DNA microarray analysis of gene expression of etiolated maize seedlings grown under microgravity conditions in space: Relevance to the International Space Station Experiment “Auxin Transport”

Motoshi Kamada1, *, Kensuke Miyamoto2, *, Mariko Oka3, Eiji Uheda4, Chiaki Yamazaki4, Toru Shimazu5, Hiromi Sano5, Haruo Kasahara6, Tomomi Suzuki7, Akira Higashibata8 and Junichi Ueda4, *

1Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan
2Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
3Faculty of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
4Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
5JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
6Technology and Research Promotion Department, Japan Space Forum, Shin-Otemachi Bldg., 2-2-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
7Utilization Engineering Department, Japan Manned Space Systems Corporation, Space Station Test Building, Tsukuba Space Center, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
8Kibo Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan

Received: December 14, 2020; Accepted: April 8, 2021
*These authors contributed equally to this work.
*To whom correspondence should be addressed:
Motoshi Kamada, Future Development Division, Advanced Engineering Services Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan; e-mail: kamada.motoshi@jaxa.jp
Junich Ueda, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan; e-mail: ueda@b.s.osakafu-u.ac.jp

Abstract
This paper introduces the use of microarray data technology with the Agilent Maize Oligo Microarray (Design ID 016047) to characterize global changes in the transcript abundance of etiolated Zea mays (cv. Golden Cross Bantam) seedlings grown under microgravity (μg) conditions on the International Space Station (ISS) compared with those grown under 1 g conditions on Earth. Gene array data were analyzed according to stringent criteria that restricted the scored genes for specific hybridization values at least two fold. Of the 32152 - 32616 transcripts detected, 1030 and 590 transcripts were significantly different in the coleoptiles and in the mesocotyls. Of the transcripts detected, 877 and 428 transcripts were found to increase under μg conditions in the coleoptiles and the mesocotyls, respectively. Venn diagram analysis showed that 154 transcripts commonly increased and 10 decreased under μg conditions irrespective of the organ difference. Of these, phytohormone-related genes were focused, indicating that some of them were responsive to gravity. These results support the commonly accepted idea that phytohormone-related genes play a significant role in regulating plant growth and development under different gravity conditions.

Keywords: Auxin-related gene, International Space Station experiment; Microarray; Zea mays

Introduction
Plant growth and development are substantially affected by various environmental factors. Of these, gravity is one of the most important environmental factors in regulating the physiological processes in the life cycle of a sessile plant on Earth. In order to clarify how gravitational stimuli affect the growth and development of plants, microgravity (μg) and hypergravity conditions have become novel and powerful tools. In particular, studies of growth response, physiological responses, and changes in phytohormone status in plants grown under μg conditions in space have been done (Halstead and Dutcher, 1987; Kamada et al., 2000; Correll and Kiss, 2008; Hoson et al., 2009, 2014; Paul et al., 2013; Kiss, 2014; Wakabayashi et al., 2015, 2017; Ferl et al., 2016; Yamazaki et al., 2016; Johnson et al., 2017; Soga et al., 2018; Ueda, 2020). Under μg conditions in space, plants have exhibited endogenously directed spontaneous growth called automorphogenesis (see review of Stanković et al., 1998).

The “Auxin Transport” (NASA’s nomenclature) space experiment was conducted in 2016 and 2017 in the Japanese Experiment Module (JEM) on the ISS, with the objective of obtaining integrated analyses of the growth and development of etiolated pea (cv. Alaska) and maize (cv. Golden Cross Bantam) seedlings in space relative to
polar auxin transport (PAT) (Ueda, 2020). Some of the relevant molecular mechanisms showing an important role that PIN proteins play as efflux carriers of auxins in gravity-controlled PAT have been reported (Miyamoto et al., 2019; Kamada et al., 2019, 2020; Oka et al., 2020). The PAT of etiolated pea and maize shoots grown under μg conditions in space was substantially decreased and enhanced, respectively, compared with those grown on artificial 1 g conditions on the ISS or 1 g conditions on Earth as observed in the BRIC-AUX experiment on the STS-95 mission using the shuttle Discovery (Ueda et al., 1999, 2000). These results clearly show that gravistimulation can positively and negatively regulate PAT in etiolated pea and maize seedlings, respectively. We have already reported that the mechanism of μg-enhanced PAT in maize shoots is most likely due to the enhanced ZmPIN1a accumulation and altered ZmPIN1a localization in parenchymatous cells of the coleoptiles (Oka et al., 2020); however, the mechanisms that enable the cells to acclimate to the changing gravistimulation are still poorly understood.

To clarify the global changes in transcript abundance elicited by various perturbations of μg conditions in space, we introduced microarray data technology with microarrays of Medicago (Medicago truncatula) to etiolated Alaska pea seedlings grown under μg and artificial 1 g conditions on the ISS; we found six auxin-related genes that are regulated by gravity. Furthermore, expression of several water channel genes was found to be gravity-regulated (Kamada et al., 2020). Yet, less information is available as to which genes are involved in growth and development of etiolated maize seedlings grown under μg conditions in space.

Based on this information, we introduced microarray techniques (the Agilent Maize Oligonucleotide Array, design ID 016047 from Agilent Technologies in the USA) to clarify gene expression profiling in the coleoptiles and the mesocotyls of etiolated maize seedlings grown under μg conditions on the ISS, comparing them with profiling of those grown under 1 g conditions on Earth. Novel findings on genes related to phytohormones, water channels, and others could significantly improve our understanding of how growth and development of the etiolated maize seedlings are regulated in space. Possible modes of action of these genes on the growth and development of etiolated maize seedlings grown under μg conditions in space will be briefly discussed.

Materials and Methods

Outline of the space experiment “Auxin Transport”

The “Auxin Transport” (NASA’s nomenclature) space experiment consisted of four runs with pea seedlings (Runs 1, 2, and 3) and maize (Run 4), and was conducted in 2016 and 2017 in the Japanese Experiment Module (JEM) on the ISS. The second experiment, Run 4 with maize and Run 1 with peas, launched on the Space X-10 mission in February 2017. It was conducted in the ISS Increment 50 in March 2017. The samples were returned to Earth in March 2017 by the Cargo Dragon capsule carried aboard the Space X-10. Details of the “Auxin Transport” experiment have already described in our previous manuscripts (Miyamoto et al., 2019; Ueda, 2020).

Plant materials

Maize (Zea mays L. cv. Golden Cross Bantam) was used in the ISS space experiment. As the seed bed, dry rockwool block (the thickness: 32 mm; Culture Mat; Nippon Rockwool, Tokyo, Japan) was fitted in an acrylic resin maize box (W 62 mm × D 100 mm × H 150 mm), which had six holes (1 cm in diameter) and covered with the hydrophobic fluoropore membrane, MilliSeal (Merck Millipore, Tokyo, Japan) for ventilation was used. Twenty dry maize seeds were inserted beneath the block surface with the seed axis longitudinal to the maize box. After an astronaut supplied 120 mL of water (Milli-Q water, autoclaved) to each maize box, the boxes were kept in the Measurement Experiment Unit, and then placed in the μg compartment in an incubator, the Cell Biology Experiment Facility (CBEF). The maize seeds were allowed to germinate and grow at 25°C in the dark for four days (96 h 27 m) under μg conditions in space. A part of the maize seedlings was used for determining the PAT, for the immunohistochemical analysis of ZmPIN1a proteins, and for the western blotting analysis of ZmPIN1a proteins.

The remaining maize seedlings were frozen at −95°C in the Minus Eighty-Degree Celsius Laboratory Freezer for ISS (MELFI) for later analysis of gene expression. These samples were returned to Earth by the Cargo Dragon capsule and sent to our laboratory; their storage temperature maintained with dry ice. The frozen seedlings were then stored at −80°C until RNA extraction.

It is impossible to use the full capacity of the CBEF or a 1 g centrifuge for this maize experiment, because the maize box is too large to fit into the CBEF. The 1 g control experiments were done at JAXA’s Tsukuba Space Center in Japan according to the procedures and the ISS experiment schedule (Miyamoto et al., 2019). Using a plant growth chamber (LPF-241SPC, Nippon Medical & Chemical Instruments, Co., Ltd., Osaka, Japan), the temperature, humidity, and CO2 concentration were adjusted to the environment of the ISS experiment. The CO2 concentration was about 3,500 ppm during experiment. Other experimental conditions were same as those used in the space experiment.

Extraction of total RNA

Total RNA was extracted using the methods reported by Kamada et al. (2019) with some modifications. The coleoptile region (from 3 to 8 mm below the tip) and the mesocotyl region (from 1 to 6 mm below the node) were carefully excised on the dry ice from the frozen etiolated maize seedlings of the ISS experiment and in the control experiment on Earth. A set of three coleoptile or mesocotyl segments was homogenized for 20 seconds with beating at 5,500 rpm four times in a Micro Smash MS-100 bead beater (Tomy Seiko, Tokyo, Japan) with 3 min of cooling on ice between rounds. The total RNA was extracted from the homogenate using a TRI reagent (Sigma-Aldrich, St.
Motoshi Kamada et al.

The residual DNA was eliminated by treating it with DNase I (Takara Bio, Shiga, Japan) during extraction and purification of the total RNA.

Microarray experiment

The Agilent Maize Oligo Microarray 4 × 44 K slides (Design ID 016047, Agilent Technologies, Santa Clara, CA, USA) was custom-designed with 42,034 in-situ synthesized 60-mer oligonucleotide reporters (Ma et al., 2008; Coetzer et al., 2011). It was used to process the gene expression profiles of a cDNA fragment for a transcript from the coleoptiles and from the mesocotyls of etiolated maize seedlings. Complementary RNA was synthesized with 200 ng of the total RNA sample, then the Cyanine 3 (Cy3)-labeled RNA was synthesized with Cy3-CTP using the Low Input Quick Amp Labeling Kit (Agilent Technologies) for microarray analysis according to the manufacturer’s protocol. The Cy3-labeled RNA was purified, fragmented, and then hybridized onto the microarray slides according to the manufacturer’s instructions. After hybridization at 65°C for 17 hours, the microarray slides were washed and scanned using the SureScan Microarray Scanner System (Model; G4900DA, Agilent Technologies). The degrees of hybridization signal, or intensity of the fluorescence, on the microarray slides were calculated using Feature Extraction Software (Agilent Technologies). Microarray analysis was conducted on three independent RNA samples obtained from etiolated maize seedlings grown in three independent maize boxes. Microarray data were analyzed using Gene Spring GX ver. 14.9.1 software (Tomy Digital Biology, Tokyo, Japan) and the maize microarray annotation database (Coetzer et al., 2011). Data were produced by normalizing to 75 percentile shift protocol and the baseline-to-median control sample protocol. Arrays were filtered on expression 20-100th percentile in the raw data. The P value was corrected by the False Discovery Rate (FDR) method. The resulting microarray data in this article can be found in the DNA Data Bank of Japan (DDBJ) BioProject database under DRA Accession number PRJDB11348.

Results and Discussion

For the study of gravity in the regulation of plant growth and development, space experiments often come with more novel challenges than do terrestrial ones. Etiolated maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under μg conditions on the ISS in space showed automorphogenesis, and a more enhanced PAT in shoots than those grown on Earth (Miyamoto et al., 2016; Oka et al., 2020). Nearly the same results were obtained in our previous BRIC-AUX experiment on the STS-95 mission (Ueda et al., 1999, 2000).

It should be mentioned that several comprehensive analyses using microarray techniques to analyze gravity-dependent alterations of gene expression have been applied to a number of biological species (Kimbrough et al., 2004; Lebsack et al., 2010; Fengler et al., 2015; Wakabayashi et al., 2015, 2017; Higashibata et al., 2016; Johnson et al., 2017). To identify genes that might be responsible for gravity-specific growth and development of etiolated maize seedlings, we compared gene expression profiles of shoots grown 1 g conditions on Earth and μg conditions on the ISS using the Agilent 016047 Maize 4 × 44 K microarray with 42,034 in-situ synthesized 60-mer oligonucleotide reporters representing approximately 80% of maize coding genes (Ma et al., 2008; Coetzer et al., 2011). Gene array data were analyzed according to stringent criteria that restricted the scored genes for specific hybridization values to at least twice the control level using software made by Coetzer et al. (2011). As a result, more than 32,000 transcripts (ca 75% of probe sets) were detectable in four microarray hybridizations with maize cRNA (Table 1).

Transcriptional changes in etiolated maize seedlings grown under μg conditions on the ISS

A volcano plot of gene expression is shown in Fig. 1. Red and blue points in the volcano plot represent genes whose expression was more than twice as high as the control level and with a statistical significance of \(P < 0.05\).

Analysis of the raw datasets revealed that 1030 transcripts accumulated at least a two-fold difference within the coleoptiles of etiolated maize seedlings grown under μg conditions on the ISS and 1 g conditions on Earth, 877 up-regulated and 153 down-regulated transcripts, and 428 up-regulated and 162 down-regulated transcripts in the coleoptiles and in the mesocotyls, respectively (Table 2A). Genes responsive to gravity might be more present in the coleoptiles than in the mesocotyls.

On the other hand, analysis of the raw datasets revealed that 5219 transcripts accumulated at least a two-fold difference in the coleoptiles than in the mesocotyls of etiolated maize seedlings grown on Earth (Table 2B). Of 5219 transcripts, 2171 and 3048 transcripts were respectively up-regulated and down-regulated from the coleoptiles compared with the mesocotyls under 1 g conditions on Earth. Under μg conditions on the ISS, 4559 transcripts were accumulated differently in the mesocotyls of etiolated maize seedlings, and 2116 and 2443 transcripts were up-regulated and down-regulated in the coleoptiles compared with the mesocotyls. These results suggest that gene expression is quite different in the coleoptiles from the mesocotyls.

Table 1. The number of transcripts in etiolated maize seedlings detected by the Agilent Maize 4×44 K microarray (Design ID 016047) with 42,034 probe sets to detect transcripts from 80% of the maize coding genes, filtered to expression of 20-100th percentile in the raw data. *Values in parentheses are percentages of transcripts in etiolated maize to the total number of probe sets.*

Conditions	Organs or gravity	Number of transcripts detected
μg vs 1 g	Coleoptile	32152 (76.5%)
μg vs 1 g	Mesocotyl	32344 (76.9%)
Coleoptile vs Mesocotyl	μg	32564 (77.5%)
Coleoptile vs Mesocotyl	1 g	32616 (77.6%)
Microarray analysis with maize seedlings grown in space

Venn diagram analysis of data sets of μg conditions on the ISS and 1 g conditions on Earth

Venn diagrams were constructed to identify the transcripts responsive to μg conditions in etiolated maize seedlings regardless of the differences between the coleoptiles and the mesocotyls (Fig. 2A). Transcripts of 10 and 154 genes were found to decrease and to increase, respectively, under μg condition in space compared with 1 g conditions (Table 3). This indicates that the number of genes commonly up-regulated under μg conditions in space was greater than those that were down-regulated. Although the total numbers of 154 and 10 were detected as commonly up-regulated and down-regulated genes there, respectively, regardless of organ difference, most of the functions of genes commonly up- and down-regulated under μg conditions in space regardless of the source organ were not clarified (Tables 3A and 3B).

Phytohormone-related genes, TC309752 (auxin-response factor 3) and TC283935 (gibberellin-2-beta-dioxygenase) were included (Tables 3A and 3B).

Venn diagrams also showed transcripts expressed in the coleoptiles and the mesocotyls regardless of gravity conditions (Fig. 2B). Of the transcripts, 1973 and 1411 transcripts commonly decreased and increased in the coleoptiles compared with the mesocotyls, respectively, regardless of gravity conditions, which suggests that the gene expression pattern of the coleoptiles is quite different from that of the mesocotyls of etiolated maize seedlings irrespective of gravity conditions.

Functional classification of genes up- and down-regulated in the coleoptiles and the mesocotyls of etiolated maize seedlings under μg conditions on the ISS

Figures 3 and 4 show the functional classification of genes up- and down-regulated under μg conditions in space with the respective organ. In the coleoptiles, 877 and 153 genes were up-regulated and down-regulated, respectively, under μg conditions in space, and 65% were unknown or not annotated (Fig. 3). Among up-regulated and down-regulated genes, several phytohormone-related genes were found to be up- or down-regulated in the coleoptiles. Several genes relating to the function of gene expression including signal transduction were also found to respond to gravity.

In the mesocotyls, 40-45% were unknown or not annotated in the genes up-regulated and down-regulated under μg conditions in space (Fig. 4). Similar to the

Table 2. Number of transcripts obtained by analysis of the effect of gravity conditions on gene expression in the coleoptiles and the mesocotyls of etiolated maize seedlings by microarray analysis with the Agilent-016047 Maize 4×44 K microarray

Organ	With a difference greater than 2 fold	Highly expressed under μg conditions in space	Weakly expressed under μg conditions in space
Coleoptile	1030	877	153
Mesocotyl	590	428	162

A

Gravity conditions	With a difference greater than 2 fold	Highly expressed in the coleoptile [coleoptile]/[mesocotyl]	Weakly expressed in the coleoptile [coleoptile]/[mesocotyl]
1 g conditions	5219	2171	3048
μg conditions	4559	2116	2443

B

Venn diagram analysis of data sets of μg conditions on the ISS and 1 g conditions on Earth

Venn diagrams were constructed to identify the transcripts responsive to μg conditions in etiolated maize seedlings regardless of the differences between the coleoptiles and the mesocotyls (Fig. 2A). Transcripts of 10 and 154 genes were found to decrease and to increase, respectively, under μg condition in space compared with 1 g conditions (Table 3). This indicates that the number of genes commonly up-regulated under μg conditions in
coleoptiles, several phytohormone-related genes were substantially found to be up- and down-regulated under μg conditions in the mesocotyls.

Phytohormone-related genes and water channel genes up- or down-regulated in etiolated maize seedlings grown under μg conditions on the ISS

We have already reported that six auxin-related genes – Auxin-induced protein SNG4, Indole-3-acetic acid amidase synthetase GH3.3, Auxin-induced protein, SAUR-like auxin-responsive family protein and Auxin response factor – were regulated by gravity using data from microarrays of Medicago (Medicago truncatula) and etiolated Alaska pea seedlings grown under μg and artificial 1g conditions on the ISS (Kamada et al., 2020). In the coleoptiles and the mesocotyls of etiolated maize seedlings grown under μg conditions in space, PAT has been reported to be greater than grown under 1g conditions on Earth (Miyamoto et al., 2019). Together with the fact that several auxin-related genes and water-channel genes are responsive to gravity in etiolated pea seedlings as mentioned above (Miyamoto et al., 2019; Kamada et al., 2020; Oka et al., 2020), phytohormone-related genes and water channel genes were focused in the raw datasets in etiolated maize seedlings. Tables 4 and 5 list phytohormone-related genes that are differently expressed under μg condition in space in the coleoptiles and the mesocotyls. Signal ratios calculated with the expression ratio greater than two are included.

In the coleoptiles of etiolated maize seedlings grown under μg conditions in space, 17 and 1 were up-regulated and down-regulated, respectively, as phytohormone-related genes (Table 4). It should be noted that expression of several auxin-related genes was up- and down-regulated under μg conditions in space (TC309752 encoding Auxin Response Factor 8, TC303498 encoding auxin responsive protein, LOC100284645 encoding SAUR family protein, and LOC100304432 encoding auxin conjugate hydrolase, and LOC100285511 encoding indole-3-acetate beta-glucosyltransferase).

On the other hand, in the mesocotyls, nine genes related to phytohormones and one gene related to water channel aquaporin were responsive to μg conditions in space (Table 5). It should also be noted that expression of several auxin-related genes were up-regulated (TC309752 encoding Auxin Response Factor 8, TC290939 encoding IAA25 [an auxin-responsive Aux/IAA family member], LOC10030406 encoding SAUR 33 [auxin-responsive SAUR family member], and LOC100191847 encoding an auxin-induced protein); several were down-regulated (LOC100279643 encoding a SAUR family protein, TC301840 encoding Aux/IAA protein, and CD947244 encoding auxin-induced-related) under μg conditions in space. These results strengthen support for the commonly accepted idea that the plant growth and development is substantially regulated by the network of phytohormones either under 1 g conditions on Earth or under μg conditions in space.

Phytohormones are considered to act as chemical mediators in response to environmental stimuli and endogenous physiological signals. Many studies of gene
Microarray analysis with maize seedlings grown in space

Table 3. Commonly expressed genes that change under μg conditions in space regardless of organ difference (the coleoptiles and the mesocotyls). The signal ratios calculated with an expression ratio >2 are included. Microarray data were analyzed using the Maize Microarray Annotation Database at http://MaizeArrayAnnot.bi.up.ac.za/ (Coetzer et al., 2011).

A: Commonly up-regulated genes under μg conditions in space regardless of organ difference (the coleoptiles and the mesocotyls)

Probe name	Gene symbol	Putative annotation
A_92_P003827	TC309752	auxin response factor expressed
A_92_P040165	TC253935	gibberellin 2-beta-dioxygenase [Zea mays]
A_92_P06218	TC301109	amino acid permease [Zea mays]
A_92_P027068	BG317220	ATP-binding cassette, sub-family A (ABC1), member 9, isoform CRA_b [Homo sapiens]
A_92_P011423	LOC100284433	ZIM motif family protein [Zea mays]
A_92_P027282	TC301163	ZIM motif family protein [Zea mays]
A_92_P038612	BM380732	ZIM motif family protein [Zea mays]
A_92_P038838	LOC100286212	ZIM motif family protein [Zea mays]
A_92_P029595	LOC100281370	WRKY DNA binding domain containing protein [Zea mays]
A_92_P032910	AC205562.3_FG002	WRKY69-superfamily of TFs having WRKY and zinc finger domains [Zea mays]
A_92_P033858	DBF4	DRE-binding protein 4 [Zea mays]
A_92_P024914	dBf5	DRE-binding protein 3 [Zea mays]
A_92_P017026	pco133091	stress-induced transcription factor NAC1 [Oryza sativa Indica Group]
A_92_P017408	pco133091	stress-induced transcription factor NAC1 [Oryza sativa Indica Group]
A_92_P032015	TC313829	GM15425 [Drosophila sechellia]
A_92_P027167	TC295487	helix-loop-helix DNA-binding domain containing protein [Zea mays]
A_92_P007074	TC281776	HSI-like protein [Saccharum hybrid cultivar R570]
A_92_P029846	CD991724	HSI-like protein [Saccharum hybrid cultivar R570]
A_92_P028814	47.21266	long cell-linked locus protein [Zea mays]
A_92_P00139	TC288823	phi-1-like phosphatase-induced protein [Zea mays]
A_92_P01352	LOC100280482	polcalcin Jun o.2 [Zea mays]
A_92_P014864	TC303349	PREDICTED: LOW QUALITY PROTEIN: RNA-binding protein 33-like [Ailuropoda melanoleuca]
A_92_P035916	TC302807	Ser/Thr receptor-like kinase, putative, expressed [Triticum aestivum]
A_92_P040191	TC283019	syntaxin 121 [Zea mays]
A_92_P026239	TC297790	type I phosphodiesterase/nucleotide pyrophosphatase family protein [Desulfovibrio magneticus RS-1]

Others: 81 genes and 8 genes belonged to hypothetical proteins; some proteins of unidentified function; 20 genes were not annotated; 20 genes were unknown.

B: Commonly down-regulated genes under μg conditions in space regardless of organ difference, the coleoptiles and the mesocotyls

Probe name	Gene symbol	Putative annotation
A_92_P031495	TC300430	LOC100284300 [Zea mays]
A_92_P011780	CG773924	hypothetical protein [Zea mays]
A_92_P01463	CN944556	hypothetical protein [Zea mays]
A_92_P029251	LOC10030437	hypothetical protein [Zea mays]
A_92_P001479	MAGI4_38589	hypothetical protein [Zea mays]
A_92_P017161	CF384436	predicted protein [Nematostella vectensis]
A_92_P003472	DR909913	NA
A_92_P023100	BM800760	unknown [Zea mays]
A_92_P028768	LOC100382036	unknown [Zea mays]
A_92_P039242	LOC100382036	unknown [Zea mays]

expression using microarrays have been conducted on different plant species. As shown in Tables 4 and 5, the phytohormone-related transcript levels of 17 up-regulated and 1 down-regulated in the coleoptiles, and 9 up-regulated and 6 down-regulated in the mesocotyls of etiolated maize seedlings grown under μg conditions in space were recognized as compared with 1 g conditions on Earth. Semi-quantitative reverse transcriptase PCR and RNA blot analyses using total RNA prepared from independently isolated should be examined in the near future. Obtained results with the microarray analysis of phytohormone-related genes will provide improvement of our understanding of how plant growth and development and other physiological events respond to the changes in gravity.

Up- and down-regulated phytohormone-related and water channel related genes in the coleoptiles compare with the mesocotyls of etiolated maize seedlings grown under 1 g conditions on Earth, and of those grown under μg conditions in space were shown in Tables 6 and 7, respectively. Obtained microarray profiles will provide improvement of our understanding of differences in morphology and growth in response to gravity conditions in these organs.

Based on the data from microarray analysis, the mechanisms by which PAT was enhanced in etiolated maize coleoptiles grown in μg conditions in space were not clarified, although, as described above, several auxin-
related genes were substantially up- or down-regulated in μg conditions in space. Microgravity dramatically altered cellular localization of ZmPIN1a, an auxin efflux carrier in plasma membranes in parenchymatous cells of the coleoptiles, shifting mainly toward the vascular bundle. However, gene expression of ZmPIN1a and ZmAUX1 encoding auxin influx carrier did not increase in space (Oka et al., 2020). In this microarray analysis, μg
conditions in space had no significant effect on ZmPIN1a and ZmAUX1 gene expression. The expression levels of OsPIN1a and OsPIN1b, and OsAUX1 in rice seedlings detected by a microarray have been reported to be unaffected by μg conditions in space (Wakabayashi et al., 2017). These data support our previous suggestion that the mechanism of μg-enhanced PAT in maize shoots is more likely to be due to the enhanced ZmPIN1a accumulation and altered ZmPIN1a localization in the parenchymatous cells of the coleoptiles (Oka et al., 2020), although the mechanisms that enable the cells to acclimate to a different gravity are still poorly understood.

The expression of several water channel genes, Nodulin26-like intrinsic protein3-1, Plasma membrane

Table 4. Up- and down-regulated genes related with phytohormones in the coleoptiles of etiolated maize seedlings under μg conditions in space. The signal ratios calculated with the expression ratio >2 are included. FC indicates the multiple. Microarray data were analyzed using the Maize Microarray Annotation Database at http://MaizeArrayAnnot.bi.up.ac.za/ (Coetzer et al., 2011).

A	Up-regulated genes in the coleoptiles under μg conditions in space compared with those under 1 g conditions on Earth		
Probe name	Gene symbol	Putative annotation	FC
A_92_P003827	TC309752	auxin response factor 8	3.40
A_92_P041727	TC303498	auxin responsive protein	12.06
A_92_P007680	LOC100284645	saur family protein	3.73
A_92_P035877	LOC100304432	auxin conjugate hydrolase	9.20
A_92_P040165	TC283935	gibberellin 2-oxidase	2.61
A_92_P004075	DT652030	tpa: gid1-like gibberellin receptor	2.21
A_92_P04220	CO449604	tpa: gid1-like gibberellin receptor	2.17
A_92_P014620	TC288228	tpa: gid1-like gibberellin receptor	2.13
A_92_P019259	tps1	ent-kaurene synthase b	9.65
A_92_P041713	BM501430	ent-kaurene synthase b	5.76
A_92_P025735	DR970388	cytokinin-O-glucosyltransferase 2	2.91
A_92_P039216	TC289805	1-aminoacyclopropane-1-carboxylate synthase	2.80
A_92_P021355	LOC100285687	ethylene-responsive transcription factor 2	3.48
A_92_P026370	LOC100274396/LOC100283499	ethylene-responsive transcription factor 2	2.59
A_92_P017575	TC309475	ethylene responsive element binding factor 5	2.24
A_92_P040282	LOC100278463	ethylene-responsive transcription factor 4	4.32
A_92_P035403	TC288322	12-oxophytodienoic acid reductase	3.75

B	Down-regulated gene in the coleoptile under μg conditions in space compared with that under 1 g conditions on Earth		
Probe name	Gene symbol	Putative annotation	FC
A_92_P019391	LOC100285511	indole-3-acetate beta-glucosyltransferase	2.71

Table 5. Up- and down-regulated genes related to phytohormones and water channel in the mesocotyls of etiolated maize seedlings under μg conditions in space. The signal ratios calculated with the expression ratio >2 are included. FC indicates the multiple. Microarray data were analyzed using the Maize Microarray Annotation Database at http://MaizeArrayAnnot.bi.up.ac.za/ (Coetzer et al., 2011).

A	Up-regulated genes in the mesocotyls under μg conditions in space compared with those under 1 g conditions on Earth		
Probe name	Gene symbol	Putative annotation	FC
A_92_P003827	TC309752	auxin response factor 8	3.29
A_92_P004637	TC290939	iaa25-auxin-responsive aux iaa family member	2.19
A_92_P039969	LOC100304064	saur33-auxin-responsive saur family member	2.04
A_92_P029268	LOC100191847	auxin-induced protein	5.12
A_92_P024419	TC308787	auxin response factor	3.14
A_92_P040165	TC283935	gibberellin 2-oxidase	4.11
A_92_P000187	geranylgeranyl diphosphate synthase	2.70	
A_92_P017575	TC309475	ethylene responsive element binding factor 5	2.17
A_92_P040282	LOC100278463	ethylene-responsive transcription factor 4	3.05
A_92_P020898	NIP2-1	nod26-like major intrinsic protein	2.05

B	Down-regulated genes in the mesocotyls under μg conditions in space compared with those under 1 g conditions on Earth		
Probe name	Gene symbol	Putative annotation	FC
A_92_P016049	LOC100279643	saur family protein	2.45
A_92_P035458	TC301840	aux iaa protein	2.09
A_92_P012851	CD947244	auxin-induced-related, indole-3-acetic acid induced-related-like	2.28
A_92_P007812	AC203966.5_FG005	gibberellin 20 oxidase	2.04
A_92_P005300	TC302601	iso-kaurene synthase	2.16
A_92_P008699	TC290707	kaurene synthase2 [Zea mays]	3.27
Table 6. Up- and down-regulated phytohormone-related and water channel-related genes in the coleoptiles compared with the mesocotyls of etiolated maize seedlings grown under 1 g conditions on Earth. The signal ratios calculated with an expression ratio >2 are included. FC indicates the multiple. Microarray data were analyzed using the Maize Microarray Annotation Database at http://MaizeArrayAnnot.bi.up.ac.za/ (Coetzer et al., 2011).

A: Up-regulated genes in the coleoptiles compared with the mesocotyls under 1 g conditions on Earth

Probe name	Gene symbol	Putative annotation	FC
A_92_P008134	LOC100274564	auxin response factor expressed	2.03
A_92_P038369	TC289436	auxin response	3.14
A_92_P028948	aic1	auxin influx carrier component	2.22
A_92_P033688	TC300002	auxin influx carrier component	2.58
A_92_P031877	TC280561	auxin response factor expressed	3.49
A_92_P031674	DT53630	auxin responsive protein	3.51
A_92_P029981	TC312303	iaa9-auxin-responsive aux iaa family member	2.04
A_92_P024977	c12749_1	auxin induced protein	3.94
A_92_P015153	TC280560	auxin response factor expressed	2.42
A_92_P021173	LOC100273544	auxin response factor expressed	2.84
A_92_P037233	LOC100279375	iaa16-auxin-responsive aux iaa family member	2.46
A_92_P018244	LOC100283409	auxin response factor 75	2.11
A_92_P029268	LOC100191847	auxin-induced protein	3.20
A_92_P027796	LOC100273280	dormancy auxin associated expressed	2.56
A_92_P035359	TC285732	dormancy auxin associated expressed	3.21
A_92_P000534	PIN10a	auxin efflux carrier	2.04
A_92_P036865	PIN10a	auxin transport protein	2.07
A_92_P034419	TC306787	auxin response factor expressed	5.23
A_92_P019180	TC312866	auxilin-like protein	2.23
A_92_P041021	bx1	indole synthase	3.13
A_92_P015991	LOC100281876	gibberellin 2-oxidase	3.31
A_92_P007195	LOC100279730	gibberellin receptor gid12	2.08
A_92_P041347	TC283646	gibberellin receptor gid12	2.86
A_92_P011603	TC279907	gibberellin-regulated protein 1 precursor	10.91
A_92_P015997	TC296753	gibberellin receptor gid12	2.61
A_92_P040561	AC148152.3_FG005	1-aminoacyclopropane-1-carboxylate oxidase	2.03
A_92_P005060	LOC100191321	1-aminoacyclopropane-1-carboxylate oxidase	2.90
A_92_P030869	TC296640	ethylene-responsive transcription factor 3	2.20
A_92_P026522	TC303789	ethylene-overproduction protein 1	2.15
A_92_P041843	LOC100278000	cytokinin-O-glucosyltransferase 2	2.85
A_92_P010694	LOC100194073	cytokinin-N-glucosyltransferase 1	4.13
A_92_P037496	LOC100216698	cis-zeatin O-glucosyltransferase	3.11
A_92_P023501	TC304292	cytokinin-O-glucosyltransferase 2	3.73
A_92_P009352	opr6	12-oxophytodienoic acid reductase	2.43

B: Down-regulated genes in the coleoptiles compared with the mesocotyls under 1 g conditions on Earth

Probe name	Gene symbol	Putative annotation	FC
A_92_P016049	LOC100279643	saur family protein (Small Auxin Up-Regulated genes)	2.62
A_92_P002869	TC282777	gh3 family protein (Auxin-responsive GH3 family protein)	4.42
A_92_P009793	TC291934	iaa16-auxin-responsive aux iaa family member	4.17
A_92_P017110	TC313452	iaa9-auxin-responsive aux iaa family member	4.88
A_92_P013043	TC303963	auxin efflux carrier component	2.04
A_92_P041401	DR815209	auxin efflux carrier component	8.89
A_92_P041727	TC303498	auxin responsive protein	21.73
A_92_P039969	LOC100304064	saur33-auxin-responsive saur family member	2.05
A_92_P011352	umc1527	iaa12-auxin-responsive aux iaa family member	2.68
A_92_P023616	LOC100193444	iaa15-auxin-responsive aux iaa family member	2.52
A_92_P031752	CO446587	iaa15-auxin-responsive aux iaa family member	2.27
A_92_P026164	LOC100272577	iaa15-auxin-responsive aux iaa family member	8.43
A_92_P028798	LOC100274580	iaa16-auxin-responsive aux iaa family member	4.75
A_92_P026777	LOC100501604	saur33-auxin-responsive saur family member	97.20
A_92_P035458	TC301840	aux iaa protein	6.17
A_92_P037187	cs8808_2	aux iaa protein	10.59
A_92_P007353	TC291881	auxin-responsive family protein	3.73
A_92_P014336	LOC100384587	iaa14-auxin-responsive aux iaa family member	3.75
A_92_P001004	LOC100281451	auxin efflux carrier family protein	4.52
A_92_P015994	DR970126	auxin efflux carrier family protein	5.68
Microarray analysis with maize seedlings grown in space

Probe name	Gene symbol	Putative annotation	FC
A_92_P022309	LOC100281432	auxin-independent growth promoter	2.79
A_92_P034034	LOC100281432	auxin-independent growth promoter	3.71
A_92_P036263	PIN5c	auxin efflux carrier component	2.48
A_92_P021795	LOC100304260	auxin-induced protein	2.11
A_92_P037345	TC302307	auxin conjugate hydrolase	3.96
A_92_P025204	TC302430	auxin-independent growth promoter	4.51
A_92_P005536	LOC100501492	auxin influx carrier component	8.90
A_92_P012851	CD947244	auxin-induced-related, indole-3-acetic acid induced-related-like	2.00
A_92_P026112	TC299405	auxin response factor 7a	3.03
A_92_P040141	LOC100285200	aux1-like permease	2.26
A_92_P007680	LOC100284645	saur family protein	4.78
A_92_P006412	CD966839	saur family protein	2.61
A_92_P006412	NIP2-1	nodulin-like protein 5ng4	12.34
A_92_P036454	LOC100279417	nodulin-like protein 5ng4	10.02
A_92_P028288	TC290531	indole-3-acetic acid-amido synthetase	3.31
A_92_P039996	CF633343	indole-3-acetic acid-induced protein	26.73
A_92_P035775	LOC100283148	gibberellin 2-oxidase	5.16
A_92_P033542	LOC100285694	gibberellin responsive1 [Zea mays]	2.69
A_92_P029216	gar1	ent-kaurene synthase-like protein 1	15.60
A_92_P041504	TC315348	gibberellin receptor gid12	6.15
A_92_P016737	CD938481	gibberellin 2-oxidase	2.87
A_92_P004220	TC291345	tpa: gid1-like gibberellin receptor	2.15
A_92_P014620	CO449604	tpa: gid1-like gibberellin receptor	2.33
A_92_P007812	AC203966.5_FG005	gibberellin 20 oxidase	2.25
A_92_P022237	DR965584	cytokinin-O-glucosyltransferase 1	4.37
A_92_P025345	CO530016	cytokinin-N-glucosyltransferase 1	11.74
A_92_P006993	CO460823	cytokinin-O-glucosyltransferase 3	4.86
A_92_P039216	TC298905	1-aminocyclopropane-1-carboxylate synthase	13.01
A_92_P017185	TC310713	1-aminocyclopropane-1-carboxylate oxidase	3.02
A_92_P039018	TC298909	1-aminocyclopropane-1-carboxylate synthase	7.27
A_92_P021355	LOC100285687	ethylene-responsive transcription factor 2	2.48
A_92_P012448	LOC100216872	ethylene-responsive family	2.70
A_92_P024931	DR816653	ethylene-responsive family	2.43
A_92_P041084	pco106446	ethylene-responsive family protein	2.30
A_92_P026370	LOC100274398/LOC100283499	ethylene responsive protein	4.58
A_92_P034037	TC289555	ethylene-responsive protein	3.23
A_92_P027408	TC315321	ethylene-induced calmodulin-binding protein 4	2.18
A_92_P040282	LOC100278463	ethylene-responsive transcription factor 4	2.66
A_92_P013803	BE643561	ethylene response factor	3.89
A_92_P026121	umc1393	ethylene response factor	2.73
A_92_P001175	TC307676	1-aminocyclopropane-1-carboxylate synthase	5.30
A_92_P024829	TC283295	brassinosteroid insensitive 1-associated receptor kinase 1 precursor	2.79
A_92_P014900	TC293855	brassinosteroid insensitive 1-associated receptor kinase 1 precursor	2.64
A_92_P030036	CD651380	jasmonate O-methyltransferase	2.59
A_92_P041718	TC304534	jasmonate O-methyltransferase	3.33
A_92_P033682	NIP2-3	nod26-like major intrinsic protein	4.01
A_92_P023471	TC306588	nod26-like major intrinsic protein	8.07
A_92_P06282	pip2e	aquaporin	3.27
A_92_P05935	TC311399	aquaporin	7.65
A_92_P016372	pip2c	plasma membrane intrinsic protein	18.53
A_92_P020820	pip2d	plasma membrane intrinsic protein	16.79
A_92_P001145	TC302043	plasma membrane intrinsic protein	138.07
A_92_P031303	tip2b	tonoplast intrinsic protein	198.92
A_92_P013456	LOC100192638	nod26-like major intrinsic protein	4.40
A_92_P020898	NIP2-1	nod26-like major intrinsic protein	4.63

Intrinsic protein11, and AQUAPORIN1/Tonoplast intrinsic protein, were found to be gravity-regulated in etiolated pea seedlings (Kamada et al., 2020). NIP2-1 gene encoding nod26-like major intrinsic protein was up-regulated in etiolated maize seedlings grown under μg conditions in space (Table 5). These data also suggest that water channel genes function to maintain plant growth and development in space.

In the coleoptiles, 877 and 153 genes were up-regulated and down-regulated under μg conditions,
Table 7.
Up- and down-regulated phytohormone-related and water channel-related genes in the coleoptiles compared with the mesocotyls of etiolated maize seedlings grown under μg conditions in space. The signal ratios calculated with the expression ration >2 are included. FC indicates the multiple. Microarray data were analyzed using the Maize Microarray Annotation Database at http://MaizeArrayAnnot.bi.up.ac.za/ (Coetzer et al., 2011).

A: Up-regulated genes in the coleoptiles compared with the mesocotyls under μg conditions in space

Probe name	Gene symbol	Putative annotation	FC
A_92_P031877	TC280561	auxin response factor expressed	2.44
A_92_P031674	DT53630	auxin responsive protein	3.27
A_92_P033267	DR795294	saur25-auxin-responsive saur family member	2.58
A_92_P024977	ci12749_1	auxin induced protein	4.29
A_92_P020320	CD995873	iaa30-auxin-responsive aux iaa family member	3.48
A_92_P021173	LOC100273544	auxin response factor expressed	2.01
A_92_P041021	bx1	indole synthase	2.32
A_92_P005060	LOC100191321	1-aminocyclopropane-1-carboxylate oxidase	3.33
A_92_P041454	LOC100191321	1-aminocyclopropane-1-carboxylate oxidase	2.02
A_92_P030869	TC296640	ethylene-responsive transcription factor 3	3.50
A_92_P026522	TC303789	ethylene-overproduction protein 1	2.77
A_92_P015991	LOC100281876	gibberellin 2-oxidase	2.76
A_92_P007195	LOC100279730	gibberellin receptor gid12	2.51
A_92_P032458	TC284380	cytokinin oxidase	3.51
A_92_P010694	LOC100194073	cytokinin-N-glucosyltransferase 1	3.39
A_92_P037496	LOC100216698	cis-zeatin O-glucosyltransferase	2.20
A_92_P003470	LOC100502319	aquaporin	2.59

B: Down-regulated genes in the coleoptiles compared with the mesocotyls under μg conditions in space

Probe name	Gene symbol	Putative annotation	FC
A_92_P001004	LOC100281451	auxin efflux carrier family protein	2.84
A_92_P015994	DR970126	auxin efflux carrier family protein	2.80
A_92_P031666	TC280891	ettin protein	2.98
A_92_P040141	LOC100285200	aux1-like permease	2.02
A_92_P022309	LOC100281432	auxin-independent growth promoter	2.80
A_92_P034034	LOC100281432	auxin-independent growth promoter	3.43
A_92_P020346	LOC100286028	iaa14-auxin-responsive aux iaa family member	2.32
A_92_P009793	TC291934	iaa16-auxin-responsive aux iaa family member	8.37
A_92_P017110	TC313452	iaa9-auxin-responsive aux iaa family member	4.80
A_92_P013043	TC303963	auxin efflux carrier component	2.49
A_92_P041401	DR815209	auxin efflux carrier component	6.16
A_92_P039969	LOC100304064	saur33-auxin-responsive saur family member	2.99
A_92_P011352	umc1527	iaa12-auxin-responsive aux iaa family member	3.13
A_92_P023616	LOC100193444	iaa15-auxin-responsive aux iaa family member	2.94
A_92_P031752	CO446587	iaa15-auxin-responsive aux iaa family member	2.48
A_92_P026164	LOC10027577	iaa15-auxin-responsive aux iaa family member	6.14
A_92_P036263	PIN5c	auxin efflux carrier component	2.95
A_92_P028798	LOC100274580	iaa16-auxin-responsive aux iaa family member	3.37
A_92_P037345	TC302307	auxin conjugate hydrolase	3.35
A_92_P025204	TC302430	auxin-independent growth promoter	3.09
A_92_P026777	LOC100501604	saur33-auxin-responsive saur family member	68.64
A_92_P005536	LOC100501492	auxin influx carrier component	6.55
A_92_P035458	TC301840	aux iaa protein	2.86
A_92_P037187	ci8808_2	aux iaa protein	4.21
A_92_P007353	TC291881	auxin-responsive family protein	2.74
A_92_P006797	LOC100283322	iaa12-auxin-responsive aux iaa family member	2.03
A_92_P014336	LOC100384587	iaa14-auxin-responsive aux iaa family member	3.62
A_92_P026112	TC299405	auxin response factor 7a	2.47
A_92_P028988	TC290531	indole-3-acetic acid-amido synthetase	4.06
A_92_P010997	TC304613	indole-3-acetic acid inducible 31	11.53
A_92_P039996	CF633343	indole-3-acetic acid-induced protein	18.18
A_92_P016013	CX129610	indole-3-acetate beta-glucosyltransferase	3.76
A_92_P024463	LOC100274322	indole-3-acetate beta-glucosyltransferase	4.90
A_92_P000591	LOC100285511	indole-3-acetate beta-glucosyltransferase	2.31
A_92_P035775	LOC100285694	gibberellin 2-oxidase	2.56
A_92_P041504	CD936481	gibberellin receptor gid12	4.70
A_92_P016737	TC291345	gibberellin 2-oxidase	2.26
Microarray analysis with maize seedlings grown in space

respectively. It should be mentioned that several genes related to cell wall metabolism were up-regulated, these encoding cellulose synthase (BM378963: FC 2.93; AW256077: FC 2.32), xyloglucan endoglycosylase (LOC10019158: FC 2.03), β-glucanase (TC280477: FC 2.32; LOC100384311: FC 2.71), and pectinacetylesterase family protein (TC305059: FC 2.15). In the mesocotyls of 428 and 162 genes up-regulated and down-regulated under μg conditions in space, several genes related to cell wall metabolism were up-regulated, these encoding pectin methylesterase (CO452292: FC 3.41), pectate lyase (CD651380: FC 2.41), and β-glucanase (LOC100384311: FC 2.71), and pectinacetylesterase family protein (TC305059: FC 2.15). In the mesocotyls of 428 and 162 genes up-regulated and down-regulated under μg conditions in space, several genes related to cell wall metabolism were up-regulated, these encoding pectin methylesterase (CO452292: FC 3.41), pectate lyase (CD651380: FC 2.41), and β-glucanase (LOC100384311: FC 2.71), and pectinacetylesterase family protein (TC305059: FC 2.15). A glycomics study of the BRIC-16-Cyt sample in Arabidopsis suggests that biosynthesis of xylan and pectic components of the cell might be impacted by μg conditions in space and cause a compositional difference in the cell wall matrix (Johnson et al., 2017). Microarray analysis as determined by the BRIC-16-Cyt microarray also revealed that several genes involved in cell wall modification were up-regulated in spaceflight: arabinogalactan proteins AGP31 (AT1G28290) and the xyloglucan XTH9 (AT4G03210) (Johnson et al., 2017). Maize seedlings grown under μg conditions in space showed automorphogenesis, the coleoptiles slightly being curved, and the mesocotyls being curved at random in a growth chamber maize box (Miyamoto et al., 2019). As already reported (Sugimoto et al., 2014; Johnson et al., 2017; Choi et al., 2019; Barker et al., 2020), it was not excluded the possibility that genes affected by μg conditions in space were related to redox control and/or stress responses in different plant organs as well. Together with the fact that several cell wall-related genes were up-regulated in maize seedlings, μg conditions in space led to structural differences in cell walls, possibly resulting in the changes due to morphogenesis.

Acknowledgments

We wish to thank the ISS crew members, Timothy Peake, Thomas Pesquet, and other colleagues, for running our in-orbit experiments. We are also grateful to all members of the Japan Aerospace Exploration Agency (JAXA) Flight Control Team for their preparations and ground operations during the experiments. The Auxin Transport project was entirely supported by funding provided by JAXA for the Japan Experiment Module (JEM) utilization program. We also sincerely thank Dr. Berger, D. K., Department of Plant Science, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa, for allowing us to use the Maize Microarray Annotation Database at http://MaizeArrayAnnot.bi.up.ac.za/.

Declaration of Interests

The authors declare that there are no competing interests.
References

Baker, R., Lombardino, J., Rasmusson, K., Gilroy, S. (2020) Test of Arabidopsis space transcriptome: A discovery environment to explore multiple plant biology spaceflight experiments. Front. Plant Sci., 11, 147. https://doi.org/10.3389/fpls.2020.00147.

Choi, W.-G., Barker, R. J., Kim, S.-H., Swanson, S. J., Gilroy, S. (2019) Variation in the transcriptome of different ecotypes of Arabidopsis thaliana reveals signatures of oxidative stress in plant responses to spaceflight. Amer. J. Bot., 106, 123-136. https://doi.org/10.1002/ajb2.1223.

Coetzter, N., Myburg, A. A., Berger, D. K. (2011) Maize microarray annotation database. Plant Methods, 7, e31. https://www.plantmethods.com/content/7/1/31.

Correll, M. J., Kiss, J. (2008) Space-based research on plant tropism. In: Gilroy, S., Masson, P. H. (eds) Plant Tropism, Blackwell, Oxford, UK., pp 161-182. https://doi.org/10.1002/9780470388297.ch8.

Fengler, S., Sporer, I., Neef, M., Ecke, M., Nieselt, K., Hampp, R. (2015) A whole-genome microarray study of Arabidopsis thaliana semisolid callus cultures exposed to microgravity and nonmicrogravity related spaceflight conditions for 5 days on board of Shenzhou 8. BioMed Res. Int., 2015, e547495. http://dx.doi.org/10.1155/2015/547495.

Ferl, R. J., Paul, A.-L. (2016) The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. npj Microgravity, 2, e15023. https://doi.org/10.1038/npjmgvrat.2015.23.

Halstead, T. W., Dutcher, F. R. (1987) Plants in space. Annu. Rev. Plant. Physiol., 38, 317-345. https://doi.org/10.1146/annurev.pp.38.060187.001533.

Higashitani, A., Hashizume, T., Nemoto, K., Higashitani, N., Etheridge, T., Mori, C., Harada, S., Sugimoto, T., Szewczyk, N. J., Baba, S. A., Mogami, Y., Fukui, K., Higashitani, A. (2016) Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. npj Microgravity, 2, e15022. https://doi.org/10.1038/npjmgvrat.2015.22.

Hoson, T., Matsumoto, S., Soga, K., Wakabayashi, K., Hashimoto, T., Sonobe, S., Muranaka, T., Kamisaka, S., Kamada, M., Omori, K., Ishioka, N., Shimazu, T. (2009) Growth and cell wall properties in hypocotyls of Arabidopsis thaliana reveals microgravity conditions in space. Biol. Sci. Space, 23, 71-76. https://doi.org/10.2187/bss.23.71.

Hoson, T., Soga, K., Wakabayashi, K., Hashimoto, T., Karahara, I., Yano, S., Tanigaki, F., Shimazu, T., Kasahara, H., Masuda, D., Kamisaka, S. (2014) Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space. Plant Biol., 16 (S1), 91-96. http://dx.doi.org/10.1111/plb.12099.

Johnson, C. M., Subramanian, A., Pattathil, S., Correll, M. J., Kiss, J. Z. (2017) Comparative transcriptomics indicate changes in wall organization and stress response in seedling during spaceflight. Amer. J. Bot., 104, 1219-1231. http://doi.org/10.3732/ajb.1700079.

Kamada, M., Fujii, N., Aizawa, S., Kamiguchi, S., Mukai, C., Shimazu, T., Takahashi, H. (2000) Control of gravimorphogenesis by auxin: accumulation pattern of CS-IAA1 mRNA in cucumber seedlings grown in space and on the ground. Planta, 211, 493-501. https://doi.org/10.1007/s004250000321.

Kamada, M., Oka, M., Inoue, R., Fujitaka, Y., Miyamoto, K., Uheeda, E., Yamazaki, C., Shimazu, T., Sano, H., Kasahara, H., Suzuki, T., Higashitani, A., Ueda, J. (2019) Gravity-regulated localization of PsPIN1 is important for polar auxin transport in etiolated pea seedlings: Relevance to the International Space Station experiment. Life Sci. Space Res., 22, 29-37. https://doi.org/10.1016/j.lssr.2019.07.001.

Kamada, M., Oka, M., Miyamoto, K., Uheeda, E., Yamazaki, C., Shimazu, T., Sano, H., Kasahara, H., Suzuki, T., Higashitani, A., Ueda, J. (2020) Microarray profile of gene expression in etiolated Pisum sativum seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment “Auxin Transport”. Life Sci. Space Res., 26, 55-61. https://doi.org/10.1016/j.lssr.2020.04.005.

Kimbrough, J. M., Salinas-Mondragon, R., Boss, W. F., Brown, C. S., Sederoff, H. K. (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol., 136, 2790-2805. https://doi.org/10.1104/pp.104.044594.

Kiss, J. Z. (2014) Plant biology in reduced gravity on the Moon and Mars. Plant Biol., 16 (S1), 12-14. https://doi.org/10.1111/plb.12031.

Lebsack, T. W., Fa, V., Woods, C. C., Gruener, R., Manziello, A. M., Pecaut, M. J., Gridley, D. S., Stodieck, L. S., Ferguson, V. L., Deluca, D. (2010) Microarray analysis of spaceflown murine thymus tissue reveals changes in gene expression regulating stress and glucocorticoid receptors. J. Cell Biochem., 110, 372-381. https://doi.org/10.1002/jcb.22547.

Ma, J., Skibbe, D. S., Fernandes, J., Walbot, V. (2008) Male reproductive development: gene expression profiling of maize anther and pollen ontogeny. Genome Biol., 9, R181. https://doi.org/10.1186/gb-2008-9-12-r181.

Miyamoto, K., Inui, A., Uheeda, E., Oka, M., Kamada, M., Yamazaki, C., Shimazu, T., Kasahara, H., Sano, H., Suzuki, T., Higashitani, A., Ueda, J. (2019) Polar auxin transport is essential to maintain growth and development of etiolated pea and maize seedlings grown under 1 g conditions: Relevance to the International Space Station experiment. Life Sci. Space Res., 20, 1-11. https://doi.org/10.1016/j.lssr.2018.11.001.

Oka, M., Kamada, M., Inoue, R., Miyamoto, K., Uheeda, E., Yamazaki, C., Shimazu, T., Sano, H., Kasahara, H., Suzuki, T., Higashitani, A., Ueda, J. (2020) Altered localisation of ZmPIN1a proteins in plasma membranes responsible for enhanced-polar auxin transport in etiolated maize seedlings under...
Microarray analysis with maize seedlings grown in space

microgravity conditions in space. Functional Plant Biol., 47, 1062-1072. https://doi.org/10.1071/FP20133.

Paul, A.-L., Wheeler, R. M., Levine, H. G., Ferl, R. J. (2013) Fundamental plant biology enabled by the Space Shuttle. Amer. J. Bot., 100, 226-234. https://doi.org/10.3732/ajb.1200338.

Soga, K., Yamasaki, C., Kamada, M., Tanigawa, N., Kasahara, H., Yano, S., Kojo, K. H., Kutsuna, N., Kato, T., Hashimoto, T., Kotake, T., Wakabayashi, K., Hoson, T. (2018) Modification of growth anisotropy and cortical microtubule dynamics in Arabidopsis hypocotyls grown under microgravity conditions in space. Physiol. Plant., 162, 135-144. https://doi.org/10.1111/ppl.12640.

Stanković, B., Volkmann, D., Sack, F. D. (1998) Autotropism, automorphogenesis, and gravity. Physiol. Plant., 102, 328-335. https://doi.org/10.1034/j.1399-3054.1998.1020222.x.

Sugimoto, M., Oono, Y., Gusev, O., Matsumoto, T., Yazawa, T., Levinskikh, M. A., Sychev, V. N., Bingham, G. E., Wheeler, R., Hummerick, M. (2014) Genomewide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biology, 14, e4. https://www.biomedcentral.com/1471-2229/14/4.

Ueda, J. (2020) Comprehensive report on the Auxin Transport space experiment: the analysis of gravity response and attitude control mechanisms of plants under microgravity conditions in space on the International Space Station. Biol. Sci. Space, 34, 12-33. https://doi.org/10.2187/bss.34.12.

Ueda, J., Miyamoto, K., Yuda, T., Hoshino, T., Sato, K., Fujii, S., Kamigaichi, S., Izumi, R., Ishioka, N., Aizawa, S., Yoshizaki, I., Shimazu, T., Fukui, K. (2000) STS-95 space experiment for growth and development, and auxin polar transport. Biol. Sci. Space, 14, 47-57. https://doi.org/10.2187/bss.14.47.

Wakabayashi, K., Soga, K., Hoson, T., Kotake, T., Kojima, M., Sakakibara, H., Yamazami, C., Higashibat, A., Ishioka, N., Shimazu, T., Kamada, M. (2017) Persistence of plant hormone levels in rice shoots grown under microgravity conditions in space: its relationship to maintenance of shoot growth. Physiol. Plant., 161, 285-293. https://doi.org/10.1111/ppl.12591.

Wakabayashi, K., Soga, K., Hoson, T., Kotake, T., Yamazaki, T., Higashibata, A., Ishioka, N., Shimazu, T., Fukui, K., Osada, I., Kasahara, H., Kamada, M. (2015) Suppression of hydroxycinnamate network formation in cell walls of rice shoots grown under microgravity conditions in space. PLoS One, 10, e0137992. https://doi.org/10.1371/journal.pone.0137992.

Yamazaki, C., Fujii, N., Miyazawa, Y., Kamada, M., Kasahara, H., Osada, I., Shimazu, T., Fusejima, Y., Higashibata, A., Yamazaki, T., Ishioka, N., Takahashi, H. (2016) The gravity-induced re-localization of auxin efflux carrier CsPIN1 in cucumber seedlings: spaceflight experiments for immunohistochemical microscopy. npj Microgravity, 2, e16030. https://doi.org/10.1038/npjmgrav.2016.30.

Author contributions

M. K., K. M., O. E. U., C. Y., T. Shimazu, H. S., H. K., T. Suzuki, A. H., and J. U. designed the experiments. M. K., K. M., O. A., H., and J. U. conducted the experiments and analyzed the data. M. K., K. M. and J. U. wrote the manuscript. All authors reviewed and approved the final version of the manuscript.