Correlating between global solar radiation and greenhouse gases over Nigeria

G F Ibeh¹, T Sombo², Edebeautu, Chinedu Callistus³, A O Azi⁴, C A Ogonna⁵, J E Ekpe⁶, and P I Akand⁷

¹Department of Physics with Electronics, Evangel University, Ebonyi State, Nigeria
²Department of Physics, Federal University of Agriculture, Makurdi, Benue State, Nigeria
³Department of Physics, Admiralty University of Nigeria, Ibora-Ogwashi-Uku-Asaba Expressway, Delta State, Nigeria
⁴Department of Physics /Instrumentation and Control Technology, Federal Polytechnic of Oil and Gas, Bonny, Nigeria
⁵Renaissance University, Ugbawka, Enugu State, Nigeria
⁶Department of Physics, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
⁷Department of Physics, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria

E-mail: ibehgabrielfriday@gmail.com (+234 806 528 9990)

Abstract. The need to study the variations of climate change in Nigeria becomes necessary at a time the universe and Nigerians, in particular are passing through challenges due to climate change as a result of emissions. The atmospheric gases have a greater transparency for incoming solar radiation, while the outgoing are trapped and re-emitted back to the Earth. This study correlated between global solar radiation and greenhouse gases over Nigeria using neural network. The results showed that positive correlations exist between solar radiations: CO₂ and CH₄ respectively, while exhibiting negative correlations with tropospheric ozone and water vapour. Consequently, an increase in 0.1017, 0.1350 units of CO₂ and CH₄, respectively could enhance the trapping and transmission of solar radiation in the atmosphere, while an increase of 1.1234 and 0.1530 units of tropospheric ozone and water vapour could cause absorption of solar radiation. The trapped energy is re-radiated back to the Earth, this warms up the atmosphere and the surface of the Earth resulting to global warming. Coefficient of determination revealed that 18%, 30%, 20%, and 29%, of the variances of solar radiation being studied is explained by the variance of the water vapour, tropospheric O₃, CO₂, and CH₄, respectively.

1. Introduction

Solar radiation travels to Earth through space from the, some get to the Earth’s surface while others are absorbed and scattered by atmospheric activities. Therefore solar radiation interacts with atmospheric parameters such as gases, liquid, and particles [2]. The amount of solar radiation that
reaches any particular point on the ground depends on the time of the day, the day of the year, the amount of cloud cover, and the latitude at that point [7, 10, 11]. When infrared radiations from the reach the Earth, some of these radiations are reflected into space while the rest is absorbed and re-radiated by greenhouse gases as shown in figure 1 [7]. This occurrence is referred to as the greenhouse effect [15]. Greenhouse effect is the natural process of warming the Earth’s surface through absorption and re-radiation of infrared radiation from the by greenhouse gases.

Life on Earth depends on energy from the and about 30% of the energy beams toward Earth is deflected by the outer atmosphere and scattered back into the space. The remaining 70% reaches the Earth’s surface and is reflected back into space again as a type of long wave energy called infrared radiation [14]. The heat produced as a result of this infrared radiation is naturally trapped by the greenhouse gases, thereby keeping the Earth warm enough for living organisms to survive, but excessive absorption and re-emitted back to the Earth brings about global warming and climate change. The energy according to [16] observed that it is affected by climate changes induced by greenhouse gases.

![Figure 1. Radiation absorption and Greenhouse Gases Emission Process [4]](image)

The human activities on the environment is rapidly increasing the levels of atmospheric greenhouse gases (GHG) which includes carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), chlorofluorocarbons (CFCs), perfluorocarbons (PFCs), and hydrocarbons (HFCs) [8].

Methane is a major greenhouse gas and produced during anaerobic decomposition of manure and accumulates around manure storage areas. The concentrations of CH₄ depend on the moisture content of the environment (which may enhance decomposition) from many plants such is produce water hyacinths release CH₄. High concentration of methane occurs in wet season and produced from wetland, decomposition of plants, rice paddies (anaerobic processes), enteric fermentation in mammals (ruminant) and termites [12]. This agrees with [12] and [1]. They stated that water hyacinth (Eichhornia crassipes) is a potential biomass source able to be converted into methane and that the increase in the rate of rice farming in Nigeria which occurs during the wet season is a major source of methane production. Termites are also a significant source of methane due to methanogenesis in the symbiotic metabolic breakdown in termite hindguts [17]. This study, therefore, correlated between global solar radiation and greenhouse gases over Nigeria by correlating the parameters. It investigated the rate of their influences on climate change and global warming.
2. Materials and Methods

2.1 Materials

2.1.1 The Study Area

The study areas used in this work are thirty-six (36) points station over Nigeria as shown in figure 2, which is the gridded map of selected stations in Nigeria, while table 1 shows the coordinates of the selected stations over Nigeria. These stations were selected based on the interval of 1.5° (from one point to the order) of the gridded map to cover Nigeria.

![Gridded Map of Nigeria Showing Data Points of the selected stations in Nigeria](image)

Figure 2. Gridded Map of Nigeria Showing Data Points of the selected stations in Nigeria

2.1.2 Sources of Data

The greenhouse gases data used in this work were gotten from www.gmes-atmosphere.eu/data from 2003 to 2015. Satellite data were used for this study because greenhouse gases have no ground-based measurements in Nigeria at the time of this study. The data which was in NetCDF format were extracted, converted to binary format, sorted, and merged to file using MATLAB software program. The interval for the study area from one point and another is 1.5° as showed in figure 2.

2.2 Research method

Neural network in MATLAB was used to carry out the modeling in this study. The designing and use of neural network for modeling require that one must systemic procedures [3]. The six basic steps followed in this study include:

- Data collection;
- Processing of data;
- Building the neural network;
- Training the neural network;
- Validations of the neural network using performance function; and
- Using the neural network (best network).

Equation (1) is the model used for the study from input layer to output layer as shown in the architecture in figure 3.
where O_m is the output vector, O_m depicts the output matrix containing the desired outputs. I represent the input vector, while I_m is the input matrix (year, day of the year (DOY), latitude, longitude), I_{wm} depicts inputs weight matrix, b_1 is bias vector 1, H_{vm} is the hidden variable matrix, L_{wm} is layer weight matrix, b_2 is bias vector 2, tansig (f_1) is hyperbolic tangent sigmoid transfer function used between the input and the hidden layers as activation function, while purelin (f_2) is the linear transfer function used from hidden layers to the output layer as the activation function. Figure 3 showed that the size of I_{wm} is h-by-4 because there are 4 inputs layer neurons. The size of L_{wm} is 1-by-h because there is one output layer neuron. The sizes of b_1, n_1, H_{vm}, b_2, and n_2 are h x 1, h x 1, h x 1, 1 x 1 and 1 x 1 respectively, where h is the number of hidden layer neurons.

Figure 3. Neural Network Architecture from Input to Output

3. Results and Discussion
The results of the relationship between Greenhouse Gases (GHGs) and solar radiation were determined using programming language written with MATLAB codes to determine the linear regression and coefficients of determination. Figure (4) and table (1) presents the plots of linear regression, Correlation Coefficients and coefficients of determination for the greenhouse gases and solar radiation. The regression equations of the plots were shown from equation (2) to equation (5), where M, C_d, T_o, W_v, and SR depict methane (ppm), carbon dioxide (ppm), tropospheric ozone (ppm), water vapour (ppm),
and global solar radiation (W/m²), respectively. The statistical significance of the relationship between greenhouse gases and solar radiation at p-value < 0.05 confidence level was determined and presented in table 1.

![Figure 4](image_url)

Figure 4. Validations of Solar Radiation with: (a) Carbon dioxide, (b) Tropospheric Ozone, (c) Methane, and (d) Water Vapour.
3.1 Relationships between Greenhouse Gases and Solar Radiation

The results from figure 4 show positive relationships between solar radiation with CO$_2$ and CH$_4$ respectively, while having negative correlation with tropospheric ozone and water vapour. Consequently, from the equations (2) and (4), an increase in 0.1017 and 0.1350 units of CO$_2$ and CH$_4$ respectively could enhance transmission in solar radiation, while an increase of 1.1234 and 0.1530 units of tropospheric ozone and water vapour of equations 3 and 5 could cause absorption in the solar radiation.

Table 1, reveals that water vapour, tropospheric O$_3$, CO$_2$, and CH$_4$ influences 18%, 30%, 20%, and 29%, respectively to the changes of solar radiation in the atmosphere. Hence, methane has the highest positive relationship with solar radiation and water vapour has the least negative relationship with solar radiation, hence little or no direct influence on solar radiation.

Secondly, it can also be observed that the water vapour and tropospheric O$_3$ exhibit indirect relationship with solar radiation. This could imply that the amount of changes in solar radiation received on the Earth surface is reduced (absorbed or scattered) by the parameters. On the other hand, CO$_2$ and CH$_4$ have direct relationship with solar radiation. This could cause transmission of some amount of solar radiation in the atmosphere. This means that 18%, 30%, 20%, and 29%, respectively of the variances of the dependent variable (solar radiation) being studied is explained by the variance of the independent variables (water vapour, tropospheric O$_3$, CO$_2$ and CH$_4$), respectively.

The result on table 1 revealed that no gaseous pollutant or greenhouse gas can have 100% influences on the variance climatic parameters. This agrees with [18] who asserts that most practical effects of variations and trends of climate do not involve a single parameter but are the synergistic result of multiple parameters. The result was also confirmed by the Intergovernmental Panel report on climate change [13]. It was also stated that global warming increases because of increase in the emissions of GHGs particularly CO$_2$ and CH$_4$[9].

Table 1. Correlation Coefficients (r), Coefficient of Determination (r^2) and p-value of Solar Radiation with Greenhouse Gases

Greenhouse Gases	Solar Radiation	p-value	
	r	r^2	
Water Vapour	-0.42	0.18	0.5931
Tropospheric Ozone	-0.54	0.30	0.0433
carbon dioxide)	0.45	0.20	0.4811
Methane	0.54	0.29	0.6504

\[
SR = 12.00 + 0.1017C_d \quad (2)
\]
\[
SR = 29.50 - 1.1234T_o \quad (3)
\]
\[
SR = 14.00 + 0.1350M \quad (4)
\]
\[
SR = 31.00 - 0.1530W_v \quad (5)
\]
The result of the significance level of the relationship between the greenhouse gases and solar radiation shows that some are statistically significant, while some are insignificant at p-value < 0.05(95%) confidence level. The p-values of 0.0433, 0.5931, 0.65042, and 0.48112 are for solar radiation and tropospheric ozone, water vapour, methane and carbon dioxide, respectively. This shows that at p-value < 0.05 level of confidence, solar radiation and tropospheric ozone are statistically significant, while others are insignificant.

4. Conclusion

Solar radiation which travels to the Earth through space is absorbed, scattered or and re-emitted back to the Earth by atmospheric greenhouse gases. This study validated the relationship between greenhouse gases and solar radiation. The results showed that positive relationship exists between solar radiation: CO$_2$ and CH$_4$, respectively, while negative correlation with tropospheric ozone and water vapour. This implied their rate on the influence of solar radiation. The investigations show their influences on climate change and global warming.

Consequently, it revealed that an increase of 0.1017 and 0.1350 units of CO$_2$, and CH$_4$, respectively could enhance the trapping and transmission of solar radiation in the atmosphere, while an increase of 1.1234 and 0.1530 units of tropospheric ozone and water vapour could cause absorption of solar radiation. The trapped energy is re-radiated back to the Earth, this warms up the atmosphere and the surface of the Earth resulting in global warming. This process is referred to as greenhouse effect. The coefficient of determination result confirms that 18%, 30%, 20%, and 29%, respectively of the variances of the dependent variable (solar radiation) being studied is explained by the variance of the independent variables (water vapour, tropospheric O$_3$, CO$_2$, and CH$_4$), respectively. This infers that each of the parameters influences global solar radiation at different levels. In accordance with [6], increased in the concentration of greenhouse gases trap the outgoing infrared radiation in the atmosphere and as a result of this anomaly, the Earth’s climate is altered. This increase of the greenhouse gases concentrations in the atmosphere captures excess heat resulting to global warming.

Acknowledgments

I want to acknowledge www.gmes-atmosphere.eu/data for making the data available for this study and Dr. Akande S of Centre for Space Research and Application, Federal University of Technology Akure, Nigeria for helping out in downloading of the data. I also want to acknowledge the anonymous reviewer that gives comments that improved this manuscript. Also, a big thanks to ISSS 2021 organizers for giving us the opportunity to present this study at the International Symposium on Space Science 2021.

GFI organize the study and the modeling, TS supervise the study, CCE proofread the study, CAO and JEE worked on the review, PIA and AOA discuss the results.

References

[1] Babu Y, Jagadeesh L, Frolking C, Nayak S, Datta D R, and Adhya T K 2005 Modelling of Methane Emissions from rice-based Production systems in India with the De-nitrification and Decomposition Model. Journal of Field Validation Sanitation Analysis 89 1904–1912.

[2] Bai J, Heikkil A, Zong X 2021 Long-Term Variations of Global Solar Radiation and Atmospheric Constituents at Sodankylä in the Arctic. Atmosphere 12 (749) 1-25 https://doi.org/10.3390/atmos12060749

[3] Beale M H, Haagan M T and Demuth B H 2015 Neural Network ToolboxTM. User’s Guide(R2014b), The Math Works, Incorporation, 6th edition Simulink Press, U.S.A P 20-35

[4] Darkwah W K, Odum B, Addae M, Koomson A D, Kwakye B D, Ewurabena A O, Asenso T Q and Buanya B A 2017 Greenhouse Effect: Greenhouse Gases and Their Impact on Global Warming. J of Sc Res & Rep 17(6) 1-9
[5] Delgado M., Guariola E and Bigeriego M 2008 Methane Generation from water Hyacinth Biomass. *J of Env Sc and Hlth.* 27(2) 347-367

[6] EPA 2017 Understanding global warming potentials. United States Environmental Protection Agency Retrieved from warming potentials https://www.epa.gov/ghgemissions/understanding-global (February 14, 2017)

[7] Falayi E O 2013 The Impact of Cloud Cover, Relative Humidity, Temperature and Rainfall on Solar Radiation in Nigeria, *En and P* 3(6) 119-127 DOI: 10.5923/j.ep.20130306.03

[8] Giwa S O, Sulaiman M A, Nwaokocha C N 2017. Inventory of greenhouse gases emissions from gasoline and diesel consumption in Nigeria. *Nig J of Tech D* 14(1) 1-10

[9] Huang J, Yu H, Guan X, Wang G and Guo R 2015 Accelerated dryland expansion under climate change. *NCI Ch* 6 166-171

[10] Ibeh G F, Udochukwu B C, Igawuwa T, Tyovenda A and Ofoma J N (2019). Assessment of Global Solar Radiation at Selected Points in Nigeria Using Artificial Neural Network Model (ANNM) *Int J of Env and Cl Ch* 9(7) 376-390,

[11] Ibeh G F, Agbo G A, Agbo P E and Ali PA (2012). Application of artificial neural networks for global solar radiation forecasting with temperature. *Adv in Appl Sc Res* 3(1) 130-134.

[12] Ibeh G F 2021 Unpublished PhD Thesis, Department of Physics, Federal University of Agriculture, Makurdi, Benue State Nigeria

[13] IPCC 2018 Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Geneva: Intergovernmental Panel on Climate Change. P 1-1

[14] Khan M Z 2017 Causes and consequences of greenhouse effect and its catastrophic problems for Earth. *Int J of Sus Mgt and Inf Tech* 3(4) 34–39. https://doi.org/10.11648/j.ijsmit.20170304.11.

[15] Lallanila M 2018 What is the greenhouse effect? Live Science. Retrieved from https://www.livescience.com/ 37743-greenhouse-effect.html (2020)

[16] Olayinka S O, Muyiwa S A, Olanrewaju M. O, Olaniran J M and Richard O F 2015 The effect of climate change on solar radiation in Nigeria. *Solar Energy* 116 272–286

[17] Philipp A.N, Lindsay B H and Stefan K A 2018 Termite mounds mitigate half of termite methane emissions, Proceeding of the National Academy of Science (PNAS) of United States of America, P 1-6.

[18] Tuller S E 2004 Measured wind speed trends on the west coast of Canada. *Int J of Cl ,* 24 1359 – 1374.