Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mathematical search technique for detecting moving novel coronavirus disease (COVID-19) based on minimizing the weight function

Saad J. Almalki a,*, W.A. Afifi b, Abd AL-Aziz Hosni EL-Bagoury c, Gamal A. Abd-Elmougod d

a Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
b Department of Mathematics and Statistics, Faculty of Science, Tabbah University, Yanbu, Saudi Arabia
c Department of Mathematics, Faculty of Science, Taibah University, Tanta, Egypt
d Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

A R T I C L E I N F O

Keywords:
COVID-19
Coronavirus
Optimal search
Weight function
Probability of undetected
Moving target
Lost target

A B S T R A C T

The study of search plans has found considerable interest between searchers due to its interesting applications in our real life like searching for located and moving targets. This paper develops a method for detecting moving targets. We propose a novel strategy based on weight function \(W(Z) \), \(W(Z) = \lambda H(Z) + (1-\lambda)L(Z) \), where \(H(Z) \), \(L(Z) \) are the total probabilities of un-detecting, and total effort respectively, is searching for moving novel coronavirus disease (COVID-19) cells among finite set of different states. The total search effort will be presented in a more flexible way, so it will be presented as a random variable with a given distribution. The objective is searching for COVID-19 which hidden in one of \(n \) cells in each fixed number of time intervals \(m \) and the detection functions are supposed to be known to the searcher or robot. We look in depth for the optimal distribution of the total effort which minimizes the probability of undetected the target over the set of possible different states. The effectiveness of this model is illustrated by presenting a numerical example.

Introduction

The COVID-19 early reported in January 2020. Since then, COVID-19 has rapidly spread around the world in just two months, as per the publicly available data sources. The COVID-19 has been the worst pandemic in last 100 years of human life. The World Health Organization (WHO) announced a pandemic emergency across the world: a review of the 2019 novel coronavirus [28]. The COVID-19 has spread to the whole world with nearly 2.4 million diagnosed cases and over 165,000 deaths up to April 20, 2020 [29]. Across the world, almost all scientists, mathematicians, biologists, environmental scientists, etc. are working to deal this outbreak pandemic.

The searching for a lost target either located or moved is often a time-critical issue where the target is very important. Search problems arise commonly in many diverse areas, like looking for a missing person, a missing black box in the sea, searching for fugitives, and prospectors explore for mineral deposits. Now systematic search is known as search theory and the object sought is called the target. More studies presented in search theory since World War II, starting with a linear search, whether this linear system is independent or intersecting [1–3]. Also, one of more interesting techniques has been studied in case of linear search is called coordinated search [4–6], the authors discussed the coordinated search technique for a located and moving target on two intersected lines and two independent lines respectively. Recently, one of an important and modern search model has been illustrated in the three dimensional space that determines a located target in a 3-D known zone by a single searcher, two searchers and 4 searchers to find a randomly located lost target [7–10].

More recently, authors illustrated a novel coordinated search algorithm for a multi searchers random walk, where the lost target is a random walker on one of \(n \) disjoint lines [11]. On the other side, the discrete search problems are not new. Whereabouts search has been studied [12–13]. The search and stop rule where all search outcomes are independent, conditional on the location of the searched object and the search policy has been studied [14–16]. The search process, where the search time of a cell depends on the number of searches so far studied [17]. The case of the target moving between two states according to a discrete parameter Markov chain has been studied [18]. The case of the target moving among a finite number of states according to a Markov chain with a discrete parameter is also studied under a variety of
conditions [19,20].

The distribution of effort which made the probability of undetection for unrestricted effort when the states are not identical and the cost of finding the target are minimum has been studied (see [21]). When the search effort is available at each fixed number of time intervals with a given distribution has been studied [22]. Recently, the searching algorithm for detecting a Markovian target based on maximizing the discount effort reward search has been introduced [23]. More recently, the authors illustrated optimal discrete search for a randomly moving COVID-19 among finite set of different states using monitoring system to search for COVID-19 which hidden in one of n cells of the respiratory system in the human body in each fixed number of time intervals m [24]. Also, the existence of multi generalized linear search problem to detect a lost target in one of several lines [25].

Various researchers published their work on the cure of patients of dialysis. In the field of medical science, a mathematical model for the minimization of the risk due to coronavirus is developed for patients to cure the dialysis. [26]. A study was performed to ensure that the mathematical modelling is able to solve the crisis of the current Covid-19 pandemic [27]. A mathematical model is formulated to provide a

Fig. 1. A human body divided into systems.

Fig. 2. The probability of detecting COVID-19 at time interval 1.
better understanding for economies at the outbreak of coronavirus pandemic [28]. For more different kinds of search problems [30–35].

In this paper, the main idea to distribute the effort of the single searcher in a perfect way to facilitate the detecting of Covid-19 as soon as possible by using a novel strategy based on weight function $W(Z)$, $W(Z) = \lambda H(Z) + (1 - \lambda) L(Z)$.

Materials and computational methods

Problem formulation

Discrete search problem is applied in defense problems in our life, such as searching for a hostage (target) hidden in a city or detecting improvised explosive devices, have underscored the need for efficient
and effective search methods for detecting targets of various types.

In this model, we have only one searcher, the main task of him is to distribute his effort in a perfect way to find the lost target as soon as possible.

The allocation of search effort is \(Z_{ij} \) where \(i = 1, 2, ..., n \) and \(j = 1, 2, ..., m \), which gives the effort to be put into state \(j \) at time \(i \), we call \(Z_{ij} \) a search plan, the conditional probability of finding the target at time given that it is located in state \(j \), is given by the detection function \[b(i, j, Z_{ij}) \]. Our main purpose is to minimize the weight function \(W(Z) \).

Design and Procedure:

Fig. 1 shows a human body divided into systems (states), the lost COVID-19 which moved from one state to another in each new time interval \(i = 1, 2, 3 \). Here, each state indicates the expected system of the lost COVID-19.

Our main purpose to minimize the weight function \(W(Z) \) where,

\[
W(Z) = \lambda H(Z) + (1 - \lambda) L(Z) \quad 0 \leq \lambda \leq 1
\]

Subject to

Fig. 5. The probability of detecting COVID-19 at time interval 4.

Fig. 6. The probability of detecting COVID-19 at time interval 5.
\[H(Z) = \prod_{i=1}^{n} \sum_{j=1}^{m} P_{ij} e^{T_{ij} (Z_{ij})} \]

Here, \(H(Z) \) is the total probability of un-detecting the COVID-19 over the whole time (see [21]). It is known that the minimizing of probability of un-detecting COVID-19 means the maximizing probability of detecting our lost COVID-19.

Total effort

\[L(Z) = \sum_{i=1}^{n} \sum_{j=1}^{m} Z_{ij} \]

So

\[W(Z) = \lambda \prod_{i=1}^{n} \sum_{j=1}^{m} P_{ij} e^{T_{ij} (Z_{ij})} + (1-\lambda) \sum_{j=1}^{m} \sum_{i=1}^{n} Z_{ij} \]

Here,

\[\sum_{j=1}^{m} Z_{ij} = L_i(Z), Z_{ij} \geq 0, \quad i = 1, 2, ..., n, \quad j = 1, 2, ..., m, \quad \sum_{j=1}^{m} P_{ij} = 1 \]

\(T_{ij} \) is the mean effort of detection in state \(j \).

By assuming,

\[Z(v_i) = \{ Z \in \mathbb{R}^{n \times m} \mid g(Z) = L_i(Z) - E(v_i) - k_p \sqrt{\text{var}(v_i)} \leq 0 \} \]

where \(E(v) \) and \(\text{var}(v) \) denote the mean and variance of the normally distributed random variable \(v \) when the target moves among \(m \) states.

By using Kuhn-Tucker conditions, we have

\[\frac{\partial W(Z)}{\partial Z_{ij}} + \sum_{i=1}^{n} U_{ij} \frac{\partial W(Z)}{\partial Z_{ij}} = 0, \]

\[Z(V_i) \leq 0, U_i Z(V_i) = 0, U_i \geq 0. \]

This leads to

\[\frac{p_{0j}}{T_j} e^{\frac{Z_{0j}}{T_j}} \prod_{i=1}^{n} \sum_{j=1}^{m} p_{ij} e^{\frac{Z_{ij}}{T_j}} + nm(1-\lambda) + u_i = 0 \]

\[L_i(Z) = E(v_i) - k_p \sqrt{\text{var}(v_i)} \leq 0 \]

\[U_i(L_i(Z) - E(v_i) - k_p \sqrt{\text{var}(v_i)}) = 0 \]

Since \(L_i(Z) - E(v_i) - k_p \sqrt{\text{var}(v_i)} \leq 0 \) and \(U_i \geq 0 \) then from the above Kuhn-Tucker conditions, we get

\[\frac{p_{0j}}{T_j} e^{\frac{Z_{0j}}{T_j}} \prod_{i=1}^{n} \sum_{j=1}^{m} p_{ij} e^{\frac{Z_{ij}}{T_j}} + nm(1-\lambda) = 0 \]

Where, \(U_i(U_i L_i(Z) - E(v_i) - k_p \sqrt{\text{var}(v_i)}) = 0 \) this leads to \(U_i = 1 \)

If the target was detected in the cell \(j \) at time \(i \), then logically the total non-detection probability in all cells until the cell \(j \) can be given from

\[\frac{p_{0j}}{T_j} e^{\frac{Z_{0j}}{T_j}} \prod_{i=1}^{n} \sum_{j=1}^{m} p_{ij} e^{\frac{Z_{ij}}{T_j}} + nm(1-\lambda) + 1 = 0 \]

Let \(\tau_i = E(v_i) - k_p \sqrt{\text{var}(v_i)} \) be the total effort on the time interval \(i \).

Then

\[L_i(Z) = \frac{Z_{0j}}{T_j}, \text{where the target detected on the cell } j. \text{ Thus} \]

\[\lambda \prod_{i=1}^{n} \sum_{j=1}^{m} P_{ij} e^{-(\tau_{ij}/T_j)} + (1-\lambda) \sum_{j=1}^{m} \sum_{i=1}^{n} Z_{ij} \]
The values of probability of undetected the lost moving COVID-19 in case of two time intervals and a random variable effort. Figs. 2-6 show the probability of detecting moving COVID-19 or cancer cells at time intervals 1, 2, 3, 4 and 5 respectively.

Time interval	p_1	p_2	$E(v_i)$	$\sigma(v_i)$	k_i	r_i	Z_{1i}	Z_{2i}	$H(Z)$
1	0.64	0.36	0.82	0.04	3	1.42	1.3900	0.1009	9.66E-3
2	0.656	0.344	0.38	0.09	3	1.73	1.4691	0.2608	
3	0.6624	0.3376	0.76	0.16	3	1.96	1.5647	0.3952	

Table 2
The values of probability of undetected the lost moving COVID-19 in case of three time intervals and a random variable effort.

Time interval	p_1	p_2	p_3	$E(v_i)$	$\sigma(v_i)$	k_i	r_i	Z_{1i}	Z_{2i}	Z_{3i}	$W(Z)$
1	0.12	0.21	0.67	0.2	0.36	3	2	0.20029	0.26705	1.53264	5.92E-3
2	0.114	0.227	0.649	0.7	0.01	3	1	5.87E-5	0.03883	0.96110	
3	0.1158	0.2289	0.6553	0.4	0.09	3	1.3	0.05896	0.10820	1.13182	
4	0.1153	0.2313	0.6534	0.1	0.25	3	1.6	0.10715	0.21733	1.27551	
5	0.1154	0.2306	0.6540	0.6	0.16	3	1.8	0.14112	0.28137	1.37750	

Application and statistical Analysis:

By supposing, $$s = \prod_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} T_j \right) \left(\prod_{k=1}^{\infty} \left(T_k \right)^{\lambda} \right) \left(\prod_{k=1}^{\infty} \left(T_k \right)^{-\sigma} \right)$$

$$W(Z) = \lambda \prod_{i=1}^{\infty} \sum_{j=1}^{\infty} P_{ij} e^{-i}$$

Conclusion
In this paper, we illustrated a new search technique that using minimizing both of probability of un-detecting the lost COVID-19 and the total effort in a new function which calls the weight function. The probabilities of detecting and un-detecting COVID-19 have been calculated, and illustrated with the help of various graphs. In fighting with such an outbreak, mathematical modeling and optimization play a crucial role in appreciating how an infectious disease outbreak is occurring and where it may transmit.

We hope that the proposed work can produce more understanding and awareness for fighting the COVID-19 pandemic. We conclude that our study also provides an understanding how fast this outbreak is spreading. The proposed work may also be very helpful for the control of this outbreak, proper utilization of available resources.

CRediT authorship contribution statement

Saad J. Almalki: Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing - review & editing. W.A. Affif: Data curation, Software, Validation, Writing - original draft. Abd Al-Aziz Hosni El-Bagouy: Data curation, Investigation, Resources, Software, Writing - original draft, Writing - review & editing. Gamal A. Abd-Elmougd: Formal analysis, Methodology, Project administration, Resources, Supervision, Writing, Review & editing.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments
Taif University Researchers Supporting Project number (TURDP-2020/253), Taif University, Taif, Saudi Arabia.
References

[1] Mohamed AA. The generalized search for one dimensional random walker. Int J Pure Appl Math 2005;19(3):375-87.
[2] Mohamed AA, Abou Gabal HM. Linear search with multiple searchers for a randomly moving target, International Conference for Statistics, Computer Science and its Application, Egypt; 2003, 115–124.
[3] Mohamed AA, Abou Gabal HM. Multiplicative linear search problem. Egypt Statistical J, Cairo Univ 2004;48(1):34-45.
[4] Mohamed AA, Abou Gabal HM, Affi WA. Coordinated search for a randomly located target. Int J Contemporary Math Sci 2011;6:5-8.
[5] Mohamed AA, Abou Gabal HM, Affi WA. Generalized coordinated search for a randomly located target. Delta J Sci 38; 2013.
[6] Mohamed AA, Affi WA. Quasi coordinate search for a randomly moving target. J Appl Matham Phys J Sci 2019;7:1814-25.
[7] Mohamed AA, El-Hadidy M, El-Bagoury AH. Optimal search strategy for a 3-Dimensional randomly located target. Int J Oper Res 2017.
[8] Mohamed AA, El-Hadidy M, El-Bagoury AH. 3-dimensional coordinated search technique for a randomly located target. Int J Comput Math 2018.
[9] Carballo T, Mohamed A, EL-Bagoury AH. Minimizing the expected time to detect a randomly located lost target using 3-dimensional search technique. J Commun Statist-Theory Methods 2020;49(13):3313–28.
[10] Kassem MA, EL-Bagoury AH, AL-Aziz SN. A novel search algorithm for a multi searchers randomly located target. M. Sci. Thesis. Tanta University; 2004.
[11] Afifi WA, Bagoury EL, Aziz SN. A novel search algorithm for a multi searchers randomly located target. J Stat Appl Probab 2021;10(1).
[12] Alp Ikizler TA, Kliger AS. Minimizing the risk of COVID-19 among patients on dialysis. Nat Rev Nephrol 2020;16:311–3.
[13] Griffiths JP. Can mathematical modelling solve the current Covid-19 crisis? BMC Public Health 2020;20:551–5.
[14] Habib N. mathematical model to guide the re-opening of economies during the COVID-19 pandemic. Ann Med Surgery 2020;57:5–6.
[15] Sohrabi C, Alshaf J, O’Neill N, Khan M, Kerwan A, Al Jabir A, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surgery 2020;76:71–6.
[16] EL-Bagoury AH, Affi WA. A coordinated search algorithm for a lost target on the plane. Computer Syst Sci Eng 2021. 10.32604/Csse.2021.016007.
[17] Shahzad Muhammad, Abdel-Aty Abdel-Haleem, Attia Raghda AM, Khoshnaw Sarbaz HA, Aalida Dipo, Ali Mehbboob, Sultan Faisal. Dynamics models for identifying the key transmission parameters of the COVID-19 disease. Alexandria Eng J 2021;60:757–65.
[18] Authors Isa Abdullahi, Baba Abdullahi Yusuf, Nisar Kottakkaran Sooppy, Abdel-Aty Abdul-Haleem, Noal Taher A. Mathematical model to assess the imposition of lockdown during COVID-19 pandemic. Results Phys 2021:20:103716.
[19] Abdulwasaa Mansour A, Abd Mohamad S, Shah Kamal, Noal Taher A, Panchal Satish K, Kawale Sunil V, et al. Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India. Results Phys 2021:20:103702. https://doi.org/10.1016/j.rinp.2020.103702.
[20] Alnaser WE, Abdel-Aty M, Al-Ubaydi O. Mathematical prospective of coronavirus infections in Bahrain, Saudi Arabia and Egypt. Inf Sci Lett 2020;9(1):51–64.
[21] Abdel-Rahman MAM. Academic attitudes toward the role of social media in shaping electronic public opinion about crises an applied study on (corona virus crisis). Inf Sci Lett 2020;9(2):143–60.