Extracorporeal Acoustic Wave Therapy and Multiple Symmetric Lipomatosis

Carlotta Scarpa, MD, PhD
Vincenzo Vindigni, MD, PhD
Franco Bassetto, MD

Summary: Acoustic waves are mechanical waves recently used to activate tissue metabolism by exploiting the cell permeabilization caused by their passage. We report a case of a retroauricular lipoma in a 44-year-old woman affected by multiple symmetric lipomatosis and treated with extracorporeal acoustic wave therapy. The adipose thickness of the lipoma was reduced from 35.8 to 21 mm, with increased softness at palpatory examination. (Plast Reconstr Surg Glob Open 2015;3:e430; doi: 10.1097/GOX.0000000000000407; Published online 22 June 2015.)

CASE REPORT

A 44-year-old woman, surgically treated several times for multiple symmetric lipomatosis, presented

Disclosures: Dr. Scarpa and Prof. Bassetto have received personal fees for expert testimony and speakers bureaus. Dr. Vindigni does not have financial support from Storz Medical. The Article Processing Charge was paid for by the authors.
a retroauricular lipoma (Fig. 1). She reported pain and limited sleep, because of the inability to rest her head on the pillow. Clinically, the lipoma was hard, fibrotic, and 35.8-mm thick, as confirmed by ultrasound (Fig. 3A).

After informed consent, the lipoma was treated with EAWT (Cellactor SC1, Storz Medical, Switzerland) applying only the defocused planar handpiece once a week, for a total of 8 sessions (Fig. 2). The energy range was 0.09–0.27 mJ/mm², with a consequent frequency of 5–3 Hz and a total number of pulses of 1200 per session.

RESULTS

One month after the end of treatment, a further ultrasound scan was taken to check adipose thickness, which had been reduced from 35.8 to 21 mm (Figs. 3, 4), clinically evident as increased softness at palpation. The patient reported less pain and increased hours of sleep. The treatment was well accepted by the patient, because of the absence of anesthesia, pain and scarring, noninvasivity, and feasibility in a medical office.

CONCLUSIONS

EAWT is a noninvasive treatment, painless, and well accepted by patients. In view of its features and the results obtained, it may be a good alternative or adequate
support to traditional treatment in patients affected by diseases requiring multisession surgical therapy.

Carlotta Scarpa, MD, PhD
Clinic of Plastic and Reconstructive Surgery
University of Padova
Via Giustiniani 2
35100 Padova, Italy
E-mail: carlotsc@tin.it

REFERENCES
1. Wilbert DM. A comparative review of extracorporeal shock wave generation. BJU Int. 2002;90:507–511.
2. Wess O. Physics and technology of shock wave and pressure wave therapy. ISMST Newsletter. 2006; 2: 2–12.
3. Mariotto S, de Prati AC, Cavalieri E, et al. Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action. Curr Med Chem. 2009;16:2366–2372.
4. Mittermayr M, Antonic V, Hartinger J, et al. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanism, and clinical efficacy. Wound Repair Regen. 2012;20:456–465.
5. Gambhir SR, Delius M, Ellwart JW. Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J Membr Biol. 1994;141: 267–275.
6. Kodama T, Hamblin MR, Doukas AG. Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophys J. 2000;79:1821–1832.
7. Koshiyama K, Kodama T, Yano T, et al. Structural change in lipid bilayers and water penetration induced by shock waves: molecular dynamics simulations. Biophys J. 2006;91: 2198–2205.
8. Angehrn F, Kuhn C, Voss A. Can cellulite be treated with low-energy extracorporeal shock wave therapy? Clin Interv Aging. 2007;2:623–630.
9. Busetto L. Multiple symmetric lipomatosis. In: Lang F., ed. Encyclopedia of Molecular Mechanisms of Disease. Berlin, Heidelberg: Springer-Verlag GmbH; 2009:1375–1377.
10. Enzi G, Busetto I, Ceschin E, et al. Multiple symmetric lipomatosis: clinical aspects and outcome in a long term longitudinal study. Int J Obes. 2002; 26:253–261