Probing of Phytofungal Proteins for Fungicidal Activity by Molecular Docking

Pooja Mishra*, Murugesh Eswaran*, Nitya Meenakshi Raman and Tanushri Kaul*
Nutritional Improvement of Crops Group, Plant Biology Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India

Abstract

Background: Plant fungal diseases are the primary causes of foliage and crop loss eventually affecting the overall economic outcome and yield quality. Hence, various chemical compounds are employed to eradicate the fungi in agriculture.

Methods: Virtual screening and molecular docking strategies provide themselves as great alternatives to find lead compounds. Lead compounds for each fungal infection were docked to target protein sequence and assessed for the strongest interaction.

Findings: Various molecules were taken under the study, for being the target ligands to bring about a fungicidal reaction in the plant pathogen system. The screening of molecules was done thoroughly to produce the results. Ligands identified through this study allow us to make plant host fight against the fungal pathogen and prevent the occurrence of the disease. The interactions have been thoroughly studied with various softwares like SPDBV and PyMol and through various online databases like STRING, GenePept, PDB, UniProt, PatchDock, Protein structure prediction server -2 and others for the overall evaluation of the drug molecule designed and to study its overall the fungicidal molecules and the target protein and help understand the role of changes if associated, explain the variations in the toxicity of the molecules with or without the same mode of action and help design new inhibitors with greater affinity to the binding site [5-7]. In this study, major fungal pathogens that contribute to a large percentage of plant disease with a wide host range of economic plants were identified. Target molecule identified as ligands with their target proteins were confirmed by a literature search. The functioning and configuration of the molecule was identified using the energy profile and simulated with all possible conformations and orientations. The overall design of the study was designed to predict the molecules effective against the fungi and not against the host plant, thereby negating the bioavailability of the fungicide for the plant.

Keywords: Fungi; Fungicide; Agriculture; Molecular docking; Molecules

Introduction

Managing fungal infections or diseases that economically impact plant yield and quality can be managed by the use of fungicide which specifically inhibits or kills or stall the growth of the fungus causing the disease [1,2]. Fungicides are also used to control the disease during various stages including establishment and development of a crop, increase in productivity, reduction in the residual infection, and improve the storage life and the quality of harvested plants [3]. According to the target sites, commercially available agricultural fungicides are classified by the international Fungicide Resistance Action Committee (FRAC). However, this classification does not include metalloorganic, inorganic and human hazardous fungicides. The emergence of resistant fungal strains, difficulty in the treatment and the multi-fold increase in the number of fungal infections necessitates and prioritises the discovery of new molecular scaffolds to achieve effective control. The urgency in dealing with fungal infections is reflected by pharmaceutical companies creating a division for pesticides especially for the agrarian market as agricultural fungicides are an excellent source of lead structures. Computation-aided drug design can help design lead molecules for target biological functions and decipher a functional overlap in molecular target sites or target similar processes or molecules [4]. Structurally, a fungicide has a specific target site where it acts to disrupt a biochemical process or function. If there is an alteration in the target site, the fungicide can no longer bind or can bind with low affinity and is unable to exert its toxic effect. Molecular docking is an in-silico technique that can be used to model the interactions between the fungicide molecules and the target protein and help understand the role of changes if associated, explain the variations in the toxicity of the molecules with or without the same mode of action and help design molecular docking studies have to be undertaken.

*Corresponding author: Tanushri Kaul, Nutritional Improvement of Crops Group, Plant Biology Division, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India, Tel: +91-9999968205; E-mail: tanushri@icgeb.res.in

*These authors are contributed equally.

Received March 15, 2019; Accepted May 07, 2019; Published May 14, 2019

Citation: Mishra P, Eswaran M, Raman NM, Kaul T (2019) Probing of Phytofungal Proteins for Fungicidal Activity by Molecular Docking. J Proteomics Bioinform 12: 079-084. doi: 10.4172/0974-276X.1000499

Copyright: © 2019 Mishra P. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
and *Magnaporthe*, that infect a wide range of economic plants reducing their overall yield [8]. Target molecules were identified that could induce resistance/ prevention from these plant pathogens. Some of these molecules were pre-existing chemical fungicides while others functioned as the elicitor molecules to induce the resistance response in host system [9]. The list of identified target molecules of corresponding fungi has been listed in Table 1.

Structural and functional analysis of ligands and target protein

The structures of these reported molecules were identified and analyzed using the PDB and PubChem- NCBI structure viewer and constructed for further work using Chemskech [10]. The structural availability allows understanding of the interaction as well as of the chemical; nature of the compound. Through the literature databases like PubMed and PMC the proteins in the host system which interact with target ligands were identified, as mentioned in Table 2. The structures of these proteins were further elucidated after using NCBI-GenPept and Protein structure prediction server respectively. The energy profiles of these proteins were screened using the Swiss PDB viewer SPDBV; [11] and the minimized energies of the protein molecules were elucidated. The different forms of energy that encompass the total energy of the molecule were analysed separately in the regular and the minimized state to understand the functioning and the configuration of the molecule. Further, the structural components of the individual protein structures were elucidated using the SOPMA software (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html) that allowed us to decipher various structural components and the overall protein profile of the reported proteins known to be interacting with our target ligand molecules.

Protein interaction

A single chemical molecule does not interact with just one other molecule in a biological system. Various proteins may possess a structural similarity with the one screened and hence, it is important to understand the networking of the protein in view and its various interactions. This is done using the online STRING database which provides the estimated interactions and similarity based on various parameters. Using the STRING database, different proteins with structural similarity with the reported proteins were short listed and their structure was detected.

Docking analysis

In the present study, the docking is mediated between the target drug ligand molecule with the interacting protein molecule using Patchdock analysis [12] tool that provides online docking interface of the files to be submitted in pdb format as a query. The formatting of the file format was done using Open Babel software that can easily convert the given file format to pdb format for the further proceedings. The results are then provided with multiple combinations, as possible for the particular ligand and protein interaction.

Results and Discussion

Six fungal species involved with *Fusarium* wilt, rice blast, late blight of potato, necrotrophy, early blight among members of family Solanaceae and flax rust were selected. The respective fungicide for each of these fungal species were identified based on which the proteins were chosen (Table 1). A single protein was selected for ligands chitosan, pyrimethanil and imidazole were chosen whereas probenazole was targeted with two proteins peroxidase and polyphenoloxidase. Although the same molecule (mancozeb) was identified for both the blight diseases, two proteins were identified as targets: cytochrome-c-oxidase for late blight of potato and monoxygenase for early blight among Solanaceae members. Docking primarily functions on the shape complementarity and simulation between the molecules with all possible conformations and orientations between the protein and the ligand [13]. Docking refers to interfacial analysis of the two components in a system. It is a molecular modelling technique that

Table 1: Major pathogens, their respective fungicide, target proteins and identified ligand molecules of the present study.

Pathogen	Disease caused	Fungicide	Ligand	Protein
Fusarium	Fusarium wilt	Chitosan	Chitosan	ch1
Magnaporthe	Rice blast	Probenazole	Probenazole	Peroxidase
Phytophthora	Late blight of potato	Mancozeb	Mancozeb	Cytochrome-c-oxidase
Botrytis	Necrotrophic	Pyrimethanil	Pyrimethanil	Cystathionine-β-lyase
Alternaria	Early blight of Solanaceae members	Mancozeb	Mancozeb	Monoxygenase
Melampsora	Flax rust	Imidazole	Imidazole	Demethylase

Table 2: SOPMA values for various proteins known to be interactive with the identified ligand molecules.
allows one to find the most favourable orientation of two interactive molecules favouring the study of molecular interaction between the two entities in a reaction. The affinity of a small molecule in drug designing is often related to the free energy calculations involved in binding. The variations found in this relationship is often equated to the interpretation and activity of organic molecules toward the target of interest [14]. The affinity of a small molecule in drug designing is often related to the free energy calculations involved in binding. The variations found in this relationship is often equated to the interpretation and activity of organic molecules toward the target of interest [14]. The affinity of a small molecule in drug designing is often related to the free energy calculations involved in binding. The variations found in this relationship is often equated to the interpretation and activity of organic molecules toward the target of interest [14].

Table 3: Energy values as calculated for the reported and screened protein sequences.

Protein molecule	Energy	Bond energy	Angle	Torsion	Improper	Non-bond	Electrostatic constraint	Total
cch1	minimized	99999900	47865.751	6530.439	11270.963	99999900	-25299.15	19984572
cytochrome c oxidase	minimized	1175.463	1714.463	1234.89	614.488	2556.57	-4988.83	2906.709
monooxygenase	minimized	457.569	1051.842	1348.383	452.036	-3136.7	-5743.36	-5561.24
cystathionine-β-lyase	minimized	150.699	1052.197	1372.626	429.567	-4581.09	-6028.68	-7604.674
Peroxidase	minimized	154.066	1052.666	1372.273	429.224	-4581.09	-6028.68	-7607.55
Demethylase	minimized	1979.069	2564.639	1388.56	1386.381	5130.31	-7366.95	5472.422
Polyphenoloxidase	minimized	2537.499	3019.232	1923.33	706.161	2789.294	3384.16	-7298.813
pdb2c7y	minimized	1949.017	3843.939	4559.577	537.308	-23915.9	-16057	-24083.145
pdb2z52	minimized	725.099	2646.74	4113.555	659.865	-26382.14	-18227.13	-36464
4yn	minimized	688.619	1865.642	520.567	-9760.85	-10855.62	-15710897	-81605.7
18w	minimized	1949.017	3843.939	4559.577	537.308	-23915.9	-16057	-24083.145
1bd	minimized	725.099	2646.74	4113.555	659.865	-26382.14	-18227.13	-36464
1wco	minimized	688.619	1865.642	520.567	-9760.85	-10855.62	-15710897	-81605.7
1wxy	minimized	1949.017	3843.939	4559.577	537.308	-23915.9	-16057	-24083.145
2v4h	minimized	725.099	2646.74	4113.555	659.865	-26382.14	-18227.13	-36464
2x3n	minimized	688.619	1865.642	520.567	-9760.85	-10855.62	-15710897	-81605.7
3e6g	minimized	1949.017	3843.939	4559.577	537.308	-23915.9	-16057	-24083.145
4h33	minimized	725.099	2646.74	4113.555	659.865	-26382.14	-18227.13	-36464
4hex	minimized	688.619	1865.642	520.567	-9760.85	-10855.62	-15710897	-81605.7
4je5	minimized	1949.017	3843.939	4559.577	537.308	-23915.9	-16057	-24083.145
403t	minimized	725.099	2646.74	4113.555	659.865	-26382.14	-18227.13	-36464

Citation: Mishra P, Eswaran M, Raman NM, Kaul T (2019) Probing of Phytofungal Proteins for Fungicidal Activity by Molecular Docking. J Proteomics Bioinform 12: 79-84. doi: 10.4172/0974-276X.1000499
Figure 1: Structures of various proteins reported corresponding to their SOPMA values. A: cytochrome c oxidase; B: cch1; C: cystathione-β-lyase; D: demethylase; E: monooxygenase; F: peroxidase; G: polyphenoloxidase.

Table 4: R-plot values for various protein ligand complexes under study.

Complex name	Total amino acid in disallowed region	Glycine	Amino acid other than glycine
Cystathionin-β-lyase + Pyrimethanil	24	8	16
Cytochrome c oxidase + Mancozeb	12	8	4
Demethylase + Imidazole	67	24	43
cch1 + Chitosan	126	20	106
Peroxidase + Probenazole	13	8	5
Polyphenoloxidase + probenazole	10	4	6
Monooxygenase + Mancozeb	28	18	10

Figure 2: Ramachandran plots for the protein-ligand complexes. A: cystathionine -β-lyase +pyrimethanil; B: cytochrome-c-oxidase+mancozeb; C: demethylase+imidazole; D: cch1+chitosan; E: peroxidase+probenazole; F: polyphenoloxidase+probenazole; G: monooxygenase+mancozeb.
predicted structure are located at outlier region. Each complex was analysed for the total amino acids in the disallowed region, the amino acids involved including and excluding glycine. The highest number of amino acids in the disallowed region was found for the complex cch1+chitosan with a total of 126 out of which 106 were amino acids other than glycine. The least number of amino acids were found in the complex polyphenoloxidase + probenazole with four glycine residues involved in the interaction. The stability of the complexes is often reported in the Ramachandran plots with the number of glycine residues as it lacks a side chain and can adopt phi psi angles in all four quadrants of the R-plot. A maximum of 24 glycine residues were present in complex demethylase+imidazole and a minimum of four residues in polyphenoloxidase+probenazole complex. The energy minimized values have been tabulated for the reported proteins+ligand complex using SPDBV (Table 5). Further the best docking poses during interaction derived from PyMol has been illustrated in Figure 3. The compounds under the observation have a high binding affinity with the receptors. All the ligands are found to form a strong hydrogen bonding with key residues and no ligand was found to stabilize inside the pocket with or without tremendous interactions with key residues of the protein. A prominent role has been played by the amine group in complexes cystathionine–β-lyase+pyrimethanil and cch1+chitosan. Among the other complexes, hydrogen bonding with key residues inside the pocket is observed to be a key determinant for binding of ligand with active residues. It can be assumed that the rigidity of the structures can also pose as a major factor that leads the ligands to attain docking poses and orient themselves in a certain fashion. Therefore, fungicidal activity can also be attributed to the greater number of hydrogen bonds between the ligand and protein. The preferred docked orientation obtained from PyMol shows the involvement of phenyl ring among the complex’s cystathionine–β-lyase+pyrimethanil; cytochrome-c-oxidase+mancozeb; cch1+chitosan; peroxidase+probenazole; polyphenoloxidase+probenazole and Monooxygenase+mancozeb. The interactions with active site residues coupled with favorable binding energy proclaim that these compounds may serve as an effective surrogate for the fungicidal activity for respective fungal diseases undertaken in this study.

Protein molecule+ligand	Energy	Bond energy	Angle	Torsion	Improper	Non-bond	E constraint	Total
cystathionine beta lyase +pyrimethanil	computed	754.168	2645	2124.869	855.516	-6693.68	-8790.4	-9104.48
	minimized	364.097	2211	2220.605	822.359	-9506.84	-9655.79	-13544.4
cytochrome c oxidase + mancozeb	computed	411.494	1328	1345.346	465.451	-3044.6	-5488.04	-4981.93
	minimized	410.283	1330	1344.518	464.577	-3050.18	-5494.15	-4994.84
cch1+chitosan	computed	99999900	47865.71	6532.959	11270.96	999999900	-25297.53	2E+08
	minimized	99999900	57299.06	6882.429	13519.31	999999900	-22703.29	-105307
monooxygenase+mancozeb	computed	884.427	4385	2793.629	1575.531	-6411.31	-13822.25	-10594.7
	minimized	1190.355	3446	2978.149	1339.491	-11407.74	-15038.3	-17492.1
demethylase + imidazole	computed	2877.407	11201.47	6468.625	3444.645	4289.96	-17827.84	10454.27
	minimized	2346.927	9941.146	7095.017	3006.757	-10668.34	-20348.38	-8616.88
peroxidase+probenazole	computed	549.414	1684	1378.262	696.008	-6387.63	-8097.08	-10177.3
	minimized	299.184	1395	417.692	628.369	-7776.23	-8378.88	-12774.9
polyphenoloxidase+ probenazole	computed	632.708	2480	1847.79	581.919	-9627.82	-10482.82	-14567.8
	minimized	353.26	1874	1897.323	523.199	-10921.45	-11144.77	-17454.9

Table 5: Energy estimation values for the protein ligand complex.

Figure 3: Pymol interactions for the protein ligand complex: A: cystathionine–β-lyase+pyrimethanil; B: cytochrome-c-oxidase+mancozeb; C: demethylase+imidazole; D: cch1+chitosan; E: peroxidase+probenazole; F: polyphenoloxidase+probenazole; G: Monooxygenase+mancozeb.
Conclusion

Various molecules were taken under the study, for being the target ligands to bring about a fungicidal reaction in the plant pathogen system. Ligands identified through this study allow us to make plant host fight against the fungal pathogen and prevent the occurrence of the disease. The interactions have been thoroughly studied with various softwares for the overall evaluation of the drug molecule designed and to study its overall effects for the overall higher efficacy and to prevent the occurrence of the fungal disease and management of the fungal pathogens in agriculture against various economically valuable plants.

References

1. Shuping DSS, Eloff JN (2017) The use of plants to protect plants and food against fungal pathogens: a review. Afr J Tradit Complement Altern Med 14: 120-127.
2. Yoon MY, Cha B, Kim JC (2013) Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 29: 1.
3. McGrath MT (2004) What are Fungicides. The Plant Health Instructor.
4. Gore M, Desai NS (2014) Computer-aided drug designing. In Clinical Bioinformatics (Pp: 313-321), Humana Press, New York, NY.
5. Aamir M, Singh VK, Dubey MK, Meena M, Kashyap SP, et al. (2018) In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against Fusarium wilt in tomato. Front Pharmacol p: 9.
6. Singh V, Praveen V, Tripathi D, Haque S, Somvanshi P, et al. (2015) Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum. Sci Rep 5: 11945.
7. Zhou Y, Chen L, Hu J, Duan H, Lin D, et al. (2015) Resistance mechanisms and molecular docking studies of four novel QoI fungicides in Peronosphythora italic. Sci Rep 5: 17466.
8. Godfray HCJ, Mason-D’Croz D, Robinson S (2016) Food system consequences of a fungal disease epidemic in a major crop. Philos Trans R Soc Lond B Biol Sci 371: 20150467.
9. Dreikorn BA, Owen WJ (2000) Fungicides, Agricultural. Kirk-Othmer Encyclopedia of Chemical Technology.
10. Hunter AD (1997) ACD/ChemSketch 1.0 (freeware); ACD/ChemSketch 2.0 and its tautomers, dictionary, and 3D plug-ins; ACD/HNMR 2.0; ACD/CNMR 2.0. J Chem Educ 74: 905.
11. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss: Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723.
12. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33: W363-W367.
13. Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7: 146-157.
14. Dhanasekaran D, Thajuddin N, Panneerselvam A (2012) Applications of actinobacterial fungicides in agriculture and medicine. Fungicides for Plant and Animal Diseases. IntechOpen.