An Extremely-Low Cost Ground-Based Whole Sky Imager

Mayank Jain¹,², Isabella Gollini³, Michela Bertolotto², Gavin McArdle², and Soumyabrata Dev¹,²

¹ The ADAPT SFI Research Centre, Dublin, Ireland
² School of Computer Science, University College Dublin, Ireland
³ School of Mathematics and Statistics, University College Dublin, Ireland

Send correspondence to S.Dev, e-mail: soumyabrata.dev@ucd.ie
Introduction

Ground-based Whole Sky Imagers (WSIs) provide sky/cloud images at:

- low cost,
- high temporal resolution, and
- high spatial resolution

as compared to their satellite counterparts

- Especially useful in applications where short-term and highly localized analysis of cloud images is required (e.g. solar irradiance forecasting)
Ground-based Whole Sky Imagers (WSIs) provide sky/cloud images at:

- low cost,
- high temporal resolution, and
- high spatial resolution

as compared to their satellite counterparts.

Especially useful in applications where short-term and highly localized analysis of cloud images is required (e.g. solar irradiance forecasting).
Introduction

Ground-based Whole Sky Imagers (WSIs) provide sky/cloud images at:

- low cost,
- high temporal resolution, and
- high spatial resolution

as compared to their satellite counterparts

Especially useful in applications where short-term and highly localized analysis of cloud images is required (e.g. solar irradiance forecasting)
Introduction

Ground-based Whole Sky Imagers (WSIs) provide sky/cloud images at:

- low cost,
- high temporal resolution, and
- high spatial resolution

as compared to their satellite counterparts

Especially useful in applications where short-term and highly localized analysis of cloud images is required (e.g. solar irradiance forecasting)
Introduction

- Ground-based Whole Sky Imagers (WSIs) provide sky/cloud images at:
 - low cost,
 - high temporal resolution, and
 - high spatial resolution

 as compared to their satellite counterparts

- Especially useful in applications where short-term and highly localized analysis of cloud images is required (e.g. solar irradiance forecasting)
Motivation

- Although WSIs have many advantages, captured images are prone to noise from:
 - sun glare,
 - bird flocks,
 - dust particles,
 - condensed water vapours near camera lens
- Post-processing is an important pre-requisite
- Multiple imagers for the same locality might help reduce noise further
- Hence, reducing the cost of such imagers will help in overall reducing overall information retrieval cost
Introduction

Motivation

Although WSIs have many advantages, captured images are prone to noise from:

- sun glare,
- bird flocks,
- dust particles,
- condensed water vapours near camera lens

- Post-processing is an important pre-requisite
- Multiple imagers for the same locality might help reduce noise further
- Hence, reducing the cost of such imagers will help in overall reducing overall information retrieval cost
Motivation

- Although WSIs have many advantages, captured images are prone to noise from:
 - sun glare,
 - bird flocks,
 - dust particles,
 - condensed water vapours near camera lens
- Post-processing is an important pre-requisite
- Multiple imagers for the same locality might help reduce noise further
- Hence, reducing the cost of such imagers will help in overall reducing overall information retrieval cost
Motivation

• Although WSIs have many advantages, captured images are prone to noise from:
 • sun glare,
 • bird flocks,
 • dust particles,
 • condensed water vapours near camera lens
• Post-processing is an important pre-requisite
• Multiple imagers for the same locality might help reduce noise further
• Hence, reducing the cost of such imagers will help in overall reducing overall information retrieval cost
Mechanical Design

Mechanical design of the WSI. A: glass dome; B: camera assembly & LDR; C: camera holder and pedestal; D: insulating polystyrene ice box; E, F: PVC Plyboard; G, H: bricks to keep apparatus in place; I: small wedges; J: slit to release hot air from the internal electronic systems; K: raised pedestal with bricks
The WSI is completely operational and is capturing images since September 2020.
Salient Features

- High-resolution images (4056 × 3040)
- Automatically adjusting shutter speeds based on LDR sensor values to capture images in low light conditions
- Local backup facility with easy handling of hard drive to avoid dependence on internet
- Online backup using ethernet cable if internet is available
- Deploys RTC to keep track of time during power outage
- Durable and low-cost chassis which is well-protected from outside heat and other weather conditions
- Extremely low-cost model (< $300) constructed with mostly off-the-shelf and readily available components
Salient Features

- High-resolution images \((4056 \times 3040)\)
- Automatically adjusting shutter speeds based on LDR sensor values to capture images in low light conditions
- Local backup facility with easy handling of hard drive to avoid dependence on internet
- Online backup using ethernet cable if internet is available
- Deploys RTC to keep track of time during power outage
- Durable and low-cost chassis which is well-protected from outside heat and other weather conditions
- Extremely low-cost model \((< $300)\) constructed with mostly off-the-shelf and readily available components
Salient Features

- High-resolution images (4056 x 3040)
- Automatically adjusting shutter speeds based on LDR sensor values to capture images in low light conditions
- Local backup facility with easy handling of hard drive to avoid dependence on internet
- Online backup using ethernet cable if internet is available
- Deploys RTC to keep track of time during power outage
- Durable and low-cost chassis which is well-protected from outside heat and other weather conditions
- Extremely low-cost model (< $300) constructed with mostly off-the-shelf and readily available components
Salient Features

- High-resolution images (4056×3040)
- Automatically adjusting shutter speeds based on LDR sensor values to capture images in low light conditions
- Local backup facility with easy handling of hard drive to avoid dependence on internet
- Online backup using ethernet cable if internet is available
- Deploys RTC to keep track of time during power outage
- Durable and low-cost chassis which is well-protected from outside heat and other weather conditions
- Extremely low-cost model (< $300) constructed with mostly off-the-shelf and readily available components
Salient Features

- High-resolution images (4056 × 3040)
- Automatically adjusting shutter speeds based on LDR sensor values to capture images in low light conditions
- Local backup facility with easy handling of hard drive to avoid dependence on internet
- Online backup using ethernet cable if internet is available
- Deploys RTC to keep track of time during power outage
- Durable and low-cost chassis which is well-protected from outside heat and other weather conditions
- Extremely low-cost model (< $300) constructed with mostly off-the-shelf and readily available components
Salient Features

- High-resolution images (4056×3040)
- Automatically adjusting shutter speeds based on LDR sensor values to capture images in low light conditions
- Local backup facility with easy handling of hard drive to avoid dependence on internet
- Online backup using ethernet cable if internet is available
- Deploys RTC to keep track of time during power outage
- Durable and low-cost chassis which is well-protected from outside heat and other weather conditions
- Extremely low-cost model (< $300) constructed with mostly off-the-shelf and readily available components
Salient Features

- High-resolution images \((4056 \times 3040)\)
- Automatically adjusting shutter speeds based on LDR sensor values to capture images in low light conditions
- Local backup facility with easy handling of hard drive to avoid dependence on internet
- Online backup using ethernet cable if internet is available
- Deploys RTC to keep track of time during power outage
- Durable and low-cost chassis which is well-protected from outside heat and other weather conditions
- Extremely low-cost model \((< $300)\) constructed with mostly off-the-shelf and readily available components
Sample images that were captured by the designed WSI. *Starting from top left corner in a clockwise manner* - clear sky during day; thick white clouds during day; patterned clouds during day; thick dark clouds during day; almost clear sky at dusk; patterned clouds during night; thick white clouds during night; and clear sky during night.
Future Work

- Improve WSI design further by:
 - adding a cooling device for the camera sensor module separately to protect against excessively high temperatures, and
 - adding an IR-filter in front of the camera lens to diminish the effect of sun-glare and color correction
- Work on post-processing methods for the captured images to get rid of the noise elements like
 - sun glare,
 - blur due to dust particles or water droplets which might get deposited on the lens (protective dome), and
 - bird flocks
Thank you for your attention!