Exoscopic vs. microscopic transsphenoidal surgery for Cushing’s disease: a retrospective single-center study on 388 patients

Piotr Sumiślawski1,2 · Andras Piffko1 · Torge Huckhagel1,3 · Alice Ryba1 · Till Burkhardt4 · Jens Aberle5 · Wolfgang Saeger6 · Jörg Flitsch1 · Roman Rotermund1

Received: 21 May 2022 / Revised: 2 August 2022 / Accepted: 14 September 2022 / Published online: 22 September 2022
© The Author(s), under exclusive license to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Microscopic and endoscopic transsphenoidal surgeries represent the standard treatment for Cushing’s disease (CD). At our institution a new exoscopic approach was implemented. After proof of the general use for transsphenoidal pituitary surgery, the aim of this study was to compare the exoscopic 4K3D video microscope with the microscopic transsphenoidal surgery for patients with CD. We conducted a retrospective analysis on 388 patients with CD treated in our medical center via microscopic transsphenoidal surgery (MTS) between January 2008 and July 2019 or via exoscopic transsphenoidal surgery (ExTS) between May 2019 and May 2021. Parameters investigated included histology, pre- and postoperative MRI with tumor size, pre- and postoperative ACTH and cortisol levels, duration of surgery, perioperative and postoperative complications as well as clinical outcome. Patients who underwent ExTS in CD experienced a lower incidence of SIADH/diabetes insipidus \((p = 0.0164) \), a higher rate of remission \((p = 0.0422) \), and a shorter duration of surgery \((p < 0.0001) \), compared to MTS. However, there was no significant difference regarding new postoperative pituitary insufficiency and intraoperative CSF space opening. We found that ExTS had multiple benefits compared to MTS for tumor resection in case of CD. These results are in line with our previous publication on the general applicability of an exoscope in pituitary surgery. To our knowledge, this is the first clinical study proving the superiority of ExTS in CD. These results are promising, nevertheless further studies comparing exoscopic with the endoscopic approach are necessary to finally evaluate the utility of the new technique.

Keywords Cushing’s disease · Microscopic transsphenoidal surgery · Exoscopic transsphenoidal surgery · ACTH · Cortisol

Introduction
Endonasal transsphenoidal surgery remains the standard treatment for Cushing’s disease (CD). The two main operative techniques consist of microscopic (MTS) and endoscopic transsphenoidal surgery (ETS). MTS has been the most popular surgical procedure for pituitary adenomas to date. However, in recent years the endoscopic approach was applied increasingly, as it offers better image resolution with higher magnification and the opportunity for additional surgical exposure if necessary [1]. Moreover, the endoscopic technique was associated with shorter mean duration of surgery [2], similar rate of postoperative pituitary insufficiency [3, 4] and other postoperative complications such as diabetes insipidus [3], a higher incidence of cerebrospinal fluid (CSF) leaks [3] as well as higher remission rates compared to MTS [1, 2] with predominance seen by macroadenomas [2, 3]. However, the data regarding incidence of cerebrospinal fluid (CSF) leaks [1,
An exoscope is a new high-definition digital imaging system which has recently been successfully implemented in different fields of neurosurgery such as neurovascular, tumor or peripheral nerve surgery and offers better maneuverability, ergonomics, and stereoscopic visualization, in comparison to the standard microscope [7–11]. First experiences with the exoscopic 4 K 3D video microscope (Orbeye, Olympus) for transsphenoidal surgery from our center have already been reported [12] and have shown that, among all pituitary surgeries, the exoscopic technique seems to create an advantage in image quality, depth perception, surgical ergonomics, and learning curve, compared to MTS. In the current study, we aim to compare MTS to exoscopic transsphenoidal surgery (ExTS), especially regarding duration of surgery as well as complication and remission rates for the isolated cohort of patients with Cushing’s disease. In theory, ExTS would be an ideal approach for this selected collective comprising relatively small tumors.

Methods

Patient selection

A total number of 388 patients after 418 transsphenoidal surgical procedures in the treatment of CD were retrospectively analyzed. Surgeries were performed either via MTS between January 2008 and July 2019 or via ExTS between May 2019 and May 2021. CD was defined according to the endocrine society guidelines [13]. In unclear cases, central venous sampling like inferior petrosal sinus sampling (IPSS) or cavernous sinus sampling (CSS) was required.

Laboratory studies

Serum cortisol, adreno-corticotropic hormone (ACTH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone or estrogen, growth hormone (GH), insulin-like growth factor-1 (IGF-1), thyroid-stimulating hormone (TSH), and thyroid hormones (fT3 and fT4) were examined preoperatively 1 day prior to surgery and were drawn on postoperative days 1 and 3 as well as on varying postoperative days before discharge.

Radiological evaluation

Focused-sellar MRI exams were performed either in an outpatient setting or inpatient prior to surgery. Tumor size was measured in the preoperative MRI and then classified as micro- (<1 cm), macroadenoma (≥ 1 cm and < 4 cm) or giant tumor (≥ 4 cm). Furthermore, suprasellar, cavernous sinus, sphenoid sinus, and clival invasion were evaluated. Preoperative intratumoral hemorrhage was also assessed.

Histological examination

Intraoperative specimens were fixed in 4% paraformaldehyde, dehydrated, embedded in paraffin, and then sectioned in 4-µm slices according to standard lab protocols and underwent H & E staining as well as periodic acid–Schiff reaction staining. Immunohistochemistry for pituitary hormones (adreno-corticotropic hormone, somatotropic hormone, prolactin, follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone); S100 protein; pancytokeratin (KL1 or Ca m 5.2); Tpit expression; mitotic marker phosphohistone-3 (PH3); proliferation marker Ki-67 (MIB-1); and accumulation of tumor suppressor protein p53 were performed using an automated staining protocol (Ventana BenchMark TX, Roche Diagnostics, Mannheim, Germany).

Tissue specimens were examined by senior physicians of the Department of Neuropathology at the University Medical Center Hamburg-Eppendorf.

Surgical procedure

Surgeries were performed by a team of experienced neurosurgeons either via microscopic or exoscopic transsphenoidal surgery. In the microscopic and exoscopic surgery, the patient’s positioning does not differ. The patient is positioned in a semi-sitting position with fixed rotation of the head towards the surgeon sitting at the right patient’s side. In the microscopic technique, the oculars of the microscope are placed in front of the nostrils, with the surgeon’s head following the oculars when changing the direction of view.

In the exoscopic technique, the smaller camera is positioned in front of the nostrils while the surgeon is watching the picture on a 4 K screen behind the patient’s head with 3D glasses. When changing the camera’s direction of view, the surgeon’s head and posture can maintain its position. Both operative techniques have previously been described [12, 14, 15]. Duration of surgery was defined as incision-suture time.

Statistical analyses

Clinical data was acquired from the patients’ electronic files via systematic data search. Data is reported as means with standard deviations (SD) for continuous variables, and as frequencies for categorical variables. The Kolmogorov–Smirnov test was performed to determine normal distribution. Means were compared using the unpaired t-test when data distribution was normal, or by the Wilcoxon rank-sum test when variables were not normally distributed. For categorical analyses, a chi-square test and
Fisher’s exact test were used. A \(p \) value < 0.05 was considered statistically significant. The statistical tests and data visualization were performed in GraphPad Prism (Version 8.4.3).

Results

Demographic and clinical data

Twenty-seven out of 388 patients had to undergo two or three surgeries (2 surgeries in 24/27 cases and three surgeries in 3/27 cases). There were 237 females (75.5%) in the MTS group and 58 females (78.4%) in the ExTS cohort. Mean age was 43.4 years (range: 6.3–80 years) and 41.5 years (range: 4.3–72 years), respectively. The MTS group comprised 193 microadenomas, 93 macroadenomas, and two giant tumors. Thirty-three patients showed no visible tumor on MRI, and tumor size in preoperative imaging was not available in 21 cases. Preoperative intratumoral hemorrhage occurred in four patients (1.2%). Primary surgeries amounted to 258; 82 patients had undergone prior surgery. Suprasellar invasion was found in 40, cavernous sinus invasion in 83, clival invasion in 5, and sphenoid sinus invasion in 13 cases, respectively.

The ExTS cohort encompassed 43 microadenomas, 20 macroadenomas, 12 patients without detectable tumor, and 3 specimens in which tumor size was not available. Preoperative intratumoral hemorrhage was radiologically identified in one patient (1.3%). Sixty patients underwent primary surgery and 18 recurrence surgery. Tumor invasion was present in 23 cases with suprasellar invasion in 10, cavernous sinus invasion in 17, clival invasion in 2, and sphenoid sinus invasion in 3 cases, respectively.

All results are summarized in Table 1.

Histological analyses

Histological examination after the 340 MTS procedures revealed 213 densely granulated corticotrophic adenomas, 81 sparsely granulated corticotrophic adenomas, and 4 Crooke’s cell adenomas. In 9 cases, the granularity pattern could not be specified. In 33 specimens, no tumor could be detected in the histological examination.

Among the 78 patients operated via ExTS we diagnosed, 45 densely granulated corticotrophic adenomas, 12 sparsely granulated corticotrophic adenomas, and 6 Crooke’s cell adenomas, according to WHO 2017 classification. In 3 cases of adenoma, the granulation pattern could not be evaluated. Twelve patients only presented with Crooke’s cells as a sign of hypercortisolemia without tumor.

Follow-up

All patients were scheduled for regular postoperative follow-up exams, which comprised clinical, laboratory, and MRI evaluation. Remission rate was defined taking into account all available parameters like abnormal circadian rhythm by late night salivary cortisol or midnight serum cortisol; impaired cortisol feedback by dexamethasone suppression test and increased 24-h cortisol by urinary free cortisol and additionally the available MRI scans. The mean follow-up period was 32.5 months (range: 0–137 months) for the MTS cohort and 8.8 months (range: 0–26) for the ExTS group. Ninety-two patients did not attend the recommended postoperative examination at our clinic. On follow-up, radiological and laboratory remission was achieved in 217/388 surgeries. Overall a higher remission rate was achieved after tumor resection via ExTS, compared to MTS (81% vs. 66.3%, \(p = 0.0422 \)). Differences were observed after primary surgeries of both microadenoma (95.5% vs. 83.7%, \(p = 0.2986 \)) and macroadenoma (84.6% vs. 62.7%, \(p = 0.1912 \)) as well as for repeated surgery of macroadenoma (25% vs. 15.4%, \(p = 0.5384 \)) and transsphenoidal surgery without histologically proven tumor (54.5% vs. 42.9%, \(p = 0.7120 \)); however, these differences were not statistically significant. No difference regarding remission rates was observed for repeated surgery of microadenoma (50% vs. 51.6%, \(p = 0.9999 \)). Overall, higher remission rates were attained after resection of microadenoma, compared to macroadenoma within both the ExTS and MTS groups. The complete comparison is presented in Table 2. For 3 patients, no clinical data was available.

Surgical aspects, complications, and distinctive features

Mean duration of surgery was significantly shorter in ExTS, compared to MTS (72.5 (± 21.8) minutes vs. 90.7 (± 36.2), \(p < 0.0001 \)). Subgroup analyses were performed with respect to tumor size, the presence or absence of tumor (in MRI and in histology), and a history of prior surgeries. Significantly shorter duration of surgery could be observed in all tumor resections (71.9 (± 19.8) min vs. 87.5 (± 34.1) min, \(p < 0.0001 \)), but especially with a predominance in primary surgeries of microadenomas (67.2 (± 15.9) min vs. 83.9 (± 34) min, \(p = 0.0027 \)) and macroadenomas (67.8 (± 13.6) min vs. 84.5 (± 24.9) min, \(p = 0.0191 \)). In CD with absence of histological tumor detection, no significant difference in surgical duration could be found between both surgical procedures (75 (± 30.4) min vs. 110.4 (± 45.5) min, \(p = 0.0977 \)). Intraoperative CSF space opening (9% vs. 11.9%, \(p = 0.5558 \)) and new postoperative pituitary insufficiency (6.4% vs. 11%, \(p = 0.2986 \)) were comparable between ExTS and MTS.
The incidence of electrolyte imbalances in the ExTS collective was lower compared to MTS. Other less common postoperative complications after both MTS and ExTS are summarized in Table 3.

Discussion

Surgical procedures, complications and remission

Here, we present the first study comparing the mean duration of surgery as well as complication and remission rates between MTS and ExTS in CD. The idea was that the new exoscopic technique combining some benefits of the microscopic and endoscopic techniques could be useful especially in CD with frequently more circumscribed lesions of the sella, when the use of an endoscope is not necessary.

Our results show a statistically significant higher remission rate after ExTS compared to MTS (81% vs. 66.3%, \(p = 0.0422 \)) and shorter mean duration of surgery in ExTS compared to MTS (72.5 (± 21.8) min vs. 90.7 (± 36.2), \(p < 0.0001 \)), which could be explained by higher image resolution, enhanced depth perception, and a steeper learning curve in ExTS as already described in the literature [12]. In our opinion, the exoscope offers a better maneuverability compared to the more unwieldy microscopes due to the more flexible and lighter camera.

Since the posture does not need to be changed when changing the viewing angle, the ergonomics is more pleasant especially for long surgeries and while operating on obese patients or patients with a rigid cervical spine (particularly

Characteristic	MTS	ExTS
Total number of patients	314	74
Female	237 (75.5%)	58 (78.4%)
Male	77 (24.5%)	16 (21.6%)
Number of surgeries	340	78
Age in yrs (range)	43.4 (6.3–80)	41.5 (4.3–72)
Duration of follow-up in months (range)	32.5 (0–137)	8.8 (0–26)
Tumor size		
Microadenoma	193 (56.8%)	43 (55.1%)
Mean tumor size in cm cor/sag/ax	0.47/0.45/0.42	0.59/0.56/0.45
Macroadenoma	91 (26.8%)	20 (25.6%)
Mean tumor size in cm cor/sag/ax	1.57/1.55/1.44	1.42/1.25/1.19
Giant tumor	2 (0.6%)	0 (0%)
Mean tumor size in cm cor/sag/ax		
No tumor	33 (9.7%)	12 (15.4%)
Mean tumor size available	21 (6.2%)	3 (3.9%)
Overall mean tumor size in cm cor/sag/ax*	0.74/0.66/0.64	0.69/0.63/0.56
Preoperative intratumoral hemorrhage	4 (1.2%)	1 (1.3%)
Associated hyperprolactinemia with prolactin levels < 100 ng/ml	6 (1.8%)	1 (1.3%)
Histopathological subgroups according to WHO 2017 Classification		
Densely granulated corticotrophic adenoma	213 (62.7%)	45 (57.7%)
Sparsely granulated corticotrophic adenoma	81 (23.8%)	12 (15.4%)
Crooke’s cell adenoma	4 (1.8%)	6 (7.7%)
No tumor, Crooke cells	33 (9.7%)	12 (15.4%)
Adenoma — granulation histologically not specified	9 (2.6%)	3 (3.8%)
Invasiveness	110 (32.4%)	23 (29.5%)
Suprasellar invasion	40 (11.8%)	10 (12.8%)
Cavernous sinus invasion	83 (24.4%)	17 (21.8%)
Sphenoid sinus invasion	13 (3.8%)	3 (3.8%)
Clival invasion	5 (1.5%)	2 (2.6%)
Primary surgery	258 (75.9%)	60 (76.9%)
Repeated surgery	82 (24.1%)	18 (23.1%)

MTS microscopic transsphenoidal surgery, ExTS exoscopic transsphenoidal surgery, ax axial, cm centimeter, cor coronal; sag sagittal, yrs years
in those cases in the microscopic technique, the surgeon sometimes has to bend his torso over the patient in order to approach the patient’s left nostril, which could lead to early fatigue and back pain).

Differences in incision-suture time are especially remarkable in primary surgeries of microadenomas and macroadenomas. On the other hand, we did not observe a significant difference between both techniques for tumor recurrence surgeries, which could be explained by the small number of patients in these groups and the manifold variables associated with prior surgeries such as previous operative technique, primary surgeon, extent

Table 2 Results

Characteristic	MTS	ExTS	p-value
Microadenoma — first surgery			
Mean (± SD) duration of surgery in minutes	83.9 (± 34)	67.2 (± 15.9)	0.0027
Intraoperative CSF space opening	11 (7%)	1 (3%)	0.6955
Remission	103/123 (83.7%)	21/22 (95.5%)	0.2000
Diabetes insipidus/SIADH	15 (9.7%)	1 (3%)	0.3131
New pituitary insufficiency	16 (10.3%)	2 (6%)	0.7442

Microadenoma — repeated surgery			
Mean (± SD) duration of surgery in minutes	97.7 (± 35)	86.5 (± 26.9)	0.0625
Intraoperative CSF space opening	7 (18.4%)	3 (3%)	0.4143
Remission	16/31 (51.6%)	3/6 (50%)	>0.9999
Diabetes insipidus/SIADH	5 (13.2%)	0 (0%)	0.5689
New pituitary insufficiency	2 (5.3%)	1 (1%)	0.5123

Macroadenoma — first surgery			
Mean (± SD) duration of surgery in minutes	84.5 (± 24.9)	67.8 (± 13.6)	0.0191
Intraoperative CSF space opening	7 (11.1%)	2 (12.5%)	<0.9999
Remission	32/51 (62.7%)	11/13 (84.6%)	0.1912
Diabetes insipidus/SIADH	8 (12.7%)	0 (0%)	0.1973
New pituitary insufficiency	11 (17.5%)	1 (6.25%)	0.4417

Macroadenoma — repeated surgery			
Mean (± SD) duration of surgery in minutes	105.7 (± 41.3)	100.3 (± 15.5)	>0.9999
Intraoperative CSF space opening	8 (28.6%)	0 (0%)	0.5947
Remission	4/26 (15.4%)	1/4 (25%)	0.5384
Diabetes insipidus/SIADH	4 (14.3%)	0 (0%)	<0.9999
New pituitary insufficiency	5 (17.9%)	1 (25%)	<0.9999

All tumors			
Mean (± SD) duration of surgery in minutes	87.5 (± 34.1)	71.9 (± 19.8)	<0.0001
Intraoperative CSF-leakage	38/304 (12.5%)	6/91 (9.1%)	0.5331
Remission	163/246 (66.3%)	39/48 (81%)	0.0422
Diabetes insipidus/SIADH	33/304 (10.9%)	1 (1.5%)	0.0164
New pituitary insufficiency	35/304 (11.5%)	5 (7.6%)	0.5109

No tumor			
Mean (± SD) duration of surgery in minutes	110.4 (± 45.5)	75 (± 30.4)	0.0977
Intraoperative CSF-leakage	2 (6.1%)	1 (8.3%)	>0.9999
Remission	9/21 (42.9%)	6/11 (54.5%)	0.7120
Diabetes insipidus/SIADH	2 (6.1%)	1 (8.3%)	>0.9999
New pituitary insufficiency	2 (6.1%)	0 (0%)	>0.9999

All operations			
Mean (± SD) duration of surgery in minutes	90.7 (± 36.2)	72.5 (± 21.8)	<0.0001
Intraoperative CSF space opening	40/337 (11.9%)	7 (9%)	0.5558
Remission	172/267 (64.4%)	45/59 (76.3%)	0.0939
Diabetes insipidus/SIADH	35/337 (10.4%)	2 (2.6%)	0.0269
New pituitary insufficiency	37/337 (11%)	5 (6.4%)	0.2986

n number of patients, SIADH—syndrome of inappropriate antidiuretic hormone secretion
of resection and complications, which could not be completely accounted for in our analysis.

Interestingly, we could observe a high inconsistency regarding the incidence of complications and remission rate after MTS in the literature [1–3, 6, 16], which can result from batch effects.

Studies with a percentage frequency distribution of micro- and macroadenomas similar to our cohort revealed similar remission rates [1, 17]. Higher remission rates presented in other studies may be associated with a higher percentage of microadenomas within these cohorts [2, 3, 6]. Analyses considering microadenomas and macroadenomas separately revealed remission rates comparable with our results [3, 5, 6]. Another feasible cause for varying remission rates may be a different cut-off value for remission in the biochemical results, especially as every laboratory has individual normal ranges for the same biochemical parameters. Moreover, many studies did not present their criteria for remission rates. Studies revealed similar incidences of new postoperative pituitary insufficiency after ETS and MTS [3, 4], ranging between 6 and 11.5% for ETS and 6 and 9.4% for MTS, and comparable with results from our study.

Incidence of diabetes insipidus reported in the literature after ETS were lower than after MTS3, but much higher compared to our study.

Endoscopic transsphenoidal pituitary surgery (ETS) is a well-established technique in the treatment of CD, especially for invasive adenomas, as it may provide better visualization for suprasellar extension or lateral invasion of the tumor, and it is associated with a lower incidence of new postoperative pituitary insufficiency [2, 3, 6]. Data regarding remission and gross total resection (GTR) rates remain incoherent [2, 3, 6].

ExTS offered postoperative high remission rates comparable with that after ETS, but with a lower rate of postoperative complications such as new hypopituitarism or SIADH/diabetes insipidus and a shorter mean duration of surgery, when comparing ExTS to ETS described in the literature [1–3, 6, 18, 19]. Based on these results, ExTS may present a further development in the treatment for Cushing’s disease by evolution of the optical possibilities and thus improving the postoperative results.

Study limitations

Our study is limited partly by the retrospective character of the analysis. Moreover, not all patients were available for follow-up analyses. For three patients, clinical data were not available. A certain bias could be possible due to the slight changing of the operating surgeons.

Conclusions

Our study presents the largest available cohort of patients after exoscopic transsphenoidal surgery and confirms the utility of this operative technique in the management of Cushing’s disease, as it shows lower postoperative SIADH/diabetes insipidus rates, a higher remission rate, and a shorter duration of surgery, compared to microscopic transsphenoidal surgery. Additionally, no significant differences between both techniques were observed with respect to postoperative new pituitary insufficiency. These results are in line with our previous publication on the general applicability of an exoscope in pituitary surgery. For Cushing’s disease, it might be even more meaningful, due to the relatively small adenomas, which lack

| Table 3 Other complications after microscopic and exoscopic transsphenoidal surgery |
|---------------------------------|---------------------------------|---|
| Complication | Comment | % |
| MTS | 1 CN palsy w/diplopia CN III | 0.3 |
| 6 CSF-leakage | 1 with meningitis, 1 with ventriculitis, 2 w/reoperation, and 1 with vp-shunt | 1.8 |
| 1 abscess | Intracerebral | 0.3 |
| 3 postoperative hemorrhage | 1 subdural hematoma, 1 subarachnoid hemorrhage with vasospasm, bleeding after inferior petrosal sinus sampling | 0.6 |
| 4 epistaxis | | 1.2 |
| 10 required intensive care | Mostly due to electrolyte imbalance | 2.9 |
| Endocrinological | 11 adrenal crisis | 1.3 |
| Other | 2 sinusitis, 1 stroke of middle cerebral artery, 2 venous thromboembolism | 1.5 |
| ExTS | 2 epistaxis | 2.6 |
| 1 required intensive care | Due to respiratory insufficiency | 1.3 |
| 1 CSF-leakage | | 1.3 |
| Endocrinological | 1 adrenal crisis | 1.3 |

CN cranial nerves, op operation, reop reoperation, vp-shunt ventriculoperitoneal shunt
the necessity of an endoscopic approach. These first results are very promising; however, further studies comparing with the endoscopic approach are necessary to fully evaluate the utility of the operative technique.

Author contribution Conception and design: Rotermund, Sumislawski. Acquisition of data: Sumislawski, Rotermund, Ryba, Piffko, Burkhardt, Saeger. Analysis and interpretation of data: Sumislawski, Rotermund. Drafting the article: Sumislawski, Rotermund. Critically revising the article: Rotermund, Aberle, Flitsch, Huckhagel, Burkhardt. Reviewed submitted version of manuscript: all the authors. Approved the final version of the manuscript on behalf of all the authors: Rotermund. Administrative/technical/material support: Saeger. Study supervision: Rotermund.

Funding The tumors in the present study were included in the German Registry of Pituitary Tumors, which is sponsored by Novartis Pharma GmbH (Nürnberg), Novo Nordisk Pharma GmbH (Mainz), Pfizer Pharma GmbH (Berlin) and Ipsen Pharma GmbH (Ettlingen).

Data Availability Underlying data can be provided upon reasonable request.

Declarations

Ethical approval and consent to participate Approval of the study was obtained from the local ethics committee (Ethikkommission der Ärztekammer Hamburg). Informed consent was obtained from all patients (above 16 years old) and their legal guardian(s) (below 16 years of age). The study was performed in accordance with the Declaration of Helsinki.

Data availability All data generated or analysed during the study are included in this published article.

Human and animal ethics Not applicable.

Consent for publication The authors affirm that informed consent for publication was given by all the participants.

Competing interests Jörg Flitsch has been a lecturer for Olympus.

References

1. Bora SK, Suri A, Khadgawat R et al (2020) Management of Cushing’s disease: changing trend from microscopic to endoscopic surgery. World Neurosurg 134:e46–e54. https://doi.org/10.1016/J.WNEU.2019.08.165
2. Møller MW, Andersen MS, Glintborg D et al (2020) Endoscopic vs. microscopic transphenoidal pituitary surgery: a single centre study. Sci Rep 10(1):21942. https://doi.org/10.1038/S41598-020-78823-Z
3. Broersen LHA, Biermasz NR, van Furth WR et al (2018) Endoscopic vs. microscopic transphenoidal surgery for Cushing’s disease: a systematic review and meta-analysis. Pituitary. 21(5):524–534. https://doi.org/10.1007/S11102-018-0893-3
4. Pablo A, Sofía B, Maximiliano T et al (2019) Endoscopic versus microscopic pituitary adenoma surgery: a single-center study. Neurol India 67(4):1015–1021. https://doi.org/10.4103/0028-3886.266241
5. Broersen LHA, van Haalen FM, Biermasz NR et al (2019) Microscopic versus endoscopic transphenoidal surgery in the Leiden cohort treated for Cushing’s disease: surgical outcome, mortality, and complications. Orphanet J Rare Dis 14(1):64. https://doi.org/10.1186/S13023-019-1038-0
6. Qiao N (2018) Outcome of endoscopic vs microsurgical transphenoidal resection for Cushing’s disease. Endocr Connect 7(1):R26–R37. https://doi.org/10.1530/EC-17-0312
7. Kijima N, Kinoshita M, Takagaki M, Kishima H (2019) Utility of a novel exoscope, ORBEYE, in gravity-assisted brain resection surgery for midline lesions of the brain. Surg Neurol Int 12:339. https://doi.org/10.25259/SNI_320_2021
8. Muscas G, Battista F, Boschi A, Morone F, della Puppa A (2021) A single-center experience with the Olympus ORBEYE 4K–3D exoscope for microsurgery of complex cranial cases: technical nuances and learning curve. J Neurol Surg A Cent Eur Neurosurg 82(5):484–489. https://doi.org/10.1055/S-0040-1719106
9. Göttsche J, Piffko A, Pantele TF, et al. (2022) Experiences with a 3D4K digital exoscope system (ORBEYE) in a wide range of neurosurgical procedures. J Neurol Surg A Cent Eur Neurosurg. Published online February 10. https://doi.org/10.1055/A-1768-4060
10. Vetraino IG, Acerbi F, Falco J, D’Ammando A, Devigili G, Nazi V (2020) High-definition 4K 3D exoscope (ORBEYE) in peripheral nerve sheath tumor surgery: a preliminary, explorative, pilot study. Oper Neurosurg (Hagerstown) 19(4):480–488. https://doi.org/10.1093/ONS/OPAA090
11. Fiani B, Jarrah R, Griepp DW, Adukuzhiyil J (2021) The role of 3D exoscope systems in neurosurgery: an optical innovation. Cureus 13(6):e15878. https://doi.org/10.7759/CUREUS.15878
12. Rotermund R, Regelsberger J, Osterhage K, Aberle J, Flitsch J (2021) 4K 3-dimensional video microscope system (orbeye) for transphenoidal pituitary surgery. Acta Neurochir (Wien) 163(8):2097–2106. https://doi.org/10.1007/S00701-021-04762-X
13. Fleseriu M, AUCHUS R, Bancos I et al (2021) Consensus on diagnosis and management of Cushing’s disease: a guideline update. Lancet Diabetes Endocrinol 9(12):847–875. https://doi.org/10.1016/S2213-8587(21)00235-7
14. Lüdecke DK, Abe T (2006) Transsphenoidal microsurgery for newly diagnosed acromegaly: a personal view after more than 1,000 operations. Neuroendocrinology 83(3–4):230–239. https://doi.org/10.1159/000055533
15. Rotermund R, Burkhardt T, Rohani Z, Jung R, Aberle J, Flitsch J (2018) Value of early postoperative random growth hormone levels and nadir growth hormone levels after oral glucose tolerance testing in acromegaly. Growth Horm IGF Res 41:64–70. https://doi.org/10.1016/J.GH IR.2018.03.002
16. Joshi SM, Cudlip S (2008) Transsphenoidal surgery. Pituitary 11(4):353–360. https://doi.org/10.1007/S11102-008-0094-6
17. Alwani RA, de Herder WW, van Aken MO et al (2010) Biochemical predictors of outcome of pituitary surgery for Cushing’s disease. Neuroendocrinology 91(2):169–178. https://doi. org/10.1159/000258677
18. Masui K, Wajima D, Aketa S, Nishimura F (2020) Efficacy of endoscopic transphenoidal surgery for Cushing’s disease: case series and review of the literature. Neurol India 68(2):403–406. https://doi.org/10.4103/0028-3886.284363
19. Cebula H, Baussart B, Villa C et al (2017) Efficacy of endoscopic endonasal transsphenoidal surgery for Cushing’s disease in 230 patients with positive and negative MRI. Acta Neurochir (Wien) 159(7):1227–1236. https://doi.org/10.1007/S00701-017-3140-1

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.