Regulation of T cell antitumor immune response by tumor induced metabolic stress

Fanny Chalmin1,2,3,4, Mélanie Bruchard1,2,3,4, Frederique Vegran1,2,3,4 and Francois Ghiringhelli1,2,3,4,*

1 Cancer Biology Research Platform, Centre Georges-François Leclerc, Dijon, France.
2 Université de Bourgogne-Franche Comté.
3 GIMI Genetic and Immunology Medical Institute, Dijon, France.
4 INSERM UMR1231, Dijon, France.
* Corresponding Author: Prof. François Ghiringhelli, Centre Georges François Leclerc, Genetic and Immunology Medical Institute GIMI, 1 rue du professeur Marion, 21000 Dijon, France. Phone: (33) 3-80-39-33-53; Fax: (33) 3-80-39-34-34; E-mail: fghiringhelli@cgfl.fr

ABSTRACT Adaptive T cell immune response is essential for tumor growth control. The efficacy of immune checkpoint inhibitors is regulated by intratumoral immune response. The tumor microenvironment has a major role in adaptive immune response tuning. Tumor cells generate a particular metabolic environment in comparison to other tissues. Tumors are characterized by glycolysis, hypoxia, acidosis, amino acid depletion and fatty acid metabolism modification. Such metabolic changes promote tumor growth, impair immune response and lead to resistance to therapies. This review will detail how these modifications strongly affect CD8 and CD4 T cell functions and impact immunotherapy efficacy.

INTRODUCTION The tumor microenvironment (TME) plays an important role in tumor progression and response to therapy. A growing number of publications show that CD8 T lymphocytes accumulation in tumor bed is a biomarker of a good clinical outcome in most cancer types [1]. Moreover, such an immune response is also a surrogate marker of chemotherapy efficacy in breast cancer setting and a biomarker of checkpoint inhibitors efficacy [2, 3]. Antitumor immunotherapy and in particular immune-checkpoint-targeting inhibitors are revolutionizing cancer therapy [4]. Checkpoint inhibitors targeting PD-1 (programmed cell death protein-1)/PD-L1 (programmed death-ligand 1) lead to a response rate in many tumor types. However, in prevalent tumor types, such as colorectal cancer, lung cancer and breast cancer, substantial responses to checkpoint blockade have only been observed in specific subsets of patients, thus suggesting that both patient selection and therapy combination may be crucial [5]. Currently two concepts evolve in parallel to predict checkpoint efficacy: the presence of mutations in tumor cells and the presence of immune infiltrate at tumor site (the concept of cold vs hot tumor). The ability of a tumor to respond to immunotherapy depends on the presence of CD8 at the tumor site. However, a CD8 infiltrate does not perfectly correlate to the checkpoint response rate, thus suggesting that in addition to the number of immune cells, functional characteristics of intratumoral infiltrating T cells must be taken into account. In addition to CD8 T cell infiltrate, many other cells influence antitumor immune response. For example, CD4 T cells are essential and different subsets are defined. Regulatory T cells (Treg) and Th2 cells have immunosuppressive functions while Th1 cells have an antitumoral effect and sustain CD8 antitumoral effects [1]. Th17 cells can...
have different effects depending on the tumor type but frequently promote inflammation and neoangiogenesis [6]. The myeloid component of the immune system is also important to promote antitumoral T cell immune response or to drive immunosuppression. The presence of mature myeloid dendritic cells is essential for a good immune response. Myeloid derived suppressor cells (MDSC) are an essential component of the tumor induced tolerance and the ratio of Type 2/Type 1 Tumor Associated Macrophages is important to balance immune reaction from immunosuppression versus antitumoral response [6]. The recruitment and functions of immune cells in the TME markedly vary between patients even in the same tumor type for unknown reason.

While immune response is essential to control tumor growth and to promote checkpoint inhibitor efficacy, tumor environment physical conditions may influence T cell response. Tumors are characterized by low oxygen level and hypoxia, extracellular milieu acidification, oxidative stress and glucose deprivation. In this review we will resume how these physical modifications of TME affect T cell antitumoral immune response.

HYPOXIA

The physiological oxygen fractions called normoxia largely vary between tissues and within the same tissue [7-9]. For example, the maximum value of oxygen found in the body reaches 14% in lung alveoli but only 1% in the skin. These values have to be put in balance with the atmospheric level of oxygen of 21%, frequently used for in vitro experiments.

Hypoxic areas can often be found within solid tumors. The oxygen level in tumors is frequently low, below 1%, and a high level of hypoxia is often associated with poor prognosis [10]. At the cellular level, hypoxia promotes tumor cell heterogeneity, epithelial to mesenchymal transition, tumor cell stemness, migration and metastatic process, and resistance to classical cytotoxic treatments such as radiotherapy and chemotherapy [11-14]. Molecular mechanisms underlying hypoxia mainly rely on the stabilization of hypoxia inducible factors (HIF1 and 2). These transcription factors mediate the cellular response to hypoxia by regulating the expression of different genes such as proangiogenic factors like VEGF (vascular endothelial growth factor) and glycolysis related genes. Indeed, low oxygen may impair energy production via oxidative phosphorylation and requires glycolysis which is less dependent on oxygen level.

It was recently shown that HIF-1 is able to regulate the balance between Treg and Th17 differentiation in CD4 T cells. Although TGF-β (transforming growth factor) is required for both Th17 and Treg differentiation, these cell types have opposing functions. While Th17 are proinflammatory cells, Tregs have an anti-inflammatory role [15-20]. Tregs master regulator is the transcriptional factor FoxP3 (forkhead box P3). In addition to TGF-β, Th17 cells require IL-6 for differentiation and expression of the transcriptional factor RORyt (RAR-related orphan receptor), the master regulator of this cell type. Hypoxia promotes accumulation of Th17 cells and decreases the number of Tregs (Figure 1 top). Mechanistically, HIF-1α enhances Th17 development. HIF cooperates with STAT3 (Signal transducer and activator of transcription) to promote expression of RORyt and then cooperates with RORyt and p300 to transactivate IL-17 production. In contrast, HIF-1α blunts Treg differentiation by binding to FoxP3, promoting its ubiquitination and subsequent degradation by the proteasome [21]. While Tregs frequently promote tumor growth and mediate immunosuppression, we can hypothesize that such mechanism could promote antitumoral immune response by limiting Treg dependent immunosuppression and activating proinflammatory Th17 cells which could exert some antitumoral effects.

CD8 T cell priming under hypoxia can promote differentiation toward lytic effector cells, with increased expression of interferon gamma (IFNγ), granzyme B (GZMB) and Fas ligand (FASL), but might reduce cell expansion [22-25]. Hypoxia promotes a metabolic switch from an oxidative phosphorylation metabolism toward a glycolytic metabolism [26] which promotes effector and limits memory differentiation, largely dependent on oxidative phosphorylation and fatty acid oxidation [26, 27]. Such data suggest that the use of hypoxia to generate ex vivo transgenic T cells or Chimeric Antigen Receptor-T cells for adoptive anticancer immunotherapy could be attractive. Moreover, it would be interesting to compare the efficacy of adoptive transfer of cells differentiated under hypoxia with increased cytotoxic effector functions and less stem cell memory properties, to the transfer of younger cells less cytotoxic with stemness capacity and better persistence and self-renewal [28-30].

Hypoxia can also affect activated memory CD8 T cells. This context is closer to tumor reality since memory cells migrate to tumor site and are then reactivated. Hypoxia prevents memory CD8 T cell expansion by decreasing both cell proliferation rate and viability, partly through apoptosis induction. Additionally, hypoxia promotes adenosine production by TME and adenosine could inhibit CD8 T cell functions. Hypoxia effect is also dependent on T cell receptor (TCR) engagement and no effect of hypoxia is observed on resting memory T cells [26]. Hypoxia could also have positive effects and enhance IL-10 production in CD8 T cells. Although IL-10 could have an immunosuppressive function, it could also sustain the development of memory CD8 T cells. In addition, hypoxia could promote CD25 and CD137 expression. CD137 is a checkpoint activator that can be targeted to reinvigorate CD8 T cells [31-33]. In some tumor models, hypoxia enhances PD-L1 expression on tumor cells and thus it might enhance the efficacy of checkpoint inhibitors targeting PD-1/PD-L1 [34].

ACIDOSIS AND GLYCOLYSIS

Median extracellular pH in human tumors ranges between 6.9 and 7.0 (compared to 7.4 in normal tissues) [35] while intracellular tumor pH remains unaltered in tumor bed [36]. Acidification of the TME has direct protumoral functions such as angiogenesis, prometastatic effect, and resistance
to radiation or cytotoxic chemotherapies and is thus associated with poor prognosis [37-62]. Acidification of TME is due to local metabolism, which favors glycolysis and lactic acid production (Figure 1 bottom) [63-65]. Anaerobic glycolysis and production of lactic acid are strongly correlated with hypoxia but glycolysis could also arise in normoxic conditions. As glycolysis is energetically less efficient than oxidative phosphorylation, tumors must
develop an important glycolytic flux to generate enough energy [66], this process is called the Warburg effect. Consequently lactic acid accumulates inside the TME [56], thus reducing pH. This acidification has a negative impact on T cell behavior and many studies demonstrated that low intra-tumoral pH leads to downregulation of anti-tumor immune responses [67]. In vitro experiments showed that at pH lower than 6.6 and similar to tumor pH [35], T cell proliferation, cytotoxicity and cytokine production are impaired [68]. This effect on T cells is rather dependent on pH than on the presence of lactate [25, 69, 70]. Interestingly, T cell function could be restored after pH neutralization [25, 69-72]. Such data underline that acidosis mostly inhibits T cell function rather than inducing T cell death [70-72]. In vivo, tumor-derived lactic acid also impedes anti-tumor immunity [73]. The LDHA (lactate dehydrogenase) gene, which codes for the LDH-2 protein, converts pyruvate into lactate. LDHA gene deficient tumors grow slower than control tumors in immunocompetent mice, but not in immunodeficient mice, thus demonstrating that lactate impedes immune response in vivo. Effector T lymphocytes are also dependent on their glycolytic activity and release lactate by SLC16A1 (best known as monocarboxylate transporter 1 MCT1). In TME, in the context of acidification, MCT1 is inhibited, thus blocking glycolysis and consequently the activation of effector T cells. In this context, we have observed reduced IFNγ and GZMB production by T cells. In humans, LDH expression in melanomas negatively correlates with T cell survival and activation [73]. On the other hand, Treg biology is promoted by high lactate concentration. FoxP3, Treg master regulator, shifts cellular metabolism from glycolysis toward oxidative phosphorylation [74]. Lactic acid inhibits T cell glycolysis leading to FoxP3 expression and promoting Treg differentiation [75-77]. Moreover, lactate uptake is required for Treg immunosuppressive effects [78]. At a mechanistic level, lactate is secreted by cancer cells via a monocarboxylate co-transporter, which induces acidification of the tumor with the release of lactate and H⁺. A high concentration of lactate and H⁺ blocks the monocarboxylate co-transporter of T cells. This blockage induces accumulation of these compounds in T cells, thus blunting glycolysis [79]. This leads to a reduction of the intracellular phosphoenolpyruvat level, a crucial glycolysis metabolite necessary for TCR mediated activation [73].

Recently it has been shown that tumor bed acidification blunts the efficacy of checkpoint inhibitors [80-82]. High LDH activity in blood is negatively correlated with the clinical outcome in melanoma patients treated with ipilimumab [83], pembrolizumab [82], or a combination of CTLA-4 and PD-1 blockade [84]. Similar results were observed with lung cancer treated with anti PD-1 [85], suggesting that combination of checkpoint inhibitors with drugs that lower tumor acidity could be interesting. Many drugs are currently tested such as glycolysis, lactate transporter and proton transporter inhibitors but also buffer therapies. Glycolysis and lactate are essential for T cell biology. Consequently, therapies targeting either glycolysis or lactate transporters are probably not ideal. In contrast, T cells are less dependent on proton transporters. Therefore, proton pump inhibitors and bicarbonate based therapies, which both can neutralize acidification, are probably better candidates to enhance immune response and to promote checkpoint inhibitors efficacy and adoptive T cell therapies.

AMINO ACIDS

In addition to glucose, amino acids are essential elements for energy generation in tumor cells and immune cells [86]. Cancer cells have the ability to consume a high level of amino acids, leading to T cell deprivation. Both arginine and tryptophan are essential for T cells and cannot be produced by T cell metabolism. Consequently, consumption of these amino acids by cancer cells controls the local immune response by inducing T cell metabolic stress (Figure 2).

Arginine can be used in oxidative phosphorylation and as a substrate for glycolysis in T cells [87]. Arginine availability favors memory T cell generation [88]. Arginine is converted by arginase or nitric oxide synthase, normally expressed in myeloid cells such as myeloid-derived suppressor cells, macrophages, dendritic cells and cancer cells. Arginase is highly expressed in many tumor types and induces T cell function inhibition via arginine deprivation [89]. Nitric oxide synthase, also frequently expressed in tumors, degrades arginine into nitric oxide. Nitric oxide could directly blunt T cell proliferation and secreting functions and promote T cell apoptosis [90].

Tryptophan is critical for several metabolic pathways and proliferation. Indoleamine-2,3-dioxygenase (IDO) 1 and 2 are key enzymes that transform tryptophan into its metabolite kynurenine. In tumors, IDO induces tryptophan deprivation and kynurenin accumulation. Tryptophan is essential for T cell biology and its depletion induces eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4; also known as GCN2, General Control Non-derepressible 2 kinase) activation and CD3 ε-chain downregulation. These events reduce T cell effector functions and limit their proliferation [91, 92]. Similarly, kynurenine restrains T cell proliferation [93] and could activate arylhydrocarbon receptor, promoting the switch of CD4 T cells into Treg cells [94]. Recent data demonstrated that both cancer cells and tumor infiltrating myeloid cells could have a high level of IDO enzyme expression [95-97]. IDO is not constitutively expressed and its induction is dependent on inflammatory signal stimulation such as IFNγ [95-99]. IDO acts as a negative feedback loop of Th1 response in cancer.

Inhibition of IDO and arginase could restore T cell functions and could improve the effector T cells/Treg ratio. Multiple IDO and arginase inhibitors are currently in development, associated to adoptive T cell therapy or checkpoint inhibitors [94]. However first reports are disappointing and phase III clinical trials evaluating efficacy of combination therapies involving IDO1 inhibitors and pembrolizumab in patients with melanoma are stopped (ECHO 301/KEYNOTE-252 study).
Alterations in lipid metabolism are frequently observed in cancer cells [100]. Tumor aggressiveness is linked to its capacity to store high levels of lipid and cholesterol [101-103].

Fatty acid metabolism plays a role in T cell differentiation. Effector CD8 T cells use de novo fatty acid synthase and fatty acid uptake, whereas memory T cells degrade endogenous esterified fatty acids [104]. Endogenous fatty acid generation is essential to maintain energy levels after PD-1 activation [105]. PD-1 activation impairs glucose and glutamine uptake but promotes fatty acid oxidation and utilization of endogenous lipids. Endogenous T cell lipid reserves provide energy and may be related to T cell exhaustion and T cell ability to be reactivated by checkpoint inhibitors [106]. Lipids produced by tumor cells could also have an impact on T cells by their transformation into prostaglandin by cyclooxygenase 2. Prostaglandin could then induce inflammation [107].

Concerning CD4 T cells, competition between de novo fatty acid synthase and exogenous uptake controls the decision between Th17 and Treg cells differentiation [108, 109]. Inhibition of acetyl-CoA carboxylase 1 and the related de novo fatty acid synthase restrains Th17 differentiation and promotes Treg cells. Such data suggest that in tumor tissue where fatty acids are mostly directed to tumor cells, the deficit in exogenous fatty acids promotes de novo fatty acid synthase and Th17 response [108]. The molecule mTOR (mammalian target of rapamycin) is essential to control Treg differentiation, function, and survival notably by its ability to control many lipid metabolism genes [110, 111].

Targeting fatty acid metabolism could be useful to improve antitumor immune response [109]. Fatty acid oxidase is required not only for memory CD8 T cell development but also for Treg cell differentiation [112], therefore its blockade limits Treg dependent immunosuppression. Similarly, fatty acid oxidase has a critical role in MDSC-mediated T cell suppressive function [113, 114]. Thus, inhibiting fatty acid metabolism may affect multiple immune populations and could have unpredictable outcomes. In contrast, fibrate which enhances fatty acid oxidase activity and enhances endogenous production of fatty acids, may enhance functions of exhausted CD8 T cells and delay tumor growth when used together with PD-1-blocking immunotherapy [115].

CONCLUSION
TME is metabolically different from healthy tissues. Tumors are characterized by glycolysis, hypoxia, acidosis, amino
acid depletion and fatty acid metabolism modifications. These modifications strongly affect CD8 T cell functions and T helper cell differentiation. Consequently, better understanding of tumor environment metabolic changes will provide key information for the development of novel therapies that improve T cell immune functions. A better knowledge of the metabolic pathways not shared between cancer and immune cells will allow the selection of drugs targeting specifically cancer or immune cells. The use of these novel drugs in combination with immunotherapies such as checkpoint inhibitors or adoptive cell transfer may open new opportunities to improve cancer treatment.

ACKNOWLEDGMENTS
We thank Isabel Gregoire for English editing.

REFERENCES
1. Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012). The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4): 298-306. doi: 10.1038/nrc3245

2. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017). Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17(2): 97-111. doi: 10.1038/nri.2016.107

3. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L (2016). Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 27(8): 1482-1492. doi: 10.1093/annonc/mdw168

4. Zou W, Wolchok JD, Chen L (2012). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med 8(328): 328rv324. doi: 10.1126/scitranslmed.aad7118

5. Gibney GT, Weiner LM, Atkins MB (2016). Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12): e542-e551. doi: 10.1016/S1470-2045(16)30406-5

6. Martin F, Apetoh L, Ghiringhelli F (2016). Inducible factors as regulators of T cell development and effector functions. Cell Stress 10(1): 3-17. doi: 10.1016/j.cstres.2016.01.001

7. Ivanov Z (2009). Hypoxia or in situ normoxia: The stem cell paradigm. J Cell Physiol 219(2): 271-275. doi: 10.1002/jcp.21690

8. McNamee EN, Korns Johnson D, Homann D, Clambey ET (2013). Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function. Immunol Res 55(1-3): 58-70. doi: 10.1007/s12026-012-8349-8

9. Carreau A, El Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011). Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15(6): 1239-1253. doi: 10.1111/j.1582-4934.2011.01258.x

10. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McDonald RE, Hjelmeland AB, Rich JD (2009). Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6): 501-513. doi: 10.1016/j.ccr.2009.03.018

11. Harris AL (2002). Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2(1): 38-47. doi: 10.1038/nrc704

12. Semenza GL (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5): 625-634. doi: 10.1038/onc.2009.441

13. Noman MZ, Hasmim M, Messai Y, Terry S, Kieda C, Janji B, Chouaib S (2015). Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia. Am J Physiol Cell Physiol 309(9): CS569-579. doi: 10.1152/ajpcell.00207.2015

14. Chouaib S, Noman MZ, Kosmatopoulos K, Curran MA (2017). Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36(4): 439-445. doi: 10.1038/onc.2016.225

15. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006). Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature 441(7090): 235-238. doi: 10.1038/nature04753

16. Dong C (2008). TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8(5): 337-348. doi: 10.1038/nri2295

17. Litman DR, Rudensky AY (2010). Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140(6): 845-858. doi: 10.1016/j.cell.2010.02.021

18. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006). Transforming growth factor-beta induces development of the Th17 lineage. Nature 441(7090): 231-234. doi: 10.1038/nature04754

19. O’Quinn DB, Palmer MT, Lee YK, Weaver CT (2008). Emergence of the Th17 pathway and its role in host defense. Adv Immunol 99:115-163. doi: 10.1016/S0065-2776(08)00605-6

20. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2): 179-189. doi: 10.1016/j.immuni.2006.01.001

21. Ding EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, Bordman Z, Fu J, Kim Y, Yen HR, Luo W, Zeller K, Shimoda L, Topalian SL, Semenza GL, Dang CV, Pandolfi PM, Fan F (2011). Control of Th17/T(reg) balance by hypoxia-inducible factor 1. Cell 146(5): 772-784. doi: 10.1016/j.cell.2011.07.033

22. Vuillerfroy de Silly R, Ducimetiere L, Yacoub Maroun C, Dietrich PY, Derouazi M, Walker PR (2015). Phenotypic switch of CDB(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol 45(8): 2263-2275. doi: 10.1002/eji.201445284

23. Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG, Sitkovsky MV (2001). Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector func-

CONFLICT OF INTEREST
Authors declare no conflict of interest relevant to this article.

COPYRIGHT
© 2019 Chalmin et al. This is an open-access article released under the terms of the Creative Commons Attribution (CC BY) license, which allows the unrestricted use, distribution, and reproduction in any medium, provided the original author and source are acknowledged.

Please cite this article as: Fanny Chalmin, Mélanie Bruchard, Frederique Vegran and Francois Ghiringhelli (2019), Regulation of T cell antitumor immune response by tumor induced metabolic stress. Cell Stress 3(1): 9-18: doi: 10.15698/cst2019.01.171
20. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstatt K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005). Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 115(6): 1616-1626. doi: 10.1172/JCI24480

21. Palazon A, Tejeira A, Martinez-Forero I, Hervas-Stubbs S, Roncal C, Penuelas I, Dubrot J, Morales-Kastrenas A, Perez-Gracia JL, Ochoa MC, Ochoa-Callejero I, Martinez A, Luque A, Dinchuk J, Rouzaut A, Jure-Kunkel M, Melero I (2011). Agonist anti-CD137 mAb act on tumor endothelial cells to enhance recruitment of activated T lymphocytes. Cancer Res 71(3): 801-811. doi: 10.1158/0008-5472.CAN-10-1733

22. Palazon A, Martinez-Forero I, Tejeira A, Morales-Kastrenas A, Alfaro C, Samanfried M, Perez-Gracia JL, Penuelas I, Hervas-Stubbs S, Rouzaut A, de Landazuri MD, Jure-Kunkel M, Aragones J, Melero I (2012). The HIF-1alpha hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2(7): 608-623. doi: 10.1158/2159-8290.CD-11-0314

23. Yonezawa A, Dutt S, Chester C, Kim J, Kohrt HE (2015). Boosting Cancer Immunotherapy with Anti-CD137 Antibody Therapy. Clin Cancer Res 21(14): 3119-3120. doi: 10.1158/1078-0432.CCR-15-0263

24. Semaan A, Dietrich D, Bergheim D, Dietrich J, Kalff JC, Branchi V, Matthaei H, Kristiansen G, Fischer HP, Goltz D (2017). CCL12 expression and PD-L1 expression serve as prognostic biomarkers in HCC and are induced by hypoxia. Virchows Arch 470(2): 185-196. doi: 10.1007/s00428-016-2051-5

25. Wike-Hooyle JL, Haveman J, Reinhold HS (1984). The relevance of tumor pH to the treatment of malignant disease. Radiother Oncol 2(4): 343-366. doi: 10.1016/0167-8140(84)80077-8

26. Gerweck LE, Seetharaman K (1996). Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56(6): 1194-1198. PMID: 8640796

27. Hunt TK, Aslam RS, Beckert S, Wagner S, GhaniiQP, Hussain MZ, Roy S, Sen CK (2007). Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal 9(8): 1115-1124. doi: 10.1089/ars.2007.1674

28. Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011). Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-6 pathway that drives tumor angiogenesis. Cancer Res 71(7): 2550-2560. doi: 10.1158/0008-5472.CAN-10-2828

29. Sonveaux P, Copetti T, De Saedeleer CJ, Vegran F, Verraz J, Kennedy KM, Moon EJ, Dhup S, Danhier F, Frerart F, Gallez B, Ribeiro A, Michiels C, Dewhirst MW, Feron O (2012). Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7(3): e33418. doi: 10.1371/journal.pone.0033418

30. Shi Q, Le X, Wang B, Abbruzzese JL, Xiong Q, He Y, Xie K (2001). Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene 20(28): 3751-3756. doi: 10.1038/sj.onc.1204500

31. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011). Lactate enhances motility of tumor cells and inhibits monocYTE migration and cytokine release. Int J Oncol 39(2): 453-463. doi: 10.3892/ijo.2011.1055

32. Martinez-Zaguirain R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996). Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14(2): 176-186. doi: 10.1007/BF00012114

33. Kato Y, Nakayama Y, Umeda M, Miyazaki K (1992). Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem 267(16): 11424-11430. PMID: 1317866

34. Kato Y, Ozawa S, Tsukuda M, Kubota E, Miyazaki K, St-Pierre Y, Hata R (2007). Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma cell lines. FEBs J 274(12): 3171-3183. doi: 10.1111/j.1742-4658.2007.05848.x

35. Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL, Juchem C, Hyder F (2016). Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas. NMR Biomed 29(3): 309-319. doi: 10.1002/nbm.3466

36. Chen Y, Kung HH, Chen CH, Huang SH, Chen KH, Wang SM (2011). Acidic extracellular pH induces p120-catenin-mediated disruption of adherens junctions via the Src kinase-PKDelta pathway. FEBS Lett 585(4): 705-710. doi: 10.1016/j.febslet.2011.01.022

37. Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Bicarbonate increases tumor pH and inhibits spontaneous metastases. J Immunol 189(18): 5158-5169. doi: 10.4049/jimmunol.167.11.6140

38. Xu Y, Chaudhury A, Zhang M, Savoldo B, Metelitsa LS, Rodgers J, Yustein JT, Neilson JR, Dotti G (2016). Glycolysis determines dichotomous regulation of T cell subsets in hypoxia. J Clin Investig 126(7): 2678-2688. doi: 10.1172/JCI85834

39. Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takashiki H (2015). Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett 167(2): 72-86. doi: 10.1016/j.imlet.2015.07.003

40. Carnero C, Hukelmann JL, Rolf J, Panteleyev AA, Okkenhaug K, Cantrell DA (2012). PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrates metabolism and migration of CD8+ T cells. J Exp Med 209(13): 2441-2453. doi: 10.1084/jem.20112607

41. Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W (2011). Lactate enhances motility of tumor cells and inhibits monocYTE migration and cytokine release. Int J Oncol 39(2): 453-463. doi: 10.3892/ijo.2011.1055

42. Martinez-Zaguirain R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996). Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14(2): 176-186. doi: 10.1007/BF00012114

43. Kato Y, Nakayama Y, Umeda M, Miyazaki K (1992). Induction of 103-kDa gelatinase/type IV collagenase by acidic culture conditions in mouse metastatic melanoma cell lines. J Biol Chem 267(16): 11424-11430. PMID: 1317866

44. Kato Y, Ozawa S, Tsukuda M, Kubota E, Miyazaki K, St-Pierre Y, Hata R (2007). Acidic extracellular pH increases calcium influx-triggered phospholipase D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma cell lines. FEBs J 274(12): 3171-3183. doi: 10.1111/j.1742-4658.2007.05848.x

45. Coman D, Huang Y, Rao JU, De Feyter HM, Rothman DL, Juchem C, Hyder F (2016). Imaging the intratumoral-peritumoral extracellular pH gradient of gliomas. NMR Biomed 29(3): 309-319. doi: 10.1002/nbm.3466

46. Chen Y, Kung HH, Chen CH, Huang SH, Chen KH, Wang SM (2011). Acidic extracellular pH induces p120-catenin-mediated disruption of adherens junctions via the Src kinase-PKDleta pathway. FEBS Lett 585(4): 705-710. doi: 10.1016/j.febslet.2011.01.022
50. Walenta S, Salameh A, Lyng H, Evensen JF, Mitze M, Rofstad EK, Mueller-Klieser W (1997). Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150(2): 409-415. PMID: 9033256

51. Liu R, Cao J, Gao X, Zhang J, Wang L, Wang B, Guo L, Hu X, Wang Z (2016). Overall survival of cancer patients with serum lactate dehydrogenase greater than 1000 IU/L. Tumour Biol 37(10): 14083-14088. doi: 10.1007/s13277-016-5228-2

52. Li G, Wang Z, Xu J, Wu H, Cai S, He Y (2016). The prognostic value of lactate dehydrogenase levels in colorectal cancer: a meta-analysis. BMC cancer 16: 249. doi: 10.1186/s12885-016-2276-3

53. Walenta S, Schroeder T, Mueller-Klieser W (2004). Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11(16): 2195-2204. doi: 10.2174/092986704364751

54. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfor K, Rofstad EK, Mueller-Klieser W (2000). High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60(4): 916-921. PMID: 10706105

55. Zhang J, Yao YH, Li BG, Yang Q, Zhang PY, Wang HT (2008). Expression of HSP27 in human cervical cancers. J Cell Physiol 216(2): 422-429. doi: 10.1002/jcp.1041380124

56. Holm E, Hagmuller E, Staedt U, Schlickeiser G, Gunther HJ, Lewel ing H, Tokus M, Kollmar HB (1995). Substrate balances across colonic carcinomas in humans. Cancer Res 55(6): 1373-1378. doi: 10.1001/00007142-199505010-00110

57. Gillies RJ, Raghunand N, Karczmar GS, Bhuiwalla ZM (2002). MRI of the tumor microenvironment. J Magn Reson Imaging 16(4): 430-450. doi: 10.1002/jmri.10181

58. Bosticardo M, Arrosti S, Losana G, Bernabeli P, Forni G, Novelli F (2001). Biased activation of human T lymphocytes due to low extracellular pH is antagonized by B7/CD28 costimulation. Eur J Immunol 31(9): 2829-2838. doi: 10.1002/1521-4141(200109)31:9<2829::AID-EIJM2829>3.0.CO;2-U

59. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Arendees R, Krause SW, Kreutz M (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109(9): 3812-3819. doi: 10.1182/blood-2006-07-035972

60. Mendler AN, Hu B, Prinzi PU, Kreutz M, Gottfried E, Noessner E (2012). Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131(3): 633-640. doi: 10.1002/ijc.26410

61. Calcinoatto P, Filippazi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72(11): 2746-2756. doi: 10.1158/0008-5472.CAN-11-1272

62. Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, Russell S, Weber AM, Luddy K, Damaghi M, Wijtikowia JW, Mule J, Ibrahim-Hashim A, Gilles RJ (2016). Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Res 76(1): 1381-1390. doi: 10.1158/0008-5472.CAN-15-1743

63. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobusch S, Peter K, Kastenberg M, Bogdan R, Schleicher U, Mackensen A, Ulrich E, Fichtner-Feigl S, Kesseling R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K, Oefner PJ, Hoffmann Mackensen A, Kunz M, Gottfried E, Schwarz S, Renner K, Timischl B, et al. (2016). LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab 25(6): 657-671. doi: 10.1016/j.cmet.2016.08.011

64. Angelin A, Gil-de-Gomez L, Daihya S, Jiao Y, Guo L, Levine MH, Wang Z, Quinn WV, 3rd, Kopinski PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock WW, Beier UH (2017). Foxp3 Reprogramms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab 25(6): 1282-1293 e1287. doi: 10.1016/j.cmet.2016.12.018

65. Eleftheriadis T, Pissas G, Kariotii A, Antoniadis G, Antoniadis N, Liakopoulos V, Stefanidis I (2013). Dichloroacetate at therapeutic concentration alters glucose metabolism and induces regulatory T-cell differentiation in alloreactive human lymphocytes. J Basic Clin Physiol Pharmacol 24(4): 271-276. doi: 10.1515/bcpp-2013-0001

66. Eleftheriadis T, Soundakdi M, Pissas G, Antoniadis G, Liakopoulos V, Stefanidis I (2016). In human alloreactive CD4(+) T-cells, dichloroacetate inhibits aerobic glycolysis, induces apoptosis and favors differentiation towards the regulatory T-cell subset instead of effector T-cell
lar and clinicopathological study. BMC cancer 15: 460. doi: 10.1186/s12885-015-1469-5

103. Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, Cheng JX (2014). Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 19(3): 393-406. doi: 10.1016/j.cmet.2014.01.019

104. O’Sullivan D, van der Windt GJ, Huang SC, Curtis JD, Chang CH, Buck MD, Qiu J, Smith AM, Lam WY, DiPillato LM, Hsu FF, Birnbaum MJ, Pearce EL, Pearce J (2014). Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41(1): 75-88. doi: 10.1016/j.immuni.2014.06.005

105. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Bousios VA (2015). PD-1 alters T cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6: 6692. doi: 10.1038/ncomms7692

106. Patsoukis N, Weaver JD, Strauss L, Herbel C, Seth P, Bousios VA (2017). Immunometabolic Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. Front Immunol 8: 330. doi: 10.3389/fimmu.2017.00330

107. Warner TD, Mitchell JA (2004). Cyclooxygenases: new forms, new inhibitors, and lessons from the clinic. FASEB J 18(7): 790-804. doi: 10.1096/fj.03-0645rev

108. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmroff K, Sandouk A, Hesse C, Castro CN, Bahre H, Tschirner SK, Gorinski N, Gohmert M, Mayer CT, Huehn J, Ponimaskin E, Abraham W, Muller R, Lochner M, Sparwasser T (2014). De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20(11): 1327-1333. doi: 10.1038/nm.3704

109. Lochner M, Berod L, Sparwasser T (2015). Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36(2): 81-91. doi: 10.1016/j.it.2014.12.005

110. Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD (2011). The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 12(4): 295-303. doi: 10.1038/ni.2005

111. Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013). mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499(7459): 485-490. doi: 10.1038/nature12297

112. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, Maciver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011). Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186(6): 3299-3303. doi: 10.4049/jimmunol.1003613

113. Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczewicka D, Zabaleta J, Sanchez MD, Dean MJ, Rodriguez PC, Ochoa AC (2017). Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. Oncolology 6(10): e1344804. doi: 10.1080/2162402X.2017.1344804

114. Hossain F, Al-Khami AA, Wyczewicka D, Hernandez C, Zheng L, Reiss K, Valle LD, Trillo-Tinoco J, Maj T, Zou W, Rodriguez PC, Ochoa AC (2015). Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunol Res 3(11): 1236-1247. doi: 10.1158/2326-6066.CIR-15-0036

115. Zhang Y, Kurupati R, Liu L, Zhou YX, Zhang G, Hudaied A, Filisio F, Giles-Davis W, Xu X, Karakousis GC, Schuchter LM, Xu W, Amaravadi R, Xiao M, Sadek N, Krepler C, Herlyn M, Freeman GJ, Rabinowitz JD, Ertl HCJ (2017). Enhancing CD8(+) T Cell Fatty Acid Catabolism within a Metabolically Challenging Tumor Microenvironment Increases the Efficacy of Melanoma Immunotherapy. Cancer Cell 32(3): 377-391 e379. doi: 10.1016/j.ccell.2017.08.004