Hodge theory of holomorphic vector bundle on compact Kähler hyperbolic manifold

Teng Huang

Abstract

Let E be a holomorphic vector bundle over a compact Kähler manifold (X, ω) with negative sectional curvature $\text{sec} \leq -K < 0$, D_E be the Chern connection on E. In this article we show that if $C := |\Lambda, i\Theta(E)| \leq c_n K$, then (X, E) satisfy a family of Chern number inequalities. The main idea in our proof is study the $L^2\bar{\partial}\tilde{E}$-harmonic forms on lifting bundle \tilde{E} over the universal covering space \tilde{X}. We also observe that there is a closely relationship between the eigenvalue of the Laplace-Beltrami operator $\Delta_{\bar{\partial}\tilde{E}}$ and the Euler characteristic of X. Precisely, if there is a line bundle L on X such that $\chi_p(X, L^{\otimes m})$ is not constant for some integers $p \in [0, n]$, then the Euler characteristic of X satisfies $(-1)^n \chi(X) \geq (n + 1) + \lfloor \frac{c_n K}{2n} \rfloor$.

Keywords. Hodge theory; Holomorphic vector bundle; Kähler hyperbolic; Chern number inequality

1 Introduction

Let us start the article by recalling a Hopf conjecture related to the negativity of Riemannian sectional curvature.

Conjecture 1.1. The Euler characteristic $\chi(X)$ of a compact $2n$-dimensional Riemannian manifold X with sectional curvature $K < 0$ (resp. $K \leq 0$) satisfies $(-1)^n \chi(X) > 0$ (resp. $(-1)^n \chi(X) \geq 0$).

This is true for $n = 1$ and 2 as the Gauss–Bonnet integrands in these two low dimensional cases have the desired sign [8]. However, in higher dimensions, it is known that the sign of the sectional curvature does not determine the sign of the Gauss-Bonnet-Chern integrand [13]. The conjecture is still open in its full generality for $n \geq 3$. Therefore, Dodziuk [11] and Singer [33] suggested to use L^2-cohomology to approach this problem as follows: Show $\mathcal{H}_{(2)}^k (X) = \{0\}$ for $k \neq n$ which implies the L^2-Betti number $b_{(2)}^k (X) = 0$ for $k \neq n$ and $\mathcal{H}_{(2)}^n (X) \neq \{0\}$ which implies $b_{(2)}^n (X) \neq 0$. However, Anderson [1] constructed simply connected complete negatively curved Riemannian manifolds on which this does not
hold, thus indicating a certainly difficulty with this approach. The program outlined above was carried out by Gromov [15] when the manifold in question is Kähler and is homotopy equivalent to a closed manifold with strictly negative sectional curvatures. The main theorem in [15] states that for a Kähler hyperbolic manifold X, $\mathcal{H}^{p,q}_{(2)}(\tilde{X}) = \{0\}$ if and only if $p + q \neq \dim_{\mathbb{C}} X$, where $\mathcal{H}^{p,q}_{(2)}(\tilde{X})$ denotes the space of L^2-harmonic forms of type (p, q) on \tilde{X}. The vanishing of $\mathcal{H}^{p,q}_{(2)}(\tilde{X})$ for $p + q \neq \dim_{\mathbb{C}} X$ is a consequence of the strong L^2-Lefschetz theorem. Nonvanishing for $p + q = \dim_{\mathbb{C}} X$ follows from the L^2-index theorem and an upper bound for the bottom of the spectrum, whose proof is based on a twisting (by tensoring $\bar{\partial} + \partial^*$ with a line bundle equipped with a connection) trick due to Vafa and Witten. By extending Gromov’s idea and notion above to the nonnegative version, Jost-Zuo [20] and Cao-Xavier [5] independently introduced the concept of Kähler parabolic and consequently settled Conjecture 1.1 in the case of $K \leq 0$ for Kähler manifolds. The study of the L^2-harmonic forms on a complete Riemannian manifold is a very fascinating and important subject. It also has numerous applications in the field of Mathematical Physics (see [16]). Other results on L^2 cohomology can be found in [2 7 12 27 28].

In this article, we consider the Hodge theory on a Hermitian vector bundle E over a complete, Kähler manifold X, $\dim_{\mathbb{C}} X = n$, with a Kähler form ω. Define a smooth Kähler metric, $g(\cdot, \cdot) = \omega(\cdot, J\cdot)$ on X, where J is the complex structure on X. Let d_A be a Hermitian connection on E. The formal adjoint operator of d_A acting on $\Omega^k(X, E) := \Omega^k(X) \otimes E$ is $d_A^* = - \ast d_A \ast$, where $\Omega^k(X)$ is smooth k-forms on X and \ast is the Hodge star operator with respect to the metric g. We denote by $\mathcal{H}^k_{(2)}(X, E)$ the space of L^2 harmonic forms in $\Omega^k(X)$ with respect to the Laplace-Beltrami operator $\Delta_A := d_A d_A^* + d_A^* d_A$.

A differential form α on a Riemannian manifold (X,g) is bounded with respect to the Riemannian metric g if the L^∞-norm of α is finite,

$$\|\alpha\|_{L^\infty(X)} := \sup_{\alpha \in X} \|\alpha(x)\|_g < \infty.$$

We say that α is d(bounded) if α is the exterior differential of a bounded form β, i.e., $\alpha = d\beta$ and $\|\beta\|_{L^\infty(X)} < \infty$.

If ω is d(bounded), the author in [18] extended the vanishing theorem of Gromov’s to holomorphic vector bundle case. We denote by $A^{1,1}_E$ the space of all integrable connections d_A, i.e., $F^{2,0}_A = F^{0,2}_A = 0$. The important observation is that if the Hermitian connection $d_A \in A^{1,1}_E$, then the operator L^k could commute with Δ_A for any $k \in \mathbb{N}^+$. Following the idea in [15], the author proved a vanishing theorem on the spaces $\mathcal{H}^k_{(2)}(X, E)$. Suppose that E is a holomorphic Hermitian vector bundle on X. We denote by $D_E = \partial_E + \bar{\partial}_E$ its Chern connection, i.e., $\bar{\partial}_E = \bar{\partial}$, by D_E^* the formal adjoint of D_E and by $\partial_E^*, \bar{\partial}_E^*$ the components of D_E^* of type $(-1, 0)$ and $(0, -1)$. Let $\Theta(E) = \partial_E \bar{\partial}_E + \bar{\partial}_E \partial_E$ be the curvature operator on E. It is clear that $\bar{\partial}^2 = 0$. Therefore, for any integer $p = 0, 1, \ldots, n$, we get a complex

$$\Omega^{p,0}(X, E) \overset{\partial}{\to} \ldots \overset{\partial}{\to} \Omega^{p,q}(X, E) \overset{\partial}{\to} \Omega^{p,q+1}(X, E) \to \ldots,$$

known as the Dolbeault complex of (p, \bullet)-forms with values in E. We can define two operators:

$$\Delta_{\bar{\partial}_E} := \bar{\partial}_E \partial^*_E + \partial^*_E \bar{\partial}_E, \quad \Delta_{\partial_E} := \partial_E \bar{\partial}^*_E + \bar{\partial}^*_E \partial_E.$$
Let us introduce, See [10, Charp V]

\[H^{p,q}_{(2);\partial E}(X, E) := \{ \alpha \in \Omega^{p,q}_{(2)}(X, E) : \Delta\partial E\alpha = 0 \} . \]

There are many vanishing theorems for Hermitian vector bundles over a compact complex manifolds. All these theorems are based on a priori inequality for \((p, q)\)-forms with values in a vector bundle, known as the Bochner-Kodaira-Nakano inequality. This inequality naturally leads to several positivity notions for the curvature of a vector bundle ([14, 21, 22, 23, 29, 30]).

The first purpose of this paper is to study the Hodge theory of the holomorphic bundle \(E \) on the compact Kähler manifold \(X \) with negative sectional curvature. At first, we denote by

\[C = \max_{p,q} |C_{p,q}| := ||[\Lambda, i\Theta(E)]|| \]

the operator norm of \([\Lambda, i\Theta(E)]\), where

\[C_{p,q} := \sup_{\alpha \in \Omega^{p,q}(X,E) \setminus \{0\}} \frac{|<[\Lambda, i\Theta(E)]\alpha, \alpha>_{L^2(X)}|}{\|\alpha\|^2}. \]

We then have

Theorem 1.2 (=Proposition 3.16 and Theorem 3.17). Let \((X, \omega)\) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,

\[\text{sec} \leq -K, \]

for some \(K > 0 \). Let \(E \) be a holomorphic vector bundle on \(X \), \(D_E \) be the Chern connection on \(E \). If the curvature \(\Theta(E) \) of \(D_E \) such that

\[C := ||[\Lambda, i\Theta(E)]|| \leq c(n)K, \]

where \(c_n \) is a positive constant depends only \(n \), then for every \(p = 0, 1, \cdots, n \), the Euler characteristic

\[\chi^p(X, E) := \int_X td(X)ch(\Omega^{p,0}(TX) \otimes E) \]

does not vanish and

\[\text{sign} \chi^p(X, E) = (-1)^{n-p}. \]

Furthermore, for all \(0 \leq j \leq n \), \((X, E)\) satisfy Chern number inequalities

\[(-1)^{n+j}K_j(X, E) \geq \sum_{p=j}^{n} \binom{p}{j}. \]

Remark 1.3. The Chern number inequalities are always not sharp. For example, suppose that the curvature \(\Theta(E) \) of the Chern connection \(D_E \) is small enough in the sense of \(L^\infty \)-norm. Then there exists a flat connection on \(\Gamma \) on \(E \) (see [34]). Hence following Proposition 3.7 we have

\[\chi_y(X, E) = \text{rank}(E)\chi_y(X), \]
i.e., for every \(p = 0, 1, \cdots, n \), the Euler characteristic satisfies
\[
\chi^p(X, E) = \text{rank}(E)\chi^p(X).
\]

Therefore, \(X, E \) satisfy Chern number inequalities
\[
(-1)^{n+j}K_j(X, E) = \text{rank}(E) \sum_{p=j}^{n} \binom{n}{j} h^{p,n-p}_j(X, E) \geq \text{rank}(E)(-1)^j K_j(\mathbb{CP}^n). \tag{1.1}
\]

All the equality cases in (1.1) hold if and only if \(\chi^p(X) = (-1)^{n-p}, 0 \leq p \leq n \). (see [24, Theorem 2.1]).

In [15], Gromov shown that for every \(p = 0, 1, \cdots, n \), the Euler characteristic of a compact Kähler hyperbolic manifold satisfies
\[
\text{sign}\chi^p(X) = (-1)^{n-p},
\]
as a consequence \((-1)^n\chi(X) \geq n+1\). Let \(L \) be a holomorphic line bundle on a compact Kähler manifold \(X \). We call
\[
P^{(p)}_n(m, L) := \chi^p(X, L^\otimes m)
\]
the \(p \)-Hilbert polynomial of line bundle \(L \). The second propose of this article is to show that the lower bound of the Euler characteristic \((-1)^n\chi(X)\) estimated by \(K \).

Theorem 1.4. Let \((X, \omega)\) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,
\[
\text{sec} \leq -K,
\]
for some \(K > 0 \). Let \(L \) be a holomorphic line bundle on \(X \). Suppose that the \(p \)-Hilbert polynomial \(\chi^p(X, L^\otimes m) \) is not constant for some \(p \in [0, n] \). Then there exists a integer \(\tilde{m} = \tilde{m}(p) \in [-\frac{\omega(K, L)}{nC}, \frac{\omega(K, L)}{nC}] \) such that either
\[
(-1)^{n-p}\chi^p(X) \geq \left\lfloor \frac{c_nK}{nC} \right\rfloor + 1.
\]
or
\[
(-1)^{n-p}\chi^p(X, L^\otimes \tilde{m}) \geq \left\lfloor \frac{c_nK}{nC} \right\rfloor + 1,
\]
where \(C := ||\Lambda, i\Theta(L)|| \). In particular, the Euler characteristic of \(X \) satisfies
\[
(-1)^n\chi(X) \geq (n+1) + \left\lfloor \frac{c_nK}{nC} \right\rfloor.
\]

Remark 1.5. The conclusion of the theorem valid for all \(p = 0, \cdots, n \) if the line bundle \(L \) satisfies \(\int_X c_1^p(L) \neq 0 \). Since the canonical bundle \(K_X \) on a compact Kähler hyperbolic manifold is ample (see [6, Theorem 2.11]), then \(X \) is projective, i.e, there is an embedding \(i : X \hookrightarrow \mathbb{P}^N \). We denote by \(\mathcal{O}(1) \) the tautological line bundle on \(\mathbb{P}^N \). The pull back bundle \(i^*\mathcal{O}(1) \) of the line bundle \(\mathcal{O}(1) \) on \(X \) satisfies \(\int_X c_1^0(i^*\mathcal{O}(1)) \neq 0 \).
The lifted Kähler form $\tilde{\omega}$ on the universal covering space $\pi : (\tilde{X}, \tilde{\omega}) \to (X, \omega)$ is d-bounded. Set

$$Q(\omega) := \{ \theta \in \Omega^1(\tilde{X}) : \tilde{\omega} = d\theta \}.$$

Let $E(\theta) := \inf_{\theta \in Q(\omega)} \| \theta \|_{L^\infty(\tilde{X})}$. The eigenvalues of the Laplace-Beltrami operator $\Delta_{\overline{\partial}_E}$ on $\Omega^{p,q}_2(\tilde{X}, \tilde{E})$ ($p + q \neq n$) have a lower bounded $c_nE(\theta)^{-2} - C$. Then the Euler number of X satisfies

$$(-1)^n \chi(X) \geq (n + 1) + \lfloor \frac{c_nE(\theta)^{-2}}{nC} \rfloor \geq n + \frac{c_nE(\theta)^{-2}}{nC}.$$

Hence, we get the following result.

Corollary 1.6. Let (X, ω) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,

$$\text{sec} \leq -K,$$

for some $K > 0$. Suppose that there is a holomorphic line bundle L on X such that the p-Hilbert polynomial $\chi^p(X, L \otimes m)$ is not constant for some $p \in [0, n]$. Then

$$\sqrt{nK} - \frac{1}{2} \geq E(\theta) \geq \left[\frac{c_n}{nC((-1)^n \chi(X) - n)} \right]^{\frac{1}{2}}.$$

In the Kähler surfaces case, we can get a stronger result as follows.

Theorem 1.7. Let (X, ω) be a compact Kähler surface with sectional curvature bounded from above by a negative constant, i.e.,

$$\text{sec} \leq -K,$$

for some $K > 0$. Suppose that there is a holomorphic line bundle L on X such that $\int_X c_1^2(L) \neq 0$. Then the Euler characteristic of X satisfies

$$\chi(X) \geq 3 + \left(\int_X c_1^2(L) \right) \cdot \left(\left[\frac{c_nK}{C} \right] \right)^2.$$

where $C := ||[\Lambda, i\Theta(L)]||$.

We denote by

$$Z_p := \{ m \in \mathbb{R} : P_n^{(p)}(m, L) = \chi^p(X) \}$$

the set of real roots of polynomial $P_n^{(p)}(m, L) - \chi^p(X)$. We denote

$$m_p(L) = \max_{m \in Z_p} |m|.$$

Remark 1.8. Following Corollary 3.19 if then Chern connection of the holomorphic line bundle on compact Kähler surface satisfies

$$C := ||[\Lambda, i\Theta(L)]|| \leq c_nk,$$

then

$$\int_X c_1(X)c_1(L) = 0.$$

For any $p = 0, 1, 2$, we then have (see the proof of Theorem 1.7)

$$m_p(L) = 0.$$
On higher dimensions case, we have following results.

Theorem 1.9. Let \((X, \omega)\) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,

\[\text{sec} \leq -K, \]

for some \(K > 0\). Suppose that there is a holomorphic line bundle \(L\) on \(X\) such that \(a_n := \int_X c_1^n(L) \neq 0\). Then the Euler characteristic of \(X\) satisfies

\[(-1)^n \chi(X) \geq \max\{n + 1, n + 1 + 2|a_n| \text{sign}([c_n K - C m_p(L)])(\lfloor \frac{c_n K - C m_p(L)}{2Cn} \rfloor)^n \}, \]

where \(C := ||[\Lambda, i\Theta(L)]||\). Furthermore, if \(n\) is odd, for any \(p = 0, 1, \ldots, n\), we then have

\[(-1)^{n-p} \chi^p(X) \geq \max\{1, 1 + 2|a_n| \text{sign}([c_n K - C m_p(L)])(\lfloor \frac{c_n K - C m_p(L)}{2Cn} \rfloor)^n \}. \]

2 Preliminaries

Let \(X\) be a smooth Kähler manifold with Kähler form \(\omega\) and \(E\) be a smooth vector bundle over \(X\). We denote by \(\Omega^k(X, E)\) the space of \(C^\infty\) sections of the tensor product vector bundle \(\Omega^k(X) \otimes E\) obtained from \(\Omega^k(X)\) and \(E\), i.e., \(\Omega^k(X, E) := \Gamma(\Omega^k(X) \otimes E)\). We denote by \(\Omega^{p,q}(X, E)\) the space of \(C^\infty\) sections of the bundle \(\Omega^{p,q}(X) \otimes E\). We have a direct sum decomposition

\[\Omega^k(X, E) = \bigoplus_{p+q=k} \Omega^{p,q}(X, E). \]

For any connection \(d_A\) on \(E\), we have the covariant exterior derivatives

\[d_A : \Omega^k(X) \otimes E \to \Omega^{k+1}(X) \otimes E. \]

Like the canonical splitting the exterior derivatives \(d = \partial + \bar{\partial}\), \(d_A\) decomposes over \(X\) into

\[d_A = \partial_A + \bar{\partial}_A. \]

We will need some of the basic apparatus of Hermitian exterior algebra. Denote by \(L\) the operator of exterior multiplication by the Kähler form \(\omega\):

\[L\alpha = \omega \wedge \alpha, \alpha \in \Omega^{p,q}(X, E), \]

and, as usual, let \(\Lambda\) denote its pointwise adjoint, i.e.,

\[\langle \Lambda \alpha, \beta \rangle = \langle \alpha, L \beta \rangle. \]

Then it is well known that \(\Lambda = \ast^{-1} \circ L \circ \ast[19]\). A basic fact is
Lemma 2.1. The map $L: \Omega^{p,q}(X, E) \to \Omega^{p+1,q+1}(X, E)$ is injective for $p + q \leq n$.

The proof is then purely algebraic and can be found in standard texts on geometry. An elegant approach is through representations of sl_2, see [10] Chap.5, Theorem 3.12 or [10, 19].

We recall some definitions on Hermitian vector bundle [10, Charp V, Section 7]. Let E be a Hermitian vector bundle of rank r over a smooth Riemannian manifold X, $\dim \mathbb{R} X = n$. We denote respectively by (ξ_1, \ldots, ξ_n) and (e_1, \ldots, e_r) orthonormal frames on TX and E over an open subset $U \subset X$. The associated inner product of E given by a positive definite Hermitian metric $h_{\lambda\mu}$ with smooth coefficients on U, such that $\langle e_\lambda(x), e_\mu(x) \rangle = h_{\lambda\mu}(x)$, $\forall x \in \Omega$.

When E is Hermitian, one can define a natural sesquilinear map

$$\Omega^p(X, E) \times \Omega^q(X, E) \to \Omega^{p+q}(X, \mathbb{C})$$

$$(\alpha, \beta) \mapsto tr(s \wedge t)$$

combining the wedge product of forms with the Hermitian metric on E. If $\alpha = \sum \sigma_\lambda \otimes e_\lambda$, $\beta = \sum \tau_\mu \otimes e_\mu$, we let

$$tr(\alpha \wedge \beta) := \sum_{1 \leq \lambda, \mu \leq r} \sigma_\lambda \wedge \tau_\mu \langle e_\lambda, e_\mu \rangle.$$

A connection d_A said to be compatible with the Hermitian structure of E, or briefly Hermitian, if for every $\alpha \in \Omega^p(X, E)$, $\beta \in \Omega^q(X, E)$ we have

$$dtr(\alpha \wedge \beta) = tr(d_A \alpha \wedge \beta) + (-1)^p tr(\alpha \wedge d_A \beta).$$

The inner product $\langle \cdot, \cdot \rangle$ on $\Omega^*(X, E)$ defined as, See [10] Charp VI, Section 3.1

$$\langle \alpha, \beta \rangle = \ast tr(\alpha \wedge \ast \beta), \quad \alpha, \beta \in \Omega^p(X, E).$$

We denote by Tr the sesquilinear map $Tr: \Omega^p(X, EndE) \times \Omega^q(X, EndE) \to \Omega^{p+q}(X, \mathbb{C})$ induced by the map $tr: \Omega^p(X, E) \times \Omega^q(X, E) \to \Omega^{p+q}(X, \mathbb{C})$.

There are several commutation relations between the basic operators associated to a Kähler manifold X, all following more or less directly from the Kähler condition $d\omega = 0$; taken together, these are referred to as the Kähler identities [10, 19].

Proposition 2.2. Let X be a complete Kähler manifold, E a Hermitian vector bundle over X and d_A be a Hermitian connection on E. We have the following identities

(i) $[\Lambda, \bar{\partial}_A] = -\sqrt{-1}d_A^*\Lambda$, $[\Lambda, \partial_A] = \sqrt{-1}\partial_A^*\Lambda$.

(ii) $[\partial_A^*, L] = \sqrt{-1}\partial_A$, $[\bar{\partial}_A, L] = -\sqrt{-1}\bar{\partial}_A$.

Since ω is parallel, the operator $L^k: \Omega^p(X, E) \to \Omega^{p+2k}(X, E)$ defined by $L^k(\alpha) = \alpha \wedge \omega^k$ for all p-forms commutes with d_A. But the operator L^k does not commute with d_A^* in general, therefore the operator L^k does not commute with Δ_A.

If A and B are operators on forms, define the (graded) commutator as

$$[A, B] = AB - (-1)^{\deg A \deg B} BA,$$

where $\deg T$ is the integer d for $T: \oplus_{p+q=r} \Omega^{p,q}(X, E) \to \oplus_{p+q=r+d} \Omega^{p,q}(X, E)$. If C is another endomorphism of degree c, the following Jacobi identity is easy to check

$$(-1)^{ca}[A, [B, C]] + (-1)^{ab}[B, [C, A]] + (-1)^{bc}[C, [A, B]] = 0.$$

At first, we observe that the operator L^k commutes with Δ_A for any connection $d_A \in A^{1,1}_E$.

Lemma 2.3. ([18 Lemma 3.9])

$$[\Delta_A, L^k] = 2k\sqrt{-1}(F^{2,0}_A - F^{0,2}_A)L^{k-1}, \quad \forall k \in \mathbb{N}.$$

In particular, if the connection $d_A \in A^{1,1}_E$, then Δ_A commutes with L^k for any $k \in \mathbb{N}$.

Proof. The case of $k = 1$: the operators d_A, d^*_A and L satisfy the following Jacobi identity:

$$-[L, [d_A, d^*_A]] + [d^*_A, [L, d_A]] + [d_A, [d^*_A, L]] = 0.$$

Then we have

$$[L, \Delta_A] = [d_A, [d^*_A, L]] = [\partial_A + \bar{\partial}_A, \sqrt{-1}(\partial_A - \bar{\partial}_A)]$$

$$= [\sqrt{-1}\partial_A, \partial_A] - [\sqrt{-1}\bar{\partial}_A, \bar{\partial}_A]$$

$$= 2\sqrt{-1}(F^{2,0}_A - F^{0,2}_A).$$

We suppose that the case of $p = k - 1$ is true, i.e.,

$$[\Delta_A, L^{k-1}] = 2(k-1)\sqrt{-1}(F^{2,0}_A - F^{0,2}_A)L^{k-2}.$$

Thus if $p = k$, we have

$$[\Delta_A, L^k] = [\Delta_A, L]L^{k-1} + L[\Delta_A, L^{k-1}]$$

$$= 2\sqrt{-1}(F^{0,2}_A - F^{2,0}_A)L^{k-1} + 2(k-1)\sqrt{-1}L(F^{2,0}_A - F^{0,2}_A)L^{k-2}$$

$$= 2k\sqrt{-1}(F^{0,2}_A - F^{2,0}_A)L^{k-1}.$$

If $d_A \in A^{1,1}_E$, then $[\Delta_A, L^k] = 0$. \qed

3 Harmonic forms on vector bundle E

As we derive estimates in this section (and also following sections), there will be many constants which appear. To simplify notation we shall write $a \lesssim b$, for $a \leq \text{const}_n b$, and $a \approx b$, for $b \lesssim a \lesssim b$.

3.1 Uniform positive lower bounds for the least eigenvalue of $\Delta_{\partial E}$

Let (X, g) be an oriented, smooth, Riemannian manifold, $\dim_{\mathbb{R}} X = n$, and E be a Hermitian vector bundle over X. Assume now that d_A is a Hermitian connection on E. The formal adjoint operator of d_A acting on $\Omega^p(X, E)$ is $d_A^* = (-1)^{np+1} * d_A*$, where the operator $*: \Omega^p(X, E) \to \Omega^{n-p}(X, E)$ induced by the Hodge-Poincaré-de Rahm operator $*$. Indeed, if $\alpha \in \Omega^p(X, E)$, $\beta \in \Omega^{p+1}(X, E)$ have compact support, we get

$$\int_X \langle d_A \alpha, \beta \rangle = \int_X \langle \alpha, d_A^* \beta \rangle.$$

The Laplace-Beltrami operator associated to d_A is the second order operator $\Delta_A = d_A d_A^* + d_A^* d_A$. The space of L^2-harmonic forms of degree of k respect to the Laplace-Beltrami operator Δ_A is defined by

$$\mathcal{H}^k_{(2)}(X, E) = \{ \alpha \in \Omega^k_{(2)}(X, E) : \Delta_A \alpha = 0 \}.$$

Define the δ-Laplacian by setting $\Delta_\delta := [\delta, \delta^*]$. For all (p, q), we denote by

$$\mathcal{H}^{p,q}_{(2),\delta}(X, E) := \ker(\Delta_\delta) \cap \Omega^{p,q}_{(2)}(X, E)$$

the space of L^2-δ-harmonic forms in bidegree (p, q). We have an useful lemma as follows.

Lemma 3.1. ([18 Lemma 3.2]) Let X be a complete Riemannian manifold X, E a Hermitian vector bundle over X. Then

$$\mathcal{H}^k_{(2)}(X, E) = \ker d_A \cap \ker d_A^* \cap \Omega^k_{(2)}(X, E),$$

$$\mathcal{H}^{p,q}_{(2),\delta}(X, E) = \ker \delta \cap \ker \delta^* \cap \Omega^{p,q}_{(2)}(X, E),$$

where $\delta = \bar{\partial}_A$ or ∂_A.

Theorem 3.2. Let (X, ω) be a complete, Kähler manifold, $\dim_{\mathbb{C}} X = n$, with a d-(bounded) Kähler form ω, i.e., there is a bounded 1-form θ such that $\omega = d\theta$, $d_A \in \mathcal{A}^{1,1}_E$ be a smooth Hermitian integrable connection on a Hermitian vector bundle E over X. Then

$$\mathcal{H}^k_{(2)}(X, E) = \{ 0 \}, \forall k \neq n.$$

Proof. Let $k < n$. For every d_A-closed L^2 k-form α, the form

$$L^{n-k} \alpha = \omega^{n-k} \wedge \alpha = d_A(\omega^{n-k-1} \wedge \theta \wedge \alpha)$$

is L^2. We denote $\beta = \omega^{n-k-1} \wedge \theta \wedge \alpha$. One can see that β is L^2. In particular, if α is Δ_A-harmonic, then $L^k \alpha = 0$ is also Δ_A-harmonic. Following Proposition [18 Proposition 3.7], we get $L^{n-k} \alpha = 0$. This implies, by Lemma [241] that $\alpha = 0$. The case $k > n$ follows by E^* is a holomorphic vector bundle on X and $\mathcal{H}^k_{(2)}(X, E) \approx \mathcal{H}^{2n-k}_{(2)}(X, E^*) = \{ 0 \}$. \qed
We want to sharpen the Lefschetz vanishing theorem\[3.2\] by giving a lower bound on the spectrum of the Laplace operator Δ_A on L^2-forms $\Omega^k(X, E)$ for $k \neq n$.

Theorem 3.3. ([[18 Theorem 1.3]]) Let (X, ω) be a complete, Kähler manifold, $\dim_{\mathbb{C}} X = n$, with a d-bounded Kähler form ω, i.e., there is a bounded 1-form θ such that $\omega = d\theta$. Let $A^{11}_E \in \mathcal{A}_{E}^{11}$ be a smooth Hermitian integrable connection on a Hermitian vector bundle E over X. If $\alpha \in \Omega^k(X, E)$ such that $\Delta_A \alpha \in L^2$, $(k \neq n)$, then we have the inequality

$$
c_{n,k} \|\theta\|^2_{L^\infty(X)} \|\alpha\|^2_{L^2(X)} \leq \langle \alpha, \Delta_A \alpha \rangle_{L^2(X)},
$$

where $c_{n,k} > 0$ is a constant which depends only on n, k.

Proof. Let α be a p-form on vector bundle $(p < n)$, we denote $\beta = L^k\alpha = \omega^k \wedge \alpha$. We recall the operator $L^k : \Omega^p(X, E) \rightarrow \Omega^{p+2k}(X, E)$ for a given $p < n$ and $p + k = n$. Since the Lefschetz theorem L^k is a bijective quasi-isometry,

$$
\|\alpha\|_{L^2(X)} \approx \|\beta\|_{L^2(X)}.
$$

If α is in L^2, β is also in L^2. Since $I_A^{0,2} = 0$, following Lemma\[2,3\] $[L^k, \Delta_A] = 0$. Then we have

$$
\langle \Delta_A \beta, \beta \rangle_{L^2(X)} = \langle L^k(\Delta_A \alpha) L^k \alpha \rangle_{L^2(X)} \approx \langle \Delta_A \alpha, \alpha \rangle_{L^2(X)}.
$$

We write $\beta = d_A\eta - \tilde{\alpha}$, for $\eta = \alpha \wedge \omega^{k-1} \wedge \theta$ and $\tilde{\alpha} = d_A\alpha \wedge \omega^{k-1} \wedge \theta$. Observe that

$$
\|\eta\|_{L^2(X)} \lesssim \|\theta\|_{L^\infty(X)} \|\alpha\|_{L^2(X)} \lesssim \|\theta\|_{L^\infty(X)} \|\beta\|_{L^2(X)},
$$

and

$$
\|\tilde{\alpha}\|_{L^2(X)} \lesssim \|d_A\alpha\|_{L^2(X)} \|\theta\|_{L^\infty(X)} \lesssim \langle \Delta_A \alpha, \alpha \rangle_{L^2(X)}^{1/2} \|\theta\|_{L^\infty(X)}.
$$

We then have

$$
\|\beta\|^2_{L^2(X)} \leq \|\beta, d_A\eta\|_{L^2(X)}^2 + \|\beta, \tilde{\alpha}\|_{L^2(X)}^2 \\
\leq \|d_A'\beta, \eta\|_{L^2(X)} + \|\beta, \tilde{\alpha}\|_{L^2(X)}^2 \\
\lesssim \langle \Delta_A \beta, \beta \rangle_{L^2(X)} \|\theta\|_{L^\infty(X)} \|\beta\|_{L^2(X)} + \|\beta\|_{L^2(X)} \|d_A\alpha\|_{L^2(X)} \|\theta\|_{L^\infty(X)} \\
\lesssim \langle \Delta_A \alpha, \alpha \rangle_{L^2(X)}^{1/2} \|\theta\|_{L^\infty(X)} \|\beta\|_{L^2(X)}.
$$

This yields the desired estimation

$$
\|\alpha\|^2_{L^2(X)} \lesssim \|\beta\|^2_{L^2(X)} \lesssim \|\theta\|^2_{L^\infty(X)} \langle \Delta_A \alpha, \alpha \rangle_{L^2(X)}.
$$

The case $p > n$ follows by E^* is a holomorphic vector bundle on X, the Poincaré duality as the operator $*_{E} : \Omega^p(X, E) \rightarrow \Omega^{2n-p}(X, E^*)$ commutes with Δ_A and is isometric for the L^2-norms. \hfill \Box
Lemma 3.4. If $d_A \in \mathcal{A}^{1,1}_E$, then
$$\Delta_A = \Delta_{\partial E} + \Delta_{\bar{\partial} E}.$$

Proof. Following the definitions of Δ_A, $\Delta_{\partial E}$ and $\Delta_{\bar{\partial} E}$, we have
$$\Delta_A = [\partial E, \partial^*_E] + [\bar{\partial} E, \partial^*_E] + [\partial E, \bar{\partial} E] = \Delta_{\partial E} + \Delta_{\bar{\partial} E} + [\partial E, \partial^*_E].$$

Following identities on Proposition 2.2, we have
$$[\partial E, \partial^*_E] = i[\Theta(E), \Lambda] = i[\partial E, [\partial E, \Lambda]] - i[\bar{\partial} E, [\partial E, \Lambda]].$$

Therefore,
$$[\partial E, \partial^*_E] = 0.$$

By the similar way, we also get
$$[\bar{\partial} E, \partial^*_E] = 0.$$

Therefore, we have
$$\Delta_A = \Delta_{\partial E} + \Delta_{\bar{\partial} E}.$$

Proposition 3.5. Let (X, ω) be a complete, Kähler manifold, $\dim_{\mathbb{C}} X = n$, with a d-bounded Kähler form ω, i.e., there is a bounded 1-form θ such that $\omega = d\theta$, D_E be the Chern connection on a holomorphic Hermitian vector bundle E over X. Then for any $\alpha \in \Omega^{p,q}(X, E)$, $(k := p+q \neq n)$, such that $\Delta_{\bar{\partial} E} \alpha \in L^2$, which satisfies the inequality
$$(c(n, k)\|\theta\|_{L^\infty(X)} - \|[i\Theta(E), \Lambda]\|_{L^2(X)})\|\alpha\|_{L^2(X)} \leq \langle \Delta_{\bar{\partial} E} \alpha, \alpha \rangle_{L^2(X)}.$$

where $c_{n,k} > 0$ is a constant which depends only on n, k. Furthermore, if
$$\|[i\Theta(E), \Lambda]\| \leq c_n\|\theta\|_{L^\infty(X)}^2,$$

where c_n is a uniformly positive constant only depends on n which satisfies $c_n < \inf c_{n,k}$, we then have
$$\mathcal{H}^{p,q}_{(2),\partial E}(X, E) = 0, \forall p + q \neq n.$$

Proof. Following the Bochner-Kodaira-Nakano formula [10 Chapter VII., Corollary 1.3]
$$\Delta_{\bar{\partial} E} = \Delta_{\partial E} + [i\Theta(E), \Lambda],$$

where $\mathcal{H}^{p,q}_{(2),\partial E}(X, E)$ is the $(2, p+q)$-cohomology group with respect to the Chern connection D_E.
we have
\[\Delta_E = \Delta_{\bar{\partial}_E} + \Delta_{\partial_E} = 2\Delta_{\bar{\partial}_E} - [i\Theta(E), \Lambda], \]
where \(\Delta_E := D_ED_E^* + D_E^*D_E \). Then for any \(\alpha \in \Omega^{p,q}_{(2)}(X, E) \), \((p + q \neq n)\), we have
\[
\langle \Delta_E \alpha, \alpha \rangle_{L^2(X)} \leq 2\langle \Delta_{\bar{\partial}_E} \alpha, \alpha \rangle_{L^2(X)} + |[i\Theta(E), \Lambda]\alpha, \alpha \rangle_{L^2(X)} |
\]
\[
\leq 2\langle \Delta_{\bar{\partial}_E} \alpha, \alpha \rangle_{L^2(X)} + |[i\Theta(E), \Lambda]| \cdot \|\alpha\|_{L^2(X)}. \]
We then have
\[
\langle \Delta_{\bar{\partial}_E} \alpha, \alpha \rangle_{L^2(X)} \geq (c(n, k)\|\theta\|_{L^\infty(X)}^2 - |[i\Theta(E), \Lambda]|)\|\alpha\|_{L^2(X)}, \]
where \(c(n, k) \) is a uniformly positive constant.

For any \(k \neq n \), if
\[
|\langle \Lambda, i\Theta(E) \rangle | \leq c_n\|\theta\|_{L^\infty(X)}^2 < c_{n,k}\|\theta\|_{L^2(X)}^2, \]
then every \(\alpha \in \mathcal{H}^{p,q}_{(2),\bar{\partial}_E}(X, E) \), we get
\[
0 \leq (c(n, k)\|\theta\|_{L^\infty(X)}^2 - |[i\Theta(E), \Lambda]|)\|\alpha\|_{L^2(X)} \leq 0, \]
i.e., \(\alpha = 0 \). We complete the proof of this theorem.

A compact Kähler manifold \((X, J, \omega)\) with sectional curvature bounded form above by a negative constant, i.e., \(\text{sec} \leq -K \) for some \(K > 0 \). We denote by \((\tilde{X}, \tilde{J}, \tilde{\omega})\) the universal covering space of \((X, J, \omega)\). Since \(\pi \) is local isometry, the sectional curvature of \(\tilde{X} \) also bounded form above by the negative constant \(K \). By [6, Lemma 3.2], there exists 1-form \(\theta \) on \(\tilde{X} \) such that
\[\tilde{\omega} = d\theta \]
and
\[\|\theta\|_{L^\infty(\tilde{X})} \leq \sqrt{n}K^{-\frac{1}{2}}. \]

Corollary 3.6. Let \((X, \omega)\) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,
\[\text{sec} \leq -K, \]
for some \(K > 0 \). Let \(E \) be a holomorphic vector bundle on \(X \), \(D_E \) be the Chern connection on \(E \). Let \(\pi : (\tilde{X}, \tilde{g}) \to (X, g) \) be the universal covering with \(\tilde{g} = \pi^*g, \tilde{E} = \pi^*E \) the pull back bundle over \(\tilde{X} \). Then for any \(\alpha \in \Omega^{p,q}_{(2)}(\tilde{X}, \tilde{E}) \) such that \(\Delta_{\bar{\partial}_E} \alpha \in L^2 \), which satisfies the inequality
\[
(c(n, k)K/n - |\langle \Lambda, i\Theta(E) \rangle |)\|\alpha\|_{L^2(X)} \leq \langle \Delta_{\bar{\partial}_E} \alpha, \alpha \rangle_{L^2(\tilde{X})}, \]
where \(c_{n,k} > 0 \) is a constant which depends only on \(n, k \). Furthermore, if
\[|\langle \Lambda, i\Theta(E) \rangle | \leq c_nK, \]
where \(c_n \) is a positive constant only depends on \(n \) which satisfies \(c_n < \inf c_{n,k}/n \), we then have
\[\mathcal{H}^{p,q}_{(2),\bar{\partial}_E}(\tilde{X}, \tilde{E}) = 0, \forall p + q \neq n. \]
3.2 Nonvanishing results

In [15], Gromov proved a nonvanishing for \(p + q = \text{dim}_\mathbb{C} X \) follows from the \(L^2 \)-index theorem and an upper bound for the bottom of the spectrum [15 Main Theorem]. A special case of a conjecture of Hopf follows from the main theorem. Namely, the Euler characteristic \(\chi(X) \) of a compact, negatively curved Kähler manifold \(X \) of complex dimension \(n \) satisfies \(\text{sign} \chi(X) = (-1)^n \). Let \(E \) be a holomorphic vector bundle equipped with a Hermitian metric and Hermitian connection \(d_A \) over a compact Kähler manifold. Suppose \(X \) is a compact Kähler manifold with underlying Riemann metric \(g \). We denote by \(\nabla^g \) the Hermitian connections induced by the Levi-Civita connection on \(\Omega^{\bullet, \bullet} \), \(\cdot \), \(T X \). Let \(D_E \) be the Chern connection on \(E \). Thus the twist bundle \(\Omega^{p,0} T X \otimes E \) is also a holomorphic vector bundle on \(X \). We denote by \(\chi^p(X, E) \) the index of the operator

\[
D_p = \bar{\partial}_E + \partial_E^* : \Omega^{p, *}(X, E) \to \Omega^{p, * \pm 1}(X, E).
\]

By definition

\[
\chi^p(X, E) = \text{Index}(D_p)
= \text{dim}_\mathbb{C}(\ker D_p) - \text{dim}_\mathbb{C}(\text{coker} D_p)
= \text{dim}_\mathbb{C} \bigoplus_q \text{even} \mathcal{H}_{\bar{\partial}_E}^{p,q} - \text{dim}_\mathbb{C} \bigoplus_q \text{odd} \mathcal{H}_{\partial_E}^{p,q}
= \sum_{q=0}^n (-1)^q h^{p,q}(X, E),
\]

where

\[
\mathcal{H}_{\bar{\partial}_E}^{p,q} = \{ \alpha \in \Omega^{p,q}(X, E) : D_p \alpha = 0 \}
\]

are the spaces of \(\bar{\partial}_E \)-harmonic forms and \(h^{p,q}(X, E) := \dim \mathcal{H}_{\bar{\partial}_E}^{p,q} \) the Hodge numbers of \((X, E) \). In particular, \(\chi^0(X, E) \) called the *Euler-Poincaré* characteristic [19 Section 5]. The Hirzebruch-Riemann-Roch theorem gives

\[
\chi^p(X, E) = \int_X t^d(X) \text{ch}(\Omega^{p,0} T X \otimes E) = \int_X t^d(X) \text{ch}(\Omega^{p,0} T X) \text{ch}(E).
\]

Given a compact \(n \)-dimensional manifold \(X \), one can associate polynomial \(\chi_y(X) \), called the Hirzebruch \(\chi_y \)-genus, in terms of their Hodge number

\[
h^{p,q}(X) := \dim \mathcal{H}_{\bar{\partial}}^{p,q}(X)
\]

as follows:

\[
\chi_y(X) := \sum_{p=0}^n \chi^p(X) \cdot y^p := \sum_{p=0}^n [\sum_{q=0}^n (-1)^q h^{p,q}(X)] y^p.
\]

where \(\chi^p(X) := \sum_{q=0}^n (-1)^q h^{p,q}(X) \) \((0 \leq p \leq n)\). The \(\chi^p(X) \)-genus was first introduced by Hirzebruch [17]. On a holomorphic bundle over compact complex manifold, we also define a polynomial as follows:

\[
\chi_y(X, E) := \sum_{p=0}^n \chi^p(X, E) \cdot y^p = \sum_{p=0}^n [\sum_{q=0}^n (-1)^q h^{p,q}(X, E)] y^p.
\]
The general form of the Hirzebruch-Riemann-Roch theorem, which is a corollary of the Atiyah-Singer index theorem, allows us to compute \(\chi_y(X, E) \) in terms of the Chern numbers of \(X, E \) as follows:

\[
\chi_y(X, E) = \int_X td(X)ch(\bigoplus_{p=0}^{n}\Omega^{p,0}(TX)y^p)ch(E).
\]

Let \(\gamma_i \) denote the formal Chern roots of \(TX \) (see [19, Corollary 5.14]), i.e., \(i \)-th elementary symmetric polynomial of \(\gamma_1, \cdots, \gamma_n \) represents the \(i \)-th Chern class of \((X, J)\):

\[
c_1 = \gamma_1 + \cdots + \gamma_n, \quad c_2 = \sum_{1 \leq i < j \leq n} \gamma_i\gamma_j, \cdots, \quad c_n = \gamma_1 \cdots \gamma_n.
\]

Then

\[
\int_X td(X) = \prod_{i=1}^{n} \frac{\gamma_i}{1 - e^{-\gamma_i}},
\]

and

\[
ch(\bigoplus_{p=0}^{n}\Omega^{p,0}(TX)y^p) = \prod_{i=1}^{n} (1 + ye^{-\gamma_i}).
\]

Proposition 3.7.

\[
\chi_y(X, E) = \int_X ch(E) \prod_{i=1}^{n} (1 + ye^{-\gamma_i}) \frac{\gamma_i}{1 - e^{-\gamma_i}}.
\]

In particular, If \(E \) is a flat bundle, then

\[
\chi_y(X, E) = rank(E) \int_X \prod_{i=1}^{n} (1 + ye^{-\gamma_i}) \frac{\gamma_i}{1 - e^{-\gamma_i}} = rank(E)\chi_y(X).
\]

Proof. If \(E \) is a flat bundle, there exists a flat connection \(d_\Gamma \) on the Hermitian vector bundle \(E \). We can write the connection \(d_A = d_\Gamma + a \), where \(a \) is a 1-form take value in \(End(E) \). Therefore, \(F_A = d_\Gamma a + a \wedge a \). Then, \([ch(E)] = [Tr(exp F_A)] = rank(E)\), i.e, there exists a differential form \(\eta \) such

\[
ch(E) = rank(E) + d\eta.
\]

Noting that \(d(td(X)ch(\Omega^{p,0}(X))) = 0 \). We then have,

\[
\chi_y(X, E) = \int_X td(X)ch(\bigoplus_{p=0}^{n}\Omega^{p,0}(TX)y^p)(rank(E) + d\eta) = rank(E)\int_X td(X)ch(\bigoplus_{p=0}^{n}\Omega^{p,0}(TX)y^p) + \int_X d(td(X)ch(\bigoplus_{p=0}^{n}\Omega^{p,0}(TX)y^p) \wedge \eta) = rank(E)\chi_y(X).
\]
Remark 3.8. The χ_y-genus famously satisfies

$$\chi_y(X) = (-y)^n \cdot \chi_{y-1}(X),$$

which are equivalent to the relations $\chi^p(X) = (-1)^n \chi^{n-p}(X)$ and can be derived from the Serre duality for the Hodge number:

$$\chi^p(X) = \sum_{q=0}^{n} (-1)^q h^{p,q}(X) = \sum_{q=0}^{n} (-1)^q h^{n-p,n-q}(X)$$

$$= (-1)^n \sum_{q=0}^{n} (-1)^q h^{n-p,q}(X) = (-1)^n \chi^{n-p}(X).$$

But for any holomorphic vector bundle E over a compact complex manifold X there exists \mathbb{C}-linear isomorphisms (Serre duality [19, Corollary 4.1.16]):

$$\mathcal{H}^{p,q}_{\overline{\partial} E}(X, E) \cong \mathcal{H}^{n-p,n-q}_{\overline{\partial} E}(X, E^*),$$

so $\chi_y(X, E)$ always cannot satisfies $\chi_y(X, E) = (-y)^n \cdot \chi_{y-1}(X, E)$.

We also observe that

$$\chi_y(X, E)|_{y=0} = \chi^0(X, E) = \int_X td(X) ch(E)$$

and

$$\chi_y(X, E)|_{y=-1} = \int_X ch(E) \prod_{i=1}^{n} \gamma_i = \text{rank}(E) \chi(X).$$

Let X be a Riemannian manifold and Γ a discrete group of isometrics of X, such that the differential operator \mathcal{D} commutes with the action of Γ. This presupposes that the action of Γ lifts to the pertinent bundles E and E', and then the commutation between the actions of Γ on sections of E and E' and $\mathcal{D} : C^\infty(E) \to C^\infty(E')$ makes sense. A trivial example is that of Galois action for a covering map $X \to X_0$, where \mathcal{D} is the pull back from an operator on X_0. We consider a Γ-invariant Hermitian line bundle (L, ∇) on X we assume X/Γ is compact, and we state Atiyah’s L^2-index theorem for $\mathcal{D} \otimes \nabla$.

Theorem 3.9. [15] Theorem 2.3.A/ Let \mathcal{D} be a first-order elliptic operator. Then there exists a closed nonhomogeneous form

$$I_\mathcal{D} = I^0 + I^1 + \cdots + I^n \in \Omega^*(X) = \Omega^0 \oplus \Omega^1 \oplus \cdots \oplus \Omega^n$$

invariant under Γ, such that the L^2-index of the twisted operator $\mathcal{D} \otimes \nabla$ satisfies

$$L^2 \text{Index}_\Gamma(\mathcal{D} \otimes \nabla) = \int_{X/\Gamma} I_\mathcal{D} \wedge \exp [\omega],$$

where $[\omega]$ is the Chern form of ∇, and

$$\exp [\omega] = 1 + [\omega] + \frac{[\omega] \wedge [\omega]}{2!} + \frac{[\omega] \wedge [\omega] \wedge [\omega]}{3!} + \cdots.$$
Remark 3.10. (1) $L^2\text{Index}_\Gamma(D \otimes \nabla) \neq 0$ implies that either $D \otimes \nabla$ or its adjoint has a non-trivial L^2-kernel.
(2) The operator D used in the present paper is the operator $\bar{\partial}_E + \bar{\partial}_E^*$. In this case the I_0-component of I_D is non-zero. Hence $\int_{X/\Gamma} I_D \wedge \exp \alpha[\omega] \neq 0$, for almost all α, provided the curvature form $[\omega]$ is “homologically nonsingular” $\int_{X/\Gamma}[\omega]^n \neq 0$.

We may start with Γ acting on (L, ∇) and then pass (if the topology allows) to the k-th root $(L, \nabla)^\frac{k}{k}$ of (L, ∇) for some $k > 2$. Since the bundle $(L, \nabla)^\frac{k}{k}$ is only defined up to an isomorphism, the action of Γ does not necessarily lift to L. Yet there is a larger group Γ_k acting on (L, Γ), where $0 \to \mathbb{Z}/k\mathbb{Z} \to \Gamma_k \to \Gamma \to 1$. In the general case where $\omega(\nabla)$ is Γ-equivariant, the action of Γ on (L, ∇) is defined up to the automorphism group of (L, ∇) which is the circle group $S^1 = \mathbb{R}/\mathbb{Z}$ as we assume X is connected. Thus we have a non-discrete group, say Γ, such that $1 \to S^1 \to \Gamma \to \Gamma \to 1$, and such that the action of Γ on X lifts to that of Γ on (L, ∇). This gives us the action of Γ on the spaces of sections of $E \otimes L$ and $E' \otimes L$, and we can speak of the Γ-dimension of $\ker(D \otimes \nabla)$ and $\coker(D \otimes \nabla)$. The proof by Atiyah of the L^2-index theorem does not change a bit, and the formula (3.4) remains valid with Γ in place of Γ,

$$L^2\text{Index}_\Gamma(D \otimes \nabla) = \int_{X/\Gamma} I_D \wedge \exp[\omega].$$

Here again, the relevant fact is the implication

$$\int_{X/\Gamma} I_D \exp[\omega] > 0 \Rightarrow \ker D \otimes \nabla \neq 0.$$

Gromov defined the lower spectral bound $\lambda_0 = \lambda_0(D) \geq 0$ as the upper bounded of the negative numbers λ, such that $\|De\|_{L^2} \geq \lambda\|e\|_{L^2}$ for those sections e of E where De in L^2. Let D be a Γ-invariant elliptic operator on X of the first order, and let $I_D = I_0 + I_1 + \cdots + I^n \in \Omega^*(X)$ be the corresponding index form on X. Let ω be a closed Γ-invariant 2-form on X and denote by I_α^n the top component of product $I_D \wedge \exp \alpha \omega$, for $\alpha \in \mathbb{R}$. Hence I_α^n is an Γ-invariant n-form on X, $\dim X = n$ depending on parameter α.

Theorem 3.11. ([15] 2.4.A. Theorem) Let $H^1_{dR}(X) = 0$ and let X/Γ be compact and $\int_{X/\Gamma} I_\alpha^n \neq 0$, for some $\alpha \in \mathbb{R}$. If the form ω is d-bounded, then either $\lambda_0(D) = 0$ or $\lambda_0(D^*) = 0$, where D^* is the adjoint operator.

We then have

Theorem 3.12. Let (X, ω) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,

$$\sec \leq -K,$$

for some $K > 0$. Let E be a holomorphic vector bundle on X, D_E be the Chern connection on E. If the curvature $\Theta(E)$ of D_E such that

$$\|[\Lambda, i\Theta(E)]\| \leq c(n)K,$$
then the spaces of $L^2 \Delta_{\partial_E}$-harmonic (p, q)-forms on the lifting bundle \tilde{E} satisfy

$$
\begin{aligned}
\mathcal{H}^{p,q}_{(2),\partial E}(\tilde{X}, \tilde{E}) &= \{0\}, \ p + q \neq n \\
\mathcal{H}^{p,q}_{(2),\partial E}(\tilde{X}, \tilde{E}) &\neq \{0\}, \ p + q = n
\end{aligned}
$$

Proof. Since π is a local isometry, the Chern curvature $\Theta(\tilde{E})$ also satisfies

$$
||[\Lambda, i\Theta(\tilde{E})]| \leq c(n)K.
$$

We denote by \tilde{D}_p the lifted of D_p for $p \geq 0$. Following Proposition [3.5] we get $\mathcal{H}^{p,q}_{(2),\partial E}(\tilde{X}, \tilde{E}) = \{0\}$ for any $p + q \neq n$. Since $\int_X [\omega]^n \neq 0$, by Theorem [3.11] we obtain that either

$$
\ker \tilde{D}_p \cap \bigoplus \Omega^{p,+}_{(2)}(X, E) = \oplus_q \text{even} \mathcal{H}^{p,q}_{(2),\partial E}(\tilde{X}, \tilde{E}) \neq 0
$$

or

$$
\ker \tilde{D}_p \cap \bigoplus \Omega^{p,-}_{(2)}(X, E) = \oplus_q \text{odd} \mathcal{H}^{p,q}_{(2),\partial E}(\tilde{X}, \tilde{E}) \neq 0.
$$

Therefore, for any $p + q = n$, we have

$$
\mathcal{H}^{p,q}_{(2),\partial E}(\tilde{X}, \tilde{E}) \neq 0.
$$

\[\square \]

3.3 L^2-Hodge numbers on vector bundle E

We assume throughout this subsection that (X, g, J) is a compact complex n-dimensional manifold with a Hermitian metric g, and $\pi : (\tilde{X}, \tilde{g}, \tilde{J}) \to (X, g, J)$ its universal covering with $\Gamma = \pi_1(X)$ as an isometric group of deck transformations. Let $E \to X$ be a holomorphic bundle on X. We denote by $\tilde{g} := \pi^*g$ the pull-back metric on \tilde{X} and $\tilde{E} := \pi^*E$ the pull-back bundle on \tilde{X}. We call an open set $U \subset \tilde{X}$ a fundamental domain of the action of $\tilde{\Gamma}$ on \tilde{X} if the following conditions are satisfied:

1. $\tilde{X} = \bigcup_{\gamma \in \Gamma} \gamma(U)$,
2. $\gamma_1(U) \cap \gamma_2(U) = \emptyset$ for $\gamma_1, \gamma_2 \in \Gamma$, $\gamma_1 \neq \gamma_2$ and
3. $\tilde{U} \setminus U$ has zero measure.

We then have (see [4] or [26] Section 3.6.1)

$$
\Omega^{p,q}_{(2)}(\tilde{X}, \tilde{E}) \cong L^2(\Gamma) \otimes \Omega^{p,q}_{(2)}(U, \tilde{E}|_U) \cong L^2(\Gamma) \otimes \Omega^{p,q}(X, E),
$$

where a basis for $L^2(\Gamma)$ is given by the function δ_γ with $\gamma \in \Gamma$ defined by $\delta_\gamma(\gamma') = 1$ if $\gamma = \gamma'$ and $\delta_\gamma(\gamma') = 0$ if $\gamma \neq \gamma'$. Consider now a Γ-module $V \subset \Omega^{p,q}_{(2)}(\tilde{X}, \tilde{E})$, that is a closed subspace of $\Omega^{p,q}_{(2)}(\tilde{X}, \tilde{E})$ which is invariant under the action of Γ. If $\{\eta_i\}_{i \in \mathbb{N}}$ is an orthonormal basis for V then the following quantity is finite:

$$
\sum_{i \in \mathbb{N}} \int_U |\eta_i|^2 dvol_{\tilde{g}|_U}
$$
and does not depend either on the choice of the orthonormal basis of V or on the choice of the fundamental domain of the action of Γ on \tilde{X}. The von Neumann dimension of a Γ-module V is therefore defined as

$$\dim_\Gamma(V) = \sum_{i \in \mathbb{N}} \int_U |\eta_i|^2 dvol_{\tilde{g}}|_U,$$

where $\{\eta_i\}_{i \in \mathbb{N}}$ is any orthonormal basis for V and U is any fundamental domain of the action of Γ on \tilde{X}. Since the Laplacian $\Delta_{\tilde{\partial}_E}$ commutes with the action of Γ, a natural and important example of Γ-module is provided by the space of $L^2(\tilde{\partial}_E)$-harmonic forms of bidegree (i, j), $H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E})$ for each $i, j = 0, \ldots, n$ (see [26, Section 3.6.2]). We denote by $\dim_\Gamma H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E})$ the Von Neumann dimension of $H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E})$ with respect to Γ, which is a nonnegative real number. We have the following two basic facts.

Lemma 3.13.

$$\dim_\Gamma H^\Gamma_{(2)}(M) = 0 \iff H^\Gamma_{(2)}(M) = \{0\},$$

and $\dim_\Gamma H$ is additive: Given

$$0 \to H_1 \to H_2 \to H_3 \to 0,$$

one have

$$\dim_\Gamma H_2 = \dim_\Gamma H_1 + \dim_\Gamma H_3.$$

Then the L^2-Hodge numbers of (X, E), denote by $h^{p,q}_{(2)}(X, E)$, are defined to be

$$h^{p,q}_{(2)}(X, E) = \dim_\Gamma H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E}) \in \mathbb{R}_{\geq 0}, \ (0 \leq p, q \leq n).$$

The Dolbeault-type operators \mathcal{D}_p can be lifted to (\tilde{X}, \tilde{E}):

$$\tilde{\mathcal{D}}_p : \Omega^{p,\ast+1}_{(2)}(\tilde{X}, \tilde{E}) \to \Omega^{p,\ast}_{(2)}(\tilde{X}, \tilde{E}),$$

and one can define the L^2-index of the lifted operators $\tilde{\mathcal{D}}_p$ by

$$L^2\text{Index}_\Gamma(\tilde{\mathcal{D}}_p) = \dim_\Gamma(\ker \tilde{\mathcal{D}}_p) - \dim_\Gamma(\coker \tilde{\mathcal{D}}_p)$$

$$= \dim_\Gamma(\bigoplus_{q \text{ even}} H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E})) - \dim_\Gamma(\bigoplus_{q \text{ odd}} H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E}))$$

$$= \sum_{q \text{ even}} \dim_\Gamma H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E}) - \sum_{q \text{ odd}} \dim_\Gamma H^\Gamma_{(2);\tilde{\partial}_E}^{p,q}(\tilde{X}, \tilde{E})$$

$$= \sum_{q=0}^n (-1)^q h^{p,q}_{(2)}(X, E).$$

We recall the Atiyah’s L^2-index theorem [3, 31].
Theorem 3.14. [31, Theorem 6.1] Let X be closed Riemannian manifold, P a determined elliptic operator on sections of certain bundles over X. Denote by \tilde{P} its lift of P to the universal covering space \tilde{X}. Let $\Gamma = \pi_1(M)$. Then the L^2 kernel of \tilde{P} has a finite Γ-dimension and

$$L^2\text{Index}_\Gamma(\tilde{P}) = \text{Index}(P).$$

We define L^2- Euler characteristics

$$\chi^p_{(2)}(X, E) = \sum_{q=0}^{n} (-1)^q h^{p,q}_{(2)}(X, E)$$

on the holomorphic bundle $\Omega^{p,0}(X) \otimes E$ over a compact Kähler manifold. The celebrated L^2-index theorem of Atiyah [3] asserts that

$$\text{Index}(D_p) = L^2\text{Index}_\Gamma(\tilde{D}_p)$$

so we have the following crucial identities between $\chi^p(X, E)$ and the L^2-Hodge numbers $h^{p,q}_{(2)}(X, E)$:

$$\chi^p(X, E) = \chi^p_{(2)}(X, E) = \sum_{q=0}^{n} (-1)^q h^{p,q}_{(2)}(X, E).$$

Theorem 3.15. Let (X, ω) be a compact Kähler manifold, E a holomorphic bundle on X. Then for any $p = 0, \ldots, n$,

$$\chi^p(X, E) = \chi^p_{(2)}(X, E) = \sum_{q=0}^{n} (-1)^q h^{p,q}_{(2)}(X, E).$$

In [15], Gromov proved that if X is Kähler hyperbolic, $\dim \mathbb{C} X = n$, then for every $p = 0, 1, \ldots, n$, the Euler characteristic

$$\chi^p(X) = \int_X td(X) \text{ch}(\Omega^{p,0}(TX))$$

does not vanish and $\text{sign} \chi^p = (-1)^{n-p}$. We will extend the result to holomorphic vector bundle case.

Proposition 3.16. Let (X, ω) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,

$$\text{sec} \leq -K,$$

for some $K > 0$. Let E be a holomorphic vector bundle on X, D_E be the Chern connection on E. If the curvature $\Theta(E)$ of D_E such that

$$|[\Lambda, i\Theta(E)]| \leq c(n)K,$$

then

$$\begin{cases} h^{p,q}_{(2)}(X, E) = 0, p + q \neq n \\ h^{p,q}_{(2)}(X, E) \geq 1, p + q = n \end{cases}$$

In particular, for every $p = 0, 1, \ldots, n$, the Euler characteristic

$$(-1)^{n-p} \chi^p(X, E) \geq 1.$$
Proof. Following Theorems 3.12 and 3.15, we have
\[(−1)^{n−p}χ^p(X, E) = h^{p,n−p}_{(2)}(X, E) ≥ 1.\]

If we denote by \(K_j(M, E)\) (\(0 ≤ j ≤ n\)) the coefficients in the Taylor expansion of \(χ_y(X, E)\) at \(y = −1\), i.e.,
\[χ_y(X, E) := \sum_{j=0}^n K_j(X, E) \cdot (y + 1)^j.\]
Following the idea of Li in \[24\], we then have

Theorem 3.17. Let \((X, ω)\) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,

\[\text{sec} ≤ −K,\]

for some \(K > 0\). Let \(E\) be a holomorphic vector bundle on \(X\), \(D_E\) be the Chern connection on \(E\). If the curvature \(Θ(E)\) of \(D_E\) such that
\[C := |[Λ, iΘ(E)]| ≤ c(n)K,\]
then for all \(0 ≤ j ≤ n\), \((X, E)\) satisfy Chern number inequalities
\[(−1)^{n+j}K_j(X, E) ≥ \sum_{p=j}^n \binom{n}{p}.\]

Proof. Following Proposition 3.16 we get
\[χ^p(X, E) = \sum_{q=0}^n (−1)^q h^{p,q}(X, E) = (−1)^{n−p}h^{p,n−p}_{(2)}(X, E).\]

We have
\[(-1)^n \sum_{j=0}^n K_j(X, E) \cdot (y + 1)^n = (-1)^n χ_y(X, E)\]
\[= (-1)^n \sum_{p=0}^n χ^p(X, E) \cdot y^p\]
\[= \sum_{p=0}^n h^{p,n−p}(X, E) \cdot (−y)^p.\]
Now comparing the coefficients of the Taylor expansion at \(y = −1\) on both sides of (3.5) yields
\[(-1)^nK_j(X, E) = \frac{1}{j!} \left[\sum_{p=0}^n h^{p,n−p}_{(2)}(X, E) \cdot (−y)^p \right]^{(j)} |_{y = −1}\]
\[= (-1)^j \sum_{p=j}^n \binom{n}{p} h^{p,n−p}_{(2)}(X, E).\]
This implies that

$$(-1)^{n+j} K_j(X, E) \geq \sum_{p=j}^{n} \binom{p}{j}.$$

\[\square \]

Remark 3.18. If E is flat bundle, then

$$\chi_y(X, E) = \text{rank}(E) \chi_y(X) = \sum_{j=0}^{n} K_j(X) \cdot (y + 1)^j.$$

Therefore,

$$K_j(X, E) = \text{rank}(E) K_j(X).$$

The first few terms are given by

$$K_0(X) = c_n[X], \quad K_1(X) = -\frac{1}{2} nc_n[X], \ldots.$$

A recursive algorithm for calculating K_j was described in [25, p. 144]. The formulas K_j for $j \leq 6$ are presented, respectively, in [25, pp. 141–143], [32, p. 145].

If E is a holomorphic bundle, then the first few terms of $K_j(X, E)$ are given by

$$K_0(X, E) = \chi_y(X, E)|_{y=-1} = \text{rank}(E)c_n[X],$$

$$K_1(X, E) = \frac{d}{dy} \chi_y(X, E)|_{y=-1}$$

\[= \frac{d}{dy} \int_X \text{ch}(E) \prod_{i=1}^{n} (1 + ye^{-\gamma_i}) \frac{\gamma_i}{1 - e^{-\gamma_i}}|_{y=-1} \]\n
\[= \int_X \text{ch}(E) t d(X) \sum_{i=1}^{n} \frac{e^{-\gamma_i}}{1 - e^{-\gamma_i}} \prod_{i=1}^{n} (1 - e^{-\gamma_i}) \]\n
\[= \int_X \text{ch}(E) \prod_{i=1}^{n} \gamma_i \sum_{i=1}^{n} \frac{e^{-\gamma_i}}{1 - e^{-\gamma_i}} \]\n
\[= \int_X \text{ch}(E) \prod_{i=1}^{n} \gamma_i \sum_{i=1}^{n} \left(-1 + \frac{1}{1 - e^{-\gamma_i}} \right) \]\n
\[= \int_X \text{ch}(E) \sum_{i=1}^{n} ((\prod_{j \neq i} \gamma_j)(\frac{\gamma_i}{1 - e^{-\gamma_i} - \gamma_i})) \]\n
\[= \int_X \text{ch}(E) \sum_{i=1}^{n} ((\prod_{j \neq i} \gamma_j)(1 - \frac{\gamma_i}{2})) \]\n
\[= \int_X (\text{rank}(E) + c_1(E))(c_{n-1}(X) - \frac{n}{2} c_n(X)) \]\n
\[= -\frac{\text{rank}(E)}{2} nc_n[X] + \langle c_{n-1}(X)c_1(E), X \rangle. \]
Here we use the fact
\[c_{n-1}(X) = \sum_{i=1}^{n} (\prod_{j \neq i} \gamma_j), \quad c_n(X) = \prod_{i=1}^{n} \gamma_i. \]

Corollary 3.19. Let \((X, \omega)\) be a compact Kähler surface with sectional curvature bounded from above by a negative constant, i.e.,
\[\text{sec} \leq -K, \]
for some \(K > 0\). Let \(E\) be a holomorphic vector bundle on \(X\), \(D_E\) be the Chern connection on \(E\). If the curvature \(\Theta(E)\) of \(D_E\) such that
\[C := |[\Lambda, i\Theta(E)]| \leq c(n)K, \]
we then have
\[\int_X c_1(X)c_1(E) = 0. \]
Furthermore, if \(\text{ch}_2(E) = 0\), then
\[\chi_y(X, E) = \text{rank}(E)\chi_y(X). \]

Proof. For any \(\alpha \in \Omega^{2,0}(X, E)\) or \(\alpha \in \Omega^{0,2}(X, E)\), we observe that
\[[\Lambda, i\Theta(E)]\alpha = 0. \]
Therefore,
\[\Delta_E\alpha = 2\Delta_{\partial_E}\alpha = 2\Delta_{\bar{\partial}_E}\alpha. \]
Hence
\[\ker \Delta_{\partial_E} \cap \Omega^{0,2}(X, E) = \ker \Delta_E \cap \Omega^{0,2}(X, E) \]
and
\[\ker \Delta_{\bar{\partial}_E} \cap \Omega^{2,0}(X, E) = \ker \Delta_E \cap \Omega^{2,0}(X, E). \]
Noticing that \(\Omega^{0,2}(X, E) \cong \Omega^{2,0}(X, E)\). We then have
\[\ker \Delta_{\partial_E} \cap \Omega^{2,0}(X, E) \cong \ker \Delta_{\bar{\partial}_E} \cap \Omega^{0,2}(X, E). \]
One can see that
\[h^{2,0}_{(2)}(X, E) = h^{0,2}_{(2)}(X, E). \]
Noticing that
\[\chi_y(X, E)|_{y=-1} = h^{0,2}_{(2)}(X, E) + h^{1,1}_{(2)}(X, E) + h^{2,0}_{(2)}(X, E). \]
We then have
\[-K_1(X, E) = \text{rank}(E) \int_X c_2(X) - \int_X c_1(X)c_1(E) \]
\[= h^{1,1}_{(2)}(X, E) + 2h^{2,0}_{(2)}(X, E) \]
\[= h^{0,2}_{(2)}(X, E) + h^{1,1}_{(2)}(X, E) + h^{2,0}_{(2)}(X, E) \]
\[= \chi_y(X, E)|_{y=-1} \]
\[= \text{rank}(E)\chi(X). \]
Therefore, we get
\[\int_X c_1(X)c_1(E) = 0. \]

Noticing that
\[td(X) = 1 + \frac{c_1(X)}{2} + \frac{c_1^2(X) + c_2(X)}{12}, \quad ch(E) = rank(E) + c_1(E) + \frac{c_2(E) - 2c_2(E)}{2}. \]

By the definition of \(K_2(X, E) \), we then have
\[
K_2(X, E) = \frac{1}{2} \frac{d^2}{dy^2} \chi_y(X, E) |_{y=-1}
\]
\[
= \frac{1}{2} \frac{d^2}{dy^2} \int_X td(X)ch(E) \prod_{i=1}^2 (1 + ye^{-\gamma_i}) |_{y=-1}
\]
\[
= \frac{1}{2} \frac{d^2}{dy^2} \int_X td(X)ch(E)e^{-\gamma_1 - \gamma_2}y^2 |_{y=-1}
\]
\[
= \int_X td(X)ch(E)e^{-c_1(X)}
\]
\[
= \int_X (1 + \frac{c_1(X)}{2} + \frac{c_1^2(X) + c_2(X)}{12})(1 - c_1(X) + \frac{c_1^2(X)}{2})(\text{rank}(E) + c_1(E) + \frac{c_2(E) - 2c_2(E)}{2})
\]
\[
= \int_X (\frac{c_1^2(E) - 2c_2(E)}{2} - c_1(X)c_1(E) + \text{rank}(E)\frac{c_1^2(X)}{2} - \text{rank}(E)\frac{c_1^2(X)}{2} + \frac{c_1(X)}{2}c_1(E)
\]
\[
+ \text{rank}(E)\frac{c_1^2(X) + c_2(X)}{12})
\]
\[
= \text{rank}(E)K_2(X) - \langle \frac{c_1(X)c_1(E)}{2}, X \rangle + \langle \frac{c_1^2(E) - 2c_2(E)}{2}, X \rangle.
\]

We also have
\[K_2(X, E) = h_{(2)}^{2,0}(X, E), \quad K_2(X) = h_{(2)}^{2,0}(X). \]

Therefore, we get
\[\int_X \frac{c_1^2(E) - 2c_2(E)}{2} = h_{(2)}^{2,0}(X, E) - \text{rank}(E)h_{(2)}^{2,0}(X). \]

If \(ch_2(E) = 0 \), then
\[K_2(X, E) = \text{rank}(E)K_2(X). \]

Notice that \(K_0(X, E) = \text{rank}(E)K_0(X) \) and \(K_1(X, E) = \text{rank}(E)K_1(X). \) Therefore,
\[\chi_y(X, E) = \text{rank}(E)\chi_y(X). \]

\[\square \]

Proof of Theorem 1.7 If \(C := ||\Lambda, i\Theta(L)|| > c(n)K \), i.e., \(\left| \frac{c_nK}{c} \right| = 0 \), then \(\chi(X) \geq 3. \)

If \(C \leq c_nK \), i.e., there is a positive integer \(N \) such that
\[C(N + 1) > c_nK \geq CN = ||\Lambda, i\Theta(L^{\otimes N})||, \]
then for any $|m| \leq N$, following Corollary 3.19, we get

$$\langle c_1(L^\otimes m)c_1(X), X \rangle = 0.$$

Therefore,

$$K_1(X, L^\otimes m) = K_1(X) = -c_2[X].$$

By the definition of $\chi_y(X, E)$, we get

$$\chi_y(X, L^\otimes m) = \chi^0(X, L^\otimes m) + \chi^1(X, L^\otimes m)y + \chi^2(X, L^\otimes m)y^2 = K_0(X, L^\otimes m) + K_1(X, L^\otimes m) \cdot (y + 1) + K_2(X, L^\otimes m) \cdot (y + 1)^2.$$

Therefore, for any $|m| \leq N$, we have

$$\chi^0(X, L^\otimes m) = K_0(X, L^\otimes m) + K_1(X, L^\otimes m) + K_2(X, L^\otimes m) = K_0(X) + K_1(X) + K_2(X) + \frac{m^2}{2} \int_X c_1^2(L) = \chi^0(X) + \frac{m^2}{2} \int_X c_1^2(L) \geq 1,$$

$$\chi^1(X, L^\otimes m) = K_1(X, L^\otimes m) + 2K_2(X, L^\otimes m) = K_1(X) + 2K_2(X) + m^2 \int_X c_1^2(L) = \chi^1(X) + m^2 \int_X c_1^2(L) \leq -1,$$

$$\chi^2(X, L^\otimes m) = K_2(X, L^\otimes m) = K_2(X) + \frac{m^2}{2} \int_X c_1^2(L) = \chi^2(X) + \frac{m^2}{2} \int_X c_1^2(L) \geq 1.$$

Following [15, 0.4.A. Theorem], we also have $(-1)^p \chi^p(X) \geq 1$, $p = 0, 1, 2$.

When $\int_X c_1^2(L) > 0$, for any $|m| \leq N$, we obtain that

$$\chi^0(X, L^\otimes m) \geq 1 + \frac{m^2}{2} \int_X c_1^2(L),$$

$$- \chi^1(X, L^\otimes m) \geq 1,$$

$$\chi^2(X, L^\otimes m) \geq 1 + \frac{m^2}{2} \int_X c_1^2(L).$$

Therefore,

$$\chi(X) = \chi_y(X, L^\otimes m)|_{y=-1} = \sum_{i=0}^2 (-1)^i \chi^i(X, L^\otimes m) \geq 3 + m^2 \int_X c_1^2(L).$$
When $\int_X c_1^2(L) < 0$, for any $|m| \leq N$, we obtain that

$$
\chi^0(X, L^\otimes m) \geq 1,
$$

$$
- \chi^1(X, L^\otimes m) \geq 1 - m^2 \int_X c_1^2(L),
$$

$$
\chi^2(X, L^\otimes m) \geq 1.
$$

Therefore,

$$
\chi(X) = \chi_y(X, L^\otimes m)|_{y=-1}
$$

$$
= \sum_{i=0}^2 (-1)^i \chi^i(X, L^\otimes m)
$$

$$
\geq 3 - m^2 \int_X c_1^2(L).
$$

Therefore, for all cases, we get

$$
\chi(X) \geq 3 + \left| \int_X c_1^2(L) \cdot \left(\frac{c_nK}{C^*} \right)^2 \right|.
$$

\[\square\]

4 Eigenvalue and Euler characteristic

4.1 Hilbert polynomial of line bundle

The Hilbert polynomial of polarized manifold (X, L), i.e., L is an ample line bundle on a compact Kähler manifold X, is defined as the functional $P_{(X,L)}(m) := \chi(X, L^\otimes L)$. Indeed, $P_{(X,L)}(m)$ is a polynomial in n. Following Kodaira vanishing theorem (see [19, Proposition 5.27]), we also have $P_{(X,L)}(m) = h^0(X, L^\otimes m)$ for $m \gg 1$. Notice that

$$
[t(X) ch(\Omega^{p,0}(TX)) ch(L^\otimes m)]_{2n} = \sum_{i=0}^n [t(X) ch(\Omega^{p,0}(TX))]_{2n-2i} [ch^m(L)]_{2i},
$$

$$
= \sum_{i=0}^n [t(X) ch(\Omega^{p,0}(TX))]_{2n-2i} \frac{(mc_1(L))^i}{i!},
$$

where $[t(X) ch(\Omega^{p,0}(TX))]_{2n-2i}$ is the part of $2n - 2i$-form of $t(X) ch(\Omega^{p,0}(TX))$. We denote

$$
a_i := \int_X [t(X) ch(\Omega^{p,0}(TX))]_{2n-2i} \wedge \frac{c_1(L)}{i!}.
$$

Therefore,

$$
P^{(p)}_n(m, L) := \sum_{i=0}^n a_i m^i = \int_X t(X) ch(\Omega^{p,0}(TX)) ch(L^\otimes m).
$$

$P^{(p)}_n(m, L)$ is a polynomial of degree n if only if $\int_X c_1^n(L) \neq 0$. We can introduce the following definition.
Definition 4.1. Let \(L \) be a holomorphic line bundle on a compact Kähler manifold \(X \). We call
\[
P^{(p)}_n(m, L) := \chi_p(X, L^\otimes m)
\]
the \(p \)-Hilbert polynomial of line bundle \(L \).

Lemma 4.2. Let \(P_n(m) \) be a numerical polynomial of degree \(n \geq 1 \). Suppose that \(P_n(m) \) is not constant. If \(N = \{i_1, \cdots, i_{2nL+1}\} \), where the integers \(\{i_j\}_{j=1, \cdots, 2nL+1} \) that are not equal to each other, then there exists integer \(\tilde{i} \) such that
\[
|P_n(\tilde{i})| \geq L.
\]

Proof. Since \(P_n(m) \) is not constant, there is an coefficient \(a_i \neq 0 \). Notice that for any integer \(i \), the equation \(P_n(x) = i \) has at most \(n \) solutions. Therefore, \(0 \leq |P_n(\tilde{i})| \leq L - 1 \) has at most \(2nL \) solutions. Hence there exists an integer \(\tilde{i} \in N \) such that \(|P_n(\tilde{i})| \geq L \).

Assume that \(X \) has a Kähler metric \(\omega \). Let
\[
\gamma_1(x) \leq \cdots \gamma_n(x)
\]
be the eigenvalues of \(i\Theta(L)_x \) with respect to \(\omega_x \) at each point \(x \in X \), and let
\[
i\Theta(L) = i \sum_{1 \leq j \leq n} \gamma_i \xi_j \wedge \bar{\xi}_j, \quad \xi_j \in T^*_x X
\]
be a diagonalization of \(i\Theta(L)_x \). We then have
\[
\langle [i\Theta(L), \Lambda]u, u \rangle = \sum_{J,K} (\sum_{j \in J} \gamma_j + \sum_{j \in K} \gamma_j - \sum_{1 \leq j \leq n} \gamma_j) |u_{J,K}|^2.
\]

Lemma 4.3. Let \(L \) be a line on a compact Kähler manifold \((X, \omega)\). Then \(C = 0 \) if only if \(\Theta(L) = 0 \). Furthermore, if \(L \) is not flat, then there is an uniform positive constant \(\varepsilon \in (0, 1) \) such that
\[
C > \varepsilon.
\]

Proof. If \(C = 0 \), then for any \(J, K \), we have
\[
\sum_{J,K} (\sum_{j \in J} \gamma_j + \sum_{j \in K} \gamma_j - \sum_{1 \leq j \leq n} \gamma_j) = 0.
\]
We take \(J = \{1, \cdots, n\} \) and \(K = j \), then we get
\[
\gamma_j = 0, \forall 0 \leq j \leq n,
\]
i.e., \(\Theta(L) = 0 \).

We suppose that the constant \(\varepsilon \) does not exist. We may then choose a sequence non-flat bundles \(\{L_i\}_{i \in \mathbb{N}} \) such that \(C_i \to 0 \) as \(i \to \infty \). We have
\[
|\Theta(L_i)| \leq \sum_{j=1}^n |\gamma_j| \leq nC_i.
\]
If \(i \) large enough, then there exists a flat connection on \(L_i \) (see [34]), contradicting our initial assumption regarding the sequence \(\{L_i\}_{i \in \mathbb{N}} \).
Proof of Theorem \ref{thm:vanishing} Since \(\chi^p(X, L^\otimes m) \) is not constant for some \(p \in [0, n] \), we obtain that \(L \) is not flat, i.e.,

\[C := ||i\Theta(L), \Lambda|| > 0. \]

For any \(K > 0 \), there is an integer \(N \) such that

\[C(nN + 1) > c_KK \geq C(nN) = ||i\Theta(L^\otimes(nN)), \Lambda||. \]

Notice that \(P_n^{(p)}(m, L) \) is integer for any \(|m| \leq nN \). Following Lemma \ref{lem:integer}, then there is a integer \(\tilde{m} = \tilde{m}(p) \) such that

\[|P_n^{(p)}(\tilde{m}, L) - \chi^p(X)| \geq N. \]

We then have either

\[(-1)^{n-p+1}(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \geq N \]

or

\[(-1)^{n-p+1}(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \leq -N. \]

If \((-1)^{n-p+1}(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \leq -N \), then

\[(-1)^{n-p}\chi^p(X, L^\otimes \tilde{m}) = (-1)^{n-p}\chi^p(X) + (-1)^{n-p}(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \geq 1 + N. \]

Following Theorem \ref{thm:vanishing} for any \(|m| \leq nN \), we get

\[(-1)^{n-p}\chi^p(X, L^\otimes m) = (-1)^{n-p}\chi^p(X) + (-1)^{n-p}(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \geq 1. \]

If \((-1)^{n-p+1}(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \geq N \), then there is a integer \(\tilde{m} \) such that

\[(-1)^{n-p}\chi^p(X) = (-1)^{n-p}\chi^p(X, L^\otimes \tilde{m}) + (-1)^{n-p+1}(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \geq 1 + N. \]

Following the vanishing theorem and the Atiyah’s \(L^2 \)-index theorem, we obtain that either

\[(-1)^{n-p}\chi^p(X) = (-1)^{n-p}\chi_{(2)}^p(X) = h_{(2)}^{n-p,p}(X) \geq 1 + N \]

or

\[(-1)^{n-p}\chi^p(X, L^\otimes \tilde{m}) = (-1)^{n-p}\chi_{(2)}^p(X, L^\otimes \tilde{m}) = h_{(2)}^{n-p,p}(X, L^\otimes \tilde{m}) \geq 1 + N. \]

Therefore, we get

\[(-1)^n\chi(X) = (-1)^n\chi_{(2)}(X) = \sum_{p=0}^n h_{(2)}^{n-p,p}(X) \geq (n + 1) + N \]

or

\[(-1)^n\chi(X, L^\otimes \tilde{m}) = (-1)^n\chi_{(2)}^p(X, L^\otimes \tilde{m}) = \sum_{p=0}^n h_{(2)}^{n-p,p}(X, L^\otimes \tilde{m}) \geq (n + 1) + N. \]

We observe that for any \(m \in \mathbb{Z} \),

\[\chi_g(X, L^\otimes m)|_{y=-1} = \chi(X). \]

Hence, the Euler number of \(X \) must satisfy

\[(-1)^n\chi(X) = (-1)^n\chi(X, L^\otimes \tilde{m}) \geq (n + 1) + N. \]

\[\square \]
4.2 The roots of Hilbert polynomial

We denote by
\[Z^\pm = \{ m \in \mathbb{R}^\pm : P_n^{(p)}(m, L) = \chi^p(X) \} \]
the set of positive (resp. negative) roots of \((P_n^{(p)}(m, L) - \chi^p(X)) \). We denote
\[C^\pm := \max_{m \in Z^\pm} |m|, \]
when \(Z^\pm = \emptyset \), we denote \(C^\pm = 0 \). It’s easy to see that \(C^\pm \) depends on \(K \) and \(c_1(L) \).

Lemma 4.4. ([9, Lemma 16.3]) Let \(P_n(m) \) be a numerical polynomial of degree \(n \geq 1 \) and with leading coefficient \(\frac{1}{n!} a_n \in \mathbb{Z}, a_n > 0 \). We assume that \(P_n(m) \geq 0 \) for all \(m \geq m_0 \). Then for any \(k \in \mathbb{N} \), there exists \(m \in [m_0, m_0 + kn] \) such that
\[P_n(m) \geq \frac{a_n k^n}{2n-1}. \]

Proof. By virtue of Newton’s formula for the iterated differentials \(\Delta P_n(m) = P_n(m + 1) - P_n(m) \), we obtain
\[\Delta^n P_n(m) = \sum_{1 \leq j \leq n} (-1)^j \binom{n}{j} P_n(m + N - j) = a_n. \]
Consequently, if \(j \in \{0, 2, 4, 2\lfloor n/2 \rfloor \} \subset [0, n] \) is the even integer realizing the maximum of \(P(m_0 + n - j) \) on this set, we obtain
\[2^{n-1} P(m_0 + n - j) \geq (\binom{n}{0} + \binom{n}{2} + \cdots) P(m_0 + n - j) \geq a_n, \]
whereby we obtain the existence of an integer \(m \in [m_0, m_0 + n] \) with \(P_n(m) \geq \frac{a_n k^n}{2n-1} \). The result is therefore prove for \(k = 1 \). In general case, we apply this particular result to the polynomial \(Q_n(m) = P_n(km - (k-1)m_0) \), for which the leading coefficient is \(\frac{1}{n!} a_n k^n \).

Proposition 4.5. Let \((X, \omega)\) be a compact Kähler manifold with sectional curvature bounded from above by a negative constant, i.e.,
\[\sec \leq -K, \]
for some \(K > 0 \). Suppose that there is a holomorphic line bundle \(L \) on \(X \) such that \(a_n := \int_X c_1^n(L) \neq 0 \). If \(c_n K \geq CC^\pm \), then there exists an integer \(\tilde{m} \in [-\frac{c_n K - CC^\pm}{nC}, \frac{c_n K - CC^\pm}{nC}] \) such that either
\[(-1)^{n-p} \chi^p(X, L^{\otimes \tilde{m}}) \geq 2|a_n|\left(\left|\frac{c_n K - CC^\pm}{2Cn}\right|\right)^n + 1 \]
or
\[(-1)^{n-p} \chi^p(X) \geq 2|a_n|\left(\left|\frac{c_n K - CC^\pm}{2Cn}\right|\right)^n + 1. \]
Proof. For any $K > 0$, there are integers N^+, N such that

$$Cn(N + 1) > c_nK - CC^\pm \geq C(nN).$$

and

$$N^+ + 1 > C^\pm \geq N^+.$$

Since $c_nK \geq CC^\pm$, $N \geq 0$. Therefore, we have

$$c_nK \geq C(nN + N^+) \geq |\langle i\Theta(L^{\otimes nN+\pm}), \Lambda \rangle|.$$

Notice that $\text{sign}(a_n)(P_n^{(p)}(m, L) - \chi^p(X))$ is positive integer for any $m > N^+$ and $\text{sign}(a_n)(P_n^{(p)}(m, L) - \chi^p(X))$ is negative (resp. positive) integer for any $m < -N^-$ when n is odd (resp. even). Following the way in Lemma 4.4, then there is a integer $N^+ \leq \tilde{m} \leq nN + N^+$ (resp. $-nN - N^- \leq \tilde{m} \leq -N^-$) such that

$$\text{sign}(a_n)(P_n^{(p)}(\tilde{m}, L) - \chi^p(X)) \geq |a_n|n^{\n/2^{n-1}} (\text{resp.} \ (-1)^n\text{sign}(a_n)P_n(\tilde{m}) \geq |a_n|n^{\n/2^{n-1}}).$$

Following Theorem 1.2 for any $|m| \leq (nL + N^\pm)$, we get

$$(-1)^{n-p}\chi^p(X, L^{\otimes m}) = (-1)^{n-p}\chi^p(X) + (-1)^{n-p}(P_n^{(p)}(m, L) - \chi^p(X)) \geq 1$$

and

$$(-1)^{n-p}\chi^p(X) = (-1)^{n-p}\chi^p(X, L^{\otimes m}) + (-1)^{n-p+1}(P_n^{(p)}(m, L) - \chi^p(X)) \geq 1.$$}

We then have

$$\max\{|(-1)^{n-p}\chi^p(X), (-1)^{n-p}\chi^p(X, L^{\otimes \tilde{m}})\} \geq 1 + |P_n^{(p)}(\tilde{m}, L) - \chi^p(X)|$$

$$\geq 1 + |a_n|n^{\n/2^{n-1}}$$

$$\geq 2|a_n|(|\frac{c_nK - CC^\pm}{2Cn}|)^n + 1.$$

We denote by

$$Z_p := \{m \in \mathbb{R} : P_n^{(p)}(m, L) = \chi^p(X)\}$$

the set of real roots of polynomial $P_n^{(p)}(m, L) - \chi^p(X)$. We denote

$$m_p(L) = \max_{m \in Z_p} |m|,$$

(when $Z = \emptyset$, we denote $m_p(L) = 0$). It’s also easy to see $m_p(L)$ depends on K and $c_1(L)$.

Proof of Theorem 1.9 There exists an integer N such that

$$Cn(N + 1) > c_n K - Cm_p(L) \geq CnN.$$

If $N \leq 0$, then $(-1)^{n-p} \chi^p(X) \geq 1$.

If $N > 0$, we then have

$$c_n K \geq C(nN + m_p(L)) \geq \left| [i\Theta(L^\otimes(nN + |m_p(L)|)), \Lambda] \right|.$$

Following Theorem 1.2 for any $|m| \leq (nN + |m_p(L)|)$, we get

$$(-1)^{n-p} \chi^p(X, L^\otimes m) \geq 1,$$

i.e.,

$$(-1)^{n-p} \chi^p(X) \geq (-1)^{n-p+1}(P^{(p)}_n(m, L) - \chi^p(X)) + 1.$$

When n is odd, we get $\text{sign}(a_n)(P^{(p)}_n(m, L) - \chi^p(X))$ is positive integer for any $m > m_p(L)$ and $\text{sign}(a_n)(P^{(p)}_n(m, L) - \chi^p(X))$ is negative integer for any $m < -m_p(L)$. Therefore, following Lemma 4.4 we get

$$(-1)^{n-p} \chi^p(X) \geq \max_{nN + |m_p(L)| \geq |m| > m_p(L)} (-1)^{n-p+1}(P^{(p)}_n(m, L) - \chi^p(X)) + 1 \geq 1 + |a_n|N^n/2^{n-1}.$$

When n is even, we get $\text{sign}(a_n)(P^{(p)}_n(m, L) - \chi^p(X))$ is positive integer for any $|m| > m_p(L)$. Following Proposition 4.5 there exists an integer $\tilde{m} \in [-nN - |m_p(L)|, nN + |m_p(L)|]$ such that either

$$(-1)^{n-p} \chi^p(X, L^\otimes \tilde{m}) \geq 1 + |a_n|N^n/2^{n-1}$$

or

$$(-1)^{n-p} \chi^p(X) \geq 1 + |a_n|N^n/2^{n-1}.$$

Therefore, for all cases, we get

$$(-1)^n \chi(X) \geq \max\{n + 1, n + 1 + 2|a_n|\text{sign}(\lfloor c_n K - Cm_p(L) \rfloor) |\lfloor \frac{c_n K - Cm_p(L)}{2Cn} \rfloor|^n\}.$$

\[\square\]

Acknowledgements

The author thanks Zhongjie Lu, Jijian Song, Ruiran Sun for their useful comments and suggestions. This work was supported in part by NSF of China (11801539) and the Fundamental Research Funds of the Central Universities (WK3470000019), the USTC Research Funds of the Double First-Class Initiative (YD3470002002).
References

[1] Anderson, M.T. “L^2 harmonic forms and a conjecture of Dodziuk-Singer.” American Mathematical Society. Bulletin. New Series 13, no. 2 (1985): 163–165.

[2] Anderson, M. “L^2-harmonic forms on complete Riemannian manifolds.” Geometry and analysis on manifolds (Katata/Kyoto, 1987), 1–19, Lecture Notes in Math., 1339, Springer, Berlin, 1988.

[3] Atiyah, M. “Elliptic operators, discrete group and Von Neumann algebras.” Astérisque, 32–33 (1976): 43–72.

[4] Bei, F. “Von Neumann dimension, Hodge index theorem and geometric applications.” European Journal of Mathematics 5 (2019): 1212–1233.

[5] Cao, J.G., and F. Xavier. “Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature.” Mathematische Annalen 319 (2001): 483–491.

[6] Chen, B.L., and X.K. Yang “Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds.” Mathematische Annalen 370 (2018): 1477–1489.

[7] Chen, B.Y. “Infinite Dimensionality of the Middle L^2-cohomology on Non-compact Kähler Hyperbolic Manifolds.” Publications of the Research Institute for Mathematical Sciences 42 (2006): 683–689.

[8] Chern, S.S. “On curvature and characteristic classes of a Riemannian manifold.” Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 20 (1955): 117–126.

[9] Demailly, J.P. “Théorie de Hodge L^2 et théorèmes d’annulation. (French) [L^2 Hodge theory and vanishing theorems].” Introduction à la théorie de Hodge, 3–111, Panor. Synthèses, 3, Soc. Math. France, Paris, 1996.

[10] Demailly, J.P. “Complex analytic and differential geometry.” Grenoble: Université de Grenoble I. (1997)

[11] Kodaira, K. “L^2 harmonic forms on rotationally symmetric Riemannian manifolds.” Proceedings of the American Mathematical Society 11 (1979): 395–400.

[12] Kodaira, K. “L^2 harmonic forms on complete manifolds. In: Yau, S. T. (ed.) Seminar on Differential Geometry,” Princeton University Press, Princeton. Ann. Math Studies, 102 (1982): 291–302.

[13] Geroch, R. “Positive sectional curvatures does not imply positive Gauss-Bonnet integrand.” Proceedings of the American Mathematical Society 54 (1976): 267–70.

[14] Griffiths, P.A. “Hermitian differential geometry. Chern classes and positive vector bundles, Global Analysis, papers in honor of K. Kodaira.” Princeton University Press, Princeton. (1969): 181–251.

[15] Gromov, M. “Kähler hyperbolicity and L_2-Hodge theory.” Journal of Differential Geometry 33 (1991): 263–292.

[16] Hitchin, N.J. “L^2 cohomology of hyper-Kähler quotients.” Communications in Mathematical Physics 211 (2000): 153–165.

[17] Hirzebruch, F. Topological methods in algebraic geometry, 3rd Edition, Springer, Berlin, 1966.

[18] Huang, T. “L^2 vanishing theorem on some Kähler manifolds.” Israel Journal of Mathematics 241 (2021): 147–186.

[19] Huybrechts, D. “Complex geometry: an introduction.” Springer Science and Business Media. (2006)

[20] Jost, J., and K. Zuo. “Vanishing theorems for L^2-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry.” Communications in Analysis and Geometry 8 (2000): 1–30.

[21] Kodaira, K. “On cohomology groups of compact analytic varieties with coefficients in some analytic faisceaux.” Proceedings of the National Academy of Sciences of the United States of America 39 (1953): 868–872.

[22] Kodaira, K. “On a differential geometric method in the theory of analytic stacks.” Proceedings of the National Academy of Sciences of the United States of America 39 (1953): 1268–1273.

[23] Kodaira, K. “On Kähler varieties of restricted type.” Annals of Mathematics 60 (1954): 28–48.

[24] Li, P. “Kähler hyperbolic manifolds and Chern number inequalities.” Transactions of the American Mathematical Society 372 (2019): 6853–6868.
[25] Libgober, A.S., and J.W. Wood “Uniqueness of the complex structure on Kähler manifolds of certain homology types.” *Journal of Differential Geometry* **30** (1990): 139–154.

[26] Ma, X., and G. Marinescu “Holomorphic Morse Inequalities and Bergman Kernels.” *Progress in Mathematics*, vol.254. Birkhäuser, Basel (2007)

[27] McNeal, J.D. “L^2 harmonic forms on some complete Kähler manifolds.” *Mathematische Annalen* **323** (2002): 319–349.

[28] McNeal, J.D. “A vanishing theorem for L^2 cohomology on complete manifolds. Sixth International Conference on Several Complex Variables.” *Journal of the Korean Mathematical Society* **40** (2003): 747–756.

[29] Nakano, S. “On complex analytic vector bundles.” *Journal of the Mathematical Society of Japan* **7** (1955): 1–12.

[30] Nakano, S. “Vanishing theorems for weakly 1-complete manifolds.” *Number Theory. Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo* (1973): 169–179.

[31] Pansu, P. “Introduction to L^2 Betti numbers.” *Riemannian geometry (Waterloo, ON, 1993)* **4** (1993): 53–86.

[32] Salamon, S. “On the Cohomology of Kähler and Hyper-Kähler Manifolds.” *Topology* **35** (1996): 137–155.

[33] Singer, I. “Some remarks on operator theory and index theory.” *K-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975)*, pp. 128–138. Lecture Notes in Math., Vol. 575, Springer, Berlin, 1977.

[34] Uhlenbeck, K.K. “The Chern classes of Sobolev connections.” *Communications in Mathematical Physics* **101** (1985): 445–457.

[35] Wells, R. “Differential Analysis on Complex Manifolds, (Third ed.)” *Graduate Texts in Math.* **65**, Springer, New York, Berlin, (2008)