Electrochemical Phosphorylation of Organic Molecules

Najoua Sbei,[a] Guilherme M. Martins,[b,c] Bahareh Shirinfar,[d] and Nisar Ahmed*[b]

Abstract: Organophosphorus chemistry is a broad field with multi-dimensional applications in the research area of organic, biology, drug design and agrochemicals. Conventional methods have been adopted extensively to access phosphorylated compounds that rely on the use of toxic, moisture sensitive phosphorylating agents and occur in the presence of oxidants, catalysts, as well as high temperatures and harsh conditions are required for complete transformations. However, recent progress has been made for phosphorylation reactions using electricity to introduce green and sustainable synthetic procedures. These reactions can be performed at mild conditions and proceed with excellent atom economy. Herein, we targeted electrochemical phosphorylation reactions with generation of new bonds such as C(sp3)–P, C(sp2)–P, O–P, N–P, S–P and Se–P. This review is aimed to offer an overview of recent developments in the synthetic methodology to easy access of organophosphorus compounds using electrochemistry.

Keywords: Electrifying synthesis, Green phosphorylation reactions, Atom economy, Organic electrochemistry, Organophosphorus chemistry

1. Introduction

Functionalized compounds containing phosphorus act as important intermediates in organic synthesis, with applications in medicinal chemistry, agrochemistry, material chemistry, flame retardant, ligands in synthetic chemistry, and it further suggests that they played an important role in the emergence of life on Earth, such as phosphates.[1–8] Considering this, the development of new strategies for obtaining new P–C and P–heteroatom bonds is of great interest, expanding the application possibilities. Generally, the most common paths for the construction of P–C and P–X bonds proceed by the nucleophilic substitution of toxic halides with ROH/RSX,[9] Friedel-Crafts reaction,[10] Michaelis-Arbuzov reaction,[11] and also with the use of organometallic and phosphorus reagents.[12] Likewise, phosphorus reagents can be applied as nucleophilic species for the formation of new bonds, starting for example from dialkyl- or diaryl-phosphine oxides, phosphonates esters, hypophosphite, phosphines, phosphine-borane, among others.[13–16] In general, these strategies can follow a direct phosphorylation in heterocycles, involving the cross-coupling between halides or alcohols of aryl or alkyl, and can also proceed to phospha-aldol, phospha-Michael or phospho-Mannich reactions. A second strategy can be considered, involving the formation of heterocyclic rings. These reactions can be subdivided into reactions with or without C–P bond formation, and recently an interesting review described by Zou and co-workers summarized the recent progress in this field, discussing the reaction mechanisms in detail.[17]
Due to the need to develop procedures with an intrinsic character of sustainability and green chemistry, several modern methodologies for the phosphorylation of organic molecules have already been explored, such as the use of photoredox catalysis, microwave irradiation, flow-based technologies, ultrasonication systems, among others. However, the replacement of redox chemicals by direct application of electricity is one of the most innovative options for chemical processes. Considering this, the electrochemistry in organic synthesis emerges as an eco-friendly alternative, based on simple electron transfers from the electrode to the substrate or mediator. While conventional synthetic methods generally occur under high temperatures or pressures, using external oxidants and often in a long reaction time, in electrochemistry this can be avoided, providing energy savings. With the variation of voltage or electrical current, the oxidation or reduction capacity of the electrochemical system is manipulated, allowing the control of the reaction selectivity.

Considering the common principles of electrolysis, electrosynthesis in organic chemistry is carried out in electrolytic circuits, generally equipped with two electrodes, where two half-reactions will occur: an oxidation and a reduction reaction. The reactional solution, in which the electrodes are immersed, needs to be conductive of electric current, and to obtain this property, an electrolyte is usually added, whose function is to conduct the electrical current from the anode to the cathode. Additionally, electrochemical cells can be

Personal Account

THE CHEMICAL RECORD

Dr. Najoua Sbei obtained a Master’s degree in organic chemistry from the University of Tunis El Manar. In 2017, she completed a Ph.D. in organic electrochemistry in collaboration between the University of Tunis El Manar and University of Alcalá Spain. She is currently a postdoctoral researcher in the Department of Organic Chemistry at RUDN University (Russia). Her current scientific interests include electrosynthesis of heterocyclic molecules and direct cyanation of organic compounds by electrogenerated acetonitriles.

Nisar Ahmed obtained his Ph.D in organic chemistry (2012) under Brain Korea BK21 fellowship working in the group of Prof. Kwang S. Kim (POSTECH, Korea). Then, he moved to the University of Zurich, Switzerland (2013) for a postdoctoral stay with a Novartis Fellowship. Subsequently (2015), he joined the University of Bristol as a research associate. He started his research career in 2017 at School of Chemistry, Cardiff University, United Kingdom with early career EU-COFUND grant as Sêr Cymru Fellow. However, the recent research support includes an EPSRC grant (UKRI). He is also an Adjunct faculty Professor at HEJ Research Institute of Chemistry, ICCBS since 2018. His research interests are development of green & sustainable technology in organic synthesis using batch & microflow electrochemistry and molecular recognition of biomolecules.

Guilherme M. Martins obtained his Ph.D in 2019 with the group of Prof. Claudio Silveira (UFSM, Santa Maria – Brazil). He performed an internship in electrosynthesis with Prof. Thomas Wirth and Prof. Nisar Ahmed in 2017 (Cardiff University, Cardiff – UK). In 2019 conducted his postdoctoral research with the group of Prof. Claus Jacob (Universität des Saarlandes, Saarbrücken – Germany). He is currently conducting postdoctoral research on electrosynthesis with the group of Prof. Antonio L. Braga and Prof. Samuel R. Mendes (UFSC, Florianópolis – Brazil).

Bahareh Shirinfar obtained her Ph.D in 2014 in organic supramolecular chemistry, working in the group of Prof. Kwang S. Kim (POSTECH, Korea). Then, she moved to Switzerland to continue her career as a post-doctoral fellow at the University of Zurich. She arrived in Bristol in January 2015 to take up a Royal Society Newton Fellowship. After two years at this position, she has continued her research as honorary / visiting research associate at the University of Bristol. She is also associated with Dr. Nisar Ahmed for electrochemical applications. Recently, she has been awarded Daphne Jackson Fellowship at University of Bath, UK. Her research focuses on molecular recognition.
assembled in two ways: divided and undivided cells. In the case of divided cells, the anode and cathode electrodes are equipped in different vessels, separated by an ion-exchange membrane or salt bridge that allows the transfer of certain dissolved ions and therefore, the two half-reactions occur separately. The undivided cells, the anode and cathode electrodes are in the same vessel. In general, the reactions can be carried out under constant current (galvanostatic) or with constant potential (potentiostatic). Considering that the potential and the current cannot be controlled at the same time, evaluating which is the best condition can be part of the challenge when assembling an electrolytic cell.

Very recently, we published important review articles, addressing the advantages of using electrolysis for organic reactions of alkene difunctionalizations, alkyne functionalizations, annulation reactions and electrochemical chalcogen (S/Se) functionalizations, and a search on these subjects is recommended for a deep understanding and updating of the main reactions in the field of organic electrosynthesis.

This review provides an overview on the electrochemical phosphorylation of organic molecules. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis in organic chemistry.

Scheme 1. Electrochemical C–H phosphorylation of a secondary amine with dialkyl phosphite.

Scheme 2. Plausible mechanism for electrochemical C–H phosphorylation of secondary amine with dialkylphosphite.
2. Electrochemically Induced Phosphorylation Reactions

2.1. C(sp³)–P Bond Formation

Tertiary and secondary amine are the most interesting substrates for the C(sp³)–P bond formation. In 2019, Ding's group reported a simple approach for an electrochemical C–H phosphorylation of unprotected secondary amine with phosphonate derivatives. Employing carboxylate salts as a catalyst under controlled potential led to the desired product in moderate to good yields (scheme 1). The aromatic group with electron-donating and electron-withdrawing were well tolerated in this methodology. Graphite felt carbon was used both as anode and cathode during the electrolysis. The authors suggest that the cascade of reactions begins with anodic oxidation of amine 1 to generate 1b, after losing one radical proton, which after further oxidation, gives 1c. The phosphate 2 was then catalyzed by sodium acetate, attacks intermediate 1c to provide the desired compound 3 (scheme 2).

In addition to unprotected amine, Léonel and co-workers proved recently that the protected amine could be applied for the synthesis of α-aminophosphanates with N-carbamates tetrahydroisoquinoline and phosphonate derivatives, different α-aminophosphanates were obtained in good yields. The reaction was performed in an undivided cell at constant current, using graphite electrodes plates both as anode and cathode. Scheme 4 shows a proposed mechanism of the electrochemical phosphorylation of protected amine 4. The reaction starts with an anodic oxidation of
tertiary amine to generate cation intermediate A. Simulta-
neously, on the cathode, the reduction of dialkyl phosphite
gives the intermediate anion B, which subsequently attacks the
intermediate A to provide the desired product 6.

2.2. C(sp2)–P Bond Formation

In the last years, there is an expanded number of electro-
chemical reactions for C(sp2)–P bond formation. The
phosphorylation of aryl halogen, hydrazones and arenes is the
main method to generate C(sp2)–P bond. In 2019, Xiang’s
group$^{[33]}$ reported an interesting Ni-catalyzed electrochemical
method for C(sp2)–P functionalization. Different aryl bro-
mides 7, dialkylphosphate, ethyl phenyl phosphinate and
diphenyl phosphinoxide 8 could afford a large family of
desired product 9 in excellent yields (scheme 5). The
electrolysis proceeded in an undivided cell at constant
of current 10 mA, using carbon plates as electrodes. Based on this
methodology, Leonel’s group$^{[34]}$ reported recently in 2020 a
new synthetic approach to achieve the electrosynthesis of
arylphosphinates 9 and vinylphosphinates 11 (scheme 6).
Under mild condition, using NiBr$_2$ as a mediator, the
combination of aryl or vinyl bromide with phosphinates
derivatives 8, affords a broad scope of the desired product in
good yields. The reaction was conducted in an undivided cell
at room temperature with iron/nickel (64/36) anode and
nickel as a cathode. As an improvement of the electro C
(sp2)–P formation, the authors suggested the following plausible mechanism (scheme 7).
The anodic oxidation of phosphites substrates leads to the radical A; on the cathode,
the reduction of NiII generates Ni0, which reacts with aryl bromide to form intermediate B, the coordination between
intermediate A and B gives NiIII complex C, whose subsequent
reductive elimination leads to the desired product (9, 11) and
NiI species.

Still talking about the phosphorylation of aryl halide, two
methods that we cited previously were based on the use of
metal catalyst as NiBr$_2$. In 2019, Wang groups$^{[35]}$ proved a
new and efficient free catalyst formation of C(sp²)–P bond (scheme 8). Aryl iodide 12 with a wide range of functional groups could be tolerated to form the desired products with moderate to excellent yields up to 99%. Aryl bromide was also tested, but less yield of desired products was obtained up to 77%, the authors suggest that it could be explained by the easy cleavage of C–I bond than C–Br. The reaction was conducted in an undivided cell, under a constant current of 25 mA, Ni plate anode, graphite cathode, using the mixture of CH₃CN and HFIP as solvent at room temperature. As an improvement, the author suggests the following mechanism (scheme 9). The reaction begins with the reduction of aryl halides 12 leading the radical anion A. Further elimination of X gives the radical B which reacts with substrate 13 to give

Scheme 7. Plausible mechanism for electrochemical synthesis of arylphosphinates and vinylphosphinates.

Scheme 8. Electrochemical synthesis of arylphosphinates.

Scheme 9. Plausible mechanism for the electrochemical synthesis of arylphosphinates.
intermediate C. The cation Ni\(^{2+}\) produced by Ni-anode oxidise radical C to form the cation intermediate D which gives after losing ethyl group the desired product 14.

Independently of aryl halide, aldehyde hydrazine 15 was also used as a substrate for electrochemical phosphorylation by diphenylphosphine oxide 16 (scheme 10). This methodology was reported by Roan’s group\(^{[36]}\) in 2020. \(\alpha\)-iminophosphine 17 oxides were formed in excellent yields with a wide range of different functional groups such as OMe, CN, SMe, CF\(_3\) etc. The results showed that high yields were obtained when the electrolyte \(n\)-Et\(_4\)NClO\(_4\) and small catalytic amount of MnBr\(_2\)-2H\(_2\)O were used. The electrolysis was carried out in an
undivided cell at a constant current of 4 mA in acetonitrile, using graphite as anode and platinum plate as cathode. The proposed mechanism in scheme 11 shows that the reaction starts at the anode. The oxidation of substrate 15 leads to the intermediate A, which reacts with 16 to form the intermediate B. This latter is oxidized on the anode to form the

Scheme 13. Electrochemical phosphonation of phenyl pyridine.

Scheme 14. Plausible mechanism for electrochemical phosphonation of phenyl pyridine.

Scheme 15. Electrochemical synthesis of azole dialkylphosphonates.
intermediate C, followed by losing one proton, leading the desired product 17.

The Pd-catalyzed electrochemical phosphonation of phenyl pyridine 18 has been described by Budnikova group\cite{37} in 2015. The reaction was performed in a divided cell at a constant voltage in acetonitrile using platinum plates, both as anode and cathode (scheme 12). However, this method presented the need of bases and additives such as NaOAc/benzoquinoline and lutidine/bpy, in addition to that, it has a limited yield (up to 78\%). For this reason, recently, the same scientific\cite{38} group tried to modify and optimize their method to get an excellent yield up to 86\% (scheme 13). The electrolysis was carried out in a divided cell at constant voltage in acetonitrile, using platinum plats as electrodes. The reaction proceeds between phenyl pyridine 18 and ethyl phosphonate 19 in the presence of pyridine for 1.25 hours at 25°C under argon atmosphere. Scheme 14 demonstrates the plausible mechanism for this reaction. At the start phenyl pyridine coordinates with [Pd(OAc)\(_2\)]\(_3\) to lead intermediate A, which after further addition of (EtO)\(_2\)PHO gives the cyclic intermediate B. This later under the effect of pyridine leads intermediate C. Finally, the oxidation of C at the anode provides the final product 20.

In view of the remarkable interest of Budnikova group\cite{39} in the reaction of C(sp\(^2\))/C0 bond such as the phosphorylation of pyridine mediated by Ni(BF\(_4\))\(_2\)bpy and CoCl\(_2\)bpy,\cite{40} Mn-mediated phosphorylation of coumarins\cite{41} and the phospho-

Scheme 16. Plausible mechanism for electrochemical synthesis of azole dialkylphosphonates.

Scheme 17. Electrochemical synthesis of arylphosphinates.
nation of caffeine in the presence of metal catalyst.\(^{[42]}\) The group also reported an efficient approach to a range azole dialkyl phosphonates.\(^{[43]}\) By using silver as a catalyst for the electrochemical transformation, different substituted azole \(21\) and dialkyl-\(H\)-phosphonates \(22\) could afford the desired products \(23\) in good yields up to 75% (scheme 15). The electrolysis was carried out in divided cell at oxidation potential, using acetonitrile as solvent. The optimal yields were obtained by the combination of \(\text{AgOAc}\) and \(\text{Na}_3\text{PO}_4\) as additives. Scheme 16 shows a proposed mechanism of this methodology. The reaction starts with the reaction of dialkyl-\(H\)-phosphonate and silver (I) cation leading intermediate \(A\), which after oxidation leads radical intermediate \(B\). Then Azole derivatives reacts with \(B\) to give radical \(C\). This latter, after losing hydrogen cation and an electron leads to the desired products \(23\).

More recently, the same group achieved an elegant approach for the electrochemical phosphorylated aromatic compounds,\(^{[44]}\) by using cobalt complex as a catalyst for the electrochemical oxidative or reductive reactions. Different diethyl phosphonates \(25\) and aryl derivatives \(24\) (scheme 17) could afford the desired products \(26\) with yield up to 80% if the reaction was carried out in reductive condition and up to 68% in oxidative condition. The electrolysis proceeds under controlled potential \((E = -0.3 \text{ V vs FC}^{+}/\text{FC})\) in divided cell. Platinum electrodes were used both as anode and cathode.

A mechanistic elucidation in scheme 18 shows that \(\text{Co}^{2+}\) precursors coordinate with diethyl-\(H\)-phosphonate \(25\) to give complex \(A\), which after further oxidation (or reduction) leads
intermediate B (or C). This latter gives after proton elimination radical intermediate D, finally, the insertion of 24 leads to final products 26.

In 2019, Hu and co-workers[45] reported a new synthetic approach to achieve the electrochemical formation of C(sp\(^2\))–P bond from quinazolin-2-(1H)-one (scheme 19). Electrolyzing quinazolin-2-(1H)-one 27 with diaryl phosphine oxides 28 in an undivided cell at constant current in acetonitrile using \(n\)-Bu\(_4\)NBF\(_6\) as electrolytes, leads to phosphonated quinazolin-2-(1H)-one 29 in moderate to good yield. The combination of platinum as anode and graphite as cathode gives the optimal results. The aromatic group with electron-donating and electron-withdrawing were tolerated in this methodology with yield up 99%. However, 3,4-disubstituted diaryl phenyl oxide, naphthyl and heteroaryl-substituted also could be tolerated in this result but low yields were obtained. This methodology was

\begin{align*}
\text{Bu}_4\text{NBF}_6 & \quad \text{Scheme 20. Electrochemical synthesis of phosphonate quinazolin-2-(1H)-one.}
\end{align*}

\begin{align*}
\text{Scheme 21. Rh(III)- catalyzed electrochemical phosphorylation of aryl substrates.}
\end{align*}
extended by Sun’s group in the same year. In addition to diaryl phenyl oxide, the authors preceded the reaction with alkylphosphonate such as dimethyl phosphonate, diethyl phosphonate, etc. The desired products were obtained with yield up to 99%. The authors proved that the same procedure could be applied for C(sp3)-H phosphorylation of xanthenes (scheme 20), moreover, only few examples has been developed and the final products formed with moderate yields (50% to 79%). The electrolysis proceeds in an undivided cell equipped with platinum as cathode and graphite as the anode. The electrochemical reaction commences with anodic oxidation of substrates 27 to give the radical cation A, which reacts with B to form the intermediate C. Then the radical C reacts with the protonated quinaxolin-2-(1H)-one giving the isolable intermediate D, which then after further oxidation and deprotonation leading the final products 29.

Scheme 22. Plausible mechanism for Rh(III)- catalyzed electrochemical phosphorylation of aryl substrates

Scheme 23. Electrochemical C-H phosphorylation of imidazo[1,2-a]pyridine.
Xu and co-workers reported in 2019 an efficient method for the electro-catalyzed phosphorylation of aryl substrates by rhodium (III) (scheme 21). A graphite rod as anode and platinum plates as cathode were used for the electrolysis. Different substituted of N-(2-pyridyl)aniline and diphenylphosphine oxide could afford the desired product in good yields. Moreover, lower efficiency of reaction was obtained with unsubstituted N-(2-pyridyl)aniline or Br-substituted and diethylphosphine oxides. The electrolysis proceeds in an undivided cell, under reflux in methanol at constant temperature.
current. Scheme 22 shows a possible mechanism of the transformation. The reaction begins with C–H activation in phenylpyridine 30 by the catalyst A to lead intermediate B. The further insertion of diphenylphosphine oxide 31 gives C. This later undergoes anodic oxidation forming to products 32, regenerating the active complex A.

Lei and co-workers reported the electrochemical oxidative C–H phosphorylation of phenyl imidazo[1,2-a]pyridine and 2-thiophenyl imidazo[1,2-a]pyridine 33 by triethylphosphite 34 (scheme 23). This transformation, could afford a vast scope of desired products 35 in moderate to good yield. The substituted substrates with electron-rich and electron-deficient could be tolerated in this synthesis. However, with unsubstituted imidazo[1,2-a]pyridine only trace amount of desired product was obtained; the authors explain this result by the high oxidative potential of imidazo[1,2-a]pyridine which is not easily oxidized. The reaction was carried out in an undivided cell, equipped with carbon rod anode and platinum plate cathode at a constant current in acetonitrile at 50 °C. The authors also proved that the same procedure could be applied for C(sp³)–H phosphorylation of xanthenes and N-methyl-9, 10-dihydroacridine, the final products were formed with good yields up to 88%. Mechanistic elucidation in scheme 24 shows that initially starts the substrates 33 oxidized at the anode to lead the radical intermediate A, which than reacts with P(OR) 34 to provide intermediate B. This latter after further oxidation and dehydrogenation result in the construction of intermediate C. Then the dialkylation of C gives the final compound 35. Meantime, on the cathode proton were reduced to form H₂.

2.3. O–P Bond Formation

The O–P bond formation from alcohol derivatives is the most attractive method. In 2019, a new approach for electro-
chemical dehydrogenative phosphorylation of alcohols was developed by Tang’s group. Alike, Han and co-workers developed the synthesis of organophosphinate \(\text{OP(=O)N} \) by the cross dehydrogenative-coupling reaction between phosphines oxides \(\text{OPH}_2 \) and alcohols \(\text{OH} \) (scheme 25). The reaction was conducted in an undivided cell in the presence of \(n\text{-Bu}_4\text{NI} \) both as catalyst and electrolyte, under constant current in acetonitrile. The proposed mechanism implies that the reaction starts with anodic oxidation of iodide to molecular iodine, which produces iodation of H-phosphite \(\text{OPH}_2 \) to provide intermediate \(A \). Subsequently, the alcohols \(\text{OH} \) reacts with intermediate \(A \) to provide the final product \(\text{OP(=O)N} \) after elimination of iodine anion and one proton (scheme 26).

Recently, Quan and co-workers reported an efficient \(n\text{-Bu}_4\text{NI} \)-catalyzed electrosynthesis of carbamoylphosphonates \(\text{CONRCO} \), starting from phosphoramides \(\text{OP(=O)NR} \) and alcohols \(\text{OR} \) (scheme 27). Using platinum plates as electrodes, large scope of the final product was formed in good to excellent yields up to 96%. The reaction proceeds in an undivided cell at a constant current. In this transformation, the alcohol reacts as a solvent and a substrate. Scheme 28 describes the plausible mechanism as an improvement for this transformation. The reaction begins with anodic oxidation of iodide to lead
molecule I$_2$, which reacts with 39 to produce the intermediate A. Then, the electrogenerated ethoxy anion B produced on the cathode attacks intermediate A to give intermediate C. Then further oxidation of C by O$_2$ in air leading the final product 41. In pathway II, A can be oxidized by O$_2$ to give intermediate D, which reacts with an electrogenerated ethoxy anion to produce the final products.
2.4. N–P Bond formation

In 2013 Wang and co-workers\(^{[52]}\) developed an efficient approach to achieve the cross-coupling reaction between N–H and P–H. Starting from phosphines oxides \(42\) and amines \(43\), a variety of different substituted phosphonic amides \(44\) were formed in good yields up to 91% (scheme 29). The authors used KI as a mediator, platinum plates as electrodes with a constant current in an undivided cell for 7 hours. Mechanistic studies (scheme 30) shows that the reaction begins with an anodic oxidation of iodide anion to give iodine radical (path I), which reacts with \(42\) to produce intermediate \(A\) with loosing of HI molecule. Then, amine derivatives \(43\) reacts with \(A\) to provide the final product (or it could be generated when iodine radical attacks intermediate \(A\) to give diphenyl phosphinyl iodide \(B\), which could react quickly with \(43\) and offer the final product). In path II, similar to path I the reaction begins with an anodic oxidation of iodide anion to give molecular iodine. Then, \(I_2\) reacts with amine \(43\) to lead the intermediate \(C\). Next, the electro-generated ethoxy anion deprotonates intermediate \(C\) to give
the anion intermediate D, which reacts with amine 43 to give the final product.

Recently, Liu and co-workers\(^\text{53}\) reported an efficient approach for an electrochemical phosphonation of carbazoles and indoles 45 by P(O)-H compounds 46 using catalytic quantity of DMMI as the redox mediator (scheme 31). A variety of phosphorylation products 47 was formed in moderate to excellent yields. The final products attached to electron-donating such as Me, MeO, CH\(_2\)CN, or electron-withdrawing such as Cl, Br, CO\(_2\)Me have a good tolerance in this transformation. The electrolysis proceeds in an undivided cell, equipped with Carbone anode and nickel cathode, at a constant current, containing DMMI/CH\(_3\)CN as the electrolyte/solvent in the presence of Cs\(_2\)CO\(_3\), a base for 3 h at room temperature. The scheme 32 illustrates the plausible mechanism of the reaction. The process starts by anodic oxidation of iodide anion to give iodide radical, which reacts with 46 to form the intermediate A. Further addition of iodide radical to A provided intermediate B. Meantime, Cs\(_2\)CO\(_3\) deprotonate the substrates 45 to generate intermediate anion C. Then C attacks B to lead the final product 47.

2.5. S–P Bond Formation

Thiols derivatives with aromatic or aliphatic substituted are the most interesting substrates for the formation of S–P bond. In 2013, Zheng and co-workers\(^\text{54}\) demonstrated an efficient electrochemical approach for S–P bond formation, starting from thiols derivatives 48 and diphenyl phosphine oxides 49. The reaction proceeds both in an undivided cell and continuous-flow. The heights results were obtained by the combination of platinum electrodes both as anode and cathode in acetonitrile as a solvent in the presence of n-Bu\(_4\)NF as an electrolyte (scheme 33). Different thiols derivatives could afford a large scope of organothiophosphates 50 in good yields up to 90%. In addition to thiols derivatives, alcohol substrates were also tolerated in this transformation, and the final products were formed in very good yields. However, only phenyl phosphine oxides were applicable. Scheme 34 illustrates...
the plausible mechanism for the reaction. On the anode, the reaction starts by oxidation of thiols 48 to produce radical A followed by fast dimerization of sulphur radical to give disulfide B. Simultaneously, the phosphorus radicals C are formed from A by a hydrogen atom transfer. Then the phosphorus radical C reacts easily with A or B to give the final products 50.

Recently, this methodology was extended in 2019 by Lee and co-workers.53 The authors developed an efficient method for \textit{n}-Bu\textsubscript{4}NI mediated electrosynthesis of organothiophosphonates 53. Under mild condition, different phosphinates and thiols could afford the desired product in good to moderate yield (scheme 35). Aryl thiols derivatives well tolerated in this transformation. Di-\textit{n}-butyl phosphate with arylthiols affords the desired products in moderate to good yield 35–79\%, however, diethylphosphites were also tested providing the corresponding products in moderate yield up 35\%. However, alkylthiols were also evaluated leading products with moderate to good yields (33–73\%). The reaction proceeds in an undivided cell under constant current, platinum plates were used as electrodes and acetonitrile as a solvent in the presence of \textit{n}-Bu\textsubscript{4}NI as an electrolyte. Based on control experiments, the authors suggested the following mechanism (scheme 36).

The reaction begins with anodic formation of I\textsubscript{2}, which oxidize easily both phosphonate and thiol giving respectively, iodo-phosphate A and sulfenyl iodide B. On the cathode the reduction of disulfide C leads to thiolate anion D and thiyl radical E, then iodophosphate A reacts with thiolate anion D providing the desired product 53.

2.6. Se–P Bond Formation

Heteroatom bond to phosphorus moieties with selenium is important chemical construction in organic chemistry because...
Se–P bond could provide some bioactive molecules. An interesting protocol was reported by Cai and co-workers for the electrochemical formation of Se–P bond. The reaction proceeds between selenols derivatives and phosphonates or phosphines oxides using \(n\text{-Bu}_4\text{NBr} \) as the redox mediator (scheme 37). Under mild condition, the electrolysis performed in an undivided cell at constant current 12 mA for 6 h, containing \(n\text{-Bu}_4\text{NBr/CH}_3\text{CN} \) as the electrolyte/solvent and platinum plates as electrodes. The final product was formed smoothly with good to excellent yield. Different phosphonates derivatives well tolerated in this transformation leading the desired product in 84 to 90%. Aryl phosphonate like diphenyl phosphonate give desired compound in 96%. However, with diaryl phosphine low yields were obtained, the authors changed the electrolysis condition, in dichloromethane at 10 mA for 4 h results increasing yield to 87–89%. Moreover, in addition to selenols derivatives, diselenides substrates were also tested, yielding the final products with very good yields. The plausible mechanism in scheme 38 shows that initially, selenol was oxidized at the anode to produce selenium radical \(\text{A} \), which after dimerization give diselenide \(\text{B} \). This latter was reduced at the cathode to provide radical anion \(\text{C} \), which after further decomposition lead \(\text{A} \) and selenium anion \(\text{D} \). Meanwhile, the oxidation of \(\text{Br}^- \) on the anode give \(\text{Br}_2 \), which reacts with substrates to form intermediate \(\text{E} \). At the end, the condensation of \(\text{E} \) and \(\text{D} \) provides the final product.

In the same year, the group of Wirth demonstrated that automated flow electrochemical reactor was successfully useful...
for the synthesis of organoselenophosphorus (scheme 39). With diphenyl diselenide and phosphites derivatives a large scope of desired compounds was formed in moderate to good yields. The optimal yields were obtained by the combination of graphite anode and platinum cathode in acetonitrile using \(n\)-Et₄NCl as an electrolyte. Scheme 40 illustrates the possible mechanism for this transformation. The reaction starts on the cathode by the reduction of diselenide leading the radical anion A, which forms with phosphate substrates the final product 59 and intermediate B. This latter oxidized on the anode to lead the radical C, which then dimerizes to produce 58.

3. Summary and Outlook

As already established that phosphorous containing organic molecules such as polymeric chains of DNA/RNA are playing important role in nature biology. Similar, organophosphorus molecules have significant utility in industry, drug design, agrochemicals, material science and organic chemistry. Therefore, the new synthetic strategies to form phosphorus-carbon or phosphorus-heteroatom bond and enlarge the substrate scope will remain an exciting practice in organic reactions to synthesize organophosphorus compounds of potential applications. In the past, much effort has been made in the developments of various methods based on transition metal- and organic catalysis to construct organophosphorus compounds. However, this review offers an overview of latest developments to use smart electrochemistry as a source of green tool in synthesis of organophosphorus compounds since it avoids using conventional chemical oxidants and generating reagents waste. Its applications in organophosphorus chemistry would be more sustainable and more attractive.

This review is concentrated on the recent advances of C (sp³)–P, C(sp²)–P, O–P, N–P, S–P, and Se–P bond formation reactions promoted by electrochemistry. These electrochemical bond formations are explained in two ways: 1) catalyzed electrochemical reaction by metal or non-metal catalyst 2) catalyst-free reaction (direct oxidation or reduction of substrates). This review demonstrated the efficacy of the electrosynthesis as an excellent, efficient and green way for constructing new bond such as C–P, O–P, N–P, S–P, and Se–P. Even with this progress, still the need to develop the catalyst-free bond process, especially for N–P and O–P bonds. Additionally, there has been made recent progress to access phosphorylated compounds using flow and automated technology that would be an additional step for easy handling of chemicals and less involvement of human, allowing the chemists, at the same time, to apply their expertise to other pressing challenges in their fields.
Acknowledgements

Support from the Marie Curie EU-COFUND Fellowship (Grant No 663830) to Dr. Nisar Ahmed is gratefully acknowledged. We also thank to RUDN University 5–100 Project framework Program (N.S), Daphne Jackson fellowship (B.S), CNPq (G.M.M) for their funding support. Thanks to Georgi C. Zimmer for her contribution to TOC.

References

[1] Y.-N. Ma, S.-X. Li, S.-D. Yang, Acc. Chem. Res. 2017, 50, 1480–1492.
[2] J. Fernández-García, A. J. Coggins, M. W. Powner, Life 2017, 7, 31.
[3] M. A. Islam, A. Fujisaka, S. Mori, K. R. Ito, T. Yamaguchi, S. Obika, Bioorg. Med. Chem. 2018, 26, 3634–3638.
[4] A. B. Wojtczak, P. J. Sikorski, K. Fac-Dabrowska, A. Nowicka, M. Warminska, D. Kubacka, E. Nowak, M. Nowotny, J. Kowalska, J. Mielniczak, K. Owsianik, M. Koprowski, D. Kubacka, B. Wang, J. Chem. Soc. 2018, 140, 5987–5999.
[5] M. A. Rydzik, M. Warminska, P. J. Sikorski, M. R. Baranowska, S. Wasiczek, J. Kowalska, J. C. Claridge, et al., Nucleic Acids Res. 2017, 45, 8661–8675.
[6] M. Eto, BioSci. Biotechnol. Biochem. 1997, 61, 1–11.
[7] M. Malhotra, Vandana, S. Sharma, P. Pandey, in Plant Nutr. Abiotic Stress Toler., Springer Singapore, Singapore, 2018, pp. 171–190.
[8] E. D. Weil, S. V. Levchik, in Kirk-Othmer Encycl. Chem. Technol., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2017, pp. 1–34.
[9] H. Huang, J. Ash, J. K. Gong, Org. Lett. 2018, 20, 4938–4941.
[10] T. Ito, T. Iwai, T. Nakai, M. Mihara, T. Mizuno, T. Ohno, A. Ishikawa, J. Kobayashi, Heteroat. Chem. 2016, 27, 336–342.
[11] A. Jasiak, G. Mielenz, K. Owstaniak, M. Koprowski, D. Krasowska, J. Drabowicz, J. Org. Chem. 2019, 84, 2619–2625.
[12] J.-J. Ye, B.-X. Yan, J.-P. Wang, J.-H. Wen, Y. Zhang, M.-R. Qiu, Q. Li, C.-Q. Zhao, Org. Chem. Front. 2020, DOI 10.1039/DQ000453G.
[13] J. Dong, L. Liu, X. Ji, Q. Shang, L. Liu, L. Su, B. Chen, R. Kan, Y. Zhou, S.-F. Yin, et al., Org. Lett. 2019, 21, 3198–3203.
[14] S. Pal, A.-C. Gaumont, S. Lakhir, I. Gallaize, Org. Lett. 2019, 21, 5621–5625.
[15] B. Xiong, X. Zeng, Y. Zhang, Y. Zhou, C.-T. Au, S.-F. Yin, Tetrahedron 2015, 71, 9293–9298.
[16] V. Iaroshenko, in Organophosphorus Chem. (Eds.: W. Debrunner, I. Wauters, C. A. Stevens), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2019, pp. 249–294.
[17] X. Chen, X. Liu, Y. Zou, Adv. Synth. Catal. 2020, 362, 1724–1818.
[18] K. Luo, W. Yang, L. Wu, Asian J. Org. Chem. 2017, 6, 350–367.
[19] J. J. Kiddle, A. F. Gurley, Phosphorus Sulfur Silicon Relat. Elem. 2000, 160, 195–205.
[20] P. Jansa, O. Hradil, O. Baszczyński, M. Dračínský, B. Klepetářová, A. Holý, J. Balzarini, Z. Janeba, Tetrahedron 2012, 68, 865–871.
[21] C. J. Smith, C. D. Smith, N. Nikbin, S. V. Ley, I. R. Baxendale, Org. Biomol. Chem. 2011, 9, 1927.
[22] L.-Q. Wu, C.-G. Yang, L.-M. Yang, L.-J. Yang, J. Chem. Res. 2009, 183–185.
[23] A. Ramazani, M. Rouhani, F. Zeinali Nasrabadi, F. Gouranlou, Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 20–28.
[24] C. Schotten, T. P. Nicholls, R. A. Bourne, N. Kapur, B. N. Nguyen, C. E. Willans, Green Chem. 2020, DOI 10.1039/D0GC01247E.
[25] Y. Yuan, A. Lei, Nat. Commun. 2020, 11, 802.
[26] M. Eto, BioSci. Biotechnol. Biochem. 1997, 61, 1–11.
[27] T. Fuchigami, M. A. Islam, A. Fujisaka, S. Mori, K. R. Ito, T. Yamaguchi, S. Obika, Bioorg. Med. Chem. 2018, 26, 3634–3638.
[28] A. B. Wojtczak, P. J. Sikorski, K. Fac-Dabrowska, A. Nowicka, M. Warminska, D. Kubacka, E. Nowak, M. Nowotny, J. Kowalska, J. Mielniczak, K. Owsianik, M. Koprowski, D. Kubacka, B. Wang, J. Chem. Soc. 2018, 140, 5987–5999.
[29] M. A. Rydzik, M. Warminska, P. J. Sikorski, M. R. Baranowska, S. Wasiczek, J. Kowalska, J. C. Claridge, et al., Nucleic Acids Res. 2017, 45, 8661–8675.
[30] M. Eto, BioSci. Biotechnol. Biochem. 1997, 61, 1–11.
[31] H. Malhotra, Vandana, S. Sharma, P. Pandey, in Plant Nutr. Abiotic Stress Toler., Springer Singapore, Singapore, 2018, pp. 171–190.
[32] E. D. Weil, S. V. Levchik, in Kirk-Othmer Encycl. Chem. Technol., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2017, pp. 1–34.
[33] H. Huang, J. Ash, J. K. Gong, Org. Lett. 2018, 20, 4938–4941.
[34] T. Ito, T. Iwai, T. Nakai, M. Mihara, T. Mizuno, T. Ohno, A. Ishikawa, J. Kobayashi, Heteroat. Chem. 2016, 27, 336–342.
[35] A. Jasiak, G. Mielenz, K. Owstaniak, M. Koprowski, D. Krasowska, J. Drabowicz, J. Org. Chem. 2019, 84, 2619–2625.
[36] J.-J. Ye, B.-X. Yan, J.-P. Wang, J.-H. Wen, Y. Zhang, M.-R. Qiu, Q. Li, C.-Q. Zhao, Org. Chem. Front. 2020, DOI 10.1039/DQ000453G.
[37] J. Dong, L. Liu, X. Ji, Q. Shang, L. Liu, L. Su, B. Chen, R. Kan, Y. Zhou, S.-F. Yin, et al., Org. Lett. 2019, 21, 3198–3203.
[38] S. Pal, A.-C. Gaumont, S. Lakhir, I. Gallaize, Org. Lett. 2019, 21, 5621–5625.
[39] B. Xiong, K. Zeng, Y. Zhang, Y. Zhou, C.-T. Au, S.-F. Yin, Tetrahedron 2015, 71, 9293–9298.
[40] V. Iaroshenko, in Organophosphorus Chem. (Eds.: W. Debrunner, I. Wauters, C. A. Stevens), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2019, pp. 249–294.
[41] X. Chen, X. Liu, Y. Zou, Adv. Synth. Catal. 2020, 362, 1724–1818.
[42] K. Luo, W. Yang, L. Wu, Asian J. Org. Chem. 2017, 6, 350–367.
[43] E. O. Yurko, T. V. Gryaznova, K. V. Kholin, V. V. Khrizanforova, Y. H. Budnikova, *Dalton Trans.* 2018, 47, 190–196.
[44] S. O. Strekalova, V. V. Grinenko, T. V. Gryaznova, A. I. Kononov, E. L. Dolengovski, Y. H. Budnikova, *Phosphorus Sulfur Silicon Relat. Elem.* 2019, 194, 506–509.
[45] C. Hu, G. Hong, C. Zhou, Z. C. Tang, J. W. Han, L. M. Wang, *Asian J. Org. Chem.* 2019, 8, 2092–2096.
[46] K. J. Li, Y. Y. Jiang, K. Xu, C. C. Zeng, B. G. Sun, *Green Chem.* 2019, 21, 4412–4421.
[47] Z. J. Wu, F. Su, W. Lin, J. Song, T. Bin Wen, H. J. Zhang, H. C. Xu, *Angew. Chem. Int. Ed.* 2019, 58, 16770–16774.
[48] Y. Yuan, J. Qiao, Y. Cao, J. Tang, M. Wang, G. Ke, Y. Lu, X. Liu, A. Lei, *Chem. Commun.* 2019, 55, 4230–4233.
[49] Q. Li, T. R. Swaroop, C. Hou, Z. Wang, Y. Pan, H. Tang, *Adv. Synth. Catal.* 2019, 361, 1761–1765.
[50] L. Deng, Y. Wang, H. Mei, Y. Pan, J. Han, *J. Org. Chem.* 2019, 84, 949–956.
[51] Q. L. Wu, X. G. Chen, C. De Huo, X. C. Wang, Z. J. Quan, *New J. Chem.* 2019, 43, 1531–1535.
[52] Y. Wang, P. Qian, J. H. Su, Y. Li, M. Bi, Z. Zha, Z. Wang, *Green Chem.* 2017, 19, 4769–4773.
[53] X. Dong, R. Wang, W. Jin, C. Liu, *Org. Lett.* 2020, 22, 3062–3066.
[54] Y. Li, Q. Yang, L. Yang, N. Lei, K. Zheng, *Chem. Commun.* 2019, 55, 4981–4984.
[55] C. Y. Li, Y. C. Liu, Y. X. Li, D. M. Reddy, C. F. Lee, *Org. Lett.* 2019, 21, 7833–7836.
[56] S. Guo, S. Li, Z. Zhang, W. Yan, H. Cai, *Tetrahedron Lett.* 2020, 61, DOI 10.1016/j.tetlet.2019.151566.
[57] N. Amri, T. Wirth, *Synlett* 2020, DOI 10.1055/s-0040-1707141.

*Manuscript received: August 5, 2020
Revised manuscript received: September 12, 2020
Version of record online: October 5, 2020*
Herein, electrochemical phosphorylation reactions involving catalyst and catalyst-free conditions, with generation of new bonds such as $\text{C(sp}^3\text{)}-\text{P}$, $\text{C(sp}^2\text{)}-\text{P}$, $\text{O}-\text{P}$, $\text{N}-\text{P}$, $\text{S}-\text{P}$ and $\text{Se}-\text{P}$ have been discussed.