Finding structural anomalies in star graphs using quantum walks: a general approach

Seth S Cottrell

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

E-mail: cottrell@cims.nyu.edu

Received 30 September 2014
Accepted for publication 14 November 2014
Published 22 December 2014

Abstract

In previous papers about searches on star graphs several patterns have been made apparent; the speed up only occurs when graphs are ‘tuned’ so that their time step operators have degenerate eigenvalues, and only certain initial states are effective. More than that, the searches are never faster than $O(\sqrt{N})$ time. In this paper the problem is defined rigorously, the causes for all of these patterns are identified, sufficient and necessary conditions for quadratic-speed searches for any connected subgraph are demonstrated, the tolerance of these conditions is investigated, and it is shown that (unfortunately) we can do no better than $O(\sqrt{N})$ time. Along the way, a useful formalism is established that may be useful in future work involving highly symmetric graphs.

Keywords: quantum information, quantum walk, quantum search, graph theory

1. Introduction and review of quantum walks

A quantum walk is a quantum version of a random walk [1]. In a quantum walk, a particle moves on a general structure, a graph, which is a collection of vertices and edges connecting them, and its motion is governed by amplitudes, whereas in a classical random walk it would be governed by probabilities. There are a number of types of quantum walks. First, the time can be either continuous [2] or advance in discrete steps [3, 4]. Within the discrete-time walks, there are another two types. In the coined walk, the particle sits on the vertices and an extra degree of freedom, a quantum coin, is needed to make the dynamics of the walk unitary.
In the scattering walk, the particle sits on the edges, and no coin is necessary [5]. There have been a number of experimental implementations of quantum walks, some using trapped ions [6, 7] and others using photons in optical networks [8–11].

Quantum walks have proven useful in finding new quantum algorithms and expanding the applicability of ones that are known. We are interested in searches. In most cases there is a distinguished vertex, one whose behavior is different from the others, and the object is to find this vertex [12–16]. More recently, quantum walks have been shown to be useful in finding marked structures, such as cliques [17], or structures that break the symmetry of a graph [18, 19]. In this paper a generalization of the latter problem will be pursued.

The problem we consider here is that of a general graph, G, attached to one of the outer vertices of a star graph. A star graph consists of a central vertex and a set of outer vertices, each of which is connected to the central vertex by a single edge. That is, it looks like a hub with spokes attached to it. We assume that we do not know which of the outer vertices is attached to G, and our object is to find the vertex that is. This we will accomplish by means of a quantum walk. Some of the results in this paper were reported in [20]. In particular, theorems 4.1, 4.5, 4.9, 4.10, and 4.11 were stated there, either without proof or with only the sketch of a proof. Here we develop the necessary mathematics to prove all of these theorems and present the proofs in detail. What these results tell us is under what conditions we can find the graph, G, with a quantum speedup. In section 5, we see what happens if these conditions are close to being fulfilled, but not exactly. We find that if the conditions are close to being satisfied, the quantum walk will still find G with a quantum speedup. In section 7, we discuss generalizations of our results and directions for future work. The results in sections 5 and 7 have not appeared before. Finally, we note that many of the proofs have been put into appendices in order to improve the readability of the paper.

In the scattering model of quantum walks [5] the states are defined on edges, with two states on every edge; one for each of the two possible directions. So, if two vertices connected by some edge are labeled a and b, then $|a, b\rangle$ is the state on the edge that points from a to b, and $|b, a\rangle$ is the state on the edge pointing from b to a. If the vertices are labeled 1, \cdots, m, then a state of the system is written $|\Psi\rangle = \sum_{j=1}^{m} \alpha_j \psi_j$, where $\alpha_j \in \mathbb{C}$, $0 \leq |\alpha_j| \leq 1$, and $\sum_{j=1}^{m} |\alpha_j|^2 = 1$. These α's are probability amplitudes, and $|\alpha_j|^2$ is the probability of measuring $|\psi_j\rangle$ and detecting the particle in the state $|j, k\rangle$.

Each vertex hosts a local unitary operator that maps all of the incoming states to outgoing states. That is, if v is a vertex, and $\{a_j\}$ is the set of connected vertices, then the unitary operator defined on v, denoted U_v, preforms a mapping $U_v: \{a_j, v\} \rightarrow \{v, a_j\}$. Notice that the notation used to describe the states indicates which vertex operator to apply. The only operator that will act on the state $|s, t\rangle$ is U_s, and the vertex operator most recently applied to $|s, t\rangle$ was U_t. The time step operator, U_t, is defined as all of the U_s taken together; $U = \bigoplus_s U_s$, where this direct sum is taken over all vertices. Like each U_s, U is unitary, but unlike each of the vertex-specific operators, U is an endomorphism. As such, we can talk about the eigenvalues and eigenvectors (equivalently, ‘eigenstates’) of U. Because the edge state implies immediately which of the vertex operators to apply, we will in general only talk about U as a whole and abandon the vertex-specific notation. For example, $U\{s, t\} = \bigoplus_s U_s\{s, t\} = U_s\{s, t\}$, but it is unnecessary on the right hand side to indicate which vertex operator is being used, since it is already announced by the state, $\{s, t\}$.

The eigenvalues of U all have modulus 1, and there is no ‘steady state’. In an intuitive, not-rigorous sense, because U must be unitary (it is a quantum mechanical time evolution operator) it must conserve information. That is, for any given state there is a unique pre-image. But a particle on a vertex at time t could have been on any adjacent vertex at time
In the earliest attempts to define a quantum analog to discrete random walks the states were again defined on the vertices, but it was quickly found that an ancillary ‘coin space’ needed to be attached to each vertex to maintain unitarity and keep track of the state’s previous vertex. The edge state formalism (e.g., \(|a, b\rangle \)) is an equivalent formalism that eliminates the need for ancillary spaces, while still carrying the additional information required.

Definition. For the purposes of this paper a ‘search’ is defined to be a process used to distinguish between \(N-1 \) identical elements, and one marked element that a priori can be any of the \(N \) total elements. Under this definition the Shor algorithm, for example, is not a search because it is used to find numbers with certain properties that set them apart. The set of numbers being considered are not all equally likely to be ‘marked’. Part of the reasoning behind this definition is that it leads naturally to graphs with very high symmetry, which substantially reduces the dimension and difficulty of the problem.

For example, consider the situation shown in figure 1; the complete graph \(K_3 \) with vertices labeled \(A, B, C \). Define \(A \) to be a strictly reflecting vertex (i.e., \(U|B, A\rangle = |A, B\rangle \) and \(B \) and \(C \) as strictly transmitting (i.e., \(U|B, C\rangle = |B, C\rangle \)). We find that the only non-trivial quantum graph automorphism is the one that exchanges \(B \) and \(C \). That is, \(\phi \) makes the following exchanges:

- \(|A, B\rangle \leftrightarrow |A, C\rangle \)
- \(|B, A\rangle \leftrightarrow |B, C\rangle \)
- \(|C, A\rangle \leftrightarrow |C, B\rangle \)

Whereas the original graph consisted of six states, \(G = \{ |A, B\rangle, |B, A\rangle, |A, C\rangle, |B, C\rangle, |C, A\rangle, |C, B\rangle \} \), the collapsed graph consists of only three states, \(G_A = \{ \frac{1}{\sqrt{2}} (|A, B\rangle + |A, C\rangle), \frac{1}{\sqrt{2}} (|B, A\rangle + |C, A\rangle), \frac{1}{\sqrt{2}} (|B, C\rangle + |C, B\rangle) \} \).

There are two things to notice here. First, this set is closed under the action of \(U \), and second, each state in \(G_A \) is mapped to itself under \(\phi \). Indeed, the states on any collapsed quantum graph are composed of exactly those states that are left invariant under the action of every \(\phi \).

Definition. For any graph \(G \) with a time step operator \(U \) we define the ‘collapsed graph’ or ‘automorphism graph’ as \(G_A \equiv \{ |\psi\rangle : \phi |\psi\rangle = |\psi\rangle, \forall \phi \text{ where } U = \phi^{-1} U \phi \} \). That is, the collapsed graph is composed only of those states that are left invariant under the mapping of every automorphism that commutes with \(U \).

It’s straightforward to demonstrate that \(G_A \) is closed under \(U \). If \(|\psi\rangle \) is a state on \(G_A \), then

\[
|\psi\rangle \in G_A \\
\Rightarrow \phi |\psi\rangle = |\psi\rangle \\
\Rightarrow U\phi |\psi\rangle = U|\psi\rangle \\
\Rightarrow U|\psi\rangle = U|\psi\rangle \\
\Rightarrow U|\psi\rangle \in G_A.
\]
By using collapsed quantum graphs we can decrease the dimension of the state space substantially. In the example above the number of dimensions was cut in half, but the greater the symmetry the greater the decrease in dimensions.

2. Star graphs with an arbitrary subgraph

This section describes the model that will be used throughout this paper.

In figure 2 the 0 vertex is the ‘hub vertex’. A hub vertex is a vertex with \(N \) connections, where \(N \) is allowed to vary. It is generally assumed that the reflection and transmission coefficients at a hub are the same for each of the \(N \) edges, so any incoming state, \(|j, 0\rangle \) will be mapped to
\(U |j, 0\rangle = r |0, j\rangle + t \sum_{k \neq j} |0, k\rangle. \)

Unitarity at the hub requires that \(|r|^2 + (N - 1)|r|^2 = 1\) and \(2 \text{Re } (r^*r) + (N - 2)|t|^2 = 0\).

For the examples in this paper we’ll assume that the hub is a standard ‘diffusive vertex’ which means that \(r = -1 + \frac{2}{N} \) and \(t = \frac{2}{N} \), although it’s easy to generalize away from this (section 7).

The subgraph, \(G \), is attached to any one of the \(N \) edges radiating from vertex 0. We assume throughout this paper that the structure of \(G \) is known, but not the vertex to which it is attached. We can, without loss of generality, assume that it is attached to vertex 1, and in this way, vertex 1 is ‘marked’.

Vertices 0 and 1, the states between them, and everything in \(G \) make up the right side of the graph.

Vertices 2 through \(N \) ‘reflect with a phase of \(\phi \)’, which means that \(U|0, j\rangle = e^{i\phi}|j, 0\rangle \). \(\phi \) is left with an unspecified value, so that it can be used to ‘dial in’ certain eigenvalues of \(U \) (how this is done will be shown momentarily).

Vertices 0 and 2 through \(N \), as well as the edges connecting them, are called the left side of the graph.

Throughout this paper I will be referring to right or left eigenvalues or vectors. This will always indicate that the thing in question is native to that side of the graph, as opposed to the traditional meaning (e.g., normally a ‘left eigenvector’ is one such that \(\langle v|M = \lambda \langle v\rangle \)).

The goal of a quantum search on a star graph is to somehow get the probability amplitude on the states \(|0, 1\rangle \) and \(|1, 0\rangle \) as high as possible, so that when a measurement is made, the result is likely to be the marked edge. In this way the marked edge is found, and the search completed. Typically it is assumed that measurements cannot be made on \(G \) itself since, in some sense, if we had access to \(G \) we wouldn’t be looking for it. So if a particle would have been measured on an edge in \(G \), the measurement is assumed to be a null result. This turns out to be a smaller problem than it might seem at first and so a better, less-specific goal is to get the state supported mostly on the right side.

The effect of \(U \) on \(|0, 1\rangle \), as well as on any of the states in \(G \), is different for different graphs, and will be left as a ‘black box’.

For every value of \(N \geq 2 \) we have another, different graph, and a new problem to solve. However, by taking advantage of the obvious symmetries on the left side, this graph can be collapsed substantially. For ease of notation define the following:

\[\text{in} \equiv \frac{1}{\sqrt{N-1}} \sum_{j=2}^{N} |j, 0\rangle \]

\[\text{out} \equiv \frac{1}{\sqrt{N-1}} \sum_{j=2}^{N} |0, j\rangle. \]

This is the collapsing discussed in the previous section. While there may be additional collapsing/simplification taking place inside of the subgraph, \(G \), that will not be directly addressed in this paper. At the hub vertex we find that \(U \) does this:

\[U|\text{in}\rangle = [r + (N - 2)r] \text{out} + t\sqrt{N - 1} |0, 1\rangle \]

\[U|1, 0\rangle = r |0, 1\rangle + t\sqrt{N - 1} \text{out}. \]
Rewriting this in terms of a new perturbation variable, $\epsilon \equiv \frac{1}{N}$, we find:

$$U |in\rangle = (1 - 2\epsilon)|out\rangle + 2\sqrt{\epsilon - \epsilon^2} |0, 1\rangle$$

(6)

$$U |1, 0\rangle = (-1 + 2\epsilon)|0, 1\rangle + 2\sqrt{\epsilon - \epsilon^2} |out\rangle.$$

(7)

Note that U is a function of ϵ, and define $U_0 \equiv U|_{\epsilon=0}$. The number of edges, N, connected to the hub vertex is the only variable in the graph, and studying the dependence of the eigenvalues and eigenvectors on $\epsilon \equiv \frac{1}{N}$ will be the focus of the rest of this paper. Unless otherwise noted, assume that every variable (eigenvalues, eigenvectors, etc.) is a function of ϵ. In general, denote $f_\epsilon \equiv f(\epsilon)|_{\epsilon=0}$. For example, suppose $|w\rangle$ is an eigenvector of U. It may depend on ϵ, because U depends on ϵ. $|w_0\rangle \equiv |w\rangle|_{\epsilon=0}$, and it is constant.

When $\epsilon = 0$, which is the $N \rightarrow \infty$ limit, the states of the two sides of the graph, left $\equiv \{|lin\rangle, |out\rangle\}$ and right $\equiv \{|G, 0, 1\rangle, |1, 0\rangle\}$, are kept separate by U_0. The eigenvalues and vectors of both the left and right sides are changed relatively little by ϵ (this will be proven), so once they have been found they can be used without modification. Clearly, $\epsilon = 0$ is the easiest case to work with, and dealing with very large values of N (where search algorithms are useful) corresponds to very small values of ϵ. Phrased in this way, the problem lends itself naturally to a perturbative approach.

It’s worth taking a moment to repeat that, and to point out how profound it is. The original problem involved an infinite family of graphs indexed by, the number of edges in the star graph, N, each of which had a Hilbert space of dimension $2N + |G|$, where $|G|$ is the number of edge states in G. But by using the symmetry of vertices 2 through N to collapse the graph, the problem now only considers a single graph with a Hilbert space of dimension $4 + |G|$ and a single non-constant vertex (the ‘hub’) that behaves like a valve between the left and right sides in a simple and predictable way.

Because the location of the 1 vertex is unknown, the initial states we have access to are of the form,

$$|\psi\rangle = \alpha \sum_{j=1}^{N} |j, 0\rangle + \beta \sum_{j=1}^{N} |0, j\rangle.$$

(8)

Which can also be written,

$$|\psi\rangle = \alpha |in\rangle + \beta |out\rangle + O\left(\frac{1}{\sqrt{N}}\right).$$

(9)

In other words, the initial state is (to within a small error) just a superposition of $|in\rangle$ and $|out\rangle$.

There’s absolutely nothing stopping us from starting with a state like $\frac{1}{\sqrt{N}} \sum_{j=1}^{N} (-1)^j |0, j\rangle$. However, this state breaks the graph’s symmetry a bit, since we now have to treat the odd and even vertices separately, and the graph becomes that much more unwieldy.

A cursory look at U_0 reveals that the eigenvalues from the left side of the graph are $\lambda = \pm e^{\pm i\frac{\pi}{2}}$, and that the corresponding eigenvectors are $\frac{1}{\sqrt{2}} (|out\rangle \pm e^{\pm i\frac{\pi}{2}} |in\rangle)$. It will be shown that if the right side of the graph shares one or both of these eigenvalues, then a ‘rotation’ (as described in section 4) may occur, and an initial state of the form $|\psi_0\rangle = \frac{1}{\sqrt{2}} (|out\rangle \pm e^{\pm i\frac{\pi}{2}} |in\rangle)$ will move into another eigenstate with the same eigenvalue, $|\psi_0\rangle$, in the right side in $O(\sqrt{N})$ time.
So, finding G boils down to finding one of the eigenvalues and eigenvectors of the right side, and this can be done by ‘dialing in’ ϕ so that the left side shares an eigenvalue with the right. This, by the way, is the great advantage of star graphs; any eigenvalue can be easily attained, and there are only two dimensions (lin and out). That said, the results and techniques of this paper can be applied far more generally.

The ‘paired’ eigenvalues of U that are involved in searches with a quadratic speed up take the form $\lambda(\epsilon) = \sum_{j=0}^{\infty} a_j (\pm \sqrt{\epsilon})^j$ (this will be proven). In what follows, it will often be advantageous to write this as $\lambda = \lambda_0 e^{\pm i c \sqrt{\epsilon}} + O(\epsilon)$. It will be shown that finding a known graph merely requires matching left and right eigenvalues of U_0.

2.1. Grover graph example

For the Grover graph, G is simply a vertex that reflects with a phase of π. The Grover graph is named for the Grover algorithm, which it exactly emulates. This example is simple enough that it can be completed by hand. The pairing of eigenvectors, the ϵ dependences and errors, as well as the $O(\sqrt{N})$ time required to execute the search are all evident here.

The Grover graph is a motivating example, but in section 9.1 a more complicated graph, the ‘Bolo graph’, is used to demonstrate how the various theorems and techniques of this paper can be applied to quickly.

The basis states of the (collapsed) Grover graph are:

$$
\begin{align*}
|\psi_1\rangle &= |\text{out}\rangle \\
|\psi_2\rangle &= |\text{lin}\rangle \\
|\psi_3\rangle &= |0, 1\rangle \\
|\psi_4\rangle &= |1, 0\rangle.
\end{align*}
$$

The time step matrix, U, is defined as before with the addition that $U \{0, 1\} = -|1, 0\rangle$. So, using the basis states as listed above,

$$
U = \begin{pmatrix}
0 & 1 - 2\epsilon & 0 & 2\sqrt{\epsilon} - e^{-\epsilon^2} \\
0 & e^{i\phi} & 0 & 0 \\
0 & 2\sqrt{\epsilon} - e^\epsilon & 0 & 2\epsilon - 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
$$

and

$$
U_0 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
e^{i\phi} & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{pmatrix}
$$

The characteristic polynomial for U_0 is $C_0(\lambda) = \lambda^4 - (e^{i\phi} + 1)\lambda^2 + e^{i\phi} = (\lambda^2 - e^{i\phi})(\lambda^2 - 1)$. This clean factoring is symptomatic of the separation of the right and left sides when $\epsilon = 0$. Clearly, double roots can be found when $\phi = 0$, so in what follows ϕ will be set to 0. The eigenvectors on the left are $l^{(1)} = \frac{1}{\sqrt{2}}(|\text{out}\rangle + |\text{lin}\rangle)$ and $l^{(-1)} = \frac{1}{\sqrt{2}}(|\text{out}\rangle - |\text{lin}\rangle)$, for $\lambda = \pm 1$, and the eigenvectors on the right are $r^{(1)} = \frac{1}{\sqrt{2}}(|0, 1\rangle - |1, 0\rangle)$ and $r^{(-1)} = \frac{1}{\sqrt{2}}(|0, 1\rangle + |1, 0\rangle)$, for $\lambda = 1$ and $\lambda = -1$ respectively.

The characteristic polynomial for U (with $\phi = 0$) is $C(\lambda) = \lambda^4 - 2(1 - 2\epsilon)\lambda^2 + 1$. The solutions of this equation are $\lambda(\epsilon) = \pm \sqrt{1 - 2\epsilon} \pm 2i\sqrt{\epsilon - \epsilon^2}$, where the \pm's are independent of each other. The four eigenvalues and their associated eigenvectors are:
\[\lambda^{(1)}(e) = \sqrt{1 - 2e + 2i\sqrt{e - e^2}}, \]
\[\lambda^{(2)}(e) = \sqrt{1 - 2e - 2i\sqrt{e - e^2}}, \]
\[\lambda^{(3)}(e) = -\sqrt{1 - 2e + 2i\sqrt{e - e^2}}, \]
\[\lambda^{(4)}(e) = -\sqrt{1 - 2e - 2i\sqrt{e - e^2}}, \]

\[|V^{(1)}(e)| = \frac{1}{2} \begin{pmatrix} \sqrt{1 - 2e + 2i\sqrt{e - e^2}} \\ -i\sqrt{1 - 2e + 2i\sqrt{e - e^2}} \end{pmatrix}, \]
\[|V^{(2)}(e)| = \frac{1}{2} \begin{pmatrix} \sqrt{1 - 2e - 2i\sqrt{e - e^2}} \\ i\sqrt{1 - 2e - 2i\sqrt{e - e^2}} \end{pmatrix}, \]
\[|V^{(3)}(e)| = \frac{1}{2} \begin{pmatrix} \sqrt{1 - 2e + 2i\sqrt{e - e^2}} \\ -i\sqrt{1 - 2e + 2i\sqrt{e - e^2}} \end{pmatrix}, \]
\[|V^{(4)}(e)| = \frac{1}{2} \begin{pmatrix} \sqrt{1 - 2e - 2i\sqrt{e - e^2}} \\ i\sqrt{1 - 2e - 2i\sqrt{e - e^2}} \end{pmatrix}. \]

Notice that looping \(e \) around 0 permutes \(\{\lambda^{(1)}(e), \lambda^{(2)}(e)\} \) and \(\{\lambda^{(3)}(e), \lambda^{(4)}(e)\} \). This property is important later. Written more simply,
\[\lambda^{(1)}(e) = e^{i\sqrt{e}} + O(e), \]
\[\lambda^{(2)}(e) = e^{-i\sqrt{e}} + O(e), \]
\[\lambda^{(3)}(e) = -e^{i\sqrt{e}} + O(e), \]
\[\lambda^{(4)}(e) = -e^{-i\sqrt{e}} + O(e), \]

\[|V^{(1)}(e)| = \frac{1}{2} \begin{pmatrix} 1 \\ -i \end{pmatrix} + O(\sqrt{e}) \left(\frac{1}{\sqrt{e}} (\ell^{(1)}) - i \right) + O(\sqrt{e}), \]
\[|V^{(2)}(e)| = \frac{1}{2} \begin{pmatrix} 1 \\ i \end{pmatrix} + O(\sqrt{e}) \left(\frac{1}{\sqrt{e}} (\ell^{(1)}) + i \right) + O(\sqrt{e}). \]
\[
\left|V^{(3)}(\ell)\right\rangle = \frac{1}{2}\begin{pmatrix} 1 \\ -i \\ -i \\ i \end{pmatrix} + O(\sqrt{\epsilon}) = \frac{1}{\sqrt{2}} \left(\left|\ell^{(-1)}\right\rangle - i \left|i^{(-1)}\right\rangle \right) + O(\sqrt{\epsilon}),
\]
\[
\left|V^{(4)}(\ell)\right\rangle = \frac{1}{2}\begin{pmatrix} 1 \\ i \\ i \\ -i \end{pmatrix} + O(\sqrt{\epsilon}) = \frac{1}{\sqrt{2}} \left(\left|\ell^{(-1)}\right\rangle + i \left|i^{(-1)}\right\rangle \right) + O(\sqrt{\epsilon}).
\]

Notice that the two eigenspaces of \(U_0\) are both two dimensional, and are spanned differently. For example, the 1-eigenspace is spanned by \(\{|\ell^{(1)}\rangle, |i^{(1)}\rangle\}\) as well as by \(\{|V^{(1)}(0)\rangle, |V^{(2)}(0)\rangle\}\). Moreover, the space spanned by \(\{|V^{(1)}(\ell)\rangle, |V^{(2)}(\ell)\rangle\}\) for \(0 < \epsilon \ll 1\) is nearly the same. Using the eigenvectors of \(U_0\), instead of the ‘true’ eigenvectors of \(U\) does introduce errors, but they are small (this will be proven).

The only reasonable initial states we have access to, under the assumption that the target vertex, 1, is unknown, are even superpositions of the form \(\frac{1}{\sqrt{N}} \sum_{j=1}^{N} |0, j\rangle\) and \(\frac{1}{\sqrt{N}} \sum_{j=1}^{N} |j, 0\rangle\). These states are located almost completely on the left side and are nearly equal to \(|\text{out}\rangle\) and \(|\text{in}\rangle\), as their inner product reveals:

\[
\langle\text{out}| \left(\frac{1}{\sqrt{N}} \sum_{j=1}^{N} |0, j\rangle \right) = \frac{1}{\sqrt{N(N-1)}} \sum_{j=2}^{N} \langle 0, j| 0, j \rangle = \sqrt{\frac{N-1}{N}} \approx 1.
\]

This means that the initial states will always start on the left, up to a tiny error. Setting the initial state to be (approximately) in the 1-eigenspace we find:

\[
|\psi\rangle = \sum_{j=1}^{N} \left|0, j\right\rangle + |\text{out}\rangle + O(\sqrt{\epsilon}) = |\ell^{(1)}\rangle + O(\sqrt{\epsilon}).
\]

Applying \(U\) repeatedly yields:

\[
U^m |\psi\rangle = \sum_{j=1}^{N} \left|\ell^{(1)}\right\rangle + O(\sqrt{\epsilon}) = \sum_{j=1}^{N} \left|\ell^{(1)}\right\rangle + \sum_{j=1}^{N} \left|i^{(1)}\right\rangle + O(\sqrt{\epsilon})
\]

\[
= \frac{1}{\sqrt{2}} \sum_{j=1}^{N} \left|\ell^{(1)}\right\rangle + \frac{1}{\sqrt{2}} U^m \left|\ell^{(1)}\right\rangle + O(\sqrt{\epsilon})
\]

\[
= \frac{1}{\sqrt{2}} \sum_{j=1}^{N} \left|\ell^{(1)}\right\rangle + \frac{1}{\sqrt{2}} \sum_{j=1}^{N} \left|i^{(1)}\right\rangle + O(\sqrt{\epsilon})
\]

\[
= \frac{1}{\sqrt{2}} \begin{pmatrix} e^{im_{\ell, \tau}} + e^{-im_{i, \tau}} \\ e^{-im_{i, \tau}} + e^{im_{\ell, \tau}} \\ -ie^{im_{\ell, \tau}} + ie^{-im_{i, \tau}} \\ ie^{-im_{\ell, \tau}} - ie^{im_{i, \tau}} \end{pmatrix} + O(\sqrt{\epsilon})
\]

\[
= \frac{1}{\sqrt{2}} \begin{pmatrix} \cos \left(m_{\ell, \epsilon}\right) \\ \cos \left(m_{i, \epsilon}\right) \\ -i \sin \left(m_{\ell, \epsilon}\right) \\ i \sin \left(m_{i, \epsilon}\right) \end{pmatrix} + O(\sqrt{\epsilon}).
\]
So, if $m = \frac{x}{\sqrt{\pi}} = \frac{x}{\sqrt{N}}$, then to within an error of $O\left(\frac{1}{\sqrt{N}}\right)$ the system will be on the right side, in either the state $|0, 1\rangle$ or $|1, 0\rangle$. A measurement at this time will complete the search.

It is worth pointing out that if we hadn’t set $\phi = 0$ then the ‘true’ eigenvectors $|V^{(k)}(\epsilon)\rangle$ would have been almost entirely constrained to one side or the other. This is because $|V^{(k)}(0)\rangle$ span the same eigenspaces as the right and left eigenvectors of U_0. If the right and left sides share no common eigenvalues, then we have four distinct eigenvalues and four distinct eigenspaces. So, rather than being a rearrangement of the eigenvectors of U_0, as was the case above, the $|V^{(k)}(\epsilon)\rangle$ are merely tiny perturbations of each of them individually.

Grover originally described his algorithm with a diffusion operator and an oracle operator. The diffusion operator is here replaced by the hub vertex, and the oracle with the differently phased reflections from the remaining vertices. The result is exactly the same, and we can see that Grover’s proof of optimality is merely a statement about the nature of the hub. That is, there’s no way to modify the hub alone to get a better speed up.

2.2. Important points
- To lowest order, the difference between U_0 and U is that U_0 treats the left and right sides separately and is therefore block-diagonal, whereas U transmits across the hub with amplitude $\sqrt{\pi}$. That is, $\langle \text{out} | U_1, 0 \rangle \approx 2\sqrt{\pi}$.
- A uniform superposition of the edge states is nearly equal ($O(\epsilon)$) to some combination of $|in\rangle = \frac{1}{\sqrt{N}} \sum_{j=2}^{N-1} |j, 0\rangle$ and $|out\rangle = \frac{1}{\sqrt{N}} \sum_{j=2}^{N-1} |0, j\rangle$. As such, any symmetric initial state on the edges connected to the hub will be concentrated almost entirely on the left side.
- This example shows that a quantum search algorithm can be seen as a ‘rotation’ from the left to the right in $O(\sqrt{N})$ time steps.

3. Algebraic functions and the behavior of zeros
In this section we’ll consider the relationship between the zeros of a polynomial and the coefficients of that polynomial. Later these results will be applied to characteristic polynomials. For more background on the math used in this section see [22] and [23].

Definition. A ‘globally analytic function’ is an analytic function that is defined as every possible analytic continuation of an analytic function from a particular point in a domain. Globally analytic functions can be many-valued.

For example, the globally analytic function $f(z) = \sqrt{z}$ has two branches (when $z \neq 0$): $f^{(0)}(re^{i\theta}) = \sqrt{r} e^{i\theta/2}$ and $f^{(1)}(re^{i\theta}) = \sqrt{r} e^{i\theta+\pi}$ with the branch cut (arbitrarily) taken at $\theta = 0$.

Just to emphasize the point that globally analytic functions can be many-valued, if $f(z) = \sqrt{z}$, then $f(16) = 2, 2i, -2, -2i$, that is; f is ‘4-valued’. For the different branches, $f^{(0)}(16) = 2, f^{(1)}(16) = 2i, f^{(2)}(16) = -2, f^{(3)}(16) = -2i$.

Theorem 3.1. If $f(z)$ is globally analytic in an annulus around 0, and is m-valued, then $f(z)$ can be expressed as a Puiseux series (a Laurent series with certain rational powers) of the form $f(z) = \sum_{n=-\infty}^{\infty} A_n z^{m/n}$. Moreover, the m different branches of f, $f^{(k)}$, can be separated by
an arbitrary branch cut through the annulus and expressed as $f^{(k)}(z) = \sum_{n=-\infty}^{\infty} A_n \omega^{kn} z^n$, where ω is a primitive mth root of unity, $\omega = e^{i\pi/m}$.

Proof. The proof of this theorem is included in the appendix.

Define $P(z, \epsilon)$ to be a polynomial in z and ϵ, written $P(z, \epsilon) = \sum_{j=0}^{d} a_j(\epsilon) z^j$, where each $a_j(\epsilon)$ is a polynomial.

Assume that $a_d(0) \neq 0$ and that $P(z, 0)$ has no zeros with a multiplicity higher than 1. That is, $P(z, 0)$ has d independent roots: $\lambda^{(1)}, \ldots, \lambda^{(d)}$.

Theorem 3.2. There exists an open disk D, containing 0, and d analytic functions, $f^{(1)}, \ldots, f^{(d)}$, such that:

(i) $P(f^{(k)}(\epsilon), \epsilon) = 0, \epsilon \in D$
(ii) $f^{(k)}(0) = \lambda^{(k)}$
(iii) $P(\lambda, \epsilon) = 0, \epsilon \in D \Rightarrow \lambda = f^{(k)}(\epsilon)$, for some k.

Note that f_k are indexed functions, and not necessarily branches of the same globally analytic function. It is true that when $P(z, \epsilon)$ is not simultaneously reducible in both z and ϵ the zeros are all branches of a single globally analytic function of ϵ, however it isn’t necessary to know that here.

Proof. In appendix.

Issues can crop up with the theorem above; specifically, if $P(z, 0)$ has a repeated zero. But before dealing with higher order roots we need a few more tools.

Theorem 3.3. If $P(z, \epsilon)$ is an irreducible polynomial in z and ϵ, then all of the double roots of P are isolated in the ϵ-plane. That is, if for some value ϵ_0, $P(z, \epsilon_0)$ has a double root, then there exists $\delta > 0$ such that when $|\epsilon - \epsilon_0| < \delta$, $P(z, \epsilon)$ does not have a double root in z.

Proof. In appendix.

Theorem 3.4. In the neighborhood of a zero of $P(z, \epsilon)$ of multiplicity $s > 1$, the zeros take the form $f^{(j)}(\epsilon) = \sum_{n=-\infty}^{\infty} A_n \omega^{nH} \epsilon^n$, where $H < s$. Specifically, the zeros are branches of one or more H-valued global analytic functions, with the given Puiseux series expansion, such that $\sum H_i = s$.

Proof. In appendix.

Notice that the only new case that this last theorem applies to are repeated roots. We’ve continued to assume that $a_d(\epsilon) \neq 0$.

The reason the ‘H_i’s’ have been introduced is to deal with the possibility that a multiple root may not permute all of the branches of the function. For example, it may be the case that $\lambda^{(1)}(0) = \lambda^{(2)}(0) = \lambda^{(3)}(0) = \lambda^{(4)}(0)$, but that looping around $\epsilon = 0$ only permutes $\lambda^{(1)}(\epsilon)$ and $\lambda^{(3)}(\epsilon)$, in which case $H_1 = 2$, $H_2 = 1$, and $H_3 = 1$.

3.1. A note on the analyticity of the characteristic polynomial

In the section above it was assumed that the polynomial $P(z, \epsilon)$ is a polynomial with respect to both z and ϵ. Yet a quick look at U reveals that this may not necessarily be the case for the characteristic polynomial, since U contains entries of $O(\epsilon)$. However, it can be shown that for the situation being considered in this write-up $C(z, \epsilon) = |U(\epsilon) - zI|$ is always a polynomial with respect to ϵ. In fact, it is affine with respect to ϵ.

Theorem 3.5. Assume that U is a time step matrix as described so far. That is, there is a left and right side and these are connected only through a hub vertex with N edges where the reflection and transmission coefficients are $r = -1 + \frac{2}{N}$ and $t = \frac{2}{N}$. Then $C(z, \epsilon) = |U - zI|$ is an affine polynomial of $\epsilon = \frac{1}{N}$ and can be written $C(z, \epsilon) = C_0(z) + \epsilon f(z)$.

Proof. The proof of this is in the appendix, in section 9.2.

Clearly, $C(z, \epsilon) = C_0(z) + \epsilon f(z)$ can never be factored into two polynomials in z and ϵ. The roots of an irreducible polynomial (such as this) can always be expressed as a single globally analytic function. An interesting consequence of this (not essential to this paper) is that while looping ϵ around zero may not permute all of the zeros, there is always a path through the ϵ-plane which does.

For example, the for zeros of the Grover graph are $\lambda(\epsilon) = \pm \sqrt{1 - 2\epsilon \pm 2i\sqrt{\epsilon - \epsilon^2}}$. Looping around $\epsilon = 0$ switches the sign on the inner ‘\pm’ (i.e., $-2i\sqrt{\epsilon - \epsilon^2} \leftrightarrow 2i\sqrt{\epsilon - \epsilon^2}$), thereby permuting the zeros in pairs. So, $H_1 = H_2 = 2$. However, a loop around $\epsilon = \frac{1}{2}$ switches the sign on the outer ‘\pm’, so each branch of the function is connected to each of the others ($\lambda(\epsilon)$ is globally analytic).

3.2. Important points

- If $P(z, \epsilon)$ is a polynomial in both z and ϵ and $P(\lambda_0, 0) = 0$, then the zeros in the z-plane are functions of the form $\lambda^{(0)}(\epsilon) = \sum_{n=-\infty}^{\infty} A_n(\epsilon^{2n}) e^{\frac{j}{N}}$ where $H \leq \deg(\lambda_0, P(z, 0))$.
- For a star graph as described in section 2, the characteristic polynomial of the time step operator is a polynomial in z and an affine polynomial in ϵ. That is; it takes the form $C(z, \epsilon) = C_0(z) + \epsilon f(z)$, where $C_0(z)$ is the characteristic polynomial of U_0 and $f(z)$ is some polynomial in z. $\deg(C_0) > \deg(f)$.

4. Pairing

In the last section it was seen that the zeros, $\lambda^{(k)}$, of a polynomial with coefficients that are polynomials of ϵ take the form

$$
\lambda^{(k)}(\epsilon) = \sum_{j=-\infty}^{\infty} A_j \omega^j \epsilon^j
$$

and these eigenvalues are grouped together into sets of size H which permute when ϵ loops around zero. For any given eigenvalue of U_0 there can be more than one of these sets, and they may have different sizes. When the polynomial in question is the characteristic
polynomial of the time step operator of a quantum walk, \(C(z, \epsilon) = a_0(\epsilon) + a_1(\epsilon)z + \cdots + a_{d-1}(\epsilon)z^{d-1} + \epsilon^d \), then some new restrictions are brought into play.

The perturbation is assumed to be set up in such a way that for some path in the \(\epsilon \)-plane starting at \(\epsilon = 0 \) \(\mathbf{U} \) is unitary and along this path \(|\lambda^{(k)}(\epsilon)| = 1, \forall k \). In a star graph \(\mathbf{U} \) is unitary for all positive integer values of \(N \). Since \(\epsilon = \frac{1}{N} \) this path is along the positive real axis in the \(\epsilon \)-plane.

Theorem 4.1. The eigenvalues, \(\lambda \), of the matrix for a quantum walk, \(\mathbf{U} \), with a characteristic polynomial that is a polynomial in both \(\lambda \) and \(\epsilon \), can only take the form of

\[
\lambda(\epsilon) = \sum_{j=0}^{\infty} A_j \epsilon^j
\]
or

\[
\lambda(\epsilon) = \sum_{j=0}^{\infty} (\pm 1)^j A_j \left(\sqrt{\epsilon} \right)^j.
\]

Proof. Since \(\mathbf{U}_0 \) is unitary, \(\lim_{\epsilon \rightarrow 0} \lambda^{(k)}(\epsilon) \) exists and is finite (\(|\lambda^{(k)}(0)| = 1 \), for all \(k \)). Therefore the Puiseux series for \(\lambda^{(k)}(\epsilon) \) has no negative terms.

For a particular eigenvalue of \(\mathbf{U}_0 \), \(\lambda_0 \), with multiplicity at least \(H \), the various branches satisfy

\[
\lambda^{(k)}(\epsilon) - \lambda_0 = \sum_{j=1}^{\infty} A_j \omega^j \epsilon^j \sqrt{\epsilon^j}.
\]

We can explore how the \(H \) branches, \(\lambda^{(1)}(\epsilon), \ldots, \lambda^{(H)}(\epsilon) \), separate from \(\lambda_0 \) by looking at the angle (phase difference) between two branches, \(\lambda^{(k)}(\epsilon) - \lambda_0 \) and \(\lambda^{(j)}(\epsilon) - \lambda_0 \). If \(\Delta \) is the angle between two complex numbers, \(x \) and \(y \), then \(|x| |y| \cos \Delta = \Re \langle x|y \rangle \). So,

\[
\cos \Delta = \frac{\Re \left[|A_1|^2 \omega^{k-j} + O\left(\epsilon^{\frac{1}{2}} \right) \right]}{|A_1|^2 + O\left(\epsilon^{\frac{1}{2}} \right)}
\]

\[
\Rightarrow \cos \Delta = \frac{\Re \left[|A_1|^2 \omega^{k-j} \right]}{|A_1|^2}
\]

\[
\Rightarrow \cos \Delta = \frac{2\pi}{H} (k-j) + O\left(\epsilon^{\frac{1}{2}} \right)
\]

\[
\Rightarrow \Delta = \arccos \left(\frac{2\pi}{H} (k-j) + O\left(\epsilon^{\frac{1}{2}} \right) \right)
\]

\[
\Rightarrow \Delta = \frac{2\pi}{H} (k-j) + O\left(\epsilon^{\frac{1}{2}} \right).
\]

So, the angle between any two branches is at least \(\frac{2\pi}{H} \). Indeed, the \(H \) directions that the different zeros take as they move away from \(\lambda_0 \) are initially evenly spaced. The only effect of
\(\epsilon\) taking different paths from zero is to rotate every \(\lambda^{(k)}(\epsilon) - \lambda_0\). If there is a path that maintains the unitarity of \(U(\epsilon)\), then for values of \(\epsilon\) along that path \(|\lambda^{(k)}(\epsilon)| = 1\). But for small values of \(\epsilon\) the unit circle is essentially a line. Specifically, if \(\lambda^{(k)}(\epsilon)\) are restricted to the unit circle and \(\lambda^{(k)}(\epsilon) - \lambda_0\) are evenly spaced, then either the angle between \(\lambda^{(k)}(1) - \lambda_0\) and \(\lambda^{(k)}(2) - \lambda_0\) must be \(\pi\), or \(\lambda(\epsilon)\) is single-valued. Therefore \(H = 1\) or \(H = 2\).

This theorem does not say that the roots of the characteristic polynomial have degree at most two. Indeed, the Bolo graph example in section 9.1 is has a degree 3 root at \(z = -1\). This theorem is stating that whatever the degree of the root, looping around \(\epsilon = 0\) permutes those roots at most in pairs.

Definition. Two eigenvalues are said to be ‘paired’ when a small loop around 0 in the \(\epsilon\)-plane causes them to switch (\(H = 2\)). As seen above, paired eigenvalues vary on the order of \(O(\sqrt{\epsilon})\), and non-paired eigenvalues vary by \(O(\epsilon)\). In addition, the associated eigenvectors and eigenprojections, \(P\), are also said to be paired.

Theorem 4.2. \(\|P^{(k)}(\epsilon) - P^{(k)}(0)\| = O(\sqrt{\epsilon})\) and \(\|V^{(k)}(\epsilon)\| = \|V^{(k)}(0)\| + O(\sqrt{\epsilon})\).

Proof. The proof of this is included in the appendix.

In that proof it was shown that \(P^{(k)}(\epsilon)\) can be expressed as a power series in \(\sqrt{\epsilon}\). This means that since we can define \(V^{(k)}\) using these projections, not only do we find that the eigenvectors can likewise be written as power series in \(\sqrt{\epsilon}\), but we automatically gain normalization: \(\|V^{(k)}V^{(k)}\| = 1\), \(\forall \epsilon\). What follows barely deserves to be a theorem, but it needs to be emphasized.

Theorem 4.3. If the vector \(|W\rangle\) is some combination of eigenvectors of \(U\), \(|W\rangle = \sum_j a_j V^{(j)}\rangle\) where the \(a_j\) are independent of \(\epsilon\), then \(|W\rangle = |W_0\rangle + O(\sqrt{\epsilon})\), where \(|W_0\rangle \equiv \lim_{\epsilon \to 0} |W\rangle\).

Proof. Since all eigenprojections can be written as power series in \(\sqrt{\epsilon}\), eigenvectors with distinct eigenvalues can as well and it follows that a linear combination of such eigenvectors can also be written as a power series in \(\sqrt{\epsilon}\). \(|W\rangle = \sum_{j=0}^\infty (\sqrt{\epsilon})^j |W_j\rangle = |W_0\rangle + O(\sqrt{\epsilon})\).

An extremely useful consequence of these theorems is that eigenvectors of \(U_0\), which are easy to find, can be used as approximations of the exact eigenvectors of \(U\), which are difficult to find, are variable, and needlessly complex.

Theorem 4.4. Define \(U|V^{(j)}(\epsilon)\rangle = \lambda^{(j)}(\epsilon)|V^{(j)}(\epsilon)\rangle\) for all \(j\), \(S = \text{span} \{|V^{(1)}(0)\rangle, \cdots, |V^{(k)}(0)\rangle\}\), and \(P_S\) as the projection operator onto \(S\).

If \(|u\rangle \in S\), then \(\forall m\)

(i) \(P_S U_m^0 |u\rangle = 0\)

(ii) \(P_S U_m |u\rangle = O(\sqrt{\epsilon})\).

That is, \(|u\rangle \in S\), then \(U_0^m |u\rangle\) is also in \(S\), and \(U_m |u\rangle\) is almost entirely in \(S\).

Proof. The proof of this theorem is trivial, but takes up a lot of space. It can be found in the appendix.
The essential idea behind this theorem is that if an initial state starts in an eigenstate, or collection of eigenstates, of \(U_0 \), then it will approximately stay there under arbitrarily many applications of \(U \). This means that, when setting up a search, only one eigenspace/eigenvalue of \(U_0 \) needs to be considered. This keeps the situation much simpler.

4.1. Necessary and sufficient conditions for pairing

In this section it will be shown that the eigenvectors of \(U_0 \) can be disjointly divided up into ‘constant eigenvectors’ and ‘active eigenvectors’.

Theorem 4.5 The three-case theorem. If \(\lambda_0 \) is a root of \(C_0(z) \) with multiplicity \(s \), then only one of the following cases applies to the ‘\(\lambda_0 \) family’ of roots of \(C(z, \epsilon) \), \(\{ \lambda^{(1)}(\epsilon), \cdots, \lambda^{(s)}(\epsilon) \} \), where \(\lambda^{(k)}(0) = \lambda_0, \forall k \).

(i) \(\lambda^{(k)}(\epsilon) = \lambda_0, \forall \epsilon \). That is, all of the roots are constant.

(ii) \(\lambda^{(k)}(\epsilon) = \lambda_0, \) for all but one value of \(k \). This root takes the form \(\lambda^{(k)}(\epsilon) = \lambda_0 e^{\epsilon \delta} + O(\epsilon^2) \).

(iii) \(\lambda^{(k)}(\epsilon) = \lambda_0, \) for all but two values of \(k \). These two are paired and take the form \(\lambda_{+} = \lambda_0 e^{\epsilon i c \sqrt{\epsilon}} + O(\epsilon) \).

Proof. From theorem 3.5, the characteristic equation can be written \(C(z, \epsilon) = C_0(z) + \epsilon f(z) \). Making the substitution \(z = \lambda_0 + \delta \) this becomes \(0 = C(\lambda_0 + \delta, \epsilon) = \sum_{j=0}^{s} a_j \delta^j + \epsilon \sum_{j=0}^{s} b_j \delta^j \), where \(t = \text{deg}(\lambda_0, f) \). If \(s > t \), then

\[
0 = \sum_{j=0}^{s} a_j \delta^j + \epsilon \sum_{j=0}^{s} b_j \delta^j \\
\Rightarrow \epsilon \sum_{j=0}^{s} b_j \delta^j = -\sum_{j=0}^{s} a_j \delta^j \\
\Rightarrow \epsilon \left(b_t \delta^t + O(\delta^{t+1}) \right) = -a_s \delta^s + O(\delta^{s+1}) \\
\Rightarrow \epsilon = -\frac{a_s}{b_t} \delta^{s-t} + O(\delta^{s+t+1}) \\
\Rightarrow \delta = O(\epsilon^{s-t})
\]

However, by theorem 4.1 we know that unitarity implies \(s - t \leq 2 \). Therefore, if \(\lambda_0 \) is a zero of \(C_0(z) \) with multiplicity \(s \), then it must also be a zero of \(f(z) \) with a multiplicity of at least \(s - 2 \). This leads to three cases:

(i) If \(\text{deg}(\lambda_0, f) \geq s \), then \(0 = C(z, \epsilon) = (z - \lambda_0)^s (g(z) + \epsilon h(z)) \), where \(g(\lambda_0) \neq 0 \). Here the entire \(\lambda_0 \) family is identically equal to \(\lambda_0 \), and has no \(\epsilon \) dependence.

(ii) If \(\text{deg}(\lambda_0, f) = s - 1 \), then \(0 = C(z, \epsilon) = (z - \lambda_0)^{s-1} (g(z) + \epsilon h(z)) \), where \(g(\lambda_0), h(\lambda_0) \neq 0 \). In this case \(s - 1 \) of the members of the \(\lambda_0 \) family are constant, and the last root is a solution of \(0 = (z - \lambda_0)g(z) + \epsilon h(z) = (g(\lambda_0)\delta + O(\delta^2)) + \epsilon (h(\lambda_0) + O(\delta)) \). But this implies that \(\delta = O(\epsilon) \).

(iii) If \(\text{deg}(\lambda_0, f) = s - 2 \), then \(0 = C(z, \epsilon) = (z - \lambda_0)^{s-2} (g(z) + \epsilon h(z)) \), where \(g(\lambda_0), h(\lambda_0) \neq 0 \). Therefore, all but two members of the \(\lambda_0 \) family are constant, and the remaining two are of the form \(\lambda_0 + O(\sqrt{\epsilon}) \). But by theorem 3.4, and the definition of pairing, an eigenvalue of this form can only show up with another eigenvalue to which it
is paired. It follows that, since there are no other possible eigenvalues to pair with, the two non-constant members of the \(\lambda_0 \) family must be paired with each other.

Since there is only one paired set of eigenvectors for a given \(\lambda_0 \), we can label them \(|V^+\rangle\) and \(|V^-\rangle\), where

\[
\mathbf{U}|V^\pm\rangle = \lambda_0 e^{ \pm i \sqrt{\epsilon} } + O(\epsilon) |V^\pm\rangle = \lambda_0 e^{ \pm i \sqrt{\epsilon} } + O(\epsilon).
\]

In the next few theorems the following properties will be important.

Theorem 4.6. Assume that \(|V\rangle \equiv |V_0\rangle + \sqrt{\epsilon}|V_1\rangle + O(\epsilon), |W\rangle \equiv |W_0\rangle + \sqrt{\epsilon}|W_1\rangle + O(\epsilon),

\[
\langle V|V\rangle = \langle W|W\rangle = 1 \quad \forall \epsilon, \quad \text{and} \quad \langle V|W\rangle = 0 \quad \forall \epsilon,
\]

then

\[
\begin{align*}
(i) \quad & \langle V_0|V_0\rangle = 1 \\
(ii) \quad & \langle V_0|V_1\rangle + \langle V_1|V_0\rangle = 0 \\
(iii) \quad & \langle V_0|W_0\rangle + \langle V_1|W_1\rangle = 0.
\end{align*}
\]

Proof. These three results are immediate, upon inspection.

Theorem 4.7. Paired eigenvectors 'straddle the hub'. That is, if \(|V\rangle\) is a paired eigenvector, then \(|V_0\rangle\) has both a left and right side component.

Proof. Paired eigenvectors have eigenvalues that always take the form

\[
\lambda = \lambda_0 e^{ i \sqrt{\epsilon} } + O(\epsilon).
\]

\[
\langle V|U_1|V\rangle = \lambda \langle V|V\rangle = \lambda
\]

\[
\Rightarrow \left(|V_0\rangle + \sqrt{\epsilon} |V_1\rangle \right) \left(< U_0 + \sqrt{\epsilon} U_1 | | V_0\rangle + \sqrt{\epsilon} | V_1\rangle \right)
\]

\[
+ O(\epsilon) = \lambda_0 + i \epsilon \lambda_0 \sqrt{\epsilon} + O(\epsilon)
\]

\[
\Rightarrow \left(|V_0\rangle + \sqrt{\epsilon} \left(\lambda_0 |V_0\rangle + \lambda_0 \langle V_0 | V_1\rangle + \langle V_0 | U_0 | V_0\rangle \right) \right)
\]

\[
= \lambda_0 + i \epsilon \lambda_0 \sqrt{\epsilon}
\]

\[
\Rightarrow \sqrt{\epsilon} \left(\lambda_0 |V_0\rangle + \langle V_0 | V_1\rangle \right) + \langle V_0 | U_1 | V_0\rangle = i \epsilon \lambda_0 \sqrt{\epsilon}
\]

\[
\Rightarrow \lambda_0 |0\rangle + \langle V_0 | U_1 | V_0\rangle = i \epsilon \lambda_0
\]

\[
\Rightarrow \langle V_0 | U_1 | V_0\rangle = i \epsilon \lambda_0.
\]

Since \(U_0 \), the \(O(\sqrt{\epsilon}) \) terms of \(U \), is only involved in the transmission between the left and right sides, in order for \(\langle V_0|U_0|V_0\rangle \) to be non-zero, \(|V_0\rangle\) must show up on both sides. That is; if \(|V_0\rangle\) was entirely supported on the right side, then \(|U_0|V_0\rangle\) would be entirely supported on the left side.

Theorem 4.8. Assume that the right side \(\lambda_0 \)-eigenspace of \(U_0 \) is D dimensional.

1. If the \(\lambda_0 \)-eigenspace of \(U_0 \) is bound in \(G \), then the \(\lambda_0 \)-eigenspace of \(U \) is D dimensional and all of the associated eigenvectors are constant. This is case (i) of the three case theorem.
2. If the \(\lambda_0 \)-eigenspace of \(U_0 \) is in contact with the hub vertex, then the right sided \(\lambda_0 \)-eigenspace of \(U \) is D-1 dimensional and the D-1 associated eigenvectors are constant.
and bound in G. This leaves one eigenvector which is non-constant in \(\epsilon \), and is in contact with the hub vertex. This is either case (ii) or case (iii) of the three case theorem.

Proof. The first result is trivial. If an eigenvector is bound in G, then varying \(\epsilon \) (which only affects reflection and transmission across the hub vertex) can’t have any impact on it. So, for eigenvectors bound in G, \(U|V\rangle = U_0|V\rangle = \lambda_0|V\rangle \). The contra-positive is likewise clear; if an eigenvector is non-constant, then it must be in contact with the hub vertex.

The second result is far more hard won, and is included in the appendix.

In the proof of the above theorem (in the appendix), the left side was given a particular form; it consisted of the states \(|\text{in}\rangle \) and \(|\text{out}\rangle \), with \(U(|\text{out}\rangle) = e^{i\phi}|\text{lin}\rangle \). It may seem strange that a particular form for the left side can be used to say such general things about the right side. But keep in mind that what’s been shown is that a certain number of the right side \(\lambda_0 \) eigenvectors are bound in G. Once we know that an eigenvector on the right is definitely not in contact with the hub vertex, then it doesn’t matter what the left side is doing.

This last theorem can be stated far more succinctly as,

Theorem 4.9. Excluding a special case, a right side eigenvector is constant and has a constant eigenvalue if and only if it is not in contact with the hub vertex.

That special case is \(\lambda_0^2 + e^{i\phi} = 0 \). When this happens the eigenvectors on each side are ‘balanced’, and there is no net flow of probability across the hub. In the Grover graph example, this happens when \(e^{i\phi} = -1 \), which means that all of the edges become identical to the marked edge. As a result, the quantum graph can be collapsed to just two states: \(|A\rangle = \frac{1}{\sqrt{N}}\sum_j |0, j\rangle \) and \(|B\rangle = \frac{1}{\sqrt{N}}\sum_j |j, 0\rangle \). Without two sides, there is no net flow. In general, even though there may not be a further collapsing of the graph, when \(\lambda_0^2 + e^{i\phi} = 0 \) there is no net flow of probability across the hub.

Definition. This unique non-constant member of the \(\lambda_0 \) family of eigenvectors, \(|w\rangle \), depends on the left side. But while \(|w\rangle \) may depend on \(\phi \) and \(\epsilon \), \(|w_0\rangle \equiv \lim_{\epsilon \rightarrow 0} |w\rangle \) does not. It is unique so long as \(\lambda_0^2 \neq e^{i\phi} \) (so long as there is no pairing). \(|w_0\rangle \) is precisely the \(\lambda_0 \) eigenvector of \(U_0 \) lost when moving from the \(\epsilon = 0 \) case to the \(\epsilon \neq 0 \) case. This \(|w_0\rangle \) is a uniquely defined right side \(\lambda_0 \) eigenvector of \(U_0 \), and it is called the ‘right side active \(\lambda_0 \) eigenvector’. An essentially identical proof demonstrates the existence of ‘left side active \(\lambda_0 \) eigenvectors’.

Definition. All of the other \(\lambda_0 \) eigenvectors are bound in G, and so are called “bound \(\lambda_0 \) eigenvectors”. Bound eigenvectors are independent of \(\epsilon \), or any structure on the far side of the hub. If the \(\lambda_0 \)-eigenspace of \(U_0 \) is \(D \)-dimensional overall, then the space of bound \(\lambda_0 \) eigenvectors of \(U \) will be \(D, D-1, \) or \(D-2 \) dimensional depending on whether the left and right sides have active eigenvectors.

Definition. The ‘active subspace’ is the span of all of the active eigenvectors of \(U_0 \), for all eigenvalues. Since it is the compliment of the span of all of the bound eigenvectors, and each non-constant eigenvector is perpendicular to every bound eigenvector, every non-constant eigenvector is contained in the the active subspace.
Theorem 4.10 (The fundamental pairing theorem). The λ_0-eigenspace is in contact with both the left and right sides of the hub vertex if and only if there exists paired vectors $|V^\pm\rangle$ with eigenvalues of the form $\lambda_0 e^{\pm i\sqrt{c}} + O(e)$.

Proof. The proof of this is somewhat involved and so is included in the appendix. Among the useful results of the Fundamental Pairing Theorem is the fact that U can be expressed in the following form:

$$U\begin{pmatrix} \ell_0 \\ \tau_0 \end{pmatrix} = \lambda_0 \begin{pmatrix} \cos(c\sqrt{c}) & i \sin(c\sqrt{c}) \\ i \sin(c\sqrt{c}) & \cos(c\sqrt{c}) \end{pmatrix} \begin{pmatrix} \ell_0 \\ \tau_0 \end{pmatrix} + O(e).$$

(11)

And, with correctly chosen complex phases, the paired eigenvectors take the form:

$$|V^\pm\rangle = \frac{|\ell_0\rangle \pm |\tau_0\rangle}{\sqrt{2}} + O(\sqrt{c}).$$

(12)

So, on each side of the hub vertex we have a unique active eigenvector and paired eigenvectors are just combinations of the active eigenvectors from both sides, up to an error of $O(\sqrt{c})$. This makes the situation pretty simple, and we can ignore the bound states entirely.

4.2. The efficiency of searches using paired eigenvectors

In order to execute a search in $O(\sqrt{N})$ it is necessary to use paired eigenspaces, since this is where changes of $O(\sqrt{c})$ can take place. The question addressed in this section is, given an initial state on one side of the hub vertex, how much of it can be transferred to the other? That is, what is the lower bound on the probability of a successful measurement under ideal conditions? Happily, the answer is $1 - O(\sqrt{c})$.

In the course of proving the fundamental pairing theorem an important additional fact was also proven, and is worth noting separately.

Theorem 4.11. Paired eigenvectors are always evenly divided across the hub vertex. That is, if P is a projection onto either the left or right side and $|V^\pm\rangle$ is a paired eigenvector, then $|\langle V^\pm | P | V^\pm \rangle| = \frac{1}{2}$.

Proof. As established in the fundamental pairing theorem, $|V^\pm\rangle = \frac{1}{\sqrt{2}}(|\ell_0\rangle \pm |\tau_0\rangle)$. For the left side projector,

$$|\langle V^\pm | P | V^\pm \rangle| = \frac{1}{2} \left| \left(\langle \ell_0 \pm \tau_0 | P | \ell_0 \pm \tau_0 \rangle \right) \right|$$

$$= \frac{1}{2} \left| \left(\langle \ell_0 | \ell_0 \rangle \pm \langle \tau_0 | \tau_0 \rangle \right) \right|$$

$$= \frac{1}{2} \left| \langle \ell_0 | \ell_0 \rangle + 0 \right|$$

$$= \frac{1}{2}.$$
Theorem 4.12. If the paired eigenvalues are of the form \(\lambda^2 = \lambda_0 e^2 ic\sqrt{\epsilon} + O(\epsilon) \), then
\[
\begin{pmatrix}
\ell_0 \\
|t_0|
\end{pmatrix}
\begin{pmatrix}
\cos (c\sqrt{\epsilon}) & i \sin (c\sqrt{\epsilon}) \\
i \sin (c\sqrt{\epsilon}) & \cos (c\sqrt{\epsilon})
\end{pmatrix}
\begin{pmatrix}
\ell_0 \\
|t_0|
\end{pmatrix} + O(\epsilon).
\]

Proof. In the last subsection it was established that
\[
\begin{pmatrix}
\ell_0 \\
|t_0|
\end{pmatrix}
\begin{pmatrix}
\cos (c\sqrt{\epsilon}) & i \sin (c\sqrt{\epsilon}) \\
i \sin (c\sqrt{\epsilon}) & \cos (c\sqrt{\epsilon})
\end{pmatrix}
\begin{pmatrix}
\ell_0 \\
|t_0|
\end{pmatrix} + O(\epsilon).
\]
From which it follows that,
\[
\begin{aligned}
\langle \ell_0 | U | t_0 \rangle \\
= \langle \ell_0 | U_0 | t_0 \rangle + \langle \ell_0 | U_1 | t_0 \rangle \sqrt{\epsilon} + O(\epsilon) \\
= \lambda_0 \langle \ell_0 | t_0 \rangle + \langle \ell_0 | U_1 | t_0 \rangle \sqrt{\epsilon} + O(\epsilon) \\
= 0 + \langle \ell_0 | U_1 | t_0 \rangle \sqrt{\epsilon} + O(\epsilon) \\
= \langle \ell_0 | U_1 | t_0 \rangle \sqrt{\epsilon} + O(\epsilon)
\end{aligned}
\]
\[
\Rightarrow i \lambda_0 \sin (c\sqrt{\epsilon}) + O(\epsilon) = \langle \ell_0 | U_1 | t_0 \rangle \sqrt{\epsilon} + O(\epsilon)
\]
\[
\Rightarrow i \lambda_0 \sqrt{\epsilon} + O(\epsilon) \Rightarrow c = -i \lambda_0 \langle \ell_0 | U_1 | t_0 \rangle.
\]
Because \(1 = l^{2\pi} \) we can infer that \(c \) is real, and we can therefore use the somewhat simpler expression \(c = \langle \ell_0 | U_1 | t_0 \rangle \). Finally,
\[
c = \langle \ell_0 | U_1 | t_0 \rangle \\
= \langle \ell_0 | U_1 | 1, 0 \rangle \langle 1, 0 | t_0 \rangle \\
= 2 \langle \ell_0 | U_1 | 1, 0 \rangle \langle 1, 0 | t_0 \rangle \\
= 2 \langle \ell_0 | U_1 | 1, 0 \rangle \langle 1, 0 | t_0 \rangle.
\]

Theorem 4.13. \(U^m \), where \(m = \left\lfloor \frac{\pi}{2(\sqrt{\epsilon} + 1)} \right\rfloor \), exchanges the left and right \(\lambda_0 \) active eigenvectors, \(\ell_0 \) and \(t_0 \), almost completely (to within \(O(\sqrt{\epsilon}) \)).

Proof. To show that \(U^m \) interchanges \(\ell_0 \) and \(t_0 \) it suffices to show that \(l(\tau_0 U^m) l(\tau_0) = 1 + O(\sqrt{\epsilon}) \). Note that \(m = \left\lfloor \frac{\pi}{2\sqrt{\epsilon}} \right\rfloor = \frac{\pi}{2\sqrt{\epsilon}} + O(1) \), since the floor function rounds down by at most 1.
\[
\begin{aligned}
\langle \ell_0 | U^m | \ell_0 \rangle \\
= \frac{1}{2} \left| \langle V^+ | - \langle V^- | U^m (| V^+ \rangle + | V^- \rangle) \right| \\
= \frac{1}{2} \left| \langle V^+ | - \langle V^- | U^m (| V^+ \rangle + | V^- \rangle) + O(\sqrt{\epsilon}) \\
\]

So, when \(m = \left\lfloor \frac{\sqrt{N}}{2} \right\rfloor \), \(\langle \tau_0 | U_{m} | \ell_0 \rangle = 1 + O(\sqrt{e}) \). This means that searches with \(|\ell_0\rangle \) as the initial state are almost guaranteed to succeed, and all of the work that goes into setting up the search: choosing an initial state, knowing what to look for afterward, and figuring out how many times to iterate \(U \), has now been pushed back to finding the active eigenvectors \(|\ell_0\rangle \) and \(|\ell_0\rangle \).

Even this is relatively straightforward. \(|\ell_0\rangle \) can be found by looking for the one eigenvector of \(P_{\mathcal{U}} U_{0} \) with eigenvalue \(\lambda_0 \) that is in contact with the hub vertex. This can be done in a few ways. For example, by removing each bound \(\lambda_0 \) eigenvector, or by comparing the \(\lambda_0 \)-eigenspaces of \(U_0 \) and a quantum graph with the hub vertex’s behavior replaced with something simple, like \(U|1, 0\rangle = 0 \). Trivially, if the right side \(\lambda_0 \)-eigenspace is one dimensional and in contact with the hub, then the \(\lambda_0 \) eigenvector is the active eigenvector.

The value of \(N \) or \(e \), and the entire left side, are unimportant to determining the active eigenvectors.

4.3. Best choice selection and the best time bound

The bigger \(c \) is the faster a search will proceed. So, when the eigenvalue can be selected (when the left side is such that it can be tuned to any given eigenvalue), the best choice is that eigenvalue with the largest value of \(c \). The question remains: how good will the best choice be?

The specificity of the star graph described in section 2 allows us to be more precise about the value of \(c \). Regardless of the value of \(\phi \), \(\langle \phi | U_{m} | \ell_0 \rangle \) is not being able to bound \(c \) from below means not being able to bound \(m \) from above. While we can’t bound \(c \) from below in general, we find that we can bound the largest value from below.

Define \(d \) to be the number of right side active eigenvectors, denoted \(|\ell_0\rangle \) for \(j = 1, \ldots, d \). These eigenvectors have eigenvalues \(\lambda_0 e^{i\phi_j} \). While there is no lower bound for all of these, we can construct a lower bound for at least some of them.
Theorem 4.14. For left side eigenvectors of the form $|\ell\rangle = |\ell\rangle_l + |\ell\rangle_r$, if d is the number of right side active eigenvectors, then $\sum_{j=1}^{d} (e^{(j)})^2 = 2$ and there exists at least one j such that $e^{(j)} \geq \frac{\sqrt{2}}{d}$.

Proof. $(1, 0)$ is adjacent to the hub vertex and therefore $|1, 0\rangle$ is entirely contained in the active subspace. It follows that $1 = \sum_{j=1}^{d} |1, 0\rangle \langle \ell|^{2} = \frac{1}{2} \sum_{j=1}^{d} (e^{(j)})^2$. Since $E \left[(e^{(j)})^2 \right] = \frac{2}{d}$, we know that there is at least one j such that $(e^{(j)})^2 \geq \frac{2}{d}$, which implies that $e^{(j)} \geq \frac{\sqrt{2}}{d}$.

Definition. The last theorem shows that there is at least one eigenvalue such that $m \leq \frac{\pi}{2N} \sqrt{dN}$. This is the ‘best time bound’ on the star graph. If the eigenvalue with the highest value of c is used, then the search will require this many time steps at most.

$$\text{best time bound} = \frac{\pi \sqrt{dN}}{2 \sqrt{2}} \leq \frac{\pi \sqrt{|G| + 2N}}{2 \sqrt{2}},$$

(13)

where $|G|$ is the number of states in G. Examples can be constructed where there is an arbitrarily small value of $e^{(j)} = \sqrt{2} \left[|1, 0\rangle \langle \ell|^{j} \right]$ for some values of j, but not for all. So long as there is a bound on the size of G, there is at least one eigenvalue where $e^{(j)}$ can be bound from below, and the corresponding number of required time steps is bound from above.

4.4. Important points

For a star graph, with $\epsilon = \frac{1}{N}$:

- For a given eigenspace of U_0 on either side, there is a unique vector called the ‘active eigenvector’ that is dependent on ϵ and is in contact with the hub. All other eigenvectors in the same eigenspace are bound (not in contact with the hub) and are constant.
- The restriction to the unit circle requires that the roots of the characteristic polynomial take the form $\lambda(\epsilon) = \sum_{j=0}^{\infty} A_j e^j$ or $\lambda_{\pm}(\epsilon) = \sum_{j=0}^{\infty} (\pm 1)^j A_j (\sqrt{\epsilon})^j$. In the latter case the roots are said to be ‘paired’.
- There is a pairing if and only if the right and left side both have an active eigenvector with the same eigenvalue. In the case that the eigenvalues of either side of the graph can be controlled, then a matching eigenvalue needs to be ‘dialed in’.
- The eigenvalues and eigenvectors of U vary from those of U_0 by $O(\sqrt{\epsilon})$. There might have been issues when an eigenspace of U_0 is degenerate, but we can uniquely specify eigenvectors of U_0 in these degenerate spaces by taking the limit of the non-degenerate eigenvectors of U as $\epsilon \to 0$.
- When there is no pairing these ‘constructed by limit’ eigenvectors of U_0 are the active eigenvectors. In the case that there is a pairing we find that the paired eigenvectors, $|V^{\pm}\rangle$, of U are equal to a very specific combination of the right and left active eigenvectors: $\frac{1}{\sqrt{2}} \left(|\ell\rangle_l \pm |\ell\rangle_r \right) + O(\sqrt{\epsilon})$.
- Paired eigenvalues can be expressed as $\lambda_{\pm} = \lambda_0 e \pm ic \sqrt{\epsilon} + O(\epsilon)$, where $c = \left| \langle \ell|U_l|\ell\rangle \right| = \lim_{\epsilon \to 0} \frac{1}{\sqrt{\epsilon}} \left| \langle \ell_l|U_l|\ell\rangle \right|$.
- The optimal number of time steps for a search is $m = \left| \frac{\pi}{\sqrt{2N}} \right|$.
- For $l_0 = l_{out} + e^{i\phi}l_{in}$, we find that there is always a value of ϕ such that the paired eigenvalues produced will have $c > \sqrt{d^2}$, where d is the number of right side active eigenvectors. For this value of c, $m < \frac{\pi}{2}\sqrt{\frac{d}{m}}$.
- After m time steps the probability of the state being either in G or on the edge between G and the hub is $1 - O(\sqrt{c})$.

5. Tolerances

For any number of reasons the left and right eigenvalues may not exactly match. However, the pairing doesn’t break immediately, but instead fades away quickly as the disagreement between the eigenvalues increases. The eigenvalues don’t have to be exactly equal in order for a $O(\sqrt{N})$ search, but they do have to be nearly equal by an amount dictated by ϵ.

The results in this section are an extension of those in [20] and did not appear there. They rely heavily on the mathematics introduced in section 3.

5.1. Grover graph example revisited

This is exactly the same situation previously seen in section 2.1, but now we are allowing $e^{i\phi}$ to take values other than 1. The advantage of the Grover graph is that it is simple enough that it is exactly solvable, even with this generalization.

The characteristic polynomial is $C(z) = z^4 - (1 - 2c)(1 + e^{i\phi})z^2 + e^{i\phi}$.

The four eigenvalues, expressed as one global function, is

$$\lambda = \pm \sqrt{\frac{1}{2}(1 - 2c)}\left(e^{i\phi} + 1\right) \pm \sqrt{\left(\frac{e^{i\phi} - 1}{2}\right)^2 - \left(e^{i\phi} + 1\right)^2\left(c - c^2\right)},$$

where the ±’s are independent. In the original example, $\phi = 0$, so $\left(\frac{e^{i\phi} - 1}{2}\right)^2 = 0$ and looping ϵ around zero permutes pairs of eigenvalues. When $\phi = 0$, then to lowest order $\lambda = \pm 1 \pm \sqrt{\epsilon} + O(e^2) = \pm e^{i\epsilon} + O(e^2)$.

When $\phi \neq 0$ the characteristic polynomial no longer has a double zero when $\epsilon = 0$. We can still expand around $\epsilon = 0$, but we find that the power series is in ϵ, not $\sqrt{\epsilon}$.

$$\lambda = \begin{cases}
\pm e^{i\epsilon}\left(1 + i \cot\left(\frac{\phi}{2}\right)\epsilon\right) + O\left(e^2\right) \\
\pm e^{i\epsilon}\cos\left(\frac{\phi}{2}\right)\epsilon + O\left(e^2\right)
\end{cases} = \begin{cases}
\pm e^{i\epsilon}\cos\left(\frac{\phi}{2}\right)\epsilon + O\left(e^2\right) \\
\pm e^{i\epsilon}\cos\left(\frac{\phi}{2}\right)\epsilon + O\left(e^2\right)
\end{cases}. \quad (14)
$$

Clearly the pairing has been lost. However, the double zero required for pairing hasn’t vanished, merely moved. This new location is ϵ_0. To find it we set the discriminant equal to zero and solve for ϵ. In this particular case the discriminant is exactly what’s found under the inner radical, $D = (e^{i\phi} - 1)^2 - 4(e^{i\phi} + 1)^2\epsilon + 4(e^{i\phi} + 1)^2\epsilon^2$. We find immediately that

$$\epsilon_0 = \frac{1}{2} \pm \frac{1}{2}e^{i\phi} + e^{i\frac{\phi}{2}} = \frac{1}{2} \pm \frac{1}{2\cos\left(\frac{\phi}{2}\right)}.$$

We’re interested in the zero that corresponds to $\epsilon_0 |_{\phi=0} = 0$, and find that $\epsilon_0 = \frac{1}{2} \pm \frac{1}{2\cos\left(\frac{\phi}{2}\right)} = -\frac{1}{16}\phi^2 + O(\phi^4)$. Expanding λ as a power series in $\sqrt{\epsilon - \epsilon_0}$, we find can be done, the eigenvalues can now...
be written,
\[\lambda = \pm e^{i\phi} \pm i e^{i\phi} \sqrt{\cos\left(\frac{\phi}{2}\right) \sqrt{e - e_0} + O(e - e_0)} \]
\[= \pm e^{i\phi} e^{i2\phi} \sqrt{e - e_0} + O\left(\phi^2 \sqrt{e - e_0}, e - e_0\right). \] (15)

Notice that if |e| \gg |e_0|, then the quadratic behavior is recovered. This will be discussed in substantially more detail below.

There’s something subtle that happens with the eigenvectors here as well. When \(\phi = 0\), all four of the eigenvectors of \(U\) are evenly divided between the left and right sides, to within \(O\left(\sqrt{e}\right)\). That is, \(U\) has four eigenvectors and when \(\phi = 0\) the limit of all of them, as \(e \to 0\), are evenly divided between the two sides since all four are paired.

When \(\phi \neq 0\), \(U_0\) has four distinct eigenvalues: \(\{1, e^{i\phi}, -1, -e^{i\phi}\}\). Therefore, the four eigenvectors of \(U\), in the limit as \(e \to 0\), converge to two couples of vectors. Two on the left for \(\lambda_0 = e^{i\phi}, -e^{i\phi}\), and two on the right for \(\lambda_0 = 1, -1\).

Clearly there is a dramatic difference between these limits. This is a ‘twisting’ of the eigenvectors of \(U\) that occurs around a double zero. A careful reading of theorem 4.2 reveals that it says that eigenvectors are continuous when they have distinct eigenvalues. When an eigenvalue is degenerate this ‘continuity of eigenvectors’ becomes a ‘continuity of eigenspaces’. There are two degenerate eigenspaces when \(e = \frac{1}{2} - \frac{1}{2 \cos(\frac{\phi}{2})}\) (when \(\phi = 0\) these are the \(\lambda = \pm 1\) eigenspaces of the original graph). Picking either, the degenerate space turns into two paired eigenvectors as \(e\) moves away from this point, and it turns into two non-paired and single sided eigenvectors as \(\phi\) moves away from this point.

From either direction the two eigenvectors of \(U\) converge to the same degenerate eigen space. The fact that the vectors they converge to are different is unimportant.

5.2. Altering the graph

We know that eigenvalues can pair, and that their values vary on the order of \(\sqrt{e} = \frac{1}{\sqrt{\phi}}\), when \(U_0\) has an identical eigenvalue on both the left and right sides. However, we can hope that there should be some leeway, and that there will be pairing for nearly equal eigenvalues. The concern here is that changing the graph will turn a double root of \(C(z, 0)\) into a closely spaced pair of distinct roots of \(C(z, 0)\). Since pairing and quadratic speed searches depend on the existence of double roots, these may be lost along with the double root.

Define a new parameter, \(\xi\), which describes a change in the graph, such as a change in the reflection and transmission coefficients of some of the vertices. Further, define \(\xi\) such that \(C(z, e, \xi)\) is a polynomial in all of its arguments, and so that \(C(z, 0, 0)\) has a double root in \(z\). \(\xi = e^{i\phi} - 1 \approx i\phi\), from section 5.1, is the motivating example.

Theorem 5.1. If \(U\) has entries that are analytic functions of a given variable, \(\xi\), then the eigenvectors of \(U\), and by extension the eigenvalues, vary by \(O(\xi)\).

Proof. Using the same argument seen in the proof of theorem 4.2 (which is in the appendix) we can show that the resolvent, \(R(\zeta, e, \xi) = (U - \zeta I)\), can be expressed as a power series in \(\zeta, \sqrt{e}\), and \(\xi\).

Since \(R(\zeta, e, \xi)\) is a power series in \(\xi\), it follows that the eigenprojections, \(P^{(i)}(e, \xi) = -\frac{1}{2\pi} \oint_{\gamma} R(\zeta, e, \xi) d\zeta\), and the eigenvectors, \(V^{(i)}\), are also expressible as power series in \(\xi\).
Because each eigenvector can be written as \(|V\) = \(|V_0\) + \(\xi\)|\(|V_1\) + \(\xi^2\)|\(|V_2\) + \(\cdot\cdot\cdot\), and because by definition \(U = U_0 + \xi U_1 + \xi^2 U_2 + \cdot\cdot\cdot\) it follows that the eigenvalues \(\epsilon\) cannot have fractional exponents in \(\xi\).

\[
U|V\rangle = \lambda|V\rangle \\
\Rightarrow (U_0 + O(\xi))(|V_0\rangle + O(\xi^2)) = (\lambda_0 + O(\xi))(|V_0\rangle + O(\xi^2)) \\
\Rightarrow U_0|V_0\rangle + O(\xi) = \lambda_0|V_0\rangle + O(\xi^2) + O(\xi) \\
\Rightarrow O(\xi) = O(\xi^2) + O(\xi) \\
\Rightarrow s \geq 1
\]

Notice that this theorem does not rule out ordinary pairing of \(O(\sqrt{\epsilon})\), since \(U\) has entries of the form \(\epsilon\xi\).

\(\xi\) has been defined so that \(C(z, 0, 0)\) has a double root. By applying the arguments of section 3 to isolated roots of \(C(z, \epsilon, \xi)\) we find that those roots, \(\lambda^{(k)}(\epsilon, \xi)\), are analytic with respect to both \(\epsilon\) and \(\xi\).

Theorem 5.2. Changing \(\xi\) causes the location of double-zeros to drift. That is, a new value of \(\epsilon\) that depends on \(\xi\), labeled \(\epsilon_0(\xi)\), may be found such that \(\epsilon_0(\xi)\) has a double root in \(z\), and \(\epsilon_0(\xi)\) is a continuous function of \(\xi\).

Proof. Consider the discriminant of \(C\), defined as \(D = \prod_{j,k} (\lambda^{(j)} - \lambda^{(k)})^2\), where \(\lambda^{(k)}\) are the roots of \(C\) in the variable \(z\). The well-known and relevant properties of \(D(\epsilon, \xi)\) are 1) \(D(\epsilon, \xi) = 0\) if and only if \(C(z, \epsilon, \xi)\) has a double root in \(z\), and 2) if \(C(z, \epsilon, \xi)\) is a polynomial in its arguments, then \(D(\epsilon, \xi)\) is also a polynomial in its arguments.

Because \(C(z, 0, 0)\) has a double root, we know that \(D(0,0) = 0\). Using the same trick that was used to describe the behavior of \(\lambda\) with respect to \(\epsilon\) (theorem 3.2), we can describe the new location of the double root in \(\epsilon\) space with respect to \(\xi\) as \(\epsilon_0(\xi) = \frac{1}{2\pi} \oint \frac{D(\epsilon, \xi)}{D_{\epsilon, \xi}} \, d\epsilon = \sum b_j(\sqrt{\epsilon})^j\) where \(s\) is less than or equal to the multiplicity of the root in \(D(\epsilon, \xi)\) in the variable \(\epsilon\). The important thing to notice here is that \(\epsilon_0(\xi)\) is continuous with respect to \(\xi\).

Note that since we’re assuming that \(C(z, 0, 0)\) has a double root, \(\epsilon_0(0) = 0\).

As shown in theorem 3.4, the only time that the Puiseux series of \(\lambda^{(k)}(\epsilon)\) can have non-integer powers is when the expansion is taken about the location in the \(\epsilon\)-plane of a double root of \(C(z, \epsilon)\). With the introduction of \(\xi\), as shown in the last theorem, the location of the double root is a function, \(\epsilon_0(\xi)\). In order for the Puiseux series of \(\lambda^{(k)}(\epsilon)\) to have half-integer powers in \(\epsilon\) it must be expanded about \(\epsilon_0\) and so it takes the form \(\lambda^{(k)}(\epsilon, \xi) = \sum_{n=0}^{\infty} a_n(\xi) \left(\sqrt{\epsilon} - \epsilon_0(\xi)\right)^{\frac{n}{2}}\).

There are no new issues with expanding around \(\epsilon = \epsilon_0\) as opposed to \(\epsilon = 0\), and the above series can certainly be constructed.

5.3. Nearly paired eigenvalues

Assume that the graph is altered in the manner described in the last subsection. Define the left and right eigenvalues when \(\epsilon = 0\) as \(\lambda_l\) and \(\lambda_r\) respectively. These are both analytic functions of \(\xi\), and thus the phase difference between them can also be described as an analytic function
Define this phase difference as δ.

$$e^{i\delta} = \lambda \ell \lambda^* .$$

(16)

So long as $\lambda \ell \lambda^*$ is invertible as a function of ξ, we can express ξ as a power series in δ and $\delta \propto \xi + O(\xi^2)$. This is a fairly reasonable assumption. In the Grover Graph example provided at the beginning of this section $\delta = \phi^2$.

So, we can reasonably assume that U, the eigenvectors, and the eigenvalues are all analytic functions of $\delta = \ell \ell^*$. In addition the point in the ϵ-plane about which the eigenvalues permute, ϵ_0, is a continuous function of δ.

We can now write λ as a power series in δ and $\delta - \epsilon_0$.

$$\lambda^\pm = \sum_{j=0}^{\infty} (\pm 1)^j a_j(\delta) \left(\sqrt{\epsilon - \epsilon_0(\delta)} \right)^j.$$

(17)

Since e^ϵ is an analytic function, we can express this in a somewhat more convenient form:

$$\lambda^\pm = e^{\sum_{j=0}^{\infty} (\pm 1)^j b_j(\delta) \left(\sqrt{\epsilon - \epsilon_0(\delta)} \right)^j}.$$

(18)

Already we can make a few observations. Since these eigenvalues must have modulus 1 over a range of values of ϵ and δ, it follows that $b_j(\delta)$ is real for all j. This is important for the following proof.

Theorem 5.3. *If the left and right eigenvalues have a phase difference of δ, then the location of the double root, ϵ_0, is given by $\epsilon_0 = -\left(\frac{1}{\delta^2} \right) + O(\delta^3)$.*

Proof. Since λ is a power series in $\sqrt{\epsilon}$ and δ, it follows that $\lambda(0, \delta) = e^{i (b_0(\delta) + b_0(\delta) \sqrt{\epsilon_0(\delta)} + b_0(\delta) \sqrt{-\epsilon_0(\delta)} + \cdots)}$ is a power series in δ. Therefore, either $\epsilon_0(\delta)$ is a power series in δ^2, or all of the odd terms (a_1, a_3, \ldots) are zero. However this can’t be the case, since $b_1(0) = c$ (this is the same c used throughout the rest of this paper). So, ϵ_0 is a power series in δ^2.

From the definition of δ, $e^{i\delta} = \lambda \ell \lambda^*$, we find that:

$$e^{i\delta} = \lambda \ell \lambda^*$$

$$\Rightarrow \delta = \sum_{j=0}^{\infty} \left(1 - (-1)^j b_j(\delta) \left(\sqrt{\epsilon - \epsilon_0(\delta)} \right)^j \right)$$
\[
\begin{align*}
&= 2b_1(\delta)\sqrt{-\epsilon_0} + 2b_1(\delta)\left(\sqrt{-\epsilon_0}\right)^3 +
&= 2b_1(\delta)\sqrt{-\epsilon_0} + O(\delta^3)
&= 2(b_1(0) + O(\delta))\sqrt{-\epsilon_0} + O(\delta^3)
&= 2c\sqrt{-\epsilon_0} + O(\delta^2)
\Rightarrow &\ 2c\sqrt{-\epsilon_0} = \delta + O(\delta^2)
\Rightarrow &\ \epsilon_0 = -\left(\frac{\delta}{2c}\right)^2 + O(\delta^3)
\end{align*}
\]

Finally, since \(\epsilon_0\) is a power series in \(\delta^2\), \(\epsilon_0 = -\left(\frac{\delta}{2c}\right)^2 + O(\delta^3)\). \(\square\)

Notice also that

\[
\lambda_\ell\lambda_r = \left(e^{i\sum_{j=0}^{\infty} b_j(\delta)\left(\sqrt{-\epsilon_0(\delta)}\right)}\right)\left(e^{i\sum_{j=0}^{\infty} b_j(\delta)\left(\sqrt{-\epsilon_0(\delta)}\right)^j}\right)
= e^{i\sum_{j=0}^{\infty} b_j(\delta)\left(-\epsilon_0(\delta)\right)^j}
= e^{i2b_0(\delta)}e^{i\sum_{j=1}^{\infty} b_j(\delta)\left(-\epsilon_0(\delta)\right)^j}
= e^{i2b_0(\delta)}O(\delta^2)
= e^{i2b_0(\delta)} + O(\delta^2)
\Rightarrow e^{i\lambda(\delta)} = \sqrt{\lambda_\ell\lambda_r} + O(\delta^2)
\]

We can now write,

\[
\lambda^\pm = e^{i\sum_{j=0}^{\infty} (\pm j) b_j(\delta)\left(\sqrt{-\epsilon_0(\delta)}\right)^j}
= e^{ib_0(\delta)}e^{i\sum_{j=1}^{\infty} b_j(\delta)\left(\sqrt{-\epsilon_0(\delta)\right)^j+\sum_{j=1}^{\infty} i^j b_j(\delta)\left(\sqrt{-\epsilon_0(\delta)}\right)^j}
= \left(\sqrt{\lambda_\ell\lambda_r} + O(\delta^2)\right)e^{i\epsilon(\delta/\sqrt{\epsilon_0}) + O(\sqrt{\epsilon_0(\delta)} + O(c-\epsilon_0))}
= \sqrt{\lambda_\ell\lambda_r} e^{i\epsilon(\delta/\sqrt{\epsilon_0}) + O(\delta/\sqrt{\epsilon_0} + \epsilon_0) + O(\delta^2)}
= \sqrt{\lambda_\ell\lambda_r} e^{i\epsilon(\delta/\sqrt{\epsilon_0}) + O(\delta^2, \delta/\sqrt{\epsilon_0} + \epsilon_0 - \epsilon_0)}.
\]

So, the double zeros of the characteristic polynomial and the pairing of the eigenvectors and eigenvalues aren’t lost. The new double zero is halfway between \(\lambda_\ell\) and \(\lambda_r\). The pairing still exists, however it’s in terms of \(\sqrt{\epsilon + \left(\frac{\delta}{2c}\right)^2 + O(\delta^4)}\), not \(\sqrt{\epsilon}\).

5.4. Nearly paired eigenvectors

Eigenvalues and eigenspaces vary by \(O(\delta, \sqrt{\epsilon})\). This is an important distinction to make. The fundamental pairing theorem is essentially the statement that when \(\delta = 0\), then \(\lim_{\epsilon \to 0} V^\pm = \frac{1}{\sqrt{\epsilon}}(\epsilon_0 \pm i\tau_0)\). However, when \(\delta \neq 0\) we find that \(V^\pm\) must each converge independently to \(\epsilon_0\) and \(\epsilon_0\). \(V_0^\pm\) is defined as a limit of eigenvectors of \(U\), and
must itself be an eigenvector of U_0. But if $\lambda_\ell \neq \lambda_r$, then no combination of the left and right active eigenvectors can be eigenvectors of U_0.

Therefore, $\lim_{\delta, \epsilon \to 0} |V^\pm(\delta, \epsilon)\rangle$ doesn’t exist. Clearly, the ‘angle’ between $|V^\pm(\delta, \epsilon)\rangle$ and the active eigenvectors, $|l_0\rangle$ and $|r_0\rangle$, is somehow dependent on δ and possibly some relationship between δ and ϵ.

With some foresight, define:

$$V^+(\delta, \epsilon) = \cos(\omega) \langle \ell_0 | + \sin(\omega) \langle r_0 | + O(\delta, \sqrt{\epsilon})$$

\hspace{1cm} (19)

$$V^-(\delta, \epsilon) = -\sin(\omega) \langle \ell_0 | + \cos(\omega) \langle r_0 | + O(\delta, \sqrt{\epsilon})$$

\hspace{1cm} (20)

That is, we can define ω using

$$\omega \equiv \langle \ell_0 | V^+(\delta, \epsilon) \rangle + O(\delta, \sqrt{\epsilon})$$

Theorem 5.4. The angle between the paired eigenvectors and the active eigenvectors, ω, is to lowest order a function of $\frac{\delta^2}{4\epsilon^2}$.

Proof. The proof of this is included in the appendix.

This relationship (as derived in the proof of the above theorem) is

$$\sin^2(2\omega) = \left(1 + \frac{\delta^2}{4\epsilon^2} + O\left(\frac{\delta^3}{\epsilon}, \delta, \epsilon\right)\right)^{-1}$$

\hspace{1cm} (21)

In the first version of this proof, when dealing with exactly matched eigenvalues, there was no issue with taking the limit $\epsilon \to 0$ to find the value of ω. However, in this case we have terms involving $\frac{\delta^2}{\epsilon}$ making that difficult.

5.5. Tuning

We now make the declarations that $\frac{\delta^2}{4\epsilon^2} \equiv t = O(1)$ and that $O(\delta, \epsilon)$ is still small. In this way we can take the limit as both ϵ and δ go to zero, but fix a relationship between them. Then,

$$\sin^2(2\omega) = (1 + t + O(\delta, \delta, \epsilon))^{-1}$$

$$\Rightarrow \sin^2(2\omega) = (1 + t + O(\delta, \epsilon))^{-1}$$

$$\Rightarrow \sin^2(2\omega) = \frac{1}{1 + t}$$

$$\Rightarrow t \sin^2(2\omega) = 1 - \sin^2(2\omega)$$

$$\Rightarrow t = \frac{\cos^2(2\omega)}{\sin^2(2\omega)}$$

$$\Rightarrow t = \cot^2(2\omega)$$

When $t \approx 0, N \ll \left(\frac{\delta^3}{\epsilon^2}\right)^2$ and $\omega \approx \frac{\pi}{4}$. In this case the graph behaves like a normal, paired system. That is, the mis-matching of the eigenvalues isn’t large enough to affect the algorithm. The paired eigenvectors are each equal combinations of both the right and left active eigenvectors (to within $O(\sqrt{\epsilon}, \delta)$), and quadratic speed searches can be executed using the vectors $|l_0\rangle$ and $|r_0\rangle$.

J. Phys. A: Math. Theor. 48 (2015) 035304 S S Cottrell
For \(t \approx 0 \), in the \(\{|l\}, \{|r\} \) basis,

\[
U = \lambda_0 \begin{pmatrix}
 \cos \left(c \sqrt{(1 + t) e} \right) & -i \sin \left(c \sqrt{(1 + t) e} \right) \\
 -i \sin \left(c \sqrt{(1 + t) e} \right) & \cos \left(c \sqrt{(1 + t) e} \right)
\end{pmatrix} + O(\epsilon).
\]

When \(t \gg 1 \), \(N \gg \left(\frac{2c}{\pi} \right)^2 \) and \(\omega \approx 0 \). The system does not behave like a paired system, but instead behaves as though there are no matched eigenvalues at all. So, for large values of \(t \) the initial state stays where it is. The left and right eigenstates are decoupled, and are no longer useful for a search.

For \(t \gg 1 \), in the \(\{|l\}, \{|r\} \) basis,

\[
U = \lambda_0 \begin{pmatrix}
 e^{i\sqrt{(1+t)\epsilon}} & 0 \\
 0 & e^{-i\sqrt{(1+t)\epsilon}}
\end{pmatrix} + O(\epsilon)
\]

‘\(t \)’ describes how ‘well tuned’ a pair of active eigenvectors are for given values of \(\epsilon \) and \(\delta \). It also provides an easy way to move back and forth between \(\epsilon \) and \(-\epsilon \), since \(\epsilon - \epsilon_0 = \epsilon + \left(\frac{\delta}{2} \right)^2 + O(\delta^4) = \epsilon(1 + t) + O(\delta^4) \). Graphs with a large value of \(t \) are ‘poorly tuned’, and graphs with a small value of \(t \) are ‘well tuned’.

We now wish to calculate \(P(m) = |\langle \ell_0 | U^m | \ell_0 \rangle|^2 \), which is the probability of a successful search, using \(|\ell_0 \rangle \) as an initial state and \(|\ell_0 \rangle \) as a target state, after \(m \) time steps. How this depends on \(t \) will be considered in the following theorem.

Theorem 5.5. There is a better than 50% chance of a successful search of the \(N \) edges of the hub vertex using the states \(|\ell_0\rangle\) and \(|\ell_0\rangle\) after \(m = \left[\frac{\delta}{2\epsilon^2} \sqrt{N} \right] \) iterations of the time step operator, whenever

\[
\delta < c \left(\frac{2}{N} \right)^{\frac{1}{4}}
\]

where \(\delta \) is the difference in phase between the left and right eigenvalues, and \(c = \left| \langle \ell_0 | U | \ell_0 \rangle \right| \).

Proof. The proof of this theorem will be included in the appendix.

So, when the error between the left and right eigenvalues is less than \(c \left(\frac{2}{N} \right)^{\frac{1}{4}} \), then we can ignore that error, and the algorithm will continue to work normally more than half of the time. We can do slightly better. A careful reading of the proof reveals that the lower bound on the probability is actually closer to \(\approx 58.7\% \). The usual ‘\(O(\sqrt{\epsilon}, \delta) \)’ error does appear here, however that extra 8% can be used to ignore these terms for sufficiently large values on \(N \) (\(N \gtrsim O(100) \)) and sufficiently small values of \(\delta \) (\(\delta \ll O(0.1) \)).

5.6. Important points

- Left and right eigenvalues of \(U_0 \) don’t need to match exactly for a pairing to exist, merely be very close: \(|\lambda - \lambda'| = \delta \ll 1 \).
- The double root ‘drifts left’ in the \(\epsilon \)-plane as a graph is perturbed: \(\epsilon_0 = -\left(\frac{\delta}{2} \right)^2 + O(\delta^4) \).
- If \(\delta < c \left(\frac{2}{N} \right)^{\frac{1}{4}} \), then all concerns over the eigenvalues not matching can be ignored completely, and the algorithm will still work as normal more than half of the time.
6. Summary of results

Take as given a star graph as described in section 2, with an attached subgraph \(G \) and a time step operator \(U \). Define \(\epsilon = \frac{1}{N} \), where \(N \) is the number of edges attached to the hub vertex.

- There are two kinds of eigenvectors of \(U_0 \): bound eigenvectors, and active eigenvectors.
 - For a given eigenvalue, \(\lambda_0 \), of \(U_0 \) there is at most one active eigenvector, \(|l_0 \rangle \). The ‘right side \(\lambda_0 \) active eigenvector’ is unique, and will exist if and only if the \(\lambda_0 \) eigenspace of \(U_0 \) is in contact with the right side of the hub.
 - Bound eigenvectors are completely isolated inside of \(G \) and are independent of \(\epsilon \).

- The same statements apply to the left side (although frequently throughout this paper we have assumed it to have a fixed, simple structure), and the left side active \(\lambda_0 \) eigenvector is denoted \(|l_0 \rangle \).

- There is a pairing if and only if both the left and right sides have an active eigenvector with the same eigenvalue. A pairing means that there are eigenvalues of \(U \) of the form \(\lambda^\pm = \lambda_0 e^{\pm i c \sqrt{\epsilon}} + O(\epsilon) \). To first order, these eigenvalues vary by \(O(\sqrt{\epsilon}) \), instead of by \(O(\epsilon) \) as non-paired eigenvectors do. Paired eigenvalues are so named because they always appear in pairs.

- The eigenvectors associated with the two eigenvalues \(\lambda^\pm \) are \(|\psi^\pm \rangle \) which have the property that \(|V^\pm \rangle = \frac{1}{\sqrt{\epsilon}} (|l_0 \rangle \pm i |r_0 \rangle) \), for properly chosen phases.

- There can be no eigenvectors or eigenvalues that vary faster than \(O(\epsilon) \).

- \(|l_0 \rangle \) and \(|r_0 \rangle \) are rotated almost entirely into each other in \(O(\sqrt{N}) \) time. That is, there exists \(m \) such that \(|l(\tau) U^m |l_0 \rangle | = 1 + O(\epsilon) \).

- That value of \(m \) is \(m = \left\lfloor \frac{\sqrt{N}}{2\epsilon} \right\rfloor \), where \(c \) is defined by the paired eigenvalues, \(\lambda_0 e^{\pm i c \sqrt{\epsilon}} \). Writing the \(U \) as \(U = U_0 + \sqrt{\epsilon} U_1 + \cdots \), the value of \(c \) is \(c = |(\tau_0 U |l_0 \rangle) | \). For a left side consisting of only the states \(\{ \text{out} \} \) and \(\{ \text{lin} \} \), we find that \(c = \sqrt{\epsilon} (|1, 0 |l_0 \rangle) | \).

- We can quickly find a \(\lambda_0 \), \(|l_0 \rangle \), and \(|r_0 \rangle \) because all of them are determined entirely by \(U_0 \), which tends to be easy to work with. This is because, in addition to being block-diagonal (the blocks corresponding to the left and right sides), \(U_0 \) is often sparse, and unlike \(U \), it has no dependence on \(\epsilon \). With \(|l_0 \rangle \) and \(|r_0 \rangle \) in hand, the values of \(c \) and \(m \) follow immediately.

- \(\lambda_0 \) doesn’t need to be an exact double eigenvalue in order for a quadratic speed up to occur, however the allowable difference in the eigenvalues, \(\delta \), is smaller for larger values of \(N \). That is; larger searches require more exact control.

When \(\delta < c \sqrt{\frac{N}{\epsilon}} \), the probability of a successful search after \(m = \left\lfloor \frac{\sqrt{N}}{2\epsilon} \right\rfloor \) iterations of \(U \) is greater than 50%.

6.1. Errors

In practice, the errors are produced by:

- Approximations of all of the important terms (i.e., \(\lambda = \lambda_0 e^{i c \sqrt{\epsilon}} + O(\epsilon) \)).

- The initial state is not exactly equal to \(|l_0 \rangle \), since it has a small component on the right side.

- \(|l_0 \rangle \) and \(|r_0 \rangle \) are eigenvectors of \(U_0 \), not \(U \), but are approximated by linear combinations of \(|V^\pm \rangle \); the actual eigenvectors of \(U \) with eigenvalues \(\lambda^\pm \).
- Rounding error due to the fact that \(m \) must be an integer.
- \(\lambda_0 \) may not be an exact double root, but instead a pair such that \(|\lambda_0 - \lambda_0'| = \delta \approx \sqrt{\epsilon} \)

All of these produce errors of \(O(\sqrt{\epsilon}) = O(\frac{1}{N}) \) or less in the final state. This is unlikely to be a problem on any individual run of the algorithm, and can be easily dealt with by repetition.

7. Generalizations and future work

Generalized values of \(r \) and \(t \)

In section 2, \(r \) and \(t \) were introduced, along with the unitarity conditions:

\[
|r|^2 + (N - 1)|t|^2 = 1 \tag{23}
\]

\[
2 \Re (r^* t) + (N - 2)|t|^2 = 0. \tag{24}
\]

Throughout this paper the standard solution, \(r = -1 + 2\epsilon \), \(t = 2\epsilon \), have been used, where \(\epsilon = \frac{1}{N} \) as usual. These are found by assuming \(\arg(r) = \pi \) and \(\arg(t) = 0 \). However, by allowing arbitrary phase angles we find a family of solutions:

\[
r = \frac{1 - 2\epsilon}{\sqrt{1 - 4\sin^2(x - y)(\epsilon - \epsilon^2)}} e^{ix} \tag{25}
\]

\[
t = \frac{-2\cos(x - y)\epsilon}{\sqrt{1 - 4\sin^2(x - y)(\epsilon - \epsilon^2)}} e^{iy}, \tag{26}
\]

where \(\cos(x - y) < 1 \). This condition is necessary for the second unitary condition to have solutions. In the collapsed graph we find \(R_R = r \) and \(R_L = r + (N - 2)t \) to be the reflection coefficients for the hub vertex from the right and left sides respectively, and \(T = \iota \sqrt{N - 1} \) as the transmission coefficient. By unitarity, \(|R_R|^2 + |T|^2 = |R_L|^2 + |T|^2 = 1 \) and \(R_R T + R_L T = 0 \). We can use this last relation to quickly find \(R_L = -\overline{R_R} \left(\frac{T}{r} \right) = -\overline{R_R} e^{2iy} \).

We can now use this to re-visit theorems 3.5 and 4.1. In the proof of theorem 3.5 we found that \(T^2 - R_R R_L = 1 \) for the standard \(r \) and \(t \), but this generalized solution may put that clean result at risk. Luckily, \(T^2 - R_R R_L = |T|^2 e^{2iy} - (R_R)(-\overline{R_R} e^{2iy}) = (|T|^2 + |R_R|^2) e^{2iy} = e^{2iy} \).

In the proof of 3.5 it was shown that \(C(z, \epsilon) = p_1(z) + p_3(z) R_R(\epsilon) + p_3(z) R_L(\epsilon) \), where \(p_1, p_2, p_3 \) are polynomials. So, while we still have a clean result, \(C(z, \epsilon) \) is no longer a polynomial of \(\epsilon \). But if a substitution is made, \(r = \frac{(1 - 2\epsilon)e^{ix}}{\sqrt{1 - 4\sin^2(x - y)(\epsilon - \epsilon^2)}} = e^{ix} - 2\cos^2(x - y)e^{ix} + O(\epsilon^2) \equiv e^{ix}(1 - 2\mu) \), then \(C(z, \mu) \) is a polynomial with respect to \(\mu \). Notice that \(\mu \) is real when \(\epsilon \) is real, and when \(x = \pi \) and \(y = 0 \) we find \(\mu = \epsilon \). Using \(\mu \) instead of \(\epsilon \) in section 3 we find that paired eigenvalues are of the form \(\lambda = \lambda_0 e^{\pm i\sqrt{\mu} + O(\mu)} \). However, because \(\mu = O(\epsilon) \), this result is the same as the original: \(\lambda = \lambda_0 e^{\pm i\sqrt{\epsilon}/N} + O(\epsilon) \). Otherwise, since \(\sqrt{\mu} = O(\sqrt{\epsilon}) \), \(\mu = O(\epsilon) \), and so on, all of the other results in this paper remain the same.

Multiple copies of \(G \)

Assume there are \(N \) total edges connected to the hub vertex, as before, but rather than 1 edge connected to \(G \) there are \(M \) edges connected to \(M \) copies of \(G \). These various copies of \(G \) can
be connected to each other, but (for this generalization) in such a way that in the automorphism graph there is only one remaining edge on the left and right sides.

The reflection and transmission coefficients are \(R_L = r + (N - M - 1)t \), \(R_R = r + (M - 1)t = -1 + 2\frac{M}{N} \), and \(T = t\sqrt{M\sqrt{N} - M} \). Plugging in the standard solutions, \(r = -1 + \frac{2}{N} \) and \(t = \frac{2}{N} \), yields \(R_L = 1 - 2\frac{M}{N} \), \(R_R = -1 + 2\frac{M}{N} \), and \(T = 2\sqrt{\frac{M}{N} - \left(\frac{M}{N}\right)^2} \), where again \(R_L \) and \(R_R \) are the left and right side reflection coefficients respectively. Clearly, by using \(\epsilon = \frac{M}{N} \) instead of \(\epsilon = \frac{1}{N} \) all of the behavior of a single copy of \(G \) is recovered (see section 2). Using the general solution for \(r \) and \(t \) doesn’t provide quite such a clean result. For example, \(T = \frac{-2 \cos(x - y) - \left(\frac{M}{N}\right)}{1 - 4 \sin^2(x - y) - \left(\frac{M}{N}\right)^2} \). But notice that to first order, like the standard solution, this is proportional to \(\sqrt{\frac{M}{N}} \).

The important result to take away from this generalization is that we can expect searches to take a time of \(O\left(\frac{N}{\sqrt{N}}\right) \). \(\frac{M}{N} \) is the ‘effective degree’ of the hub vertex.

Multiple subgraphs

If there are multiple subgraphs that share a common eigenvalue but have different forms, then it can be shown that they will behave collectively as though they were a single subgraph. The probability of a particular subgraph being the result of a search increases with increasing \(c \), as one might expect. These results fall immediately out of the fact that if there are \(S \) right side subgraphs, each with a \(\lambda_0 \) active eigenvector, then we can construct \(S - 1 \) ‘un-communicating’ eigenstates from a linear combinations of those vectors. This leaves one ‘collective’ active eigenvector that is a linear combination of the constituent active eigenvectors, weighted by their values of \(c \).

The un-communicating eigenvectors are in contact with the hub vertex, but are bound in the sense that they are independent of \(\epsilon \) and destructively interfere in such a way that they never interact with the left side.

General highly symmetric graphs

The star graph gives us a way of looking at the behavior of a hub vertex in depth. For highly symmetric graphs with bounded diameter (the maximum distance between any pair of vertices is bound), we will find at least one hub vertex. Using the techniques of this paper it should be fairly straightforward to generalize to automorphism graphs with multiple hubs. For example, in the investigation of the behavior of finite-depth tree graphs.

Acknowledgments

I’d like to thank Professors Edgar Feldman, Janos Bergou, and Sylvain Cappell for their support and input. In particular I’d like to thank Mark Hillery, who helped with each step of the process of writing and publishing this paper, pointed out mistakes, and answered every question no matter how off-topic. This paper wouldn’t exist without his generous help and the foundation provided in previous papers by Hillery, Feldman, and Bergou.
Appendix A. Appendix

A.1. In-depth example: the Bolo subgraph

The Bolo graph shown in figure A1 (which resembles a Bolo tie) has a bound state, and 4 right side active eigenvectors. Using techniques from the paper we can quickly decide on the best eigenvalue and left side eigenvector to use as an approximate initial state to ensure the quickest search. For the purposes of this example, $N = 10^6$.

We can get all the information we need from U_0, so we can ignore the left side entirely. Define the basis vectors as:

- $|\psi_1\rangle = |0, 1\rangle$
- $|\psi_2\rangle = |A, 1\rangle$
- $|\psi_3\rangle = |b\rangle$
- $|\psi_4\rangle = |1, A\rangle$
- $|\psi_5\rangle = |1, 0\rangle$

And in this basis define the effect of U_0 as:

$$U_0 = \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & 0 & 0 \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} & 0 & 0 \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} & 0 & 0 \end{pmatrix}$$
This is an equal scattering in three directions at vertex 1. The difference is that a signal returns from the b arm in 1 time step, and from the A arm in 2.

Step (1) Find the eigenvalues and eigenvectors of the right side.

The characteristic polynomial is \(C_0(z) = z^5 + \frac{1}{3}z^4 - \frac{2}{3}z^3 + \frac{1}{3}z^2 - \frac{1}{3}z - 1 \), and the five eigenvalues are then found to be: \(\lambda = \{-1, -1, 1, \frac{1}{2}(1 + i2\sqrt{2}), \frac{1}{2}(1 - i2\sqrt{2})\} \).

Already we know that there must be at least one bound eigenstate with eigenvalue \(-1\), since the active eigenvector for each eigenvalue is unique and \(-1\) is degenerate (theorem 4.8). The eigenvectors, in the same order, are:

- **Bound**
 \[|\text{bound}\rangle = \frac{1}{\sqrt{3}}(|A, 1\rangle - |b\rangle + |1, A\rangle) \]

- **e(-i)**
 \[|e^{-i}\rangle = \sqrt{3} \left[|0, 1\rangle - \frac{1}{3} |A, 1\rangle - \frac{2}{3} |b\rangle - \frac{1}{3} |1, A\rangle + |1, 0\rangle \right] \]

- **e(i)**
 \[|e^{i}\rangle = \frac{1}{2} \left[-|0, 1\rangle + |A, 1\rangle - |1, A\rangle + |1, 0\rangle \right] \]

- **e^{i+\sqrt{2}i/3}**
 \[|e^{i+\sqrt{2}i/3}\rangle = \frac{\sqrt{3}}{4} \left[\left(-\frac{1}{3} + \frac{2\sqrt{2}}{3}i \right) |0, 1\rangle + \left(-\frac{1}{3} + \frac{2\sqrt{2}}{3}i \right) |A, 1\rangle \right. \\
 \left. + \left(\frac{2}{3} + \frac{2\sqrt{2}}{3}i \right) |b\rangle + |1, A\rangle + |1, 0\rangle \right] \]

- **e^{i-\sqrt{2}i/3}**
 \[|e^{i-\sqrt{2}i/3}\rangle = \frac{\sqrt{3}}{4} \left[\left(-\frac{1}{3} - \frac{2\sqrt{2}}{3}i \right) |0, 1\rangle + \left(-\frac{1}{3} - \frac{2\sqrt{2}}{3}i \right) |A, 1\rangle \right. \\
 \left. + \left(\frac{2}{3} - \frac{2\sqrt{2}}{3}i \right) |b\rangle + |1, A\rangle + |1, 0\rangle \right] \]

All of the last four eigenvectors are active eigenvectors. This is immediately obvious because \(\langle 0, 1 | r^{(0)} \rangle \neq 0 \) for each of them, so they are hub adjacent. The \(\lambda_0 = -1 \) active eigenvector can be found by first finding the unique bound eigenvector. What remains in the \(-1\) eigenspace must be the active eigenvector.

The active eigenspace is 6-dimensional and is spanned by these four right side and the two left side active eigenvectors. Paired, or otherwise dependent on \(c \), eigenvectors are always expressible as superpositions of these six active eigenvectors. Even if the left side were replaced with something more interesting, these four vectors would provide all the information necessary to analyze how the right side interacts.

Step (2) Select a target eigenvalue.

We already have enough information to see which of these states, or rather which of these eigenvalues, is the best target for a search. Because the optimal number of iterations for a quadratic search is is given by \(m = \left\lceil \frac{\varphi}{2c} \sqrt{N} \right\rceil \) (theorem 4.13), and since \(c = \|\ell_0(U)|r_0\rangle\| = \sqrt{2} \|\langle 1, 0 | r_0\rangle\| \) (theorem 4.12), the state that overlaps \(|1, 0\rangle \) most will yield the shortest search time. Additionally, a large value of \(c^{(0)} \) means that the right side active eigenvector is concentrated closer to the hub, which means that states on the edge between 0 and 1 are more likely to be measured, which is important if we assume that the states in \(G \) are unmeasurable (i.e., cannot be the result of a measurement).
Clearly, $\lambda_0 = -1$ is the best choice, since $\max \{ c^{(j)} \} = c^{(-1)} = \sqrt{\frac{3}{4}}$. We know (theorem 4.14) that there is always some $c^{(j)} \geq \sqrt{\frac{3}{4}} = \frac{1}{\sqrt{2}}$, so a value of $\sqrt{\frac{3}{4}}$ is not surprising.

Step (3) Tune the left side eigenvalues.

The left side $\lambda_0 = -1$ active eigenvector is $|\ell^{(-1)}\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |j\rangle)$, and this eigenstate is only possible when $e^{i\phi} = \lambda_0^{j} = (-1)^j = 1$. So, by setting $\phi = 0$, the eigenvalues on the left become ± 1. This does mean that, since both sides now share both 1 and -1 as eigenvalues, paired states can exist for both eigenspaces. However, by initializing with the -1 eigenstate, the +1 state is unimportant. We want to match the -1 state because it is the fastest (largest value of $c^{(j)}$).

Step (4) Initialize the system with the state $|\Psi\rangle = \sum_{j} |j\rangle = \frac{1}{\sqrt{2}} \sum_{j=1}^{10^6} (|0\rangle - |j\rangle)$. To within an error of $||\Psi - \Psi_0||_{\infty} = O(0.1\%)$, this is equal to the left side $\lambda_0 = -1$ eigenstate, $|\ell^{(-1)}\rangle = \frac{1}{\sqrt{2}} \sum_{j=1}^{10^6} (|0\rangle - |j\rangle)$. Since we assume that we don’t know to which edge the Bolo graph is attached, we can’t start entirely in the -1 left active eigenstate. That said, $\langle \ell^{(-1)} | \Psi \rangle = \frac{2(10^6 - 1)}{2 \cdot 10^6 \sqrt{10^6 - 1}} = 0.99999995$, so these two states are essentially equal.

Step (5) Iterate the time step operator, U.

Use U to step time forward $m = 1813$ times. This process will cause the state to rotate from $|\ell^{(-1)}\rangle$ to $|\ell^{(-1)}\rangle$ to within an additional error of $O(0.1\%)$ produced by the rounding of the floor function, and the fact that the paired eigenvectors, $|V^\pm\rangle$, are only very closely approximated by combinations of $|\ell^{(-1)}\rangle$ and $|\ell^{(-1)}\rangle$.

Step (6) Measure the system. The probability of the particle being detected on the edge between vertices 0 and 1 is $p = \left| \langle 0, 1 | (\ell^{(-1)} \otimes \ell^{(-1)}) | 0, 1 \rangle \right|^2 + \left| \langle 1, 0 | (\ell^{(-1)} \otimes \ell^{(-1)}) | 0, 1 \rangle \right|^2 = \left| \frac{\sqrt{2}}{\sqrt{10^6}} \right|^2 + \left| \frac{\sqrt{2}}{\sqrt{10^6}} \right|^2 = \frac{3}{4}$.

This $\frac{3}{4}$ is good news, since it means that the algorithm won’t need to be repeated extensively.

Finally, the left and right eigenvalues need not be exact. According to theorem 5.5, the search will still work more than half of the time when the difference between the left and right eigenvalues, δ, satisfies $\delta < e^{(-1)} \frac{\sqrt{N}}{\sqrt{2}} \approx 0.001$. So, for $N = 10^6$, the complex phase of the left eigenvalue should be in the range $[\pi - 0.001, \pi + 0.001]$.

Notice that, aside from finding the value of m and estimating errors, N (or ϵ) was never considered at all. Indeed the the left and right sides are handled separately from beginning to end.
A.2. Proofs from section 3 (algebraic functions and the behavior of zeros)

Theorem 3.1. If $F(z)$ is globally analytic in an annulus around 0, and is m-valued, then $F(z)$ can be expressed as a Puiseux series (a Laurent series with certain rational powers) of the form $F(z) = \sum_{n=0}^{\infty} A_n z^{\frac{n}{m}}$. Moreover, the m different branches of F, $F^{(k)}$, can be separated by an arbitrary branch cut through the annulus and expressed as $F^{(k)}(z) = \sum_{n=0}^{\infty} A_n \omega^{m-n} z^{\frac{n}{m}}$, where ω is a primitive mth root of unity, $\omega = e^{\frac{i\pi}{m}}$.

Proof. Consider the annulus in the z-plane defined by $D = \{ z : 0 < |z| < R \}$, and the mapping $z = \zeta^m$. Define $G(\zeta) \equiv F(\zeta^m)$ on the annulus $D_\epsilon = \{ \zeta; 0 < |\zeta| < \epsilon < R \}$. G inherits its analyticity from F, since $\frac{d}{d\zeta} G(\zeta) = \frac{d}{d\zeta} F(\zeta^m) = \frac{d}{d\zeta} F(z)$. In addition, G is single valued. Defining any one of the branches of F to be the principle branch, f_0, and taking the value of $G(x) = F^{(0)}(x^m)$, $x \in \mathbb{R}$, we can then define $G(z)$ to be the terminal value of any analytic continuation of G from x. While $F(z)$ has m branches, $G(\zeta)$ has m corresponding $\frac{2\pi}{m}$ wedges.

Continuation along a path, C_ϵ, that starts at $x \in \mathbb{R}^+$ and traverses once around the circle $|\zeta| = x$ corresponds to traversing the circle C_ϵ, defined by $|\zeta| = x^m$ in D_ϵ, m times. But since $F(z)$ is m valued, traversing $|\zeta| = x^m$ m times will return F to the principle branch. Thus, $G(x e^{2\pi i}) = G(x)$, and more generally $G(\zeta e^{2\pi i}) = G(\zeta)$, for $\zeta \in D_\epsilon$.

Since $G(\zeta)$ is analytic and single-valued in the annulus D_ϵ, it admits a Laurent series: $G(\zeta) = \sum_{n=0}^{\infty} A_n \zeta^n$. Therefore, the globally analytic m-valued function F can be written as $F(z) = G(z^{\frac{1}{m}}) = \sum_{n=0}^{\infty} A_n z^{\frac{n}{m}}$.

Notice that if the initial branch, $F^{(0)}(z) = \sum_{n=0}^{\infty} A_n z^{\frac{n}{m}}$, is analytically continued once around C_ϵ, a 2π phase is added to z and we find the function taking values on the next branch cut (so a very natural ordering of the branch cuts is here defined by subsequent loops around $z = 0$). We find that $F^{(1)}(z) = \sum_{n=0}^{\infty} A_n (e^{2\pi i}) \zeta^{\frac{n}{m}} = \sum_{n=0}^{\infty} A_n \omega^{n} \zeta^{\frac{n}{m}}$, where $\omega = e^{\frac{i\pi}{m}}$. j loops around $z = 0$ yields $F^{(j)}(z) = \sum_{n=0}^{\infty} A_n \omega^{m-n} \zeta^{\frac{n}{m}}$. □

Theorem 3.2. There exists an open disk D, containing 0, and d analytic functions, $f^{(1)}, \ldots, f^{(d)}$, such that:

(i) $P(f^{(k)}(e)) = 0$, $e \in D$
(ii) $f^{(k)}(0) = \lambda^{(k)}$
(iii) $P(\lambda, e) = 0$, $e \in D \Rightarrow \lambda = f^{(k)}(e)$, for some k

Note that $f^{(k)}$ are indexed functions, and not necessarily branches of the same globally analytic function. While it is true that when $P(z, e)$ is not simultaneously reducible in both z and e the zeros, as functions or e, are all branches of the same globally analytic function, it isn’t necessary to know that here.

Proof. Since the zeros of $P(z, 0)$ are distinct, $\exists \delta$ such that $|z| - \lambda^{(k)}| \leq \delta$ contains no zeros other than $\lambda^{(k)}$. Define C_δ to be the loop defined by $|z| - \lambda^{(k)} = \delta$. By the argument principle $\frac{1}{2\pi i} \int_{C_\delta} \frac{P(z, 0)}{P_z(0)} dz = 1$. Here we are assuming that the zeros of $P(z, 0)$ are all of degree 1, and there is only one zero inside of C_δ. The case of higher degree zeros is dealt with in the next theorem.
The zeros of $P(z, \epsilon)$ are continuous functions of the coefficients of $P(z, \epsilon)$ (other than a_d at $a_d = 0$), and the coefficients of $P(z, \epsilon)$ are continuous functions of ϵ. By definition $\exists \sigma > 0$ such that when $\epsilon < \sigma$, $|f^{(k)}(\epsilon) - \lambda^{(k)}| < \delta$. In other words, the zero will stay within C_0, so for small values of ϵ, $\frac{1}{2\pi i} \oint_{C_0} \frac{\partial P(z, \epsilon)}{P(z, \epsilon)} \, dz = 1$. Notice that we've only used the definition of $f_k(\epsilon)$ as the zero of $P(z, \epsilon)$ corresponding to $\lambda^{(k)}$, independent of its analytic properties.

This integral can be used to pick out the value of the zero, $f^{(k)}(\epsilon)$, by multiplying the argument of the integral by z. By the residue calculus:

$$f^{(k)}(\epsilon) = \frac{1}{2\pi i} \oint_{C_0} \frac{\partial P(z, \epsilon)}{P(z, \epsilon)} \, dz.$$

The important thing to notice here is that, since $P(z, \epsilon)$ is a polynomial of ϵ near $\epsilon = 0$, $f^{(k)}(\epsilon)$ is analytic.

Repeating this process for each of the d simple zeros of P, yields the d analytic functions $f^{(1)}(\epsilon), \ldots, f^{(d)}(\epsilon)$ that are the zeros of $P(z, \epsilon)$. □

Theorem 3.3. If $P(z, \epsilon)$ is an irreducible polynomial in z and ϵ, then all of the double roots of P are isolated in the ϵ-plane. That is, if for some value ϵ_0, $P(z, \epsilon_0)$ has a double root, then there exists $\delta > 0$ such that when $0 < |\epsilon - \epsilon_0| < \delta$, $P(z, \epsilon)$ does not have a double root in z.

The proof of this requires the introduction of a new object: the discriminant.

Definition. The ‘discriminant of P’, $D[P]$, is a function of the coefficients of a polynomial P, and $D[P] \equiv a_d^{d-2} \prod_{j \neq k} (\lambda^{(j)} - \lambda^{(k)})^2$, where a_d is the leading coefficient of P, and $\{\lambda^{(k)}\}$ are the zeros of P.

Clearly the discriminant is zero if and only if P has a repeated root, and this is the property that makes it so appealing.

Proof. A known fact about the discriminant is that it is the resultant of P and P_z, which is in some sense like being the $gcd(P, P_z)$. One of the methods of finding the discriminant is very much like Euclid’s algorithm for finding the gcd of two numbers, but rather than finding combinations of the two numbers that produce the lowest non-zero value, the discriminant involves finding the combination of polynomials that produces the lowest degree non-zero polynomial. For example, if $P(z) = A z^2 + B z + C$, then $P_z(z) = 2 A z + B$, and

$$2P - z P_z = Bz + 2C$$

$$\Rightarrow 2A(2P - z P_z) - BP_z = 4AC - B^2$$

Which is the well-known discriminant for quadratic equations. So, $D[P] = B^2 - 4AC = (-4A)P + (2A z + B)P_z$.

The things to keep in mind here are:

(i) $D = 0$ if and only if $P(z)$ has a repeated zero.
(ii) D is not a function of z.
(iii) D is a polynomial in the coefficients of P.
(iv) If the coefficients of P are polynomials of ϵ, then so is D.

36
Proof. $D(\epsilon)$ inherits its analyticity from $P(z, \epsilon)$. Because D is analytic, if it has a non-isolated zero, then it must be identically zero. But if the discriminant of P is always zero, then P always has a double root, and must therefore be reducible into factors. Because the original assumption was that $P(z, \epsilon)$ is irreducible, D cannot be identically zero, and therefore any zeros of $D(\epsilon)$ are isolated. This means that changing ϵ splits a multiple zero into simple zeros in general, and if $P(z, 0)$ has a repeated root, then within a small punctured disk about $\epsilon = 0$, $P(z, \epsilon)$ has only simple roots.

Theorem 3.4. In the neighborhood of a zero of $P(z, \epsilon)$ of multiplicity $s > 1$, the zeros take the form $f^{(s)}(\epsilon) = \sum_{n=-\infty}^{\infty} A_n \omega^n \epsilon^s$, where $H < s$. Specifically, the zeros are branches of one or more H-valued global analytic functions, with the given Puiseux series expansion, such that $\sum H_i = s$.

Proof. Without loss of generality, assume that the zero of multiplicity s is found at $\epsilon = 0$, so $f^{(1)}(0) = f^{(2)}(0) = \cdots = f^{(s)}(0)$. In the last theorem it was shown that within a small disk excluding $\epsilon = 0$ these s functions are different. For some ϵ_0 within this punctured disk we can apply theorem 3.2 almost verbatim to show that $f^{(1)}(\epsilon), \ldots, f^{(s)}(\epsilon)$ are analytic functions. However, they may not necessarily be single-valued. If they are analytically continued in a loop around $\epsilon = 0$ they may come back with a different value. However, by definition $P(f^{(k)}(\epsilon), \epsilon) = 0$, and there are only d possible such functions. As a result, if $f^{(k)}(\epsilon)$ does not return to its original value it must return as one of the other functions. Therefore, looping around $\epsilon = 0$ permutes $f^{(1)}, \ldots, f^{(s)}$. If H loops brings f_k back to its original value, then $f^{(k)}$ is a branch of an H-valued global analytic function. Clearly, $H < s$ since there are only s available functions to permute. The s different functions can be grouped according to which of the global analytic functions they’re branches of, $\{f^{(1)}, f^{(2)}, \ldots, f^{(H_1)}\} \{f^{(H_1 + 1)}, \ldots, f^{(H_1 + H_2)}\} \ldots$, where $\sum H_i = s$.

Since these functions are branches of a global analytic function in an annulus, by theorem 3.4 these functions must be of the form $f^{(s)}(\epsilon) = \sum_{n=-\infty}^{\infty} A_n \omega^n \epsilon^s$.

Proof that the characteristic polynomial is affine in ϵ

For a hub vertex with reflection coefficients r and t, we know that unitarity implies $|r|^2 + (N - 1)|t|^2 = 1$ and $2 \Re (rt) + (N - 2)|t|^2 = 0$. The most commonly used solution, and the one assumed throughout this paper, is $r = -1 + 2\epsilon$, $t = 2\epsilon$. The generalized solution is handled in section 7.

In the automorphism graph we found that the reflection coefficients are $R_L = r + (N - 2)t = 1 - 2\epsilon$ and $R_R = r = -1 + 2\epsilon$, for the left and right sides respectively, and the transmission coefficients between the two sides is $T = t\sqrt{N - 1} = 2\sqrt{\epsilon} - \epsilon^2$.

Theorem 3.5. Assume that U is a time step matrix as described so far. That is, there is a left and right side and these are connected only through a hub vertex with N edges where the reflection and transmission coefficients are $r = -1 + \frac{2}{N}$ and $t = \frac{2}{N}$. Then $C(z, \epsilon) = [U - zI]$ is an affine polynomial of $\epsilon = \frac{1}{N}$ and can be written $C(z, \epsilon) = C_0(z) + \epsilon f(z)$.

Proof. First, some cumbersome notation. Define $|M|$ to be the determinant of the matrix M, $|M|_{(i,j)}$ to be the determinant with the (i,j) term replaced with a zero, and $|M|_{z(i,j)}$ to be the
determinant of M with the ith column and jth row removed. Note that if M is an $n \times n$ matrix, then $|M|_{(i,j)}$ is also $n \times n$, and $|M|_{<i,j>}$ is $(n - 1) \times (n - 1)$.

In what follows we’ll make use of the fact that we can remove an element from the determinant of M, but must include a determinant of a minor matrix. For example,

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - d \begin{vmatrix} b & c \\ h & i \end{vmatrix} + g \begin{vmatrix} b & c \\ e & f \end{vmatrix}$$

This is can be more succinctly written, $|M| = |M|_{(1,3)} + g |M|_{<1,3>}$. Notice that $|M|_{(1,3)}$ is 3×3, while $|M|_{<1,3>}$ is 2×2.

If we list all of the left side states first, then

$$U \equiv \begin{pmatrix} U_L \\ T_{ij} \\ U_R \end{pmatrix},$$

where U_L and U_R are the restrictions of U to the left and right sides, and T_{ij} and T_{kl} are all zero except for a single $T = 2\sqrt{e - e^2}$ at the indicated coordinate. Note that if the T’s are at the coordinates (i, j) and (k, l), then the reflection coefficient for the left side, R_L, can be found at (k, j) and similarly R_R can be found at (i, l). It is now straightforward to see,

$$C(z, \epsilon) = \frac{U_L - zI}{T_{ij}} T_{ij} \frac{U_R - zI}{T_{ij}} + (-1)^{i+j} T \frac{U_L - zI}{T_{ij}} T_{ij} \frac{U_R - zI}{T_{ij}} \frac{0}{T_{ij}} + (-1)^{i+j+k+l-2} T \frac{U_L - zI}{T_{ij}} T_{ij} \frac{0}{T_{ij}} \frac{0}{T_{ij}}$$

There’s a slight abuse of notation in this step. Since the third term has had the jth row removed, the coordinate of T_{ij} is not (k, l), but is instead $(k, l - 1)$. It follows that,

$$\begin{pmatrix} U_L - zI \\ 0 \\ U_R - zI \end{pmatrix} \frac{0}{T_{ij}} + (-1)^{i+j+k+l-2} \begin{pmatrix} U_L - zI \\ 0 \\ U_R - zI \end{pmatrix} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}}$$

$$\begin{pmatrix} U_L - zI \\ 0 \\ U_R - zI \end{pmatrix} \frac{0}{T_{ij}} + (-1)^{i+j+k+l-2} T \frac{U_L - zI}{T_{ij}} T_{ij} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}} \frac{0}{T_{ij}}$$
The second and third terms of this last line are both equal to zero. In the second term the \(l \)th column is removed, but since \(U_R - zI \) is a square matrix, removing a row leaves the columns linearly dependent. Thus the matrix is degenerate, and the determinant is zero. A similar argument holds for the third term. Both of the non-zero blocks of the fourth term are square matrices, and are therefore the determinant is not necessarily zero. We now have,

\[
C(z, \epsilon) = \left| \begin{array}{cc}
U_L - zI & 0 \\
0 & U_R - zI
\end{array} \right| - (-1)^{j+i+k+l}T^4
\times \left| \begin{array}{cc}
U_L - zI & 0 \\
0 & U_R - zI
\end{array} \right|_{<i,j>,<k,l>}
\]

(A.1)

This is enough to show that \(C(z, \epsilon) \) is a polynomial in both \(z \) and \(\epsilon \). However, this can be taken a step further. \(R_R \) is the \(i, l \) term and \(R_L \) is the \(k, j \) term. Repeating the same trick we find that

\[
\left| \begin{array}{cc}
U_L - zI & 0 \\
0 & U_R - zI
\end{array} \right| = \left| \begin{array}{cc}
U_L - zI & 0 \\
0 & U_R - zI
\end{array} \right|_{(i,l)} + (-1)^{j+i}R_R \left| \begin{array}{cc}
U_L - zI & 0 \\
0 & U_R - zI
\end{array} \right|_{(<i,j>,<k,l>)}
\]

By definition we know that

\[
\left| \begin{array}{cc}
U_L - zI & 0 \\
0 & U_R - zI
\end{array} \right|_{(i,l)} = \left| \begin{array}{cc}
U_L - zI & 0 \\
0 & U_R - zI
\end{array} \right|_{(i,l),<k,j>},
\]

since these matrices are missing the same rows and columns.

We can now write,
And finally, using the fact that $\epsilon = -r_{12} R$, $\epsilon = -t_{2} L$, and $\epsilon = -T_{2}$,

$$
C(z, \epsilon) = \begin{cases}
U_L - z I & 0 \\
0 & U_R - z I
\end{cases}_{i,j,(k,l)}
+ (-1)^{i+j+k} R_L \begin{cases}
U_L - z I & 0 \\
0 & U_R - z I
\end{cases}_{i,j,(k,l)}
+ (-1)^{i+j} R_R \begin{cases}
U_L - z I & 0 \\
0 & U_R - z I
\end{cases}_{i,j,(k,l)}
+ (-1)^{i+j+k+l} \left(R_R R_L - T^2 \right) \begin{cases}
U_L - z I & 0 \\
0 & U_R - z I
\end{cases}_{i,j,(k,l)}
$$

(A.2)

It’s worth noting that $R_R R_L - T^2 = -1$ is not a coincidence dependent on how the solutions to the unitarity condition are chosen, but is in fact the unitarity condition itself. Thus, if we had used a solution different from $r = -1 + 2\epsilon$, $t = 2\epsilon$, we would find that $R_R R_L - T^2$ is always a constant.

The long manipulation in this proof is nothing more than a careful removal of every ϵ-dependent element of U, so the explicit ϵ in the above equation is in fact the only remaining ϵ. Clearly, the characteristic polynomial is a polynomial in z and an affine polynomial in ϵ. With $C_0(z) \equiv |U_0 - z I|$ we can now write

$$
C(z, \epsilon) \equiv |U - z I| = C_0(z) + \epsilon f(z)
$$

(A.3)

A.3. Proofs from section 4 (pairing)

Theorem 4.2. $\|P^{(k)}(\epsilon) - P^{(k)}(0)\| = O(\sqrt{\epsilon})$ and $|V^{(k)}(\epsilon)| = |V^{(k)}(0)| + O(\sqrt{\epsilon})$.

Proof. The ‘resolvent’ is a matrix defined as $R(z, \epsilon) = (U - z I)^{-1}$.
When ζ_0 is not an eigenvalue of U,

$$
U - \zeta I = U_0 - \zeta_0 I - (\zeta - \zeta_0)I + (U - U_0)
$$

$$
= U_0 - \zeta_0 I - (\zeta - \zeta_0)I + U - U_0)R(\zeta_0, 0)(U_0 - \zeta_0 I)
$$

$$
= \left[I - (\zeta I - \zeta_0 I + U - U_0)R(\zeta_0, 0) \right](U_0 - \zeta_0 I)
$$

$$
\Rightarrow R(\zeta, \epsilon) = R(\zeta_0, 0)\left[I - (\zeta - \zeta_0)I + U - U_0)R(\zeta_0, 0) \right]^{-1}
$$

Since U_0 is a known unitary matrix, for which ζ_0 is not an eigenvalue, we know that $R(\zeta_0, 0)$ is well-defined. The entries of U can be expanded as power series in ϵ, and since the entries of U are continuous functions of ϵ, $\|U - U_0\|$ can be made arbitrarily small. Therefore, for small values of ϵ and $(\zeta - \zeta_0)$ we find that $\|U - U_0\| < \|R(\zeta_0, 0)\|^{-1}$, and therefore $R(\zeta, \epsilon)$ can be written as a double power series in ζ and $\sqrt{\epsilon}$.

Interesting things happen when $\zeta = \lambda^{(k)}$. The projection operator onto the $\lambda^{(k)}$-eigenspace can be expressed as $P^{(k)} = -\frac{1}{2\pi i} \oint R(\zeta, \epsilon) \, d\zeta$, where the integral is taken over a curve that loops once around $\lambda^{(k)}$, and no other eigenvalues. This can be shown by applying $P^{(k)}$ to the eigenvector $V^{(j)}$.

Since $\|V^{(j)}\| = R(\zeta, \epsilon)(U - \zeta I)|V^{(j)}\rangle = (\lambda^{(j)} - \zeta)R(\zeta, \epsilon)|V^{(j)}\rangle$ we know that $R(\zeta, \epsilon)|V^{(j)}\rangle = \frac{1}{\lambda^{(j)} - \zeta} |V^{(j)}\rangle$.

It follows that,

$$
P^{(k)}\left| V^{(j)} \right\rangle = -\frac{1}{2\pi i} \oint R(\zeta, \epsilon) \, d\zeta \left| V^{(j)} \right\rangle
$$

$$
= -\frac{1}{2\pi i} \oint R(\zeta, \epsilon) \left| V^{(j)} \right\rangle \, d\zeta
$$

$$
= -\frac{1}{2\pi i} \oint R(\zeta, \epsilon) \left| V^{(j)} \right\rangle \, d\zeta
$$

$$
= \frac{1}{2\pi i} \oint R(\zeta, \epsilon) \left| V^{(j)} \right\rangle \, d\zeta
$$

$$
= \delta_{jk} \left| V^{(j)} \right\rangle.
$$

The last step follows from the residue theorem, and the assumption that the integral is over a path that encloses only $\lambda^{(k)}$. $[P^{(k)}]^2 = P^{(k)}$, so $P^{(k)}$ is a projection, and $P^{(j)}P^{(k)} = \delta_{jk} P^{(k)}$, by the orthogonality of eigenvectors with different eigenvalues. Notice that this isn’t a projection onto a particular eigenvector with eigenvalue $\lambda^{(k)}$, but is a projection onto the eigenspace for $\lambda^{(k)}$.

The important thing is that since $R(\zeta, \epsilon)$ is expressible as a power series in $\sqrt{\epsilon}$, then so is $P^{(k)}$.

Away from $\epsilon = 0$ the eigenvalues are distinct, and thus the eigenprojections are 1-dimensional and can be written $P^{(k)} = |V^{(k)}\rangle\langle V^{(k)}|$. So if the entries of $P^{(k)}$ take the form of $\sum_{n=0}^{\infty} c_n \sqrt{\epsilon}^n$, then so do the entries in the corresponding eigenvector. □
Theorem 4.4. Define \(U|V^{(j)}(e)\rangle \) for all \(j \), \(S = \text{span} \{ |V^{(1)}(0)\rangle, \ldots, |V^{(j)}(0)\rangle \} \), and \(P_S \) as the projection operator onto \(S \).

If \(|u\rangle \in S \), then \(\forall m \)

(i) \(P_S U^m |u\rangle = 0 \)

(ii) \(P_S U^m |u\rangle = O(\sqrt{e}) \)

That is, if \(|u\rangle \in S \), then \(U_0^m |u\rangle \) is also in \(S \), and \(U^m |u\rangle \) is almost entirely in \(S \).

Proof.

(i)

\[
|u\rangle \in S \\
\Rightarrow |u\rangle = \alpha_1 |V^{(1)}(0)\rangle + \ldots + \alpha_j |V^{(j)}(0)\rangle \\
\Rightarrow U_0^m |u\rangle = \alpha_1 \left[\lambda^{(1)} \right]^m |V^{(1)}(0)\rangle + \ldots + \alpha_j \left[\lambda^{(j)} \right]^m |V^{(j)}(0)\rangle \\
\Rightarrow U_0^m |u\rangle \in S
\]

(ii) Notice first that \(U_0 \) is unitary, so \(\|U_0\| = 1 \). Since it has entries of \(O(\sqrt{e}) \), \(\|U - U_0\| = O(\sqrt{e}) \) and therefore \(\|U\| \leq \|U_0\| + O(\sqrt{e}) = 1 + O(\sqrt{e}) \). When on the ‘unitary preserving path’, \(\|U\| = 1 \).

\[
|u\rangle \in S \\
\Rightarrow |u\rangle = \alpha_1 |V^{(1)}(0)\rangle + \ldots + \alpha_j |V^{(j)}(0)\rangle \\
= |u\rangle = \alpha_1 |V^{(1)}(e)\rangle + \ldots + \alpha_j |V^{(j)}(e)\rangle + O(\sqrt{e}) \quad \text{By theorem 4.3} \\
\Rightarrow U^m |u\rangle = \alpha_1 \left[\lambda^{(1)}(e) \right]^m |V^{(1)}(e)\rangle + \ldots + \alpha_j \left[\lambda^{(j)}(e) \right]^m |V^{(j)}(e)\rangle \quad + U^m O(\sqrt{e}) \\
= \alpha_1 \left[\lambda^{(1)}(e) \right]^m |V^{(1)}(0)\rangle + \ldots + \alpha_j \left[\lambda^{(j)}(e) \right]^m |V^{(j)}(0)\rangle + O(\sqrt{e}) \quad \text{By unitarity} \\
= \alpha_1 \left[\lambda^{(1)}(e) \right]^m |V^{(1)}(0)\rangle + \ldots + \alpha_j \left[\lambda^{(j)}(e) \right]^m |V^{(j)}(0)\rangle + O(\sqrt{e}) \quad \text{By theorem 4.3} \\
\]

Since \(\alpha_1 \left[\lambda^{(1)}(e) \right]^m |V^{(1)}(0)\rangle + \ldots + \alpha_j \left[\lambda^{(j)}(e) \right]^m |V^{(j)}(0)\rangle \in S \), \(P_S U^m |u\rangle = O(\sqrt{e}) \). \(\square \)

Theorem 4.8. Assume that the right side \(\lambda_0 \)-eigenspace of \(U_0 \) is \(D \) dimensional.

(1) If the \(\lambda_0 \)-eigenspace of \(U_0 \) is bound in \(G \), then the \(\lambda_0 \)-eigenspace of \(U \) is \(D \) dimensional and all of the associated eigenvectors are constant. This is case i) of the Three Case Theorem.

(2) If the \(\lambda_0 \)-eigenspace of \(U_0 \) is in contact with the hub vertex, then the right sided \(\lambda_0 \)-eigenspace of \(U \) is \(D-1 \) dimensional and the \(D-1 \) associated eigenvectors are constant and bound in \(G \). This leaves one eigenvector which is non-constant in \(e \), and is in contact with the hub vertex. This is either case ii or case iii of the Three Case Theorem.
Proof. The first result is trivial. If an eigenvector is bound in \(G \), then varying \(\epsilon \) (which only affects reflection and transmission across the hub vertex) can’t have any impact on it. So, for eigenvectors bound in \(G \), \(U|V⟩ = V₀|V⟩ = λ₀|V⟩ \).

For the second result we assume that the \(λ₀ \)-eigenspace is in contact with the hub vertex, and we’ll use the set up described in section 2. Define \(|V⟩ = α|in⟩ + β|out⟩ + γ|1, 0⟩ + δ|0, 1⟩ + |G⟩ \), where \(|G⟩ = P₀|V⟩ \) and \(U|V⟩ = λ₀|V⟩ \). So \(|V⟩ \) is in contact with the hub vertex, is an eigenvector of \(U \), and has a constant eigenvalue. It may seem too restrictive to assume that the left side has a particular form, but we’ll find that it makes no difference.

The rough idea of the proof is to show that if \(|V₀⟩ \) is a hub-adjacent \(λ₀ \) eigenvector of \(U₀ \), then \(|V⟩ \) cannot be a \(λ₀ \) eigenvector of \(U \). Instead, the eigenvalue must be a non-constant function of \(\epsilon \). Since a \(λ₀ \) eigenvector is lost when we change from the \(\epsilon = 0 \) case to the \(\epsilon \neq 0 \) case, we can say that if the \(λ₀ \)-eigenspace of \(U₀ \) is \(D \) dimensional, then the \(λ₀ \)-eigenspace of \(U \) is \(D-1 \) dimensional.

Assume that there is no left side \(λ₀ \)-eigenspace. By the Three Case theorem and theorem 4.7, the only possibilities are that all of the eigenvectors in the \(λ₀ \) family are constant, or there is one unique non-constant eigenvector. Since the \(λ₀ \) space of \(U₀ \) is entirely right sided, \(|V₀⟩ \) takes the form \(|V₀⟩ = γ₀|1, 0⟩ + δ₀|0, 1⟩ + |G₀⟩ \). It follows that,

\[
U₀|V₀⟩ = λ₀|V₀⟩
\]

\[
⇒ −γ₀|0, 1⟩ + U₀[δ₀|0, 1⟩ + |G₀⟩] = γ₀δ₀|1, 0⟩ + δ₀λ₀|0, 1⟩ + λ₀|G₀⟩
\]

\[
⇒ \begin{cases}
γ₀ = −δ₀λ₀ \\
U₀[δ₀|0, 1⟩ + |G₀⟩] = γ₀δ₀|1, 0⟩ + λ₀|G₀⟩
\end{cases}
\]

Keep both of these innocent looking results in mind for a moment.

Now extending to the \(\epsilon \neq 0 \) case,

\[
U|V⟩ = α\left[(1 - 2\epsilon)|out⟩ + 2\sqrt{\epsilon - \epsilon^2}|0, 1⟩\right] + βe^{iφ}|in⟩ + γ\left[(-1 + 2\epsilon)|0, 1⟩ + (\epsilon - \epsilon^2)|out⟩\right] + U[δ₀|0, 1⟩ + |G⟩]
\]

\[
U|V⟩ = λ₀|V⟩ \Rightarrow \begin{cases}
|in⟩: \quad βe^{iφ} = αλ₀ \\
|out⟩: \quad α(1 - 2\epsilon) + γ2\sqrt{\epsilon - \epsilon^2} = βλ₀ \\
|0, 1⟩: \quad α2\sqrt{\epsilon - \epsilon^2} + γ(-1 + 2\epsilon) = δλ₀ \\
U[δ₀|0, 1⟩ + |G⟩] = γλ₀|1, 0⟩ + λ₀|G⟩.
\end{cases}
\]

This is difficult to solve directly, but fortunately the last of these four relations can be used to eliminate a variable. Notice that \(U[δ₀|1, 0⟩ + |G⟩] = U₀[δ₀|0, 1⟩ + |G⟩] \) since both \(|0, 1⟩ \) and \(|G⟩ \) are unaffected by the hub vertex. Beginning with the last relation from both the \(\epsilon = 0 \) and \(\epsilon \neq 0 \) cases,
\[
\begin{align*}
\{ \mathbf{U}_0\left[\delta_0 \mid 0, 1 \right] + \left| G_0 \right\} &= \gamma_0 \lambda_0 \left| 0, 1 \right\} + \lambda_0 \left| G_0 \right\} \\
\mathbf{U}_0\left[\delta_0 \mid 0, 1 \right] + \left| G \right\} &= \gamma \lambda_0 \left| 1, 0 \right\} + \lambda_0 \left| G \right\}
\end{align*}
\]
\[
\Rightarrow \begin{cases}
\mathbf{U}_0\left[\delta_0 \mid 0, 1 \right] + \left| G_0 \right\} = \gamma_0 \lambda_0 \left| 0, 1 \right\} + \lambda_0 \left| G_0 \right\} \\
\mathbf{U}_0\left[\delta_0 \mid 0, 1 \right] + \left| G \right\} = \gamma \lambda_0 \left| 1, 0 \right\} + \lambda_0 \left| G \right\}
\end{cases}
\]
\[
\Rightarrow \mathbf{U}_0\left[\delta_0 \mid 0, 1 \right] + \left\{ \mathbf{U}_0\left[\delta_0 \mid 0, 1 \right] + \left| G_0 \right\} \right\} = \gamma \lambda_0 \left| 1, 0 \right\} + \lambda_0 \left| G \right\}
\]
\[
\Rightarrow \left(\bar{\gamma} \bar{\lambda} \right) \left| \mathbf{U}_0 \right| \left(\bar{\lambda} \left| 0, 1 \right\} + \lambda_0 \left| G \right\} \right)
\]
\[
\Rightarrow \delta_0 \delta \left(\bar{\gamma} \bar{\lambda} \right) \left| \mathbf{U}_0 \right| \left(\bar{\lambda} \left| 0, 1 \right\} + \lambda_0 \left| G \right\} \right)
\]
\[
\Rightarrow \delta_0 \delta + \left(\bar{\gamma} \bar{\lambda} \right) \left| \mathbf{U}_0 \right| \left(\bar{\lambda} \left| 0, 1 \right\} + \lambda_0 \left| G \right\} \right)
\]
\[
\Rightarrow \delta_0 \delta \left(\bar{\gamma} \bar{\lambda} \right) \left| \mathbf{U}_0 \right| \left(\bar{\lambda} \left| 0, 1 \right\} + \lambda_0 \left| G \right\} \right)
\]
\[
\Rightarrow \delta_0 \delta = \bar{\gamma} \bar{\lambda}
\]
\[
\Rightarrow \delta = -\bar{\gamma} \bar{\lambda}
\]
\[
\Rightarrow \delta = \gamma.
\]

So we now have four straightforward equations and four variables:

\[
\begin{align*}
\beta e^{i\phi} &= a \lambda_0 \\
\alpha (1 - 2e) + \gamma 2 \sqrt{e - e^2} &= \beta \lambda_0 \\
\alpha 2 \sqrt{e - e^2} - \gamma (1 + 2e) &= \delta \lambda_0 \\
\gamma &= -\delta \lambda_0
\end{align*}
\]
\[
\Rightarrow \begin{cases}
\beta = a \lambda_0 e^{-i\phi} \\
\alpha (1 - 2e) + (-\delta \lambda_0) 2 \sqrt{e - e^2} &= \beta \lambda_0 \\
\alpha 2 \sqrt{e - e^2} - (-\delta \lambda_0) (1 + 2e) &= \delta \lambda_0
\end{cases}
\]
\[
\Rightarrow \begin{cases}
\alpha (1 - 2e) - \delta \lambda_0 2 \sqrt{e - e^2} = (a \lambda_0 e^{-i\phi}) \lambda_0 \\
\alpha 2 \sqrt{e - e^2} &= \delta \lambda_0 2 \sqrt{e - e^2}
\end{cases}
\]
\[
\Rightarrow \begin{cases}
\alpha (1 - \lambda_0^2 e^{-i\phi} - 2e) = \delta \lambda_0 2 \sqrt{e - e^2} \\
\alpha 2 \sqrt{e - e^2} &= \delta \lambda_0 2 \sqrt{e - e^2}
\end{cases}
\]
\[
\Rightarrow \begin{cases}
\alpha (1 - \lambda_0^2 e^{-i\phi} - 2e) = \delta \lambda_0 2 \sqrt{e - e^2} \\
\alpha = a \sqrt{e - e^2} / \lambda_0 e
\end{cases}
\]

44
\[a\left(1 - \lambda^2 e^{-i\phi} - 2e\right) = \left(\frac{\sqrt{e} - e^2}{\lambda_0 e}\right) \lambda_0 2\sqrt{e} - e^2 \]
\[a\left(1 - \lambda^2 e^{-i\phi} - 2e\right) = a(2 - 2e) \]
\[a\left(\lambda_0^2 + e^{i\phi}\right) = 0. \]

Unless \(\phi \) was specifically chosen so that \(e^{i\phi} + \lambda_0^2 = 0 \) it follows that \(a = \beta = \gamma = \delta = 0 \), which contradicts the statement that \(\{V_0\} \) is in contact with the hub vertex. What has just been shown is that if \(\{V_0\} \) is a \(\lambda_0 \) eigenvector of \(U_0 \) in contact with the hub vertex, then \(\{V\} \) either has a different eigenvalue or \(e^{i\phi} + \lambda_0^2 = 0 \).

First assume that \(\lambda_0^2 + e^{i\phi} \neq 0 \) and \(\lambda_0^2 - e^{i\phi} \neq 0 \) (there is no left side \(\lambda_0\)-eigenspace).

If the \(\lambda_0 \) eigenspace of \(U_0 \) is in contact with the hub vertex, then by moving from the \(e = 0 \) case to the \(e \neq 0 \) case at least one eigenvector is lost. Since \(\lambda_0^2 - e^{i\phi} \neq 0 \), by theorem 4.7 there can be no pairing. The Three Case Theorem then implies that there is at most only one non-constant eigenvalue in the \(\lambda_0 \) family. So, only one eigenvector is lost and if the right side \(\lambda_0\)-eigenspace of \(U_0 \) is \(D \) dimensional, then the right side \(\lambda_0\)-eigenspace of \(U \) must be \(D-1 \) dimensional.

The fundamental pairing theorem

Theorem 4.10. The \(\lambda_0\)-eigenspace is in contact with both the left and right sides of the hub vertex if and only if there exists paired vectors \(\{V^2\} \) with eigenvalues of the form \(\lambda_0 e^{\pm i\sqrt{e}} + O(e) \).

Proof. Both sides of the \(\lambda_0\)-eigenspace have an active eigenvector, because both sides are in contact with the hub (theorem 4.8). Define \(\ell_0 \) and \(\tau_0 \) to be the left and right side active eigenvectors.

Assume that \(\{P\} \) and \(\{Q\} \) are eigenvectors with eigenvalues in the \(\lambda_0 \) family, and that both are in contact with the hub vertex. They may be paired, or one or both may be constant. \(\{P\} \) and \(\{Q\} \) are in the active subspace, and \(\{R\} \) and \(\{Q_0\} \) are in the \(\lambda_0\)-eigenspace of \(U_0 \), so it follows that \(span \{\{R\}, \{Q_0\}\} = span \{\{\ell_0\}, \{\tau_0\}\} \). Define the eigenvalues of \(\{P\} \) and \(\{Q\} \) to be \(\lambda_0 e^{i\phi_0} \) and \(\lambda_0 e^{i\phi_1} \), where \(p(0) = q(0) = 0 \).

Because the spans are equal and two dimensional there exists a transformation between the orthonormal bases, \(\{\{\ell_0\}, \{\tau_0\}\} \) and \(\{\{R\}, \{Q_0\}\} \), which we can write

\[
\begin{pmatrix}
\ell_0 \\
\tau_0 \\
\end{pmatrix} =
\begin{pmatrix}
e^{i\phi} \cos(\omega) & e^{i\phi} \sin(\omega) \\
e^{-i\phi} \sin(\omega) & -e^{-i\phi} \cos(\omega)
\end{pmatrix}
\begin{pmatrix}
P \\
Q_0 \\
\end{pmatrix}
\]

By carefully choosing the relative phases between all four vectors, we can assume without loss of generality that

\[
\begin{pmatrix}
\ell_0 \\
\tau_0 \\
\end{pmatrix} =
\begin{pmatrix}
\cos(\omega) & \sin(\omega) \\
-sin(\omega) & \cos(\omega)
\end{pmatrix}
\begin{pmatrix}
R \\
Q_0 \\
\end{pmatrix},
\]

with \(0 \leq \omega \leq \frac{\pi}{2} \), and use this to define \(\ell \) and \(\tau \) as:

\[
\begin{pmatrix}
\ell \\
\tau \\
\end{pmatrix} =
\begin{pmatrix}
\cos(\omega) & \sin(\omega) \\
-sin(\omega) & \cos(\omega)
\end{pmatrix}
\begin{pmatrix}
P \\
Q \\
\end{pmatrix}
\]

Notice that while \(\{\ell_0\} \) and \(\{\tau_0\} \) are eigenvectors of \(U_0, \ell \) and \(\tau \) are not eigenvectors of \(U \), they’re merely defined in terms of the eigenvectors \(\{P\} \) and \(\{Q\} \). Since eigenvectors can be expressed as power series in \(\sqrt{e} \), we can write \(\{\ell\} = \{\ell_0\} + \sqrt{e} \{\ell_1\} + O(e) \), and similarly for \(\{\tau\} \).
In the \(|lP, lQ\rangle\) basis \(U = \lambda_0 \begin{pmatrix} e^{ip(c)} & 0 \\ 0 & e^{iq(c)} \end{pmatrix}\) and a similarity transform allows us to write this in the \(|l, \ell\rangle\) basis,

\[
U = \begin{pmatrix} \cos (\omega) & \sin (\omega) \\ -\sin (\omega) & \cos (\omega) \end{pmatrix} \lambda_0 \begin{pmatrix} e^{ip(c)} & 0 \\ 0 & e^{iq(c)} \end{pmatrix} \begin{pmatrix} \cos (\omega) & -\sin (\omega) \\ \sin (\omega) & \cos (\omega) \end{pmatrix} = \lambda_0 \begin{pmatrix} \cos (\omega) e^{ip(c)} - \sin (\omega) e^{iq(c)} & 0 \\ 0 & \sin (\omega) e^{ip(c)} + \cos (\omega) e^{iq(c)} \end{pmatrix} \begin{pmatrix} \cos (\omega) & \sin (\omega) \\ -\sin (\omega) & \cos (\omega) \end{pmatrix}
\]

Using the trig identities \(\cos^2(\omega) = \frac{1 + \cos(2\omega)}{2}\), \(\sin^2(\omega) = \frac{1 - \cos(2\omega)}{2}\), and \(\sin(\omega) \cos(\omega) = \frac{\sin(2\omega)}{2}\) we find

\[
U = \frac{\lambda_0}{2} \begin{pmatrix} e^{ip(c)} + e^{iq(c)} + \cos(2\omega) \left(e^{ip(c)} - e^{iq(c)}\right) & \sin(2\omega) \left(-e^{ip(c)} + e^{iq(c)}\right) \\ \sin(2\omega) \left(-e^{ip(c)} + e^{iq(c)}\right) & e^{ip(c)} + e^{iq(c)} - \cos(2\omega) \left(e^{ip(c)} - e^{iq(c)}\right) \end{pmatrix}
\]

This is enough to determine the value of \(\omega\).

Notice that \(2|U_{12}| = |l| \sin(2\omega)|e^{ip(c)} - e^{iq(c)}\rangle\) and \(l|U_{11} - U_{22}| = |l| \cos(2\omega)|e^{ip(c)} - e^{iq(c)}\rangle\). It follows that

\[
\frac{\sin^2(2\omega) + \cos^2(2\omega)}{\sin^2(2\omega) + \cos^2(2\omega)} \sin^2(2\omega) = |U_{11} - U_{22}|^2 = \frac{|l| \sin(2\omega)|e^{ip(c)} - e^{iq(c)}\rangle\langle e^{ip(c)} - e^{iq(c)}|l|}{4 \left|\sum \left|U_{11} - U_{22}\right|^2\right|^2}
\]

Or more simply, \(\sin^2(2\omega) = \left(1 + \left|\frac{U_{11} - U_{22}}{2U_{12}}\right|^2\right)^{-1}\). We can calculate \(|U_{11} - U_{22}|\) and \(|U_{12}|\) directly:

\[
\begin{align*}
|U_{11} - U_{22}| &= \left|\langle l | U | l \rangle - \langle \tau | U | \tau \rangle\right| \\
&= \left|\langle \ell_0 | U_0 | \ell_0 \rangle - \langle \tau_0 | U_0 | \tau_0 \rangle + \sqrt{E} \left(\langle \ell_1 | U_0 | \ell_0 \rangle + \langle \ell_0 | U_0 | \ell_1 \rangle - \langle \tau_1 | U_0 | \tau_0 \rangle - \langle \tau_0 | U_0 | \tau_1 \rangle\right)\right| + O(\epsilon) \\
&= |\lambda_0 \langle \ell_0 | \ell_0 \rangle - \lambda_0 \langle \tau_0 | \tau_0 \rangle + \sqrt{E} \left(\lambda_0 \langle \ell_1 | \ell_0 \rangle + \langle \ell_0 | U_0 | \ell_1 \rangle - \lambda_0 \langle \tau_1 | \tau_0 \rangle - \langle \tau_0 | U_0 | \tau_1 \rangle\right)\right| + O(\epsilon) \\
&= |\lambda_0 - \lambda_0 + \sqrt{E} \left(\lambda_0 \left(\langle \ell_1 | \ell_0 \rangle + \langle \ell_0 | \ell_1 \rangle\right) - \left(\langle \tau_1 | \tau_0 \rangle + \langle \tau_0 | \tau_1 \rangle\right)\right)\right| + O(\epsilon)
\end{align*}
\]
In the last step here we used the fact that l_0 and r_0 are one-sided, and since U_1 is only involved in transmitting between the left and right sides, $\langle l_0 | U_1 | l_0 \rangle = \langle r_0 | U_1 | r_0 \rangle = 0$.

$$\begin{align*}
[U_{12}] &= 1 + \sqrt{\ell} \left[\langle \ell | U_0 \rangle \langle l_0 | \ell_0 \rangle + \sqrt{\ell} \left(\langle \ell | U_0 \rangle \langle l_0 | \ell_0 \rangle + \langle \ell | U_1 \rangle \langle l_0 | \ell_1 \rangle \right) + O(\epsilon) \\
&= \sqrt{\ell} \left[\langle \ell | U_0 \rangle \langle l_0 | \ell_0 \rangle - \langle r_0 | U_1 | r_0 \rangle \right] + O(\epsilon) \\
&= \sqrt{\ell} |0 - 0| + O(\epsilon) \\
&= O(\epsilon).
\end{align*}$$

By construction, $\langle P | Q \rangle = 0 \Rightarrow \langle \ell | \ell \rangle = 0$, and in the last step this fact is used twice. First $\langle r_0 | l_0 \rangle = 0$ and second, by theorem 4.6, $\langle r_0 | l_0 \rangle + \langle r_0 | l_0 \rangle = 0$. By assumption, l_0 and r_0 are adjacent to the hub vertex, $\langle r_0 | U_0 | l_0 \rangle \neq 0$.

So by construction, $\langle P | Q \rangle = 0 \Rightarrow \langle \ell | \ell \rangle = 0$, and in the last step this fact is used twice. First $\langle r_0 | l_0 \rangle = 0$ and second, by theorem 4.6, $\langle r_0 | l_0 \rangle + \langle r_0 | l_0 \rangle = 0$. By assumption, l_0 and r_0 are adjacent to the hub vertex, $\langle r_0 | U_0 | l_0 \rangle \neq 0$.

So we now have that $|U_{12}| = O(\sqrt{\ell})$ and $|U_{11} - U_{22}| = O(\epsilon)$. It follows that

$$\begin{align*}
sin^2(2\omega) &= \left(1 + \left| \frac{U_{11} - U_{22}}{2U_{12}} \right|^2 \right)^{-1} = (1 + O(\epsilon))^{-1} \Rightarrow \sin^2(2\omega) = 1, \text{ since } \omega \text{ was originally defined independently of } \epsilon \text{ (e.g., } \cos(\omega) = \langle \ell_0 | V_0^* \rangle). \text{ So, } \sin(2\omega) = \pm 1, \text{ and since } 0 \leq \omega \leq \frac{\pi}{4}, \text{ we find that } \omega = \frac{\pi}{4}. \text{ Now } U \text{ takes a much simpler form in the } \{\ell, \ell, \ell \} \text{ basis:}

U &= \frac{\lambda_0}{2} \left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array} \right) \left(\begin{array}{cc}
\epsilon_{p(e)} + \epsilon_{q(e)} \\
\epsilon_{p(e)} - \epsilon_{q(e)}
\end{array} \right) + O(\epsilon).
\end{align*}$$

Since $\lambda_0 \epsilon_{p(e)} - \lambda_0 \epsilon_{q(e)} = 2 |U_{12}| = O(\sqrt{\ell})$ it follows that $p(e) - q(e) = O(\sqrt{\ell})$. So, $p(e) = O(\sqrt{\ell})$ or $q(e) = O(\sqrt{\ell})$. Without loss of generality, assume that $p(e) = c\sqrt{\ell} + O(\epsilon)$.

In addition,

$$\begin{align*}
U_{11} &= \langle \ell | U | \ell \rangle \\
&= \langle \ell_0 | U_0 | \ell_0 \rangle + \sqrt{\ell} \left(\langle \ell_1 | U_0 | \ell_0 \rangle + \langle \ell_0 | U_1 | \ell_0 \rangle \right) + O(\epsilon) \\
&= \lambda_0 \langle \ell_0 | \ell_0 \rangle + \sqrt{\ell} \left(\lambda_0 \langle \ell_0 | \ell_0 \rangle + \lambda_0 \langle \ell_0 | \ell_1 \rangle \right) + O(\epsilon) \\
&= \lambda_0 + \lambda_0 \sqrt{\ell} \left(\langle \ell_1 | \ell_0 \rangle + \langle \ell_0 | \ell_1 \rangle \right) + O(\epsilon) \\
&= \lambda_0 + O(\epsilon).
\end{align*}$$

Since $\frac{\lambda_0}{2} \left(\frac{1}{2} \epsilon_{p(e)} + \frac{1}{2} \epsilon_{q(e)} \right) = \lambda_0 + O(\epsilon)$, $p(e) + q(e)$ has no $\sqrt{\ell}$ term, and therefore $q(e) = -c\sqrt{\ell} + O(\epsilon)$.

Clearly, this situation is case iii in the three-case theorem, and since there are only two non-constant eigenvalues, and all eigenvalues that vary by $O(\sqrt{\ell})$ are paired with another eigenvalue, these two eigenvalues are paired to each other (and not merely coincidentally related). So by definition $|P|$ and $|Q|$ are paired eigenvectors. In fact, they are $|V^\perp|$.

The reverse implication, that the λ_0-eigenspace of U_0 is adjacent to both sides of the hub vertex if there exists paired eigenvectors, is a direct result of theorem 4.7. □
A.4. Proofs from section 5 (tolerances)

With some foresight, define:
\[\begin{align*}
\delta & \equiv \frac{\rho}{\lambda} \left(\frac{1}{\epsilon} + \epsilon \right) \\
\omega & \equiv \frac{\rho}{\lambda} \left(\frac{1}{\epsilon} + \epsilon \right)
\end{align*}\]

Theorem 5.4. The angle between the paired eigenvectors and the active eigenvectors, \(\omega\), is to lowest order a function of \(\frac{\rho}{\lambda^2}\).

Proof. The (arbitrary) phase of each of the eigenvectors can be carefully chosen so that each of these amplitudes are real, and so that \(0 \leq \omega \leq \frac{\pi}{2}\).

Define
\[
\begin{align*}
|\ell\rangle & = \cos(\omega) |V^+(\delta, \epsilon)\rangle - \sin(\omega) |V^- (\delta, \epsilon)\rangle \\
|\ell^\prime\rangle & = \sin(\omega) |V^+(\delta, \epsilon)\rangle + \cos(\omega) |V^- (\delta, \epsilon)\rangle \\
|\ell\rangle & \equiv \sin(\omega) |V^+(\delta, \epsilon)\rangle + \cos(\omega) |V^- (\delta, \epsilon)\rangle
\end{align*}
\]

and
\[
\begin{align*}
|\ell\rangle & = \cos(\omega) |V^+(\delta, \epsilon)\rangle + \sin(\omega) |V^-(\delta, \epsilon)\rangle \\
|\ell^\prime\rangle & = \sin(\omega) |V^+(\delta, \epsilon)\rangle - \cos(\omega) |V^- (\delta, \epsilon)\rangle
\end{align*}
\]

where \(|\ell\rangle\) and \(|\ell^\prime\rangle\) are projections of the corresponding active eigenvectors onto the space spanned by the paired eigenvectors. As such, \(\text{Span} \{|\ell\rangle, |\ell^\prime\rangle\} = \text{Span} \{|V^+\rangle, |V^-\rangle\}\) is an invariant subspace of \(U\).

Using the same technique used in the proof of the Fundamental Pairing theorem we can find an expression for \(\omega\):
\[
\frac{4 |U_{ll}|^2}{|U_{ll} - U_{rr}|^2 + 4 |U_{lr}|^2} = \frac{4 \sin^2(2\omega) \sin^2\left(c \sqrt{e - e_0}\right)}{4 \cos^2(2\omega) \sin^2\left(c \sqrt{e - e_0}\right) + 4 \sin^2(2\omega) \sin^2\left(c \sqrt{e - e_0}\right)} = \frac{\sin^2(2\omega) \sin^2\left(c \sqrt{e - e_0}\right)}{\sin^2\left(c \sqrt{e - e_0}\right)} = \sin^2(2\omega).
\]

Once again, to solve for \(\omega\) we need to find \(|U_{ll} - U_{rr}|^2\) and \(4|U_{lr}|^2\):

\[
\begin{align*}
|U_{ll} - U_{rr}|^2 &= |\langle \ell | U | \ell \rangle - \langle r | U | r \rangle|^2 \\
&= \left| \langle \ell_0 | U_0 | \ell_0 \rangle - \langle \ell_0 | U_0 | \ell_1 \rangle - \langle \ell_0 | U_0 | \ell_0 \rangle - \langle \ell_0 | U_0 | \ell_0 \rangle \right|^2 \\
&= \left| \lambda_0 - \lambda_0 + \lambda_0 \langle \ell_0 | U_0 | \ell_0 \rangle - \lambda_0 \langle \ell_0 | U_0 | \ell_1 \rangle - \lambda_0 \langle \ell_0 | U_0 | \ell_0 \rangle - \lambda_0 \langle \ell_0 | U_0 | \ell_0 \rangle \right|^2 \\
&= \left| \lambda_0 - \lambda_0 + \lambda_0 \langle \ell_0 | U_0 | \ell_0 \rangle - \lambda_0 \langle \ell_0 | U_0 | \ell_1 \rangle - \lambda_0 \langle \ell_0 | U_0 | \ell_0 \rangle - \lambda_0 \langle \ell_0 | U_0 | \ell_0 \rangle \right|^2 \\
&= \left| \lambda_0 e^{i\delta} - \lambda_0 e^{-i\delta} + O(\epsilon) \right|^2 \\
&= \left| 2i\lambda_0 \sin \left(\frac{\delta}{2}\right) + O(\epsilon) \right|^2 \\
&= 4 \sin^2 \left(\frac{\delta}{2}\right) + O\left(\delta\epsilon, \epsilon^2\right)
\end{align*}
\]

\[
\begin{align*}
4 |U_{lr}|^2 &= |\langle \ell | U | r \rangle|^2 \\
&= \left| \langle \ell_0 | U_0 | \ell_0 \rangle + \langle \ell_0 | U_0 | \ell_1 \rangle + \langle \ell_0 | U_1 | \ell_0 \rangle \right|^2 \\
&= \left| 0 + \lambda_0 \langle \ell_0 | U_0 | \ell_0 \rangle + \lambda_0 \langle \ell_0 | U_0 | \ell_1 \rangle \right|^2 \\
&= \left| \lambda_0 \left(e^{i\delta} \langle \ell_0 | \ell_0 \rangle + e^{-i\delta} \langle \ell_0 | \ell_1 \rangle \right) + \langle \ell_0 | U_1 | \ell_0 \rangle \right|^2 \\
&= \left| i\lambda_0 \sin \left(\frac{\delta}{2}\right) \left(\langle \ell_0 | \ell_0 \rangle - \langle \ell_0 | \ell_1 \rangle \right) + \langle \ell_0 | U_1 | \ell_0 \rangle \right|^2 \\
&= \left| i\lambda_0 \sin \left(\frac{\delta}{2}\right) \left(\langle \ell_0 | \ell_0 \rangle - \langle \ell_0 | \ell_1 \rangle \right) \right|^2 + 2 \text{Re} \left[i\lambda_0 \sin \left(\frac{\delta}{2}\right) \langle \ell_0 | \ell_0 \rangle \right]
\end{align*}
\]
\[
\begin{align*}
- \langle \ell_0 | \tau_1 \rangle \langle \tau_0 | U_1 | \ell_0 \rangle + | \langle \ell_0 | U_1 | \tau_0 \rangle |^2 \\
= \sin^2 \left(\frac{\delta}{2} \right) | \langle \ell_1 | \tau_0 \rangle - \langle \ell_0 | \tau_1 \rangle |^2 + 2 \Re \left[\imath \omega_0 \sin \left(\frac{\delta}{2} \right) \langle \ell_1 | \tau_0 \rangle \right] \\
- \langle \ell_0 | \tau_1 \rangle \langle \tau_0 | U_1 | \ell_0 \rangle + c^2 \epsilon \\
= c^2 \epsilon + O(\delta^2 \epsilon, \delta \epsilon) \\
= c^2 \epsilon + O(\delta \epsilon)
\end{align*}
\]

Plugging these in to the formula for \(\sin^2(2\omega) \),

\[
\sin^2(2\omega) = \frac{4 |U_l|^2}{|U_l - U_r|^2 + 4 |U_r|^2} = \left(1 + \frac{|U_l - U_r|^2}{4 |U_r|^2} \right)^{-1} + O \left(\frac{\delta^2 \epsilon, \epsilon^2}{c^2 \epsilon + O(\delta \epsilon)} \right)^{-1}
\]

\[
= \left(1 + \sin^2 \left(\frac{\delta}{2} \right) \frac{1}{c^2 \epsilon + O(\delta \epsilon)} + O \left(\frac{\delta \epsilon, \epsilon^2}{c^2 \epsilon + O(\delta \epsilon)} \right) \right)^{-1}
\]

\[
= \left(1 + \frac{\sin^2 \left(\frac{\delta}{2} \right)}{c^2 \epsilon} \frac{1}{1 + O(\delta)} + \frac{O(\delta, \epsilon)}{1 + O(\delta)} \right)^{-1}
\]

\[
= \left(1 + \frac{\sin^2 \left(\frac{\delta}{2} \right)}{c^2 \epsilon} + O \left(\frac{\delta^3}{\epsilon} + O(\delta, \epsilon) \right) \right)^{-1}
\]

\[
= \left(1 + \frac{\delta^2}{4 c^2 \epsilon} + O \left(\frac{\delta^3}{\epsilon^3}, \delta, \epsilon \right) \right)^{-1}
\]

Since we have made no statement about how \(\epsilon \) and \(\delta \) are related, this cannot be further simplified. However, assuming that both variables are small, we can say that the largest term is \(1 + \frac{\delta^2}{4 c^2 \epsilon} \).

\[\square\]

Theorem 5.5. There is a better than 50% chance of a successful search of the N edges of the hub vertex using the states \(|\ell_0\rangle \) and \(|\tau_0\rangle \) after \(m = \left\lfloor \frac{\epsilon}{2 \delta} \sqrt{N} \right\rfloor \) iterations of the time step operator, whenever
where δ is the difference in phase between the left and right eigenvalues, and $c = \left\langle \langle t_0 |U| t_0 \rangle \right\rangle$.

Proof. First, we find an expression for $P(m, t)$,

$$P(m, t) = \left\langle t_0 \left| U^m \right| t_0 \right\rangle^2$$

$$= \left\langle \left(\sin(\omega) \left(V^+(-\delta, \epsilon) \right) + \cos(\omega) \left(V^-(\delta, \epsilon) \right) \right) U^m \left(\cos(\omega) \left(V^+(-\delta, \epsilon) \right) \right) \right\rangle$$

$$= \left(\sin(\omega) \cos(\omega) \left(\lambda^+ \right)^m - \sin(\omega) \cos(\omega) \left(\lambda^- \right)^m \right)^2 + O\left(\sqrt{\epsilon}, \delta \right)$$

$$= \left(\sin(\omega) \cos(\omega) e^{i m \sqrt{\epsilon}} - \sin(\omega) \cos(\omega) e^{-i m \sqrt{\epsilon}} \right)^2 + O\left(\sqrt{\epsilon}, \delta \right)$$

$$= \left(\sin(\omega) \cos(\omega) \right)^2 \left(e^{i m \epsilon} - e^{-i m \epsilon} \right)^2 + O\left(\sqrt{\epsilon}, \delta \right)$$

$$= 2 \sin(\omega) \cos(\omega)^2 \left(mc \sqrt{(1+t)\epsilon} \right)^2 + O\left(\sqrt{\epsilon}, \delta \right)$$

$$= \frac{1}{1+t} \sin^2 \left(mc \sqrt{(1+t)\epsilon} \right) + O\left(\sqrt{\epsilon}, \delta \right).$$

Notice that this isn’t a function of ϵ, it’s a function of $(1+t)\epsilon$. This raises issues, because we may have chosen the wrong value of m. $m = \left\lfloor \frac{\pi}{2 \sqrt{\epsilon}} \right\rfloor$ is the value that would be chosen if the graph was assumed to be ‘correctly tuned’, with $\delta = 0$. Knowing only that the ‘error’ between the eigenvalues is small, this value of m is the natural choice.

$m = \left\lfloor \frac{\pi}{2 \sqrt{(1+t)\epsilon}} \right\rfloor$ is the value of m that should be chosen if δ is known, and is being compensated for. That is, if the exact difference between the eigenvalues is known, then the number of iterations can be adjusted to give a slightly better chance of success.

Taking into account the difference between the eigenvalues,

$$P\left(\left\lfloor \frac{\pi}{2 \sqrt{(1+t)\epsilon}} \right\rfloor \right)$$

$$= \frac{1}{1+t} \sin^2 \left(\frac{\pi}{2 \sqrt{(1+t)\epsilon}} + O(1) \right) c \sqrt{(1+t)\epsilon} + O(\sqrt{\epsilon})$$

$$= \frac{1}{1+t} \sin^2 \left(\frac{\pi}{2} + O\left(\sqrt{(1+t)\epsilon} \right) \right) + O(\sqrt{\epsilon})$$

$$= \frac{1}{1+t} \cos^2 \left(O\left(\sqrt{(1+t)\epsilon} \right) \right) + O(\sqrt{\epsilon})$$

51
\[
\frac{1}{1 + t} + O((1 + t)e, \sqrt{e}) \\
= \frac{1}{1 + t} + O(\sqrt{e}).
\]

And not taking into account the difference \(\delta\), but instead assuming that \(\delta = 0\),

\[
P\left(\left\lfloor \frac{\pi}{2c\sqrt{e}} \right\rfloor \right)
\leq \frac{1}{1 + t} \sin^2\left(\frac{\pi}{2}\sqrt{1 + t} + O\left(\sqrt{(1 + t)e}\right)\right) + O(\sqrt{e})
\leq \frac{1}{1 + t} \sin^2\left(\frac{\pi}{2}\sqrt{1 + t} + O\left(\sqrt{(1 + t)e}, \sqrt{e}\right)\right)
\leq \frac{1}{1 + t} \sin^2\left(\frac{\pi}{2}\sqrt{1 + t} + O(\sqrt{e})\right)
\]

\[
\frac{1}{2} < \frac{1}{1 + t} \sin^2\left(\frac{\pi}{2}\sqrt{1 + t}\right) \leq \frac{1}{1 + t} \quad \text{over the interval } 0 \leq t \leq \frac{1}{2}.
\]

This condition can be rewritten,

\[
t \leq \frac{1}{2}
\Rightarrow \frac{\delta^2}{4e^2} \leq \frac{1}{2}
\Rightarrow \frac{\delta^2N}{4e^2} \leq \frac{1}{2}
\Rightarrow \delta^2 \leq \frac{2e^2}{N}
\Rightarrow \delta \leq c \sqrt{\frac{2}{N}}
\]

This means that \(P\left(\left\lfloor \frac{\pi}{2c\sqrt{N}} \right\rfloor \right) > \frac{1}{2}\) whenever \(\delta < c \sqrt{\frac{2}{N}}\). \(\square\)

References

[1] Reitzner D, Nagaj D and Bužek V 2011 Acta Phys. Slovaca 61 603
[2] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
[3] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
[4] Aharonov D, Ambainis A, Kempe J and Vazirani U 2001 Proc. 33rd ACM STOC pp 50–59
[5] Hillery M, Bergou J and Feldman E 2003 Phys. Rev. A 68 032314
[6] Schmitz H, Matjeschik R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[7] Karski M, Forster L, Choi J-M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174–7
[8] Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R and Silberberg Y 2008 Phys. Rev. Lett. 100 170506
[9] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I and Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502
[10] Peruzzo A et al 2010 Science 329 1500
[11] Schreiber A, Gábris A, Rohde P, Laiho K, Štefaňak M, Potoček V, Hamilton C, Jex I and Silberhorn Ch 2012 Science 336 55
[12] Shenvi N, Kempe J and Whaley B K 2003 Phys. Rev. A 67 052307
[13] Potoček V, Gábris A, Kiss T and Jex I 2009 Phys. Rev. A 79 012325
[14] Aaronson S and Ambainis A 2003 Proc. 44th IEEE Symposium on Foundations of Computer Science (Cambridge, MA, 11–14 October 2003) p 200
[15] Childs A M and Goldstone J 2004 Phys. Rev. A 70 022314
[16] Lovett N B, Everitt M, Heath R M and Kendon V 2011 arXiv:1110.4366
[17] Hillery M, Reitzner D and Bužek V 2009 Phys. Rev. A 81 062324
[18] Feldman E, Hillery M, Lee H-W, Reitzner D, Zheng H and Bužek V 2010 Phys. Rev. A 82 040301R
[19] Hillery M, Zheng H, Feldman E, Reitzner D and Bužek V 2012 Phys. Rev. A 85 062325
[20] Cottrell S S and Hillery M 2014 Phys. Rev. Lett. 112 030501
[21] Krovi H and Brun T A 2007 Phys. Rev. A 75 062332
[22] Kato T 1996 Perturbation Theory for Linear Operators (New York: Springer) chapter 2
[23] Ahlfors L 1966 Complex Analysis 2nd edn (New York: McGraw-Hill) chapter 8