A Simple Approach to Mode Analysis for Parabolic Waveguides

Charles S. Kenney, Associate Member, IEEE, and P. L. Overfelt, Member, IEEE

Abstract — Difficulty in obtaining accurate values for parabolic cylinder functions has been an impediment to mode analysis for parabolic waveguides. A simple method, based on one-dimensional analytic continuation, is presented which gives essentially exact values for these functions; i.e., the relative error in the computed result is on the order of the machine round-off. When supplemented with a Newton–Poisson shooting method and simple homotopy techniques, this continuation method can be used to find the TE and TM mode eigenvalues, and associated separation constants, for arbitrary parabolic domains. These methods are then used to compute a power handling efficiency factor for a range of parabolic regions.

I. INTRODUCTION

We consider parabolic cylinders of uniform cross section in the confocal parabolic coordinates \((\xi, \eta, z)\), which are related to rectangular coordinates \((X, Y, Z)\) via

\[
X = \frac{1}{2} (\eta^2 - \xi^2) \quad Y = \eta \xi \quad z = Z
\]

(see Fig. 1). The cross sections of interest consist of the interior regions \(\Omega = \Omega(\xi_0, \eta_0)\) bounded on the right by the curve \(\eta = \eta_0\) and on the left by the curve \(\xi = \xi_0\).

Assuming a uniform, perfectly conducting waveguide of parabolic cross section with \(e^{-j\beta z} e^{j\omega t}\) dependence, we use

\[
\psi = \begin{bmatrix} E_z \\ H_z \end{bmatrix}
\]

where \(\psi\) satisfies

\[
\psi_{XX} + \psi_{YY} = -k^2 \psi \quad \text{in} \quad \Omega
\]

subject to the boundary conditions,

\[
E_z = 0 \quad \text{on} \quad \partial \Omega \quad \text{(TM modes)}
\]

(3)

or

\[
\frac{\partial H_z}{\partial n} = 0 \quad \text{on} \quad \partial \Omega \quad \text{(TE modes)}.
\]

(4)

Here \(\partial \Omega\) denotes the boundary of \(\Omega\), \(\partial / \partial n\) is the outward normal derivative, and variable subscripts indicate differentiation. In (2), \(k^2 = k_{\xi}^2 - \beta^2\) and \(k_{\xi}^2 = \omega^2 \epsilon_0 \mu_0\).

Fig. 1. Confocal parabolic regions.

Expressing (2) in parabolic coordinates gives

\[
\psi_{\xi \xi} + \psi_{\eta \eta} = -k^2 (\xi^2 + \eta^2) \psi.
\]

(5)

Using separation of variables with \(\psi = U(\xi)V(\eta)\) we find

\[
U_{\xi\xi} + (k_\eta^2 \xi^2 + \alpha) U = 0
\]

(6)

\[
V_{\eta\eta} + (k_\xi^2 \eta^2 - \alpha) V = 0
\]

(7)

where \(\alpha\) is the separation constant. Equations (6) and (7) must be supplemented by the boundary conditions

\[
U(\xi_0) = 0, \quad V(\eta_0) = 0 \quad \text{(TM modes)}
\]

(8)

or

\[
U(\xi_0) = 0, \quad V(\eta_0) = 1 \quad \text{(TE modes)}.
\]

(9)

Although (6) and (7) can be solved for any \(\alpha\) and \(k\), the boundary conditions (8) and (9) are satisfied only at discrete pairs \((\alpha, k)\), when \(\xi_0\) and \(\eta_0\) are fixed.

In the following section, we show that solutions to (6) and (7) can be computed via one-dimensional analytic continuation. Section III discusses a Newton–Poisson shooting method for finding the separation constants, \(\alpha\), and eigenvalues, \(k\), for fixed \(\xi_0\) and \(\eta_0\). This method is easy to use and reveals some inaccuracies in previously published work. In particular, Tables I and II give pairs of values \((\alpha, q) = (\alpha/2k, \sqrt{2k})\) to seven significant digits for the case \(\xi_0 = \eta_0\), and show that some entries in similar tables from [1] have only one digit of accuracy. The values in Tables I and II were used to generate (via a simple homotopy method) the eigen-
values of the first nine TM modes and the first eight TE modes for \( \xi_0 = 1 \) and \( 0.1 \leq \eta_0 \leq 1 \), as illustrated in Figs. 6–9. These figures show that the TM modal ordering given in [2, pp. 1401–1402] is incorrect (since the TM modes immediately following \( k_{31}, k_{13} \) should be \( k_{20} \) and \( k_{00} \) rather than \( k_{22} \)). Highly accurate polynomial/rational approximations of the separation constants and eigenvalues are also given in this section for the first three TM and TE modes for \( 0.1 \leq \eta_0 \leq 1 \) and \( \xi_0 = 1 \).

The last section of this paper considers selecting \( \eta_0 \) (for \( \xi_0 = 1 \)) so as to optimize the power handling capability [3, 20] of the parabolic waveguide. Fig. 10 shows that there are two local maxima of the power handling efficiency factor, \( \gamma \), for \( 0 \leq \eta_0 \leq 1 \). As in [4], both of these maxima occur at \( \eta_0 \) values for which the second and third TE mode eigenvalues are equal. The largest of these \( \gamma \) values is 0.4600, which occurs at \( \eta_0 = 1 \), and gives a symmetrical cross section to the parabolic waveguide. This compares well with \( \gamma = 0.4653 \) for the 2:1 rectangle and \( \gamma = 0.4698 \) for an ellipse of eccentricity \( e = 0.8546 \).

II. ANALYTIC CONTINUATION

In order to treat (6)–(9) in a systematic manner, we use the normalized functions, \( u \) and \( v \), where

\[
\frac{1}{\sqrt{2k}} u(\xi) = U(\xi) \quad (10)
\]
\[
\frac{1}{\sqrt{2k}} v(\eta) = V(\eta) . \quad (11)
\]

This leads to

\[
u_{xx} + \left( \frac{x^2}{2} + \frac{\alpha}{2k} \right) u = 0 \quad (12)
\]
\[
u_{xx} + \left( \frac{x^2}{2} - \frac{\alpha}{2k} \right) v = 0 \quad (13)
\]

where \( x = \sqrt{2k} \xi \) for (12) and \( x = \sqrt{2k} \eta \) for (13), with

\[
u(\sqrt{2k} \xi_0) = u(\sqrt{2k} \eta_0) = 0 \quad (TM \text{ modes})
\]
\[
u(\sqrt{2k} \xi_0) = u(\sqrt{2k} \eta_0) = 0 \quad (TE \text{ modes}) . \quad (14)
\]

Both (12) and (13) have the form

\[
u_{xx} + \left( \frac{x^2}{2} + \alpha \right) v = 0 . \quad (15)
\]

The solution to (16) can be expressed in terms of Whittaker functions [5], [6] or Weber functions [7]–[9] but these methods are more useful for exterior parabolic problems. Another approach [10] is to expand \( y \) in a Taylor series about \( x = 0 \):

\[
y(x) = y_0 + y_1 x + \cdots + y_n x^n + \cdots \quad (17)
\]

where \( y_n \) is the \( n \)th derivative of \( y \) at \( x = 0 \). We may assume that \( y_0 \) and \( y_1 \) are given (in fact \( y_0 = 1 \), \( y_1 = 0 \) generates the even, cosinelike solution to (16) as illustrated in Fig. 2; \( y_0 = 0 \), \( y_1 = 1 \) generates the odd, sinelike solution to (16)).
where \( y_n \) now denotes the \( n \)th derivative of \( y \) at \( x = x_0 \). By substituting \( x = x_0 + h \) into (16), the higher order values of \( y_n \) can be generated by

\[
y_n = -\frac{(4a + x_0^2)}{4} y_{n-2} - \frac{(n - 2)x_0}{2} y_{n-3} + \frac{(n - 2)(n - 3)}{4} y_{n-4}. \quad (20)
\]

Differentiating (19) with respect to \( h \) gives the series expansion for \( y_n \):

\[
y_n(x_0 + h) = y_1 + y_2 h + \cdots + y_n \frac{h^{n-1}}{(n-1)!} + \cdots. \quad (21)
\]

Thus to evaluate \( y \) at \( x \), given \( y(0) \) and \( y_1(0) \), set \( h = x/N \) for \( N \) large enough so that \(|h| \) is small, say \(|h| \leq 0.1 \); then evaluate \( y(h) \) and \( y_1(h) \) by (19) and (21). Proceeding sequentially, evaluate \( y \) and \( y_1 \) at \( dh \) for \( 1 \leq i \leq N \). The sums in (19) and (20) are truncated so that the pseudorelative error is less than a prescribed tolerance value \( \epsilon \). That is, pick \( n \) large enough so that

\[
\frac{|y_{n+1} h^{n+1}|}{n+1} < \epsilon \quad \text{(relative error test for } y) \quad (22)
\]

and

\[
\frac{|y_{n+1} h^n|}{n!} < \epsilon \quad \text{(relative error test for } y_n). \quad (23)
\]

The above method is really just a one-dimensional version of analytic continuation [11] and is sometimes referred to as a constant-step variable-order Taylor method [12]. The accuracy of the analytic continuation method was checked by using the ordinary differential equation solver LSODE [13], which employs error monitoring procedures such as those described in [14]. In all computations the analytic continuation method gave at least 11 digits of accuracy and because of its specialized nature was ten to one hundred times faster than the LSODE solver.

III. NEWTON–POISSON SHOOTING METHOD

By combining features of the Poisson shooting method [15] with the vector form of Newton’s method [12], we can solve the second-order ordinary differential equations (12) and (13) subject to (14) or (15) for fixed values of \( \xi_0 \) and \( \eta_0 \).

For vector valued functions, \( f: R^n \rightarrow R^n \), Newton’s method of solving \( f(\omega) = 0 \) consists of an iterative procedure:

\[
\omega^{k+1} = \omega^k - (\nabla f(\omega^k))^{-1} f(\omega^k) \quad (24)
\]

where \( \omega^k \in R^n \) is given, and \( \nabla f = (\partial f_i / \partial \omega_j) \) is the gradient matrix of \( f \).

This can be applied to the problem of solving for \( (a, k) \), such that (12)–(15) are satisfied, by setting \( \omega = (a, k) \) and letting

\[
f_1(a, k) = u(\sqrt{2k} \xi_0) \quad f_2(a, k) = v(\sqrt{2k} \eta_0) \quad \text{(TE modes)} \quad (25)
\]

or

\[
f_1(a, k) = u_1(\sqrt{2k} \xi_0) \quad f_2(a, k) = v_1(\sqrt{2k} \eta_0) \quad \text{(TM modes)} \quad (26)
\]

with

\[
\nabla f(a, k) = \begin{bmatrix} \partial f_1 / \partial a & \partial f_1 / \partial k \\ \partial f_2 / \partial a & \partial f_2 / \partial k \end{bmatrix} \quad (27)
\]

The values of \( f_1 \) and \( f_2 \) are easily computed by the methods of the previous section, and the derivatives in (27) can be approximated by using second-order central difference formulas. In this method, both the values \( \xi_0 \) and \( \eta_0 \) and the initial conditions \( u, u_1, v, v_1 \) are fixed, so that (25)–(27) do not correspond exactly to the classical Newton–Poisson shooting method [15] in which only some of the initial conditions are specified.

The iteration (24) converges quadratically to the exact solution, provided that the initial guess, \( \omega^0 = (a_0, k_0) \), is sufficiently close to the exact solution. It is the invertibility of the gradient matrix (see the Appendix) which accounts for this rapid convergence. This raises the question of how to select the initial values of \( a_0 \) and \( k_0 \). A lucid account of this problem is given in [2], which we paraphrase below.

Consider the problem of finding \( a \) and \( k \) for even TM modes. Let \( a \) have an arbitrary fixed value and let \( u \) and \( v \) satisfy

\[
u_{xx} + \left( \frac{x^2}{4} + a \right) u = 0 \quad u(0) = 1 \quad u_x(0) = 0 \quad (28)
\]

\[
u_{xx} + \left( \frac{x^2}{4} - a \right) v = 0 \quad v(0) = 1 \quad v_x(0) = 0 \quad (29)
\]

Then \( u \) has simple zeros \( 0 < z_0^+ < z_1^+ < z_2^+ \cdots \) from which we may define the values

\[
k_m^+ = \frac{1}{2} \left( \frac{z_m^+}{\xi_0} \right)^2 \quad (30)
\]

(Even subscripts are used to indicate that \( u \) is an even function.) Similarly, \( v \) has simple zeros \( 0 < z_0^- < z_1^- < z_2^- \cdots \) and we set

\[
k_m^- = \frac{1}{2} \left( \frac{z_m^-}{\eta_0} \right)^2 \quad (31)
\]

The values \( k_m^+ \) and \( k_m^- \) vary with \( a \), and if \( k_m^+ = k_m^- \) for some value \( \omega = (a_n, k_{mn}) \) then \( k_{mn} \) equal to the mutual value of \( k_m^+ \) and \( k_m^- \), the pair \( (a_{mn}, k_{mn}) \) forces \( f_1 \) and \( f_2 \) to be zero in (25). See Fig. 4, which illustrates the intersections of these zero curves for the special case \( \xi_0 = \eta_0 = 1 \). Similarly, for the odd TM modes, if we let \( u \) and \( v \) satisfy (28) and (29) with the initial conditions \( u(0) = 0, u_x(0) = 1, v(0) = 0, v_x(0) = 1 \), then \( u \) has simple zeros \( 0 < z_0^- < z_1^- < z_2^- \cdots \) which interlace the even zeros \( z_{2m}^+ \), and \( v \) has simple zeros \( 0 < z_1^- < z_2^- \cdots \) which interlace the even zeros \( z_{2m}^- \). Defining \( k_m^+ \) and \( k_m^- \) as in (30) and (31), we again set \( a_{mn} = a \) if \( k_m^+(a) = k_m^-(a) \) \((m, n \) both odd). This is illustrated in Fig. 5, and it should be noted that we are only interested in odd–odd or even–even intersections as discussed in [2].

Plots such as those in Figs. 4 and 5 provide approximate values for \( (a_{mn}, k_{mn}) \) which can then be refined as in
For the TE modes we use the same procedure but work with the zeros of $u_z$ and $u_{zz}$ rather than $u$ and $v$. Plots of these values are similar to the TM case.

This was done for the special case $\eta_0 = \xi_0 = 1$ and the results are given in Tables I and II for $m, n \leq 8$ in the form $(a_{mn}, q_{mn})$ where $q_{mn} = \sqrt{2k_{mn}}$. (Compare with the results in [11].)

**Remark:** The cumbersome method of graphically determining $(a_{mn}, k_{mn})$ for arbitrary $\xi$ and $\eta$ can be avoided by using the values in Tables I and II for those in [11] in the following way. Starting with $(a_{mn}, k_{mn})$ from the tables, move in small steps from $(\xi_0, \eta_0) = (1, 1)$ to $(\xi_0, \eta_0)$ by using the Newton–Poisson method to find $(a_{mn}, k_{mn})$ at each step with the previous values used as starting values. This method is very fast and was used to generate the values of $a_{nn}$ and $k_{nn}$ for $n + n \leq 4$ (i.e., the first nine TM modes and the first eight TE modes) with $\xi_0 = 1$ and $0.1 \leq \eta_0 \leq 1$, as illustrated in Figs. 6–9. These values were also used to generate the highly accurate polynomial/rational approximations given in Tables III and IV. A comparison of the lowest TE and TM eigenvalues from various sources [1], [2], [10], [19] is given in Table V.

### IV. Power Handling Capability of Parabolic Waveguides

In [3], Baum defines the efficiency factor, $\gamma$, for a planar domain $\Omega$ as

$$
\gamma = \frac{k_z}{2\pi} \left( 1 - \frac{k_1}{k_z} \right)^{1/4} \frac{\left| (\nabla \phi_i)^2 \right|_{\Omega}}{\left| \nabla \phi_i \right|_{\Omega}^2}^{1/2}
$$

where $0 < k_1 < k_z$ are the two lowest nonzero TE eigenvalues and $\phi_i$ is the TE eigenfunction corresponding to $k_z$.

Using the methods of the previous two sections, we investigated $\gamma = \gamma(\eta_0)$ for confocal parabolic domains, $\Omega$, with $\xi_0 = 1$ and $0.1 \leq \eta_0 \leq 1$. (The integral on the right-hand side of (32) was evaluated numerically by using a 24-point Gaussian product formula, which is exact on polynomials up through order 47.) The results are given in Fig. 10, where we see that the overall maximum occurs at $\eta_0 = 1$ with $\gamma(1) = 0.4600$. A secondary maximum occurs at $\eta_0 = 0.14083$ with $\gamma(0.14083) = 0.4234$. Intermediate between these maxima, $\gamma$ attains a minimum value of zero at $\eta_0 = 0.31297$. As per the discussion in [4], these extreme values occur at crossing points for the second and third TE eigenvalues (for the maxima at $\eta_0 = 1$ and $\eta_0 = 0.14083$) or the crossing point for the first and second TE eigenvalues ($\eta_0 = 0.31297$).

We can interpret these results by comparison with the efficiency factor for a rectangle with aspect ratio $r = \text{height}/\text{width}$. In this case the maximum efficiency factor is $0.4653 = (3/\sqrt{2})^4$ which is attained at $r = 2$ and $r = 1/2$. Between these two maxima, the efficiency factor reaches a minimum of zero at $r = 1$.

For a confocal parabolic domain, $\Omega$, with $\xi_0 = 1$, the aspect ratio of the height to the width is given by

$$
r = \frac{\eta_0}{1 + \eta_0^2}.
$$

If the efficiency factor depended only on $r$, we would then expect $\gamma$ to be maximized at $r = 2$ and $r = 1/2$ and minimized at $r = 1$ by analogy with the rectangle. That is, we would expect from (33) to see maximum efficiency at $\eta_0 = 1$ (for $r = 2$) and at $\eta_0 = 4 - \sqrt{15} = 0.12702$ (for $r = 1/2$). The corresponding minimum would then be at $\eta_0 = 2 + \sqrt{3} = 2.61803$ (for $r = 1$). Since these values are close to the true values of $\eta_0 = 1$, $\eta_0 = 0.14083$, and $\eta_0 = 0.31297$, we conclude that for parabolic waveguides the aspect ratio of the cross section is of prime importance in determining the power handling capability—just as in the case of rectangular and triangular waveguides [16], [17], [20].

### V. Conclusion

Mode analysis for confocal coaxial parabolic regions is greatly simplified by using analytic continuation to evaluate parabolic cylinder functions. When combined with Newton–Poisson shooting and homotopy methods, this continuation technique easily generates the separation constants and eigenvalues of arbitrary parabolic regions, and has been applied to the problem of determining power handling capabilities for such regions.

### Appendix

**Nonsingularity of Newton’s Method**

We need two technical lemmas to show that the gradient matrix, $\nabla f_i$, in (24) is nonsingular.

**Lemma 1:** Let $y$ satisfy (16) with $y^0(0) + y^1(0) = 0$. Then, for any $x_n > 0$, $y^2(x_n) + y^3(x_n) = 0$. Moreover, if $(y(0), y_x(0)) = (0, 0)$ and $(y_x(x_n)) = 0$, then $y_x(x_n) = 0$.

**Proof:** If $y^2(x_n) + y^3(x_n) = 0$ for some $x_n$, then $y(x) > 0$ for all $x$ by (19) and (20). This would contradict the assumption that $y^0(0) + y^1(0) = 0$. Now suppose that $y_x(x_n) = 0$. By (16) $y_x(x_n) = -y^2(0)/y^3(0)$. Since $y(x_n) = 0$, $y_x(x_n)$ is nonzero unless $a = -x^2/4$. Case 1: suppose that $(y(0), y_x(0)) = (0, 1)$ and that $a = -x^2/4$. Then $y_x(x) = (x^2/4 - a)y(x) = (x^2/4 - x^2/4)y(x) = y(x)$, which is increasing for $x > 0$. Thus $y(x)$ is zero at $x = x_n$. In particular, this means that at $x = x_n$, $y_x$ is nonzero, which is a contradiction. Case 2: suppose that $(y(0), y_x(0)) = (0, 0)$ and $a = -x^2/4$. Again, $y_x(x) > 0$ for $0 < x < y_x$ and $y(x) > 0$, which leads to a contradiction. Thus in either case if $(y(0), y_x(0)) = (0, 0)$ or $(y(0), y_x(0)) = 0$, then $y_x(x_n) = 0$.

**Lemma 2:** Let $k^+_n = k^+_n(a, \xi_0)$ and $k^-_n = k^-_n(a, \eta_0)$ be defined by (30) and (31) respectively. Then $\partial k^+_n / \partial a < 0$ and $\partial k^-_n / \partial a > 0$.
TABLE I
VALUES OF THE SEPARATION CONSTANT, \( a_{\text{m},n} \) (UPPER NUMBERS), AND THE EIGENVALUE PARAMETER, \( \alpha_{\text{m},n} = \sqrt{2 \kappa_{\text{m},n}} \) (LOWER NUMBERS),
FOR THE TE MODES WHERE \( \xi_0 = \pi_0 \)

| \( m = 0 \) | \( m = 1 \) | \( m = 2 \) | \( m = 3 \) | \( m = 4 \) | \( m = 5 \) | \( m = 6 \) | \( m = 7 \) | \( m = 8 \) |
|---|---|---|---|---|---|---|---|---|
| \( n = 0 \) | 0.0 | 2.701082 | 3.641106 | 4.364091 | 4.976563 | 4.020361 | 3.976241 | 4.249902 |
| \( n = 1 \) | 0.0 | 1.331693 | 2.547107 | 3.976241 | 4.249902 | 3.704908 | 3.976241 | 4.680999 |
| \( n = 2 \) | 0.0 | 0.620562 | 1.415250 | 2.832878 | 3.766949 | 3.183781 | 3.183781 | 3.756773 |
| \( n = 3 \) | 0.0 | 1.251464 | 2.245691 | 3.213575 | 4.020361 | 4.501579 | 4.501579 | 5.670876 |
| \( n = 4 \) | 0.0 | 0.513563 | 0.817493 | 0.513563 | 0.817493 | 0.513563 | 0.817493 | 0.513563 |
| \( n = 5 \) | 0.0 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 |
| \( n = 6 \) | 0.0 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 |
| \( n = 7 \) | 0.0 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 |
| \( n = 8 \) | 0.0 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 | 0.481947 |

TABLE II
VALUES OF THE SEPARATION CONSTANT, \( a_{\text{m},n} \) (UPPER NUMBERS), AND THE EIGENVALUE PARAMETER, \( \alpha_{\text{m},n} = \sqrt{2 \kappa_{\text{m},n}} \) (LOWER NUMBERS),
FOR THE TM MODES WHERE \( \xi_0 = \pi_0 \)

| \( m = 0 \) | \( m = 1 \) | \( m = 2 \) | \( m = 3 \) | \( m = 4 \) | \( m = 5 \) | \( m = 6 \) | \( m = 7 \) | \( m = 8 \) |
|---|---|---|---|---|---|---|---|---|
| \( n = 0 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 1 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 2 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 3 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 4 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 5 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 6 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 7 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |
| \( n = 8 \) | 0.0 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 | 2.621655 |

Fig. 6. TM mode eigenvalues.

Fig. 7. TM mode separation constants.
We now show that the distance between the $m$th zero of $u$, and the next consecutive zero of $u$, decreases with $a$. Similar arguments show that the distance between a zero of $u$, and the next consecutive zero of $u$, also decreases with $a$, thus completing the proof.

Suppose that $u(x_0) = 0$ and $u_x(x_0) > 0$. Let $\hat{\alpha}(x_0) = 0$ and $\hat{\alpha}_x(x_0) = u_x(x_0)$ with $u_{xx} = -(x^2/4 + a)u$, $u_{xx} = -(x^2/4 + a)u$.

**Proof:** By (28)–(31), $k_n^2(a, \eta_0) = k_n^2(-a, \eta_0)$, so we need only show that $dk_n^2/da < 0$. By definition, $k_n^2$ is the $n$th zero of $u$ in (28). By the Sturm separation theorem [8], the zeros of $u$ and $u_x$ are simple and interlace each other.

We now show that the distance between a zero of $u$ and the next consecutive zero of $u$, decreases with $a$. Similar arguments show that the distance between a zero of $u$, and the next consecutive zero of $u$, also decreases with $a$, thus completing the proof.

Suppose that $u(x_0) = 0$ and $u_x(x_0) > 0$. Let $\hat{\alpha}(x_0) = 0$ and $\hat{\alpha}_x(x_0) = u_x(x_0)$ with $u_{xx} = -(x^2/4 + a)u$, $u_{xx} = -(x^2/4 + a)u$.
/4 + \epsilon_1 \tilde{u}_x, \text{ for } \epsilon > 0. \text{ Let } x_1 \text{ and } \tilde{x}_1 \text{ denote respectively the first zero larger than } x_0 \text{ of } u_x \text{ and } \tilde{u}_x. \text{ Now define } \\
\omega = \tilde{u}_x = \omega, \text{ then } \omega = -(x^2/4 + a) \omega - \epsilon \tilde{u}_x. \\

As in Lemma 1, we may assume that \(x_1/x_2 < a\) \& 0. If \(\omega(x_1) = 0\) for \(x_0 < x_2 < \tilde{x}_1\), then \(\omega(x_2) = -\epsilon \tilde{u}_x(x_2) < 0\) since \(\tilde{u}_x\) is positive on \((x_0, \tilde{x}_1)\). This implies that \(\omega < 0\) over \([x_0, \tilde{x}_1]\) and hence \(0 \leq \tilde{u}_x < u_x\), over the same interval. That is, the distance between the zeros of \(u_x\) and \(\tilde{u}_x\) decreases as \(a\) increases. Similar arguments hold for \(u(x_0) = 0\) and \(u_x(x_0) < 0.\)

### Remark

Essentially the same proof shows that \(\partial k_m^=/\partial a < 0 \text{ and } \partial k_m^=/\partial \epsilon > 0\) for the TE modes.

### Theorem

The gradient matrix, \(\nabla f\), is nonsingular at \((a, k)\)

\[(a_m, k_m) = (u(x_0, \tilde{u}_x), a) \quad \text{for } m \geq 0, n \geq 0.\]

### Proof

First consider the TM mode case: \(f(a, k) = u(\sqrt{2k} \xi_m, a), f(a, k) = c(\sqrt{2k} \eta_n, a)\), where the second argument denotes the dependence on \(a\). The gradient matrix is nonsingular if det \(\nabla f = (f_1/\partial a)(f_2/\partial k) - (f_1/\partial k)(f_2/\partial a) = 0\). By definition, \(u(\sqrt{2k} \xi_m, a) = 0, c(\sqrt{2k} \eta_n, a) = 0.\) Differentiating with respect to \(a\) gives

### Table IV

| Mode | m, n | Approximation of the Separation Constant, \(a\), and the Eigenparameter \(q = \sqrt{2k}\) | Maximum Relative Error |
|------|------|----------------------------------|-----------------------|
| TM 00 | 0    | \[a = 1.70632 - 3.55721/n, a = 2.942827/n^2, a = 1.319285/n^3, a = 0.227234/n^4\] | \[\eta \text{ Interval, } |\eta| \text{ Percent} \] | 0.002 |
| TM 01 | 1    | \[a = 1.448325 \times 10^{-1} + 4.948715/n^2, a = 0.857818/n^3 - 0.112022/n^4\] | \[\eta \text{ Interval, } |\eta| \text{ Percent} \] | 0.00003 |
| TM 02 | 2    | \[a = 1.220774 + 2.369542/n, a = 0.840549/n^3 - 1.13536/n^4\] | \[\eta \text{ Interval, } |\eta| \text{ Percent} \] | 0.002 |
| TM 03 | 3    | \[a = 0.826084 - 4.94841/n^2, a = 4.31613/n^3 - 4.17285/n^4 - 1.92434/n^5\] | \[\eta \text{ Interval, } |\eta| \text{ Percent} \] | 0.00004 |
| TM 04 | 4    | \[a = 0.231229 + 0.62035/n, a = 0.153552/n^2 + 1.34657/n^3 - 9.23839/n^4\] | \[\eta \text{ Interval, } |\eta| \text{ Percent} \] | 0.0001 |
| TM 05 | 5    | \[a = 2.676350 + 0.58592/n - 3.64749/n^2 + 2.0488/n^3 - 5.00584/n^4\] | \[\eta \text{ Interval, } |\eta| \text{ Percent} \] | 0.0003 |

### Table V

| Mode | m, n | Kenney-Overfelt | Zagrodzki | Morse-Feinbuch | Spence-Well | Larsen |
|------|------|-----------------|-----------|---------------|------------|--------|
| TM 00 | 0    | 2.832878        | 0.0        | 2.83277       | 2.833     | 2.85   |
| TM 11 | 1    | 3.335199        | 0.0        | 3.33535       | 3.335     | 3.35   |
| TM 22 | 2    | 4.526387        | 0.0        | 4.5268        | 4.527     | 4.50   |
| TE 11 | 0    | 2.057677        | 0.0        | 2.0576        | 2.061     | 2.08   |
| TE 22 | 0    | 2.701082        | 0.8        | 2.7011        | 2.72      | 2.72   |
| TE 33 | 0    | 3.316939        | 1.3        | 3.3169        | 3.32      | 3.32   |
| TE 44 | 0    | 3.641106        | 1.9        | 3.6411        | 3.64      | 3.64   |
| TE 55 | 0    | 3.736688        | 0.0        | 3.737        | 3.73      | 3.73   |
| TE 66 | 0    | 4.020361        | 2.5        | 4.0204        | 4.04      | 4.04   |
| TE 77 | 0    | 4.139511        | 4.0        | 4.1395        | 4.14      | 4.14   |

### Comparison of Eigenparameters, \(q_{mn} = \sqrt{2k_{mn}}\) and Separation Constants \(a_{mn}\) for \(\xi_0 = 1\) from Various Sources
Fig. 10. Parabolic waveguide efficiency factors.

\[ \frac{\partial f_1}{\partial a} = u_\alpha \left( \frac{\xi_0}{2k_{\alpha}^m} \frac{\partial k_{\alpha}^m}{\partial a} \right), \quad \frac{\partial f_2}{\partial a} = v_\alpha \left( \frac{\eta_0}{2k_{\alpha}^m} \frac{\partial k_{\alpha}^m}{\partial a} \right). \]

Also, \( \frac{\partial f_1}{\partial k} = \frac{u_\alpha \xi_0}{2\sqrt{2k_{\alpha}^m}} \frac{\partial k_{\alpha}^m}{\partial a} \). Therefore, at \( a = a_{mn} \) and \( k_{\alpha}^m = k_{\alpha}^{mn} \),
\[ \det \nabla f = \left( \xi_0 \eta_0 u_\alpha v_\alpha \right) / \left( 8k_{\alpha}^m \frac{\partial k_{\alpha}^m}{\partial a} \right) \neq 0 \]

For the TE modes we find \( \det \nabla f \neq 0 \), again by Lemmas 1 and 2.

Charles S. Kenney (A’67) was born in Washington, DC, in 1950. He received the B.S., M.A., and Ph.D. degrees in mathematics from the University of Maryland, College Park, in 1973, 1976, and 1979, respectively.

From 1979 to 1981 he taught mathematics at California State College, Bakersfield, and subsequently worked as a Numerical Analyst at the Naval Weapons Center, China Lake, CA. Since 1987 he has worked half-time at the Weapons Center and half-time as an Associate Research Engineer in the Electrical and Computer Engineering Department at the University of California, Santa Barbara. Dr. Kenney is a member of SIAM with research interests in numerical linear algebra, control theory, and partial differential equations.

P. L. Overfelt (M’85), photograph and biography not available at the time of publication.