Research Article

A First-Stage Approximation to Identify New Imprinted Genes through Sequence Analysis of Its Coding Regions

Elias Daura-Oller, Maria Cabrè, Miguel A. Montero, José L. Paternáin, and Antoni Romeu

Biochemistry and Biotechnology Department, Faculty of Chemistry, Rovira i Virgili University (URV), c/Marcel-lí Domingo, s/n. Campus Sescelades, 43007 Tarragona, Spain

Correspondence should be addressed to Antoni Romeu, antoni.romeu@urv.cat

Received 11 August 2008; Revised 2 December 2008; Accepted 22 January 2009

Recommended by Graziano Pesole

In the present study, a positive training set of 30 known human imprinted gene coding regions are compared with a set of 72 randomly sampled human nonimprinted gene coding regions (negative training set) to identify genomic features common to human imprinted genes. The most important feature of the present work is its ability to use multivariate analysis to look at variation, at coding region DNA level, among imprinted and non-imprinted genes. There is a force affecting genomic parameters that appears through the use of the appropriate multivariate methods (principle components analysis (PCA) and quadratic discriminant analysis (QDA)) to analyse quantitative genomic data. We show that variables, such as CG content, [bp]% CpG islands, [bp]% Large Tandem Repeats, and [bp]% Simple Repeats, are able to distinguish coding regions of human imprinted genes.

Copyright © 2009 Elias Daura-Oller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Genomic imprinting is an epigenetic modification of dispersed regions of the genome depending on their exposure to the maternal or paternal germline. This results in differential expression of only one of the two alleles depending on the parent of origin. Allele-specific CpG methylation, histone acetylation, asynchronous DNA replication, and chromatin condensation are all associated with imprinted loci [1].

Recently, the question of whether imprinted genes have sequence characteristics that distinguish them from non-imprinted genes is drawing the attention of several research groups. Such structural differences may elucidate the mechanisms leading to allele-specific expression of imprinted genes [2]. Greally [3] found that the main sequence characteristic of human imprinted genes is a lower incidence of short interspersed nuclear elements. For tandem repeats and CpG islands, there is accumulating evidence correlating these elements and genomic imprinting. Accordingly, some authors [4–7] suggested using these sequence features as a search tool for imprinted genes.

Identifying imprinted genes experimentally is challenging because the monoallelic expression of an imprinted gene may occur only in one of possibly several isoforms, only in particular tissues, or only at particular stages of development. Many autosomal genes are imprinted only in specific tissues or cell types, including GRB10 [8], Igf2/H19 [9], UBE3A [10], ATP10A (formerly ATP10C) [11], and KCNQ1 [12].

Consequently, in the absence of any method for prioritising genes, an average of 100 genes must be examined before a new imprinted gene can be identified. Indeed, experimental identification of human imprinted genes to date has been slow. To date, only ~60 human imprinted genes have been identified.

For this reason, the application of sequence analysis approaches to genome-wide screening of human genes, which can be ranked to identify those with a sequence composition suggestive of imprinting, is very useful.

To date, imprinted genes are predicted using a wide range of genomic features and sophisticated strategies and methodologies [13–16], but no simple sequence patterns and models are known to accurately distinguish imprinted genes from non-imprinted ones. But even so, a simple approach
would be potentially valuable for directing laboratory work in a first stage.

We are concerned with identifying possible candidate imprinted genes to allow their imprinting status to be determined experimentally. For this reason, human gene coding region features are considered further with a view to developing an approximation to a first-stage screening and classifying genes into imprinted and non-imprinted candidate groups. This study uses statistical approaches for a first discrimination between imprinted and non-imprinted genes based on the currently available coding region sequences.

2. Materials and Methods

A positive training set of 30 human genes (Table 1) that showed imprinting effects were selected for analysis from the Catalogue of Imprinted Genes (http://igc.otago.ac.nz/home.html). A negative training set of 72 randomly selected control genes and a test set of 31 predicted imprinted genes were compiled from the recent literature and were collected from the NCBI nucleotide database (http://www.ncbi.nlm.nih.gov). See supplementary data for more details about these genes used in this study.

The sequence characteristics of the coding regions of each gene were examined in the analysis. These regions are the portions of a gene or an mRNA which actually code for a protein.

For CpG dinucleotide analysis, we used the NEWCP-GREPORT program (http://mobyle.pasteur.fr/cgi-bin/portal.py?form=newcpgreport), and the total number of CpG islands was counted. For the repeat element analysis, the Repeat Masker program (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) was used, and for tandem repeat analysis, the ETANDEM program (http://mobyle.pasteur.fr/cgi-bin/MobylePortal/portal.py?form=etandem) was used. All classes of repeat elements output from Repeat Masker were collected. We used ETANDEM to obtain numbers of tandem repeat elements ranging from 5 bp to 100 bp. The Wilbur and Lipman pairwise sequence alignment method, implemented in the MegaAlign program of the DNastar Sequence Analysis software (Lasergene v8.0; http://www.dnastar.com) used to align sequences of Large Tandem Repeats identified in imprinted genes.

Principal component analysis (PCA) and quadratic discriminant analysis (QDA) models of the [bp]% sequence characteristics data were performed using the Minitab software [17].

PCA analysis is a multivariate statistical technique. The central idea of PCA is to reduce the dimensionality of a data set that presents a large number of interrelated variables, while retaining as much as possible the variation present in the data set. PCA can search the data for qualitative and quantitative distinctions in situations where the number of data available is too large.

The purpose of the Quadratic Discriminant Analysis is to predict membership of a group from a set of predictor variables (the sequence characteristics). The discriminant is the quadratic combination of the predictor variables that best predicts group membership, allowing each gene to be classified into either imprinted or control groups on the basis of its sequence characteristics.

The performance of the classification was assessed using internal and external validation methods according to our software capabilities.

With the QDA model, we used an internal validation method called cross-validation [18]. This method uses the training set to check the model. Here, the training set is divided in several segments. One segment is reserved to corroborate the results, and the rest of them are used to build the model.

This process is repeated as many times as segments you have, and every time one of these segments is out of the calibration, and the other ones are used to build the model. Finally, all the segments are used to both build and validate the model.

With the PCA model, we used the external validation test set method. The number of elements of this set must be large (at least 25% of the training set size), and it must be
independent of the training set, but also this test set must represent the training set. The imprinted status of the test set is known, so it is possible to assess the PCA model using different elements that the ones used to build the model.

3. Results and Discussion

Recently, Ke et al. [14] found significant statistical differences between some sequence descriptors of human imprinted and control gene coding regions. These significant variables in their regression model were the Simple and Large Tandem Repeats, GC content, CpG islands, and short interspersed nuclear elements.

Taking into account this fact, we considered these descriptors (variables) as the most relevant ones for our study. So, the [bp]% genomic sequence characteristics of GC content, CpG islands, simple repeats (SR), large tandem repeats (LTR) and SINEs of all imprinted and non-imprinted coding region sequences were calculated.

Before applying the pattern recognition methods, each calculated descriptor was autoscaled. In the autoscaling method, each variable is scaled to a mean of zero and a standard deviation of unity. This method is very important because each variable is weighted equally, and this provides a measure of the ability of a descriptor to discriminate classes of compounds [19]. With this method, we can compare all descriptors at the same level.

Firstly, we started applying the PCA technique. After several PCA analyses, the best separation was obtained by using the following descriptors: GC content, [bp]% CpG islands, [bp]% Simple Repeats and [bp]% Large Tandem Repeats. This suggests that in this case, the other variables are not significant for the classification of the coding regions studied.

The PCA results show that the first component (PC1) is responsible for 49.6% of the variance of the data.

Considering the first (PC1) and second (PC2) components, the accumulated variance increases to 72%. Figure 1 shows that both PC1 and PC2 are in fact responsible for the discrimination between imprinted (two groups: I1 and I2) and non-imprinted (two groups: NO-I1 and NO-I2) genes. PC1 and PC2 can be represented by the following equations, that in fact form the PCA pattern recognition model:

\[
\begin{align*}
PC1 &= 0.535 \text{[GC content]} + 0.511 \text{[bp]% CpG islands]} \\
&\quad + 0.521 \text{[bp]% LTR} + 0.426 \text{[bp]% SR}, \\
PC2 &= -0.425 \text{[GC content]} - 0.467 \text{[bp]% CpG islands]} \\
&\quad + 0.313 \text{[bp]% LTR} + 0.71 \text{[bp]% SR}. \\
\end{align*}
\]

From Figure 2 and (1), we can see that the imprinted group I1 has large values for GC content and [bp]% CpG islands and a major content of [bp]% LTR compared with the I2 group. The imprinted group I2 has small values for GC content and [bp]% CpG islands and a major content of [bp]% SR.

On the other hand, we can see that the major part of non-imprinted genes, the NO-I2 group, has small values for [bp]% SR and [bp]% LTR, and the NO-I1 group has large values for the same both descriptors. It is clear that there are four coding region groups, and each one is located in practically one specific quadrant of the XY axes.

Genomic sequence characteristics of a total of 22544 bp from the coding sequences of 12 (I1 group) imprinted genes were compared to those of 66959 bp of coding sequences of 18 (I2 group) imprinted genes (Table 2) in order to carry out a deep study of the most relevant imprinted descriptors. The average number of CpG islands was higher in I1 group (1.8) than in I2 group (0.4). The frequency of \(G + C\) was also higher in I1 genes (62%) than in I2 ones (45%). Moreover, the average number of the ratio [bp]% LTR/[bp]% coding sequence coefficient is higher in the I1 group (11) than in I2 (0.03). Note that these results are in good agreement with the loadings of the PCA model.

We found an obvious functional difference between I1 and I2 groups in terms of expression pattern. We observed
Table 2: The number of large tandem repeats (LTR), CpG islands, and GC content in coding sequences of imprinted genes.

I1 group	Lenght	CG content	Number CpG islands	Number LTR Size count	Consensus
TP73	2234	64.6	3	0	—
LRRMT1	2217	58.4	2	1	24.7
KLF14	1383	66.8	2	1	18.9
KCNK9	1303	60.1	2	0	—
KCNQ1	3262	63.4	1	1	30.4
IGF2AS	2056	64	1	0	—
SMPD1	2473	59.8	1	1	6.9
IGF1	1356	63.7	3	1	14.18
SLC22A18	1549	65	1	0	—
KCNQ1	3262	63.4	1	1	30.4

I2 group	Lenght	CG content	Number CpG islands	Number LTR Size count	Consensus
NAP1L5	1912	42.9	0	1	12.7
PRIM2	2353	40.7	0	0	—
PLAG1	4354	46.9	1	1	25.3
HYMAI	5005	42.1	1	1	13.7
PEG10	6628	44.7	2	2	42.3 12.4
PON1	2395	41.3	0	0	—
CALCR	3470	40.4	0	0	—
PPP1R9A	9705	39.9	0	1	5.8
MEST	2507	45.1	1	2	42.4 23.3
COPG2	3365	43.1	0	0	—
CPA4	2807	48.9	1	0	—
INPP5F, V2	4955	43.5	1	0	—
ZNF215	3658	40.4	1	2	84.3 84.3
H19	2615	55.9	0	2	8.10 20.4
KRN3	3107	48	0	1	29.5
MAGEL2	2294	53.7	0	2	36.7 21.3
UBE3A	4491	36.7	0	1	10.7
NNAT	1338	56.5	0	0	—

maternal expression for 67% of the I1 imprinted genes and paternal expression for 61% of the I2 imprinted genes.

Moreover, other important observation is that all the Large Tandem Repeats of the I1 group genes are inside CpG islands while this fact is not observed in the I2 group. These results agree with those of Meguro et al. [11]: the CpG islands of imprinted genes contain some special DNA elements that distinguish them from CpG islands of biallelically expressed genes.

To identify sequence fingerprints and similarities among Large Tandem Repeats in the two imprinted groups, we used the Wilbur and Lipman pairwise sequence alignment method (see supplementary data for details). The I1 sequences group is quite consistent; all sequences are rich in GC content, and the similarity index of the aligned fragments ranges from 60 to 100%. In contrast, the sequences of the I2 group are longer, more heterogenous in terms of nucleotide composition; in some of them, the presence of a polyA motif.
could be empathised. The I2 sequence repeats show a much more wide range of similarity index. In addition, because of some significant differences in nucleotide composition between members of I2 sequences, some I2 sequence pairs could not be aligned. From this analysis, we can conclude that these two Large Tandem Repeats: GC-motifs (in I1 group) and AT-motifs (in I2 group) are highly conserved sequence patterns across their respective coding regions.

Then, we built a new model using another statistical technique: the quadratic discriminant analysis (QDA). QDA is also closely related to principal component analysis (PCA) in that both look for combinations of variables which best explain the data. QDA explicitly attempts to model the difference between the classes of data (supervised pattern recognition). PCA, on the other hand, does not take into account any difference in class (nonsupervised pattern recognition).

Table 3 shows the results of the QDA classification model. The total percentage of correct classification was 93%, and the proportions for each group are 100% (I2), 92% (I1), 90% (NO I1) and 92% (NO I2).

After the employing of QDA and PCA methods, we proceeded to the validation of their respective classification models.

The cross-validation approach was used to validate the QDA model. The total percentage of correct classification was 83% (Table 3). Therefore, this result confirms the existence of four groups between the coding regions characteristics.

On the other hand, the test set approach was used to validate the PCA model. We decided to apply the PCA model to a series of new predicted imprinted genes whose imprinting status was predicted by other methodologies [16] but it is still not experimentally proved. In this way, apart from the construction of a representative test set, we could compare our PCA results with the ones of Luedi et al. [16].

To form a randomly test set, we did a full-text mining search with all Luedi’s predicted gene names across the publication data of the Nutrigenomics Database (http://133.11.220.243/nutdb.html). After that, we formed a test group of 31 supposed imprinted genes related to nutrigenomics in humans (Table 4). It is important to emphasise that these possible imprinted genes are related with dietary factors known to influence DNA methylation as alcohol, folate, zinc, and cadmium. We thought that this fact may be interesting for future nutrigenomic work.

We calculated the genomic sequence characteristics of the 31 coding regions, and then we checked if our PCA pattern recognition model could classify them as imprinted genes, too.

Figure 3 shows the results of the PCA calculations for the first (PC1) and second (PC2) principal components. Before carrying out the prediction calculations, the descriptors were also autoscaled as previously. We found that 27 of the 31 genes were classified in the two correct imprinted quadrants (84%) by the PCA model. The GFI1, HSPA6, HOXD9, PITX2, PTPRN2, GADD45G, GATA3, NRGN, F10, JAG2, GATA6, ELA2, and ZNF42 genes are classified in the I1 imprinted group. The I2 imprinted groups are formed by EFNA4, BCL2L11, PER2, PPARG, POLR2H,

Table 3: Classification obtained with the QDA analysis.
Group
count
Summary of classification
True group
Put into group
I2
I1
NO_I1
NO_I2
Total N
N correct
Proportion
N = 102; N correct = 95; proportion correct = 0.93; proportion correct with cross-validation = 0.833.

Table 4: List of 31 genes from the test group.
Gene
GFI1
EFNA4
HSPA6
SHC1
CYP1B1
SIX3
OTX1
BCL2L11
HOXD9
PER2
PPARG
POLR2H
PITX2
TLL1
NDUFS4
ITGB8
CDK6
PTPRN2
GADD45G
AKR1C2
GATA3
NRGN
KLRF1
KLRC3
POU4F1
F10
JAG2
SFRS2
GATA6
ELA2
ZNF42

in the I1 imprinted group. The I2 imprinted groups are formed by EFNA4, BCL2L11, PER2, PPARG, POLR2H,
regions, and the di
completed.
identified and confirmed and the genome sequencing is
and the resolution improved as more imprinted genes are
valuable for a first-stage approximation directing follow-up
sequence composition suggestive of imprinting, is potentially
human genes, which can be ranked to identify those with a
sequence analysis approach to genome-wide screening of
methods for imprinted genes is problematic due to the small
content, [bp]% Simple Repeats are able to distinguish human
tative genomic data. We show that variables, such as, CG
quadratic discriminant analysis (QDA) to analyse quanti-
appears through the use of the appropriate multivari-
tions among imprinted and non-imprinted
tional parameters that
developmentally regulated,
maternally expressed gene, ATP10C, encodes a putative
brain,
imprinted and expressed from the paternal and maternal
allele in a highly tissue- and isoform-specific fashion,

tandem repeats and retroelements located between imprinted
subdomains of mouse distal chromosome 7,” DNA Research,
vol. 11, no. 5, pp. 325–334, 2004.
B. Hutter, V. Helms, and M. Paulsen, “Tandem repeats in the
CpG islands of imprinted genes,” Genomics, vol. 88, no. 3,
323–332, 2006.
H. Khatib, I. Zaitoun, and E.-S. Kim, “Comparative analysis of
sequence characteristics of imprinted genes in human, mouse,
and cattle,” Mammalian Genome, vol. 18, no. 6-7, pp. 538–547,
2007.
B. Neumann, P . Kubicka, and D. P . Barlow, “Characteristics
of imprinted genes,” Nature Genetics, vol. 9, no. 1, pp. 12–13,
1995.
H. Shirohzu, T. Yokomine, C. Sato, et al., “A 210-kb segment of
tandem repeats and retroelements located between imprinted
subdomains of mouse distal chromosome 7,” DNA Research,
vol. 11, no. 5, pp. 325–334, 2004.
B. Hutter, V. Helms, and M. Paulsen, “Tandem repeats in the
CpG islands of imprinted genes,” Genomics, vol. 88, no. 3,
323–332, 2006.
H. Khatib, I. Zaitoun, and E.-S. Kim, “Comparative analysis of
sequence characteristics of imprinted genes in human, mouse,
and cattle,” Mammalian Genome, vol. 18, no. 6-7, pp. 538–547,
2007.
N. Blagitko, S. Mergenthaler, U. Schulz, et al., “Human GRB10
is imprinted and expressed from the paternal and maternal
allele in a highly tissue- and isoform-specific fashion,” Human
Molecular Genetics, vol. 9, no. 11, pp. 1567–1595, 2000.
M. Charalambous, T. R. Menheniott, W. R. Bennett, et al., “An
encoder element at the Ig/2/H19 locus drives gene expression
in both imprinted and non-imprinted tissues,” Developmental
Biology, vol. 271, no. 2, pp. 488–497, 2004.
C. Rougeulle, H. Glatt, and M. Lalande, “The Angelman
syndrome candidate gene, UBE3AIE6-AP, is imprinted in
brain,” Nature Genetics, vol. 17, no. 1, pp. 14–15, 1997.
M. Meguro, A. Kashiwagi, K. Mitsuya, et al., “A novel
maternally expressed gene, ATP10C, encodes a putative
aminophospholipid translocase associated with Angelman
syndrome,” Nature Genetics, vol. 28, no. 1, pp. 19–20, 2001.
T. D. Gould and K. Pfeifer, “Imprinting of mouse Kvlqt1 is
developmentally regulated,” Human Molecular Genetics, vol. 7,
no. 3, pp. 483–487, 1998.
I. M. Morison, J. P . Ramsay, and H. G. Spencer, “A census of
mammalian imprinting,” Trends in Genetics, vol. 21, no. 8, pp.
457–465, 2005.
X. Ke, N. S. Thomas, D. O. Robinson, and A. Collins, “A novel
approach for identifying candidate imprinted genes through
sequence analysis of imprinted and control genes,” Human
Genetics, vol. 111, no. 6, pp. 511–520, 2002.
P. P. Luedi, A. J. Hartemink, and R. L. Jirtle, “Genome-wide
prediction of imprinted murine genes,” Genome Research, vol.
15, no. 6, pp. 875–884, 2005.

4. Conclusions

The most important feature of the present work is its ability
to use multivariate analysis to look at variation, at coding
region DNA level, among imprinted and non-imprinted
genes. There is a force affecting genomic parameters that
appears through the use of the appropriate multivari-
ate methods (principle components analysis (PCA) and
quadratic discriminant analysis (QDA) to analyse quanti-
tative genomic data. We show that variables, such as, CG
content, [bp]% CpG islands, [bp]% Large Tandem Repeats,
and [bp]% Simple Repeats are able to distinguish human
coding region imprinted genes.

We know that a conclusive assessment of prediction
methods for imprinted genes is problematic due to the small
number of affected genes, their clustering in small genomic
regions, and the difficulty of experimental validation.

However, we think that the application of this PCA
sequence analysis approach to genome-wide screening of
human genes, which can be ranked to identify those with a
sequence composition suggestive of imprinting, is potentially
valuable for a first-stage approximation directing follow-up
laboratory work.

Clearly an approach like this can be further refined
and the resolution improved as more imprinted genes are
identified and confirmed and the genome sequencing is
completed.
[16] P. P. Luedi, F. S. Dietrich, J. R. Weidman, J. M. Bosko, R. L. Jirtle, and A. J. Hartemink, “Computational and experimental identification of novel human imprinted genes,” *Genome Research*, vol. 17, no. 12, pp. 1723–1730, 2007.

[17] *Minitab Statistical Software Release 15.1*, Minitab, State College, Pa, USA, 2007.

[18] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,” *Analytica Chimica Acta*, vol. 185, pp. 1–17, 1986.

[19] J. C. Lindon, E. Holmes, and J. K. Nicholson, “Pattern recognition methods and applications in biomedical magnetic resonance,” *Progress in Nuclear Magnetic Resonance Spectroscopy*, vol. 39, no. 1, pp. 1–40, 2001.