Ambient temperature and cardiovascular mortality: A systematic review and meta-analysis

Ali Ardalan 1,2,3, Mohammad Taghi Moghadamnia Corresp., 1, Alireza Mesdaghinia 4, Abbas Keshtkar 5, Kazem Naddafi 4, Mir Saeed Yekaninejad 6

1 Department of Disaster Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 National Institute of Health Research, Tehran University of Medical Sciences, Tehran, Iran
3 Harvard Humanitarian Initiative, Harvard University, Cambridge, United States
4 Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
5 Department of Health Sciences Education Development, Tehran University of Medical Sciences, Tehran, Iran
6 Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran

Corresponding Author: Mohammad Taghi Moghadamnia
Email address: m-moghadamnia@razi.tums.ac.ir

Introduction: Our study aims at identifying and quantifying the relationship between the cold and heat exposure and the risk of cardiovascular mortality through a systematic review and meta-analysis Material and Methods: A systematic review and meta-analysis were conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Peer-reviewed studies about the temperature and cardiovascular mortality were retrieved in the MEDLINE, Web of Science; and Scopus databases from January 2000 up to the end of 2015. The pooled effect sizes of short-term effect were calculated for the heat exposure and cold exposure separately. Also, we assessed the dose–response relationship of temperature-cardiovascular mortality by a change in units of latitudes, longitude, lag days and annual mean temperature by Meta-regression. Result: After screening the titles, abstracts and full texts; 26 articles were included in the meta-analysis. The risk of cardiovascular mortality increased by 5% (RR, 1.055; 95% CI, 1.050 to 1.060) for the cold exposure, 1.3% (RR, 1.013; 95% CI, 1.011 to 1.015) for the heat exposure. The short-term effects of cold and heat exposure on risk of cardiovascular mortality in males were 3.8% (RR, 1.038; 95% CI, 1.034 to 1.043) and 1.1% (RR, 1.011; 95% CI, 1.009 to 1.013) respectively. Moreover, effects of cold and heat exposure on risk of cardiovascular mortality in females were 4.1% (RR, 1.041; 95% CI, 1.037 to 1.045) and 1.4% (RR, 1.014; 95% CI, 1.011 to 1.017) respectively. In the elderly, it was at 8.1% increase and 6% increase in the heat and cold exposure respectively. The greatest risk of cardiovascular mortality in cold temperature was in the 14 lag days (RR, 1.09; 95% CI, 1.07 to 1.010) and in hot temperature in the 7 lag days (RR, 1.14; 95% CI, 1.09 to 1.17 The significant dose–response relationship of latitude and longitude in cold exposure with cardiovascular mortality was found. The results showed that the risk of
cardiovascular mortality increased with each degree increased significantly in latitude and longitude in cold exposure (0.2%, 95% CI: (0.006-0.035) and (0.07%, 95% CI: 0.0003 - 0.014) respectively. The risk of cardiovascular mortality increased with each degree increase in latitude in heat exposure (0.07%, 95% CI: 0.0008 - 0.124). **Conclusion:** Our findings indicate that the increase and decrease in ambient temperature had a relationship with the cardiovascular mortality. To prevent the temperature-related mortality, persons with cardiovascular disease and the elderly should be targeted. The review has been registered with PROSPERO (registration number CRD42016037673).
Ambient temperature and cardiovascular mortality: A systematic review and meta-analysis

Ali Ardalan1, Mohammad Taghi Moghadamnia2, Alireza Mesdaghinia3, Abbas Keshtkar4, Kazem Naddafi5, Mir Saeed Yekaninejad6

1Department of Disaster Public Health, School of Public Health, Tehran University of Medical Science, Tehran, Iran.

2National Institute of Health Research, Tehran University of Medical Science, Tehran, Iran.

1Harvard Humanitarian Initiative, Harvard University, Cambridge, USA.

2Department of Disaster Public Health, School of Public Health, Tehran University of Medical Science, Tehran, Iran.

3 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences; Institute for Environment Research, Tehran, Iran.

4Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

5 Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences; Institute for Environment Research, Tehran, Iran.

6Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Corresponding author: Mohammad Taghi Moghadamnia

Abstract:

Introduction:
Our study aims at identifying and quantifying the relationship between the cold and heat exposure and the risk of cardiovascular mortality through a systematic review and meta-analysis

Material and Methods:
A systematic review and meta-analysis were conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Peer-reviewed studies about the temperature and cardiovascular mortality were retrieved in the MEDLINE, Web of Science; and Scopus databases from January 2000 up to the end of 2015. The pooled effect sizes of short-term
effect were calculated for the heat exposure and cold exposure separately. Also, we assessed the dose–response relationship of temperature-cardiovascular mortality by a change in units of latitudes, longitude, lag days and annual mean temperature by Meta-regression.

Result:

After screening the titles, abstracts and full texts; 26 articles were included in the meta-analysis. The risk of cardiovascular mortality increased by 5% (RR, 1.055; 95% CI, 1.050 to 1.060) for the cold exposure, 1.3% (RR, 1.013; 95% CI, 1.011 to 1.015) for the heat exposure. The short-term effects of cold and heat exposure on risk of cardiovascular mortality in males were 3.8% (RR, 1.038; 95% CI, 1.034 to 1.043) and 1.1% (RR, 1.011; 95% CI, 1.009 to 1.013) respectively. Moreover, effects of cold and heat exposure on risk of cardiovascular mortality in females were 4.1% (RR, 1.041; 95% CI, 1.037 to 1.045) and 1.4% (RR, 1.014; 95% CI, 1.011 to 1.017) respectively. In the elderly, it was at 8.1% increase and 6% increase in the heat and cold exposure respectively. The greatest risk of cardiovascular mortality in cold temperature was in the 14 lag days (RR, 1.09; 95% CI, 1.07 to 1.010) and in hot temperature in the 7 lag days (RR, 1.14; 95% CI, 1.09 to 1.17). The significant dose–response relationship of latitude and longitude in cold exposure with cardiovascular mortality was found.

Conclusion:

Our findings indicate that the increase and decrease in ambient temperature had a relationship with the cardiovascular mortality. To prevent the temperature-related mortality, persons with cardiovascular disease and the elderly should be targeted.

The review has been registered with PROSPERO (registration number CRD42016037673).
Introduction

The relationship between climate change and health is considered to be a major concern in the health care system (Cheng & Su 2010). Exposure to hot temperature is associated with the physiological changes which include: increased plasma viscosity and cholesterol levels in serum (Lin et al. 2013b). Some studies have demonstrated that ambient temperature has effects on the overall mortality (Huang et al. 2012; Lin et al. 2013b; Rocklöv et al. 2010). The relationship between ambient temperature and mortality has been described as a J, V, or U-pattern (Huang et al. 2014; Lin et al. 2013b; Ryti et al. 2015).

The relationship between temperature, morbidity, and mortality is mediated by direct and indirect ecological processes (Habib et al. 2010). The majority of deaths due to heat waves affect individuals with pre-existing cardiovascular disease (Pfeiffer 2011). Some studies have further shown that increases in cardiovascular diseases (CVD) is associated with both cold and hot temperatures (Bhaskaran et al. 2009).

Acute coronary syndrome (ACS) usually occurs in the late stages of coronary heart disease (CHD) and is one of the leading causes of death in the world (Li et al. 2011). The significant inverse relation between temperatures and acute coronary syndrome (ACS) incidence suggests that the coldness may play an important role in the incidence of ACS. Some studies have reported greater mortality in cold weather than heat-related mortality (Gomez-Acebo et al. 2013; Medina-Ramón & Schwartz 2007). In addition, the heat wave effects appear in short time whereas the effects of cold spells may persist for up to 2 months (Goggins et al. 2013b; Xie et al. 2012). The harmful effects of cold and heat are strongly apparent in CVDs (Zhou et al. 2014). New research indicates that global warming, increasing ambient temperatures, and heat-related effects are of particular importance in the public health perspective (Turner et al. 2012).

The effects of temperature based on individual, social, economic and geographic factors are different. The poor and the elderly with underlying medical conditions, and those living in big cities are considered particularly vulnerable (Ng et al. 2014). The relationship between mortality
and temperature may be dependent on the latitude. Thus, it is necessary that some studies be carried out in areas of different latitudes (Ahmadnezhad et al. 2013; Shonkoff 2012).

Therefore, our study aims at identifying and quantifying the relationship between cold and heat exposure and risk of cardiovascular mortality through a systematic review and meta-analysis.

Materials and method

A systematic review and meta-analysis were conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Search strategy and sources

Peer-reviewed studies about temperature and cardiovascular mortality were retrieved in the databases which included: MEDLINE (via PubMed); Web of Science; and Scopus, from January 2000 up to the end of 2015. Reference lists of the selected studies were scanned in order to identify any further studies. To access important “gray literature” we examined the following websites: World Health Organization; Intergovernmental Panel on Climate Change; National Institutes of Health (USA) and Department for Environment, Food, and Rural Affairs (UK).

Search keywords and terms

We conducted a systematic search in two phases. In the primary investigation, the following keywords were used: (“weather” or “climate”) and “cardiovascular diseases”. All sub-terms were also included but we limited the search only to human studies published in English.

Then secondary search similar to primary was followed although we used more specific terms for CVDs such as “myocardial infarct*”, “coronary event”, “heart attack”, “Q wave infarct*”, “non-Q wave infarct*”, “Acute coronary syndrome”, “QWMI”, “NQWMI”, “STEMI”, “NSTEMI”, “coronary infarct*”, “heart infarct*”, “myocardial thrombosis”, “coronary thrombosis”, “congestive heart failure” and “heart failure”. The specific terms for (“weather” or “climate”) were used if included “temperature”, “ambient temperature”, “cold temperature”, “hot temperature”, where “*” indicates any word ending.

Selection of articles

The following eligibility criteria were used in this study:

1. Studies applying time-series regression research design and case-crossover study design.
2. The nonlinear model statistical analysis (DLNM or GAM) in the time series studies. These methods show the effect of exposure event to be distributed over a specific period of time, using several parameters in explaining the contributions at different lags, thus providing a comprehensive picture of the time-course of the exposure-outcome relationship cannot use the linear estimators and a non-linear one is appropriate. This method was first developed by Gasparrini and colleagues in 2011 (Gasparrini 2011; Gasparrini et al. 2010; Lin et al. 2013b).

3. Studies observing mortality outcomes in all types of CVDs.

4. Those reporting results which included the effect estimate associated with one unit increase or decrease in temperature. An outcome measure was reported as either: relative risk, odds ratio, regression coefficient or percent change.

5. Also, the studies which used the percent change in mortality associated with one unit increase or decrease in the temperature by turning odds ratio with this formula; \((\text{OR} - 1) \times 100 = \text{percent increase}\)

On the other hand, the exclusion criteria were:

1. The studies providing only linear curves of temperature–outcome relationship
2. The studies using indoor temperature as the exposure variable
3. The qualitative studies without precise statistical relationship
4. Studies related to periods of extreme temperature such as the cold spells and heat waves

Data extraction

The results of titles and abstracts of all relevant studies were merged into the Endnote software, and the duplicates were removed. Abstracts and titles were screened by two independent reviewers and non-relevant articles were deleted. Full-text articles which met the inclusion criteria for the systematic review were downloaded. We were able to obtain full-text papers of all the potentially eligible studies and there was no need to contact their corresponding authors. The results of reviews were then compared and in the case of any discrepancies, they were resolved through consensuses.

We tested publication bias using Egger’s Method.
Study Quality Assessment

In order to separate low-quality studies from others, quality assessment was necessary. Assessing the quality of public health studies and their risk of bias may be difficult. This is partly due to the wide variety of study designs used. Assessment of the quality or risk of bias for all of the reviewed studies was conducted by two independent reviewers using the Critical Appraisal Skills Program (CASP). This was adapted from Critical Appraisal Skills Program, Public Health Resource Unit, and Institute of Health Science, Oxford (Oxman et al. 1994). In this checklist, the quality score ranged from 1 to 10. A cut-off point of 6 was used for any study to be included in this systematic review and meta-analysis. The quality of studies was investigated based on: the study design/time-span; the population of study; sample size; statistical methods; main temperature exposure variable; confounder variables and lag time.

Statistical Analysis

Statistical analysis was performed in two steps. At first, the pooled effect size was computed for temperature exposure to the cold and hot weather using the random-effects meta-analysis. In the next step, dose–response effects of temperature on cardiovascular mortality were modeled using the random effects meta-regression.

In all of the reviewed studies, the hot and cold effect were calculated separately in six studies using the percent change in mortality associated with one unit increase or decrease of the temperature. The odds ratio (OR) were calculated using this formula; \((\text{OR} - 1) \times 100 = \text{percent increase mortality}\). Then we converted the ORs to relative risk (RRs) using the following equation: \(\text{RR} = \frac{\text{OR}}{[(1 – P0) + (P0 \times \text{OR})]}\), where \(P0\) = the incidence of non-exposed group. When the value of \(P0\) is extremely small, we assume \(\text{RR} = \text{OR}\).

In a study (Goggins et al. 2013a) the effect of 10 °C decrease of temperature on cardiovascular mortality was reported. Here, in order to calculate the risk of CVD mortality per 1 °C decrease of temperature, first, the percent of death due to cardiovascular mortality was changed to the relative risk then this effect size was divided by 10.

In some studies comparison between several percentiles used for the heat and cold temperature effects on cardiovascular mortality which had a great influence on mortality in our analysis. All the studies provided different lag patterns estimating the exposure-outcome and the delayed effect.
of temperature change from a single day to 35 days. In this case, we chose the largest estimate effects.

In cases where the results of the temperature effects on mortality in one city observed in two studies were similar, only one study was analyzed. If the outcomes of cardiovascular mortality in the two studies were different, then both included. The pooled effect sizes were calculated separately for the cold and heat temperature. Also, we analyzed pooled effect size based on subgroup for males, females and vulnerable age groups in cold and hot temperature separately.

In order to evaluate the city-specific estimates, we calculated the I² criteria. It was used to investigate heterogeneity between studies, whereby the increasing values (from 0% to 100%) could explain the increasing heterogeneity (Turner et al. 2012). We used the Bayesian hierarchical approach to pool the city-specific effect estimates.

At the end, to show the reason of high heterogeneity in the estimated effect sizes, Meta-regression models were estimated. The dependent variables were the effect sizes (risk of cardiovascular mortality) of cold or heat exposure in each study. The explanatory variables were the mean annual temperature of the location of studies, the number of lag days in each study, latitude, and longitude of the location of studies. The Meta-regression models were estimated using the study variance estimator. All the analyses were conducted using the Stata 12.0 (Stata Corporation, College Station, Texas, USA).

Results

As shown in Figure 1, 681 articles were identified in the initial search. After screening the title and abstract, 626 articles were excluded because of not absolutely full-filling the inclusion criteria.

Of the remaining 55 articles, 10 were excluded due to their estimated effect based on extreme event weather such as cold spells and heat waves (Barnett et al. 2012; Chen et al. 2015; Lee et al. 2015; Ma et al. 2015; Sheridan & Lin 2014; Son et al. 2012; Tian et al. 2013; Xie et al. 2013; Zeng et al. 2014; Zhou et al. 2014). Five studies were excluded based on the special meteorological indicators [(diurnal temperature range, (DTR)] (Ding et al. 2015; Yang et al. 2013), [universal thermal climate index (UTCI)] (Burkart et al. 2014), [Temperature Changes between Neighboring Days] (Lin et al. 2013a) and [Apparent Temperature] (Sun et al. 2012). In the eight studies with
case-crossover design using special meteorological indicators (e.g., Apparent Temperature and $T_{\text{app, max}}$) were excluded (Basu & Ostro 2008; Bell et al. 2008; Gronlund et al. 2015; Madrigano et al. 2013; Medina-Ramón & Schwartz 2007; Stafoggia et al. 2006; Wichmann et al. 2011; Wilson et al. 2013). Two studies provided the estimates of temperature effect on all-cause mortality, not special cardiovascular mortality (Son et al. 2012; Vutcovici et al. 2014), and one study used the particular effect measure entitled “years of life lost” (Huang et al. 2012). The data of one study on cardiovascular and respiratory mortality were mixed and was not reported separately (Goldberg et al. 2011). Two studies written by the same authors, at the same time, geographical area and with similar information were removed (Breitner et al. 2014b; Yu et al. 2011a). The remaining 26 studies were included in the meta-analysis.

Among the included studies, 22 studies assessed effects of both heat and cold on cardiovascular mortality (Bai et al. 2014; Breitner et al. 2014a; Breitner et al. 2014b; Chen et al. 2014; Guo et al. 2012a; Guo et al. 2012b; Huang et al. 2014; Huang et al. 2015; Kim et al. 2015; Lin et al. 2013b; Seposo et al. 2015; Tian et al. 2012; Wang et al. 2014; Wang et al. 2015; Wichmann et al. 2013; Yang et al. 2015a; Yang et al. 2012; Yang et al. 2015b; Yang et al. 2015c; Yi & Chan 2015; Yu et al. 2011b; Yu et al. 2011c). Three studies specifically examined the effect of heat on mortality (Chan et al. 2012; Kim et al. 2016; Qiao et al. 2015b) and two studies examined the cold effects on mortality (Goggins et al. 2013a; Gómez-Acebo et al. 2013). The majority of studies utilized confounding variables such as PM_{10}, O_3, NO_2, SO_2, humidity, atmospheric pressure, time trend and season leading to more reliable estimates of temperature effects on cardiovascular mortality. The day lag in considered studies ranged from 0 to 35 days. This was an important consideration that the effects of temperature on mortality extend beyond one day. The study period of included investigations was from 2 years (Gómez-Acebo et al. 2013) till 31 years (Kim et al. 2016). A large number of studies used a specific percentile of temperature to test the presence of the heat and cold effect (Bai et al. 2014; Breitner et al. 2014a; Breitner et al. 2014b; Chen et al. 2014; Goggins et al. 2013a; Gómez-Acebo et al. 2013; Guo et al. 2012a; Guo et al. 2012b; Kim et al. 2015; Lin et al. 2013b; Ma et al. 2014; Seposo et al. 2015; Tian et al. 2012; Wang et al. 2014; Wang et al. 2015; Yang et al. 2015a; Yang et al. 2012; Yang et al. 2015b; Yang et al. 2015c; Yi & Chan 2015). In the remaining studies, the specific heat or cold temperature was used as a starting point (Chan et al. 2012; Huang et al. 2014; Huang et al. 2015; Kim et al. 2016; Qiao et al. 2015b; Yu et al. 2011b; Yu et al. 2011c). In most of the studies, the daily mean temperature was used as...
a main temperature exposure variable. In the study where researchers used mean temperatures and diurnal temperature range (DTR) as the thermal index, the mean temperature findings were included in the meta-analysis (Kim et al. 2016). In all of the included studies, 25 had time series design and one study case-crossover design. The final articles included in this analysis are listed in Table 1. In this table, comprehensive details on each study in terms of time, location, the type of heart disease and defined warm and cold temperature are presented.

The pooled effect sizes of the short-term effect of temperature exposure and cardiovascular mortality were separately reported for the cold and heat exposure.

The risk of cardiovascular mortality increased by 5% (RR, 1.055; 95% CI, 1.050 to 1.060) for the cold exposure, 1.3% (RR, 1.013; 95% CI, 1.011 to 1.015) for the heat exposure (figures 2 and 3). The short-term effects of cold and heat exposure on risk of cardiovascular mortality in males were 3.8% (RR, 1.038; 95% CI, 1.034 to 1.043) and 1.1% (RR, 1.011; 95% CI, 1.009 to 1.013) respectively (figures 4 and 5). Also, effects of cold and heat exposure on risk of cardiovascular mortality in female were 4.1% (RR, 1.041; 95% CI, 1.037 to 1.045) and 1.4% (RR, 1.014; 95% CI, 1.011 to 1.017) respectively (figures 6 and 7). In the elderly, these figures raised to 8.1% and 6% in the heat exposure and cold exposure respectively (figures 8 and 9). The lag days have also an effect on the risk of cardiovascular mortality for the heat and cold exposure so that the greatest risk of cardiovascular mortality in cold temperature was in the 14 lag days (RR, 1.09; 95% CI, 1.07 to 1.010) and in hot temperature in the 7 lag days (RR, 1.11; 95% CI, 1.08 to 1.14) (table 2). Regarding the effect of low and high educational level on risk of CVD mortality, similar findings were revealed (table 2).

The dose–response effects of the mean annual temperature, the number of lag days, latitude and longitude of the location of studies on the risk of cardiovascular mortality are shown in table 3. The results showed that the temperature associated increase in risk of cardiovascular mortality increased with each degree increased significantly in latitude and longitude in cold exposure (0.2%, 95% CI: (0.006-0.035) and (0.07%, 95% CI: 0.0003 - 0.014) respectively. The temperature associated increase in risk of cardiovascular mortality increased with each degree increase in latitude in heat exposure (0.07%, 95% CI: 0.0008 - 0.124). However, this dose–response relationship was not statistically significant in other explanatory variables. For both heat and cold
exposure, I^2 values were mostly on the order of 76% to 92%, indicating large heterogeneity among studies, and emphasizes the use of random-effects models.

Discussion

To the best of our knowledge, this study is the first meta-analysis to survey the association between temperature and cardiovascular mortality. Also, findings of this study showed that both cold and hot temperatures increased the risk of cardiovascular mortality, although, the cold temperature had stronger effects on CVD mortality. This result is consistent with other investigations that revealed cold weather is responsible for the most part of the temperature-related CVD mortality (Goggins et al. 2013a; Xie et al. 2012; Yang et al. 2015c). In contrast to our findings, Grjibovski et al in a study in Astana, Kazakhstan- the second coldest capital in the world between 2000–2001 and 2006–2010- didn’t find any significant associations between ambient temperatures and mortality of hypertensive diseases (ICD-10 codes: I10–I15), ischemic heart disease (I20–I25) and CVDs (I60–I69) (Grjibovski et al. 2012). The inconsistency between the findings may be due to differences in geographical location of studies and weather conditions.

The cold seasons causes physiological changes including increases in blood sugar, the level of cholesterol, fibrinogen concentration and platelet aggregation. Fibrinogen plays an important role in the formation of clots in the coronary artery, the start of acute myocardial infarction and life-threatening arrhythmias (Čulić 2007; Mittleman & Mostofsky 2011). Cold temperature causes peripheral vasoconstriction and increase of cardiac afterload in patients with preexisting CVDs as a result of exacerbating symptoms. Furthermore, cold weather may induce complications such as respiratory infections with an indirect effect on the cardiovascular performance.

Our study also indicated that hot exposure increase risk of cardiovascular mortality. In this regard, Qiao et al reported a sensible effect of high temperatures on cardiovascular deaths in summer (Qiao et al. 2015a).

Exposure to high temperature could increase the viscosity of plasma and cholesterol levels in serum (Lin et al. 2013b). Also, it has been shown that hot temperature leads to the increase in red blood cell and platelet counts (Bhaskaran et al. 2009). However, further studies are required to identify the accurate mechanisms of heat effect on the CVD mortality.
Our finding showed that both hot and cold temperature had a strong effect on cardiovascular mortality in elderly. In agreement with our finding, Weiwei et al reported that 1°C increase in temperature was associated with 2–5% increase in mortality rate whereas 1°C decrease in temperature causes 1-2% increase in mortality (Yu et al. 2012). Ability to regulate the body temperature decreases with age and an elevated sweating threshold. In the hot temperatures, older people may lose body fluids and become dehydrated. They, thus, eventually experience the cardiovascular complications. Moreover, the process of atherosclerosis escalates the conditions for developing CVDs such as ACS.

Results of this study showed that the effect of cold and hot temperature on cardiovascular mortality regarding the gender was approximately the same. In this regard, Kan et al indicated that the effect of the cold and heat temperature was not significantly different between the two genders (Kan et al. 2007). However, the findings of Yang et al(Yang et al. 2012) and Lim et al (Lim et al. 2015) showed that men were less sensitive to effects of DTR on cardiovascular mortality and morbidity than women. Conversely, Chen and colleagues reported extreme temperatures were significantly associated with cardiovascular mortality among both males and females, but the associations were stronger for males(Chen et al. 2014).

We noticed that high and low temperature had the greatest effect in lag 7 and 14 respectively. According to the previous studies, the temperature variability had delayed effect on health. The study conducted by Huang et al showed that effect of the cold temperatures had a long lag period of 10–25 days while the hot temperatures had a short lag period of only 1–3 days(Huang et al. 2014). Several recent studies reported that the cold days have a longer lag effect on the cardiovascular morbidity and mortality compared to hot days, (Lin et al. 2013b; Yu et al. 2011b; Yu et al. 2011c). However, to date, the underlying environmental and physiological mechanisms for various lag effects of heat and cold exposure remain unclear thus more studies are required.

Many factors may influence the relationship between ambient temperature and cardiovascular mortality either directly or indirectly as confounders. Our results did not show significant differences in mortality in people with different educational levels in hot and cold weather. In a study, results showed that the level of education and socioeconomic status could also be affecting the relationship between temperature and mortality(Son et al. 2012). The discrepancies between
the findings of this study and others are perhaps due to the paucity of studies in this regard. The people living in low-income countries with poor access to suitable heating or cooling systems much experience the adverse effect of temperature. Also, those with low level of education have been reported more vulnerable to exposure–response relationship.

For dose–response relationship between temperature and risk of CVD mortality, one-degree change for latitude significantly increased the risk of mortality. That means higher latitude countries show higher effects of cold temperature on the risk of cardiovascular mortality. Findings of many previous studies showed that extreme cold temperature is a major public health threat in high-latitude countries(Kysely et al. 2009; Shaposhnikov et al. 2014). This study revealed increase in longitude had higher effects of cold temperature in mortality. Differences of longitude may incorporate the different characteristics between cities and nations. Further study is required to assess how characteristics of the cities and nations may modify the temperature effect. Also, a one-degree increase of latitude significantly increased the risk of mortality in heat temperature. This finding is consistent with the previous reviews (Kim et al. 2016). The reasons for the latitude effect in colder weather were that the adaptive capacity of people who live in cold climate is lower because the population is less acclimatized to hot temperatures and live in houses that are improper for hot weather.

This study has several strengths. First, it is the first study to apply a systematic review and meta-analysis in assessing the available and valid literature related to the effects of ambient temperature on cardiovascular mortality. Second, we used the daily mean temperature which is the best indicator to show the exposure – outcome relationship of the cold and heat ambient temperature. In this case, previous studies only showed that the daily mean temperature was the best predictor of the death counts(Anderson & Bell 2009). Finally, we included the studies with nonlinear models statistical analysis (DLNM). The major advantage of this is that it is flexible enough to simultaneously describe a non-linear exposure-response association and delayed effects or harvesting effect. This method was first developed by Gasparrini and colleagues in 2011(Gasparrini 2011; Gasparrini et al. 2010; Lin et al. 2013b).

However, this study was not exceptional to some limitations. Although an accurate and complete search to select the eligible primary studies was employed, most of the studies reviewed
were from the South East Asian countries such as China and few others from other parts of the world. Lack of attention to the use of air conditioning in summer, heating system in winter and socioeconomic and demographic factors in many primary studies that were considered for this review and analysis is also another likely limitation to the study.

Conclusion

Our systematic review and meta-analysis showed that the ambient temperature is associated with increased cardiovascular mortality rates. According to our findings, the increase and decrease in the ambient temperature had a relationship with the cardiovascular mortality. People with underlying heart disease especially the elderly are more vulnerable to the cold and hot effects. To prevent the temperature-related mortality, people with cardiovascular disease and vulnerable groups especially the elderly should be targeted.

Based on the evidence rereviewed most studies were conducted in the South East Asia so future studies are recommended in other parts with a focus on specific geographical and climate areas.

References

Critical Appraisal Skills Programme: Making Sense of Evidence. Avalable at: http://www.casp-uk.net.
Ahmadnezhad E, Holakouie Naeni K, Ardalan A, Mahmoodi M, Yunesian M, Naddafi K, and Mesdaghinia AR. 2013. Excess mortality during heat waves, Tehran Iran: An ecological time-series study. Journal of research in health sciences 13:24-31.
Anderson BG, and Bell ML. 2009. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology (Cambridge, Mass) 20:205.
Bai L, Woodward A, and Liu Q. 2014. Temperature and mortality on the roof of the world: a time-series analysis in three Tibetan counties, China. Science of The Total Environment 485:41-48.
Barnett A, Hajat S, Gasparrini A, and Rocklöv J. 2012. Cold and heat waves in the United States. Environmental Research 112:218-224.
Basu R, and Ostro BD. 2008. A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. American journal of epidemiology 168:632-637.
Bell ML, O’Neill MS, Ranjit N, Borja-Aburto VH, Cifuentes LA, and Gouveia NC. 2008. Vulnerability to heat-related mortality in Latin America: a case-crossover study in Sao Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. International journal of epidemiology 37:796-804.
Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, and Smeeth L. 2009. The effects of ambient temperature on the incidence of myocardial infarction–A systematic review. Heart.
Breitner S, Wolf K, Devlin RB, Diaz-Sanchez D, Peters A, and Schneider A. 2014a. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis. *Science of The Total Environment* 485:49-61.

Breitner S, Wolf K, Peters A, and Schneider A. 2014b. Short-term effects of air temperature on cause-specific cardiovascular mortality in Bavaria, Germany. *Heart* 100:1272-1280.

Burkart K, Breitner S, Schneider A, Khan MMH, Krämer A, and Endlicher W. 2014. An analysis of heat effects in different subpopulations of Bangladesh. *International journal of biometeorology* 58:227-237.

Chan EYY, Goggins WB, Kim JJ, and Griffiths SM. 2012. A study of intricacy variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. *Journal of Epidemiology and Community Health* 66:322-327.

Chen K, Bi J, Chen J, Chen X, Huang L, and Zhou L. 2015. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. *Science of The Total Environment* 506:18-25.

Chen R, Li T, Cai J, Yan M, Zhao Z, and Kan H. 2014. Extreme temperatures and out-of-hospital coronary deaths in six large Chinese cities. *Journal of Epidemiology and Community Health* :jech-2014-204012.

Cheng X, and Su H. 2010. Effects of climatic temperature stress on cardiovascular diseases. *European journal of internal medicine* 21:164-167.

Čulić V. 2007. Acute risk factors for myocardial infarction. *International journal of cardiology* 117:260-269.

Ding Z, Guo P, Xie F, Chu H, Li K, Pu J, Pang S, Dong H, Liu Y, and Pi F. 2015. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis. *Science of The Total Environment* 526:358-365.

Gasparrini A. 2011. Distributed lag linear and non-linear models in R: the package dlnm. *Journal of Statistical Software* 43:1.

Gasparrini A, Armstrong B, and Kenward M. 2010. Distributed lag non-linear models. *Statistics in medicine* 29:2224.

Goggins WB, Chan E, Yang C, and Chong M. 2013a. Associations between mortality and meteorological and pollutant variables during the cool season in two Asian cities with sub-tropical climates: Hong Kong and Taipei. *Environ Health* 12:59.

Goggins WB, Chan EY, Yang C, and Chong M. 2013b. Associations between mortality and meteorological and pollutant variables during the cool season in two Asian cities with sub-tropical climates: Hong Kong and Taipei. *Environ Health* 12.

Goldberg MS, Gasparrini A, Armstrong B, and Valois M-F. 2011. The short-term influence of temperature on daily mortality in the temperate climate of Montreal, Canada. *Environmental Research* 111:853-860.

Gomez-Acebo I, Llorca J, and Dierssen T. 2013. Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: a case-crossover study. *Public health* 127:252-258.

Gómez-Acebo I, Llorca J, and Dierssen T. 2013. Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: a case-crossover study. *Public health* 127:252-258.

Grijbovski AM, Nurgaliyeva N, Kosbayeva A, and Menne B. 2012. No association between temperature and deaths from cardiovascular and cerebrovascular diseases during the cold season in Astana, Kazakhstan—the second coldest capital in the world. *International journal of circumpolar health* 71.

Gronlund CJ, Berrocal VJ, White-Newsome JL, Conlon KC, and O’Neill MS. 2015. Vulnerability to extreme heat by socio-demographic characteristics and area green space among the elderly in Michigan, 1990–2007. *Environmental Research* 136:449-461.
Guo Y, Li S, Zhang Y, Armstrong B, Jaakkola JJ, Tong S, and Pan X. 2012a. Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China. *Heart*:heartjnl-2012-302518.

Guo Y, Punnasiri K, Tong S, Aydin D, and Feychting M. 2012b. Effects of temperature on mortality in Chiang Mai city, Thailand: a time series study. *Environ Health* 11:10.1186.

Habib RR, El Zein K, and Ghanawi J. 2010. Climate change and health research in the Eastern Mediterranean Region. *EcoHealth* 7:156-175.

Huang C, Barnett AG, Wang X, and Tong S. 2012. Effects of extreme temperatures on years of life lost for cardiovascular deaths: a time series study in Brisbane, Australia. *Circulation: Cardiovascular Quality and Outcomes* 5:609-614.

Huang J, Wang J, and Yu W. 2014. The lag effects and vulnerabilities of temperature effects on cardiovascular disease mortality in a subtropical climate zone in China. *International journal of environmental research and public health* 11:3982-3994.

Huang Z, Lin H, Liu Y, Zhou M, Liu T, Xiao J, Zeng W, Li X, Zhang Y, and Ebi KL. 2015. Individual-level and community-level effect modifiers of the temperature–mortality relationship in 66 Chinese communities. *BMJ open* 5:e009172.

Kan H, London SJ, Chen H, Song G, Chen G, Jiang L, Zhao N, Zhang Y, and Chen B. 2007. Diurnal temperature range and daily mortality in Shanghai, China. *Environmental Research* 103:424-431.

Kim H, Heo J, Kim H, and Lee J-T. 2015. Has the impact of temperature on mortality really decreased over time? *Science of The Total Environment* 512:74-81.

Kim J, Shin J, Lim Y-H, Honda Y, Hashizume M, Guo YL, Kan H, Yi S, and Kim H. 2016. Comprehensive approach to understand the association between diurnal temperature range and mortality in East Asia. *Science of The Total Environment* 539:313-321.

Kysely J, Pokorna L, Kyncl J, and Kriz B. 2009. Excess cardiovascular mortality associated with cold spells in the Czech Republic. *BMC public health* 9:19.

Lee WK, Lee HA, Lim YH, and Park H. 2015. Added effect of heat wave on mortality in Seoul, Korea. *International journal of biometeorology*:1-8.

Li Y, Du T, Lewin MR, Wang H, Ji X, Zhang Y, Xu T, Xu L, and Wu JS. 2011. The seasonality of acute coronary syndrome and its relations with climatic parameters. *The American journal of emergency medicine* 29:768-774.

Lim Y-H, Reid CE, Mann JK, Jerrett M, and Kim H. 2015. Diurnal temperature range and short-term mortality in large US communities. *International journal of biometeorology* 59:1311-1319. 10.1007/s00484-014-0941-2

Lin H, Zhang Y, Xu Y, Xu X, Liu T, Luo Y, Xiao J, Wu W, and Ma W. 2013a. Temperature changes between neighboring days and mortality in summer: a distributed lag non-linear time series analysis. *PLoS one* 8:e66403.

Lin Y-K, Chang C-K, Wang Y-C, and Ho T-J. 2013b. Acute and Prolonged Adverse Effects of Temperature on Mortality from Cardiovascular Diseases. *PLoS one* 8:e82678.

Ma W, Chen R, and Kan H. 2014. Temperature-related mortality in 17 large Chinese cities: How heat and cold affect mortality in China. *Environmental Research* 134:127-133.

Ma W, Zeng W, Zhou M, Wang L, Rutherford S, Lin H, Liu T, Zhang Y, Xiao J, and Zhang Y. 2015. The short-term effect of heat waves on mortality and its modifiers in China: An analysis from 66 communities. *Environment international* 75:103-109.

Madrigano J, Mittleman MA, Baccarelli A, Goldberg R, Melly S, Von Klot S, and Schwartz J. 2013. Temperature, myocardial infarction, and mortality: effect modification by individual and area-level characteristics. *Epidemiology (Cambridge, Mass)* 24:439.
Medina-Ramón M, and Schwartz J. 2007. Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. *Occupational and environmental medicine* 64:827-833.

Mittleman MA, and Mostofsky E. 2011. Physical, Psychological and Chemical Triggers of Acute Cardiovascular Events Preventive Strategies. *Circulation* 124:346-354.

Ng CFS, Ueda K, Takeuchi A, Nitta H, Konishi S, Bagrowicz R, Watanabe C, and Takami A. 2014. Sociogeographic Variation in the Effects of Heat and Cold on Daily Mortality in Japan. *Journal of Epidemiology* 24:15.

Oxman AD, Cook DJ, Guyatt GH, Bass E, Brill-Edwards P, Browman G, Detsky A, Farkouh M, Gerstein H, and Haines T. 1994. Users' guides to the medical literature: VI. How to use an overview. *Jama* 272:1367-1371.

Pfeiffer AJ. 2011. The Effects of Climate Change on Public Health and the Healthcare Provider's Role in Addressing Climate Change.

Qiao Z, Guo Y, Yu W, and Tong S. 2015a. Assessment of Short- and Long-Term Mortality Displacement in Heat-Related Deaths in Brisbane, Australia, 1996-2004. *Environmental Health Perspectives* 123:766-772. 10.1289/ehp.1307606

Qiao Z, Guo Y, Yu W, and Tong S. 2015b. Assessment of short-and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. *Environmental Health Perspectives* 123:766.

Rocklöv J, Kristie E, and Bertil F. 2010. Mortality related to temperature and persistent extreme temperatures: a study of cause-specific and age-stratified mortality. *Occupational and environmental medicine*: 2010.058818.

Ryti NR, Guo Y, and Jaakkola J. 2015. Global association of cold spells and adverse health effects: a systematic review and meta-analysis. *Environ Health Perspect*.

Seposo XT, Dang TN, and Honda Y. 2015. Evaluating the effects of temperature on mortality in manila city (Philippines) from 2006–2010 using a distributed lag nonlinear model. *International journal of environmental research and public health* 12:6842-6857.

Shaposhnikov D, Revich B, Gurfinkel Y, and Naumova E. 2014. The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia. *International journal of biometeorology* 58:799-808.

Sheridan SC, and Lin S. 2014. Assessing variability in the impacts of heat on health outcomes in New York city over time, season, and heat-wave duration. *EcoHealth* 11:512-525.

Shonkoff SB. 2012. Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden.

Son J-Y, Lee J-T, Anderson GB, and Bell ML. 2012. The impact of heat waves on mortality in seven major cities in Korea. *Environmental Health Perspectives* 120:566.

Stafoggia M, Forastiere F, Agostini D, Biggeri A, Bisanti L, Cadum E, Caranci N, de'Donato F, De Lisio S, and De Maria M. 2006. Vulnerability to heat-related mortality: a multicity, population-based, case-crossover analysis. *Epidemiology* 17:315-323.

Sun J, Li GX, Jayasinghe R, Sadler R, Shaw G, and Pan XC. 2012. Time course of apparent temperature effects on cardiovascular mortality: a comparative study of Beijing, China and Brisbane, Australia. *Public Health Research* 2:43-48.

Tian Z, Li S, Zhang J, and Guo Y. 2013. The characteristic of heat wave effects on coronary heart disease mortality in Beijing, China: a time series study. *PLoS one* 8:e77321.

Tian Z, Li S, Zhang J, Jaakkola JJ, and Guo Y. 2012. Ambient temperature and coronary heart disease mortality in Beijing, China: a time series study. *Environ Health* 11:10.1186.

Turner LR, Barnett AG, Connell D, and Tong S. 2012. Ambient temperature and cardiorespiratory morbidity: a systematic review and meta-analysis. *Epidemiology* 23:594-606.
Vutcovici M, Goldberg MS, and Valois M-F. 2014. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Quebec, 1984–2007. *International journal of biometeorology* 58:843-852.

Wang C, Chen R, Kuang X, Duan X, and Kan H. 2014. Temperature and daily mortality in Suzhou, China: a time series analysis. *Science of The Total Environment* 466:985-990.

Wang X, Li G, Liu L, Westerdahl D, Jin X, and Pan X. 2015. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China. *International journal of environmental research and public health* 12:16136-16156.

Wichmann J, Andersen ZJ, Ketzel M, Ellermann T, and Loft S. 2011. Apparent temperature and cause-specific mortality in Copenhagen, Denmark: A case-crossover analysis. *International journal of environmental research and public health* 8:3712-3727.

Wichmann J, Rosengren A, Sjöberg K, Barregard L, and Sallsten G. 2013. Association between ambient temperature and acute myocardial infarction hospitalisations in Gothenburg, Sweden: 1985–2010. *PLoS one* 8:e62059.

Wilson LA, Morgan GG, Hanigan IC, Johnston FH, Abu-Rayya H, Broome R, Gaskin C, and Jalaludin B. 2013. The impact of heat on mortality and morbidity in the Greater Metropolitan Sydney Region: a case crossover analysis. *Environmental Health* 12:1.

Xie H, Yao Z, Zhang Y, Xu Y, Xu X, Liu T, Lin H, Lao X, Rutherford S, and Chu C. 2012. Short-term effects of the 2008 cold spell on mortality in three subtropical cities in Guangdong Province, China. *Environmental Health Perspectives* 121:210-216.

Xie H, Yao Z, Zhang Y, Xu Y, Xu X, Liu T, Lin H, Lao X, Rutherford S, and Chu C. 2013. Short-term effects of the 2008 cold spell on mortality in three subtropical cities in Guangdong Province, China. *Environmental Health Perspectives (Online)* 121:210.

Yang C, Meng X, Chen R, Cai J, Zhao Z, Wan Y, and Kan H. 2015a. Long-term variations in the association between ambient temperature and daily cardiovascular mortality in Shanghai, China. *Science of The Total Environment* 538:524-530.

Yang J, Liu H-Z, Ou C-Q, Lin G-Z, Zhou Q, Shen G-C, Chen P-Y, and Guo Y. 2013. Global climate change: impact of diurnal temperature range on mortality in Guangzhou, China. *Environmental Pollution* 175:131-136.

Yang J, Ou C-Q, Ding Y, Zhou Y-X, and Chen P-Y. 2012. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou. *Environ Health* 11:63.

Yang J, Ou C-Q, Guo Y, Li L, Guo C, Chen P-Y, Lin H-L, and Liu Q-Y. 2015b. The burden of ambient temperature on years of life lost in Guangzhou, China. *Scientific reports* 5.

Yang J, Yin P, Zhou M, Ou C-Q, Guo Y, Gasparrini A, Liu Y, Yue Y, Gu S, and Sang S. 2015c. Cardiovascular mortality risk attributable to ambient temperature in China. *Heart*:heartjnl-2015-308062.

Yi W, and Chan AP. 2015. Effects of temperature on mortality in Hong Kong: a time series analysis. *International journal of biometeorology* 59:927-936.

Yu W, Guo Y, Ye X, Wang X, Huang C, Pan X, and Tong S. 2011a. The effect of various temperature indicators on different mortality categories in a subtropical city of Brisbane, Australia. *Science of The Total Environment* 409:3431-3437.

Yu W, Hu W, Mengersen K, Guo Y, Pan X, Connell D, and Tong S. 2011b. Time course of temperature effects on cardiovascular mortality in Brisbane, Australia. *Heart* 97:1089-1093.

Yu W, Mengersen K, Hu W, Guo Y, Pan X, and Tong S. 2011c. Assessing the relationship between global warming and mortality: lag effects of temperature fluctuations by age and mortality categories. *Environmental Pollution* 159:1789-1793.

Yu W, Mengersen K, Wang X, Ye X, Guo Y, Pan X, and Tong S. 2012. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. *International journal of biometeorology* 56:569-581.
Zeng W, Lao X, Rutherford S, Xu Y, Xu X, Lin H, Liu T, Luo Y, Xiao J, and Hu M. 2014. The effect of heat waves on mortality and effect modifiers in four communities of Guangdong Province, China. *Science of The Total Environment* 482:214-221.

Zhou MG, Wang LJ, Liu T, Zhang YH, Lin HL, Luo Y, Xiao JP, Zeng WL, Zhang YW, and Wang XF. 2014. Health impact of the 2008 cold spell on mortality in subtropical China: the climate and health impact national assessment study (CHINAs). *Environmental Health* 13:60.
Figure 1. Procedure for literature search

A total of 681 articles were searched in databases

Database search

626 were excluded after reviewing of titles and abstracts

55 Studies retrieved for the detailed evaluation

29 studies were excluded for full-text reviewing basing on:
- estimate effect base on extreme event weather (10)
- use of special meteorological indicators (e.g., apparent temperature)(13)
- incomplete information of cardiovascular mortality(2)
- use special health effect “years of life lost” (1)
- Cardiorespiratory mixed data(1)
- Exclude because same data(2)

26 studies were included in the meta-analysis
Figure 2

Figure 2. Meta-analysis of ambient temperature on risk of cardiovascular mortality in cold exposure
Figure 3

Figure 3. Meta-analysis of ambient temperature on risk of cardiovascular mortality in heat exposure
Figure 4. Meta-analysis of cold exposure and risk of cardiovascular mortality in males

Study ID	ES (95% CI)	Weight
Tian et al (2012)	1.15 (0.95, 1.39)	0.03
Goggins et al (2011)	1.04 (1.03, 1.06)	9.98
Goggins et al (2011)	1.04 (1.03, 1.05)	11.88
Jun et al (2015)	1.16 (1.13, 1.18)	2.30
Yang et al (2012)	1.31 (1.20, 1.42)	0.12
Seposo et al (2015)	0.92 (0.80, 1.06)	0.09
Chen et al (2014)	1.69 (1.15, 2.48)	0.00
Huang et al (2015)	1.03 (1.03, 1.04)	71.00
Wang et al (2014)	1.63 (1.26, 2.10)	0.01
Yang et al (2015)	1.05 (1.03, 1.07)	3.59
Huang et al (2014)	1.05 (1.01, 1.08)	0.99
Bai et al (2014)	1.46 (0.94, 2.26)	0.00
Bai et al (2014)	1.13 (0.69, 2.15)	0.00
Bai et al (2014)	2.92 (1.05, 8.63)	0.00
Gomez-Aceboli et al (2013)	3.90 (2.51, 6.06)	0.00
Overall (I-squared = 90.6%, p = 0.000)	1.04 (1.03, 1.04)	100.00
Figure 5. Meta-analysis of heat exposure and risk of cardiovascular mortality in males

Study	ID	ES (95% CI)	%
Tian et al (2012)		1.37 (1.16, 1.62)	0.01
Jun et al (2015)		1.01 (1.01, 1.01)	49.64
Yang et al (2012)		1.08 (1.02, 1.14)	0.08
Seposo et al (2015)		1.24 (1.13, 1.37)	0.02
Chen et al (2014)		1.73 (1.28, 2.32)	0.00
Huang et al (2015)		1.01 (1.01, 1.01)	49.64
Wang et al (2014)		1.33 (1.14, 1.56)	0.01
Yang et al (2015)		1.03 (0.99, 1.06)	0.25
Huang et al (2014)		1.04 (1.00, 1.08)	0.20
Chan et al (2012)		1.04 (1.00, 1.09)	0.15
Bai et al (2014)		1.14 (0.85, 1.53)	0.00
Bai et al (2014)		1.67 (1.11, 2.52)	0.00
Bai et al (2014)		1.92 (1.05, 3.52)	0.00
Overall (I-squared = 81.2%, p = 0.000)		1.01 (1.01, 1.01)	100.00
Figure 6

Figure 6. Meta-analysis of cold exposure and risk of cardiovascular mortality in females

Study	ID	ES (95% CI)	% Weight
Tian et al (2012)		1.18 (1.03, 1.43)	0.04
Goggins et al (2013)		1.05 (1.04, 1.06)	17.95
Goggins et al (2013)		1.03 (1.02, 1.05)	6.74
Jun et al (2015)		1.15 (1.13, 1.18)	2.59
Yang et al (2012)		1.16 (1.05, 1.28)	0.12
Seposo et al (2015)		1.05 (0.82, 1.35)	0.02
Chen et al (2014)		1.52 (1.00, 2.30)	0.00
Huang et al (2015)		1.03 (1.03, 1.04)	64.79
Wang et al (2014)		1.74 (1.32, 2.29)	0.01
Yang et al (2015)		1.03 (1.01, 1.05)	4.05
Huang et al (2014)		1.07 (1.05, 1.09)	3.67
Bai et al (2014)		1.47 (0.68, 3.17)	0.00
Bai et al (2014)		1.31 (0.76, 2.25)	0.00
Bai et al (2014)		2.34 (0.77, 7.14)	0.00
Gomez-Aceboi et al (2013)		5.09 (3.15, 8.21)	0.00
Overall (I-squared = 88.4%, p = 0.000)		1.04 (1.04, 1.05)	100.00
Figure 7

Figure 7. Meta-analysis of heat exposure and risk of cardiovascular mortality in females
Figure 8

Figure 8. Meta-analysis of heat exposure on risk of cardiovascular mortality in vulnerable age groups

Study ID	ES (95% CI)	% Weight
Tian et al (2012)	1.47 (1.13, 1.91)	0.11
Yu et al (2011)	1.07 (1.04, 1.10)	18.58
Qiao et al (2015)	1.25 (1.16, 1.35)	1.74
Jun et al (2015)	1.12 (1.09, 1.15)	17.96
Yang et al (2012)	1.17 (1.06, 1.30)	1.12
Gue et al (2012)	1.33 (1.08, 1.64)	0.21
Yi et al (2015)	1.10 (1.01, 1.15)	3.30
Seposo et al (2015)	1.53 (1.31, 1.80)	0.27
Chen et al (2014)	1.51 (1.04, 2.19)	0.05
Huang et al (2015)	1.17 (1.03, 1.21)	2.04
Wang et al (2014)	1.38 (1.21, 1.58)	0.47
Yang et al (2015)	1.06 (1.03, 1.10)	13.20
Huang et al (2015)	1.04 (1.01, 1.07)	17.96
Yu et al (2011)	1.04 (1.00, 1.07)	14.85
Chen et al (2014)	1.07 (1.01, 1.12)	6.10
Bai et al (2014)	1.08 (1.00, 1.18)	2.02
Bai et al (2014)	1.89 (1.03, 3.49)	0.01
Bai et al (2014)	1.34 (0.74, 2.43)	0.02
Overall (I-squared = 76.9%, p = 0.000)	1.08 (1.07, 1.09)	100.00
Figure 9. Meta-analysis of cold exposure on risk of cardiovascular mortality in vulnerable age groups

Study ID	ES (95% CI)	Weight
Tian et al (2012)	1.29 (1.06, 1.58)	0.05
Yu et al (2011)	1.04 (1.02, 1.06)	7.87
Goggins et al (2011)	1.07 (1.06, 1.09)	19.57
Goggins et al (2011)	1.04 (1.02, 1.05)	12.15
Jun et al (2015)	1.16 (1.13, 1.18)	5.29
Yang et al (2012)	1.29 (1.11, 1.46)	0.11
Gui et al (2012)	1.30 (1.05, 1.61)	0.04
Yi et al (2015)	1.41 (1.35, 1.51)	0.52
Seposo et al (2015)	1.14 (0.87, 1.50)	0.03
Chen et al (2014)	1.81 (1.06, 2.56)	0.01
Huang et al (2015)	1.04 (1.03, 1.05)	33.08
Wang et al (2014)	1.80 (1.45, 2.24)	0.02
Yang et al (2015)	1.04 (1.02, 1.06)	8.27
Huang et al (2014)	1.07 (1.05, 1.09)	8.27
Yu et al (2011)	1.03 (1.01, 1.06)	4.71
Bai et al (2014)	1.77 (1.04, 3.10)	0.00
Bai et al (2014)	1.24 (0.78, 1.97)	0.01
Bai et al (2014)	4.03 (1.06, 7.15)	0.00
Gomez-Acebo et al (2013)	3.80 (2.83, 5.09)	0.00
Overall (I-squared = 92.3%, p = 0.000)	1.06 (1.05, 1.06)	100.00
Table 1 (on next page)

Characteristic of included studies
NO	Authors and Years of publication	Events No /Data source	Location and time period	Main temperature exposure variable(s)	Variables Controlled	Lags (Days)	Study Design	Effect estimate of temperature/threshold (definition of hot & cold effect)	Outcome measurement
1	Lin et al 2013 (Lin et al. 2013)	1.25-3.75 mortality per day department of Health	four regions of Taiwan 1994-2007	Mean temperature	PM10, NOx, O3	0-20	Time-Series	15°C compare with 27°C for cold effect vs.31°C compare with 27°C for hot effect	ICD-9 Codes Ischemic heart disease and CVD
2	Tian et al 2012 (Tian et al. 2012)	26460/ Death Classification System, Beijing Public Security Bureau	Beijing, China 2000-2011	Daily mean temperature	Day of the week	0-15	Time-Series	99th (30.5°C) compare 90th (27.0°C) for hot effect vs 1st (-7.6°C) compare to 10th (-2.2°C) for cold effect	ICD-10 (120-125), CHD mortality
3	Yu et al 2011 (Yu et al. 2011b)	22805/ Office of Economic and Statistical Research of the Queensland Treasury	Queensland, Australia 1996-2004	Mean temperature	Time trend, PM10, RH, NOx, O3	0-20	Time-Series	1°C above 24°C for hot effect 1°C below 24°C for cold effect	ICD-9 (390-459) ICD-10 (I00-I79) CVD
4	Qiao et al 2015 (Qiao et al. 2015)	22,561/ Office of Economic and Statistical Research of the Queensland Treasury	Brisbane, Australia 1996-2004	Daily mean temperature	Time trend, seasonality	0-20	Time-Series	1°C mean temperature increase above the threshold (28°C)	ICD-9 (390-459) ICD-10 (I00-I99) CVD
5	Goggins et al 2013 (Goggins et al. 2013)	Hong Kong 91/d and Taiwan 33/d Hong Kong Census and Statistics Bureau, Taiwan’s Department of Health	Hong Kong 1999-2009 Taiwan 1999-2008	Mean temperature	RH, PM10, NOx, SO2, O3 wind speed, solar radiation, Time trend, seasonality, Day of Week	0-35	Time-Series	10°C drop in temperature in cold season for Cold effect	ICD-9 (390-459) ICD-10 (I00-I99)
6	Jun et al 2015 (Yang et al. 2015c)	1 936 116/ Death Register and Report of Chinese CDC	China 2007-2013 2007-2013	Mean temperature	not mention	0-21	Time-Series	99th compare with MMT for hot effect vs 1th compare with MMT for cold effect	ICD-10 (I00-I99)

1. PM: Particle Matter
2. NOx: Nitrous Oxide
3. O3: Ozone
4. ICD: International Classification of Diseases
5. RH: Relative Humidity
6. SO2: Sulfur Dioxide
7. CDC: Center of control Diseases
| 7 | Kim et al. 2016 (Kim et al. 2016) | Ranged from 3.3 to 50.5 mean daily Chinese CDC Ministry of Health and Welfare of Japan, and the National Death Registry of Taiwan | 30 different cities of East Asia, 1979-2010 | mean Temperature diurnal Temperature range | PM10, NO2, and SO2 | 0-21 | Time-Series | 1 °C increase above mean temperature for hot effect | ICD-10(I00-I99) |
| NO | Authors and Years of publication | Events No /Data source | Location and time period | Main temperature exposure variable(s) | Variables Controlled | Lags (Days) | Study Design | Effect estimate of temperature/threshold | Outcome measurement |
|----|----------------------------------|------------------------|--------------------------|---------------------------------------|---------------------|-------------|-------------|--|-------------------|
| 8 | Yang et al 2012(Yang et al. 2012) | Guangzhou Bureau of Health | Guangzhou, China 2003-2007 | Maximum, minimum and Mean temperature | PM$_{10}$, NO$_2$, and SO$_2$ | 0-25 | Time-Series | 99th to the 90th for hot effect | ICD-10(100-199) Cardiovascular mortality |
| 9 | Guo et al 2012(Guo et al. 2012b) | 11,746, Bureau of Policy and Strategy, Ministry of Public Health, Thailand | Thailand 1999-2008 | Maximum, Minimum and Mean Temperature | PM10, O3, RH Influenza | 0-21 | Time-Series | 99th compare 75th for hot effect vs 1st compare to 25th for cold effect | ICD-10(100-199) Cardiovascular mortality |
| 10 | Yi et al 2015 (Yi & Chan 2015) | 98,091, Bureau of Policy and Strategy, Ministry of Public Health, Thailand | Thailand 1999-2008 | Maximum, Minimum and Mean Temperature | PM$_{10}$, NO$_2$, and SO$_2$ | 0-21 | Time-Series | 99th compare 75th for hot effect vs 1st compare to 25th for cold effect | ICD-10(100-199) Cardiovascular mortality |
| 11 | Seposo et al 2015 (Seposo et al. 2015) | 14.7 mortality per day Philippine Statistics Authority-National Statistics Office (PSA-NSO) | Philippine 2006-2010 | daily average temperature | seasonal effect | No | Time-Series | 1st respective to MMT for cold effect vs. 99th respective to MMT for hot effect | ICD codes (100-199) Cardiovascular-related mortality |
| 12 | Chen et al 2014(Chen et al. 2014) | 126-925, Death Register System from Chinese CDC | China 2009-2011 | Maximum, Minimum and Mean Temperature | PM$_{10}$, NO$_2$, and SO$_2$ | 0-14 | Time-Series | 99th compare 75th for hot effect vs 1st compare to 25th for cold effect | ICD -10: (I00-125) Coronary artery Disease |
| 13 | Guo et al 2012 (Guo et al. 2012a) | 16 559, Chinese CDC | China 2004-2008 | Maximum, Minimum and Mean Temperature | PM$_{10}$ and NO$_2$ | 0-20 | Time-Series | 99th compare 90th for hot effect vs 1st compare to 10th for cold effect | ICD -10: (I00-125) Coronary artery Disease |
| 14 | Kim et al 2015 (Kim et al. 2015) | 8.5 mortality per day Statistics Korea, National Institute of Environmental Research | Korea 1995-2011 | Daily Mean Temperature | RH, holidays, Day of Week, Time trends | PM$_{10}$, NO$_2$ | 0-21 | 99th compare 90th for hot effect vs 10th compare to 25th for cold effect | ICD-10(120-159), ICD-9(410-429) |
| 15 | Huang et al 2015(Huang et al. 2015) | 552 866, Chinese CDC | China 2006-2011 | Mean Temperature | Seasonal trend, Day of Week RH, Duration of sunshine, Precipitation, Atmospheric Pressure | 0-21 | Time-Series | 1 °C increase from 25 °C for hot effect, 1 °C decrease from 25 °C for cold effect | ICD codes (100-199) |
| 16 | Yang et al 2015(Yang et al. 2015a) | Shanghai, China 1981-2012 | Shanghai, China | Daily mean Temperature | Seasonality, Day of Week RH, Holidays, population size | 0-28 | Time-Series | 99th compare 90th for hot effect vs 1st compare to 10th for cold effect | ICD-9 (390-459), ICD codes (100-199) |
| NO | Authors and Years of publication | Events No/Data source | Location and time period | Main temperature exposure variable(s) | Variables Controlled | Lags (Days) | Study Design | Effect estimate of temperature/threshold | Outcome measurement |
|---|---------------------------------|-----------------------|--------------------------|---------------------------------------|----------------------|-------------|-------------|--|-------------------|
| 17 | Breitner et al 2014 (Breitner et al. 2014) | not mention Bavarian State Office for Statistics and Data Processing | Bavaria, Germany 1990-2007 | Mean Temperature | Ozone, PM10, Influenza epidemic, time trend, Day of week, RH, barometric pressure | 0-14 | Time-Series | 99th compare 90th for hot effect vs 1th compared to 10th for cold effect | ICD-9 (390-459) ICD codes (I00-I99) |
| 18 | Wang et al 2014 (Wang et al. 2014) | 18,530 Suzhou Center for Disease Control and Prevention | Suzhou, China 2005-2008 | Mean Temperature | PM10, NO2, and SO2 | 0-28 | Time-Series | 99th compare MMT(26 C) for hot effect vs 1st compare to MMT(26 C) for cold effect | ICD codes (I00-I99) |
| 19 | Ma et al 2014 (Ma et al. 2014) | not mention Municipal Center for Disease Control and Prevention (CDC) | 17 large cities of China 1996-2008 | Mean Temperature | PM10, NO2, and SO2 | 0-28 | Time-Series | 99th compare 75th for hot effect vs 1st compare to 25th for cold effect | ICD codes (I00-I99) |
| 20 | Yang et al 2015 (Yang et al. 2015b) | 23.8 mortality per day Guangzhou Bureau of Health | Guangzhou, China 2003-2007 | Mean Temperature | PM10, NO2, and SO2 Seasonality, RH, Atmospheric Pressure | 0-30 | Time-Series | 99th compare 75th for hot effect vs 1st compare to 25th for cold effect | ICD codes (I00-I99) |
| 21 | Huang et al 2014 (Huang et al. 2014) | 19,418 Chinese CDC | Changsha, China 2008-2011 | daily Mean, Maximum and Minimum temperature | long-term, Seasonality, barometric pressure, RH | 0-30 | Time-Series | 1 °C decrease from 10 °C for cold effect vs 1 °C increase from 29 °C for hot effect | ICD codes (I00-I79) |
| 22 | Yu, et al (Yu et al. 2011a) | 22,805 Office of Economic and Statistical Research of the Statistical Research of the Queensland Treasury | Brisbane, Australia 1996-2004 | Maximum, Minimum Temperature | PM10, NO2, O3 | 0-31 | Time-Series | 1 °C increase from 24 °C for cold effect vs 1 °C decrease from 24 °C for cold effect | ICD-9 (390-499) ICD codes (I00-I99) |
| 23 | Chan, E. Y. Y 2012 (Chan et al. 2012) | 129 688 Hong Kong Census And Statistics Department | Hong Kong 1998-2006 | average daily mean temperature | PM10, NO2, SO2, O3 Day of the week and holiday | 0-14 | Time-Series | 1 °C increase from 28.2 °C for hot effect | ICD 390.459 ICD 10 I00-I99 |
| 24 | Wang, X 2015 (Wang et al. 2015) | Not mentioned Chinese CDC | Chinese 2007-2009 | Mean Temperature | Seasonality, Time trend, PM10, NO2, SO2, RH, Wind | 0-27 | Time-Series | 99th compare 90th for hot effect vs 1st compare to 10th for cold effect | ICD 10 I00-I99 |
| 25 | Bai, L 2014 (Bai et al. 2014) | 5,610 Tibetan CDC | China 2008-2012 | Mean Temperature | ------------------ | 0-14 | Time-Series | 99th compare 75th for hot effect vs 1st compare to 10th for cold effect | ICD 10 I00-I99 |
| 26 | Gomez-Acebo 2013 (Gomez-Acebo et al. 2013) | 1252 Spanish National Institute for Statistical | Spain 2004-2005 | minimum temperatures | age, sex, underlying disease | 0-6 | Case-crossover | 5th (-13.8 °C) compare campare with over the 5th (1.8 C) for cold effect | ICD-10 I00-I99 |
Bai L, Woodward A, and Liu Q. 2014. Temperature and mortality on the roof of the world: a time-series analysis in three Tibetan counties, China. *Science of The Total Environment* 485:41-48.

Breitner S, Wolf K, Devlin RB, Diaz-Sanchez D, Peters A, and Schneider A. 2014. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis. *Science of The Total Environment* 485:49-61.

Chan EYY, Goggins WB, Kim JJ, and Griffiths SM. 2012. A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. *Journal of Epidemiology and Community Health* 66:322-327.

Chen R, Li T, Cai J, Yan M, Zhao Z, and Kan H. 2014. Extreme temperatures and out-of-hospital coronary deaths in six large Chinese cities. *Journal of Epidemiology and Community Health*:jech-2014-204012.

Goggins WB, Chan E, Yang C, and Chong M. 2013. Associations between mortality and meteorological and pollutant variables during the cool season in two Asian cities with sub-tropical climates: Hong Kong and Taipei. *Environ Health* 12:59.

Gomez-Acebo I, Llorca J, and Dierssen T. 2013. Cold-related mortality due to cardiovascular diseases, respiratory diseases and cancer: a case-crossover study. *Public health* 127:252-258.

Guo Y, Li S, Zhang Y, Armstrong B, Jaakkola JJ, Tong S, and Pan X. 2012a. Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China. *Heart*:heartjnl-2012-302518.

Guo Y, Punnasiri K, Tong S, Aydin D, and Feychting M. 2012b. Effects of temperature on mortality in Chiang Mai city, Thailand: a time series study. *Environ Health* 11:10.1186.

Huang J, Wang J, and Yu W. 2014. The lag effects and vulnerabilities of temperature effects on cardiovascular disease mortality in a subtropical climate zone in China. *International journal of environmental research and public health* 11:3982-3994.

Huang Z, Lin H, Liu Y, Zhou M, Liu T, Xiao J, Zeng W, Li X, Zhang Y, and Ebi KL. 2015. Individual-level and community-level effect modifiers of the temperature–mortality relationship in 66 Chinese communities. *BMJ open* 5:e009172.

Kim H, Heo J, Kim H, and Lee J-T. 2015. Has the impact of temperature on mortality really decreased over time? *Science of The Total Environment* 512:74-81.

Kim J, Shin J, Lim Y-H, Honda Y, Hashizume M, Guo YL, Kan H, Yi S, and Kim H. 2016. Comprehensive approach to understand the association between diurnal temperature range and mortality in East Asia. *Science of The Total Environment* 539:313-321.

Lin Y-K, Chang C-K, Wang Y-C, and Ho T-J. 2013. Acute and Prolonged Adverse Effects of Temperature on Mortality from Cardiovascular Diseases. *PLoS one* 8:e82678.

Ma W, Chen R, and Kan H. 2014. Temperature-related mortality in 17 large Chinese cities: How heat and cold affect mortality in China. *Environmental Research* 134:127-133.

Qiao Z, Guo Y, Yu W, and Tong S. 2015. Assessment of short-and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. *Environmental Health Perspectives* 123:766.

Seposo XT, Dang TN, and Honda Y. 2015. Evaluating the effects of temperature on mortality in manila city (Philippines) from 2006–2010 using a distributed lag nonlinear model. *International journal of environmental research and public health* 12:6842-6857.
Tian Z, Li S, Zhang J, Jaakkola JJ, and Guo Y. 2012. Ambient temperature and coronary heart disease mortality in Beijing, China: a time series study. *Environ Health* 11:10.1186.

Wang C, Chen R, Kuang X, Duan X, and Kan H. 2014. Temperature and daily mortality in Suzhou, China: a time series analysis. *Science of The Total Environment* 466:985-990.

Wang X, Li G, Liu L, Westerdahl D, Jin X, and Pan X. 2015. Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China. *International journal of environmental research and public health* 12:16136-16156.

Yang C, Meng X, Chen R, Cai J, Zhao Z, Wan Y, and Kan H. 2015a. Long-term variations in the association between ambient temperature and daily cardiovascular mortality in Shanghai, China. *Science of The Total Environment* 538:524-530.

Yang J, Ou C-Q, Ding Y, Zhou Y-X, and Chen P-Y. 2012. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou. *Environ Health* 11:63.

Yang J, Ou C-Q, Guo Y, Li L, Guo C, Chen P-Y, Lin H-L, and Liu Q-Y. 2015b. The burden of ambient temperature on years of life lost in Guangzhou, China. *Scientific reports* 5.

Yang J, Yin P, Zhou M, Ou C-Q, Guo Y, Gasparrini A, Liu Y, Yue Y, Gu S, and Sang S. 2015c. Cardiovascular mortality risk attributable to ambient temperature in China. *Heart*:heartjnl-2015-308062.

Yi W, and Chan AP. 2015. Effects of temperature on mortality in Hong Kong: a time series analysis. *International journal of biometeorology* 59:927-936.

Yu W, Hu W, Mengersen K, Guo Y, Pan X, Connell D, and Tong S. 2011a. Time course of temperature effects on cardiovascular mortality in Brisbane, Australia. *Heart* 97:1089-1093.

Yu W, Mengersen K, Hu W, Guo Y, Pan X, and Tong S. 2011b. Assessing the relationship between global warming and mortality: lag effects of temperature fluctuations by age and mortality categories. *Environmental Pollution* 159:1789-1793.
Table 2 (on next page)

Heat and cold exposure effect in lag days and low and high educational levels
Table 2. The cumulative relative risks (95% confidence interval) of cold and heat exposure on cardiovascular mortality based on lag days and educational levels.

Variables	Cold effect	Heat effect
Lag Days		
Lag 0	1.01 (1.00 to 1.02)	1.04 (1.03 to 1.05)
Lag 0-3	1.06 (1.05 to 1.08)	1.10 (1.08 to 1.12)
Lag 0-7	1.05 (1.03 to 1.07)	1.14 (1.09 to 1.17)
Lag 0-13	1.09 (1.07 to 1.10)	1.11 (1.08 to 1.15)
Lag 0-21	1.06 (1.05 to 1.07)	1.12 (1.06 to 1.17)
Lag 0-28	1.07 (1.05 to 1.08)	1.13 (1.07 to 1.17)
Educational levels		
Low Educational Level	1.035 (1.031 to 1.04)	1.03 (1.02 to 1.04)
High Educational Level	1.014 (1.011 to 1.02)	1.011 (1.00 to 1.015)
Table 3 (on next page)

The dose–response relationship between the risk of cardiovascular mortality (%) and latitude, longitude, lag day and mean annual temperature
Tables 3. The dose–response relationship between the temperature associated increase in risk of cardiovascular mortality (%) and latitude, longitude, lag day and mean annual temperature.

Explanatory Variable	Cold Exposure	Heat Exposure		
	Coefficient (95% Conf. Interval)	P value	Coefficient (95% Conf. Interval)	P value
One-degree change in latitude	0.020 (0.0060-0.0356)	0.009	0.007 (0.0008 - 0.0124)	0.026
One-degree change in longitude	0.007 (0.0003 - 0.0146)	0.042	0.006 (-0.002 - 0.004)	0.655
One-day increase in lag	-0.0167 (-0.055 - 0.021)	0.366	0.006 (-0.009 - 0.022)	0.385
One-degree increase in mean annual temperature	0.026 (-0.019 - 0.072)	0.240	0.008 (-0.0151 - 0.031)	0.474
Constant variable	248.867 (175.507 - 480.227)	0.037	175.327 (64.792 - 285.862)	0.004

* Significant at 95% CI