GRASP65 and GRASP55 SEQUENTIALLY PROMOTE THE TRANSPORT OF C-TERMINAL VALINE BEARING CARGOES TO AND THROUGH THE GOLGI COMPLEX

Giovanni D’Angelo1,2, Liana Prencipe1, Luisa Iodice1,3, G. Beznoussenko2, Marco Savarese1, PierFrancesco Marra2,4, Giuseppe Di Tullio2, Gianluca Martire1,3, Maria Antonietta De Matteis2, and Stefano Bonatti1

From Department of Biochemistry and Medical Biotechnology, University of Naples Federico II, Naples, Italy1; Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy2; Department. of Environmental Sciences and Technology, University of Molise, Isernia, Italy3; Section of Cell & Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London, UK4

Running head: Role of GRASPs in protein transport

Address correspondence to: Dr. Stefano Bonatti, Dipartimento di Biochimica e Biotecnologie Mediche, Via S. Pansini 5, 80131 Napoli, Italy. Fax: +39-081-7463205. E-mail: bonatti@unina.it

The Golgi-matrix proteins GRASP65 and GRASP55 have recognized roles in maintaining the architecture of the Golgi complex, in mitotic progression and in unconventional protein secretion while, surprisingly, they have been shown to be dispensable for the transport of commonly used reporter cargo proteins along the secretory pathway. However, it is becoming increasingly clear that many trafficking machineries operate in a cargo-specific manner, thus we have investigated whether GRASPs may control the trafficking of selected classes of cargoes. We have taken into consideration the C-terminal valine bearing receptors CD8α and Frizzled4 that we show bind directly to the PSD95-DlgA-zo-1 (PDZ) domains of GRASP65 and GRASP55. We demonstrate that both GRASPs are needed sequentially for the efficient transport to and through the Golgi complex of these receptors, thus highlighting a novel role for the GRASPs in membrane trafficking. Our results open new perspectives for our understanding of the regulation of surface expression of a class of membrane proteins, and suggests the causal mechanisms of a dominant form of autosomal human familial exudative vitreoretinopathy that arises from Frizzled4 mutation involving its C-terminal valine.

GRASP65 and GRASP55 were identified in in-vitro assays as factors that are required for the stacking of the Golgi cisternae (1,2). This activity arose as the result of the tethering functions displayed by GRASP65 and GRASP55, through their interactions with their partner proteins GM130 and golgin-45, respectively (2-4). Several other studies have shown more recently that the GRASPs are involved in the maintenance of the structure of the Golgi ribbon in mammal cells during interphase, in controlling the fragmentation of the Golgi complex at the onset of mitosis (5-8), in establishing cell polarity in migrating cells (9), and in the consumption of COPII vesicles and the formation of the cis-Golgi in yeast (10).

While the role of the GRASPs in the control of the Golgi complex structure (both in interphase and during mitosis) is well established, their involvement in cargo transport along the secretory pathway is still debated. Indeed, a direct role for the GRASPs in cargo transport has so far been established only for the unconventional secretion routes in Dictyostelium and Drosophila (11,12), while they have been shown not to be directly involved in the trafficking of commonly studied reporter cargo proteins along the “conventional” secretory pathway (e.g. the temperature-sensitive (ts-045) mutant of the G protein of vesicular stomatitis virus (VSVG)) and secretory horse-radish peroxidase (5,6,13,14).

GRASPs can engage different types of interactions including the ones mediated by their PDZ domains, through which the GRASPs can not only homodimerize, thus participating in cisternal stacking (15) but

Copyright 2009 by The American Society for Biochemistry and Molecular Biology, Inc.
can also bind the C-terminal valine motifs (C-TVM) of membrane proteins such as proTGFα and p24α (16,17).

Interestingly a C-terminal valine can behave as “transport signal” in some cargoes, as it has been shown that the removal of this valine can lead to either the block or strong delay in trafficking of the proteins to the plasma membrane (16,18-23) or to their mislocalization (17). In this context, we have shown that the C-TVM influences the rate of endoplasmic reticulum (ER) to Golgi transport of the CD8α glycoprotein, whereby deletion or substitution of this C-TVM resulted in an ~4-fold decrease in the transport kinetics and impaired the accumulation of CD8α in the intermediate compartment (IC) (23).

However, the C-TVM has the potential to interact with diverse sets of cytosolic proteins at different segments of the secretory pathway (COPII, GOPC, GRASPs, syntentin (16,24,25)); as a consequence the ultimate mechanism responsible for the impaired transport induced by the removal of the C-TVM and the precise site of action of the molecular machineries deciphering the signal in the different cargoes have remained undefined.

With this background, we have investigated here the possibility that the GRASPs may selectively control the transport of neosynthesized C-valine cargoes. To this end we have combined the two independent approaches of removing the C-TVM and interfering with the GRASP machinery. We provide biochemical and functional evidence that GRASP65 and GRASP55 bind directly to newly synthesized CD8α in a C-TVM-dependent fashion and show that the GRASPs control two sequential transport steps of CD8α from the ER into the Golgi complex. We also show that a similar mechanism operates for the Frizzled4 receptor (Fz4), which is a membrane-multispanning protein that is involved in a number of signalling events at the plasma membrane, and is associated with the human familial exudative vitreoretinopathy (FEVR), a hereditary ocular disorder (26-28).

Altogether, our results demonstrate a novel role for the GRASPs in the transport of selected cargoes along the “conventional” secretory pathway, and they provide a molecular pathogenetic explanation for the defect underlying a dominant form of human FEVR, which is induced by the mistrafficking of a mutated Fz4.

Experimental Procedures

All of the culture reagents were obtained from Sigma-Aldrich (Milan, Italy). The solid chemical and liquid reagents were obtained from E. Merck (Darmstadt, Germany), Farmitalia Carlo Erba (Milan, Italy), Serva Feinbiochemica (Heidelberg, Germany), Delchimica (Naples, Italy) and BDH (Poole, United Kingdom). All of the radiochemicals were obtained from Perkin Elmer (Bruxelles, Belgium). Protein A-Sepharose CL-4B and the ECL reagents were from Amersham Biosciences (Milan, Italy).

Antibodies - The following antibodies were used: the OKT8 mouse anti-CD8 monoclonal antibody, from Ortho (Raritan, NJ, USA); the N1 mouse anti-CD8 monoclonal antibody (29); a rabbit anti-ERGIC-53 antibody (30); a rabbit anti-GM130 antibody, a rabbit anti-Sec31 antibody, and a rabbit anti-giantin antibody (31); a mouse anti-HA antibody, a rabbit anti-HA antibody (Santacruz). The anti-GRASP65 polyclonal antibody was obtained through immunization against a fusion protein between GST and rat GRASP65, and it was affinity purified; the anti-GRASP55 polyclonal antibody was a kind gift of Dr. F. Barr. Peroxidase-conjugated anti-mouse and anti rabbit IgG were from Sigma-Aldrich (Milan, Italy). Texas-Red-conjugated anti-mouse IgG and FITC-conjugated anti-rabbit IgG were from Jackson Immunoresearch Laboratories (West Grove, PA, USA).

Cell culture, transfection, virus infection, radiolabelling, immunoprecipitation, immunofluorescence microscopy and Endo-H treatment - Parental FRT cells were grown and transiently transfected as described by (23). CHO and IdG cells were grown at 34 °C as described previously (32). Stably expressing cells were obtained after transfection by selection in the presence of G418 (Invitrogen, Milan, Italy) and screening by indirect immunofluorescence. Propagation of the VSV ts-045 strain and infection were...
performed as described previously (33). Radiolabelling, preparation of cell extracts, and immunoprecipitation were all performed as reported previously (33). In the two-step immunoprecipitation experiments on radiolabelled cell extracts after the first round of immunoprecipitation with the antibodies (anti-GRASP65 or anti GRASPP55) samples were boiled for 15 min in denaturation buffer (150 mM NaCl; 20 mM TRIS-HCl pH 7.2; 1% SDS) subsequently the buffer was adjusted to be 150 mM NaCl; 20 mM TRIS-HCl pH 7.2; 0.1% SDS; 1% Triton, and CD8 was immunoprecipitated using the folding-insensitive N1-anti-CD8 mAb (33). The cells were grown on glass coverslips and treated for indirect immunofluorescence as described previously (34), and they were observed under an Axiohot microscope or with an LSM 510 confocal laser scanning microscope (Carl Zeiss, Jena, Germany). Image analysis was performed using the Zeiss LSM 510 colocalisation software. Immunoprecipitated samples were treated with 1,000 U Endo H (New England Biolabs) as described previously (33).

SDS-PAGE, Western immunoblotting, and far-Western blotting-Proteins were resolved on linear 12.5% polyacrylamide gels, as described previously (33), and then electrophoretically transferred to nitrocellulose filters. The filters were incubated overnight in blocking buffer (5% non-fat dry milk, 0.1% Tween 20 in PBS), and then with the primary antibodies diluted in blocking buffer, and finally with the peroxidase-conjugated secondary antibodies. After washing, the bound antibodies were detected by ECL. To quantify the relative amounts of the immunolabelled bands, different exposures of the blots were analyzed with the NIH Image programme. Binding to the filters of 0.5 mM purified His-fusion protein was carried out for 8 h at 4 °C, and the bound protein was detected with a polyclonal anti-His antibody and a peroxidase-conjugated secondary antibody, as above.

Ultrathin cryosectioning and immunogold labelling-Cells were fixed with 2% formaldehyde and 0.2% glutaraldehyde in PHEM buffer (60 mM PIPES, 25 mM HEPES, 2 mM MgCl₂, 10 mM EGTA, pH 7.4), washed in the same buffer, and collected by centrifugation. The cell pellets were embedded in 10% gelatin, cooled in ice, and cut into 1-mm³ blocks, at 4 °C. The blocks were infused with 2.3 M sucrose at 4 °C for at least 2 h, and frozen in liquid nitrogen. Thick sections (50-60 nm) were cut at –120 °C using an Ultracut R/FCS (Leica, Milan, Italy) equipped with an antistatic device (Diatome, Fort Washington, PA, USA) and a diamond knife. Ultrathin sections were picked up in a mix of 1.8% methylcellulose and 2.3 M sucrose (1:1), as described previously (35). The cryosections were collected on formvar/ carbon-coated slot copper grids and then incubated with different combinations of rabbit polyclonal and mouse monoclonal antibodies, followed by protein-A-conjugated gold particles of different sizes (36). Double immunolabelling was performed as described previously (36), with optimal combinations of gold particle sizes.

RNA interference- The siRNAs used were specific for human GRASP65 (NM_031989) and human GRASPP55 (NM_015550) and consisted of a mixture of four siRNA duplexes that were selected using the Dharmacon SMART selection process and SMART pool algorithm. They were obtained from Dharmacon (Lafayette, CO, USA). For the RNAi, the COS7 cells were plated for 30% confluence in 24-well plates and transfected with 50 pmol GRASP65 siRNAs using Oligofectamine (Invitrogen, Milan, Italy), according to the manufacturer protocol. For the control, COS7 cells were treated with identical concentrations of transfectant. Forty-eight h after the initial siRNAs treatment, the cells were processed directly for immunofluorescence microscopy or transfected with VSVG-based constructs, and kept for 16 h at 40 °C before the transport assays were performed.

RESULTS

The C-TVM is required for the rapid transport of CD8α from the ER to the Golgi complex. To perform a detailed study of the function of the CD8α C-TVM that we identified previously in cells transiently expressing CD8α, we isolated stable clones of FRT epithelial cells expressing CD8α and...
two C-terminal-mutated CD8α proteins, CD8α-ΔYV and CD8α-TL. CD8α-ΔYV is a truncated form of CD8α that lacks both the tyrosine in position -2 and the C-terminal valine (our previous work showed that the tyrosine residue plays no role in this C-TVM (23)). The CD8α-TL mutant lacks the entire C-terminal cytosolic tail of CD8α (28 residues) and is severely impaired in its progress along the entire secretory pathway (23); CD8α-TL was chosen as a negative control (Fig. 1a).

Immunofluorescence analysis of the clones showed that, at the steady state, CD8α is present mostly at the cell surface, while CD8α-ΔYV also accumulates in the ER, as indicated by the labelling of the nuclear envelope. In contrast, the vast majority of CD8α-TL accumulates in the ER, and is not seen on the cell surface (Fig. 1b).

As a glycoprotein, CD8α has only O-glycans and it moves rapidly from the ER to the plasma membrane (t_{1/2} 30 min; (37)). Its O-glycosylation occurs entirely in the Golgi complex and its initial and terminal glycosylation are spatially and temporally separate, occurring in the cis- and trans-Golgi, respectively. The non-glycosylated (CD8u), initially glycosylated (CD8i), and terminally glycosylated (CD8m) forms of CD8α have different electrophoretic mobilities on SDS-PAGE, thus allowing to monitor the progression of CD8α along the secretory pathway (37).

After a 30 min pulse with [35S]-Cys/Met, about 30% of the newly synthesized CD8α wt was in the CD8u form, while the majority had reached the Golgi complex and had been converted to the glycosylated CD8i and CD8m forms (Fig. 1c, left panel). In contrast, the CD8u form represented more than 70% and 80% of CD8α-ΔYV and CD8α-TL, respectively, confirming their slower ER-to-Golgi transport (Fig. 1c, left panel). In addition, pulse-chase labelling with [35S]-Cys/Met showed very fast maturation of non-glycosylated CD8u and an initial transient increase of CD8i (Fig. 1c, upper right panel; CD8u disappearance t_{1/2} ~12 min; (37)); in contrast, CD8α-ΔYV showed delayed glycosylation of CD8u (CD8u disappearance t_{1/2} ~60 min) and substantial disappearance of CD8i as a transient intermediate (Fig. 1c, lower right panel). Thus, the C-TVM promotes a fast and synchronous wave of transport of CD8α to the cis-Golgi (23).

To further test this hypothesis, a chimeric reporter protein was generated by joining the ectomembrane and transmembrane domains of the temperature-sensitive VSVG (38) to the cytosolic domain of the CD8α glycoprotein. This reporter should have the characteristics of both the viral protein and CD8α: (i) a reversible temperature-sensitive phenotype that causes misfolding and retention of VSVG in the ER at the non-permissive temperature, and its correct folding and exit from the ER upon a shift to the permissive temperature; and (ii) the C-TVM-dependent rapid transport to the Golgi complex of CD8α. Therefore this chimeric reporter protein should allow a morphological analysis of its transport.

Two forms of the chimera were generated: one with the wild-type cytosolic tail of CD8α, and the other with this tail but without the terminal tyrosine and valine residues (VSVG–CD8α and VSVG–CD8α-ΔYV, respectively; Fig. 1d). Both of these were expressed by transfection in COS7 cells incubated at 40 °C. Confocal immunofluorescence analysis revealed that at this temperature, both of these chimeric forms of VSVG were retained in the ER (Fig. 1e). Upon shifting the temperature to 32 °C, VSVG–CD8α moved quickly to the Golgi complex and then on to the plasma membrane, while VSVG–CD8α-ΔYV showed accumulation in the ER and a clear delay in its transport to the Golgi complex and to the plasma membrane (Fig. 1e).

The C-TVM of CD8α stimulates an early transport step between the ER and the Golgi complex. The rate of ER-to-Golgi complex transport of specific cargo proteins has been proposed to be stimulated by selective recruitment to ER exit sites (ERES) via a direct or indirect interaction of the cargo with COPII coat (24,39-41). We thus asked whether the C-TVM of CD8α has a role in driving the cargo concentration at the ERES. As a readout for a possible involvement of the C-TVM of CD8α in this process, we considered the subcellular distribution of VSVG-CD8α at 10 °C, a
temperature at which COPII components are recruited to the ERES, but where the fissioning of the nascent carrier is blocked (42-44). Under these conditions, cargo proteins that can directly interact with COPII components, such as VSVG (which has a COPII-binding DXE di-acidic motif), appear concentrated at the ERES ((43) and Fig. 2a).

As shown in Figure 2a, VSVG–CD8α showed reduced accumulation at the ERES at 10 °C as compared to the parental VSVG, with a distribution similar to that seen for the negative control of VSVG, (VSVG-AXA) in which the di-acidic motif has been mutated (40). VSVG–CD8α-ΔYV also showed reduced accumulation at the ERES at 10 °C, with a distribution very similar to VSVG–CD8α.

As these data indicated that the C-TVM of CD8α does not promote concentration at the ERES, we asked whether this anterograde signal had a role in a subsequent transport step. To this end, we followed the transport of these chimeras at 15 °C, a condition that leads to the accumulation of cargo proteins in the intermediate compartment (IC) (42). Here, with ERGIC-53 used as a marker for the IC, VSVG–CD8α and VSVG showed strong accumulation in the IC (Fig. 2b). In contrast, the C-terminal mutant forms VSVG–CD8α-ΔYV and VSVG-AXA showed little IC co-localisation, with an overall ER labelling pattern similar to that seen at 10 °C (Fig. 2b; compare with Fig. 2a). Together, these results suggest that the C-TVM of CD8α promotes a transport step subsequent to cargo recruitment to the ERES and that it fosters cargo entry or proceeding into the IC.

CD8α interacts directly with GRASP65 and GRASP55 through the C-TVM. The requirement of the C-TVM (a PDZ binding motif) for rapid transport of CD8α and concentration at the IC prompted us to test whether GRASP65, that has PDZ domains and that cycles between the Golgi complex and pre-Golgi compartments, including the IC, had any role in the decoding of the CD8α C-TVM, and through this, in controlling the trafficking of CD8α.

To this end, we first performed co-immunoprecipitation assays. As shown in Figure 3a, endogenous GRASP65 co-immunoprecipitated with CD8α, but did not co-immunoprecipitate with CD8α-ΔYV, CD8α-TL, or in the control non-transfected parental FRT cells. Figure 3a also shows that GM130, a well-known interactor of GRASP65, co-immunoprecipitated with GRASP65 and CD8α; however, p115, an “indirect” interactor of GRASP65 (as it binds the GRASP65/GM130 complex through GM130; (45), was not co-immunoprecipitated with CD8α and was therefore not investigated further (data not shown). (23). Interestingly, as shown in Fig 3b, not only GRASP65, but also GRASP55, which also contains PDZ domains, was co-immunoprecipitated with CD8α, but not with CD8α-ΔYV or CD8α-TL. In addition, the same specific GRASPs–CD8α interactions were revealed when immunoprecipitation was performed with anti-GRASPs antibody (see below). Of note, normal rates of transport of CD8α correlated with its binding to GRASP65, as tested by the concomitant rescue of GRASP binding and rapid transport induced by the readdition of a terminal valine to a CD8α mutant with a partially truncated cytosolic tail (D17+; Fig. 3c; (23)).

To determine if CD8α interacts directly with the GRASPs, far-Western blotting assays were performed. The glutathione-S-transferase (GST)-tagged cytosolic tails of CD8α and CD8α-ΔYV, and GST alone, were analyzed by SDS-PAGE. The proteins were transferred to nitrocellulose filters, which were then overlaid with purified His-tagged GRASP65, GRASP65 lacking its two PDZ domains (DPDZ-GRASP65), GRASP55 and FAPP2 (negative control). Finally, the binding was revealed with anti-His epitope antibody.

Figure 3d shows that full-length GRASP65 and GRASP55 bind CD8α but not CD8α-ΔYV, while neither DPDZ-GRASP65 nor FAPP2 showed any significant binding. Thus, the C-TVM of CD8α determines its direct binding to GRASP65 and GRASP55, which is most likely to occur through the PDZ domains of the GRASPs.

GRASP65 and GRASP55 interact with different forms of CD8α. As shown in Fig. 4, and in agreement with a previous report (1), GRASP65 and GRASP55 localize to distinct segments of the secretory
pathway. Indeed, at immunofluorescence level GRASP65 labelling concentrated in the perinuclear Golgi-like area and in peripheral punctae, with a distribution similar but not coincident to that of Sec31; GRASP55 appeared instead mostly concentrated in the perinuclear Golgi-like area (Fig. 4b). Immuno-electron microscopy showed that GRASP65 was present in the cis-Golgi compartments and in elements close to the ER containing Sec31 (i.e. ERES) (Fig. 4a), while GRASP55 was mainly present in the medial cisternae of the Golgi complex (Fig. 4b).

Thus we asked whether neosynthesized CD8α interacts with the two GRASPs at different steps of its intracellular trafficking. To this end cells stably expressing CD8α wt were pulse-labelled for 30 min with [35S]-Cys/Met, and were then immunoprecipitated with anti-GRASP65 or GRASP55 antibodies. The immunoprecipitates were resuspended and further immunoprecipitated after denaturation with the N1 anti-CD8α monoclonal antibody (see methods for details). Importantly, the CD8u (i.e. pre-Golgi) form of CD8α was highly enriched in the anti-GRASP65 immunoprecipitate (Fig. 4c). In contrast, the CD8m (i.e. Golgi) form was enriched in the anti-GRASP55 immunoprecipitate (Fig. 4c), indicating that CD8α interacts sequentially with GRASP65 and with GRASP55. The interaction with GRASP65 would occur most likely before reaching the Golgi complex, while that with GRASP55 within the Golgi complex, a conclusion fully consistent with the above reported different intracellular localization of the two GRASPs. This conclusion was also supported by the results of the experiments with Brefeldin A (BFA), a fungal toxin that reversibly disassembles the Golgi complex and arrests the progression of cargoes to the Golgi complex. CD8α accumulates in the ER and does not bind GRASP65 in BFA-treated cells, while it exits from the ER and recovers quickly its binding to GRASP65 upon BFA wash out (data not shown).

GRASP65 and GRASP55 are needed for the rapid transport of CD8α. At this point we used two different approaches to investigate whether the interaction of GRASPs with CD8α had a functional relevance for its transport along the secretory pathway.

First, we evaluated the impact of knocking down the expression of GRASP65 and GRASP55 by RNA interference (RNAi) on CD8α transport. We obtained ~90% knock-down in COS cells for both of the GRASPs (Supplementary Fig. S1), with only minor effects on the distribution of the Golgi marker giantin at the immunofluorescence level (data not shown). Mock treated and GRASPs knocked-down cells (KD) were transfected with VSVG–CD8α or VSVG-GFP cDNAs, and incubated at 40 °C for 16 h to arrest the protein in the ER. The temperature was then shifted to 32°C and the transport of the different cargoes followed up to 90 minutes (Figure 5a, b). While the transport of VSVG, in agreement with a previous report (13), was comparable in mock and GRASPs-KD cells, the transport of VSVG–CD8α was distinctively delayed in GRASP65- and 55-KD cells compared to mock cells. In particular, at 30 min VSVG–CD8α was still largely present in the ER (and its transport toward the Golgi complex and then to the plasma membrane was delayed) in GRASP65-KD cells; in contrast, in GRASP55-KD cells, the transport of VSVG–CD8α appeared undisturbed at 30 min (i.e. normal exit from the ER and arrival at the Golgi complex), but was clearly delayed afterwards (barely detectable on the plasma membrane at 90 min) (Fig. 5a, b). These results indicated that GRASP65 and GRASP55 have specific roles for the transport of C-TVM-bearing cargoes and confirmed that GRASP55 acts after GRASP65 on these cargoes.

To analyze the site of action of the GRASPs in more detail, the transport experiments were repeated shifting the temperature from 40 °C to 10 °C (concentration at the ERES) or to 15 °C (arrival to the IC). No significant differences were seen between mock and GRASPs-KD cells at 10 °C (not shown); in contrast, striking differences emerged between GRASP65- and GRASP55-KD cells with the shift to 15 °C: here the transport of VSVG–CD8α to the IC was markedly inhibited in GRASP65-KD cells but not in GRASP55-KD cells. VSVG-GFP was again unaffected (Fig. 5d). These results thus fully
support the hypothesis that GRASP65 is needed to enter and proceed through the IC, while GRASP55 is needed to enter and proceed through the Golgi complex. Further support for these conclusions came from the observation that the microinjection of an anti-GRASP65 antibody inhibited the transport of CD8α to the reassembling Golgi complex in a BFA-washout assay (data not shown).

Next, the requirement for GRASP65 and its main interactor GM130 in CD8α-transport was tested in ldIG cells, a conditional-lethal mutant CHO cell line that does not express detectable levels of GM130 (4,32,46). Thus, at the non-permissive temperature (39.5 °C), ldIG cells show a complex phenotype that is characterized by the disruption of the Golgi complex and a block in the transport of newly synthesized proteins (32). However, at 34 °C these cells have an apparently normal phenotype and continue to proliferate, despite the absence of GM130. ldIG cells express GRASP65, although it is delocalised to the periphery even at the permissive temperature (32). Thus we analyzed the intracellular distribution of GRASP65 at 34 °C in parental CHO cells and in these ldIG cells, and in ldIG cells transfected for the expression of exogenous GM130. GRASP65 was indeed completely delocalised, but the expression of GM130 led to a clear re-association of GRASP65 with the Golgi complex (not shown; (4)). Thus, the parental CHO, the ldIG cells and the ldIG cells expressing GFP-GM130 were transfected at 34 °C with CD8α-cDNA. At steady state, CD8α appeared localized mainly at the cell surface in the CHO cells and in the ldIG cells stably expressing GFP-GM130, while in the ldIG cells (without GM130) it was mainly in the Golgi complex, with less seen at the cell surface (Fig. 5e). These CD8α-transfected cells were also analyzed after 90 min of pulse-labelling with [35S]-Cys/Met, and the percentage distributions of the labelling among the CD8u, CD8i and CD8m forms of CD8α were analyzed, as described above. The rate of transport of CD8α appeared to be significantly lower in the ldIG cells in comparison to the parental CHO cells (increased CD8u; Fig. 5f), while the expression of GM130 in ldIG cells restored the full rate of transport (Fig. 5f). In contrast, and in agreement with previous results (4,32) no major differences were seen when the transport of the VSVG glycoprotein to the Golgi complex was analyzed in parallel (Supplementary Fig. S2).

Transport to the cell surface of the human Fz4 receptor requires a C-TVM and interactions with GRASP65 and GRASP55. To explore whether the results obtained with CD8α have broader implications, we analyzed the transport to the plasma membrane of the Fz4 receptor (Fz4-wt), a member of the Fz receptor family, which is involved in embryogenesis and adult tissue homeostasis (47). Fz4-wt is a seven transmembrane-spanning-domain protein with an extracellular aminoterminal domain that is required for ligand binding. It also has short extracellular and intracellular loops that connect the transmembrane segments, and a 41-residue C-terminal cytosolic domain that terminates with two consecutive valines. Recently, a frameshift mutation (L501fsX533) has been described at the fifth cytosolic residue of Fz4-wt, which results in a change in the protein ‘tail’ with a premature stop after 32 residues, and with no final valines (26). This mutant (Fz4-FEVR) is associated with a dominant form of human FEVR, and strikingly, it does not reach the plasma membrane in transfected cells (48). Thus, we generated the Fz4-FEVR and two other Fz4 constructs, Fz4-ΔVV, as Fz4-wt without only the two terminal valine residues, and Fz4-FEVR-VV, as the Fz4-FEVR disease mutant with two terminal valines re-attached (Fz4-FEVR-VV; Fig. 6a). These constructs were transfected in COS7 cells, and their localisation was determined by confocal immunofluorescence microscopy in comparison to Fz4-wt and Fz4-FEVR.

As shown in Figure 6b, c, Fz4ΔVV showed less accumulation at the cell surface when compared to Fz4-wt, and most strikingly, the localisation of Fz4-FEVR mutant at the plasma membrane was rescued almost completely just by the addition of two valine residues at its C-terminus (Fz4-FEVR-VV). Moreover, the far-Western analysis revealed specific valine-dependent binding of the Fz4-wt tail (and also Fz4-
FEVR-VV tail) to both GRASP65 and GRASP55 (Fig. 6d), and knocking-down the expression of either GRASP65 or GRASP55 significantly decreased the amount of Fz4-wt transported to the cell surface (Fig. 6e, f). These data were thus all fully consistent with those obtained with CD8α.

DISCUSSION

In the present study, we have shown that GRASP65 and GRASP55 decode the information provided by the C-TVM of CD8α and Fz4 to sequentially promote their anterograde transport along the secretory pathway. Two main lines of evidence support this conclusion, provided by knocking down the GRASPs levels by RNAi and by using cells defective for the function of GRASP65. On the other hand, mutations of the motif that result in altered transport also lead to the loss of direct binding of CD8α and Fz4 with the GRASPs. Thus, perturbing the GRASPs or removing the C-TVM results in the same transport defect. Strikingly, the GRASPs do not directly contribute to the transport of membrane cargo proteins that do not bear the C-TVM, and thus this mechanism will be specific for a subset of membrane proteins. Therefore, our data provide an explanation for the molecular mechanisms behind the previously reported role of the C-TVMs in anterograde transport (18-21,23) and for the binding of GRASPs to specific cargo proteins (16,17). Our model in Figure 7 illustrates the hypothesis that we believe to be more consistent with the available evidence and the results we have reported here. GRASP65 and GRASP55 are envisaged to have specific functions at two different stages that are temporally and spatially distinct. The GRASP65-sensitive step corresponds to an early step of ER-to-Golgi transport, different from COPII mediated recruitment to the ERES (Fig. 3). Most likely, this step is also different from the budding of carriers from the ER, as it has been reported that in yeast the GRASPs homologue Grh1 is not required for budding of COPII vesicles although it binds COPII (10); and our preliminary results suggest that the C-TVM of CD8α plays no role in a budding assay in vitro (D’Angelo et al., unpublished).

Thus, the site of action of this valine–GRASP65 interaction system has to be placed at a post-ER and pre-Golgi station, i.e. the IC, a site where GRASP65 has been shown to recycle from the Golgi complex (31,51). Unfortunately, too little is at present known at the molecular level about cargo protein entry into and transiting through the IC to define in detail the molecular mechanisms promoting anterograde transport of these C-TVM-bearing proteins.

What might be the distinctive properties of the C-TVM-bearing cargo proteins that make them sensitive to the GRASPs? Different possibilities can be envisaged here. These proteins might have an as-yet-undefined ‘retrograde’ signal that would usually be overridden by the GRASP-interacting anterograde C-TVM. In the absence of either the valine signal or of the GRASPs, the retrograde motif would mediate the recycling of these cargo proteins to the ER, as has been suggested for the NMDA receptor, where a C-TVM counteracts the activity of an ER-retention arginine-based motif in the protein (49,50). As an additional possible mechanism, the C-TVM could promote an active sorting of these GRASP-sensitive cargo proteins into anterogradely moving carriers, thus accelerating their transport to the Golgi complex. In the absence of the C-TVM or of the GRASPs, these cargoes would instead be transported via a bulk-flow mechanism, which would necessarily be less effective than the mechanism based on active sorting.

What are the transport steps that are specifically controlled by this C-TVM/GRASPs interaction? Our model in Figure 7 illustrates the hypothesis that we believe to be more consistent with the available evidence and the results we have reported here. GRASP65 and GRASP55 are envisaged to have specific functions at two different stages that are temporally and spatially distinct. The GRASP65-sensitive step corresponds to an early step of ER-to-Golgi transport, different from COPII mediated recruitment to the ERES (Fig. 3). Most likely, this step is also different from the budding of carriers from the ER, as it has been reported that in yeast the GRASPs homologue Grh1 is it is not required for budding of COPII vesicles although it binds COPII (10); and our preliminary results suggest that the C-TVM of CD8α plays no role in a budding assay in vitro (D’Angelo et al., unpublished).

Thus, the site of action of this valine–GRASP65 interaction system has to be placed at a post-ER and pre-Golgi station, i.e. the IC, a site where GRASP65 has been shown to recycle from the Golgi complex (31,51). Unfortunately, too little is at present known at the molecular level about cargo protein entry into and transiting through the IC to define in detail the molecular mechanisms promoting anterograde transport of these C-TVM-bearing proteins.
to but distinct from the ERES, and its ‘late’ ones that are closer to the Golgi complex (31). In this context, active sorting of a cargo protein from the early to the late IC components (through its interaction with GRASP65) would offer a kinetic transport advantage. This would occur through recruitment of the GRASP65–GM130 machinery, which can form a complex with the transiting C-TVM-bearing cargo, and which has a recognized role in promoting the incorporation of ER-derived carriers into the Golgi complex (4) and in maintaining the architecture of the Golgi complex itself. The relationships between the role of GRASP65 in the transport of C-TVM bearing cargo proteins that we report here and its established structural role at the Golgi complex remain however to be defined.

The GRASP55-sensitive transport step for these GRASP-sensitive cargoes appears to be within the Golgi complex, and presumably related to the progression within the Golgi complex of the cargoes, considering the preferential binding of GRASP55 to the CD8m form (Fig. 4), the block of VSVG–CD8α in a GM130-positive Golgi compartment in GRASP55 knocked-down cells (not shown), and considering the medial Golgi localisation of GRASP55 (Fig. 3; (1)). The molecular mechanisms involved in this transport block have yet to be defined. An intriguing possibility is that in the absence of GRASP55, the C-TVM-bearing cargo proteins remain bound to GRASP65, and are thus stacked in early Golgi compartments.

Finally, interactions with the GRASPs are likely to have an important role in the physiology of CD8 and Fz4, two plasma-membrane receptors. CD8 is a glycoprotein complex that is mainly expressed in cytotoxic T lymphocytes. It consists of two subunits that can associate as homodimers and heterodimers: the α subunit, which has a C-terminal valine; and the β subunit, which is devoid of this signal (52). CD8αβ is the main functional co-receptor, although CD8αα is also expressed at the cell surface and is functional, whereas CD8ββ is inactive and is retained in the ER (53-57). The co-expression of CD8αα relocates CD8β to the cell surface (57,58). This thus highlights the driving role of the valine signal in the promotion of the exposure of these receptors at the plasma membrane, and hence, their function.

Fz4 and the other members of the Fz family of Wnt receptors also form homooligomers and hetero-oligomers (48). Recently, it has been shown that this oligomerisation occurs in the ER (48), and that the Fz4 mutation responsible for a dominant form of FEVR does not allow anterograde transport of the mutated proteins and blocks the transport of the wild-type Fz chains upon oligomerization (48). This mechanism would explain the dominant effects of the Fz4-FEVR mutant in heterozygous FEVR patients (26). The absence of Fz4 receptor expression at the plasma membrane results in a signalling defect during embryogenesis that leads to defective angiogenesis, aberrant neo-vascularization and exudative retinopathy (26-28). Our results now offer a molecular explanation to the intracellular retention of Fz4-FEVR, as the inability of the mutant protein to interact with GRASP65 and GRASP55.

REFERENCES

1. Shorter, J., Watson, R., Giannakou, M. E., Clarke, M., Warren, G., and Barr, F. A. (1999) EMBO J 18(18), 4949-4960
2. Barr, F. A., Puype, M., Vandekerckhove, J., and Warren, G. (1997) Cell 91(2), 253-262
3. Short, B., Preisinger, C., Korner, R., Kopajtich, R., Byron, O., and Barr, F. A. (2001) J Cell Biol 155(6), 877-883
4. Marra, P., Salvatore, L., Mironov, A., Jr., Di Campli, A., Di Tullio, G., Trucco, A., Beznoussenko, G., Mironov, A., and De Matteis, M. A. (2007) Mol Biol Cell 18(5), 1595-1608
5. Feinstein, T. N., and Linstedt, A. D. (2008) Mol Biol Cell 19(7), 2696-2707
6. Duran, J. M., Kinseth, M., Bossard, C., Rose, D. W., Polishchuk, R., Wu, C. C., Yates, J., Zimmerman, T., and Malhotra, V. (2008) Mol Biol Cell 19(6), 2579-2587
7. Puthenveedu, M. A., Bachert, C., Puri, S., Lanni, F., and Linstedt, A. D. (2006) Nat Cell Biol 8(3), 238-248
8. Sutterlin, C., Hsu, P., Mallababbarana, A., and Malhotra, V. (2002) Cell 109(3), 359-369
9. Bisel, B., Wang, Y., Wei, J. H., Xiang, Y., Tang, D., Miron-Mendoza, M., Yoshimura, S., Nakamura, N., and Seemann, J. (2008) J Cell Biol 182(5), 837-843
10. Behnia, R., Barr, F. A., Flanagan, J. J., Barlowe, C., and Munro, S. (2007) J Cell Biol 176(3), 255-261
11. Schotman, H., Karhinen, L., and Rabouille, C. (2008) Dev Cell 14(2), 171-182
12. Kondylis, V., Spoorendonk, K. M., and Rabouille, C. (2005) Mol Biol Cell 16(9), 4061-4072
13. Sengupta, D., Truschel, S., Bachert, C., and Linstedt, A. D. (2009) J Cell Biol 186(1), 41-55
14. Kuo, A., Zhong, C., Lane, W. S., and Derynck, R. (2000) Embo J 19(23), 6427-6439
15. Paulhe, F., Imhof, B. A., and Wehrle-Haller, B. (2004) J Biol Chem 279(53), 55454-5555
16. Urena, J. M., Merlos-Suarez, A., Baselga, J., and Arribas, J. (1999) J Cell Sci 112 (Pt 6), 773-784
17. Crambert, G., Li, C., Swee, L. K., and Geering, K. (2004) J Biol Chem 279(29), 30888-30895
18. Boyle, L. H., Gillingham, A. K., Munro, S., and Trowsdale, J. (2006) J Immunol 176(1), 6464-6472
19. Fernandez-Larrrea, J., Merlos-Suarez, A., Urena, J. M., Baselga, J., and Arribas, J. (1999) Mol Cell 3(4), 423-433
20. Iodice, L., Sarnataro, S., and Bonatti, S. (2001) J Biol Chem 276(31), 28920-28926
21. Xu, Q., Wang, Y., Dabdoub, A., Smallwood, P. M., Williams, J., Woods, C., Kelley, M. W., Jiang, L., Tasman, W., Zhang, K., and Nathans, J. (2004) Cell 116(6), 883-895
22. de Iongh, R. U., Abud, H. E., and Hime, G. R. (2006) Front Biosci 11, 2442-2464
23. Martire, G., Mottola, G., Pascale, M. C., Malagolini, N., Turrini, I., Serafini-Cessi, F., Jackson, M. R., and Bonatti, S. (1996) J Biol Chem 271(7), 3541-3547
24. Spatuzza, C., Renna, M., Faraonio, R., Cardinali, G., Martire, G., Bonatti, S., and Remondelli, P. (2004) J Biol Chem 279(41), 42535-42544
31. Marra, P., Maffucci, T., Daniele, T., Tullio, G. D., Ikehara, Y., Chan, E. K., Luini, A., Beznoussenko, G., Mironov, A., and De Matteis, M. A. (2001) *Nat Cell Biol* 3(12), 1101-1113
32. Vasilie, E., Perez, T., Nakamura, N., and Krieger, M. (2003) *Traffic* 4(4), 254-272
33. Bonatti, S., Migliaccio, G., and Simons, K. (1989) *J Biol Chem* 264(21), 12590-12595
34. Mottola, G., Jourdan, N., Castaldo, G., Malagolini, N., Lahm, A., Serafini-Cessi, F., Migliaccio, G., and Bonatti, S. (2000) *J Biol Chem* 275(31), 24070-24079
35. Liou, W., Geuze, H. J., and Slot, J. W. (1996) *Histochem Cell Biol* 106(1), 41-58
36. Slot, J. W., and Geuze, H. J. (1985) *Eur J Cell Biol* 38(1), 87-93
37. Pascale, M. C., Malagolini, N., Serafini-Cessi, F., Migliaccio, G., Leone, A., and Bonatti, S. (1992) *J Biol Chem* 267(14), 9940-9947
38. Gallione, C. J., and Rose, J. K. (1985) *J Virol* 54(2), 374-382
39. Kuehn, M. J., and Schekman, R. (1997) *Curr Opin Cell Biol* 9(4), 477-483
40. Nishimura, N., and Balch, W. E. (1997) *Science* 277(5325), 556-558
41. Saito, K., Chen, M., Bard, F., Chen, S., Zhou, H., Woodley, D., Polischuk, R., Schekman, R., and Malhotra, V. (2009) *Cell* 136(5), 891-902
42. Lotti, L. V., Torrisi, M. R., Erra, M. C., and Bonatti, S. (1996) *Exp Cell Res* 227(2), 323-331
43. Mezzacasa, A., and Helenius, A. (2002) *Traffic* 3(11), 833-849
44. Ronchi, P., Colombo, S., Francolini, M., and Borgese, N. (2008) *J Cell Biol* 181(1), 105-118
45. Sonnichsen, B., Lowe, M., Levine, T., Jamsa, E., Dirac-Svejstrup, B., and Warren, G. (1998) *J Cell Biol* 140(5), 1013-1021
46. Hobbie, L., Fisher, A. S., Lee, S., Flint, A., and Krieger, M. (1994) *J Biol Chem* 269(33), 20958-20970
47. Slusarski, D. C., Corces, V. G., and Moon, R. T. (1997) *Nature* 390(6658), 410-413
48. Kaykas, A., Yang-Snyder, J., Heroux, M., Shah, K. V., Bouvier, M., and Moon, R. T. (2004) *Nat Cell Biol* 6(1), 52-58
49. Standley, S., Roche, K. W., McCallum, J., Sans, N., and Wenthold, R. J. (2000) *Neuron* 28(3), 887-898
50. Wenthold, R. J., Prybylowski, K., Standley, S., Sans, N., and Petralia, R. S. (2003) *Annu Rev Pharmacol Toxicol* 43, 335-358
51. Ward, T. H., Polischuk, R. S., Caplan, S., Hirschberg, K., and Lippincott-Schwartz, J. (2001) *J Cell Biol* 155(4), 557-570
52. Parnes, J. R. (1989) *Adv Immunol* 44, 265-311
53. Devine, L., tying, L., Aitken, V., and Kavathas, P. B. (2000) *J Immunol* 164(2), 833-838
54. Dialynas, D. P., Loken, M. R., Glasebrook, A. L., and Fitch, F. W. (1981) *J Exp Med* 153(3), 595-604
55. DiSanto, J. P., Knowles, R. W., and Flomenberg, N. (1988) *Embo J* 7(11), 3465-3470
56. Norment, A. M., and Littman, D. R. (1988) *Embo J* 7(11), 3433-3439
57. Hennecke, S., and Cosson, P. (1993) *J Biol Chem* 268(35), 26607-26612
58. Schmidt-Ullrich, R., and Eichmann, K. (1990) *Int Immunol* 2(3), 247-256

FOOTNOTES

This paper is dedicated to Stefano Ferrari and Francesco D’Angelo. We thank E. Brescia, M. Santoro and P. Sesti for technical assistance; C. P. Berrie for editorial assistance; Dr. F. Barr for GRASP55 antibody; Dr G. De Luca for participating to the initial steps of the work; Drs M.R. Hayden and M.L. MacDonald for the Fz4-wt construct. This work was supported by grants from: Ministero Università Ricerca Scientifica e Tecnologica to S.B; and from the Italian Association for Cancer Research and Telethon Italia to A.D.M; by Telethon Electron Microscopy Core Facility; and by a fellowship from FIRC to G.D.A.
The abbreviations used are: BFA, Brefeldin A; C-TVM, C-terminal valine motif; ER, endoplasmic reticulum; ERES, endoplasmic reticulum exit sites; FEVR, familial exudative vitreoretinopathy; Fz4, Frizzled4; IC, intermediate compartment; PDZ, PSD95-DlgA-zo-1; VSVG, vesicular stomatitis virus G glycoprotein.

FIGURE LEGENDS

Figure 1. The C-TVM of CD8α enhances its intracellular transport. a) Schematic representations of the three different CD8α constructs used. TL: tail less. b) Immunofluorescence analysis of FRT cells stably expressing the CD8α constructs, as indicated. Bar 10 µm. c) Left panels: SDS-PAGE analysis of the immunoprecipitated forms of CD8α and CD8α-ΔYV labelled in stably expressing cells after a 30-min pulse with [35S]Cys/Met. The quantitation of CD8 forms was performed by densitometric scanning and the relative amounts of CD8u (see Methods) are shown in the histogram. The TL mutant shows a faster mobility on SDS-PAGE due to the deletion of the 28 amino-acid residues of the cytosolic tail. Right panels: time courses of the relative amounts of the immunoprecipitated CD8u, CD8i and CD8m forms labeled after a 5-min pulse with [35S]Cys/Met followed by the indicated chase times and analyzed by SDS-PAGE. d) Schematic representations of the VSVG–CD8α and VSVG–CD8α-ΔYV chimaeric proteins. e) Parallel cultures of COS7 cells transfected with these constructs, incubated for 16 h at 40 °C, and then shifted to 32 °C in the presence of cycloheximide for the times indicated, with analysis by confocal immunofluorescence microscopy. The percentages of cells showing ER, Golgi or plasma-membrane labelling (frequently, more than one compartment was stained in the same cell at a given time point) are shown on the right and was determined by counting at least 200 cells per condition. The data are from single experiments that are representative of at least three different experiments, each carried out in duplicate. Bar 10 µm.

Figure 2. The C-TVM of CD8α promotes the entry or progression into the IC. a, b) Parallel cultures of COS7 cells transfected with the VSVG–CD8α, VSVG–CD8α-ΔYV, VSVG and VSVG-AXA (no di-acidic tail control) constructs, as indicated (top). They were incubated for 16 h at 40 °C, and then shifted to 32 °C in the presence of cycloheximide for the times indicated, with analysis by confocal immunofluorescence microscopy. The percentages of co-localisation with ERES (a; Sec31) and IC (b; ERGIC-53) are shown on the right. For quantitation images from at least 50 cells were analysed with LSM-510 software and the values corresponding to the unweighted colocalisation of the cargo protein staining into the compartment marker were plotted.

Figure 3. CD8α binds GRASP65 and GRASP55 through the C-TVM. a) Cell lysates obtained from parental and stably expressing FRT cells (FRT) and FRT cells stably expressing wt CD8α (wt), CD8α-TL (TL), CD8α-ΔYV (ΔYV) were subjected to immunoprecipitation with an anti-CD8α antibody (ip CD8α). The immunoprecipitated products were analyzed by SDS-PAGE, followed by immunoblotting with the antibodies as indicated. Cell lysates (as 1/20) were also loaded (Lysates). * IgG heavy chain; ** CD8m. b) Cell lysates were treated as in panel (a), with the immunoprecipitation performed with an anti-CD8α antibody immobilized on protein A-Sepharose beads. The filter was developed with an anti-GRASP55 antibody. FT, unbound material. c) Cells were transiently transfected to express the different CD8α recombinants, as indicated (top). Aliquots of total cell lysates were analyzed directly on SDS-PAGE followed by immunoblotting (Lysates, as 1/20), or after immunoprecipitation with an anti-CD8α antibody (ip CD8α). The filter was developed with the indicated antibodies. * CD8m; ** CD8u. d) Purified GST and the GST-tagged cytosolic tails of CD8α and CD8α-ΔYV (GST-CD8α and GST-CD8α-ΔYV, respectively) were resolved on SDS-PAGE, transferred onto a nitrocellulose filter, and incubated with the
His-tagged version of the proteins indicated. The bound proteins were revealed with an anti-His antibody. The Ponceau staining of the blotted GST-tagged forms is shown below. Right: schematic representation of the His-tagged proteins used. PH, pleckstrin homology domain; GLTP, Glycolipid transfer protein homology domain. The data are from single experiments that are representative of at least three independent experiments, each carried out in duplicate.

Figure 4. Intracellular distribution of GRASP65 and GRASP55 and preferential interaction with different CD8α forms. **a**) Immunofluorescence analysis in FRT cells (upper panels), and immunoelectron microscopical analysis in RBL cells (lower panels) of the distribution of GRASP65 and Sec31 proteins (bars 10 and 100 µm, respectively). Black arrowheads indicate GRASP65 labeling at ERES. **b**) as in **a**, but labeling for GRASP55 and GRASP65. The lower right panel shows the relative distribution of GRASP65 and GRASP55 over the Golgi complex cisternae as assessed by counting the number of gold particles per cisterna in 30 different Golgi stacks. **c**) FRT cells stably expressing CD8α were pulse-labelled for 30 min with [35S]-Cys/Met, and lysed. Five percent of the lysates were immunoprecipitated (ip) with an anti-CD8 antibody, as indicated. The remainder was devided in two aliquots and initially immunoprecipitated with anti-GRASP65 or anti-GRASP55 antibody, with the immunoprecipitates resuspended and then immunoprecipitated with the anti-CD8 antibody (indicated as ip GRASP65 or GRASP55). The lane with the anti-GRASP55 immunoprecipitation is from a longer exposure of the gel. The percentage of CD8u, CD8i and CD8m forms on the total CD8α is indicated on the right panel.

Figure 5. Transport of CD8α is selectively affected when the expression of GRASP65 or GRASP55 is impaired. **a-d**) Parallel cultures of COS7 cells were mock-transfected or transfected with siRNAs pools against GRASP65 and GRASP55, as indicated (mock, KD) (see also Supplementary Fig. S1 and Methods). Forty-eight hours later, the cells were transfected with VSVG–CD8α and VSVG-GFP cDNAs, as indicated, incubated for 16 h at 40 °C, and then shifted to 32 °C (a, b) or 15 °C (c, d) in the presence of cycloheximide for the times indicated (a, b) or for 3 h (c, d), with analysis by confocal immunofluorescence microscopy. **a**) Representative experiment. **b**) Relative ER, Golgi and plasma-membrane labelling (determined as in Fig. 1 e). **c**) Representative experiment. **d**) Accumulation in the IC of the transfected proteins, as indicated. **e**) Parallel cultures of parental CHO cells, ldlG cells, and ldlG cells stably transfected for expression of GM130 were grown on glass coverslips at 34 °C, transfected to express CD8α and analyzed by confocal immunofluorescence microscopy. **f**) Parallel cultures of parental CHO cells and ldlG cells were grown at 34 °C and transiently transfected with CD8α alone or CD8α and GM130 cDNAs, and then pulse-labelled with [35S]-Cys/Met for 90 min. The cells were then lysed and subjected to immunoprecipitation with an anti-CD8α antibody, and the immunoprecipitates were analyzed by SDS-PAGE. The CD8u, CD8i and CD8m forms of CD8α are indicated. The relative amounts of the CD8u form were assessed by densitometric scanning, and are given in the histogram. Bars 10 µm. The quantified data are presented as means ± standard deviations from 3 independent experiments, each carried out in duplicate (n = 3).

Figure 6. Transport to the cell surface of Fz4 receptor requires C-TVM and GRASPs. **a**) Schematic drawing of the recombinant Fz4 forms used. **b**) Parallel cultures of COS7 cells transfected with the Fz4 forms as indicated, with analysis by confocal immunofluorescence microscopy. **c**) Cells were transfected as in **b** and stained with a monoclonal anti-Ha epitope antibody, and then permeabilized. Following permeabilization, they were stained with a polyclonal anti-Ha epitope antibody, thus providing quantification of the extracellular versus intracellular staining of the transfected cells. **d**) Purified GST and the GST-tagged cytosolic tails of Fz4, Fz4-FEVR, Fz4-AVV and Fz4-FEVR-VV were resolved on SDS-PAGE, transferred onto a nitrocellulose filter, and incubated with the His-tagged version of the proteins indicated. The bound proteins were revealed with an anti-His antibody. Right: schematic representation of the His-tagged forms of GRASP65, GRASP55, the recombinant...
form of GRASP65 lacking the 2 PDZ domains (ΔPDZ-GR65), and FAPP2 as negative control. The Ponceau staining of the blotted GST-tagged forms is shown below. e) Parallel cultures of COS7 cells were mock-transfected or transfected with siRNAs pools against GRASP65 and GRASP55, as indicated (mock, KD) (see Methods). Forty-eight hours later, the cells were transfected to express Fz4-wt, as indicated. Analysis by confocal immunofluorescence microscopy and quantitation as for (b) and (c). Bars 10 µm; * p< 0.05; ** p< 0.01.

Figure 7. Working model. a) Schematic representation of the role of the C-TVM and of the possible site of action of GRASP65 and GRASP55 proteins in selecting C-TVM bearing cargoes through the early secretory pathway. In the absence of the C-TVM, cargoes proceed in the pathway with a much slower kinetic. In the case of Fz4-FEVR (b), we speculate that a retention/recycling motif would either block the protein in the ER or trigger recycling from the IC, possibly driven by COPI vesicular carriers.
GRASP65 and GRASP55 sequentially promote the transport of C-terminal valine bearing cargoes to and through the Golgi complex

Giovanni D’Angelo, Liana Prencipe, Luisa Iodice, Galina Beznoussenko, Marco Savarese, PierFrancesco Marra, Giuseppe Di Tullio, Gianluca Martire, Maria Antonietta De Matteis and Stefano Bonatti

J. Biol. Chem. published online October 19, 2009

Access the most updated version of this article at doi: 10.1074/jbc.M109.068403

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2009/10/19/M109.068403.DC1