Congruence between cytochrome oxidase I (COI) and morphological data in Anuraphis spp. (Hemiptera, Aphididae) with a comparison between the utility of the 5’ barcode and 3’ COI regions

Giuseppe E. Massimino Cocuzza1, Silvia Di Silvestro2, Rosanna Giordano3, Carmelo Rapisarda1

1 Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, via S. Sofia 100, 95123 Catania, Italy 2 Centro di Ricerca per l’Agrumicoltura e le Colture Mediterranee, Corso Savoia 190, 95024 Acireale, Italy 3 Department of Biology, University of Puerto Rico, San Juan, PR 00931, USA

Corresponding author: Giuseppe E. Massimino Cocuzza (cocuzza@unict.it)

Academic editor: R. Blackman | Received 10 June 2015 | Accepted 21 September 2015 | Published 26 October 2015

Citation: Cocuzza GEM, Di Silvestro S, Giordano R, Rapisarda C (2015) Congruence between cytochrome oxidase I (COI) and morphological data in Anuraphis spp. (Hemiptera, Aphididae) with a comparison between the utility of the 5’ barcode and 3’ COI regions. ZooKeys 529: 123–144. doi: 10.3897/zookeys.529.6081

Abstract
The discrimination of species in the genus Anuraphis is particularly difficult due to the overlap of morphological characters. In this study, we used the 5’ (barcode) and 3’ regions of cytochrome oxidase I (COI) to test their utility in the identification of species in this genus as well as closely related species. Both regions were useful to discriminate all the species tested. However the non-barcode 3’ region resulted in higher resolution and support for species relationships when the data were analyzed using both Maximum Likelihood and MrBayes. We propose the development of an integrated database that encompasses morphological, molecular, life-cycle, host plant and bibliographic information to facilitate and increase the accuracy of aphid identification.

Keywords
Insects, aphids, taxonomy, species identification
Introduction

Aphids are sap-sucking insects. Currently there are 5012 valid species (Favret 2014) associated with plants belonging to various botanical groups. Many species have a heteroeccious life cycle that includes alternating between a primary host plant (usually a tree) and a secondary host (usually an herbaceous species). The genus Anuraphis Del Guercio presently ascribed to the tribe Macrosiphini includes a small number of taxonomically well-defined species, *A. subterranea* (Walker, 1852), *A. farfarae* (Koch, 1854), *A. catonii* Hille Ris Lambers, 1935, *A. pyrilarasi* Shaposhnikov, 1950, *A. cachryos* Barbagallo & Stroyan, 1982, *A. ferulae* Shaposhnikov, 1995 and *A. shaposhnikovi* Barbagallo & Cocuzza, 2003. In addition, Remaudière and Remaudière (1997) reported four other nominal species (i.e., *A. capparidis* Nevsky, 1929, *A. cortusae* Nevsky, 1929, *A. floris* Monzen, 1934 and *A. katsurae* Shinji, 1952). However, the generic placement of *A. capparidis* has been questioned by Blackman and Eastop (2006) who noted that, based on the original description, this is probably not an *Anuraphis* species but an immature *Aphis* sp. The recognized *Anuraphis* species are distributed in the Ponto-Mediterranean area of the western Palaeartic region. A common trait of almost all *Anuraphis* species is the use of Apiaceae as host plants, with the exception of *A. farfarae* that feeds on Asteraceae (*Tussilago, Petasites* and *Hieracium*). Some populations of *A. subterranea, A. pyrilarasi, A. farfarae* and *A. catonii* have been shown to be heteroeccious holocyclic with *Pyrus* spp. (Rosaceae) as primary host plants (Shaposhnikov 1951; Kolesova 1972; Lampel and Meyer 2007). However, some populations of *A. farfarae* (Shaposhnikov & Sharov, 1978), and probably other species, are solely anholocyclic on secondary host plants. For *A. cachryos, A. shaposhnikovi* and *A. ferulae* the primary host plants remain to be determined.

A. farfarae (pear-colt’s foot aphid) and *A. subterranea* (pear-hogweed aphid) have been reported in the literature as pests of pear, where they cause direct damage to young foliage in spring (Kolesova 1972). However, damage due to their infestation has a negligible effect on production (Alford 2014).

All species belonging to the genus *Anuraphis* are morphologically similar to each other but easily discriminated from other genera. The main morphological features of the genus are an almost flat frontal profile, as a result of the minimally developed antennal tubercles, and a short cauda. Moreover, *Anuraphis* shares with a few other genera of Macrosiphini a typical spinulose ornamentation of siphunculi and a well-developed, often almost complete set of dorsal tubercles (both marginal and spinal). However, as already reported for other groups of aphids, the morphometric similarity among *Anuraphis* species leads to an overlap that renders their discrimination to species level difficult (Stroyan 1984; Heie 1986). Barbagallo and Cocuzza (2003) published a morphological key to discriminate viviparous morphs (for both apterae and alate) of *Anuraphis* species and a discriminant function to separate *A. subterranea* and *A. shaposhnikovi*. However, the discrimination of *A. subterranea* and *A. shaposhnikovi* using only morphological characters requires the skills of an experienced researcher, especially when specimens are collected on primary host plants or when the secondary host is unknown.
In some genus (e.g. *Aphis*), a recurrent and difficult problem in using only morphological characters to identify aphids is that for many species there are insufficient diagnostic characters, resulting in their identification being partially based on host plant association and life cycle characteristics (Stroyan 1984; Heie 1986). However, due to incomplete and/or missing knowledge of many aphid/plant associations, the use of this criterion to identify aphid species, could lead to misidentification (Stroyan 1984; Coeur d’acier et al. 2007). Many studies have used the 5’ region of the cytochrome oxidase I gene (COI), more commonly referred to as the DNA barcode region, as a useful tool to discriminate various groups of insects (Hebert et al. 2003a, b, Deng et al. 2012; Derocles et al. 2012; Williams et al. 2012; Julsirikul et al. 2013), including aphid species (Coeur d’acier et al. 2008; Footitt et al. 2008, 2009a, b, c; Miller and Footitt 2009; Wang and Qiao 2009; Kim et al. 2010; Lee et al. 2011; Zhang et al. 2010, 2011; Wang et al. 2011; Chen et al. 2013; Massimino Cocuzza and Cavalieri 2014). However, especially in some insect groups such as Aphididae, the DNA barcode region, due to low genetic diversity at this marker, was no more informative than morphological characters (Footitt et al. 2008; Lee et al. 2011). For instance, results obtained using the COI barcode region with adelgids were inadequate for the purpose of discriminating species that were morphologically indistinguishable or belonged to a species-complex (Žuroková 2010). Other studies have shown that the COI barcode region discriminated 96% of aphid taxa tested (Footitt et al. 2008).

Ideally the description of a species should result from a synthesis of information that encompasses morphological, molecular, biological, biogeographical, physiological, ecological and bibliographical data (Dayrat 2005; De Salle 2006; Waugh 2007; Padial et al. 2010; Taylor and Harris 2012), however, this compendium of information is lacking for the great majority of species.

This study was undertaken to improve the current taxonomic knowledge of the various taxa belonging to the genus *Anuraphis* by testing the utility of the COI gene, specifically comparing the widely used barcode 5’ region with the much less studied 3’ region, as a molecular tool for their identification. A further goal is to compare the results obtained with the COI gene to those previously published using only morphological characters (Barbagallo and Cocuzza 2003).

Materials and methods

This study was conducted with seven species (Table 1) belonging to the genus *Anuraphis*. Unfortunately, it was not possible to include *A. ferulae*, a species recorded only from Tajikistan on *Ferula* sp. When possible, species were collected in different geographic locations and on different host plants. Taxonomic nomenclature follows Remaudière and Remaudière (1997). Two samples of *Nearctaphis bakeri* (Cowen, 1895) were included in the analysis. The genus *Nearctaphis* is considered the vicariant (or sister) Nearctic relative of *Anuraphis*, from which it differs morphologically due to the lack of spinal tubercles, and biologically by the use of *Malus* sp. as a primary host plant.
Voucher code	Species	Host plant	Location	Sampling date	GeneBank accession N°
S03189	*Anaphis farfarae* Koch	*Tussilago farfara*	40,0970N/15,8131E Lauria (Potenza, Basilicata)	25 Jun. 03	KT878791
S03190	*A. farfarae*	*Tussilago farfara*	39,8762N/16,0050E Mormanno (Cosenza, Calabria)	25 Jun. 03	KT878792
S13572	*A. farfarae*	*Tussilago farfara*	46,5606N/12,1285E Cortina d’Ampezzo (Bolzano, Trentino Alto Adige)	18 Sep. 13	KT878793
S03157	*A. pyrilaseri* Shaposhnikov	*Magydaris pastinacea*	37,9795N/12,7637E Buseto Palizzolo (Trapani, Sicily)	6 Jun. 03	KT878794
S03171	*A. pyrilaseri*	*Thapsia garganica*	37,9258N/15,7062E Rognudi (Reggio Calabria, Calabria)	9 Jun. 03	KT878795
S03141	*A. pyrilaseri*	*Ferula communis*	37,6345N/15,0744E Trecastagni (Catania, Sicily)	15 May 03	KT878797
S03146	*A. pyrilaseri*	*Ferula communis*	38,0229N/15,3890E Fiumedinisi (Messina, Sicily)	17 May 03	KT878799
S03152	*A. pyrilaseri*	*Thapsia garganica*	37,8152N/15,1869E Piedimonte Etneo (Catania, Sicily)	28 May 03	KT878796
S03147	*A. pyrilaseri*	*Ferula communis*	38,0440N/15,4309E Itala (Messina, Sicily)	17 May 03	KP714117
CBGP#ACOE2024	*A. pyrilaseri*	Not reported	37,7863N/15,2337E Fiumefreddo (Catania, Sicily)	27 May 06	ACEA860
GBMIN37806	*A. pyrilaseri*	Not reported	37,7826N/15,1325E Sant’Alfio (Catania, Sicily)	Not reported	GU568501
CBGP#ACOE2050	*A. pyrilaseri*	Not reported	37,7827N/15,1418E Linguaglossa (Catania, Sicily)	23 May 06	ACEA839
CBGP#ACOE1998	*A. pyrilaseri*	Not reported	Not reported	30 May 06	Not reported
S03144	*A. catonii* HRL	*Pimpinella major*	38,0505N/15,4343E Itala (Messina, Sicily)	17 May 03	KT878815
S03173	*A. catonii*	*Pimpinella peregrina*	37,9937N/15,9250E Bova (Reggio Calabria, Calabria)	9 Jun. 03	KT878816
Voucher code	Species	Host plant	Location	Sampling date	GeneBank accession N°
-------------	--------------------------	-----------------------	---	---------------	-----------------------
S12477	A. catonii	Pimpinella peregrina	37,1334N/15,0165E Sortino (Syracusa, Sicily)	25 May 12	KT878817
S03179	A. cachryos Barb. & Str.	Cachrys sicula	37,3619N/15,0219E Scordia (Catania, Sicily)	15 Jun. 12	KT878818
S03180	A. cachryos	Cachrys sicula	36,7765N/14,5989E Donnalucata (Ragusa, Sicily)	15 Jun. 12	KT878819
S12423	A. cachryos	Cachrys sicula	36,7766N/14,5990E Donnalucata (Ragusa, Sicily)	2 May 12	KT878820
S14599	A. cachryos	Cachrys libanotis	37,3080N/14,8587E Lentini (Siracusa, Sicily)	13 Jun. 13	KT878821
CPGP#ACOE1057	A. cachryos	Not reported	42,7869N/3,0361 Languedoc-Roussillon (France)	30 Oct. 00	ACEA353
S03181	A. subterranea (Walker)	Heracleum pyrenicum	37,9756N/14,9516E Floresta (Messina, Sicily)	22 Jun. 03	KT878800
S03182	A. subterranea	Heracleum pyrenicum	37,9808N/15,1435E Novara di Sicilia (Messina, Sicily)	22 Jun. 03	KT878801
S12517	A. subterranea	Heracleum sphondylum	37,9020N/13,9999E Isnello (Palermo, Sicily)	3 Jul. 12	KT878804
S03191	A. subterranea	Pastinaca sativa	39,8761N/16,0038E Mormanno (Cosenza, Sicily)	25 Jun. 03	KT878805
S03163	A. subterranea	Heracleum pyrenicum	37,8801N/14,0283E Petralia Sottana (Palermo, Sicily)	6 Jun. 03	KT878802
S03184	A. subterranea	Heracleum pyrenicum	37,9756N/14,9516E Floresta (Messina, Sicily)	22 Jun. 03	KT878803
CBGP#ACOE2053	A. subterranea	Not reported	37,9216N/14,957E Randazzo (Catania, Sicily)	30 May 06	ACEA883
CBGP#ACOE2060	A. subterranea	Not reported	37,9921N/14,9306E Floresta (Messina, Sicily)	30 May 06	ACEA890
CBGP#ACOE645	A. subterranea	Not reported	44,8893N/1,4062E Peryllac-et-Millac (France)	2 Jun. 99	ACEA164
CBGP#ACOE1068	A. subterranea	Not reported	42,8742N/2,1829E Quillan (France)	21 May 01	ACEA367
Voucher code	Species	Host plant	Location	Sampling date	GeneBank accession N°
--------------	------------------------------	---------------------	---	---------------	-----------------------
S03160	A. shaposhnikovi Barb. & Coc.	Magydaris pastinacea	37,9795N/12,7637E Buseto Palizzolo (Trapani, Sicily)	6 Jun. 03	KT878808
S03143	A. shaposhnikovi	Opopanax chironium	37,9075N/15,1211E Francavilla di Sicilia (Messina, Sicily)	16 May 03	KT878809
S03166	A. shaposhnikovi	Opopanax chironium	37,9917N/15,9309E Bova Sup. (Reggio Cal., Calabria)	9 Jun. 03	KT878810
S14589	A. shaposhnikovi	Opopanax chironium	37,6324N/14,9859E Belpasso (Catania, Sicily)	21 Apr. 14	KT878811
CBGP#ACOE438	A. shaposhnikovi	Not reported	44,1891N/6,7477E Entrailles (France)	24 Jul. 98	ACEA035
CBGP#ACOE2052	A. shaposhnikovi	Not reported	37,9216N/14,957E Randazzo (Catania, Sicily)	30 May 06	ACEA882
S12413	Nearctaphis bakeri (Cowen)	Trifolium pratense	45,0877N/7,6387E Torino (Piemonte)	16 Apr. 12	KT878807
S13562	N. bakeri	Trifolium pratense	41,2367N/13,9319E Sessa Aurunca (Caserta, Campania)	12 Jun. 13	KT878806
CBGP#ACOE824	N. bakeri	Not reported	43,7337N/3,5500 S. Aurunca (Caserta, Italia)	8 Apr. 00	ACEA242
CBGP#ACOE1020	N. bakeri	Not reported	47,9862N/-4.4642E Plouhinec (France)	30 Jul.00	ACEA331
S06340	Aphis fabae Scopoli	Vicia faba	36,9251N/14,7423E Ragusa (Sicily)	20 Apr. 06	KT878822
CBGP#ACOE460	A. fabae	Not reported	44,0105N/3,6058E Revigna (Sicily)	1 Jul. 98	ACEA050
S04230	Roepkea marchali HRL	Prunus mahaleb	43,2235N/13,1518E S. Severino (Macerata, Marche)	20 May 04	KT878812
S14613	R. marchali	Prunus mahaleb	50,0810N/14,4029E Prague (Czech Rep.)	31 May 14	KT878813
Congruence between cytochrome oxidase I (COI) and morphological data...

Voucher code	Species	Host plant	Location	Sampling date	GeneBank accession N°
S14623	R. marchali	Prunus mahaleb	50.0871N/14.4172E Prague (Czech Rep.)	1 Jun. 14	KT878814
CBGP#ACOE1674	R. marchali	Not reported	43.6833N/3.9262E Teyran (France)	26 Jun. 0	ACEA723
S03145	Brachycaudus jacobi Stroyan	Myosotis sylvatica	38.0505N/15.4343E Itala (Messina, Sicily)	15 May 03	EU189690
GBMIN10086	B. jacobi	Myosotis sylvatica	38.0505N/15.4343E Itala (Messina, Sicily)	15 May 03	EU196598
and Fabaceae and Scrophulariaceae as secondary hosts (Hille Ris Lambers 1970). In addition, samples of *Roepkea marchali* Hille Ris Lambers, *Brachycaudus jacobi* Stroyan and *Aphis fabae* Scopoli, were used as out-groups. Collections of aphid colonies were made on individual plants and at least two individuals were sequenced per collection. Details regarding the specimens used in this study (host plants, collection locality, sampling date and gene bank accession numbers) can be found in Table 1. For each sample, 5–6 apterae and alate individuals were slide-mounted for morphological identification. Specimens were morphologically identified by S. Barbagallo using characters in the keys provided by Heie (1992), Barbagallo and Cocuzza (2003) and Blackman (2010). Specimen slides are stored in the Aphididae collection of S. Barbagallo (Department of Agriculture, Food and Environment, University of Catania).

Whole aphid specimens for DNA sequencing were stored in 95% ethanol at -20 °C, those used for morphological observations were stored in 70% ethanol and at room temperature.

Total genomic DNA was extracted by macerating entire single individuals using the DNeasy Blood & Tissue kit (Qiagen*, Hilden, Germany) in 50 µl of extraction buffer and stored at -20 °C. To compare the utility of the 5’, barcode region, and the 3’ region of COI we amplified the following regions: for the 5’ end, a 600 bp region using primers LCO1490 and HCO2198 (Folmer et al. 1994), widely used on a variety of organisms as well as aphids (Hebert et al. 2003, Coeur D’acier et al. 2008; Kim et al. 2010; Lee et al. 2014), for the 3’ end, a 648 bp fragment using primers C1-J-2195 and TL2-N-3014 (Simon et al. 1994), found to be informative in several aphid studies (Coeur d’acier et al. 2008; Massimino Cocuzza and Cavalieri 2014). PCR reactions were performed using 8.5 µl of buffer premix 2x F (FailSafe tm PCR Premix Selection Kit –Épicentre Technologies) 1 µl of each primer (10 µM), 0.5 µl Taq polymerase (Life Technologies) and 2 µl DNA template (quantified in 6-18 ng/ µl) in a total volume of 21 µl. The cycle conditions for primer set LCO1490 and HCO2198 was 94 °C for 3 min (initial denaturation), followed by 35 cycles of 94 °C for 30 s (denaturation), 48 °C for 1 min (annealing) and 72 °C for 1 min (extension). Primer set C1-J-2195 and TL2-N-3014 conditions were 96 °C for 5 min (initial denaturation) and 35 cycles of 96 °C for 5 s (denaturation), 45 °C for 1 min (annealing), 72 °C for 1 min (extension). PCR products were run in 1.6% agarose gels stained with Syber Safe DNA gel stain (Life Technologies). PCR products were sequenced at BMR genomics (Padua, Italy) or at the W. M. Keck Center at the University of Illinois (Urbana-Champaign, IL) and run on an ABI PRISM 3730XL DNA analyzer (Life Technologies Corporation, Carlsbad, CA, USA). For each sample 2–8 individuals were sequenced, and one representative sequence for each sample was subsequently chosen. Sequences of *Anuraphis* available in Genbank and or BOLD databases were utilized in the analysis and are identified in Table 1 by their accession number.

The COI sequences were edited manually using BioEdit (Hall 1999) or Sequencher v. 5.0 (GeneCodes Corporation, AnnArbor, MI, USA). Nucleotide sequences were translated using EPoS (Griebel et al. 2008) to check for stop codons (Zhang and Hewitt 1996). Sequence divergences were calculated using the p-distance model as suggested by
Srivathsan and Meier (2012), and a neighbour-joining (NJ) tree (Saitou and Nei 1987), as implemented in MEGA 6 (Tamura et al. 2011), was used to visualize the distance matrix among taxa and population samples. The Bayesian phylogenetic analysis was conducted using MrBayes v 3.2.1 (Ronquist et al. 2012) implementing the GTR + I model of sequence evolution selected by JModel test 2.1.4 (Posada 2008) based on the Akaike information criterion (AIC). Beginning with random trees, four independent runs with four Markov chains were run for 25,000,000 generations. Bayesian trees were sampled every 1000th generations. All other parameters were set at default. Convergence was assessed using TRACER 1.6 (Rambaut et al. 2014) using a 25% burn in value. Posterior probabilities (pp) and the consensus trees were computed in MrBayes. The Bayesian analysis was run on the CIPRES Science Gateway (Miller et al. 2010). A maximum likelihood analysis was also performed using RAxML v. 8 (Stamatakis 2014) with the GTR +I model; clade support for the maximum likelihood tree was determined in RAxML by bootstrap, based on 1000 pseudoreplicates.

Results

COI was easily amplified for all specimens analysed using the primers indicated above. No frame shift or premature stop codons were detected.

The five prime end (5’) constituted a 601 base pair (bp) fragment. With total bp frequencies of 75.3% for A/T and 24.7% for G/C. These latter results concur with those found for other aphid species (Shufran et al. 2000; Wang et al. 2011). The 5’ end showed that there were 533 conserved and 125 variable nucleotides with 92 of the latter being parsimony informative. The overall average distance for the 5’ end of the COI gene was 5.8, ranging from 0 (samples within a species) to 11.7 across species.

The three prime end (3’) sequences analysed consisted of 648 bp with frequencies of 74.9% A/T and 25.1% G/C. The 3’ end showed that there were 521 constant and 127 variable sites of which 111 were parsimony informative. The percentage of variable sites was slightly higher for the 3’ (19.6%) than the 5’ end (18.99%).

Considering the 5’ region, the mean genetic distance of *Anuraphis* species from *N. bakeri*, *R. marchali*, *B. jacobi* and *A. fabae* were 6.5%, 6.7%, 8.0% and 9.2%, respectively, whereas slightly higher distance values were observed for most comparisons of the 3’ region (7.5%, 7.9, 8.1 and 8.6%, respectively). The genetic differences recorded in the 5’ barcode region among *Anuraphis* species (Table 2) ranged from 0.2% (between *A. shaposhnikovi* and *A. catonii*) to 6.7% (between *A. cachryos* and *A. pyrilaseri*). When the 3’ region was used, the pairwise distance ranged from 0.8 (*A. shaposhnikovi* vs *A. catonii*) to 7.4 (*A. subterranea* vs *A. pyrilaseri*).

Our results indicate that there is high genetic homogeneity within *Anuraphis* species, despite differences in geographic origin and host plant. *Anuraphis farfarae* is the only member of the genus that uses Asteraceae, nevertheless its position in *Anuraphis* is well supported (Fig. 2c and 2a). Adaptation to this host plant may be of recent origin and its ecological uniqueness is not reflected at the COI level.
	1	2	3	4	5	6	7	8	9											
	5'	3'	5'	3'	5'	3'	5'	3'	5'	3'	5'	3'								
1	Anuraphis farfarae																			
2	Anuraphis pyralisera	1.7	3.2																	
3	Anuraphis subterranea	5.7	7.2	5.8	7.4															
4	Anuraphis shaposnikovi	5.3	6.9	5.0	6.6	3.7	4.7													
5	Anuraphis catoni	5.5	6.9	5.2	6.6	3.9	4.8	0.2	0.8											
6	Anuraphis cachryos	6.6	7.0	6.7	6.6	4.3	5.9	5.6	3.3	5.6	3.8									
7	Nearctaphis bakeri	6.8	8.3	6.9	7.9	5.6	7.6	6.6	6.9	6.6	7.0	6.7	7.1							
8	Roepkea marchali	7.3	7.9	6.7	8.2	6.2	8.0	6.7	7.6	6.7	7.7	6.8	8.1	5.5	7.4					
9	Brachycaudus jacobi	8.5	8.4	8.9	8.5	7.1	8.5	7.8	7.5	7.8	7.6	7.8	8.2	7.5	8.0	6.9	6.8			
10	Aphis fabae	10.0	9.9	9.1	8.1	9.1	9.1	9.0	7.9	9.0	8.0	8.9	8.4	8.1	8.1	8.5	10.0	10.0	9.5	
Little to no intraspecific differences were found among the various geographic samples of each *Anuraphis* species (0.3% only for some populations of *A. catonii*, *A. cachryos* and *A. pyrilaseri*). Phylogenetic analysis with Neighbour Joining (NJ), Maximum Likelihood (ML) and Bayesian (MrBayes) using the 5’ and 3’ end of the COI gene showed two discreet clades: one comprising *A. farfarae* and *A. pyrilaseri*; the other including *A. cachryos*, *A. subterranea*, *A. catonii*, and *A. shaposhnikovi* respectively (Figs 1, 2).

The clade including *A. farfarae* and *A. pyrilaseri* shows a genetic distance between the two species of 3.2% when using the 3’ end and 1.7% when using the 5’ end of COI. The various samples of *A. farfarae* were highly similar, regardless of host plant, locality and COI region examined. Similarly, the populations of *A. pyrilaseri* showed low genetic variability (0.3%). Differences in body colour, possibly due to host plant effects, as well as differences in dorsal abdominal sclerotisation, do not correlate with the low genetic diversity observed with the COI gene. The various samples of *A. subterranea* showed no genetic differences, regardless of their geographic origin, host plant or COI region used for the analysis. Genetic difference (3.7% with 3’ and 4.7% with 5’ region) between *A. subterranea* and *A. shaposhnikovi* clearly distinguishes the two species, despite the small morphological differences observed (length of ultimate rostral...
segment and number and distribution of abdominal spinal tubercles). *A. shaposhnikovi* and *A. catonii* showed the lowest genetic divergence (<1%) regardless of the COI region considered. However, while with 5' COI barcode showed a pairwise distance of 0.2%, the 3' region showed a difference of 0.8%.

A result similar to the one based on COI was found using a multivariate discriminant analysis with 16 morphometric characters (Barbagallo and Cocuzza 2003) and graphically as Mahalanobis’ generalized distance (Fig. 3). The dendrogram indicates a distinction of *A. subterranea* and *A. shaposhnikovi*, and the similarity between the latter species and *A. catonii*.

Discussion

The molecular analysis based on the 3' and 5' COI gene regions indicates that the genus *Anuraphis* is a homogeneous taxonomic group. However, COI also provides
Congruence between cytochrome oxidase I (COI) and morphological data...

Information to distinguish the taxa at the species level as evidenced by the level of support, 89% bootstrap or more, on the likelihood tree (Fig. 2a). Thus, the analysis using COI confirms the species delimitation concepts previously reported using a multivariate analysis of morphological features (Barbagallo and Cocuzza 2003). The division of Anuraphis species in two groups (one clade consisting of A. farfarae and A. pyrilaseri, a second clade including A. subterranea, A. cachryos, A. shaposhnikovii and A. catonii) is easily observable by comparing the phylogenetic trees and Mahalanobis’ generalized distance. The COI-based molecular analysis permitted a better discrimination of A. shaposhnikovii and A. subterranea than the multivariate analysis based on morphometric features. It is useful that the COI gene can also differentiate A. subterranea and A. catonii, because the taxonomic status of the latter species has been questioned. Hille Ris Lambers (1935), regarded A. catonii as a subspecies of A. subterranea. The only morphological difference between A. subterranea and A. catonii noted by Stroyan (1950) was in the number of secondary rhinaria on the antennae of alatae, more numerous in the former species. However, Blackman (2010) has reported other morphological differences between these two species, both in apterae and alatae. Biologically, it has been

Figure 2a. Likelihood tree estimated using 648 bp at the 3’ end of COI for selected Anuraphis species.
shown that when transferred to *Pastinaca sativa*, the nymphs of *A. catonii* can reach adulthood (Stroyan 1959); conversely, Shaposhnikov (1951) observed that nymphs of *A. catonii* transferred from pear survive on *Pimpinella* sp. but not on *Pastinaca sativa*. A further intricacy was the recovery by Kolesova (1972) of a sample of *A. catonii* on *P. sativa*, although this could be a case of misidentification.

Barbagallo and Cocuzza (2003) reported that *A. shaposhnikovi*, collected on *Magydaris pastinacea* has slight morphological differences from those developing on *Opopanax chironium*, (i.e., the length of the last rostral segment and the number of abdominal spinal tubercles). The putatively fixed nature of the morphological differences is confirmed by the COI analysis and can be the result of intraspecific variability and possibly geographic isolation, since *M. pastinacea* occurs in very restricted areas of Sicily and Sardinia. Another interesting observation is the low genetic divergence observed between *A. catonii* and *A. shaposhnikovi*, a similarity already evidenced in the morphological analysis (Barbagallo and Cocuzza 2003). These species may have diverged recently from a common ancestor as a result of differences in the habitats of their respective host plants. The genus *Pimpinella* is typical of herb-rich areas and...
wooded pastures, whereas *O. chironium* prefers uncultivated dry land with a Mediterranean climate (Pignatti 1982). The phenomenon of host-races as a first step leading to speciation has been repeatedly observed in phytophagous insects (Drès and Mallet 2001) and is common in aphids (Sunnucks et al. 1997; Margaritopoulos et al. 2007), especially in populations that have partially or totally lost the sexual generation in favour of continuous parthenogenetic reproduction. Host-plant use may represent a food resource niche that favours the speciation process of species in sympatry (Peccoud et al. 2010). Moreover, low genetic diversity at the COI level is typical of taxa with recent ecological divergence (Jimbo et al. 2011) and can explain the low genetic divergence (<1%) reported in some aphid groups (Foottit et al. 2008; Lee et al. 2011; Massimino Cocuzza and Cavalieri 2014). Lee et al. (2014) found that the COI barcode region was not helpful in the identification of 7% of the aphid species they examined. This lack of resolution could be resolved by the development of additional molecular markers with higher diversity, leading to greater accuracy in species identification (Lozier et al. 2009; Sano and Akimoto 2012; Chen et al. 2013; Lee et al. 2014). In the

Figure 2c. MrBayes tree estimated using 648 bp at the 3’ end of COI for selected *Anuraphis* species.
case of A. catonii and A. shaposhnikovi the genetic difference, albeit low, was consistently observed in all samples analysed.

We observed a difference in genetic distances when using the 5’ barcode or the 3’ regions of COI. Most “barcode” studies on aphids are carried out using the 5’ region of COI that has produced some ambiguous results (Foottit et al. 2008; Žuroková et al. 2010; Lee et al. 2011). This study demonstrates that in Anuraphis the 3’ COI region has a higher capacity of discrimination. In the case of A. catonii and A. shaposhnikovi the difference recorded with the 3’ (0.8%) and 5’ regions (0.2%) is crucial, especially when considering that a distance of 0.5% in aphids is usually considered as the “borderline” between species (Massimino Cocuzza and Cavalieri 2014; Rakauskas et al. 2014). However, low genetic difference in species that are morphologically different is not an unknown phenomenon in aphids. For example, despite Aphis hederae Kaltenbach, 1843 and Aphis newtoni Theobald, 1927 having well-defined morphological and biological differences, they have a low interspecific divergence (0.17%) in the 5’ COI region (Lee et al. 2014).
Congruence between cytochrome oxidase I (COI) and morphological data...

The genetic results observed here in *Anuraphis* spp. closely mirror previous morphometric findings. The lack of appreciable differences in morphological characters is a phenomenon well known in various groups of aphids (Stroyan 1984; Foottit 1997; Wang et al. 2011) and this peculiarity can easily lead to the misidentification of species (Coeur d’acier et al. 2007). Because of this difficulty, there is a need for methods of investigation that can be used in conjunction with classic morphometric analysis. Confirming the finding of previous studies on aphids (Foottit et al. 2008; 2009c), the present study indicates that the COI gene may significantly aid in the correct identification of aphid species, especially in cases where morphological characters are insufficient to clarify taxonomic status. Morphometrics and the COI gene can be used in parallel to improve the discrimination of aphid species. However, an identification-integrated system that links molecular data, morphological features, life cycle, host plant, photos (in vivo and on slides) and a bibliography for each aphid species would further facilitate and improve the accuracy of aphid species determination.

Acknowledgements

We are grateful to Prof. Sebastiano Barbagallo and Prof. Felipe Soto, for a critical review as well as suggestions provided during the research. Many thanks to Dr. Vincenzo Cavalieri for technical support in molecular analysis and Dr. Giuseppe Scuderi for valuable suggestions. Finally, we are particularly grateful to the anonymous reviewer and to Dr. R.L. Blackman for their valuable comments.
References

Alford DV (2014) Pests of Fruit Crops. A colour handbook. 2n ed. CRC Press, 462 pp.
Barbagallo S, Cocuzza GE (2003) Morphological discrimination of six species of the genus *Anuraphis* (Hemiptera: Aphididae), including description of a new species. The Canadian Entomologist 135: 839–862. doi: 10.4039/n02-098
Blackman RL, Eastop VF (2006) Aphids on the World’s Herbaceous Plants and Shrubs (2 vol.), Wiley & Sons, Chichester, 1439 pp.
Blackman RL (2010) Aphids – Aphidinae (Macrosiphini). Handbooks for the Identification of British Insects 2(7): 413 pp + CD.
Chen R, Jiang L-Y, Liu L, Liu Q-H, Wen J, Zhang R-L, Li X-Y, Wang Y, Lei F-M, Qiao G-X (2013) The *gnd* gene of *Buchnera* as a new, effective DNA barcode for aphid identification. Systematic Entomology 38: 615–625. doi: 10.1111/syen.12018
Coeur d’acier A, Jousselin E, Martin JF, Rasplus JY (2007) Phylogeny of the genus *Aphis* Linnaeus 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 42: 598–611. doi: 10.1016/j.ympev.2006.10.006
Coeur d’acier A, Cocuzza GE, Jousselin E, Cavalieri V, Barbagallo S (2008) Molecular phylogeny and systematics in the genus *Brachycaudus* (Homoptera: Aphididae): insight from a combined analysis of nuclear and mitochondrial genes. Zoologica Scripta 37: 175–193. doi: 10.1111/j.1463-6409.2007.00317.x
Dayrat B (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407–415. doi: 10.1111/j.1095-8312.2005.00503.x
Deng J, Yu F, Zhang T-X, Hu H-Y, Zhu C-D, Zhang Y-Z (2012) DNA barcoding of six *Ceroplastes* species from China. Molecular Ecology Resources 12: 791–796. doi: 10.1111/j.1755-0998.2012.03152.x
Derocles SAP, Plantegenest M, Simon J-C, Taberlet P, Le Ralec A (2012) A universal method for the detection and identification of Aphidiinae parasitoids within their aphid hosts. Molecular Ecology Resources 12: 634–645. doi: 10.1111/j.1755-0998.2012.03131.x
De Salle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conservation Biology 20: 1545–1547. doi: 10.1111/j.1523-1739.2006.00543.x
Drès M, Mallet J (2001) Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transaction Royal Society London B 357: 471–491. doi: 10.1098/rstb.2002.1059
Favret C (2014) Aphid speciesfile. Version 5.0/5.0 [retrieval date]. http://Aphid.SpeciesFile.org
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome *c* oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
Foottit RG (1997) Recognition of parthenogenetic insect species. In: Claridge MF, Dawah HA, Wilson MR (Eds) Species. The Units of Biodiversity Chapman & Hall, London, 291–307.
Foottit RG, Maw HEL, Von Dohlen CD, Hebert PDN (2008) Species identification of aphids though DNA barcode. Molecular Ecology Resources 8: 1189–1201. doi: 10.1111/j.1755-0998.2008.02297.x
Congruence between cytochrome oxidase I (COI) and morphological data... 141

Foottit RG, Maw HEL, Pike KS (2009a) DNA barcodes to explore diversity in aphids (Hemiptera Aphididae and Adelgidae). Redia 92: 87–91.

Foottit RG, Lowery DT, Maw HEL, Smirle MJ, Lushai G (2009b) Identification, distribution and molecular characterization of the apple aphids Aphis pomi and A. spiraecola. Canadian Entomologist 141: 478–495. doi: 10.4039/n09-037

Foottit RG, Maw HEL, Havill NP, Ahern RG, Montgomery ME (2009c) DNA barcodes to identify species and explore diversity in the Adelgidae (Insecta: Hemiptera: Aphidoidea). Molecular Ecology Resources 9 (suppl. 1): 188–195. doi: 10.1111/j.1755-0998.2009.02644.x

Griebel T, Brinkmeyer M, Bocker S (2008) EPoS: a modular software framework for phylogenetic analysis. Bioinformatics 24: 2399–2400. doi: 10.1093/bioinformatics/btn364

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium 41: 95–98.

Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identification through DNA barcodes. Proceedings of Royal Society London B 270: 313–321. doi: 10.1098/rspb.2002.2218

Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome C oxidase subunit 1 divergences among closely related species. Proceedings Royal Society London B (suppl.) 270: 96–99. doi: 10.1098/rsbl.2003.0025

Heie OE (1986) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. 3. Family Aphididae: subfamily Pterocommatinae & tribe Aphidini of subfamily Aphidinae. Fauna Entomologica Scandinava 17: 1–314.

Heie OE (1992) The Aphididae (Hemiptera) of Fennoscandia and Denmark. IV. Fauna Entomologica Scandinava 25: 1–189.

Hille Ris Lambers D (1970) The genus Neartaphis Shaposhnikov, 1950. I. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings 73: 48–74.

Jimbo U, Kato T, Ito M (2011) Current progress in DNA barcoding and future implications for entomology. Entomological Science 14: 107–124. doi: 10.1111/j.1479-8298.2011.00449.x

Julsirikul D, Worapong J, Kitthawees S (2013) Analysis of mitochondrial COI sequences of the Diachasmimorpha longicauda (Hymenoptera: Braconidae) species in Thailand. Entomological Science. doi: 10.1111/ens.12051

Kim H, Hoelmer KA, Lee W, Kwon Y-D, Lee S (2010) Molecular and morphological identification of the soybean aphid and other Aphis species on the primary host Rhamnus davarica in Asia. Annals of the Entomological Society of America 103: 532–543. doi: 10.1603/AN09166

Kolesova DA (1972) The ecology of pear aphids of the genus Anuraphis Guercio in the Crimea. Vestnik Zoologii 3: 11–15. [In Russian]

Lampel G, Meier W (2007) Hemiptera: Sternorrhyncha – Aphidina 2. Aphididae. Fauna Helvetica 16: 1–523.

Lee W, Hyojoong K, Jongok L, Hwal-Ran C, Yeyeun K, Yang-Su K, Jeong-Yeon JI, Foottit RG, Seunghwan L (2011) Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: updating the global data set. Molecular Ecology Resources 11: 32–37. doi: 10.1111/j.1755-0998.2010.02877.x
Lee W, Lee Y, Kim H, Akimoto S, Lee S (2014) Developing a new molecular marker for aphid species identification. Evaluation of eleven candidate genes with species-level sampling. Journal of Asia-Pacific Entomology 17: 617–627. doi: 10.1016/j.aspen.2014.06.008

Lozier JD, Roderick GK, Mills NJ (2009) Tracing the invasion history of the mealy plum aphid, *Hyalopterus pruni* (Hemiptera: Aphidoidea), in North America: a population genetic approach. Biological Invasion 11: 299–314. doi: 10.1007/s10530-008-9248-8

Margaritopoulos JT, Malarky G, Tsitsipis JA, Blackman RL (2007) Microsatellite DNA and behavioural studies provide evidence of host mediated speciation in *Myzus persicae* (Hemiptera: Aphididae). Biological Journal of the Linnean Society 91: 687–702. doi: 10.1111/j.1095-8312.2007.00828.x

Massimino Cocuzza GE, Cavalieri V (2014) Identification of aphids of *Aphis frangulae*-group living on Lamiaceae species through DNA barcode. Molecular Ecology Resources 14: 447–457. doi: 10.1111/1755-0998.12199

Miller GL, Foottit RG (2009) The taxonomy of crop pests: the aphids. In: Foottit RG, Adler PH (Eds) Insect Biodiversity: Science and Society. Wiley-Blackwell Publishing, UK, 463–473. doi: 10.1002/9781444308211.ch20

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE). IEEE, 1–8. doi: 10.1109/GCE.2010.5676129

Padial JM, Miralles A, De la Riva I, Vences M (2010) The integrative future of taxonomy. Frontiers in Zoology 7: 16. doi: 10.1186/1742-9994-7-16

Peccoud J, Simon J-C, von Dohlen C, Coeur d’acier A, Plantagenest M, Vanlenberghe-Masutti F, Jousselin E (2010) Evolutionary history of aphid-plant association and their role in aphid diversification. Comptes Rendus Biologies 333: 474–487. doi: 10.1016/j.crvi.2010.03.004

Pignatti S (1982) Flora d’Italia. Ed. Calderini, Bologna, Vol. 2, 732 pp.

Posada D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. doi: 10.1093/molbev/msn083

Rakauskas R, Havelka J, Zaremba A, Bernotiene R (2014) Mitochondrial COI and morphological evidence for host specificity of the black cherry aphids *Myzus cerasi* (Fabricius, 1775) collected from different cherry tree species in Europe (Hemiptera, Aphididae). Zookeys 388: 1–16. doi: 10.3897/zookeys.388.7034

Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer

Remaudière G, Remaudière M (1997) Catalogue of the World’s Aphididae. INRA, Paris.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. doi: 10.1093/sysbio/sys029

Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.

Sano M, Akimoto S (2012) Morphological phylogeny of gall-forming aphids of the tribe Eriosomatinae (Aphididae: Eriosomatinae). Systematic Entomology 36: 607–627. doi: 10.1111/j.1365-3113.2011.00589.x
Congruence between cytochrome oxidase I (COI) and morphological data...

Shaposhnikov GCh (1951) Aphididae of fruit trees of South Crimea. Trudy Vsesoyuznogo Entomologicheskogo Oshchestva Akademiya Nauk SSSR 43: 7–33.

Shaposhnikov GCh, Sharov AA (1977) Variability in panmictic of clonal populations of the aphid Anuraphis farfarae Koch (Homoptera, Aphididae). Entomologicheskogo Oshchestva 56: 601–609. [English translation in Entomological Review 57(1978): 81–87.]

Shufran KA, Burd JD, Anstead JA, Lushai G (2000) Mitochondrial DNA sequence among greenbug (Homoptera: Aphididae) biotypes: evidence for host adapted races. Insect Molecular Biology 9: 179–184. doi: 10.1046/j.1365-2583.2000.00177.x

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of Entomological Society of America 87: 651–701. doi: 10.1093/aesa/87.6.651

Srivathsan A, Meier R (2012) On the inappropriate use of Kimura-2-Parameter (K2P) divergences in the DNA – barcoding literature. Cladistics 28: 190–194. doi: 10.1111/j.1096-0031.2011.00370.x

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. doi: 10.1093/bioinformatics/btu033

Stroyan HLG (1950) Recent addition to the British aphid fauna. Part I: Dactynotus Rafinesque to Rhopalosiphum Koch. Transactions Royal Entomological Society of London 101: 89–124. doi: 10.1111/j.1365-2311.1950.tb00376.x

Stroyan HLG (1984) Aphids-Pterocommatinae and Aphidinae (Aphidini) Homoptera, Aphididae. Handbook for the identification of British insects, Vol. 2, part 6. Royal Entomological Society London, London, 232 pp.

Sunnucks P, De Barro PJ, Lushai G, Maclean N, Hales DF (1997) Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization. Molecular Ecology 6: 1059–1073. doi: 10.1046/j.1365-294X.1997.00280.x

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. doi: 10.1093/molbev/mst197

Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources 12: 377–388. doi: 10.1111/j.1755-0998.2012.03119.x

Thomson JD, Plewniak F, Poch O (1999) A comprehensive comparison of multiple sequence alignment programs. Nuclear Acids Research 27: 2682–2690. doi: 10.1093/nar/27.13.2682

Waugh J (2007) DNA barcoding in animal species: process, potential and pitfalls. Bioessays 29: 188–197. doi: 10.1002/bies.20529

Wang J-F, Qiao G-X (2009) DNA barcoding of genus Toxoptera Koch (Hemiptera: Aphididae): identification and molecular phylogeny inferred from mitochondrial COI sequences. Insect Science 16: 475–484. doi: 10.1111/j.1744-7917.2009.01270.x

Wang J-F, Jiang L-Y, Qiao G-X (2011) Use of mitochondrial COI sequence to identify species of subtribe Aphidina. ZooKeys 122: 1–17. doi: 10.3897/zookeys.122.1256
Williams PH, Brown MJF, Carolon JC, et al. (2012) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. world-wide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity 10: 21–56. doi: 10.1080/14772000.2012.664574
Zhang DX, Hewitt GM (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends in Ecology and Evolution 11: 247–251. doi: 10.1016/0169-5347(96)10031-8
Zhang H-H, Huang X-L, Jiang L-Y, Qiao G-X (2010) Subspecies differentiation of Aphis fabae Scopoli (Hemiptera: Aphididae) based on morphological and molecular data. Acta Zootaxonomic Sinica 35: 537–547.
Žuroková M, Havelka J, Starý P, Věchtová P, Chundelova D, Jarošova A, Kučerová L (2010) “DNA barcoding” is of limited value for identifying adelgids (Hemiptera: Adelgidae) but supports traditional morphological taxonomy. European Journal of Entomology 107: 147–156.