One planet: one health. A call to support the initiative on a global science–policy body on chemicals and waste

Werner Brack1,2*, Damia Barcelo Culleres3,4, Alistair B. A. Boxall5, Hélène Budzinski6, Sara Castiglioni7, Adrian Covaci8, Valeria Dulio9, Beate I. Escher1,10, Peter Fantke11, Faith Kandie12, Despo Fatta-Kassinos13, Félix J. Hernández14, Klara Hilscherová15, Juliane Hollender16,17, Henner Hollert2, Annika Jahnke1,18, Barbara Kasprzyk-Hordern19, Stuart J. Khan20, Andreas Kortenkamp21, Klaus Kümmere1,22, Brice Lalonde23, Marja H. Lamoree24, Yves Levi23, Pablo Antonio Lara Martín25, Cassiana C. Montagner26, Christian Mougin27, Titus Msagati28, Jörg Oehlmann2, Leo Posthuma29,30, Malcolm Reid31, Martin Reinhard32, Susan D. Richardson33, Pawel Rostkowski34, Emma Schymanski35, Flurina Schneider2,36, Jaroslav Slobodník37, Yasuyuki Shibata38, Shane Allen Snyder39, Fernando Fabriz Sodré40, Ivana Teodorovic41, Kevin V. Thomas42, Gisela A. Umbuzeiro43, Pham Hung Viet44, Karina Gin Yew-Hoong45, Xiaowei Zhang46 and Ettore Zuccato7

Abstract

The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science–policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science–policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science–policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.

Keywords: Chemical pollution, Science–policy body on chemicals, Planetary boundaries, One-health perspective, Systems thinking

A call to action

Climate change and biodiversity loss are well known to pose a threat to humankind and the global environment and are rightly in the focus of global policies and the public. However, a third major challenge on a global level of the same significance is the chemical pollution crisis that severely threatens human and environmental health.
globally and has not been sufficiently addressed by global and national policies. Governmental organization such as the European Commission [1, 2] and intergovernmental organizations such as the United Nations Environment Programme (UNEP) [3], have developed strategies and enacted legally binding regulations and multilateral agreements to control and manage chemical pollution to foster a toxic-free environment and enacted legally binding regulations, respective host the secretariats of legally binding multilateral agreements. Recently, UNEP published the first synthetic report, in which chemical pollution and wastes was listed as one of three top-priority issues together with climate change and biodiversity loss [4]. However, while international science–policy bodies are established to address climate change (Intergovernmental Panel on Climate Change, IPCC) and the loss of biodiversity (Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services, IPBES), an overarching intergovernmental science–policy body to address pollution and its negative effects on humans and the environment on a global scale commensurate with the scope of the problem is still lacking.

Such a science–policy body on chemicals and waste has recently been suggested by several renowned environmental chemists and toxicologists, striving for enhanced bidirectional communication between policy-makers and scientists on a global scale with broad involvement of the wider scientific community to mobilize worldwide expertise to respond to this severe threat for humankind [5]. We strongly support this initiative. We highlight the need for horizon scanning and the establishment of early warning mechanisms on risks related to chemicals and waste to cover the growing universe of compounds and keep or reduce chemical pollution well below planetary boundaries for novel entities which include synthetic chemicals [6], but also to prevent exceedance of local and regional boundaries with clear impact on biodiversity, ecosystem services and human health. Immediate action to reduce global chemical pollution is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science–policy interface body with wide involvement of scientists and practitioners as suggested by Wang et al. [5].

There is an increasing awareness that humanity, particularly the population and industry in high-income countries, have already likely left the safe operating space, i.e., transgressed the planetary boundary for novel entities [7]. In addition, international assessment and regulation of chemical pollution clearly lags behind the rapid and enormous increase in production and diversity of chemicals. Therefore, we see important tasks of the new body in improving prevention of pollution, reducing and eliminating data and management gaps on a global scale, identifying pollution problems with the potential to exceed regional and global boundaries, as well as developing strategies to tackle these issues holistically and systematically. Clearly communicating science and policy needs to solve this societal problem, the body is required to conduct assessments that go beyond current approaches, which are limited in terms of the geographical regions covered, the number of chemicals considered and the lack of considering ambient mixtures, the consideration of science-based and absolute pollution reduction targets and the lack of systems thinking. Major challenges for a novel science–policy body on chemicals and wastes are (i) to foster global knowledge production on exposure, impacts and governance, and go beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals and mixtures, (iii) to follow a one-health perspective considering the risks posed by chemicals on ecosystems, ecosystem services and human health, (iv) and to strive for solution-oriented assessments based on systems thinking and appreciating the complexity of driving forces, pressures, states, impacts and possible responses to reduce chemical pollution to remain within safe boundaries [7].

Foster global knowledge on exposure and impacts

Several UN Sustainable Development Goals (SDGs) aim to globally ensure healthy lives (#3), access to clean water and sanitation (#6), responsible consumption and production (#12), and the protection of aquatic and terrestrial life (#14 and #15). Attaining these goals requires an efficient contaminant monitoring, control, and mitigation. Nine planetary boundaries have been identified including “novel entities” comprising new chemical substances, new forms of existing substances and modified new life forms [8]. There is sufficient evidence for chemical impacts on environmental and human health on local to global scales [9], although its quantification is challenged by complexity [10, 11]. However, even if a well-defined planetary boundary for novel entities including chemical pollution is still lacking, the rate of increase of chemical production and use is alarming and exceeds that of most other indicators including population growth rate, emissions of carbon dioxide and agricultural land use [12]. A recent paper concluded that “humanity is currently operating outside the planetary boundary” on novel entities and that “the increasing rate of production and releases of larger volumes and higher numbers of novel entities with diverse risk potentials exceed societies’ ability to conduct safety related assessments and monitoring” [7]. At the global level, three criteria have been defined to be fulfilled to pose a threat to the Earth system [10]. Next to the (i) occurrence of a disruptive effect on a vital Earth-system process and (ii)
a lack of reversibility, they include (iii) discovery only when the problem is already occurring at a global scale. One example for exceeding planetary boundaries may be plastic pollution combining global distribution and irreversibility [13] of the phenomenon with potential impacts on Earth systems [14, 15]. Extraordinary efforts are needed to mitigate plastic pollution and transform the global plastics economy [16] aiming at zero plastic pollution [17]. The excessive generation of plastic wastes generated worldwide (1.6 million tonnes per day) during the COVID-19 pandemic runs the risk to reverse the momentum of global efforts to reduce plastic waste production [18], resulting in severe pollution problems on all continents [19, 20]. Early warning strategies informed by monitoring data from many regions of the world, evaluated in assessments by the global scientific community, and organized in an international science–policy body is key to ensure or re-establish that the safe operating space for global societal development is not exceeded.

Current separate approaches are insufficient. Existing data clearly support that chemical pollution and its impacts occur from the local to the global scale, despite current assessments and policies. Chemicals can be transported over long distances via the atmosphere and water cycles and hence affect regions far from where they were produced, used, or emitted (Fig. 1). Persistent organic pollutants have been detected in humans globally [21–24] and in their food [25], in aquatic biota even at the remotest places such as polar regions, high-mountain lakes, offshore waters and deep ocean trenches [26, 27] and in terrestrial food webs [28]. At the same time, there is evidence that climate change may remobilize legacy pollution in sediments [29] and glaciers [30] that has been thought to be permanently removed from the biosphere [31]. However, also less persistent chemicals of emerging concern (CECs), including pharmaceuticals and modern pesticides, occur ubiquitously in the global environment because of their widespread and continued use by societies all over the world [32–35].

The manufacture of hazardous chemicals is rapidly growing in low- and middle-income countries. Production is typically for use in high-income markets with poorly treated industrial wastewater discharged into domestic sewers [36]. Particularly high concentrations of hazardous chemicals are emitted from pesticide [37], textile [38] and drug [39] production. Manufacturing antibiotic drugs is often accompanied by very high concentrations in sewers that may act as a reservoir for antimicrobial resistant (AMR) bacteria [40]. Even if antimicrobials occurrence in the environment above Predicted No Effect Concentrations (PNEC) for resistance selection [41] remains a local phenomenon, the rapid
spread of AMR bacteria by global mobility, migration and trade provides an almost perfect scenario for the exceed-
ance of global boundaries [11]. It is predicted that by
2050, the number of deaths attributable annually to AMR
bacteria will reach about 10 million, exceeding those of
cancer, HIV and other diseases [42]. There is increasing
evidence that even regional pollution problems can thus
rapidly transform to global-scale issues that cannot be
tackled at national and regional scales and require global
action and steering globally by an international body.

While chemical pollution data in North America and
Europe is increasingly becoming available, supported
by continental scale science–policy networks such as
the European NORMAN network [43], there is still a
substantial lack of data from many countries in Asia,
Africa and South America, as shown for pharmaceuti-
cals [33] and pesticides [44], even if monitoring studies
in data-poor countries such as Brazil [45], Sri Lanka [46],
Kazakhstan [47], Nigeria [48] and Kenya [49] are slowly
increasing. These emerging data indicate that concentra-
tions of hazardous chemicals in low-income countries
may be significantly higher than in Europe today. This is
due to a combination of waste mismanagement [50] and
global waste trade [51], poor sanitation and water treat-
ment, the continued use and emission of high-risk chem-
icals phased out in high-income countries and the high
use of region-specific compounds such as antiretroviral
and antimalarial drugs and pesticides that may provide
so-far unrecognized risks [52, 53].

Mitigating pollution problems in low-income countries
is not only essential to protect human health, biodiver-
sity, and ecosystem functions there, but has also direct
benefits for all other regions. This effect may be high-
lighted for global trade of food, which has been shown to
largely account for human exposure to pesticides and
other hazardous chemicals in Europe and the US [54, 55].
Examples are the export of fruits and vegetables from
South Africa and South America to Europe and transfer
of meat from South America to Europe. The close nexus
between unsustainable chemistry and agriculture for the
production of food and other sectors for consumer goods
with severe impacts on human health and ecosystems in
producing regions, combined with the worldwide dis-
tribution of the hazardous chemicals with global trade,
clearly demands for strategies on sustainable chemistry
[56] on a global scale. An international body should care-
fully review existing regional strategies such as the EU
Chemical Strategy for Sustainability [2]—including their
regulatory mechanisms and effectiveness in mitigating
pollution—and conclude on requirements for a toxic-
free environment on a global scale. This overarching goal
requires, among others, incentives and initiatives to close
data gaps on pollution, risks and promising governance
instruments in many regions of the world, supported
amongst others by better uptake of digitalization meth-
ods [57] to derive and prioritize needs for global preven-
tion, monitoring, regulation and mitigation.

Cover the whole range of hazardous chemicals
and mixtures
Since the 1970s, global production, trade and consump-
tion of chemicals has increased substantially, particularly
in emerging economies [12], and increasingly complex
products have been designed to meet numerous func-
tionalities [58]. A recent worldwide inventory revealed
that more than 350,000 industrial chemicals and mixtures
have been registered for production [59] and may finally
end up in the environment. As most regulations handle
per-chemical dossiers, restrictions for specific chemicals
often result in their replacement by other, often equally
persistent and hazardous chemicals, reflected by the
emerging global distribution of these new compounds
[60]. Although several international treaties including
the Stockholm, Rotterdam, Minamata and International
Maritime Organization (IMO) Conventions regulate the
production, use and trade of persistent organic pollutants
(POPs) and other hazardous substances, the large major-
ity of potentially hazardous compounds in use [59] and
detected in the environment [61] is not considered by any
of these conventions.

Substantial progress in analytical multi-compound
screening techniques opened new doors to extend moni-
toring to a large number of potentially hazardous target
chemicals complemented by more exploratory non-tar-
geted approaches and help to slowly approach the full
complexity of the chemical pollution problem [34, 62].
At the same time, awareness is growing that chemicals
exert impact on the local to the global scale as complex
mixtures of a multitude of chemicals, and there is sub-
estantial evidence that ignoring mixture exposure and
effects significantly underestimates pollution risks and
impacts [63]. A better exchange on and understanding
of the global ambient and human exposure to complex
mixtures of chemicals is supported by new approaches
of FAIR and open science [64, 65], openly accessible data
infrastructures as provided by NORMAN [66, 67] and
extensive web-based applications on chemical properties
and hazard data for almost one million compounds such
as the US-EPA CompTox Chemicals Dashboard [68] and
PubChem [69]. These resources will allow for a quantum
leap in the global data exchange, rapid growth of acces-
sible knowledge and derivation of key management actions
as required for effective assessments and the design of
effective preventive and management actions by the sug-
gested international science–policy body and for political
decisions on pollution control and mitigation all over the world.

One of the great challenges for a novel science–policy body on chemical pollution and waste would be to respond to the rapidly increasing numbers of produced and used chemicals worldwide and develop strategies for a holistic approach on preventing, monitoring, regulating, and mitigating chemical pollution rather than chemical by chemical. Key elements of an unbiased strategy to explore pollution trends and upcoming risks may be the global promotion of non-target screening [62] and effect-based methods [34, 70] in environmental and human (bio)monitoring based on harmonized criteria in quality assurance [71]. These measures support grouping of chemicals for regulation and advanced assessment of chemical mixtures [72–74] and the restriction of potentially hazardous chemicals to essential use only [75].

Follow a one-health perspective

Although the impact of chemical pollution on environmental and human health has historically been addressed separately, “the convergence of people, animals, and our environment has created a new dynamic in which the health of each group is inextricably interconnected” [76]. Environmental pollution is a key driver of human health impairment and at the same time of environmental health threats including losses of biodiversity and ecosystem functions and services to humans. Since humans and wildlife share many targets for biologically active chemicals [77] and adverse outcome pathways [78], problematic chemicals affect both, so that also innovative solutions for a pollution-free planet [3, 79] will protect both. Therefore, we suggest the new science–policy interface body to follow a one-health perspective addressing chemical risks on humans and ecosystems.

Diseases caused by chemical pollution have been estimated to be responsible for 9 million premature deaths in 2015, three times more than from HIV, tuberculosis and malaria together and 15 times more than from war and violence [80]. For neuro-developmental toxicity, a global pandemic has been uncovered with one in every six children having a neuro-developmental disability, including autism, attention deficit disorder, mental retardation, and cerebral palsy. Exposure to more than 200 neurotoxic chemicals has been identified as possible cause including metals, POPs and organic solvents [81]. Mixtures of polybrominated flame retardants have been shown to play an important role in neurodevelopmental effects [82]. Human reproduction is also at risk by chemical pollution. Within the last century a significant decline of total human fertility rates has occurred, while male reproductive disorders have increased [83, 84]. Exposure to mixtures of endocrine disruptors is hypothesized to be one of the drivers of this phenomenon [85].

Human health threats triggered by chemical pollution are typically accompanied by impairments of ecosystems and a decline of biodiversity [86, 87]. For Europe it has been shown that aquatic ecosystems are exposed to ambient mixtures of toxic pollution [88] at a level of which chemicals are of similar importance for the impaired ecological status as other well-accepted drivers, such as habitat degradation and excessive loads of nutrients [89]. In the oceans, legacy POPs still occur at concentrations that cause a continuous decline of distinct predatory marine mammals such as killer whales [90]. In freshwater ecosystems, continuously emitted endocrine disruptors may lead to population effects at very small concentrations, as demonstrated for contraceptive drugs which may cause intersex in wild fish [91] and collapse of fish populations [92]. Antifouling agents, globally used in high tonnages in ship paints [93], can act as endocrine disruptors and have been shown to cause the extinction of mollusc populations in harbours suffering from high exposure [94, 95]. In addition, they may also impair macrophyte communities [96] and even caused regime shifts in lake ecosystems [97].

The current biodiversity crisis has severe impacts on essential ecosystem services for humankind exceeding planetary boundaries for many biomes [98, 99]. This is particularly concerning for the drastic decline of flying insect biomass threatening pollination of the majority of plant species in nature and for food production, nutrient cycling and food sources for higher trophic levels [100]. Agriculture intensification, including increased pesticide and fertilizer usage, is one of the potential reasons for the decline of insects [100] and insectivorous grassland birds [101, 102]. The anti-inflammatory drug diclofenac applied in cattle was shown to cause near-extinction of vultures feeding on carcasses of animals treated with this compound in India and Pakistan [103], with severe effects on public health [104]. A strong link between ecosystem integrity and human health was also suggested for pesticide application in Africa. Pesticides has applied in Kenya have been shown not only to affect invertebrate communities but also to promote tolerant hosts for parasites and thus, pave the way for transmission of diseases such as schistosomiasis, with 218 million people infected worldwide and up to 280,000 deaths per year [105].

The close interlink between chemical pollution and impacts on human and environmental health, including losses of biodiversity and impaired ecosystem functions [106, 107], strongly demands for a one-health perspective from the local to the global scale. Thus, a global science–policy body on chemicals and waste should adopt this perspective from the very beginning and aim to
maximize synergies of human and ecosystem health protection striving for a pollution-free and healthy planet [3, 79]. This goal requires involvement and collaboration of experts from the different scientific communities (chemistry, human health, (eco)toxicology, epidemiology, biodiversity, social sciences, economy) and the close collaboration with existing intergovernmental organizations such as the Strategic Approach to International Chemicals Management (SAICM), World Health Organization (WHO) and IPBES.

Strive for solutions-oriented assessments based on systems thinking

Already established for pollution problems at the regional scale [108], the drivers–pressures–states–impact–response (DPSIR) causal–analytical scheme may be also useful to address this challenge at a global scale. Chemical emissions as a global pressure (P) for ecosystems and human health is highly complex with respect to the resulting mixture composition status (S), which may be dynamic in time and space but also regarding the associated potential impacts (I) on wildlife and human health. The diversity of driving forces (D) and actors involved in the emissions is large, and include agriculture, industry, global trade, and consumers, while those are in turn subjected to global change. Chemical pollution thus creates a high diversity of pollution states in different regions of the world with different impacts on biodiversity, ecosystem functions, exposure and health effects on human populations. It is then the focus on the response opportunities and consideration of a wide range of possible responses that matters for solving the problem, with potential solutions on all aspects of the DPSI-chain, i.e., on drivers, states and impacts. The earlier in that chain the response is effective, the less the risks and impacts.

We see the need for an international science–policy interface body on chemical pollution to take the high complexity of this system and the “solutions space” of possible responses into account from the very beginning [109]. Solution spaces can range from technical and management options for local application until governance options including regulatory and financing mechanisms at the global scale [110]. Systems thinking emphasizing the “how” and “why” of intervention outcomes should combine complexity-aware evaluation of monitoring data (critical mixture components, influence of time etc.) with broad stakeholder involvement and virtual simulation models that allow for scenario calculations [111]. Existing integrated fate-exposure models such as the UN Environment scientific consensus model USEtox may be used and expanded to test for different exposure and risk scenarios and possible interventions [112]. The power of these models to estimate near-field human exposures has been demonstrated recently by high-throughput screening of chemicals of concern in toys [113] and in building materials [114]. Long-range transport models for organic chemicals have been developed to understand pollution problems far from the regions, where chemicals have been produced and applied [115]. Consistent modelling frameworks for the distribution of chemical pollutants by global trade of goods and waste are less available although first examples exist such as the global food system [54].

Our call to support the initiative on a global science–policy body

Along the lines discussed above, we see a clear need for the establishment of a global science–policy body on chemicals and waste, as suggested by Wang et al. [5], bringing together global scientific expertise on chemical pollution and governance, ecosystem and human health, as well as biodiversity to “strengthen the science–policy interface and the use of science in monitoring progress, priority-setting, solution focus and policy making throughout the life cycle of chemicals and waste” as suggested in the UNEP Global Chemicals Outlook II [79]. This is a call to scientists and practitioners to mobilize their scientific networks and to intensify science–policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge, explaining the urgency of global action on chemical pollution and discussing the anticipated benefit for human and environmental health on the way towards a pollution-free planet and a sustainable economic development within the safe operating space of the planetary boundaries. This initiative can only be successful if scientists and policy-makers join forces and combine expert and practical knowledge across continents and institutional silos in the suggested global panel to close the dramatic data gaps on chemical pollution in many parts of the world, identify the most important pollution problems and develop solution strategies to tackle them based on close science–policy interfacing and broad stakeholder involvement. A strong mandate and support from national governments and the international community are required to give prevention and mitigation of pollution an adequate weight in regulation, industry, and private behaviour to protect our common one health on our one planet.

Acknowledgements

All authors thank multiple funding agencies and their institutes for long-term support in fundamental and applied research on chemical pollution.

Authors’ contributions

WB conceptualized and drafted the manuscript. All other authors helped to further elaborate the manuscript and contributed specific aspects. All authors read and approved the final manuscript.
18. Benson NU, Bassey DE, Palanisami T (2021) COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e06343
19. Benson NU et al (2021) COVID-19 pandemic and emerging plastic-based personal protective equipment waste pollution and management in Africa. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.105222
20. Arduoso M et al (2021) COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144365
21. Fromme H et al (2009) Perfluorinated compounds—exposure assessment for the general population in western countries. Int J Hyg Environ Health 212(3):239–270. https://doi.org/10.1016/j.ijeh.2008.04.007
22. Katsikantami I et al (2016) A global assessment of phthalates burden and related links to health effects. Environ Int 97:212–236. https://doi.org/10.1016/j.envint.2016.09.013
23. Honda M, Kannan K (2018) Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ Pollut 232:487–493. https://doi.org/10.1016/j.envpol.2017.09.073
24. Fedler H, Sadia M (2021) Regional occurrence of perfluoroalkane substances in human milk for the global monitoring plan under the Stockholm convention on persistent organic pollutants during 2016–2019. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.130287
25. Weber R et al (2018) Reviewing the relevance of dioxin and PCB sources and contributions for the general population in western countries. Int J Hyg Environ Health 211(3):42. https://doi.org/10.1016/j.ijeh.2018.06.002
26. Jamieson AJ et al (2017) Bioaccumulation of persistent organic pollutants in the deepest oceanic fauna. Nat Ecol Evol. https://doi.org/10.1038/s41559-016-0051
27. Houde M et al (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review PFCs in aquatic biota. Environ Sci Technol 45(19):7962–7973. https://doi.org/10.1021/es104326w
28. Malavannan G, Poma G, Covaci A (2020) Interspecies comparison of the residue levels and profiles of persistent organic pollutants in terrestrial top predators. Environ Res 183:109187. https://doi.org/10.1016/j.envres.2020.109187
29. Crawford SE et al (2022) Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.126691
30. Pawlík F, Koziol K, Polkowska Z (2021) Chemical hazard in glacial melt? A systematic review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144365
31. Nizzetto L et al (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44(17):6526–6531. https://doi.org/10.1021/es100178f
32. Fang WD et al (2019) A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environ Int. https://doi.org/10.1016/j.envint.2019.104994
33. aus der Beek T et al (2016) Pharmaceuticals in the environment—global occurrences and perspectives. Environ Toxicol Chem 35(4):823–835. https://doi.org/10.1002/etc.3339
34. Escher BI, Stapleton HM, Schymanski EL (2020) Tracking complex mixtures of chemicals in our changing environment. Science 367(6476):388–392. https://doi.org/10.1126/science.aay6636
35. Tran NH, Reinhard M, Gin KY-H (2018) Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—a review. Water Res 153:182–207. https://doi.org/10.1016/j.watres.2017.12.029
36. Kockana RE et al (2014) Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2013.0586
37. Dskowitzky L et al (2014) A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India. Sci Total Environ 485:348–362. https://doi.org/10.1016/j.scitotenv.2014.03.034
38. Yaseen DA, Scholz M (2019) Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol 16(2):1193–1226. https://doi.org/10.5772/618-02150-z
39. Larsson DGJ (2014) Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2013.0571
40. Marathe NP et al (2013) A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bacteria. PLoS ONE. https://doi.org/10.1371/journal.pone.0077310
41. Bengtsson-Palme J, Larsson DGJ (2016) Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int 86:140–149. https://doi.org/10.1016/j.envint.2015.10.015
42. O’Neill J (2014) The review on antimicrobial resistance. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. https://amr-review.org
43. Dulio V et al (2020) The NORMAN association and the European partnership for chemicals risk assessment (PARC): let’s cooperate! Environ Sci Eur. https://doi.org/10.1186/s12302-020-00375-w
44. Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci USA 112(18):5750–5755. https://doi.org/10.1073/pnas.1500231112
45. Sposito JC et al (2018) Emerging contaminants in Brazilian rivers: occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere 209:696–704. https://doi.org/10.1016/j.chemosphere.2018.06.046
46. Gurge Ke et al (2019) First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci Total Environ 690:683–695. https://doi.org/10.1016/j.scitotenv.2019.07.042
47. Aubakirova B, Beisenova R, Boxall ABA (2017) Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan. Integ Environ Assess Manag 13(5):832–839. https://doi.org/10.1002/ieam.1895
48. Ögünbaşni O et al (2020) High concentrations of pharmaceuticals in a Nigerian river catchment. Environ Toxicol Chem. https://doi.org/10.1002/etc.4879
49. Kandie FY et al (2020) Occurrence and risk assessment of organic micro-pollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.1367478
50. Femorano N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16060160
51. Brooks AL, Wang SL, Jambeck JR (2018) The Chinese import ban and its impact on global plastic waste trade. Sci Adv. https://doi.org/10.1126/sciadv.aat0131
52. Fekadu S et al (2019) Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci Total Environ 654:324–337. https://doi.org/10.1016/j.scitotenv.2018.11.072
53. K’Oreje KO et al (2020) Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: literature review and a look ahead. J Environ Manag. https://doi.org/10.1016/j.jenvman.2019.109752
54. Ng CA, Goetz N (2017) The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125(1):1–7. https://doi.org/10.1289/EHP168
55. Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology of persistent organic pollutants in the northern Hemisphere. A systematic review. Sci Total Environ. https://doi.org/10.1016/s0048-9697(01)00786-4
56. Kümmerer K et al (2021) Key Characteristics of sustainable chemistry. https://www inaccessible_chemistry_key_characteristics_20210113.pdf
57. Kümmerer K et al (2018) A path to clean water. Science 361(6399):222–224. https://doi.org/10.1126/science.aau2405
59. Wang ZY et al (2020) Toward a global understanding of chemical pol‑

60. Pan YT et al (2018) Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environ Sci Technol 52(14):7621–7629. https://doi.org/10.1021/acs.est.8b08029

61. Gago-Ferrero P et al (2020) Wide‑scope target screening of > 2000 emerging contaminants in wastewater samples with UPLC‑Q‑ToF‑HRV5/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121712

62. Brack W et al (2019) High‑resolution mass spectrometry to comple‑

63. Kortenkamp A, Faust M (2018) Regulate to reduce chemical mixture

64. Schymanski EL, Williams AJ (2017) Open science for identifying “known unknown” chemicals. Environ Sci Technol 51(10):5357–5359

65. Schymanski EL, Bolton EE (2021) FAIR chemical structures in the Journal of Chemicalinformatics. J Cheminforn 13(1):50. https://doi.org/10.1016/j.

66. Alygyizakis NA et al (2019) NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution‑mass spectrometry data and screen suspects in “digitally frozen” environmental samples. Trac‑Trends Anal Chem 115:129–137. https://doi.org/10.1016/j.

67. Slobodnik J et al (2019) Establish data infrastructure to compile and exchange environmental screening data on a European scale. Environ Sci Eur 31(1):65. https://doi.org/10.1186/s12302‑019‑0237‑6

68. Williams AJ et al (2021) Sourcing data on chemical properties and haz‑

69. Kim S et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):D1388–D1395. https://doi.org/10.1093/nar/gkaa971

70. Brack W et al (2019) Effect‑based methods are key. The European col‑

71. Caballero‑Casero N et al (2021) Towards harmonised criteria in quality

72. Bopp SK et al (2018) Current EU research activities on combined expo‑

73. Drakvik E et al (2020) Statement on advancing the assessment of chemical mixtures and their risks for human health and the environ‑

74. Posthuma L et al (2019) Improved component‑based methods for mix‑

75. Cousins IT et al (2019) The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts 21(1):1803–1815. https://doi.org/10.1039/c9em0163h

76. American Veterinary Medical Association (2008) One health: a new professional imperative. American Veterinary Medical Association, Schaumburg

77. Gunnarsson L et al (2008) Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol 42(5):5807–5813. https://doi.org/10.1021/es805173

78. Edwards SW et al (2016) Adverse outcome pathways—organizing toxicological information to improve decision making. J Pharmacol Exp Ther 356(1):170–181. https://doi.org/10.1124/jpet.115.228239

79. United Nations Environment Programme (2019) Global chemicals out‑look II. From legacies to innovative solutions. Implementing the 2030 agenda for sustainable development. https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions

80. Landrigan PJ et al (2018) The lancet commission on pollution and health. Lancet 391(10119):462–512. https://doi.org/10.1016/S0140‑6736(17)32345‑0

81. Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of indus‑

82. Martin OV et al (2017) A human mixture risk assessment for neurode‑

83. Skakkebaek NE et al (2016) Male reproductive disorders and fertility

84. Groh K et al (2012) Anthropogenic chemicals as underestimated drivers of biodiversity loss: scientific and societal implications. Environ Sci Technol 56:707–710. https://doi.org/10.1021/acs.est.1c03899

85. Malaj E et al (2014) Organic chemicals jeopardise freshwater ecosystems health on the continental scale. Proc Natl Acad Sci USA 111(26):9549–9554. https://doi.org/10.1073/pnas.132082111

86. Vorosmarty CJ et al (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561. https://doi.org/10.1038/ nature09440

87. Grob S et al (2019) Improved component‑based methods for diagnosis and monitoring of water quality. Environ Sci Eur 31(1):70. https://doi.org/10.1016/j.

88. Lemm JU et al (2021) Multiple stressors determine river ecological sta‑

89. Lemm JU et al (2021) Multiple stressors determine river ecological status at the European scale: towards an integrated understanding of river status deterioration. Glob Change Biol 27(9):1962–1975. https://doi.org/10.1111/gcb.15504

90. Desforges JP et al (2018) Predicting global killer whale population collapse from PCB pollution. Science 361(6409):1373–1376. https://doi.

91. Jobling S et al (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32(17):2498–2506. https://doi.org/10.1021/es9710870

92. Kidd KA et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104(21):8897–8901. https://doi.

93. Secretariat for the Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (2008) Decision guidance document for tributyltin compounds. United Nations Environment Programme

94. Oehlmann J et al (2007) Endocrine disruption in prosobranch molluscs: evidence and ecological relevance. Ecotoxicology 16(1):29–43. https://doi.

95. Oetken M et al (2004) Evidence for endocrine disruption in inverte‑

96. Machate O et al (2021) Evidence for antifouling biocides as one of the

97. Secretariat for the Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (2008) Decision guidance document for tributyltin compounds. United Nations Environment Programme

98. Newbold T et al (2016) Has land use pushed terrestrial biodiversity

99. Hallmann CA et al (2017) More than 75 percent decline over 27 years in surface waters. Environ Sci Eur 31(1):70. https://doi.org/10.1016/j.

100. Hallmann CA et al (2017) More than 75 percent decline over 27 years in surface waters. Environ Sci Eur 31(1):70. https://doi.org/10.1016/j.

101. Hallmann CA et al (2017) More than 75 percent decline over 27 years in surface waters. Environ Sci Eur 31(1):70. https://doi.org/10.1016/j.

102. Hallmann CA et al (2017) More than 75 percent decline over 27 years in surface waters. Environ Sci Eur 31(1):70. https://doi.org/10.1016/j.
101. Mineau P, Whiteside M (2013) Pesticide acute toxicity is a better correlate of US grassland bird declines than agricultural intensification. PLoS ONE. https://doi.org/10.1371/journal.pone.0057457

102. Hallmann CA et al (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511(7509):341. https://doi.org/10.1038/nature13531

103. Oaks JL et al (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427(6975):630–633. https://doi.org/10.1038/nature02317

104. Balmford A (2013) Pollution, politics, and vultures. Science 339(6120):653–654. https://doi.org/10.1126/science.1234193

105. Becker JM et al (2020) Pesticide pollution in freshwater paves the way for schistosomiasis transmission. Sci Rep 10(1):3650. https://doi.org/10.1038/s41598-020-60654-7

106. Johnston EL, Mayer-Pinto M, Crowe TP (2015) Chemical contaminant effects on marine ecosystem functioning. J Appl Ecol 52(1):140–149. https://doi.org/10.1111/1365-2664.12355

107. Wang J et al (2021) Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. J Environ Manag. https://doi.org/10.1016/j.jenvman.2020.111873

108. Meybeck M et al (2007) Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005). Sci Total Environ 375(1–3):204–231. https://doi.org/10.1016/j.scitotenv.2006.12.017

109. Posthuma L et al (2019) Exploring the ‘solution space’ is key: SOLUTIONS recommends an early-stage assessment of options to protect and restore water quality against chemical pollution. Environ Sci Eur 31(1):73. https://doi.org/10.1186/s11367-019-0253-6

110. Backhaus T, Scheringer M, Wang ZY (2018) Developing SAICM into a framework for the international governance of chemicals throughout their Lifecycle: Looking beyond 2020. Integr Environ Assess Manag 14(4):432–433. https://doi.org/10.1002/ieam.4052

111. McAlister MM et al (2022) Systems thinking for effective interventions in global environmental health. Environ Sci Technol 56(2):732–738. https://doi.org/10.1021/acs.est.1c04110

112. Fantke P et al (2021) Exposure and toxicity characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. Int J Life Cycle Assess 26(5):899–915. https://doi.org/10.1007/s11367-021-01889-y

113. Aurisano N et al (2021) Chemicals of concern in plastic toys. Environ Int. https://doi.org/10.1016/j.envint.2020.106194

114. Huang L et al (2022) Chemicals of concern in building materials: a high-throughput screening. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127574

115. Scheringer M (2009) Long-range transport of organic chemicals in the environment. Environ Toxicol Chem 28(4):677–690. https://doi.org/10.1897/08-324R.1

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.