Measurement of Phenotypic Variation for Control and Bacterial Leaf Blight Inoculated Rice Lines and Varieties

M. H. M. Mubassir1, *, Khondoker M. Nasiruddin1, Nazmul Hoque Shahin2, Shamsun Nahar Begum2, Afia Sultana3, A. Q. M. Bazlur Rashid3

1Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, Bangladesh
2Bangladesh Institute of Nuclear Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
3Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh

Email address:
mubassirmhm@gmail.com (M. H. M. Mubassir), nasirbiotech@yahoo.com (K. M. Nasiruddin), snhoque28@yahoo.com (N. H. Shahin), sblna98@yahoo.com (S. N. Begum), af.sultana87@gmail.com (A. Sultana), aqmbr@yahoo.com (A. Q. M. B. Rashid)

*Corresponding author

To cite this article: M. H. M. Mubassir, Khondoker M. Nasiruddin, Nazmul Hoque Shahin, Shamsun Nahar Begum, Afia Sultana, A. Q. M. Bazlur Rashid. Measurement of Phenotypic Variation for Control and Bacterial Leaf Blight Inoculated Rice Lines and Varieties. American Journal of Bioscience and Bioengineering. Vol. 4, No. 6, 2016, pp. 59-64. doi: 10.11648/j.bio.20160406.11

Abstract: Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae is a devastating disease of rice, the staple food crop of Bangladesh. Under field condition the disease significantly damages the phenotypic characteristics of the plants affecting the yield. An assessment of the phenotypic variations due to the disease in 10 rice lines and 17 rice varieties were studied at the maximum tillering stage in both natural and induced epiphytotic conditions. Along with the indigenous cultivars the test materials including the check resistant and susceptible cultivars were collected from IRRI. Significant differences in both plant height and the number of effective tillers were recorded in the check and inoculated lines and varieties. Among the rice lines, RC222 resulted the maximum reduction in plant height (3.18%) in the inoculated plants whereas RC217 yielded the minimum reduction of 1.27%. Among the rice varieties, Binadhan-8 and Binadhan-10 showed the maximum reduction in plant height (11.43% and 18.22% respectively) for the inoculated plants where IRBB21, IRBB65 and Kumragur resulted 0% reduction. The number of effective tiller among the rice lines, RC251 yielded the maximum reduction of 26.19% in the inoculated plants whereas RC192 showed as minimum as 4.16% reduction. For rice varieties, Binadhan-8, Binadhan-10 and BR-11 yielded the maximum reduction of 52.62%, 50.07% and 50.06% while IRBB21, IRBB65 and Kumragur showed 0% reduction. The findings of such phenotypic variations may contribute significantly to the selection of best lines and further research to develop the disease free commercial varieties of rice against the disease.

Keywords: Bacterial Leaf Blight, Phenotype, Resistance, Plant Height, Tiller Number

1. Introduction

Bacterial leaf blight (BLB) is a destructive disease of rice which is caused by Xanthomonas oryzae pv. oryzae (Xoo.) [1]. This disease is mostly common in rice growing countries in Asia specially where there is irrigated and rainfed lowland [2]. BLB can reduce grain production by 20-50% [3] by affecting the panicle emergence and grain filling. The yield loss can go up to 80% if severely affected which depends on the crop stage, environmental condition and susceptibility [4-7]. Besides different control measures, development of resistant cultivar by breeding technique is the best cost-effective method to approach the disease [8, 9].

At the early period of the infection, at the leaf tips lesions are observed. These lesions become yellowish and turn into irregular lesions with wavy margins covering the whole leaf blade with wavy margin at the later stage [4]. As a result of the infection immature and sterile and poor quality grains are produced [10].

During vegetative stage by the phenotypic characteristics of the plant yield loss can be predicted. If the phenotypic characteristics like plant height, effective tiller number etc. of
the plant shows abnormality from the ideal plant characteristics it can be assumed that the plant will not give expected yield. Also, percent infected leaf area and growth stage directly affect the yield production of rice [7]. Moreover, BLB disease clearly shows this kind of phenotypic symptoms where all the plant become diseased and burned and show less effective tiller number with less grain production [11, 12].

In this study, an experiment was conducted to ten rice lines and seventeen rice varieties by inoculating with bacterial strain BXO-09 (Xoo.) responsible for BLB disease with an objective to assess the reduction of plant height and tiller number in these rice lines and varieties. For the selection of best rice lines to develop as commercial variety this result can contribute significantly. Moreover, this result may also contribute towards understanding the effect of BLB on the phenotype of the rice plant in terms of plant height and tiller number.

2. Materials and Methods

2.1. Experimental Setup

In the experimental field of Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA) the study was conducted. Different rice lines and varieties were taken for the study (Table 1) where the variety IRBB21 and BR-11 were considered as the resistant and susceptible cultivars for check [13-15] respectively.

Type	Name of the test material	Source of Collection
Line	RC191, RC192, RC193, RC217, RC221, RC222, RC225, RC229, RC251, RC249	BINA
Variety	BR-10, BR-11, BR-14, BR-16, BR-26, BRRI Dhan31, BRRI Dhan32, IRBB 5, IRBB 21, IRBB 60, IRBB 65	BRRI
Variety	Binadhan-7, Binadhan-8, Binadhan-10, Binadhan-11, Binadhan-12	BINA
Variety	Kamragur	Gazipur

BINA = Bangladesh Institute of Nuclear Agriculture; BRRI = Bangladesh Rice Research Institute

2.2. Preparation of Pre-germinated Seeds for Sowing

Collected seeds were heat-treated in an oven set for 5 days at 50°C to break the seed dormancy. The seeds were then soaked in tap water for 24 hours at room temperature, washed and rinsed properly with tap water, placed on petri dishes with moistened filter papers and incubated for 48 hours at 30°C to germinate.

2.3. Preparation of Soil Tray

Soil trays were prepared for raising the germinated seeds successfully. The trays were first filled up 1/3 portion with soil and then these were puddle carefully until the soil was soft enough to grow a germinated seed successfully. The required amount of fertilizers and manures were applied time to time.

2.4. Sowing of Seeds and Maintenance of Seedlings

Twenty germinated seeds for each lines and varieties were sown in trays following line sowing method. The young seedlings were nursed carefully by following agronomic management practices time to time.

2.5. Preparation of Bacterial Inoculum and Inoculation of Rice Plant

BXO-09, the most virulent strain in Bangladesh [16] was collected from Bangladesh Rice Research Institute. This isolate was maintained and grown on peptone sucrose agar (PSA) medium for 72 hours at 30°C. Then, by mixing the cultured bacteria with 10 ml sterile distilled water, the inoculum was prepared. Prior to inoculation using sterile distilled water, the concentration of bacterial suspension was adjusted to 108 CFU/ml. After preparing the bacterial inoculum, the inoculation of rice seedlings was done following clipping method [17]. After 21 days of inoculation, data was taken for the measurement of phenotypic variation.

2.6. Measurement of Phenotypic Variation

Two types of data, plant height and total tillers and effective tillers/hill, were taken in case of measuring the phenotypic variation of rice plant caused due to BLB infection. All these data were taken both from the infected rice plants and uninfected/control plants. Plant height was taken from the ground level to the tip of the main stem at maximum tillering stage of the plant and was expressed in cm. For the measurement of total tillers and effective tillers/hill, total tiller numbers in a hill were counted then total effective tiller numbers in a hill were checked at maximum tillering stage.

3. Results and Discussion

3.1. Plant Height

At maximum tillering stage, significant difference in plant height between control and BLB inoculated rice lines and varieties were observed. Among the rice lines RC222 showed maximum reduction in plant height for BLB inoculated plants although it was only 3.18 % whereas RC217 showed the minimum reduction in plant height (Table 2). In case of RC192, RC193 and RC251 average reduction in plant height were observed (Fig. 1). It indicates that RC222 may have the maximum effect on bacterial leaf blight disease and maximum reduction in yield may happen in case of RC222. This result is consistent with our previous work of screening of BLB resistant rice lines which showed that RC222 is moderately susceptible line [18] which may be the reason of showing much effect on plant height in this study.
At maximum tillering stage, significant difference in plant height between control and BLB inoculated varieties were also observed. Binadhan-8, BR11 and Binadhan-10 showed maximum reduction in plant height (11.43%, 11.47 and 18.22% subsequently) for BLB inoculated plants whereas IRBB21, IRBB65 and Kumragur showed 0% reduction from control condition (Table 3). In case of Binadhan-7, Binadhan-11, BR-10 and BR-16, they performed moderate reduction for BLB inoculated rice plants compared to its control condition (Fig. 2). This result is consistent with our previous study which showed that Binadhan-8 and BR11 are the highly susceptible variety [18] and thus may have ultimate effect on plant height and yield generation. Similar findings were observed in another study of Jeyalakshmi et al. (2010) where it was observed that plant height significant varies due different treatments and BLB resistance for that which has direct impact on plant height [12].

Table 2. Measurement of plant height for control and BLB inoculated rice lines.

Line	Plant height (cm)	Control	Treatment	% reduction
RC191	126.0 cd	124.3 bc	1.293 e	
RC192	123.3 cd	120.7 cd	2.220 bc	
RC193	144.7 a	141.3 a	2.303 bc	
RC217	133.0 abc	131.3 abc	1.277 e	
RC221	123.0 cd	121.0 cd	1.637 de	
RC222	115.0 d	111.3 d	3.180 a	
RC225	117.7 d	116.0 d	1.283 e	
RC229	126.7 bed	122.3 cd	3.407 a	
RC251	140.2 ab	136.7 ab	2.507 b	
RC249	117.7 d	115.3 d	1.913 cd	
LSD (0.05)	13.06	12.84	0.539	

Table 3. Measurement of plant height for control and BLB inoculated rice varieties.

Variety	Plant height (cm)	Control	Treatment	% reduction
BR-11	114.7 ab	101.7 de	11.47 b	
Binadhan-7	92.00 f	87.33 ghi	5.070 cd	
Binadhan-8	93.00 ef	82.33 i	11.43 b	
Binadhan-10	104.0 bcd	85.00 hi	18.22 a	
Binadhan-12	115.3 a	108.0 bcd	5.783 e	
Binadhan-11	112.7 abc	107.3 bcd	4.713 cd	
BR-10	111.7 abc	107.7 bcd	3.567 cd	
BR-14	119.3 a	119.0 a	0.2767 d	
BR-16	97.67 def	94.00 efg	3.707 cd	
BR-26	112.7 abc	112.0 abc	0.590 d	
BRRI Dhan31	114.0 abc	113.3 ab	0.5967 d	
BRRI Dhan32	120.7 a	120.0 a	0.5467 d	
IRBB5	91.67 f	91.00 fghi	0.703 cd	
IRBB21	96.67 def	96.67 def	0.0000 d	
IRBB60	103.3 ede	102.3 ede	0.9533 cd	
IRBB65	99.33 def	99.33 def	0.0000 d	
Kumragur	118.3 a	118.3 a	0.0000 d	
LSD (0.05)	9.57	8.79	4.46	

Level of significance ** ** **
3.2. Effective Tillers/Hill

At maximum tillering stage, significant difference in effective tiller number between control and BLB inoculated rice lines/varieties was observed. Among the rice lines RC251 showed maximum reduction (26.19%) (Table 4) in effective tiller number for BLB inoculated plants whereas RC192 showed minimum reduction (4.16%) in effective tiller number (Fig. 3). It indicates that RC222 may have the maximum effect on bacterial leaf blight disease and maximum reduction in yield may happen in case of RC222. This result shows consistency with our previous work of screening of BLB resistant rice lines which described RC222 as a moderately susceptible rice line [18] and may be due to this, line RC222 has much effect on plant effective tiller number for BLB in this study.

Table 4. Measurement of tiller number for control and BLB inoculated rice lines.

Line	Effective tillers/hill	Control	Treatment	% reduction
RC191	9.000 ab	8.000 ab		11.20 d
RC192	8.000 bcd	7.667 bc		4.167 f
RC193	8.667 abc	7.000 cd		19.16 b
RC217	8.000 bcd	6.333 de		20.50 b
RC221	8.000 bcd	6.667 de		16.80 c
RC222	7.333 d	6.333 de		11.57 d
RC225	9.333 a	8.667 a		7.037 e
RC229	7.667 cd	6.333 de		17.26 c
RC251	7.333 d	5.333 f		26.19 a
RC249	7.333 d	6.000 ef		20.37 b
LSD (0.05)	1.13	0.871		1.7
Level of significance	**	**		**
For the rice varieties, Binadhan-8, Binadhan-10 and BR-11 showed maximum reduction in effective tiller number (52.62%, 50.07% and 50.06% subsequently) for BLB inoculated plants (Table 5) where IRBB21, IRBB65 and Kumragur showed 0% reduction from control condition (Fig. 4). This result is consistent with our previous study which showed that Binadhan-8 and BR11 are the highly susceptible variety [18] and thus may have ultimate effect on plant effective tiller number and yield generation. Similar finding was resulted by Jeyalakshmi et al. (2010) where it was observed that plant effective tiller number varies due different treatments and BLB resistance level of the plant [12].

Table 5. Measurement of tiller number for control and BLB inoculated rice varieties.

Variety	Effective tillers/hill	Treatment	% reduction
BR-11	8.667 abc	4.330 hi	50.000 a
Binadhan-7	7.667 abcd	6.000 efg	21.300 b
Binadhan-8	6.333 ef	3.000 i	51.590 a
Binadhan-10	6.667 def	3.333 i	49.200 a
Binadhan-12	7.000 cdef	5.667 fhg	18.650 bc
Binadhan-11	6.000 f	5.000 gh	15.080 bed
BR-10	7.000 cdef	5.670 fhg	17.860 bc
BR-14	9.000 ab	8.333 abc	7.4070 bed
BR-16	8.000 abcd	6.333 defg	20.500 b
BR-26	7.330 bcdef	7.000 cdef	4.167 ed
BRR1 Dhan31	7.670 abcd	7.667 bed	0.000 d
BRR1 Dhan32	8.000 abcd	7.333 bcde	7.870 bed
IRBB5	8.000 abcd	7.667 bcde	4.763 cd
IRBB21	8.000 abcd	8.000 abc	0.000 d
IRBB60	8.667 abc	8.667 abc	0.000 d
IRBB65	8.333 abcd	8.000 abc	4.167 cd
Kumragur	9.333 a	9.333 a	0.000 d
LSD (0.05)	1.49	1.31	13.79

Figure 4. Graphical view of effective tiller variation between control and BLB inoculated rice varieties.

4. Conclusion

Ten IRRI advanced rice lines and seventeen rice varieties were analyzed to assess the reductions in plant height and effective tiller number due to bacterial leaf blight disease. Rice line RC222 showed maximum reduction in plant height (3.18%) and RC217 showed minimum (1.27%). Also rice variety Binadhan-8 and Binadhan-10 showed maximum reduction (11.43 % and 18.22%) for BLB inoculated plants...
where IRBB21, IRBB65 and Kumragur showed 0 % reduction. For effective tiller number rice line RC251 showed maximum reduction (26.19%) and RC192 minimum (4.16%). Rice variety Binadhan-8, Binadhan-10 and BR-11 showed maximum reduction in (52.62%, 50.07% and 50.06% subsequently), where IRBB21, IRBB65 and Kumragur showed 0 % reduction among the BLB inoculated rice plants. This result may have significant impact on yield as the plants lost their photosynthetic area to produce grain. Also as the lines are not released as variety yet, this result also contributes to the selection of best lines to develop as commercial variety.

Acknowledgement

We are very much thankful to Dr. Mohammad Ashik Iqbal Khan, Senior Scientific Officer, Plant Pathology Division, Bangladesh Rice Research Institute, Gazipur for his support upon giving bacterial strain and materials needed for the experiment conducted.

References

[1] Swings, J., et al., Reclassification of the Causal Agents of Bacterial Blight (Xanthomonas campestris pv. oryzae) and Bacterial Leaf Streak (Xanthomonas campestris pv. oryzicola) of Rice as Pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic and Evolutionary Microbiology, 1990. 40 (3): p. 309-311.
[2] Chu, Z., et al., Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & development, 2006. 20 (10): p. 1250-1255.
[3] Khan, J. A., et al., Biochemical basis of resistance in rice against Bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae. Adv. life sci, 2014. 1 (3): p. 181-190.
[4] Ou, S. H., Rice diseases. 1985: IRRI.
[5] Shin, M., et al., Effects of inoculation of compatible and incompatible bacterial blight races on grain yield and quality of two rice cultivars. Korean Journal of Breeding (Korea Republic), 1992.
[6] Mew, T., et al., Focus on bacterial blight of rice. Plant disease, 1993. 77 (1): p. 5-12.
[7] Noh, T.-H., et al., Effects of bacterial leaf blight occurrence on rice yield and grain quality in different rice growth stage. Research in Plant Disease, 2007. 13 (1): p. 20-23.
[8] NIÑO·LIU, D. O., P. C. Ronald, and A. J. Bogdanove, Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 2006. 7 (5): p. 303-324.
[9] Pinta, W., et al., Pyramiding of blast and bacterial leaf blight resistance genes into rice cultivar RD6 using marker assisted selection. African Journal of Biotechnology, 2013. 12: p. 4432-4438.
[10] Tagami, Y. and T. Mizukami, Historical review of the researches on bacterial blight of rice caused by Xanthomonas oryzae (Uyede and Ishiyama) Dowson. Spec. Rep. Plant Dis. Ins. Pests Forecasting Serv, 1962. 10: p. 112.
[11] Reddy, A., et al., Relationship of bacterial leaf blight severity to grain yield of rice. Phytopathology, 1979. 69: p. 967-969.
[12] Jeyalakshmi, C., K. Madhiazhagan, and C. Rettinassababady, Effect of different methods of application of Pseudomonas fluorescens against bacterial leaf blight under direct sown rice. J. Biopest, 2010. 3 (2): p. 487-488.
[13] Huang, N., et al., Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theoretical and Applied Genetics, 1997. 95 (3): p. 313-320.
[14] Latif, M., et al., Identification of genotypes resistant to blast, bacterial leaf blight, sheath blight and tungro and efficacy of seed treating fungicides against blast disease of rice. Scientific Research and Essays, 2011. 6 (13): p. 2804-2811.
[15] Suh, J.-P., et al., Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice, 2013. 6 (1): p. 5.
[16] Khan, M., et al., Pathogenic diversity of Xanthomonas oryzae pv. oryzae in Bangladesh. Bangladesh Journal of Plant Pathology, 2009. 25 (1/2): p. 1-6.
[17] Kauffman, H., et al., Improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Disease Reporter, 1973.
[18] Mubassir, M. H. M., et al., Morpho-Molecular Screening for Bacterial Leaf Blight Resistance in Some Rice Lines and Varieties. Journal of Plant Sciences, 2016. 4 (6): p. 146-152.