GREEDY AND LAZY REPRESENTATIONS IN NEGATIVE BASE SYSTEMS

TOMÁŠ HEJDA, ZUZANA MASÁKOVÁ, EDITA PELANTOVÁ

We consider positional numeration systems with negative real base $-\beta$, where $\beta > 1$, and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal $(-\beta)$-representation with respect to the alternate order. We also show that both extremal representations can be obtained using the positive base β^2 and a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy and lazy $(-\beta)$-representation. Such a characterization allows us to study the set of uniquely representable numbers. In case that β is the golden ratio and the Tribonacci constant, we give the characterization of digit sequences admissible as greedy and lazy $(-\beta)$-representation using a set of forbidden strings.

Keywords: numeration systems, lazy representation, greedy representation, negative base, unique representation

Classification: 11A63, (37B10)

1. INTRODUCTION

A positional number system is given by a real base α with $|\alpha| > 1$ and by a finite set of digits $A \subset \mathbb{R}$, usually called alphabet. If $x \in \mathbb{R}$ can be expressed in the form $\sum_{i \leq k} x_i \alpha^i$ with coefficients $x_i \in A$, we say that x has an α-representation in A. The most important assumption on the choice of the alphabet A is that any positive real number x has at least one α-representation. This assumption implies for the cardinality of the alphabet $\#A \geq |\alpha|$.

It is well known that if the base α is a positive integer and the alphabet is $A = \{0, 1, 2, \ldots, \alpha-1\}$ then any positive real x has an α-representation and almost all positive reals (up to a countable number of exceptions) have unique representation. For example, in the decimal numeration system

\[\frac{1}{2} = 0.5000000 \ldots = 0.4999999 \ldots, \quad \text{whereas} \quad \frac{1}{3} = 0.333333 \ldots \]

If the base α is not an integer and the alphabet A is rich enough to represent all positive reals, then almost all $x \geq 0$ have infinitely many representations and one
can choose among them “the nicest” one from some point of view.

The most studied numeration system with a positive base \(\alpha \notin \mathbb{Z} \) uses the alphabet \(\mathcal{A} = \{0, 1, 2, \ldots, \lfloor \alpha \rfloor\} \). The set of all \(\alpha \)-representations of \(x \) understood as infinite words in the alphabet \(\mathcal{A} \) is lexicographically ordered. The lexicographically greatest \(\alpha \)-representation is considered to be the “nicest”. Since this \(\alpha \)-representation is computed by the so called greedy algorithm, it is referred to as the greedy representation. On the other hand, the lexicographically smallest \(\beta \)-representation is called lazy. One might also be interested in other representations in positive base systems, for an extensive overview we refer to [6].

The study of greedy representations for non-integer bases \(\alpha > 1 \) was initialized by Rényi in 1957 [9]. An interest in lazy representations for bases \(\alpha \in (1, 2) \) with alphabet \(\{0, 1\} \) started in 1990 by works of Erdős, Joó and Komornik [4]. A systematic study of lazy representations for all bases \(\alpha > 1 \) can be found in the work of Dajani and Kraaikamp [2] from 2002.

Recently, Ito and Sadahiro [5] introduced a numeration system with a negative base \(\alpha = -\beta < -1 \) with the alphabet \(\mathcal{A} = \{0, 1, 2, \ldots, \lfloor \beta \rfloor\} \). They gave an algorithm for computing a \((-\beta)\)-representation of \(x \in \left[\frac{-\beta}{1+\beta}, \frac{1}{1+\beta} \right) \) and showed that the natural order on \(\mathbb{R} \) corresponds to the alternate order on such \((-\beta)\)-representations. Using a negative base, we can represent positive and negative numbers without an additional bit for the signum \(\pm \). A family of transformations producing negative base representations of numbers for \(1 < \beta < 2 \) is studied in [1]. Among other, it is shown that although none of them gives the maximal representation in the alternate order, it is produced by a random algorithm, see Theorem 4.2. in [1]. In its proof, one can find out that the greedy representation is obtained by periodic application of two transformations.

In this article, we focus on negative bases \(-\beta, \beta > 1 \) in general, and deduce analogous result without introducing random \((-\beta)\)-expansions. Our main result states that both extremal representations can be obtained using the positive base \(\beta^2 \) and a non-integer alphabet \(\mathcal{B} \) by application of a transformation of the form \(T(x) = \beta^2 x - D(x) \), where \(D(x) \in \mathcal{B} \) (Theorems 4.1 and 4.2). Note that representations using a non-integer alphabet were considered by Pedicini [8]. This enables us to exploit results of [6] for giving necessary and sufficient conditions for identifying sequences admissible as greedy and lazy \((-\beta)\)-expansions (Theorem 5.3). For \(\beta = \phi \), the golden ratio, and \(\beta = \mu \), the Tribonacci constant, we describe such sequences in terms of forbidden strings. Finally, we illustrate how the characterization of admissible greedy and lazy representations can be applied for the study of uniquely representable numbers (Section 7).

2. HOW TO OBTAIN \(\alpha \)-REPRESENTATIONS OF REAL NUMBERS

In this chapter we recall a method for finding an \(\alpha \)-representation of a given number with general real base \(\alpha, |\alpha| > 1 \). It is clear that if we are able to find a representation for all numbers \(x \) from some bounded interval \(J \subset \mathbb{R} \) containing 0, then we are also

\footnote{Note that although most people prefer writing \(\frac{1}{2} = 0.5 \), the shopkeepers consider the representation 0.4999\ldots nicer than 0.5000\ldots for \(x = \frac{1}{2} \).}
able to find an α-representation for any $x \in \bigcup_{k \in \mathbb{Z}} \alpha^k J$, i.e. for any real number (if 0 is inside J or the base α is negative) or for all positive reals or all negative reals (if 0 is a boundary point of J and the base α is positive). Our definition below is a restriction of the very general numeration system considered by Thurston [11], which permits for the base also complex numbers.

Definition 2.1. Given a base $\alpha \in \mathbb{R}$, $|\alpha| > 1$, a finite alphabet $\mathcal{A} \subset \mathbb{R}$ and a bounded interval $J \ni 0$. Let $D : J \mapsto \mathcal{A}$ be a mapping such that the transformation defined by $T(x) = \alpha x - D(x)$ maps $J \mapsto J$. The corresponding α-representation of x is a mapping $d = d_{\alpha,J,D} : J \mapsto \mathcal{A}^\mathbb{N}$,

$$d_{\alpha,J,D}(x) = x_1 x_2 x_3 x_4 \cdots,$$

where $x_k = D(T^{k-1}(x))$.

Let us comment the previous definition. From the prescription for T, we have for any $x \in J$ that $x = \frac{D(x)}{\alpha} + \frac{T(x)}{\alpha}$. As the value $T(x)$ is required to belong to J as well, we may use this formula recursively and obtain the mentioned α-representation of x in the alphabet \mathcal{A}:

$$x = \frac{D(x)}{\alpha} + \frac{D(T(x))}{\alpha^2} + \frac{D(T^2(x))}{\alpha^3} + \frac{D(T^3(x))}{\alpha^4} + \cdots \tag{1}$$

Clearly, at any step of this recursion we have

$$x = \frac{x_1}{\alpha} + \frac{x_2}{\alpha^2} + \cdots + \frac{x_n}{\alpha^n} + \frac{T^n(x)}{\alpha^n}. \tag{2}$$

Example 2.2. In [9], Rényi defined for $\alpha = \beta > 1$ the mappings $T : [0,1) \mapsto [0,1)$ and $D : [0,1) \mapsto \{0,1,\ldots,\lceil \beta \rceil - 1\}$ by the prescriptions

$$D(x) = \lfloor \beta x \rfloor \quad \text{and} \quad T(x) = \beta x - D(x).$$

The β-representation of $x \in [0,1)$ corresponding to this choice of D and T is usually called the greedy β-expansion of x.

More general case of number systems with positive base is studied in [6], where the authors admit also non-integer digits and, among other, give condition for a digit string to be admissible as a number expansion. We refer to [6] also for an extensive list of useful literature.

Example 2.3. In [5], Ito and Sadahiro considered negative bases $\alpha = -\beta$, for any $\beta > 1$. On the interval $J = \left[-\frac{\beta}{\beta + 1}, \frac{1}{\beta + 1} \right)$ the mappings T and D are defined as follows:

$$D(x) = \lfloor -\beta x + \frac{\beta}{\beta + 1} \rfloor \quad \text{and} \quad T(x) = -\beta x - D(x).$$

The corresponding alphabet, i.e., the range of D, is $\mathcal{A} = \{0,1,\ldots,\lceil \beta \rceil\}$. Let us mention that for $\beta \notin \mathbb{N}$ the Ito-Sadahiro alphabet and the Rényi alphabet coincide. In case that $\beta \in \mathbb{N}$, the digit $\lceil \beta \rceil$ occurs only in the infinite suffix $(\lceil \beta \rceil)^\omega$ and, in fact, every number in J can also be represented in base $(-\beta)$ with the smaller alphabet $\mathcal{A} \setminus \{\lceil \beta \rceil\} = \{0,1,\ldots,\beta - 1\}$. However, such a representation cannot be obtained using a transformation from Definition 2.1.
The Rényi β-expansion and the Ito-Sadahiro $(-\beta)$-expansion are “order-preserving”, provided that we choose a suitable order on the set of representations which they produce.

Definition 2.4. Let $\mathcal{A} \subset \mathbb{R}$ be a finite alphabet ordered by the natural order “$<$” in \mathbb{R}. Let $x_1x_2x_3\cdots$ and $y_1y_2y_3\cdots$ be two different strings from $\mathcal{A}^\mathbb{N}$. Denote $k = \min\{i \mid x_i \neq y_i\}$. We write
- $x_1x_2x_3\cdots <_{\text{lex}} y_1y_2y_3\cdots$ if $x_k < y_k$ and say that $x_1x_2x_3\cdots$ is smaller than $y_1y_2y_3\cdots$ in the lexicographical order;
- $x_1x_2x_3\cdots <_{\text{alt}} y_1y_2y_3\cdots$ if $(-1)^k x_k < (-1)^k y_k$ and say that $x_1x_2x_3\cdots$ is smaller than $y_1y_2y_3\cdots$ in the alternate order.

Proposition 2.5. Let α, A, J and D be as in Definition 2.1. Let numbers $x, y \in J$ and let $d_{\alpha,J,D}(x) = x_1x_2x_3\cdots$ and $d_{\alpha,J,D}(y) = y_1y_2y_3\cdots$ be their α-representations.
- If $\alpha > 1$ and $D(x)$ is non-decreasing then $x < y \iff x_1x_2x_3\cdots <_{\text{lex}} y_1y_2y_3\cdots$.
- If $\alpha < -1$ and $D(x)$ is non-increasing then $x < y \iff x_1x_2x_3\cdots <_{\text{alt}} y_1y_2y_3\cdots$.

Proof. We prove the statement for a negative base $\alpha < -1$. Let us denote $k = \min\{i \mid x_i \neq y_i\}$. As $x_\ell = y_\ell$ for all $\ell = 1, 2, \ldots, k - 1$ we have according to (2) that

$$x < y \iff \frac{T^{k-1}(x)}{\alpha^{k-1}} < \frac{T^{k-1}(y)}{\alpha^{k-1}}.$$ \hfill (3)

Since D is non-increasing and $x_k = D(T^{k-1}(x)) \neq y_k = D(T^{k-1}(y))$, we have

$$x_k > y_k \iff \frac{T^{k-1}(x)}{\alpha^{k-1}} < \frac{T^{k-1}(y)}{\alpha^{k-1}}.$$ \hfill (4)

First we discuss the case k even. Since $\alpha < 0$, combining (3) and (4), we obtain

$$x < y \iff x_k < y_k \iff x_1x_2x_3\cdots <_{\text{alt}} y_1y_2y_3\cdots.$$

If k is odd, then we obtain

$$x < y \iff x_k > y_k \iff x_1x_2x_3\cdots <_{\text{alt}} y_1y_2y_3\cdots.$$

The proof of the statement for a positive base is analogous. \hfill \square

The above proposition allows one to give a condition of admissibility on a digit string to be a representation of a number according to the algorithm presented in Definition 2.1. Such an admissibility condition was given in [7] for the Rényi number system from Example 2.2, for more general positive base systems in [6].
For the number system from Example 2.3, it is given in [5]. Let us stress that the representations and consequently admissibility conditions depend on the given transformation T in the scheme J,D,T.

From now on, we focus on a different question. We do not fix any transformation, but among all representations of a number x with a given alphabet, we search for an extremal one.

For a given base α and an alphabet $A \subset \mathbb{R}$ we put

$$J_{\alpha,A} = \left\{ \sum_{i=1}^{\infty} a_i \alpha^{-i} \mid a_i \in A \right\},$$

the set of numbers representable with negative powers of α and the alphabet A, and for any $x \in J_{\alpha,A}$, we denote the set of its α-representations in A by

$$R_{\alpha,A}(x) = \{ x_1 x_2 x_3 \cdots \mid x = \sum_{i=1}^{\infty} x_i \alpha^{-i} \text{ and } x_i \in A \}.$$

The Proposition 2.5 suggests how to choose a suitable ordering on the set $R_{\alpha,A}(x)$.

Definition 2.6. Let α be a real base with $|\alpha| > 1$ and let $A \subset \mathbb{R}$ be a finite alphabet.

- Let $\alpha < -1$ and $x \in J_{\alpha,A}$. Then the maximal and minimal elements of $R_{\alpha,A}(x)$ with respect to the alternate order are called the greedy and lazy α-representations of x in the alphabet A, respectively.

- Let $\alpha > 1$ and $x \in J_{\alpha,A}$. Then the maximal and minimal elements of $R_{\alpha,A}(x)$ with respect to the lexicographical order are called the greedy and lazy α-representations of x in the alphabet A, respectively.

In order to justify that the maximal and minimal elements in $R_{\alpha,A}(x)$ exist, realize that $R_{\alpha,A}(x)$ is a compact subspace of $A^\mathbb{N}$. For, it is a pre-image of a closed set $\{x\} \subset \mathbb{R}$ under the map $x_1 x_2 x_3 \cdots \mapsto \frac{x_1}{\alpha} + \frac{x_2}{\alpha^2} + \frac{x_3}{\alpha^3} + \cdots$ which is continuous with respect to the Cantor metric on $A^\mathbb{N}$.

For positive bases $\alpha = \beta > 1$, the greedy β-representation in the alphabet $\{0, 1, \ldots, [\beta] - 1\}$ corresponds to the β-representation produced by the Rényi greedy algorithm described in Example 2.2. The method for obtaining the lazy representation in the same alphabet was described in [2].

Let us demonstrate on the case of the golden mean $\phi = \frac{1 + \sqrt{5}}{2}$ how to obtain these extremal representations. Since $[\phi] = 2$, we consider the alphabet $A = \{0, 1\}$. As $\phi^2 = \phi + 1$, we have $\sum_{i=1}^{\infty} \phi^{-i} = \phi$ and so clearly,

$$J_{\phi,A} = \left\{ \sum_{i=1}^{\infty} a_i \phi^{-i} \mid a_i \in \{0, 1\} \right\} = [0, \phi].$$

If the first digit in a ϕ-representation of an $x \in J_{\phi,A}$ is $x_1 = 0$ then necessarily $x \in \frac{1}{\phi} J_{\phi,A} = [0,1]$. If the first digit in a ϕ-representation of x is $x_1 = 1$ then necessarily $x \in \frac{1}{\phi} + \frac{1}{\phi} J_{\phi,A} = \left[\frac{1}{\phi}, \phi \right]$. It means that
for $x \in [0, \frac{1}{\phi})$, all representations in $R_{\phi, A}(x)$ have the first digit $x_1 = 0$,
- for $x \in (1, \phi]$, all representations in $R_{\phi, A}(x)$ have the first digit $x_1 = 1$,
- for $x \in [\frac{1}{\phi}, 1]$, both 0 and 1 appear as x_1.

As we now consider the lexicographical order, the greedy representation of an $x \in \left[\frac{1}{\phi}, 1 \right]$ has the first digit $x_1 = 1$ and the lazy representation must have $x_1 = 0$. Thus the corresponding digit assigning mappings are

$$D_G(x) = \begin{cases} 0 & \text{for } x \in \left[0, \frac{1}{\phi} \right), \\ 1 & \text{for } x \in \left[\frac{1}{\phi}, \phi \right], \end{cases} \quad \text{and} \quad D_L(x) = \begin{cases} 0 & \text{for } x \in [0, 1], \\ 1 & \text{for } x \in (1, \phi), \end{cases}$$

or equivalently

$$D_G(x) = \left\lfloor x + \frac{1}{\phi^2} \right\rfloor, \quad D_L(x) = \left\lfloor x \right\rfloor - 1 \quad \text{for any } x \in (0, \phi)$$

and

$$D_G(0) = D_L(0) = 0, \quad D_G(\phi) = D_L(\phi) = 1.$$

The graphs of the corresponding transformations T_G and T_L are depicted in Figure 1.

The transformations T_G and T_L map $[0, \phi] \mapsto [0, \phi]$. The points 0 and ϕ are fixed points of both transformations. However, we see that

- for any $x \in [0, \phi)$ there exists $n \geq 1$ such that $T_G^n(x) \in J_G = [0, 1)$ and $T_G(J_G) = J_G$,
- for any $x \in (0, \phi]$ there exists $n \geq 1$ such that $T_L^n(x) \in J_L = (\frac{1}{\phi}, \phi]$ and $T_L(J_L) = J_L$.

Fig. 1. The greedy and lazy transformations T_G and T_L for $\beta = +\phi$ with pre-images of 0 and 1 under D_G and D_L, respectively.
Moreover the intervals \([0, 1)\) and \((\frac{1}{\beta}, \phi]\) are the smallest intervals with the above described property. Such interval is in [2] called the attractor of a mapping. Let us point out that in both cases there exists an isolated fixed point \(\phi = T_G(\phi)\) and \(0 = T_L(0)\) outside the attractors. In fact, for finding the greedy \(\beta\)-representation, Rényi used \(J_G = [0, 1)\) as the domain of \(D\) and \(T\) in the scheme \(J, D, T\). Even when the scheme \(J, D, T\) for finding the lazy representation is described, the restriction of the mappings \(D\) and \(T\) to the ‘attractor’ interval of \(T\) is preferred.

3. EXTREMAL REPRESENTATIONS IN NEGATIVE BASE SYSTEMS

Let us now fix a base \(\alpha = -\beta\) for some \(\beta > 1\), \(\beta \notin \mathbb{N}\), and an alphabet \(\mathcal{A} = \{0, 1, \ldots, \lfloor \beta \rfloor\}\). (We exclude integer bases because of the phenomena explained in Example 2.3.) Using the same arguments as in [8] it can be shown that the set \(I\) of numbers representable in this system is an interval, namely

\[
I = \left[\frac{-\beta \lfloor \beta \rfloor}{\beta^2 - 1}, \frac{\lfloor \beta \rfloor}{\beta^2 - 1}\right] =: [l, r]. \tag{5}
\]

The interval \(I\) (i.e. its boundary points) depend on the base \(\beta\), however, we avoid it in the notation for simplicity. We denote by \(I_a\) the set of numbers which have a \((-\beta)\)-representation starting with the digit \(a\in \mathcal{A}\). Then

\[I_a = \frac{a}{-\beta} + \frac{1}{-\beta}I = \left[\frac{a}{-\beta} + \frac{r}{-\beta}, \frac{a}{-\beta} + \frac{l}{-\beta}\right]\]

and \(I\) can be written as a (not necessarily disjoint) union of intervals \(I = \bigcup_{a \in \mathcal{A}} I_a\). Obviously, we have \(-\beta x - a \in I\) for every \(x \in I_a\).

Note that intervals \(I_a\) overlap, but not three at a time. If \(\lfloor \beta \rfloor = 1\), then it is clear, as they are only two. If \(\lfloor \beta \rfloor \geq 2\), then the right end-point of \(I_{a+1}\) is smaller than the left end-point of \(I_{a-1}\), namely

\[
\frac{a + 1}{-\beta} + \frac{l}{-\beta} = \frac{a + 1}{-\beta} + \frac{\lfloor \beta \rfloor}{\beta^2 - 1} < \frac{a - 1}{-\beta} + \frac{1}{-\beta} + \frac{\lfloor \beta \rfloor}{\beta^2 - 1} = \frac{a - 1}{-\beta} + \frac{r}{-\beta},
\]

which is equivalent to \(2\beta - \lfloor \beta \rfloor - 2 > 0\).

Our aim is to provide an algorithm for finding extremal digit strings (with respect to the alternate order) representing a given \(x\) in the base \((-\beta)\). Assigning of the first digit of such an extremal representation must prefer – among all possible digits – the minimal or the maximal one in the alternate order.

We define

\[
D_m(x) = \begin{cases}
\lfloor \beta \rfloor & \text{for } x \in I_{\lfloor \beta \rfloor}, \\
\ a & \text{for } x \in I_a \setminus I_{a+1}, \ a \in \mathcal{A}, \ a \neq \lfloor \beta \rfloor.
\end{cases}
\]

and

\[
D_v(x) = \begin{cases}
0 & \text{for } x \in I_0, \\
\ a & \text{for } x \in I_a \setminus I_{a-1}, \ a \in \mathcal{A}, \ a \neq 0.
\end{cases}
\]
Fig. 2. Transformations T_m and T_v which prefer small and large digits in the alternate order, respectively (for a base $-\beta \in (-3, -2)$).

and corresponding transformations

$$T_m(x) = -\beta x - D_m(x) \quad \text{and} \quad T_v(x) = -\beta x - D_v(x).$$

It is readily seen that $D_m(x)$ prefers small digits (in the alternate order) and $D_v(x)$ prefers great digits, i.e.

$$D_m(x) = a \implies -\beta x - b \notin I \quad \text{for any } b <_{\text{alt}} a, \ b \in \mathcal{A} \quad (6)$$

and

$$D_v(x) = a \implies -\beta x - b \notin I \quad \text{for any } b >_{\text{alt}} a, \ b \in \mathcal{A}. \quad (7)$$

Proposition 3.1. Let $x \in I$.

- Denote $\varepsilon_0 = x$ and for all $i \geq 0$ put

 $$z_{2i+1} = D_m(\varepsilon_{2i}), \ \varepsilon_{2i+1} = T_m(\varepsilon_{2i}) \quad \text{and} \quad z_{2i+2} = D_v(\varepsilon_{2i+1}), \ \varepsilon_{2i+2} = T_v(\varepsilon_{2i+1}).$$

 Then $z_1 z_2 z_3 \cdots$ is the greedy $(-\beta)$-representation of x.

- Denote $\eta_0 = x$ and for all $i \geq 0$ put

 $$y_{2i+1} = D_v(\eta_{2i}), \ \eta_{2i+1} = T_v(\eta_{2i}) \quad \text{and} \quad y_{2i+2} = D_m(\eta_{2i+1}), \ \eta_{2i+2} = T_m(\eta_{2i+1}).$$

 Then $y_1 y_2 y_3 \cdots$ is the lazy $(-\beta)$-representation of x.

Proof. For contradiction, let there exist a representation $x_1 x_2 x_3 \cdots \in R_{-\beta, \mathcal{A}}(x)$ such that $z_1 z_2 z_3 \cdots \prec_{\text{alt}} x_1 x_2 x_3 \cdots$. Let us denote $k = \min\{i \mid z_i \neq x_i\}$.
If $k = 2\ell$ is even, then the inequality $z_1z_2z_3\cdots \prec_{alt} x_1x_2x_3\cdots$ implies $z_{2\ell} < x_{2\ell}$ and thus $z_{2\ell} = a$ and $x_{2\ell} = b$ for some $a, b \in \mathcal{A}$, $a < b$. Since
\[
\varepsilon_{2\ell - 1} = (-\beta)^{2\ell - 1}(x - \sum_{i=1}^{2\ell - 1} z_i(-\beta)^{-i}) = (-\beta)^{2\ell - 1}(x - \sum_{i=1}^{2\ell - 1} x_i(-\beta)^{-i}) = \frac{1}{\beta} \sum_{i=2\ell + 1}^{\infty} x_i(-\beta)^{-i},
\]
we have $-\beta\varepsilon_{2\ell - 1} - b \in I = [l, r]$. On the other hand, $z_{2\ell} = D_1(\varepsilon_{2\ell - 1}) = a$ implies according to (6), that $-\beta\varepsilon_{2\ell - 1} - b \notin I$, which is a contradiction. The case k odd is analogous.

Very similarly one proves the statement for the lazy representation. \vspace{12pt}

For $\beta \in (1, 2)$, the description of greedy ($-\beta$)-representations of Proposition 3.1 can be deduced from the proof of Theorem 4.2 in [1], albeit the statement of the theorem is vague, namely that the greedy ($-\beta$)-representation can be generated by a “random sequence of transformations”.

4. REPRESENTATIONS IN BASE β^2 WITH NON-INTEGER ALPHABETS

The algorithm for obtaining extremal ($-\beta$)-representations of a number x, described in Proposition 3.1 does not fit in the scheme of the Definition 2.1 for negative base $\alpha = -\beta$. In particular, there is no transformation $T(x) = -\beta x - D(x)$ which generates for every x the greedy (or lazy) ($-\beta$)-representation. This fact complicates the description of digit strings occurring as greedy or lazy representations. Nevertheless, we arrive to overcome this handicap.

Defining $T_G := T_mT_v$ and $T_L := T_vT_m$ we obtain transformations $I \rightarrow I$ which produce the greedy and lazy ($-\beta$)-representations. The price to be paid is that the digit assigning functions D_G and D_L are not integer-valued. For, we have
\[
T_G(x) = T_m(T_v(x)) = \beta^2 x + \beta D_v(x) - D_m(-\beta x - D_v(x)),
\]
and therefore
\[
D_G(x) := -\beta D_v(x) + D_m(-\beta x - D_v(x)) \in \mathcal{B},
\]
with the alphabet $\mathcal{B} = \{-b\beta + a \mid a, b \in \mathcal{A}\}$, which has $(\#\mathcal{A})^2$ distinct elements, as $\beta \notin \mathbb{N}$.

Let us describe the mappings T_G and D_G (resp. T_L and D_L) explicitly. As T_G is a composition of two piecewise linear functions, T_G is also of this kind. Its points of discontinuity are described as follows,
\[
\operatorname{Dis}_G = \operatorname{Dis}_v \cup T_v^{-1}(\operatorname{Dis}_m),
\]
where Dis_v and Dis_m are discontinuity points of T_v and T_m respectively. Clearly, $\#\operatorname{Dis}_v = \#\operatorname{Dis}_m = \#\mathcal{A} - 1$. We can easily see that
\[
\operatorname{Dis}_m = \left\{ \frac{a}{-\beta} + \frac{l}{-\beta} \bigg| a \in \mathcal{A}, a \neq 0 \right\}
\]
and
\[
\mathcal{D}_{is} = \left\{ \frac{a}{-\beta} + \frac{r}{-\beta} \mid a \in \mathcal{A}, \ a \neq \lfloor \beta \rfloor \right\}.
\] (10)

As every discontinuity point \(\frac{a}{-\beta} + \frac{r}{-\beta} \) of \(\mathcal{D}_{is} \) lies in \((r-1,r]\) and for every letter \(a \in \mathcal{A} \) one has \((r-1,r] \subset T_v(I_a)\), the set \(T_{-1}^{-1}(\mathcal{D}_{is}) \) has \(\#\mathcal{A} \times (\#\mathcal{A} - 1) \) points. Thus the union in (8) has \(\#\mathcal{A} \times (\#\mathcal{A} - 1) \) elements. The interval \(I \) therefore splits into \((\#\mathcal{A})^2 - 1 \) subintervals on which the transformation \(T_G \) is continuous. Explicitly, for every \(a \in \mathcal{A} \), \(a \neq 0 \), we have
\[
T_{-1}^{-1} \left(\frac{a}{-\beta} + \frac{r}{-\beta} \right) = \left\{ \frac{b}{-\beta} + \frac{a}{(-\beta)^2} + \frac{l}{(-\beta)^2} \mid b \in \mathcal{A} \right\}.
\]

As \(-\beta r = l\), every discontinuity point \(\frac{b}{-\beta} + \frac{r}{-\beta} \) of \(\mathcal{D}_{is} \) can be written in the form \(\frac{b}{-\beta} + \frac{a}{(-\beta)^2} \), and thus
\[
\mathcal{D}_{is} = \left\{ \frac{b}{-\beta} + \frac{a}{(-\beta)^2} + \frac{l}{(-\beta)^2} \mid a, b \in \mathcal{A}, \ (b, a) \neq (\lfloor \beta \rfloor, 0) \right\}.
\]

In order to obtain an explicit prescription for the mapping \(T_G \), let us define
\[
\gamma_{ba} := \frac{b}{-\beta} + \frac{a}{(-\beta)^2} + \frac{l}{(-\beta)^2}, \quad \text{for any } a, b \in \mathcal{A}.
\] (11)

Note that if \((b, a) = (\lfloor \beta \rfloor, 0) \), then \(\gamma_{ba} = l \). The set of words of length two over the alphabet \(\mathcal{A} \) can be ordered by the alternate order, namely
\[
\lfloor \beta \rfloor 0 \prec_{alt} \lfloor \beta \rfloor 1 \prec_{alt} \cdots \prec_{alt} \lfloor \beta \rfloor \lfloor \beta \rfloor \prec_{alt} (\lfloor \beta \rfloor - 1) 0 \prec_{alt} \cdots \prec_{alt} 1 \lfloor \beta \rfloor \prec_{alt} 00 \prec_{alt} \cdots \prec_{alt} 0 \lfloor \beta \rfloor.
\]

Taking into account that \(\beta \neq \mathbb{N} \), one can easily see that
\[
ab \prec_{alt} cd \iff \gamma_{ab} = \frac{a}{-\beta} + \frac{b + l}{(-\beta)^2} < \frac{c}{-\beta} + \frac{d + l}{(-\beta)^2} = \gamma_{cd}.
\]

In particular, this means that the assignment \(ab \mapsto -a\beta + b \), for \(a, b \in \mathcal{A} \), is a bijection. On the set \(\mathcal{A}^2 \) we can define the predecessor and successor functions by
\[
P(ab) := \max\{cd \mid cd \in \mathcal{A}^2, \ cd \prec_{alt} ab\},
\]
\[
S(ab) := \min\{cd \mid cd \in \mathcal{A}^2, \ cd \succ_{alt} ab\},
\]
where maximum and minimum is taken again with respect to the alternate order. Of course, the predecessor is not defined for the minimal element \(\min(\mathcal{A}^2) = \lfloor \beta \rfloor 0 \) and the successor is not defined for the maximal element \(\max\mathcal{A}^2 = 0 \lfloor \beta \rfloor \).

Now we are ready to provide an explicit prescription for the digit assigning map \(D_G : \mathcal{I} \to \mathcal{B} = \{-b\beta + a \mid a, b \in \mathcal{A}\} \), namely
\[
D_G(x) = \begin{cases}
-b\beta + a, & \text{if } x \in [\gamma_{ba}, \gamma_{S(ba)}) \text{ for some } ba \neq 0 \lfloor \beta \rfloor, \\
\lfloor \beta \rfloor, & \text{if } x \in [\gamma_{ba}, r) \text{ for } ba = 0 \lfloor \beta \rfloor.
\end{cases}
\] (12)
Let us summarize the above considerations. Define a morphism $\psi : \mathcal{B}^* \to \mathcal{A}^*$ by

$$\psi(-b\beta + a) = ba.$$

Note that ψ is well defined as $\beta \not\in \mathbb{N}$. The action of the morphism ψ can be naturally extended to infinite words by setting $\psi(x_1x_2x_3\cdots) = \psi(x_1)\psi(x_2)\psi(x_3)\cdots$.

Theorem 4.1. Let $\beta > 1$, $\beta \not\in \mathbb{N}$, $\mathcal{A} = \{0, 1, \ldots, \lfloor \beta \rfloor \}$. Define on the interval I from (5) the transformation $T_G : I \to I$ by the prescription

$$T_G(x) = \beta^2 x - D_G(x),$$

where $D_G : I \to \mathcal{B}$ is given by (12). For an $x \in I$ denote by $d_G(x)$ the corresponding β^2-representation of x. Then

- $d_G(x)$ is the greedy β^2-representation of x in the alphabet \mathcal{B}.
- $\psi(d_G(x))$ is the greedy $(-\beta)$-representation of x in the alphabet \mathcal{A}.

For the sake of completeness, let us provide an explicit prescription for the lazy transformation $T_L = T_vT_m : I \to I$ and the corresponding digit assigning map $D_L : I \to \mathcal{B}$. Defining

$$\delta_{ba} := \frac{b}{-\beta} + \frac{a}{(-\beta)^2} + \frac{r}{(-\beta)^2}, \quad \text{for any} \ a, b \in \mathcal{A},$$

we can write the set of discontinuity points of T_L as

$$\text{Dis}_L = \{ \delta_{ba} \mid a, b \in \mathcal{A}, \ ba \neq 0[\beta] \}.$$

Note that for $ba = 0[\beta]$ one has $\delta_{ba} = r$. Again,

$$ab <_{alt} cd \iff \delta_{ab} < \delta_{cd}.$$

We now have the digit assigning function $D_L : I \to \mathcal{B} = \{-b\beta + a \mid a, b \in \mathcal{A}\}$, given by

$$D_L(x) = \begin{cases}
-\lfloor \beta \rfloor \beta, & \text{if} \ x \in [l, \delta_{ba}] \text{ for } ba = \lfloor \beta \rfloor 0, \\
-b\beta + a, & \text{if} \ x \in (\delta_{P(ba)}, \delta_{ba}) \text{ for } ba \neq \lfloor \beta \rfloor 0.
\end{cases} \quad (13)$$

Theorem 4.2. Let $\beta > 1$, $\beta \not\in \mathbb{N}$, $\mathcal{A} = \{0, 1, \ldots, \lfloor \beta \rfloor \}$. Define on the interval I from (5) the transformation $T_L : I \to I$ by the prescription

$$T_L(x) = \beta^2 x - D_L(x),$$

where $D_L : I \to \mathcal{B}$ is given by (13). For an $x \in I$ denote by $d_L(x)$ the corresponding β^2-representation of x. Then

- $d_L(x)$ is the lazy β^2-representation of x in the alphabet \mathcal{B}.
• $\psi(d_L(x))$ is the lazy $(-\beta)$-representation of x in the alphabet A.

In [4], the relation between the lazy and the greedy representations of numbers in a numeration system with a positive base $\beta \in (1, 2)$ and the alphabet $\{0, 1\}$ was established. Namely, if $x = x_1x_2x_3\cdots$ is the greedy β-representation of $x \in J_{\beta,A} = [0, \frac{1}{\beta-1}]$, then $(1-x_1)(1-x_2)(1-x_3)\cdots$ is the lazy β-representation of $y = \frac{1}{\beta-1} - x$. Generalization of this relation for numeration systems with a base $\beta > 1$ and the alphabet $A = \{0, 1, \ldots, \lfloor \beta \rfloor\}$ was presented in [2]. Comparing the prescriptions for D_G and D_L, one can deduce a similar symmetry between greedy and lazy $(-\beta)$-representations.

Proposition 4.3. Let $z_1z_2z_3z_4\cdots$ be the greedy $(-\beta)$-representation of a number $z \in I$ and let $y_1y_2y_3y_4\cdots$ be the lazy $(-\beta)$-representation of a number $y \in I$. Then

$$y_i + z_i = \lfloor \beta \rfloor \quad \text{for every } i \geq 1 \quad \iff \quad y + z = -\frac{\lfloor \beta \rfloor}{\beta + 1}.$$

From now on, we shall concentrate on the properties of the greedy transformation T_G only.

5. ADMISSIBILITY

The transformation T_G has the following property:

For every $x \in [l, l+1)$ one has $T_G(x) \in [l, l+1)$. Moreover, for every $x \in I \setminus [l, l+1)$, $x \neq r$, there exists an exponent $k \in \mathbb{N}$ such that $T_G^k(x) \in [l, l+1)$.

The above fact implies that, in general, some digits from the alphabet \mathcal{B} do not appear infinitely many times in the greedy β^2-representation of any number $x \in I$.
Lemma 5.1. Let d_G be as in Theorem 4.1. Denote by A_G the minimal alphabet, such that the β^2-representation $d_G(x)$ of every $x \in [l,l+1)$ has digits in A_G. Then

$$A_G = \{-b\beta + a \mid a,b \in A, \ b \geq 1\} \cup \{a \mid a \in A, \ a < \beta\{\beta\}\},$$

where $\{\beta\} = \beta - \lfloor \beta \rfloor$ is the fractional part of β. Moreover, for every $x \in I$, the β^2-representation $d_G(x)$ has a suffix over A_G.

Proof. The fact that a given $x \in I$ satisfies $T^k_G(x) \in [l,l+1)$ for sufficiently large k means that the greedy representation of x eventually uses only such digits $-b\beta + a$ that the corresponding interval $[\gamma_{ba}, \gamma_{S(ba)}]$ has a non-empty intersection with $[l,l+1)$. Such digits satisfy

$$l + 1 > \gamma_{ba} = \frac{b}{-\beta} + \frac{a}{(-\beta)^2} + \frac{l}{(-\beta)^2}.$$

This is equivalent to

$$\beta(\beta - \lfloor \beta \rfloor) > -b\beta + a. \quad (14)$$

The left-hand side of the above inequality is positive. The right-hand side is negative whenever $b \geq 1$. If $b = 0$ then the condition for a is written as $a < \beta\{\beta\}$. \hfill \Box

Remark 5.2. From the above lemma it follows that the maximal digit $\max A_G$ satisfies

$$0 \leq \max A_G = -0 \cdot \beta + \lceil \{\beta\}\beta \rfloor - 1.$$

In order that $A_G = B$, one needs that the maximal digit $\max B = -0 \cdot \beta + \lfloor \{\beta\} \rfloor$ of the alphabet B also satisfies (14). This gives the condition

$$\beta^2 - \lfloor \beta \rfloor \beta - \lfloor \beta \rfloor > 0,$$

which happens if and only if β is strictly greater than the quadratic Pisot number, root of $x^2 - \lfloor \beta \rfloor x - \lfloor \beta \rfloor$.

As a consequence of Lemma 5.1 for the description of admissible digit strings in the greedy representations, it is reasonable to consider the transformation T_G restricted to the interval $[l,l+1)$. Denote for any $X = -b\beta + a \in A_G$

$$l_X = \gamma_{ba} \quad \text{and} \quad r_X = \begin{cases} \gamma_{S(ba)} & \text{if } X \neq \max A_G, \\ l + 1 & \text{if } X = \max A_G, \end{cases} \quad (15)$$

where $\gamma_{ba} = -b\beta + a$, (see (11)). Then we have a disjoint union

$$[l,l+1) = \bigcup_{X \in A_G} [l_X, r_X]$$

and the digit function D_G restricted to $[l,l+1)$ can be written as

$$D_G(x) = X \quad \text{if } x \in [l_X, r_X].$$
The mappings \(D_G : [l, l + 1) \to A_G \), and the corresponding \(T_G : [l, l + 1) \to [l, l + 1) \),
\(d_G : [l, l + 1) \to \mathcal{A}_G^N \) are right continuous.

In order to formulate the result about admissible greedy representations which is derived using a result of [6], let us define the left continuous mapping \(D^*_G : (l, l + 1] \to A_G \) by
\[
D^*_G(x) = X \quad \text{if} \quad x \in (l_X, r_X].
\]
The left continuous mappings \(T^*_G : (l, l + 1] \to (l, l + 1] \), \(d^*_G : (l, l + 1] \to \mathcal{A}_G^N \) are defined accordingly. The mappings \(T \) and \(T^* \) are illustrated in Figure 4. Note that for every \(x \in (l, l + 1] \), one has
\[
D^*_G(x) = \lim_{\varepsilon \to 0^+} D_G(x - \varepsilon), \quad T^*_G(x) = \lim_{\varepsilon \to 0^+} T_G(x - \varepsilon), \quad d^*_G(x) = \lim_{\varepsilon \to 0^+} d_G(x - \varepsilon).
\]

Theorem 5.3. Let \(X_1X_2X_3 \cdots \in \mathcal{A}_G^N \). Then there exists an \(x \in [l, l + 1) \) such that \(d_G(x) = X_1X_2X_3 \cdots \) if and only if for every \(k \geq 1 \)
\[
X_{k+1}X_{k+2}X_{k+3} \cdots \prec \begin{cases}
 d^*_G(T^*_G(l + 1)) & \text{if } X_k = \max A_G, \\
 d^*_G(l + \{\beta\}) & \text{if } X_k = -b\beta + \lfloor \beta \rfloor, \ X_k \neq \max A_G.
\end{cases}
\]

Proof. Applying Theorem 2.5 from [6] to the greedy transformation \(T_G \), we obtain a necessary and sufficient condition for a string \(X_1X_2X_3 \cdots \) over the alphabet \(A_G \) to be admissible, namely
\[
d(l_{X_k}) \preceq X_kX_{k+1}X_{k+2} \cdots \prec d^*(r_{X_k}) \quad \text{for all } k \geq 1.
\]

For simplicity of notation we omit in the proof the subscripts in \(d_G = d, T_G = T, \)
\[
d^*_G = d^*, T^*_G = T^*.
\]
Since \(d(l_X) = Xd(T(l_X)) \) and \(d^*(r_X) = Xd^*(T^*(r_X)) \), we can rewrite conditions (16) as
\[
d(T(l_{X_k})) \preceq X_{k+1}X_{k+2}\cdots \prec d^*(T^*(r_{X_k})) \quad \text{for all } k \geq 1. \tag{17}
\]

Let us study the left-hand side inequality. From the prescription for \(T = T_G \), it is clear that for every letter \(X \in \mathcal{A}_G \), we have \(T(l_X) = l \) (see also Figure 4) and thus, the string on the left-hand side of (17) reads
\[
d(T(l_{X_k})) = d(l) = (\min \mathcal{A}_G)^\omega.
\]

Consequently, the left-hand side condition is not limiting.

In order to study the right-hand side condition from (17), realize that if \(X \neq \max \mathcal{A}_G \), we have
\[
T^*(r_X) = \begin{cases}
 l + 1 & \text{for } X \neq -b\beta + \lfloor \beta \rfloor, \\
 l + \lfloor \beta \rfloor & \text{for } X = -b\beta + \lfloor \beta \rfloor,
\end{cases}
\]
see Figure 4. As \(r_X = l + 1 \) for \(X = \max \mathcal{A}_G \), the right-hand side condition can be written as
\[
X_{k+1}X_{k+2}\cdots \prec \begin{cases}
 d^*(T^*(l + 1)) & \text{for } X_k = \max \mathcal{A}_G, \\
 d^*(l + 1) & \text{for } X_k = -b\beta + \lfloor \beta \rfloor, X_k \neq \max \mathcal{A}_G, \\
 d^*(l + \{\beta\}) & \text{for } X_k = -b\beta + \lfloor \beta \rfloor, X_k \neq \max \mathcal{A}_G.
\end{cases} \tag{18}
\]

We have \(d^*(l + 1) = \max \mathcal{A}_G d^*(T^*(l + 1)) \). Therefore if \(X_{k+1} \prec \max \mathcal{A}_G \), then the condition
\[
X_{k+1}X_{k+2}\cdots \prec d^*(l + 1) = \max \mathcal{A}_G d^*(T^*(l + 1))
\]
is satisfied. If \(X_{k+1} = \max \mathcal{A}_G \), then the condition is equivalent to \(X_{k+2}\cdots \prec d^*(l + 1) = d^*(T^*(l + 1)) \), which is ensured by verifying the first of (18) for the shifted index \(k + 1 \). This completes the proof. \(\square \)

Remark 5.4. Using Proposition 4.3 one can derive an analogous necessary and sufficient condition for admissible lazy \(\beta^2 \)-representations \(X_1X_2X_3\cdots \) of numbers in \(x \in (r - 1, r) \) over the alphabet \(\mathcal{A}_L = \lfloor \beta \rfloor - \mathcal{A}_G \).

6. **NEGATIVE GOLDEN RATIO**

Let us illustrate the previous results and their implications on the example of the negative base \(-\beta \) where \(\beta = \phi = \frac{1+\sqrt{5}}{2} \approx 1.618 \) is the golden ratio. Real numbers representable in base \(-\phi \) over the alphabet \(\mathcal{A} = \{0, 1\} \) form the interval \(J_{-\phi, \mathcal{A}} = I = [-1, \frac{1}{\phi}] = [l, r] \).

The greedy and lazy \((-\phi)\)-representation can be obtained from the greedy and lazy \(\phi^2 \)-representation over the alphabet \(\mathcal{B} = \{-\phi, -\phi + 1, 0, 1\} \), applying the morphism \(\psi : \mathcal{B}^* \to \mathcal{A}^* \) given by
\[
\psi(-\phi) = 10, \quad \psi(-\phi + 1) = 11, \quad \psi(0) = 00, \quad \psi(1) = 01.
\]
The greedy and lazy \(\phi^2 \)-representations are generated by the transformation

\[
T_G(x) = \phi^2 x - D_G(x), \quad T_L(x) = \phi^2 x - D_L(x), \quad x \in \left[-1, \frac{1}{\phi} \right],
\]

where the digit assigning maps \(D_G \) and \(D_L \) are

\[
D_G(x) = \begin{cases}
-\phi & \text{for } x \in \left[-1, -\frac{1}{\phi} \right), \\
-\phi + 1 & \text{for } x \in \left[-\frac{1}{\phi}, -\frac{1}{\phi^2} \right), \\
0 & \text{for } x \in \left[-\frac{1}{\phi^2}, 0 \right), \\
1 & \text{for } x \in \left[0, \frac{1}{\phi^2} \right),
\end{cases}
\quad D_L(x) = \begin{cases}
-\phi & \text{for } x \in \left[-1, -\frac{1}{\phi^2} \right], \\
-\phi + 1 & \text{for } x \in \left(-\frac{1}{\phi^2}, 0 \right], \\
0 & \text{for } x \in \left(0, \frac{1}{\phi^2} \right], \\
1 & \text{for } x \in \left(\frac{1}{\phi^2}, \frac{1}{\phi} \right].
\end{cases}
\]

The graph of the transformations \(T_G, T_L \) together with their restriction to the intervals \([l, l+1) = [-1,0), (r-1, r) = (1/\phi^2, 1/\phi] \) are drawn in Figure 5.

Remark 6.1. From the graphs of \(T_G \) and \(T_L \) we see that

- the greedy \(\phi^2 \)-representation of an \(x \in \left[-1, \frac{1}{\phi} \right] \) eventually uses only digits from the alphabet \(A_G = \{-\phi, -\phi + 1, 0\} \), while its lazy \(\phi^2 \)-representation eventually uses only digits \(A_L = \{-\phi + 1, 0, 1\} \); in particular,
 - if \(x \in \left[0, \frac{1}{\phi} \right) \), i.e. outside \([l, l+1) \), then its greedy \(-\phi\)-representation has the form \((01)^M z_1 z_2 z_3 \cdots \), where \(M \) is the minimal positive integer such that \(x - \sum_{k=1}^{M} \frac{1}{\phi^{2k}} < 0 \);
 - if \(x \in \left(-1, -\frac{1}{\phi^2} \right] \), i.e. outside \((r-1, r) \), then its lazy \(-\phi\)-representation has the form \((10)^M y_1 y_2 y_3 \cdots \), where \(M \) is the minimal positive integer such that \(x + \phi \sum_{k=1}^{M} \frac{1}{\phi^{2k}} > -\frac{1}{\phi^2} \);
- the greedy and lazy \(-\phi\)-representations of \(\frac{1}{\phi} \) are both equal to \((01)^{\omega}\);
the greedy and lazy \((-\phi)\)-representations of \(-1\) are both equal to \((10)\omega\);

- the greedy \((-\phi)\)-representation of 0 is 01(10)ω, while its lazy \((-\phi)\)-representation is 11(01)ω = 1(10)ω.

Let us now apply Theorem 5.3 to the case \(\beta = \phi\). Denote for simplicity the digits of the alphabet \(B = \{-\phi, -\phi + 1, 0, 1\}\) by

\[A = -\phi < B = -\phi + 1 < C = 0 < D = 1. \]

With this notation, we have \(A_G = \{A, B, C\}\) and \(A_L = \{B, C, D\}\).

Proposition 6.2. A string \(X_1X_2X_3 \cdots\) over the alphabet \(A_G = \{A, B, C\}\) is the greedy \(\phi^2\)-representation of a number \(x \in [-1, 0)\) if and only if it does not contain a factor from the set \(\{BC, B^\omega, C^\omega\}\).

A string \(X_1X_2X_3 \cdots\) over the alphabet \(A_L = \{B, C, D\}\) is the lazy \(\phi^2\)-representation of a number \(x \in \left(\frac{1}{\phi^2}, \frac{1}{\phi}\right]\) if and only if it does not contain a factor from the set \(\{CB, B^\omega, C^\omega\}\).

Proof. Since both \(l + 1 = 0\) and \(l + \{\phi\} = -\frac{1}{\phi^2}\) are fixed points of the transformation \(T^*_G\), we obtain

\[
d^*_G(T^*_G(l + 1)) = 0^\omega = C^\omega, \quad d^*_G(l + \{\phi\}) = (-\phi + 1)^\omega = B^\omega,
\]

and from Theorem 5.3 a string \(X_1X_2X_3 \cdots\) over the alphabet \(A_G\) is the greedy \(\phi^2\)-representation of a number \(x \in [-1, 0)\) if and only if for all \(k \geq 1\),

\[
X_{k+1}X_{k+2} \cdots < \begin{cases} C^\omega & \text{if } X_k = C, \\ B^\omega & \text{if } X_k = B. \end{cases}
\]

It is not difficult to see that such condition is satisfied exactly by the strings in \(\{A, B, C\}^*\) which do not contain a factor from the set \(\{BC, B^\omega, C^\omega\}\).

The statement about lazy \(\phi^2\)-representations is derived by symmetry \(A \leftrightarrow D, B \leftrightarrow C\), (cf. Proposition 4.3).

From the above it is obvious that only digits \(B = -\phi + 1\) and \(C = 0\) are common to both lazy and greedy \(\phi^2\)-representation restricted to the intervals \([l, l+1), (r-1, r]\), respectively. However, due to the forbidden strings \(BC\) in greedy and \(CB\) in lazy \(\phi^2\)-representation, no string over the alphabet \(\{B, C\}\) is admissible in both cases. Combining with Remark 6.1 we have the following result.

Corollary 6.3. The points \(x = -1\) and \(x = \frac{1}{\phi}\) are the only points in \([-1, \frac{1}{\phi}]\) which have a unique \((-\phi)\)-representation over the alphabet \(\{0, 1\}\).

Proposition 6.2 provides a combinatorial criterion for admissibility of representations in base \(\phi^2\) in the non-integer alphabet \(A_G\). One can also rewrite the admissibility of a digit string in base \(-\phi\) using forbidden strings in the original alphabet \(\{0, 1\}\).
Proposition 6.4. A digit string \(x_1x_2x_3\cdots\) over the alphabet \(\{0,1\}\) is a greedy \((-\phi)\)-representation of some \(x \in [-1,0)\) if and only if

(i) it does not start with the prefix \(1^{2k}0\), nor \(0^{2k-1}1\), \(k \geq 1\);

(ii) it does not end with the suffix \(0^\omega\) nor \(1^\omega\);

(iii) it does not contain the suffix \(10\).

Proof. \((\Rightarrow):\) Realize that grouping the digits in the greedy \((-\phi)\)-representation of \(x\) to pairs, we obtain a string over the alphabet \(\{(10), (11), (00), (01)\}\). This is justified by the fact that the greedy \((-\phi)\)-representation of \(x \in \{0,1\}\) is obtained from the greedy \(\phi^2\)-representation of \(x\) over \(\{A, B, C, D\}\) applying \(\psi(A) = 10, \psi(B) = 11, \psi(C) = 00, \psi(D) = 01\).

From Proposition 6.2 one can derive that the forbidden strings over the alphabet \(\{(10), (11), (00), (01)\}\) are \((01), (11)(00), (00)\). It is thus obvious that the greedy representation over the alphabet \(\{0,1\}\) cannot have a suffix \(0^\omega, 1^\omega\), i.e. (ii) holds. In order to prove (i), realize that \(0^{2k-1}1 = (00)^{-1}(01)\) contains the forbidden digit \(01\). Similarly, \(1^{2k}0 = (11)^k0\) is a prefix of either \((11)^k(01)\) or \((11)^k(00)\), where the former contains the forbidden digit \(01\) and the latter the forbidden string \((11)(00)\). As for (iii), note that the factor \(10^k1\) is read in the alphabet \(\{(10), (11), (00), (01)\}\) either as \((10)(00)^k(01)\) or as a part of \((1)(00)^k(1*)\). In both cases it necessarily contains either \((01)\) or \((11)(00)\). The string \(01^{2k}0\) is excluded in a similar way.

\((\Leftarrow):\) We must show that a string over \(\{0,1\}\) satisfying conditions (i)–(iii) does not contain forbidden strings of pairs \((01), (11)(00), (11)^\omega, (00)^\omega\). Note that the brackets are always around pairs \(x_{2i+1}x_{2i+2}\). Conditions (i)–(iii) enforce that the string \(x_1x_2x_3\cdots\) is of the form

\[0^{k_1}1^{2k_2+1}0^{2k_3+1}1^{2k_4+1}\cdots, \quad \text{with } k_i \geq 0.\]

Thus the blocks of 1’s always start at odd-indexed positions and blocks of 0’s (except the prefix) start at even-indexed positions. This implies the impossibility of occurrence of \((01), (11)(00)\). The impossibility of \((11)^\omega, (00)^\omega\) is obvious. \(\Box\)

Let us now compare the greedy and lazy \((-\phi)\)-representations with those obtained by the Ito-Sadahiro algorithm, presented in Example 2.3. We denote by \(D_{IS}\) and \(T_{IS}\) the corresponding transformations which now read \(D_{IS}, T_{IS} : [-\frac{1}{\phi}, \frac{1}{\phi}] \rightarrow [-\frac{1}{\phi}, \frac{1}{\phi}]\) defined

\[D_{IS}(x) = [-\phi x + \frac{1}{\phi}] \quad \text{and} \quad T_{IS}(x) = -\phi x - [-\phi x + \frac{1}{\phi}].\]

As follows from the admissibility condition in \[5\], a digit sequence \(x_1x_2x_3\cdots\) over the alphabet \(\{0,1\}\) is the Ito-Sadahiro \((-\phi)\)-representation of some \(x \in [-\frac{1}{\phi}, \frac{1}{\phi}]\) if and only if

\[10^\omega \preceq_{alt} x_1x_{i+1}x_{i+2}\cdots \preceq_{alt} 010^\omega \quad \text{for all } i \geq 1. \tag{19}\]

One can easily derive that \(x_1x_2x_3\cdots\) is an Ito-Sadahiro \((-\phi)\)-representation if and only if it does not contain any string \(10^{2k+1}1\) for \(k \geq 0\) as a substring, and it does not end with \(010^\omega\).
Greedy and lazy representations in negative base systems

The example $x = -\frac{1}{2}$ shows that, in general, the Ito-Sadahiro algorithm does not assign to $x \in \left[-\frac{1}{\phi}, \frac{1}{\phi^2}\right)$ any extremal representation. We have the following $(-\phi)$-representations of $-\frac{1}{2}$:

Representation	String	Value
Ito-Sadahiro	$x_1x_2x_3\cdots = (100)\omega$	$100\ 100\ 100\ \cdots$
Lazy	$y_1y_2y_3\cdots = 1(001110)\omega$	$100\ 111\ 000\ \cdots$
Greedy	$z_1z_2z_3\cdots = (111000)\omega$	$111\ 000\ 111\ \cdots$

Clearly, $y_1y_2y_3\cdots \prec_{alt} x_1x_2x_3\cdots \prec_{alt} z_1z_2z_3\cdots$. In fact, one can show that for no element of the interval $x \in \left[-\frac{1}{\phi}, \frac{1}{\phi^2}\right)$ the Ito-Sadahiro $(-\phi)$-representation is extremal with respect to the alternate order.

Proposition 6.5. The Ito-Sadahiro $(-\phi)$-representation is not extremal for any $x \in \left[-\frac{1}{\phi}, \frac{1}{\phi^2}\right)$.

Proof. Let us consider an $x \in \left[-\frac{1}{\phi}, \frac{1}{\phi^2}\right)$ with the Ito-Sadahiro $(-\phi)$-representation $y_1y_2y_3\cdots$. Suppose that $y_1y_2y_3\cdots$ is also a greedy $(-\phi)$-representation of x. Then by Remark 6.1 it is of the form $y_1y_2y_3\cdots = (01)^M x_1x_2x_3\cdots$, for some $M \geq 0$,

and the string $x_1x_2x_3\cdots$ satisfies the conditions of Proposition 6.4, hence it does not end in 0^ω nor in 1^ω. Thus it contains a factor of the form $10^j 1$, where $j \geq 1$ is, again by Proposition 6.4, odd. However, this is not compatible with the admissibility condition (19) for Ito-Sadahiro $(-\phi)$-representations.

Suppose now that the Ito-Sadahiro $(-\phi)$-representation $y_1y_2y_3\cdots$ is also lazy. The argumentation is similar, noting that the forbidden strings for the lazy $(-\phi)$-representation can be derived from Proposition 6.4 by replacing $0 \leftrightarrow 1$.

7. UNIQUE $(-\beta)$-REPRESENTATIONS

In [1], it is shown that for $1 < \beta < 2$, the set of numbers with a unique $(-\beta)$-representation is of Lebesgue measure zero. The authors also show that for $\beta < \phi$,
such numbers are only two. Let us show that although the measure is always zero, the set of numbers with unique \((-\beta)\)-representation can be uncountable.

Example 7.1. Let \(\beta = \mu\) be the Tribonacci constant, i.e. the real root \(\mu \approx 1.83\) of \(x^3 - x^2 - x - 1\). Since \(|\mu| = 1\) and \(\mu > \phi\), the greedy \(\mu^2\)-representation of numbers in the interval \([l, l + 1) = [-\frac{\mu}{\mu^2 - 1}, \frac{1}{\mu^2 - 1}]\) may use all possible digits \(-\mu, -\mu + 1, 0, 1\), see Lemma 5.1. We shall again use the notation

\[
A = -\mu, \quad B = -\mu + 1, \quad C = 0, \quad D = 1.
\]

Our aim is to derive the admissibility condition for digit strings \(X_1X_2X_3\cdots\) over the alphabet \(A_G = \{A, B, C, D\}\) using Theorem 5.3.

With the notation (15), omitting subscripts of \(T_G = T, d_G = d\), one can verify that

\[
l + \{\mu\} = r_C,
\]

\[
T^*(l + \{\mu\}) = T^*(r_C) = l + 1 = r_D,
\]

\[
(T^*)^2(l + \{\mu\}) = T^*(r_D) = r_B,
\]

\[
(T^*)^3(l + \{\mu\}) = T^*(r_B) = l + \{\mu\},
\]

see also Figure 7. The strings used in the admissibility condition from Theorem 5.3 are thus purely periodic and very strongly related, namely

\[
d^*(l + \{\mu\}) = Cd^*(l + 1) = CDb^*(T^*(l + 1)) = CDBd^*(l + \{\mu\}) = (CDB)^\omega.
\]

Therefore, a digit string \(X_1X_2X_3\cdots\) over the alphabet \(A_G\) is an admissible greedy \(\mu^2\)-representation if and only if for all \(k \geq 1\),

\[
X_{k+1}X_{k+2}X_{k+3}\cdots \prec \begin{cases} (CDB)^\omega & \text{if } X_k = B, \\ (BCD)^\omega & \text{if } X_k = D, \end{cases}
\]

which is equivalent to the requirement that the string \(X_1X_2X_3\cdots\) does not contain a factor from \(\{BD, DC, DD, (BCD)^\omega\}\).
Greedy and lazy representations in negative base systems

By symmetry $A \leftrightarrow D$, $B \leftrightarrow C$, we obtain that a digit string $X_1X_2X_3 \cdots$ over the alphabet $A_L = A_G$ is an admissible lazy μ^2-representation if and only if it does not contain a factor from the set $\{CA, AB, AA, (CBA)^\omega\}$.

From this, we can see that any digit string over the alphabet $\{B, C\}$ is admissible both as the lazy and greedy μ^2-representation, thus numbers represented by such a string have only one representation in base $-\mu$. There is uncountably many of such numbers.

Theorem 7.2. Let $\beta > 1 + \sqrt{3}$, $\beta \notin \mathbb{N}$. Then there exist uncountably many numbers in $J_{-\beta, A}$ having a unique $(-\beta)$-representation over the alphabet $A = \{0, 1, \ldots, \lfloor \beta \rfloor\}$.

Proof. We will show that there are uncountably many numbers in the interval $J_{-\beta, A} = [l, r)$ for which the lazy and the greedy $(-\beta)$-representations coincide. Necessarily, such a number x (with the exception of $x = l$ and $x = r$) must lie in the intersection $[l, l+1) \cap (r-1, r] = (r-1, l+1)$. The alphabet for the β^2-representation of such an $x \in (r-1, l+1)$ is $A_G \cap A_L$.

Recall the requirement for the admissible greedy β^2-representations from Theorem 5.3

$$X_{k+1}X_{k+2}X_{k+2} \cdots < \begin{cases} d_G(T_G(l+1)) & \text{if } X_k = \max A_G, \\ d_G(l+\lfloor \beta \rfloor) & \text{if } X_k = -b\beta + \lfloor \beta \rfloor, X_k \neq \max A_G. \end{cases} \quad (20)$$

Note that the above conditions control the string only after digits X_k of the form $X_k = -b\beta + \lfloor \beta \rfloor$ and $X_k = \max A_G$. By symmetry (Proposition 4.3), the requirement on lazy β^2-representations conditions digits X_k of the form $X_k = -b\beta + 0$ and $X_k = \min A_L$. Realize that

$$\max A_G = 0 \cdot \beta + a \quad \text{and} \quad \min A_L = \lfloor \beta \rfloor \cdot \beta + \lfloor \beta \rfloor - a$$

for some $a \in \{0, 1, \ldots, \lfloor \beta \rfloor\}$, see Remark 5.2. Therefore any digit string over the original alphabet $A = \{0, 1, \ldots, \lfloor \beta \rfloor\}$ avoiding 0 and $\lfloor \beta \rfloor$ is allowed both as a greedy and lazy $(-\beta)$-representation. If $\beta > 3$, then $A \setminus \{0, \lfloor \beta \rfloor\}$ has at least two elements and thus we have uncountably many numbers with unique $(-\beta)$-representation.

Let now β satisfy $1 + \sqrt{3} < \beta < 3$. The above argument is not sufficient, since $A \setminus \{0, \lfloor \beta \rfloor\} = \{1\}$, so we need to refine our study of admissible greedy and lazy strings. As $1 + \sqrt{3}$ is the quadratic Pisot number, root of $x^2 - 2x - 2$, by Remark 5.2 the alphabets A_G, A_L of lazy and greedy β^2-representations are equal to the full alphabet $B = \{-b\beta + a \mid 0 \leq a, b \leq 2\}$.

Let us show that the string $d_G(l+\lfloor \beta \rfloor)$ starts with a digit $X \in B, X \geq 0$. For that, we have to verify that

$$l + \lfloor \beta \rfloor > l_0 = \frac{1}{(-\beta)^2},$$

where we use notation (15). This is equivalent to $\beta^2 - 2\beta - 2 > 0$, which is true precisely when $\beta > 1 + \sqrt{3}$.

From the condition (20) we derive that any string over the alphabet $\{X \in B \mid X < 0\}$ is admissible as a greedy β^2-representation. By symmetry, any string over
the alphabet \(\{ X \in \mathcal{B} \mid X > -2\beta + 2 \} \) is admissible as a lazy \(\beta^2 \)-representation. Altogether, every string over the alphabet

\[
\{ X \in \mathcal{B} \mid -2\beta + 2 < X < 0 \} = \{-\beta, -\beta + 1, -\beta + 2\}
\]

is admissible both as the greedy and as the lazy \(\beta^2 \)-representation of some number \(x \in (r-1, l+1) \), and therefore \(x \) has a unique \((-\beta) \)-representation. Obviously, there is uncountably many of such numbers.

8. CONCLUSIONS

Our main tool in this paper was to view the \((-\beta)\)-representations in the alphabet \(\mathcal{A} = \{0, 1, \ldots, \lfloor \beta \rfloor \} \) as strings of pairs of digits in \(\mathcal{A} \), which amounts, in fact, to considering the alphabet \(\mathcal{B} = -\beta \cdot \mathcal{A} + \mathcal{A} \) and the base \(\beta^2 \). Such an approach puts forward the utility of studying number systems with positive base and a non-integer alphabet, as was already started by Pedicini [8] or Kalle and Steiner [6]. Obtaining new results for such systems – for example analogous to those of de Vries and Komornik [3] or Schmidt [10] would probably contribute also to the knowledge about negative base systems.

ACKNOWLEDGEMENTS

This work was supported by the Czech Science Foundation, grant number GAČR 201/09/0584, by the grants MSM6840770039 and LC06002 of the Ministry of Education, Youth, and Sports of the Czech Republic, and by the grant of the Grant Agency of the Czech Technical University in Prague, grant No. SGS11/162/OHK4/3T/14.

REFERENCES

[1] Karma Dajani and Charlene Kalle. Transformations generating negative \(\beta \)-expansions. Preprint, arXiv:1008.4289, 2010.
[2] Karma Dajani and Cor Kraaikamp. From greedy to lazy expansions and their driving dynamics. Expo. Math., 20(4):315–327, 2002.
[3] Martijn de Vries and Vilmos Komornik. Unique expansions of real numbers. Adv. Math., 221(2):390–427, 2009.
[4] Paul Erdős, István Joó and Vilmos Komornik. Characterization of the unique expansions \(1 = \sum_{i=1}^{\infty} q^{-n_i} \) and related problems. Bull. Soc. Math. France, 118(3):377–390, 1990.
[5] Shunji Ito and Taizo Sadahiro. Beta-expansions with negative bases. Integers, 9:A22, 239–259, 2009.
[6] Charlene Kalle and Wolfgang Steiner. Beta-expansions, natural extensions and multiple tilings associated with pisot units. Trans. Amer. Math. Soc., 364:2281–2318, 2012.
[7] William Parry. On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hungar., 11:401–416, 1960.
[8] Marco Pedicini. Greedy expansions and sets with deleted digits. Theoret. Comput. Sci., 332(1-3):313–336, 2005.
[9] Alfréd Rényi. Representations for real numbers and their ergodic properties. *Acta Math. Acad. Sci. Hungar*, 8:477–493, 1957.

[10] Klaus Schmidt. On periodic expansions of Pisot numbers and Salem numbers. *Bull. London Math. Soc.*, 12(4):269–278, 1980.

[11] William Thurston. *Groups, tilings, and Finite state automata*. AMS Colloquium Lecture Notes, American Mathematical Society, Boulder, 1989.

Tomáš Hejda, Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic
e-mail: tohecz@gmail.com

Zuzana Masáková, Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic
e-mail: zuzana.masakova@fjfi.cvut.cz

Edita Pelantová, Doppler Institute for Mathematical Physics and Applied Mathematics and Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic
e-mail: edita.pelantova@fjfi.cvut.cz