The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

Tim Lichtenberga,b,∗, Gregor J. Golabekb,c, Taras V. Geryab, Michael R. Meyera

aInstitute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, 8093 Zürich, Switzerland
bInstitute of Geophysics, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
cBayerisches Geoinstitut, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany

Abstract

The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as \(26\text{Al}\) and \(60\text{Fe}\), as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family \textsc{2dElvis}/\textsc{3dElvis} we have run numerous 2D and 3D numerical finite-difference fluid dynamic models with varying planetesimal radius, formation time and initial porosity. Our results indicate that powdery materials lowered the threshold for melting and convection in planetesimals, depending on the amount of SLRs present. A subset of planetesimals retained a powdery surface layer which lowered the thermal conductivity and hindered cooling. The effect of initial porosity was small, however, compared to those of planetesimal size and formation time, which dominated the thermo-mechanical evolution and were the primary factors for the onset of melting and differentiation. We comment on the implications of this work concerning the structure and evolution of these planetesimals, as well as their behavior as possible building blocks of terrestrial planets.

Keywords: Planetary formation, Terrestrial planets, Planetesimals, Interiors, Thermal histories

1. Introduction

During the early stages of planet formation the building material of terrestrial planets like Earth or Mars is distributed within planetesimals with sizes of \(\sim 10^4–10^5\) km (Weidenschilling and Cuzzi2006). It remains unclear how these bodies assembled from sub-micron grains in a circumstellar disk in detail. First order constraints from the standard collisional model for growth relate the doubling time \(t_d \sim \rho_p R_p/(\Sigma\text{disk}\Omega_K)\) of a growing planetesimal to its size \(R_p\) and density \(\rho_p\) as well as to the properties of the disk, namely mass surface density \(\Sigma\text{disk}\) and Keplerian frequency \(\Omega_K\) (Goldreich et al.2004). This formula, however, essentially a cross-section calculation, ignores gravitational focusing and limits to growth, such as the bouncing barrier (e.g., Zsom et al.2010) and the radial migration of solids due to gas drag (Weidenschilling1977). Nonetheless, there are also complex local processes that can enhance the formation of planetesimals with up to several hundred kilometers radii due to particle collection in vortices, pressure bumps, and other effects (e.g., Johansen et al.2007, Cuzzi et al.2008, Morbidelli et al.2009, Chambers2010, Johansen et al.2015). These point to rapid formation on the time scale of \(\sim 10^5\) yr after the formation of Ca-Al-rich inclusions (CAIs), consistent with findings from geochemical data (Kleine et al.2009).

Theoretical models to investigate this epoch after the initial assembly of the planetesimals rely on numerical models of internal dynamics. So far, such models were mostly based on 1D studies, focusing on conductive cooling as the main heat transfer mechanism (e.g., Ghosh and McSween1998, Hevey and Sanders2006, Sahijpal et al.2007). Recent work, however, has shown that more mechanisms need to be taken into account. Firstly, these bodies are supposed to be sufficiently big to become heated by decay of short-lived radionuclides (SLRs), most importantly \(26\text{Al}\) and \(60\text{Fe}\), which would alter their inner structure and evolution dramatically up to the point of silicate melting. For example, bodies greater than \(\sim 10\) km in radius, formed at the time of CAI formation, are supposed to melt completely (Hevey and Sanders2006). Secondly, some meteorite parent bodies seem to have experienced solid-state deformation (Tkalec et al.2013, Tkalec and Brenker2014). These points underline the importance of 2D or 3D thermo-mechanical modeling approaches for the evolution of planetesimals to detect effects such as the differences of the surface-to-volume ratio in 1D, 2D and 3D models or non-axisymmetric advection processes. As a further complicating issue, recent work highlights the potentially important role of porous bulk material on the thermal history of planetesimals, by lowering the thermal conductivity of the silicate material and thus to prevent effective...
heat transport via conduction (Cuzzi et al., 2008; Neumann et al., 2014).

The initial powdery state of the uncompacted material is however reduced in the inner parts of the planetesimals by cold isostatic compaction due to self-gravity (Henke et al., 2012), effectively decreasing its influence with increasing size of the body. Another important aspect is the formation time of the body. As outlined above, the accretion time scale of planetesimals is on the order of 10^5 yr, which is roughly an order of magnitude shorter than the evolutionary time scale of the protoplanetary disk and the thermo-mechanical evolution of planetesimals on the order of 10^6 yr. Hence, the quasi-instantaneous formation time sets the limit on the amount of SLRs incorporated into the body.

Additional heat sources for planetesimals can be energy injection during the accretion of the body and later impacts. First, the temperature increase due to the conversion of gravitational energy to heat is low for bodies < 1000 km (Schubert et al., 1986; Qin et al., 2008; Elkins-Tanton et al., 2011). Second, during runaway growth, the velocity dispersion of planetesimals is set by the equilibrium between self-stirring and gas drag. Impact velocities are therefore comparable or smaller to the escape velocity (Greenberg et al., 1978; Morbidelli et al., 2015), which drastically limits the amount of injected energy. The formation time thus dominates the energy budget for heating and sets the pace of internal dynamic processes, such as core formation, to the order of several 10^6 Al half-lives.

Clearly, the thermo-mechanical evolution of planetesimals needs to be treated adequately to achieve a consistent theoretical understanding of this stage of planetary assembly. In this study we assessed the role of the initial size, formation time and porosity of planetesimals on their thermo-mechanical history via 2D and 3D numerical models. In Sect. 2 we describe constraints from earlier work and outline the most important concepts of our numerical model; in Sect. 3 we present the results obtained from the simulation runs, for which we outline the technically inherent limitations in Sect. 4. In Sect. 5 we discuss the physical implications and draw conclusions in Sect. 6. Supplementary material can be found in Appendix A and a list of all simulations is given in Appendix B.

2. Physical and numerical methodology

The physical and numerical methods in this work follow earlier work by Golabek et al. (2014), in which an in-depth analysis of observational constraints on the thermal history for the acapulcoite-lodranite parent body is compiled. In contrast to this study, we focused on the general role of planetesimal evolution and seeked to explore the thermo-mechanical regimes before the onset of the giant impact phase in terrestrial planet formation. The most important physical constants used in the model are explained in the following sections, all others are listed with their respective references in Table 1.

2.1. Fluid flow

As outlined in Sect. 1 we studied the thermo-mechanical evolution of instantaneously and recently formed planetesimals using the t2ELVIS/3ELVIS code family (Gerya and Yuen, 2007). The code solves the fluid dynamic conservation equations using the extended Boussinesq approximation, to account for thermal and chemical buoyancy forces, with a conservative finite-differences (FD) approach on a fully staggered-grid (Gerya and Yuen, 2003), namely the continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \rho \mathbf{v} = 0,$$

with density ρ, time t and flow velocity \mathbf{v}; the Stokes equation

$$\nabla \sigma' - \nabla P + \rho g = 0,$$

with deviatomic stress tensor σ', pressure P and directional gravity g obtained via the location-dependent Poisson equation

$$\nabla^2 \Phi = 4\pi G \rho,$$

with the gravitational potential Φ and Newton’s constant G; and finally the energy equation

$$\rho c_T \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = -\frac{\partial q_i}{\partial x_i} + H_i + H_h + H_{lat},$$

with heat capacity c_T, temperature T, heat flux $q_i = -k \nabla T$, thermal conductivity k, and radioactive (H_i), shear (H_h) and latent (H_{lat}) heat production terms. The energy equation is advanced using a Lagrangian marker-in-cell technique to minimise numerical diffusion and enable an accurate advection of non-diffusive flow properties during material deformation. The staggered-grid FD method permits to capture sharp variations of stresses and thermal gradients with strongly variable viscosity and thermal conductivity. For further details on the code’s features we refer to Gerya and Yuen (2003; 2007).

2.2. Heating by short-lived radionuclides

As discussed earlier, the radiogenic heat source term H_r in Equation 4 is dominant for early formed planetesimals. It is driven by the decay of short-lived isotopes 26Al and 60Fe and the long-lived 40K, 235U, 238U and 232Th. Among these 26Al is by far the most important one and therefore drives the internal heating of the young bodies, as the abundance of 60Fe is lower by orders of magnitude (Barr and Canup, 2008; Tang and Dauphas, 2012; Mishra et al., 2016). In this work, we considered time-dependent radiogenic heating by 26Al and the long-lived radioactive isotopes as input for H_r in Equation 4. For the initial 26Al/27Al ratio we adopted an upper-limit value (Jacobsen et al., 2008) of $5.85 \cdot 10^{-5}$ (Thrane et al., 2006) at CAI formation.

2.3. Silicate melting model

For the silicates we assumed a peridotite composition and used the parameterizations by Herzberg et al. (2000) and Wade and Wood (2005) (based on data of Tromms and Frost, 2002) for the solidus and liquidus temperatures T_{sol} and T_{liq}, which determine the silicate melt fraction

$$\varphi = \begin{cases}
0 & : T \leq T_{sol}, \\
\frac{T - T_{sol}}{T_{liq} - T_{sol}} & : T_{sol} < T < T_{liq}, \\
1 & : T \geq T_{liq}.
\end{cases}$$
We took into account both consumption and release of latent heat due to melting and freezing of silicates. Silicate density depends on the melt fraction φ as

$$\rho_{\text{eff}}(P, T, \varphi) = \rho_{\text{Si-sol}}(P, T) - \varphi(\rho_{\text{Si-sol}}(P, T) - \rho_{\text{Si-liq}}(P, T))$$ \hspace{1cm} (6)

with solid and liquid silicate densities $\rho_{\text{Si-sol}}$ and $\rho_{\text{Si-liq}}$. For silicate melt fractions $0.1 < \varphi < 0.4$ the effective viscosity (Pinkerton and Stevenson, 1992) is given as

$$\eta_{\text{eff}} = \eta_{\text{Si-sol}} \exp \left(2.5 + \left(\frac{1 - \varphi}{\varphi} \right)^{0.48} \right) \cdot (1 - \varphi).$$ \hspace{1cm} (7)

Above $\varphi \geq 0.4$ a transition occurs from solid-like structures to low-viscosity crystal suspensions (Solomatov, 2015; Costa et al., 2009), with $\eta_{\text{Si-sol}} = 10^{-4} - 10^{-2}$ Pa s (Bottinga and Weill, 1972; Rubie et al., 2003; Liebske et al., 2005). This effectively increases the Rayleigh number

$$Ra = \frac{\alpha g(T - T_{\text{surf}})\rho_{\text{eff}}^2 c_p D^3}{k\rho_{\text{Si-liq}}},$$ \hspace{1cm} (8)

with thermal expansivity α, surface temperature T_{surf}, depth of the magma ocean D and thermal conductivity k and thus enables an efficient cooling process.

Above melt fractions $\varphi \geq 0.4$ our model is restricted by a lower cut-off viscosity $\eta_{\text{num}} = 10^{17}$ Pa s, which preserves numerical stability, but lies orders of magnitude above realistic values of molten state silicate viscosities. To bypass restrictions of the physical interpretation in this melt regime we employed the soft turbulence model by Kraichnan (1962) and Sig-gia (1994), and estimated the convective heat flux as

$$q = 0.089 \frac{k(T - T_{\text{surf}})R^3}{D^{1/3}}.$$ \hspace{1cm} (9)

Using Equation 10 we derived an increased effective thermal conductivity

$$k_{\text{eff}} = \left(\frac{q}{0.089} \right)^{3/2} \frac{1}{(T - T_{\text{surf}})^2 \rho_{\text{eff}} \eta_{\text{num}}} \left(\frac{\alpha g c_p}{\eta_{\text{num}}} \right)^{-1/2},$$ \hspace{1cm} (10)

which approximates correct heat flux for a low viscosity magma ocean (Tackley et al., 2001; Hevey and Sanders, 2006; Golabek et al., 2011). For a more detailed discussion on model limitations due to this issue see Sect. 3.

2.4. Porosity

As already indicated in Sect. 1, the initial porous state of recently accreted planetesimals is thought to be due to cold isostatic pressing with pressure and thus depth into a configuration of closer packing (Henke et al., 2012), via

$$\phi(P) = 0.42 + 0.46 \left(\frac{P}{P_0} \right)^{1.72} + 1,$$ \hspace{1cm} (11)

with $P_0 = 0.13$ bar, which effectively introduces an upper cut-off porosity for depths greater than $\sim 10^2$ m, mostly dependent
on the size of the body. Furthermore, the porosity changes the density of the solid material
\[\rho_{\text{Si-pore}}(P, T, \phi) = \rho_{\text{Si-sol}}(P, T) \cdot (1 - \phi), \]
and the effective thermal conductivity for porous material
\[k_{\text{eff-pore}} = \begin{cases} \frac{k_1}{\phi^{3/2}} & : \phi < 0.2, \\ \frac{k_2}{\phi} & : \phi > 0.4, \\ \frac{k_3}{\phi^{1/4}} & : 0.2 \leq \phi \leq 0.4, \end{cases} \]
with constants \(a = -1.2, \phi_0 = 0.08 \) and \(\phi_1 = 0.167 \), fitting lab experiments [Henke et al., 2012; Gail et al., 2015]. Finally, the material compaction is sensitive to sintering effects via
\[\frac{\partial \phi}{\partial t} = A(1 - \phi) \frac{\sigma^{3/2}}{R^2} \exp \left[\frac{E_p}{RT} \right], \]
with the effective stress \(\sigma \), the effective grain size \(R \), the gas constant \(R \) and experimentally determined factors \(A \approx 4 \times 10^3 \) and activation energy \(E_p = 85 \text{ kcal mol}^{-1} \) [Henke et al., 2012].

Table 2: Distinct values of chosen parameter space.

Parameter	Symbol	Value range	Unit	List of values
Planetesimal radius	\(R_p \)	20–200 km		20, 50, 80, 110, 140, 170, 200
Instantaneous formation time	\(t_{\text{form}} \)	0.1–1.75 Myr		0.1, 0.5, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.75
Initial porosity	\(\phi_{\text{init}} \)	0.0–0.75		0.0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75

2.6. Parameter space

The goal of this work was to assess the combined effect of radiogenic heating by SLRs and initial porosity on the subsequent evolution of planetesimals. Hence, the parameter space was based on varying the planetesimal radius \(R_p = 20–200 \text{ km} \), the instantaneous formation time \(t_{\text{form}} = 0.1–1.75 \text{ Myr} \) after CAI formation and the initial porosity \(\phi_{\text{init}} = 0.0–0.75 \), in total a set of 616 2D simulations. A full list of all applied values is given in Table 2.

Due to the heavy computational cost of 3D simulations we first analyzed the 2D simulations, categorized them and then performed selected 3D simulations to verify the 2D results.

From our varied parameters, both \(R_p \) and \(t_{\text{form}} \) directly influenced the amount of SLRs present in the body. A list of all simulation runs with corresponding parameters and categories can be found for the 2D simulations in Table B.3 and for the 3D simulations in Table B.4.

3. Results

3.1. Thermo-mechanical evolution

In this section we analyze the thermo-mechanical outcome of the simulations. In Sect. 3.1.1 we focus on the temporal evolution of the material properties, i.e., solid or molten, and categorize the 2D results accordingly. Each category is then described and examples are given. In Sect. 3.1.2 we investigate the temperature-dependent maximum temperatures of the bodies and assess the influence of each of the varied parameters on it by constructing \(R_p, t_{\text{form}} \) and \(\phi_{\text{init}} \) isolines. Also, we analyze the influence of \(\phi_{\text{init}} \) on the temperature profile for fixed formation time and planetesimal size.

3.1.1. Material properties

Figure 1 illustrates the thermo-mechanical results of the material properties within each 2D simulation run. Each dot represents a single simulation and color indicates in which kind of regime we categorize the simulation. Each of these regimes is described below and an example, illustrating the state for \(\phi, T \) and \(\rho \) at a certain time, is given. Illustrating video files for each of the described regimes below can be found in the supplementary material (see Appendix A).
Solid regime. The blue rendered simulations in Fig. 1 build the class of solid models. These are models which lacked enough heat production by SLRs to experience any sign of transition from the solid silicate to a partially molten silicate state. An example of this kind is given in Fig. 2. The upper left image shows all simulation runs of this class. The composition plot illustrates the unperturbed layered structure of the silicates it is composed of. Because the body never experienced enough heat, no transition to a molten state occurred and therefore the layers resided with their original ordering. The temperature and density plots illustrate these parameters at the same time during the evolution. Since the body experienced some heat from SLRs it heated up and cooled down to the temperature of the surrounding space on the order of several tens of Myr. As shown in Fig. 2, these kinds of models can be found for all tested radii for \(t_{form} \gtrsim 1.7 \) Myr, i.e., when the initial amount of \(^{26}\text{Al}\) has significantly reduced. Additionally, planetesimals with \(R_p = 50 \) km already belong to this class for earlier formation times \(t_{form} \gtrsim 1.6 \) Myr and for \(t_{form} \gtrsim 1.3 \) Myr for bodies with \(R_p = 20 \) km since they cooled more efficiently. Comparison of figures 1 and 2 for bodies with \(R_p = 20 \) km reveals the influence of \(\phi_{init} \). For \(t_{form} = 1.3 \) Myr, the models were solid for \(\phi_{init} \lesssim 0.3 \) and molten for \(\phi_{init} \gtrsim 0.4 \). Hence, the effects of initial porosity only affected this transitional stage for the smallest bodies in our parameter space.

Static melt regime. This class of simulations showed characteristics of phase transitions from solid to molten states, indicated with green circles and diamonds in Fig. 1. For the deviations between these we refer to the discussion of our model limitations in Sect. 4. An example of a static melt model is given in Fig. 3. In the composition Fig. we see molten silicate phases shown in red. As the material in the inner parts could not cool as efficiently as the outer parts higher temperatures occurred and thus silicates in this region tended to melt. Hence, the density in the outer shells was higher than in the inner parts. Simulations of this class were dominant for bodies with \(R_p \leq 50 \) km. For \(R_p = 20 \) km the boundary for the transition from solid to melt was \(t_{form} \approx 1.3 \) Myr, for \(R_p = 50 \) km it was \(t_{form} \approx 1.6 \) Myr. In bodies with \(R_p = 80 \) km this class could be found solely for \(t_{form} = 1.6 \) Myr, marking the boundary to the transition from solid models to more dynamic models displaying convection.
Deformed melt regime. This class marked the transition from the static melt to the mixing regime in the three-dimensional parameter space. A deformation example is given in Fig. 4 for an evolutionary stage with molten silicate phases and deformed layers, which clearly deviated from the initial circular structure. This kind of models reached higher temperatures than their static melt-bearing counterparts. Due to the larger density contrast this leaded to the onset of mass segregation within the body. An interesting case is given for $R_p = 50$ km. These bodies were dominated by deformation for $\phi_{init} \geq 0.4$ and $t_{form} \leq 1.3$ Myr. This type is categorized differently as it indicates the restrictions of our model: if the viscosities fell below η_{num}, fluid motions could not always be correctly resolved, in spite of accurately modeling the heat flux. Again, for a more detailed discussion on this issue see Sect. 4.

Mixing regime. The class of mixing models was the most dynamic of all types. An example is given in Fig. 5 showing the onset of convection due to extreme heating conditions within the body due to high SLR abundances. In these cases the density contrast of inner and outer layers initiated and drove convectional motion. The subsequent downwellings from the surface layers (cool and dense) to the inner parts (hot and buoyant) are reflected in the composition, temperature and density plots. We will discuss the time evolution of this in Sect. 5.1.4. Models of this kind were only found for bodies with $R_p \geq 80$ km. The formation time is less important than the radius, but showed significant effects by lowering the threshold t_{form} for smaller bodies, i.e., $R_p \leq 140$ km models did not mix anymore above $t_{form} \geq 1.6$ Myr, whereas $R_p \geq 170$ km models did. Even less influential for the qualitative evolution were changes in initial porosity, for which no significant variance was observed.

3.1.2. Heat balance

This section is devoted to an analysis of the energy reservoir in the bodies over time. To analyze the influence of each of the varied simulation parameters we construct isolines, fixing two of the three parameters (see figures 6a and 7). The models which are discussed here were among the simulations with the most extreme differences in peak temperature and are therefore best suited to show general trends in the data.

Influence of planetesimal radius R_p. Figure 6a shows the radius isolines for all R_p values for models with $t_{form} = 1.7$ Myr and $\phi_{init} = 0.25$. In general, smaller bodies cooled more efficiently than their larger counterparts, which were prone to reach higher temperatures. This resulted in lower viscosities for the latter and gave them more time to develop deformed structures or convection.

Influence of formation time t_{form}. Figure 6b shows the influence of the formation time on models with $R_p = 20$ km and $\phi_{init} = 0.4$. There are two interesting characteristics to note in this plot. Firstly, the bodies with $t_{form} = 0.1/0.5$ Myr showed a steep increase in temperature, compared to all other t_{form} isolines but reached a sudden turning point at $t \approx 7.2 \cdot 10^5$ Myr. These bodies incorporated more 26Al due to its half-life time of $t_{1/2} \approx 7.2 \cdot 10^5$ Myr. When the temperatures increased, the material transitioned to molten states and viscosities $\eta \leq \eta_{num}$ occurred, the soft turbulence model set in and increased the heat flux, which permitted the body to cool at an elevated rate (see Sect. 4). Secondly, simulations with stronger heating sources and therefore higher peak temperatures showed steeper cooling
curves than models with later formation time. In practice, the ordering of formation isolines is reverted at $t = 8$ Myr. This can be explained with the higher thermal conductivity of molten silicate states. The models with higher peak temperatures reached higher melt fractions than those with lower peak temperatures, and are therefore able to cool down more efficiently.

Influence of initial porosity ϕ_{init}. Figure 7 shows the contribution of initial porosity on peak temperature deviations in bodies with $R_p = 20$ km and $t_{\text{form}} = 1.75$ Myr. In general, higher porosity increases the voids within the granular material, effectively lowering the thermal conductivity. Therefore, models with higher initial porosity sustained their internal heat by SLRs over a longer time period. Fig. 7 shows an extreme case in the overall parameter range, where the maximum peak temperatures deviated by $\Delta T \approx 120$ K, not enough to achieve qualitative differences, as all peak temperatures were below the melting temperature for silicates.

To check for local variations of the temperature within specific planetesimals, we derive peak temperature profiles by assessing the maximum value from four points at the same distance from the planetesimal center. Therefore, the values in Fig. 7 represent the maximum temperatures at a certain depth, which does not necessarily imply the same average value for this depth for non-axisymmetric behavior. However, irrespective of a few specific cases these are nearly undistinguishable and certainly not in the range in which these differences affect the long-term thermo-mechanical evolution. Hence, we restrict our discussion to the maximum temperature case. The variations in peak temperature with depth were most importantly effecting small bodies, most remarkably $R_p = 20$ km in our parameter space. Therefore, Fig. 7b shows the porosity isolines for the simulation with $R_p = 20$ km and $t_{\text{form}} = 1.75$ Myr at time $t = 4.61$ Myr. Going from the surface of the planetesimal to its center the temperature differences increased.

As displayed in both plots of Fig. 7 in such small planetesimals the peak temperatures were not enough for the onset of melting. Thus, the temperature deviations due to porosity changes did not result in qualitative differences between the displayed models. Since the peak temperature differences between porosity isolines decrease for all other parameter combinations the porosity did not have a significant effect on the thermo-mechanical evolution of the planetesimals.

3.2. Porous shells

Additional to the marginal effect of porosity changes on the peak temperature and the thermo-mechanical evolution, the majority of our models with initial porosity showed a porous shell feature. As illustrated for several models in Fig. 8 these structures were retained during the thermo-mechanical evolution and formed because of two effects. Firstly, compaction due to self-gravity by cold pressing (Equation 12) lowered the porosity within the body close to $\phi = 0.42$ and consequently increased the density contrast between the outermost layers and the layers deeper inside the body. Secondly, during the temporal evolution of the models the temperatures deep within the planetesimals were by far higher than those close to the surface. The temperatures within the body were high enough for sintering effects, which altered the porosity value according to Equation 15. Because both effects were unimportant closer to the surface, a large subset of the model retained a porous layer throughout their whole evolution. Only the models with the most extreme heating values were hot enough to sinter or melt even their outermost layers. Fig. 8 shows the combined effects of planetesi-
3.3. 3D analogues

As described in Sect. 2.5 we additionally performed a set of 3D simulations for different parameter combinations to check for possible deviations from the 2D results. All 3D models are listed in Table B.4.

In principal, the selected 3D simulations confirmed the general trends we have found in two dimensions before. Smaller bodies with \(R_p \leq 50 \text{ km} \) displayed solid or static molten type and developed no convection patterns, regardless of their formation time. Larger bodies were more likely to experience convectional mixing, as illustrated in Fig. 11. Comparable to the 2D simulations the formation time was the dominant parameter for the thermo-mechanical evolution and the onset of melting processes: early formed bodies experienced stronger heating by SLRs. As expected from the 2D results we also found porous shells in the appropriate parameter ranges.

The 3D models, however, did not perfectly match the results from the 2D simulations, as can be seen for model number 624, with \(R_p = 110 \text{ km}, \phi_{init} = 0.25 \) and \(t_{form} = 1.7 \text{ Myr} \), which evolved to a static molten state and did not retain a porous shell. Its 2D counterpart however was solid throughout its evolution and we found a shell at the end of its thermo-mechanical evolution. In general, as far as we can conclude from the restricted model set of 3D simulations, they seem to have experienced higher temperatures than their respective 2D analogues and thus the whole parameter space was shifted toward a higher fraction of static molten, deformed molten and mixing models. As already mentioned in the introduction, this result is expected and can be attributed to the lower surface-to-volume ratio of 3D models. Hence, planetesimals in 3D experienced a lower heat flux compared to their increased volume and abundance of porous shells.
Figure 4: Example of a deformation model, with $R_p = 50$ km, $t_{\text{form}} = 1.0$ Myr, $\phi_{\text{init}} = 0.75$ at $t = 14.06$ Myr. The temperatures were high enough to initiate the onset of convection but could not sustain these temperatures long enough for mixing to occur.

Figure 5: Example of a mixing model, with $R_p = 140$ km, $t_{\text{form}} = 0.5$ Myr, $\phi_{\text{init}} = 0.4$ at $t = 10.83$ Myr. The density contrast of inner and outer layers drove convection.

SLRs and therefore reached higher internal temperatures.

All in all, our 3D models were capable of reproducing the most important structures, compositional types and porosity features of the 2D models with slightly shifted regime boundaries and therefore verified the main conclusions we have drawn before.

4. Model limitations

The main caveat regarding the evolutionary channels from Sect. 3.1 is the lower cut-off viscosity η_{num}, whereas we expect that the real viscosity at melt fractions above 0.4 drops to values orders of magnitudes smaller than the applied lower cut-off viscosity (see Sect. 2.3 for examples). This especially happened for models with early formation times $t_{\text{form}} = 0.1 / 0.5$ Myr, i.e., within the first few half-life times of 26Al. As mentioned before these low viscosities cannot be resolved numerically.

To estimate which of our numerical models would have experienced convection, that could not be resolved, we estimate the onset time of convection based on the approach of Howard (1964). Since internal heating was important in the models, we employ the Roberts-Rayleigh number (Roberts, 1967), which can be used to compute the boundary layer Roberts-Rayleigh number

$$R_{\text{\alpha}} = \frac{\alpha \rho_0 H_0 \delta^5}{k \eta},$$

with reference density ρ_0, boundary layer thickness δ and thermal diffusivity κ. For the latter we use the characteristic diff-
phase, it is unlikely for planetesimals to be shaped perfectly symmetric. Irregular body structures would result in higher surface to volume ratios, hence enabling a faster cooling of the body (Davison et al., 2013).

Furthermore, as already discussed in Golabek et al. (2014), a more sophisticated approach for representing melt migration processes, cooling effects via 26Al partitioning (Sahijpal et al., 2007) and iron-silicate-separation (Schubert et al., 1986) would incorporate a two-phase flow model, which was not featured here. Finally we did not consider the effect of melt composition on melt density, which would influence our melting-mixing boundary (Fu and Elkins-Tanton, 2014).

5. Discussion & implications

In Sect. 4 we have presented the results from our set of 2D and 3D computational models of the thermo-mechanical evolution of recently formed planetesimals with varied radius, instantaneous formation time and initial porosity to gain a better understanding of the processes in the early stages of terrestrial planet formation. We now discuss the key insights of our results.

Initial porosity of the bodies was only of minor importance for the model set we have run here. Although higher initial porosity tended to lower thermal conductivity and therefore favored higher internal temperatures, the thermo-mechanical evolution was only marginally affected.

As expected, radius of the body and formation time had a strong influence on the evolution of a planetesimal. With increasing radius and decreasing formation time the bodies ex-
Figure 11: Density isocontours in a mixing 3D model, with $R_p = 110$ km, $\phi_{\text{init}} = 0.25$ and $t_{\text{form}} = 0.1$ Myr. The density increased from the inside (dark red, $\rho = 3100$ kg m$^{-3}$) to the outside (dark blue, $\rho = 3385.6$ kg m$^{-3}$). Therefore, the model experienced buoyancy driven mass movement.

With decreasing radius of the body the technical assessment of the numerical model became more important, as a thermo-mechanical regime with partially molten, but non-convectional interior was observed (static melt class in Fig. 1). In this regime with $\varphi \leq 0.4$ we expect the Stokes velocity $v_{\text{Stokes}} \sim g/\eta$ for iron droplets to be small, such that the time scale for differentiation is high. These melt-bearing but undifferentiated planetesimals are a potentially important link for impact splash models of chondrule formation (see, e.g., Sanders and Taylor [2005]).

For a more stringent analysis of the importance of these models and corresponding parameter ranges we will further evaluate this connection in future work.

A subset of our models evolved to a state with highly porous outer layers, which altered the cooling history of the planetesimal. These shells occupied a larger fraction of the planetesimal radius with later formation time and smaller radius of the body. Hence, smaller and later formed objects were the most porous bodies, which can have implications on their dynamical behavior during impact processes, as investigated by Jutzi et al. [2008, 2009]. The larger planetesimals in our dataset can either be subject to catastrophic impact events with similar-sized bodies or subject to impacts by smaller bodies. For both cases the state of the material is important for the interaction with the encountered body. All in all these effects tend to influence the dynamical history of the accretion phase of terrestrial planets and cannot be neglected for investigations of collisional growth. Additionally, the thickness of the shells could be used to relate the structure of pristine bodies in the Solar System, which did not experience catastrophic impact events after their rapid formation, to their formation time.

Many of our models reached elevated temperatures, potentially high enough to outgas existing volatile elements. When these models reached a specific boundary the resulting bodies might end up as dry bodies, unable to deliver volatile elements to the forming planets via impacts. Thus, future studies will investigate the effect of SLR heating and initial porosity on the outgassing of volatiles in small bodies and therefore might have implications for the habitability of planetary systems, when related to the delivery to accreting terrestrial planets (e.g., Elser et al. [2012], Ciesla et al. [2015]).

The more moderate models still showed temperatures high enough for hydration and metamorphic transformation processes, potentially creating serpentinites via an exothermic reaction. As discussed in Abramov and Mojzsis [2011], such reactions can provide energy for non-volcanic hydrothermal activity. Within certain depths of onion shell structured planetesimals, which are in accordance with our models and previous work (Weiss and Elkins-Tanton [2013] and references therein), the energy output might be in the right regime for the synthesis of primitive organic compounds, such as basic amino acids (Cobb and Pudritz [2014]). Their synthesis is dependent on the ammonia and water content of the corresponding planetesimal and can also change with radial distance to the central star (Cobb et al. [2015]). Therefore, future studies can be directed to couple interior evolution to exterior formation conditions, i.e., the region in the protoplanetary disk and the appropriate formation time for various size classes, to gain a better understanding of the geological environment of early biological processes in our Solar System.

6. Conclusions

The initial state of planetesimals in the early Solar System crucially affected their thermo-mechanical evolution, which yields implications for terrestrial planet formation theories. We have conducted numerous 2D and 3D finite-difference fluid dynamics simulations of planetesimals with varying radius, formation time and initial porosity. From these we have determined the parameter space for various thermo-mechanical regimes and the influence of initial porosity. Our conclusions are the following:

- Typically, planetesimals with large size, early formation time and high initial porosity tended to develop convection. Small radii, late formation times and low porosities led to bodies which did not experience silicate melting.
- A third thermo-mechanical regime with largely molten bodies without convectional mixing existed for an intermediate parameter range with a trend toward small bodies and formation times $t_{\text{form}} \approx 1.1–1.5$ Myr after CAI formation.
• The effects of initial porosity were by far outweighed by those of planetesimal size and formation time, scarcely affecting the qualitative evolution of a planetesimal.

• A majority of models retained a shell of highly porous material in their outer layers, which was not affected by melting and sintering processes inside the bodies. The depth of these shells increased with later formation times and decreased planetesimal size.

With our models we were able to constrain stringent parameter ranges for the major thermo-mechanical regimes and to show that porosity is not a primary factor for the evolution of planetesimals. Future investigations will link these results to specific aspects of terrestrial planet formation, like volatile degassing and chondrule formation. Moreover, connecting these results with SLR enrichment mechanisms in stellar clusters (e.g., Parker et al. 2014, Parker and Dale 2016), and thus probably strongly varying abundances of SLRs, would be beneficial for a comprehensive theory of planetary assembly and habitability on interstellar or galactic scales.

Acknowledgements

We thank the referee Stephen J. Mojzsis for a thorough and constructive review, which considerably helped to improve the manuscript. We thank the NCCR PlanetS and the PlanetZ platforms for an inspiring and collaborative scientific environment and Richard J. Parker and Cornelis P. Dullemond for stimulating discussions. TL was supported by ETH Research Grant ETH-17 13-1. The numerical simulations in this work were performed on the brutus and euler computing clusters of ETH Zürich. The models were analyzed using the open source software environments matplotlib (Hunter 2007), bokeh and paraview (Ahrens et al. 2005).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.icarus.2016.03.004.

Appendix B. List of simulation runs

Table B.3: List of all 2D simulations with radius \(R_p \) (km), formation time \(t_{\text{form}} \) (Myr) and initial porosity \(\phi_{\text{init}} \) (non-dim.). Grid specifies the number of nodes in the finite-difference grid, Shell indicates whether the corresponding model retained a porous shell after its thermo-mechanical evolution, Thermom. regime indicates the evolutionary channel of the model and Unr. Conv. states whether the model resolved the internal fluid motion.

```
| No. | \( R_p \) | \( \phi_{\text{init}} \) | \( t_{\text{form}} \) | Grid | Shell | Thermom. regime | Unr. Conv. |
|-----|-----------|----------------|----------------|------|-------|----------------|-----------|
| 001 | 20        | 0              | 0.1            | 501² | No    | Static melt    | Yes       |
| 002 | 20        | 0              | 0.5            | 501² | No    | Static melt    | Yes       |
```

http://matplotlib.org
http://bokeh.pydata.org
http://www.paraview.org
No.	R_0	\(\varphi_{sat}\)	t_{conv}	Grid	Shell	Thermol. regime	Unb. Conv.
003	20	0.4	1	No	Static melt	No	
004	20	0.4	1	No	Static melt	No	
005	20	0.4	1	No	Static melt	No	
006	20	0.4	1	No	Static melt	No	
007	20	0.4	1	No	Static melt	No	
008	20	0.4	1	No	Static melt	No	
009	20	0.4	1	No	Static melt	No	
010	20	0.4	1	No	Static melt	No	
011	20	0.4	1	No	Static melt	No	
012	20	0.4	1	No	Static melt	No	
013	20	0.4	1	No	Static melt	No	
014	20	0.4	1	No	Static melt	No	
015	20	0.4	1	No	Static melt	No	
016	20	0.4	1	No	Static melt	No	
017	20	0.4	1	No	Static melt	No	
018	20	0.4	1	No	Static melt	No	
019	20	0.4	1	No	Static melt	No	
020	20	0.4	1	No	Static melt	No	
021	20	0.4	1	No	Static melt	No	
022	20	0.4	1	No	Static melt	No	
023	20	0.4	1	No	Static melt	No	
024	20	0.4	1	No	Static melt	No	
025	20	0.4	1	No	Static melt	No	
026	20	0.4	1	No	Static melt	No	
027	20	0.4	1	No	Static melt	No	
028	20	0.4	1	No	Static melt	No	
029	20	0.4	1	No	Static melt	No	
030	20	0.4	1	No	Static melt	No	
031	20	0.4	1	No	Static melt	No	
032	20	0.4	1	No	Static melt	No	
033	20	0.4	1	No	Static melt	No	
034	20	0.4	1	No	Static melt	No	
035	20	0.4	1	No	Static melt	No	
036	20	0.4	1	No	Static melt	No	
037	20	0.4	1	No	Static melt	No	
038	20	0.4	1	No	Static melt	No	
039	20	0.4	1	No	Static melt	No	
040	20	0.4	1	No	Static melt	No	
041	20	0.4	1	No	Static melt	No	
042	20	0.4	1	No	Static melt	No	
043	20	0.4	1	No	Static melt	No	
044	20	0.4	1	No	Static melt	No	
045	20	0.4	1	No	Static melt	No	
046	20	0.4	1	No	Static melt	No	
047	20	0.4	1	No	Static melt	No	
048	20	0.4	1	No	Static melt	No	
049	20	0.4	1	No	Static melt	No	
050	20	0.4	1	No	Static melt	No	
051	20	0.4	1	No	Static melt	No	
052	20	0.4	1	No	Static melt	No	
053	20	0.4	1	No	Static melt	No	
054	20	0.4	1	No	Static melt	No	
055	20	0.4	1	No	Static melt	No	
056	20	0.4	1	No	Static melt	No	
057	20	0.4	1	No	Static melt	No	
058	20	0.4	1	No	Static melt	No	
059	20	0.4	1	No	Static melt	No	
060	20	0.4	1	No	Static melt	No	
061	20	0.4	1	No	Static melt	No	
062	20	0.4	1	No	Static melt	No	
063	20	0.4	1	No	Static melt	No	
064	20	0.4	1	No	Static melt	No	
065	20	0.4	1	No	Static melt	No	
No.	R_e	ϕ_{sat}	t_{com}	Grid	Shell	Thermo. regime	Unr. Conv.
-----	------	--------	------	-----	-----	---------------	-----------
129	50	0.25	1.5	501	Yes	Static melt	No
130	50	0.25	1.6	501	Yes	Solid	No
131	50	0.25	1.7	501	Yes	Solid	No
132	50	0.25	1.75	501	Yes	Solid	No
133	50	0.3	0.1	501	No	Static melt	Yes
134	50	0.3	0.5	501	Yes	Static melt	Yes
135	50	0.3	1	501	Yes	Static melt	Yes
136	50	0.3	1.1	501	Yes	Static melt	Yes
137	50	0.3	1.2	501	Yes	Static melt	Yes
138	50	0.3	1.3	501	Yes	Static melt	Yes
139	50	0.3	1.4	501	Yes	Static melt	No
140	50	0.3	1.5	501	Yes	Static melt	No
141	50	0.3	1.6	501	Yes	Solid	No
142	50	0.3	1.7	501	Yes	Solid	No
143	50	0.3	1.75	501	Yes	Solid	No
144	50	0.4	0.1	501	No	Static melt	Yes
145	50	0.4	0.5	501	Yes	Def. melt	Yes
146	50	0.4	1	501	Yes	Def. melt	Yes
147	50	0.4	1.1	501	Yes	Def. melt	Yes
148	50	0.4	1.2	501	Yes	Def. melt	Yes
149	50	0.4	1.3	501	Yes	Def. melt	Yes
150	50	0.4	1.4	501	Yes	Def. melt	No
151	50	0.4	1.5	501	Yes	Static melt	No
152	50	0.4	1.6	501	Yes	Solid	No
153	50	0.4	1.7	501	Yes	Solid	No
154	50	0.4	1.75	501	Yes	Solid	No
155	50	0.5	0.1	501	No	Static melt	Yes
156	50	0.5	0.5	501	Yes	Def. melt	Yes
157	50	0.5	1	501	Yes	Def. melt	Yes
158	50	0.5	1.1	501	Yes	Def. melt	Yes
159	50	0.5	1.2	501	Yes	Def. melt	Yes
160	50	0.5	1.3	501	Yes	Def. melt	Yes
161	50	0.5	1.4	501	Yes	Static melt	No
162	50	0.5	1.5	501	Yes	Static melt	No
163	50	0.5	1.6	501	Yes	Solid	No
164	50	0.5	1.7	501	Yes	Solid	No
165	50	0.5	1.75	501	Yes	Solid	No
166	50	0.75	0.1	501	No	Static melt	Yes
167	50	0.75	0.5	501	No	Def. melt	Yes
168	50	0.75	1	501	Yes	Def. melt	Yes
169	50	0.75	1.1	501	Yes	Def. melt	Yes
170	50	0.75	1.2	501	Yes	Def. melt	Yes
171	50	0.75	1.3	501	Yes	Def. melt	Yes
172	50	0.75	1.4	501	Yes	Static melt	No
173	50	0.75	1.5	501	Yes	Static melt	No
174	50	0.75	1.6	501	Yes	Solid	No
175	50	0.75	1.7	501	Yes	Solid	No
176	50	0.75	1.75	501	Yes	Solid	No
177	80	0	0.1	501	No	Mixing	Yes
178	80	0	0.5	501	No	Mixing	Yes
179	80	0	1	501	No	Mixing	Yes
180	80	0	1.1	501	No	Mixing	No
181	80	0	1.2	501	No	Mixing	No
182	80	0	1.3	501	No	Mixing	Yes
183	80	0	1.4	501	No	Mixing	Yes
184	80	0	1.5	501	No	Def. melt	No
185	80	0	1.6	501	No	Static melt	No
186	80	0	1.7	501	No	Solid	No
187	80	0	1.75	501	No	Solid	No
188	80	0.1	0.1	501	No	Mixing	Yes
189	80	0.1	0.5	501	No	Mixing	Yes
190	80	0.1	1	501	Yes	Mixing	Yes
191	80	0.1	1.1	501	Yes	Mixing	Yes
No.	\(R_P\)	\(\phi_{tot}\)	\(\theta_{tot}\)	Grid	Shell	Thermol. regime	Unr. Conv.
-----	--------	------------	-------------	------	-------	-----------------	----------
255	80	0.75	0.5	501^2	No Mixing	Yes	318
256	80	0.75	1	501^2	Yes Mixing	Yes	319
257	80	0.75	1.1	501^2	Yes Mixing	Yes	320
258	80	0.75	1.2	501^2	Yes Mixing	Yes	321
259	80	0.75	1.3	501^2	Yes Mixing	Yes	322
260	80	0.75	1.4	501^2	Yes Mixing	No	323
261	80	0.75	1.5	501^2	Yes Mixing	Yes	324
262	80	0.75	1.6	501^2	Yes Static melt	Yes	325
263	80	0.75	1.7	501^2	Yes Solid	No	326
264	80	0.75	1.75	501^2	Yes Solid	No	327
265	110	0	0.1	501^2	No Mixing	Yes	328
266	110	0	0.5	501^2	No Mixing	Yes	329
267	110	0	1	501^2	No Mixing	Yes	330
268	110	0	1.1	501^2	No Mixing	Yes	331
269	110	0	1.2	501^2	No Mixing	Yes	332
270	110	0	1.3	501^2	No Mixing	Yes	333
271	110	0	1.4	501^2	No Mixing	Yes	334
272	110	0	1.5	501^2	No Mixing	Yes	335
273	110	0	1.6	501^2	No Def. melt	No	336
274	110	0	1.7	501^2	No Solid	No	337
275	110	0	1.75	501^2	No Solid	No	338
276	110	0.1	0.1	501^2	No Mixing	Yes	339
277	110	0.1	0.5	501^2	No Mixing	Yes	340
278	110	0.1	1	501^2	Yes Mixing	Yes	341
279	110	0.1	1.1	501^2	Yes Mixing	Yes	342
280	110	0.1	1.2	501^2	Yes Mixing	Yes	343
281	110	0.1	1.3	501^2	Yes Mixing	Yes	344
282	110	0.1	1.4	501^2	Yes Mixing	No	345
283	110	0.1	1.5	501^2	Yes Mixing	Yes	346
284	110	0.1	1.6	501^2	Yes Def. melt	No	347
285	110	0.1	1.7	501^2	Yes Solid	Yes	348
286	110	0.1	1.75	501^2	Yes Solid	No	349
287	110	0.2	0.1	501^2	No Mixing	Yes	350
288	110	0.2	0.5	501^2	No Mixing	Yes	351
289	110	0.2	1	501^2	Yes Mixing	Yes	352
290	110	0.2	1.1	501^2	Yes Mixing	Yes	353
291	110	0.2	1.2	501^2	Yes Mixing	Yes	354
292	110	0.2	1.3	501^2	Yes Mixing	Yes	355
293	110	0.2	1.4	501^2	Yes Mixing	No	356
294	110	0.2	1.5	501^2	Yes Mixing	No	357
295	110	0.2	1.6	501^2	Yes Def. melt	No	358
296	110	0.2	1.7	501^2	Yes Solid	No	359
297	110	0.2	1.75	501^2	Yes Solid	No	360
298	110	0.25	0.1	501^2	No Mixing	Yes	361
299	110	0.25	0.5	501^2	No Mixing	Yes	362
300	110	0.25	1	501^2	No Mixing	Yes	363
301	110	0.25	1.1	501^2	Yes Mixing	Yes	364
302	110	0.25	1.2	501^2	Yes Mixing	Yes	365
303	110	0.25	1.3	501^2	Yes Mixing	Yes	366
304	110	0.25	1.4	501^2	Yes Mixing	No	367
305	110	0.25	1.5	501^2	Yes Mixing	No	368
306	110	0.25	1.6	501^2	Yes Def. melt	No	369
307	110	0.25	1.7	501^2	Yes Solid	No	370
308	110	0.25	1.75	501^2	Yes Solid	No	371
309	110	0.3	0.1	501^2	No Mixing	Yes	372
310	110	0.3	0.5	501^2	No Mixing	Yes	373
311	110	0.3	1	501^2	Yes Mixing	Yes	374
312	110	0.3	1.1	501^2	Yes Mixing	Yes	375
313	110	0.3	1.2	501^2	Yes Mixing	Yes	376
314	110	0.3	1.3	501^2	Yes Mixing	Yes	377
315	110	0.3	1.4	501^2	Yes Mixing	No	378
316	110	0.3	1.5	501^2	Yes Mixing	No	379
317	110	0.3	1.6	501^2	Yes Def. melt	No	380
No.	R_p	ϕ_{min}	t_{geom}	Grid	Shell	Thermol. regime	Unr. Conv.
-----	-------	--------------	------------	------	-------	----------------	------------
381	140	0.2	1.4	5012	Yes	Mixing	No
382	140	0.2	1.5	5012	Yes	Mixing	No
383	140	0.2	1.6	5012	Yes	Mixing	No
384	140	0.2	1.7	5012	Yes	Solid	No
385	140	0.2	1.75	5012	Yes	Solid	No
386	140	0.25	0.1	5012	No	Mixing	No
387	140	0.25	0.5	5012	No	Mixing	No
388	140	0.25	1	5012	Yes	Mixing	No
389	140	0.25	1.1	5012	Yes	Mixing	No
390	140	0.25	1.2	5012	Yes	Mixing	No
391	140	0.25	1.3	5012	Yes	Mixing	No
392	140	0.25	1.4	5012	Yes	Mixing	No
393	140	0.25	1.5	5012	Yes	Mixing	No
394	140	0.25	1.6	5012	Yes	Mixing	No
395	140	0.25	1.7	5012	Yes	Solid	No
396	140	0.25	1.75	5012	Yes	Solid	No
397	140	0.3	0.1	5012	No	Mixing	No
398	140	0.3	0.5	5012	No	Mixing	No
399	140	0.3	1	5012	Yes	Mixing	No
400	140	0.3	1.1	5012	Yes	Mixing	No
401	140	0.3	1.2	5012	Yes	Mixing	No
402	140	0.3	1.3	5012	Yes	Mixing	No
403	140	0.3	1.4	5012	Yes	Mixing	No
404	140	0.3	1.5	5012	Yes	Mixing	No
405	140	0.3	1.6	5012	Yes	Mixing	No
406	140	0.3	1.7	5012	Yes	Solid	No
407	140	0.3	1.75	5012	Yes	Solid	No
408	140	0.4	0.1	5012	No	Mixing	No
409	140	0.4	0.5	5012	No	Mixing	No
410	140	0.4	1	5012	Yes	Mixing	No
411	140	0.4	1.1	5012	Yes	Mixing	No
412	140	0.4	1.2	5012	Yes	Mixing	No
413	140	0.4	1.3	5012	Yes	Mixing	No
414	140	0.4	1.4	5012	Yes	Mixing	No
415	140	0.4	1.5	5012	Yes	Mixing	No
416	140	0.4	1.6	5012	Yes	Mixing	No
417	140	0.4	1.7	5012	Yes	Solid	No
418	140	0.4	1.75	5012	Yes	Solid	No
419	140	0.5	0.1	5012	No	Mixing	No
420	140	0.5	0.5	5012	No	Mixing	No
421	140	0.5	1	5012	Yes	Mixing	No
422	140	0.5	1.1	5012	Yes	Mixing	No
423	140	0.5	1.2	5012	Yes	Mixing	No
424	140	0.5	1.3	5012	Yes	Mixing	No
425	140	0.5	1.4	5012	Yes	Mixing	No
426	140	0.5	1.5	5012	Yes	Mixing	No
427	140	0.5	1.6	5012	Yes	Mixing	No
428	140	0.5	1.7	5012	Yes	Solid	No
429	140	0.5	1.75	5012	Yes	Solid	No
430	140	0.75	0.1	5012	No	Mixing	No
431	140	0.75	0.5	5012	No	Mixing	No
432	140	0.75	1	5012	Yes	Mixing	No
433	140	0.75	1.1	5012	Yes	Solid	No
434	140	0.75	1.2	5012	Yes	Mixing	No
435	140	0.75	1.3	5012	Yes	Mixing	No
436	140	0.75	1.4	5012	Yes	Mixing	No
437	140	0.75	1.5	5012	Yes	Mixing	No
438	140	0.75	1.6	5012	Yes	Mixing	No
439	140	0.75	1.7	5012	Yes	Solid	No
440	140	0.75	1.75	5012	Yes	Solid	No
441	170	0	0.1	5012	No	Mixing	No
442	170	0	0.5	5012	No	Mixing	No
443	170	0	1	5012	No	Mixing	No
No.	R_F	ϕ_{init}	t_{form}	Grid	SHELL	THERMOM. regime	Unr. Conv.
-----	-------	---------------	----------	------	-------	-----------------	-----------
507	170	0.5	0.1	5012	No Mixing	No	No
508	170	0.5	0.1	5012	No Mixing	No	No
509	170	0.5	1	5012	Yes Mixing	No	No
510	170	0.5	1.1	5012	Yes Mixing	No	No
511	170	0.5	1.2	5012	Yes Mixing	No	No
512	170	0.5	1.3	5012	Yes Mixing	No	No
513	170	0.5	1.4	5012	Yes Mixing	No	No
514	170	0.5	1.5	5012	Yes Mixing	No	No
515	170	0.5	1.6	5012	Yes Mixing	No	No
516	170	0.5	1.7	5012	Yes Def. melt	No	No
517	170	0.5	1.75	5012	Yes Solid	No	No
518	170	0.75	0.1	5012	No Mixing	No	No
519	170	0.75	0.1	5012	Yes Mixing	No	No
520	170	0.75	1	5012	Yes Mixing	No	No
521	170	0.75	1.1	5012	Yes Mixing	No	No
522	170	0.75	1.2	5012	Yes Mixing	No	No
523	170	0.75	1.3	5012	Yes Mixing	No	No
524	170	0.75	1.4	5012	Yes Mixing	No	No
525	170	0.75	1.5	5012	Yes Mixing	No	No
526	170	0.75	1.6	5012	Yes Mixing	No	No
527	170	0.75	1.7	5012	Yes Def. melt	No	No
528	170	0.75	1.75	5012	Yes Solid	No	No
529	200	0	0.1	5012	No Mixing	No	No
530	200	0	0.5	5012	No Mixing	No	No
531	200	0	1	5012	No Mixing	No	No
532	200	0	1.1	5012	No Mixing	No	No
533	200	0	1.2	5012	No Mixing	No	No
534	200	0	1.3	5012	No Mixing	No	No
535	200	0	1.4	5012	No Mixing	No	No
536	200	0	1.5	5012	No Mixing	No	No
537	200	0	1.6	5012	No Mixing	No	No
538	200	0	1.7	5012	No Mixing	No	No
539	200	0	1.75	5012	No Solid	No	No
540	200	0.1	0.1	5012	No Mixing	No	No
541	200	0.1	0.5	5012	No Mixing	No	No
542	200	0.1	1	5012	Yes Mixing	No	No
543	200	0.1	1.1	5012	Yes Mixing	No	No
544	200	0.1	1.2	5012	Yes Mixing	No	No
545	200	0.1	1.3	5012	Yes Mixing	No	No
546	200	0.1	1.4	5012	Yes Mixing	No	No
547	200	0.1	1.5	5012	Yes Mixing	No	No
548	200	0.1	1.6	5012	Yes Mixing	No	No
549	200	0.1	1.7	5012	Yes Mixing	No	No
550	200	0.1	1.75	5012	Yes Solid	No	No
551	200	0.2	0.1	5012	No Mixing	No	No
552	200	0.2	0.5	5012	No Mixing	No	No
553	200	0.2	1	5012	Yes Mixing	No	No
554	200	0.2	1.1	5012	Yes Mixing	No	No
555	200	0.2	1.2	5012	Yes Mixing	No	No
556	200	0.2	1.3	5012	Yes Mixing	No	No
557	200	0.2	1.4	5012	Yes Mixing	No	No
558	200	0.2	1.5	5012	Yes Mixing	No	No
559	200	0.2	1.6	5012	Yes Mixing	No	No
560	200	0.2	1.7	5012	Yes Mixing	No	No
561	200	0.2	1.75	5012	Yes Solid	No	No
562	200	0.25	0.1	5012	No Mixing	No	No
563	200	0.25	0.5	5012	No Mixing	No	No
564	200	0.25	1	5012	Yes Mixing	No	No
565	200	0.25	1.1	5012	Yes Mixing	No	No
566	200	0.25	1.2	5012	Yes Mixing	No	No
567	200	0.25	1.3	5012	Yes Mixing	No	No
568	200	0.25	1.4	5012	Yes Mixing	No	No
569	200	0.25	1.5	5012	Yes Mixing	No	No

Table B.4: List of all 3D simulations with radius R_F (km), formation time t_{form} (Myr) and initial porosity ϕ_{init} (non-dim.). Grid specifies the number of nodes in the finite-difference grid, SHELL indicates whether the corresponding model retained a porous shell after its thermo-mechanical evolution ended and THERMOM. regime indicates the evolutionary channel of the model.
whether the corresponding model retained a porous shell after its thermo-mechanical evolution.

No.	R_p (km)	ϕ_{init}	t_{form} (Myr)	Grid	Shell	Therm. regime
625	140	0.2	0.5	261	No	Mixing
626	140	0.4	1.0	261	No	Mixing
627	170	0.4	1.3	261	No	Mixing

Table B.5: List of all 2D simulations of thermo-mechanical type static melt, for which the numerical model is consistent with the analytical solution. Parameters are radius R_p, formation time t_{form} (Myr), initial porosity ϕ_{init} (non-dim.), Grid specifies the number of nodes in the finite-difference grid, Shell indicates whether the corresponding model retained a porous shell after its thermo-mechanical evolution.

References

Ahrens, J., Geveci, B., Law, C., 2005. Paraview: An end-user tool for large-data visualization. Elsevier, ISBN-13: 978-0123875822, 2005.

Barr, A. C., Canup, R. M., 2008. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus 198, 163–177.

Barkhay, S. S., Lewis, J. S., 1976. Chemistry of primitive solar material. ARA&A 14, 81–94.

Bottinga, Y., Weill, D. F., 1972. The viscosity of magmatic silicate liquids: a model calculation. Am. J. Sci. 272, 438–475.

Chambers, J. E., 2010. Planetesimal formation by turbulent concentration. Icarus 208, 505–517.

Ciesla, F. J., Mulders, G. D., Pascucci, I., Apai, D., 2015. Volatile delivery to planets from water-rich planetesimals around low mass stars. ApJ 804, 9.

Cobb, A. K., Pudritz, R. E., 2014. Nature’s Starships. I. Observed Abundances and Relative Frequencies of Amino Acids in Meteorites. ApJ 783, 140–152.

Cobb, A. K., Pudritz, R. E., Pearce, B. K. D., 2015. Nature’s Starships. II: Simulating the Synthesis of Amino Acids in Meteorite Parent Bodies. ApJ 809, 6.

Costa, A., Caricchi, L., Bagdassarov, N., 2009. A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosys 10, 3010.

Crameri, F., Schmelinger, H., Golabek, G. J., Duretz, T., Orendt, R., Buiter, S. J. H., May, D. A., Kaup, B. J. P., Gerya, T. V., Tackley, P. J., 2012. A comparison of numerical surface topography calculations in geo dynamic modelling: an evaluation of the “sticky air” method. Geophys. J. Int. 189, 38–54.

Cuzzi, J. N., Hogan, R. C., Shariﬀ, K., 2008. Toward Planetesimals: Dense Chondrule Clumps in the Protoplanetary Nebula. ApJ 687, 1432–1447.

Davison, T. M., O’Brien, D. P., Ciesla, F. J., Collins, G. S., 2013. The early impact histories of meteorite parent bodies. Meteorit. Planet. Sci. 48, 1894–1918.

Dullemond, C. P., Stammier, S. M., Johansen, A., 2014. Forming Chondrules in Impact Splashes. I. Radiative Cooling Model. ApJ 794, 91–103.

Elkins-Tanton, L. T., Weiss, B. P., Zuber, M. T., 2011. Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett. 305, 1–10.

Elser, S., Meyer, M. R., Moore, B., 2012. On the origin of elemental abundances in the terrestrial planets. Icarus 221, 859–874.

Fu, R. R., Elkins-Tanton, L. T., 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth Planet. Sci. Lett. 390, 128–137.

Gail, H.-P., Henke, S., Trieloff, M., 2015. Thermal evolution and sintering of chondritic planetesimals. II. Improved treatment of the compaction process. A&A 576, A60.

Gerya, T. V., Yuen, D. A., 2003. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Int. 140, 293–318.

Gerya, T. V., Yuen, D. A., 2007. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Int. 163, 83–105.

Ghosh, A., McSween, H. Y., 1998. A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating. Icarus 134, 187–206.

Golabek, G. J., Bourdon, B., Gerya, T. V., 2014. Numerical models of the thermomechanical evolution of planetesimals: Application to the acapulcoite-lodranite parent body. Meteorit. Planet. Sci. 49, 1083–1099.

Golabek, G. J., Keller, T., Gerya, T. V., Zhu, G., Tackley, P. J., Connolly, J. A. D., 2011. Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215, 346–357.

Goldreich, P., Lithwick, Y., Sari, R., 2004. Planet Formation by Coagulation: A Focus on Uranus and Neptune. ARA&A 42, 549–601.

Greenberg, R., Hartmann, W. K., Chapman, C. R., Wacker, J. F., 1978. Planetesimal satellites. Icarus 28, 128–137.

Heckenberg, C., Eatteron, P., Zhang, J., 2000. New experimental observations on the anhydrous solidus for peridotite KLB-1. Geochem. Geophys. Geosyst. 1, 1051–14.

Hevey, P. J., Sanders, I. S., 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41, 95–106.
Howard, L. N., 1964. Convection at high Rayleigh number. Proceedings of the 11th International Congress in Applied Mechanics. Springer, Berlin, pp. 1109–1115.

Hunter, J. D., 2007. Matplotlib: A 2d graphics environment. Computing In Science & Engineering 9, 90–95.

Jacobsen, B. S., Yin, Q.-Z., Moshier, V., Amelin, Y., Krot, A. N., Nagashima, K., Hutchison, I. D., Palme, H., 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett. 272, 353–364.

Johansen, A., Mac Low, M.-M., Lacerda, P., Bizzarro, M., 2015. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, 1500109.

Johansen, A., Oishi, J. S., Mac Low, M.-M., Klahr, H., Henning, T., Youdin, A., 2007. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025.

Jutzi, M., Benz, W., Michel, P., 2008. Numerical simulations of impacts involving porous bodies: I. implementing sub-resolution porosity in a 3d sph hydrocode. Icarus 198, 242–255.

Jutzi, M., Michel, P., Hiraoka, K., Nakamura, A. M., Benz, W., 2009. Numerical simulations of impacts involving porous bodies: II. comparison with laboratory experiments. Icarus 201, 802–813.

Kleine, T., Touilbou, M., Bourdon, B., Nimmo, F., Mezger, K., Palme, H., Jacobsen, S. B., Yin, Q.-Z., Halliday, A. N., 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188.

Kraichnan, R. H., 1962. Turbulent Thermal Convection at Arbitrary Prandtl Number. Phys. Fluids 5, 1374–1389.

Liebsch, C., Schmucker, B., Terasaki, H., Poe, B. T., Suzuki, A., Funakoshi, K.-I., Ando, R., Rubie, D. C., 2005. Viscosity of peridote liquid up to 13 GPa: Implications for magma ocean viscosity. Earth Planet. Sci. Lett. 240, 589–604.

Mackwell, S. J., 1991. High-temperature rheology of enstatite: Implications for creep in the mantle. Geophys. Res. Lett. 18, 2027–2030.

Mishra, R. K., Mathas, K. K., Sameer, Feb. 2016. Abundance of 60Fe inferred from nanoSIMS study of QUE 97008 (L3.05) chondrules. Earth Planet. Sci. Lett. 436, 71–81.

Morbidelli, A., Bottke, W. F., Nesvorný, D., Levison, H. F., 2009. Asteroids were born big. Icarus 204, 558–573.

Morbidelli, A., Lambrechts, M., Jacobson, S., Bitsch, B., 2015. The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores. Icarus 238, 418–429.

Neumann, W., Breuer, D., Spohn, T., 2014. Modelling of compaction in planetesimals. A&A 567, A120.

Parker, R. J., Church, R. P., Davies, M. B., Meyer, M. R., 2014. Supernova enrichment and dynamical histories of solar-type stars in clusters. MNRAS 437, 946–958.

Parker, R. J., Dale, J. E., 2016. Did the Solar system form in a sequential triggering star formation event? MNRAS 456, 1066–1072.

Pinkerton, H., Stevenson, R. J., 1992. Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J. Volcanol. Geotherm. Res. 53, 47–66.

Qin, L., Dauphas, N., Wadhwa, M., Masarik, J., Janney, P. E., 2008. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025.

Ranalli, G., 1995. Rheology of the Earth. Chapman and Hall, New York.

Ranalli, G., 1995. The origin of chondrules and enstatite: Debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci. 4, 1372–1389.

Saunders, I. S., Taylor, G. J., 2005. Implications of 26Al in Nebular Dust: Formation of Chondrules by Disruption of Molten Planetesimals. In: Krot, A. N., Scott, E. R. D., Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. Vol. 341 of Astronomical Society of the Pacific Conference Series. pp. 915–932.

Schmeling, H., Babeyko, A. Y., Enns, A., Faccenna, C., Funiciello, F., Gerya, T., Golabek, G. J., Grigull, S., Kaus, B. J. P., Morra, G., Schmalholz, S. M., van Hunen, J., 2008. A benchmark comparison of spontaneous subduction models–Towards a free surface. Phys. Earth Planet. Int. 171, 198–223.

Sahijpal, S., Soni, P., Gupta, G., 2007. Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Int. 112, 171–190.

Sotin, C., Labrosse, S., 1999. Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Int. 112, 171–190.

Stolper, E., Hager, B. H., Walker, D., Hays, J. F., 1981. Melt segregation from partially molten source regions - The importance of melt density and source region size. J. Geophys, Res. 86, 6261–6271.

Suzuki, A., Ohtani, E., Kato, T., 1998. Density and thermal expansion of a peridotite melt at high pressure. Phys. Earth Planet. Sci. Int. 107, 53–61.

Tackley, P. J., Schubert, G., Glatzmaier, G. A., Schenk, P., Ratcliff, J. T., Matas, J.-P., 2003. Three-Dimensional Simulations of Melt Convection in Io. Icarus 149, 79–93.

Thrane, K., Bizzarro, M., Baker, J. A., 2006. Extremely Brief Formation Interval for Refractory Inclusions and Uniform Distribution of 26Al in the Early Solar System. ApJ 646, L159–L162.

Tkalcic, B. J., Brenker, F. E., 2014. Plastic deformation of olivine-rich diogenites and implications for mantle processes on the diogenite parent body. Meteorit. Planet. Sci. 49, 1202–1213.

Tkalcic, B. J., Golabek, G. J., Brenker, F. E., 2013. Solid-state plastic deformation in the dynamic interior of a differentiated asteroid. Nature Geosc 6, 93–97.

Trounnes, R. G., Frost, D. J., 2002. Peridotite melt and mineral-melt partitioning of major and minor elements at 22–24.5 GPa. Earth Planet. Sci. Lett. 197, 117–131.

Turbide, E. D., 1997. Aerodynamics of solid bodies in the solar nebula. MNras 180, 57–70.

Weidenschilling, S. J., 1977. Aerodynamics of solid bodies in the solar nebula. MNras 180, 57–70.

Weidenschilling, S. J., Cuzzi, J. N., 2006. Accretion Dynamics and Timescales: Relation to Chondrites. Meteorites and the Early Solar System II, 1. pp. 473–485.

Weiss, B. P., Elkins-Tanton, L. T., 2013. Differentiated Planetesimals and the Parent Bodies of Chondrites. Annu. Rev. Earth Planet. Sci. 41, 529–560.

Wilhelms, E. D., Roederer, J. T., Matas, A., Blackman, E., Scott, E. R. D., McKinley, R. D., 2014. Evidence for a Dynamo in the Main Group Pullastre Parent Body. Science 339, 939–942.

Wade, J., Wood, B. J., 2005. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95.

Wendlandt, S. J., 2017. Magneto-hydrodynamics of solar jets. Science 358, 93–97.

Zsom, A., Nornel, C. W., Güttler, C., Blum, J., Dullemond, C. P., 2010. The outcome of protoplanetary disk growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A 513, A57.