A Preliminary Study of the Heating Effect of the Tibetan Plateau

Yonghui Yao, Baiping Zhang*

State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

Abstract

The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect of the plateau and its implications. This paper firstly collects climate data (2001–2007) from 109 observation stations and MODIS-based estimated monthly mean temperature data in the plateau and the neighboring Sichuan Basin, and conducts correlation and simple linear regression to reveal the altitudinal pattern of temperature. Then, according to the linear relationships of temperature and altitude for each month, it compares air temperature differences on the same elevation between the main plateau and surrounding mountains and the Sichuan Basin so as to quantify the heating effect and discuss its implication on timberline of the plateau. The results show that: 1) the heating effect of the plateau is significant. The temperature of the main plateau area was higher than that of free air on the same elevation above the neighboring areas; on the elevation of 4500 m (the main plateau), temperature is 1–6°C higher in the main Plateau than over the Sichuan Basin for different months and 5.9–10.7°C higher than in the Qilian Mountains in the northeastern corner of the plateau. 2) Even at altitudes of 5000–6000 m in the main Plateau, there are 4 months with a mean temperature above 0°C. The mean temperature of the warmest month (July) can reach 10°C at about 4600–4700 m. This may help explain why the highest timberline in the northern hemisphere is on the southeastern Tibetan Plateau.

Introduction

One of the most significances of the existence of the immense and towering Tibetan Plateau is that it thermodynamically shapes the climate of the Eurasian continent and even the whole world, and thus its geographical and ecological patterns are very special in the world. Previous researches have revealed that the highest timberline in the northern hemisphere is on the southeastern Tibetan Plateau. The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect of the plateau and its implications. This paper firstly collects climate data (2001–2007) from 109 observation stations and MODIS-based estimated monthly mean temperature data in the plateau and the neighboring Sichuan Basin, and conducts correlation and simple linear regression to reveal the altitudinal pattern of temperature. Then, according to the linear relationships of temperature and altitude for each month, it compares air temperature differences on the same elevation between the main plateau and surrounding mountains and the Sichuan Basin so as to quantify the heating effect and discuss its implication on timberline of the plateau. The results show that: 1) the heating effect of the plateau is significant. The temperature of the main plateau area was higher than that of free air on the same elevation above the neighboring areas; on the elevation of 4500 m (the main plateau), temperature is 1–6°C higher in the main Plateau than over the Sichuan Basin for different months and 5.9–10.7°C higher than in the Qilian Mountains in the northeastern corner of the plateau. 2) Even at altitudes of 5000–6000 m in the main Plateau, there are 4 months with a mean temperature above 0°C. The mean temperature of the warmest month (July) can reach 10°C at about 4600–4700 m. This may help explain why the highest timberline in the northern hemisphere is on the southeastern Tibetan Plateau.

The massive Tibetan Plateau has been found to be a heat source in summer (March through September) [11–15]. This has been recognized by many scientists since the 1950s [11–20]. Flohn (1957, 1968) proposed that the plateau surface is warmer in summer than adjacent free air, as a result of the altitudinal increase in solar radiation and relative constancy with height of effective infrared radiation [21,22]. Barry (2008) suggested that two factors contribute to the heating effect in the mountain atmosphere: sensible heat transfer from the surface and the latent heat of condensation owing to precipitation from orographically induced cumulus development [23]. Chinese scientists have already carried out many studies on effects of this heat source on atmospheric general circulation [12,14,15,24–26]. Calculations by Yeh (1982) indicated a total daily energy transfer from the plateau to the atmosphere of 231 W m⁻² in June [12]. The maximum heating rates in June for the layer between 600 mb and 150 mb are +1.8°C day⁻¹ from sensible heat and +1.4°C day⁻¹ from latent heat; along with a radiative cooling of −1.5°C day⁻¹, this gives a net heating of +1.7°C day⁻¹ [12]. Various estimates suggest that the heating is about 2°C day⁻¹ over the eastern half of the plateau [11]. Such a significant heating effect must impact ecological and geographical patterns on the plateau. Zheng et al. (1990) and Liu et al. (2003) mentioned that the plateau heating effect is important to the spatial pattern of mountain altitude belts [4,27]. However,
due to the scarcity of meteorological observation stations and very limited climatic data, previous works on the heating effect have focused on heat exchange between the atmosphere over the plateau and surrounding areas; little is quantitatively known about heating effect of the plateau and its forcing on plateau geo-ecological patterns. For instance, although many studies and field surveys have proposed the central mountains are warmer than the outer ranges at given elevations, we still do not know how much the main Plateau is warmer than the surrounding areas. Thus, this paper tries to quantify the plateau heating effect by comparing the temperature difference between the plateau and adjacent lowlands at same elevation, and to discuss why the highest timberline is on the Tibetan Plateau from the point of the changes of temperature with altitude in the plateau.

**Sites and Methods**

The study area stretches from latitudes 25–40°N and longitudes 70–105°E (Figure 1), and includes the entire Tibetan Plateau and adjacent areas. The plateau covers an area of nearly 2.5 million km², and most parts of the plateau lies between 4000 m and 6000 m. The Himalayas, Hengduan Mountains and Kunlun Mountains, mostly 6000–7500 m above sea level, are situated at the southern, eastern and northern edges of the plateau, respectively. They and the broad high plateau between them constitute the main body of the plateau. The Qaidam Basin in the northeast is only about 3000 m and separates the Qilian Mountains from the main plateau. We selected the Sichuan Basin to the east of the plateau as the area from comparison. It is lower than 1000 m, and its western mountains are mostly lower than 3000 m.

**Table 1.** The correlation and linear regression of monthly mean Temperature with altitude.

| Region                  | Analysis   | Parameters | Jan.  | Feb.   | Mar.   | Apr.   | May    | Jun.   | Jul.   | Aug.   | Sep.   | Oct.   | Nov.   | Dec.    |
|-------------------------|------------|------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| Main Plateau            | Correlation| Pearson Correlation | −0.820 | −0.870 | −0.890 | −0.921 | −0.901 | −0.871 | −0.907 | −0.909 | −0.885 | −0.888 | −0.88 | −0.834 |
|                         | Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|                         | Linear Regression | R² | 0.67 | 0.76 | 0.79 | 0.85 | 0.81 | 0.76 | 0.82 | 0.83 | 0.78 | 0.79 | 0.77 | 0.70 |
|                         | F-Prob     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Qilian Mountains        | Correlation| Pearson Correlation | −0.872 | −0.894 | −0.895 | −0.916 | −0.948 | −0.96 | −0.950 | −0.94 | −0.93 | −0.934 | −0.91 | −0.836 |
|                         | Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|                         | Linear Regression | R² | 0.76 | 0.80 | 0.80 | 0.84 | 0.90 | 0.92 | 0.90 | 0.88 | 0.86 | 0.87 | 0.83 | 0.70 |
|                         | F-Prob     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| Sichuan                 | Correlation| Pearson Correlation | −0.942 | −0.93 | −0.954 | −0.956 | −0.972 | −0.971 | −0.969 | −0.965 | −0.97 | −0.959 | −0.953 | −0.932 |
|                         | Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|                         | Linear Regression | R² | 0.87 | 0.86 | 0.91 | 0.91 | 0.95 | 0.94 | 0.94 | 0.93 | 0.94 | 0.92 | 0.91 | 0.87 |
|                         | F-Prob     | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Note: Correlation is significant at the 0.01 level (2-tailed).
Table 2. Linear regression models for the three regions in each month.

| Month | The main Plateau | The Sichuan Basin | The Qilian Mountains |
|-------|-----------------|-------------------|----------------------|
| Jan.  | $y = -0.0057x+16.591$ | $y = -0.0043x+8.866$ | $y = -0.0057x+6.1174$ |
| Feb.  | $y = -0.0061x+20.489$ | $y = -0.0045x+12.325$ | $y = -0.0061x+11.507$ |
| Mar.  | $y = -0.0061x+23.975$ | $y = -0.0051x+16.788$ | $y = -0.0065x+17.107$ |
| Apr.  | $y = -0.0058x+26.807$ | $y = -0.0056x+21.81$ | $y = -0.0061x+22.506$ |
| May   | $y = -0.0051x+27.588$ | $y = -0.0059x+25.641$ | $y = -0.0064x+26.663$ |
| Jun.  | $y = -0.0043x+28.101$ | $y = -0.0052x+27.543$ | $y = -0.0062x+29.933$ |
| Jul.  | $y = -0.0039x+28.306$ | $y = -0.0050x+29.337$ | $y = -0.0058x+31.005$ |
| Aug.  | $y = -0.0039x+27.698$ | $y = -0.0048x+28.299$ | $y = -0.0058x+30.255$ |
| Sept. | $y = -0.0044x+25.704$ | $y = -0.0047x+24.851$ | $y = -0.0053x+24.545$ |
| Oct.  | $y = -0.0051x+24.369$ | $y = -0.0052x+20.837$ | $y = -0.0058x+19.909$ |
| Nov.  | $y = -0.0058x+21.259$ | $y = -0.0051x+16.28$ | $y = -0.0063x+14.246$ |
| Dec.  | $y = -0.0055x+16.85$  | $y = -0.0045x+10.326$ | $y = -0.0057x+7.0039$ |

| Month | The main Plateau | The Sichuan Basin | The Qilian Mountains |
|-------|-----------------|-------------------|----------------------|
| Jan.  | $y = 0.0142x+2.029$ | $y = 0.0225x+2.864$ | $y = 0.0138x+2.078$ |
| Feb.  | $y = 0.0138x+1.984$ | $y = 0.0226x+2.826$ | $y = 0.0138x+2.078$ |
| Mar.  | $y = 0.0141x+2.043$ | $y = 0.0228x+2.845$ | $y = 0.0139x+2.079$ |
| Apr.  | $y = 0.0142x+2.029$ | $y = 0.0225x+2.864$ | $y = 0.0138x+2.078$ |
| May   | $y = 0.0141x+2.043$ | $y = 0.0228x+2.845$ | $y = 0.0139x+2.079$ |
| Jun.  | $y = 0.0142x+2.029$ | $y = 0.0225x+2.864$ | $y = 0.0138x+2.078$ |
| Jul.  | $y = 0.0141x+2.043$ | $y = 0.0228x+2.845$ | $y = 0.0139x+2.079$ |
| Aug.  | $y = 0.0142x+2.029$ | $y = 0.0225x+2.864$ | $y = 0.0138x+2.078$ |
| Sept. | $y = 0.0141x+2.043$ | $y = 0.0228x+2.845$ | $y = 0.0139x+2.079$ |
| Oct.  | $y = 0.0142x+2.029$ | $y = 0.0225x+2.864$ | $y = 0.0138x+2.078$ |
| Nov.  | $y = 0.0141x+2.043$ | $y = 0.0228x+2.845$ | $y = 0.0139x+2.079$ |
| Dec.  | $y = 0.0142x+2.029$ | $y = 0.0225x+2.864$ | $y = 0.0138x+2.078$ |

Then linear regression models of monthly temperature with altitude are constructed for the three aforementioned groups as follows:

$$ T_j = A_j \times \text{altitude} + B_j $$

Where $T_j$ is air temperature (°C) modeled by the equation; Altitude equals elevation above sea level (m); i represents the three groups; j is month (from January through December). For each equation, two coefficients were computed: $A_j$ is regional average lapse rate (°C/m), and $B_j$ is temperature at sea level (0 m; °C).

Based on the equations of temperature with altitude by month (i) in the three groups, temperature differences ($\Delta T_j$) between the main plateau, Qilian mountains and Sichuan Basin were calculated at given elevations for each month. If $\Delta T_j > 0$, then the main plateau temperature was higher than free air temperature in the adjacent area, at the given elevation. According to
those ΔTj greater than 0°C, the values and sustained period of the heating effect are quantified.

**Results**

**Altitudinal pattern of monthly mean temperature in the main Plateau**

**Correlation of monthly mean temperature with elevation.** Correlation analysis indicates that, temperature is significantly negatively correlated with elevation and it is significant at the 0.01 level (Table 1). Determination coefficients (R²) and F-Prob value indicate that the linear regression model could be adequately used to describe the changes of temperature with elevation (Table 1). Monthly mean temperatures are decreasing with altitude increasing in each month for the three regions (Table 2, Figure 2), but there are regional difference and seasonal difference. Firstly, for every region, the regional average lapse rate (ΔTj) is different in season. It is lower in summer and winter and higher in spring and autumn (Table 2). Secondly, for every month, the regional average lapse rate is different in region. It is lower for Sichuan Basin and higher for the main Plateau and Qilian Mountains in spring and winter, but it is lowest for the main Plateau in summer (Table 2).

**Altitudinal pattern of monthly mean temperature.** According to the linear regression models of temperature with elevation (Table 2), temperatures at different elevations were calculated for the three regions. In the main Plateau, at altitudes of 4000–4500 m, there are 7 months (April through October) with a mean monthly temperature above 0°C; at altitudes of 4500–5000 m, there are 5 months (May through September) with a mean temperature above 0°C and 4 months (June through September) above 5°C; even at altitudes of 5000–6000 m, there are 4 months (June through September) with mean temperature above 0°C. For the warmest month (July), the mean temperature at altitudes 4000–4500 m can reach 10°C or higher (Table 3, Figure 3).

In Qilian Mountains, at altitudes 4000–4500 m, there are 4–5 months (May through September) with monthly mean temperature above 0°C, and even in the warmest month (July), the temperature at this elevation cannot reach 10°C; at the altitudes 4500–5000 m, there are only 2–4 months (June through September) with mean temperature above 0°C and all of them are lower than 5°C; above 5000 m, there are almost lower than 0°C year-round (Table 4, Figure 3).

In Sichuan Basin, at altitudes 4000–4500 m, there are 4–6 months (May through October) with mean temperature between 0°C–10°C; at the altitudes 4500–5000 m, there are only 4 months with temperature above 0°C and even in July, the highest mean temperature on the elevation 4500 m is 6.84°C; above 5000 m, the monthly mean temperature are going to lower than 0°C (except for in July and August) (Table 5 and Figure 3).

Moreover, on the same elevation, we can see, the monthly mean temperature in the main Plateau is higher than in the Sichuan Basin and the Qilian Mountains (Figure 3, Table 3,4 and 5), especially in the warm months. These results indicate that there is longer growing season and higher monthly mean temperature in the main Plateau than in its surroundings and adjacent lowlands. This shows that the main Plateau is really a tremendous heat source.

---

**Table 3. Temperatures at altitudes 4000–6000 m in the main Plateau (unit: °C).**

| Elevation (m asl) | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
|------------------|------|------|------|------|-----|------|------|------|-------|------|------|------|
| 4000             | 5.2  | 5.3  | 5.4  | 5.5  | 5.6 | 5.7  | 5.8  | 5.9  | 6.0   | 6.1  | 6.2  | 6.3  |
| 4500             | 5.8  | 5.9  | 6.0  | 6.1  | 6.2 | 6.3  | 6.4  | 6.5  | 6.6   | 6.7  | 6.8  | 6.9  |
| 5000             | 6.4  | 6.5  | 6.6  | 6.7  | 6.8 | 6.9  | 7.0  | 7.1  | 7.2   | 7.3  | 7.4  | 7.5  |
| 5500             | 7.0  | 7.1  | 7.2  | 7.3  | 7.4 | 7.5  | 7.6  | 7.7  | 7.8   | 7.9  | 8.0  | 8.1  |
| 6000             | 7.6  | 7.7  | 7.8  | 7.9  | 8.0 | 8.1  | 8.2  | 8.3  | 8.4   | 8.5  | 8.6  | 8.7  |

doi:10.1371/journal.pone.0068750.t003

---

**Figure 3. Temperatures with altitude for the three groups in January (left) and July (right).**

doi:10.1371/journal.pone.0068750.g003
Heating effect quantified by temperature difference between the main plateau, the Qilian Mountains and the Sichuan Basin

Comparison of air temperatures on same elevation with the Sichuan Basin and Qilian Mountains reveals that temperatures in the main plateau is higher than the free air on same elevation in the Qilian and Sichuan Basin (Figure 4, Table 6). From Tab. 6, we can see that, on elevation of 4500 m (the mean elevation of the plateau), temperature is evidently higher in the main plateau than in the Sichuan Basin. The difference is large (4–6°C) in warm months from April to October, and small (1–2°C) in other cold months. Moreover, these differences increase in warm months and decrease in winter (November through next year February) with higher altitudes (Figure 4). From individual observed data (Table 7), temperature of Lhasa station at 3649 m in July is 5.7°C higher than Leshan station in Sichuan Basin, and higher 5.6°C–9.3°C year-round. This means that the heating effect is strong in warm months and even evident in cold months.

Air temperature of the main plateau is higher than in the Qilian Mountains year-round (Figure 4, Table 8). On elevation of 4500 m, the difference is small (5.9–7.0°C) in warm months, and large (6.1–10.7°C) in other cold months. Temperature differences increase with increased elevation year-round (Figures 4). Comparing Wudaoliang station in the northern Tibetan Plateau with Lintao station in Qilian Mountains, the former is 2.5–5.9°C higher than the latter year-round, and the difference is smaller in warm months than in cold months (Table 8). This shows that the main plateau is warmer than the surrounding mountains, and the heating effect is pronounced in the main plateau.

Table 4. Temperatures at altitudes 4000–6000 m in the Qilian Mountains (unit: °C).

| Elevation (m a.s.l) | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
|--------------------|------|------|------|------|-----|------|------|------|------|------|------|------|
| 4000               | −16.68 | −12.89 | −8.29 | −2.34 | 1.06 | 5.13 | 7.81 | 7.06 | 3.35 | −3.30 | −10.95 | −15.80 |
| 4500               | −19.53 | −15.94 | −11.54 | −5.39 | −2.14 | 2.03 | 4.91 | 4.16 | 0.70 | −6.20 | −14.10 | −18.65 |
| 5000               | −22.38 | −18.99 | −14.79 | −8.44 | −5.34 | −1.07 | 2.01 | 1.26 | −1.96 | −9.10 | −17.25 | −21.50 |
| 5500               | −25.23 | −22.04 | −18.04 | −11.49 | −8.54 | −4.17 | −0.90 | −1.65 | −4.61 | −12.00 | −20.40 | −24.35 |
| 6000               | −28.08 | −25.09 | −21.29 | −14.54 | −11.74 | −7.27 | −3.80 | −4.55 | −7.26 | −14.90 | −23.55 | −27.20 |

Table 5. Temperatures at altitudes 4000–6000 m in the Sichuan Basin (unit: °C).

| Elevation (m a.s.l) | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
|--------------------|------|------|------|------|-----|------|------|------|------|------|------|------|
| 4000               | −8.33 | −5.68 | −3.61 | −0.59 | 2.04 | 6.74 | 9.34 | 9.10 | 6.05 | 0.04 | −4.12 | −7.67 |
| 4500               | −10.48 | −7.93 | −6.16 | −3.39 | −0.91 | 4.14 | 6.84 | 6.70 | 3.70 | −2.56 | −6.67 | −9.92 |
| 5000               | −12.63 | −10.18 | −8.71 | −6.19 | −3.86 | 1.54 | 4.34 | 4.30 | 1.35 | −5.16 | −9.22 | −12.17 |
| 5500               | −14.78 | −12.43 | −11.26 | −8.99 | −6.81 | −1.06 | 1.84 | 1.90 | −1.00 | −7.76 | −11.77 | −14.42 |
| 6000               | −16.93 | −14.68 | −13.81 | −11.79 | −9.76 | −3.66 | −0.66 | −0.50 | −3.35 | −10.36 | −14.32 | −16.67 |

Heating effect quantified by temperature difference between the main plateau, the Qilian Mountains and the Sichuan Basin

Comparison of air temperatures on same elevation with the Sichuan Basin and Qilian Mountains reveals that temperatures in the main plateau is higher than the free air on same elevation in the Qilian and Sichuan Basin (Figure 4, Table 6). From Tab. 6, we can see that, on elevation of 4500 m (the mean elevation of the plateau), temperature is evidently higher in the main plateau than in the Sichuan Basin. The difference is large (4–6°C) in warm months from April to October, and small (1–2°C) in other cold months. Moreover, these differences increase in warm months and decrease in winter (November through next year February) with higher altitudes (Figure 4). From individual observed data (Table 7), temperature of Lhasa station at 3649 m in July is 5.7°C higher than Leshan station in Sichuan Basin, and higher 5.6°C–9.3°C year-round. This means that the heating effect is strong in warm months and even evident in cold months.

Air temperature of the main plateau is higher than in the Qilian Mountains year-round (Figure 4, Table 8). On elevation of 4500 m, the difference is small (5.9–7.0°C) in warm months, and large (6.1–10.7°C) in other cold months. Temperature differences increase with increased elevation year-round (Figures 4). Comparing Wudaoliang station in the northern Tibetan Plateau with Lintao station in Qilian Mountains, the former is 2.5–5.9°C higher than the latter year-round, and the difference is smaller in warm months than in cold months (Table 8). This shows that the main plateau is warmer than the surrounding mountains, and the heating effect is pronounced in the main plateau.

Figure 4. Temperature differences between main plateau and Sichuan Basin (left), and Qilian Mountains (right).

doi:10.1371/journal.pone.0068750.g004
Heating effect makes the occurrence of the highest
timberline of the northern hemisphere in the
southeastern Tibetan Plateau

Above analysis shows that the temperatures at high altitudes in
main plateau are warmer than adjacent free air in surrounding
areas due to the heating effect. On elevation 4500 m, the growing
season can up to 4–5 months (mean temperature above 5°C), and in
the warmest month (July), the monthly mean temperature can reach
10.5°C (Table 3). This provides temperature condition for forest
development in such high elevation, for the 10°C isotherm of the
warmest month lies between 4600–4700 m, which strictly confirms
the result of previous timberline research of the plateau [2–4].

Besides above calculated temperatures with altitudes, observed
temperatures in the main plateau also confirm that it is possible for
mean temperature higher than 10°C at altitudes 4600–4700 m in July.
For example, observed mean temperature of Lhasa station
(located at: 29.67°N, 91.13°E, in southern main Plateau; Elevation:
3649 m) in July is 16.5°C, which is close to mean temperatures of
Wuhan and Changsha in April, then even calculating by average
lapse rate of 6.0°C/100 m, the mean temperature of mountains near
Lhasa station at altitude 4649 m can reach 10.5°C (Table 7). In fact,
the temperature lapse rate in the main Plateau may be lower than
6.0°C/100 m in summer according to related researches (Hastenrath
1968), Forster (1982) and Flenley (2007) have stated that lapse rates
determine timberline altitude [31]. Our results show that the 10

timonline 

Discussion

Discussion and Conclusions

Discussion

Temperature lapse rate. Normally when we study moun-
tain climate, temperature lapse rate is a necessary parameter [32].
In this paper, average lapse rate of −0.60°C/100 m is used to
adjust the temperature of observed stations (Table 7 and 8).
However, such average value is known to be rough approxima-
tions unsuitable in more precise studies [33–34], though average
temperature lapse rates of −0.55/100 m [35], −0.60°C/100 m
[36], or −0.65°C/100 m [37] are often used when low precision
suffices [32]. Related researches revealed that the lapse rate at
which air cools with elevation varies from about −0.98°C/100 m
for dry air (the dry-air adiabatic lapse rate) to about −0.48°C/100
m (the saturated adiabatic lapse rate [36]). Dry adiabatic lapse
rate is very different than wet. In Tibetan Plateau, the humidity is
quite different in places and in seasons [38–39], in turns the lapse
rate in the Plateau will vary widely in different places and months.
Moreover, lapse rates for the Tibetan Plateau may be smaller than
the average temperature lapse rate given the heating effect of the
Tibetan Plateau, because temperature lapse rates are steeper on
isolated mountains near the sea than on extensive mountain
ranges that provide their own heating [30,40], and the greater the
heating effect of the mountains, the smaller the average lapse rates.
It is also noted that lapse rates show considerable variability in
relation to climatic zone, season [30], air mass type [41], and local
topography [10,23]. So it will be important to study the lapse rate
for the Tibetan Plateau in future.

Table 6. Temperatures and temperature differences (ΔT) in the three group areas at altitude 4500 m in the annual course (unit: C).

| Region            | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
|-------------------|------|------|------|------|-----|------|------|------|-------|------|------|------|
| Main plateau area | −9.1 | −7.0 | −3.5 | 0.7  | 4.6 | 8.8  | 10.5 | 10.1 | 7.7   | 1.4  | −4.8 | −7.9 |
| Qilian Mountains  | −19.5| −15.9| −11.5| −5.4 | −2.1| 2.0  | 4.9  | 4.2  | 0.7   | −6.2 | −14.1| −18.6|
| Sichuan Basin     | −10.5| −7.9 | −6.2 | −3.4 | −0.9| 4.1  | 6.8  | 6.7  | 3.7   | −2.6 | −6.7 | −9.9 |

ΔT<sub>Sichuan</sub> 1.4 1.0 2.7 4.1 5.5 4.6 3.6 3.4 4.0 4.0 1.9 2.0
ΔT<sub>Qilian</sub> 10.4 8.9 8 6.1 6.7 6.8 5.6 5.9 7.0 7.6 9.3 10.7

Table 7. Observed mean Temperatures, calculated mean temperatures at elevation of 3649 m and their differences between Lhasa station and Leshan station (unit: °C).

| Station      | LAT. | LONG. | ELEV.(m) | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
|--------------|------|-------|----------|------|------|------|------|-----|------|------|------|-------|------|------|------|
| Lhasa        | 29.67| 91.13 | 3649     | 0.6  | 3.0  | 6.3  | 8.7  | 12.7| 16.1 | 16.5 | 16.1 | 14.2  | 9.7  | 4.0  | 0.8  |
| Leshan       | 29.57| 103.75| 424      | 7.4  | 10.7 | 14.3 | 19.0 | 22.4| 24.4 | 26.9 | 26.0 | 22.8  | 18.3 | 14.2 | 8.7  |
| Leshan*      | 29.57| 103.75| 3649     | −12.0| −8.7 | −5.0 | −0.4 | 3.1 | 5.0  | 7.6  | 6.7  | 3.4   | −1.0 | −5.1 | −10.6|
| Leshan#      | 29.57| 103.75| 3649     | −6.5 | −3.8 | −2.1 | 0.9  | 3.4 | 7.6  | 10.8 | 10.5 | 7.6   | 1.6  | −2.2 | −5.8 |
| ΔT<sub>1</sub>| −7.1 | −6.8 | 8.4      | 7.8  | 9.3  | 8.5  | 5.7  | 5.6 | 6.6  | 8.1  | 6.2  | 6.5   |

Note: * and # are calculated temperature of Leshan at elevation 3649 m, the same elevation of Lhash station; and * Calculated by average lapse rate of 6.0°C km⁻¹; # calculated by linear models in Table 2.

doi:10.1371/journal.pone.0068750.t006

doi:10.1371/journal.pone.0068750.t007
Why does the highest timberline of the northern hemisphere occur in the southeastern Tibetan Plateau, but not in other places of the Tibetan Plateau? Our results show that the 10°C isotherm of the warmest month can lie between 4600–4700 m in the Tibetan Plateau, and this is the necessary temperature condition for forest growth. However, this does not mean all 4600–4700 m mountain areas are suitable for forest development. It may higher than 10°C, but not in other places of the Tibetan Plateau.

Conclusions

(1) The heating effect of the Tibetan Plateau is significant. The mean monthly temperature, on the elevation of 4500 m, is higher in the main plateau than in the neighboring regions, usually 1–6°C higher than over the Sichuan Basin and 5.9–10.7°C higher than in the Qilian Mountains in the northeastern plateau. (2) At altitudes of 4000–5000 m on the main plateau, there are 5–7 months with a mean temperature above 0°C, and 4–5 months above 5°C. Even at altitudes of 5000–6000 m, there are 4 months with a mean temperature above 0°C. The mean temperature of the warmest month (July) can reach 10°C at about 4600–4700 m, providing favorable temperature condition for forest growth at this high elevation.

Acknowledgments

We thank the meteorological services of China for providing the temperature observations, and Zhang Yichi for helping to access the observation output data. Finally, we also thank the anonymous reviewers and academic editors for their relevant comments.

Author Contributions

Conceived and designed the experiments: YHY BPZ. Performed the experiments: YHY. Analyzed the data: YHY. Contributed reagents/materials/analysis tools: YHY. Wrote the paper: YHY BPZ.

Table 8. Observed mean Temperatures, calculated mean temperatures at elevation of 3649 m and their differences between Wudaoliang station and Lintao station (unit: °C).

| Station    | L.A.T. | L.ONG. | ELEV.(m) | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
|------------|--------|--------|----------|------|------|------|------|-----|------|------|------|-------|------|------|------|
| Wudaoliang | 35.22  | 93.08  | 4612.20  | -15.3| -13.0| -9.6 | -4.5 | -0.8| 3.1  | 6.7  | 6.2  | 2.7   | -4.3 | -11.0| -14.1|
| Lintao     | 35.35  | 103.85 | 1893.80  | -5.7 | -0.7 | 4.2  | 9.5  | 13.7| 17.1 | 19.3 | 18.7 | 13.8  | 8.3  | 1.7  | -4.5 |
| Lintao*    | 35.35  | 103.85 | 4612.20  | -22.0| -17.0| -12.1| -6.8 | -2.6| 3.8  | 3.0  | 2.4  | 2.5   | -2.8 | -8.0 | -14.6|
| Lintao#    | 35.35  | 103.85 | 4612.20  | -21.2| -17.3| -13.5| -3.7 | 3.0 | 2.9  | 0.6  | -7.5 | -15.4 | 20.0 |
| AT1*       | -      | -      | -       | 6.7  | 4.0  | 2.6  | 2.3  | 1.8 | 2.3  | 3.7  | 3.8  | 5.2   | 3.7  | 3.6  | 6.7  |
| AT2#       | -      | -      | -       | 5.9  | 4.3  | 3.9  | 2.5  | 2.9 | 3.2  | 3.2  | 3.3  | 3.2   | 4.4  | 5.9  |

Note: * and # are calculated temperature of Lintao at elevation 4612.2 m, the same elevation of Wudaoliang station, and * Calculated by average lapse rate of 6.0°C km⁻¹; # calculated by linear models in Table 2.

doi:10.1371/journal.pone.0068750.t008

References

1. Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebirgenden der Erde und ihr Abstand zur Schneegrenze. Kolner Geo-graphische Arbeiten 5: 115.
2. Miehe G, Miehe S, Vogel J, Co S, Duo L (2007) Highest Treeline in the Northern Hemisphere Found in Southern Tibet. Mountain Research and Development 27(2): 169–173.
3. Troll C (1973) The Upper Timberlines in Different Climatic Zones. Arctic and Alpine Research 5(3): 3–18.
4. Zheng D, Li BY (1990) Evolution and differentiation of the natural environment of the Qinghai-Tibet Plateau. Geographical Research 9(2): 1–10.
5. Han F, Yao YH, Dai SB, Sun RH, et al. (2012) Mass elevation effect and its forcing on timberline altitude. Journal of geographical Science 22(4): 699–616.
6. Han F, Zhang BP, Yao YH, Zhu YH, Pung Y (2011) Mass Elevation Effect and Its Contribution to the Altitude of Snowline in the Tibetan Plateau and Surrounding Areas. Arctic, Antarctic, and Alpine Research 43(2): 207–212.
7. Holtmier F-K (2003) Mountain timberlines: ecology, patchiness, and dynamics. Nordrhein, Boston: Klover Academic Publishers.
8. Tollner H (1949) Der Einfluß großer Massenerhebungen auf die Lufttemperatur und die Ursachen des Erhöhung der Vegetationsgrenzen in den inneren Ostalpen. Theoretical and Applied Climatology 1: 347–372.
9. De Quervain A (1904) Die Hebung der atmospha¨rischen Isothermen in den Schwerzer Alpen und ihre Beziehung zu den Holzgrenzen. Gerlands Beitra¨ge zur Geophysik 6: 481–533.
10. Penley J (2007) Ultraviolet insolation and the tropical rainforest: altitudinal variations. Quaternary and recent change, extinctions, and biodiversity. Tropical Rainforest Responses to Climatic Change. 219–235.
11. Chen LX, Reiter ER, Feng ZQ (1985) The atmospheric heat-source over the Tibetan Plateau-May–August 1979. Monthly Weather Review 113: 1771–1790.
12. Yeh DZ (1982) Some aspects of the thermal influences of Qinghai-Tibetan Plateau on the atmospheric circulation. Archives for Meteorology, Geophysics, and Bioclimatology Series A31(3): 203–225.
13. Yeh DZ, Wu GX (1998) The Role of The Heat Source of the Tibetan Plateau in the General Circulation. Meteorology and Atmospheric Physics 67: 181–197.
14. Yeh TC, Chang CC (1974) Preliminary experimental simulation on heating effect of Tibetan Plateau on general circulation over Eastern Asia. Science Sinica 17: 397–420.
15. Yeh TC, Gao YX (1979) The meteorology of the Qinghai-Tibetan Plateau. Beijing: Science Press: 276.
16. Kutzbach JE, Prell WL, Ruddiman W F (1993) Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. Journal of Geology (Chicago) 101: 177.
17. Kutzbach JE, Prell PL, Ruddiman WF (1992) Sensitivity of Eurasian climate to surface uplift of the Tibetan. In: Centennial Symp of the Journal of Geology: Evolution of the Earth Surface Plateau. Chicago II.
18. Reiter ER, Gao DY (1982) Heating of the Tibetan Plateau and movement of the south Asian high during spring. Monthly Weather Review 110: 1694–1711.
19. Wang YN, Zhang B, Chen LX, He JH, Li W, et al. (2008) Relationship between the atmospheric heat source over Tibetan Plateau and the heat source and general circulation over East Asia Chinese Science Bulletin 53(21): 3387–3394.
20. Yeh TC, Liao SW, Zhu P (1957) The Flow pattern and heat budget in the troposphere over the Tibetan Plateau and surrounding area. Acta Meteorology Sinica 20: 108–121.
21. Fluhm H (1957) Large-scale aspects of the “summer monsoon” in South and East Asia. Journal of the Meteorological Society of Japan 75th Annual volume: 180–186.
22. Flohn H (1968) Contributions to a meteorology of the Tibetan Highlands. Atmospheric Science Paper No130 Fort Collins, Colorado & Colorado State University.
23. Barry RG (2008) Mountain weather and climate. Boulder, USA: University of Colorado.
24. Fu C, Fletcher JO (1985) The relationship between Tibet-tropical ocean thermal contrast and interannual variability of Indian monsoon rainfall. Journal of climate and applied meteorology 24: 841–847.
25. Qian YF, Zheng YQ, Zhang Y, Miao MQ (2003) Responses of China’s summer monsoon climate to snow anomaly over the TP. International Journal of Climatology 23: 593–613.
26. Wu GX, Li WP, Guo H, Liu H (1997) Sensible heat-driving air pump of the TP and the Asian summer monsoon. In: Ye DZ (ed) Memorial Volume of Prof. Zhao Jiuzhang. Chinese Science Press, Beijing 116–126.
27. Liu Ds, Sun HL, Zheng D (2003) The Tibet Plateau research’s scientific paradigm, effect and its spiritual connotation. www2cascn/html/Dir/2003/10/14/2458htm.
28. Yao YH, Zhang BP (2013) MODIS-based Estimation of Air Temperature of the Tibetan Plateau. Acta Geographica Sinica 68(1): 95–107
29. Forster RM (1982) A study of the spatial distribution of bryophytes on Rakata. In: J.R. Flenley, and K. Richards (eds.), The Krakatoa Centenary expedition: Final Report (Miscellaneous Series No. 25). Geography department, University of Hull, Hull, UK: 103–126.
30. Hastenrath S (1968) Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of central America and southern Mexico. Colloquium Geography 9: 122–130.
31. Holtmeier FK, Broll G (2005) Sensitivity and response of Northern Hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography 14(5): 395–410.
32. Rolland C (2003) Spatial and Seasonal Variations of Air Temperature Lapse Rates in Alpine Regions. Journal of Climate 16: 1032–1046.
33. Carrega P (1995) A method for the reconstruction of mountain air temperatures with automatic cartographic applications Theoretical and applied climatology 52: 69–84.
34. Douguerdriou A, De Saintignon MF (1984) Les gradients de température et de précipitation en montagne. Revue de géographie alpine 72.
35. Ångot A (1982) Sur la décroissance de la température de l'air avec la hauteur. C.R. Acad Sci 115: 1272–1273.
36. Dobson R, Marks D (1997) Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Res 8: 1–20.
37. Barry RG, Chorley RJ (1987) Atmosphere, Weather and Climate. The 5th ed. Routledge: 448.
38. Zhang BP, Chen XD, Li BL, Yao YH (2002) Biodiversity and conservation in the Tibetan Plateau. Journal of Geographical Sciences 12(2): 133–143.
39. Liao K (1990) The Atlas of the Tibetan Plateau. Beijing: Science Press.
40. Flenley JR (1995) Cloud forest, the Massenerhebung effect, and ultraviolet irradiation. Ecological Studies 110: 130–135.
41. Yoshino MM (1966) some aspects of air temperature climate of the high mountains in Japan. Japanese Progress of Climate November: 21–27.
42. Malyshev L (1993) Levels of the upper forest boundary in northern Asia. Vegetation 109: 175–196.
43. Leuschner C (1996) Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: Elevation, structure and floristic. Vegetation 123: 193–206.
44. Wang CH, Zhou SW, Tang XP, Wu P (2011) Temporal and Spatial Distribution of Heavy Precipitation Over Tibetan Plateau in Recent 48 Years. Scientia Geographica Sinica 31(4): 470–477.