ABSTRACT

Phytochemical study of the hexane fruits peel extract of *Lansium domesticum* contributed to the discovery of onoceranoid-type triterpene, onoceradienedione 1. The structure of the isolated compound was done by advance spectroscopic techniques, comprising IR, UV, 1D, 2D NMR and HR-ESI-MS spectra data. Moreover, hexane extract and isolated compound 1 were examined for their cytotoxic activity against HeLa, T47D, and A549 cells. The results revealed the significance cytotoxic activity in the hexane extract.

Keywords: Fruit Peel, Onoceranoid-type triterpene, Meliaceae, Cytotoxicity, Anticancer, Spectroscopic Analysis

INTRODUCTION

Langsat fruit (*Lansium domesticum* Corr., family Meliaceae) is one of Southeast Asia's most common fruits, particularly in Indonesia. It is widely found in other Asian countries, including Malaysia, Vietnam, Cambodia, Myanmar, and the Philippines. Phytochemical analysis revealed that triterpenoids especially onoceranoids with rare and unique skeleton, onoceranoid glycosides, tetranortriterpenoid, and cycloartenoidtriterpenes are the major components in this plant. The extract and its major components from genus *Lansium* have shown significant biological activities such as antifeedant, anticancer, antimalarial, antidiabetic, antioxidant and antifungal.1-17

Our investigation on the hexane soluble portion of methanol fruits peel extract of *Lansium domesticum* Led to the isolation of an onoceradienedione, namely an 8,14-secogammacacera-7,14(27)-dien-3,21-dione (Fig.-1) Moreover, cytotoxic activity of hexane extract and the isolated compound was evaluated using MTT and XTT assay against cervical (HeLa), breast (T47D) and lung (A549) cancer cell lines *in vitro*.

EXPERIMENTAL

Plant Materials

Lansium domesticum Corr. fruits have been brought from markets Nganjuk, East Java, Indonesia in December 2018. The sample was cleaned and dried. Fruit peels of *Lansium domesticum* were cut into small
parts and powder. The plant sample was identified by Herbarium Bogoriense, Biology Research Center, Cibinong, Indonesia.

Extraction and Isolation
The powder of *Lansium domesticum* (4000 g) was extracted by methanol at room temperature for 3 days (3 × 2L) and filtered. Then, the combined filtrates were evaporated and partitioned between hexane and DCM (dichloromethane). The hexane soluble fractions (300 g) were then separated by using VLC (vacuum liquid chromatography) using step gradient solvent mixtures of hexane-DCM to give five fractions (A-E). Fraction C (0.612 g) was then separated by using silica gel column chromatography and eluted with the solvent mixtures of hexane-EtOAc to produce six sub-fractions (L₁-L₆). Sub-fraction L₃ (174 mg) has been applied to the column chromatography using the hexane-EtOAc solvent mixtures to get compound 1 (5.1 mg).

General Procedure
NMR spectra were measured on Bruker AVANCE III spectrometer using CDCl₃ as a solvent. HR-EI-MS was obtained on a JEOL JMS-700 spectrometer. IR spectrum was determined on a FTIR-8400S (Shimadzu) spectrophotometer, where UV spectrum was recorded in MeOH on UV-Vis Shimadzu spectrometer. The melting point was measured on a Fisher-Johns Melting Point Apparatus. Silica gel 60 (700-200 mesh ASTM) was used for column chromatography. Analytical TLC was conducted on a pre-coated silica gel 60 F₂₅₄ (Merck).

Detection Method
Bioassay
Cell Culture
Three cancer cell lines, Cervical (HeLa), breast (T47D) and lung (A459) obtained from American Type Culture Collection (ATCC). Cells were cultured at 37°C and 5% CO₂ for 24 hours and 100% humidified in medium supplemented with 10% FBS, 1%, L-glutamine and 1% penicillin/streptomycin.

MTT Assay
Cytotoxicity of test samples was used by the established method¹⁸. Briefly, cells were seeded in 96 well plates (10⁴-10⁵ cells/well) and incubated in CO₂ incubator at 37°C for 24 hours. Following incubation, cells were served with specific assay concentrations (1.5625-100 μg/mL) at 37°C in the CO₂ incubator for 24 hours. Doxorubicin was used as a positive control. After incubation, a hundred μL of MTT reagent in phosphate-buffered saline (5 mg/mL in PBS) was transferred into every well, and the plates re-incubated for 3 hours at 37 ºC. Then, the medium was removed, and the purple formazan was solvated in 0.1 N HCl. The absorbance was recorded on ELISA microplate reader at wavelength 560 nm. Each experiment was carried out in triplicates. The % of cell viability was calculated by the following equation:

\[
\% \text{ Cell viability} = \frac{(a-c)}{(b-c)} \times 100\%
\]

Where a = absorbance of the sample, b = absorbance of cells control and c = absorbance of media control.

XTT Assay
XTT assay of extract and isolated compound were done according to the established protocol.¹⁸

RESULTS AND DISCUSSION
Compound 1 was isolated as white needle-like crystals, and the molecular formula C₃₀H₄₆O₂ was determined by HREI-MS (m/z 438.3498, [M+H]⁺) (Caled. 438.6960). ¹H NMR, and ¹³C NMR spectra data (Table-1). The UV spectrum of compound 1 in MeOH displayed absorption maxima at 214.5 nm. The presence of carbonyl and olefinic groups were suggested by IR spectra data. The proton NMR (600 MHz, CDCl₃) displayed seven methyl singlet signals at δH 0.84 (H₃-28), 0.94 (H₃-25), 1.01 (H₃-30), 1.04 (H₃-23), 1.08 (H₃-24), 1.10 (H₃-29), and 1.72 (H₃-26); eight multiplet methylene signals at δH 1.42, 2.06 (H₂-1), 2.24, 2.70 (H₂-2), 1.92, 2.40 (H₂-11), 1.92, 2.40 (H₂-12), 2.42 (H₂-15), 1.67, 1.49 (H₂-16), 1.54, 2.00 (H₂-19),
and 2.21, 2.61 (H-20); one doublet of doublet methylene signals at δH 1.35, 1.26 (H-6); an olefinic broad singlet signal at δH 5.42 (H-7); three multiplet methine signals at δH 1.58 (H-17), 1.60 (H-13), and 1.65 (H-9); and the remaining one set of olefinic singlet methylene signals 4.92, 4.61 (H-27). The 13C NMR (150 MHz) revealed the presence of seven methyl carbons signals at δC 13.5 (C-25), 14.2 (C-28), 21.6 (C-30), 22.0 (C-24), 22.2 (C-26), 25.0 (C-23), and 26.1 (C-29); ten methylene carbon signals (9 sp3 and 1 sp2) at δC 24.0 (C-11), 24.1 (C-12), 25.2 (C-16), 25.3 (C-6), 34.6 (C-2), 34.7 (C-20), 37.8 (C-19), 37.9 (C-15), 38.1 (C-1), and 107.7 (C-27); five methine carbon signals (including 4 sp3 and 1 sp2) at δC 51.6 (C-5), 54.3 (C-13), 55.2 (C-17), 56.0 (C-9), and 121.8 (C-7); eight quaternary carbon signals (including 2 carbonyl, 2 sp2, 4 sp3) at δC 14.3 (C-14), 39.2 (C-18), 36.5 (C-10), 47.4 (C-4 and C-22), 135.4 (C-8), 216.6 (C-21), and 216.8 (C-3). According to the above spectra data, compound 1 has an onoceranoid-type triterpene. The structure of compound 1 was further confirmed by COSY and HMBC correlations (Fig.-2). Compound 1 was then established by comparison with the reporter data as an onoceradienedione (Fig.-1).

Moreover, cytotoxicity of hexane extracts and compound 1 were evaluated against HeLa, T47D and A549 cell lines. The results are shown in Table-2. According to the Cancer Institute standards, crude extracts with IC50 values of < 20 μg/mL, and a natural compound that has IC50 values of < 4 or 10 μg/mL are considered active. Therefore, hexane extract displayed potential cytotoxic activity against T47D (IC50 0.10 μg/mL) and A549 (IC50 18.83 μg/mL) cell lines, but compound 1 demonstrated weak activity against only A549 (IC50 13.71 μg/mL) cell lines.

Table-1: NMR Spectral Data of Compound 1

Position	δH (ppm) (mult, J in Hz)	δC (ppm)	HMBC
1	1.42 (1H, m)	38.1	C-2, C-3, C-10
	2.06 (1H, m)		
2	2.24 (1H, m)	34.6	C-1, C-3, C-10
	2.70 (1H, m)		
3	-	216.8	
4	-	47.4	
5	1.59 (1H, dd, J = 7.0, 5.0 Hz)	51.6	C-9, C-10, C-24
6	1.35 (1H, dd, J = 7.0, 10.0 Hz)	25.3	C-7, C-10
	1.26 (1H, dd, J = 5.0, 10.0 Hz)		
7	5.42 (1H, s br)	121.8	C-5, C-9, C-26
8	-	135.4	
9	1.65 (1H, m)	56.0	C-26
10	-	36.5	
11	1.92 (1H, m)	24.0	C-9

Fig.-1: Chemical Structure of Compound 1 from the Fruit Peel of Lansium domesticum

Fig.-2: HMBC and COSY Experiments of Compound 1
CONCLUSION

In conclusion, onoceradienedione 1 was produced from the hexane soluble portion of methanol fruits peel extract of *Lansium domesticum*. The structure of the isolated compound was done by advance spectroscopic techniques, including IR, UV, NMR, and HR-ESI-MS spectra data. Moreover, cytotoxicity of hexane extract and the isolated compound was evaluated using MTT and XTT assay against HeLa, T47D, and A459 cell lines. The results showed that hexane extract displayed significant cytotoxic activity against T47D and A459 cell lines, but the isolated compound has weak activity against A459 cell lines.

ACKNOWLEDGEMENT

The author expresses high appreciation to: (1) Institute for Research and Community Services, UniversitasAirlangga, Surabaya, Indonesia for “HIBAH RISET MANDAT KOLABORASI MITRA LUAR NEGERI” funding support. (2) Faculty of Pharmacy, Meijo University, Nagoya, Japan for NMR data. (3) Cancer Research Lab, Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia for the cytotoxic analysis.

REFERENCES

1. K. Venkatachalam, *Fruits*, 71(5), 289(2016), [DOI:10.1051/fruits/2016026]
2. Rudiayansyah, A.H Alimudin, Masriani, R. Muharini, P. Proksch P, Phytochem Letters, 23, 90(2018), DOI:10.1016/j.phytol.2017.11.019
3. M. Nishizawa, M. Emura, H. Yamada, M. Shiro, Chairul, Y. Hayashi, H. Tokudav, Tetrahedron Letters, 30(41), 5615(1989), DOI:10.1016/S0040-4039(01)93813-4
4. T. Tanaka, M. Ishibashi, H. Fujimoto, E. Okuyama, T. Koyano, T. Kowithayakorn, M Hayashi, K. Komiyama, Journal of Natural Products, 65(11), 1709(2002), DOI:10.1021/np0202390
5. S. Omar, M. Marcotte, P. Fields, P.E. Sanchez, L. Poveda, R. Mata, A. Jimenez, T. Durst, J. Zhang, S. MacKinnon, D. Leaman, J.T. Arnason, B.J.R. Philogene, Journal of Stored Product Research, 43, 92(2007), DOI:10.1016/j.jspr.2005.11.005
6. S.H Dong, C.R Zhang, Y.W Wu, J.M Yue, Journal of Natural Products, 74(5), 1042(2011), DOI:10.1021/np100943x
7. T. Mayanti, R. Tjokronegoro, U. Supratman, M.R Mukhtar, K. Awang, A.H. A. Hadi, Molecules, 16(4), 2785(2011), DOI:10.3390/molecules16042785
8. M. Nishizawa, H. Nishide, Y. Hayashi, S. Kosela, Tetrahedron Letters, 23, 1349(1982), DOI:10.1016/S0040-4039(00)87101-4
9. T. Potipiranum, W. Worawalai, P. Phuwapraisirisan, Natural Product Research, 32(16), 1881(2018), DOI:10.1080/14786419.2017.1354184
10. M. Nishizawa, H. Nishide H, S. Kosela, Y. Hayashi Y, Journal of Organic Chemistry, 48, 4462(1983), DOI:10.1021/jo00172a004
11. R. Ramadhan, W. Worawalai, Natural Product Research, 33(20), 2917(2019), DOI:10.1080/14786419.2018.1510395
12. T. Mastsumoto, T. Kitagawa, S. Teo, Y. Anai, R. Ikeda, D. Imamori, H.S.B. Ahmad, T. Watanabe, Journal of Natural Products, 81(10), 2187 (2018), DOI:10.1021/acs.jnatprod.8b00341
13. M. Nishizawa M, Y. Nademoto, S. Satrapradja, M. Shiro, Y. Hayashi, Journal of Organic Chemistry, 50, 5487(1985), DOI:10.1021/jo00350a009
14. M. Nishizawa, Y. Nademoto, S. Sastrapradja, M. Shiro, Y. Hayashi, Phytochemistry, 27(1), 237(1988), DOI:10.1016/0031-9422(88)80622-8
15. N. Saewan, J.D Sutherland, K. Chantrapromma, Phytochemistry, 67(20), 2288(2006), DOI:10.1016/j.phytochem.2006.07.005
16. T. Mayanti, J. Sianturi, D. Harneti, Darwati, U. Supratman, M. Mustaqim, H.K Fun, Molbank, 2015(4), M880(2015), DOI:10.3390/M880
17. D.T.T. Yapp and S.Y. Yap, Journal of Ethnopharmacol, 85(1), 145(2003), DOI:10.1016/s0378-8741(02)00375-6
18. CCRC, 2014, Prosedur Tetap Uji Sitotoksik Metode MTT, Faculty of Pharmacy Gadjah Mada University, Yogyakarta, (Text in Indonesia), http://ccrc.farmasi.ugm.ac.id/wp-content/uploads/10_sop-ujisitotokskimetode-mtt.pdf
19. T. Mayanti, W.D Natawigena, U. Supratman, R. Tjokronegoro, International Seminar on Chemistry 2008, Bandung 30-31 October 2008, http://pustaka.unpad.ac.id/wp-content/uploads/2010/11/antibacterial_terpenoid_from_the_bark_of_lansium_domesticum.pdf
20. A. M. Alabsi, K.L. Lim, I. C Paterson, R. Ali-Saeed, B.A Muharram, BioMed Research International, 3, 1(2016), DOI:10.1155/2016/4904016

[Q. Labibah et al. 2021, RASĀYAN J. Chem. Vol. 14 | No. 2 |1336-1340| April - June | 2021 | CYTOTOXIC CONSTITUENT OF Lansium domesticum]