ABSTRACT
A 2018 update of the most accurate calculated and experimental static dipole polarizabilities of the neutral atoms in the Periodic Table from nuclear charge \(Z = 1 \) to 120 is given. Periodic trends are analyzed and discussed.

1. Introduction

The electric dipole polarizability of an atom or molecule describes the linear response of an electronic charge distribution with respect to an externally applied electric field \([1,2]\). Atomic and molecular polarizabilities are important ingredients in many applications ranging from optical phenomena (e.g. dielectric constants, refractive indexes) to blackbody radiation shifts, atoms in optical lattices, quantum information, interatomic interactions, polarizable force-field calculations, and atomic scattering to name but a few \([2,3]\). The knowledge of accurate dipole polarizability values is therefore of utmost importance to atomic and molecular physics \([4]\). However, despite its relevance in many fields, accurate values for atomic dipole polarizabilities are not so readily available for most elements in the periodic table, especially for open-shell systems \([5]\).

In a static homogeneous electric field, the (real and symmetric) dipole polarizability tensor of the ground electronic state is described by the quadratic Stark effect \([6]\) (in atomic units)

\[
\alpha_{\alpha\beta} = - \frac{\partial^2 E}{\partial F_\alpha \partial F_\beta} \bigg|_{F=0} = -\text{Re} \langle \langle r_\alpha; r_\beta \rangle \rangle_{\omega=0}
\]

\[
= 2 \sum_n \frac{(0 | r_\alpha | n) \langle n | r_\beta | 0 \rangle}{E_n - E_0}
\]

(1)

Where, in the perturbation expression for a multi-electron system, \(r_\alpha \) for the corresponding \(N \)-electron system is defined as \(r_\alpha = \sum_i r_{\alpha,i} \), and \(n \) runs over all
electronic states (including in principle the continuum). As the quadratic Stark shift is always negative for the ground state, the dipole polarizability is always positive and non-zero. Similar expressions to (1) are obtained for the dynamic polarizability in an oscillating field of frequency ω, important in many applications such as laser physics and materials science [5].

For a closed-shell atom, the polarizability for the ground state becomes scalar ($\text{tr}(\alpha)/3$). However, in the most general open-shell case one needs to consider the correct Stark splitting of a specific electronic state into different $|M_L|$ components (within the LS coupling scheme), or in the case of strong spin-orbit coupling into different $|M_J|$ components (within the jj coupling scheme). It is clear that obtaining accurate polarizabilities for individual Stark-split states in open-shell atoms (or molecules) is very challenging for both experiment and theory [7]. For open-shell cases, it is often convenient to transform to a spherical basis and express the static polarizability in terms of a scalar and tensor component (field applied in z-direction without loss of generality), i.e. in LS or jj coupling one obtains ($L > 0, J > \frac{1}{2}$)

$$\alpha_L^{(LS)}(M_L) = \bar{\alpha}^{(LS)} + \alpha_d^{(LS)} \frac{3M_L^2 - L(L + 1)}{L(2L - 1)}$$

$$\alpha_J^{(jj)}(M_J) = \bar{\alpha}^{(jj)} + \alpha_d^{(jj)} \frac{3M_J^2 - J(J + 1)}{J(2J - 1)}$$

(2)

Here $\bar{\alpha}$ is the scalar (or average) polarizability and α_d is the spherical anisotropy component (tensor component). For very weak electric fields one has to consider the hyperfine splitting as well.

In the intermediate coupling regime or with several states becoming close in energy, as for open-shell lanthanide and actinide atoms, the states become multi-reference in nature and these formulae are only approximate (they only contain two independent parameters), that is each Stark-split state has to be considered separately. It becomes now clear that for many open-shell atoms the scalar polarizability and its anisotropy component are in general not strictly defined, and the values quoted depend on the underlying approximation used and electronic states considered. In other words, there is no unique definition for the scalar polarizability which we list in this paper (except for those states where the two components $\bar{\alpha}$ and α_d are sufficient). For more details see Bonin and Kresin [2].

The determination of accurate atomic polarizabilities requires a high-level electron correlation treatment within a relativistic framework, especially for the heavier elements. The gold standard in quantum chemistry is coupled cluster theory with single and double substitutions including perturbative triples, CCSD(T) [8], starting from a scalar relativistic framework (e.g. Douglas-Kroll Hamiltonian (DK) [9,10]) or within a Dirac-Coulomb (DC) formalism including Breit interactions [11]. However, for open-shell systems coupled-cluster theory is not yet so well developed at the fully relativistic level [12], and one relies on multi-reference configuration interaction (MRCI) [13] or many-body perturbation theory such as in complete active space methods like CASPT2 [14] including spin–orbit coupling and scalar relativistic effects [15]. Deviations from the exact value come from basis set incompleteness, restriction in the active orbital space chosen in the electron correlation treatment, neglect of higher-order excitations in the CI or CC treatment, incomplete treatment of Breit interactions, and the neglect of quantum electrodynamic effects, the latter being particularly important for heavy s-shell elements. For s-shell elements where the core is well separated from the valence space, one can use perturbation theory (sum-over states as shown in eq. (1) (with available experimental data as additional input)) [5]. Different density functionals widely used by the chemistry and physics community can lead to rather large errors in dipole polarizabilities due to the incorrect long-range and self-interaction description or the model applied [16]. In such a case it is often not easy to estimate the error in published polarizability values and to make safe recommendations.

Over the past 50 years there have been a number of reviews and tabulations of atomic static dipole polarizabilities [17–19], the most widely used one is that by Miller and Bederson [20,21]. Here we update the list of available theoretical and experimental static polarizabilities of the neutral elements up to nuclear charge 120, and try to estimate the error in the polarizability value we recommend, and briefly discuss periodic trends.

2. Experimental and calculated scalar static polarizabilities

Table 1 lists experimental and calculated static dipole polarizabilities for all neutral atoms with nuclear charge $Z = 1–120$, except for livermorium where we could not find a reliable value. Not all published dipole polarizabilities are listed, only the most accurate ones we could find (e.g. experimental or theoretical from relativistic configuration interaction or coupled cluster theory). Note that there is some confusion about the experimental data listed in the CRC Handbook of Chemistry and Physics taken from Miller and Bederson [57]. Some of the data are not experimental values as indicated, but from LDA calculations of Doolen, which are listed here as well.
Table 1. Static scalar dipole polarizabilities (in atomic units) for neutral atoms.

Z	Atom	Refs.	State	α₀	Comments
1	H	[22]	²S	4.5	NR, exact
		[22,23]			R, Dirac, variational, Slater basis/B-splines (more digits are given in ref [23])
		[24]	²S₁/₂	4.4997514958	R, Dirac, Lagrange mesh method (more digits are given in this paper)
		[23]	²S₁/₂	4.507107623	R, Dirac (as above), but with finite mass correction added for the ¹H isotope
				4.50711 ± 0.00003	recommended
2	He	[25]	¹S₀	1.383191	R, Dirac, Breit-Pauli, QED, mass pol., correlated basis (⁴He)
		[26]	¹S₀	1.38376079 ± 0.0000023	R, Dirac, Breit-Pauli, QED, mass pol., exponentially correlated Slater functions (⁴He)
		[27]	¹S₀	1.3837295330 ± 0.0000000001	R, Dirac, Breit, QED, recoil, . . . (⁴He)
		[28,29]		1.383746 ± 0.000007	exp.
		[30]	¹S₀	1.383759 ± 0.000013	exp.
				1.38375 ± 0.00002	recommended
3	Li	[31,32]	²S	164.05	NR, exponentially correlated Gaussians [33] + R/DK
		[34]	²S₁/₂	164.084	R, Dirac, MBPT, Breit, QED, recoil (³Li)
		[35]	²S₁/₂	164.1125 ± 0.0005	Hylleraas basis, R(MV + Darwin + Breit), QED, recoil (³Li)
		[36]	²S₁/₂	164.21	Frozen core Hamiltonian, semi-empirical polarisation potential
		[37]	²S₁/₂	164.0 ± 3.4	exp.
		[38]	²S₁/₂	164.2 ± 1.1	exp.
				164.1125 ± 0.0005	recommended
4	Be	[31]	¹S	37.755	NR, exponentially correlated Gaussians [33]
		[39]	¹S₀	37.80 ± 0.47	R, Dirac, coupled cluster
		[40]	¹S₀	37.76 ± 0.22	R, Dirac, CI + MBPT + experimental data
		[31,41]	¹S₀	37.739 ± 0.030	R correction of –0.016 applied to value from ref [31]
		[42]	¹S₀	37.86 ± 0.17	R, Dirac, MBPT, CCSD
		[43]	¹S₀	37.73 ± 0.05	CCSDT(T)
		[44]	¹S₀	37.807	CI, expanded London formula
		[45]	¹S₀	37.69	Combination of ab initio and semi-empirical methods
		[46]	¹S₀	37.29	All-electron SCF plus valence CI
		[47]	¹S₀	37.9	Model potential
				37.74 ± 0.03	recommended
5	B	[48]	²P	20.47	NR, PNO-CEPA, Mᵢ res.
		[49]	²P	20.43 ± 0.11	NR, CCSD(T), Mᵢ res.
		[50]	²P	20.59	R, SF, MRCI, Mᵢ res.
		[50]	²P₁/₂³P₁/₂	20.53/20.54	R, Dirac, MRCI, Mᵢ res.
				20.5 ± 0.1	recommended
6	C	[51]	³P	11.39	NR, CASPT2, Mᵢ res.
		[49]	³P	11.67 ± 0.07	NR, CCSD(T), Mᵢ res.
		[52]	³P₀	11.26 ± 0.20	R, Dirac = Gaunt, CCSD(T)
				11.3 ± 0.2	recommended
7	N	[48]	⁴S	7.43	NR, PNO-CEPA
		[53]	⁴S	7.41	R, DK, CASPT2
		[49]	⁴S	7.26 ± 0.05	NR, CCSD(T)
		[57,58]	⁴S₁/₂	7.6 ± 0.4	exp.
		[55,56]	⁴S₁/₂	7.28	exp.
				7.4 ± 0.2	recommended
8	O	[48,57]	³P	5.41 ± 0.11	NR, PNO-CEPA, Mᵢ res.
		[51]	³P	5.4	NR, CASPT2, Mᵢ res.
		[41,49]	³P	5.24 ± 0.04	NR, CCSD(T), Mᵢ res.
		[54]	³P₂	5.2 ± 0.4	exp.
				5.3 ± 0.2	recommended
9	F	[48]	²P	3.76	NR, PNO-CEPA, Mᵢ res.
		[58]	²P	3.76 ± 0.06	NR, CASPT2, Mᵢ res.
		[49]	²P	3.70 ± 0.03	NR, CCSD(T), Mᵢ res.
				3.74 ± 0.08	recommended
10	Ne	[59]	¹S	2.68	NR, CCSD(T)
		[60]	¹S	2.665	R, CC3
		[60–62]	¹S	2.666	R, CC3 + FC₁ + DK3 correction
		[63,64]	¹S₀	2.677 ± 0.070	R, Dirac-Coulomb, non-linear PRCC
		[65]	¹S₀	2.6603 ± 0.000001	CCSD(T), ECP
		[41]	¹S₀	2.661 ± 0.005	R, CCSD(T)
		[66]	¹S₀	2.663	exp.
		[67]	¹S₀	2.6669 ± 0.0008	exp.
		[68]	¹S₀	2.66110 ± 0.00003	exp.
				2.66110 ± 0.00003	recommended

(continued)
Table 1. Continued.

Z	Atom	Refs.	State	α_0	Comments
11	Na		$^2S_{1/2}$	162.6 ± 0.3	R, SD all orders + exp. data
		[69]			
		[41,70]	$^2S_{1/2}$	162.88 ± 0.60	R, CCSD(T)
		[71]	$^2S_{1/2}$	162.7 ± 0.5	exp.
		[72]	$^2S_{1/2}$	162.7 ± 0.1/± 1.2	exp. (values in parentheses correspond to statistical and systematic uncertainties resp.)
		[73]	$^2S_{1/2}$	161 ± 7.5	exp.
11				**162.7 ± 0.5**	recommended
12	Mg	[74]	5S	71.7	NR, MBPT4
		[75]	5S	71.8	NR, MBPT4
		[76]	5S	70.90	R, DK, CASPT2
		[39]	5P_0	73.4 ± 2.3	R, Dirac, coupled cluster
		[40,77]	5P_0	70.89	R, Dirac, CI + MBPT + experimental data
		[78]	5P_0	70.76	R, Dirac + Breit, perturbed relativistic coupled-cluster theory (PRCC)
		[41]	5P_0	71.22 ± 0.36	R, DK, CCSD(T)
		[40]	5P_0	71.33	R, Dirac, CI + MBPT
		[40]	5P_0	71.3 ± 0.7	R, Dirac, CI + MBPT, recommended
		[47]	5P_0	72.0	Model potential
		[45]	5P_0	71.35	Combination of ab initio and semi-empirical methods
		[79]	5S	71.32	NR, PNO-CEPA
		[80]	5S	70.5	NR, CI + pseudo-potential
		[42]	5P_0	72.54 ± 0.50	R, Dirac, MBPT, CCSD
		[81]	5P_0	71.4	CI, oscillator strength correction
		[69]	5P_0	74.9 ± 2.7	Hybrid-RCI + MBPT sum rule
		[73]	5P_0	59 ± 16	exp.
		[82]	5P_0	77.6 ± 7.8	exp.
		[83,84]	5P_0	75.0 ± 3.5	exp.
		[85]	5P_0	71.5 ± 3.5	exp.
13	Al	[79]	2P	56.27	NR, PNO-CEPA
		[83]	2P	62.0	NR, numerical MCSCF, M_i res.
		[86]	2P	57.74	NR, CCSD(T), M_i res.
		[50]	2P	55.5	R, SF, MRCl, M_i res.
		[50]	$^2P_{1/2}^2P_{1/2}$	55.4/55.9	R, Dirac, MRCl, M_i res.
		[41]	2P	57.79 ± 0.30	R, DK, CCSD(T)
		[87]	2P	59.4	NR, MRCl
		[88]	2P	61	SIC-DFT
		[89]	$^2P_{1/2}^2P_{1/2}$	57.8 ± 1.0/58.0 ± 1.0	Si-SOCl, M_i res.
		[90]	2P	58.0 ± 0.4	CCSD(T)
		[91,92]	2P	46 ± 2	exp. (see also ref [73])
		[82,93]	2P	55.3 ± 5.5	exp.
14	Si	[79]	3P	36.32	NR, PNO-CEPA
		[51]	3P	36.54	NR, CASPT2, M_i res.
		[94]	3P	37.4	NR, CCSD(T), M_i res.
		[86]	3P	37.17 ± 0.21	NR, CCSD(T), M_i res.
		[52]	3P_0	37.31 ± 0.70	R, Dirac + Gaunt, CCSD(T)
		[88]	3P	38.9	SIC-DFT
		[87]	3P	36.95	NR, MRCl
15	P	[79]	4S	24.7 ± 0.5	NR, PNO-CEPA
		[51]	4S	24.6 ± 0.2	NR, CASPT2
		[53]	4S	24.9	R, DK, CASPT2
		[86]	4S	24.93 ± 0.15	NR, CCSD(T)
		[88]	4S	26.11	SIC-DFT
		[56]	4S	25.06	R, DK, CASPT2
16	S	[79]	3P	19.60	NR, PNO-CEPA
		[51]	3P	19.6	NR, CASPT2, M_i res.
		[58]	3P	19.6	NR, CASPT2, M_i res.
		[88]	3P	19.72	SIC-DFT
		[86]	3P	19.37 ± 0.12	NR, CCSD(T), M_i res.
17	Cl	[79]	2P	14.71	NR, PNO-CEPA
		[51]	2P	14.6	NR, CASPT2, M_i res.
		[58]	2P	14.73	NR, CASPT2, M_i res.
		[88]	2P	14.7	SIC-DFT
		[86]	2P	14.57 ± 0.10	NR, CCSD(T), M_i res.
				14.6 ± 0.1	recommended

(continued)
Table 1. Continued.

Z	Atom	Refs.	State	α_d	Comments	
18	Ar	[79]	^{1}S	11.10	NR, PNO-CEPA	
		[65]	^{1}S	11.08401 ± 0.00004	NR, CCSD(T)	
		[53]	^{1}S	11.1	R, DK, CASPT2	
		[62,65]	^{1}S	11.10 ± 0.004	R, CCSD(T) + DK3 correction	
		[42]	^{1}S	11.085 ± 0.060	R, CCSD(T)	
		[66]	$^{1}S_0$	11.080	exp.	
		[95,96]	$^{1}S_0$	11.070 ± 0.007	exp.	
		[64]	$^{1}S_0$	11.081 ± 0.005	exp.	
		[28]	$^{1}S_0$	11.083 ± 0.002	exp.	
		[97]	$^{1}S_0$	11.091	exp.	
		[41]	$^{1}S_0$	11.078 ± 0.010	exp.	
				11.083 ± 0.007	recommended	
19	K	[69]	$^{2}S_{1/2}$	289.1	R-LCCSD	
		[98]	^{2}S	281.1 ± 1.5	R, DK, CCSD(T), AE	
		[99]	$^{2}S_{1/2}$	290.2	Combination of theoretical and experimental data	
		[69]	$^{2}S_{1/2}$	290.2 ± 0.8	R, SD all orders + exp. data for electronic transitions	
		[45]	$^{2}S_{1/2}$	290.0	Combination of ab initio and semi-empirical methods	
		[100]	$^{2}S_{1/2}$	290.05	Oscillator-strength sum rule	
		[37]	$^{2}S_{1/2}$	292.9 ± 6.1	exp.	
		[72]	$^{2}S_{1/2}$	290.6 ± 1.4	exp. (for hyperfine effects see ref [100])	
		[101,102]	$^{2}S_{1/2}$	289.7 ± 0.3	exp.	
				289.7 ± 0.3	recommended	
20	Ca	[103]	$^{1}S_0$	160	R, CI, MBPT	
		[104]	^{1}S	152.0	R, MVD, CCSD + T	
		[76]	^{1}S	163	R, DK, CASPT2	
		[105]	$^{1}S_0$	158.0	R, DK + SO, CCSD(T)	
		[39]	$^{1}S_0$	154.58	R, Dirac, coupled cluster	
		[40,77]	$^{1}S_0$	155.9	R, Dirac, CI + MBPT + experimental data	
		[78]	$^{1}S_0$	160.77	R, Dirac + Breit, perturbed relativistic coupled-cluster theory (PRCC)	
		[42]	$^{1}S_0$	157.03 ± 0.80	R, Dirac, MBPT, CCSD	
		[40]	$^{1}S_0$	157.1 ± 1.3	Hybrid-RCI + MBPT sum rule	
		[40]	$^{1}S_0$	159.0	R, Dirac, CI + MBPT	
		[45]	^{1}S	159.4	Combination of ab initio and semi-empirical methods	
		[74]	^{1}S	157	NR, MBPT4	
		[99]	$^{1}S_0$	157.1	Combination of theoretical and experimental data	
		[80]	$^{1}S_0$	153.7	NR, CI + pseudo-potential	
		[41]	$^{1}S_0$	157.9 ± 0.8	R, DK, CCSD(T)	
		[81]	^{1}S	158.6	CI, oscillator strength correction	
		[57,106]	$^{1}S_0$	169 ± 17	exp.	
				160.8 ± 4.0	recommended	
21	Sc	[57,107]	$^{2}D_{1/2},^{2}D_{3/2}$	120 ± 30	R, Dirac, LDA	
		[108,109]	$^{2}D_{3/2}$	107.1	R, small CI, VPA	
		[110]	$^{2}D_{5/2}$	142 ± 21	R, small CI, VPA	
		[111]	$^{2}D_{3/2}$	115.46	DFT	
		[112]	$^{2}D_{1/2},^{2}D_{3/2}$	121 ± 12	R, DK, MRCl	
		[113]	$^{2}D_{9/2}$	105.88	TD-DFT	
		[114]	$^{2}D_{5/2}$	114.00	Interacting-induced-dipoles polarisation model	
		[115]	$^{2}D_{3/2}$	123	TD-DFT (LEXX)	
		[88,116]	$^{2}D_{1/2},^{2}D_{3/2}$	106.0	TD-DFT (RXH)	
		[116]	$^{2}D_{5/2}$	134.6	TD-DFT (PGG)	
		[73]	$^{2}D_{1/2},^{2}D_{3/2}$	97.2 ± 9.5	exp.	
				97 ± 10	recommended	
22	Ti	[57,107]	$^{3}F_{2},^{3}d_{2}$	99 ± 25	R, Dirac, LDA	
		[108]	$^{3}F_{2},^{3}d_{2}$	91.8	NR, small CI, VPA	
		[110]	$^{3}F_{2},^{3}d_{2}$	114 ± 17	NR, MCPF	
		[112]	$^{3}F_{2},^{3}d_{2}$	102 ± 10	R, DK, MRCI	
		[113]	$^{3}F_{2},^{3}d_{2}$	94.69	TD-DFT	
		[108]	$^{3}F_{2},^{3}d_{2}$	91.4	NR, small CI, VPA	
		[88]	$^{3}F_{2},^{3}d_{2}$	85.7	SIC-DFT	
		[73]	$^{3}F_{2},^{3}d_{2}$	63.4 ± 3.4	exp.	
				100 ± 10	recommended	
23	V	[57,107]	$^{4}F_{3/2},^{4}F_{3/2}$	84 ± 21	R, Dirac, LDA	
		[108]	$^{4}F_{3/2},^{4}F_{3/2}$	80.6	NR, small CI, VPA	
		[110]	$^{4}F_{3/2},^{4}F_{3/2}$	97 ± 15	NR, MCPF	
		[112]	$^{4}F_{3/2},^{4}F_{3/2}$	87.3 ± 8.7	R, DK, MRCI	
		[88]	$^{4}F_{3/2},^{4}F_{3/2}$	72.8	SIC-DFT	
		[73]	$^{4}F_{3/2},^{4}F_{3/2}$	68.2 ± 5.4	exp.	
				87 ± 10	recommended	
Z	Atom	Refs.	State	\(\alpha_D \)	Comments	
---	---	---	---	---	---	
24	Cr	[57,107] [110] [117] [56] [88] [73]	\(^7S_{1/2}, 3d^6 \)	78 ± 20	R, Dirac, LDA	
			\(^7S, 3d^6 \)	95 ± 15	NR, MCPF	
			\(^7S_{1/2}, 3d^6 \)	78.4 ± 7.8	DK, CASPT2	
			\(^7S_{1/2}, 3d^6 \)	83.2	R, CCSD(T)	
			\(^7S, 3d^6 \)	60.7	SIC-DFT	
			\(^7S_{1/2}, 3d^6 \)	60 ± 24	exp.	
			\(^7S_{1/2}, 3d^6 \)	68 ± 9	recommended	
25	Mn	[57,107]	\(^6S_{1/2}, 3d^5 \)	63 ± 16	R, Dirac, LDA	
		[108]	\(^6S_{3/2}, 3d^5 \)	65.4	NR, small CI, VPA	
		[88]	\(^6S_{3/2}, 3d^5 \)	56.8	SIC-DFT	
		[110]	\(^6S_{3/2}, 3d^5 \)	76 ± 11	NR, MCPF	
		[117]	\(^6S_{1/2}, 3d^5 \)	66.8 ± 6.7	DK, CASPT2	
		[56]	\(^6S_{1/2}, 3d^5 \)	68.5	R, CCSD(T)	
26	Fe	[57,107]	\(^5D_{3/2}, 3d^6 \)	57 ± 14	R, Dirac, LDA	
		[88]	\(^5D_{5/2}, 3d^6 \)	54.4	SIC-DFT	
		[108]	\(^5D_{3/2}, 3d^6 \)	58.4	NR, small CI, VPA	
		[110]	\(^5D_{3/2}, 3d^6 \)	63.93	NR, MCPF	
		[118]	\(^5D_{3/2}, 3d^6 \)	62.65	NR, GGA(PW86)	
27	Co	[57,107]	\(^4F_{7/2}, 3d^7 \)	51 ± 13	R, Dirac, LDA	
		[108]	\(^4F_{5/2}, 3d^7 \)	52.3	NR, small CI, VPA	
		[88]	\(^4F_{5/2}, 3d^7 \)	57.71	NR, MCPF	
		[110]	\(^4F_{5/2}, 3d^7 \)	48.9	SIC-DFT	
28	Ni	[57,107]	\(^3F_{3/2}, 3d^6 \)	46 ± 11	R, Dirac, LDA	
		[108]	\(^3F_{3/2}, 3d^6 \)	48.3	NR, small CI, VPA	
		[110]	\(^3F_{3/2}, 3d^6 \)	51.10	NR, MCPF	
		[112]	\(^3F_{3/2}, 3d^6 \)	47.4 ± 4.7	R, DK, MRCI	
		[88]	\(^3F_{3/2}, 3d^6 \)	44.5	SIC-DFT	
29	Cu	[57,107]	\(^2S_{1/2}, 3d^{10} \)	41 ± 10	R, Dirac, LDA	
		[110]	\(^2S_{3/2}, 3d^{10} \)	53.44	NR, MCPF	
		[119]	\(^2S_{1/2}, 3d^{10} \)	45.0	R, PP, QCSD(T)	
		[41,120]	\(^2S_{1/2}, 3d^{10} \)	46.50 ± 0.35	R, DK, CCSD(T)	
		[117]	\(^2S_{1/2}, 3d^{10} \)	40.7 ± 4.1	R, DK, CASPT2	
		[112]	\(^2S_{1/2}, 3d^{10} \)	43.7 ± 4.4	R, DK, MRCI	
		[121]	\(^2S_{1/2}, 3d^{10} \)	51.8	semi-empirical	
		[122]	\(^2S_{1/2}, 3d^{10} \)	46.98	R, DK, CCSD(T)	
		[88]	\(^2S_{1/2}, 3d^{10} \)	39.5	SIC-DFT	
		[3,123]	\(^2S_{1/2}, 3d^{10} \)	41.65	CICP	
		[1124]	\(^2S_{1/2}, 3d^{10} \)	42.6	B3LYP/aug-cc-pVDZ	
		[82,93]	\(^2S_{1/2}, 3d^{10} \)	54.7 ± 5.5	exp.	
		[73]	\(^2S_{1/2}, 3d^{10} \)	58.7 ± 4.7	exp.	
30	Zn	[57,107]	\(^1S_{0}, 3d^{10} \)	38 ± 9	R, Dirac, LDA	
		[125]	\(^1S_{0}, 3d^{10} \)	39.2 ± 0.8	NR, CCSD(T), MP2 basis correction	
		[126]	\(^1S_{0}, 3d^{10} \)	38.01	R, PP, CCSD(T)	
		[127]	\(^1S_{0}, 3d^{10} \)	37.6	R, MVD, CCSD(T)	
		[117]	\(^1S_{0}, 3d^{10} \)	38.4	R, DK, CASPT2	
		[128]	\(^1S_{0}, 3d^{10} \)	38.666 ± 0.096	R, Dirac, CASSD	
		[41,127]	\(^1S_{0}, 3d^{10} \)	38.35 ± 0.29	R, MVD, CCSD(T)	
		[129]	\(^1S_{0}, 3d^{10} \)	38.75	R, CCSD(T)	
		[88]	\(^1S_{0}, 3d^{10} \)	37.7	SIC-DFT	
		[130]	\(^1S_{0}, 3d^{10} \)	39.12	R, MRCI, pseudo-potential	
		[129,131]	\(^1S_{0}, 3d^{10} \)	38.92	exp.	
		[125]	\(^1S_{0}, 3d^{10} \)	38.8 ± 0.8	exp.	
		\(^1S_{0}, 3d^{10} \)	\(^2S_{1/2}, 3d^{10} \)	\(^2S_{3/2}, 3d^{10} \)	38.67 ± 0.30	recommended
31	Ga	[132]	\(^2P \)	54.9 ± 1.0	R, PNO-CEPA, \(M_J \) res.	
		[50]	\(^2P \)	50.7	R, SF, MRCI, \(M_J \) res.	
		[50]	\(^2P_{1/2}/^2P_{3/2} \)	49.9/51.6	R, Dirac, MRCI, \(M_J \) res.	
		[133]	\(^2P_{1/2}/^2P_{3/2} \)	51.4/53.4	R, Dirac, FSCC, \(M_J \) res. (\(J = 3/2; M_J = 3/2; 41.9, M_J = 1/2; 65.0 \))	
		[134]	\(^2P \)	52.9 ± 0.40	R, DK, CCSD(T)	
		[89]	\(^2P_{1/2}/^2P_{3/2} \)	51.3 ± 2.0/53.0 ± 2.0	Si-SC(\(M_J \) res.	
		[73]	\(^2P_{1/2} \)	46.6 ± 4.0	exp.	
32	Ge	[132]	\(^3P \)	41.0	R, PNO-CEPA, \(M_J \) res.	
		[52]	\(^3P \)	40.16	R, DK, CCSD(T), \(M_J \) res. (\(M_J = 0: 32.83, M_J = 1: 43.83 \))	
		[52]	\(^3P_0 \)	39.43 ± 0.80	R, Dirac Gaunt, CCSD(T)	

(continued)
Table 1. Continued.

Z	Atom	Refs.	State	α_D	Comments
33	As	[132]	3P_0	40.80 ± 0.82	R, PNO-CEPA
				40 ± 1	**recommended**
34	Se	[54]	1P_2	28.9 ± 1.0	R, MVD, CASPT2, M_l res.
				28.9 ± 1.0	**recommended**
35	Br	[136]	$^3P_{1/2}$	21.9	R, DK, SO-Cl
36	Kr	[95]	1S_0	16.80 ± 0.13	R, DK3, CCSD(T)
37	Rb	[69,99]	$^3S_{1/2}$	318.6 ± 0.6	R, SD all orders + exp. data
38	Sr	[41,103]	1S_0	167.5 ± 1.3	Cl oscillator strength correction
39	Y	[57,107]	$^{2}D_{3/2}^{(2)}$	199.0 ± 2.0	R, CI, MBPT
40	Zr	[57,107]	$^{3}D_{2,3}^{(2)}$	162 ± 12	R, Dirac, LDA
41	Nb	[57,107]	$^{5}D_{1/2,3}^{(2)}$	112 ± 13	R, Dirac, LDA
42	Mo	[57,107]	$^{3}S_{2,3}^{(2)}$	98 ± 8	R, Dirac, LDA

(continued)
Z	Atom	Refs.	State	α_D	Comments
43	Tc	[57,107]	$^7S_3, 4d^0$	87.1 ± 6.1	exp.
		[145]	$^7S_3, 4d^0$	61 ± 10	exp.
		[57,107]	$^6S_{1/2, 4d^5}$	77 ± 20	R, Dirac, LDA
		[82,117]	$^6S_{5/2, 4d^5}$	80 ± 12	R, DK, CASPT2
		[115]	$^6S_{1/2, 4d^5}$	79.6	TD-DFT (LEXX)
		[56]	$^6S_{1/2, 4d^5}$	78.6	R, CCSD(T)
			$^7S_{9/2, 4d^5}$	79 ± 10	recommended
44	Ru	[57,107]	$^5F_3, 4d^7$	65 ± 16	R, Dirac, LDA
		[115]	$^5F_5, 4d^7$	72.3	TD-DFT (LEXX)
		[57,107]	$^4F_{9/2, 4d^8}$	58 ± 15	R, Dirac, LDA
		[115]	$^4F_{7/2, 4d^8}$	66.4	TD-DFT (LEXX)
		[73]	$^4F_{9/2, 4d^8}$	11 ± 22	exp. (an unusually low value was obtained)
			$^6S_{1/2, 4d^10}$	66 ± 10	recommended
46	Pd	[57,107]	$^1S_0, 4d^{10}$	32 ± 8	R, Dirac, LDA
		[146]	$^1S_0, 4d^{10}$	26.14 ± 0.10	CCSD(T) & DKH + Gaunt, CBS
		[147]	$^1S_4, 4d^{10}$	26.612	NR, ECP, CCSD(T)
		[148]	$^1S_0, 4d^{10}$	24.581	R, DK
		[41,120]	$^2S_4, 4d^{10}$	52.2	R, PP, QCSD(T)
		[117]	$^2S_4, 4d^{10}$	52.46 ± 0.52	R, DK, CCSD(T)
		[121]	$^2S_4, 4d^{10}$	36.7	R, DK, CCSD(T)
		[120]	$^2S_{1/2, 4d^{10}}$	55.2	Semi-empirical
		[149]	$^2S_{1/2, 4d^{10}}$	55.3 ± 0.5	R, DK, CCSD(T)
		[73]	$^2S_{1/2, 4d^{10}}$	46.17	CICP
		[82]	$^2S_{1/2, 4d^{10}}$	46.3 ± 0.1	1 recommended
		[51]	$^5S_2, 4d^{10}$	32.6 ± 0.2	1 recommended
		[126]	$^1S_0, 4d^{10}$	46.25	R, PP, CCSD(T)
		[127]	$^1S_0, 4d^{10}$	46.8	R, MVD, CCSD(T)
		[117]	$^1S_0, 4d^{10}$	46.9	R, DK, CASPT2
		[150]	$^1S_0, 4d^{10}$	46.02 ± 0.50	R, DHF, CCSD(T)
		[41,127]	$^1S_0, 4d^{10}$	47.55 ± 0.48	R, MVD, CCSD(T)
		[151]	$^1S_0, 4d^{10}$	44.63	R, DHF, CPM
		[128]	$^1S_0, 4d^{10}$	45.86 ± 0.15	R, DF, CCSD(T), MBPT3
		[152]	$^1S_0, 4d^{10}$	49.7 ± 1.6	exp.
		[153,154]	$^1S_0, 4d^{10}$	53 ± 1.4	exp.
		[154]	$^1S_0, 4d^{10}$	48.2 ± 1.1	exp.
		[50,133]	$^2P_{1/2}$	65.2	R, DFT
		[50]	$^2P_{1/2}$	66.7	R, SF, MRCI, M _res.
		[133]	$^2P_{1/2}^2P_{3/2}$	61.9/69.6	R, Dirac, FSCC, M _res.
		[156]	$^2P_{1/2}$	62.0 ± 1.9/69.8	R, Dirac + FSCC, M _res.
		[134]	$^2P_{1/2}$	62.4	R, Dirac + Gaunt, CCSD(T)
		[50,133]	$^2P_{1/2}$	68.67 ± 0.69	R, DK, CCSD(T)
		[89]	$^2P_{1/2}$	61.5	CCSD(T)
		[157]	$^2P_{1/2}^2P_{3/2}$	66.4 ± 5/74.4 ± 8.0	R, SI-SOCI, M _res.
		[73]	$^2P_{1/2}$	68.7 ± 8.1	exp.
		[73]	$^2P_{1/2}$	62.1 ± 6.1	exp.
50	Sn	[57,107]	3P	52 ± 13	R, Dirac, LDA
		[52]	3P	53.3 ± 5.7	R, PP, 2nd order MBPT
		[52]	3P	56.34	R, PP, CCSD(T), M _res. (M _s = 0: 54.28, M _t = ± 1: 59.36)
		[52]	3P_0	52.9 ± 2.1	R, Dirac + Gaunt, CCSD(T)
		[158]	3P_0	54.48	R, PP, DFT, BP386
		[88]	3P	57.5	SIC-DFT
		[52]	3P_0	42.4 ± 11	exp.
		[73]	3P_0	67.5 ± 8.8	exp.
51	Sb	[57,107]	4S	45 ± 11	R, Dirac, LDA
		[53]	4S	42.2 ± 1.3	R, DK, CASPT2
		[159]	4S	42.55	NR, CCSD(T)
		[56]	4S	43.03	ECP, CCSD(T)
		[88]	4S	47.07	SIC-DFT
			3P	43 ± 2	recommended

(continued)
Z	Atom	Refs.	State	α_D	Comments
52	Te	[57,107]	3^1P	37.0 ± 4	R, LDA
		[41,160]	3^1P	38.1 ± 3.8	QR, MVD-HF, GTO basis set
		[88]	3^1P	40.06	SIC-DFT
				38 ± 4	**recommended**
53	I	[136]	$2^3P_{1,2}$	35.1	R, DK, SO-Cl
		[136]	$2^3P_{3,2}$	36.6	R, DK, SO-Cl, M_J res.
		[41,136,160]	$2^3P_{3,2}$	33.0 ± 1.7	R, DK, SO-Cl
		[88]	2^1P	33.6	SIC-DFT
		[161]	$2^3P_{3,2}$	32.9 ± 1.3	exp.
		[162]	$2^3P_{3,2}$	33.4	exp.
				32.9 ± 1.3	**recommended**
54	Xe	[62]	1^1S	27.06 ± 0.27	R, DK3, CCSD(T)
		[163]	1^5S_0	27.36	R, SOPP, CCSD(T) + MP2 basis set correction
		[139]	1^5S	27.16	DOSD (constrained dipole oscillator strength distribution)
		[53]	1^5S	26.7	R, DK, CASPT2
		[137]	1^5S_0	25.297	R, Dirac, CCSD(T)
		[164]	1^5S_0	27.42	R, DK3, CCSD(T)
		[138]	1^5S_0	26.7	R, PolPot
		[140]	1^5S_0	26.432	R, DK3, CCSD
		[65]	1^5S_0	27.2937 ± 0.0003	CCSD(T), ECP
		[165]	1^1S_0	28.4 ± 0.5	R, CCSD(T)
		[166]	1^1S_0	27.508	R, CCSD(T)
		[67]	1^1S_0	27.078 ± 0.050	exp.
		[97]	1^1S_0	27.342	exp.
		[66]	1^1S_0	27.292	exp.
				27.32 ± 0.20	**recommended**
55	Cs	[69]	$2^3S_{1/2}$	399.9 ± 1.9	R, Dirac, SD, all orders + exp. data
		[98]	2^1S	396.0 ± 5.9	R, DK, CCSD(T), AE
		[167]	$2^3S_{1/2}$	399.0	R, Dirac, CCSD(T)
		[168]	$2^3S_{1/2}$	399.5 ± 0.8	R, Dirac, RCC-SD
		[99]	$2^3S_{1/2}$	399.8	Combination of theoretical and experimental data
		[169]	$2^3S_{1/2}$	398.2 ± 0.9	R, Dirac, SDpT
		[170]	$2^3S_{1/2}$	398.4 ± 0.7	R, DF, RPA, SD-all order
		[69]	$2^3S_{1/2}$	401.5	R, SD all orders + exp. data for electronic transitions
		[171]	$2^3S_{1/2}$	401.0 ± 0.6	exp.
		[101,102]	$2^3S_{1/2}$	400.8 ± 0.4	exp.
				400.9 ± 0.7	**recommended**
56	Ba	[40,103]	1^1S	262.2	R, CI, MBPT
		[41,105]	1^5S_0	273.5 ± 4.1	R, DK + SO, CCSD(T)
		[39]	1^5S_0	268.19	R, Dirac, coupled cluster
		[172]	1^5S_0	272.7	R, Dirac + Gaunt, CCSD(T)
		[78]	1^5S_0	274.68	R, Dirac + Breit, perturbed relativistic coupled-cluster theory (PRCC)
		[138]	1^5S_0	251	R, RPA, PolPot
		[47]	1^5S_0	261.2	Model potential
		[173]	1^5S_0	275.5 ± 5.5	R, DK, CCSD(T)
		[40,99]	1^5S_0	273.5 ± 2.0	Hybrid-RCI + MBPT sum rule, recommended
		[40]	1^5S_0	272.1	Hybrid-RCI + MBPT sum rule
		[106]	1^5S_0	268 ± 22	exp.
				272 ± 10	**recommended**
57	La	[57,107]	$2^3D_{3/2,5/2}$	210 ± 52	R, Dirac, LDA
		[174]	$2^3D_{3/2,5/2}$	213.7	R, Dirac, CI + MBPT + CP(RPA); ($\alpha_D = 218.7$ for the $5d^66s^1$ configuration)
		[144]	$2^3D_{3/2,5/2}$	201 ± 40	TD-DFT
		[82,175]	$2^3D_{5/2}$	220 ± 22	R, CASSCF, ECP
		[175]	$2^3D_{3/2,5/2}$	219.8	R, CASSCF, ECP
		[73]	$2^3D_{3/2,5/2}$	170.7 ± 8.1	exp.
				215 ± 20	**recommended**
58	Ce	[57,107]	$4^1f^65d^1$	200 ± 50	R, Dirac, LDA
		[174]	$4^1f^65d^1$	204.7	R, Dirac, CI + MBPT + CP(RPA); ($\alpha_D = 223.4$ for the $4f^2$ configuration)
		[144]	$4^1f^65d^1$	194 ± 39	TD-DFT
		[73]	$4^1f^14^1f^65d^1$	192 ± 20	exp.
				205 ± 20	**recommended**
59	Pr	[57,107]	4^1f^3	190 ± 48	R, Dirac, LDA
		[174]	4^1f^3	215.8	R, Dirac, CI + MBPT + CP(RPA); ($\alpha_D = 195.7$ for the $4f^25d^1$ configuration)
		[144]	4^1f^3	220 ± 44	TD-DFT
		[73]	$4^1f^12^1f^3,4^1f^3$	239 ± 28	exp.
				216 ± 20	**recommended**

(continued)
Z	Atom	Refs.	State	\(\alpha_0\)	Comments
60	Nd	[57,107], [174], [144]	\(4f^4\)	212 ± 53	R, Dirac, LDA \(\alpha_0 = 187.5\) for the \(4f^3 5d^1\) configuration
		[73]	\(3^1f_{3/2}, 4f^4\)	184 ± 20	exp.
				\(208 ± 20\) recommended	
61	Pm	[57,107], [174], [144]	\(4f^6\)	202.0	R, Dirac, LDA
		[144]		206 ± 41	TD-DFT
				\(200 ± 20\) recommended	
62	Sm	[57,107], [174], [144], [175], [82,175]	\(4f^6\)	197 ± 20	R, Dirac, LDA
		[73]		157 ± 16	exp.
				\(192 ± 20\) recommended	
63	Eu	[57,107], [174], [144]	\(4f^7\)	184.2	R, Dirac, LDA
		[175], [82,175]		189 ± 19	R, CASSCF, ECP
		[73]		155 ± 25	exp.
				\(184 ± 20\) recommended	
64	Gd	[57,107], [174], [144]	\(4f^{14} 5d^1\)	159 ± 40	R, Dirac, LDA
		[144]		161 ± 32	TD-DFT
		[73]		176 ± 26	exp.
				\(158 ± 20\) recommended	
65	Tb	[57,107], [174], [144]	\(4f^9\)	181 ± 36	R, Dirac, LDA
		[174]		169.5	exp.
		[73]		159 ± 11	exp.
				\(170 ± 20\) recommended	
66	Dy	[57,107], [174], [144]	\(4f^{10}\)	165 ± 41	R, Dirac, LDA
		[174]		162.7	R, Dirac, LDA
		[144]		165	exp.
		[73]		164	exp.
				\(163 ± 15\) recommended	
67	Ho	[57,107], [174], [138], [144]	\(4f^{11}\)	159 ± 40	R, Dirac, LDA
		[174]		156.3	R, RPA, PolPot
		[138]		161	exp.
		[144]		170 ± 34	TD-DFT
		[176]		160	exp.
		[73]		145 ± 12	exp.
				\(156 ± 10\) recommended	
68	Er	[57,107], [174], [144], [178]	\(4f^{12}\)	153 ± 38	R, Dirac, LDA
		[174]		150.2	R, Dirac, LDA
		[144]		154	R, RPA, PolPot
		[178]		141 ± 7	R, RPA, PolPot
		[178]		149	exp.
		[73]		155	exp.
				\(156 ± 10\) recommended	
69	Tm	[57,107], [174], [138]	\(4f^{13}\)	147 ± 37	R, Dirac, LDA
		[138]		144.3	R, RPA, PolPot
		[144]		147	exp.
		[175]		161 ± 32	TD-DFT
		[73]		152.2	R, CASSCF, ECP
				\(144 ± 15\) recommended	
70	Yb	[57,107], [39], [180]	\(5s^2 4f^{14}\)	142 ± 36	R, Dirac, LDA
		[39]		144.6 ± 5.6	R, Dirac, coupled cluster
		[180]		140.7 ± 7.0	R, Dirac + Gaunt, CCSD(T)
Table 1. Continued.

Z	Atom	Refs.	State	α_0	Comments
71	Lu	[57,107]	$^2D_{1/2,5d^{5}}$, $^2D_{3/2,5d^{5}}$	139 ± 6	recommended
72	Hf	[57,107]	$^3F_{2,5d^{2}}$, $^3F_{2,6d^{2}}$	137 ± 7	recommended
73	Ta	[57,107]	$^4F_{1/2,5d^{3}}$, $^4F_{3/2,5d^{3}}$	103 ± 6	recommended
74	W	[57,107]	$^5D_{0,5d^{4}}$, $^5D_{2,5d^{4}}$	68 ± 15	recommended
75	Re	[57,107]	$^6S_{1/2,5d^{5}}$, $^6S_{1/2,5d^{5}}$	62 ± 3	recommended
76	Os	[57,107]	$^5D_{4,5d^{6}}$	57	recommended
77	Ir	[57,107]	$^4F_{1/2,5d^{7}}$, $^4F_{1/2,5d^{7}}$	54 ± 7	recommended
78	Pt	[57,107]	$^3D_{1,5d^{6}}$, $^3D_{2,5d^{6}}$	48 ± 4	recommended
79	Au	[119,122,192]	2S, 2S	35.1	
Table 1. Continued.

Z	Atom	Refs.	State	\(\alpha_D \)	Comments
[82,93]	\(^{2}S_{1/2}, \ ^{2}S_{1/2}\)	49.1 ± 4.1	exp.		
[117]	\(^{2}S_{1/2}, \ ^{2}S_{1/2}\)	39.1 ± 9.8	exp.		
80	Hg	\(^{1}S, \ ^{1}S_{0}\)	36 ± 3	recommended	
[126]	\(^{1}S\)	34.42	R, PP, CCSD(T)		
[127]	\(^{1}S\)	31.24	R, MVD, CCSD(T)		
[121]	\(^{1}S\)	32.9	semi-empirical		
[117]	\(^{1}S\)	33.3	R, DK, CASPT2		
[195]	\(^{3}S_{0}, \ ^{3}S_{0}\)	34.15	R, Dirac, CCSD(T)		
[196]	\(^{3}S_{0}\)	34.27	R, Dirac, CCSD(T) + QED		
[138]	\(^{3}S_{0}\)	39.1	R, RPA, PolPot		
[41,197]	\(^{3}S_{0}, \ ^{3}S_{0}\)	34.73 ± 0.52	R, DK, CCSD(T)		
[198]	\(^{3}S_{0}\)	34.1	R, Dirac, CCSD(T)		
[129]	\(^{3}S_{0}\)	33.59	R, PRCC(T)		
[199]	\(^{3}S_{0}\)	34.2 ± 0.5	R, CCSD(T) + Breit		
[165]	\(^{3}S_{0}\)	34.5 ± 0.8	R, CCSD(T)		
[127,131,200]	\(^{3}S_{2}, \ ^{3}S_{2}\)	33.75	exp.		
[201]	\(^{3}S_{2}\)	33.91 ± 0.34	exp.		
81	Tl	\(^{5}p\)	33.91 ± 0.34	recommended	
[50]	\(^{3}P_{1/2}, \ ^{3}P_{3/2}\)	51.6/81.2	R, Dirac, MRCl, M(\(J\)) res.		
[202]	\(^{3}P_{1/2}\)	52.3	R, Dirac, FS-CCSD		
[133]	\(^{3}P_{1/2}, \ ^{3}P_{3/2}\)	50.3/80.9	R, Dirac, FSCC, (\(J = 3/2, M_J = 3/2\) S = 6.7, \(J = 1/2\) 105.1)		
[82,134]	\(^{3}P\)	71.7 ± 1.1	R, DK, CCSD(T)		
[198,202]	\(^{3}P\)	51.3	R, Dirac, FS-CCSD		
[3,203]	\(^{3}P\)	49.2	RCI + MBPT		
[204]	\(^{3}P\)	48.81	R, Dirac, CI + MBPT		
[205]	\(^{3}P\)	47.78	R, Dirac + Breit + QED, SD + CI, RPA		
[206]	\(^{3}P\)	50.0 ± 3.0	R, CC		
[206]	\(^{3}P\)	50.7	R, CI + all-order		
[133]	\(^{3}P\)	51.1 ± 1.6	R, Dirac, FSCC		
[207]	\(^{3}P\)	50.4	R, DHH, SD, MBPT all-order		
[134]	\(^{3}P\)	50.48	R, DK, CCSD(T)		
[134]	\(^{3}P\)	50.62	R, DK, CCSD(T)		
[89]	\(^{3}P_{1/2}, \ ^{3}P_{3/2}\)	50.7 ± 5.0/78.5 ± 6.0	SI-SOCI, M(\(J\)) res.		
[57]	\(^{3}P_{1/2}\)	51.3 ± 5.4	exp.		
82	Pb	\(^{5}p\)	50 ± 2	recommended	
[107]	\(^{3}P\)	46 ± 11	R, Dirac, LDA		
[208]	\(^{3}P_{0}\)	51.0	R, SOPP, CCSD(T)		
[52]	\(^{3}P_{0}\)	47.70	R, Dirac + Gaunt, CCSD(T)		
[195]	\(^{3}P_{0}\)	46.96	R, Dirac, CCSD(T)		
[52]	\(^{3}P_{0}\)	47.3 ± 0.9	R, Dirac + Gaunt, CCSD(T)		
[198]	\(^{3}P_{0}\)	47.0	R, Dirac, FS-CCSD		
[205]	\(^{3}P_{0}\)	44.04	R, Dirac + Breit + QED, SD + CI, RPA		
[209]	\(^{3}P_{0}\)	46.5	R, CI + all-order, RPA		
[52,57]	\(^{3}P_{0}\)	47.1 ± 7.1	exp.		
[73]	\(^{3}P_{0}\)	56 ± 18	exp.		
83	Bi	\(^{5}S\)	47 ± 3	recommended	
[57,107]	\(^{4}S\)	50 ± 12	R, Dirac, LDA		
[53]	\(^{4}S\)	48.6	R, DK, CASPT2		
[210]	\(^{4}S\)	52.85	R, Cowan-Griffin, HF only		
[56]	\(^{4}S\)	48.75	ECP, CCSD(T)		
[205]	\(^{4}S\)	44.62	R, Dirac + Breit + QED, SD + CI, RPA		
[73]	\(^{4}S_{1/2}\)	55 ± 11	exp.		
84	Po	\(^{3}P_{2}\)	48 ± 4	recommended	
[57,107]	\(^{3}P_{2}\)	46	R, R, Dirac, LDA		
[210]	\(^{3}P_{2}\)	46.8	R, Cowan-Griffin, HF only, M(\(J\)) res.		
[41,82,210]	\(^{3}P_{2}\)	43.6 ± 4.4	R, Cowan-Griffin, HF only		
85	At	\(^{3}P_{1/2}\)	44 ± 4	recommended	
[136]	\(^{3}P_{1/2}\)	45.6	R, DK, SO-CI		
[136]	\(^{3}P_{1/2}\)	43.0	R, DK, SO-CI, M(\(J\)) res.		
[41,82,210]	\(^{3}P_{1/2}\)	40.7 ± 2.0	R, Cowan-Griffin, HF only		
86	Rn	\(^{1}S\)	42 ± 4	recommended	
[62]	\(^{1}S\)	33.18	R, DK3, CCSD(T)		
[163]	\(^{1}S_0\)	34.93	R, SOPP, CCSD(T) + MP2 basis set correction		
[208]	\(^{1}S_0\)	28.6	R, SOPP, CCSD(T)		
[53]	\(^{1}S\)	32.6	R, DK, CASPT2		
[138]	\(^{1}S_0\)	34.2	R, RPA, PolPot		
[193,211]	\(^{1}S_0\)	35.77	R, DK, CCSD(T)		
[211]	\(^{1}S_0\)	35.47	CCSD, ECP		

(continued)
Table 1. Continued.

Z	Atom	Refs.	State	α_D	Comments
[140]	15S	35.391	R, RPA, PolPot		
[198]	15S	35.0	R, Dirac, CCSD(T)		
[57,107]	15P	36 ± 5	R, Dirac, LDA		
[212]	13P	35.87	R, DFT, DC, PBE38		
[213]	13P	34.89	R, DKH2, B3LYP, SARC		
[213]	13P	34.70	R, DKH2, B3LYP, UGBS		
[163]	15P	34.60	R, SOPP, CCSD(T) + MP2 basis set correction		
[212]	15S	33.62	R, DFT, sDFA, PBE38		
[65]	15S	34.4374 ± 0.0001	CCSD(T), ECP		
[165,215]	15S	35.04 ± 1.8	R, Dirac, CCSD(T)		
[165]	15S	37.0 ± 0.5	R, CCSD(T)		
[165]	15S	35.3	R, Dirac-Gaunt, CCSD(T)		
87	Fr	35 ± 2	recommended		
[69,99]	15S	317.8 ± 2.4	R, Dirac, SD all orders + experimental data		
[98]	15S	315.2	R, DK, CCSD(T), AE		
[167]	15S	311.5	R, Dirac, CCSD(T)		
[216]	15S	316.8	exp.		
88	Ra	317.8 ± 2.4	recommended		
[41,105]	15S	246.2 ± 4.9	R, DK + SO, CCSD(T)		
[172]	15S	242.8	R, Dirac + Gaunt, CCSD(T)		
[78]	15S	242.42	R, Dirac + Breit, perturbed relativistic coupled-cluster theory (PRCC)		
[138]	15S	232	R, RPA, PolPot		
[105]	15S	248.56	R, DK + SO, CCSD(T)		
[165]	15S	236 ± 15	R, CCSD(T)		
89	Ac	246 ± 4	recommended		
[57,107]	25D$_{3/2}$, 6d1	217 ± 44	R, Dirac, LDA		
[174]	25D$_{3/2}$, 6d1	203 ± 3	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 141.9$ for the 7s27p1 configuration)		
90	Th	203 ± 12	recommended		
[57,107]	6d2	217 ± 54	R, Dirac, LDA		
91	Pa	154 ± 20	recommended		
[57,107]	5f26d1	171 ± 34	R, Dirac, LDA		
[174]	5f26d1	154.4	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 151.9$ for the 5f26d17s1 configuration)		
92	U	129 ± 17	recommended		
[57,107]	5f26d1	167 ± 42	R, Dirac, LDA		
[174]	5f26d1	150.5	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 127.5$ for the 5f6 configuration)		
93	Np	151 ± 20	recommended		
[57,107]	5f6	165 ± 41	R, Dirac, LDA		
[174]	5f6	132.2	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 147.6$ for the 5f56d1 configuration)		
94	Pu	132 ± 20	recommended		
[57,107]	5f6	165 ± 41	R, Dirac, LDA		
[174]	5f6	132.2	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 147.6$ for the 5f56d1 configuration)		
95	Am	131 ± 25	recommended		
[57,107]	5f7	155 ± 39	R, Dirac, LDA		
[174]	5f7	143.6	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 128.6$ for the 5f6 configuration)		
96	Cm	144 ± 25	recommended		
[57,107]	5f6	153 ± 38	R, Dirac, LDA		
[174]	5f6	125.3	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 146.1$ for the 5f66d1 configuration)		
97	Bk	122 ± 20	recommended		
[57,107]	5f7	153 ± 38	R, Dirac, LDA		
[174]	5f7	125.3	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 142.3$ for the 5f66d1 configuration)		
98	Cf	118 ± 20	recommended		
[57,107]	5f10	161 ± 40	R, Dirac, LDA		
[174]	5f10	113.4	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 155.6$ for the 5f106d1 configuration)		
99	Es	113 ± 20	recommended		
[57,107]	5f11	123 ± 31	R, Dirac, LDA		
[174]	5f11	109.4	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 179.6$ for the 5f136d1 configuration)		
100	Fm	109 ± 20	recommended		
[57,107]	5f12	123 ± 31	R, Dirac, LDA		
[174]	5f12	109.4	R, Dirac, CI + MBPT + CP(RPA); $(\alpha_D = 179.6$ for the 5f136d1 configuration)		

(continued)
Table 1. Continued.

Z	Atom	Refs.	State	\(\omega_D \)	Comments
102	No	[57,107]	^1S_0,^5S_{1/2}	118 ± 30	R, Dirac, LDA
		[180]	^1S_0,^5S_{1/2}	110.8 ± 5.5	R, Dirac + Gaunt, CCSD(T)
		[174]	^1S_0,^5S_{1/2}	105.4	R, Dirac, CI + MBPT + CP(RPA); \(\omega_D = 267.8 \) for the ^5S_{1/2}^1S_{1/2}^1p^{1s} configuration
		[138]	^1S_0,^5S_{1/2}	114	R, RPA, PolPot
		[174,189]	^1S_0,^5S_{1/2}	112 ± 6	R, DF, CI + all-order + Breit + QED
		[174,189]	^1S_0,^5S_{1/2}	110 ± 8	R, DF, CI + all-order + Breit + QED
		[187]	^1S_0,^5S_{1/2}	107.77	R, DFT, CAM-B3LYP, 2c-NESC
		[180]	^1S_0,^5S_{1/2}	115.64	R, DK, CCSD(T)
		[219]	^1S_0,^5S_{1/2}	115.6	R, DFT, DKH, B3LYP
				\(110 \pm 6 \) recommended	
103	Lr	[189]	\(^7p_1 \)	323 ± 80	R, DF, CI + all-order + Breit + QED
		[189]	\(^7p_1 \)	320 ± 80	R, DF, CI + MBPT + Breit + QED
		[220]	\(^7p_1 \)	225.2	R, DK, DFT, CAM-B3LYP
				\(320 \pm 20 \) recommended	
104	Rf	[189]	\(^6d_2 \)	107 ± 5	R, DF, CI + MBPT + Breit + QED
		[189]	\(^6d_2 \)	115 ± 13	R, DF, CI + all-order + Breit + QED
				\(112 \pm 10 \) recommended	
105	Db	[138]	\(^6d^4 \)	42.5	R, RPA, PolPot
		[138]	\(^6d^4 \)	42.4 ± 4	R, RPA, PolPot (value recommended by authors)
				\(42 \pm 4 \) recommended	
106	Sg	[138]	\(^6d^4 \)	40.7	R, RPA, PolPot
		[138]	\(^6d^4 \)	40.4	R, RPA, PolPot (value recommended by authors)
				\(40 \pm 4 \) recommended	
107	Bh	[138]	\(^6d^6 \)	38.4	R, RPA, PolPot
		[138]	\(^6d^6 \)	38.4	R, RPA, PolPot (value recommended by authors)
				\(38 \pm 4 \) recommended	
108	Hs	[138]	\(^6d^6 \)	36.2	R, RPA, PolPot
		[138]	\(^6d^6 \)	36.4	R, RPA, PolPot (value recommended by authors)
				\(36 \pm 4 \) recommended	
109	Mt	[138]	\(^6d^6 \)	34.2	R, RPA, PolPot
		[138]	\(^6d^6 \)	34.3	R, RPA, PolPot (value recommended by authors)
				\(34 \pm 3 \) recommended	
110	Ds	[138]	\(^6d^6 \)	32.3	R, RPA, PolPot
		[138]	\(^6d^6 \)	32.3	R, RPA, PolPot (recommended value by authors)
				\(32 \pm 3 \) recommended	
111	Rg	[138]	\(^6d^6 \)	30.6	R, RPA, PolPot
		[138]	\(^6d^6 \)	30.3	R, RPA, PolPot (value recommended by authors)
		[221]	\(^6d^6 \)	31.6	ARPP CCSD(T)
				\(32 \pm 6 \) recommended	
112	Cn	[126]	^1S_0,^6d_{10}	25.82	R, PP, CCSD(T)
		[208]	^1S_0,^6d_{10}	28.68	R, SOPP, CCSD(T)
		[195]	^1S_0,^6d_{10}	27.64	R, Dirac, CCSD(T)
		[138]	^1S_0,^6d_{10}	28.2	R, RPA, PolPot
		[195]	^1S_0,^6d_{10}	27.40	R, Dirac, CCSD(T)
		[138]	^1S_0,^6d_{10}	28.4	R, RPA, PolPot (value recommended by authors)
				\(32 \pm 6 \) recommended	
113	Nh	[202]	^2P_{1/2}	29.85	R, Dirac, FS-CSSD
		[205]	^2P_{1/2}	28.8	R, Dirac + Breit + QED, SD + CI, RPA
				\(28 \pm 2 \) recommended	
114	Fl	[208]	^3P_0	34.35	R, SOPP, CCSD(T)
		[52]	^3P_0	31.98	R, Dirac + Gaunt, CCSD(T)
		[195]	^3P_0	30.59	R, Dirac, CCSD(T)
		[195]	^3P_0	29.52	estimate
		[205]	^3P_0	31.4	R, Dirac + Breit + QED, SD + CI, RPA
		[52]	^3P_0	31.0	R, Dirac + Gaunt, CCSD(T)
				\(31 \pm 4 \) recommended	
115	Mc	[205]	^4S_{1/2}	70.5	R, Dirac + Breit + QED, SD + CI, RPA
				\(71 \pm 20 \) recommended	
116	Lv		^3P_2	-	No value currently available
117	Ts	[222]	^2P_{1/2}	76.3	empirical estimate
118	Og	[208]	^1S_0	52.4	R, SOPP, CCSD(T)
		[214]	^1S_0	46.33	R, Dirac, CCSD(T)
		[138]	^1S_0	59.0/57.2	R, RPA, PolPot
		[223]	^1S_0	57.98	R, Dirac + Gaunt, CCSD(T)
		[138]	^1S_0	57 ± 3	R, RPA, PolPot
				\(58 \pm 6 \) recommended	

(continued)
Concerning older literature, in 1971 the polarizabilities were listed up to the element radon by Teachout and Pack giving 138 references [18]. A more recent review by Mitroy, Safronova and Clark is highly recommended [3,5]. The present list started in 2006 and the first version was published in Ref. [19].

Our recommended value for each element, together with an estimate of its uncertainty, is the last value listed (in bold). Many of our estimated uncertainties are large, particularly for the heavier elements, and reflect the limited experimental and calculated results available for these elements. Obviously we had to exercise judgment in estimating the uncertainties in the recommended polarizability values. We considered both the uncertainties in polarizability values provided by the authors of the publications cited as well as the range of polarizability values available for each element. For convenience, our recommended values and accompanying uncertainties also are provided in periodic table format in Figure 1.

The hydrogen atom deserves some special attention as its electronic spectrum is important in testing fundamental physics [225]. The polarizabilities can be calculated very accurately within a relativistic framework, see Table 1. These calculations assume infinite nuclear mass M neglecting reduced mass corrections, finite extension of the nucleus, nuclear recoil effects (for the theory of such effects see Ref. [226]), as well as quantum electrodynamic effects (QED). The reduced mass correction f_M to the energy E_i of a specific state $|i\rangle$ can easily be evaluated by coordinate scaling $r \rightarrow r \sqrt{M/f_M}$ with $f_M = M/(M + m_e)$ (m_e is the electron mass), introduced originally by Hylleraas for the nuclear charge Z [227]. This leads to the original (infinite nuclear mass) Schrödinger equation, but with a ‘mass corrected’ nuclear charge $Z_M \rightarrow Z \sqrt{M/(M + m_e)}$. One can now easily verify that $E_i = f_M E_i^{M \rightarrow \infty}$ [228]. For the ^1H and ^2H hydrogen isotopes we obtain $f_M = 0.999456 \approx 1 - m_e/m_p$ (m_p is the proton mass) and 0.999728, respectively. The Z-dependence of the hydrogen ground state static polarizability is well known (in atomic units, α_{FS} is the fine structure constant),

$$\alpha(Z) = Z^{-4} \left[\frac{9}{2} + \sum_i \lambda_i (Z \alpha_{FS})^{2i} \right]$$

(3)

with the expansion coefficients λ_i given by Drake and Goldman [22]. Using Z_M instead and taking care of the scaling of the field term we get the mass correction for the ^1H isotope polarizability of $\Delta \alpha_M = +0.00735613$ a.u. This increase in polarizability is easily explained as it originates mostly from the decrease in the mass corrected nuclear charge. This effect is an order of magnitude larger than the relativistic contribution. We can also estimate QED effects, as the dominant correction comes from the $1s$ Lamb-level shift taken from Weitz et al. [229],

$$\Delta \alpha_{\text{QED}} \approx -\alpha \left[\frac{\Delta E_{1s}^{\text{QED}}}{E_{1s}} \right] \approx -1 \times 10^{-5} \text{ a.u.}$$

(4)

which we use for our error estimate of the final value given in Table 1. We note that there are only a few experiments on atomic hydrogen [20], and the only directly measured value available for the hydrogen static dipole polarizability is that measured by Scheffers and Stark ($\alpha = 4.0 \pm 1.3$ a.u.) [230,231]. A dynamic dipole polarizability of 4.59 ± 0.07 a.u. and a ratio of H to H$_2$ polarizabilities of 0.8283 ± 0.0090, both at 587 nm [232], can be combined with the experimental static dipole polarizability for H$_2$ of 5.437 a.u. [233] to yield a value of 4.503 ± 0.049 a.u. for atomic hydrogen. This value for the static dipole polarizability of atomic hydrogen assumes that the ratio of static dipole polarizabilities is equal to the ratio of dynamic dipole polarizabilities at 587 nm.
Clearly, a more accurate and directly measured experimental value for the static dipole polarizability of the hydrogen atom is needed.

3. Periodic trends

3.1. Horizontal trends

Some general periodic trends are apparent from a consideration of the polarizabilities listed in Figure 1. In very nearly all cases, polarizabilities decrease with increase in atomic number for each \(nl \) group of elements (e.g., the \(2p \) elements B-Ne). This reflects the well-known decrease in size with increasing atomic number for elements in a given row of the periodic table, an effect generally attributed to increasing effective nuclear charge. Polarizabilities have units of volume, and the proportionality between atomic polarizability and volume is well known [234,235]. In fact, polarizabilities provide a nearly unique direct measure of the size of an isolated atom [236].

In order to more clearly illustrate these periodic trends in polarizabilities, plots of polarizabilities (\(\alpha \); error bars reflect estimated uncertainties) versus atomic number (\(Z \)) for each of the \(nl \)-rows of elements are shown in Figures 2 and 3. Empirical, weighted, non-linear least-squares fits according to a power dependence of \(\alpha \) on \(Z \) are included for each \(nl \) graph except for the \(6d \) (Figure 3(d)) and \(7p \) (Figure 2(f)) elements, for which only limited and often uncertain calculated polarizability values are available.

It is remarkable that for ten of the twelve \(nl \) groups of elements shown, the exceptions being the \(6d \) (Figure 3(d)) and \(7p \) (Figure 2(f)) elements, the polarizabilities show a power-function dependence on atomic number in which the calculated best-fit line passes through, or very close to, the error bar for nearly all of the elements included in the data fits. Pd is an exception to this observation. This discrepancy is accounted for since, among the \(d \)-block elements, the ground state of Pd (\(4d^{10}5s^0 \)) is unique in having no electrons in a valence \(s \) orbital. The situation for Lr (\(6d^{10}7s^27p^{1/2} \)) also is unique in that Lr is the only \(d \)-block element not having at least one electron in a valence \(d \) orbital [237]. Other exceptions include the other Group 3 elements Sc, Y, and Lu, as well as Ac (which, together with Th, are the only \(f \)-block elements not having at least one electron in a valence \(f \)-orbital) and U. As additional, more accurate polarizabilities become available it will be interesting to...
Figure 2. Plot of atomic polarizabilities as a function of atomic number for the p-block elements, together with weighted, nonlinear least-squares fits for all but the 7p elements (Figure 2(f)) according to empirical power relationships between α and Z. The ordering α(Nh, Fl) $< \alpha$(Mc, Ts, Og) among the 7p elements is unusual, reflecting large relativistic effects for these atoms.

see if the current, irregular variation of polarizability of the 6d and 7p elements (and, to a lesser extent, the 6p (Figure 2(e)) and 5f (Figure 3(f)) elements) with atomic number is maintained. If so, it is most likely that especially large relativistic effects on the properties of these heavy elements are responsible for their departure from the more systematic behaviour exhibited by the lighter elements.

3.2. Vertical trends

We turn now to a consideration of vertical (group) periodic trends in polarizabilities. For the Group 1 (Figure 4(a)) and Group 2 (Figure 4(b)) elements (s-block elements), polarizabilities increase with increasing period number n for the first six rows of the periodic table. The only exception to this behaviour is the
Figure 3. Plot of atomic polarizabilities as a function of atomic number for the d-block and f-block elements together with weighted, nonlinear least-squares fits according to empirical power relationships between α and Z. Pd, having the closed-shell $4d^{10}5s^0$ electron configuration, was not included in the fit for the $4d$ elements (Figure 3(b)). Inset for $6d$ elements (Figure 3(d)): expanded view omitting Lr, having an exceptionally large polarizability due to its unique $6d^07s^27p_{1/2}^1$ electron configuration, and Rf, also having a very large polarizability. A weighted, nonlinear least-squares fit of the remaining ten $5d$-elements according to an empirical power relationship between α and Z is shown.

Slight decrease in polarizability of Na compared to Li, accounted for by the increased effective nuclear charge of Na due to its filled $2p^6$ subshell. For the last two rows, the polarizabilities decrease, a result of the large direct relativistic contraction and stabilisation of the $7s$ and $8s$ orbitals.

For the first two columns of the p-block elements, Groups 13 (Figure 6(a)) and 14 (Figure 6(b)), polarizabilities increase with increasing period number n for the first five rows, the only exception being the decrease in polarizability of Ga compared to Al, presumably reflecting the increased effective nuclear charge of Ga.
resulting from its filled $3d^{10}$ subshell, an effect mirrored in the relative ionisation energies of these two elements. For the last two rows of these two groups, there is a decrease in polarizabilities for Tl and Nh and for Pb and Fl compared to their lighter congeners, presumably due to the direct relativistic contraction and stabilisation of the $6p_{1/2}$ and $7p_{1/2}$ orbitals of these elements. For the remaining p-block elements, those of Groups 15–18 (Figure 6(c–f)), polarizabilities increase with increasing period number n, with no exceptions (except possibly Lv, for which no reliable polarizability value is available).

For the d-block elements, Groups 3–12, $\alpha(4d) > \alpha(3d)$ except for Group 10, where α(Pd) < α(Ni), a reflection of the unique $4d^{10}5s^0$ ground state electron configuration.
Figure 5. Plots of atomic polarizabilities as a function of ionisation energy for the elements of IUPAC Groups 7–12 together with weighted, nonlinear least-squares fits according to empirical power relationships between α and IE. Pd was not included in the data fit for the Group 10 elements (Figure 5(d)) due to its unique $4d^{10}5s^0$ valence electron configuration.

The only exceptions to the trend $\alpha(5d) < \alpha(4d)$, while Lr and (possibly) Rf are the only exceptions to the trend $\alpha(6d) < \alpha(5d)$. As noted above, the extremely large polarizability of Lr is likely a result of its unique $6d^07s^27p_{1/2}$ ground state electron configuration.

For the f-block elements, $\alpha(4f) > \alpha(5f)$ in all cases except Th, likely due to its $6d^27s^2$ ground state electron configuration compared to $4f^{15}5d^16s^2$ for Ce, the only pair of elements among the fourteen pairs having such different ground state electron configurations.

Many attempts have been made to correlate trends in atomic polarizabilities with atomic ionisation energies for a given group or column of elements in the periodic table [82,238]. We include graphical representations of the relationship between polarizabilities and ionisation energies [239] for IUPAC Groups 1–18 (all but the f-block elements, for which there are only two members...
Figure 6. Plot of atomic polarizabilities as a function of ionisation energy for the elements of IUPAC Groups 13–18 together with weighted, nonlinear least-squares fit according to empirical power relationships between α and IE (Groups 13–14; Figure 6(a and b)) and empirical exponential relationships between α and IE (Groups 15–18; Figure 6(c–f))). Lv is not included among the Group 16 (Figure 6(a)) elements since its polarizability is not known.

To summarise the vertical periodic trends in polarizability, it appears that useful quantitative correlations exist between polarizability and ionisation energy for Group 2 (Figure 4(b)) and Groups 13–18 (Figure 6), although there are several outliers within these correlations, including Uue, Pt, Ir, Cd, Ga, Tl, Se, Pb, Bi, and Mc. There is too much scatter and uncertainty in the polarizabilities of Group 1 (Figure 4(a)) and Groups 3–12 (Figures 4(a,c-f) and 5) to draw any firm conclusions about trends within these groups. The lack of a good correlation between the accurately known polarizabilities and ionisation energies of the Group 1 elements (Figure 4(a)) serves as a particularly important caveat for attempts to predict accurate polarizability values from their correlation with ionisation energies. Furthermore, for many of the heaviest elements ($Z > 103$), the
uncertainties in the ionisation energies are as large as or
greater than the errors in the polarizabilities [138].

4. Conclusion

The updated list of recommended static atomic dipole polarizabilities listed in Figure 1 and Table 1 reveals both horizontal and vertical trends among subsets of elements. Specifically, for individual \(nl \) series of elements the polarizability decreases in a nearly smooth way with increasing atomic number. The most notable exceptions to this trend include many of the 6\(d \) (Figure 3(d)) and 7\(p \) (Figure 2(f)) elements, as well as a few other elements such as the Group 3 (Figure 3(a–d)) elements Sc, Y, Lu, and Lr, as well as Pd (Figure 3(d)) and the 5\(f \) (Figure 3(f)) elements Ac, Th, and U. It is unclear at this time whether such irregular dependences of polarizability on atomic number are due to large uncertainties in the limited calculated values available, or whether the particularly large relativistic effects characteristic of such heavy elements causes them to depart from the more regular periodic behaviour observed for lighter elements.

A consideration of the vertical trends among polarizabilities for the eighteen IUPAC groups of the periodic table reveals more complicated patterns where, in many cases, an increase in polarizability with increasing period number \(n \) for the lighter elements is often followed by a reversal in behaviour as the polarizabilities decrease for the heavier elements in these groups. Although there are perhaps some useful correlations between atomic polarizabilities and ionisation energies, quantitatively useful relationships appear to exist only for the Group 2 (Figure 4(b)) and Group 13–18 (Figure 6) elements.

Experimental measurements for roughly half of the known elements are currently available, but the reliability of many of those values is questionable. Although calculated polarizabilities are available in nearly all cases for \(Z = 1–120 \) (Lv being the only exception), there is certainly room for improvement, especially for open-shell elements and for heavy atoms that experience large relativistic effects. We hope that this review and brief analysis of polarizabilities and their periodic trends will help those interested in making experimental and computational contributions to establishing more reliable atomic polarizabilities do so. Clearly, future theoretical treatments should be done at the relativistic level using the Dirac Hamiltonian including Breit and QED effects together with an accurate treatment of electron correlation, which still is a major challenge for electronic structure theory.

An updated table of static dipole polarizabilities also is available as a pdf file from the CTCP website at Massey University: http://ctcp.massey.ac.nz/dipole-polarizabilities. If you have more accurate polarizability data available, please provide the necessary information with a proper reference to be included in the next update. Any criticisms of the recommended values and their accompanying uncertainties are most welcome.

Acknowledgements

PS thanks Ivan Lim and Nicola Gaston (Auckland), Gordon W. F. Drake (Windsor), Uwe Hohn (Braunschweig), Antonio Rizzo (Pisa), Jürgen Hinz (Bielefeld), Gary Doolen (Los Alamos National Laboratory), Dirk Andrae (Bielefeld), Vitaly Kresin (Los Angeles), Timo Fleig (Düsseldorf), Ajit Thakkar (Fredericton), Pekka Pyykko (Helsinki), Zong-Chao Yan, (Brunswick), Juha Tiitinen (Helsinki) and Keith Bonin (Winston-Salem) for helpful discussions. JN thanks Bowdoin College for sabbatical leave support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Financial support from Marsden funding (17-MAU-021) by the Royal Society of New Zealand is gratefully acknowledged.

References

[1] A. Dalgarno, Adv. Phys. 11, 281 (1962).
[2] K.D. Bonin and V.V. Kresin, Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (World Scientific, Singapore, 1997).
[3] J. Mitroy, M.S. Safronova, and C.W. Clark, J. Phys. B: At. Mol. Opt. Phys. 43, 202001 (2010).
[4] H. Gould and T.M. Miller, Adv. At. Mol. Phys. 51, 343 (2005).
[5] M.S. Safronova, J. Mitroy, C.W. Clark, and M.G. Kozlov, AIP Conf. Proc. 1642, 81 (2015).
[6] N.B. Delone and V.P. Krainov, Physics-Uspekhi 42, 669 (1999).
[7] W.A. van Wijngaarden, AIP Conf. Proc. 477, 305 (1999).
[8] I.T. Margraf, A. Perera, J.J. Lutz, and R.J. Bartlett, J. Chem. Phys. 147, 184101 (2017).
[9] M. Reiher, Theor. Chem. Acc. 116, 241 (2006).
[10] M. Reiher, WIREs Comput. Mol. Sci. 2, 139 (2012).
[11] W. Liu, Mol. Phys. 108, 1679 (2010).
[12] T. Fleig, L.K. Sørensen, and J. Olsen, Theor. Chem. Acc. 118, 347 (2007).
[13] T. Fleig, Chem. Phys. 395, 2 (2012).
[14] B.O. Roos, K. Andersson, M.P. Fülscher, P.-Å. Malmqvist, L. Serrano-Andrés, K. Pierloot, and M. Merchán, Adv. Chem. Phys. 93, 219 (2007).
[15] P.-Å. Malmqvist, B.O. Roos, and B. Schimmelpfennig, Chem. Phys. Lett. 357, 230 (2002).
[16] S.J.A. van Gisbergen, V.P. Osinga, O.V. Gritsenko, R. van Leeuwen, J.G. Snijders, and E.J. Baerends, J. Chem. Phys. 105, 3142 (1996).
[17] S. Fraga, J. Karwowski, and K.M.S. Saxena, Atomic Data Nucl. Data Tabl. 12, 467 (1973).
[219] L.S.C. Martins, F.E. Jorge, M.L. Franco, and I.B. Ferreira, J. Chem. Phys. 145, 244113 (2016).
[220] A.K. Srivastava, S.K. Pandey, and N. Misra, Mater. Chem. Phys. 177, 437 (2016).
[221] M. Seth, P. Schwerdtfeger, M. Dolg, K. Faegri, B.A. Hess, and U. Kaldor, Chem. Phys. Lett. 250, 461 (1996).
[222] R.F. de Farias, Chem. Phys. Lett. 667, 1 (2016).
[223] P. Jerabek, B. Schuetrumpf, P. Schwerdtfeger, and W. Nazarewicz, Phys. Rev. Lett. 120, 053001 (2018).
[224] J.P. Desclaux, Atomic Data Nucl. Data Tabl. 12, 311 (1973).
[225] T. Udem, Nature Phys. 14, 632 (2018).
[226] V.M. Shabaev, Phys. Rev. A 39, 976 (1989).
[227] E.A. Hylleraas, Z. Phys. 65, 209 (1930).
[228] M.R. Godefroid, C. Froese Fischer, and P. Jönsson, Phys. Scr. T65, 70 (1996).
[229] M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, W. Vassen, C. Zimmermann, K. Pachucki, T.W. Hänsch, L. Julien, and F. Biraben, Phys. Rev. A 52, 2664 (1996).
[230] H. Scheffers and J. Stark, Phys. Z 37, 217 (1936).
[231] H. Scheffers, Phys. Z 41, 399 (1940).
[232] W.C. Marlow and D. Bershader, Phys. Rev. A 133, 629 (1964). The polarizability value of 4.59 ± 0.07 includes the more accurate estimate of the correction factor for the contribution from excited vibrational states of H$_2$ as reported in: W.C. Marlow, Proc. Phys. Soc. 86, 731 (1965).
[233] H. Schüler and K.L. Wolf, Phys. Z 34, 343 (1925). Their measured refractive index was converted to the static polarizability given here as described by W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967).
[234] F.O. Kannemann and A.D. Becke, J. Chem. Phys. 136, 034109 (2012).
[235] T.S. Brinck, J.S. Murray, and P. Politzer, J. Chem. Phys. 98, 4305 (1993).
[236] N. Joshipura, Resonance 18, 799 (2013).
[237] W.-H. Xu and P. Pyykkö, PCCP 18, 17351 (2016).
[238] R.L. DeKock, J.R. Strikwerda, and EricX. Wu, Chem. Phys. Lett. 547, 120 (2012); H.J. Bohórquez and R.J. Boyd, Chem. Phys. Lett. 480, 127 (2009); P. Politzer, P. Jin, and J.S. Murray, J. Chem. Phys. 117, 8197 (2002); B. Fricke, J. Chem. Phys. 84, 862 (1986); I.K. Dmitrieva and G.I. Plindov, J. Appl. Spect. 44, 4 (1986); I.K. Dmitrieva and G.I. Plindov, Phys. Scr. 27, 402 (1983).
[239] $Z = 1–56, 71–88, 103, 105–106$: A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2018), NIST Atomic Spectra Database (ver. 5.5.6), [Online]. Available: https://physics.nist.gov/asd [2018, August 26].
[240] National Institute of Standards and Technology, Gaithersburg, MD; $Z = 104$: Ref. [208]; $Z = 107–112, 120$: Ref. [155]; $Z = 113$: Ref. [224]; $Z = 114$: V. Pershina, Theoretical Chemistry of the Heaviest Elements, in The Chemistry of Superheavy Elements, edited by M. Schädel and D. Shaughnessy (Springer-Verlag, Berlin, 2014), pp. 135–239; $Z = 115–117$: A. Borschevsky, L. F. Pašteka, V. Pershina, E. Eliav, and U. Kaldor, Phys. Rev. A 91, 020501 (2015); $Z = 118$: Ref. [242]; $Z = 119$: Ref. [186].