Null effects of news exposure: A causal test of the (un)desirable effects of a ‘news vacation’ and ‘news binging’

Magdalena Wojcieszak (mwojcieszak@ucdavis.edu)
University of California, Davis
https://orcid.org/0000-0001-5456-4483

Sjifra de Leeuw
U of Amsterdam

Andreu Casas
Free U of Amsterdam

Xudong Yu
UC Davis

Ericka Menchen-Trevino
American U

Bernhard Clemm von Hohenberg
U of Amsterdam

Miriam Boon
U of Amsterdam

Article

Keywords: News exposure, Political Polarization, Computational Social Science, News media, Democratic Attitudes

Posted Date: October 5th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-909520/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Null effects of news exposure: A causal test of the (un)desirable effects of a ‘news vacation’ and ‘news binging’

Magdalena Wojcieszak¹,², Sjifra de Leeuw², Andreu Casas³, Xudong Yu¹, Ericka Menchen-Trevino³, Bernhard Clemm von Hohenberg⁴, and Miriam Boon⁵

¹University of California-Davis; ²University of Amsterdam; ³Free University of Amsterdam; ⁴American University

This manuscript was compiled on September 16, 2021

This preregistered project examines the general belief that news has a beneficial impact on society. We test news exposure effects on desirable outcomes, i.e., political knowledge and participation, and detrimental outcomes, i.e., attitude and affective polarization, negative system perceptions, and worsened individual well-being. We rely on two complementary over-time experiments that combine participants’ survey self-reports and their behavioral browsing data: one that incentivized participants taking a ‘news vacation’ for a week (N = 797; 30M visits) in the US, the other of ‘news binging’ for two weeks (N = 828; 17M visits) in Poland. Across both experiments, we demonstrate that reducing or increasing news exposure has little – if any – impact on the positive or negative outcomes tested. These robust null effects emerge irrespective of participants’ prior levels of news consumption and whether prior news diet was like-minded, and regardless of compliance levels. We argue that these findings reflect the reality of limited news exposure in the real world, with news exposure comprising roughly 3.5% of citizens’ online information diet.

News exposure | Political Polarization | Computational Social Science | News media | Democratic Attitudes

Introduction

Democratic theorists view news media as normatively beneficial (1). Thus, observers worry about decreasing news use (2) and the underfunding of media organizations (3, 4), and survey respondents over-report news exposure, underscoring its perceived desirability among the public (5). Some research confirms democratic benefits of news media. By covering the issues of the day and providing information about opportunities for political involvement, news media increase knowledge and stimulate participation (6–11). And yet, the vast ‘minimal effects’ literature clearly shows that citizens’ prior predispositions (12), interpersonal contacts (13), and media fragmentation (14) lead to non-existent or very small media effects (see (15)).

Furthermore, there are reasons to believe that news exposure may have a wide range of largely overlooked adverse effects. After all, negativity is one of core journalistic values (16), and so news media tend to focus on clashes between political groups, feature uncivil debates (17–19), and cover politics as a game or a horse-race (20). This may lead people to see the system at large as failing, the elites as evil, and society as sharply divided, and also make individuals anxious, worried, or angry. Longstanding theories of public opinion formation also establish that elite cues distort citizens’ policy preferences (21–23) and make people’s partisan identities more salient. Because citizens are exposed to these cues and elite communication via news media, news exposure can polarize attitudes (21, 24) and intensify out-group hostility (18, 25), among other side-effects that have received little attention.

Realistic estimates of these positive and negative outcomes are missing. Previous work has been unable to identify causal effects of news exposure, let alone in naturalistic settings. Correlational evidence of its link to political engagement cannot establish causality and relies on largely unreliable (5) survey self-reports of news use. Although controlled experiments address these limitations, they often ‘force’ people to watch certain - often partisan - content (24). Even those experiments that allow for some selection (26–28) cannot approximate actual exposure contexts, where users can tune in to a nearly unlimited number of sources.

Addressing this gap, we use two unique pre-registered experiments on non-probability-based but representative on key census demographics samples in the United States (US) and Poland (see SI B.2 for a description of the samples). The first experiment examines the effects of taking a seven-day ‘news vacation’ (N = 803) in the US. In this experiment, we incentivized participants to not consume any news. The second experiment tests the effects of ‘news binging’ in Poland (N = 936), where we incentivized participants to increase their news consumption for 14 days. Both experiments are part of an international panel project that studies changes in attitudes and behaviorally tracked online exposure.

Our study offers several key advantages. For one, we maximize ecological validity by embedding the treatments in participants’ real life rather than in a controlled and isolated context. As importantly, we move beyond reliance on self-reports by analyzing participants’ online browsing data comprising over 47 million visits, collected via our open-source tool Web Historian (see SI A.1). We use these behavioral data to measure compliance, establish floor and ceiling effects, and examine heterogeneity in treatment effects by prior levels of news consumption and also the congeniality thereof. Toward this end, we create a comprehensive list of news domains in both countries (4,683 in the US, 301 in Poland, of which 944 and 212, respectively, were visited by our final samples). We match 702 of the visited US news domains with a list of ideology scores,
We find a robust pattern of near-zero effects. Neither taking a week-long news vacation nor increasing news consumption for two weeks influenced the tested outcomes, beneficial (e.g., political engagement) or not (e.g., polarization, attribution of malevolence to out-party). These null effects emerged consistently regardless of one’s prior levels of news exposure, the extent to which one’s news diet was like-minded, and one’s compliance with the treatment. Because our designs had sufficient statistical power to detect effects and these effects emerged in two different countries, we see them as accurate representations of reality. News media have a central role in society. Yet, our evidence suggests that their contributions (often detected cross-sectionally) may be more limited than generally believed, with news domains comprising only 3.5% of the overall browsing of our respondents.

Research Design

Fig. 1 provides an overview of our pre-registered design. Both experiments were embedded in a larger international 3-wave panel study, in which, every three months, the same participants completed 20-minute surveys and submitted - after extensive informed consent - their browsing data via Web Historian, our open-source tool that allows transparent data sharing.

1Web Historian is a web browser plug-in that accesses respondents’ browser history stored on their computers, displays it to them using visualizations (e.g. network graph of websites visited, word cloud of used search terms, searchable table of browser history), and allows them to submit it to researchers following an extensive informed consent. SI A.1 contains more details and shows screenshots of the interactive informed consent process.
The ‘news binging’ experiment was embedded in Wave 2 of the Polish part of the project. Out of 976 Wave 2 participants, 936 (84%) opted in to the experiment (probability of assignment to treatment: 50%). Those in the news binging treatment (N = 442) were instructed to consume more news for two weeks; the control (N = 494) received no instructions. We do not observe any concerning attrition bias when comparing the samples that completed the preceding waves, those who opted in to the experiments, and those who completed the post-test (SI B.3, B.4). In addition, SI B shows that randomization was successful. In both experiments, the control and the treated groups do not differ significantly from each other, both when opting in and at the post-test.

Across both studies, we recorded compliance using both self-reported and behavioral data. First, every two days, participants completed short surveys about news media use. Second, we rely on participants’ browsing data to assess their online news consumption during the duration of the experiments. As the visualizations of the compliance tests in Fig. 1 show, in the US, the experimental group decreased their news intake more than the control, while in Poland the experimental group increased their news intake more than the control. Both groups were asked to complete the post-test after seven days in the US (treatment N = 378; control N = 288) and after 12 days in Poland (treatment N = 397, control N = 402).

Results

News exposure in perspective. Do our respondents consume news? We first describe the roughly 30 million visits in the US trace data and the 17 million visits in the Polish trace data. We find that only 3.54% of these visits across both countries were to news domains (US 2.24%, Poland 5.75%). That is, the average participant encountered only one news domain for every 28 sites they visited. Centrist sites were most popular (53%), and visits to like-minded domains accounted for 28% of news visits with ideological classification (or mere 0.80% of all browsing!). These descriptives offer one crucial insight: News is only a small drop in an ocean of online content, and so it is questionable whether changing this small part of people’s information diet will make any difference. We return to this finding in the discussion.

News exposure effects. We examine a range of outcomes, each measured using multiple indicators: political knowledge (both self-reported and actual, assessed with questions about current events), attitude and affective polarization, perceptions of the political system (i.e., attribution of malevolence to the out-party, support for compromise, and perceived polarization), and general well-being (both psychological, such as feeling anxious or depressed, and physical, such as drinking alcohol or the desire to hit someone). SI Tab. A.3 lists all items used in this study, as well as key statistics and reliability measures.

SI Tab. B.7 reports the summary statistics of the variables as they appear in the analyses, while SI Tab. B.8 summarizes the untransformed variables. SI Fig. B.2 and SI Fig. B.3 visualize the over-time variability; and SI Fig. B.4 and SI Fig. B.5 visualizes the variable distributions. Fig. 2 shows the results for the ‘No News’ experiment in yellow and those for the ‘More News’ experiment in grey. 3 SI C disaggregates the results for the individual items of the composite outcome variables. The dataset and the replication code are available on Harvard Dataverse and Github.

We first address the beneficial outcomes: political knowledge and participation (we do not have pre-measurements for these variables). Unlike hypothesized, participants who consumed more news were not any more knowledgeable (Facet vi) - or felt they were (Facet i) - than the control. In addition, those in the No News condition were not any less knowledgeable than those in the control, nor did they feel as such. Similar null effects from ‘news vacation’ and ‘news binging’ emerge for participants’ engagement in a range of civic and political activities, from signing a petition to protesting (Facet iii).

We turn to negative outcomes, testing if news exposure increases attitude polarization (i.e., attitude importance and strength on five salient issues per country) and affective polarization (i.e., hostility toward out-ideologues, out-partisans, and citizens with opposite political beliefs, each measured in three ways), see SI A.3. Using multiple measures ensures that the detected patterns are not due to any specific measurement alone. Again, the over-time treatment - whether decreasing or increasing news use - had no significant effects on attitude (Facets iv for importance and v for strength) and affective (Facets vi to viii) polarization. Treatment effects do not surpass the 2% mark independently of which indicator and which political out-group we examine.

Adding to this null pattern, news exposure had near-zero effects on three negative system perceptions: whether people think the out-party wants to harm the country (Attribution of malevolence, Facet ix), oppose politicians crossing the aisle and reaching compromise (No support for compromise, (Facet x), and perceive the political climate as polarized (Polarization, Facet xi), even though - theoretically - media’s focus on negativity (16), conflict, horse-race, and in-your face debates (17–19) was expected to worsen these outcomes. Lastly, we predicted that news exposure would reduce individual well-being. Studies find links between news consumption and stress, anxiety, fatigue, or sleep loss (Jan 31, 2018, click here), especially when news is personally relevant (30), and negative effects of hard news exposure on one’s mental well-being (31). These emotional responses may trigger unhealthy behaviors to alleviate the stress. Yet, our causal tests find no significant news effects on emotional well-being (e.g., anxiety, anger, among other emotions) and physical well-being (e.g., consuming alcohol, getting into arguments, wanting to hit someone) during the treatment period (Facets xii and xiii).

Robustness checks. To ascertain that these (near-zero) effects are robust, we test whether our treatment has different effects depending on one’s prior news diet. For instance, some partic-

2 In SI B.2, we show that the samples well represent the general populations (but overrepresent those 25–54 and those with graduate degrees, as often the case in online samples. Importantly, comparison between the top visited news websites reported by Alexa and our data suggests that our participants’ browsing behavior corresponds to that of the populations (see SI B.1). Power analyses show that the sample sizes suffice to observe small effects; See SI Figure B.1.

3 To help readability, we rescaled all variables to range between 0 and 100. Coefficients denote the percentual increase in the outcome for a one percent increase in the predictor. Unless stated otherwise, all models control for respondents’ pre-measurement on the outcome. Items marked by an asterisk (*) were reversed to construct the scales.
Fig. 2. Results

| Wojcieszak et al. | 4 |

Model 1: Treatment
- Treatment
- News Exposure
- Treatment

Model 2a: News (Self-Report)
- Treatment + News Exposure
- News Exposure
- Treatment

Model 2b: News (Behavioral)
- Treatment + News Exposure
- News Exposure
- Treatment

Model 3a: Congenial News (Self-Report)
- Treatment + News Exposure
- News Exposure
- Treatment

Model 3b: Congenial News (Behavioral)
- Treatment + News Exposure
- News Exposure
- Treatment

VI AFFECTIVE POLARIZATION:
- FEELING THERMOMETER (WARM-COLD)

VII AFFECTIVE POLARIZATION:
- NO UNDERSTANDING

VIII AFFECTIVE POLARIZATION:
- STUPID

IX NEGATIVE SYSTEM PERCEPTIONS:
- ATTRACTION OF MALEVOLENCE

X NEGATIVE SYSTEM PERCEPTIONS:
- NO SUPPORT FOR COMPROMISE

XI NEGATIVE SYSTEM PERCEPTIONS:
- PERCEIVED POLARIZATION

XII PERSONAL WELL-BEING:
- PHYSICAL

XIII PERSONAL WELL-BEING:
- MENTAL

EXPERIMENT
- More News
- No News

RESPONDENTS
- All
- Online-Completed
- Self-Reported-Completed
Participants in the No News experiment may consume no news in general, and thus unable to reduce their intake. Also, heavy news consumers in the More News experiment may already have reached a saturation point before the experiment. Four models tested heterogeneous treatment effects by levels of prior news exposure (Models 2a, 2b) and of prior congenial news exposure (Models 3a, 3b). Models a use a self-reported measure of how often participants consume news via nine different channels (e.g., TV, newspapers, etc.). Models b rely on behavioral measures, whereby we averaged the number of visits to news websites per day in our online trace data in general and to ideologically like-minded sites, using validated machine learning models (see SI A.2). The null-effects do not hold any heterogeneity. We do not observe different effects for heavy or light news consumers, nor for those whose media diet is primarily like-minded.

Furthermore, in maximizing ecological validity by embedding treatments in a larger project and testing news effects in naturalistic settings, we lose some control over treatment. To account for the extent to which participants in the experimental conditions complied with the treatment, we calculate two pre-registered compliance measures. The self-reported measure (indicated by a cross) asked participants every second day whether they consumed less or more news than usual. The behavioral measure (indicated by a star) compares the amount of news exposure in online trace data before and after the start of the experiment. As Fig. 2 shows, the null estimates are nearly identical to those already presented. In short, the null findings do not depend on the extent of prior (congenial) news diet and hold when looking at those assigned to the treatment (i.e., ITT estimates) as well as the participants who more clearly complied with the treatment in both experiments (i.e., CACE).

Discussion

This project systematically evaluated the democratic role of news media and also addressed potential side-effects of news exposure. Across two unique experimental designs combining participants’ survey self-reports and behavioral browsing data in two distinct countries, prolonged decreases (in the US) and increases (in Poland) in individual news consumption had absolutely no effects on any of the outcomes tested, whether positive (political knowledge and participation) or negative (polarization, worsened perceptions of the political system, or decreased well-being). Furthermore, although we used both self-reported and behavioral indicators of prior levels of news consumption and its congeniality, news effects did not depend on individual typical news diet. That is, the decrease in news use was not less impactful for the avid news consumers or the increase in news use did not affect those rarely exposed to news. Similarly, changes in one’s news diet did not depend for the respondents who more clearly complied with the treatments. Testing our hypotheses in two distinct contexts further assures that the results are not due to idiosyncrasies of any particular media or party system alone.

Although ours is among the most comprehensive causal examinations of various effects of news exposure, these null effects are not precise estimates of population average treatment effects because our samples are not a perfect cross-section of the populations. This limitation is common to most work relying on data from online samples willing to share their behavioral traces, in that no such work can claim representativeness. Also, it is possible that people selectively shape what content they opt out of in a way that preserve their existing attitudes. In other words, participants may have complied in volume but adjusted sources or content in ways that buffers any potential change. In a similar vein, our findings cannot speak to the content seen by the participants. We attributed the potential negative effects to various biases in journalistic routines, yet the news our participants typically see may not be about negativity, conflict, or polarization. News content aside, the robust null pattern is noteworthy.

These results counter the popular narrative that news media contribute to healthy citizenry and our expectations that they should have a range of adverse effects. Nevertheless, we argue that these effects portray the reality of (very limited) effects of news exposure in the real world more accurately. Past work cannot speak to actual exposure in naturalistic settings, where people can select from unlimited content and where politics accounts for a small fraction of citizens’ online activities. In our data, spanning six months of individual web browsing, visits to news websites comprised 3.54% of the overall browsing. This is normatively problematic, as citizens should stay informed about politics. At the same time, this finding puts us into perspective news media effects altogether. Because news content is nearly unnoticeable in the context of overall information and communication ecology of most individuals, as we show, its effects are also very limited. This evidence aligns with the vast literature on minimal media impact.

Naturally, news media are important. They keep other powers in check by investigating and publicizing the truth, offer information, and bind citizens together around shared events or concerns. Furthermore, news media may still play a paramount role in the development of political attitudes during political socialization (33) and have cumulative effects on people’s perceptions of (political) reality (34), long-term effects that we cannot capture. This project, however, the first to rely on incentivized over-time designs using both self-reported and online behavioral indicators in naturalistic settings and across countries, suggests that the contributions of news media may be more limited than typically hoped or assumed.

Materials and Methods

See SI Appendix for a detailed description of all materials and methods used within this study as well as additional robustness checks, extended discussion of the used classifiers as well as alternative classifications. The data and the code will be made available upon publication on GitHub and on Harvard Dataverse.

ACKNOWLEDGMENTS. This project was funded by the European Research Council (ERC Starting Grant EXPO-756301; Principal Investigator, Magdalena Wojcieszak).

1. M Dell Carpini, S Keeter, What Americans know about politics and why it matters. (New Haven, MA: Yale University Press), (1996).
2. R Putnam, Bowling alone: The collapse and revival of American community. (New York, NY: Simon & Schuster), (2000).
3. E Mitchelein, P Boczkowski, Between tradition and change: A review of recent research on online news production. Journalism 10, 562-586 (2009).
4. R Picard, Digitization and media business models, Technical report (2011).

We re-estimated our models using weights (even though using weights in experiments may be problematic ((32)). SI 77 presents the results.
5. M Prior, The immensely inflated news audience: Assessing bias in self-reported news exposure. Public Opin. Q. 73, 130–143 (2009).
6. R Colwell Quarles, Mass media use and voting behavior: The accuracy of political perceptions among first-time and experienced voters. Commun. Res. 6, 407–436 (1979).
7. J Strömbäck, In search of a standard: Four models of democracy and their normative implications for journalism. Journalism Stud. 6, 331–345 (2005).
8. J Lemert, News context and the elimination of mobilizing information: An experiment. Journalism. Q. 61, 243–259 (1984).
9. P Norris, A virtuous circle: Political communications in postindustrial societies. (Cambridge, UK: Cambridge University Press), (2000).
10. D Shah, J Cho, W Eveland, N Kwak, Information and expression in a digital age: Modeling internet effects on civic participation. Commun. Res. 32, 531–565 (2005).
11. R Woltinger, S Rosenstone, Who votes? (New Haven, CT: Yale University Press), (1980).
12. D Sears, J. Freedman, Selective exposure to information: A critical review. Public Opin. Q. 31, 194–213 (1987).
13. PF Lazarsfeld, B Berelson, H Gaudet, The people’s choice: How the voter makes up his mind in a presidential campaign. (New York, NY: Columbia University Press), 3 edition, (1968).
14. WL Bennett, S Iyengar, A new era of minimal effects? the changing foundations of political communication. J. Commun. 58, 707–731 (2008).
15. WR Neuman, L Guggenheim, The evolution of media effects theory: A six-stage model of cumulative research. Commun. Theory 21, 169–196 (2011).
16. J Galtung, M Ruge, The structure of foreign news: The presentation of the congo, cuba and cyprus crises in four norwegian newspapers. J. Peace Res. 2, 64–90 (1965).
17. G Martin, A Yurukoglu, Bias in cable news: Persuasion and polarization. Am. Econ. Rev. 107, 2565–2599 (2017).
18. M Levendusky, N Malhotra, Does media coverage of partisan polarization affect political attitudes? Polit. Commun. 33, 283–301 (2016).
19. D Moct, How the mass media divide us. (Washington, DC: Brookings Institution Press), (2006).
20. JN Cappella, KH Jamieson, News frames, political cynicism, and media cynicism. The Annals Am. Acad. Polit. Sci. 546, 71–84 (1996).
21. J Druckman, E Peterson, R Slothuus, How elite partisan polarization affects public opinion formation. Am. Polit. Sci. Rev. 107, 57–79 (2013).
22. K Mullinix, Partisanship and preference formation: Competing motivations, elite polarization, and issue importance. Polit. Behav. 38, 383–411 (2016).
23. S Nicholson, Polarizing cues. Am. journal political science 56, 52–66 (2012).
24. M Levendusky, How partisan media polarize America. (Chicago, IL: University of Chicago Press), (2013).
25. E Finkel, et al., Political sectarianism in america. Science 370, 533–536 (2020).
26. K Aronaeaus, M Johnson, J Drydeneman, Communication, persuasion, and the conditioning value of selective exposure: Like minds may unite and divide but they mostly tune out. Polit. Commun. 30, 213–231 (2013).
27. N Stroud, L Feldman, M Wojcieszak, B Bimber, The consequences of forced versus selected political media exposure. Hum. Commun. Res. 45, 27–51 (2019).
28. J de Benedictis-Kessner, M Baum, A Berinsky, T Yamamoto, Persuading the enemy: Estimating the persuasive effects of partisan media with the preference-incorporating choice and assignment design. Am. Polit. Sci. Rev. 113, 902–916 (2019).
29. R Robertson, et al., Auditing partisan audience bias within google search. Proc. ACM on Human-Computer Interact. 2, 1–22 (2018).
30. N de Hoog, P Verbon, Is the news making us unhappy? the influence of daily news exposure on emotional states. Br. J. Psychol. 111, 157–173 (2020).
31. M Boukos, R Viegenhart, News consumption and its unpleasant side effect. J. Media Psychol. 29, 137–147 (2017).
32. LW Miratrix, JS Sekhon, AG Theodorsid, LF Campos, Worth weighting? how to think about use weights in survey experiments. Polit. Analysis 26, 275–291 (2018).
33. J Moeller, G de Vreese, Spiral of political learning: The reciprocal relationship of news media use and political knowledge among adolescents. Commun. Res. 46, 1078–1094 (2019).
34. G Gerbner, Cultivation analysis: An overview. Mass Commun. Soc. 1, 175–194 (1998).
A. Study Material

A.1. Web Historian. Screenshots are provided of the interactive informed consent process for this study created by the Web Historian tool on the participants’ local computers. Participants went through the nine steps process pictured below but the data visualized was their own web browsing data and differed for each participant. The web browsing data pictured are example data that are not from a participant.

![Web Historian interface](image)

![Web Historian interface](image)
A.2. Ideology Classifier.

A.2.1. United States. To classify the ideological leaning of the news domains, we use scores based on the Twitter linking patterns of partisans from Robertson et al. (2019). These scores were cross validated with self-reported data and other methods of measuring a domain’s political leaning (see Robertson et al., 2018 for details and robustness checks) and highly correlate with classifications from other work ($r = .98$; Eady et al., 2019). Lower scores indicate the outlet has a more liberal audience and higher scores indicate a more conservative audience. Using these scores, we categorized the domains as either liberal, centrist, or conservative, such that liberal news sites were those with an ideological score of $-.20$ or lower, conservative sites included those with scores of $.09$ or higher, and news sites with scores between $-.19$ and $.08$ were categorized as centrist.

These categorizations were based on natural cut points in the data that made intuitive sense and had face validity. Because our dataset is public, these categories can be reassigned. Appendix Figure A.2 visualizes the ideology ranking of all sites that were visited at least 5 times by our participants and had ideology scores.

A.2.2. Poland. In the absence of parallel scores for Poland, we rely on a technique that uses follower patterns of news media accounts on Twitter. We start with the list of news organizations compiled earlier, but only consider those (1) that have a visit frequency in our data of above the median, or are national outlets even though less visited (2) and that have a Twitter account. This leaves us with 153 domains in Poland.

Our scaling approach builds on the “mediascores” model by Eady and Linder (click here), which is based on the assumption of homophily: users on social media, conceived as a one-dimensional ideological space, are more likely to share news from news media accounts close to them. Instead of using sharing behavior, we use following behavior, thus assuming that users are more likely to follow news organizations close to them.

To build the bipartite graph that indicates whether any user follows any media account, we obtain the list of Twitter followers of all media organizations. To avoid an overly sparse graph, we exclude organizations with less than 250 followers. To better estimate ideology scores for small media accounts, we first look at accounts with less than 30,000 followers, and get all followers who follow at least 10 of them. We take all of these users into account. Then, for the media accounts with more than 30,000 followers, we only pull a random sample of 300 followers. For validation purposes, we also add parliament members as followers to the graph, again excluding those with less than 250 followers.

Running the model on this graph results in ideology scores, which according to several political experts in both countries have good face validity. Repeating the analyses with members of parliament provides further validation: Most opposition politicians are on one end, most government politicians one the other end. Finally, we compare the ideology score of a news domain with the average user ideology visiting that domain, as found in our browsing data. Appendix Figure A.3 visualizes the ideology ranking of all sites that were visited at least 5 times by our participants and had ideology scores.
Fig. A.2. Ideology classification American domains

Notes. The horizontal axis signals the ideology estimates. Lower and negative scores indicate a more liberal and higher scores more conservative share of audience responding to the outlet. The size of the points represents the logged number of visits in our data. The news domains list was compiled by manually coding the domains listed in Alexa’s Top 1000, the 1000 most browsed domains in our own data and the 1000 most shared domains by politicians on Twitter. Only sites that were visited five times or more are displayed in this figure. The full table containing the raw scores is available in the data folder in the replication repository as ‘Figure A.2[A.3] - Data.csv’.
Fig. A.3. Ideology classification Polish domains

Notes. The horizontal axis signals our own ideology estimates based on Twitter linking patterns. Lower and negative scores indicate a more liberal and higher scores more conservative share of audience responding to the outlet. The size of the points represents the logged number of visits in our data. The news domains list was compiled by manually coding the domains listed in Alexa’s Top 1000, the 1000 most browsed domains in our own data and the 1000 most shared domains by politicians on Twitter. Only sites that were visited ten times or more are displayed in this figure. The full table containing the raw scores is available in the data folder in the replication repository as ‘Figure A.2[A.3] - Data.csv’.
Table A.1. Question wording and scaling statistics

Question	United States Mean	SD	α	Poland Mean	SD	α
Partisanship	3.59	2.11		3.70	3.25	
Please select the option that best describes your political affiliation.						
United States:						
1 'strong Democrat' to 7 'strong Republican'						
Poland:						
1 'opponent' to 10 'proponent' of the government						
Self-reported news exposure	3.42	1.61		3.25	1.63	
Thinking about a typical week, how many days do you get information						
about politics and current events from the following sources?						
• Television.						
• Newspapers or magazines (paper and online).						
• Radio (including podcasts and online).						
• Online websites and blogs.						
• Social media (e.g., Facebook, Twitter).						
• Messaging applications (e.g., Whatsapp, messenger).						
• Talking to people face-to-face.						
• News app or news alerts on a mobile phone.						
• Search engine e.g. Google, Bing.						
0 days to 7 days						
Self-reported like-minded news exposure	0.71	3.20		0.74	2.40	
Generally speaking, when you get information about politics and current						
affairs from the news media, most of the sources you use are in your						
opinion:						
1 'completely left-leaning' to 7 'completely right-leaning'						
Self-perceived knowledge	4.09	1.43	0.87	3.65	1.39	0.87
How much do you agree with the following statements?						
• I know pretty much about politics.						
• I do not feel very knowledgeable about politics.						
• Among my circle of friends, I’m one of the experts.						
• Compared to most other people, I know less.						
• When it comes to politics, I really don’t know a lot.						
1 'strongly disagree' to 7 'strongly agree'						
Participation	1.97	1.78		1.06	1.43	
In the list below, select all political activities in which you were						
involved in.						
• Signed a petition						
• Donated or collected money for a political cause.						
• Among my circle of friends, I’m one of the experts.						
• Shared my thoughts on politics in social media.						
• Attended a political meeting.						
• Participated in a protest.						
• Contacted a politician.						
• Volunteered for a campaign.						
• Wrote a letter to the media.						
0 'no' or 1 'yes'						
	United States		Poland			
--------------------------------	--------------	---------------	--------	---------------		
	Mean	SD	α	Mean	SD	α
Attitude importance						
How important is each of the	5.68	1.49	0.63	5.26	1.04	0.68
following issues to you						
personally?						
Attitude strength	5.15	1.14	0.66	5.27	1.07	0.79
How strong are your views on						
each of the following issues?						
United States:						
• Gun control.						
• Immigration.						
• Climate change.						
• The economy.						
Poland:						
• Women’s rights.						
• Religion and the Church in						
public life.						
• Poland’s relations with the						
EU.						
• The economy.						
Feeling thermometer	47.6	17.42	0.71	71.56	18.36	0.90
We’d like you to rate several						
different groups using						
something called a						
‘feeling thermometer’. The						
higher the number, the						
warmer or more						
favorable you feel toward						
the group, the lower the						
number, the colder or						
less favorable. . .						
Negative trait rating	3.12	1.33	0.93	4.08	1.4	0.90
To what extent do you agree						
or disagree with the						
statement that members						
of the following groups are						
stupid.						
Understanding	2.79	1.12	0.89	1.76	0.75	0.89
How much do you understand						
the perspectives and values						
of the following groups						
(*I understand* does not						
necessarily mean that you						
agree with them).						
Attribution of malevolence	4.22	1.64	0.90	4.73	1.31	0.84
To what extent do you agree						
with the following statements?						
• I worry that [out-partisans]						
are deliberately trying to						
hurt [country].						
• [out-partisans] are						
knowingly sabotaging the						
country.						
• [out-partisans] don’t care						
about [country].						
• I believe [out-partisans]						
genuinely want what is best						
for [country].						
• I trust [out-partisans] to						
do what they think is best						
for [country].						

1 ‘not at all strong’ to 7 ‘very strong’

1 ‘not at all’ to 7 ‘very much’

* in Poland out-partisans were defined as (a) people who hold opposite stances on the government (b) people who support the largest party on the opposite side of the spectrum, and (c) people who support the party respondents feel farthest from.

** a separate item for each of the four issues listed above.
Support for compromise

Which position most closely reflects your views?

- Politicians must be faithful to their values, no matter what – Politicians must cooperate with each other to be effective first of all, sometimes at the expense of values
- Politicians should never compromise their values – Sometimes compromise is necessary when solving important problems
- I want politicians who stick to their opinions and principles – I want politicians who cooperate with each other.
- Values should never be violated – Principles should never block progress.

1 ‘left position’ to 7 ‘right position’

	Mean	SD	α
United States	2.04	1.53	0.90
Poland	2.35	1.65	0.92

Perceived polarization

How much do you agree or disagree with the following statements:

- [partisans] hate each other.
- The differences between [partisans] are too great to be reconciled.
- [citizens] are greatly divided when it comes to the most important values.
- Polarization in [country] is greater than ever before.

1 ‘strongly disagree’ to 7 ‘strongly agree’

	Mean	SD	α
United States	4.79	1.16	0.72
Poland	5.20	1.11	0.85

Mental well-being

Over the past week, how much have you felt each of the following?

- Depressed.
- Anxious.
- Happy.
- Satisfied with life.
- Optimistic about the future.
- Calm and peaceful.

1 ‘Not at all’ 7 ‘To a great extent’

	Mean	SD	α
United States	2.42	1.34	0.88
Poland	2.85	1.22	0.90

Physical well-being

Over the past week, how much have you felt each of the following?

- Had one or more alcoholic beverage.
- Ordered pizza or other fast food.
- Felt like hitting someone.
- Satisfied with life.
- Gotten into an argument.
- Exercised.

0 days to 7 days
Table B.1. Correspondence news ranks between our and Alexa browsing data

Domain	United States Alexa	Own Ranking	Poland Alexa	Own Ranking
cnn	1	1	1	2
nytimes	2	5	2	1
foxnews	3	4	3	3
breitbart	4	29	4	6
bbc	5	16	5	5
wapnews	6	2	6	4
patch	7	30	7	11
buzzfeed	8	3	8	7
vice	9	32	9	10
forbes	10	7	10	93
usatoday	11	10	11	94
businessinsider	12	9	12	8
theguardian	13	18	13	9
theepochtimes	14	75	14	21
dailymail.co.uk	15	17	15	15
huffpost	16	12	16	12
cnbc	17	25	17	42
westernjournal	18	55	18	32
npr.org	19	20	19	38
drudgereport	20	24	20	29

Notes. We find a correspondence between the rank of the news sites included in our study and the rank of the news sites using site rankings from Alexa (we note that Alexa has no visit statistics for Google News and Yahoo News). As this table shows, the top browsed news sites reported by Alexa are also among the top browsed sites in our samples.

Table B.2. Survey vs. population statistics

Age/Education/Sex	United States Population	Poland Population	Experiment United States	Poland
Age: 0–17	18.73	14.80	12.35	11.84
18–24	13.27	10.34	9.35	10.87
25–54	39.45	43.44	59.43	56.68
55+	28.54	31.42	28.21	31.47
Education: Less than high school	9.92	1.57	1.67	
High school or vocational degree	28.11	35.99	19.69	
Some college	27.34	9.30	30.89	
Bachelor degree	22.55	10.87	32.18	
Graduate school	12.07	42.27	15.57	
Sex: Male	48.90	48.50	49.76	47.37
Female	51.10	51.50	50.24	52.63
Table B.3. Attrition by condition across waves (Poland)

	Wave 1	Wave 2	Accepting participation	Post-wave	Wave 3	Sign.
Age: 18–24	11.65	9.73	9.94	8.99	7.78	0.97
25–54	69.76	70.08	70.09	70.60	66.27	0.99
55+	18.58	20.18	19.98	20.41	25.94	0.97
Education: Less than high school	1.65	1.74	1.50	1.58	1.65	
High school or vocational degree	36.46	34.94	34.19	35.72	31.60	
Some college	11.93	10.25	10.47	9.36	11.79	0.99
Bachelor degree	10.71	11.37	11.75	10.81	9.91	
Graduate school	39.25	41.70	42.09	42.53	45.05	
Sex: Male	56.08	51.02	50.64	49.82	45.28	0.87
Female	43.92	48.98	49.36	50.18	54.72	

Notes. Table shows key demographic statistics per wave for the Poland. The final column shows significance tests (p-value of a chi-squared test) for differences between the sample in Wave 2, the sample accepting participation and the sample in the post-survey.

Table B.4. Attrition by condition across waves (US)

	Wave 1	Wave 2	Wave 3	Accepting participation	Post-experiment wave	Sign.
Age: 18–24	10.79	8.89	8.98	8.75	9.32	0.99
25–54	65.87	66.21	67.66	68.38	67.82	0.99
55+	23.35	24.90	23.36	22.88	22.86	
Education: Less than high school	1.44	1.08	1.15	1.13	1.36	
High school or vocational degree	16.34	13.89	14.07	14.54	14.93	1.00
Some college	30.01	31.70	31.60	31.58	30.77	
Bachelor degree	31.83	33.37	34.49	34.34	33.94	
Graduate school	17.01	16.63	15.69	15.54	15.99	
Sex: Male	44.72	43.19	43.69	43.46	43.54	0.99
Female	51.67	56.42	55.96	56.16	56.31	

Notes. Table shows key demographic statistics per wave for the United States. The final column shows significance tests (p-value of a chi-squared test) for differences between the sample in Wave 2, the sample accepting participation and the sample in the post-survey.

Table B.5. Balance and differential attrition (Poland)

	Accepting participation	Post-experiment wave	Accepting vs. post-wave					
	Control	Treatment	Sign.	Control	Treatment	Sign.	Sign. (control)	Sign. (treatment)
Age: 18–24	9.31	10.63	0.77	8.96	9.32	0.94	0.98	0.82
25–54	70.24	69.91	0.77	70.40	70.78	0.96	0.98	0.82
55+	20.45	19.46	0.77	20.65	19.90	0.77	0.95	0.99
Education: Less than high school	2.02	0.90	0.77	1.99	1.01	0.77	0.95	0.99
High school or vocational degree	31.58	37.10	0.77	33.83	36.78	0.77	0.95	0.99
Some college	10.32	10.63	0.01	9.45	9.82	0.42	0.95	0.99
Bachelor degree	13.77	9.50	0.77	12.69	9.32	0.77	0.95	0.99
Graduate school	42.31	41.86	0.77	42.04	43.07	0.77	0.95	0.99
Sex: Male	53.24	47.74	0.11	51.74	46.85	0.19	0.77	0.85
Female	46.76	52.26	0.11	48.26	53.15	0.19	0.77	0.85

Notes. Table shows balance statistics between treatment and control for those accepting participation, and separately for those responding to the post-experiment survey. Columns labelled "Sign." show significance tests (p-value of a chi-squared test) for differences between treatment and control, or differences between those accepting and responding to post-survey within a condition.
Table B.6. Balance and differential attrition (United States)

	Accepting participation	Post-experiment wave	Accepting vs. post-wave					
	Control	Treatment	Sign.	Control	Treatment	Sign.	Sign. (control)	Sign. (treatment)
Age: 18–24	7.83	9.45	0.33	7.99	10.34	0.43	0.89	0.9
25–54	66.96	69.45	0.33	67.36	68.17	0.43		
55+	25.22	21.10	24.65	21.49				
Education: Less than high school	0.58	1.54	0.70	1.86			0.99	0.99
High school or vocational degree	15.41	13.88	14.98	14.89				
Some college	29.94	32.82	0.52	29.97	31.38	0.48		
Bachelor degree	34.30	34.36	33.10	34.57				
Graduate school	15.99	15.20	17.07	15.16				
Sex: Male	44.51	42.67	0.67	45.49	42.06	0.44	0.9	0.27
Female	55.20	56.89	54.51	57.67				

Notes. Table shows balance statistics between treatment and control for those accepting participation, and separately for those responding to the post-experiment survey. Columns labelled "Sign." show significance tests (p-value of a chi-squared test) for differences between treatment and control, or differences between those accepting and responding to post-survey within a condition.
Notes. Figure is based on G*Power analyses for linear fixed effects analysis (F test-family) with 2 as the denominator of the degrees of freedom for the main effect models and 3 for the moderation effect models. Effect sizes below 0.2 are considered very small effect sizes, effect sizes between 0.2 and 0.5 small, and between 0.5 and 0.8 medium.
Table B.7. Summary statistics	United States	Poland						
	Pre-Survey	Post-Survey	Pre-Survey	Post-Survey	Min.	Max.		
Political Engagement: Self-perceived Knowledge	Mean 61.56	Median 63.33	Std.Dev 23.82	Mean 54.09	50.00	23.22	0.00	100.00
	Mean 43.53	Median 50.00	Std.Dev 31.72	Mean 63.62	75.00	22.63	0.00	100.00
Political Engagement: Participation	Mean 21.89	Median 11.11	Std.Dev 19.79	Mean 13.25	10.00	17.84	0.00	100.00
Attitude Polarization: Attitude Strength	Mean 70.95	Median 70.83	Std.Dev 18.07	Mean 67.10	66.67	17.29	0.00	100.00
Attitude Polarization: Attitude Importance	Mean 54.37	Median 56.25	Std.Dev 70.36	Mean 64.67	54.67	19.89	50.00	100.00
Affective Polarization: Feeling Thermometer	Mean 68.12	Median 69.92	Std.Dev 21.14	Mean 54.67	24.19	17.95	13.25	100.00
Affective Polarization: Lack of Understanding	Mean 41.28	Median 40.28	Std.Dev 24.94	Mean 38.05	37.75	16.94	40.28	100.00
Affective Polarization: Stupid	Mean 51.19	Median 50.00	Std.Dev 27.92	Mean 42.46	43.06	23.69	30.81	100.00
Negative System Perceptions: Attribution of Malevolence	Mean 60.77	Median 56.67	Std.Dev 27.42	Mean 59.80	60.00	21.12	60.00	100.00
Negative System Perceptions: No Support for Compromise	Mean 34.86	Median 33.33	Std.Dev 25.90	Mean 33.18	29.17	21.12	30.84	100.00
Negative System Perceptions: Perceived Polarization	Mean 62.29	Median 62.50	Std.Dev 18.69	Mean 64.34	62.50	18.44	62.50	100.00
Well-being: Mental	Mean 34.82	Median 33.33	Std.Dev 22.26	Mean 33.33	22.26	18.44	34.82	100.00
Well-being: Physical	Mean 30.27	Median 28.57	Std.Dev 17.36	Mean 30.27	28.57	14.94	30.27	100.00
News Exposure: Total	Mean 8.61	Median 7.44	Std.Dev 6.37	Mean 6.20	4.93	3.98	0.44	72.00
News Exposure: Congenial	Mean 0.71	Median 0.08	Std.Dev 3.20	Mean 0.74	0.16	2.40	0.00	63.76

Notes. Table displays the summary statistics of the variables the way they appear in the analyses. The dependent variables in the analyses were rescaled to range between 0 and 100. The exposure variables were constructed by dividing the number of visits by the number of days an individual logged onto the computer (active days). These variables were log-transformed and subsequently rescaled to range between 0 and 100.
	United States		Poland											
	Pre-Survey	Post-Survey												
	Mean	Median	Std.Dev	Mean	Median	Std.Dev	Mean	Median	Std.Dev	Min.	Max.			
Political Engagement: Self-perceived Knowledge	4.09	4.20	1.43	3.65	3.40	1.39	0.40	6.40						
Political Engagement: Actual Knowledge	1.74	2.00	1.27	2.54	3.00	0.91	0.00	4.00						
Political Engagement: Participation	1.97	1.00	1.78	1.06	0.00	1.43	0.00	9.00						
Attitude Polarization: Attitude Strength	5.26	5.25	1.08	5.03	5.00	1.19	5.35	5.50	1.04	5.19	5.25	1.09	1.00	7.00
Attitude Polarization: Attitude Importance	5.35	5.50	1.06	6.07	6.00	1.79	5.32	5.25	1.01	5.19	5.25	1.07	1.00	9.00
Affective Polarization: Feeling Thermometer	51.34	52.69	15.85	43.27	41.25	18.14	72.06	73.12	17.95	71.05	71.71	18.76	0.00	100.00
Affective Polarization: Lack of Understanding	2.86	2.81	1.12	2.71	2.69	1.12	25.53	22.54	10.76	24.70	20.75	10.69	0.83	53.50
Affective Polarization: Stupid	3.30	3.25	1.28	2.91	2.94	1.39	4.13	4.00	1.42	4.03	4.00	1.37	1.00	7.00
Negative System Perceptions: Attribution of Malevolence	4.25	4.00	1.65	4.19	4.20	1.64	4.76	4.60	1.27	4.70	4.40	1.35	0.60	6.60
Negative System Perceptions: No Support for Compromise	2.09	2.00	1.55	1.99	1.75	1.50	2.43	2.25	1.67	2.27	2.25	1.62	0.00	6.00
Negative System Perceptions: Perceived Polarization	4.74	4.75	1.12	4.86	4.75	1.20	5.18	5.25	1.11	5.22	5.25	1.12	1.00	7.00
Well-being: Mental	2.42	2.33	1.34	2.85	3.00	1.22	0.33	6.33						
Well-being: Physical	2.50	2.40	0.97	3.00	2.80	1.05	0.80	7.80						
News Exposure: Total	8.61	7.44	6.37	6.20	4.93	5.38	4.44	72.00						
News Exposure: Congenial	0.71	0.08	3.20	0.74	0.16	2.40	0.00	63.76						

Notes. Table displays the summary statistics of the untransformed exposure measures. The exposure measures were calculated as the number of news visits per active day. This table shows the summary statistics of these measures, e.g., the mean number of news visits per active day across all respondents. Columns display the statistics for all respondents who submitted their browsing data, irrespective of whether they participated in the next wave of the survey or not. The final column reports whether any significant changes across these categories could be detected.
Notes. The chord diagrams visualize the overtime change in the values in the dependent variables. Arcs within the same category or colors (for example from grey ‘0-20’ to grey ‘0-20’) indicate the percentage of respondents who reported no change between the pre- and post-measurement. Arcs between categories (for example from grey ‘0-20’ to dark blue ‘20-40’) denote the percentage of respondents who reported a change from one category to the other between the two timepoints. The ‘messier’ the diagram is, the larger the overtime variability.
Notes. The chord diagrams visualize the overtime change in the values in the dependent variables. Arcs within the same category or colors (for example from grey ‘0-20’ to grey ‘0-20’) indicate the percentage of respondents who reported no change between the pre- and post-measurement. Arcs between categories (for example from grey ‘0-20’ to dark blue ‘20-40’) denote the percentage of respondents who reported a change from one category to the other between the two timepoints. The ‘messier’ the diagram is, the larger the overtime variability.
Fig. B.4. Variable distributions United States

Notes. All variables were rescaled to range between 0 and 100, as is the case in the analyses, to make the distributions easier to read.
Fig. B.5. Variable distributions Poland

Notes. All variables were rescaled to range between 0 and 100, as is the case in the analyses, to make the distributions easier to read.
C. Additional Analyses

Fig. C.1. Disaggregated analyses political engagement

Notes. The horizontal bars indicate a 95% confidence interval surrounding the point estimate. Model 1 is based on a fixed effects model. Models 2 and 3 are based on a random effects model with a cross-level interaction between the news exposure variables and the experimental manipulation. All exposure measures were log-transformed to account for the skewed distribution. The dependent variables were rescaled between 0 and 100 so that the coefficients denote the percentual change in the dependent variable as the result of one unit increase in the independent variable. The table containing the raw scores is available in the output/tables folder in the replication repository as ‘Figure C.1[.xlsx]’.

Wojcieszak et al.
Fig. C.2. Disaggregated analyses attitude polarization

Notes. The horizontal bars indicate a 95% confidence interval surrounding the point estimate. Model 1 is based on a fixed effects model. Models 2 and 3 are based on a random effects model with a cross-level interaction between the news exposure variables and the experimental manipulation. All exposure measures were log-transformed to account for the skewed distribution. The dependent variables were rescaled between 0 and 100 so that the coefficients denote the percentual change in the dependent variable as the result of one unit increase in the independent variable. The table containing the raw scores is available in the output/tables folder in the replication repository as 'Figure C.1[C.10] - Data.xlsx'.
Fig. C.3. Disaggregated analyses affective polarization

Notes. The horizontal bars indicate a 95% confidence interval surrounding the point estimate. Model 1 is based on a fixed effects model. Models 2 and 3 are based on a random effects model with a cross-level interaction between the news exposure variables and the experimental manipulation. All exposure measures were log-transformed to account for the skewed distribution. The dependent variables were rescaled between 0 and 100 so that the coefficients denote the percentual change in the dependent variable as the result of one unit increase in the independent variable. The table containing the raw scores is available in the output/tables folder in the replication repository as ‘Figure C.1(C.10) - Data.xlsx’.
Fig. C.4. Disaggregated analyses negative system perceptions

Notes. The horizontal bars indicate a 95% confidence interval surrounding the point estimate. Model 1 is based on a fixed effects model. Models 2 and 3 are based on a random effects model with a cross-level interaction between the news exposure variables and the experimental manipulation. All exposure measures were log-transformed to account for the skewed distribution. The dependent variables were rescaled between 0 and 100 so that the coefficients denote the percentual change in the dependent variable as the result of one unit increase in the independent variable. The table containing the raw scores is available in the output/tables folder in the replication repository as 'Figure C.1[C.10] - Data.xlsx'.
Notes. The horizontal bars indicate a 95% confidence interval surrounding the point estimate. Model 1 is based on a fixed effects model. Models 2 and 3 are based on a random effects model with a cross-level interaction between the news exposure variables and the experimental manipulation. All exposure measures were log-transformed to account for the skewed distribution. The dependent variables were rescaled between 0 and 100 so that the coefficients denote the percentual change in the dependent variable as the result of one unit increase in the independent variable. The table containing the raw scores is available in the output/tables folder in the replication repository as 'Figure C.1[C.10] - Data.xlsx'.