Photomolecular High-Temperature Superconductivity

M. Buzzi1,*, D. Nicoletti1, M. Fechner1, N. Tancogne-Dejean1, M. A. Sentef1, A. Georges2,3, T. Biesner4, E. Uykur1, M. Dressel,4 A. Henderson,5 T. Siegrist,5 J. A. Schlueter,6,6 K. Miyagawa7, K. Kanoda7, M.-S. Nam8, A. Ardavan8, J. Coulthard,8 J. Tindall,8 F. Schlawin8, D. Jaksch,8 and A. Cavalleri1,*,†

1 Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
2 Center for Computational Quantum Physics (CCQ), The Flatiron Institute, New York, New York 10010, USA
3 Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
4 I. Physikalisches Institut, Universität Stuttgart, 70569 Stuttgart, Germany
5 National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
6 Division of Material Research, National Science Foundation, Alexandria, Virginia 22314, USA
7 Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
8 Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom

(Received 27 April 2020; revised 4 June 2020; accepted 5 June 2020; published 6 August 2020)

The properties of organic conductors are often tuned by the application of chemical or external pressure, which change orbital overlaps and electronic bandwidths while leaving the molecular building blocks virtually unperturbed. Here, we show that, unlike any other method, light can be used to manipulate the local electronic properties at the molecular sites, giving rise to new emergent properties. Targeted molecular excitations in the charge-transfer salt \(\kappa-(\text{BEDT}-\text{TTF})_{2}\text{Cu}[\text{N(CN)}_{2}]_{2}\text{Br} \) induce a colossal increase in carrier mobility and the opening of a superconducting optical gap. Both features track the density of quasiparticles of the equilibrium metal and can be observed up to a characteristic coherence temperature \(T' \approx 50 \) K, far higher than the equilibrium transition temperature \(T_C = 12.5 \) K. Notably, the large optical gap achieved by photoexcitation is not observed in the equilibrium superconductor, pointing to a light-induced state that is different from that obtained by cooling. First-principles calculations and model Hamiltonian dynamics predict a transient state with long-range pairing correlations, providing a possible physical scenario for photomolecular superconductivity.

DOI: 10.1103/PhysRevX.10.031028

Subject Areas: Condensed Matter Physics, Strongly Correlated Materials, Superconductivity

Organic conductors based on the bis(ethylenedithio)tetraphiafulvalene (BEDT-TTF) molecules display low-dimensional electronic structures and unconventional high-\(T_C \) superconductivity [1–3]. In the crystals with a \(\kappa \)-type arrangement, the \(\text{(BEDT}-\text{TTF})^{+0.5} \) molecules (henceforth abbreviated as ET) form dimers, which are organized in planes on a triangular lattice [4]. Because of dimerization, the quarter-filled band originating from the overlap of the molecular orbitals splits into pairs of half-filled bands. The ET planes are separated by layers of monovalent anions, which act as charge reservoirs [Fig. 1(a)]. The compound with the highest superconducting transition temperature is \(\kappa-(\text{ET})_{2}\text{Cu}[\text{N(CN)}_{2}]_{2}\text{Br} \) (henceforth abbreviated as \(\kappa-\text{Br} \)), for which \(T_C = 12.5 \) K.

The low-energy physics of the \(\kappa \)-phase compounds is captured by a Hubbard model on a triangular lattice with weak and strong bonds [Fig. 1(a), lower-right panel] [5–7]. The ground state can be tuned either by applying hydrostatic pressure or by chemical substitution with different anions [8]. In both cases, the spacing between the dimers changes [Fig. 1(a)], directly acting on the hopping integrals (\(t, t' \)), leaving the on-site wave function and electronic correlations essentially unperturbed. Here, we explore the possibility of dynamically manipulating the Hamiltonian parameters and the many-body wave function by resonant excitation of ET molecular vibrations [Fig. 1(b)]. Equilibrium optical spectra were measured in the normal state of \(\kappa-\text{Br} \) single crystals using a Fourier transform spectrometer for temperatures between 15 K and 300 K (see Fig. 2 and Supplemental Material [9]), in good agreement with those reported previously in the

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Open access publication funded by the Max Planck Society.
In the equilibrium normal state \((T > T_C)\), \(\kappa\)-Br is a quasi-two-dimensional Fermi liquid, characterized by a narrow Drude peak in the in-plane optical conductivity, observed up to \(T / T_C \approx 50 \text{ K} \) \([12, 13]\). For temperatures \(T > T_C\), the quasiparticle response vanishes, and the material exhibits the behavior of a so-called “bad metal” \([14]\) \(\text{[Fig. 2(a)]}\). A large gap and a temperature-independent insulating optical conductivity are found along the perpendicular (interlayer) direction \([14]\) \(\text{[Fig. 2(a)]}\). Several narrow peaks are also evident in the midinfrared spectral region, corresponding to infrared-active vibrational modes of the ET molecules \([15–17]\).

Femtosecond midinfrared pump pulses were polarized along the out-of-plane crystallographic axis and tuned to the spectral region where the molecular modes are found \(\nu_{\text{pump}} \approx 900–2000 \text{ cm}^{-1}, \ \lambda_{\text{pump}} \approx 5–11 \mu\text{m}\). The peak pump electric field was varied between 500 kV/cm and 4 MV/cm. The changes in low-frequency reflectivity and complex optical conductivity induced by midinfrared excitation were measured for frequencies between 0.8 and 7 THz, with probe pulses polarized along the conducting layers. These were detected by electro-optical sampling after reflection from the sample at different pump-probe time delays.
Figure 3 shows the most suggestive results discussed in this paper. Therein, optical properties $|R(\omega)|$, $\sigma_1(\omega) + i\sigma_2(\omega)$ are reported for four representative base temperatures between $T = 15$ K and $T = 70$ K, measured before (red) and 1 ps after photoexcitation (blue). Here, the pump pulses were tuned close to resonance with molecular vibrations corresponding to distortions of the C=C bonds on the ET dimers (see sketch in Fig. 2). Importantly, these pump pulses, polarized along the insulating direction, penetrated deeper than the THz probe field (polarized along the metallic planes; see also Supplemental Material). Hence, from the “raw” changes in electric field reflectance, $r_1(\omega) + i r_2(\omega)$, one could directly extract the complex optical conductivity, $\sigma_1(\omega) + i\sigma_2(\omega)$, without the need to account for an inhomo- geneously excited medium.

The transient optical properties measured at base temperature $T = 15$ K, that is, immediately above $T_C = 12.5$ K, exhibited the largest changes. The reflectivity saturated to $R = 1$ over a broad frequency range, decreasing only above ~ 120 cm$^{-1}$. Correspondingly, a gap opened in $\sigma_1(\omega)$, and a $1/\omega$ divergence developed in $\sigma_2(\omega)$. A qualitatively similar response was recorded for $T = 30$ K and $T = 50$ K, although with a smaller gap and $\sigma_2(\omega)$ divergence. For these three temperatures, the metallic optical spectra measured at negative time delays were fitted with a Drude-Lorentz model (red lines in Fig. 3) for normal conductors, whereas all the transient optical properties were fitted with an extension of the Mattis-Bardeen model for superconductors of variable purity (blue lines in Fig. 3; see also Supplemental Material).

A qualitatively different response was measured at $T = 70$ K, for which $\sigma_1(\omega)$ increased rather than decreasing to zero, and $\sigma_2(\omega)$ remained characteristic of a metal without diverging toward low frequencies. These 70-K spectra were then fitted with the same Drude-Lorentz model used to reproduce the equilibrium response.

For each of the three measurements at $T \leq 50$ K reported in Fig. 3, we extracted the optical gap 2Δ from the Mattis-Bardeen fits. The temperature-dependent gap size could be fitted by the function $\Delta(T) = \Delta(0) \tanh(\beta \sqrt{(T'/T[T])})$, where $2\Delta(0) = 23$ meV was the zero-temperature nonequilibrium gap, $\beta = 1.74$, and $T' \approx 50$ K provided an effective “critical” temperature for the nonequilibrium state [see Fig. 4(a)]. Note that $T' \sim T'' \approx 50$ K, which coincides with the temperature at which a coherent Drude peak was observed in the equilibrium metallic state of Fig. 2.

The connection between the superconducting-like optical properties measured in the transient state and the Fermi-liquid behavior of the equilibrium normal state is further underscored by the analysis reported in Fig. 4(b). Therein, the divergence in transient $\sigma_2(\omega)$ was used to estimate the light-induced “superfluid density,” determined as $N_{\text{eff}}^{\text{Trans}} = (m V_{\text{Cell}}/e^2) \lim_{\omega \to 0} |\omega \sigma_2^{\text{Trans}}(\omega)|$. This quantity was compared to the temperature-dependent density of equilibrium quasiparticles, $N_{\text{eff}}^{\text{Equil}} = (m V_{\text{Cell}}/4 \pi e^2)(\omega_p^{\text{Equil}})^2$. Here, m is the bare electron mass, V_{Cell} the unit cell volume, e the electron charge, and ω_p^{Equil} the equilibrium carrier plasma frequency (extracted from Drude-Lorentz fits). Even though the absolute values on the two vertical axes of Fig. 4(b) are different, the temperature dependences are similar, with the same onset at $T'' \approx 50$ K.

The time dependence of these features is visualized in Fig. 5, where three different quantities are displayed. Figure 5(a) reports the transient integrated spectral weight $\int_{40 \text{ cm}^{-1}}^{110 \text{ cm}^{-1}} \sigma_1(\omega) d\omega$, which, in a superconductor, exhibits a depletion by an amount proportional to the density of...
FIG. 3. In-plane reflectivity, real and imaginary parts of the optical conductivity measured in $\kappa-(ET)_2\text{Cu[N(CN)]}_2\text{Br}$ at equilibrium (red circles) and at $\tau \approx 1$ ps time delay after vibrational excitation (blue circles), at four different base temperatures between 15 K and 70 K. Lines are corresponding fits to the spectra. These fits were performed with a Drude-Lorentz model for the equilibrium response at all temperatures and for the transient spectra at $T = 70$ K. A Mattis-Bardeen model for superconductors was used instead for the out-of-equilibrium response at $T \leq 50$ K. All data have been taken upon vibrational excitation close to resonance with the C≡C stretching mode ($\nu_{\text{pump}} \approx 1250$ cm$^{-1}$), with a pump fluence of 2 mJ/cm2.

FIG. 4. (a) Photoinduced optical gap 2Δ, extracted from Mattis-Bardeen fits to the transient optical properties of Fig. 3, as a function of base temperature. (b) Blue, left scale: Temperature dependence of the effective number of “condensed” carriers per unit cell in the transient state, $N^\text{Trans}_{\text{eff}}$. Red, right scale: Corresponding effective number of mobile carriers per unit cell in the equilibrium metallic state before photoexcitation, $N^\text{Equil}_{\text{eff}}$ (see discussion in the text). These data have been taken upon vibrational excitation with a pump fluence of 2 mJ/cm2.
condensed pairs. Figure 5(b) shows the transient superfluid density $N_{\text{Trans}}^{\text{eff}}$ extracted from the low-frequency imaginary conductivity, as in Fig. 4(b). Figure 5(c) reports $\sigma_0 = \lim_{\omega \to 0} \sigma_1(\omega)$, that is, the extrapolated "zero-frequency" conductivity from Drude-Lorentz fits to the transient optical properties (see Supplemental Material [9]).

All three quantities changed promptly, immediately after photoexcitation, and relaxed within a few picoseconds, a timescale that we tentatively associate with the lifetime of the resonantly driven ET vibration. Importantly, σ_0 diverged to values larger than 10^{5} Ω$^{-1}$ cm$^{-1}$ (corresponding to mean free paths of at least 100 unit cells), limited

FIG. 5. (a) Dynamical evolution of the transient spectral weight in the real part of the optical conductivity as a function of pump-probe time delay. (b) Time evolution of the effective number of "condensed" carriers per unit cell in the transient state, $N_{\text{Trans}}^{\text{eff}}$. (c) Time evolution of the zero-frequency extrapolation of the optical conductivity, $\sigma_0 = \sigma_1(\omega)|_{\omega \to 0}$, extracted from Drude-Lorentz fits of the transient optical properties. Data have been taken at $T = 30$ K after vibrational excitation with a pump fluence of 2 mJ/cm2.

FIG. 6. Left panels: In-plane complex optical conductivity of κ-(ET)$_2$Cu[N(CN)$_2$]Br measured at $T = 50$ K in equilibrium (red circles) and at $\tau \approx 1$ ps time delay after photoexcitation (blue circles) at four different pump frequencies: $\nu_{\text{pump}} = 910$ cm$^{-1}$ ($\lambda_{\text{pump}} = 11$ μm), $\nu_{\text{pump}} = 1250$ cm$^{-1}$ ($\lambda_{\text{pump}} = 8$ μm), $\nu_{\text{pump}} = 1470$ cm$^{-1}$ ($\lambda_{\text{pump}} = 6.8$ μm), and $\nu_{\text{pump}} = 2000$ cm$^{-1}$ ($\lambda_{\text{pump}} = 5$ μm). Lines are corresponding fits performed with a Drude-Lorentz model. The $\nu_{\text{pump}} = 2000$ cm$^{-1}$ spectra display an enhancement of $\sigma_2(\omega)$ in the absence of a gap opening in $\sigma_1(\omega)$. This is indicative of a slight increase in metallicity, with no superconducting-like response. All data have been taken with a constant pump fluence of 2 mJ/cm2. Right panel: Zero-frequency extrapolation of the transient optical conductivity, $\sigma_0 = \sigma_1(\omega)|_{\omega \to 0}$ (see main text), extracted from the spectra on the left for different pump wavelengths (blue circles, left scale). A data point at $\nu_{\text{pump}} = 1100$ cm$^{-1}$ ($\lambda_{\text{pump}} = 9$ μm) is also reported, for which the transient spectra look identical to those at $\nu_{\text{pump}} = 910$ cm$^{-1}$ (negligible pump-induced effect). The equilibrium out-of-plane imaginary dielectric function [14] is also displayed (black line, right scale) to visualize the resonant photoconductivity behavior on the C=C ET vibration.
here by the 0.8-THz low-frequency cutoff of our measurement, which in turn was set by the relaxation time of the state (∼2 ps).

In Fig. 6, we report the transient complex optical conductivity after photoexcitation at different driving frequencies, all measured by keeping the pump fluence fixed to 2 mJ/cm². A superconducting-like response could only be observed for excitation at 8 μm and 6.8 μm [see also Fig. 1(a)], while detuned driving to both red (λ_{pump} = 11 μm, resonant to a weaker ET vibration) and blue (λ_{pump} = 5 μm) sides resulted in a slight increase in σ₂(ω) and negligible changes in σ₁(ω). The σ₀ values extracted from these data are displayed in the right panel of Fig. 6, along with the equilibrium out-of-plane imaginary dielectric function. This plot confirms that superconducting-like optical properties in the transient state can only be observed when pumping in the 6.8–8 μm range, close to resonance with C=\(\text{C} \) modes of the ET molecule.

In searching for a microscopic mechanism for the observed photomolecular response, we note that in a previous work on the one-dimensional Mott insulator ET-F₂TCNQ, featuring the same ET molecular building block as \(\kappa \)-Br, selective driving of an IR-active vibration was shown to provide a dynamical modulation of the on-site Hubbard-\(U \) interaction, achieved by quadratic electron-phonon coupling [27,28].

In the \(\kappa \)-Br system studied here, \textit{ab initio} calculations in the frozen-phonon approximation yielded an estimate for the on-dimer Hubbard \(U \), hopping matrix elements \(t \) (strong bonds), and \(t' \) (weak bonds) as a function of normal mode distortion (see Supplemental Material [9]). Excitation of the molecular C=\(\text{C} \) stretching modes (i.e., the \(\nu_{27} \) vibration at 6.8 μm) leads to a significant modulation of \(U \) and \(t \), whereas \(t' \) remains mostly unaffected [Fig. 7(a) and Supplemental Material [9]]. By contrast, excitation of molecular modes that involve mainly motions in the terminal ethylene groups of the ET molecule (i.e., at 9 and 11 μm) does not produce any sizable change in the effective electronic parameters [Fig. 7(b)].

Starting from these estimates, we performed simulations of a driven Fermi-Hubbard model on a triangular ladder system (see Supplemental Material [9] for the Hamiltonian and specific geometry of the system). In the driven state,
correlations between pairs of doublons residing on different sites were quantified by the doublon correlation function
\[d_i^\dagger d_j = c_i^\dagger c_i c_j^\dagger c_j \] (here, \(c_i^\dagger \) and \(c_i \) are single-particle creation and annihilation operators, respectively). In the simulations, the system was initialized in its half-filled zero-temperature ground state, yielding doublon correlations that decay exponentially with distance [blue dashed line in Fig. 7(a)]. When the driving was turned on, long-range, uniform on-site doublons were formed with long correlation distances. These correlations stabilized and persisted for timescales compatible with those explored in the experiment [blue solid line, Fig. 7(a); see also Supplemental Material [9]. When considering these theoretical predictions, a driving-induced emergence of long-range order in the system is hypothesized, where the external driving establishes both a large density of on-site doublons and phase coherence over macroscopic distances. The predictions reported in Fig. 7(b) for excitation of a terminal ethylene mode, for which no enhancement in coherent on-site doublons is expected, are in agreement with the experimental results of Fig. 6, which show that a coherent state is induced only for excitation of the C=C stretching mode.

The scenario proposed by the model sketched in Fig. 7 is notable as it implies the formation of a qualitatively new state of the system, with double occupancies that are “synchronized” through the U/t modulation. This mechanism, which may explain the appearance of a large gap not present in the low-temperature equilibrium superconductor, bears some resemblance to the proposed photoinduced \(\eta \)– pair superconductor [29–31], in which repulsive pairs are activated by the drive.

Other mechanisms, different from the one discussed here, may also be at play [32–34], including the stabilization of preexisting Cooper pairs in the normal state [35], which have been revealed by superconducting Nernst effect measurements [36]. Finally, the possible appearance of a negative-\(U \) superconductivity through electronic squeezing in a molecular excited state should also be considered, especially in the context of a nearly frustrated electronic structure like the present one [37,38].

The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 319286 (QMAC). We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) via the Cluster of Excellence “The Hamburg Centre for Ultrafast Imaging” (EXC 1074—Project ID No. 194651731), the priority program SFB925, and the Emmy Noether program (SE 2558/2-1). J.A.S. acknowledges support from the Independent Research/Development program while serving at the National Science Foundation. K.M. and K.K. acknowledge support from the Japan Society for the Promotion of Science Grant No. 18H05225. T. S. and A. H. acknowledge funding from the NSF under Grant No. DMR-1534818. The National High Magnetic Field Laboratory is supported by the NSF under Grant No. DMR-1644779 and the State of Florida.

[1] T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer-Verlag Berlin Heidelberg, 1998).
[2] D. Jérome, The Physics of Organic Superconductors, Science 252, 1509 (1991).
[3] M. Lang and J. Mueller, Organic Superconductors, arXiv: cond-mat/0302157.
[4] A. Ardavan, S. Brown, S. Kagoshima, K. Kanoda, K. Kuroki, H. Mori, M. Ogata, S. Uji, and J. Wosnitza, Recent Topics of Organic Superconductors, J. Phys. Soc. Jpn. 81, 011004 (2012).
[5] A. Fortunelli and A. Painelli, On the Ab Initio Evaluation of Hubbard Parameters. II. The \(\kappa \)-(BEDT–TTF)\(_2\) Cu[\(\alpha \)(CN)]\(_2\)Br Crystal, J. Chem. Phys. 106, 8051 (1997).
[6] H. C. Kandpal, I. Opahle, Y. Z. Zhang, H. O. Jeschke, and R. Valentí, Revision of Model Parameters for \(\kappa \)-Type Charge Transfer Salts: An Ab Initio Study, Phys. Rev. Lett. 103, 067004 (2009).
[7] R. H. McKenzie, A Strongly Correlated Electron Model for the Layered Organic Superconductors \(\kappa \)-(BEDT–TTF)\(_2\)X, Comments Condens. Matter Phys. 18, 309 (1998), https://arxiv.org/abs/cond-mat/9802198.
[8] H. Kino and H. Fukuyama, Phase Diagram of Two-Dimensional Organic Conductors: (BEDT–TTF)\(_2\)X, J. Phys. Soc. Jpn. 65, 2158 (1996).
[9] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevX.10.031028 for sample preparation, determination of equilibrium and transient optical properties, fitting models, extended data sets, and ab initio calculations.
[10] J.E. Eldridge, K. Kornelsen, H.H. Wang, J.M. Williams, A.V.S. Crouch, and D.M. Watkins, Infrared Optical Properties of the 12 K Organic Superconductor \(\kappa \)-(BEDT–TTF)\(_2\)Cu[\(\alpha \)(CN)]\(_2\)Br, Solid State Commun. 79, 583 (1991).
[11] D. Faltermeyer, J. Barz, M. Dumm, M. Dressel, N. Drichko, B. Petrov, V. Semkin, R. Vlasova, C. Mezière, and P. Batail, Bandwidth-Controlled Mott Transition in \(\kappa \)-(BEDT–TTF)\(_2\)Cu[\(\alpha \)(CN)]\(_2\)Br, Cl\(_{1−x}\): Optical Studies of Localized Charge Excitations, Phys. Rev. B 76, 165113 (2007).
[12] M. Dumm, D. Faltermeyer, N. Drichko, M. Dressel, C. Mezière, and P. Batail, Bandwidth-Controlled Mott Transition in \(\kappa \)-(BEDT–TTF)\(_2\)Cu[\(\alpha \)(CN)]\(_2\)Br, Cl\(_{1−x}\): Optical Studies of Correlated Carriers, Phys. Rev. B 79, 195106 (2009).
[13] M. Dressel, M. Dumm, N. Drichko, C. Mezière, and P. Batail, Coherent Particle Response of Two-Dimensional Organic Conductors upon Crossing the Mott Transition, J. Phys. Conf. Ser. 200, 012029 (2010).
[14] J.J. McGuire, T. Rööm, A. Pronin, T. Timusk, J.A. Schluter, M.E. Kelly, and A.M. Kini, Incoherent...
Interplane Conductivity of κ-(BEDT−TTF)$_2$Cu[N(CN)$_2$]Br, Phys. Rev. B 64, 094503 (2001).

[15] J. E. Eldridge, C. C. Homes, J. M. Williams, A. M. Kini, and H. H. Wang, The Assignment of the Normal Modes of the BEDT-TTF Electron-Donor Molecule Using the Infrared and Raman Spectra of Several Isotopic Analogs, Spectrochim. Acta, Part A 51, 947 (1995).

[16] J. E. Eldridge, Y. Xie, H. H. Wang, J. M. Williams, A. M. Kini, and J. A. Schlueter, Electron-Phonon Effects in the Organic Superconductor κ-(BEDT−TTF)$_2$Cu[N(CN)$_2$]Br, Spectrochim. Acta, Part A 52, 45 (1996).

[17] M. Maksimuk, K. Yakushi, H. Taniguchi, K. Kanoda, and A. Kawamoto, The C=C Stretching Vibrations of κ-(BEDT−TTF)$_2$Cu[N(CN)$_2$]Br and Its Isotope Analogues, J. Phys. Soc. Jpn. 70, 3728 (2001).

[18] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, Light-Induced Superconductivity in a Stripe-Ordered Cuprate, Science 331, 189 (2011).

[19] W. Hu, S. Kaiser, D. Nicoletti, C. R. Hunt, I. Gierz, M. C. Hoffmann, M. Le Tacon, T. Loew, B. Keimer, and A. Cavalleri, Optically Enhanced Coherent Transport in YBa$_2$Cu$_3$O$_{6.5}$ by Ultrafast Redistribution of Interlayer Coupling, Nat. Mater. 13, 705 (2014).

[20] S. Kaiser et al., Optically Induced Coherent Transport Far above T_c in Underdoped YBa$_2$Cu$_3$O$_{6.5}$, Phys. Rev. B 89, 184516 (2014).

[21] M. Mitrano et al., Possible Light-Induced Superconductivity in K$_2$C$_{60}$ at High Temperature, Nature (London) 530, 461 (2016).

[22] D. Nicoletti, E. Casandruc, Y. Laplace, V. Khanna, C. R. Hunt, S. Kaiser, S. S. Dhesi, G. D. Gu, J. P. Hill, and A. Cavalleri, Optically Induced Superconductivity in Striped La$_2$Cu$_3$O$_4$ by Polarization-Selective Excitation in the Near Infrared, Phys. Rev. B 90, 100503 (2014).

[23] A. Cantaluppi, M. Buzzi, G. Jotzu, D. Nicoletti, M. Mitrano, D. Pontiroli, M. Ricco, A. Perucchi, P. Di Pietro, and A. Cavalleri, Pressure Tuning of Light-Induced Superconductivity in K$_2$C$_{60}$, Nat. Phys. 14, 837 (2018).

[24] W. Zimmermann, E. H. Brandt, M. Bauer, E. Seidel, and L. Genzel, Optical Conductivity of BCS Superconductors with Arbitrary Purity, Physica C (Amsterdam) 183, 99 (1991).

[25] M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, England, 2002).

[26] A. Kawamoto, K. Miyagawa, Y. Nakazawa, and K. Kanoda, 13C NMR Study of Layered Organic Superconductors Based on BEDT-TTF Molecules, Phys. Rev. Lett. 74, 3455 (1995).

[27] S. Kaiser et al., Optical Properties of a Vibrationally Modulated Solid State Mott Insulator, Sci. Rep. 4, 3823 (2015).

[28] R. Singla et al., THz-Frequency Modulation of the Hubbard U in an Organic Mott Insulator, Phys. Rev. Lett. 115, 187401 (2015).

[29] F. Peronaci, O. Parcollet, and M. Schirò, Enhancement of Local Pairing Correlations in Periodically Driven Mott Insulators: arXiv:1904.00857 (2019).

[30] J. Tindall, B. Buča, J. R. Coulthard, and D. Jaksch, Heating-Induced Long-Range η Pairing in the Hubbard Model, Phys. Rev. Lett. 123, 030603 (2019).

[31] J. Li, D. Golez, P. Werner, and M. Eckstein, Long-Range η-Pairing in Photodoped Mott Insulators, arXiv:1908.08693 (2019).

[32] A. Nava, C. Giannetti, A. Georges, E. Tosatti, and M. Fabrizio, Cooling Quasiparticles in A_2C$_{60}$ Fullerides by Excitonic Mid-infrared Absorption, Nat. Phys. 14, 154 (2018).

[33] H. Dehghani, Z. M. Raines, V. M. Galitski, and M. Hafezi, Optical Enhancement of Superconductivity via Targeted Destruction of Charge Density Waves, Phys. Rev. B 101, 224506 (2020).

[34] A. Sheikhan and C. Kollath, Dynamically Enhanced Unconventional Superconducting Correlations in a Hubbard Ladder, arXiv:1902.07947 (2019).

[35] Y. J. Uemura, Dynamic Superconductivity Responses in Photoexcited Optical Conductivity and Nernst Effect, Phys. Rev. Mater. 3, 104801 (2019).

[36] M. S. Nam, A. Ardavan, S. J. Blundell, and J. A. Schlueter, Fluctuating Superconductivity in Organic Molecular Metals Close to the Mott Transition, Nature (London) 449, 584 (2007).

[37] D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis, Transient Superconductivity from Electronic Squeezing of Optically Pumped Phonons, Nat. Phys. 13, 479 (2017).

[38] M. A. Sentef, Light-Enhanced Electron-Phonon Coupling from Nonlinear Electron-Phonon Coupling, Phys. Rev. B 95, 205111 (2017).