Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation

Louise C. Andresen1 | Maria T. Domínguez2 | Sabine Reinsch2
Andrew R. Smith3,2 | Inger K. Schmidt4 | Per Ambus4 | Claus Beier5
Pascal Boeckx6 | Roland Bol7,1 | Giovanbattista de Dato8 | Bridget A. Emmett2
Marc Estiarte9,10 | Mark H. Garnett11 | György Kröel-Dulay12 | Sharon L. Mason1
Cecilie S. Nielsen13 | Josep Peñuelas9,10 | Albert Tietema1

1Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands; 2Centre for Ecology and Hydrology, Bangor, UK; 3School of Environment, Natural Resources & Geography, Bangor University, Bangor, UK; 4Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; 5Centre for Catchments and Urban Water Research, Norwegian Institute for Water Research (NIVA); 6Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium; 7Institute of Bio- and Geosciences, IBG-3: Agosphere, Forschungszentrum Jülich, Jülich, Germany; 8Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Viterbo, Italy; 9CSIC, Global Ecology Unit CREA-CSIC-UAB, Cerdanyola del Vallés, Catalonia, Spain; 10CREAF, Cerdanyola del Vallés, Barcelona, Catalonia, Spain; 11NERC Radiocarbon Facility, Scottish Enterprise Technology Park, East Kilbride, UK; 12Centre for Ecological Research, Institute of Ecology and Botany, Hungarian Academy of Sciences, Budapest, Hungary and 13Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden

Correspondence
Maria T. Domínguez
Email: mdominguez23@us.es

Present addresses
Louise C. Andresen, Department of Earth Sciences, University of Gothenburg, Göteborg, Sweden
Maria T. Domínguez, Department of Crystallography, Mineralogy and Agricultural Chemistry, Edaphology Unit, University of Seville, Seville, Spain
Giovanbattista de Dato, Council for Agricultural Research and Economics (CRAE) - Research Centre for Forestry and Wood, Arezzo, Italy

Funding information
European Commission, Grant/Award Number: FTP7-ICT-2008-1; VKR Foundation; Spanish Government, Grant/Award Number: CGL2016-79835-P; Catalan Government, Grant/Award Number: 5GR2014-274; European Research Council, Grant/Award Number: ERC-SyG-610028; Hungarian Scientific Research, Grant/Award Number: OTKA K112576; János Bolyai Research Scholarship of the Hungarian Academy of Sciences

Handling Editor: Robert Freckleton

Abstract
1. Long-term climate change experiments are extremely valuable for studying ecosystem responses to environmental change. Examination of the vegetation and the soil should be non-destructive to guarantee long-term research. In this paper, we review field methods using isotope techniques for assessing carbon dynamics in the plant–soil–air continuum, based on recent field experience and examples from a European climate change manipulation network.
2. Eight European semi-natural shrubland ecosystems were exposed to warming and drought manipulations. One field site was additionally exposed to elevated atmospheric CO2. We discuss the isotope methods that were used across the network to evaluate carbon fluxes and ecosystem responses, including: (1) analysis of the naturally rare isotopes of carbon (13C and 14C) and nitrogen (15N); (2) use of in situ pulse labelling with 13CO2, soil injections of 13C- and 15N-enriched substrates, or continuous labelling by free air carbon dioxide enrichment (FACE) and (3) manipulation of isotopic composition of soil substrates (14C) in laboratory-based studies.
3. The natural 14C signature of soil respiration gave insight into a possible long-term shift in the partitioning between the decomposition of young and old soil carbon sources. Contrastingly, the stable isotopes 13C and 15N were used for shorter-term processes, as the residence time in a certain compartment of the stable isotope label signal is limited. The use of labelled carbon-compounds to study carbon
mineralisation by soil micro-organisms enabled to determine the long-term effect of climate change on microbial carbon uptake kinetics and turnover.

4. Based on the experience with the experimental work, we provide recommendations for the application of the reviewed methods to study carbon fluxes in the plant–soil–air continuum in climate change experiments. 13C-labelling techniques exert minimal physical disturbances, however, the dilution of the applied isotopic signal can be challenging. In addition, the contamination of the field site with excess 13C or 14C can be a problem for subsequent natural abundance (14C and 13C) or label studies. The use of slight changes in carbon and nitrogen natural abundance does not present problems related to potential dilution or contamination risks, but the usefulness depends on the fractionation rate of the studied processes.

KEYWORDS

14C, bomb-C, drought, free air carbon dioxide enrichment, pulse-labelling, stable isotopes, warming

1 | INTRODUCTION

Global climate change scenarios predict that increased greenhouse gas (e.g. CO$_2$, CH$_4$ and N$_2$O) concentrations in the atmosphere will alter the periodicity and magnitude of drought events and will increase mean global temperatures by approximately 0.2°C per decade (IPCC, 2013). For the European continent this will manifest as drier summers in the South and increased precipitation in the North (IPCC, 2013). Elucidating the consequences of such atmospheric changes for biogenic carbon fluxes is one of the main challenges for the scientific community. Some models have predicted a positive feedback to climate change, resulting from higher increases in respiratory fluxes from ecosystems (e.g. carbon release through soil respiration) than in net primary productivity, which would lead to further increases in atmospheric CO$_2$ (Denman et al., 2007; Friedlingstein et al., 2006). To assess the likelihood of this positive feedback, experimental studies that analyse the long-term adaptations of ecosystem carbon fluxes to climate change are critically needed. However, climate change experiments are often conducted at short or medium timescales due to funding constraints, or due to the limited life span of the experimental plots, as repeated removal of samples often leads to disturbances and experimental artefacts in the studied system. Hence, there is a necessity for the maintenance of long-term experiments using non-destructive methods.

Carbon fluxes through the plant–soil–air continuum play a central role in soil carbon cycling (Phillips, Fox, & Six, 2006; Zak, Pregitzer, King, & Holmes, 2000). Consequently, above-ground to below-ground fluxes might largely determine carbon emissions from ecosystems under the different climate change scenarios (Chapin et al., 2009). Stable carbon isotope studies can give important insights into carbon fluxes through the plant–soil–air continuum with the minimal disturbance to the system. The isotopic carbon composition of compartments in this continuum is a result of the different isotope fractionation processes along the pathway from CO$_2$ fixation by plants to carbon allocation to soil (reviewed in Brüggemann et al., 2011). Thus, the analysis of the natural abundance of carbon isotopes in these compartments can give information about some processes related to photosynthesis and carbon losses through plant or soil respiration. In addition, in situ pulse labelling with the heavy stable carbon isotope (13C) is a powerful tool to analyse short-term dynamics of carbon allocation to the soil with high resolution (Epron et al., 2012; Högberg et al., 2008; Reinsch & Ambus, 2013). The application of these isotopic methods can therefore provide unique information about above-ground-below-ground linkages and their alterations in response to climate changes.

In order to investigate long-term effects of climate change on shrubland ecosystems, an experimental network was established across Europe (the INCREASE network). Studying the response of shrublands to climate change is important, since they are representative ecosystems in Mediterranean and North European countries, where they play an important ecological role in preserving biodiversity (Wessel et al., 2004). In addition, land area covered by shrublands has dramatically decreased in temperate Europe during the past century, due to land use changes, increased pollution and eutrophication, and climate change (Fagúndez, 2013). In Mediterranean regions, however, shrublands have increased their extension due to land abandonment (Fagúndez, 2013).

Within the climate change network, common non-destructive methods were used across sites to ensure the comparison of treatment effects across different climatic regions. Evaluating the impact of climate change treatments on shrubland carbon dynamics was one of the main objectives of this experimental network, and thus a range of methodologies to quantify and trace distinct carbon pools and their fluxes have been applied since 1999. Priority was given to those techniques that minimise disturbances to vegetation and soil to guarantee long-term research.

Here, we review isotope methods that have been applied across this climate change experimental network to study ecosystem carbon fluxes through the plant–soil–air continuum.
dynamics in the plant-soil-air continuum. In particular, we focus on methodologies that: (1) analyse the abundance of naturally rare isotopes of carbon (\(^{13}\)C and \(^{14}\)C) and nitrogen (\(^{15}\)N) in the different ecosystem compartments, (2) trace experimentally-induced changes in the isotopic signatures to assess rhizodeposition utilisation by soil biota, and (3) manipulate and trace the isotopic composition of C-compounds to analyse C mineralisation by soil micro-organisms in laboratory studies. Along-side the methods, data from the field studies are presented as accompanying illustrative boxes, and practical recommendations for the applications of these methodologies at large-scale climate change experiments are outlined in Table 1.

2 | THE EXPERIMENTAL CLIMATE CHANGE NETWORK INCREASE

The experimental network for the study of climate change impacts on European shrublands (INCREASE, “An Integrated Network on Climate Research Activities on Shrubland Ecosystems”) was established in 1998. The network is comprised of eight shrublands situated across a natural temperature gradient of mean annual temperature from c. 8°C in the North to c. 16°C in the South, and a rainfall gradient ranging from 510 mm to 1,741 mm from East to West (Figure 1). These sites represent Continental, Atlantic and Mediterranean shrublands. At each site, whole-ecosystem warming and drought treatments were applied in triplicates of 20 m² plots, using automated retractable curtain constructions (see Beier et al., 2004; Mikkelsen et al., 2008 for a full description). At one of the Danish sites (DK-BRA), a FACE treatment was installed, and combinations of the climate treatments were established and resulted in a plot size of 9 m². Climatic conditions at the plot level (air temperature, humidity, soil temperature and moisture) were recorded in half-hour or hourly intervals, and main carbon pools and fluxes have been periodically monitored, including above-ground plant biomass (Kröel-Dulay et al., 2015), litter production, soil respiration and net ecosystem carbon exchange (Beier et al., 2008; Lellei-Kovács et al., 2016).

3 | METHODOLOGIES USING NATURAL ABUNDANCE OF CARBON ISOTOPES

3.1 | Ecosystem processes reflected by stable isotope fractionation (\(^{13}\)C and \(^{15}\)N)

The relative abundance of the rare and heavy stable isotopes of nitrogen (\(^{15}\)N) and carbon (\(^{13}\)C) compared to the most abundant stable isotope, \(^{14}\)N and \(^{12}\)C, respectively, is expressed as the delta (δ) notation (e.g. δ\(^ {13}\)C and δ\(^ {15}\)N in ‰), which is the deviation of the \(^{13}\)C or \(^{15}\)N abundance in the sample compared to a reference material (Brand & Coplen, 2014). Most natural processes (chemical, physical or enzymatically catalysed) discriminate against heavy isotopes (e.g. \(^{13}\)C, \(^{15}\)N, \(^{18}\)O), which in open systems results in an isotopically depleted product with comparably smaller concentration of the heavy isotopes than its corresponding substrate (Fry, 2006). If the dominant process rate changes, or if the substrate is exhausted, then the δ value of the

TABLE 1 Suggestions and advice to consider when applying isotopic methods for the study of carbon fluxes in the plant-soil system

Method	Expenses (cost)	Advice (do’s and don’ts)
Bomb-C (natural \(^{14}\)C abundance)	High (AMS analysis); Equipment for CO\(_2\) sampling is cheap (closed chambers, carbon-free pump, batteries, and molecular sieve system). An IRGA is also required	Avoid materials and labs with possible \(^{14}\)C contamination. If soil CO\(_2\) is to be analysed in the field, long incubation times are required to get sufficient CO\(_2\) for AMS analysis (typically >1 ml). Carefully think about the soil depths to be analysed, and take the sample consistently. \(^{14}\)C signatures might vary strongly along few cm in the soil. If bulk soil \(^{13}\)C is to be analysed, try to remove the roots as much as possible, because of their contrasted \(^{13}\)C signature
In situ \(^{13}\)C-CO\(_2\) pulse-labelling	\(^{13}\)C- enriched compounds used for labelling and as standards are usually expensive; \(^{13}\)C determination in specific compounds is expensive, although cheaper than AMS	Consider the target pools to be analysed and the potential dilution of the label by the unlabelled root system or soil carbon pool. If your study requires a high \(^{13}\)C enrichment, mind the potential risk of contaminating the site. Avoid above ambient CO\(_2\) concentrations in the chamber. If you need to monitor CO\(_2\) during your pulse, remember that IRGAs are rather insensitive to \(^{13}\)CO\(_2\)
Natural abundance of isotopes (\(^{13}\)C and \(^{15}\)N)	IRMS analysis is relatively cheap	Make sure the history of sampling site is known (previous labelling experiments?)
\(^{14}\)C-substrates mineralisation	Analysis of the trapped \(^{14}\)C-CO\(_2\) is relatively cheap	High risk of contaminating laboratory equipment
\(^{13}\)C-injection in situ	Similar to \(^{13}\)C-CO\(_2\) pulse-labelling	Contamination risk of \(^{13}\)C leaching is present, but smaller to our judgement than from \(^{13}\)C-CO\(_2\) experiments. Do not use areas dedicated to natural abundance work
Suggestions and advice to consider when applying isotopic methods for the study of carbon fluxes in the plant-soil system

Natural abundance

Method	Expenses (cost)	Advice (do’s and don’ts)
In situ	**13C- CO2**	**13C** IRMS analysis is relatively cheap
	13C- CO2 pulse-labelling	High risk of contaminating laboratory equipment

Before you start

Data analysis hint	Time spent
Discuss your results with the Radiocarbon facility staff	Processing time depends on the type of sample, although is usually low; determination by AMS may take several months depending on the facility
Report the label addition per area: g 13C m$^{-2}$	Pulse labelling experiments are usually short, but intensive (high sampling frequency immediately after the pulse)
Sampling time and grinding / weighing of sample	Experiments requiring root washing or microbial compound extraction are time consuming

Test your chamber and tubing materials for adsorption/desorption effects, and ensure these are without carbon content (use PTFE (Teflon) tape, not gluing paper-based)

Be aware that FACE can dilute the isotopic signal, most CO$_2$ enriched systems use 13C depleted sources, because this is cheaper

You need to work in a dedicated 14C laboratory safely away from the natural abundance facility

Labelling intended for soil microbial components is more intense from 13C liquid substrate in-situ injection than from 13C-CO$_2$ pulse labelling

product (such as the plant leaf) may significantly change, due to the underlying fractionation.

Decreases in soil water availability due to drought can alter the isotope signature of both carbon and nitrogen in the above-ground plant biomass. During drought stress, leaves reduce stomatal opening to preserve water. As this happens, the space that confines the air as an immediate source of CO$_2$ for photosynthesis (the sub-stomatal cavity) becomes a more closed system due to the restriction of the renewal of CO$_2$, and as a result a higher proportion of the heavy 13C in CO$_2$ is fixed by Rubisco (C3 plants; Tcherkez, Mahe, & Hodges, 2011). Hereby the discrimination against the heavy 13C isotope is decreased. As a consequence, in plants with a C3 photosynthetic pathway a 13C enrichment in the leaf occurs during drought stress (Cernusak et al., 2013). Indeed, the 13C enrichment at the leaf level is related to an increased intrinsic water use efficiency (WUEi), the ratio of assimilation to stomatal conductance (Farquhar & Richards, 1984). Changes in soil water availability may also alter the leaf nitrogen isotope signature by changing the nitrogen availability with soil depth, and thereby the 15N signature of the plant nitrogen source (Lloret, Peñuelas, & Ogaya, 2004). In general, an increase in the δ15N signature in the leaves indicates a progressive N saturation and/or N losses in the surrounding system because all major pathways of N loss (denitrification, ammonia volatilisation and nitrate leaching) cause δ15N enrichment of the remaining nitrogen (Peñuelas, Filella, Lloret, Piñol, & Siscart, 2000). Interpretation of changes in leaf δ15N, however, is not straightforward since leaf δ15N signatures might largely depend on mycorrhizal associations, and shifts in nitrogen sources between organic and inorganic compounds under a drought or warming could influence the leaf δ15N as well (Andresen, Michelsen, Jonasson, Beier, & Ambus, 2009; Michelsen, Quarmby, Sleep, & Jonasson, 1998). For instance, the increase in plant δ15N values with aridity may also result from increasing reliance on recycled organic N sources as opposed to new inputs.

Across the INCREASE network the effects of warming and drought on plant 13C and 15N natural abundance was monitored over four years, starting two years after onset of the climate manipulation. Current year shoots or leaves were analysed for δ13C and δ15N immediately after each artificially prolonged drought. Plant material was dried at 70°C and ground to a fine powder before analysis of δ13C and δ15N using isotope ratio mass spectrometry (IRMS). We expected to find higher δ13C values: (1) in drought treated plants (compared to control plots) and, (2) in plants growing at drier locations across the precipitation gradient (for a given common plant species). Furthermore, we expected (3) the δ15N to change in response to drought, as the nitrogen source (depth) is changed (at one location, within-species). Some significant effects of the drought treatment were observed on plant tissue δ13C and δ15N (Box 1). Differences between years (effect of time) were more pronounced than the effect of the drought treatment for *Populus alba* δ13C (HUI, *Erica multiflora* δ15N (SP) and *Globularia alypum* δ13C (SP). Only *Calluna vulgaris* showed a significant response to the drought treatment for δ13C as hypothesised (Box 1a). For *C. vulgaris*, which was growing at several locations (UK-CL, NL and DK-MOLS), the δ13C was higher at drier locations, when compared along the precipitation gradient, and also higher in the drought treatment at the
NL and UK-CL sites (Box 1b). Finally, we found no response of leaf δ¹⁵N to drought or warming, however, _P. alba_ had a much depleted δ¹⁵N relative to the other species. We attribute these differences to species specific utilisation of different nitrogen sources (perhaps more dependent on nitrate at the HU site) or different mycorrhizal associations with higher rates of isotopic fractionation.

3.2 | Bomb-¹⁴C technique to assess sources of soil respiration

The natural radioactive ¹⁴C abundance can be used to identify different sources of carbon in a mixed pool, for instance, in soil respiration. Radiocarbon signatures of more recent (i.e. <65-70 years) and older carbon sources are different as a result of the nuclear bomb tests in the atmosphere during the 1950/60s. These tests led to an increase in the ¹⁴C content in the atmospheric CO₂ in the Northern hemisphere, which reached its maximum in 1963 ("bomb peak" doubling at c. 200% pMC). Ever since the subsequent atmospheric nuclear test moratorium, the "bomb-¹⁴C" content has decreased due to the dilution with fossil fuel-derived CO₂ in the atmosphere and its incorporation in ocean and terrestrial carbon pools (Trumbore, 2009). Through its incorporation in plant biomass, the radiocarbon analysis of ecosystem fluxes found to contain bomb-¹⁴C provides singularly unique information which crucially and directly confirms the "recent" origin of any (decomposed) carbon substrate. Recently plant-assimilated carbon (autotrophic component of soil respiration) should have a similar radiocarbon signature as the current atmosphere, while the radiocarbon content of older carbon released through SOM mineralisation (heterotrophic component) reflects the year of fixation of that carbon, with the relative contribution of both sources of different ages being resolvable using a mixing model solution. Several studies have successfully achieved the separation of sources of C respiration across ecosystems using the "bomb-¹⁴C"
method (Cisneros-Dozal, Trumbore, & Hanson, 2006; Schuur & Trumbore, 2006; Subke, Voike, Leronni, Garnett, & Ineson, 2011). In these studies, analysis of the 13C-CO$_2$ signatures of roots and SOM was performed under controlled conditions and collated with analyses of field gas efflux (the mixed pool). Radiocarbon analysis of soil or ecosystem respiration has been used to evaluate the response of a range of ecosystems to different factors of climate change, such as increasing temperatures, decreasing rainfall or permafrost thaw (Borken, Savage, Davidson, & Trumbore, 2006; Muhr, Borken, & Matzner, 2009; Schuur et al., 2009). The method allows for a direct evaluation about possible differential effects of climate change factors on the fate of recent vs. older soil C moieties, a central question for climate change scientists. The applicability, sensitivity and accuracy of the method is obviously improved when more of the "bomb-14C" is detectable in the specific analysed C pool, e.g. containing relatively more C which laid down in living tissues and subsequent decomposition products in the 1950 to 1970s period.

We tested the effect of experimental warming and drought on the natural abundance of 14C in respired soil CO$_2$ at early stages of the climate manipulations at the Peaknaze field site (UK-PK). Our hypothesis was that drought increased heterotrophic respiration more than warming in this seasonally waterlogged soil, due to a greater responsiveness of old soil carbon to drought relative to temperature as a driver (Dominguez, Holthof, Smith, Koller, & Emmett, 2017; Dominguez et al., 2015). Therefore, we expected the greatest 14C-enrichment in the field-collected soil respiration samples from the drought plots. Soil efflux samples were collected in the late experimental drought period (September 2011), using a molecular sieve sampling system (Bol & Harkness, 1995; Hardie, Garnett, Fallick, Rowland, & Ostle, 2005) attached to closed dark respiration chambers placed on the soil overnight. CO$_2$ was subsequently recovered from the molecular sieve traps for 14C analysis by Accelerator Mass Spectrometry (AMS; Box 2). Soil and root samples were collected to conduct separate incubations to obtain the 14C-signatures of the heterotrophic and autotrophic respiration, respectively. These incubations were performed in leak-tight glass jars with a connection to the molecular sieve sampling system. The results revealed a high heterogeneity of the 14C signature of the soil efflux with no significant effect of the warming treatment, and a trend towards the release of older carbon from the drought plots (although not statistically significant). By comparison with the known record of post-bomb atmospheric 14C-CO$_2$ concentration (Box 2), the carbon being released from the plots was estimated to have been fixed between six and eight years earlier (M. Dominguez, unpublished).

4 | METHODS USING IN-SITU 13C LABELLING TO STUDY RHIZODEPOSITION UTILISATION

4.1 | 13C-CO$_2$ pulse labelling

In situ pulse labelling with the stable carbon isotope (13C) is a good method to address questions related to the time-lag between carbon assimilation and CO$_2$ release from soil (Kuzyakov & Gavrichkova, 2010). In 13C-CO$_2$ pulse labelling experiments, 13C enriched CO$_2$ is released in closed, intact plant-soil systems during daylight hours, typically for 1.5 to 6 hr, where it is assimilated by the photosynthetically active plant biomass. Plant and soil samples are taken from unlabelled and labelled systems at different time intervals, with a higher sampling frequency within the first 48 hr after the labelling. The allocation of 13C to below-ground pools (roots, exudates, microbiota) is subsequently analysed, which allows the determination of the fraction of recently fixed carbon actively utilised by e.g. different microbial functional groups if analysis of 13C in specific compounds such as PLFA or RNA is performed. Using 13C-CO$_2$ pulse labelling, several authors demonstrated that the flux of recently photosynthesised carbon to soil microbes occurs very fast, often within a few hours of 13CO$_2$ uptake (Rangel-Castro et al., 2005; Treonis et al., 2004), with a maximum incorporation of 13C into microbial RNA or biomass occurring within one to eight days after the pulse (Butler, Bottomley, Griffith, & Myrold, 2004; Ostle et al., 2003). These studies have also shown that this flux might be affected by a range of factors such as the seasonality of plant activity. Usually, more carbon is allocated below-ground towards the end of the growing season (Balasooriya et al., 2013; Högberg et al., 2010), under exposure to elevated atmospheric CO$_2$ concentrations (Jin & Evans, 2010; Reinsch & Ambus, 2013), under drought conditions (Fuchslueger, Bahn, Fritz, Hasibeder, & Richter, 2014) or in plants grown on fertile soils (Denef, Roobroeck, Manimel Wadu, Lootens, & Boeckx, 2009).

In the INCREASE network, several pulse-labelling experiments were conducted in combination with 13C-PLFA analyses to study rhizodeposit utilisation by microbes. At the Clocaenog site (UK-CL) we aimed to study the utilisation of rhizodeposits along a soil moisture gradient, by applying a 13C-CO$_2$ pulse during the late growing-season (August 2011). Transparent domes of 50 cm diameter and 100 cm height, enclosing individual C. vulgaris plants, were used. Repeated pulses of 13C-CO$_2$ (99 atom% 13C = 99% 13C + 1% 12C) were applied over 8 hr (Box 3). The domes were sealed to a frame which was inserted into the ground at least ten days before the pulse, and had several sealed septa to collect gas samples to estimate the concentration of the 13C-labelled CO$_2$. Plant leaves and soil from the rooting zone were collected at different times after the labelling, using a higher sampling frequency during the first hours after the pulse. Soils were freeze-dried, sieved to ≤ 0.05 mm and PLFAs were extracted. Fatty acid methyl esters (FAMES) were analysed by gas chromatography combustion-isotope ratio mass spectrometry (GC-c-IRMS). The main challenge was the low recovery of 13C label in the below-ground compartment, especially in individual FAMES. Despite the applied 13C concentration of 99 atom%, the apparent low photosynthetic rates combined with the excessive dilution of the 13C label in the large carbon pools of unlabelled woody branches and root- and microbial biomass resulted in an overall low level of 13C enrichment in the FAMES (Box 3). Similar patterns have also been observed in other pulse labelling experiments (Griffiths et al., 2004).
BOX 1 Isotopic signal of plant leaf responses to precipitation. Stable isotopes ($\delta^{13}\text{C}$ and $\delta^{15}\text{N}$) in above-ground plant material collected across the network was analysed by isotopic ratio mass spectrometry (IRMS). (a) Leaves and twigs (t) from *P. alba* (HU), *E. multiflora* L. (SP), *G. alypum* L. (SP) and *C. vulgaris* (NL); filled circle ● is control, open circle ○ is drought treatment, ▼ is warming treatment. p-values indicate effects of treatment, year, and the interaction of these factors on ^{13}C or ^{15}N, analysed by two-way ANOVA; ns is non-significant effect. Number indicates year (2001 = 1, 2002 = 2, 2003 = 3 or 2004 = 4). Species (site) differences and annual differences are stronger than treatment effects. (b) $\delta^{13}\text{C}$ of *C. vulgaris* leaves vs. annual precipitation of the previous year.
Three pulse-labelling events were conducted at the Brandbjerg site (DK-BRA) between 2010 and 2013 (Box 3). The Brandbjerg experiment consists of drought and warming manipulations in combination with ambient and elevated levels of CO\textsubscript{2} concentration. The developed experimental setup for pulse-labelling aimed (1) to be easily deployable in remote areas, (2) to distribute labelled 13C-CO\textsubscript{2} to as many plots at the same time as possible to ensure similar and constant conditions for CO\textsubscript{2} uptake by the vegetation, and (3) to ensure constant CO\textsubscript{2} concentration available to the vegetation throughout the labelling period. Therefore, a mobile flow-through system suitable for continuous 13C-CO\textsubscript{2} delivery was developed (Box 3): A gas-tight vinyl balloon (c. 3 m diameter) was filled with CO\textsubscript{2} free synthetic air and mixed with 13C-CO\textsubscript{2} (50 or 99 atom%) that supplied the transparent chambers enclosing the vegetation of interest with air over the duration of the experiments, ranging from 4 to 7.5 hr. Air was pumped continuously through gas tight tubing via electric diaphragm pumps (Reinsch & Ambus, 2013). The first experiment was conducted at the end of the growing season (October 2010), when we observed the highest allocation of carbon below-ground as measured by 13C in soil respiration (Reinsch et al., 2014). The second experiment was conducted in the spring (May 2011) and showed a major allocation of carbon to above-ground structures under elevated atmospheric CO\textsubscript{2} concentration, but carbon allocation to below-ground structures was higher in drought plots than in untreated control plots. The allocation of recently-assimilated carbon under warming conditions was similar to that under ambient conditions. The last experiment,
BOX 3 Analysis of rhizodeposit utilisation by microbes using in-situ 13C-CO$_2$ pulse-labelling experiments. (a) At the Clocaenog site (UK-CL) this technique was applied along a peat layer gradient. Repeated pulses of 13C-CO$_2$ were applied during 8 hr to C. vulgaris using sealed transparent domes attached to a core inserted into the ground. (b) The incorporation of 13C into soil microbial PLFAs was analysed. Despite a high applied dose of 13C (99 atom%), the dilution of the tracer within the large pool of unlabelled root biomass was remarkable, and as a consequence most of the analysed PLFAs showed no 13C enrichment. (c) 13C recovery in Gram-negative bacteria after a 13C-CO$_2$ pulse at the Brandbjerg site (DK-BRA). The enrichment pattern in PLFAs attributed to Gram-negative bacteria in soils exposed to drought and elevated CO$_2$ concentration (+120 ppm) for 8 years show different carbon utilisation patterns and magnitudes under imposed climatic conditions implying changed carbon cycle dynamics. (d) Flow-through pulse-labelling equipment showing the gas reservoir containing 13C-CO$_2$ for up to 8 hr of labelling connected to transparent Plexiglas chambers via tubing.
conducted in early season 2013 (June), was performed during a period with impeded photosynthetic activity and indicated that labelling performance is poor when vegetation is recovering from harsh winter conditions with bare frost or severe drought conditions (Box 3). Thus, it is important that the vegetation of interest displays green, photosynthetically active structures to facilitate CO$_2$ uptake and sufficient labelling of ecosystem carbon pools. From these labelling experiments we learned that climate change factors change the flow of carbon within the plant-soil-atmosphere continuum. Increased atmospheric CO$_2$ concentrations accelerate the carbon cycle as seen as labelled carbon through the bacterial community over time. In contrast, drought slowed down carbon transport dynamics with soil microbes showing the 13C label later in time (Reinsch et al., 2014).

Our studies illustrate the complexity of controlling in situ pulse-labelling experiments in ecosystems dominated by woody plants, which is even more challenging with 13C-CO$_2$ than with 14C-CO$_2$ because of their respective atmospheric backgrounds and detection limits (Epron et al., 2012). Ideally, 13C doses for in situ use should be carefully tested in trials, considering the nature of the studied vegetation and the compounds to be analysed. If for example, specific compounds of the soil microbial biomass are the main interest, then strong isotopic doses should be applied, and it is advisable to deploy the 13C pulse when plants naturally allocate carbon below-ground, for example, when preparing for winter. The 13C signal can be increased, using highly labelled 13C-CO$_2$ (99 atom %). However, the usage of a highly enriched CO$_2$ can potentially lead to blurry signals and has to be applied with caution (Watzinger, 2015). Furthermore, 13C-CO$_2$ concentration inside the labelling chamber should be as close as possible to ambient values, because unrealistic high CO$_2$ concentration will change plant CO$_2$ uptake. Repeated moderated 13C-CO$_2$ applications during longer exposure times might be more appropriate, but inside closed transparent chambers temperature and humidity may increase if the labelling period is prolonged, which also affects photosynthetic processes (Epron et al., 2012). Losses of 13C due to physical diffusion and adsorption/desorption into the chamber and tubing material should also be considered. In particular, the back-diffusion of the 13CO$_2$ from the soil to the atmosphere which entered the soil pores during the labelling might confound the interpretation of measured below-ground respiration (Selsted et al., 2011; Subke et al., 2009). However, when applied properly, the insights into terrestrial carbon allocation can be detailed and novel (Box 3).

4.2 | Free air carbon dioxide enrichment (FACE)-labelling

An alternative method for 13C labelling of vegetation and whole-ecosystems is to use 13C-depleted CO$_2$ in FACE experiments. The FACE technique has through decades been used within cropping systems (Kimball, 2016), grasslands (Hovenden, Newton, & Wills, 2014; Mueller et al., 2016; Reich, Hobbie, & Lee, 2014) and forests (Terrer, Vicca, Hungate, Phillips, & Prentice, 2016) experiments, with the primary goal of assessing potential carbon dynamics and enhancement of plant growth (Andresen et al., 2016). As a side effect, the change in carbon isotopic composition of vegetation exposed to the FACE-treatment can be used to trace freshly assimilated carbon into soil microbial biomass, fauna and organic carbon pools. This approach was used at the Brandbjerg site (DK-BRA). The CO$_2$ used to elevate concentrations of atmospheric CO$_2$ to 510 ppm had 13C values ranging from −3.0 to −36.7‰ throughout 8 years of experimental treatment, with an overall mean of −26.1‰. The source of the CO$_2$ supplied was brewery surplus CO$_2$ as a chemically obtained side product. The mixing of the added CO$_2$ via FACE with ambient CO$_2$ in the moving air mass resulted in a 13C depletion ranging from −6.7 to −15.6‰. On average, this equals a depletion of CO$_2$ in FACE plots of −4.8‰ relative to the atmospheric −8‰ average. Ecosystem carbon pools became depleted accordingly, and the FACE-13C depletion acted as a long-term persistent isotope labelling. As a result, soil fauna (Enchytraeids) sampled from each of the climate-treated plots was significantly depleted in 13C by −0.5 to −2.0‰ in the CO$_2$ treatments (Andresen et al., 2011). This was due to translocated 13C substrate through the food web, starting with plant assimilation of 13C-depleted CO$_2$, followed by plant root exudation and microbial utilisation of the 13C-depleted substrate and eventual digestion of microbes by enchytraeids. Hereby the freshly supplied carbon source was recognised to be transferred in the natural setting, within a given timescale. Also microbial biomass and PLFAs had a different baseline of 13C content in ambient (not-treated) plots compared to CO$_2$ treated plots (Andresen et al., 2014). This was used for the calculation of 13C enrichments in each PLFA biomarker, also illustrating the pathway of newly assimilated carbon into microbial biomass.

A general drawback of the 13C-FACE label is again the contamination of the surroundings, as even short and small un-planned draft winds can carry the depleted label onto “ambient” plots, and these will most likely be “contaminated” with 13C (though not markedly exposed to high CO$_2$ concentrations) after some years of FACE activity. Therefore, one needs to collect reference material for the “natural abundance” level well away from the FACE experiment. Also, FACE-CO$_2$ can only be used as tracer if the isotopic composition of the FACE-CO$_2$ is considerably different than the isotopic composition of the atmospheric CO$_2$.

4.3 | In situ injection of 13C-enriched substrate solutions

As a much more localised approach, in situ injection of 13C- and 15N-enriched substrates directly below the soil surface can be used to assess the competition for the substrate between (1) plants and soil microbes, (2) microbial groups, and (3) the effects of the climate change treatments upon the competition for carbon or nitrogen substrates. Much research has focused on the sharing of nitrogen sources between plant and microbes (Kuzyakov & Xu, 2013), using in situ soil injections of 15N labelled inorganic nitrogen (ammonium and nitrate) or organic nitrogen (amino acids) (Sorensen, Michelsen, & Jonasson, 2008). Once amino acids with dual labelled compounds (13C and 15N) were available for experimental use, double-labelled substrate was used to explore, for example, plant uptake of intact amino acids
In a labelling experiment at the DK-BRA site, amino acid injections into the soil were conducted to analyse the impact of the climate treatments on the uptake of free amino acid nitrogen by plants and soil microbes. Dual-labelled glycine (15C$_2$15N-glycine: 99 atom% 13C—of both carbon atoms—and 99 atom% 15N) was added to 20×20 cm2 subplots (Andresen et al., 2009). Each sub-plot received 0.1 L of re-demineralised water labelled with 0.027 g glycine, corresponding to 687 mg glycine m$^{-2}$ (223 mg C m$^{-2}$ or 0.016 mg glycine g$^{-1}$ dry weight soil). The label was injected into the soil just below the soil surface with a syringe moved among 16 evenly spaced points of a template, placed on top of the vegetation (Andresen et al., 2009). One day (c. 24 hr) after labelling with glycine, soil cores were sampled from the soil surface to 15 cm depth, for determining the relative uptake of the amino acid in plant roots (IRMS solid sample) and soil microbes. As in many other soil labelling experiments, the largest label recovery (measured by 15N recovery since respiratory losses of 13C remain unknown) was found in the total microbial biomass compared to total plant biomass (Kuzyakov & Xu, 2013). A subsample of fresh soil was extracted with re-demineralised water, and another set of sub-samples was first vacuum-incubated with chloroform for 24 hr to release microbial carbon and nitrogen (Brookes, Landman, Pruden, & Jenkinson, 1985; Joergensen & Mueller, 1996), before extraction with re-demineralised water. A third subsample of soil was freeze-dried and later used for PLFA extractions. The 13C enrichment in PLFA markers thus indicated the activity (vitality) of the specific microbial group (Watzinger, 2015). We found that bacteria opportunistically utilised the freshly added glycine substrate, that is, incorporated 13C, whereas fungi showed only minor or no glycine derived 13C-enrichment (Andresen et al., 2014). In comparison, 13C traced into the microbial community via the 13C-12CO$_2$ pulse label at the same site (DK-BRA) also reached the bacterial community first. Bacteria showed high 13C enrichment compared to fungal groups (Reinsch et al., 2014). This suggests that in situ injection of 13C substrates might be a plausible alternative to mimic rhizodeposition effects. With the direct addition of 13C label to the soil, a strong labelling of the microbial community was more easily achieved than with the indirect 13C labelling of microbes via plant assimilated 13C-12CO$_2$ (Box 3).

5 | USE OF LABELLED CARBON-COMPOUNDS TO ANALYSE CARBON MINERALISATION BY SOIL MICROORGANISMS

Since soil micro-organisms have an important role in controlling the availability of nutrients via mineralisation of SOM, our understanding of how microbial functioning in the ecosystem is altered by global change must be improved (Grayston, Vaughan, & Jones, 1997). Microbial catabolic diversity of a soil is directly related to the carbon decomposition function within a soil and potentially provides a sensitive and ecologically relevant measure of the microbial community functional structure (Garland & Mills, 1991). Subsequently, multiple assays have been developed to generate community level physiological profiles (CLPP) that can act as fingerprints of microbial function. Three approaches for measuring CLPP in soils are reported in the literature: (1) Biolog (Garland & Mills, 1991); (2) a substrate-induced respiration (SIR) technique (Degens & Harris, 1997); and (3) MicroResp (Campbell, Chapman, Cameron, Davidson, & Potts, 2003). These methods are all based on quantifying CO$_2$ respired during the mineralisation of organic carbon compounds that vary in size, charge and structural complexity. The first approach, Biolog MicroPlate (Biolog), assesses the catabolic diversity of soil organisms using a microtitre plate by incubating a soil culture in the presence of nutrients and 95 different carbon substrates; respired CO$_2$ is used to reduce a tetrazolium violet salt, which results in a colour change that can be quantified colorimetrically (Garland & Mills, 1991). This approach, however, has been criticised for bias towards fast growing organisms that thrive in culture (Preston-Mafham, Boddy, & Randerson, 2002).

In response to the criticism of the Biolog method, Degens and Harris (1997) developed a method based on SIR where individual substrates are added to intact soil and evolved CO$_2$ is sampled and quantified. Finally, Campbell et al. (2003) combined aspects of both methods (MicroResp) where the response to carbon substrate addition to soil is measured colorimetrically, using a cresol red indicator dye in a microtitre plate format. Community level physiological profiling of soil samples collected from all treatments across the network was conducted to determine the catabolic utilisation profile, turnover and pool allocation of low molecular weight (LMW) carbon compounds, using a selection of 14C-labelled substrates. This method enabled the attribution of respired CO$_2$ to specific metabolic processes that facilitates the quantification and qualification of microbial mineralisation kinetics of substrates varying in structural complexity and recalcitrance. The kinetics of microbial 14C-CO$_2$ evolution can be described using a first order exponential decay model (Box 4). The number of terms used in the exponential decay model can be used to explain how microbial kinetics relates time, substrate complexity and carbon pool allocation to, for example, rapidly cycled labile soil solution carbon, microbial structural carbon and recalcitrant extracellular soil organic carbon (Boddy, Hill, Farrar, & Jones, 2007; Kuzyakov & Demin, 1998; Nguyen & Guckert, 2001). Attribution of modelled carbon pool sizes and turnover rates to biological function are not only time and substrate dependent. Therefore, soil physical, biological and chemical interactions may be miss-attributed to biological function. Indeed, current knowledge and techniques available might not be enough to examine the interaction between discrete carbon pools (Glanville, Hill, Schnepf, Oburger, & Jones, 2016). Using the half-life of 14C labelled carbon in soil solution we were able to examine the environmental gradient of the warming treatment across the climate change network and identified that temperature becomes rate limiting for microbial uptake of carbon from the soil solution pool at $<10.5^\circ$C. We also showed that experimentally manipulated warming simply speeds up the catabolic utilisation of labile LMW carbon in a predictable pattern (Box 4).
BOX 4 Exponential decay kinetics for 14CO$_2$ evolution during microbial 14C substrate mineralisation. The catabolic utilisation profile, turnover and pool allocation of low molecular weight (LMW) carbon substrates was determined in soils collected across the experimental network. Sixteen 14C labelled amino acids and sugars varying in structural complexity and recalcitrance were used in a multiple substrate induced respiration (SIR) assay on soil. Evolved CO$_2$ was collected using NaOH traps and absorbed 14CO$_2$ was measured with a scintillation counter. (a) For substrate mineralisation a double-term first order decay model with an asymptote fitted the data with an R^2 of .99. Using the coefficients from the fitted equation, estimated half-life of the substrate in the first phase (soil solution uptake) was 30 hr, and in the second slower phase (microbial turnover) 408 hr. Approximately, 40% of the substrate was immobilised in the soil, 48.3% respired during the first phase, and 13.2% respired during the slower second phase. (b) Half-life of the substrate in the soil solution vs. mean annual temperature, in control (triangle) and warming (circle) treatments, data points are $M \pm SE (n = 3)$. Warming treatment and relative warmer site, simply increases the catabolic utilisation of labile LMW-carbon until a threshold mean annual temperature of 11.5°C

6 | CONCLUSIONS AND RECOMMENDATIONS

Stable isotope studies provide insightful information about carbon (and nitrogen) fluxes through the plant-soil-atmosphere continuum with minimal disturbance to the system. The value of the different isotope techniques depends on the specific research questions.

The analysis of the natural abundance of the heavy isotopes is only useful when isotope signatures in the different carbon or nitrogen pools are clearly distinct as a result of important fractionation processes. In practice, the application of this technique is limited to the study of the effects of changing abiotic conditions on processes that operate over a relative broad period of time, for instance to study changes in plant water use efficiency or N sources in a drought experiment over the growing season or different years. In contrast, the radiocarbon analysis ("bomb-C" technique) of instantaneous fluxes (soil or ecosystem respiration) has been proved to be very useful to evaluate whether different factors of climate change provoke the release of older carbon sources through soil or ecosystem respiration, a central question in relation to the proposed positive feedback between climate change and SOM decomposition. However, the progressive dilution of the bomb-C signature of the atmosphere will limit the application of this technique in the upcoming decades.

If the analysis of climate change effects on the allocation of plant carbon below-ground and cycling through the microbial community is the main research interest, then 13C labelling approaches are the most appropriated tools. Coupled with the analysis of 13C in specific microbial compounds, this technique constituted a remarkable advance in the study of processes occurring at the rhizosphere level. A significant challenge of the application of this technique is the achievement of sufficient 13C enrichment in microbial biomass where the pools of background carbon in the studied compartments are high and hence dilute the 12C signal. As an alternative, direct injection of 13C-enriched substrates into soil can be applied to mimic rhizodeposition and to achieve a higher 13C signal in the microbial community. Fumigation with FACE-CO$_2$ can be used to achieve a longer-term labelling of soil microbes and fauna.

The application of these techniques, however, is not exempt from difficulties and disadvantages. To keep a high caution and avoid mistakes, our collective recommendations for applying the described methods are provided and addressed in Table 1.

For in situ pulse-labelling studies there are major seasonality constraints to the distribution of the label throughout the ecosystem compartments, that is, the seasonality of carbon allocation below-ground due to changing plant activity, or the plant health status which determines the amount of tracer entering the system. Importantly, field plots previously "contaminated" by highly enriched isotope labelling should be considered potentially inoperable for further scientific isotope studies using the natural abundance approach. However, plant and soil structures remain largely undisturbed. In outlook for setting up a large-scale climate manipulation, areas that have not been previously used for experimental
work with isotopes should consequently be selected. In particular, the “bomb-C” method is very sensitive to the contamination of soil or plant samples with 14C-enriched material, and thus its application should be limited to sites and facilities where no 14C-labelling work has been conducted. Additionally, it should be noted that any history of fertilisation might also alter the natural isotope abundance of ecosystem compartments (in particular 15N signatures), potentially confounding experimental results. The surroundings of a FACE experiment can be also “contaminated” by draft winds carrying the depleted label onto ambient plots.

ACKNOWLEDGEMENTS

This paper is a WP3 and WP15 of the INCREASE EU-infrastructure. Financial support by the European Commission (FP7-ICT-2008-1, Grant Agreement no. 227628) is gratefully acknowledged. L.C.A., I.K.S., P.A. and C.B. received support from the VKR Foundation through the CLIMAITE project. M.E. and J.P. acknowledge support from the Spanish Government grant CGL2016-79835-P, the Catalan Government grant SGR2014- 274, and the European Research Council grant ERC-Syg-610028 IMBALANCE-P. G.K.-D. was supported by the Hungarian Scientific Research Fund (OTKA K112576) and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The ClimMani (ESSEM COST Action ES1308, Climate Change Manipulation Experiments in Terrestrial) is acknowledged. Authors state that they do not have any conflicts of interest to declare.

AUTHORS’ CONTRIBUTIONS

All authors contributed to the collection of the data included as illustration of the methodologies. L.C.A., M.T.D., S.R. and A.R.S. wrote the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

DATA ACCESSIBILITY

Datasets associated with this article are available through Dryad Digital Repository https://doi.org/10.5061/dryad.mc460 (Andresen et al., 2018).

ORCID

Louise C. Andresen http://orcid.org/0000-0002-4890-889X
Sabine Reinsch http://orcid.org/0000-0003-4649-0677

REFERENCES

Andresen, L. C., Dominguez, M. T., Reinsch, S., Smith, A., Schmidt, I. K., Ambus, P., … Tietema, A. (2018). Data from: Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation. Dryad Digital Repository, https://doi.org/10.5061/dryad.mc460
Andresen, L. C., Dungait, J. A. J., Bol, R., Selsted, M. B., Ambus, P., & Michelsen, A. (2014). Bacteria and fungi respond differently to multifactorial climate change in a temperate heathland, Traced with 13C-Glycine and FACE CO2. PLoS ONE, 9, e85070. https://doi.org/10.1371/journal.pone.0085070
Andresen, L. C., Konestabo, H. S., Maraldo, K., Holmstrup, M., Ambus, P., Beier, C., & Michelsen, A. (2011). Organic matter flow in the food web at a temperate heath under multifactorial climate change. Rapid Communications in Mass Spectrometry, 25, 1485–1496. https://doi.org/10.1002/rcm.4907
Andresen, L. C., Michelsen, A., Jonasson, S., Beier, C., & Ambus, P. (2009). Glycine uptake in heath plants and soil microbes responds to elevated temperature, CO2 and drought. Acta Oecologica, 313, 283–295.
Andresen, L. C., Müller, C., de Dato, G., Duke, J. S., Emmett, B. A., Estiarte, M., … Bilton, M. C. (2016). Shifting impacts of climate change: Long-term patterns of plant response to elevated CO2, drought, and warming across ecosystems. Advances in Ecological Research, 55, 437–473. https://doi.org/10.1016/bs.aer.2016.07.001
Balasooriya, W., Huygens, D., Denef, K., Roobroeck, D., Verhoest, N. C., & Boeckx, P. (2013). Temporal variation of rhizodeposit-C assimilating microbial communities in a natural wetland. Biology and Fertility of Soils, 49, 333–341. https://doi.org/10.1007/s00374-012-0729-7
Beier, C., Emmett, B. A., Gundersen, P., Tietema, A., Peñuelas, J., Estiarte, M., … Williams, D. (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive night-time warming. Ecosystems, 7, 583–597.
Beier, C., Emmett, B. A., Peñuelas, J., Schmidt, I. K., Tietema, A., Estiarte, M., … Gorissen, A. (2008). Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Science of the Total Environment, 407, 692–697. https://doi.org/10.1016/j.scitotenv.2008.10.001
Boddy, E., Hill, P. W., Farrar, J. F., & Jones, D. L. (2007). Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biology and Biochemistry, 39, 827–835. https://doi.org/10.1016/j.soilbio.2006.09.030
Bol, R., & Harkness, D. D. (1995). The use of zeolite molecular sieves for trapping low concentrations of CO2 from environmental atmospheres. Radiocarbon, 37, 643–647. https://doi.org/10.1017/S0038071700011515
Borken, W., Savage, K., Davidson, E. A., & Trumbore, S. E. (2006). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Global Change Biology, 12, 177–193. https://doi.org/10.1111/j.1365-2486.2005.001058.x
Brand, W. A., & Coplen, T. B. (2014). Stable isotope deltas: Tiny, yet robust signatures in nature. Isotopes in Environmental and Health Studies, 48, 393–409.
Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842. https://doi.org/10.1016/0038-0717(85)90144-0
Brüggemann, N., Gessler, A., Kayler, Z., Keel, S. G., Badeck, F., Barthel, M., … Bahn, M. (2011). Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: A review. Biogeosciences, 8, 3457–3489. https://doi.org/10.5194/bg-8-3457-2011
Butler, J. L., Bottomley, P. J., Griffith, S. M., & Myrold, D. D. (2004). Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres. Soil Biology and Biochemistry, 36, 371–382. https://doi.org/10.1016/j.soilbio.2003.10.011
Campbell, C. D., Chapman, S. J., Cameron, C. D., Davidson, M. S., & Potts, J. M. (2003). A rapid microtitre plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology, 69, 3593–3599. https://doi.org/10.1128/AEM.69.6.3593-3599.2003
Cernusak, L. A., Ubierna, N., Winter, K., Holtum, J. A. M., Marshall, J. D., & Farquhar, G. D. (2013). Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytologist, 200, 950–965. https://doi.org/10.1111/nph.12423
Nguyen, C., & Guckert, A. (2001). Short-term utilisation of

Reinsch, S., & Ambus, P. (2013). In situ

Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microorganisms.

Phillips, D. A., Fox, T. C., & Six, J. (2006). Root exudation (net efflux of amino acids)

Reinsch, S., Michelsen, A., Sárossy, Z., Egsgaard, H., Schmidt, I. K., Jakobsen, I., & Ambus, P. (2014). Short-term utilisation of carbon by the soil microbial community under future climatic conditions in a temperate heathland. Soil Biology and Biochemistry, 68, 9–19. https://doi.org/10.1016/j.soilbio.2013.09.014

Rinnan, R., & Baath, E. (2009). Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and Environmental Microbiology, 75, 3611–3620. https://doi.org/10.1128/AEM.02865-08

Schuur, E. A., & Trumbore, S. E. (2006). Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. Global Change Biology, 12, 165–176. https://doi.org/10.1111/j.1365-2486.2005.01066.x

Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., & Osterkamp, T. E. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556–559. https://doi.org/10.1038/nature08031

Selsted, M. B., Ambus, P., Michelsen, A., van der Linden, L., Larsen, K. S., Pilegaard, K., … Beier, C. (2011). Measurement of carbon dioxide fluxes in a free-air carbon dioxide enrichment experiment using the closed flux chamber technique. Atmospheric Environment, 45, 208–214. https://doi.org/10.1016/j.atmosenv.2010.09.022

Sorensen, P. L., Michelsen, A., & Jonasson, S. (2008). Nitrogen uptake during one year in subarctic plant functional groups and in microbes after long-term warming and fertilization. Ecosystems, 11, 1223–1233. https://doi.org/10.1002/ecz.169

Subke, J. A., Vaillack, H. M., Tord, M., Keel, S. G., Metcalfe, D. B., Högberg, P., & Ineson, P. (2009). Short-term dynamics of abiotic and biotic soil CO2 effluxes after in situ CO2 pulse-labelling of a boreal pine forest. New Phytologist, 183, 349–357. https://doi.org/10.1111/j.1469-8137.2009.02883.x

Subke, J. A., Voke, N. R., Leronn, V., Garnett, M. H., & Ineson, P. (2011). Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling. Journal of Ecology, 99, 186–193. https://doi.org/10.1111/j.1365-2745.2010.01740.x

Tcherkez, G., Mahe, A., & Hodges, M. (2011). 12C/13C fractions in plant primary metabolism. Trends in Plant Science, 16, 499–506.

Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353, 72–74. https://doi.org/10.1126/science.aaf4610

Treonis, A. M., Ostle, N. J., Stott, A. W., Primrose, R., Grayston, S. J., & Ineson, P. (2004). Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biology and Biochemistry, 36, 533–537. https://doi.org/10.1016/j.soilbio.2003.10.015

Trumbore, S. E. (2009). Radiocarbon and soil carbon dynamics. Annual Reviews on Earth Planetary Sciences, 37, 47–66. https://doi.org/10.1146/annurev.earth.36.031207.124300

Watzinger, A. (2015). Microbial phospholipid biomarkers and stable isotope methods help reveal soil functions. Soil Biology and Biochemistry, 86, 98–107. https://doi.org/10.1016/j.soilbio.2015.03.019

Wessel, W. W., Tietema, A., Beier, C., Emmett, B. A., Peñuelas, J., & Rüsch-Nielsen, T. (2004). A qualitative ecosystem assessment for different shrublands in western Europe under impact of climate change. Ecosystems, 7, 662–671. https://doi.org/10.1007/s10021-004-0219-3

Zak, D. R., Pregitzer, K. S., King, J. S., & Holmes, W. E. (2000). Elevated atmospheric CO2 fine roots and the response of soil micro-organisms: A review and hypothesis. New Phytologist, 147, 201–222. https://doi.org/10.1046/j.1469-8137.2000.00687.x

How to cite this article: Andresen LC, Dominguez MT, Reinsch S, et al. Isotopic methods for non-destructive assessment of carbon dynamics in shrublands under long-term climate change manipulation. Methods Ecol Evol. 2018;9:866–880. https://doi.org/10.1111/2041-210X.12963