Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
More tools for our toolkit: The application of HEL-299 cells and dsRNA-nanoparticles to study human coronaviruses in vitro

Shawna L Semplea, Tamiru N Alkiea, Kristof Jenika, Bryce M Warnerb, Nikesh Tailorb, Darwyn Kobasab, Stephanie J DeWitte-Orra,*

a Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
b Public Health Agency of Canada, Winnipeg, Manitoba, Canada

\section*{ARTICLE INFO}

Keywords:
Human coronaviruses
Interferons
Nanoparticles
Antiviral genes
Poly I:C

\section*{ABSTRACT}

Human coronaviruses (HCoVs) are important human pathogens, as exemplified by the current SARS-CoV-2 pandemic. While the ability of type I interferons (IFNs) to limit coronavirus replication has been established, the ability of double-stranded (ds)RNA, a potent IFN inducer, to inhibit coronavirus replication when conjugated to a nanoparticle is largely unexplored. Additionally, the number of IFN competent cell lines that can be used to study coronaviruses in vitro are limited. In the present study, we show that poly inosinic: poly cytidylic acid (pIC), when conjugated to a phytoglycogen nanoparticle (pIC+NDX) is able to protect IFN-competent human lung fibroblasts (HEL-299 cells) from infection with different HCoV species. HEL-299 was found to be permissive to HCoV-229E, -OC43 and MERS-CoV-GFP but not to HCoV-NL63 or SARS-CoV-2. Further investigation revealed that HEL-299 does not contain the required ACE2 receptor to enable propagation of both HCoV-NL63 and SARS-CoV-2. Following 24h exposure, pIC+NDX was observed to stimulate a significant, prolonged increase in antiviral gene expression (IFN\textbeta, CXCL10 and ISG15) when compared to both NDX alone and pIC alone. This antiviral response translated into complete protection against virus production, for 4 days or 7 days post treatment with HCoV-229E or -OC43 when either pre-treated for 6h or 24h respectively. Moreover, the pIC+NDX combination also provided complete protection for 2d post infection when HEL-299 cells were infected with MERS-CoV-GFP following a 24h pretreatment with pIC+NDX. The significance of this study is two-fold. Firstly, it was revealed that HEL-299 cells can effectively be used as an IFN-competent model system for in vitro analysis of MERS-CoV. Secondly, pIC+NDX acts as a powerful inducer of type I IFNs in HEL-299, to levels that provide complete protection against coronavirus replication. This suggests an exciting and novel area of investigation for antiviral therapies that utilize innate immune stimulants. The results of this study will help to expand the range of available tools scientists have to investigate, and thus further understand, human coronaviruses.

\section*{1. Introduction}

Human coronaviruses (HCoVs) were an unknown entity until 1966 when Tyrrell and Bynoe isolated an ether-sensitive virus from the respiratory tract of an adult presenting cold-like symptoms (Tyrrell and Bynoe, 1966). At that time, several other researchers had also reported the detection of viruses that induced mild upper respiratory tract infections in humans (Hamre and Procknow, 1966; McIntosh et al., 1967). These pathogens did not share the defining features of other cold-causing, enveloped viruses and also differed significantly in morphology when viewed by electron microscopy (Almeida and Tyrrell, 1967). This eventually led to the recognition of a new family of viruses called \textit{Coronaviridae}, so named due to the “crown”- or “corona”-like appearance of their surface projections, now known as spike proteins (Tyrrell et al., 1975). Since then, there have been seven HCoV species identified. The four common species are HCoV-229E, -OC43, -NL63, and -HKU1. These typically cause mild to moderate upper-respiratory tract ailments resulting in approximately 15-30% of common colds (reviewed by Van der Hoek, 2007). In contrast, a highly pathogenic illness known as severe acute respiratory syndrome (SARS) is caused by the three remaining HCoV species: SARS-1, MERS-CoV and SARS-CoV-2 (reviewed by da Costa et al., 2020). SARS is defined as a highly transmissible, febrile lower respiratory tract infection often leading to pneumonia and/or acute respiratory distress (reviewed by Christian...
Following their discovery, each of the three SARS-associated viruses have been responsible for significant casualties and morbidities. Indeed, the current COVID-19 pandemic caused by SARS-CoV-2 has resulted in serious global economic and public health consequences while also highlighting the need for a deeper understanding of fundamental HCoV interactions with the immune system (reviewed in Hu et al., 2020). As such, more cellular and molecular tools are needed to better study this group of viruses.

For any virus to successfully replicate, permissive host cells must contain receptors that facilitate viral attachment and subsequent entry. With respect to HCoVs, binding of their spike protein enables access into target cells where the virus can then exploit host cellular machinery to ensure its replication (reviewed by Chen et al., 2020). However, not all of the HCoV species require the same receptor (reviewed by Guruprasad, 2021). HCoV-NL63, SARS-1 and SARS-CoV-2 bind to angiotensin-converting enzyme 2 (ACE2), HCoV-HKU1 and -OC43 utilize 9-O-acetylated sialic acid (9-O-Ac-Sia), HCoV-229E usesaminopeptidase N (CD13), and MERS-CoV binds to dipeptidyl peptidase 4 (DPD4) to enable entry into human cells (Yeager et al., 1992; Hulswit et al., 2019; reviewed by Guruprasad, 2021). Due to this varied receptor tropism, in vitro studies involving HCoVs often use a variety of different cell lines. This can often make it difficult to understand HCoVs as well as their interactions with cellular immune defenses.

Double-stranded (ds)RNA is a by-product of viral replication and a potent inducer of type I interferons (IFNs) (Weber et al., 2006; Son et al., 2015; Li et al., 2021). Because long dsRNA is not found in normal, healthy cells, this molecule is able to act as a pathogen associated molecular pattern (PAMP) and can alert the host immune system to the presence of viral pathogens (reviewed by Kawai and Akira, 2006). To do this, long dsRNA binds to host pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-3 within the endosome as well as retinoic acid-inducible gene -I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) within the cytoplasm (reviewed by Brennan and Bowie, 2010). Upon receptor binding, signaling pathways are activated resulting in the production of type I interferons (IFNs). These IFNs signal through their cognate receptor (IFNAR) and the Jak/STAT pathway to activate hundreds of interferon stimulated genes (ISGs) including CXCL10 and ISG15 (reviewed by Yang and Li, 2020). An accumulation of ISGs within a cell establishes an antiviral state, making the cell refractive to viral infection (reviewed in Borden et al., 2007; Perng and Lenschow, 2018). To date, it has been shown that coronaviruses produce dsRNA during replication (Hagemeijer et al., 2012) which activates TLR-3, RIG-I, and MDA5 signaling pathways (Totura et al., 2015; Sampao et al., 2021; Yamada et al., 2021). Type I IFNs can be effective at limiting HCoV replication and treatment prior to peak replication may provide effective protection against SARS-CoV-2 (reviewed by Sodeifian et al., 2022). However, the coronavirus/IFN interaction is complicated. HCoVs, such as SARS-CoV-2, are poor inducers of IFNs in vivo, which suggests effective immune evasion strategies (Chu et al., 2020). Indeed, SARS-CoV-2 encodes for at least 10 proteins that interfere with IFN induction and signaling (Sa Ribero et al., 2020). These immune evasion strategies are not well understood and require further elucidation.

Nanoparticles, or molecules less than 100 nm in diameter, are ideal candidates for carrying innate immune stimulants (Medina et al., 2007). In fact, nanoparticles of various compositions have shown promise as carriers of poly inosinic: poly cytidylic acid (pIC), a commercially available viral dsRNA mimic, while effectively stimulating the immune system (Nikiforuk et al., 2017; Sokolova et al., 2018). Because nanoparticles of inorganic composition can have negative impacts on cells and their responses (Jong and Swanson, 2006; Villeret et al., 2018; Báez et al., 2021; reviewed by Sengul and Aksamatu, 2020), optimization with an organic nanoparticle, such as the phytoglycogen nanoparticle (NDX) previously used by our group (Alkie et al., 2019; Jenik et al., 2021a; Jenik et al., 2021b), would be ideal. Previous work has shown that this phytoglycogen nanoparticle is non-toxic, can effectively deliver pIC to vertebrate cells, and can successfully limit rhadovirus replication (Alkie et al., 2019). Despite these promising results, the ability of pIC+NDX to limit HCoV replication is currently unknown.

Cell culture remains an essential tool within the toolbox of every virologist. This fundamental technique has been the source of many virological discoveries, such as understanding viral replication cycles, their interactions with host immunity and viral diagnostics. Indeed, following the discovery of any novel virus, a rapid search ensues to identify appropriate cell lines that can support replication and enable their study. Such has been the case for HCoVs as well (Kaye et al., 2006; Schildgen et al., 2006; de Wilde, 2013 and Pyrc et al., 2010). IFN-incompetent cell lines, such as the African green monkey kidney cell line Vero (Emeny and Morgan, 1979), are commonly used to study HCoVs, particularly MERS-CoV (de Wilde et al., 2013; Bracci et al., 2020). While excellent at propagating high titers of MERS-CoV, these cells are not appropriate for studying IFN-related interactions. Human lung cells with intact IFN pathways and the ability to support high levels of virus replication would be beneficial for furthering coronavirus research, particularly for understanding virus/host interactions at the cellular level.

The present study firstly investigates the permissiveness of HEL-299 cells to five HCoVs: HCoV-229E, -OC43, -NL63, MERS-CoV and SARS-CoV-2. Second, it investigates the ability of pIC+NDX to induce an IFN-mediated response in HEL-299 cells over time. The protective effect of this antiviral response was investigated with HCoV-229E, -OC43 and MERS-CoV. These data suggest that HEL-299 is a promising cell line for human coronavirus research and that dsRNA conjugated phytaglycogen nanoparticles hold promise, not only as tools for studying innate anti-coronavirus immune responses, but perhaps as future anti-coronavirus therapeutics.

2. Materials and methods

2.1. Cells

Two human embryonic lung cell lines, MRC-5 (ATCC, CCL-171) and HEL-299 (ATCC, CCL-137), were obtained from the American Type Culture Collection (ATCC). The MRC-5 cells were propagated in Eagle’s minimum essential medium (EMEM) while the HEL-299 cells were cultured in Dulbecco’s modified eagle medium (DMEM, Sigma). The liver hepatocellular carcinoma cell line, HepG2 (ATCC, HB-8065), was also cultured in DMEM. The human colonic epithelial cell line, HCT-8 (ATCC, CCL-244), was cultured in Roswell Park Memorial Institute (RPMI)-1640 medium (Corning). The media used for all of the above cell lines was supplemented with 10% fetal bovine serum (FBS, Seradigm) and 1% penicillin-streptomycin (P/S, Sigma). The green monkey kidney epithelial cell line, Vero (ATCC, CCL-81), was cultured in modified eagle medium (MEM) supplemented with 10% bovine growth serum (BGS), 1% P/S, and 2% L-glutamine (L-glut). VeroE6 cells (ATCC, CRL-1586) were cultured in DMEM (Hyclone) supplemented with 5% Bovine Growth Serum (Hyclone). All cells were grown in vented 75 flask (BD Falcon) at 37 °C with 5% CO2.

2.2. Viruses

2.2.1. Propagation

Human coronavirus (HCoV)-229E (ATCC, VR-740), HCoV-OC43 (ATCC, VR-190) and HCoV-NL63 (ATCC, VR-470) were obtained from the ATCC. MERS-CoV-GFP was generated using a reverse genetics system, as described previously (Nikiforuk et al., 2016). This virus was generated with GFP in place of MERS ORF5, and was grown on VeroE6 cells. SARS-CoV-2 (Canada/ON-VIDO-01/2020; EPI_ISL_425177) was isolated from a positive patient sample then grown and titered in VeroE6 cells.

HCoV-229E was propagated in MRC-5 cells that were grown in...
ventilated T75 flasks. Briefly, MRC-5 cells were grown to 80% confluency. All normal growth media was removed and was replaced with 3 mL of serum-free EMEM. HCoV-229E was added to the cell monolayer. The infected flask was incubated at 33°C for 2h with gentle rocking every 10 min. Following this incubation, 7 mL of EMEM containing 2% FBS was added to the flask. The cells were incubated at 33°C and 5% CO₂ for 3 days. The entire flask was frozen and thawed twice, thereafter the cell supernatant was collected and centrifuged at 10,000 x g for 10 min at 4°C. HCoV-OC43 was propagated in HCT-8 cells. Briefly, HCT-8 cells were grown to 80% confluence in ventilated T75 flasks. All of the normal growth media was removed and replaced with 3 mL of serum-free RPMI-1640 for 3h. Following this incubation, an additional 7 mL of RPMI-1640 containing 2% FBS was added. The cells were incubated at 33°C for 7 days with 5% CO₂. The entire flask was frozen and thawed three times, after which the cell supernatant was collected and centrifuged at 10,000 x g for 10 min at 4°C. After clearing the cellular debris, all cell supernatants were stored at -80°C for future use. HCoV-NL63 was not propagated but used directly from the vial received from ATCC.

2.2.2. Titration by tissue culture infectious dose (TCID₅₀)

The cell lines described above for viral propagation were seeded in 96-well plates (1.5 × 10⁴ cells/well) and were used to titrate their respective human coronaviruses by TCID₅₀. Following overnight adherence, all wells were washed once with basal media. For HCoV-229E and HCoV-OC43, supernatants of interest were serially diluted 1:10 in media containing 2% FBS. For each sample dilution, 100 µL was added to the 96-well plate in six-fold. Plates were then incubated at 33°C with 5% CO₂. At seven days post-infection (dpi), wells were scored by the presence of cytopathic effects (CPE). For MERS-CoV-GFP, supernatants were serially diluted in MEM containing 1% FBS, 1% P/S, and 2% L-Glutamine and 100 µl was added to triplicate wells in a 96 well plate format. Cells were incubated at 37°C with 5%CO₂ and CPE was scored on day 5 post-infection. Viral titers were calculated using the Reed and Muench method to obtain the TCID₅₀/mL (Reed and Muench, 1938). Neither SARS-CoV-2 nor NL63 was titred as no CPE was observed.

2.3. Susceptibility of HEL-299 to human coronaviruses

To determine whether HEL-299 was permissive to different human coronaviruses, the cells were exposed to HCoV-229E, HCoV-OC43, HCoV-NL63, MERS-CoV-GFP, and SARS-CoV-2. HEL-299 cells were seeded into a 12-well plate at a density of 2.0 × 10⁴ cells/well. The cells were allowed to adhere overnight before the monolayer was washed twice with media and infected with either HCoV-229E or HCoV-OC43 both at an MOI of 0.002, HCoV-NL63 at an MOI of 0.03, MERS-CoV-GFP at an MOI of 0.001, or SARS-CoV-2 at an MOI of 0.1, 0.01 and 0.001. HCoV-229E, HCoV-OC43, HCoV-NL63 infected plates were incubated at 33°C with 5% CO₂. MERS-CoV-GFP and SARS-CoV-2 infected cells were incubated at 37°C with 5% CO₂. On days 3 and 6, the cells were observed under an inverted microscope for CPE and cell supernatants were collected for virus titration as described above in Section 2.2.2.

2.4. Presence of the ACE2 receptor on HEL-299

2.4.1. ACE2 transcript levels by qRT-PCR

To determine whether HEL-299 contain the ACE2 gene, the expression of ACE2 mRNA was assayed. Total mRNA was extracted from a confluent T75 flask of HEL-299 cells (6.0 × 10⁶ cells) and the positive control HepG2 cells (5.0 × 10⁶ cells) using TRizol Reagent (Invitrogen) as per the manufacturer’s instructions. RNA was treated with Turbo DNA-free™ kit (Invitrogen) to remove any contaminating genomic DNA. Complementary DNA (cDNA) was synthesized from 500 ng of purified RNA using the iScript™ CDNA Synthesis Kit (Bio-Rad) following protocols provided by the manufacturer.

The expression of ACE2 and the β-actin endogenous control was assessed via quantitative real-time polymerase chain reaction (qRT-PCR). All PCR reactions contained: 2 µL of 1:10 diluted cDNA, 2x SsoFast EvaGreen Supermix (Bio-Rad), 0.2 mM of forward primer (Sigma Aldrich), 0.2 mM of reverse primer (Sigma Aldrich) and nuclelease-free water to a total volume of 10 µL (Fisher Scientific). The sequences and accession number for each primer set are outlined in Table 1. qRT-PCR reactions were performed using the CFX Connect Real-Time PCR Detection System (Bio-Rad). The program used for all qPCR reactions was: 98°C denaturation for 3 min, followed by 40 cycles of 98°C for 5 sec, 55°C for 10 sec, and 95°C for 10 sec. A melting curve was conducted from 65°C to 95°C with a read every 5 sec. Product specificity was determined through single PCR melting peaks. The data is presented as the average Ct values of three experimental replicates with the standard error of the mean (SEM).

2.4.2. ACE2 immunocytochemistry (ICC)

To confirm the presence of known known human coronavirus receptors at the protein level, ICC was completed on HEL-299 for ACE2. One sterile, circular glass coverslip was placed in each well of a 12-well tissue culture plate. HEL-299 cells were then seeded at a density of 2.0 × 10⁵ cells/well in basal media and allowed to adhere to the coverslips overnight at 37°C with 5%CO₂. The positive control cells of HepG2 cells were seeded at a density of 2.0 × 10⁴ cells/well.

Following overnight adherence, media was removed from each well and cells were washed once with DPBS. Cells were then fixed to coverslips with 10% neutral buffered formalin and incubated for 10 min at room temperature. Wells were washed three times and blocked overnight at 4°C with fresh ICC blocking solution (3% w/v BSA, 3% v/v goat serum, 0.02% v/v Tween-20). Wells were washed once with DPBS and incubated for 1h in a humidified chamber with a 1:100 dilution of ACE2 recombinant rabbit monoclonal antibody (ThermoFisher, Cat No. MA5-32307). Wells were washed three times with DPBS before being incubated with a 1:200 dilution of goat anti-rabbit Alexa Fluor plus 488 secondary antibody (ThermoFisher, Cat No. A32731) in a humidified chamber for 1h in the dark. All wells were washed three times with DPBS. The cellular nuclei were stained using 5 µg/mL of DAPI and incubated in the dark for 5 min. Wells were washed three times with DPBS and once with milliQ water to remove residual salt. Coverslips were mounted on glass microscope slides using 3 µL of SlowFade Gold Antifade mountant. For negative control wells, cells were probed with only the secondary antibody to ensure that no specific binding was not occurring.

2.5. Nanoparticle and pIC formulations

A commercial grade phytoglycogen nanoparticle (NanoDendrix™ (NDX), Glyantas, Guelph, ON, Canada) derived from sweet corn was modified to attain a net positive surface charge, herein referred to as pIC. A commercial grade phytoglycogen nanoparticle (NanoDendrix™ (NDX), Glyantas, Guelph, ON, Canada) derived from sweet corn was modified to attain a net positive surface charge, herein referred to as pIC. A commercial grade phytoglycogen nanoparticle (NanoDendrix™ (NDX), Glyantas, Guelph, ON, Canada) derived from sweet corn was modified to attain a net positive surface charge, herein referred to as pIC. A commercial grade phytoglycogen nanoparticle (NanoDendrix™ (NDX), Glyantas, Guelph, ON, Canada) derived from sweet corn was modified to attain a net positive surface charge, herein referred to as pIC. A commercial grade phytoglycogen nanoparticle (NanoDendrix™ (NDX), Glyantas, Guelph, ON, Canada) derived from sweet corn was modified to attain a net positive surface charge, herein referred to as pIC.
cationic phytoglycon nanoparticles (Ph-NPs). Both the nanoparticles and the synthetic dsRNA analogue, called High Molecular Weight (HMW) poly(I:C) (pIC, InvivoGen) were re-suspended at 1 mg/mL in nuclease free water. The pIC and cationic Ph-NPs were mixed by gentle pipetting at 1:1 ratio and incubated at room temperature for 30 minutes for the formation of pIC-Ph-NPs complexes through simple electrostatic interactions between the negatively charged pIC and the cationic Ph-NPs. The physical properties of the dsRNA and nanoparticles were characterized as described previously (Alkie et al., 2019). In the present study, the pIC-Ph-NPs complex is designated as pIC+NDX. The HMW poly(I:C) is denoted as pIC. The cationic Ph-NPs alone are designated as NDX.

2.6. Viability of HEL-299 cells to pIC and NDX treatments

To assess whether the pIC and NDX formulations influenced the survival of HEL-299, two fluorescent indicator dyes, alamarBlue (AB, Invitrogen) and 5-carboxyfluorescein diacetate acetoxyethyl ester (CFDA-AM, Invitrogen), were used. Together these dyes provide an excellent indication of cell viability as both cellular metabolism (AB) and membrane integrity (CFDA-AM) are measured (Dayeh et al., 2003). HEL-299 cells were seeded at a density of 2.0 \times 10^5 cells/well in a 96-well tissue culture plate and allowed to adhere overnight at 37°C with 5% CO_2. All cell monolayers were washed twice with PBS before exposure to AB and CFDA-AM as described by Dayeh et al. (2003). Plates were read on a Synergy HT plate reader as outlined previously by Semple et al. (2022). Results are presented as a percentage of untreated control cells and represents the average of at least 3 independent experiments.

2.7. Induction of antiviral genes following stimulation of HEL-299 cells with pIC and NDX

2.7.1. RNA extraction and cDNA synthesis

To determine the impact of pIC and NDX conjugates on innate antiviral gene stimulation, HEL-299 cells were seeded (2 \times 10^5 cells/well) in 12-well cell culture plates and incubated for 24 h at 37°C with 5% CO_2. The cell monolayer was washed twice with media and then treated in six replicate wells with either 1 µg/mL pIC+NDX, 1 µg/mL NDX, 1 µg/mL pIC, or media alone for 24h at 37°C with 5% CO_2. Following incubation, each well was washed twice with PBS before exposure to AB and CFDA-AM as described by Dayeh et al. (2003). Plates were read on a Synergy HT plate reader as outlined previously by Semple et al. (2022). Results are presented as a percentage of untreated control cells and represents the average of at least 3 independent experiments.

2.7.2. qRT-PCR

The expression of antiviral immune genes (IFNβ, CXCL10 and ISG15) was measured by qRT-PCR as described above in Section 2.4.1 with the sequences and accession number for each primer set outlined in Table 1. All qRT-PCR data was analyzed using the ΔΔCt method and is presented as the average of three experimental replicates with the standard error of the mean (SEM). Specifically, gene expression was normalized to the housekeeping gene (β-actin) and presented as fold changes over the control group.

2.8. Inhibition of HCoV infections of HEL-299 following pre-stimulation with pIC and NDX

2.8.1. HCoV-229E and HCoV-OC43

HEL-299 cells were seeded in 12-well plates at a density of 2.0 \times 10^5 cells/well in DMEM and were allowed to adhere overnight. Cells were washed twice with PBS and treated with either 1 µg/mL of pIC, 1 µg/mL of NDX, 1 µg/mL of pIC+NDX or basal media alone and incubated at 37°C with 5% CO_2. At either 6 or 24h post-exposure, the media was supplemented with 2% FBS and the cell monolayers were infected with HCoV-229E or HCoV-OC43 at a MOI of 0.002. An untreated, uninfected cell control was included. Plates were then incubated at 33°C with 5% CO_2. At 1, 2, 3, 4 and 7 dpi, all plates went through two to three freeze-thaw cycles, after which the cell supernatant was collected and centrifuged at 10,000 x g for 10 min at 4°C. Supernatants were stored at -80°C until the TCID_{50} assay could be performed as described above in Section 2.2.2. Microscopic images were taken of each well at all time points to document the appearances of CPE.

2.8.2. HCoV-MERS-GFP

HEL-299 cells were seeded in 12-well plates at a density of 2.0 \times 10^5 cells/well in basal MEM media and allowed to adhere overnight. Cells were exposed to the same treatments as described in Section 2.8.1 for 24h, after which the media was supplemented with BGS to a final concentration of 2%. MERS-CoV-GFP was then added to the cells at either an MOI of 0.01 or 0.001. All wells included in each experiment were run in triplicate and supernatants from each well were collected on days 2, 4, and 6h post-infection. Supernatants were stored at -80°C until a TCID_{50} assay was performed as described above in Section 2.2.2. Additionally, microscopic images were taken of each well on days 2, 4, and 6 to document any CPE from infection. Untreated, uninfected media control wells were included on each plate for reference.

2.9. Statistical analyses

All data sets were tested for a normal distribution (Shapiro-Wilk) and homogeneity of variance (Levene’s) using R (R Core Team, 2014; RStudio Team, 2015). Further statistical analyses were competed with GraphPad (Version 8, GraphPad, La Jolla, CA). A one-way analysis of variance (ANOVA) was competed to compare mean between treatment groups, followed by a Tukey’s post-hoc test for gene expression and viral titers) or a Dunnett’s post-hoc test for (viability data). Data is presented as the average of experimental replicates with the SEM. A p-value of p ≤ 0.05 was considered statistically significant.

3. Results

3.1. HEL-299 is permissive to HCoV-229E, -OC43 and MERS-CoV-GFP

When HEL-299 cells were exposed to either HCoV-229E, HCoV-OC43, HCoV-NL63, MERS-CoV-GFP or SARS-CoV-2, the human lung fibroblasts demonstrated CPE with three of these viruses (Fig. 1). When compared to control uninfected cells (Fig. 1A), significant CPEs were observed in cells exposed to HCoV-229E (Fig. 1B), HCoV-OC43 (Fig. 1C) and MERS-CoV-GFP (Fig. 1E) at 5 dpi. In comparison, infection with HCoV-NL63 and SARS-CoV-2 resulted in no changes to cellular morphology (Figs. 1D and F) indicating that HEL-299 is likely not permissive and/or susceptible to these viruses.

3.2. The ACE2 receptor is absent in HEL-299 cells

Both HCoV-NL63 and SARS-CoV-2 require the ACE2 receptor to attach/enter host cells and these viruses were unable to infect HEL-299. As a result, the presence of the ACE2 receptor was explored in HEL-299. At the transcript level, HEL-299 did not have detectable levels of ACE2 mRNA while the HepG2 positive control cells did present amplification of this transcript (Fig. 2A). When ACE2 presence was further assessed at the protein level by ICC, HEL-299 did not contain ACE2 protein (Fig. 2B), but was detectable in the positive control HepG2 cells (Fig. 2Bi). At both the transcript and protein level, HEL-299 is not positive for the ACE2 receptor (Fig. 2).

3.3. pIC and NDX formulations influence HEL-299 cellular metabolism

In order to explore the impact that pIC and pIC+NDX conjugates had
on IFN mediated, anti-HCoV responses, it was first necessary to ensure that the pIC and NDX formulations were not themselves negatively impacting HEL-299 viability. Following a 24h exposure to the pIC and NDX preparations, HEL-299 cells treated with the pIC + NDX complex were observed to have a reduction in cellular metabolism when compared to untreated cells as indicated by the Alamar Blue assay (Fig. 3A, Control = 100% ± 0% SEM, NDX = 89.76% ± 4.71% SEM, pIC = 85.17% ± 6.31% SEM and pIC + NDX = 63.35% ± 4.50% SEM). However, cellular membrane integrity, as measured using CFDA-AM, was unaffected in any treatment group (Fig. 3B). When microscopic images were taken following the 24h treatments there were no obvious differences in cellular morphology between groups (Fig. 3C).

3.4. PIC and NDX complexes induce stronger antiviral immune responses in HEL-299 cells

The ability of pIC and NDX formulations to induce IFN pathways was then tested. After HEL-299 cells were stimulated with pIC and NDX formulations for 6, 24, 48 and 168h, differences in antiviral gene expression (IFNβ, CXCL10 and ISG15) were observed. Administration of pIC alone was only able to induce significant upregulation of IFNβ and CXCL10 at 6h post-stimulation, otherwise gene expression in this group did not differ from the untreated controls (Fig. 4). In comparison, the complex of pIC+NDX induced significant upregulation of all three antiviral genes at 6h post-exposure when compared to the control and was significantly higher than pIC alone for IFNβ and CXCL10 expression at this time point (Fig. 4A). Furthermore, treatment with the pIC+NDX complex resulted in significant upregulation of IFNβ and CXCL10 at 24 and 168h post-stimulation (Figs. 4Bi-ii and Di-ii), but ISG15 expression was only significantly upregulated in this group at 168h (Figs. 4Biii and Diii). For all treatments, antiviral gene expression did not differ from the control at 48h post-stimulation (Fig. 4C). The NDX alone treatment did not induce any gene expression and results remained similar to the control untreated groups at all time points (Fig. 4).

3.5. PIC and NDX complexes inhibited HCoV replication in HEL-299 cells

Pre-treatment of HEL-299 cells with pIC for 6h induced a significant reduction in HCoV-229E titers at 1 and 2 dpi (Fig. 5Ai) and that of HCoV-OC43 titers at 1, 2 and 4 dpi (Fig. 5Bi) compared to untreated infected controls. When HEL-299 was pre-treated for 6h with pIC+NDX complexes, viral production was not observed at all until 7 dpi for both
HCoV-229E and HCoV-OC43 (Fig. 5Ai and Bi). Following pre-treatment for 24h, pIC alone displayed a similar inhibitory pattern to what was observed at the 6h pre-treatment condition wherein viral titers were significantly reduced for HCoV-229E at 1 and 2 dpi (Fig. 5Aii) and HCoV-OC43 at 1, 2 and 3 dpi (Fig. 5Bii). In comparison, the inhibition observed after 6h pre-treatment with pIC + NDX was strengthened when HEL-299 cells were pre-treated for the longer duration of 24h. In the 24h pre-exposure of pIC+NDX, both HCoV-229E and HCoV-OC43 viral titers were undetectable at all timepoints, up to 7 dpi (Figs. 5Aii and Bi). Regardless of the virus and in either of the pre-treatment conditions, NDX alone did not significantly differ from the untreated control condition at all of the timepoints studied (Fig. 5).

Twenty-four hour pre-treatment with the pIC and NDX formulations was also able provide protection to HEL-299 against MERS-CoV-GFP.
At an MOI of 0.01, pre-treatment with pIC+NDX significantly reduced the viral titer at 2 dpi, but this inhibition was lost by 4 dpi (Fig. 6A). At all other timepoints as well as in the pIC alone treatment, viral titers were not significantly different from the untreated control (Fig. 6A). Following exposure of HEL-299 to MERS-CoV-GFP at an MOI of 0.001, only the pIC+NDX treatment at 2 dpi was significantly different from the unexposed control (Fig. 6B). In this condition, the pIC alone treatment was not significantly different from either the control or the pIC+NDX treatment. At all other timepoints, none of the treatment conditions stimulated significant inhibition of the virus when compared to the control (Fig. 6B). Additionally, a 6h pre-treatment with pIC and NDx formulations provided no protection to HEL-299 against MERS-CoV-GFP (data not shown).

4. Discussion

Cell lines are an important tool for studying virus replication in vitro. Of the five HCoVs that were tested in this study, HEL-299 cells were able to support the replication of HCoV-229E, -OC43 and MERS-CoV to higher titers. Most HCoV studies use either MRC5 or HCT-8 cells for propagating HCoV-229E and -OC43 respectively, while Vero cells are used for the growth of MERS-CoV (Funk et al., 2012; Coleman and Frieman, 2015; Warnes et al., 2015; Owczarek et al., 2018). The permissiveness of HEL-299 cells to HCoV-229E and -OC43 but not SARS-1 (Rabe et al., 2006; Persoons et al., 2021) has been reported previously. However, the ability of this cell line to support MERS-CoV replication as well as its inability to perpetuate SARS-CoV-2 and...
HCoV-NL63 infection is novel. Given the pattern of HCoV propagation observed here, it would be anticipated that HEL-299 cells have CD13, 9-O-Ac-Sia and CD26 receptors (reviewed by Guruprasad, 2021) while lacking the ACE2 receptor required for SARS-CoV-2 and HCoV-NL63 infection (Milewska et al., 2014; reviewed by Scialo et al., 2020). Indeed, when explored further, the ACE2 receptor was not observed at both the transcript and protein level in HEL-299. Additionally, because the Vero cells typically used for MERS-CoV propagation are not IFN competent (Emeny and Morgan, 1979), the IFN competent HEL-299 cells could provide a considerable improvement for understanding the immune response to this virus. When compared to other permissive human cell lines, HEL-299 cells were able to stimulate MERS-CoV titers greater than 10^6 TCID$_{50}$/mL after 4 dpi, making this cell line comparable to VeroE6 cells which produce similar titres at 40 hpi (Eckerle et al., 2014). Having an alternative cell line that is both lung-derived and has an intact IFN response will be valuable for MERS-CoV research, particularly for studying host-virus interactions.

After evaluating the permissiveness of HEL-299 to HCoVs, the anti-viral effects of pIC either alone or conjugated to a phytoglycogen nanoparticle (NDX) was tested. Nanoparticles have gained a great deal of attention for their ability to deliver pharmaceuticals and therapeutic compounds (reviewed in Chakravarty and Vora, 2021); however, the potential cytotoxic effects associated with most inorganic nanoparticles have warranted the need to examine safer alternatives (reviewed in Sengul and Asmatulu, 2020). In the present study, while the cellular metabolism of HEL-299 cells were reduced upon treatment with pIC $+$ NDX, cell membrane integrity remained unaffected. Previous studies documented that pIC can cause a reduction in cellular metabolism (reviewed by Chakravarty and Vora, 2021) while the potential for cytotoxicity can be improved through co-delivery with nanoparticles (reviewed in Sengul and Asmatulu, 2020).

Fig. 5. Pre-treatment with pIC and NDX formulations can protect HEL-299 from HCoV-229E and HCoV-OC43. HEL-299 cells were infected with HCoV-229E (A) and HCoV-OC43 (B) (MOI = 0.002) following either 6h (i) or 24h (ii) pre-stimulation with either media only (control), pIC alone, NDX alone or pIC $+$ NDX. Each panel represents three independent experiments and is presented as the mean \pm SEM. Following a two-way ANOVA and Tukey’s post-hoc test, a p-value of less than 0.05 was considered to be statistically significant when data was compared at each timepoint. Error bars with different letters represent significantly different data within the same timepoint.

Fig. 6. MERS-CoV-GFP infection can be inhibited via pre-treatment with pIC and NDX conjugates. After 24h pre-exposure with either media only (control), pIC alone, NDX alone or pIC $+$ NDX, HEL-299 cells were infected with MERS-CoV-GFP at an MOI of 0.01 (A) or 0.001 (B). Each panel represents three independent experiments and is presented as the mean \pm SEM. Following a two-way ANOVA and Tukey’s post-hoc test, a p-value of less than 0.05 was considered to be statistically significant when data was compared at each timepoint. Error bars with different letters represent significantly different data within the same timepoint.
metabolism by inducing an antiviral state (reviewed in Fritsch and Weichhart, 2016), thus CFDA-AM may be a better indicator of cell viability in this situation. Additionally, the cell monolayers appeared healthy as determined by microscopy, providing further support that the NDX was not cytotoxic.

A key component of innate antiviral immunity is the ability of IFNs to stimulate the production of ISGs, as these effector proteins accumulate to form an antiviral state within the cell (reviewed by Yang and Li, 2020). The robust production of IFN and associated ISGs is critical for the successful prevention of viral infections. This has been previously shown by Lenschow and colleagues (2007) when ISG15 knockout mice were found to be more susceptible to various strains of influenza, herpes simplex and Sindbis viruses when compared to their functional ISG15 counterparts. Our group and others have shown that pIC complexed with nanoparticles are superior to pIC in inducing an antiviral state through the production of IFNs and ISGs in large vertebrate models and in aquatic species (Kim et al., 2017; Sokolova et al., 2017; Speth et al., 2017, Alkie et al., 2019). The results presented here demonstrate that delivering pIC complexed with NDX induced a stronger type I IFN response in IFN competent human lung fibroblasts (HEL) when compared to pIC alone. Moreover, the same formulation induced ISGs until 168h post-stimulation suggesting a more stable IFN-induction platform over time. Thus, pIC induced IFN responses were strong and longer-lasting using NDX. This is likely due to NDX mediated receptor clustering and stabilizing dsRNA degradation (Alkie et al., 2019). The potent production of IFNs and ISGs by pIC+NDX could provide a unique perspective for studying the effects of IFNs in modulating HCoV replication over time and ultimately preventing successful viral infection within the host cell.

Coronaviruses are known to modulate the host IFN response. For example, SARS-CoV-2 limits antiviral cytokine production in vivo (Kouwaki et al., 2021) and is known to produce at least 10 proteins that can influence type I IFN responses (Sa Ribo et al., 2020). Additionally, MERS-CoV evades host immunity not only by suppressing type I IFN pathways, but also by introducing repressive histone modifications to decrease the expression of ISG subsets (Menachery et al., 2014). Despite all of these immune-evasion mechanisms, inducing or administering IFNs at or prior to infection can suppress viral replication. This was observed when type I IFNs were administered during the early stages of COVID-19 infections resulting in reduced patient mortality (Park and Iwashaki, 2020; Davoudi-Monfared et al., 2020; Wang et al., 2020) and this treatment has also been shown to inhibit SARS-CoV-2 infection in various in vitro models (Felgenhauer et al., 2020; Vanderheiden et al., 2020). Additionally, early treatment with pIC alone has been shown stimulate protection against SARS-CoV-1 and MERS-CoV in mouse models (Zhao et al., 2012; Wang et al., 2017). In the present study, pIC+NDX treatment resulted in enhanced antiviral responses and protected against HCoV infection when compared to pIC alone. The pre-treatment with pIC alone was observed to significantly delay infection of HEL with HCoV-229E and -OC43. Interestingly, when pIC was conjugated to the NDX nanoparticle and then used for pre-treatment, infection with all three of the HCoVs investigated were either significantly delayed further than what was observed with pIC alone or completely prevented. Using pIC and NDX nanoparticle complexes to induce a potent, and early, antiviral IFN response is one method to significantly inhibit or completely stop the infection of HCoVs in permissive cell lines. This IFN-induction capacity holds value for future studies in vivo. Indeed, pIC-loaded calcium phosphate nanoparticles coated with liver targeted antibodies demonstrated significant uptake in murine livers resulting in protection against hepatitis B viral infection (Du et al., 2021). Thus, furthering our understanding of pIC conjugated to NDX could help develop a very interesting tool for studying HCoV-host interactions in animals models and holds potential as a new avenue for antiviral therapies, pending further analysis and toxicity testing in vivo.

The results of the present study introduce new tools for studying HCoVs, particularly within the context of type I IFN signaling. HEL-299, as an IFN-competent, human lung cell line may prove to be an important model system to study HCoV-host interactions as they relate to IFNs. Additionally, as a potent inducer of IFNs over time, use of pIC+NDX is an excellent system for understanding the temporal effects of IFN on HCoV infections, in vitro and in future in vivo studies. These tools will aid in our fundamental understanding of human coronaviruses and how they interact with the cellular innate antiviral immune response, which is of utmost importance given the current HCoV pandemic.

Funding

The work presented in this paper was supported by an NSERC Alliance grant to SDO and a Mitacs Accelerate PDF award to SS. Work done at the National Microbiology Laboratory was supported by the Public Health Agency of Canada.

CRediT authorship contribution statement

Shawna L. Semple: Methodology, Validation, Formal analysis, Investigation, Writing – original draft, Writing – review & editing, Visualization. Tamiru N Alkie: Conceptualization, Methodology, Validation, Writing – original draft, Writing – review & editing. Kristof Jenik: Validation, Investigation. Bryce M Warner: Validation, Investigation, Formal analysis. Nikesh Tailor: Investigation. Darwyn Kobasa: Validation, Resources, Supervision, Funding acquisition. Stephanie J DeWitte-Orr: Resources, Writing – original draft, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

The authors would like to acknowledge Anders Leung, who made the MERS-GFP virus.

References

Alkie, TN, de Jong, J, Jenik, K, Klinger, KM, DeWitte-Orr, SJ, 2019. Enhancing innate antiviral immune responses in rainbow trout by double stranded RNA delivered with cationic polyethylenimine nanoparticles. Sci. Rep. https://doi.org/10.1038/s41598-019-49931-2.

Almeida, JD, Tyrell, DA, 1967. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J. Gen. Virol. 1, 175–178.

Baez, DF, Gallardo-Toledo, E, Oyarzun, MP, Araya, E, Kogan, MJ, 2021. The influence of size and chemical composition of silver and gold nanoparticles on in vivo toxicity with potential applications to central nervous system diseases. Int. J. Nanomed. 16, 2187–2201.

Borden, EC, Sen, GC, Uze, G, Silverman, RH, Ransohoff, RM, Foster, GR, Stark, GR, 2007. Interferon at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug Discovery 6, 975–990.

Bracci, N, Pan, H-C, Lehman, C, Kehn-Hall, K, Lin, S-C, 2020. Improved plaque assay for human coronaviruses 229E and OC43. PeerJ. https://doi.org/10.7717/peerj.10639.

Brennan, K, Bowie, AG, 2010. Activation of host pattern recognition receptors by viruses. Curr. Opin. Microbiol. 13, 503–507.

Coleman, CM, Frieman, MB, 2015. Growth and quantification of MERS-CoV infection. Curr Protoc Microbiol 37, 1521–1529.

Chakravarty, M, Vora, A, 2021. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res 11, 748–767.

Chen, Y, Liu, Q, Guo, D, 2020. Severe acute respiratory syndrome. Clin. Infect. Dis. 38, 1420–1427.
Dayeh, VR, Schirmer, K, Lee, LEJ, Bols, NC, 2003. The use of fish-derived cell lines for investigations of environmental contaminants. Current Protocols in Toxicology.

Virus Research 321 (2022) 198925

Eckerle, I, Corman, VM, Müller, MA, Lenk, M, Ulrich, RG, Drosten, C, 2014. Replicative capacity of MERS coronavirus in livestock cell lines. Emerg. Infect. Dis. https://doi.org/10.3201/eid2002.131182.

Emeny, JM, Morgan, MJ, 1979. Regulation of the interferon system: evidence that vero cells have a genetic defect in interferon production. J. Gen. Virol. https://doi.org/10.1099/00221229-43-3-147.

Ferguson, G, Gondan, AIB, Ruiz-de-Angulo, A, Zableta, A, Blanco, NG, Sobaleda-Siles, BM, Garcia-Granda, MJ, 2018. Effective cancer immunotherapy in mice by poly(C):mimicrdRNA complexes and engineered magnetic nanoparticles. Biomaterials 170, 95–115.

Fritsch, SD, Weichhart, T, 2016. Effects of interferons and viruses on metabolism. Front. Physiol. 161, 39–53.

Hamre, D, Procknow, JJ, 1966. A new virus isolated from the human respiratory tract. Arch. Virol. 10, 193–200.

Hamre, D, Procknow, JJ, 1966. A new virus isolated from the human respiratory tract. Arch. Virol. 10, 193–200.

Hagedorn, W, von Bülow, H, Hämmerling, G, Frosch, R, 1973. Inhibition of viral infections by interferon in the treatment of COVID-19. J. Med. Virol. https://doi.org/10.1002/jmv.1620211004.

Hagemeijer, MC, Vonk, AM, Monastyrska, I, Rottier, PJM, de Haan, CAM, 2012. SARS-CoV-2: discovery and use. J. Virol. Methods 170, 95–115.

Hagemeijer, MC, Vonk, AM, Monastyrska, I, Rottier, PJM, de Haan, CAM, 2012. SARS-CoV-2: discovery and use. J. Virol. Methods 170, 95–115.

Hame, D, Procknow, JJ, 1966. A new virus isolated from the human respiratory tract. Arch. Virol. 10, 193–200.

Hame, D, Procknow, JJ, 1966. A new virus isolated from the human respiratory tract. Arch. Virol. 10, 193–200.

Han, X, Xin, L, Liu, B, He, Y, Poria, S, et al., 2018. RIG-I-like receptor-mediated viroceptor binding site in spike protein domain A. Proc. Natl Acad. Sci. 116, 2681–2690.

Jeng, HA, Swanson, J, 2006. Toxicity of metal oxide nanoparticles in mammalian cells. Nanotoxicology 1, 93–105.

Kouwaki, T, Nishimura, T, Wang, G, Oshiumi, H, 2021. RIG-I-like receptor-mediated induction, signaling, evasion and application to combat COVID-19. Cell Host Microbe 27, 870–876.

Lee, SK, Park, I-S, Kim, J-S, Hwang, J, et al., 2021. In vitro and in vivo characterization of insulin monomethylated derivatives produced by a nanoparticle in rainbow trout (Oncorhynchus mykiss). Nanomaterials 11, 53.

Krechel, K, Kémere, T, Khovd, S, et al., 2010. Culturing SARS-CoV-2 from respirovirus carriers. J. Virol. Methods 236, 178–183.

Krug, H, Prause, A, Kerner, J, et al., 2020. RIG-I-like receptor-mediated induction, signaling, evasion and application to combat COVID-19. Cell Host Microbe 27, 870–876.

Krug, H, Prause, A, Kerner, J, et al., 2020. RIG-I-like receptor-mediated induction, signaling, evasion and application to combat COVID-19. Cell Host Microbe 27, 870–876.
Warnes, SL, Little, ZR, Keevil, CW, 2015. Human coronavirus 229E remains infectious on common touch surface materials. mBio. https://doi.org/10.1128/mBio.01697-15.

Weber, F, Wagner, V, Rasmussen, SB, Hartmann, P, Paludan, SR, 2006. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-sense RNA viruses. J. Virol. 80, 5059–5064.

Yamada, T, Sato, S, Sotoyama, Y, Orba, Y, Sawa, H, Yamouchi, H, et al., 2021. RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. Nat. Immunol. https://doi.org/10.1038/s41590-021-00942-0.

Yang, E, Li, MMH, 2020. All about the RNA: interferon-stimulated genes that interfere with viral RNA processes. Front. Immunol. https://doi.org/10.3389/fimmu.2020.605024.

Yeager, CL, Ashmun, RA, Williams, RK, Cardellichio, CB, Shapiro, LH, Look, AT, et al., 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420–422.

Zhao, J, Wohlford-Lenane, C, Zhao, J, Fleming, E, Lane, TE, McCray, PB, et al., 2012. Intranasal treatment with poly(I:C) protects aged mice from lethal respiratory virus infections. J. Virol. https://doi.org/10.1128/JVI.01410-12.