FIELDS OF DEFINITION OF CYCLIC P-GONAL CURVES

RUBEN A. HIDALGO

ABSTRACT. Let S be cyclic p-gonal Riemann surface, that is, a closed Riemann surface of genus $g \geq 2$ admitting a conformal automorphism φ of prime order p so that $S/\langle \varphi \rangle$ has genus zero. In this article we provide a short argument of the fact that if S is definable over a subfield k of \mathbb{C}, then there is a subfield k_0 of \mathbb{C}, this being an extension of degree at most $2(p-1)/2$ of k, so that S is definable by a curve $y^p = F(x)$, where $F(x)$ is a polynomial with coefficients in k_0. Moreover, if both S and φ are simultaneously definable over k, then k_0 can be chosen to be an extension of degree at most 2 of k.

In the particular case $p = 2$ the above means that every hyperelliptic Riemann surface, which is definable over k, is also hyperelliptically definable over an extension of degree at most 2 of it, extending results due to Mestre, Huggins and Lercier, Ritzenthaler and Sijslingit.

1. Introduction

A closed Riemann surface S, of genus $g \geq 2$, is called cyclic p-gonal, where p is a prime integer, if it admits a conformal automorphism φ of order p so that the orbifold $S/\langle \varphi \rangle$ has genus zero. In this case, we say that φ is a p-gonal automorphism and that the cyclic group $\langle \varphi \rangle$ is a p-gonal group of S. If m denotes the number of fixed points of φ, then $g = (m-2)(p-1)/2$. Cyclic 2-gonal Riemann surfaces are also known as hyperelliptic Riemann surfaces, in which case there is a unique 2-gonal automorphism; called the hyperelliptic involution.

In [1] R.D. Accola studied cyclic 3-gonal automorphisms and in [16] G. González-Diez proved that p-gonal groups are unique up to conjugation in the full group of conformal automorphisms. In general, the p-gonal group (for $p \geq 3$) is not unique [9, 10, 34]. In [34] A. Wootton studied the uniqueness and described those cases were the uniqueness fails. Real structures on p-gonal Riemann surfaces have been studied in [6, 7]. Other results concerning automorphisms of p-gonal Riemann surfaces can be found, for instance, in [4, 2, 3, 5, 8, 18, 19, 28, 29, 35].

As a consequence of Riemann-Roch’s theorem [13], every closed Riemann surface can be defined by irreducible complex algebraic curves. In the case of a cyclic p-gonal Riemann surface S, with p-gonal automorphism φ, such an algebraic curve can be constructed as follows. Consider a regular branched cover $\pi : S \to \mathbb{C}$, with $\langle \varphi \rangle$ as its deck group, and let $a_1, \ldots, a_m \in \mathbb{C}$ be its branch values. If none of the points a_j is equal to ∞, then there exist integers $n_1, \ldots, n_m \in \{1, \ldots, p-1\}$, $n_1 + \cdots + n_m \equiv 0 \mod p$, so that S is definable by the p-gonal curve

$$E = y^p = F(x) = \prod_{j=1}^{m} (x - a_j)^{n_j} \in \mathbb{C}[x],$$

and φ and π are defined, respectively, in the above model, by

$$\varphi(x, y) = (x, \omega_p y), \quad \text{where} \quad \omega_p = e^{2\pi i/p},$$

$$\pi(x, y) = x.$$
If one of the branch values is equal to ∞, say $a_m = \infty$, then in the above we need to delete the corresponding factor $(x - a_m)^{y_m}$ and to have $n_1 + \cdots + n_{m-1} \neq 0 \mod p$. In the case $p = 2$ (i.e., when S is hyperelliptic) one has that $m \in \{2g + 1, 2g + 2\}$ and $n_j = 1$.

If k_0 is a subfield of \mathbb{C} so that we may choose $F(x) \in k_0[x]$, then we say that S is cyclically p-gonally defined over k_0. Note that the field k_0 is not uniquely determined by S and it is not clear the existence of a minimal such field for which S is cyclically p-gonally defined.

In this paper we provide a simple and short proof of the following fact.

Theorem 1.1. Let S be a cyclic p-gonal Riemann surface of genus $g \geq 2$, definable over a subfield k of \mathbb{C}, and let φ be a p-gonal automorphism of S. Then

1. S is cyclically p-gonally definable over an extension of degree at most $2(p - 1)$ of k.
2. If both S and φ are simultaneously defined over k, then S is cyclically p-gonally definable over an extension of degree at most 2 of k.
3. If, in equation (1) we have that $n_1 = \cdots = n_m = n$, then S is cyclically p-gonally definable over an extension of degree at most 2 of k.

Let us consider the case $p = 2$, that is, when S is a hyperelliptic Riemann surface of genus g. In [27] J-F. Mestre proved that, if g is even and S is definable over k, then it is also hyperelliptically definable over k. If g is odd, then this fact is in general false as can be seen from the examples in [25, 26]. B. Huggings [21] proved that if the reduced group of automorphisms of S is neither trivial or a cyclic group, then S is also hyperelliptically definable over k. In [26] R. Lercier, C. Ritzenthaler and J. Sijsling proved that if the reduced group is a non-trivial cyclic group, then S is always hyperelliptically definable over an extension of degree at most 2 of k. Theorem 1.1 completes the above results to the case when the reduced group of automorphisms is trivial.

Corollary 1.2. Every hyperelliptic Riemann surface, which definable over a subfield k of \mathbb{C}, is hyperelliptically definable over an extension of degree at most 2 of k.

2. A remark on fields of moduli

Let S be a closed Riemann surface and let C be a curve defining S. The field of moduli of S is the fixed field of the group $\Gamma_C = \{\sigma \in \text{Aut}(C/\mathbb{Q}) : C^\sigma \cong C\}$; this field does not depend on the choice of C. In [22] S. Koizumi proved that the field of moduli coincides with the intersection of all fields of definitions of S and in [33] J. Wolfart proved that if $S/\text{Aut}(S)$ is the Riemann sphere with exactly 3 cone points (i.e., S is a quasiplatonic Riemann surface), then the field of moduli of S is a field of definition of it.

Let us now assume that S is a p-gonal Riemann surface of genus $g \geq 2$, with a p-gonal automorphism φ. In the case that the p-group $\langle \varphi \rangle$ is not normal (i.e., not unique), then S can always be p-gonally defined over an extension of degree at most 2 of its field of moduli (see Section 3). Next, let us assume $\langle \varphi \rangle$ is a normal subgroup of $\text{Aut}(S)$. In this case, we may consider the quotient group $\text{Aut}(S)/\langle \varphi \rangle$; called the reduced group of S. A. Kontogeorgis [23] proved that if the reduced group is neither trivial or a cyclic group, then S can always be defined over its field of moduli. So, a direct consequence of Theorem 1.1 is the following.
Corollary 2.1. If the reduced group of the cyclic \(p \)-gonal Riemann surface \(S \) is different from the trivial group or a cyclic group, then \(S \) is \(p \)-gonally definable over an extension of degree at most \(2(p - 1) \) of its field of moduli.

Every hyperelliptic Riemann surface can be defined over an extension of degree at most 2 of its field of moduli. In the case that the reduced group is non-trivial, then the hyperelliptic Riemann surface can always be defined over an extension of degree at most 2 of its field of moduli \([21, 26]\). In this way, Theorem 1.1 asserts the following.

Corollary 2.2. Every hyperelliptic Riemann surface is hyperelliptically definable over an extension of degree at most 4 of its field of moduli. Moreover, if either (i) the genus is even or (ii) the genus is odd and the reduced group of automorphisms is neither trivial or a cyclic group, then the hyperelliptic Riemann surface is hyperelliptically defined over an extension of degree 2 of its field of moduli.

Examples of hyperelliptic Riemann surface with trivial reduced group which cannot be defined over their field of moduli were provided by Earle \([11, 12]\) and Shimura \([30]\). Same type of examples, but with non-trivial cyclic reduced group, were provided by Huggins \([21]\).

Remark 2.3. In \([14, 15]\), for the case \(k = \mathbb{Q} \), the authors have provided the following hyperelliptic curves (of genus \(g = 4\gamma - 3 \))

\[C : y^2 = \prod_{d=4}^{2\gamma+2} \left(x^4 - 2 \left(1 - \frac{r_3 - r_1 q_d - r_2}{r_3 - r_2 q_d - r_1} \right) x^2 + 1 \right), \]

where \(r_1, r_2, r_3 \) are the zeroes of \(x^3 - 3x + 1 \) and \(q_4, ..., q_{2\gamma+2} \in \mathbb{Q} \) are chosen so that its reduced group is \(H = \langle A(x) = -x, B(x) = 1/x \rangle \cong \mathbb{Z}_2^2 \). None of the branched values of the two-fold branched cover \(\pi : C \to \hat{C}, \pi(x, y) = x \), is a fixed points of an involution of \(H \). In \([15]\) it is proved that the field of moduli of \(C \) is \(\mathbb{Q} \) and claimed that \(C \) cannot be hyperelliptic defined over \(\mathbb{Q}(\sqrt{d}) \), where \(d > 0 \) is an integer. This is not in a contradiction to Corollary 1.2 as the degree 2 extension provided by it may be non-real, i.e., of the form \(\mathbb{Q}(\sqrt{d}) \), with \(d < 0 \). The results in \([14, 15]\) seem to be in contradiction to the results of Huggings \([21]\) as mentioned to the author by C. Ritzenthaler.

Consider the hyperelliptic curve, of genus \(4\gamma \),

\[D : y^2 = Q(x) = x(x^4 - 1) \prod_{d=4}^{2\gamma+2} \left(x^4 - 2 \left(1 - \frac{r_3 - r_1 q_d - r_2}{r_3 - r_2 q_d - r_1} \right) x^2 + 1 \right), \]

which has \(H \) as subgroup of its reduced group of automorphisms. The 6 added points are all the fixed points of all the involutions in \(H \). It can be checked that the field of moduli of \(D \) is contained in \(k \). By results due to Huggins \([21]\), \(D \) can be defined (maybe not in an hyperelliptic form) over its field of moduli, so over \(k \). As the genus of \(D \) is even, by Mestre’s result in \([27]\), \(D \) is hyperelliptically definable over \(k \), that is, there is a Möbius transformation \(T : \hat{C} \to \hat{C} \) so that the image under \(T \) of the zeroes of \(Q \) is invariant under \(\text{Gal}(\overline{k}/k) \). The image of the 6 extra points are
sent to the 6 fixed points of THT^{-1}. If H is the reduced group of D, then these 6 points are also invariant under $\text{Gal}(\overline{k}/k)$. In that case, it follows that the set of the other points is also invariant under $\text{Gal}(\overline{k}/k)$; but these points provide a hyperelliptic model of C as desired. The problem with the above argument is that the reduced group of D may be larger than H.

3. Automorphisms of p-gonal Riemann surfaces

Let us consider a cyclic p-gonal Riemann surface S, of genus $g \geq 2$, together a p-gonal automorphism φ. Let us denote by m the number of fixed points of φ.

In [16] G. González-Diez proved that the p-gonal group $\langle \varphi \rangle$ is unique up to conjugation, that is, if ϑ is another p-gonal automorphism of S, then there exists a conformal automorphism τ of S so that $\tau(\varphi)\tau^{-1} = \langle \vartheta \rangle$.

We say that the p-gonal group $\langle \varphi \rangle$ is unique if for any other p-gonal automorphism ϑ of S one has that $\langle \varphi \rangle = \langle \vartheta \rangle$. The uniqueness property has been used by many authors to describe the full group of conformal automorphisms of cyclic p-gonal Riemann surfaces [5, 3, 34] and the types of symmetries they may have [6].

Castelnuovo-Severi’s inequality [1, 31] ensures that if $g > (p-1)^2$, equivalently $p < m/2$ (so $m \geq 5$), then $\langle \varphi \rangle$ is unique. Let us note that for each fixed m there are only a finite number of possible primes p satisfying such an inequality (for instance, (i) if $m = 3, 4$, then there are no primes p solving that inequality; (ii) for $m = 5$ the inequality obligates to have $p = 2$, but this case is impossible as involutions have an even number of fixed points and (iii) for $m = 6$ the only possibility is $p = 2$, given by the hyperelliptic involution).

Examples, for $p \geq m/2$, in which the uniqueness of $\langle \varphi \rangle$ is not longer true are known [9, 10, 17] (we will be back to these examples below). In [20] we obtained that, for each $m \geq 3$, there is an integer $q(m)$ so that if $p \geq q(m)$, then the p-gonal group is unique. By results due to Lefschetz [24] it can be seen that $q(3) = 11$. In [20] it was noticed that $q(4) = 7$.

In [34] A. Wootton proved that the p-gonal group is a normal subgroup (so unique by Gabino’s result in [16]) in most of the cases.

Theorem 3.1 (Wotton [34]). Let S be a cyclic p-gonal Riemann surface of genus $g \geq 2$, let ϑ be a p-gonal automorphism of S and let m be the number of fixed points of ϑ. If either (m, p) is different from (i) $(3, 7)$, (ii) $(4, 3)$, (iii) $(4, 5)$, (iv) $(5, 3)$, (v) (p, p), $p \geq 5$ and (vi) $(2p, p)$ with $p \geq 3$, then $\langle \vartheta \rangle$ is unique.

The cyclic p-gonal Riemann surfaces where the above non-normality occur (so, non-uniqueness) are described in the same paper [34]; below we describe them.

1. Case $(m, p) = (3, 7)$ corresponds to quartic Klein’s surface, $x^3y + y^3z + z^3x = 0$, whose group of automorphisms is $\text{PGL}_2(7)$ (of order 168). This surface can be defined by the 7-gonal curve $y^7 = x^2(z - 1)$.

2. Case $(m, p) = (4, 3)$ corresponds to the genus two surface $y^2 = x(x^4 - 1)$, whose group of automorphisms is $\text{GL}_2(3)$ (of order 48). This surface can be defined by the 3-gonal curve $y^3 = (x^2 - 1)(x^2 - 15\sqrt{3} + 26)^2$.

3. Case $(m, p) = (4, 5)$ corresponds to the genus four non-hyperelliptic Riemann surface, called the Bring curve, which is the complete intersection of the quadric $x_1x_4 + x_2x_3 = 0$ and the cubic $x_1^3x_3 + x_2^3x_1 + x_3^3x_4 + x_4^3x_2 = 0$ in the 3-dimensional complex projective space.
Its group of automorphisms is \mathfrak{S}_5, the symmetric group in five letters \mathfrak{S}_5. This surface can be represented by the 5-gonal curve $y^5 = (x^2 - 1)(x^2 + 1)^4$.

(4) Case $(m, p) = (5, 3)$ corresponds to the genus three non-hyperelliptic closed Riemann surface $x^4 + y^4 + z^4 + 2i\sqrt{3}z^2y^2 = 0$, whose group of automorphisms has order 48. The quotient of that surface by its group of automorphisms has signature $(0; 2, 3, 12)$. This surface can be represented 3-gonally as $y^3 = x^3(x^4 - 1)$.

(5) Case $(m, p) = (p, p)$, where $p \geq 5$, corresponds to the Fermat curve $x^p + y^p + z^p = 0$, whose group of automorphisms is $\mathbb{Z}^2_p \rtimes \mathfrak{S}_3$. This is already in a p-gonal form (take $z = 1$) as $y^p = -1 - x^p$.

(6) Case $(m, p) = (2p, p)$, where $p \geq 3$. There is a 1-dimensional family with group of automorphisms $\mathbb{Z}^2_p \rtimes \mathbb{Z}^2_2$ (the quotient by that group has signature $(0; 2, 2, 2, p)$). Also, there is a surface with group of automorphisms $\mathbb{Z}^2_p \rtimes D_3$ (the quotient by that group has signature $(0; 2, 4, 2p)$). These surfaces are p-gonally given as $y^p = (x^p - a^p)(x^p - 1/a^p)$.

We should note that in all the above exceptional cases the surface S is p-gonally defined over an extension of degree at most 2 over the field of moduli.

4. Proof of Theorem 1.1

As we are assuming that S is definable over the subfield k of \mathbb{C}, we may assume that it is represented by a curve C defined over k and that φ be a p-gonal automorphism of C (defined over the algebraic closure \overline{k} of k inside \mathbb{C}). We only need to assume that $\langle \varphi \rangle$ is unique (by the observations in the previous section).

Let us take a regular branched covering, say $\pi : C \to \mathbb{P}^1_\overline{k}$, with $\langle \varphi \rangle$ as its deck group and whose branch values are a_1, \ldots, a_m, and let the integers $n_1, \ldots, n_m \in \{1, \ldots, p-1\}$, $n_1 + \cdots + n_m \equiv 0 \mod p$, so that C is isomorphic to the p-gonal curve E as in (1).

4.1. Proof of Part (1). It follows, from the uniqueness of $\langle \varphi \rangle$, that for each $\sigma \in \Gamma = \text{Aut}(\overline{k}/k)$ it holds that φ^σ is a power of φ; in particular, that φ is defined over an extension k_1 of k of degree at most $p - 1$. Set $\Gamma_1 = \text{Gal}(\overline{k}/k_1)$.

If $\sigma \in \Gamma_1$, then the identity $I : C \to C = C^\sigma$ defines a M"{o}bius transformation $g_\sigma \in \text{PGL}_2(\overline{k})$ such that $\pi^\sigma = g_\sigma \circ \pi$. The transformation g_σ is uniquely determined by σ; so the collection $\{g_\sigma\}_{\sigma \in \Gamma_1}$ satisfies the co-cycle relations

$$g_{\sigma \tau} = g_\tau \circ g_\sigma, \quad \sigma, \tau \in \Gamma_1.$$

Weil’s descent theorem [32] ensures the existence of a genus zero irreducible and non-singular algebraic curve B, defined over k_1, and an isomorphism $R : \mathbb{P}^1_{\overline{k}} \to B$, defined over \overline{k}, so that

$$g_\sigma \circ R^\sigma = R, \quad \sigma \in \Gamma_1.$$

Clearly, for $\sigma \in \Gamma_1$, we have the equality $\{\sigma(a_1), \ldots, \sigma(a_m)\} = \{g_\sigma(a_1), \ldots, g_\sigma(a_m)\}$, so it follows that $\{R(a_1), \ldots, R(a_m)\}$ is Γ_1-invariant.

Let us denote by $A(n_j)$ the set of those a_l’s for which $n_k = n_j$.

If, for $\sigma \in \Gamma_1$, we consider the cover $g_\sigma \circ \pi : C \to \overline{C}$, then we may see that the set $g_\sigma(A(n_j))$ corresponds to the set of those $\sigma(a_k)$ having the same n_l (for some l); that is, $g_\sigma(A(n_j)) = \sigma(A(n_j))$.

As $\varphi^\sigma = \varphi$, we must have $n_1 = n_j$; that is, g_σ and σ both sends $A(n_j)$ to the same set. In particular, the set $R(A(n_j))$ is also Γ_1-invariant.
Let ω be a k_1-rational meromorphic 1-form in B. Since the canonical divisor $K = (\omega)$ is k_1-rational of degree -2, then for a suitable positive integer d, the divisor $D = R(a_1) + \cdots + R(a_m) + dK$ is k_1-rational of degree 1 or 2. Riemann-Roch’s theorem ensures the existence of an isomorphism $f : B \to \mathbb{P}^1_k$, defined over k_1, so that $U = (f) + D \geq 0$. As the divisor U is k_1-rational of degree 1 or 2 and $U > 0$, the divisor U has three possibilities:

1. $U = s$, where $s \in B$ is k_1-rational; or
2. $U = 2p$, where $p \in B$ is k_1-rational; or
3. $U = r + q$, where $r, q \in B$, $r \neq q$, and (r, q) is Γ_1-invariant.

In cases (1) and (2) we have the existence of a k_1-rational point in B. In this case, we set $k_2 = k_1$.

In case (3) we have a point (say r) in B which is rational over an extension k_2 of degree 2 of k_1. The existence of a k_2-rational point ensures the existence (again by Riemann-Roch’s theorem) of an isomorphism $L : B \to \overline{\mathbb{C}}$, defined over k_2. The sets $\{L(R(a_1)), \ldots, L(R(a_m))\}$ and $L(R(A(n_j)))$ are Γ_2-invariant, where $\Gamma_2 = \text{Gal}(\overline{k}/k_2)$. It follows that $q(x) = \prod_{j=1}^{m} \left(x - L(R(a_j)) \right) \in k_2[x]$ and that C is isomorphic to $y^0 = q(x)$.

4.2. Proof of Parts (2) and (3). If in Equation (1) we have that $n_1 = \cdots = n_m = n$, then we work as above but with Γ instead of Γ_1. As in this case, there will be only one set $A(n)$, we may proceed similarly as above to obtain the desired result. Similarly if we assume φ is already defined over k.

References

[1] R.D.M. Accola. On cyclic trigonal Riemann surfaces. I. Trans. Amer. Math. Soc. 283 (2) (1984), 423–449.
[2] G. Bartolini, A.F. Costa and M. Izquierdo. On isolated strata of p-gonal Riemann surfaces in the branch locus of moduli spaces. Albanian J. Math. 6 (2012), 11–19.
[3] G. Bartolini, A.F. Costa and M. Izquierdo. On automorphisms groups of cyclic p-gonal Riemann surfaces. J. of Symbolic Computation 57 (2013), 61–69.
[4] S.A. Broughton and A. Wootton. Topologically unique maximal elementary abelian group actions on compact oriented surfaces. J. Pure Appl. Algebra 213 (4) (2009), 557–572.
[5] E. Bujalance, F.J. Cirre and G. Gromadzki. Groups of automorphisms of cyclic trigonal Riemann surfaces. J. Algebra 322 (4) (2009), 1086–1103.
[6] A.F. Costa and M. Izquierdo. Symmetries of real p-gonal Riemann surfaces. Pacific J. Math. 213 (2) (2004), 231–243.
[7] A.F. Costa and M. Izquierdo. On real trigonal Riemann surfaces. Math. Scand. 98 (1) (2006), 53–68.
[8] A.F. Costa and M. Izquierdo. Maximal order of automorphisms of trigonal Riemann surfaces. J. Algebra 323 (1) (2010), 27–31.
[9] A.F. Costa, M. Izquierdo and D. Ying. On Riemann surfaces with non-unique cyclic trigonal morphism. Manuscripta Math. 118 (4) (2005), 443–453.
[10] A.F. Costa, M. Izquierdo and D. Ying. On cyclic p-gonal Riemann surfaces with several p-gonal morphisms. Geom. Dedicata 147 (2010), 139–147.
[11] C.J. Earle. On the moduli of closed Riemann surfaces with symmetries. Advances in the Theory of Riemann Surfaces (1971), 119–130. Ed. L.V. Ahlfors et al. (Princeton Univ. Press, Princeton).
[12] C.J. Earle. Diffeomorphisms and automorphisms of compact hyperbolic 2-orbifolds. Geometry of Riemann surfaces, 139–155, London Math. Soc. Lecture Note Ser. 368, Cambridge Univ. Press, Cambridge, 2010.
[13] H.M. Farkas and I. Kra. Riemann surfaces. Second edition. Graduate Texts in Mathematics 71. Springer-Verlag, New York, 1992. xvi+363 pp. ISBN: 0-387-97703-1.
[14] Y. Fuertes. Fields of moduli and definition of hyperelliptic curves of odd genus. Arch. Math. 95 (2010), 15–18.
[15] Y. Fuertes and G. González-Diez. Fields of moduli and definition of hyperelliptic covers. Arch. Math. 86 (2006), 398–408.
[16] G. González-Diez On prime Galois coverings of the Riemann sphere. Ann. Mat. Pura Appl. 168 (4) (1995), 1–15.
[17] G. Gromadzki. On the number of p-gonal coverings of Riemann surfaces. *Rocky Mountain J. of Math.* **40** (4) (2010), 1221–1226.

[18] G. Gromadzki, A. Weaver and A. Wootton. On gonality of Riemann surfaces. *Geom. Dedicata* **149** (2010), 1–14.

[19] R.A. Hidalgo. On conjugacy of p-gonal automorphisms. *Bull. Korean Math. Soc.* **49** (2) (2012), 411–415.

[20] R.A. Hidalgo and M. Leyton. On uniqueness of automorphisms groups of Riemann surfaces. *Revista Matematica Iberoamericana* **23**, No. 3 (2007), 793–810.

[21] B. Huggins. Fields of Moduli and Fields of Definition of Curves. Ph.D. Thesis, UCLA, 2005.

[22] S. Koizumi. Fields of moduli for polarized Abelian varieties and for curves. *Nagoya Math. J.* **48** (1972), 37-55.

[23] A. Kontogeorgis. Field of moduli versus field of definition for cyclic covers of the projective line. *J. de Theorie des Nombres de Bordeaux* **21** (2009) 679–692.

[24] S. Lefschetz. On certain numerical invariants of algebraic varieties with applications to abelian varieties. Selected papers, Chelsea, New York 1991.

[25] R. Lercier and C. Ritzenthaler. Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects. *J. Algebra* **372** (2012), 595–636.

[26] R. Lercier, C. Ritzenthaler and J. Sijsling. Explicit Galois obstruction and descent for hyperelliptic curves with tamely cyclic reduced automorphism group. http://arxiv.org/pdf/1301.0695v1.pdf

[27] J-F. Mestre. Construction de courbes de genre 2 à partir de leurs modules. (French) [Constructing genus-2 curves from their moduli] Effective methods in algebraic geometry (Castiglioncello, 1990), 313–334, *Progr. Math.* **94**, Birkhäuser Boston, Boston, MA, 1991.

[28] R. Sanjeeewa. Automorphism groups of cyclic curves over finite fields of any characteristics. *Albanian J. Math.* **3** (2009), 131–160.

[29] R. Sanjeeewa and T. Shaska. Determining equations of families of cyclic curves. *Albanian J. Math.* **2** (2008), 199–213.

[30] G. Shimura. On the field of rationality for an abelian variety. *Nagoya Math. J.* **45** (1972), 167–178.

[31] I. Vainsencher and J.F. Voloch. On the Castelnuovo-Severi inequality. *Journal fr die reine und angewandte Mathematik* **390** (1988), 114–116.

[32] A. Weil. The field of definition of a variety. *Amer. J. Math.* **78** (1956), 509–524.

[33] J. Wolfart. ABC for polynomials, dessins d’enfants and uniformizationa survey, in *Elementare und analytische Zahlentheorie*, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, **20**, Franz Steiner Verlag Stuttgart, Stuttgart, 2006, pp. 313–345.

[34] A. Wootton. The full automorphism group of a cyclic p-gonal surface. *J. Algebra* **312** (1) (2007), 377–396.

[35] A. Wootton. Defining equations for cyclic prime covers of the Riemann sphere. *Israel J. Math.* **157** (2007), 103–122.

E-mail address: ruben.hidalgo@usm.cl