Low Concentrations of Bisphenol A Induce Mouse Spermatogonial Cell Proliferation by G Protein–Coupled Receptor 30 and Estrogen Receptor-α

Zhi-Guo Sheng1 and Ben-Zhan Zhu1,2

1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, People’s Republic of China; 2Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA

BACKGROUND: Bisphenol A (BPA) is one of the most prevalent chemicals in daily-use materials; therefore, human exposure to BPA is ubiquitous. The estrogenicity of BPA is generally mediated by nuclear estrogen receptors (ERs). However, low concentrations of BPA stimulate seminoma cell proliferation by an uncertain mechanism that does not involve activation of ERs.

OBJECTIVE: We investigated the possible promoting effects of low-concentration BPA and the possible mechanism(s) using the murine ER-β negative spermatogonial GC-1 cell line.

METHODS AND RESULTS: Using the specific signaling inhibitor, BPA at test concentrations ranging from 10−10 to 10−8 M markedly induced proliferation of GC-1 cells by activating both cGMP-dependent protein kinase (PKG) and epidermal growth factor receptor (EGFR) extracellular regulated kinase (ERK) pathways. BPA stimulated a rapid (15-min) phosphorylation of the transcription factor cAMP response element binding protein (CREB) and the cell cycle regulator retinoblastoma protein (Rb). Interestingly, ER-α phosphorylation is involved in the proliferation, whereas BPA does not directly transactivate ER-α in gene reporter assays. Using specific agonists and gene silencing, we further observed that BPA mediates the proliferation and fos gene expression of GC-1 cells by G protein–coupled receptor 30 (GPR30) and ER-α.

CONCLUSIONS: Our data suggest that low concentrations of BPA activate the PKG and EGFR/ERK/c-fos pathways through a cross-talk between GPR30 and ER-α, which in turn stimulates GC-1 cell proliferation. The present study provides a novel insight regarding the potential role of GPR30 and ER-α in mediating the proliferative effects of BPA in male germ cells.

KEY WORDS: 17β-estradiol, bisphenol A, estrogen-receptor-α, G protein-coupled receptor 30, mouse spermatogonial GC-1 cells. Environ Health Perspect 119:1775–1780 (2011). http://dx.doi.org/10.1289/ehp.1103781 [Online 3 August 2011]

Bisphenol A (BPA) is one of the most prevalent chemicals in daily-use materials; therefore, human exposure to BPA is ubiquitous. The estrogenicity of BPA is generally mediated by nuclear estrogen receptors (ERs). However, low concentrations of BPA stimulate seminoma cell proliferation by an uncertain mechanism that does not involve activation of ERs.

OBJECTIVE: We investigated the possible promoting effects of low-concentration BPA and the possible mechanism(s) using the murine ER-β negative spermatogonial GC-1 cell line.

METHODS AND RESULTS: Using the specific signaling inhibitor, BPA at test concentrations ranging from 10−10 to 10−8 M markedly induced proliferation of GC-1 cells by activating both cGMP-dependent protein kinase (PKG) and epidermal growth factor receptor (EGFR) extracellular regulated kinase (ERK) pathways. BPA stimulated a rapid (15-min) phosphorylation of the transcription factor cAMP response element binding protein (CREB) and the cell cycle regulator retinoblastoma protein (Rb). Interestingly, ER-α phosphorylation is involved in the proliferation, whereas BPA does not directly transactivate ER-α in gene reporter assays. Using specific agonists and gene silencing, we further observed that BPA mediates the proliferation and fos gene expression of GC-1 cells by G protein–coupled receptor 30 (GPR30) and ER-α.

CONCLUSIONS: Our data suggest that low concentrations of BPA activate the PKG and EGFR/ERK/c-fos pathways through a cross-talk between GPR30 and ER-α, which in turn stimulates GC-1 cell proliferation. The present study provides a novel insight regarding the potential role of GPR30 and ER-α in mediating the proliferative effects of BPA in male germ cells.

KEY WORDS: 17β-estradiol, bisphenol A, estrogen-receptor-α, G protein-coupled receptor 30, mouse spermatogonial GC-1 cells. Environ Health Perspect 119:1775–1780 (2011). http://dx.doi.org/10.1289/ehp.1103781 [Online 3 August 2011]

Bisphenol A (BPA) has been widely used in the manufacture of various consumer products and is one of the highest-volume chemicals produced worldwide. Hydrolysis of BPA under heat, acidic, or basic conditions leads to products and is one of the highest-volume chemicals common to type B spermatogonia and early spermatocytes (Bellvé et al. 1977). In addition, GC-1 cells express G protein-coupled receptor 30 (GPR30), which mediates a rapid xenobiotic-activated pathway in premeiotic germ cells, among which spermatogonia represent the most important cell population. Thus, these cell lines might be useful to investigate the role of GPR30 in the proliferation-promoting effects stimulated by BPA.

In the present study, we examined whether low concentrations of BPA (10−12 to 10−7 M), which are environmentally relevant, can stimulate proliferation of GC-1 cells via such a non-genomic action and, if so, whether GPR30 or its combination with ER-α is involved in the proliferation.

Materials and Methods

Reagents: All chemicals were of reagent grade or better and were purchased from Sigma Chemical Co. (St. Louis, MO, USA) unless otherwise noted. We purchased antibodies against GPR30, ER-α, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from Cell Signaling Technology Inc. (Beverly, MA, USA) and horseradish peroxidase-conjugated secondary antibody from Santa Cruz Biotechnology (Santa Cruz, CA, USA). All compounds were solubilized in dimethyl sulfoxide (DMSO) except E2 and PD98059 [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one], which were dissolved in ethanol. Although the quality of compounds was guaranteed by manufacturers, we confirmed quality by analyzing the key regents and solutions, such as BPA, before the experiments. We used steroid-free medium containing DMSO as the control.

Cell treatments: GC-1 and SkBr3 cells were cultured in phenol red-free Dulbecco’s modified Eagle medium (DMEM)/F-12 (1:1) and RPMI 1640 growth medium, respectively, which was supplemented with 10% charcoal-stripped fetal bovine serum, 1% glutamine, and 1% penicillin/streptomycin. Cells were maintained in growth medium for 48 hr and then switched to serum-free medium the day before immunoblot and reverse-transcription polymerase chain reaction (RT-PCR) experiments. For cell proliferation experiments, we used a cell density of 103 cells per well as a starting point. Both the plastic items used for the experiments and the water used to prepare the reagents were pretreated by enhanced sonochemical degradation to reduce any potential background BPA (Pétrier et al. 2010).

MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] assay. Cell viability was determined using an MTT assay. Briefly, at the end of treatment, 100 µL MTT

Address correspondence to B.-Z. Zhu, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, P. R. China. Telephone: 86 010 62894321. Fax: 86 010 62923563. E-mail: bzhu@rcees.ac.cn

Supplemental Material is available online (http://dx.doi.org/10.1289/ehp.1103781).

This work was supported by grant 2011-011061 from the Ministry of National Natural Science Foundation of China (NSFC) to Z.-G.S. and by grants 200952724, 200877081, 200901112, and 200921063 from the NSFC and grants ES11497, RR01008, and ES00210 from the U.S. National Institutes of Health to B.-Z.Z.

The authors declare they have no actual or potential competing financial interests.

Received 7 April 2011; accepted 3 August 2011.
(5 mg/mL in 1 M phosphate-buffered saline, pH 7.6) was added to each well of 96-well plates and the plates were incubated for 2 hr at 37°C in 5% CO₂/95% air. Optical density (OD) was measured at 570 nm with a microplate reader.

[^1H]-thymidine incorporation analysis. We evaluated [^1H]-thymidine incorporation after 6 hr incubation with 1 μCi [^1H]-thymidine per well. Cells were washed once with 10% trichloroacetic acid, twice with 5% trichloroacetic acid, then lysed in 1 mL 0.1 M NaOH at 37°C for 30 min. The total suspension was added to 10 mL optrifluor fluid and counted in a scintillation counter.

Caspase 3 activity assay. We used the caspase 3 activity assay, which involves spectrophotometric detection of the chromophore p-nitroanilide after cleavage from the substrate Ac-DEVD-p-nitroanilide. The method has been described previously (Sheng et al. 2008).

Effect of BPA on G protein–coupled receptor (GPCR), cGMP-dependent protein kinase (PKG), and epidermal growth factor receptor–extracellular regulated kinase (ERFGR-ERK) pathways. We examined BPA’s ability to activate different downstream signaling transduction pathways (kinases) by pretreating GC-1 cells with the PKG inhibitor KT5823, the Gαi/Gαq, Src, and EGFR, respectively). Values shown for p-ERK, p-Src, and p-EGFR were measured by Bio-Rad. Primers for the amplification were based on published sequences for mouse fos. The nucleotide sequences of the primers were as follows: forward, 5′-GAG GAG GGA GCT GAC AGA TAC ACT-3′ and reverse, 5′-GAT TGG CAA TTC GCT TGG CTA A-3′.

Western blot analysis. Methods for Western blotting have been described in detail previously (Sheng et al. 2008). For protein extraction, treated cells were lysed in ice-cold lysis buffer, and the protein concentration was determined using a BCA (bicinchoninic acid) Protein Assay Kit (Invitrogen). Protein was separated using SDS-PAGE and then transferred onto a nitrocellulose membrane, which was subsequently probed with the following primary antibodies: anti-GPR30 (1:1,000), anti-ER-α (1:500), anti-p-Ser118-ER-α (1:500), anti-p-response element binding protein (CREB) (1:1,000), anti-p-retinoblastoma protein (Rb) (1:1,000), and anti-GAPDH as an internal control. After incubation, blots were incubated with the appropriate secondary antibodies conjugated to horseradish peroxidase. The bands were revealed by enhanced chemiluminescence using the ECL (enhanced chemiluminescence) commercial kit (Invitrogen).

Plasmids. Plasmids used were described previously by Albano et al. (2008a). Briefly, we used ERExkLuc for ER and GKI for yeast transcription factor Gal4 fusion proteins. ERExkLuc (XETL) contains the estrogen response element (ERE), the herpes simplex virus thymidine kinase promoter region, the firefly luciferase coding sequence, and the SV40 splice and polycistronic sites. Gal4 chimeras Gal-ER-β and Gal-ER-β were expressed from plasmids GAL 93ER (α) and GAL-ER-β, respectively. They were constructed by transforming the coding sequences for the hormone-binding domain (HBD) of ER-α from HEG0 and for the ER-β HBD from plasmid pCMV5-Her-β into the pSCTEVGal93. The Renilla luciferase expression vector pRL-TK served as a transfection standard.

Transfection and luciferase assays. We performed transfection and luciferase assays as described by Albano et al. (2008a). Briefly, medium was replaced with phenol red–free DMEM/F-12 or RPMI 1640, and transfection was performed using FuGENE 6 Reagent (Roche Diagnostics, Mannheim, Germany) as recommended by the manufacturer. After the cells were subjected to the various treatment regimens, luciferase activity was measured with the Dual Luciferase Kit (Promega, Madison, WI, USA) according to the manufacturer’s recommendations. Firefly luciferase values were normalized to the internal transfection control provided by Renilla luciferase activity. The normalized relative light unit values obtained from cells treated with vehicle were considered 1-fold induction, and the activity induced by the various treatments was then calculated based on the control reference.

Antisense oligodeoxynucleotide experiments. We purchased antisense (AS) oligonucleotides (AS-ODNs) from MWG (Florence, Italy). The ODNs used were 5′-TGG AGT AGT CGC ATC CAT-3′ for Gpr30; 5′-GACCATGACCATGCCCT-3′ for Er-1, and 5′-GATCTCACGACGGAAT-3′ for the scrambled control. For AS experiments, 200 nM of the indicated ODN was transfected for 5–6 hr before treatment using Lipofectamine LTX (1:3; Invitrogen) according to manufacturer’s instructions. Cells were
maintained in medium containing the transfection mix for 36 hr before being treated for 5 min and then lysed and used for Western blot analysis. For proliferation experiments, cells were maintained in medium containing the transfection mix for 24 hr, and medium was then replaced for the treatment.

Statistical analysis. All data were expressed as mean ± SE. We used the Student’s t-test for comparison of two groups in all the experiments. We considered differences with p-values < 0.05 at both tails to be statistically significant. All statistical analyses were performed using the SPSS software for Windows, Release 11.5 (SPSS, Chicago, IL, USA).

Results

Very low concentrations of BPA stimulate GC-1 cell proliferation. GC-1 cells were exposed to BPA (10⁻¹² to 10⁻⁵ M) for 12 hr, and cell proliferation was examined by MTT assay. BPA induced proliferation in an inverse U-shaped concentration-independent manner, with a weak promotion at 10⁻⁹ M and 10⁻¹¹ M (23.56% and 16.64%, respectively) and the maximal effect around 10⁻¹⁰ to 10⁻⁸ M (46.28%, 48.81%, and 47.82%, respectively) [Figure 1A; see also Supplemental Material, Figure 1 (http://dx.doi.org/doi:10.1289/ehp.1103781)]. These results demonstrate that GC-1 cell proliferation is stimulated by BPA at very low concentrations. However, another interpretation of this proliferative effect is that BPA suppressed apoptotic regulating genes or promoted their antiapoptotic counterparts. However, we ruled out this possibility because BPA did not inhibit caspase 3, the final effector of apoptosis relative to controls (see Supplemental Material, Figure 2). Thus, BPA presumably does not enhance cell survival by obstructing normal apoptotic mechanisms.

In addition, a [³H]-thymidine incorporation assay performed to corroborate data obtained with the MTT assay yielded results comparable with the viability assay [Figure 1B; see also Supplemental Material, Figure 3 (http://dx.doi.org/doi:10.1289/ehp.1103781)], thereby supporting the notion that very low concentrations of BPA significantly stimulate proliferation of GC-1 cells.

BPA promotes GC-1 cell proliferation through activating both GPCR, PKG, and EGFR-ERK pathways. Through activating different downstream signaling transduction pathways (kinases), xenoestrogens fine-tune cell proliferation or apoptosis (Bulayeva and Watson 2004). As shown in Figure 1C, the PKG inhibitor KT5823, the ERK inhibitor PD98059, the Gtx/Gotq inhibitor pertussis toxin (PTX), the Src inhibitor PP2, and the EGFR inhibitor AG-1478 prevented GC-1 proliferation by 10⁻⁹ M BPA, a concentration that provided maximum cell proliferation, whereas the PKA inhibitor H89 and the G0s inhibitor NF449 did not, suggesting that both GPCR, PKG, and EGFR-ERK, but not PKA signaling pathways, were involved in proliferation stimulation by BPA.

BPA rapidly stimulates the phosphorylation of both transcription factor CREB and nuclear factor Rb in GC-1 cells. An earlier study revealed that the transcription factor CREB and the nuclear factor Rb participate in the regulation of gene transcription (Mayr and Montminy 2001). This regulation is related to the stage of the cell cycle and the phosphorylation induced by a variety of protein kinases, including PKG and ERK (Coulon et al. 2010; Mayr and Montminy 2001; Shaywitz and Greenberg 1999). Consequently, we wanted to determine if the well-recognized stimulus-induced transcription factor CREB and the cell cycle regulator Rb can be rapidly activated by BPA in a non-genomic manner. As shown in Figure 2, BPA exposure led to rapid (15 min) phosphorylation (activation) of CREB and Rb in GC-1 cells, which was dependent on ERα and PKG, as both PD98059 and PTX completely abolished this CREB and Rb phosphorylation.

BPA-induced proliferation of GC-1 cells is involved in activation of classical nuclear ER-α. BPA-stimulated proliferation was similar to that caused by E2-bovine serum albumin (BSA), an impermeable E2 conjugate [see Supplemental Material, Figure 4 (http://dx.doi.org/doi:10.1289/ehp.1103781)]. However, E2-BSA plus BPA induced an effect equivalent to those of E2-BSA of BPA alone, indicating a lack of synergistic or antagonistic effect and likely a convergence in the activated pathways. It should be noted that the combination of BPA and E2 significantly promoted the proliferative effects of E2, suggesting that ER-α may play a role in the stimulation in GC-1 cells by BPA (see Supplemental Material, Figure 4). Predictably, the ER antagonist ICI significantly counteracted the proliferative effects of E2 and BPA, but not E2-BSA, on GC-1 cells, indicating a classical nuclear ER-α-dependent mechanism, because GC-1 cells express ER-α but not ER-β. Additionally, ER-α has an apparent intracytoplasmic localization without any evident membrane location (Sirianni et al. 2008). The above results demonstrated that the proliferative effects by BPA in GC-1 cells were likely dependent on both the classical ER-α and the GPCR-EFGR-ERK pathways.

BPA does not directly activate ER-α in GC-1 cells. Based on the finding that ER-α was involved with BPA-induced proliferation in GC-1 cells, we further employed transfection assays to assess whether BPA directly activated ER-α. As shown in Figure 3A, exposure of the GC-1 cells to 10⁻⁹ M E2 strongly stimulated ER-α transactivation through a transiently transfected ER reporter gene but was abolished in the presence of 10 µM ICI. In contrast, BPA at ≥ 10⁻⁹ M (data not shown) failed to induce luciferase expression or to block that observed on addition of E2. Moreover, BPA did not activate an expression vector encoding ER-α transiently transfected in ER-negative SkBr3 breast cancer cell (Figure 3B). In another heterologous system,
chimeric proteins consisting of the DNA binding domain of the yeast transcription factor Gal4 and the ER-α or ER-β HBBD transiently transfected in SkBr3 cells were strongly activated by E2 but not by BPA (Figure 3C,D), further corroborating the aforementioned results. These data suggested that BPA failed to directly activate ER-α in GC-1 cells (ER-β negative); this result has also been reported in JKT-1 cells (Bouskine et al. 2009).

BPA-stimulated proliferation of GC-1 cells is involved in activation of the GPR30. Recently, Siriani et al. (2008) showed that GPR30, an orphan GPCR, mediates the proliferative effects induced by E2 in GC-1 cells. Therefore, we examined whether both GPR30 and ER-α were involved in BPA’s promotion of effects in GC-1 cells. We observed that the specific GPR30 agonist G1 and the ER-α agonist propyl pyrazole triol (PPT), but not the ER-β agonist DPNI, stimulated GC-1 cell proliferation (see Supplemental Material, Figure 5). Furthermore, we found that BPA plus G1 also induced the same effect as each of them alone, as was the case with BPA plus E2-BSA, indicating a similarity in the activation of effects in GC-1 cells. We observed that the specific GPR30 agonist G1 and the ER-α agonist propyl pyrazole triol (PPT), but not the ER-β agonist DPNI, stimulated GC-1 cell proliferation (see Supplemental Material, Figure 5). Furthermore, we found that BPA plus G1 also induced the same effect as each of them alone, as was the case with BPA plus E2-BSA, indicating a similarity in the activated pathways. However, the combination of PPT and BPA or PPT and G1 exhibited even greater proliferative effects than did PPT, BPA, and G1 alone (PPT plus BPA, \(p = 0.024; \) PPT plus G1, \(p = 0.019 \)), suggesting that an additive or synergistic effect was possibly involved. These findings indicate that both GPR30 and ER-α were involved in proliferation of GC-1 cells, which was also confirmed by Siriani et al. (2008), and that cross-talk likely exists between these two proteins.

BPA phosphorylates the Ser118 site of ER-α by activating the GPR30 and EFGR-ERK pathways. Mitogen-activated protein kinase (MAPK)-mediated phosphorylation in Ser118 site of ER-α has been suggested to enhance tumor growth induced by MAPK/ER cross-talk (Atanaskova et al. 2002). We wanted to know if BPA could phosphorylate the Ser118 site of ER-α via such a mechanism. As shown in Supplemental Material, Figure 6 (http://dx.doi.org/10.1289/ehp.1105781), BPA markedly increased the levels of p-ser118-ER-α (lane 2). However, the effects were completely abolished by the GPR30 antagonist G15 (lane 4), EFRG inhibitor AG-1478 (lane 6), or MAPK inhibitor PD98059 (lane 8). The results demonstrate that BPA activates ER by phosphorylating ER-α, and this response is likely mediated through the GPR30 and ERK-ERK pathways.

Silencing of Gpr30 and Er-1 blocks BPA-induced proliferation and fos expression in GC-1 cells. To confirm the role that GPR30 and ER-α exert in BPA-induced proliferative effects of GC-1 cells, we investigated cell proliferation by reducing Gpr30 and Er-1 expression by using AS-ODNs directed against these genes. The silencing of Gpr30 and Er-1 expression by specific AS-ODNs significantly abolished GC-1 cell proliferation induced by E2, BPA, G1, and PPT without altering either Er-1 expression or Gpr30 (Figure 4A,B). Predictably, the antisense G30 ODN could not completely suppress the proliferative effects of E2 and PPT, further suggesting that cross-talk between GPR30 and ER-α was involved with BPA-induced proliferation of GC-1 cells.

GPR30 mediates rapid estrogen signaling, leading to the induction of the activator protein-1 (AP-1) family member c-fos (Siriani et al. 2008), which participates in the regulation of the cell cycle (Shaulian and Karin 2002). As shown in Figure 4C and 4D, the AS-ODN completely blocked the expression of c-fos mRNA induced by E2, BPA, G1, and PPT without altering Er-1 or Gpr30 expression.

The induction of c-fos via GPR30 was previously demonstrated to occur after activation of EGFR and MAPKs (Siriani et al. 2008). As we predicted, both the EGFR inhibitor AG-1478 and the ERK inhibitor PD98059 significantly inhibited fos expression induced by E2, BPA, G1, and PPT (see Supplemental Material, Figure 7). In addition, we also observed that ICI markedly decreased BPA-mediated fos levels (see Supplemental Material, Figure 7), suggesting that ER-α participated in the induction of BPA to fos.

Discussion

In this study we demonstrated that low concentrations of BPA (10⁻¹⁰ to 10⁻⁸ M) stimulated mouse spermatogonial proliferation of GC-1 cells by activating both PKG and EFGR-ERK c-fos pathways mediated via cross-talk between GPR30 and ER-α.

Low concentrations of BPA have been reported to trigger a nongenomic proliferative effect in the pancreatic islet, endothelium, breast, and pituitary gland by initiating rapid responses (Bulyaeva and Watson 2004; Wetherill et al. 2007). In the present study, we also observed a representative nongenomic proliferative effect, which presented as the paradoxical inverse U-shaped curve, and rapid activation of CREB and Rb. Bouskine et al. (2009) demonstrated that low concentrations of BPA promote proliferation in JKT-1 human seminoma cells by activating PKA and PKG via a membrane GPCR. However, in our study, membrane GPCR, EFGR-ERK, and PKG pathways participated in the proliferation of GC-1 cells stimulated by BPA. Transactivation of the EGFR and the ERK/MAPK cascade promoted by the GPCR agonist has been shown in a variety of cellular

Figure 3. BPA did not directly transactivate ER-α in GC-1 and SkBr3 cells, as shown by firefly luciferase activity in GC-1 cells (A) and SkBr3 cells (B–D). (A) GC-1 cells transfected with the ER luciferase reporter plasmid ERE-luc (XELT) and treated with E2 or BPA (each at 10⁻⁸ M), with or without ICI. (B–D) SkBr3 cells transfected with ER luciferase reporter gene XELT and ER-α expression plasmid (B), with Gal4 reporter gene (GK1) and the Gal4 fusion proteins encoding the HBBD of ER (GalER-α; C), and with GK1 and GalER-β (D) and treated with E2 or BPA (each at 10⁻⁸ M), with and without ICI. See “Materials and Methods” for details. Luciferase activity was normalized to Renilla luciferase expression vector (pRL-TK), and the value for control cells was set as 1-fold induction. Values shown (mean ± SE) represent the results of three independent experiments performed in triplicate.

* \(p < 0.05 \), compared with control. ** \(p < 0.05 \), compared with E2.
Estrogens acting via GRP30 are capable of stimulating adenyl cyclase activity, which in turn leads to PKA-mediated suppression of EGFR-ERK (Filardo et al. 2002). Our results suggest that PKA possibly did not participate in the suppression of this pathway because inhibition of PKA activation could not enhance the proliferative effects of BPA. Thus, we assumed that BPA-induced proliferation of GC-1 cells via GRP30 was likely to be long-lasting because of the lack of the opposing effects on the EGFR-to-MAPK axis.

Hence, data from the present study indicate that a complex interplay between ER-α and GPR30 contributes to low concentrations of BPA activity in GC-1 cells by activating EGFR-ERK transduction pathways, similar results for atrazine in ovarian cancer cells (Albanito et al. 2008a; Bunone et al. 1996). Based on the present data and available literature, BPA may act via GRP30 to activate PKG and induce the release of surface-bound, membrane-anchored, heparin-binding, EGF-like growth factor (proHB-EGF) (Filardo et al. 2000), which in turn activates EGFR-ERK/ERK signaling can occur at different levels (Filardo et al. 2000; Revankar et al. 2005). Several lines of evidence have suggested that the interaction of EGFR-MAPK with estrogen signaling can occur at different levels (Filardo et al. 2000; Revankar et al. 2005). Therefore, it has been assumed that exposure of pregnant mothers to low BPA levels may exert adverse biological effects on fetuses. Thus, excessive fetal exposure to xenoestrogens with high affinity for the nonclassical estrogen GPCR (e.g., GPR30), such as shown here for BPA, may stimulate abnormal nongenomic proliferation of gonocytes, consequently resulting in malignant germ cell transformation/carcinoma in situ and then testicular germ cell cancer, the most frequent cancer of young men, with increasing incidence.

The primary focus of our study was on an in vitro approach to investigate the molecular mechanisms of BPA action. However, it is strongly correlated with human testicular seminomas (Hirvonen-Santti et al. 2003; Pais et al. 2003). Therefore, it has been assumed that human gonocytes, which do not express the active ER-β1 isoform until the prenatal period (Gaskell et al. 2003), may be exclusively sensitive to the BPA-mediated promoting effect. Thus, the exposure of the fetuses to BPA likely poses a hazard to male germ cells. In a group of pregnant mothers and their fetuses, Schönfelder et al. (2002) observed blood BPA levels of 3.0–18.9 ng/mL (1.31 × 10^{-8} to 8.28 × 10^{-7} M) and 0.2–9.2 ng/mL (8.76 × 10^{-9} to 4.29 × 10^{-8} M), respectively; based on prior studies (Welshons et al. 2006), these levels equate to similar concentrations used in the present study. This implies that exposure of pregnant mothers to low BPA levels may exert adverse biological effects on fetuses. Thus, excessive fetal exposure to xenoestrogens with high affinity for the nonclassical estrogen GPCR (e.g., GPR30), such as shown here for BPA, may stimulate abnormal nongenomic proliferation of gonocytes, consequently resulting in malignant germ cell transformation/carcinoma in situ and then testicular germ cell cancer, the most frequent cancer of young men, with increasing incidence.

The primary focus of our study was on an in vitro approach to investigate the molecular mechanisms of BPA action. However, it is strongly correlated with human testicular seminomas (Hirvonen-Santti et al. 2003; Pais et al. 2003). Therefore, it has been assumed that human gonocytes, which do not express the active ER-β1 isoform until the prenatal period (Gaskell et al. 2003), may be exclusively sensitive to the BPA-mediated promoting effect. Thus, the exposure of the fetuses to BPA likely poses a hazard to male germ cells. In a group of pregnant mothers and their fetuses, Schönfelder et al. (2002) observed blood BPA levels of 3.0–18.9 ng/mL (1.31 × 10^{-8} to 8.28 × 10^{-7} M) and 0.2–9.2 ng/mL (8.76 × 10^{-9} to 4.29 × 10^{-8} M), respectively; based on prior studies (Welshons et al. 2006), these levels equate to similar concentrations used in the present study. This implies that exposure of pregnant mothers to low BPA levels may exert adverse biological effects on fetuses. Thus, excessive fetal exposure to xenoestrogens with high affinity for the nonclassical estrogen GPCR (e.g., GPR30), such as shown here for BPA, may stimulate abnormal nongenomic proliferation of gonocytes, consequently resulting in malignant germ cell transformation/carcinoma in situ and then testicular germ cell cancer, the most frequent cancer of young men, with increasing incidence.
critically important to consider combining in vitro and in vivo approaches to investigate actions of BPA at exposures mirroring those that occur in human and animal populations. Thus, in future research, we will extend our in vitro experiments to an in vivo study using rats chronically exposed to environmentally relevant concentrations of BPA.

In conclusion, our results provide a novel insight regarding the potential role of GPR30 and ER-α in mediating a growth stimulatory action of low concentrations of BPA in male germ cells.

References

Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz ER, Cappello AR, et al. 2008a. G-protein-coupled receptor 30 and estrogen receptor-α are involved in the proliferative effects induced by atrazine in ovarian cancer cells. Environ Health Perspect 116:1846–1855.

Albanito L, Madeo A, Lappano R, Vivacqua A, Rago V, Cappino A, et al. 2007. G-protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17β-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 67:1859–1866.

Bouskine A, Nebout M, Brücker-Davis F, Benahmed M, Fenichel P. 2009. Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a novel, MEK G-protein-coupled estrogen receptor. Environ Health Perspect 117:1053–1058.

Bulyeva NN, Watson CS. 2004. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health Perspect 112:1481–1487.

Bunone G, Briand PA, Miksicek RJ, Picard D. 1996. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15:2174–2183.

Coulon V, Cheili K, Cavetier F, Blanchard JM. 2010. A novel mouse c-fos intronic promoter that responds to CREB and AP-1 is developmentally regulated in vivo. PLoS One 5:e11235; doi:10.1371/journal.pone.0011235 [Online 21 June 2010].

Filardo EJ. 2002. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol 80:231–236.

Filardo EJ, Quinlin JA, Bland KI. 2008. Estrogen-induced activation of ERK-1 and ERK-2 requires the G-protein-coupled receptor homolog, GPR30, and occurs via transactivation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660.

Filardo EJ, Quinlin JA, Bland KI. 2002. Estrogen action via the G-protein-coupled receptor, GPR30: stimulation of adenyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor to MAPK signal-transduction pathway. Toxicol Appl Pharmacol 183:283–294.

Gaskell TL, Robinson LL, Groome NP, Anderson RA, Saunders PT. 2003. Differential expression of two estrogen receptor (ER) isoforms in the human fetal testis during the second trimester of pregnancy. J Clin Endocrinol Metab 88:424–432.

Hirvonen-Santti SJ, Rannikko A, Santti H, Savolainen S, Nyberg M, Janne DA, et al. 2003. Down-regulation of estrogen receptor beta and transcriptional coregulator SNURF-RNF4 in testicular germ cell cancer. Eur Urol 44:742–747.

Joel PB, Traish AM, Lannigan DA. 1995. Estradiol and phosphor ester cause phosphorylation of serine 118 in the human estrogen receptor. Mol Endocrinol 10:1041–1052.

Lannigan DA. 2003. Estrogen receptor phosphorylation. Steroids 68:1–9.

Levin ER. 2003. Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol Endocrinol 17:309–317.

Mayr B, Montminy M. 2001. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609.

Metzger D, Ali S, Bomert JM, Champan M. 1996. Characterization of the amino-terminal transcriptional activation function of the human estrogen receptor in animal and yeast cells. J Biol Chem 271:9326–9340.

Pais V, Leav L, Lau KM, Jiang Z, Ho SM. 2003. Estrogen receptor-beta expression in human testicular germ cell tumors. Clin Cancer Res 9:4475–4482.

Périer C, Torres-Palma R, Combet E, Sarantakos G, Baup S, Pulgarin C. 2010. Enhanced sonochemo degradation of bisphenol-A by bicarbonate ions. Ultrason Sonochem 17:111–115.

Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. 2005. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630.

Richert CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, et al. 2007. In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224.

Salian S, Doshi T, Vanage G. 2011. Perinatal exposure of rats to bisphenol A affects fertility of male offspring—an overview. Reprod Toxicol 31:359–362.

Shenfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. 2002. Parent bisphenol A accumulation in the human maternal–fetal–placental unit. Environ Health Perspect 110:A703–A706.

Shaulian E, Karin M. 2002. AP-1 as a regulator of cell life and death. Nat Cell Biol 4:131–136.

Shaywitz AJ, Greenberg ME. 1999. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861.

Sheng Z, Cao X, Peng S, Wang C, Li, Q, Wang Y, et al. 2008. Oglossin induces apoptosis in microencapsulated canine rabbit chordrocytes by caspase-8-dependent mitochondria l pathway. Toxicol Appl Pharmacol 226:119–127.

Sirianni R, Chimento A, Ruggiero C, De Luca A, Lappano R, Andò S, et al. 2008. The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17β-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology 149:5943–5951.

Thomas P, Dong J. 2006. Binding and activation of the seven transmembrane estrogen receptor GRP30 by environmental xenoestrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol 102:175–179.

Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. 2010. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect 118:1055–1070.

Welschons WV, Nagel SC, von Saal FS. 2006. Large effects from small exposures. Ill. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147:536–549.

Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, et al. 2007. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 24:178–188.