STUDY THE EFFECT OF ETHANOLIC EXTRACT OF CERATOINA SILIQUA, GLIMEPHAN AND METFORMIN ON SEMEN FLUID QUALITY IN DIABETIC MALE GUINEA PIG INDUCED BY ALLOXAN

Muna H. AL-Saeed* Mariam A. Kadhem*
and Arwa H. AL-Saeed**

*Department of Physiology, Pharmacology and Chemical, College of Veterinary Medicine, University of Basrah, Basrah, Iraq.
**Department of Chemistry, College of Sciences, University of Basrah, Basrah, Iraq.

(Received 15 May 2019, Accepted 15 July 2019)

Key words: Ceratonia siliqua, Glimephan, metformin.
Corresponding Author: mina31232@gmail.com

ABSTRACT

This study was carried out in an animal house of the Collage of Veterinary Medicine/ University of Basrah, An attempt has been done to induce diabetic by alloxan in male guinea pigs and investigation of the effects of diabetic on semen fluid quality. Moreover, the present study aimed to evaluate the ameliorating effect of ethanolic extract of Ceratonia siliqua, metformin and Glimphan in experimentally induced in diabetic male guinea pigs. The study was applied on (30) adult male guinea pigs, their weight ranged between (800-1000g) and aged between 6-6.5 months. The male guinea pigs were divided randomly into five groups, each group consist of six guinea pig as the following:

Group1:- Male guinea pigs at (Negative controls) administrated normal saline3ml orally for 30 days.

Group2:- Male guinea pigs at(Positive control) given alloxan (150mg/kg B.W. I.P) for three days and remain for 30 days.

Group3:- Male guinea pigs given alloxan (150mg/kg B.W. I.P.) for three days, then treated with Glimphan drug (0.1mg/kg orally administration) for 30 days.

Group4:- Male guinea pigs given alloxan (150mg/kg I.P.) for three days, then treated with Metformin drug(15mg/kg orally administration) for 30 days.
Group 5:- Male guinea pigs given alloxan 150mg/kg I.P. for three days, then treated with ethanolic extract of *Ceratonia siliqua* fruit (500mg/kg B.W. orally administration) for 30 days.

At the end of experimental period, the blood samples were collected from heart by cardiac puncture, the serum was isolated to be used for the analysis of biochemical parameters such as glucose concentration, FSH, LH and testosterone concentrations. The results showed a significant (P≤0.05) increase in glucose concentration of the serum diabetic male guinea pig group as compared with (-ve) control group, whereas the results were revealed a significant (P≤0.05) decrease of glucose concentration guinea pigs treated with ethanolic extract of *Ceratonia siliqua*. The results obtained a significant decrease (P≤0.05) in body weight, FSH, LH and testosterone concentrations in serum and semen, sperm motility, sperm concentration, total sperm cell, live-dead sperm and significant (P≤0.05) increase in sperm abnormalities. While guinea pigs that are treated with ethanolic extract of *Ceratonia siliqua* showed a significant (P≤0.05) increase in body weight. In addition, this extract improved the reproductive system by significantly increasing FSH, LH and testosterone concentrations in serum and semen, sperm motility, sperm concentration, total sperm cell, live-dead sperm and significant (P≤0.05) decrease in sperm abnormalities of the diabetic male guinea pigs treated with extract as compared with (-ve) control and another treated groups.

Histological examination showed many pathological changes in pancreas and testis in diabetic group but in those that are treated with ethanolic extract of *Ceratonia siliqua*, the histological changes were near the normal status. It is concluded that good anti-diabetic activity, hypoglycemia effect and spermatogenic activities. Based on these results, we suggested the possible utilization of *Ceratonia siliqua* as a therapy to prevent diabetic and improved the performance of male reproductive system as compared with other treated such as glimephan and metformin drugs.

INTRODUCTION

Diabetes mellitus(DM) is a syndrome of impaired carbohydrate, fat, and protein metabolism caused by either lack of insulin secretion or decreased sensitivity of the tissues to insulin. Programs by the world health organization (WHO) suggest that the
number of people with diabetes may reach 366 million people in 2030 [1]. There are two general types of diabetes mellitus. Type 1 diabetes, also called insulin-dependent diabetes mellitus, is caused by lack of insulin secretion. Type 2 diabetes, also called non–insulin-dependent diabetes mellitus, is initially caused by decreased sensitivity of target tissues to the metabolic effect of insulin. This reduced sensitivity to insulin is often called insulin resistance.

In both types of diabetes mellitus, metabolism of all the main foodstuffs is altered. The basic effect of insulin deficiency or insulin resistance on glucose metabolism is to prevent the efficient uptake and utilization of glucose by most cells of the body, except those of the brain. As a result, blood glucose concentration increases, cell utilization of glucose falls increasingly lower, and utilization of fats and proteins increases.

The diabetes mellitus leads to damages, impaired and failures of various organs. An important complication of diabetes is the disorder in the male reproductive system. Glucose metabolism is an important event in spermatogenesis. Moreover, glucose metabolism is also important for maintaining basic cell activity, as well as specific functions, such as motility and fertilization ability in mature sperm. Diabetic disease and experimentally induced diabetes both demonstrated that either type 1 diabetes or type 2 diabetes could have detrimental effects on male fertility, especially on sperm quality, such as sperm motility [2]. One of these causes is the alarming elevate of the number of men developing DM during the reproductive age [3] and there is an elevating number of children and adolescents with type 2 DM (T2DM) [4]. When describe the treatment for DM is needed to find the most suitable antidiabetic drug [5]. Several of these compounds, if not all, have the ability to modulate cellular metabolism in a manner that may benefit some organs, but damage others.

Metformin hydrochlorid (Glucophage) is an antidiabetic medicine that belongs to the group of biguanides, describe the first-line treatment for T2DM [6]. It is an insulin-sensitizing drug that exerts its anti-hyperglycemic effects by increasing the skeletal muscle uptake of glucose and reducing the absorption of glucose in the intestinal mucosa [7, 8]. Metformin, the active ingredient in glucophage XR Moreover, it blocks liver gluconeogenesis through regulation of the gluconeogenic flux [9]. Nevertheless, although a common feature has already been attributed to this drug in promoting the activity of AMP-activated protein kinase (AMPK) [10], the
exact molecular mechanisms of metformin action remain to be fully disclosed, despite several decades of research focused on this drug action [9].

Glimephan is a tablets active ingredient glimepiride, its an antidiabetic, it reduces blood glucose levels by stimulating insulin secretion[11].

Carob is medicine plant, native to mediterranean regions and is found in south of Syria, India and most of mediterranean areas as well as in California. The broken pod has a characteristic odor caused by its 1.3% isobutyric acid content [12]. The main application of carob pods in animal feed production [13] and [14]. In fact, it is a suitable replacement for cocoa, because it lacks caffeine and theobromine. Carob germ flour is used as dietetic human food [15] or as a potential ingredient in cereal-derived foods for celiac people [16]. Ceratonia pulp is prepared for treatment of hypercholesterolemia [17], as well as treating mouth inflammation[18]. Similarly, Ceratonia siliqua seeds are useful as antioxidant, anti-ulcer, anti-inflammatory and to treat and improve diabetes symptoms because it has compounds such as fibers, phytosterols and tocopherol [19,20,21]. Carob also contains minerals such as calcium, sodium, potassium and phosphorus, as well as vitamins like D, E, C, B6, niacin, folic acid and polyphenol [22,23,24].

This study aimed to investigate the hypoglycemic effect of ethanol extract of Ceratonia siliqua fruit by using an experimental animal model of alloxan-induced damage of β-cell of langerhans islet in male guinea pigs. To determine its effect on semen fluid quality and some biochemical parameters in diabetic male guinea pigs and it could ameliorate the diabetes mellitus and comparison the effects of ethanol extract with glimephan and metformin drugs.

MATERIALS AND METHODS

Drugs and Chemicals.

Alloxan is obtained from Safa co. Diala-Iraq, Glimephan , Metformin

Plant Material.

Ethanolic extract had been extracted from carob fruits (Ceratonia siliqua) that were used in this study. The carob was hand-picked from local market. It was washed with tap water. The fruits of the carob were turned to powder with the help of an electric grinder and kept in dark container at 25C°.
Preparation Ethanolic Extract from Carob Fruits (*Ceratonia siliqua*).

Fifty grams of dried carob fruits powder was defatted with (500 ml) of n-hexane for 6 hours by soxhlete. The combined n-hexane extract was concentrated below 50°C under reduced pressure in a rotary evaporator to get 7 ml of brown oily mass[28]. The remain of dried carob powder was (40 g) refluxed in (500 ml) of ethanol (70%) for 16 hours concentrated by rotary evaporator at 40°C and dried at room temperature [25].

Experimental Animals.

Thirty adult male guinea pig weight ranged between (800-1000 gm) kept for an adaptation period for 1 month in the animal house of Veterinary Medicine College / University of Basrah. The experimental animals were kept in individual cages, provided with standard ration.

Experimental design.

The guinea pigs were divided into five groups of comprising 6 animals in each group as the following:

Group 1: Male guinea pigs (negative control group) administrated normal saline (0.9% of NaCl) (3 ml) for 30 days.

Group 2: Male guinea pigs were given alloxan (150 mg/kg B.W. I.P) dissolved in 3 ml of normal saline for three days (positive control group) and remain for 30 days.

Group 3: Male guinea pigs were given alloxan (150 mg/kg B.W.) dissolved in 3 ml of normal saline by I.P. for three days and then treated with glimephan (0.1 mg/kg B.W.) orally for 30 days.

Group 4: Male guinea pigs were given alloxan (150 mg/kg I.P.) for three days, then treated with metformin (15 mg/kg B.W.) orally for 30 days.

Group 5: Male guinea pigs were given alloxan (150 mg/kg I.P.) for three days, then treated with ethanolic extract of *Ceratonia siliqua* fruit (500 mg/kg B.W.) orally administration for 30 days.

Induction of Diabetes Mellitus.

Diabetes mellitus were induced in twenty four starved male guinea pig by giving alloxan injected by one ml size syringe and in dose 150 mg/kg for three days.

Collection of Blood Samples.

Blood samples (10 ml) were collected from each animals at end of experiment by the heart (cardiac puncture). Blood was deposited into tube without anticoagulant and
then the blood samples were centrifuged at (3000 rpm) for 15 minutes and serum samples stored in polyethylene eppendorff tubes at (-20ºC), which are used to study biochemical parameters (serum glucose and hormonal assay such as FSH, LH and testosterone).

Study parameter:-

1- **Measurement of Body weight and body weight gain.**
The animals were weighed in the 0 day, 15th day and at the end period of the experiment.

2- **Estimation of Glucose concentration.**
Serum glucose was enzymatically measured by using a linear chemical kit (RANDOX/ GLUC-PAP, United Kingdom) [26].

3- **Hormonal Assay.**
Serum samples and plasma semen were estimated for FSH, LH and testosterone concentrations, using ELISA technique.

4- **Semen Collection.**
The testis were removed along with the epididymides according method[27]

4.1- **Semen Analysis.**
Progressive sperm motility according method to[28].

4.2- **Sperm viability (Live/dead ratio):** The percentage was calculated by [28].

\[
\text{Live sperm} \% = \frac{\text{Live sperm}}{\text{Total sperm count}} \times 100
\]

\[
\text{Dead sperm} \% = \frac{\text{Dead sperm}}{\text{Total sperm count}} \times 100
\]

4.3- **Sperm maturation by aniline-blue:-**
The nuclear maturation was to evaluate by aniline-blue stain, according to [28].

4.4- **Sperm Morphology:-**
The changes in sperm morphology were to evaluate according to the method of [29].

4.5- **Sperm Count:** The sperm count according to [30].

Histology Examination.
At the end of experimental period the animals were sacrificed and the samples removing such as pancreas and testes were taken and fixed in 10% formalin according to [31].

Statistical Analysis:

The result were tabulated as mean values ± SD. and statistical analyze by using one-way analysis of variance. All statistical analyzes were performed using SPSS statistical version 23 software package [32].

RESULT

1-Body Weight and Body Weight Gain in Diabetic Male Guinea Pig Treated of Ceratonia siliqua Fruit, Glimephan and Metformin.

The results in Table (1) revealed a significant reduce (P≤0.05) in body weight and body weight gain of diabetic male pigs as compared with (-ve) the control group and the treated group with ethanolic extract of Ceratonia siliqua while the results showed non-significant change (P>0.05) body weight of diabetic male pigs treated with ethanolic extract of Ceratonia siliqua as compared with control (-ve) group.

Table(1) Mean of Body Weight and Body Weight Gain in Diabetic Male Guinea Pig Treated with Ceratonia siliqua Fruit, Glimephan and Metformin. (n=6)

Parameters	Body Weight (g)	Body Weight Gain (g)		
	0Days	15Days	30Days	
Control (-ve)	930.78±46.19	933.70±79.23	935.53±39.25	4.75±0.11
Normal Saline(0.9% NaCl)	a	a	a	b
Control (+ve)	940.83±70.65	885.81±59.37	860.40±89.19	-80.43±5.02
2- Glucose Concentration in Serum of Diabetic Male Guinea Pig Treated with Ceratonia siliqua Fruit, Glimphan and Metformin.

The results in Table (2) showed a significant rise (P≤0.05) in glucose concentration in serum of diabetic male pigs as compared with the control group(-ve.) and another treated groups while the results showed non-significant change (P>0.05) glucose concentration in serum of diabetic male pigs treated with ethanolic extract of Ceratonia siliqua compared with control(-ve) group.

Table (2) Mean of Glucose Concentration in Serum of Diabetic Male Guinea Pig Induced by Alloxan treated with Ceratonia siliqua Fruit and Glimphan and Metformin. (n=6)
n=number of animals., Small letters denote differences between groups, $P \leq 0.05$ vs. control,

3-Physical Properties of Semen Analysis in Diabetic Male Guinea Pig Treated With Ceratonia siliqua Fruit, Glimephan and Metformin.

The results in Table (3) revealed that the physical properties of semen analysis in diabetic male pigs treated with Ceratonia siliqua fruit, glimephan and metformin drugs. The results were revealed a significant ($p \leq 0.05$) decline in sperm motility, sperm concentration, live-dead sperm and a significant ($p \leq 0.05$) increase in sperm abnormalities in diabetic male pigs (+ve) when compared with the control(-ve) and another treated groups. While the results were showed a significant ($p \leq 0.05$) exceed in sperm motility, sperm concentration, live-dead sperm and a significant ($p \leq 0.05$) decrease in sperm abnormalities in diabetic male pig treated with ethanolic extract of Ceratonia siliqua compared with control and another treated groups but its non-significant ($p > 0.05$) in sperm motility, sperm concentration in diabetic male pig treated with glimephan and metformin drugs as compared with the control(-ve).

Table (3) Physical Properties of Semen Analysis in Diabetic Male Guinea Pig Treated with Ceratonia siliqua Fruit, Glimephan and Metformin Drugs. (n=6)
4- Sperm morphology in Diabetic Male Guinea Pig Treated with *Ceratonia siliqua* Fruit, Glimephan and Metformin Drugs.

Bent tail: The pigs in (+ve control) induced diabetic were observed to have significantly (P≤0.05) elevate spermatozoa bent tail abnormality when compared with control pigs and another groups.

Curved mid-piece and tail: Fewer spermatozoa of pigs in the control group and another groups (P≤0.05) had curved tail sperm abnormality than those of the diabetic pigs (+ve control).

Normal head without tail/tailless head: The pigs in the control group and treated with extract had low number of spermatozoa with normal head without tail abnormality when compared with pigs in another treated groups. The percentage of this abnormality in the male guinea pigs (+ve control group) was higher than that of the control pigs and another groups.

Normal tail without head/headless tail: The spermatozoa of diabetic pigs in (+ve control group) were observed much of the normal tail without head/ headless tail abnormality than those of the control guinea pigs and another treated groups.

Parameters	Control (-ve) Normal Saline (0.9% NaCl)	Control (+ve) Alloxan (150mg/kg)	Alloxan + Glimephan	Alloxan + Metformin	Alloxan + Ehanolic Extract of *Ceratonia siliqua* (500mg/kg /B.W.)
Sperm motility%	75.17 ±10.21b	40.10 ±3.43c	60.22 ±11.47b	55.23 ±8.63b	85.40 ±19.12a
Sperm concentration (×10⁶/ml)	7.25 ± 1.04b	3.75±0.19c	6.91±0.53ab	6.32 ± 0.12b	7.74±0.67a
Total sperm cell/ejaculate (×10⁶/ml)	4.74±0.36b	1.98 ± 0.14c	5.35 ± 0.13b	4.74±0.36b	6.79 ± 0.21a
Live-dead sperm ratio	70:30 ± 5.98b	35:65 ± 6.17c	82:18 ± 3.04a	70:30 ± 5.98b	87:13 ± 2.27a
Sperm abnormalities	17.56±2.5b	24.38 ± 5.23a	19.25±2.12ab	21.52±3.24ab	8.59 ± 0.28c

N=number of animals., Small letters denote differences between groups, P≤0.05 vs. control.
Big head: distinct changes have been observed in sperm structure like big head of diabetic pigs as compared with control (-ve) and treated with ethanolic extract of *Ceratonia siliqua* group.

Table (4):- Sperm morphology Diabetic Male Guinea Pig Treated with *Ceratonia siliqua* Fruit, Glimephan and Metformin Drugs. (n= 6)

Parameters	Groups	Control (-ve)	Control (+ve)	Alloxan + Glimephan	Alloxan + Metformin	Alloxan + Ehanolic Extract of *Ceratonia siliqua* (500mg/kg/B.W.)
Bent tail	Control (-ve) Normal Saline (0.9% NaCl)	1.31 ±0.012 c	10.08±0.21 a	3.14±0.01 b	4.36±0.005 b	2.26±0.002 c
Curved mid-piece and tail	Control (-ve) Alloxan (150mg/kg)	1.23 ±0.011 c	20.21±0.011 a	4.59±0.001 b	5.92±0.004 b	1.78±0.006 c
Normal head without tail	Control (+ve) Alloxan (150mg/kg)	2.02±0.014 c	15.3±0.011 a	4.07±0.002 b	5.54±0.032 b	2.65±0.005 c
Tailless head	Control (+ve) Alloxan (150mg/kg)	1.28±0.001 c	18.09±0.04 a	6.04±0.006 b	4.11±0.001 b	2.06±0.001 c
Normal tail without head	Control (+ve) Alloxan (150mg/kg)	3.76±0.005 c	17.02±0.02 a	5.92±0.102 b	6.24±0.023 b	2.90±0.10 c
Headless tail	Control (+ve) Alloxan (150mg/kg)	2.15±0.004 c	15.13±0.10 a	5.68±0.003 b	5.31±0.020 b	1.69±0.002 c
Big head	Control (+ve) Alloxan (150mg/kg)	0.0±0.00 c	5.13±0.10 a	1.29±0.001 b	2.63±0.010 b	0.0±0.00 c

N=number of animals., Small letters denote differences between groups,P ≤0.05 vs. control,

N=number of animals., Small letters denote differences between groups,P ≤0.05 vs. control.

5- FSH, LH and Testosterone Concentrations in Serum and Semen Male Guinea Pig with Treated *Ceratonia siliqua* Fruit, Glimphan and Metformin Drugs.

The results in Table (5) revealed that the FSH, LH and testosterone concentrations in serum and semen diabetic male pigs treated with *Ceratonia siliqua* fruit, gimephan
and metformin drugs. The results indicated a significant (P≤0.05) decline of FSH, LH and testosterone concentrations in serum and semen diabetic male pigs (+ve) as compared with the control negative group and other groups while the results showed non-significant (P>0.05) changes of FSH and LH concentrations in serum of diabetic male pigs treated with ethanolic extract of *Ceratonia siliqua* fruit as compared with control (-ve) group while the results were showed a significant(P≤0.05) rise of testosterone serum and semen diabetic male pig treated with ethanolic extract of *Ceratonia siliqua* fruit when compared with the control (–ve) group and other groups.

Table (5):- Mean of FSH, LH and Testosterone Concentrations in Serum and Semen Male Guinea Pig treated with *Ceratonia siliqua* Fruit, Glimphan and Metformin Drugs on Induced by Alloxan. (n=6)

Groups	Parameters	FSH (mlU/ml)	LH (mlU/ml)	Testosterone in Serum (ng/ml)	Testosterone in Semen (ng/ml)
Control (-ve) Normal Saline(0.9% NaCl)	2.73±0.021	4.97±0.002	0.76±0.011	0.98±0.014	
Control (+ve) Alloxan (150mg/kg)	2.05±0.014	1.09±0.025	0.24±0.010	0.37±0.012	
Alloxan + Glimephan	2.35±0.016	4.12±0.0012	0.49±0.013	0.53±0.017	
Alloxan + Metformin	2.42±0.012	4.01±0.001	0.40±0.007	0.48±0.008	
Alloxan + Ehanolic Extract of *Ceratonia siliqua*(500mg/kg/B.W.)	2.89±0.011	5.30±0.006	1.23±0.019	1.64±0.015	

N=number of animals., Small letters denote differences between groups, P≤0.05 vs. control.

-Histological Examination:-

-Pancreas:-

The section of pancreas of negative control group guinea pig is composed of two major types of tissues, the *acini*, which secrete digestive juices into the duodenum, and, the *islets of Langerhans*, which secrete insulin and glucagon directly into the blood. Fig.(1) normal of langerhan's islets. The section of control group of guinea pigs' pancreas showed closely packed lobules of pancreatic acini. While the diabetic group of pig by alloxan positive control group revealed histopathological changes of both exocrine and endocrine part of the pancreas represented by vacuolation and
degeneration marked decrease of β-cells. Some exocrine acini revealed focal acinar damage represented by cytoplasmic vacuolation and pyknotic nuclei of some acinar cells obvious as shown in Fig. (2). Moreover the pancreas of the pigs treated with glimephan drug showed clear revealed histopathological changes. The changes included vacuolation of langerhan's islets as shown in Fig. (3) and the pancreas of guinea pig treated with metformin drug showed clear revealed histopathological changes. The changes included vacuolation of langerhan's islets, hyperplasia of β-cells of islets of langerhans associated with pyknosis of their nuclei as shown in Fig. (4). But the pancreas of guinea pig treated with Ceratonia siliqua showed amelioration of architecture of islets langerhan's compared to pancreas treated with alloxan alone as shown in Fig. (5).
Testis:-
The section of testis of control group pigs showed normal architecture of seminiferous tubules with different stage of spermatogenesis, primary spermatocyte and normal sertoli cells as shown in Fig.(6). While the section of testis untreated diabetic pigs showed normal architecture of seminiferous tubules with different stage of spermatogenesis, primary spermatocyte and normal sertoli cells as shown in Fig.(6).
showed vacuolation of spermatogonia and suppression of spermatogenesis, widening of inter seminiferous tubules, arrested of spermatogenesis and reduce in the number of interstitial leydig cells as shown in Fig. (7). Moreover, section of testis of pig treated with *glimephan drug*. The seminiferous tubules have mild vacuolation and shows normal association of spermatogenesis, as shown in Fig. (8). Also, section of testis of guinea pig treated with *metformin* drug showed normal seminiferous tubules and spermatogenesis, interstitial leydig cells and present sertoli cells as shown in Fig.(9). But the testis of pig treated with *ethanolic extract of Ceratonia siliqua* showed normal seminiferous tubules, spermatogenesis, interstitial leydig cells between seminiferous tubules and present primary spermatocyte as shown in Fig.(10).

Fig(6):- Section of testicular tissue of guinea pig belongs to the control group. Shows normal association of spermatogenesis (Sp). (H&E stain,100X)

Fig(7):- Section of testis of guinea pig treated alloxan (DM). Showing (A) sever vacuolation and widening of inter seminiferous tubules, suppression of spermatogenesis (Sp). (H&E.stain,100X)
DISCUSSION

Hyperglycemia leads to dysfunction in target organs of diabetic animals [2]. Partial or complete insulin deficiency in diabetic animals appears to have adverse
effects on all organs, including reproductive systems[33] [34] [35]. This study confirms that diabetes have an adverse effect on male reproductive function as proposed by others[36] also this study demonstrates a protective effect of the ethanolic extract of *Ceratonia siliqua* recovery of diabetes and testicular dysfunctions eminent in diabetic state.

The body weight of diabetic guinea pigs was declined. This is associated with dehydration and catabolism of fats and proteins due to proteolysis on muscular tissues occurred in insulin deficiency states[37] [38], furthermore, our results also showed that treated with ethanolic extract of *Ceratonia siliqua* lead to improve the body weight gain in male guinea pigs, Through its contents which were flavonoids several flavonoid subclasses have shown decrease energy intake, increase glucose uptake in muscle in vivo, and decrease glucose uptake in adipose tissue in vitro.

In this study, glucose concentration of serum diabetic guinea pigs elevated above the normal concentration, and this elevation in glucose concentration was approximately constant through the course of diabetes. Reduction in pancreatic β-cell mass is associated with development of diabetes [39]. In the present study, alloxan was used for induction of diabetes. This alkylating agent causes pancreatic β-cell damage and death lead to insulin deficiency. Treatment with the ethanolic extract of *Ceratonia siliqua* revealed reduction in blood glucose concentration diabetic guinea pigs, due to the presence of flavonoid in *Ceratonia siliqua* fruit. These compounds can reduce glucose concentration by stimulating pancreatic β-cells to secret more insulin in blood circulation, in this way, blood glucose concentration is controlled better [40,41]. It is possible that the ethanolic extract of *Ceratonia siliqua* may increase glucose removal from blood, through decrease the release of glucagon or increase that of insulin, and stimulate directly glycolysis in peripheral tissues, or reduce glucose absorption from the gastrointestinal tract.

The changes of pancreas in diabetic pigs showed the reduced number of islet, degeneration of β cells, hydropic degeneration and pyknosis. While the pancreas of pigs treated with ethanolic extract of *Ceratonia siliqua* showed improvement of architecture of islets langerhan's compared to pancreas treated with glimephan and metformin drugs. The pancreas of pigs treated with the ethanolic extract of *Ceratonia siliqua* showing nearly normal structure of islets of langerhans. The protective effects of *Ceratonia siliqua* as antioxidant on alloxan induced β cells destruction, increasing
islets size, and β cell population were presented. β cell apoptosis and replication rates and islets neogenesis are the major determinants of pancreatic endocrine capability for insulin secretion and glucose homeostasis [49].

Also in this study the effect of diabetes on semen quality was investigated and this is in agreement with the previous observations [42] [43] [44]. An induction of reduced fertility in the subjects [45]. This was attributed to damage of the secretory epithelia cells of the seminiferous tubules [46], probably due to oxidative damage from glucose auto-oxidation and excessive production of superoxide radicals and formation of advanced glycation end products associated with DM [33]. Our results showed that administration of ethanolic extract of Ceratonia siliqua enhanced the reproductive parameters of diabetic male guinea pigs. The extract was more prominent on the percentage motility and the live/dead ratio of the spermatozoa than the effects of the glimephan and metformin drugs, this result reported that the presence of flavonoid in the extract is potent antioxidant and able to scavenge free radicals, flavonoid also has an anti-hyperglycaemic activity, which may suppress glucose release from the liver as well as improving glucose uptake in peripheral tissues [43].

In present study, the diabetic caused germ cells depletion in pigs. The spermatide and spermatozoa cells affected. The majority changes that occur on testicle tissue and spermatogenesis procedure following diabetic are probably due to the changes in testosterone concentration [44] while its treated with ethanolic extract of Ceratonia siliqua resulted stimulation on testicle tissue and spermatogenesis procedure, it increased the concentration testosterone by stimulating the gonad regulating cycle including the hypothalomo-pituitary axis. This in turn regulates the amount of testosterone in the organism if the testosterone concentration in the blood is low and the tests will signal the hypothalamus to release LHRH thus the hypophysis releases gonadotropin, LH and FSH consequently, the interstitial cell of leydig activate the production of testosterone [48,49].

The Ceratonia siliqua can ameliorative the spermatogenesis and steroidogenesis processes of Leydic cells through the observation in this study we concluded that the ethanolic extract of Ceratoina siliqua induces anti-hyperglycemia and improves the male reproductive system was more than treated to glimephan and metformin drugs. In addition, these findings suggest the possible utilization of the ethanolic extract of Ceratoina siliqua as a therapy.
دراسة تأثير المستخلص الإيثانولي لنبات الخروب على كفاءة السائل المنوي في ذكور خنزير غنيا Metformin و عقار Glimephan المستحثة داء السكري بوساطة الألوكسان

منى حميد السعيد * مريم عبد الحسين كاظم ** اروي حمدي السيد

** فرع الفلسفة والأدوية والكيمياء، كلية الطب البيطري، جامعة البصرة. العراق.

** قسم الكيمياء، كلية العلوم، جامعة البصرة. العراق.

الخلاصة
تمت الدراسة في البيوت الحيوانيات التابعة إلى كلية الطب البيطري، جامعة البصرة لمحاولة استخدام المستخلصات الداء السكري باستخدام الألوكسان ومنع دراسة التأثير العلاجي لمستخلص الإيثانولي لثمار نبات الخروب بجرعة (0.05 ملغم/كغم من وزن الجسم) (المخصص لمستويات السكر في الدم بجرعة 0.1 ملغم/كغم من وزن الجسم) Glimephan، وبمقارنة مع عقار Metformin (0.15 ملغم/كغم) ومدى فاعلية هذا المستخلص في تخفيض السكر وأثره الضارة.

وتضمنت الدراسة استخدام 30 ذكر من خنزير غنيا البالغة المحلي، تتراوح أوزانها ما بين (800-1000 غم) و باعصار تتراوح (6-5.5 شهر) قسمت شعوانیا بالتساوي إلى خمس مجتمعات (6 نفر، غنيا)

المجموعة الأولى: - مجموعة السيطرة (السابقة) جرعت ذكور خنزير غنيا (9.0%) من المحول الفسيولوجي (3مل/مدة 30 يوم).

المجموعة الثانية: - مجموعة السيطرة (موجبة) جرعت ذكور خنزير غنيا في غشاء البروتون بالألوكسان 50 ملجم/كم (بعد أذبنه ب(3مل) من المحول الفسيولوجي لمدة 3 أيام لاستحداث داء السكري وتركت لدوان (03 يوم بدون أي معاملة.

المجموعة الثالثة: - حقعت ذكور خنزير غنيا في البروتون بالالوكسان (150 ملجم/كم) بعد أذبنه ب(3مل)

المجموعة الرابعة: - حقعت ذكور خنزير غنيا في البروتون بالألوكسان 150 ملجم/كم بعد أذبنه ب(3مل) من المحول الفسيولوجي لمدة 3 أيام + عقار Metformin (15 ملغم/كم)。

المجموعة الخامسة: - حقعت ذكور خنزير غنيا في البروتون بالألوكسان 150 ملجم/كم بعد أذبنه ب (3مل) من المحول الفسيولوجي لمدة 3 أيام + Glimephan (500 ملغم/كم) من المستخلص الإيثانولي لثمار نبات الخروب لمدة 30 يوم المجموعة.

بعد انتهاء فترة التجريبة تم نصب عينات الدم (01 مل) من قلب الحيوانات حيث وضعت في أنابيب غير حاوية على مائع للتخلص. تم الحصول على مصل الدم لإجراء بعض قياسات المعايير الكيميائية كقياس تركيز
The study found a reduction in blood glucose levels (p<0.05) and a decrease in FSH, LH and testosterone levels in the test group compared to the control group. The study also noted an increase in the mortality rate, decrease in the number of viable animals, and an increase in the weight of the animals. Metformin and glibenclamide were found to be effective in reducing blood glucose levels and improving the quality of the semen. The study concluded that the ethanolic extract of Calotropis procumbens was effective in reducing blood glucose levels and improving the quality of the semen, and that this effect was comparable to the use of other medications such as glimephane and metformin.

REFERENCES

1-Wild, S.; Roglic, G.; Green, A.; Sicree, R. and King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 27: 1047-1053.

2-Tartarin, P.; Moison, D.; Guibert, E.; Dupont, J. and Habert, R. (2012). Metformin exposure affects human and mouse fetal testicular cells. Human Repro 27(11): 3304-14.

3-Adaramoye, O.; Akanni, O.; Adesanoye, O.; Labo-Popoola, O. and Olaremi, O. (2012). Evaluation of toxic effects of metformin hydrochloride and glibenclamide on some organs of male rats. Nigerian J Physio Sci. 27(2): 137-44.
4-Nasrolahi, O.; Khaneshi, F.; Rahmani, F. and Razi, M.(2013). Honey and metformin ameliorated diabetes-induced damages in testes of rat; correlation with hormonal changes. Iranian J Rep Med. 11(12): 1013-20.

5-Fang X, Xu QY, Jia C, Peng YF (2012). Metformin improves epididymal sperm quality and antioxidant function of the testis in diet-induced obesity rats. Zhonghua Nan Ke Xue 18(2): 146-9.

6-Vignera, S.; Condorelli, R.; Vicari, E.; D'agata, R. and Calogero, A.E. (2012). Diabetes mellitus and sperm parameters. Journal of andrology 33(2): 145-153.

7-Patterson, C.C.; Dahlquist, G.G.; Gyürüs, E.; Green, A. and , G. (2009). Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. The Lancet 373(9680): 2027-2033.

8-Chen, L.; Magliano, D.J. and Zimmet, P.Z. (2012). The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nature Reviews Endocrinology 8(4): 228-236.

9-Qaseem, A.; Humphrey, L.L.; Sweet, D.E.; Starkey, M., Shekelle, P. (2012). Oral pharmacologic treatment of type 2 diabetes mellitus: a clinical practice guideline from the American College of Physicians. Annals of internal medicine 156(3): 218-231.

10-Hamada, Y.; Fujii, H. and Fukagawa, F.(2009). Role of oxidative stress in diabetic bone disorder. Bone 45, S35–S38.

11-Karen, W. (2015). Drugs affecting the endocrine system.6 ed.Philadelphia: Lippincott Williams & Wikins:. Chapter 25, Drugs for diabetes: p. 341.

12-Karkacier,M. and Artik, N.(1995). Determination of physical properties, chemical composition and extraction conditions of carob bean (Ceratonia siliqua L.). Gida 20:131-136.
13-Kumazawa, S.; Taniguchi, M.; Suzuki, Y.; Shimura, M.; Kwon, M. and Nakayama, T. (2002). Antioxidant activity of polyphenols in carob pods. J. Agric. Food Chem. 50 (2). PP 373 - 377.

14-Batlle, I. and Tous, J. (1997). Carob tree Ceratonia siliqua L. Rome, Italy: International Plant Genetic Resources Institute:

15-Ayaz, F.A.; Torun, H.; Ayaz, S.; Correia, P.J.; Alaiz, M.; Sanz, C.; Gruz, J. ans Strand, M. (2007). Determination of chemical composition of 1 Anatolian carob pod (Ceratonia siliqua L.): sugar, Amino and organic Acids, Minerals and phenolic compounds. J Food Qual. 30(6): 1040-1055.

16-Inoue, M.; Suzuki, R.; Koide, T.; Sakaguchi, N.; Ogihara, Y. and Yabu, Y. (1994). Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem Biophys Res Commun. 204: 898-904.

17-Nidal, A.J. (2005). Medical plants utilized in Palestinian folk medicine for treatment of diabetes mellitus and Cardiac diseases. Al-Aqsa Unv., 9.

18-Jim, D. (2005). Phytochemical and ethnochemical databases, Beltsvill Argriculture Research Cenntter. Green Farmacy Garden; 1-200.

19-Rtibi, K.; Selmi, S.; Grami, D.; Amri, M.; Eto, B.; EL-Benna, J.; Sebai, H. and Marzouki, L. (2017). Chemical constituents and pharmacological actions of carob pods and leaves (Ceratonia siliqua L.) on the gastrointestinal tract: areview. Biomedicine & Pharmacotherapy.; 93:522-528.

20-Rtibi, K.; Selmi, S.; Jabri, M.A; Mamadou, G.; Limas-Nzouzi, N.; Sebai, H.; EL-Benna, J.; Marzouki, L.; Eto, B. and Amri, M. (2016). Effects of aqueous extracts from Ceratonia siliqua L. pods on small intestinal motility in rats and jejunal permeability in mice. RSC Advances.; 6: 44345-44353.
21-Zunft, H. J. F.; Lüder, W.; Harde, A.; Haber, H.; Graubaum, B. J. and Gruenwald, J. (2008). Carob pulp preparation for treatment of hypercholesterolemia. Advan Ther. 18(5):230-236.

22-Sęczyk, Ł.; Świeca, M. and Gawlik-Dziki, U. (2016). Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem. 194:637-42.

23-Custódio, L.; Escapa, A.L.; Fernandes, E.; Fajardo, A.; Aligué, R. and Alberício, F. (2011). Phytochemical profile, antioxidant and cytotoxic activities of the carob tree (Ceratonia siliqua L.) germ flour extracts. Plant Foods Hum Nutr. 66(1):78-84.

24-Rtibi, K.; Jabri, M.A.; Selmi, S.; Souli, A.; Sebai, H. and El-Benna, J. (2015). Gastroprotective effect of carob (Ceratonia siliqua L.) against ethanol-induced oxidative stress in rat. BMC Complement Altern Med.; 15(1):292.

25-Harborn, J.B. (1993). Phytochemical methods. Guide to modern technique in Plant Analysis. 4th Ed., New York, USA. Chapman and Hall.

26-Ram, A. (1996). Effect of pulmagoZeylanica in hyperlipidemic rabbits it modification by vitamin E. Indi J Pharma; 28: 61-166.

27-Burtis, C.A. and Ashwood, E.R. (1999). Tietz Textbook of clinical chemistry", 3rd ed., W. B. Saunders Co, Tokyo, PP. 1034-1054.

28-Morel, B.S.; Mercier, S. and Roux, C. (1998). Inter individual variations in the disomy frequencies of human spermatozoa and their correlation with nuclear maturity as evaluated by aniline blue staining. Fertil. Steril.; 69 : 1122-1127.

29-Feustan, M.H.; Bodnai, K.R. and Kerstetter, S.L. (1989). Reproductive toxicity of 2-methoxy ethanol applied dermally to occluded and non-occluded sides in male rats. Toxicol Appl Pharmacol. 1;100:145–165.
30-Mohammad–Reza, P.; Farzaneh, D.; Taherch, T.K. and Zoherb, P.P. (2005). The effects of hydroalcoholic extract of *Actinidia chinensis* on sperm count and motility, and blood levels of estradiol and testosterone in male rats. *Achieves of Iranian Medicine*, 8(3): 211-216.

31-Luna, L.G. (1968). Manual of histology staining methods of the Armed Forces Institute of Pathology. 3rd ed., New York, Mc grawHill.

32-Stat Soft Inc. Electronic statistics textbook. Tulsa, Oklahoma, (2006).

33-Ballester, J.; Munoz, J.; Domingues, M.; Sensat, T.; Rigaut, J.; Guinovart, J. and Rodriguez-Gil J.E. (2004). Insulin- dependent diabetes affects testicular function by FSH and LH- linked mechanisms. *J Androl.*; 25:706-719.

34-Agbaje, I.M.; Rogres, D.A.; McVicar, C.M.; McClure, N.; Atkinson, A.B.; Mallidis, C. and Lewis S.E.M. (2007). Insulin dependent diabetes mellitus: Implications for male reproductive function. *Hum. Reprod.*; 22: 1871-1871.

35-Clark, M.G. and Wallis M.G. (2003). Blood flow and muscle metabolism: a focus on insulin action. *Am. J.Physiol. Endocrinol. Metabol.*; 284: 241-58.

36-Shlaby, M. and Mounier, S.M. (2010). Effect of zingiber officinale roots and cinnamon zeylanicum bark on fertility of male diabetic rats. *Clob. Vet*; 5(6) 341-7.

37-Sundaram, R.; Naresh, R.; Shanthi, P. and Sachdanandam, P. (2013). Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats. *Phyto Med.*; 20(7): 577-84.

38-Jangir, R.N. and Jain, G.C. (2017). Evaluation of antidiabetic activity of hydro alcoholic extract of *Cassia fistula Linn*. Pod in streptozotocin – induced diabetic rats. *Pharma J.*; 9(5): 599-606.
39-Marles, R.J and Farnsworth, N.R. (1995). Antidiabetic plants and their active constituents. Phytomedicine.; 2:137-189.

40-Williams, D.R.; James, W.P. and Evans I.E.(1980). Dietary fibre supplementation of a 'normal' breakfast administered to diabetics. *Diabetologia.*;18(5):379-83

41-Ivorra, M.D; Paya, M. and Villar, A.(1989). A review of natural products and plants as potential anti-diabetic drugs. *J. Ethnopharmacol.*; 27:248–275.

42-Carvalho, C.A.F.; Camargo, A.M.; Cagnon, V.H.A and Padovani C.R.(2003). Effect of experimental diabetes on the structure and ultra structure of the coagulating gland of C57BL/J and NOD mice. *Anal. Rec. Part A.*; 270:129-136.

43-Bonnefont-Rousselot, D.; Beaudeux, J.L, Therond, P.; Peynet, J. ; Legrand, A. and Delattre, J.(2004). Diabetes mellitus, oxidative stress and advanced glycation end products. *Annales Pharmaceutiques Francaises.*; 62(3): 147-57.

44- Kim, S.T. and Moley, K.H.(2008). Paternal effect on embryo quality in mice is related to poor sperm quality and associated with decreased glucose transporter expression. *Reproduction.* 136(3): 313-22.

45-Navodita, P and Varma M.C.(2014). Effect of Moringa oleifera leaf powder on sperm count, histology of testis and epididymis of hyperglycaemic mice Mus musculus.American *Int.J.of Res.in Formal, Applied Natural Sciences.*: 7(1):7-13.

46-Vafaei A, Mohammadi S, Fazel A, Soukhtanloo M, Mohammadi A, Beheshti F. (2018). Effects of Carob (*Ceratonia siliqua*) on sperm quality, testicular structure, testosterone level and oxidative stress in busulfan – induced infertile mice. *Pharma.Sci.*; 24: 104-111.
47-Souli A, Sebai H, Chehimi L, Rtibi K, Tounsi H, Boubar S. (2013). Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat. *Toxicol. Ind. Health.* ; 31(9): 802-10.

48-Azadeh, V.; Shabnam, M.; Alireza, F.; Mohammad, S., Abbas, P. and Farimah, B. (2018). Effect of Carob (*Ceratonia siliqua*) on sperm quality, testicular structure, testosterone level and oxidative stress in Busulfan-induced infertile mice. *Pharmaceutical Sciences.* ; 24:104-111.

49-Montanya, E. and Tellez, N. (2009). Pancreatic remodeling: β-cell apoptosis, proliferation and neogenesis, and the measurement of β-cell mass and of individual beta-cell size. *Methods Mol. Biol.* ; 560:137-158.