Adult human neural stem cell therapeutics: Current developmental status and prospect

Hyun Nam, Kee-Hang Lee, Do-Hyun Nam, Kyeung Min Joo

Hyun Nam, Kee-Hang Lee, Do-Hyun Nam, Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
Kee-Hang Lee, Do-Hyun Nam, Kyeung Min Joo, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710, South Korea
Kyeung Min Joo, Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea

Author contributions: Nam H and Lee KH wrote the paper; Nam DH and Joo KM reviewed the final manuscript.

Supported by The Korea Ministry of Food and Drug Safety in 2014, No. 10172KFDA993

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Kyeung Min Joo, MD, PhD, Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-gu, Seoul 135-710, South Korea. kmjoo@skku.edu
Telephone: +82-2-21489779
Fax: +82-2-21489829
Received: July 28, 2014
Peer-review started: July 29, 2014
First decision: August 14, 2014
Revised: September 22, 2014
Accepted: October 14, 2014
Article in press: December 16, 2014
Published online: January 26, 2015

Abstract

Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.

Key words: Adult neural stem cell; Neurological diseases; Stem cell therapy; Preclinical trial; Clinical trial

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this review, we compare advantages and disadvantages of various types of stem cells for regenerative therapy in neurological disease, and discuss the preclinical and clinical developmental hurdles of stem cell technologies. While at present, adult neural stem cells (aNSCs) have clinical advantages, technical issues in the isolation and expansion of aNSCs prevent active preclinical and clinical applications of aNSCs. However, several papers have recently reported scientific breakthroughs, on the basis of which broad application trials using aNSCs could be performed. In this review, we also summarize the current status of preclinical and clinical applications of aNSCs for various neurological diseases.
Nam H et al. Adult human neural stem cell therapeutics

STEM CELL THERAPY FOR NEUROLOGICAL DISEASES

Neurological diseases are derived from the loss of functional neurons in the central nervous system (CNS). Although acute localized neurodegeneration could result from a temporal localized injury, such as stroke and trauma, chronic neurodegeneration usually develops over a long period of time, and has unclear multifactorial causes. Functional neurological deficits in chronic neurological diseases originate from either loss of a specific neuronal subtype, or universal brain damage. Alzheimer’s and Huntington’s diseases result in non-specific death of neurons in the brain, whereas Parkinson’s disease is characterized by the specific and localized damage of dopaminergic neurons located in the substantia nigra. In the brain and spinal cord, amyotrophic lateral sclerosis (ALS) and traumatic spinal cord injury induce diffuse motor neuronal loss and localized nonspecific neural tissue damage, respectively. Although these neurodegenerative conditions have unique morphological pathologies, the molecular mechanisms for the neuronal death are complicated and ambiguous, making the development of mechanism-based therapeutic modalities elusive. Since functional loss of neural cells is the common final pathway of various neurological diseases, regardless of specific etiologies, regenerative treatment using stem cells that could repair damaged neural tissue is a viable and non-specific therapeutic option.

TYPES OF STEM CELLS AND THEIR APPLICATIONS TO NEUROLOGICAL DISEASES

Stem cells have two important characteristics: proliferation capacity, and differentiation potential into multiple cellular lineages. According to the source, stem cells can be classified into embryonic, fetal, and adult stem cells (ESCs, FSCs, and ASCs, respectively). Pluripotent ESCs are obtained from the blastocyst of fertilized egg[1]. ESCs proliferate robustly and have multi-potent differentiation potentials into three germ layer cells, which consist of the whole body tissues. However, ethical concerns and risks of adverse effects, such as immune rejection and tumor formation, prevent their clinical applications. Recently, it was reported that somatic cells could be reprogrammed into pluripotent state, by overexpression of Oct4, Sox2, Klf4, and c-Myc[2]. Although these induced pluripotent stem cells (iPSCs) maintain the merits of ESCs, iPSCs still have limitations, such as low efficient generation, and the formation of teratomas or tumors in vivo. These critical limitations provoke hesitation in the use of ESCs and iPSCs as clinical therapies. As other sources of stem cells, fetal organs that contain FSCs have been suggested. In spite of the advantages of FSCs, including proliferation capacity, limited differentiation potential, and lack of teratoma formation[3-5], ethical problems of using fetal tissues still remain.

ASCs are classically defined as multi-potent cells that originate from various tissues within the adult body, including the bone marrow, skeletal muscle, central nervous system, and adipose tissue[6-8]. The important benefit of ASCs is possible autologous transplantation, in which stem cells can be primarily cultured from and applied to the same patient. This benefit bypasses the ethical problems that ESCs and FSCs harbour. However, in spite of these advantages of ASCs, their limited differentiation and proliferation ability interrupts their widespread use.

Therefore, in the current status, technical and ethical considerations indicate that compared with other stem cells, ASCs are the most clinically applicable.

ADULT NEURAL STEM CELLS FOR NEUROLOGICAL DISEASES

Among various ASCs, mesenchymal stem cells (MSCs) are the most widely used, and furthest progressed in preclinical and clinical trials[9,10]. The strengths of MSCs are relatively simple isolation, and in vitro expansion techniques. However, there are concerns about the clinical applications of MSCs[11]. First of all, in the culture methods of MSCs, bovine serum should be used. Because the dangers of bovine serum have not been well characterized, potential risks in clinical applications still exist[12]. Although xeno-free culture methods for MSCs have been developed, their quality needs to further study. Moreover, many previous studies suggested that the beneficial effects of MSCs for neurological diseases might originate from their paracrine effects involving immune modulation and/or secretory growth factors, and not from direct neuroregenerative effects producing functional neural cells[13-16].

Compared to MSCs, NSCs are cultivated and expanded in media containing low, or no bovine serum[17-20]. Preclinical studies using NSCs suggest that NSCs not only have beneficial paracrine effects in the regeneration and repair of neural tissue, but also direct differentiation potential into diverse neuronal lineages, to form networks with surrounding neuronal cells[21,22]. Since the ultimate goal of regenerative treatment for neurodegenerative diseases is the functional repair of damaged neural tissues, NSCs seem to be a more optimal choice for neurological diseases.

Adult NSCs are tissue-resident multi-potent neural progenitor cells that have self-renewal capacity, so long as they
can be maintained undifferentiated. NSCs have the potential, under appropriate culture conditions, to differentiate into multiple neural cells, such as neurons, astrocytes, and oligodendrocytes. NSCs are observed in the developmental stage and mature CNS of mammalian species[26-29], specifically in the subventricular (SVZ) and subgranular zones (SGZ)[30-32]. The neurogenic niche surrounding SVZ and SGZ represents a unique microenvironment that regulates the survival and differentiation of NSCs[20,33].

TECHNICAL HURDLES AND RECENT BREAKTHROUGHS IN THE USE OF ADULT NEURAL STEM CELLS FOR NEUROLOGICAL DISEASES

Depending on the types of neurological diseases, undifferentiated NSCs themselves, or differentiated neural cells, have been applied to verify their efficacy in preclinical animal models. However, in vitro expansion of differentiated neural cells to acquire the necessary amount of cells for transplantation is very difficult, because differentiated cells cannot proliferate well. Therefore, regardless of transplantation cell types, aNSCs first need to be properly isolated, and effectively expanded in vitro. Compared with other stem cells, such as ESCs, fetal NSCs, and MSCs, aNSCs reside in restricted areas of the adult CNS[31,32], and have limited capacity to proliferate[33,34]. Therefore, difficulties in the primary isolation and stable in vitro expansion of aNSCs are major technical obstacles to be resolved, for the utilization of aNSCs.

Up to now, several research teams have addressed these difficulties, using various scientific and technical approaches. Surgical samples from the adult CNS are usually very small (1-2 mL). As the number of resident aNSCs within the tissue is also very small, isolation techniques have been optimized to increase the success rate of the primary isolation of aNSCs. To acquire aNSCs, CNS tissues are physically minced, and enzymatically digested into single cells. Among them, the enzymatic digestion is a critical step, because it directly affects the survival of aNSCs. The compositions of dissociating enzymes and incubation times are various among investigators. Papain, trypsin, and collagenase have usually been used, and in some reports, papain dissociation was suggested to be most optimal for the primary isolation of aNSCs[18-35].

After the mechanical and enzymatic dissociation of CNS tissues, the resulting single cells have been cultured by two alternative methods: the neurosphere, and adherent culture methods. Conventionally, the neurosphere culture method has been used for in vitro culture of NSCs[36-47]. This method was first used in the primary isolation of NSCs from murine brains. The neurosphere culture method was also applied to maintain aNSCs from human brains. However, difficulties in the stable in vitro expansion of aNSCs using suspension culture methods resulted in the need for another culture method to be developed. Moreover, a single neurosphere may not be derived from a single NSC[48]. The possible heterogenous origin of neurospheres could not guarantee the homogeneity of in vitro expanded aNSCs in the suspension culture conditions[49-51].

To overcome the weak points of the neurosphere culture method, others, as well as ourselves, developed alternative adherent culture methods for NSCs[19-21,44,52-54]. Each group used their own coating plates to attach NSCs to the plates, and various culture medium compositions. Laminin and poly-L-ornithine (PLO) have frequently been used to coat plates, which increase the adherent efficiency of NSCs. To maintain stemness and proliferation of NSCs, the amount of EGF and basic FGF have been optimized[55]. For example, we expanded aNSCs from temporal lobectomy samples of epilepsy patients without any neoplastic diseases, on PLO-coated plates in a DMEM/F12 media supplemented with 1% B27, 1% penicillin/streptomycin, EGF (50 ng/mL), bFGF (50 ng/mL), and 0.5% fetal bovine serum (Table 1)[56]. Using the adherent culture method, aNSCs were expanded in vitro from 10^4 to 10^5 cells within 8 subcultures for 2 mo. Moreover, the expression of Nestin and Sox2 as NSC markers was stably maintained[18]. If the number of aNSCs required for transplantation is 10^7 per patient, at least one hundred thousand patients could be treated with a primary culture of aNSCs.

Table 1 summarizes various primary culture and in vitro expansion techniques for aNSCs. As indicated in Table 1, major obstacles in the primary isolation and stable in vitro expansion of aNSCs have been, or are being resolved, which would increase their clinical applicability.

CURRENT THERAPEUTIC STATUS OF ADULT NEURAL STEM CELLS FOR NEUROLOGICAL DISEASES

Since technical breakthroughs for the preclinical and clinical utilization of aNSCs were introduced relatively recently, scientific results showing treatment effects of aNSCs against neurological diseases are, at present, limited[18,56-59]. However, many previous reports have indicated that NSCs, compared with other stem cell types, are optimal for neurological diseases, since neural functional recovery requires direct neural cell supplementation, besides indirect paracrine effects. With brief presentation of the current developmental status of stem cell therapeutics for individual neurological disease, Tables 2 and 3 summarize preclinical and clinical results, respectively, of aNSCs against various neurological diseases.

Ischemic stroke

Various human stem cells and their derivatives can differentiate into neurons restoring functional losses in the rodent stroke model[60,61]. In particular, human ESC-derived NSCs, injected into the ischemic penumbra region in rat brains with ischemic stroke, have been reported to
infarction area, and showed recovery of motor function \(^{[18]} \).

When human fetal NSCs were transplanted into ischemic lesions of rodent brains, they migrated toward the injured regions and differentiated into neurons \(^{[63,64]} \).

Moreover, human adult temporal lobe-derived NSCs, grafted into the contralateral ventricle of the rat brains with focal cerebral stroke, significantly reduced the infarction area, and showed recovery of motor function \(^{[18]} \).

Table 1: Isolation and in vitro culture methods for adult neural stem cells

Culture methods	Cell source	Dissociating method	Media composition	Plate coating	Maximal in vitro culture	Ref.
Adherent culture method	Temporal lobe	Physical Mincing and enzymatic digestion with papain	DMEM/F12 supplemented with 10 ng/mL bFGF, 20 ng/mL TGF-α, 2.5 µg/mL heparin, 2% B27 (without retinoic acid), 10 mmol/L hepes, and 1% FBS	-	-	[54]
	Temporal lobe	Mechanical trituration and enzymatic dissociation using papain and DNase 1	DMEM/F12 supplemented with 1% B27, 50 ng/mL EGF, 50 ng/mL bFGF, and 0.5% FBS	Poly-L-ornithine	18 passages	[18]
Neurosphere culture method	Hippocampal and lateral ventricle wall tissue	Mechanical dissociation and enzyme digestion using hyaluronic acid, kynurenic acid, and trypsin	DMEM/F12 supplemented with 10 ng/mL EGF, 20 ng/mL EGF, B27, and 2 mmol/L glutamine	-	-	[39]
	Temporal lobe	Enzymic digestion with trypsin	N2 medium supplemented with 5% FBS	Poly-2-hydroxyethyl methacrylate	-	[40]
	Hippocampus	Enzymic digestion with hyaluronidase, kynurenic acid, and trypsin	DMEM/F12 supplemented with 0.6% glucose, 2 mmol/L glutamine, 3 mmol/L sodium bicarbonate, 5 mmol/L L-HEPES buffer, 25 mg/mL insulin, 10 mg/mL heparan sulfate, 100 ng/mL transferrin, 20 mmol/L progesterone, 60 mmol/L putrescine, 30 mmol/L/5-iodo-nicotinate	-	-	[41]
	Amygdala	Enzymic digestion with hyaluronidase, kynurenic acid, and trypsin	DMEM/F12 supplemented with 1% B27, 50 ng/mL EGF, 50 ng/mL bFGF, and 0.5% FBS	Poly-L-ornithine	-	[40]
	Frontal cortex	Enzymic digestion with hyaluronidase, kynurenic acid, and trypsin	DMEM/F12 supplemented with N2, 35 µg/mL bovine pituitary extract, 5% fetal calf serum, 40 ng/mL EGF, and 20 ng/mL bFGF	Ultra-low attachment dish	> 60 population doublings	[46]
	Temporal cortex	Enzymic digestion with papain,	DMEM/F12 supplemented with 10 ng/mL bFGF, 20 ng/mL EGF, and B27	-	-	[45]
	Temporal lobe from 11-wk-old postnatal male	Initially, DMEM/F-12 supplemented with glutamine and 10% FBS	Fibronectin	-	-	[42]
	Hippocampus, ventricular zone, motor cortex and corpus callosum from and a 27-year-old male	Enzymic digestion with papain,	DMEM/F12 supplemented with N2, 35 µg/mL bovine pituitary extract, 5% fetal calf serum, 40 ng/mL EGF, and 20 ng/mL bFGF	-	-	[43]
	Lateral ventricular roof	Enzymic digestion with papain,	DMEM/F12 supplemented with N2, 35 µg/mL bovine pituitary extract, 5% fetal calf serum, 40 ng/mL EGF, and 20 ng/mL bFGF	-	-	[46]

TGF-α: Transforming growth factor alpha; DMEM/F12: Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12; FBS: Fetal bovine serum; bFGF: Basic fibroblast growth factor; EGF: Epidermal growth factor.
Initial clinical trials with stem cells have been completed in stroke[61]. Unfortunately, no significant clinical outcomes were observed when autologous MSCs were injected intravenously into ischemic patients[60]. Although other clinical studies adopting intravenous or intra-arterial administration of autologous bone marrow-derived stem cells in stroke patients are in progress or planning[23], MSC-based regenerative treatment with both paracrine and neuronal supplementation effects would be more effective. Recently, a clinical trial for stroke with immortalized NSCs generated from human fetal cortex was planned in the United Kingdom[23], which would yield scientific data that might possibly demonstrate the superior regenerative and treatment activities of NSCs.

Although there are scientific data demonstrating the therapeutic effects of aNSCs on ischemic stroke, aNSCs have not applied to clinical trials for ischemic stroke yet. In contrast, clinical trials using MSCs for ischemic stroke are continuously planned and performed world widely. Compared with MSC clinical trials, the most different feature of NSC trials is the injection route; while MSCs are usually injected intravenously, NSCs are stereotactically transplanted in the brain. Since the penetration of MSCs across brain-blood barrier is still controversial, direct implantation of NSCs into the brain would potentiate the therapeutic effects against ischemic stroke.

Spinal cord injury

Human NSCs transplanted into a mouse model of spinal cord injury were observed to differentiate into neurons and oligodendrocytes to lead the recovery of locomotion[66]. Treatment mechanism study indicated that neurons derived from transplanted stem cells integrated into the host neuronal circuitry and mediated functional recovery[19,67]. On the other hand, the functional recovery after NSC transplantation into spinal cord injury models was proportional to the number of transplanted stem cell-derived oligodendrocytes and the amount of regenerated myelin[68]. Those preclinical results indicate that the supplementation of mature neural cells by implanted stem cells would also be important in clinical settings, for the functional recovery of spinal cord injury patients.

Highly refined oligodendrocyte progenitor cells (OPCs) generated *in vitro* from human ESCs differentiated into oligodendrocytes, and induced remyelination of the demyelinated spinal cord of mouse[69]. Based on these observations, a first phase I clinical trial using human ESC-derived OPCs is under planning by the United States company, Geron[23]. This first clinical trial has raised worries about the risk for tumorigenicity, which is difficult to determine in preclinical situations[70]. Since the results from animal models could not be directly translated into human, the possible risks need to be further validated. Moreover, utilization of aNSCs, instead of fetal origin stem cells, would reduce the possible tumorigenicity, due to their limited proliferation potential.

Parkinson’s disease

Human embryonic mesencephalic tissue which contains many post-mitotic dopaminergic neuroblasts was tried clinically, which have showed proof of concept that regenerative approach could have therapeutic effects in Parkinson’s disease (PD) patients[71]. Dopaminergic neuroblasts for preclinical animal models have been cultured from various different stem cell sources, including ESCs[72-76], fetal NSCs and precursors of embryonic ventral mesencephalon[80-83], adult NSCs from the SVZ[84], bone marrow stem cells[85,86], and fibroblast-derived iPSCs[87]. Although a small portion of dopaminergic neurons derived from transplanted cells contain disease-specific Lewy bodies 11 to 16 years after transplantation[88,89], implanted cells remained viable[83,89]. However, definitive
successful clinical trials have not yet been reported in the case of human stem cell-derived dopaminergic neurons. In contrast, a group of patients who had embryonic mesencephalic graft showed dyskinesia[90-92]. Those reports have provoked major concern about the possible side effects of transplanted ESC cell-derived dopaminergic neuroblasts[93], and the need for safer stem cell sources, such as aNSCs.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with premature degeneration of motor neurons in the CNS[94-97]. For the regeneration and/or supplementation of motor neurons, motor neurons were generated in vitro from ESCs[94-97], fetal NSCs[98-100], and iPSCs[101,102].

Recently, transplantation of fetal spinal cord- or iPSC-derived NSCs was reported to be effective in slowing down the disease progression of ALS animal models[103,104]. Based on the preclinical results, a phase I clinical trial of intraspinal cord injection of fetal NSCs into ALS patients was attempted in the United States. Clinical outcomes from 6 to 18 mo after the transplantation showed that the intervention did not accelerate disease progress[105]. In contrast, their efficacy could not be determined, although higher dose of injection showed better results in some evaluating factors. On-going and/or planned phase II and III clinical trials would further determine the optimal therapeutic dose, and their therapeutic efficacy against ALS[106].

Until now, there have been few preclinical and clinical trials using aNSCs for ALS. However, ALS could be a good treatment target of aNSCs, having regard to its fatality, and lack of proven therapeutic options for it.

Alzheimer’s disease

Alzheimer’s disease (AD) is the most frequent neurological disease, which is characterized by the increased amyloid plaques and neurofibrillary tangles in the brain[107]. Amyloid plaques are extracellular aggregations consisting of amyloid-peptides. Neurofibrillary tangles are intracellular aggregations of hyperphosphorylated tau, a microtubule-associated protein within neuron[108]. The causative relationship between amyloid plaques/neurofibrillary tangles and AD is still under investigation[109]. Widespread non-specific neuronal death in the AD brain makes stem cell-based regeneration challenging. For effective cell therapy for AD, NSCs need to migrate to multiple regions

Table 3 Current clinical trials of neural stem cells against neurodegenerative diseases

Disease	NSC source	Brief title	Trial ID	Condition	Location	Period	Cell source	Route	Phase
ALS	Fetal NSCs	Human neural stem cell transplantation in amyotrophic lateral sclerosis	NCT01640067	Recruiting	Italy	2011-12 -2016-09	Fetal neural stem cells	Spinal cord	I
		Dose escalation and safety study of human spinal cord derived neural stem cell transplantation for the treatment of amyotrophic lateral sclerosis	NCT01730716	Ongoing	United States	2013-05 -2014-09	Spinal cord of a single fetus 8 wk of gestation	Spinal cord after laminectomy	II
		Human spinal cord derived neural stem cell transplantation for the treatment of amyotrophic lateral sclerosis	NCT01348451	Ongoing	United States	2009-01 -2015-12	Spinal cord of a single fetus 8 wk of gestation	Spinal cord after laminectomy	I
Stoke	Adult NSCs	Pilot investigation of stem cells in stroke	NCT01151124	Ongoing	United Kingdom	2010-06 -2015-03	CTX003 DP allogeneic neural stem cells	Putamen region of the brain	I
		Pilot Investigation of stem cells in stroke phase II efficacy	NCT02117635	Recruiting	United Kingdom	2014-06 -2015-12	CTX003 DP allogeneic neural stem cells	Intracranially via stereotaxic	II
SCI	Adult NSCs	Safety study of human spinal cord-derived neural stem cell transplantation for the treatment of chronic SCI	NCT01772810	Recruiting	United States	2014-08 -2016-02	Human spinal cord-derived neural stem cell	Direct injections into spinal parenchyma	I
		Study of human central nervous system stem cells in patients with thoracic spinal cord Injury	NCT01321333	Ongoing	Canada, Switzerland	2011-03 -2015-05	Human central nervous system stem cells	Thoracic spinal cord	I, II
		Study of human central nervous system stem cell transplantation in cervical spinal cord injury	NCT02163876	Recruiting	United States	2014-10 -2017-05	Human central nervous system stem cells	Cervical spine	II

NSCs: Neural stem cells; ALS: Amyotrophic lateral sclerosis; iPSCs: Induced pluripotent stem cells.
of the brain and then differentiate into numerous multiple subtype neural cells. Moreover, the effect of amyloid plaques on the survival, migration, and differentiation of injected stem cells should be taken into consideration.

Human NSCs transplanted into the brains of AD animal models showed little neurogenesis, but unwanted gliosis around the plaque-like structures. Therefore, stem cell-based regenerative therapies need to be further developed preclinically, before clinical applications to AD. The disappointing preclinical data have resulted in few clinical trials using NSCs against AD. However, MSC is in relative advanced clinical trial stages. For example, human umbilical cord blood-derived MSCs are currently in a phase Ⅰ clinical trial. Most trials using MSCs hire one-time direct injection of MSCs into the patient’s brain. As AD is a progressive disease, long term investigations are necessary, to examine the lasting effects, as well as the safety of transplanted stem cells.

PERSPECTIVES

Based on few scientifically proven treatment modalities for neurological diseases, and the regenerative potentials of stem cells, cell therapies using various stem cells have been preclinically and clinically applied to neurological diseases. There are many controversies about the therapeutic effects of stem cell treatments and their treatment mechanisms. The controversies could be derived from the diverse types of stem cells, and from their unique pros and cons. Compared with other stem cell sources, aNSCs have several advantages, such as differentiation potential into functional neural cells, limited proliferation capacity, and few ethical problems. Therefore, at the current status, aNSCs can be attractive stem cell sources, to be introduced into the preclinical and clinical trials targeting various neurological diseases.

REFERENCES

1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. _Science_ 1998; 282: 1145-1147 [PMID: 9804556 DOI: 10.1126/science.282.5391.1145]
2. Mimeault M, Hauke R, Batra SK. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. _Clin Pharmacol Ther_ 2007; 82: 252-264 [PMID: 17671448 DOI: 10.1038/sj.clpt.6100301]
3. Juengst E, Fossel M. The ethics of embryonic stem cells—now and forever, cells without end. _JAMA_ 2000; 284: 3180-3184 [PMID: 11135785 DOI: 10.1001/jama.284.24.3180]
4. McLaren A. Ethical and social considerations of stem cell research. _Nature_ 2001; 414: 129-131 [PMID: 11689959 DOI: 10.1038/3502194]
5. Baldwin T. Morality and human embryo research. Introduction to the Talking Point on morality and human embryo research. _EMBO Rep_ 2009; 10: 299-300 [PMID: 19337297 DOI: 10.1038/embr.2009.37]
Nam H et al. Adult human neural stem cell therapeutics

Neural stem cells in the adult human brain. Exp Cell Res 1999; 253: 733-736 [PMID: 10585297 DOI: 10.1006/excr.1999.4678]

Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O’Brien TF, Kusakabe M, Steindler DA. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 1999; 156: 333-344 [PMID: 10328940 DOI: 10.1006/exnr.1999.7028]

Arsenijevic V, Villemorge JG, Brunet JF, Bloch JJ, Deglon N, Kostic C, Zurn A, Aebischer P. Isolation of multipotent neural precursor cells residing in the cortex of the adult human brain. Exp Neurol 2001; 170: 48-62 [PMID: 11421583 DOI: 10.1006/exnr.2001.7891]

Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Cell culture. Progenitor cells from human brain after death. Nature 2001; 411: 42-43 [PMID: 11333968 DOI: 10.1038/35075141]

Westerlund U, Moe MC, Varghese M, Berg-Johnsen J, Ohlsson M, Langmoen IA, Svensson M. Stem cells from the adult human brain develop into functional neurons in culture. Exp Cell Res 2003; 289: 378-385 [PMID: 14496569 DOI: 10.1016/S0014-4837(03)00291-X]

Moe MC, Varghese M, Danilov AI, Westerlund U, Ramm-Pettersen J, Brundin L, Svensson M, Berg-Johnsen J, Langmoen IA. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 2005; 128: 2189-2199 [PMID: 15958804 DOI: 10.1093/brain/awi674]

Westerlund U, Svensson M, Moe MC, Varghese M, Gustavsson B, Wallstedt L, Berg-Johnsen J, Langmoen IA. Endoscopically harvested stem cells: a putative method in future autotransplantation. Neurosurgery 2005; 57: 779-784; discussion 779-784 [PMID: 16298992 DOI: 10.1227/01.NEU.0000176402.7862.0d]

Walton NM, Sutter BM, Chen HK, Chang LJ, Roper SN, Scheffler B, Steindler DA. Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 2006; 133: 3671-3681 [PMID: 16914491 DOI: 10.1242/dev.02594]

Varghese M, Olstorn H, Berg-Johnsen J, Moe MC, Murrell W, Langmoen IA. Isolation of human multipotent neural progenitors from adult filum terminale. Stem Cells Dev 2009; 18: 603-613 [PMID: 18652547 DOI: 10.1089/scd.2008.0144]

Rietze RL, Reynolds BA. Neural stem cell isolation and characterization. Methods Enzymol 2006; 419: 3-25 [PMID: 17141048 DOI: 10.1016/S0076-6879(06)19001-1]

Bez A, Corsini E, Curti D, Biggiogera M, Colombo A, Nicosia RF, Pagano SF, Parati EA. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res 2003; 993: 18-29 [PMID: 14642827 DOI: 10.1016/j.brainres.2003.08.061]

Suslov ON, Kukekov VG, Ignatova TN, Steindler DA. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA 2002; 99: 14506-14511 [PMID: 12381788 DOI: 10.1073/pnas.212525299]

Reynolds BA, Rietze RL. Neural stem cells and neurospheres-re-evaluating the relationship. Nat Methods 2005; 2: 333-336 [PMID: 15846359 DOI: 10.1038/nmeth758]

Xu L, Ryugo DK, Pongstaporn T, Johe K, Koliatsos VE. Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuit. J Comp Neurol 2009; 514: 297-309 [PMID: 19326469 DOI: 10.1002/cne.22022]

Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 1996; 10: 3129-3140 [PMID: 8895182 DOI: 10.1101/gad.10.24.3129]

Murrell W, Palmero E, Bianco J, Stangeland B, Joel M, Paulson L, Thiede B, Grieg Z, Ramsnes I, Skjellegard HK, Nygaard S, Brandal P, Sandberg C, Vik-Mo E, Palmero S, Langmoen IA. Expansion of multipotent stem cells from the adult human brain. PLoS One 2013; 8: e71334 [PMID: 23967194 DOI: 10.1371/journal.pone.0071334]

Vescovi AL, Reynolds BA, Fraser DD, Weiss S. BFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuroreport 1993; 11: 951-966 [PMID: 8240816 DOI: 10.1097/00006273-199306270-00024]
Parish CL, Castelo-Branco G, Rawal N, Townes J, Sorensen AT, Salto C, Kokaia M, Lindvall O, Arenas E. Wnt5a-treated midbrain neural stem cell improve dopamine cell replacement therapy in Parkinsonian mice. J Clin Invest 2008; 118: 149-160 [PMID: 18060047 DOI: 10.1172/JCI32273]

Sánchez-Pernaute R, Studer L, Bankiewicz KS, Mayor EO, McKay RD. In vitro generation and transplantation of precursor-derived human dopamine neurons. J Neurosci Res 2001; 65: 284-288 [PMID: 11494363 DOI: 10.1002/jnr.1152]

Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in Parkinsonian rats. Nat Neurosci 1998; 1: 290-295 [PMID: 10195162 DOI: 10.1038/11085]

Shim JW, Park CH, Bae YC, Bae JY, Chung S, Chang MY, Koh HC, Lee HS, Hwang SJ, Lee KH, Lee YS, Choi CY, Lee SH. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells 2007; 25: 1252-1262 [PMID: 17234994 DOI: 10.1634/stemcells.2006-0274]

Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itozaki Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004; 113: 1701-1710 [PMID: 15199405 DOI: 10.1172/JCI20905]

Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 2008; 105: 5856-5861 [PMID: 18391196 DOI: 10.1073/pnas.0801677105]

Kordower JH, Chu Y, Hauser RA, Freeman TB, Olson CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008; 14: 504-506 [PMID: 18391962 DOI: 10.1038/nm1747]

Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehnström S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P. Lewy bodies in grafted neuronal cells in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008; 14: 501-503 [PMID: 18391963 DOI: 10.1038/nm1746]

Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehnström S, Widner H, Lindvall O. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 1999; 2: 1137-1140 [PMID: 10570549 DOI: 10.1038/170960]

Freed CR, Greenberg E, Brenci M, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344: 710-719 [PMID: 11236774 DOI: 10.1056/NEJM20010308341002]

Olano CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003; 54: 403-414 [PMID: 12953276 DOI: 10.1002/ana.10720]

Hagell P, Piccini P, Björklund A, Brundin P, Rehnström S, Widner H, Crabb L, Pavese N, Oertel WH, Quinn N, Brooks DJ, Lindvall O. Dyskinasias following neural transplantation in Parkinson’s disease. Nat Neurosci 2002; 5: 627-628 [PMID: 12042822 DOI: 10.1038/nneuro863]

Lagier-Tourenne C, Cleveland DW. Rethinking ALS: the FUS about TDP-43. Cell 2009; 136: 1001-1004 [PMID: 19308344 DOI: 10.1016/j.cell.2009.03.006]

Singh Roy N, Nakano T, Xuing L, Kang J, Nedergaard M, Goldman SA. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp Neurol 2005; 196: 224-234 [PMID: 16198339 DOI: 10.1016/j.expneurol.2005.06.021]

Lee H, Shamy GA, Elakbet Y, Schofield CM, Harrision NL, Panagiotakos G, Socci ND, Tabar V, Studer L. Directed
Nam H et al. Adult human neural stem cell therapeutics

differentiation and transplants of human embryonic stem cell-derived motorneurons. Stem Cells 2007; 25: 1931-1939 [PMID: 17478583 DOI: 10.1634/stemcells.2007-0097]

96 Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC. Specification of motorneurons from human embryonic stem cells. Nat Biotechnol 2005; 23: 215-221 [PMID: 15685164 DOI: 10.1038/nbt1063]

97 Li XJ, Hu BY, Jones SA, Zhang YS, Lavaute T, Du ZW, Zhang SC. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 2008; 26: 886-893 [PMID: 18238853 DOI: 10.1634/stemcells.2007-0620]

98 Jordan PM, Ojeda LD, Thonhoff JR, Gao J, Boecking D, Yu Y, Wu P. Generation of spinal motor neurons from human fetal brain-derived neural stem cells: role of basic fibroblast growth factor. J Neurosci Res 2009; 87: 318-332 [PMID: 18803285 DOI: 10.1002/jnr.21856]

99 Wu P, Tarasenko YI, Gu Y, Huang LY, Coggeshall RE, Yu Y. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 2002; 5: 1271-1278 [PMID: 12426573 DOI: 10.1038/neuro074]

100 Gao J, Coggeshall RE, Tarasenko YL, Wu P. Human neural stem cell-derived cholinergic neurons innervate muscle in motorneuron deficient adult rats. Neuroscience 2005; 131: 257-262 [PMID: 15708470 DOI: 10.1016/j.neuroscience.2004.10.033]

101 Dimos JT, Rodolfa KT, Niakan KK, Weissenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321: 1218-1221 [PMID: 18669821 DOI: 10.1126/science.1158799]

102 Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 2009; 27: 806-811 [PMID: 19358680 DOI: 10.1002/stem31]

103 Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johk M, Hatfield G, Koliatsos VE. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006; 82: 865-875 [PMID: 17038899 DOI: 10.1097/01.tp.0000235532.00927.a]

104 Popescu IR, Nicolea C, Liu S, Bisch G, Knippenberg S, Daubie V, Boh D, Pochet R. Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis. Stem Cells Transl Med 2013; 2: 167-174 [PMID: 23413576 DOI: 10.5966/stemc.2012-0042]

105 Glass JD, Bouls NM, Johe K, Rutkove SB, Federici T, Polak M, Kelly C, Feldman EL. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 2012; 30: 1144-1151 [PMID: 22415942 DOI: 10.1002/stem.1079]

106 Feldman EL, Bouls NM, Hur J, Johe K, Rutkove SB, Federici T, Polak M, Bordeaux J, Sakowski SA, Glass JD. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase I trial outcomes. Ann Neurol 2014; 75: 363-373 [PMID: 24510776 DOI: 10.1002/ana.24113]

107 Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120: 545-555 [PMID: 15734868 DOI: 10.1016/j.cell.2005.02.008]

108 Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007; 8: 663-672 [PMID: 17684513 DOI: 10.1038/nrn2194]

109 Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Heffneran MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LS. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 2012; 482: 216-220 [PMID: 22278606 DOI: 10.1038/nature10821]

110 Chen WW, BlurtIon-Jones M. Concise review: Can stem cells be used to treat or model Alzheimer’s disease? Stem Cells 2012; 30: 2612-2618 [PMID: 22997040 DOI: 10.1002/stem.1240]

111 Fan X, Sun D, Tang X, Cai Y, Yin ZQ, Xu H. Stem-cell challenges in the treatment of Alzheimer’s disease: a long way from bench to bedside. Med Res Rev 2014; 34: 957-978 [PMID: 24500883 DOI: 10.1002/med.21309]

112 Sugaya K, Kwak YD, Ohmitsu O, Marutle A, Greig NH, Choummina E. Practical issues in stem cell therapy for Alzheimer’s disease. Curr Alzheimer Res 2007; 4: 570-577 [PMID: 17908039 DOI: 10.2174/156720507781788936]

113 Bolongan CV. Recent preclinical evidence advancing cell therapy for Alzheimer’s disease. Exp Neurol 2012; 237: 142-146 [PMID: 22766481 DOI: 10.1016/j.expneurol.2012.06.024]

114 Moe MC, Westerlund U, Varghese M, Berg-Johnsen J, Svensson M, Langmoen IA. Development of neuronal networks in single stem cells harvested from the adult human brain. Neurosurgery 2005; 56: 1182-1188 [discussion 1188-1189] [PMID: 15919034 DOI: 10.1227/01.NEU.0000159881.09663.6D]

P- Reviewer: Dawe GS, Leanza G, Li JX
S- Editor: Ji FF
L- Editor: A
E- Editor: Lu Y
