Basic Properties of Anthocyanin for Pain Management

I. Putu Eka Widyadharma1,2*, Andreas Soejitno2, Made Jawi1,3, Thomas Eko Purwata1,2, Dewa Ngurah Suprapta1,4, A. A. Raka Sudewi1,2

1Department of Biomedical Sciences, Faculty of Medicine, Udayana University, Bali, Indonesia; 2Department of Neurology, Faculty of Medicine, Udayana University, Sanglah General Hospital, Bali, Indonesia; 3Department of Pharmacology, Faculty of Medicine, Udayana University, Bali, Indonesia; 4Laboratory of Biopesticide, Faculty of Agriculture, Udayana University, Bali, Indonesia

Abstract

Inflammation and oxidative stress are both important key players in the development, enhancement, and maintenance of both nociceptive and neuropathic pain. They are almost invariably involved in pain-related diseases, such as all-cause low back pain, diabetic neuropathy, neurodegenerative diseases, myocardial ischemia, cancer, and various autoimmune disorders, among others. They act synergistically and their presence can be beneficial, yet detrimental to neurons and nerves if they are in overdrive state. Meanwhile, anthocyanin, a group of flavonoid polyphenols, is very common in nature and can be easily derived from fruits and vegetables. Accumulating evidence has shown that anthocyanin possesses potent anti-inflammatory and anti-oxidant effects through numerous mechanisms and that its proof-of-concept in ameliorating various pathology of disease states have been extensively documented. Unfortunately, however, the empirical evidence of anthocyanin for alleviating pain has been very minimal to date, despite its potentials. Herein, we discuss the basic properties of anthocyanin and its relevant pain mechanisms which could become potential targets for pain management using this natural compound.

Introduction

Pain is a universal feeling innately presents in almost every human being. Naturally, pain is designed to protect our body from various harmful insults, yet pain can often be problematic during persistent pathological states, such that seen in the majority of diseases. Further complicating matters, abnormal processing of pain signals either in the periphery or in the central nervous system (CNS) in the presence of ongoing noxious insults can lead to the development of neuropathic pain. Neuropathic pain is difficult to manage due to multiple issues, including inadequate diagnosis, high complexity, and less understanding of the mechanisms involved, inappropriate treatment selections and outcome reporting, and inadequate comorbidity management [1]. In fact, the limited options for neuropathic pain have led to the surge of opioid addiction and overdose epidemic in the U.S [2]. Given the account of the extremely common prevalence of pain (i.e., more than one-third of Americans suffer from acute or chronic pain [3]) and the desperate needs for novel pain therapeutic strategies, it is worth to take a look on an abundantly available natural substance with strong anti-inflammatory and anti-oxidant properties such as anthocyanin (ANC). ANC has been studied extensively over the past decades and has been proven to either mitigate or alleviate a vast array of diseases, including infections (e.g., common colds, and urinary tract infections), cardiometabolic and degenerative diseases (e.g., hypertension, and myocardial infarction), and to autoimmune disorders (e.g., ulcerative colitis, and systemic lupus erythematosus) [4], [5], [6]. Extensive studies have proven that ANC exerts a clinically significant effect as an anti-inflammatory and anti-oxidant against those aforementioned diseases. Given its potential protective effects toward inflammation and oxidative stress, ANC, thus, is also potential for the treatment of pain, including nociceptive and neuropathic pain. In fact, ANC has been shown to reduce inflammation-induced pain behavior in animal study with similar efficacy as to NSAID, as well as demonstrating proof-of-concept prevention and treatment for diabetic neuropathy [7], [8]. We, therefore, would like to discuss the relevant aspects of ANC and its potential use to be incorporated in the management of pain.
ANC’s baseline characteristics

ANC is a group of flavonoid polyphenols regarded as the most abundant water-soluble pigments of plants on earth. ANC is derived from two Greek words which mean red blue [9]. According to its name, ANC gives multiple pigments to many fruits, flowers, and other vegetation’s, ranging from red, blue, and orange, to purple [10]. ANC is naturally found as glycoside and bound to sugar groups, thus are also known as anthocyanidins [11]. There are six types of widely spread and readily available anthocyanidins, which are arguably of importance to human diet, comprises: Cyanidin, delphinidin, petunidin, peonidin, pelargonidin, and malvidin (Figure 1) [9], [10]. In addition, glycosylation is essential to increase anthocyanidin’s molecular stability and water-soluble capacity [12].

ANC’s pharmacokinetics (absorption, distribution, metabolism, and excretion)

ANC has been demonstrated to be rapidly absorbed, that is, it can be detected in the portal and systemic blood plasma within 6–20 min post-ingestion [21], [22]. Interestingly, it can be absorbed intact, regardless of its molecular sizes and structures or its attached acylated components, although recent evidence seems to confront these findings [23], [24], [25], [26], [27], [28], [29], [30]. The time to reach maximum plasma concentration ($T_{\text{max}}$) of ANC varies, depending on the types of active substance, as well as the dietary source of it. In general, based on animal studies, the $T_{\text{max}}$ ranges from 15 min (as seen in bilberries, and elderberries with cyanidine 3-glucoside), 30 min (as seen in blackcurrants with cyanidine 3-glucoside and cyanidine 3-rutinoside, and 4–8-week-blueberries), an hour (as seen in dry marrion blackberries with 3-glucoside), and to 2 h (as seen in delphinidin 3-rutinoside) [9], [24], [23], [31]. It was proposed that the rate and extent of its absorption depend on the structure and composition of glycine, sugar moiety, and its acylation components [31], [32], [33], [34]. It was generally presumed the more complex of an ANC structure, the less rate for it being absorbed [35].

ANC has been extensively studied and further processed to become natural food additives [17], as well as food supplements for health-related purposes [18]. In fact, there is plenty of valid evidence supporting the wide-range beneficial effects of ANC in promoting health through various organ systems with numerous molecular mechanisms. For instance, it has been shown through laboratory and epidemiologic studies that ANC consumption can lower the risk of multiple degenerative diseases, ranging from ischemic heart disease to cancer, and helps alleviating generic pain due mainly to its anti-oxidant, anti-inflammatory, and immunomodulation properties.

ANC-rich dietary sources can be easily found in the environment, thanks to its common availability. Among those with highest content are (comprising but not limited to) bilberries (Vaccinium myrtillus) with 405 mg of glucoside-type ANC/100 g, elderberries (Sambucus nigra) with 794.13 mg of glucoside-type ANC and 462.96 sambubioside-type ANC/100 g, chokeberries (Aronia melanocarpa) with 557.67 mg of galactoside-type ANC/100 g, and billberries (V. myrtillus) with 405 mg of galactoside-type ANC/100 g, among others [9], [19], [20]. Given its widespread availability, abundant contents, relative affordability, and well-known health promoting effects, ANC merit further studies and perhaps, to some extent, to be incorporated into the treatment of various diseases of which it has been proven to have protective and/or alleviating effects. In this review, we focus to discuss the pharmacokinetics and pharmacodynamics of ANC, especially for its ability to reduce acute and chronic pain transmission.

Figure 1: Different types of anthocyanin molecular structure with its associated pigment (adapted from Pojer et al. [9] and Bowen-Forbes et al. [16])

ANC’s molecular structure and color are greatly influenced by pH changes. For instance, it is red to orange in color with eight conjugated double bond-carrying cations under very acidic pH (i.e., 1–3) [13], [14], it turns into quinoidal blue on pH 4 [10], becomes colorless and form a chalcone at pH 5–6 [9], and ultimately turns to blue-purple with quinodal base at pH 7–8 [15] [16].
of the substance detected in organs [42]. This finding was supported by the use of radioactive labeling of cyanidin 3-O-glucoside (Cy3G) fed to the mice which showed minimal accumulation of the traced substance outside the gastrointestinal tract tissue (i.e., only 0.76% of radioactivity was detected), suggesting that Cy3G was poorly absorbed by other organs, despite high accumulation in GI tract (44.5%) [43]. However, it was suggested that ANC’s bioavailability could be much greater when taking into account of the pre-systemic metabolism, such as Phases I and II metabolism, conjugation, microbe-assisted metabolism, as well as enterohepatic recycling [42], [44].

ANC undergoes specific bodily activities which varied between organs it passes. For instance, the exposure of saliva to ANC in the mouth could degrade approximately 50% of its total amount as a combined result of oral microbes’ enzymatic activities, high temperature, and salivary protein bindings [42], [45]. In addition, it also experienced several processes which results in modified ANC structure. For example, oral pH exposure of 6.78 leads to a significant transformation of native ANC to chalcone (which was reported to be up to 30% from total ANC content), or its deglycosylation by oral microbes transform it into aglycones [42], [46].

It is suspected that ANC was significantly absorbed in the stomach as opposed to the small intestine. The notion was based on the observation that in situ gastric administration of ANC glucoside and galactoside on rats can readily be observed in the blood plasma in the form of malvidin 3-glucosidase after only 6 min post-administration [21]. ANC absorption in humans has also been confirmed within minutes of its ingestion [47]. In fact, ANC can be found in portal and systemic circulation through translocation activities using bilitranslocase, an organic anion carrier that can be found both in the stomach and liver [21], [48], [49], [50], [51]. Due to the nature of highly acidic gastric content (pH between 1.5 and 4), ANC is stabilized as well as found in the forms of quinoidal as well as the flavylum species which are eligible to be transported to the liver by means of bilitranslocase [9], [42].

ANC can also be absorbed from small intestine through various transport mechanisms. Some of them were sodium-dependent glucose co-transporter-1 or other glucose-associated transporters and intestinal bilitranslocase [42], [49], [52]. It had been reported that ANC absorption was greater in the jejunum (roughly 55% from total content) followed by duodenum, although to a smaller extent (i.e., 10%), with no observable absorption through ileum or colon [53]. In total, small intestine was estimated to be responsible for up to 7.5% absorption of ingested ANC, a 3–7-fold higher than the estimated bioavailability of ANC [9], [54]. The size of the molecule also matters for absorption. ANC, being a large water-soluble molecule, should be transported by means of active diffusion, as opposed to its aglycone version (anthocyanidin) which is known to be hydrophobic, thus can passively diffuse across the enterocytes [9], [55], [56].

In addition to being absorbed in the small intestine, ANC also undergoes metabolism, for example, being hydrolyzed to aglycone by the action of various intestinal enzymes, such as β-glucosidase, β-glucuronidase, and α-rhamnosidase [9], [57], [58]. The purpose of the transformation is suspected to ease the transport of these molecules. ANC also undergoes methylation by catechol-O-methyl transferase (COMT), an enzyme responsible for the degradation of catecholamines [26], [59], [60]. It occurs in the kidney tubular epithelial cells, as well as in the vascular endothelial cells, after the release of ANC in the bloodstream [61].

ANC then reaches the liver wherein it undergoes various metabolic processes, including hydroxylation and glucuronidation through Phases I and II metabolisms [28], [33], [42]. However, the extent of ANC metabolism by cytochrome P450 was unknown, but it was assumed to be related to the hydroxylation of nonreactive carbons [42], [62]. Whereas, phase II metabolism consists of conjugation and glucuronidation, with the latter being assisted by Uridine 5’-diphospho - (UDP) glucoronosyl transferase and UDP dehydrogenase enzymes [42], [58], [63].

ANC also undergoes sulfation with phenol sulfotransferase (SULT1) enzyme which can be found in the small intestine, liver, and platelet [38], [64], [65]. The resulting sulfoconjugate formation of ANC (in this case: Cyanidine and pelargonidin) can readily be found in human urine after ingestion of ANC-rich dietary sources [38], [66].

Although ANC absorption was deemed next to none in the large intestine, the organ plays an important role in enterohepatic recycling of bile-containing ANCs [39]. Native ANC can be readily detected in rat’s bile after 20 min of its ingestion [22]. It is also interesting to note that bile can undergo a recycling process for more than 20 times, suggesting a prolonged transit time of ANC in the body, along with its potential extended Phase II metabolism [42]. Given the evidence that ANC was found in bile, it is prudent to assume that its excretion was done through urine and feces. Indeed, a human study using blueberry juice demonstrated that only 4% of native ANC content was found in the urine, with the rest of it was found in the forms of its metabolites [67]. A study using radioisotope-labeled cyanidine 3-glucoside also found that approximately 44% of ANCs were eliminated by means of urine, breath, and feces [68]. The study also found that ANC was degraded into various metabolites, such as phenolic, hippuric, and phenylacetic acids. This is in accordance with another finding in which more than 371 ANC metabolites can be detected in the urine [69].

As mentioned previously, organ uptake of ANC was relatively small. A study using rats fed by
blackberry (*Rubus fruticosus* L.) known for its rich ANC content (i.e., 14.8 mmol/kg diet) compared with those of control diet for 15 days was shown to have highest accumulated ANC in the jejunum (605 nmol/g), followed by kidney (3.27 nmol/g), liver (0.38 nmol/g), and brain (0.25 nmol/g) [22]. A greater amount of ANC accumulation in the kidney was reported by the administration of 500 mg/kg of cyanidine 3-glucoside, that is, 700 nmol/g, whereas in the prostate gland was found to be roughly 400 nmol/g [40]. Another study using mice fed with 0.5% bilberry extracts for 2 weeks demonstrated highest ANC accumulation in the liver by 173 pmol/g wet weight of tissue [70]. Moreover, this comprises for up to 51.5% of the total ANC distribution in the body.

**Pathophysiology of pain and its relevant targets for ANC**

Pain is defined as an unpleasant sensory and emotional experience that is commonly associated with actual or potential tissue damage [71]. Based on its neurophysiological mechanism, pain can be classified as nociceptive and non-nociceptive. Nociceptive pain is elicited by noxious stimuli (i.e., mechanical, temperature, and chemical) to the peripheral tissue in the body. Whenever the threshold for the stimuli is lowered and/or the magnitude of noxious stimuli increases, sensitization occurs [72], which, in turn, transmits the pain impulse to the dorsal horn of the spinal cord to be further modulated and processed into the thalamus and higher cortical function, respectively [73]. On the other hand, the most relevant non-nociceptive pain is neuropathic pain. Neuropathic pain is defined as ongoing pain after injury to the central or peripheral nervous system (PNS) (including but not limited to trauma, metabolic imbalance, ongoing viral infections, and exposure to chemotherapies) [72]. Neuropathic pain is thought to result from abnormal somatosensory processing in the central and PNS. There are several underlying mechanisms, comprising aberrant activation of transducers and membrane instability (due to biophysical changes of ion channels) induced by the previous nerve injury.

The pathophysiology of pain is very broad and complex; therefore, due to space constraints and relevancy, we focus our discussion on the potential prospects of ANC in pain intervention, especially linked to inflammation and oxidative stress.

**Pro-inflammatory cytokines and chemokine**

Inflammation has long been recognized to play key roles in the occurrence and maintenance of various pathological pains [74]. Inflammation may occur following tissue injury by noxious stimuli, that is, through mechanical, thermal, or chemical exposure. Inflammation is marked by the production of various cytokines and/or chemotaxatants proteins by the peripheral nerves [74], spinal cord [75], the dorsal root ganglion (DRG) [76], cutaneous source [77], resident or recruited macrophages (including astrocytes and microglia) [78], mast cells [79], endothelial cells [80], and Schwann cells [81] (Figure 2). In addition, cytokines can be delivered to the DRG and dorsal horn of spinal cord by means of retrograde axonal or non-axonal mechanisms, thus further extending its coverage [74].

Among those cytokines, the most critical group being pro-inflammatory cytokines. There is accumulating evidence demonstrating the involvement of various pro-inflammatory cytokines in the initiation, exacerbation, and maintenance of pathological pain, for example, interleukin 1β (IL-1β). It is commonly synthesized and secreted by the recruited and activated macrophages in the vicinity of inflamed area and even in the DRG neurons [82]. IL-1β has been proven to exert hyperalgesia on *in vivo* administration [83]. Furthermore, inhibition of IL-1 receptor by an antagonist was able to attenuate hyperalgesia and nerve injury-induced allodynia [84], [85]. In addition, IL-1β was also responsible to increase certain neuropeptide and lipid compound productions which are strongly associated with pathological pain and inflammation, such as substance P and prostaglandin E₂ (PGE₂) [86], [87].

Another example is IL-6. This cytokine has pleiotropic effects with regard to nerves and pain. IL-6 plays an important role in CNS axonal regeneration, but also can be destructive during inflammatory period [88], [89]. IL-6 also activated astrocytes and microglia, two resident glial cells which possess several critical interplays with neurons during either
physiological or pathological states [90]. Indeed, IL-6 immunoactivity was observed in the dorsal and ventral horns of rats following nerve injury (e.g., sciatic cryoneurolysis/SCN), whereas its intrathecal administration could mimic and potentiate pain behavior after SCN [91]. In addition, spinal nerve lesion on IL-6 knockout mice demonstrated delayed response of mechanical allodynia [92], suggesting that IL-6 may contribute to the development of neuropathic pain. On the other hand, increased PGE$_2$ levels were shown to increase the secretion of IL-6 from injured nerve, while the administration of selective PGE$_2$ antagonist (EP4) and protein kinase C (PKC) inhibitor attenuated this effect, suggesting that PGE$_2$ may increase IL-6 secretion (or even production) by the recruited macrophages and resident glial cells in an inflamed area by means of PKC pathway and EP4 receptor [93].

IL-6 also plays an important role in cancer pain. An animal study with implanted tumor cell demonstrated an increased level of IL-6 mRNA expression and another study confirmed elevated levels of IL-6 following tumor cell implantation [94]. The mechanism of IL-6-induced cancer pain was thought due to trans-signaling pathway in the DRG, thus inducing its hyperexcitability which in turn upregulates transient receptor potential vanilloid channel type 1 (TRPV1) through Janus-activated kinase (JAK)/Phosphoinositide 3-kinase (PI3K) signaling pathway [95].

Tumor necrosis factor-alpha (TNF-$\alpha$) is another critical cytokine in the pathophysiology of inflammatory pain. It was predominantly secreted by microglia under the influence of interferon gamma (IFN-$\gamma$) during neuroinflammatory events. Intraplantar injection of TNF-$\alpha$ had been shown to induce mechanical and thermal hyperalgesia. TNF-$\alpha$ bound to TNF receptor 1 (TNFR1) and TNFR2, both of which found in both neurons and glial cells [96], which in turn activated NF-kB following peripheral nerve injury [93]. Furthermore, the administration of TNF-$\alpha$ antagonists was shown to attenuate inflammation in human intervertebral disk cells and hyperalgesia from two independent studies [83], [97]. In addition, TNF-$\alpha$ was thought to play a role in the neuropathic pain by increasing Ca$^{2+}$-permeable AMPARs insertion in the spinal cord neurons which, in turn, induced mechanical allodynia [98]. It was also shown that TNF-$\alpha$ upregulated IL-6 expression in the DRG on binding with TNFR1 through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-$\kappa$B) activation [93]. It is also interesting to note that TNF-$\alpha$ induced Wallerian degeneration on nerve injection, as well as demonstrated the appearance of neuropathic pain behaviors [74].

Besides pro-inflammatory cytokines, chematoactrant cytokines (or also known as chemokines) also play a critical role in the modulation of pain. This is especially true for chemokine (C-C motif) ligand 2 (CCL2) (previously known as monocyte chematoactractant protein 1/MCP-1), a chemokine which acts to recruit and regulate migration and infiltration of monocytes, neutrophils, and glial cells [99]. CCL2 and its receptor (CCR2) are upregulated in peripheral nerve injury as well as other cases, including neuroinflammation, or CNS trauma [74]. CCR2s were identified in DRG neurons and an animal model lacking these receptors was shown to be protective from developing mechanical allodynia, whereas a persistent upregulation of CCR2s in DRG and peripheral nerve was seen following injury [74]. These findings suggest that CCL2 is likely involved in mediating nociceptive and chronic neuropathic pain, as well as present in various other neuroinflammatory conditions. It is also relevant to note that CCL2-CCR2 interaction was shown to induce hypersensitivity in a demyelinating neuropathic pain in a time-dependent manner, suggesting that chronic pain should be staged as different molecular interplays and mechanisms take place over variable timing periods [72].

ANC has been able to suppress the production of multiple aforementioned pro-inflammatory cytokines and chemokines, including IL-1$\beta$, IL-6, TNF-$\alpha$, and CCL2, as well as inhibit its corresponding receptor (i.e., G-coupled protein receptor/GPCR and CCR2). In addition, ANC was also demonstrated to inhibit ATP production, ameliorate ROS in the event of oxidative stress, and suppress glutamate (Glu) release from inflamed neurons. These multifaceted mechanisms were relevant in the pathophysiology of nociceptive and neuropathic pain, thus explaining its mechanism of action for this pathological event (discussed further in section 2.3.4).

Glial activation in CNS and PNS

two types of resident glial cells in the CNS, i.e., microglia and astrocytes are activated by various neuropeptides and neurotransmitters secreted from nearby neurons. Under normal physiological conditions, glial cells are important by acting as a physical support for neurons, improving synaptic transmission efficacy, preserving tissue integrity during nerve injury, facilitating neuronal ionic exchange, and continuously communicating with neurons to modulate neuronal transmission [90]. However, during inflamed states, the corresponding neurons may secrete EEA, PGEs, substance P (SP), ATP, and nitric oxide (NO), all of which induces glial cell activation. Those activated glial cells in turn are recruited to the injury site by the role of the previously described chemokines (esp. CCL2) and secrete various pro-inflammatory cytokines, including IL-1$\beta$, IL-6, and TNF-$\alpha$ [74].

In addition to pro-inflammatory cytokines, activated glial cells also increase PGEs production through increased cyclooxygenase (COX) enzymes activity [100]. The resulting PGEs, in turn, promote positive feedback to the dorsal root neurons to increase NO production. Interestingly, activated glial cells
also release NO under the influence of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and metabotropic glutamate (mGluRs), as well as responsible in the production of ATP [90].

NO has been well-demonstrated to play a role in dorsal horn neurons sensitization during inflammatory tissue damage and primary afferent fiber (PAF) injury by means of cyclic guanosine monophosphate (cGMP) formation and PKG-mediated phosphorylation of specific membrane associated proteins (MAPs) [90]. In addition, NO was reported to increase nociception by transported retrograde into the presynaptic PAF terminals and release glutamate, SP, and calcitonin gene-related peptide (CGRP) via cGMP.

PGEs are also critical in the pathological pain state. Prostaglandin G2 and H2 are synthesized from arachidonic acid in which its processes are catalyzed by COX enzymes [101]. In general, COX-2 enzyme is thought to be responsible in generating a large amount of prostaglandin H2, which, in turn, converted into PGE2 by prostaglandin E synthase (PGES) and –synthase 2 (PGES2) [102]. In fact, COX-2 existence predominates in the spinal cord, especially in regions receiving nociceptive inputs, such as laminae I, II, and X [90]. PGE2 binds to its receptors (EP2, EP3, and EP4) and are coupled to G-protein coupled receptor (GPCR) alpha-s which results in adenylate cyclase stimulation and increased cyclic adenosine monophosphate (cAMP) levels with subsequent protein kinase A (PKA) activation [103]. PGE2 signaling is thought to increase peripheral nociceptors responsiveness through capsaicin receptor (TRPV1) and tetrodotoxin-resistant sodium channel SCN10A [104], in which its activations are responsible to increase excitability of peripheral nociceptors and facilitate the propagation of nociceptive impulses along the peripheral nerve.

Increasing evidence has demonstrated the role of p38 mitogen-activated protein kinase (MAPK) activation in the event of nociceptive and neuropathic pain [105], [106], [107]. MAPK plays a crucial role in the generation of pain due to its ability to be activated by several microglial receptors, as well as to regulate many inflammatory mediators important in pain facilitation. For example, p38 MAPK pathway was activated following spinal nerve ligation and the administration of its antagonist was proven to prevent allodynia [108]. In addition, minocycline, which is known for its microglial activity inhibitor, was shown to elicit its action through p38 MAPK pathway with the resulting pain attenuation in various pathological states [109]. In neuropathic pain model, activated microglia by ATP was shown to release brain-derived neurotrophic factor (BDNF), wherein it was involved in the shifting of neuronal anion gradient in the event of neuropathic pain [110].

**Purinergic pathways and its relations to pain**

Purinergic pathways have been well-documented to be involved in both nociceptive and neuropathic pain transduction, conduction, and transmission, along with its apparent physiological roles in hollow organs. Purinergic pathways involve purinergic receptors which exist in several different types and are found in peripheral nociceptive sensory neurons in the DRG, trigeminal, nodose, and petrosal ganglia [111], [112].

Purinergic receptor nomenclature is defined by the type of the activating cotransmitters, with P1 and P2 receptor family being activated by adenosine and ADP/ATP, respectively [113]. The P2 receptor family is further divided into two subtypes, P2X and P2Y, by means of pharmacological classification [114] and the mechanisms of signal transduction [115]. P2X subtypes are those with ligand-gated ion channel receptors, whereas P2Y subtypes are those with G-protein coupled receptors (GPCRs) [113], [115].

Under normal physiological conditions, purinergic pathway is involved in various organ signaling. For instance, distended urinary bladder caused epithelial cells to release ATP which readily bound to the purinergic receptor P2X3 and assisted the normal voiding reflex. Another instance was the involvement of both P1 and P2 receptor families in the intestinal peristalsis regulation, as well as its serotonin secretion [116], [117]. Other purinergic signaling was found on uterine cervical dilation during late pregnancy as mediated by ATP release and subsequent interaction with P2X3 receptors, as well as in the lung's vagal sensory fibers which play a role in airway's smooth muscle hyperactivity during asthma and chronic obstructive pulmonary disease [118], [119].

Regarding nociceptive stimuli, it was proposed that the pain transduction involves the sensitization of P2X3, P2X2, P1A, and P2Y1 receptors in the sensory neurons found in the peripheral nociceptive terminals of cutaneous region and other organs by the released adenosine and/or ATP/ADP from sympathetic nerves, mechanoreceptors (i.e., Merkel cell), vascular endothelial cells, and even cancer cells. The binding, in turn, generates nociceptive impulse and conducted to the first order neuron in the dorsal column of spinal cord through DRG, then continue to the thalamus and somatosensory cortex after once again modulated by purinergic receptors (P2X3, P2X2, and P2Y1)-ATP interaction. It was also proposed that purinergic receptors upregulation was positively associated with TRPV1, suggesting their functional interaction and subsequent sensitization of nociceptive sensory neurons which underlies the development of mechanical hyperalgesia [113], [120], [121].

In fact, P2X3 receptors were found to be expressed in the cutaneous sensory nerve fibers and the subsequent binding of ATP and α,β-methylene ATP can activate the Aδ and C fiber nociceptors [122], [123]. It was proposed that ATP also mediates the upregulation of P2X3 and P2X2 receptors in the DRG during cutaneous inflammation and subsequently contributes to a more effective nociceptive sensitization [113], [124]. In
addition, purinergic mechanism is also involved even in a disease with autoimmune etiology such as inflammatory bowel disease (IBD), wherein the noxious stimuli arise from the intrinsic immune system. It was found that P2X<sub>1</sub>-immunoreactive neurons were significantly higher in myenteric plexus of inflamed colon as opposed to normal control [125]. Interestingly, other types of purinergic receptors (P2Y<sub>6</sub> and P2X<sub>2</sub>) were also found to be strongly expressed and upregulated in the resident CD4<sup>+</sup> and CD8<sup>+</sup> T cells in the mediulary thymus and spleen of IBD cases and subsequent administration of P2X<sub>7</sub> receptor antagonist decreased NF-κB activation in lamina propria immune cells, as well as downregulation of pro-inflammatory cytokine production in colon tissues and put murine colitis into halt [126], [127]. These findings suggest that purinergic signaling mechanisms are not only limited to the peripheral nociceptive sensory neurons but also activated in various immune cells in the event of inflammation, which almost invariably occurs during nociceptive sensitization. In the heart, P2X<sub>7</sub> as well as adenosine (A<sub>2A</sub> and A<sub>3</sub>) receptors were important in the nociceptive transmission through nodose ganglion afferent neurons during myocardial ischemia [128], [129]. Moreover, the P2X<sub>7</sub> and P2Y<sub>2</sub> receptors in the heart were found to be upregulated and downregulated, respectively, in the event of ischemia-reperfusion injury, suggesting the harmful role of P2X<sub>7</sub> and protective effect of P2Y<sub>2</sub> purinergic signaling pathway [130]. Purinergic and adenosine receptors (P2X<sub>1</sub>, P2X<sub>3</sub>, P2Y<sub>2</sub>, and A<sub>3</sub>) subtype were also found in the articular joints of the temporomandibular [131], knee [132], [133], and ankle [134], anatomical locations that are often be problematic and associated with combined mechanical and inflammatory nociceptive sensitization.

Purinergic signaling also plays a major role in neuropathic pain. Several receptors including P2X<sub>3</sub>, P2X<sub>7</sub>, and P2Y<sub>6</sub> receptors expressed by the activated microglia have been linked to the development of neuropathic pain. ATP was suspected to play a role through binding with these receptors [135]. One mechanism for neuropathic pain signaling modulated by purinergic receptors is through the synthesis and release of BDNF and disinhibition of pain transmission activity by neurons located in the lamina I [136]. The involvement of BDNF was also confirmed by the attenuation of mechanical hyperalgesia-induced neuropathic pain in the absence of P2X<sub>3</sub> receptors [137]. Interestingly, activated P2X<sub>7</sub> receptors require calcium ion and p38 MAPK pathway for the synthesis and release of BDNF from microglia [138], and that this mechanism also applied to the long-term potentiation (LTP) induction of C-fiber by ATP in the dorsal horn of spinal cord [139].

It is also well noted that P2X<sub>7</sub> receptors which are commonly expressed in resident glial cells also contribute to neuropathic pain, particularly through inflammation [140]. ATP dependent-activated P2X<sub>7</sub> receptors were known to upregulate pro-inflammatory cytokines, mainly IL-1β [141], [142], TNF-α [143], and IL-6 [144]. IL-1β and TNF-α productions were increased through p38 MAPK pathway, whereas the underlying mechanism of IL-6 upregulation is still unclear [143], [144]. These findings reiterate the importance of inflammation-mediated nociceptive and neuropathic pain and that to successfully manage pathological pain; we shall always take inflammation into account.

The anti-inflammatory properties of anthocyanin

ANC derived from various dietary sources has been studied extensively, particularly with regard to its anti-inflammatory effects. ANC extracted from red raspberries has been demonstrated to suppress COX-2, IL-1β, and IL-6 expression, as well as reducing NO synthesis (through inhibited expression of iNOS) in RAW264.7 macrophages [145]. Its subsequent administration to a mouse model with colitis was shown to ameliorate the associated weight loss and cellular damage. ANC exerts its anti-inflammatory effects through inhibiting NF-κB, p38 MAPK, JNK, and Akt signaling pathways [146], [147], [148], [149]. In addition, ANC is also a strong COX enzyme inhibitor. The COX inhibitory capacity was even comparable to NSAIDs such as ibuprofen or naproxen at certain concentrations [150]. In fact, ANC derived from red sweet cherry water was shown to inhibit COX enzymes by 80–95% at 250 μg/ml [151]. Furthermore, ANC appears to have an increased tendency toward COX-2 rather than COX-1 inhibition. ANC derived from black soybean seed coats has been shown to inhibit UV-induced COX-2 expression [152]. Similarly, ANC-derived purple sweet potato also reduced the expression of COX-2 and iNOS expression in rats with liver injury [153]. This is perhaps due to the heavy involvement of COX-2 in various pathological states, such as ischemia-reperfusion injury [154], intestinal inflammation [155], and tumor [156], [157]. Fortunately, both nociceptive and neuropathic pain also have a strong connection with COX-2 as its mediators [158], [159], [160], thus the ability of ANC to inhibit COX-2 and relieve both types of pain would be greatly appreciated. Predictably, strong COX-2 inhibition results in reduced PGE-2 production and release [152], [161], [162], hence, abridging the inflammation and nociceptive sensitization.

The resulting inhibition of inflammatory pathways by ANC was supposedly demonstrated by reduced pro-inflammatory cytokines production and secretion. Indeed, ANC derived from soybean seed coat was shown to inhibit TNF-α expression through NF-κB-dependent pathway [163], whereas ANCs-rich extract from bilberry was shown to reduce mRNA levels of iNOS, TNF-α, IL-1β and IL-6, and reduce protein levels of iNOS, TNF-α, and NF-κB [164]. In addition, ANC metabolites also reduced IL-6 and VCAM-1 levels in oxidized LDL challenged vascular endothelial cells [165].
It is also worth noted that ANC-rich black elderberry administration to hyperlipidemic mice was shown to reduce CCL2 serum levels [166]. Purified ANC supplementation for 24 weeks could reduce plasma CCL2 levels by approximately 11% [167]. Similarly, delphinidin 3-sambubioside and delphinidin downregulated MEK1/2/ERK1/2 and NF-kB signaling pathway and lead to decreased IL-6, TNF-α, and MCP-1 (also known as CCL2) levels [168]. Reduction in chemokine levels, thus, can potentially reduce resident glial activation and prevent the exacerbation of inflammatory nociceptive sensitization. Indeed, the combined suppression of pro-inflammatory cytokines and chemokine gene expression, production, and release of strawberries-derived ANC extract has been shown to ameliorate reactive astrogliosis, delay disease onset, and extend survival in mice with amyotrophic lateral sclerosis (ALS) [169]. Moreover, ANC can also block glutamate-induced AMPK activation [170], suggesting that ANC may act indirectly in mitigating excessive neuronal excitations.

The various mechanisms of anti-inflammatory actions elicited by ANC should, therefore, be readily demonstrated on a clinical basis. Indeed, a double-blind RCT of tart cherry drink administration before long distance running was shown to reduce muscle pain significantly among runners who did not consume it [171]. A double-blind randomized controlled trial (RCT) assessing the efficacy of cherry juice to osteoarthritis (OA) patients also demonstrated the same outcome, which is a significant reduction of both pain score and highly specific C-reactive protein (hsCRP) inflammatory marker among treatment group [172]. To be specific, ANC has been demonstrated to attenuate inflammation-induced thermal hyperalgesia, mechanical hyperalgesia, and edema in rat model, with similar efficacy to indomethacin at its highest dose (400 mg/kg BW) [173].

Finally, the direct involvement of ANC on purinergic receptors with regard to pain attenuation has yet to be investigated because purinergic receptors have gained accumulating evidence and important roles in both nociceptive and neuropathic pain, and that its inhibition by ANC seems plausible.

Oxidative stress

Oxidative stress is a condition wherein there is an imbalance between the amount of free radicals and antioxidants. The imbalance can be in the form of excessive free radicals in the presence of relatively inadequate antioxidants. Under normal physiological states, aerobic metabolism as a consequence of various mitochondrial enzymes produces free radicals in the form of reactive oxygen intermediates and nitrogen species (RNI). These are also produced through ultraviolet, ionizing radiation, and air pollution exposures [174]. In addition to these, the electron transport chain activity in mitochondria also generates reactive oxygen species (ROS) [175]. All of those molecules belong to free radicals. A free radical has a free electron on its external orbit and always attempts to find another electron to stabilize itself. Hence, a free-radical may forcefully take an extra electron from nearby biomolecules [174].

Another example of ROS generation is through the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, cell membrane enzyme complexes to produce ROS which involves in cellular signaling and tissue homeostasis (Figure 3). The enzymes were expressed in the neurons, astrocytes, and microglia. Under abnormal states (e.g., infections), NADPH oxidases can be highly activated (especially NADPH oxidase 2/NOX2 in the CNS), thus resulting in high levels of ROS which is associated with oxidative stress and neurodegeneration [176].

![Figure 3: The generic roles of mitochondrial ROS in cell death](image-url)
The existence of a free radical may be omitted on an individual basis, but it can be problematic when massive free radicals appear simultaneously over a prolonged period of time, which is usually found during oxidative stress. Oxidative stress can be detrimental to the cells and tissues because free radicals damage all of the cellular components (including organelles, lipids, proteins, and DNA), inducing apoptosis. This is especially relevant for neurons in the CNS in which they contain high levels of polyunsaturated fatty acids, thus is prone to cellular damage [177]. It is also important to note that mitochondrial DNA is more vulnerable to ROS than the nuclear DNA, thus mitochondrial dysfunction may result in more ROS production [178].

Even worse, oxidative stress can initiate an inflammatory cascade wherein the surrounding cells, including neurons and resident glial cells, to be activated and further produce various pro-inflammatory molecules, along with increased production of more free radicals. The activation of glial cells by means of toll-like receptors has been shown to induce the release of various pro-inflammatory cytokines and ROS at the same time [179]. On chronic activation of these glial cells, they are known to secrete more superoxide which can react to NO (which is also produced by glial cells) to generate peroxynitrite which has been shown to be detrimental to neurons [177]. Moreover, NF-κB, a protein complex responsible for the activation of glial cells, is also a strong inducer of NOX2 and inducible NO synthase/iNOS (an enzyme that catalyzes NO production), thus also responsible to the generation of ROS and subsequent cellular damage [180]. On the other hand, as previously described, NF-κB was also responsible for the upregulation of COX-2 enzyme, thus increases PGEs production, and subsequently elevates the superoxide levels as a byproduct of PGEs production, further damaging the cells [177]. This positive feedback can maintain a vicious cycle with linear increase in its magnitude with regard to inflammation and tissue damage, thus initiating, maintaining, and increasing the intensity of nociceptive stimuli.

The *folie à deux* actions between oxidative stress and inflammation also affect the pathophysiology of pain in various pathological states. For example, they have been linked as a culprit for diabetic neuropathy, wherein a chronic persistent hyperglycemic state induced peripheral nerve damage, increased accumulation of advanced glycation end products and activated various inflammatory pathways [181]. Another example is cancer that metastasize to bone was known to upregulate glutamate release responsible for cancer-induced bone pain and attenuation of its release could reduce the pain [182]. In addition, cancer chemotherapy has also been identified to produce oxidative stress and inflammation, further complicating cancer treatment through peripheral nerve damage and the resulting neuropathy [183]. Oxidative stress is also thought to contribute to the development of osteoarthritis by inducing telomere instability, replicative senescence, and chondrocyte impairment in the affected cartilage [184]. Furthermore, oxidative stress also triggers an inflammatory state and thus, initiating nociceptive stimulation in OA as predicted [185].

Furthermore, ROS has been shown to induce and maintain central sensitization in the spinal cord through the regulation of N-methyl-D-aspartate and AMPARs and its downstream effect of LTP [186], [187]. ROS also activated TRPA1 and TRPV1, ion channels known to involve in membrane depolarization and consequent nociceptive sensitization in the spinal cord, in chronic pain after spinal cord injury (SCI) [72], [188], [189], [190]. Similarly, hydrogen peroxide (H$_2$O$_2$), a product of cellular respiration, has been demonstrated to modulate synaptic plasticity and affecting the release of calcium ions in the interneurons of spinal cord dorsal horn neurons with the consequent nociceptive sensitization [188], [191], [192], [193]. Interestingly, nociceptive pain like capsaicin-induced hyperalgesia was shown to cause superoxide accumulation and concomitant reduction of antioxidant superoxide dismutase (SOD)-2 activity [194], suggesting a direct causative link between oxidative stress and antioxidant imbalance with the generation of nociceptive and neuropathic pain.

**The anti-oxidant properties of anthocyanin**

ANC exerts potent antioxidant activities. Its antioxidant potential depends on its chemical structure and the subsequent hydroxylation, methylation, acylation, and glycosylation patterns [195], [196], [197]. ANC has potent superoxide- and peroxynitrite-scavenging activities [198]. It, therefore, also inhibits lipid peroxidation [199]. It was reported that different ANC variants exert different magnitude of antioxidant capacities. Accordingly, ANC’s antioxidant power can be ranked as follows (from strongest to weakest): Delphinidin, petunidin, malvidin (equals to cyanidin), pelargonidin and cyanidin [9], [198]. On raw foods (e.g., in vegetables, and fruits), ANCs were commonly found alongside with other compounds, such as Vitamin C and phenol, thus enabling them to act synergistically as antioxidants [200].

It was proposed that ANC acts through both direct and indirect mechanisms. It has a direct free-radical scavenging activity because it can donate the electron to the reactive free radicals, thus stabilizing it [9]. In fact, ANC can bind with superoxide, singlet oxygen, peroxide, hydrogen peroxide, and hydroxyl radicals [201], [202], [203], [204], [205]. Whereas indirectly, it increases *in vivo* endogenous antioxidant activities, such as increasing intrinsic SOD and glutathione peroxidase gene expressions and levels or reducing ROS formation through inhibiting NADPH oxidase [206], [207]. These comprehensive mechanisms ergo reduce as well as neutralize various free radicals.
Clinically, ingestion of ANC derived from blueberries was shown to increase serum antioxidant status in human subjects [208], [209]. Likewise, administration of cyanidin 3-glucoside to rats was shown to reduce thiobarbituric acid reactive substances (TBARS) and protection against lipid peroxidation amidst no elevation of endogenous antioxidants. This study, therefore, is in accordance with the direct free-radicals scavenging mechanisms of ANC [210]. Furthermore, ethanol and water extract of purple sweet potato (PSP) had been demonstrated to suppress malondialdehyde levels in cell culture medium [211]. PSP is known for its ANC-rich content [212], whereas malondialdehyde, similar to TBARS, is the most frequently used biomarker for oxidative stress in the presence of various diseases [213].

There has been no direct study which links ANC with its potential ability to reduce free radicals in the event of inflammatory pain. However, some evidence can be used to infer several notions. First, ANC has specific neuroprotective mechanisms against antioxidants. ANC was shown to be protective against apoptosis of mitochondrial oxidative stress-induced cerebellar granule neurons through increased glutathione (GSH) levels, inhibiting lipid peroxidation and cardiolipin oxidation, and prevention of mitochondrial fragmentation [214]. Second, ANC is permeable to viable neurons. It was shown that ANC metabolites can prevent ROS formation on both the cellular membrane and cytosol of human neuronal cell line, suggesting that it can be up taken by neurons in the CNS and PNS [215]. Indeed, ANC was shown to readily penetrate blood–brain barrier [216], [217] and could be identified in the cortex, cerebellum, hippocampus, and striatum of rats fed daily with 2% blueberry for 10 weeks [218]. Third, ANC can act centrally to attenuate CNS demyelination, reduce inflammation, and scavenge free radicals. ANC can be detected in the peripheral interstitial fluid and its administration to ethidium bromide-induced pontine demyelination rat models has been shown to restore the Na⁺/K⁺ ATPase pump activities of these cells (suggesting protection against demyelination), reduce pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) levels, and combat oxidative stress by increasing SOD levels [219]. Fourth, ANC can act in the PNS as it was demonstrated to promote myelination in the peripheral nerve through increase Sirt2 protein known to involve in myelination in mouse embryonic Schwann cell culture model [220].

If we take a look at these notions, it is prudent to assume that ANC could attenuate both nociceptive and neuropathic pain through its neurotrophic and neuroprotective mechanisms against direct noxious insults, free radicals, and inflammation. In fact, it is known that central as well as peripheral demyelination is associated with pain due to direct nerve injury or prolonged immobilization [221]. Thus, the fourth and fifth notion could actually serve a template model in which in vivo ANC might attenuate nociceptive and/or neuropathic pain. In fact, administration of pelargonidin, a subtype of ANC, has been proven to alleviate chemical and thermal hyperalgesia and reduce ROS formation in streptozotocin-induced-diabetic rat models [222]. The last study is technically a proof-of-concept of ANC's capability in alleviating pain.

Conclusion

Inflammation and oxidative stress precipitate and maintain of both nociceptive and neuropathic pain. The mechanisms are pleiotropic, including activation of inflammatory pathways leading to increased production and secretion of various pro-inflammatory cytokines and chemokines, upregulation of nociceptive receptors and its associated transcription factors, as well as specific interaction with certain receptors and pathways, such as purinergic pathway (particularly for neuropathic pain). Oxidative stress also plays a major role in the pathophysiology of both pain types. ANC's protective effects against inflammation and oxidative stress had been described meticulously in this review and shown to exert multiple simultaneous actions against these pathological events. In fact, the proof-of-concept study had been translated into meaningful clinical impacts toward the treatment of several pathological pains. Given its excellent safety profile and the nature of its massive anti-inflammatory and anti-oxidant properties, ANC should be further investigated in more clinical settings for treating various nociceptive and/or neuropathic pain originated from multiple diseases.

A potentially useful approach would be to incorporate ANC as an adjunctive treatment along with currently accepted medication regimens and to compare it with the conventional medication alone in the setting of RCT whenever possible. The currently available data favors the promising results of such studies, and if it is proven so, the benefits would not only be limited to alleviating the pain but also to ameliorate, if not accelerating recovery, against the primary disease itself.

References

1. Harden N, Cohen M. Unmet needs in the management of neuropathic pain. J Pain nd Symptom Manage. 2003;25(5):S12-7. https://doi.org/10.1016/s0885-3924(03)00065-4 PMid:12694988
2. Volkow ND, McLellan AT. Opioid abuse in chronic pain misconceptions and mitigation strategies. N Engl J Med. 2016;374(13):1253-63. https://doi.org/10.1056/nejmr1507771 PMid:27028915

3. Johannes CB, Le TK, Zhou X, Johnston JA, Dworkin RH. The prevalence of chronic pain in United States adults: results of an Internet-based survey. J Pain. 2010;11(11):1230-9. https://doi.org/10.1016/j.jpain.2010.07.002 PMid:20797916

4. Ohnishi R, Ito H, Kasajima N, Kameda M, Kariyama R, Kumor H, et al. Urinary excretion of anthocyanins in humans after cranberry juice ingestion. Biosci Biotechnol Biochem. 2006;70(7):1681-7. https://doi.org/10.1271/bbb.060023 PMid:16861803

5. Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassem AH, Rimm EB. High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation. 2013;127(2):188-96. https://doi.org/10.1161/circulationaha.112.122408 PMid:23319811

6. Li S, Wu B, Fu W, Reddivari L. The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. Int J Mol Sci. 2019;20(10):2588. https://doi.org/10.3390/ijms20102588 PMid:31317778

7. Tall J, Seeram N, Zhao C, Nair M, Meyer R, Raja S. Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res. 2004;153(1):181-8. https://doi.org/10.1016/j.bbr.2003.11.011 PMid:15219719

8. Putta S, Yarla NS, Kumar KE, Lakakappa DB, Karnal MA, Scotti L, et al. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications. Curr Med Chem. 2018;25(39):5347-71. https://doi.org/10.2174/09298673256661 71206101945 PMid:29210634

9. Pojer E, Mattivi F, Johnson D, Stockley CS. The case for anthocyanin consumption to promote human health: A review. Compr Rev Food Sci Food Saf. 2011;10(6):17-15.

10. Miguel MG. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J Agri Phys Chem. 2011;1(6):17-15.

11. Prior RL, Wu X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res. 2006;40(10):1014-28. https://doi.org/10.1080/10715760600758522 PMid:17015246

12. Cheng J, Wei G, Zhou H, Gu C, Vimolmangkang S, Liao L, et al. Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach. Plant Physiol. 2014;166(2):1044-58. https://doi.org/10.1104/pp.114.246876 PMid:25106821

13. Wahyuningsih S, Wulandari L, Wartono MW, Munawaroh H, Dwiadi S, et al. Determination of antioxidant capacity and phenolics in foods and beverages. J Agric Food Chem. 2016;64(12):2691-7. https://doi.org/10.1021/acs.jafc.6b00986 PMid:27030581

14. Horbowicz M, Kosson R, Grzesiuk A, Dębski H. Anthocyanins of fruits and vegetables: their occurrence, analysis and role in human nutrition. Veg Crops Res Bull 2008;68:5-22. https://doi.org/10.2478/v10032-008-0001-8

15. Lapidot T, Harel S, Akiri B, Granit R, Kanner J. PH-dependent forms of red wine anthocyanins as antioxidants. J Agric Food Chem. 1999;47(1):67-70. https://doi.org/10.1021/jf980704g PMid:10563851

16. Bowen-Forbes CS, Zhang Y, Nair MG. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J Food Compos Anal. 2010;23(6):554-60. https://doi.org/10.1016/j.jfca.2009.08.012

17. Bridle P, Timberlake CF. Anthocyanins as natural food colours selected aspects. Food Chem. 1997;58(1):103-9. https://doi.org/10.1016/s0308-8146(96)00222-1

18. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53(10):4290-302. https://doi.org/10.1021/jf0502698 PMid:15884874

19. Ogawa K, Sakakibara H, Iwata R, Ishii T, Sato T, Goda T, et al. Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J Agric Food Chem. 2008;56(12):4457-62. https://doi.org/10.1021/jf800406v PMid:18522397

20. Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010:bap024. https://doi.org/10.1093/database/bap024 PMid:20428313

21. Passamonti S, Vrhosek U, Vanzo A, Mattivi F. The stomach as a site for anthocyanins absorption from food. FEBS Lett. 2003;544(1-3):210-3. https://doi.org/10.1016/s0014-5793(03)00504-0 PMid:12782377

22. Talavera S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL, et al. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem. 2005;53(10):3902-8. https://doi.org/10.1021/jf050145v PMid:15884815

23. Tsuda T, Horio F, Osawa T. Absorption and metabolism of cyanidin 3-O-beta-D-glucoside in rats. FEBS Lett. 1999;449(2-3):179-82. https://doi.org/10.1016/s0014-5793(99)00407-x PMid:10338127

24. Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem. 2006;54(1):1546-51. https://doi.org/10.1021/jf050264q PMid:11312894

25. He J, Magnuson BA, Giusti MM. Analysis of anthocyanins in rat intestinal contents—impact of anthocyanin chemical structure on fecal excretion. J Agric Food Chem. 2005;53(8):2859-66. https://doi.org/10.1021/jf0479923 PMid:15826031

26. Crozier A, Jaganath IB, Clifford MN. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep. 2009;26(8):1001-43. https://doi.org/10.1039/b802662a PMid:19636448

27. Del Bo C, Ciappellano S, Klimis-Zacas D, Martini D, Gardana C, Riso P, et al. Anthocyanin absorption, metabolism, and distribution from a wild blueberry-enriched diet (Vaccinium angustifolium) is affected by diet duration in the Sprague-Dawley rat. J Agric Food Chem. 2010;58(4):2491-7. https://doi.org/10.1021/jf903472x PMid:20030330

28. Kay CD, Mazza GJ, Holub BJ. Anthocyanins exist in the circulation primarily as metabolites in adult men. J Nutr. 2005;135(11):2582-8. https://doi.org/10.1093/jn/135.11.2582 PMid:16251615

29. Mullen W, Edwards CA, Serafini M, Crozier A. Bioavailability of pelargonidin-3-O-glucoside and its metabolites in humans following the ingestion of strawberries with and without cream. J Agric Food Chem. 2008;56(3):713-9. https://doi.org/10.1021/jf072000p
30. Garcia-Alonso M, Minihane AM, Rimbach G, Rivas-Gonzalo JC, de Pascual-Teresa S. Red wine anthocyanins are rapidly absorbed in humans and affect monoteric chemoattractant protein 1 levels and antioxidant capacity of plasma. J Nutr Biochem. 2009;20(7):521-9. https://doi.org/10.1016/j.jnutbio.2008.05.011

PMid:18789665

31. Wu X, Pittman HE 3rd, Prior RL. Pelargonidin is absorbed and metabolized differently than cyanidin after manorberry consumption in pigs. J Nutr. 2004;134(10):2603-10. https://doi.org/10.1093/jn/134.10.2603

PMid:15465754

32. Tian Q, Giusti MM, Stone GD, Schwartz SJ. Urinary excretion of black raspberry (Rubus occidentalis) anthocyanins and their metabolites. J Agric Food Chem. 2006;54(4):1407-72. https://doi.org/10.1021/jf052367z

PMid:16478275

33. Wu X, Pittman HE 3rd, McKay S, Prior RL. Aglycones and sugar moieties alter anthocyanin absorption and metabolism after berry consumption in weanling pigs. J Nutr. 2005;135(10):2417-24. https://doi.org/10.1093/jn/135.10.2417

PMid:16172706

34. Fang J. Bioavailability of anthocyanins. Drug Metab Rev. 2014;46(4):508-20.

PMid:25347327

35. Kurthlich AC, Clevend BA, Britz SJ, Simon PW, Newoty JA. Plasma and urine responses are lower for acetylated nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem. 2005;53(16):6537-42. https://doi.org/10.1021/jf050570o

PMid:16076146

36. Borges G, Roowi S, Rouanet JM, Duthie GG, Lean ME, Remesy C. Blackberry anthocyanins are slightly bioavailable in rats. Mol Nutr Food Res. 2007;51(6):714-25. https://doi.org/10.1002/mnfr.200700024

PMid:17533654

37. Felgines C, Texier O, Besson C, Fraisse D, Laimaion JL, Remesy C. Blackberry anthocyanins are slightly bioavailable in rats. J Nutr. 2002;132(6):1249-53. https://doi.org/10.1093/jn/132.6.1249

PMid:12042441

38. Felgines C, Talavena S, Gonthier MP, Texier O, Scalbert A, Laimaion JL, et al. Strawberry anthocyanins are recovered in urine as glucuro and sulfoconjugates in humans. J Nutr. 2003;133(5):1296-301. https://doi.org/10.1093/jn/133.5.1296

PMid:12730413

39. Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Konishi T. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J Agric Food Chem. 2006;54(18):6578-87. https://doi.org/10.1021/jf0602370

PMid:16939412

40. Marczyno TH, Cooke D, Brown K, Steward WP, Gescher AJ. Pharmacokinetics and metabolism of the putative cancer chemoprotective agent cyanidin-3-glucoside in mice. Cancer Chemother Pharmacol. 2009;64(6):1261-8. https://doi.org/10.1007/s00280-009-0996-7

PMid:19363608

41. Matsunoto H, Ichiyanagi T, Iida H, Ito K, Tsuda T, Harayama M, et al. Ingested delphinidin-3-rutinoside is primarily excreted to urine as the intact form and to bile as the methylated form in rats. J Agric Food Chem. 2006;54(2):578-82. https://doi.org/10.1021/jf052411a

PMid:16417324

42. Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanins bioavailability for human health. Annu Rev Food Sci Technol. 2016;7:375-93. https://doi.org/10.1146/annurev-food-041715-033346

PMid:26772410

43. Felgines C, Krisa S, Mauray A, Besson C, Laimaion JL, Scalbert A, et al. Radiolabelled cyanidin 3-O-glucoside is poorly absorbed in the mouse. Br J Nutr. 2010;103(12):1738-45. https://doi.org/10.1017/s0007114500000661

PMid:20187984

44. Fang J. Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: Extensive presystemic metabolism reduces apparent bioavailability. J Agric Food Chem. 2014;62(18):3904-11. https://doi.org/10.1021/jf405356b

PMid:24650097

45. Kamonpatana K, Giusti MM, Chithumroonchokchai C, MorenoCruz M, Riedl KM, Kumar P, et al. Susceptibility of anthocyanins to ex vivo degradation in human saliva. Food Chem. 2012;135(2):738-47. https://doi.org/10.1016/j.foodchem.2012.04.110

PMid:22868153

46. Mallery SR, Budendorf DE, Larsen MP, Pei P, Tong M, Holpuch AS, et al. Effects of human oral mucosal tissue, saliva, and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins. Cancer Prev Res (Phila). 2011;4(8):1209-21. https://doi.org/10.1158/1940-6207.capr-11-0040

PMid:21558412

47. Milbury PE, Cao G, Prior RL, Blumberg J. Bioavailability of elderberry anthocyanins. Mea Ageing Dev. 2002;123(8):997-1006. https://doi.org/10.1016/s0047-6374(01)00383-9

PMid:12044949

48. Passamonti S, Vrhovsek U, Mattivi F. The interaction of anthocyanins with bilirubinolase. Biochem Biophys Res Commun. 2002;296(3):631-6. https://doi.org/10.1016/s0006-291x(02)00927-0

PMid:12176028

49. Passamonti S, Terdoslavich M, Franca R, Vanzo A, Tramer F, Braidot E, et al. Bioavailability of flavonoids: A review of their membrane transport and the function of bilirubinocase in animal and plant organisms. Curr Drug Metab. 2009;10(4):369-94. https://doi.org/10.2174/138920009788498950

PMid:19519345

50. Passamonti S, Vrhovsek U, Tramer F, Cocolo A, Decorti G, et al. Hepatic uptake of grape anthocyanins and the role of bilirubinocase. Food Res Int. 2005;38(8):953-60. https://doi.org/10.1016/j.foodres.2005.02.015

51. Talavera S, Felgines C, Texier O, Besson C, Laimaion JL, Remesy C. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr. 2003;133(12):4178-82. https://doi.org/10.1093/jn/133.12.4178

PMid:14652368

52. Fernandes I, Faria A, Calhau C, de Freitas V, Mateus N. Bioavailability of anthocyanins and derivatives. J Funct Foods. 2014;7:54-66. https://doi.org/10.1016/j.jff.2013.05.010

53. Matuschek MC, Hendriks WH, McGhie TK, Reynolds GW. The jejunum is the main site of absorption for anthocyanins in mice. J Nutr Biochem. 2006;17(1):31-6.

PMid:16098729

54. He J, Wallace TC, Keatley KE, Failla ML, Giusti MM. Stability of black raspberry anthocyanins in the digestive tract lumen and transport efficiency into gastric and small intestinal tissues in the rat. J Agric Food Chem. 2009;57(8):3141-8. https://doi.org/10.1021/jf9005671

PMid:19317488

55. Hollman PC. Absorption, bioavailability, and metabolism of
flavonoids. Pharm Biol. 2004;42(Suppl 1):74-83. https://doi.org/10.3109/13880204090839492

56. Arts IC, Sesink AL, Faassen-Peters M, Hollman PC. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. Br J Nutr. 2004;91(6):641-7. https://doi.org/10.1079/bln20041123

PMid:15182387

57. Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of bioavailability studies. Am J Clin Nutr. 2005;81(Suppl 1):230S-42. https://doi.org/10.1093/ajcn/81.1.230s

PMid:15640486

58. Kay CD. Aspects of anthocyanin absorption, metabolism, and pharmacokinetics in humans. Nutr Res Rev. 2006;19(1):137-46. https://doi.org/10.1079/nrr2005116

PMid:19079881

59. Ichiyanagi T, Shida Y, Rahman MM, Hatano Y, Konishi T. Metabolism of cyanidin-3-glucoside: A (13)C-tracer study. Am J Clin Nutr. 2003;78(5):790-6. https://doi.org/10.1203/01.pmr.0000090193.56368.64

60. Zimman A, Waterhouse AL. Enzymatic synthesis of [3'-O-methyl-(3)H]malvidin-3-glucoside from petunidin-3-glucoside. J Agric J Food Chem. 2002;50(8):2429-31. https://doi.org/10.1021/jf010502b

PMid:16131146

61. Vanzo A, Terdoslavich M, Brandoni A, Torres AM, Vrhovsek U, Passamonti S. Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol Nutr Food Res. 2008;52(10):1106-16. https://doi.org/10.1002/mnfr.200700505

PMid:18655007

62. Breinholt VM, Offord EA, Brouwer C, Nielsen SE, Brosen K, Siemionow K, Klimczak A, Brzezicki G, Siemionow M, Passamonti S. Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol Nutr Food Res. 2008;52(10):1106-16. https://doi.org/10.1002/mnfr.200700505

PMid:18655007

63. Vanzo A, Terdoslavich M, Brandoni A, Torres AM, Vrhovsek U, Passamonti S. Uptake of grape anthocyanins into the rat kidney and the involvement of bilitranslocase. Mol Nutr Food Res. 2008;52(10):1106-16. https://doi.org/10.1002/mnfr.200700505

PMid:18655007

64. Yeo M, Na YM, Kim DK, Kim YB, Wang HJ, Lee JA. The role of cytochrome P450-dependent pathways in the metabolism of dietary flavonoids. Food Chem Toxicol. 2002;40(5):609-16. https://doi.org/10.1016/s0278-6915(01)00125-9

PMid:11955666

65. Wu X, Cao G, Prior RL. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr. 2002;132(7):1865-71. https://doi.org/10.1093/jn/132.7.1865

PMid:12097661

66. Yeo M, Na YM, Kim DK, Kim YB, Wang HJ, Lee JA, et al. Absorption of phenol sulfotransferase I in hepatocellular carcinoma. Toxicology. 2010;292(2-3):266-76. https://doi.org/10.1016/j.tox.2009.09.011

PMid:200900721

67. Butler PR, Anderson RJ, Ventura DL. Human platelet phenol sulfotransferase: Partial purification and detection of two forms of the enzyme. J Neurochem. 1983;41(3):630-9. https://doi.org/10.1111/j.1471-4159.1983.tb04788.x

68. Felgines C, Talavera S, Texier O, Gil-Izquierdo A, Lamaison JL, Remesy C. Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J Agric Food Chem. 2005;53(20):7721-7. https://doi.org/10.1021/jf051002b

PMid:16190623

69. Kalt W, Liu Y, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA. Anthocyanin metabolites are abundant and persistent in human urine. J Agric Food Chem. 2014;62(18):3926-34. https://doi.org/10.1021/jf500107j

PMid:24432743

70. Czank C, Cassidy A, Zhang Q, Morrison DJ, Preston T, Kroon PA, et al. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A (13)C-tracer study. Am J Clin Nutr. 2013;97(5):995-1003. https://doi.org/10.3945/ajcn.112.049247

PMid:23604435

71. Kalt W, McDonald JE, Liu Y, Fillmore SA. Flavonoid metabolites in human urine during blueberry anthocyanin intake. J Agric Food Chem. 2017;65(8):1582-91. https://doi.org/10.1021/acs.jafc.6b05455

PMid:28150498

72. Sakakibara H, Ogawa T, Koyanagi A, Kobayashi S, Goda T, Kumazawa S, et al. Distribution and excretion of bilberry anthocyanins [corrected] in mice. J Agric Food Chem. 2009;57(17):7681-6. https://doi.org/10.1021/jf901341b

PMid:19663426

73. Merskey H. IASP Task Force on Taxonomy Australia Classification of Chronic Pain. Seattle: IASP Press; 1994.

74. Gold MS, Gebhart GF. Noceceptor sensitization in pain pathogenesis. Nat Med. 2010;16(11):1248-57. https://doi.org/10.1038/nm.2335

PMid:20948530

75. Anwar K. Pathophysiology of pain. Dis Mon. 2016;62(9):324-9. https://doi.org/10.1097/brs.0b013e3181ab1f68

PMid:27329514

76. Siemionow K, Klimczak A, Brzezicki G, Siemionow M, McLain RF. The effects of inflammation on glial fibrillary acidic protein expression in satellite cells of the dorsal root ganglion. Spine (Phila Pa 1976). 2009;34(16):1631-7. https://doi.org/10.1097/brs.0b013e3181ab1868

PMid:19770604

77. Dawes JM, Antunes-Martins A, Perkins JR, Paterson KJ, Siigisano M, Schmid R, et al. Genome-wide transcriptional profiling of skin and dorsal root ganglia after ultraviolet-B-induced inflammation. PLoS One. 2014;9(4):e93338. https://doi.org/10.1371/journal.pone.0093338

PMid:24732968

78. Karthikeyan A, Patnala R, Jadhav SP, Eng-Ang L, Dheen ST. MicroRNAs: Key players in microglia and astrocyte mediated inflammation in CNS pathologies. Curr Med Chem. 2013;20(15):2050-68. https://doi.org/10.2174/1389450916666081401040

PMid:25728056

79. Nakano N, Nishiyama C, Yagita H, Hara M, Motomura Y, Kubo M, Okumura K, et al. Notch signaling enhances FcepsilonRI-mediated cytokine production by mast cells through direct and indirect mechanisms. J Immunol. 2015;194(9):4535-44. https://doi.org/10.4049/jimmunol.1301850

PMid:25821223

80. Stepanova OI, Safonova NU, Furaeva KN, Lvova TU, Sokolov DI, Selkov SA. Effects of placental secretory factors on cytokine production by endothelial cells. Bull Exp Biol Med. 2013;153(5):375-8. https://doi.org/10.1007/s10517-013-1954-2

PMid:23484204

81. Qin Y, Hua M, Duan Y, Gao Y, Shao X, Wang H, et al. TNF-alpha expression in Schwann cells is induced by LPS and NF-kappaB-dependent pathways. Neurochem Res. 2012;37(4):722-31. https://doi.org/10.1007/s11064-011-0664-2

PMid:22219126

82. Hasegawa S, Kohro Y, Shiratori M, Ishii S, Shimizu T, Tsuda M, et al. Role of PAF receptor in proinflammatory cytokine...
expression in the dorsal root ganglion and tactile allodynia in a rodent model of neuropathic pain. PLoS One. 2010;5(5):e10467. https://doi.org/10.1371/journal.pone.0010467
83. Watkins LR, Wiertelak EP, Goehler LE, Smith KP, Martin D, Maier SF. Characterization of cytokine-induced hyperalgesia. Brain Res. 1994;654(1):15-26. https://doi.org/10.1016/0006-8993(94)91566-0 PMid:7982088
84. Wang KC, Wang SJ, Fan LW, Cai Z, Rhodes PG, Tien LT. Interleukin-1 receptor antagonist ameliorates neonatal lipopolysaccharide-induced long-lasting hyperalgesia in the adult rat. Toxicology. 2001;179(1-3):123-9. https://doi.org/10.1016/S0306-4522(00)00574-1 PMid:20937348
85. Sweitzer S, Martin D, DeLeo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-aldogenic action in a rat model of neuropathic pain. Neuroscience. 2001;103(2):529-39. https://doi.org/10.1016/S0306-4522(00)00574-1 PMid:11246166
86. Katsuragawa, Gottschall PE, Dahl RR, Arimura A. Interleukin-1beta increases prostaglandin E2 in rat astrocyte cultures: Modulatory effect of neuropeptides. Endocrinology. 1989;124(6):3125-7. https://doi.org/10.1210/endo-124-6-3125 PMid:2785913
87. Hart RP, Shadiack AM, Jonakait GM. Substance P gene expression is regulated by interleukin-1 in cultured sympathetic ganglia. J Neurosci. 1991;29(3):282-91. https://doi.org/10.1021/jn.490290303
88. Leibinger M, Muller A, Gobrecht P, Diekmann H, Andreadaki A, Fischer D. Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis. 2013;4:e609. https://doi.org/10.1038/cddis.2013.126 PMid:23618907
89. Eerta M, Quintana A, Hidalgo J. Interleukin-6 mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: Roles in the development of bone cancer pain in a rat model. Pain. 2015;166(6):1124-44. https://doi.org/10.1097/j.pain.0000000000000158 PMid:25775359
90. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett. 1994;172(1-2):151-4. https://doi.org/10.1016/0304-3904(94)90684-x PMid:8084523
91. Sinclair SM, Shamji MF, Chen J, Jing L, Richardson WJ, Brown CR et al. Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist. Spine (Phila Pa 1976). 2011;36(15):1190-6. https://doi.org/10.1097/bs.0b013e3181e8db43 PMid:21217452
92. Choi JS, Svensson CI, Koehn FJ, Bhuskute A, Sorkin LS. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain. 2010;149(2):243-53. https://doi.org/10.1016/j.pain.2010.02.008 PMid:20202754
93. Deshmukh SN, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 2009;29(6):313-26. https://doi.org/10.1089/ jir.2008.0027 PMid:19441883
94. Ramer MS, Murphy PD, Richardson PM, Bisy MA. Spinal nerve lesion-induced mechanolalldynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain. 1998;78(2):115-21. https://doi.org/10.1016/ s0304-3959(98)00121-3 PMid:9839821
95. Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, et al. Interleukin-6: An emerging regulator of pathological pain. J Neuroinflammation. 2016;13(1):141. https://doi.org/10.1186/s12974-016-0607-6 PMid:27267059
96. Dong Y, Mao-Ying QL, Chen JW, Yang CJ, Wang YQ, Tan ZM. Involvement of EphB1 receptor/ephrinB1 ligand in bone cancer pain. Neurosci Lett. 2011;496(3):163-7. https://doi.org/10.1016/j. neulet.2011.04.008 PMid:21514363
97. Fang D, Kong LY, Cai J, Li S, Liu XD, Han JS, et al. Interleukin-6-mediated functional upregulation of TRPV1 receptors in dorsal root ganglion neurons through the activation of JAK/PI3K signaling pathway: Roles in the development of bone cancer pain in a rat model. Pain. 2015;166(6):1124-44. https://doi.org/10.1097/j.pain.0000000000000158 PMid:25775359
98. Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett. 1994;172(1-2):151-4. https://doi.org/10.1016/0304-3904(94)90684-x PMid:8084523
99. Sinclair SM, Shamji MF, Chen J, Jing L, Richardson WJ, Brown CR et al. Attenuation of inflammatory events in human intervertebral disc cells with a tumor necrosis factor antagonist. Spine (Phila Pa 1976). 2011;36(15):1190-6. https://doi.org/10.1097/bs.0b013e3181e8db43 PMid:21217452
100. Choi JS, Svensson CI, Koehn FJ, Bhuskute A, Sorkin LS. Peripheral inflammation induces tumor necrosis factor dependent AMPA receptor trafficking and Akt phosphorylation in spinal cord in addition to pain behavior. Pain. 2010;149(2):243-53. https://doi.org/10.1016/j.pain.2010.02.008 PMid:20202754
101. Fu JY, Masferrer JL, Seibert K, Raz A, Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990;265(28):16737-40. PMid:2120205
102. Murakami M, Naraba H, Tanio B, Semmyo N, Nakatani Y, Kojima F et al. Regulation of prostaglandin E2 biosynthesis by inductive membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem. 2000;275(42):32783-92. https://doi.org/10.1074/jbc. m003505200 PMid:10863934
103. Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem. 1990;265(28):16737-40. PMid:2120205
104. Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron. 2002;35(4):721-31. https://doi.org/10.1016/ s0896-6277(02)00802-4 PMid:12194871
105. Ji RR, Gereau RW, Malcangio M, Strichartz GR. MAP kinase and pain. Brain Res Rev. 2009;60(1):135-48. https://doi.org/10.1016/j.brainresrev.2008.12.011 PMid:19150373
106. Ji RR, Suter MR. p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain. 2007;3:33. https://doi.org/10.1186/1744-8069-3-33 PMid:17974036
107. Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced neuropathic pain. J Neurosci. 2005;25(10):2967-75. https://doi.org/10.1523/jneurosci.3738-04.2005 PMid:15737792
spinal pain processing. J Neurochem. 2003;86(6):1534-44. https://doi.org/10.1046/j.1471-4159.2003.01969.x PMid:12950462

108. Schaefers M, Svensson CI, Sommer C, Sorkin LS. Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci. 2003;23(7):2517-21. https://doi.org/10.1523/jneurosci.23-07-02517.2003 PMid:12864435

109. Camiglia L, Ramirez D, Durand D, Saba J, Turati J, Caruso C, et al. Neuroepithelium and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm. 2017;2017:5048616. https://doi.org/10.1155/2017/5048616

110. Coull JA, Beggs S, Boudreau D, Bolvin D, Tsuda M, Inoue K, et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017-21. https://doi.org/10.1038/nature04223 PMid:16355225

111. Burnstock G. P2X receptors in sensory neurones. Br J Anaesth. 1992;69(6):510-7. PMid:1391048

112. Burnstock G. P2X receptors-alpha and estrogen receptor-beta knockout mice. Neuroscience. 2012;232:226-38. https://doi.org/10.1016/j.neuroscience.2012.11.015 PMid:23201260

113. Burnstock G, Knight GE, Greig AV. Purinergic signaling in healthy and diseased skin. J Invest Dermatol. 2012;132(3 Pt 1):526-46. https://doi.org/10.1038/jid.2011.344 PMid:22158558

114. Burnstock G. Purinoceptors: Are there families of P2-purinoceptor? Pharmacol Ther. 1994;64(3):445-75. https://doi.org/10.1016/0306-3623(94)90048-4

115. Burnstock G. Purinergic Mechanisms and Pain. Adv Pharmacol. 2016;75:91-137. PMid:26920010

116. Burnstock G, Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433-40. https://doi.org/10.1016/0163-7258(85)90001-1 PMid:2996968

117. Christofi FL. Purinergic receptors and gastrointestinal neuroepithelial body innervation. Auton Neurosci. 2006;126-7:307-19. https://doi.org/10.1016/j.autneu.2006.02.006 PMid:16600695

118. Adriaenssen D, Brouns I, Pintelon I, De Proost I, Timmermans JP. Evidence for a role of neuroepithelial bodies as complex airway sensors: Comparison with smooth muscle-associated airway receptors. J Appl Physiol (1985). 2006;101(3):960-70. https://doi.org/10.1152/japplphysiol.00267.2006 PMid:16741263

119. Brouns I, De Proost I, Pintelon I, Timmermans JP, Adriaenssen D. Sensory receptors in the airways: Neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci. 2006;126-127:307-19. https://doi.org/10.1016/j.autneu.2006.02.006 PMid:16600695

120. Cho T, Chaban VV. Expression of P2X3 and TRPV1 receptors in primary sensory neurons from estrogen receptors-alpha and estrogen receptor-beta knockout mice. Neuroreport. 2012;23(9):530-4. https://doi.org/10.1097/wnr.0b013e328353fabc PMid:22581043

121. Saloman JL, Chung MK, Ro JY. P2X(3) and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons. Neuroscience. 2013;232:226-38. https://doi.org/10.1016/j.neuroscience.2012.11.015 PMid:23201260

122. Burnstock G, Knight GE, Greig AV. Purinergic signaling in healthy and diseased skin. J Invest Dermatol. 2012;132(3 Pt 1):526-46. https://doi.org/10.1038/jid.2011.344 PMid:22158558

123. Hamilton SG, McMahon SB, Lewin GR. Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. J Physiol. 2001;534(Pt 2):437-45. https://doi.org/10.1111.j.1469-7793.2001.00437.x PMid:11454962

124. Xu GY, Huang LY. Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J Neurosci. 2002;22(1):93-102. https://doi.org/10.1523/jneurosci.22-01-00093.2002 PMid:11756482

125. Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, et al. ATP-gated ion channel P2X(3) is increased in human inflammatory bowel disease. Neurogastroenterol Motil. 2001;13(4):365-9. https://doi.org/10.1046/j.1365-2982.2001.00276.x PMid:11576396

126. Somers GR, Hammet FM, Trute L, Southey MC, Venter DJ. Expression of the P2Y6 purinergic receptor in human T cells infiltrating inflammatory bowel disease. Lab Invest. 1998;78(11):1375-83. PMid:9840612

127. Wan P, Liu X, Xiong Y, Ren Y, Chen J, Lu N, et al. Extracellular ATP mediates inflammatory responses in colitis via P2 x 7 receptor signaling. Sci Rep. 2016;6:19108. https://doi.org/10.1038/srep19108

128. Wang Y, Li G, Lian S, Zhang A, Xu C, Gao Y, et al. Role of P2X3 receptor in myocardial ischemia injury and nociceptive sensory transmission. Auton Neurosci. 2008;139(1-2):30-7. https://doi.org/10.1016/j.autneu.2019.102587 PMid:18276198

129. Thompson GW, Horackova M, Armour JA. Role of P1 purinergic receptors in myocardial ischemia sensory transduction. Cardiovasc Res. 2002;53(4):888-901. https://doi.org/10.1016/s0008-6363(01)00542-9

130. Granado M, Amor S, Montoya JJ, Monge L, Fernandez N, Garcia-Villalon AL. Altered expression of P2Y2 and P2X7 purinoceptors in myocardial ischemia sensory transduction. Cardiovasc Res. 2002;53(4):888-901. https://doi.org/10.1016/s0008-6363(01)00542-9

131. Watanabe T, Tsuibo Y, Sessle BJ, Iwata K, Hu JW. P2X and NMDA receptor involvement in temporomandibular joint-evoked reflex activity in rat jaw muscles. Brain Res. 2010;1346:83-91. https://doi.org/10.1016/j.brainres.2010.05.055

132. Dowd E, McQueen DS, Chessell IP, Humphrey PP. P2X2 receptor-mediated sensitisation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol. 1998;125(2):341-6. https://doi.org/10.1038/sj.bjp.0702080 PMid:9786507

133. Bar-Yehuda S, Rath-Wolfson L, Del Valle L, Ochaoian A, Cohen S, Patoka R, et al. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. Arthritis Rheum. 2009;60(10):3061-71. https://doi.org/10.1002/art.24817

134. Martins DF, Mazzardo-Martins L, Cidral-Filho FJ, Stramosk J, Santos AR. Ankle joint mobilization affects postoperative pain through peripheral and central adenosine A1 receptors. Phys Neuroscience. 2013;232:226-38. https://doi.org/10.1016/j.neuroscience.2012.11.015 PMid:23201260
Anthocyanins inhibit nuclear factor-κB and phosphatidylinositol 3-kinase/Akt pathway. J Agric Food Chem. 2009;57(4):1239-46. 
https://doi.org/10.1021/jf8032039
PMid:19199565

Tsoky K, Park HB, Kim YM, Chung JJ, Shin SC, Lee WS, et al. Anthocyanins from black soybean seed coats inhibit UVB-induced inflammatory cylooxygenase-2 gene expression and PGE2 production through regulation of the nuclear factor-kappaB and phosphatidylinositol 3-kinase/Akt pathway. J Agric Food Chem. 2008;56(19):8969-74. 
https://doi.org/10.1021/jf801345c
PMid:18778065

Hwang YP, Choi JH, Yun HJ, Han EH, Kim HG, Kim JY, et al. Anthocyanins from purple sweet potato attenuate dimethylnitrosamine-induced liver injury in rats by inducing Nrf2-mediated antioxidant enzymes and reducing COX-2 and iNOS expression. Food Chem Toxicol. 2011;49(1):93-9. 
https://doi.org/10.1016/j.fct.2010.10.002
PMid:20934476

Kim HJ, Xu L, Chang KC, Shin SC, Chung JJ, Kang D, et al. Anti-inflammatory effects of anthocyanins from black soybean seed coat on the keratinocytes and ischemia-reperfusion injury in rat skin flaps. Microsurgery. 2012;32(7):563-70. 
https://doi.org/10.1002/micr.22019
PMid:22821773

Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29(6):781-8. 
https://doi.org/10.1038/onc.2009.421
PMid:19946329

Sobolewski C, Corrella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158. 
https://doi.org/10.1155/2010/215158
PMid:20339581

Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015;15(1):106. 
https://doi.org/10.1186/s12935-015-0260-7
PMid:26549987

Ma W, Chabot JG, Vercauteren F, Quirion R. Injured nerve-derived COX2/PGE2 contributes to the maintenance of neuropathic pain in aged rats. Neurobiol Aging. 2010;31(7):1227-37. 
https://doi.org/10.1016/j.neurobiolaging.2010.03.005
PMid:20339581
Widyadharma et al. Basic Properties of Anthocyanin for Pain

159. Lee Y, Rodriguez C, Dionne RA. The role of COX-2 in acute pain and the selective use of COX-2 inhibitors for acute pain relief. Curr Pharm Des. 2005;11(14):1737-55. https://doi.org/10.2174/1381612053764896 PMid:15892672

160. Sinatra R. Role of COX-2 inhibitors in the evolution of acute pain management. J Pain Symptom Manage. 2002;24(1):S18-27. https://doi.org/10.1016/s0885-3924(02)00410-4 PMid:12204484

161. Han GL, Li CM, Mazza G, Yang XG. Effect of anthocyanin rich fruit extract on PGE2 produced by endothelial cells. Wei Sheng Yan Jiu. 2005;34(5):581-4. PMid:16329602

162. He YH, Zhou J, Wang YS, Xiao C, Tong Y, Tang JC, et al. Anti-inflammatory and anti-oxidative effects of cherries on Freund’s adjuvant-induced arthritis in rats. Scand J Rheumatol. 2006;35(5):356-8. https://doi.org/10.1080/03009740600704154 PMid:17062435

163. Kim HJ, Tsoy I, Park JM, Chung JJ, Shin SC, Chang KC. Anthocyanins from soybean seed coat inhibit the expression of TNF-alpha-induced genes associated with ischemia/reperfusion in endothelial cell by NF-kappab-dependent pathway and reduce rat myocardial damages incurred by ischemia and reperfusion in vivo. FEBS Lett. 2006;580(5):1391-7. https://doi.org/10.1016/j.febslet.2006.01.062 PMid:16457818

164. Luo H, Lv XD, Wang GE, Li YF, Kurihara H, He RR. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice. Int J Food Sci Nutr. 2014;65(5):594-601. https://doi.org/10.3109/09637486.2014.886184 PMid:24548119

165. Amin HP, Czank C, Raheem S, Zhang Q, Botting NP, Cassidy A, et al. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol Nutr Food Res. 2015;59(6):1095-106. https://doi.org/10.1002/mnfr.201400803 PMid:25758598

166. Farrell N, Norris G, Lee SG, Chung OK, Blesso CN. Anthocyanin-rich black elderberry extract improves markers of HDL function and reduces aortic cholesterol in hyperlipidemic mice. Food Funct. 2015;6(4):1278-87. https://doi.org/10.1039/c4fo01036a PMid:24378630

167. Zhang X, Zhu Y, Song F, Yao Y, Ya F, Li D, et al. Effects of purified anthocyanin supplementation on platelet chemokines in hypcholesterolemic individuals: A randomized controlled trial. Nutr Metab. 2016;13(1):86. https://doi.org/10.1186/s12986-016-0146-2 PMid:27933092

168. Sogo T, Terahara N, Hisanaga A, Kumamoto T, Yamashiro T, et al. Antioxidant activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin. Biofactors. 2015;41(1):58-65. https://doi.org/10.1002/biof.1201 PMid:25728636

169. Winter AN, Ross EK, Wilkins HM, Stankiewicz TR, Wallace T, Miller K, et al. Anthocyanin-enriched extract from strawberries delays disease onset and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutr Neurosci. 2016;21(4):141-26. https://doi.org/10.1080/10284 15x.2017.1297023 PMid:28276271

170. Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, et al. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation. 2016;13(1):286. https://doi.org/10.1186/s12974-016-0752-y PMid:27821173

171. Kuehl KS, Perrier ET, Elliot DL, Chesnutt JC. Efficacy of tart cherry juice in reducing muscle pain during running: A randomized controlled trial. J Int Soc Sports Nutr. 2010;7:17. https://doi.org/10.1186/1550-2783-7-17 PMid:20459662

172. Schumacher HR, Pullman-Moosar S, Gupta SR, Dinnella JE, Kim R, McG Hughes MP. Randomized double-blind crossover study of the efficacy of a tart cherry juice blend in treatment of osteoarthritis (OA) of the knee. Osteoarthritis Cartilage. 2013;21(8):1035-41. https://doi.org/10.1016/j.joca.2013.05.009 PMid:23727631

173. Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN. Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res. 2004;153(1):181-8. https://doi.org/10.1016/j.bbr.2003.11.011 PMid:15219719

174. Sanchez A, Calpena AC, Clares B. Evaluating the oxidative stress in inflammation: Role of melatonin. Int J Mol Sci. 2015;16(8):16981-7004. https://doi.org/10.3390/ijms160816981 PMid:26225657

175. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1-13. PMid:19061483

176. Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, et al. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener. 2017;12(1):7. https://doi.org/10.1186/s13024-017-0150-7

177. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid Med Cell Longev. 2015;2015:18. https://doi.org/10.1155/2015/610813

178. Urrutia PJ, Men A NP, Nunez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014;5:38. https://doi.org/10.3389/fphar.2014.00038 PMid:24653700

179. van Noort JM, Bsibsi M. Toll-like receptors in the CNS: Neuroinflammation and oxidative stress, neuroinflammation, and neurodegeneration during the execution step of neurodegenerative disorders. Mol Neurodegener. 2013;2014:674987. https://doi.org/10.1186/13024-017-0150-7

180. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21(1):103-15. PMid:21187859

181. Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathies: Future strategies based on these targets. Int J Endocrinol. 2014;2015:267645. https://doi.org/10.1155/2014/267645 PMid:25728636

182. Ungard RG, Seidlitz EP, Singh G. Oxidative stress and cancer. Oxidative stress, neuroinflammation, and oxidative stress in diabetic neuropathies. Mol Neurodegener. 2017;12(1):7. https://doi.org/10.1186/s13024-017-0150-7

183. van Noort JM, Balsb M. Toll-like receptors in the CNS: Implications for neuroregeneration and repair. Prog Brain Res. 2009;175:139-48. https://doi.org/10.1016/ s0079-6123(09)17509-x PMid:19061483

184. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011;21(1):103-15. PMid:21187859
F - Review Articles Narrative Review Article

185. Ziskoven C, Jager M, Zilkens C, Bloch W, Brixius K, Krauspe R. Oxidative stress in secondary osteoarthritis: From cartilage destruction to clinical presentation? Orthop Rev (Pavia). 2010(2):a23. https://doi.org/10.1080/or.2010.023
PMid:2108712

186. Lee KY, Chung K, Chung JM. Involvement of reactive oxygen species in long-term potentiation in the spinal cord dorsal horn. J Neurophysiol. 2010;103(1):382-91. https://doi.org/10.1152/jn.00906.2008
PMid:19008675

187. Lee DZ, Chung JM, Chung K, Kang MG. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior. Pain. 2012;153(9):1905-15. https://doi.org/10.1016/j.pain.2012.06.001
PMid:22770842

188. Nishio N, Taniguchi W, Sugimura YK, Takiguchi N, Yamanaka M, Kiyoyuki Y, et al. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels. Neuroscience. 2013;247:201-12. https://doi.org/10.1016/j.neuroscience.2013.05.023

189. Chung MK, Jung SJ, Oh SB. Role of TRP channels in pain sensation. Adv Exp Med Biol. 2011;704:615-36.
PMid:21290319

190. Jardin I, López JJ, Diez R, Sánchez-Collado J, Cantorero C, Albarrán L, et al. TRPs in pain sensation. Front Physiol. 2017;8:392. https://doi.org/10.3389/fphys.2017.00392
PMid:28649203

191. Takahashi A, Mikami M, Yang J. Hydrogen peroxide increases GABAergic mIPSC through presynaptic release of calcium from IP3 receptor-sensitive stores in spinal cord substantia gelatinosa neurons. Eur J Neurosci. 2007;25(3):705-16. https://doi.org/10.1111/j.1460-9568.2007.05323.x
PMid:17328771

192. Roberts RA, Smith RA, Safe S, Szabó C, Tjalkens RB, Robertson FM. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology. 2010;276(2):85-94. https://doi.org/10.1016/j.tox.2010.07.009
PMid:20643181

193. Kolberg C, Horst A, Moraes MS, Duarte FC, Riffel AP, Scheid T, et al. Peripheral oxidative stress blood markers in patients with chronic back or neck pain treated with high-velocity, low-amplitude manipulation. J Manipulative Physiol Ther. 2015;38(2):119-29. https://doi.org/10.1016/j.jmpt.2014.11.003
PMid:25487299

194. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci. 2009;29(1):159-68. https://doi.org/10.1523/jneurosci.3792-08.2009
PMid:19129394

195. Kähkönen MP, Heinonen M. Antioxidant activity of anthocyanins and their aglycones. J Agric Food Chem. 2003;51(3):628-33. https://doi.org/10.1021/jf0205551
PMid:12537433

196. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933-56. https://doi.org/10.1016/0891-5849(95)00227-9
PMid:8743980

197. Wang H, Cao G, Prior RL. Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem. 1997;45(2):304-9. https://doi.org/10.1021/jf960421t

198. Rahman MM, Ichiyangai T, Komiyama T, Hatano Y, Konishi T. Superoxide radical and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radic Res. 2006;40(9):953-1002. https://doi.org/10.1080/10715760600815322
PMid:17015281

199. Tsuda T, Shiga K, Osawa T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharmacol. 1996;52(7):1033-9. https://doi.org/10.1016/0006-2952(96)00421-2
PMid:8831722

200. Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantis G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007;102(3):777-83. https://doi.org/10.1016/j.foodchem.2006.06.021

201. Moriyama H, Morita Y, Ukeda H, Sawamura M, Terahaha N. Superoxide anion-scavenging activity of anthocyanin pigments. Nippon Shokuhin Kagaku Kagou Kaishi. 2003;50(11):499-505. https://doi.org/10.3136/nsskk.50.499

202. De Rosso VV, Moran Vieyra FE, Borsarelli CD. Singlet oxygen quenching by an anthocyanin's flavylum cations. Free Radic Res. 2008;42(10):885-91. https://doi.org/10.1080/1071576080250349
PMid:18985487

203. Ichikawa H, Ichiyangai T, Xu B, Yoshii Y, Nakajima M, Konishi T. Antioxidant activity of anthocyanin extract from purple black rice. J Med Food. 2001;4(4):211-8. https://doi.org/10.1089/jmf.2001.4-52744481
PMid:12639403

204. Bi X, Zhang J, Chen C, Zhang D, Li P, Ma F. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chem. 2014;152:205-9. https://doi.org/10.1016/j.foodchem.2013.11.088
PMid:24444927

205. Devi PS, Kumar MS, Das SM. DNA damage protecting activity and free radical scavenging activity of anthocyanins from red Sorghum (Sorghum bicolor) Bran. Biotechnol Res Int. 2012:2012;258787. https://doi.org/10.1155/2012/258787

206. Lim TG, Jung SK, Kim JE, Kim Y, Lee HJ, Jang TS, et al. NADPH oxidase is a novel target of delphinidin for the inhibition of UVB-induced MMP-1 expression in human dermal fibroblasts. Exp Dermatol. 2013;22(6):428-30. https://doi.org/10.1111/exd.12157
PMid:23711068

207. Xie X, Zhao R, Shen GX. Impact of cyanidin-3-glucoside on glycedated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells. Int J Mol Sci. 2012;13(12):15867-80. https://doi.org/10.3390/ijms131215867
PMid:23443099

208. Mazza G, Kay CD, Cottrell T, Holub BJ. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Nutr. 2002;132(6):1746-51. https://doi.org/10.1093/jn/132.6.1746
PMid:12475297

209. Kay CD, Holub BJ. The effect of wild blueberry (Vaccinium angustifolium) consumption on postprandial serum antioxidant status in human subjects. Br J Nutr. 2007;98(4):389-98. https://doi.org/10.1017/s1475284107001077
PMid:17230217

210. Tsuda T, Horio F, Osawa T. Dietary cyanidin 3-O-β-d-glucoside

https://www.id-press.eu/mjms/index
increases ex vivo oxidation resistance of serum in rats. Lipids. 1998;33(6):583-8. https://doi.org/10.1007/s11745-998-0243-5 PMid:9655373

211. Park KH, Kim JR, Lee JS, Lee H, Cho KH. Ethanol and water extract of purple sweet potato exhibits anti-atherosclerotic activity and inhibits protein glycation. J Med Food. 2010;13(1):91-8. https://doi.org/10.1089/jmf.2009.077 PMid:20136441

212. Steed LE, Truong VD. Anthocyanin content, antioxidant activity, and selected physical properties of flowable purple-fleshed sweetpotato purees. J Food Sci. 2008;73(5):S215-21. https://doi.org/10.1111/j.1750-3841.2008.00774.x PMid:18577019

213. Khoubnasabjafari M, Ansarin K, Jouyban A. Reliability of malondialdehyde as a biomarker of oxidative stress in psychological disorders. Bioimpacts. 2015;5(3):123-7. https://doi.org/10.15171/bi.2015.20 PMid:26457249

214. Kelsey N, Hulick W, Winter A, Ross E, Linseman D. Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress. Nutr Neurosci. 2011;14(6):249-59. https://doi.org/10.1017/S147683051100000020 PMid:22053756

215. Tarozzi A, Morroni F, Hrelia S, Angeloni C, Marchesi A, Cantelli-Forti G, et al. Neuroprotective effects of anthocyanins and their in vivo metabolites in SH-SY5Y cells. Neurosci Lett. 2007;424(1):36-40. https://doi.org/10.1016/j.neulet.2007.07.017 PMid:17709193

216. Passamonti S, Vrhovsek U, Vanzo A, Mattivi F. Fast access of some grape pigments to the brain. J Agric Food Chem. 2005;53(18):7029-34. https://doi.org/10.1021/jf050565k PMid:16131107

217. Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, et al. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem. 2008;56(3):705-12. https://doi.org/10.1021/jf071998l PMid:18211026

218. Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci. 2005;8(2):111-20. https://doi.org/10.1080/1028415050078117 PMid:16053243

219. Carvalho FB, Gutierrez JM, Bohnert C, Zago AM, Abdalla FH, Vieira JM, et al. Anthocyanins suppress the secretion of proinflammatory mediators and oxidative stress, and restore ion pump activities in demyelination. J Nutr Biochem. 2015;26(4):378-90. https://doi.org/10.1016/j.jnutbio.2014.11.006

220. Stettner M, Wolffram K, Mausberg AK, Albrecht P, Derksen A, Methner A, et al. Promoting myelination in an in vitro mouse model of the peripheral nerve system: The effect of wine ingredients. PLOS One. 2013;8(6):e66079. https://doi.org/10.1371/journal.pone.0066079 PMid:23762469

221. Moulin DE. Pain in central and peripheral demyelinating disorders. Neurol Clin. 1998;16(4):889-98. PMid:9767068

222. Mirshekar M, Roghani M, Khalili M, Baluchnejadmojarad T, Moazzen SA. Chronic oral pelargonidin alleviates streptozotocin-induced diabetic neuropathic hyperalgesia in rat: Involvement of oxidative stress. Iran Biomed J. 2010;14(1-2):33-9. PMid:20683496