Uncovering Active Bacterial Symbionts in Pollen-Feeding Beetles

Emiliano Mancini (emiliano.mancini@uniroma1.it)
Sapienza University of Rome

Simone Sabatelli
Sapienza University of Rome

Yi Hu
Drexel University

Sara Frasca
Sapienza University of Rome

Andrea Di Giulio
Roma Tre University

Paolo Audisio
Sapienza University of Rome

Christopher D. Brown
University of Pennsylvania

Jacob A. Russell
Drexel University

Marco Trizzino
Thomas Jefferson University

Research Article

Keywords: symbiont, pollen, beetle, phytophagous, host-plant specialization

DOI: https://doi.org/10.21203/rs.3.rs-717271/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Microbial symbionts enable many phytophagous insects to specialize on plant-based diets through a range of metabolic services. Pollen comprises one plant tissue consumed by such herbivores. While rich in lipids and protein, its nutrient content is often imbalanced and difficult-to-access due to a digestibly recalcitrant cell wall. Pollen quality can be further degraded by harmful allelochemicals. To identify microbes that may aid in palynivory, we performed cDNA-based 16S rRNA metabarcoding on three related pollen beetles (Nitidulidae: Meligethinae) exhibiting different dietary breadths: Brassicogethes aeneus, B. matronalis, and Meligethes atratus. Nine bacterial symbionts (i.e. 97% OTUs) exhibited high metabolic activity during active feeding. Subsequent PCR surveys revealed varying prevalence of those from three Rickettsiales genera - Lariskella, Rickettsia and Wolbachia - within beetle populations. Our findings lay the groundwork for future studies on the influence of phylogeny and diet on palynivorous insect microbiomes, and roles of symbionts in the use of challenging diets.

Main Text

Many phytophagous insects harbor symbiotic microorganisms that play fundamental roles in their host-plant interactions [1]. Symbiotic bacteria can synthesize essential diet-limited metabolites, break down defensive or recalcitrant plant compounds, or recycle/upgrade metabolites that are metabolically inaccessible to insects [1, 2]. Through such activities, they can have a large impact on the adaptation of insects with varying degrees of dietary specialization.

The beetle subfamily Meligethinae includes ~700 species that develop in budding flowers [3, 4] of Dicots and Monocots (palms), with both larvae and adults consuming pollen as their primary food. Evolution within this subfamily has been characterized by repeated host shifts towards plants of different tribes or genera within the same botanical family, and more rarely towards members of unrelated families [5, 6, 7, 8]. Overall, Meligethinae are remarkably variable in their degrees of host-plant specialization within several genera [3]. These factors position this subfamily as a suitable group for studies on how phylogeny and diet shape symbiont communities [9, 10]. Given the precedent for microbial digestion of pollen [11], this group holds further promise for exploring symbionts’ impacts on diet use and diversification.

To initiate such investigation, we studied microbiomes of three Meligethinae species varying in host-plant specialization. Brassicogethes aeneus is a renowned pest of oilseed rape crops [12] and feed on various Brassicaceae (e.g. Brassica, Sinapis, Cakile, and Biscutella). Its congener, B. matronalis, is monophagous, feeding exclusively on Hesperis matronalis (Brassicaceae). Meligethes atratus is a more distantly related oligophagous beetle, associated with genera from the Rosaceae (i.e. Rosa, Crataegus and Prunus) [5, 7]. Highlighting active bacterial communities in these beetles, we performed 16S rRNA metabarcoding on cDNA libraries from a total of 66 dissected individuals collected while feeding on their respective host plants (Supplementary Methods). cDNA was synthesized from two pooled RNA extractions per species - one from dissected head tissue and one from abdomens - aiding in preliminary
ascertainment of whether bacteria are confined to the midgut and hindgut, or more broadly distributed throughout tissues beyond. After quality control and filtering of our six Illumina V4 sequencing libraries, we obtained 69,382 reads (B. aeneus = 21,337; B. matronalis = 19,549; M. atratus = 28,496; **Supplementary data**). Sequences were clustered into Operational Taxonomic Units (OTUs) at 97% sequence similarity, enabling us to compute the relative ‘activity’ [13] of distinct symbionts.

Among the 47 detected 97% OTUs, nine (i.e. 5, 6, 17, 18, 34, 40, 42, 46, 99) had a relative abundance higher than 3% in at least one of the six tissue pools gathered from the three species: eight belonged to Proteobacteria (92.6% of all reads) and one to Tenericutes (7.2% of reads), the latter represented by *Spiroplasma* (Mollicutes: Entomoplasmatales) in *B. aeneus* (**Supplementary data**). Among these OTUs, eight corresponded to distinct bacterial genera, whereas *Pseudomonas* was represented by OTU40 and by the collectively rare (i.e. <0.01%) OTU67 and OTU136 (**Supplementary data**). The eight bacterial genera appeared differently distributed across the three Meligethinae and localized beyond midgut and hindgut tissues (**Fig. 1**).

Among the Proteobacteria, three abundant/active OTUs (i.e. 5, 18 and 42; **Supplementary data**), comprising 54.2% of all reads, were classified to *Wolbachia*, *Rickettsia*, and *Lariskella* within the Rickettsiales (Alphaproteobacteria). *Wolbachia* is a common symbiont of arthropods [14], residing in somatic and germline tissues. Whilst traditionally viewed as intracellular, some evidence exists for an extracellular, gut-associated lifestyle [15, 16]. *Rickettsia* exhibits a diversity of host-dependent lifestyles [17, 18], and like *Wolbachia*, some are vertically transmitted symbionts of invertebrates [19]. Despite such transmission, both *Wolbachia* and *Rickettsia* can move horizontally between arthropod species [20, 21 22]. Several strains of these symbionts can also manipulate arthropod reproduction [17, 23]. Prior findings suggest *Wolbachia* could aid the use of plant-based diets by providing B-vitamins [24, 25]. Nutritional, digestive, and detoxification capacities of *Rickettsia* are largely unknown, as are those of *Lariskella* – another vertically transferred facultative symbiont of arthropods, including stinkbugs and weevils [26, 27].

Among these Rickettsiales we detected differences in abundance/activity across the three pollen-beetle species: *Wolbachia*, *Rickettsia* and *Lariskella*, dominated in *B. aeneus*, *M. atratus* and *B. matronalis*, respectively, and were rare or inactive in the other species (**Fig. 1**). Since Rickettsiales are common insect symbionts and since some may assist phytophagy [28], we further explored their presence in DNA from 71 separately collected Meligethinae specimens through diagnostic PCR (**Supplementary Methods**). The generated data largely validated initial findings (**Table 1**), supporting the confinement of *Lariskella* to *B. matronalis*, and the occurrence of *Rickettsia* in the two generalist species, most notably *M. atratus*. *Wolbachia* was more widespread than expected from our initial study, suggesting fluctuating prevalence or environmental modulation of *Wolbachia* activity.

Table 1 Diagnostic PCR-assessed prevalence of three abundant/active Rickettsiales in 2018-2019 field-collected Meligethinae
Beyond the Rickettsiales, we identified five other abundant/active 97% OTUs (i.e. 6, 17, 34, 40 and 99) in our 16S rRNA metabarcoding dataset, hailing from the Gammaproteobacteria and comprising 36.4% of our reads (Fig. 1; Supplementary data) - four were Enterobacteriales (32.32%), while the fifth belonged to the Pseudomonadales (4.08%). Like the Rickettsiales, Enterobacteriales exhibited differential activity patterns across the three Meligethinae. For instance, *Sodalis*, a common facultative symbiont [29], was only active in the two generalist species. In other hosts, *Sodalis* provision nutrients such as tyrosine, lysine, biotin and riboflavin [30], suggesting the potential for beneficial impacts. Another bacterium, *Morganella* - found in other insects and beetles [31, 32] - was also active in the two generalist species (Fig. 1). While several functions, and even commensalism, are possible, *Sodalis* and *Morganella*, like other Enterobacteriales, could aid the breakdown of plant cell wall compounds, including pectin [33].

Based on common plant-association for their closest relatives, we speculate that two other Enterobacteriales OTUs (i.e. 6 and 46), *Pantoea/Erwinia* and *Pseudomonas*, represent transiently acquired bacteria, noting that they accordingly showed higher activity/abundance in mid- and hind-gut containing tissues of *B. matronalis* (Fig. 1). Related bacteria are, however, known symbionts of insects. Based on prior findings, these microbes could shape pollen cell wall breakdown [34, 35], nutrient provisioning or recycling [36, 37], or diet detoxification [38].

In conclusion, three pollen-feeding beetles from the Meligethinae harbor variable active microbiomes. Close relatives of abundantly active bacteria encode functions of possible use in a plant-based diet, with potential to influence utilization of a sometimes nitrogen-rich [39], yet often nutrient-imbalanced [40], well-defended tissue [41]. Yet belonging to two different genera, the two generalist species shared more symbionts (Fig. 1; Table 1). Future studies on other pollen-beetles are needed to weigh the combined influence of host-plant use and phylogeny in structuring symbiotic communities.

Declarations

Acknowledgements

We thank Paolo Cardoli and Elisa Taviani for helping in collecting field specimens.

Funding
This work was supported by ‘Roma Tre’ University (contribution to the laboratory, CAL/2016), ‘Sapienza’ University of Rome (Progetti di Ateneo 2020, prot. N° RP120172B8C07DF1 - Microbiome of Meligethinae, Coleoptera: Nitidulidae) and partially by NSF Award #1442144 to JAR.

Conflicts of interest

The author declares no bias nor conflicts of interest in this research.

Availability of data and material

The short-read DNA sequences have been deposited in the Sequence Read Archive (SRA) database of NCBI (http://www.ncbi.nlm.nih.gov/sra) under bioproject number (requested, not yet available).

References

1. Janson EM, Stireman III JO, Singer MS, Abbot P (2008) Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997-1012.

2. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38-47.

3. Audisio P, Cline AR, De Biase A, Antonini G, Mancini E, Trizzino M, Costantini L, Strika S, Lamanna F, Cerretti P (2009) Preliminary re-examination of genus-level taxonomy of the pollen beetle subfamily Meligethinae (Coleoptera: Nitidulidae). Acta Entomol Mus Natl Pragae 49:341-504.

4. Sabatelli S., Liu M, Cline AR, Lason, A, Macuvelo S., Muambalo K, Chuquela L, Audisio P. (2020) Palms and pollen beetles: two new anthophilous beetle species of Meligethus from Mozambique (Coleoptera: Nitidulidae: Meligethinae). Zootaxa, 4802:32-40.

5. Liu M., Huang M., Cline AR, Sabatelli S, Audisio P (2017) A new species of Meligethes Stephens from China and additional data on members of the M. chinensis species-complex (Coleoptera: Nitidulidae, Meligethinae). Fragmenta entomol 49:79-84

6. Liu M, Huang M, Cline AR, Mancini E, Scaramuzzi A, Paradisi S, Audisio P, Badano D, Sabatelli S (2021) Rosaceae, Brassicaceae and pollen beetles: exploring relationships and evolution in an anthophilous beetle lineage (Nitidulidae, Meligethes-complex of genera) using an integrative approach. Front Zool 18:9

7. Liu M, Huang M, Cline AR, Mancini E, Scaramuzzi A, Paradisi S, Audisio P, Badano D, Sabatelli S (2020) Molecular diversification, host plant use, and phylogeny of pollen beetles of the genus Thymogethes (Coleoptera) on their Lamiaceae host plants. Zool Scr 49:28-46.

8. Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124-5137.
10. Kolasa M, Ścibior R, Mazur MA et al. (2019) How hosts taxonomy, trophy, and endosymbionts shape microbiome diversity in beetles. Microb Ecol 78:995-1013.

11. Engel P, Martinson VG, Moran NA (2012). Functional diversity within the simple gut microbiota of the honeybee. Proc Natl Acad Sci U S A 109:11002-11007.

12. Williams IH (2010) The major insect pests of oilseed rape in Europe and their management: an overview. In: Williams IH (eds) Biocontrol-based integrated management of oilseed rape pests. Springer, London, pp 1–43.

13. Lasa AV, Fernández-González AJ, Villadas PJ, Toro N, Fernández-López M (2019) Metabarcoding reveals that rhizospheric microbiota of Quercus pyrenaica is composed by a relatively small number of bacterial taxa highly abundant. Sci Reports 9:1-13.

14. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7:e38544.

15. Andersen SB, Boye M, Nash DR, Boomsma JJ (2012) Dynamic Wolbachia prevalence in Acromyrmex leaf-cutting ants: potential for a nutritional symbiosis. J Evol Biol 25:1340-1350.

16. Diouf M, Miambi E, Mora P, Frechault S, Robert A, Rouland-Lefèvre C, Hervé V (2018) Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol Lett 365: 10.1093/femsle/fny046

17. Perlman SJ, Hunter MS, Zchori-Fein E (2006) The emerging diversity of Rickettsia. Proc Biol Sci 273:2097-2106.

18. Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins, FM (2009) Evolution and diversity of Rickettsia bacteria. BMC biology 7:1-15.

19. Brumin M, Levy M, Ghanim M (2012) Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl Environ Microbiol 78:5565-5574.

20. Sintupachee S, Milne JR, Poonchaisri S, Baimai V, Kittayapong P (2006) Closely related Wolbachia strains within the pumpkin arthropod community and the potential for horizontal transmission via the plant. Microb Ecol 51:294-301.

21. Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E (2012) Horizontal transmission of the insect symbiont Rickettsia is plant mediated. Proc Biol Sci 279:1791-1796.

22. Li SJ, Ahmed MZ, Lv N, Shi PQ, Wang XM, Huang JL, Qiu BL (2017) Plant mediated horizontal transmission of Wolbachia between whiteflies. ISME J 11:1019-1028.

23. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741-751.

24. Correa CC, Ballard JWO (2016) Wolbachia associations with insects: winning or losing against a master manipulator. Front Ecol Evol 3:153

25. Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T (2014) Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc Natl Acad Sci U S A 111:10257-10262.
26. Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T (2012) Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol 78:4149-4156.

27. Toju H, Tanabe AS, Notsu Y, Sota T, Fukatsu T (2013) Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME J 7:1378-1390.

28. Driscoll TP, Verhoeve VI, Guillotette ML, Lehman SS, Rennoll SA, Beier-Sexton M, Rahman MS, Azad AF, Gillespie JJ (2017) Wholly Rickettsia! Reconstructed metabolic profile of the quintessential bacterial parasite of eukaryotic cells. mBio 8:e00859.

29. Oakeson KF, Gil R, Clayton AL, Dunn DM, von Niederhausen AC, Hamil C, Aoyagi A, Duval B, Baca A, Silva FJ, Vallier A, Jackson DG, Latorre A, Weiss RB, Heddi A, Moya A, Dale C (2014) Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol Evol 6:76-93.

30. Vigneron A, Masson F, Vallier A, Balmand S, Rey M, Vincent-Monégat C, Aksoy E, Aubailly-Giraud E, Zaidman-Rémy A, Heddi A (2014) Insects recycle endosymbionts when the benefit is over. Curr Biol 24:2267-2273.

31. Sanchez-Cruz A, Robledo N, Rosete-Enríquez M, Romero-López AA (2020) Attraction of adults of Cyclocephala lunulata and Cyclocephala barrerai (Coleoptera: Scarabaeoidea: Melolonthidae) towards bacteria volatiles isolated from their genital chambers. Molecules 25:4430.

32. White JA, Richards NK, Laugraud A, Saeed A, Curry MM, McNeill MR (2015) Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. Microb Ecol 70:274-286.

33. Blankenchip CL, Michels DE, Braker HE, Goffredi SK (2018) Diet breadth and exploitation of exotic plants shift the core microbiome of Cephaloleia, a group of tropical herbivorous beetles. PeerJ 6:e4793.

34. Bistolas KS, Sakamoto RI, Fernandes JA, Goffredi SK (2014) Symbiont polyphyly, co-evolution, and necessity in pentatomid stinkbugs from Costa Rica. Front Microbiol 5:349.

35. Briones-Roblero CI, Rodríguez-Díaz R, Santiago-Cruz JA, Zúñiga G, Rivera-Orduña FN (2017) Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhiophagous (Curculionidae: Scolytinae). Folia Microbiol (Praha) 62:1-9.

36. Estes AM, Hearn DJ, Agrawal S, Pierson EA, Hotopp JCD (2018). Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep 8:1-13.

37. Manzano-Marı NA, Coeur d’acier A, Clamens AL, Orvain C, Cruaud C, Barbe V, Jousselin E. (2020) Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J 14:259-273.

38. Ceja-Navarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL (2015) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618.
39. Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Syst Evol 222:187-209.

40. Weiner CN, Hilpert A, Werner M, Linsenmair KE, Blüthgen N (2010) Pollen amino acids and flower specialisation in solitary bees. Apidologie 41:476-487.

41. Rivest S, Forrest JR (2020) Defence compounds in pollen: why do they occur and how do they affect the ecology and evolution of bees? New Phytol 225:1053-1064.

Figures
Relative abundance (="activity") of bacterial genera across the three Meligethinae species (polyphagous or oligophagous = B. aeneus and M. atratus; monophagous = B. matronalis) on V4 amplicon sequencing of 16S rRNA from 2015-collected specimens. Bar graphs for each library (one column = pooled tissues from all field-caught beetles; AB = abdomen, HE = head) show the percentage of denoised and quality-controlled Illumina sequence reads classified to genera. Rare bacteria (never exceeding a relative
abundance of 3% in any of our n=6 sequence libraries) were pooled into the single category ‘Others’. Bacteria from different genera are represented by distinct colors.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Mancinietal.SupplDataMicrobEcol120721.xlsx
- Mancinietal.SupplMethodsMicrobEcol120721.docx