Bismuth Porphyrin Antagonizes Cisplatin-Induced Nephrotoxicity via Unexpected Metallothionein-Independent Mechanisms

Runming Wang, Suyu Wang, Shing Chan, ..., Godfrey Chi-Fung Chan, Hongyan Li, Hongzhe Sun

HIGHLIGHTS
Bi(TPP), a potent nephroprotectant against cisplatin-induced toxicity, is disclosed
Protective potency of Bi(TPP) could be modulated by varying lipophilic TPP ligands
Bi(TPP) ameliorates cisplatin-induced renal damage via multiple mechanisms
Combined therapy with Bi(TPP) does not compromise the antitumor efficacy of cisplatin

Wang et al., iScience 23, 101054 May 22, 2020 © 2020 The Authors.
https://doi.org/10.1016/j.isci.2020.101054
Bismuth Porphyrin Antagonizes Cisplatin-Induced Nephrotoxicity via Unexpected Metallothionein-Independent Mechanisms

Runming Wang,1 Suyu Wang,1 Shing Chan,2 Yuchuan Wang,1 Yufeng Zhang,3 Zhong Zuo,3 Godfrey Chi-Fung Chan,2 Hongyan Li,1 and Hongzhe Sun1,4,*

SUMMARY

Cisplatin (CDDP) has been a highly successful anticancer drug in cancer therapy; however, its further application suffers severe nephrotoxicity. Herein, we identify bismuth tetraphenylporphyrinate [Bi(TPP)] as a potent protective agent against CDDP-induced nephrotoxicity. Bi(TPP) attenuates CDDP-induced acute kidney injury and prevents the death of mice exposed to a lethal dose of CDDP. The protective potency of bismuth porphyrin complexes could be optimized by varying lipophilic TPP ligands with ideal ClogP values of 8–14. Unexpectedly, Bi(TPP) exhibited a protective role via metallothionein-independent pathways, i.e., maintenance of redox homeostasis and energy supplement, elimination of accumulated platinum in the kidney, and inactivation of caspases cascade in apoptotic pathway. Significantly, Bi(TPP) does not compromise the antitumor activity of CDDP in the orthotopic tumor xenograft mouse model. These findings suggest that Bi(TPP) could be incorporated into current CDDP-based cancer therapy as a nephroprotective agent.

INTRODUCTION

Cisplatin, cis-diamminedichloroplatinum(II) (CDDP), plays a pivotal role in cancer therapy and has been a standard component in the treatment regimens of a wide spectrum of solid tumors including bladder, cervix, head and neck, esophageal, small cell lung cancer, breast cancers, testicular cancer, and neuroblastoma (Bertolini et al., 2009; Cheng et al., 2018; Ladenstein et al., 2020; Seiwert et al., 2007; Silver et al., 2010). It has also been used as salvage therapy in the case that the first-line treatment has failed or in specific situations that preclude the standard treatment (Candelaria et al., 2006; Haasheer et al., 2010). Despite its therapeutic success, CDDP unfortunately exhibits undesirable dose-dependent side effects such as neurotoxicity, ototoxicity, nausea/vomiting, hepatotoxicity, and particularly nephrotoxicity (Rabik and Dolan, 2007). Patients may suffer a progressive and persistent decline in renal function after a successive treatment cycle, which is characterized by a deterioration in the glomerular filtration rate (GFR), massive renal electrolytes loss, and elevated serum urea and creatinine levels (Pabla and Dong, 2008). CDDP-induced nephrotoxicity accounts for up to 60% of all cases of hospital-acquired acute kidney injury (AKI), a disease that is associated with considerable morbidity and mortality (Murugan and Kellum, 2011) and has no effective treatment currently.

Although the precise mechanisms involved in CDDP-induced renal failure have not been thoroughly understood, it is generally believed to be multifaceted including injury to nuclear and mitochondrial DNA, production of reactive oxygen species (ROS)/reactive nitrogen species (RNS), activation of apoptosis, initiation of inflammatory response, and altered transport of CDDP into renal epithelial cells (Wang and Lippard, 2005). Moreover, it was found that platinum is preferentially accumulated in the S3 segment of tubular epithelial cells in kidney being 5-fold concentrated than that in blood (Chevalier, 2016), and a lack of means to eliminate excessive Pt(II) in kidney sharply compromises its therapeutic advantage. Despite various methods used to reduce the side effects caused by CDDP, e.g. pre-hydration with mannitol or furosemide, and co-administration with cimetidine or amifostine (Sprwol et al., 2013), their protective profile are suboptimal and a gap in reducing CDDP-induced nephrotoxicity still remains in the clinic.

Bismuth(III) [Bi(III)] compounds, e.g. bismuth (sub)nitrate, were found to be effective inducers of metallothionein (MT) and have been demonstrated to offer protection against the nephrotoxicity caused by...
CDDP and doxorubicin (Adriamycin) (Fujiwara and Satoh, 2013; Kaegi and Schaeffer, 1988; Klaassen et al., 2009; Maret, 2008; Satoh et al., 1988; Thirumoorthy et al., 2011). Bismuth is a “green” metal and has been used in clinic for the treatment of various diseases for decades, particularly for Helicobacter pylori infection (Li and Sun, 2012). Bismuth also achieves the highest visceral concentrations in proximal tubule epithelial cells of kidney as platinum does (Dresow et al., 1991) but exhibits negligible toxicity in humans, attributable to its glutathione, and multidrug-resistant protein-mediated disposal in mammalian cells (Hong et al., 2015). Thus, there is a great potential for bismuth to be incorporated in cancer chemotherapy to circumvent CDDP-induced nephrotoxicity. It is generally believed that Bi(III) may induce certain cytoprotective biomolecules, i.e., reduced glutathione (GSH) and, in particular MT, which are utilized for the defense of oxidative/nitrosative stress or direct chelation of platinum by MT to ameliorate CDDP-induced nephrotoxicity. However, the precise protective mechanism remains elusive. Moreover, the existing bismuth compounds exhibit relatively low protective efficacy, and new potent neuroprotective agents await to be developed.

Here, we report bismuth tetraphenylporphyrinate [Bi(TPP)] as a potent nephroprotective agent both in vitro and in vivo. Different from previously reported bismuth compounds, Bi(TPP) exhibits protective roles via maintaining ROS and ATP levels and eliminating renal platinum and targeting caspase-dependent apoptosis rather than induction of MT. Notably, Bi(TPP) does not interfere with the antitumor activity of CDDP. Therefore, Bi(TPP) has the potential to be incorporated in cancer therapy as an antidote against CDDP-induced nephrotoxicity.

RESULTS
Identification of Cytoprotective Bi(III) Compounds In Vitro
We first prepared Bi(III) compounds by coordinating Bi(III) (as Bi(NO)₃) with a series of organic ligands including porphyrin, crown ether, salicylic acid analogs, thiols, etc. (Figure S1). The identity and purity of Bi(III) compounds were confirmed by fast atom bombardment (FAB)/electrospray ionisation (ESI) mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) (see in Supplemental Information). The cytotoxicity of synthesized compounds to two mammalian cells was relatively low, with a half cytotoxic concentration (TC₅₀) over 100 μM (Figure S2). To identify cytoprotective Bi(III) compounds, a primary phenotypic screening was conducted on a normal human renal proximal tubule cells (HK-2). HK-2 cells were pre-incubated with or without Bi(III) compounds at fixed concentration (100 μM) and then exposed to cytotoxic concentrations of CDDP (10 μM) over a period of 48 h. Any compound that showed protective index (PI) > 1, where PI was defined as the ratio of survival rate of cells treated with Bi(III) and CDDP to that of CDDP treated alone and had less than 10% cytotoxicity to cells in the absence of CDDP, was considered to be protective. Amifostine, a nephroprotective adjuvant used in cancer chemotherapy, and two reported active compounds, Bi(NO)₃ (Boogaard et al., 1991) and BiZn (Chan et al., 2019), as well as three bismuth drugs, i.e., bismuth subsalicylate (BSS, Pepto-Bismol), colloidal bismuth subcitrate (CBS, De-Nol), and bismuth subgallate (BSG, Devrom) were used for comparison. This primary screening generated two categories of active compounds, i.e., Bi(III) tetraphenylporphyrate (Cpd 1) and Bi(III) thiolates (Cpd 6 and Cpd 8) with PI of 3.54, 2.82, and 2.90 for HK-2 cells, respectively. These compounds had much higher PI than amifostine and other Bi(III) compounds with PI no greater than 2 (Figure 1A). We further demonstrated that Cpd 1 [Bi(TPP)] and Cpd 8 [Bi(NAC)₃] (Figure 1B) protected cells in a dose-dependent manner with the protective potency (EC₅₀) of 15.3 and 73.7 μM for HK-2 cells, respectively, under identical conditions (Figures 1C and 1D).

In Vivo Protective Potency of Bi(III) Compounds in Mouse Model of CDDP-Induced Kidney Injury
We further evaluated the protective effect of selected Bi(III) compounds on CDDP-induced renal toxicity in a validated mouse model of acute kidney injury. Briefly, groups of mice receiving intraperitoneal injection of a lethal dose (20 mg kg⁻¹) of CDDP were administered orally with Bi(III) compounds three times prior to and twice after CDDP treatment as shown in Figure 2A. The administration of CDDP led to acute renal damage with 10-fold increase in the level of renal toxicity biomarker, blood urea nitrogen (BUN), from 17.7 to 171.1 mg dl⁻¹ in comparison to non-treated group (Figure 2B). The BUN levels were reduced greatly by co-administration of Bi(TPP) with or without CDDP treatment (Figure 2C). The renal platinum levels were determined 3 days after CDDP injection, and approximately 47.2% decrease in the platinum level was noted in the mouse kidney of Bi(TPP) co-treatment group.
compared with those of CDDP-alone group (Figure 2C), indicating that Bi(TPP) could facilitate platinum clearance from renal cells. In a separate experiment, acute renal damage induced by CDDP resulted in around 30% body weight loss 4 days after CDDP treatment (Figure 2D) and further led to death of all mice within five days (Figure 2E). In contrast, pre-treatment of Bi(TPP) effectively prevented the death of mice with a survival rate of 66.7%, whereas Bi(NAC)3 and BiZn could only rescue 12.5% and 25% of mice, respectively, at the end of the experimental period (Figure 2E). The body weights of survived mice were recovered to normal ranges within four weeks (Figure 2D).

Oral administration of Bi(TPP) as a representative compound was studied in mice to preliminarily evaluate the pharmacokinetics profile of related Bi(III) compounds. The compound was administered to mice orally. The plasma and kidney of the mice were sampled between 0 and 48 h at different time intervals shown in Figure 2F. Bi(TPP) displayed a rapid absorption profile with maximum concentration of 16.8 μg L⁻¹ (Cmax) reached at 1 h (Tmax). AUC0–48 h of Bi(TPP) could achieve 370.2 h·μg L⁻¹ with an estimated plasma t1/2 of 6 h (Table S1). The renal bismuth content was also profiled over the period of 48 h as shown in Figure 2G, demonstrating the sufficient accumulation of bismuth in kidney. Taken together, we showed that the tested Bi(III) compounds, in particular Bi(TPP), served as a protective agent against CDDP-induced renal toxicity in mice.

Structure and Activity Relationship of Bi(III) Porphyrins

To explore the role of Bi(III) and porphyrin ligand, we first compared the protective effect of Bi(TPP) with other metallo-tetraphenylporphyrinates in HK-2 cells. As shown in Figure 3A, porphyrinates of Fe(III), Cu(II), Co(II), and Zn(II) were also identified to be active with protective index of around 3, whereas negligible or no protection was provided by porphyrinates of either Mn(III) or Ga(III) or the ligand itself. Nevertheless, the protective index of Bi(TPP) was determined to be the best with the highest PI value. We then examined structure-activity relationship (SAR) of Bi(III) porphyrinates and synthesized a series of Bi(III) compounds by complexation with tetraphenylporphyrin and its derivatives (Figure 3B) as described in the Material and Method section. The in vitro screening gave rise to seven Bi(III) porphyrinates with PI values...
of 1.84–4.58 and three compounds with PI lower than 1 (Figure 3C). The protective activity and the ClogP of the ligands could be approximately fitted into a third-order equation as shown in inset of Figure 3C, suggesting that the protective activity of Bi(III) porphyrinates could be finely tuned by altering the lipophilicity of the ligand. Generally, a lipophilic porphyrin ligand with Clog P ranged from 8 to 14 may favor the activity of the compound, as the increased lipophilicity facilitated the passive permeation of small molecules (Arnott and Planey, 2012). The protective effectiveness of two of the most potent Bi(III) complexes with TPP derivatives, Bi(TMOPP) and Bi(TMPP), were further verified in the mouse model under identical condition, as shown in Figures 3D and 3E. Collectively, we showed that the protective effectiveness of Bi(III) porphyrinate could be optimized by tuning ligand lipophilicity.

Buffering of CDDP-Regulated Gene Alteration in Key Biological Pathways by Bi(TPP)

To gain a global perspective of the protective mechanism(s) of Bi(TPP) toward CDDP-induced nephrotoxicity, we performed transcriptomic analysis on the kidneys of mice treated with either Bi(TPP) and Bi(NAC)₃, or BiZn in the absence of CDDP served as control. Comparing to vehicle-treated group, CDDP severely altered the transcriptome level of mouse kidney with 2,453 genes being upregulated and 2,250 genes being upregulated with Bi(TPP) and Bi(NAC)₃, and BiZn upon the treatment of CDDP. Data are represented as mean ± SEM. *p < 0.05 **p < 0.01, and ***p < 0.001, Student’s t test. (C) Renal platinum levels were measured in the kidneys of mice from CDDP-alone and CDDP-Bi(TPP) co-administration group three days after CDDP injection. Data are represented as mean ± SEM; n = 4 for CDDP group and n = 6 for CDDP-Bi(TPP) co-administration group; **p < 0.01, Student’s t test. (D) Curves of averaged body weight changes of each group after CDDP injection. Error bars represent means ± SEM from biological replicates. (E) Survival curves showing the protective effects of Bi(TPP) and Bi(NAC)₃. Eight mice per treatment group were used for the survival studies. p < 0.001, Mantel-Cox test. (F and G) Pharmacokinetics profiles of (F) plasma bismuth concentration and (G) renal bismuth content. Bi(TPP) was used at 50 mg kg⁻¹ following oral administration. Three mice were used for each time point, and data are represented as mean ± SEM.
downregulated (p < 0.05). However, the co-administration of Bi(TPP) significantly suppressed the upregulated genes by 29.2% (717) and the downregulated genes by 28.7% (646) as shown in the heat maps in Figure 4A, SET I, and Figure 4B, SET II, respectively. In contrast, BiZn could only buffer 11.2% (275) and 9.1% (204) genes that were up- and downregulated by CDDP, respectively (Figures S3A and S3B), in line with its inferior in vivo effectiveness to Bi(TPP) as demonstrated earlier. We then examined the expression levels of GSH- and MT-related genes, which were previously considered to be responsible for the protective role of Bi(III) for CDDP-induced nephrotoxicity. We found that GSH-related genes including \textit{Mgst1} and \textit{Mgst2} and MT-related genes including \textit{Mt1} and \textit{Mt2} were significantly upregulated in BiZn-treated group (Figure 4C). The expressions of some genes were further induced when BiZn and CDDP were used together, including \textit{Gsta3} (1.19 folds), \textit{Gsta4} (1.76 folds), \textit{Gstm6} (3.22 folds), \textit{Mgst1} (2.76 folds), \textit{Mgst2} (8.90 folds), \textit{Mt1} (19.73 folds), and particularly \textit{Mt2} (42.06 fold) (Figures 4C and Table S2). These results are in agreement with previous reports that the significant upregulation of GSH and MT in kidney contributed greatly to the nephroprotection provided by BiZn and related Bi(III) compounds, e.g. BN, BSN, and CBS (Boogaard et al., 1991; Kondo et al., 2004; Leussink et al., 2003; Naganuma et al., 1987). In contrast to BiZn, Bi(TPP) suppressed the expression of \textit{Mgst2} by 2.34-fold and slightly induced the expression of \textit{Gstt1}, \textit{Gstt2}, \textit{Gstm6}, \textit{Gstm7}, and \textit{Gsta2} by no more than 1.6-fold (Figure 4C and Table S2). We then compared the expression levels of these genes in the CDDP-alone group with those of the CDDP-Bi(TPP) combination group and found that the genes related to GSH and MT were not significantly upregulated. Instead, the expression of \textit{Mt1} and \textit{Mt2} were largely suppressed to almost normal levels (Table S2). These results suggest the protection provided by Bi(TPP) may represent a new mechanism.

Gene ontology (GO) network was created to probe the functional specificity of clusters differentiated between CDDP-alone and CDDP-Bi(TPP) combination groups with respect to biological processes. Genes in SET I were functionally arranged into 15 parental clusters, and the most significantly enriched two clusters were genes related to endopeptidase activity (GO:0004175) and regulation of protein phosphorylation (GO:0001932) with 26 and 24 child terms, respectively (Figures 4D and S3C and Table S3). Although the genes in SET II were grouped into 15 clusters among which inorganic cation transmembrane transporter activity (GO:0022890) with 12 child terms was the most significantly enriched cluster (Figures 4F and S3D and Table S4). The child-annotated terms in endopeptidase activity could be predominantly traced to
Cysteine-type endopeptidase activity involved in apoptotic process (GO:0097153), which were in close relation to another parent cluster, negative regulation of apoptotic signaling pathway (GO:2001234) as showed in Figure S3C. This provided clues that Bi(TPP) may generically regulate the activity of cysteine-type endopeptidase related to apoptosis process. The genes upregulated by Bi(TPP) were largely related to the annotated term of cation transmembrane transporter activity, wherein gene expression levels of multidrug and toxin extrusion 1 transporter MATE1/SLC47A1 and copper efflux transporters ATP7A and ATP7B were increased by 1.23-, 1.41-, and 1.33-folds, respectively (Table S2). The former has been demonstrated to efflux CDDP into the tubular lumen, thus reducing cellular accumulation of CDDP (Nakamura et al., 2010) and the latter to sequester CDDP into subcellular compartments, limiting CDDP cytotoxicity (Leonhardt et al., 2009; Samimi et al., 2004). Additionally, the significantly enriched GO terms in SET II genes include acyl-CoA metabolic process (GO:0006637), purine ribonucleotide metabolic process (GO:0009150), fatty acid biosynthetic process (GO:0009062), kidney epithelium development (GO:0072073), and nephron...
epithelium development (GO:0072006) (Figure S3D), indicating that the action of Bi(TPP) may be associated with cell proliferation and cell respiration.

A Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that genes in SET I are primarily enriched in p53 signaling pathway (20 gene counts, $p = 1.70 \times 10^{-11}$), TNF signaling pathway (24 gene counts, $p = 1.99 \times 10^{-11}$), and apoptosis pathway (26 gene counts, $p = 3.90 \times 10^{-11}$) among the 245 annotated KEGG pathways (Figure 4F and Table S5), whereas genes in SET II are primarily enriched in metabolic pathways (96 gene counts, $p = 2.87 \times 10^{-17}$) among 235 KEGG pathways (Figure 4G and Table S6). The differentially expressed genes from the four most enriched pathways were further shown as log2FPKM value of CDDP-Bi(TPP) combination versus CDDP-alone group (Figure S3E). We found that genes encoding TNF-alpha and several key cysteine-containing pro-apoptotic proteins (Bax, caspase 7, caspase 8) involved in caspase cascade in TNF-induced apoptosis pathway were significantly downregulated. Genes encoding proteins belonging to cytochrome P450 superfamily (CYP2C44, CYP2A5, CYP51, CYP4F14), which serves as drug metabolism mediators, were upregulated as shown in Figure S3E and Table S2. This was in accordance with CYP-mediated drug clearance in vivo as reported previously (Backman et al., 2016; Quintanilha et al., 2017).

Modulation of CDDP-Induced Oxidative Stress, Energetic Metabolism Impairment by Bi(TPP)

The Bi(TPP)-induced alteration in mRNA expression levels was confirmed in HK-2 cells by reverse-transcriptase PCR (RT-PCR). According to the RT-PCR data shown in Figure 5A, the expression levels of MT1A, MT2A, and SLC22A1 were slightly increased by 2.30-, 2.62-, and 1.65-folds, respectively, whereas that of cytochrome P450 superfamily (CYP2C44, CYP2A5, CYP51, CYP4F14) were generally upregulated by more than 3-fold. In contrast, the expression level of SLC47A1 was increased by 19.6-fold, which may refer to enhanced effluxing capacity toward CDDP (Nakamura et al., 2010). Interestingly, we observed that the gene expression levels of glutathione-S-transferases (GSTs) were dramatically increased at cellular level, in particular that of GSTA1, GSTA3, and GSTM5 being increased by 39.9-, 454.9- and 28.5-fold, respectively. GSTs are a family of multifunctional enzymes that could modulate CDDP-induced generation of ROS by catalyzing the conjugation of GSH with electrophilic substrates (De Luca et al., 2019; Hayes et al., 2005). Any ROS accumulation beyond the cellular antioxidant capacity depolarizes mitochondrial potential (ΔΨm, MMP), a marker for mitochondrial activity, and subsequently leads to a compromised adenosine triphosphate (ATP) production in cellulo (Godbout et al., 2002; Krüdering et al., 1997).

GST activity was measured in HK-2 cells by spectrometrically monitoring GST-catalyzed reaction between GSH and the GST substrate, CDNB (1-chloro-2,4-dinitrobenzene), to produce a GS-DNB conjugate. The treatment of Bi(TPP) led to the increase of activity from 46.8 to 95.4 μmol min $^{-1}$ per 106 cells in a dose-dependent manner (Figure 5B). This corresponded with the RT-PCR data that Bi(TPP) induced the production of GST. The cellular ROS level was increased to 174.5% after exposure of HK-2 cells to CDDP for 24 h. However, such an increase was almost completely prevented by Bi(TPP) at 10 μM or higher concentrations (Figure 5C). We next examined the cellular MMP and ATP levels. Bi(TPP) ameliorated the loss of mitochondrial membrane potential (ΔΨm, MMP) caused by CDDP and scarcely altered ΔΨm when used alone (Figure 5A). Bi(TPP) increased the ATP level from 148.5 to 222.1 nM/106 cells in a dose-dependent manner (Figure 5D). Notably, in a separate experiment, we observed greatly reduced cellular platinum level by nearly 4-fold upon pretreatment of cells with Bi(TPP) at 100 μM (Figure 5E). This was in accordance with the diminished renal platinum level found in mice (Figure 2C), which may be due to the formed GS-platinum complex, bis-(glutathionato)-platinum(II) being effluxed from renal cells in an ATP-dependent manner (Ishikawa and Ali-Osman, 1993; Renes et al., 1999).

Amelioration of CDDP-Induced Caspase-Dependent Apoptosis by Bi(TPP)

Based on bioinformatics analysis, we further explore the Bi(TPP)-mediated detoxification in caspase-dependent apoptosis pathway. It has been demonstrated that CDDP-induced nephrotoxicity occurred primarily through programmed cell death (apoptosis) (Cummings and Schnellmann, 2002; Gonzalez et al., 2001). We then examined the apoptosis of CDDP treated HK-2 cells with or without pretreatment of Bi(TPP) and Zn(TPP) by flow cytometry. We found that CDDP-Bi(TPP) treatment markedly induced cell proliferation by 79.6%, whereas pretreatment of Zn(TPP) led to cell proliferation by 57.4%, similar to that of CDDP treatment alone (53.2%). In accordance, significant reduction in the percentage of cells undergoing apoptosis to 10.5% was observed in Bi(TPP)-CDDP treatment; in comparison, 23.6% and 36.8% of cell apoptosis were noted in Zn(TPP)-CDDP and CDDP-only groups, respectively (Figure 6A), indicating the pretreatment of Bi(TPP) prevents cells from apoptosis.
Western blot analysis of HK-2 cells treated with CDDP revealed that TNF, apoptotic regulator Bax, and active caspases, i.e., caspase 3, caspase 7, caspase 8, and caspase 9, that mediate cell death in CDDP-induced nephrotoxicity, were upregulated. However, such upregulations were prevented upon supplementation of Bi(TPP) to the cell prior to CDDP treatment, whereas an increase in the expression levels of anti-apoptotic protein Bcl-2 was observed (Figure 6B). Notably, Bi(TPP) did not affect the expression of p53, indicating that the amelioration of CDDP-induced apoptosis by Bi(TPP) was p53 independent. Moreover, we observed dose-dependent effects on the expression levels of caspase 3, caspase 7, caspase 8, caspase 9, Bax, and Bcl-2 upon treatment of cells by varying concentrations of Bi(TPP) in the absence of CDDP (Figure 6C), revealing that Bi(TPP) itself suppressed the apoptotic signaling in cells to a certain extent. Bi(III) has been shown to be able to inhibit enzyme activity in cells via binding to key cysteines in the active sites of enzymes (Cun et al., 2008; Wang et al., 2018). We then examined whether Bi(TPP) could target caspases 3/7 in cells. By using cellular thermal shift assay (Jafari et al., 2014), we show that melting temperatures of both...
caspase 3 and caspase 7 were decreased by Bi(TPP) (Figures 6D and 6E), indicative of binding of Bi(III) to the enzymes. Moreover, we observed the reduced caspase activity in lysate extracted from HK-2 cells treated with Bi(TPP) in the absence of CDDP (Figure S5). We further carried out an enzymatic assay on recombinant proteins and observed that the activity of cleaved caspase 3 and caspase 9 was inhibited by Bi(TPP) with IC₅₀ of 2.19 μM and 0.53 μM, respectively (Figure 6F). Our combined data provided evidence that Bi(TPP) protects CDDP-induced cell death by maintaining cellular redox, preserving mitochondrial function, facilitating the excretion of renal platinum, and attenuating caspase-dependent apoptosis.

CDDP Antineoplastic Performance in Neuroblastoma Mouse Pretreated with Bi(III) Compounds

It is of vital importance to examine whether the pre-administration of tested Bi(III) compounds would ameliorate CDDP-induced nephrotoxicity, without interfering with the anti-tumor response of CDDP. We evaluated the antineoplastic activity of CDDP with or without pretreatment of Bi(III) compounds in an orthotopic neuroblastoma xenograft model. The neuroblastoma cells SKNLP were stably transfected with the luciferase gene and orthotopically inoculated at the adrenal area of SCID Beige mice as previously described (Chan et al., 2019). Mice were pre-treated with Bi(III) compounds prior to CDDP treatment as schemed in Figure 7A, and the tumor burden was monitored by bioluminescence imaging. We found that the tumor size was significantly decreased with averaged diameter from 19.3 mm in non-treated group to 6.7 mm in CDDP-alone treatment group for three weeks (Figure 7B).
Pre-administration of either Bi(TPP) or Bi(NAC)₃ or BiZn led to almost no changes in tumor size, suggesting that pretreatment of Bi(III) compounds have negligible effects on the anti-tumor action of CDDP (Figure 7B). On the contrary, the bioluminescence imaging showed no significant difference in total flux in mice receiving treatment of CDDP alone or CDDP-Bi(III) combination three weeks after treatment completion, which was far lower than that in non-treated group (Figure 7C). Furthermore, no significant tumor metastasis to liver or lung was observed in either CDDP-alone or combination groups, in contrast to non-treated group (Figure 7D). We demonstrated that the tested Bi(III) compounds, i.e., Bi(TPP) and Bi(NAC)₃, do not compromise CDDP antineoplastic activity against neuroblastoma, and concurrently nephroprotection role of Bi(TPP) is not due to its capability of sequestration of CDDP in the blood.

DISCUSSION

The use of highly successful anticancer drug CDDP is limited by its severe side effects, in particular nephrotoxicity (Rabik and Dolan, 2007). This nephrotoxicity is mainly attributable to preferential accumulation of CDDP in renal proximal tubules, primarily in the epithelial tubular cells of the S3 segment, which subsequently favors the renal platinum uptake systems (dos Santos et al., 2012). A number of nephroprotective agents have been tested or even put on clinical trial, such as cimetidine (and Imatinib as OCT-2 substrate), amifostine (Ethyol as antioxidants), trichostatin A (and suberoylanilide hydroxamic acid as p53 inhibitor), quercetin (as TNF-α inhibitor), and so on (Cvitkovic, 1998; Katsuda et al., 2010; Tanihara et al., 2009). However, the protective effects of most agents are partial and few of them were not to interfere with antitumor efficacy of CDDP in the experimental context (Koyner et al., 2008). Moreover, some cytoprotectors exert severe adverse effects (Rades et al., 2004). Currently there is no satisfactory strategy to reduce CDDP-induced nephrotoxicity without compromising the anticancer activity of CDDP.
In this study, we identify two protective Bi(III) compounds, Bi(TPP) and Bi(NAC)₃, based on a cell-based screening, nevertheless the in vitro activity of the latter was not efficiently translated in animal models. Co-administration of Bi(TPP) diminished the renal damage and increased the survival rate of mice receiving a lethal dose of CDDP, thus a high dose of CDDP could be administered to patients. Our results suggest that once Bi(TPP) is absorbed into the bloodstream, it is rapidly metabolized and distributed to the kidney, during which the plasma bismuth content remains well under the documented safety level (50 μg L⁻¹) or alarm level (100 μg L⁻¹) (Benet, 1991). The pharmacokinetics profiles show that in comparison to BiZn, Bi(TPP) possessed lower clearance rate and higher AUC₀₋₈h value (104.2 μg L⁻¹ h of Bi(TPP) versus 78.3 μg L⁻¹ h of BiZn) (Table S1), which is in line with its superior protective effectiveness. In this regard, longer duration and less peak-to-trough variations might optimize the dosing frequency and potentially improve oral efficacy.

Porphyrin ligands are well documented to be able to modify the lipophilicity of metal complexes and metal uptake via passive diffusion in a membrane-potential dependent manner (Haas and Franz, 2009). This is confirmed by our data that the protective potency of Bi(III) porphyrin complexes is correlated with the ClogP value of porphyrin ligands (Figure 3C). Protective potency of Bi(TPP) may be rooted from the metal coordination environments and synergized function with porphyrin ligands. Nevertheless, we conclude that an appropriate lipophilicity is one of the important factors that contributes to the protective potency of Bi(TPP). The precise mode of action(s) among different Bi(III) porphyrin compounds still needs further investigation.

We then perform a comprehensive mechanistic study of the protective role of Bi(TPP) by transcriptome analysis and bioassays. We show that Bi(TPP) confers protection against CDDP-induced nephrotoxicity not primarily owing to the induction of MT (Figures 5A and 6C) but rather to other multiple protective mechanisms. We first observe that the Bi(TPP) induced upregulation of GSTs (Figures 5A and 5B), members of superfamily of phase II detoxifying enzymes that protect cells by catalyzing the conjugation reactions of toxic compounds, e.g. CDDP with GSH, to form corresponding GS-Pt conjugate (Allocati et al., 2018). We also note the elevated transcript level of platinum efflux transporters, e.g. MATE1/SLC47A1, which may account for the diminished renal platinum in kidney from Bi(TPP)-CDDP co-administration group, yet the level of platinum influx transporters, e.g. OCT2/SLC22A2, was not significantly changed (Figure 5A). Therefore, GSTs and efflux transporters, e.g. MATE1/SLC47A1, may synergise to increase the discharge of GS-Pt conjugate from renal cell as suggested by both our data (Figures 2C and 5E) and previous reports (Tew and Gateé, 2001). In parallel, we demonstrate that Bi(TPP) lowers the CDDP-induced ROS in dose-dependent manner, which may be owing to the overexpression of alpha class GSTs, i.e., GSTA1, GSTA2, and GSTA3, that could provide antioxidant effect toward various ROS (Coles and Kadlubar, 2005; Simic et al., 2006).

Apoptosis is a mode of programmed cell death that is used by multicellular organisms to dispose of irreparably damaged cells and is executed by a family of caspases (Fuentes-Prior and Salvesen, 2004). CDDP-induced apoptosis occurs via activation of caspases, e.g. caspase 3, 8, and 9, in the apoptotic pathway (Cummings and Schnellmann, 2002; Henkels and Turchi, 1999). Our combined data reveal Bi(TPP) mediates the caspase cascade by either preventing the CDDP-induced caspases upregulation or directly inhibiting the caspase activity (Figures 6B, 6C, 6F, and S3E). The former may result from the hindered activation of apoptosis signaling pathways by less ROS (Redza-Dutordoir and Averill-Bates, 2016), which is mediated by Bi(TPP); the latter may be due to the binding of Bi(III) to cysteine residues at the caspase active site, because Bi(III) has been proven to inhibit enzyme activity through binding to the key cysteine in the active site (Wang et al., 2018).

Renal proximal tubules are largely dependent on ATP generation by mitochondrial oxidative phosphorylation and thus particularly susceptible to mitochondrial damage (Uchida and Endou, 1988; Wirthensohn and Guder, 1986). We find that Bi(TPP) promotes the generation of ATP, possibly due to Bi(TPP)-induced upregulation of cytochrome c (Figures 6B and 6C) and cytochrome c oxidase (encoded by COX8, complex IV) (Figure 5A and Table S2), both of which serve as indispensable parts of the mitochondrial electron transport chain (ETC). Cytochrome c is a multi-functional enzyme involved in life-sustaining functions, i.e., respiration and ROS scavenging, and in programmed cell death, i.e., apoptosis (Hüttemann et al., 2011). The increased cytochrome c may also account for the decreased of ROS level, because it was perceived as an “ideal antioxidant” (Pereverzev et al., 2003). Although, the dramatic increase of cytochrome c may slightly lead to cell apoptosis (Figure 6A), it may still contribute to scavenging generated ROS and preventing ATP depletion caused by CDDP (Figures 5C and 5D). We note that Bi(III) could bind to apo-form of
cytochrome c (Figures S6A and S6B); however, such binding did not trigger the activation of caspase cascade based on cell-free caspase activation assay (Figure S6C). It could be inferred that the binding of Bi(III) triggers certain feedback regulation to produce more cytochrome c. However, it is not clear why the significant upregulation of cytochrome c dose not initiate severe apoptotic cell death. This may be correlated with coherent upregulation of cytochrome c oxidase mediated by Bi(TPP) (Schüll et al., 2015), but the mechanistic insights of why cytochrome c is upregulated by Bi(TPP) and how it is regulated to be more “protective” here than apoptotic warrant further studies in the future.

A highly significant and clinically relevant finding of this study is that Bi(TPP) provides nephroprotection without compromising the antitumor effect of CDDP in an in vivo neuroblastoma orthotopic model. Bi(TPP) does not affect the therapeutic effectiveness of CDDP in either primary adrenal site or metastatic sites, e.g. lung and liver. Since some porphyrins e.g. 5, 10, 15, 20-tetra-(N-methyl-4-pyridyl)porphyrin [TMPyP4(P4)] and related manganese porphyrin (Han et al., 1999; Morris et al., 2012; Pradines and Pratviel, 2013) were reported to have anticancer activities when bound to G-quadruplex, it could be deduced that a nephroprotective metallo-porphyrin could exert certain degree of anticancer activity under rational design. N-acetylcysteine (NAC) has also been shown to display antitumor activity either used alone or combined with other anticancer drugs such as CDDP and doxorubicin (Delneste et al., 1997; Lopez et al., 2004; Muldoon et al., 2015). It is likely that Bi(NAC), or its analogues could be further developed as a bifunctional partner of anticancer drugs upon optimization of pharmacokinetics and pharmacodynamics, so that they could simultaneously protect normal cells and synergize with an anticancer drug in its antineoplastic performance.

In summary, we demonstrate that Bi(TPP) could serve as a new type of potent protective agent against CDDP-induced nephrotoxicity without compromising its anticancer properties. Distinct from previously reported bismuth drugs that exert protective role through MT-dependent pathway, Bi(TPP) inactivates caspase-dependent apoptotic pathway, maintains energy supply, and eliminates the renal platinum. Our studies suggest that Bi(TPP) may be incorporated into CDDP-based chemotherapy regimens to ameliorate CDDP-induced nephrotoxicity in patients receiving low-dosed CDDP or those with refractory tumors receiving high-dosed CDDP. Our findings provide the potentials to revive the clinical usage of highly effective anticancer drug CDDP.

Limitations of the Study

Some limitations to the findings of this study must be acknowledged. First, we observed the demetallation of Bi(TPP) upon long period exposure to light and moisture. The enhancement of both stability and solubility of the complex in aqueous medium either through structural or through compositional optimization would probably improve its in vivo protective potency. In addition, further optimization of pharmacokinetics profiles of the drug candidate may be required to achieve lower clearance and longer half-life while maintaining its promising potency and low toxicity. One additional limitation of the study is the difficulty in assessing precise protective mechanisms in primary human renal epithelial cells. Although we demonstrate that Bi(TPP) exerts an MT-independent protective action in HK-2 cell, more in vitro and in vivo assays are necessary to rule out cell-line-specific phenomenon. Further study is also required to unveil whether Bi(TPP) and/or other Bi(III) porphyrins as well as other protective metallo-porphyrins share the same or similar protective mode of action(s).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

Data and code related to this paper may be requested from the authors. All the mRNA sequencing data could be found in Data S1.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101054.

ACKNOWLEDGMENTS

This work was supported by Innovation and Technology Fund, Hong Kong (ITS/124/17), Research Grants Council of Hong Kong SAR (R7070-18) and Norman & Cecilia Yip Foundation (University of Hong Kong).
We thank Kenneth Raymond (UC Berkeley) and Roman Vilar (Imperial College London) for helpful comments.

AUTHOR CONTRIBUTIONS

H.S., H.L., C.-F.C., and Z.Z. conceived idea and designed experiments; R.W. synthesized the compounds; R.W. and S.Y. performed all the enzyme-based and cell-based experiments. R.M. and S.Y. conducted in vivo nephroprotective experiments. R.W. and Y.W. performed the transcriptomic analysis. C.C. performed the in vivo tumor model experiments. Y.Z. performed the pharmacokinetics study. R.W., H.L., and H.S. principally wrote the manuscript with input from all coauthors.

DECLARATION OF INTERESTS

H.S., C.-F. C., R.W., and H.L. have filed a patent application (US Provisional Application No. 62/193,282) related to the Bi(III) compounds reported in this manuscript.

Received: October 28, 2019
Revised: March 10, 2020
Accepted: April 6, 2020
Published: May 22, 2020

REFERENCES

Allocatii, N., Masulli, M., Di Illo, C., and Federici, L. (2018). Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7, 8.

Amott, J.A., and Planey, S.L. (2012). The influence of lipophilicity in drug discovery and design. Expert Opin. Drug. Dis. 7, 863–875.

Backman, J.T., Filippula, A.M., Niemi, M., and Neuvonen, P.J. (2016). Role of cytochrome P450 2C8 in drug metabolism and interactions. Pharmacol. Rev. 68, 168–241.

Benet, L. (1991). Safety and pharmacokinetics: colloidal bismuth subcitrate. Scand. J. Gastroenterol. 26, 29–35.

Bertolini, G., Roz, L., Perego, P., Tortoreto, M., Fontanella, E., Gatti, L., Pratesi, G., Fabbri, A., Andriani, F., and Tinelli, S. (2009). Highly tumorigenic lung cancer CD133+ cells display properties of metallothionein more relevant than dimeric metallothionein. Proc. Natl. Acad. Sci. U S A 106, 16281–16286.

Boogaard, P.J., Slikkerweer, A., Nagelkerke, J.F., and Mulder, G.J. (1991). The role of metallothionein in the reduction of cisplatin-induced nephrotoxicity by Bi3+-pretreatment in the rat in vivo and in vitro: are antioxidant properties of metallothionein more relevant than platinum binding? Biochem. Pharmacol. 41, 369–375.

Candelaria, M., Garcia-Arias, A., Cetina, L., and Dueñas-Gonzalez, A. (2006). Radiosensitzers in cervical cancer. Cisplatin and beyond. Radiat. Oncol. 1, 15.

Chan, S., Wang, R., Man, K., Nicholls, J., Li, H., Sun, H., and Chan, G.C.-F. (2019). A novel synthetic compound, bismuth zinc citrate, could potentially reduce cisplatin-induced toxicity without compromising the anticancer effect through enhanced expression of antioxidant protein. Transl. Oncol. 12, 788–799.

Cheng, L., Albers, P., Berney, D.M., Feldman, D.R., Daugaard, G., Gilligan, T., and Looijenga, L.H. (2018). Testicular cancer. Nat. Rev. Dis. Primers. 4, 29.

Chevalier, R.L. (2016). The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am. J. Physiol. Renal. 317, F145–F161.

Coles, B.F., and Kadubur, F.F. (2005). In Human Polymorphism, Expression, and Susceptibility to disease. Methods Enzymol, H. Sies and L. Packer, eds. (Academic Press), pp. 9–42.

Cummings, B.S., and Schnellmann, R.G. (2002). Cisplatin-induced renal cell apoptosis: caspase 3-dependent and-independent pathways. J. Pharmacol. Exp. Ther. 302, 8–17.

Cun, S., Li, H., Ge, R., Lin, M.C., and Sun, H. (2008). A histidine-rich and cysteine-rich metal-binding domain at the c terminus of heat shock protein a from Helicobacter Pylori implication for nickel homeostasis and bismuth susceptibility. J. Biol. Chem. 283, 15142–15151.

Cytovkovic, E. (1998). Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat. Rev. 24, 265–281.

De Luca, A., Parker, L.J., Ang, W.H., Rodolfo, C., Gabbiani, V., Hancock, N.C., Palone, F., Mazzetti, A.P., Menin, L., Morton, C.J., et al. (2019). A structure-based mechanism of cisplatin resistance mediated by glutathione transferase P1-1. Proc. Natl. Acad. Sci. U S A 116, 13943.

Delhede, Y., Jeannin, P., Potier, L., Romero, P., and Bonnefoy, J.-Y. (1997). N-acetyl-L-cysteine exhibits antitumoral activity by increasing tumor necrosis factor a-dependent T-cell cytotoxicity. Blood 90, 1124–1132.

dos Santos, N.A.G., Rodrigues, M.A.C., Martins, N.M., and Dos Santos, A.C. (2012). Cisplatin-induced nephrotoxicity and targets of nephroprotection: an update. Arch. Toxicol. 86, 1233–1250.

Dresow, B., Nielsen, P., Fischer, R., Wendel, J., Gabbe, E.E., and Heinrich, H.C. (1991). Bioavailability of bismuth from 205Bi-labelled pharmaceutical oral Bi-preparations in rats. Arch. Toxicol. 65, 646–650.

Fuentes-Prior, P., and Salvesen, G.S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384, 201–232.

Fujimura, Y., and Satoh, M. (2013). Protective role of metallothionein in chemical and radiation carcinogenesis. Curr. Pharm. Biotechnol. 14, 394–399.

Godbout, J.P., Pesavento, J., Hartman, M.E., Manson, S.R., and Freund, G.G. (2002). Methyglyoxal enhances cisplatin-induced cytotoxicity by activating protein kinase Cb. J. Biol. Chem. 277, 2554–2561.

Gonzalez, V.M., Fuertes, M.A., Alonso, C., and Perez, J.M. (2001). Is cisplatin-induced cell death always produced by apoptosis? Mol. Pharmacol. 59, 657–663.

Haas, K.L., and Franz, K.J. (2009). Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 109, 4921–4960.

Han, F.X., Wheelhouse, R.T., and Hurley, L.H. (1999). Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J. Am. Chem. Soc. 121, 3561–3570.

Hausheer, F.H., Shannugarajah, D., Leverett, B.D., Chen, X., Huang, Q., Kochat, H., Petluru, P.N., and Parker, A.R. (2010). Mechanistic study of BNPP7787-mediated cisplatin nephroprotection: modulation of gamma-glutamyl transpeptidase. Cancer Chemother. Pharmacol. 65, 941–951.
Tew, K.D., and Gate´, L. (2001). Glutathione S-transferases as emerging therapeutic targets. Expert Opin. Ther. Targets 5, 477–489.

Thirumoorthy, N., Sunder, A.S., Kumar, K.M., Ganesh, G., and Chatterjee, M. (2011). A review of metallothionein isoforms and their role in pathophysiology. World J. Surg. Oncol. 9, 54.

Uchida, S., and Endou, H. (1988). Substrate specificity to maintain cellular ATP along the mouse nephron. Am. J. Physiol. Renal. 255, F977–F983.

Wang, D., and Lippard, S.J. (2005). Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307.

Wang, R., Lai, T.-P., Gao, P., Zhang, H., Ho, P.-L., Woo, P.C.-Y., Ma, G., Kao, R.Y.-T., Li, H., and Sun, H. (2018). Bismuth antimicrobial drugs serve as broad-spectrum metallo-ß-lactamase inhibitors. Nat. Comm. 9, 439.

Wirthensohn, G., and Guder, W.G. (1986). Renal substrate metabolism. Physiol. Rev. 66, 469–497.
Supplemental Information

Bismuth Porphyrin Antagonizes Cisplatin-Induced Nephrotoxicity via Unexpected Metallothionein-Independent Mechanisms

Runming Wang, Suyu Wang, Shing Chan, Yuchuan Wang, Yufeng Zhang, Zhong Zuo, Godfrey Chi-Fung Chan, Hongyan Li, and Hongzhe Sun
SUPPLEMENTAL FIGURES

Figure S1: Chemical structures of tested bismuth compounds for initial screening, Related to Figure 1

* The two oxygens in Cpd 9 are from two adjacent molecules.
Figure S2: Cytotoxicity assay of Bi(III) compounds for initial screening, Related to Figure 1
(A-B) Dose-response curve showing the cytotoxicity of Bi(III) compounds by XTT assay upon treatment of (A) HK-2 and (B) MIHA cells at varying concentrations.
Figure S3: Transcriptome analysis of BiZn and detailed information on transcriptome analysis of Bi(TPP), Related to Figure 4

(A-B) Venn image and heat map of whole transcriptome sequencing on kidney extracts from mice receiving treatments of vehicle, BiZn, CDDP, or CDDP+ BiZn, respectively (n=3 mice per group). The overlapping sets amidst Venn image revealing that the expression of genes (A) in SET I was suppressed over CDDP-induced upregulation and (B) in SET II was induced over CDDP-induced downregulation upon the treatment of BiZn. Heat maps illustrate the scaled average gene expression. A false discovery cut-off rate of 0.05 was used for determining differential gene expression. Color code: Blue-low expression, red color-high expression. (C-D) Detailed child terms information from Fig. 4C, 4D. (C) showed endopeptidase activity+negative regulation of apoptotic signalling pathway and (D) showed inorganic cation transmembrane transporter activity+purine nucleotide metabolic process+calcium ion transport are shown in details. (E) The transcript level of genes enriched in TNF signalling, p53 signalling, apoptosis and metabolic pathway according to the analysis in Figure 4E, 4F.
Figure S4: Mitochondrial membrane potential ($\Delta \Psi_m$) of HK-2 cell affected by Bi(II)TPP in the presence or absence of CDDP, Related to Figure 5

(A-B) Mitochondrial membrane potential of HK-2 cells exposed to various concentrations of Bi(II)TPP (A) in the presence and (B) the absence of 20 µM CDDP. Data are represented as mean ± SEM. * $p < 0.05$ ** $p < 0.01$ and *** $p < 0.001$, Student’s t test, with the significance in comparison to the control group for (A) group of Bi(II)TPP concentration at 0 µM for (B).
Figure S5: lysate activity of caspase 3 and caspase 9 inhibited by Bi(TPP), Related to Figure 6

(A-B) Examination of (A) caspase 3 and (B) caspase 9 activity from extracted lysate of HK-2 cells. M Data are represented as mean ± SEM. *p<0.05 **p<0.01 and ***p<0.001, Student’s t test, with the significance in comparison to the group of Bi(TPP) concentration at 0 µM.
Figure S6: Characterization of the binding of Bi(III) ion to apo-cytochrome C, Related to Figure 6

(A) MALDI-TOF mass spectra of apo-form of cytochrome C (upper) and Bi-cytochrome C (lower) (B) Cellular thermal shift assays showing the binding of Bi(III) to (apo-)cytochrome C with $\Delta T_m = 13.54^\circ C$. (C) Representative immunoblots of fully-cleaved caspase 9 induced by apo-cytochrome c, Bi-cytochrome c and cytochrome c, respectively, from cell-free caspase activation assay.
Table S1: Pharmacokinetics parameters of bismuth compounds in mouse plasma, Related to Figure 2

Compd.	BiZn* p.o. (96.46 mg kg⁻¹)	Bi(TPP) p.o. (50 mg kg⁻¹)
AUC₀⁻⁸h (µg L⁻¹ h)	78.3	104.2
AUC₀⁻₄₈h (µg L⁻¹ h)	-	370.2
T₁/₂ (h)	1.9	6.1
Cₘₐₓ (µg L⁻¹)	24.7	16.8
Tₘₐₓ (h)	1.0	1.0
Vₐ/F (L)	151.9	113.4
CL/F (L⁻¹ h)	10.9	6.6

*Data were generated from experiments in a previous report for comparison (Chan, Wang et al., 2019).
Table S2: Altered expression level of key gene upon drug treatment, Related to Figure 4

Gene name	Protein name	Fold change of averaged FPKM vs control	BiZn	Bi(TPP)	CDDP	BiZn +CDDP	Bi(TPP) +CDDP
Gsta1	Glutathione S-transferase, alpha 1	1.69	1.32	1.06	1.58	1.25	
Gsta2	Glutathione S-transferase, alpha 2	1.55	1.47	0.83	1.04	0.92	
Gsta3	Glutathione S-transferase, alpha 2	1.14	1.03	1.18	1.19	1.22	
Gsta4	Glutathione S-transferase, alpha 4	1.12	0.87	0.64	1.76	0.88	
Gstm5	Glutathione S-Transferase Mu 5	0.98	1.06	2.74	2.27	1.91	
Gstm6	Glutathione S-Transferase Mu 6	1.25	1.42	2.33	3.22	2.46	
Gstm7	Glutathione S-Transferase Mu 7	1.27	1.36	1.03	1.31	1.64	
Mgst1	Microsomal glutathione S-transferase 1	1.08	0.95	2.13	2.76	1.78	
Mgst2	Microsomal glutathione S-transferase 2	1.01	0.30	1.41	8.90	1.27	
Mt1	Metallothionein 1	13.32	1.10	8.23	19.73	4.51	
Mt2	Metallothionein 2	24.49	1.06	18.91	42.06	8.08	
Oct 2/	Solute carrier family 22 (organic cation transporter), member 2	0.95	0.61	0.99	0.65	0.76	
Slc22a2							
Atp7a	ATPase, Cu\(^{2+}\) transporting, alpha polypeptide	0.93	1.08	0.85	1.33	0.98	
Atp7b	ATPase, Cu\(^{2+}\) transporting, beta polypeptide	0.92	0.68	0.91	0.55	0.90	
Mate1/	Solute carrier family 47, member 1	1.01	0.55	1.12	0.64	0.80	
Slc47a1							
Cyp2c44	Cytochrome P450, family 2, subfamily c, polypeptide 44	1.19	0.48	0.98	0.70	0.85	
Cyp2a5	Cytochrome P450, family 2, subfamily a, polypeptide 5	1.96	0.29	3.25	0.35	0.57	
Cyp2j5	Cytochrome P450, family 2, subfamily j, polypeptide 5	1.00	0.35	0.94	0.52	0.69	
Cyp51	Cytochrome P450, family 51	0.85	0.13	0.84	0.18	0.30	
	Cytochrome P450, family 4, subfamily f, polypeptide 14						
-------	---	-------	-------	-------	-------		
Cyp4f14	Cytochrome c oxidase subunit VIIIb	0.83	0.18	0.70	0.37	0.46	
Cox8b	Cytochrome c oxidase subunit VIIIb	0.58	0.40	0.74	1.90	1.62	
Table S4: GO term of biological process annotation for SET II, Related to Figure 4

GO ID	Go term	Term P Value	Group P Value	GO Groups	Associated Genes %	Genes
GO:0009062	Fatty acid catabolic process	7.492E-05	7.492E-05	Group00	10.91	12
GO:0030111	Regulation of Wnt signaling pathway	5.254E-04	5.254E-04	Group01	6.50	21
GO:0060349	Bone morphogenesis	4.826E-04	4.826E-04	Group02	8.96	12
GO:1901606	Alpha-amino acid catabolic process	1.601E-15	1.601E-15	Group03	24.47	23
GO:0008238	Exopeptidase activity	7.492E-05	7.492E-05	Group04	10.91	12
GO:0030900	Forebrain development	2.451E-04	2.451E-04	Group05	5.83	30
GO:003279	Cardiac septum development	4.363E-05	4.363E-05	Group06	10.14	14
GO:0030182	Neuron differentiation	2.119E-04	2.119E-04	Group07	4.42	73
GO:0031175	Neuron projection development	3.194E-04	2.119E-04	Group07	4.69	56
GO:0048592	Eye morphogenesis	4.936E-04	4.936E-04	Group08	7.73	15
GO:0048593	Camera-type eye morphogenesis	5.533E-05	4.936E-04	Group08	9.93	14
GO:0051924	Regulation of calcium ion transport	6.589E-04	3.086E-04	Group09	6.58	20
GO:0006816	Calcium ion transport	3.086E-04	3.086E-04	Group09	5.85	29
GO:0072006	Nephron development	1.959E-04	1.931E-04	Group10	8.43	15
GO:0072073	Kidney epithelium development	6.712E-04	1.931E-04	Group10	7.82	14
GO:0072009	Nephron epithelium development	5.518E-04	1.931E-04	Group10	8.82	12
GO:0042327	Positive regulation of phosphorylation	1.468E-04	1.468E-04	Group11	4.81	57
GO:0001934	Positive regulation of protein phosphorylation	4.355E-04	1.468E-04	Group11	4.71	53
GO:0043410	Positive regulation of MAPK cascade	3.803E-04	1.468E-04	Group11	5.56	33
GO:0001568	Blood vessel development	3.750E-09	3.750E-09	Group12	6.82	55
GO:0001525	Angiogenesis	9.481E-07	3.750E-09	Group12	6.70	39
GO:0048514	Blood vessel morphogenesis	\(3.999\times 10^{-09}\)	\(3.750\times 10^{-09}\)	Group12	7.16	50
GO:0045765	Regulation of angiogenesis	\(1.755\times 10^{-04}\)	\(3.750\times 10^{-09}\)	Group12	6.80	23
GO:0045766	Positive regulation of angiogenesis	\(6.781\times 10^{-04}\)	\(3.750\times 10^{-09}\)	Group12	7.50	15
GO:0006163	Purine nucleotide metabolic process	\(8.119\times 10^{-05}\)	\(3.627\times 10^{-06}\)	Group13	6.63	26
GO:0006633	Fatty acid biosynthetic process Ribonucleotide metabolic process Purine nucleoside bisphosphate metabolic process	\(1.084\times 10^{-04}\)	\(3.627\times 10^{-06}\)	Group13	9.33	14
GO:0009259	Acyl-coa metabolic process Ribonucleoside bisphosphate metabolic process	\(7.608\times 10^{-05}\)	\(3.627\times 10^{-06}\)	Group13	6.67	26
GO:0034032	Amino acid transport Organic anion transporter activity Carboxylic acid transport	\(2.639\times 10^{-07}\)	\(3.627\times 10^{-06}\)	Group13	13.56	16
GO:0006637	Acyl-coa metabolic process Ribonucleoside bisphosphate metabolic process	\(4.993\times 10^{-06}\)	\(3.627\times 10^{-06}\)	Group13	13.13	13
GO:0033875	Purine ribonucleotide metabolic process	\(2.639\times 10^{-07}\)	\(3.627\times 10^{-06}\)	Group13	13.56	16
GO:0009150	Purine ribonucleotide metabolic process	\(4.969\times 10^{-05}\)	\(3.627\times 10^{-06}\)	Group13	6.95	26
GO:0008514	Amino acid transporter activity Carboxylic acid transporter activity	\(1.414\times 10^{-05}\)	\(1.942\times 10^{-06}\)	Group14	9.60	17
GO:1905039	Sodium ion transmembrane transporter activity	\(6.526\times 10^{-10}\)	\(1.942\times 10^{-10}\)	Group14	11.69	27
GO:0015718	Monocarboxylic acid transport Inorganic cation transmembrane transporter activity	\(1.918\times 10^{-09}\)	\(1.942\times 10^{-10}\)	Group14	11.90	25
GO:0022890	Monovalent inorganic cation transmembrane transporter activity	\(6.004\times 10^{-04}\)	\(1.942\times 10^{-10}\)	Group14	7.91	14
GO:0015077	Symporter activity Sodium ion transport Metal ion transport	\(2.399\times 10^{-04}\)	\(1.942\times 10^{-10}\)	Group14	5.15	42
GO:0015293	Symporter activity Sodium ion transport Metal ion transport	\(3.052\times 10^{-06}\)	\(1.942\times 10^{-10}\)	Group14	6.88	34
GO:0035725	Symporter activity Sodium ion transport Metal ion transport	\(2.221\times 10^{-13}\)	\(1.942\times 10^{-10}\)	Group14	16.36	27
GO:0046873	Symporter activity Sodium ion transport Metal ion transport	\(6.257\times 10^{-06}\)	\(1.942\times 10^{-10}\)	Group14	9.05	20

12
GO:0046943	Carboxylic acid transmembrane transporter activity	1.692E-09	1.942E-10	Group14	13.50	22
GO:0015294	Solute:cation symporter activity	3.673E-10	1.942E-10	Group14	17.12	19
GO:0015081	Sodium ion transmembrane transporter activity	4.749E-06	1.942E-10	Group14	9.22	20
Table S5: Top 20 KEGG Pathway annotation chart of SET I, Related to Figure 4

Pathway	ID	Gene count	count%	P-Value
p53 signaling pathway	mmu04115	20	29.41%	1.702E-11
TNF signaling pathway	mmu04668	24	21.82%	1.988E-11
Apoptosis	mmu04210	26	18.84%	3.899E-11
Osteoclast differentiation	mmu04380	20	15.50%	1.917E-07
Leishmaniasis	mmu05140	14	21.54%	8.844E-07
HTLV-I infection	mmu05166	28	10.11%	1.036E-07
Influenza A	mmu05164	21	12.35%	2.388E-06
Toxoplasmosis	mmu05145	16	14.29%	1.262E-05
Herpes simplex infection	mmu05168	21	10.19%	3.402E-05
Proteoglycans in cancer	mmu05205	21	10.19%	3.402E-05
Cytokine-cytokine receptor interaction	mmu04060	24	9.09%	4.032E-05
Tuberculosis	mmu05152	19	10.80%	4.643E-05
Hepatitis B	mmu05161	17	11.72%	5.572E-05
MAPK signaling pathway	mmu04010	23	9.06%	6.470E-05
Salmonella infection	mmu05132	12	15.38%	1.194E-04
Rheumatoid arthritis	mmu05323	12	14.81%	1.606E-04
NF-kappa B signaling pathway	mmu04064	13	13.13%	2.155E-04
Legionellosis	mmu05134	10	17.24%	2.500E-04
Hematopoietic cell lineage	mmu04640	12	13.79%	2.789E-04
Chagas disease (American trypanosomiasis)	mmu05142	13	12.62%	2.979E-04
Table S6: Top 20 KEGG Pathway annotation chart of SET II, Related to Figure 4

Pathway	ID	Gene count	count%	P-Value
Metabolic pathways	mmu01100	96	7.57%	2.869E-17
Butanoate metabolism	mmu00650	10	37.04%	2.442E-06
Valine, leucine and isoleucine degradation	mmu00280	12	21.05%	1.284E-05
Tryptophan metabolism	mmu00380	9	19.57%	5.768E-04
Rap1 signaling pathway	mmu04015	18	8.33%	1.698E-03
Arginine and proline metabolism	mmu00330	8	16.33%	3.748E-03
Pantothenate and CoA biosynthesis	mmu00770	5	26.32%	9.006E-03
Propanoate metabolism	mmu00640	6	19.35%	9.006E-03
beta-Alanine metabolism	mmu00410	6	18.75%	9.006E-03
Cysteine and methionine metabolism	mmu00270	7	14.89%	9.006E-03
Sulfur metabolism	mmu00920	4	36.36%	9.006E-03
Synthesis and degradation of ketone bodies	mmu00072	4	36.36%	9.006E-03
Focal adhesion	mmu04510	15	7.43%	9.006E-03
ECM-receptor interaction	mmu04512	9	10.84%	9.752E-03
Phenylalanine metabolism	mmu00360	5	21.74%	1.017E-02
Protein digestion and absorption	mmu04974	9	10.00%	1.453E-02
Glycine, serine and threonine metabolism	mmu00260	6	15.00%	1.480E-02
Biosynthesis of unsaturated fatty acids	mmu01040	5	17.86%	1.842E-02
Biosynthesis of amino acids	mmu01230	8	10.26%	1.903E-02
Glyoxylate and dicarboxylate metabolism	mmu00630	5	17.24%	1.903E-02
Table S7: List of primer sequences of genes in RT-PCR (5’-3’), Related to Figure 5

	Forward Primers	Reverse Primers
Gsta1	CCT GAT CTG ATT CCT CCC	TCA AGC TCC TCG ACG TAG TA
Gsta2	AGT GCC ATT TAG GAA CCA GAG	TCC TCA TTC CCT GCT CTA TCT
Gsta3	CCT TCT TCC CTC TCT TTT G	TAA ACC CTG CTC ACC CTT TG
Gsta4	CTA ACT CTG GGC TTC CAT TCT C	CTT CGG GTC TGT ACC AAC TCC TG
Gstm5	ACT CCT ATT CAC CGA CCT TCT C	GCC TCT CAC TGC ACT CAT TT
Mgst1	TCA GTA TCA CCA GTG TGT CTT G	GCC GTT GAG TAG AGG AAT GTA G
Mgst2	CTC TTG GTT CCA GGC AGA TAT T	CTT GGG CAG AGT CCA CAT AAA
Mt1a	CGC CTT ATA GCC TCT CAA CTT C	CCA GAA ACC TAG CAT CCC TTA C
Mt1a	CCC TCT TTC TTT CTC TGG TCA C	GGG CTC CGA ATA ACC TAG AAT G
S1c22a2	CGT GGT GCT GGT AGG AAT TAG A	ATC CCA AAG TGC TGG GAT TAG T
S1c47a1	GCT CGG TAG TTT GTG GGA TAT T	AGC ATG GCT GAT GGA TCT TAT T
Cyp2c44	GCC CTC ACT AGC ACT TCT TAT C	CCT AGC ACC TGC TTC AAT TCT A
Cyp2a5	GAG GAG ATT GAT CGG GTG ATT G	CAT GGA TTA CAG CCT CCG TAT AG
Cyp2j5	GGG TGA AAG GGT ATG GGA TAA A	CAG AAG GCT ATG AGG GTA AGA AG
Cyp51	GTG TGT TGA CTG GAT TGC TTT G	CCC ACC TAC TGC CTC CTA ATA
Cyp4f14	CTG AGC GTG TAA GAA CCC TAT T	CCC AGC CAC TAC ATC TCA TTT
Cox8b	CTG AGT GAA CCT CTG CCT TAC	CAG GGA GAA TGA CCT CAG AAA T
Gadph	GGA GTG AGT GGA AGA CAG AAT G	GAG GGA CAC AAG GTT ACC ATA TAC
Table S8: List of primary antibodies, Related to Figure 6

Target Protein	Host	Manufacturer	Catalog Number
Caspase 3	Rabbit	Proteintech	19677-1-AP
Caspase 7	Rabbit	Proteintech	27155-1-AP
Bax	Rabbit	Proteintech	50599-2-LG
Bcl-2	Rabbit	Proteintech	12789-1-AP
Caspase 8	Rabbit	Abcam	ab138485
Caspase 9	Rabbit	Abcam	ab2324
P53	Rabbit	Abcam	ab31333
TNF alpha	Rabbit	Abcam	ab9739
Cytochrome c	Mouse	Abcam	ab9739
Metallothionein	Mouse	Abcam	ab12228
β-Actin	Rabbit	Cell Signaling Technology	4970S
TRANSPARENT METHODS

General Chemistry

All reagents and solvents were purchased from commercial sources and used without further purification. Bismuth subsalicylate (BSS) and bismuth subgallate hydrate (BSG) were purchased from Alfa Aesar. Colloidal bismuth subcitrate were kindly given from Livzon Pharmaceutical Group Inc. All the porphyrins were purchased from Frontier Scientific, Inc. Fe(TPP), Zn(TPP), Cu(TPP), Co(TPP), Mn(TPP), and Ga(TPP) were purchased from Chemson Industrial (Shanghai) Co., Ltd. All other chemicals were purchased from Sigma-Aldrich unless otherwise stated. Chemical structure and CLogP were generated by ChemDraw Ultra 16.0. Specific primers for RT-PCR were purchased from Integrated DNA Technologies (IDT) and the sequences were listed in Table S7. Sources and details of all antibodies are listed in Table S8. Caspase-3 (ab52314) and caspase-9 (ab52203) protein were purchased from Abcam Ltd.

Human renal proximal tubule cells (HK-2), human hepatic cells (MIHA) and neuroblastoma cell (SKNLP) cell lines were cultivated in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), supplemented with penicillin (100 µg mL⁻¹) and streptomycin (100 µg mL⁻¹). Cells were maintained in a 37 °C incubator under a humidified atmosphere of 5% CO₂.

Six-to-eight-week-old female and male BALB/c nude mice were purchased from Charles River Laboratories, Inc. Six-to-eight-week-old male C57BL/6 were supplied by the Laboratory Animal Services Centre at The Chinese University of Hong Kong. All the mice were randomly caged and given free access to water and food. All animal procedures were approved by the Committee on the Use of Live Animals in Teaching and Research (CULATR) of the University of Hong Kong (CULATR 4753-18) and the Animal Ethics Committee of the Chinese University of Hong Kong (Animal Experimentation Ethics Committee No.: 17/176/MIS-5-C). All animal procedures were approved by the Committee on the Use of Live Animals in
Synthesis of Cpd 1 [Bi(TPP)] and Bi(THPP).

Bi(TPP) and Bi(THPP) were synthesized using a modified method (Wang, Lai et al., 2018). Briefly, Bi(NO$_3$)$_3$·5H$_2$O (1.99 g) was added to 80 mL of refluxing pyridine containing 0.10 g of the ligand (TPP: tetraphenylporphyrin or THPP: tetra(4-hydroxyphenyl)porphyrin), and a further 2.00 g of Bi(NO$_3$)$_3$·5H$_2$O was then added three hours later. Large amount of pyridine was removed by rotary evaporation after further refluxing for 2 hours and the resulting filtrate was then left to dry overnight under vacuum. Green solids that were obtained were then washed with chloroform and rotary evaporated to ensure all pyridine solvent was removed. The dark green solids were then purified on a silica gel column. The compound was purified by washing the column with firstly chloroform and then chloroform: methanol in a ratio of 20:1.

Bi(TPP): 1H NMR (300 MHz, CDCl$_3$, δ ppm): 8.85 (s, 8H), 8.26 (dd, 8H, J= 7.43, 1.90 Hz), 7.79 (m, 8H), 7.23 (m, 4H). FAB-MS m/z +ve: 820.9 (calc: 821.2; [BiL]$^+$, 100%).

Bi(THPP): 1H NMR (500 MHz, CDCl$_3$, δ ppm): 9.04 (s, 4H), 8.65 (s, 4H), 8.63 (s, 4H), 7.75 (t, 8H, J= 8 Hz). 6.99 (m, 8H). FAB-MS m/z +ve: 885.5 (calc: 885.2; [BiL]$^+$, 100%).

Synthesis of Cpd2.

The Bi(III) complex with 12-crown-4 was prepared using a modified method (Rogers, Bond et al., 1992). BiCl$_3$ (0.64 g, 2 mmol) was added to a mixture solvent of CH$_3$CN: CH$_3$OH=3:1 (20 mL). The mixture was stirred for 2 hours at 60 °C, followed by the quick addition of 12-crown-4 (0.5 mmol in 80 µL). The mixture was continuously stirred for another 2 hours before centrifugation to remove a small quantity of white precipitates. The supernatant was slowly evaporated to remove about half of volume, followed by storage at 4 °C and -20 °C for 24 hours.
and 48 hours, respectively. The resulting solution was further evaporated to afford crystalline material. The final product was collected before washed with large amount of ethanol.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 3.27 (s, 16H); ESI-MS m/z -ve: 457.2 (calc: 457.0; [BiLCl$_2$]$^-$, 100%).

Synthesis of Cpd3.

The Bi(III) complex with cyclen was prepared using a modified method (Luckay, Cukrowski et al., 1997). Bi$_2$O$_3$ (0.25 g) was stirred in 5 mL of 70% HClO$_4$ till totally dissolved, followed by the dropwise addition of cyclen (0.086 g, 0.5 mmol) in 5 mL 70% HClO$_4$. The mixture was continued to stir for 3 hours at 30 °C and then was slowly added appropriate amount sodium bicarbonate to adjust pH~1. The resulting solution was stood at 4 °C for 10 days and afforded small crystal by slow evaporation. The final product was collected before being washed by large amount of acetone and ethanol.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 3.11 (s, 16H), 7.95 (s, 4H); ESI-MS m/z -ve: 779.1 (calc: 779.0; [Bi(ClO$_4$)$_4$]$^-$, 100%)

Synthesis of Cpd 4.

The coordination of 2-picolinic acid to Bi(III) was carried out according to the literature (O. Anjaneyulu, 2010). Bi(NO$_3$)$_3$·5H$_2$O (0.49 g, 1.0 mmol) was added to deionized water (50 mL) resulting in a cloudy white solution. The temperature was increased until the solution was refluxing and had turned colorless. At this point, 2-picolinic acid (0.34 g, 3.0 mmol) was added and the resulting colorless solution was left to reflux for a further 2 hours. The solution was then allowed to cool to room temperature before being filtered under vacuum to remove any insoluble impurities. The colorless filtrate was then decanted into a beaker, covered and allowed to stand at room temperature for 2 days after which point a small amount of small, colorless crystals were collected.
1H NMR (500 MHz, D$_2$O, δ ppm): 7.80 (s, 3H), 7.95 (d, 3H, J= 7.5 Hz), 8.10 (s, 3H), 8.82 (s, 3H); ESI-MS m/z +ve: 459.9 (calc: 461.0; [(BiL$_2$)$_2$O]$^{2+}$, 100%), 452.9 (calc: 453.0; [BiL$_2$]$^+$, 6%).

Synthesis of Cpd 5.

To Bi(NO$_3$)$_3$·5H$_2$O (0.49 g) suspension in methanol (30 mL) was slowly titrated thiosalicylic acid (TSA) in methanol at room temperature till a transparent yellowish solution was formed. The solution was then filtered to remove any insoluble impurities and was then subjected to slow evaporation and the crystalline product was recrystallized from acetone-water.

1H NMR (500 MHz, MeOD-d_4, δ ppm): 7.08 (t, 3H, 7.5 Hz), 7.26 (d, 3H, J= 8 Hz), 7.43 (td, 3H, J= 7.5, 1.5 Hz), 7.65 (s, 3H); ESI-MS m/z +ve: 515.3 (calc: 514.0; [BiL$_2$+H]$^+$, 100%), 666.9 (calc: 666.5; [BiL$_3$+H]$^+$, 34%).

Synthesis of Cpd 6.

To Bi(NO$_3$)$_3$·5H$_2$O (0.19 g) suspension in methanol (10 mL) was slowly added 30 mL methanol containing L-glutathione reduced (GSH, 0.26 g), sonicated and then stir at 60 ºC for 4 hour. The solution was then filtered to remove any insoluble impurities and then slowly rotary evaporated to remove most solvents. Then the sample was freezed dry for overnight and the solid product was collected and washed by ethanol.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 2.02 (m, 6H), 2.36 (m, 6H), 3.70 (d, 6H, J= 5.5 Hz), 3.916 (s, 4H), 4.58 (dd, 4H, J= 14 Hz, 7.5 Hz), 8.31 (s, 12H); ESI-MS m/z -ve: 306.1 (calc: 306.0; L-H, 100%), 512.1 (calc: 512.3; [BiL-3H]$^-$, 29%), 818.9 (calc: 819.1; [BiL$_2$-2H]$^-$, 18%).

Synthesis of Cpd 7.

Bismuth tartrate was prepared based on according to the literature (Logutenko, Evseenko et al., 2003; Sagatys, Oreilly et al., 1992). Bi(NO$_3$)$_3$·5H$_2$O (0.48 g) was firstly dissolved in 5% HNO$_3$ under sonication, and then mixed with tartaric acid (0.45 g) for 2 hour at 60 ºC. The pH of the
solution was adjusted to ~4 with NaHCO$_3$ till the white precipitate formed. The precipitate was filtered off, washed with large amount of distilled water and ethanol by centrifuge, and then dried in air. The product was then dissolved in minimum volume of diluted (3%) ammonia water and crystalline products were collected after several days’ sedimentation.

1H NMR (500 MHz, D$_2$O, δ ppm): 2.32 (d, 2H, J= 15.5), 2.45 (d, 2H, J= 15.5), 2.54 (s, 8H); ESI-MS m/z +ve: 711.0 (calc: 711.9; [Bi$_2$L$_2]^+$, 100%) , 748.9 (calc: 748.1; [Bi$_2$L$_2$(H$_2$O)$_2$]$^+$, 30%).

Synthesis of Cpd 8.

Bi(NO$_3$)$_3$·5H$_2$O (0.24 g, 0.5 mmol) and N-acetyl-L-cysteine (NAC, 0.24 g) were mixed in deionized water (10 mL) and left to stir at room temperature for 1 hour. To the resulting yellow solution was added NaOH (1 M, 3 mL) to raise the pH to ~ 6. The solution was then filtered to remove any insoluble impurities and was then subjected to freeze drier. The yellowish solid product was then washed with ethanol (6×10 mL) and dried in vacuum.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 1.76 (s, 9H), 4.26 (dt, 3H, J= 10.5 Hz, 5.5 Hz), 8.08 (d, 3H, J= 5 Hz); ESI-MS m/z +ve: 784.1 (calc: 784.5; [BiL$_3$+4Na]$^+$, 100%).

Synthesis of Cpd 9.

The preparation of Bi(III) complex with nitrilotriacetic acid (NTA) was carried out according to the literature (Summers, Abboud et al., 1994). To a boiling solution of NTA (0.21 g) in H$_2$O (50 mL) was added (BiO)$_2$CO$_3$ (0.42 g). The mixture was continued to stir for 18 hours. The solution was filtered while hot, and stored at 4 °C. The crystalline product was collected 1 day later and washed by saturated NaCl and ethanol.

1H NMR (500 MHz, D$_2$O, δ ppm): 3.19 (s, 6H); ESI-MS m/z +ve: 398.0 (calc: 398.1; [BiL+H]$^+$, 100%).
Synthesis of Cpd 10.

The reaction of Bi(N)₃·5H₂O with 2,2’-bipyridine was carried out according to the literature (Leonard J. Barbour, 1998). Bi(NO₃)₃·5H₂O (0.49 g, 1.0 mmol) and 2,2’-bipyridine (0.31 g, 2.0 mmol) were dissolved, with gentle heating, in a minimum amount of DMSO. Once fully dissolved, the warm colorless solution was filtered and the colorless filtrate was left to stand at room temperature for 14 days to allow a small amount of crystals. The crystalline product was then collected via vacuum filtration.

¹H NMR (500 MHz, DMSO-d₆, δ ppm): 7.36 (m, 2H), 7.63 (s, 2H), 7.69 (d, 2H, J = 1.5 Hz), 9.00 (s, 2H), 9.02 (m, 2H); ESI-MS m/z +ve: 488.9 (calc: 489.2; [BiL(NO₃)₂]⁺, 100%).

Synthesis of Bi(TDHPP).

Tetra(3,5-dihydroxyphenyl) porphyrin (TDHPP) (0.074 g) was refluxed in DMF for 10 mins, followed by the addition of Bi(NO₃)₃·5H₂O (0.81 g) dissolved in minimal volume of ethylene glycol. The mixture was refluxed for 10 mins and filtered while hot. The filtrate was concentrated to ca. 3 mL, added to a 10 mL mixture of acetone/water (3: 10) and stored at 4 ºC. Crystal-like product was washed and collected 4 days later.

¹H NMR (500 MHz, DMSO-d₆, δ ppm): 8.80 (s, 8 H), 8.74 (m, 8 H), 6.96 (dd, 8 H, J = 4 Hz, 6 Hz), 6.57 (m, 4H). ESI-MS m/z +ve: 949.4 (calc: 949.2; [BiL]⁺, 100%)

Synthesis of Bi(TMPP) and Bi(TMOPP).

The Bi(III) complexes of tetra (4-methylphenyl) porphyrin (TMPP) and tetra (4-methoxyphenyl) porphyrin (TMOPP) were synthesized by a generic method. TMPP (0.064 g) was dissolved in pyridine (50 mL) and reflux for 1 hour. Bi(NO₃)₃·5H₂O (0.81 g) was added and the mixture continued to be refluxed for 5 hours, after which additional Bi(NO₃)₃·5H₂O (0.49 g) was added and the solution was refluxed overnight. Green products were collected and re-dissolved in chloroform after all the pyridine was removed in vacuum. The compound was purified by washing the column firstly with chloroform and then chloroform: methanol in the ratio of 8:1.
Bi(TMOPP) was prepared following the exactly same procedures by proportionally change the amount of raw material.

Bi(TMPP): 1H NMR (300 MHz, CDCl$_3$, δ ppm): 9.13 (s, 8H), 8.61 (dd, 8H, J= 5.8 Hz, 1.7 Hz), 7.68 (tt, 4H, J= 7.7 Hz, 1.7 Hz), 7.29 (m, 10H), 2.72 (s, 12H). ESI-MS m/z +ve: 877.7 (calc: 877.3; [BiL]$^+$, 100%).

Bi(TMOPP): 1H NMR (300 MHz, CDCl$_3$, δ ppm): 9.20 (s, 8H), 8.61 (m, 4H), 7.68 (tt, 2H, J = 7.7 Hz, 1.8 Hz), 7.33 (m, 2H) 7.29 (m, 10H), 4.12 (s, 12H). ESI-MS m/z +ve: 941.3 (calc: 941.8; [BiL]$^+$, 100%).

Synthesis of Bi(TPyP).

The preparation of complex 6 was based on a modified method. Bi(NO$_3$)$_3$·5H$_2$O (0.20 g) was added to 30 mL pyridine and refluxed under vigorous stirring for 0.5 hours. Tetra (4-pyridyl) porphyrin (TPyP) (0.020 g) was added dropwise to the refluxed bismuth suspension and stirred for another 3 hours. Additional Bi(NO$_3$)$_3$·5H$_2$O (0.10 g) was added 3 and 6 hours later. The mixture was refluxed for another 16 hours, followed by evaporation to remove all pyridine. The resulting green solid was dissolved in the mixture of dichloromethane and methanol. Any impurity was filtered out and the product was then re-dissolved in ddH$_2$O. The solution was left at room temperature to allow the formation of crystals.

1H NMR (500 MHz, CDCl$_3$, δ ppm): 9.02 (dd, 8H, J= 1.5 Hz, 4 Hz), 8.24 (s, 8H). 8.12 (dd, 8H, J= 1.5 Hz, 4.5 Hz). FAB-MS m/z +ve: 825.6 (calc: 825.5; [BiL]$^+$, 100%).

Synthesis of Bi(TClPP).

Tetra (4-chlorophenyl) porphyrin (TClPP, 0.075 g) was dissolved in pyridine (50 mL) and refluxed for 0.5 hours, followed by the addition of Bi(NO$_3$)$_3$·5H$_2$O (0.24 g). A further 0.24 g Bi(NO$_3$)$_3$·5H$_2$O was introduced 2 hours later and the mixture was refluxed for another 16 hours. Green gross product was collected and re-dissolved in dichloromethane after all the pyridine
was removed in vacuo. The compound was purified by washing the column with dichloromethane and then dichloromethane : methanol in a ratio of 20 : 1.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 8.80 (s, 8H), 8.25 (s, 4H), 8.17 (d, 6H, J= 1.5 Hz), 7.83 (d, 6H, J= 4.0 Hz). ESI-MS m/z +ve: 959.3 (calc: 959.1; [BiL]$^+$, 100%).

Synthesis of Bi(TDClPP).

Tetra (2,6-dichlorophenyl) porphyrin (TDClPP) (0.089 g) was dissolved in pyridine (50 mL) and refluxed for 2 hours, followed by the addition of Bi(NO$_3$)$_3$·5H$_2$O (0.48 g). A further 0.48 g Bi(NO$_3$)$_3$·5H$_2$O was introduced 4 hours later and the mixture was refluxed for another 48 hours. Green gross product was collected and re-dissolved in dichloromethane after all the pyridine was removed in vacuo. The compound was purified by washing the column firstly with dichloromethane and then dichloromethane: acetone in a ratio of 8:1. The product was collected by evaporation and washed with ethanol and saturated NaCl solution.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 8.69 (s, 8H), 7.98 (d, 8H, J = 1 Hz), 7.83 (dd, 4H, J = 7.5 Hz, 9.0 Hz). ESI-MS m/z +ve: 1096.9 (calc: 1096.9; [BiL]$^+$, 100%).

Synthesis of Bi(TAPP).

To 50 mL solvent mixture (pyridine: methanol: dichloromethane = 1:1:1), Bi(NO$_3$)$_3$·5H$_2$O (0.40 g) was added and refluxed under vigorous stirring for 0.5 hours. Tetra (4-aminophenyl) porphyrin (TAPP) (0.10 g) was slowly added to the refluxed suspension. Additional 0.4 g Bi(NO$_3$)$_3$·5H$_2$O was added 1 hour later and refluxed for another 3 hours. The mixture was refluxed for another 16 hours, followed by evaporation to remove all pyridine. Any impurity was filtered out and the resulting green solid was dissolved in the mixture of dichloromethane and methanol. Any impurity was filtered out and the product was then re-crystalized from methanol.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 8.81 (s, 8H), 7.79 (d, 8H, J= 15.5 Hz), 6.94 (d, 8H, J= 16.0 Hz), 5.49 (s, 8H). ESI-MS m/z +ve: 881.5 (calc: 881.3; [BiL]$^+$, 100%).
Synthesis of Bi(TSPP).

Tetra (4-sulfonatophenyl) porphyrin (TSPP) (0.124 g) was dissolved in 50 mL solvent mixture (pyridine: methanol = 3:1) and refluxed for 2 hours, followed by the addition of Bi(NO$_3$)$_3$·5H$_2$O (0.48 g). A further 0.48 g Bi(NO$_3$)$_3$·5H$_2$O was introduced 6 hours later and the mixture was refluxed for another 24 hours. Green gross product was collected and re-dissolved in acetone after all the pyridine was removed in vacuo. Final product was recrystallized from methanol.

1H NMR (500 MHz, DMSO-d_6, δ ppm): 9.12 (m, 8H), 8.76 (m, 8H), 8.50 (m, 8H). ESI-MS m/z +ve: 1141.0 (calc: 1141.0; [BiL+Na]$^+$, 100%), 1163.0 (calc: 1163.1; [BiL+2Na]$^+$, 86%), 1185.1 (calc: 1185.0; [BiL+3Na]$^+$, 47%), 1228.9 (calc: 1228.9; [BiL+4Na]$^+$, 10%).

In vitro cell proliferation assay.

The growth of HK-2 cells with supplementation of bismuth compounds and CDDP was measured using the cell proliferation kit II XTT assay (Roche Diagnostics, USA), according to the manufacturer’s instruction. Ten to twenty thousand cells per well were grown in 96-well plates in a final volume of 100 µL culture medium per well overnight. For cytotoxicity assay, cells were then exposed to various concentrations (1-100 µM) of bismuth compounds for 24 hours. For primary screening of cytoprotective compounds, HK-2 and MIHA cells were treated with tested compounds at a fixed concentration (100 µM) for 2 hours and then exposed to CDDP treatment (10 µM) for 2 days. Various concentrations (1-100 µM) of Bi(PP) and Bi(NAC)$_3$ were used for the dose-dependent assay under the same condition. Cells without drug treatment served as a control. After a fixed time of incubation, 50 µL of the XTT labeling mixture was added to each well, and the cells were further incubated for 4 hours under cell culture condition. The formation of formazan dyes, produced only by metabolic active cells, was spectrophotometrically detected at 490 nm. Measurements were performed in triplicate.
In vivo mouse model.

Nephrotoxicity experiments were conducted with female BALB/c mice. A single nephrotoxic dose of CDDP (20 mg kg\(^{-1}\)) was *i.p.* injected into groups of mice on day 0. Bi(III) compounds (50 mg kg\(^{-1}\)) were *p.o.* pre-administered on day -2, -1 and 0 prior to CDDP administration and on day 2 and 4 post CDDP administration, respectively, as shown in Fig. 2A. Eight mice were used for each group and mice receiving vehicle (5% DMSO+10% PEG) served as control. The body weight of mice was monitored once daily and a scoring index of pathologic changes was given for each animal. Kaplan-Meier estimates of the survival curves were calculated and plotted. The examination of protective role of Bi(TMOPP) and Bi(TMPP) were performed under identical condition. For BUN assay, groups of mice were treated under the identical condition except that 6 mice were used in each group. All the mice were sacrificed on day 4 and serum of mice was collected and subjected to BUN assay (Urea Nitrogen Kit (serum), Stanbio Laboratory, USA) according to the manufacturer’s instruction. Kidneys were dissected and acidified by 68% HNO\(_3\) at 60 °C overnight using a Thermolyne DriBath. The samples were diluted to appropriate concentration for quantification of metals by ICP-MS (Agilent 7500a, Agilent Technologies, CA, USA) with \(^{115}\)In as an internal standard. Metal quantifications were triplicated and average values were used.

Pharmacokinetic study was conducted with male C57BL/6 mice. A single dose of Bi(PPP) (50 mg kg\(^{-1}\)) was *p.o.* administered to groups of mice. Blood were collected by terminal cardiac puncture at 0.17, 0.33, 0.5, 1, 2, 8, 12, 48 hours post dose and kidneys were also collected at the time of sacrifice. Three mice were used for each time point. Blood samples were collected into heparinized tubes and centrifuged at 4000g for 5 min. Plasma and dissected tissues were acidified and subjected to ICP-MS measurement as mentioned above. Pharmacokinetic parameters, including the elimination half-life (t\(_{1/2}\)), total clearance of drug from plasma (CL), volume of distribution (V\(_d\)), the area under the concentration-time curve to 8 hour (AUC\(_{0-8h}\)) and time curve to infinity (AUC\(_{0-\infty}\)), were calculated through noncompartmental analysis with
Phoenix WinNonlin (Certara). The area under the concentration-time curve to 8 hours was calculated through trapezoidal rule whereas \(\text{AUC}_{(0-\infty)} \) was obtained from combining the area under the curve to the last time point \(\text{AUC}_{(0-t)} \) with the extrapolated AUC value of the terminal phase. The value of \(C_{\text{max}} \) and \(T_{\text{max}} \) was evaluated through the individual dose-time profile.

Orthotopic neuroblastoma cancer xenograft model was established in male BALB/c nude mice using a modified method based on previously described methods\(^3\). Briefly, SKNLP neuroblastoma cells transfected with luminescent plasmid were injected into the adrenal glands of groups of mice and tumor was established within one month. Groups of tumor-bearing mice were p.o. pre-administered with vehicle and Bi(III) compounds (50 mg kg\(^{-1}\)), i.e., Bi(TPP), Bi(NAC)\(_3\), BiZn, once per day on day –2, -1 and 0 prior to CDDP administration and every two days post CDDP administration, respectively. Mice received three times of CDDP administration (7.5 mg kg\(^{-1}\)) on day 0, 7 and 14 as shown in Fig. 6A. Four mice were used in vehicle, CDDP+vehicle, CDDP+Bi(NAC)\(_3\), CDDP+Bi(TPP) group, one mouse in CDDP alone group died owing to the toxicity of CDDP during the experimental period; Five mice were used in CDDP+BiZn. Tumor-bearing mice receiving vehicle served as control. Mice were monitored twice daily and a scoring index of pathologic changes was given for each animal. Bioluminescence imaging was conducted on groups of mice once a week post CDDP administration. D-luciferin (150 mg kg\(^{-1}\)) was \(i.p. \) injected into each mouse. The growth of tumors was examined in real time by a luminescent IVIS imaging system, equipped with Living Imaging software (Xenogen, Alameda, CA). All the mice were sacrificed on Day 21, by an overdose of pentobarbital. Livers and lungs were dissected and subjected to bioimaging while the tumor size was collected for physical measurement.

Transcriptomics analysis.

Transcriptomics assay were performed according to previously described methods(Han, Zhang et al., 2018). Groups of mice were treated under the identical condition as described in
nephrotoxicity experiment except that all the mice were sacrificed 3 days post CDDP administration. Whole kidneys were collected and homogenized. Total RNA was isolated with RNeasy Mini Kit (Qiang, Venlo, USA). RNA purity was detected by NanoDrop® spectrophotometers (Thermo Fihser, MA, USA). RNA concentration was measured using Qubit® RNA Assay Kit in Qubit® 3.0 Flurometer (Life Technologies, CA, USA). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA).

For gene expression arrays, quality control and quantification of gene expression levels were performed with HTSeq v0.6.1(Anders, Pyl et al., 2015). Briefly, the initial preprocessing of the raw intensity data was firstly processed through in-house perl scripts to remove reads with low quality, and then FPKM of each gene was calculated based on the length of the gene and reads count mapped to this gene. FPKM stands for “fragments per kilobase of exon per million fragments mapped”, and is calculated based on the length of the fragments and the reads count mapped to each fragment. Differential expression analysis between two groups (three biological replicates per condition) was performed using the DESeq R package (1.18.0)(Love, Huber et al., 2014). DESeq provides statistical routines for determining differential expression in digital gene expression data using a model based on the negative binominal distribution. The resulting p-values were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery rate. Genes with an adjusted p-value < 0.05 found by DESeq were assigned as differentially expressed. Heatmaps were created using the Heatplus package in R and the average of the three replicates is shown.

Bioinformatic study.

GO terms and pathways in functionally organized networks were visualized with ClueGO(Bindea, Mlecnik et al., 2009). For the enrichment of biological terms and groups, we used the two-sided (Enrichment/Depletion) tests based on the hyper-geometric distribution.
Fusion criteria in ClueGO was selected to diminish the redundancy of the terms shared by similar associated proteins, which allows one to maintain the most representative parent or child term. The κ score threshold was set to 0.40. Other analysis parameters include: GO level intervals: (8-12); GO term minimum number of genes: 5; GO terms are presented as nodes and are clustered together based on the similarity of genes present in each term or pathway. Nodes with multiple colors are associated with more than one processes. R functions (phyper and q-value) were used to test for the statistical enrichment of the differentially expressed genes among the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathways with corrected p value less than 0.05 were considered to be significantly enriched among the differentially expressed genes. Bubble chart was created using the ggplot2 package in R (Wickham, 2011) and the average of the three replicates is shown.

Real-Time PCR.

Real-time PCR to measure gene expression levels in HK-2 cells was carried out according to previous report (Xu, Wang et al., 2019). About 1×10^6 HK-2 cells were treated with 10 μM BiTPP, respectively, for 12 hours. Cell receiving no treatment served as control group. Three replicates were prepared for each group being combined for total RNA extraction. Total RNA was extracted using RNA Extraction Kit (Takara, Japan) according to manufacturer’s instructions with slight modifications and collected in 200 μL RNase-free water and stored at -80 °C. A NanoDrop 1000 spectrophotometer was used to check RNA quality and to estimate RNA concentration. Reverse transcription was performed using PrimeScriptTM RT Master Mix (Perfect Real Time, Takara, Japan) and the resulting cDNA was used as template for PCR. Real-Time PCR was conducted using TB GreenTM Premix Ex TaqTM (Takara, Japan) and specific primers (sequences are listed in Table S7) on StepOnePlus Real-Time PCR system (Applied Biosystems, USA). cDNA for each sample and the non-template control were used in the detection of each target gene. The transcription level of target genes was quantified using $\Delta\Delta$Ct method (Livak and Schmittgen, 2001). GAPDH was used as an endogenous control and expression of target genes was calculated relative to GAPDH expression.
Immunoblotting analysis and cellular thermal shift assay.

HK-2 cells were pre-treated with 40 µM Bi(TPP) for 18 hours and then treated with 20 µM CDDP for another 24 hours. Total protein concentration was quantified by BCA Protein assay Kit (Pierce BCA Protein Assay Kit, Thermo Fisher Scientific Ltd.). Proteins were electrophoresed onto 15% SDS-PAGE gel and transferred to polyvinylidene fluoride membrane (PVDF) membranes (Hybond-P, GE Healthcare), which was then incubated with primary antibodies listed in Table S6 and secondary antibody, rabbit anti-rabbit or anti-mouse antibodies. The protein blots were visualized with a chemiluminescence reagent (Thermo Fisher Scientific Ltd.) by MyECL Imager (Thermo Scientific). For dose-dependent study, all the procedures were the same except that cells were treated with different concentrations of Bi(TPP) at 0, 5, 10, 20, 30, 50 µM in the absence of CDDP.

Cellular thermal shift assay was performed according to previously described method (Molina, Jafari et al., 2013). HK-2 cells were cultivated in the absence or presence of 50 µM Bi(TPP) for 18 hours. The cell pellets were harvested and resuspended in PBS. About one million cells were aliquoted into PCR tubes in a volume of 80 µL. Heat treatment was performed at the designated temperature ranging from 37 °C to 64 °C for 3 min in a 96-well thermal cycler. Samples were lysed through three freeze-thaw cycles in liquid nitrogen. Lysate was centrifuged at 20,000 × g at 4 °C for 20 min, and the resulting supernatant was subjected to immunoblotting analysis by using caspase 3 and caspase 7 antibodies as described above.

Enzyme activity assay.

The caspase activity was examined with QuantiFluo™ Caspase 3 Assay Kit (DCS3-100, BioAssay Systems, USA) and Caspase 9 Assay Kit (ab65607, Abcam Inc., UK) by a modified method from manufacturer’s instructions. For lysate activity assay, 1×10⁵ HK-2 cells were treated with 0, 5, 10, 20, 30, 50, 75, 100 µM Bi(TPP), respectively, for 24 hours and then lysed by RIPA buffer [25 mM Tris Cl (pH 7.4), 0.1% SDS, 150 mM NaCl, 1% Nonidet P-40, 2 mM
DTT], followed by incubation on ice for 15 minutes. Cytosolic extract was collected by centrifuge (1 min, $10,000 \times g$). One hundred µg protein was diluted in 100 µL assay buffer (CAB) [50 mM PIPES, 10% glycerol, 10 mM DTT] in 96-well assay plate (Corning® 3603). To each well, 2 µL of DEVD-AFC (AFC: 7-amino-4-trifluoromethyl coumarin) substrate (50 µM final concentration) and 5 µL of LEHD-AFC substrate (200 µM final concentration) was added for caspase 3 and caspase 9 activity assay, respectively, and the plate was incubated at 37°C for 1 hour in the dark. For protein activity assay, 1 unit of recombinant caspase 3 protein (ab52101, Abcam Inc., UK) or 1 unit of recombinant caspase 9 protein (ab52203, Abcam Inc., UK) was added to each reaction while other conditions were kept identical. Fluorescence was determined on a plate reader (Beckman Coulter, DTX 880) with excitation (λ_{ex})/emission (λ_{em}) of 400/490 nm and 405/505 nm for caspase 3 assay, and caspase 9 assay respectively.

Cell-based bioassay.

For the measurement of GST level, experiments were performed using GST activity assay kit (ab65326, Abcam Inc., UK) according to the manufacturer's instructions. Briefly, about 5×10^5 HK-2 cells were treated with 0, 5, 10, 20, 30, 50 µM Bi(TPP), respectively. After 18 hours incubation, cells were washed with cold PBS and resuspend in 100 µL of GST assay buffer. Cytosolic extract was collected by centrifuge at 4°C (15 min, $10,000 \times g$) and resulting supernatant was added in a 50-µL aliquot in a 96-well assay plate (Corning® 3603), then was added 5 µL of GSH to each sample and control well. Fifty µL of GST reaction mix (GST Substrate (CDNB) Solution: GST Assay Buffer = 1:49) were added afterwards. The luminescence was measured on SpectraMax® iD3 multi-mode microplate reader (Molecular Devices, USA) in a kinetic mode. The experiment was carried out in triplicate.

For the measurement of cellular ATP level, experiments were performed using CellTiter-Glo® Luminescent cell viability assay kit (Promega corporation, USA) according to manufacturer’s instruction. Briefly, about 5×10^4 HK-2 cells were seeded in each well of a 96-
well assay plate (SPL® 13485) and then incubated with 0, 1, 2, 5, 10, 20, 30, 50 µM Bi(TPP) for two hours and then with 40 µM CDDP for another 18 hours. To an aliquot of 100 µL culture was added 100 µL of CellTiter-Glo reagent. The mixture was incubated at room temperature for 20 min and then the luminescence was measured on Synergy™ HTX multi-mode microplate reader (BioTek Instruments, USA). The experiment was carried out in triplicate.

For the measurement of ROS level, about 2×10^4 HK-2 cells were incubated with 0, 5, 10, 20, 30, 50 µM of Bi(TPP) for 2 hours in 96-well assay plate, and then incubated with 20 µM CDDP. After another 6-hour incubation, cells were washed with PBS and replenished with medium containing 10 µM CM-H2DCFDA (Thermo Fisher Scientific Ltd.), followed by incubation for 45 min at 37 °C in the dark. The labelled cells were washed and replenished with fresh medium. Fluorescence was determined with excitation (λ_{ex})/emission (λ_{em}) 490/520 nm. The experiment was carried out in triplicate.

For mitochondrial membrane potential (MMP) assay, 1×10^5 HK-2 cells were incubated with 0, 5, 10, 20, 30, 50 µM of Bi(TPP) for 2 hours in 96-well assay plate, and then incubated with 20 µM CDDP for another 16 hours. Tetramethylrhodamine, ethyl ester (Invitrogen™) at 1000 nM were added to cell in medium and the cells were returned to incubator and cultured for an additional 30 minutes. Cells were then washed with PBS/0.2% BSA and fluorescence was measured in the same loading buffer with Ex/Em 549/575 nm. The experiment was carried out in triplicate.

For cellular platinum uptake measurement, about 5×10^5 HK-2 cells were cultured in a 6-well plate and pre-incubated with 0, 5, 10, 20, 30, 50 µM of Bi(TPP) for 6 hours. Afterwards, 20 µM of CDDP were added into each well for another 12 hours. The incubated cells were washed 3 times with PBS and harvested. About 1.5×10^5 cells were dissolved in 60 µL nitric acid (68%, v/v) overnight and subsequently diluted to appropriate concentration with nitric acid (1%, v/v). The platinum content was then measured by ICP-MS as described above.
Flow cytometry.

Flow cytometry assay was performed by using Alexa Fluor 488 Annexin V/Dead Cell Apoptosis Kit (Invitrogen™) according to manufacturer’s instructions. About 1×10^6 HK-2 cells were seeded in each well in 6-well plates and pre-treated with 40 µM Bi(TPP) or Zn(TPP) for 24 hours, followed by another 24-hour incubation in the absence or presence of 20 µM CDDP. Cell treated with 1% DMSO served as control. All the cells were trypsinized and washed three times with cold PBS. For each group, about 5×10^5 cells per 100 µL were resuspended in 1×annexin-binding buffer, and then 5 µL Alexa Fluor® 488 annexin V (Component A) and 1 µL 100 µg mL$^{-1}$ PI working solution were added. After 15 min incubation at room temperature, all the stained cells were evaluated by flow cytometry with measurement of fluorescence emission at 530 nm and 575 nm and excitation at 488 nm.

MALDI-TOF mass spectrometer analysis.

The apo-cytochrome c was prepared by a modified method based on previous report (Fisher, Taniuchi et al., 1973). Briefly, 50 mg cytochrome c from bovine heart (Sigma, C2037) was dissolved in 8 ml H$_2$O, 2 ml of glacial acetic acid and then 10 ml of 2.0 % silver acetate was added, and the mixture was kept at 42 °C for 6 hours in the dark. The protein was precipitated with 10 volumes of acid-acetone (1 mL H$_2$SO$_4$ (5 N)/100 mL acetone) and washed by acid-acetone for three times. The protein was dialysed in 0.1 M sodium phosphate buffer (pH 7.0) for overnight, and then suspended in 1 ml of 0.2 M ammonium acetate at pH 5.0 containing 6 M guanidine HCl and 1 M dithiothreitol (DTT). The suspension was left for 6 hours at room temperature in the dark and was centrifuged to collect supernatant. The proteins in supernatant was concentrated and dialysed in the same buffer. The protein was collected and used immediately. Bi-cytochrome c was prepared by co-incubation of apo-cytochrome c (20 µM) and Bi(TPP) (100 µM) at 4 °C overnight.
MALDI-TOF MS with a 355 nm solid state laser (Bruker Daltonics, Germany) was employed for performing the mass spectrometry experiments. One µl of the protein sample was mounted on a modified stainless-steel sample plate using electrically conductive tapes (9713 XYZ-Axis; 3M, St. Paul, MN) and then overlaid with 1 µL of matrix solution (saturated sinapic acid in 50: 50= acetonitrile (ACN): H₂O). The plate was then introduced into the mass spectrometer, operating in a positive-ion reflectron mode. The mass resolution of ion peaks was recorded in the range of m/z 10,000–20,000. MS data was processed using FlexAnalysis (version 1.2, Bruker Daltonics).

Cell-free caspase activation.

Cytoplasmic extracts of HK-2 cells were prepared using Mitochondria Isolation Kit for Cultured Cells (Thermo Scientific™) according to manufacturer’s instructions. The protein extracts were diluted in 10 mM HEPES buffer (pH 7.0) containing 5 mM EGTA, 50 mM NaCl, 2 mM MgCl₂, 1 mM DTT, 1 mM ATP, 1 mM dithiothreitol with the final concentration of 1 mg mL⁻¹. Apo-cytochrome c, Bi-cytochrome c and cytochrome c were added to the extract solution with final concentration of 10 µM. The components were mixed well and incubated at 37 °C for 4 hours and then subjected to western blot analysis.
SUPPLEMENTAL REFERENCES

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 31, 166-169.

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., Pagès, F., Trajanoski, Z., and Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England). 25, 1091-1093.

Chan, S., Wang, R., Man, K., Nicholls, J., Li, H., Sun, H., and Chan, G.C.-F. (2019). A novel synthetic compound, bismuth zinc citrate, could potentially reduce cisplatin-induced toxicity without compromising the anticancer effect through enhanced expression of antioxidant protein. Transl. Oncol. 12, 788-799.

Fisher, W.R., Taniuchi, H., and Anfinsen, C.B. (1973). On the role of heme in the formation of the structure of cytochrome c. J. Biol. Chem. 248, 3188-3195.

Han, B., Zhang, Z., Xie, Y., Hu, X., Wang, H., Xia, W., Wang, Y., Li, H., Wang, Y., and Sun, H. (2018). Multi-omics and temporal dynamics profiling reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. Chem. Sci. 9, 7488-7497.

Leonard J. Barbour, S.J.B., Peter C. Junk, Matthew K. Smith (1998). Bidentate nitrogen base adducts of bismuth(III) nitrate. Aust. J. Chem. 51, 337-342.

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25, 402-408.

Logutenko, O.A., Evseenko, V.I., Yukhin, Y.M., and Afonina, L.I. (2003). Precipitation of bismuth(III) tartrates from nitrate solutions. Russ. J. Appl. Chem. 76, 1-6.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Luckay, R., Cukrowski, I., Mashishi, J., H. Reibenspies, J., H. Bond, A., D. Rogers, R., and D. Hancock, R. (1997). Synthesis, stability and structure of the complex of bismuth(III) with the nitrogen-donor macrocycle 1,4,7,10-tetraazacyclododecane. The role of the lone pair on bismuth(III) and lead(II) in determining co-ordination geometry. J. Chem. Soc., Dalton Trans. 901-908.

Molina, D.M., Jafari, R., Ignatushchenko, M., Seki, T., Larsson, E.A., Dan, C., Sreekumar, L., Cao, Y., and Nordlund, P. (2013). Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84.

O. Anjaneyulu, T.K.P., K. C. Kumara Swamy (2010). Coordinatively polymeric and monomeric bismuth(III) complexes with pyridine carboxylic acids. Dalton Trans. 39, 1935-1940.
Rogers, R.D., Bond, A.H., Aguinaga, S., and Reyes, A. (1992). Complexation chemistry of bismuth(III) halides with crown ethers and polyethylene glycols. Structural manifestations of a stereochemically active lone pair. *J. Am. Chem. Soc.* 114, 2967-2977.

Sagatys, D.S., Oreilly, E.J., Patel, S., Bott, R.C., Lynch, D.E., Smith, G., and Kennard, C.H.L. (1992). Group 15 Metal complexes with carboxylic acids. Preparation and crystal structure of polymeric ammonium aquabis[(+)-tartrato(2-)]bismuthate(III) hydrate. *Aust. J. Chem.* 45, 1027-1034.

Summers, S.P., Abboud, K.A., Farrah, S.R., and Palenik, G.J. (1994). Syntheses and structures of bismuth(III) complexes with nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid. *Inorg. Chem.* 33, 88-92.

Wang, R., Lai, T.-P., Gao, P., Zhang, H., Ho, P.-L., Woo, P.C.-Y., Ma, G., Kao, R.Y.-T., Li, H., and Sun, H. (2018). Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. *Nat. Comm.* 9, 439.

Wang, X., Zhang, X., Lin, J., Chen, J., Xu, Q., and Guo, Z. (2003). DNA-binding property and antitumor activity of bismuth(III) complex with 1,4,7,10-tetrakis(2-pyridylmethyl)-1,4,7,10-tetraazacyclododecane. *Dalton Trans.* 2379-2380.

Wickham, H. (2011). ggplot2. *WIREs Computational Statistics.* 3, 180-185.

Xu, X., Wang, H., Li, H., Hu, X., Zhang, Y., Guan, X., Toy, P.H., and Sun, H. (2019). S-Dimethylarsino-glutathione (darinaparsin®) targets histone H3.3, leading to TRAIL-induced apoptosis in leukemia cells. *Chem. Comm.* 55, 13120-13123.