.doi.org/10.3201/eid111224.
26. European Centre for Disease Prevention and Control. Zika virus epidemic Stockholm; ECDC; 2015 [updated 2015 Nov 25].
27. Oehler E, Watrin L, Larre P ve diğer. Zika virus infection complicated by Guillain-Barre syndrome–case report, France Polynesia, December 2013. Euro surveillance: bulletin Européen sur les maladies transmissibles = European communicable disease bulletin 2014;19.
28. Ginier M, Neumayr A, Günther S ve diğer. Zika without symptoms in returning travellers: What are the implications?. Travel Medicine and Infectious Disease. 2016 Feb 5.
29. Musso D, Roche C, Nhan TX ve diğer. Detection of Zika virus in saliva Journal of Clinical Virology 68 (2015) 53–5
30. Lucey DR, Gostin LO. The emerging Zika pandemic:enhancing preparedness. JAMA. 2016 Jan 27.
31. Summers DJ, Acosta RW, Acosta AM (2015). Zika Virus in an American Recreational Traveler. J Travel Med doi: 10.1111/jtm.12208.
32. Centers for Disease Control and Prevention. Zika virus. www.cdc.gov/zika.
33. European Centre for Disease Prevention and Control. Zika virus infection.http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/pages/index.a sp.
34. Public Health England. Health protection guidance: Zika virus. Updated 5 Feb 2016. www.gov.uk/guidance/zika-virus.