A Pilot Study to Predict Future Cardiovascular Events by Novel Four-dimensional Echocardiography Global Area Strain in ST-Elevation Myocardial Infarction Patients Managed by Primary Percutaneous Coronary Intervention

Yasmin Abdelrazek Ali, Ahmed Mohammed Alashry¹, Maged Tawfik Saad, Walaa Adel, Azza Abdallah El Fiky

Department of Cardiology, Ain Shams University, Cairo, Egypt. ¹Department of Cardiology, Helwan University, Helwan, Egypt

Abstract

Context: Four-dimensional speckle-tracking echocardiography (4D-STE) is ideal to accurately assess myocardial deformation. The novel 4D global area strain (GAS) uses global longitudinal and global circumferential strains (GCSs) to detect subtle changes in myocardium. **Aims:** The aim of this study was to determine the predictive value of 4D strain echocardiography for major adverse cardiovascular events (MACEs) in ST-elevation acute myocardial infarction (STEMI) patients after successful reperfusion by primary percutaneous coronary intervention (PCI).

Settings and Design: This was a longitudinal study at a single center. **Patients and Methods:** We enrolled 170 patients who underwent successful primary PCI. Each patient was evaluated with 2D echocardiography and 4D echocardiography with 4D strain parameters and followed up over a year for the occurrence of MACE. **Statistical Analysis Used:** Chi-square test, independent t-tests, and multivariate logistic regression analysis were used. **Results:** Over 1 year of follow-up, 32 MACE were recorded. Patients with MACE were more likely to have had percutaneous transluminal coronary angioplasty done during the index primary PCI intervention, multivessel coronary artery disease, higher left ventricular end-diastolic and end-systolic dimensions (left ventricle end diastolic dimension (LVEDD) and left ventricle end systolic dimension (LVEDD), respectively), lower 2D left ventricular ejection fraction (LVEF), higher baseline heart rate, higher end-diastolic and end-systolic volumes, lower 3D-LVEF, higher 4D global longitudinal strain, 4D-GCS, 4D-GAS, and lower 4D global radial strain (4D-GRS) ($P < 0.005$ for all parameters). The most powerful predictor for MACE among our study population is 4D-GAS, with the best cutoff value of $4D$-GAS >−17 ($P = 0.008$; odds ratio = 20.668; confidence interval = 2.227–191.827). **Conclusions:** The novel 4D-GAS echocardiography predicts adverse clinical events in STEMI patients managed by successful primary PCI.

Keywords: Four-dimensional global area strain, four-dimensional strain echocardiography, major adverse cardiovascular events

INTRODUCTION

ST-elevation myocardial infarction (STEMI) is the most serious complication of coronary artery disease (CAD). Primary percutaneous coronary intervention (PCI) performed by an experienced team in an acute setting is the recommended reperfusion strategy.[1] Remodeling of the left ventricle (LV) after an acute myocardial infarction (AMI) involves changes that affect LV structure and function.[2] Left ventricular ejection fraction (LVEF) is used to assess and predict clinical outcomes after AMI,[3] but its correlation with intrinsic myocardial contractility is limited by load dependency and complex LV geometry.[4] Because strain analysis by speckle-tracking technology accurately assesses the deformation of each myocardial segment, it correlates to myocardial performance.[5]

Recently, four-dimensional (4D) echocardiography has been developed to overcome the limitations of 2D speckle-tracking echocardiography (STE) using LV longitudinal, diastolic and end-systolic dimensions, lower 3D-LVEF, higher baseline heart rate, higher end-diastolic and end-systolic volumes, lower 3D-LVEF, higher 4D global longitudinal strain, 4D-GCS, 4D-GAS, and lower 4D global radial strain (4D-GRS) ($P < 0.005$ for all parameters). The most powerful predictor for MACE among our study population is 4D-GAS, with the best cutoff value of $4D$-GAS >−17 ($P = 0.008$; odds ratio = 20.668; confidence interval = 2.227–191.827). **Conclusions:** The novel 4D-GAS echocardiography predicts adverse clinical events in STEMI patients managed by successful primary PCI.
circumferential, radial, and areal strains acquired in real time.\cite{6} 4D echocardiography is able to measure strain dynamics in every myocardial segment using a 3D reconstruction of the LV and color mapping throughout the cardiac cycle.\cite{7,8}

This study evaluates the role of 4D global area strain (4D-GAS) in predicting the clinical outcomes of patients who underwent successful revascularization of STEMI by primary PCI.

Patients and Methods

Patient selection

Patients who presented to our hospital with acute STEMI from December 2015 to March 2017 were enrolled to the study. The diagnosis and treatment of patients with STEMI were carried out according to the European Society of Cardiology guidelines of 2012 on the diagnosis and management of STEMI.\cite{9} All enrolled patients had a successful primary PCI (restoration of thrombolysis in myocardial infarction III flow and myocardial blush grade II–III) in the occluded vessel and its territory. Patients with multivessel disease (64 patients, 37.6%) underwent PCI to the significant lesions in later sessions. All patients underwent 2D echocardiography and 4D strain echocardiography within 48 h after revascularization. Patients with atrial fibrillation, LVEF below 40%, cardiogenic shock, or moderate-to-severe valve disease were excluded. The patients were divided into two groups, according to the presence of major adverse cardiovascular event (MACE). Group I was made up of 32 patients who experienced MACE in the follow-up period, whereas Group II included 138 patients who did not experience MACE in the follow-up period.

Ethics

The study was approved by the university hospital research ethics committee, and all patients provided written informed consent. The study followed the principles of the Helsinki Declaration of 1975, as revised in 2000.

Echocardiography

Conventional two-dimensional echocardiography

Echocardiography was performed using Vivid E9 Ultrasound (GE Healthcare Vingmed ultrasound AS) equipped with a 2.5 MHZ transducer gated with ECG. The patient was positioned in the left lateral decubitus and was allowed to breathe normally. We measured left ventricular end-systolic volume (ml), left ventricular end-diastolic volume (ml), LVEF (%), using biplane Simpson’s method), and the wall motion score index (WMSI) through apical four-chamber, apical two-chamber, and apical long-axis views.\cite{10}

Four-dimensional strain echocardiography

Real-time, 4D, full-volume images were obtained using a 4V-D transducer probe (manufacturer details) set at a frequency of 1.5–40 MHZ, a frame rate >25/s, and in apical four-chamber view. The multiple cardiac cycle mode was used to ensure the inclusion of the whole LV cavity and its walls in the total volume of the image. The patient was instructed to hold his or her breath during 3–4 cardiac cycles in order to avoid stitching artifacts on the images.\cite{11}

EchoPAC software version BTII, 4D Auto LVQ (GE Vingmed Ultrasound AS), was used to perform data analysis on all 4D data sets. For semi-automated endocardial surface detection, the software automatically generated tracking of the endocardium and the epicardium. Endocardial mesh was used to measure the LVESV, LVEDV, and LVEF. The endocardial and epicardial web framework was used to measure the weight of the LV and the strain of the segmental and the whole LV. The software provides the following standard 4D echocardiographic parameter values: 4D LVEF, 4D LVESV and LVEDV, 4D stroke volume, cardiac output, and end-diastolic and end-systolic mass. In addition, the software provides peak systolic values of longitudinal, radial, and circumferential strains of each of the 17 LV segments, as well as the mean values of the global longitudinal strain (GLS), global circumferential strain (GCS), global radial strain (GRS), and the GAS.

All echocardiographic measurements were analyzed by two independent operators without knowledge of the patient’s clinical status or coronary angiography. The average value of three cycles was calculated and used in our analyses. Agreement between the two operators was acceptable (coefficient of variation = 8.5%).

Follow-up

All candidates were followed up for 1 year in an outpatient setting and by telephone. The follow-up end point was the occurrence of MACE, defined as cardiac death, cerebrovascular stroke, ventricular arrhythmias (nonsustained or sustained ventricular tachycardia), myocardial infarction, a need for repeated revascularization, and heart failure requiring hospitalization.

Statistical analysis

All descriptive data were expressed as mean ± standard deviation. Baseline clinical parameters and echocardiography parameters were compared using Chi-square tests and independent t-tests. Multivariate logistic regression analysis was performed for clinical and echocardiographic parameters. The coefficient of variation was used to assess interobserver variability. Statistical significance was set at P < 0.005.

Results

A total of 171 patients were enrolled in our study. One patient was lost to follow-up due to death from bladder cancer. Thirty-two patients had reported MACE: 16 patients developed heart failure, 6 patients had recurrent MI and ventricular arrhythmia, 9 patients had repeated revascularization, and one patient had a nonfatal cerebrovascular stroke. Six patients experienced cardiac death [Table 1].

There is no significant difference in demographic data, clinical data, risk factors, family history, history of previous
revascularization, laboratory findings, location of myocardial infarction, or pain to balloon time between the two groups [Table 2].

During the PCI procedure, Group I required significantly more percutaneous transluminal coronary angioplasty (68.8% vs. 46.4%; \(P = 0.023 \)). Patients in Group I are more likely to have multivessel CAD (59.4% vs. 32.6%; \(P = 0.005 \)) [Table 2].

As shown in Table 4, 2D echocardiography reveals higher LVEDD \((P = 0.003 \)), LVESD \((P = 0.002 \)), lower LVEF \((P = 0.000 \)), and higher WMSI \((P = 0.000 \)) in patients in Group I. As shown by 4D echocardiography, patients in Group I have a higher baseline heart rate at presentation \((P = 0.000 \)), higher end-diastolic volume \((P = 0.017 \)) and end-systolic volume \((P = 0.001 \)), lower 3D LVEF \((P = 0.000 \)), higher GLS \((P = 0.000 \)), GCS \((P = 0.000 \)), GAS \((P = 0.000 \)) and lower GRS \((P = 0.000 \)).

Multivariate logistic regression analysis for all significant parameters reveals that 4D-GAS is the most powerful predictor for MACE in patients who have STEMIs treated with primary PCI. The best cutoff value of 4D-GAS is found to be 4D-GAS >−17 \((P = 0.008 \); odds ratio = 20.668; confidence interval = 2.227–91.827). These results are shown in Figure 1 and Table 5.

DISCUSSION

LV systolic performance is the cornerstone in the evaluation and follow-up of patients following myocardial infarction, and LVEF is the most used parameter. However, LVEF is limited by load dependency and complex LV structure, rendering myocardial strain analysis to be a more accurate assessment of cardiac function.5 As myocardial strain

Table 1: Occurrences of major adverse cardiac events

MACE	n (%)
Positive	32 (18.8)
Death	6 (3.5)
HF	16 (9.4)
MI or VA	6 (3.5)
Unplanned revascularization	9 (5.3)
Stroke	1 (0.6)

HF=Heart failure, MI=Myocardial infarction, VA=Ventricular arrhythmia, MACE=Major adverse cardiovascular events

Figure 1: Best cutoff points for 4D echocardiography strains to detect MACE. The best cutoff value for 4D-GAS to detect MACE was −17 with a sensitivity of 87.5%, a specificity of 92%, a positive predictive value of 71.8%, and a negative predictive value of 96.9%. 4D = Four-dimensional, GAS = global area strain, GCS = global circumferential strain, GLS = global longitudinal strain, GRS = global radial strain, MACE = major adverse cardiac events

Table 2: Demographic data, risk factors, laboratory findings, and angiographic data

Parameter	Mean±/ SD Group I (n=32)	Mean±/ SD Group II (n=138)	\(P \)
Age (years)	Mean±SD (range) 56.78±9.57 (35-80)	54.93±9.03 (33-74)	0.304
Gender (%)	Female 12.5	14.5	0.771
	Male 87.5	85.5	
Smoking (%)	Positive 75.0	75.9	0.914
DM (%)	Positive 56.3	47.8	0.390
HTN (%)	Positive 59.4	42.8	0.089
Dyslipidemia (%)	Positive 25.0	30.4	0.543
FH of CAD (%)	Positive 9.4	10.1	0.896
Previous revascularization (%)	12.5	5.1	0.124
Serum creatinine (g/dl)	Mean±SD (range) 1.16±0.26 (0.6-1.8)	1.17±0.20 (0.6-1.7)	0.711
Peak CKT (g/dl)	Mean±SD (range) 3766.31±1495.15 (750-6300)	3380.64±1362.18 (200-8000)	0.158
Peak MB (g/dl)	Median (IQR) range 424 (290-735.5) (100-1100)	385 (270-570) (145-3350)	0.320
Anterior (%)	Positive 65.6	50.7	0.128
Inferior (%)	Positive 15.6	30.4	0.091
Infero-post+lateral (%)	Positive 15.6	12.3	0.616
Lateral (%)	Positive 3.1	4.3	0.754
Posterior (%)	Positive 0.0	2.2	0.400
Pain to balloon (h)	Median (IQR) range 6 (4-8) (2-24)	5 (4-7) (1-18)	0.105

DM=Diabetes mellitus, HTN=Hypertension, FH of CAD=Family history of coronary artery disease, CKT=Creatinine kinase total, MB=Myocardial fraction, IQR=Interquartile range
analysis with speckle tracking allows for the evaluation of myocardial deformation (segmental and global), it is a precise assessment of LV systolic function. However, the myocardium cannot be evaluated by 2D-STE; 4D-STE must be used.

4D echocardiography uses longitudinal, circumferential, radial, and areal strains acquired in real time to measure myocardium.\(^\text{[10]}\) It uses a 3D reconstruction of the LV and color mapping to measure strain dynamics in every myocardial segment.\(^\text{[13,19]}\) 4D-GAS is the best 4D strain parameter to detect viable myocardium and microvascular obstruction.\(^\text{[12]}\) It reflects regional changes in endocardial surface area throughout the cardiac cycle and is a faster, more comprehensive, and easily reproduced assessment of myocardial function.\(^\text{[11]}\) In magnetic resonance imaging tagging, area strain has been shown to discriminate normal and ischemic zones better than most other strain indexes.\(^\text{[14]}\) However, limited data exist on the prognostic value of 4D-STE on clinical outcomes after AMI.\(^\text{[15]}\) Our study evaluated the predictive value of 4D echocardiography in the clinical outcomes of patients with STEMI after successful reperfusion by PCI. We found that family history of CAD, history of revascularization, and serum biomarkers are not correlated with the occurrence of MACE. These results are similar to those of Kim et al.,\(^\text{[16]}\) but opposed to those of Tsai et al.,\(^\text{[17]}\) who found a correlation between serum creatinine and MACE in patients with acute coronary syndrome. This may be explained by the exclusion of patients with renal impairment from our study. Our study also found that the location of myocardial infarction is not a statistically significant predictor for MACE. Again, this is in agreement with the results of a study reported by Cai et al.,\(^\text{[12]}\) Cai et al. showed a statistically significant correlation of MACE and anterior MI, but their follow-up period was longer than that in our study.\(^\text{[12]}\)

Several studies have found that LVEF obtained using 4D echocardiography is an independent predictor for MACE\(^\text{[18,19]}\) and

Table 3: Percutaneous intervention data

Culprit vessel	Group I, \(n\) (%)	Group II, \(n\) (%)	\(P\)
LAD	22 (68.8)	72 (52.2)	0.089
RCA	7 (21.9)	47 (34.1)	0.182
LCX	2 (6.3)	9 (6.5)	0.956
OM	1 (3.1)	8 (5.8)	0.543
PDA	0 (0.0)	1 (0.7)	0.629
D1	0 (0.0)	1 (0.7)	0.629

Lesions			
Single	13 (40.6)	93 (67.4)	0.005
Multiple	19 (59.4)	45 (32.6)	

PTCA=Percutaneous transluminal coronary angioplasty, BMS=Bare metal stent, DES=Drug-eluting stent, LAD=Left anterior descending artery, RCA=Right coronary artery, LCX=Left circumflex artery, OM=Obtuse marginal artery, PDA=Posterior descending artery, D1=First diagonal artery, MACE=Major adverse cardiovascular events

Table 4: Two-dimensional and four-dimensional echocardiographic parameters

Parameter	Group I \((n=32)\)	Group II \((n=138)\)	\(P\)	
LVEDD (mm)	Mean±SD (range)	54.66±5.62 (42-64)	52.01±4.08 (42-63)	0.003
LVESD (mm)	Mean±SD (range)	40.44±5.31 (29-48)	37.34±4.92 (26-49)	0.002
EF%	Mean±SD (range)	45.97±5.03 (37-57)	51.20±6.03 (32-65)	0.000
E/A (m/s)	Mean±SD (range)	1.09±0.51 (0.4-2.63)	0.96±0.34 (0.4-2.1)	0.073
E/e’	Mean±SD (range)	7.44±2.65 (3.33-16.8)	6.50±2.18 (2.63-12.75)	0.036
WMSI	Mean±SD (range)	2.03±0.36 (1.18-2.5)	1.73±0.38 (1-2.35)	0.000
HR	Mean±SD (range)	91.59±15.82 (60-130)	79.25±14.52 (53-126)	0.000
FRAME RATE	Mean±SD (range)	27.00±0.00 (27-27)	27.00±0.00 (27-27)	NA
EDV (ml)	Mean±SD (range)	112.75±19.83 (77-160)	102.49±22.02 (1.3-157)	0.017
ESV (ml)	Mean±SD (range)	65.72±14.44 (37-95)	56.56±13.58 (33-102)	0.001
EF%	Mean±SD (range)	42.41±2.75 (40-51)	46.54±4.91 (33-67)	0.000
LVM	Median (IQR) (range)	130 (122-140) (100-153)	134.5 (125-140) (86-1254)	0.364
GLS	Median (IQR) (range)	−8 (−8–6) (−13–5)	−11 (−13–10) (−21–6)	0.000
GCS	Median (IQR) (range)	−8 (−8.5–6) (−18–4)	−11 (−13–10) (−20–6)	0.000
GAS	Mean±SD (range)	17.84±4.11 (10-30)	28.51±5.49 (10-43)	0.000
Median (IQR) (range)	−13.5 (−15–12) (−18–10)	−20 (−22–18) (−28–15)	0.000	

HR=Heart rate, EDV=End-diastolic volume, ESV=End-systolic volume, EF=Ejection fraction, LVM=Left ventricular mass, GLS=Global longitudinal strain, GCS=Global circumferential strain, GRS=Global radial strain, GAS=Global area strain, LVEDD=Left ventricular end-diastolic diameter, LVESE=Left ventricular end-systolic diameter, EF=Ejection fraction, WMSI=Wall motion score index
that all 4D echocardiography strains are predictors of MACE.\cite{12,16} In our study, 4D-GAS is the most powerful predictor for MACE when compared with all other significant parameters using multivariate logistic regression analysis. This strain is able to measure the change of the area under the LV myocardial intima and analyze the cardiac function as a whole or as a segment. The systolic reduction in the area is a product of both longitudinal and circumferential shortening, which increases the magnitude of the change and, consequently, the sensitivity of 4D-GAS. This is in accordance with several other studies.\cite{12,16,20}

Our study is not without limitations. It was performed at a single center, included a small number of patients, and had a short follow-up period. Furthermore, 4D-STE is a new technology, and normal strain range values have not yet been established. This technology requires low frame rates, good quality images, a regular cardiac rhythm, and patient cooperation and is more expensive than 2D echocardiography. The intervendor variability has not yet been studied.

Conclusions

We found that 4D-GAS can predict MACE in patients with STEMI after successful primary PCI.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014;35:2541-619.

2. Konstam MA. Patterns of ventricular remodeling after myocardial infarction: Clues toward linkage between mechanism and morbidity. JACC Cardiovasc Imaging 2008;1:592-4.

3. Solomon SD, Skali H, Anavekar NS, Bourgoun M, Barvik S, Ghali JK, et al. Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation 2005;111:3411-9.

4. Marwick TH. Methods used for the assessment of LV systolic function: Common currency or tower of Babel? Heart 2013;99:1078-86.

5. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 2011;24:277-313.

6. Abate E, Hooslag GE, Antoni ML, Nucifora G, Delgado V, Holman ER, et al. Value of three-dimensional speckle-tracking longitudinal strain for predicting improvement of left ventricular function after acute myocardial infarction. Am J Cardiol 2012;110:961-7.

7. Luis SA, Yamada A, Khandheria BK, Sp ranza V, Benjami n A, Ischenko M, et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: A comparative study to three-dimensional echocardiography. J Am Soc Echocardiogr 2014;27:285-91.

8. Orta Kilickesmez K, Baydar O, Bostan C, Coskun U, Kucukoglu S. Four-dimensional speckle tracking echocardiography in patients with hypertrophic cardiomyopathy. Echocardiography 2015;32:1547-53.

9. Steg PG, James SK, A tar D, Badano LP, B lomstrom-Lundqvist C, Borger MA, et al. The Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology (ESC). ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-elevation or non-ST-elevation. Eur Heart J 2012;33:2569-619.

10. Douglas PS, Khandheria B, Stainback RF, Weissman RJ, Brindis RG, TTE/TEE Appropriateness Criteria Writing Group, et al. ACCF/AESC/ACEP/ASNC/SCAI/SCCT/SCMR 2007 Appropriateness Criteria for Transesophageal and Transesophageal Echocardiography: A Report of the
American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American Society of Echocardiography, American College of Emergency Physicians, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and the Society for Cardiovascular Magnetic Resonance. Endorsed by the American College of Chest Physicians and the Society of Critical Care Medicine. J Am Soc Echocardiogr 2007;50:187-204.

11. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, et al.: EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr 2012;25:3-46.

12. Cai W, Dong Y, Tian L, Cao CX, Niu XL, Liu XL, et al.: Predictive value of four-dimensional strain echocardiography for adverse cardiovascular outcomes in ST-elevation myocardial infarction patients treated with primary percutaneous coronary intervention. Cardiology 2018;139:255-64.

13. Kleijn SA, Pandian NG, Thomas JD, de Isla LP, Kamp O, Zuber M, et al.: Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: Results from a multicentre study. Eur Heart J Cardiovasc Imaging 2015;16:410-6.

14. Haim A, Weiss JL, Rogers WJ, Siu CO, Shapiro EP. A non-invasive comparative study of myocardial strains in ischemic canine hearts using tagged MRI in 3-D. Am J Physiol 1995;268:Hl918-26.

15. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K. Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc Imaging 2011;4:358-65.

16. Kim CH, Cho GY, Yoon YE, Park JJ, Youn TJ, Chae, IH. 3D myocardial strain measurement after reperfusion therapy is useful to predict future clinical events in patients with ST-segment elevation myocardial infarction. Eur Heart J 2015;36:435.

17. Tsai IT, Wang CP, Lu YC, Hung WC, Wu CC, Lu LF, et al. The burden of major adverse cardiac events in patients with coronary artery disease. BMC Cardiovasc Disord 2017;17:1.

18. Soliman OI, Kirschbaum SW, van Dalen BM, Delavary BM, Vletter WB, van Geuns RJ, et al. Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. Am J Cardiol 2008;102:778-83.

19. Muraru D, Badano LP, Piccoli G, Gianfagna P, Del Mestre L, Ermacora D, et al. Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr 2010;11:359-68.

20. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O. Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J Am Soc Echocardiogr 2011;24:314-21.