The improvement of sea highway route by using parallel insertion and exhaustive search

I Subiantoro¹, Lukmandono², P I Santoso³ and H C Suroso⁴

¹Postgraduate Student, Master of Industrial Engineering Department, Institut Teknologi Adhi Tama Surabaya, Indonesia
²,³,⁴Lecturer, Master of Industrial Engineering Department, Institut Teknologi Adhi Tama Surabaya, Indonesia
irfan.subiantoro18@gmail.com

Abstract. Indonesia contains of island and ocean which perform some problems in logistics delivery such as create a gap between west side and east side of Indonesia. A sea highway program were made by president to send logistics to be more effective and efficient. This program has been implemented for four years recently but still has many adjustment such as creating the best route of sea highway. This research try to create a better route of sea highway by using tour construction to create an initial route in two steps, clark and wright saving matriks and parallel insertion. The second method is tour improvement aims to generate a new route after initial route by using exhaustive search. Five route of sea highway are generated in tour construction and two route has been adjusted in the tour improvement because of a better score came up. The improvement of fourth route from Depot-Malahayati-Batam-Telukbayur-Depot becomes Depot-Malahayati-Telukbayur-Batam-Depot and second route still being the same but there also another option of route which has 18 score different from the best route score , those are Depot-Sampit-Samarinda-Balikpapan-Pontianak-Depot.

1. Introduction

As technology becomes more sophisticated and human mobility needs keep growing, the logistics demand also increasing. The consumer want to get goods as soon as possible so that the lead time requirement should be shorter. By this condition, Indonesia has a main problem to increase the shipment of logistic from one city to another because Indonesia contains of thousands island.

The region of Indonesia mostly contains of ocean as much as 63% with the coastline 80.791 km². Meanwhile, the 37% contains of mainland with 17.499 islands. This condition of Indonesia that own lots of island which is surrounded by the ocean, the sea highway is one of the solution to support logistics transportation to be spreaded all over Indonesia and also able to reduce the logistics cost in the society [1]. In 2019 there are 18 route of sea highway with the frequency target and different day service on each route. However, the more sea highway route the more fuel that will be consumed, the more cost on loading unloading material, and also the amount of labour that will be taken. All of those variabel will increase the logistics cost so that a method such as Vehicle Routing Problem (VRP) should be implemented in this case to create a new route to be more efficient. Vehicle Routing Problem is a problem in the distribution to define vehicle route with certain capacity from one or two port to fullfill the consumer needs [2][3].
The improvement of sea highway route have not been implemented because this program has just running for four years and everything still on adjustment. However some research about sea highway have been created such as using AHP method to analyse the effectiveness and efficiency factor in the third year of sea highway implementation [4], analysing the consistency of route and capacity of the shipment [5] and giving a recommendation about improving the efficiency about route, frequency, and capacity.

Tools that will be used in this research is implementation of Vehicle Routing Problem which has been proven the effectiveness of creating a better route. Parallel insertion and Exhaustive Search will be implemented in this case to find out a better route of sea highway. The parallel insertion has been proven to get a better route compare with sequential version and also exhaustive search has better route to improve the previous option as long as there are enough time to calculate [6].

1.1. Theory

1.1.1. Vehicle Routing Problem. Vehicle Routing Problem (VRP) is a problem in distribution which has the objective to create an optimal route especially for vehicle that has been known the capacity to fulfil the consumer expectation in the certain location and certain demand [7]. VRP also can be defined as a problem to design optimal delivery route from several depots to several supplier by fulfilling certain constraints [8]. Both definition empezhised by [6] that VRP is a problem which focus on distribution of logistics from depot to the consumer. The solution of VRP is some routes to deliver the logistics by certain vehicle. Each route travelled by one vehicle and the vehicle should be back to the early port. There are some general objective VRP such as minimize the transportation cost, minimize the vehicle, balance the route and minimize the penalty due to unpleasant service of consumer.

The characteristic of VRP can be seen as follows [9][8]:
1. The travel route of vehicle should be started and finished in the early depot
2. There are some place that the demand should fulfill once
3. If the capacity of vehicle has been used and unable to serve the next consumen, the vehicle should turn back to the main depot and fulfill the capacity to serve the next consumen
4. The main objective of this problem is to minimize the total distance of vehicle by arrange the sequence of consumen and when the vehicle turn back to the main depot to fulfill the capacity

1.1.2. Tour Construction. In this step the early solution of sea highway route will be created. The method which used to create early route is construction method especially Clarke and Wright Saving Algorithm. This algorithm categorize as construction method because it works by gradually insert the consumen into a route. The saving means some distance can be reduced by combine two consumen into one [3]. The two route that having the greatest saving which has chance to create as the early route[6][10][11].

The algorithm of saving matriks categorized as heuristik algoritm which is not given the optimal solution in the certain problem. The illustration concept of saving matrix can be draw in the diagram below [7]:
Figure 1. Saving Matriks Illustration

I, j = consumer i, consumer j
O = depot

\[D_a = C_{oi} + C_{io} + C_{oj} + C_{ja} \]
\[D_b = C_{oi} + C_{ij} + C_{jo} \]
\[S_{ij} = D_a - D_b = (C_{oi} + C_{io} + C_{oj} + C_{ja}) - C_{oi} + C_{ij} = C_{io} + C_{oj} - C_{ij} \]

There are two version to create the route after doing saving matriks. Sequential version which create route gradually by looking at every consumer saving list to try to put in to the route. The priority of this method is creating the first route by the greatest saving list. Meanwhile parallel version can be created more than one every choice on the saving list. Priority of parallel version are focus on the greatest saving list[12][6].

1.1.3. Tour Improvement. After getting the earlier route from tour construction, the next step is to optimize the route by tour improvement. The improvement were done by switch the node which stay on the solution (single route improvement). The location of sequential node moving by certain rules. During the movement if there is the best solution so that the earlier solution will be replaced by the new solution.

Exhaustive search is an approaches to problem solving with brute-force enumeration [13]. This method is simple based on the mathematical argument. An exhaustive search examines every search point inside the search region and gives the possible match. The basic principal of this methode is divide the search process into sequential steps and choosing the next step search direction based on the current step result[14]. However, this method considered inelegant, boring, error prone, and exhausting. When the option is too much then this method is unrecemended to be applied [6].

2. Materials and Method

Method that has been used in this research are divided into two step, tour construction and tour improvement. Tour construction used for defining the early route of sea highway which choosen Clark and Wright Saving Matriks as a tools to create the route. The Clark and Wright Saving Matriks done by parallel insertion due to it has better solution rather than sequential version. The next step is tour improvement which aims to optimize the earlier solution. Exhaustive search were choosen to solve this problem because it still feasible to get the best solution by looking at each sequential step to create the optimal solution.

2.1. Study Design and Overview

The data were got from ministry of maritime database that has been share into documents. There are 22 port which became consume and there is a port that became the main depot. The main depot located in Belawan the westenmost Indonesia. Distance Matrix that has been collected can be seen as follows:
DESTINATION (Nm – Nautical Mile)	1	2	3	4	5	6	7	8	9	10
ORIGIN										
Belawan	0	1021	1119	1427	2243	372	251	630	784	673
Tj. Priok	1	0	358	750	1492	468	977	334	495	225
Tj. Perak	2	1119	358	0	431	725	1325	640	1005	540
Makassar	3	1427	750	431	0	999	1569	967	1167	887
Sorong	4	2243	1492	1226	754	0	1644	2176	1656	849
Batam	5	372	725	999	1644	0	573	155	245	246
Malahayati	6	251	977	1325	1569	573	155	649	490	756
Jambi	7	630	334	670	1316	573	155	649	200	108
Palembang	8	784	495	1005	1167	490	200	0	289	400
Panjang	9	673	225	540	887	200	108	289	0	153
Tj. Emas	11	1102	1055	455	842	1578	398	886	400	153
Pontianak	12	696	393	503	670	1101	583	154	561	491
Banjarmasin	13	1104	228	416	1101	583	154	561	491	406
Balikpapan	14	1151	257	309	1011	689	1260	662	862	586
Samarinda	16	1481	700	510	308	846	792	1347	812	757
Pantoloan	17	1555	841	578	266	683	955	1507	973	915
Kendari	18	1793	949	636	202	552	1152	1143	1343	1068
Temau Kupang	19	1806	1018	665	390	724	1347	1924	1488	1198
Ternate	20	2048	1295	1107	595	252	1400	1931	1431	1376
Ambon	21	1994	1281	960	531	250	1476	2035	1475	1403
Jayapura	22	2819	2036	1696	1282	555	2190	2732	2422	2134

DESTINATION (Nm – Nautical Mile)	1	2	3	4	5	6	7	8	9	10
ORIGIN										
Belawan	0	1033	696	1104	1151	1421	1481	1555	1793	1806
Tj. Priok	1	217	393	422	488	660	700	841	949	1018
Tj. Perak	2	195	503	281	257	461	510	578	636	665
Makassar	3	547	670	416	309	279	308	266	202	390
Sorong	4	1298	1316	1101	1011	867	846	683	552	724
Batam	5	617	330	583	689	779	792	955	1152	1347
Malahayati	6	1168	893	1154	1260	1340	1347	1507	1720	1924
Jambi	7	518	352	561	662	789	812	973	1143	1293

Table 2. Destination Matriks location 11 – 22

DESTINATION (Nm – Nautical Mile)	11	12	13	14	15	16	17	18	19	20	21	22
ORIGIN												
Belawan	0	1033	696	1104	1151	1421	1481	1555	1793	1806	2048	1994
Tj. Priok	1	217	393	422	488	660	700	841	949	1018	1295	1281
Tj. Perak	2	195	503	281	257	461	510	578	636	665	1107	960
Makassar	3	547	670	416	309	279	308	266	202	390	595	531
Sorong	4	1298	1316	1101	1011	867	846	683	552	724	252	250
Batam	5	617	330	583	689	779	792	955	1152	1347	1400	1476
Malahayati	6	1168	893	1154	1260	1340	1347	1507	1720	1924	1931	2035
Jambi	7	518	352	561	662	789	812	973	1143	1293	1431	1475
DESTINATION (Nm – Nautical Mile)

ORIGIN	Tj. Emas	Pontianak	Sampit	Banjarmasin	Balikpapan	Samarinda	Pantoloan	Kendari	Tenau Kupang	Ternate	Ambon	Jayapura	
Telukbayur	8	700	541	761	862	986	1008	1169	1343	1488	1625	1675	2422
Palembang	9	32	326	491	586	728	757	915	1068	1198	1376	1403	2134
Panjang	10	317	406	490	567	732	769	916	1036	1119	1376	1371	2106
Tj. Emas	11	0	421	265	371	454	470	633	829	1044	1085	1151	1887
Pontianak	12	421	0	265	371	454	470	633	829	1044	1085	1151	1887
Sampit	13	305	265	0	106	242	279	427	582	779	888	914	1643
Banjarmasin	14	329	371	106	0	182	230	354	482	674	809	816	1548
Balikpapan	15	511	454	242	182	0	50	186	382	669	647	697	1415
Samarinda	16	558	470	279	230	50	0	162	386	695	619	688	1398
Pantoloan	17	677	633	427	354	186	162	0	255	610	461	530	1235
Kendari	18	748	829	582	482	382	386	255	0	377	407	335	1070
Tenau Kupang	19	801	1044	779	674	609	695	610	377	0	699	478	1106
Ternate	20	1118	1085	888	809	647	619	461	407	699	0	274	803
Ambon	21	1078	1151	914	816	697	688	530	335	478	274	0	734
Jayapura	22	1811	1887	1643	1548	1415	1398	1235	1070	1106	803	734	0

Demand of each location or consumer also need to be outlined as one of constrain in this research. The demand will be illustrated in TEUS (Twenty-foot Equivalent UnitS) which usually used for container or logistics metrices. The demand data has been collected and can be seen bellow :

Table 3. Demand of each location/consumer

Location/ Consumer	Demand (TEUS)	Location/ Consumer	Demand (TEUS)
Tj. Priok	132510	Pontianak	159303
Tj. Perak	225514	Sampit	159303
Makassar	67547	Banjarmasin	229438
Sorong	47850	Balikpapan	159303
Batam	253369	Samarinda	159303
Malahayati	159303	Pantoloan	159303
Jambi	159303	Kendari	159303
Telukbayur	159303	Tenau Kupang	159303
Palembang	159303	Ternate	159303
Panjang	159303	Ambon	159303
Tj. Emas	159303	Jayapura	159303
2.2. Software
The main software that used in this research is Ms. Excel 2013 especially on Excel Solver to calculate the saving matrices and create an optimal route. Netpas Distance also been used to define the distance between depot to consumer and consumer to consumer. Distance metrics illustrated in Nautical mile (Nm).

3. Result and Discussion

3.1. Saving List
Saving list can be found by calculating the destination and formula below:

\[S_{ij} = C_{i0} + C_{0j} - C_{ij} \]

\[S_{sorong,jayapura} (S_{4,22}) = C_{4,0} + C_{0,22} - C_{4,22} \]

\[= 2243 + 2819 - 555 \]

\[= 4507 \text{Nm} \]

Consumer i	Consumer j	Saving (Nm)
Sorong	Jayapura	4507
Ambon	Jayapura	4079
Ternate	Jayapura	4064
Sorong	Ternate	4039
Sorong	Ambon	3987
Ternate	Ambon	3768
Kendari	Jayapura	3542
Tenau Kupang	Jayapura	3519

3.2. Creating earlier route
After getting saving list result, a new route can be created by using parallel insertion method which choosing the highest saving list to be executed firstly. A new route has been solved by Ms.Excel and can be outlined below:

Number of Route	Sequence Route
First Route	Depot – Jambi – Panjang – Tj.Priok – Tj. Emas – Palembang - Depot
Second Route	Depot – Pontianak – Samarinda – Balikpapan – Sampit – Depot
Third Route	Depot – Banjarmasin – Pentoloan – Kendari – Tenau Kupang – Tj. Perak - Depot
Fourth route	Depot – Malahayati – Batam - Telukbayur – Depot
Fifth route	Depot – Makassar – Ambon – Jayapura – Sorong – Ternate - Depot
3.3. Improvement route by using exhaustive search

There are five route that will be processed by exhaustive search algorithm. Firstly the enumeration list should be noted systematically, evaluated every possibility of solution one by one, when all the enumeration list has been proceed then announce the best score. The enumeration list can be created by using formula below:

\[\text{Number of enumeration} = (n - 1)! \]

So that the numbers enumeration of each route are below:

Table 6. Enumeration
Number of Route
First Route
Second Route
Third Route
Fourth Route
Fifth route

Table 7. Enumeration fourth route
Tour route
Depot – Malahayati – Telukbayur – Batam – Depot
Depot – Malahayati – Batam – Telukbayur – Depot
Depot – Telukbayur – Malahayati – Batam – Depot
Depot – Telukbayur – Batam – Malahayati – Depot
Depot – Batam – Malahayati – Telukbayur – Depot
Depot – Batam – Telukbayur – Malahayati – Depot

Table 8. Enumeration second route
Tour Route
Depot – Pontianak – Samarinda - Balikpapan - Sampit – Depot
Depot – Pontianak – Samarinda – Sampit – Balikpapan – Depot
Depot – Pontianak – Sampit – Samarinda – Balikpapan – Depot
Depot – Pontianak – Sampit – Balikpapan – Samarinda – Depot
Depot – Pontianak – Balikpapan – Sampit – Samarinda – Depot
Depot – Pontianak – Balikpapan – Samarinda – Sampit – Depot
Depot – Samarinda – Pontianak – Balikpapan – Sampit – Depot
Depot – Samarinda – Balikpapan – Pontianak – Sampit – Depot
Depot – Samarinda – Balikpapan – Sampit – Pontianak – Depot
Depot – Samarinda – Pontianak – Sampit – Balikpapan – Depot
4. Discussion

From table 7 can be concluded the best solution of sea highway route with the lowest score 1358 are Depot - Malahayati – Telukbayur – Batam – Depot and Depot – Batam – Telukbayur – Malahayati – Depot. The first solution before implementing tour construction obtained score as much as 1853 which is the second lowest route in tabel 6. This might not significant difference before and after implementing exhaustive search but still worthy to try.

Table 8 shown the lowest score is 2562 with the best route Depot – Pontianak – Samarinda – Balikpapan – Sampit – Depot and Depot – Sampit – Samarinda – Balikpapan – Pontianak – Depot. By using exhaustive search also can be seen the other possibility that might be choosen by the researcher. For example, there are slightly different score as much as 2583 which has 18 different score so it can be choosen as consideration. Knowing many possibility has some advantages such as the election of route can be added by some other consideration. The consideration might be the easiest route due to weather in the sea, the schedule of each port or destination and so on. However for some highly possibility of permutation such as first, second, and fifth route, It spent so much time to calculate each enumeration. This prove that exhaustive search is not recommended for higher level of research.

5. Conclusions

Tour construction generate five sea highway route option by using clark and wright saving matriks and parallel instruction. The five sea highway route still able to be improved by using exhaustive search method so that some initial route are changed. The improvement occured on the fourth route which is the route from tour construction was Depot – Malahayati – Batam - Telukbayur – Malahayati – Depot becomes Depot - Malahayati – Telukbayur – Batam – Depot. The second route also spot an interesting highlight, there is no improvement in the second route but there is another option route that can be offered those are Depot – Sampit – Samarinda – Balikpapan – Pontianak – Depot which only 18 score different from earlier route (Depot – Pontianak – Samarinda – Balikpapan – Sampit – Depot). This prove that exhaustive search able to improve the initial route by creating the enumeration. Nonetheless, exhaustive search are not recommend for big permutaion possibility due to time consuming.
6. References

[1] A. Lukman and L. Adam, “Maritime Connectivity Policy in Indonesia,” Politica, vol. 6, no. 1, 2015.

[2] M. A. Clark-wright, P. Studi, T. Industri, F. Teknik, and U. Diponegoro, “Optimasi Rute Angkutan Publik dengan Menggunakan,” pp. 8–9, 2017.

[3] Lukmandomo, M. Basuki, M. J. Hidayat, and F. B. Aji, “Application of Saving Matrix Methods and Cross Entropy for Capacitated Vehicle Routing Problem (CVRP) Resolving,” IOP Conf. Ser. Mater. Sci. Eng., vol. 462, no. 1, 2019.

[4] F. Kristini, A. N. Bambang, W. Handoko, and A. A. Priadi, “Efektivitas dan Efisiensi Program Tol Laut berbasis AHP (Studi Kasus: Pelabuhan Tahunah),” War. Penelit. Perhub., vol. 31, no. 2, pp. 75–82, 2019.

[5] D. D. Andilas and L. A. Yanggana, “Pelaksanaan Program Tol Laut Pt Pelayaran Nasional Indonesia,” J. Manaj. Transp. Dan Logistik, vol. 4, no. 1, p. 1, 2017.

[6] I. Maulana and R. Arifati, “PERENCANAAN RUTE PENGIRIMAN MENGGUNAKAN METODE PARALLEL INSERTION DAN EXHAUSTIVE SEARCH PADA PT. STARMASS LOGISTICS UPN " VETERAN " JAKARTA UPN " VETERAN " JAKARTA.”

[7] P. Nusmesse, A. Rahawarin, and D. B. Paillinn, “Usulan Penentuan Rute Dalam Pendistribusian Bbm Bersubsidi (Premium) Pada Pt. Pertamina Tbbm Wayame Ambon Ke Spbu Di,” Arika, vol. 10, no. 1, pp. 1–14, 2016.

[8] I. A. Soenandi, J. Joice, and B. Marpaung, “Optimasi Capacitated Vehicle Routing Problem with Time Windows dengan Menggunakan Ant Colony Optimization,” J. Sist. dan Manaj. Ind., vol. 3, no. 1, p. 59, 2019.

[9] C. Roch and S. Langer, “The Capacitated Vehicle Routing Problem,” Digit. Welt, vol. 3, no. 2, pp. 30–33, 2019.

[10] L. Octora, A. Imran, and S. Susanty, “Pembentukan Rute Distribusi Menggunakan Algoritma Clarke & Wright Savings dan Algoritma Sequential Insertion,” Reka Integr., vol. 2, no. 2, pp. 1–11, 2014.

[11] N. Ikfan and M. Ilyas, “Penentuan rute Transportasi Terpendek untuk Meminimalkan Biaya Menggunakan Metode Saving Matriks,” J. Ilm. Tek. Ind., vol. 12, no. 2, pp. 165–178, 2013.

[12] F. Ahmad and H. F. Muharram, “Penentuan Jalur Distribusi Dengan Metode Saving Matriks,” Competitive, vol. 13, no. 1, p. 45, 2018.

[13] J. Nievergelt, “Exhaustive search, combinatorial optimization and enumeration: Exploring the potential of raw computing power,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 1963, no. January 2000, pp. 18–35, 2000.

[14] H. M. Hang and Y. M. Chou, Motion Estimation for Image Sequence Compression. Woodhead Publishing Limited, 2012.

Acknowledgments

The author would like to thank the financial support given from The Ministry of Research and Technology / National Agency for Research and Innovation of Indonesia under the Magister Thesis Research scheme 2020 (Contract No. 046/SP2H/LT/MULTI/L7/2019 and 046/SP2H/AMD/LT/MULTI/ L7/2020)