Germicidal Activity against Carbapenem/Colistin-Resistant Enterobacteriaceae Using a Quantitative Carrier Test Method

Hajime Kanamori,a,b William A. Rutala,a,b Maria F. Gergen,a Emily E. Sickbert-Bennett,a,b David J. Webera,b

a Department of Hospital Epidemiology, University of North Carolina Health Care, Chapel Hill, North Carolina, USA
b Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

ABSTRACT Susceptibility to germicides for carbapenem/colistin-resistant Enterobacteriaceae is poorly described. We investigated the efficacy of multiple germicides against these emerging antibiotic-resistant pathogens using the disc-based quantitative carrier test method that can produce results more similar to those encountered in health care settings than a suspension test. Our study results demonstrated that germicides commonly used in health care facilities likely will be effective against carbapenem/colistin-resistant Enterobacteriaceae when used appropriately in health care facilities.

KEYWORDS carbapenem-resistant Enterobacteriaceae, Klebsiella pneumoniae carbapenemase, colistin-resistant Enterobacteriaceae, mcr-1, germicides, disinfectants, antiseptics, efficacy

Carbapenem-resistant Enterobacteriaceae (CRE) have broad resistance to most ß-lactam antibiotics and are a growing worldwide problem (1). CRE infections are difficult to treat, have a substantial mortality (1), and are involved in health care-associated outbreaks via contaminated environmental surfaces and medical equipment (2). Colistin-resistant Enterobacteriaceae isolates carrying mcr-1 are a global health concern, since colistin is often a last-line antibiotic used to treat CRE (3). Furthermore, a recent study from China described a hospital outbreak caused by MCR-1-producing Klebsiella pneumoniae with potential spread of mcr-1 via the hospital environment (4).

(This work was presented in part at the IDWeek 2017, San Diego, CA, poster 487.)

Although there is currently no strong scientific evidence demonstrating that clinical use of disinfectants/antiseptics is associated with selection of antibiotic-resistant organisms, some studies have described reduced susceptibility to disinfectants (e.g., quaternary ammonium compounds [QAC]) and antiseptics (e.g., chlorhexidine) as well as cross-resistance (e.g., benzalkonium chloride/quinolones) (5–7). Susceptibility to germicides (e.g., disinfectants, antiseptics) for carbapenem- or colistin-resistant Enterobacteriaceae is poorly described (7, 8). In this study, we assessed the efficacy of multiple germicides against these emerging antibiotic-resistant pathogens because of global clinical and public health concerns.

Three species of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae, including clinical isolates (9) of K. pneumoniae (Kp11), Enterobacter cloacae (Ec12), and a strain of Escherichia coli (ATCC BAA-2340), as well as E. coli carrying mcr-1 (MRSN 388634), were studied. Multiple different types of germicides, including 5 high-level disinfectants/chemical sterilants, 7 low- and intermediate-level disinfectants (2 dilutions of sodium hypochlorite), 8 antiseptics, and 1 disinfectant/antiseptic, were tested (Table 1). The germicides were prepared according to the manufacturer’s instructions, and germicides requiring dilution were made fresh each day =3 h before use. Germicides were stored at room temperature and tested within the expiration date. Sterile distilled water was utilized in the experiments. Hard water was prepared for
Germicide name	Manufacturer, location	Active ingredient	Formulation tested	Classification	KPC E. coli	KPC K. pneumoniae	KPC E. cloacae	MCR-1 E. coli
Purell Advanced instant hand sanitizer	GOJO, Akron, OH	70% ethanol	Undiluted	Antiseptic	4.6	3.5	4.1	4.2
Betadine solution	Purdue Products L.P., Stamford, CT	10% povidone-iodine/1% titratable iodine	Undiluted	Antiseptic	3.4	2.9	3.5	3.9
Solution of hydrogen peroxide 3% USP	Medichoice, Mechanicsville, VA	3% hydrogen peroxide	Undiluted	Antiseptic	2.2	3.5	3.2	1.7
Medicated Soft 'N Sure Soft Care Defend	Steris Corp., St. Louis, MO	0.5% triclosan	Undiluted	Antiseptic/handwash	2.3	2.9	3.3	3.8
Avagard	Diversey, Inc., Charlotte, NC	1% chloroxylenol	Undiluted	Antiseptic/surgical hand scrub	2.6	3.8	3.7	1.8
Scrub-Stat 2%	Ecolab, St. Paul, MN	2% chlorhexidine gluconate solution, 61% ethyl alcohol	Undiluted	Antiseptic/surgical hand scrub/handwash	3.4	3.5	3.4	4.1
Scrub-Stat 4%	Ecolab, St. Paul, MN	4% chlorhexidine gluconate solution	Undiluted	Antiseptic/handwash	3.1	4.0	3.5	4.4
Isopropyl rubbing alcohol 70% USP	Medichoice, Mechanicsville, VA	70% isopropyl alcohol	Undiluted	Antiseptic/disinfectant	4.6	4.0	4.9	4.4
Austin's A-1 bleach 1:10	James Austin Company, Mars, PA	5.25% sodium hypochlorite	1:10 dilution	Disinfectant	4.9	5.6	5.9	4.4
Austin's A-1 Bleach 1:50	James Austin Company, Mars, PA	5.25% sodium hypochlorite	1:50 dilution	Disinfectant	4.9	3.5	3.4	4.4
Vesphene Ile	Steris Corp., St. Louis, MO	5.20% o-phenylphenol, 7.66% p-tertiary amylphenol	1:128 dilution	Disinfectant	4.9	5.6	5.8	4.4
Hydrogen peroxide cleaner disinfectant	Clorox Company, Oakland, CA	1.4% hydrogen peroxide	Undiluted	Disinfectant	4.9	5.6	5.8	4.4
Lysol disinfectant spray A-456 II disinfectant cleaner	Reckitt Benckiser, Parsippany, NJ	58% ethanol, 0.1% QAC^b	Undiluted	Disinfectant	4.9	5.6	5.8	4.4
Super Sani-Cloth wipe	Ecolab, St. Paul, MN	21.7% QAC^c	1:25 dilution	Disinfectant	4.9	3.5	4.7	4.4
Prime Sani-Cloth wipe	PDI, Orangeburg, NY	55% isopropyl alcohol, 0.5% QAC^d	Undiluted^f	Disinfectant	4.9	5.2	5.8	4.4
Cidex OPA	Advanced Steril. Prod., Irvine, CA	0.55% ortho-phthalaldehyde	Undiluted	High-level disinfectant	4.8	5.6	5.9	4.4
Cidex	Advanced Steril. Prod., Irvine, CA	2.4% glutaraldehyde	Undiluted	High-level disinfectant/chemical sterilant	2.4	4.8	3.4	2.0
Oxycide	Ecolab, St. Paul, MN	27.5% hydrogen peroxide	1:43 dilution	High-level disinfectant/chemical sterilant	4.9	5.6	5.8	4.4
Revital-Ox Resort	Steris Corp., Mentor, OH	5.8% peroxyacetic acid	Undiluted	High-level disinfectant/chemical sterilant	5.2	5.9	5.8	4.4
S40 Sterilant	Steris Corp., Mentor, OH	35% peracetic acid	Undiluted	High-level disinfectant/chemical sterilant	4.9	5.6	5.8	4.4

^aTest condition of 10⁶ test organisms with 5% FCS and 1 min contact time.

^bQAC (quaternary ammonium compounds): alkyl (C₁₄ 50%, C₁₂ 40%, C₁₆ 10%) dimethyl benzyl ammonium saccharinate 0.1%.

^cQAC: octyl decyl dimethyl ammonium chloride 6.51%, dioctyl dimethyl ammonium chloride 2.604%, didecyl dimethyl ammonium chloride 3.906%, alkyl (C₁₄ 50%, C₁₂ 40%, C₁₆ 10%) dimethyl benzyl ammonium chloride 8.66%.

^dQAC: n-alkyl (C₁₂ 68%, C₁₄ 32%) dimethyl ethyl benzyl ammonium chlorides 0.25%; n-alkyl (C₁₄ 60%, C₁₂ 30%, C₁₆ 5%, C₁₈ 5%) dimethyl benzyl ammonium chloride 0.25%.

^eQAC: didecyl dimethyl ammonium chloride 0.61%.

^fExtract from cloth. We did not quantify QAC adhering to the cloth that is used to apply that particular germicide and may release smaller amounts of active QAC (17), but our data were not affected by this possibility because the extract was tested.
The disc-based quantitative carrier test method was used to assess the bactericidal activity of chemical germicides according to the method of Sattar et al. (10, 11). Brushed stainless steel discs (1 cm in diameter, 0.7 mm in thickness; Muzeen and Blythe Ltd., Winnipeg, Canada) were used as carriers. A 10-μl inoculum containing ~10⁶ test organisms with 5% fetal calf serum (FCS) was placed on each disc and dried in a vacuum desiccator for 2 h. After drying, each carrier was placed in a plastic vial with the inoculated side up. The dried inoculum was entirely covered by 50 μl of the test germicide for 1 min at room temperature (~20°C). A 9.95-ml eluent with neutralizer was added into each carrier holder to dilute and neutralize the germicide. Serial dilutions of the eluates were filtered to evaluate the bacterial viability and achieve countable numbers. The membrane filters of appropriate serial dilutions were placed on sheep blood agar plates and incubated for 24 to 48 h at 37°C and counted (i.e., CFU determined). Based on our ability to count CFU per plate, we used counts of 500 CFU for plates with confluent growth and 300 CFU for plates with colony numbers too numerous to count (TNTC). This was done in order to calculate means of multiple experimental runs. Three replicates were performed for each organism and each germicide. Three carrier controls were quantitated during each experiment in the manner described above. Compared to mean carrier control counts, the log₁₀ reduction of the test organism for each germicide was calculated.

The efficacy of germicides, along with active ingredient, product name, and classification, against test organisms is summarized in Table 1. Overall, most germicides reached at least a 3-log₁₀ reduction (20/22 [91%] for KPC K. pneumoniae, 22/22 [100%] for KPC E. cloacae, 18/22 [82%] for KPC E. coli, and 19/22 [86%] for MCR-1 E. coli). Furthermore, all germicides, except for two products (1% chlorhexidine gluconate plus 61% ethyl alcohol and 3% hydrogen peroxide) against MCR-1 E. coli, demonstrated at least a 2-log₁₀ reduction for these pathogens even in challenging test conditions (5% FCS and 1 min exposure time).

Under conditions of 10³ inoculum of MCR-1 E. coli with 5% FCS and 1 min contact time for 1% chlorhexidine gluconate plus 61% ethyl alcohol and 3% hydrogen peroxide, 1.6-log₁₀ and 0.7-log₁₀ reductions, respectively, were observed. Additionally, with a 10⁶ inoculum of MCR-1 E. coli with 5% FCS and 5 min contact time for 3% hydrogen peroxide, a 3.6-log₁₀ reduction was achieved.

The present study assessed a broad range of germicides against carbapenem/colistin-resistant Enterobacteriaceae, including high-level disinfectants used for semicritical items, disinfectants for noncritical items, and antiseptics for patients, which are commonly used in health care facilities, using the disc-based quantitative carrier test method that can produce results more similar to those actually encountered in health care settings than a suspension test (10).

Although a specific quantitative microbial bioburden in the health care environment linked to a specific increased risk for health care-associated infections has not been defined, several studies demonstrated that epidemiologically important pathogens on environmental surfaces were <72 CFU/Rodac in precleaning/postcleaning (12) or 61 CFU/room when hospital rooms were disinfected with quaternary ammonium compounds (13). Moreover, CRE surface contamination was infrequent and generally associated with only low levels (mean 5 CFU/120 cm² of contaminated surface) in an academic hospital in the United States (14). There is no standard level of germicidal efficacy for environmental surfaces, but most germicides tested are likely to be clinically effective (>3-log₁₀ reduction with a margin of safety) against carbapenem/colistin-resistant Enterobacteriaceae when used appropriately. Germicidal activity against colistin-resistant Enterobacteriaceae, except for a few germicides with challenging conditions (5% FCS and 1 min exposure time), was similar to activity against CRE. Many studies of health care disinfectants demonstrated microbial reduction against health
care-associated pathogens, with a contact time of ~1 min as a realistic condition of health care use, although some of the Environmental Protection Agency (EPA)-registered disinfectants used in this study have an EPA registration claim of >1 min contact time (15). It is also essential to facilitate best disinfection/antiseptic practice, since health care-associated outbreaks have often been caused by inadequate use of disinfectants/antiseptics for the environmental surfaces and medical equipment (2).

This study has the following limitations. First, given some TNTC and confluent growth cultures, our germicidal activity should be considered a maximum level. We assessed germicidal activity under different conditions for germicides that presented a relatively low germicidal levels (i.e., a <2-log\textsubscript{10} reduction). Second, germicides with high surface tension (e.g., 0.55% orthophthalaldehyde [Cidex OPA]) may have affected the results because of the difficulty in spreading out their inoculum on discs. Third, the phenotypic and genotypic resistances to germicides were not evaluated.

EPA assessments of germicidal activity for EPA-registered disinfectant products against multidrug-resistant organisms other than methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus do not exist (16). Furthermore, bacterial activity based on suspension tests of health care disinfectants has been reported from manufacturers and published literature, but their activity may be less applicable to actual clinical use (10, 11). Thus, our data based on a quantitative carrier test with a realistic condition of clinical use can mimic an actual health care environment and clinical application. Further investigations for germicidal activity against carbapenem/colistin-resistant Enterobacteriaceae under different conditions (e.g., inoculum, exposure time, with/without 5% FCS) and for phenotypic and genotypic resistances to germicides (e.g., MIC, specific resistance gene) may be necessary.

ACKNOWLEDGMENTS

We thank Mary Hinkle at Walter Reed Army Institute of Research for providing us with E. coli MRSN 38863.

This study was supported by internal funding from UNC Health Care. H.K. received financial support necessary for studying abroad from the Japan Society for the Promotion of Science (JSPS) Overseas Research Fellowships.

W.A.R. and D.J.W. are consultants for PDI.

REFERENCES

1. Centers for Disease Control and Prevention. 2015. Facility guidance for control of carbapenem-resistant Enterobacteriaceae (CRE) – November 2015 update CRE toolkit. https://www.cdc.gov/hai/organisms/cre/cre-toolkit/index.html. Accessed 21 January 2018.

2. Kanamori H, Rutala WA, Weber DJ. 2017. The role of patient care items as a fomite in healthcare-associated outbreaks and infection prevention. Clin Infect Dis 65:1412–1419. https://doi.org/10.1093/cid/cix462.

3. Poirel L, Jayol A, Nordmann P. 2017. Polyoxymixins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30:557–596. https://doi.org/10.1128/CMR.00064-16.

4. Tian GB, Doi Y, Shen J, Walsh TR, Wang Y, Zhang R, Huang X. 2017. MCR-1-producing Klebsiella pneumoniae outbreak in China. Lancet Infect Dis 17:377. https://doi.org/10.1016/S1473-3099(17)30266-9.

5. Weber DJ, Rutala WA. 2006. Use of germicides in the home and the healthcare setting: is there a relationship between germicide use and antibiotic resistance? Infect Control Hosp Epidemiol 27:1107–1119. https://doi.org/10.1086/507964.

6. Harbarth S, Tuan Soh S, Horner C, Wilcox MH. 2014. Is reduced susceptibility to disinfectants and antiseptics a risk in healthcare settings? A point/counterpoint review J Hosp Infect 87:194–202. https://doi.org/10.1016/j.jhin.2014.04.012.

7. Guo W, Shan K, Xu B, Li J. 2015. Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog Glob Health 109:184–192. https://doi.org/10.1179/2047773215Y.0000000022.

8. Reichel M, Schlütich A, Östermeyer C, Kampf G. 2014. Efficacy of surface disinfectant cleaners against emerging highly resistant Gram-negative bacteria. BMC Infect Dis 14:292. https://doi.org/10.1186/1471-2334-14-292.

9. Kanamori H, Parobek CM, Juliano JJ, van Duin D, Cairns BA, Weber DJ, Rutala WA. 2017. A prolonged outbreak of KPC-3-producing Enterobacter cloacae and Klebsiella pneumoniae driven by multiple mechanisms of resistance transmission at a large academic burn center. Antimicrob Agents Chemother 61:e01516-16. https://doi.org/10.1128/AAC.01516-16.

10. Sattar SA, Springthorpe VS, Adegbunrin O, Zafer AA, Busa M. 2003. A disc-based quantitative carrier test method to assess the virucidal activity of chemical germicides. J Virol Methods 112:3–12. https://doi.org/10.1016/S0166-0934(03)00192-7.

11. Rutala WA, Peacock JE, Gergen MF, Sobsey MD, Weber DJ. 2006. Efficacy of hospital germicides against adenovirus 8, a common cause of epidemic keratoconjunctivitis in health care facilities. Antimicrob Agents Chemother 50:1419–1424. https://doi.org/10.1128/AAC.50.4.1419-1424_2006.

12. Huslage K, Rutala WA, Gergen MF, Sickbert-Bennett EE, Weber DJ. 2013. Microbial assessment of high-, medium-, and low-touch hospital room surfaces. Infect Control Hosp Epidemiol 34:211–212. https://doi.org/10.1086/669092.

13. Anderson DJ, Chen LF, Weber DJ, Moehring RW, Lewis SS, Triplett PF, Blocker M, Becherer P, Schwab JC, Nkelson LP, Lohkhnyyna Y, Rutala WA, Kanamori H, Gergen MF, Sexton DJ, CDC Prevention Epicenters Program. 2017. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): a cluster-
randomised, multicentre, crossover study. Lancet 389:805–814. https://doi.org/10.1016/S0140-6736(16)31588-4.
14. Weber DJ, Rutala WA, Kanamori H, Gergen MF, Sickbert-Bennett EE. 2015. Carbapenem-resistant Enterobacteriaceae: frequency of hospital room contamination and survival on various inoculated surfaces. Infect Control Hosp Epidemiol 36:590–593. https://doi.org/10.1017/ice.2015.17.
15. Rutala WA, Weber DJ. 2014. Selection of the ideal disinfectant. Infect Control Hosp Epidemiol 35:855–865. https://doi.org/10.1086/676877.
16. U.S. Environmental Protection Agency. Selected EPA-registered disinfectants. https://www.epa.gov/pesticide-registration/selected-epa-registered-disinfectants. Accessed 12 February 2018.
17. Boyce JM, Sullivan L, Booker A, Baker J. 2016. Quaternary ammonium disinfectant issues encountered in an environmental services department. Infect Control Hosp Epidemiol 37:340–342. https://doi.org/10.1017/ice.2015.299.