LIST COLORING AND n-MONOPHILIC GRAPHS

RADOslav KIROV AND RAMIN NAimi

Abstract. In 1990, Kostochka and Sidorenko proposed studying the smallest number of list-colorings of a graph G among all assignments of lists of a given size n to its vertices. We say a graph G is n-monophilic if this number is minimized when identical n-color lists are assigned to all vertices of G. Kostochka and Sidorenko observed that all chordal graphs are n-monophilic for all n. Donner (1992) showed that every graph is n-monophilic for all sufficiently large n. We prove that all cycles are n-monophilic for all n; we give a complete characterization of 2-monophilic graphs (which turns out to be similar to the characterization of 2-choosable graphs given by Erdős, Rubin, and Taylor in 1980); and for every n we construct a graph that is n-choosable but not n-monophilic.

1. Introduction

Suppose for each vertex v of a graph G we choose a list $L(v)$ of a fixed number n of colors, and then to each v we assign a color chosen randomly from its color list $L(v)$. If our goal is to maximize the probability of getting the same color for at least two adjacent vertices, then it seems intuitively plausible that we should give every vertex of G the same list. But this turns out to be false for some graphs! Graphs which do satisfy this property are called “n-monophilic” (defined more precisely below). It is natural to ask: Which graphs are n-monophilic for a given n? This question has been open at least since 1990.

We work with finite, simple graphs, and use the notation and terminology of Diestel [1]. Given a graph $G = (V, E)$, a list assignment (resp. n-list assignment, $n \in \mathbb{N}$) for G is a function that assigns a subset (resp. n-subset) of \mathbb{N} to each vertex $v \in V$, denoted $L(v)$. Given a list assignment L for G, a (proper) coloring of G from L is a function $\gamma : G \to \mathbb{N}$ such that for each vertex $v \in V$, $\gamma(v) \in L(v)$, and for any pair of adjacent vertices v and w, $\gamma(v) \neq \gamma(w)$. We denote the number of distinct colorings of G from L by $\text{col}(G, L)$. In the special case where $L(v) = [n] = \{1, \ldots, n\}$ for every $v \in V$, we also write $\text{col}(G, n)$ for $\text{col}(G, L)$. We say G is n-monophilic if $\text{col}(G, n) \leq \text{col}(G, L)$ for every n-list assignment L for G. Clearly a graph is n-monophilic iff each connected component of it is n-monophilic. So we restrict attention to connected graphs only.

In 1990, Kostochka and Sidorenko [7] proposed studying the minimum value $f(n)$ attained by $\text{col}(G, L)$ over all n-list assignments L for a given graph G. They observed that for chordal graphs $f(n)$ equals the chromatic polynomial of G evaluated at n; i.e., chordal graphs are n-monophilic for all n. In 1992 Donner [4] showed that for any fixed graph G, $f(n)$ equals the chromatic polynomial of G for
there appears to be no further literature on this subject since then. A graph G is said to be n-colorable if $\text{col}(G, n) \geq 1$; and G is said to be n-choosable (or n-list colorable) if $\text{col}(G, L) \geq 1$ for every n-list assignment L for G. The chromatic number of G, denoted $\chi(G)$, is the smallest n such that G is n-colorable. The list chromatic number of G (also called the choice number of G), denoted $\chi_l(G)$ (or ch(G)), is the smallest n such that G is n-choosable. Since χ and χ_l are well-known and have been studied extensively, it is interesting to compare the concept of n-monophilic graphs to them. The following are clear from definitions. For every graph G,

1. $\chi(G) \leq \chi_l(G)$;
2. if $n < \chi(G)$, then G is n-monophilic;
3. if $\chi(G) \leq n < \chi_l(G)$, then G is not n-monophilic.

The interesting region is $\chi_l(G) \leq n$, which contains n-monophilic graphs (e.g., all cycles and all chordal graphs), as well as non-n-monophilic graphs (Section 5).

Deciding whether a graph is n-choosable turns out to be difficult. Even deciding whether a given planar graph is 3-choosable is NP-hard [6]. Thus one might expect the decision problem for n-monophilic graphs to be NP-hard as well; so a “nice characterization” (i.e., one that would lead to a polynomial time decision algorithm) of n-monophilic graphs might not exist. In this paper we prove that all cycles are n-monophilic for all n, and G is not 2-monophilic iff all its cycles are even and it contains at least two cycles whose union is not $K_{2,3}$. This characterization of 2-monophilic graphs is fairly similar to that given by Erdős, Rubin, and Taylor [4]. But, as we show in Section 5 for every $n \geq 2$ there is a graph that is n-choosable but not n-monophilic.

2. Chordal graphs are n-monophilic

A graph is chordal if every cycle in it of length greater than 3 has a chord. Kostochka and Sidorenko [7] observed that all chordal graphs are n-monophilic for all n. Because the proof is short, we include it below. Observe that if H is a subgraph of G, then L restricts in a natural way to give a list assignment for H, and $\text{col}(H, L)$ denotes the number of colorings of H from this restricted list assignment.

Lemma 1. Let G be an n-monophilic graph, and suppose v_1, \ldots, v_k induce a complete subgraph of G. Let G' be the graph obtained from G by adding a new vertex and connecting it to v_1, \ldots, v_k. Then G' is n-monophilic.

Proof. Let L be an n-list assignment for G'. If $n \leq k$, then $\text{col}(G', n) = 0$ and we are done. So assume $n > k$. Then each coloring of G from L extends to at least $n - k$ distinct colorings of G' from L. Hence $\text{col}(G', L) \geq (n - k)\text{col}(G, L) \geq (n - k)\text{col}(G, n) = \text{col}(G', n)$.

A graph has a simplicial elimination ordering if its vertices can be ordered as v_1, \ldots, v_k such that for each v_i the subgraph induced by $\{v_i\} \cup N(v_i) \cap \{v_1, \ldots, v_{i-1}\}$, where $N(v_i)$ denotes the set of neighboring vertices of v_i, is a complete graph.

Theorem. (Dirac [2]) A graph is chordal iff it has a simplicial elimination ordering.

The above lemma and Dirac’s Theorem give us:
Corollary. (Kostochka and Sidorenko [7]) Every chordal graph is \(n \)-monophilic for every \(n \).

Note that trees and complete graphs are chordal and hence are \(n \)-monophilic for every \(n \).

3. Cycles are \(n \)-monophilic

In this section we show that every \(m \)-cycle is \(n \)-monophilic for all \(m, n \). We first need some definitions. Let \(L \) be a list assignment for a graph \(G \). For \(i = 1, \cdots, k \), let \(v_i \) be a vertex of \(G \), and \(c_i \) a color in \(L(v_i) \). Then \(\text{col}(G, L, v_1, c_1, \cdots, v_k, c_k) \) denotes the number of colorings of \(G \) from \(L \) which assign color \(c_i \) to \(v_i \), \(i = 1, \cdots, k \). We say \(L \) is minimizing for \(G \) if \(\text{col}(G, L) \leq \text{col}(G, L') \) for every list assignment \(L' \) where \(|L'(v)| = |L(v)| \) for every \(v \).

Lemma 2. Let \(G_1 \) and \(G_2 \) be disjoint subgraphs of a graph \(G \), with \(v_i \) a vertex of \(G_i \), such that \(G = G_1 \cup G_2 + v_1 v_2 \). Let \(L \) be a list assignment for \(G \). Then there exists a list assignment \(L' \) such that \(|L'(v)| = |L(v)| \) for every \(v \), \(L'(v_1) \subseteq L'(v_2) \) or \(L'(v_2) \subseteq L'(v_1) \), and \(\text{col}(G, L') \leq \text{col}(G, L) \). Moreover, the inequality is strict provided there exist \(c_1 \in L(v_1) \setminus L(v_2) \) and \(c_2 \in L(v_2) \setminus L(v_1) \) with \(\text{col}(G_1, L, v_1, c_1) \neq 0 \) and \(\text{col}(G_2, L, v_2, c_2) \neq 0 \).

Proof. If \(L(v_1) \subseteq L(v_2) \) or \(L(v_2) \subseteq L(v_1) \), then there is nothing to show. So we can assume there exist colors \(c_1 \in L(v_1) \setminus L(v_2) \) and \(c_2 \in L(v_2) \setminus L(v_1) \).

Let \(L' \) be the list assignment that is identical to \(L \) except that in the lists assigned to the vertices of \(G_2 \) every \(c_1 \) is replaced with \(c_2 \) and every \(c_2 \) with \(c_1 \). Then, for each \(c \neq c_1 \) in \(L(v_1) \), \(\text{col}(G, L', v_1, c) = \text{col}(G, L, v_1, c) \) (since \(c \neq c_2 \), as \(c_2 \notin L(v_1) \)). Furthermore,

\[
\text{col}(G, L', v_1, c_1) = \text{col}(G, L, v_1, c_1) - \text{col}(G, L, v_1, c_2) = \text{col}(G_1, L, v_1, c_1) \cdot \text{col}(G_2, L, v_2, c_2)
\]

Hence, \(\text{col}(G, L', v_1, c_1) > \text{col}(G, L, v_1, c_1) \) if \(\text{col}(G_1, L, v_1, c_1) \) and \(\text{col}(G_2, L, v_2, c_2) \) are both nonzero.

Now, by renaming \(L' \) as \(L \) and then repeating this process as long as \(L(v_1) \nsubseteq L(v_2) \) and \(L(v_2) \nsubseteq L(v_1) \), we eventually obtain the desired \(L' \). \(\square \)

The length of a path is the number of edges it contains. For \(n \geq 2 \), an \((n, n-1)\)-list assignment for a path of length at least one is a function that assigns \(n \)-color lists to the path’s interior vertices, if any, and \((n-1)\)-color lists to its two terminal vertices. Suppose the interior vertices of the path have identical lists, each of which contains as a subset the \((n-1)\)-color list of each of the two terminal vertices. If, in addition, these two \((n-1)\)-color lists are identical, we say \(L \) is type A, and denote \(\text{col}(P, L) \) by \(A_k \); otherwise we say \(L \) is type B, and denote \(\text{col}(P, L) \) by \(B_k \). Note that, up to renaming colors, all type A \((n, n-1)\)-list assignments for a given path are equivalent, and similarly for type B.

Lemma 3. Let \(n \geq 2 \), and let \(L \) be an \((n, n-1)\)-list assignment for a path \(P \) of length \(k \geq 2 \). Then: (a) \(A_k - B_k = (-1)^k \), and \(A_k = \frac{n-1}{n}((-n-1)^{k+1} + (-n)^k) \); (b) \(\text{col}(P, L) \geq \min(A_k, B_k) \); and (c) for \(n \geq 3 \), \(L \) is minimizing only if \(k \) is odd and \(L \) is type A or \(k \) is even and \(L \) is type B.
Proof. Part (a): Let \(v \) be a terminal vertex of \(P \), and let \(w \) be the vertex adjacent to \(v \). Suppose \(L \) is type A. Then, for each color that we choose to assign to \(v \), there remains an \((n - 1)\)-color list of choices for \(w \), and this list is not the same as the \((n - 1)\)-color list of the other terminal vertex of \(P \). Thus we get
\[
A_k = (n - 1)B_{k-1}
\] (2)
By a similar (but slightly longer) reasoning, we see that
\[
B_k = A_{k-1} + (n - 2)B_{k-1}
\] (3)
Subtracting (3) from (2) gives
\[
A_k - B_k = (-1)(A_{k-1} - B_{k-1})
\] (4)
Now, by direct calculation, \(A_1 = (n - 1)(n - 2) \), and \(B_1 = (n - 2)^2 + (n - 1) \). It follows that \(A_1 - B_1 = -1 \), which together with (4) inductively yield
\[
A_k - B_k = (-1)^k
\] (5)
Finally, combining (2) with (5) gives \(A_k = (n - 1)(A_{k-1} + (-1)^k) \). It follows by induction from the base case \(A_1 = (n - 1)(n - 2) \) that \(A_k = \frac{n-1}{n}((n-1)^{k+1} + (-1)^k) \).

Part (b): This follows immediately from Lemma 2 and the definition of \(A_k \) and \(B_k \).

Part (c): Assume \(k \geq 2 \), since the case \(k = 1 \) is trivial. Suppose, toward contradiction, that \(v_1, v_2 \) are adjacent vertices of \(P \) such that \(L(v_1) \not\subseteq L(v_2) \) and \(L(v_2) \not\subseteq L(v_1) \). Then, in the proof of Lemma 2, the term \(\text{col}(G_1, L, v_1, c_1) \cdot \text{col}(G_2, L, v_2, c_2) \) being subtracted in equation (1) is positive since each \(G_i \) is now a path and \(n \geq 3 \). This would imply that \(L \) is not minimizing. Hence, if \(L \) is minimizing, it must be type A or type B. The result now follows from equation (5).

Remark: For \(n = 2 \) a minimizing list need not be type A or type B; examples are easy to construct.

Lemma 4. Let \(L \) and \(L' \) be distinct list assignments for a path \(P \) such that for every vertex \(v \) in \(P \) we have \(L(v) \subseteq L'(v) \) and \(|L'(v)| \geq 2 \). Then \(\text{col}(P, L) < \text{col}(P, L') \).

Proof. Since \(L(v) \subseteq L'(v) \) for every \(v \), every coloring of \(P \) from \(L \) is also a coloring of \(P \) from \(L' \). And since \(L \) and \(L' \) are distinct, for some vertex \(w \) there is a color \(c \in L'(w) \setminus L(w) \). By hypothesis, \(|L'(v)| \geq 2 \) for every \(v \); hence \(\text{col}(P, L', w, c) \geq 1 \), i.e., there is at least one coloring of \(P \) from \(L' \) that is not a coloring of \(P \) from \(L \). The result follows.

Let \(L \) be a list assignment for a graph \(G \), and let \(v_1, \ldots, v_k \) be vertices in \(G \), where \(k < |G| \). Let \(c_i \in L(v_i) \). We define the list assignment \(L_{c_1, \ldots, c_k} \text{ induced by} \ L, \ c_1, \ldots, c_k \) on the graph \(H = G - \{v_1, \ldots, v_k\} \) by: for every vertex \(v \in H \), \(L_{c_1, \ldots, c_k}(v) = L(v) \setminus \{c_i : v_i \in N(v)\} \) where \(N(v) \) denotes the set of vertices in \(G \) adjacent to \(v \). Then clearly \(\text{col}(G, L, v_1, c_1, \ldots, v_k, c_k) = \text{col}(H, L_{c_1, \ldots, c_k}) \).

Theorem 1. Every cycle is \(n \)-monophilic for all \(n \geq 2 \).

Proof. Let \(C \) be a cycle of length \(k \geq 3 \). Suppose we assign the color list \([n]\) to every vertex of \(C \). Then, by Lemma 3 for each \(c \in [n] \), \(\text{col}(C, n, v, c) = A_{k-2} \). Therefore \(\text{col}(C, n) = nA_{k-2} \). Let \(L \) be an \(n \)-list assignment that does not assign identical lists to all vertices of \(C \). We will show \(\text{col}(C, L) \geq nA_{k-2} \). Since \(L \) does
not assign identical lists to all vertices of \(C \), there are adjacent vertices \(v \) and \(w \) such that \(L(v) \neq L(w) \). Let \(P \) be the path \(C - v \). We have two cases.

Case 1: \(k \) is odd. For each \(c \in L(v) \) we have \(\text{col}(C, L, v, c) \geq A_{k-2} \), then we are done. So assume for some \(c_0 \in L(v) \) we have \(\text{col}(C, L, v, c_0) < A_{k-2} \). Then \(\text{col}(P, L_{c_0}) < A_{k-2} \) since \(\text{col}(P, L_{c_0}) = \text{col}(C, L, v, c_0) \). As \(P \) has even length \(k - 2 \), it follows from Lemma 3 that \(L_{c_0} \) must be a type B \((n, n-1)\)-list assignment for \(P \) and \(\text{col}(P, L_{c_0}) = B_{k-2} - 1 \). Let \(u \) be the vertex adjacent to \(v \) in \(C - w \). Then \(c_0 \) is in both \(L_u \) and \(L_w \), and not in \(L_{c_0}(u) \cup L_{c_0}(w) = L_{c_0}(x) = L(x) \), where \(x \) is any vertex in \(P - \{u, w\} \). Therefore, for each \(c \neq c_0 \in L(v) \), the induced list assignment \(L_c \) on \(P \) is not type B because \(c_0 \) is in \(L_c(u) \) and \(L_c(w) \) but not in \(L_c(x) = L(x) \). Hence \(\text{col}(C, L, v, c) > B_{k-2} \), i.e., \(\text{col}(C, L, v, c) \geq A_{k-2} \).

Now, as follows that \(\text{col}(C, L, v, d) \geq A_{k-2} + 1 \). Note that \(\text{col}(L_d) = \text{col}(L) \) contains \(n \) colors. Let \(L' \) be an \((n, n-1)\)-list assignment for \(P \) obtained from \(L_d \) by removing one element other than \(c_0 \) from \(L_d(w) \), and also one element from \(L_d(u) \) if \(|L_d(u)| = n \). Since \(c_0 \in L'_d(w) \), \(L'_d \) is not a type B list assignment for \(P \). So, by Lemma 3 \(\text{col}(P, L'_d) \geq B_{k-2} + 1 = A_{k-2} \). Hence, by Lemma 4 \(\text{col}(P, L_d) = \text{col}(P, L'_d) \geq A_{k-2} \), as desired.

Thus we get

\[
\text{col}(C, L) = \text{col}(C, L, v, c_0) + \text{col}(C, L, v, d) + \sum_{c \in L(v) \setminus \{c_0, d\}} \text{col}(C, L, v, c) \\
\geq B_{k-2} + (A_{k-2} + 1) + (n - 2)A_{k-2} \\
= nA_{k-2}
\]

as desired.

Now suppose \(n \geq 3 \). Clearly \(\text{col}(C, 2) = 2 \). Let \(Q \) be the path obtained by removing the edge \(vw \) (but not its vertices) from \(C \). We will show there are at least two colorings of \(Q \) from \(L \) that extend to colorings of \(C \). First, we need a definition. Let \(x \) and \(y \) be any two vertices in a graph \(G \) with a given list assignment \(M \). We say that \(c \in M(x) \) forces \(d \in M(y) \) if \(\text{col}(G, M, x, c, y, d) \geq 1 \) and for every \(d' \neq d \in M(y) \), \(\text{col}(G, M, x, c, y, d') = 0 \).

Denote the vertices of \(Q \) by \(v_0, \ldots, v_k \), where \(v_0 = v \), \(v_k = w \), and \(v_i \) is adjacent to \(v_{i+1} \) for \(i = 0, \ldots, k-1 \). Suppose, toward contradiction, that each color in \(L(v) \) forces a color in \(L(w) \). Then each color in \(L(v_i) \) must be in \(L(v_{i+1}) \). Hence \(L(v_1) = L(v_{i+1}) \). But \(L(v) \neq L(w) \). So at least one of the colors in \(L(v) \) forces no color in \(L(w) \). Let \(L(v) = \{\alpha, \beta\} \) and \(L(w) = \{\gamma, \delta\} \). Then, without loss of generality, \(\alpha \) forces neither \(\gamma \) nor \(\delta \). Therefore \(\text{col}(Q, L, v, \alpha, w, \gamma) \) and \(\text{col}(Q, L, v, \alpha, w, \delta) \) are both nonzero, since \(\text{col}(Q, L, v, \alpha) \geq 1 \). Now, if \(\alpha \) is different from both \(\gamma \) and \(\delta \), then any coloring of \(Q \) that assigns \(\alpha \) to \(v \) extends to a coloring of \(C \), and we're done. On the other hand, suppose \(\alpha \) is not different from both \(\gamma \) and \(\delta \). Then, without loss of generality, \(\alpha = \gamma \). So any coloring of \(Q \) with \(\alpha \) assigned to \(v \) and \(\delta \) to \(w \) extends to a coloring of \(C \). Also, \(\beta \neq \gamma \) since \(\beta \neq \alpha \). And \(\beta \neq \delta \) since
\(\{\alpha, \beta\} \neq \{\gamma, \delta\}\). So any coloring of \(Q\) with \(\beta\) assigned to \(v\) also extends to a coloring of \(C\). As \(\text{col}(Q, L, v, \beta) \geq 1\), we are done again.

\[\square\]

Note that although cycles are 2-monophilic, every even cycle has a minimizing 2-list assignment that does not assign the same list to every vertex: assign the list \(\{1, 2\}\) to two adjacent vertices, and the list \(\{2, 3\}\) to all the remaining vertices.

4. A characterization of 2-monophilic graphs

The \textbf{core} of a connected graph \(G\) is the subgraph of \(G\) obtained by repeatedly deleting vertices of degree 1 until every remaining vertex has degree at least 2.

Lemma 5. A connected graph is \(n\)-monophilic iff its core is \(n\)-monophilic.

Proof. This is proved easily using Lemma 2 and induction on the number of vertices in the graph.

\[\square\]

Let \(\theta_{a,b,c}\) denote the graph consisting of two vertices connected by three paths of lengths \(a, b, c\) with mutually disjoint interiors. In particular, \(\theta_{2,2,2}\) is the complete bipartite graph \(K_{2,3}\). In the paper by Erdős, Rubin, and Taylor [4], we find the following result by Rubin:

Theorem. (A. L. Rubin) A connected graph is 2-choosable iff its core is a single vertex, an even cycle, or \(\theta_{2,2,2m}\) for some \(m \geq 1\).

We use this to prove that a connected graph is 2-monophilic iff its core is a single vertex, is an even cycle, is \(K_{2,3}\), or contains an odd cycle.

Lemma 6. \(K_{2,3}\) is 2-monophilic.

Proof. In Figure 1 the five vertices of \(K_{2,3}\) have been labeled as \(u, v, w, x, y\). Since \(K_{2,3}\) has no odd cycles, \(\text{col}(K_{2,3}, 2) = 2\). Let \(L\) be a 2-list assignment for \(K_{2,3}\). We will show that \(\text{col}(K_{2,3}, L) \geq 2\). We consider three cases, depending on the number of colors that \(L(x)\) and \(L(y)\) share.

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{k23.png}
\caption{\(K_{2,3}\)}
\end{figure}

\textbf{Case 1.} \(|L(x) \cap L(y)| = 2\). Then there are two ways to assign the same color to \(x\) and \(y\); and for each way, there is at least one way to color each of \(u, v,\) and \(w\). Hence \(\text{col}(K_{2,3}, L) \geq 2\).

\textbf{Case 2.} \(|L(x) \cap L(y)| = 1\). Without loss of generality, \(L(x) = \{1, 2\}\) and \(L(y) = \{1, 3\}\). If at least one of the vertices \(u, v, w,\) does not contain color 1 in its list, then there are at least two distinct colorings of \(K_{2,3}\) with color 1 assigned to both \(x\) and \(y\). On the other hand, if all three vertices \(u, v, w\) contain color 1
their lists, then we can obtain one coloring by assigning color 2 to \(x \), 3 to \(y \), and 1 to \(u, v, w \), and another coloring by assigning color 1 to both \(x \) and \(y \), and using the second color in each of the lists for \(u, v, w \).

Case 3. \(|L(x) \cap L(y)| = 0 \). Without loss of generality, assume \(L(x) = \{1, 2\} \), \(L(y) = \{3, 4\} \). Then there are four ways to color the pair \(x, y \). If at least two of these extend to a coloring of \(K_{2,3} \), we are done. Otherwise, without loss of generality, \(L(u) = \{1, 3\} \), \(L(v) = \{1, 4\} \), and \(L(w) = \{2, 3\} \). Then \((u, v, w, x, y) = (1, 1, 3, 2, 4)\) and \((u, v, w, x, y) = (3, 1, 3, 2, 4)\) are two distinct colorings of \(K_{2,3} \).

\[\square\]

Theorem 2. A connected graph is 2-monophilic iff its core is a single vertex, is a cycle, is \(K_{2,3} \), or contains an odd cycle.

Equivalently: A graph is not 2-monophilic iff all its cycles are even and it contains at least two cycles whose union is not \(K_{2,3} \).

Proof. Clearly a single vertex and a graph that contains an odd cycle are both 2-monophilic. Also, by Theorem 1 and Lemma 6, all cycles and \(K_{2,3} \) are 2-monophilic. Using Lemma 5, this gives us one direction of the theorem.

To prove the converse, let \(G \) be a 2-monophilic graph. If \(G \) is not 2-colorable, then it must contain an odd cycle, and we are done. So assume \(\chi(G) \) is 1 or 2. Then \(G \) is also 2-choosable since it is 2-monophilic. So, by Rubin’s theorem above, it is enough to show that for \(m \geq 2 \), \(\theta_{2,2,2m} \) is not 2-monophilic.

Figure 2 shows a 2-list assignment \(L \) for the case when \(m = 2 \). When \(m > 2 \), we add an even number of vertices to the interior of the edge \(uv \) in Figure 2 and assign to each new vertex the list \(\{1, 2\} \). It is then easy to check that for \(m \geq 2 \), \(\text{col}(\theta_{2,2,2m}, L) = 1 < 2 = \text{col}(\theta_{2,2,2m}, 2) \), as desired.

5. Examples of \(n \)-choosable, non-\(n \)-monophilic graphs

Given the close similarity between Theorem 2 and Rubin’s theorem above, it is natural to wonder how similar or different the notions of \(n \)-choosable and \(n \)-monophilic are. In this section, for each \(n \geq 2 \) we construct a graph \(H_n \) that is \(n \)-choosable but not \(n \)-monophilic. To make the notation simpler, we work with \(H_{n+1} \) with \(n \geq 1 \) instead of \(H_n \) with \(n \geq 2 \).

First, consider the complete bipartite graph \(K_{n,n^n} \). Fix \(n \geq 1 \), and denote the vertices of \(K_{n,n^n} \) by \(a_1, \ldots, a_n, b_1, \ldots, b_n^n \). Let \(L_0 \) be an \(n \)-list assignment for
for every vertex \(v \in j \) vertices, colors are renamed so that colors 1, \(\cdots \), \(n \) smallest integer such that \(a \in n \)\smallest integer such that \(a \in n \) \(\) and each \(L_0(a_i) \) shares exactly one element with each \(L_0(b_k) \). Then there are \(n^n \) distinct ways to assign a color to each of \(a_1, \cdots, a_n \), and each of them will preclude assigning a color to \(b_k \) for some \(k \). It follows that \(\text{col}(K_{n,n^n}, L_0) = 0 \).

Let \(L'_0 \) be an \(n \)-list assignment for \(K_{n,n^n} \) that is the same as \(L_0 \) except that its colors are renamed so that colors 1, \(\cdots \), \(n \) do not appear in any of its lists. For each \(j \in [n] \), let \(L_j \) be the \((n+1)\)-list assignment for \(K_{n,n^n} \) given by \(L_j(v) = L'_0(v) \cup \{j\} \) for every vertex \(v \in K_{n,n^n} \). Let \(x = \text{col}(K_{n,n^n}, L_j) \); clearly \(x \) is nonzero and independent of \(j \).

Let \(\{G_{i,j} : i, j \in [n]\} \) be a set of \(n^2 \) disjoint copies of \(K_{n,n^n} \). Let \(p \) be the smallest integer such that \(n^p > x^{n^2} \). Let \(K_{n,p} \) be a complete bipartite graph with vertices \(v_1, \cdots, v_n, w_1, \cdots, w_p \). We connect each \(v_i \) to all vertices of \(G_{i,1}, \cdots, G_{i,n} \).

This describes the graph \(H_{n+1} \).

Lemma 7. For all \(n \geq 1 \), the graph \(H_{n+1} \) is not \((n+1)\)-monoplicial.

Proof. Define an \((n+1)\)-list assignment \(L \) for \(H_{n+1} \) as follows. For all \(k \in [p] \), \(L(w_k) = \{n+1, n+2, \cdots, 2n+1\} \); for each \(i \in [n] \), \(L(v_i) = [n] \cup \{n+i\} \); and on each \(G_{i,j} \), \(L = L_j \).

Let \(\gamma \) be a coloring of \(H_{n+1} \) from \(L \). Since \(\text{col}(K_{n,n^n}, L_0) = 0 \), for each \(i, j \in [n] \), \(\gamma \) must assign color \(j \) to at least one vertex of \(G_{i,j} \). Hence for all \(i \in [n] \), \(\gamma(v_i) = n+i \); and for all \(k \in [p] \), \(\gamma(w_k) = 2n+1 \). It follows that \(\text{col}(H_{n+1}, L) = x^{n^2} \).

On the other hand, \(\text{col}(H_{n+1}, n+1) \geq n^p \): there are \(n^p \) ways to color \(w_1, \cdots, w_p \) from just \([n]\); then assign color \(n+1 \) to every \(v_i \); and finally color every \(G_{i,j} \) using colors 1 and 2. Hence \(\text{col}(H_{n+1}, L) < \text{col}(H_{n+1}, n+1) \), as desired.

So it remains to show that \(H_{n+1} \) is \((n+1)\)-choosable. We do this in the three following lemmas. We say two list assignments \(L \) and \(L' \) for a graph \(G \) are **equivalent** if one can be obtained from the other by renaming colors and vertices, i.e., there is a bijection \(f : \mathbb{N} \to \mathbb{N} \) and an automorphism \(\phi : G \to G \) such that for every vertex \(v \in G \), \(L'(v) = f(L(\phi(v))) \).

Lemma 8. Let \(L \) be a list assignment for \(K_{n,n^n} \) such that for every vertex \(v \in K_{n,n^n} \), \(|L(v)| \geq n \). If \(\text{col}(K_{n,n^n}, L) = 0 \), then \(L \) is equivalent to \(L_0 \).

Proof. Denote the two vertex-partitions of \(K_{n,n^n} \) by \(A \) and \(B \), with \(|A| = n \) and \(|B| = n^n \). Suppose for some \(a_1 \neq a_2 \) in \(A \), \(L(a_1) \cap L(a_2) \neq \emptyset \). If we assign the same color to \(a_1 \) and \(a_2 \), and to each \(a' \neq a_1, a_2 \) we assign a color to from \(L(a') \), then for every \(b \in B \), \(L(b) \) contains at least one color that was not assigned to any \(a \in A \). Hence \(\text{col}(K_{n,n^n}, L) > 0 \), which is a contradiction. So for all \(a_1 \neq a_2 \) in \(A \), \(L(a_1) \cap L(a_2) = \emptyset \).

Now, suppose we have colored all \(a \in A \). Since \(K_{n,n^n} \) is not colorable from \(L \), there must exist some \(b \in B \) whose color list is exactly the \(n \) colors we have chosen for the vertices in \(A \). Since there are only \(n^n \) vertices in \(B \), if there were more than \(n^n \) ways to color \(A \), then \(\text{col}(K_{n,n^n}, L) \) would not be zero. So each \(L(a) \) must contain exactly \(n \) colors, and there are exactly \(n^n \) ways to color \(A \). It follows that every \(L(b) \) must contain exactly one color from \(L(a) \) for each \(a \in A \), and no other colors; Furthermore, distinct vertices in \(B \) must have distinct lists. This proves \(L \) is equivalent to \(L_0 \).
Lemma 9. Let \(v \) denote the vertex in the one-element partition of the complete tripartite graph \(K_{n,n+1} \). Let \(L \) be an \((n+1) \)-list assignment for \(K_{n,n+1} \) such that \(L(v) = [n+1] \). Suppose for some \(j \in [n] \), \(\text{col}(K_{n,n+1}, L, v, j) = 0 \). Then \(L \) is equivalent to \(L_j \); and for all \(i \neq j \), \(\text{col}(K_{n,n+1}, L, v, i) > 0 \).

Proof. Let \(L' \) be the list assignment for \(K_{n,n+1} \) obtained by deleting color \(j \) from every list in the restriction of \(L \) to \(K_{n,n+1} \). Then \(\text{col}(K_{n,n+1}, L') = 0 \). So, by Lemma 8, \(L' \) is equivalent to \(L_0 \), and hence \(L \) is equivalent to \(L_j \). If for some \(i \neq j \), \(\text{col}(K_{n,n+1}, L, v, i) = 0 \), then it would follow that both \(i \) and \(j \) are in every list of \(L \), which contradicts the fact that \(L' \) is equivalent to \(L_0 \). \(\square \)

Lemma 10. For all \(n \geq 1 \), \(H_{n+1} \) is \((n+1) \)-choosable.

Proof. Let \(L \) be an \((n+1) \)-list assignment for \(H_{n+1} \). For each \(i, j \in [n] \), let \(G_{i,j} \) be the subgraph of \(H_{n+1} \) induced by \(G_{i,j} \) and \(v_i \). By Lemma 9, there is at most one color \(c \) in \(L(v_i) \) such that \(\text{col}(G_{i,j}, L, v_i, c) = 0 \). Since \(|L(v_i)| = n+1 \), there exists \(c_i \in L(v_i) \) such that for every \(j \in [n] \), \(\text{col}(G_{i,j}, L, v_i, c_i) \neq 0 \). Furthermore, since each \(w_k \) has only \(n \) neighbors, \(L(w_k) \{ c_1, \ldots, c_n \} \) is non-empty. Hence \(\text{col}(H_{n+1}, L) \neq 0 \). \(\square \)

6. Questions

In this section we offer (and try to motivate) two questions. The Dinitz Conjecture, proved by Galvin [5], states that the line graph of the complete bipartite \(K_{n,n} \) is \(n \)-choosable. The List Coloring Conjecture (which is open as of this writing), generalizes the Dinitz Conjecture: for every graph \(G \), \(\chi_l(L(G)) = \chi(L(G)) \), where \(L(G) \) denotes the line graph of \(G \).

Note that the line graph of \(K_{n,n} \) is isomorphic to the product \(K_n \times K_n \), where the product \(G \times H \) is defined by \(V(G \times H) = V(G) \times V(H) \), with two vertices \((g, h) \) and \((g', h') \) in \(G \times H \) declared to be adjacent if \(g = g' \) and \(h \) is adjacent to \(h' \) or if \(h = h' \) and \(g \) is adjacent to \(g' \). Thus, another way to generalize the Dinitz Conjecture is:

Question 1. Is the product of two \(n \)-monophilic graphs \(n \)-monophilic?

For \(n = 2 \) the answer to this question is No; Letting \(P_n \) denote the path of length \(i \), it follows from Theorem 2 that \(P_3 \times P_3 \) is not 2-monophilic, while by Theorem 3 every \(P_i \) is 2-monophilic. However, it is possible that the \(n = 2 \) case is special and for \(n \geq 3 \) the answer is Yes.

Donner's result [3] allows us to define the monophilic number of \(G \), denoted \(\chi_m(G) \), in two possible natural ways:

1. the smallest \(n \) for which \(G \) is \(n \)-colorable and \(n \)-monophilic, or
2. the smallest \(n \) such that \(G \) is \(n' \)-monophilic for all \(n' \geq n \).

We do not know whether or not these two definitions are equivalent; it depends on the answer to the following:

Question 2. If a graph is \(n \)-colorable and \(n \)-monophilic, is it necessarily \((n+1) \)-monophilic?

Acknowledgment. The authors thank Peter Keevash of Queen Mary, University of London for bringing the references [3] and [7] to their attention. The second named author is grateful to Caltech for its hospitality while he worked there on this paper during his sabbatical leave.
References

[1] Reinhard Diestel. *Graph Theory*. Springer, Graduate Texts in Mathematics 173 (1997).
[2] G. A. Dirac. *On rigid circuit graphs*. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25 (1961), 71-76.
[3] Q. Donner. *On the number of list-colorings*. Journal of Graph Theory 16 (1992), 239-245.
[4] Paul Erdős, Arthur L. Rubin, Herbert Taylor. *Choosability in graphs*. Congr. Numer. 26 (1980), 125-157.
[5] Fred Galvin. *The List Chromatic Index of a Bipartite Multigraph*. J. of Combinatorial Theory, Series B 63 (1995), 153-158.
[6] Shai Gutner. *The complexity of planar graph choosability*. Discrete Math. 159 (1996) 119-130.
[7] A. V. Kostochka, A. F. Sidorenko. *Problem presented at the problem session. Fourth Czechoslovak Symposium on Combinatorics, Prachatice, 1990*. Annals of Discrete Mathematics 51 (1992), 380.
[8] Z. Tuza. *Graph colorings with local constraints — A survey*. Discussiones Mathematicae – Graph Theory 17, No. 2 (1997), 161-228.

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Department of Mathematics, Occidental College, Los Angeles, CA 90041, USA.