Transverse magnetic field and chiral-nonchiral transition in vortex states for nearly $B \parallel ab$ in chiral p-wave superconductors

Masahiro Ishihara, Yujiirou Amano, Masanori Ichioka and Kazushige Machida
Department of Physics, Okayama University, Okayama 700-8530, JAPAN
(Dated: February 7, 2014)

On the basis of Eilenberger theory, we study the vortex state when a magnetic field is applied nearly parallel to the ab plane in a chiral p-wave superconductor with a large anisotropy ratio of ab and c, as in Sr$_2$RuO$_4$. We quantitatively estimate the field dependence of the pair potential, magnetization, and flux line lattice form factor, and study the transition from the chiral p-state at low fields to the nonchiral p_d state at high fields. Even for exactly parallel fields to the ab plane, transverse fields exist in the chiral state. The chiral-nonchiral transition disappears when the magnetic field orientation is tilted within 1° from the ab plane. This may be a reason why the experimental detection of this transition is difficult.

PACS numbers: 74.25.Uv, 74.70.Pq, 74.20.Rp, 74.25.Ha

I. INTRODUCTION

Chiral p-wave superconductivity attracts much attention as one of representatives of topological superconductors. The chiral p-wave superconductivity with the pairing function $p_{\pm} = p_{\pm} \pm i p_{\parallel}$ is a possible pairing state, when the p-wave pairing interaction works instead of the conventional s-wave pairing. The pairing function p_{\pm} breaks time-reversal symmetry, inducing spontaneous magnetic fields observed by μSR experiments. We also expect that Majorana states are accommodated at vortex and surfaces in chiral p-wave superconductors. This type of pairing is realized in the A phase of superfluid 3He, and is a candidate for the superconducting phase of Sr$_2$RuO$_4$. However, there remain mysteries for the pairing symmetry of Sr$_2$RuO$_4$, since we have not observed some typical phenomena expected in chiral p-wave superconductors. For example, when a magnetic field \mathbf{B} is applied in the orientation $\mathbf{B} \parallel ab$, theoretically we expect the transition from the chiral p_{\pm}-wave state to the nonchiral p_{d}-wave state (when $\mathbf{B} \parallel y$) at high fields. That is, at low fields, the free energy of the chiral p_{\pm}-wave state is lower than that of nonchiral p_d- or p_{d^*}-wave states, because the latter nonchiral states have vertical line nodes. On the other hand, the nonchiral state is realized at high fields, because the upper critical field H_{c2} of the p_d state is higher than that of the chiral p_{\pm}-wave state when $\mathbf{B} \parallel y$. While the chiral-nonchiral transition was suggested by experiments of the magnetization curve, this transition was not observed in other experimental methods. There were discussions in that the double transition near H_{c2} corresponds to the chiral-nonchiral transition.

On the other hand, in superconductors with uniaxial anisotropy, transverse magnetic fields appear in the vortex state when the field orientation is tilted from the ab plane. This transverse field is detected by the spinflip scattering of the small angle neutron scattering (SANS) in the vortex states, as demonstrated in YBa$_2$Cu$_3$O$_{7-\delta}$. Recently, the spin flip SANS by the transverse field was reported in Sr$_2$RuO$_4$. Therefore, the quantitative theoretical estimate of the transverse field is expected. It is also important to find new phenomena by the contribution of Cooper pair’s angular momentum $L_{z}/\hbar = \pm 1$ of the p_{\pm}-wave pairing.

The purpose of this study is to establish quantitative theoretical estimations of the vortex structure in chiral p-wave superconductors when a magnetic field is applied exactly $\mathbf{B} \parallel ab$, and when the field orientation is slightly tilted from the ab plane. On the basis of Eilenberger theory by which we can quantitatively calculate the spatial structure and the physical quantities of the vortex states, we will clarify behaviors of the chiral-nonchiral transition and the transverse field structure as a function of a magnetic field \mathbf{B}.

II. FORMULATION BY EILENBERGER THEORY

As a model of the Fermi surface, we use a quasi-two dimensional Fermi surface with a rippled cylinder shape. The Fermi velocity is assumed to be $v = (v_x, v_y, v_z) \propto (\cos \phi, \sin \phi, \tilde{v}_z \sin \phi)$ at $\mathbf{p} = (p_a, p_b, p_c) \propto (p_x \cos \phi, p_y \sin \phi, p_z)$ on the Fermi surface. We consider a case $\tilde{v}_z = 1/60$, producing large anisotropy ratio of coherence lengths, $\gamma \equiv \xi_c/\xi_b \sim (v_x^2)^{1/2}/(v_y^2)^{1/2} \sim 1/60$, where $(\cdot \cdot \cdot)_p$ indicates an average over the Fermi surface. The magnetic field is tilted within 1° from the ab plane. Since we set the z axis to the vortex line direction, the coordinate (x, y, z) for the vortex structure is related to the crystal coordinate (a, b, c) as $(x, y, z) = (a \cos \theta + c \sin \theta, c \cos \theta - b \sin \theta)$ with $\theta = 90^\circ \sim 89^\circ$.

In a chiral p-wave superconductor, the pair potential takes the form,

$$\Delta (\mathbf{p}, \mathbf{r}) = \Delta_+(\mathbf{r})\phi_+(\mathbf{p}) + \Delta_- (\mathbf{r})\phi_- (\mathbf{p})$$

with the pairing functions $\phi_{\pm} (\mathbf{p}) = (p_a \pm ip_b)/p_W = e^{\pm \phi}$. $\Delta_+(\mathbf{r})$ describes the vortex structure as a function of \mathbf{r} (the center of mass coordinate of the pair). In our study, $\Delta_- (\mathbf{r})$ is a main component and $\Delta_+(\mathbf{r})$ is a passive
component induced around a vortex.\(^{15,16}\) At a zero field, \(\Delta_+(\mathbf{r}) = 0\). When we consider the \(p_x\) and \(p_y\) orbital components, the pair potential is decomposed as \(\Delta(\mathbf{p}, \mathbf{r}) = \Delta_x(\mathbf{r})\phi_x(\mathbf{p}) + \Delta_y(\mathbf{r})\phi_y(\mathbf{p})\) with \(\phi_x(\mathbf{p}) = \sqrt{2}p_x = \sqrt{2}\cos \phi\) and \(\phi_y(\mathbf{p}) = \sqrt{2}p_y = \sqrt{2}\sin \phi\).

Using the anisotropic ratio \(\Gamma_{\theta} \equiv \xi_y/\xi_x \sim \langle v^2 \rangle^{1/2}/\langle v_x^2 \rangle^{1/2} \sim (\cos^2 \theta + \gamma^{-2} \sin^2 \theta)^{-1/2}\), we set the unit vectors of the vortex lattice as \(\mathbf{u}_1 = c(\alpha/2, -\sqrt{3}/2)\) and \(\mathbf{u}_2 = c(\alpha/2, \sqrt{3}/2)\) with \(c^2 = 2\phi_0/(\sqrt{3}\alpha B)\) and \(\alpha = 3\Gamma_{\theta}/2\) as shown in Fig. 1(a). \(\phi_0\) is the flux quantum, and \(B\) is the flux density. As shown in Fig. 1(b), the unit vectors in the reciproc space are given by \(\mathbf{q}_1 = (2\pi/c)(1/\alpha, -1/\sqrt{3})\) and \(\mathbf{q}_2 = (2\pi/c)(1/\alpha, 1/\sqrt{3})\), where spots of the SANS appear.

Quasiclassical Green’s functions \(f(\omega_n, \mathbf{p}, \mathbf{r}), f^\dagger(\omega_n, \mathbf{p}, \mathbf{r}), g(\omega_n, \mathbf{p}, \mathbf{r})\) in the vortex lattice states are obtained by solving the Riccati equation, which is derived from the Eilenberger equation

\[
\begin{align*}
\{\omega_n + \tilde{\mathbf{v}} \cdot (\nabla + i\mathbf{A})\} f &= \Delta g, \\
\{\omega_n - \tilde{\mathbf{v}} \cdot (\nabla - i\mathbf{A})\} f^\dagger &= \Delta^* g.
\end{align*}
\]

in the clean limit, with a normalization condition \(g = (1 - f f^\dagger)^{1/2}\) and the Matsubara frequency \(\omega_n\).\(^{15-18}\) That is, we have scaled the length, temperature, magnetic field, and energies in units of \(\xi_0, T_c, B_0\), and \(\pi\lambda/T_c\) respectively, where \(\xi_0 = \hbar v_F/2\pi\lambda T_c\) \(B_0 = \phi_0/2\pi\xi_0^2\). The vector potential \(\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{r} + \mathbf{a}(\mathbf{r})\) is related to the internal field as \(\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A} = (B_x(\mathbf{r}), B_y(\mathbf{r}), B_z(\mathbf{r}))\) with \(\mathbf{B} = (0, 0, B)\), \(B_x(\mathbf{r}) = B + b_x(\mathbf{r})\) and \((B_x, B_y, b_z) = \nabla \times \mathbf{a}\).

The spatial averages of \(B_x, B_y\), and \(b_z\) are zero.\(^{15,16}\)

We calculate \(\Delta(\mathbf{p}, \mathbf{r})\) by the gap equation

\[
\Delta(\mathbf{p}, \mathbf{r}) = \lambda_0 2T \sum_{\omega_n > 0} \langle \phi^*_n(\mathbf{p}) f \rangle_p,
\]

where \(\lambda_0 = N_0 g_0\) is the dimensionless \(p\)-wave pairing interaction in the low-energy band \(\omega_n \leq \omega_c\), defined by the cutoff energy \(\omega_c\) as \(1/\lambda_0 = \ln T + 2T \sum_{\omega_n > 0} \omega_n^{1/2}\). We carry out calculations using the cutoff \(\omega_c = 20k_BT_c\). The current equation to obtain \(\mathbf{A}\) is given by

\[
\mathbf{j}(\mathbf{r}) = \nabla \times (\nabla \times \mathbf{A}) = -\kappa^{-2} 2T \sum_{\omega_n > 0} \langle \mathbf{v} \mathbf{I} \mathbf{m} g \rangle_p.
\]

The Ginzburg-Landau (GL) parameter \(\kappa\) is the ratio of the penetration depth to coherence length for \(\mathbf{B} \parallel c\), and set to be \(\kappa = 2.7\) appropriate to \(\text{Sr}_2\text{RuO}_4\).\(^\dagger\) The case of effective GL parameter \(\kappa_0 \sim \kappa T_\theta\) for a field orientation \(\theta\) is reproduced by the anisotropy of \(\tilde{\mathbf{v}}\) in Eq. (3). Iterating Eqs. (2)\(^{-}\) at \(T = 0.5T_c\), we obtain self-consistent solutions of \(\Delta_{\pm}(\mathbf{r})\), \(\mathbf{A}(\mathbf{r})\), and quasiclassical Green’s functions.

III. EXACTLY PARALLEL FIELD TO THE BASAL PLANE

First, we study the vortex states for exactly \(\mathbf{B} \parallel ab\) (\(\theta = 90^\circ\)). In Fig. 2 we show the calculated spatial structures within a unit cell of the vortex lattice at low and high fields. The main component \(\Delta_{-}(\mathbf{r})\) has a winding 1 of the phase at the vortex center, where the amplitude \(|\Delta_{-}(\mathbf{r})|\) in Fig. 2(a) is suppressed. At low fields, the vortex core is localized at the center. At high fields the vortex core contribution becomes important in the properties of the vortex states, since the inter-vortex distances become shorter with increasing fields. As a property of chiral \(p\)-wave superconductors, the opposite chiral component \(\Delta_{+}(\mathbf{r})\) also appears where the main chiral component \(\Delta_{-}(\mathbf{r})\) has spatial modulations around vortex cores.\(^{15,19}\) The amplitude of the induced component \(\Delta_{+}(\mathbf{r})\) is presented in Fig. 2(b). It appears locally around the vortex core at a low field \(B\) = 2. With increasing fields, since the inter-vortex distances become shorter, \(\Delta_{+}(\mathbf{r})\) of neighbor vortex cores overlap with each other, as shown in panels for \(B = 8\) and 16. With further increasing \(\mathbf{B}\), the amplitude of \(\Delta_{+}(\mathbf{r})\) is reduced to \(\Delta_{+}(\mathbf{r}) = |\Delta_{-}(\mathbf{r})|\), as shown in a panel for \(B = 20\) in Fig. 2(b). This indicates disappearance of \(\Delta_{+}(\mathbf{r})\) by the chiral-nonchiral transition from the chiral \(p\)-wave state to the nonchiral \(p_y\)-wave state.

The \(z\)-component of the internal field, \(B_z(\mathbf{r})\), has a conventional spatial structure of the vortex lattice also for \(\mathbf{B} \parallel ab\) in chiral \(p\)-wave superconductors, if the length is re-scaled by the effective coherence length in each direction. As shown in Fig. 2(c), \(B_z(\mathbf{r})\) has a peak at a vortex center, and decreases as a function of radius from the center. We note that the transverse components \(B_x(\mathbf{r})\) and \(B_y(\mathbf{r})\) appear even when exactly \(\mathbf{B} \parallel ab\) in the chiral \(p_-\) state at low fields. This is unconventional behavior due to the contribution of the internal angular momentum \(L_z\) of the chiral pairing function. The transverse components vanish in nonchiral \(p_y\) states at high fields.
To see the behaviors of the chiral-nonchiral transition, we plot the amplitudes of each component of the pair potential as a function of \bar{B} in Fig. 2(a). With increasing \bar{B}, the p_- wave component decreases and the p_+ wave component increases. After the chiral-nonchiral transition at $B > B^* \sim 18$, the amplitudes of p_+ and p_- are the same. If we see the pair potential in the decomposition of p_x and p_y, with increasing \bar{B}, the p_y component decreases toward zero at H_{c2} and the p_x component decreases toward zero at B^*. $\Delta_x = 0$ at $B > B^*$ by the chiral-nonchiral transition. In Fig. 2(a), we also show the case of conventional s-wave pairing. Compared with the s-wave case, H_{c2} is enhanced in the p_y-wave state. This comes from the fact that H_{c2} is enhanced when the pairing function has a horizontal line node relative to the field direction.

To discuss the \bar{B}-dependence of the internal field distribution, we consider flux line lattice (FLL) form factors $F(q_{h,k}) = (F_x(h,k), F_y(h,k), F_z(h,k))$ calculated as Fourier transformation of the internal field distribution, $\mathbf{B}(r) = \sum_{h,k} F(q_{h,k}) \exp(iq_{h,k} \cdot r)$ with the wave vectors $q_{h,k} = h\mathbf{q}_1 + k\mathbf{q}_2$. h and k are integers. The z-component $|F_z(h,k)|^2$ from $B_z(r)$ gives the intensity of spots in the conventional non-spinflip SANS experiments. The transverse components, $|F_x(h,k)|^2 = |F_x(h,k)|^2 + |F_y(h,k)|^2$, is accessible by the spin-flip SANS experiments. In Fig. 3(b), we see exponential decays of $|F_z(h,k)|^2$ as a function of \bar{B}, as in the conventional behavior of the vortex states, since we do not take care of the Pauli-paramagnetic effect. The transverse components $|F_x(1,0)|^2$ and $|F_y(1,1)|^2$ appear only in the chiral states at $\bar{B} < B^*$. From the stripe pattern in the spatial structure of $B_y(r)$ as in Fig. 2(c), the main spot of $|F_y(1,1)|^2$ is at $(h,k) = (1,0)$. The intensity of $|F_x(1,0)|^2$ is much smaller than $|F_y(1,1)|^2$.
IV. FIELD ORIENTATION TILTED FROM THE BASAL PLANE

Next, we discuss the vortex states when the magnetic field is slightly tilted from the ab plane as $89^\circ \leq \theta < 90^\circ$. The vortex states in the p_--wave domain, where $\Delta_-(\mathbf{r})$ is the main component, has lower free energy than that in the p_+-wave domain where $\Delta_+(\mathbf{r})$ is the main component. This is because the field orientation lifts up the degeneracy of the p_- and p_+-wave domains.\cite{15, 16}

Therefore, we study the stable p_--wave domain case here.

When $\theta = 89^\circ$, around the vortex core of the main component $\Delta_-(\mathbf{r})$, the opposite chiral component $\Delta_+(\mathbf{r})$ is also induced as presented in Fig. 2(a). There, the spatial pattern of $|\Delta_-(\mathbf{r})|$ at $\bar{B} = 2$ is similar to that of $\mathbf{B} \parallel c$ case as rather than that of $\mathbf{B} \parallel ab$ in Fig. 2(b). $|\Delta_+(\mathbf{r})|$ at a high field $\bar{B} = 20$ keeps similar spatial structure to that of $\mathbf{B} \parallel ab$ case with $\bar{B} = 8$ in Fig. 2(b). Thus $|\Delta_+(\mathbf{r})| \neq |\Delta_-(\mathbf{r})|$ even at high fields, indicating that the nonchiral state with $\Delta_+(\mathbf{r}) = 0$ does not realize. To see the disappearance of the chiral-nonchiral transition, we study the \bar{B}-dependence of each component of the pair potential for $\theta = 89.9^\circ$, 89.5°, and 89.0°. As seen from the curve for 89.9° in Fig. 2(a), even if the field orientation is tilted by 0.1°, the chiral-nonchiral transition changes to a crossover behavior. At high fields, small differences between the p_- and p_+ components still exist. Thus, in Fig. 2(b), a small amplitude of p_+-wave component survives up to H_{c2}. Further tilting the field orientation to 89.5° and 89.0°, the crossover behaviors are smeared, and we can not see the remnant of the chiral-nonchiral transition anymore. The amplitude of the p_+-wave component monotonically decreases toward H_{c2}.

The chiral-nonchiral transition is reflected by the magnetization curve, $M = \bar{B} - H$ as a function of \bar{B}. From the selfconsistent solutions we obtain the relation of \bar{B} and the external field H as

$$H = \bar{B} + \left(\langle B_z(\mathbf{r}) - \bar{B} \rangle \right)_r / \bar{B}$$
been observed yet. This may be because the experimental situation of exactly $\vec{B} \parallel ab$ is difficult to be realized. Our study shows that the chiral-nonchiral transition vanishes by tilting the field orientation within 1°.

In Sr$_2$RuO$_4$, when $\vec{B} \parallel ab$, H_{c2} is suppressed and changes to the first order phase transition. Our simple formulation in this work does not include the mechanism for the suppression of H_{c2}, such as a Pauli-paramagnetic-like effect. The study for this H_{c2} behavior belongs to future works.

Both in the \vec{B}-dependence of $|F_x(1,0)|^2$ in Fig. 7(a) and $|F_z(1,1)|^2$ in Fig. 7(b), with decreasing θ from 90°, $|F_z|^2$ becomes larger at low fields, reflecting the decrease of the effective GL parameter κ_θ. Roughly $|F_z| \propto (\kappa_\theta)^{-1}$ from Eq. (4). On the other hand, $|F_x|^2$ becomes smaller at high fields, because H_{c2} decreases by the decrease of θ. As shown in Figs. 7(b)-(c), $B_x(r)$ and $B_y(r)$ have similar spatial structures until high fields to those of $B = 2$ and $\theta = 90^\circ$ in Figs. 2(d)-(e). However, the amplitudes of B_x and B_y at $\theta = 89^\circ$ are much larger than those at $\theta = 90^\circ$. Thus, $|F_x(1,0)|^2$ in Fig. 7(c) and $|F_y(1,1)|^2$ in Fig. 7(d) increase rapidly with decreasing θ from 90°. $|F_x(1,1)|^2$ and $|F_y(1,0)|^2$ are less than 10^{-12}.

When these form factors are compared with each other, the intensity of the spinflip SANS at $q_{1,1}$ from $F_{y}(1,1)$ is much larger than that of the non-spinflip SANS intensity of $|F_{x}(1,1)|^2$ and $|F_{z}(1,0)|^2$. On the other hand, very small intensity of the spinflip SANS at $q_{1,0}$ from $|F_{z}(1,0)|^2$ is difficult to be observed. These correspond to the SANS experimental results on Sr$_2$RuO$_4$, where the spinflip SANS spot was observed only at $q_{1,1} \parallel \vec{B}$. Within the experimental resolution, the spin-flip SANS spot at $q_{1,0}$ and the non-spinflip SANS spots have not been observed yet. We note that similar behaviors of the transverse fields appear also in the nonchiral state including s-wave pairing, if $\theta \neq 90^\circ$. Thus, for $\theta \neq 90^\circ$, it is not easy that unique effects due to the chiral state are extracted from qualitative behaviors of the transverse fields.

![FIG. 7: (Color online) B-dependence of the FLL form factors in the vortex states, when the magnetic field is slightly tilted from the ab plane, i.e., $\theta = 89.9^\circ$, 89.5$^\circ$, and 89.0$^\circ$. (a) $|F_x(1,0)|^2$. (b) $|F_z(1,1)|^2$. (c) $|F_y(1,0)|^2$. (d) $|F_y(1,1)|^2$. In (a)-(d), the vertical axis is log-scale.](image)

\[\sum_{\omega_n > 0} \langle \langle \text{Re} \left[\frac{\Delta^\dagger + \Delta^*}{2(g+1)} \right] \rangle \rangle_p \tau, \]

which is derived by Doria-Gubernatis-Rainer scaling. The average over τ indicates a spatial average. In the magnetization curve in Fig. 4(a), we see a change of the slope at B^* for exactly $\vec{B} \parallel ab$ ($\theta = 90^\circ$). This is clearly seen as a step at B^* in the plot of the derivative dM/dB in Fig. 4(b). However this behavior of second-order phase transition is smeared by tilting the field orientation within 1°. The step in dM/dB was suggested in the experimental observation of the magnetization curve. However in other experimental methods such as specific heat and thermal conductivity, the chiral-nonchiral transition has not been observed yet. This may be because the experimental situation of exactly $\vec{B} \parallel ab$ is difficult to be realized. Our study shows that the chiral-nonchiral transition vanishes by tilting the field orientation within 1°.

V. SUMMARY

We studied the vortex states for nearly $\vec{B} \parallel ab$ in chiral p-wave superconductors on the basis of Eilenberger theory. The chiral-nonchiral transition at exactly $\vec{B} \parallel ab$ vanishes by tilting the magnetic field within 1°. We quantitatively estimated the FLL form factors including transverse fields, and showed that the spin-flip SANS intensity by the transverse fields has large intensity at $(1,1)$-spot. The transverse fields appear even when exactly $\vec{B} \parallel ab$, as a unique effect of the chiral states. These theoretical results indicate the importance of careful studies about the vortex states for nearly $\vec{B} \parallel ab$, to detect some natures of chiral p-wave superconductors or Sr$_2$RuO$_4$.
Acknowledgments

We thank M. R. Eskildsen for fruitful discussions and information about their spin-flip SANS experiments.

1 C. Nayak, S.H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008).
2 G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin, J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q. Mao, Y. Mori, H. Nakamura, and M. Sigrist, Nature 394, 558 (1998).
3 N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
4 A. P. Mackenzie and Y. Maeno, Rev. Mod. Phys. 75, 657 (2003).
5 Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K. Ishida, J. Phys. Soc. Jpn. 73, 011009 (2011).
6 D. F. Agterberg, Phys. Rev. Lett. 80, 5184 (1998).
7 R. P. Kaur, D. F. Agterberg, and H. Kusunose, Phys. Rev. B 72, 144528 (2005).
8 K. Tenya, S. Yasuda, M. Yokoyama, H. Amitsuka, K. Deguchi, and Y. Maeno, J. Phys. Soc. Jpn. 75, 023702 (2006).
9 K. Deguchi, Z. Q. Mao, and Y. Maeno, J. Phys. Soc. Jpn. 73, 1313 (2004).
10 Y. Yaguchi, K. Deguchi, M. A. Tanatar, Y. Maeno, T. Ishiguro, J. Phys. Chem. Solids 63, 1007 (2002).
11 S. L. Thiemann, Z. Radović, and V. G. Kogan, Phys. Rev. B 39, 11406 (1989).
12 P. G. Kealey, D. Charalambous, E. M. Forgan, S. L. Lee, S. T. Johnson, P. Schleger, R. Cubitt, D. McK. Paul, C. M. Aegerter, S. Tajima, and A. Rykov, Phys. Rev. B 64, 174501 (2001).
13 C. Rastovski, C. D. Dewhurst, W. J. Gannon, D. C. Peets, H. Takatsu, Y. Maeno, M. Ichioka, K. Machida, and M. R. Eskildsen, arXiv:1302.4810
14 M. Ichioka and K. Machida, Phys. Rev. B 65, 224517 (2002).
15 C. Rastovski, C. D. Dewhurst, W. J. Gannon, D. C. Peets, H. Takatsu, Y. Maeno, M. Ichioka, K. Machida, and M. R. Eskildsen, arXiv:1302.4810