Molecular Phylogenetic Study on *Pseudomonas stutzeri* Isolated from Currency Notes in Khartoum State, Sudan and Identified Via16s rRNA Gene Sequence Analysis

Mosab Yahya Al-Nour¹, *, Malik Suliman Mohamed², Noha Ahmed Abd Alfadil³, Hisham Nouraldayem Altayb⁴, Salah-Eldin Gumaa El-Izaki⁵, Mohamed Ahmed Hassan⁶

¹Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
²Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
³Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Alneelain, Khartoum, Sudan
⁴Department of Microbiology, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
⁵Department of Epidemiology, Molecular Epidemiology Laboratory, Tropical Medicine Institute Research, Khartoum, Sudan
⁶Applied Bioinformatics Center, Africa City of Technology, Khartoum, Sudan

Email address: mosabyahiaalnour@gmail.com (M. Y. Al-Nour)

*Corresponding author

To cite this article:
Mosab Yahya Al-Nour, Malik Suliman Mohamed, Noha Ahmed Abd Alfadil, Hisham Nouraldayem Altayb, Salah-Eldin Gumaa El-Izaki, Mohamed Ahmed Hassan. Molecular Phylogenetic Study on *Pseudomonas stutzeri* Isolated from Currency Notes in Khartoum State, Sudan and Identified Via16s rRNA Gene Sequence Analysis. *European Journal of Biophysics*. Vol. 5, No. 6, 2017, pp. 104-111.
doi: 10.11648/j.ejb.20170506.12

Received: November 28, 2017; Accepted: December 19, 2017; Published: January 17, 2018

Abstract: *Pseudomonas stutzeri* is a valuable bacteria for understanding of the taxonomical and the phylogenetic relationships. The study of genetic relationships between organisms or genes is carried out by molecular phylogeny. We aim to study the relationships according to16S rRNA gene sequences between our samples and the closest strains from other countries over the world. To our knowledge, the phylogenetic studies between strains from Sudan with strains from other countries were not done before. A total of 140 currency notes in different denominations were collected randomly from several locations including hospitals, food sellers and transporters. From the collected notes, a total of 135 bacterial colonies were isolated and from them 14 isolates were identified as a *Pseudomonas stutzeri*. In the study, streaking plate method was used for the isolation of pure bacterial culture, Chelex 100 method was used for DNA extraction, conventional PCR was used for amplification of the targeted gene, agarose gel electrophoresis and various bioinformatics tools were used for nucleotide sequence analysis. The PCR products were sent for Macrogen Company-Netherlands for purification and nucleotide sequencing. After sequencing 3 samples were noisy, hence they were excluded. According to phylogenetic analysis, we found that the samples were closely related to strains from south-east Asia (Indonesia), east Asia (China), south-central Asia (Bangladesh), south Asia (India), north Africa (Tunisia) and south Europe (Italy and Greece). Despite the samples were from the same source (currency notes), we found that there is broad sequence variation between them.

Keywords: *Pseudomonas stutzeri*, Currency Notes, Molecular Phylogenetic, Khartoum, Sudan

1. Introduction

Pseudomonas stutzeri is a gram negative straight rod [5] belonging to gamma-Proteobacteria [6]. Strains of *P. stutzeri* exhibit broad genotypic diversity [7], [8] consequently, *P. stutzeri* is a valuable bacteria for understanding of the taxonomical and the phylogenetic relationships [9]. The study of genetic relationships between organisms or genes is carried out by molecular phylogeny via the
comparing of protein or homologous DNA sequences such as ribosomal RNA and mitochondrial genes. Ribosomal RNA consists of highly conserved and variable regions as well as it is universal, consequently, is a valuable target for the phylogenetic studies [10].

P. stutzeri strains are characterized by their ability to grow in broad range of temperature, anaerobically, and organotrophically (via utilization of many organic substrates) as well as the resistance to heavy metals. Therefore, they were isolated from various environments including soil, groundwater, rhizosphere marine water, sediment, wastewater [5], clinical materials [11] and currency notes [12]. Many studies on the genotypic identification and phylogenetic analysis of _P. stutzeri_ were performed via several highly specific and sensitive molecular markers including 16S rRNA gene [5]. In Sudan, it was isolated and identified via conventional methods [13], [14], [15] as well as 16S rRNA gene [16].

After the Isolation and Identification of bacteria, we aim to study the relationships according to 16S rRNA gene sequences between our samples and the closest strains from other countries over the world. Within the Ribosomal RNA genes, 16S rDNA is the most universal and conservative, therefore it is the most valuable in phylogenetic [17], hence it was selected for the study. To our knowledge, the phylogenetic studies between strains from Sudan with strains from other countries were not done before.

2. Materials and Methods

This study was conducted in Faculty of pharmacy, Omdurman Islamic University in collaboration with the Applied Bioinformatics Center, Africa City of Technology and the Department of Epidemiology, Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan between May 2016 and July 2016. A total of 140 currency notes in 5, 10, 20 and 50 denominations were isolated from various environments including soil, food sellers and transporters. The collected notes were placed into sterile plastic petri dishes and transferred to the laboratory.

2.1. Microbiological Methods

Firstly, the collected currency notes were moistened with sterile distilled water and swabbed at both sides cotton tipped swabs. The swabs were directly inoculated in 5% blood agar plates, incubated aerobically for 24 hours at 37°C, sub cultured in MacConkey and Cetrimide agars and incubated for 24 hours at 37°C. After that, the single colonies were isolated, cultured into nutrient agar plates and identified phenotypically (gram staining and biochemical tests) according to protocols described in Monica Cheasbrough [18]. Several biochemical tests were performed including Oxidase, Catalase, Indole, Glucose and Lactose fermentation, Citrate, Urease and Motility tests. The results of biochemical tests are listed in Table 2. A total of 135 bacterial colonies were isolated and from them 21 isolates were identified as a _pseudomonas_ species.

2.2. Molecular Methods

At first, streaking plate method was used for the isolation of pure bacterial culture [19]. Next, 200μl from 1X phosphate buffer saline were taken and transferred to sterile 1.5ml eppendorf tube by micropipette. Then, the distinctive colonies from the pure bacterial culture were isolated and inoculated into the eppendorf tubes. After that, Chelex 100 method was used for DNA extraction [20], conventional PCR was carried out via Alpha Unit Block Assembly DNA Thermo cycler from Bio-RAD Company by using Maxime PCR premix kit (i-Taq, for 20 μl reaction) from INtRON Biotechnology with the universal primers 27F and 1495R that have the sequences (5’-AGAGTTTGGATCMTGGCTCAG-3’) and (5’-CTACGGCTACCTGTAGCA-3’) respectively [21].

The PCR reaction volumes are listed below in Table 3 and temperature cycles involved initial denaturation cycle at 94°C for 5 minutes, followed by 35 amplification cycles (1 minute at 94°C, 1 minute at 58°C and 2 minute at 72°C) as well as final extension cycles at 72°C for 10 minutes [21]. After that, agarose gel electrophoresis was carried out against the obtained PCR amplicons via Amersham gel electrophoresis device according to protocol described by Lee. P. Y et al. [22] and the PCR products were sent to Macrogen Company-Netherlands for purification and nucleotide sequencing of both strands.

2.3. Bioinformatics Analysis

After obtaining the sequences, firstly they were checked and corrected them manually via Finch TV software [23]. From the received sequences, 14 sequences were identified as _P. stutzeri_ via nucleotide BLAST tool at NCBI [24], but 3 sequences of them were noisy, consequently they were excluded. After that, various bioinformatics tools were used including GenBank database [25] to obtain the sequences of previously identified genomovars and strains with higher identity.

In addition to that, Clustal W algorithm was used for multiple sequence alignment [26] and BioEdit software [1] for the visualization of multiple sequence alignment. Moreover, MEGA 6.06 [4] was used for phylogenetic analysis and Unipro UGENE software [27] was used for the calculation of simple identity in percent. The closest strains (sequences with higher identity in BLAST search) that we used for phylogenetic analysis with their accession numbers are listed Table 1.

Nucleotide Sequence Accession Numbers

The identified nucleotide sequences were deposited in the GenBank database [25] under the accession numbers KY039354 to KY039364 that listed in Table 4.
Table 1. Nucleotide sequences of stains with higher identity in BLAST search [19] obtained from GenBank database [20].

Strain	Country	Accession number
VKM B-97	USA	NR_116489.1
0511MAR14N1	Spain	LN774555.1
APB6	China	KF768391.1
1005	India	KU749990.1
SL-02	Indonesia	KX082892.1
SC-04	Indonesia	KX082841.1
SP-09	Indonesia	KX082842.1
SR-23	Indonesia	KX082843.1
TRA27A	Spain	JQ782508.1
K-2-7	Iran	JQ963329.1
F1	China	HQ292192.1
A10	Tunisia	KU180229.1
EGY-SCM1	Egypt	KJ545584.1
OOPY-9	Italy	KJ534280.1
ME-1	Pakistan	KF975434.1
A160/74	Spain	HF571089.1
MH004	Egypt	KU855015.1
Gr45	Greece	FR667889.1
Gr17	Greece	FN813477.1
B11	China	KT380516.1
W45	China	KT380587.1
BD-2.2.1	Vietnam	LC125170.1
B15	China	KT380520.1
MN1	India	KU708859.1
NA3	India	KU708861.1
Bon_a1	United Kingdom	FN397901.1
Xmb018	China	KT986148.1
KG-2 NRB-DRDO MP	India	KX344913.1
NB-03	Pakistan	KX262874.1
SP-10	Indonesia	KX082893.1
40/D/Mac2	Bangladesh	KT716345.1
Bd8	Sudan	KJ801394.1
N55	China	JK004621.1
I-A-E-25	Poland	KT922026.1
ARO3	Brazil	KP744123.1
W12	China	KT380558.1
W1	China	KT380544.1

3. Results and Discussion

The nucleotide sequence chromatogram, nucleotide BLAST search results, multiple sequence alignment of samples with strains of higher identity obtained from GenBank database [25] are shown in Figure 1, 2 and 3 respectively.

P. stutzeri strains have almost a universal environmental distribution [5], hence it is not strange to be isolated from currency notes. In the same manner, Kalita M et al. isolated *P. stutzeri* from currency notes [12].

After isolation, identification of bacteria and the phylogenetic analysis, we found that sample 1 clustered with strain SC-04 from Indonesia in the same phylogenetic sub branch (100% sequence identity), sample 2 was closely related to strain N55 from China (100% sequence identity) and Bd8 from Sudan (99% sequence identity). Also, sample 3 clustered with strain OOPY-9 from Italy (95% sequence identity) and sample 4 was closely related to strain SR-23 (100% sequence identity) from Indonesia and Gr45 from Greece (100% sequence identity). In addition, sample 5 was closely related to strain PIGB61 from India (100% sequence identity) and 40/D/Mac2 from Bangladesh (100% sequence identity), sample 6, 7, 11 was closely related to strain APB6 from China (100% sequence identity) and sample 8, 9, 10 was closely related to strain CB44 from China and A10 from Tunisia (99-100% sequence identity) (Figure 5 and 6).

In contrast, we found that other strains from China (B11, W1, W12, and W45) are closely related to other strains from Egypt (MH004 and EGY-SCM1), Iran (K-2-7), Poland (I-A-E-25), Brazil (ARO3), Indonesia (SP-10) and Greece (Gr17). Moreover, other strains from India (NB-03, NA3, KG-2 NRB-DRDO MP and 1005) are closely related to other strains from Pakistan (ME-1 and NB-03), Bangladesh (40/D/Mac2) and Spain (A160/74) (Figure 5). This finding reflects the geographical variation in habitats of *P. stutzeri* strains as the samples were closely related to strains from south-east Asia (Indonesia), east Asia (China), south-central Asia (Bangladesh), south Asia (India), north Africa (Tunisia) and south Europe (Italy and Greece)[28]. Unfortunately, currency notes are widely circulating agents making the identification of the exact location from which our samples were isolated is difficult.
Figure 1. Nucleotide sequence chromatogram.

Figure 2. Nucleotide BLAST [20] search Results.

Figure 3. Multiple Sequence Alignment of samples with strains of higher identity obtained from GenBank database [20] carried out via Clustal W multiple alignment algorithm [21] on MEGA 6.06 [22] and visualized via BioEdit software [1].
Figure 4. Multiple Sequence Alignment of samples with strains of higher identity obtained from GenBank database [20] carried out via Clustal W multiple alignment algorithm [21] on MEGA 6.06 [22] and visualized via BioEdit software [1].

The evolutionary history was inferred via the Maximum Likelihood method based on the Jukes-Cantor model [2]. The bootstrap consensus tree inferred from 2000 replicates [3] was taken to represent the evolutionary history of the analyzed samples [3]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were collapsed. Initial tree for the heuristic search was achieved by applying the Neighbor-Joining method to a matrix of pairwise distances estimated via the Maximum Composite Likelihood (MCL) approach. The analysis involved 52 nucleotide sequences. There were a total of

Figure 5. Molecular Phylogenetic Analysis on samples and strains with higher identity via 16S rRNA gene sequences.

Indicates the positions of our samples
Despite the samples from the same source (currency notes), according to the results of multiple sequence alignment results (Figure 3 and 4), we found that there is a broad sequence variation between them in the nucleotide positions 495-620. In these positions, sample 1, 2, 3, 4, 5, 6 and 7 are identical (group A) as well as sample 9 and are identical (group B) with strain A10 from Tunisia and CB44 from China. In contrast, the sequences of sample 8 and 11 were not involving these nucleotide positions because they were partial sequences; hence they were represented by dashes.

The genotypic variation between \(P.\) \textit{stutzeri} strains can be interpreted by the natural transformation [29] and rearrangements in their genomic organization (not conserved) [30] that predominantly may be as a result of adaptation to specific environment [31]. In this respect, Sikorski et al. [32] found that the transformability is common among environmental \(P.\) \textit{stutzeri} strains.

As the Strains of \(P.\) \textit{stutzeri} exhibit broad genotypic diversity, they were sub classified into DNA-DNA similarity groups termed as genomovars [7], [8]. In order to predict the genomovars that the samples belong, we carried out phylogenetic analysis between our samples and other strains from previously identified genomovars. We found that our samples were closely related to strains from genomovar 1 and 5 (Figure 7), but in order to confirm this result, further identification with other housekeeping genes beside 16S rDNA must be carried out.

In fact, currency notes from several countries over the world were found to be contaminated with many resistant microorganisms. The isolation of bacteria from currency notes is alarm that needs attention and health education especially in the development countries in order to prevent the risks and health hazards facing individuals be in contact with contaminated currency notes [33].

16S rDNA is characterized by its slow rate of evolution, consequently it have been used broadly for the phylogenetic reconstruction [34]. We found that 16S rDNA sequence analysis is a valuable method for the study, because it provides considerable results that achieved the objective.

The sample size was small and other genes beside the 16S rRNA gene were not used in the study, consequently the authors recommend the avoiding of these limitations for better identification and phylogenetic analysis.

4. Conclusion

\(P.\) \textit{stutzeri} was identified in currency notes via 16S rDNA sequence analysis. According to the phylogenetic analysis, we found that the samples are closely related to strains from Indonesia (SC-04 and SR-23), China (N55, CB44 and APB6), Bangladesh (PIGB61), India (40/D/Mac2), Tunisia (A10), Greece (Gr45), Italy (O0YW-9) and other strain from Sudan (Bd8).

Conflict of Interest

The Authors declare that they have no conflict of interest.
Appendix

Figure 7. Molecular Phylogenetic analysis on our samples and strains from various genomovars via 16S rDNA sequences.

The evolutionary history was inferred via the Maximum Likelihood method based on the Jukes-Cantor model [2]. The bootstrap consensus tree inferred from 2000 replicates [3] was taken to represent the evolutionary history of the analyzed samples [3]. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates were collapsed. Initial tree for the heuristic search was achieved by applying the Neighbor-Joining method to a matrix of pairwise distances estimated via the Maximum Composite Likelihood (MCL) approach. The analysis involved 40 nucleotide sequences. There were a total of 1516 positions in the final dataset. The evolutionary analysis was conducted in MEGA6 [4].

gv. is an abbreviation for genomovar.

Table 2. Results of the Biochemical Tests.

Biochemical test	Result
Oxidase	positive
Catalase	positive
Indole	negative
Glucose fermentation	positive
Lactose fermentation	positive
Citrate	positive
Urease	negative
Motility	positive

Table 3. PCR reaction volumes according to INtRON Biotechnology company instructions.

PCR reaction mixture	Volume (µl)
DNA extract	5
Forward Primer (10pmol/µl)	1
Reverse Primer (10pmol/µl)	1
Distilled water	13
Maxime PCR preMix (20µl reaction)	5
Total volume	25

Table 4. Accession numbers of our samples.

Sample number	Location	Accession number
1	transporters	KY039354
2	Khartoum Teaching Hospital	KY039355
3	Khartoum Teaching Hospital	KY039356
4	food sellers	KY039357
5	food sellers	KY039358
6	food sellers	KY039359
7	transporters	KY039360
8	food sellers	KY039361
9	transporters	KY039362
10	Omdurman Teaching Hospital	KY039363
11	Omdurman Teaching Hospital	KY039364

References

[1] Bio Edit software. (http://www.mbio.ncsu.edu/bioedit/bioedit.html).
[2] Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mammalian protein metabolism 3: 132.
[3] Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution: 783-791.
[4] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Molecular biology and evolution 30: 2725-2729.
[5] Lalucat J, Bennasar A, Bosch R, Garcia-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70: 510-547. doi: 10.1128/MMBR.00047-05.
[6] Stackebrandt E, Murray RG, Trüper HG (1988) Proteobacteria classis nov., a Name for the Phylogenetic Taxon That Includes the “Purple Bacteria and Their Relatives”. International Journal of Systematic and Evolutionary Microbiology 38: 321-325. doi:10.1099/00207713-38-3-321.
[7] Rosselló - Mora R, Lalucat J, Dott W, Kämpfer P (1994) Biochemical and chemotaxonomic characterization of Pseudomonas stutzeri genomovars. Journal of applied bacteriology 76: 226-233.
[8] Rosselló R, García-Valdés E, Lalucat J, Ursing J (1991) Genotypic and phenotypic diversity of Pseudomonas stutzeri. Systematic and applied microbiology 14: 150-157.
[9] Garcia-Valdés E, Mulet M, Lalucat J (2010) Insights into the life styles of Pseudomonas stutzeri Pseudomonas. Springer, pp. 177-198.
[10] Patwardhan A RS, Roy A (2014) Molecular Markers in Phylogenetic Studies – A Review. J Phylogen Evolution Biol 2. doi: 10.4172/2329-9002-2-131.
[11] B H (1986) Identification and distribution of Pseudomonas stutzeri in clinical material. J Appl Bacteriol 60: 401-411.
[12] Kalita M, Palusinska-Szysz M, Turska-Szewczuk A, Wdowiak-Wrobel S, Urbanik-Sypniewska T (2013) Isolation of cultivable microorganisms from Polish notes and coins. Pol J Microbiol 62: 281-286.
[13] Aradaib MEaEaE (2006) Association of Pseudomonas stutzeri with An Infected Ruptured Pulmonary Hydatid Cyst in A Young Patient. Surgery Journal 1: 32-34.
[14] Osman TMaES, S. M. (2013) Aerobic Bacteria Isolated from Dead in -Shell Chick Embryo in Khartoum State. The Sudan Journal of Veterinary Research 28: 1-7.
[15] E. Mohamed Ahmed HAAaIEA (2006) A Clinical Case of Recurrent Pleural Effusions, Culminating in Empyema-thoraces in a Sudanese Woman with Yellow Nail Syndrome. International Journal of Tropical Medicine 1: 137-139.
[16] El-Hussein AA, Elsalahi RH, Osman AG, Sherif AM, El Siddig MA (2014) Isolation and 16S rRNA-Based Identification of Benomyl-Degrading Bacteria. British Biotechnology Journal 4: 670.
[17] Lane DJ PB, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America 82: 6955-6959.
[18] Cheesbrough M (2006) District laboratory practice in tropical countries- part 2. Cambridge university press.
[19] Dart RK (1996) Microbiology for the analytical chemist. Royal Society of Chemistry.
[20] Giraffa G, Rossetti L, Neviani E (2000) An evaluation of chelex-based DNA purification protocols for the typing of lactic acid bacteria. Journal of Microbiological Methods 42: 175-184.
[21] Liu W, Bao Q, Qing M, Chen X, Sun T, Li M, Zhang J, Yu J, Bilge M, Sun T (2012) Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiological research 167: 110-115.
[22] Lee PY, Costumbrado J, Hsu C-Y, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. JoVE (Journal of Visualized Experiments): e3923-e3923.
[23] Finch TV software, (http://www.geospiza.com/ftvdlinfo.html).
[24] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of molecular biology 215: 403-410.
[25] Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic acids research 41: D36-D42.
[26] Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22: 4673-4680.
[27] Okonechnikov K, Golosova O, Fursov M (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166-1167.
[28] Maps of world (www.mapsofworld.com).
[29] Carlson CA, Pierson LS, Rosen J, Ingram JL (1983) Pseudomonas stutzeri and related species undergo natural transformation. Journal of Bacteriology 153: 93-99.
[30] Sikorski I, Rosselló-Mora R, Lorenz MG (1999) Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. Systematic and applied microbiology 22: 393-402.
[31] Scotta C, Gomila M, Mulet M, Lalucat J, Garcia-Valdés E (2013) Whole-cell MALDI-TOF mass spectrometry and multilocus sequence analysis in the discrimination of Pseudomonas stutzeri populations: three novel genomovars. Microbial ecology 66: 522-532.
[32] Sikorski J, Teschner N, Wackernagel W (2002) Highly diverse lactic acid bacteria from Tarag in Eastern Inner Mongolia of China. Microbial ecology 66: 522-532.
[33] Almeu A (2014) Microbial contamination of currency notes and coins in circulation: a potential public health hazard. Biomedicine and Biotechnology 2: 46-53.
[34] Cladera AM, Bennasar A, Barceló M, Lalucat J, Garcia-Valdés E (2004) Comparative genetic diversity of Pseudomonas stutzeri genomovars, clonal structure, and phylogeny of the species. Journal of bacteriology 186: 5239-5248.