Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone

Sinead E. Shortall, Clare H. Spicer, Francis J. P. Ebling, A. Richard Green, Kevin C. F. Fone & Madeleine V. King

School of Life Sciences, Medical School, Queen’s Medical Centre, The University of Nottingham, UK

ABSTRACT

The psychoactive effects of mephedrone are commonly compared with those of 3,4-methylenedioxymethamphetamine, but because of a shorter duration of action, users often employ repeated administration to maintain its psychoactive effects. This study examined the effects of repeated mephedrone administration on locomotor activity, body temperature and striatal dopamine and 5-hydroxytryptamine (5-HT) levels and the role of dopaminergic and serotonergic neurons in these responses. Adult male Lister hooded rats received three injections of vehicle (1 ml/kg, i.p.) or mephedrone HCl (10 mg/kg) at 2 h intervals for radiotelemetry (temperature and activity) or microdialysis (dopamine and 5-HT) measurements. Intracerebroventricular pre-treatment (21 to 28 days earlier) with 5,7-dihydroxytryptamine (150 μg) or 6-hydroxydopamine (300 μg) was used to examine the impact of 5-HT or dopamine depletion on mephedrone-induced changes in temperature and activity. A final study examined the influence of i.p. pre-treatment (∼30 min) with the 5-HT1A receptor antagonist WAY-100635 (0.5 mg/kg), 5-HT1B receptor antagonist GR 127935 (3 mg/kg) or the 5-HT7 receptor antagonist SB-258719 (10 mg/kg) on mephedrone-induced changes in locomotor activity and rectal temperature. Mephedrone caused rapid-onset hyperactivity, hypothermia (attenuated on repeat dosing) and increased striatal dopamine and 5-HT release following each injection. Mephedrone-induced hyperactivity was attenuated by 5-HT depletion and 5-HT1B receptor antagonism, whereas the hypothermia was completely abolished by 5-HT depletion and lessened by 5-HT1A receptor antagonism. These findings suggest that stimulation of central 5-HT release and/or inhibition of 5-HT reuptake play a pivotal role in both the hyperlocomotor and hypothermic effects of mephedrone, which are mediated in part via 5-HT1B and 5-HT1A receptors.

Keywords 5-HT, dopamine, locomotor activity, mephedrone, microdialysis, telemetry.

INTRODUCTION

The synthetic cathinone derivative 4-methylmethcathinone (mephedrone) was first synthesized in 1929 and became popular amongst recreational users at the beginning of the 21st century as a legal high (Green et al. 2014). Although mephedrone has been implicated in a number of deaths and became illegal in Europe and the United States between 2010 and 2012 (Dargan et al. 2011; Gershman & Fass 2012), it remains widely available for illicit use (Kelly et al. 2013; Yamamoto et al. 2013; Elliott & Evans 2014), and users report similar psychoactive effects to 3,4-methylenedioxymethamphetamine (MDMA). Mephedrone is a high-affinity substrate for the monoamine reuptake transporters for dopamine, noradrenaline and 5-hydroxytryptamine (5-HT). Once transported into the cell, mephedrone stimulates neurotransmitter release and disrupts vesicular storage by interaction with the vesicular monoamine transporter and can also stimulate non-exocytotic release by reversing the monoamine transporter flux (Simmler et al. 2013). Consistent with this, systemic mephedrone
administration to freely moving rats elevates extracellular levels of dopamine, and to a greater extent 5-HT, in the nucleus accumbens (Kehr et al. 2011; Baumann et al. 2012; Wright et al. 2012).

Multiple re-dosing is common with mephedrone users attempting to maintain the desired effects of this short-acting drug, and while a typical recreational dose is often between 100–200 mg, individuals may re-dose and ingest up to 4 g in a single session (Schifano et al. 2011; Winstock et al. 2011). Most studies show the acute effect of a single injection, or self-administration of mephedrone in the rat is hypothermia (Aarde et al. 2013; Miller et al. 2013; Shortall et al. 2013a), but hyperthermia has also been reported following rapid repeated dosing (Hadlock et al. 2011; Baumann et al. 2012). Given the established association of hyperthermia with life-threatening adverse effects of MDMA (Docherty & Green 2010), it is essential to see if there might be a similar adverse risk with repeated mephedrone. The current study therefore examined the temporal profile of the temperature and locomotor response to short-term repeated mephedrone and established the involvement of serotonergic and dopaminergic neurons in these changes because of their known role in the effects of MDMA.

In the current study, rats received three intraperitoneal (i.p.) injections of mephedrone (10 mg/kg) at 2 h intervals. Previous calculations suggest that this dose and route of mephedrone administration would produce similar plasma exposure to that occurring in many recreational users (Green et al. 2014). However, as pharmacokinetic studies of mephedrone have not been performed in man and there is wide variation in use of single or repeated recreational dose schedules, firm conclusions of the translatable accuracy of this dose cannot be made. Importantly, 10 mg/kg i.p. produces robust but sub-maximal physiological and behavioural changes in the rat (Wright et al. 2012; Shortall et al. 2013a; Shortall et al. 2013b), thereby enabling detection of either enhanced or attenuated temperature and locomotor effects following repeated injection (Green et al. 2014). In the current study, all experiments were performed at ambient temperature as Wright et al. (2012) observed that mephedrone produced a comparable hypothermia and increase in locomotor activity when recorded at normal (23°C) and elevated (27°C) ambient room temperature in Wistar rats.

The current repeat dosing studies used continuous radiotelemetry to accurately and repeatedly record locomotor activity and core body temperature over a prolonged period in the same animal, without repeated insertion of a rectal probe, which would confound assessment of activity, at a consistent dose interval to previous pre-clinical studies using MDMA or mephedrone (Baumann et al. 2008; Rodsiri et al. 2011; Baumann et al. 2012). Because mephedrone causes hyperlocomotion (Shortall et al. 2013b) and the striatum plays a role in motor activity (Schultz 2000), extracellular dopamine and 5-HT efflux from this region were measured by in vivo microdialysis to examine whether neurotransmitter release correlated with the behavioural effects.

Previous pharmacological studies suggest the involvement of dopamine in mephedrone-induced hypothermia (Shortall et al. 2013a), so we further examined the contribution of serotonergic and dopaminergic neurons to the behavioural effects of mephedrone. Intracerebroventricular (i.c.v.) pre-treatment with selective neurotoxins (5,7-dihydroxytryptamine (5,7-DHT) and 6-hydroxydopamine, 6-OHDA, respectively) was used to determine the impact of 5-HT or dopamine depletion on the thermoregulatory and locomotor stimulant effects of repeated mephedrone measured using radiotelemetry. After identifying a role of 5-HT in mephedrone-induced hyperactivity and hyperthermia, a final acute study investigated the involvement of specific 5-HT receptors by assessing the impact of selective 5-HT1A, 5-HT1B or 5-HT2 receptor antagonists on acute mephedrone-induced hyperlocomotion or hyperthermia. These receptors were chosen because of their known role in locomotion and/or thermoregulation in the rat and to permit comparisons with the published effects of MDMA. Radiotelemetry was not used in these studies in accordance with the three Rs principle that invasive surgical implantation was unnecessary for acute measurement. This is the first study to concomitantly examine the effects of repeated mephedrone on hyperactivity, hyperthermia and striatal dopamine efflux in short time periods (to provide a good temporal resolution) and establish the differential role of dopamine and 5-HT in mephedrone-induced hyperactivity and hyperthermia for comparison with the established effects of repeated MDMA injection.

MATERIALS AND METHODS

Animals

Experimentally naïve young adult male Lister hooded rats (190–300 g; Charles River UK) were used in all experiments. Rats were housed in groups of four prior to surgery and in individual cages post-surgery, under constant housing conditions (12 hours light:dark cycle with lights on at 07.00 hours, ambient temperature 21 ± 2°C and relative humidity 55 ± 10%). Food and water were freely available, and wet mash was provided for 5 days post-surgery.

The drug doses and behavioural schedule used were chosen to comply with the three Rs of humane animal testing. All experiments were conducted in accordance with the Animals (Scientific Procedures) Act, 1986 and...
Animal Research: Reporting of In Vivo Experiments guidelines with approval of University of Nottingham Local Ethical Committee.

Compounds

(±)-Mephedrone-HCl was purchased from Ascent Scientific, Cambridge, UK. Desipramine hydrochloride, ascorbic acid, 6-hydroxydopamine, hydrobromide, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl(ethyl)]-N-[2-pyridyl] cyclohexanecarboxamide maleate (WAY-100635), N-[4-Methoxy-3-[4-methyl-1-piperazinyl]phenyl]-2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)-1,1′-biphenyl-4-carboxamide hydrochloride (GR 127935), and (1R)-3,N-dimethyl-N-[1-methyl-3-[4-methylpiperidin-1-yl]propyl]benzenesulphonamide hydrochloride (SB-258719) were purchased from Tocris Bioscience, Bristol, UK. 5,7-dihydroxytryptamine (5,7-DHT) creatine sulphate was purchased from Sigma-Aldrich, Dorset, UK. Methedrone, desipramine, WAY-100635, GR 127935 and SB-258719 were dissolved in 0.2% w/v ascorbic acid. All doses are quoted as the salt.

Radiotelemetry

Radiotelemetry was conducted as previously described (Rodsiri et al. 2011). Sterile radio-transmitters (Model TA 10TA-F20, DataScience International, St. Paul, MN, USA) were surgically implanted into the peritoneal cavity under isoflurane anaesthesia. Post-operative analgesia was administered for 3 days (Rimadyl (carprofen), Pfizer; 4 mg/kg, subcutaneous), and rats were allowed to recover for 9 days, then transferred to the procedure room 24 hours prior to testing to habituate. During testing, core body temperature and activity were continuously monitored in the home cage at ambient room temperature (19.9–20.9°C), using receivers (RPC-1) and A.R.T. v4 acquisition software (DataScience International, St. Paul, MA, USA). Rats (n = 5 per treatment group) received three i.p. injections of either saline vehicle (1 ml/kg) or methedrone (10 mg/kg i.p.), and samples were collected every 20 minutes into microtubes containing 5 μl of 0.1 M perchloric acid with 0.03% sodium metabisulphite. Samples were immediately stored on dry ice and then at −80°C until analysis by high performance liquid chromatography-electrochemical detection. After a collection of the final microdialysis sample, rats were euthanized with pentobarbital. Brains were rapidly removed and stored in 4% paraformaldehyde until sectioned (150-μm coronal slices) using a vibrotome (Campden Instruments Ltd, Loughborough, UK). Location of the probe in the striatum was confirmed under a light microscope using Paxinos & Watson (1997).

Microdialysis

As our Animals (Scientific Procedures) Act, 1986 project licence did not permit radiotelemetry and microdialysis to be performed in the same animal, microdialysis was measured in a separate cohort of rats using an identical protocol as previously described (Rodsiri et al. 2011). A CMA12 polyurethane guide cannula (CMA Microdialysis AB, Kista, Sweden) was implanted above the striatum using stereotaxic coordinates anterior–posterior +0.48, medial-lateral ±3.0, dorsal-ventral −3.6 from Bregma (Paxinos & Watson 1997) under isoflurane anaesthesia. Seven days post-surgery, rats were briefly anaesthetized (isoflurane/O2/N2O) to insert a microdialysis probe (CMA12, 4 mm polyarylethersulphon membrane, 500 μm outer diameter, 3 μl internal volume with a 20 kDa molecular cut-off; CMA Microdialysis AB) and each rat then placed in a circular arena (50 cm diameter, 45 cm height) with sawdust bedding and food and water freely available. The probe was connected to a microinfusion pump (Harvard Apparatus, Holliston, MA, USA) using FEP tubing (Instech Laboratories Inc, Plymouth Meeting, PA, USA) via a liquid swivel (Instech 375/22, Instech Laboratories Inc) to allow unrestricted movement and perfusion with artificial cerebrospinal fluid (125 mM NaCl, 13.5 mM NaHCO3, 1.25 mM KCl, 0.22 mM NaH2PO4, 0.9 mM Na2HPO4, 0.3 mM Na2SO4, 0.5 mM MgCl2, 0.5 mM CaCl2, pH 7.4) at 1 μl/min. The following day, rats (n = 10 per treatment group) received three injections at 2-hour intervals of saline vehicle (1 ml/kg) or mephedrone (10 mg/kg i.p.), and samples were collected every 20 minutes into microtubes containing 5 μl of 0.1 M perchloric acid with 0.03% sodium metabisulphite. Samples were immediately stored on dry ice and then at −80°C until analysis by high performance liquid chromatography-electrochemical detection. After a collection of the final microdialysis sample, rats were euthanized with pentobarbital. Brains were rapidly removed and stored in 4% paraformaldehyde until sectioned (150-μm coronal slices) using a vibrotome (Campden Instruments Ltd, Loughborough, UK). Location of the probe in the striatum was confirmed under a light microscope using Paxinos & Watson (1997).

Dopamine and 5-hydroxytryptamine depletion

In a third group of rats, bilateral i.c.v. injection of a monoamine neurotoxin (5,7-DHT or 6-OHDA) was performed under isoflurane anaesthesia as previously described (King et al. 2009). All rats received desipramine (15 mg/kg, i.p., 30-minute pre-treatment) to protect noradrenergic neurons prior to 5 μl of 0.2% w/v ascorbic acid vehicle, 75 μg/5 μl of 5,7-DHT or 150 μg/5 μl of 6-OHDA into each lateral ventricle (anterior–posterior −0.8, medial-lateral ±1.5, dorsal-ventral −3.8 from Bregma (Paxinos & Watson 1997) at a rate of 5 μl/minute. These doses were chosen as they reportedly produce a similar degree of depletion (70–75% below control value; Nowak et al. 2005; King et al. 2009).
Twenty-one days post-surgery, each rat (n = 8 per treatment group) received three injections of saline vehicle (1 ml/kg) or mephedrone (10 mg/kg, i.p.) at 2-hour intervals, with radiotelemetry measurements as described previously. Using a cross-over design, rats received the opposite treatment during repeat monitoring 28 days post-surgery to minimize inter-individual responses to drug treatment or the lesion.

Neurochemical detection by high performance liquid chromatography-electrochemical detection

Seven days after radiotelemetry recording (35 days after i.c.v. injection), rats were killed by concussion followed by immediate decapitation, and the hypothalamus, right striatum, frontal cortex and hippocampus were collected on a refrigerated table (4°C), flash frozen in liquid nitrogen and stored at −80°C until analysis of dopamine, 5-HT and their major metabolites by high performance liquid chromatography-electrochemical detection, as previously described (Shortall et al. 2013b). Samples were thawed, weighed and sonicated for 30 seconds in 800 μl 0.05 M perchloric acid containing 5,7-DHT and 6-OHDA pre-treated rats using a modified adrenaline levels were measured in the same regions in and 5-HT in microdialysis samples. In addition, noradrenaline was also used to quantify extracellular dopamine, 5-HT and their major metabolites by high performance liquid chromatography-electrochemical detection, as previously described (Shortall et al. 2013b). Samples were thawed, weighed and sonicated for 30 seconds in 800 μl 0.05 M perchloric acid containing 1 μM sodium metabisulphite, centrifuged (17 400 × g, 4°C for 20 minutes; Harrier 18/80: MSE Scientific Instruments, London, UK), and the supernatant filtered (0.45 μm syringe tip filter, Kinesis Ltd, Saint Neots, UK). Monoamines were separated using a Targa C18 3 μm column (100 × 2.1 mm; Phenomenex, Cheshire, UK) and detected using an Antec VT-03 cell with a glassy carbon 2 mm working electrode set to +0.59 V with an in situ Ag/AgCl reference electrode. This system was also used to quantify extracellular dopamine and 5-HT in microdialysis samples. In addition, noradrenaline levels were measured in the same regions in 5,7-DHT and 6-OHDA pre-treated rats using a modified HPLC protocol (a mobile phase of 20 mM KH₂PO₄/Na acetate, 8 mM KCl, 0.1 mM EDTA, 1 mM OSA, containing 10% methanol, pH 4.07).

Effect of 5-HT₁A, 5-HT₁B and 5-HT₇ receptor antagonists on mephedrone-induced hyperactivity and hypothermia following a single injection

Locomotor activity (LMA) and rectal temperature were recorded from separate groups to establish the role of specific 5-HT receptors in acute mephedrone-induced hyperactivity and hypothermia, using previously described methods (Shortall et al. 2013a; Shortall et al. 2013b). Rats (n = 8 per treatment group) received saline vehicle (1 ml/kg, i.p.), the 5-HT₁A receptor antagonist WAY-100635 (0.5 mg/kg), the 5-HT₁B receptor antagonist GR 127935 (3 mg/kg) or the 5-HT₇ receptor antagonist SB-258719 (10 mg/kg), followed 30 minutes later by vehicle (1 ml/kg, i.p.) or mephedrone (10 mg/kg). Doses of 5-HT receptor antagonists were selected from previous studies (Fletcher et al. 2002; Guscott et al. 2003; Graf et al. 2004; Rusyniak et al. 2007).

Locomotor activity

Rats were placed in individual Perspex arenas and allowed to habituate for 60 minutes prior to the first injection. LMA was continuously recorded (in 5-minute time bins) for 30 minutes after the first and 60 minutes after the second injection using a Photobeam Activity System (San Diego Instruments, San Diego, CA, USA) to record ambulation and rears.

Rectal temperature

In acute drug studies, rats were placed in individual Perspex arenas and basal temperature measured 40 minutes prior to the first injection to allow habituation to the recording procedure, which involved insertion of a rectal probe (Portec Instrumentation, Bedfordshire, UK) to a depth of 6.5 cm for approximately 20 seconds. Rectal temperature was measured immediately prior to each injection and then at 20-minute intervals for the next 2 hours.

Statistical analysis

Analyses were performed using Graphpad prism v6.02 or SPSS v21 software. Radiotelemetry data were analysed by two-way repeated measures analysis of variance (ANOVA, with drug treatment and time as between and within factors, respectively) where rats received vehicle or mephedrone alone, or four-way repeated measures ANOVA (applied separately to 5,7-DHT and 6-OHDA groups, with i.c.v. injection and drug as between factors and time and week as within factors) where they also received i.c.v. injections. Dopamine microdialysis data were analysed by two-way repeated measures ANOVA (with drug treatment and time as between and within factors, respectively). 5-HT microdialysis data were analysed by one sample t-test against the pre-injection basal value as vehicle values fell below the limit of detection after 40 minutes. HPLC data were analysed by one-way ANOVA where rats received vehicle or mephedrone alone, or two-way ANOVA where they also received i.c.v. injections. Acute LMA and rectal temperature data were analysed by three-way repeated measures ANOVA (with 5-HT receptor antagonist pre-treatment and mephedrone treatment as between factors and time as the within factor). Total cumulative activity counts were analysed by two-way ANOVA (with pre-treatment and treatment as between factors). Bonferroni multiple comparisons post hoc test was used where appropriate, and P < 0.05 was considered statistically significant. All data are presented as mean ± SEM.
RESULTS

EFFECTS OF REPEATED MEPHEDRONE ON LOCOMOTOR ACTIVITY, BODY TEMPERATURE AND IN VIVO STRIATAL DOPAMINE RELEASE

Locomotor activity

Mephedrone increased activity above vehicle control levels for 40 minutes after the first injection and 80 minutes after the second and third injections, such that there was a drug × time interaction ($F_{(18,144)} = 3.43, P < 0.001$, Fig. 1a). The response to vehicle appeared to diminish with each consecutive administration, whereas the magnitude of the mephedrone-induced increase was similar after each injection.

Analysis of total cumulative activity in the 2 hours following each injection confirmed that mephedrone caused a reproducible hyperactivity on each occasion, with no significant difference between injections (First: 580 ± 56; Second: 567 ± 98; Third: 416 ± 115 counts/2 hours). The peak response (increase compared with each pre-injection value) was also similar (7.2 ± 2.2; 8.2 ± 3.3; 7.9 ± 2.7). However, in vehicle-treated rats, the total decreased from 197 ± 105 following the first injection to 61 ± 15 after the third administration ($P < 0.05$), suggesting some habituation to injection, which was not observed following mephedrone. This was reflected by a drug × injection number interaction ($F_{(2,16)} = 3.87, P < 0.05$), which was attributed to the change in the vehicle rather than mephedrone response.

Core body temperature

There were no between-group differences in temperature (recorded simultaneously with locomotor activity) in the 60 minutes prior to injection (data not shown), with baseline values (at the time of the first injection) being $37.8 \pm 0.2{\circ}C$ in rats due to receive vehicle and $37.9 \pm 0.1{\circ}C$ in those due to receive mephedrone. Following injection there was a difference between injections ($F_{(18,144)} = 4.26, P < 0.001$, Fig. 1b), and although mephedrone decreased body temperature to a greater extent than vehicle from 40–60 minutes after the first injection only, the maximum temperature change from baseline following each consecutive mephedrone injection was similar, being $-1.3{\circ}C$, $-1.4{\circ}C$ and $-1.2{\circ}C$ following the first, second and third injections, respectively. However, temperature did not return to baseline between injections, and the magnitude of each further decrease (compared with immediate pre-injection values; at T_0, T_{120} and T_{240}) was attenuated (First: $-1.3 \pm 0.3{\circ}C$; Second: $-0.6 \pm 0.3{\circ}C$; Third: $-0.2 \pm 0.2{\circ}C$ reaching significance for the last injection; $P < 0.05$ from the first response) suggesting tolerance occurred.

In vivo striatal dopamine and 5-hydroxytryptamine efflux

In a separate group of rats to those used for radiotelemetry, there were no between-group differences in basal extracellular dopamine levels in the 60 minutes prior to the first injection (7.32 ± 1.65 pmol/ml in rats due to receive vehicle and 5.08 ± 0.85 pmol/ml in those due to receive mephedrone). Following injection, there was a drug × time interaction ($F_{(18,119)} = 3.55, P < 0.001$, Fig. 1c). Mephedrone rapidly increased extracellular dopamine levels above vehicle control for 40 minutes after the first and third injections and 60 minutes after the second, but dopamine levels returned to near basal between injections. Thus, each injection produced a similar magnitude (First: 298%, Second: 520%, Third: 435% peak change from baseline) and time course of elevation in extracellular striatal dopamine.

Basal extracellular levels of 5-HT were close to the detection limit but equivalent in both groups when measured immediately prior to the first injection (0.295 ± 0.12 and 0.323 ± 0.07 pmol/ml in control and mephedrone groups, respectively). In vehicle-treated rats, post-injection 5-HT levels remained either close to or below the detection limit, and the pre-injection value has been used to calculate the percentage increase (Fig. 1d). The first mephedrone injection failed to elevate extracellular 5-HT, but the two subsequent injections produced statistically significant increases ($P < 0.05$ to $P < 0.01$, versus mean baseline 60 minutes after the second [458% peak change from baseline] and 40 minutes after the third injection [351% peak change from baseline]).

Ex vivo monoamine content

There was no significant effect of repeated mephedrone administration on tissue levels of dopamine, 5-HT or their major metabolites in the hypothalamus, striatum, hippocampus or frontal cortex measured 7 days after radiotelemetry recording (data not shown).

EFFECTS OF 5-HT OR DOPAMINE DEPLETION ON REPEATED MEPHEDRONE-INDUCED CHANGES IN LOCOMOTOR ACTIVITY AND CORE BODY TEMPERATURE

Locomotor activity

The third experiment again found that mephedrone caused a rapid increase in locomotor activity, which returned to basal levels between injections, whereas vehicle produced only a very small transient response in the same rats. Four-way repeated measures ANOVA confirmed a drug × 5,7-DHT ($F_{(1,28)} = 4.92, P < 0.001$) and drug × time interactions ($F_{(18,504)} = 9.32, P < 0.001$),
but no drug × 5,7-DHT × time interaction \((F_{18,504}, 1.24, P > 0.05\), Fig. 2a). Of note, 5,7-DHT pre-treatment attenuated the mephedrone-induced hyperactivity, such that there was no significant response of 5,7-DHT-treated rats to the first mephedrone injection, and responses to the second and third mephedrone injections were significantly lower in 5,7-DHT-treated rats than sham controls (while the response to vehicle was unaffected). In contrast, 6-OHDA lesion did not alter mephedrone-induced hyperactivity (drug × 6-OHDA × time: \(F_{1,28} = 1.66, P > 0.05\), Fig. 2b).

Consistent with the previous experiment, total cumulative activity in the 2 hours following each injection confirmed mephedrone-induced hyperactivity, with a drug × injection number interaction (\(F_{1,210} = 5.31, P < 0.01\), Table 1). 5,7-DHT completely prevented the response to the first mephedrone injection and attenuated that to the third \((P < 0.01\) versus sham control mephedrone response). In contrast, 6-OHDA-treated rats continued to exhibit an increase in cumulative activity following each mephedrone injection, which did not differ from the response in mephedrone-treated sham controls.

Core body temperature

Basal core body temperatures prior to the first injection on each test day (recorded simultaneously with locomotor activity in the same sham and lesioned rats) were equivalent, being 37.2 ± 0.2°C and 37.5 ± 0.2°C in sham controls, 36.9 ± 0.2°C and 37.2 ± 0.2°C in 5,7-DHT and 37.5 ± 0.2°C and 37.4 ± 0.2°C in 6-OHDA rats prior to injection of vehicle or mephedrone, respectively. The maximum temperature change from baseline following each mephedrone injection in sham controls \((-1.2°C, -1.2°C\) and \(-1.0°C\) following the first, second and third injections, respectively) was equivalent, but in agreement with the first study, the maximum temperature decrease (compared with each pre-injection value) was attenuated following both the second and third \((P < 0.05\) compared with the first injection \((-1.2°C, -0.3 ± 0.1°C\); Third: \(-0.1 ± 0.2°C)\).

There was a main drug × 5,7-DHT × time interaction \((F_{18,504} = 1.72, P < 0.05\); Fig. 2c,d) such that mephedrone significantly reduced core body temperature in sham controls 20–80 minutes after the first, 20–60 minutes after the second and at 40 and 80 minutes after the third injection. 5,7-DHT pre-treatment completely abolished mephedrone-induced hypothermia, and there was no difference between vehicle and mephedrone-treated 5,7-DHT rats at any time point, and the temperature change in 5,7-DHT mephedrone-treated rats was significantly attenuated compared with mephedrone-treated sham controls. There was also a main drug × 6-OHDA × time interaction \((F_{18,504})\)

Figure 1 Comparison of the effect of repeated injection of saline vehicle (V, 1 ml/kg, i.p., \(n = 5\)) or mephedrone (Meph, 10 mg/kg, \(n = 5\)) on (a) locomotor activity, (b) core body temperature and in vivo extracellular striatal, (c) dopamine and (d) 5-HT levels \((n = 10\) per treatment group) in individually housed adult male Lister hooded rats. Vehicle or mephedrone were injected once every 2 hours at 0, 120 and 240 minutes (as indicated by the arrows). Temperature data are represented as change from baseline \((t = 0\) min, °C). All data are presented as mean ± SEM and \(P < 0.05\), **\(P < 0.01\), ***\(P < 0.001\) compared with vehicle, Bonferroni multiple comparisons post hoc following two-way repeated measures ANOVA. (d) 5-HT levels fell below the detection limit in most rats at more than 40 minutes after starting microdialysis collection preventing data for subsequent time points to be displayed so the change in 5-HT in the mephedrone group was analysed against the pre-injection basal value \((0.35 ± 0.09\) pmol/ml) using one sample t-test. \(**P < 0.01\). For clarity of presentation, microdialysis data \((c, d)\) are displayed as percentage change from baseline, but statistical analysis was performed on the raw data.
Table 1 Total activity counts following repeated mephedrone administration to 5-HT or dopamine-depleted rats.

Lesion type	Treatment	Injection 1	Injection 2	Injection 3
Sham	V	285 ± 63	149 ± 25	139 ± 231
	Meph	579 ± 77***	619 ± 70***	572 ± 73***
5,7-DHT	V	226 ± 40	123 ± 23	134 ± 26
	Meph	382 ± 44	444 ± 43***	313 ± 50††
6-OHDA	V	298 ± 50	132 ± 20†	182 ± 57
	Meph	743 ± 63***	766 ± 72***	667 ± 39***

ANOVA = analysis of variance; SEM = standard error of the mean; 5-HT = 5-hydroxytryptamine; 5,7-DHT = 5,7-dihydroxytryptamine; 6-OHDA = 6-hydroxydopamine. Horizontal ambulatory counts (mean ± SEM) were measured following each of three i.p. injections of saline vehicle (V, 1 ml/kg) or mephedrone (Meph, 10 mg/kg) at 2-hour intervals, 21 or 28 days after bilateral i.c.v. injection under isoflurane anaesthesia of either 0.2% ascorbic acid vehicle (5 μl), 5,7-DHT (75 μg/5 μl per side) or 6-OHDA (150 μg/5 μl per side), to individually housed adult male Lister hooded rats (n = 8 per treatment group). †P < 0.05, **P < 0.01, ***P < 0.001 sham mephedrone compared with sham + vehicle; ††P < 0.001, ‡P < 0.05 lesion mephedrone compared with sham + vehicle; †††P < 0.001, ‡‡P < 0.01, ‡‡‡P < 0.05 lesion mephedrone compared with sham vehicle, ††††P < 0.001, ‡‡‡‡P < 0.01 lesion mephedrone compared with sham mephedrone, Bonferroni multiple comparisons post hoc following three-way repeated measures ANOVA.

Figure 2 Effects of bilateral i.c.v. injection (5 μl per side) of 0.2% ascorbic acid vehicle, 5,7-DHT (75 μg/5 μl per side) or 6-OHDA (150 μg/5 μl per side, b, d) pre-treatment on saline vehicle (1 ml/kg) or mephedrone (10 mg/kg) induced change in (a, b) ambulatory activity counts and (c, d) core body temperature change from baseline (at t = 0 min, °C) in adult male Lister hooded rats (n = 8 per treatment group). Using a crossover design, each rat received vehicle or mephedrone on day 21, and the opposite treatment 28 days post-surgery. Vehicle and mephedrone were injected once every 2 hours at 0, 120 and 240 minutes (as indicated by the arrows). All data are presented as mean ± SEM. For clarity, 5,7-DHT and 6-OHDA have been presented as separate figures versus the sham controls, but ANOVA has been performed on all groups. *P < 0.05, **P < 0.01, ***P < 0.001 sham mephedrone compared with sham + vehicle; ****P < 0.001, ***P < 0.01, ****P < 0.05 lesion mephedrone compared with sham mephedrone; *****P < 0.001, ****P < 0.01, *****P < 0.05 lesion mephedrone compared with lesion mephedrone; ******P < 0.001, *****P < 0.01, ******P < 0.05 lesion mephedrone compared with sham mephedrone, Bonferroni multiple comparisons post hoc following four-way repeated measures ANOVA.
such that mephedrone-induced hypothermia was reduced in 6-OHDA pre-treated rats where the decrease in temperature was only significant from sham controls at 40–80 minutes and at 40 minutes following the first and second injections, respectively.

Ex vivo neurochemistry

Dopamine, 5-HT and noradrenaline levels in the hypothalamus, right frontal cortex, hippocampus and striatum were measured 35 days after neurotoxin administration to confirm selective monoamine depletion. As expected, the serotonergic neurotoxin, 5,7-DHT, significantly reduced 5-HT to 46% of control in the frontal cortex (P < 0.001), 13% in the hippocampus (P < 0.01), 42% in the hypothalamus (P < 0.001) and 66% in the striatum, although the latter did not reach significance because of high individual variation (Table 2). In contrast, 6-OHDA reduced dopamine to 52% of control in the striatum (P < 0.001) and 56%, 80% and 86% of control in the frontal cortex, hippocampus and hypothalamus, respectively, although the depletion in these areas was not statistically significant (Table 2). However, the 6-OHDA-induced decrease in striatal dopamine was accompanied by a significant reduction in hippocampal 5-HT (F(2,20) = 7.19, P < 0.01) as well as decreased noradrenaline levels in the hypothalamus and hippocampus (F(2,21) = 9.53, P < 0.001), but noradrenaline levels were unchanged in the other regions examined.

EFFECT OF 5-HT1A, 5-HT1B AND 5-HT7 RECEPTOR ANTAGONISTS ON ACUTE MEPHEDrone-INDUCED HYPERACTIVITY AND DECREASES IN RECTAL TEMPERATURE

In a final study, separate groups of rats were pre-treated i.p. with the 5-HT1A receptor antagonist, WAY-100653, the 5-HT1B receptor antagonist, GR 127935, or the 5-HT7 receptor antagonist, SB-258719, to investigate the role of specific 5-HT receptors in mephedrone-induced hyperactivity and hypothermia.

Locomotor activity

None of the three 5-HT receptor antagonists had any effect on activity counts following their injection (data not shown). The predominant locomotor stimulant effect of mephedrone in vehicle pre-treated rats was a prolonged increase in ambulatory activity (P < 0.05–0.001, accompanied by a smaller increase in fine movement without increased rearing consistent with previous studies by our group (Shortall et al. 2013b) and the current telemetry data. It was briefly attenuated by WAY-100653 (Fig. 3a) at 15-minute post-injection and more substantially attenuated by GR 127935 (Fig. 3b) from 15–35-minute post-mephedrone injection, but completely unaffected by SB-258719 (Fig. 3c). Consistent with the time-course data, total cumulative ambulation in

Table 2 Effect of i.c.v. administration of 6-OHDA or 5,7-DHT on brain tissue dopamine, 5-HT and noradrenaline levels 5 weeks post-surgery.

Lesion type	Frontal cortex	Hippocampus	Hypothalamus	Striatum
Dopamine				
Sham	0.72 ± 0.2	0.4 ± 0.03	3.0 ± 0.2	55.6 ± 4.5
5,7-DHT	0.46 ± 0.02	0.4 ± 0.02	3.4 ± 0.2	60.4 ± 2.2
6-OHDA	0.40 ± 0.02	0.3 ± 0.01	2.5 ± 0.2	28.6 ± 5.5***
5-HT				
Sham	3.5 ± 0.3	3.8 ± 0.4	7.2 ± 0.5	4.4 ± 0.3
5,7-DHT	1.6 ± 0.3***	0.5 ± 0.1***	3.0 ± 0.4***	2.9 ± 0.5
6-OHDA	4.0 ± 0.2	1.9 ± 0.6*	5.4 ± 0.6	5.5 ± 0.5
Noradrenaline				
Sham	1.8 ± 0.1	2.8 ± 0.3	16.8 ± 1.5	0.9 ± 0.1
5,7-DHT	1.9 ± 0.1	2.2 ± 0.5	15.9 ± 1.5	1.1 ± 0.2
6-OHDA	1.7 ± 0.1	0.9 ± 0.2**	8.5 ± 1.4**	1.0 ± 0.3

ANOVA = analysis of variance; SEM = standard error of the mean; 5-HT = 5-hydroxytryptamine; 5,7-DHT = 5,7-dihydroxytryptamine; 6-OHDA = 6-hydroxydopamine. Dopamine, 5-HT and noradrenaline levels (mean ± SEM, pmol/mg wet weight) were measured 35 days after bilateral i.c.v. injection of either 0.2% ascorbic acid vehicle (5 μl per side), 5,7-DHT (75 μg/5 μl per side) or 6-OHDA (150 μg/5 μl per side) to individually housed male Lister hooded rats (n = 8 per treatment group). ***P < 0.001, **P < 0.01, *P < 0.05 compared with sham controls, Bonferroni post hoc following one-way ANOVA. Note that 5,7-DHT selectively reduced 5-HT in the frontal cortex, hippocampus and hypothalamus while 6-OHDA depleted dopamine in the striatum without affecting noradrenaline and 5-HT in this region.

© 2015 Society for the Study of Addiction

Addiction Biology, 21, 1127–1139
the 60-minute post-mephedrone period was reduced from 1244 ± 199.1 in vehicle pre-treated rats to 706.8 ± 78.4 by GR 127935 pre-treatment (pre-treatment × mephedrone interaction: \(F(1,28) = 5.39, P < 0.05 \)), but unaffected by WAY-100653 (1007 ± 129.6) or SB-258719 (1557 ± 176.7).

Rectal temperature
Injection of vehicle had no effect on rectal temperature irrespective of whether rats were pre-treated with WAY-100635 (Fig. 4a), GR 127935 (Fig. 4b) or SB-258719 (Fig. 4c). Mephedrone caused a transient but significant decrease in rectal temperature at 20-minute (\(P < 0.001 \)) and 40-minute (\(P < 0.05 \)) post-injection compared with vehicle, which was consistent with the duration and magnitude observed in a previous study by our group (Shortall et al. 2013a). There was a WAY-100635 × mephedrone × time interaction (\(F(7,196) = 2.84, P < 0.01 \), Fig. 4a), such that the mephedrone-induced hypothermia was partially reduced by WAY-100635 from 20- to 40-minute post-mephedrone. However, there was no significant GR 127935 × mephedrone × time interaction (\(F(7,196) = 1.16, P > 0.05 \), Fig. 4b) nor an SB-258719 × mephedrone × time interaction (\(F(7,196) = 1.35, P > 0.05 \), Fig. 4c).

DISCUSSION
This study investigated the effects of repeated mephedrone injection on core body temperature, locomotor activity and striatal dopamine and 5-HT release in the rat and examined the role of dopamine and 5-HT-containing neurons in mephedrone-induced changes in body temperature and activity. This is one of a few studies to use radiotelemetry to obtain a high temporal resolution of changes appropriate for the short-duration responses (Miller et al. 2012; Wright et al. 2012; Aarde et al. 2013). The main findings were as follows: (1) while hyperactivity and increased extracellular striatal dopamine seen after the first mephedrone injection were similar in magnitude and time course to those following the second and third injections, the hypothermia was attenuated with repeated dosing; (2) extracellular striatal 5-HT overflow was more variable but was enhanced when second and third injections were given when compared with the first response; (3) 6-OHDA did not affect hyperactivity but reduced the duration of the hypothermic response; (4) 5,7-DHT administration and 5-HT₁B receptor antagonism attenuated mephedrone-induced hyperactivity; (5) 5,7-DHT administration completely abolished, and 5-HT₁A receptor antagonism attenuated mephedrone-induced hypothermia. Importantly, some of these observed effects contrast with those reported with MDMA.

Figure 3 Comparison of the effect of (a) the 5-HT₁A receptor antagonist WAY-100635, (b) the 5-HT₁B receptor antagonist GR 127935, and (c) the 5-HT₇ receptor antagonist SB-258719 on saline vehicle (1 ml/kg) or mephedrone (10 mg/kg)-induced change in locomotor activity following a single injection in adult male Lister hooded rats (\(n = 8 \) per treatment group). Saline vehicle (1 ml/kg), WAY-100635 (0.5 mg/kg), GR 127935 (3 mg/kg) or SB-258719 (10 mg/kg) was injected –30 min, before saline or mephedrone at time = 0 min. All data are presented as mean ± SEM. Line indicates significance at indicated time points. \(^{*} P < 0.05 \), \(^{**} P < 0.01 \), \(^{***} P < 0.001 \) vehicle + mephedrone versus vehicle + vehicle; \(^{†} P < 0.05 \), \(^{‡} P < 0.01 \), \(^{***} P < 0.001 \) antagonist + mephedrone versus vehicle + vehicle; \(^{††} P < 0.05 \), \(^{‡‡} P < 0.01 \), \(^{***} P < 0.001 \) antagonist + mephedrone versus antagonist + vehicle, \(^{‡} P < 0.05 \), \(^{‡‡} P < 0.01 \) antagonist + mephedrone versus antagonist + vehicle + mephedrone, Bonferroni post hoc following three-way repeated measures ANOVA.
suggestion differing possible adverse effects following recreational use.

Mephedrone has a high affinity for rat dopamine and 5-HT transporters as well as the 5-HT2A and 5-HT2c receptors, and α1A and α3A adrenoceptors (Martinez-Clemente et al. 2012; Eshleman et al. 2013; Simmler et al. 2013). It increases extracellular dopamine and to an even greater extent 5-HT in the nucleus accumbens (Kehr et al. 2011; Baumann et al. 2012; Wright et al. 2012; Eshleman et al. 2013). The current study, in contrast, suggests that in the striatum, the percentage increase in 5-HT and dopamine is rather similar, at least after the second and third doses.

The repeated dose given in the current study (10 mg/kg) did not produce any neurotoxic loss of brain regional dopamine or 5-HT measured 7 days post-injection. This is in marked contrast to MDMA, where a repeated dose schedule that releases striatal dopamine also produces significant long-term neurotoxic 5-HT depletion in the rodent (Green et al. 2003), but similar to methcathinone where a much larger dose than that needed to elicit behavioural changes is required to obtain neurotoxicity (Sparago et al. 1996). Although hypothermia protects against MDMA neurotoxicity (Malberg & Seiden 1998), a previous study in which mephedrone produced hyperthermia in the rat also failed to detect any neurotoxic loss of post-mortem brain monoamines two weeks after a repeated dosing schedule similar to that used in the current study (Baumann et al. 2012). These data therefore suggest that rapid repeated mephedrone administration is less likely to produce monoamine neurotoxicity than MDMA.

Mephedrone induces hyperactivity in rodents following both acute and intermittent administration (Kehr et al. 2011; Angoa-Perez et al. 2012; Baumann et al. 2012; Marusich et al. 2012; Wright et al. 2012; Shortall et al. 2013b). Mephedrone (0.5 to 30 mg/kg i.p. or subcutaneous) has consistently been shown to elicit hyperactivity in a variety of rat strains, when given during both the light (Lisek et al. 2013; Miller et al. 2013; Shortall et al. 2013) or dark (Motbey et al. 2012; Miller et al. 2013) phase of the circadian cycle. Because significant hyperactivity was found irrespective of circadian phase, the current study was conducted in the light phase to enable comparison with the many studies on MDMA, including our own, which use this protocol. In the current study, repeated ‘binge-style’ mephedrone administration caused reproducible hyperactivity after each injection, the onset of which occurred within minutes of injection but returned to baseline levels within 1 hour. The time courses for both the striatal dopamine release and the hypothermia are consistent with a previous study using a single systemic injection (Shortall et al. 2013b). It is noteworthy that the peak plasma level of
mephedrone in the rat follows a similar temporal pattern following subcutaneous injection (Miller et al. 2013). Importantly, the total ambulatory activity counts following the second and third injections of mephedrone were comparable with those following the first injection. This response therefore differs markedly from MDMA where progressively increasing hyperactivity was observed following a similar repeated dosing schedule (Rodsiri et al. 2011).

In the current study, central 5-7-DHT administration markedly attenuated the hyperactivity observed following mephedrone injection 21 or 28 days later, while i.c.v. injection of 6-OHDA had no effect on mephedrone-induced hyperactivity. This observation is consistent with the ability of pCPA-induced 5-HT depletion to reduce mephedrone-induced hyperactivity in mice (Lopez-Arnau et al. 2012) and supports a key role for 5-HT in mephedrone-induced hyperactivity. In the current study, blockade of 5-HT1B, and to a lesser extent 5-HT1A (but not 5-HT7), receptors also reduced mephedrone-induced hyperactivity; and this is consistent with similar observations on MDMA-induced hyperactivity (McCreary, Bankson, & Cunningham 1999; Fletcher et al. 2002). The affinity of mephedrone for the 5-HT1B receptor has not yet been investigated and so it is difficult to ascertain whether this effect on mephedrone-induced hyperactivity is due to a direct effect on this receptor.

Although hyperthermia has not been recorded in mephedrone users, there is evidence that it alters peripheral thermoregulation because reported adverse effects include cold/blue fingers, hot flushes and sweating (Winstock et al. 2011; Wood & Dargan 2012), which may occur from peripheral changes in blood flow. Earlier studies have generally failed to observe hyperthermia in rodents given an acute injection of mephedrone, even when the animals are group-housed or kept in raised ambient temperature (Wright et al. 2012; Shortall et al. 2013a). However, hyperthermia was observed in two studies investigating the effects of repeated mephedrone injection (Hadlock et al. 2011; Baumann et al. 2012). Of note, both of these studies used Sprague Dawley rats and subcutaneous injections so there could be strain and/or pharmacokinetic differences (Wright et al. 2012). These repeated injection studies also used a rectal probe to measure the response at 1-hour intervals so the observed hyperthermia may have resulted from an additive effect of repeated mephedrone injection combined with stress-induced hyperthermia associated with rectal measurement as evident in vehicle control animals (Hadlock et al. 2011; Baumann et al. 2012). The current study therefore used radiotelemetry to measure the temperature response following repeated mephedrone injection and showed it produced hypothermia as reported following a single injection (Miller et al. 2012; Aarde et al. 2013). In the current study, 5,7-DHT administration abolished the hypothermic response to mephedrone. Furthermore, administration of the 5-HT1A receptor antagonist, WAY-100635, attenuated mephedrone-induced hypothermia while antagonism of the 5-HT1B or 5-HT7 receptors had no effect. Although 5-HT1A receptors are implicated in the hypothermic response, their involvement is almost certainly a consequence of 5-HT release and/or inhibition of reuptake, because the low affinity of mephedrone for the 5-HT1A receptor (Ki > 20 µM; Simmler et al. 2013) makes any direct effect unlikely. Interestingly, pre-treatment with WAY-100635 at the same dose as used herein also prevents the hypothermic response to MDMA (Rusyniak et al. 2007) but the involvement of 5-HT1B and 5-HT7 receptors in the thermoregulatory effect of MDMA has not been documented. In contrast, mephedrone injection to 6-OHDA-treated rats produced a hypothermic response that was shorter in duration than that seen in sham controls. At first, this appears paradoxical because we have shown that administration of the dopamine D1 receptor antagonist, SCH 23390, prolonged mephedrone-induced hypothermia (Shortall et al. 2013a). However, the limited depletion of dopamine in the hypothalamus makes it difficult to come to any firm conclusion about the role of dopamine in mephedrone-induced hypothermia.

Tolerance to the hypothermic effect of mephedrone is intriguing and is unlikely to be due to a pharmacokinetic effect as locomotor and dopamine responses were unaffected. Considerable evidence shows that 5-HT plays a major role in thermoregulation, particularly when body temperature is perturbed by amphetamine-like drugs (Docherty & Green 2010). However, it is unclear whether increased 5-HT release with repeated dosing, observed herein, is associated with tolerance to the hypothermic effect of mephedrone. Although the limited depletion of hypothalamic dopamine makes it impossible to completely exclude a role of this monoamine in mephedrone-induced hypothermia, the fact that this response is unaffected by dopamine D2 receptor blockade and prolonged by D1 receptor antagonism (Shortall et al. 2013a) suggests that mephedrone-induced increases in dopamine eflux are unlikely to contribute to the drug-induced hypothermia. In contrast modulation of central serotonergic neurotransmission plays a key role in mediating both the hyperlocomotor and hypothermic effects of mephedrone.

Although caution is required in attempting to translate the relevance of these findings in the rat to those in man, they demonstrate the need to evaluate the pharmacology and psychoactive effects of any new amphetamine analogues and not rely on prediction from structural analogy.
Acknowledgements

This study was funded by the University of Nottingham, School of Biomedical Sciences.

Disclosure

There is no conflict of interest to report.

Authors Contribution

SES, ARG, KCFF and MVK were responsible for the study concept and design. SES, CHS and MVK performed surgical procedures. SES, FJPE and MVK contributed to the acquisition of animal data. SES and MVK drafted the manuscript. ARG, KCFF and MVK provided critical revision of the manuscript for important intellectual content. All authors critically reviewed content and approved final version for publication.

References

Aarde SM, Angrish D, Barlow DJ, Wright MJ, Vandewater SA, Creehan KM, Houseknecht KL, Dickenson TJ, Taffe MA (2013) Mephedrone (4-methylmethcathinone) supports intravenous self-administration in Sprague–Dawley and Wistar rats. Addict Biol 18:786–799.

Angoa-Perez M, Kane MJ, Francescutti DM, Sykes KE, Shah MM, Mohammed AM, Thomas DM, Kuhn DM (2012) Mephedrone, an abused psychoactive component of bath salts’ methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 120:1097–1107.

Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozza NV (2012) The designer methcathinone analogs, methedrone and methylone, are substrates for monoamine transporters in brain tissue. Neurropsychopharmacol 37:1192–1203.

Baumann MH, Clark RD, Franken FH, Rutter JJ, Rothman RB (2008) Tolerance to 3,4-methylenedioxyamphetamine in rats exposed to single high-dose binges. Neuroscience 152:773–784.

Dargan PI, Sedevol R, Gallegos A, Wood DM (2011) The pharmacology and toxicology of the synthetic cathinone mephedrone (4-methylmethcathinone). Drug Test Anal 3:454–463.

Docherty JR, Green AR (2010) The role of monoamines in the changes in body temperature induced by 3,4-methylenedioxyamphetamine (MDMA, ‘ecstasy’) and its derivatives. Br J Pharmacol 160:1029–1044.

Elliott S, Evans J (2014) A 3-year review of new psychoactive substances in casework. Forensic Sci Int 243C:55–60.

Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A (2013) Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 85:1803–1815.

Fletcher PJ, Korth KM, Robinson SR, Baker GB (2002) Multiple 5-HT receptors are involved in the effects of acute MDMA treatment: studies on locomotor activity and responding for conditioned reinforcement. Psychopharmacology (Berl) 162:282–291.

Gershman JA, Fass AD (2012) Synthetic cathinones (‘bath salts’): legal and health care challenges. P T 37:571–595.

Graf M, Jakus R, Kantor S, Levy G, Bugdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359:45–48.

Green AR, King MV, Shortall SE, Fone KCF (2014) The preclinical pharmacology of mephedrone; not just MDMA by another name. Br J Pharmaco 171:2251–2268.

Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxyamphetamine (MDMA, ‘ecstasy’). Pharmacol Rev 55:463–508.

Gregg RA, Tallarida CS, Reitz A, McCurdy C, Rawls SM (2013) Mephedrone (4-methylmethcathinone), a principal constituent of psychoactive bath salts, produces behavioral sensitization in rats. Drug Alcohol Depen 133:746–750.

Guscott MR, Egan E, Cook GP, Stanton JA, Beer MS, Rosahl TW, Hartmann S, Kulagowski J, McAllister G, Fone KCF, Hutson PH (2003) The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor. Neuropharmacology 44:1031–1037.

Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andreanyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2011) 4-methylmethcathinone (mephedrone): neuropsychological effects of a designer stimulant of abuse. J Pharmaco Exp Ther 339:530–536.

Kehr J, Ichinoe F, Yoshitake S, Gomny M, Sievertsson T, Nyberg F, Yoshitake T (2011) Mephedrone, compared with MDMA (‘ecstasy’) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmaco 164:1949–1958.

Kelly BC, Wells BE, Pawson M, Leclair A, Parsons JT, Golub SA (2013) Novel psychoactive drug use among younger adults involved in US nightlife scenes. Drug Alcohol Rev 32:588–593.

King MV, Spicer CH, Sleight AJ, Marsden CA, Fone KCF (2009) Impact of regional 5-HT depletion on the cognitive enhancing effects of a typical 5-HT-6 receptor antagonist, Ro 04-6790, in the novel object discrimination task. Psychopharmacology (Berl) 202:111–123.

Liseg R, Xu W, Yuvashvea E, Chiu YT, Reitz AB, Liu-Chen LY, Rawls SM (2012) Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depen 126:257–262.

Lopez-Arnau R, Martinez-Clemente J, Pubill D, Escudero E, Camarasa J (2012) Comparative neuropharmacology of three psychostimulant cathinone derivatives: butylone, mephedrone and methylone. Br J Pharmaco 167:407–420.

Malberg JE, Seidman LS (1998) Small changes in ambient temperature cause large changes in 3,4-methylenedioxyamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 18:5086–5094.

Martinez-Clemente J, Escudero E, Pubill D, Camarasa J (2012) Interaction of mephedrone with dopamine and serotonin targets in rats. Eur Neuropsychopharmac 22:231–236.

Marsuch JA, Grant KR, Blough BE, Wiley JL (2012) Effects of synthetic cathinones contained in ‘bath salts’ on motor behavior and a functional observational battery in mice. Neurotoxicology 33:1305–1313.

McCreary AC, Bankson MG, Cunningham KA (1999) Pharmacological studies of the acute and chronic effects of (+)-3,4-methylenedioxyamphetamine on locomotor activity: role of 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B/1D) receptors. J Pharmaco Exp Ther 290:965–973.
Miller ML, Creehan KM, Angrish D, Barlow DJ, Houseknecht KL, Dickerson TJ, Taffe MA (2012) Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone). Drug Alcohol Depend Accepted article doi: 10.1016/j.drugalcdep.2012.07.003.

Miller ML, Creehan KM, Angrish D, Barlow DJ, Houseknecht KL, Dickerson TJ, Taffe MA (2013) Changes in ambient temperature differentially alter the thermoregulatory, cardiac and locomotor stimulant effects of 4-methylmethcathinone (mephedrone). Drug Alcohol Depend 127:248–253.

Motbey CP, Karanges E, Li KM, Wilkinson S, Winstock AR, Ramsay J, Hicks C, Kendig MD, Callaghan PD, McGregor IS (2012) Mephedrone in adolescent rats: residual memory impairment and acute but not lasting 5-HT depletion. PLoS One 7: e45473.

Nowak P, Kostrzewa RM, Kwiecinski A, Bortel A, Labus L, Brus R (2005) Neurotoxic action of 6-hydroxydopamine on the nigrostriatal dopaminergic pathway in rats sensitized with D-amphetamine. J Physiol Pharmacol 56:325–333.

Paxinos G, Watson C (1997) The rat Brain in Stereotaxic Coordinates, 3rd edn. Academic Press, London.

Rodsiri R, Spicer C, Green AR, Marsden CA, Fone KCF (2011) Acute concomitant effects of MDMA binge dosing on extracellular 5-HT, locomotion and body temperature and the long-term effect on novel object discrimination in rats. Psychopharmacology (Berl) 213:365–376.

Rusyniak DE, Zaretskaia MV, Zaretsky DV, DiMeco JA (2007) 3,4-methylenedioxyamphetamine- and 8-hydroxy-2-di-n-propylamino-tetralin-induced hypothermia: role and location of 5-hydroxytryptamine 1A receptors. J Pharmacol Exp Ther 323:477–487.

Schifano F, Albanese A, Fergus S, Stair JL, Deluca P, Corazza O, Davey Z, Corkery J, Siemann H, Scherbaum N, Farre M, Torrens M, Demetrovic S, Ghodse AH (2011) Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology (Berl) 214:593–602.

Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–207.

Shortall SE, Green AR, Swift KM, Fone KCF, King MV (2013a) Differential effects of cathinone compounds and MDMA on body temperature in the rat, and pharmacological characterization of mephedrone-induced hypothermia. Br J Pharmacol 168:966–977.

Shortall SE, Macerola AE, Swaby RT, Jayson R, Korsah C, Pillidge KE, Wigmore PM, Ebling FJ, Richard Green A, Fone KC, King MV (2013b) Behavioural and neurochemical comparison of chronic intermittent cathinone, mephedrone and MDMA administration to the rat. Eur Neuropsychopharmac 23:1085–1095.

Simmler LD, Buser TA, Donzelli M, Schramm Y, Dieu LH, Huwyler J, Chaboe S, Hoener M, Laecht ME (2013) Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 168:458–470.

Sparago M, Wlos J, Yuan J, Hatzidimitriou G, Tolliver J, Dal Cason TA, Katz J, Ricautre G (1996) Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): a new drug of abuse. J Pharmacol Exp Ther 279:1043–1052.

Winstock A, Mitcheson L, Ramsey J, Davies S, Puchnarewicz M, Marsden J (2011) Mephedrone: use, subjective effects and health risks. Addiction 106:1991–1996.

Wood DM, Dargan PI (2012) Mephedrone (4-methylmethcathinone): what is new in our understanding of its use and toxicity. Prog Neuro-Psychoph 39:227–233.

Wright MJ Jr, Angrish D, Aarde SM, Barlow DJ, Buczynski MW, Creehan KM, Vandewater SA, Parsons LH, Houseknecht KL, Dickerson TJ, Taffe MA (2012) Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague–Dawley rats. PLoS One 7: e44652.

Yamamoto T, Kawsar A, Ramsey J, Dargan PI, Wood DM (2013) Monitoring trends in recreational drug use from the analysis of the contents of amnesty bins in gay dance clubs. Qjm-Int J Med 106:1111–1117.