Evaluation of the in vitro susceptibility of various filarial nematodes to emodepside

Marc P. Hübner a, b, 1, Simon Townson c, 1, Suzanne Gokool c, Senyo Tagboto c, Mary J. Maclean d, Guilherme G. Verocai e, f, Adrian J. Wolstenholme g, Stefan J. Frohberger a, Achim Hoerauf a, Simon Specht h, Ivan Scandale i, Achim Harder j, Martin Glenschek-Sieberth k, Daniel Kulke i, k, x

a Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
b German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
c Griffin Institute (formerly Northwick Park Institute for Medical Research), London, HA1 3UJ, United Kingdom
d National Institutes of Health, National Eye Institute, Clinical and Translational Immunology Section, Laboratory of Immunology, 10 Center Drive, Building 10, Room 10N113, Bethesda, MD, 20892, USA
e Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, (current Address: INRAE Centre Val de Loire, 37380 Nouzilly, France), Athens, GA, 30602, USA
f Department of Veterinary Pathobiology, College of Veterinary & Biomedical Sciences, Texas A&M University, 4467 TAMU College Station, TX, 77843, USA
h Independent Scholar, Europa Park 1, 42859 Remscheid, Germany
g Department of Insect Pathology, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
i Independent Scholar, Falkenberg 1, 42859 Remscheid, Germany
j Elanco Animal Health, Alfred-Nobel-Str. 50, 40789, Monheim, Germany
k Iowa State University, Department of Biomedical Sciences, 2008 Vet Med, Ames, IA, 50011, United States

* Corresponding author. Iowa State University, Department of Biomedical Sciences, 2008 Vet Med, Ames, IA, 50011, United States.

E-mail addresses: hubner@uni-bonn.de (M.P. Hübner), s.townson@imperial.ac.uk (S. Townson), s.gokool@ucl.ac.uk (S. Gokool), senyo2@hotmail.com (S. Tagboto), m.j.maclean@nih.gov (M.J. Maclean), gverocai@cvm.tamu.edu (G.G. Verocai), adrianw@uga.edu (A.J. Wolstenholme), stefan.frohberger@gmx.de (S.J. Frohberger), hoerauf@uni-bonn.de (A. Hoerauf), s.pecht@dndi.org (S. Specht), is.candale@dndi.org (I. Scandale), achim.harder@hotmail.de (A. Harder), mgglenscheklieber689@t-online.de (M. Glenschek-Sieberth), steffen.hahnel@elancoah.com (S.R. Hahnel), dkulke@iastate.edu, dkulke@iastate.edu (D. Kulke).

1 Equally contributing first authors.

https://doi.org/10.1016/j.ijpddr.2021.07.005
Received 22 February 2021; Received in revised form 19 July 2021; Accepted 24 July 2021
Available online 28 July 2021

Abstract

Filariae are vector-borne nematodes responsible for an enormous burden of disease. Human lymphatic filariasis, caused by Wuchereria bancrofti, Brugia malayi, and Brugia timori, and onchocerciasis (caused by Onchocerca volvulus) are neglected parasitic diseases of major public health significance in tropical regions. To date, therapeutics efforts to eliminate human filariasis have been hampered by the lack of a drug with sufficient macrofilaricidal and/or long-term sterilizing effects that is suitable for use in mass drug administration (MDA) programs, particularly in areas co-endemic with Loa loa, the causative agent of loiasis.

Emodepside, a semi-synthetic cyclooctadepsipeptide, has been shown to have broad-spectrum efficacy against gastrointestinal nematodes in a variety of mammalian hosts, and has been approved as an active ingredient in dewormers for cats and dogs. This paper evaluates, compares (where appropriate) and summarizes the in vitro effects of emodepside against a range of filarial nematodes at various developmental stages.

Emodepside inhibited the motility of all tested stages of filariae frequently used as surrogate species for preclinical investigations (Acanthocheilonema viteae, Brugia pahangi, Litomosoides sigmodontis, Onchocerca gutturosa, and Onchocerca lienalis), human-pathogenic filariae (B. malayi) and filariae of veterinary importance (Dirifilaria immitis) in a concentration-dependent manner. While motility of all filariae was inhibited, both stage- and species-specific differences were observed. However, whether these differences were detected because of stage- and/or species-specific factors or as a consequence of variations in protocol parameters among the participating laboratories (such as purification of the parasites, read-out units, composition of media, incubation conditions, duration of incubation etc.) remains unclear.
1. Introduction

Worldwide, more than 1 billion people are at risk of acquiring one or more filarial diseases, the vast majority of which reside in areas of greatest poverty in tropical and subtropical regions (WHO, 2017a; WHO, 2017b). Approximately 198 million people across 36 countries are at risk of the filarial disease onchocerciasis (also known as river blindness), caused by Onchocerca volvulus (WHO, 2017a). According to estimates by the African Program for Onchocerciasis Control (APOC), 99% of those at risk of O. volvulus infection live in sub-Saharan African countries (Kuesel, 2016). Furthermore, around 856 million people, spread across 52 countries, are threatened by lymphatic filariasis caused by Wuchereria bancrofti, Brugia malayi, or Brugia timori (WHO, 2017b). Filariae are transmitted by blood-feeding insect vectors that transmit the infective third-stage larvae (L3). Within the definitive host, L3 migrate to the species-specific site, e.g., the subcutaneous tissue for O. volvulus and lymphatic vessels for filariae causing lymphatic filariasis, molt into adult worms, mate and release the filarial progeny, the microfilariae. For transmission, the microfilariae are passaged via a specific blood-feeding insect vector, developing into the L3, the infective stage for the definitive host.

The Global Burden of Disease Study (GBD) is a landmark initiative that systematically quantifies prevalence, mortality and morbidity for hundreds of diseases considered to be of global health importance (GBD, 2017). Data modeling from the 2017 GBD suggested that (a potentially underestimated) 20.9 million people were infected with onchocerciasis (GBD, 2017; WHO, 2017a). The most severe complication attributed to onchocerciasis is vision loss, which is observed in approximately 1.15 million people (GBD, 2017). However, onchocerciasis is a systemic disease that is also associated with musculoskeletal pain, reduced body mass index, and decreased work productivity (Basanez et al., 2006). Moreover, the immunological response to the death of the O. volvulus microfilariae is also associated with severe itching, disfiguring skin lesions and deprevation, which together comprise the vast majority of symptoms observed in infected people (Kuesel, 2016).

Both lymphatic filariasis and onchocerciasis are considered to be potentially eradicable (Townson et al., 2007). However, despite the tremendous burden of these diseases, treatment options remain insufficient (Mackenzie, 2006; Bockarie and Deb, 2010; Osei-Atweneboana et al., 2011; Stolk et al., 2018). For decades, the control of onchocerciasis exclusively relied on the administration of a single macrocyclic lactone (ML), ivermectin, administered through mass drug administration (MDA) programs (some 2 billion treatments were donated by Merck & Co over the past 30 years) (Campbell, 2016). Finally, in June 2018, a New Drug Approval by the U.S. Food and Drug Administration for the use of another ML, moxidectin, for treatment of onchocerciasis in patients aged 12 years and older (FDA, 2018). A single ML dose clears the skin-dwelling O. volvulus microfilariae and temporarily interrupts fertility of the adult female to some degree, however adulticidal effects are minimal (Walker et al., 2017). Consequently, MDA programs need to be repeated for multiple years in order to encompass the reproductive lifespan of the long-lived adult O. volvulus (estimated at 9–11 years), with high population coverage, to greatly reduce or interrupt transmission in a given endemic area (WHO, 1993). More recently, it was shown that four or more ivermectin treatments have partial adulticidal effects and permanently sterilize adult females (Walker et al., 2017).

Nonetheless, a number of barriers to the elimination of onchocerciasis remain, including drawbacks that come from the reliance on ivermectin. For example, the emergence of suboptimal responses to ivermectin has been observed in some O. volvulus-infected human populations in Ghana and Cameroon (Osei-Atweneboana et al., 2007; Doyle et al., 2017). In addition, ivermectin is contraindicated in people heavily co-infected with another filarial nematode, Loa loa, due to the risk of life-threatening adverse events such as encephalitis (Gardon et al., 1997; Akue, 2011; Vinkeles Melchers et al., 2020), and thus cannot be simply distributed in areas co-endemic for L. loa. Therefore, although recent studies suggest triple therapy with diethylcarbamazine (DEC) (which also causes L. loa associated encephalitis), ivermectin, and albendazole may exert some macrofilaricidal activity in lymphatic filariasis, this combination is also contraindicated in areas co-endemic for loiasis (Thomsen et al., 2016).

Other barriers to elimination include the logistical and financial challenges to increasing MDA program frequency from annual to biannual, which would facilitate sustained interruption of microfilariae production, thereby interrupting transmission (Hotze et al., 2015). Additionally, with lower prevalence of filarial diseases, the cost-effectiveness of community-directed MDA treatments will decrease, but short-term treatments with a macrofilaricidal or long-term sterilizing drug could reduce the program time frames required to reach elimination of onchocerciasis (Dunn et al., 2015).

An orally active anthelmintic with an ivermectin-independent mode of action that kills or at least permanently sterilizes adult worms – preferably safe in patients co-infected with L. loa (Gardon et al., 1997; Vinkeles Melchers et al., 2020) – would therefore add significant value towards the ambitious goal of eliminating onchocerciasis. The cyclooctadepsipeptide emodepside exhibits striking anthelmintic efficacy against gastrointestinal nematodes in a wide range of hosts (Krücken et al., 2012). Due to its broad spectrum of anthelmintic activity, favorable mammalian safety profile and unique mode of action through the calcium-activated and voltage-dependent potassium channel SLO-1 (Kulke et al., 2014), emodepside is considered to be one of the most promising anthelmintic drug candidates for potential human use (Geary et al., 2010; Keiser and Utzinger, 2010; Olliaro et al., 2011; Kuesel, 2016). In 2014, the Drugs for Neglected Diseases initiative (DNDi) and Bayer AG agreed to jointly develop emodepside as an adulticidal treatment for onchocerciasis. Clinical development has started with first-in-human studies to determine the safety, tolerability and pharmacokinetics of emodepside in healthy male volunteers having been recently completed (Kuesel, 2016).

To evaluate the filaricidal activity spectrum of emodepside as part of the preclinical package, this study investigates emodepside in vitro susceptibility of a range of filariae, including Acanthocheilonema vitaeae, B. malayi, B. pahangi, Dirofilaria immitis, Litomosoides sigmodontis, O. gutturosa, and O. lienalis. These species are commonly used as model organisms for human filariasis (Townson et al., 2005; Morris et al., 2013; Risch et al., 2021). Different stages including microfilariae, third-stage (L3) and fourth-stage (L4) larvae, as well as adult male and female worms, were exposed to varying concentrations of emodepside in order to measure drug effects on helminth motility, using established and adapted protocols (Tagboto and Townson, 1996; Townson et al., 2007; Storey et al., 2014; Maclean et al., 2017).

2. Material and methods

2.1. Ethics statement

All animal housing conditions and the procedures used in this work were in accordance with the Animal Care and Use Committees of each institution and the respective governmental authorities. More detail is
provided in the following sub-sections.

2.2. Emodepside in vitro assays

The effect of emodepside on motility was tested on a variety of different filariae species and developmental stages. Parasite maintenance and experimental setup for each species/stage is provided in the following sub-sections as well as summarized in Supplementary Table 1. A range of at least three concentrations of emodepside was used in the various in vitro assays described below.

Acantholechnomena viteae microfiliae in vitro assays.

All experiments on A. viteae were performed in the laboratory of the Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany in accordance with the European Union animal welfare guidelines, and all protocols were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz, Cologne, Germany (AZ 84-02.04.2012.A140).

To obtain A. viteae microfiliae, blood was collected via cardiac puncture from euthanized infected gerbils (Meriones unguiculatus) and transferred into ethylenediaminetetraacetic acid (EDTA)-coated tubes.

Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany was added to every well of a 96-well microtiter plate containing supplemented RPMI 1640 medium as a negative control. Motility of microfiliae was evaluated at 2 h, 24 h, 48 h, 72 h, 96 h and 120 h post exposure, using an Olympus inverted microscope (Olympus, Hamburg, Germany). Motility scores were assessed on a scale of 0 (immobile) to 10 (maximum) (Townson et al., 2007).

2.2.1. Brugia spp. in vitro assays

2.2.1.1. Brugia malayi and Brugia pahangi microfiliae in vitro assays.

All experiments on B. malayi and B. pahangi microfiliae were performed in the laboratory of Dr. Adrian Wolstenholme at the University of Georgia (Athens, GA, USA) (Evans et al., 2017). From 2012 onward, the isolate was also maintained and passaged in beagle dogs at the University of Georgia (Athens, GA, USA) (Evans et al., 2017). From 2012 onward, the isolate was also maintained at the laboratories of Bayer Animal Health GmbH (Monheim, Germany) in accordance with the local Animal Care and Use Committee and governmental authorities (LANUV #200/A176 and #200/A154). The Missouri D. immitis isolate used for assays with microfiliae, L3 and L4 stages, was originally isolated from an infected dog from Missouri (USA). From 2005 onwards, the isolate was maintained and passaged in beagle dogs at the University of Georgia (Athens, GA, USA) (Evans et al., 2017). From 2012 onward, the isolate was also maintained at the laboratories of Bayer Animal Health GmbH in Monheim, Germany. For the experiments with microfiliae, blood was collected from beagle dogs (Marshall BioResources, North Rose, NY, USA) with patent infections, and microfiliae were purified according to the protocol described by the FR3 (FR3, 2009). L3s were obtained by feeding microfilarial canine blood to Aedes aegypti mosquitoes (black-eyed Liverpool strain). Fourteen days after feeding, L3s were isolated from infected A. aegypti according to the protocol by Evans and colleagues (Evans et al., 2017). L4s were obtained by incubating freshly isolated L3s in a 96-well microtiter plate (one L3 per cavity) containing supplemented RPMI 1640 medium for an additional 1.5 h. After two repetitions of supernatant collection, supernatants were pooled and centrifuged (400 g, 5 min), followed by three washing steps with supplemented MEM. The obtained microfiliae were then resuspended in supplemented MEM to a final concentration of 80 microfiliae per mL. A 125 μL microfiliae suspension (~10 microfiliae) was added to each well of a 96-well microtiter plate and incubated at 37 °C in an atmosphere of 5 % CO₂. An emodepside dilution series in pure dimethylsulfoxide (DMSO) was prepared from a 10 mM stock solution to obtain final concentrations of 10 μM, 1 μM, 0.1 μM, and 0.01 μM and compared with the negative control (0 % DMSO only). For each well, motility of microfiliae was evaluated under the microscope after 2 h, 24 h, 48 h, 72 h and 96 h of exposure using a 4-point scoring system where 0 represented microfiliae with normal motility (vigorous, fidgeting movements), 1 microfiliae with impaired motility (slow movements), 2 microfiliae with impaired motility (slow movements), 3 microfiliae with impaired motility (slow movements), and 4 microfiliae with no movement within the 20 s observation period per well (adapted from Townson et al., 2007). A single experiment with three technical replicates was performed.

2.2.2. Dirofilaria immitis in vitro assays

Experiments on D. immitis microfiliae, L3 and L4 were performed in the laboratories of Bayer Animal Health GmbH (Monheim, Germany) in accordance with the local Animal Care and Use Committee and governmental authorities (LANUV #200/A176 and #200/A154). The Missouri D. immitis isolate used for assays with microfiliae, L3 and L4 stages, was originally isolated from an infected dog from Missouri (USA). From 2005 onwards, the isolate was maintained and passaged in beagle dogs at the University of Georgia (Athens, GA, USA) (Evans et al., 2017). From 2012 onward, the isolate was also maintained at the laboratories of Bayer Animal Health GmbH in Monheim, Germany. For the experiments with microfiliae, blood was collected from beagle dogs (Marshall BioResources, North Rose, NY, USA) with patent infections, and microfiliae were purified according to the protocol described by the FR3 (FR3, 2009). L3s were obtained by feeding microfilarial canine blood to Aedes aegypti mosquitoes (black-eyed Liverpool strain). Fourteen days after feeding, L3s were isolated from infected A. aegypti according to the protocol by Evans and colleagues (Evans et al., 2017). L4s were obtained by incubating freshly isolated L3s in a 96-well microtiter plate (one L3 per cavity) containing supplemented RPMI 1640 medium for 72 h. Only the worms that exhibited a fully separated cuticula and showed normal motility were utilized for in vitro assays.

Experiments on adult D. immitis were carried out in the laboratory of Dr. Adrian Wolstenholme at the University of Georgia Athens, GA, USA using nematodes of the Georgia-2 isolate (GA-2) supplied by TRS Labs Inc. Athens, GA, USA. The GA-2 isolate originated from a blood collection from a dog from Vidalia, GA, USA, in 2013. Following an initial passage through the mosquito vector (A. aegypti; black-eyed Liverpool strain), it was maintained in laboratory beagle dogs at TRS Labs Inc. (Berrafato et al., 2019).

2.2.2.1. Dirofilaria immitis microfiliae in vitro assay

Approximately 250 freshly purified microfiliae were cultured in single wells of a 96-well microtiter plate containing supplemented RPMI 1640 medium as described in section 2.2.2.1. Emodepside was added in the following...
concentrations: 8.93 μM, 1.79 μM, 360 nM, 71.5 nM, 14.3 nM, 2.9 nM, 0.57 nM, and 0.11 nM. Microfilariae exposed to medium substituted with 1 % DMSO were used as negative controls. Microfilariae motility was evaluated 72 h after drug exposure using an image-based approach – Dirolmager, developed by Bayer Technology Services. This device is a fully automated high-throughput platform, allowing high-resolution optical imaging of an entire 96-well microtiter plate. The Dirolmager integrates a high-resolution video camera (Prosilica GT6600; Allied Vision) with a telecentric lens (SSLPJ3005; Sill Optics) that prevents perspective distortion of the recorded images, ensuring high accuracy of measured values across all samples.

In brief, a series of 20 high-resolution images were recorded (one per second). In a first step, image processing filters were used that discriminate larger objects to avoid the detection of crystallized or undissolved particles. In the actual calculation, pixel-wise differences between sequential images were calculated to determine worm movement between single images of a series; emodepside activity was determined as the reduction of motility in comparison to the solvent control. Based on the evaluation of a wide concentration range, concentration–response curves as well as IC_{50} values were calculated. Ten experiments with three replicates were performed.

2.2.2.2. Dirofilaria immitis L3 in vitro assay. Freshly isolated L3s were cultured in wells of a 96-well microtiter plate with approximately 10 L3 per well. All wells contained supplemented RPMI 1640 medium and emodepside at one of the following concentrations: 8.93 μM, 1.79 μM, 360 nM, 71.5 nM, 14.3 nM, 2.9 nM, 0.57 nM, and 0.11 nM L3s exposed to DMSO only (1 %) were used as negative controls. All emodepside concentrations were tested in triplicate and drug effects were evaluated after 72 h of incubation. Motility was scored on a 4-point scale, where 0 represented complete paralysis and 3 represented full motility as observed before any drug was added. Emodepside activity was determined as the reduction of motility in comparison to the negative control.

Data were only considered as valid if the worms in the negative control group remained as motile as observed at the beginning of the experiment. Based on the evaluation of a wide concentration range, concentration–response curves as well as IC_{50} values were calculated. Ten experiments with three replicates were performed.

2.2.2.3. Dirofilaria immitis L4 in vitro assay. Freshly isolated L4s were cultured individually in wells of a 96-well microtiter plate. After 72 h of incubation at 37 °C and 5 % CO₂, each well was screened for the presence of motile larvae and a fully separated cuticula, indicating a molted and infective L3. Necropsy was performed 5 days after infection and infective L3 were obtained by percutaneous feeding with supplemented MEM.

L. sigmodontis adult worms were flushed from the pleural cavity of a patently infected donor animal (gerbil or cotton rat) and individual, intact adult worms were washed with supplemented MEM and transferred into individual wells of a 12-well plate, containing a confluent layer of monkey kidney cells (LLC-MK2, ECACC, UK).

2.2.3. Litomosoides sigmodontis microfilariae in vitro assay. Freshly isolated microfilariae were adjusted to a concentration of 80 microfilariae/mL; 125 μL of this suspension (~10 microfilariae) was then added to each well of a 96-well microtiter plate containing confluent LLC-MK2 cells in supplemented MEM at 37 °C, 5 % CO₂.

To assess emodepside’s effects on microfilariae motility, medium was removed from the culture plates and 125 μL of supplemented MEM containing emodepside at concentrations of 10 μM, 1 μM, 0.1 μM, and 0.01 μM or 0.5 % DMSO as the negative control was added and incubated at 37 °C, 5 % CO₂. Motility of microfilariae was assessed under the microscope after 96 h of exposure. Media containing emodepside at the indicated concentrations, as well as the negative control media, were changed after 48 h. A 4-point scoring system was used for evaluating microfilariae motility, in which 3 represented microfilariae with normal motility (vigorous, fidgeting movements), 2 microfilariae with impaired motility (slow movements), 1 worms with minimal motility (single movements observable), and 0 microfilariae exhibiting no movement within the 20 s observation period per well. Two independent experiments were performed in triplicate.

2.2.3.2. Litomosoides sigmodontis L3 in vitro assay. Using a 96-well plate, approximately 13 L3s in a volume of 198 μL supplemented MEM were seeded per well. Emodespide was tested at four concentrations (10 μM, 1 μM, 0.1 μM, and 0.01 μM) with two replicates per condition. L3s exposed to 0.5 % DMSO served as negative control. Motility was evaluated after 72 h of incubation at 37 °C and 5 % CO₂ using a 3-point scoring system, in which 0 % activity represented larvae concentration 1 % were used as negative controls. Adult worm motility was scored on a 4-point scale at 72 h post treatment, where 0 represented complete paralysis and 3 represented full motility as observed before any drug was added. Two experiments were carried out in triplicate (three males and three females).
showing no motility impairment, 80 % activity for L3s with motility impairment and 100 % activity for dead or completely immobile larvae. This scoring system was due to the fact that weaker effects on L3 motility were difficult to quantify, so only drastic effects resulting in either 80 or 100 % motility reduction were recorded. Each L3 was individually scored and mean activity was determined per well. Ten independent experiments were performed in duplicate.

2.2.3.3. Litomosoides sigmodontis adult worms in vitro assay. Adult worms (3–4 per experiment) were individually co-cultured with LLC-MK2 cells at 37 °C and 5 % CO₂, analogue to the above described microfilariae in vitro culture in wells of a 12-well plate. The effect of emodepside was tested at final concentrations of 10 μM, 1 μM and 0.1 μM, and treatment with 0.5 % DMSO only served as negative control. Media containing emodepside at the indicated concentrations, as well as the negative control media, were changed after 48 h. Emodepside’s activity on female and male adult worm motility was evaluated after 96 h using a 5-point scoring system (Lentz et al., 2013) in which 0 represented absence of movement, 1 described worms that were entirely stretched with single shivering movements, 2 were worms that were mostly stretched with non-continuous wave-like movements and no change in their general position, 3 was for worms that had longer immobile periods but changed their position, 4 described worms with slower movements that were not continuous, and 5 was for worms with continuous and vigorous movements. All experiments (two experiments for adult female worms, one experiment for adult male worms) were performed with at least three technical replicates.

2.2.4. Onchocerca spp. in vitro assays

2.2.4.1. Onchocerca lienalis microfilariae in vitro assay. All experiments on O. lienalis microfilariae were performed in the laboratory of Simon Townson (Griffin Institute, formerly Northwick Park Institute for Medical Research, London, UK). A single large batch of microfilariae was obtained from the peri-umbilical skin area of freshly euthanized, naturally infected cattle from an abattoir in the UK following the procedure described by Tagboto and Townson (1991). The extracted microfilariae were cryopreserved using a two-step incubation technique with ethanediol as a cryoprotectant (Ham et al., 1981), stored in liquid nitrogen, and thawed when required for immediate use. Upon thawing, five worms were transferred into each well of a 96-well plate containing 200 μL of MEM supplemented with 10 % heat-inactivated NCS, 200 units/mL penicillin, 200 μg/mL streptomycin, 0.5 μg/mL amphotericin and an LLCMK2 (ECACC, UK) cell feeder layer at 36.5 °C under an atmosphere of 5 % CO₂ in air (Townson et al., 2007). The activity of emodepside on microfilariae was assessed using two wells (10 worms) for the following drug concentrations (serial dilutions): 12.5 μM, 3.13 μM, 0.78 μM, 0.195 μM, 0.048 μM, 0.012 μM, and 3.0 nM. At the highest concentration of 12.5 μM, the final DMSO solvent concentration was 0.25 % and led to complete paralysis of the majority of microfilariae (IC₅₀ after 72 h (Fig. 1A)). Over the time course of the experiment, microfilariae motility was already considerably impaired at 2 h of exposure to 0.01 μM emodepside. Motility impairment increased with higher emodepside concentrations (0.1 μM, 1 μM, and 10 μM) and led to complete paralysis of the majority of microfilariae throughout the observation period from 2 h to 96 h for emodepside concentrations of 1 and 10 μM (Fig. 1A). Microfilariae exposed to lower concentrations of 0.01 μM and 0.1 μM emodepside recovered some of their motility during the experiment (Fig. 1A), which was reflected by the IC₅₀ values over time (2 h: 0.0062 μM; 24 h: 0.0051 μM; 48 h: 0.0098 μM; 72 h: 0.0096 μM; 96 h: 0.0145 μM).

3.2. In vitro effects of emodepside on Brugia spp. microfilariae and adult worms

Emodepside inhibited Brugia spp. microfilariae motility in a concentration-dependent manner over a time period of up to 72 h in vitro (Fig. 1B). For both B. malayi and B. pahangi, microfilariae were completely paralyzed at the tested concentrations of 360 nM and 71.5 nM, respectively. Thus, B. malayi microfilariae (IC₅₀ = 0.064 μM; 95 %
CI 0.045–0.09) were less sensitive to emodepside, as shown by non-overlapping 95% CI than B. pahangi microfilariae (IC_{50} = 0.025 μM; 95% CI xxx–0.035) in an assay that was performed at the same institute under identical conditions (Fig. 1B). Emodepside-induced motility inhibition was also observed for B. pahangi adult worms, with IC_{50} values of 0.14 μM for males and 0.24 μM for females after 24 h of treatment (Fig. 1C).

3.3. In vitro effects of emodepside on Dirofilaria immitis microfilariae, L3, L4, and adult worms

To investigate the effect of emodepside on the canine heartworm D. immitis, developmental stages of the parasite were incubated with different drug concentrations over a period of 72 h in vitro. Emodepside was found to inhibit the motility of the investigated D. immitis stages in a dose-dependent manner (Fig. 1D). Remarkably, adult worms showed a higher susceptibility to emodepside than larval stages as indicated by non-overlapping 95% CI (Table 1), using the same assay (including scoring system and media), although at different institutes. While male and female worms were already completely paralyzed at the lowest assay concentration of ~3 nM, complete inhibition of L4 motility was only achieved after exposure to an emodepside concentration of 72 nM and complete inhibition of microfilariae and L3 motility was achieved at a concentration of 360 nM. Overall, IC_{50} values for all larval stages were close together, with concentrations of 0.01 μM (microfilariae), 0.006 μM (L3), and 0.009 μM (L4) of emodepside.

3.4. In vitro effects of emodepside on Litomosoides sigmodontis microfilariae, L3, and adult worms

Emodepside inhibited L. sigmodontis microfilariae motility in a dose-dependent manner over a period of up to 96 h in vitro. Over the time course of the experiment, inhibition of microfilariae motility was already observed 2 h post emodepside exposure; at a concentration of 0.01 μM emodepside, microfilariae motility was impaired after 2 h (score 1–2) and this effect was maintained throughout the observation period of 96 h (data not shown). Microfilariae had a motility reduction of 89% at an emodepside concentration of 0.1 μM, with 99% and complete inhibition of motility obtained with emodepside concentrations of 1 μM and 10 μM, respectively, starting at 2 h of culture and continuing until the end of the observation period (96 h). The calculated IC_{50} value was 0.009 μM after 96 h of treatment.

To assess the effect of emodepside on L. sigmodontis L3 motility, L3s were evaluated after 72 h in vitro culture in the presence of varying concentrations of the drug. In contrast to microfilariae, none of the emodepside concentrations tested were able to inhibit L3 motility completely. Emodepside 10 μM had an efficacy of 80.9% in inhibiting L3 motility, while lower concentrations resulted in reduced efficacy from 67.6% (1 μM), 35.5% (0.1 μM), and 6.5% (0.01 μM) (Fig. 1E). These results demonstrate that emodepside inhibits L3 motility in a dose-dependent manner with an IC_{50} of 0.35 μM.

The highest emodepside sensitivity was observed for adult worms, where the drug completely inhibited L. sigmodontis female and male motility at the lowest assay concentration tested (0.01 μM). Two hours after in vitro emodepside exposure at 0.01 μM, L. sigmodontis female adult worms were generally immotile with non-continuous movements; higher concentrations of emodepside (1 μM and 10 μM) completely inhibited female adult worm motility at this time point. From 24 h to the end of the observation period at 96 h, no male or female adult worm motility was observed for all emodepside concentrations tested.

3.5. In vitro effects of emodepside on Onchocerca spp

To investigate the effect of emodepside on the bovine filarial nematode O. lienalis, microfilariae were incubated with different drug concentrations over a period of 120 h in vitro. Emodepside inhibited O. lienalis microfilariae motility in a dose-dependent manner (Fig. 1F). At the highest emodepside concentration of 12.5 μM, microfilariae were completely paralyzed and partial but marked effects could be seen down to a concentration of 12 nM (IC_{50} = 0.02 μM).

Compared with O. lienalis microfilariae, the effect of emodepside on adult males of O. guttatus was more pronounced. When emodepside was incubated for 120 h with O. guttatus males in vitro, the drug inhibited motility completely from a concentration of 48 nM, with an IC_{50} value of 0.001 μM.

4. Discussion

Filarial nematodes have a tremendous impact on global health, with over 1 billion people at risk of infection from the parasitic diseases onchocerciasis or lymphatic filariasis (WHO, 2017a; WHO, 2017b). Since existing registered drugs do not kill the adult worms and have the potential to induce resistance, elimination programs will greatly benefit from innovative treatments that provide long-term sterilization and ideally kill the adult worms (Mackenzie, 2000; Bockarie and Deb, 2010; Osei-Aweneboana et al., 2011; Stolk et al., 2018). Emodepside belongs
International Journal for Parasitology: Drugs and Drug Resistance 17 (2021) 27–35

M.P. Hübner et al.

International Journal for Parasitology: Drugs and Drug Resistance 17 (2021) 27–35

33

to the cyclooctadepsipeptide class of anthelmintics, and has been shown to exhibit anthelmintic activity against a broad range of parasitic nematodes of medical and veterinary importance, including filariae, roundworms, hookworms and strongylids (Krücken et al., 2012), and can successfully eliminate nematodes resistant to other anthelmintic classes (von Samson-Himmelstjerna et al., 2005; Jimenez Castro et al., 2020). In the present study, we tested the in vitro efficacy of emodepside against a broad range of related filarial parasite species and development stages using motility assays.

Overall, emodepside inhibited the motility of all tested filarial nematode species and stages in a dose-dependent manner. Species-specific and developmental stage differences in the response to emodepside were observed, although an overall susceptibility ranking is not advised because of the different experimental designs used to culture the various species and stages. Those various in vitro assays were originally established for different reasons, e.g. to allow screening of compound libraries, resistance-monitoring, evaluation of plant extracts or understanding of PK/PD relationships. Furthermore, culture conditions were optimized for the different lifecycle stages and filarial species used. Therefore, assays varied in multiple parameters, including composition...
Microfilariae of the rodent filarial nematode *A. viteae* showed a moderate response to emodepside with a complete inhibition of motility starting at a concentration of 1 μM *in vitro*. These results are in line with previous findings of Zahner and colleagues that indicated an adequate efficacy of emodepside in the multimammate mouse (*Mus musculus*). *A. viteae* in vivo model with an almost complete clearance of the microfilariae (Zahner et al., 2001a, 2001b).

An interesting observation from these *in vitro* experiments on *A. viteae* microfilariae was that at lower concentrations of emodepside, i.e. 0.01 μM and 0.1 μM, the motility of the microfilariae was initially inhibited, but the worms showed a partial recovery from the drug effects as the experiment proceeded, which was reflected by the IC₅₀ over time. Similar experiments investigating the effect of emodepside on nematode motility have described worm death as the point at which there is complete paralysis (Karpstein et al., 2019). It is clear from the findings with *A. viteae* that partial inhibition of motility is not a lethal effect. Thus, at least the lowest concentrations of emodepside at which complete and maintained inhibition of motility is achieved should be considered as minimal systemic exposure in the host.

Microfilariae of other related filarial species (*B. malayi* and *B. pahangi*, *D. immitis*, *L. sigmodontis*, and *O. lienalis*) also showed a moderate response to emodepside. In all cases, motility was completely inhibited at concentrations of 0.36 μM–10 μM. This suggests that microfilariae are generally susceptible to emodepside, as has been indicated *in vivo* in previous studies of emodepside efficacy in *filariae*-infected rats, and gastrointestinal nematodes of sheep and cattle (Zahner et al., 2001a; Zahner et al., 2001b; von Samson-Himmelstjerna et al., 2005).

Given the above-mentioned limitations of this study, several observations on the susceptibility to emodepside were made and based on non-overlapping 95 % CI, as shown in Table 1. Using the same protocol at the same institute, microfilariae of *B. malayi* were less susceptible to emodepside than those of *B. pahangi*, despite their high genomic similarity (Lau et al., 2015). Within the same laboratory, but differences in the readout and the culture media, testing of L3 and L4 stages of *D. immitis* showed comparable sensitivity to the microfilariae experiments. In contrast, within the same laboratory but differences in culture media, the L3 stage of *L. sigmodontis* was less sensitive than microfilariae as none of the tested emodepside concentrations were able to inhibit L3 *L. sigmodontis* completely. *L. sigmodontis* is used as a rodent model for human filarial infections (Hübner et al., 2009; Risch et al., 2021), and previous *in vivo* studies of emodepside in a rodent model have already indicated that emodepside is not effective at killing larval and pre-adult stages of *L. sigmodontis* or *B. malayi* (Zahner et al., 2001a). Only microfilariae of *B. malayi* were tested in this study, and therefore the *in vitro* susceptibility of the L3 stage of *B. malayi* remains unknown.

Most remarkably, adult worms of all tested species except for *B. pahangi* exhibited the strongest susceptibility to emodepside compared with all other development stages (see Table 1), which is a promising finding with respect to the weak adjuvantial effects observed for currently used MDA compounds (Walker et al., 2017). If this finding is also confirmed *in vivo*, emodepside concentrations may be used for treatment of filariasis that have macrofilarial efficacy without resulting in rapid microfilariae killing, thus avoiding severe adverse events. In this case, treatment in areas co-endemic for loiasis may be also safe.

Although *in vitro* activity cannot be easily translated to the *in vivo* situation, given that formulations, drug uptake, distribution and metabolism, accessibility of the parasite to the drug, PK/PD relationship are altered *in vivo* and dependent on the host species, we are certain that our study provides new insights into the potential of emodepside as a novel anthelmintic compound for humans with broad-spectrum efficacy against nematodes.

5. Conclusion

In summary, emodepside exhibits good *in vitro* efficacy against various filarial nematode species and developmental stages included in our study. The present data strengthens the potential of emodepside as a promising anthelmintic drug with broad-spectrum activity against microfilarial, third larval, fourth larval, and adult stages of a variety of filarial genera and species. Based on these findings, emodepside is validated as a promising candidate for treatment of human filarial infections.

Declaration of competing interest

Achim Harder, Steffen Hahnel and Daniel Kulke were employees of Bayer Animal Health, which has since been taken over by Elanco Animal Health. Martin Glensche-Sieberth was employee of Bayer AG. Bayer Animal Health a division of Bayer AG developed and sold veterinary pharmaceuticals including dewormers. Except for the authors, Bayer Animal Health was not involved in the preparation of the manuscript. The decision to publish the data was jointly taken. Simon Townsend, Suzanne Gokool, Senyo Tagboto, Mary J. Maclean, Guilherme G. Vercuci, Adrian J. Wolstenholme, Stefan J. Frohberger and Achim Hörnrauf declare no competing interests.

Role of the funding source

This work was supported by the World Health Organization and Drugs for Neglected Diseases initiative. The funding for studies with *L. sigmodontis* and *A. viteae* and for experiments at the University of Georgia was obtained from Bayer Animal Health, which has since been taken over by Elanco Animal Health. Except for the co-authors Achim Harder, Steffen Hahnle and Daniel Kulke, Bayer Animal Health was neither involved in the study design nor in collection, analysis and interpretation of the data. However, Bayer Animal Health approved the decision to publish the work.

Acknowledgements

The authors would like to thank Martina Fendler, Marianne Koschel, Alexandra Ehrens and Christian Lentz for their help with the *L. sigmodontis* and *A. viteae* *in vitro* experiments. They would also like to thank Barbara Reaves for her assistance with the adult *D. immitis* and *A. viteae* *in vitro* experiments and to acknowledge the NIH/NIAID Filariasis Research Reagent Resource Center (FR3) (www.filariasiscenter.org) for providing some parasite materials and advice in parasite maintenance (Brugia spp., *Dirofilaria immitis*). The authors acknowledge Highfield Communication, Oxford, United Kingdom, sponsored by Bayer AG, for editorial support.

References

Akue, J.P., 2011. Encephalitis due to Loa loa. In: Tkachev, S. (Ed.), Non-Flavivirus Encephalitis. InTech, London.
Basáñez, M.G., Pion, S.D., Churcher, T.S., Breitling, L.P., Little, M.P., Bousin, M., 2006. River blindness: a success story under threat? PLoS Med. 3, e371.
Bernaudo, T., Coates, R., Reaves, B.J., Kulke, D., Wolstenholme, A.J., 2019. Macrocyclic lactone anthelmintic-induced leukocyte binding to *Dirofilaria immitis* microfilariae: influence of the drug resistance status of the parasite. Int. J. Parasitol. Drugs Drug Resist 10, 45–50.
Bockarie, M.J., Deb, R.M., 2010. Elimination of lymphatic filariasis: do we have the drugs to complete the job? Curr. Opin. Infect. Dis. 23, 617–620.
Campbell, W.C., 2016. Ivermectin: a reflection on simplicity (nobel lecture). In: Engl, S.M., Ham, P.J., Townson, S., James, E.R., Bianco, A.E., 1981. An improved technique for the cryopreservation of O. volvulus microfilariae. Parasitol. Res. 67, 139–146.

Kulke, D., von Samson-Himmelstjerna, G., Miltsch, S.M., Wolstenholme, A.J., Jex, A.R., Kuesel, A.C., 2016. Research for new drugs for elimination of onchocerciasis in Africa. Parasit. Vectors 8, 451.

Boussinesq, M., 2017. Macrofilaricidal efficacy of repeated doses of ivermectin for onchocerciasis. Curr. Opin. Infect. Dis. 13, 457–468.

WHO, 2017b. Summary of global update on preventive chemotherapy implementation in 2016: crossing the billion. Wkly. Epidemiol. Rec. 92, 681–694.

WHO, 2017a. Progress on the elimination of onchocerciasis, 2016–2017. Wkly. Epidemiol. Rec. 92, 589–593.

Zahner, H., Taubert, A., Harder, A., von Samson-Himmelstjerna, G., 2001a. Efficacy of Bay 44–4400, a new cyclooctadepsipeptide, on developing stages of filariae (Acanthochelonea vitreae, Litomosoides sigmodontis) in the rodent Mastomys coucha. Acta Trop. 80, 19–28.

Zahner, H., Taubert, A., Harder, A., von Samson-Himmelstjerna, G., 2001b. Filaricidal efficacy of anthelmintically active cyclooctadepsipeptides. Int. J. Parasitol. 31, 1515–1522.