Interacting like charges in Landau levels: Planar geometry, symmetries, and effective quasiparticles

A. B. Dzyubenko and A. R. Todd
Department of Physics, California State University at Bakersfield, Bakersfield, CA 93311, USA

(Dated: February 1, 2008)

We consider a system of two interacting particles with like but unequal charges in a magnetic field in the planar geometry. We construct a complete basis of states compatible with both the axial symmetry and magnetic translations. The basis is obtained using a canonical transformation that generates effective quasiparticles with modified interactions. We establish a connection of this transformation with the SU(2) algebra and make use of the SU(2) Baker-Campbell-Hausdorff formulas for evaluating the interaction matrix elements. We calculate analytically the eigenenergies of the problem (Haldane pseudopotentials) in the first few Landau levels for a relatively wide class of interaction potentials.

PACS numbers: 71.70.Di, 71.35.Ji, 73.43.-f
Keywords: Coulomb correlations, strong magnetic fields, SU(2) algebra

I. INTRODUCTION

Interparticle correlations are enhanced in the presence of a strong magnetic field and play a central role in determining the physics of various systems, such as, atoms and ions in ultrastrong magnetic fields1,2,3 and electrons in Landau levels.4,5 The corresponding few- and many-body electron problems have been considered in detail in both planar and spherical geometries, especially in the context of the fractional quantum Hall effect6-9

In this work, we consider a system of two like but unequal charges in a magnetic field interacting via an arbitrary pairwise potential. Our motivation is symmetry-related: to the best of our knowledge, this problem has not been treated with a full account of the relevant symmetries in the planar geometry. At the same time, such systems present physical interest and may describe, e.g., multicharged complexes in layered systems10 and strongly bound ions interacting with one another and being treated as structurless point-like charges.11

The developed algebraic approach may also be useful for studying interactions between fractionally charged quasiparticles12,13,14 and bound states consisting of such excitations.13,14,15

This approach may also be relevant for separating variables in bulk three-dimensional systems16 and in electron systems consisting of two groups of electrons with, e.g., different masses.17 In the latter case the charges and coordinates introduced in Sec. II A below correspond to the total charges and center-of-charge coordinates of the two subsystems.17

II. TWO INTERACTING CHARGED PARTICLES IN A MAGNETIC FIELD

A. The Hamiltonian and Bose ladder operators

We consider a system of two interacting like charges moving on a 2D plane perpendicular to a uniform magnetic field \(\mathbf{B} = (0, 0, B) \). The latter is assumed to be strong so that interaction-induced mixing of Landau levels (LLs) is weak and, in the first approximation, can be ignored. Our goal here is to construct a complete basis of states that is compatible with all symmetries of the problem and to find exact diagonalization for interacting states in a few lowest LLs. Note that in the absence of the interparticle interaction, the states are infinitely-fold degenerate. Our procedure allows one to consider mixing between LLs perturbatively.

To be definite, let us take the charges to be negative, \(-q_1 < 0 \) and \(-q_2 < 0\)18 The Hamiltonian describing the system is

\[
\mathcal{H} = \frac{\hat{\Pi}_1^2}{2m_1} + \frac{\hat{\Pi}_2^2}{2m_2} + V(|\mathbf{r}_1 - \mathbf{r}_2|) \equiv \mathcal{H}_0 + \mathcal{H}_0 + \mathcal{V}_{int}. \tag{1}
\]

Here \(\hat{\Pi}_j = -i\hbar \nabla_j + \frac{2}{c} \mathbf{A}(\mathbf{r}_j) \) are kinematic momentum operators and \(V(r) \) is the interaction potential that can be rather arbitrary. In the symmetric gauge \(\mathbf{A} = \frac{\mathbf{B} \times \mathbf{r}}{2} \) the states of free non-interacting particles in LLs can be described by the factored wave functions13,15

\[
\phi_{nm}^{(j)}(\mathbf{r}_j) = \frac{1}{\sqrt{n!m!}}(\mathbf{r}_j)(A_j^\dagger)^n(B_j^\dagger)^m |0\rangle, \tag{2}
\]

corresponding constructed using the raising Bose ladder inter- and intra-LL operators, correspondingly,

\[
A_j^\dagger(\mathbf{r}_j) = \frac{1}{\sqrt{2}} \left(\frac{z_j}{2l_j} - 2l_j \frac{\partial}{\partial z_j} \right), \tag{3}
\]
\[
B_j^\dagger(\mathbf{r}_j) = \frac{1}{\sqrt{2}} \left(\frac{z_j^*}{2l_j} - 2l_j \frac{\partial}{\partial z_j} \right). \tag{4}
\]

Here \(z_j = x_j + iy_j \) are the 2D complex coordinates and \(l_j = (\hbar c / q_j B)^{1/2} \) are the magnetic lengths.19 The operators commute as \([A_j, A_j^\dagger] = \delta_{j,k}, [B_j, B_j^\dagger] = \delta_{j,k} \), and \([A_j, B_k] = [A_j, B_k^\dagger] = [A_j, B_k^\dagger] = 0 \). The inter-LL operators are connected with the kinematic momentum operators as...
\(A_j^\dagger = -i(\hat{\Pi}_{jx} + i\hat{\Pi}_{jy})l_j/\sqrt{2}\hbar \). The symmetry and algebra leading to the intra-LL operators \(B_j^\dagger \) is discussed below.

The Hamiltonian of free particles from (1) expressed in terms of the inter-LL operators becomes

\[
\mathcal{H}_0 = \mathcal{H}_{01} + \mathcal{H}_{02} = \hbar \omega_1 (A_j^\dagger (r_1) A(r_1) + \frac{1}{2}) + \hbar \omega_2 (A_j^\dagger (r_2) A(r_2) + \frac{1}{2}),
\]

where \(\omega_j = q_j B/m_j c \) are the cyclotron frequencies. A complete basis of states of the total angular momentum projection. It can be shown that states of (6) have definite total angular momentum projections and are given by \(\hat{\Pi} = \hat{\Pi}_{jx} \) is the generator of MT for the whole system. Indeed, the Hamiltonian commutes with \(\hat{\Pi} = \hat{\Pi}_{jx} - \hbar\nabla_j \times B \). In the symmetric gauge, \(\hat{\Pi}_j(B) = \hat{\Pi}_j(-B) \). Independent of the gauge, all components of \(\hat{\Pi}_j \) and \(\hat{\Pi}_j \) commute with each other: \([\hat{\Pi}_j, \hat{\Pi}_j] = 0, p, q = x, y \). Therefore, the exact eigenstates of \(\mathcal{H} \) can be characterized by the eigenvalues of the mutually commuting operators \(L_z \) and \(\hat{\Pi}^2 \). However, the basis (6) is not compatible with magnetic translations.

B. Geometrical symmetries

The system possesses the axial symmetry, \(\{\mathcal{H}, \hat{L}_z\} = 0 \), where \(\hat{L}_z = \sum_j L_{zj} = \sum_j [r_j \times (-i\nabla_j)]_z \) is the operator of the total angular momentum projection. It can be expressed as \(\hat{L}_z = \sum_j (A_j^\dagger A_j - B_j^\dagger B_j) \). Therefore, the basis states (6) have definite total angular momentum projections and are compatible with the axial symmetry.

The total Hamiltonian \(\mathcal{H} \) is characterized by yet another geometrical symmetry, namely, magnetic translations (MT). Indeed, the Hamiltonian commutes with a two-component vector operator, \(\{\mathcal{H}, \hat{K}\} = 0 \), where \(\hat{K} = \sum_j \hat{K}_j \) is the generator of MT for the whole system. The generators of MT for individual particles are given by \(\hat{K}_j = \hat{\Pi}_j - \frac{2}{\hbar} r_j \times B \). In the symmetric gauge, \(\hat{K}_j(B) = \hat{\Pi}_j(-B) \). The components of \(\hat{K}_j \) and \(\hat{\Pi}_j \) commute with each other: \([\hat{K}_j, \hat{\Pi}_j] = 0, p, q = x, y \). Therefore, the exact eigenstates of \(\mathcal{H} \) can be characterized by the eigenvalues of the mutually commuting operators \(L_z \) and \(\hat{K}^2 \). However, the basis (6) is not compatible with magnetic translations.

C. Operator of Magnetic Translations (MT)

To elucidate this, let us indicate the connection between the intra-LL raising \(B_j^\dagger \) and lowering \(B_j \) operators with the MT generators \(\hat{K}_j \). The components of the latter are canonically conjugate: \([\hat{K}_j, \hat{K}_{j'}] = i\frac{\hbar B}{c} q_j \neq 0 \).

Introducing dimensionless operators \(k_j = \hat{K}_j/\hbar \), one constructs the raising and lowering intra-LL operators as \(B_j^\dagger = -i k_j^- \) and \(B_j = i k_j^+ \). The raising operator \(B_j^\dagger (r_j) \) is explicitly given as a combination of the coordinates and derivatives in Eq. (4). We define \(\bar{k}_j \pm = (\bar{k}_{jx} \pm i \bar{k}_{jy})/\sqrt{2} \).

The components of the MT operator for the whole system, \(\hat{K} \), can be expressed as

\[
\hat{K}_x = \hat{K}_{1x} + \hat{K}_{2x} = \frac{i\hbar}{2} \left(\frac{B_1^\dagger - B_1}{l_1} + \frac{B_2^\dagger - B_2}{l_2} \right),
\]

\[
\hat{K}_y = \hat{K}_{1y} + \hat{K}_{2y} = -\frac{\hbar}{2} \left(\frac{B_1^\dagger + B_1}{l_1} + \frac{B_2^\dagger + B_2}{l_2} \right).
\]

Note now that \(\hat{K}^2 = \hat{K}_x^2 + \hat{K}_y^2 \) of the form

\[
\hat{K}^2 = 2\hbar^2 \left(\frac{B_1^\dagger B_1 + \frac{1}{2}}{l_1^2} + \frac{B_2^\dagger B_2 + \frac{1}{2}}{l_2^2} + \frac{B_1^\dagger B_2 + B_2^\dagger B_1}{l_1 l_2} \right),
\]

i.e., is not diagonal. From here we see that the basis states (6) are not eigenstates of \(\hat{K}^2 \). Therefore, we need to find a transformation that diagonalizes \(\hat{K}^2 \) while keeping the axial symmetry intact.

III. CANONICAL TRANSFORMATION AND NEW COORDINATES

To find the transformation that diagonalizes \(\hat{K}^2 \), notice first that the components of \(\hat{K} \) commute as

\[
[\hat{K}_x, \hat{K}_y] = \frac{i\hbar B}{c} (q_1 + q_2) = \frac{i\hbar B}{c} Q,
\]

where \(Q = q_1 + q_2 > 0 \) is the negative of the total charge; note the signs. Let us introduce the dimensionless operator

\[
\hat{k} = \sqrt{\frac{\hbar c}{Q B}} \hat{K} = \frac{\hbar L_B}{\hbar}
\]

with the components commuting as canonical variables, \([\hat{k}_x, \hat{k}_y] = i; L_B = \sqrt{\hbar c/Q B} \) is the magnetic length corresponding to the total charge \(Q \). This allows one to introduce the following Bose ladder operators

\[
\hat{B}_1^\dagger = -i \hat{k}_- = \sqrt{\frac{q_1}{Q}} B^\dagger + \sqrt{\frac{q_2}{Q}} B^\dagger \equiv u B_1^\dagger + v B^\dagger ,
\]

\[
\hat{B}_1 = i \hat{k}_+ = \sqrt{\frac{q_1}{Q}} B^\dagger + \sqrt{\frac{q_2}{Q}} B \equiv u B_1 + v B_2,
\]

which commute as \([\hat{B}_1, \hat{B}_1^\dagger] = 1 \); here \(\bar{k}_\pm = (\bar{k}_{jx} \pm i \bar{k}_{jy})/\sqrt{2} \) (cf. with the single-particle operator algebra presented above). This solves the problem of diagonalizing \(\hat{K}^2 \). Indeed, in the new operators we have \(\hat{k}_- = i \hat{B}_1^\dagger \) and \(\hat{k}_+ = i \hat{B}_2 \) so that \(\hat{k}^2 = \hat{k}_- \hat{k}_+ = 2 \hat{B}_1^\dagger B_1 + 1 \).

Note now that we need to consider also the second independent pair of new Bose ladder operators. These are given by

\[
\hat{B}_2^\dagger = -v B_1^\dagger + u B_2^\dagger,
\]

\[
\hat{B}_2 = -v B_1 + u B_2.
\]
The new operators commute as \([\hat{B}_2, \hat{B}_1^\dagger] = 1\), \([\hat{B}_1, \hat{B}_2^\dagger] = 0\), and \([\hat{B}_1, \hat{B}_2] = 0\).

The transformation to the new operators is in fact a Bogoliubov canonical transformation generated by the unitary operator (see, e.g., Refs. [17])

\[
S = \exp(\Phi M),
\]

\[
M = B^\dagger(r_1)B(r_1) - B^\dagger(r_2)B(r_2),
\]

where \(\Phi\) is the transformation parameter and \(u = \cos \Phi = \sqrt{q_1/Q}\), \(v = \sin \Phi = \sqrt{q_2/Q}\). This transformation can be conveniently presented in the following matrix form:

\[
\begin{pmatrix}
\hat{B}_{1}^\dagger \\
\hat{B}_{2}^\dagger
\end{pmatrix} =
\begin{pmatrix}
SB^\dagger(r_1)S^\dagger \\
SB^\dagger(r_2)S^\dagger
\end{pmatrix} =
\mathcal{G} \begin{pmatrix}
B^\dagger(r_1) \\
B^\dagger(r_2)
\end{pmatrix},
\]

\[G = \begin{pmatrix} u & v \\
v & -u \end{pmatrix}.\] (19)

The matrix \(G\) is an SU(2) matrix, which reflects the fact that the operator \(M\) consists of the generators of the SU(2) algebra, see Appendices A and B and Refs. [2][22].

A. New coordinates

The above canonical transformation introduces, implicitly, new effective coordinates in which one degree of freedom separates. To demonstrate this, let us write down the coordinate representations of the new operators:

\[
\begin{align*}
\hat{B}_1^\dagger &= \frac{1}{\sqrt{2}} \left[\frac{1}{2} \left(\frac{uz_1^* + vz_2^*}{l_1} - 2 \left(ul_1 \frac{\partial}{\partial z_1} + vl_2 \frac{\partial}{\partial z_2} \right) \right) , \\
\hat{B}_2^\dagger &= \frac{1}{\sqrt{2}} \left[\frac{1}{2} \left(\frac{uz_2^* - vz_1^*}{l_2} - 2 \left(ul_2 \frac{\partial}{\partial z_2} - vl_1 \frac{\partial}{\partial z_1} \right) \right) .
\end{align*}
\]

This suggests that the complex variables \(Z_1 = \frac{u}{l_1} z_1^* + \frac{v}{l_2} z_2^*\) and \(Z_2 = \frac{u}{l_2} z_2^* - \frac{v}{l_1} z_1^*\) may be relevant. Accordingly, let us introduce the new dimensionless variables using the matrix function:

\[
\begin{pmatrix} \rho_1 \\
\rho_2
\end{pmatrix} = F \begin{pmatrix} r_1 \\
r_2
\end{pmatrix}, \quad F = \begin{pmatrix} \frac{-u}{l_1} & \frac{-v}{l_2} \\
\frac{v}{l_1} & \frac{-u}{l_2}
\end{pmatrix}.
\]

The derivatives in the new variables are determined, as usual, by the inverse of the transposed matrix, \((F^T)^{-1}\).

\[
\frac{\partial}{\partial \rho_1} = (F^T)^{-1} \frac{\partial}{\partial \rho_2}, \quad (F^T)^{-1} = \begin{pmatrix} ul_1 & vl_2 \\
-vl_1 & ul_2
\end{pmatrix}.
\]

(21)

This shows that indeed we have the derivatives in the new coordinates \(Z_1\) and \(Z_2\), so that \(\hat{B}_1^\dagger = \frac{1}{\sqrt{2}} \left(\frac{1}{2} Z_1^* - 2 \frac{\partial}{\partial z_1} \right)\) and \(\hat{B}_2^\dagger = \frac{1}{\sqrt{2}} \left(\frac{1}{2} Z_2^* - 2 \frac{\partial}{\partial z_2} \right)\).

What is the physical meaning of the new coordinates \(\rho_1\) and \(\rho_2\)? To answer this question let us note that the matrices \(F\), Eq. (20), and \((F^T)^{-1}\), Eq. (21), can be presented as

\[
F = \frac{1}{L_B} \begin{pmatrix} u^2 & v^2 \\
vu & uv
\end{pmatrix}, \quad (F^T)^{-1} = L_B \begin{pmatrix} 1 & 1 \\
1 & 1
\end{pmatrix}.
\]

This allows one to introduce the following coordinates related to \(\rho_1\) and \(\rho_2\) by scaling:

\[
\begin{align*}
\mathbf{R}_1 = L_B \rho_1 &= u^2 r_1 + v^2 r_2 = \frac{q_1 r_1 + q_2 r_2}{Q}, \\
\mathbf{R}_2 = L_B \rho_2 &= uv(r_2 - r_1) = \frac{\sqrt{q_1 q_2}}{Q} (r_2 - r_1).
\end{align*}
\]

Using (22) one can show that the transformed operators are conveniently expressed in the new variables as

\[
\begin{align*}
\hat{B}_1^\dagger &= B^\dagger(R_1) = \frac{1}{\sqrt{2}} \left(\frac{Z_1^*}{2L_B} - 2L_B \frac{\partial}{\partial Z_1} \right), \\
\hat{B}_2^\dagger &= B^\dagger(R_2) = \frac{1}{\sqrt{2}} \left(\frac{Z_2^*}{2L_B} - 2L_B \frac{\partial}{\partial Z_2} \right).
\end{align*}
\]

We conclude that the canonical transformation generates the new coordinates, which are the “center-of-charge” (a weighted dipole) coordinate \(\mathbf{R}_1\) and a weighted relative coordinate \(\mathbf{R}_2\).

B. Do variables separate completely?

We will see that the above transformation introduces new effective quasiparticles with coordinates \(\mathbf{R}_1\) and \(\mathbf{R}_2\). Let us first establish the form of the total Hamiltonian in the new variables. The interaction Hamiltonian takes the form

\[
V_{\text{int}} = V(|\mathbf{r}_1 - \mathbf{r}_2|) = V\left(\frac{|\mathbf{R}_2|}{uv} \right).
\]

The important feature is that \(V_{\text{int}}\) does not depend on \(\mathbf{R}_1\) leading to a partial separation of variables.

At this point it might seem that the coordinate \(\mathbf{R}_1\) can be completely separated. However, generally, this is not the case. Indeed, the Hamiltonian of free particles is expressed in the new coordinates \(\mathbf{R}_1\) and \(\mathbf{R}_2\) assumes the form

\[
\mathcal{H}_0 = \hbar \omega_1 \left(A^\dagger r_1 A r_1 + \frac{1}{2} \right) + \hbar \omega_2 \left(A^\dagger r_2 A r_2 + \frac{1}{2} \right) + \hbar \omega (A^\dagger r_1 A r_2 + \text{H.c.}) .
\]

Here the frequencies are given by

\[
\begin{align*}
\omega_1 &= \frac{q_1}{Q} \omega_1 + \frac{q_2}{Q} \omega_2, \\
\omega_2 &= \frac{q_2}{Q} \omega_1 + \frac{q_1}{Q} \omega_2, \\
\delta \omega &= \frac{\sqrt{q_1 q_2}}{Q} (\omega_1 - \omega_2) .
\end{align*}
\]
Notice the coupling term proportional to $\delta \omega$ in Eq. (28). It is this term that precludes one from separating two degrees of freedom corresponding to R_1. The coupling only vanishes in a magnetic field for particles with a constant charge-to-mass ratio $q_1/m_1 = q_2/m_2$, so that $\delta \omega = \omega_1 - \omega_2 = 0$. In this case R_1 coincides with the center-of-mass coordinate and completely separates from the internal motion.6,16,23

C. A complete basis of states

Because of the coupling term 23, switching directly to the new variables R_1 and R_2 is not technically advantageous. We will proceed instead by constructing a complete basis of states which allows one to circumvent that difficulty. Notice first that the unitary transformation 10 does not generate a new vacuum state:

$$S(0) = |0\rangle. \quad (32)$$

This is because the generator \mathcal{M} given by Eq. (17) is in the normal form. This should be contrasted with systems of charges of opposite signs, where new squeezed vacuum states are generated.1724 The coordinate representations of the normalized vacuum state in the two sets of coordinates are

$$\langle r_1, r_2 |0\rangle = \frac{1}{2\pi l_1 l_2} \exp \left(\frac{r_1^2}{4l_1^2} - \frac{r_2^2}{4l_2^2} \right), \quad (33)$$

$$\langle R_1, R_2 |0\rangle = \frac{1}{2\pi L_B} \exp \left(-\frac{R_1^2 + R_2^2}{4L_B^2} \right). \quad (34)$$

We construct a complete orthonormal set of states compatible with both axial and magnetic translational symmetries as follows:

$$|n_1, n_2, m_1, m_2, k\rangle = \frac{1}{(n_1! n_2! m_1! m_2! k!)^{1/2}} \times (A^\dagger(r_1))^{n_1} [A^\dagger(r_2)]^{n_2} [B^\dagger(R_2)]^{m_2} [B^\dagger(R_1)]^k |0\rangle. \quad (35)$$

Notice the mixed character of this representation: the inter-LL operators are in the old variables r_1 and r_2, while the intra-LL operators are canonically transformed and, as such, are expressed in the new variables R_1 and R_2. The latter is indicated by an olive sign in the notations for the bra and ket states. Formally, the states 35 are the Perelomov coherent states of the $SU(2)$ group,24 this will be considered in more detail elsewhere.24

Acting by the operators \hat{L}_z and \hat{K}^2 on states 35 we obtain

$$\hat{L}_z |n_1, n_2, m_1, m_2, k\rangle = (n_1 + n_2 - m_2 - k) |n_1, n_2, m_1, m_2, k\rangle,$$

$$\hat{K}^2 |n_1, n_2, m_1, m_2, k\rangle = \frac{\hbar^2}{L_B^2} (2k + 1) |n_1, n_2, m_1, m_2, k\rangle. \quad (36)$$

We see that the basis states 35 are simultaneous eigenstates of the generators of rotations \hat{L}_z and magnetic translations squared \hat{K}^2, i.e., are indeed compatible with both the axial symmetry and magnetic translations. For identical particles (when, in particular, $q_1 = q_2$) the permutational symmetry imposes an additional constraint4,5,6,17 on the parity of $n_2 + m_2$.

The meaning of the oscillator quantum number k is the distance squared to the center of the cyclotron orbit of the complex as a whole.2,3,17 There is the macroscopic Landau degeneracy in k for a charged complex in B. Because of the degeneracy in k, from now on we will only consider the $k = 0$ states, $|n_1, n_2, m_1, m_2, k\rangle \equiv |n_1, n_2, m_2\rangle$. Geometrically, these states are at the minimal distance from the origin. All other states $k = 1, 2, \ldots$ are displaced from the origin but, because of the degeneracy, have exactly same energies. We consider this in more detail in two sections below.

D. Guiding center coordinates: Quantum equations of motion

Let us take a closer look at the quantum dynamics of the degrees of freedom associated with the introduced transformed operators $B^\dagger(R_1)$ and $B^\dagger(R_2)$. It is instructive first to use the connection between the intra-LL operators of individual particles $B^\dagger(r_j)$, $j = 1, 2$, and the operators r_j describing positions of their guiding centers in a magnetic field. These have the form $r_j = -\frac{q_j}{eB} K_j \times e_z$, where e_z is the unit vector in the magnetic field direction; let us remind that we consider negatively charged particles of charges $-q_j < 0$. Expressing K_j in terms of the intra-LL operators gives $\hat{r}_j = [B^\dagger(r_j) + B(r_j)]/\sqrt{2}$ and $\hat{y}_j = i[B^\dagger(r_j) - B(r_j)]/\sqrt{2}$. The quantum equations of motion for \hat{r}_j have the form

$$\frac{d\hat{r}_j}{dt} = \frac{i}{\hbar} [\mathcal{H}, \hat{r}_j] = \frac{c}{Bq_j} \left(-\frac{\partial V_{\text{int}}}{\partial \hat{r}_j} \right), \quad j = 1, 2. \quad (37)$$

Noticing that $\partial V_{\text{int}}/\partial \hat{r}_1 = -\partial V_{\text{int}}/\partial \hat{r}_2$ and rearranging Eqs. (37) we get

$$\frac{d\hat{R}_1}{dt} = 0, \quad \hat{R}_1 = q_1 \hat{r}_1 + q_2 \hat{r}_2, \quad (38)$$

$$\frac{d\hat{R}_2}{dt} = \frac{c}{B\sqrt{q_1 q_2}} \left(-\frac{\partial V_{\text{int}}}{\partial \hat{r}_2} \right) \times e_z, \quad (39)$$

$$\hat{R}_2 = \frac{\sqrt{q_1 q_2}}{Q} (\hat{r}_2 - \hat{r}_1), \quad (40)$$

where $Q = q_1 + q_2$. The operators \hat{R}_1 and \hat{R}_2 are the guiding center operators for the new variables R_1 and R_2 introduced above in Eqs. (23) and (24). The former are expressed via the transformed intra-LL operators as $\hat{X}_j = [B^\dagger(R_j) + B(R_j)]L_B/\sqrt{2}$ and $\hat{Y}_j = i[B^\dagger(R_j) - B(R_j)]L_B/\sqrt{2}$. Notice that the same effective magnetic length L_B is involved in both of them.

We see that the guiding center operator \hat{R}_1 corresponding to the “center-of-charge” coordinate is a conserved quantity, while the relative coordinate guiding
center \mathbf{R}_2 experiences a drift motion in the direction perpendicular to the gradient of the potential V_{int} and the magnetic field \mathbf{B}.

There is a direct connection between \mathbf{R}_1 and the integral of the motion \mathbf{K}: $\mathbf{R}_1 = -\frac{L_B}{\hbar} \mathbf{K} \times \mathbf{e}_z$. We see that $\mathbf{R}_1^2 = |2B^*\mathbf{R}(\mathbf{R}_1)B(\mathbf{R}_1) + 1|L_B^2$. Therefore, quantization of the oscillator quantum number $k = 0, 1, \ldots$ directly determines the average distances squared of the “center-of-charge” from the origin, $(\mathbf{R}_1^2) = (2k + 1)L_B^2$.

E. Connection with finite Magnetic Translations

The operator of finite MT for the whole system is[2,30]

$$\hat{T}(\mathbf{a}) = \exp \left(i \frac{\mathbf{a} \cdot \mathbf{K}}{\hbar} \right).$$

The group of MTs is non-abelian (non-commutative) for charged systems. We have

$$\hat{T}(\mathbf{b}) \hat{T}(\mathbf{a}) = \exp \left(i \frac{[\mathbf{a}, \mathbf{b}]_z}{2L_B^2} \right) \hat{T}(\mathbf{a} + \mathbf{b}). \quad (41)$$

IV. NEW QUASIPARTICLES AND THE UNITARY TRANSFORMATION OF THE HAMILTONIAN

The interaction Hamiltonian is block-diagonal in the constructed basis:

$$\langle n', n, m, \kappa | V_{\text{int}} | n, n, m, \kappa \rangle = \delta_{n, n'} \delta_{m, m} | n, n, m, \kappa \rangle \langle n', n, m, \kappa | V_{\text{int}} | n, n, m, \kappa \rangle. \quad (44)$$

Note that the matrix elements [44] do not depend on the oscillator quantum number k and can be calculated using the $k = 0$ states defined above in Sec. III C as $|n_1, n_2, m_2\rangle$.

It is now convenient to perform the transformation of the inter-LL operators to the variables \mathbf{R}_1 and \mathbf{R}_2. This can be done as follows:

$$\begin{pmatrix} A^\dagger(\mathbf{r}_1) \\ A^\dagger(\mathbf{r}_2) \end{pmatrix} = \begin{pmatrix} U A^\dagger(\mathbf{R}_1) U^\dagger \\ U A^\dagger(\mathbf{R}_2) U^\dagger \end{pmatrix} = G^{-1} \begin{pmatrix} A^\dagger(\mathbf{R}_1) \\ A^\dagger(\mathbf{R}_2) \end{pmatrix}, \quad G^{-1} = \begin{pmatrix} u -v \\ v \quad u \end{pmatrix}. \quad (46)$$

This is a canonical transformation similar to the inverse of the transformation of the intra-LL operators [13]. Accordingly, the unitary operator involved is

$$U = \exp(-\Phi \mathcal{L})$$

$$\mathcal{L} = A^\dagger(\mathbf{R}_2)A(\mathbf{R}_1) - A^\dagger(\mathbf{R}_1)A(\mathbf{R}_2), \quad (48)$$

cf. Eq. [14]. Notice that $[U, \mathcal{L}] = 0$ so that the antihermitean generator \mathcal{L} has the same form in both sets of coordinates: $\mathcal{L} = U \mathcal{L} U^\dagger = A^\dagger(\mathbf{r}_2)A(\mathbf{r}_1) - A^\dagger(\mathbf{r}_1)A(\mathbf{r}_2)$.

When expressed in terms of the new coordinates, $\hat{T}(\mathbf{a})$ becomes of the form

$$\hat{T}(\mathbf{a}) = \exp \left(i \frac{[\mathbf{a} \times \mathbf{R}_1]_z}{2L_B^2} \right) \exp (\mathbf{a} \cdot \nabla \mathbf{R}_i). \quad (42)$$

This means that only the \mathbf{R}_1 coordinate is affected by magnetic translations:

$$\hat{T}(\mathbf{a}) \Psi(\mathbf{R}_1, \mathbf{R}_2) = \exp \left(i \frac{[\mathbf{a} \times \mathbf{R}_1]_z}{2L_B^2} \right) \Psi(\mathbf{R}_1 + \mathbf{a}, \mathbf{R}_2). \quad (43)$$

Essentially, the operator of finite magnetic translations is an oscillator displacement operator[21]

$$\hat{T}(\mathbf{a}) = \exp [\alpha B^\dagger(\mathbf{R}_1) - \alpha^* B(\mathbf{R}_1)]$$

with $\alpha = -(a_x - ia_y)/\sqrt{2L_B}$.

Performing the transformation we obtain matrix elements [44] as

$$\langle n_1', n_2', m_2' | V_{\text{int}} | n_1, n_2, m_2 \rangle = \langle n_1', n_2', m_2' | U V_{\text{int}} U^\dagger | n_1, n_2, m_2 \rangle. \quad (49)$$

Here we introduced the states that are expressed solely in terms of the new variables:

$$\frac{1}{(n_1! n_2! m_2!)^{1/2}} | n_1, n_2, m_2 \rangle. \quad (51)$$

We used the fact that $U^\dagger | 0 \rangle = | 0 \rangle$, which is similar to Eq. [32]. We arrive therefore to the desired representation in the new variables \mathbf{R}_1, \mathbf{R}_2.

In this representation, the Hamiltonian undergoes the unitary transformation

$$\mathcal{H} \rightarrow \mathcal{H} = U^\dagger \mathcal{H} U. \quad (52)$$

For the interaction Hamiltonian, the change $V_{\text{int}} \rightarrow \nabla_{\text{int}} = U V_{\text{int}} U^\dagger$ is evident from Eq. [50], Transformation of the free Hamiltonian $\mathcal{H}_0 \rightarrow \mathcal{H}_0 = U^\dagger \mathcal{H}_0 U$ yields

$$\mathcal{H}_0 = \hbar \omega_1 (A^\dagger(\mathbf{R}_1)A(\mathbf{R}_1) + \frac{1}{2})$$

$$+ \hbar \omega_2 (A^\dagger(\mathbf{R}_2)A(\mathbf{R}_2) + \frac{1}{2}). \quad (53)$$
The change of coordinates follows from [15]. Now we see that indeed new quasiparticles with coordinates R_1 and R_2, the same cyclotron frequencies ω_1 and ω_2 [cf. Eq. (23)], and a modified interaction $V_{\text{int}} = UV_{\text{int}}U^\dagger$ emerge in the developed formalism.

Note that the states $|n_1,n_2,m\rangle$ depend only on three quantum numbers corresponding to the three remaining degrees of freedom. Note also that while V_{int} depends only on R_2, the transformed interaction Hamiltonian $\hat{V}_{\text{int}} = UV_{\text{int}}U^\dagger$ depends on both R_1 and R_2. This reflects the fact that, generally, no complete separation of variables is possible in a magnetic field.

The unitary transformation [12] together with simultaneous diagonalization of the integrals of the motion K^2 and L_z (Sec. III) are the main formal results of this paper. Two different techniques for calculating the interaction matrix elements in higher Landau levels are presented in Appendices A and C. These are connected with two different representations of the SU(2) group. We discuss the relevant SU(2) algebras in Appendix B. Below we concentrate on eigenstates and eigenenergies in lowest Landau levels.

A. Eigenfunctions and eigenvalues in zero Landau level

Let us denote the states $|n_1,n_2,m\rangle$ in zero LLs $n_1 = 0$, $n_2 = 0$ and with oscillator quantum number $k = 0$ as

$$|m\rangle = \frac{1}{\sqrt{m!}} [B^\dagger(R_2)]^m |0\rangle.$$

(54)

These states form a complete orthonormal basis of states compatible with both axial and translational symmetries in the lowest LL. The coordinate representation is given by

$$\langle R_1, R_2 | m \rangle = \frac{1}{2\pi L_B^2 \sqrt{m!}} \left(\frac{Z_2^*}{\sqrt{2L_B}} \right)^m e^{-\frac{R_1^2+R_2^2}{4L_B^2}}, \quad (55)$$

i.e., has a standard form of the factored electron wavefunctions in zero LL [4,5,12].

Since U has a normal form, the states in zero LLs do not change under the action of this operator: $U|m\rangle = |m\rangle$. Therefore,

$$\langle m | V_{\text{int}} | m \rangle = \langle m | V_{\text{int}} | m \rangle = \delta_{m',m} \langle m | V_{\text{int}} | m \rangle.$$

(56)

We used the fact that the interaction Hamiltonian $V_{\text{int}} = V(R_2)$, Eq. (27), possesses the axial symmetry and, therefore, does not have off-diagonal matrix elements in this basis. This allows one to calculate the energy eigenvalues in a given LL as the expectation values of the interaction Hamiltonian. This is similar to the case of the electron system in a strong magnetic field and determines the Haldane pseudopotentials [4,5,6,5].

A relatively wide class of pairwise interaction potentials with combined power-law and Gaussian distance dependencies can be treated analytically:

$$V(|r_1 - r_2|) = \frac{W_0}{|r_1 - r_2|^\epsilon} \exp\left(-\frac{|r_1 - r_2|^2}{2L^2} \right). \quad (57)$$

Here W_0 is the potential amplitude, ϵ determines the power-law dependence, and L is the characteristic length. Such effective potentials may be relevant for a description of interactions between quasiparticles in the fractional quantum Hall effect regime [11].

Switching from the relative coordinate $|r_1 - r_2|$ to the variable $R_2 = |R_2|$ from Eq. (22) and calculating the diagonal matrix elements using the coordinate representation [55] gives the eigenenergies of the problem (Haldane pseudopotentials). These have the following form:

$$V_{0,m} = \langle m | V_{\text{int}} | m \rangle$$

$$V_{0,m} = \frac{W_0}{L_B} \left(\frac{q_1 q_2}{Q^2} \right)^{\frac{\epsilon}{2}} \left[1 + \frac{Q^2 q_1 q_2}{L_B} \left(\frac{L_B}{L} \right)^2 \right]^{\frac{\epsilon}{2}m^{-1}} \times \Gamma(m - \frac{\epsilon}{2} + 1) \frac{1}{2^{2m} m!}, \quad (58)$$

where $\Gamma(x)$ is the gamma-function. The eigenenergies $V_{0,m}$ for several sets of the parameters are shown in Fig. 1. The asymptotic behavior $m \gg 1$ of the eigenenergies [55] is exponential for finite L: $V_m \sim x^{-m} m^{-\epsilon/2}$, where $x = 1 + Q^2 L_B^2 / q_1 q_2 L^2$. For pure power-law potentials $V_{\text{int}} \sim r^{-\epsilon}$ (corresponding to $L \to \infty$), the asymptotics is a power-law $V_m \sim m^{-\epsilon/2}$. Note that even in case of a repulsive interaction between the particles, all states are bound and the eigenspectra are completely discrete.
For $\epsilon = 1$, $L \to \infty$ and amplitude $W_0 = q_1 q_2$, Eq. (58) gives results for the Coulomb interaction matrix

$$V_{\text{int}}^C = \frac{q_1 q_2}{|\mathbf{r}_1 - \mathbf{r}_2|} = \frac{\sqrt{q_1 q_2}}{Q} \frac{q_1 q_2}{R_2}.$$ \hspace{1cm} (59)

The eigenenergies in zero LL in this case are given by

$$V_{0,m}^C = \langle m | V_{\text{int}}^C | m \rangle = \frac{q_1 q_2}{2} \frac{\sqrt{q_1 q_2}}{Q} \Gamma(m + \frac{1}{2}).$$ \hspace{1cm} (60)

For $q_1 = q_2$ these reproduce to the Haldane pseudopotentials in zero LL.5,8,9,11

B. Eigenfunctions and eigenvalues in first Landau levels

We will illustrate how one can obtain the eigenenergies in the few first LLs on the example of the Coulomb potential. To calculate the interaction matrix elements we will use representation (49). Consider, e.g., the state $|1, 0, \overline{m}\rangle = A^\dagger(r_1)|0, 0, \overline{m}\rangle$. Using transformation (45), $A^\dagger(r_1) = uA^\dagger(R_1) - vA^\dagger(R_2)$, one obtains

$$|1, 0, \overline{m}\rangle = u|1, 0, \overline{m}\rangle - v|0, 1, \overline{m}\rangle.$$ \hspace{1cm} (61)

The total energy of this state is given as an expectation value of the total Hamiltonian and is equal to

$$\langle 1, 0, \overline{m} | H_0 + V_{\text{int}}^C | 1, 0, \overline{m}\rangle = \frac{3}{2} \hbar \omega_1 + u^2 V_{0,m}^C + v^2 V_{1,m}^C.$$ \hspace{1cm} (62)

Here $V_{0,m}^C$ is given by Eq. (60) and $V_{1,m}^C = \frac{4m-1}{4m-2} V_{0,m}^C$ are the Coulomb pseudopotentials in the first LL.

Analogously, for a state $|0, 1, \overline{m}\rangle = A^\dagger(r_2)|0, 0, \overline{m}\rangle$ using $A^\dagger(r_2) = vA^\dagger(R_1) + uA^\dagger(R_2)$ from (45) one gets

$$|0, 1, \overline{m}\rangle = v|1, 0, \overline{m}\rangle + u|0, 1, \overline{m}\rangle.$$ \hspace{1cm} (63)

Therefore,

$$\langle 0, 1, \overline{m} | H_0 + V_{\text{int}}^C | 0, 1, \overline{m}\rangle = \frac{3}{2} \hbar \omega_2 + v^2 V_{0,m}^C + u^2 V_{1,m}^C.$$ \hspace{1cm} (64)

Notice that both zero- and first-LL pseudopotentials are involved in Eqs. (62) and (64).

In conclusion, we introduced the operator formalism for partial separation of degrees of freedom for complexes consisting of two like but unequal charges in a magnetic field in the planar geometry. The exact geometrical symmetry, magnetic translations, played the central role in our approach. We established the connection of the developed formalism with the SU(2) algebras. We found analytically Haldane pseudopotentials in the first few Landau levels for a class of interaction potentials with combined power-law and gaussian dependencies. Our results may be useful for considering Coulomb correlations in Landau levels.

Acknowledgments

ABD is grateful to the Kavli Institute for Theoretical Physics, UC Santa Barbara, and to the Max Planck Institute for the Physics of Complex Systems, Dresden, for hospitality. This work was supported in part by NSF grants DMR-0203560 and DMR-0224225 and by a College Science Award of Cottrell Research Corporation.

APPENDIX A: MATRIX ELEMENTS IN HIGHER LANDAU LEVELS: TRANSFORMED BASIS

We present here a derivation of the interaction matrix elements in arbitrary LLs using the canonically transformed representation (50). We first disentangle the operators in the exponent of U, Eq. (47), to obtain the normal-ordered form

$$U = \exp \left(-\tan \Phi A_1^a A_1^b \right) \times$$

$$\times \exp \left[\ln(\cos \Phi) \left(A_1^a A_1^b - A_1^b A_1^a \right)\right] \exp \left(\tan \Phi A_1^a A_1^b \right),$$

where $\cos \Phi = u = \sqrt{q_1/Q} > 0$. Expression (A1) is an analog of the Baker-Campbell-Hausdorff formulas for the SU(2) group.21,22 and is discussed in Appendix B below. Acting by U on one of a basis states (51) we get

$$U |n_1, n_2, m_2\rangle = \sum_{k=0}^{n_2} \sum_{l=0}^{n_1+k} H_{n_1,n_2}(k,l) |n_1 + k - l, n_2 - k + l, m_2\rangle,$$ \hspace{1cm} (A2)

$$H_{n_1,n_2}(k,l) = u^{n_1-n_2-1} l^k (-1)^l u^{-l} [l \choose n_2-k+l] [l \choose n_1+k]^{-1/2} [k \choose n_1+k] [k \choose n_2]^{1/2}.$$

Using the fact that $V_{\text{int}} = V(R_2/uv)$ does not depend on R_1, we obtain

$$\langle n_1', n_2', m_2' | U^\dagger V_{\text{int}} U | n_1, n_2, m_2\rangle = \delta_{n_1+n_2-n_2',n_1'+n_2'-m_2}' \times$$

$$\times \sum_{k'=0}^{n_2'} \sum_{l'=0}^{n_1+k'} \sum_{k=0}^{n_2} \sum_{l=0}^{n_1+k} \delta_{n_1+k-l,n_1'+k'-l'} H_{n_1,n_2}(k,l) H_{n_1,n_2}(k',l') H_{n_1,n_2}(k,l) |n_2 - k + l, m_2\rangle.$$ \hspace{1cm} (A3)
Here \(V_{n,m}^{n',m'} = \delta_{n+m,n'+m'} F_{n,m}^{n',m'} \) is a single-particle matrix element defined, e.g., in Eqs. (43) and (44) of Ref. [17].

APPENDIX B: DISENTANGLING THE OPERATORS: THE SU(2) ALGEBRA

Equation (A1) is the analog of the Baker-Campbell-Hausdorff formulas for the SU(2) group. It can be obtained as follows. Notice first that operators \(A_1^† A_1 \equiv K_\perp, \ A_1^† A_2 \equiv K_+ \), and \(\frac{1}{2} (A_1^† A_1 - A_1^† A_2) \equiv K_0 \) realize a two-mode representation of the SU(2) algebra and satisfy the commutation relations

\[
[K_0, K_\pm] = \pm K_\pm, \quad [K_- , K_+] = -2K_0. \quad (B1)
\]

We will note here in passing that the quadratic Casimir operator, i.e., the operator commuting with all SU(2) generators \(K_\pm \) and \(K_0 \), is of the form

\[
C_2 = K_0^2 + \frac{1}{2} (K_- K_+ + K_+ K_-) = \hat{N} (\hat{N} + 1),
\]

where, in our case, \(\hat{N} = \frac{1}{2} (\hat{N}_1 + \hat{N}_2) = \frac{1}{2} (A_1^† A_1 + A_2^† A_2) \). We notice that all states generated by transformation (A2) belong to the same representation of the SU(2) group and are characterized by the same Bargmann index \(N = (n_1 + n_2)/2 \). Here \(n_1 \) and \(n_2 \) are the Landau level numbers. The Casimir operator \(C_2 \) for the SU(2) group is the analog of the total angular momentum operator \(J^2 \) so that \(N \) is the analog of the total angular momentum \(J \).

Notice now that the unitary transformation operator \(U = \exp \left[\Phi (K_+ - K_-) \right] \), Eq. (17), involves two generators of the SU(2) group in the exponent. Although various useful representations for such operators can be found in the literature, we will present here a derivation of the form (A1) directly suitable for our purposes. In order to disentangle the operators, we will closely follow the method of Ref. [20]. Let us first present \(U \) in the form

\[
U = \exp (\alpha K_-) \exp (\beta K_0) \exp (\gamma K_+) \quad (B2)
\]

where \(\alpha, \beta, \) and \(\gamma \) are unknown functions of \(\Phi \). Let us establish the differential equations that these functions obey. To this end we differentiate Eq. (B2) with respect to \(\Phi \) and then multiply both parts from right by \(\exp (-\gamma K_+) \), \(\exp (-\beta K_0) \), and \(\exp (-\alpha K_-) \) in the indicated order. This gives

\[
K_+ - K_- = \alpha' K_- + \beta' e^{\alpha K_-} K_0 e^{-\alpha K_-} + \gamma' e^{\alpha K_-} e^{\beta K_0} K_0 e^{-\beta K_0} e^{-\alpha K_-}, \quad (B3)
\]

where \(\alpha', \beta', \) and \(\gamma' \) are the derivatives with respect to \(\Phi \). We identify in Eq. (B3) the similarity transformations of the SU(2) group. These can be found by differentiating with respect to the transformation parameter. We have

\[
\begin{align*}
G(\alpha) & \equiv e^{\alpha K_-} K_0 e^{-\alpha K_-}, \\
\frac{dG}{d\alpha} & = e^{\alpha K_-} [K_- , K_0] e^{-\alpha K_-} = K_- , \\
G(0) & = K_0 , \\
G(\alpha) & = \alpha K_- + K_0. \quad (B5)
\end{align*}
\]

Analogously,

\[
\begin{align*}
F(\beta) & \equiv e^{\beta K_0} K_+ e^{-\beta K_0}, \\
\frac{dF}{d\beta} & = e^{\beta K_0} [K_0 , K_+] e^{-\beta K_0} = F , \\
F(0) & = K_+, \\
F(\beta) & = e^{\beta K_+}. \quad (B7)
\end{align*}
\]

Finally,

\[
\begin{align*}
J(\alpha) & \equiv e^{\alpha K_-} K_+ e^{-\alpha K_-}, \\
\frac{dJ}{d\alpha} & = -2 e^{\alpha K_-} K_0 e^{-\alpha K_-}, \quad \frac{d^2J}{d\alpha^2} = -2 K_- , \\
J(0) & = K_+, \\
J(\alpha) & = -\alpha^2 K_- - 2 \alpha K_0 + K_+. \quad (B9)
\end{align*}
\]

We can now identify the linearly independent terms in Eq. (B5) and establish a system of coupled differential equations

\[
\begin{align*}
\gamma' e^\beta & = 1, \\
\alpha' + \beta' \alpha - \alpha^2 & = -1, \\
\beta' - 2\alpha & = 0.
\end{align*}
\]

Solutions satisfying the initial conditions \(\alpha(0) = \beta(0) = \gamma(0) = 0 \) are given by \(\alpha = -\gamma = \tan \Phi \) and \(\beta = 2 \ln(|\cos \Phi|) \). This gives

\[
\exp [\Phi (K_+ - K_-)] = \exp (-\tan \Phi K_-) \times \\
\times \exp (2 \ln(|\cos \Phi|) K_0) \exp (\tan \Phi K_+) , \quad (B10)
\]

and Eq. (A1) follows.

APPENDIX C: MATRIX ELEMENTS IN HIGHER LANDAU LEVELS: INITIAL BASIS

We present here a derivation of the interaction matrix elements in arbitrary LLs based on the untransformed representation [49]. This is similar to our treatment in Sec. IV B above. Using transformation [45] to express \(A^\dagger (r_1) \) and \(A^\dagger (r_2) \) in terms of \(A^\dagger (R_1) \) and \(A^\dagger (R_2) \) and applying the binomial expansion, we obtain the ket states as
\[|n_1, n_2, m_2\rangle = \sum_{k_1=0}^{n_1} \sum_{k_2=0}^{n_2} G_{n_1n_2}(k_1, k_2) |k_1 + k_2, n_1 + n_2 - k_1 - k_2, m_2\rangle, \]
\[G_{n_1n_2}(k_1, k_2) = (-1)^{n_1-k_1} u^{n_2-k_2+k_1} v^{n_1-k_1+k_2} \binom{k_1}{n_1} \binom{k_2}{n_2} \left[\frac{(k_1 + k_2)! (n_1 + n_2 - k_1 - k_2)!}{n_1! n_2!} \right]^{1/2}. \]

Using the fact that \(V_{\text{int}} = V(R_2/u\tau) \) does not depend on \(R_1 \), we obtain
\[\langle n'_1, n'_2, m'_2 | V_{\text{int}} | n_1, n_2, m_2\rangle = \delta_{n_1+n_2-m_2, n'_1+n'_2-m'_2} \times \]
\[\times \sum_{k'_1=0}^{n'_1} \sum_{k'_2=0}^{n'_2} \sum_{n_1=0}^{n_1} \sum_{k_2=0}^{n_2} \delta_{k_1+k_2, k'_1+k'_2} G_{n'_1n'_2}(k'_1, k'_2) G_{n_1n_2}(k_1, k_2) V_{n'_1+n'_2-k_1-k_2 m'}. \]

Here, as well as above in Appendix A, \(V_{n' m'} = \delta_{n+m, n'+m'} F_{n' m'} \) is the single-particle matrix element defined, e.g., in Eqs. (43) and (44) of Ref. [17]. Two different expressions (A3) and (C2) for the same matrix elements are connected with two different representations of the \(SU(2) \) group. Their equivalence at low finite orders can be checked directly, term by term, and, generally, by the methods indicated in Ref. [22]. The form (C2) appears to be more suitable for numerical calculations.

* Electronic address: adzyubenko@sub.edu on leave from General Physics Institute, RAS, Moscow 117942, Russia.

1. H. Ruder, G. Wunner, H. Herold, and F. Geyer, *Atoms in Strong Magnetic Fields* (Springer-Verlag, Berlin, 1994).

2. J. E. Avron, I. W. Herbst, and B. Simon, Ann. Phys. (N.Y.) 114, 431 (1978).

3. B. R. Johnson, J. O. Hirschfelder, and K. H. Yang, Rev. Mod. Phys. 55, 109 (1983).

4. *The Quantum Hall Effect*, Eds. S. M. Girvin and R. E. Prange (Springer-Verlag, New York, 1990).

5. *Perspectives in Quantum Hall Effects*, Eds. S. Das Sarma and A. Pinczuk (Wiley, New York, 1997).

6. R. B. Laughlin, Phys. Rev. B 27, 3383 (1983).

7. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

8. F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

9. F. D. M. Haldane, in Ref. [4].

10. V. I. Yudson, Phys. Rev. Lett. 77, 1564 (1996).

11. C. Töke, M. R. Peterson, G. Sang Jeon, and J. K. Jain, Phys. Rev. B 72, 125315 (2005).

12. S. H. Simon, E. H. Rezayi, and N. R. Cooper Phys. Rev. B 75, 075318 (2007).

13. E. I. Rashba and M. E. Portnoi, Phys. Rev. Lett. 70, 3315 (1993).

14. D. G. W. Parfitt and M. E. Portnoi, Phys. Rev. B 68, 035306 (2003).

15. A. Wójcich, A. Gladysiewicz, and J. J. Quinn, Phys. Rev. B 73, 235338 (2006).

16. K. Asano and T. Ando, Phys. Rev. B 58, 1485 (1998).

17. A. B. Dzyubenko, Phys. Rev. B 65, 035318 (2001).

18. For positive charges \(q_1 > 0 \) and \(q_2 > 0 \), the eigenergies are the same as given in the present paper, while the wavefunctions can be obtained by complex conjugation.

19. These operators will be considered to be linear functions of spatial coordinates and derivatives.

20. J. Zak, Phys. Rev. 134, A1602 (1964).

21. A. Perelomov, *Generalized Coherent States and Their Applications* (Springer-Verlag, Berlin, 1986).

22. R. Gilmore, *Lie Groups, Lie Algebras and Some of Their Applications* (Dover, New York, 2005), Ch. 5, Sec. III.

23. W. Kohn, Phys. Rev. 123, 1242 (1961).

24. A. B. Dzyubenko, Int. J. Mod. Phys. B 21, 1476 (2007).

25. A. B. Dzyubenko, to be published.

26. D. A. Kirzhnits, *Field Theoretical Methods in Many-Body Systems* (Pergamon Press, Oxford, 1967).