LONGITUDINAL GLUON POLARIZATION IN RHIC DOUBLE-SPIN ASYMMETRIES

BARBARA JÄGER AND MARCO STRATMANN
Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

STEFAN KRETZER AND WERNER VOGELSANG
Physics Department, Brookhaven National Laboratory, and RIKEN-BNL Research Center, Upton, New York 11973, USA

The longitudinally polarized gluon density is probed sensitively in hard collisions of polarized protons under the condition that the dominant dynamics are perturbative and of leading twist origin. First data have recently been presented by Phenix on the double-spin asymmetry $A_{\pi L}^\pi$ for π^0 production at moderate transverse momentum $p_T \approx 1 \div 4$ GeV and central rapidity. By means of a systematic investigation of the relevant degrees of freedom we show that the perturbative QCD framework at leading power in p_T produces an asymmetry that is basically positive definite in this kinematic range, i.e. $A_{\pi L}^\pi \gtrsim \mathcal{O}(10^{-3})$.

1 Introduction

The determination of the nucleon’s polarized gluon density is a major goal of current experiments with longitudinally polarized protons at RHIC [1]. It can be accessed through measurement of the spin asymmetries

$$A_{LL} = \frac{d\Delta\sigma}{d\sigma} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}}$$

for high transverse momentum (p_T) reactions. In Eq. (1), σ^{++} (σ^{+-}) denotes the cross section for scattering of two protons with same (opposite) helicities. Such reactions can be treated in pQCD via factorization into parton densities, hard scattering cross sections and, eventually, fragmentation functions. Hadronic reactions have the advantage over DIS that the partonic Born cross sections involve gluons in the initial state. They may therefore serve to examine the gluon content of the colliding longitudinally polarized protons. We will here consider [2] the spin asymmetry A_{LL}^{π} for high-p_T π^0 production, for which very recently the Phenix collaboration has presented first data [3] at a c.m.s. energy $\sqrt{S} = 200$ GeV and central rapidity.

2 Hard-Scattering calculation

We may write the polarized high-p_T pion cross section as

$$\frac{d\Delta\sigma^{\pi}}{dp_T d\eta} = \sum_{a,b,c} \int dx_a \int dx_b \int dz_c \Delta a(x_a, \mu) \Delta b(x_b, \mu)$$

© Institute of Experimental Physics SAS, Košice, Slovakia
\[\Delta g = g_{\text{input}} \]
\[\Delta g = -g_{\text{input}} \]
\[\Delta g = 0 \text{ input} \]
\[p_{\perp} \text{[GeV]} \]
\[A_{\text{LL}} \]
\[A_{\pi} \]
\[NLO \]
\[\sqrt{s} = 200 \text{ GeV} \]
\[-0.01 \]
\[0 \]
\[0.01 \]
\[0.02 \]
\[0.03 \]
\[0.04 \]
\[0.05 \]
\[0.06 \]
\[\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array} \]
\[\frac{d\Delta \sigma^c_{ab}(p_{\perp}, \eta, x_a, x_b, z_c, \mu)}{dp_{\perp} d\eta} D_{\pi}^c(z_c, \mu), \]
\[\Delta g(x, \mu) \equiv g_+(x, \mu) - g_-(x, \mu), \]

Figure 1. NLO predictions for \(A_{\pi LL}^c \).

3 Basic observations

We first focus on the partonic cross sections. Among the reactions (i)-(iii) listed above that have gluons in the initial state, process (ii) has a negative partonic spin asymmetry \(\hat{a}_{\text{LL}} \equiv -1 \), while (i) and (iii) both have \(\hat{a}_{\text{LL}} > 0 \) [1]. A first guess is, then, to attribute a negative \(A_{\pi LL}^c \) to the negative \(gg \to q\bar{q} \) cross section. However, this expectation is refuted by the numerical hierarchy in the partonic cross sections: at \(\hat{\eta} = 0 \) in the partonic c.m.s., which is most relevant for the PHENIX data, channel (i) is (in absolute magnitude) larger than (ii) by a factor of about 160. We therefore exclude that the \(gg \to q\bar{q} \) channel is instrumental in making \(A_{\pi LL}^c \) negative, and we thus have to investigate possibilities within \(\Delta g \) itself, and its involvement in \(gg \to gg \) and \(qq \to q\bar{q} \) scattering.
4 A lower bound on A_{LL}^π.

We consider the LO cross section integrated over all rapidities η. It is then convenient to take Mellin moments in x_T^2 of the cross section,

$$\Delta\sigma^\pi(N) \equiv \int_0^1 dx_T^2 \left(x_T^2 \right)^{N-1} \frac{p_T^3 d\Delta\sigma^\pi}{dp_\perp} .$$

One obtains (we suppress the scale μ from now on):

$$\Delta\sigma^\pi(N) = \sum_{a,b,c} \Delta a^{N+1} \Delta b^{N+1} \Delta c^{N} D_{ab}^{\pi} N + 3,$$

where the Δc^{N} are the x_T^2-moments of the partonic cross sections and, as usual, $f_N \equiv \int_0^1 dx \, x^{N-1} f(x)$ for the parton distribution and fragmentation functions. We now rewrite Eq. (5) in a form that makes the dependence on the moments Δg^N explicit:

$$\Delta\sigma^\pi(N) = (\Delta g^{N+1})^2 A^N + 2\Delta g^{N+1} B^N + C^N .$$

Here, A^N represents the contributions from $gg \to gg$ and $gg \to q\bar{q}$, B^N the ones from $gg \to gg$, and C^N those from the (anti)quark scatterings (iv) above; in each case, the appropriate combinations of Δq, $\Delta \bar{q}$ distributions and fragmentation functions are included. Being a quadratic form in Δg^{N+1}, $\Delta\sigma^\pi(N)$ possesses an extremum, given by the condition

$$A^N \Delta g^{N+1} = -B^N .$$

The same equation may also be derived by finding the stationarity condition along a variational approach. In the following we neglect the contribution from the $gg \to q\bar{q}$ channel which, as we discussed above, is much smaller than that from $gg \to gg$ for the p_\perp we are interested in. The coefficient A^N is then positive, and Eq. (7) describes a minimum of $\Delta\sigma^\pi(N)$, with value

$$\Delta\sigma^\pi(N) \Big|_{\text{min}} = - (B^N)^2 / A^N + C^N .$$

It is straightforward to perform a numerical Mellin inversion of this minimal cross section:

$$\frac{p_T^3 d\Delta\sigma^\pi}{p_\perp} \Big|_{\text{min}} = \frac{1}{2\pi i} \int_{\Gamma} dN \left(x_T^2 \right)^{-N} \Delta\sigma^\pi(N) \Big|_{\text{min}} ,$$

where Γ denotes a suitable contour in complex-N space. For the numerical evaluation we use the LO Δq, $\Delta \bar{q}$ of GRSV [5], the D_{c}^π of [6], and a fixed scale $\mu = 2.5$ GeV. We find that the minimal asymmetry resulting from this exercise is negative indeed, but very small: in the range $p_\perp \sim 1 \div 4$ GeV its absolute value does not exceed 10^{-3}. The Δg in Eq. (7) that minimizes the asymmetry is shown in Fig. 2, compared to Δg of the GRSV LO “standard” set [5]. One can see that it has a node and is generally much smaller than the GRSV one, except at large x. The node makes it possible to probe the two gluon densities in the gg term at values of x_a, x_b where they have different sign, so that $A_{LL}^\pi < 0$ becomes just barely possible.
5 Conclusions

In its details, the bound in Eq. (9) is subject to a number of corrections, however, a global analysis [2], taking into account the results from polarized DIS as well confirms the somewhat idealized case, as summarized by Eqs. (8) and (9), that \(A_{LL}^{\pi} \) is basically positive definite \(A_{LL}^{\pi} \gtrsim \mathcal{O}(-10^{-3}) \) in leading twist pQCD and for \(p_{\perp} \) not largely exceeding \(\sim 4 \) GeV. At the same time, \(A_{LL}^{\pi} \) is trivially bounded from above by saturating positivity through \(\Delta g(x) = g(x) \), see the corresponding curve in Fig. 1. A significantly negative \(A_{LL}^{\pi} \) would be indicative of power-suppressed contributions or non-perturbative effects. One possibility might be the population of low \(p_{\perp} \) bins with statistical pions that follow a quasi-thermal exponential distribution. However, such random pions would have to realize the \(J = 1 \) configuration in Eq. (1) either through angular momentum of (Goldstone) pions or the spin of co-produced massive baryons, leading one to expect a positive \(A_{LL}^{\pi}_{\text{nonpert}} > 0 \). A quantitative estimate of this effect will be given elsewhere.

Acknowledgements

This work was supported in part by BMBF and DFG, Berlin/Bonn and by RIKEN, BNL, and the U.S. Department of Energy (contract DE-AC02-98CH10886).

References

1. See, e.g.: G. Bunce et al., Annu. Rev. Nucl. Part. Sci. 50, 525 (2000).
2. B. Jäger et al., Phys. Rev. Lett. 92, 121803 (2004).
3. PHENIX Collab. (S.S. Adler et al.), hep-ex/0404027; and F. Bauer’s contribution to these proceedings.
4. D. de Florian, Phys. Rev. D67, 054004 (2003); B. Jäger et al., Phys. Rev. D67, 054005 (2003).
5. M. Glück et al., Phys. Rev. D63, 094005 (2001).
6. B.A. Kniehl et al., Nucl. Phys. B582, 514 (2000).