Analytical assessment on aviation practitioners needs for knowledge enhancement at the postgraduate level: an application of Fuzzy Delphi method

M F N Mohammad1,2,*, N H Ghafar1, N A Rahman1, R Abdullah2 and F Mayor3

1 Malaysian Institute of Aviation Technology, Universiti Kuala Lumpur, Selangor, Malaysia
2 Faculty of Computer Sciences and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia
3 Department of Economics and Social Sciences, Universitat Politècnica De Valencia, Valencia, Spain

*E-mail: fakhrulnizam@outlook.com

Abstract. Knowledge enhancement is essential to support continuous sustainability of organization in a competitive environment. It is not an exception to an aviation industry. In facing up with future challenges of industrial revolution 4.0 (IR 4.0), studies have shown that one of the issues addressed in ensuring its success is the importance of knowledge among employees. Various activities can be done to enhance knowledge such as by enrolling to academic (undergraduate or postgraduate) programs, attending short courses/training or sitting for professional certification. Furthermore, obtaining postgraduate degrees offers wide exposure to academic and industry environment. Therefore, the purpose of this study is to gauge the understanding on practitioners’ key reasons to further their education at the postgraduate level. Four major constructs established for this study to analyse the aviation practitioners’ intention to further study that are personal needs for continuing education, organization needs, source of funding and teaching and learning facilities. Document review were conducted at the beginning of the study to explore fundamental issues of knowledge enhancement needs among practitioners, meanwhile survey performed were analysed by using Fuzzy Delphi method (FDM). Findings shows that six elements (items) for the whole survey fulfil the criteria of threshold value (d construct) less than 0.2 and achieved the percentage of expert group consensus more than 75%. This research provides objective and constructive input to university on the major factors influencing aviation practitioner’s decision to further their study at the postgraduate level. The finding becomes avenues for university to draft a better postgraduate program to fulfil the requirement of industry and academic.

1. Introduction
Knowledge and skilful workers are the catalyst for the development of a country [1]. Pursuing formal education at postgraduate level is a continuous improvement that helps many to improve and enhance fundamental and applied knowledge. However, there are other factors that may affect the choices of pursuing study among practitioners. External and internal factors play important role in influencing the practitioners’ decision to pursue their study at postgraduate level. Within education sector that specialises on aviation program, there are very minimal number of postgraduate programs offered by university.
It is even more difficult to find aviation management program courses offered not only within Asia but in another region as well. Scarcity of programs may become external factors that deter aviation practitioners to further studies at postgraduate level. On the other hand, internal factors that gearing them up to further their studies are also important factors to look at. Furthermore, studies on practitioners’ decision to pursue their study at the postgraduate level remains unexplored. Therefore, studies need to be conducted in identifying the factors that influences practitioners’ decision in enhancing knowledge and pursue their study at postgraduate level.

Development of aviation management program at postgraduate level is hoped to fill up the gaps in offering aviation practitioners’ opportunities to upgrade their academic qualification. Development of master’s degree in aviation management is to support the development of future managers in the industry. It is estimated that by year 2030, Malaysia requires a total number of 32,000 aviation workforce [2]. From this figure, there is a conjecture for the compounding needs of numbers of managers and senior executive that requires higher academic qualification.

Malaysia has about 53 education and training institute in aerospace related programmes comprises of 27 higher education institutions, 15 technical academies and 11 DCA (Part 145) approved training organizations [3]. However, the dearth of management program in aviation offered is noteworthy; there is only one bachelor’s degree in aviation management offered currently, and there is no masters’ degree in aviation program offered yet. There is other aviation related program at postgraduate level currently offered in the other region such as Embry Riddle University (United States of America), Cranfield University (United Kingdom) or in Emirates Aviation University (Dubai) but not specifically to aviation management program. In year 2014, 3,637 skilled workers have been produced within South East Asia; Malaysia alone has produced about 54% of the skilled workers within region [3]. In the Asia Pacific region, Malaysia is forecasted to be the forefront in aviation sector. Furthermore, education and training sector are considered as essential in supporting the initiatives as highlighted both in the Malaysia Aerospace Industry Blueprint 2015-2030.

In realizing the emergence needs of an aviation management program at postgraduate level, an online survey was conducted to practitioners in aviation industry; to gauge their feedback for continuing education at the postgraduate level. The survey questionnaire has been distributed among practitioners’ in Malaysia. The major constructs of the survey questions using multi-stage multi-level analysis that comprises of four categories: personal needs for education, organizational needs, sources of funding and teaching and learning facilities. From the education provider perspective, identifying the main objective for prospective students (practitioners) to pursue their academic qualification at the postgraduate level is a golden quest. Since the purpose of this study is to conduct an analytical analysis on respondents’ survey, therefore this study will provide a guide for other researcher in conducting research survey based on FDM. This study contributes for more discussion on FDM use in analysing the survey respondents.

2. Fuzzy Delphi method
Multicriteria decision making (MCDM) tools such as Analytical Hierarchy Process (AHP), Delphi method, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), VIKOR method and others have been widely used in organization as well as in academic studies. The purpose of using MCDM tools are normally because these tools have been incorporated with consistency checking [4] therefore minimizes subjective influences in decision making [5].

Delphi method developed in 1950s by RAND corporation [6], provide benefits in assessing decision such as: (1) effectiveness of decision making in the absence of past data. (2) survey can be made remotely without face to face and (3) its usefulness in future prediction for new technology or product [7]. However, there are also critiques on the weaknesses of Delphi method as discussed by [7]. Combination of fuzzy set theory and Delphi method introduced by [8] provide stability in the result obtained from analysis.
Study by [9] defined different roles of MCDM tools such as FDM, FAHP and Fuzzy TOPSIS and its application. For instance, FDM is used to determine the important criteria for building the hierarchy in MCDM. Subsequently, FAHP is adopted to elaborate the weight of criteria and fuzzy TOPSIS on the other hand deployed to rate alternatives used in decision making made by decision maker. The practices adopted by [9] accentuating earlier practices discussed by [10]; that adopts the use of modified Delphi in determining and analysing criteria based on the conducted survey. The relation between these three decisions making tools are illustrated by [9] in Figure 1.

![Diagram](image1.png)

Figure 1: The three-stage technology selection process

Figure 1 indicated that FDM were assigned to determine criteria and develop the hierarchy prior to further process by FAHP and Fuzzy TOPSIS. The same practice are used earlier by [10] that adopts modified Delphi prior to analysis by FAHP. Similarly, FDM are used to explore important criteria in selection [7,11] and to develop primary evaluation criteria [12,13]. Therefore, we suggest the use of FDM to analyse questionnaire survey conducted among aviation practitioner. Furthermore, most suitable collection of information via group decision making and feedback from experts are to use Delphi method [14]. Survey result were analysed using FDM by performing analytical assessment to investigate the needs of knowledge enhancement among aviation practitioners will witness a concrete and stability in term of the findings and reporting.

3. Methodology

Purpose of this study is to analyse the result obtained from survey conducted online. Survey is chosen as the strategy of inquiry to get feedback from aviation practitioners with regards to the needs of enhancing knowledge; by pursuing in the academic program at the postgraduate level (master’s degree). Survey questionnaire were developed on four major constructs built for this study represented in the following Figure 2. Seven items Likert scale are used to acquire respond from the respondent, however the preferential levels are differently used for each question as shown in Table 1.

![Diagram](image2.png)

Figure 2: Major constructs built for this study
Survey was conducted online and distributed through referral and contacts within a month using an online form. The advantages of using online survey is costs saving, shorter time to acquire data, access to unique and unreachable population [15] and easier to reach remote users [16]. At the end of the survey period, 55 respondents have responded and answered all questions. The number of respondents is considered enough for the time being; considering the period for the survey (within a month) and has expedited efforts to promote the survey (through referral). Nonetheless, there are still arguments and discussions over the minimum number (15 respondents) and maximum number (50 respondents) for Delphi method [17].

The list of preferential level is shown in Table 1. In overall, there are seven types of preferential level used in this survey. Subsequently, seven items Likert scale and seven points FDM as shown in Table 2 were matched and converted. The whole FDM process was performed using Microsoft Excel 2016. Template for calculating FDM result were developed. The survey result was analysed and included in Microsoft Excel. At the end of the process, findings from the analysis were conducted and reported. The findings of the analysis are discussed in the next section. Analysis of the result for this study was conducted in two stages as described in Figure 3.

Table 1: Preferential Table Used in the Survey Questionnaire

Suitability Level	Importance Level	High Level	Likeliness Level	Preferential Level	Requirement Level	Agreement Level
Strongly Suitable	Extremely Important	Extremely High	Strongly Likely	Highly Preferred	Highly Required	Strongly Agree
Mostly Suitable	Mostly Important	Most Likely High	Most Likely	Most Preferred	Slightly Required	Mostly Agree
Suitable	Important	High	Likely	Preferred	Required	Agree
Neutral	Neutral	Neutral	Neutral	Neutral	Neutral	Neutral
Not Suitable	Not Important	Lower	Unlikely	Non-Preferred	Not Required	Disagree
Mostly Not Suitable	Mostly Not Important	Mostly Lower	Most Unlikely	Most Non-Preferred	Mostly Not Required	Mostly Agree
Strongly Not Suitable	Strongly Not Important	Extremely Lower	Strongly Unlikely	Strongly Non-Preferred	Strongly Not Required	Strongly disagree

Figure 3: Analysis steps

- Online survey conducted for a month period (aviation practitioners)
- Respond from non-aviation practitioners not discarded (to understand the intention of non-aviation respondents towards participating or provide feedback about the program.)
- Preferences level used in the survey questions were retrieved from the previous survey.
- List of preferential level is shown in Table 1
Table 2: Matching Table between Likert scale and 7 Point Fuzzy scale
Adopted from [18,19]

Preferential Level	7 points Fuzzy Scale	Likert Scale
Strongly disagree	(0.0,0.0,0.1)	1
Somewhat disagree	(0.0,0.1,0.3)	2
Disagree	(0.1,0.3,0.5)	3
Neutral	(0.3,0.5,0.7)	4
Agree	(0.5,0.7,0.9)	5
Somewhat agree	(0.7,0.9,1.0)	6
Strongly agree	(0.9,1.0,1.0)	7

4. Analysis and Findings
Results of the survey shows that majority of the respondents from this study are currently an active employee working within aviation industry in Malaysia. Meanwhile, employees from other industry and current students in aviation/aerospace sectors were also involved and provide their feedback in the study. In term of the jobs/employment level as shown in Table 3, majority of respondents are from the executive/senior executive/engineer/officer categories. Second in place, the total number of 15 respondents such as students/lecturer/SL1M (Skim Latihan 1 Malaysia Malaysia Training Scheme program) trainees also participated in the study apart from employee at the managerial/directors’ level.

Table 3: Types of Respondents’ Jobs

No	Jobs level\areas	Example	Quantity
1	Manager\Director	Director, Quality manager, Human Resource manager.	9 respondents
2	Executive\Senior Engineer\Officer	NOTAM officer, Process engineer, Route revenue analyst, Operation executive, Human Resource officer.	28 respondents
3	Education within aviation	Lecturer, Students, SL1M trainee	15 respondents
4	Others	Pilot, Airforce Inspector, Banking officer	3 respondents

Total respondents: 55 respondents

From the business segments of the respondents, Figure 4 shows that majority of the respondents comes from the operations\engineering\technical area within several domains in the aviation sector such as airlines operations, airport, air-traffic controller, maintenance, repair & overhaul (MRO). This figure will lead university for detailed study in future to identify the exact target prospective students for more relevant syllabus preparation.

FDM was conducted on the result from 27 items of survey response; based on the survey questionnaire obtained earlier. From the 29 survey questions, two questions were discarded as both questions are descriptive in nature.
4.1 Conditions and Percentage
FDM outlines two types of conditions needs to be qualified and fulfilled by the result: threshold value d and percentages of expert’s consensus of more than 75% [1]. Survey questionnaire was clustered from four major constructs defined earlier that are personal needs for continuing education, organizational needs, source of funding and teaching & learning facilities. From Table 4, FDM processes shows that six items (elements) are accepted after getting threshold value less than 0.2 and accepted in consensus by the experts after getting the percentage of consensus more than 75%.

Table 4 : FDM process result

No	Elements	Triangular Fuzzy Numbers	Defuzzification Process	Expert Consensus	Ranking	
		Threshold Value, d	Expert Consensus, $\%$	m_1 m_2 m_3	Score	
1	A1	0.3	50%	0.655 0.511 0.502	0.790	ACCEPT 11
2	A2	0.2	55%	0.718 0.873 0.953	0.8470	ACCEPT 4
3	A3	0.2	58%	0.747 0.896 0.969	0.8789	ACCEPT 3
4	A4	0.3	70%	0.636 0.552 0.504	0.7612	ACCEPT 13
5	A5	0.3	74%	0.736 0.633 0.918	0.8291	ACCEPT 6
6	A6	0.3	80%	0.651 0.513 0.911	0.7851	ACCEPT 10
7	A7	0.3	81%	0.635 0.724 0.851	0.6516	ACCEPT 1
8	B1	0.3	47%	0.555 0.802 0.902	0.7097	ACCEPT 11
9	B2	0.3	65%	0.640 0.769 0.657	0.7012	ACCEPT 13
10	B10	0.3	47%	0.586 0.558 0.911	0.7515	REJECT 15
11	B11	0.3	52%	0.647 0.809 0.911	0.7891	ACCEPT 12
12	C12(b)	0.3	42%	0.216 0.365 0.540	0.3798	REJECT 26
13	C13(a)	0.3	33%	0.302 0.518 0.851	0.5175	REJECT 24
14	C14(a)	0.4	27%	0.531 0.857 0.805	0.6745	REJECT 19
15	C15(a)	0.4	33%	0.373 0.533 0.660	0.5836	REJECT 22
16	C16 DESC	0.4	Non rating questions	Non rating questions	Non rating questions	
17	D17(a)	0.4	24%	0.276 0.442 0.825	0.4473	REJECT 25
18	D18(a)	0.4	38%	0.342 0.523 0.704	0.523	REJECT 23
19	D19(a)	0.3	75%	0.436 0.627 0.783	0.6190	REJECT 20
20	D20(a)	0.2	67%	0.516 0.716 0.870	0.7036	ACCEPT 17
21	D21(b)	0.3	85%	0.689 0.813 0.902	0.7045	ACCEPT 9
22	D22(b)	0.3	70%	0.676 0.527 0.910	0.6079	ACCEPT 8
23	D23(b)	0.4	65%	0.716 0.445 0.912	0.3248	REJECT 7
24	D24(b)	0.2	91%	0.776 0.902 0.968	0.8770	ACCEPT 2
25	D25(b)	0.3	80%	0.733 0.659 0.930	0.6487	ACCEPT 5
26	D26(c)	0.4	47%	0.433 0.652 0.765	0.5570	ACCEPT 21
27	D27(c)	0.3	85%	0.522 0.887 0.827	0.6788	REJECT 18
28	D28(c)	0.3	80%	0.642 0.795 0.690	0.7770	ACCEPT 14
TOTAL ITEMS &	6	16	Non rating questions	6		
Threshold value d and Consensus Percentage are conditions used in FDM to display the consensus among experts on the items agreeable in the study; of which the d value must be less than 0.2 and the group of experts consensus must be more than 75% [20]. Inability to get the required value and percentage, items either needs to be removed or require second round of FDM. Defuzzification process were constructed to identify the rank of elements (importance) of respondents’ selection over the decision on enhancing their knowledge at the postgraduate level (master’s degree).

4.2 Threshold Value and Consensus Percentage
This study utilizes questionnaire survey that comprises of 29 questions. However, only 27 questions were analysed using FDM; the other two questions were descriptive in nature. Table 5 shows only six elements are accepted which those questions are getting d value less than 0.2 are items under the personal needs in continuing education and teaching and learning facilities.

Aviation practitioners decided to pursue their study due to their personal needs in enhancing knowledge. This has some reflection to the descriptive figure on the type of respondents’ level of jobs that majority of them are coming from executive/senior/executive/officer level; as opposed to other types of categories. It briefly concluded that the quest for knowledge enhancement among this group is relatively high. It also enlightened that most respondents believe that postgraduate program (masters’ degree) will enhance their managerial skills, they will feel satisfied if they are able to upgrade academic qualification and belief that age does not an issue for continuing education.

On top of their personal factors that influences the decision, second factors related to teaching and learning facilities provided by the university are also important. The result shows that, prospective students appreciated for flexible learning and more practical types of learning as indicated by their choices of prefer classes on modular basis, availability of simulated learning facility and preference of access to e-Resources (learning materials accessible through online/internet). Most 91% of respondents prefer classes on modular basis and having access to e-resources. One of the major significant finding is that, the respondent also prefers the availability of simulated learning facility to combine between academic build up and the industry experience. Therefore, they would be able to link immediately with the experience in the real-life situation.

Table 5: Result of Fuzzy Delphi Method on respondent priority of continuing education

No	Code	Accepted Item	Threshold d value	Expert Consensus Percentage
1	A2	Master program will enhance managerial skills	0.2	93%
2	A3	Feel satisfied if able to upgrade academic qualification	0.2	96%
3	A7	Age does not stop from upgrading education.	0.2	91%
4	D20(a)	Prefer classes on modular basis	0.2	87%
5	D(24(a)	Prefer access to e-Resources	0.2	91%
6	D25(a)	Existence of simulated learning facility	0.2	93%

4.3 Ranking of Items
Table 6 and Table 7 shows the ranking of accepted and rejected items based on the consensus from the expert responds. It is to note that most experts in consensus agreed that personal needs and teaching and learning facilities influences main reason for practitioners in pursuing education. Source of funding for prospective students may not be the main reason at the time the questions was answered. Main reasons...
could be: 1) fees amount was not mentioned in the study and 2) respondents were asked in term of their source of funds but not their capabilities on how to pay for the fees.

Table 6 : Ranking of items – Expert Consensus > 75% (Accepted)

Ranking of items	Fuzzy Score	Accepted Item	Expert Consensus	Category
1	0.902	Age does not stop from upgrading education.	91%	PN
2	0.877	Prefer access to e-Resources	91%	TL
3	0.871	Feel satisfied if able to upgrade academic qualification	96%	PN
4	0.848	Master program will enhance managerial skills	93%	PN
5	0.847	Existence of simulated learning facility	93%	TL
6	0.829	Masters’ degree enables to move to another domain	84%	PN
7	0.825	Access to campus WiFi	85%	TL
8	0.808	Must have separate training for study skills	78%	PN
9	0.795	Access to virtual leaning platform	85%	TL
10	0.792	Master’s degree able to increase promotion	80%	PN
11	0.790	Aim to enrol in master’s degree in aviation management related	80%	PN
12	0.789	People will higher education level may have career mobility	82%	ON
13	0.781	Master’s degree able to move upward in organization hierarchy	78%	PN
14	0.781	Organization encourage staff to involve in self-development program	80%	ON
15	0.777	Blended between academic research and industry case study	80%	TL
16	0.704	Prefer classes on modular basis	87%	TL

Table 7: Ranking of Items - Expert Consensus < 75% (Rejected)

Ranking of items	Fuzzy Score	Accepted Item	Experts Consensus	Category
15	0.752	The higher position for a person, the more it demands for academic qualification upgrade	47%	ON
16	0.710	Present job demands for more management skills related.	47%	ON
18	0.679	Prefer for final year project to be purely industry case study	65%	TL
19	0.675	Sources of fund from external sponsorship	27%	SF
20	0.619	Prefer have classes on weekends.	35%	TL
21	0.597	Prefer for final year project to be purely academic research thesis	47%	TL
22	0.530	Sources of fund from EPF Withdrawal scheme.	33%	SF
23	0.522	Prefer classes at night	38%	TL
24	0.517	Sources of fund from company’s sponsorship	13%	SF
25	0.447	Prefer have classes between 8am to 5pm	24%	TL
26	0.374	Sources of fund from own saving	42%	SF

Categories: PN = Personal Needs, ON = Organization Needs, TL = Teaching & Learning facilities and SF = Source of Funding
5. Conclusion

Knowledge can be defined into tacit and explicit knowledge [21]. Acquiring and expanding knowledge is a continuous process whereby enhancement of knowledge can be achieved from formal or informal education. Challenges of universities in the new era is to provide education that can fulfil the needs of industry and produce more knowledge workers. More challenges are foreseeing especially in the upcoming of Industrial Revolution 4.0 (IR 4.0). From the industry standpoint, expansion of intellectual capital assures continuous operations and sustainability of the organization. The analysis used FDM process has successfully defined the main reasons practitioners’ pursuing their studies mainly due to their personal needs and teaching and learning facilities offered by university. Constructively, FDM is one of the MCDM tools used to analyse decision and criteria of respondents by delineating biasness, subjective responds and at the same time retrieve consensus agreement among experts. The result of FDM process provides an early understanding for education and training institute on prospective students’ intention in continuing their education at the postgraduate level. University as the education provider may prioritise to emphasize on the two categories of concern by prospective students that are their personal needs in continuing education at the postgraduate level as well as to provide conducive teaching and learning facilities. In future, further studies may emphasize on the modification to overcome some of the weaknesses with the questionnaire items and the design. Furthermore, the survey was conducted earlier before engaging into FDM process. FDM questionnaire design might be considered in future while designing the questions for more structured type of questions and analysis.

References

[1] Hasan A, Hafiz F, and Shahril M 2017 Application of Fuzzy Delphi Approach Determining Element in Technical Skills among Students towards the Electrical Engineering Industry Needs Pertanika J.Soc.Sci Humanit., vol. 25, no. 5, pp. 1–8
[2] Mohammad M F, and Rahman N A A 2015 Analysis of Competition Issues for Universiti Kuala Lumpur, Malaysian Institute of Aviation Technology (UNIKL MIAT): Towards Achieving Malaysian Aerospace Industry Blueprint 2015-2030 Procedia - Soc. Behav. Sci., vol. 211, pp. 226–231
[3] Zainal K, Talib A R A, and Hack I 2015 Malaysian Aerospace Industry Blueprint
[4] Mohammad M F, Rahman N A A, Hassan R, and Kurniawan R 2017 Multi-Criteria Decision Making for Bachelor of Aircraft Engineering Technology (Avionic) Final Year Students in project Management Course : AHP Method for Career Selection J. Eng. Appl. Sci., vol. 12, no. 3, pp. 705–714
[5] Mammadova M, and Jabrayilova Z 2014 Application of Fuzzy Optimization Method in Decision-Making for Personnel Selection Intell. Control Autom., vol. 05, no. 04, pp. 190–204
[6] Dalkey N 1969 The Delphi Method: An Experimental Study of Group Opinion The RAND Corporation, pp. 408–426
[7] Chang P L, Hsu C W, and Chang P C 2011 Fuzzy Delphi method for evaluating hydrogen production technologies Int. J. Hydrogen Energy, vol. 36, no. 21, pp. 14712–14179
[8] Murray T J, Leo L P, and Givgh J P 1985 A pilot study of fuzzy set modification of Delphi Hum. Syst. Manag., vol. 5, no. 1, pp. 76–80
[9] Lee Y C and Chou C J 2016 Technology evaluation and selection of 3DIC integration using a three-stage fuzzy MCDM Sustain., vol. 8, no. 2, pp. 1–15
[10] Hsu P F and Chen B Y 2007 Developing and implementing a selection model for bedding chain retail store franchisee using Delphi and Fuzzy AHP Qual. Quant., vol. 41, no. 2, pp. 275–290
[11] Hsu Y L, Lee C H, and Kreng V B 2010 The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology selection Expert Syst. Appl., vol. 37, no. 1, pp. 419–425
[12] Cheng J H, Lee C M, and Tang C H 2009 An application of fuzzy delphi and fuzzy AHP on evaluating wafer supplier in semiconductor industry WSEAS Trans. Inf. Sci. Appl., vol. 6, no. 5, pp. 756–767
[13] Cheng J H and Tang C H 2009 An application of Fuzzy Delphi and Fuzzy AHP for multi-criteria evaluation on bicycle industry supply chains WSEAS Trans. Syst. Control, vol. 4, no. 1, pp. 21–34
[14] Dalkey N and Helmer O 1962 An Experimental Application of The Delphi Method To the use of experts
[15] Wright K B 2015 Researching Internet-Based Populations: Advantages and Disadvantages of Online Survey Research, Online Questionnaire Authoring Software Packages, and Web Survey Services J. Comput. Commun., vol. 10, no. 3
[16] Andrews D, Nonnecke B, and Preece J 2003 Electronic Survey Methodology: A Case Study in Reaching Hard-to-Involve Internet Users Int. J. Hum. Comput. Interact., vol. 16, no. 2, pp. 325–344
[17] Hsu C C and Sandford B A 2005 The Delphi technique: Making Sense of Consensus Pract. Assess., Res. Eval., vol. 7, no. 2, p. 4
[18] Hussin M R M J Z, Noh N R M, Sapar A A, and Alias N 2013 Application of Fuzzy Delphi Method in Educational Research Design and Developmental Research
[19] Kamarulzaman N, Jomhari N, Raus N M, and Yusoff M Z M 2015 Applying the Fuzzy Delphi Method to Analyze the user Requirement for user Centred Design Process in Order to Create Learning Applications Indian J. Sci. Technol., vol. 8, no. 32
[20] Cheng C and Lin Y 2002 Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation Eur. J. Oper. Res. 142, vol. 142, pp. 174–186
[21] Nonaka I 1994 A Dynamic Theory of Organizational Knowledge Creation Organ. Sci., vol. 5, no. 1, p. 25