Classification of Fano manifolds containing a negative divisor isomorphic to projective space

Toru Tsukioka

March 2, 2022

Abstract

We classify n-dimensional complex Fano manifolds X ($n \geq 3$) containing a divisor E isomorphic to \mathbb{P}^{n-1} such that $\text{deg} N_{E/X}$ is strictly negative.

1 Introduction

A projective manifold X is called Fano manifold if its anti-canonical bundle $-K_X$ is ample. In [BCW] the authors classified n-dimensional complex Fano manifolds X ($n \geq 3$) containing a divisor E isomorphic to \mathbb{P}^{n-1} with normal bundle $N_{E/X} \simeq \mathcal{O}_{\mathbb{P}^{n-1}}(-1)$. The purpose of the present note is to generalize their result to the case $\text{deg} N_{E/X} < 0$. Note that such X has automatically Picard number $\rho(X) \geq 2$.

Theorem 1. Let X be a complex Fano manifold of dimension $n \geq 3$ and let E be a divisor of X. We suppose that E is isomorphic to \mathbb{P}^{n-1} and let $E|_E \simeq \mathcal{O}_{\mathbb{P}^{n-1}}(-d)$. If $d > 0$, the pair (X, E) is (up to isomorphism) one of the following: 1

1. $X \simeq \mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}} \oplus \mathcal{O}_{\mathbb{P}^{n-1}}(-d))$ ($0 < d < n$) and E is the negative section such that $E|_E \simeq \mathcal{O}_{\mathbb{P}^{n-1}}(-d);$

2. (a) X is the blow-up of \mathbb{P}^n along W smooth complete intersection of a hyperplane and a hypersurface of degree r with $2 \leq r \leq n$, and E is the strict transform of the hyperplane containing $W;$

(b) X is the blow-up of $\mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}} \oplus \mathcal{O}_{\mathbb{P}^{n-1}}(d'))$ (d' is an integer satisfying $-n < d' < n$) along W and E is the strict transform of E': here E' is a section of the \mathbb{P}^1-bundle $\mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}} \oplus \mathcal{O}_{\mathbb{P}^{n-1}}(d'))$ with normal bundle $\mathcal{O}_{\mathbb{P}^{n-1}}(d')$ and W is a smooth divisor of degree r ($d' < r < n + d'$) in $E' \simeq \mathbb{P}^{n-1}$.

As in [BCW] the proof of this theorem is based on the theory of extremal contractions, which was originally used in [MM] to classify Fano 3-folds with Picard number ≥ 2. Recall that a fiber connected proper holomorphic map $\varphi : X \to Z$ to a normal projective variety is called extremal contraction if $-K_X$ is φ-ample. We say φ is elemental if $\rho(X) - \rho(Z) = 1$. By the Mori theory, a Fano manifold has a finite number of elemental extremal contractions. So in our situation, we can take an extremal contraction $\varphi : X \to Z$ whose fiber meets the negative divisor E. The essential part of the classification is to show that the restriction map $\varphi|_E : E \to \varphi(E)$ is an isomorphism. The corresponding fact is shown in [BCW], but their proof relies heavily on the fact $\text{deg} N_{E/X} = -1$. In this note we will propose another approach which allows us to get our result.

1For a vector space V, we denote by $\mathbb{P}(V)$ the projective space of lines in V.

1
2 Preliminary results

Let \(X \) be a complex Fano manifold of dimension \(n \geq 3 \) containing a divisor \(E \simeq \mathbb{P}^{n-1} \). We assume \(\deg N_{E/X} < 0 \) and let \(E|_E \simeq \mathcal{O}_{\mathbb{P}^{n-1}}(-d) \) with \(d > 0 \). Note that \(d < n \). Indeed, since \(-K_X\) is ample (so is \(-K_X|_E\)), by the adjunction formula: \(K_E = (K_X + E)|_E \), we have

\[
0 < \deg(-K_X|_E) = \deg(-K_E) + \deg(E|_E) = n - d.
\]

A similar argument as \([BCW]\) (Lemme 1) shows that there exists an extremal ray \(\mathbb{R}^+[f] \) (where \(f \) is a minimal rational curve of the ray) such that \(E \cdot f > 0 \) and the fibers of the corresponding (elementary) extremal contraction \(\varphi : X \to Z \) are at most of dimension 1. By \([A]\), either:

1. \(\varphi \) is a conic bundle with smooth base \(Z \), or

2. \(\varphi \) is a smooth blow-up whose centre is smooth and of codimension 2.

We shall show that the restriction map \(\varphi|_E : E \to \varphi(E) \) is an isomorphism in each case.

Lemma 1. In the case (1), \(\varphi|_E \) is an isomorphism.

Proof. Since \(\deg N_{E/X} < 0 \), by Grauert’s criterion, there is a fiber connected holomorphic map \(\pi : X \to Y \) to an analytic variety such that \(\pi(E) \) is a point. We have

\[
K_X = \pi^*K_Y + \alpha E
\]

where \(\alpha := (n - d)/d \). Here \(\pi^*K_Y \) is to be considered as a \(\mathbb{Q} \)-divisor \((\pi^*(dK_Y))/d\) on \(X \) (note that \(dK_Y \) is Cartier divisor because \(\pi(E) \) is a cyclic quotient singular point of order \(d \)). This formal expression is useful in the following numerical calculations.

Since the smooth projective variety \(Z \) is dominated by \(E \simeq \mathbb{P}^{n-1} \) we have \(Z \simeq \mathbb{P}^{n-1} \) (see \([L]\)). Hence, if we define \(L := \varphi^*\mathcal{O}_Z(1) \), \(L^{n-1} \) is numerically equivalent to only one fiber of \(\varphi \). Therefore,

\[
\begin{aligned}
L^n &= 0 \\
(-K_X) \cdot L^{n-1} &= 2.
\end{aligned}
\]

Since the contraction map \(\varphi \) is supposed to be elemental, we have \(\rho(X) = \rho(Z) + 1 = 2 \). Hence there exist \(x, y \in \mathbb{Q} \) such that

\[
L \equiv x \pi^*(-K_Y) - y E.
\]

We have \(yd \in \mathbb{N} \), because \(0 < L \cdot e = -y(E \cdot e) = yd \) where \(e \) is a line in \(E \simeq \mathbb{P}^{n-1} \). Remark that \(E^n = (-d)^{n-1} \) and \(\pi^*(-K_Y) \cdot E \equiv 0 \). We get

\[
L^n = (x \pi^*(-K_Y) - y E)^n = x^m - y^n d^{n-1},
\]

\[
(-K_X) \cdot L^{n-1} = (\pi^*(-K_Y) - \alpha E)(x \pi^*(-K_Y) - y E)^{n-1} = x^{n-1}m - \alpha y^{n-1} d^{n-1}
\]

where \(m := (\pi^*(-K_Y))^n \). Remark that \(m \in \mathbb{Q} \) and \(md^{n} \in \mathbb{N} \). We have

\[
\begin{aligned}
x^m m &= y^n d^{n-1} \\
x^{n-1} m &= 2 + \alpha y^{n-1} d^{n-1}
\end{aligned}
\]
We divide the first equality by the second:

\[x = \frac{y^n d^{n-1}}{2 + \alpha y^{n-1} d^{n-1}}. \]

(1)

By the first equation again,

\[\left(\frac{y}{x} \right)^n = \frac{m}{d^{n-1}}. \]

(2)

Since

\[\frac{y}{x} = y \cdot \frac{2 + \alpha y^{n-1} d^{n-1}}{y^n d^{n-1}}, \]

we have

\[\left(\frac{2 + \alpha y^{n-1} d^{n-1}}{y^{n-1} d^{n-1}} \right)^n = \frac{m}{d^{n-1}}. \]

We get

\[\left(\frac{2d^2}{(yd)^{n-1}} + \alpha d^2 \right)^n = \left(\frac{2 + \alpha y^{n-1} d^{n-1}}{y^{n-1} d^{n-1}} \right)^n \cdot d^{2n} = md^n \cdot d \in \mathbb{N}, \]

because \(md^n \) and \(d \) are integers. It follows that

\[\frac{2d^2}{(yd)^{n-1}} + (n - d)d \in \mathbb{N} \]

Hence \(l := \frac{2d^2}{(yd)^{n-1}} \) is an integer. We have

\[2d^2 = (yd)^{n-1} l. \]

On the other hand, \((l + (n - d)d)^n = d(md^n) \in d\mathbb{N}\). Hence \(l^n \in d\mathbb{N}\).

Now we can show the equality \(yd = 1 \): Recall first \(yd \in \mathbb{N} \) and \(d < n \). If \(yd \geq 3 \), \(2(n - 1)^2 \geq 2d^2 = (yd)^{n-1} l \geq 3^{n-1} l \). This is impossible because \(n \geq 3 \). We suppose now \(yd = 2 \). We have \(2d^2 = 2^{n-1} l \), hence \(d^2 = 2^{n-2} l \). Since \(d \leq n - 1 \) and \(l^n \in d\mathbb{N} \), this equality is possible only when \((n, d, l) = (3, 2, 2) \) or \((5, 4, 2) \). These two cases can be ruled out by using the fact that \((-K_X)^n\) is a natural number (because \(X \) is smooth). Note first that

\[(-K_X)^n = \left(\pi^*(-K_Y) - \frac{n - d}{d} E \right)^n = m - \frac{(n - d)^n}{d}. \]

If \((n, d, l) = (3, 2, 2)\) then \(y = yd/d = 1 \), \(x = 1 \) and \(m = 4 \) by \(\text{[1]} \) and \(\text{[2]} \). Therefore, \((-K_X)^3 = 7/2 \notin \mathbb{N}\), contradiction. Similarly, if \((n, d, l) = (5, 4, 2)\) we have \(y = yd/d = 1/2 \), \(x = 4/3 \) and \(m = 243/128 \), so that \((-K_X)^5 = 211/128 \notin \mathbb{N}\), contradiction. Finally, we conclude that \(yd = 1 \).

Now we can determine the intersection number \(E \cdot L^{n-1} \):

\[E \cdot L^{n-1} = E \cdot (x\pi^*(-K_Y) - yE)^{n-1} = (yd)^{n-1} = 1. \]

Since \(L^{n-1} \) is a fiber of \(\varphi \), this implies that the restriction map \(\varphi|_E : E \to Z \) is an isomorphism.

\[\blacksquare \]

Lemma 2. In the case (2) also, \(\varphi|_E \) is an isomorphism.
by the hypothesis of the proposition, we get

If C exists we have the example 1.

In particular $E \subset B$ we deduce the exact sequence over Z

Theorem 1.

The intersection $E \cap F$ is transversal.

Proof: If not, we have an isomorphism of tangent bundles: $TE|_{\tilde{W}} \simeq TF|_{\tilde{W}}$ and so $N_{\tilde{W}}/E \simeq N_{\tilde{W}}/F$. But this is a contradiction. Indeed: $N_{\tilde{W}}/E$ is ample (because $\tilde{W} \subset E \simeq \mathbb{P}^{n-1}$) and $N_{\tilde{W}}/F$ is also ample (because \tilde{W} is contracted by $\pi|_{F} : F \to \pi(F) \subset Y$).

Hence \tilde{W} is a section without multiplicity, namely $\varphi|_{E} : E \to E' := \varphi(E)$ is an isomorphism. In particular $E' \simeq \mathbb{P}^{n-1}$.

Lemma 3. In the case (2), Z is a Fano manifold.

Proof. In fact, by the Proposition (see below), it is sufficient to show that for every curve $B \subset W$, we have $-K_{Z} \cdot B > 0$. Let $e' := \varphi_{*}e$. Since $\varphi|_{E}$ is an isomorphism, e' is a line in $E' \simeq \mathbb{P}^{n-1}$. Since $d < n$, we get

$$-K_{Z} \cdot e' = -K_{X} \cdot e + F \cdot e = n - d + r > 0$$

where r is the degree of W in $E' \simeq \mathbb{P}^{n-1}$. For each curve B contained in W (so in E'), there exists $b \in \mathbb{N}$ such that $B \equiv be'$. Hence $-K_{Z} \cdot B = b(-K_{Z} \cdot e') > 0$.

Proposition 1. Let X be a Fano manifold of dimension $n \geq 3$ and $\varphi : X \to Z$ a blow-up of center W smooth subvariety of codimension k ($2 \leq k \leq n$) in a projective manifold Z. If $-K_{Z} \cdot B > 0$ for any curve B contained in W, then Z is Fano.

Proof. Let F be the exceptional divisor of φ and let R be the extremal ray defining φ. Let C be a curve of X such that $[C] \notin R$. If $C \notin F$, $F \cdot C \geq 0$ so that

$$\varphi^{*}(-K_{Z}) \cdot C = -K_{X} \cdot C + (k - 1)F \cdot C > 0.$$

If $C \subset F$, $\varphi_{*}C$ is an effective 1-cycle (because $[C] \notin R$) whose support is contained in W. So, by the hypothesis of the proposition, we get $-K_{Z} \cdot \varphi_{*}C > 0$. By Lemma (3.1), this means that $-K_{Z}$ is ample.

3 Proof of Theorem

In this section, we prove two propositions which imply our main Theorem.

Proposition 2. In the case (1) (φ is a conic bundle), we have the example 1 in the list of Theorem

Proof. Since $\varphi|_{E} : E \to Z$ is an isomorphism, φ is necessarily a \mathbb{P}^{1}-bundle and $E \cdot f = 1$ where $f \simeq \mathbb{P}^{1}$ is any fiber. From the exact sequence

$$0 \to \mathcal{O}_{X} \to \mathcal{O}_{X}(E) \to \mathcal{O}_{E}(E) \to 0,$$

we deduce the exact sequence over $Z \simeq \mathbb{P}^{n-1}$:

$$0 \to \mathcal{O}_{\mathbb{P}^{n-1}} \to \varphi_{*}\mathcal{O}_{X}(E) \to \mathcal{O}_{\mathbb{P}^{n-1}}(-d) \to 0,$$

so that $\varphi_{*}\mathcal{O}_{X}(E)$ is identified to $\mathcal{O}_{\mathbb{P}^{n-1}} \oplus \mathcal{O}_{\mathbb{P}^{n-1}}(-d)$ and X to $\mathbb{P}(\mathcal{O}_{\mathbb{P}^{n-1}} \oplus \mathcal{O}_{\mathbb{P}^{n-1}}(-d))$. Hence we have the example 1.

4
Proposition 3. In the case (2) (\(\varphi\) is a blow-up along a centre of codimension 2), we have the examples 2-(a) or 2-(b).

Proof. Since \(Z\) is Fano, there exists an elementary extremal contraction \(\mu := \text{cont}_{\mathbb{R}^+[m]} : Z \to Z'\) such that \(E' \cdot m > 0\) where \(m\) is a minimal rational curve of the ray.

The case where there exists a fiber \(M = \mu^{-1}(z')\) of dimension \(\geq 2\). In this case there exists a curve \(B \subset E' \cap M\). So \([B] \in \mathbb{R}^+[e']\) and \([B] \in \mathbb{R}^+[m]\) (\(e'\) is a line in \(E' \simeq \mathbb{P}^{n-1}\)). Hence \(\mathbb{R}^+[e'] = \mathbb{R}^+[m]\). It follows that (the numerical class of) any curve in \(E'\) is on the ray \(\mathbb{R}^+[m]\), namely, \(\mu(E')\) is a point in \(Z'\). On the other hand, \(E' \cdot e' > 0\) because \(E' \cdot m > 0\). By Proposition [4] (see below) we have \(\rho(Z) = 1\) and the effective divisor \(E' \simeq \mathbb{P}^{n-1}\) is then ample. Finally, by [BCW] Lemme 4, we conclude that \((Z, E') \simeq (\mathbb{P}^n, O_{\mathbb{P}^n}(1))\). In particular, \(E' \cdot e' = 1\).

Now we estimate the number \(r := \text{deg of } W\) as a divisor in \(E' \simeq \mathbb{P}^{n-1}\). Since \(\varphi^*E' = E + F\), we have \(1 = E' \cdot e' = E \cdot e + F \cdot e = -d + r\). But since \(0 < d < n\), we obtain \(2 \leq r \leq n\). It follows that \(W = E' \cap L\) where \(E' \in |O_{\mathbb{P}^n}(1)|\) and \(L \in |O_{\mathbb{P}^n}(r)|\) (\(2 \leq r \leq n\)). So we get the example (2)-(a).

The case where every fiber of \(\mu\) is at most of dimension 1 (the following argument is essentially due to [BCW]). By [A], the elementary extremal contraction \(\mu : Z \to Z'\) is one of the following:

1. a \(\mathbb{P}^1\)-bundle,

2. a conic bundle (with singular fibers),

3. a smooth blow-up whose centre is smooth and of codimension 2.

Note first that only the first case is possible. In fact in the other cases, \(K_Z \cdot m = -1\) and there exists a minimal rational curve \(m\) such that \(m \cap W\) is not empty. If \(\tilde{m}\) is the strict transform of \(m\), we have

\[
K_X \cdot \tilde{m} = K_Z \cdot m + F \cdot \tilde{m} = -1 + F \cdot \tilde{m} \geq 0,
\]

which is a contradiction because \(X\) is Fano.

So, it is sufficient to study the case where \(\mu\) is a \(\mathbb{P}^1\)-bundle. In this case each fiber (= \(m\)) meets \(W\) transversally at a single point: in fact, if not, there exists \(m\) such that \(F \cdot \tilde{m} \geq 2\). Then, as above, \(K_X \cdot \tilde{m} = K_Z \cdot m + F \cdot \tilde{m} = -2 + F \cdot \tilde{m} \geq 0\), contradiction. So \(\mu_W : W \to \mu(W) \subset Z'\) is an isomorphism (by [L], \(Z'\) is isomorphic to \(\mathbb{P}^{n-1}\) because \(Z'\) is dominated by \(E' \simeq \mathbb{P}^{n-1}\).

We have a standard commutative diagram of Picard groups:

\[
\begin{array}{ccc}
\text{Pic}(Z') & \longrightarrow & \text{Pic}(E') \\
\downarrow & & \downarrow \\
\text{Pic}(\mu(W)) & \cong & \text{Pic}(W)
\end{array}
\]

By a theorem of Lefchetz, the two vertical maps (induced by inclusions: \(\mu(W) \subset Z'\) and \(W \subset E'\)) are isomorphisms. Therefore \(\mu^* : \text{Pic}(Z') \to \text{Pic}(E')\) is an isomorphism, so is \(\mu_{|E'} : E' \to Z'\).

Let \(E'_{|E'} \simeq O_{\mathbb{P}^{n-1}}(d')\) (\(d' = -d + r\) where \(r\) is the degree of \(W \subset E' \simeq \mathbb{P}^{n-1}\), so \(d'\) might be positive). Finally \(Z \simeq \mathbb{P}(O_{\mathbb{P}^{n-1}} \oplus O_{\mathbb{P}^{n-1}}(d'))\) and \(E'\) is a section with normal bundle \(O_{\mathbb{P}^{n-1}}(d')\).

Now we estimate the possibilities of the integers \(d'\) and \(r\). Since \(Z\) is Fano, we get immediately \(-n < d' < n\). We recall now that \(0 < d < n\). Since \(r = d' - d\), we have finally \(d' < r < n + d'\). So we get the example (2)-(b). ■

Proposition 4. Let \(X\) be a smooth projective variety and let \(\varphi : X \to Z\) be an elementary extremal contraction of ray \(R\). We assume that there exists a prime divisor \(E\) such that \(\varphi(E)\) is a point. If there exists a curve \(C \subset E\) such that \(E \cdot C > 0\) then \(\rho(X) = 1\).
Proof. By assumption, $E \cdot R > 0$ (ie: for all $[\Gamma] \in R$, we have $E \cdot \Gamma > 0$). If φ is birational, $E = \text{Exc}(\varphi)$ and $E \cdot R < 0$ \footnote{Let H be a hyperplane section of Z passing through the point $\varphi(E)$. We can write: $\varphi^*H = \tilde{H} + kE$ ($k > 0$) where \tilde{H} is the strict transform of H. Note that there exists a curve $A \subset E$ such that $\tilde{H} \cdot A > 0$. We get $0 = (\varphi^*H) \cdot A = \tilde{H} \cdot A + k(E \cdot A)$. Therefore $E \cdot A < 0$. It follows that $E \cdot R < 0$ because φ is an elementary contraction.}, a contradiction. Hence φ is of fiber type. If $\dim Z > 0$, we take a point $z \neq \varphi(E)$. Then for any curve B contained in $\varphi^{-1}(z)$, we get $E \cdot B = 0$ although $[B] \in R$. This contradicts our assumption. Therefore Z is a point, namely $\rho(X) = 1$. ■

4 Comments on the bound of Picard number

By the classification result of Theorem 1, the Picard number of a Fano manifold X containing a divisor $E \simeq \mathbb{P}^{n-1}$ with $\deg N_{E/X} < 0$ is less than or equal to 3. This is in fact true in more general situation.

Proposition 5. Let X be an n-dimensional Fano manifold ($n \geq 3$). We assume that X contains a prime divisor E with $\rho(E) = 1$. Then $\rho(X) \leq 3$.

Proof. Since X is Fano, we can take an extremal ray $\mathbb{R}^+[f]$ such that $E \cdot f > 0$. Let $\varphi := \text{cont}_{\mathbb{R}^+[f]} : X \to Z$ be the associated elementary extremal contraction.

If there exists $z \in Z$ such that $\dim \varphi^{-1}(z) \geq 2$, then there exists a curve $B \subset E \cap \varphi^{-1}(z)$. We have $[B] \in \mathbb{R}^+[f]$, because $B \subset \varphi^{-1}(z)$. This implies that $E \cdot B > 0$. Since $B \subset E$, we have $\rho(X) = 1$ by Proposition 4.

If $\dim \varphi^{-1}(z) \leq 1$ for all $z \in Z$, by φ is either a conic bundle or a smooth blow-up of a smooth center of codimension 2 (here, \mathbb{P}^1-bundle is considered as a special case of conic bundles).

- If φ is a conic bundle (or a \mathbb{P}^1-bundle), the restriction map $\varphi|_E : E \to Z$ is surjective (and moreover finite). Since $\rho(E) = 1$, $\rho(Z) = 1$. It follows that $\rho(X) = \rho(Z) + 1 = 2$ (because φ is elemental).

- We treat now the case where φ is a blow-up along a smooth center W of codimension 2. Let $E' = \varphi(E)$. Since there exists a surjective map $\varphi|_E : E \to E'$, we have $\rho(E') = 1$.

Claim. The smooth variety Z is Fano.

Proof: By Proposition 4 it is sufficient to show that for any curve $B \subset W$ we have $-K_Z \cdot B > 0$. Let A be a curve in E' not contained in W. Since $\rho(E') = 1$, there exists a positive real number a such that $B \equiv aA$ in E'. Since $E' \subset Z$, this numerical equivalence holds also in Z. Therefore $-K_Z \cdot B > 0$ if and only if $-K_Z \cdot A > 0$. This is in fact the case, because

$$-K_Z \cdot A = -K_X \cdot \tilde{A} + F \cdot \tilde{A} > 0$$

where \tilde{A} is the strict transform of A by φ.

So we can take an extremal ray $\mathbb{R}^+[m]$ such that $E' \cdot m > 0$. Let $\mu := \text{cont}_{\mathbb{R}^+[m]} : Z \to V$ be the associated elementary extremal contraction.

- If there exists $v \in V$ such that $\dim \varphi^{-1}(v) \geq 2$, by the same argument as above, we get $\rho(Z) = 1$. Hence $\rho(X) = \rho(Z) + 1 = 2$.

If \(\dim \varphi^{-1}(v) \leq 1 \) for all \(v \in V \), as mentioned above, \(\mu \) is either a conic bundle or a blow-up of codimension 2. In the first case, we have a surjective map \(\mu|_{E'} : E' \to V \), so \(\rho(V) = 1 \) and \(\rho(Z) = \rho(V) + 1 = 2 \). It follows that \(\rho(X) = \rho(Z) + 1 = 3 \).

Now we rule out the birational case: let \(M \) be the exceptional divisor of \(\mu \). Since \(\rho(E') = 1 \), \(M \cap W \neq \emptyset \). It follows that there is a fiber \(m \) of the exceptional divisor \(M \) such that \(m \cap W \neq \emptyset \). If \(\tilde{m} \) is the strict transform of \(m \) by \(\varphi \), we get

\[
K_X \cdot \tilde{m} = K_Z \cdot m + F \cdot \tilde{m} \geq -1 + 1 = 0,
\]

a contradiction because \(X \) is Fano.

We conclude that in every case, we have \(\rho(X) \leq 3 \). ■

References

[A] T. Ando, On extremal rays of the higher-dimensional varieties. \emph{Invent. Math.} 81 (1985), no. 2, 347–357.

[BCW] L. Bonavero, F. Campana and J. Wiśniewski, Variétés complexes dont l’éclatée en un point est de Fano. (French) [Complex manifolds whose blow-up at a point is Fano] \emph{C. R. Math. Acad. Sci. Paris} 334 (2002), no. 6, 463–468.

[L] R. Lazarsfeld, Some applications of the theory of positive vector bundles. \emph{Complete intersections (Acireale, 1983)}, 29–61, Lecture Notes in Math., 1092, Springer, Berlin, 1984.

[MM] S. Mori and S. Mukai, Classification of Fano 3-folds with \(B_2 \geq 2 \). \emph{Manuscripta Math.} 36 (1981/82), no. 2, 147–162.

Erratum: ”Classification of Fano 3-folds with \(B_2 \geq 2 ” \emph{Manuscripta Math.} 36 (1981/82), no. 2, 147–162; MR 83f:14032. \emph{Manuscripta Math.} 110 (2003), no. 3, 407.

[T] T. Tsukioka, Del Pezzo surface fibrations obtained by blow-up of a smooth curve in a projective manifold. \emph{C. R. Acad. Sci. Paris, Ser. I} 340 (2005), 581–586.

[W] J. Wiśniewski, On contractions of extremal rays of Fano manifolds. \emph{J. Reine Angew. Math.} 417 (1991), 141–157.

email: tsukiokatoru@yahoo.co.jp