AT LEAST HALF OF ALL GRAPHS SATISFY $\chi \leq \frac{1}{4}\omega + \frac{3}{4}\Delta + 1$

LANDON RABERN

ABSTRACT. We prove that for any graph G at least one of G or \bar{G} satisfies $\chi \leq \frac{1}{4}\omega + \frac{3}{4}\Delta + 1$. In particular, self-complementary graphs satisfy this bound.

1. Introduction

In [5] Reed conjectured that

(1) $\chi \leq \left\lceil \frac{\omega + \Delta + 1}{2} \right\rceil$.

In the same paper he proved that there exists $\epsilon > 0$ such that

$\chi \leq \epsilon \omega + (1 - \epsilon)\Delta + 1$,

holds for every graph. The ϵ used in the proof is quite small (less than 10^{-8}).

We prove the following.

Main Result. Let G be a graph. Then at least one of G or \bar{G} satisfies

$\chi \leq \frac{1}{4}\omega + \frac{3}{4}\Delta + 1$.

To prove this we combine a result from [4] on graphs containing a doubly critical edge with the following lemma.

Key Lemma. Every graph satisfies $\chi \leq \iota + \omega + \Delta + n + 2$.

Here ι is the maximum number of singleton color classes appearing in an optimal coloring of the graph (formally defined below).

2. Stinginess

In [4] it was shown that a doubly critical edge is enough to imply an upper bound on the chromatic number that is slightly weaker than Reed’s conjectured upper bound.

Lemma 2.1. If G is a graph containing a doubly critical edge, then

$\chi(G) \leq \frac{1}{3}\omega(G) + \frac{2}{3}(\Delta(G) + 1)$.

The following two lemmas were proved in [1] using matching theory results.

Lemma 2.2. If G is a graph with $\chi(G) > \left\lceil \frac{|G|}{2} \right\rceil$, then

$\chi(G) \leq \frac{\omega(G) + \Delta(G) + 1}{2}$.

Lemma 2.3. If \(G \) is a graph with \(\alpha(G) \leq 2 \), then
\[
\chi(G) \leq \left\lceil \frac{\omega(G) + \Delta(G) + 1}{2} \right\rceil.
\]

Lemma 2.4. Let \(G \) be a graph for which every optimal coloring has all color classes of order at most 2. Then
\[
\chi(G) \leq \left\lceil \frac{\omega(G) + \Delta(G) + 1}{2} \right\rceil.
\]

Proof. If \(\alpha(G) \leq 2 \), the result follows by Lemma 2.3. Hence we may assume that we have an independent set \(I \subseteq G \) with \(|I| \geq 3 \). Put \(H = G \setminus I \). Since \(G \) has no optimal coloring containing a color class of order \(\geq 3 \), we have
\[
\chi(H) = \chi(G) = \frac{|G|}{2} = \frac{|H| + 3}{2} > \left\lceil \frac{|H|}{2} \right\rceil.
\]
Hence, by Lemma 2.2, we have
\[
\chi(G) = \chi(H) \leq \frac{\omega(H) + \Delta(H) + 1}{2} \leq \frac{\omega(G) + \Delta(G) + 1}{2}.
\]
The lemma follows.

Definition 1. The stinginess of a graph \(G \) (denoted \(\iota(G) \)) is the maximum number of singleton color classes appearing in an optimal coloring of \(G \). An optimal coloring of \(G \) is called stingy just in case it has the maximum number of singleton color classes.

Lemma 2.5. Let \(G \) be a graph and \(H \) an induced subgraph of \(G \). If \(\chi(G) = \chi(G \setminus H) + \chi(H) \), then \(\iota(G) \geq \iota(G \setminus H) + \iota(H) \).

Proof. Assume that \(\chi(G) = \chi(G \setminus H) + \chi(H) \). Then patching together any optimal coloring of \(G \setminus H \) with any optimal coloring of \(H \) yields an optimal coloring of \(G \). The lemma follows.

Lemma 2.6. Let \(G \) be a graph. Then \(\chi(G) \leq \frac{\iota(G) + |G|}{2} \).

Proof. Let \(C = \{I_1, \ldots, I_m, \{s_1\}, \ldots, \{s_{\iota(G)}\}\} \) be a stingy coloring of \(G \). Since \(|I_j| \geq 2 \) for \(1 \leq j \leq m \), we have \(\chi(G) \leq \iota(G) + \frac{|G| - \iota(G)}{2} = \frac{|G| + \iota(G)}{2} \).

3. Respectfully Greedy Partial Colorings

Definition 2. Let \(G \) be a graph. A partial coloring \(C \) of \(G \) is called \(r \)-greedy just in case every color class has order at least \(r \).

Definition 3. Let \(G \) be a graph. A partial coloring of \(C \) of \(G \) is called respectful just in case \(\chi(G \setminus \cup C) = \chi(G) - |C| \).

Lemma 3.1. Let \(G \) be a graph and \(C \) a respectful 3-greedy partial coloring of \(G \) with \(|G \setminus \cup C| \) minimal. Then
\[
\chi(G) \leq \frac{\omega(G) + \Delta(G) + 1}{2} + \frac{|C| + 1}{2}.
\]
Proof. Put \(H = G \setminus \cup C \). By the minimality of \(|H| \), every optimal coloring of \(H \) has all color classes of order at most 2. Thus, by Lemma 2.4, we have

\[
\chi(H) \leq \frac{\omega(H) + \Delta(H) + 1}{2} + \frac{1}{2}.
\]

Using the minimality of \(|H| \) again, we see that every vertex of \(H \) is adjacent to at least one vertex in each element of \(C \). Hence \(\Delta(H) \leq \Delta(G) - |C| \). Putting it all together, we have

\[
\chi(G) = \chi(H) + |C|
\leq \frac{\omega(H) + \Delta(H) + 1}{2} + \frac{1}{2} + |C|
\leq \frac{\omega(H) + \Delta(G) - |C| + 1}{2} + \frac{1}{2} + |C|
\leq \frac{\omega(G) + \Delta(G) - |C| + 1}{2} + \frac{1}{2} + |C|
= \frac{\omega(G) + \Delta(G) + 1}{2} + \frac{|C| + 1}{2}.
\]

□

Key Lemma. Every graph satisfies \(\chi \leq \frac{\iota + \omega + \Delta + n + 2}{4} \).

Proof. Let \(C \) be a respectful 3-greedy partial coloring of a graph \(G \) with \(|G \setminus \cup C| \) minimal. Since \(\chi(G \setminus \cup C) = \chi(G) - |C| \) we have \(\iota(G \setminus \cup C) \leq \iota(G) \) (by Lemma 2.5). Applying Lemma 2.6 yields

\[
\chi(G) = \chi(G \setminus \cup C) + |C|
\leq \frac{\iota(G) + |G| - |\cup C|}{2} + |C|
\leq \frac{\iota(G) + |G| - |C|}{2}.
\]

Adding this inequality with the inequality in Lemma 3.1 gives

\[
2\chi(G) \leq \frac{\iota(G) + \omega(G) + \Delta(G) + |G| + 2}{2}.
\]

The lemma follows.

□

4. The Main Results

Theorem 4.1. Let \(G \) be a graph. Then at least one of the following holds,

1. \(\chi(G) \leq \frac{1}{3}\omega(G) + \frac{2}{3}(\Delta(G) + 1) \),
2. \(\chi(G) \leq \frac{\omega(G) + |G| + \Delta(G) + 3}{4} \).

3
Proof. Assume that (1) does not hold. Then, by Lemma 2.1, we have \(\iota(G) < 2 \). Applying the Key Lemma gives

\[
\chi(G) \leq \frac{1 + \omega(G) + \Delta(G) + |G| + 2}{4}.
\]

The theorem follows. \(\square \)

Corollary 4.2. Let \(G \) be a graph satisfying \(\Delta \geq \frac{n}{2} \). Then \(G \) also satisfies

\[
\chi \leq \frac{1}{4} \omega + \frac{3}{4} (\Delta + 1).
\]

Proof. By Theorem 4.1, \(G \) satisfies

\[
\chi \leq \max \left\{ \frac{1}{3} \omega + \frac{2}{3} (\Delta + 1), \frac{\omega + n + \Delta + 3}{4} \right\}
\]

\[
\leq \max \left\{ \frac{1}{3} \omega + \frac{2}{3} (\Delta + 1), \frac{\omega + n + \Delta + 3}{4} \right\}
\]

\[
\leq \max \left\{ \frac{1}{3} \omega + \frac{2}{3} (\Delta + 1), \frac{\omega + 3 \Delta + 3}{4} \right\}
\]

\[
= \frac{1}{4} \omega + \frac{3}{4} (\Delta + 1).
\]

\(\square \)

We would like to find an upper bound on the chromatic number that must hold for a graph or its complement. The previous corollary is not quite good enough for this purpose since it doesn’t handle \(\frac{n-1}{2} \)-regular graphs. Instead, we use the following.

Corollary 4.3. Let \(G \) be a graph satisfying \(\Delta \geq \frac{n-1}{2} \). Then \(G \) also satisfies

\[
\chi \leq \frac{1}{4} \omega + \frac{3}{4} \Delta + 1.
\]

Proof. By Theorem 4.1, \(G \) satisfies

\[
\chi \leq \max \left\{ \frac{1}{3} \omega + \frac{2}{3} (\Delta + 1), \frac{\omega + n + \Delta + 3}{4} \right\}
\]

\[
\leq \max \left\{ \frac{1}{3} \omega + \frac{2}{3} (\Delta + 1), \frac{\omega + n + \Delta + 3}{4} \right\}
\]

\[
\leq \max \left\{ \frac{1}{3} \omega + \frac{2}{3} (\Delta + 1), \frac{\omega + 3 \Delta + 3}{4} \right\}
\]

\[
= \frac{1}{4} \omega + \frac{3}{4} \Delta + 1.
\]

\(\square \)

Since every graph satisfies \(\Delta + \bar{\Delta} \geq \Delta + n - 1 - \Delta = n - 1 \), combining the pigeonhole principle with Corollary 4.3 proves the following.

Main Result. Let \(G \) be a graph. Then at least one of \(G \) or \(\bar{G} \) satisfies

\[
\chi \leq \frac{1}{4} \omega + \frac{3}{4} \Delta + 1.
\]

5. **Some Related Results**

In [3] the following was proven.

Lemma 5.1. If \(G \) is a graph with \(\iota(G) > \frac{\omega(G)}{2} \), then

\[
\chi(G) \leq \frac{\omega(G) + \Delta(G) + 1}{2}.
\]
Theorem 5.2. Let G be a graph. Then at least one of the following holds,

1. $\chi(G) \leq \frac{\omega(G) + \Delta(G) + 1}{2}$,
2. $\chi(G) \leq \frac{3}{8} \omega(G) + \frac{|G| + \Delta(G) + 2}{4}$.

Proof. Assume that (1) does not hold. Then, by Lemma 5.1, we have $\iota(G) \leq \frac{\omega(G)}{2}$. Applying the Key Lemma gives

$$\chi(G) \leq \frac{\omega(G)}{2} + \omega(G) + \Delta(G) + |G| + 2.$$

The theorem follows. \qed

References

[1] Landon Rabern. A Note On Reed’s Conjecture. *SIAM J. Discrete Math.*, To Appear.
[2] Landon Rabern. On Graph Associations. *SIAM J. Discrete Math.*, 20(2):529–535, 2006.
[3] Landon Rabern. Coloring and The Lonely Graph. *arXiv:0707.1069*, 2007.
[4] Landon Rabern. Coloring Graphs Containing a Doubly Critical Edge. *Submitted to Journal of Graph Theory*, 2007.
[5] Bruce Reed. ω, Δ, and χ. *J. Graph Theory.*, 27:177-212, 1997.