Calcium signaling in hepatitis B virus infection and its potential as a therapeutic target

Fanyun Kong
Fulong Zhang
Xiangye Liu
Suping Qin
Xiaoying Yang
Delong Kong
Xiucheng Pan
Hongjuan You
Kuiyang Zheng
Renxian Tang

Video Byte

Keywords: Cell Communication and Signaling, hepatitis B virus, HBV, calcium signaling, Ca2+, infection, therapy, review

Posted Date: October 13th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-966274/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The ubiquitous second messenger calcium (Ca2+) interacts with numerous cellular proteins to regulate physiological processes. Ca2+ also participates in a variety of diseases, including hepatitis B virus (HBV) infection. HBV infection is a major cause of fibrosis, cirrhosis, and hepatocellular carcinoma. Recent studies have demonstrated that HBV infection elevates levels of intracellular Ca2+ and this elevation is primarily dependent on the HBV protein HBX. The activation of Ca2+ signaling contributes to viral replication in HBV-infected cells. The importance of Ca2+ signaling in HBV infection makes controlling intracellular Ca2+ a promising therapeutic target. Early studies have suggested that binding cytosolic Ca2+ or inhibiting Ca2+ channels reduces viral replication, but current research is largely derived from in vitro cellular models and needs to be confirmed in animal models and human patients. The influence Ca2+ signaling has on the subsequent development of HBV-associated diseases, like hepatitis, is also largely unexplored.