Phase Diagram of CeCoIn$_5$ in the Vicinity of H_{c2} as Determined by NMR

V. F. Mitrovića,*, G. Koutroulakisa, M. -A. Vachona, M. Horvatićb, C. Berthierb, G. Lapertotc, J. Flouquetc,

aDepartment of Physics, Brown University, Providence, RI 02912, U.S.A.
bGrenoble High Magnetic Field Laboratory, CNRS, B.P. 166, 38042 Grenoble Cedex 9, France
cDépartement de Recherche Fondamentale sur la Matière Condensée, SPSMS, CEA Grenoble, 38054 Grenoble Cedex 9, France

Abstract

We report 115In nuclear magnetic resonance (NMR) measurements in the heavy-fermion superconductor CeCoIn$_5$ as a function of temperature in different magnetic fields applied parallel to the (\hat{a}, \hat{b}) plane. The measurements probe a part of the phase diagram in the vicinity of the superconducting critical field H_{c2} where a possible inhomogeneous superconducting state, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO), is stabilized. We have identified clear NMR signatures of two phase transitions occurring in this part of the phase diagram. The first order phase transitions are characterized by the sizable discontinuity of the shift. We find that a continuous second order phase transition from the superconducting to the FFLO state occurs at temperature below which the shift becomes temperature independent. We have compiled the first phase diagram of CeCoIn$_5$ in the vicinity of H_{c2} from NMR data and found that it is in agreement with the one determined by thermodynamic measurements.

Key words: FFLO; Vortex lattice; NMR; Superconductivity

PACS: 74.70.Tx, 76.60.Cq, 74.25.Dw, 71.27.+a

1. Introduction

Very soon after the development of the BCS theory there have been many efforts to go beyond conventional superconductivity investigating other possible superconducting phases. One of the most notable examples is the prediction of Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) [1] of an unconventional superconducting state realized in the vicinity of the critical field H_{c2}. In general, superconductivity is suppressed in the presence of an applied magnetic field (H_0) through two distinct physical mechanisms: one, the coupling of the magnetic field to the electronic orbital angular momentum which leads to the formation of a regular vortex array (Abrikosov vortex state); two, the Cooper pairs breaking caused by the Zeeman interaction between the field and the electron spins (Pauli paramagnetism). FFLO argued that when the Pauli pair breaking dominates over the orbital effects, the normal state is unstable with respect to the formation of a new type of electron pairs with non-zero center-of-mass momentum. Specifically, a pairing state ($k_\uparrow, -k + q_\downarrow$) with $q \sim 2\mu_B H_0/\hbar v_F$ is stabilized reducing the Pauli paramagnetic effect. The appearance of the non-zero momentum q breaks the spatial symmetry and, consequently, an inhomogeneous superconducting phase with order parameter that oscillates in real space emerges. It is striking that despite the early theoretical prediction of this exotic superconducting phase its commonly accepted experimental realization is yet to be observed.

Extensive efforts have been made to detect the FFLO state in materials so that the rich physics of the state can be explored. The material properties that are favorable to formation of the FFLO state include high purity ($l \gg \xi$), large spin susceptibility favoring spin coupling to the applied field, and layered structure that inhibits electronic orbital motion for magnetic fields parallel to the conducting planes. Single crystals of CeCoIn$_5$ are identified as good candidate for formation of the FFLO. Indeed, many experiments [2,3,4,5] have identified a possible phase transition to a FFLO state. The phase transition is discerned within the Abrikosov superconducting (SC) state (henceforth referred to as SC state) in the vicinity of the H_{c2}.

Most experiments have focused on the detection of a phase transition between the SC and FFLO states and/or between the FFLO and normal states. However, direct evidence of the order parameter oscillation in the real space is
still lacking and the nature of the new low temperature SC state thus remains to be elucidated. NMR appears to be the technique of choice for probing the microscopic nature of the state. However, clear signature of the transition to the FFLO state from SC state across continuous second order transition is still lacking. To address this issue we have performed extended measurements of the temperature dependence of the NMR shift throughout the high field part of the phase diagram.

Here we report 115In NMR measurements as a function of temperature in various applied magnetic fields in the vicinity of H_{c2} on a single crystal sample of CeCoIn$_5$. The shift and the lineshape measurements probe the local spin susceptibility (χ) and a local magnetic field map, respectively. By examining the temperature (T) dependence of the shift, we identify clear NMR signatures of two phase transitions at low temperatures and high magnetic fields. These are: the sizable discontinuity of the shift at the first order phase transition and onset of the temperature independence of the shift at the continuous second order phase transition from the superconducting to the FFLO state. Furthermore, we show that the phase transitions are accompanied by concomitant line broadening below the transition temperatures. We have compiled the phase diagram in the vicinity of H_{c2} and found it in agreement with the one determined by thermodynamic measurements [2].

2. Experimental Technique and the Sample

We have used high quality single crystals of CeCoIn$_5$ grown by a flux method [6]. The In ($I = 9/2$) quadrupolar-split NMR satellite lines were used to infer that H_0 was aligned to better than 1° with respect to the sample’s $(\hat{a}b)$ plane. Here, the spectra of the axially symmetric 115In(1) site are reported. They were recorded using a custom built NMR spectrometer and obtained, at each given value of H_0, from the sum of spin-echo Fourier transforms recorded at each 10 (or 20) KHz interval. The shift was determined by the diagonalization of the nuclear spin Hamiltonian including the quadrupolar effects. Pure magnetic contribution of the shift is obtained after subtracting independent orbital contribution of 0.13% to the shift.

The low temperature environment was provided by a 3He/4He dilution refrigerator. The RF coil was mounted into the mixing chamber of the refrigerator, ensuring good thermal contact. We used both the ‘top-tuning’ and fixed ‘bottom-tuning’ scheme. The ‘top-tuning’ scheme, in which the variable tuning delay line and matching capacitor were mounted outside the NMR probe, enabled us to span over a wide field/frequency range, while the ‘bottom-tuning’, in which a fixed capacitor was mounted in the mixing chamber near the coil, was used to assure improved signal-to-noise ratio. The sample was both zero-field and field-cooled. No notable influence of the sample cooling history on the NMR shift was detected. In order to avoid heating of the sample by RF pulses we used an RF excitation power much weaker than usual and repetition times of the order of a second to several seconds, depending on temperature.

3. Magnetic Shift

The temperature dependence of the shift at different applied fields is shown in Fig. 1. The region of the phase diagram that was scanned in these measurements is indicated by arrows in the inset to the figure. In fields ranging from 10.2 T to 12 T, the T dependence of shift clearly reveals two phase transitions, at T_c and T^*, as indicated in Fig. 1 by the blue and black arrows, respectively. The shift is discontinuous across the first-order and varies smoothly across the second-order phase transitions [2]. Even though, the NMR measurements cannot a priori unambiguously determine the order of a phase transition, in this case the NMR shift correctly reveals the order. As was previously discussed [4], the phase transition at T_c can be clearly associated with the transition to the uniform SC state. This conclusion comes from the observation of the strong loss of signal intensity due to RF shielding by SC currents.

Furthermore, three distinct temperature dependence of the shift are evident. Thus, the distinct T variation of the shift can be interpreted as a signature of separate states.
stabilized in this part of the phase diagram. The normal state shift exhibits linear T dependence and increases with decreasing temperature. In the SC state the temperature dependence of the shift, is expected to be quadratic, when $\mu_B H_0 > k_B T$ [7,8]. Indeed, the quadratic T dependence is observed at 10.2 T, 10.67 T, and 11 T fields, as indicated by solid lines in Fig. 1. However, at 10.67 T and 11 T at low temperatures there is an obvious discrepancy, well outside the error bars, between data and the expected T dependence in the SC state. We point out that the difference is particularly significant on the reduced T scale as was shown in Ref. [4] Moreover, shift is temperature independent in this low temperature part of the phase diagram. We interpret this T independence of χ as a signature of the FFLO state.

Two observations support our inference that the signature of the FFLO state is the T independent shift. First, in $H_0 > 11$ T the transition from the normal to the FFLO state is expected to be of the first order as per specific heat measurements [2]. At $H_0 = 11.3$ T and 11.56 T, shift is temperature independent below the T at which it discontinuously decreases from its normal state value. For $H_0 \leq 11$ T temperature independence of the shift onsets concomitantly with the departure from its expected T^2 behavior.

The T independence of the shift supports the FFLO scenario for this phase as opposed to the magnetic one [5]. Obviously, the low temperature shift exhibits a strong field dependence. Therefore, in the magnetic scenario it would be hard to conciliate the fact that moments do not respond to temperature perturbation while the system is readily affected by the changes of H_0.

4. NMR Lineshape in the Possible FFLO State

To further address the issue of the NMR signature of the FFLO phase, we examine the NMR lineshape at 10.67 T whose temperature dependence is plotted in Fig. 2. The solid line in the figure indicates the frequency position corresponding to temperature independent shift in the FFLO state. Peak position of all green shaded spectra coincides with the line. Above $T \approx 250$ mK, peak of the spectra shifts to higher frequencies with increasing temperature.

Let us now consider the T dependence of the lineshape. The full width at the half maximum (FWHM) and square root of the second moment ($\sqrt{\sigma^2}$) of the measured 115In spectra as a function of temperature at 10.67 T magnetic field, $H_0 || [100]$. The solid lines are guides to the eye.

5. High field Low Temperature Phase Diagram as Determined by NMR

A phase diagram as determined by our NMR measurements is plotted in Fig. 4. It is in excellent agreement with the one determined by thermodynamic measurements of A. Bianchi et al. [2].

6. Summary

In conclusion, we measured the NMR spectra of In(1) in a single crystal sample of CeCoIn$_5$ as a function of tem-
temperature in different magnetic fields, applied parallel to SC planes, in the vicinity of the upper critical field. Clear NMR signatures of two phase transitions at low temperatures and high magnetic fields are identified. The first order phase transitions are characterized by the sizable discontinuity of the shift. We find that a continuous second order phase transition from the superconducting to the FFLO state occurs at temperature below which the shift becomes temperature independent, i.e. the temperature dependence of the shifts departs from its characteristic T^2 behavior. Furthermore, we show that the phase transitions are accompanied by concomitant line broadening below the transition temperatures. We have compiled the first phase diagram of CeCoIn$_5$ in the vicinity of H_{c2} from NMR measurements. The phase diagram is in very good agreement with the one determined by thermodynamic measurements.

7. Acknowledgement

We thank S. Krämer for his contribution. This research is supported in part by the funds from the National Science Foundation (DMR-0547938), Brown University, and the Grenoble High Magnetic Field Laboratory, under European Community contract RITA-CT-2003-505474.

References

[1] P. Fulde and R.A. Ferrell, Phys. Rev. 135 (1964) A550; A.I. Larkin and Y.N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47 (1964) 1136.
[2] A. Bianchi et al., Phys. Rev. Lett. 91 (2003) 187004.
[3] C. Martin et al., Phys. Rev. B 71 (2005) 020503.
[4] V. F. Mitrović et al., Phys. Rev. Lett. 97 (2006) 117002.
[5] B.-L. Young et al., Phys. Rev. Lett. 98 (2006) 036402.
[6] Č. Petrović et al., J. Phys. Condens. Matt. 13 (2001) L337.
[7] A. B. Vorontsov and M. J. Graf, cond-mat 0507479.
[8] Kun Yang and S. L. Sondhi, Phys. Rev. B 57, 8566 (1998).