On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers

S. Subburam 1,†, Lewis Nkenyereye 2,†, N. Anbazhagan 1, S. Amutha 3, M. Kameswari 4, Woong Cho 5,* and Gyanendra Prasad Joshi 6,*

Abstract: Consider the Diophantine equation \(y^n = x + x(x+1) + \cdots + x(x+1) \cdots (x+k), \) where \(x, y, n, \) and \(k \) are integers. In 2016, a research article, entitled – ‘power values of sums of products of consecutive integers’, primarily proved the inequality \(n = 19,736 \) to obtain all solutions \((x, y, n)\) of the equation for the fixed positive integers \(k \leq 10. \) In this paper, we improve the bound as \(n \leq 10,000 \) for the same case \(k \leq 10, \) and for any fixed general positive integer \(k, \) we give an upper bound depending only on \(k \) for \(n. \)

Keywords: Diophantine equation; Ternary Diophantine equation

MSC: 11D61; 11D45

1. Introduction

In 1976, Tijdeman proved that all integral solutions \((x, y, n), n > 0 \) and \(|y| > 1,\) of the equation

\[y^n = f(x) \]

satisfy \(n < c_0, \) where \(c_0 \) is an effectively computable constant depending only on \(f \) if \(f(x) \) is an integer polynomial with at least two distinct roots (Shorey-Tijdeman [1], Tijdeman [2], Waldschmidt [3]). In 1987, Brindza in [4] obtained the unconditional form of the result for \(f(x) = f_1k_1(x) + f_2k_2(x) + \cdots + f_sk_s(x), \) where \(f_1, f_2, \ldots, f_s \) are integer polynomials and \(k_1, k_2, \ldots, k_s \) are positive integers such that \(\min\{k_i : 1 \leq i \leq s\} > s(s-1). \) In 2016, Hajdu, Laishram, and Tengely in [5] proved the above result for \(f(x) = x + x(x+1) + \cdots + x(x+1) \cdots (x+k). \) In 2018, Subburam [6] assured that, for each positive, real \(\epsilon < 1, \) there exists an effectively computable constant \(c(\epsilon) \) such that

\[\max\{x, y, n\} \leq c(\epsilon)(\log \max\{a, b, c\})^{2+\epsilon}, \]

where \((x, y, n)\) is a positive integral solution of the ternary exponential Diophantine equation

\[a^n = b^x + c^y \]
and \(a, b, c\) are fixed positive integers with \(\gcd(a, b, c) = 1\). In 2019, Subburam [7] provided the unconditional form of the first result for \(f(x) = (x + a_1)^r_1 + (x + a_2)^r_2 + \cdots + (x + a_m)^r_m\), where \(m \geq 2; a_1, a_2, \ldots, a_m; r = r_1, r_2, \ldots, r_m\) are integers such that \(r_1 \geq r_2 \geq \cdots \geq r_m > 0; \gcd(\eta, \cont(f(x))) = 1; \eta^{2\eta}\) is not an integer > 1; \(r_2 < r_1 - 1\) when \(r_2 < r_1\); \(\eta = |\{r_i : r_1 = r_i\}|\); and \(\cont(f(x))\) is the content of \(f(x)\). For further results related to this paper, see Bazsó [8]; Bazsó, Berczes, Hajdu, and Luca [9]; and Tengely and Ulas [10].

In this paper, we consider the Diophantine equation

\[
y^n = x + x(x+1) + \cdots + x(x+1) \cdots (x+k) =: f_k(x)
\]

in integral variables \(x, y,\) and \(n,\) with \(n > 0,\) where \(k\) is a fixed positive integer. In Theorem 2.1 of [5], Hajdu, Laishram, and Tengely proved that there exists an effectively computable constant \(c(k)\) depending only on \(k\) such that \((x, y, n)\) satisfy

\[
n \leq c(k)
\]

if \(y \neq 0, -1.\) For the case \(1 \leq k \leq 10,\) they explicitly calculated \(c(k)\) as

\[
n \leq 19,736.
\]

Here, we prove the following theorem. For any positive integers \(s, p_1, p_2, \ldots, p_m,\) we denote

\[
\lambda_s(p_1, \ldots, p_m) = \sum_{i_1, \ldots, i_s} p_{i_1}p_{i_2}\cdots p_{i_s}
\]

for \(1 \leq i_1 < \cdots < i_s \leq m\)

and \(\lambda_0(p_1, \ldots, p_m) = 1.\) This elementary symmetric polynomial and its upper bound have been studied in Subburam [11].

Theorem 1. Let \(k\) be any positive integer and

\[
b = 4\left|\sum_{i=0}^{k-1} (-1)^i A_{k-i-1} 2^i\right|
\]

where \(A_0 = 1, A_1 = 1 + a_1, A_{k-1} = 1 + a_{k-2},\) and \(A_j = a_{j-1} + a_j\) for \(j = 2, 3, \ldots, k - 2\) and where

\[
a_m = 1 + \sum_{i=0}^{m-1} \lambda_{i+1}(3, \ldots, k + i - m + 1)
\]

for \(m = 1, 2, \ldots, k - 2.\) Then, all integral solutions \((x, y, n),\) with \(y \neq 0, -1, x \neq 1, n \geq 1,\) of (1) satisfy

\[
n \leq c_2 \log b,
\]

where \(c_2\) can be bounded using the linear form of the logarithmic method in Laurent, Mignotte, and Nesterenko [12], and an immediate estimation is

\[
c_2 = \begin{cases}
21,468 & \text{if } 21 > \log n \\
26,561(\log \log b)^2 & \text{if } 21 \leq \log n.
\end{cases}
\]

If

\[
b \leq 4 \times 9 \times 11 \times 467 \times 2,018,957,
\]
Theorem 2. Let \(k \) be odd. Then, we have the following:

\[
\begin{align*}
\text{Corollary 1. If } 1 \leq k \leq 10, \text{ then } n \leq 10,000.
\end{align*}
\]

Hajdu, Laishram, and Tengely studied each of the cases \((n, k) \) where \(n = 2 \) and \(k \) is odd with \(1 \leq k \leq 10^5 \) in the proof of Theorem 2.2 of [5]. Here, we prove the following theorem for any odd \(k \). This can be written as a suitable computer program by considering each step of the following theorem as a sub-program that can be separately and directly run.

Theorem 2. Let \(k \) be odd. Then, we have the following:

(i) There uniquely exist rational polynomials \(B(x) \) and \(C(x) \) with \(\deg(C(x)) \leq \frac{k - 1}{2} \) such that

\[
f_k(x) = B^2(x) + C(x).
\]

(ii) Let \(l \) be the least positive integer such that \(IB(x) \) and \(l^2C(x) \) have integer coefficients for any nonnegative integer \(i \) and \(\delta \in \{1, -1\} \)

\[
P_{i,\delta}(x) = \delta(IB(x) + \delta i)^2 - \delta(IB(x))^2 - \delta l^2C(x),
\]

\(r \) is any positive integer,

\[
H_1 = \{ \alpha \in \mathbb{Z} : P_{r,\delta}(\alpha) = 0, \delta \in \{1, -1\}, i = 0, 1, 2, \ldots, r - 1 \},
\]

and

\[
H_2 = \{ \alpha \in \mathbb{R} : P_{r,1}(\alpha) = 0 \text{ or } P_{r,-1}(\alpha) = 0 \},
\]

where \(\mathbb{R} \) and \(\mathbb{Z} \) are the sets of all real numbers and integers, respectively. If \(H_1 \) and \(H_2 \) are empty, then (1) has no integral solution \((x, y, 2)\). Otherwise, all integral solutions \((x, y, 2)\) of (1) satisfy \(x \in H_1 \) or

\[
\min H_2 \leq x \leq \max H_2.
\]

2. Proofs

Lemma 1. Let \(k \geq 3 \). Then, all integral solutions \((x, y, n)\), \(n > 0 \) and \(y \neq 0 \), of (1) satisfy the equation

\[
a_2b_1y^n_2 - b_2a_1y^n_1 = 2b_1a_1,
\]

where \(a_1, a_2, b_1, \) and \(b_2 \) are positive integers such that

\[
a_1a_2b_1b_2 \mid 4 \sum_{i=0}^{k-1} (-1)^i A_{k-1-i}2^i,
\]

\(A_i \) is the coefficient of \(x^{k-i-1} \) in the polynomial \(f_k(x) / x(x + 2) \),

\[
x = \left(\frac{b_2}{b_1} \right) y^n_1, \text{ and } x + 2 = \left(\frac{a_2}{a_1} \right) y^n_2.
\]
for some nonzero integers \(y_1\) and \(y_2\).

Proof. Let \(k \geq 3\). Let \((x, y, n)\), with \(n > 0\) and \(y \neq 0\), be any integral solution of the Diophantine equation

\[
y^n = x + x(x + 1) + \cdots + x(x + 1) \cdots (x + k).
\]

This can be written as

\[
y^n = x(x + 2)g_k(x)
\]

for some integer polynomial \(g_k(x)\), which is not divided by \(x\) and \(x + 2\), since \(k \geq 3\). Let \(d\) and \(q\) be positive integers such that

\[
gcd(x, (x + 2)g_k(x)) = d \quad \text{and} \quad \gcd((x + 2), xg_k(x)) = q.
\]

Let \(d_1, d_2, q_1\), and \(q_2\) be positive integers such that \(d_1d_2 = d\ \gcd(d_1, d_2) = 1\), \(\gcd(d_2^2, (x/d)) = \gcd(d_2^2, ((x + 2)g_k(x)/d)) = 1\), \(q_1q_2 = q\), and \(\gcd(q_1, q_2) = 1 = \gcd(q_2^2, ((x + 2)/q)) = \gcd(q_2, (xg_k(x)/q)) = 1\). Then,

\[
\left(\frac{d_1^2}{d}\right)x = y_1^q \quad \text{and} \quad \left(\frac{q_2^2}{q}\right)(x + 2) = y_2^q
\]

for some nonzero integers \(y_1\) and \(y_2\), since \(y \neq 0\) and \(n \geq 1\). From this, we have

\[
q_2d_1^2y_2^n - dq_1^2y_1^n = 2q_1d_1^2
\]

and so

\[
q_2d_1^2y_2^n - dq_1^2y_1^n = 2q_1d_1.
\]

Let

\[
g_k(x) = f_k(x)/(x(x + 2)) = x^{k-1} + A_1x^{k-2} + \cdots + A_{k-1}
\]

and

\[
g(x) = x^2 + 2x.
\]

Then, for each integer \(l\) with \(0 \leq l \leq k - 1\),

\[
h_l(x) = \left(\sum_{i=0}^{l}(-1)^iA_{l-i}2^i\right)x^{k-l-1} + A_{l+1}x^{k-l-2} + \cdots + A_{k-1}.
\]

In particular,

\[
h_{k-1}(x) = \sum_{i=0}^{k-1}(-1)^iA_{k-i-1}2^i.
\]

This implies that

\[
\gcd(g(x), g_k(x)) \mid \sum_{i=0}^{k-1}(-1)^iA_{k-i-1}2^i,
\]

where \(A_i\) is the coefficient of \(x^{k-i-1}\) in the polynomial \(g_k(x)\).

If \(x\) is odd, then \(d \mid x, d \mid g_k(x), q \mid (x + 2), q \mid g_k(x)\) and so \(dq \mid \gcd(g(x), g_k(x))\).

Suppose that \(x\) is even. Then,

\[
\frac{dq}{4} \mid \frac{x(x + 2)}{4} \quad \text{and} \quad \frac{dq}{4} \mid g_k(x).
\]

Hence, we have

\[
dq \mid 4\gcd(g(x), g_k(x)) \quad \text{and} \quad dq \mid 4\sum_{i=0}^{k-1}(-1)^iA_{k-i-1}2^i.
\]

This proves the lemma. \(\square\)
Lemma 2 (Hajdu, Laishram, and Tengely [5]). Let a, b, and c be positive integers with $a < b \leq 4 \times 2,018,957 \times 99 \times 467$ and $c \leq 2ab$. Then, the Diophantine equation

$$au^n - bv^n = \pm c,$$

in integral variables $u > v > 1$, implies

$$n \leq \begin{cases} \max\{1000, 824.338 \log b + 0.258\} & \text{if } b \leq 100 \\ \max\{2000, 769.218 \log b + 0.258\} & \text{if } 100 < b \leq 10,000 \\ \max\{10,000, 740.683 \log b + 0.234\} & \text{if } b > 10,000 \end{cases}$$

Lemma 3 (Szalay [15]). Suppose that $p \geq 2$ and $r \geq 1$ are integers and that

$$F(x) = x^p + a_{rp-1} x^{p-1} + \cdots + a_0$$

is a polynomial with integer coefficients. Then, rational polynomials

$$B(x) = x^r + b_{r-1} x^{r-1} + \cdots + b_0$$

and $C(x)$ with $\deg(C(x)) \leq rp - r - 1$ uniquely exist for which

$$F(x) = B^p(x) + C(x).$$

Lemma 4 (Srikanth and Subburam [13]). Let p be a prime number, $B(x)$ and $C(x)$ be nonzero rational polynomials with $\deg(C(x)) < (p-1) \deg(B(x))$, l be a positive integer such that $l B(x)$ and $l^p C(x)$ have integer coefficients for any nonnegative integer i and $\delta \in \{1, -1\}$:

$$P_{i,\delta}(x) = \delta (l B(x) + \delta i)^p - \delta (l B(x))^p - \delta l^p C(x),$$

r be any positive integer,

$$H_1 = \{ \alpha \in \mathbb{Z} : P_{i,\delta}(\alpha) = 0, \delta \in \{1, -1\}, i = 0, 1, 2, \ldots, r - 1 \},$$

and

$$H_2 = \{ \alpha \in \mathbb{R} : P_{r,1}(\alpha) = 0 \text{ or } P_{r,-1}(\alpha) = 0 \}.$$

If H_1 and H_2 are empty, then the Diophantine equation

$$y^p = B(x)^p + C(x)$$

has no integral solution (x, y). Otherwise, all integral solutions (x, y) of the equation satisfy $x \in H_1$ or

$$\min H_2 \leq x \leq \max H_2.$$

In some other new way as per Note 2, using Laurent’s result leads to a better result. For our present purpose, the following lemma is enough.

Lemma 5 (Laurent, Mignotte, and Nesterenko [12]). Let l, m, a_1, a_2, β_1, and β_2 be positive integers such that $l \log(a_1/a_2) - m \log(\beta_1/\beta_2) \neq 0$. Let

$$\Gamma = \left| \left(\frac{a_1}{a_2} \right)^l \left(\frac{\beta_1}{\beta_2} \right)^m - 1 \right|.$$

Then, we have

$$|\Gamma| > 0.5 \exp\{-24.34 \log a \log \beta (\max\{\gamma + 0.14, 21\})^2\},$$
where $\kappa = \max\{3, \alpha_1, \alpha_2\}$, $\beta = \max\{3, \beta_1, \beta_2\}$ and $\gamma = \log\left(\frac{1}{\log \beta} + \frac{m}{\log \kappa}\right)$.

Proof of Theorem 1. Assume that $k \geq 3$. Then, by Lemma 1, all integral solutions (x, y, n), $y \neq 0, -1$ and $n \geq 1$, of (1) satisfy the equation

$$ay^2 - by^n = c,$$

where y_1 and y_2 are nonzero integers, a and b are positive integers such that $c \leq 2ab$,

$$ab \mid 4 \sum_{i=0}^{k-1} (-1)^i A_{k-i-1}2^i,$$

and A_i is the coefficient of x^{k-i-1} in the polynomial $f_k(x)/x(x+2)$. Without loss of generality, we can take $y_1 > y_2$ to prove the result. From (2), we write

$$\left| 1 - \left(\frac{a}{b}\right) \left(\frac{y_2}{y_1}\right)^n \right| = \frac{c}{by_1^2}.$$

Next, take $\alpha_1 = a$, $\alpha_2 = b$, $\beta_1 = y_2$, $\beta_2 = y_1$, $l = 1$, and $m = n$ in Lemma 5. Then, by the lemma, we obtain

$$\frac{c}{by_1^2} \geq \exp\{-24.3414(\log \max\{3, a, b\})(\log \max\{3, y_1\}) \max\{21, (\log n)\}^2\}.$$

From this, we obtain the required bound. Next, assume that $1 \leq k \leq 2$. Then, we can write Equation (1) as

$$y_1^2 = c_1 x$$

and

$$y_2^2 = c_2 (x+2)^i,$$

where $c_1, c_2 \in \{1/4, 1/2, 1, 2, 4\}$ and $i \in \{1, 2\}$. In the same way, we can obtain the required bound. To find the exact values of $A_0, A_1, \ldots, A_{k-1}$, equate the coefficients of the polynomials

$$g_k(x) = 1 + (x+1)(1+(x+3)+\cdots+(x+3)(x+4)\cdots(x+k)).$$

and

$$g_k(x) = x^{k-1} + A_1 x^{k-2} + \cdots + A_{k-1}.$$

Then, we obtain $A_0 = 1$, $A_1 = 1 + \alpha_1$, $A_{k-1} = 1 + \alpha_{k-2}$, and $A_j = \alpha_{j-1} + \alpha_j$ for $j = 2, 3, \ldots, k-2$ and

$$\alpha_m = 1 + \sum_{i=0}^{m-1} \lambda_{i+1}(3, \ldots, k + i - m + 1)$$

for $m = 1, 2, \ldots, k-2$. \□

Next, we consider the case that

$$b \leq 4 \times 9 \times 11 \times 467 \times 2,018,957.$$

If $y_1 = 1, y_2 = 1$, or $y_1 = y_2$, then we have

$$x = \frac{d_2}{d_1} = 1, x = \frac{q_2}{q_1} - 2 = -1, x = \frac{2q_1 d_2}{d_1 q_2 - q_1 d_2}.$$
where \(d_1, d_2, q_1 \) and \(q_2 \) are positive integers such that \(d_1 d_2 q_1 q_2 = ab \). These three equations give the required upper bound. Hence, Lemma 2 completes the theorem.

Proof of Corollary 1. Take \(k = 10 \) in Theorem 1. Then, \(A_0 = 1, A_1 = 54, A_2 = 1258, A_3 = 16,541, A_4 = 134,716, A_5 = 700,776, A_6 = 2,309,303, A_7 = 4,589,458, A_8 = 4,880,507, A_9 = 2,018,957, \) and \(b/4 = 46,233 \) and so

\[
740.683 \log b \leq 8982.9.
\]

In a similar way, for the case \(k < 10 \), we have

\[
\max \{10,000, 740.683 \log b + 0.23\} \leq 10,000.
\]

Hence, Lemma 2 confirms the result. \(\square \)

Proof of Theorem 2. Take \(F(x) = x + x(x + 1) + \cdots + x(x + 1) \cdots (x + k) \) in Lemma 3. Since \(k \) is odd, so \(2 \mid \deg(F(x)) \), \(p = 2 \), and \(r = \frac{k+1}{2} \). Then, by Lemma 3, there uniquely exist rational polynomials \(B(x) \) and \(C(x) \) with \(\deg(C(x)) \leq \frac{k-1}{2} \) such that

\[
F(x) = B^2(x) + C(x).
\]

Now, by Lemma 4, we have the theorem. \(\square \)

Note 1. First, find the values of the elementary symmetric forms \(\lambda_{i+1}(3, \ldots, k+i-m+1) \) for \(i = 0, \ldots, m-1 \) and \(m = 1, 2, \ldots, k-2 \). Next, obtain \(a_1, a_2, \ldots, a_{k-2} \) and so \(A_0, A_1, \ldots, A_{k-1} \). Using this, calculate \(|A_{k-i-1} - 2A_{k-i-2}| \) and so

\[
2^i |A_{k-i-1} - 2A_{k-i-2}| = |A_{k-i-1} 2^i - A_{k-i-2} 2^{i+1}|
\]

for \(i = 0, 2, 4, \ldots \). In this way, for any positive integer \(k \), we can find the exact value of \(b \) in Theorem 1. Therefore, it is not so hard to decide for which \(k \) is

\[
b \leq 4 \times 9 \times 11 \times 467 \times 2,018,957
\]

as in Theorem 1. For this work, we can use a suitable computer program.

Note 2. The result of Laurent [16] is an improvement on the result of Laurent, Mignotte, and Nesterenko [12]. From the proof, using the result of Laurent [16] and Proposition 4.1 in Hajdu, Laishram, and Tengely [5], we write the following:

Let \(A, B, \) and \(C \) be positive integers with \(C \leq 2AB, B > A \) and \(B \leq 4 \times 9 \times 11 \times 467 \times 2,018,957 \). Then, the equation

\[
Au^v - Bv^u = \pm C
\]

in integer variables \(u > v > 1, n > 3 \) implies

\[
n \leq C_m (\max \{m, h_n\})^2 (\log B) \left(2\left(\frac{\tau - 1}{\log u_0} + \frac{1}{\log u_0}\right) + \frac{\log 4}{\log u_0}\right),
\]

where

\[
h_n = \log \left(\frac{n}{(\tau + 1) \log B} + \frac{1}{2 \log u + (\tau - 1) q_0}\right) + \epsilon_m,
\]

in which \(q_0, u_0, C_m, m, \tau, \) and \(\epsilon_m \) are positive real numbers such that \(u \geq u_0, \log(u/v) \leq q_0, C_m > 1, \epsilon_m > 1, \) and \(\tau > 1 \).

If we use the above observation in Lemma 1 of this paper, then we obtain the bound

\[
n \leq C'_b (\log n - \log \log b)^2 \log b
\]
and so an immediate estimation is

\[n \leq c_2 \log b, \]

where \(c_2 \) is as in Theorem 1 and \(c'_2 \) is a positive real number depending on \(u_0, q_0, C_m, m, \tau, \) and \(\varepsilon_\eta. \) Though there are better bounds in the literature than what the linear form of the logarithmic method in Laurent, Mignotte, and Nesterenko [12] gives, it is sufficient to obtain an explicit bound only in terms of \(k \) using our method, which simplifies the arguments in Section 5 of [5] as well.

3. Conclusions

This article implied a method to obtain an upper bound for all \(n \) where \((x, y, n) \) is an integral solution of (1) and to improve the method and algorithm of [4]. The same method can be applied to study the general Diophantine equation (see [8–10]),

\[y^n = a_0 x + a_1 x(x + 1) + \cdots + a_k x(x + 1) \cdots (x + k), \]

where \(k, a_0, a_1, \ldots, a_k \) are fixed integers and \(x, y, n \) are integral variables in obtaining a better upper bound (depending only on \(k, a_0, a_1, \ldots, a_k \)) for all \(\max \{x, y, n\} \), where \((x, y, n) \) is an integral solution of the general equation.

Author Contributions: Conceptualization, S.S.; data curation, S.A.; formal analysis, S.S., N.A., and M.K.; methodology, N.A. and S.A.; project administration, W.C. and G.P.J.; resources, W.C. and G.P.J.; software, M.K.; supervision, W.C. and G.P.J.; validation, L.N.; visualization, L.N.; writing—original draft, S.S. and N.A.; writing—review and editing, G.P.J. All authors have read and agreed to the published version of the manuscript.

Funding: Anbazhagan and Amutha thank the RUSA grant sanctioned vide letter No. F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, Dt. 9 October 2018; the DST-PURSE 2nd Phase programme vide letter No. SR/PURSE Phase 2/38 (G) Dt. 21 February 2017; and the DST (FST—level I) 657876570 vide letter No. SR/FIST/MS-I/2018/17 Dt. 20 December 2018. S. Subburam’s research has been honored by the National Board of Higher Mathematics (NBHM), Department of Atomic Energy, Government of India (IN).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shorey, T.N.; Tijdeman, R. Exponential Diophantine Equations; Cambridge University Press: Cambridge, UK, 1986.
2. Tijdeman, R. Applications of the Gel’fond-Baker method to rational number theory. In Topics in Number Theory, Proceedings of the Conference Debrecen 1974; Colloquia Mathematica Societatis Janos Bolyai; North-Holland: Amsterdam, The Netherlands, 1976; Volume 13, pp. 399–416.
3. Waldschmidt, M. Open Diophantine problems. Mosc. Math. J. 2004, 4, 245–305. [CrossRef]
4. Brindza, B. Zeros of polynomials and exponential Diophantine equations. Comp. Math 1987, 61, 137–157.
5. Hajdu, L.; Laishram, S.; Tengely, S. Power values of sums of products of consecutive integers. Acta Arith 2016, 172, 333–349. [CrossRef]
6. Subburam, S. On the Diophantine equation \(la^2 + mb^2 = nc^2 \). Res. Number Theory 2018, 4, 25. [CrossRef]
7. Subburam, S. A note on the Diophantine equation \((x + a_1)^n + (x + a_2)^2 + \cdots + (x + a_m)^n = y^n \). Afrika Mat. 2019, 30, 957–958. [CrossRef]
8. Bázsó, A. On linear combinations of products of consecutive integers. Acta Math. Hung. 2020, 162, 690–704. [CrossRef]
9. Bázsó, A.; Berczes, A.; Hajdu, L.; Luca, F. Polynomial values of sums of products of consecutive integers. Monatsh. Math. 2018, 187, 21–34. [CrossRef]
10. Tengely, S.; Ulas, M. Power values of sums of certain products of consecutive integers and related results. J. Number Theory 2019, 197, 341–360. [CrossRef]
11. Subburam, S. The Diophantine equation \((y + q_1)(y + q_2) \cdots (y + q_m) = f(x) \). Acta Math. Hung. 2015, 146, 40–46. [CrossRef]
12. Laurent, M.; Mignotte, M.; Nesterenko, Y. Formes linéaires en deux logarithmes et determinants d’interpolation. *J. Number Theory* **1995**, *55*, 285–321. [CrossRef]

13. Srikanth, R.; Subburam, S. On the Diophantine equation $y^2 = \prod_{i \leq 8} (x + k_i)$. *Proc. Indian Acad. Sci. (Math. Sci.*) **2018**, *128*, 41. [CrossRef]

14. Subburam, S.; Togbe, A. On the Diophantine equation $y^n = f(x)/g(x)$. *Acta Math. Hung.* **2019**, *157*, 1–9. [CrossRef]

15. Szalay, L. Superelliptic equation $y^p = x^{kp} + a_{kp-1}x^{kp-1} + \cdots + a_0$. *Bull. Greek Math. Soc.* **2002**, *46*, 23–33.

16. Laurent, M. Linear forms in two logarithms and interpolation determinants II. *Acta Arith.* **2008**, *133*, 325–348. [CrossRef]