Determination of optimum animal feed raw material order allocation

D Wahyuni¹*, M T Sembiring¹, I Budiman², T Utari¹ and C D N Silaen¹

¹ Department of Industrial Engineering, Faculty of Engineering, Universitas Sumatera Utara
² Department of Industrial Engineering, Faculty of Technology and Computer Sciences, Universitas Prima Indonesia

*E-mail: diniwahyuni2015@gmail.com

Abstract. The availability of raw materials is the key to the implementation of production activities so that suppliers, who are able to supply according to the needs of the company, are needed. If the material that comes is not according to the specifications requested, even though the supplier changes so that the amount of material is still fulfilled, it still causes disruption to the smooth production process. The aim of this study is to assess the supplier’s performance to optimize allocated raw material. This research was conducted at an animal feed factory. The raw materials used include yellow corn and rice bran, obtained from several suppliers. The raw material that comes in part is rejected because it is not in accordance with the requested specifications, among others due to excessive water content, mushroom content and the content of corn cobs that exceed the established limit. In this study, carried out a performance analysis of suppliers referring to 23 supplier assessment criteria by Dickson and used 6 selected criteria, namely quality, delivery, history of supplier performance, claim and guarantee policies, prices and communication systems. The optimal amount of raw material orders from the results of goal programming is allocated to each supplier based on their performance.

1. Introduction
Effective supply chain management requires careful consideration of multiple tiers of partners [1]. Necessary capabilities for developing the partners to be able to fulfill their respective purposes needed in the supply chain [2]. Cost-effective material management domain has, therefore, become a competitive priority [3]. Availability of raw materials is important for the sustainability of a company’s production. In order to avoid shortages of raw materials, companies often allocate large amounts of orders, even though storage of materials has a risk of damage or loss, in addition to other risks. The purchasing department of the company is responsible for purchasing raw materials and other needs and the amount can reach 50-80% of the entire company budget [4]. The risk of purchasing materials can be reduced and maximizing the total value of purchases up to 3.9% has been studied in auto-body hydraulic part manufacturers [5-6]. Research on the determination of raw material sources in the supply chain of the cable-making industry can minimize logistics costs and maximize purchase value [7]. The shortage of raw materials from those targeted because they have not considered supplier performance has been studied in the paper recycling industry [8]. Supplier performance evaluation can be used for continuous improvement and performance measurement and can minimize frequent risks...
[9]. A quality factor need to consider such as deterioration of the inherent properties of the materials [10].

This research was conducted at an animal feed company located in North Sumatra. The feed produced includes animal feed for chickens, ducks, pigs and cattle which are produced in the form of mash, pellet or crumble. The types of ingredients used are yellow corn, soy bean meal, corn gluten meal, guar meal, rapeseed meal, and rice bran. Each ingredient was obtained from the same supplier except yellow corn and rice bran from several suppliers. Supplier performance in supplying raw materials has a difference. There are a number of materials that are rejected by the company because they are not according to the specifications specified, as shown in Table 1.

No	Supplier	Type of Raw Material	Order Amount (ton)	Amount Rejected (ton)
1.	Supplier A	Yellow corn	12,883	1,461.21
2.	Supplier B	Yellow corn	12,285	1,630.98
3.	Supplier C	Yellow corn	8,571	838.40
4.	Supplier D	Rice bran	1,359	47.72
5.	Supplier E	Rice bran	1,465	158.21
6.	Supplier F	Rice bran	1,181	53.77

The non-conformity of raw material specifications occurs due to high water content (above 22%), fungus content (aflatoxin) above 50 ppb, or too much corn cob (above 2%). If this happens, the supplier is obliged to replace it, but this results in a disruption to the production floor because the substitute for the raw material comes after the time specified in the order. In this study the performance of each supplier will be assessed and to optimize allocation of raw material purchases based on supplier performance.

2. Method and equipment

Supplier performance appraisal is based on 23 supplier assessment criteria by Dickson. In accordance with the conditions of the company, 6 criteria were selected, namely quality, delivery, claim and guarantee policy, performance history, price, and communication system [11]. Determination of criteria is obtained based on the results of an open questionnaire given to the factory manager, quality control manager and purchasing manager. Likewise, the determination of the sub-criteria. Interrelationships between criteria and sub-criteria [12] are netted through a closed questionnaire, as did the pair-wise comparison questionnaire, which still involved the respondent.

Data processing was carried out using Analytic Network Process [13-14] through the stages of building structured problem models, calculating partial weights and consistency ratios in pair-wise comparison matrices, as well as making super matrix, total weights and determining supplier ratings. To get the optimum amount of order, the Goal Programming [15] and LINDO software methods are used.

3. Results and Discussions

Criteria and sub-criteria obtained based on semi-open questionnaires on the three respondents can be seen in Table 2.
Table 2. Criteria and Sub-Criteria obtained from Questionnaire

No	Criteria	Sub-criteria
1	Quality	K1. Compliance with the desired specifications
		K2. Number of raw materials rejected
		K3. Quality consistency
2	Shipping	P1. Timeliness of delivery
		P2. Accurate number of shipments
		P3. Flexibility of delivery schedule
3	Supplier Performance History	KS1. Capability of order fulfillment
		KS2. Ability to maintain good relations
4	Claim and Guarantee Policies	KKJ1. Willingness to compensate for material
		KKJ2. Complaints responsiveness
		KKJ3. Compliance procedures for complaints
5	Price	H1. Low prices
		H2. Ease of agreement on prices
		H3. Price stability
		H4. Discount
6	Communication System	SK1. Easy to contact
		SK2. Openness in sharing information

Pair-wise comparisons are carried out between criteria and between sub-criteria in each cluster. In addition, pair-wise comparisons between alternatives (between suppliers) were also carried out for each sub-criteria. After that, a super-matrix calculation is performed. The results of process using Analytic Network Process is obtained for each sub-criteria weights as shown in Table 3.

Table 3. Weight of Sub-criteria

No	Criteria	Sub Criteria	Normalization Weight	Global Weight
1	Quality	K1	0.4276	0.28913
		K2	0.4398	0.01197
		K3	0.1326	0.00361
2	Shipping	P1	0.4197	0.36850
		P2	0.2511	0.22046
		P3	0.3293	0.01163
3	Supplier Performance History	KS1	0.1027	0.00011
		KS2	0.8973	0.00095
4	Claim and Guarantee Policies	KKJ1	0.4194	0.01754
		KKJ2	0.3156	0.01320
		KKJ3	0.2651	0.01109
5	Price	H1	0.6801	0.00311
		H2	0.0656	0.00030
		H3	0.2063	0.00094
		H4	0.0481	0.00022
6	Communication System	SK1	0.5625	0.00005
		SK2	0.4375	0.00004
	Total		**6.0000**	**1.00000**
Ranking of each supplier are shown in Table 4.

Table 4. Ranking of Supplier

No	Type of Commodity	Supplier	Total Weight	Rank
1.	Yellow Corn	A	0.4053	1
		B	0.3944	2
		C	0.2004	3
2.	Rice Bran	D	0.4466	1
		E	0.3523	2
		F	0.2012	3

From Table 4 it can be seen that the supplier ranking is obtained based on ANP according to the existing conditions. The company allocates the number of orders to suppliers according to the ranking above. Ranking 1 gets the priority to supply the material, and gets the the biggest order than others for each type of material.

The monthly raw material requirements for yellow corn and rice bran are shown in Figure 1 and the minimum and maximum order data from each supplier are listed in Table 5.

Figure 1. Required Raw Material

Table 5. Minimum and Maximum Order

No	Raw Material	Supplier	Minimum Order (tons)	Maximum order (tons)	Price/ton (Rp.000)
1.	Yellow Corn	A	500	3,000	3,400
		B	200	3,000	3,300
		C	100	2,000	3,100
2.	Rice Bran	D	5	500	2,500
		E	10	500	2,600
		F	5	200	2,550
Not all materials ordered come according to the specifications requested. The number of out of specification corn ranges from 1.17% to 1.47%, while rice bran ranges from 0.4 to 0.9%. The calculation of the number of raw material orders from each supplier is done by the goal programming method with the help of LINDO software and the results can be seen in Table 6.

Table 6. Results of the 13th to 18th Month Order Allocation

Raw Materials	Supplier	Allocation results with goal programming (tons)	Total					
		Month 13	Month 14	Month 15	Month 16	Month 17	Month 18	
Yellow Corn	A	2,762	500	2,008	2,375	780	1,960	10.385
	B	200	1,024	700	200	500	200	2.824
	C	100	1,827	300	100	300	100	2.727
	TOTAL	3,062	3,350	3,008	2,675	1,580	2,260	15,935
Rice Bran	D	162	148	472	500	300	500	2.082
	E	10	10	10	10	50	10	100
	F	5	5	5	90	0	15	120
	TOTAL	177	163	487	600	350	525	2,302

From Table 6 above, it can be seen that Supplier A receives the largest order allocation, namely 65% of the total raw material requirement for yellow corn and supplier D is requested to fulfill 90% of the raw material requirements for rice bran. From the table, it is clear that the highest priority is given to the best ranking.

Supplier performance assessment needs to be done so that the supplier knows the extent of its performance so far. Consequently, suppliers with high performance will get larger orders compared to suppliers with low performance. This will encourage suppliers to continue to improve their performance.

Supplier performance evaluation conducted by Hawkins et al shows a number of weaknesses related to information on supplier performance, identification of risks and factors that affect risk mitigation effectiveness [16]. Supplier empowerment has been studied by Liao et al, covering cognitive concept in mediating relationship between suppliers' process and mutual trust with customers and suppliers' services performance operations and customer services [17]. The purchasing department at the company needs to monitor supplier performance. The Supplier Development Program was reviewed by Bentor Jr. et al cover a number of programs and the results show that operational procedures affect the buying and selling relationship in the organization. Communication, cooperation, and commitment are key to supplier performance [18].

4. Conclusions
Supplier performance assessment criteria used in this study are (1) Quality, (2) delivery, (3) supplier performance history, (4) claim and guarantee policies, (5) prices and (6) communication systems. The optimum amount of order allocation is divided into each supplier according to their performance.

References
[1] Jorg H. Grimm, Joerg S. Hofstetter, and Joseph Sarkis 2014 Critical factors for sub-supplier management: A sustainable food supply chains perspective Int. J. Production Economics 152 p 159-173.
[2] Philip Beske, Anna Land, and Stefan Seuring 2014 Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature Int. J. Production Economics 152 p 131-143.
[3] Raid Al-Aomar, Hussam Alshraideh 2019 A service-oriented material management model with green options J. Cleaner Production 236 p 117557
[4] R.E. Indrajit 2005 Supply and Supply Chain Management Strategy Current Management Approach to Facing Global Competition, Strategi Manajemen Pembelian dan Supply Chain Pendidikan Management Terkini untuk Menghadapi Persaingan Global (Jakarta: Grasindo).
[5] M. Dehghani, M. Esmaeilian, R. T. Moghaddam 2013 Int. J. Economy 2 p 565-575
[6] S. Hamdan, A. Cheaitou 2015 Proceedings of the 2015 International Conference on Industrial Engineering and Operations Management Dubai, United Arab Emirates (UAE) vol 1 (IEEE) p 1390-1399
[7] M. Rezaei 2013 Decision Science Letter 2(4) pp. 287-298
[8] C. F. M. Tantrika, W. Azlia, A. Arfiansyah 2017 Proceedings of National Seminar of Industrial Engineering and SATELIT 2017(Batu) vol 1 (Malang: Badan Kerjasama Penyelenggara Pendidikan Tinggi Teknik Industri).
[9] K. Yohana 2017 Proceedings of National Seminar of Industrial Engineering and SATELIT 2017 (Batu) vol 1 (Malang: Badan Kerjasama Penyelenggara Pendidikan Tinggi Teknik Industri).
[10] L. Rigamonti et al 2020 A step forward in quantifying the substitutability of secondary materials in waste management life cycle assessment studies J. Waste Management 114 Pp. 331-340.
[11] G.W. Dickson 1996 J. Purchasing 2(1) pp. 5-17 (1966)
[12] Z. Isik, I. Dikmen, M. T. Birgonul 2007 Using Analytic Network Process (ANP) for Performance Measurement in Construction (RICS, Georgia Tech and the Contributor). pp. 3-13.
[13] T. L. Saaty 1996 Decision Making with Dependence and Feedback the Analytic Network Process (USA: RWS Publications).
[14] T. L. Saaty 2005 Theory and Applications of the Analytic Network Process (Pittsburgh: RWS Publications).
[15] F. Hillier, G. Lieberman 1994 Introduction to Operation Research, Pengantar Riset Operasi (Jakarta: Erlangga).
[16] Timothy G. Hawkins, Michael J. Gravier, William A. Muir 2020 The role of supplier performance evaluations in mitigating risk: Assessing evaluation processes and behaviors J. Industrial Marketing Management 87 pp. 2-17.
[17] Kun Liao, Xiaodong Deng, Ying Liao, Qingyu Zhang 2020 Supplier empowerment: Mediating situational factors and perceived performance J. Purchasing and Supply Management 26 pp. 100611.
[18] W.C. Benton Jr., Carol Prahinski, Ying Fan 2020 The influence of supplier development programs on supplier performance Int. J. Production Economics 230 pp. 107793.