Dairy consumption, systolic blood pressure, and risk of hypertension

Mendelian randomization study

Ding, Ming; Huang, Tao; Bergholdt, Helle K M; Sørensen, Thorkild I.A.; Linneberg, Allan René; Sandholt, Camilla Helene; Pedersen, Oluf; Hansen, Torben; Kilpeläinen, Tuomas O; CHARGE Consortium; Nordestgaard, Børge G; Ellervik, Christina; Qi, Lu; Mendelian Randomization of Dairy Consumption Working Group

Published in:
The BMJ

DOI:
10.1136/bmj.j1000

Publication date:
2017

Document version:
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC

Citation for published version (APA):
Ding, M., Huang, T., Bergholdt, H. K. M., Sørensen, T. I. A., Linneberg, A. R., Sandholt, C. H., Pedersen, O., Hansen, T., Kilpeläinen, T. O., CHARGE Consortium, Nordestgaard, B. G., Ellervik, C., Qi, L., & Mendelian Randomization of Dairy Consumption Working Group (2017). Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study. *The BMJ, 356*, [j1000]. https://doi.org/10.1136/bmj.j1000
Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

Mendelian Randomization of Dairy Consumption Working Group

ABSTRACT

OBJECTIVE
To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal.

DESIGN
Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable.

SETTING
CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium.

PARTICIPANTS
Data from 22 studies with 171,213 participants, and an additional 10 published prospective studies with 26,119 participants included in the observational analysis.

MAIN OUTCOME MEASURES
The instrumental variable estimation was conducted using the ratio of coefficients approach. Using meta-analysis, an additional eight published randomized clinical trials on the association of dairy consumption with systolic blood pressure were summarized.

RESULTS
Compared with the CC genotype (CC is associated with complete lactase deficiency), the CT/TT genotype (TT is associated with lactose persistence, and CT is associated with certain lactase deficiency) of LCT-13910 (lactase persistence gene) rs4988235 was associated with higher dairy consumption (0.23 (about 55 g/day), 95% confidence interval 0.17 to 0.29) serving/day; P<0.001) and was not associated with systolic blood pressure (0.31, 95% confidence interval −0.05 to 0.68 mm Hg; P=0.09) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; P=0.27). Using LCT-13910 rs4988235 as the instrumental variable, genetically determined dairy consumption was not associated with systolic blood pressure (β=1.35, 95% confidence interval −0.28 to 2.97 mm Hg) for each serving/day or risk of hypertension (odds ratio 1.04, 0.88 to 1.24). Moreover, meta-analysis of the published clinical trials showed that higher dairy intake has no significant effect on change in systolic blood pressure for interventions over one month to 12 months (intervention compared with control groups: β=−0.21, 95% confidence interval −0.98 to 0.57 mm Hg). In observational analysis, each serving/day increase in dairy consumption was associated with −0.11 (95% confidence interval −0.20 to −0.02 mm Hg; P=0.02) lower systolic blood pressure but not risk of hypertension (odds ratio 0.98, 0.97 to 1.00; P=0.11).

CONCLUSION
The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by a comprehensive instrumental variable analysis and systematic review of existing clinical trials.

Introduction
Raised blood pressure is an important risk factor for cardiovascular disease and has been the top single contributor to the global burden of morbidity and mortality, leading to 94 million deaths each year. In clinical trials, lowering blood pressure has been shown to be effective in reducing the incidence of cardiovascular disease. Each 5 mm Hg reduction in blood pressure is associated with a 20% lower risk of coronary heart disease and a 29% lower risk of stroke.

Maintaining a healthy diet is critical for the prevention of hypertension; whether dairy products should be incorporated into such a diet is, however, controversial. In epidemiological studies, the association of dairy consumption with blood pressure has been inconsistent. Several observational studies have reported inverse associations of dairy consumption with systolic blood pressure and risk of hypertension; however, such associations were not observed in other studies. Two meta-analyses of prospective cohort studies consistently indicated that dairy consumption was associated with lower systolic blood pressure and lower risk of hypertension. Owing to the observational nature of the studies included, the reported associations might not indicate causality.

In recent years, Mendelian randomization analysis has been widely used to assess potential causal estimates of various risk factors with health outcomes. This approach has the advantage over traditional observational studies of minimizing confounding by using genetic markers as instrumental variables of environmental risk factors. An SNP (single nucleotide polymorphism) rs4988235 upstream of the lactase persistence gene (LCT-13910) has been consistently related to dairy intake in multiple populations, representing a strong instrumental variable for analyzing the causal relation between dairy intake and disease risk.

In this study, using data collected from 32 studies with 197,332 participants, we performed an instrumental variable analysis to examine the possible causal effect of dairy consumption on systolic blood pressure and
risk of hypertension. In addition we conducted a meta-analysis to summarize the results of eight randomized clinical trials assessing dairy intake intervention on changes in systolic blood pressure.

Methods

Study design and population

We used an instrumental variable approach to examine associations of dairy consumption with systolic blood pressure and risk of hypertension. We collected data from 22 observational studies with 171,213 participants within the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. All participants provided written informed consent. The web appendix describes the studies in the analysis.

To provide comprehensive evidence on associations of dairy intake with systolic blood pressure and risk of hypertension, we conducted a systematic review of previously published cohort studies and randomized clinical trials. In the web appendix, we describe the process of the systematic review in detail.

Dairy consumption

Dairy products included skim/low fat milk, whole milk, ice cream, yogurt, cottage/ricotta cheese, cream cheese, other cheese, and cream. In most of the studies, dairy intake was self reported by food frequency questionnaire. We calculated total dairy consumption as the sum of all dairy categories (see table 1 in the web appendix for a detailed description of dairy consumption in the included studies).

Outcome measures

The outcome of our Mendelian randomization included systolic blood pressure and risk of hypertension. Given that systolic blood pressure is superior to diastolic blood pressure as a major risk factor of cardiovascular disease, we used systolic blood pressure as the main outcome in our analysis (see table 1 in the web appendix for the detailed measurement of systolic blood pressure in the included studies). For participants taking antihypertensive drugs, we added 15 mm Hg to systolic blood pressure to adjust for treatment effects. Hypertension was defined as a systolic blood pressure of 140 mm Hg or higher or current use of antihypertensive drugs.

SNP rs4988235

Table 1 in the web appendix shows genotyping platforms, genotype frequencies, Hardy-Weinberg equilibrium P values, and call rates for lactase persistence SNP rs4988235. The SNP rs4988235 was not genotyped or imputed in two studies; proxy SNPs (rs309137: r² = 0.77; rs1446585: r² = 1.00) were used instead.

Statistical analyses

We initially conducted statistical analyses within each included study in accordance with a standard analysis plan. As lactase persistence is inherited as a dominant trait, we used dominant models (CC v CT/TT genotype) to examine associations of LCT-13910 rs4988235 with dairy intake, systolic blood pressure, and risk of
hypertension adjusting for baseline age, sex, ethnicity, and region. We examined associations of dairy consumption with systolic blood pressure and risk of hypertension using linear or logistic models adjusting for baseline age, body mass index, blood pressure, smoking status, physical activity, total energy intake, alcohol consumption at baseline, and follow-up, as well as for age, body mass index, blood pressure/hypertension, smoking status, physical activity, total energy intake, and alcohol consumption at baseline.

Patient involvement
No patients were involved in setting the research question or the outcome measures, nor were they involved in developing plans for design or implementation of the study. No patients were asked to advise on interpretation or writing up of results. There are no plans to disseminate the results of the research to study participants or the relevant patient community.

Results
We included 22 studies with 17 213 participants from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium. Table 1 shows the baseline characteristics of the studies. Of the 22 studies, nine were conducted in the US, nine in countries in northern Europe, three in countries in southern Europe, and one in Australia. The frequency of CC alleles varied across studies. In most of the studies, participants were
white, and dairy intake was assessed prospectively before measuring systolic blood pressure.

By conducting a systematic review, we additionally identified 10 published cohort studies with 26,119 participants and eight randomized clinical trials with 735 participants. Figure 1 in the web appendix shows the flowchart of study selection. The clinical trials examined the effect of dairy intake on systolic blood pressure over one month to 12 months of interventions. In the cohort studies, seven assessed systolic blood pressure as the outcome and five used hypertension as the outcome. Tables 2 and 3 in the web appendix show the characteristics of the published trials and cohorts.

In observational analysis, each serving/day increase in dairy consumption was associated with lower systolic blood pressure ($\beta=-0.11$, 95% confidence interval -0.20 to -0.02 mm Hg; $P=0.02$) and was not associated with a lower relative risk of hypertension (odds ratio 0.98, 95% confidence interval 0.97 to 1.00; $P=0.11$) (figs 1 and 2). In the randomized clinical trials, however, dairy intake did not show a significant effect on changes in systolic blood pressure over one month to 12 months of interventions (comparing intervention with control group: $\beta=-0.21$, -0.98 to 0.57 mm Hg; $P=0.60$) (fig 3). No publication bias of included cohorts and clinical trials was found (systolic blood pressure in cohorts: Egger’s test $P=0.51$; hypertension in cohorts: $P=0.46$; randomized clinical trials: $P=0.33$) (fig 2 in the web appendix).

Compared with the CC genotype, the CT/TT genotype of LCT-13910 rs4988235 was associated with higher dairy consumption (0.23 (95% confidence interval 0.17 to 0.29) serving/day (about 55 g/day); $P<0.001$), and the Z statistic was 7.51, showing that the instrumental variable was strong and valid (fig 4). However, significant heterogeneity was found across studies ($I^2=80.0%$, $P<0.001$ for heterogeneity). Compared with the CC genotype, the CT/TT genotype of LCT-13910 rs4988235 was not associated with systolic blood pressure (0.31, -0.05 to 0.68 mm Hg; $P=0.09$) or risk of hypertension (odds ratio 1.01, 95% confidence interval 0.97 to 1.05; $P=0.27$) (figs 5 and 6). Using LCT-13910 rs4988235 as the instrumental variable, we estimated that genetically determined dairy consumption was not associated with systolic blood pressure ($\beta=1.35$, 95% confidence interval -0.28 to 2.97 mm Hg for each serving/day) or risk of hypertension (odds ratio 1.04, 0.88 to 1.24).

To explore sources of heterogeneity in the association of LCT-13910 rs4988235 with dairy intake, we conducted stratified analyses by region or country, frequency of the CC genotype, race, study design, and measurement of systolic blood pressure. We classified Denmark, the Netherlands, Sweden, and Finland as northern European countries and Italy, Spain, and France as southern European countries. Among studies with a CC genotype frequency of 12% or less, or studies conducted in northern European countries, we found no heterogeneity of LCT-13910 rs4988235 with dairy intake, and the instrumental variable remained strong in both subgroups. Genetically determined dairy consumption was unrelated to systolic blood pressure and risk of hypertension within each stratum, which was consistent with the main finding.
(table 2). No effect modification on causal estimates was found by CC frequency, region or country, race, study design, and systolic blood pressure measurement.

In sensitivity analyses, we applied the instrumental variable analysis within each study and combined the instrumental variable estimates using meta-analysis. The results were consistent with the main findings (fig 3 in the web appendix). We examined the associations of dairy consumption with systolic blood pressure and risk of hypertension by modeling the LCT-13910 genotype in recessive and additive inheritance manner (figs 4 and 5 in the web appendix). Genetically determined dairy consumption was not associated with systolic blood pressure or risk of hypertension using the recessive model, and it was weakly associated with higher systolic blood pressure using the additive model (table 4 in the web appendix).

Discussion

In this study, using Mendelian randomization analysis in 32 studies (22 observational studies, 10 previously published cohort studies) with 197,332 participants, we examined the potential causal effect of dairy consumption on systolic blood pressure and risk of hypertension. Using the LCT-13910 gene variant affecting lactase persistence as the instrumental variable, our study showed that genetically determined dairy intake did not affect systolic blood pressure or risk of hypertension. Furthermore, a meta-analysis of the results from published randomized clinical trials showed that dairy consumption had no effect on changes of systolic blood pressure in response to interventions over one month to 12 months.

Strengths and weaknesses of this study

Our study has several strengths. First, we carried out a large instrumental variable analysis on the causality of dairy intake on systolic blood pressure and hypertension. The large sample size provided us with enough power to estimate the causal effect of dairy intake on systolic blood pressure. Second, the single nucleotide polymorphism (SNP) rs4988235 for lactase persistence is a well established variant associated with dairy intake, with a solid biological basis, and is therefore a highly valid instrumental variable. Third, we summarized published randomized clinical trials on dairy consumption with systolic blood pressure. Although clinical trials have shorter follow-up time than cohort studies, they still provided further supportive evidence to the instrumental variable results. Our study has several limitations. First, given the variability of the CC allele across studies and the different prevalence of hypertension across countries, population stratification might exist. However, as most of the studies included were genetically homogeneous, we performed instrumental variable analysis within each study first and

Cohorts	Effect size (95% CI)	Weight (%)	Effect size (95% CI)
CGPS	6.5	0.26 (0.22 to 0.29)	
WCHS	6.3	0.18 (0.12 to 0.24)	
GESUS	5.5	0.27 (0.17 to 0.38)	
NHS	6.1	0.18 (0.10 to 0.25)	
ARIC (white)	5.6	0.33 (0.23 to 0.43)	
ARIC (African-American)	5.4	-0.05 (-0.16 to 0.07)	
HPFS	5.7	0.40 (0.30 to 0.50)	
INTER99	5.3	0.34 (0.22 to 0.46)	
DESIR	5.2	-0.06 (-0.19 to 0.06)	
Rotterdam	2.7	0.32 (0.04 to 0.60)	
MDCS	2.3	0.38 (0.06 to 0.70)	
GLACIER	3.3	0.11 (-0.12 to 0.34)	
MESA	4.2	0.24 (0.06 to 0.41)	
FamHS	4.1	0.39 (0.21 to 0.57)	
CHS	4.6	0.13 (-0.04 to 0.30)	
Young Finns Study	1.9	0.69 (0.33 to 1.05)	
Diet, Cancer and Health cohort	2.3	0.21 (-0.11 to 0.52)	
DIGENES (controls)	2.3	0.42 (0.10 to 0.73)	
DIGENES (weight gainers)	1.5	0.33 (-0.10 to 0.77)	
PREIMED-VALENCIA	4.8	0.12 (-0.03 to 0.26)	
BPRHS	3.8	0.37 (0.17 to 0.57)	
GOLDN	1.7	0.51 (0.11 to 0.90)	
Raine	4.1	0.25 (0.07 to 0.43)	
InCHANTI	5.1	-0.09 (-0.22 to 0.04)	
Overall: P<0.001, I²=80%	100.0	0.23 (0.17 to 0.29)	

Fig 4 | Association of SNP rs4988235 with dairy consumption using dominant model (CT/TT vs CC genotype). Linear regression adjusted for baseline age, sex, ethnicity, and region or country.

Studies	Effect size (95% CI)	Weight (%)	Effect size (95% CI)
CGPS	32.0	0.34 (-0.31 to 0.98)	
WCHS	21.3	-0.21 (-1.00 to 0.58)	
GESUS	6.5	0.93 (-0.50 to 2.36)	
ARIC (white)	6.0	0.12 (-1.37 to 1.61)	
ARIC (African-American)	2.3	-0.30 (-2.73 to 2.13)	
INTER99	5.1	-0.49 (-2.10 to 1.12)	
D.E.S.I.R. Study	6.0	1.41 (-0.08 to 2.90)	
Rotterdam Study	1.8	0.46 (-2.25 to 3.16)	
Malmo Diet and Cancer Study	1.3	0.36 (-0.80 to 3.51)	
GLACIER	1.6	1.09 (-1.75 to 3.94)	
MESA	2.4	0.75 (-1.61 to 3.10)	
FamHS	1.8	2.73 (-0.01 to 5.47)	
Cardiovascular Health Study	0.5	2.44 (-2.93 to 7.80)	
Young Finns Study	3.0	0.03 (-2.08 to 2.14)	
Diet, Cancer and Health cohort	0.5	4.03 (-1.22 to 9.29)	
DIGENES (controls)	0.5	-0.10 (-5.10 to 4.88)	
DIGENES (weight gainers)	0.3	-0.01 (-6.47 to 6.45)	
PREIMED-VALENCIA study	0.2	-2.85 (-10.52 to 4.82)	
BPRHS	1.6	-1.69 (-4.62 to 1.24)	
GOLDN	0.9	-0.26 (-4.40 to 3.58)	
Raine	3.0	-0.32 (-2.44 to 5.80)	
InCHANTI	1.4	3.04 (-0.02 to 6.10)	
Overall: P=0.67, I²=0%	100.0	0.31 (-0.05 to 0.68)	

Fig 5 | Association of SNP rs4988235 with systolic blood pressure using dominant model (CT/TT vs CC genotype). Linear regression adjusted for baseline age, sex, ethnicity, and region or country.
combined the instrumental variable results through meta-analysis. The instrumental variable results were consistent with the main findings. Second, the pleiotropic effect of SNP rs4988235 is not known. However, SNP rs4988235 was located in the MCM6 gene upstream from LCT-13910, and neither gene has been found to have additional biological function besides lactase persistence. Third, dairy consumption was self-reported by questionnaire and might be affected by measurement errors. If measurement errors were random, the observed associations would not be biased, although the confidence intervals might be wider. Fourth, we included total dairy intake as the main exposure; however, lactase content differs between dairy products. For example, Swiss cheese and mozzarella contain trivial amounts of lactase. Similar to the measurement error of dairy intake, the variability in lactase content of dairy products might not bias the instrumental variable estimates but might widen the confidence intervals. Fifth, several studies examined dairy consumption and systolic blood pressure using a cross-sectional study design, and even if instrumental variable analysis was used this might result in reverse causation. However, no statistically significant effect modification by study design was found in stratified analysis, indicating that reverse causation caused by study design might be minimal.

Possible explanations and implications
Compared with the CC genotype, the CT/TT genotype was associated with 0.23 serving/day (about 55 g/day) higher dairy intake. In previous cohort studies, a 55 g/day increment in dairy intake was estimated to be statistically significantly associated with 0.03 mm Hg lower systolic blood pressure, and 1%, 2%, and 1% lower risks of hypertension, type 2 diabetes, and cardiovascular disease, respectively. However, in our study, the CT/TT genotype was associated with a 0.31 mm Hg higher systolic blood pressure, and genetically determined dairy consumption did not decrease systolic blood pressure or risk of hypertension using instrumental variable estimation. Moreover, the meta-analyzed results of clinical trials showed that dairy intake had no effect on changes in systolic blood pressure. There could be two reasons that the reported associations from observational studies were inconsistent with our instrumental variable results. First, even if yogurt and specific nutrients in dairy such as milk peptides have antihypertensive effects, specific dairy products such as yogurt only compose a small fraction of total dairy products and could not explain the general observational association between dairy intake and outcome. Second, higher low-fat dairy intake was more likely to be associated with a healthy diet and lifestyle. Therefore, the observed inverse association of particularly low-fat dairy intake with systolic blood pressure might be due to confounding of intake of other food items and a healthy lifestyle. However, as one fundamental assumption for the instrumental variable to be valid is that the instrumental variable is associated with the outcome only through the exposure under study.

Strengths and weaknesses in relation to other studies
In our study we observed an inverse association between dairy intake and systolic blood pressure. Consistently, cross-sectional studies showed an inverse association between dairy intake and systolic blood pressure. Previous cohort studies have been summarized in two meta-analyses. One meta-analysis involving approximately 45,000 participants showed that dairy products were associated with lower risks of raised systolic blood pressure. In line with this, another meta-analysis, which included nine cohort studies with a sample size of 57,256, found an inverse association between dairy foods and risk of hypertension. However, in both meta-analyses, the associations of high-fat dairy products, including whole milk, cream, and cream cheese, and low-fat dairy products, including skim milk and yogurt with systolic blood pressure were inconsistent. In the two published meta-analyses, the observed inverse association was mainly due to consumption of low-fat dairy products. Furthermore, a meta-analysis summarizing 14 clinical trials found that probiotic fermented milk, including yogurt, resulted in a statistically significant reduction in systolic blood pressure. Clinical trials also showed that tripeptides and peptides derived from milk have hypotensive effects in prehypertensive and hypertensive participants.
Table 2: Stratified analysis on causal estimates of dairy consumption (serving/day) with systolic blood pressure (mm Hg) and risk of hypertension (odds ratio). Values in brackets are 95% confidence intervals unless stated otherwise.

Variables	SNP rs4988235	SNP rs4988235
CC genotype frequency	12%	14%
(P value)	0.27 (0.22 to 0.32)	0.24 (0.20 to 0.27)
No of observations	19	23
Region or country	Northern Europe	USA
(P value)	< 0.001	0.001
10	0.29 (0.24 to 0.34)	0.25 (0.20 to 0.30)
β	0.28 (0.23 to 0.33)	0.26 (0.21 to 0.31)
Race:	White	Other
(P value)	< 0.001	< 0.001
20	0.23 (0.20 to 0.26)	0.20 (0.19 to 0.21)
β	0.26 (0.23 to 0.30)	0.24 (0.21 to 0.27)
Clinical trials	Cross sectional	Cohort
(P value)	< 0.001	< 0.001
19	0.23 (0.19 to 0.27)	0.20 (0.19 to 0.21)
β	0.25 (0.21 to 0.30)	0.22 (0.18 to 0.26)

For each analysis, we conducted stratified analysis by CC frequency and/or variable analysis and systematic review of existing clinical trials. We found that the weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by our comprehensive instrumental variable analysis and systematic review of existing clinical trials. Members of the Mendelian Randomization of Dairy Consumption Working Group:

We could not separate the effect of individual dairy products in our study to further explain the inconsistency between observational and instrumental results using the current instrumental variable. And it is difficult to find a specific instrumental variable for each dairy product.

To tackle the heterogeneity of the association between SNP rs4988235 and dairy intake across studies, we conducted stratified analysis by CC frequency and region or country. SNP rs4988235 was consistently associated with higher dairy intake across subgroups, showing the robustness of our instrumental variable. No heterogeneity was found among studies conducted in northern Europe or among studies with a CC frequency of 12% or less, perhaps because these populations consume a relatively high amount of dairy products, and SNP rs4988235 was found to be associated completely with lactase persistence in north Europeans. No associations of genetically determined dairy intake with systolic blood pressure and risk of hypertension were found in both subgroups, which were consistent with our main finding.

Conclusion

The weak inverse association between dairy intake and systolic blood pressure in observational studies was not supported by our comprehensive instrumental variable analysis and systematic review of existing clinical trials.
Contributors: LQ obtained funding from the National Institutes of Health, MD, TH, HB, CE, and LQ designed the study. MD and TH collected the data. MD, TH, and HB provided statistical expertise. MD supervised the study and wrote the first draft of the manuscript. MD, TH, and HKB provided statistical expertise. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD and TH prepared the final manuscript. MD, TH, and HKB provided statistical expertise. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD, TH, and HKB prepared the final manuscript.

Funding: LQ is recipient of the National Heart, Lung, and Blood Institute grant K23HL126024. MD is a Damon Runyon Fellow, supported by National Heart, Lung, and Blood Institute contracts R01HL107734 and 5R01 HL105679, and a New York Academy of Medicine, New York, USA, and the Foundation for Sleep Study Technicians. The BMJ acknowledges the collaboration of the Real Colegio Complutense at Harvard University, Cambridge, MA, USA.

Contributors: MD, TH, HB, CE, and LQ contributed to the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or critical revision of the manuscript. MD, TH, HB, CE, and LQ contributed to the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or critical revision of the manuscript. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD, TH, and HKB prepared the final manuscript.

Funding: LQ is recipient of the National Heart, Lung, and Blood Institute grant K23HL126024. MD is a Damon Runyon Fellow, supported by National Heart, Lung, and Blood Institute contracts R01HL107734 and 5R01 HL105679, and a New York Academy of Medicine, New York, USA, and the Foundation for Sleep Study Technicians. The BMJ acknowledges the collaboration of the Real Colegio Complutense at Harvard University, Cambridge, MA, USA.

Contributors: MD, TH, HB, CE, and LQ obtained funding from the National Institutes of Health, MD, TH, HB, CE, and LQ designed the study. MD and TH collected the data. MD, TH, and HB provided statistical expertise. MD supervised the study and wrote the first draft of the manuscript. MD, TH, and HKB provided statistical expertise. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD, TH, and HKB prepared the final manuscript. MD, TH, and HKB provided statistical expertise. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD, TH, and HKB prepared the final manuscript.

Funding: LQ is recipient of the National Heart, Lung, and Blood Institute grant K23HL126024. MD is a Damon Runyon Fellow, supported by National Heart, Lung, and Blood Institute contracts R01HL107734 and 5R01 HL105679, and a New York Academy of Medicine, New York, USA, and the Foundation for Sleep Study Technicians. The BMJ acknowledges the collaboration of the Real Colegio Complutense at Harvard University, Cambridge, MA, USA.

Contributors: LQ obtained funding from the National Institutes of Health, MD, TH, HB, CE, and LQ designed the study. MD and TH collected the data. MD, TH, and HB provided statistical expertise. MD supervised the study and wrote the first draft of the manuscript. MD, TH, and HKB provided statistical expertise. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD, TH, and HKB prepared the final manuscript. MD, TH, and HKB provided statistical expertise. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD, TH, and HKB prepared the final manuscript. MD, TH, and HKB provided statistical expertise. MD, TH, and HKB contributed to the interpretation of the results and critical revision of the manuscript. MD, TH, and HKB prepared the final manuscript.

Funding: LQ is recipient of the National Heart, Lung, and Blood Institute grant K23HL126024. MD is a Damon Runyon Fellow, supported by National Heart, Lung, and Blood Institute contracts R01HL107734 and 5R01 HL105679, and a New York Academy of Medicine, New York, USA, and the Foundation for Sleep Study Technicians. The BMJ acknowledges the collaboration of the Real Colegio Complutense at Harvard University, Cambridge, MA, USA.
the bmj | 2M:2017:356:i1000 | doi: 10.1136/bmj.i1000

The provision of genotyping data was supported in part by the National Institutes of Health (grant No UL1TR00040 and UL1TR00079 from NCRR). The TamiHS was supported by grants DK80925 and HL117078 from the National Institutes of Health. Infrastructure for the CHARGE Consortium is supported in part by the National Heart, Lung, and Blood Institute grant R01HL105756. This CHS research was supported by NHLBI contracts HHSN26820062522C. Infrastructure was partly supported by grant No UL1TR002500, a component of the National Institutes of Health and Brookhaven National Laboratory for medical research. The Inter99 study was funded by the Danish Research Councils, Health Foundation, Danish Centre for Evaluation and Health Technology Assessment, Copenhagen County, Danish Heart Foundation, Ministry of Health and Prevention, Association of Danish Pharmacies, Augustinus Foundation, Novo Nordisk, Velux Foundation, Becket Foundation, and b Henrikssons Foundation. The D.E.S.I.R. study has been supported by INSERM contracts with CNAMTS, Lilly, Novartis Pharma, and Sanofi-Aventis; by INSERM (Réseaux en Santé Publique, Interactions entre les déterminants de la santé, Cohortes Santé TiGR 2008), the Association O. Diabète Risque Vasculaire, la Fédération Française de Cardiologie, La Fondation de France, ALFEDIAM, CNEL, ONIVINS, Société Francoprovençale du Diabète, Ardix Medical, Bayer Diagnostics, Becton Dickinson, Cardionics, Merck Santé, Novo Nordisk, Pierre Fabre, Roche, Topcon. The funding sources had no role in the design or conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript. The D.E.S.I.R. Study Group: INSERM CESP U1018: B Balkau, P Ducimetière, E Eschwège; INSERM U367: F Alhenc-Gelas; CHU d’Angers: A Girault, Bichat Hospital: F Fumeron, M Marre, R Roussel, CHU de Rennes: F Bonnet, CNRS UMR9090: Lille: S Cauchi P Froug, Centre d’Examens de Santé: Alençon, Angers, Blois, Caen, Chartres, Chateauroux, Cholet, Le Mans, Orléans, Tours, Institute de Recherche Médicale Générale: J Cogneau; General practitioners of the region; Institute inter-Regional pour la santé: C Borm, E Caces, N Copin, JG Moreau, O Lantieri, F Rakotokozany, J Tichet, S Vol. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMW), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research (NWO) Investments (No 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (2014-93-015, RIDE), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project No 050-060-810. The MDCs was initiated and planned in collaboration with the International Agency for Research on Cancer, the Swedish Cancer Society, and Swedish Medical Research Council and the Faculty of Medicine Lund University, Sweden. The study is also funded by Region Skåne, City of Malmö, Pålsson Foundation and the Swedish Heart and Lung Foundation.

The GLACIER Study was funded by project grants from the Swedish Heart-Lung Foundation, the Swedish Diabetes Association, the Pålsson’s Foundation, Region Skåne, the Swedish Research Council, the Umeå Medical Research Foundation, Novo Nordisk, the Heart Foundation of Northern Sweden (all to PNF), and Wellcome Trust W0799851. The MESA study was supported by contracts HHSN268201000003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169 from the National Heart, Lung, and Blood Institute, and by grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, and R01HL120193 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences (NCATS) grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The YFS has been financially supported by the Academy of Finland: grants 286284 (TL), 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skuleskog). The study was also supported by grants from Tampere and Turku University Hospital Medical Funds (grant XS1001 for T.L.), Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation of Cardiovascular Research (T.L.); Finnish Cultural Foundation, Tampere Tuberculosis Foundation (TL), Emil Aalonfen Foundation, and John Insson Foundation (TL). The BCR and the DIOGENES cohorts were a part of the research program of the UNIK: Food, Fitness and Pharma for Health and Disease (see www.foodfitnesspharma.ku.dk). The UNIK project was supported by the Danish Ministry of Science, Technology and Innovation. Tuomas Ö Kilpeläinen was supported by the Danish Council for Independent Research (DFF – 733-00124 and Sapere Aude program grant DFF–1331-00730B). The PREMID-VALENCIA study was supported by the Spanish Ministry of Health (Instituto de Salud Carlos III) and the Ministerio de Economía y Competitividad (projects G03/100, CIBER 06/03, RD060045P070095A, CNIC 06, P11/02509, SAF2009-12304, AGL2010-2319-03-C03-07 and PXR14/00527, Fondo Europeo de Desarrollo Regional, by the University Jaume I (Project PI-12B2013-54) and by the Generalitat Valenciana (AP111/10, AP-042/11, BEST/2015/087, GACOMP2012-115, ACOMP2011/115, ACOMP2012/190 and ACOMP2013/159. The BPRHS was supported by the National Institutes of Health grants P01 AG023394 and P50 HL101585. The GOLDN Study was supported by National Heart, Lung, and Blood Institute (NHLBI) grant No U01HL075254 (Genetic and Environmental Determinants of Triglycerides and Type 2 Diabetes), P01 HL095157 (Diabetes Research and Prevention Study) on Lipid Response to Fenofibrate and Dietary Fat), NHLBI grant Nos HL54776 and HL078885; and by contracts 53-K06-5-10 and 58-1950-9-001 from the US Department of Agriculture, Agriculture Research Service. The Raine Study was supported by the National Health and Medical Research Council of Australia (grant Nos 403988 and 1003209) and the Canadian Institutes of Health Research (grant No MOP-82893). The 22 year Raine Study follow-up fund was supported by NHMRC project grants 1027469, 1044860 and 1021855. Funding was also provided by Safework Australia. The InCHIANTI study baseline (1998-2000) was supported as a “targeted project” (IC1101/RF721) by the Italian Ministry of Health and in part by the US National Institute on Aging (contracts: 263 MD 9164 and 263 MD 82136). The sponsors have no role in: the study design; the collection, analysis, or interpretation of data; the writing of the report; or in the decision to submit the manuscript for publication.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/doi_disclosure.pdf and declare: no support from any organization for the submitted work; no financial relationships with any organizations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and the Harvard TH Chan School of Public Health. The completion of the self administered questionnaire was considered to imply informed consent.

Data sharing: No additional data available.

Transparency: The lead authors (the manuscript’s guarantors) affirm that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/ by-nc/4.0/.

1. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224–60. doi:10.1016/S0140-6736(12)6166-8.
2. James AM, Arveiler D, BL et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014;311:507-20. doi:10.1001/jama.2013.288427.
17 Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment
16 Ehret GB, Munroe PB, Rice KM, et al. International Consortium for
15 Vimaleswaran KS, Cavadino A, Berry DJ, et al. LifeLines Cohort Study
14 Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose
8 Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and
7 Livingstone KM, Lovegrove JA, Cockcroft JR, Elwood PC, Pickering JE,
5 Wang H, Fox CS, Troy LM, McKeeen NM, Jacques PF. Longitudinal
3 Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering
23 Tanaka S, Uenishi K, Ishida H, et al. A randomized intervention trial of
18 Petitti DB. Approaches to heterogeneity in meta-analysis.
2011;478:103-9. doi:10.1038/nature10405.
2014;2:719-29.
2009;124:579-91. doi:10.1007/s00439-008-0593-6.
2012;60:1131-7. doi:10.1161/HYPERTENSIONAHA.112.195206.
2013;37:56-63. doi:10.2337/diabetes.62.2.56.
2012;26:3-13. doi:10.1038/jhh.2011.3.
2015;14:12. doi:10.1186/1475-2891-14-12.
2007;85:1650-6.
2005;24:2911-35. doi:10.1002/sim.2165.
2000;100:810-7. doi:10.1016/S0002-8223(00)00236-4.
2016;13:83. doi:10.1186/1475-2891-13-83.
25 Rideout TC, Marinangeli CP, Martin H, Browne RW, Rempel CB. Consumption of low-fat dairy foods for 6 months improves insulin resistance without adversely affecting lipids or body weight in healthy adults: a randomized free-living cross-over study. Nutr 2011;12:76.
24 Crickton GE, Howe PR, Buckley JD, Coates AM, Murphy KJ. Dairy consumption and cardiometabolic health: outcomes of a 12-month crossover trial. Nutr Metab (Lond) 2012;9:19.
23 Wang H, Fox CS, Troy LM, McKeeen NM, Jacques PF. Longitudinal
22 Wennersberg MH, Smedman AM, et al. Dairy products and metabolic effects in overweight men and women: results from a 6-month intervention study. Am J Clin Nutr 2009;90:960-8. doi:10.3945/
21 Barb SI, McCarron DA, Heaney RP, et al. Effects of increased consumption of fluid milk on energy and nutrient intake, body weight, and cardiometabolic risk factors in healthy older adults. J Am Diet Assoc 2000;100:810-7. doi:10.1016/S0002-8223(00)00236-4.
20 Heracles A, Mishra GD, Hardy RJ, et al. Dairy intake, blood pressure and incidence hypertension in a general British population: the 1946 birth cohort. Eur J Nutr 2012;51:583-91. doi:10.1007/s00394-
19 Engberink MF, Geleijnse JM, de Jong N, Smit HA, Kok FJ, Verschuren WM. Dairy intake, blood pressure, and incidence hypertension in a general Dutch population. J Nutr 2009;139:583-7. doi:10.3945/
18 Alonso A, Beunza JJ, Delgado-Rodríguez M, Martínez JA, Martínez-González MA. Low-fat dairy consumption and reduced risk of hypertension: the Seguimiento Universidad de Navarra (SUN) cohort. Am J Clin Nutr 2005;82:972-9.
17 Steffen LM, Kroeckel CH, Yu X, et al. Associations of plant food, dairy product, and meat intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 2005;82:1169-77, quiz 1363-4.
16 Djoussé L, Pankow JS, Hunt SC, et al. Influence of saturated fat and linoleic acid on the association between intake of dairy products and blood pressure. Hypertension 2006;48:335-41. doi:10.1161/01.HYP.0000229668.73501.e8.
15 Ruidavets JB, Bongard V, Simon C, et al. Independent contribution of dairy products and calcium intake to blood pressure variations at a population level. J Hypertens 2006;24:671-81. doi:10.1097/01.hyp.
14 Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, et al. Milk and dairy consumption and cardiometabolic health: outcomes of a 12-month intervention study. Br J Nutr 2013;26:442-9. doi:10.1093/ajhn/hpt094.
13 Dong JY, Szeto IM, Makinen K, et al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. J Sci Food Agric 2014;94:2179-29. doi:10.1002/jsfa.6313.
12 Ehrdt GB, Munroe PB, Rice KM, et al. International Consortium for Blood Pressure Genome-Wide Association Studies CARDioGRAM consortium KidneyGen Consortium EchoGen consortium to identify the lactic acidosis associated with adult-type hypolactasia. Nutr Genet 2002;3:233-7. doi:10.1080/nug.2002.30.
11 Ingram CJ, Mulcare IA, Yang TS, et al. Dolichol digestion and the evolutionary genetics of lactase persistence. Nutr Genet 2002;13:101-11. doi:10.1080/nug.2002.13.101-11.
10 Samara A, Herberth B, Ndalé NC, et al. Dairy product consumption, calcium intake, and metabolic syndrome-related factors over 5 years in the STANISLAS study. Nutrition 2013;29:519-24. doi:10.1016/j.
9 Ralph RA, Lee SJ, Ruffy B, Palermo CE, Walker KZ. A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods. J Hum Hypertens 2012;26:3-13. doi:10.1038/jhh.2011.3.
8 Dauchet L, Kesse-Guyot E, Czernichow S, et al. Dietary patterns and blood pressure change over 5-y follow-up in the SUVI MAX cohort. Am J Clin Nutr 2007;85:1650-6.
7 Livingstone KM, Lovegrove JA, Cockcroft JR, Elwood PC, Pickering JE, Gwens DJ. Does dairy food intake predict arterial stiffness and blood pressure in men? Evidence from the Caerphilly Prospective Study. Hypertension 2013;61:42-7. doi:10.1161/HYPERTENSIONAHA.111.00026.
6 Wang H, Fox CS, Troy LM, Mckeeen NM, Jacques PF. Longitudinal
5 Wang H, Fox CS, Troy LM, Mckeeen NM, Jacques PF. Longitudinal
4 Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016;133:187-225. doi:10.1161/CIRCULATIONAHA.115.018585.
3 Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 7 effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels - updated overview and meta-analyses of randomized trials. J Hypertens 2013;31:613-22. doi:10.1097/
2 Dourin-Chartier PJ, Gagnon J, Labonté ME, et al. Impact of milk consumption on cardiometabolic risk in postmenopausal women with abdominal obesity. Nutr J 2015;14:12. doi:10.1186/1475-2891-14-12.
1 Tanaka S, Ueshi K, Ishida H, et al. A randomized intervention trial of 24-ek dairy consumption on waist circumference, blood pressure, and fasting blood sugar and lipids in Japanese men with metabolic syndrome. J Nutr Sci Vitaminol (Tokyo) 2014;60:305-12. doi:10.3177/jnsv.
10 Dourin-Chartier PJ, Gigleux I, Tremblay AJ, Poirier L, Lamarche B, Couture P. Impact of dairy consumption on essential hypertension: a clinical study. Nutr J 2014;13:83. doi:10.1186/1475-2891-13-83.
9 Dourin-Chartier PJ, Gigleux I, Tremblay AJ, Poirier L, Lamarche B, Couture P. Impact of dairy consumption on essential hypertension: a clinical study. Nutr J 2014;13:83. doi:10.1186/1475-2891-13-83.