PHAEOPHYTINS FROM *Thyrsacanthus ramosissimus* Moric. WITH INHIBITOR ACTIVITY ON HUMAN DNA TOPOISOMERASE II-α

Análucia Guedes Silveira Cabral, Fábio Henrique Tenório-Souza, Marcelo Dantas Moura, Sabrina Gondim Ribeiro Mota, Antônio Cláudio da Silva Lins, Celidarque da Silva Dias e José Maria Barbosa-Filho*
Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CP 5009, 58051-970 João Pessoa – PB, Brasil
Ana Maria Giulietti
Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, 44036-900 Feira de Santana – BA, Brasil / Royal Botanic Gardens, Kew, TW9 3AB, UK
Tania Maria Sarmento da Silva
Departamento de Ciências Molecular, Universidade Federal Rural de Pernambuco, 52171-900 Recife – PE , Brasil
Creusioni Figueredo dos Santos
Departamento de Biologia Molecular, Universidade Federal da Paraíba, 58051-900 João Pessoa – PB, Brasil

Our study report the extraction and isolation of a new phaeophytin derivative 15'-hydroxy-(15'-S)-porphyrlinaclactone, designated anamarian (1) herein, isolated from the chloroform fraction of aerial parts of *Thyrsacanthus ramosissimus* Moric. along with the known 15'-ethoxy-(15'-S)-porphyrinolaclactone (2). These compounds were identified by usual spectroscopic methods. Both compounds were subjected to in vitro (inhibitory activity) tests by means of supercoiled DNA relaxation techniques and were shown to display inhibitory activity against human DNA topoisoamerase II-α at 50 µM. Intercconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely but cannot be entirely ruled out.

Keywords: *Thyrsacanthus ramosissimus*; phaeophytins; topoisoamerase activity.

INTRODUCTION

The family Acanthaceae comprises around 250 genera and approximately 2500 species,¹ which occur mainly in the Atlantic Forest and in the mesopholic forest formations of the Central-Western and Southeastern regions of Brazil, as well as in other types of vegetation.² Previous studies on the isolation of natural products from the family Acanthaceae have revealed the presence of alkaloids,³ flavonoids,⁴ terpenes,⁵ coumarins,⁶ lignans,⁷ and quinoids.⁸ These constituents have been demonstrated to have biological effects such as cytotoxicity,⁷ vasorelaxant, anti-inflammatory,⁹ antifungal,¹⁰ and antiviral actions,¹¹ as well as CNS depression and immunosuppressive activities.⁹,¹¹

Thyrsacanthus Moric. is a genus with five species whose presence is restricted to South America and that occurs mainly in Brazil. Recently, the genus was restored to include the South American species traditionally assigned to *Anisacanthus Nees. Thyrsacanthus ramosissimus* Moric. (= *Anisacanthus brasiliensis* Lindau) is popularly known as "canudo" and is endemic to Brazil, in the states of Alagoas, Bahia, Minas Gerais, Pernambuco, and Rio Grande do Norte. It can be found principally in seasonally dry vegetation and in semideciduous and riparian forests.¹² No biological studies have been previously performed with this species and chemical and biological studies with species of this genus are also scarce.

Interest in compounds with inhibitory activity against the enzyme DNA-topoisomerase II-α has increased,¹³-²⁰ because intracellular levels of topoisomerase II-α (topo II-α) are elevated in a number of human tumors as compared to the respective normal tissues. Moreover, the development of drugs that can affect the DNA replication process by selectively interfering with the function of topo II-α continues to draw researchers’ attention.²¹ Topo II-α is an essential enzyme that plays a key role in DNA replication, but is also important in repair, transcription, and chromosome segregation. Topo II-α changes DNA topology by passing an intact DNA double helix through a transient double-stranded break, thereby producing another helix.²²²³ Thus, as part of our ongoing chemical investigations of this plant species,²⁴ in this work we evaluate the inhibitory effect of this plant on human DNA-topoisomerase II-α. The isolation of a new phaeophytin (1), as well as its structural elucidation by means of ESI-MS and 1D- and 2D-NMR experiments, will be reported here.

EXPERIMENTAL

General experimental procedures

Melting points were determined on a Koehler hot stage and are uncorrected. The infrared absorption spectra were recorded in KBr pellets, using a Bomem/MB-102 spectrophotometer operating in the 4000-400 cm⁻¹ range. The LC-MS spectra were obtained in the positive electrospray mode using a Quattro LC-Micromass device (Waters). Silica gel 60 was used for column chromatography, and Kieselgel 60F₂₅₄ (E. Merck) was employed for preparative TLC as precoated plates. Sephadex LH-20 (Sigma) was utilized for gel permeation chromatography.¹¹ ¹H and ¹³C NMR spectra were acquired on a Bruker AC 200 spectrometer (200 MHz for ¹H and 50 MHz for ¹³C), in CDCl₃.

Plant material

The aerial parts of *Thyrsacanthus ramosissimus* Moric. were collected in the city of Rio de Contas, state of Bahia, Brazil, in March 2006. The plant was identified by Dr. A. M. Giulietti. A voucher specimen (Tombo HUEFS 59791) was deposited at the Herbarium of Universidade Estadual de Feira de Santana.
Extraction and isolation

The powdered plant material (5.0 kg) was extracted successively with EtOH, to give 310.0 g dry extract. This extract was dissolved in MeOH/H₂O (3:7) and successively fractionated with hexane, CHCl₃, and AcOEt, yielding the hexane (20.0 g), CHCl₃ (10.0 g), and EtOAc (5.0 g) fractions. The CHCl₃ fraction was successively submitted to column chromatography using silica gel and Sephadex LH-20, followed by preparative TLC on silica, to yield 1 (29.2 mg) and 2 (27.8 mg) as dark blue amorphous solids. Analysis of the spectroscopic data (IR, LC-MS and NMR spectra, including 2D NMR) led to identification of the following compounds: anamariaine (15₁-hydroxy-(15₁-S)-porphyrinolactone, (1) and 15₁-ethoxy-(15₁-R)-porphyrinolactone (2).

Anamariaine (1)

Dark blue amorphous solid; mp 171.0 ºC; IR (KBr) ν_max 3549, 3476, 3414, 1737, 1638, 1615 cm⁻¹. ¹H NMR (CDCl₃, 200 MHz) (Table 1), ¹³C NMR (CDCl₃, 50 MHz) (Table 1), ESI-MS (pos) m/z 903.99 [M+H]⁺ (C₅₅H₇₄N₄O₇).

In vitro assay for DNA topoisomerase II-α

The conversion of pBR322 supercoiled plasmid DNA to the relaxed form by topo II-α was examined in the presence of phaeophytins 1 and 2. DNA topoisomerases are enzymes that modulate the topological state of DNA and are targets for many active drugs in cancer treatment.¹⁵,²³

Enzymatic activity was analyzed by the DNA relaxation assay

Table 1. ¹H (200 MHz) and ¹³C (50 MHz) spectral data for anamariaine (1) obtained by heteronuclear 2D shift-correlated HSQC, HMQC, and HMBC spectra, in CDCl₃. Chemical shifts (δ, ppm) and coupling constants (J in Hz, in parenthesis)

Position	δ_C	δ_H	Position	δ_C	δ_H
1	141.18		P1	61.45	4.52 (m)
2	131.45		P2	117.70	5.20 (t, 7.0)
3	12.13	3.42 (s)	P3	142.86	
3¹	128.93	8.05 (dd, 18.0; 12.0)	P4	39.77	1.93 (m)
3²	122.71	(E) 6.37 (dl, 18.0) (Z) 6.24 (dl, 7.8)	P5	24.95	1.30 (m)
4	135.98		P6	29.69	1.30 (m)
5	99.59	9.68 (s)	P7	32.73	1.55 (m)
6	155.71		P7¹	19.71	0.84 (d, 6.6)
7	136.46		P8	37.36	1.04 (m)
7¹	11.24	3.22 (s)	P9	24.39	1.30 (m)
8	145.51		P10	36.59	1.21 (m)
8¹	19.52	3.87 (m)	P10¹	22.70	0.88 (d, 6.6)
8²	17.58	1.68 (t, 8.0 Hz)	P11	19.71	0.81 (d, 6.6)
9	149.94		P12	37.28	1.24 (m)
10	104.10	9.91 (s)	P13	24.76	1.30 (m)
11	138.70		P14	39.32	1.48 (m)
12	134.75		P15	27.94	1.52 (m)
12¹	12.43	3.87 (s)	P15¹	22.70	0.88 (d, 6.6)
13	111.29		P16	22.70	0.88 (d, 6.6)

²D homonuclear ¹H-¹H-COSY and heteronuclear HMBC spectra were also used for these assignments. Hydrogen atoms chemical shifts obtained from ¹D ¹H NMR spectra. Carbon signals corresponding to C, CH, CH₂, and CH₃ as deduced by comparative analysis of the APT and HSQC spectra. Superimposed ¹H signals are described without multiplicity and chemical shifts were deduced by HSQC, HMBC, and ¹H-¹H-COSY.
according to the protocol described by USB Corporation (USB Corporation, Cleveland, OH, USA). One unit of topo II-α (USB Corporation, Cleveland, OH, USA) was incubated with 0.152 µg pBR322 DNA (human recombinant from E. coli, Invitrogen) and with 100 or 50 µM of compound 1 or 2, or without the test compounds, in 10 µL reaction mixture containing 10 mM Tris, pH 7.9, 50 mM NaCl, 50 mM KCl, 5 mM MgCl₂, 0.1 mM EDTA, 15 µg/mL BSA, 1 mM ATP, 10 mM Na₂HPO₄, and 0.2 mM DTT for 40 min, at 37 °C. The reaction was terminated by addition of 1µL stop solution consisting of 50% glycerol, 10% sodium dodecyl sulfate (SDS), and 25% bromophenol blue. Electrophoresis was carried out on 1% agarose gel (Sigma-Aldrich) equilibrated with TAE buffer (4.84 g L⁻¹ Tris-base, pH 8.5, 1.14 g L⁻¹ glacial acetic acid and 100 mL of 0.74 g L⁻¹ EDTA) for 120 min at 40 V. Etoposide was used as the positive control. The gels were stained with ethidium bromide solution (5 g L⁻¹) after electrophoresis for 30 min, washed with water, and photographed under UV light with a digital camera.

RESULTS AND DISCUSSION

Extensive chromatography of the CHCl₃ fraction of Thysranthecus ramosissimus resulted in the isolation and characterization of two phaeophytins 1 and 2 (Figure 1). Compound 1 was isolated as a dark blue amorphous solid. ESI-MS analysis in the positive ionization mode resulted in [M+H]⁺ m/z 903.99, indicating 21 degrees of insaturation for a molecular formula of C₁₃H₁₃N₂O₇. The IR absorptions at 3549, 3476, 3414, 1737, and 1615 cm⁻¹ and UV data, together with the degrees of insaturation, allowed us to establish a conjugated d-lactone structure, which appeared to be formed between the C-13-C-13 bond at ring E of 13'-hydroxyphaeophytin A. There was evidence of a carbonyl carbon at δC 166.30 instead of the resonances at δC 192.2 for the corresponding carbon.

The complete analysis of the porphyrin structure was conducted on the basis of the correlations detected in the 2-D JCH, long-range of the olefinic protons H-5, H-10, H-20, which provide the connectivities between the four pyrrole rings (Figure 2). The signal corresponding to H-5 (δH 9.68) correlated with C-7 in ring B. Similarly, H-10 (δH 9.91) presented connectivity with C-8 (ring B) and C-11 in ring C, while H-20 (δH 8.86) correlated with C-1 and C-2 (ring A). The signal relative to 3H-18' (δH 1.62) in ring D showed long-range connectivity with C-19, and H-18 (δH 4.51) correlated with C-16. The JCH correlation of OCH₂-15' (δH 3.75) with the carboxyl group C-15 confirmed the position of the methyl-ester. The presence of the phytol-moiety attachment to the porphyrin system was indicated by the JCH correlation of 17'-B (δH 2.22) and 17'-A (2.49) to the carboxyl function C-17' (δC 173.30).

The configuration of C-15' was determined as S by up-field of H-17 (δH 4.16), since the Nuclear Overhauser enhancements in the NOESY spectrum did not show signals referring to this chiral center. Other significant signals were observed in the porphyrin system (Figure 3). Therefore, the structure of compound 1 was identified as 15'-hydroxy-(15'-S)-porphyrinolactone (anamariaine). This is its first isolation as a natural compound.

Compound 2 displays identical signals as compared to compound 1, except for an additional ethoxy group identified from ¹H resonances at δH 4.36 (q, J = 7.1 Hz, H-2'-1) and 1.50 (t, J = 7.10 Hz, H-3'-2) and the respective carbons at δC 62.44 and 15.62. The ethoxy group was deduced as being positioned at C-15' on the basis of the HMBC correlation between H2-1' and C-15' (δC 106.31). The spectral data of compound 2, including the chiral center at C-15' (δH 4.82), agrees with those described in the literature and allows for its identification as 15'-ethoxy-(15'-R)-porphyrinolactone. This compound has been previously isolated from the green alga Cladophora fascicularis.

The isolation of phaeophytins from Thysranthecus ramosissimus raises the question as to whether this material occurs naturally or is...
Phaeophytins from Thyrsacanthus ramosissimus Moric.

Comparison between the structures of compounds 1 and 2 shows that an interconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely.

The effects of the compounds on the catalytic activity of the DNA topo II-a enzyme were observed in the relaxation assays using pBR322 in the presence of ATP. Compounds 1 and 2 were evaluated at 50 µM (lanes 4 and 5, respectively) (Figure 4). The two compounds promoted significant inhibition of the catalytic activity of topo II as compared to etoposide, which was used as the positive control.

SUPPLEMENTARY MATERIAL

1H and 13C NMR, HMQC, COSY, HMBC, NOESY, IR, and ESI-MS spectra of compound 1 are available at http://quimicanova.sbq.org.br, in PDF file, with free access.

ACKNOWLEDGEMENTS

This work was financially supported by CNPq/CAPES/FAPESQ/PRONEX. We are also extremely grateful to CENAUREM/UFC for conducting the 200 MHz spectra. The authors are also thankful to the technicians R. N. da Silva Filho (UFPB) and D. E. de A. Uchoa (UFC) for the technical support. Dr. A. Leyva helped with editing of the English language.

REFERENCES

1. Barroso, G. M.; Peixoto, A. L.; Costa, C. G.; Ichaso, C. L. F.; Guimarães, E. F.; Lima, H. C.; Sistemática das Angiospermas do Brasil, Imprensa Universitária: Viçosa, 1991, vol. 3.
2. Braz, D. M.; Carvalho-Okano, R. M.; Kameyama, C.; Rev. Bras. Bot. 2002, 25, 495.
3. Amer, M. E.; Abou-Shoer, M. I.; Abdel-Kader, M. S.; El-Shaibany, A. M. S.; Abdel-Salam, N. A.; J. Braz. Chem. Soc. 2004, 15, 262.
4. Rao, Y. K.; Vimalamma, G.; Rao, C. V.; Tseng, Y.; Phytochemistry 2004, 65, 2317.
5. Rasoamiaranahanary, L.; Marston, A.; Guilet, D.; Schenk, K.; Randimbivololona, F.; Hostettmann, K.; Phytochemistry 2003, 62, 333.
6. Leal, L. K. A. M.; Ferreira, A. A. G.; Bezerra, G. A. A.; Matos, F. J. A.; Viana, G. S. B.; J. Ethnopharmacol. 2000, 70, 151.
7. Venkataraman, R.; Gopalakrishnan, S.; Phytochemistry 2002, 61, 963.
8. Siripong, P.; Yahuafai, J.; Shimizu, K.; Ichikawa, K.; Yonezawa, S.; Asai, T.; Kanokmedakul, K.; Ruchirawat, S.; Ouku, N.; Biol. Pharm. Bull. 2006, 29, 2279.
9. Kanchanapoom, T.; Noiarsa, P.; Ruchirawat, S.; Kasai, R.; Otsuka, H.; Phytochemistry 2004, 65, 2613.
10. Asano, J.; Chiba, K.; Tada, M.; Yosmil, T.; Phytochemistry 1996, 42, 713.
11. Luo, Y.; Feng, C.; Tian, Y.; Zhang, G.; Phytochemistry 2002, 61, 449.
12. Côrtes, A. L. A.; Borges, R. L. B.; Rapini, A.; Taxon 2010, 59, 965.
13. Silva, M. N.; Ferreira, V. F.; Souza, M. C. B. V.; Quim. Nova 2003, 26, 407.
14. Oliveira, M. C. C.; Carvalho, M. G.; Grynberg, N. F.; Brioso, P. S. T.; Plantas Med. 2005, 71, 561.
15. Cunha, A. S.; Lima, E. L. S.; Pinto, A. C.; Esteves-Souza, A.; Echevarria, A.; Câmara, C. A.; Vargas, M. D.; Torres J. C.; J. Braz. Chem. Soc. 2006, 17, 439.
16. Vega, M. R. G.; Esteves-Souza, A.; Vieira, I. J. C.; Mathias, L.; Braz-Filho, R.; Echevarria, A.; J. Braz. Chem. Soc. 2007, 18, 1554.
17. Esteves-Souza, A.; Figueiredo, D. V.; Esteves, A.; Câmara, C. A.; Vargas, M. D.; Pinto, A. C.; Echevarria, A.; Braz. J. Med. Biol. Res. 2007, 40, 1399.
18. Branco, A.; Pinto, A. C.; Braz-Filho, R.; Silva, E. F.; Grynberg, N. F.; Echevarria, A.; Rev. Bras. Farmacogn. 2008, 18, 703.
19. Cotrim, C. A.; Garrido, S. S.; Trovatti, E.; Marchetto, R.; Quim. Nova 2010, 33, 841.
20. Bruxel, F.; Guterres, S. S.; Teixeira, H. F.; Quim. Nova 2011, 34, 1643.
21. Corbett, A. H.; Osheroff, N.; Chem. Res. Toxicol. 1993, 6, 585.
22. Nitiss, J. L.; Biochim. Biophys. Acta 1998, 1400, 63.
23. Wang, J. C.; Annu. Rev. Biochem. 1996, 65, 635.
24. Dias, C. S.; Moura, M. D.; Cabral, A. G. S.; Mota, S. G. R.; Cunha, E. V. L.; Silva, T. M. S.; Harle, A. M. G.; Barbosa-Filho, J. M.; Labciencia 2007, 7, 14.
25. Buchanan, M. S.; Hashimoto, T.; Asakawa, Y.; Phytochemistry 1996, 41, 1373.
26. Helaja, J.; Stapelbroek-Mollmann, M.; Hynninen, P. H.; J. Org. Chem. 2000, 65, 3700.
27. Schwikkard, S. L.; Mulholland, D. A.; Hutchings, A.; Phytochemistry 1998, 49, 2391.
28. Tomaz, A. C. A.; Nogueira, R. B. S. S.; Pinto, D. S.; Agra, M. F.; Souza, M. F. V.; Cunha, E. V. L.; Rev. Bras. Farmacogn. 2008, 18, 47.
29. Jerz, G.; Arrey, T. N.; Wray, V.; Du, Q.; Winterhalter, P.; Innov. Food Sci. Emerging Technol. 2007, 8, 413.
30. Nakatani, Y.; Onrisson, G.; Beck, J. P.; Chem. Pharm. Bull. 1981, 29, 2261.
31. Huang, X.; Li, M.; Xu, B.; Zhu, X.; Deng, Z.; Lin, W.; Molecules 2007, 12, 582.
32. Silva, T. M. S.; Câmara, C. A.; Medeiros, F. D.; Oliveira, E. J.; Agra, M. F.; Harle, R. M.; Giulietti, A. M.; Biochem. Syst. Ecol. 2006, 34, 263.
33. Silva, T. M. S.; Câmara, C. A.; Barbosa-Filho, J. M.; Giulietti, A. M.; Quim. Nova 2010, 33, 571.