Network Coding Based on Chinese Remainder Theorem

Zhifang Zhang
Key Laboratory of Mathematics Mechanization, AMSS, Chinese Academy of Sciences
E-mail: zfz@amss.ac.cn

Abstract—Random linear network code has to sacrifice part of bandwidth to transfer the coding vectors, thus a head of size $k \log |T|$ is appended to each packet. We present a distributed random network coding approach based on the Chinese remainder theorem for general multicast networks. It uses a couple of modulus as the head, thus reduces the size of head to $O(\log k)$. This makes it more suitable for scenarios where the size of source nodes is large and the bandwidth is limited. We estimate the multicast rate and show it is satisfactory in performance for randomly designed networks.

Index Terms—Network coding, the Chinese remainder theorem, multi-source multicast networks

I. INTRODUCTION

In their pioneering work, Ahlswede et al [1] state multicast rate can be close to the max-flow bound by allowing network coding instead of just routing. Then linear coding schemes for general multicast networks are designed [9], [6] which achieve the optimum multicast rate. Inspired by these theoretical results, network coding has become a promising technique to be applied in networking applications, such as wireless networks and content distribution networks.

In practice, random linear network coding [4] is more preferable since it is suitable for dynamic networks. But this approach has to sacrifice part of bandwidth to keep track of the linear combinations chosen currently. Namely, each packet needs append a head which is a vector (called the coding vector) indicating the combination coefficients associated with this packet. The overhead of coding vectors is acceptable for large packets, however, in wireless applications, such as sensor networks where packets are much shorter and bandwidth is very limited, it can very fast become prohibitive. We restate an example described in [3] and [11].

Example 1. Consider a sensor network consisting of 100 nodes, each sending a message to a sink. To implement a network code over a field of size $q = 2^4$, the coding vector is in \mathbb{F}_q^{100} and so is of 50 bytes. But in an usual sensor network, such as TinyOs operating system, a typical frame length allows approximately 30 bytes for data transmission. Thus just the coding vector alone will exceed the bandwidth limit.

To shorten coding vectors, paper [11] proposed a compression approach by constraining the number of nonzero components of each coding vector no larger than a fraction of the total dimension. But in practice, to achieve good multicast rate, this fraction cannot be too small and it is difficult for internal nodes to maintain this constraint. This approach was later improved by using erasure decoding and list decoding at the cost of increasing decoding complexity at receivers [8].

Another linear coding approach is subspace coding [7] where messages are mapped into linear subspaces to be transferred and thus no coding vectors are needed. But it achieves the same information rate as the coding vector based approach when the packet length increases [3]. Moreover, a large codebook must be maintained at the source and sink nodes, and designing subspace codes for multi-source network coding is very difficult [11].

In this paper we propose a distributed random network coding approach based on the Chinese remainder theorem (CRT) for general multicast networks. Unlike the random linear network code, it uses a couple of modulus as the head. The existing random linear network coding approaches [4], including the compression approach and its improvements [11], [8], all need coding vectors of size $k \log q$ assuming coding over a field \mathbb{F}_q, while in our coding scheme the counterpart is of size $O(\log k)$.

Before our work, the Chinese remainder theorem has been used in network coding [2], but they use CRT-based coding only at source nodes, and just routing at internal nodes. We use CRT-based coding at each node, therefore it achieves a higher multicast rate than just routing. Meanwhile, computation performed at each node in our scheme can be simplified by pre-computation.

The paper is organized as follows. Section II introduces the coding vector based approach. Section III describes our CRT-based coding approach for both single source multicast and multi-source multicast. Section IV gives an elementary estimation of the multicast rate and displays some experimental results.

II. PRELIMINARIES

A. Coding vector based approach for multicast

Linear network coding is a widely studied approach in the literature. For convenience, let the alphabet F be an l-dimensional vector space over a finite field \mathbb{F}_q, i.e., $F = \mathbb{F}_q^l$ for some positive integer l, and \mathcal{F} be a finite dimensional vector space over F. A linear network code can be described as follows. Let $x_1, \ldots, x_k \in \mathbb{F}_q^l$ be the information sources. Each receiver $t \in T$ receives (s_1, \ldots, s_n). Since each node performs linear operations on its input symbols to generate its output symbols, s_i is a linear combination of x_1, \ldots, x_k. That
is, the receiver t gets the following system of linear equations.

$$
\begin{pmatrix}
 s_1 \\
 s_2 \\
 \vdots \\
 s_u
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1k} \\
 a_{21} & a_{22} & \cdots & a_{2k} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{u1} & a_{u2} & \cdots & a_{uk}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_k
\end{pmatrix}
$$

(1)

The ith row of the coefficient matrix A in (1) is the coding vector corresponding to the received packet s_i.

Obviously, the receiver needs the knowledge of coding vectors to solve the equations (1) and recover the source information x_1, \ldots, x_k. In deterministic network coding [6, 9], the coding vectors are pre-determined based on the network topology. For networks with unknown or changing topologies, distributed random coding [4] is a more useful approach. That is, each node independently chooses a random linear combination of its received packets and generates its output packets. Since these linear combinations are randomly chosen in a distributed setting, each packet needs append a head to record the coding vector associated with this packet. Namely, each link $e \in E$ transmits

$$
\hat{s}_e = [p_e | s_e],
$$

where $s_e \in \mathbb{F}_q$ is the information packet and $p_e \in \mathbb{F}_k$ is the head such that

$$
\hat{s}_e = p_e (x_1, \ldots, x_k)^T.
$$

Therefore, in random linear network coding partial bandwidth must sacrifice to keep tracking of the coding vectors. In general, it requires $q > |E|$ to devise a linear network coding over \mathbb{F}_q [4, 9]. When k and $|E|$ are quite large while the bandwidth is limited, this coding vector based approach turns out to be constrained.

B. The Chinese remainder theorem

The Chinese remainder theorem (CRT) is a result about congruences in number theory. We refer to [10] for the main results introduced in this section.

Theorem 1. (The Chinese Remainder Theorem)

Let m_1, m_2, \ldots, m_r be pairwise relatively prime positive integers. Then the system of congruences

$$
x \equiv a_i \pmod{m_i}, \quad 1 \leq i \leq r
$$

has a unique solution modulo $M = m_1 m_2 \cdots m_r$.

For two integers a, b, let $\gcd(a, b)$ denote the greatest common divisor of a and b, and $\text{lcm}(a, b)$ denote the least common multiple. Then we consider systems of congruences when the modulus are not pairwise relatively prime.

Theorem 2. The system of congruences

$$
x \equiv a_1 \pmod{m_1}
$$

$$
x \equiv a_2 \pmod{m_2}
$$

has a solution if and only if $\gcd(m_1, m_2) \mid (a_1 - a_2)$. If there is a solution, it is unique modulo $\text{lcm}(m_1, m_2)$.

Corollary 1. The system of congruences

$$
x \equiv a_i \pmod{m_i}, \quad 1 \leq i \leq r
$$

has a solution if and only if $\gcd(m_i, m_j) \mid (a_i - a_j)$ for all pairs of integers (i, j) with $1 \leq i < j \leq r$. If there is a solution, it is unique modulo $\text{lcm}(m_1, \ldots, m_r)$.

It can use the extended Euclidean algorithm to get a solution to (2) in polynomial time.

III. Network Coding Based on CRT

A. Single source multicast

Let $s \in V$ be the source node and $T \subseteq V$ be the set of receivers. Denote $|\text{out}(s)| = k$ and $|\text{in}(t)| = l_t$ for $t \in T$. Let the information source be an n-bit integer X, i.e., $\lfloor \log X \rfloor = n$. In the following, we design a network code for the single-source multicast problem based on the Chinese remainder theorem.

Coding at the source:

(s.1) The source s randomly selects $2k$ distinct m-bit primes p_1, \ldots, p_{2k}. We will discuss the selection of m in Part B.

(s.2) For $1 \leq i \leq k$, the ith output link of s transmits

$$
[X \mod p_{2i-1}, p_{2i}] - [p_{2i-1}, p_{2i}].
$$

Coding at the internal node $v \in V$:

(v.1) Suppose the node v gets from all its input links the input $[a_1 | q_1, q_2, \ldots, [a_{l_v}, q_{2l_v-1}, q_{2l_v}]]$, where $l_v = |\text{in}(v)|$. Then v solves the system of congruences

$$
x \equiv a_i \pmod{q_{2l_v-1} q_{2l_v}}, \quad 1 \leq i \leq l_v
$$

and gets a solution $x \equiv a_i \pmod{\text{lcm}(q_1, \ldots, q_{2l_v})}$.

(v.2) v randomly picks $q_i, q_j \in \{q_1, \ldots, q_{2l_v}\}$ and computes $a' = a_i \pmod{q_i q_j}$. Then its output links transmit $[a' | q_i, q_j]$.

Decoding at the receiver node $t \in T$:

(t.1) Suppose the receiver t gets from its input links the input $[a_1' | q_1, q_2, \ldots, [a_{l_t} | q_{2l_t-1}, q_{2l_t}]]$. Then t solves the system of congruences

$$
x \equiv a_i' \pmod{q_{2l_t-1} q_{2l_t}}, \quad 1 \leq i \leq l_t
$$

and gets a solution $x \equiv a_i' \pmod{\text{lcm}(q_1, \ldots, q_{2l_t})}$.

(t.2) Denote $\text{lcm}(q_1, \ldots, q_{2l_t}) = N$ and let $0 \leq c < N$. If $|\log(c + N)| > n$, then t recovers $X = c$. Otherwise, t concludes that $X = c + lN$ for some integer l.

The following example illustrates our coding approach on the butterfly network.

Example 2. The source s is to multicast the information $X = 200$ which is a 8-bit integer to the receivers s_1 and s_2. It chooses primes 3, 5, 7, 11 and transmits the information as shown in Figure 7.

The receiver s_1 gets the system of congruences

$$
x \equiv 2 \pmod{3 \times 11}
$$

$$
x \equiv 46 \pmod{7 \times 11}
$$

where $|\text{in}(s_1)| = 1$ and $|\text{out}(s_1)| = 2$. Since $\gcd(3 \times 11, 7 \times 11) = 1$, s_1 gets a solution $x \equiv 2 \pmod{3 \times 11}$. It then decodes $x \equiv 46\pmod{7 \times 11}$ to $x = 46 + 71 = 117$.
By using the extended Euclidean algorithm it obtains a solution $x \equiv 200 \pmod{231}$. Since the information source is at most 8-bit in length (which is regarded as a predetermined information publicly known to all nodes), t_1 can deduce $X = 200$.

B. Parallelization

Let (X_1, \ldots, X_u) be the information sources where X_i is an n-bit integer. The information is transmitted in the same way as described in Section III.A, except that each node deals with u systems of congruences simultaneously, each for an information source X_i. Thus each packet is of the form

$$[a_1, \ldots, a_u \mid p, q]$$

where a_i is congruent to X_i modulo pq. Suppose a receiver $t \in T$ gets inputs $[a_{i_1'}, \ldots, a_{i_u'} \mid q_{j_2} - 1, q_{j_2}]$, $1 \leq j \leq l_t$. It can solve the u systems of congruences

$$x_i \equiv a_{i_j'} \pmod{q_{j_2} - 1}, \quad 1 \leq j \leq l_t, \quad 1 \leq i \leq u,$$

and get the solutions

$$x_i \equiv a_i \pmod{\text{lcm}(q_1, \ldots, q_{2t_i})}, \quad 1 \leq i \leq u.$$

In practice, the choice of u depends on the bandwidth and size of the modulus, i.e., the bit size m. First, determine m according to how many primes are needed in the network code. For example, in a sensor network with 30-byte bandwidth and 100 source nodes, our CRT-based network code needs 200 primes. The prime number theorem [5] approximates the number of primes no more than n by $\frac{n}{\ln n}$. By this approximation, we know the number of 16-bit primes is more than 10^3 which is absolutely enough for ordinary sensor network. Let $m = 16$, then each head message is of 4 bytes taking 1.3% of the bandwidth.

Step (t.2) shows there is a possibility that the receiver can only get partial information of the message. Actually fixing X_i to be an integer of size less than $2m$-bit can eliminate this possibility. Then adjusting the value of u according to the bandwidth and size of the message to be transferred.

C. Multi-source multicast

In sensor networks, the information sources are usually generated at distributed multiple source nodes and each receiver tries to collect the information from all sources. In this section we demonstrate how the CRT-based network code works for multi-source multicast.

Suppose there are k information sources X_1, \ldots, X_k generated at the distributed source nodes s_1, \ldots, s_k respectively. Let T be the set of receivers. Each receiver $t \in T$ tries to get the information X_1, \ldots, X_k. Certainly, we assume that there is a path from source s_i to t for $1 \leq i \leq k$ and all these k paths are edge disjoint.

First, each source node determines a pair of m-bit primes as its identity, making sure that different sources do not have common primes. That is, let p_1, \ldots, p_{k_2} be m-bit primes different from each other, and (p_{2i-1}, p_{2i}) be s_i’s identity for $1 \leq i \leq k$. The identity can be easily determined in an initial phase. Once they are determined, they are fixed for all the transmission thereafter and become the common knowledge to all nodes.

Without loss of generality, we assume X_i is a $(2m - 1)$-bit integer since integers of larger size can be cut in parts and transmitted in parallel. Then for $1 \leq i \leq k$ the source s_i sends $[X_i \mid p_{2i-1}, p_{2i}]$ on each of its output links. In this way the k sources jointly determine an integer X satisfying the system of congruences:

$$X \equiv X_i \pmod{p_{2i-1} p_{2i}}, \quad 1 \leq i \leq k.$$

From Theorem [2] we know this system is solvable although the equations are determined in a distributed setting.

The internal nodes do the same as in steps (v.1) and (v.2). Then for a receiver $t \in T$ with l_t input links, it solves the system of congruences as in step (t.1) and gets a solution $x \equiv c \pmod{\text{lcm}(q_1, \ldots, q_{2t_i})}$. It is easy to see that $X \equiv c \pmod{\text{lcm}(q_1, \ldots, q_{2t_i})}$ and $[q_1, \ldots, q_{2t_i}] \subseteq \{p_1, \ldots, p_{k_2}\}$. There are three cases for the receiver t recovering X_i:

1. If $\{p_{2i-1}, p_{2i}\} \subseteq \{q_1', \ldots, q_{2t_i}'\}$, then t can recover X_i as $X_i \equiv c \pmod{p_{2i-1} p_{2i}}$.

2. If $\{p_{2i-1}, p_{2i}\} \cap \{q_1', \ldots, q_{2t_i}'\} = \{p_{2i}\}$, then t computes $c' \equiv c \pmod{p_{2i}}$ and concludes $X_i = c' + b p_{2i}$ for some integer b. A similar conclusion can be made when $\{p_{2i-1}, p_{2i}\} \cap \{q_1', \ldots, q_{2t_i}'\} = \{p_{2i-1}\}$.

3. If $\{p_{2i-1}, p_{2i}\} \cap \{q_1', \ldots, q_{2t_i}'\} = \emptyset$, then t cannot recover X_i.

Although there is a chance that t cannot recover X_i or just know partial information about X_i, we will show in section IV that this chance can be very small when l_t is large enough.

D. Simplifying computation

In steps (v.1) and (v.2) of the CRT-based network coding, the internal node with l_t input links needs to solve a system of l_t congruent equations and then pick two primes as its output modulus. Actually, this process can be simplified. The internal node first picks two primes from all his input primes, say, p and q. Let $[a_i \mid p, p']$ and $[a_j \mid q, q']$ be two packets it received containing the picked primes p and q. Compute

$$a \equiv a_i \pmod{p} \quad \text{and} \quad b \equiv a_j \pmod{q}.$$

Then, it has a system of two congruences:

$$X \equiv a \pmod{p} \quad \text{and} \quad X \equiv b \pmod{q}.$$ (3)
It is much easier to solve the system containing only two congruent equations and get a solution of X modulo pq. Similar simplifications can be made at the decoding steps in multi-source case.

IV. ESTIMATION OF MULTICAST RATE

For the single source multicast, a receiver can always recover the message as stated in Section III-B. For the multi-source case, a receiver t finally gets modulus $\text{lcm}(q_{1t}, \ldots, q_{d,t})$, then he can recover X_t if $\{p_{2i-1}, p_{2i}\} \subseteq \{q_{1t}, \ldots, q_{d,t}\}$. We are interested in the number of X_i’s that a receiver can recover.

Lemma 1. Let k, l be positive integers. Let $S_i = \{2i - 1, 2i\}$ for $1 \leq i \leq k$ and $S = \bigcup_{i=1}^{k} S_i$. For $1 \leq j \leq l$, a subset $A_j \subseteq S$ with $|A_j| = 2$ is independently and uniformly chosen. Denote

$$I_S = \{i | 1 \leq i \leq k, \ S_i \subseteq \bigcup_{j=1}^l A_j\}.$$

Then the expectation of $|I_S|$ is $k(1 - (1 - \frac{1}{k})^2)$.

Denote $l = rk$. Since $\lim_{k \to \infty} (1 - \frac{1}{k})^k = \frac{1}{e} \approx 0.3679$, we approximate $(1 - \frac{1}{k})^k$ by 0.367 as k is a three-digit number. Then the expectation of $|I_S|$ is $k(1 - 0.367^2)$. Define the recover rate as $R^* = |I_S|/k$. Thus the expectation of R^* is about $(1 - 0.367^2)^2$. Since a receiver tries to collect all source information, it is reasonable to assume that for any $t \in T$, $l_t \geq k$, i.e., $r \geq 1$. Table I lists our estimation of R^* at some points of r. It can see as r increases the recover rate R^* becomes more and more satisfactory.

r	1	1.5	2	2.5	3	3.5	4
R^*	0.40	0.60	0.76	0.84	0.90	0.94	0.96

TABLE I

A. An experiment

Our estimation is based on the probabilistic event described in Lemma 1. In the following, we show this estimation does not deviate the real performance too much for a randomly designed network.

The network is designed as follows. First, all nodes in the network are divided into $L + 2$ levels, denoted as $V_0, V_1, \ldots, V_L, V_{L+1} \subset V$, and each level contains M_l nodes, i.e., $|V_i| = M_i$. Let V_0 be the set of sources and V_{L+1} be the set of receivers, and the rest be internal nodes. For $0 \leq i \leq L$, each node in V_i independently links to σM_{i+1} nodes which are randomly and uniformly chosen in V_{i+1}. In an experiment, set $M_0 = 100, M_{L+1} = 10, \sigma = 0.8$, and $M_1 = \cdots = M_L = M$. Then implement the CRT-based network code on such a network at different values of M and L, and record the number of prises each receiver finally gets. The results are displayed in Table II where t_i means the number of prises that the ith receiver finally collects and $R' = \frac{1}{200} \sum_{i=1}^{10} t_i$, which is close to the real recover rate. Note in the experiment $r \approx \frac{\sigma M}{L}$.

Actually it is difficult to achieve the optimal rate for all distributed random network coding, since partial bandwidth is taken by the head message. The main advantage of our CRT-based network coding is the great reduction in head message. Suppose there are k source nodes or the information source is of k dimensions, and there are $|T|$ receivers. Then the coding vector based network code needs to convey the head message which is a k-dimensional vector over F_q, where $q > |T|$. Thus the head message is of size $k \log |T|$. Sometimes the size of this head message alone will exceed the bandwidth. While our CRT-based network code only needs to convey a pair of primes chosen from $2k$ distinct m-bit primes. By the prime number theorem, the primes are of size $O(\log k)$. Therefore, comparing with the coding vector based approach, we reduce the size of head message from $k \log |T|$ to $O(\log k)$.

REFERENCES

[1] R. Ahlswede, N. Cai, S. YR. Li, and R.W. Yeung, Network information flow, IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.
[2] G. Campobello, A. Leonardi, S. Palazzo, On the use of Chinese Remainder Theorem for Energy Saving in Wireless Sensor Networks, Proc. of IEEE ICC 2008, Beijing, China, May 19-23, 2008.
[3] C. Fragouli, Network coding: beyond throughput benefits, NetCod 2010, Proceedings of the IEEE, Volume 99, Issue 3, pp. 461–475, 2011.
[4] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros, The benefits of coding over routing in a randomized setting, in Proc. 2003 IEEE Int. Symp. Information Theory (ISIT 2003), Yokohama, Japan, June/July 2003, pp. 442.
[5] A. E. Ingham, The Distribution of Prime Numbers. Cambridge University Press. pp. 2–5, ISBN 0-521-39789-8, 1990.
[6] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. Tolhuizen, Polynomial time algorithms for multicast network code construction, IEEE Trans. Info. Theory, IT-51: 1973–1982, 2005.
[7] R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, Vol. 54, no. 8, pp.3579–3591, 2008.
[8] S. Li and A. Ramamoorthy, Improved compression of network coding vectors using erasure decoding and list decoding, IEEE Communications Letters, vol. 14, no. 8, pp. 749–751, 2010.
[9] S.-Y. R. Li, R. W. Yeung, and N. Cai, Linear network coding, IEEE Trans. Inform. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.
[10] Kenneth H. Rosen, Elementary number theory and its applications, Addison-Wesley, 1984.
[11] M. J. Siavoshian, L. Keller, C. Fragouli, K. Argyrak, and S. Diggavi, Compressed network coding vectors, Proc. IEEE Int. Symp. Inf. Theory, 2009, pp. 109–113.

M, L	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t_9	t_{10}	R'
200, 5	155	157	160	160	156	156	101	157	154	157	0.787
200, 3	159	155	156	161	156	159	158	154	155	0.785	
250, 5	173	169	173	166	175	175	171	175	170	175	0.861
250, 3	172	171	175	167	166	170	169	172	174	169	0.853
400, 5	194	194	194	194	194	194	194	194	194	194	0.965
400, 3	199	195	193	195	194	192	192	192	190	196	0.965

TABLE II