Strike-slip tectonics during rift linkage

Carolina Pagli, Sang-Ho Yun, Cynthia Ebinger, Derek Keir, and Hua Wang

1 Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 56126 Pisa, Italy
2 Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA
3 Department of Earth & Environmental Sciences, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, USA
4 Ocean and Earth Science, University of Southampton, European Way, SO14 3ZH, Southampton, UK
5 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, 50121 Florence, Italy
6 Department of Surveying Engineering, Guangdong University of Technology, 100 Waihuan Xi Road, Panyu District, Guangzhou, 510006, China

ABSTRACT

The kinematics of rift segment linkage in magmatic rifts remains debated. Strain patterns from Afar provide tests of current models of how segmented rifts grow in areas of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary linkage between the Red Sea and Gulf of Aden rifts of Afar is accommodated primarily by distributed extensional faulting. Large rotations about vertical axes predicted by bookshelf faulting models are not detected. Additionally, models of stress changes and seismicity induced by recent dikes provide poor fits to the observed time-space patterns of strike-slip earthquakes. Instead we explain these as
rift-perpendicular shearing at the tips of spreading rifts where extension terminates
against less stretched lithosphere. Our results demonstrate that distributed extension
drives rift-perpendicular shearing that achieves plate boundary linkage during
incipient seafloor spreading

INTRODUCTION

Continental rifts are three-dimensional structures with complex fault
kinematics ranging from extensional to strike-slip (i.e., Kebede et al., 1989; Sigmundsson, 1992). The distribution of strain also evolves from rift initiation to plate rupture. During the initial continental extension, rifts show along-axis segmentation by large-offset faults but, as plate stretching and heating progresses to rupture, magma intrusion may accommodate a large percentage of the plate boundary deformation, and along-axis segmentation is in part controlled by the distribution of magma chambers (Ebinger and Casey, 2001; Keir et al., 2009). Yet, unlike mid-ocean ridge segments that are linked by transform faults (>50 km offsets) or smaller 10 km non-transform offsets (Macdonald et al., 1988), there are few if any strike-slip faults at the surface between en echelon rift segments; it remains debated how crustal extension is transferred from one rift segment to another. This gap obfuscates our understanding of the mode and stability of rift linkage in Afar. However, recent seismicity (Ebinger et al., 2008; Keir et al., 2009; Belachew et al., 2011) and high-resolution InSAR and GPS derived strain maps (Pagli et al., 2014) now allow us to identify the present plate boundary and constrain its kinematics in Afar. Our seismicity and strain rate maps are complemented by independent structural data (Varet, 1975; Hayward and Ebinger, 1996; Manighetti et al., 2001).

The divergence of the Nubian, Arabian and Somalian plates during the past 30 Ma created the Afar depression, where extension occurs across the Red Sea, the Gulf
of Aden, and the Main Ethiopian rifts (MER) (Fig. 1) (Barberi and Varet, 1977;
Courtillot et al., 1984). Current full spreading velocities are 18 mm/yr for Nubia-
Arabia, 16 mm/yr for Somalia–Arabia, and 6 mm/yr for Nubia–Somalia (McClusky et
al., 2010; Saria et al., 2014). The Red Sea and Gulf of Aden rifts are extending in a
NE-SW direction, and are connected to the much slower, ~E-W extending MER by
the Tendaho-Goba’ad discontinuity (Hayward and Ebinger, 1996; Manighetti et
al., 1998). Extension along the southern Red Sea was initially accommodated on large
border faults but during the past ~4 Ma strain localized to axial magmatic segments,
which mark the active plate boundary from latitude ~15° to 12°N in the Red Sea rift,
and south of 11°N in the MER (Fig. 1) (Hayward and Ebinger, 1996; Manighetti et
al., 1998). Similar patterns occur in the Gulf of Aden rift (Asal-Ghoubbet rift)
(Doubre et al., 2007; Vigny et al., 2007). Between the clear segmentation of the Red
Sea and Gulf of Aden rifts, from latitude 12° to 11°N, the presence of mainly tectonic
fault zones without recent (Holocene) volcanism suggests that plate opening is
accommodated by faulting.

The mode of linkage between the Red Sea and Gulf of Aden rifts in central
Afar has been debated. A model of propagating rifts assumes that the Red Sea rift
propagates southward as the Gulf of Aden rift propagates northward (Fig. 1 and Fig.
DR1 in the GSA Data Repository1) (i.e., Tapponnier et al., 1990; Manighetti et al.,
1998; Kidane et al., 2003; Muluneh et al., 2013; Kidane, 2016). According to the
bookshelf faulting model, the two propagating rift tips do not directly join but instead
overlap creating a broad zone of right-lateral shear in central Afar. The shearing is
achieved by slip along a series of rift-parallel left-lateral strike-slip faults: bookshelf
faulting. The 1969 Serdo earthquakes, rupturing ~2 km long, rift-parallel left-lateral
strike-slip faults, together with clockwise block rotations were originally used as
evidence of bookshelf faulting (Courtillot et al., 1984; Tapponnier et al., 1990).

However, the 1989 earthquake swarm from the Dobi graben had normal faulting mechanisms (Sigmundsson, 1992). As normal faulting is not explained by the bookshelf model, the author then argued that the model should be modified to include extension together with strike-slip. Alternative models have also been proposed; the rift-perpendicular distribution of aftershocks from the Serdo earthquakes was interpreted as a rift-perpendicular transform (Kebede et al., 1989). The palaeomagnetic rotations have been explained by models of rigid microplates bounded by narrow zones of strain that may not be stable in time (Acton et al., 1991), but Quaternary fault slip patterns show more distributed deformation in central Afar (Polun et al., 2018). Importantly neither model considers strain accommodation by episodic magma intrusion. Here we present a new model that separates magmatic and tectonic features, and leads to distributed extension to link rift segments at plate rupture.

SEPARATING DIKE-INDUCED AND TECTONIC SEISMICITY

We analyzed the seismicity from two local seismic networks that were deployed in Afar between 19 October 2005 and 07 October 2009 (Fig. 1 and Table DR1) (Ebinger et al., 2008; Keir et al., 2009; Belachew et al., 2011; Belachew et al., 2013; Ayele et al., 2015). The catalogues were located using Hypo2000 and a single 1-dimensional velocity model. In our study area (black box in Fig. 1) there are a total of 6141 earthquakes with local magnitudes of 0.8–4.7 and a mean horizontal error on the earthquakes epicenters of 1.3 km. A total of fourteen intrusions occurred in DMH between 2005 and 2010 and were identified by geodesy and seismicity (Wright et al., 2012; Belachew et al., 2013), of which ten are covered by our catalogue. The seismicity patterns in Figure 1 are caused by both tectonic and dike-induced stresses.
Dike intrusions cause stress changes in the surrounding crust, inducing earthquakes. Specifically, the stress imposed by a dike intrusion is expected to cause normal faulting above it and strike-slip faulting along two limbs near each of the two dike tips, at ~120 degrees to the strike of the intrusion (Hill, 1977; Toda et al., 2002). We analyzed the seismicity to separate co-intrusive from longer-term tectonic features.

In Figure 2a and Figure DR2 we show the co-intrusive seismicity at DMH. The majority of the co-intrusive events occur within DMH (Fig. 2a) while off-rift earthquakes are observed mainly northeast and southeast of the rift, crudely defining two limbs (Fig. 2a). Nonetheless, earthquakes occur on the sides of DMH irrespective of dike intrusions (Fig. 2b).

We modeled the seismicity around DMH calculating the stress changes caused by the dikes, using a method that takes into account the dike-induced stress changes caused by the intruded magma on the dike walls and the fact that these stresses acts on crustal faults inducing earthquakes (Yun et al., 2006; Segall et al., 2013). We first calculate the dike opening distributions in DMH, then we relate the dike-induced stresses to seismicity based on the seismicity-rate theory of Dieterich (Dieterich, 1994) as described by Segall et al. (2013) (Supplemental Material and Fig. DR4). We simulated the earthquakes induced by magma intruded in DMH between 2 and 9 km depth (Wright et al., 2012). We assumed a 70-km-long, N150E striking DMH rift and aligned faults (Varet, 1975; Hayward and Ebinger, 1996; Manighetti et al., 2001). Our modeling predicts increased seismicity due to dike-induced stress changes around DMH, reproducing some of the off-rift earthquakes (Fig. 2c). However, the ~E-W-trending belt of persistent seismicity southeast of DMH cannot be matched by the model predictions (Fig. 2c). We conclude that the off-rift earthquakes immediately
adjacent to the intruded area northeast and southeast of DMH are likely induced by
the intrusions while the rest of the seismicity is caused by tectonic stresses.

To better understand the tectonics of the area we then analyzed the seismicity
catalogue together with the focal mechanisms of the larger events and the strain rate
maps derived from InSAR and GPS. We removed from the catalogue all earthquakes
spanning the time of an intrusion and subsequent 30 days to make the seismicity
comparable to the geodesy, in which the one-month co-intrusive displacements were
removed. Co-intrusive seismicity plots (Fig. DR3) show that dike-induced
earthquakes decay more rapidly than 30 days. The resulting seismicity describes the
recent tectonic stresses acting in the region devoid of short-term dyking processes
(Fig. 2b). Although earthquake magnitudes are too small or azimuthal gaps too large
to evaluate isotropic and CLVD (Compensated Linear Vector Dipole) components,
earthquakes in the central Afar rifts do not occur in swarms characteristic of magma
intrusion events, and the focal mechanism analyses are consistent with double-couple
mechanisms.

RIFT-PERPENDICULAR SHEARING AT SEGMENT TIPS

Knowledge of how the crust deforms is fundamental to understand the
ongoing tectonics. Recently Pagli et al. (2014) combined InSAR data, acquired in
different geometries by the ENVISAT satellite, with the available GPS data to obtain
a continuous high-resolution 3D velocity field of Afar (Supplemental Material and
Figs. DR5-DR7) (Wang and Wright, 2012). The velocity field was then used to
calculate the horizontal strain rates (e.g. Savage et al., 2001). The InSAR and GPS
data span the time period from the start of 2007 to mid 2010, comparable to the
observation period of the seismic networks (Oct 2005-Oct 2009). All co-intrusive
deformation in the DMH segment has been removed from the data so the resulting
strain rates are representative of the tectonic regime. We also augment our seismicity and strain rate maps with local (Lépine and Hirn, 1992; Ebinger et al., 2008) and teleseismic focal mechanisms (Kebede et al., 1989; Craig et al., 2011).

High strain rates and dense seismicity clusters occur at the DMH axis, where segment-centered extension (Fig. 3a) and shear (Fig. 3b) correlates with normal and strike-slip earthquakes as a result of transient post-rifting deformation (Hamling et al., 2014; Pagli et al., 2014). However, high shear strain rates and seismicity also extend off-rift, in particular along two WSW-trending zones at the northern and southern tips of DMH (Fig. 3b). Globally, co-intrusive deformation and induced earthquakes have been observed in detail in the past and conceptual models exist (Hill, 1977; Yamashita, 1999; Passarelli et al., 2015). However, Figure 3 shows for the first time that repeated dyking at a rift segment (co-rifting) can generate shear off-rift during post-rifting.

In central Afar, southeast of DMH, extension rates are detected across a 150–200 km-wide region of sub-parallel basins: Manda-Gargori, Dobi, Immino, Hanle, and Asal-Ghoubbet (Fig. 3a). Normal faulting earthquakes recorded globally also occurred at the same location showing a tectonic regime dominated by extension rather than distributed shear. Conversely, an ENE-WSW band of seismicity with strike-slip focal mechanisms is recorded at the rift tips, including the Serdo earthquakes (Fig. 3b), showing rift-perpendicular shear with good correlation to where the extension of the central Afar rifts terminates (Fig. 3a). We explain these spatial patterns as the result of a rift-perpendicular, right-lateral shear zone at the rift tips where the extension across a broad region terminates against less stretched lithosphere. The focal mechanism nodal planes and fault patterns are consistent with the shear being accommodated by short rift-parallel left-lateral faults (i.e., 1969 Serdo
175 earthquakes), although the shear zone may also evolve to a through-going right-lateral
176 transform fault. The shearing is well captured by seismicity but not as clearly by the
177 shear strain rate map, likely because the resolution does not allow us to identify
178 narrow localized shear or because the shear motion is not high enough to be identified
179 by InSAR due to projection along the satellite Line-Of-Sight.

180 Paleomagnetic rotations have been taken as evidence of bookshelf faulting in
181 central Afar (Tapponnier et al., 1990) but recent studies show that rotations are
182 heterogeneous in the area, and that the western rifts (i.e., Manda-Gargori and Dobi)
183 are not rotated (Kidane et al., 2003). The bookshelf model also requires rift
184 propagation from the Asal-Ghoubbet rift into Manda-Inakir and Moussa-Alli rifts.
185 However, no strain localization or seismicity is recorded there, while extension and
186 normal faulting earthquakes occur in the central Afar rifts. Detailed structural
187 analyses in central Afar show that fault slip is primarily normal with a minimal
188 oblique component, and bookshelf fault zones have been inactive over the 5-100 ka
189 (Polun et al., 2017). We acknowledge that a zone of bookshelf may have acted in the
190 past, but our analyses of current strain rates and seismicity support a model for Red
191 Sea-Gulf of Aden-MER linkage through a broad zone of overlapping, extensional
192 basins bounded by rift-perpendicular shear zones (Fig. 4).
193
194 The Tendaho-Goba’ad discontinuity that links the MER to the Red Sea and
195 Gulf of Aden zones comprises conjugate NNW- and NNE-striking faults owing to the
196 high obliquity between the extension directions (Varet, 1975). In the MER, seismicity
197 occurs mainly in the Karrayu segment while extension is accommodated occurs over
198 a broader zone (Fig. 3a). This extension may be related to the superposition of the
199 younger MER structures on the ~30 Ma Red Sea-Gulf of Aden rift junction (Kidane
200 et al., 2003).
CONCLUSIONS

Our results show that rifts are linked by a series of extensional faults bounded by a rift-perpendicular zone of shear, providing a new tectonic model of the Afar plate boundary (Fig. 4). Specifically, plate extension is accommodated within the DMH, while south of it, in the central Afar rifts strain rates and seismicity are consistent with linkage between the Gulf of Aden ridge to the Southern Red Sea through a series of rift segments that connect to the DMH. Owing to the lack of any significant strain rates or seismicity in Manda-Inakir and Moussa-Alli (Fig. 3) these areas are not the locus of the plate boundary at present, arguing against the broad zone of shear deformation required by bookshelf faulting models.

The central Afar rifts are deep, sediment filled, grabens bounded by normal faults that show normal faulting earthquakes. Seismicity, geodetic, and structural data indicate that the central Afar basins are in extension, and lack the strike-slip faulting and block rotations predicted by bookshelf faulting. We conclude that the Red Sea, Gulf of Aden, and MER are currently linked by a zone of rift-parallel normal faults bound by narrow rift-perpendicular shear zones.

REFERENCES CITED

Acton, G.D., Stein, S., and Engeln, J.F., 1991, Block rotation and continental extension in Afar: A comparison to oceanic microplate systems: Tectonics, v. 10, p. 501–526, https://doi.org/10.1029/90TC01792.

Ayele, A., Ebinger, C.J., van Alstyne, C., Keir, D., Nixon, C.W., Belachew, M., and Hammond, J.O.S., 2015, Seismicity of the central Afar rift and implications for Tendaho dam hazards: Geological Society of London, Special Publications, v. 420, p. 1–9, https://doi.org/10.1144/SP420.9.
Barberi, F., and Varet, J., 1977, Volcanism of Afar—Small-Scale Plate Tectonics

Implications: Geological Society of America Bulletin, v. 88, p. 1251–1266,
https://doi.org/10.1130/0016-7606(1977)88<1251:VOASPT>2.0.CO;2.

Belachew, M., Ebinger, C., and Cote, D., 2013, Source mechanisms of dike-induced
earthquakes in the Dabbahu-Manda Hararo rift segment in Afar, Ethiopia:
Implications for faulting above dikes: Geophysical Journal International, v. 192,
p. 907–917, https://doi.org/10.1093/gji/ggs076.

Belachew, M., Ebinger, C., Cote, D., Keir, D., Rowland, J.V., Hammond, J.O.S., and
Ayele, A., 2011, Comparison of dike intrusions in an incipient seafloor-spreading
segment in Afar, Ethiopia: Seismicity perspectives: Journal of Geophysical
Research, v. 116, B06405, https://doi.org/10.1029/2010JB007908.

Courtillot, V., Achache, J., Landre, F., Bonhommet, N., Montigny, R., and Feraud,
G., 1984, Episodic Spreading and Rift Propagation—New Paleomagnetic and
Geochronologic Data from the Afar Nascent Passive Margin: Journal of
Geophysical Research, v. 89, p. 3315–3333,
https://doi.org/10.1029/JB089iB05p03315.

Craig, T.J., Jackson, J.A., Priestley, K., and McKenzie, D., 2011, Earthquake
distribution patterns in Africa: their relationship to variations in lithospheric and
geological structure, and their rheological implications: Geophysical Journal
International, v. 185, p. 403–434, https://doi.org/10.1111/j.1365-246X.2011.04950.x.

Dieterich, J., 1994, A constitutive law for rate of earthquake production and its
application to earthquake clustering: Journal of Geophysical Research, v. 99,
p. 2601–2618, https://doi.org/10.1029/93JB02581.
Doubre, C., Manighetti, I., Dorbath, C., Dorbath, L., Jacques, E., and Delmond, J.C., 2007, Crustal structure and magmato-tectonic processes in an active rift (Asal-Ghoubbet, Afar, East Africa): 1. Insights from a 5-month seismological experiment: Journal of Geophysical Research, v. 112, B05405, https://doi.org/10.1029/2005jb003940.

Ebinger, C.J., and Casey, M., 2001, Continental breakup in magmatic provinces: An Ethiopian example: Geology, v. 29, p. 527–530, https://doi.org/10.1130/0091-7613(2001)029<0527:CBIMPA>2.0.CO;2.

Ebinger, C.J., Keir, D., Ayele, A., Calais, E., Wright, T.J., Belachew, M., Hammond, J.O.S., Campbell, E., and Buck, W.R., 2008, Capturing magma intrusion and faulting processes during continental rupture: seismicity of the Dabbahu (Afar) rift: Geophysical Journal International, v. 174, p. 1138–1152, https://doi.org/10.1111/j.1365-246X.2008.03877.x.

Hamling, I.J., Wright, T.J., Calais, E., Lewi, E., and Fukahata, Y., 2014, InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia: Geophysical Journal International, v. 197, p. 33–49, https://doi.org/10.1093/gji/ggu003.

Hayward, N.J., and Ebinger, C.J., 1996, Variations in the along-axis segmentation of the Afar Rift system: Tectonics, v. 15, p. 244–257, https://doi.org/10.1029/95TC02292.

Hill, D.P., 1977, Model for Earthquake Swarms: Journal of Geophysical Research, v. 82, p. 1347–1352, https://doi.org/10.1029/JB082i008p01347.

Kebede, F., Kim, W.Y., and Kulhanek, O., 1989, Dynamic Source Parameters of the March-May 1969 Serdo Earthquake Sequence in Central Afar, Ethiopia, Deduced
from Teleseismic Body Waves: Journal of Geophysical Research, v. 94, p. 5603–5614, https://doi.org/10.1029/JB094iB05p05603.

Keir, D., et al., 2009, Evidence for focused magmatic accretion at segment centers from lateral dike injections captured beneath the Red Sea rift in Afar: Geology, v. 37, p. 59–62, https://doi.org/10.1130/G25147A.1.

Kidane, T., 2016, Strong clockwise block rotation of the Ali-Sabieh/Aīsha Block: evidence for opening of the Afar Depression by a ‘saloon-door’ mechanism: Geological Society, London, Special Publication, v. 420, p. 209-219, https://doi.org/10.1144/SP420.10.

Kidane, T., Courtillot, V., Manighetti, I., Audin, L., Lahitte, P., Quidelleur, X., Gillot, P.-Y., Gallet, Y., Carlut, J., and Haile, T., 2003, New paleomagnetic and geochronologic results from Ethiopian Afar: Block rotations linked to rift overlap and propagation and determination of a ~2 Ma reference pole for stable Africa: Journal of Geophysical Research, v. 108, B22102, https://doi.org/10.1029/2001jb000645.

Lépine, J.C., and Hirn, A., 1992, Seismotectonics in the Republic of Djibouti, Linking the Afar Depression and the Gulf of Aden: Tectonophysics, v. 209, p. 65–86, https://doi.org/10.1016/0040-1951(92)90011-T.

Macdonald, K.C., Fox, P.J., Perram, L.J., Eisen, M.F., Haymon, R.M., Miller, S.P., Carbotte, S.M., Cormier, M.H., and Shor, A.N., 1988, A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities: Nature, v. 335, p. 217–225, https://doi.org/10.1038/335217a0.

Manighetti, I., Tapponnier, P., Courtillot, V., Gallet, Y., Jacques, E., and Gillot, P.Y., 2001, Strain transfer between disconnected, propagating rifts in Afar: Journal of
Manighetti, I., Tapponnier, P., Gillot, P.Y., Jacques, E., Courtillot, V., Armijo, R., Ruegg, J.C., and King, G., 1998, Propagation of rifting along the Arabia-Somalia plate boundary: Into Afar: Journal of Geophysical Research, v. 103, p. 4947–4974, https://doi.org/10.1029/97JB02758.

McClusky, S., et al., 2010, Kinematics of the southern Red Sea–Afar Triple Junction and implications for plate dynamics: Geophysical Research Letters, v. 37, L05301, https://doi.org/10.1029/2009GL041127.

Muluneh, A.A., Kidane, T., Rowland, J., and Bachkadse, V., 2013, Counterclockwise block rotation linked to southward propagation and overlap of sub-aerial Red Sea Rift segments, Afar Depression: Insight from paleomagnetism: Tectonophysics, v. 593, p. 111–120, https://doi.org/10.1016/j.tecto.2013.02.030.

Pagli, C., Wang, H., Wright, T.J., Calais, E., and Lewi, E., 2014, Current plate boundary deformation of the Afar rift from a 3-D velocity field inversion of InSAR and GPS: Journal of Geophysical Research, v. 119, p. 8562–8575, https://doi.org/10.1002/2014jb011391.

Passarelli, L., Rivalta, E., Cesca, S., and Aoki, Y., 2015, Stress changes, focal mechanisms, and earthquake scaling laws for the 2000 dike at Miyakejima (Japan): Journal of Geophysical Research, v. 120, p. 4130–4145, https://doi.org/10.1002/2014jb011504.

Polun, S., Horrell, D., Tesfaye, S., and Gomez, F., 2017, New kinematic constraints on the Quaternary tectonic evolution of the Afar triple junction: Geological Society of America Abstracts with Programs, v. 49, no. 6, https://doi.org/10.1130/abs/2017AM-305558.
Saria, E., Calais, E., Stamps, D.S., Delvaux, D., and Hartnady, C.J.H., 2014, Present-day kinematics of the East African Rift: Journal of Geophysical Research. Solid Earth, v. 119, p. 3584–3600, https://doi.org/10.1002/2013JB010901.

Savage, J.C., Gan, W.J., and Svarc, J.L., 2001, Strain accumulation and rotation in the Eastern California Shear Zone: Journal of Geophysical Research. Solid Earth, v. 106, p. 21995–22007, https://doi.org/10.1029/2000JB000127.

Segall, P., Llenos, A.L., Yun, S.H., Bradley, A.M., and Syracuse, E.M., 2013, Time-dependent dike propagation from joint inversion of seismicity and deformation data: Journal of Geophysical Research, v. 118, p. 5785–5804, https://doi.org/10.1002/2013JB010251.

Sigmundsson, F., 1992, Tectonic Implications of the 1989 Afar Earthquake Sequence: Geophysical Research Letters, v. 19, p. 877–880, https://doi.org/10.1029/92GL00686.

Tapponnier, P., Armijo, R., Manighetti, I., and Courtillot, V., 1990, Bookshelf Faulting and Horizontal Block Rotations between Overlapping Rifts in Southern Afar: Geophysical Research Letters, v. 17, p. 1–4, https://doi.org/10.1029/GL017i001p00001.

Toda, S., Stein, R.S., and Sagiya, T., 2002, Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity: Nature, v. 419, p. 58–61, https://doi.org/10.1038/nature00997.

Varet, J., 1975, Geological map of Central and Southern Afar: CNRS-CNRS, scale 1:500,000.

Vigny, C., de Chabalier, J.B., Ruegg, J.C., Huchon, P., Feigl, K.L., Cattin, R., Asfaw, L., and Kanbari, K., 2007, Twenty-five years of geodetic measurements along the...
Tadjoura-Asal rift system, Djibouti, East Africa: Journal of Geophysical Research, v. 112, p. B06410, https://doi.org/10.1029/2004JB003230.

Wang, H., and Wright, T.J., 2012, Satellite geodetic imaging reveals internal deformation of western Tibet: Geophysical Research Letters, v. 39, p. L07303, https://doi.org/10.1029/2012gl051222.

Wright, T.J., et al., 2012, Geophysical constraints on the dynamics of spreading centres from rifting episodes on land: Nature Geoscience, v. 5, p. 242–250, https://doi.org/10.1038/ngeo1428.

Yamashita, T., 1999, Pore creation due to fault slip in a fluid-permeated fault zone and its effect on seismicity: Generation mechanism of earthquake swarm: Pure and Applied Geophysics, v. 155, p. 625–647, https://doi.org/10.1007/s000240050280.

Yun, S., Segall, P., and Zebker, H., 2006, Constraints on magma chamber geometry at Sierra Negra Volcano, Galápagos Islands, based on InSAR observations: Journal of Volcanology and Geothermal Research, v. 150, p. 232–243, https://doi.org/10.1016/j.jvolgeores.2005.07.009.

FIGURE CAPTIONS

Figure 1. Local seismicity 2005–2009 (black dots). Solid red polygons are the Holocene magmatic rift segments: DMH Dabbahu-Manda Hararo, MA Moussa Alli, MI Manda Inakir and AG Asal-Ghoubbet segments. Volcanoes are marked by black outlines. Dashed line mark the Tendaho-Goba’ad discontinuity (TDG). Black lines are faults. The tectonic rift segments are: K Karrayu, MG Manda Gargori, D Dobi, I
Immino, H Hanle and DG Derele Gaggade. The box marks the area shown in Figure 2–4. Inset shows the location of Afar.

Figure 2. a) Co-intrusive seismicity. Filled circles are the earthquakes color coded by day of occurrence since onset of intrusion over a 30-day period (see also Fig. DR1 [see footnote 1]). b) Non co-intrusive seismicity obtained from plotting the complete seismic catalogue minus the earthquakes in a). c) Co-intrusive seismicity (as in panel a) and predicted dike-induced seismicity (black dots). The red line marks the intruded area. Black outlines are volcanoes and black lines are faults.

Figure 3. a) First invariant of the horizontal strain rate tensor (positive values are extension), normal faulting mechanisms (beach balls) from Craig et al. (2011), and local seismicity (circles) as in Figure 2b. b) Maximum shear strain rate, strike-slip faulting mechanisms (beach balls) from Kebede et al. (1989), Lépine and Hirn (1992), Craig et al. (2011) and Ebinger et al. (2008), and local seismicity (circles) as in Figure 2b. White box marks a band of shear. Rift segments names are in Fig. 1.

Figure 4. Sketch of the plate boundary w.r.t. stable Nubia. South of DMH fault orientations are consistent with two directions of extension as shown by arrows 1 and 2. Earthquakes (white circles) as in Figure 2b.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and the editor for constrictive comments. CP acknowledges support from the grant PRA_2018_19 and Rita Levi Montalcini fellowship. D.K. is supported by NERC grant NE/L013932/1. H.W. is supported by the NSFC grant (NSFC/41672205).

1GSA Data Repository item 2018xxx, xxxxxxxxxxxxxxxx, is available online at http://www.geosociety.org/datarepository/2018/, or on request from editing@geosociety.org.