Research Article

PDGF Suppresses Oxidative Stress Induced Ca2+ Overload and Calpain Activation in Neurons

Lian-Shun Zheng,1,2 Yoko Ishii,2 Qing-Li Zhao,3 Takashi Kondo,3 and Masakiyo Sasahara2

1 Institute of Anatomy and Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
2 Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani Toyama, Toyama 930-0194, Japan
3 Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan

Correspondence should be addressed to Yoko Ishii; yishii@med.u-toyama.ac.jp

Received 4 October 2013; Accepted 4 December 2013

Academic Editor: Luisa Minghetti

Copyright © 2013 Lian-Shun Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oxidative stress is crucially involved in the pathogenesis of neurological diseases such as stroke and degenerative diseases. We previously demonstrated that platelet-derived growth factors (PDGFs) protected neurons from H\textsubscript{2}O\textsubscript{2}-induced oxidative stress and indicated the involvement of PI3K-Akt and MAP kinases as an underlying mechanism. Ca2+ overload has been shown to mediate the neurotoxic effects of oxidative stress and excitotoxicity. We examined the effects of PDGFs on H\textsubscript{2}O\textsubscript{2}-induced Ca2+ overload in primary cultured neurons to further clarify their neuroprotective mechanism. H\textsubscript{2}O\textsubscript{2}-induced Ca2+ overload in neurons in a dose-dependent manner, while pretreating neurons with PDGF-BB for 24 hours largely suppressed it. In a comparative study, the suppressive effects of PDGF-BB were more potent than those of PDGF-AA. We then evaluated calpain activation, which was induced by Ca2+ overload and mediated both apoptotic and nonapoptotic cell death. H\textsubscript{2}O\textsubscript{2}-induced calpain activation in neurons in a dose-dependent manner. Pretreatment of PDGF-BB completely blocked H\textsubscript{2}O\textsubscript{2}-induced calpain activation. To the best of our knowledge, the present study is the first to demonstrate the mechanism underlying the neuroprotective effects of PDGF against oxidative stress via the suppression of Ca2+ overload and inactivation of calpain and suggests that PDGF-BB may be a potential therapeutic target of neurological diseases.

1. Introduction

Oxidative stress and excitotoxicity play important roles in the pathogenesis of a number of neurological diseases, including ischemic infarction, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer’s, Huntington’s, and Parkinson’s diseases [1–3]. Ca2+ has been shown to mediate the cytotoxicity of oxidative stress and excitotoxicity, and cellular Ca2+ overload or the perturbation of intracellular Ca2+ compartmentalization induced by these noxious stimuli can cause cytotoxicity and trigger cell death including both apoptotic and necrotic cell death [4–6]; however, these mechanisms of cellular injury have yet to be elucidated in adequate detail to prevent and treat neurological diseases [7, 8].

Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways including apoptosis and necrosis [9, 10]. An elevated intracellular calcium concentration will hyperactivate calpains. The activation of calpains was shown to be involved in various pathological conditions, including ischemic brain injuries and chronic neurodegenerative diseases, for example, Alzheimer’s disease [9, 11]. Previous studies reported that calpain inhibitors were neuroprotective in free radical injury models associated with mitochondrial dysfunction [12], apoptotic injury following spinal cord trauma [13], and traumatic brain injury [14]. Neural degeneration and apoptosis were shown to be ameliorated in calpain-1 null mice following traumatic brain injury [15]. Therefore, suppressing
Ca\(^{2+}\) overload and the activation of calpain are a crucial strategy to overcome neurological diseases mediated by oxidative stress and excitotoxicity.

The platelet-derived growth factor (PDGF) family members, PDGF-A, -B, -C, and -D, are assembled as disulfide-linked homo- or heterodimers, and two receptor tyrosine kinases, PDGFR-\(\alpha\) and -\(\beta\), which can form homo- and heterodimeric receptor complexes, have been identified [16]. PDGFR-\(\alpha\) was previously shown to be activated by PDGF-AA, -AB, -CC, and -BB, PDGF-\(\alpha\) by PDGF-AB, -BB, and -CC, and PDGFR-\(\beta\) by PDGF-BB and -DD.

Previous studies demonstrated that PDGF and PDGFRs were widely expressed in the central nervous system (CNS) [17–19]. A neuroprotective role has been hypothesized based on the findings of a number of studies; either the suppression of oxidative stress and excitotoxicity or ischemia [20–22]. Furthermore, our recent studies demonstrated that PDGF-AA and -BB protected cultured neurons against oxidative stress and suppressed the H\(_2\)O\(_2\)-induced activation of caspase-3 activation through PDGFR-\(\alpha\) or -\(\beta\) [23]. In this study, PI3-K/Akt and MAP kinase pathways were suggested to mediate neuroprotective effects. PDGF-CC was reported to exert neuroprotective effects through the activation of GSK3\(\beta\) both in vivo and vitro [24]. However, the neuroprotective mechanism underlying PDGF signaling has not yet been clarified.

We herein identified another neuroprotective pathway mediated by PDGFs. PDGF-AA and PDGF-BB suppressed the Ca\(^{2+}\) overload induced by H\(_2\)O\(_2\) in primary cultured mouse cortical neurons. Furthermore, PDGF-BB attenuated the H\(_2\)O\(_2\)-induced activation of calpain, which is one of the key molecules of neuronal dysfunction induced by oxidative stress and Ca\(^{2+}\) overload [10]. Therefore, this study provides a novel insight into the mechanism underlying the neuroprotective effects of PDGF against oxidative stress.

2. Experimental Procedures

2.1. Mice. We used wild-type C57BL/6 mice (Sankyo Laboratory, Toyama, Japan). Mice were maintained with free access to laboratory pelter, chow and water and exposed to a 12 h light/12 h dark cycle. All animal procedures were performed according to the Institutional Animal Care and Use Committee Guidelines at the University of Toyama under an approved protocol.

2.2. Cell Cultures. Cell cultures were established as previously mentioned [23]. Briefly, cerebral cortices were dissected from neonatal mice on postnatal day 1, enzymatically dissociated in 0.1% trypsin (Nacalal Tesque, Kyoto, Japan) for 5 min at 37°C, and were then mechanically dissociated with fire-polished Pasteur pipettes. Following centrifugation (150 × g for 5 min), cells were resuspended in Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium (1:1; Invitrogen, Carlsbad, CA) containing 10% fetal bovine serum (FBS; HyClone, Yokohama, Japan) and were maintained in serum-free neurobasal medium supplemented with 1% B27 supplement (Invitrogen), 2 mM L-glutamine (Sigma, Louis, MO), 100 units/mL penicillin (Invitrogen), and 0.1 mg/mL streptomycin (Invitrogen). Cells were then plated on glass-bottomed culture dishes (P35G-0-10-C, MatTek, Ashland, MA) at a density of 4.2 × 10\(^4\) cells/cm\(^2\) to determine the intracellular concentration of the calcium ion ([Ca\(^{2+}\)]\(_i\)). To determine calpain activity, cells were plated on 24-well plates (BD Biosciences, San Jose, CA) at a density of 1 × 10\(^5\) cells/cm\(^2\). All dishes and plates were precoated with 0.001% poly-L-lysine (Sigma). Fresh medium was added every 3 days and cultures were maintained. Fewer than 5% of cultured cells were glia because more than 95% were MAP-2-positive neurons with morphologically mature features, such as extending neurites, at 7 days in vitro (DIV).

2.3. Drug Treatments. Recombinant human PDGF-AA and PDGF-BB were purchased from Chemicon (Temecula, CA). Oxidative stress was induced by a treatment with H\(_2\)O\(_2\) for 24 h at DIV 7 as previously described [23]. To investigate the effects of PDGF on H\(_2\)O\(_2\)-induced Ca\(^{2+}\) overload [23], neurons were pretreated with PDGF for 24 h. After loading Fura-2-AM (Dojindo, Kumamoto, Japan), cells were transferred into fresh media containing H\(_2\)O\(_2\). PDGF was not included in this fresh medium in order to avoid the acute effects of freshly provided PDGF on [Ca\(^{2+}\)]\(_i\). To determine the effects of PDGF on H\(_2\)O\(_2\)-induced calpain activity, neurons pretreated with PDGF for 24 or 48 h were exposed to H\(_2\)O\(_2\) prepared in media containing PDGF for 24 h and were then processed to determine calpain activity.

2.4. Ca\(^{2+}\) Imaging Analysis: Determination of the Intracellular Concentration of Calcium Ions. [Ca\(^{2+}\)]\(_i\), was evaluated as described elsewhere [25, 26]. Briefly, 1 \(\mu\)M Fura-2-AM (Dojindo) solution was prepared using loading buffer, which was HEPES-buffered Ringer solution supplemented with 0.2% bovine serum albumin (Sigma), Eagle’s minimal essential amino acids (Flow Laboratories, Surrey UK), and 2 mM L-glutamine. HEPES-buffered Ringer solution (pH 7.4) contained 118 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl\(_2\), 1.13 mM MgCl\(_2\), 1 mM Na\(_2\)HPO\(_4\), 5.5 mM glucose, and 10 mM HEPES-KOH. After the 24 h PDGF pretreatment, cells were washed with PBS and loaded with 1 \(\mu\)M Fura-2-AM solution for 15 min at room temperature (25°C). Cells were washed twice with PBS, which was then replaced with cultured media supplemented with or without H\(_2\)O\(_2\), for up to 30 min. Digital images of Fura-2 fluorescence were acquired and analyzed by a digital image processor (Argus 50/CA, Hamamatsu Photonics, Hamamatsu, Japan) coupled with an inverted fluorescent microscope [25]. The ratio of 510 nm emission fluorescence at 340 nm excitation to that at 380 nm excitation, F(340/380), was used as an indicator of [Ca\(^{2+}\)]\(_i\) in cortical neurons. Pseudocolor images of individual cells and mean F(340/380) values were obtained 15 and 30 min after the treatment with H\(_2\)O\(_2\).

2.5. Calpain Activity Assay. Activated calpain released into the cytosol was extracted, and the activities of calpain-1 and -2 were determined using the Calpain Activity Assay kit (Biovision, Milpitas, CA) according to the manufacturer’s
instruction. Briefly, cultured neurons were incubated with
lysis buffer for 20 min at 4˚C. Clarified cell lysates after cen-
trifugation were incubated with reaction buffer containing a
substrate of calpain (Ac-LLL-AFC) for 1 h at 37˚C in the dark.
Upon cleavage of the substrate, the fluorogenic portion (7-
amino-4-trifluoromethyl coumarin) yielded 505 nm fluores-
cence emission at 400 nm excitation. Fluorescence emission
was measured by a standard fluorimeter (FilterMax F5, Mol-
ecular Devices, Sunnyvale, CA). Control reactions were
performed for each sample in the presence of an inhibitor
of calpain-1 and -2 to monitor any calpain-independent
proteolysis of the fluorogenic peptide. Values from control
reactions were subtracted from total activity values to specif-
ically determine calpain activity for each sample. Results are
expressed as relative fluorescence units per milligram of lysate
protein.

3. Statistical Analysis
Quantitative data were expressed as means ± SEM, and each
experiment was repeated at least three times. A one-way
ANOVA followed by Fisher’s PLSD test used for statistical
analysis, with P values less than 0.05 being considered
significant.

4. Results
4.1. PDGF-BB Attenuated the H₂O₂-Induced Increase in the
Intracellular Calcium Ion Concentration. The neuroprotec-
tive effects of PDGFs against H₂O₂ have been reported previ-
ously [23]; therefore, we examined the effects of PDGFs
on the H₂O₂-induced overload of [Ca²⁺], which has been
implicated in oxidative stress-induced cellular injury [27, 28].
On in situ pseudocolor images, control neurons that were not
exposed to H₂O₂ frequently showed low [Ca²⁺], and many
neurons showed high [Ca²⁺] after H₂O₂ at 15 and 30 min
(Figure I(a)). The number of neurons showing high [Ca²⁺],
after H₂O₂ appeared to be decreased by the 24 h pretreat-
ment with PDGF-BB at both 15 and 30 min (Figure I(a)). The
means of [Ca²⁺], evaluated from these images demonstrated
that the PDGF-BB pretreatment did not affect [Ca²⁺] in the
control neurons without H₂O₂ exposure (Figure I(b)). The
H₂O₂ treatment increased [Ca²⁺] in neurons in a dose-
dependent manner up to 5 and 20 μM at 15 and 30 min,
respectively, (Figure I(b)). This H₂O₂-induced [Ca²⁺] over-
load was completely abolished by the PDGF-BB pretreatment
under all conditions examined.

We then compared the effect of PDGF-AA and -BB on
[Ca²⁺] overload after the H₂O₂ treatment. On in situ pseudo-
color images of relative [Ca²⁺], many neurons showed high
[Ca²⁺] after the 10 μM H₂O₂ treatment (Figure I(c)). Either
the PDGF-AA or PDGF-BB pretreatment appeared to
decrease the number of neurons showing high [Ca²⁺],
after 10 μM H₂O₂ (Figure I(c)). Analyses of the mean [Ca²⁺],
indicated that either the PDGF-AA or PDGF-BB pretreat-
ment did not affect [Ca²⁺] in the control neurons without
H₂O₂ treatment (Figure I(d)). The H₂O₂ treatment signifi-
cantly induced [Ca²⁺], overload at 15 and 30 min. PDGF-AA
significantly inhibited this [Ca²⁺], overload. This inhibition
was partial, and [Ca²⁺], after H₂O₂ in neurons pretreated
with PDGF-AA was significantly higher than that in control
neurons without the H₂O₂ treatment. [Ca²⁺], in neurons
pretreated with PDGF-BB was significantly lower than that
in neurons pretreated with PDGF-AA at 15 and 30 min and
was similar to that in the controls at 30 min.

4.2. PDGF-BB Attenuated the H₂O₂-Induced Increase in Active
Calpain. Because the PDGF pretreatment suppressed H₂O₂-
induced [Ca²⁺], overload, we examined whether PDGF sup-
ppressed calpain activation, which is a downstream mediator
of [Ca²⁺], overload that induces cellular injury. We deter-
mined the activities of calpain-1 and -2, as these were shown
to be the major subtypes of the calpain family that mediate
neurological diseases [9]. The H₂O₂ treatment activated cal-
pain in cultured neurons in a dose-dependent manner from
5 μM to 20 μM, and their activities remained high to similar
extents from 20 μM to 80 μM of H₂O₂ (Figure 2(a)). H₂O₂-
induced calpain activation in neurons pretreated for 24 h with
PDGF-BB significantly decreased from 5 to 20 μM of H₂O₂ to
a similar level as that in neurons without the H₂O₂ treatment
(Figure 2(b)). Although H₂O₂-induced calpain activation in
neurons pretreated for 48 h with PDGF-BB appeared to be
decreased to lower levels than the control, this difference was
not significant (Figure 2(c)).

5. Discussion
In the present study, we examined a PDGF-mediated neu-
roprotective pathway against H₂O₂-induced oxidative stress.
Increased cytosolic Ca²⁺ and subsequent calpain activation
represent one of the major pathways underlying reactive
oxidative species (ROS)-mediated cell death [9]. In the
present study, the H₂O₂-induced Ca²⁺ increase and calpain
activation in cultured neurons were markedly suppressed by
PDGF and were suggested to be the targets of a neuroprotec-
tive mechanism by PDGF.

The oxidative stress-induced Ca²⁺ overload in cultured
neurons was markedly suppressed by PDGF-BB and, to a
lesser extent, by PDGF-AA. The oxidative stress-induced
inward Ca²⁺ current has been shown to trigger several
downstream lethal reactions, including nitrosative and oxidative
stress, mitochondrial dysfunction, and protease and
phospholipase activation, which culminate in cell death [5,
28]. This Ca²⁺-pathway may be one of the central mech-
nisms underlying the death of neurons subjected to ischemia
and energy deprivation. The Ca²⁺ chelator BAPTA/AM
was shown to induce a decrease in intracellular Ca²⁺ and
almost completely blocked H₂O₂-induced apoptosis [29].
Thus, the inhibition of Ca²⁺ overload may be one mechanism
underlying PDGF-mediated neuroprotection [30], and this
mechanism could correspond, at least partly, to the PDGF-
induced suppression of neuronal cell death exposed to H₂O₂
[23]. A previous study demonstrated that NGF and bFGF
protected cultured hippocampal neurons by suppressing

Oxidative Medicine and Cellular Longevity 3
Figure 1: Continued.
Figure 1: Effects of PDGF-AA and PDGF-BB on the H$_2$O$_2$-induced increase in [Ca$^{2+}$]. [Ca$^{2+}$] was determined using Fura-2-AM fluorescent dye. (a) Pseudocolor images representing the relative [Ca$^{2+}$], indicated by the fluorescence ratio between 340 and 380 nm (F340/380) in individual cortical neurons 15 and 30 min after the H$_2$O$_2$ treatment. Following a 24 h preincubation with 50 ng/mL PDGF-BB, neurons were loaded with Fura-2-AM and exposed to different concentrations of H$_2$O$_2$ (5, 10, and 20 μM). The inserted bar indicates the relationship between colors and fluorescent intensity ratios at 340 and 380 nm. (b) Histogram analyses of the mean F340/380 of (a). Three pictures were taken from each well, and the means of the F340/380 of each neuron were calculated. Data are expressed as means ± SEM derived from three different sets of experiments. (c) To compare the effects of PDGF-AA and PDGF-BB on [Ca$^{2+}$] overload induced by H$_2$O$_2$, cells were pretreated with 50 ng/mL PDGF-AA or PDGF-BB for 24 h followed by exposure to 10 μM H$_2$O$_2$ for 15 and 30 min. (d) Histogram analysis of (c). Data are expressed as means ± SEM of three independent experiments. \(^{a1}P < 0.01 \) and \(^{a2}P < 0.05 \) versus the untreated control; \(^{b}P < 0.01 \) versus the same H$_2$O$_2$ exposure without the PDGF pretreatment; \(^{c1}P < 0.01 \) and \(^{c2}P < 0.05 \) versus the same H$_2$O$_2$ exposure with the PDGF-AA pretreatment.
increases in Ca^{2+} due to glucose deprivation, which was consistent with our results [31].

In the present study, PDGF-AA significantly suppressed H_{2}O_{2}-induced Ca^{2+} overload. PDGF-BB suppressed Ca^{2+} overload more potently than PDGF-AA. PDGF-BB was previously shown to activate two types of PDGFRs to high levels, while PDGF-AA activated PDGFR-α, but not PDGFR-β in cultured neurons [23]. Accordingly, two types of PDGFR were suggested to mediate the suppressive effects of Ca^{2+} overload, respectively, and the additive effects of the two activated PDGFRs may explain the more potent effects of PDGF-BB than those of PDGF-AA. Alternatively, distinctive signaling downstream of these two PDGFRs may account for the different effects of PDGF-AA and -BB; for example, PDGFR-β was shown to potentely activate the PI3-Akt pathway, whereas it activated the MAP kinase pathway to a similar

Figure 2: Effects of PDGF-BB on H_{2}O_{2}-induced calpain activation. Calpain-1 activity was measured 24 h after exposure to H_{2}O_{2} as described in the Experimental procedures. (a) Calpain activity induced by the indicated amounts of H_{2}O_{2} (5, 10, 20, 40, and 80 μM) exposure increased calpain activation in cortical neurons in a dose-dependent manner from 5–20 μM. (b), (c) Calpain activity in neuronal cultures pretreated with 50 ng/mL PDGF-BB 24 h (b) and 48 h (c) before exposure to H_{2}O_{2}. PDGF-BB completely blocked calpain activity induced by H_{2}O_{2}. Data are expressed as means ± SEM of three independent experiments. \(^{a1}P < 0.01 \) and \(^{a2}P < 0.05 \) versus the untreated control; \(^{b1}P < 0.01 \) and \(^{b2}P < 0.05 \) versus the same H_{2}O_{2} exposure without the PDGF-BB pretreatment.
extent to that of PDGFR-α, as demonstrated in a PDGFR-β knockout study in cultured neurons [23].

Calpain has been shown to be activated by either ROS or NMDA-induced Ca\(^{2+}\) overload [32]. Calpain 1 (μ-calpain) and calpain 2 (m-calpain) exist as a proenzyme heterodimer (80 kDa–29 kDa) in resting cells, and they are activated by Ca\(^{2+}\) in autolytic processing (to produce a heterodimer 78 kDa–18 kDa) [9,10]. This activated calpain further disturbs mitochondrial Ca\(^{2+}\) metabolism and plays a pivotal role in inducing distinctive types of cell death including apoptosis, necrosis, and autophagy [9, 10, 33]; for example, calpain-1 mediated the cleavage of autophagy-related gene 5, which is a critical switch from protective autophagy to cell death in the presence of apoptotic stimuli [33]. In our previous study conducted in the same experimental condition as present study, PDGF-BB suppressed both apoptotic and nonapoptotic cell death induced by H\(_2\)O\(_2\) [23]. Accordingly, these findings indicate that the suppressive effects of PDGF on calpain activity may correspond to the neuroprotective effects of PDGF including apoptotic and non-apoptotic prosurvival mechanisms.

Evidence is accumulating to show that Ca\(^{2+}\) overload and the activation of calpain mediate excitotoxic neuronal injury [9, 34–36]. PDGF-B protected primary cultured neurons from NMDA-induced excitotoxicity [37]. We reported that the suppression of PDGF-B mRNA expression by antisense oligonucleotides exaggerated NMDA-induced excitotoxicity in neonatal rat brains [20] and that adult mouse brains that expressed reduced levels of neuronal PDGFR-β had more lesions after NMDA-induced excitotoxicity or cryogenic injury [21]. Accordingly, the effects of PDGF on Ca\(^{2+}\) overload and calpain activation shown in the present study may correspond to the underlying mechanism of PDGF to suppress excitotoxicity. An inward Ca\(^{2+}\) current after oxidative stress was shown to be evoked through NMDA receptors and transient receptor potential (TRP) channels, which belong to a group of ion channels [1, 38]. PDGF suppressed the inward Ca\(^{2+}\) current through NMDA receptors [39, 40], which may be involved in the antixcitotoxic effect of PDGF; however, further studies are required to clarify the effects of PDGF on neuronal cell metabolism [30].

A previous report demonstrated that PDGF-AA and PDGF-BB protected hippocampal neurons subjected to glucose deprivation or exposed to the hydroxyl radical-promoting agent, FeSO\(_4\), due to the induction of antioxidant enzymes [41]. The activation of Akt and MAP kinase was shown to mediate prosurvival effects in neurons exposed to H\(_2\)O\(_2\)-induced oxidative stress [23]. PDGF-CC exerted neuroprotective effects via the activation of GSK3beta [24]. Therefore, the presently reported effects on Ca\(^{2+}\) and calpain metabolism were suggested to be a novel neuroprotective mechanism of PDGF. Calpain and Ca\(^{2+}\) elevations have been shown to mediate both acute and chronic cell death, such as ischemic-traumatic brain injuries and Alzheimer’s disease, respectively [9, 10]. Our studies identified PDGF as a potential therapeutic intervention in neurons exposed to oxidative stress. Further studies are needed to investigate the role of PDGF-BB in the pathway of neuronal death induced by oxidative stress.

PDGF-BB is one of the intrinsic neurotrophic factors abundantly expressed in the brain and is upregulated in response to brain insults [17, 42]. In parallel to the ongoing clinical phase I/II trial of PDGF-BB in Parkinson’s patients [43], further basic studies are required to find out the effective therapeutic strategies targeting PDGF-BB.

Acknowledgments

The authors thank members of the Department of Pathology and Life Science Research Center, University of Toyama, for thoughtful discussion and careful animal care. This project was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Contract Grant nos. 23590444 (to Yoko Ishii) and 25293093 (to Masakiyo Sasahara).

References

[1] L. M. Sayre, G. Perry, and M. A. Smith, “Oxidative stress and neurotoxicity,” Chemical Research in Toxicology, vol. 21, no. 1, pp. 172–188, 2008.

[2] P. H. Chan, K. Niizuma, and H. Endo, “Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival,” Journal of Neurochemistry, vol. 109, no. 1, pp. 133–138, 2009.

[3] S. Gandhi and A. Y. Abramov, “Mechanism of oxidative stress in neurodegeneration,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 428010, 11 pages, 2012.

[4] C. Krieger and M. R. Duchen, “Mitochondria, Ca\(^{2+}\) and neu- rodegenerative disease,” European Journal of Pharmacology, vol. 447, no. 2–3, pp. 177–188, 2002.

[5] S. Orrenius, B. Zhivotovsky, and P. Nicotera, “Regulation of cell death: the calcium-apoptosis link,” Nature Reviews Molecular Cell Biology, vol. 4, no. 7, pp. 552–565, 2003.

[6] R. Rizzuto, D. de Stefani, A. Raffaello, and C. Mammiucari, “Mitochondria as sensors and regulators of calcium signaling,” Nature Review Molecular Cell Biology, vol. 13, no. 9, pp. 566–578, 2012.

[7] A. Reynolds, C. Laurie, R. Lee Mosley, and H. E. Gendelman, “Oxidative stress and the pathogenesis of neurodegenerative disorders,” International Review of Neurobiology, vol. 82, pp. 297–325, 2007.

[8] I. Nikić, D. Merkler, C. Sorbara et al., “A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis,” Nature Medicine, vol. 17, no. 4, pp. 495–499, 2011.

[9] Y. Huang and K. K. W. Wang, “The calpain family and human disease,” Trends in Molecular Medicine, vol. 7, no. 8, pp. 355–362, 2001.

[10] M. B. Bevers and R. W. Neumar, “Mechanistic role of calpains in postischemic neurodegeneration,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 4, pp. 655–673, 2008.

[11] P. S. Vosler, Y. Gao, C. S. Brennan et al., “Ischemia-induced calpain activation causes euarkytic (translation) initiation factor 4GI (eIF4GI) degradation, protein synthesis inhibition, and neuronal death,” Proceedings of the National Academy of
