Geothermal resources of Ukraine

V V Gordienko, I V Gordienko, O V Zavgorodnyaya
Tectonosphere Department, Institute of Geophysics, NAS Ukraine, 32 Acad. Palladine pr.,
Kiev, 04680, Ukraine, tectonos@igph.kiev.ua

Abstract. A technique for the assessment of Ukraine’s geothermal resources is discussed in terms of the intensity of the Earth’s heat flow. The availability (density) of thermal resources in major tectonic regions has been estimated. Their reserves are shown to be 25 times larger than known reserves of all fossil fuel deposits. Three areas of Ukraine have been categorized as suitable for the construction of geothermal power plants. In other areas, cost-effective energy production for heating purposes is feasible.

1. Introduction
The share of the Earth’s heat in the world’s energy balance is insignificant, so far. It is, however, the fastest developing branch of power engineering [12, 17 and others]. The deployment in recent years of new technologies for heat extraction (thermal pumps and so on) [10, 12, 15 and others] speaks volumes about the potential geothermal power engineering advancing to occupy a leading position in residential energy consumption. In economically developed countries, over several recent years, about a million geothermal heating systems for households have been installed. The ecological aspect is also noteworthy here: The modern geothermal energy systems provide for complete return of the water, recovered from large depths, back into the ground. For that reason, analysis of geothermal evidence with a view to assessing the thermal energy resource potential appears to be important and topical.

This lecture is regional in character and aims specifically at an assessment of the concentration (density) of thermal resources \((W)\). Actually, reserves in deposits can already be determined once relevant tasks are set for a number of Ukrainian regions. In accordance with requirements worked out for other mineral deposits, such an assessment can be performed in different versions [3, 4, 5, 8, 14 and others] with dissimilar degrees of validity and proceeding from dissimilar heat-extraction technologies. The circulation technology for heat extraction from dry rocks [2, 14 and others] appears to be the best as it fully reflects the region’s energy potential. It is precisely for the case of circulation technology that calculations will be performed and, if necessary, the results can be re-examined in line with requirements of other technologies.

It is common practice to classify resources, in terms of the degree of validity, into the categories of promising \((C_3)\) and forecast \((P_1\) and \(P_2\)). The borderline between \(P_1\) and \(C_3\) resources shifts with technological improvements and with the cost of energy from conventional sources. For that particular reason, the authors decided to perform calculations for the entire territory of Ukraine assuming the level of \(W\) that reflects the contemporary position of the borderline between \(P_1\) and \(C_3\). In doing so, we will focus on resources suitable for the use in heat supply systems, i.e., for hot fluid extraction from the geothermal circulation system (GCS) at the temperature of 60°C and its dumping out at 20°C. These are the largest possible resources, considering that we need 100–40°C and 210–70°C, respectively, for heating and electricity production (steam for turbines). This approach enables us to
adopt globally approved results of economic appraisals published by the Massachusetts Technological University (see figure 1). They point to the economic feasibility of geothermal energy extraction from the GCS for the most up-to-day technologies at the level of the geothermal gradient \(\gamma \) equaling 20-25\(^\circ\)C/km. Ukraine also provides an example of using thermal energy in practice in an area with such a value of \(\gamma \).

![Figure 1](image_url)

Figure 1. Production costs of the heat extracted with the help of the geothermal circulation system (GCS) as a function of geothermal conditions and of the technological level. Economic model of the Massachusetts Technological University [15]. The digits 1 to 4 designate versions of the GCS technology.

Actual sources of geothermal energy involve a feature that often tends to be misrepresented. We are talking about categorization of such sources as renewable. This is true, in principle: The heat extracted from the Earth’s interior will, some day, be replenished with the heat coming from larger depths. However, in terms of the genuine thermal properties of the medium, the rate of such a renewal turns out to be incommensurably slower than what human history is aware of, i.e., it will eventually amount to zero.

We used in our analysis the data obtained for the territory of Ukraine due to two reasons: 1) The authors have contributed much to the detailed coverage of the territory in question; 2) We can show on this example the significance of geothermal energy for ordinary (not volcanic) region.

2. Calculation procedure
This is how the density of thermal resources is calculated [4 and others]:

\[
W = N \cdot K \cdot C \cdot \Delta T (H_{bd} - H_b),
\]

where \(N \) is the fuel consumption norm per marketable heat. It equals \(0.34 \times 10^{-10} \) tons of standard fuel divided by \(J \) (one ton of oil contains 1.47 tons of s.f.; one ton of coal – 0.9 tons of s.f.; one ton of condensate – 1.54 tons of s.f.; 1,000 m\(^3\) of gas – 1.25 tons of s.f.; and one ton of lignite - 0.49 tons of s.f.); \(K \) is the temperature extraction coefficient (adopted in the publication by Dyadkin et al. [4], as equaling 0.125); \(C \) - volumetric heat capacity of rocks. It is virtually invariable and amounts to 2.5 \(10^6 \) J/m\(^3\)\(^\circ\)C; \(\Delta T \) – is the temperature differential – amounting to 40\(^\circ\)C – between the heat carrier and the water being discharged; \(H_{bd} \) – is the depth of the borehole at which the bottom \(T \) was measured; Accordingly, \(W = 0.000425(H_{bd} - H_b) \) in tons of s.f./m\(^3\) (H in meters); \(H_b \) is the depth at which the average temperature in the \(H_{bd} - H_b \) range amounts to 60\(^\circ\)C. It is determined from the formula \((T_{bd} - T_{tm})/0.5\gamma \), where \(T_{tm} \) stands for the temperature of the heat carrier, \(\gamma \) - is the average geothermal gradient within the depth interval.

If the temperature (T) at the lower point is high, the upper point turns out to occur above the surface. To prevent this situation from happening, we need to introduce a restriction for T: It has to be 10\(^\circ\)C higher than the temperature of the water to be dumped back, i.e., it must be 30\(^\circ\)C. In such a case, we need to take into account the difference between the average temperature of recoverable water and the standard temperature amounting to 60\(^\circ\)C. This produces an additional factor – \((T_{av}-20)/40\) – in the \(W \) calculation formula.
Consequently, the task reduces to determining \(T \) for the given region (for the given distribution of thermal conductivity with depth) at dissimilar deep-seated heat flows (HF) characteristic of the region and to subsequent assessment of \(W \) for the drilling depth of 6,000 meters (evaluations were also performed for the depths of 4,500 and 3,000 meters). The use of the specific temperature at the surface on the site, where deep-seated temperatures were determined, produces variations in \(W \) values of up to \(\pm 4\% \) (for example, if 8°C is replaced by 6 to 10°C). Thus, it is possible, in principle, to adopt a single \(T_0 \) value in the determination of \(T \) in terms of the heat flow.

Clearly, the temperature extraction ratio is not a constant value. It has to be determined with a view to real conditions of the procedure.

The calculation shows that we do not need to take into account every single parameter of the process. To begin with, the temperature anomaly does not significantly exceed the limits of the fractured zone over the entire period of system operation. The time of the system existence may constitute a restriction. It is associated with siting of the fractured zone around the borehole. This prevents water being discharged from percolating back down in required amounts, so that more power is needed to operate injection pumps, and so on. Proceeding from available data, the geothermal circulation system may function for 25 years. If it operates for a shorter period of time, then the moment when the average temperature in the bed, from which water is extracted, reaches 60°C, heat extraction must be halted.

Let us determine the system’s operating time. According to [15] and others, the layer in which fracturing occurs can reach 500 meters in thickness. We estimate the dimensions of the fractured area as 250x250 meters. The connected porosity accounts for about 0.1 of the rocks’ volume. Its variation does not have any significant effect on the result: depending on porosity, the system will be filled through a single operation of the injection pump more frequently (with a lower single thermal effect) or more seldom (with a larger single thermal effect).

The amount of injected water, given affordable power consumption for injection operations, will amount to 1,000-7,000 m\(^3\) a day. If we adopt a real value (to simplify the assessment) of 4,300 m\(^3\) a day, it takes two years to fill up the porous system. The following formula describes temperature drop in the volume:

\[
T_{a1} = 0.167 \frac{dT}{d\gamma} \quad \text{taking into account the ratio of volumetric heat capacities of water} - 4.18 \times 10^6 \quad \text{J/°C m}^3 \quad \text{– and of the rock).} \]

\(dT \) denotes temperature difference between the average \(T \) at the depth of 5,500-6,000 meters and 20°C. The evaluation shows that the resulting anomaly remains intact in the body (not for just two years, but for the entire real period of observations). Therefore, \(T_{a2} \) equals 0.167 (\(dT - T_{a1} \)) and so on, until (\(dT \) – the sum of \(T_{a1} \)), etc. reaches 40°C.

The estimated time for the drilling depth of 6 km at geothermal gradients amounting to 2-6°C/100 meters ranges between 8 and 23 years; for 3 km, the estimated time will constitute 1.5 to 13 years. Therefore, the lifetime of the system is not exceeded and the coefficient \(K \) can be determined (\(T_0=10°C \)) as \((5,755 \gamma - 50)/(6,000 - 20/\gamma)6\gamma \), where \(\gamma \) is measured in °C/meter. At \(\gamma=0.02 \), \(K \) amounts to 0.108, at 0.03 to 0.127, at 0.04 to 0.136, and at 0.05 to 0.141.

The calculations of abyssal temperatures in terms of heat-flow values in the regions were conducted for a stationary distribution, and corrections were excluded from estimated temperatures. The point is that observed heat-flow values are not suitable for the task when we deal with large depths. In the Dnieper-Donets Basin (DDB), it was more suitable, instead of striking off the correction for hydrogeological conditions, to introduce somewhat elevated thermal conductivity in the upper portion of the profile.

The calculations used values of average effective thermal conductivities \(\gamma \) of rocks within the depth ranges of 0-1.5, 1.5-3, 3-4.5, and 4.5-6 km listed in table 1 (in W/m°C).

The suggested technique for estimating abyssal temperatures involves obvious sources of errors, primarily, the failure to account for real values of thermal conductivity at the evaluation point. To make up for this inconsistency, we conducted comparison between estimated and measured temperatures for all the regions in question at maximum depths of measurements. This did not include the Ukrainian Shield and its slopes, where virtually no deep boreholes are available (except for the boreholes in Krivoy Rog and Kirovograd areas, 5 and 3 km, respectively). The resulting histograms
display modal values of deviations in the Carpathian, Transcarpathian, and Donets Basin regions amounting to 1°C. For the Dnieper-Donets Basin, the Crimea, the Volyn-Podolian Plate, and Southern Ukraine monocline, the deviations amount to 3-4°C. The deviations increase sharply exclusively in areas with thick salt beds. They are, however, not suitable for the creation of geothermal circulation systems (GCS). Consequently, errors in temperature evaluations cannot have a significant effect on the determination of W. The predicted error of up to 10% does not exceed that in the measurements of the heat flow.

Let us now determine the level of W, delineating areas with the territorial distribution of category C3 resources. It amounts to 2.5 tons of standard fuel per square meter. Table 2 lists heat-flow values in various regions of Ukraine that are compatible with the aforementioned and other values of W. It is obvious that the relationship between the territorial distribution of geothermal sources and the value of the deep-seated heat flow (HF) is quite complicated, especially so at large values of W.

Table 1. Thermal conductivities distribution versus depth in Ukrainian regions
ΔH, km
0-1.5
1.5-3
3-4.5
4-5.5
5-6

Numbering of regions: 1 – Transcarpathian, 2 – Carpathian, 3 – Ciscarpathian Trough, 4 – Volyno-Podolian plate, 5 – Ukrainian Shield, 6 – Dnieper-Donets Basin, 7 – Voronezh Massif, 8 – Donbass, 9 – Southern Ukraine monocline, 10 – the Crimea

Table 2. Correlation between HF and W in different Ukrainian regions
W, tons of s.f. per m²
HF, mW/m² in regions
1
2
3
4

The estimates indicate that the density of resources falling into category C3 are quite widespread. Of certain interest is correlation between W values and the data on hydrocarbon deposits. Let us examine the territorial distribution of energy resources that can be extracted in the form of commercial heat from a large oil deposit in the Dnieper-Donets Basin (without taking into account the expenditure of energy on oil transportation and with the efficiency of its conversion into useful heat amounting to 0.8). If we adopt actual parameters of the deposit: thickness of the productive bed equaling 180 meters; porosity of the reservoir rocks – 0.15; the pore-filling coefficient – 0.75; the extraction coefficient – 0.37; and oil density – 0.8 t/m³, we get 8.8 tons of standard fuel per m². In the case of minor deposits, which, in the conditions prevailing in Ukraine, are considered to be cost efficient for operation only provided that boreholes are already there, the reserves distribution density is smaller by an order of magnitude.

This suggests that, even in terms of concentration, geothermal energy in a number of areas is comparable with that comprised in traditionally mined hydrocarbon deposits. Territories where geothermal energy is available are much more sizable.
The above evaluation of K envisages “single-use” heat extraction technique. In this case, the value of W (W₆) appears to be sharply lower. It is obvious that energy extraction can proceed further even after its source has been exhausted at the depth of 5.5-6.0 km (possibly, without the need of drilling additional boreholes). Energy is likely to be recovered from the depths of at least 2.5-3.0 km at the geothermal gradient of 20°C/km. Relevant evaluations for other depths (H, in km) at the bottom of the interval being mined produce values of W = (0.427H – 0.07)γ – 2.7 + 0.3H. For example, given the heat flow of 45 mW/m² typical of the Dnieper-Donets Basin, the “full” value of W will be 4.5 time higher than W₆. It is noteworthy that by using the data for regions characterized by dissimilar values of W₆, we can readily obtain (for the range of W₆ 2.5-10), W₃ = 0.53(W₆ -1.5) and W₄₋₅ = 0.78(W₆ – 0.8).

3. Initial data

In our specific case, the evaluation of geothermal reserves distribution density was based on the available heat-flow values. The level of knowledge of Ukraine’s territory in terms of this parameter is unique. In the rest of Europe, about 4,000 HF values were determined in various boreholes, whereas in Ukraine (occupying just 6% of the continent’s area) the number of such determinations is 13,000. Thus, Ukraine is best suited for showing the potential possibilities of utilizing the Earth’s heat in regions, the majority of which have not been known for a high-energy potential.

In addition to a large body of information on the heat flow, Ukrainian explorers make use of values of the deep-seated heat flow. This implies introduction of allowances for the effect of near-surface distortions into observed values.

This primarily applies to the effect of the paleoclimate. Special studies have made it possible to select the length of the time sequence for paleotemperatures at the surface enabling us to adjust the values of T at various depths. The total length of the sequence amounted to 1.2 million years. Adjustments in shallow boreholes drilled through the shield sometimes account for one-third of the heat-flow value.

In many regions, the effect of groundwater cross-flows was significant. It is extremely diverse in form and intensity. In some cases, the geothermal gradient may decrease almost to zero. If the borehole pierces “underground rivers,” there may also appear negative values of the geothermal gradient.

Less significant and less common in Ukraine are allowances for the structural effect, young thrusts, and sedimentation. Those features are large beneath the surface of the Black Sea floor, but no relevant data were used in the evaluation of W.

The HF values in adjacent (one minute of latitude and longitude apart) boreholes were averaged in line with the regional character of the study. As a result, the diagrams presented below cover 5,500 sites. The HF determination grid is very irregular. Clearly, the majority of values were obtained for petroliferous and coal-bearing areas, as well as in local territories of ore fields. In other areas (primarily, in a larger part of the Ukrainian Shield and its slopes, at the Voronezh Massif slope, and partly, in Folded Carpathians), “blank spaces” prevail.

Figure 2 shows the pattern of HF distribution. This version of the map is somewhat out of date (National Atlas of Ukraine, 2007), so that in the given case, it is simply a way to show a general picture of the parameter variations.

The regions shown on the map: Volyn-Podolian Plate (1-3), Ciscarpathian Trough (4), Ukrainian Shield (5-6), Donets Basin (7-8), Scythian Plate (9), and Dnieper-Donets Basin (10-12). The dots mark experimentally derived HF values and lines denote estimated values.

The difference between maximum HF values for the Transcarpathian Trough (120-130 mW/m²) and minimum values for the Ukrainian Shield (30-35 mW/m²) reaches a factor of 4, and the estimated values of W differ even more significantly (see below). Even before we proceed to estimating geothermal resources density, it can be surmised that they are mainly confined to three vast basins: western, southern, and eastern, divided by a territory at the center of Ukraine where the resources are scarce. The majority of the aforementioned basins cannot be shown in the maps presented below, yet it is precisely within those basins that the region’s maximum geothermal energy is amassed (figure 3).
The lateral dimension of the anomalies amounts to a few kilometers, and the intensity of the disturbance (above the local background) is rather monotonous – about 20 mW/m², which corresponds to the W increase (see Table 2) by approximately 2 tons of s.f./m². Geological evidence and special evaluations indicate that the anomalies are confined to areas close to heated fluids whose source is located at a depth of 6-7 km in zones of recent activation [1, 6, 8, and others]. The width of the

Figure 2. Deep-seated heat flow (in mW/m²) on the territory covered by studies.

Figure 3. Local anomalies of the deep-seated HF in various regions of Ukraine.

permeable zone through which the fluids percolate turns out to be small – at the level of a few hundred meters. A.E. Lukin built a similar model, not based on geothermal data, for a petrolierous structure in
the Dnieper-Donets Basin [11] – figure 4. It is noteworthy that in all cases the parameters of the circulation system are similar, despite the tectonic diversity of the regions in question.

Consequently, already at this stage of regional studies, one can talk about the discovery of individual geothermal energy resources that occur in virtually all regions of Ukraine, including the Ukrainian Shield, which is, in fact, not really promising for the mineral resource in question.

Figure 4. Abyssal water injection through dislocations on the Machukha field (Lukin, 1997 – adjusted for ease of reference).

1 – direction of abyssal fluids movement under high-pressure; 2 – gas deposit; 3 – dislocations; 4 – unconformity surface (barrier?).

4. Geothermal resources in Ukraine’s main regions

Figure 5 shows distribution of geothermal resources in the western region.

Figure 5. Geothermal resources in the west of Ukraine

1– Sites where the values of W were determined; 2 – boundaries of tectonic units. The periphery of the Pannonian Depression, the Transcarpathian Trough, the Folded Carpathians, the cis-Carpathian Trough, and the Volyn-Podolian plate extend from the southwest to northeast.
The \(W_6 \) level on the Volyn-Podolian plate conforms to the changeover from low values at the slope of the shield to elevated ones in the Carpathian geosyncline undergoing a stage of post-geosynclinal activation. In the north of the region, there lies a zone of extremely low \(W \) values (much lower than cost-efficient) confined to the site of the Volyn negative heat-flow anomaly. The average level of the geothermal energy concentration is quite low ranging from 1.5-2 to 2.5 tons of s.f./m^2. Elevated \(W_6 \) values are only observed within Yavoriv, Ternopil, and Chernivtsi heat-flow anomalies (up to 4-5 tons of s.f./m^2). The anomalies in question are confined to recent activation zones where other geological and geophysical indications of the process have also been registered.

A similar pattern has also been observed for the Ciscarpathian Trough (which, with the exception of its southwestern margin, overlies a Precambrian basement) where typical values of the heat flow are small and where larger heat-flow values have only been registered within western portions of the Yavoriv and Chernivtsi anomalies, as well as at the border with the Folded Carpathians.

The thermal field in the Folded Carpathians has largely been explored in the Skiby zone, which partly overlaps the foredeep. In the main part of the region, there are few boreholes covered by studies, so that we observe a large “blank space” there (figure 5). The values of \(W_6 \) average 33.5 tons of s.f./m^2 despite the rather high HF. This is due to the considerable thermal conductivity of rocks reducing the geothermal gradient.

In the Transcarpathian Trough, the values of \(W_6 \) are the largest for the territory of Ukraine. In some areas, they come up to 10 tons of s.f./m^2. This region appears to be the most likely for making use of the Earth’s heat. It is there that hot water is supplied to spa resorts and goes for heating purposes. There were plans to build a geothermal electric power plant there. Nowadays, however, the structure, designed for the plant, serves as a gas-storage facility for the transit gas pipeline.

Owing to the large territory the Volyn-Podolian plate occupies, the total amount of resources in the western basin makes it quite promising (despite the low \(W_6 \) values). Altogether, \(0.25 \times 10^{12} \) tons of s.f. is accumulated in the basin (we are talking about the depth range of 5.5-6.0 km, and the resources can be considerably supplemented by those located at more shallow depths – see above).

Figure 6. Geothermal resources of the southern basin

See figure 5 for the legend

In the southern basin (figure 6), at the transition from the Ukrainian Shield slope to the southern Ukrainian monocline, and then to the Scythian plate, the \(W_6 \) value gradually increases from north to south from 2.5 to 3.5-4.0 tons of s.f./m^2. A combination of geological and geophysical studies conducted in recent activation zones of the Crimea, northern Dobruja and cis-Dobrujan Trough have identified anomalies of up to 7 tons of s.f./m^2. Some of them have been associated with the heating up of a stratum several kilometers in thickness by hot abyssal fluids [8 and others].

The total amount of geothermal resources in the basin is quite significant due to its vast territory: \(0.3 \times 10^{12} \) tons of s.f.
Figure 7. Geothermal resources at the slope of the Voronezh Massif (the top diagram) and of the Dnieper-Donets Basin (the lower diagram)

See figure 5 for the legend.

The thermal field in areas of the eastern basin has been explored with dissimilar degrees of detail. In the Donets Basin, the coverage is the best (6,500 individual determinations of the heat flow), whereas at the Voronezh Massif slope it does not exceed the extent of coverage of the Ukrainian Shield. For that reason, parts of the basin are shown at different scales (figures 7 and 8).

The data for the territory of Russia were also used for plotting the diagram of W_6 distribution at the Voronezh Massif slope. This only slightly affected the possibility of identifying areas with viable values of W, and “blank spots” there are common. It is only at the boundary with the Donets Basin that a small area was identified with the relevant parameter larger than 4 tons of s.f./m2.

In the Dnieper-Donets Basin (DDB), territories promising for rich geothermal resources are widespread. Yet, usual concentrations of geothermal energy in the DDB are not high – about 2.5-3.0 tons of s.f./m2. In rare cases only, can one encounter areas with W larger than 4 tons of s.f./m2 (exceptions are mentioned earlier in the paper). The boundary between the DDB and Donbass proper is in the given case drawn quite arbitrarily: A straight line replaces the vast transition area. It roughly separates the territory with a dense survey grid at the Donbass mining fields from the territory with a sparse survey grid – at hydrocarbon deposits in the Dnieper-Donets Basin (figure 7).

The concentration of geothermal energy in Donbass is much higher than in the Dnieper-Donets Basin (figure 8). However, in Donbass, elevated values of estimated W_6 are largely associated with water percolation through permeable fault zones. The temperature distribution with depth (down to 6 km) in them is virtually invariable, even though it should have differed from that derived according to the formula. It might be easy to amend the values, but such procedure would only make sense in the case of more detailed studies (the available estimates are provided in parentheses in the table attached to figure 8). It is unlikely that detailed studies would radically alter the W_6 values. The subparallel strike of the faults near the axes of the Main and the Druzhkovka-Konstantinovka anticlines is probably responsible for a significant expansion of the thermal anomalies. That is why one can observe them on the map (figure 8).

The average concentration of geothermal energy in Donbass amounts to about 4.0-4.5 tons of s.f./m2, increasing to 6.0-7.0 tons of s.f./m2 in the northwestern part of the Main anticline and in southwestern Donbass. W_6 anomalies are quite common in the region. It only remains to point out that values of the estimated parameter in southwestern Donbass with a thin sedimentary veneer are somewhat overestimated. The determinations there used the same value of γ as for other areas of the region. Actually, however, a considerable depth range there is composed of crystalline rocks of the basement with an average thermal conductivity higher by 15-20 percent. A comparison between...
observed and estimated temperatures does not detect the error since the depths of the boreholes, in which temperatures were measured, are not sufficiently large (about 1 km).

Figure 8. Geothermal resources of Donbass
See figure 5 for the legend

Figure 9. Geothermal energy resources of the Ukrainian Shield and its slopes.
See figure 5 for the legend.

As pointed out earlier in the paper, the insufficiently detailed coverage of much of the Ukrainian Shield makes it impossible to describe the thermal field on its large territories. This also naturally applies to the distribution of W values. The data presented in figure 9 testify to the fact that areas promising for category C3 resources may be available on the Ukrainian Shield and its slopes, but their
identification and exploration have yet to be carried out. If we apply the concept of a low heat flow to the entire shield outside the Kirovograd anomaly (and to a few other spatially small HF disturbances), the \(W_6 \) value there may be estimated at 1.8 tons of s.f./m\(^2\).

Northeast of the shield (already in Belarus), there appears a zone of relatively high \(W_6 \) values in the Pripyat Trough. In reality, however, the entire Belarusian Massif and the Pripyat Swell are characterized as zones of abnormally low HF and, accordingly, low \(W \) values.

The poor exploration maturity of the Ukrainian Shield territory and the detection of quite intensive heat-flow anomalies in its best-explored parts show that, at least in individual zones, commercial reserves of geothermal energy may be discovered in the future. Their detection is likely within the still not fully explored Dnieper anomaly at the northeastern part of the Ukrainian Shield. The northwestern part of the Ukrainian Shield and the adjoining territory of the Volyn-Podolian plate, as well as some territories in the northern part of the shield are the only areas that have no prospect of containing geothermal resources. It is unlikely to expect there heat-flow values (even close to average for the region) at which the level of promising resources can be achieved. This is due to the high thermal conductivity of crystalline rocks.

5. Conclusions

Figure 10 shows a joint map of geothermal energy resources. It is poor in detail but illustrates possibilities for consecutive utilization of the Earth’s heat from various depth intervals.

In three basins and in the central part of Ukraine, known for the low thermal potential, the total amount of thermal resources amounts to about \(10^{12} \) tons of standard fuel. Let us compare the resulting data with information on Ukraine’s of fossil fuel reserves shown in table 3 [16].
The total value of \(W_6 \) exceeds reserves of fossil fuel (mainly, hard coal) by a factor of 25. In view of the fact that geothermal energy is more advantageous ecologically, we can appraise the utilization of the Earth’s heat in Ukraine as a very promising trend.

Table 3. Energy reserves in Ukraine’s fossil fuel deposits

Fuel type	Reserves	Reserves in tons of s.f.
Hard coal	4.31141·10\(^{10}\) tons	3.880·10\(^{10}\)
Lignite	0.25848·10\(^{10}\) tons	0.127·10\(^{10}\)
Peat	0.0659379·10\(^{10}\) tons	0.025·10\(^{10}\)
Oil	0.01467·10\(^{10}\) tons	0.022·10\(^{10}\)
Gas	129·10\(^{10}\) m\(^3\)	0.161·10\(^{10}\)
Condensates	0.00807·10\(^{10}\) tons	0.012·10\(^{10}\)
Total		**0.04·10\(^{12}\)** tons of s.f.

An evaluation of geothermal resources that can be used without additional heating, so that we obtain steam suitable for producing electricity, has shown that, at the drilling depth of 4.5 km, minimal resources emerge in the zone of maximum heat-flow values in the Transcarpathian Trough (>120 mW/m\(^2\)). The temperature of the fluid is 210\(^\circ\)C and that of the water being discharged – 70\(^\circ\)C, i.e. the fluid being discharged may be used for heat supply. With the drilling depth of 6 km, we obtain values matching those of \(W_6 \) for the version discussed above (T of the heat conductor is 60\(^\circ\)C and of the discharge – 20\(^\circ\)C): 6 – 0; 7 – 2.5; 8 – 3.8; 9 – 5; 10 – 8 tons of s.f./m\(^2\). In other words, conditions suitable for the extraction of steam are present solely in the Transcarpathian Trough and in rather limited number of areas in the Crimea and Donbass.

There exist quite promising projects for the utilization of hot water (provided that exploration boreholes are already available) that can produce steam by way of additional heating with the help of burning associated gas from line wells in the Dnieper-Donets Basin fields, methane from abandoned coal mines of Donbass, shale gas, etc.

The assumption, voiced at the beginning of the lecture regarding high advantages offered by the use of thermal energy, has been validated by relevant studies. This traditional alternative source could be quite timely for Ukraine.

Acknowledgment: The authors wish to express special thanks to Mrs. Rita Schneider for translating this paper from Russian.

References

[1] Aleksandrov A L, Gordienko V V, Derevskaya Ye I, Zemskov G A, Ivanov A P, Panov B S, Shumlyansky V A and Apov O G 1996 Deep structure, evolution of fluid-magmatic systems, and prospects for discovery of endogenous gold deposits in the southeastern part of the Ukrainian Donbass (Kiev: Proceedings of the Institute of Fundamental Studies) p 74

[2] Armstead H and Tester J 1987 Heat Mining (London: E. F. Spon) p 320

[3] Dyadkin Yu D 1985 Fundamentals of Geothermal Technology (Leningrad: LGI) p 176

[4] Dyadkin Yu D, Boguslavsky E I and Vaynblat A B 1991 Geothermal resources of the USSR Geothermal models of geological structures ed. Yu D Dyadkin (St. Petersburg: VSEGEI) p 68-176

[5] Gordienko I V 2001 Thermal fields and geothermal energy in the Carpathians and in the Transcarpathian Trough (Kiev: Proceedings of the Institute of Fundamental Studies) p 122-124

[6] Gordienko I V and Gordienko V V 2002 Heat flow and geothermal resources in the Ciscarpathian Basin and Volyn-Podolian plate The Earth’s thermal field and related research methods (Moscow: Peoples’ Friendship University of Russia) p 89-91
[7] Gordienko V V 2015 *Essential points of the advection-polymorphism hypothesis* (NCGT Journal) 2 p 112-134

[8] Gordienko V V, Gordienko I V, Zavgorodnyaya O V and Usenko O V 2002 *Thermal field of the territory of Ukraine* (Kiev: Znaniye) p 170

[9] Gordienko V, Gordienko I and Zavgorodnyaya O 2016 *Thermal field and geothermal resources of Ukraine* (Saarbrucken: LAP) p 108

[10] Kohl T, Brennild R and Eugster W 2002 Investigation of the performance of a deep borehole heat exchanger *The Earth’s thermal field and related research methods* (Moscow: Peoples’ Friendship University of Russia) p 126-128

[11] Lukin A Ye 1997 *Lithological and dynamic factors in oil and gas accumulation within aulacogen basins* (Kiev: Naukova Dumka) p 224

[12] Lud N D and Mishchenko A V 2001 *Renewable energy sources in Ukraine – resources and characteristics* (London: Renewable Energy Bulletin) 3 p 5-8

[13] *National Atlas of Ukraine* 2007 (Kiev: Cartography) p 440

[14] Shpak A A, Yefremochkin N V and Borevsky L V 1989 *Prospecting for, exploration, and assessment of prospective resources and operational reserves of thermal waters* (Moscow: Nedra) p 89

[15] Tester J and Herzog H 1990 *Economic Predictions for Heat Mining: A Review and Analysis of Hot Dry Rock (HDR)* (Massachusetts: Geothermal Energy Technology) MIT-EL 90-001 p 180

[16] The National Geological Survey of Ukraine *Reference book* 1999 (Kiev: Geoinform) p 87

[17] Zabarny G N, Shurchkov A V and Zadorozhnaya A A 1997 *Resources and heat extraction potential of thermal water resources in the Transcarpathian region that are potentially amenable to industrial development* (Kiev: Institute for Technical Thermal Physics NASU) p 150