Risk factors associated with cat parasites in a feline medical center

Tamara Libertad Iturbe Cossío1, Azucena Danae Montes Luna1, Magdalena Ruiz Mejia2, Ariadna Flores Ortega3, Rafel Heredia Cárdenas2 and Camilo Romero Nuñez2

Abstract

Objectives The present study was carried out to evaluate the risk factors for and presence of intestinal parasites in cats at the feline hospital ‘CEME Gatos’, Mexico City.

Methods In total, 528 fecal samples from domestic cats were collected and analyzed in order to diagnose enteroparasites.

Results The parasite with the highest prevalence was *Giardia* species (21.97%), followed by *Cryptosporidium* species (7%), *Toxocara cati* (6.45%), *Cystoisospora* species (5.11%) and *Dipylidium caninum* (0.76%). One hundred and twenty-one cats (55.50%) were infected with a single parasite, 80 (36.69%) were infected with two and 17 (14.04%) were infected with three parasites. The results of the prevalence study showed that a liquid consistency of feces was associated with the presence of *Giardia* species, whereas age <7 months and mucus in the stool were factors associated with the prevalence of *Cystoisospora* species. Regarding *T. cati*, the associated risk factors were age <7 months, being male, contact with other animal species and access to the outdoors. The last factor was strongly associated with the presence of *T. cati* (eight times more likely) in outdoor cats’ feces. Brushing frequency was also an associated factor: *T. cati* was present in cats that were never brushed. The results of the analysis of cats infected with *D. caninum* showed that interaction with other species was a risk factor for infection.

Conclusions and relevance Age <7 months, mucus in feces, living with other animal species, outdoor access and frequency of brushing are risk factors for the presence of parasites.

Keywords: Intestinal parasites; diarrhea; domestic cat; risk factor

Accepted: 27 June 2021

Introduction

Domestic cats (*Felis catus*) have become a popular pet worldwide,1 and despite the numerous advantages of having a pet, the close contact between pet cats and humans can pose a risk, as cats are definitive hosts for a large number of parasites, some of which cause important zoonoses.2 For example, *Toxocara* species have been identified as the cause of a parasitic zoonosis of global public health relevance associated with eye ailments and cognitive delays in children.2 Additionally, *Giardia* species in cats have a zoonotic potential because cats can harbor zoonotic genotypes (assemblages A and B).3 However, although the risk of *Dipylidium caninum* infection in humans is low, due to their play habits and proximity to domestic cats, *D. caninum* can affect infants and young children.1 Another parasite of public health importance is *Cryptosporidium* species;
diarrhea is the main clinical sign of cryptosporidiosis. Humans can acquire this pathogen through contact with infected animals, or via the consumption of contaminated food or water. Cystoisospora species are a protozoan parasite of the coccidia group; they are strictly host-specific and have a worldwide distribution. This parasite does not cause zoonotic problems, as cats are definitive hosts of Cystoisospora species. However, diagnosis is important as infection produces watery diarrhea (sometimes accompanied by blood), vomiting, anorexia and dehydration. It can cause death in immunosuppressed cats and puppies. Therefore, the objective of this study was to analyze the risk factors and presence of intestinal parasites in cats that attended medical examinations at the feline hospital ‘CEME Gatos’ in Mexico City, Mexico.

Materials and methods
In this study, we included 528 fecal samples from domestic cats attending medical examinations. These were analyzed using four specific techniques to detect protozoa, nematodes, trematodes and cestodes. Feline sex, age, habits, origin, characteristics of the feces and frequency of hair brushing were considered as explanatory variables. All the owners who agreed to participate signed an informed consent form. Additionally, as part of the study, cat owners answered a questionnaire about epidemiological data and risk factors for the presence of parasites.

The fecal samples were collected in polyethylene bags directly from the litter box and subsequently processed in the laboratory of the Medical Center for Cats (‘Centro Médico para Gatos’), in Mexico City. Additionally, for the Graham test, the samples were collected from the perianal area of the patients using adhesive tape. A total of 6 g of feces were collected. Fecal matter from each individual was divided into samples to be used in different tests. Three grams of feces were processed using the following techniques: direct wet mount for the detection of Giardia species; Faust centrifugal flotation for the detection of nematodes and protozoa; Scotch tape or Graham’s test for the detection of cestodes; and the Kinyoun stain technique for the detection of Cryptosporidium species. All fecal samples were analyzed individually by the direct wet mount technique with and without staining (Lugol). When performing a Graham’s test, we used adhesive tape (Scotch tape) to collect the samples from the perianal area of the cat. When performing the Faust centrifugal flotation technique (also known as zinc sulfate flotation technique), we emulsified 1 g of feces in water and filtered the emulsion to remove fecal debris. Next, we centrifuged the filtrate to obtain a sediment, which was suspended in 4 ml of ZnSO₄ solution (1:200 dilution). The suspension was allowed to settle for 30 mins. A coverslip was placed on top of the tube to collect the eggs/larvae, which were transferred to a glass slide for microscopic examination. The samples were also analyzed with the modified Kinyoun acid-fast stain for the detection of oocysts of Cryptosporidium species. The fecal samples were carefully examined in an optical binocular bright field microscope at ×4, ×10, ×40 and ×100 magnifications. The observation was made field by field in each slide. The samples were classified as positive when at least one parasitic form was observed. Any parasitic stage was identified using the previously described morphologic characteristics.

Statistical analysis
The explanatory variables considered were age (<7 months old, 7.1–13 months old, >13.1 months old), sex (female/male), interaction with other cats (yes/no), interaction with other animal species (yes/no), outdoor access (yes/no), brushing frequency (daily, weekly, monthly, never), cat’s origin (shelter vs breeder), hair type (long vs short) and cat size (small, medium or large). Some characteristics of the stool samples were also considered as explanatory variables: color (yellow, brown, dark brown and green), consistency (liquid, firm, hard and dry) and the presence of mucus, blood and macroscopic parasites such as nematodes or proglottids of cestodes. The variables of this study were categorical; therefore, they were analyzed using non-parametric tests. A χ² test was performed to determine the association between each variable and the presence of each parasitic taxon, using an odds ratio of ≥1 and an alpha of P ≤0.05 to determine the risk factor for the presence of gastrointestinal (GI) parasites in feline feces. Statistical software (JMP 8.0) was used for the analysis.

Results
In total, 528 cat feces samples were analyzed (271 from females and 257 males). Cats were aged from 1 month to 18 years old; the average age was 3.5 years. The prevalence of gastroenteric parasites was 41.29% (218 positive and 310 negative). Giardia species were the parasite with the greatest prevalence, followed by Cryptosporidium species, Toxocara cati, Cystoisospora species and D caninum (Table 1). In total, 121 of the infected cats (55.50%) had a single parasite infection, 80 (36.69%) had two-parasite infections and 17 (14.04%) had three-parasite infections. The parasite combinations most frequently found in the samples were Giardia species/Cystoisospora D caninum.

Table 1 Prevalence of parasites in domestic cats

Parasite	Positive cats (n = 528)
Cryptosporidium species	37 (7.00)
Cystoisospora species	27 (5.11)
Dipylidium caninum	4 (0.76)
Giardia species	116 (21.97)
Toxocara cati	34 (6.45)
Total positive	218 (41.29)
Number of parasites detected	310 (58.71)

Data are n (%)
species or *Giardia* species/Cryptosporidium species, followed by *Giardia* species/T *cati* and *T cati/D caninum*.

We analyzed the association between the presence of GI parasites and risk factors. Table 2 shows the results for the prevalence of *Giardia* species. Liquid consistency of feces was a factor associated with the presence of *Giardia* species ($\chi^2 = 40.71, P < 0.0001$). The presence of other parasites in the feces was not associated with *Giardia* species.

Table 2: Prevalence of and risk factors for *Giardia* species in cats

Characteristics of Feces	Positive (n = 116)	Negative (n = 412)	χ^2	P value	OR	P value	CI
Age (months)							
<7	32 (6.06)	90 (17.0)	2.14	0.36	–	–	–
7.1–13	15 (2.84)	49 (9.2)					
>13.1	69 (13.07)	273 (51.70)					
Sex							
Female	51 (9.66)	220 (41.67)	3.22	0.07	0.68	0.07	0.452–1.03
Male	65 (12.31)	192 (36.36)					
Interaction with other cats							
Yes	82 (15.53)	287 (54.36)	0.46	0.83	0.95	0.83	0.60–1.49
No	34 (6.44)	125 (23.67)					
Interaction with other animals							
Yes	30 (5.68)	105 (19.89)	0.007	0.93	0.98	0.93	0.61–1.57
No	86 (16.29)	307 (58.14)					
Outdoor access							
Yes	22 (4.17)	73 (13.83)	0.095	0.75	0.92	0.75	0.54–1.56
No	94 (17.80)	339 (64.20)					
Hair type							
Long	108 (20.45)	392 (74.24)	0.75	0.38	0.68	0.38	0.29–1.60
Short	8 (1.52)	20 (3.79)					
Origin							
Adopted	108 (20.45)	392 (74.24)	0.75	0.38	0.68	0.38	0.29–1.60
Cat breeder	8 (1.52)	20 (3.79)					
Origin							
Adopted	108 (20.45)	392 (74.24)	0.75	0.38	0.68	0.38	0.29–1.60
Cat breeder	8 (1.52)	20 (3.79)					
Hair type							
Long	108 (20.45)	392 (74.24)	0.75	0.38	0.68	0.38	0.29–1.60
Short	8 (1.52)	20 (3.79)					
Size							
Large	18 (3.41)	76 (14.39)	0.53	0.46	0.81	0.46	1.18–3.11
Medium	90 (18.56)	336 (63.64)					
Small	0	0					
Characteristics of Feces							
Color							
Yellow	7 (1.33)	10 (1.89)	4.83	0.18	1.99	0.16	0.74–5.33
Brown	101 (19.13)	375 (71.02)					
Dark	6 (1.14)	24 (4.55)					
Green	2 (0.38)	3 (0.57)					
Consistency							
Liquid	28 (5.30)	34 (6.44)	40.71	<0.0001			
Soft	29 (5.49)	55 (10.42)					
Hard and dry	3 (0.57)	54 (10.23)					
Firm	56 (10.61)	269 (50.95)					
Findings							
Mucus	21 (3.98)	48 (9.09)					
Parasites	2 (0.38)	7 (1.33)					
Blood	4 (0.76)	7 (1.33)					
No findings	89 (16.86)	350 (66.29)					

Data are n (%) unless otherwise indicated

OR = odds ratio; CI = confidence interval
Table 3 shows the results of association between Cystoisospora species and risk factors. Age <7 months was a factor associated with the prevalence of Cystoisospora species ($\chi^2 = 14.68, P = 0.0006$). Mucus in the stool was also associated with the presence of Cystoisospora species.
Brushing frequency was associated with the prevalence of *Cryptosporidium* species ($\chi^2 = 11.56$, $P = 0.009$) (Table 4).

Table 5 shows the risk factors associated with *T. cati* infection in cats. Age <7 months was a factor associated with the prevalence of *T. cati* ($\chi^2 = 35.37$, $P = <0.0001$). Sex was a risk factor: males were more prone to infection ($\chi^2 = 5.39$ [P = 0.02]; odds ratio [OR] 0.41 [P = 0.02]). Contact with other animals was strongly associated with parasite prevalence ($\chi^2 = 17.54$ [P < 0.0001]; OR 4.12 [P

Table 4	Prevalence of and risk factors for *Cryptosporidium* species in cats						
	Positive (n = 37)	Negative (n = 491)	χ^2	P value	OR	P value	CI
Age (months)							
<7	8 (1.52)	114 (21.59)	0.142	0.93	–	–	–
7.1–13	4 (0.76)	60 (11.36)					
>13.1	25 (4.73)	317 (60.04)					
Sex							
Female	20 (3.79)	251 (47.54)					
Male	17 (3.22)	240 (45.45)	0.119	0.73	1.12	0.73	0.57–2.19
Interaction with other cats							
Yes	24 (4.55)	345 (65.34)	0.47	0.48	1.27	0.48	0.63–2.58
No	13 (2.46)	146 (27.65)					
Interaction with other animals							
Yes	11 (2.08)	124 (23.48)	0.36	0.54	0.79	0.54	0.38–1.66
No	26 (4.92)	367 (71.51)					
Outdoor access							
Yes	7 (1.33)	88 (16.67)	0.02	0.87	0.93	0.87	0.39–2.19
No	30 (5.68)	403 (76.33)					
Brushing							
Daily	10 (1.9)	64 (12.12)					
Weekly	6 (1.14)	180 (34.09)					
Monthly	4 (0.76)	86 (16.29)					
Never	17 (3.22)	161 (31.0)	11.56	0.009	–	–	–
Origin							
Adopted	37 (5.11)	463 (87.69)	2.22	0.13	–	–	–
Cat breeder	0 (0)	28 (5.30)					
Hair type							
Long	10 (1.89)	114 (21.59)	0.27	0.59	0.81	0.59	0.38–1.73
Short	27 (5.11)	377 (71.40)					
Size							
Large	5 (0.95)	89 (16.86)	0.50	0.47	0.70	0.47	0.26–1.86
Medium	32 (6.06)	402 (76.14)					
Small	0 (0)	0 (0)					
Characteristics of feces							
Color							
Yellow	0 (0)	17 (3.22)	1.75	0.62	1.99	0.16	0.74–5.33
Brown	35 (6.63)	441 (83.52)					
Dark	2 (0.38)	28 (5.30)					
Green	0 (0)	5 (0.95)					
Consistency							
Liquid	3 (0.57)	59 (11.17)	3.70	0.29	–	–	–
Soft	6 (1.14)	78 (14.77)					
Hard and dry	1 (0.19)	56 (10.61)					
Firm	27 (5.11)	298 (56.44)					
Findings							
Mucus	3 (0.57)	66 (12.50)					
Parasites	1 (0.19)	8 (1.52)					
Blood	1 (0.19)	10 (1.89)	1.10	0.77	–	–	–
No findings	32 (6.06)	407 (77.08)					

Data are n (%) unless otherwise indicated
OR = odds ratio; CI = confidence interval
Table 5 Prevalence of and risk factors for *Toxocara* species in cats

	Positive (n = 34)	Negative (n = 494)	χ²	P value	OR	P value	CI
Age							
<7	21 (3.98)	101 (19.13)	35.37	<0.0001	–	–	–
7.1–13	6 (1.14)	58 (10.98)					
>13.1	7 (1.33)	335 (63.45)					
Sex							
Female	24 (4.55)	247 (46.78)					
Male	10 (1.89)	247 (46.78)	5.39	0.02	0.41	0.02	0.19–0.88
Interaction with other cats							
Yes	23 (4.36)	346 (65.53)	0.08	0.76	0.89	0.76	0.42–1.88
No	11 (2.08)	148 (28.03)					
Interaction with other animals							
Yes	19 (3.60)	116 (21.97)	17.54	<0.0001	4.12	<0.0001	2.03–8.38
No	15 (2.84)	378 (71.59)					
Outdoor access							
Yes	20 (3.79)	75 (14.20)	41.06	<0.0001	7.98	<0.0001	3.86–16.49
No	14 (2.65)	419 (79.36)					
Brushing							
Daily	0 (0)	74 (14.02)					
Weekly	7 (1.33)	179 (33.90)					
Monthly	3 (0.57)	87 (16.48)					
Never	24 (4.55)	154 (29.17)	23.40	<0.0001	–	–	–
Origin							
Adopted	37 (5.11)	463 (87.69)	2.22	0.13	–	–	–
Cat breeder	0 (0)	28 (5.30)					
Hair type							
Long	10 (1.89)	114 (21.59)	0.27	0.59	0.81	0.59	0.38–1.73
Short	27 (5.11)	377 (71.40)					
Size							
Large	5 (0.95)	89 (16.86)	0.50	0.47	0.70	0.47	0.26–1.86
Medium	32 (6.06)	402 (76.14)					
Small	0 (0)	0 (0)					
Characteristics of feces							
Color							
Yellow	0 (0)	17 (3.22)	1.75	0.62	1.99	0.16	0.74–5.33
Brown	35 (6.63)	441 (83.52)					
Dark	2 (0.38)	28 (5.30)					
Green	0 (0)	5 (0.95)					
Consistency							
Liquid	6 (1.14)	56 (10.61)	5.22	0.15	–	–	–
Soft	9 (1.70)	75 (14.20)					
Hard and dry	2 (0.38)	55 (10.42)					
Firm	17 (3.22)	308 (58.33)					
Findings							
Mucus	3 (0.57)	66 (12.50)					
Parasites	1 (0.19)	8 (1.52)	1.10	0.77	–	–	–
Blood	1 (0.19)	10 (1.89)					
No findings	32 (6.06)	407 (77.08)					

Data are n (%) unless otherwise stated
OR = odds ratio; CI = confidence interval

<0.0001]). Outdoor access was also a risk factor: cats with access to the outdoors were eight times more likely to be infected with *T cati* ($\chi^2 = 41.06$ [P < 0.0001]; OR 7.98 [P < 0.0001]). Brushing frequency was also a risk factor; lack of brushing was associated with the prevalence of *T cati* ($\chi^2 = 23.40$; P < 0.0001). Table 6 shows the results of the analysis performed on cats infected with *D caninum*. Interaction with other
animal species was associated with infection ($\chi^2 = 5.17$ [P = 0.02]; OR 0.11 [P = 0.02]).

Discussion

Overall, the prevalence of gastroenteric parasites was 41.29%. In this study, the parasite with the highest prevalence was *Giardia* species followed by *Cryptosporidium* species, *T. cati*, *Cystoisospora* species and *D. caninum*. These results coincide with the results of a similar scope study conducted in Poland15,16 which showed that *Giardia* species are the most common parasites in cats. Nevertheless, our results differ from the results of Little

Table 6	Prevalence of and risk factors for *Dipylidium caninum* species in cats						
	Positive (n = 4)	Negative (n = 524)	χ^2	P value	OR	P value	CI
Age							
<7	2 (0.38)	120 (22.73)	1.88	0.38	–	–	–
7.1–13	0 (0)	64 (12.12)					
>13.1	2 (0.38)	340 (64.39)					
Sex							
Female	2 (0.38)	269 (50.95)	0.003	0.95	0.94	0.02	0.13–6.78
Male	2 (0.38)	255 (48.30)					
Interaction with other cats							
Yes	4 (0.76)	365 (69.13)	1.73	0.18	–	–	–
No	0 (0)	159 (30.11)					
Interaction with other animals							
Yes	3 (0.57)	132 (25.00)	5.17	0.02	0.11	0.02	0.01–1.08
No	1 (0.19)	392 (74.24)					
Outdoor access							
Yes	1 (0.19)	94 (17.80)	0.13	0.71	0.65	0.71	0.06–6.37
No	3 (0.57)	430 (81.44)					
Brushing							
Daily	0 (0)	74 (14.02)					
Weekly	0 (0)	186 (35.23)					
Monthly	1 (0.19)	89 (16.86)					
Never	3 (0.57)	175 (33.14)	4.17	0.24	–	–	–
Origin							
Adopted	4 (0.76)	496 (93.94)					
Cat breeder	0 (0)	28 (5.30)	0.22	0.63	–	–	–
Hair type							
Long	0 (0)	124 (23.48)	1.23	0.26	–	–	–
Short	4 (0.76)	400 (75.76)					
Size							
Large	0 (0)	94 (17.80)	0.87	0.35	–	–	–
Medium	4 (0.76)	430 (81.44)					
Small	0 (0)	0 (0)					
Characteristics of feces							
Color							
Yellow	0 (0)	17 (3.22)	0.44	0.93	1.99	0.16	0.74–5.33
Brown	4 (0.76)	472 (89.39)					
Dark	0 (0)	30 (5.68)					
Green	0 (0)	5 (0.95)					
Consistency							
Liquid	0 (0)	62 (11.74)	3.94	0.26	–	–	–
Soft	2 (0.38)	82 (15.53)					
Hard and dry							
Firm	2 (0.38)	323 (61.17)					
Findings							
Mucus	1 (0.19)	68 (12.88)	0.62	0.89	–	–	–
Parasites	0 (0)	9 (1.70)					
Blood	0 (0)	11 (2.08)					
No findings							
Data are n (%) unless otherwise stated							
OR = odds ratio; CI = confidence interval							
et al., which indicated that *T. cati* is the most common parasite (found in up to 40% of the total study population). Other studies argue that *Giardia* species are the most common parasite detected in cat and dog populations, followed by a significant prevalence of ascarid, hookworm and tapeworm infections. Unlike Schuster et al., our results reported a higher prevalence of this parasite in young clowders of cats.

The results of our study on parasitic infection and associated risk factors showed that liquid feces were associated with the presence of *Giardia* species. This is an indicator mentioned by other researchers. For example, Gruffydd et al. stated that diarrhea or liquid stools, along with mucus/blood, are the main clinical signs to diagnose giardiasis.

Finding mucus in the stool was also associated with the presence of *Cystoisospora* species. Schuster et al. reported a higher prevalence of this parasite in young cats vs adult cats and age as the only factors associated with prevalence. Unlike Schuster et al., our results show that the prevalence of *Cryptosporidium* species in young cats was associated with infrequent brushing (less than once a month) and not only with age; this might be because at a young age the kitten does not frequently groom and has an immature immune system. *Cystoisospora* species infections can also occur via ingestion of sporulated oocysts present in the environment and can occur at any age and in different parasite life stages, including residual infection or infections in clowders of cats.

Regarding the presence of *T. cati*, we found that age (<7 months) is associated with infection. This is in contrast with Szwabe and Błaszkowska, who reported more infections in cats older than 12 months of age (17.7%) than in animals aged <12 months (10.3%). Contact with other animals was strongly associated with the presence of parasites. Access to the outdoors was highly associated with the presence of parasites; this could be related to the predatory lifestyle of cats with access to the outdoors and their consumption of rodents and birds, which can act as transporters of *T. cati*. Brushing frequency was also associated with *T. cati*. There was a high prevalence of *T. cati* in cats that were never brushed. This result is similar to that reported by Keegan and Holland. Keegan and Holland’s study showed an association between the cat’s lack of grooming and the presence of *T. cati* eggs.

Our study showed that interaction with other species was a risk factor for infection with *D. caninum*. It has recently been reported that the *Dipylidium* species found in dogs and cats are probably different, suggesting that cats could be infected by parasite species affecting dogs.

Conclusions

In domestic cats, age, mucus in feces, living with other species, outdoor access and brushing frequency are risk factors for the presence of parasites such as *Giardia* species, *Cryptosporidium* species, *T. cati*, *Cystoisospora* species and *D. caninum*.

Conflict of interest The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding The authors received no financial support for the research, authorship, and/or publication of this article.

Ethical approval This study only involved the use of non-experimental animals, including owned or unowned animals and data from prospective or retrospective studies. We followed the established internationally recognized high standards (‘best practice’) of individual veterinary clinical patient care. Ethical approval from a committee was therefore not specifically required for publication in JFMS Open Reports.

Informed consent Informed consent (either verbal or written) was obtained from the owner or legal custodian of all animal(s) studied in this work (either experimental or non-experimental animals) for the procedure(s) undertaken (either prospective or retrospective studies). For any animals or humans individually identifiable within this publication, informed consent (either verbal or written) for their use in the publication was obtained from the people involved.

ORCID iD Tamara libertad Iturbe Cossio https://orcid.org/0000-0002-2625-619X

Azucena Danae Montes Luna https://orcid.org/0000-0002-3504-6888

Magdalena Ruiz Mejia https://orcid.org/0000-0002-1064-8906

Rainel Heredia Cárdenas https://orcid.org/0000-0002-6127-3825

References

1. Bradshaw J. *Introduction*. In: Bradshaw J (ed). Cat sense: how the new feline science can make you a better friend to your pet. New York: Basic Books, 2012, pp xix–xxviii.

2. Nagamori Y, Payton ME, Duncan-Decocq R, et al. Fecal survey of parasites in free-roaming cats in northcentral Oklahoma, United States. *Vet Parasitol Reg Stud Reports* 2018; 14: 50–53.

3. Schuster RK, Thoma K, Sivakumar S, et al. The parasite fauna of stray domestic cats (*Felis catus*) in Dubai, United Arab Emirates. *Rev Parasitol Res* 2009; 105: 125–134.

4. Gil H, Cano L, De Lucio A, et al. Detection and molecular diversity of *Giardia duodenalis* and *Cryptosporidium* spp. in sheltered dogs and cats in Northern Spain. *Rev Infect Genet Evol* 2017; 50: 62–69.

5. Nagamori Y, Payton ME, Looper E, et al. Retrospective survey of parasitism identified in feces of client-owned cats in North America from 2007 through 2018. *Vet Parasitol* 2020; 277: 109008. DOI: 10.1016/j.vetpar.2019.109008.
6 Loftin CM, Donnett UB, Schneider LG, et al. *Prevalence of endoparasites in northern Mississippi shelter cats.* Rev Vet Parasitol Reg Stud Reports 2019; 18: 100322. DOI: 10.1016/j.vprsr.2019.100322.

7 Ilić T, Kulišić Z, Antić N, et al. *Prevalence of zoonotic intestinal helminths in pet dogs and cats in the Belgrade area.* J App Anim Res 2017; 45: 204–208.

8 Solarte PLD, Castañeda SR and Pulido VAP. *Gastrointestinal parasites in street dogs in animal shelter from the Bogota DC, Colombia.* Rev Neotrop Helminthol 2013; 7: 83–93.

9 Girard KR. *Manual de parasitología: Técnicas para Laboratorios de Atención Primaria de Salud y para el Diagnóstico de las Enfermedades Infecciosas Desatendidas.* 3rd ed. Honduras: Dirección de Investigación Científica Universidad Nacional Autónoma de Honduras y Hospital-Escuela, 2014.

10 Hooshyar H, Rostamkhani P, Arbabi M, et al. *Giardia lamblia* infection: review of current diagnostic strategies. Gastroenterol Hepatol Bed Bench 2019; 12: 3–12.

11 Amiri S, Rahimi MT, Mahdavi SA, et al. *Prevalence of Enterobius vermicularis* infection among preschool children, Babol, North of Iran. Rev J Parasit Dis 2016; 40: 1558–1562.

12 Faust EC, D’Antoni JO, Odom V, et al. A critical study of clinical laboratory technics for the diagnosis of protozoan cysts and helminth eggs in feces. Am J Trop Med 1938; 18: 169–183.

13 Salleh FM, AL-Mekhlafi MA, Nordin A, et al. Evaluation of gram-chromotrope Kinyoun staining technique: its effectiveness in detecting microporidal spores in fecal specimens. Diagn Microbiol Infect Dis 2011; 1: 82–85.

14 Zajac AM and Conboy GA. *Dogs and cats.* In: Zajac AM, Conboy GA and Little SE (eds). Veterinary clinical parasitology. 8th ed. Hoboken, NJ: Wiley-Blackwell, 2012, pp 48–53.

15 Szwabe K and Błaszkowska J. *Stray dogs and cats as potential sources of soil contamination with zoonotic parasites.* Ann Agric Environ Med 2017; 24: 39–43.

16 Sweet S, Szlosek D, McCrann D, et al. *Retrospective analysis of feline intestinal parasites: trends in testing positivity by age, USA geographical region and reason for veterinary visit.* Parasit Vectors 2020; 13: 473.

17 Little S, Adolph C, Downie K, et al. *High prevalence of covert infection with gastrointestinal helminths in cats.* J Am Anim Hosp Assoc 2015; 51: 359–364.

18 Kostopoulou D, Claerebout E, Arvanitis D, et al. Abundance, zoonotic potential and risk factors of intestinal parasitism amongst dog and cat populations: the scenario of Crete, Greece. Parasit Vectors 2017; 10: 43. DOI: 10.1186/s13071-017-1989-8.

19 Gruffydd JT, Addie D, Belá k, et al. *Giardiasis in cats: ABCD guidelines on prevention and management.* J Feline Med Surg 2013; 15: 650–652.

20 Claerebout E, Casaert S, Dalemans AC, et al. *Giardia and other intestinal parasites in different dog populations in Northern Belgium.* Vet Parasitol 2009; 161: 41–46.

21 Ortuno A and Castella J. *Intestinal parasites in shelter dogs and risk factors associated with the facility and its management.* Isr J Vet Med 2011; 66: 103–107.

22 Szwabe K and Błaszkowska J. *Stray dogs and cats as potential sources of soil contamination with zoonotic parasites.* Ann Agric Environ Med 2017; 24: 39–43.

23 Beugnet F, Bourdeau P, Chalvet-Monfray K, et al. *Parasites of domestic owned cats in Europe: coinfections and risk factors.* Parasit Vectors 2014; 7: 291. DOI: 10.1186/1756-3305-7-291.

24 Mircean V, Titilincu A and Vasile C. *Prevalence of endoparasites in household cat (Felis catus) populations from Transylvania (Romania) and association with risk factors.* Vet Parasitol 2010; 171: 163–166.

25 Keegan DJ and Holland CV. *Contamination of the hair of owned dogs with the eggs of Toxocara spp.* Vet Parasitol 2010; 173: 161–164.

26 Labuschagne M, Beugnet F, Rehein S, et al. *Analysis of Dipylidium caninum* tapeworms from dogs and cats, or their respective fleas. Parasite 2018; 25: 30. DOI: 10.1051/parasite/2018029.