Detecting Intentional Packet Drops on the Internet via TCP/IP Side Channels: Extended Version

Roya Ensafi, Jeffrey Knockel, Geoffrey Alexander, and Jedidiah R. Crandall

Department of Computer Science, University of New Mexico, USA.
{royaen,jeffk,alexandg,crandall}@cs.unm.edu

Abstract. We describe a method for remotely detecting intentional packet drops on the Internet via side channel inferences. That is, given two arbitrary IP addresses on the Internet that meet some simple requirements, our proposed technique can discover packet drops (e.g., due to censorship) between the two remote machines, as well as infer in which direction the packet drops are occurring. The only major requirements for our approach are a client with a global IP Identifier (IPID) and a target server with an open port. We require no special access to the client or server. Our method is robust to noise because we apply intervention analysis based on an autoregressive-moving-average (ARMA) model. In a measurement study using our method featuring clients from multiple continents, we observed that, of all measured client connections to Tor directory servers that were censored, 98% of those were from China, and only 0.63% of measured client connections from China to Tor directory servers were not censored. This is congruent with current understandings about global Internet censorship, leading us to conclude that our method is effective.

1 Introduction

Tools for discovering intentional packet drops are important for a variety of applications, such as discovering the blocking of Tor by ISPs or nation states [1]. However, existing tools have a severe limitation: they can only measure when packets are dropped in between the measurement machine and an arbitrary remote host. The research question we address in this paper is: can we detect packet drops between two hosts without controlling either of them and without sharing the path between them? Effectively, by using idle scans our method can turn approximately 1% of the total IP address space into conscripted measurement machines that can be used as vantage points to measure IP-address-based censorship, without actually gaining access to those machines. We can achieve this because of information flow in their network stacks.

This is the extended version of a paper from the 2014 Passive and Active Measurements Conference (PAM), March 10th–11th, 2014, Los Angeles, California.
Antirez \[2\] proposed the first type of idle scan, which we call an IPID idle port scan. In this type of idle scan an “attacker” (which we will refer to as the \textit{measurement machine} in our work) aims to determine if a specific port is open or closed on a “victim” machine (which we will refer to as the \textit{server}) without using the attacker’s own return IP address. The attacker finds a “zombie” (client in this paper) that has a global IP identifier (IPID) and is completely idle. In this paper, we say that a machine has a global IPID when it sends TCP RST packets with a globally incrementing IPID that is shared by all destination hosts. This is in contrast to machines that use randomized IPIDs or IPIDs that increment per-host. The attacker repeatedly sends TCP SYN packets to the victim using the return IP address of the zombie, while simultaneously eliciting RST packets from the zombie by sending the zombie SYN/ACKs with the attacker’s own return IP address. If the victim port that SYN packets are being sent to is open, the attacker will observe many skips in the IPIDs from the zombie. Nmap \[3\] has built-in support for antirez’s idle scan, but often fails for Internet hosts because of noise in the IPID that is due to the zombie sending packets to other hosts. Our method described in this paper is resistant to noise, and can discover packet drops in either direction (and determine which direction). Nmap cannot detect the case of packets being dropped from client to server based on destination IP address, which our results demonstrate is a very important case.

Two other types of idle scans were presented by Ensafi \textit{et al.} \[4\], including one that exploits the state of the SYN backlog as a side channel. Our method is based on a new idle scan technique that can be viewed as a hybrid of the IPID idle scan and Ensafi \textit{et al.}’s SYN backlog idle scan. Whereas Ensafi \textit{et al.}’s SYN backlog idle scan required filling the SYN backlog and therefore causing denial-of-service, our technique uses a low packet rate that does not fill the SYN backlog and is non-intrusive. The basic insight that makes this possible is that information about the server’s SYN backlog state is entangled with information about the client’s IPID field. Thus, we can perform both types of idle scans (IPID and SYN backlog), to detect drops in both directions, and our technique overcomes the limitations of both by exploiting the entanglement of information in the IPID and treating it as a linear intervention problem to handle noise characteristic of the real Internet.

This research has several major contributions:

- A non-intrusive method for detecting intentional packet drops between two IP addresses on the Internet where neither is a measurement machine.
- An Internet measurement study that shows the efficacy of the method.
- A model of IPID noise based on an autoregressive-moving-average (ARMA) model that is robust to autocorrelated noise.

Source code and data are available upon request, and a web demonstration version of the hybrid idle scan is at \url{http://spookyscan.cs.unm.edu}. The types of measurements we describe in this paper raise ethical concerns because the measurements can cause the appearance of connection attempts between arbitrary clients and servers. In China there is no evidence of the owners of Internet
Fig. 1. Three different cases that our method can detect. MM is the measurement machine.

hosts being persecuted for attempts to connect to the Tor network, thus our measurements in this paper are safe. However, we caution against performing similar measurements in other countries or contexts without first evaluating the risks and ethical issues. More discussion of ethical issues is in Section 7.

The rest of the paper is structured as follows: After describing the implementation of our method in Section 2, we present our experimental methodology for the measurement study in Section 3. This is followed by Section 4 which describes how we analyze the time series data generated by a scan using an ARMA model. Results from the measurement study are in Section 5 followed by discussions of related work in Section 6 and ethical issues in Section 7 and then the conclusion.

2 Implementation

In order to determine the direction in which packets are being blocked, our method is based on information flow through both the IPID of the client and the SYN backlog state of the server, as shown in Figure 1. Our implementation queries the IPID of the client (by sending SYN/ACKs from the measurement machine and receiving RST responses) to create a time series to compare a base case to a period of time when the server is sending SYN/ACKs to the client (because of our forged SYNs). We assume that the client has global IPIDs and the server has an open port.

Global IPIDs were explained in Section 1. The SYN backlog is a buffer that stores information about half-open connections where a SYN has been received and a SYN/ACK sent but no ACK reply to the SYN/ACK has been received. Half-open connections remain in the SYN backlog until the connection is com-
pleted with an ACK, aborted by a RST or ICMP error, or the half-open connection times out (typically between 30 and 180 seconds). The SYN/ACK is retransmitted some fixed number of times that varies by operating system and version, typically three to six SYN/ACKs in total. This SYN backlog behavior on the server, when combined with the global IPID behavior of the client, enables us to distinguish three different cases (plus an error case):

- **Server-to-client-dropped**: In this case SYN/ACKs are dropped in transit from the server to the client based on the return IP address (and possibly other fields like source port), and the client’s IPID will not increase at all (except for noise). See Figure 2.

- **No-packets-dropped**: In the case that no intentional dropping of packets is occurring, the client’s IPID will go up by exactly one. See Figure 3. This happens because the first SYN/ACK from the server is responded to with a RST from the client, causing the server to remove the entry from its SYN backlog and not retransmit the SYN/ACK. Censorship that is stateful or not based solely on IP addresses and TCP port numbers may be detected as this case, including filtering aimed at SYN packets only. Also, if the packet is not dropped, but instead the censorship is based on injecting RSTs or ICMP errors, it will be detected as this case. Techniques for distinguishing these other possibilities are left for future work.
Fig. 3. Example IPID difference time series’ for three separate experiments that lead to detection of the **No-packets-dropped** case. Note the high amount of noise in the second experiment. Our ARMA modeling is able to detect this case correctly even in the presence of such high noise.

Fig. 4. Example IPID difference time series’ for three separate experiments that lead to detection of the **Client-to-server-dropped** case.
- **Client-to-server-dropped:** In this case RST responses from the client to the server are dropped in transit because of their destination IP address (which is the server). When this happens the server will continue to retransmit SYN/ACKs and the client’s IPID will go up by the total number of transmitted SYN/ACKs including retransmissions (typically three to six). See Figure 4. This may indicate the simplest method for blacklisting an IP address: null routing.

- **Error:** In this case networking errors occur during the experiment, the IPID is found to not be global throughout the experiment, a model is fit to the data but does not match any of the three non-error cases above, the data is too noisy and intervention analysis (see Section 4) fails because we are not able to fit a model to the data, and/or other errors.

Noise due to packet loss and delay or the client’s communications with other machines may be autocorrelated. The autocorrelation comes from the fact that the sources of noise, which include traffic from a client that is not idle, packet loss, packet reordering, and packet delay, are not memoryless processes and often happen in spurts. The accepted method for performing linear intervention analysis on time series data with autocorrelated noise is ARMA modeling [5], which we describe in Section 4.

3 Experimental Setup

All measurement machines were Linux machines connected to a research network with no packet filtering. Specifically, this network has no stateful firewall or egress filtering for return IP addresses.

One measurement machine was dedicated to developing a pool of both client and server IP addresses that have the right properties for use in measurements. Clients were chosen by horizontally scanning China and other countries for machines with global IPIDs, then continually checking them for a 24-hour period to cull out IP addresses that frequently changed global IPID behavior (e.g., because of DHCP), went down, or were too noisy. A machine is considered to have a global IPID if its IPID as we measure it by sending SYN/ACKs from alternating source IP addresses and receiving RSTs never incrementing outside the ranges $[-40, 0)$ or $(0, 1000]$ per second when probed from two different IP addresses. This range allows for non-idle clients, packet loss, and packet reordering. It is possible to build the time series in different ways where negative IPID differences are never observed, but in this study our time series was the differences in the client’s IPIDs in the order in which they arrived at the measurement machine. Our range of $[-40, 0)$ or $(0, 1000]$ is based on our observations of noise typical of the real Internet. The IPID going up by 0 is a degenerate case and means the IPID is not global.

Servers were chosen from three groups: Tor directory authorities, Tor bridges, and web servers. The ten Tor directory authorities were obtained from the Tor source code and the same ten IPs were tested for every day of data. Three Tor
bridges were collected daily both through email and the web. Every day seven web servers were chosen randomly from the top 1000 websites on the Alexa Top 1,000,000 list [6]. All web server IPs were checked to make sure that they stood up for at least 24 hours before being selected for measurement. Furthermore, we checked that the client and server were both up and behaving as assumed between every experiment (i.e., every five minutes).

A round of experiments was a 24-hour process in which measurements were carried out on the two measurement machines. Each 24-hour period had 22 hours of experiments and 2 hours of down time for data synchronization. For each measurement period on each of the two machines performing direct measurements, ten server machines and ten client machines from the above process were chosen for geographic diversity: 5 from China, 2 from countries in Asia that were not China, 1 from Europe, and 2 from North America. IP addresses were never reused except for the Tor directory authorities, so that every 24-hour period was testing a set of 20 new clients, 10 new servers, and the 10 directory authorities.

For each of the twenty clients and twenty servers geographical information provided by MaxMind was saved. MaxMind claims an accuracy of 99.8% for identifying the country an IP address is in [7]. For each of the twenty server machines, a series of SYN packets was used to test and save its SYN/ACK retransmission behavior for the analysis in Section 4.

Every hour, each of our two main measurement machines created ten threads. Each thread corresponded to one client machine. Each thread tested each of the ten server IP addresses sequentially using our idle scan based on the client’s IPID. No forged SYNs were sent to the server during the first 100 seconds of a test, and forged SYNs with the return IP address of the client were sent to the server at a rate of 5 per second for the second 100-second period. Then forged RST packets were sent to the server to clear the SYN backlog and prevent interference between sequential experiments. A timeout period of sixty seconds was observed before the next test in the sequence was started, to allow all other state to be cleared. Each experiment lasted for less than five minutes, so that ten could be completed in an hour. Every client and server was involved in only one experiment at a time. Each client/server pair was tested once per hour throughout the 24-hour period, for replication and also to minimize the effects of diurnal patterns. Source and destination ports for all packets were carefully chosen and matched to minimize assumptions about what destination ports the client responds on. Specifically, source ports for SYN packets sent to the server (both forged SYNs and SYNs with the measurement machine’s IP address as the return IP address for testing) were chosen from the same range as the destination ports for SYN/ACKs send to the client (always strictly less than 1024). We did not find it necessary to hold the source port for SYN/ACKs sent to the client to be always equal to the open port on the server, but this is possible.
4 Analysis

In this section, we set out our statistical model for our time series data. We then describe our process for outlier removal and for statistically testing if and in which direction packet drops are occurring.

We model each time series \(y_1, \ldots, y_n \) as a linear regression with ARMA errors, a combination of an autoregressive-moving-average (ARMA) model with external linear regressors. ARMA models are used to analyze time series with autocorrelated data and are themselves a combination of two models, an autoregressive (AR) model and a moving-average (MA) model.

An AR model of order \(p \) specifies that every element of a time series can be written as a constant plus the linear combination of the previous \(p \) elements:

\[
y_t = c + z_t + \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p}
\]

where \(z_t \) is a white noise series. An MA model of order \(q \) specifies that every element of a time series can be written as a constant plus the linear combination of the previous \(q \) white-noise terms:

\[
y_t = c + z_t + \theta_1 z_{t-1} + \cdots + \theta_q z_{t-q}
\]

Intuitively, each element is linearly related to the previous random “shocks” in the series. An ARMA(\(p, q \)) model combines an AR model of order \(p \) and an MA model of order \(q \):

\[
y_t = c + z_t + \sum_{i=1}^{p} \phi_i y_{t-i} + \sum_{i=1}^{q} \theta_i z_{t-i}
\]

We use a linear regression with ARMA errors to model our time series data. This specifies that every element in a time series can be written as a constant plus the linear combination of regressors \(x_1, \ldots, x_r \) with an ARMA-modeled error term:

\[
y_t = c + \sum_{i=1}^{r} \beta_i x_{it} + e_t,
\]

\[
e_t = z_t + \sum_{i=1}^{p} \phi_i e_{t-i} + \sum_{i=1}^{q} \theta_i z_{t-i}
\]

We use the regressors \(x_i \) for intervention analysis, i.e., for analyzing our experimental effect on the time series at a specific time.

For each experiment, we pick regressors according to which times the server (re)transmits SYN/ACK’s in response to SYN’s. For a server that (re)transmits \(r \) SYN/ACK’s in response to each SYN, we have \(r \) regressors. We call time \(t_1 \) the time of the first transmission in response to the first of our forged SYN’s, and we call \(t_{i+1} \) the time the server would send the \(i \)th retransmission in response to that SYN. Then we define regressor \(x_i \) as the indicator variable

\[
x_{ij} = \begin{cases} 1 & \text{if } t_i \leq j \text{ and either } j < t_{i+1} \text{ or } i = r \\ 0 & \text{otherwise} \end{cases}
\]
Fig. 5. For a server that retransmits \(r - 1 \) SYN/ACK’s, each case can be expressed as the linear combination of regressors \(x_1, \ldots, x_r \); shown is when \(r = 3 \) with SYN/ACK transmissions responding to the first forged SYN occurring at \(t_1, t_2, \) and \(t_3 \). C→S indicates client-to-server, and S→C indicates server-to-client.

In other words, \(x_1 \) is zeros until the time the server transmits the first SYN/ACK then ones until the server begins retransmitting SYN/ACK’s. The remaining \(x_i \) are zeros until the time the server would begin retransmitting its \(i \)th SYN/ACK then ones until if/when the \((i+1) \)th SYN/ACK’s would begin being retransmitted. This definition allows us to model any of the possible level shifts in any case of packet drop as a linear combination of all \(x_i \). See Figure 5 for an illustration.

We choose ARMA orders \(p \) and \(q \) by performing model selection over time series elements \(y_1, \ldots, y_{t_1} \). We find the \(p \leq 7 \) and \(q \leq 7 \) for the ARMA(\(p, q \)) model that maximizes the corrected Akaike information criterion, a metric which rewards models that lose less information but penalizes models overfitted with too many parameters [8]. It is given by

\[
AIC_C = -2 \ln L + 2k + \frac{2k(k+1)}{n-k-1},
\]

where here the number of parameters \(k \) is \(p + q + 2 \) and where \(L \) is the estimated maximum likelihood over all \(\phi_i \) and \(\theta_i \).

After \(p \) and \(q \) are chosen, we then simultaneously fit all \(\phi_i, \theta_i, \) and \(\beta_i \) of our linear regression model with ARMA errors over the entire time series \(y_1, \ldots, y_n \) corresponding to the estimated maximum likelihood.

After fitting parameters, we remove outliers that might be caused by, e.g., spikes in network traffic that may hamper our analysis. We use the \(\hat{\lambda}_{2,T} \) test statistic proposed by Chang et al. [9] with significance \(\alpha = 0.05 \). After removing outliers, we iteratively refit the \(\phi_i, \theta_i, \) and \(\beta_i \) parameters and test for outliers until no additional outliers are removed.

For intervention analysis, we use hypothesis testing over the value of \(\beta_r \) to determine if packets are dropped and in which direction. If we send \(s \) forged SYN’s, without noise, we would expect \(\beta_r \) to equal one of the following: 0 for
the case where packets are dropped from the server to client, s for the case where no packets are dropped, or rs for the case where packets are dropped from the client to server. One might pick two thresholds, $k_1 = s/2$ in between the first two cases and threshold $k_2 = (1 + r)s/2$ between the last two cases; however, for the second threshold, we instead choose $k_2' = \min(2s, k_2)$ to be more robust to, e.g., packet loss. Then we determine the case by a series of one-sided hypothesis tests performed with significance $\alpha = 0.01$ according to the following breakdown:

- **Server-to-client-dropped** if we reject the null hypothesis that $\beta_r \geq k_1$.
- **No-packets-dropped** if we reject the null hypotheses that $\beta_r \leq k_1$ and that $\beta_r \geq k_2'$.
- **Client-to-server-dropped** if we reject the null hypothesis that $\beta_r \leq k_2'$.
- **Error** if none of the above cases can be determined.

5 Results

Table 1 shows results from 5 days of data collection, where $S \rightarrow C$ is **Server-to-client-dropped**, None is **No-packets-dropped**, $C \rightarrow S$ is **Client-to-server-dropped**, and Error is **Error**. CN is China, Asia-CN is other Asian countries, EU is Europe, and NA is North America. For server types, Tor-dir is a Tor directory authority, Tor-bri is a Tor bridge, and Web is a web server.

Client,Server	$S \rightarrow C$ (%)	None (%)	$C \rightarrow S$ (%)	Error (%)
CN,Tor-dir	2200 (73.04)	19 (0.63)	504 (16.73)	289 (9.59)
Asia-CN,Tor-dir	0 (0.00)	1171 (96.38)	1 (0.08)	43 (3.54)
NA,Tor-dir	1 (0.07)	1217 (90.69)	49 (3.65)	75 (5.59)
EU,Tor-dir	2 (0.28)	695 (97.89)	2 (0.28)	11 (1.55)
CN,Tor-bri	1012 (58.91)	565 (32.89)	31 (1.80)	110 (6.40)
Asia-CN,Tor-bri	0 (0.00)	626 (80.88)	9 (1.6)	139 (17.96)
NA,Tor-bri	0 (0.00)	657 (78.21)	30 (3.57)	153 (18.21)
EU,Tor-bri	0 (0.00)	313 (78.25)	9 (2.25)	78 (19.50)
CN,Web	28 (2.15)	995 (76.30)	36 (2.76)	245 (18.79)
Asia-CN,Web	1 (0.17)	569 (97.43)	1 (0.17)	13 (2.23)
NA,Web	0 (0.00)	606 (93.37)	0 (0.00)	43 (6.63)
EU,Web	0 (0.00)	305 (90.24)	0 (0.00)	33 (9.76)
All Web	29 (1.01)	2475 (86.09)	37 (1.29)	334 (11.62)
All Tor-bri	1012 (27.12)	2161 (57.90)	79 (2.12)	480 (12.86)
All Tor-dir	2203 (35.09)	3102 (49.40)	556 (8.85)	418 (6.66)

Table 1. Results from the measurement study.

Our expectation would be to observe **Server-to-client-dropped** for clients in China and Tor servers because of Winter and Lindskog’s observation that the SYN/ACKs are statelessly dropped by the “Great Firewall of China” (GFW)
based on source IP address and port \[10\]. We would expect to see \textbf{No-packets-dropped} for most web servers from clients in China, unless they host popular websites that happen to be censored in China. Similarly, in the expected case we should observe \textbf{No-packets-dropped} for clients outside of China, regardless of server type. We expect a few exceptions, because censorship happens outside of China and because the GFW is not always 100% effective. In particular, Tor bridges are not blocked until the GFW operators learn about them, and some routes might not have filtering in place. Our results are congruent with all of these expectations.

In 5.9\% of the client/server pairs we tested, multiple cases were observed in the same day. In some cases it appears that noise caused the wrong case to be detected, but other cases may be attributable to routes changing throughout the day \[11\]. That the data is largely congruent with our expectations demonstrates the efficacy of the approach, and some of the data points that lie outside our expectations have patterns that suggest that a real effect is being measured, rather than an error. For example, of the 28 data points where web servers were blocked from the server to the client in China, 20 of those data points are the same client/server pair.

38\% of the data we collected does not appear in Table \[1\] because it did not pass liveness tests. Every 5-minute data point has three associated liveness tests. If a server sends fewer than 2.5 SYN/ACKs in response to SYNs from the measurement machine, a client responds to less than \(\frac{3}{5}\) of our SYN/ACKs, or a measurement machine sending thread becomes unresponsive, that 5-minute data point is discarded.

Two out of the ten Tor directory authorities never retransmitted enough SYN/ACKs to be included in our data. Of the remaining eight, two more account for 98.8\% of the data points showing blocking from client to server. These same two directory authorities also account for 72.7\% of the Error cases for directory authorities tested from clients in China, and the case of packets being dropped from server to client (the expected case for China and the case of the majority of our results) was never observed for these two directory authorities.

When Winter and Lindskog \[10\] measured Tor reachability from a virtual private server in China, there were eight directory authorities at that time. One of the eight was completely accessible, and the other seven were completely blocked in the IP layer by destination IP (\textit{i.e., Client-to-server}). In our results, six out of ten are at least blocked \textbf{Server-to-client} and two out of ten are only blocked \textbf{Client-to-server} (two had all results discarded). Winter and Lindskog also observed that Tor relays were accessible 1.6\% of the time, and we observed that directory authorities were accessible 0.63\% of the time. Our results have geographic diversity and their results can serve as a ground truth because they tested from within China. In both studies the same special treatment of directory authorities compared to relays or bridges was observed, as well as a small percentage of cases where filtering that should have occurred did not.

To evaluate the assumption that clients with a global IPID are easy to find in a range of IP addresses that we desire to measure from, take China as an
example. On average, 10% of the IP addresses in China responded to our probes so that we could observe their IPID, and of those 13% were global. So, roughly 1% of the IP address space of China can be used as clients for measurements with our method, enabling experiments with excellent geographic and topological diversity.

6 Related Work

Related work directly related to idle scans [2,3,4] was discussed in Section 1. Other advanced methods for inferring remote information about networks have been proposed. Qian et al. [12] demonstrate that firewall behavior with respect to sequence numbers can be used to infer sequence numbers and perform off-path TCP/IP connection hijacking. Chen et al. [13] use the IPID field to perform advanced inferences about the amount of internal traffic generated by a server, the number of servers in a load-balanced setting, and one-way delays. Morbitzer [14] explores idle scans in IPv6.

iPlane [15] sends packets from PlanetLab nodes to carefully chosen hosts, and then compounds loss on specific routes to estimate the packet loss between arbitrary endpoints without access to those endpoints. This does not detect IP-address-specific packet drops. Our technique, in contrast, can be used to detect intentional drops of packets based on IP address and requires no commonalities between the measurement machine’s routes to the server or client and the routes between the server and client. Queen [16] utilizes recursive DNS queries to measure the packet loss between a pair of DNS servers, and extrapolates from this to estimate the packet loss rate between arbitrary hosts. Reverse traceroutes can be performed by forging return IP addresses and using the IP options for recording routes and timestamps [17]. De A. Rocha et al. [18] present a method for estimating average variance and delay based on forged return IP addresses and the IPID field.

Dainotti et al. [19] analyze several Internet disruption events that were censorship-related using various data sources from both the control and data planes. Flach et al. [20] present a method for detecting cases where routing decisions are not solely based on destination IP address. In general, understanding reachability and routing issues on the Internet is an important problem, and we assert that idle scans are a promising general approach to perform these kinds of measurements.

7 Discussion of Ethical Issues

The main ethical concerns with the measurements presented in this paper arise from the fact that we are essentially creating traffic between a client and server, where the client is typically inside a domain where access to the server might be blocked. Simply creating such traffic may have negative consequences for the owner/operator of the client machine. A separate ethical concern is raised by the measurements themselves, because we are sending SYN packets at a relatively
high rate, some of them forged, with no intention of completing a connection with the server.

Regarding the creation of traffic between the client and server, assuming that the path from the measurement machine to the server does not go through the censor’s Internet infrastructure, then the traffic generated between the client and server that the censor can see is only SYN/ACKs from the server to the client and RSTs from the client to the server. Nonetheless, if this information is reported to authorities in an aggregated form, such as netflow records or aggregate bandwidth numbers, then it could appear that the client is communicating with the server. Thus we strongly recommend that the measurements we present in this paper not be carried out without a full understanding of the context and ethical considerations specific to the country being studied. China has no history of persecuting Internet users for attempting to connect to evasion technologies such as the Tor network. China’s basic approach to censorship and surveillance on the Internet is to have these functions carried out by companies (see, e.g., Crandall et al. [21]), with the government only stepping in when the companies fail to do an adequate job [22]. For more information about Internet controls in China, see the Open Net Initiative’s country profile [23].

Regarding the fact that we are sending SYN packets to the server at a relatively high rate with no intention of completing a connection, note that the rate we are sending SYN packets (5 per second) is not enough to create a denial-of-service condition on any modern network stack. Modern network stacks have mechanisms for preventing their SYN backlogs from being filled except at very high rates, and, even if the SYN backlog is full, modern operating systems typically have SYN cookies [24] turned on by default. Causing the SYN backlog to fill is still a potential denial-of-service when SYN cookies are enabled, because SYN cookies are never retransmitted and often exclude important features such as the scaled flow control window. Fortunately, our hybrid idle scan, unlike the SYN backlog idle scan of Ensafi et al. [4], does not require the SYN backlog to be full before information is leaked about the SYN backlog state. For an interesting discussion about ethical issues related to port scans in general, we refer the reader to Durumeric et al. [25].

8 Conclusion

We have presented a method for detecting intentional packet drops (e.g., due to censorship) between two almost arbitrary hosts on the Internet, assuming the client has a globally incrementing IPID and the server has an open port. Our method can determine which direction packets are being dropped in, and is resistant to noise due to our use of an ARMA model for intervention analysis. Our measurement results are congruent with current understandings about global Internet censorship, demonstrating the efficacy of the method.
9 Acknowledgments

We would like to thank the anonymous PAM 2014 reviewers and our shepherd, Jelena Mirkovic, as well as Terran Lane, Patrick Bridges, Michalis Faloutsos, Stefan Savage, and Vern Paxson for helpful feedback on this work. This material is based upon work supported by the National Science Foundation under Grant Nos. #0844880, #1017602, #0905177, and #1314297.

References

1. arma: Research problem: Five ways to test bridge reachability. Tor Blog, 1 December 2011, available at: https://blog.torproject.org/blog/research-problem-five-ways-test-bridge-reachability

2. Antirez: New tcp scan method. Posted to the bugtraq mailing list, 18 December 1998

3. Lyon, G.: Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning. Insecure.Org LLC, Sunnyvale, CA, USA (2009)

4. Ensafi, R., Park, J.C., Kapur, D., Crandall, J.R.: Idle port scanning and non-interference analysis of network protocol stacks using model checking. In: Proceedings of the 19th USENIX Security Symposium. USENIX Security’10, USENIX Association (2010)

5. Bisgaard, S., Kulahci, M.: Time Series Analysis and Forecasting by Example (Wiley Series in Probability and Statistics). Wiley (2011)

6. Alexa: Alexa top 1,000,000 sites. Available at: http://www.alexa.com/topsites

7. MaxMind: How accurate are your GeoIP databases? Available at: http://www.maxmind.com/en/faq#accurate

8. Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small samples. Biometrika 76(2) (1989) 297–307

9. Chang, I., Tiao, G.C., Chen, C.: Estimation of time series parameters in the presence of outliers. Technometrics 30(2) (1988) 193–204

10. Winter, P., Lindskog, S.: How the Great Firewall of China is Blocking Tor. In: Free and Open Communications on the Internet, Bellevue, WA, USA, USENIX Association (2012)

11. Paxson, V.: End-to-end internet packet dynamics. SIGCOMM Comput. Commun. Rev. 27(4) (1997) 139–152

12. Qian, Z., Mao, Z.M.: Off-path TCP sequence number inference attack - how firewall middleboxes reduce security. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy. SP ’12, Washington, DC, USA, IEEE Computer Society (2012) 347–361

13. Chen, W., Huang, Y., Ribeiro, B.F., Suh, K., Zhang, H., de Souza e Silva, E., Kurose, J., Towsley, D.: Exploiting the IPID field to infer network path and end-system characteristics. In: Proceedings of the 6th international conference on Passive and Active Network Measurement. PAM’05, Berlin, Heidelberg, Springer-Verlag (2005) 108–120

14. Morbitzer, M.: TCP Idle Scans in IPv6. Master’s thesis, Radboud University Nijmegen, The Netherlands (2013)

15. Madhyastha, H.V., Isdal, T., Pietek, M., Dixon, C., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane: an information plane for distributed services. In: Proceedings of the 7th symposium on Operating Systems Design and Implementation. OSDI ’06, Berkeley, CA, USA, USENIX Association (2006) 367–380
16. Wang, Y.A., Huang, C., Li, J., Ross, K.W.: Queen: Estimating packet loss rate between arbitrary Internet hosts. In: Proceedings of the 10th International Conference on Passive and Active Network Measurement. PAM ’09, Berlin, Heidelberg, Springer-Verlag (2009) 57–66
17. Katz-Bassett, E., Madhyastha, H.V., Adhikari, V.K., Scott, C., Sherry, J., Van Wesep, P., Anderson, T., Krishnamurthy, A.: Reverse traceroute. In: Proceedings of the 7th USENIX conference on Networked systems design and implementation. NSDI’10, Berkeley, CA, USA, USENIX Association (2010) 15–15
18. De A. Rocha, A.A., Leão, R.M.M., De Souza e Silva, E.: A non-cooperative active measurement technique for estimating the average and variance of the one-way delay. In: Proceedings of the 6th international IFIP-TC6 Conference on Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet. NETWORKING’07, Berlin, Heidelberg, Springer-Verlag (2007) 1084–1095
19. Dainotti, A., Squarcella, C., Aben, E., Claffy, K.C., Chiesa, M., Russo, M., Pescapé, A.: Analysis of country-wide internet outages caused by censorship. In: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. IMC ’11, New York, NY, USA, ACM (2011) 1–18
20. Flach, T., Katz-Bassett, E., Govindan, R.: Quantifying violations of destination-based forwarding on the internet. In: Proceedings of the 2012 ACM Conference on Internet Measurement Conference. IMC ’12, New York, NY, USA, ACM (2012) 265–272
21. Crandall, J., Crete-Nishihata, M., Knockel, J., McKune, S., Senft, A., Tseng, D., Wiseman, G.: Chat program censorship and surveillance in china: Tracking TOM-Skype and Sina UC. First Monday 18(7) (2013)
22. Link, P.: China: The anaconda in the chandelier. The New York Review of Books, April, 2002
23. Open Net Initiative: Country profile: China. Available at https://opennet.net/research/profiles/china-including-hong-kong
24. Bernstien, D.J.: SYN Cookies. http://cr.yp.to/syncookies.html
25. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: Fast Internet-wide scanning and its security applications. In: Proceedings of the 22nd USENIX Security Symposium. (August 2013)