Supporting Information

A fast-responsive fluorescent turn-on probe for nitroreductase imaging in living cells

Chengli Jia, Yong Zhang, Yuesong Wang, Min Ji*

School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210009

Contents

1. Reported fluorescent probes...2

2. The characterization of NTR-NO₂ ...3

3. The measurement of fluorescence quantum yields ...4

4. The HRMS analysis of the products ..5

5. The fluorescent spectra of NTR-NO₂ responding with NaBH₄ ..6

6. Cytotoxicity assays of probe NTR-NO₂ at different concentrations...6

7. Reference..7
1. Reported fluorescent probes

Table S1. Comparison of fluorescent probes for palladium detection

Probe	$\lambda_{ex}/\lambda_{em}$ (nm)	Stokes shift (nm)	Response time (min)	Limit of detection (ng/mL)	Reference
![Probe 1](image1)	![Probe 2](image2)	![Probe 3](image3)	![Probe 4](image4)	![Probe 5](image5)	![Probe 6](image6)
2. The characterization of NTR-NO$_2$

Fig. S1: 1H NMR spectrum of NTR-NO$_2$
3. The measurement of fluorescence quantum yields

The quantum yield values were calculated by using coumarin-153 in ethanol ($\Phi = 0.38$) as a standard according to the following formula$^{1-3}$:

$$Y_u = Y_s \cdot \frac{F_u}{F_s} \cdot \frac{A}{A_s} \cdot \left[\frac{G_u}{G_s} \right]^2$$
Where, Y_u is the quantum yield of NTR-NH$_2$; Y_s is the quantum yield of coumarin-153 ($\Phi = 0.38$) in ethanol; F is the integrated emission intensity (peak area); A is the absorbance at λ_{ex}.

Table S2. Photophysical properties of NTR-NH$_2$

(DMSO:PBS=1:5, pH = 7.4)

Compound	λ_{abs} (nm)	λ_{em} (nm)	Stokes shift (nm)	Y_u
NTR-NH$_2$	430	541	111	0.43

4. The HRMS analysis of the products

![HRMS spectrum of NTR-NO$_2$](image)

Fig. S4: HRMS spectrum of NTR-NO$_2$
5. The fluorescent spectra of NTR-NO₂ responding with NaBH₄

![Fluorescent spectra graph]

Fig. S5: The fluorescence spectra of probe NTR-NO₂ (10μM) incubated with NTR (red) and NaBH₄ (black) in the presence of NADH (500μM)

6. Cytotoxicity assays of probe NTR-NO₂ at different concentrations

![Cytotoxicity assay graph]

Fig. S6: MTT assay for the viability of HeLa cells treated with various concentrations of probe NTR-NO₂ for 24h
7. Reference

1. D. Guo, Z. P. Dong, C. Luo, W.Y. Zan, S. Q. Yan and X. J. Yao, RSC Adv., 2014, 4, 5718-5725.
2. C. Kar, M. A. Adhikari, A. Ramesh and G. Das, Inorg. Chem., 2013, 52, 743-752.
3. D. R. Haynes, A. Tokmakoff, S. M. George, Chemical Physics Letters, 1993, 214, 50-56.