ABSTRACT

We collected literature data of thermal conductivity experimentally measured in ethylene glycol-based nanofluids and investigated the influence of concentration, temperature and nanoparticle size. We implemented statistical linear regression analysis of all data points and examined four separate nanoparticle materials – alumina, titania, copper oxide and carbon-nanotubes. We found that the statistical correlations are in good agreement with Maxwell’s effective medium theory, despite large scatter in the data. The thermal conductivity increases linearly with concentration, and in the case of carbon-nanotubes with temperature, whereas the nanoparticle size shows significant influence for alumina and titania. The large scatter in the experimental data is one of the main problems. We suggest that there is a need for careful, detailed characterizations and measurements to quantify the potential of nanofluids.

NOMENCLATURE

\(k_{\text{eff}} \) [W/mK] Effective thermal conductivity of suspension
\(k_f \) [W/mK] Thermal conductivity base fluid
\(k_p \) [W/mK] Thermal conductivity nanoparticle material
\(T \) [K] Temperature
\(S \) [1/\(\text{nm} \)] Nanoparticle surface
\(C \) [-] Regression coefficient

Special characters
\(\phi \) [-] Particle volume fraction ratio
\(\beta \) [-] Standardized regression coefficient

INTRODUCTION

The term Nanofluids was introduced by Lee et al. \cite{1}, who dispersed metallic nanoparticles in heat transfer fluids and measured the strongly increased thermal conductivity. A first description of the increase in thermal conductivity of a fluid by the dispersion of particles is given by Maxwell’s \cite{2} effective medium theory

\[
\frac{k_{\text{eff}}}{k_f} = 1 + \frac{3\phi(k_p - k_f)}{3k_f + (1 - \phi)(k_p - k_f)}. \tag{1}
\]

Maxwell’s effective medium theory assumes homogeneously dispersed particles and gives the lower limit in the bounds of thermal conductivity derived by Hashin and Shtrikman \cite{3}. Buongiorno et al. \cite{4} conducted a benchmark study, which showed large scatter in the experimental data due to differences in the characterization and measurements. First attempts were made to increase the quality of measurements by critically examining the different measuring techniques \cite{5}–\cite{8}, with the conclusion that insufficient characterizations were mainly responsible for scatter. However, general correlations to calculate the thermal conductivity of nanofluids were still developed resulting in various versions \cite{9}–\cite{11}. A first attempt using statistical linear regressions was used by Khanafer et al. \cite{12}, again with the aim of having a general equation describing the increase in thermal conductivity.

In this study, we use linear regressions to quantify the influence of the parameters concentration, temperature and nanoparticle size on the experimental measured thermal conductivity. We further compare the results to Maxwell’s effective medium theory for separate materials to estimate their potential.

MATERIAL AND METHODS

We collected literature data and set up a database with \(N = 1167 \) data points of experimentally measured thermal conductivity in ethylene glycol nanofluids. We only considered studies in which the concentration, temperature and nanoparticle size are specified. The preparation of the nanofluids and method of thermal conductivity measurement are explained in each study. The database contains data for 18 different materials out of 59 publications. First we analysed all data points together. Additionally, four separate materials are analysed, in which at least 4 different publications with 50 data points are necessary to ensure statistical significance. The separate analyzed materials are:

(i) Alumina (\(\text{Al}_2\text{O}_3 \), \(N = 292 \)) \cite{1, 13, 28}
(ii) Titania (\(\text{TiO}_2 \), \(N = 105 \)) \cite{20, 23, 29–33}
(iii) Carbon-Nanotubes (CNT, \(N = 76 \)) \cite{34–38}
(iv) Copper oxide (\(\text{CuO} \), \(N = 61 \)) \cite{1, 15, 18, 26, 36, 39–41}

The remaining materials do not have 50 data points out of 4 publications and are thus not analyzed separately [15], [23], [26], [40], [42]–[70].

Linear Statistical Model

We employed a linear statistical model to analyze the effect of the concentration φ, the temperature T and the particle size through the specific surface S on the normalized thermal conductivity

\[k^*(\phi, T, S) = \frac{k_{\text{eff}}(\phi, T, S)}{k_{\text{i}}(T)} \]

where \(k_{\text{i}}(T) \) is the thermal conductivity of the base fluid (ethylene glycol) as a function of the measurement of temperature. With the use of linear regressions, the predictors were implemented in the following equation with the coefficients \(C_i \) \((i = 0, \phi, T, S) \) given from each regression:

\[k^*(\phi, T, S) = C_0 + C_\phi \phi + C_T T^* + C_S S^*, \]

The determination of the linear model and the statistical method is fully described in a previous paper [71], where it is applied to water-based nanofluids.

RESULTS

The results of the statistical analysis of thermal conductivity modeled with the linear regression eq. (3) for all data points and the separate materials are shown in table I and fig. 1 respectively. The scatter of the data, expressed by the corrected correlation coefficients \(R^2 \) in [0.30;0.80] suggest that there are large uncertainties in the measurements. However, the regression for all data points is in good approximation with Maxwell’s effective medium theory. The influence of each parameter, given by the standardized regression coefficients \(\beta_j \) \((j = \phi, T, S) \), show only a concentration-dependence with \(\beta_\phi = 0.55 \) and insignificant coefficients towards the temperature or surface with \(\beta_T = 0.08 \) and \(\beta_S = 0.03 \), respectively. Most of the data, especially of the separately analyzed materials, lie within the ±10% interval, as displayed in fig. 1. But there are materials and measurements that significantly differ from the results with modeled thermal conductivities above \(k^* > 1.5 \).

Table 1. Results of the linear regressions fitted to the entire database and for separate materials. Given are the number of data points \(N \), corrected correlation coefficient \((R^2) \), model coefficients \((C_i) \), standardized regression coefficients \((\beta_j) \).

Material	\(N \)	\(R^2 \)	\(C_0 \)	\(C_\phi \)	\(C_T \)	\(C_S \)	\(\beta_\phi \)	\(\beta_T \)	\(\beta_S \)
all	1167	0.30	1.03	3.46	0.55	0.23	0.08	0.05	0.03
Al2O3	292	0.54	0.99	3.10	0.70	0.09	0.04	0.45	0.36
TiO2	105	0.69	1.00	2.24	0.71	0.01	0.01	0.37	0.35
CNT	76	0.50	1.06	2.85	0.71	0.70	0.28	0.01	0.03
CuO	61	0.80	0.99	4.57	0.94	0.16	0.15	0.58	0.03

The concentration is the main parameter in the statistical correlation. In all cases, the standardized regression coefficient \(\beta_\phi \) is the highest. The modeled coefficients \(C_\phi \) are in general agreement with the the bounds derived from the linearized Maxwell equation \(C_\phi, \text{Maxwell} \in [-1.5, 3] \), see [71]. We plotted the values of \(C_\phi \) against the thermal conductivity of the particles \(k_p \) in fig. 2. We also show the bounds according to Hashin-Shtrikman [3] in their linearized form as solid black lines. The lower HS-bound is Maxwell’s effective medium theory with the maximum at \(C_\phi = 3 \). The upper HS-bound includes all possible dispersion states. The modeled values for alumina and carbon-nanotubes are in excellent agreement with the linearized Maxwell equation, while the value for titania lies below it. If the data for higher concentrations (\(\phi \geq 2.5\text{vol}\% \)) are excluded, the value for titania also fits to Maxwell’s prediction. The value for copper oxide exceeds Maxwell’s prediction, but is inside the bounds derived by Hashin-Shtrikman.

![Figure 1. Experimentally measured versus modeled normalized thermal conductivity (\(k^* \)) for ethylene glycol-based nanofluids. The ideal values of \(k^* \) and a ±10% interval are displayed as a solid line and a grey area, respectively. Colors are used to distinguish single materials (analyzed separately) from other materials (see the legend).](image)

Similar to the concentration, we plotted the temperature- and surface-dependent coefficients \(C_T \) and \(C_S \) in figures 3 and 4 respectively. If the standardized regression coefficient \(\beta < 0.1 \), the corresponding parameter rendered insignificant. In the case of the temperature coefficient, results gave insignificant coefficients for alumina with \(\beta_T = 0.04 \) and titania with \(\beta_T = 0.01 \). We found a marginally significant temperature-dependence for copper oxide with \(C_T = 0.16 \) (\(\beta_T = 0.15 \)). The results for carbon-nanotubes have a significant temperature coefficient with \(C_T = 0.70 \) (\(\beta_T = 0.28 \)). As seen in fig. 3 the results for carbon-nanotubes go along with large error-bars. In contrast to the temperature, the size dependence showed insignificant results for copper oxide and carbon-nanotubes, both with \(\beta_S = 0.03 \). The large error-bars for copper oxide as seen in fig. 4 correspond to the small range of measured nanoparticle diameters. Alumina and titania exhibit significant regression coefficients at the same level with \(C_S = 0.45 \) (\(\beta_S = 0.36 \)) for alumina and \(C_S = 0.37 \) (\(\beta_S = 0.35 \)) for titania.
DISCUSSION

The main problem in the field of nanofluids seems to be the large scatter in the measurements. Nanofluids with the apparently same characterizations (concentration, temperature, size, material) exhibit different measurement results depending on the publication. The use of different measuring techniques is not the only reason [8]. There is a lack of understanding on how to measure the thermal conductivity of dispersions; even in the measurement of pure fluids, partially large scattering occurs [72]. In the case of concentration, the use of volume-based units by dispersing colloidal nanoparticles is less common than the use of weight-based units [8], [72]. The determination of the nanoparticle size and homogeneous distribution should be measured in all cases. A simple reference to the manufacturers information is not sufficient, because the particles act differently in dispersion than when stored dry. Comparing measurements of the sizes (e.g. TEM and DLS measurements) should not only lead to more significant results, they would also give a hint to the dispersion state and the agglomeration of the particles [8]. Therefore it is important to examine and develop comparable measuring techniques. A careful characterization of the nanoparticles properties could lead to verifiable measurements.

The results shown in table 1 and fig. 2 suggest that the thermal conductivity of nanofluids is in agreement with Maxwell’s effective medium theory. The concentration mainly determines the thermal conductivity, the temperature and nanoparticle size have lower significant influence. The temperature effect is only significant for carbon-nanotubes and marginal for copper oxide (see fig. 3). As already stated by Prasher et. al., the influence of temperature on the thermal conductivity coincides with agglomeration in the dispersion [73]. As seen in fig. 2 the concentration coefficient for copper oxides exceed Maxwell’s prediction. This suggests a non-homogeneous dispersion state in the theory of Hashin-Shtrikman [3], [6] and agrees with the significant temperature coefficient; copper oxides are known to build large agglomerates [74]. Percolation networks likely occur without the use of surfactants or other surface treatments. Indeed, the data for copper oxide based on the statistical regression used no surfactants at all. In the case of carbon-nanotubes, the temperature effect is significant while the concentration coefficient fits to Maxwell’s theory. In many cases surfactants or surface functionalizations are used to ensure the homogeneous dispersion of the carbon-nanotubes, but surfactants can also lead to a decrease in thermal conductivity [75]. Fig. 3 therefore shows that while the data for alumina, titania and copper oxide are similar, the temperature coefficient and the corresponding error-bars for carbon-nanotubes significantly differ from the other materials. Significant size effects occur only for alumina and titania in our statistical results, while the results for carbon-nanotubes and copper oxides are insignificant (see fig. 4). These insignificant size effects mainly result for the limited variation of nanoparticle sizes in the data sets. For carbon-nanotubes the variation of the size is limited due to the shape. It is also unclear whether the size of carbon-nanotubes is to be defined by the diameter or the
length of the tube [76]. The size coefficient and the standardized regression coefficients for alumina and titania are in comparable ranges. This supports that the thermal conductivity of the nanofluid increases with decreasing particle sizes as already published [12]. However, the uncertainties of the measurements and the difficulties in the stabilization of the well-dispersed state, are not taken into account in the statistical analysis.

CONCLUSION

With our statistical analysis we show that the thermal conductivity of nanofluids can be well described by Maxwell’s effective medium theory. Only copper oxides exceeds this prediction [10]. J. Buongiorno, “Convective Transport in Nanofluids,“ Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2005.

The main limiting factor is in general the lack of precise measurements and characterizations. Furthermore, the formation of agglomerates and percolation networks increases the viscosity of the dispersion, which makes it unfavourable for application. With careful and comparable measurements, further statistical analyses would allow to assess the full potential of nanofluids [71].

References

[1] S. Lee et al., “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” Journal of Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999.

[2] J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. Clarendon Press, 1881, p. 435.

[3] Z. Hashin et al., “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials,” Journal of Applied Physics, vol. 33, no. 10, pp. 3125–3131, 1962.

[4] J. Buongiorno et al., “A benchmark study on the thermal conductivity of nanofluids,” Journal of Applied Physics, vol. 106, no. 9, p. 94 312, 2009.

[5] P. Keblinski et al., “Thermal conductance of nanofluids: is the controversy over?” Journal of Nanoparticle Research, vol. 10, no. 7, pp. 1089–1097, 2008.

[6] J. Eapen et al., “The Classical Nature of Thermal Conduction in Nanofluids,” Journal of Heat Transfer, vol. 132, no. 10, pp. 102 402–102 414, 2010.

[7] C. A. Nieto de Castro et al., “Towards the Correct Measurement of Thermal Conductivity of Ionic Melts and Nanofluids,” Energies, vol. 13, no. 1, 2020.

[8] S. Bobbo et al., “Analysis of the Parameters Required to Properly Define Nanofluids for Heat Transfer Applications,” vol. 6, no. 2, 2021.

[9] J. A. Eastman et al., “Thermal Transport in Nanofluids,” Annual Review of Materials Research, vol. 34, no. 1, pp. 219–246, 2004.

[10] J. Buongiorno, “Convective Transport in Nanofluids,” Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2005.

[11] I. Mugica et al., “A critical review of the most popular mathematical models for nanofluid thermal conductivity,” Journal of Nanoparticle Research, vol. 22, no. 5, p. 113, 2020.

[12] K. Khanafar et al., “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19, pp. 4410–4428, 2011.

[13] B. Barbé et al., “Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids,” Journal of Thermal Analysis and Calorimetry, vol. 111, no. 2, pp. 1615–1625, 2013.

[14] M. P. Beck et al., “The effect of particle size on the thermal conductivity of alumina nanofluids,” Journal of Nanoparticle Research, vol. 11, no. 5, pp. 1129–1136, 2009.

[15] J. A. Eastman et al., “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, vol. 78, no. 6, pp. 718–720, 2001.

[16] M. Hemmat Esfe et al., “Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles,” International Journal of Heat and Mass Transfer, vol. 88, pp. 728–734, 2015.

[17] M. Hemmat Esfe et al., “Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle,” Journal of Thermal Analysis and Calorimetry, vol. 126, no. 2, pp. 643–648, 2016.

[18] R. Gowda et al., “Effects of Particle Surface Charge, Species, Concentration, and Dispersion Method on the Thermal Conductivity of Nanofluids,” Advances in Mechanical Engineering, 2010.

[19] N. Kumar et al., “Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid,” International Communications in Heat and Mass Transfer, vol. 90, pp. 1–10, 2018.

[20] G. A. Longo et al., “Experimental Measurements of Thermophysical Properties of Al2O3– and TiO2–Ethylene Glycol Nanofluids,” International Journal of Thermophysics, vol. 34, no. 7, pp. 1288–1307, 2013.

[21] A. V. Minakov et al., “Measurement of the Thermal- Conductivity Coefficient of Nanofluids by the Hot-Wire Method,” Journal of Engineering Physics and Thermophysics, vol. 88, no. 1, pp. 149–162, 2015.

[22] H. Mohammadian et al., “Experimental study of ethylene glycol-based Al2O3 nanofluid turbulent heat transfer enhancement in the corrugated tube with twisted tapes,” Heat and Mass Transfer, vol. 52, no. 1, pp. 141–151, 2016.

[23] S. M. S. Murshed, “Simultaneous Measurement of Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Nanofluids,” Heat Transfer Engineering, vol. 33, no. 8, pp. 722–731, 2012.
[24] D.-W. Oh et al., “Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method,” *International Journal of Heat and Fluid Flow*, vol. 29, no. 5, pp. 1456–1461, 2008.

[25] M. J. Pastoriza-Gallego et al., “Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids,” *Nanoscale Research Letters*, vol. 6, no. 1, p. 221, 2011.

[26] H. E. Patel et al., “An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids,” *Journal of Nanoparticle Research*, vol. 12, no. 3, pp. 1015–1031, 2010.

[27] E. V. Timofeeva et al., “Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory,” *Physical Review E*, vol. 76, no. 6, p. 61203, 2007.

[28] H. Xie et al., “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” *Journal of Applied Physics*, vol. 94, no. 8, pp. 4967–4971, 2003.

[29] B. Barbés et al., “Thermal conductivity and specific heat capacity measurements of CuO nanofluids,” *Journal of Thermal Analysis and Calorimetry*, vol. 115, no. 2, pp. 1883–1891, 2014.

[30] R. S. Khedkar et al., “Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid,” *International Communications in Heat and Mass Transfer*, vol. 73, pp. 54–61, 2016.

[31] S. M. S. Murshed et al., “Morphology and thermophysical properties of non-aqueous titania nanofluids,” *Heat and Mass Transfer*, vol. 54, no. 9, pp. 2645–2650, 2018.

[32] S. S. Sonawane et al., “Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons,” *Journal of Experimental Nanoscience*, vol. 10, no. 4, pp. 310–322, 2015.

[33] N. R. Karthikeyan et al., “Effect of clustering on the thermal conductivity of nanofluids,” *Materials Chemistry and Physics*, vol. 109, no. 1, pp. 50–55, 2008.

[34] S. Harish et al., “Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions,” *International Journal of Heat and Mass Transfer*, vol. 55, no. 13, pp. 3885–3890, 2012.

[35] X. Li et al., “Experimental investigation of β-cyclodextrin modified carbon nanotubes nanofluids for solar energy systems: Stability, optical properties and thermal conductivity,” *Solar Energy Materials and Solar Cells*, vol. 157, pp. 572–579, 2016.

[36] M. Liu et al., “Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system,” *Nanoscale Research Letters*, vol. 6, no. 1, p. 297, 2011.

[37] M. Shamaeil et al., “The effects of temperature and volume fraction on the thermal conductivity of functionalized DWCNTs/ethylene glycol nanofluid,” *Journal of Thermal Analysis and Calorimetry*, vol. 126, no. 3, pp. 1455–1462, 2016.

[38] H. Xie et al., “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” *Journal of Applied Physics*, vol. 94, no. 8, pp. 4967–4971, 2003.

[39] B. Barbés et al., “Thermal conductivity and specific heat capacity measurements of CuO nanofluids,” *Journal of Thermal Analysis and Calorimetry*, vol. 115, no. 2, pp. 1883–1891, 2014.

[40] J. R. V. Peñas et al., “Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method,” *Journal of Applied Physics*, vol. 104, no. 4, p. 44314, 2008.

[41] M. Leena et al., “Evaluation of acoustical parameters and thermal conductivity of TiO2-ethylene glycol nanofluid using ultrasonic velocity measurements,” *English, Nanotechnology Reviews*, vol. 4, no. 5, pp. 449–456, 2015.

[42] R. Agarwal et al., “Comparison of Experimental Measurements of Thermal Conductivity of Fe2O3 Nanofluids Against Standard Theoretical Models and Artificial Neural Network Approach,” *Journal of Materials Engineering and Performance*, vol. 28, no. 8, pp. 4602–4609, 2019.

[43] S. Akilu et al., “Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol based nanofluids,” *International Communications in Heat and Mass Transfer*, vol. 88, pp. 245–253, 2017.

[44] F. M. Ali et al., “The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: Numerical and experimental,” *Review of Scientific Instruments*, vol. 81, no. 7, p. 74901, 2010.

[45] A. Amiri et al., “The Specific Heat Capacity, Effective Thermal Conductivity, Density, and Viscosity of Coolants Containing Carboxylic Acid Functionalized Multi-Walled Carbon Nanotubes,” *Journal of Dispersion Science and Technology*, vol. 37, no. 7, pp. 949–955, 2016.

[46] M. Hemmat Esfe et al., “Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network,” *Journal of Thermal Analysis and Calorimetry*, vol. 118, no. 1, pp. 287–294, 2014.

[47] X. Fang et al., “Effects of inclusion size on thermal conductivity and rheological behavior of ethylene glycol-based suspensions containing silver nanowires with various specific surface areas,” *International Journal of Heat and Mass Transfer*, vol. 81, pp. 554–562, 2015.

[48] W. Guo et al., “Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method,” *Thermochimica Acta*, vol. 661, pp. 84–97, 2018.

[49] H. U. Kang et al., “Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume,” *Experimental Heat Transfer*, vol. 19, no. 3, pp. 181–191, 2006.
[50] A. Kazemi-Beydokhti et al., “Experimental Investigation of Parameters Affecting Nanofluid Effective Thermal Conductivity,” Chemical Engineering Communications, vol. 201, no. 5, pp. 593–611, 2014.

[51] N. Kumar et al., “Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger,” International Communications in Heat and Mass Transfer, vol. 78, pp. 277–284, 2016.

[52] D. Madhesh et al., “Experimental study on the heat transfer and flow properties of Ag–ethylene glycol nanofluid as a coolant,” Heat and Mass Transfer, vol. 50, no. 11, pp. 1597–1607, 2014.

[53] A. Mariano et al., “Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids,” Fluid Phase Equilibria, vol. 337, pp. 119–124, 2013.

[54] A. Mariano et al., “Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high pressure density,” International Journal of Heat and Mass Transfer, vol. 85, pp. 54–60, 2015.

[55] M. Michael et al., “Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids,” Journal of Thermal Analysis and Calorimetry, vol. 137, no. 2, pp. 369–380, 2019.

[56] M. Moosavi et al., “Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids,” International Journal of Heat and Fluid Flow, vol. 31, no. 4, pp. 599–605, 2010.

[57] N. Nikkam et al., “The effect of particle size and base liquid on thermo-physical properties of ethylene and diethylene glycol based copper micro- and nanofluids,” International Communications in Heat and Mass Transfer, vol. 86, pp. 143–149, 2017.

[58] M. J. Pastoriza-Gallego et al., “Thermophysical profile of ethylene glycol-based ZnO nanofluids,” The Journal of Chemical Thermodynamics, vol. 73, pp. 23–30, 2014.

[59] B. Jacob Rubasingh et al., “Predicting thermal conductivity behaviour of ZnO, TiO2 and ball milled TiO2/ZnO based nanofluids with ethylene glycol as base fluid,” Materials Research Express, vol. 6, no. 9, p. 95702, 2019.

[60] C. Selvam et al., “Thermal conductivity enhancement of ethylene glycol and water with graphene nanoplatelets,” Thermochimica Acta, vol. 642, pp. 32–38, 2016.

[61] M. Seyhan et al., “The effect of functionalized silver nanoparticles over the thermal conductivity of base fluids,” AIP Advances, vol. 7, no. 4, p. 45101, 2017.

[62] H. Xie et al., “Thermal Conductivity of Suspensions Containing Nanosized SiC Particles,” International Journal of Thermophysics, vol. 23, no. 2, pp. 571–580, 2002.

[63] H. Xie et al., “MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles,” Journal of Experimental Nanoscience, vol. 5, no. 5, pp. 463–472, 2010.

[64] K. M. Yashawantha et al., “Experimental investigation on physical and thermal properties of graphite nanofluids,” AIP Conference Proceedings, vol. 2039, no. 1, p. 20057, 2018.

[65] W. Yu et al., “Experimental investigation on the thermal transport properties of ethylene glycol based nanofluids containing low volume concentration diamond nanoparticles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 380, no. 1, pp. 1–5, 2011.

[66] W. Yu et al., “Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid,” Particuology, vol. 9, no. 2, pp. 187–191, 2011.

[67] G. Żyła et al., “Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride–ethylene glycol (AlN–EG) nanofluids,” Thermochimica Acta, vol. 637, pp. 11–16, 2016.

[68] G. Żyła et al., “Huge thermal conductivity enhancement in boron nitride–ethylene glycol nanofluids,” Materials Chemistry and Physics, vol. 180, pp. 250–255, 2016.

[69] G. Żyła, “Viscosity and thermal conductivity of MgO–EG nanofluids,” Journal of Thermal Analysis and Calorimetry, vol. 129, no. 1, pp. 171–180, 2017.

[70] G. Żyła et al., “Viscosity, thermal and electrical conductivity of silicon dioxide–ethylene glycol transparent nanofluids: An experimental studies,” Thermochimica Acta, vol. 650, pp. 106–113, 2017.

[71] J. Tielke et al., “Statistical analysis of thermal conductivity experimentally measured in water-based nanofluids,” Proceedings of the Royal Society A, vol. 477, p. 2010222, 2021.

[72] R. D. Chirico et al., “Improvement of Quality in Publication of Experimental Thermophysical Property Data: Challenges, Assessment Tools, Global Implementation, and Online Support,” Journal of Chemical & Engineering Data, vol. 58, no. 10, pp. 2699–2716, 2013.

[73] R. Prasher et al., “Effect of aggregation on thermal conductivity of colloidal nanofluids,” Applied Physics Letters, vol. 89, no. 14, p. 143119, 2006.

[74] S. Jadhav et al., “Copper Oxide Nanoparticles: Synthesis, Characterization and Their Antibacterial Activity,” Journal of Cluster Science, vol. 22, no. 2, pp. 121–129, 2011.

[75] S. Kim et al., “Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial,” International Communications in Heat and Mass Transfer, vol. 91, pp. 95–102, 2018.

[76] A. Eatemadi et al., “Carbon nanotubes: properties, synthesis, purification, and medical applications,” Nanoscale Research Letters, vol. 9, no. 1, p. 393, 2014.