SUBGROUPS OF SO(3) ASSOCIATED WITH TILINGS

by
Charles Radin\(^1\) and Lorenzo Sadun\(^2\)

Mathematics Department
University of Texas
Austin, TX 78712
radin@math.utexas.edu and sadun@math.utexas.edu

Abstract

We give a thorough analysis of those subgroups of SO(3) generated by rotations about perpendicular axes by \(2\pi/p\) and \(2\pi/q\). A corollary is that such a group is the free product of the cyclic groups of rotations about the separate axes if and only if \(p, q \geq 3\) and are both odd. These groups are naturally associated with a family of hierarchical tilings of Euclidean 3-space.

Subject Classification: 51F25, 52C22

\(^1\) Research supported in part by NSF Grant No. DMS-9304269 and Texas ARP Grant 003658-113
\(^2\) Research supported in part by an NSF Mathematical Sciences Postdoctoral Fellowship and Texas ARP Grant 003658-037
§0. Introduction

We analyze certain subgroups of $SO(3)$ motivated by polyhedral tilings of Euclidean 3-space. The tilings are made by a general iterative procedure and consist of congruent copies of some finite set of polyhedra. Our interest here is in the relative orientations of the polyhedra in such a tiling.

An example called “quaquaversal” tilings, consisting of congruent copies of a single triangular prism, was analyzed in [CoR]. Let $G(p, q)$ be the group of rotations in 3-space generated by rotations, about perpendicular axes, by $2\pi/p$ and $2\pi/q$. In a quaquaversal tiling the orientations of any two prisms are related by an element of $G(6, 4)$. More precisely, in any cube of side 2^n, the relative orientations of the prisms are words of length $j(n)$ or less in the generators of $G(6, 4)$, where $j(n)$ is a function that grows linearly with n. All words of length $k(n)$ or less arise in this manner, where $k(n)$ also grows linearly with n. To show that the number of distinct orientations in such a cube grows exponentially in n, presentations of the subgroups $G(3, 4)$ and $G(3, 3)$ were derived in [CoR]. In that paper the rotations are represented by conjugation of real quaternions, and the results are unique factorizations for certain elements in noncommutative subrings of quaternions.

In this paper we extend the analysis to all groups $G(p, q)$, $p, q \geq 3$, using a somewhat simpler method. We represent the rotations by explicit $SO(3)$ matrices, and obtain our factorization theorems by applying commutative ring theory to the individual matrix elements. We prove that $G(p, q)$ is the free product of the cyclic groups of rotations about the separate axes if and only if both p and q are odd. If p or q is even, we can write $G(p, q)$ as the amalgamated free product of two finite groups. In all cases we obtain canonical forms for the elements of $G(p, q)$. (We note the following: if p or q is 1, $G(p, q)$ is a finite cyclic group; if p or q is 2, $G(p, q)$ is a finite dihedral group; $G(4, 4)$ is the finite group of symmetries of the cube; all the other $G(p, q)$ are dense in $SO(3)$.)

The organization of the paper is as follows. Our main results, presentations of the groups $G(p, q)$ and canonical forms for the group elements, are given in §1 and §2, respectively. In §3 we describe a new tiling for which the orientations of the polyhedra are given by $G(10, 4)$. In §4 we consider orientation groups $G(\theta, 4)$, where the angle of rotation θ is an irrational multiple of 2π. First we describe a new tiling with orientation group containing $G(\tan^{-1}(\frac{4}{3}), 4)$ and find a presentation of that group. Then we discuss the case of $G(\omega, 4)$ where $\exp(i\omega)$ is transcendental.

§1. Presentations for $G(p,q)$

In this section we state and prove a classification theorem for the groups $G(p, q)$. After stating the theorem and deriving some corollaries, we begin the proof. We first reduce the theorem to Lemma 1, then reduce Lemma 1 to Lemmas 2 and 3, and then prove Lemmas 2 and 3. Although the statement of the theorem is group theory, much of the proof, and in particular Lemmas 2 and 3, is commutative ring...
theory.

Given positive integers \(p, \ell \) and \(q \), we define rotations \(A = R^{2\pi/p}_x \), \(L = R^{2\pi/\ell}_y \), \(S = R^{2\pi/4}_y \) and \(B = R^{2\pi/q}_x \), where \(R^{2\pi/p}_x \) is a rotation about the x-axis by angle \(2\pi/p \), etc. Let \(G(p, \ell, q) \) be the group generated by \(A, L \) and \(B \), and let \(G(p, q) \equiv G(p, 1, q) \) be the group generated by \(A \) and \(B \).

Theorem 1: Presentations for \(G(p,q) \)

(i) If \(p, q \geq 3 \) are odd, then \(G(p, q) \) is isomorphic to the free product

\[\mathbb{Z}_p \ast \mathbb{Z}_q = \langle \alpha, \beta : \alpha^p, \beta^q \rangle. \]

(1.1)

(ii) If \(p \geq 4 \) is even and \(q \geq 3 \) is odd, then \(G(p, q) \) has the presentation

\[\langle \alpha, \beta : \alpha^p, \beta^q, \alpha^{p/2} \beta \alpha^{p/2} \beta >. \]

(1.2)

(iii) If \(p \geq 4 \) is even and \(q = 2s, s \geq 3 \) odd, then \(G(p, q) \) has the presentation

\[\langle \alpha, \beta : \alpha^p, \beta^q, \alpha^{p/2} \beta \alpha^{p/2} \beta, \beta^{q/2} \alpha \beta^{q/2} \alpha >. \]

(1.3)

(iv) If \(4 \) divides both \(p \) and \(q \), then \(G(p, 1, q) = G(\text{lcm}(p, q), 4, 1) \).

In cases (i), (ii) and (iii), the isomorphism between the abstract presentation and \(G(p, q) \) is given by \(\alpha \mapsto A, \beta \mapsto B \).

These results can be rephrased in terms of free products and amalgamated free products.

Corollary 1: If \(p, q \geq 3 \), then \(G(p, q) \) is isomorphic to the free product

\[\mathbb{Z}_p \ast \mathbb{Z}_q = \langle \alpha, \beta : \alpha^p, \beta^q \rangle, \]

(1.4)

with the isomorphism given by \(\alpha \mapsto A, \beta \mapsto B \), if and only if both \(p \) and \(q \) are odd.

Now let \(D_p \) denote the dihedral group \(\langle \alpha, \gamma : \alpha^p, \gamma^2, \gamma \alpha \gamma \alpha > \). In cases (ii) and (iii) we can introduce a new generator \(\mu \), which we then set equal to \(\alpha^{p/2} \), and in case (iii) we introduce \(\gamma \), which we set equal to \(\beta^{q/2} \). The subgroup of \(G(p, q) \) generated by \(\alpha \) and \(\gamma \) is then \(D_p \), while the subgroup generated by \(\beta \) and \(\mu \) is \(D_q \). In case (iii), \(\gamma \) and \(\mu \) generate a \(D_2 \) subgroup.

Corollary 2: If \(p \geq 4 \) is even and \(q \geq 3 \) is odd, then \(G(p, q) \) is isomorphic to the amalgamated free product

\[\mathbb{Z}_p \ast_{D_2} D_q, \]

(1.5)

where \(\alpha^{p/2} \in \mathbb{Z}_p \) is identified with \(\mu \in D_q \).

If \(p \geq 4 \) is even and \(q = 2s, s \geq 3 \) odd, then \(G(p, q) \) is isomorphic to the amalgamated free product

\[D_p \ast_{D_2} D_q, \]

(1.6)
where $\gamma \in D_{\rho}$ is identified with $\beta^q/2 \in D_q$ and $\alpha^p/2 \in D_{\rho}$ is identified with $\mu \in D_q$.

Remark: In case (iv), $G(p, q)$ cannot, in general, be written as an amalgamated free product of \mathbb{Z}_p (or D_{ρ} or $G(p, 4)$) with \mathbb{Z}_q (or D_q or $G(4, q)$). There are simply too many relations. However, in this case $G(p, q)$ is equal to $G(m, 4)$, where $m = \text{lcm}(p, q)$. This does turn out to be an amalgamated free product

$$D_m *_{D_4} G(4, 4),$$

where the D_4 subgroup is generated by $R^{\pi}/2$ and R^{π}_z. In Theorem 2 we construct a canonical form for $G(m, 4, 1)$, which can then be applied to this case.

Proof of the theorem: In cases (i), (ii) and (iii), we consider the natural map ρ from the abstract group $\langle \alpha, \beta : \text{(relations)} \rangle$ to $G(p, q)$, which sends α to A and β to B. In each case the relations get mapped to the identity matrix I, so the maps are well-defined. Since A and B are in the image of ρ, ρ is onto. We must show that ρ is 1–1. To do this we show that every element $g \neq e$ of the abstract group can be written as a word in α and β in a canonical way, and that the corresponding word in A and B is not equal to the identity matrix. The key to understanding these words is the following lemma, which we assume at this point, and prove after giving the rest of the proof of our theorem.

Lemma 1: Let $m = s2^t$, s odd and $t \geq 0$, and define $T = R^{2\pi/m}_x$. If $W, E \in G(4, 4, 1)$, $4a_j \neq 0 \mod m$, b_j odd and $n > 0$, then

$$WS^{b_1}T^{a_1}S^{b_2}T^{a_2} \cdots S^{b_n}T^{a_n}E \neq I.$$ \hspace{1cm} (1.8)

We use Lemma 1 with $m = pq$. Note that $A = T^q$ and $B = S^3T^pS$. An arbitrary element of the abstract group is a word in α and β. Using the relations α^p and β^q such an element g can always be put in the form

$$\alpha^{\tilde{a}_1}\beta^{\tilde{b}_2} \cdots \alpha^{\tilde{a}_n}\beta^{\tilde{b}_n},$$

with each $\tilde{a}_i \in (0, p)$ and each $\tilde{b}_i \in (0, q)$, except \tilde{a}_1 and \tilde{b}_n, which may equal zero. In cases (ii) and (iii) we will use the given relations to put further restrictions on the \tilde{a}_i’s and \tilde{b}_i’s. The matrix $\rho(g)$ then equals

$$T^{a_1}S^3T^{b_1}S \cdots T^{a_n}S^3T^{b_n}S,$$

where $a_i = q\tilde{a}_i$ and $b_j = p\tilde{b}_j$. We will show that, if $g \neq e$, this matrix cannot equal the identity.

i) If $p \geq 3$ and $q \geq 3$ are odd, we have $4a_i \neq 0 \mod m$, for $i > 1$ and $4b_j \neq 0 \mod m$ for $j < n$. By Lemma 1, the only way (1.10) can equal the identity is if $n = 1$ and $a_1 = b_1 = 0$, in which case $g = e$ to begin with. So ρ is 1-1.

ii) Assume $p \geq 4$ is even and $q \geq 3$ is odd. By applying the identity $\beta^{b}\alpha^{p/2} = \alpha^{p/2}\beta^{-b}$ to the expression (1.9) we can require that all the \tilde{a}_i’s, except possibly \tilde{a}_1,
be nonzero and lie in the interval \((-\frac{p}{4}, \frac{p}{4}]\). Since \(q\) is odd, we already have \(4b_j \neq 0 \pmod{m}\) for \(j < n\).

Lemma 1 cannot be directly applied to expression (1.10), since, if \(p\) is divisible by 4, \(a_i\) may equal \(m/4\) for some \(i\). We remove the offending \(T^{m/4}\) terms using the identity \(ST^{m/4}S^3 = T^{m/4}S^3T^{-m/4}\). The factors of \(T^{\pm m/4}\) may then be attached to the neighboring \(T^{b_j}\)'s, producing new \(b_j\)'s that still satisfy \(4b_j \neq 0 \pmod{m}\). We then apply Lemma 1 to this expression. As in case (i), the only way (1.10) can equal the identity is if \(n = 1\) and \(b_1 = 0\), in which case \(\rho(g) = A^{\pi_1}\). This equals the identity only if \(a_1 = 0\), in which case \(g = e\). So \(\rho\) is 1-1.

iii) Assume \(p \geq 4\) is even and \(q = 2s\), \(s \geq 3\) odd. By applying the identity \(\beta^{n/2}\alpha^a = \alpha^{-a}\beta^{n/2}\) we can require that all the \(\tilde{a}_i\)'s, except possibly \(\tilde{a}_n\), be nonzero and lie in the interval \((-\frac{q}{4}, \frac{q}{4}]\). By applying the identity \(\beta^b\alpha^{p/2} = \alpha^{p/2}\beta^{-b}\) to the expression (1.9) we can require that all the \(\tilde{a}_i\)'s, except possibly \(\tilde{a}_1\), be nonzero and lie in the interval \((-\frac{q}{4}, \frac{q}{4}]\). As in the last case, we have \(4b_j \neq 0 \pmod{m}\) but may have \(4a_i = m\). The \(T^{m/4}\) terms are eliminated as in case (ii), and Lemma 1 shows that the only way \(\rho(g)\) can equal zero is if \(n = 1\), \(4\tilde{a}_1 = 0 \pmod{p}\) and \(2\tilde{b}_1 = 0 \pmod{q}\). These 8 cases are easily listed, and the only one that gives \(\rho(g) = I\) is \(\tilde{a}_1 = \tilde{b}_1 = 0\), in other words \(g = e\).

iv) Since \(lcm(p, q)\) is a multiple of \(p\) and of \(q\), \(G(lcm(p, q), 4, 1)\) contains \(A\) and \(R_x^{2\pi/q}\). Since it also contains \(S\), it contains \(S^{-1}R_x^{2\pi/q}S = B\). Therefore \(G(lcm(p, q), 4, 1)\) contains \(G(p, 1, q)\).

Since 4 divides both \(p\) and \(q\), \(G(p, 1, q)\) contains \(R_x^{2\pi/4}\) and \(R_z^{2\pi/4}\), and so contains \(S = R_x^{-2\pi/4}R_z^{2\pi/4}R_z^{2\pi/4}\). But then it also contains \(SBS^{-1} = R_x^{2\pi/q}\), and so contains \(R_x^{2\pi/lcm(p, q)}\), and so contains \(G(lcm(p, q), 4, 1)\). (We have used the fact that \(lcm(p, q)\) \(\frac{gcd(p, q)}{pq}\), so there exist integers \(k, \ell\) such that \(\frac{1}{lcm(p, q)} = \frac{k}{p} + \frac{\ell}{q}\).)

\section*{Proof of Lemma 1}

The lemma for a fixed value of \(m\) is a corollary of the lemma applied to \(4m\). So, without loss of generality, we may assume from the start that \(m\) is divisible by 4. Let \(x = e^{2\pi i/m}\), \(y = x^s\) and \(z = x^{2^t}\). Note that \(y^{2^t} = 1 = z^s\). Since \(s\) and \(2^t\) are relatively prime in \(\mathbb{Z}\), \(\mathbb{Z}_m = \mathbb{Z}_s \times \mathbb{Z}_{2^t}\); for each exponent \(a\) there are \(u, v \in \mathbb{Z}\) such that \(x^a = y^u z^v\). Let \(R\) be the ring \(\mathbb{Z}[x] = \mathbb{Z}[y, z]\). By using the identity \(y^{2^t-1} = -1\) we can write any element of \(R\) in the form

\[
\sum_{j=0}^{2^{t-1}-1} k_j(z)y^j, \text{ with } k_j(z) \in \mathbb{Z}[z].
\] (1.11)

To see that this form is unique, we recall some facts about the Euler function and cyclotomic polynomials. The Euler function \(\phi(n)\) gives the number of positive integers \(r \leq n\) relatively prime to \(n\). The cyclotomic polynomial of \(e^{2\pi i/n}\) has order \(\phi(n)\), so that \(\mathbb{Z}[e^{2\pi i/n}]\) has exactly \(\phi(n)\) linearly independent elements over \(\mathbb{Z}\). Now \(\phi(s2^t) = 2^{t-1}\phi(s)\), since for a number to be relatively prime to \(s2^t\) it must be odd and relatively prime to \(s\). There are \(\phi(s)\) such numbers between 1 and \(2s\),
another $\phi(s)$ between $2s + 1$ and $4s$, and so on. But the form (1.11) requires exactly $2^{t-1}\phi(s)$ coefficients, $\phi(s)$ for each power of y. If any of these could be eliminated, $\mathbb{Z}[x]$ would be generated, as an abelian group, by fewer than $\phi(m)$ elements, which is a contradiction.

Consider each factor S^bT^a in the statement of the lemma. It is of the form

$$ST^a = \begin{pmatrix} 0 & -\tilde{s} & \tilde{c} \\ 0 & \tilde{c} & \tilde{s} \\ -1 & 0 & 0 \end{pmatrix}, \quad (1.12)$$

or

$$S^3T^a = \begin{pmatrix} 0 & \tilde{s} & -\tilde{c} \\ 0 & \tilde{c} & \tilde{s} \\ 1 & 0 & 0 \end{pmatrix}, \quad (1.13)$$

where $\tilde{c} = \cos(2\pi a/m) = (x^a + \bar{x}^a)/2$, $\tilde{s} = \sin(2\pi a/m) = (x^a - \bar{x}^a)/2i$. Writing x^a in the form $x^a = y^uz^v$, we distinguish each factor by whether $v \equiv 0 \pmod{s}$ or $v \not\equiv 0 \pmod{s}$. Let I be a maximal extension of the ideal $(1 + y) \subset R$.

We need two further lemmas, whose proofs we again defer.

Lemma 2: If $v \not\equiv 0 \pmod{s}$ when writing $x^a = y^uz^v$, the $(1, 2), (1, 3), (2, 2)$ and $(2, 3)$ entries of the matrix $2S^bT^a$ are in R but not in the maximal ideal I.

Lemma 3: If $x^a = y^u$, there is a power w such that the $(2, 2)$ entry of $(1+y)^wS^bT^a$, namely $(1+y)^w(y^u + y^{-u})/2$, is in R but not in the maximal ideal I. In particular, if $u = r2^k$, with r odd, then $w = 2t-1 - 2^{k+1}$. Similarly, the $(1, 2), (1, 3)$ and $(2, 3)$ entries of $(1+y)^wS^bT^a$ are also in R but not in I.

Now consider the matrix $F_iS^bT^a$, where F_i is either 2 or an appropriate power of $(1+y)$. (Note that $2 \in I$ since $2 = 1 - y^{2^{t-1}} = (1+y)(1-y+y^2-\cdots-y^{2^{t-1}-1})$.)

We have shown that, modulo I, this matrix takes the form

$$\begin{pmatrix} 0 & \alpha & \beta \\ 0 & \gamma & \delta \\ 0 & 0 & 0 \end{pmatrix}, \quad (1.14)$$

with $\alpha, \beta, \gamma, \delta$ nonzero elements of the field R/I. But the product of two (or more) matrices of this form again takes this form, so

$$FS^{b_1}T^{a_1}S^{b_2}T^{a_2}\cdots S^{b_n}T^{a_n}, \quad (1.15)$$

where F is the appropriate product of the F_i’s, again takes this form. Matrices in the group $G(4, 4, 1)$ are, up to sign, permutation matrices, so

$$FWS^{b_1}T^{a_1}S^{b_2}T^{a_2}\cdots S^{b_n}T^{a_n}E \quad (1.16)$$
has 4 matrix elements that are nonzero in R/I. But F times the identity matrix is clearly zero modulo I, so $WS^{b_1}T^{a_1}S^{b_2}T^{a_2}\cdots S^{b_n}T^{a_n}E$ can never equal the identity.

Proof of Lemma 2: We prove this first for the $(2,2)$ entry $x^a + x^{-a} = y^u z^v + y^{-u} z^{-v}$. Assume $y^u z^v + y^{-u} z^{-v} \in I$. Since $1 + y \in I$, $(-y)^u - 1 = -[1 + y][1 + (-y) + (-y)^2 + \cdots + (-y)^{u-1}] \in I$ and so $(-y)^u z^v - z^{-v} \in I$. Similarly, $(-y)^{-v} - 1 \in I$, so $(-y)^{-v} z^{-v} - z^{-v} \in I$. This implies, using $y^u z^v + y^{-u} z^{-v} \in I$, that $z^v + z^{-v} \in I$.

We now show that this implies $1 \in I$, which is a contradiction which proves the lemma for the $(2,2)$ entry.

Let $\bar{z} \equiv z^v \neq 1$. Note that $\bar{z}^s = 1$. Now $(\bar{z} + \bar{z}^{-1})(\bar{z}^2 + \bar{z}^{-3}) = (\bar{z} + \bar{z}^2 + \bar{z}^3 + \cdots + \bar{z}^{4k+4}) \in I$. We now consider two cases. If $s = 1$ (mod 4), take $k = (s - 5)/4$, obtaining that $\bar{z} + \bar{z}^2 + \bar{z}^3 + \cdots + \bar{z}^{s-1} \in I$. But $1 + \bar{z} + \bar{z}^2 + \bar{z}^3 + \cdots + \bar{z}^{s-1} = (1 - \bar{z}^s)/(1 - \bar{z}) = 0$, so $\bar{z} + \bar{z}^2 + \bar{z}^3 + \cdots + \bar{z}^{s-1} = -1$, which implies $1 \in I$. Alternatively, if $s = 3$ (mod 4) take $k = (s - 3)/4$, obtaining $\bar{z} + \bar{z}^2 + \bar{z}^3 + \cdots + \bar{z}^{s+1} \in I$. But using $1 + \bar{z} + \bar{z}^2 + \bar{z}^3 + \cdots + \bar{z}^{s+1} = (1 - \bar{z}^s)/(1 - \bar{z}) = 0$, $\bar{z} + \bar{z}^2 + \bar{z}^3 + \cdots + \bar{z}^{s+1} = \bar{z}^{s+1} = \bar{z}$, and if $\bar{z} \in I$ then $1 \in I$.

Now consider the other entries. The $(1,3)$ entry is just plus or minus the $(2,2)$ entry. The $(1,2)$ and $(2,3)$ entries are (up to sign) of the form $y^u z^v + y^{-u} z^{-v}$, where $u' = u + 2^t - 2$. The above argument, with u replaced by u', shows that these elements are in R but not in I.

Proof of Lemma 3: We essentially have to count the number w of factors $(1 + y)$ it takes so that $(1 + y)^w(y^u + y^{-u})$ is a multiple of 2 in $\mathbb{Z}[y]$. (It is important to note that this takes place in $\mathbb{Z}[y]$ not $\mathbb{Z}[x]$, as we shall see.) We first establish a few simple facts about powers of $(1 + y)$.

1. If c is a power of 2, then $(1 + y)^c = 1 + y^c = 1 - y^c$ (mod 2). In particular, $(1 + y)^{2^{t-1}} = 0$ (mod 2). (This follows from the binomial theorem).

2. If c is a power of 2, then $(1 \pm y^c)(1 + y)^{2^{t-1} - c} = 0$ (mod 2). (This follows from 1, applied first to c and then to 2^{t-1}.)

3. If c is a power of 2, then $(1 \pm y^c)(1 + y)^{2^{t-1} - c} \neq 0$ (mod 2). (The coefficient of $y^{2^{t-1} - 1}$ is ± 1, not a multiple of 2.)

Now we write

$$y^u + y^{-u} = y^{-u}(1 + y^{2u})$$

$$= y^{-u}(1 - y^{2k+1} + y^{2k+1} + y^{2u})$$

$$= y^{-u}(1 - y^{2k+1} + y^{2k+1-u}(1 - y^{2u-2k+1}) + 2y^u.

$$ (1.17)

The last term on the last line is always a multiple of 2. Now $2u - 2k+1 = \frac{(r-1)}{2}2^{k+2}$ so $1 - y^{2u-2k+1} = (1 - y^{2k+2})(1 + y + \cdots + y^{(r-1)2^{k+2}}).$ Therefore whenever $w \geq 2^{t-1} - 2^{k+2}$, $(1 + y)^w$ times the second term is divisible by 2. But $(1 + y)^w$ times the first term is divisible by 2 if and only if $w \geq 2^{t-1} - 2^{k+1}$. As a result,
(1 + y)^w(y^u + y^{-u}) is divisible by 2 when w = 2^t-1 - 2^{k+1}, but is not divisible by 2 when w = 2^t-1 - 2^{k+1} - 1.

Now let u' = u + 2^{t-2}, as before. Since k is, by assumption, less than t - 2, the power of (1 + y) needed to make y^{u'} + y^{-u'} divisible by 2 is the same as that needed to make y^u + y^{-u} divisible by 2.

So we have determined the critical power w such that multiplying by (1 + y)^w puts the matrix elements in \(\mathbb{Z}[y] \) but not in the ideal \((1 + y)_0\) in \(\mathbb{Z}[y] \) generated by 1 + y. (1 + y)_0 is a maximal ideal in \(\mathbb{Z}[y] \) since \(\mathbb{Z}[y]/(1 + y)_0 \) is the field \(\mathbb{Z}_2 \). Since \(I \cap \mathbb{Z}[y] \) must be a proper ideal in \(\mathbb{Z}[y] \), \(I \cap \mathbb{Z}[y] \) must coincide with \((1 + y)_0\), and so the matrix elements cannot be in \(I \).

This completes the proof of Theorem 1.

§2. Canonical forms for \(G(p,q) \)

In this section we construct canonical forms for elements of the groups \(G(p,q) \). Since \(G(p,q) \) is always a subgroup of \(G(pq,4,1) \), we first construct a canonical form for elements of \(G(m,4,1) \), where \(m \) is an arbitrary integer (Theorem 2). This is most useful when \(p \) and \(q \) are both divisible by 4, for in that case \(G(p,q) = G(lcm(p,q),4,1) \). In the remaining cases, where \(p \) or \(q \) is not divisible by 4, Theorem 3 provides canonical forms for elements of \(G(p,q) \) as products of the generators of \(G(p,q) \).

As before, we take \(S = R_y^{2\pi/4} \) and \(T = R_x^{2\pi/m} \). We also define \(U = R_x^{2\pi/4} \). Note that \(S \) and \(U \) generate \(G(4,4,1) = G(4,4,4) \).

Theorem 2: Canonical form for \(G(m,4,1) \)

Let \(H = G(4,4,1) \cap G(m,4,1) \). Let \(g \) be an arbitrary element of \(G(m,4,1) \). Then \(g \) can be uniquely written in the form

\[
g = WST^{a_1} \cdots ST^{a_n} E,
\]

for some \(n \geq 0 \), where \(W \) and \(E \) are elements of \(H \), \(a_i \) is an integer, and the following restrictions are applied:

1. If \(m \) is odd, \(W \in \{ I, S^3 \} \), \(a_i \in (-\frac{m}{2}, \frac{m}{2}) \), and \(a_i \neq 0 \).
2. If \(m \) is twice an odd number, \(W \in \{ I, S^3 \} \), \(a_i \in (-\frac{m}{4}, \frac{m}{4}) \) and \(a_i \neq 0 \).
3. If \(m \) is divisible by 4, \(W \in \{ I, S^3, U \} \), \(a_i \in (-\frac{m}{4}, \frac{m}{4}) \), \(a_i \neq 0 \), and \(a_n \in (0, \frac{m}{4}) \).
4. If \(n = 0 \), then \(W = I \).

Remark 1: Since \(G(m,4,1) \subset G(2m,4,1) \subset G(4m,4,1) \), one could write any element \(g \) of \(G(m,4,1) \) using the canonical form for \(G(4m,4,1) \). However, if \(m \) is not divisible by 4, this would typically involve writing \(g \) as a product of matrices that are not themselves in \(G(m,4,1) \).

Remark 2: The allowed values of \(W \) can be understood as follows. There is a subgroup \(H_1 \) of \(H \) that can be commuted (or anticommuted) past powers of \(ST^a \),
or absorbed into ST^a. Factors in H_1 can be removed from W and either absorbed into ST^{a_1} or transferred all the way from W to E. The allowed values of W are representatives of the cosets in H/H_1.

If m is odd, then $H = \mathbb{Z}_4$, generated by S. In this case $H_1 = \mathbb{Z}_2$, generated by S^2, and $H = H_1 \cup S^3H_1$. If m is twice an odd integer, then H is the 8-element group generated by S and U^2, H_1 is the 4-element subgroup generated by S^2 and U^2, and once again $H = H_1 \cup S^3H_1$. If m is divisible by 4, then $H = G(4, 4, 1)$ is the 24-element group generated by S and U, H_1 is the 8-element subgroup generated by S^2 and SU, and $H = H_1 \cup S^3H_1 \cup UH_1$.

Remark 3: When m is divisible by 4, the canonical form (2.1) is closely related to the amalgamated free product (1.7). The nontrivial cosets of $G(4, 4)/D_4$ are represented by S and SU^{-1}, while the nontrivial cosets of D_m/D_4 are represented by T^a, with $a \in (0, \frac{m}{4})$. Multiplying these together we get ST^a, with a nonzero and in $(-\frac{m}{4}, \frac{m}{4})$.

Proof: The proof is an application of two lemmas, which are proved below:

Lemma 4: Any element of $G(m, 4, 1)$ can be put in the form (2.1).

Lemma 5: If $g \in G(m, 4, 1)$ is in the form (2.1), there is at most one expression g' in the form (2.1) such that that $gg' = 1$.

By Lemma 4, representatives for g and g^{-1} always exist. Applying Lemma 5 to g^{-1} we see that the representation for $g = (g^{-1})^{-1}$ is unique, and the theorem is proved.

Proof of Lemma 4: There are 3 cases to consider, depending on whether m is odd, twice an odd number, or divisible by 4. In all cases we assume that g is not in H, since if $g \in H$ we can simply take $W = \mathbb{I}$, $n = 0$, $E = g$.

Let m be odd. Any element g of $G(m, 4, 1)$ can be written as a word in the generators S and T, and hence takes the form

$$g = S^{b_1}T^{a_1}S^{b_2}T^{a_2}\ldots S^{b_N}T^{a_N}S^{b_{N+1}},$$

(2.2)

with no restrictions on N or b_i or a_i. By applying the relations $S^4 = T^m = \mathbb{I}$, we can force each $a_i \in (-\frac{m}{2}, \frac{m}{2})$, $b_i \in \{0, 1, 2, 3\}$. If any $a_i = 0$ or $b_i = 0$, we can collapse the expression into a shorter word and proceed as before. If any $b_i = 2$, we can use the relation

$$S^2T^a = T^{-a}S^2$$

(2.3)

to shorten the word further. Since the word has finite length, this process must terminate, leaving us with an expression of the form

$$g = S^{b_1}T^{a_1}\ldots S^{b_n}T^{a_n}S^{b_{n+1}},$$

(4.4)

where each b_i, with the possible exception of b_1 and b_{n+1}, is odd, and each $a_i \in (-\frac{m}{2}, \frac{m}{2})$ and is nonzero. Next we force b_1 to equal 0 or 1 by using (2.3), if needed, to push a factor of S^2 past T^{a_1}. We then force $b_2 = 1$ by possibly using (2.3) to
push a factor of S^2 past T^{a_2}. Continuing in this way we can make all the b_i’s equal to 1, with the possible exceptions of b_1, which can equal 0 or 1, and b_{n+1}, which is not constrained. Define $W = S^{b_1 - 1}$, $E = S^{b_{n+1}}$. Our element g then takes the form (2.1).

Note that the specific numbers a_i may be changed in converting from the form (2.2) to (2.4) to (2.1). In our usage a_i does not denote a fixed number; rather, it denotes the i-th exponent of T in a typical expression.

Now suppose that m is twice an odd number. We proceed as before to reach the form (2.4), with b_1 odd and $a_i \in (-\frac{m}{4}, \frac{m}{4})$ and nonzero. We then use the relation

$$T^{m/2}S^b = S^{4-b}T^{m/2},$$ \hspace{1cm} (2.5)$$
as needed, to eliminate factors of $T^{m/2}$ and to make each $a_i \in (-\frac{m}{4}, \frac{m}{4})$. We begin with a_1, possibly using (2.5) to push $T^{m/2}$ past S^{b_2}, then forcing a_2 into $(-\frac{m}{4}, \frac{m}{4})$ by possibly using (2.5) to push $T^{m/2}$ past S^{b_3}, and so on. In this way all the a_i’s, with the possible exception of a_n, can be put in $(-\frac{m}{4}, \frac{m}{4})$. Then we use (2.3) to make all the b_i’s, with the same exceptions for b_1 and b_{n+1} as before, equal to 1. Note that minus a nonzero integer in $(-\frac{m}{4}, \frac{m}{4})$ is another nonzero integer in $(-\frac{m}{4}, \frac{m}{4})$, so fixing the b_i’s does not disrupt the form of the a_i’s.

This gives us an expression of the form (2.4), with each $a_i \in (-\frac{m}{4}, \frac{m}{4})$ and nonzero, except a_n, which is nonzero and in $(-\frac{m}{4}, \frac{m}{4})$, and with each $b_i = 1$, except for b_1 which may equal 0 or 1, and b_{n+1} which is arbitrary. As before, define $W = S^{b_1 - 1}$. If $a_n \in (-\frac{m}{4}, \frac{m}{4})$, define $E = S^{b_{n+1}}$; otherwise, define $E = T^{m/2}S^{b_{n+1}}$. This puts us in the form (2.1).

Finally, suppose that m is divisible by 4. We proceed as before to the form (2.4), with b_i odd and a_i not divisible by $m/2$. If any of the a_i’s (other than a_1 or a_n) is divisible by $m/4$, we can reduce the length of the word further, as follows. First use (2.3) to set $b_i = b_{i+1} = 1$. Then use one of the relations

$$SUS = USU; \hspace{1cm} SU^3S = U^3SU^3$$ \hspace{1cm} (2.6)$$
to change $T^{a_{i-1}}ST^{\pm m/4}ST^{a_{i+1}}$ to $T^{a_{i-1}}\pm \frac{m}{4}ST^{a_{i+1}}\pm \frac{m}{4}$. This may result in an exponent that is divisible by $m/2$, in which case we use (2.5) to reduce the word length further. Since the original word has finite length, we eventually reach the form (2.4) where none of the a_i’s, possibly excepting a_1 and a_n is divisible by $m/4$.

If a_1 is divisible by $m/4$ we define $\tilde{W} = S^{b_1}T^{a_1}$; otherwise $\tilde{W} = S^{b_1 - 1}$. If a_n is divisible by $m/4$ we define $\tilde{E} = ST^{a_n}S^{b_{n+1}}$; otherwise $\tilde{E} = S^{b_{n+1}}$. In any case, we now have g in the form

$$\tilde{W}S^{b_1}T^{a_1} \ldots S^{b_{n+1}}T^{a_n}\tilde{E},$$ \hspace{1cm} (2.7)$$
with \tilde{W} and \tilde{E} in $H = G(4,4,4)$, with b_i odd and with a_i not divisible by $m/4$.

This is almost of the form (2.1). To achieve the necessary restrictions on W, E, a_i and b_i, we work from left to right, pushing undesired factors rightwards. Let
H_1 be the 8-element subgroup of H generated by S^2 and SUS^{-1}. Of these two generators, S^2 can be commuted past a factor S^{bT^a} (changing it to $S^{bT^{-a}}$), while SUS^{-1} can be absorbed into a factor of ST^a:

$$SUS^{-1}ST^a = SUT^a = ST^a + \frac{a}{m},$$

(2.8)

without changing the fact that a is not divisible by $\frac{m}{4}$. Factors in H_1 can thus be removed from \hat{W} and moved rightwards. Since $H = H_1 \cup S^3H_1 \cup UH_1$, we can change \hat{W} to I, S^3 or U, which we then call W. Then, working left to right, we use (2.3) to change some b_i's from 3 to 1 and use (2.5) to place the a_i's in the range $(-\frac{m}{4}, \frac{m}{4})$. Finally, if $a_n < 0$, we define E to be $U^{-1}\bar{E}$ (otherwise $E = \bar{E}$). By factoring out U^{-1}, we put $a_n \in (0, \frac{m}{4})$, and we have achieved the form (2.1).

Proof of Lemma 5: Suppose that we have $g = WST^{a_1} \cdots ST^{a_n}E$, and that $g^{-1} = W'S^{a'_1} \cdots ST^{a'_n}E'$, with appropriate restrictions on W, a_i, E, W', a'_i, E'. We will show that there is a unique choice of W', n', a'_i and E'. Any other choices will allow us to turn the expression $WST^{a_1} \cdots ST^{a_n}E$ into something of the general form

$$WS^{b_1}T^{a_1} \cdots S^{b_n}T^{a_n}E,$$

(2.9)

with b_i odd, a_i not divisible by $m/4$, and $W, E \in H$. By Lemma 1, such an expression is not equal to I, contradicting the equation $gg^{-1} = I$. As usual, the details depend on whether m is odd, twice odd, or divisible by 4.

Suppose m is odd. We must choose W' such that $EW'S$ is an even power of S. If this choice is not made, then $WST^{a_1} \cdots ST^{a_n}(EW'S)T^{a'_1} \cdots ST^{a'_n}E'$ is of the form (2.9). Since $W' \in \{I, S^3\}$, there is exactly one right choice.

Now, since $EW'S$ is an even power of S, it can be commuted past all the ST^{a_i} factors, leaving us with the form $WST^{a_1} \cdots ST^{a_n}T^{a'_1} \cdots ST^{a'_n}E'$, where the new a_i's are \pm the old ones, and the new E' is $EW'S$ times the old one. If $a_n + a'_1 \neq 0$, then we are again of the form (2.9), so we must have $a'_1 = -a_n$. We again push a factor of S^2 all the way to the right, and find that there is a unique value of a'_2 such that we again avoid the form (2.9). This process continues, with each a'_i determined by a_{n+1-i} and the history of what has passed before. We cannot have $n' \neq n$, as that would leave some powers of ST^a (or $ST^{a'_i}$) that are not cancelled. If $n = n'$ and each a'_i is chosen correctly, we eventually reach the form $W \times$(transferred powers of $S) \times E'$. There is clearly a unique choice of E' that makes this equal unity.

Now suppose m is twice an odd number. The argument is almost identical. E is a power of S, possibly times U^2. As before, if that power is odd, we must choose $W' = I$, while if that power is even we must choose $W' = S^3$. If this choice is not made, we can commute any U^2 factors to the right and achieve the form (2.9), which would not be the identity. If this choice is made, then $EW'S$ is an even power of S, possibly times U^2, and can be commuted past all the $ST^{a'_i}$ factors. The argument then proceeds precisely as before, with each a'_i determined by a_{n-i+1}, and with E' determined by what remains after the ST^a factors are all cancelled.
The same line of reasoning works for \(m \) divisible by 4, with a few extra steps to deal with complications coming from powers of \(U \). Recall that we have the 8-element subgroup \(H_1 \) of \(H \), generated by \(SUS^{-1} \) and \(S^2 \), of elements that can be commuted past (or absorbed into) \(ST^a \). We write \(gg^{-1} \) as \(WST^{a_1} \cdots ST^{a_n}S^{-1}(SEW')ST^{a_1'} \cdots ST^{a_{n'}'}E' \). \(SEW' \) can be expressed as \(xh \), where \(x \in \{ \mathbb{I}, S^3, U \} \) and \(h \) is an element of \(H_1 \). We can push \(h \) all the way to the right, getting an expression of the form

\[
WST^{a_1} \cdots ST^{a_n}S^{-1}xST^{a_1'} \cdots ST^{a_{n'}'}E'.
\]

(2.10)

If \(x = S^3 \), this is of the form (2.9) and cannot equal the identity. If \(x = U \), we use the identity \(S^{-1}US = U^3S^3U \) and absorb the powers of \(U \) into \(T^{a_n} \) and \(T^{a_1} \) to put this in the form (2.9). Thus the only way to have \(gg^{-1} = \mathbb{I} \) is to have \(x = \mathbb{I} \), or equivalently for \(SEW' \in H_1 \). It is straightforward to check that, for each possible \(E \in H \), there is a unique \(W' \in \{ \mathbb{I}, S^3, U \} \) such that \(SEW' \in H_1 \).

Once \(W' \) is chosen and \(h \) is pushed to the right, we have an expression of the form \(WST^{a_1} \cdots ST^{a_n}T^{a_1'} \cdots ST^{a_{n'}'}E' \), where the new \(a \)'s and \(E \)'s are determined in a 1–1 way by the old ones. If \(a_n + a_1' \) is not divisible by \(m/4 \), this is of the form (2.9) and cannot equal unity. Since \(a_1' \in (-\frac{m}{4}, \frac{m}{4}) \), there are exactly two values of \(a_1' \) for which \(a_n + a_1' \) is divisible by \(m/4 \), one of which has \(a_n + a_1' = 0 \), the other of which has \(a_n + a_1' = \pm m/4 \). If \(a_n + a_1' = \pm m/4 \), we use the identity (2.6), and the fact that neither \(a_{n-1} \) nor \(a_2' \) is a multiple of \(m/4 \), to achieve the form (2.9). Thus we must have \(a_1' = -a_n \).

Similarly, \(a_2' \) is determined by \(a_{n-1} \), and so on. As before, we must have \(n = n' \). After \(n - 1 \) cancellations we are left with

\[
WST^{a_1}T^{a_n}(\text{transferred powers of } S^2)hE'.
\]

(2.11)

At this point the argument that \(a_1 + a_1' \neq \pm m/4 \) breaks down. However, \(a_n' \) is restricted to \((0, \frac{m}{4}) \). Either \(-a_1 \) or \(\frac{m}{4} - a_1 \), but not both, lie in \((0, \frac{m}{4}) \). This is the only possible value of \(a_n' \) that keeps (2.11) from being of the form (2.9). Once this choice is made, \(WST^{a_1}T^{a_n'}(\text{transferred powers of } S^2)h \in H \), and \(E' \) must be chosen to be the inverse of this element.

We now turn to canonical forms for \(G(p, q) \) in general. As before, let \(A = \mathbb{R}_x^{2\pi/p} \) and let \(B = \mathbb{R}_z^{2\pi/q} \). If \(p \) and \(q \) are both odd, then \(G(p, q) \) is a free product, and every element can be uniquely written in the form

\[
A^{a_1}B^{b_1} \cdots A^{a_n}B^{b_n},
\]

(2.12)

with \(a_i \in (-\frac{p}{2}, \frac{p}{2}) \), \(b_j \in (-\frac{q}{2}, \frac{q}{2}) \), and all exponents, except perhaps \(a_1 \) and \(b_n \), nonzero. If \(p \) and \(q \) are both divisible by 4, then \(G(p, q) = G(lcm(p, q), 4, 1) \), and a canonical form is provided by Theorem 2. But what if \(p \) is even and \(q \) is not divisible by 4? Here we define three canonical forms in such cases. Depending on the application, one or another of these forms may be most useful.
Definition: Let p and q be positive integers ≥ 3 with p even and q not divisible by 4.

A product (2.12), with all exponents nonzero except perhaps a_1 and b_n, is in L-canonical form if: For $i > 1$, $a_i \in (-\frac{p}{4}, \frac{p}{4}]$; $a_1 \in (-\frac{p}{2}, \frac{p}{2}]$; $b_1 \in (-\frac{q}{2}, \frac{q}{2}]$, and may equal $q/2$ only if $n = 1$; for $j > 1$, $b_j \in (-\frac{q}{2}, \frac{q}{2}]$ if q is odd and $b_j \in (-\frac{q}{4}, \frac{q}{4}]$ if q is even.

A product (2.12), with all exponents nonzero except perhaps a_1 and b_n, is in R-canonical form if: For $i < n$, $a_i \in (-\frac{p}{4}, \frac{p}{4}]$; $a_n \in (-\frac{p}{2}, \frac{p}{2}]$, and may equal $p/2$ only if $n = 1$; $b_n \in (-\frac{q}{2}, \frac{q}{2}]$; for $j < n$, $b_j \in (-\frac{q}{2}, \frac{q}{2}]$ if q is odd and $b_j \in (-\frac{q}{4}, \frac{q}{4}]$ if q is even.

A product (2.12), with all exponents nonzero except perhaps a_1 and b_n, is in C-canonical form if: For $i > 1$, $a_i \in (-\frac{p}{4}, \frac{p}{4}]$; $a_1 \in (-\frac{p}{2}, \frac{p}{2}]$; $b_n \in (-\frac{q}{2}, \frac{q}{2}]$; for $j < n$, $b_j \in (-\frac{q}{2}, \frac{q}{2}]$ if q is odd and $b_j \in (-\frac{q}{4}, \frac{q}{4}]$ if q is even.

The differences between the canonical forms is just a matter of where to put factors of R_x^π and R_z^π. In L-canonical form they are placed at the left, in R-canonical form they are placed at the right, and in C-canonical form R_x^π is moved left and R_z^π is moved right. If q is odd, R_z^π does not appear, and the L- and C-canonical forms coincide.

Theorem 3: Canonical forms for $G(p,q)$

Let p and q be positive integers ≥ 3 with p even and q not divisible by 4. Each element of $G(p,q)$ can be uniquely written in L-canonical form, and uniquely written in R-canonical form, and uniquely written in C-canonical form.

Proof: The proof has several steps, and is quite similar in spirit to the proof of Theorem 2. First we show that any element of $G(p,q)$ can be put into each of the canonical forms. Next we show that the only R-canonical form for the identity element is A^0B^0. Then we show that R-canonical forms are unique, by showing that each element in L-canonical form has a unique inverse in R-canonical form. Finally we show that L-canonical and C-canonical forms are unique by relating them to R-canonical forms of the same length.

Step 1: Since A and B generate $G(p,q)$, and since $A^p = B^q = I$, any element of $G(p,q)$ can be written in the form (2.12) with each $a_i \in (-\frac{p}{2}, \frac{p}{2}]$, each $b_j \in (-\frac{q}{2}, \frac{q}{2}]$, and with all terms except a_1 and b_n nonzero. If any a_i's except a_0 equal $p/2$, we can shorten the word using the identity $A^aB^bA^{p/2}B^{b'} = A^{a'+\frac{p}{2}}B^{-b}$. Similarly, if any b_j other than b_n equals $q/2$, we can shorten the word with the identity $A^aB^bA^{q/2}B^{a'} = A^{a-d'}B^{b+\frac{q}{2}}$. Thus we can achieve the form (2.12) in which for $i > 1, 0 \neq a_i \in (-\frac{p}{2}, \frac{p}{2}]$ and for $j > n, 0 \neq b_j \in (-\frac{q}{2}, \frac{q}{2}]$.

Suppose q is odd. To put our expression in L-canonical (or C-canonical) form, we must adjust the exponents a_j, $a > 1$ that are not in $(-\frac{p}{2}, \frac{p}{2}]$ by $\pm p/2$, using the identity $A^{a_{i-1}}B^aA^{a_i+\frac{p}{2}} = A^{a_{i-1}+\frac{p}{2}}B^{-b}A^a$. We begin by adjusting a_n at the expense of a_{n-1} and b_{n-1}, then adjust a_{n-1} at the expense of a_{n-2} and b_{n-2}, and continue until all the a_i's, except perhaps a_1, are in $(-\frac{p}{4}, \frac{p}{4}]$. In the process some
R-canonical form. We write g

Step 3: separately checked to not equal the identity.

A original word was so that all but the first (for L-canonical) or last (for C-canonical or R-canonical) b_i lie in $(-\frac{q}{4}, \frac{q}{4})$. One then adjusts the a_i's, as above. Since the condition $b_j \in (-\frac{q}{4}, \frac{q}{4})$ is equivalent to $-b_j \in (-\frac{q}{4}, \frac{q}{4})$, adjusting the a_i's does not disrupt the form of the b_j's. Again, it should be clear that converting from one canonical form to another does not change the length of the word.

Step 2: We must show that a nontrivial word in R-canonical form cannot equal the identity. This is essentially a repeat of an argument in the proof of Theorem 1. Embed $G(p,q)$ in $G(m,4,1)$, where $m = pq$. $G(m,4,1)$ is generated by $T = R_x^{2\pi/m}$ and $S = R_y^{\pi/2}$. Note that $A = T^q$ and $B = ST^pS^3$. Rewrite any nontrivial word in A and B as a word in S and T. Although the powers of S in this word are all odd, the expression is not quite in the form (2.9), as some $T^{m/4}$ factors may appear. These are removed with the identity $T^b S^3 T^{m/4} S T^{b'} = T^{b - \frac{m}{4}} S^3 T^{b'} + \frac{m}{4}$. Unless the original word was $A^{(0 \text{ or } \frac{1}{2})} B^{(0 \text{ or } \frac{1}{2})}$, the result is of the form (2.9), and by Lemma 1 is not the identity. The three special cases $A^{p/2}B^0$, $A^0B^{q/2}$ and $A^{p/2}B^{q/2}$ are separately checked to not equal the identity.

Step 3: We show that every word in L-canonical form has at most one inverse in R-canonical form. We write $g = A^{a_1}B^{b_1} \cdots A^{a_n}B^{b_n}$, $g^{-1} = A^{a'_1}B^{b'_1} \cdots A^{a'_n}B^{b'_n}$, where g is in L-canonical form and g^{-1} is in R-canonical form. We show that, unless the a's and b's are all chosen correctly, the product gg^{-1} can be placed in a nontrivial R-canonical form, and so cannot equal unity. We proceed by induction.

Uniqueness of inverses is easy to check for $n = 1$. The unique inverse for A^aB^b, with a and b both nonzero, is $A^0B^{-b}A^{-a}B^0$, unless q is even and $b \not\in (-\frac{q}{4}, \frac{q}{4})$, in which case the unique inverse is $A^0B^{\frac{q}{4} - b}A^b$. The unique inverse to A^aB^0 is $A^{-a}B^0$, the unique inverse to A^0B^b is A^0B^{-b}, and the unique inverse to A^0B^0 is A^0B^0.

Now assume the assertion is proved for $n = k$ and that we have an expression g of length $n = k + 1$. If $b_n = 0$, we must have $a'_1 = -a_n$ (unless $a_n = p/4$, in which case $a'_1 = p/4$), as $gg^{-1} = A^{a_1}B^{b_1} \cdots A^{a_n + a'_1}B^{b'_1} \cdots A^{a'_n}$. If a'_1 is chosen incorrectly, the exponent $a_n + a'_1$ is not divisible by $p/2$, so, by transferring powers of $A^{p/2}$ and $B^{q/2}$ from left to right, this expression can be placed in nontrivial R-canonical form, and so cannot equal I. Once a'_1 is chosen correctly, $gA^{a'_1}$ is a word of length $n - 1 = k$. It may be converted to L-canonical form and so, by the inductive hypothesis, its inverse in R-canonical form is uniquely determined. But
its inverse is precisely $A_0 B^{b_1} \cdots A_{a_{n'}} B^{b_{n'}}$, so b_1, a_2, etc., are uniquely determined.

If $b_n \neq 0$, we must have $a_1 = 0$, or else $gg^{-1} = A^{a_1} B^{b_1} \cdots A^{a_n} B^{b_n} A^{a_1'} B^{b_1'} \cdots A^{a_{n'}}$, could similarly be massaged into nontrivial R-canonical form. By the same argument, we also must have $b_1' = -b_{n'}$. But then $gB^{b_1'}$ is a word of length $k + 1$ with final exponent zero, and its inverse is uniquely determined by the argument of the previous paragraph.

Since every element $g \in G(p, q)$ can be put in L-canonical form, this shows that each element $g \in G(p, q)$ has a unique inverse in R-canonical form. Thus $g = (g^{-1})^{-1}$ has a unique R-canonical form.

Step 4: We count the number of words of length n for any particular form by multiplying the number of choices for each a_i and each b_j. This number equals $pq \left(\frac{p}{2} - 1 \right)^{n-1} (q - 1)^{n-1}$ if q is odd, and $pq \left(\frac{p}{2} - 1 \right)^{n-1} \left(\frac{q}{2} - 1 \right)^{n-1}$ if q is even, and is the same for R-canonical, L-canonical and C-canonical forms.

Now consider the set of R-canonical forms of length n or less. We have already shown that these can be converted to L-canonical forms of length n or less. Since the number of L-canonical forms equals the number of R-canonical forms, and since each R-canonical form corresponds to a distinct element of $G(p, q)$, each L-canonical form is achieved in this way exactly once. Thus distinct L-canonical forms of length n or less correspond to distinct R-canonical forms, and hence to distinct elements of $G(p, q)$. Since n is arbitrary, this shows that L-canonical forms are unique. A similar argument shows that C-canonical forms are unique. ■

§3. Dite and kart tilings

We construct here 3-dimensional tilings with symmetry group $G(10, 4)$, based on a version of the 2-dimensional kite and dart tilings. The new tilings consist of congruent copies of 8 elementary prisms, constructed as follows.

Consider the two right triangles of Fig. 1 which we denote by δ and κ. δ has legs of lengths 1 and $\tau \sqrt{2 + \tau}$ and κ has legs of lengths τ and $\sqrt{2 + \tau}/\tau$, where $\tau = (1 + \sqrt{5})/2$, the golden mean. (The triangles δ and κ are halves of the triangles S_A and S_B introduced by Raphael Robinson in his version of the kite and dart tilings [GrS].) It is elementary to check that the small angle in δ is $\pi/10$ and the small angle in κ is $\pi/5$. We next introduce triangles $\tilde{\delta}$ and $\tilde{\kappa}$ which are larger than δ and κ by a linear factor τ.

The constructions in Fig. 1 (called deflation rules) then show how these 4 triangles can be decomposed into congruent copies of triangles which are each a linear factor τ^2 smaller than δ, κ, $\tilde{\delta}$ and $\tilde{\kappa}$.

We thicken δ by two different depths to make two types of prisms, a “short thin dite” of depth 1 and a “short thick dite” of depth τ. Likewise from $\tilde{\delta}$ we make a “tall thin dite” of depth 1 and a “tall thick dite” of depth τ. Finally, replacing δ by κ we make the analogous 4 types of “karts”.

14
We now make deflation rules for the prisms as follows, again shrinking by a linear factor of τ^2. We begin with the karts.

The short thin kart is deflated into a pair of layers. The “top” layer consists of short thin dites and karts which, when viewed from above, have the same pattern as the deflated 2-dimensional κ (Fig. 1). The bottom layer consists of short thick dites and karts in the same pattern. Since $\tau^2 = 1 + \tau$, the sum of the thicknesses of the two layers equals the thickness of the original thin kart.

The rule for the short thick kart is similar, only we now use 3 layers of short dites and karts; a top thin layer and 2 thick lower layers. Since $\tau = (1 + 2\tau)/\tau^2$, the total thickness of the deflated layers equals the thickness of the original thick kart.

The rules for the tall thin and thick karts are now immediate, replacing the short dites and karts in the deflation of $\tilde{\kappa}$ by tall dites and karts.

The rule for deflating dites uses the deflation of δ and $\tilde{\delta}$ rather than that of κ and $\tilde{\kappa}$, with one added twist, based on the rectangles appearing in the deflations of δ and $\tilde{\delta}$ (Fig. 1). As with karts, the thin dites deflate into 2 layers and the thick ones into 3 layers. The deflation of each dite generates 2 or 3 parallelepipeds corresponding to the aforementioned rectangle. If the original dite is short, then the parallelepiped in the thin layer has 2 square faces, while if the original dite is tall, the parallelepipeds in the thick layers have 2 square faces. We then rotate the parallelepiped by $\pi/2$ about the axis joining the centers of the square faces, as in Fig. 2. This completes the deflation rules.

Given these deflation rules, the dite and kart tilings are obtained as follows. We begin with any one of the 8 prisms, say a short thick dite, deflate it, then expand the 10 resulting small prisms linearly by a factor τ^2 about some point. Next reposition the 10 prisms so that a copy of a short thick dite is sitting over the original position. By indefinitely repeating this process of deflation-expansion-repositioning one obtains the desired tilings of space.

What is the group of relative orientations for each species of tile? Since each species of tile, when deflated several times, gives rise to all species of tiles, the group does not depend on the species. We show that this group is $G(10, 4)$.

In the 2-dimensional δ-κ tiling, the group is D_{10}. One can see two δ tiles that differ by a rotation by π in the deflation of $\tilde{\delta}$. In the deflation of κ one sees two δ tiles that differ by reflection, and two δ tiles that differ by rotation by $6\pi/5$. The reflection and these two rotations generate D_{10}.

In the 3-dimensional dite-and-kart tiling, one has the same generators, plus the twist of the square-faced parallelepipeds. The twist introduces a rotation by $\pi/2$ about a perpendicular axis, and extends the group to $G(10, 4)$.

§4. Algebraic and Transcendental Rotations

So far we have considered groups generated by rotations by angles that are
rational multiples of 2π. In this next example we consider rotations by irrational multiples of 2π. Our first example comes from a 3-dimensional version of the pinwheel tiling [Rad] (Fig. 3).

Consider the right triangle ϕ with legs 1 and 2, and the deflation of it given in Fig. 4, which decomposes ϕ into 25 congruent triangles each similar to ϕ and smaller by a linear factor of 5. We fatten ϕ by width 1 to make a triangular prism we call the “wedge”. We now give a deflation rule for the wedge, consisting of 5 identical layers each looking almost like Fig. 4 from one direction but with an added complication similar to that which arose in the deflation rules for dites.

Note the heavily outlined rectangle in Fig. 4 consisting of 2 small triangles meeting along their hypothenuses. When these triangles are fattened to become wedges and appear in the 5 layers of the deflation rule for a wedge, these pairs of wedges do not appear in their original orientations but are first rotated about the axes joining the centers of their square faces, just as we did for dites.

Given this deflation rule for wedges, “wedge tilings” are made by infinite repetition of deflation-expansion-repositioning, just as for dite and kart tilings. We now analyze the relative orientations of the wedges in such a tiling.

Let $\nu = 2 \tan^{-1}(\frac{1}{2}) = \tan^{-1}(\frac{4}{3})$. In the 2 dimensional pinwheel tiling, the group of relative orientations is generated by rotation by ν, rotation by $\pi/2$ and reflection. In the 3 dimensional wedge tiling, the group is generated by $R^{\nu}_x, R^{\pi/2}_x$ and $R^{\pi/2}_y$. We consider the subgroup $G(\nu, 4, 1)$ generated by $S = R^{\pi/2}_y$ and $T = R^{\nu}_x$, and the further subgroup $G(\nu, 1, \nu)$. Our results are extremely similar to the rational case:

Lemma 6: An expression of the form

$$WS^{b_1}T^{a_1} \cdots S^{b_n}T^{a_n}E,$$ \hspace{1cm} (4.1)

with $W, E \in G(1, 4, 1)$, each b_i odd, each a_i nonzero, and $n > 0$, cannot equal the identity matrix.

Theorem 4: The group $G(\nu, 4, 1)$ generated by T and S has the presentation $< \alpha, \beta : \beta^3, \beta^2\alpha\beta^2\alpha >$, with the identification $\alpha \rightarrow T$, $\beta \rightarrow S$.

Corollary 3: The subgroup $G(\nu, 1, \nu)$ of $G(\nu, 4, 1)$ is isomorphic to a free group on two generators, with the generators corresponding to T and $S^{-1}TS$.

Remark: It is a well-known result of Stanislaw Swierczkowski that, if $\cos(\theta)$ is rational and not equal to 0, $\pm\frac{1}{2}$ or ±1, $G(\theta, 1, \theta)$ is isomorphic to the free group $< \alpha, \beta >$, with $\alpha \rightarrow R^{\theta}_x$ and $\beta \rightarrow R^{\theta}_z$ [Swi]. Since $\cos(\nu) = 3/5$, Corollary 3 is a special case of Swierczkowski’s theorem.

Proof of Lemma 6: As in the proof of Lemma 1, we consider products F_aST^a, where F_a is a numerical factor, show that all the matrix elements live in a certain ring R, and show that the $(1,2)$, $(1,3)$, $(2,2)$, and $(2,3)$ elements (and only these elements) fail to live in a certain maximal ideal I. In this case $R = \mathbb{Z}$, I is the principal ideal (5), $R/I = \mathbb{Z}_5$ and $F_a = 5^{\lfloor |a| \rfloor}$.

16
The cosine and sine of \(n\nu \) are the real and imaginary parts of \((3+4i)^n/5^n\). Now, if \(n > 0 \), the real and imaginary parts of \((3+4i)^n\) equal 3 and 4 (mod 5), respectively. Thus, for any positive \(a \), \(5^a \cos(a\nu) \) and \(5^a \sin(a\nu) \) are integers but not divisible by 5, while for \(a < 0 \), \(5^{-a} \cos(a\nu) = 5^{-a} \cos(-a\nu) \) and \(5^{-a} \sin(a\nu) = -5^{-a} \sin(a\nu) \) are integers but not divisible by 5. Since \(F^{b_1}T^{a_1} \) takes the form (1.12) or (1.13), \(F_{a_i}S^{b_i}T^{a_i} \) takes the form

\[
\begin{pmatrix}
0 & \epsilon & \beta \\
0 & \gamma & \delta \\
0 & 0 & 0
\end{pmatrix}
\pmod{5},
\tag{4.2}
\]

with \(\epsilon, \beta, \gamma, \delta \) nonzero elements of \(\mathbb{Z}_5 \). But the product of two (or more) matrices of this form again takes this form, so \(F S^{b_1}T^{a_1}S^{b_2}T^{a_2} \ldots S^{b_n}T^{a_n} \), where \(F \) is the appropriate product of the \(F_{a_i} \)'s, again takes this form. Matrices in the group \(G(1, 4, 1) \) are, up to sign, permutation matrices, so \(F W S^{b_1}T^{a_1}S^{b_2}T^{a_2} \ldots S^{b_n}T^{a_n} E \) has 4 matrix elements that are nonzero in \(\mathbb{Z}_5 \). But \(F \) times the identity matrix is clearly zero modulo 5, so \(W S^{b_1}T^{a_1}S^{b_2}T^{a_2} \ldots S^{b_n}T^{a_n} E \) can never equal the identity.

Proof of Theorem 4: The map that sends \(\alpha \rightarrow T \) and \(\beta \rightarrow S \) is a well-defined homomorphism from the abstract group to \(G(\nu, 4, 1) \), and is clearly onto. We must show that it is 1-1. Using the given relations, any word in \(\alpha \) and \(\beta \) can either be written as a power of \(\beta \) or as \(\beta^{b_w}T^{a_1}\beta T^{a_2} \ldots \beta T^{a_n}\beta^{b_E} \), where \(n > 0 \) and each \(a_i \) is nonzero. By Lemma 6, the image of such an expression in \(G(\nu, 4, 1) \) is not the identity. And the only powers of \(\beta \) that map to the identity are powers of \(\beta^4 = 1 \).

Proof of Corollary 3: Any nontrivial word in \(T \) and \(S^{-1}TS \) is of the form (4.1), and so cannot equal the identity.

Theorem 5. Define the rotations \(X = R_x^\omega \) and \(V = S^{-1}XS = R_z^\omega \), where \(x \equiv e^{i\omega} \) (equivalently \(\cos(\omega) \)) is transcendental. Then the group generated by \(X \) and \(V \) is the free group with those generators.

Proof: Any word in the group generated by \(X \) and \(V \) is of the form \(X^{b_1}V^{d_1}X^{b_2} \ldots V^{d_1}X^{b_1}V^{d_2} \ldots \) and can be expressed as \(X^{b_1}S^{3}X^{d_1}SX^{b_2} \ldots \) or \(S^{3}X^{d_1}SX^{b_1}S^{3}X^{d_2} \ldots \). Using \(S^2X^a = X^{-a}S^2 \), we can put either expression in the form

\[
S^{a_i}S^{c_1}X^{c_2} \ldots S^{c_n}S^{b_i},
\tag{4.3}
\]

where \(a, b \) and \(c_j \) are integers. All we need to show is that \(n > 0 \) implies that \(S^{a_i}S^{c_1}X^{c_2} \ldots S^{c_n}S^{b_i} \) is not the unit matrix.

Each factor \(SX^{c_j} \) is of the form

\[
\begin{pmatrix}
0 & -\tilde{s_j} & \tilde{c}_j \\
0 & \tilde{c}_j & \tilde{s_j} \\
-1 & 0 & 0
\end{pmatrix},
\tag{4.4}
\]
where $\tilde{c}_j = \cos(c_j\omega) = \frac{x^{c_j} + x^{-c_j}}{2}$, $\tilde{s}_j = \sin(c_j\omega) = \frac{x^{c_j} - x^{-c_j}}{2i}$. The $(2,2)$ matrix element of $SX^{c_1}SX^{c_2} \cdots SX^{c_n}$ is a sum of terms. One term is the product $\prod_j \cos(c_j\omega) = \prod_j \frac{x^{c_j} + x^{-c_j}}{2}$ of the $(2,2)$ matrix elements of all the factors, and is a high-order polynomial in x and x^{-1}. The remaining terms each contain at least one power of the $(3,1)$ element -1, and so are lower-order polynomials in x and x^{-1}. The sum is therefore a polynomial with the same leading term as the product $\prod_j \cos(c_j\omega)$. Since x is transcendental, this polynomial cannot equal 0 or 1.

The factors S^a and S^b are, up to signs, permutations, so some matrix element of $S^aSX^{c_1}SX^{c_2} \cdots SX^{c_n}S^b$ must be neither 0 nor 1, and so $S^aSX^{c_1}SX^{c_2} \cdots SX^{c_n}S^b$ cannot be the unit matrix. ■

Acknowledgements. It is a pleasure to thank John Conway and Douglas Van Wieren for useful discussions; in particular, John Conway was very helpful concerning amalgamated free products.
References

[CoR] J. H. Conway and C. Radin, Quaquaversal tilings and rotations, *Inventiones math.*, to appear.

[GrS] B. Grünbaum and G.C. Shephard, *Tilings and Patterns*, Freeman, New York, 1986.

[Rad] C. Radin, The pinwheel tilings of the plane, *Annals of Math.* 139 (1994), 661-702.

[Swi] S. Swierczkowski, A class of free rotation groups, *Indag. Math. (N.S.)* 5 (1995), 221-226.
Figure 1. Dites and karts
Figure 2. Rotating the boxes
Figure 3. A pinwheel tiling
Figure 4. Decomposition of ϕ