Does the degree of tensile strain have an impact on the cracking behavior of vertical structural elements?

T Chrysanidis* and V Panoskaltsis

1Department of Civil Engineering, Demokritos University of Thrace, Xanthi, Greece

*Email: thchrysa@civil.duth.gr

Abstract. Given the random nature of crack formation, research into reinforced concrete members in the context of cracking behavior proves difficult. Therefore, widely accepted methodologies for predicting crack characteristics, e.g. crack width and spacing and number of cracks, have not been developed yet. Furthermore, cracking for members strained to high degrees of elongation, as happens during earthquakes, has not been investigated before. This experimental work aims to look into the impact, primarily of tensile deformation’s mechanical factor, in terms of cracking behaviour. Four test specimens were strained under uniaxial tensile loading. The degrees of elongation used were equal to 10‰, 20‰, 30‰ and 50‰. Useful conclusions concerning cracking behaviour are derived.

1. Introduction

Several international researchers have explored the phenomenon of cracking in reinforced concrete structures [1]–[23]. Although most of the given structures are typically reinforced in two directions, most studies carried out worldwide to investigate the behaviour of cracking have involved uniaxially tensiled reinforced concrete members with reinforcement in only one direction. To date there is not yet a widely established and accepted methodology for predicting cracking characteristics, e.g. crack widths and spacings between cracks [7], [9], [10], [23]–[26]. In addition, most of the existing research conducted has been strictly limited to the state of the stabilized crack pattern only and does not involve cracking behaviour and crack characteristics deep in the yield region [27], [28].

In the framework of the current study, an experimental program has been conducted involving reinforced concrete members detailed in two directions using longitudinal rebars and transverse reinforcement in the form of ties. This is a common construction practice used in the vast majority of concrete structures. As per the results outlined within this work, cracking behaviour and the crack characteristics are discussed. Useful conclusions concerning cracking under different degrees of elongation are derived. The experimental procedure of the current study has taken place in Aristotle University of Thessaloniki at the Laboratory of Strength of Materials but the result analysis has taken place in Democritus University of Thrace.

2. Experimental program

2.1. Detailing of test specimens

The current experimental program consists of four test specimens. The thickness of each specimen is 7.5 cm and the length of the cross-section is 15 cm. The ratio between the length and the thickness of the cross-sectional area is equal to 2, which is a typical ratio for constructing reinforced concrete
columns. The total height of the test specimen is equal to 90 cm. Each of the four specimens is subjected to a uniaxial central tensile loading. The main test element is between the metal plates and its height is 64 cm (Fig. 1).

Table 1 shows the geometrical and detailing characteristics of all four specimens. All four segments tested here have been detailed in two directions through deformed bars in terms of reinforcement. The reinforcement of each specimen simulates a typical reinforcement found in the reinforced concrete columns of typical construction buildings or in the confined boundaries of reinforced concrete seismic walls. The construction scale used to simulate typical columns or typical confined boundaries was equal to 1:3, which is commonly used for research purposes worldwide [29], [30].

The number of longitudinal bars is equal to six. Four of them have a diameter of 8 mm and two of them have a diameter of 10 mm. The longitudinal reinforcement ratio is equal to 3.19%. The transverse reinforcement consists of transverse ties placed along the height of the prism. The centre-to-centre distance between two ties is about 3.3 cm and the diameter of each tie is 4.2 mm. The only variable differentiating specimens from each other is the tensile strain. The nominal tensile strain takes values equal to 10.00%, 20.00%, 30.00% and 50.00%. It is well known that in real constructions, tensile strains up to 30.00% have been observed [31], [32]. Also, modern seismic and concrete codes
have related provisions allowing large tensile strains for reinforcement bars [33]–[39]. The name of each specimen is of the type H-“Number”, where “H” corresponds to the high longitudinal reinforcement ratio of the elements and the number shows the degree of elongation applied to the specimen in question.

Table 1. Geometrical and detailed properties of element specimens.

N/A	Specimen name	Length (cm)	Thickness (cm)	Effective height (cm)	Longitudinal reinforcement	Longitudinal reinforcement ratio [ρl] (%)	Transverse reinforcement	Nominal tensile strain (%)
1	H-10	15	7.5	64	4xD8 + 2xD10	3.19	D4.2@33 mm	10.00
2	H-20	15	7.5	64	4xD8 + 2xD10	3.19	D4.2@33 mm	20.00
3	H-30	15	7.5	64	4xD8 + 2xD10	3.19	D4.2@33 mm	30.00
4	H-50	15	7.5	64	4xD8 + 2xD10	3.19	D4.2@33 mm	50.00

2.2. **Test setup for loading**

A universal testing machine was used to apply the load. For example, for specimen H-20, the nominal degree of elongation is 20.00‰. Fig. 2 displays the experimental configuration for imposing the tensile load. The rate of loading was slow, of the order of 4 mm/min, so no result was affected by the influence of the strain rate. This is well established in international bibliography and it is a common practice [40].

![Figure 2. Loading test configuration.](image)

3. **Discussion of results**

3.1. **Experimental findings**

Fig. 3 presents the change of tensile strain relative to the tensile load imposed on the test elements. It is obvious that specimens with a high nominal degree of elongation are subjected to high tensile strains too and vice versa. It is noted that the nominal degrees of tensile strain (10‰, 20‰, 30‰, 50‰)
are slightly different from the residual actual tensile degrees, but these differences are small and negligible.

After conducting the experiments, different cracking formations and eventually cracking characteristics were noticed for each specimen. Fig. 4 shows the state of each specimen after the end of the uniaxial tensile test. Cracks of small width are obvious for specimens with low degrees of tensile strain (10‰ and 20‰), while cracks of moderate and large width are present for specimens strained under larger degrees of elongation (30‰ and 50‰). It is apparent that the final cracking formation differs between the specimens, depending on the tensile strain they have sustained.

![Figure 3](image3.png)

Figure 3. Diagram of tensile load versus elongation.

![Images](image4.png)

(a) H-10, (b) H-20, (c) H-30, (d) H-50

Figure 4. Specimens after the uniaxial tensile test: (a) H-10, (b) H-20, (c) H-30, (d) H-50.
3.2. Analysis of experimental findings

The results of the analysis of the test findings for all segments are brought together in the following tables and diagrams. Table 2 and Table 3 present the width and spacing characteristics of the cracks. Fig. 5 displays the variation of the crack width and spacing characteristics. Fig. 7 – Fig. 13 use bar charts to display the results for the same type of cracking characteristics, e.g. minimum width, average spacing, etc.

Table 2. Crack width characteristics.

N/A	Specimen	Number of cracks [N]	Minimum crack width $[W_{\text{min}}]$ (mm)	Maximum crack width $[W_{\text{max}}]$ (mm)	Average crack width $[W_{\text{ave}}]$ (mm)	$W_{\text{min}}/W_{\text{ave}}$	$W_{\text{max}}/W_{\text{ave}}$	$W_{\text{max}}/W_{\text{min}}$
1	H-10	11	0.2	1.0	0.655	0.31	1.53	5.00
2	H-20	12	0.2	1.5	1.050	0.19	1.43	7.50
3	H-30	13	0.6	2.0	1.354	0.44	1.48	3.33
4	H-50	13	0.8	3.2	2.277	0.35	1.41	4.00

Table 3. Crack spacing characteristics.

N/A	Specimen	Number of cracks [N]	Minimum crack spacing $[S_{\text{min}}]$ (cm)	Maximum crack spacing $[S_{\text{max}}]$ (cm)	Average crack spacing $[S_{\text{ave}}]$ (cm)	$S_{\text{min}}/S_{\text{ave}}$	$S_{\text{max}}/S_{\text{ave}}$	$S_{\text{max}}/S_{\text{min}}$
1	H-10	11	4.3	10.4	6.540	0.66	1.59	2.42
2	H-20	12	2.6	10.6	5.855	0.44	1.81	4.08
3	H-30	13	2.6	7.6	5.533	0.47	1.37	2.92
4	H-50	13	2.9	9.0	5.575	0.52	1.61	3.10

Figure 5. Change of crack width relative to the degree of elongation.
Figure 6. Change of crack spacing relative to the degree of elongation.

Figure 7. Bar chart of number of cracks regarding the degree of elongation.
Figure 8. Bar chart of minimum crack width as a percentage of the minimum crack width of the reference specimen.

Figure 9. Bar chart of maximum crack width as a percentage of the maximum crack width of the reference.
Figure 10. Bar chart of average crack width as a percentage of the average crack width of the reference specimen.

Figure 11. Bar chart of minimum crack spacing as a percentage of the minimum crack spacing of the reference specimen.
Figure 12. Bar chart of maximum crack spacing as a percentage of the maximum crack spacing of the reference specimen.

Figure 13. Bar chart of average crack spacing as a percentage of the average crack spacing of the reference specimen.
The experimental findings of the test elements were then analysed and evaluated:

1. The number of cracks appearing increases by one crack for each elongation degree, 10‰, 20‰, 30‰, and remains constant thereafter for the elongation degree of 50‰. For a better understanding of this phenomenon, more experiments concerning different longitudinal reinforcement ratios and arrangements of rebars need to be performed.

2. Comparing the crack width with the degree of elongation applied, it can be seen that the width becomes larger as the elongation degree sustained increases (Table 2, Fig. 5). It is noteworthy that all types of crack width increase with the increment of the tensile degree – meaning the minimum, maximum and average crack width.

3. It seems that there is a general trend for decreased crack spacing compared to the spacing of cracks for the initial degree of elongation of 10‰ (Fig. 6). The explanation for this may be that the number of cracks formed increases for degrees higher than the initial 10‰, which eventually translates to smaller spacings between a larger number of cracks.

4. The spacings remain almost constant between cracks, independent of the degree of elongation.

5. The damage state of specimens indicates that cracks appear at or near to the tie positions (Fig. 4). Thus, the presence of steel ties helps and promotes the disorganization of concrete around them.

4. Conclusions

This paper looks at four specimens to investigate cracking formation and behaviour in terms of the number of cracks, their width and spacing. The following conclusions are drawn:

1. The degree of tensile deformation holds a significant part in terms of the formation of cracks and their characteristics, e.g. the number of cracks formed, the width and spacing of cracks – whether considering the minimum, maximum or average value.

2. Higher degrees of elongation result in cracks with larger widths. Thus, the design of reinforced concrete structural components should take into account the degree of elongation because, as it is well known, large crack widths can lead to oxidation and deterioration of rebars and eventually affect structural safety.

3. The spacing between cracks seems to be affected when a higher tensile degree leads to a higher number of cracks. Otherwise, spacing characteristics remain more or less unaffected too.

4. The question arises of whether the longitudinal ratio or whether the arrangement of rebars plays an essential role, too. Further research is needed on the subject using test specimens with different longitudinal reinforcement ratios and arrangements. This will help to check the impact that the mechanical factor of reinforcement ratio has.

References

[1] H T Hu and W C Schnobrich 1990 “Nonlinear analysis of cracked reinforced concrete” ACI Structural Journal 87 199–207.
[2] Z Shi, M Suzuki and M Nakano 2003 “Numerical Analysis of Multiple Discrete Cracks in Concrete Dams Using Extended Fictitious Crack Model” Journal of Structural Engineering 129 pp 324–336.
[3] C Ouyang, E Wollrab, S M Kulkarni and S P Shah 2002 “Prediction of Cracking Response of Reinforced Concrete Tensile Members” Journal of Structural Engineering 123 pp 70–78.
[4] K A Vu and M G Stewart 2005 “Predicting the Likelihood and Extent of Reinforced Concrete Corrosion-Induced Cracking” Journal of Structural Engineering 131 pp 1681–1689.
[5] M Lorrain, O Maurel and M Seffo 1998 “Cracking behavior of reinforced high-strength concrete tension ties” ACI Structural Journal 95 pp 626–635.
[6] S L Lee, M A Mansur, K H Tan and K Kasiraju 1987 “Cracking Behavior of Concrete Tension Members Reinforced With Welded Wire Fabric,” 84 pp 481–491.
[7] H Marzouk, M Hossin and A Hussein 2010 “Crack width estimation for concrete plates,” ACI Structural Journal 107 pp 282–290.
[8] C H Lu, W L Jin and J H Mao 2011 “Experimental Investigation of Corrosion-Induced Cover Cracking in Reinforced Concrete Structures” Advanced Materials Research 197–198 pp 1690–1693.

[9] S K Padmarajah and A Ramaswamy 2001 “Crack-width prediction for high-strength concrete fully and partially prestressed beam specimens containing steel fibers” ACI Structural Journal 98 pp 852–861.

[10] R Gaetano and R Filippo 1992 “Cracking Response of RC Members Subjected to Uniaxial Tension” Journal of Structural Engineering 118 pp 1172–1190.

[11] H Gesund and R J Frosh 2000 “Another look at cracking and crack control in reinforced concrete Paper by Robert J Frosh” ACI Structural Journal 97 p 355.

[12] B H C Chan, Y K Cheung and Y P Huang 1993 “Crack analysis of reinforced concrete tension members” 118 pp 2118–2132.

[13] H Mirzabozorg and M Ghaemian 2005 “Non-linear behavior of mass concrete in three-dimensional problems using a smeared crack approach” Earthquake Engineering and Structural Dynamics 34 pp 247–269.

[14] M Byfield 2018 “Control of cracking in reinforced concrete” Structural Design from First Principles 105 pp 271–288.

[15] B P Hughes and C V Cifuentes 1988 “Comparison of Early-Age Crack Width Formulas for Reinforced Concrete” ACI Structural Journal 85 pp 158–166.

[16] S Yang and J Chen 1988 “Bond Slip and Crack Width Calculations of Tension Members,” ACI Structural Journal 85 pp 414–422.

[17] H G Sohn, Y M Lim, K H Yun and G H Kim 2005 “Monitoring crack changes in concrete structures” Computer-Aided Civil and Infrastructure Engineering 20 pp 52–61.

[18] M M Smadi and F O Slate 1989 “Microcracking of high and normal strength concretes under short- and long-term loadings” ACI Materials Journal 86 pp 117–127.

[19] Y H Lee and K Willam 1997 “Mechanical properties of concrete in uniaxial compression,” ACI Materials Journal 94 pp 457–471.

[20] M Aschheim and J Browning 2008 “Influence of Cracking on Equivalent SDOF Estimates of RC Frame Drift” Journal of Structural Engineering 134 pp 511–517.

[21] G Chen and G Baker 2003 “Influence of Bond Slip on Crack Spacing in Numerical Modeling of Reinforced Concrete” Journal of Structural Engineering 129 pp 1514–1521.

[22] N Ariyawardena, A Ghali and M Elbadry 1997 “Experimental study on thermal cracking in reinforced concrete members” ACI Structural Journal 94 pp 432–441.

[23] Z P Bažant and B H Oh 2008 “Spacing of Cracks in Reinforced Concrete” Journal of Structural Engineering 109 pp 2066–2085.

[24] B Bengt and L Leroy 1965 “Effects of Arrangement of Reinforcement on Crack Width and Spacing of Reinforced Concrete Members” ACI Journal Proceedings 62 pp 1395–1420.

[25] Y Goto 1971 “Internal Cracks Formed in Concrete Around Deformed Tension Bars” ACI Journal Proceedings 68 pp 244–251.

[26] R R H Zhu, W Wanichakorn, T T C Hsu and J Vogel 2003 “Crack width prediction using compatibility-aided strut-and-tie model” ACI Structural Journal 100 pp 413–421.

[27] Wood S L, Wight J K and J P Moehle 1987 “The 1985 Chile Earthquake, Observations on Earthquake Resistant Construction in Viña del Mar” Civil Engineering Studies p 176.

[28] M Fintel 2014 “Performance of Buildings With Shear Walls in Earthquakes of the Last Thirty Years” PCI Journal 40 pp 62–80.

[29] G G Penelis and A J Kappos 1996 Earthquake-resistant Concrete Structures London, UK: E & F N SPON (Chapman & Hall).

[30] G Penelis, K Stylianidis, A Kappos and C Ignakis 1995 Reinforced Concrete Structures Thessaloniki, Greece: AUTh Press.

[31] J W Wallace 2012 “Behavior, design, and modeling of structural walls and coupling beams - Lessons from recent laboratory tests and earthquakes” International Journal of Concrete
Structures and Materials 6 pp 3–18.
[32] Y H Chai and S K Kunnath 2005 “Minimum thickness for ductile RC structural walls” Engineering Structures 27 pp 1052–1063.
[33] Standards New Zealand 2006 “NZS 3101:2006, Concrete structures standard: Part 1 – The design of concrete structures” Wellington, New Zealand.
[34] Canadian Standards Association 2007 “CAN/CSA-A233-04, Design of Concrete Structures (Update No 2 - July 2007),” Mississauga, Ontario, Canada.
[35] European Committee for Standardization 2004 “EN 1998-1:2004, Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings” Brussels, Belgium.
[36] Ministry of Environment Planning and Public Works 2000 “Greek Code for the Design and Construction of Concrete Works” Athens, Greece. (In Greek)
[37] International Conference of Building Officials 1997 “Uniform Building Code – Volume 2: Structural Engineering Design Provisions” Whittier, California, USA.
[38] T A Chrysanidis 2020 “Evaluation of Out-of-Plane Response of R/C Structural Wall Boundary Edges Detailed with Maximum Code-Prescribed Longitudinal Reinforcement Ratio” International Journal of Concrete Structures and Materials 14.
[39] T Chrysanidis 2019 “Influence of elongation degree on transverse buckling of confined boundary regions of R/C seismic walls” Construction and Building Materials 211 pp 703–720.
[40] T Chrysanidis and I Tegos 2020 “Axial and transverse strengthening of R/C circular columns: Conventional and new type of steel and hybrid jackets using high-strength mortar” Journal of Building Engineering 30.