Phytochemical Screening and Antimicrobial Activity of *Hydnoraabyssinicia* Root Extract

Mohammed MA, Adam MIM and Hamadnalla HMY *

Department of Biochemistry, College of Applied Sciences, University of Bahri, Sudan

Abstract

This study was carried out in Khartoum state-Sudan, during March; this plant was collected from Al-Dubibat area, locality of algoze, South Kordofan State, western Sudan. The dried root of Hydnora abyssinica was extracted successively with (petroleum ether, chloroform, and methanol). The phytochemical screening carried out for different plant roots extracts and showed that it contain high amount of alkaloids in all extract and moderate amount of flavonoids (in chloroform, methanol extracts) and moderate amount of tannins, sterol and triterpenes also moderate amount of cardiac glycoside and high amount of saponins. The antimicrobial activity of extracts were evaluated against four standard bacteria (Gram positive; *Bacillus subtilis*, *Staphylococcus aureus*) and (Gram negative; *Escherichia coli*, *Pseudomonas aeruginosa*).in addition of one standard fungi (*Candida albicans*).The result of antimicrobial tests indicated that the methanolic extract inhibited the growth of all microorganisms and most extracts showed same degree of antimicrobial activity. The result provides promising baseline information for the potential use of these crude extracts in the treatment of bacterial and fungal infections.

Keywords: Al-Dubibat area; Folk medicine; Medicinal plants; Phytochemical screening

Introduction

Sudan is the largest country in Africa, it has a wide diversity climate which is responsible for its varied vegetation and very rich flora. Many species of plants grow abundantly in the Sudan and other African countries and are used by the village populations for treatment of various disorders [1,2]. The Sudanese folkloric medicine represents a unique blend of indigenous cultures with Egyptian, Indian, Arabian, East and West African cultures [3,4]. In Sudan; plants are the main medicinal source to treat infectious diseases [5], in many developing countries like Sudan, the medicinal plants have played an important role in the treatment of diseases especially in rural areas. The medicinal and aromatic plants contain a number of chemical constituents such as alkaloids, flavonoids, tannins, saponins, glycosides and others isolated and used as an important source of indispensable drugs [6-8]. State that, medicinal plants are known by their required clinical effects on the abnormal living tissues or organs while toxic ones are known by their ability to cause a non-required physiological deviation in animals’ bodies, the traditional medicinal plants are increase in both developing and industrialized countries [4,9-11] reported that both literate and illiterate people still use local plants as drugs in many conditions.

Many secondary metabolites of plant are commercially important and find use in a number of pharmaceutical compounds [12]. However, a sustained supply of the source material often becomes difficult due to the factors like environmental changes, cultural practices, diverse geographical distribution, labor cost and selection of the superior plant stock and over exploitation by pharmaceutical industry [13]. The species *Hydnoraabyssinicia* belong to family *Hydnoraceae* locally known as (tartous) was chosen because it’s using traditionally in treatment of many abdominal diseases. Phytochemical activities were investigated to detect the effects of antimicrobial.

Objective

The objective of this study is to evaluate the phytochemical profile and the antimicrobial activities of *Hydnora abyssinica* root.

Material and Method

All the chemicals and reagents used in this study were of analytical grade such as chloroform, distilled water, ethanol, methanol, petroleum ether, acetic anhydride, sulphuric acid, gelatine salt, ferric chloride, reagents (Wagner, Hager, and Dragendorffs), aluminium chloride and potassium hydroxide.

Plant material, collection and identification

Hydnora abyssinica were collected in Septembers 2015 from Al-Dubibat area, locality of algoze, South kordofan State- Sudan and identified in herbarium of natural research Centre and compared with herbarium of Faculty of Science University of Khartoum.

Preparation of crude extracts

50g of the dried roots was weighted and extracted successively with petroleum ether by shaker apparatus for four hours at room temperature. Then extracted with chloroform and was filtrated and dried after extraction, the residual of the powdered plants materials were dried and then extracted again with methanol for 18 hours. The extracts were air dried between each extraction 50g of the dried roots was weighted and extracted successively with petroleum ether by...
shaker apparatus for four hours at room temperature. Then extracted with chloroform and was filtrated and dried after extraction, the residual of the powdered plants materials were dried and then extracted again with methanol for 18 hours. The extracts were air dried between each extraction that has involved different solvents; each extract was filtrated through Whisman No 1 filter paper, followed by concentrated under vacuum room. The crude extracts were then kept at -20°C in sterile universal bottles.

Preliminary Phytochemical screening of different extracts of the plant

General phytochemical screening for the active constituents was carried out for plant extracts using the methods carried by [14-16].

Antimicrobial activity

Preparation of nutrient agar media: 28g of powdered nutrient agar was weighted, dispensed in 1 liter of distilled water and allowed to soak for 10 minutes, swirl to mix then sterilized by autoclaving for 15 minutes at 121°C cooled to 47°C mixed well then poured into petri dishes.

Tested organisms

Bacterial organisms: Bacillus subtilis (NCTC 8236 Gram positive bacteria).

Staphylococcus aureus (ATCC 25923 Gram positive bacteria).

Escherichia coli (ATCC 25922 Gram negative bacteria).

Psedomonas arginosa (ATCC 27853 Gram negative bacteria).

Fungal organisms: Candida albicans (ATCC 7596 Fungi).

In vitro testing of extract for antimicrobial activity

Testing for antibacterial activity: The cup-plate agar diffusion method [17] was adopted with some minor modifications to assess the antibacterial activity of the prepared extracts. One ml of the standardized bacterial stock suspension 10^{-8}-10^{-9} C.F.U/ml were thoroughly mixed 0.1ml sample of each of the extract dilution in methanol using automatic micro liter pipette, and allowed to diffuse at room temperature for two hours. The plates were then incubated in the upright position at 37°C for 18 hours. Three replicates were carried out for each extract against each of the test organism. After incubation the diameters of the resultant growth inhibition zones were measured, averaged and mean values were tabulated.

Testing for antifungal activity: The same method for bacteria was adopted. Instead of nutrient agar. The incubated medium was incubated at 25°C for two days for the candida albicans.

Result and discussion

Phytochemical screening of Hydnoraabyssinicia and physical properties

Three solvents were used in successive polarities to extract secondary metabolites from Hydnora abyssinicia and their properties were cited in table 1.

Table 1 reported the result of extractives values of Hydnora abyssinicia as following for methanol 3.22% (Dark brown powder) followed by chloroform 1.24% (brown powder), petroleum ether 0.86% (brown powder) (Table 2).

Table 1: Properties and extractives values of Hydnoraabyssinicia extract root Preliminary phytochemical screening of extract from Hydnoraabyssinicia.

Extracts	Characteristic	Colour of Extract	Weight	Yield
Methanol	Powder	Dark brown	6.44	3.22
Chloroform	Powder	Brown	2.48	1.24
Petroleum Ether	Powder	Brown	1.92	0.86

Table 2: Result of phytochemical screening.

Key: Very high = (++++), High = (+++), Moderate = (++), Trace amount = (+) and absent = (-).

Hydnoraabyssinicia roots extract contain high amount of alkaloids, high amount of tannins in methanol extract and moderate amount of flavonoids, and triterpenes, and trace amount of cardiac glycosides and high amount of saponins.

The extract of Hydnoraabyssinicia root at concentrations (100mg/ml, 50mg/ml, 25mg/ml, 12.5mg/ml) were subjected to antimicrobial tests by using cup plate agar diffusion method and inhibition zone were measured in (mm) against four bacterial strains and one fungi. The range of inhibition was found 11-25mm (Table 3).

Phytochemical screening of Hydnoraabyssinicia

The phytochemical screening were carried out on different ex-
tricts of Hydnoraabyssinicia roots extracts and they showed to con-
tain high amount of alkaloids, high amount of tannins in methanol...
extract, moderate amount of flavonoids, and triterpenes, trace amount of cardiac glycosides and high amount of saponins.

Extract	Zone of inhibition in diameters (mm)	Concentration in mg/ml			
Methanol	E.c	P.a	S.a	B.s	C.a
100	19	-	20	25	19
50	18	-	17	24	18
25	17	-	14	23	16
12.5	12	-	12	22	15
Chloroform	E.c	P.a	S.a	B.s	C.a
100	17	-	-	22	17
50	16	-	-	20	14
25	15	-	-	19	10
12.5	11	-	-	18	10
Petroleum	E.c	P.a	S.a	B.s	C.a
100	-	-	-	20	16
50	-	-	-	19	15
25	-	-	-	17	13
12.5	-	-	-	15	10

Table 3: Result of antimicrobial activities.

Key: B.s, Bacillus subtilis; S.a, staphylococcus aureus; E.c, Escherichia coli; Pa pseudomonas aeruginosa, C.a Candida albicans.

Antimicrobial activities of Hydnora abyssinica

The methanol extract showed high activity at all concentrations (100, 50, 25, 12.5mg/ml) against bacillus subtilis (25, 24, 23, 22), low activity against E.c (19, 18, 17, 16), as well as staphylococcus aureus (20, 17, 14, 12), and low activity against candida albicans (19, 18, 16, 15, 11), Chloroform extract cited low activity against E.c (17, 16, 15, 11), as well as candida albicans (17, 14, 10, 10) and high activity against bacillus subtilis (22, 20, 19, 18),舞蹈石油 ether extract showed high activity against bacillus subtilis (20, 19, 17, 15), showed low activity against candida albicans (16, 15, 13, 10). This activity is due to presence of phytoconstituents present in roots extracts mainly saponins and phenolic compounds which was confirmed by phytochemical tests. African medicinal plants are well tested for their antimicrobial activity this activity is due to phytochemical class such as saponin, flavonoid, tannins and phenolic compounds.

Conclusion

Antimicrobial resistance is reported to be on the increase due to gene mutation of the disease pathogens. Hydnora abyssinica was chosen for this study because of their reputation in folklore medicine as antimicrobial agents and usage in many diseases, this agreed with [15]. Phytochemical screening was carried out and lead to presence of some secondary metabolites the plant was showed to contain alkaloids, flavonoids, tannins, saponins, sterol, triterpenes, and cardiac glycosides. The crude extract was subjected to antimicrobial assays using cup plate diffusion method and the inhibition zone was measured in mm. The methanol extract gave good result against four tested microorganisms (E.c, S.a, B.s, and C.a). The petroleum ether extract showed absence of inhibition zone against four bacterial strains, and showed low activity against candida albicans.

References

1. Adam SEI (1978) Toxicity of indigenous plants and agricultural chemicals in farm animals. clinical toxicology 13: 269-280.
2. Nwude N (1979) Poisonous Plants in Nigeria. Ahmadu Bello University Press, Zaria, Nigeria.
3. Gamal ED, Mahgoob SEL, Awatif AB, Mohammed GM (1997) Medicinal plant of ingassana area, research institute for medicinal and aromatic plants. National Center for Research, Khartoum, Sudan.
4. Nethathe BB, Ndip RN (2011) Bioactivity of Hydnoraeaficana on selected bacterial pathogens: Preliminary phytochemical screening. African Journal of Microbiology Research, 5: 2820-2826.
5. El-Kamali HH, EL-Karim EMA (2009) Evaluation of antibacterial activity of some medicinal plants used in sudanese traditional medicine for treatment of wound infections. Academic Journal of Plant Sciences 2: 246-251.
6. Elgazali BEG, Eltahami SM, El Egami BAA (1994) Medicinal plants of the Sudan: Medicinal plant of the white nile provinces. National Centre for Research, Medicinal & Aromatic Plants Research Institute. Telangana, India.
7. Williamsa VL, Falcãö MP, Wojtasik EM (2011) Hydnora abyssinica: Ethnobotanical evidence for its occurrence in southern Mozambique; South African Journal of Botany 77: 474-478.
8. Wondergen P, Senah KA, Glover EK (1989) Herbal drugs in primary healthcare. Zimbabwe Science News.
9. WHO (1998) Regulatory situation of herbal medicines: A worldwide review. World Health Organization, Geneva, Switzerland.
10. Koko Waro JO (1976) Medicinal plants of East Africa. East African Literature Bureau. Bloomington, Indiana.
11. Onyancha JM, Cherongis CN, Nzivo JM, Muriithi GI, Njuguna DG, et al. (2015) Phytochemical screening and evaluation of antioxidant activity of methanolic extract of Kenyan Hydnoraeabissaica. a. Braun (Hydnoraceae). Journal of Innovations in Pharmaceuticals and Biological Sciences 2: 1-6.
12. Gibbons S (2008) Phytochemicals for bacterial resistance-strengths, weaknesses and opportunities. Planta Med 74: 594-602.
13. Joy Thomas J, Mathew S, Skaria BP (1998) Medicinal plants. Kerala Agricultural University, Kerala, India.
14. Shelley BC (2009) Ethanolbotany & the process of drug discovery: A laboratory exercise. The American Biology Teacher 71: 541-547.
15. Akinyemi KO, Oladapo O, Okwara CE, Ibe CC, Fasure KA (2005) Screening of crude extracts of six medicinal plants used in South West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Complement Altern Med 5:1.
16. Martinez A, Valencia G (2003) Farmacognosia y Fitoquímica. In: Manual de prácticas de Farmacognosia y Fitoquímica 2008, (1st edition). Universidad de Antioquia, Colombia, South America.
17. Kavanagh F (1972) Analytical microbiology. Academic Press, New York.
Journal of Anesthesia & Clinical Care
Journal of Addiction & Addictive Disorders
Advances in Microbiology Research
Advances in Industrial Biotechnology
Journal of Agronomy & Agricultural Science
Journal of AIDS Clinical Research & STDs
Journal of Alcoholism, Drug Abuse & Substance Dependence
Journal of Allergy Disorders & Therapy
Journal of Alternative, Complementary & Integrative Medicine
Journal of Alzheimer’s & Neurodegenerative Diseases
Journal of Angiology & Vascular Surgery
Journal of Animal Research & Veterinary Science
Archives of Zoological Studies
Archives of Urology
Journal of Atmospheric & Earth-Sciences
Journal of Aquaculture & Fisheries
Journal of Biotech Research & Biochemistry
Journal of Brain & Neuroscience Research
Journal of Cancer Biology & Treatment
Journal of Cardiology: Study & Research
Journal of Cell Biology & Cell Metabolism
Journal of Clinical Dermatology & Therapy
Journal of Clinical Immunology & Immunotherapy
Journal of Clinical Studies & Medical Case Reports
Journal of Community Medicine & Public Health Care
Current Trends: Medical & Biological Engineering
Journal of Cytology & Tissue Biology
Journal of Dentistry: Oral Health & Cosmesis
Journal of Diabetes & Metabolic Disorders
Journal of Dairy Research & Technology
Journal of Emergency Medicine Trauma & Surgical Care
Journal of Environmental Science: Current Research
Journal of Food Science & Nutrition
Journal of Forensic, Legal & Investigative Sciences
Journal of Gastroenterology & Hepatology Research
Journal of Gerontology & Geriatric Medicine
Journal of Genetics & Genomic Sciences
Journal of Hematology, Blood Transfusion & Disorders
Journal of Human Endocrinology
Journal of Hospice & Palliative Medical Care
Journal of Internal Medicine & Primary Healthcare
Journal of Infectious & Non Infectious Diseases
Journal of Light & Laser: Current Trends
Journal of Modern Chemical Sciences
Journal of Medicine: Study & Research
Journal of Nanotechnology: Nanomedicine & Nanobiotechnology
Journal of Neonatology & Clinical Pediatrics
Journal of Nephrology & Renal Therapy
Journal of Non Invasive Vascular Investigation
Journal of Nuclear Medicine, Radiology & Radiation Therapy
Journal of Obesity & Weight Loss
Journal of Orthopedic Research & Physiotherapy
Journal of Otolaryngology, Head & Neck Surgery
Journal of Protein Research & Bioinformatics
Journal of Pathology Clinical & Medical Research
Journal of Pharmacology, Pharmaceutics & Pharmacovigilance
Journal of Physical Medicine, Rehabilitation & Disabilities
Journal of Plant Science: Current Research
Journal of Psychiatry, Depression & Anxiety
Journal of Pulmonary Medicine & Respiratory Research
Journal of Practical & Professional Nursing
Journal of Reproductive Medicine, Gynaecology & Obstetrics
Journal of Stem Cells Research, Development & Therapy
Journal of Surgery: Current Trends & Innovations
Journal of Toxicology: Current Research
Journal of Translational Science and Research
Trends in Anatomy & Physiology
Journal of Vaccines Research & Vaccination
Journal of Virology & Antivirals
Sports Medicine and Injury Care Journal
International Journal of Case Reports and Therapeutic Studies
Journal of Ecology Research and Conservation Biology

Submit Your Manuscript: http://www.heraldopenaccess.us/Online-Submission.php