New Modular Fixed-Point Theorem in the Variable Exponent Spaces $\ell_p(.)$

Amnay El Amri 1 and Mohamed A. Khamsi 2,∗

1 Faculté des Sciences Ben Msik (LAMS), Hassan II University, Casablanca 21100, Morocco; amnayelamri95@gmail.com or amnay.elamri-etu@etu.univh2c.ma
2 Department of Applied Mathematics and Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
* Correspondence: mohamed.khamsi@ku.ac.ae

Abstract: In this work, we prove a fixed-point theorem in the variable exponent spaces $\ell_p(.)$ when $p^− = 1$ without further conditions. This result is new and adds more information regarding the modular structure of these spaces. To be more precise, our result concerns ρ-nonexpansive mappings defined on convex subsets of $\ell_p(.)$ that satisfy a specific condition which we call “condition of uniform decrease”.

Keywords: electrorheological fluid; fixed point; modular vector space; Nakano; strictly convex; uniformly convex

MSC: primary 47H09; 47H10

1. Introduction

Variable exponent spaces first appeared in a work of Orlicz in 1931 [1] (see also [2]), where he defined the following space:

$$X = \{\{x_n\} \in \mathbb{R}^N, \sum_{n=0}^{\infty} |x_n|^{p(n)} < \infty, \text{ for some } \lambda > 0 \}.$$

They became very important because of their use in the mathematical modeling of non-Newtonian fluids [3,4]. The typical example of such fluids are electrorheological fluids, the viscosity of which exhibits dramatic and sudden changes when exposed to an electric or magnetic field. The necessity of a clear understanding of the spaces with variable integrability is reinforced by their potential applications.

The properties of this vector space have been extensively studied in [5–7]. The norm that was commonly used to investigate the geometrical properties of X is the Minkowski functional associated to the modular unit ball and it is known as the Luxembourg norm. Whereas in the case of classical ℓ_p spaces, the natural norm is suitable for making calculations, the Luxembourg norm on X is very difficult to manipulate.

In 1950, Nakano [8] introduced for the first time the notion of modular vector space (see also [9,10]). This abstract point of view has been crucial to the development of the research on geometrical and topological properties of the variable exponent spaces $\ell_p(.)$.

In this work, we will introduce a class of subsets of $\ell_p(.)$ that have some interesting geometrical properties. This will allow us to prove a new fixed-point theorem concerning $\ell_p(.)$ spaces. For the study of metric fixed-point theory, we recommend the book [9].
2. Basic Notations and Terminology

For a function \(p : \mathbb{N} \rightarrow [1, +\infty) \), define the vector space

\[
\ell_{p(.)} = \left\{ \{x_n\} \in \mathbb{R}^\mathbb{N}, \sum_{n=0}^{\infty} \frac{1}{p(n)} |\lambda x_n|^p < \infty, \text{ for some } \lambda > 0 \right\}.
\]

Nakano [8,11] introduced the concept of modular vector space.

Proposition 1 ([6,9]). Consider the function \(\rho : \ell_{p(.)} \rightarrow [0, +\infty] \) defined by

\[
\rho(x) = \rho(\{x_n\}) = \sum_{n=0}^{\infty} \frac{1}{p(n)} |x_n|^p(n)
\]

then \(\rho \) satisfies the following properties

1. \(\rho(x) = 0 \) if and only if \(x = 0 \),
2. \(\rho(ax) = \rho(x), \text{ if } |a| = 1 \),
3. \(\rho(ax + (1-a)y) \leq a\rho(x) + (1-a)\rho(y), \forall a \in [0,1] \).

for any \(x, y \in X \). The function \(\rho \) is called a convex modular.

For any subset \(I \) of \(\mathbb{N} \), we consider the functional

\[
\rho_I(x) = \sum_{n \in I} |x_n|^p(n).
\]

If \(I = \emptyset \), we set \(\rho_I(x) = 0 \). We define on modular spaces a modular topology which is similar to the topology induced by a metric.

Definition 1. Consider the vector space \(\ell_{p(.)} \).

(a) We say that a sequence \(\{x_n\} \subset \ell_{p(.)} \) is \(\rho \)-convergent to \(x \in \ell_{p(.)} \) if and only if \(\rho(x_n - x) \rightarrow 0 \). The \(\rho \)-limit is unique if it exists.

(b) A sequence \(\{x_n\} \subset \ell_{p(.)} \) is called \(\rho \)-Cauchy if \(\rho(x_n - x_m) \rightarrow 0 \) as \(n, m \rightarrow +\infty \).

(c) A nonempty subset \(C \subset \ell_{p(.)} \) is called \(\rho \)-closed if for any sequence \(\{x_n\} \subset C \) which \(\rho \)-converges to \(x \) implies that \(x \in C \).

(d) A nonempty subset \(C \subset \ell_{p(.)} \) is called \(\rho \)-bounded if and only if

\[
\delta_\rho(C) = \sup \{ \rho(x - y), \ x, y \in C \} < \infty.
\]

Note that \(\rho \) satisfies the Fatou property, i.e.,

\[
\rho(x - y) \leq \liminf_{n \to +\infty} \rho(x - y_n),
\]

holds whenever \(\{y_n\} \) \(\rho \)-converges to \(y \), for any \(x, y, y_n \in \ell_{p(.)} \). Throughout, we will use the notation \(B_\rho(x, r) \) to denote the \(\rho \)-ball with radius \(r \geq 0 \) centered at \(x \in \ell_{p(.)} \) and defined as

\[
B_\rho(x, r) = \left\{ y \in \ell_{p(.)}, \ \rho(x - y) \leq r \right\}.
\]

Note that Fatou property holds if and only if the \(\rho \)-balls are \(\rho \)-closed. That is, all \(\rho \)-balls are \(\rho \)-closed in \(\ell_{p(.)} \).

Definition 2. Let \(C \subset \ell_{p(.)} \) be a nonempty subset. A mapping \(T : C \rightarrow C \) is called \(\rho \)-Lipschitzian if there exists a constant \(K \geq 0 \) such that

\[
\rho(T(x) - T(y)) \leq K \rho(x - y), \ \forall x, y \in C.
\]
If $K = 1$, T is called ρ-nonexpansive. A point $x \in C$ is called a fixed point of T if $T(x) = x$.

The concept of modular uniform convexity was first introduced by Nakano [11], but a weaker definition of modular uniform convexity called (UUC2) was introduced in [9] and seems to be more suitable to hold in ℓ_p when weaker assumptions on the exponent function $p(\cdot)$ hold. The following definition is given in terms of subsets because of the subsequent results discovered in this work.

Definition 3 ([9]). Consider the vector space ℓ_p. Let C be a nonempty subset of ℓ_p.
1. Let $r > 0$ and $\varepsilon > 0$. Define

 \[
 D_2(r, \varepsilon) = \{(x, y) \in \ell_p \times \ell_p, \rho(x) \leq r, \rho(y) \leq r, \rho\left(\frac{x - y}{2}\right) \geq \varepsilon r\}.
 \]
 If $D_2(r, \varepsilon) \cap (C \times C) \neq \emptyset$, let

 \[
 \delta_{2,C}(r, \varepsilon) = \inf \left\{1 - \frac{1}{r} \rho\left(\frac{x + y}{2}\right), (x, y) \in D_2(r, \varepsilon) \cap (C \times C)\right\}.
 \]
 If $D_2(r, \varepsilon) \cap (C \times C) = \emptyset$, we set $\delta_2(r, \varepsilon) = 1$. We say that ρ satisfies (UUC2) on C if for every $r > 0$ and $\varepsilon > 0$, we have $\delta_{2,C}(r, \varepsilon) > 0$. When $C = \ell_p$, we remark that for every $r > 0$, $D_2(r, \varepsilon) \neq \emptyset$, for $\varepsilon > 0$ small enough. In this case, we will use the notation $\delta_{2,\ell_p}(r, \varepsilon) = \delta_2$.
2. We say that ρ satisfies (UUC2) on C if for every $s \geq 0$ and $\varepsilon > 0$, there exists $\eta_2(s, \varepsilon) > 0$ depending on s and ε such that

 \[
 \delta_{2,C}(r, \varepsilon) \geq \eta_2(s, \varepsilon) > 0 \quad \text{for} \quad r > s.
 \]
3. We say that ρ is strictly convex on C (in short (SC)), if for every $x, y \in C$ such that
 \[
 \rho(x) = \rho(y) \quad \text{and} \quad \rho\left(\frac{x + y}{2}\right) = \frac{\rho(x) + \rho(y)}{2}\quad \text{imply}\quad x = y.
 \]

In the study of the properties of ℓ_p (see [12]), the following values are very important:

\[
p^+ = \sup_{n \in \mathbb{N}} p(n) \quad \text{and} \quad p^- = \inf_{n \in \mathbb{N}} p(n).
\]

In [5], the authors proved that for ℓ_p with $p^- > 1$, the modular is (UUC2). This modular geometrical property allows to prove the following fixed-point result:

Theorem 1. Consider the vector space ℓ_p. Assume $p^- > 1$. Let C be a nonempty ρ-closed convex ρ-bounded subset of ℓ_p. Let $T : C \rightarrow C$ be a ρ-nonexpansive mapping. Then T has a fixed point.

In [13], the authors proved a similar fixed-point theorem in the case where $\{n \in \mathbb{N}, p(n) = 1\}$ has at most one element which is an improvement from $p^- > 1$.

Before we close this section, we recall the following lemma, of a rather technical nature, which plays a crucial role when dealing with ℓ_p spaces.

Lemma 1. The following inequalities hold:
(i) [14]. If $p \geq 2$, then
 \[
 \left|\frac{a + b}{2}\right|^p + \left|\frac{a - b}{2}\right|^p \leq \frac{1}{2} \left(|a|^p + |b|^p\right),
 \]
 for any $a, b \in \mathbb{R}$.

(ii) [15]. If \(1 < p \leq 2\), then
\[
\left| a + b \right|^{p} + \frac{p(p - 1)}{2} \left| \frac{a - b}{|a| + |b|} \right|^{2} \left| a - b \right|^{p} \leq \frac{1}{2} \left(|a|^{p} + |b|^{p} \right),
\]
for any \(a, b \in \mathbb{R}\) such that \(|a| + |b| \neq 0\).

In this work, using a different approach, we obtain some fixed-point results when \(p^{-} = 1\) without the known conditions on the function \(p(\cdot)\).

3. Uniform Decrease Condition

First, we introduce an interesting class of subsets of \(\ell_{p(\cdot)}\), which will play an important part in our work. In particular, they enjoy similar modular geometric properties as \(\ell_{p(\cdot)}\) when \(p^{-} > 1\). Before, let us introduce the following notations:

\[
I_{a} = \{ n \in \mathbb{N}; \; p(n) \geq a \} \quad \text{and} \quad J_{a} = \mathbb{N} \setminus I_{a} = \{ n \in \mathbb{N}; \; p(n) < a \},
\]
where \(a \in [1, +\infty)\).

Definition 4. Consider the vector space \(\ell_{p(\cdot)}\). A nonempty subset \(C\) of \(\ell_{p(\cdot)}\) is said to satisfy the uniform decrease condition (in short \((UD)\)) if for any \(\alpha > 0\), there exists \(r > 1\) such that
\[
\sup_{x \in C} \rho_{J_{a}}(x) \leq \alpha.
\]

Obviously the condition \((UD)\) passes from a set to its subsets. Moreover, if \(p(\cdot)\) is identically equal to 1, then the only \((UD)\) subset is \(C = \{0\}\). Since this case is not interesting, we will assume throughout that \(p(\cdot)\) is not identically equal to 1. Moreover, if \(p^{-} > 1\), then any nonempty subset of \(\ell_{p(\cdot)}\) satisfies the condition \((UD)\). Indeed, let \(C\) be a nonempty subset of \(\ell_{p(\cdot)}\) and \(a > 0\). Let \(a \in (1, p^{-})\). Then \(J_{a} = \emptyset\) which implies
\[
\sup_{x \in C} \rho_{J_{a}}(x) = 0 \leq \alpha.
\]
Therefore, the condition \((UD)\) is interesting to study only when \(p^{-} = 1\) and \(p(\cdot)\) is not identically equal to 1, which will be the case throughout.

Example 1. Consider the function \(p(\cdot)\) defined by
\[
p(n) = 1 + \frac{1}{n + 1}, \quad n \in \mathbb{N}.
\]

Consider the subset
\[
C = \left\{ x \in \ell_{p(\cdot)}; \; |x_{n}| \leq \frac{1}{(n + 1)^{2}}, \; n \in \mathbb{N} \right\}.
\]

\(C\) is nonempty, convex and \(p\)-closed. Let us show that it satisfies the condition \((UD)\). Indeed, fix \(\alpha > 0\). Let \(N \geq 1\) be such that \(\sum_{k \geq N} \frac{1}{(k + 1)^{2}} \leq \alpha\). Set \(a = 1 + \frac{1}{N}\). We have
\[\rho_{\ell_1}(x) = \sum_{n \in J_n} \frac{|x_n|^p(n)}{p(n)} \leq \sum_{n \geq N} \frac{|x_n|^p(n)}{p(n)} \leq \sum_{n \geq N} \frac{1}{p(n)(n+1)^2} \leq \sum_{n \geq N} \frac{1}{a(n+1)^2} \leq \alpha, \]

for all \(x \in C \), which proves our claim that \(C \) is \((UD)\).

Before we give a characterization of subsets which satisfy the condition \((UD)\), we need to introduce a new class of subsets of \(\ell_p(\cdot)\).

Definition 5. Consider the vector space \(\ell_p(\cdot)\) such that \(p^- = 1\) and \(p(\cdot)\) not identically equal to 1. Let \(f : (0, +\infty) \to (1, 2) \) be a nondecreasing function. Define the set \(C_f \) to be

\[C_f = \left\{ x \in \ell_p(\cdot); \; \rho_{\ell_1}(x) \leq \alpha, \; \text{for all } \alpha > 0 \right\}. \]

Note that \(C_f \) is never empty since \(0 \in C_f \). Some of the basic properties of \(C_f \) are given in the following lemma.

Lemma 2. Consider the vector space \(\ell_p(\cdot)\) such that \(p^- = 1\) and \(p(\cdot)\) not identically equal to 1. Let \(f : (0, +\infty) \to (1, 2) \) be a non-decreasing function. Then the following properties hold:

1. \(C_f \) is convex.
2. \(C_f \) is symmetrical, i.e., \(-z \in C_f \) whenever \(z \in C_f \).
3. The Fatou property implies easily that \(C_f \) is \(p\)-closed as a subset of \(\ell_p(\cdot)\) which in turn implies that \(C_f \) is \(p\)-complete.

Proposition 2. Consider the vector space \(\ell_p(\cdot)\) such that \(p^- = 1\) and \(p(\cdot)\) not identically equal to 1. A subset \(C \) of \(\ell_p(\cdot)\) satisfies the condition \((UD)\) if and only if there exists \(f : (0, +\infty) \to (1, 2) \) non-decreasing such that \(C \subset C_f \).

Proof. First, we prove that \(C_f \) satisfies the condition \((UD)\). Fix \(\alpha > 0 \). If we take \(a = f(\alpha) \), we obtain

\[\sup_{x \in C_f} \rho_{\ell_1}(x) \leq \alpha, \]

which proves our claim. Clearly, any subset \(C \) of \(C_f \) will also satisfy the condition \((UD)\). Conversely, let \(C \) be a nonempty subset of \(\ell_p(\cdot)\) which satisfies the condition \((UD)\). For any \(\alpha > 0 \), there exists \(a > 1 \) such that \(\sup_{x \in C} \rho_{\ell_1}(x) \leq \alpha \). Set

\[[\alpha] = \left\{ a > 1; \; \sup_{x \in C} \rho_{\ell_1}(x) \leq \alpha \right\}. \]

Define

\[f(\alpha) = \begin{cases} 2 \sup_{[\alpha]} \left([\alpha] \cap (1, 2) \right) & \text{if } [\alpha] \subset [2, +\infty), \vspace{1mm} \\
\infty & \text{if } [\alpha] \cap (1, 2) \neq \emptyset. \end{cases} \]

Clearly, \(f \) is well defined and \(f(\alpha) \in (1, 2] \), for all \(\alpha > 0 \). Let \(\alpha < \beta \) be such that \(0 < \alpha \leq \beta \). We claim that \(f(\alpha) \leq f(\beta) \). Indeed, it is easy to see that \([\alpha] \subset [\beta] \). If \([\alpha] \cap (1, 2] \neq \emptyset \), then we have \([\beta] \cap (1, 2] \neq \emptyset \) which easily implies \(f(\alpha) \leq f(\beta) \). Otherwise, assume \([\alpha] \subset [2, +\infty) \).
Let \(a \in [\alpha] \). We have \(a \geq 2 \) and \(a \in [\beta] \). By definition of the sets \(I \), we have \(J_2 \subset I_\alpha \). Since \(\rho_{J_2}(x) \leq \rho_{I_\alpha}(x) \), for all \(x \in \ell_{p(\cdot)} \), we obtain
\[
\sup_{x \in C} \rho_{J_2}(x) \leq \sup_{x \in C} \rho_{I_\alpha}(x) \leq \beta,
\]
i.e., \(2 \in [\beta] \). This fact, will force \(f(\beta) = 2 \). In all cases, we have \(f(\alpha) \leq f(\beta) \). In other words, the function \(f : (0, +\infty) \rightarrow (1, 2] \) is non-decreasing. Finally, let us show that \(C \subset \ell_g \), where \(g(x) = (1 + f(x))/2 \), for all \(a > 0 \). Since \(1 < f(\alpha) \), then we have \(1 < g(a) < f(\alpha) \), for all \(a > 0 \). If \([\alpha] \subset [2, +\infty) \), pick \(\alpha \in [\alpha] \). Then \(g(\alpha) = 3/2 < a \) which implies \(I_g(\alpha) \subset I_\alpha \). Hence
\[
\rho_{I_g(\alpha)}(x) \leq \rho_{I_\alpha}(x), \quad \text{for all } x \in C,
\]
which implies \(\sup_{x \in C} \rho_{I_g(\alpha)}(x) \leq \sup_{x \in C} \rho_{I_\alpha}(x) \leq \alpha \). Otherwise, assume \([\alpha] \cap (1, 2] \neq \emptyset \), then \(f(\alpha) = \sup \{ [\alpha] \cap (1, 2] \} \). Since \(g(a) < f(\alpha) \), there exists \(\alpha \in [\alpha] \) such that \(g(\alpha) < a \leq f(\alpha) \). Similar argument will show that
\[
\sup_{x \in C} \rho_{I_g(\alpha)}(x) \leq \sup_{x \in C} \rho_{I_\alpha}(x) \leq \alpha.
\]
In both cases, we showed that \(\sup_{x \in C} \rho_{I_g(\alpha)}(x) \leq \alpha \), for all \(a > 0 \), i.e., \(C \subset C_g \) as claimed. \(\square \)

Proposition 2 allows us to focus on the subsets \(C_f \) instead of subsets which satisfy the condition \((ULD) \). The next result is amazing and surprising since it tells us that the subsets \(C_f \) enjoy nice modular geometric properties despite the fact that \(p^- = 1 \).

Theorem 2. Consider the vector space \(\ell_{p(\cdot)} \) such that \(p^- = 1 \) and \(p(\cdot) \) not identically equal to 1. Let \(f : (0, +\infty) \rightarrow (1, 2] \) be a non-decreasing function. Then, \(\rho \) is \((ULIC2) \) on \(C_f \).

Proof. Let \(r > 0 \) and \(\epsilon > 0 \). Let \(x, y \in C_f \) such that \(\rho(x) \leq r, \rho(y) \leq r \) and \(\rho(\frac{x-y}{2}) \geq \epsilon r \). Since \(\rho \) is convex, we have
\[
\epsilon r \leq \rho(\frac{x-y}{2}) \leq \frac{\rho(x) + \rho(y)}{2} \leq r,
\]
which implies \(\epsilon \leq 1 \). Set \(\alpha = \frac{\epsilon r}{2} \). The properties of \(C_f \) imply \(\frac{x-y}{2} \in C_f \). So
\[
\rho_{I_f(\alpha)}(\frac{x-y}{2}) \leq \alpha,
\]
which implies
\[
\rho_{I_f(\alpha)}(\frac{x-y}{2}) = \rho(\frac{x-y}{2}) - \rho_{I_f(\alpha)}(\frac{x-y}{2}) \geq \epsilon r - \alpha = \frac{\epsilon r}{2}.
\]
Next, set
\[
K = I_f(\alpha) \cap \{ n, p(n) \geq 2 \} \quad \text{and} \quad L = I_f(\alpha) \cap \{ n, p(n) < 2 \}.
\]
Since \(I_f(\alpha) = K \cup L \), we obtain \(\rho_{I_f(\alpha)}(z) = \rho_K(z) + \rho_L(z) \), for all \(z \in C_f \). From our assumptions, we have
\[
\rho_K(\frac{x-y}{2}) \geq \frac{\epsilon r}{4} \quad \text{or} \quad \rho_L(\frac{x-y}{2}) \geq \frac{\epsilon r}{4}.
\]
Assume first that
\[
\rho_K(\frac{x-y}{2}) \geq \frac{\epsilon r}{4}.
\]
Using Lemma 1, we obtain
\[\rho_K \left(\frac{x+y}{2} \right) + \rho_K \left(\frac{x-y}{2} \right) \leq \frac{\rho_K(x) + \rho_K(y)}{2}, \]
which implies
\[\rho_K \left(\frac{x+y}{2} \right) \leq \frac{\rho_K(x) + \rho_K(y)}{2} - \varepsilon r. \]
Using the convexity of the modular, we have
\[\rho_{L \cup J_{f(a)}} \left(\frac{x+y}{2} \right) \leq \frac{\rho_{L \cup J_{f(a)}}(x) + \rho_{L \cup J_{f(a)}}(y)}{2}, \]
which implies
\[\rho \left(\frac{x+y}{2} \right) \leq \frac{\rho(x) + \rho(y)}{2} - \varepsilon r \leq r \left(1 - \frac{\varepsilon}{4} \right). \]
For the second case, assume
\[\rho_L \left(\frac{x-y}{2} \right) \geq \frac{\varepsilon r}{4}. \]
Set
\[c = \frac{\varepsilon r}{8}, \quad L_1 = \left\{ n, \ |x_n - y_n| \leq c \left(|x_n| + |y_n| \right) \right\} \text{ and } L_2 = L \setminus L_1. \]
Since \(c < 1 \), we obtain
\[\rho_{L_1} \left(\frac{x-y}{2} \right) \leq \sum_{n \in L_1} c^{p(n)} \left(\frac{|x_n| + |y_n|}{2} \right)^{p(n)} \leq \frac{c}{2} \sum_{n \in L_1} \frac{|x_n|^{p(n)} + |y_n|^{p(n)}}{p(n)}. \]
Hence
\[\rho_{L_1} \left(\frac{x-y}{2} \right) \leq \frac{c}{2} \left(\rho_{L_1}(x) + \rho_{L_1}(y) \right) \leq \frac{c}{2} \left(\rho(x) + \rho(y) \right) \leq \frac{c}{2} r. \]
Our assumption on \(\rho_L \left(\frac{x-y}{2} \right) \) implies
\[\rho_{L_2} \left(\frac{x-y}{2} \right) = \rho_L \left(\frac{x-y}{2} \right) - \rho_{L_1} \left(\frac{x-y}{2} \right) \geq r \frac{\varepsilon r}{4} \geq \frac{\varepsilon}{8}. \]
For any \(n \in L_2 \), we have
\[f \left(\frac{\varepsilon r}{2} \right) - 1 = f(\alpha) - 1 \leq p(n) - 1 \leq p(n) (p(n) - 1) \]
\[c \leq c^{2-p(n)} \leq \left(\frac{|x_n - y_n|}{|x_n| + |y_n|} \right)^{2-p(n)}. \]
Using Lemma 1, we obtain
\[\left| \frac{x_n + y_n}{2} \right|^{p(n)} + \left(\frac{f(\alpha) - 1}{2} \right) c \left| \frac{x_n - y_n}{2} \right|^{p(n)} \leq \frac{1}{2} \left(|x_n|^{p(n)} + |y_n|^{p(n)} \right), \]
for any \(n \in L_2 \). Hence
\[\rho_{L_2} \left(\frac{x+y}{2} \right) \leq \frac{\rho_{L_2}(x) + \rho_{L_2}(y)}{2} \leq \frac{r (f(\alpha) - 1) \varepsilon^2}{128}, \]
which implies
\[\rho \left(\frac{x+y}{2} \right) \leq r \left(1 - \frac{(f(\alpha) - 1) \varepsilon^2}{128} \right). \]
Both cases imply that \(\rho \) is \((UIC2)\) on \(C_f \) with

\[
\delta_{2,C_f}(r,\varepsilon) \geq \min \left(\frac{\varepsilon}{4} \left(\frac{f\left(\frac{\varepsilon}{2}\right)}{128} - 1 \right)^2 \right) > 0,
\]

since \(f(a) > 1 \), for any \(a > 0 \). Since \(f(\cdot) \) is nondecreasing, we may set

\[
\eta_2(r,\varepsilon) = \min \left(\frac{\varepsilon}{4} \left(\frac{f\left(\frac{\varepsilon}{2}\right)}{128} - 1 \right)^2 \right)
\]

to see that in fact \(\rho \) is \((UUC2)\) on \(C_f \) which completes the proof of Theorem 2. \(\Box \)

The following lemma will be useful:

Lemma 3. Consider the vector space \(\ell_{p(\cdot)} \) such that \(p^{-} = 1 \) and \(p(\cdot) \) not identically equal to 1. Let \(f : (0, +\infty) \to (1, 2] \) be a non-decreasing function. Set \(g(a) = f\left(\frac{a}{4}\right) \), for \(a > 0 \). We have

\[
C_f + C_f = \{ x + y; \ x, y \in C_f \} \subset C_g.
\]

Proof. Let \(x, y \in C_f \). For any \(n \in I_{g(a)} = \{ n; \ p(n) \leq f\left(\frac{a}{4}\right) \} \), we have

\[
\left| \frac{x_n + y_n}{2} \right|^{p(n)} \leq \frac{1}{2} \left(|x_n|^{p(n)} + |y_n|^{p(n)} \right),
\]

which implies

\[
\frac{1}{p(n)} |x_n + y_n|^{p(n)} \leq \frac{2^{p(n)-1}}{p(n)} \left(|x_n|^{p(n)} + |y_n|^{p(n)} \right).
\]

Hence

\[
\rho_{\frac{a}{4} + \frac{a}{4}}(x + y) \leq 2^{f\left(\frac{a}{4}\right)-1} \left(\rho_{\frac{a}{4}}(x) + \rho_{\frac{a}{4}}(y) \right)
\]

\[
\leq 2\left(\frac{a}{4} + \frac{a}{4}\right) = a.
\]

Therefore \(\rho_{\frac{a}{4}}(x + y) \leq a \), that is \(x + y \in C_g \), which completes the proof of Lemma 3. \(\Box \)

In the next section, we will prove a fixed-point theorem for modular nonexpansive mappings.

4. Application

As an application to Theorem 2, we will prove a fixed-point result for modular nonexpansive mappings. The classical ingredients will be needed. First, we prove the proximinality of \(\rho \)-closed convex subsets which satisfies the condition \((UD)\).

Proposition 3. Consider the vector space \(\ell_{p(\cdot)} \) such that \(p^{-} = 1 \) and \(p(\cdot) \) not identically equal to 1. Let \(f : (0, +\infty) \to (1, 2] \) non-decreasing. Any nonempty \(\rho \)-closed convex subset \(C \) of \(C_f \) is proximinal, i.e., for any \(x \in C_f \) such that

\[
d_\rho(x, C) = \inf \left\{ \rho(x - y); \ y \in C \right\} < \infty,
\]

there exists a unique \(c \in C \) such that \(d_\rho(x, C) = \rho(x - c) \).
We claim that
\[
\rho \left(\frac{y_{\phi(n)} - y_{\phi(m)}}{2} \right) \geq \varepsilon_0,
\]
for any \(n > m \geq 1 \). According to Lemma 3, \(\{ x - y_{\phi(n)} \} \) is in \(C_y \), where \(g(\alpha) = f(\alpha/4) \), for any \(\alpha > 0 \). Fix \(n > m \geq 1 \). We have

\[
\max \left\{ \rho \left(x - y_{\phi(n)} \right), \rho \left(x - y_{\phi(m)} \right) \right\} \leq R \left(1 + \frac{\varepsilon_0}{\phi(m)} \right),
\]

Since
\[
\varepsilon_0 = R \left(1 + \frac{1}{\phi(m)} \right) \frac{\varepsilon_0}{R \left(1 + \frac{1}{\phi(m)} \right)} \geq R \left(1 + \frac{1}{\phi(m)} \right) \varepsilon_1,
\]

with \(\varepsilon_1 = \frac{\varepsilon_0}{2R} \), and using Theorem 2, we obtain
\[
\rho \left(x - \frac{y_{\phi(n)} + y_{\phi(m)}}{2} \right) \leq R \left(1 + 1/\phi(m) \right) \left(1 - \delta \phi_n \left(1 + 1/\phi(m) \right), \varepsilon_1 \right)
\]
\[
\leq R \left(1 + 1/\phi(m) \right) \left(1 - \eta_2(R, \varepsilon_1) \right),
\]

where
\[
\eta_2(R, \varepsilon_1) = \min \left(\frac{\varepsilon_1}{4}, \left(\frac{R \varepsilon_1}{2} - 1 \right) \frac{\varepsilon_1}{128} \right).
\]

Since \(y_{\phi(n)} \) and \(y_{\phi(m)} \) are in \(C \) and \(C \) is convex, we obtain
\[
R = d_\rho(x, C) \leq \rho \left(x - \frac{y_{\phi(n)} + y_{\phi(m)}}{2} \right) \leq R \left(1 + 1/\phi(m) \right) \left(1 - \eta_2(R, \varepsilon_1) \right).
\]

If we let \(m \to +\infty \), we obtain
\[
R \leq R \left(1 - \eta_2(R, \varepsilon_1) \right) < R.
\]

This contradiction implies that \(\{ y_n/2 \} \) is \(\rho \)-Cauchy. Since \(\ell_{\rho(\cdot)} \) is \(\rho \)-complete, there exists \(y \in \ell_{\rho(\cdot)} \) such that \(\{ y_n/2 \} \) \(\rho \)-converges to \(y \). Since \(C \) is convex and \(\rho \)-closed, we conclude that \(2y \in C \). Using the Fatou property, we have
\[
R = d_\rho(x, C) \leq \rho \left(x - 2y \right) \leq \liminf_{m \to +\infty} \rho \left(x - \left(y + \frac{y_m}{2} \right) \right) \leq \liminf_{m \to +\infty} \liminf_{n \to +\infty} \rho \left(x - \frac{y_n + y_m}{2} \right) \leq \liminf_{m \to +\infty} \liminf_{n \to +\infty} \rho \left(x - y_n \right) + \rho \left(x - y_m \right) = R = d_\rho(x, C).
\]

If we set \(c = 2y \), we obtain \(d(x, C) = \rho(x - c) \). The uniqueness of the point \(c \) comes from the fact that \(\rho \) is strictly convex on \(C_y \) since it is \((\text{UUC2})\). \(\square \)

The next result discusses an intersection property known as the property \((R)\) [9]. Recall that a nonempty \(\rho \)-closed convex subset \(C \) of \(\ell_{\rho(\cdot)} \) is said to satisfy the property \((R)\)
Proposition 4. Consider the vector space $\ell_{p(\cdot)}$ such that $p^- = 1$ and $p(\cdot)$ not identically equal to 1. Let $f : (0, +\infty) \to (1, 2]$ be a non-decreasing function. Then C_f satisfies the property (R).

Proof. Let $\{C_n\}$ be a decreasing sequence of nonempty ρ-closed convex subsets of C_f. Let $x \in C_1$. We have

$$d_\rho(x, C_n) = \inf \{\rho(x, x_n); x_n \in C_n\} \leq \sup \{\rho(x, y), \; x, y \in C_1\} = \delta_\rho(C_1) < \infty.$$

Since $\{C_n\}$ is decreasing, the sequence $\{d_\rho(x, C_n)\}$ is increasing bounded above by $\delta_\rho(C_1)$. Set $R = \lim_{n \to +\infty} d_\rho(x, C_n) = \sup d_\rho(x, C_n)$. If $R = 0$, then $x \in C_n$ for any $n \geq 1$, which will imply $\bigcap_{n \geq 1} C_n \neq \emptyset$. Otherwise, assume $R > 0$. Using Proposition 3, there exists $c_n \in C_n$ such that $d_\rho(x, C_n) = \rho(x - c_n)$, for any $n \geq 1$. Similar argument as the one used in the proof of Proposition 3 will show that $\{c_n/2\}$ is ρ-Cauchy and converges to $c \in \ell_{p(\cdot)}$. Since $\{C_n\}$ is a decreasing sequence of ρ-closed subsets, we conclude that $2c \in \bigcap_{n \geq 1} C_n$. Again this will show that $\bigcap_{n \geq 1} C_n \neq \emptyset$ which completes the proof of Proposition 4. Moreover, using Fatou property, we note that

$$\rho(x - 2c) \leq \liminf_{n \to +\infty} \liminf_{m \to +\infty} \rho\left(x - \frac{c_n + c_m}{2}\right),$$

which will imply

$$d_\rho\left(x, \bigcap_{n \geq 1} C_n\right) = \lim_{n \to +\infty} d_\rho(x, C_n).$$

\qed

Remark 1. Let us note that under the assumptions of Proposition 4, the conclusion still holds when we consider any family $\{C_\alpha\}_{\alpha \in \Gamma}$ of nonempty, convex, ρ-closed subsets of C, where (Γ, \prec) is upward directed, such that there exists $x \in C$ which satisfies $\sup_{\alpha \in \Gamma} d_\rho(x, C_\alpha) < \infty$. Indeed, set $d = \sup_{\alpha \in \Gamma} d_\rho(x, C_\alpha)$. Without loss of generality, we may assume $d > 0$. For any $n \geq 1$, there exists $\alpha_n \in \Gamma$ such that

$$d\left(1 - \frac{1}{n}\right) < d_\rho(x, C_{\alpha_n}) \leq d.$$

Since (Γ, \prec) is upward directed, we may assume $\alpha_n \prec \alpha_{n+1}$ which implies $C_{\alpha_{n+1}} \subset C_{\alpha_n}$. Proposition 4 implies $C_0 = \bigcap_{n \geq 1} C_{\alpha_n} \neq \emptyset$. Clearly C_0 is ρ-closed and using the last noted point in the proof of Proposition 4, we obtain

$$d_\rho(x, C_0) = \lim_{n \to +\infty} d_\rho(x, C_{\alpha_n}) = \sup_{n \geq 1} d_\rho(x, C_{\alpha_n}) = d.$$

Let $c_0 \in C_0$ such that $d_\rho(x, C_0) = \rho(x - c_0)$. We claim that $c_0 \in C_{\alpha_n}$ for any $\alpha \in \Gamma$. Indeed, fix $\alpha \in \Gamma$. If for some $n \geq 1$ we have $\alpha \prec \alpha_n$, then obviously we have $c_0 \in C_{\alpha_n} \subset C_{\alpha_n}$. Therefore let us assume that $\alpha \not\prec \alpha_n$, for any $n \geq 1$. Since Γ is upward directed, there exists $\beta_n \in \Gamma$ such that $\alpha_n \prec \beta_n$ and $\alpha \prec \beta_n$, for any $n \geq 1$. We can also assume that $\beta_n \prec \beta_{n+1}$, for any $n \geq 1$. Again we have $C_1 = \bigcap_{n \geq 1} C_{\beta_n} \neq \emptyset$. Since $C_{\beta_n} \subset C_{\alpha_n}$, for any $n \geq 1$, we obtain $C_1 \subset C_0$. Moreover we have

$$d = d_\rho(x, C_0) \leq d_\rho(x, C_1) = \sup_{n \geq 1} d_\rho(x, C_{\beta_n}) \leq d.$$
Hence, $d_\rho(x, C_1) = d$ which implies the existence of a unique point $c_1 \in C_1$ such that $d_\rho(x, C_1) = \rho(x - c_1) = d$. Since ρ is (SC) on C_f, we obtain $c_0 = c_1$. In particular, we have $c_0 \in C_{\beta_n}$, for any $n \geq 1$. Since $\alpha < \beta_n$, we conclude that $C_{\beta_n} \subset C_\alpha$, for any $n \geq 1$, which implies $c_0 \in C_\alpha$. Since α was taking arbitrary in Γ, we obtain $c_0 \in \bigcap_{\alpha \in \Gamma} C_\alpha$, which implies $\bigcap_{\alpha \in \Gamma} C_\alpha \neq \emptyset$ as claimed.

The next result is necessary to obtain the fixed-point theorem sought for ρ-nonexpansive mappings.

Proposition 5. Consider the vector space $\ell_{p(\cdot)}$ such that $p^- = 1$ and $p(\cdot)$ are not identically equal to 1. Let $f : (0, +\infty) \to [1, 2]$ be a nondecreasing function. Then C_f has the ρ-normal structure property, i.e., for any nonempty ρ-closed convex ρ-bounded subset C of C_f not reduced to one point, there exists $x \in C$ such that

$$\sup_{y \in C} \rho(x - y) < \delta_\rho(C).$$

Proof. Let C be a ρ-closed convex ρ-bounded subset C of C_f not reduced to one point. Since C is not reduced to one point, we have $\delta_\rho(C) > 0$. Let $x, y \in C$ such that $x \neq y$. Set

$$\varepsilon_0 = \frac{1}{\delta_\rho(C)} \rho\left(\frac{x - y}{2}\right) > 0.$$

Fix $c \in C$. Using Lemma 3, we have $x - c$ and $y - c$ are in $C_f - C_f \subset C_g$, where $g(\alpha) = f(\alpha/4)$, for any $\alpha > 0$. So far we have

$$\max\{\rho(x - c), \rho(y - c)\} \leq \delta_\rho(C) \quad \text{and} \quad \rho\left(\frac{x - y}{2}\right) \geq \delta_\rho(C) \varepsilon_0.$$

Theorem 2 implies

$$\rho\left(c - \frac{x + y}{2}\right) \leq \delta_\rho(C) \left(1 - \delta_{2,C_g}(R, \varepsilon_0)\right).$$

Since c was taken arbitrary in C, we conclude that

$$\sup_{c \in C} \rho\left(c - \frac{x + y}{2}\right) \leq \delta_\rho(C) \left(1 - \delta_{2,C_g}(\delta_\rho(C), \varepsilon_0)\right) < \delta_\rho(C) > 0.$$

Therefore the proof of Proposition 5 is complete. \(\square\)

Putting all this together, we are ready to prove the main fixed-point result of our work.

Theorem 3. Consider the vector space $\ell_{p(\cdot)}$ such that $p^- = 1$ and $p(\cdot)$ are not identically equal to 1. Let C be a nonempty ρ-closed convex ρ-bounded subset of $\ell_{p(\cdot)}$, which satisfies the condition (UD). Any ρ-nonexpansive mapping $T : C \to C$ has a fixed point.

Proof. Since C satisfies the condition (UD), Proposition 2 secures the existence of a non-decreasing function $f : (0, +\infty) \to [1, 2]$ such that C is a subset of C_f. The conclusion is trivial if C is reduced to one point. Therefore, we will assume that C is not reduced to one point, i.e., $\delta_\rho(C) > 0$. Consider the family

$$\mathcal{F} = \{K \subset C, \ K \neq \emptyset, \ \rho \text{-closed convex and } T(K) \subset K\}$$

The family \mathcal{F} is not empty since $C \in \mathcal{F}$. Since C is bounded, we use Remark 1 to be able to use Zorn’s lemma and conclude that \mathcal{F} contains a minimal element K_0. Let us show that K_0 is reduced to one point. Assume not, i.e., K_0 contains more than one point. Set $\text{co}(T(K_0))$ to be the intersection of all ρ-closed convex subset of C containing $T(K_0)$. Hence $\text{co}(T(K_0)) \subset K_0$ since $K_0 \in \mathcal{F}$. Moreover, we have
which implies that \(\text{co}(T(K_0)) \subset T(K_0) \subset \text{co}(T(K_0)) \),

and we deduce the existence of \(x_0 \in K_0 \) such that

\[
r_0 = \sup_{y \in K_0} \rho(x_0 - y) < \delta_\rho(K_0).
\]

Define the subset

\[
K = \left\{ x \in K_0, \sup_{y \in K_0} \rho(x - y) \leq r_0 \right\}.
\]

Next, we prove that \(T(K) \subset K \). Indeed, let \(x \in K \). Since \(T \) is \(\rho \)-nonexpansive, we have

\[
\rho(T(x) - T(y)) \leq \rho(x - y) \leq r_0,
\]

for all \(y \in K_0 \). So we have \(T(y) \in B_\rho(T(x), r_0) \cap K_0 \), which implies \(T(K_0) \subset B_\rho(T(x), r_0) \).

Since \(K_0 = \text{co}(T(K_0)) \), we conclude that \(K_0 \subset B_\rho(T(x), r_0) \), which implies

\[
\rho(T(x) - y) \leq r_0,
\]

for all \(y \in K_0 \). Hence \(T(x) \in K \). Since \(x \) was taken as arbitrary in \(K \), we obtain \(T(K) \subset K \).

The minimality of \(K_0 \) will force \(K = K_0 \). Hence

\[
r_0 < \delta_\rho(K_0) = \delta_\rho(K) \leq r_0.
\]

This is a contradiction. Therefore, \(K_0 \) is reduced to one point and it is a fixed point of \(T \) because \(T(K_0) \subset K_0 \).

Remark 2. In Theorem 3, the condition (UD) can be replaced by the following condition which is slightly more general:

there exists \(x_0 \in \ell_{p(.)} \) such that \(x_0 + C \) satisfies the condition (UD).

Author Contributions: A.E.A. and M.A.K. contributed equally on the development of the theory and their respective analysis. All authors have read and agreed to the published version of the manuscript.

Funding: Khalifa University research project No. 8474000357.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The second author was funded by Khalifa University, UAE, under grant No. 8474000357. The authors, therefore, gratefully acknowledge, with thanks, Khalifa University’s technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

- MDPI Multidisciplinary Digital Publishing Institute
- DOAJ Directory of open access journals
- TLA Three letter acronym
- LD linear dichroism
References
1. Orlicz, W. Über konjugierte Exponentenfolgen. *Studia Math.* **1931**, *3*, 200–211. [CrossRef]
2. Musielak, J. *Orlicz Spaces and Modular Spaces*; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Tokyo, Japan, 1983; Volume 1034.
3. Rajagopal, K.; Ružička, M. On the modeling of electrorheological materials. *Mech. Res. Commun.* **1996**, *23*, 401–407. [CrossRef]
4. Ružička, M. *Electrorheological Fluids: Modeling and Mathematical Theory*; Lecture Notes in Mathematics 1748; Springer: Berlin/Heidelberg, Germany, 2000.
5. Bachar, M.; Bounkhel, M.; Khamsi, M.A. Uniform Convexity in $\ell_{p(i)}$. *J. Nonlinear Sci. Appl.* **2017**, *10*, 5292–5299. [CrossRef]
6. Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. *Lebesgue and Sobolev Spaces with Variable Exponents*; Lecture Note in Mathematics 2017; Springer: Berlin/Heidelberg, Germany, 2011.
7. Khamsi, M.A.; Kozlowski, W.K.; Reich, S. Fixed point theory in modular function spaces. *Nonlinear Anal.* **1990**, *14*, 935–953. [CrossRef]
8. Nakano, H. *Modulared Semi-Ordered Linear Spaces*; Maruzen Co.: Tokyo, Japan, 1950.
9. Kamsi, M.A.; Kozlowski, W.M. *Fixed Point Theory in Modular Function Spaces*; Birkhauser: New York, NY, USA, 2015.
10. Kozlowski, W.M. *Modular Function Spaces*; Series of Monographs and Textbooks in Pure and Applied Mathematics; Dekker: New York, NY, USA; Basel, Switzerland, 1988; Volume 122.
11. Nakano, H. *Topology of Linear Topological Spaces*; Maruzen Co., Ltd.: Tokyo, Japan, 1951.
12. Waterman, D.; Ito, T.; Barber, F.; Ratti, J. Reflexivity and Summability: The Nakano $\ell(p_i)$ spaces. *Stud. Math.* **1969**, *331*, 141–146. [CrossRef]
13. Bachar, M.; Khamsi, M.A.; Mendez, O.; Bounkhel, M. A geometric property in $\ell_{p(i)}$ and its applications. *Math. Nachr.* **2019**, *292*, 1931–1940. [CrossRef]
14. Clarkson, J.A. Uniformly Convex Spaces. *Trans. Am. Math. Soc.* **1936**, *40*, 396–414. [CrossRef]
15. Sundareshan, K. Uniform convexity of Banach spaces $\ell(p_i)$. *Stud. Math.* **1971**, *39*, 227–231. [CrossRef]