Bartonella infections in cats and dogs including zoonotic aspects

Alejandra Álvarez-Fernández1, Edward B. Breitschwerdt2 and Laia Solano-Gallego1*

Abstract

Bartonellosis is a vector-borne zoonotic disease with worldwide distribution that can infect humans and a large number of mammals including small companion animals (cats and dogs). In recent years, an increasing number of studies from around the world have reported Bartonella infections, although publications have predominantly focused on the North American perspective. Currently, clinicopathological data from Europe are more limited, suggesting that bartonellosis may be an infrequent or underdiagnosed infectious disease in cats and dogs. Research is needed to confirm or exclude Bartonella infection as a cause of a spectrum of feline and canine diseases. Bartonella spp. can cause acute or chronic infections in cats, dogs and humans. On a comparative medical basis, different clinical manifestations, such as periods of intermittent fever, granulomatous inflammation involving the heart, liver, lymph nodes and other tissues, endocarditis, bacillary angiomatosis, peliosis hepatitis, uveitis and vasoproliferative tumors have been reported in cats, dogs and humans. The purpose of this review is to provide an update and European perspective on Bartonella infections in cats and dogs, including clinical, diagnostic, epidemiological, pathological, treatment and zoonotic aspects.

Keywords: Bartonella, Dog, Cat, Europe, Zoonosis

Background

Bartonella is a genus of Alphaproteobacteria within the family Bartonellaceae. Bartonella spp. are small, thin, short and slightly curved, gram-negative, hemotrophic and rod-shaped bacteria [1]. They are catalase, oxidase, urease and nitrate reductase negative [1]. Bartonella spp. are fastidious, slow growing and facultative intracellular pathogens that are highly adapted to a broad spectrum of mammalian reservoir hosts and are mainly transmitted by arthropod vectors [2, 3]. Thirty-eight different Bartonella species have been isolated or detected from humans or from domestic and wild animals including bats, birds, canids, cattle, deer, Felids, horses, marine mammals, rodents, sheep and reptiles [4–10]. Bartonella spp. are distributed throughout the world. In recent years, an increasing number of studies from around the world have reported canine and feline Bartonella infections. The purpose of this review is to provide an update while emphasizing European literature relative to Bartonella spp. infections in cats and dogs, including clinical, diagnostic, epidemiological, pathological, treatment and zoonotic aspects.

Clinically relevant Bartonella species described in cats, dogs and humans

At least thirteen Bartonella species or subspecies have been recognized as agents of human disease, three species are reportedly responsible for the majority of clinical illness: B. bacilliformis, B. quintana and B. henselae [11]. Because serological testing for other Bartonella spp. is rarely performed in human medicine and due to difficulties associated with isolation or PCR amplification of these bacteria from patient specimens, it is possible that B. koehlerae [12, 13], B. vinsonii berkhoffii, as well as other species are under-recognized as a cause of human illness [14, 15].

Primary reservoirs, accidental hosts and the confirmed or suspected vectors for the main Bartonella species infecting cats and dogs with zoonotic potential are listed in Table 1. The most relevant species implicated in companion animal medicine are B. clarridgeiae, B. elizabethae, B. henselae, B. koehleri, B. quintana, B. rochalimae and B. vinsonii berkhoffii. All of these species have been associated with severe illnesses in cats or dogs.

* Correspondence: laia.solano@uab.cat
1Department de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
and all have zoonotic potential [16, 17]. Each *Bartonella* spp. appears to have co-evolved with a specific primary reservoir host which poses a source of infection for accidental hosts under natural exposure conditions [16].

The cat (*Felis catus*) is the primary but not sole reservoir for *B. henselae* [18], the causal agent of human cat scratch disease (CSD). Domestic cats are also principal reservoir hosts for *B. clarridgeiae* and *B. koehlerae*. Infected cats are thought to rarely develop clinical signs [19]. However, chronic, relapsing bacteremia can frequently be detected in infected cats and potential long-term consequences of relapsing bacteremia are unknown [20–22]. Cats can also be infected with *B. bovis* (ex *weissii*) and *B. quintana*, but the role of domestic cats in the epidemiology of these two *Bartonella* species has not been clearly established [21].

The dog (*Canis familiaris*) may also be a host for *B. henselae* and canines are considered the primary reservoirs for *B. vinsonii berkholffii*, causing endocarditis in dogs and humans [23, 24]. Wild canids such as coyotes (*Canis latrans*) in California and potentially domestic dogs have been described as main reservoir hosts for *B. vinsonii berkholffii*, as prolonged bacteremia also occurs in these animals [5, 25, 26]. *Bartonella henselae*, first isolated from a dog in Gabon in 2003 may be the *Bartonella* spp. that most often infects pet dogs [27]. Dogs can also be infected with *B. clarridgeiae*, *B. elizabethae*, *B. koehlerae*, *B. quintana*, *B. rochalimae* and *B. washoensis*, potentially causing similar disease manifestations as reported in humans, including bacillary angiomatosis, endocarditis, granulomatous hepatitis and granulomatous lymphadenitis, myocarditis, peliosis hepatitis and others [20, 28–32]. Due to direct and frequent contact with humans, pet and stray infected cats and dogs pose a potential risk for human infection [33].

Bartonella henselae also causes multiple other clinical entities in human patients, potentially related to the individual's immune status, variations in strain virulence, co-infection with other pathogens and co-morbidities [34]. Infection with *B. clarridgeiae* has been suspected in a few CSD cases and the organism has been isolated from one asymptomatic human blood donor [35]. *Bartonella koehlerae* has been associated with regional pain syndrome type I [13], hallucinations, sensory neuropathy, peripheral visual deficits [36], endocarditis [22] and other clinical conditions [12]. *Bartonella vinsonii berkholffii* has been associated with human endocarditis and a spectrum of neurological symptoms [23, 24]. *Bartonella quintana*, the agent of trench fever, has been classically considered a human-specific species transmitted solely by human body lice [37]. However, *B. quintana* DNA has been detected in dogs with endocarditis [38] and healthy dogs [39, 40], cats [41, 42] and monkeys (*Macaca fascicularis* and *Macaca mulatta*) [43, 44].

Inter- and intra-species transmission

Intra-erythrocytic *Bartonella* organisms within the bloodstream are ingested by blood-sucking arthropod vectors, mainly fleas, lice, sand flies, biting flies and ticks, after which they are transmitted to a primary reservoir or to an accidental host [37] (Table 1). Vector transmission occurs in two primary ways: (i) inoculation of *Bartonella*-contaminated arthropod feces *via* animal scratches or bites or by self-inflected contamination of wounds induced by the host scratching irritating arthropod bites. These are important modes of transmission.
among primary reservoir and accidental hosts, including cats, dogs and humans [45–47]. (ii) The other primary mode of transmission is by vector bites, as confirmed for Lutzomyia verrucarum sand flies, the vector of B. bacilliformis among humans [48]. Experimentally, using an in vitro model, Ixodes ricinus ticks were able to infect mammalian blood with B. henselae [49]. Furthermore, the presence of Bartonella spp. DNA, particularly B. henselae, has been well documented in questing ticks from Europe and other continents [50–52]. Ticks have also been clinically implicated in the transmission of Bartonella infection to dogs or humans in the absence of other vectors or known modes of transmission [53–56]. Interestingly, regurgitation of B. henselae by cat fleas (Ctenocephalides felis) has been demonstrated experimentally [57], but additional studies are needed to confirm flea-bite transmission to animals or humans. It is important to note that non-vectorial modes of transmission are also possible such as transmission through needle stick injury to veterinarians [58] or by blood transfusion as documented experimentally in cats, dogs and humans [59–62].

Epidemiology, prevalence and distribution in Europe

Serology, PCR or culture-based clinico-epidemiological studies in cats and dogs in Europe are summarized in Tables 2 and 3 and Figs. 1 and 2. More than 50 feline and canine seroprevalence studies have been reported from different European countries (Tables 2, 3); however, culture or PCR confirmed cases of canine or feline bartonellosis have been infrequently reported. Bartonella spp. seroprevalence rates are high in cats in European Mediterranean countries, where temperature and humidity are favorable for flea and tick infestations [20] (Fig. 1). In Europe, Bartonella antibody prevalence in cats ranges from 0% in Norway [63] to 71.4% in Spain [64] (Table 2). Bacteremic prevalence rates for various combinations of B. clarridgeiae, B. henselae and B. koehlerae often approach 50–75% in feral cat populations worldwide [17]. Generally, the differences in serological or bacteremic prevalences are related to different climatic conditions, whether the cat population tested consisted of pet or stray cats and whether acaricide products were used routinely. Information regarding clinic-epidemiological studies performed in cats in other continents is summarized in Table 4.

Bartonella henselae infection is commonly encountered in cats and potentially dogs and humans worldwide [65] (Tables 2, 3, 4, 5). Bartonella clarridgeiae, B. quintana, B. koehlerae and B. bovis are less frequently isolated from domestic cats than B. henselae, potentially because these species are more difficult to isolate or are unevenly distributed worldwide (Tables 2, 4). In Europe, B. clarridgeiae serological and molecular prevalence rates vary from 17 to 36%, while B. quintana seroprevalence rates range from 0 to 18%, among a few reported studies (Table 2). Interestingly, B. koehlerae and B. bovis have not yet been documented to infect cats in Europe although B. koehlerae DNA has been amplified from cat fleas in France [66].

Bartonella exposure or infection prevalence studies involving cats have been widely reported from around the world (Tables 2, 4), whereas fewer serological or isolation studies are available regarding Bartonella exposure or infection in dogs (Fig. 2). In the USA, one study found a 3.6% B. vinsonii berkholffii seroprevalence in 1920 clinically ill dogs. The B. vinsonii berkholffii prevalence increased to 36 and 52% if the dogs were co-exposed to Ehrlichia canis or Babesia canis, respectively [67]. Another study found B. henselae IgG antibodies in 10.1% of healthy dogs and in 27.2% of sick dogs, whereas B. vinsonii berkholffii IgG antibodies were detected in only 1% of healthy dogs and 4.7% of sick dogs [68]. A recent Bartonella seroepidemiology study from North America found overall low B. henselae, B. koehlerae and B. vinsonii berkholffii seroprevalences in dogs in which a vector-borne disease was suspected [69]. In California, 102 out of 3417 (2.99%) sick dogs were seroreactive for at least one species of Bartonella antigen. Of these, 36 (35.3%) had antibodies against B. henselae only, 34 (33.3%) had antibodies against B. clarridgeiae only, 2 (2.0%) had antibodies against B. vinsonii berkholffii only and 30 (29.4%) had antibodies against a combination of these antigens [70]. Although the sensitivity of Bartonella spp. indirect immunofluorescence assay (IFA) most likely under estimates overall seroprevalence, IFA specificity appears to approach 100% [71]. Bartonella seroprevalence data is more limited in Europe and other continents in dogs when compared to North America (Tables 3, 5). In Europe, 3% were B. henselae-seropositive in the UK [72] and 5.8% in Italy [73]. In Spain, B. henselae and B. vinsonii berkholffii seroprevalences were 16.8 and 1.1%, respectively [74]. Moreover, it is important to remark that after a search in PubMed we found around seven times more reports of Bartonella infection in dogs in the USA than in Europe [5, 14, 28–31, 38, 75–100]. Information regarding clinico-epidemiological studies performed in dogs in other continents is summarized in Table 5.

The annual number of human cases of CSD in the USA is estimated to be 12,000 outpatients and 500 inpatients [101]. Comparative data have not been reported for European countries. By IFA testing, B. henselae seroprevalence rates reported for humans in Europe range between 3 and 30% [51, 102, 103]. A recent study that used six Bartonella spp. or genotype antigens to test 89 Spanish veterinarians documented a high Bartonella spp. seroprevalence
Table 2 Bartonella spp. clinico-epidemiological studies involving cats in Europe

Country (area, year)	Total no. of animals studied (lifestyle)	Percentage of positive animals	Confirmed Bartonella spp. and type using molecular methods	Reference		
Albania (Tirana, 2014)	146 (client-owned)	nr	0.7	B. henselae	[182]	
Cyprus (2017)	174 (stray and client-owned)	nr	10.9	B. henselae	[183]	
Greece (Crete, Mykonos, Skopelos, Athens, 2017)	148 (stray)	58.8	4.7	B. henselae, B. clarridgeiae	[184]	
Greece (Thessaly, Macedonia, 2018)	100 (client-owned)	nr	8.5	B. henselae, B. clarridgeiae, B. koehlerae	[178]	
Czech Republic (Prague, 2003)	61 (stray, client-owned and shelter)	nr	8.0	B. henselae type II	[185]	
Denmark (2002)	93 (stray and client-owned)	45.6	nr	22.6	B. henselae types I and II	[186]
France (Nancy, 1997)	94 (stray)	nr	nr	53	B. henselae types I and II, B. claridgeiae	[187]
France (Paris, 2001)	436 (client-owned)	41.1	nr	16.5	B. henselae types I and II, B. claridgeiae	[188]
France (Lyon, 2004)	99 (client-owned)	nr	nr	8.1	B. henselae, B. claridgeiae	[189]
Germany (Freiburg, 1997)	100 (client-owned)	nr	nr	13	B. henselae	[190]
Germany (southern and northern, 1999)	713 (stray and client-owned)	1	nr	nr	nr	[191]
Germany (Berlin, 2001)	193 (client-owned and stray)	nr	nr	20	B. henselae types I and II, B. claridgeiae	[192]
Germany (Hannover and others, 2011)	507 (nr)	68.7 (ELISA)	nr	2.2	B. henselae	[193]
Germany (north-east, 2012)	256 (stray and client-owned)	37.1; 18.8 (B. quintana)	0	nr	na	[194]
Germany (southern, 2017)	479 (nr)	nr	2.5	nr	B. henselae, B. claridgeiae	[195]
Italy (Tuscany, 2002)	427 (client-owned and shelter)	16.0	4.0	0	B. henselae	[196]
Italy (northern, 2002)	248 (nr)	nr	nr	9.7	B. henselae	[197]
Italy (northern, 2004)	1585 (stray)	39.0	nr	2.0	B. henselae types I and II, B. claridgeiae	[198]
Italy (Sassari, 2007)	79 (stray and client-owned)	21.5	nr	nr	na	[199]
Italy (Sardinia, 2009)	55 (nr)	10.9	5.5	nr	B. henselae	[73]
Italy (southern, 2010)	85 (client-owned)	nr	83.5	nr	B. henselae	[148]
Italy (Sicily, 2012)	182 (stray and client-owned)	57.1	nr	nr	na	[200]
Italy (Pisa, 2012)	234 (client-owned)	33.3	11.1	nr	B. henselae types I and II	[201]
Italy (northern, 2013)	1340 (stray)	23.1	nr	17.0	B. henselae, B. claridgeiae	[202]
Italy (northern, 2016)	82 (stray)	30.4	nr	nr	na	[203]
Italy (southern, 2016)	42 (nr)	54.8	38.1	nr	B. henselae, B. claridgeiae	[204]
Italy (Aeolian Islands, 2017)	330 (client-owned)	nr	3.9	nr	B. henselae, B. claridgeiae	[205]
Ireland (Dublin area, 2010)	121 (client-owned)	26.5 (ELISA)	5.2	nr	B. henselae type II, B. claridgeiae	[206]
Netherlands (1997)	163 (stray and client-owned)	51.8 (ELISA)	nr	22.0	B. henselae	[207]
Norway (2002)	100 (stray and client-owned)	0	nr	0	na	[63]
Poland (Warsaw, 2007)	137 (nr)	45.0	10.2	nr	B. henselae, B. claridgeiae	[208]
(73.0%), as well as a high molecular prevalence (7.9%) using *Bartonella* alpha proteobacteria growth medium (BAPGM)/PCR [104]. Interestingly, the lowest IFA seroreactivity was found against *B. quintana* antigen (11.2%) and the highest, against *B. vinsonii berkhoffii* genotype III antigen (56%). Infection with *B. henselae*, *B. vinsonii berkhoffii* genotypes I and III, and *B. quintana* DNA was documented [104]. In a previous study carried out in Spain using a commercial enzyme-linked immunosorbent assay (ELISA) kit *B. henselae* seroprevalence in cat owners, and blood donors was 28.9 and 5.9%, respectively [103]. These lower percentages most likely reflect differences in the antigens used, and exposure risks among the study populations. It is relevant to remark that veterinary personnel have a major exposure risk compared to the general population [104].

Infection and pathogenesis

In animal models, mainly cat and mouse, after initial inoculation the infection cycle of *Bartonella* spp. is initiated by colonization of the still enigmatic primary niche where the bacteria reside, persist and are periodically seeded into the bloodstream to cause the typical relapsing *Bartonella* spp. bacteremia [105]. Endothelial cells, lymph nodes, liver, spleen, kidney, dermis and the bone marrow are some of the proposed niches where *Bartonella* spp. have been isolated from mammals [106–112]. *Bartonella henselae* has been shown to infect erythrocytes, endothelial cells, macrophages, microglial cells and even human CD 34⁺ progenitor cells [113–116]. In a recent study, *Bartonella tribocorum* subcutaneous inoculated in rats led to bloodstream invasion through the lymphatic circulation [110], a finding that may have clinical implications for diseases such as chylothorax.

Bartonella tribocorum was able to resist macrophage phagocytosis and to inhibit pyroptosis at an early stage of infection [110]. Endothelial cells are an important target cell type in probably all mammals, including humans incidentally infected by zoonotic species [117].

Table 2 *Bartonella* spp. clinico-epidemiological studies involving cats in Europe (Continued)

Country (area, year)	Total no. of animals studied (lifestyle)	Percentage of positive animals	Confirmed *Bartonella* spp. and type using molecular methods	Reference		
Portugal (Lisbon, Evora, 2009)	51 (client-owned, shelter and stray)	64.9	67.7	nr	*B. henselae*	[209]
Portugal (1995)	14 (nr)	14.3 (*B. quintana*; 6.7)	nr	nr	na	[210]
Portugal (2014)	649 (stray and client-owned)	nr	2.9	nr	*Bartonella* spp.	[211]
Spain (Barcelona, Tarragona, Mallorca, 2005)	115 (client-owned)	29.6	7.0	nr	*B. henselae*	[212]
Spain (Barcelona, Tarragona, Mallorca, 2006)	168 (client-owned)	71.4	17.0	nr	*B. henselae*, *B. clarridgeiae*	[64]
Spain (Barcelona, 2008)	100 (client-owned)	nr	1	nr	*B. clarridgeiae*	[213]
Spain (Madrid, 2012)	680 (client-owned and stray)	24.7	0.3	nr	*B. henselae*	[127]
Spain (Rioja, Catalonia, 2013)	147 (stray and client-owned)	nr	32	nr	*B. henselae*, *B. clarridgeiae*	[214]
Spain (multiple locations, 2015)	86 (client-owned)	50	nr	nr	*B. henselae*	[215]
Spain (Zaragoza, 2016)	47 (stray and shelter)	nr	38.29	nr	*B. henselae*	[216]
Spain (Catalonia, 2016)	116 (shelter)	35.3 (ELISA)	22.4	nr	*B. henselae*, *B. clarridgeiae*	[217]
Scotland (2011)	52 (client-owned and stray)	15.4 (ELISA)	5.8	nr	*B. henselae*	[218]
Sweden (different locations, 2002)	292 (nr)	0 (*B. quintana*; 25 (*B. elizabethae*); 1 (*B. henselae*))	nr	nr	na	[219]
Sweden (Stockholm, 2003)	91 (client-owned)	nr	nr	2.2	*B. henselae* type II	[220]
Switzerland (Tessin, northern, 1997)	728 (client-owned and shelter)	8.3	nr	nr	na	[150]
UK (Bristol, 2002)	360 (nr)	nr	nr	9.4	*B. henselae* types I and II	[221]
UK (2000)	148 (stray and client-owned)	41.2 (ELISA)	nr	nr	na	[72]

*Tested by IFA for *B. henselae* antigen unless another method or antigen is indicated

Abbreviations: ELISA enzyme-linked immunosorbent assay, IFA indirect immunofluorescence assay, na not applicable, nr not reported
tropism of *Bartonella* spp. for endothelial cells in conjunction with their proximity to the bloodstream suggest that endothelial cells are an important constituent of the primary niche [118]. In mammalian reservoir hosts, *Bartonella* spp. infection is characterized by chronic intraerythrocytic bacteremia whereas in accidental hosts the bacteria are less frequently documented in association with intraerythrocytic bacteremia, potentially due to a very low-level infection of erythrocytes [105, 119]. *Bartonella* spp. are able to colonize endothelial cells in both, accidental and reservoir hosts [120]. The endothelial or vascular niche provides the bacterium with a means of seeding the blood with organisms on a sporadic basis, potentially contributing to infection of CD34+ progenitor cells in the bone marrow, as well as circulating erythrocytes and monocytes [16].

In dogs, *B. vinsonii berkholffii* can induce vascular endothelial growth factor (VEGF) endothelial cell proliferations, as reported for *B. bacilliformis*, *B. henselae* and *B. quintana* in human patients [121] leading to vascular tumor formation [118] and vasoproliferation, particularly in patients with human immunodeficiency virus (HIV) or therapeutic suppression of the immune system [121]. There is *in vitro* evidence that *B.vinsonii berkholffii* genotypes I, II and III are capable of inducing activation of hypoxia inducible factor-1 and production of VEGF, thereby providing mechanistic evidence as to how these bacteria could contribute to the development of

Table 3 *Bartonella* spp. clinico-epidemiological studies performed in European dogs

Country (area, year)	Total no. of animals studied (lifestyle)	Percentage of positive animals*	Confirmed *Bartonella* spp. and type using molecular methods	Reference	
Albania (Tirana, 2009)	30 (stray)	0 (ELISA)	0	na	[222]
Finland (southern, 2014)	390 (client-owned and hunting)	nr	0	na	[223]
Greece (Thessaloniki, 2009)	50 (client-owned sick)	nr	4	*B. rochalimae, Bartonella strain HMD*	[32]
Italy (Sassari, 2007)	58 (shelter, client-owned)	28.3	nr	na	[199]
Italy (Bologna, 2007)	381 (client-owned)	6	nr	na	[224]
Italy (Basilicata, Ginosa, 2009)	60 (shelter and client-owned)	6.6, 1.7 (*B. vinsonii berkholffii*)	11.6	*B. henselae, B. vinsonii berkholffii types I and II, Bartonella strain HMD*	[32]
Italy (Sardinia, 2009)	190 (nr)	9.5	0	na	[73]
Italy (Aeolian Islands, 2017)	263 (client-owned)	nr	0	na	[205]
Poland (Warsaw, 2007)	54 (nr)	5.0, 5.5 (*B. vinsonii berkholffii*)	10.2	*B. henselae, B. vinsonii berkholffii*	[208]
Poland (northwestern, 2011)	242 (client-owned and shelter)	nr	0.3	*Bartonella* spp.	[225]
Portugal (southern, 2014)	1010 (client-owned and stray)	nr	0	na	[211]
Spain (northern, 2006)	466 (client-owned)	16.8, 1.1 (*B. vinsonii berkholffii*)	nr	na	[74]
Spain (Barcelona, 2009)	153 (nr)	nr	0	na	[226]
Spain (north-west, 2018)	61 (client-owned *Leishmania* infected sick dogs); 16 (client-owned healthy)	40	nr	na	[227]
Spain (north-west, north-east, south-east, 2018)	30 (client-owned dogs with culture negative endocarditis)	nr	26.6c	*B. rochalimae, B. vinsonii berkholffii, B. koehlerae*	[136]
Spain (north-east, 2018)	68 (client-owned dogs with pericardial effusion)	nr	0d	na	[228]
UK (2000)	100 (client-owned)	3 (ELISA)	nr	na	[72]
UK (Bristol, 2002)	211 (nr)	nr	nr	na	[221]

*Blood culture was not performed in any of the listed studies with the exception of one study performed in Bristol that did not isolate *Bartonella* in dogs studied [221].

*Tested by IFA for *B. henselae* antigen unless another method or antigen is indicated.

*Samples were from cardiac valve tissue and blood.

*Samples were from pericardial effusion and blood.

Abbreviations: ELISA enzyme-linked immunosorbent assay, IFA indirect immunofluorescence assay, na not applicable, nr not reported.
vasoproliferative lesions [121]. For this reason, infection with one or more Bartonella spp. may contribute to the pathogenesis of systemic reactive angioidendotheliomatosis and hemangiopericytomas in animals [14, 122]. In human patients, activation of hypoxia inducible factor-1 and production of VEGF have been reported for B. bacilliformis, B. henselae and B. quintana [121] leading to vascular tumor formation [118] and vasoproliferation, particularly in patients with HIV or therapeutic suppression of the immune system [121]. Moreover, in humans, Bartonella spp. infections range from low to no morbidity (e.g. reactive, suppurative, or granulomatous lymphoid response in immunocompetent individuals), to occasional mortality (e.g. B. quintana infection), to substantial mortality in Peru due to the severe hemolytic anemia associated with B. bacilliformis [123].

Clinical signs and laboratory abnormalities
The spectrum of disease manifestations associated with Bartonella spp. infections continues to expand, yet remains incompletely characterized in many domestic and wild animals [16]. Although most acute Bartonella infections are probably self-limiting, persistent infections appear to be associated with a wide variety of clinical signs and pathological abnormalities in cats, dogs, and humans. Bartonella infections manifest from subclinical bacteremia (e.g. healthy animal and human blood donors) to encephalitis, fever of unknown origin, lymphadenomegaly, endocarditis and myocarditis, ocular disease (neuroretinitis, uveitis), skin inflammation and many other less common disease manifestations [124]. Some factors that could influence the appearance of disease manifestations include virulence differences among Bartonella spp. and strains, mode of transmission, differences in the host immune response, concurrent infectious or non-infectious diseases, immunosuppression and malnutrition [16, 125].

In the context of comparative medicine, One Health and pet ownership, B. henselae, B. koehlerae and B. vinsonii berkhoftii are the three Bartonella spp. most frequently associated with pathology in cats, dogs and humans. As reservoir host for B. henselae and B. koehlerae, cats can be sub clinically infected for months and even years [54]. However, more virulent strains of these species, as well as other Bartonella spp. for which cats are accidental hosts, appear to result in enhanced pathogenicity (Table 6). Furthermore, immunosuppressive viral infections like feline leukemia virus (FeLV) may predispose to B. henselae infection or
persistence in cats [126] (Table 6). Despite long-standing bloodstream infection in cats, complete blood count, serum biochemical profiles and urinalysis findings are frequently normal; however, laboratory abnormalities reported with some frequency in sick cats include anemia, eosinophilia, hyperproteinemia, hyperglobulinemia, neutropenia and thrombocytopenia [127]. In cats experimentally infected with *B. henselae* by blood transfusion, histopathological lesions revealed peripheral lymph node hyperplasia, splenic follicular hyperplasia, lymphocytic cholangitis/pericholangitis, lymphocytic hepatitis, lymphoplasmacytic myocarditis and interstitial lymphocytic nephritis [112]. These indicators of chronic inflammation support the need for long-term studies to determine if cats (or other animals) suffer biological consequences for long-standing infection with one or more *Bartonella* spp.

Currently, dogs appear to be an accidental rather than reservoir host for *B. henselae*, which is supported by the fact that this is the most frequently documented *Bartonella* spp. detected in sick dogs [128]. *Bartonella henselae* DNA was also the predominant *Bartonella* spp. amplified and sequenced from dogs with splenic hemangiosarcomas [129]. To date, *B. henselae* is the only *Bartonella* spp. associated with peliosis hepatitis in dogs and humans [130, 131]. *Bartonella henselae* has been associated with other disease manifestations in dogs (Table 6) such as pyogranulomatous lymphadenitis, hepatitis and pulmonary nodules, dermatitis, panniculitis and endocarditis [92, 93, 99, 132]. In humans, *B. henselae* causes cutaneous vasoproliferative lesions (bacillary angiomatosis) and parenchymal vasoproliferative lesions of the liver, spleen (bacillary peliosis), and less frequently other tissues, particularly in immunosuppressed individuals including transplant recipients, and HIV and cancer patients [14, 133] (Table 6).

Bartonella vinsonii berkhoffii was first isolated from a dog with endocarditis in 1993 [87]. In dogs, *B. vinsonii berkhoffii* infection has been associated with endocarditis, arrhythmias, myocarditis, granulomatous lymphadenitis and granulomatous rhinitis. Clinical cases of *B. vinsonii berkhoffii* infection in cats and humans have been rarely described in the literature and clinical findings are summarized in Table 6. Current studies indicate *Bartonella* spp. infections appear to be more
pathogenic in dogs and humans than in cats, potentially reflecting differences in host evolutionary adaptations to these vector-borne organisms.

To date, few cases of canine bartonellosis have been reported from Europe (Fig. 2) or other continents when compared with the USA, and the clinical findings match those described in dogs from the USA. *Bartonella*-associated inflammatory cardiomyopathy was described in a dog from Italy [95]. *Bartonella* infection in association with panniculitis, polyarthritis and meningitis was reported in a dog from England [75]. In France, *B. henselae* was amplified from blood of a dog with fever of unknown origin and granulomatous lymphadenitis [134] as well as from saliva in a subclinical German dog owned by a human patient suffering angioedema due to *B. henselae* [135]. In Spain, *B. koehlerae* DNA was amplified from blood and mitral valve tissue of a dog with infective endocarditis [30] and *B. rochalimae, B. vinsonii berkoffii* and *B. koehlerae* were detected by PCR in valve tissue or blood from eight out of 30 (26.6%) dogs with blood culture-negative endocarditis [136]. In another study seroreactivity to *B. henselae* was detected in a dog with a monoclonal gammopathy and *Bartonella* species DNA was amplified from splenic tissue [98].

Diagnosis and identification methods

Accurate diagnosis of *Bartonella* infections remains challenging. Currently there is no diagnostic technique for which a negative result assures the absence of infection. The most frequently used techniques for the detection of acute and chronic infections are specialized microbiological culture techniques, polymerase chain reaction (PCR), immunohistochemistry (IHC) and serology [137].

Table 4 Summary of main clinico-epidemiological studies carried out in cats in continents other than Europe

Continent	Area or country	Bartonella spp. seroprevalence (%)	PCR/Culture prevalence (%)	Confirmed Bartonella spp. and type	Reference
Africa	Eastern	11	nf	nf	[229]
	Northern	15.0–59.6	PCR: 0.9–23.5; Culture: 17.0	*B. clarridgeiae, B. henselae*	[230–233]
	Southern	21.0–24.0	PCR: 7.8	*B. clarridgeiae, B. henselae*	[234–236]
Asia	China	nf	PCR: 10.5–21.5; Culture: 5.8–18.6	*B. clarridgeiae, B. henselae*	[237]
	Japan	8.8	PCR: 4.6; Culture: 2.0–20.0	*B. clarridgeiae, B. henselae*	[238–240]
	Korea	nf	PCR: 41.8–44.1	*B. clarridgeiae, B. henselae*	[241]
	Middle East	1.2–39.5	PCR: 9.4; Culture: 4.3–9.4	*B. clarridgeiae, B. henselae type I, B. koehlerae*	[242–246]
	Philippines	62.6–68.0	Culture: 61.0	*B. clarridgeiae, B. henselae*	[247]
	Thailand	nf	Culture: 12.8–50.0	*B. clarridgeiae, B. henselae types I and II	[248]
Australia	Eastern	37	PCR: 26.2	*B. clarridgeiae, B. henselae*	[249]
	South New Wales (Sydney)	nf	Culture and PCR: 35.0	*B. henselae*	[250]
	Western and Dirk Hartog and Christmas islands	nf	PCR: 0–5.2	*B. henselae, B. koehlerae*	[250, 251]
North America	Centre	0–45.0	nf	nf	[252]
	East	10.0–85.2	PCR: 0–62.5	*B. clarridgeiae, B. henselae types I and II, B. koehlerae*	[243, 252–257]
	West	0–26.2	PCR: 270–27.7; Culture: 32.8	*B. clarridgeiae, B. henselae types I and II, B. koehlerae*	[252, 258, 259]
South America	Argentina	nf	PCR: 17.0	*B. clarridgeiae, B. henselae*	[260]
	Brazil	15–68	PCR: 4.5–97.0; Culture: 45.5	*B. clarridgeiae, B. henselae*	[261–264]
	Chile	5.6–8.0	PCR: 18.1; Culture: 41	*B. clarridgeiae, B. henselae, B. koehlerae*	[265, 266]
	Galapagos islands	75.0	PCR: 59.0	*B. clarridgeiae, B. henselae*	[267]
	Guatemala	nf	PCR: 33.8; Culture 8.2	*B. clarridgeiae, B. henselae*	[268]

Abbreviations: PCR polymerase chain reaction, nf not found
Specialized culture techniques including lysis centrifugation, cell culture isolation and growth enrichment in insect biochemical composition growth media are the “gold standard” for confirmation of Bartonella infection. Optimal samples for microbiological culture include blood, cerebrospinal fluid [138], joint fluid [81], pathological effusions [138] and tissue biopsies [139]. In reservoir-adapted hosts such as rodents and cats and infrequently in accidental hosts (sick dogs or humans), Bartonella spp. can be cultured successfully with agar plates containing 5% defibrinated rabbit or sheep blood, that are maintained at 35 °C in a high humidity chamber with 5% CO₂ concentration. Agar plate isolation requires prolonged incubation times: bacterial colonies may not be visible until 10–56 days after inoculation of the agar plate [140]. Because Bartonella spp. are fastidious, slow-growing bacteria, a negative blood culture or biopsy culture after a long incubation period does not exclude suspected Bartonella infection [141]. Furthermore, the patient can be intermittently bacteremic as documented in feline Bartonella henselae experimental infections [59, 112]. Similarly, testing serial blood specimens collected over a 7-day period enhanced microbiological documentation of Bartonella as reported in humans [142]. BAPGM, an optimized insect cell medium, has been used in an enrichment culture platform to enhance the growth of Bartonella spp. prior to attempted subculture bacterial isolation. The BAPGM, prior to PCR testing, has been used to increase sensitivity for documentation of infection, thereby facilitating a diagnosis of bartonellosis in cats, dogs and humans [16].

Table 5 Summary of main clinico-epidemiological studies carried out in dogs in continents other than Europe

Continent	Area or country	Bartonella spp. seroprevalence (%)	PCR / culture prevalence (%)	Confirmed Bartonella spp. and type	Reference
Africa	East nf	PCR: 0	nf	B. clarridgeiae, B. henselae	[269]
	Central nf	PCR: 2.3		B. clarridgeiae, B. elizabethae, B. henselae, B. rochalimae, B. vinsonii berkhoffi	[27]
	North 19.5–47.4	PCR: 0.85–37.1		B. clarridgeiae, B. henselae	[230, 270–272]
	South 14	PCR: 0–9.0; Culture: 0	B. henselae		[233, 273, 274]
	West nf	PCR: 0	nf		[275]
Asia	Middle East 6.6–47.4	Culture and PCR: 9.2–37.1	“Candidatus Bartonella merieuxii”, B. vinsonii berkhoffii (type III in one study)		[276–278]
	South Korea nf	PCR: 0–29.6	B. clarridgeiae, B. henselae		[241, 279, 280]
	Sri Lanka 5.1	PCR: 3.38	Bartonella strain HMD		[281]
	Thailand 38	PCR: 1.8; Culture and PCR: 0.3–31.3	B. clarridgeiae, B. elizabethae, B. grahamii, B. quintana, B. taylorii, B. vinsonii arupensis		[40, 282–284]
	Vietnam 0	PCR: 0	nf		[281]
	Australia New South Wales and Northern Territory 0	Culture and PCR: 0	nf		[285]
North America	Centre 0–20	nf	PCR: 9.2; Culture: 52.5	B. bovis, B. henselae, B. koehlerae, B. vinsonii berkhoffii, B. volans-like	[68, 69, 128, 286]
	East 0–49	PCR: 0.2; Culture: 2.5	B. clarridgeiae-like, B. vinsonii berkhoffii		[69, 286]
	West 0–29	PCR: 0.1–7; Culture: 2.2	B. clarridgeiae-like, B. vinsonii berkhoffii		[60, 286–288]
South America	Argentina nf	PCR: 3	B. clarridgeiae, B. henselae, B. vinsonii berkhoffii		[260]
	Brazil 1.5–24.8	PCR and culture: 1	B. henselae, B. vinsonii berkhoffii		[262, 264, 281, 289]
	Chile nf	PCR: 4.3	B. henselae, B. vinsonii berkhoffii		[290]
	Colombia 10.1	PCR: 0.77	B. rochalimae, B. vinsonii berkhoffii		[281]
	Galapagos Islands nf	PCR: 13.6	B. clarridgeiae, B. elizabethae, B. henselae		[267]
	Peru 40–62	PCR: 10	B. rochalimae, B. vinsonii berkhoffii, type III		[291]

Abbreviations: PCR polymerase chain reaction, nf not found
PCR is positive for the genus Bartonella. The isolation of BAPGM has facilitated the successful optimization of Bartonella isolation approach lacks sensitivity. Although additional dogs, horses or human blood samples using an identical tissue testing or submit fresh or fresh frozen specimens formalin fixation, it is advisable to store tissues for future tissue samples or aspirates depending on each individual clinical case. To avoid DNA denaturation by formalin fixation, it is advisable to store tissues for future testing or submit fresh or fresh frozen specimens for PCR amplification of Bartonella DNA. Once the PCR is positive for the genus Bartonella, the species can be determined using species-specific primers or optimally by DNA sequencing [146–149].

Seroconversion can be used to confirm acute Bartonella spp. infection by documenting a four-fold rise in antibody titer over a 2–3-week period [16]. To date, there has been minimal use of serology or other diagnostic modalities for testing cats or dogs with acute onset illness [56]. Serological tests used to detect antibodies include IFA, ELISA and western immunoblot [56]. Sero logical tests appear to have good specificity and can be used to confirm prior or ongoing infection, but due to poor sensitivity, serology is of more limited value for predicting bacteremia in dogs and potentially sick cats [69, 150]. In cats, high antibody titers often correlate with positive blood cultures or PCR amplification of Bartonella DNA directly from blood [140]. Alternatively, the inability to detect B. henselae antibodies appears to be predictive of the absence of bacteremia in healthy cats [151], but similar to dogs and humans, there are sick bacteremic cats that do not have detectable Bartonella spp. infection by documenting a four-fold rise in antibody titer over a 2–3-week period [16]. To date, there has been minimal use of serology or other diagnostic modalities for testing cats or dogs with acute onset illness [56]. Serological tests used to detect antibodies include IFA, ELISA and western immunoblot [56]. Sero logical tests appear to have good specificity and can be used to confirm prior or ongoing infection, but due to poor sensitivity, serology is of more limited value for predicting bacteremia in dogs and potentially sick cats [69, 150]. In cats, high antibody titers often correlate with positive blood cultures or PCR amplification of Bartonella DNA directly from blood [140]. Alternatively, the inability to detect B. henselae antibodies appears to be predictive of the absence of bacteremia in healthy cats [151], but similar to dogs and humans, there are sick bacteremic cats that do not have detectable Bartonella spp. infection by documenting a four-fold rise in antibody titer over a 2–3-week period [16]. To date, there has been minimal use of serology or other diagnostic modalities for testing cats or dogs with acute onset illness [56]. Serological tests used to detect antibodies include IFA, ELISA and western immunoblot [56]. Sero logical tests appear to have good specificity and can be used to confirm prior or ongoing infection, but due to poor sensitivity, serology is of more limited value for predicting bacteremia in dogs and potentially sick cats [69, 150]. In cats, high antibody titers often correlate with positive blood cultures or PCR amplification of Bartonella DNA directly from blood [140]. Alternatively, the inability to detect B. henselae antibodies appears to be predictive of the absence of bacteremia in healthy cats [151], but similar to dogs and humans, there are sick bacteremic cats that do not have detectable Bartonella spp. antibodies, for reasons that remain unclear [128]. It is important to note that only 50% of dogs infected with B. vinsonii berkoffii and 25% of dogs infected with B. henselae have Bartonella specific IFA.

Table 6 Clinical sign, lesions and laboratory abnormalities reported in association with Bartonella infections in cats, dogs and humans

Bartonella spp.	Hosts	Dogs	Humans
B. henselae	Anemia (EI); diaphragmatic myositis (NI); endocarditis (NI); endomyocarditis - left ventricular; endocardial fibrosis complex (NI); eosinophilia (NI); fever (EI, NI); hyperglobulinemia (EI, NI); lethargy (EI, NI); lymphadenomegaly (EI); mild neurological signs (EI); pyogranulomatous myocarditis and uveitis, conjunctivitis, keratitis and corneal ulcers (NI); subclinical (EI, NI); thrombocytopenia (NI)	Endocarditis (NI); eosinophilia (NI); epistaxis(NI); fever (NI); granulomatous hepatitis (NI); granulomatous inflammation (NI); hyperglobulinemia (NI); hyperinsulinemic hypoglycemia syndrome (NI); ineffective erythropoiesis (NI); lymphadenomegaly (NI); monoclonal gammopathy (NI); peliosis hepatis (NI); subclinical (EI, NI); thrombocytopenia (NI); vasoproliferative lesions (NI)	Arthralgia; arthritis; bacillary angiomatosis; CSD; endocarditis; erythema; granulomatous hepatitis; neutropenia; peliosis hepatis; pulmonary nodules; uveitis; vasoproliferative tumors
B. vinsonii berkoffii	Endocardial fibrosis complex (NI); endomyocarditis - left ventricular; osteomyelitis (NI)	Endocarditis (NI); arrhythmias (NI); endocarditis (NI); epistaxis(NI); fever (NI); granulomatous lymphadenitis (NI); hemorrhagicarcoma (NI); myocarditis (NI); polyarthritis (NI); splenomegaly (NI); subclinical (EI, NI); thrombocytopenia (NI); uveitis (NI)	Endocarditis
B. clarridgeiae	NCR or subclinical	Endocarditis (NI); hepatic disease (NI)	CSD
B. quintana	NCR or subclinical	Endocarditis (NI); subclinical (NI)	Bacillary angiomatosis; endocarditis; fever; neuroretinitis; uveitis
B. koehlerae	Endomyocarditis - left ventricular; endocardial fibrosis complex	Endocarditis (NI); hyperinsulinemic hypoglycemia syndrome (NI); splenic disease (NI)	Endocarditis
B. rochalimae	NCR or subclinical (EI)	Endocarditis (NI); subclinical (EI)	Fever; splenomegaly
B. wassilms	NCR or subclinical	Endocarditis (NI)	Fever; myocarditis

*Details included in Table 6 are provided in [20–22, 29, 30, 39, 70, 91, 92, 96, 98, 99, 112, 127, 132, 136, 154, 160, 168–170, 289, 292–305]

*Pathology reported in dogs to date is mainly due to natural infection only

Abbreviations: CSD cat scratch disease, EI experimental infection, NI natural infection, NCR not clearly related (the reports did not completely prove the direct relation between the clinical findings and the Bartonella infection or the animals had subclinical infection)
antibody reactivity to the respective organism. PCR amplification of organism-specific gene fragments is often diagnostically useful for *Bartonella* cases in which culture and serology results are negative [128].

Studies to date indicate that inflammatory lesions (e.g. pyogranulomatous inflammation) can be severe; however, few organisms are normally visualized [111]. Therefore, stains and techniques to better visualize bacteria in histological specimens are available such as Warthin-Starry staining or immunohistochemistry. *Bartonella* spp. as well as other bacteria such as *Helicobacter pylori* or *Legionella pneumophila* can be visualized in biopsied tissues using Warthin-Starry staining [152]. For this reason, other techniques like *Bartonella* immunohistochemistry, fluorescent in situ hybridization (FISH) and PCR can be used to confirm that the bacteria observed by Warthin-Starry staining of histopathological lesions are *Bartonella* spp. [153].

Immunohistochemistry, including confocal immunohistochemistry, has been used for the detection of *Bartonella* spp. in cat, dog and human tissues [38, 94, 153–157]. The principal advantage of immunohistochemistry over other antigen detection techniques is the ability to identify the organism directly in the tissue samples such as cardiac valves or lymphoid organs and thus more effectively establish correlations between antigen localization and histopathological lesions [158]. An immunoassay using two specific in-house *B. henselae* monoclonal antibodies (MAb) documented the intra-erythrocytic localization of this bacterium in three blood culture positive cats. That study concluded that direct fluorescence with a specific MAb is a sensitive, rapid and simple technique which could be useful for detecting *Bartonella* infections in healthy cats [159].

Clinical decision making in light of diagnostic results

The definitive diagnosis of bartonellosis in cats, dogs and, based upon more recent literature, humans [62, 104] remains a clinical, microbiological and pathological challenge. Based on the broad spectrum of historical and clinical abnormalities, bartonellosis is often among differential diagnostic considerations for various clinical problems. However, in many clinical situations, bartonellosis is either not considered diagnostically or becomes a diagnosis after exclusion of other compatible disease entities. However, it is important for clinicians to attempt to achieve diagnostic confirmation prior to embarking upon a long duration antibiotic therapy. A positive therapeutic response to antibiotics, in conjunction with seroreactivity or positive culture or PCR results, provides indirect support for a definitive diagnosis of bartonellosis. Prior or ongoing administration of antibiotics and potentially immunosuppressive drugs can adversely affect serological and molecular diagnostic test results [56, 160]. According to the experience of the authors and current literature, *Bartonella* infection should be investigated using both serology, culture and/or molecular methods (PCR) in healthy pets when: (i) screening cats and dogs as blood donors [60]; (ii) in pets owned by immunocompromised persons [161]; (iii) *Bartonella* infection has been diagnosed or is suspected in a pet owner [162]; and (iv) when there is a history of exposure to fleas, ticks, others arthropods or scratch or bite wound in sick pets [163]. Interpretation of various diagnostic results to guide clinical decision making are summarized in Table 7.

Diagnostic methods	*Bartonella* infection*	Treatment decisions options
Culture PCR Serology		
+ + +	Confirmed	Treat
+ + -	Confirmed	Treat
+ - +	Confirmed	Treat
+ - +	Confirmed	Treat
- + +	Confirmed	Do not treat or treat empirically if disease progresses. Empirical treatment should not be routinely recommended
- - +	Bartonellosis not excluded; Repeat culture and PCR if the suspicion of clinical bartonellosis remains	Do not treat or treat empirically if disease progresses. Empirical treatment should not be routinely recommended
- - -	Bartonellosis not excluded; Repeat serology in 2–3 weeks or culture and PCR in a few days if the suspicion of clinical bartonellosis remains	Do not treat or treat empirically if disease progresses. Empirical treatment should not be routinely recommended

*Despite diagnostic confirmation of bartonellosis in cats and dogs, as listed in the table, vector-borne disease co-infections, co-morbidities and other differential diagnoses should be evaluated in conjunction with or prior to administration of antimicrobial drugs

Key: +, positive; -, negative
Treatment

Antimicrobial therapy comprises the primary treatment modality and in most cases a combination of antibiotics is necessary to achieve disease resolution (Table 8). There is no standardized antibiotic protocol for treatment of bartonellosis in cats or dogs [164]. Data from controlled efficacy studies involving naturally-infected cats and dogs are lacking. While many antibiotics are effective in vitro, in vivo efficacy appears to vary among individual patients [25]. Treatments have varied depending upon the predominant tissue location of disease manifestations (e.g. endocard, brain, or blood stream infection).

Most laboratory-based antibiotic treatment studies indicate that complete clearance of Bartonella spp. from cats has not been achieved with antibiotics studied to date (doxycycline, amoxicillin, amoxicillin-clavulanic acid, enrofloxacin, erythromycin and rifampicin) [59, 164–166]. Results of these studies were variable with bacteremia apparently being eliminated in some cats [167, 168]. Serum antibody titers typically decrease rapidly (3–6 months) and remain below the limits of detection in animals that have a positive treatment response, and have presumably eliminated the infection [2]. Treatment in sick cats is recommended when Bartonella spp. are confirmed diagnostically and compatible disease entities (e.g. endocarditis, encephalitis, myocarditis, fever and uveitis) are suspected or confirmed (Table 8). Because widespread use of antibiotics contributes to antimicrobial resistance among non-targeted bacteria, antibiotic treatment is not routinely recommended for healthy, B. henselae bacteremic cats, despite the risk of zoonotic transmission [167]. However, antibiotic treatment of bacteremic healthy cats living in a household with immunocompromised adults or young children is recommended. In these cases, treatment is aimed at decreasing bacterial load, minimizing the risk of additional vector exposure and thus decreasing the risk of transmission among pets or to humans.

An optimal protocol for treatment Bartonella spp. infection in dogs has also not been established. Use of an antibiotic capable of crossing lipid membranes and reaching high intracellular concentrations, such as amoxicillin, azithromycin, doxycycline and enrofloxacin is recommended [168–170]. Macrolides, like azithromycin, are effective but are not recommended as a first line antibiotic due to rapid development of resistance among B. henselae strains. Once genetically-mediated (mutation) resistance developed, B. henselae isolates were resistant to all macrolides [16]. For dogs with central nervous system involvement, a combination of doxycycline and rifampicin has been used successfully, but the use of rifampicin is not recommended in cats [167]. Aminoglycosides, used to treat human endocarditis, are recommended in conjunction with careful monitoring of renal function during the initial treatment of suspected Bartonella endocarditis or myocardi-tis in cats and dogs. A combination of doxycycline and amikacin represents a treatment option for Bartonella endocarditis in cats and dogs [16]. For dogs that are reasonably stable starting with one antibiotic (for example doxycycline at 5 mg/kg every 12 hours) and adding the

Table 8 Reported treatments in cats and dogs

Host Clinical Bartonella spp. manifestations/ species	Treatment	Dose/duration	Referencea
Cats Bacteremia and uveitis/Bartonella spp.	Doxycycline + Pradofloxacin	5 mg/kg PO q 12 h/4–6 weeks + 5 mg/kg PO q 12 h/4–6 weeks	[167]
	Doxycycline	10 mg/kg PO q 12–24 h/4–6 weeks	[170]
	Azithromycin	10 mg/kg PO q 24–48 h/7 days followed by every other day for 6–12 weeks	[169]
Endocarditis/B. henselae	Marbofloxacin + Azithromycin	5 mg/kg PO q 24 h/6 weeks + 10 mg/kg PO q 24 h for 7 days and then q 48 h/6 weeks	[294]
Osteomyelitis and polyarthritis/B. vinsonii berkhoffi	Amoxicillin-clavulanate + Azithromycin	62.5 mg PO q 12 h/2 months + 10 mg/kg PO q 48 h/3 months	[168]
Dogs Splenic vasculitis, thrombosis and infarction/B. henselae	Doxycycline + Trimethoprim–sulfamethoxazole	5–10 mg/kg PO q 12 h/4 weeks + 23 mg/kg, PO q 12 h/6 weeks	[28]
Neurological and ocular disorders/ Bartonella spp.	Doxycycline + Enrofloxacin	5–15 mg/kg PO q 12 h + 5 mg/kg PO q 12 h/4–6 weeks	[169]
	Doxycycline + Rifampicin	5–10 mg/kg PO q 12 + 5 mg/kg PO q 24 h/4–6 weeks	
Endocarditis/B. koehlerae	Ampicillin + Enrofloxacin	22 mg/kg PO q 8 h + 5 mg/kg PO q 12–24 h/4–6 weeks	[30]
Hemangiopericytoma/B. vinsonii berkhoffi	Enrofloxacin	5 mg/kg PO q 12 h/4–6 weeks	[14]

a*Details included in Table 8 are provided in references

Abbreviations: q every, PO oral administration
second antibiotic 5–7 days later may help to avoid a potential Jarisch-Herxheimer-like reaction that appears to be related to rapid bacterial injury/death. The Jarisch-Herxheimer-like reaction is typically associated with lethargy, fever, occasionally vomiting and commonly occurs in cats and dogs at 4–7 days after starting antibiotics. If a Jarisch-Herxheimer-like reaction occurs, it is not recommended to interrupt or change antibiotics; supportive therapy and anti-inflammatory steroids for a few days may help dogs through this period [167].

General treatment recommendations for feline and canine bartonellosis based upon the literature and the authors’ experiences are summarized below:

- Diagnostic confirmation of clinical bartonellosis is recommended or a very high index of suspicion.
- Prolonged treatment periods (4–6 weeks) are recommended to avoid bacterial drug resistance and to achieve disease resolution.
- Antibiotics are currently the mainstay of treatment.
- It is not recommended to use macrolides as the first therapy option.
- Antibiotics combinations with various mechanisms of action, achieving therapeutic drug concentrations within cells and within plasma are needed to eradicate Bartonella infections.

Preventative measures

As vaccines are not available to prevent infection, flea and tick control are the only successful measures to prevent this vector-borne infection in healthy animals [166], to decrease the dispersion of these bacteria among canine and feline populations, and to decrease the risk of zoonotic pathogen transmission to humans [65]. Cats and dogs should be protected from flea and tick infestations year-round by the regular use of acaricides in the form of collars, spot-on or spray-on or oral formulations [171]. Furthermore, both people and pets should avoid contact with stray dogs and cats. In the context of One Health, the authors support the future development of vaccines to protect pets against infection with *B. henselae* and *B. vinsonii berkhoffii* and thereby decrease reservoir potential and zoonotic risks.

In households with immunosuppressed persons or young children, if their pets are determined as bacteremic, antibiotic treatment and routine acaricide use are recommended for these pets. When acquiring a new cat or dog, into a household with immunocompromised individuals and children, choosing an adult animal will lower the possibility of acquiring a *Bartonella* spp. bacteremic pet [25, 65].

Blood transfusion has also been identified as a risk factor for the transmission of *Bartonella* infections. Screening of blood donors for *Bartonella* infections, should be considered [37, 60].

Conclusions

Based upon the recent and ongoing discovery of novel *Bartonella* spp. in hosts such as bats [172, 173] and rodents [174], it is likely that additional *Bartonella* spp., in conjunction with their respective reservoir host and vector, will be described. Furthermore, as *Bartonella* spp. transmission routes are not fully understood, research efforts should focus on modes of transmission so that appropriate control measures can be implemented to prevent the pathogen transmission between animals and from animals to humans. *Bartonella* spp. seroprevalence rates in cats and dogs in Europe and other parts of the world do not correspond with the low number of reported clinical cases, especially in dogs, potentially because *Bartonella* infections are underdiagnosed. The limited number of reported cases of *Bartonella* spp. infection compromises our collective ability to establish a complete list of clinical conditions or specific pathologies related to this infection. In conclusion, more efforts are needed in both research and clinical settings to characterize the medical importance of *Bartonella* spp. infections in cats and dogs. Additionally, randomized case control studies are needed to assess treatment efficacy and to establish an optimal protocol for the treatment of chronic bartonellosis in cats, dogs and humans. Efforts to develop safe and effective vaccines are needed to protect pets and their families.

Abbreviations

- BAPGM: Bartonella alpha proteobacteria growth medium
- CO₂: Carbon dioxide
- CSD: Cat scratch disease
- EI: Experimental infection
- ELISA: Enzyme-linked immunosorbent assay
- FeLV: Feline leukemia virus
- FISH: Fluorescent in situ hybridization
- HIV: Human immunodeficiency virus
- IFA: Indirect immunofluorescence assay
- IgG: Immunoglobulin G
- IHC: Immunohistochemistry
- MAb: Monoclonal antibody
- NA: Not applicable
- NCR: Not clearly related
- NI: Natural infection
- NF: not found
- nr: Not reported
- PCR: Polymerase chain reaction
- PO: Oral administration
- q: Every
- VEGF: Vascular endothelial growth factor

Acknowledgements

Open access publication of the paper has been sponsored by Bayer Animal Health (Germany) in the framework of a sponsored research project.

Funding

Open access publication of the paper has been sponsored by Bayer Animal Health (Germany) in the framework of a sponsored research project.

Availability of data and materials

Not applicable.

Authors’ contributions

LSG conceived the manuscript. AAF wrote, and EB and LSG edited the first draft. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

LSG and AAF declare that they have no competing interests. In conjunction with Dr Sushama Sontakke and North Carolina State University, EBB holds
44. Huang R, Liu Q, Li G, Li D, Song X, Birtles RJ, et al. Bartonella quintana infections in captive monkeys, China. Emerg Infect Dis. 2011;17:1707–9.
45. Mosbacher ME, Klotz S, Klotz J, Pinnas JL. Bartonella henselae and the potential for arthropod-borne transmission. Vector Borne Zoonotic Dis. 2011;11:1471–7.
46. Guitiú L. Bartonellosis. Vet Clin North Am Small Anim Pract. 2003;33:809–25.
47. Foli L, Andres S, Freeland RL, Roy AF, Rutledge R, Triche PC, et al. Experimental infection of domestic cats with Bartonella henselae by inoculation of Ctenophthalmes felis (Siphonaptera: Pulicidae) feces. J Med Entomol. 1998;35:625–8.
48. Battisti JM, Lawyer PG, Mminnick MF. Colonization of Lutzomyia verrucarum by Bartonella henselae. Clin Infect Dis. 1992;14:1468–8.
49. Cotté V, Bonnet S, Le Rhun D, Le Naour E, Chauvin A, Boulouis HJ, et al. –.
50. Maggi RG, Ericson M, Mascarelli PE, Bradley JM, Breitschwerdt EB. Colonization of Lutzomyia verrucarum by Bartonella henselae. J Vet Intern Med. 2013;27:343–9.
51. Solano-Gallego L, Bradley B, Breitschwerdt EB. Bartonella henselae IgG antibodies are prevalent in dogs from southeastern USA. Vet Res. 2004;35:585–95.
52. Henn JB, Liu C-H, Kasten RW, VanHorn BA, Beckett LA, Kass PH, et al. Seroreversion of antibodies against Bartonella species and evaluation of risk factors and clinical signs associated with seroreversion in dogs. Am J Vet Res. 2005;66:688–94.
53. Solano-Gallego L, Bradley J, Hegarty B, Hegarty BC, Breitschwerdt EB. Bartonella henselae infection in cats and dogs in the United Kingdom. Vet Rec. 2000;147:673–7.
54. Balakrishnan N, Pritchard J, Ericsson M, Grindem C, Phillips K, Jennings S, et al. Angiomatosis in an immunosuppressed dog. J Clin Microbiol. 2008;46:3447–52.
55. Pappalardo BL, Brown T, Gookin JL, Morrill CL, Breitschwerdt EB. Granulomatous disease associated with Bartonella infection in 2 dogs. J Vet Intern Med. 2000;14:437–42.
56. Shelnutt LM, Balakrishnan N, Devanna J, Bayet KL, Breitschwerdt EB. Death of military working dogs due to Bartonella vinsonii subspecies berkhoffii genotype III-endocarditis and mycocarditis. Mil Med. 2014;180:1864–9.
57. Diniz PPV de P, Wood M, Maggi RG, Sontakke S, Stepnik M, Breitschwerdt EB. Concurrent bartonellosis and babesiosis in a dog with persistent thrombocytopenia. J Am Vet Med Assoc. 2003;223:1306–10.
58. Pappalardo BL, Brown T, Gookin JL, Morrill CL, Breitschwerdt EB. Multiple characterization of Bartonella vinsonii subspecies berkhoffii genotype III in immunocompetent hosts: implication for therapy and new epidemiological associations. Clin Infect Dis. 1992;14:1683–8.
59. Zobba R, Chessa G, Mastrandrea S, Parpaglia MLP, Patta C, Masala G. Seralogical and molecular detection of Bartonella spp. in humans, cats and dogs from northern Sardinia, Italy. Clin Microbiol Infect. 2009;15:134–5.
60. Solano-Gallego L, Llull J, Osso M, Hegarty B, Breitschwerdt E. A serological study of exposure to arthropod-borne pathogens in dogs from northeastern Spain. Vet Res. 2006;37:231–44.
61. Muller A, Reiter M, Schötta AM, Stockinger H, Stanek G. Detection of Bartonella spp. in lice ricinus ticks and Bartonella seroprevalence in human populations. Ticks Tick Borne Dis. 2016;7:763–7.
62. Zobba R, Chessa G, Mastrandrea S, Parpaglia MLP, Patta C, Masala G. Serological and molecular detection of Bartonella spp. in humans, cats and dogs from northern Sardinia, Italy. Clin Microbiol Infect. 2009;15:134–5.
63. Pappalardo BL, Wood M, Maggi RG, Sontakke S, Stepnik M, Breitschwerdt EB. Concurrent bartonellosis and babesiosis in a dog with persistent thrombocytopenia. J Am Vet Med Assoc. 2003;223:1306–10.
64. Solano-Gallego L, Llull J, Osso M, Hegarty B, Breitschwerdt E. Bartonella henselae and new epidemiological associations. Clin Infect Dis. 1992;14:683–90.
111. Balakrishnan N, Cherry NA, Linder KE, Pierce E, Sontakke N, Hegarty JL, Hong J, Li Y, Hua X, Bai Y, Wang C, Zhu C, et al. Inhibition of phagocytosis of Bartonella henselae and Bartonella clarridgeiae DNA in hepatic specimens from two dogs with hepatic disease. J Vet Med Assoc. 2003;22:247–51.

112. Kordick DL, Sellon RK, Tucker RL, Wills TB, Simonsen A, Maggi RG, et al. Bilateral mandibular pyogranulomatous lymphadenitis and pulmonary nodules in a dog with Bartonella henselae bacteremia. Can Vet J. 2014;55:970–4.

113. Mändle T, Einsele H, Schaller M, Neumann D, Vogel W, Autenrieth IB, et al. Detection of Bartonella henselae and Bartonella clarridgeiae in dogs with subclinical infection. J Vet Emerg Crit Care. 2015;26:874–8.

114. Kempf VA, Volkmann B, Schaller M, Alitalo K, Riess T, et al. Improved methods for the detection of Bartonella henselae and Bartonella clarridgeiae in tissues and sera of domestic cats. J Vet Med B. 2015;62:101–9.

115. Maeno N, Oda H, Yoshiie K, Wahid MR, Fujimura T, Matayoshi S, et al. Live attenuated vaccine against Bartonella henselae. J Med Microbiol. 2018;67:849–54.

116. Pulliainen AT, Dehio C. Persistence of Bartonella spp. as stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev. 2012;36:563–99.

117. Breed AM, Chenoweth SB, Motley AJ, Breitschwerdt EB. Bartonella species infection in contacts of Bartonella henselae-positive dogs in the United States. J Vet Med B. 2015;62:522–9.

118. Hahn M, Maggi RG, Breitschwerdt EB. Bartonella clarridgeiae serology in dogs. J Small Anim Pract. 2014;55:296–300.

119. Sanchez MA, Sanchez MA, Carrasco G, Whitfield MJ, Chen FM, Berger TG, et al. Molecular epidemiology of Bartonella infections in patients with bacillary angiomatosis. J Med Microbiol. 2013;62:2162–70.

120. Pulliainen AT, Dehio C. Bartonella henselae homologous and heterologous interactions with host cells. Curr Top Microbiol Immunol. 2017;420:187–220.
laboratory yields Bartonella henselae from human immunodeficiency virus-
positive patient and unique Bartonella strain from his cat. J Clin Microbiol.
1995;33:2:107–13.
3. Weeden AL, Cherry NA, Breitschwerdt EB, Cheves AG, Wamsley HL. Bartonella henselae in canine cavitary effusions: prevalence, identification, and clinical associations. Vet Clin Pathol. 2017;46:326–30.
4. Lee SA, Plett SK, Luetkemeyer AF, Borgo GM, Ohliger MA, Conrad MB, et al. Bartonella quintana aortitis in a man with AIDS, diagnosed by needle biopsy and 16S rRNA gene amplification. J Clin Microbiol. 2015;53:2773–6.
5. Breitschwerdt EB. Feline bartonellosis and cat scratch disease. Vet Immunol Immunopathol. 2008;123:167–71.
6. Buoz MO, Antonelli M, Pecorini G, Favuzzi AMR, Landolfi R, Flex A. Fever of unknown origin and splenomegaly: a case report of blood culture negative endocarditis. Medicine. 2017;96:e91179.
7. Pultorak EL, Maggi RG, Mascarelli PE, Breitschwerdt EB. Serial testing from a culture platform. J Vet Intern Med. 2013;27:854–61.
8. Dummer JS, Sconzo DG. Bartonella In: Manual of clinical microbiology. 11th ed. Washington: ASM Press; 2015. p. 873–86.
9. Diddi K, Chaudhry R, Sharma N, Dhawan B. Strategy for identification & characterization of Bartonella henselae with conventional molecular methods. Indian J Med Res. 2013;137:380–7.
10. Namekata DY, Kasten RW, Boman DA, Straub MH, Siperstein-Cook L, Davenport AC, Mascarelli PE, Maggi RG, Breitschwerdt EB. Phylogenetic methods. Indian J Med Res. 2013;137:380–7.
11. Duncan AW, Maggi RG, Breitschwerdt EB. Feline bartonellosis and cat scratch disease. Vet Immunol Immunopathol. 2013;123:167–71.
12. Bartonella henselae in canine cavitary effusions: prevalence, identification, and clinical associations. Vet Clin Pathol. 2017;46:326–30.
13. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
14. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
15. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
16. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
17. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
18. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
19. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
20. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
21. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
22. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
23. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
24. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
25. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
26. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
27. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
28. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
29. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
30. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
31. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
32. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
33. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
34. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
35. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
36. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
37. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
38. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
39. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
40. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
41. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
42. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
43. Webster JD, Miller MA, DuSold D, Ramos-Vara J. Effects of prolonged collection period by use of the Alphaproteobacteria genus. Indian J Med Res. 2013;137:380–7.
cats living in continental and insular Greece. PloS Negl Trop Dis. 2017;11: e0005335.
185. Melter O. Detection and characterization of feline Bartonella henselae in the Czech Republic. Vet Microbiol. 2003;95:261–73.
186. Chornel BB, Boulouis H-J, Petersen H, Kasten RW, Yamamoto K, Chang C-C, et al. Prevalence of Bartonella infection in domestic cats in Denmark. Vet Res. 2002;33:205–13.
187. Heller R, Antoiz M, Xemer V, De Briel D, Gehin H, Jaulhac B, et al. Prevalence of Bartonella henselae and Bartonella clarridgeiae in stray cats. J Clin Microbiol. 1997;35:1327–31.
188. Guelfed AN, Boulouis H-J, Chornel BB, Kasten RW, Heller R, Bouillim C, et al. Epidemiology of Bartonella infection in domestic cats in France. Vet Microbiol. 2001;80:185–98.
189. Rolain J-M, Locatelli C, Chabanne L, Davoust B, Raoult D. Prevalence of Bartonella clarridgeiae and Bartonella henselae in domestic cats from France and detection of the organisms in erythrocytes by immunofluorescence. Clin Diag Lab Immunol. 2004;11:423–5.
190. Sander A, Híer CB, Pelz K, Von Cramm E, Breit W. Detection and identification of two Bartonella henselae variants in domestic cats in Germany. J Clin Microbiol. 1997;35:584–7.
191. Haimerl M, Tenter AM, Simon K, Rommel M, Hilger J, Autenrieth IB. Evidence of Bartonella spp., Rickettsia spp. and Anaplasma phagocytophilum in domestic, shelter and stray cat blood and fleas, Portugal. Clin Microbiol Infect. 2009;15(Suppl. 2):1–3.
192. Childs JE, Olson JG, Wolf A, Cohen N, Fakile Y, Rooney JA, et al. Prevalence of antibodies to Rochalimaea species (cat-scratch disease agent) in cats. Vet Rec. 1995;136:19–20.
193. Maia C, Ramos C, Coimbra M, Bastos F, Martins A, Pinto P, et al. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal. Parasit Vectors. 2014;7:115.
194. Pons I, Santelliu I, Quesada M, Anton E, Sampere M, Font B, et al. Prevalence of Bartonella henselae in cats in Catalonia, Spain. Am J Trop Med Hyg. 2005;72:483–7.
195. Tabar MD, Attel L, Francino O, Sánchez A, Ferrer L, Roua X. Vector-borne infections in cats: molecular study in Barcelona area (Spain). Vet Parasitol. 2008;151:332–6.
196. Gil H, Escudero R, Pons I, Rodríguez-Vargas M, García-Esteban C, Rodríguez-Moreno I, et al. Distribution of Bartonella henselae variants in patients, reservoir hosts and vectors in Spain. PLoS One. 2013;8:e68248.
197. Grañés MJ, Marcén JM, Pinal R, Calvete J, Rodes D. Prevalence of Rickettsia and Bartonella species in Spanish cats and their fleas. J Vector Ecol. 2015;40:233–9.
198. Alaman Valtierra M, Simón Valencía C, Fuertes Negro H, Unzueta Galarza A, Flores Somarriba B, Hálaihel KN. Molecular epidemiology of Bartonella henselae in stray and sheltered cats of Zaragoza, Spain. Rev Esp Salud Publica. 2016;90:S5.
199. Rascini S, Pastor J, Hawley J, Brewer M, Castro-López J, Beall M, et al. Prevalence of selected infectious disease agents in stray cats in Catalonia, Spain. JFMS Open Rep. 2016;2:205116916634109.
200. Bennett AD, Gunn-Moore DA, Brewer M, Lappin MR. Prevalence of Bartonella species, haemoplasmas and Toxoplasma gondii in cats in Scotland. J Fel Med Surg. 2011;13:553–7.
201. Hjelm E, McGill S, Blomqvist G. Prevalence of antibodies to Bartonella henselae, B. elizabethae and B. quintana in Swedish domestic cats. Scand J Infect Dis. 2002;34:192–6.
202. Olsson Engvall E, Fasth C, Brandstrom B, Ferrer M, Blomqvist G, Englund L. Prevalence of Bartonella henselae in young, healthy cats in Sweden. Vet Rec. 2003;152:366–9.
203. Britles RJ, Laycock G, Day MJ, Kenny MJ, Shaw SE. Prevalence of Bartonella species causing bacteriaemia and companion animals in the United Kingdom. Vet Rec. 2002;151:225–9.
204. Hamel D, Slaghi C, Kraus M, Visser M, Kusi I, Rapti D, et al. Detection of Babesia canis subspecies and other arthropod-borne diseases in dogs from Tirana, Albania. Wien Klin. 2009;121:42.
205. Pérez Vera C, Kapainen S, Junnikka S, Aitokallio K, Spillmann T, Vapalahti O. Survey of selected tick-borne diseases in dogs in Finland. Parasit Vectors. 2014;7:285.
206. Di Francesco A, Sanguinetti V, Gallina L, Gavioli R, Piva S, Baldelli R. Prevalence of antibodies to Bartonella henselae in dogs in Italy. Vet Rec. 2007;161:489–90.
207. Rymaszewska A, Adamska M. Molecular evidence of vector-borne pathogens confecting dogs from Poland. Acta Vet Hung. 2011;59:215–23.
208. Tabar M-D, Francino O, Attel L, Sanchez A, Ferrer L, Roua X. PCR survey of vectorborne pathogens in dogs living in and around Barcelona, an area endemic for leishmaniosis. Vet Rec. 2009;164:112–6.
209. Baxarias M, Álvarez-Fernández A, Martínez-Orellana P, Montserrat-Sangrà S, Ordeix L, Rojas A, et al. Does co-infection with vector-borne pathogens play a role in clinical canine leishmaniosis? Parasit Vectors. 2018;11:135.
210. Tabar M-D, Movilla R, Serrano L, Attel L, Francino O, Roua X. PCR evaluation of selected vector-borne pathogens in dogs with pericardial effusion. J Small Anim Pract. 2018;59:248–52.
211. Kamar I, Darrington C, Molla B, Saville WJA, Talhoun GQOC. An investigation into the seroprevalence of Toxoplasma gondii, Bartonella spp, feline immunodeficiency virus (FIV), and feline leukaemia virus (FeLV) in cats in Addis Ababa, Ethiopia. Epidemiol Infect. 2013;141:1029–33.
230. Bassa A, Leulmi H, Bitam L, Zaidi S, Air-Oudhia K, Raoult D, et al. Molecular evidence of vector-borne pathogens in dogs and cats and their ectoparasites in Algiers, Algeria. Comp Immunol Microbiol Infect Dis. 2016;45:23–8.

231. Azzazz H, Haddada N, Durand B, Petit E, Ammouche A, Chomel B, et al. Population structure of Bartonella henselae in Algerian urban stray cats. PLoS One. 2012;7(4):e3621.

232. Al-Kappany YM, Lappin MR, Kordick DL, Hegarty BC, Breitschwerdt EB. Comparative seroreactivity to Bartonella henselae, Bartonella clarridgeiae and concurrent Bartonella spp., feline immunodeficiency virus, feline leukemia virus, and Dirofilaria immitis infections in Egyptian cats. J Parasitol. 2011;97:256–8.

233. Trataris AN, Rossouw J, Arntzen L, Karstaedt A, Frean J. Bartonella spp. in human and animal populations in Gauteng, South Africa, from 2007 to 2009. Onderstepoort J Vet Res. 2012;79:62.

234. Lobert R, Lappin MR. Prevalence of Toxoplasma gondii, Bartonella species and haemoplasma infection in cats in South Africa. J Feline Med Surg. 2012;14:857–62.

235. Kelly PJ, Rooney JJ, Marston EL, Jones DC, Regney RL. Bartonella henselae isolated from cats in Zimbabwe. Lancet. 1998;351:1,706.

236. Kelly PJ, Matthewman LA, Hayter D, Downey S, Wray K, Bryson NR, et al. Bartonella (Rochalimaea) henselae in southern Africa: evidence for infections in domestic cats and implications for veterinarians. J S Afr Vet Assoc. 1996;67:182–7.

237. Yuan C, Zhu C, Wu Y, Pan X, Hua X. Bacteriological and molecular characterisation of Bartonella henselae among pet cats in Japan. J Vet Med Sci. 2000;62:273–9.

238. Sato S, Kabeya H, Negishi A, Tsujimoto H, Nishigaki KEY. Molecular survey of Bartonella henselae in cats and dogs in Japan. Clin Microbiol Infect. 2013;19:141–6.

239. Yuan C, Zhu C, Wu Y, Pan X, Hua X. Bacteriological and molecular characterisation of Bartonella henselae among pet cats in Japan. J Vet Med Sci. 2000;62:273–9.

240. Maruyama S, Kabeya H, Nakao R, Tanaka S, Sakai T, Xuan X, et al. Molecular characterisation of Bartonella henselae in cats and dogs in Japan. Microbiol Immunol. 2003;47:147–53.

241. Kim Y, Lee K, Lee J, Choi E, Lee H, Hwang C, et al. Prevalence of Bartonella henselae and Bartonella clarridgeiae in cats and dogs in Korea. J Vet Sci. 2009;10:855–7.

242. Switzer AD, McMillan-Cole AC, Kasten RW, Stuckey MJ, Karstaedt A, Frean J, et al. Bartonella and Toxoplasma infections in stray cats from Iraq. Am J Trop Med Hyg. 2013;89:1219–24.

243. Baneth G, Kordick DL, Hegarty BC, Breitschwerdt EB. Comparative seroreactivity to Bartonella henselae, Bartonella clarridgeiae and the 16S RNA gene types of Bartonella henselae among pet cats in Japan. J Vet Med Sci. 2000;62:273–9.

244. Sato S, Kabeya H, Negishi A, Tsujimoto H, Nishigaki KEY. Molecular survey of Bartonella henselae in cats and dogs in Japan. Clin Microbiol Infect. 2013;19:141–6.

245. Kubo Y, Kato M, Saito Y, Sato S, Kabeya H, Nakao R, et al. Serological investigation of Bartonella henselae infection in cats in Japan. J Vet Med Sci. 2003;65:149–53.

246. Celebi B, Kilic S, Aydin N, Tarhan G, Carhan A, Babur C. Investigation of Bartonella henselae in cats in Ankara, Turkey. Zoonoses Public Health. 2009;56:169–75.

247. Gutierrez R, Morick D, Gross I, Winkler R, Emmerich K, Harrus S. Bartonella in domestic and stray cats from Israel: comparison of bacterial cultures and high-resolution melting real-time PCR as diagnostic methods. Vector Borne Zoonotic Dis. 2013;13:857–64.

248. Chomel BB, Carlos ET, Kasten RW, Yang AM, dosage R, et al. Bartonella and Bartonella clarridgeiae infection in domestic cats from the Philippines. Am J Trop Med Hyg. 1999;60:593–7.

249. Maruyama S, Nakamura Y, Kabeya H, Tanaka S, Hase S, et al. Bartonella (Rochalimaea) henselae in domestic cats from Valdivia, southern Chile. Parasitology. 2013;138:57–64.

250. Tomás A, Pulorak EL, Guen NE, Breitschwerdt EB, Lascelles BD. Relationship between degenerative joint disease, pain, and Bartonella spp. seroreactivity in domestic cats. J Vet Intern Med. 2015;29:217–7.

251. Lappin MR, Hawley J. Presence of Bartonella species and Rickettsia species DNA in the blood, oral cavity, skin and claw beds of cats in the United States. Vet Dermatol. 2009;20:503–14.

252. Levy JK, Levy J, Kass E, Shackelford T, Lappin MR. Prevalence of selected infectious disease agents in cats from Arizona. J Feline Med Surg. 2006;8:164–8.

253. Fleischmann DA, Chomel BB, Kasten RW, Stuckey MJ, Scarlet J, Liu H, et al. Bartonella infection among cats adopted from a San Francisco shelter, revisited. Appl Environ Microbiol. 2015;81:6446–50.

254. Eberhardt JM, Neal K, Shackelford T, Lappin MR. Prevalence of Bartonella species and haemoplasma infection in domestic cats. J Vet Med Sci. 2009;71:225–8.

255. Drummond MR, Lania BG, de Paiva Diniz PP, Pilloti R, Demolin DWR, Scipio DG, et al. Improvement of Bartonella henselae DNA detection in cat blood samples by combining molecular and culture methods. J Clin Microbiol. 2018;56:e01732–17.

256. Vissotto de Paiva Diniz PP, Maggi RQ, Schwartz DS, Cadenas MB, Bradley JM, Hegarty B, et al. Canine bartonellosis: serological and molecular prevalence in Brazil and evidence of co-infection with Bartonella henselae and Bartonella vinsonii subsp. berkhoffii. Vet Res. 2007;38:697–710.

257. Braga MD, Diniz PP, André MR, de Bertoti CP, Machado RZ. Molecular characterisation of Bartonella species in cats from São Luis, state of Maranhão, north-eastern Brazil. Mem Inst Oswaldo Cruz. 2012;107:772–7.

258. Fontalvo MC, Fervás ARM, Arauco AC, Santos NMD, Oliveira GMB, Aguiar DM, et al. Bartonella species pathogenic for humans infect pets, free-ranging wild mammals and their ectoparasites in the Caatinga biome, northeastern Brazil: a serological and molecular study. Brazilian J Infect Dis. 2017;21:290–6.

259. Müller A, Walker R, Bittencourt P, Machado RZ, Benevenute T, DO Amaral RB, et al. Prevalence, hematological findings and genetic diversity of Bartonella spp. in domestic cats from Valdivia, southern Chile. Parasitology. 2017;144:773–82.

260. Feralis M, Abarca K, Godoy P, Garcia P, Palavecino E, Méndez G, et al. Presence of Bartonella henselae in cats: natural reservoir quantification and human exposure risk of this zoonoses in Chile. Rev Med Chil. 2005;133:1465–71.

261. Levy JK, Crawford PC, Lappin MR, Dubovi EJ, Levy MG, Alleman R, et al. Infectious diseases of dogs and cats on Isabela Island, Galapagos. J Vet Intern Med. 2008;22:260–5.

262. Bai Y, Dizoo NF, Alvarez D, Moran D, Peruski LF, Kosoy M. Coexistence of Bartonella henselae and B. clarridgeiae in populations of cats and their fleas in Guatemala. J Vector Ecol. 2015;40:327–32.

263. Probstte T, Kellermann T, Mendiya D, Solano-Gallego L, Fernández de Meza IG, Chiffole AD, et al. Infection and exposure to vector-borne pathogens in rural dogs and their ticks, Uganda. Parasit Vectors. 2015;8:306.

264. Azzag N, Pett E, Gandoin C, Boullin C, Chalmin F, Haddad N, et al. Prevalence of select vector-borne pathogens in stray and client-owned dogs from Algiers. Comp Immunol Microbiol Infect Dis. 2015;38:1–7.

265. Kermel T, Assi M, Coudurier S-E, Chomel BB, Raoult D, Bitam I. Molecular evidence of Bartonella infection in domestic dogs from Algeria, North Africa, by polymerase chain reaction (PCR). Am J Trop Med Hyg. 2010;83:298–300.

266. Jenny H, Vanhom BA, Kasten RW, Kachani M, Chomel BB. Antibodies to Bartonella vinsonii subsp. berkhoffii in Moroccan dogs. Am J Trop Med Hyg. 2006;74:222–3.

267. Williams BM, Berentsen A, Shock BC, Teixeira M, Dunbar MR, Becker MS, et al. Prevalence and diversity of Babesia, Hepatozoon, Ehrlichia, and Bartonella in wild and domestic carnivores from Zambia, Africa. Parasitol Res. 2014;113:911–8.

268. Kelly PJ, Eoghain GN, Raoult D. Antibodies reactive with Bartonella henselae and Ehrlichia canis in dogs from the communal lands of Zimbabwe. J Afr Vet Assoc. 2004;7:116–20.
