Disclosures. All authors: No reported disclosures.

789. Comparison of Interferon-γ Release Assays (IGRAs) for Diagnosis of Latent or Active Tuberculosis in Cancer Patients
Prathit Kulkarni, MD; Joumana Kmeid, MD; Marjorie Batista, MD, PhD; Firas El Chaer, MD; Eila Ariza-Heredia, MD; Edward A. Graus, PhD, MPH, FIDSA; Victor E. Mudanovitch, MD and Roy F. Chemaly, MD, MPH, FIDSA, FACP.

1Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, Texas
2Infectious Diseases, MD Anderson Cancer Center, Houston, Texas
3The University of Texas MD Anderson Cancer Center, Houston, Texas
4University of Maryland Greenebaum Cancer Center, Baltimore, Maryland
5Houston Methodist Research Institute, Houston, Texas
6Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
7Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas

Session: 70. Tuberculosis and Other Mycobacterial Infections
Thursday, October 4, 2018: 12:30 PM

Background. Patients with certain types of cancer are at increased risk for progression from latent tuberculosis infection (LTBI) to active tuberculosis (ATB) because of immunosuppression. The purpose of this study was to compare the utility of the two commonly used IGRAs, QuantiFERON-TB Gold® (QFT) and T-spot.TB (T-spot.TB), for diagnosis of LTBI or ATB in cancer patients.

Methods. We identified patients who had an initial IGRA during 2013 and 2014 at our institution. Along with demographic information, collected clinical data included type of underlying cancer or other condition, reason for testing, diagnosis of ATB following testing, and absolute lymphocyte count (ALC) at the time of testing. IGRA results (positive, negative, borderline, or indeterminate/invalid) were compared between patients who underwent testing with either QFT or T-spot.TB.

Results. A total of 356 patients had 411 QFT tests done, while 737 patients had 853 T-spot.TB tests performed. The most common underlying malignancies in the QFT and T-spot.TB groups were acute myeloid leukemia (30% and 25%, respectively) and solid tumors (28% vs. 30%, respectively). The most common reasons for testing were pre-hematopoietic-cell transplantation (HCT) screening (42% with QFT and 34% with QFT and 42% with T-spot.TB). In the QFT group, 145/411 (35%) tests were indeterminate, while only 96/853 (11%) tests in the T-spot.TB group were invalid (P < 0.001). The median ALC was 650 cells/µL in patients with an indeterminate result in the QFT group and 90 cells/µL in patients with an invalid result in the T-spot.TB group. A total of four patients were diagnosed with ATB at 1 year after testing. Figure 1 provides a flowchart describing IGRA testing results and development of ATB.

Conclusion. The frequency of an inconclusive test result is significantly higher with QFT as compared with T-spot.TB for diagnosis of LTBI or ATB in cancer patients. A low ALC is likely a contributing factor in indeterminate QFT and invalid T-spot.TB results.

790. The Efficacy of the Interferon-γ Releasing Assay-Based Isoniazid Treatment for Preventing Active Tuberculosis in Kidney Transplant Recipients: A Quasi-experimental Study
Hae-In Kim, MD; Keeyong Min Jo, MD; Sunglim Choi, MD; Kyung Hwa Jung, MD; Jung Wei Park, MD; Ji Hyun Yun, MD; Min Jae Kim, MD; Yong Fu Cheng, MD, PhD; Sang-O Lee, MD, PhD; Sang Ho Choi, MD, PhD; Jun Hee Woo, MD, PhD; Sang Shin, MD; Young-Hoon Kim, MD, PhD; Duk Jong Han, MD, PhD and Sung-Han Kim, MD, PhD.

1Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of (South)
2Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea, Republic of (South)
3Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of (South)

Session: 70. Tuberculosis and Other Mycobacterial Infections
Thursday, October 4, 2018: 12:30 PM

Background. Interferon-γ releasing assays (IGRAs) are useful for diagnosing LTBI. However, there are limited data on the efficacy of IGRA-based isoniazid (INH) treatment with/without back-up tuberculin skin test (TST) to prevent the development of TB in solid-organ transplant recipients.

Methods. All adults patients admitted to a KT unit from January 2014 to December 2016 were retrospectively reviewed in a 2,700-bed, tertiary-care hospital in Seoul, South Korea. The IGRA (i.e., QuantiFERON-In-Tube) with/without TST was performed on all recipients before KT, and 9-month INH treatment was given to patients with clinical risk factors for LTBI regardless of IGRA results. Our hospital policy on LTBI diagnosis and treatment was changed as follows. Period 1 (January 2014–September 2015) adopted IGRA-based INH treatment. We administered INH treatment to all patients with positive IGRA results. Period 2 and period 3 adopted IGRA-based followed by back-up TST-based INH treatment. Period 2 (October 2015–December 2015) included the temporary shortage of Mantoux test, so INH treatment was not given to the patients with positive IGRA since back-up TST was not performed. In Period 3 (January 2016–December 2016), we administered INH treatment to the patients with positive IGRA results followed by back-up TST. A10 mm. The development of TB after KT as the primary endpoint was observed from January 2014 to April 2018.

Results. The study flow is shown in Figure 1. Of the 1,150 KT recipients, 14 (1.2%) developed TB (incidence rate 0.63 per 100 person-years, 95% CI 0.33–1.06). The median time for TB development was 9.4 months (IQR 4.7–14.5). Seven (3.2%) of 216 patients with positive IGRA without INH treatment developed TB, whereas none of 106 patients with positive IGRA with INH treatment developed TB (rate difference 2.43 per 100 person-years, P = 0.008) and 7 (0.8%) of 828 patients with negative or indeterminate IGRA results developed TB (rate difference 2.0 per 100 person-years, P < 0.001). The number needed to treat (NNT) for IGRA-based INH treatment was 31 (95% CI 18–114).

Conclusion. IGRA-based INH treatment is effective to prevent the development of TB in KT recipients without clinical risk factors for LTBI with reasonable NNT.

791. Hyponatremia Incidence and Its Association With Mortality in Patients With Tuberculosis
Andrea Llamas-Lopez, Internal Medicine Resident; Tania Vargas, Internal Medicine Resident; Luis Morales-Garza, MD, and Rogelio Maya, MD.

1Medicina Interna, Tecnologico de Monterrey, Monterrey, Mexico
2Medicina Interna, Tecnologico de Monterrey, Monterrey, Mexico
3Internal Medicine, Tecnologico de Monterrey, Monterrey, Mexico

Session: 70. Tuberculosis and Other Mycobacterial Infections
Thursday, October 4, 2018: 12:30 PM

Background. Hyponatremia is a common clinical abnormality in tuberculosis patients. The objective of this study was to determine the association of mortality with hyponatremia in patients with tuberculosis infection.

Methods. All adults patients admitted to a KT unit from January 2014 to December 2016 were retrospectively reviewed in a 2,700-bed, tertiary-care hospital in Seoul, South Korea. The IGRA (i.e., QuantiFERON-In-Tube) with/without TST was performed on all recipients before KT, and 9-month INH treatment was given to patients with clinical risk factors for LTBI regardless of IGRA results. Our hospital policy on LTBI diagnosis and treatment was changed as follows. Period 1 (January 2014–September 2015) adopted IGRA-based INH treatment. We administered INH treatment to all patients with positive IGRA results. Period 2 and period 3 adopted IGRA-based followed by back-up TST-based INH treatment. Period 2 (October 2015–December 2015) included the temporary shortage of Mantoux test, so INH treatment was not given to the patients with positive IGRA since back-up TST was not performed. In Period 3 (January 2016–December 2016), we administered INH treatment to the patients with positive IGRA results followed by back-up TST. A10 mm. The development of TB after KT as the primary endpoint was observed from January 2014 to April 2018.

Results. The study flow is shown in Figure 1. Of the 1,150 KT recipients, 14 (1.2%) developed TB (incidence rate 0.63 per 100 person-years, 95% CI 0.33–1.06). The median time for TB development was 9.4 months (IQR 4.7–14.5). Seven (3.2%) of 216 patients with positive IGRA without INH treatment developed TB, whereas none of 106 patients with positive IGRA with INH treatment developed TB (rate difference 2.43 per 100 person-years, P = 0.008) and 7 (0.8%) of 828 patients with negative or indeterminate IGRA results developed TB (rate difference 2.0 per 100 person-years, P < 0.001). The number needed to treat (NNT) for IGRA-based INH treatment was 31 (95% CI 18–114).

Conclusion. IGRA-based INH treatment is effective to prevent the development of TB in KT recipients without clinical risk factors for LTBI with reasonable NNT.
Methods. Patients were collected from a 2-year period in the Hospital Dr. Bernardo Sepulveda in Nuevo Leon, Mexico. Inclusion criteria were patients >18 years of age, with positive tuberculous tests, and sodium and serum glucose values upon admission. Clinical data from the electronic file were collected and analyzed by descriptive statistics; Student's t-test and chi-square test were used to compare categorical variables, and Kaplan-Meier to estimate survival curves.

Results. There were 314 patients with suspected TB, 77 patients were included (Table 1).

Table 1. Patient characteristics.

Characteristics	Total (N = 77)	Normal Sodium (N = 23)	Hyponatremia (N = 54)	P
Age, Mean (SD)	41.48 (16.22)	41.25 (16.32)	41.44 (16.08)	
Sex				
Female, %	26 (33.7%)	8 (34.7%)	18 (33.3%)	0.90
Infection				0.63
Pulmonary	66 (85.7%)	20 (86.9%)	46 (85.18%)	
Pleural	6 (77%)	2 (8.6%)	4 (74%)	
Meningeal	3 (3.8%)	1 (4.3%)	2 (3.7%)	
Disseminated	2 (2.5%)	1 (4.3%)	1 (1.8%)	
Serum sodium, mean (SD)	131.08 (6.1)	131.08 (6.1)	131.08 (6.1)	
Comorbidities				
Diabetes	26 (33.7%)	9 (39.1%)	17 (31.4%)	0.51
Cirrhosis	4 (5.1%)	4 (1.7%)		0.18
HIV	14 (18.1%)	1 (4.3%)	13 (42.5%)	0.04
Charlson Comorbidity Index, Mean (SD)	2.09 (2.38)	2.06 (2.38)	2.07 (2.39)	

Sex

Drugs				
Diuretics	3 (3.8%)	2 (8.7%)	1 (1.9%)	0.89
ARV	5 (6.4%)	5 (22.2%)		0.13
Hospitalized	71 (92.2%)	22 (95.6%)	49 (90.7%)	
Survival, Mean (SD) Months	6.5 (7.15)	7 (30.4%)	21 (38.8%)	

Mean follow-up was 6.5 ± 7.1 months. Overall mortality rate was 36.3%. Analysis of mortality is presented in Fig 2, and in severe hyponatremia in Figure 3.

Conclusion. Overall mortality was higher than previously reported, but there was no statistical association between hyponatremia and mortality compared with patients with normal sodium, or by severity. Within the limitations of this study, we must consider that 92% of patients were hospitalized patients at the time of diagnosis, implying that they were patients with complications and may be the reason why both mortality and the incidence of hyponatremia were higher.

Disclosures. All authors: No reported disclosures.