Nature versus Nurture: The curved spine of the galaxy cluster X-ray luminosity – temperature relation

W. G. Hartley, L. Gazzola, F. R. Pearce, S. T. Kay & P. A. Thomas

1 School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
2 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL
3 Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH
4 Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH

Released 2007

ABSTRACT

The physical processes that define the spine of the galaxy cluster X-ray luminosity – temperature (L-T) relation are investigated using a large hydrodynamical simulation of the Universe. This simulation models the same volume and phases as the Millennium Simulation and has a linear extent of $500h^{-1}\text{Mpc}$. We demonstrate that mergers typically boost a cluster along but also slightly below the L-T relation. Due to this boost we expect that all of the very brightest clusters will be near the peak of a merger. Objects from near the top of the L-T relation tend to have assembled much of their mass earlier than an average halo of similar final mass. Conversely, objects from the bottom of the relation are often experiencing an ongoing or recent merger.

Key words: cosmology: theory — hydrodynamics — methods: numerical

1 INTRODUCTION

Since the launch of the XMM-Newton and Chandra satellites (Jansen et al. 2001; Weisskopf et al. 2002), measurements of the X-ray emission from hot gas in clusters of galaxies have achieved unprecedented levels of accuracy and depth. However, the physical origin of the scaling relations between observable quantities, such as the luminosity of the X-ray emitting gas and its temperature, remain only partly understood.

There are currently a number of surveys (Romer et al. 2001; Schwepe et al. 2003; Pierre et al. 2006) in progress with the potential to greatly expand our understanding of the processes that define correlations such as the luminosity-temperature (L-T) relation of clusters. For this potential to be realised we require a sound theoretical basis upon which to work. To this end, numerical hydrodynamical simulations have become indispensable tools and continue to grow in size and complexity (Pearce et al. 2000; Kay et al. 2007; Faltenbacher et al. 2007) but they have to date lacked a sufficiently large dynamic range in mass. In this work we use a hydrodynamical model of a large volume that contains over a hundred galaxy clusters. For the first time we are able to study the evolutionary processes within a cosmological context as we have hundreds of well resolved objects spanning a large dynamic range rather than the more typical handful (Rowley, Thomas, & Kay 2004) (hereafter R04), or idealised models (Ritchie & Thomas 2002; Poole et al. 2006).

This paper is organised as follows: in the remainder of this section we summarise the work done to date on defining the physical processes that define the shape of the L-T relation. Then, in section 2, we give an account of the simulations we have undertaken, explain how our cluster sub-sample was selected and how the properties of these clusters were derived. Section 3 details our results before we discuss their implications and conclude in section 4.

X-rays are chiefly emitted from the hot gas in clusters via thermal bremsstrahlung (for dark matter halos more massive than $10^{14}h^{-1}\text{M}_\odot$ their temperature is typically above 2keV). For such a homologous population (Kaiser 1986) showed that simple scaling relations were expected between bulk properties such as the mass, temperature and luminosity. Observational work subsequently found that the properties of X-ray clusters where indeed related but the slopes of the relations were not those derived by Kaiser. Kaiser (1986) assumed that galaxy clusters were self-similar entities and that therefore only a single property, such as the mass, was required in order to describe the other bulk properties. Such a homology results in an L-T relation with a power-law slope of 2. However, as figure demonstrates, X-ray observations of clusters with a median redshift of ~ 0.07 found that the slope was closer to 3 (Markevitch 1998; Arnaud & Evrard 1999; Wu et al. 1999; Xue & Wu 2000; Horner et al. 2001; Mulchaey et al. 2003).
Horner et al. (2001)
Wu et al. (1999)
Xue and Wu (2000)
Helsdon and Ponman (2000)
Arnaud and Evrard (1999)
Markevitch et al. (1998)
Mulchaey et al. (2003)
Osmond and Ponman (2002)

Figure 1. Compilation of low-redshift observed group and cluster X-ray luminosities within \(r_{500} \) compared to their emission-weighted temperature. \(r_{500} \) is a radius enclosing an overdensity of 500. The small points are the simulated groups and clusters used in this work. The data was taken from variously: Markevitch (1998); Arnaud & Evrard (1999); Wu et al. (1999); Helsdon & Ponman (2000); Xue & Wu (2000); Horner et al. (2001); Mulchaey et al. (2003); Osmond & Ponman (2004).

Hydrodynamical simulations performed in the absence of cooling or any additional heat sources other than compression and shock heating have long been known to reproduce the self-similar hierarchy well (Eke, Navarro, & Frenk 1998; Navarro, Frenk, & White 1995). Unfortunately they do not reproduce either the slope or the normalisation of the observations, producing clusters that are too bright for any given temperature, even at the bright end. Following this work, simulations with limited physics within a cosmological volume have been used in an attempt to reconcile the apparent discrepancy between theory and observation regarding the slope of the L-T relation (Pearce et al. 2000; Muanwong et al. 2001; Bialek, Evrard, & Mohr 2001; Borgani et al. 2002). These models showed that a simple cooling or preheating scheme was sufficient to match the simulated L-T relation to that observed at redshift zero. More recently Kay et al. (2007) investigated the effects of feedback on the X-ray properties of clusters in hydrodynamical simulations, and demonstrated that their results were in good agreement with both the observed scaling relations and structural properties (e.g. entropy and temperature profiles), particularly for cool-core clusters.

Balogh et al. (2006) investigated the role that preheating, cooling and concentration of the halo profile can have on the scaling relations. They found that, for a realistic range of halo concentrations, the scatter generated was minimal in comparison with observed values. Variations in the cooling time of the gas in the centre of clusters could account for much of the scatter but is limited by the age of the universe and so could not explain the whole range. Finally, varying feedback from supernovae and AGN could explain the entire range, but required an order of magnitude difference in energy injection to cover the whole envelope. Their result implies that it is processes in the cores of clusters that are primarily responsible for driving the scatter in the scaling relations. This confirms earlier work by Fabian et al. (1994); Markevitch (1998) and McCarthy et al. (2004). Kay et al. (2007) identify the scatter with strong cool core clusters, and expect the scatter to be smaller at high redshift due to the diminished prevalence of such systems. Nowadays, the general consensus is that the scatter is largely due to the strength of the X-ray core. In this work, which includes strong preheating, X-ray cores are absent. This allows us to study the shape of the relation without the additional complication of a large intrinsic scatter.

In this work we will use a sample of halos identified from the full simulation volume. With these we will show that because mergers tend to move clusters up the L-T relation they extend it beyond the point where the most massive, relaxed clusters are expected to lie. Thus many of the brightest, most
luminous objects are ongoing or recent merger events which (as R04 point out) may be difficult to resolve observationally if they are close to the peak of the merger. In addition, because we have many closely spaced outputs we can track the motion of each of our clusters on the L-T plane, allowing us to define a “mean merger” vector. As this vector is not perfectly parallel to the L-T relation but rather falls slightly below it, a gentle roll in the relation naturally arises.

2 THE SIMULATIONS

The simulation used in this work is part of the Millennium Gas Simulations (Pearce et al. 2007). This sequence of hydrodynamical simulations all have the same volume as the Millennium Simulation (Springel et al. 2005) as well as utilising the same amplitude and phase for the initial perturbations. The cosmological parameters for both the Millennium Simulation and the gas counterparts were: \(\Omega_\Lambda = 0.75, \Omega_M = 0.25, \Omega_b = 0.045, h = 0.73, n = 1, \) and \(\sigma_8 = 0.9, \) where the Hubble constant is characterised as \(100h \mathrm{km\,s^{-1}\,Mpc^{-1}}. \) These cosmological parameters are consistent with recent combined analyses from WMAP data (Spergel et al. 2003) and the 2dF galaxy redshift survey (Colless et al. 2001). The simulation volume is a comoving cube of linear size \(500h^{-1}\mathrm{Mpc} \) containing 500 million dark matter particles and 500 million gas particles. Their masses are \(1.422 \times 10^{10}h^{-1}M_\odot \) and \(3.12 \times 10^9h^{-1}M_\odot \) respectively. The simulation includes radiative cooling of the gas, with the metallicity set at a constant value of 0.3\(Z_\odot \), similar to that observed within the intra-cluster medium (Sarazin 1986) and preheating. The preheating is implemented in a similar way to Borgani et al. (2004): at redshift 4 the whole volume is heated to 200\(\mathrm{keV/cm^2} \), a value chosen such that the resulting L-T relation at redshift 0 matches observations. Star particles are formed from cold, dense gas particles when a temperature threshold (\(2 \times 10^4 \) K), a density threshold (\(n_H = 4.18 \times 10^{-27} \) g\,cm\(^{-3} \)) and an overdensity threshold (100 times critical) are all passed, but the process of converting gas to stars has no effect on the thermal dynamics of the system, other than to make the particles collisionless. The effect of the preheating in this simulation is so extreme as to prevent any further star formation since redshift 4.

2.1 Sample selection

At redshift zero the entire volume was processed to obtain a set of friends-of-friends halos with a linking length of 0.2 times the mean interparticle separation. Within each of these halos the most bound particle was found and used as the centre for a spherical over-density calculation that extended to \(r_{200} \), a radius enclosing an over-density of 200 times the cosmic mean. The analysis presented in this work is for a fixed radius of \(r_{500} \) (the radius enclosing an over-density 500 times the cosmic mean density), roughly \(0.59 \times r_{200} \) for NFW halos (Navarro, Frenk, & White 1997) of typical concentration. Within this radius we calculate the bolometric luminosity and the emission weighted temperature assuming a standard (Sutherland & Dopita 1993) cooling function for a uniform metallicity gas of 0.3\(Z_\odot \).

Three sub-samples were selected from the top, bottom and median of the L-T relation. We refer to the sample of clusters that are more luminous and/or cooler than expected as coming from the top of the relation, with conversely under luminous, hot clusters coming from the bottom. We also select a control sample of clusters from close to the median of the relation. The clusters were selected such that the range of masses within each sample spanned the entirety of the available relation. We only consider objects containing more than 1000 particles and that are at least two virial radii away from any larger neighbour. This ensures a meaningful estimate of the cluster bulk properties.

Once selected at redshift zero, each of our 108 clusters was traced backwards in time until their mass dropped below our imposed resolution threshold of 1000 particles. The final locations of the selected clusters on the L-T plane are shown on figure 2 where the high scatter clusters are indicated by open circles, low scatter by open squares and the control sample by filled circles. The full sample is shown faintly in the background, together with our fitted median relation indicated by the line. Once the mass accretion histories of the sample had been extracted a small amount of smoothing was introduced in order to remove merger induced ringing in the cluster mass.

3 HALO PROPERTIES

3.1 Low-scattered halos

The L-T histories of nine low scattered halos ranked by final mass are shown in figure 3 with their respective mass accretion histories given in figure 4. The dark track in the L-T plane follows the history of each object from redshift 1.5 to the present day. The background points show the location of the entire sample of clusters in the L-T plane at \(z = 0 \). To the bottom right of each panel are two additional vectors. The short line shows the mean evolution of the control sample between \(z = 0.5 \) and the present. The other longer line shows the evolution of each particular group over the same
Figure 3. X-ray evolution in the L-T plane of 9 of the low-scattered clusters ranked by final mass. In each of the nine frames the L-T relation at redshift zero is defined by a sample of clusters (background points) whilst the track showing the evolution of each cluster is shown as the dark line. To the bottom right of each panel the evolution in the L-T plane for each cluster (long dashed line) and the mean of the control sample members of similar mass (short solid line) between a redshift of 0.5 and 0.

redshift interval. While the control sample moves slightly up in luminosity and down in temperature, 8 of the 9 low scattered clusters move dramatically to larger luminosities and temperatures, nearly parallel to the spine of the L-T relation. This is in agreement with the trend noticed by R04. Figure I which shows the corresponding mass accretion histories for these objects demonstrates that 8 of the 9 low scattered objects are in the process of an ongoing major merger and are much hotter and brighter than would be typical for objects of their mass. In each of these panels merger events are denoted by the bold sections of line. The masses at redshift 1.5 are significantly lower than expected in all bar one case, (the mean mass accretion history for objects of each mass is indicated by the dotted line on figure 4).

3.2 High-scattered halos
Figures 5 & 6 show the L-T evolution and mass accretion histories for nine of the high scattered clusters. These nine halos end up significantly above the mean relation and as can be seen from their L-T tracks in figure 5 eight of the nine (all except panel e) slightly lose temperature rather than gain temperature along with the mean of the control sample. The mass accretion history makes it clear why this is the case: all bar panel (e) assemble their final mass early, with significantly more mass in place at \(z = 1.5 \) than that collected by the control sample. The object in panel (e) has just undergone a merger. We conclude, as did Balogh et al. (2006), that high-scattered objects are in general early forming with consequently slightly more concentrated dark matter profiles resulting in slightly more luminous objects at a particular final mass.

3.3 Properties of mergers
As discussed in the previous section the motion of an object on the L-T plane during a merger is a significant driver behind finding it below the mean L-T relation at any given mass, particular at the high-mass end. To explore this further we extracted a sample of mergers from the mass accretion histories of the clusters used previously in this work. In order to distinguish a merger from gradual accretion we require that a cluster gains significant extra mass over a short period of time. Specifically we define a merger in the following way:

- A growth in mass through the merger event of at least 15% of the cluster’s final mass.
- A ratio of at least 1:4/3 between the mass before the merger and the mass at the peak of the merger.
- The mass accretion rate must exceed 14% of the final mass per Gyr.

Merger events automatically identified using this procedure are shown on the mass accretion history figures 4 & 6.
as the bold sections of the lines. The peak of a merger is considered to be the point at which the cluster's mass is greatest. As the dark matter halos subsequently pass through each other the final mass is usually below this value. As can immediately be guessed by simply comparing the number of bold line sections in figures 3 & 5 the mean number of mergers undergone by clusters in the low-scattered sample is over three times higher than clusters in the high-scattered sample.

By identifying the location on the L-T plane of each object at the start and peak of each merger we can produce a "cricket score" diagram (figure 7), where each line denotes the motion on the L-T plane due to one merger. As the merger timescale is short the net drift of the relation is small and on average slightly below it. This tendency for mergers to boost the dotted line on figure 7, closely parallels the slope of the L-T relation.

Interestingly, an "average merger" vector, indicated by the dotted line on figure 7, closely parallels the slope of the L-T relation. This vector lies largely parallel to the outer halo properties will underlie these, further complicate matters but the processes discussed here will be used and bright cooling cores are present. Preheating schemes such as the one used here are well known to accurately reproduce the slope and normalisation of the L-T relation as a whole (Pearce et al. 2000; Muanwong et al. 2001; Bialek, Evrard, & Mohr 2001; Borgani et al. 2002). The model we have implemented also accurately reproduces the mean location of halos on the L-T plane at the present day but in a much larger volume than has typically been observed scatter in future work (Gazzola et al. 2007) where physics. We intend to examine the physical origin of the observed scatter in future work (Gazzola et al. 2007) where the processes discussed here which relate to the outer halo properties will underlie these, with the variation in core properties leading to a scatter about the relation discussed here.

By identifying mergers using the mass accretion histories of our objects and matching these episodes to the motion of each object on the L-T plane we have derived a "mean merger" vector in this plane. This vector lies largely parallel

4 DISCUSSION

This work examines the physics that underlies the spine of the X-ray L-T relation. Due to our strong preheating prescription our halos do not have strong cores and as such do not reproduce the large scatter in the observed L-T relation, allowing us a clear window into the basic physics. We intend to examine the physical origin of the observed scatter in future work (Gazzola et al. 2007) where a more physically motivated energy feedback prescription will be used and bright cooling cores are present. Preheating schemes such as the one used here are well known to accurately reproduce the slope and normalisation of the L-T relation as a whole (Pearce et al. 2000; Muanwong et al. 2001; Bialek, Evrard, & Mohr 2001; Borgani et al. 2002). The model we have implemented also accurately reproduces the mean location of halos on the L-T plane at the present day but in a much larger volume than has typically been used previously. In the real world bright cooling cores will further complicate matters but the processes discussed here which relate to the outer halo properties will underlie these, with the variation in core properties leading to a scatter about the relation discussed here.

By identifying mergers using the mass accretion histories of our objects and matching these episodes to the motion of each object on the L-T plane we have derived a "mean merger" vector in this plane. This vector lies largely parallel

Figure 4. Mass accretion history for the 9 low-scattered clusters whose L-T evolution was shown in figure 3. The lighter line is the mass accretion history for the mean of similar mass clusters in the control sample whereas the darker line shows the history of the individual cluster. Bold sections demote periods when the cluster is undergoing a merger as defined in section 3.3 below. The mass of the cluster at each expansion factor is normalised by its final mass, labelled as "scaled mass". Also plotted is a horizontal dotted line to show when a cluster has assembled 70% of its final mass.
to the cluster L-T relation, as previously noted by RO4. At any particular time the mass function of the dark matter haloes present within a volume will be exponentially truncated at the high mass end above some characteristic mass scale. The large boost generated during a merger will produce points on the L-T plane appearing to lie above this characteristic mass, where there should be few objects. We therefore expect the majority of the brightest objects to be experiencing ongoing mergers, although they may be difficult to identify if they are close to their peak.

The mean merger vector we have derived is not exactly parallel to the L-T relation but rather lies slightly below it. This behaviour leads to all bar one of our low-scattered objects being obvious recent or ongoing merger events (figure 4). We also note that at the high mass end the vast majority of our haloes lie below the mean relation shown on figure 2. The fact that the mean merger vector lies slightly below the mean relation provides a natural explanation for the slight curvature evidenced in the simulated relation.

In summary, while it is straightforward to reproduce the observed slope and normalisation of the X-ray luminosity–temperature relation using a simple preheating scheme, such a scheme does not reproduce the observed scatter. As a preheating model includes the full underlying framework of the hierarchical build up of structure bulk mergers are not significant drivers of this scatter. Mergers can, however, produce objects that are brighter and hotter than would be expected from the cluster mass as merger events drive objects along the L-T relation towards the bright end. We find that a typical merger track does not exactly parallel the L-T relation but rather lies slightly below it, leading to a prevalence of recent or ongoing merger events on the low-scattered side of the relation. This process also leads to a slight curvature of the mean relation at the high mass end.

Figure 5. L-T evolution for 9 of the high-scattered sample. The symbols and lines have the same meaning as in figure 4.

Figure 7. Relative motion on the L–T plane during each of the mergers defined in section 3.3. Each line represents a single merging event. The long dashed line indicates the mean L–T relation whereas the dotted line indicates the mean merger direction.
ACKNOWLEDGEMENTS

The Millennium Simulation referred to in this paper was carried out by the Virgo Supercomputing Consortium at the Computing Centre of the Max-Planck Society in Garching. The Millennium Gas Simulations were carried out at the Nottingham HPC facility, as was the analysis required by this work.

REFERENCES

Arnaud M., Evrard A. E., 1999, MNRAS, 305, 631
Bialek J. J., Evrard A. E., Mohr J. J., 2001, ApJ, 555, 597
Balogh M. L., Babul A., Voit G. M., McCarthy I. G., Jones L. R., Lewis G. F., Ebeling H., 2006, MNRAS, 366, 624
Borgani S., et al., 2004, MNRAS, 348, 1078
Borgani S., Governato F., Wadsley J., Menci N., Tozzi P., Quinn T., Stadel J., Lake G., 2002, MNRAS, 336, 409
Colless M., et al., 2001, MNRAS, 328, 1039
Eke V. R., Navarro J. F., Frenk C. S., 1998, ApJ, 503, 569
Fabian A. C., Crawford C. S., Edge A. C., Mushotzky R. F., 1994, MNRAS, 267, 779
Faltenbacher A., Hoffman Y., Gottlöber S., Yepes G., 2007, MNRAS, 145
Gazolla, L., et al., 2007, MNRAS, submitted
Helsdon S. F., Ponman T. J., 2000, MNRAS, 315, 356
Horner D., Baumgartner W., Mushotzky R., Gendreau K., 2001, AAS, 1461, 33
Jansen F., et al., 2001, A&A, 365, L1
Kaiser N., 1986, MNRAS, 222, 323
Kay S. T., da Silva A. C., Aghanim N., Blanchard A., Lidstone A. R., Puget J.-L., Sadat R., Thomas P. A., 2007, MNRAS, 234
Kay S. T., Thomas P. A., Theuns T., 2003, MNRAS, 343, 608
Markevitch M., 1998, ApJ, 504, 27
McCarthy I. G., Balogh M. L., Babul A., Poole G. B., Horner D. J., 2004, ApJ, 613, 811
Muanwong O., Thomas P. A., Kay S. T., Pearce F. R., Couchman H. M. P., 2001, ApJ, 552, L27
Mulchaey J. S., Davis D. S., Mushotzky R. F., Burstein D., 2003, ApJS, 145, 39M
Navarro J. F., Frenk C. S., White S. D. M., 1995, MNRAS, 275, 720
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Osmond J. P. F., Ponman T. J., 2004, MNRAS, 350, 151
Pearce, F. R., et al., 2007, MNRAS, submitted
Pearce F. R., Thomas P. A., Couchman H. M. P., Edge A. C., 2000, MNRAS, 317, 1029
Pierre M., et al., 2006, MNRAS, 372, 591
Poole G. B., et al., 2007, MNRAS, 380, 437P
Ritchie B. W., Thomas P. A., 2002, MNRAS, 329, 675R
Romer A. K., Viana P. T. P., Lidstone A. R., 2001, ApJ, 547, 594R
Rowley D. R., Thomas P. A., Kay S. T., 2004, MNRAS, 352, 508 [R04]
Sarazin C. L., 1986, RvMP, 58, 1
Schwope A. D., Lamer G., Burke D., Elvis M., Watson
M. G., Schulze M. P., Szokoly G., Urrutia T., 2004, AdSpR, 34, 2604
Spergel D. N., et al., 2003, ApJS, 148, 175
Springel V., et al., 2005, Natur, 435, 629
Sutherland R. S., Dopita M. A., 1993, ApJS, 88, 253
Weisskopf M. C., Brinkman B., Canizares C., Garmire G.,
 Murray S., Van Speybroeck L. P., 2002, PASP, 114, 1
Wu X., Xue Y., Fang L., 1999, ApJ, 524, 22
Xue Y., Wu, X., 2000, ApJ, 538, 65