Conceptual framework for performing simultaneous fold and sequence optimization in multi-scale protein modeling

István Kolossváry1,2,*

1Department of Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary

2BIOKOL Research, LLC, Madison, New Jersey 07940, USA

*Correspondence: Istvan@Kolossvary.hu

PACS number(s): 87.15.Cc, 02.60.Pn, 87.15.A-

We present a dual optimization concept of predicting optimal sequences as well as optimal folds of off-lattice protein models in the context of multi-scale modeling. We validate the utility of the recently introduced hidden-force Monte Carlo optimization algorithm by finding significantly lower energy folds for minimalist and detailed protein models than previously reported. Further, we also find the protein sequence that yields the lowest energy fold amongst all sequences for a given chain length and residue mixture. In particular, for protein models with a binary sequence, we show that the sequence-optimized folds form more compact cores than the lowest energy folds of the historically fixed, Fibonacci-series sequences of chain lengths of 13, 21, 34, 55, and 89. We then extend our search algorithm to use UNRES, one of the leading united-residue protein force fields. Our combined fold and sequence optimization on three test proteins reveal an inherent bias in UNRES favoring alpha helical structures even when secondary structure prediction clearly suggests only beta sheets besides random coil, and virtually no helices. One test in particular, a triple-stranded antiparallel beta-sheet protein domain, demonstrates that by permutations of its sequence UNRES re-folds this structure into a perfect alpha helix but, in fact, the helix is just an artefact of the force field, the structure quickly unfolds in all-atom state-of-the-art molecular dynamics simulation.
I. INTRODUCTION

We recently introduced the hidden-force algorithm (HFA), a global Monte Carlo optimization method and used it to predict low-energy binary Lennard-Jones (BLJ) cluster configurations [1]. In this communication, we apply HFA to find the optimal fold of simple and detailed protein models. Further, we also find the protein sequence that yields the lowest energy fold amongst all sequences for a given chain length and residue mixture. In particular, we study protein AB (PAB) models [2, 3]. These have close similarity to BLJ models. Despite their minimalism, PAB models mimic a basic feature of protein folding—the formation of a hydrophobic core. Similar to BLJ models PAB models consist of only two types of residues, denoted A and B. The interaction energy between two A residues (AA interaction) is twice as strong as AB or BB interactions to promote core formation. The interaction potential has a pseudo Lennard-Jones form and the total potential energy includes angle-bending and torsion terms to account for local interactions. Historically, PAB models use a Fibonacci series sequence protein with chain lengths of 13, 21, 34, 55, and 89 [4, 5]. At first, we revisit the Fibonacci sequences and find that much lower energy folds exist than previously reported. Moreover, the new putative global minima show topological features qualitatively different from real proteins. The new low-energy folds are deeply knotted indicative of a flaw in the PAB model. Simplifying the local interaction terms introduced to extend the PAB model to three dimensions [3], we obtain new realistic low-energy folds without knots. Using this simplified potential we use HFA optimization to find non-Fibonacci sequences that fold into still lower energy structures with more compact cores comprised of A residues.

We then apply HFA optimization to six test proteins using UNRES, one of the leading united-residue force fields [6, 7, 8] that has been highly successful in the past fifteen years of CASP competition (Critical Assessment of protein Structure Prediction [9]) [10]. First, as a validation of HFA on this sophisticated two-bead model, we compare our global minima to those found by UNRES/CSA [11] and for five out of the six proteins find lower energy folds. We also find, however, that these new global minima all represent slightly unfolded structures, which is indicative of a flaw in the force field and/or a flaw in the concept of locating the global minimum of a potential energy function as a means to identify the global minimum free-energy
structure/fold. Furthermore, we probe the UNRES force field by once again applying sequence optimization in order to find sequences that fold into still lower energy structures, and find that UNRES has a strong tendency to fold sequences into alpha helices. One test in particular, a WW domain (1E0L), which is the smallest monomeric triple-stranded antiparallel beta-sheet protein domain, demonstrates that by permutations of its sequence HFA/UNRES re-folds this structure into a perfect alpha helix.

II. MODEL AND ALGORITHMIC DETAILS

PAB models are one of the minimalist protein models [12]. We used the model by Irbäck et al [3], a well-studied three-dimensional extension of the original two-dimensional PAB model by Stillinger et al [2]. In this model proteins consist of two types of residues, A and B. Each residue represents a Cα atom. The Cα–Cα bonds are set to unit length and the potential energy is:

\[E = -\kappa_1 \sum_{i=1}^{N-2} \cos \alpha_{i,i+1,i+2} - \kappa_2 \sum_{i=1}^{N-3} \cos \alpha_{i,i+1,i+2,i+3} + \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} 4\varepsilon(\sigma_i, \sigma_j) \left(\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^6} \right) \]

Eq. 1

The first two sums represent local interactions as angle-bending or torsion energies, involving three or four consecutive Cα atoms, respectively. The last double sum is a pseudo Lennard-Jones (LJ) potential representing long-range interactions. N is the number of residues, \(r_{ij} \) is the distance between two residues, \(\varepsilon(\sigma_i, \sigma_j) \) is the residue pair-specific LJ well-minimum depth, and \(\kappa_1 \) and \(\kappa_2 \) are empirical parameters determined by Monte Carlo simulations to reproduce qualitatively Cα angle and torsion distributions of proteins in the Protein Data Bank (PDB) [3]. We used \(\kappa_1 = -1 \) and \(\kappa_2 = 0.5 \). \(\varepsilon(\sigma_i, \sigma_j) \) favor the formation of a core of A residues analogous to the hydrophobic core of real proteins: \(\varepsilon(A, A) = 1 \) and \(\varepsilon(A, B) = \varepsilon(B, B) = 0.5 \). LJ interactions between adjacent residues are excluded. In lieu of constraints we add strong harmonic distance terms to keep Cα–Cα bond lengths at unity and flat-bottom angle-bending terms to disallow near linear Cα–Cα–Cα bond angles (within two degrees). Linear bond angles cause a catastrophic physical divergence in the torsion term of the PAB model.

The UNRES model is a sophisticated two-bead representation of the polypeptide chain. Each amino acid residue is represented by two interaction centers, one is the halfway point between
two consecutive Cα atoms (the Cα atoms themselves serve only as geometric reference points), and the other interaction center is the center of mass of the side chain that is modeled as an ellipsoid with two rotational degrees of freedom with respect to the backbone. Backbone flexibility itself is allowed by varying virtual-bond angles and virtual-bond dihedral angles along three or four Cα atoms, respectively. The UNRES force field includes numerous bonded and non-bonded terms as well as implicit contributions from the interaction of the side chain with the solvent [6, 7, 8] and has been parameterized utilizing the so-called hierarchical design of the potential-energy landscape employing multiple training proteins simultaneously [13].

The hidden-force algorithm [1] exploits that, though the gradient components of an additive potential sum to zero at a local minimum, each component’s magnitude is generally nonzero. Disrupting this network of opposing forces (negative of the gradient) can result in the collective rearrangement of cluster atoms. Using a tug-of-war analogy to describe the basic HFA move, some players (atoms) simultaneously drop their ropes (drop their contributions to the potential). The remaining players then rearrange due to their net nonzero tugging and reach a partial impasse. Then the dropouts resume tugging until a new total impasse is achieved. There is no guarantee that the resulting cluster configuration will be lower in energy than the starting configuration, but we found HFA to be an exceptionally successful move set in a Monte Carlo cluster minimization. HFA trial configurations are highly dependent on the starting configurations since the moves are driven by forces already present—making the HFA Monte Carlo search non-Markovian.

Algorithmically, PAB models can be treated similar to BLJ clusters with slightly different LJ terms and additional geometric constraints favoring protein like chains. We used the same algorithm and software described in detail in [1] with two notable differences: (1) when the basic HFA move is applied to a given local minimum-energy configuration, only the pseudo LJ terms are dropped; the remaining terms stay in effect to preserve the chain geometry. (2) Single or multiple mutations are utilized by swapping the types of randomly selected residues rather than flipping the type of a single residue at a time, in order to keep the composition fixed while varying the sequence. A BLJ cluster of fixed size is fully determined by its A/B composition, but PAB models also depend on the sequence of the residues. Therefore, while swapping A and B particles in a BLJ cluster will not change its identity, swapping A and B residues in a PAB protein will be a mutation. Further, in [1], we found the optimal A/B composition of a BLJ cluster of fixed size with lowest energy. For PAB models, the optimal A/B composition is trivial, a sequence of all A
residues (AA interactions are stronger than AB or BB interactions). The more interesting and challenging mutation study we carry out keeps the A/B composition fixed and optimizes over sequences to find the lowest energy fold.

Employment of the UNRES model requires further significant but straightforward changes in the HFA algorithm with respect to how it is utilized with PAB models. (1) When the basic HFA move is applied, instead of simply dropping the non-bonded interactions, the selected residue is temporarily mutated into GLY, and it keeps all of its interactions. (2) Since UNRES is a two-bead model, every local minimization step is combined with side chain optimization along the full length of the polypeptide chain. Moreover, akin to the PAB studies we mutate the UNRES models by swapping one or more pairs of residues keeping the overall residue composition fixed and optimize over sequences to find the lowest energy fold. It should be noted, however, that while such residue swaps readily allow direct comparison of the energies of different sequence mutants in the minimal PAB model, this is not trivial with UNRES. Similar to all-atom molecular mechanics force fields, UNRES energy is not absolute and, therefore, energies of two different molecules are generally not comparable. Nonetheless, when comparing the energies of two different peptides with the same residue composition, but subject to single or multiple residue swaps and altogether having different residue sequences, is an exception. The energies of such peptides (we shall call them permutation isomers) are indeed comparable in any molecular mechanics force field including UNRES devoid of sequence dependent terms. UNRES does have the built-in capability of employing sequence dependent terms, but the current parameterization omits them.

III. RESULTS AND DISCUSSION

To test HFA against existing optimization methods for PAB models, we run HFA searches on Fibonacci sequences in Table I and compare our putative global minimum-energy folds with those found in [4, 5]. Table I clearly demonstrates that HFA Monte Carlo search is efficient searching the fold space of PAB models. The difference in energy does not carry information about structural differences, though. Direct comparison was, unfortunately, not possible because the coordinates of the structures reported in [4, 5] were not published. Nonetheless, based on the visualizations in [4, 5], FIG. 1 clearly shows that our new minima belong to a different topological
class indicative of a flaw in PAB models. With the exception of S_13, which is simply too short and S_21 that forms a simple trefoil knot (one end of the chain folding back through a loop), every other fold is deeply knotted (coordinates are listed in the Supplementary Material). Knotted protein structures occur naturally [14, 15], however, this level of knot formation cannot be found in the PDB [16]. With $\kappa_1 = -1$ and $\kappa_2 = 0.5$ [3], the simple cosine terms favor a 180 degree bond angle and a zero degree torsion angle. In real proteins, the bond angle distribution has a well-defined structure and bond angles strictly fall within the range of 85-145 degrees [3]. Torsion angles, on the other hand, are more uniform; there are no disallowed values. Nevertheless, zero degree torsion angles are rare. Eq. 1 represents an additive potential and even though the PAB models will always be frustrated in three dimensions, we can expect that at or close to the global minimum many individual energy terms will be close to their minimum values. This is exactly what we can see in FIG. 1; numerous bond angles are close to 180 degrees (kept away from exact linearity by the flat bottom angle-bending term) and numerous torsion angles are very close to zero degrees. This is the geometrical basis for forming knots in the ground state, never seen in real proteins.

Table I. Energies of the new putative global minima listed in ε units, found by HFA for five Fibonacci sequences. The * operator in the Sequence column means concatenation. The previously reported energies were taken from [4, 5].

Model identifier with chain length	Sequence	Lowest energy [ε] previously reported	Putative global minimum energy [ε]
S_13	ABBABBABABBAB	-26.507	-27.171
S_21	BABABBAB * S_13	-52.934	-56.409
S_34	S_13 * S_21	-98.357	-106.115
S_55	S_21 * S_34	-176.691	-190.579
S_89	S_34 * S_55	-311.614	-325.578
FIG. 1. Putative global minimum-energy folds found for 5 Fibonacci sequences using the potential in Eq. 1. Dark balls represent type A (“hydrophobic”) residues and light grey balls are type B residues. Sequences and energies are given in Table I. (a) S_13, (b) S_21, (c) S_34, (d) S_55, and (e) S_89.

Ideally, more sophisticated potentials should be derived from the actual Cα bond angles and torsion angles found in the PDB via, e.g., the Boltzmann inversion method [12]. Keeping with the minimalist spirit of PAB models, however, we drop the angle-bending and torsion terms altogether, but we add a flat-bottom harmonic angle term that disallows Cα–Cα–Cα angles outside the 85-145 degree range. Using this potential we find that the Fibonacci sequences fold into globular structures with no tendency to form knots, and with a “hydrophobic” core. We then carried out sequence optimization using this potential. The left hand side of FIG. 2 shows the putative global minima found for the five Fibonacci sequences and the right hand side shows the lowest energy folds after sequence mutations were applied to the Fibonacci sequences (coordinates are available in the Supplementary Material). Visual inspection confirms the simplified PAB
model yields compact folds with a clear core and no knots. The cores are more compact in the mutated sequences, which is quantified in Table II by the radius of gyration of the core (type A) residues. Table II also lists the energy drop after sequence optimization with respect to the putative global minimum energy of the Fibonacci sequence.

Table II. Fold optimization via sequence mutation. Energy drop and radius of gyration of the “hydrophobic” core formed by the type A residues. Energy is computed with the LJ-only potential (see text). The optimal sequences, coordinates, and absolute energies are listed in the Supplementary Material.

Model identifier with chain length	Energy drop $[\varepsilon]$ relative to Fibonacci sequence global min.	Radius of gyration of the core in Fibonacci sequence global min.	Radius of gyration of the core in optimal-sequence global min.
S_13	-0.346	0.203	0.156
S_21	-1.369	0.288	0.223
S_34	-2.748	0.336	0.281
S_55	-9.074	0.371	0.327
S_89	-18.576	0.460	0.365
FIG. 2. Putative global minimum-energy folds using the simplified LJ-only potential (see text). On the left hand side the Fibonacci sequences are shown and on the right hand side the optimal folds are displayed that were found after sequence optimization. Dark balls represent type A (“hydrophobic”) residues and light grey balls are type B residues. The optimal sequences, coordinates, and energies are listed in the Supplementary Material. (a1, a2) S_13, (b1, b2) S_21, (c1, c2) S_34, (d1, d2) S_55, and (e1, e2) S_89.

To further test HFA against UNRES’ native conformational space annealing (CSA) [11] global-optimization method, we run HFA searches on six test proteins (1BDD, 1GAB, 1LQ7, 1CLB, 1E0G, and 1IGD) that were essential in parameterizing UNRES. Among the force field options in UNRES we employ 4P (parameterized using four training proteins simultaneously) that is most adequate for small proteins of any fold including alpha, beta, and alpha/beta [13, 17]. Table III demonstrates that HFA Monte Carlo search is also efficient searching the fold space of sophisticated UNRES models. Similar to the PAB study, the difference in energy itself does not carry information about structural differences and direct comparison was, unfortunately, not possible because the coordinates of the structures reported in [18] were not published with the exception of 1IGD for which the complete CSA results are available in the UNRES download kit [19]. Nevertheless, the results point to noteworthy anomalies. Similar energies and similar RMS distances found with 1BDD, 1CLB, and 1E0G suggest that CSA and HFA searches located the same ground state folds for these chains. Moreover one could even argue that since the HFA ground state for 1GAB is significantly lower in energy than the lowest lying CSA structure and at the same time the HFA fold is 0.3 Å closer to the experimental structure in C-alpha RMS distance than the CSA minimum; lowering the energy might have the general effect of actually getting closer to the native structure, and thereby providing strong support for the force field. However, the two remaining proteins in Table III crush such hopes. HFA generated a fold for 1LQ7 that has virtually the same energy as the CSA ground state, yet the HFA fold is more than 4 Å farther away from the experimental structure than the quite accurate CSA minimum. 1IGD yields an even more negative result where the HFA ground state is, again, over 4 Å farther away than the CSA minimum, but the HFA fold has significantly (11 kcal/mol) lower energy. The C-alpha RMS distance between the CSA and HFA folds is 8.8 Å and visual inspection clearly shows that in the HFA ground state the alpha helix and both antiparallel beta strands start to unfold. The C-alpha
coordinates of all six of the HFA putative global minimum-energy structures are listed in the Supplementary Material.

Table III. UNRES/4P energies of the lowest lying structures of six test proteins and their C-alpha RMS distances from the corresponding experimental structure found by CSA [18] and HFA, respectively. The number of residues are shown in parentheses. The C-alpha coordinates of the HFA putative global minimum-energy structures are listed in the Supplementary Material.

PDB ID	CSA glob. min. energy [kcal/mol]	HFA glob. min. energy [kcal/mol]	CSA RMSD to exp. struct. [Å]	HFA RMSD to exp. struct. [Å]
1BDD (46)	-597	-601	5.5	5.6
1GAB (47)	-669	-681	2.9	2.6
1LQ7 (67)	-937	-937	2.3	6.6
1CLB (75)	-1053	-1054	5.1	5.2
1E0G (48)	-632	-634	4.1	4.3
1IGD (61)	-741	-752	5.6	9.9

We conclude our UNRES tests with running HFA sequence optimization on three proteins to learn more about the force field. We choose a pure alpha protein 1BDD, a mixed alpha/beta protein 1IGD, and a pure beta mini protein 1E0L (28 residues), which is the smallest monomeric triple-stranded antiparallel beta-sheet protein domain. We want to see if sequence optimization can provide stable folds lower in energy than those of the native sequence/fold and whether we can draw any general conclusions about UNRES in this regard as we do with the modified PAB model above. Sequence optimization involves periodically swapping pairs of residues followed by HFA fold search and thereby exploring the sequence space of permutation isomers. As noted above, UNRES energy is not absolute but energies of permutation isomers are readily comparable.
FIG. 3, FIG. 4, and FIG. 5 give vivid visual insight and to put it bluntly; everything folds into a helix. The left hand side of the figures show the HFA ground state structure of the native sequence (rainbow colors from red N-terminus to purple C-terminus) superposed on the experimental structure shown in gray and the right hand side presents the result of sequence optimization. The figures also include the native sequence vs. optimized sequence and the associated energy drop. The evident qualitative statement that can be drawn from the figures is that sequence optimization re-folds all three native structures into helical structures with significant energy stabilization. Moreover, as shown by explicit tube representation, PRO residues are either pushed out the termini or break the alpha helices in the interior of the chain as generally seen in real protein structures, and GLY residues tend to shift to flexible coil segments. One would of course be tempted to draw physical conjectures based on the sequence optimization data, but further analysis makes it clear that folding into these predominantly alpha helical structures is, in fact, just a serious artefact of the UNRES force field. We provide two types of evidence.

FIG. 3. Ground state sequence-permutation isomer of 1BDD. Energy drop 21 kcal/mol. See text for details. First row shows the native sequence and the second row shows the energy-optimized sequence below:

QQNAFYEILHLPLNLNEQRNGFIQLKDDPSQSANLLAEAKKLND
SPAЕYKKEALDQAIQLSDPESNFIKLQEALLLFNHQQLQRNNNDN
FIG. 4. Ground state sequence-permutation isomer of 1IGD. Energy drop 41 kcal/mol. See text for details. First row shows the native sequence and the second row shows the energy-optimized sequence below:

GMTPAVTTYKLVINGKTLGETTTKAVDAETAEKAFQYANDNGVDGVWTYDDATKTVTFVTEGGGEAAVTMWANVGEVDGTYKFTDKADGPATDTNTETANYVVQFILVAKKLTDYETTTKTKG

First, secondary structure prediction performed on the optimized sequences by multiple trusted web servers [20] provides no evidence for helical segments in either the 1IGD or the 1E0L ground state permutation isomers; the predictions are all beta and random coils (except for a tiny alpha contribution in 1IGD). Not surprisingly, however, 1BDD itself being an all-alpha protein, retains its alpha character after sequence optimization. Second, the extreme case of 1E0L where sequence optimization results in re-folding a pure triple-stranded antiparallel beta-sheet into a pure alpha helical structure, pleads for more accurate calculations. Here we employ multi-scale modeling by (i) generating the full backbone structure from the C-alpha coordinates [21], (ii) applying highly accurate side chain prediction using SCWRL4 [22], and finally (iii) running all-atom molecular dynamics (MD) simulation with explicit solvent. We carry out the MD simulation with Desmond [23] running on a NVIDIA GeForce GTX 780 graphics processor and using a simulation protocol that has proven highly successful in folding numerous small proteins [24]. The length of the MD simulation is 150 ns and the MPEG video file (70 MB) is available upon request. The trajectory provides vivid graphical evidence that the all-alpha UNRES ground-state sequence-permutation isomer of 1E0L is not stable at all, it entirely unfolds in less than 10 ns and remains in a highly volatile, flexible and somewhat U-shaped random coil configuration for the rest of the simulation.
FIG. 5. Ground state sequence-permutation isomer of 1E0L. Energy drop 45 kcal/mol. See text for details. First row shows the native sequence and the second row shows the energy-optimized sequence below:

SEWTEYKTADGTKYYNNRTLESTWEKP
NRTETYLSNTETYEYEKKWTWADGSKPY

IV. SUMMARY AND PERSPECTIVE

In this communication, we propose a dual concept for the global optimization of off-lattice protein models predicting optimal sequences as well as optimal folds and embed our approach in multi-scale modeling. Using hidden-force Monte Carlo optimization we find the optimal fold of simple and detailed protein models. Further, we also find the protein sequence that yields the lowest energy fold amongst all sequences for a given chain length and residue mixture. We then generate an all-atom model and run state-of-the-art MD simulation. In particular, we find that with a simplified potential, binary protein AB models fold into globular, compact structures with no tendency to form knots, and with a “hydrophobic” core. Historically, these models use a Fibonacci series sequence protein with chain lengths of 13, 21, 34, 55, and 89. We show that sequence optimization yields non-Fibonacci sequences that fold into still lower energy structures with more compact cores than the original Fibonacci sequences. We extend our investigation to study real proteins using the sophisticated UNRES model and find via sequence optimization and all-atom MD simulation that UNRES inherently favors helical structures.
We demonstrate that our methodology is applicable to detailed protein models, fits well within multi-scale modeling, and ultimately may aid de novo protein design by yielding novel folds. However, we also demonstrate that further improvements in force fields are needed before sequence optimization could become a reliable tool for proteins in general, and for the moment our research focus stays within the realm of all-alpha proteins, studying sequences that afford stable folds—whether native or non-native.

Acknowledgement. I am indebted to Adam Liwo for instrumental assistance with UNRES.

[1] I. Kolossváry and K. J. Bowers, Phys. Rev. E 82, 056711 (2010).
[2] F. H. Stillinger, T. Head-Gordon, and C. L. Hirshfeld, Phys. Rev. E 48, 1469 (1993).
[3] A. Irbäck, C. Peterson, F. Potthast, and O. Sommelius, J. Chem. Phys. 107, 273 (1997).
[4] J. Lee, K. Joo, S.-Y. Kim, and J. Lee, J. Comput. Chem. 29, 2479 (2008).
[5] C. Zhang and J. Ma, J. Chem. Phys. 130, 194112 (2009).
[6] A. Liwo, S. Oldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga, J. Comput. Chem. 18, 849 (1997).
[7] A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, S. Oldziej, and H. A. Scheraga, J. Comput. Chem. 18, 874 (1997).
[8] A. Liwo, R. Kazmierkiewicz, C. Czaplewski, M. Groth, S. Oldziej, R. J. Wawak, S. Rackovsky, M. R. Pincus, and H.A. Scheraga, J. Comput. Chem. 19, 259 (1998).
[9] http://predictioncenter.org.
[10] Y. He, M. A. Mozolewska, P. Krupa, A. K. Sieradzan, T. K. Wirecki, A. Liwo, K. Kachlishvili, S. Rackovsky, D. Jagiela, R. Slusarz, C. R. Czaplewski, S. Oldziej, and H. A. Scheraga, Proc Natl Acad Sci U S A 110, 14936 (2013).
[11] J. Lee, D. R. Ripoll, C. Czaplewski, J. Pillardy, W. J. Wedemeyer, and H. A. Scheraga, J. Phys. Chem. B 105, 7291 (2001).
[12] V. Tozzini, Quart. Rev. Biophys. 43, 333 (2010).
[13] S. Oldziej, J. Lagiewka, A. Liwo, C. Czaplewski, M. Chinchio, M. Nalias, and H. A. Scheraga, J. Phys. Chem. B 108, 16950 (2004).
[14] W. L. Taylor, Nature 406, 916 (2000).
[15] W. L. Taylor, Comput. Biol. Chem. 31, 151 (2007).
[16] http://www.rcsb.org.
[17] http://www.unres.pl/unres, Chapter 7 (Force Fields).
[18] A. Liwo, M. Khalili, and H. A. Scheraga, Proc Natl Acad Sci U S A 102, 2362 (2005).
[19] http://www.unres.pl/downloads, in the directory examples/CSA/4P/CSA/.
[20] http://expasy.org/resources/search/keywords:secondary%20structure%20prediction.
[21] M. Levitt and J. Geer, J. Mol. Biol 114, 181 (1977).
[22] G. G. Krivov, M. V. Shapovalov, and R. L. Jr. Dunbrack, Proteins 77, 778 (2009).
[23] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, I. Kolossváry, J. L. Klepeis, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw, Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), New York, NY: IEEE, (2006).
[24] K. Lindorff-Larsen, S. Piana1, R. O. Dror, and D. E. Shaw, Science 334, 517 (2011) Supporting Online Material.
Title: Conceptual framework for performing simultaneous fold and sequence optimization in multi-scale protein modeling

Author: Istvan Kolossvary

Description:
List of coordinates, sequences, and energies of putative global minimum folds of PAB and UNRES models. The coordinates are Cartesian coordinates. The sequence is identified by the residue type A or B in the first column. Energies are absolute energies in epsilon units. The first 5 models were computed with the potential in Eq. 1. The other 5 models were computed with the simplified potential including the pseudo Lennard-Jones potential, the bond length restraint and the flat-bottom angle bending constraint to keep the Calpha-Calpa-Calpha bond angles within the 85-145 degree range. The UNRES protein models below are represented by their C-alpha atoms listed in PDB format. The energy is UNRES/4P.

S_13 Fibonacci sequence global minimum energy computed by Eq. 1 = -27.171382

A	-2.210729	-0.766557	0.859473							
B	-1.468936	-0.515469	1.481321							
B	-1.125457	0.413991	1.346684							
A	-2.015611	0.307761	0.903583							
B	-2.875024	0.042923	0.466239							
B	-2.923165	-0.824726	-0.028602							
A	-2.104003	-1.398285	-0.026841							
B	-1.292453	-1.270099	0.543208							
A	-1.100612	-0.289674	0.498904							
B	-1.256479	0.656395	0.214902							
B	-2.203998	0.733500	-0.095357							
A	-1.998733	-0.244823	-0.122725							
B	-1.256899	-0.823838	-0.460991							

S_21 Fibonacci sequence global minimum energy computed by Eq. 1 = -56.408990

B	-3.502088	-2.347106	-2.580986							
A	-3.633583	-3.070794	-1.903502							
B	-3.182330	-2.964804	-1.017422							
A	-2.558379	-2.207111	-0.826145							
B	-1.942815	-1.419028	-0.828706							
B	-1.631517	-1.022569	-1.692370							
A	-1.917468	-1.469613	-2.539947							
B	-2.396659	-2.287089	-2.859494							
A	-2.809866	-3.188090	-2.727356							
B	-2.658749	-3.616882	-1.836679							
B	-2.088394	-3.137323	-1.169805							
A	-1.497975	-2.495615	-0.680298							
B	-0.926488	-1.760655	-1.045314							
B	-0.814412	-1.662030	-2.034107							
A	-1.235498	-2.340732	-2.635811							
B	-1.870827	-3.002000	-2.236963							
A	-2.685908	-2.555420	-1.867897							
B	-3.446519	-2.008019	-1.518868							
B	-2.589028	-1.522775	-1.689879							
S_34 Fibonacci sequence global minimum energy computed by Eq. 1 = \(-106.115214\)

A	-1.763180	-2.085958	-1.661572
B	-0.995117	-2.724986	-1.620079

A	-0.054962	2.229487	-0.900343
B	-0.853011	2.143012	-1.496697

S_55 Fibonacci sequence global minimum energy computed by Eq. 1 = \(-190.579174\)

A	-1.048644	-1.434770	-2.612892
B	-0.857230	-1.125885	-1.681255

A	-0.995117	-2.724986	-1.620079
B	-0.951238	1.732429	-0.590181

A	-0.524775	1.446744	0.268022
B	0.330605	1.385370	0.782374

A	1.265892	1.429216	1.133538
B	1.199972	1.905059	0.256483

A	0.995707	2.354906	-0.612946
B	0.707322	2.800658	-1.460375

A	-0.237086	3.129292	-1.450697
B	-0.878686	2.917563	-0.713459

A	-0.848802	2.520503	0.203846
B	-0.411806	2.204694	1.046045

A	0.565968	2.364524	1.181737
B	1.553768	2.506594	1.117971

A	2.284360	2.032034	0.627028
B	2.006677	1.145438	0.257113

A	1.079417	0.771783	0.233288
B	0.127003	0.470460	0.187356

A	-0.495836	0.717894	-0.554834
B	-0.200073	1.245807	-1.350967

A	0.708342	1.655607	-1.433690
B	1.614781	2.075060	-1.482927

A	1.824123	2.954070	-1.054539
B	1.063933	3.448186	-0.632687

A	0.147975	3.147931	-0.366482
B	0.176094	2.278401	0.126597

A	0.388799	1.417582	-0.335729
B	0.682145	0.618698	-0.860826

A	1.419258	1.273341	-0.693175
B	2.059386	2.006824	-0.464622

A	1.809237	2.833024	0.040171
B	0.893430	3.031008	0.389595

A	-0.039220	3.183399	0.716612
B	0.618698	-2.612892	

A	-0.860826	-0.635729
B	-0.860826	-0.335729

A	-1.419258	-0.693175
B	-0.693175	-0.335729

A	-0.495836	-0.554834
B	-0.495836	-0.554834

A	-0.200073	-1.350967
B	-0.200073	-1.350967

A	-0.995117	-1.450697
B	-0.995117	-1.450697

A	-0.857230	-1.681255
B	-0.857230	-1.681255

A	-0.596707	-0.827388
B	-0.596707	-0.827388

A	-0.290393	-0.029967
B	-0.290393	-0.029967

A	0.110010	0.626335
B 0.255341 -1.879653 -1.216491
B -0.653161 -1.783533 -0.809818
A -1.504582 -1.262869 -0.746650
B -1.578376 -0.369291 -1.189448
A -1.557596 0.523631 -1.639172
B -0.739898 1.066795 -1.830141
B 0.113194 1.559915 -2.000266
A 1.027615 1.166839 -1.903716
B 1.928092 0.747291 -1.789189
A 2.048504 0.042246 -1.090328
B 1.410687 -0.255968 -0.380218
B 0.694872 -0.476615 0.282294
A -0.074711 -0.632197 0.901598
B -0.858279 -0.013484 0.844884
B -0.934677 -0.677467 0.126029
A -0.778999 0.418222 -0.827153
B -0.560743 -0.043843 -1.686720
A -0.310408 -0.533405 -2.521979
B 0.337372 -1.040818 -3.092334
B 0.770256 -0.531522 -2.346440
A 1.031028 0.810187 -1.600259
B 1.181685 0.761207 -0.882872
B 0.607766 1.578979 -0.926071
A -0.391078 1.531446 -0.918889
B -1.367073 1.318376 -0.873801
A -1.829006 0.501407 -0.528579
B -1.397912 -0.309658 -0.133193
B -0.837781 -1.075151 0.183464
A 0.074510 -1.212677 -0.202294
B 0.924085 -1.760727 -0.728487
A 1.540988 0.860680 -1.449567
B 1.854634 -0.317133 -2.228143
B 1.320831 0.424115 -2.635087
A -0.699667 1.130165 -2.975156
B -0.300051 1.108245 -2.966151
B -0.904839 0.382850 -2.637471
A -1.426102 -0.387277 -2.269794
B -1.917393 -1.171891 -1.891624
A -1.532661 2.027320 -1.544895
B -0.607225 2.241704 -1.857312
B -0.015642 1.517680 -2.212015
A 0.222705 -0.833229 -1.523018
B 0.419780 -0.197002 -0.777114

S_89 Fibonacci sequence global minimum energy computed by Eq. 1 =
-325.578412

A -0.890676 5.222297 11.293380
B -1.668704 4.931778 10.736363
B -2.158498 5.528157 10.100414
A -1.668164 6.004270 9.370424
B -1.051123 6.389643 8.684315
B -0.152088 6.170183 8.305408
A 0.750047 5.925282 7.950197
B 1.538695 5.358181 8.187744
A	0.826827	4.723130	7.887825
B	0.036563	4.606234	7.286312
B	-0.894691	4.884079	7.050588
A	-1.682813	4.670039	7.627694
B	-2.347825	4.340134	8.297708
B	-2.648735	3.820308	9.097229
A	-2.285703	3.421407	9.939301
B	-1.657824	3.205639	10.687106
B	-0.847691	3.027347	10.355175
A	-1.461699	2.870416	10.216187
B	-1.046089	2.509760	9.936040
A	0.580722	2.208172	9.607502
B	0.051615	1.960772	9.355104
B	-0.206286	1.730165	9.105529
A	0.307527	1.503541	8.856532
B	0.935780	1.275874	8.606540
B	-0.134992	1.020308	8.356555
A	0.426810	0.853174	8.106565
B	1.817329	0.606234	7.840111
B	1.556098	0.476697	7.585146
B	0.721844	0.347230	7.330143
A	-0.183812	0.216844	7.075139
B	-0.999588	0.087697	6.820134
B	-1.748901	0.062470	6.565140
A	-2.477520	0.020295	6.310146
B	-2.379992	0.005174	6.055152
A	-1.423481	0.002965	5.800157
B	-0.656610	0.001969	5.545163
A	0.233414	0.000785	5.290169
B	1.076682	0.005363	5.035175
B	1.784226	0.005363	4.775181
A	1.493492	0.004140	4.510187
B	0.703605	0.003857	4.245193
B	-0.134302	0.003108	3.980199
A	-0.743820	0.002274	3.715204
B	-0.914901	0.001295	3.450210
A	-0.147806	0.000503	3.185216
B	0.622976	0.000491	2.920222
B	1.522606	0.000477	2.655228
A	2.156608	0.000463	2.390234
B	1.890921	0.000449	2.125240
B	1.508479	0.000435	1.860246
A	0.138880	0.000421	1.605252
B	-0.812989	0.000407	1.340258
A	-1.610013	0.000393	1.075264
B	-1.492645	0.000379	0.810270
B	-0.979113	0.000365	0.545276
A	-0.136436	0.000351	0.280282
---	---	---	---
B	0.713138	5.769108	11.129872
A	1.235614	4.994903	11.487115
B	0.879173	4.060589	11.489658
B	0.131152	3.711345	10.925309
A	-0.587034	3.420047	10.293368
B	-1.290857	3.148875	9.636790
B	-1.913205	2.998510	8.868630
A	-1.660815	3.509169	8.046727
B	-0.894610	3.973606	7.602627
A	-0.054379	4.003275	6.955636
B	0.11977	5.023939	9.451800
B	-0.501837	4.623321	10.451800
A	-0.959711	4.067838	11.148288
A	-0.714692	3.117182	11.338593
B	-0.066216	2.493851	10.901628
A	0.583538	2.018076	10.308790
B	0.927769	2.356424	9.432990
B	1.249645	2.721486	8.559421
B	1.494238	3.149799	7.689523
A	0.878466	3.814968	7.267178
A	-0.066076	3.506738	7.152503
A	-1.872515	-0.893300	1.154829
B	-2.731132	-0.568108	0.758563
B	-2.520868	0.363275	1.055738
A	-1.590969	0.182426	1.326019
B	-1.309534	0.775524	0.621679
B	-0.785642	0.122565	0.074705
A	-0.850686	-0.469205	0.878182
B	-1.174009	-1.161829	0.233409
A	-2.165186	-1.224768	0.116772
B	-2.796179	-0.659337	-0.414391
B	-2.608159	0.249817	-0.042793
A	-1.790042	-0.174069	0.345796
B	-1.637280	-0.521693	-0.579308

S_13 Fibonacci sequence global minimum energy computed by LJ term = -18.264451

A	1.872515	-0.893300	1.154829
B	-2.731132	-0.568108	0.758563
B	-2.520868	0.363275	1.055738
A	-1.590969	0.182426	1.326019
B	-1.309534	0.775524	0.621679
B	-0.785642	0.122565	0.074705
A	-0.850686	-0.469205	0.878182
B	-1.174009	-1.161829	0.233409
A	-2.165186	-1.224768	0.116772
B	-2.796179	-0.659337	-0.414391
B	-2.608159	0.249817	-0.042793
A	-1.790042	-0.174069	0.345796
B	-1.637280	-0.521693	-0.579308

S_21 Fibonacci sequence global minimum energy computed by LJ term = -38.280724
A -1.693473 -1.901240 -2.385884
B -1.498008 -2.638748 -3.032317
B -2.233398 -3.230214 -2.701607
A -2.734630 -2.377477 -2.554629
B -3.551075 -2.074591 -2.063023
B -3.307601 -1.117647 -1.904976
A -2.600228 -1.274972 -2.593879
B -1.969334 -0.931424 -1.898036
A -1.564488 -1.608399 -1.283378
B -2.179463 -2.041624 -0.624500
B -2.319442 -3.001169 -0.868793
A -1.967465 -2.733347 -1.765666
B -1.265945 -3.308704 -2.186183

S_34 Fibonacci sequence global minimum energy computed by LJ term = -75.170999

A 0.472359 2.418285 -0.638095
B -0.322102 2.299673 -1.23713
B -0.047300 1.650925 -1.943368
A 0.691744 1.410112 -1.314225
B 0.478766 0.496016 -0.969161
B -0.167306 0.439314 -0.207994
A -0.553580 1.238591 0.252382
B 0.290259 1.228340 0.788878
A 0.371417 2.187270 0.517094
B 0.329232 2.937186 1.177280
B 1.087189 3.424014 0.743116
A 1.236341 2.671553 0.10590
B 2.127574 2.239059 0.238152
B 2.271682 2.431017 -0.732612
A 1.412721 2.889055 -0.961792
B 0.950592 3.588052 -0.416237
A 0.206155 3.177982 0.110693
B -0.407799 3.236765 -0.676456
B 0.371919 3.267500 -1.301832
A 0.730286 2.427743 -1.709729
B 1.608837 1.981712 -1.538835
A 1.389475 1.818740 -0.576900
B 1.491686 0.851222 -0.808113
B 0.968414 0.654887 0.021127
A 0.390090 1.417616 -0.268326
B -0.318322 1.226465 -0.947748
B -1.130292 1.717089 -0.631537
A -0.481968 2.287088 -0.126787
B -0.645757 2.798181 0.716986
A -0.449328 1.931999 1.176489
B 0.464218 1.940154 1.583146
B 1.267028 2.344961 1.145395
A 1.267005 1.595162 0.483729
B 2.057765 1.152922 0.060503
S_55 Fibonacci sequence global minimum energy computed by LJ term

LJ term value: -137.241642

B	1.373813	0.169900	-0.003080
A	0.839574	0.156997	-0.848314
B	1.224370	0.867832	-1.437077
A	0.377357	0.770842	-1.959722
B	-0.189950	1.593290	-2.001428
A	-0.752958	1.436535	-1.189978
B	-0.408800	1.311824	-0.259385
A	-1.308185	0.916183	-0.073446
B	-0.189950	1.593290	-2.001428
A	-0.752958	1.436535	-1.189978
B	-0.408800	1.311824	-0.259385
A	-1.308185	0.916183	-0.073446
B	-0.189950	1.593290	-2.001428
A	-0.752958	1.436535	-1.189978
B	-0.408800	1.311824	-0.259385
A	-1.308185	0.916183	-0.073446
B	-0.189950	1.593290	-2.001428
A	-0.752958	1.436535	-1.189978
B	-0.408800	1.311824	-0.259385
A	-1.308185	0.916183	-0.073446
S_89 Fibonacci sequence global minimum energy computed by LJ term = -242.825509
A 0.307962 5.836758 8.994945
B 0.333013 4.837120 9.004377
A -0.571119 4.495350 8.747993
B -1.120092 5.123399 8.196463
B -1.849419 5.310010 8.854684
A -1.339882 4.756065 9.513103
B -2.071029 4.998725 10.150706
A -1.718019 4.498096 10.941120
B -0.872181 4.798858 11.381687
B 0.077675 4.558385 11.581548
A 0.182024 4.230095 10.642753
B 1.108881 3.982703 10.925125
B 1.911000 4.295324 10.416331
A 1.632244 5.247700 10.292738
B 0.902394 5.026502 10.939569
A -0.052887 5.286314 10.798382
B -0.303312 5.670244 11.687135
B -1.181011 5.874377 11.253575
A -1.080298 5.286839 10.450671
B -1.417309 5.856847 9.701329
B -0.703314 5.492788 9.103273
A -0.296294 4.909130 9.023301
B -0.038124 3.964528 9.603241
A 0.775288 3.919465 9.023301
B 1.664446 3.811010 9.467861
B -0.266002 2.803327 11.691918
B -1.597429 3.379182 10.873698
B 1.700779 3.211873 10.386473
B 1.777215 2.716025 9.521436
B -0.579429 3.791820 10.873698
B -1.932869 2.849475 10.094665

S_13 Optimized sequence global minimum energy computed by LJ term = -18.610603
	B	1.376632	-1.087295	-1.432712
A	0.902306	-1.121712	-0.553038	
B	0.741207	-2.082997	-0.776590	

S_21 Optimized sequence global minimum energy computed by LJ term = -39.650163

	B	-1.168606	-0.122705	-2.808934
A	-1.862785	0.435824	-2.354887	
A	-2.028844	0.286177	-1.380195	
B	-2.208717	0.787197	-0.533660	
B	-2.321778	1.581406	-1.130690	
A	-2.688791	1.008135	-1.863261	
B	-3.071911	0.417466	-1.153099	
A	-2.710029	-0.513141	-1.098203	
B	-1.740871	-0.628266	-0.880305	
B	-1.228007	0.201424	-0.659886	
B	-1.321287	1.055575	-1.171476	
B	-1.642009	1.469229	-2.023548	
B	-2.236188	1.350234	-2.819030	
A	-2.846012	0.559679	-2.875036	
A	-2.806989	-0.083118	-2.109995	
A	-1.972821	-0.621171	-1.988909	
B	-1.118503	-0.184810	-1.709544	
B	-0.832964	0.693723	-2.089489	
B	-1.179475	1.016090	-2.970403	
B	-1.880494	0.483777	-3.444972	
A	-2.235819	-0.357323	-3.037179	

S_34 Optimized sequence global minimum energy computed by LJ term = -77.919140

	A	-1.545522	1.177180	0.136790
B	-1.852461	0.277788	-0.174471	
B	-2.305021	-0.428425	0.370003	
B	-3.101351	0.175172	0.330931	
A	-3.195326	0.957649	0.946476	
B	-4.038946	1.291080	1.367341	
B	-4.224617	1.700988	0.474313	
A	-3.255779	1.948018	0.456213	
B	-2.867313	2.642656	-0.149237	
A	-2.003360	2.160413	-0.004241	
A	-1.353174	2.093840	0.752612	
B	-0.702807	1.334230	0.756818	
B	-1.148185	0.439531	0.790805	
A	-2.144132	0.521769	0.827252	
B	-2.763715	0.018408	1.429532	
B	-3.745329	0.034185	1.239312	
B	-4.162410	0.586755	0.517710	
B	-3.599110	1.065813	-0.155487	
A	-2.615162	1.147361	0.003235	
A	-2.300719	1.565377	0.855517	
A	-1.531879	1.230223	1.400088	
B	-1.698313	0.324516	1.789952	
B	-2.423976	0.230089	2.471492	
B	-2.808893	1.058299	2.878807	
---	------	------	------	
B	-2.591776	1.960076	2.505099	
A	-2.020424	2.161472	1.709489	
A	-2.436276	2.622496	0.925573	
B	-3.342021	3.018557	0.774705	
B	-3.946384	2.397500	1.273737	
A	-3.103517	1.925973	1.533034	
B	-3.622960	1.621311	2.331381	
B	-3.408948	0.689301	2.038883	
A	-2.513309	1.063787	1.798910	
B	-1.783385	1.210412	2.466526	

S_55 Optimized sequence global minimum energy computed by LJ term = -146.316053
A -4.358333 -0.925402 -0.688582
A -4.064674 0.028497 -0.750527
A -4.475313 0.734922 -1.327012
B -4.626157 1.593895 -0.837716
B -4.254866 2.224542 -0.156227
A -3.969040 1.409887 0.348391
B -3.388986 1.976633 0.933481
B -2.482623 1.596761 1.118441
B -2.082081 0.738179 0.798419
A -2.703822 0.106200 0.335778
A -3.627577 0.416598 0.111441
A -3.686799 1.075113 -0.638791
B -2.761678 1.354487 -0.895892
B -2.574822 0.783251 -1.695125

S_89 Optimized sequence global minimum energy computed by LJ term = -261.401077

A 5.335687 2.905267 -9.716160
A 5.832940 3.467213 -9.055139
A 6.573647 2.963723 -8.610340
A 6.588762 1.996723 -8.356021
B 5.847304 1.652888 -7.779812
B 5.450839 0.761876 -8.000976
B 5.614742 0.326729 -8.886291
B 6.455216 0.556758 -9.376892
A 6.901018 1.437602 -9.217604
A 7.452963 1.296742 -8.395709
A 8.130765 1.874034 -8.851024
A 7.343220 2.415189 -9.145851
A 7.573687 3.296985 -8.734368
B 8.399980 3.828942 -8.919462
B 7.784366 4.611600 -9.011471
B 6.863774 4.955809 -8.826990
B 5.981103 4.509978 -8.678237
B 6.107616 3.756833 -8.032664
B 5.201538 3.341739 -8.114643
B 4.914555 2.436884 -7.800192
B 4.961990 1.641023 -8.403811
A 5.822732 1.383511 -8.842915
B 6.484006 0.839015 -8.326934
B 6.836661 1.268568 -7.495599
B 6.784960 2.142826 -7.301905
B 6.008944 2.723401 -7.716685
A 5.606019 2.472408 -8.596829
A 6.184722 2.264265 -9.385352
A 6.065528 1.427481 -9.919749
B 5.418240 0.665944 -9.952566
B 4.790851 0.986499 -9.242901
A 5.132237 1.897241 -9.475287
B 4.599280 2.534158 -8.918247
B 4.710900 3.517102 -9.064396
B 5.232536 4.180442 -9.600936
A 5.942526 3.752122 -10.159911
A 6.116817 3.564621 -11.126589
B 5.343402 3.660016 -11.753270
B 5.037800 2.712679 -11.848961
A 5.925344 2.478301 -11.452313
B 6.425150 3.088922 -12.066588
B 6.376102 4.087309 -12.037999
B 5.764629 4.603617 -11.438394
B 6.511205 4.548973 -10.775344
A 6.987514 3.704822 -10.529306
B 7.819385 4.211375 -10.756005
B 8.393817 4.441852 -9.970570
B 8.697227 3.490507 -10.024274
A 8.324763 2.816763 -9.386044
B 8.431279 2.794482 -8.391982
A 7.559624 2.19576 -8.076287
B 7.090471 3.228031 -7.720905
B 7.129588 4.108302 -8.193762
A 6.794454 3.948602 -9.122298
A 6.713603 3.124316 -9.682663
A 6.139630 2.723901 -10.39663
A 5.267798 3.014540 -10.791219
B 4.503855 2.386220 -10.938199
B 4.323784 2.515777 -9.963116
B 4.521673 3.479175 -10.143959
B 5.075225 4.062989 -10.737880
B 5.536667 4.879314 -10.390486
B 6.245523 4.684382 -9.712604
B 7.218278 4.576227 -9.917663
A 7.676200 3.711366 -9.711939
A 7.613535 2.857795 -10.229128
A 6.959172 2.114544 -10.089911
A 6.478405 1.761216 -10.892414
B 6.988109 1.005053 -11.302800
B 7.362086 0.196718 -10.848117
B 7.433998 0.151774 -9.851718
A 7.851979 0.980870 -9.480380
A 7.972920 1.876910 -9.907562
B 8.564523 2.432906 -10.491407
B 8.228152 3.223417 -11.003215
B 7.833432 2.633804 -11.707879
A 7.642734 1.991391 -10.965627
B 7.933594 1.092223 -10.638680
A 7.025067 1.046270 -10.223394
B 6.376887 0.309481 -10.415756
B 5.815884 0.956523 -10.932099
B 4.839685 0.739740 -10.938399
B 4.591087 1.453429 -10.283537
A 5.409067 1.958511 -10.558853
B 5.186689 1.664048 -11.488282
B 6.093856 1.482577 -11.867911
B 6.892296 2.082913 -11.822188
A 6.928889 2.779607 -11.105753
B 7.273290 3.603558 -11.555743
REMARK E= -600.67000 Rg= 2.942 SEQ=
QQNAFYEILHLPNLNEEQRNGFIQSLKDDPSQSANLAEAKKLND

ATOM 1 CA GLN 1 3.800 0.000 0.000 0.000
ATOM 2 CA GLN 2 3.910 -3.798 0.000 0.000
ATOM 3 CA ASN 3 2.071 -3.958 -3.321 0.000
ATOM 4 CA ALA 4 5.026 -2.468 -5.189 0.000
ATOM 5 CA PHE 5 7.282 -5.270 -3.966 0.000
ATOM 6 CA TYR 6 4.770 -7.927 -5.000 0.000
ATOM 7 CA GLU 7 4.137 -6.224 -8.337 0.000
ATOM 8 CA ILE 8 7.818 -5.337 -8.659 0.000
ATOM 9 CA LEU 9 8.917 -8.854 -7.732 0.000
ATOM 10 CA HIS 10 6.631 -10.416 -10.335 0.000
ATOM 11 CA LEU 11 7.421 -14.129 -10.173 0.000
ATOM 12 CA PRO 12 4.717 -16.796 -10.045 0.000
ATOM 13 CA ASN 13 5.064 -17.126 -6.275 0.000
ATOM 14 CA LEU 14 4.320 -13.433 -5.784 0.000
ATOM 15 CA ASN 15 1.445 -13.591 -8.265 0.000
ATOM 16 CA GLU 16 0.065 -16.676 -6.528 0.000
ATOM 17 CA GLU 17 0.778 -15.102 -3.144 0.000
ATOM 18 CA GLN 18 -0.955 -11.904 -4.243 0.000
ATOM 19 CA ARG 19 -4.027 -13.870 -5.309 0.000
ATOM 20 CA ASN 20 -4.389 -15.441 -1.868 0.000
ATOM 21 CA GLY 21 -3.735 -12.542 0.501 0.000
ATOM 22 CA PHE 22 -0.100 -13.473 1.102 0.000
ATOM 23 CA ILE 23 0.798 -9.982 2.306 0.000
ATOM 24 CA GLN 24 0.083 -10.849 5.936 0.000
ATOM 25 CA SER 25 2.002 -8.027 5.625 0.000
ATOM 26 CA LEU 26 4.650 -12.508 -3.425 0.000
ATOM 27 CA LYS 27 4.868 -9.509 5.748 0.000
ATOM 28 CA ASP 28 4.984 -11.763 8.005 0.000
ATOM 29 CA ASP 29 7.472 -8.075 -1.365 0.000
ATOM 30 CA PRO 30 9.863 -11.440 6.038 0.000
ATOM 31 CA SER 31 8.963 -9.279 3.044 0.000
ATOM 32 CA GLN 32 12.602 -8.384 2.416 0.000
ATOM 33 CA SER 33 13.562 -12.061 -2.426 0.000
ATOM 34 CA ALA 34 10.635 -12.926 -0.162 0.000
ATOM 35 CA ASN 35 11.369 -9.894 -2.007 0.000
ATOM 36 CA LEU 36 15.069 -10.760 -2.004 0.000
ATOM 37 CA LEU 37 14.261 -14.466 -2.235 0.000
ATOM 38 CA ALA 38 11.600 -13.778 -4.860 0.000
ATOM 39 CA GLU 39 13.869 -11.235 -6.541 0.000
ATOM 40 CA ALA 40 16.883 -13.455 -5.890 0.000
ATOM 41 CA LYS 41 14.888 -16.512 -6.948 0.000
ATOM 42 CA LYS 42 13.582 -14.666 -10.002 0.000
ATOM 43 CA LEU 43 16.977 -13.062 -10.588 0.000
ATOM 44 CA ASN 44 18.733 -16.411 -10.210 0.000
ATOM 45 CA ASP 45 16.533 -18.094 -12.811 0.000
ATOM 46 CA ALA 46 18.211 -16.279 -15.698 0.000
REMARK E= -680.97900 Rg= 2.382 SEQ=
LLKNAKDAIIEELKKAGITSDFYNAINKAKTVEEVNALKNEILKAH
ATOM 1 CA LEU 1 3.800 0.000 0.000 0.000
ATOM 2 CA LEU 2 3.945 -3.797 0.000 0.000
ATOM 3 CA LYS 3 0.795 -4.077 -2.106 0.000
ATOM 4 CA ASN 4 2.780 -4.504 -5.318 0.000
ATOM 5 CA ALA 5 5.485 -6.574 -3.634 0.000
ATOM 6 CA LYS 6 2.894 -8.505 -1.635 0.000
ATOM 7 CA GLU 7 0.757 -9.029 -4.733 0.000
ATOM 8 CA ASP 8 3.821 -10.002 -6.761 0.000
ATOM 9 CA ALA 9 5.372 -11.761 -3.771 0.000
ATOM 10 CA ILE 10 2.027 -13.341 -2.901 0.000
ATOM 11 CA ALA 11 1.446 -14.208 -6.555 0.000
ATOM 12 CA GLU 12 5.006 -15.514 -6.807 0.000
ATOM 13 CA LEU 13 4.671 -17.056 -3.350 0.000
ATOM 14 CA LYS 14 1.267 -18.459 -4.292 0.000
ATOM 15 CA LYS 15 2.858 -20.254 -7.239 0.000
ATOM 16 CA ALA 16 5.501 -21.762 -4.962 0.000
ATOM 17 CA GLY 17 2.853 -23.511 -2.872 0.000
ATOM 18 CA ILE 18 3.262 -21.244 0.151 0.000
ATOM 19 CA THR 19 0.552 -19.930 2.467 0.000
ATOM 20 CA SER 20 -1.303 -16.620 2.252 0.000
ATOM 21 CA ASP 21 -1.277 -16.162 6.024 0.000
ATOM 22 CA PHE 22 2.504 -16.511 6.163 0.000
ATOM 23 CA TYR 23 3.023 -14.360 3.074 0.000
ATOM 24 CA PHE 24 0.415 -11.814 4.149 0.000
ATOM 25 CA ASN 25 1.440 -11.988 7.803 0.000
ATOM 26 CA ALA 26 5.136 -12.204 6.946 0.000
ATOM 27 CA ILE 27 4.723 -9.625 4.186 0.000
ATOM 28 CA ASN 28 2.376 -7.517 6.305 0.000
ATOM 29 CA LYS 29 4.933 -7.369 9.113 0.000
ATOM 30 CA ALA 30 7.715 -6.511 6.671 0.000
ATOM 31 CA LYS 31 6.169 -3.135 5.863 0.000
ATOM 32 CA THR 32 9.260 -1.940 4.003 0.000
ATOM 33 CA VAL 33 9.950 -3.126 0.460 0.000
ATOM 34 CA GLU 34 13.508 -4.173 1.292 0.000
ATOM 35 CA GLU 35 12.244 -6.400 4.100 0.000
ATOM 36 CA VAL 36 9.590 -7.832 1.788 0.000
ATOM 37 CA ASN 37 12.197 -8.437 0.909 0.000
ATOM 38 CA ALA 38 14.497 -9.993 1.685 0.000
ATOM 39 CA LEU 39 11.522 -11.702 3.318 0.000
ATOM 40 CA LYS 40 10.319 -12.901 0.081 0.000
ATOM 41 CA ASN 41 13.838 -14.072 0.912 0.000
ATOM 42 CA GLU 42 14.204 -15.525 2.580 0.000
ATOM 43 CA ILE 43 10.712 -17.015 2.429 0.000
ATOM 44 CA LEU 44 11.242 -18.262 1.121 0.000
ATOM 45 CA LYS 45 14.830 -19.276 0.388 0.000
ATOM 46 CA ALA 46 13.882 -21.129 2.792 0.000
ATOM 47 CA HIS 47 11.886 -23.706 0.839 0.000
Atom	Residue	Type	Sequence	X	Y	Z	Occupancy
1	GLY	CA		0.000	0.000	0.000	1.000
2	SER	CA		3.800	0.000	0.000	1.000
3	ARG	CA		3.982	-3.796	0.000	1.000
4	VAL	CA		3.482	-3.977	-3.763	1.000
5	LYS	CA		5.879	-1.081	-4.317	1.000
6	ALA	CA		8.391	-2.771	-2.020	1.000
7	LEU	CA		7.791	-6.057	-3.831	1.000
8	GLU	CA		8.172	-4.295	-7.177	1.000
9	GLU	CA		11.222	-2.447	-5.864	1.000
10	LYS	CA		12.457	-5.655	-4.246	1.000
11	VAL	CA		11.414	-7.583	-7.350	1.000
12	LYS	CA		13.174	-5.009	-9.521	1.000
13	ALA	CA		16.156	-5.156	-7.170	1.000
14	LEU	CA		15.879	-8.944	-7.058	1.000
15	GLU	CA		18.222	-6.663	-11.319	1.000
16	GLU	CA		15.297	-9.034	-10.812	1.000
17	LYS	CA		18.966	-11.902	-10.378	1.000
18	ALA	CA		23.707	-10.298	-12.343	1.000
19	LEU	CA		23.558	-13.619	-10.501	1.000
20	GLY	CA		24.190	-15.603	-13.680	1.000
21	GLY	CA		21.762	-16.345	-16.508	1.000
22	GLY	CA		20.899	-19.841	-15.293	1.000
23	GLY	CA		17.691	-21.761	-14.614	1.000
24	ARG	CA		15.297	-9.034	-10.812	1.000
25	GLY	CA		18.122	-6.663	-11.319	1.000
26	LYS	CA		20.233	-10.816	-13.792	1.000
27	VAL	CA		11.414	-7.583	-7.350	1.000
28	LYS	CA		13.174	-5.009	-9.521	1.000
29	GLU	CA		16.156	-5.156	-7.170	1.000
30	LEU	CA		15.879	-8.944	-7.058	1.000
31	GLU	CA		18.222	-6.663	-11.319	1.000
32	GLU	CA		15.297	-9.034	-10.812	1.000
33	LYS	CA		18.966	-11.902	-10.378	1.000
34	ALA	CA		23.707	-10.298	-12.343	1.000
35	LEU	CA		23.558	-13.619	-10.501	1.000
36	GLY	CA		24.190	-15.603	-13.680	1.000
37	GLY	CA		21.762	-16.345	-16.508	1.000
38	GLY	CA		20.899	-19.841	-15.293	1.000
39	GLY	CA		17.691	-21.761	-14.614	1.000
40	ARG	CA		15.297	-9.034	-10.812	1.000
41	GLU	CA		16.156	-5.156	-7.170	1.000
42	GLU	CA		15.879	-8.944	-7.058	1.000
43	LYS	CA		18.222	-6.663	-11.319	1.000
44	LEU	CA		15.297	-9.034	-10.812	1.000
45	GLU	CA		18.222	-6.663	-11.319	1.000
46	GLU	CA		15.297	-9.034	-10.812	1.000
47	LYS	CA		18.966	-11.902	-10.378	1.000
48	ALA	CA		23.707	-10.298	-12.343	1.000
49	LEU	CA		23.558	-13.619	-10.501	1.000
50	GLY	CA		24.190	-15.603	-13.680	1.000
51	GLY	CA		21.762	-16.345	-16.508	1.000
ATOM	CA	LYS	52	3.000	-14.285	-0.524	0.000
------	-----	-----	----	-------	---------	--------	------
ATOM	CA	VAL	53	4.909	-12.321	-3.159	0.000
ATOM	CA	GLU	54	7.482	-11.280	-0.563	0.000
ATOM	CA	GLU	55	7.896	-14.925	0.428	0.000
ATOM	CA	GLU	56	7.999	-15.910	-3.240	0.000
ATOM	CA	VAL	57	10.249	-12.947	-4.016	0.000
ATOM	CA	LYS	58	12.307	-13.610	-0.891	0.000
ATOM	CA	LYS	59	12.146	-17.351	-1.538	0.000
ATOM	CA	LEU	60	13.132	-16.747	-5.158	0.000
ATOM	CA	GLU	61	15.932	-14.430	-4.048	0.000
ATOM	CA	GLU	62	16.884	-16.824	-1.254	0.000
ATOM	CA	GLU	63	16.557	-19.803	-3.589	0.000
ATOM	CA	ILE	64	18.490	-18.002	-6.321	0.000
ATOM	CA	LYS	65	21.003	-16.597	-3.840	0.000
ATOM	CA	LYS	66	21.936	-20.074	-2.623	0.000
ATOM	CA	LEU	67	23.718	-20.892	-5.877	0.000

1CLB
REMARK E= -1053.83000 Rg= 2.961 SEQ= KSPEELKIFEFKYAAKEGDPNQLSKEELKLLLQTEFPSLLKGGSTLDELFEELDKNGDGEVSFEFQVLVKKISQ

ATOM	CA	LYS	1	3.800	0.000	0.000	0.000
ATOM	CA	SER	2	3.976	-3.796	0.000	0.000
ATOM	CA	PRO	3	3.124	-5.788	-3.122	0.000
ATOM	CA	GLU	4	-0.513	-6.749	-3.659	0.000
ATOM	CA	GLU	5	-0.003	-10.148	-2.039	0.000
ATOM	CA	LEU	6	1.461	-8.549	1.082	0.000
ATOM	CA	LYS	7	-1.406	-6.062	1.267	0.000
ATOM	CA	GLY	8	-3.999	-8.835	1.108	0.000
ATOM	CA	ILE	9	-2.000	-11.228	3.281	0.000
ATOM	CA	PHE	10	-1.421	-8.601	5.965	0.000
ATOM	CA	GLU	11	-5.040	-7.456	5.787	0.000
ATOM	CA	LYS	12	-6.284	-11.043	5.645	0.000
ATOM	CA	TYR	13	-3.584	-12.208	8.051	0.000
ATOM	CA	ALA	14	-4.184	-9.280	10.397	0.000
ATOM	CA	ALA	15	-7.945	-9.587	9.494	0.000
ATOM	CA	LYS	16	-7.904	-13.112	11.368	0.000
ATOM	CA	GLU	17	-6.120	-11.961	14.519	0.000
ATOM	CA	GLY	18	-9.401	-11.106	16.234	0.000
ATOM	CA	ASP	19	-11.188	-14.242	15.048	0.000
ATOM	CA	PRO	20	-8.781	-16.566	16.850	0.000
ATOM	CA	ASN	21	-5.119	-16.591	15.836	0.000
ATOM	CA	GLN	22	-5.813	-18.303	12.515	0.000
ATOM	CA	LEU	23	-2.978	-16.394	10.854	0.000
ATOM	CA	SER	24	-0.829	-19.521	10.635	0.000
ATOM	CA	LYS	25	-3.534	-21.447	8.787	0.000
ATOM	CA	GLU	26	-4.778	-18.348	6.974	0.000
ATOM	CA	GLU	27	-1.231	-17.178	6.272	0.000
ATOM	CA	LEU	28	-0.205	-20.714	5.332	0.000
ATOM	CA	LYS	29	-3.383	-21.132	3.292	0.000
ATOM	CA	LEU	30	-2.955	-17.641	1.851	0.000
ATOM	CA	LEU	31	0.777	-18.190	1.391	0.000
ATOM	CA	LEU	32	0.177	-21.601	-0.174	0.000
ATOM	CA	GLN	33	-2.302	-20.129	-2.650	0.000
ATOM	CA	THR	34	0.487	-18.292	-4.464	0.000
ATOM 35 CA GLU 35 3.508 -20.250 -3.246 0.000
ATOM 36 CA PHE 36 5.833 -18.729 -0.655 0.000
ATOM 37 CA PRO 37 9.394 -19.681 0.271 0.000
ATOM 38 CA SER 38 9.895 -22.379 2.899 0.000
ATOM 39 CA LEU 39 9.260 -19.969 5.768 0.000
ATOM 40 CA LEU 40 5.523 -20.647 5.667 0.000
ATOM 41 CA LYS 41 5.946 -24.112 7.167 0.000
ATOM 42 CA GLY 42 4.985 -24.665 10.802 0.000
ATOM 43 CA GLY 43 8.547 -24.681 12.125 0.000
ATOM 44 CA SER 44 9.508 -21.396 10.473 0.000
ATOM 45 CA THR 45 9.413 -17.749 11.535 0.000
ATOM 46 CA LEU 46 5.682 -17.497 10.859 0.000
ATOM 47 CA ASP 47 4.919 -19.987 13.626 0.000
ATOM 48 CA GLU 48 7.477 -18.340 15.903 0.000
ATOM 49 CA LEU 49 6.361 -14.906 14.716 0.000
ATOM 50 CA PHE 50 2.718 -15.837 15.267 0.000
ATOM 51 CA GLU 51 3.483 -17.194 18.733 0.000
ATOM 52 CA GLU 52 6.009 -14.437 19.411 0.000
ATOM 53 CA LEU 53 3.816 -11.836 17.718 0.000
ATOM 54 CA ASP 54 0.794 -12.951 19.735 0.000
ATOM 55 CA LYS 55 2.502 -11.873 22.954 0.000
ATOM 56 CA ASN 56 2.499 -8.232 21.868 0.000
ATOM 57 CA GLY 57 -1.036 -7.432 20.729 0.000
ATOM 58 CA ASP 58 -0.264 -3.878 19.625 0.000
ATOM 59 CA GLY 59 -0.781 -2.883 15.994 0.000
ATOM 60 CA GLU 60 2.925 -2.518 15.236 0.000
ATOM 61 CA VAL 61 3.553 -6.177 16.045 0.000
ATOM 62 CA SER 62 1.069 -7.290 13.394 0.000
ATOM 63 CA PHE 63 2.493 -4.819 10.883 0.000
ATOM 64 CA GLU 64 6.063 -5.580 11.941 0.000
ATOM 65 CA GLU 65 5.341 -9.311 11.907 0.000
ATOM 66 CA PHE 66 3.333 -8.942 8.702 0.000
ATOM 67 CA GLN 67 6.046 -6.766 7.172 0.000
ATOM 68 CA VAL 68 8.743 -8.965 8.699 0.000
ATOM 69 CA LEU 69 6.899 -12.147 7.743 0.000
ATOM 70 CA VAL 70 5.823 -10.668 4.412 0.000
ATOM 71 CA LYS 71 9.274 -9.208 3.781 0.000
ATOM 72 CA LYS 72 10.947 -12.381 5.036 0.000
ATOM 73 CA ILE 73 8.721 -14.570 2.870 0.000
ATOM 74 CA SER 74 9.364 -12.515 -0.261 0.000
ATOM 75 CA GLN 75 12.880 -13.884 -0.714 0.000

LE0G
REMARK E= -634.31000 Rg= 2.788 SEQ=
DSITYRVRKGSLSIARHGVNIKDMVRWNSDTANLQPGDKLTLFVK
ATOM 1 CA ASP 1 3.800 0.000 0.000 0.000
ATOM 2 CA SER 2 4.000 -3.795 0.000 0.000
ATOM 3 CA ILE 3 2.380 -5.979 -2.654 0.000
ATOM 4 CA THR 4 0.381 -9.176 -2.179 0.000
ATOM 5 CA TYR 5 0.735 -12.228 -4.416 0.000
ATOM 6 CA ARG 6 -1.201 -15.467 -4.863 0.000
ATOM 7 CA VAL 7 0.630 -18.763 5.330 0.000
ATOM 8 CA ARG 8 -2.417 -20.557 6.722 0.000
ATOM 9 CA LYS 9 -1.398 -19.983 -10.337 0.000
ATOM 10 CA GLY 10 2.113 -20.872 -11.487 0.000
ATOM 11 CA ASP 11 2.568 -17.723 -13.566 0.000
ATOM 12 CA SER 12 2.184 -15.486 -10.519 0.000
ATOM 13 CA LEU 13 5.898 -14.686 -10.458 0.000
ATOM 14 CA SER 14 5.846 -13.766 -14.145 0.000
ATOM 15 CA SER 15 2.516 -11.973 -13.779 0.000
ATOM 16 CA ILE 16 3.619 -10.353 -10.524 0.000
ATOM 17 CA ALA 17 7.009 -9.509 -12.020 0.000
ATOM 18 CA LYS 18 5.327 -8.359 -15.228 0.000
ATOM 19 CA ARG 19 2.710 -6.425 -13.267 0.000
ATOM 20 CA HIS 20 5.382 -4.557 -11.315 0.000
ATOM 21 CA GLY 21 8.134 -3.736 -13.802 0.000
ATOM 22 CA VAL 22 10.701 -5.987 -12.134 0.000
ATOM 23 CA ASN 23 12.844 -8.616 -13.847 0.000
ATOM 24 CA ILE 24 12.715 -12.205 -12.603 0.000
ATOM 25 CA LYS 25 15.706 -11.687 -10.317 0.000
ATOM 26 CA ASP 26 14.094 -8.587 -8.822 0.000
ATOM 27 CA VAL 27 10.802 -10.439 -8.409 0.000
ATOM 28 CA MET 28 12.634 -13.536 -7.188 0.000
ATOM 29 CA ARG 29 14.809 -11.687 -4.937 0.000
ATOM 30 CA TRP 30 11.766 -9.328 -3.954 0.000
ATOM 31 CA ASN 31 9.690 -12.494 -3.626 0.000
ATOM 32 CA SER 32 12.348 -14.094 -1.432 0.000
ATOM 33 CA ASP 33 12.345 -11.133 0.949 0.000
ATOM 34 CA THR 34 8.569 -10.743 0.782 0.000
ATOM 35 CA ALA 35 5.761 -12.520 2.626 0.000
ATOM 36 CA ASN 36 3.977 -15.679 1.496 0.000
ATOM 37 CA LEU 37 0.468 -16.459 2.729 0.000
ATOM 38 CA GLN 38 -1.283 -19.820 2.453 0.000
ATOM 39 CA PRO 39 -5.050 -19.821 1.958 0.000
ATOM 40 CA GLY 40 -5.222 -23.329 0.508 0.000
ATOM 41 CA ASP 41 -3.098 -22.329 -2.480 0.000
ATOM 42 CA LYS 42 -0.516 -19.743 -1.442 0.000
ATOM 43 CA LEU 43 -0.723 -15.961 -1.129 0.000
ATOM 44 CA THR 44 2.484 -13.950 -1.462 0.000
ATOM 45 CA LEU 45 3.125 -10.504 0.007 0.000
ATOM 46 CA PHE 46 5.520 -8.402 -2.064 0.000
ATOM 47 CA VAL 47 7.592 -5.229 -1.785 0.000
ATOM 48 CA LYS 48 8.153 -3.212 -4.956 0.000

1IGD
REMARK E= -751.76700 Rg= 3.349 SEQ=
MTPAVTTYKLVINGKTLGGETTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE
ATOM 1 CA MET 1 3.800 0.000 0.000 0.000
ATOM 2 CA THR 2 3.907 -3.799 0.000 0.000
ATOM 3 CA PRO 3 4.933 -5.977 -2.939 0.000
ATOM 4 CA ALA 4 2.295 -6.653 -5.590 0.000
ATOM 5 CA VAL 5 1.617 -9.983 -7.291 0.000
ATOM 6 CA THR 6 0.096 -10.395 -10.749 0.000
ATOM 7 CA THR 7 -1.317 -13.700 -11.983 0.000
ATOM 8 CA TYR 8 -2.312 -14.533 -15.554 0.000
ATOM 9 CA LYS 9 -4.520 -17.533 -16.308 0.000
ATOM 10 CA LEU 10 -5.036 -19.088 -19.737 0.000
ATOM 11 CA VAL 11 -7.874 -21.301 -18.517 0.000
ATOM	12 CA ILE 12	-9.430 -22.386 -15.224	0.000
ATOM	13 CA ASN 13	-8.434 -25.723 -13.704	0.000
ATOM	14 CA GLY 14	-9.232 -27.337 -10.358	0.000
ATOM	15 CA LYS 15	-7.590 -26.055 -7.179	0.000
ATOM	16 CA THR 16	-4.174 -25.609 -8.781	0.000
ATOM	17 CA LEU 17	-2.495 -24.057 -11.817	0.000
ATOM	18 CA LYS 18	-1.890 -25.886 -15.093	0.000
ATOM	19 CA GLY 19	0.807 -24.591 -17.435	0.000
ATOM	20 CA GLU 20	1.729 -21.652 -15.209	0.000
ATOM	21 CA THR 21	4.095 -18.748 -15.846	0.000
ATOM	22 CA THR 22	5.445 -16.359 -13.216	0.000
ATOM	23 CA THR 23	6.722 -12.785 -13.403	0.000
ATOM	24 CA LYS 24	8.627 -11.098 -10.581	0.000
ATOM	25 CA ALA 25	8.211 -7.612 -12.037	0.000
ATOM	26 CA VAL 26	5.374 -6.880 -9.617	0.000
ATOM	27 CA ASP 27	5.202 -10.565 -8.706	0.000
ATOM	28 CA ALA 28	3.458 -11.613 -11.916	0.000
ATOM	29 CA GLU 29	2.062 -15.085 -12.576	0.000
ATOM	30 CA THR 30	0.826 -16.536 -15.863	0.000
ATOM	31 CA ALA 31	-1.282 -19.694 -16.024	0.000
ATOM	32 CA GLU 32	-2.234 -21.892 -18.974	0.000
ATOM	33 CA LYS 33	-4.854 -23.739 -16.933	0.000
ATOM	34 CA ALA 34	-5.560 -21.575 -13.890	0.000
ATOM	35 CA PHE 35	-7.402 -22.485 -10.693	0.000
ATOM	36 CA LYS 36	-11.071 -23.245 -10.058	0.000
ATOM	37 CA GLN 37	-11.015 -21.236 -6.833	0.000
ATOM	38 CA TYR 38	-10.117 -18.090 -8.767	0.000
ATOM	39 CA ALA 39	-13.117 -18.450 -11.071	0.000
ATOM	40 CA ASN 40	-15.379 -19.272 -8.131	0.000
ATOM	41 CA ASP 41	-15.010 -15.825 -6.575	0.000
ATOM	42 CA ASN 42	-16.214 -14.017 -9.693	0.000
ATOM	43 CA GLY 43	-12.747 -12.774 -10.630	0.000
ATOM	44 CA VAL 44	-13.178 -13.427 -14.349	0.000
ATOM	45 CA ASP 45	-13.797 -9.764 -15.151	0.000
ATOM	46 CA GLY 46	-10.770 -9.504 -17.433	0.000
ATOM	47 CA VAL 47	-8.235 -9.251 -14.614	0.000
ATOM	48 CA TRP 48	-8.376 -10.560 -11.049	0.000
ATOM	49 CA THR 49	-6.792 -9.100 -7.919	0.000
ATOM	50 CA TYR 50	-5.401 -10.759 -4.795	0.000
ATOM	51 CA ASP 51	-4.779 -8.865 -1.560	0.000
ATOM	52 CA ASP 52	-2.812 -11.693 0.045	0.000
ATOM	53 CA ALA 53	0.488 -10.010 -0.806	0.000
ATOM	54 CA THR 54	-1.279 -7.586 -3.139	0.000
ATOM	55 CA LYS 55	-1.927 -10.046 -5.962	0.000
ATOM	56 CA THR 56	-3.399 -9.523 -9.426	0.000
ATOM	57 CA PHE 57	-4.823 -12.297 -11.599	0.000
ATOM	58 CA THR 58	-5.246 -12.124 -15.371	0.000
ATOM	59 CA VAL 59	-7.069 -14.532 -17.677	0.000
ATOM	60 CA THR 60	-6.253 -15.266 -21.315	0.000
ATOM	61 CA GLU 61	-8.641 -16.763 -23.864	0.000