Nodal spread and micrometastasis within mesorectum

Cun Wang, Zong-Guang Zhou, Zhao Wang, Dai-Yun Chen, Yang-Chun Zheng, Gao-Ping Zhao

INTRODUCTION

Treatment and prognosis of rectal cancer are mainly determined by the presence of lymph node metastasis in specimens\(^1,2\). The node status distinguishes TNM stage I and II patients from stage III patients. In general, individuals without evidence of nodal metastasis are at a relatively low risk for developing recurrent disease\(^3,4\).

In this study, we investigated the distribution of metastasized lymph nodes within mesorectum on large slices. Then all negative lymph nodes were collected by tissue microarray technique to search possible micrometastasis. Therefore, the purpose was to examine the largest possible amount of lymph nodes in order to make correct staging, therapeutic decisions and prognosis in patients with rectal cancer.

MATERIALS AND METHODS

Study patients

Specimens from 31 consecutive patients with biopsy-proven adenocarcinoma of the rectum who underwent resection from November 2001 to May 2002 were retrospectively investigated. There were 15 males and 16 females with an average age of 60 years. Preoperative endoscopic evaluation showed tumor 3-15 cm from the anus. None of the patients received preoperative chemotherapy or radiation therapy.

Surgical technique

Twenty-five of the patients underwent laparotomic anterior resection and six patients had laparoscopic total mesorectal excision (TME). The TME procedure was defined as sharp dissection under direct vision, the rectum and mesorectum in the fascia propria were excised\(^5\). This did not necessarily mean an excision of the entire mesorectum down to the pelvic floor or anal canal, but the standard policy for division of the rectum and mesorectum was 3 cm below the tumor. If possible, 5 cm of rectum and mesorectum was excised.

Specimens' preparation

Mesorectal lymph nodes were never removed so as to preserve the mesorectum. Each specimen was stitched under tension onto a made-to-order board ex vivo after a column of sponge was loaded into the intestinal cavity to make sure it conformed to biological dimensions. The boards were floated with the specimens down for fixation in 10\% buffered formalin for 48 h. Serial transverse tissue blocks were cut at 5-mm intervals from the distal resection margin to the proximal margin. Each block consisting of full thickness of rectum and mesorectum was embedded in paraffin. Four-micrometer-thick sections were sliced from each block, mounted on a large glass slide (15 cm\(\times\)6 cm), and stained with hematoxylin-eosin.

Histopathologic diagnosis

All the slices were reviewed to detail the histologic findings according to TNM classification\(^6\). In addition, we also...
examined the direct tumor infiltration and lymph node involvement to assess circumferential margin following the quality control principles formulated by Quirke et al. The positive circumferential resection margin (CRM) was defined as tumor growth within 1 mm from the resection margin. The distance of tumor spread was measured using a ruler. During examination and recording, we divided the mesorectum into three regions (i.e., left, right, and rear regions) according to its observed shape on large slices. Each region was further separated into three layers (i.e., outer, middle, and inner layers) on the basis of their distance from the outer limit of serosa. Therefore, we got nine areas and located each focus to one or more of them.

Tissue microarray technique

Negative lymph nodes were noted during examination of the large tissue sections stained with hematoxylin-eosin. Corresponding areas on the sectioned paraffin-embedded block were marked. From each paraffin block, core biopsy specimens of lymph nodes were punched and positioned into a recipient block. Core biopsy from the primary lesions was used as the positive control. In the ensuing paraffin array block, tissue cylinders were aligned, marked for identification, and cut into 4-µm-thick sections for further examination.

Immunohistochemical analysis

Four-micrometer-thick sections were transferred to glass slides disposed with APES. Following deparaffinization in xylene and rehydration in graded ethanol, the sections were treated in citrate buffer (pH 6.0) for antigen retrieval for 3 min, stained immunohistochemically with CK20 (Dako, Glostrup, Denmark) monoclonal antibody using avidin-biotin-peroxidase complex and visualized by diaminobenzidine. Binary antibody was applied to the sections at 37 °C for 45 min. Negative control sections for immunohistochemical (IHC) staining were not stained with the primary antibody. Cancer cells positive for CK20 were intensely stained in (IHC) staining were not stained with the primary antibody.

Statistical analysis

The data were analyzed with the SPSS 10.0 package. Pearson coefficient was chosen in bivariate correlation analysis. The \(\chi^2 \) and stepwise forward LR tests were used respectively in crosstabs statistics and binary logistic regression. \(P < 0.05 \) was considered statistically significant.

RESULTS

All the operations were considered curative by the surgeons. Distal donuts included in the stapler device were also examined microscopically. All were histologically free of carcinoma.

Examination of lymph nodes

Using large slice technique, 992 lymph nodes were examined from specimens of 31 patients. Tumor involvement was in 148 of them, and there was no tumor involvement in the other 844 lymph nodes. The average number of examined lymph nodes per specimen was 32. The details of harvested nodes are shown in Table 1.

Metastasis rate of lymph nodes, defined as the percent of involved nodes for each specimen, was related to the depth of tumor infiltration (\(r = 0.548, P = 0.001 \)) and tumor differentiation (\(r = 0.470, P = 0.008 \)). No significant difference in the rate was observed between tumors at different sites.

Distribution of involved lymph nodes

Fifty-one involved lymph nodes were located in the outer layers (including left, right, and rear regions) of mesorectum, accounting for 25.6% of all involved lymph nodes, and 41.7% of the involved lymph nodes were observed in the rear region of mesorectum. Of the 10 stage III patients with primary tumors mainly located on the left or right side of rectal wall, 34.7% of the involved nodes were in the same lateral region of mesorectum, and 6.1% on the opposite side. The difference was significant (\(P < 0.01 \)) (Table 2).

Circumferential margin involvement

Twelve specimens were involved in the circumferential margin and four of them had a real positive margin (i.e., tumor cells in the resection margin). The positive CRM included circumferential margin involvement (CMI) of primary tumor infiltration and lymph node metastasis. If CMI of the latter was included, the number of positive margins would be nine. No relationship between the occurrence of CMI and T stage, tumor location and differentiation was found in logistic regression analysis (Table 3).

Lymph node micrometastasis

A total of 844 negative lymph nodes were marked on tissue blocks and 795 were successfully transferred to recipient blocks using tissue microarray. The other 49 lymph nodes not removed were smaller than 0.5 mm in diameter, accounting for 5.8%. Occult tumor cells in lymph node specimens were found in 9 of 31 patients (29.0%) by IHC analysis. The cells were located in subcapsular sinuses of lymph nodes as single cells or in groups and rarely in
parenchyma. We rarely detected a stromal reaction around the tumor cells. No significant difference in incidence rate of micrometastasis was obtained between tumors at different T stages, N status, and differentiation (Table 4).

Table 4 Lymph node micrometastasis with clinicopathologic characteristics

Micrometastasis	Rectal cancer (n = 31)	CMI (n = 12)	Sig	Exp (B)
	No. of patients	Percent (%)	No. of patients	Percent (%)
Age (yr)				
<40	3	9.68	3	25.00
40–59	12	38.71	5	41.67
≥60	16	51.61	4	33.33
Primary tumor location				
Lower	9	29.03	4	33.33
Middle	17	54.84	6	50.00
Upper	5	16.13	2	16.67
Differentiation				
Poor	11	35.48	8	66.67
Moderate	18	58.06	3	25.00
Well	2	6.45	1	8.33
Infiltration				
T1	2	6.45	1	8.33
T2	6	19.35	0	0.00
T3	21	67.74	9	75.00
T4	2	6.45	2	16.67
Involved LN				
0	15	48.39	3	25.00
1–9	11	35.48	5	41.67
≥10	5	16.13	4	33.33

DISCUSSION

Radical surgery remains the first choice of treatment for rectal cancer and the prognosis primarily depends on the stage of tumor at the time of diagnosis. As diagnostic assessment is performed more and more precisely and surgical techniques have been greatly improved in the last decade, the rate of curative resections and sphincter-saving procedures for rectal cancer is significantly increased and the mortality rate is decreased[8]. However, numerous factors such as characteristics of primary tumor and presence of lymph node metastasis affect the survival of patients with carcinoma of the rectum[9,10]. Detection of lymph node metastasis and determination of pN status are essential for prediction of prognosis and planning therapeutic modalities. Hida et al[11], and Greenson et al[12], reported that the number of lymph nodes identified at the time of pathologic examination of surgical specimens might vary not only in patients but also in the extent of pathologic exploration. However, because the surgical stuff was stable during the study period and the operations were performed following the principles of TME, we believe surgical technique was unlike to affect our data. Therefore, the result mainly reflected the significance of pathological examination.

The number of lymph nodes that need to be examined to accurately stage individuals with rectal cancer is controversial and ranges between 12 and 17[13-16]. In this study, we combined large tissue slides with tissue microarray technique in examining lymph node status of patients with rectal cancer. Metastasis detected in our study by the integration of HE staining with IHC process provides an absolutely new method for maximizing the number of lymph nodes. It detected a higher average number of harvested lymph nodes compared with other studies. Furthermore, 583 lymph nodes had a diameter of less than 2 mm, which could not be achieved by conventional pathologic test. Scott and Grace[13] demonstrated that 80% of lymph node metastases are found in lymph nodes smaller than 5 mm in diameter. In this study, 70.3% metastasized nodes were smaller than 5 mm in diameter, those bigger than 10 mm in diameter just accounted for 8.1%. Clinical studies suggested that the number of positive lymph nodes
with mural penetration is the most valuable predictive factor for survival\cite{11,12,13}. In this study, correlation test did confirm the relation between metastasis rate of lymph nodes and depth of tumor infiltration.

Providing a holistic view of rectum, together with surrounding mesorectum, the large slice technique used in this study promoted us to study the pattern of tumor spread. The result of our study showed that 41.7% of the involved lymph nodes were observed in the rear region of mesorectum and the rate was 25.6% in outer layers (including left, right, and rear regions). Concerning the principles of TME, dissection between the relatively avascular plane outside the visceral fascia and complete removal of mesorectum from behind are mandatory. Therefore, lymphatic drainage from the rectum is eliminated by TME. When conventional blunt procedure is used, metastasis in the outer layers would be left in the pelvis of patients and gives rise to further local recurrence. Furthermore, as shown in Table 2, in tumors located on the left and right side of the rectum, nearly one-thirds of the positive nodes were located in the same lateral region of the mesorectum, significantly more than those in the opposite region, suggesting that the lateral discrepancy in dissection of the hypogastric plexus can guarantee clear lateral margin in these areas.

Quirke et al\cite{21}, de Haas-Kock et al\cite{17}, Adam et al\cite{26}, and Cawthorn et al\cite{29,17} have introduced the conception of CMI. They found that CMI is a surgery-related factor that increases the risk for local recurrence. It was reported that CRM influences the rate of local recurrence, distant increases the risk for local recurrence. It was reported that CMI is a surgery-related factor that increases the metastasis rate.200 CMI with tumor location and differentiation. Cawthorn et al\cite{29,17} have introduced the conception of CMI.

It has been observed that as the number of examined lymph nodes increases, the number of lymph node positive specimens increases\cite{15,16,22}. Theoretically, sampling of the entire perirectal fat would be an accurate method for total lymph node examination\cite{23,24}. Koren et al\cite{25} introduced the lymph node revealing solution method and showed that the stage of the disease can be determined more accurately by it. However, 20-30% of patients with no histopathologically detectable lymph node metastasis die of a local tumor relapse or distant metastases, which might be explained by an early dissemination of tumor cells into the lymphatic system that cannot be detected using conventional pathological techniques. Gusterson\cite{26} first reported that up to 20% of patients with negative lymph node metastasis on routine sections have micrometastases. In the current study, we collected all negative lymph nodes observed on large slices using tissue microarray technique for further investigation. IHC analysis discovered micrometastasis from the negative lymph nodes of nine specimens. No statistical difference was found in detected tumor cells, suggesting that the submucosa lymphatic spread of tumor cells occurs once the infiltration reaches this layer.

In conclusion, positive lymph nodes are distributed in mesorectum, and micrometastasis can be discovered in cancers at different stages and causes future recurrence. TME is rather a good procedure for rectal cancer.

REFERENCES

1. Wiggers T, Arends JW, Schutte B, Volovics L, Bosman FT. A multivariate analysis of pathologic prognostic indicators in large bowel cancer. Cancer 1988; 61: 386-395
2. Ponz de Leon M, Sant M, Micheli A, Saccheri C, Di Gregorio C, Fante R, Zanghieri G, Melotti G, Gatta G. Clinical and pathologic prognostic indicators in colorectal cancer. A population-based study. Cancer 1992; 69: 626-635
3. Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Goodman PJ, Ungerleider JS, Emerson WA, Tormey DC, Glick JH. Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 1990; 322: 352-358
4. Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen CM, Ungerleider JS, Emerson WA, Tormey DC, Glick JH, Veeder MH, Mailliard JA. Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: a final report. Ann Intern Med 1995; 122: 321-326
5. Heald RJ, Husband EM, Ryall RD. The mesorectum in rectal cancer surgery—the clue to pelvic recurrence? Br J Surg 1982; 69: 613-616
6. American Joint Committee on Cancer. AJCC Cancer Staging Manual. 5th ed. Philadelphia: Lippincott Raven 1997: 83-90
7. Quirke P, Durdey P, Dixon MF, Williams NS. Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet 1986; 2: 996-999
8. Bruch HP, Schwandner O, Schiedek TH, Roblick UJ. Actual standards and controverses on operative technique and lymph-node dissection in colorectal cancer. Lungenbecks Arch Surg 1999; 384: 167-175
9. Stocchi L, Nelson H, Sargent Dj, O’Connell Mj, Tepper J, Kroek J, Beart R. Impact of surgical and pathologic vari-ables in rectal cancer: a United States community and cooperative group report. J Clin Oncol 2001; 19: 3959-3902
10. Sitzler PJ, Seow-Choen F, Ho YH, Leong AP. Lymph node involvement and tumor depth in rectal cancers: an analysis of 805 patients. Dis Colon Rectum 1997; 40: 1472-1476
11. Hida J, Mori N, Kubo R, Matsuda T, Morikawa E, Kitaoka M, Sindoh K, Yasutomi M. Metastases from carcinoma of the colon and rectum detected in small lymph nodes by the clearing method. J Am Coll Surg 1994; 178: 223-228
12. Greenson JK, Isenhart CE, Rice R, Mojziski C, Houchens D, Martin EW. Identification of occult micrometastases in peri-ocytic lymph nodes of Duke’s B colorectal cancer patients using monoclonal antibodies against cytokeratin and CC49. Correlation with long-term survival. Cancer 1994; 73: 563-569
13. Scott KW, Grace RH. Detection of lymph node metastases in colorectal carcinoma before and after fat clearance. Br J Surg 1989; 76: 1165-1167
14. Wong JH, Severino R, Honnebier MB, Tom P, Namiki TS. Number of nodes examined and staging accuracy in colorectal carcinoma. J Clin Oncol 1999; 17: 2896-2900
15. Goldstein NS, Sanford W, Coffey M, Layfield LJ. Lymph node recovery from colorectal resection specimens removed for adenocarcinoma. Trends over time and a recommendation for a minimum number of lymph nodes to be recovered. Am J Clin Pathol 1996; 106: 209-216
16. Fielding LP, Arsenault PA, Chapuis PH, Dent O, Gathright B, Hardcastle JD, Hermanek P, Jass JR, Newland RC. Clinico-pathological staging for colorectal cancer: an International Documentation System (IDS) and an International Comprehensive Anatomical Terminology (ICAT). J Gastroenterol Hepatol 1991; 6: 325-344
17. de Haas-Kock DF, Baeten CG, Jager JJ, Langendijk JA, Schouten LJ, Volovics A, Arends JW. Prognostic significance of radial margins of clearance in rectal cancer. Br J Surg 1996; 83: 781-785
18. Adam IJ, Mohamdee MO, Martin IG, Scott N, Finan PJ, Johnston D, Dixon MF, Quirke P. Role of circumferential margin involvement in the local recurrence of rectal cancer. Lancet 1994; 344: 707-711
19 Cawthorn SJ, Parums DV, Gibbs NM, A’Hern RP, Caffarey SM, Broughton CI, Marks CG. Extent of mesorectal spread and involvement of lateral resection margin as prognostic factors after surgery for rectal cancer. *Lancet* 1990; 335: 1055-1059

20 Wibe A, Rendedal PR, Svensson E, Norstein J, Eide TJ, Myrvold HE, Soreide O. Prognostic significance of the circumferential resection margin following total mesorectal excision for rectal cancer. *Br J Surg* 2002; 89: 327-334

21 Nagtegaal ID, Marijnen CA, Kranenburg EK, van de Velde CJ, van Krieken JH. Circumferential margin involvement is still an important predictor of local recurrence in rectal carcinoma: not one millimeter but two millimeters is the limit. *Am J Surg Pathol* 2002; 26: 350-357

22 Wong JH, Bowles BJ, Bueno R, Shimizu D. Impact of the number of negative nodes on disease-free survival in colorectal cancer patients. *Dis Colon Rectum* 2002; 45: 1341-1348

23 Cawthorn SJ, Gibbs NM, Marks CG. Clearance technique for the detection of lymph nodes in colorectal cancer. *Br J Surg* 1986; 73: 58-60

24 Herrera-Ornelas L, Justiniano J, Castillo N, Petrelli NJ, Stulc JP, Mittelman A. Metastases in small lymph nodes from colon cancer. *Arch Surg* 1987; 122: 1253-1256

25 Hohenberger W, Schick CH, Goabl J. Mesorectal lymph node dissection: is it beneficial? *Langenbecks Arch Surg* 1998; 383: 402-408

26 Koren R, Siegal A, Klein B, Halpern M, Kyzer S, Veltman V, Gal R. Lymph node-revealing solution: simple new method for detecting minute lymph nodes in colon carcinoma. *Dis Colon Rectum* 1997; 40: 407-410

27 Gusterson B. Are micrometastases clinically relevant? *Br J Hosp Med* 1992; 47: 247-248

Science Editor Wang XL and Guo SY Language Editor Elsevier HK