Phase Transition Evaluation of a Medium Using Acoustic Reverberation Time

Hossep Achdjian, Julien Bustillo, Andres Arciniegas, Jérôme Fortineau, Nicole Doumit, Laurianne Blanc
GREMAN UMR 7374, INSA Centre Val de Loire, Université de Tours, CNRS, Blois, France
E-mail: hossep.achdjian@insa-cvl.fr

Abstract. Non-destructive monitoring of a material’s state during its physico-chemical transformation is of interest for several industrial fields including food processing and industrial manufacturing. Recent research trends have focused on the monitoring of elastic properties (Young's modulus, shear modulus) of sol-gel products. The use of ultrasound to provide reliable information about physico-chemical properties is becoming increasingly popular. In fact, ultrasonic techniques have the main advantage of being rapid and non-invasive methods that allow parameters such as product composition, structure and physical state to be obtained. Yet, classical techniques are limited to the characterization of the medium along the propagation path using first wave packets. In this paper, an alternative technique based on studying the reverberated signals is used, by analogy with those classically used in room acoustics. These complex signals contain useful quantitative and qualitative information about medium properties and are sensitive to structural changes. In previous works, this method has shown its capability to characterize materials. Compared to classical techniques, it has the advantage of studying a medium as its whole structure. Using this method, the determination of sol-gel phase transition of Salol is presented. Measurements were performed using an aluminum mould and nine piezoelectric (PZT) patches randomly distributed on the mould rear face. One of them is used as a source and the others are connected to an eight-channel oscilloscope and are used as receivers. The mean reverberation time over four receivers has been studied and its evolution can be linked to a sol-gel phase transition.

1. Introduction
The term ”sol-gel” was coined in the late 1800s. In contrast with high-temperature processes, the sol-gel technique refers to a low-temperature method using chemical precursors that can produce ceramics and glass with higher purity and better homogeneity. Currently, this process is used in order to produce a large range of compositions in various forms like fibers [1], monoliths [2], composites [3, 4], powders [5], porous membranes [6, 7] and organic/inorganic hybrids [8]. Sol-gel derived products have been used in several fields and industries [9, 10], such as in electronic [11], optical [12], dental [13], bio-medical [14], food processing [15], cosmetic [16], etc. Recent research trends have been focused on the monitoring of elastic properties (Young’s modulus, shear modulus) of sol-gel products [17, 18, 19]. In-situ and non-destructive monitoring of a material state during its transformation (phase transition) is challenging for industrial applications, especially in food (like cheese and other milk derived products) and cosmetics.

Ultrasonic techniques are becoming increasingly popular for providing information about the physico-chemical properties, such as product composition, structure and physical state [20, 21].
These techniques can also be used for continuous monitoring of product properties directly on production lines. Most of classical ultrasonic NDT techniques are based on the study of only the first received wave packets [22, 23], without using the signal coda. They are commonly used to determine the phase change time and the viscosity of a local studied medium. In this paper, a complementary technique based on the study of the reverberated signal in order to estimate the phase transition of a whole structure is proposed.

In case of a high number of propagation paths, wave physics problems can judiciously be treated as a random process. Such approaches are well known for example in multiple scattering [24, 25] or reverberation [26, 27, 28]. These multi-path propagation in whole structure with low acoustic attenuation could offer potentially useful global and local information about the structural properties of this medium using only few sensors [29, 30, 31]. Arguably the most common application of ensemble averaging of reverberated acoustic signals is developed in the field of room acoustics. Thus, the reverberation time (RT) can be easily estimated from Schroeder’s backward integration [32, 33] or envelope averaging technique [34]. Then, the sound absorption coefficients of walls can be estimated using either Sabine’s or Eyring’s law, or a generalised version of these [35]. This well-known example shows that average features on apparently random signals may give access to some useful characteristic properties of the medium.

In this paper, the relation between RT variation and the sol-gel phase transition is presented. This method was inspired from room acoustics techniques and adapted for an aluminum mould. Then, a theoretical relationship is derived from Sabine’s law in order to establish a relation between the RT and absorption coefficient of the interface between aluminum and sol-gel. Subsequently, RT is estimated through a log-linear curve fitting of Schroeder’s integrals, averaged over the several sensors. Finally, an experimental setup has been established in order to validate the principle and to show the feasibility of observing phase transition.

2. Method

Most of the research in acoustic rooms are based on the RT determination, which was introduced in the early twentieth century by W.C. Sabine [36]. In this method, a high modal density allows uniform distribution of sound energy (diffuse field) in the room. During its propagation, the acoustic wave decays due to the fluid attenuation factor Γ and can be described by $E_0 e^{-\Gamma c r t}$, where E_0 is the initial energy, c_r is the wave velocity in the fluid and t is the propagation time. When a reflection on a wall occurs, a part of this energy is reflected whereas the other part is transmitted. These phenomena can be modeled as a discrete attenuation $(1 - \alpha)$, where α is the wall absorption coefficient. Therefore the energy over the time in a finite fluid cavity can be written as [37]:

$$E(t) = E_0 e^{-\Gamma c_r t} (1 - \alpha)^{t/t_a}, \quad (1)$$

with t_a the average period of time between two successive reflections, given by

$$t_a = 4V_r/c_r S, \quad (2)$$

where V_r is the room volume and S is the walls total area. Then, the reverberation time needed for the level to decrease by 60 dB ($I_0/I = 10^6$) in air, is given by

$$RT_{-60\,\text{dB}} = 0.16 \frac{V_r}{4\Gamma V_r - S \ln(1 - \alpha)}. \quad (3)$$

Since $\alpha \ll 1$ and assuming that Γ is negligible, the equation (3) can be written as

$$RT_{-60\,\text{dB}} = 0.16 \frac{V_r}{S \alpha}, \quad (4)$$
where the constant 0.16 depends on wave velocity in room fluid ($c_r = 340 \text{ m/s}$) and for an attenuation coefficient of 60 dB. In this paper, empirical Sabine’s equation (equation 4) is adapted in order to study phase transition in a sol-gel. By applying room acoustics technique to a solid medium, we consider aluminum mould equivalent to "room", where reverberation occurs, and the sol-gel equivalent to the walls, where discrete attenuation occurs. Figure 1 shows a typical example of an aluminum mould used in this study. The sol-gel volume is very low compared with that of the mould and assumed to be negligible. By analogy, the volume of mould (V_m) is equivalent to Sabine’s V_r and Sabine’s product $S\alpha$ is equivalent to the absorption coefficient A_m (dB.m2) between aluminum mould and sol-gel interface.

\[RT_{-10\text{dB}} = 0.00145 \frac{V_m}{A_m}. \]

As previously explained, Sabine’s law takes the hypothesis that the intrinsic attenuation of the reverberating medium (Γ) is negligible and that the attenuation coefficient α is small. In case of Aluminum, the criterion on Γ is realistic for this range of frequency ($\Gamma = 0.066 \text{Np/m}$ [31] and α varies from 10^{-4} (Air) up to 0.19 for solid salol [38]). Even if the attenuation coefficient α value can be quite high, the Sabine’s law still allows us to distinguish the phase transition.

An accurate estimation of $RT_{-10\text{dB}}$ value is obtained by applying log-linear curve-fitting process on the averaged envelopes or the Schroeder-like method (Figure 2), over the received signals.

Once $RT_{-10\text{dB}}$ is measured (through curve-fitting) using equation (5), absorption coefficient A_m is estimated and a phase transition of sol-gel can be deduced.

3. Experimental setup and results
The experimental bench is shown in figure 3. The rear face of the aluminum mould has been equipped with a set of 9 identical piezoelectric (PZT) patches to the plate surface to act as sensors. A 10 mm diameter has been chosen for the patches in order to simulate approximately punctual displacements. One of these is used as a source and is powered with an electrical signal provided by an arbitrary function generator (Agilent 33220a). This electrical signal is set to a 10 V amplitude and corresponds to one 300 kHz sine cycle. This particular frequency range was chosen to privilege bulk acoustic waves (wavelength smaller than the dimensions of the aluminum

![Figure 1. Aluminum mould and sol-gel cavity.](image-url)
Figure 2. Experimental results: Schroeder’s integrals average over the received signals (—) and the fitted curve (— —).

mould). The 8 other PZT patches are connected successively to a four-channel oscilloscope (LECROY HDO4104) and are used as receivers. In fact, 1024 signals are acquired over a few seconds and time averaged in order to reduce discretization noise and obtain an improved SNR. Then, the reverberated signals are transferred via the Ethernet bus to a computer for the signal processing step, using Matlab software. Thus, spatial-averaging over 8 receivers is calculated in order to privilege coda waves and attenuate the direct paths propagation.

Figure 3. Experimental setup to estimate reverberation time (RT).

Figure 4 shows a typical reverbrant signal received in a solid medium and represented in time (a) and frequency (b) domain. It can be observed that sufficient modal overlaps occur in the
plate (Figure 4-b), allowing to qualify the field as diffuse.

Figure 4. Example of a reverberant signal received in a solid medium, represented in time domain (a) and frequency domain (b).

Figure 5. Three characteristic cases of aluminum mould: (a) sol-gel free aluminum mould, (b) sol-gel with low attenuation, (c) sol-gel with high attenuation.

Figure 5 shows the measurement principle using three characteristic cases. In the first case, the measurement is performed only on an aluminum-mould, without sol-gel. Results
show a very low attenuation due to high mechanical impedance mismatching between air and aluminum (Figure 5-a). In the second case, sol-gel is in liquid phase, whereas part of the energy is absorbed by the solution and hence less reverberation in the mould (Figure 5-b). In the third case, the sol-gel is in a solid phase and presents higher absorption due to better impedance matching (figure 5-(c)).

As shown in figure 5, the reverberated signals follow an exponential decay. Thus, RT are estimated through a log-linear curve fitting process applied to Schroeder’s integrals average to deduce A_m.

![Figure 6. Experimental result: reverberation time in function of temperature.](image)

In order to validate our principle, the determination of sol-gel phase transition of Salol is studied. Salol ($C_{13}H_{10}O_3$) is a white crystalline powder derived from salicylic acid and used in the manufacture of plastics, suntan oils and in medical application, as an analgesic and antipyretic. The figure 6 shows the variation of the reverberation time as a function of temperature during the cooling phase.

The reverberation time for solid salol is around 0.4 ms whereas it is around 1.8 ms for liquid phase. A smooth variation of this value is observed during the transition phase. Thus, results showed that the RT is directly linked to phase of sol-gel, here salol, and can be used to monitor the phase transition of sol-gels.

4. Conclusion
The presented work establishes a direct relationship between the phase transition of sol-gel and the behavior of the reverberated signals. In addition, used technique used does not require any time measurement or even trigger synchronization between the input channels of instrumentation, and thus implies low hardware requirements. Such methods could also be used to complement conventional NDT techniques and structural health monitoring. The Sabine’s equation is adopted and adapted for aluminum reverberating media in order to estimate phase transition of sol-gel. Experimental validation has been performed on salol and have shown that reverberation time is sensitive to the sol-gel phase variation (salol in our case). Thus, this work shows that room acoustic technique can be applied to solid reverberating media in order to perform non destructive evaluation of complex media such as sol-gel. This method has several advantages compared to other proposed methods in literature (low cost, contactless, non-invasive) and can be easily implemented on the production line. The first experimental
validation, presented in this work, shows that this method is a very promising way to estimate sol-gel transition. Future works will focus on in-situ estimation of other sol-gel parameters, such as viscosity.

References

[1] C.-S. Chu, C.-Y. Chuang, Optical fiber sensor for dual sensing of dissolved oxygen and cu2+ ions based on pdtfpp/cdse embedded in sol-gel matrix, Sensors and Actuators B: Chemical 209 (2015) 94–99.

[2] X. Guo, K. Nakamishi, K. Kanamori, Y. Zhu, H. Yang, Preparation of macroporous corderite monoliths via the sol-gel process accompanied by phase separation, Journal of the European Ceramic Society 34 (3) (2014) 817–823.

[3] B. Ramezanazdeh, A. Ahmadi, M. Mahdavian, Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets, Corrosion Science 109 (2016) 182–205.

[4] Y. Jin, L. Li, Y. Cheng, L. Kong, Q. Pei, F. Xiao, Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol-gel transition, Advanced Functional Materials 25 (10) (2015) 1581–1587.

[5] P. Pereira, I. Nogueira, E. Longo, E. Nassar, I. Rosa, L. Cavalcante, Rietveld refinement and optical properties of swro4: Eu3+ powders prepared by the non-hydrolytic sol-gel method, Journal of Rare Earths 33 (2) (2015) 113–128.

[6] S. L. Kwon, Y. U. Jin, B. J. Kim, M. H. Han, G. S. Han, S. Shin, S. Lee, H. S. Jung, Infiltration of methylnammonium metal halide in highly porous metal halide using sol-gel-derived coating method, Applied Surface Science 416 (2017) 96–102.

[7] M. Kanezashi, R. Matsugasaki, H. Tawarayama, H. Nagasawa, T. Tsuru, Pore size tuning of sol-gel-derived triethoxysilane (tries) membranes for gas separation, Journal of Membrane Science 524 (2017) 64–72.

[8] J. Wen, G. L. Wilkes, Organic/inorganic hybrid network materials by the sol-gel approach, Chemistry of Materials 8 (8) (1996) 1667–1681.

[9] J. D. Wright, N. A. Sommerdijk, Sol-gel materials: chemistry and applications, CRC press, 2014.

[10] R. Ciriminna, A. Fidalgo, V. Pandarus, F. Beland, L. M. Ilharco, M. Pagliaro, The sol-gel route to advanced silica-based materials and recent applications, Chemical reviews 113 (8) (2013) 6592–6620.

[11] S. Sung, S. Park, W.-J. Lee, J. Son, C.-H. Kim, Y. Kim, D. Y. Noh, M.-H. Yoon, Low-voltage flexible organic electronics based on high-performance sol-gel titanium dioxide dielectric, ACS applied materials & interfaces 7 (14) (2015) 7456–7461.

[12] M. Zayat, D. Almendro, V. Vadillo, D. Levy, Sol-gel optical and electro-optical materials, The Sol-Gel Handbook (2015) 1239–1280.

[13] M. Catauro, F. Papale, F. Bollino, S. Piccolella, S. Marciano, P. Nocera, S. Pacifico, Silica/quercetin sol–gel hybrids as antioxidant dental implant materials, Science and technology of advanced materials 16 (3) (2015) 035001.

[14] G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C.-M. Han, C. Mahapatra, H.-W. Kim, J. C. Knowles, Sol-gel based materials for biomedical applications, Progress in Materials Science 77 (2016) 1–79.

[15] C. Lantano, I. Allieri, A. Cavazza, C. Corradini, A. Lorenzi, N. Zucchetto, A. Montenero, Natamycin based sol-gel antimicrobial coatings on polyactic acid films for food packaging, Food chemistry 165 (2014) 342–347.

[16] P. Hallegot, G. Hussler, V. Jeanne-Rose, F. Leroy, P. Pineau, H. Samain, Discovery of a sol–gel reinforcing the strength of hair structure: mechanisms of action and macroscopic effects on the hair, Journal of Sol-Gel Science and Technology 79 (2) (2016) 359–364.

[17] A. I. Carrillo, J. Bachl, J. Mayr, P. J. Plaza-González, J. M. CáƟala-Civera, D. D. Díaz, Non-invasive and continuous monitoring of the sol–gel phase transition of supramolecular gels using a fast (open-ended coaxial) microwave sensor, Physical Chemistry Chemical Physics 17 (9) (2015) 6212–6216.

[18] B. L. Caetano, M. N. Silva, C. V. Santilli, V. Briois, S. H. Pulcinelli, Unified zno q-dot growth mechanism from simultaneous uv–vis and exafs monitoring of sol-gel reactions induced by different alkali base, Optical Materials 61 (2016) 92–97.

[19] H. Sato, K. Watanabe, J. Koshoubu, In-situ monitoring of sol-gel transition by temperature-dependent vcd method: Signal enhancement induced by gelation, Chemistry Letters 47 (11) (2018) 1435–1437.

[20] K. Prasad, D. Pinjari, A. Pandit, S. Mhaske, Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol-gel technique, Ultrasonics Sonochemistry 17 (2) (2010) 409–415.
[21] A. Agafonov, A. Vinogradov, Sol-gel synthesis, preparation and characterization of photoactive TiO2 with ultrasound treatment, Journal of sol-gel science and technology 49 (2) (2009) 180–185.

[22] J. Bustillo, H. Achdjian, A. Arciniegas, L. Blanc, Simultaneous determination of wave velocity and thickness on overlapped signals using Forward Backward algorithm, NDT & E International 86 (2017) 100–105. doi:10.1016/j.ndteint.2016.12.001.
URL http://linkinghub.elsevier.com/retrieve/pii/S0963869516302559

[23] A. Arciniegas, H. Achdjian, J. Bustillo, F. Vander Meulen, J. Fortineau, Experimental Simultaneous Measurement of Ultrasonic Properties and Thickness for Defect Detection in Curved Polymer Samples, Journal of Nondestructive Evaluation 36 (3) (2017) 46. doi:10.1007/s10921-017-0427-3.
URL http://link.springer.com/10.1007/s10921-017-0427-3

[24] P. C. Waterman, R. Truell, Multiple Scattering of Waves, Journal of Mathematical Physics 2 (4) (1961) 512–537. doi:10.1063/1.1703737.
URL http://aip.scitation.org/doi/10.1063/1.1703737

[25] T. W. Bartel, S. L. Yaniv, Curvature of sound decays in partially reverberant rooms, The Journal of the Acoustical Society of America 72 (6) (1982) 1838–1844.

[26] J. Davy, The ensemble variance of random noise in a reverberation room, Journal of Sound and Vibration 107 (3) (1986) 361–373. doi:10.1016/0022-460X(86)90113-4.
URL http://linkinghub.elsevier.com/retrieve/pii/S0022460X86801134

[27] F. Kawakami, K. Yamaguchi, Space ensemble average of reverberation decay curves, The Journal of the Acoustical Society of America 70 (4) (1981) 1071–1082. doi:10.1121/1.386937.
URL http://asa.scitation.org/doi/10.1121/1.386937

[28] T. W. Bartel, S. L. Yaniv, Curvature of sound decays in partially reverberant rooms, The Journal of the Acoustical Society of America 72 (6) (1982) 1838–1844. doi:10.1121/1.388658.
URL http://asa.scitation.org/doi/10.1121/1.388658

[29] E. Moulin, H. Achdjian, J. Assaad, N. Abou Leyla, Y. Zaatar, Extraction of statistical properties of the point source response of a reverberant plate and application to parameter estimation (L), The Journal of the Acoustical Society of America 132 (4) (2012) 2165–2168. doi:10.1121/1.4750495.

[30] H. Achdjian, E. Moulin, F. Benmeddour, J. Assaad, L. Chehami, Source localisation in a reverberant plate using average coda properties and early signal strength, Acta Acustica united with Acustica 100 (5) (2014) 834–841.

[31] H. Achdjian, J. Bustillo, A. Arciniegas, N. Doumit, L. Blanc, Contact surface fraction evaluation between aluminium and polymer using acoustic reverberation, Applied Acoustics 141 (2018) 208–212.

[32] M. R. Schroeder, Integrated impulse method measuring sound decay without using impulses, The Journal of the Acoustical Society of America 66 (2) (1979) 497–500. doi:10.1121/1.383103.
URL http://asa.scitation.org/doi/10.1121/1.383103

[33] W. T. Chu, Comparison of reverberation measurements using Schroeder’s impulse method and decay curve averaging method, The Journal of the Acoustical Society of America 63 (5) (1978) 1444–1450. doi:10.1121/1.381889.
URL http://asa.scitation.org/doi/10.1121/1.381889

[34] H. Achdjian, E. Moulin, F. Benmeddour, J. Assaad, J. Cuenca, Prediction of average propagation characteristics in polygonal reverberant plates for experimental feature extraction, in: Ultrasonics Symposium (IUS), 2012 IEEE International, IEEE, 2012, pp. 2678–2681.

[35] F. Ollendorff, Statistical room-acoustics as a problem of diffusion (a proposal), Acta Acustica united with Acustica 21 (4) (1969) 236–245.

[36] W. C. Sabine, Collected Papers on Acoustics, Peninsula Publishing, 1993.
URL https://books.google.fr/books?id=3B8PQAACAAJ

[37] M. Bruneau, Acoustics in Closed Spaces, John Wiley & Sons, Ltd, 2010. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470612439.ch9, doi:10.1002/9780470612439.ch9.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470612439.ch9

[38] H. Kamioka, Elastic behaviour of salol during melting and solidification processes, Japanese journal of applied physics 32 (5S) (1993) 2216.