Empowering upland farmers to become more resilient towards climate change – experiences from Toraja, Indonesia

H Iswoyo¹, S Stoeber², Kaimuddin¹, A Yassi¹, R Dermawan¹, T Ramba³

¹Department of Agronomy, Faculty of Agriculture, University of Hasanuddin. Jl. Perintis Kemerdekaan KM 10 Makassar-Indonesia
²Humboldt-Universität zu Berlin, Germany, Faculty of Life Sciences, at the Centre for Rural Development (SLE)
³Pusbinlat Motivator GT, Kondoran Sangalla Toraja-South Sulawesi-Indonesia

e-mail: iswoyo@yahoo.com; hariiswoyo@unhas.ac.id

Abstract. Climate change is a factual phenomenon which is currently occurring and has affected every part of the world. It is disastrous in agriculture as in long term the harvest failure and diminishing farmland could result in food shortage hence world crisis. Farmers are most susceptible, therefore helping them to prepare, adapt and mitigate the impact of climate change become essential. This paper presents the factual climate-related problems in agriculture. It also shows stages of activity conducted by collaboration of farmers, university and NGO in stimulating and empowering farmers to be more aware, ready, smart and capable in proposing efforts of adaptation for their farms. The process acknowledged that farmers are also curious for field experiment before a technology can be fully adopted by them.

1. Introduction
Climate change poses various threats to the agricultural sector and affects the sustainability of food production through a series of newly emerging problems [1]. In Indonesia, all sectors climate changes affects all sectors, with the agriculture sector experiences the most serious impacts for several reasons. Many resource-poor households are involved in agriculture and depend on rain-fed farming [2]. Farmers already suffer from declining yields and crop failures among others [3]. Various bio-physical impacts from climate change influence the physical and biological systems of the environment [4] and these changes highly affect farm management decisions on seed varieties, soil fertility management and pest and diseases control [2]. Bio-physical impacts are observed in the category of climate with unstable precipitation patterns and changed wind patterns, rising temperatures, increased salinity through sea level rise; in the category of hazards with increased intensity of tropical storms, landslides by increased heavy rainfall events. Agriculture is directly impacted by changes in the reproduction behaviors of animals and plants, distribution of species and population size and increased frequency of plant pests and diseases [4]. These bio-physical factors threaten the food security and make Indonesia highly vulnerable to climate change [1].

Considering climate as one main factor for plant’s metabolism and physiology, global warming has detrimental effect on the sustainability of agricultural development [5].
Climate change affects the way farmers manage irrigated and rain-fed paddy land. Changing and influential elements in land management include the scheduling of irrigation water, which is often late due to changing patterns and erratic distribution of rainfall. This irregularity often destroys rice nurseries and tends to increase the intensity of pest attacks in paddy fields and shorter planting seasons for rice [6].

A study by [7] shows the significance to address the issue of climate change and the need to raise farmers' awareness of climate change. Generally, there is a lack of farmers’ understanding of what climate change really means and how it affects their farming systems. There have been efforts to support farmers in adapting to climate change, how to adapt with farm-level strategies to better manage the microclimate in their farms.

Indonesia has two distinct seasons, the wet and the dry season, which varies across agro-ecological regions in terms of time of occurrence and duration of the event. The western part of Indonesia is mainly influenced by the Asian weather situation in the rainy season, while its eastern part is determined by the general weather situation from Australia in the dry season. The latter macro weather also applies for South Sulawesi. During the previous decade, South Sulawesi has experienced a significant climate change compared to earlier situations, which results in various problems and losses in agriculture[8].

This paper aims at describing the impacts of climate change on agriculture and farmers in the specific region of South Sulawesi, as well as analyzing the impact and value of adaptation strategies carried out by farmers. It also reflects on a participatory research process conducted with farmers in Tana Toraja, a hilly upland region in South Sulawesi. In this process, farm-level adaptation strategies are assessed by farmer field trials. These farmer field trials are set up and managed in so-called farmer climate field labs, a specific form of citizen science [9] (X). In this field research farmers act as farmer researchers conducting research as non-academia by designing treatments, collecting and analyzing data and developing location-specific solutions for their farm to address their climate change related needs.

2. Impacts of Climate Change on Agriculture
There are many studies that describe the climatic factors, which affect agriculture in general. Depending on the perspective, the community differentiates between agriculture as contributing sector to accelerate global warming and agriculture as suffering sector factor. While the contribution of direct emissions from the agricultural sector is relatively small, the impact that the sector feels in return could be massive [2].

According to [10], three main global climate change factors have impacts on the Indonesian agricultural sector, which are: 1) changes in rainfall patterns, 2) increased hazards (floods and droughts), and 3) increased air and sea surface temperatures. Pointing specifically to rising sea levels, the losses of coastal land are high in specific islands of the archipelago (i.e. Java, Bali, North Sumatra, Lampung, West Nusa Tenggara and Kalimantan). Salt water intrusion causes serious damage to agricultural infrastructure and land degradation through salinization, which is that detrimental for crops [5].

In general, the effects of climate change to agriculture are due to two main factors:

2.1. Temperature
The influence of climate change on temperature can be seen from the occurrence of anomalies in global air temperatures on the Earth's surface over the past hundred years [11], the trend with scientific credential is factual temperature increase [4]. The increase in global air temperature over the past 100 years was 0.57°C in average [12]. In Asia there has been a reported increase in temperature of 1°C-3°C, and in Indonesia there has been a moderate rise in temperature of 0.3°C in the last decade [3].

The increase in temperature causes an increase in transpiration which further decreases the productivity of food crops [5], increased water consumption, accelerated maturation of fruits/seeds, reduced quality of yields and a more encouraging environment for the development of pests and diseases [2]. According to a study on three different altitude in Indonesia, a temperature rise up to 2°C in uplands and highlands cause a production decrease by about 20% [13].
2.2. Disruption of Hydrological cycle
Climate change is characterized by changes in rainfall patterns that cause a shift in the beginning of the planting season, making it difficult to plan crop cultivation [14]. Research by [15] showed that the number of months with extreme rainfall tends to increase in last 50 years.

Disruption in hydrological cycle resulted in a longer dry season and a more intensive but shorter rainy season, increasing cycles of dry and rainy anomalies and decreasing soil moisture. These all will disrupt the agricultural sector, which is likely to decrease crop yields due to the increasing dry land in a longer dry season [16].

The instability of rainfall is also one of the main factors that can affect the productivity of food crops, especially rice in Indonesia. An increase in rainfall will have a positive impact to a certain point, yet excessive rainfall will have a negative impact on rice productivity [17].

Climate change causes the seasons to become erratic and weather is more difficult to predict [18]. This is caused by changes that occur in elements of climate and weather [1,19]. Changes in these climate elements are very likely to encourage shifts in the climate zone [20] which results in changes in cropping patterns and patterns of agricultural production [16].

3. Farmers Knowledge and adaptation on Climate Change
Almost all agricultural sub-sectors, especially horticulture and livestock, have a high risk of being affected by the effects of climate change [1]. Therefore, farmers are the frail party to bear the consequences.

In general, the level of knowledge of climate change adaptation for most farmers is relatively not comparable with the impact of observable climate change. A research by [18] seen a small number of farmers with knowledge of adaptation strategies. In other research by [21] quite significant farmers already realized the incidence of climate change, yet very few of them have taken adaptation measures.

Adaptation by definition is adjustment in various system of fields such as ecology, social or economy as a measure to respond to observable changes in climatic stimuli in order to mitigate the impacts of these changes as well as make an opportunity out of them [22]. The ability of farmers to adapt in overcoming the effects of climate change is becoming increasingly important to reduce the losses. Adaptation to climate change can be interpreted as a form of response adjustments made to address the effects of climate change [23].

A research by [18] found knowledge of farmers' climate change adaptation is relatively low, especially regarding rice paddy varieties that are tolerant of flood, drought, or certain pests as well as other superior varieties that can be planted as a strategy to reduce the negative impacts of climate change. Majority of those farmers were also wonder why pests and diseases were more intense in their farm lately.

4. A Process of Learning and Solving: A Case of Torajan Farmers in Responding toFarm Challenges related to Climate Change
Tana Toraja has geographically hilly region, hence is considered to be one of frail areas against the climate change. The observable conditions such as shift in rainfall pattern, solar radiation, humidity and temperature. Apart from direct effect of climate-related disaster such as landslides, flooding, drought, etc, the climate change affect farmers in Toraja through declining farms yield due to extreme climatic condition that is unfavourable and even detrimental for plants. Agriculture is a sector that can contribute to as well as be affected by climate change [1] [6].

Recognizing the importance of farmers understanding the phenomenon of climate change and conducting mitigation and adaptation actions, farmers in Toraja with the help of NGOs (MTV-Pusbintar) and university (Universitas Hasanuddin) work together in an activity: ‘Climate Resilient Agriculture Innovation Investigation Project’ (CRAIIP). In this project the NGO facilitates farmers to obtain guidance from universities in addressing the phenomenon of climate change. Various activities carried out are described in the following stages.

The flow of activities is seen in Figure 1.
4.1. Understanding the problems

After learning experiences from other places and based on what was experienced by the farmers themselves, through a Focus Group Discussion (FGD), Torajan farmers were asked to identify the agriculture-related problems they have. As a way to ease the identification process, before the FGD the teams from university and NGO have performed survey and identification which will then enrich material for discussion with farmers.

First of all, through this process farmers were required to express their feeling and observation towards the climatic atmosphere. The results is presented in Table 2.

Table 1. Climatic variability and changes-farmers perceiveness

CLIMATE VARIABILITY AND CHANGE (How our weather has changed in 30 years)	Bua’ Tarrung	Batu Sura’	To’ Pao	Tallang Sura’	Buntu Datu
1 How do you feel that the day time temperature has changed in your village?	Hotter	Hot	Hot	Hotter	Hotter
2 How do you feel that the night time temperature has changed in your village?	Hotter	Very cold	Cold	Colder, especially in the dry season	Colder
3 How has the overall annual rainfall changed?	Increasing	Higher rainfall	Rainfall is unpredictable	Higher	Unpredictable
4 In which months do you have more rain than usual?	December - August	End of October to January	January - June	October – May	March - June
5 In which months do you have less rain than usual?	September - November	April to June	August - November	June - September	July – November
6 Do you have traditional weather rules in your village?	Full moon	Thick cloud over Mt. Sado’ko, birds singing, Marble-shaped mango flowers	Dec-Jun = Rainy season July-Aug = light rain Aug-Nov = Dry season	None	None
7 Can you rely on these rules? If not, what has changed?	less reliable	No	Yes	No	No
8 Explain any changes about the start of the rainy season. Does it start earlier or later? With heavy or light rain?	Earlier and doesn’t start with heavy rain	Starts with light spots of rain, becoming heavier	High temperature, thunderstorms, wind from the south	Overcast, windy and thunderstorms. Usually heavy rain accompanied by strong winds	Light spots of rain
9 Do you experience more or less dry spells during beginning of rainy season?	Yes?	A little less?	A little?		
10 How does it affect your plants?	Reduced yield	More diseases and pests	influential	Tomato fruit and stems rot, green mustard eaten by caterpillars	There is a change in the plants
4.2. Developing Ideas

After climatic change identification, farmers also identify problems they perceive in their farms which they think related with climate. With the guidance from university during the FGD, farmers also suggested ideas on how to investigate more about the problem or further how to overcome the problems. The result of this process can be seen in Table 2.

Table 2. Impacts of climate change and new ideas for adaptation—farmers perceiveness

No	Impacts of Climate Change on Agriculture	New Ideas for Adaptation / Best Practice (from where?)	Activities in the target Village	Output Expected
1	Increase soil acidity (content of acid carbon in rain is high)	Compost enriched by microbial Trichoderma, Mycorrhizae, Aspergillus niger ideas from UNHAS (Pest/disease control? E.g. Phytophthora?)	Compost enriched microbe (Trichoderma, Mycorrhizae, Aspergillus niger) in all assisting areas (dosage, treatment, and material are measurable)	To indentify the type of compost suitable for paddy, coffee, cocoa and vegetables (yields rise)
	Soil organic matter decline	Compost enriched with plants/ green manuring e.g. Sesbania rostrata, other? – Idea from: Thailand and India	Compost kitchen waste residue	There are books compost formula
		Liquid Organic Fertilizer (LOF) enriched with Trichoderma – Idea from: Makassar	Liquid Organic Fertilizer (LOF) enriched with trichoderma in all assisted village	Reduce production costs
		Directly Treatment of green manure e.g. Sesbania rostrata, for example?, in rice field (Thailand and India)	Using acid tolerant rice varieties	GT compost formulas have academic evidence
		Vermicompost – Idea from: Philippine, Jogia and India	Vermicompost (Casting)	Easy to get a laboratory analysis with low cost
		Azolla sp for nitrogen fertilizer in rice plants (Idea from: BFDW and UNHAS and India)	Azola for nitrogen fertilizer in rice field	
		A laboratory for analyze soil, compost, and water (Idea from: India)	Comparison between LOF GT formula and LOF from other parties	
	Poisoning by Aluminum (Al) and Ferrum (Fe) high.	Extra Calcium to increasing Soil pH by administering Skin Flour of snail (Idea from: Kondoran)	Need additional information whether all activities in number b. are able to answer the toxicity of Al and Fe. OK if soil is above pH 4.5 add chalk?	
	Lack of Calcium (Ca)			
	Perhaps there are plants that are extinct	Endemik seed promoting		
		Local paddy Demplot		
		Establishing seed bank for local varieties (paddy and vegetable)		
2	Longer dry season (Drought)	Drought resistant varieties for upland rice (Idea from: Indonesian Seed Institute and India)	Planting Rice Drought resistant varieties for upland rice in 6 villages	Rice production remains in drought
a)	The rice yield decreased (rain fed)	Seed priming with local varieties (Idea from: UNHAS)	Seed priming will be tried in 6 villages with more scientific treatments	New module
		Planting timing (Research in lowland rice in Sidrap and UNHAS research)	Looking for a local rice verities with drought resistance beside black rice	
		Planting time (Season Calendar) Utilization of Meteorology Climatology and Geophysics Council (BMKG) forecast at farmers’ level Idea from: SLI Module for rice)	Comparing between local varieties and rice from Indonesia Seed Institution	
		Fertilizing with application of microorganisms (Mycorrhiza, Trichoderma, Azotobacter,	The timing of planting (Season Calendar) to take advantage of the weather forecast from	
			BMKG at the farmers’ level	
No	Impacts of Climate Change on Agriculture	New Ideas for Adaptation / Best Practice (from where?)	Activities in the target Village	Output Expected
b)	See: 1.a, 1.b, 1.c.	Planting alternative staple food such as various of Taro (Colocasia esculenta) (Idea from: Toraja Utara)	Planting alternative staple food such as various of Taro (Colocasia esculenta) with new treatments such as with compost, planting method and planting time suitable plant species	Farmers have a food reserve if the rice harvest failed.
c)	The harvest of chili decreases	- Drip Irrigation (Idea from: UNHAS)		
- Early pruning technique (Idea from: UNHAS)
- Using mulch from organic material (Idea from GT and UNHAS) | - Drip Irrigation will be tried at Tallang Sura, La’bo, Batu Sura’, To Pao, and Bua Tarrung
- Cultivations and Early pruning technique
- Using mulch from organic material | Reduce women working hours for watering vegetable / chili and water saving
Chili and vegetable production are stable |
| d) | Vegetable production are decreasing | - Drip Irrigation (Idea from: UNHAS)
- Using mulch from organic material (Idea from GT and UNHAS) | - Drip Irrigation will be tried at Tallang Sura, Pokkarondang, Batu Sura’, To Pao, and Bua Tarrung
- Using mulch from organic material | Reduce women working hours for watering vegetable / chili and water saving
Chili and vegetable production are stable |
| e) | Cacao production decreasing | - Plantation sanitation (Idea: research by Prof Laode-UNHAS)
- Plant rehabilitation | Need information on how far the cocoa plant fits in Toraja.
Offered to institutions in Germany to help overcome the Cocoa disease. | |
| f) | Powdery mildew and pest whiteflies in chilli and tomato crops and string beans are increased | Botanical pesticides (Idea from: research of Prof. Sylvia Sjam-UNHAS) – GT Pesticides formulas from GT and have been application by farmers (tea + tobacco + garlic) | Using Botanical pesticides formula from UNHAS and GT | Overcoming the Powdery mildew and whiteflies in chilli and tomato crops
Increasing production
There are books with the right formula for each commodity
GT pesticides formulas have academic evidence |
| g) | Corn production are decreasing or without production | - Drought-tolerant maize varieties (Idea from: Balitsereal)
- Suitable place and good timing for planting | - Establishing seed bank in Kondoran and in villages
- Comparison seed storage in Balisereal and in India
- Seed treatment | Seed stock is always available
Keeping local seed for not extinct
Extend viability (endurance seed) |
| h) | Viability and vigoritas (germination power) are decreases | - Seed storage technique (Idea from: Balisereal and India)
- Seed treatment (Idea from: UNHAS) | | |
| i) | Lack of livestock (pig) forage (high cost) | Hibiscus leaf as pig forage to change the sweet potato leaf (Idea from: GT) | Using Hibiscus leaf as pig forage to change the sweet potato leaf and see how far it is worked (with scientific analyze)
Provide information on nutrition content of each pig forage | The working hours of women decreased for feeding their pigs
Availability pigs forage in the dry season is guaranteed
Reducing production costs |
| j) | ND disease of poultry are increasing | Plant a special species as a barrier to prevent virus attacks (Idea from: Farmers in Toraja)
- Vaccination | | |
| 3 | Changing rainfall patterns (extreme rain) Land slide disasters increasing | Vegetative Terracing with using Sesbania rostrata or Mucuma (Idea from: GT and UNHAS)
- Planting trees (Idea from GT)
- Planting vetiver –(Idea from LHP) | Vegetative Terracing with using Sesbania rostrata or Mucuma
- Planting vetiver in open lands
- System of row crops | Reducing erosion and landslide
Reducing runoff |
| No | Impacts of Climate Change on Agriculture | New Ideas for Adaptation / Best Practice (from where?) | Activities in the target Village | Output Expected |
|----|--|---|----------------------------------|-----------------|
| | System of row crops (Idea from: UNHAS) | Reforestation combined with food crops (will be looking for the kind of commodity) and production animal feed (the German Institution is expected to look for a best practice) | | |
| | IFS (Integrated Farming System) especially for prevent land slide | IFS (Integrated Farming System) especially for prevent land slide (Note: UNHAS or Germany Institution need to looking for a reference) | | |
| | Increased soil erosion in productive land (topsoil) | Mulching (Idea from: UNHAS) | Mulching o vegetable garden System of row crops (slopes crossing) | Reduce erosion |
| | Puddles plants in Kondoran, Labo 'and Pokkarondang. (incidental only) | Repairing drainages | Need more innovation to prevent erosion | |
| | Post-harvest disrupted for rice, cocoa, corn, etc. | Drier closet (Idea from India and LHP) | Drier closet (modification of the solar drier in LHP) | Preventing damage in the drying process |
| | Increased rice crop diseases (stem rot, bacterial wilt, fungi, Tunto viruses) | Setting the time for planting (season Calendar) which implies the cropping pattern (Idea from India, GT, CCROM, and UNHAS) | Create a local planting season | Production of rice is stable during extreme rain |
| | | Setting the time for planting (season Calendar) with using BMKG forecast at farmers' level (Idea from SLI Module) | Translating the language of BMKG/ scientific to practical language that is easily understood by farmers in Climate Field School for rice in 5 sub centers | |
| | | Planting disease-resistant varieties (local varieties: black rice, red rice) - proof of farmers in Toraja. | Using local varieties in the rice research | |
| | Chili and vegetable diseases increases (stem rot, fungus, yellow virus) | Organic pesticide – UNHAS, Kondoran (bawang putih) | Organic pesticides were able to overcome the emerging diseases during the extremes rainy season | |
| | | Organic pesticide (Idea from GT and UNHAS) | | |
| | Cocoa diseases (cacao fruit borers, stem borers, etc.). | Condomisation (Idea from: Plantation Office of South Sulawesi) | Condomisation Side grafting and grafting Sanitation and pruning | Preventing the spread of disease Develop disease-resistant cocoa |
| | | Side grafting and grafting (Idea from Soppeng, Mamuju, and Luwu) | | |
| | | Sanitation and pruning (Idea from UNHAS) | | |
| | Horticultural fertilization decreased | Greenhouse –(Idea from GT) Adding micro nutrient (Ca - Calcium and Bo-Boron) in the soil (Ideas from UNHAS) | | None |

4 Higher temperature (assumption) - Validation data from BMKG Pongtiku and Global weather

The number and types of pests increase

5 Tornado and strong wind are increased

Paddy fall so that the harvest damaged

Horticultural fertilization failure

6) From all (1-6) Food prices are increasing and food security threatened

Planting alternative staple food such as various of Taro (Colocasia esculenta) (Idea from: Toraja Utara) | Planting alternative staple food such as various of Taro (Colocasia esculenta) with new treatments such as with compost, planting method and planting time suitable plant species | Farmers have a food reserve if the rice harvest failed. |
Impacts of Climate Change on Agriculture

New Ideas for Adaptation / Best Practice (from where?)

Activities in the target Village

Output Expected

No	Impacts of Climate Change on Agriculture	New Ideas for Adaptation / Best Practice (from where?)	Activities in the target Village	Output Expected
	Farmers income are decreasing	Farmers group produce certification paddy seed (Idea from India and UNHAS)	• strengthen existing track Production Marketing through Motivator program	
• Farmers group produce certification black paddy seed
• Lobbying to Agriculture office to buy the seed and distribute for free to all farmers in Tana Toraja
• Introduce snowberry (need more information) | |

Notes: UNHAS = Universitas Hasanuddin
GT = Gereja Toraja (NGO)
CCROM = previous project
BMKG = Weather Station
LHP = Light House Project (Previous Project)
IPB = Institut Pertanian Bogor (Agricultural Bogor University)

4.3. Proposing for actions

Surmaini et al [2] recommended activities consisting of mitigation and adaptation efforts. Among the mitigation efforts are the use of low emission varieties and fertilizers, non-tillage technology (also in [24]) and intermittent irrigation. While adaptation measures are adjustment on planting pattern and time (also in [24–26]), use of superior and resistant varieties, rain harvest technology and irrigation technology. Learning from research by [18], farmers are also unaware about superior varieties for withholding unfavourable environmental atmosphere due to climate change.

Bringing all those lessons from elsewhere into Torajan farmers’ concerns increase their curiosity for trying and experimenting for the best solutions for the climatic related challenges in their area. With the guidance from the university, the next phase of workshop and FGD is for the formulation of field experiment. Figure 2 shows some parts of brainstorming process which involve farmers in formulating the field experiment.

Figure 2. FGD for formulating field experiment that is scientifically manageable for farmers

Turning a farmer into a farmer researcher requires ability to develop questions of things they bewildered on or off-farms. They should be able to choose among options in an absence of manual or instructions. It is only possible after testing the options in experiment, and the experiment is valid only when it follows principle of experimental design [27].

Therefore, one important principle for the proposed research and experiment activity is that it should be scientific, yet practicable and manageable by farmers. Given that when the project is over, the farmers are still capable of handling similar experiment activity in the future. Also important that the anticipation strategy as well as the projected adaptation program need to be supported by innovative and adaptive technology [1].
5. Conclusion
Climate change has become a disaster to agriculture and farmers in general. However, there have been many efforts for adaptive agriculture which farmers can learn and implement. In order to make the adaptation program successful, the farmers involvement at all stages is important, from understanding the problem, thinking for possible solution and ever formulating and designing strategies for adaptation. Farmers in Toraja has demonstrated their eagerness and willingness to get involved in activities for climate change mitigation and adaptation efforts. Their participation has been very significant, as seen in their capabilities of identifying problems as well as proposing solutions.

Acknowledgments
This study is part of the Climate-resilient Investigation and Innovation Project (CRAIIP) funded by the German Non-Governmental Organisation Bread for the World (first phase: 2017-2018), which is implemented in Sulawesi by the Church of Toraja and scientific support by UNHAS. The authors are equally grateful to the farmers from the Toraja District, for their active participation in the design, implementation and discussion of research results throughout the field experiments.

References
[1] Badan Litbang Penelitian 2011 *Pedoman umum adaptasi perubahan iklim sektor pertanian*
[2] Surmaini E, Runtunuwu E and Las I 2015 Upaya sektor pertanian dalam menghadapi perubahan iklim
[3] Firdaus M A 2013 Adaptasi Petani terhadap Perubahan Iklim *J. Lingkung. HIDUP*
[4] Turashis and M Kolopaking L 2016 *STRATEGI ADAPTASI PERUBAHAN IKLIM PADA PETANI DATARAN TINGGI* (Studi Petani di Dataran Tinggi Dieng, Kabupaten Banjarnegara) vol 4
[5] Las 2007 Pembingkaiakan Diskusi Panel dan Penelitian Konorsium Perubahan Iklim
[6] Hafib F 2014 Dampak Perubahan Iklim Terhadap Pola Pengelolaan Lahan Pertanian di Lampung
[7] Ichdayati L I 2014 Respon Petani dan Adaptasinya terhadap Perubahan Iklim *Agribus. J.* 8 155–70
[8] Gauk R N R, Yudono P A and Umar D A 2009 *Analisis suhu, kelembaban dan radiasi pada ruang terbuka hijau lapangan Karebosi dan Universitas Hasanuddin* (An analysis on temperature, humidity and radiation in green open space of Karebosi public space and University of Hasanuddin) (Makassar: University of Hasanuddin)
[9] Ryan S F, Adamson N L, Aktipis A, Andersen L K, Austin R, Barnes L, Beasley M R, Bedell K D, Briggs S and Chapman B 2018 The role of citizen science in addressing grand challenges in food and agriculture research *Proc. R. Soc. B* 285 20181977
[10] Salinger M J 2005 Climate variability and change: past, present and future—an overview *Increasing climate variability and change* (Springer) pp 9–29
[11] Febrianti N 2009 Hubungan Pemanasan Global dengan Kondisi Suhu Udara dan Curah Hujan di Indonesia
[12] Runtunuwu E and Kondoh A 2008 Assessing global climate variability and change under coldest and warmest periods at different latitudinal regions *Indones. J. Agric. Sci.* 9 2008
[13] Surmaini E, Rakman and Boer R 2008 Dampak perubahan iklim terhadap produksi padi: Studi kasus pada daerah dengan tiga ketinggian berbeda *Prosiding Seminar Nasional dan Dialog Sumberdaya Lahan Per−tanian. Balai Besar Penelitian dan Pengem− bang Sumberdaya Lahan Pertanian, Bogor
[14] Susilokarti D, Arif S S, Susanto S and Sutiarso L 2015 Identifikasi Perubahan Iklim Berdasarkan Data Curah Hujan di Wilayah Selatan Jatiluhur Kabupaten Subang, Jawa Barat *Agritech* 35 98–105
[15] Aldrian E and Djamil S D 2006 Long term rainfall trend of the brantas catchment area, East Java
Indones. J. Geogr. 38 27

[16] Kristiningrum A, Mukti F R, Saputra T A, Alwi A M, Imani S F and Prabandaru J L 2015 dampak Perubahan Iklim terhadap Pertanian di Indonesia dan di Dunia

[17] Nurhayanti Y and Nugroho M 2015 Sensitivitas Produksi Padi Terhadap Perubahan Iklim Di Indonesia Tahun 1974-2015 Agro Ekon. 27 183–96

[18] Salampessy Y L A, Lubis D P, Amien I and Suhardjito D 2018 Menakar Kapasitas Adaptasi Perubahan Iklim Petani Padi Sawah (Kasus Kabupaten Pasuruan Jawa Timur) J. Ilmu Lingkung. 16 25–34

[19] Khudori K 2011 Sistem Pertanian Pangan Adaptif Perubahan Iklim J. PANGAN 20 105–20

[20] Febrianti N 2008 Perubahan Zona Iklim di Indonesia dengan Menggunakan Sistem Klasifikasi Koppen Workshop Aplikasi Sains Atmosfer (LAPAN)

[21] Kurniawati F 2011 Dampak Perubahan Iklim Terhadap Pendapatan dan Faktor-Faktor Penentu Adaptasi Petani Terhadap Perubahan Iklim Studi Kasus: di Desa Purwasari, Kecamatan Dramaga, Kabupaten Bogor Skripsi. Jur. Ekon. Sumber d. dan Lingkungan. Fak. Ekon. dan Manaj.

[22] Adger W., Arnell N W. and Tompkins L 2005 Successful adaptation to climate change across scale Glob. Environ. Chang. 15 77–86

[23] Gero A, Meheux K and Dominey-Howes D 2010 Disaster risk reduction and climate change adaptation in the Pacific: The challenge of integration Univ. New South Wales, Sydney

[24] Girsang W and Hamid 2016 Adaptasi Petani terhadap Perubahan Iklim Workshop Ahli Perubahan Iklim Regional (Ambon)

[25] Hidayati I N and Suryanto S 2015 Pengaruh Perubahan Iklim terhadap Produksi Pertanian dan Strategi Adapta di Lahan Rawan Kekeringan J. Ekon. Stud. Pembang. 16 42–52

[26] Laimheheriwa S 2012 Perubahan Iklim dan Dampaknya terhadap Perubahan Musim Tanam di Wilayah Maluku dengan Pola Hujan Bimodal JurnalAgrilan 1 75–84

[27] Davis R F, Harris G H, Roberts P M and MacDonald G E 2009 Designing research and demonstration tests for farmers’ fields