Simultaneous quantification of the interplay between molecular turnover and cell mechanics by AFM-FRAP

Mark Skamrah1, Huw Colin-York1, Liliana Barbieri1, Marco Fritzsche1,2,*

1MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford. OX3 9DS, United Kingdom
2Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom

Abstract

Quantifying the adaptive mechanical behaviour of living cells is essential for the understanding of their inner working and function. Yet, despite the establishment of quantitative methodologies correlating independent measurements of cell mechanics and its underlying molecular kinetics, explicit evidence and knowledge of the sensitivity of the feedback mechanisms of cells controlling their adaptive mechanics behaviour remain elusive. Here, we introduce a combination of atomic force microscopy and fluorescence recovery after photobleaching offering simultaneous quantification and direct correlation of molecule kinetics and mechanics in living cells. Systematic application of this optomechanical AFM-FRAP platform revealed changes in the actin turnover and filament lengths of ventral actin stress fibers in response to constant mechanical force at the apical actin cortex with a dynamic range from 0.1 nN to 10 nN, highlighting a direct relationship of active mechanosensation and adaptation of the cellular actin cytoskeleton. Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open-up unprecedented insights into adaptive mechanobiological mechanisms of cells.

Keywords

AFM; FRAP; actin cytoskeleton; turnover; kinetics; cell mechanics; mechanobiology

Introduction

Living cells are biomechanical entities. Recent research indicates that they regulate their cell mechanics not exclusively downstream of signalling events triggered by for instance ligand–receptor binding, but that they employ a diversity of feedback mechanisms to dynamically adjust their mechanics in response to extrinsic conditions1–5. This remarkable attribute of cells to modulate their mechanics involve biochemical processes between a range of proteins, subcellular structures, and organelles, but is primarily related to the dynamic
nature of their actin cytoskeleton5–9. Despite the significance for cell function10,11, our understanding of the interplay of cell mechanics and its underlying actin kinetics controlling the adaptive mechanical behaviour of cells remains at best correlative from independent measurements.

Fluorescence Recovery after Photobleaching (FRAP) is perhaps the most successful quantification methodology of molecule kinetics and dynamics, owing to its versatility to measure reaction and diffusion dynamics at the right spatiotemporal scales12–14. In a typical FRAP experiment, a small region of interest (ROI) is bleached by a short exposure to high-power laser light15–17, and subsequently the recovery of fluorescently-tagged molecules is monitored over time15,18. The shape of the FRAP recovery curve, the so-called mobile fraction, reflects all of the complexity of the reaction diffusion dynamics of the molecule of interest. Using a theoretical model or numerical simulations for the analysis of the molecular actions combined with knowledge of the recovery time(s) of the respective molecule, the reaction kinetics and diffusion dynamics can be calculated and interpreted19–21. Analysis of the experiments reveals whether a molecule undergoes reaction kinetics or diffusion dynamics or a combination of both processes13,22. The presence of a substantial immobile fraction may be the result of the loss of fluorescence due to imaging as experienced by the fluorescent molecules during image acquisition, or it may signify that recovery has been followed over a duration that is short in comparison with the molecule’s actual recovery time13. To this end, FRAP has been employed to identify and quantify the different types of filamentous actin (F-actin), their turnover dynamics, and lengths in the actin cortex, lamellipodium, and stress fibers22–26.

Atomic force microscopy (AFM) is the most broadly-used quantification methodology of cell mechanics. AFM allows the precise quantification and application of mechanical forces on the apical cell surface with piconewton (pN) resolution27–31. For the application of mechanical force over a micro-scaled subregion of a cell, the cantilever tip is typically functionalised with a micron-sized fluorescent bead, and then exerted against the apical cell surface. Using AFM electronic feedback loops allows the recording of the nanoscale force indentations of the cell surface as a function of the applied constant mechanical force. For example, this type of approach has been applied to investigate the biological behaviour and function of living cells in response to external mechanical force32,33.

Hence, efforts to understand the mechanical adaptive behaviour of cells separately quantified cell mechanics by AFM and molecule dynamics by FRAP, and thus inferred a relationship through correlation upon different experimental conditions, precluding knowledge of the exact nature of cell mechanosensation and its feedback. Most attempts to understand the relationship between actin and cell mechanics, employed methodologies to study independently either the actin-assembly-pathways34–36 (via classic cell-biological methods to identify a set of responsible pathways and proteins) or cellular mechanics2,37,38 (via mechanical tools to measure mechanical properties and forces), allowing correlative predictions for example about the interwoven relationship of actin kinetics, respective F-actin lengths, and cellular mechanics38–40. However, in-depth understanding of the feedback mechanisms of the adaptive mechanical behaviour of living cells profoundly necessitates simultaneous recordings and thus time-dependent correlation of actin kinetics and cell
mechanics, which separate measurements do not allow due to the lack of temporally synchronised information. Such synchronous measurements also allow the quantification of the mechanical response time, the dynamic range of mechanical forces to which adaption is possible, and mechanical propagation length-scale at which living cells can sense and respond to external mechanical force.

Here, to overcome these challenges, we developed and applied an optomechanical platform combining AFM and FRAP, which offered the quantification of the adaptive mechanical behaviour of living cells by simultaneous measurements of cell mechanics and the underlying actin kinetics. We found that cervical HeLa cells dynamically adjusted up to 2-fold the cortical F-actin turnover rates and nanoscale filament lengths within a dynamic range of 0.1 nN to 10 nN in response to constant mechanical force at the apical actin cortex applied through contact with a \(r = 5 \mu m \) bead connected to the AFM cantilever. Strikingly, the apical mechanical stress was detected by the cells at their ventral interface resulting in adaptation of the nanoscale organisation of F-actin stress-fibers qualitatively comparable to those in the actin cortex, highlighting a mechanical propagation length-scale equivalent of the entire cell volume. Consequently, such simultaneous experiments may thus become the methodology of choice to reveal the mechanobiological mechanisms underlying mechanoadaptation.

Results

To quantify the effects of mechanoadaptation of the actin cytoskeleton in living cells, we combined simultaneous AFM and FRAP experiments (Figure 1a). This optomechanical AFM-FRAP platform consisted of JPK AFM, Leica DMI8, and Rapp Electronics FRAP modules (Method section). The AFM module allowed the application of constant mechanical force by contact with a bead functionalised AFM cantilever at the apical surface and proximity of the central cell plane away from the cell nucleus. Simultaneously, the FRAP module enabled measurements of the turnover dynamics of cellular structures directly underneath the cell surface-bead contact or any location within the cell volume.

To calibrate the AFM-FRAP experiments, we first optimised the FRAP protocol. To this end, we determined the diffraction-limited Point-Spread-Function (PSF) of the FRAP laser (Figure 1b) and measured the volume of a FRAP photobleaching event in a region-of-interest (ROI) at two different axial locations within a 15-20 μm thick EGFP-functionalised polyacrylamide gel. We achieved laterally the best well-defined reduction in fluorescence of a 2 μm diameter-sized ROI with 50% laser power when adjusting between 25%-100% total laser power at both the glass-hydrogel interface and 4 μm deep into the fluorescent gel (Figure 1c), representing the ventral and central plane of HeLa cells, respectively.

To ensure that the laser settings of the FRAP photobleaching event were compatible with and not harmful to F-actin structures in cells, we next performed FRAP experiments on ventral actin stress fibers in fixed HeLa cells fluorescently labelled with the photostable dye phalloidin-Alexa488, which was kept present in the imaging medium of the fixed cells and thus allowed phalloidin turnover measurements. Notably, extended laser power of the photobleaching event could yield permanent damage to the F-actin architecture in addition
to photobleaching the fluorescent dye. Consistent with our EGFP hydrogel calibration, we achieved a well-defined 2 μm-sized ROI, sufficient fluorescence reduction, and mobile fluorescence recovery. The recovery appeared continuous throughout the ROI volume with no indication of directed fluorescence growth from the geometric sides of the actin stress fibers as it could be expected from damaged and regrowing actin stress fibers (Figure 1d). Note, the FRAP calibration experiments were terminated after 600 s in the fixed cells because of sample drift and partial 80% fluorescence mobile recovery of phalloidin was sufficient for the evaluation of the direction of fluorescence increase considering 10% loss of fluorescence due to photobleaching and immobile fraction.

Having optimised the FRAP protocol, we next established an experimental protocol for a full typical AFM-FRAP experiment (Figure 1e-g). We approached the cell with the bead-cantilever until initial contact (Figure 1e), then indented the cell surface by gradually further decreasing the distance and increasing the force until the maximal pre-defined force was reached, which was then maintained constant over time of the AFM-FRAP experiment. Once constant force was established, we waited for 2 min post initial contact to equilibrate the bead-cantilever cell surface interaction, and subsequently executed the previous FRAP protocol simultaneously to the force application by AFM (Figure 1f), allowing turnover measurements under constant mechanical force. Finally, the cantilever would be retracted once full FRAP recovery was completed and the AFM-FRAP protocol was repeated in a different HeLa cell for statistical robustness (Figure 1g).

To gain a quantitative understanding of the length-scale and sensitivity of mechanoadaptation in living cells, we first set out to characterise the actin cytoskeleton in control conditions in the absence of mechanical force. Because we reasoned to perform the AFM-FRAP experiment at a ROI representative for the global mechanical stiffness, we acquired a stiffness spectroscopy map of a HeLa cell applying the cantilever functionalised with a radius \(r = 5 \) μm bead (Figure 2a,b). We primarily aimed at quantifying the turnover dynamics in actin stress fibres and cortex without any contributions from the cytoplasmic actin network or cellular organelles such as the nucleus while applying a global mechanical stimulus. Hence, spectroscopic evaluation suggested a representative ROI location at the extended HeLa cell body away from the cell nucleus. (Figure 2b). We also avoided the cell edge to mitigate effects of the underlying stiffer glass and to probe a mechanically representative area, resulting in an optimal position in between the nucleus and the cell boundary (Figure 2b).

Applying FRAP at the central actin cortex in live HeLa cells expressing fluorescently labelled actin-EGFP, we found two processes contributing to fluorescence recovery. Analysis of the FRAP experiments revealed an average turnover rate of \(\omega_{\text{cortex, Arp2/3, Ctrl}} = 0.55 \pm 0.12 \) (mean ± SD) 1/s for the Arp2/3-mediated F-actin and \(\omega_{\text{cortex, formin, Ctrl}} = 0.040 \pm 0.009 \) (mean ± SD) 1/s for the formin-mediated F-actin in control conditions consistent with our previous measurements (Table 1 ; see Method section)\(^{22,23}\), which were dominating fluorescence recovery on short time-scales and long time-scales, respectively. In contrast to cortical F-actin, actin stress fibers have been shown to be constituted by primarily formin-mediated F-actin. Consistent with this expectation, our FRAP experiments on ventral stress fibers displayed only one turnover process contributing to fluorescence recovery.

Small. Author manuscript; available in PMC 2021 November 25.
Analysis of the FRAP experiments yielded one turnover rate $\omega_{\text{stress fibers, formin, Ctrl}} = 0.032 \pm 0.013$ (mean ±SD) 1/s statistically comparable to cortical formin-mediated turnover ($p = 0.22$ compared to second turnover kinetics in actin cortex), as reported by a full fluorescence recovery shown in kymographs, FRAP curves, and respective LogPlot functions (Figure 2c,d). Note, the LogPlot functions are logarithmic second order derivatives of the fluorescence recovery visualising the number of turnover processes and relative abundance as described in 13. The turnover dynamics for the corresponding cortical and stress fiber F-actins were identified previously in these HeLa cells22.

Having determined the turnover kinetics in live HeLa cells under control conditions, we next quantified these processes under mechanical force. Executing the full AFM-FRAP protocol at the ventral stress fibers in live HeLa cells in the presence of 1 nN constant mechanical force applied by the bead cantilever at the central actin cortex revealed a statistically significant 2-fold change in the kinetics of the turnover rates of the F-actin structures from $\omega_{\text{stress fibers, formin, Ctrl}} = 0.032 \pm 0.013$ (mean ±SD) 1/s to $\omega_{\text{stress fibers, formin, 1 nN}} = 0.016 \pm 0.010$ (mean ±SD) 1/s ($p < 0.01$, Table 1 and Figure 2c,d), suggesting F-actin modulation of ventral actin turnover in stress fibers in response to apical mechanical force at the actin cortex.

To explore the sensitivity of such mechanoadaptation, we systematically measured the changes in the turnover kinetics in response to mechanical force ranging between 0.1 nN and 10 nN. Strikingly, we found that the mean and median turnover kinetics exponentially scaled as a function of the externally applied mechanical force and stress (Figure 2e) with the strongest response at the mean characteristic value of the exponential function at 1 nN and 35 pN/µm2 (Figure 2e and Table 1), respectively, which corresponded to an apical indentation depth of 2 µm deflecting the cortical actin. Consistent with the exponential dependence, non-statistically different adjustments of turnover kinetics were detected at 0.1 nN ($\omega_{\text{stress fibers, formin, 0.1 nN}} = 0.028 \pm 0.007$ (mean ±SD) 1/s, $p = 0.84$) and 0.5 nN ($\omega_{\text{stress fibers, formin, 0.5 nN}} = 0.020 \pm 0.011$ (mean ±SD) 1/s, $p = 0.17$) but significant differences were found at 1 nN and 10 nN with $\omega_{\text{stress fibers, formin, 1 nN}} = 0.016 \pm 0.010$ (mean ±SD) 1/s, $p < 0.01$, which corresponded to a 0.4 µm (0.1 nN), a 1.4 µm (0.5 nN) and 2.0 µm (1 nN) indentation of apical cortical F-actin (Figure 2a,b). Together, the simultaneous AFM-FRAP revealed direct modulation of the F-actin kinetics in ventral stress fibers in response to apical mechanical force.

Finally, we computed the filament length distributions and their mean filament lengths of the formin-mediated F-actin in the stress fibers from the FRAP quantification (see Method section). We found statistically significant differences with the nanoscale architecture adjusting a maximum of 2-fold $<L>_{\text{stress fibers, formin, 1 nN}} = 2.1 \pm 0.9$ (mean ± SD) µm compared to control conditions $<L>_{\text{stress fibers, formin, Ctrl}} = 1.0 \pm 0.45$ (mean ± SD) µm ($p < 0.01$, Table 2 and Figure 2f). For lower external forces, we found no or minor changes in the filament lengths of F-actins of $<L>_{\text{stress fibers, formin, 0.1 nN}} = 1.15 \pm 0.5$ (mean ± SD) µm, $<L>_{\text{stress fibers, formin, 0.5 nN}} = 1.5 \pm 0.75$ (mean ± SD) µm compared to control conditions ($p = 0.84$ for 0.1 nN and $p = 0.17$ for 0.5 nN). No further statistical differences in the F-actin filament lengths were observed in response to 10 nN of external force $<L>_{\text{stress fibers, formin, 10 nN}} = 2.4 \pm 1.2$ (mean ± SD) µm compared to 1 nN ($p = 0.94$, Small. Author manuscript; available in PMC 2021 November 25.
Table 2). These measurements highlighted nanoscale F-actin lengths remodelling of ventral stress fibers in direct response to apical mechanical stress.

Discussion

We introduced an optomechanical platform combining AFM and FRAP experiments offering simultaneous quantification and direct correlation of molecular kinetics and mechanics in living cells. We chose to quantify the effects of mechanoadaptation and their dynamic range by measuring the changes in the nanoscale turnover kinetics and filament lengths of F-actins under constant mechanical force in the ideal model system of ventral stress fibers, because they were predicted and experimentally-proven to function as mechanotransducers8,42,43. To this end, mechanoadaptation of the previously identified formin-mediated F-actins constituting stress fibers as well as Arp2/3- and formin-mediated F-actins in the cortical network were characterised22,23.

Together, our experimental and computational AFM-FRAP results paint the following picture of cytoskeletal mechanoadaptation. For actin filaments in ventral stress fibers, we strikingly measured a maximum of 2-fold change in the mean and median turnover kinetics and filament lengths at constant 1 nN force and 35 pN/μm2 apical stress application, which corresponded to an indentation depth of 2 μm of the actin cortex. Interestingly, minor modulation of the turnover kinetics was detected in response to shallow indentations depths comparable to the thickness of the actin cortex. Similarly, F-actin turnover and lengths displayed effectively no adjustment to critically high indentation of apical cortical F-actin comparable to over half of the height of a HeLa cell.

On the basis of our work, we conclude that the simultaneous measurements and direct correlation of cell mechanics and its underlying actin kinetics is superior to independent quantification, because of the feedback mechanisms of the adaptive mechanical behaviour of living cells and the additional accessible parameters such as mechanical response time, the mechanical propagation length-scale, and the ability to determine the dynamic range of mechanoadaptation. We empirically found that the dynamic range of mechanoadaptation of the actin cytoskeleton is most effective at a length-scale of 2 μm indentation allowing modulation of turnover kinetics and filament lengths on the length-scale of the complete cytoplasm possibly throughout all mechanically interlinked actin structures as a function of the externally applied stress as predicted by 44,45.

One might speculate that the dynamic range of mechanoadaptation is most effective at a length-scale of a formin-mediated actin filament, which corresponded to ~2.0 μm equivalent to the indentation depth of 1 nN, because formin-mediated F-actins are ten-times longer than Arp2/3-mediated F-actins and known to primarily determine cellular mechanical properties such as the elastic modulus and bending rigidity of the actin cytoskeleton23,46. Consequently, it is feasible to speculate that the typical length-scale of a formin-mediated F-actin is critical for the sensitivity of mechanoadaption. Consistent with this line of thought, high mechanical stress and large indentations on the length-scale of the cell height resulted in poor mechanoadaptation, which is in contrast to favoured cell adhesion on hard surfaces in the gigapascal range6. Similarly, indentations in the order of the cortex thickness...
but small compared to the average length of formin-mediated F-actin, yielded no significant mechanoadaption. From the mechanical point of view, formins are well-known to contribute to mechanosensation49–51. To this end, the mechanical setting at the apical actin cortex in our experiments could translate into pulling or pushing forces on single formin molecules in cortical F-actin and the mechanically linked stress fibers, which have been demonstrated in vitro to accelerate or de-accelerate formin’s polymerisation activities52. In contrast to such passive mechanosensation by biophysical principles, active signalling-associated mechanosensation by dedicated molecules could be responsible for the actin mechanoadaptation. In light of this argument, we waited for 2 min post force application and prior execution of the FRAP experimentation for equilibration of the external forces applied to the living cells, allowing unaccounted time for signalling responses controlling actin and associated crosslinker turnover. In addition, stress propagation and transduction by mechanical tension release through the actin cytoskeleton could also contribute to the observed mechanosensation processes52.

One intriguing prediction of mechanoadaption is hence that tuning the activity of actin kinetics to alter filament lengths may thus be a mechanism allowing cells to adjust their dynamic range and sensitivity of mechanoadaptation. The AFM-FRAP platform offers three major types of investigations, which are not possible in independent FRAP or AFM experiments: (1) Quantitative measurements of the dynamic range of cellular mechanosensation. (2) Mechanistic study of the origin of cell mechanics: mechanical properties and mechanical force production by living cells can be dynamically interrogated in response to pharmacological and genetic treatments. (3) Mechanistic investigation of the implications of protein kinetics for cell mechanics: dissecting the molecular protein dynamics underlying cell mechanics by dynamically exerting mechanical load onto living cells. Consequently, AFM-FRAP will lay a foundation to address a plethora of open biological problems. Important examples include but are not restricted to T-cell activation, cancer cell mechanics, stem cell differentiation, cellular migration, and tissue functions. These time-dependent mechanoadaptive processes have thus far only been studied without the spatiotemporal synchronisation as offered by AFM-FRAP. Simultaneous quantification of the relationship between molecule kinetics and cell mechanics may thus open-up unprecedented insights into adaptive mechanobiological mechanisms of cells.

Materials and Methods

Cell culture

Cell culture was performed as described in24. HeLa cells (product 93021013, Sigma Aldrich, UK; mycoplasma tested) were cultured in sterile DMEM (Sigma Aldrich) supplemented with 10% FCS (Sigma Aldrich), 2 mM L-Glutamine (Sigma Aldrich) and 1% Penicillin-Streptomycin-Neomycin solution (Sigma Aldrich). Cells were maintained at 37 °C and 5% CO\textsubscript{2} during culturing, and handling was performed in HEPA-filtered microbiological safety cabinets. Cells were passaged every 48 h, kept subconfluent, and seeded overnight prior to experimentation.
Generation of stable cell lines

HeLa lines stably expressing actin-EGFP were generated using a lentiviral transduction strategy. HEK-293T cells were plated in six-well plates at 3×10^5 cells/mL, 2 mL per well in DMEM (Sigma Aldrich) supplemented with 10% FCS. Cells were incubated at 37 °C and 5% CO_2 for 24 h before transfection with 0.5 mg per well each of the lentiviral packaging vectors p8.91 and pMD.G and the relevant pH-SIN lentiviral expression vector using GeneJuice (Merck Millipore, UK) as per the manufacturer’s instructions. 48 hours after transfection, the cell supernatant was harvested and filtered using a 0.45 mm Millex-GP syringe (Merck Millipore) filter unit to remove detached HEK-293T cells. In all wells, 3 mL of this virus-containing medium was added to 1.5×10^6 HeLa cells in 3 mL supplemented DMEM medium. After 48 h, cells were moved into 10 mL supplemented DMEM and passaged as described above.

Cell fixation and staining

Cell fixation was effected as described in 54. HeLa cells were washed and resuspended in cytoskeleton buffer [50 mM imidazole, 50 mM KCl, 0.5 mM MgCl_2, 0.1 mM EDTA, and 1 mM EGTA (pH 6.8)] at a concentration of 2.5×10^6 cells/mL. Petri dishes (FluoroDish, FD35-100; World Precision Instruments, UK) with adherent subconfluent HeLa cells were washed three times with 1 mL of cytoskeleton buffer. Cells were incubated for varying amounts of time at room temperature, after which the cytoskeleton buffer was replaced with 1 mL of cytoskeleton buffer containing 0.25% glutaraldehyde and 0.5% Triton X-100, with care taken not to disturb the cells attached to the glass. Samples were fixed for 5 min at room temperature before they were washed twice with 1 mL of cytoskeleton buffer and covered with 1 mL cytoskeleton buffer containing 33 nM phalloidin-AlexaFluor488 (Life Technologies). Before our FRAP calibration experiments, 20 μL of dye-containing buffer was removed and replaced by additional 20 μL of 33 nM phalloidin-AlexaFluor488 in order to ensure sufficient amounts of the fluorophore in the medium.

AFM-FRAP experiments

The optomechanical AFM-FRAP platform allowed the simultaneous execution of AFM and FRAP experiments in living cells. FRAP was effected as described in 13,22 at 37 °C using a 1.4 N/4 100× oil immersion objective on a widefield fluorescence microscope (Leica DMi8, Leica Microsystems) and FRAP UGA-42-Firefly laser unit (Rapp Optoelectronic). In the FRAP experiments, a small circular ROI (radius r = 2 μm) centred on the basal stress fibers. The photobleaching event was executed by a single photobleaching spot of a 488 nm beam operating at 50% power of the 200 mW laser using a 1% transmission neutral-density filter to reduce the applied power finally to 0.5%. In our protocol, bleaching was realised with a single laser pulse of 2 s. The recovery of fluorescence was monitored at 10% fluorescence lamp intensity over 200 frames at 0.8 s to 2 s (live cells) or 3 s (fixed cells) intervals to minimise the loss of fluorescence due to imaging. For each recovery, two time-lapse image streams were recorded before the initial bleaching, which facilitated normalisation of the fluorescence signal. To assess the loss in fluorescence during observation of the recovery (due to imaging), we selected the simultaneously recorded fluorescence signal from a nonbleached region. In all cases, the rate of fluorescence loss due to the imaging was
significantly smaller than the rates of fluorescence recovery, with a characteristic time of ~1000 s, which was one order of magnitude larger than the slowest recovery time scale observed for actin. Hence, imaging-induced fluorescence loss did not significantly affect turnover measurements.

AFM nanoindentation tests were performed with a JPK NanoWizard IV (JPK Instruments) interfaced with the Leica DMI8. For our measurements, we used tipless cantilevers with a nominal spring constant of 0.03 N/m (Arrow TL2, NanoWorld, Switzerland) functionalised with a polystyrene bead with 5 μm radius. Contact radii and respective mechanical stress were inferred following the Hertzian theory by numerically solving
\[
\delta = 0.5a \ln((r+a)/(r-a))
\]
with the indentation depth \(\delta\), the bead radius \(r\) and the contact radius \(a\) for spherical indentors using MATLAB (Mathworks, USA).

AFM analysis

Analysis of AFM force curves was performed using the JPK SPM Data Processing software and adapting the publicly available (GitHub) python script Jpkfile. Actual spring constants of the cantilevers were determined using the thermal noise method implemented in the AFM software (JPK SPM). Before indentation tests, the sensitivity of the cantilever was set by measuring the slope of force-distance curves acquired on glass regions of the petri dish. Note, the force spectroscopy map analysed within the 1 nN dynamic range refers to linear fitting of 10% indentation depth from InN force towards the contact point.

FRAP analysis

FRAP data analysis was effected as described by Fritzsche et al. in \(^{13,22}\). The total fluorescence intensity in stress fibers resulted from actin monomers bound to the actin architectures and monomers freely diffusing within these structures. Fluorescence recovery had thus contributions from (i) diffusive actin and (ii) from association/dissociation of actin monomers to the structures. Given the fast cytoplasmic actin diffusion coefficient \((D \sim 15 \mu m^2/s)\) of actin in our experimental geometry), diffusion of monomers took place with a characteristic time scale of \(T_{\text{diffusion}} \sim r^2/4D < 1 s\) (with \(r = 1 \mu m\) being the radius of the bleached zone), which was several-fold shorter than the characteristic times of the reactions examined in this study \((t \geq 10 s)\). Hence, given the acquisition rate used in this study \((1 to 2 s per frame)\), diffusive recovery was complete by the time we acquired the first postbleach frame. Consequently, we could assume the fluorescence recovery was solely reactive. To determine how many first-order molecular processes contributed to turnover, we fitted recovery \(I(t)\) with a combination of exponential functions \(I_i\) of the form \(I_i(t) \sim [1-\exp(-t/T_{d,i})]I_i F_0\), where \(F_0\) is the initial fluorescence of the bleached region and \(i\) is the molecular process participating to recovery. Each function \(I_i(t)\) represents the contribution of the molecular process \(i\) to the total recovery, with \(I_i\) being the portion of the total protein population undergoing turnover process \(i\) \((\Sigma_i I_i = 1)\) and \(T_{d,i}\) being the characteristic dissociation time of process \(i\). The characteristic dissociation time \(T_{d,i}\) is inverse to the turnover rate \(\omega_{d,i}\) and linked to the half-time reported in most FRAP experiments: \(T_{1/2} = \ln(2) T_1\). If several molecular processes occur at similar time scales, they cannot be distinguished, and the apparent rate constant measured reflects an average over all of the molecular processes acting at that time scale. In practice, fluorescence recovery curves \(I(t)\)
were fitted with an increasing number of exponential functions until the following three conditions were met: the goodness of fit estimated through r^2 no longer increased, the total change in fluorescence associated with process i was less than 0.001%, and the sum of squared errors no longer decreased. Hence, this approach allowed determination of the number of molecular processes i that contribute to fluorescence recovery, their characteristic turnover times $T_{d,i}$, and the portion f_i of the total protein population that recovered through process i. In this analysis, changes in the recovery half-time $t_{1/2}$ may have therefore resulted from changes in the number of processes i participating to recovery, changes in the characteristic times $T_{d,i}$ of some or all of the processes, changes in the relative importance f_i of some or all of the turnover processes, or a combination of all of these factors. Logarithmic acceleration plots that represent the logarithm of the second derivative of the fit function were used to compare the turnover rate constants across experimental conditions and to visualise the different possible processes participating in the fluorescence recovery of the FRAP data. In these plots, each piecewise linear segment corresponds to a different fluorescence recovery process. The slope of each segment is characteristic for the turnover rate $\omega_{d,i}$. Notably, we only found formin-mediated actin kinetics in the stress fibers while two main processes corresponding to Arp2/3- and formin-filaments dominate the actin cortex22–24. Futhermore, cells showing significant spatial motion during an experiment were excluded from the analysis to avoid possible artefacts in the results.

Quantification of F-actin lengths

Computation of the F-actin length distribution and their respective mean filament lengths were calculated from the actin turnover rates measured in the FRAP experiments as described in23,53.

Photobleaching optimisation in polyacrylamide gel

FRAP photobleaching volume calibration was performed using a 3D hydrogel substrate loaded with recombinant EGFP. Polyacrylamide (PAA) hydrogels were prepared as previously described55. Acrylamide (Sigma Aldrich) and bis-acrylamide (Sigma Aldrich) were combined at concentrations of 10% (vol/vol) and 0.4% (vol/vol) respectively, including the addition of 1 μM EGFP (Sino Biological, Cat: 16118-S07E). Polymerisation was initiated by the addition of TEMED (Sigma Aldrich) followed by APS (Sigma Aldrich). 3 μL of the gel solution was pipetted onto an 18 mm coverslip and the drop covered by a 12 mm coverslip to form a sandwich. After allowing 30 min for polymerisation, the gel was imaged at the microscope. Photobleaching calibration was performed using the AFM-FRAP platform where a circular ROI was created at varying laser powers and the resulting bleach volume imaged. Downstream analysis and visualisation was performed using custom-written MATLAB (Mathworks) scripts.

Statistical analyses

For each experimental condition, we acquired FRAP recovery curves from at least 12 individual cells over the course of at least three independent experiments. Statistical comparison of all conditions was carried out using a Kruskal-Wallis ANOVA test to detect a significant trend at the $p < 0.01$ level (**). Additionally, to test pair-wise significance Mann-Whitney U tests were performed and results were denoted as described in the figure.
legend of Figure 2. All statistical tests were applied using OriginPro 8.5. All experiments were repeated in at least 12 cells in 3 independent experiments.

Acknowledgments

The authors thank the Wolfson Imaging Centre Oxford for providing microscope facility support, the Wellcome Trust (212343/Z/18/Z), and EPSRC (EP/S004459/1). We are also grateful for generous financial support from Andreas Janshoff from the Institute of Physical Chemistry at the University of Goettingen. We also thank Richard Thorogate, Guillaume Charras, and Emad Moeendarbary for equipment training and advice with the AFM analysis from the London Centre for Nanotechnology and Mechanical Engineering Department at the University College London, UK.

References

1. Rottner K, Kage F. Actin Networks: Adapting to Load through Geometry. Curr Biol. 2017; 27 :R1274–R1277. [PubMed: 29207269]
2. Luo T, Mohan K, Iglesias PA, Robinson DN. Molecular mechanisms of cellular mechanosensing. Nat Mater. 2013; 12 :1064–71. [PubMed: 24141449]
3. Colin-York H, et al. Cytoskeletal control of antigen dependent T-cell activation. Cell Rep. 2019; 26 :3369–3379. [PubMed: 30893608]
4. Harris AR, Jreij P, Fletcher DA. Mechanotransduction by the Actin Cytoskeleton: Converting Mechanical Stimuli into Biochemical Signals. 2018; 47 :617–631.
5. Ogneva IV. Cell mechanosensitivity: mechanical properties and interaction with gravitational field. Biomed Res Int. 2013; 2013 598461 [PubMed: 23509748]
6. Gupta M, et al. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat Commun. 2015; 6 :7525. [PubMed: 26109233]
7. Hayakawa K, Tatsumi H, Sokabe M. Mechano-sensing by actin filaments and focal adhesion proteins. Commun Integr Biol. 2012; 5 :572–7. [PubMed: 2336027]
8. Tojkander S, Gateva G, Husain A, Krishnan R, Lappalainen P. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. Elife. 2015; 4
9. Oria R, et al. Force loading explains spatial sensing of ligands by cells. Nature. 2017; 552 :219–224. [PubMed: 29211717]
10. Chen CS. Forces as regulators of cell adhesions. Nat Rev Mol Cell Biol. 2017; 18 :715. [PubMed: 29093558]
11. Schwarz US, Gardel ML. United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. J Cell Sci. 2012; 125
12. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976; 16 :1055–1069. [PubMed: 786399]
13. Fritzsche M, Charras G. Dissecting protein reaction dynamics in living cells by fluorescence recovery after photobleaching. Nat Protoc. 2015; 10 :660–680. [PubMed: 25837418]
14. Schneider F, et al. Statistical Analysis of Scanning Fluorescence Correlation Spectroscopy Data Differentiates Free from Hindered Diffusion. ACS Nano. 2018; 12 :8540–8546. [PubMed: 30028588]
15. Blumenthal D, Goldstien L, Edidin M, Gheber LA. Universal Approach to FRAP Analysis of Arbitrary Bleaching Patterns. Sci Rep. 2015; 5 :11655 [PubMed: 26108191]
16. Mudumbi KC, Schirmer EC, Yang W. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution. Nat Commun. 2016; 7 :12562 [PubMed: 27558844]
17. Sprague BL, Pego RL, Stavreva DA, McNally JG. Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching. Biophys J. 2004; 86 :3473–3495. [PubMed: 15189848]
18. Reits EAJ, Neefjes JJ. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol. 2001; 3 E145–E147 [PubMed: 11389456]
19. Bläßle A, et al. Quantitative diffusion measurements using the open-source software PyFRAP. Nat Commun. 2018; 9 :1582. [PubMed: 29679054]
20. Müller P, et al. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science. 2012; 336 :721–4. [PubMed: 22499809]
21. Kang M, Day CA, Kenworthy AK, DiBenedetto E. Simplified Equation to Extract Diffusion Coefficients from Confocal FRAP Data. Traffic. 2012; 13 :1589–1600. [PubMed: 22984916]
22. Fritzschke M, Lewalle A, Duke T, Kruse K, Charras G. Analysis of turnover dynamics of the submembranous actin cortex. Mol Biol Cell. 2013; 24 :757–67. [PubMed: 23345594]
23. Fritzschke M, Erlenkämper C, Moeendarbary E, Charras G, Kruse K. Actin kinetics shapes cortical network structure and mechanics. Sci Adv. 2016; 2
24. Fritzschke M, et al. Self-organizing actin patterns shape membrane architecture but not cell mechanics. 2017; 8 :1–14.
25. Smith MB, Kiuchi T, Watanabe N, Vavylonis D. Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophys J. 2013; 104 :247–57. [PubMed: 23332077]
26. Dimchev G, et al. Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly. Mol Biol Cell. 2017; 28 :1311–1325. [PubMed: 28331069]
27. Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med. 2014; 6 :371–388. [PubMed: 25269160]
28. Sen S, Subramaniam S, Discher DE. Indentation and Adhesive Probing of a Cell Membrane with AFM: Theoretical Model and Experiments. Biophys J. 2005; 89 :3203–3213. [PubMed: 16113121]
29. Eghiaian F, Rico F, Colom A, Casuso I, Scheuring S. High-speed atomic force microscopy: Imaging and force spectroscopy. FEBS Lett. 2014; 588 :3631–3638. [PubMed: 24937145]
30. Katan AJ, Dekker C. High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale. Cell. 2011; 147 :979–82. [PubMed: 22118456]
31. Ando T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys Rev. 2017; 9 :421–429. [PubMed: 28762198]
32. Charras GT, Horton MA. Single Cell Mechanotransduction and Its Modulation Analyzed by Atomic Force Microscope Indentation. Biophys J. 2002; 82 :2970–2981. [PubMed: 12023220]
33. Mollaeian K, et al. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope. Int J Mol Sci. 2018; 19 :3461.
34. Wyckoff JB, et al. Direct Visualization of Macrophage-Assisted Tumor Cell Intravasation in Mammary Tumors. Cancer Res. 2007; 67 :2649–2656. [PubMed: 17363585]
35. Köster DV, et al. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc Natl Acad Sci. 2016; 113 E1645–E1654 [PubMed: 26929326]
36. Blanchon I, Boujema-Paterski R, Sykes C, Plastino J. Actin Dynamics, Architecture, and Mechanics in Cell Motility. Physiol Rev. 2014; 94 :235–263. [PubMed: 24382887]
37. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010; 463 :485–492. [PubMed: 21109922]
38. Chugh P, et al. Actin cortex architecture regulates cell surface tension. Nat Cell Biol. 2017; 19 :689–697. [PubMed: 28530659]
39. Stachowiak MR, et al. A mechanical-biochemical feedback loop regulates remodeling in the actin cytoskeleton. Proc Natl Acad Sci. 2014; 111 :17528–17533. [PubMed: 25422436]
40. De La Cruz EM, Gardel ML. Actin Mechanics and Fragmentation. J Biol Chem. 2015; 290 :17137–44. [PubMed: 25957404]
41. Elson EL, Genin GM. The role of mechanics in actin stress fiber kinetics. Exp Cell Res. 2013; 319 :2490–2500. [PubMed: 23906923]
42. Stricker J, Falzone T, Gardel ML. Mechanics of the F-actin cytoskeleton. J Biomech. 2010; 43 :9–14. [PubMed: 19913792]
43. Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. J Cell Biol. 2013; 200 :9–19. [PubMed: 23295347]
44. Walcott S, Sun SX. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. PNAS. 2010; 107

45. McFadden WM, McCall PM, Gardel ML, Munro EM. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLOS Comput Biol. 2017; 13 e1005811 [PubMed: 29253848]

46. Fritzsche M, et al. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci Adv. 2017; 3

47. Clausen MP, Colin-York H, Schneider F, Eggeling C, Fritzsche M. Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy. J Phys D Appl Phys. 2017; 50 064002 [PubMed: 28458398]

48. Koenderink GH, Paluch EK. Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol. 2018; 50 :79–85. [PubMed: 29482169]

49. Romero S, et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell. 2004; 119 :419–29. [PubMed: 15507212]

50. Kubota H, et al. Biphasic Effect of Profilin Impacts the Formin mDia1 Force-Sensing Mechanism in Actin Polymerization. Biophys J. 2017; 113 :461–471. [PubMed: 28746856]

51. Higashida C, et al. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat Cell Biol. 2013; 15 :395–405. [PubMed: 23455479]

52. Jégou A, Carlier M-F, Romet-Lemonne G. Formin mDia1 senses and generates mechanical forces on actin filaments. Nat Commun. 2013; 4 :1883. [PubMed: 23695677]

53. Brückner BR, et al. Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton. Prog Biophys Mol Biol. 2018; 144 :77–90. [PubMed: 30197289]

54. Fritzsche M, et al. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Sci Adv. 2017; 3 e1603032 [PubMed: 28691087]

55. Colin-York H, et al. Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nat Prot. 2017; 12 :783–796.
Figure 1. Establishment and calibration of the optomechanical AFM-FRAP platform.
(a) Schematic of AFM-FRAP setup illustrating the experimental power of simultaneous
quantification of molecule kinetics and cell mechanics. (b) Representative images of the
diffraction-limited FRAP PSF in XY, XZ, and YZ orientation. Scale bars are 2 μm (XY) and
4 μm (XZ and YZ). (c) Calibration of the FRAP ROI at both the glass-hydrogel interface
and 4 μm deep into the fluorescent gel within a 15-20 μm thick EGFP-functionalised
 polyacrylamide gel for different laser powers. Scale bars are 2 μm (in x-direction) and 4 μm
in y-direction). (d) Evaluation of FRAP photobleaching events on ventral actin stress fibers
in fixed HeLa cells fluorescently labelled with phalloidin-Alexa488. Kymographs illustrate
fluorescence recovery in the ROI (red). Scale bars: 2 μm. (e,f) AFM and FRAP protocols
for the application of mechanical force and measurements of the turnover kinetics in living
HeLa cells. (g) Workflow of a typical AFM-FRAP experiment.
Figure 2. Application of AFM-FRAP experiments in ventral actin stress fibers.
(a) Representative experimental AFM-FRAP live-cell setup showing the application of mechanical force to the central plane at the apical surface of a HeLa cells with a bead-functionalised cantilever (indicated in blue, blue arrow). Simultaneous FRAP experiments were acquired in ventral actin stress fibers (white arrow head). Scale bars are 10 μm (x/y-plane) and 4 μm (z-plane in horizontal views). (b) Spectroscopic validation of the stiffness distribution and corresponding force-distance curves for a typical HeLa cell. Scale bar is 10 μm. (c,d) AFM-FRAP experiments illustrated in kymographs, force-time plots, and FRAP recovery curves, and their corresponding Logarithmic acceleration plots showing the mechanoadaptation of ventral actin stress fibers in control conditions and in response to external mechanical force ranging from 0.1 nN to 10 nN. Scale bars are 2 μm. Corresponding mean and median turnover rates are presented in Table 1. (e) Boxplot displaying the quantification of actin turnover kinetics in ventral actin stress fibers in control conditions and in response to external mechanical force ranging from 0.1 nN to 10 nN and turnover rate as a function of force and corresponding mechanical stress. Error bars show medians and SDs while means are indicated by a horizontal line inside the boxes. (f) Quantification of the filament length distribution in control conditions and in response to external mechanical force ranging from 0.1 nN to 10 nN. Corresponding mean filament lengths are presented in Table 2. Two stars indicate a significance of p < 0.01.
Table 1
Summary of FRAP fitting parameters in living HeLa cells.

Single-component fitting of FRAP recovery curves revealed the turnover kinetics of the ventral actin stress fibers (mean ± SD). Fitting parameters of the turnover rates and respective abundance for formin-mediated F-actins in stress fibers are given by $\omega_{\text{stress fibers, formin}}$ and $f_{\text{stress fibers, formin}}$. Two stars indicate a significance level of $p < 0.01$.

Condition	Control	0.1 nN	0.5 nN	1.0 nN	10 nN
$\omega_{\text{stress fibers, formin}}$ [1/s]	0.032 ± 0.013	0.028 ± 0.007	0.020 ± 0.011	0.016 ± 0.010	0.013 ± 0.005
f	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1
p (compared to control)	-	$p = 0.84$	$p = 0.17$	$p < 0.01^{**}$	$p < 0.01^{**}$
Table 2
Summary of the filament lengths of ventral actin stress fibers in living HeLa cells.

Computation of the mean filament length $<L>$ (± SD) of formin-mediated F-actin in ventral actin stress fibers.

Condition	Control	0.1 nN	0.5 nN	1.0 nN	10 nN
$<L>$ [μm]	1.0 ± 0.45	1.15 ± 0.5	1.5 ± 0.75	2.1 ± 0.9	2.4 ± 1.2