An Inequality for Gaussians on Lattices

Oded Regev∗† Noah Stephens-Davidowitz∗
noahsd@cs.nyu.edu

Abstract
We show that for any lattice $L \subseteq \mathbb{R}^n$ and vectors $x, y \in \mathbb{R}^n$,
$$\rho(L + x)^2 \rho(L + y)^2 \leq \rho(L)^2 \rho(L + x + y) \rho(L + x - y),$$
where ρ is the Gaussian measure $\rho(A) = \sum_{w \in A} e^{-\pi \|w\|^2}$. We show a number of applications, including bounds on the moments of the discrete Gaussian distribution, various monotonicity properties, and a positive correlation inequality for Gaussian measures on lattices.

1 Introduction
A lattice $L \subset \mathbb{R}^n$ is the set of all integer linear combinations of n linearly independent vectors $B = (b_1, \ldots, b_n)$. For a lattice $L \subset \mathbb{R}^n$, the dual lattice, denoted L^*, is defined as the set of all vectors that have integer inner products with all lattice points,
$$L^* = \{w \in \mathbb{R}^n : \forall y \in L, \langle w, y \rangle \in \mathbb{Z} \}.$$
It is easy to show that L^* is itself a lattice.

For any $s > 0$, we define the function $\rho_s : \mathbb{R}^n \to \mathbb{R}$ as $\rho_s(x) = \exp(-\pi \|x\|^2 / s^2)$. For a discrete set $A \subset \mathbb{R}^n$ we define $\rho_s(A) = \sum_{w \in A} \rho_s(w)$. The discrete Gaussian distribution over $L + x$ with parameter s, $D_{L + x,s}$, is the probability distribution over $L + x$ that assigns probability proportional to $\rho_s(w)$ to each vector $w \in L + x$. (See Figure 1a) The periodic Gaussian function over L with parameter s is
$$f_{L,s}(x) := \rho_s(L + x) / \rho_s(L).$$
(See Figure 1b) When $s = 1$, we write $\rho(x), D_L$, and $f_L(x)$. Using the Poisson summation formula, one can write
$$f_L(x) = \mathbb{E}_{w \sim D_{L^*}} \left[\cos(2\pi \langle w, x \rangle) \right].$$

These objects appear in several guises in mathematics and are well studied. For example, $\rho(L + x)$ is the Riemann theta function in a dual form (see, e.g., [Mum07]) and was studied in connection with the Riemann zeta function [Rie57, BPY01]; it can also be seen as the heat kernel

∗Courant Institute of Mathematical Sciences, New York University.
†Supported by the Simons Collaboration on Algorithms and Geometry and by the National Science Foundation (NSF) under Grant No. CCF-1320188. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.
in the flat torus \mathbb{R}^n/L; it played an instrumental role in proving tight transference theorems for lattices by Banaszczyk [Ban93]; and it was used to construct bilipschitz embeddings of flat tori into Hilbert space [HR13]. Both D_L+x and f_L have also played an important role in recent years in computer science, especially in cryptographic applications of lattices (e.g., [MR07, GPV08]). Our motivation comes from attempts to improve upon the current fastest known algorithm for the main computational problem on lattices, the Shortest Vector Problem [ADRS14].

2 The main inequality

The following is our main theorem. The proof is essentially a combination of a certain identity related to Riemann’s theta relations (see [Mum07, Chapter 1, Section 5]) and the Cauchy-Schwarz inequality.

Theorem 2.1. For any lattice $\mathcal{L} \subset \mathbb{R}^n$ and any two vectors $x, y \in \mathbb{R}^n$, we have

$$\rho(\mathcal{L}+x)^2 \rho(\mathcal{L}+y)^2 \leq \rho(\mathcal{L})^2 \rho(\mathcal{L}+x+y) \rho(\mathcal{L}+x-y).$$

Proof. Let $\mathcal{L}^{\oplus 2} := \mathcal{L} \oplus \mathcal{L}$. We can then write $\rho(\mathcal{L}+x)\rho(\mathcal{L}+y) = \rho(\mathcal{L}^{\oplus 2} + (x,y))$. Consider the $2n \times 2n$ matrix

$$T := \begin{pmatrix} I_n & I_n \\ I_n & -I_n \end{pmatrix},$$

where I_n is the $n \times n$ identity matrix. Note that $T/\sqrt{2}$ is an orthogonal matrix so that $\|Tv\| = \sqrt{2}\|v\|$ for any $v \in \mathbb{R}^{2n}$. We therefore have

$$\rho(\mathcal{L}+x)\rho(\mathcal{L}+y) = \rho_{\sqrt{2}}(T(\mathcal{L}^{\oplus 2} + (x,y))) = \rho_{\sqrt{2}}(T\mathcal{L}^{\oplus 2} + (x+y,x-y)).$$

(2)

For any $z := (z_1, z_2) \in \mathcal{L}^{\oplus 2}$, we have $Tz = (w_1, w_2)$ where $w_1 = z_1 + z_2$ and $w_2 = w_1 - 2z_2$. It
follows that
\[TL^2 = \{(w_1, w_2) \in L^2 : w_1 \equiv w_2 \mod 2L\} \]
\[= \bigcup_{c \in L/(2L)} (2L + c)^2, \]
where the union is disjoint. Plugging in to Eq. (2), we have
\[\rho(\mathcal{L} + x)\rho(\mathcal{L} + y) = \sum_{c \in L/(2L)} \rho_{\sqrt{2}}(2L + c + x + y) \cdot \rho_{\sqrt{2}}(2L + c + x - y). \] (3)

Call this \(g(x, y) \). Note that, by the right-hand side of (3), we can view \(g(x, y) \) as the inner product of two vectors,
\[g(x, y) = \langle h(x + y), h(x - y) \rangle. \]
Then, by Cauchy-Schwarz, we have
\[g(x, y)^2 \leq \|h(x + y)\|^2\|h(x - y)\|^2 = g(x + y, 0)g(x - y, 0), \]
as needed.

We remark that using the same proof with other transformations \(T \) might lead to other such inequalities. We leave this for future work and proceed to list a few immediate corollaries of Theorem 2.1.

Corollary 2.2. For any lattice \(L \subset \mathbb{R}^n \) and any two vectors \(x, y \in \mathbb{R}^n \), we have

\[f_L(x)^2f_L(y)^2 \leq f_L(x + y)f_L(x - y) \] (4a)
\[f_L(x)^4 \leq f_L(2x) \] (4b)
\[f_L(x)f_L(y) \leq (f_L(x + y) + f_L(x - y))/2 \] (4c)
\[\mathbb{E}_{w \sim D_L} [\cos(2\pi \langle w, x \rangle)]^2 \leq \mathbb{E}_{w \sim D_L} [\cos(2\pi \langle w, y \rangle)]^2 \] (4d)
\[\mathbb{E}_{w \sim D_L} [\cos(2\pi \langle w, x \rangle)] \mathbb{E}_{w \sim D_L} [\cos(2\pi \langle w, y \rangle)] \leq \mathbb{E}_{w \sim D_L} [\cos(2\pi \langle w, x \rangle) \cos(2\pi \langle w, y \rangle)]. \] (4e)

Proof. Eq. (4a) follows from the definition of \(f_L \). Eq. (4b) follows from plugging in \(y = x \) to Eq. (4a). Eq. (4c) follows from the fact that \(\sqrt{ab} \leq (a + b)/2 \) for all \(a, b \geq 0 \). Eq. (4d) follows from writing \(f_L(x) \) in its dual form (Eq. (1)) in Eq. (4a) and then applying the identity \(\cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b) \). Finally, Eq. (4e) follows from applying the same analysis to (4c).

3 Moments of the discrete Gaussian distribution

We next show an inequality on the Hessians of \(f_L \). In particular, this inequality constrains the shape of the local maxima of \(f_L \). (As observed in [DRST14], \(f_L \) can in fact have local maxima at non-lattice points.)
Proposition 3.1. For any lattice $\mathcal{L} \subset \mathbb{R}^n$ and any vector $x \in \mathbb{R}^n$, we have the positive semidefinite inequality
\[
\frac{H f_\mathcal{L}(x)}{f_\mathcal{L}(x)} \geq H f_\mathcal{L}(0) + \frac{\nabla f_\mathcal{L}(x)(\nabla f_\mathcal{L}(x))^T}{f_\mathcal{L}(x)^2}.
\]

Proof. By Eq. (4a), we have
\[
f_\mathcal{L}(x + y) f_\mathcal{L}(x) - f_\mathcal{L}(x)^2 f_\mathcal{L}(y)^2 \geq 0.
\]
Note that this is tight when $y = 0$. It follows that, for any x, the left-hand side has a local minimum at $y = 0$, and therefore the Hessian with respect to y at 0 must be positive semidefinite. The result follows by taking the Hessian and rearranging.

As a corollary, we obtain that the covariance matrix of $D_{\mathcal{L}+x}$ is minimized at $x = 0$.

Corollary 3.2. For any lattice $\mathcal{L} \subset \mathbb{R}^n$ and vector $x \in \mathbb{R}^n$, we have the positive semidefinite inequality
\[
\mathbb{E}_{w \sim D_{\mathcal{L}+x}} [ww^T] - \mathbb{E}_{w \sim D_{\mathcal{L}+x}} [w] \mathbb{E}_{w \sim D_{\mathcal{L}+x}} [w^T] \succeq \mathbb{E}_{w \sim D_{\mathcal{L}}} [ww^T] - \mathbb{E}_{w \sim D_{\mathcal{L}}} [w] \mathbb{E}_{w \sim D_{\mathcal{L}}} [w^T].
\]

In particular,
\[
\mathbb{E}_{w \sim D_{\mathcal{L}+x}} [\|w\|^2] - \mathbb{E}_{w \sim D_{\mathcal{L}+x}} [\|w\|^2] \succeq \mathbb{E}_{w \sim D_{\mathcal{L}}} [\|w\|^2].
\]

Proof. A straightforward computation shows that
\[
\frac{\nabla f_\mathcal{L}(x)}{f_\mathcal{L}(x)} = -2\pi \mathbb{E}_{w \sim D_{\mathcal{L}+x}} [w],
\]
\[
\frac{H f_\mathcal{L}(x)}{f_\mathcal{L}(x)} = 4\pi^2 \mathbb{E}_{w \sim D_{\mathcal{L}+x}} [ww^T] - 2\pi I_n.
\]
The result then follows from Proposition 3.1.

The following proposition (with $x = y$) implies that the one-dimensional projections of the discrete Gaussian distribution are “leptokurtic,” i.e., have kurtosis greater than 3, the kurtosis of a normal variable. We remark that the case $n = 1$ follows from a known inequality related to the Riemann zeta function $\zeta(3)$ (see also [BPY01, Section 2.2]).

Proposition 3.3. For any lattice $\mathcal{L} \subset \mathbb{R}^n$ and vectors $x, y \in \mathbb{R}^n$,
\[
\mathbb{E}_{w \sim D_{\mathcal{L}}} [(w, x)^2 (w, y)^2] \geq \mathbb{E}_{w \sim D_{\mathcal{L}}} [(w, x)^2] \mathbb{E}_{w \sim D_{\mathcal{L}}} [(w, y)^2] + 2 \mathbb{E}_{w \sim D_{\mathcal{L}}} [(w, x) (w, y)]^2.
\]

Proof. From Eq. (4d), for any $u, v \in \mathbb{R}^n$, we have
\[
\mathbb{E}_{w \sim D_{\mathcal{L}}} [\cos(2\pi (w, u))]^2 \mathbb{E}_{w \sim D_{\mathcal{L}}} [\cos(2\pi (w, v))]^2 \leq \mathbb{E}_{w \sim D_{\mathcal{L}}} [\cos(2\pi (w, u)) \cos(2\pi (w, v))]^2 - \mathbb{E}_{w \sim D_{\mathcal{L}}} [\sin(2\pi (w, u)) \sin(2\pi (w, v))]^2.
\]
As in the proof of Proposition 3.1, we note that this inequality is tight when \(u = 0 \). So, by taking the second derivative in the \(x \) direction, we have

\[
\mathbb{E}_{w \sim D_L} [(\langle w, x \rangle)^2] \mathbb{E}_{w \sim D_L} [\cos(2\pi \langle w, v \rangle)]^2 \geq \mathbb{E}_{w \sim D_L} [(\langle w, x \rangle)^2 \cos(2\pi \langle w, v \rangle)] \mathbb{E}_{w \sim D_L} [\cos(2\pi \langle w, v \rangle)] + \mathbb{E}_{w \sim D_L} [(\langle w, x \rangle \sin(2\pi \langle w, v \rangle))^2].
\]

This new inequality is tight when \(v = 0 \). So, by taking the derivative twice at \(v = 0 \) in the \(y \) direction, we have

\[
2 \mathbb{E}_{w \sim D_L} [(\langle w, x \rangle)^2] \mathbb{E}_{w \sim D_L} [(\langle w, y \rangle)^2] \leq \mathbb{E}_{w \sim D_L} [(\langle w, x \rangle)^2 (\langle w, y \rangle)^2] + \mathbb{E}_{w \sim D_L} [(\langle w, x \rangle)^2] \mathbb{E}_{w \sim D_L} [(\langle w, y \rangle)^2] - 2 \mathbb{E}_{w \sim D_L} [(\langle w, x \rangle \langle w, y \rangle)^2],
\]

and the result follows. \(\Box \)

4 Monotonicity of the periodic Gaussian function

Proposition 4.1. For any lattice \(L \subset \mathbb{R}^n \) and vector \(x \in \mathbb{R}^n \),

\[
\frac{d}{ds} f_{L,s}(x) = \frac{2\pi f_{L,s}(x)}{s^3} \cdot \mathbb{E}_{w \sim D_{L \times s}} [||w||^2] - \frac{2\pi f_{L,s}(x)}{s^3} \cdot \mathbb{E}_{w \sim D_{L,s}} [||w||^2].
\]

In particular, \(f_{L,s}(x) \) is non-decreasing as a function of \(s \).

Proof. A straightforward computation shows that

\[
\frac{d}{ds} f_{L,s}(x) = \frac{2\pi f_{L,s}(x)}{s^3} \cdot \mathbb{E}_{w \sim D_{L \times s}} [||w||^2] - \frac{2\pi f_{L,s}(x)}{s^3} \cdot \mathbb{E}_{w \sim D_{L,s}} [||w||^2]
\]

\[
\geq \frac{2\pi f_{L,s}(x)}{s^3} \cdot \mathbb{E}_{w \sim D_{L \times s}} [||w||^2]^2,
\]

where we have applied Corollary 3.2. The result then follows from the fact that

\[
\frac{\|\nabla f_{L,s}(x)\|}{f_{L,s}(x)} = \frac{2\pi}{s^2} \cdot \mathbb{E}_{w \sim D_{L \times s}} [||w||^2]. \quad \Box
\]

The next proposition can be viewed as a generalization of Proposition 4.1 in which we replace the scalar parameter \(s > 0 \) by a positive definite matrix \(S \).

Proposition 4.2. For any lattice \(L \subset \mathbb{R}^n \), positive definite matrix \(S \in \mathbb{R}^{n \times n} \), and \(x \in \mathbb{R}^n \), let \(f_{L,S}(x) := f_{S^{-1}L}(S^{-1}x) \). Then, for any positive definite matrix \(S' \) satisfying the positive semidefinite inequality \(S' \preceq S \),

\[
f_{L,S'}(x) \leq f_{L,S}(x).
\]

This answers a question of Price [Pri14b], who proved monotonicity for the case \(n = 1 \). He also asked if there are other manifolds for which such a monotonicity property holds, a question that we leave open.
Proof. By replacing L by $S^{-1}L$, x by $S^{-1}x$, and S by $S^{-1}S$, we can assume without loss of generality that $S' = I_n$. Because S is symmetric, there exists an orthonormal basis that diagonalizes S. Let $s_1, \ldots, s_n \geq 1$ be the entries along the diagonal of S in this basis (i.e., the eigenvalues of S).

The proof now proceeds nearly identically to the proof of Proposition 4.1. Differentiating with respect to s_i, we have

$$\frac{d}{ds_i} f_{L,S}(x) = \frac{2\pi f_{L,S}(x)}{s_i^3} \left(\mathbb{E}_{w \sim D_{S^{-1}(L+x)}} [w_i^2] - \mathbb{E}_{w \sim D_{S^{-1}L}} [w_i^2] \right),$$

where w_i is the ith coordinate of w (in the basis that diagonalizes S). The result follows by noting that Corollary 3.2 implies that this derivative is positive for all $s_i > 0$.

Proposition 4.3. For any lattice $L \subset \mathbb{R}^n$, sublattice $M \subseteq L$, and vector $x \in \mathbb{R}^n$,

$$f_M(x) \leq f_L(x).$$

Proof.

$$\rho(M + x) \rho(L) = \sum_{c \in L/M} \rho(M + x) \rho(M + c)$$

$$\leq \sum_{c \in L/M} \rho(M) \rho(M + x + c) / 2 \quad \text{(Eq. (4c))}$$

$$= \sum_{c \in L/M} \rho(M) \rho(M + x + c)$$

$$= \rho(M) \rho(L + x).$$

The result follows.

As a corollary, we answer a question asked by Price [Pri14a].

Corollary 4.4. For any lattice $L \subset \mathbb{R}^n$, sublattice $M \subseteq L$, and subspace $V \subseteq \mathbb{R}^n$, we have

$$\frac{\rho(M)}{\rho(M \cap V)} \leq \frac{\rho(L)}{\rho(L \cap V)}.$$

Proof.

$$\frac{\rho(L)}{\rho(L \cap V)} = \sum_{c \in L/(L \cap V)} \frac{\rho((L \cap V) + c)}{\rho(L \cap V)}$$

$$\geq \sum_{c \in L/(L \cap V)} \frac{\rho((M \cap V) + c)}{\rho(M \cap V)} \quad \text{(Prop. 4.3)}$$

$$\geq \sum_{c \in M/(M \cap V)} \frac{\rho((M \cap V) + c)}{\rho(M \cap V)}$$

$$= \frac{\rho(M)}{\rho(M \cap V)},$$

where the last inequality follows from the fact that for any two distinct cosets $c, c' \in M/(M \cap V)$, $c - c' \notin V$ and therefore $(L \cap V) + c \neq (L \cap V) + c'$. \qed
5 Positive correlation of Gaussian measure on lattices

The following shows that under the normalized Gaussian measure on a lattice, sublattices are positively correlated. This has superficial resemblance to the celebrated Gaussian correlation conjecture (see [SSZ98] and references therein).

Theorem 5.1. For any lattice $\mathcal{L} \subset \mathbb{R}^n$ and sublattices \mathcal{M} and \mathcal{N},

$$\frac{\rho(\mathcal{M})}{\rho(\mathcal{L})} \cdot \frac{\rho(\mathcal{N})}{\rho(\mathcal{L})} \leq \frac{\rho(\mathcal{M} \cap \mathcal{N})}{\rho(\mathcal{L})} .$$

Proof. We claim that for any $w \in \mathcal{L}$,

$$\sum_{c \in M^*/L^*} \cos(2\pi \langle w, c \rangle) = |M^*/L^*| \cdot 1_M(w). \quad (5)$$

If $w \in \mathcal{M}$ this is obvious, so suppose that $w \in \mathcal{L} \setminus \mathcal{M}$. Then, there exists $c' \in M^*/L^*$ such that $\langle w, c' \rangle \not\in \mathbb{Z}$. Since the cosets form a group, we have

$$\sum_{c \in M^*/L^*} \cos(2\pi \langle w, c \rangle) = \sum_{c \in M^*/L^*} \cos(2\pi \langle w, c + c' \rangle)$$

$$= \cos(2\pi \langle w, c' \rangle) \sum_{c \in M^*/L^*} \cos(2\pi \langle w, c \rangle) - \sin(2\pi \langle w, c' \rangle) \sum_{c \in M^*/L^*} \sin(2\pi \langle w, c \rangle),$$

where we have used the identity $\cos(a + b) = \cos(a) \cos(b) - \sin(a) \sin(b)$. Eq. (5) follows after noting that the second term on the right-hand side must be zero by symmetry. Similarly,

$$\sum_{d \in N^*/L^*} \cos(2\pi \langle w, d \rangle) = |N^*/L^*| \cdot 1_N(w).$$

By (4e), we have that for any $c \in M^*/L^*$ and $d \in N^*/L^*$,

$$\mathbb{E}_{w \sim D_c} \left[\cos(2\pi \langle w, c \rangle) \right] \mathbb{E}_{w \sim D_c} \left[\cos(2\pi \langle w, d \rangle) \right] \leq \mathbb{E}_{w \sim D_c} \left[\cos(2\pi \langle w, c \rangle) \cos(2\pi \langle w, d \rangle) \right].$$

The result then follows by summing both sides over all cosets c and d. \qed

Acknowledgements

We thank Tom Price for helpful discussion.

References

[ADRS14] D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz. Solving the shortest vector problem in 2^n time via discrete Gaussian sampling, 2014. Submitted. Available at http://arxiv.org/abs/1412.7994.

[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. *Mathematische Annalen*, 296(4):625–635, 1993.
[BPY01] P. Biane, J. Pitman, and M. Yor. Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. *Bull. Amer. Math. Soc. (N.S.)*, 38(4):435–465, 2001.

[Chu76] K. L. Chung. Excursions in Brownian motion. *Ark. Mat.*, 14(2):155–177, 1976.

[DRS14] D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector problem with a distance guarantee. In *IEEE 29th Conference on Computational Complexity*, pages 98–109. 2014. Full version available at http://arxiv.org/abs/1409.8063.

[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In *STOC*, pages 197–206. 2008.

[HR13] I. Haviv and O. Regev. The Euclidean distortion of flat tori. *J. Topol. Anal.*, 5(2):205–223, 2013.

[MR07] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. *SIAM J. Comput.*, 37(1):267–302 (electronic), 2007.

[Mum07] D. Mumford. *Tata lectures on theta. I*. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman, Reprint of the 1983 edition.

[New76] C. M. Newman. Fourier transforms with only real zeros. *Proc. Amer. Math. Soc.*, 61(2):245–251 (1977), 1976.

[Pri14a] T. Price. Inequality regarding sum of gaussian on lattices. MathOverflow, 2014. http://mathoverflow.net/q/160507 (version: 2014-12-01).

[Pri14b] T. Price. Is the heat kernel more spread out with a smaller metric? MathOverflow, 2014. http://mathoverflow.net/q/186428 (version: 2014-12-11).

[Rie57] B. Riemann. Theorie der Abel’schen Functionen. *Journal für die reine und angewandte Mathematik*, 54:101–155, 1857.

[SSZ98] G. Schechtman, T. Schlumprecht, and J. Zinn. On the Gaussian measure of the intersection. *Ann. Probab.*, 26(1):346–357, 1998.