Research Article

Lotfi Jlali*

Long time decay for 3D Navier-Stokes equations in Fourier-Lei-Lin spaces

https://doi.org/10.1515/math-2021-0060
received January 20, 2021; accepted May 3, 2021

Abstract: In this paper, we study the long time decay of global solution to the 3D incompressible Navier-Stokes equations. We prove that if $u(t) \in \mathcal{X}^{-\infty,\sigma}(\mathbb{R}^3)$ is a global solution to the considered equation, where $\mathcal{X}^{-\infty,\sigma}(\mathbb{R}^3)$ is the Fourier-Lei-Lin space with parameters $\rho = -1$ and $\sigma \geq -1$, then $\|u(t)\|_{\mathcal{X}^{-\infty,\sigma}}$ decays to zero as time goes to infinity. The used techniques are based on Fourier analysis.

Keywords: Navier-Stokes equations, critical spaces, long time decay

MSC 2020: 35Q30, 35D35

1 Introduction

The 3D incompressible Navier-Stokes equations (NSEs) are

$$
\begin{align*}
\partial_t u - \nu \Delta u + u \cdot \nabla u &= -\nabla p \quad \text{in} \quad \mathbb{R}^+ \times \mathbb{R}^3, \\
\text{div} \ u &= 0 \quad \text{in} \quad \mathbb{R}^+ \times \mathbb{R}^3, \\
u \partial_t u &= u_0(x) \quad \text{in} \quad \mathbb{R}^3,
\end{align*}
$$

where $\nu > 0$ is the viscosity of the fluid, $u = u(t, x) = (u_1(t, x), u_2(t, x), u_3(t, x))$, and $p = p(t, x)$ denote, respectively, the unknown velocity and the unknown pressure of the fluid at the point $(t, x) \in \mathbb{R}^+ \times \mathbb{R}^3$, $(u \cdot \nabla u) = u_1 \partial_1 u + u_2 \partial_2 u + u_3 \partial_3 u$, and $u^0 = (u_1^0(x), u_2^0(x), u_3^0(x))$ is an initial given velocity. If u^0 is quite regular, then the divergence-free condition determines the pressure p.

Several authors have studied the local existence of solutions to the (NSE), for example, Leray [1,2] and Kato [3]. The global existence of weak solutions goes back to Leray [2] and Hopf [4]. The global well-posedness of strong solutions for small initial data in the critical Sobolev space $\dot{H}^{\frac{1}{2}}$ is due to Fujita and Kato [5]. In [6], Chemin considered initial data that belong to the space \dot{H}^s for $s > \frac{1}{2}$. In [7], Kato has proved the case of the Lebesgue space L^3. In [8], Koch and Tataru considered the space BMO^{-1} (see also [9–11]). In all these works, the norms in the corresponding spaces of the initial data are assumed to be very small. More precisely, the norm was supposed to be bounded by the viscosity coefficient ν multiplied by some positive constants. More results and details in this direction can be found in the book by Cannone [12].

In [13], the authors consider a new critical space that is contained in BMO^{-1}, where they show it is sufficient to assume that the norms of initial data are less than exactly the viscosity coefficient ν. Then, the space used in [13] is the following

$$
\mathcal{X}^{-\infty,\sigma}(\mathbb{R}^3) = \left\{ f \in \mathcal{D}'(\mathbb{R}^3); \int \frac{|\hat{f}(\xi)|}{|\xi|^\sigma} d\xi < \infty \right\},
$$

* Corresponding author: Lotfi Jlali, Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia, e-mail: ljlali@ksu.edu.sa

Open Access. © 2021 Lotfi Jlali, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
which is equipped with the norm
\[\|f\|_{X^{-\sigma}(\mathbb{R}^3)} = \int_{\mathbb{R}^3} \frac{|\hat{u}(\xi)|}{|\xi|^\sigma} d\xi. \]

We will also use the notation, for \(i = 0, 1, \)
\[X^i(\mathbb{R}^3) = \left\{ f \in \mathcal{D}'(\mathbb{R}^3); \hat{f} \in L^1_{\text{loc}}(\mathbb{R}^3), \int_{\mathbb{R}^3} |\xi|^i |\hat{u}(\xi)| d\xi < \infty \right\}. \]

For the small initial data, the global existence is proved in [13]:

Theorem 1.1. (See [13]). Let \(u^0 \in X^{-\sigma}(\mathbb{R}^3) \), such that \(\|u^0\|_{X^{-\sigma}(\mathbb{R}^3)} < \nu \). Then, there is a unique \(u \in C(\mathbb{R}^+, X^{-\sigma}(\mathbb{R}^3)) \) such that \(\Delta u \in L^1(\mathbb{R}^+, X^{-\sigma}(\mathbb{R}^3)) \). Moreover, \(\forall t \geq 0 \)
\[\sup_{0 \leq t < \infty} \left(\|u(t)\|_{X^{-\sigma}} + (\nu - \|u^0\|_{X^{-\sigma}}) \int_0^t \|\nabla u\|_{L^\infty} d\tau \right) \leq \|u^0\|_{X^{-\sigma}}. \]

On the other hand, in [14] the authors proved the local existence for the large initial data and blow-up criteria if the maximal time is finite, precisely:

Theorem 1.2. (See [14]) Let \(u^0 \in X^{-\sigma}(\mathbb{R}^3) \). There exists time \(T \) such that the system (NSE) has a unique solution \(u \in L^2([0, T], X^0(\mathbb{R}^3)) \) which also belongs to
\[C([0, T], X^{-\sigma}(\mathbb{R}^3)) \cap L^1([0, T], X^\sigma(\mathbb{R}^3)) \cap L^\infty([0, T], X^{-\sigma}(\mathbb{R}^3)). \]
Let \(T^* \) denote the maximal time of existence of such solution. Hence, if \(\|u\|_{X^{-\sigma}} < \nu \), then
\[T^* = \infty; \]
if \(T^* \) is finite, then
\[\int_0^{T^*} \|u(t)\|_{X^\sigma}^2 dt = \infty. \]

In [15], to improve the result [13,14], we introduced the Fourier Lei-Lin space which is defined as follows:
\[X^\sigma(\mathbb{R}^3) = \left\{ f \in S'(\mathbb{R}^3); \hat{f} \in L^1_{\text{loc}}(\mathbb{R}^3) \quad \text{and} \quad \int_{\mathbb{R}^3} |\xi|^\sigma |\hat{f}(\xi)| d\xi < \infty \right\}, \quad \sigma \in \mathbb{R}, \]
which is equipped with the norm
\[\|f\|_{X^\sigma(\mathbb{R}^3)} = \int_{\mathbb{R}^3} |\xi|^\sigma |\hat{f}(\xi)| d\xi, \quad f \in X^\sigma(\mathbb{R}^3). \]

In the same study, as \(X^\sigma(\mathbb{R}^3) \) is not a Banach space for \(\sigma > 0 \), we introduced the following non-homogeneous spaces:
\[X^{\sigma,0}(\mathbb{R}^3) = \left\{ f \in S'(\mathbb{R}^3); \hat{f} \in L^1_{\text{loc}}(\mathbb{R}^3) \quad \text{and} \quad \int_{\mathbb{R}^3} ((|\xi|^i + |\xi|^\sigma)|\hat{f}(\xi)|) d\xi < \infty \right\}, \quad \sigma \in \mathbb{R}, \quad i = -1, 0, \]
equipped with the norm
\[\|f\|_{X^{-1,0}(\mathbb{R}^3)} = \int_{\mathbb{R}^3} (|\xi|^2 + |\xi|^4) |\hat{f}(\xi)|^2 d\xi = \|f\|_{X^0} + \|f\|_{X^1}. \]

Precisely, we proved the following theorem:

Theorem 1.3. (See [15]) Let \(\sigma \geq -1 \) and \(u^0 \in X^{-1,0}(\mathbb{R}^3) \) be such that \(\|u^0\|_{X^{-1}} < \frac{\nu}{2^{\sigma + 1}} \). Then there exists a unique global solution \(u \in C(\mathbb{R}^+, X^{-1,0}(\mathbb{R}^3)) \) such that
\[|u(t)|_{X^{-1,0}} + \frac{\nu}{2} \int_0^t \|\Delta u\|_{X^{-1,0}} \, d\tau \leq \|u^0\|_{X^{-1,0}}, \quad t \geq 0. \]

Our problem is to show that the norm of the global solution to (NSE) in \(X^{-1,0} \) tends to zero when the time grows to infinity. The behavior of the norm of the solution to infinity, in the different Banach spaces, was studied by several researchers. Wiegner proved in [16] that the \(L^2 \) norm of the solutions vanishes for any square integrable initial data, as time goes to infinity and gives a decay rate that seems to be optimal for a class of initial data.

In [17] for the critical Sobolev spaces \(\dot{H}^1 \), I. Gallagher, D. Iftimie, and F. Planchon proved that \(\|u(t)\|_{\dot{H}^1} \) goes to zero at infinity. Recently, Benamou [18] has proved the following result.

Theorem 1.4. (See [18]). Let \(u \in C(\mathbb{R}^+, X^{-1,0}(\mathbb{R}^3)) \) be a global solution to (NSE). Then
\[\limsup_{t \to \infty} \|u(t)\|_{X^{-1,0}} = 0. \]

Now we are ready to state the main result.

Theorem 1.5. For \(\sigma \geq -1 \), let \(u \in C(\mathbb{R}^+, X^{-1,0}(\mathbb{R}^3)) \) be the global solution to (NSE). Then
\[\limsup_{t \to \infty} \|u(t)\|_{X^{-1,0}} = 0. \]

In the following, we give a natural application of Theorem 1.5, which is the stability of global solutions of (NSE) system.

Theorem 1.6. For \(\sigma \geq -1 \), let \(u \in C(\mathbb{R}^+, X^{-1,0}(\mathbb{R}^3)) \) be the global solution to (NSE). Then, for all \(v^0 \in X^{-1,0}(\mathbb{R}^3) \) such that
\[\|v^0 - u(0)\|_{X^{-1,0}} < \frac{\nu}{2^{\sigma + 1}} e^{-\frac{2\sigma + 1}{2\sigma + 7}} \int_0^\infty \|u(s)\|_{X,0,0,1}^2 \, ds. \]

Then, Navier-Stokes system starting by \(v^0 \) has a global solution. Moreover, if \(v \) is the corresponding global solution, then
\[\|v(t) - u(t)\|_{X^{-1,0}} + \frac{\nu}{2} \int_0^t \|v(\tau) - u(\tau)\|_{X,0,0,1}^2 \, d\tau \leq \|v^0 - u(0)\|_{X^{-1,0}} e^{-\frac{2\sigma + 1}{2\sigma + 7}} \int_0^\infty \|u(s)\|_{X,0,0,1}^2 \, ds. \]

The paper is organized in the following way: in Section 2, we give some notations and important preliminary results. Section 3 is devoted to prove the principal result. In Section 4, we prove the stability result for the global solutions.
2 Notations and preliminary results

2.1 Notations

In this section, we collect some notations and definitions that will be used later.

First, the Fourier transformation is normalized as
\[\mathcal{F}(f)(\xi) = \hat{f}(\xi) = \int_{\mathbb{R}^3} \exp(-ix \cdot \xi)f(x) \, dx, \quad \xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3, \]
the inverse Fourier formula is
\[\mathcal{F}^{-1}(g)(x) = (2\pi)^{-3} \int_{\mathbb{R}^3} \exp(i\xi \cdot x)g(\xi) \, d\xi, \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3, \]
and the convolution product of a suitable pair of functions \(f \) and \(g \) on \(\mathbb{R}^3 \) is given by
\[(f \ast g)(x) = \int_{\mathbb{R}^3} f(y)g(x-y) \, dy. \]

If \(f = (f_1, f_2, f_3) \) and \(g = (g_1, g_2, g_3) \) are two vector fields, then we set
\[f \otimes g = (g_1f_1, g_2f_2, g_3f_3), \]
and
\[\text{div}(f \otimes g) = (\text{div}(g_1f_1), \text{div}(g_2f_2), \text{div}(g_3f_3)). \]

We denote by \(P \) the Leray projection operator defined by the formula:
\[\mathcal{F}(Pf)(\xi) = \hat{f}(\xi) - \frac{(f(\xi) \cdot \xi)}{|\xi|^2} \xi. \]

Finally, let \((B, \| \cdot \|) \) be a Banach space, \(1 \leq p \leq \infty \) and \(T > 0 \). We define \(L^p(B) \) to be the space of all measurable functions
\[[0, T] \ni t \mapsto f(t) \in B \text{ such that } t \mapsto \| f(t) \| \in L^p([0, T]). \]

2.2 Preliminary results

In this section, we recall some classical results and we give a few technical lemmas.

Lemma 2.1. Let \(\sigma \in \mathbb{R} \), we have
\[\|f\|_{X^{\sigma-1}(\mathbb{R}^3)} \leq \|f\|_{X^{\sigma+2}(\mathbb{R}^3)}^{1/2} \|f\|_{X^{\sigma+2}(\mathbb{R}^3)}^{1/2}. \] (2.1)

For \(\sigma \geq -1 \), we have
\[\|f\|_{X^{\sigma+1}(\mathbb{R}^3)} \leq \|f\|_{X^{\sigma+2}(\mathbb{R}^3)}^{\sigma+2} \|f\|_{X^{\sigma+2}(\mathbb{R}^3)} \] (2.2)
and
\[\|f\|_{X^{\sigma-1}(\mathbb{R}^3)} \leq \|f\|_{X^{\sigma+3}(\mathbb{R}^3)}^{\sigma+2} \|f\|_{X^{\sigma+3}(\mathbb{R}^3)}^{\sigma+2}. \] (2.3)
Proof. First, let $\sigma \in \mathbb{R}$. By Cauchy-Schwarz inequality, we have
\[
\|f\|_{X^{\sigma}([0,1])} = \int |\xi|^{|\alpha|} \hat{f}(\xi) d\xi \\
= \int (|\xi|^{|\alpha|} |\hat{f}(\xi)|)^{1/2} (|\xi|^{|\alpha|+2} |\hat{f}(\xi)|)^{1/2} d\xi \\
\leq \left(\int |\xi|^{|\alpha|} |\hat{f}(\xi)| d\xi \right)^{1/2} \left(\int |\xi|^{|\alpha|+2} |\hat{f}(\xi)| d\xi \right)^{1/2} \\
\leq \|f\|_{H^{\frac{|\alpha|}{2}}} \|f\|_{H^{\frac{|\alpha|+2}{2}}},
\]
which proves (2.1).

Second, for $\sigma \geq -1$ choosing $(p, q) = \left(\frac{\sigma+3}{\sigma+2}, \sigma + 3 \right)$ and applying Hölder inequality, we obtain
\[
\|f\|_{X^{\sigma}([0,1])} = \int |\xi|^{\frac{\sigma+2}{\sigma+3}} |\hat{f}(\xi)| d\xi \\
= \int (|\xi|^{-1} |\hat{f}(\xi)|)^{\frac{\sigma+2}{\sigma+3}} (|\xi|^{|\alpha|+2} |\hat{f}(\xi)|)^{\frac{\sigma+2}{\sigma+3}} d\xi \\
\leq \left(\int |\xi|^{-1} |\hat{f}(\xi)| d\xi \right)^{\frac{\sigma+2}{\sigma+3}} \left(\int |\xi|^{|\alpha|+2} |\hat{f}(\xi)| d\xi \right)^{\frac{\sigma+2}{\sigma+3}} \\
\leq \|f\|_{H^{\frac{\sigma+3}{2}}} \|f\|_{H^{\frac{\sigma+2}{2}}}. \quad \Box
\]

Finally, for $\sigma \geq -1$ choosing $(p, q) = \left(\sigma + 3, \frac{\sigma+3}{\sigma+2} \right)$ and applying Hölder inequality, we obtain
\[
\|f\|_{X^{\sigma}([0,1])} = \int |\xi|^{|\alpha|+1} |\hat{f}(\xi)| d\xi \\
= \int (|\xi|^{-1} |\hat{f}(\xi)|)^{\frac{\sigma+2}{\sigma+3}} (|\xi|^{|\alpha|+2} |\hat{f}(\xi)|)^{\frac{\sigma+2}{\sigma+3}} d\xi \\
\leq \left(\int |\xi|^{-1} |\hat{f}(\xi)| d\xi \right)^{\frac{\sigma+2}{\sigma+3}} \left(\int |\xi|^{|\alpha|+2} |\hat{f}(\xi)| d\xi \right)^{\frac{\sigma+2}{\sigma+3}} \\
\leq \|f\|_{H^{\frac{\sigma+2}{\sigma+7}}} \|f\|_{H^{\frac{\sigma+2}{\sigma+3}}}. \quad \Box
\]

Lemma 2.2. Let $\sigma \geq -1$, we have
\[
\|f\|_{X^{\sigma}([0,1])} \leq 2 \|f\|_{H^{\frac{\sigma+2}{\sigma+7}}} \|f\|_{H^{\frac{\sigma+2}{\sigma+3}}}.
\]

Proof. Let $\sigma \geq -1$, we have
\[
\|f\|_{X^{\sigma}([0,1])} = \|f\|_{X^0} + \|f\|_{X^{\sigma+1}}.
\]
Using the inequality (2.1), we obtain
\[
\|f\|_{X^{\sigma}([0,1])} \leq \|f\|_{H^{\frac{\sigma+2}{\sigma+7}}} \|f\|_{H^{\frac{\sigma+2}{\sigma+3}}} + \|f\|_{H^{\frac{\sigma+2}{\sigma+2}}} \|f\|_{H^{\frac{\sigma+2}{\sigma+2}}} \leq 2 \|f\|_{H^{\frac{\sigma+2}{\sigma+7}}} \|f\|_{H^{\frac{\sigma+2}{\sigma+3}}}. \quad \Box
\]

Lemma 2.3. Let $\sigma \geq -1$, we have
\[
\|fg\|_{X^{\sigma}([0,1])} \leq 2^{\sigma+2} \|f\|_{X^{\sigma}([0,1])} \|g\|_{X^{\sigma}([0,1])} \quad (2.4)
\]
and
\[\|fg\|_{X^{\sigma,1}(R^n)} \leq 2^{\sigma+1}\|f\|_{X^{\sigma,1}(R^n)}^{1/2}\|g\|_{X^{\sigma,1}(R^n)}^{1/2} + 2^{\sigma+1}\|f\|_{L^2} + 2^{\sigma+1}\|g\|_{L^2}, \]

Proof. Let \(\sigma \geq -1 \). First, we have
\[\|fg\|_{X^{\sigma,1}(R^n)} = \int \left(1 + |\xi|^{\sigma+1}\right) |\hat{f}(\xi)\hat{g}(\xi)| d\xi \]
\[\leq \int \left(1 + |\xi|^{\sigma+1}\right) \left(\int |\hat{f}(\xi - \eta)| |\hat{g}(\eta)| d\eta \right) d\xi \]
\[\leq \int \left(1 + |\xi|^{\sigma+1}\right) \left(\int_{|\eta|<|\xi - \eta|} |\hat{f}(\xi - \eta)| |\hat{g}(\eta)| d\eta + \int_{|\eta|>|\xi - \eta|} |\hat{f}(\xi - \eta)| |\hat{g}(\eta)| d\eta \right) d\xi. \]

Using the inequality \((1 + |\xi|^{\sigma+1}) \leq 2^{\sigma+1}(1 + (\max(|\xi|, |\eta|))^{\sigma+1}) \) and taking \(F(\xi) = (1 + |\xi|^{\sigma+1})|\hat{f}(\xi)|, G_1(\xi) = |\hat{f}(\xi)|, G_2(\xi) = (1 + |\xi|^{\sigma+1})|\hat{g}(\xi)|, G_3(\xi) = |\hat{g}(\xi)| \), we get
\[\|fg\|_{X^{\sigma,1}(R^n)} \leq 2^{\sigma+1}\|F \ast G_1\|_{L^1} + 2^{\sigma+1}\|G_1 \ast F_1\|_{L^1} \]
\[\leq 2^{\sigma+1}\|F\|_{L^1}\|G_1\|_{L^1} + 2^{\sigma+1}\|F_1\|_{L^1}\|G_2\|_{L^1} \]
\[\leq 2^{\sigma+1}\|f\|_{X^{\sigma,1}}\|g\|_{X^{\sigma,1}} + 2^{\sigma+1}\|f\|_{X^{\sigma,1}}\|g\|_{X^{\sigma,1}} \]
\[\leq 2^{\sigma+2}\|f\|_{X^{\sigma,1}+1}\|g\|_{X^{\sigma,1}+1}, \]

which proves (2.4).

Second, combining inequality (2.4) and Lemma (2.2), we obtain (2.5). \(\square \)

Lemma 2.4. Let \(\sigma \geq -1 \), we have
\[\|f^2\|_{X^{\sigma,1}(R^n)} \leq 2^{\sigma+2}\|f\|_{X^{\sigma,1}(R^n)}\|f\|_{X^{\sigma,1}(R^n)}. \]

Proof. Let \(\sigma \geq -1 \), we have
\[\|f^2\|_{X^{\sigma,1}(R^n)} = \int |\xi|^{\sigma+1}|\hat{f}(\xi)|^2 d\xi \]
\[\leq \int |\xi|^{\sigma+1} \left(\int |\hat{f}(\xi - \eta)| |\hat{f}(\eta)| d\eta \right) d\xi \]
\[\leq \int |\xi|^{\sigma+1} \left(\int_{|\eta|<|\xi - \eta|} |\hat{f}(\xi - \eta)| |\hat{f}(\eta)| d\eta + \int_{|\eta|>|\xi - \eta|} |\hat{f}(\xi - \eta)| |\hat{f}(\eta)| d\eta \right) d\xi. \]

From the inequality \(|\xi|^{\sigma+1} \leq 2^{\sigma+1}(\max(|\xi|, |\eta|))^{\sigma+1} \), we get
\[\|f^2\|_{X^{\sigma,1}(R^n)} \leq 2^{\sigma+1} \int \left(\int_{|\eta|<|\xi - \eta|} |\xi - \eta|^{\sigma+1} |\hat{f}(\xi - \eta)| |\hat{f}(\eta)| d\eta + \int_{|\eta|>|\xi - \eta|} |\xi - \eta|^{\sigma+1} |\hat{f}(\xi - \eta)| |\hat{f}(\eta)| d\eta \right) d\xi \]
\[\leq 2^{\sigma+1}\|\xi|^{\sigma+1}|\hat{f}|_{L^1} \|\hat{f}\|_{L^1} + 2^{\sigma+1}\|\xi|^{\sigma+1}|\hat{f}|_{L^1} \|\hat{f}\|_{L^1} \]
\[\leq 2^{\sigma+2}\|f\|_{X^{\sigma,1}+1}\|f\|_{X^{\sigma,1}} \]

Using inequalities (2.2) and (2.3), we obtain the desired result. \(\square \)
3 Long time decay for the global solutions

In this section, we prove the main result Theorem 1.5. For $\sigma \geq -1$ (we can take $\epsilon < \frac{\sigma}{2\pi\nu}$), let $u \in C(\mathbb{R}^3, X^{1,0}(\mathbb{R}^3))$ be the global solution of (NSE) given by Theorem 1.3.

First, from Theorem 1.4, we have

$$\lim sup_{t \to \infty} \|u(t)\|_{X^{-1}} = 0.$$

Then, for $\epsilon > 0$ there is $t_0 > 0$ such that

$$\|u(t)\|_{X^{-1}} < \epsilon, \quad \forall t \geq t_0.$$

As

$$\|u(t)\|_{X^{-1,\epsilon}} = \|u(t)\|_{X^{-1}} + \|u(t)\|_{X^{\epsilon}},$$

it suffices to prove that

$$\lim sup_{t \to \infty} \|u(t)\|_{X^{\epsilon}} = 0.$$

On the other hand, we have

$$\partial_t u - \nu \Delta u + u \cdot \nabla u = -\nabla p.$$

Taking the Fourier transform with respect to the space variable, we obtain

$$\partial_t \hat{u}(t, \xi) + \nu |\xi|^2 \hat{u}(t, \xi) + (\hat{u} \cdot \hat{\nu} u)(t, \xi) = 0.$$

Multiplying by $\hat{v}(t, \xi)$, we get

$$\partial_t |\hat{u}(t, \xi)|^2 + 2\nu |\xi|^2 |\hat{u}(t, \xi)|^2 + 2\text{Re}(\hat{u} \cdot \hat{\nu} u)(t, \xi) \cdot \hat{u}(t, \xi) = 0.$$

This implies

$$\partial_t |\hat{u}(t, \xi)|^2 + 2\nu |\xi|^2 |\hat{u}(t, \xi)|^2 + 2\text{Re}(\hat{u} \cdot \hat{\nu} u)(t, \xi) \cdot \hat{u}(t, \xi) = 0.$$

and

$$\partial_t |\hat{u}(t, \xi)|^2 + 2\nu |\xi|^2 |\hat{u}(t, \xi)|^2 \leq 2\text{Re}(\hat{u} \cdot \hat{\nu} u)(t, \xi) \cdot \hat{u}(t, \xi).$$

Let $\epsilon > 0$, we have

$$\partial_t |\hat{u}(t, \xi)|^2 + \partial_t (|\hat{u}(t, \xi)|^2 + \epsilon) + 2\nu |\xi|^2 |\hat{u}(t, \xi)|^2 + \epsilon \cdot \partial_t |\hat{u}(t, \xi)|^2 + \epsilon.$$

Then

$$\partial_t \sqrt{|\hat{u}(t, \xi)|^2 + \epsilon + \nu |\xi|^2} \leq \frac{|\hat{u}(t, \xi)|}{\sqrt{|\hat{u}(t, \xi)|^2 + \epsilon}} \leq \sqrt{|\hat{u}(t, \xi)|^2 + \epsilon}.$$

Integrating over (t_0, t), we obtain

$$\sqrt{|\hat{u}(t, \xi)|^2 + \epsilon + \nu |\xi|^2} \int_{t_0}^t \frac{|\hat{u}(\tau, \xi)|^2}{\sqrt{|\hat{u}(\tau, \xi)|^2 + \epsilon}} d\tau \leq \sqrt{|\hat{u}(t, \xi)|^2 + \epsilon} + \int_{t_0}^t |\hat{u}(\tau, \xi)| d\tau.$$

Letting $\epsilon \to 0$, we get

$$|\hat{u}(t, \xi)| + \nu |\xi|^2 \int_{t_0}^t |\hat{u}(\tau, \xi)| d\tau \leq |\hat{u}(t_0, \xi)| + \int_{t_0}^t |\hat{u}(\tau, \xi)| d\tau.$$
Multiplying by ξ^σ and integrating with respect to ξ, we obtain

$$
|u(t)|_{\mathcal{L}^\sigma} + \nu \int_{t_0}^t \|\Delta u\|_{\mathcal{L}^\sigma} \, d\tau \leq \|u(t_0)|_{\mathcal{L}^\sigma} + \int_{t_0}^t \|(u \cdot \nabla u)(\tau, \xi)\|_{\mathcal{L}^\sigma} \, d\tau.
$$

Using the fundamental property $u \cdot \nabla v = \text{div}(u \otimes v)$ if $\text{div} u = 0$, we get

$$
|u(t)|_{\mathcal{L}^\sigma} + \nu \int_{t_0}^t \|\Delta u\|_{\mathcal{L}^\sigma} \, d\tau \leq \|u(t_0)|_{\mathcal{L}^\sigma} + \int_{t_0}^t \|\text{div}(u \otimes u)\|_{\mathcal{L}^\sigma} \, d\tau \leq \|u(t_0)|_{\mathcal{L}^\sigma} + \int_{t_0}^t \|u \otimes u\|_{\mathcal{L}^\sigma} \, d\tau.
$$

Lemma (2.4) yields

$$
\|u(t)|_{\mathcal{L}^\sigma} + \nu \int_{t_0}^t \|\Delta u\|_{\mathcal{L}^\sigma} \, d\tau \leq \|u(t_0)|_{\mathcal{L}^\sigma} + 2\nu \int_{t_0}^t \|u\|_{\mathcal{L}^\sigma} \|\Delta u\|_{\mathcal{L}^\sigma}.
$$

From inequality (3.1), we obtain

$$
|u(t)|_{\mathcal{L}^\sigma} + \nu \int_{t_0}^t \|\Delta u\|_{\mathcal{L}^\sigma} \, d\tau \leq \|u(t_0)|_{\mathcal{L}^\sigma}, \quad \forall t \geq t_0.
$$

(3.2)

Now, for $t \geq t_0$, we have

$$
|u(t)|_{\mathcal{L}^\sigma} = \int_{\mathbb{R}^3} |\xi|^{\sigma} |\hat{u}(t, \xi)| \, d\xi = I_1(t) + I_2(t),
$$

with

$$
I_1(t) = \int_{|\xi|<1} |\xi|^{\sigma} |\hat{u}(t, \xi)| \, d\xi,
$$

$$
I_2(t) = \int_{|\xi|>1} |\xi|^{\sigma} |\hat{u}(t, \xi)| \, d\xi.
$$

First, using inequality (3.1), we obtain

$$
I_1(t) = \int_{|\xi|<1} |\xi|^{\sigma} |\hat{u}(t, \xi)| \, d\xi \leq \int_{|\xi|<1} |\xi|^{-1} |\hat{u}(t, \xi)| \, d\xi \leq \|u(t)|_{\mathcal{L}^{-1}} < \varepsilon/2.
$$

(3.3)

Second, we have

$$
I_2(t) = \int_{|\xi|>1} |\xi|^{\sigma} |\hat{u}(t, \xi)| \, d\xi \leq \int_{|\xi|>1} |\xi|^{\sigma-1} |\hat{u}(t, \xi)| \, d\xi \leq \|\Delta u\|_{\mathcal{L}^\sigma},
$$

then

$$
\int_{t_0}^t I_2(t) \, dt \leq \int_{t_0}^t \|\Delta u\|_{\mathcal{L}^\sigma} \, d\tau \leq \frac{2}{\nu} \|u(t_0)|_{\mathcal{L}^\sigma}.
$$

As, $I_2(t) \geq 0$ and $I_2 \in L^1([t_0, \infty)) \cap C([t_0, \infty))$, then there exists $T_0 > t_0$ such that

$$
I_2(T_0) < \varepsilon/2.
$$

Moreover, from inequality (3.3), there exists $T_0 > t_0$ such that

$$
I_1(T_0) < \varepsilon/2.
$$
Thus,
\[\|u(T_0)\|_{X^\sigma} = I_1(T_0) + I_2(T_0) < \varepsilon, \]
and
\[\|u(t)\|_{X^\sigma} + \frac{\nu}{2} \int_0^t \|\Delta u\|_{X^\sigma} \, dt \leq \|u(T_0)\|_{X^\sigma} < \varepsilon, \quad \forall t \geq T_0, \]
which means
\[\|u(t)\|_{X^\sigma} < \varepsilon, \quad \forall t \geq T_0, \]
and the proof is finished.

4 Stability of global solutions

In this section, we prove Theorem 1.6. This proof is done in two steps.

Step 1: We begin by recalling the following property: (see [15]).

For \(\sigma \geq -1 \) and \(u^0 \in \mathcal{X}^{-1,\sigma}(\mathbb{R}^3) \) such that \(\|u^0\|_{X^{-1}} < \frac{\nu}{2\sigma+1} \). Let \(u \in \mathcal{C}^1(0, T^*) \cap L_{loc}^1([0, T^*), \mathcal{X}^{1,\sigma}(\mathbb{R}^3) \cap L_{loc}^1([0, T^*), \mathcal{X}^{1,\sigma+2}(\mathbb{R}^3) \}
be the maximal solution of (NSE). From Theorem 1.3, there exists a unique global solution \(u \in \mathcal{C}^1(0, T^*) \cap L_{loc}^1([0, T^*), \mathcal{X}^{1,\sigma}(\mathbb{R}^3) \)
such that \(\|u\|_{X^{1,\sigma}} = \mathcal{I}(v^0, T^*) \). Moreover, \(\forall t \geq 0 \)
\[\|u(t)\|_{X^{-1,\sigma}} + \frac{\nu}{2} \int_0^t \|\Delta u\|_{X^{1,\sigma}} \, dt \leq \|u^0\|_{X^{1,\sigma}}. \]

Step 2: For \(\sigma \geq -1 \), let \(v \in \mathcal{C}^1([0, T^*), \mathcal{X}^{-1,\sigma}(\mathbb{R}^3) \) be the maximal solution of (NSE) with the initial condition \(v^0 \). We wish to prove \(T^* = \infty \).

In fact from Theorem 1.3, we get \(v \in L^1_{loc}([0, T^*), \mathcal{X}^{1,\sigma+2}(\mathbb{R}^3) \). Put \(w = v - u \) and \(w^0 = v^0 - u(0) \). We have
\[\partial_t w - \nu \Delta w + w \nabla w + u \cdot \nabla w = -\nabla P. \]

Using the fundamental property \(u \cdot \nabla v = \text{div}(u \otimes v) \) if \(\text{div} u = 0 \), we get
\[\partial_t w - \nu \Delta w + \text{div}(w \otimes w) + \text{div}(u \otimes w) + \text{div}(w \otimes u) = -\nabla P. \]

Then, for \(t \in [0, T^*) \)
\[\|w(t)\|_{X^{-1,\sigma}} + \frac{\nu}{2} \int_0^t \|\Delta w\|_{X^{1,\sigma}} \, dt \leq \|w^0\|_{X^{-1,\sigma}} + \int_0^t \|\text{div}(w \otimes w)\|_{X^{1,\sigma}} \, dt + \int_0^t \left(\|\text{div}(u \otimes w)\|_{X^{1,\sigma}} + \|\text{div}(w \otimes u)\|_{X^{1,\sigma}} \right) \, dt. \]

On the other hand, from inequality (2.5) we get
\[\int_0^t \|\text{div}(w \otimes w)\|_{X^{1,\sigma}} \, dt \leq \int_0^t \|w \otimes w\|_{X^{1,\sigma}} \, dt \leq 2^{\sigma+4} \int_0^t \|w\|_{X^{1,\sigma}} \, dt \leq 2^{\sigma+4} \int_0^t \|w\|_{X^{1,\sigma+2}} \, dt. \]
Also, inequality (2.4), Lemma (2.2), and Young inequality yield

\[
\int_0^t \left(\| \text{div}(u \otimes w) \|_{X^{-1, 0}} + \| \text{div}(w \otimes u) \|_{X^{-1, 0}} \right) \, dt \leq \int_0^t \left(\| u \|_{X^{0, 0}} \| w \|_{X^0} + \| w \|_{X^0} \| u \|_{X^{0, 0}} \right) \, dt
\]

\[
\leq 2^{p+3} \int_0^t \| u \|_{X^{0, 0}} \| w \|_{X^0} \, dt
\]

\[
\leq 2^{p+4} \int_0^t \| u \|_{X^{0, 0}} \| w \|_{X^0} \| w \|_{X^0} \, dt
\]

\[
\leq \frac{2^{p+8}}{\nu} \int_0^t \| u \|_{X^{0, 0}} \| w \|_{X^0} \, dt + \frac{\nu}{4} \int_0^t \| w \|_{X^0} \, dt.
\]

Then

\[
|w(t)|_{X^{-1, 0}} + \frac{3\nu}{4} \int_0^t |w(\tau)|_{X^{1, 0}} \, d\tau \leq |w^0|_{X^{-1, 0}} + 2^{p+4} \int_0^t \| w \|_{X^0} \| w \|_{X^0} \, dt + \frac{2^{p+8}}{\nu} \int_0^t \| u \|_{X^{0, 0}}^2 \| w \|_{X^0} \, dt.
\]

Put

\[
T = \sup \left\{ t \in [0, T^*), \sup_{\tau \in [0, t]} |w(t)|_{X^{-1, 0}} < \frac{\nu}{2^{p+6}} \right\}.
\]

For \(t \in [0, T) \), we have

\[
|w(t)|_{X^{-1, 0}} + \frac{\nu}{2} \int_0^t |w(\tau)|_{X^{1, 0}} \, d\tau \leq |w^0|_{X^{-1, 0}} + \frac{2^{p+8}}{\nu} \int_0^t \| u \|_{X^{0, 0}}^2 \| w \|_{X^0} \, dt.
\]

Using Gronwall Lemma, we can deduce

\[
|w(t)|_{X^{-1, 0}} + \frac{\nu}{2} \int_0^t |w(\tau)|_{X^{1, 0}} \, d\tau \leq |w^0|_{X^{-1, 0}} e^{\frac{2^{p+8}}{\nu} \int_0^t \| u \|_{X^{0, 0}}^2 \, dt} < \frac{\nu}{2^{p+7}}.
\]

Then \(T = T^* \) and \(\int_0^T |w(\tau)|_{X^{1, 0}} \, d\tau < \infty \), therefore, \(T^* = \infty \) and the proof is finished.

Some numerical approaches regarding similar problems are given in [19,20].

Acknowledgements: This research was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (13-MAT887-02).

Conflict of interest: Author states no conflict of interest.

References

[1] J. Leray, *Essai sur le mouvement d’un liquide visqueux emplissant l’espace*, Acta Math. 63 (1933), 22–25.

[2] J. Leray, *Sur le mouvement d’un liquide visqueux emplissant l’espace*, Acta Math. 63 (1934), no. 1, 193–248.

[3] T. Kato, *Quasi-linear equations of evolution, with applications to partial differential equations*, in: W. N. Everitt (ed.), Spectral Theory and Differential Equations, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, Heidelberg, 1975, pp. 25–70.
[4] E. Hopf, *Uber die Anfangswertaufgabe fur die hydrodinamischen Grundgleichungen*, Math. Nachr. 4 (1951), 213–231.

[5] H. Fujita and T. Kato, *On the Navier-Stokes initial value problem. I*, Arch. Ration. Mech. Anal. 16 (1964), 269–315.

[6] J.-Y. Chemin, *Remarque sur l’existence global pour le systeme de Navier-Stokes incompressible*, SIAM J. Math. Anal. 26 (2009), no. 2, 599–624.

[7] T. Kato, *Strong L^p-solutions of the Navier-Stokes equation in \mathbb{R}^m, with applications to weak solutions*, Math. Z. 187 (1984), 471–480.

[8] H. Koch and D. Tataru, *Well-posedness for the Navier-Stokes equations*, Adv. Math. 157 (2001), 22–35.

[9] J.-Y. Chemin and I. Gallagher, *Wellposedness and stability results for the Navier-Stokes equations in \mathbb{R}^3*, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 2, 599–624.

[10] M. Cannone, *Harmonic analysis tools for solving the incompressible Navier-Stokes equations*, in: S. J. Friedlander and D. Serre (Eds.), Handbook of Mathematical Fluid Dynamics, vol. 3, Elsevier, Amsterdam, 2004.

[11] F. Planchon, *Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in \mathbb{R}^3*, Ann. Inst. H. Poincare Anal. Non Lineaire 13 (1996), no. 3, 319–336.

[12] M. Cannone, *Harmonic Analysis Tools for Solving the Incompressible Navier-Stokes Equations*, Diterot Editeur, Paris, 1995.

[13] Z. Lei and F.-H. Lin, *Global mild solutions of Navier-Stokes equations*, Comm. Pure Appl. Math. 64 (2011), no. 9, 1297–1304.

[14] Z. Zhang and Z. Yin, *Global well-posedness for the generalized Navier-Stokes system*, (June 2013), arXiv: 1306.3735v1.

[15] L. Jlali, *Global well-posedness of 3D-NSE in Fourier-Lei-Lin spaces*, Math. Methods Appl. Sci. 40 (2017), no. 7, 2713–2736.

[16] M. Wiegner, *Decay results for weak solutions of the Navier-Stokes equations on \mathbb{R}^n*, J. London Math. Soc. 35 (1987), no. 2, 303–313.

[17] I. Gallagher, D. Iftimie, and F. Planchon, *Non-blowup at large times and stability for global solutions to the Navier-Stokes equations*, C. R. Acad. Sci. Paris, Ser. I 334 (2002), 289–292.

[18] J. Benameur, *Long time decay to the Lei-Lin solution of 3D Navier-Stokes equation*, J. Math. Anal. Appl. 422 (2015), no. 1, 424–434.

[19] C. Turc, Y. Boubendir, and M. K. Riahi, *Well-conditioned boundary integral equation formulations and Nyström discretizations for the solution of Helmholtz problems with impedance boundary conditions in two-dimensional Lipschitz domains*, J. Integral Equations Appl. 29 (2017), no. 3, 441–472.

[20] M. K. Riahi, *A new approach to improve ill-conditioned parabolic optimal control problem via time domain decomposition*, Numer. Algorithms 72 (2016), 635–666, DOI: https://doi.org/10.1007/s11075-015-0060-0.