Molecular Characterization of Two Isolates of Wild Tomato Mosaic Virus and Chilli Veinal Mottle Virus Co-infecting Chilli Pepper in China

Yongliang Hu
Dehong Tropical Agriculture Research Institute of Yunnan

Yuqin Chen
Dehong Tropical Agriculture Research Institute of Yunnan

Xiaoxia Su
Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences

Jiawei Huang
Dehong Tropical Agriculture Research Institute of Yunnan

Hongxing Yin
Dehong Tropical Agriculture Research Institute of Yunnan

Guannrun Ma
Dehong Tropical Agriculture Research Institute of Yunnan

Yingqing Wang
Dehong Tropical Agriculture Research Institute of Yunnan

Jie Zhang
Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences

Zhongkai Zhang
Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences

Yong Ding
Key Laboratory of Forest Biotechnology in Yunnan, Southwest Forestry University

Kuanyu Zheng (zhengkuanyu@126.com)
Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences https://orcid.org/0000-0001-9991-4651

Research Article

Keywords: Wild tomato mosaic virus, Chilli veinal mottle virus, co-infection, recombination, phylogenetic analysis

DOI: https://doi.org/10.21203/rs.3.rs-442269/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The present study reports observation of a field chilli pepper disease consisting of a co-infection with two potyviruses: Wild tomato mosaic virus Dehong isolate (WTMV-Dh) and Chili vein mottle virus Dehong isolate (ChiVMV-Dh). We obtained the complete genome sequences of these two viruses by NGS sequencing. The WTMV-Dh is 9,598 nucleotides (nt) in length and encodes a complete polyprotein of 3,075 amino acids (aa). The polyprotein of WTMV-Dh shares 76.1–82.6% nt and 85.3–89.5% aa identities with the other three WTMV isolates reported previously. The ChiVMV-Dh is 9688 nt in length and encodes a complete polyprotein with 3, 089 aa. The polyprotein of ChiVMV-Dh shares 80.8–92.2% nt and 85.3–95.6% aa identities with the other ChiVMV isolates reported previously. Following phylogenetic analysis based on the polyprotein sequences of other potyviruses, WTMV-Dh clustered with the Vietnam strain WTMV-Laichau while ChiVMV-Dh clustered with several ChiVMV Sichuan isolates. Evaluation of the recombination events within the WTMV and ChiVMV subgroups indicated that some putative recombination events occurred in critical regions. These regions include the N-terminal of HC-Pro and P1 region of WTMV-Dh, CP and the P3 to CI region of ChiVMV-Dh, which may be new evidence of adaptive evolution of potyviruses.

Background

Chilli pepper (Capsicum annuum L.) is an economically important crop in the world. The production of chilli pepper is hampered by susceptibility to numerous plant pathogens, including potyviruses [1, 2]. Potyviruses form a large group of aphid transmitted plantviruses of the genus Potyvirus. The potyviruses virion is a flexuous filamentous capsid with a length of 700–900 nm and a diameter of 11–13 nm. The genome of potyviruses consists of a single-stranded RNA (ssRNA) with a size of about 9.7 Kb, two untranslated regions in 5'UTR and 3'UTR, and a single major open reading frame (ORF) encoded a single large polyprotein. This polyprotein is cleaved into 10 functional proteins as described previously [3-5].

Chilli vein mottle virus (ChiVMV), a member of the genus Potyvirus, was first reported in West Malaysia in 1979 [6] after which it has been widely reported in many Asian and East African nations as an important pathogen of chilli crops [7-10].

Wild tomato mosaic virus (WTMV), also a member of the genus Potyvirus, was first shown to infect wild tomatoes in Vietnam in 2008 [3]. Later, the disease was reported to infect various crops, including tobacco, wild eggplant, and Solanumnigrum L. in Guangdong, Hainan and Sichuan regions of China [11-14]. At present, however, only three complete genome sequences have been reported, including isolates from wild tomato, tobacco, and Solanumnigrum L.

NGS sequencing generated total of 24,598,402 raw reads, and 24,183,806 clean reads with length 150 nucleotides (nt) after removing low quality reads with the quality control Q30=95.45%. Finally, a total of 12,377 unigene reads (>300bp) were obtained by de novo assembly. After BlastX search against NR databases, the contig DN4369_c0_g1_i1 with a length of 9598 nt was mapped to the WTMV complete sequence and named WTMV-Dh (NCBI accession No. MT793717). Another contig, DN4168_c0_g1_i1 with a length of 9688 nt, was mapped to the ChiVMV entire sequence and named ChiVMV-Dh (NCBI accession No. MT787292). To analyze the accumulation level of the NGS reads of each of the virus, the complete sequence of WTMV-Dh and ChiVMV-Dh were used as references for BLAST searches of viral reads from the clean reads pool. The result showed that a total of 739,404 reads (3.28%) were mapped to WTMV-Dh, whereas 215,871 reads (0.89%) were mapped to ChiVMV-Dh. According to the respective FPKM values, the complete sequence of WTMV-Dh is 8.19E+04, which is much higher than the value of ChiVMV-Dh (Table 1).

Sequence analysis showed that the complete sequence of WTMV-Dh contains a complete polyprotein ORF, but 11 nt on the 5'UTR and 44 nt on the 3'UTR were missing, compared with other WTMV isolates. The polyprotein ORF encodes 3, 075 amino acids, and the polyprotein predicted to cleave into 10 matureproteins, like other WTMV isolates [5, 14] (S1 Fig.). Multiple sequence alignments were conducted by MegAlign (Lasergene7.1) for analyses of sequence identity. The result showed the region encoding the WTMV-Dh polyprotein shares the highest amino acid (aa) sequence identity (89.5% aa) with the Vietnam strain Laichau (DQ851495.1) (Table 2). Comparison of the nucleotide and amino acid sequences of individual proteins/regions showed that 5'UTR and P1 of the WTMV subgroup are hypervariable, sharing a low identity of 48.6% to 71.9% nt in 5'UTR, and 50.0% to 59.7% aa in P1. The 6K1 of WTMV-Dh was found to share low nucleotide homology (74.7%) but high amino acid identity (98.1%) with the Sn and XC-1. Meanwhile, we showed that the P3 of WTMV-Dh shares both low nucleotide homology (71.6%–72.2%) and amino acid identity (70.6%–71.2%) with the strains Sn and XC-1 (Table 2). To evaluate the recombination events, the Recombination Detection Program, version 4 (RDP4) had been done based on 22 potyviruses sequences that are closely related to WTMV (the sequence information is shown in Fig. 2). The results revealed a total of three putative recombination events of WTMV-Dh (Table 4). One of the recombination regions detected from nucleotide 1049 to 1494 of WTMV-Dh forms part of the HC-Pro N-terminal and Laichau was predicted as the major parent while XC-1 as the minor parent. The two recombination events were detected in the 5'UTR and P1 regions from nucleotides 48 to 162, and 166 to 342 of the WTMV-Sn. For the recombinant WTMV-Sn, the minor parent was identified as WTMV-Dh, while XC-1 was identified as the major parent. Phylogenetic
Sequence analysis showed that the complete sequence of ChiVMV-Dh contains a complete polyprotein ORF but lacks 39 nt on the 3′UTR. The polyprotein is composed of 3,089 amino acids and is expected to cleave into 10 mature proteins, similar to other ChiVMV isolates [5] (S1 Fig). The coding region of the ChiVMV-Dh polyprotein is more closely related to Sichuan strains than Yunnan strains. The polyprotein shares 95.6%, 95.3%, and 95.3% aa sequence identity with the Sichuan strains Yp8 (KC711055), Pp4 (KC711056), and LZ (MK405594), respectively, and 90.4% aa sequence identity with the Yunnan strain YNt (JX088636). But ChiVMV-Dh shared the highest identity with YNt in the 5′UTR (80.2% nt) and P1 (84.4% nt, 82.7% aa) regions compared with other ChiVMV isolates (Table 3). The 6K1 of ChiVMV-Dh shared a low nucleotide homology but the highest amino acid identity with YNt (100% aa). Among all the ChiVMV isolates, the P3 of ChiVMV-Dh shared the least homology with the YNt isolate (76.6% nt, 76.5% aa). The recombination events were examined by RDP4 based on 22 potyviruses sequences downloaded from the NCBI (the sequence information is shown in Fig. 2) that are closely correlated with ChiVMV-Dh. As shown in Table 4, a total of four putative recombination events related to ChiVMV-Dh were found. One of the putative recombination events was detected in CP and the 3′UTR, from nucleotide 8828 to 9781 of ChiVMV-Dh. The major parent was predicted as Dzh-Qyg, while YNt was shown to be the minor parent. The other three putative recombination events were detected in the same region of ChiVMV that covered parts of P3, CI, and 6K1. All the recombinants were from Indian and Pakistan isolates, and ChiVMV-Dh was assumed to be the minor parent, while the Korean isolate AM90971 was predicted as the major parent. Phylogenetic analysis was conducted based on the polyprotein amino acid sequence to determine the phylogenetic relationship of ChiVMV-Dh with other potyviruses. The resultant neighboring tree divided all ChiVMV isolates into two distinct clades, and ChiVMV-Dh clustered in the clade2 group. The ChiVMV clade2 has two branches, and ChiVMV-Dh clustered with Sichuan strains, while YNt clustered in another branch (Fig. 2).

To evaluate the biological characteristics of the two viruses, Chenopodium quinoa was mechanically inoculated with the viruses using co-infected chilli pepper samples. Subsequently, single local lesions were separated three times to obtain purified virus isolates [19]. Purified virus isolates were identified as either ChiVMV-Dh or WTMV-Dh by RT-PCR amplification using ChiVMV and WTMV specific primers (S2 Table) and sequencing, respectively. The ChiVMV-Dh and WTMV-Dh strains were then single or mix inoculated to chilli pepper using the methods above. Fourteen days post-inoculation (dpi), different symptoms were observed on chilli pepper, and RT-PCR was conducted to detect virus species (Fig. 3). The result showed WTMV-Dh induced mosaicism and deformity in developing leaves and yellowing of inoculated leaves. Meanwhile, ChiVMV-Dh induced shrinkage and yellowing of developing leaves, and vein yellowing of inoculated leaves. Co-inoculated chilli pepper showed yellowing and mosaicism on developing leaves and yellowing and necrotic spotting on inoculated leaves.

In conclusion, we reported the co-infection of chilli pepper with WTMV and ChiVMV under natural conditions for the first time. We also report the complete genome sequence of WTMV and ChiVMV from chilli pepper. By co-inoculation experiment, the symptoms of these two viruses on chilli pepper under single-infection and co-infection were determined. It was found that the co-infection symptoms of WTMV and ChiVMV on chilli pepper are a combination of the single-infection symptoms and show more severe symptoms than single-infection. This finding indicates that co-infection of these two viruses may play a synergistic effect and increase virulence.

Recombination events are considered to be a significant source of genetic diversity and enhance host adaptability of plant viruses. Co-infection facilitates genetic exchange and recombination between two viruses. Although we did not find direct recombination events between WTMV-Dh and ChiVMV-Dh, some recombination events were found within the WTMV or ChiVMV subgroups. The recombination events include P1, P3 to CP, and HC-Pro region.

Previous reports have indicated the P1 region is related to host adaptation and defines the host range [20, 21]. Another study found recombination events in the P1 region of WTMV-Sn, but the minor parents of WTMV-Sn are unknown [14]. Herein, analysis of a WTMV-Dh recombination event found that WTMV-Dh may be a putative minor parent of WTMV-Sn in the P1 region. Also found were recombination events of ChiVMV-Dh from P3 to the CI region, as the minor parent of isolates originated from India and Pakistan. Previous studies have found that Indian and Pakistan isolates of ChiVMV are closely related to Chinese isolates. Thus, a transboundary movement of infected chilli seedlings or other host plants is speculated [22, 23]. However, our study indicated that the ChiVMV isolates from India and Pakistan are more likely to be recombinant viruses and that ChiVMV-Dh may serve as an intermediary between East Asian and South Asian ChiVMV isolates.

HC-Pro is a multifunctional protein composed of three functional regions, and the N-terminal region is necessary for aphid transmission [24, 25]. We blasted the complete aminocid acid sequence of HC-Pro in WTMV-Dh and ChiVMV-Dh. The results showed that the HC-Pro N-terminal regions of these two viruses differ substantially, but the central and C-terminal regions are highly conserved. Overall, the HC-Pro regions of the two viruses share 59%, 79.5% and 93.63% sequence identity in the N-terminal (1–100 aa), central (101–300 aa) and C-terminal (301–457 aa) regions, respectively. Therefore, we speculated the differences in the HC-Pro N-terminal sequences of WTMV-Dh and ChiVMV-Dh might be involved in the affinity with aphid species.

We also found a recombination event in the HC-Pro N-terminal region of WTMV-Dh. The major parent was Laichau, while the minor parent was the Sichuan isolate XC-1. This result further indicates that the N-terminal of HC-Pro is a hot spot for recombination and variability, which may participate in the adaptive evolution of aphid transmission.

Declarations

Acknowledgements
The study was supported by the National Natural Science Foundation of China (31660508), the Science and Technology Program of Yunnan Province (2018FB028, 2018FA020), National Natural Science Foundation of China-Yunnan Joint Fund Key Project (U1802235), Yunnan Provincial Academician Workstation of Fang Rongxiang and Yunling Scholar (Zhongkai Zhang).

References

1. Kenyon L, Kumar S, Tsai WS, Hughes JDA (2014) Virus diseases of peppers (Capsicum spp.) and their control. Adv Virus Res 90: 297–354.
2. Parisi M, Alioto D, Tripodi P (2020) Overview of Biotic Stresses in Pepper (Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 21:2587.
3. Ha C, Coombs S, Revill PA, Harding RM, Vu M, Dale JL (2008) Design and application of two novel degenerate primer pairs for the detection and complete genomic characterization of potyviruses. Arch Virol 153:25–36.
4. Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902.
5. Adams MJ, Antoniwi JD, Beaudoin F (2005) Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol 6: 471–487.
6. Ong CA, Varghese G, Ting WP (1979) Aetiological investigations on a veinal mottle virus of chilli (Capsicum annuum L.) newly recorded from peninsula Malaysia. Mard Res Bull 7: 78–88.
7. Wang J, Liu Z, Niu S, Peng M, Xiong Z (2006) Natural occurrence of chilliveinal mottle virus on capsicum chinense in China. Plant Dis 90: 377–377.
8. Tsai WS, Huang YC, Zhang DY, Reddy K, Hidayat SH, Srithongchai W, Jan FJ (2008) Molecular characterization of the CP gene and 3' UTR of Chiliveinal mottle virus from south and Southeast Asia. Plant Pathol 57: 408–416.
9. Nono-Womdim R, Swai IS, Chadha ML, Gebre-Selassie K, Marchoux G (2001) Occurrence of Chiliveinal mottle virus in Solanum Aethiopicum in Tanzania. Plant Dis 85: 801–801.
10. Tan GT, Shi LL, Wang HL, Gong ZH (2003) Diagnosis of Viruses in Chili Pepper in Shanxi Province. J China Capsicum 3: 32–33. (in Chinese)
11. Du ZG, She XM, Tang YF, He ZF (2014) First report of Wild tomato mosaic virus infecting tobacco (Nicotiana tabacum) in China. Plant Dis 98:856–856.
12. Zhang S, Yu N, Wang X, Liang J, Xie H, Wang J, Zhang Y, Liu Z (2014) Natural occurrence of Wild tomato mosaic virus in wild eggplant in China. J Phytopathol 163: 1023–1026.
13. Sun H, Liu W, Yang J, Wang F, Qian Y (2015) Complete genome sequence of a novel wild tomato mosaic virus isolate infecting nicotianatabacum in china. J Phytopathol 164: 686–690.
14. Zhang L, Shang J, Jia Q, Gong G, Zhang M, Yang W (2019) The complete genome sequence of wild tomato mosaic virus isolated from solanumnigrum reveals recombination in the p1 cistron. Arch Virol 164: 903–906.
15. Zheng KY, Chen TC, Wu K, Kang YC, Dong JH (2019) Characterization of a New Orthotospovirus from chilli pepper in Yunnan Province. China. Plant Dis 104: 1175–1182.
16. Grabherr MG, Haas BJ, Yassour M (2011) Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol 29: 644–652.
17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
18. Langmead B, Salzberg SL, Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357–359.
19. Yang J, Dong JH, Zhang TJ, Wang R, Zhang ZK (2013) A new isolate of chilli veinal mottle virus that infects tobacco in China. J Plant Pathol 95: 187–190.
20. Salvador B, Saenz P, Yangue E, Quiot JB, Quiot L, Delgadillo M, Garcia J, Simón-Mateo C (2008) Host-specific effect of P1 exchange between two potyviruses. Mol Plant Pathol 9:147–155.
21. Shi Y, Chen J, Hong X, Chen J, Adams MJ (2007) A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Mol Plant Pathol 8: 785–790.
22. Ahmad A, Ashfaq M (2018) Genetic diversity and recombination analysis based on capsid protein gene of chilliveinal mottle virus isolates from pakistan. Eur J Plant Pathol 151:891–900.
23. Rakesh S, Taibangnganbi CN, Kumar SS, Roy SS, Ansari MA, Prakash N (2018) Genetic diversity of chilliveinal mottle virus infecting different chilli landraces in north east India indicates the possibility of transboundary movement of virus. 3 Biotech 8:357.
24. Atreya CD, Pinote TP (1993) Mutational analysis of the helper-component protease gene of a potyvirus: effect of amino acid substitutions, deletions and gene replacement on virulence and aphid transmissibility. Proc Natl Acad Sci USA 90: 11919–11923.
25. Seo JK, Kang SH, Seo BY, Jung JK, Kim KH (2010) Mutational analysis of interaction between coat protein and helper component-protease of Soybean mosaic virus involved in aphid transmission. Mol Plant Pathol 11: 265–276.
Table 1

Analyses for read coverage of reads mapping to WTMV-Dh and ChiVMV-Dh in co-infected samples.

Coding region	ChiVMV-Dh reads number	ChiVMV-Dh FPKM	WTMV-Dh reads number	WTMV-Dh FPKM
Complete sequence	215871	2.20E + 04	793404	8.19E + 04
P1	14731	2.05E + 04	54309	7.61E + 04
Hc-pro	29797	2.72E + 04	99328	9.08E + 04
P3	18026	2.19E + 04	65638	7.90E + 04
6K1	531	4.11E + 03	1104	8.54E + 03
CI	35334	2.29E + 04	148485	9.64E + 04
6K2	153	6.47E + 02	364	2.79E + 03
VPg	7350	1.61E + 04	27650	6.05E + 04
Nla	15697	2.71E + 04	52927	9.14E + 04
Nib	32137	2.59E + 04	122457	9.86E + 04
CP	18996	2.76E + 04	55931	8.16E + 04

Table 2

Nucleotide (nt) and amino acid (aa) sequence homologies (%) of the individual coding sequences of WTMV-Dh to those of other WTMV isolates.

Virus	Polyprotein (nt/aa)	5’UTR (nt)	P1 (nt/aa)	HC-Pro (nt/aa)	P3 (nt/aa)	6K1 (nt/aa)	CI (nt/aa)	6K2 (nt/aa)	VPg (nt/aa)	Nla (nt/aa)	Nib (nt/aa)
WTMV-Laichau (DQ851495.1)	82.6/89.5	58.9	64.5/59.7	82.8/95.2	81.9/81.8	88.9/100	86.1/96.0	87.4/94.3	84.1/93.1	84.4/95.5	83.4/91.0
WTMV-Sn (MK070541)	76.6/85.9	71.9	60.2/57.0	81.0/94.3	72.2/70.6	74.7/98.1	77.8/90.8	78.6/90.6	76.2/88.9	79.8/93.4	76.8/90.0
WTMV-XC-1 (KM401435.1)	76.1/85.3	48.6	55.5/50.0	81.2/94.1	71.6/71.2	74.7/98.1	78.0/91.0	78.6/90.6	76.2/88.4	79.6/93.0	77.1/89.1
Table 3

Virus	Polyprotein (nt/aa)	5'UTR (nt)	P1 (nt/aa)	HC-Pro (nt/aa)	P3 (nt/aa)	6K1 (nt/aa)	CI (nt/aa)	6K2 (nt/aa)	VPg (nt/aa)	Nla (nt/aa)	θ
ChiVMV-Yp8 (KC711055)	92.2/95.6	76.7	81.4/78.7	92.0/97.6	93.3/94.8	95.7/98.1	93.6/98.6	92.2/94.1	94.2/95.3	93.9/98.3	9
ChiVMV-LZ (MK405594)	92.1/95.3	76.1	81.9/78.7	92.3/97.8	93.0/94.8	94.4/98.1	93.1/98.0	91.5/94.1	93.9/95.3	93.7/96.7	9
ChiVMV-Pp4 (KC711056)	92.1/95.3	75.3	82.1/79.0	91.8/97.6	93.1/93.6	94.4/98.1	93.4/98.4	92.2/94.1	93.7/94.8	93.9/98.3	9
ChiVMV-Ynt (JK088366)	83.1/90.4	80.2	84.4/82.7	85.9/95.4	76.6/76.5	82.1/100	81.9/91.3	73.9/86.3	83.2/91.6	82.8/89.7	8
ChiVMV-GD (KU987835)	81.8/88.5	53.1	64.8/59.3	81.1/92.6	81.9/80.8	80.9/94.4	83.0/92.4	81.0/90.2	85.5/94.8	86.6/96.7	8
ChiVMV-NC (GQ981316)	81.6/88.3	52.9	67.4/58.7	80.5/92.3	81.9/80.8	79.0/88.9	83.2/92.5	79.7/90.2	85.3/94.8	86.1/96.7	8
ChiVMV(LN832362)	81.3/88.0	52.6	63.0/56.7	80.7/92.8	81.0/79.9	76.5/94.4	83.2/92.9	79.1/88.2	85.9/94.2	86.8/95.9	8
ChiVMV(AJ972878)	81.3/86.1	52.2	63.4/56.7	81.0/91.7	81.8/80.8	79.0/94.4	82.9/86.6	78.4/88.2	86.4/95.3	86.8/95.9	8
ChiVMV(AM909717)	81.5/86.4	51.3	63.7/56.7	80.9/91.7	81.7/80.5	79.0/94.4	82.8/86.4	78.4/88.2	86.6/94.8	86.5/95.5	8
ChiVMV(NC005778)	80.8/85.3	51.0	60.0/54.3	80.7/92.6	81.8/81.1	85.2/96.4	83.2/84.7	78.4/88.2	87.3/93.7	87.5/95.9	8
ChiVMV-PK (MN207122)	84.1/88.5	52.9	64.2/58.3	82.1/93.2	89.4/91.0	87.7/96.3	87.5/88.8	77.8/88.2	85.6/88.4	88.8/97.5	8
ChiVMV-Ch-Jal(GU170807)	82.4/87.1	51.0	63.7/58.0	78.6/91.0	88.4/87.5	88.3/98.1	86.3/88.2	75.2/86.3	83.3/84.7	87.2/97.5	8
ChiVMV-Ch-War(GU170808)	82.3/86.7	51.0	63.0/57.3	78.8/92.1	87.8/86.3	87.7/98.1	86.4/86.9	71.9/80.4	80.2/85.8	86.5/95.0	8
ChiVMV-HN (KR296797)	81.4/87.2	54.1	62.9/56.7	80.1/91.5	81.2/79.7	77.2/94.4	83.4/91.1	79.7/88.2	86.0/94.2	87.1/95.9	8
ChiVMV(AJ237843.3)	80.9/85.4	51.0	60.0/54.3	80.7/92.6	81.8/81.1	85.2/94.4	83.2/84.7	78.4/88.2	87.3/93.7	87.5/95.9	8

Table 4

Recombinant	Parents	Begin	end	P-value
WTMV-Dh	WTMV-Laichau	1049	1494	2.56×10⁻⁹
WTMV-Sn	WTMV-XC-1	48	162	8.417×10⁻²²
WTMV-Sn	WTMV-XC-1	166	342	4.974×10⁻³⁹
ChiVMV-Dh	ChiVMV-Dzh-Qyg	8288	9781	3.187×10⁻¹⁹
ChiVMV-Ch-Jal	AM90971	3038	4987	3.711×10⁻¹⁴
ChiVMV-Ch-War	AM90971	3326	4426	3.711×10⁻¹⁴
ChiVMV-PK	AM90971	3678	4214	3.711×10⁻¹⁴

Figures
Symptomatic of chilli pepper disease and virus morphology. a, Chilli pepper leaves showed mosaic, mottle and shrinkage; b, Virus particles were observed in the symptomatic leaf tissue of the chilli pepper sample.
Phylogenetic trees of potyviruses based on polyprotein amino acid sequences. ChiVMV-Dh and WTMV-Dh isolates are boxed. Bootstrap values on the branches represent the percentage of 1,000 bootstrap replicates.

Figure 3

Symptoms of single/co-inoculation of WTMV-Dh and ChiVMV-Dh on chilli pepper at 14 days post-inoculation. a. a. WTMV-Dh symptoms on developing leaves; b. WTMV-Dh symptoms on inoculated leaves; c. Detection WTMV-Dh by RT-PCR; d. ChiVMV-Dh symptoms on developing leaves; e. ChiVMV-Dh symptoms on inoculated leaves; f. Detection of ChiVMV-Dh by RT-PCR; g. co-infection symptoms of WTMV-Dh and ChiVMV-Dh on developing leaves; h. co-infection symptoms of WTMV-Dh and ChiVMV-Dh on inoculated leaves; i. Detection of WTMV-Dh and ChiVMV-Dh by RT-PCR. iM: Marker; 1. WTMV positive control; 2. ChiVMV positive control; 3. Negative control; 4, 5, 6, 7, 8 and 9. Detection WTMV and ChiVMV respectively by use pepper samples in the parallel left picture.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- S1Fig.jpg
- SupplementaryTable1.docx
- ChiliveinalmottlevirusisolateDh.fas
- WildtomatomosaicvirusisolateDh.fas