Tools for promoting a scientific article: Computer Optics journal case study

D V Kudryashov

Abstract. The author analyzes the main tools for promoting scientific articles that are used most often by the editorial board of the Computer Optics journal to promote the publication in international scientometric databases and popularize the ideas of science. It is noted that the use of these tools allowed the publication to increase significantly the “portfolio” of articles, the number of articles published per year, including the articles in English, increase significantly the citation of journal articles in other scientific publications, as well as expand the geographical spread of authors.

1. Introduction
The Computer Optics journal has been published since 1987 and Russian and in English. Within this time, 43 volumes have been published with over 1,800 scientific papers. Since 2016, it has been published 6 times per year. Every issue has at least 20 articles and reviews [1] in the following sections: diffractive optics; informational optical technology; nanophotonics and optics of nanostructures; image analysis and understanding, pattern recognition; geo-information technologies; digital processing of signals and images. Earth remote sensing technologies; hyperspectral data analysis; numerical methods of computer optics; intelligent video analysis [2].

Starting from the very first issue, all the articles of the journal are available for open access [3-4] on the journal website: www.computeroptics.ru.

As a result of the efforts of the editorial staff, every year the journal has been improving its scientometric indicators in the respective international databases (ISDBs). This particular goal was set in late 2014 by the Editor-in-Chief of the journal, Academician of RAS V.A. Soifer [5].

Besides, starting from 2015, the number of citations of the journal has grown substantially. Based on the preliminary data for the year 2018, this indicator has first rose beyond the number of 1000 citations. Since 2017, the journal has reached the Q2 level in all subject areas represented in it [6]. In accordance with the Scimago Journal Rank, the scientific journal “Computer Optics” entered the first quartile in the field of “Engineering” based on the indicators of 2019. All these achievements became possible due to the well-reasoned editorial politics with respect to international promotion of the journal using up-to-date tools and methods of promotion.

2. Promotion tools
The development of Internet and information technologies revealed that traditional publications of scientific articles in journals are no longer sufficient. Increase of citations of both the article and the
journal, attraction of attention of scientific community towards the issues addressed in the articles, improvement of scientometric indicators requires various tools and methods of article promotion. We shall now analyze the major tools of promotion of the most cited scientific articles [7-54] from the "Computer Optics" journal. I should note that the publications [55-75] of the authors of articles [7-54] determine Scopus H Index of a number of other domestic journals: "Optoelectronics, Instrumentation and Data Processing," "Technical Physics Letters," "Russian Microelectronics," "Russian Engineering Research," "Journal of Optical Technology," "Pattern Recognition and Image Analysis," "Optical Memory and Neural Networks (Information Optics)," "Herald of the Russian Academy of Sciences."

2.1. ISDB

Presently, any scientific edition, if it aims at international level, should have its website not only in Russian but in English as well. If particular rules are observed, this allows very fast listing in various international scientometrics databases including Scopus and Web of Science. Since 2012, the Computer Optics journal has been indexed in the Scopus database where the archive of issues is available starting from the year 2008 (issues for the period 2001-2007 are being prepared for publication). Since 2017, the Computer Optics journal has been indexed in the Web of Science Core Collection (Emerging Source Citation Index) where all issues starting from 2015 are available.

According to the journal website, Computer Optics is also found in such databases as Compendex, Crossref, DOAJ, Urlich’s Periodicals Directory, Applied Science & Technology Source Ultimate of EBSCO Publishing based on the EBSCOhost Research Databases platform, in the Inspec referral databases, and in the collection of the EastView database. It is also present in the Russian databases, namely in the Scientific Electronic Library (NEB) which is included in the RSCI core.

The presence of the journal in many databases ensures fast discoverability of the journal and separate articles in the Internet and on specialized web resources, allows comparison of scientometric indicators of the journal (and its contributors) with other scientific journals (authors) in the similar areas of knowledge. What is most important, however, is that the presence in various ISDBs increases the chances of the article being cited in other journals of international level with Q1 and Q2 indexes. Specifically, the index of article and journal citation is one of the main reasons for the journal to be included in the main database, the Web of Science Core Collection (Expanded).

2.2. E-libraries and Repositories

It is seen from the research [76] that electronic editions are becoming more and more popular. This became the reason for the creation of paid (for subscription-based journals) and free (for open-access journals) electronic libraries and repositories.

Usually publishing houses are using resources of free e-libraries to increase their footprint in the Internet and increase the number of references to the journal, and to attract additional audience. The issues of the Computer Optics journal are published in such e-libraries as “CyberLeninka” (Fig. 1), “Lan’”, “KnoRus”, Math-Net. The journal is also available in the repository of the Samara National Research University (Fig. 2) that is one of the publishers of the Computer Optics Journal. As a rule, the Russian repositories working under universities publish the journals issued by the respective educational institutions. For example, the repository of the Samara University also has issues of the “Polyot” newspaper whose founder is the Samara National Research University.

2.3. Wikipedia

In the autumn of 2019, the page describing the Computer Optics journal including the data about the board of editors and major scientometric indicators was created in the open Internet encyclopedia “Wikipedia” (Fig. 3). Despite the fact that the average number of visitors of this Internet resource is approx. 11 billion per month [77], Wikipedia is not broadly embraced by the scientific community, a major reason being that the information in Wikipedia is at times not confirmed and not scientific. The articles from Wikipedia are not indexed by the ISDBs and do not receive any scientometric indices. Nevertheless, this resource may also be regarded as a tool to promote the journal and its specific
articles (using the Comments), because the Wikipedia audience is very broad and the Wikipedia content is accessed every day by people worldwide.

Figure 1. The Computer Optics journal profile in the “CyberLeninka” electronic library.

Figure 2. The Computer Optics journal profile in the repository of the Samara University.

2.4. Social Networks

Publishing houses are beginning to use social networks very actively (including focused ones, e.g. Professional.ru), partner sites (publishers and founders) as a very important channel to promote their journals; in this respect, two ways may be observed.

First, the “official” journal blog is opened with news, snippets of articles, editorial stories etc. Second, the members of the board of editors publish their private blogs which they use not only to advertise for their journal but to promote it into the international scientific community. Same methods are used to promote the journal in popular social networks (VKontakte, Facebook, Twitter, Odnoklassniki).

Besides, marketing experts of publishing houses are engaged in professional internet forums (sometimes openly when they act as staff of the journal, sometimes “covertly”) by answering
questions, promoting the journal, referring to specific articles in past issues, suggesting topics for discussion etc. The forums are also used to publish specific articles, to announce new issues, and information about activities organized by the journal.

Figure 3. The Computer Optics journal page in Wikipedia.

Regrettfully, this promotion tool is not very popular and seldom used in Russia; however, early steps are made. Since 2019, the page of the Samara University Publishing Development Center has been on Facebook (Fig. 4). This online venue allows announcement of new issues of journals published by the university including issues of Computer Optics, and publication of most important news and updates from the partners, ranking agencies, and Russian branches of scientometric databases.

Figure 4. Facebook page of the Samara University Publication Development Center.

In 2020, the editorial board of the Computer Optics journal is planning to create its page on Facebook, both in Russian and in English, as this social network has the world’s largest number of registered users, “i.e. represents the most popular and extended implementation of the social networks in the world with a number of registered users exceeding 1.3 billion people” [78]. The availability of the publisher’s own page in the social network will enable it to engage in discussions on vital topics and articles, exchange knowledge, receive reviews, promote scientific developments among users,
increase article citation, and attract new contributors and reviewers. Besides, since the Computer Optics journal does not have a mobile version of the website, the page in the social network will make the publishing house accessible from any smartphone at any time.

2.5. Information Agencies
One more channel for the promotion and popularization of science is information agencies that allow raising public awareness about scientific research, developments and achievements. In 2019, the Samara University made an agreement with Russia’s largest informational agency, RIA “Novosti”. Following the terms and conditions of the agreement, the University provides to the agency the notes about most significant scientific articles published in journals of international level belonging to first or second quartiles. Computer Optics is one of such journals. In less than a year, RIA “Novosti” published approximately 10 articles with references to scientific papers from Computer Optics [79]. These articles are extended annotations written in simple, non-technical language without special terminology and concepts. This makes the scientific work of the Samara University understandable for millions of people in Russia and abroad, people with access to Internet and its news and information resources. An article published in a journal usually attracts attention of hundreds, maybe thousands of people accessing the official website of the journal or having a subscription. Popularization of scientific developments by means of information agencies makes scientific articles highly demanded and popular among millions of users.

However, this tool has a flaw: from the entirety of the news stream (hundreds and thousands of news stories per day) the users may not always be able to trace the story that might be interesting to them. A day later, the news story might get lost in the archive of the news agency having been replaced by more important and up-to-date information including that from the realm of science.

2.6. Scientific Conferences
Various scientific conferences also facilitate engagement of new authors and reviewers to the journal and promotion of journals among scientific institutions and universities. One of such conferences is “Informational Technologies and Nanotechnologies” held annually by the Samara University and the Image Processing Systems Institute of RAS [80]. In the course of conference, the guests may receive free copies of the Computer Optics journal and answers to their questions as to getting their papers published in this journal. Besides, following the results of the conference the best reports may also be published in the journal (following the peer review process).

In their turn, the staff of the Computer Optics editorial board also take part in international conferences where they not only present the journal to other participants but also make reports on the organization of editorial work [6], share experience with colleagues and receive consultations from experts of Elsevier and Clarivate Analytics. These recommendations find their implementation on the pages of the journal with respect to article layout and design.

2.7. Bulk Messaging
Some experts consider bulk mailing of letters with journal information and publishing opportunities to be yet another tool to promote a scientific journal; however, this method is not embraced by many as it is considered to be spam and a feature of a “predatory journal”.

At the same time, bulk mailing of the journal itself to the authors and contributors, scientific institutions and industry-specific universities as a rule is welcome and considered to be “good manners” and “a sign of attention” to its authors.

3. Conclusion
Publishers of scientific journals spend fewer resources on traditional means of promotion (advertising in the first place) of journals and seek other means to attract attention of their audience.

The sphere of Internet is becoming more and more important. “The availability of a website is no longer sufficient for successful promotion on the web. Publishers are opening pages in social
networks, keep their blogs, publish informational newsletters, and cooperate with electronic libraries” [81]. The use of the abovementioned promotion tools in the Computer Optics journal resulted in the increase of the “portfolio” of articles sent to the publisher, and increase of the number of authors including foreign authors (respectively, the number of articles in English increased as well). The presence of the journal in social networks and its mentioning in the news of leading information agencies not only popularizes the science but makes the journal recognizable by scientific and interested communities. Moreover, the described promotion tools enabled the journal to get in the Q2 in 2017 (source: Scimago Journal & Country Rank) in all areas of knowledge (before 2016, the journal was only in Q4 and Q3), and by the results of 2019, its performance allowed it to come to Q1.

4. References
[1] Kudryashov D V 2018 Current objectives of the development of the journal Computer Optics Proceedings of the III International Conference and the Youth School on Information Technology and Nanotechnology (ITNT) (Samara: Novaya Tekhnika) 364-368.
[2] [Electronic resource] Access mode: http://www.computeroptics.smr.ru/.
[3] Kudryashov D V 2018 Formation, development and features of English-language issues of the journal Computer Optics Journal of Physics: Conferences series 1096 012148 DOI: 10.1088/1742-6596/1096/1/012148.
[4] Kudryashov D V 2017 Current problems of development of the journal of Computer Optics CEUR Workshop Proceedings 1900 122-125.
[5] Soifer V A 2014 Quo vadis Computer Optics 38(4) 589.
[6] Kudryashov D V and Kirsh D V 2019 Regulations of the editors of the journal Computer Optics Journal of Physics: Conferences series 1368(2) 022077 DOI: 10.1088/1742-6596/1368/2/022077.
[7] Kazanskiy N L, Butt M A, Degtyarev S A and Khonina S N 2020 Achievements in the development of plasmonic waveguide sensors for measuring the refractive index Computer Optics 44(3) 295-318 DOI: 10.18287/2412-6179-CO-743.
[8] Kotlyar V V, Nalimov A G, Kovalev A A, Porfirev A P and Stafeev S S 2020 Transfer of spin angular momentum to a dielectric particle Computer Optics 44(3) 333-342 DOI: 10.18287/2412-6179-CO-686.
[9] Boori M S, Choudhary K and Kupriyanov A V 2020 Crop growth monitoring through Sentinel and Landsat data based NDVI time-series Computer Optics 44(3) 409-419 DOI: 10.18287/2412-6179-CO-635.
[10] Agafonova Yu D, Gaidel A V, Zelter P M and Kapishnikov A V 2020 Efficiency of machine learning algorithms and convolutional neural network for detection of pathological changes in MR images of the brain Computer Optics 44(2) 266-273 DOI: 10.18287/2412-6179-CO-671.
[11] Butt M A, Khonina S N and Kazanskiy N L 2019 Optical elements based on silicon photonics Computer Optics 43(6) 1079-1083 DOI: 10.18287/2412-6179-2019-43-6-1079-1083.
[12] Khonina S N, Tukmakov K N, Degtyarev S A, Reshetnikov A S, Pavelyev V S, Knyazev B A and Choporova Yu Yu 2019 Design, fabrication and investigation of a silicon subwavelength terahertz axicon Computer Optics 43(5) 756-764 DOI: 10.18287/2412-6179-2019-43-5-756-764.
[13] Arlazarov V V, Bulatov K, Chernov T and Arlazarov V L 2019 MIDV-500: a dataset for identity document analysis and recognition on mobile devices in video stream Computer Optics 43(5) 818-824 DOI: 10.18287/2412-6179-2019-43-5-818-824.
[14] Morozov O G, Sakhabutdinov A J 2019 Addressed fiber Bragg structures in quasi-distributed microwave-photon sensor systems Computer Optics 43(4) 535-543 DOI: 10.18287/2412-6179-2019-43-4-535-543.
[15] Kirilenko M S and Khonina S N 2019 Investigation of the topological charge stability for multiring Laguerre–Gauss vortex beams to random distortions Computer Optics 43(4) 567-576 DOI: 10.18287/2412-6179-2019-43-4-567-576.

[16] Vasilyev V S, Kapustin A I, Skidanov R V, Podlipnov V V, Ivliev N A and Ganchevskaya S V 2019 Experimental investigation of the stability of Bessel beams in the atmosphere Computer Optics 43(3) 376-384 DOI: 10.18287/2412-6179-2019-43-3-376-384.

[17] Egorova A A and Fedoseev V A 2019 A classification of semi-fragile watermarking systems for JPEG images Computer Optics 43(3) 419-433 DOI: 10.18287/2412-6179-2019-43-3-419-433.

[18] Thanh D N H, Prasath V B S, Son N V and Hieu L M 2019 An adaptive image inpainting method based on the modified Mumford-Shah model and multiscale parameter estimation Computer Optics 43(2) 251-257 DOI: 10.18287/2412-6179-2019-43-2-251-257.

[19] Magdeev R G and Tashlinskii A G 2019 Efficiency of object identification for binary images Computer Optics 43(2) 277-281 DOI: 10.18287/2412-6179-2019-43-2-277-281.

[20] Evsutin O O, Kokurina A S and Meshcheryakov R V 2019 A review of methods of embedding information in digital objects for security in the internet of things Computer Optics 43(1) 137-154 DOI: 10.18287/2412-6179-2019-43-1-137-154.

[21] Bibikov S A, Kazanskiy N L and Fursov V A 2018 Vegetation type recognition in hyperspectral images using a conjugacy indicator Computer Optics 42(5) 846-854 DOI: 10.18287/2412-6179-2018-42-4-846-854.

[22] Kropotov Y A, Proskuryakov A Y and Belov A A 2018 Method for forecasting changes in time series parameters in digital information management systems Computer Optics 42(6) 1093-1100 DOI: 10.18287/2412-6179-2018-42-6-1093-1100.

[23] Kazanskiy N L, Kharitonov S I, Kozlova I N and Moiseev M A 2018 The connection between the phase problem in optics, focusing of radiation, and the Monge-Kantorovich problem Computer Optics 42(4) 574-587 DOI: 10.18287/2412-6179-2018-42-4-574-587.

[24] Shirokanov A S, Kirsh D V, Ilyasova N Yu and Kupriyanov A V 2018 Investigation of algorithms for coagulate arrangement in fundus images Computer Optics 42(4) 712-721 DOI: 10.18287/2412-6179-2018-42-4-712-721.

[25] Maksimov A I and Gashnikov M V 2018 Adaptive interpolation of multidimensional signals for differential compression Computer Optics 42(4) 679-687 DOI: 10.18287/2412-6179-2018-42-4-679-687.

[26] Plotnikov D E, Kolbudaev P A and Bartalev S A 2018 Identification of dynamically homogeneous areas with time series segmentation of remote sensing data Computer Optics 42(3) 447-456 DOI: 10.18287/2412-6179-2018-42-3-447-456.

[27] Kotlyar V V and Nalimov A G 2017 A vector optical vortex generated and focused using a metalens Computer Optics 41(5) 645-654 DOI: 10.18287/2412-6179-2017-41-5-645-654.

[28] Myasnikov E V 2017 Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches Computer Optics 41(4) 564-572 DOI: 10.18287/2412-6179-2017-41-4-564-572.

[29] Nikonorov A V, Petrov M V, Bibikov S A, Kutikova V V, Morozov A A and Kazanskiy N L 2017 Image restoration in diffractive optical systems using deep learning and deconvolution Computer Optics 41(6) 875-887 DOI: 10.18287/2412-6179-2017-41-6-875-887.

[30] Smelkina N A, Kosarev R N, Nikonorov A V, Bairikov I M, Ryakov K N, Avdeev A V and Kazanskiy N L 2017 Reconstruction of anatomical structures using statistical shape modeling Computer Optics 41(6) 897-904 DOI: 10.18287/2412-6179-2017-41-6-897-904.

[31] Vorobiova N S, Sergeyev V V and Chernov A V 2016 Information technology of early crop identification by using satellite images Computer Optics 40(6) 929-938 DOI: 10.18287/2412-6179-2016-40-6-929-938.

[32] Soifer V A, Korotkova O, Khonina S N and Shchepakina E A 2016 Vortex beams in turbulent media: review Computer Optics 40(5) 605-624 DOI: 10.18287/2412-6179-2016-40-5-605-624.
[33] Kazanskiy N L, Stepanenko I S, Khaimovich A I, Kravchenko S V, Byzov E V and Moiseev M A 2016 Injectional multilens molding parameters optimization Computer Optics 40(2) 203-214 DOI: 10.18287/2412-6179-2016-40-2-203-214.

[34] Agafonov A A and Myasnikov V V 2016 Method for the reliable shortest path search in time-dependent stochastic networks and its application to GIS-based traffic control Computer Optics 40(2) 275-283 DOI: 10.18287/2412-6179-2016-40-2-275-283.

[35] Spitsyn V G, Bolotova Yu A, Phan N H and Bui T T T 2016 Using a Haar wavelet transform, principal component analysis and neural networks for OCR in the presence of impulse noise Computer Optics 40(2) 249-257 DOI: 10.18287/2412-6179-2016-40-2-249-257.

[36] Egorov A V, Kazanskiy N L and Serafimovich P G 2015 Using Coupled Photonic Crystal Cavities for Increasing of Sensor Sensitivity Computer Optics 39(2) 158-162 DOI: 10.18287/0134-2452-2015-39-2-158-162.

[37] Karpeev S V, Khonina S N and Kharitonov S I 2015 Study of the diffraction grating on the convex surface as a dispersive element Computer Optics 39(2) 211-217 DOI: 10.18287/0134-2452-2015-39-2-211-217.

[38] Kazanskiy N L, Kharitonov S I, Doskolovich L L and Pavelyev A V 2015 Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme Computer Optics 39(1) 70-76 DOI: 10.18287/0134-2452-2015-39-1-70-76.

[39] Murzin S P 2014 Method of composite nanomaterials synthesis under metal/oxide pulse-periodic laser treatment Computer Optics 38(3) 469-475.

[40] Karpeev S V, Alferov S V, Khonina S N and Kudryashov S I 2014 Study of the broadband radiation intensity distribution formed by diffractive optical elements Computer Optics 38(4) 689-694.

[41] Kazanskii N L, Khonina S N, Skidanov R V, Morozov A A, Kharitonov S I and Volotovskiy S G 2014 Formation of images using multilevel diffractive lens Computer Optics 38(3) 425-434.

[42] Kazanskiy N L, Kharitonov S I, Khonina S N, Volotovskiy S G and Strelkov Yu S 2014 Simulation of hyperspectrometer on spectral linear variable filters Computer Optics 38(2) 256-270.

[43] Gasnikov M V and Glumov N I 2014 Hierarchical grid interpolation for hyperspectral image compression Computer Optics 38(1) 87-93.

[44] Kazanskiy N L, Kharitonov S I, Karsakov A V and Khonina S N 2014 Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics Computer Optics 38(2) 271-280.

[45] Kotlyar V V, Kovalev A A and Soifer V A 2014 Diffraction-free asymmetric elegant Bessel beams with fractional orbital angular momentum Computer Optics 38(1) 4-10.

[46] Zimichev E A, Kazanskiy N L and Serafimovich P G 2014 Spectral-spatial classification with k-means++ particional clustering Computer Optics 38(2) 281-286.

[47] Lyubopytov V S, Tlyavlin A Z, Sultanov A Kh, Bagmanov V Kh, Khonina S N, Karpeev S V and Kazanskiy N L 2013 Mathematical model of completely optical system for detection of mode propagation parameters in an optical fiber with few-mode operation for adaptive compensation of mode coupling Computer Optics 37(3) 352-359.

[48] Khonina S N and Volotovskiy S G and Kharitonov S I 2013 Features of nonparaxial propagation of gaussian and Bessel beams along the axis of the crystal Computer Optics 37(3) 297-306.

[49] Kazanskiy N L and Popov S B 2012 The distributed vision system of the registration of the railway train Computer Optics 36(3) 419-428.

[50] Soifer V A and Kurpiyanov A V 2011 Analysis and recognition of the nanoscale images: Conventional approach and novel problem statement Computer Optics 35(2) 136-144.

[51] Bartalev S A, Egorov V A, Loupian E A, Plotnikov D E and Uvarov I A 2011 Recognition of arable lands using multi-annual satellite data from spectroradiometer modis and locally adaptive supervised classification Computer Optics 35(1) 103-116.
[52] Kazanskiy N L, Murzin S P and Tregub V I 2010 Optical system for realization selective laser sublimation of metal alloys components Computer Optics 34(4) 481-486.
[53] Soifer V A, Kotlyar V V and Doskolovich L L 2009 Diffractive optical elements in nanophotonics devices Computer Optics 33(4) 352-368.
[54] Kotlyar V V and Stafeev S S 2009 Modeling sharp focus radially-polarized laser mode with conical and binary microaxicons Computer Optics 33(1) 52-60.
[55] Golub M A, Kazanski N L, Sisakyan I N, Soifer V A and Kharitonov S I 1987 Diffraction calculation for an optical element which focuses into a ring Optoelectronics, Instrumentation and Data Processing 6 7-14.
[56] Golub M A, Kazanski N L, Sisakyan I N and Soifer V A 1988 Computational experiment with plane optical elements Optoelectronics, Instrumentation and Data Processing 1 70-82.
[57] Kazanskiy N L and Khonina S N 2017 Nonparaxial Effects in Lensacon Optical Systems Optoelectronics, Instrumentation and Data Processing 53(5) 484-493 DOI: 10.3103/S8756699017050089.
[58] Kazanskiy N L, Kolpakov V A and Kolpakov A I 2004 Anisotropic Etching of SiO2 in High-Voltage Gas-Discharge Plasmas Russian Microelectronics 3(3) 169-182 DOI: 10.1023/B:RUMI.0000026175.29416.eb.
[59] Abul'khanov R S, Khonina N L, Doskolovich L L and Kazakova O Y 2011 Manufacture of diffractive optical elements by cutting on numerically controlled machine tools Russian Engineering Research 31(12) 1268-1272 DOI: 10.3103/S1068798X11120033.
[60] Bezus E A, Doskolovich L L, Kazanskiy N L and Soifer V A 2011 Scattering in elements of plasmon optics suppressed by two-layer dielectric structures Technical Physics Letters 37(12) 1091-1095 DOI: 10.1134/S1063785011120030.
[61] Kazanskiy N L, Moiseev O Yu and Poletayev S D 2016 Microprofile Formation by Thermal Oxidation of Molybdenum Films Technical Physics Letters 42(2) 164-166 DOI: 10.1134/S1063785016020085.
[62] Borodin S A, Volkov A V and Kazanski N L 2009 Device for analyzing nanoroughness and contamination on a substrate from the dynamic state of a liquid drop deposited on its surface Journal of Optical Technology 76(7) 408-412 DOI: 10.1364/JOT.76.000408.
[63] Khonina S N, Kazanski N L, Ustinov A V and Volotovsky S G 2011 The lensacon: non-paraxial effects Journal of Optical Technology 78(11) 724-729 DOI: 10.1364/JOT.78.000724.
[64] Khonina S N, Savel'ev D A, Pustovoit I A and Serafimovich P G 2012 Diffraction at binary microaxicons in the near field Journal of Optical Technology 79 626-631.
[65] Kazanskiy N L and Popov S B 2015 Integrated design technology for computer vision systems in railway transportation Pattern Recognition and Image Analysis 25(2) 215-219 DOI: 10.1134/S1054661815020133.
[66] Thanh D N H and Dvovenko S D 2016 A method of total variation to remove the mixed Poisson-Gaussian noise Pattern Recognition and Image Analysis 26(2) 285-293 DOI: 10.1134/S1054661816020231.
[67] Kazanskiy N L and Popov S B 2010 Machine Vision System for Singularity Detection in Monitoring the Long Process Optical Memory and Neural Networks (Information Optics) 19(1) 23-30 DOI: 10.3103/S1060992X10010042.
[68] Khonina S N, Kazanskiy N L and Volotovsky S G 2011 Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system Optical Memory and Neural Networks (Information Optics) 20(1) 23-42 DOI: 10.3103/S1060992X11010024.
[69] Golovashkin D L and Kasanskiy N L 2011 Solving diffractive optics problem using graphics processing units Optical Memory and Neural Networks (Information Optics) 20(2) 85-89 DOI: 10.3103/S1060992X11020019.
[70] Khonina S N, Nesterenko D V, Morozov A A, Skidanov R V and Soifer V A 2012 Narrowing of a light spot at diffraction of linearly-polarized beam on binary asymmetric axicons Optical
Memory and Neural Networks (Information Optics) 21 17-26 DOI: 10.3103/S1060992X12010043.

[71] Kazanskiy N L, Serafimovich P G and Khonina S N 2010 Harnessing the guided-mode resonance to design nano-optical transmission spectral filters Optical Memory and Neural Networks (Information Optics) 19 318-324 DOI: 10.3103/S1060992X10040090.

[72] Kirilenko M S and Khonina S N 2013 Information transmission using optical vortices Optical Memory and Neural Networks (Information Optics) 22 81-89 DOI: 10.3103/S1060992X13020069.

[73] Ustinov A V and Khonina S N 2012 Calculating the complex transmission function of refractive axicons Optical Memory and Neural Networks (Information Optics) 21 133-144 DOI: 10.3103/S1060992X1203006X.

[74] Khonina S N, Ustinov A V and Kovalyov A A 2014 Near-field propagation of vortex beams: Models and computation algorithms Optical Memory and Neural Networks (Information Optics) 23 50-73.

[75] Soifer V A 2014 Diffractive nanophotonics and advanced information technologies Herald of the Russian Academy of Sciences 84 9-20 DOI: 10.1134/S1019331614010067.

[76] Russian scientific periodicals: from paper to online (the results of study of the readiness of Russian publications for the transition from traditional print journals to electronic versions of issues) [Electronic resource] Access mode: http://ifets.ieee.org/russian/depository/v9_i3/html/1.html.

[77] [Electronic resource] Access mode: https://ru.wikipedia.org/wiki/

[78] Dyachenko O V 2016 Russian mass media in the social networks Facebook and Vkontakte.ru: analysis of activity and audience information preferences Vesti Mosk. Univ. Ser. 10. Journalism 1 28-45.

[79] [Electronic resource] Access mode: https://ssau.ru/news/17672-ria-novosti-moshchnaya-optika-mozhet-byt-kompaktnoy-uchenye-sozdayut-ochki-teleskopy.

[80] Savelyev D A 2017 International Conference and Youth School “Information Technologies and Nanotechnology” (ITNT-2017) Computer Optics 41(5) 775-785 DOI: 10.18287/2412-6179-2017-41-5-775-785.

[81] Solomakhin M S 2011 Some methods of promoting journals at the market of professional publications Marketing in Russia and abroad 1.