A Survey of Syntactic-Semantic Parsing Based on Constituent and Dependency Structures

Meishan Zhang*

School of New Media and Communication, Tianjin University, China

Abstract

Syntactic and semantic parsing has been investigated for decades, which is one primary topic in the natural language processing community. This article aims for a brief survey on this topic. The parsing community includes many tasks, which are difficult to be covered fully. Here we focus on two of the most popular formalizations of parsing: constituent parsing and dependency parsing. Constituent parsing is majorly targeted to syntactic analysis, and dependency parsing can handle both syntactic and semantic analysis. This article briefly reviews the representative models of constituent parsing and dependency parsing, and also dependency graph parsing with rich semantics. Besides, we also review the closely-related topics such as cross-domain, cross-lingual and joint parsing models, parser application as well as corpus development of parsing in the article.

1 Introduction

Sentence-level syntactic and semantic parsing is one major topic in the natural language processing (NLP) community, which aims to uncover the internal structural relations in sentences [1, 2, 3, 4]. From the view of linguistics, the goal of parsing is to disclose how words are combined to form sentences and the rules that govern the formation of sentences. On the other hand, from the view of NLP applications, parsing can be beneficial for a number of tasks, such as machine translation, question answering, information extraction, sentiment analysis and generation [5, 6, 7], and the performance of parsing matters greatly.

Parsing has been extensively studied for decades. The goal of syntactic parsing is to derive the syntax information in sentences, such as the subjects, objects, modifiers and topics. There have been a number of achievements for the task, and large-scale corpora for a range of languages have been already available. Compared with syntactic parsing, semantic parsing is much more difficult due to the complex structure of various semantics such as predicate-argument, and it is also a long-range goal of NLP. With the recent advance in data-driven machine learning models, semantic parsing has received increasing interests, especially under the neural setting. Several datasets based on certain formalizations have been developed to facilitate research.

Parsing often relies on specific grammars, which are used to refine the output structures of syntax and semantics. There are many sophisticated grammars for accurately expressing the syntactic and semantic information at the sentence-level. In this paper, we focus on two popular grammars which are concerned mostly. Context-free grammar (CFG), well known as constituent parsing (or phrase-structure parsing) [4] (thus, also as constituent grammar or phrase-structure grammar), adopts hierachical phrase-structural trees to organize sentence-level syntactic information, which has been researched intensively since very early. Dependency grammar is another widely-adopted grammar for syntactic and semantic parsing, where words are directly connected by dependency links, with labels indicating their syntactic or semantic
relations [2]. Because of the conciseness and easy annotation of dependency structures, **dependency parsing** has received more attention than constituent parsing.

Besides, there are many other great grammars. The representative topics include combinatory categorial grammar (CCG), head-driven phrase structure grammar (HPSG), lexical functional grammar (LFG), abstract meaning representation (AMR), minimal recursion semantics (MRS), universal conceptual cognitive annotation (UCCA) and also several logic-targeted formalizations. All these categories have been researched for a long time and in particular several of which are now quickly developed because of the powerfulness of neural networks as well as pretrained contextualized word representations. However, this article leaves these studies for future more comprehensive surveys.

Model	Main Features	PTB	CTB
Chart-based, Statistical Models			
Collins (1997) [9]			
Charniak (2000) [10]			
McClosky et al. (2006) [11]			
Petrov and Klein (2007) [12]			
Hall et al. (2014) [13]			
Transition-based, Statistical Models			
Sagae and Lavie (2005) [14]	greedy	86.0	N/A
Zhu et al. (2013) [15]	global learning, beam	**91.3**	**85.6**
Chart-based, Neural Models			
Socher et al. (2013) [16]	recursive NN		
Durrett and Klein (2015) [17]	CNN	91.1	N/A
Stern et al. (2017) [18]	LSTM, span	91.8	N/A
Kitaev and Klein (2018) [19] (a)	self-attentive		
Kitaev and Klein (2018) [19] (b)	+ELMo	**95.1**	N/A
Transition-based, Neural Models			
Wang et al. (2015) [20]	neural-di-discrete	90.7	**86.6**
Watanabe and Sumita (2015) [21]	global learning, beam	90.7	N/A
Dyer et al. (2016) [22]	language modelling	92.4	82.7
Cross and Huang (2016) [23]	dynamic oracle	91.3	N/A
Liu and Zhang (2017) [24]	in-order	91.8	86.1
Fried and Klein (2018) [25]	policy gradient	92.6	86.0
Kitaev and Klein (2019) [26]	policy gradient	**95.4**	86.0
Other Methods (report neural models only)			
Shen et al. (2018) [27]	distance to tree	91.8	86.5
Teng and Zhang (2018) [28]	local classification	92.7	87.3
vilares et al. (2019) [29]	sequence labeling	91.1	85.6
Zhou and Zhao (2019) [30]	HPSG grammar	**96.3**	**92.2**
Mrini et al. (2019) [31]	HPSG, improved attention	**96.3**	N/A

Figure 1 shows an example constituent tree, where nodes in the constituent tree are constituent spans, also known as phrases. The goal of constituent parsing is to uncover these phrases as well as their relations. The standard evaluation method of constituent parsers is based on recognition of the phrases, where precision, recall and the F1-measure scores are adopted as the major metrics.

The mainstream approaches of constituent parsing include the chart-based and the transition-based models. Current neural models have achieved state-of-the-art performances under both two kinds of methods. In fact, neural constituent parsing starts very early before the prosperity of deep learning [8]. In this section, first we introduce the chart-based and transition-based constituent models, and then show several other models out of the two categories. Here before the detailed introduction, we show an overall picture of the performances of various representative constituent parsers in Table 1, where ensemble models are excluded for fair comparisons.

2 Constituent Parsing

Constituent parsing is one fundamental task for syntax parsing, which has received great interest for decades [1, 3, 4].

2.1 Chart-Based Parsing

2.1.1 Statistical Models

Early successful constituent parsing models exploit the productive CFG rules to guide the generation of constituent trees. The chart parsing algorithms are exploited universally for decoding, and most of the effort is focused on the refinement of CFG rules, which serve as the major sources of parameter estimation. Collins (1997) [9] and Charniak (2000) [10] extend probabilistic context-free grammar (PCFG) with head lexicalization, associating PCFG rules with head words, which can effectively boost the PCFG parsing performance. Unlexicalized models have also received great attention, by using fine-grained structural annotation [32] or automatic latent
variables [12] to enrich PCFG rules, leading to comparable or even better performance than lexicalized models.

![An example of constituent tree.](image)

The above models suffer the difficulty of integrating non-local features since future decisions are invisible during decoding which is critical for global inference. Condition random field (CRF) is one way for global modeling. Hall et al. (2014) [13] propose a strong constituent parsing model by adapting the standard n-gram CRF models for CFG, and meanwhile presenting rich sophisticated features. The dependencies among adjacent CFG rules can be modeled, which are used for global inference.

2.1.2 Neural Models

Socher et al. (2010) [33] is the first work to define scores over phrases by recursive neural networks. The CFG-based constituent trees can be naturally modeled in this way. Neural CRF parsing is accordingly proposed by Durrett and Klein (2015) [17], which can be regarded as a neural enhancing of Hall et al. (2014) [13]. The work simply uses feed-forward neural networks to encode atomic features instead of human composition. Notice that it is different from Socher et al. (2010) [33] as no recursive composition is used here.

Stern et al. (2017) [18] propose state-of-the-art chart-based neural models. On the one hand, they use deep bidirectional long-short term memory (LSTM) neural networks to enhance sentence representations, designing sophisticated strategies for span representation. On the other hand, they also adopt top-down incremental parsing for decoding, which dilutes the differences between chart-based and transition-based approaches. Their results are very strong on par with the state-of-the-art transition-based methods at the same time. The work is further followed by Gaddy et al. (2018) [34] with extensive analysis and Kitaev and Klein (2018) [19] with a self-attentive encoder. In particular, Kitaev and Klein (2018) [19] exploit contextualized word representation including ELMo [35] and BERT [36], leading to almost the best parsing performance in the literature.

2.2 Transition-Based Parsing

2.2.1 Statistical Models

The transition-based models demonstrate highly promising for constituent parsing [14, 37]. The key idea is to define a transition system with transition states and actions, where states denote partial parsing outputs, and actions specify next-step state-transition operations. Transition actions indicate the incremental tree construction process. For constituent parsing, typical actions include the shift to building terminal nodes, the unary to building unary nodes, and the binary to building binary nodes. The details can be referred to as Sagae and Lavie (2005) [14]. The model is also commonly referred to as the shift-reduce model, where unary and binary are actions of reduction. By converting constituent parsing into predicting a sequence of transition actions, discriminant classifiers such as max-entropy and support vector machine (SVM) can be applied for the prediction, with rich manually-crafted features.

The initial shift-reduce model classifies the sequence of actions for a single constituent tree separately, greedily searching for the best output constituent tree, which may suffer the error propagation problem since the early step errors can affect later predictions. To this end, globally modeling with beam search is proposed to alleviate the problem, which decodes the total sequence of actions for a full constituent tree as a whole [15, 38]. The discriminative perceptron-style online learning greatly promotes this line of work [39], which enables legal parameter optimizations towards inexact search. For feature engineering, the contextual lexicalized words, POS tags, distances and their compositions are all extensively investigated, which can be referred to [15] for details.

2.2.2 Neural Models

Watanabe and Sumita (2015) [21] and Wang et al. (2015) [20] could be the direct extensions of Zhu et al. (2013) [15] by using neural networks. The composition of atomic features is achieved by feed-forward neural networks. Cross and Huang (2016) [40] find that the greedy style decoding can also achieve highly competitive performance when a deep LSTM encoder is exploited. Then, several studies suggest dynamic oracles to optimize greedy constituent parsers [23, 41]. The main idea is to let models make optimum decisions when facing erroneous transition states [42]. A proportion of training instances with erroneous transition states and their oracle actions are added into the original training corpus.

There have been several studies exploiting different transition strategies. Dyer et al. (2016) [22] suggest the recurrent neural work grammar (RNNG), which is a top-down transition-based system. Liu and Zhang (2017) [24]
design an in-order transition system to make a compromise between top-down and bottom-up transitions. Coavoux et al. (2019) [43] present a novel system with an additional GAP action for discontinuous constituency parsing, and they also find that unlexicalized models give better performance. Fernández-González and Gómez-Rodríguez (2019) [44] optimize the transition actions to facilitate the construction of non-binarized constituent nodes, avoiding the preprocessing of binarization for constituent trees. Kitaev and Klein (2019) [26] suggest the tetra-tagging system, which combines sequence tagging and transition action classification. The system achieves state-of-the-art performance on the benchmark PTB dataset with BERT representations.

2.3 Other Frameworks

Neural networks such as deep LSTM and multi-head self-attention are capable of encoding global features implicitly into their final representations, which weakens the role of decoding as a source of feature induction. Based on the observation, several studies attempt to use simple frameworks, aiming for a wide community for parsing.

One representative attempt is to exploit neural sequence-to-sequence models for structural constituent parsing [45, 46]. The key idea is to first linearize a phrase-structural constituent tree into a sequence of symbols by certain traversing strategies, and then directly feed the pair of input words and output symbols into a standard sequence-to-sequence model. These models require large-scale corpora for training, which could be obtained by auto-parsed high-confidence constituent trees from other state-of-the-art parsers.

Neural sequence labeling models have also been investigated for constituent parsing [47]. Gómez-Rodríguez and Vilares (2018) [47] propose the first work of this line, which exploits the lowest common ancestor between adjacent words as clues to encode the word roles. Vilares et al. (2020) [48] extend the work by language modeling and enhance parsing with pretraining. Further, more direct schemes have been proposed with local modeling for constituent parsing. Shen et al. (2018) [27] directly predict the distance of constituent phrases and then decode greedily in a top-down way for a full constituent tree. Similarly, Teng and Zhang (2018) [28] propose two models based on local span prediction, achieving highly competitive performance on par with transition-based models. Recently, Zhou and Zhao (2019) [30] present to exploit the HPSG-based grammar for constituent parsing, and further power the model with XLNet word representations [49], achieving the top performances for both CTB and PTB datasets. Mrini et al. (2019) [31] revise the multi-head self-attention mechanism in Zhou and Zhao (2019) [30], leading to a similar performance with a smaller number of layers.

Model	Main Features	PTB CTB
FIFA (2018) [84]	3-layer LSTM, bia	93.4 87.4
Ballesteros et al. (2017) [83]	2-order	93.1 86.6
Zhang and Clark (2008) [70]	word clusters	91.4 84.3
Goldberg and Nivre (2012) [42]	4-order	91.0 84.7
Li et al. (2019) [77] (b)	+ELMO	96.6 90.3
Li et al. (2019) [77] (c)	+BERT	96.7 92.2
Ji et al. (2019) [78]	GNN	96.0 N/A
Mrini et al. (2019) [31]	HPSG, improved attention	97.3 N/A

2.4 Semi-Supervised Models

The semi-supervised architecture aims to enhance a supervised model by statistical information extracted from raw text. McClosky et al. (2006) [11] present the first work which achieves improved performance for constituent parsing by self-training, and McClosky et al. (2008) [50] study self-training empirically to show the conditions of usefulness. Candito and Crabbé (2009) [51] exploit unsupervised word clusters learned from raw text to enhance constituent parsing. While recent studies shift to the neural network setting, the borderline between semi-supervised and supervised is be-
coming vague, as pretraining from raw text is one critical for the successfullness of neural models.

2.5 Model Ensemble

The model ensemble is one effective way to boost the performance of constituent parsing. Initial work focuses on the output reranking [52, 53]. We can take either the k-best outputs of a constituent parser or one-best outputs from heterogeneous parsers as the inputs, and then build a new constituent tree by using a feature-rich reranking model. Benefiting from sophisticated manually-crafted non-local features, the framework can improve the parser performance significantly. However, related studies under the neural setting have received much less concern, which can be potentially due to that the majority of state-of-the-art neural models exploit the same sentence encoders, indicating that features are resemble in different kinds of models, and meanwhile homogeneous ensemble (e.g., different random seeds) by simply voting can achieve unsurpassable performances.

![An example of dependency tree.](image)

3 Dependency Parsing

Dependency parsing is developed for syntax and semantic analysis by using bilexicalized dependency grammar, where all syntactic and semantic phenomena are represented by bilexicalized dependencies [2]. Figure 2 shows an example tree of dependency parsing. For the evaluation of various dependency parsers, dependency accuracy is used as the major metric, in terms of the unlabeled attachment score (UAS) and the labeled attachment score (LAS). In the early stage, dependency parsing is constrained to trees, projective or non-projective [54]. Recently, several studies have devoted to dependency parsing over graphs [55]. On the one hand, initial dependency trees are mostly syntactic oriented, while recently there are growing interests focusing on semantic relations between words [54, 55]. This section mainly focuses on dependency tree parsing, while dependency graph parsing will be discussed in the next section.

The majority of dependency parsing models can be divided into two types, graph-based and transition-based [56], both of which have been extensively investigated under the traditional statistical setting [57, 58, 59, 60] and the neural setting [56]. There also exist other interesting approaches for dependency parsing outside the two categories [61]. Table 2 shows an overall picture of the performances of several representative dependency parsers, and all ensemble models are excluded in this table. The graph-based and transition-based models are almost comparable (graph-based models are slightly higher) across both traditional statistical and neural settings, and other types of models achieve good performance with the support of sophisticated neural networks. Currently, neural models achieve state-of-the-art performances for dependency parsing [62].

3.1 Graph-Based Parsing

3.1.1 Statistical Models

Graph-based methods exploit the maximum spanning tree (MST) algorithm for decoding, which decomposes a full dependency tree into small factors, such as dependency edges, and scores the full tree by summing the scores of all the included factors. The score of each factor can be calculated independently by the features extracted from it. The models by using dependency edges as the basic scoring factor are referred to as first-order models, where the order indicates the maximum number of edges in a factor. McDonald et al. (2005) [57] propose a feature-rich first-order MST parser based on discriminative max-margin training.

Later, higher-order MST parsers have been studied. With larger factors, the parsing models can exploit more sophisticated features, and thus can potentially bring improved performance. Second order MST parsing models have studied extensively [58, 63, 87, 88], where the newly added features include the relations from parent-sibling and parent-child-grandchild factors. Notice that higher-order MST decoding can have higher time complexity (i.e., from \(O(n^3)\) to \(O(n^4)\)), which may lead to intolerable parsing speed. The problem could be largely alleviated by Bohnet (2010) [88] with feature hashing. Koo and Collins (2010) [67] propose an efficient third-order dependency parsing model, which adds grand-sibling and tri-sibling features into the model. Lei et al. (2014) [89] exploit low-rank tensor to alleviate the burden of feature engineering. Fourth-order dependency parsing has been investigated by Ma and Zhao (2012) [68]. As a whole, second-order and third-order parsers could be good choices considering both performance and efficiency.

3.1.2 Neural Models

Pei et al. (2015) [72] present a graph-based neural model by embedding all discrete atomic features in the traditional statistical MST models and then composing these embeddings with a similar feed-forward network of (Chen and Manning, 2014) [79]. Convolution neural network is then applied for neural feature composition in Zhang et al. (2016) [73]. Following, deep bidirectional LSTMs are exploited to substi-
tute the simple neural feed-forward network [74, 75]. As sentence-level global information can be encoded through these neural structures, the performance gap between first- and higher-order decoding is largely reduced.

Dozat and Manning (2016) [76] propose a deep biaffine parser which achieves the impressive performances, boosting the UAS and LAS numbers into a new degree. The parser exploits a three-layer bidirectional LSTM as the encoder, and a biaffine operation as the decoder to score all possible dependency edges. This work adopts several tricks to reach their final performance, e.g., the node-level dropouts, and the same dropout mask at every recurrent timestep. Li et al. (2019) [77] further enhance the biaffine parser with self-attentive encoder and contextualized word representations such as ELMo and BERT [35, 36]. Ji et al. (2019) [78] exploit graph neural networks to better the input sentence encoder.

3.2 Transition-Based Parsing

Transition-based models have achieved great success on dependency parsing. To some extent, the transition-based framework is then received great attention to other NLP tasks involving structural learning because of the successfulness of dependency parsing. For example, the transition-based constituent parsing is initially inspired by transition-based dependency parsing. On the one hand, the transition-based models can obtain nearly equivalent performance compared with graph-based methods. On the other hand, these models are highly efficient, which can achieve linear time complexity. Transition-based models convert dependency parsing into an incremental state-transition process, where states denote partial outputs and they are advanced step by step by predefined transition actions.

3.2.1 Statistical Models

The initial work for feature-rich transition-based dependency parsing is suggested by Nivre (2003) [59] and Yamada and Matsumoto (2003) [60], and then the framework is extensively investigated [69, 90]. There are two typical transition configurations, arc-standard and arc-eager, respectively, which are comparable in parsing performances. Typically, the transition actions include shift operation (aiming for starting next word processing), arc-left (aiming for building a left directional dependency), and arc-right (aiming for right directional dependencies). Besides, several researchers propose other transition configurations [90, 91, 92, 93], which can handle various complex cases, such as non-projective dependencies.

Early transition-based methods usually exploit discriminative classifiers for action prediction when a certain transition state is given, which processes the parsing in a local manner. The scheme may suffer the error propagation problem, where early errors can influence future predictions. To alleviate the problem, global learning with beam-search is one effective way. Zhang and Clark (2008) [70] firstly apply the strategy. Rich global features that have been exploited in high-order graph-based dependency parsers can be also integrated into the model [71]. The strategy can be also enhanced with dynamic programming further [94, 95].

Another alternative strategy is the dynamic oracle, which is firstly proposed by Goldberg and Nivre (2012) [42] for transition-based models by using arc-eager. The method defines dynamic gold-standard oracle based on a sample of erroneous states, and then add these instances to enhance model training. Thus, we can minimize global performance losses when errors occur. Although the strategy gives slightly worse performance than Zhang and Nivre (2011) [71], it enables dependency parsing in a greedy way, greatly increasing the parsing efficiency. The strategy has been investigated by several studies with different configurations, such as arc-standard and non-projective parsing [96, 97].

3.2.2 Neural Models

(Chen and Manning, 2014) [79] is one millstone work for neural dependency parsing, which substitutes traditional manually-crafted discrete features with neural features. The work uses simple feed-forward neural networks to compose the embeddings of all atomic features automatically, and thus is free of feature engineering. Finally, the proposed model obtained much better performance than the corresponding statistical baseline. Pretrained word embeddings and the neural composition function are the keys to success.

There exist several directions to improve the performance of neural transition-based dependency parsing. First, we can exploit better neural network structures. Stack-LSTM is presented by Dyer et al. (2015) [80] and then followed by several studies [83, 98, 99], which can represent transition states by utilizing partial structural information. In parallel, deep bidirectional LSTM is also investigated [75, 84]. Ma et al. (2018) [84] exploit a similar encoder as Dozat and Manning (2016) [76], achieving slightly better performances than (Dozat and Manning, 2016) [76]. In fact, with powerful neural encoders, especially pretrained contextualized word representations, the performance difference between graph-based and transition-based is very marginal [62].

Several researchers suggest global learning with beam-search strategy in (Zhang and Nivre, 2011) [71] under the neural setting. Zhou et al. (2015) [81] make the pioneer attempts for this goal, which is further perfected with a theoretical guaranty by Andor et al. (2016) [82]. These mod-
els have achieved state-of-the-art performance before the bi-
affine parser [76]. One major drawback is that the strategy
suffers from the efficiency problem due to the beam search.
The dynamic oracle strategy is applied as well making the
greedy transition-based neural dependency parsers [100]. Re-
cently, both global learning and dynamic oracle are difficult
to give much-improved capacity when pretrained contextual-
ized word representations are exploited.

3.3 Other Frameworks
Several interesting models outside the graph-based and
transition-based framework are also concerned. For exam-
ple, the grammar-based framework can be applied to depen-
dency parsing as well. First, a dependency tree is converted
to an equivalent phrase-structural constituent tree, and then a
grammar-based constituent parsing model can be applied for
dependency parsing. The method is proposed firstly by Mc-
Donald (2006) [87], and also highly emphasized in Kübler
et al. (2009) [2]. Several studies have exploited this method
as one component for model ensembling [101]. Recently, ZHOU and ZHAO (2019) [30] and MRINI et al. (2019) [31] adopt
the HPSG grammar for the same goal, achieving very com-
petitive performances.

GOLDBERG and ELHADAD (2010) [102] present an easy-first
dependency parsing model, which processes the input sen-
tences in a non-directional way. The output dependency
tree is constructed recursively, where the highest-confidence
dependency arc is selected at each time. The neural ver-
sion of the work is exploited by Kiperwasser and Gold-
berg (2016) [85] by using hierarchical LSTMs. Sequence-
to-sequence learning can be also applied to neural depen-
dency parsing, where the transition-based linearization can
be served as one natural solution. LI et al. (2018) [61] present
a strong sequence-to-sequence model by head prediction for
each word. STRZYZ et al. (2019) [86] suggest a sequence la-
beling model for dependency parsing.

3.4 Semi-Supervised Models
Here we briefly offer a survey for semi-supervised depen-
dency parsing under the traditional statistical setting, which
utilizes statistical information extracted from a raw text to
enhance a baseline model. This scheme has received little at-
tention under the neural setting because of pretraining. As a
whole, the semi-supervised dependency parsing models can be
categorized into three types according to the extracted in-
formation from the raw text, namely word-level, partial-tree
level, and sentence-level methods.

For word-level information, one representative work is
(KOO et al., 2008) [64], which augments the atomic features
of a baseline model with word clusters. ZHOU et al. (2011)
[103] exploit selectional preference information from web
texts to improve dependency parsing. Actually, word em-
beddings can be also regarded as a kind of semi-supervised
word-level information, which has been suggested by TURIAN
et al. (2010) [104] for NLP, but not experimented on depen-
dency parsing. CHEN et al. (2014) [105] further extend the
idea into feature embeddings, embedding all features includ-
ing words.

For the partial-tree level integration, CHEN et al. (2008)
[106] exploit high-frequency auto-parsed bilexical dependen-
cies to enhance the baseline supervised model. Further, CHEN
et al. (2009) [65] extend the work by using higher-order sub-
trees. CHEN et al. (2012) [107] could be regarded as a general
framework for the partial tree level integration, by utilizing
dependency language models learned from auto-parsed de-
dependency trees.

Self-training, co-training as well as tri-training are
straightforward methods for sentence-level semi-supervised
learning [108], where high-confidence auto-parsed depen-
dency trees from several baseline models, are used to aug-
ment the training dataset. LI et al. (2014) [109] propose an
ambiguity-aware learning method to effectively model the
confidence of auto-parsed dependency trees, leading to sig-
nificant performance improvements.

3.5 Model Ensemble
By effectively combining heterogeneous models, the depen-
dency parsing performance can be further boosted. NIVRE
and MCDONALD (2008) [56] first analyze the differences be-
tween graph-based and transition-based models, and then
combine the two kinds of models to utilize their comple-
mentary information, resulting in better performances. SUN
and WAN (2013) [101] perform parsing ensemble by includ-
ing grammar-based models further, which are highly diverse
with the graph-based and transition-based models. Under the
neural setting, simple voting can achieve very strong perfor-
mances.

The above studies are all targeted at different parsing mod-
els based on the same treebank. There are several studies
aimed at the parser ensemble based on heterogeneous tree-
banks, whose annotation guidelines are highly different. LI
et al. (2012) [110] exploit stacked learning combine with
quasi-synchronous grammars for effective integration. GUO
et al. (2016) [111] study a similar ensemble by using deep
multitask learning, where treebanks of different languages
are also concerned. JIANG et al. (2018) [112] present and
study the task of supervised treebank conversion, which can
be served as one method for integration.
4 Semantic Dependency Graph

The dependency parsing models mentioned in the previous section are all aimed for dependency tree parsing, which majorly reflects syntactic and shallow-semantic information in sentences. As there are growing demands of deep semantic parsing, which is difficult to be expressed by dependency tree only, dependency graph parsing has received increasing interests [55, 113, 114], which allows multiple (including zero) heads for one word in sentences. Note that the semantic graph is still formalized by a set of bilexicalized dependencies, with nodes corresponding to surface lexical words, and edges indicating the semantic relations between nodes.

There are different formalizations of the semantic dependency graph. We can combine syntactic tree-based dependency parsing and semantic role labeling (SRL) to result in a dependency graph, which is referred to as joint dependency syntax and SRL [54, 115]. Recently, the conception of semantic dependency parsing (SDP) has been introduced [55, 113, 114], which provides different views of semantic relations, such as DELPH-IN MRS (DM), predicate-argument structures (PDS) and Prague semantic dependencies (PSD). Following, we will review the studies of the two types of semantic dependency graph parsing.

![Figure 3](image_url) An example of joint syntactic and semantic dependencies.

4.1 Joint Dependency Syntax and SRL

Figure 3 shows an example dependency graph of joint syntactic and semantic dependencies. Here we do not intend to introduce the pipeline models, which train syntactic and semantic models separately, and then output the dependency graph by either two steps or jointly [116, 117]. Although these models can perform dependency graph parsing, they receive less attention as this topic. We focus on the models of joint learning and decoding for full dependency graph parsing. Table 3 shows the performance of several studies on this line.

Table 3 A comparison of typical joint dependency syntax and SRL models on the CONLL08 English dataset.

Model	Main Features	WSJ	Brown	
Johansson (2009) [117]	joint inference	86.6	77.1	81.8
Titov et al. (2009) [118]	transition-based	87.5	76.1	81.8
Henderson et al. (2013) [119]	sigmoid belief network	87.5	76.1	81.8
Swayamdipta et al. (2016) [120]	neural, stack-LSTM	89.1	80.5	84.5

Titov et al. (2009) [118] extend the transition-based dependency parsing with a particular swap operation, enable the model to process non-planarity multiple graphs jointly, and thus dependency graph parsing can be performed jointly. Henderson et al. (2013) [119] also exploit the transition-based framework to derive syntactic and semantic dependencies concurrently based on a similar transition system as Titov et al. (2009) [118], but adopt a different model estimation by using an incremental sigmoid belief network with latent variables. Lluís et al. (2013) [121] present a graph-based model with a dual decomposition algorithm for decoding, assigning syntactic and semantic dependencies concurrently.

All the aforementioned studies are based on the traditional statistical setting. Under the neural setting, there is little work focus on the task, with one exception. Swayamdipta et al. (2016) [120] present a transition-based stack-LSTM model for joint syntactic and semantic dependencies, where their transition system is largely followed (Henderson et al., 2013) [119]. Since then, neural dependency graph dependency parsing models are centered on other datasets.

![Figure 4](image_url) An example of semantic dependency graph.

Table 4 A comparison of typical dependency parsing models on the SemEval-2015 shared dataset, where WSJ and Brown indicate the in-domain and out-of-domain test sections.

Model	Main Features	WSJ	Brown
Du et al. (2015) [122]	tree approximations	85.4	80.8
Almeida and Martins (2015) [123]	2-order graph	85.2	81.2
Peng et al. (2017) [124]	multi-task learning	87.2	83.6
Wang et al. (2018) [125]	transition, LSTM	86.9	82.8
Dozat and Manning (2018) [126]	LSTM, biaffine	89.5	86.3
Wang et al. (2019) [127]	2-order graph, LSTM	**89.8**	**86.9**

4.2 Semantic Dependency Parsing

SDP could be regarded as an extension from syntactic dependency parsing by characterizing more semantic relations over the bilexical dependencies [114, 128], which can be greatly benefited from the advances of dependency parsing. While recently, Oepen et al. (2014) [113] and Oepen et al. (2015) [55] present SDP from a different view, which converts the already available linguistic-informed semantic annotations into dependencies, including three different formalisms: DM, PAS and PAD, and currently it has been widely accepted for deep semantic parsing. Figure 4 shows an example of SDP. For SDP, graph- and transition-based models are also the
mainstream methods, and most of these models are adapted from dependency tree parsing. Table 4 shows the performance of several representative SDP models.

4.2.1 Graph-based

There are a range of graph-based SDP models for the shared tasks of SDP in SemEval [123, 129]. Generally, it is hard to develop a graph-based decoding algorithm targeted to arbitrary dependency graphs. Thus, most models have imposed particular constraints. Kuhlmann and Jonsson (2015) [130] present a cubic-time exact inference algorithm for non-crossing dependency graphs. Cao et al. (2017) [131] and Cao et al. (2017) [132] investigate the maximum subgraph algorithm for 1-endpoint-crossing, pagenumber-2 graphs. Sun et al. (2017) [133] attempt to solve the dependency graph parsing by subgraph decomposition and merging. Sun et al. (2017) [134] propose an interesting book embedding strategy for SDP.

All the above models exploit manually-crafted discrete features. Under the neural setting, Peng et al. (2017) [124] present a multi-task learning framework to different views of SDP. Dozat and Manning (2018) [126] extend the biaffine dependency parsing for SDP. Recently, Wang et al. (2019) [127] propose a second-order SDP model based on (Dozat and Manning, 2018) [126]. As a whole, neural models can obtain better performances for SDP.

4.2.2 Transition-based

The transition-based SDP models can also achieve competitive performance, and meanwhile, these models are more efficient and free of constraints, thus they have received great attention [135, 136]. Actually, transition-based dependency graph parsing can be dated back to Sagae and Tsujii (2008) [137], and the model is enhanced with dynamic oracle by Tokgoz and Eryigit (2015) [138]. Sun et al. (2014) [128] define a K-permutation transition system to handle dependency graph generation. Zhang et al. (2016) [139] present two novel transition systems for deep semantic dependency parsing. Gildea et al. (2018) [140] presents a transition-based system by including a cache to capture dependency graphs.

Recently, Wang et al. (2018) [125] propose a strong transition-based SDP model by using neural networks. They exploit deep bidirectional LSTM as sentential encoder together with stack-LSTM for better representation of transition states. Buys and Blunsom (2017) [141] present a transition-based model for general semantic graph parsing, which is also suitable for SDP.

4.2.3 Other Methods

Dependency graph parsing by using tree approximations and post-processing is also able to obtain competitive performance. These kinds of models first convert dependency graphs into trees, and then tree-based parsing can be applied [142, 143]. Du et al. (2015) [122] ensemble several tree approximation strategies and achieve the top performance in SemEval 2015 [55]. Agic et al. (2015) [144] conduct a comprehensive investigation of semantic dependency graph parsing using tree approximations.

5 Cross-Domain Parsing

Cross-domain adaption is one hot topic in the NLP community, especially for the syntactic and semantic parsing tasks, where the data annotation is extremely laborious and expensive. Currently supervised parsing has achieved incredibly high performances thanks to the recent advances of neural networks. However, the performance could drop significantly when the well-trained parsers are applied to texts in different domains as the training corpus. It is impractical to annotate training datasets for all domains. Thus, cross-domain adaption is very important to make parser applicable. The studies of cross-domain parsing are focused on two settings majorly: unsupervised domain adaption, where no target domain training dataset is available, and semi-supervised domain adaption, where a small-scale of training instances are available for a target domain. Figure 5 shows the architecture of cross-domain parsing, where the differences between the two settings are illustrated.

5.1 Unsupervised Domain Adaption

Self-training is one useful strategy for cross-domain parser adaption, although it has achieved very limited gains under the in-domain semi-supervised setting. Initial work mostly focuses on constituent parsing. McClosky et al. (2006) [145] exploit a reranking strategy to obtain a set of high-confidence auto-parsed outputs, and then add them to the training corpus.
Sagae (2010) [146] shows that without reranking self-training alone can also give significant improvements. Kawahara and Uchimoto (2008) [147] firstly apply self-training successfully on dependency parsing, which exploits an extra classifier to determine whether a parsed tree is reliable. Chen et al. (2008) [148] exploit only high-confidence partial dependencies for next-round training. Yu et al. (2015) [149] propose a novel confidence estimation method, leading to improved performance on the out-of-domain dataset.

Besides self-training, there are several other methods for unsupervised domain adaptation. Steedman et al. (2003) [150] apply co-training to constituent parsing, which is similar to self-training but difference in that the example selection is performed by two parsers. Sagae and Tsujii (2007) [151] use a similar co-training method for dependency parsing. Further, Søgaard and Rishøj (2010) [108] exploit tri-training for domain adaption of dependency parsing, extending two parsers into parsers. Interestingly, Plank and van Noord (2011) [152] select training instances from the source-domain dataset instead, where the instances most relevant to the target domain are chosen. Yang et al. (2015) [153] exploit deep belief neural networks to enhance the dependency parsing performance on out-of-domain test data, which can effectively extract useful information from target-domain raw texts.

Multi-source domain adaption is also a promising direction, which assumes that training corpora of several source domains are available. The setting is highly matched with the real practical scenario. McClosky et al. (2010) [154] present the first work of this setting for dependency parsing. They linearly combine the parsing models of different domains with the weights learned from a regression model, considering the performance of each individual parser on the target domain.

5.2 Semi-Supervised Domain Adaption

With a small number of target domain training dataset, Reichart and Rappoport (2007) [155] show that self-training can effectively improve the performance of constituent parsing. Recently, most work focuses on effectively training on the mixed source and target training instances by separating the domain-dependent and domain-invariant features [156]. By treating these features differently, the final model can accurately transfer the useful knowledge from the source domain into the target. Finkel and Manning (2009) [157] extend the idea with a hierarchical Bayesian model and evaluate it on dependency parsing, achieving better performance on the target domain than training with only the target-domain data. Under the neural setting, adversarial learning is one effective method for the same purpose [158]. Sano et al. (2017) [159] firstly apply the method on dependency parsing.

Active learning can be one promising approach for semi-supervised domain adaption. Considering that full-sentence syntaxSemantic annotation is extremely expensive, partial annotation might be preferable. For constituent parsing, Joshi et al. (2018) [160] suggest partial annotation of constituent brackets to enhance domain adaption. For dependency parsing, Flanery and Mori (2015) [161] exploit partial annotation combined with active learning for cross-domain dependency parsing in Japanese. Recently, Li et al. (2019) [162] investigate the strategy comprehensively for Chinese dependency parsing under the neural setting.

6 Cross-Lingual Parsing

Cross-lingual parsing, which aims to parse the sentence structures of low-resource languages with the help of resource-rich languages such as English. There have been a number of studies for this task, and the majority of work focuses on dependency parsing due to the relatively structural conciseness as well as well-developed universal dependencies. In particular, with the recent development of cross-lingual or universal word representations based on neural pretraining techniques, the task has been concerned with increasing interests. The task includes two main settings, the unsupervised setting assuming that no training corpus is available for target languages, and the semi-supervised/supervised setting where there exists a certain scale of corpora for the target languages. The architecture of cross-lingual parsing is shown in Figure 6, where the detailed difference between unsupervised and semi-supervised/supervised settings are illustrated as well.

6.1 Unsupervised Setting

For unsupervised cross-lingual parsing, the mainstream methods can be classified into two categories, model transferring and annotation projection, where the first category trains a model on the source-language training corpus, and then directly uses it to parse the target-language texts, and the second category projects the source-language parse annotations into the target-language by using a parallel corpus, resulting in...
in a pseudo training corpus for the target language, and then trains a target-language parsing model on the pseudo corpus.

6.1.1 Model Transferring

The model transferring approach is straightforward for cross-lingual parsing. The most effort is concerned with language-independent features, which play consistent functions across languages. This line of work is initially presented by Zeman and Resnik (2008) [163] which suggests delexicalized models for cross-lingual dependency parsing, and is further developed by McDonald et al. (2011) [164] for multi-source transferring, where multiple source languages are used to enhance a target language. Several researchers resort to various non-lexical features to enhance the delexicalized cross-lingual models [165, 166].

Recently, Täckström et al. (2012) [167] exploit cross-lingual word clusters, which is one king of cross-lingual word representations. Under the neural setting, the exploration of cross-lingual word representations is greatly facilitated. Guo et al. (2015) [168] propose to use cross-lingual word embeddings for lexicalized cross-lingual dependency parsing. This method is then received much attention and can be further enhanced by various ways such as better neural structures [169] and multi-source adaption [170, 171].

Cross-lingual pretrained contextualized word representations give the state-of-the-art performances of this category. Schuster et al. (2019) [172] provide a method to learn contextual ELMo representations effectively and then apply the representations on the task, achieving much better performances than cross-lingual word embeddings. Wang et al. (2019) [173] and Wu and Dredze (2019) [174] apply cross-lingual mBERT to zero-shot cross-lingual dependency parsing. Lample and Conneau (2019) [175] introduce the XLM concurrently to mBERT, which is also a kind of strong multilingual contextualized word representations for cross-lingual parsing [176]. All these recent studies lead to state-of-the-art performances in the literature of this category.

6.1.2 Annotation Projection

The annotation projection approach requires slightly more effort compared with model transferring, which aims to build a pseudo training corpus through bitext projection. With the pseudo training corpus, the final model can capture rich target-language characteristics. The method relies on a set of parallel sentences between the source and target languages. A source parser trained on the source treebank is used to parse the source-side sentences of the parallel corpus, and then the automatic source annotations are projected onto the target language sentences according to word alignments, resulting in the final pseudo training corpus. There are a range of strategies to achieve the goal. For example, we can use different kinds of parallel corpora, such as EuroParl and the book Bible, and can also exploit various sophisticated methods to improve the projection quality.

For constituent parsing, Snyder et al. (2009) [177] exploit the method for unsupervised constituent parsing, and find that it can significantly outperform the purely-unsupervised models. Jiang et al. (2011) [178] suggest an EM algorithm to incremental boost the quality of the projected constituent trees with relaxing constraints. The number of studies on constituent parsing is relatively small, which may be possible due to that the projection of constituent structures is very complex.

For dependency parsing, Hwa et al. (2005) [179] present the first work of this category, and then the approach has been extensively studied under different settings, such as confidence-aware learning [180], neural network enhancing [181, 182], and multi-source adaption [183, 184]. Interestingly, Jiang et al. (2015) [185] propose a joint model for cross-lingual constituent and dependency parsing with annotation projection. The approach achieves great success for cross-lingual dependency parsing.

6.1.3 Other Methods

There are also several other methods for unsupervised cross-lingual parsing. Treebank translation is one representative strategy, which is essentially highly similar to annotation projection. The approach also aims to construct a pseudo training corpus. Different from annotation projection, it directly translates the source training corpus into the target language. Besides bitext projection, it requires translation to produce target language sentences. Tiedemann et al. (2014) [186] firstly propose this method and their method is further perfected by their later studies [187]. Zhang et al. (2019) [188] study the approach under the neural setting with partial translation, and combine their model with model transferring.

The methods exploited in cross-domain parsing may be also suitable (e.g., self-training) for this setting because of the cross-lingual word representations. However, these kinds of methods have been seldom studied. Rasooli and Collins (2017) [189] combine the advantages of model transferring, annotation projection, treebank translation as well as self-training to obtain a very strong model for cross-lingual dependency parsing.

Sentence reordering is one interesting method presented recently, which aims to reorder the input source language syntactic trees to make it highly similar to the target language. The idea is first studied by Wang and Eisner (2018) [190]. Rasooli and Collins (2019) [191] exploit the method with two
strong reordering strategies, obtaining very competitive performance compared with even supervised parsing models.

6.2 Semi-Supervised/Supervised Setting

As the availability of treebanks for a range of languages, how to effectively exploit both source and target language treebanks is one interesting problem. Since very early, several studies show that two languages are better than one language alone for parsing. Smith and Smith (2004) [192] show that joint training the English and the Korean parser can bring better performance. Burkett and Klein (2008) [193] also demonstrate the same observation.

Under the neural setting, this line of work can be conducted more conveniently due to the cross-lingual word representations. Ammar et al. (2016) [194] propose to use one single universal model to parse all languages. However, their final performance is still below the corresponding individual baselines. Smith et al. (2018) [195] train 34 models for 46 different languages. By aggregating multiple treebanks from one language or closely related languages, we can achieve competitive performances and meanwhile reduce the number of required models greatly. Most recently, Kondratyuk and Straka (2019) [196] propose a sophisticated strategy to train one universal model for 75 languages by leveraging a multilingual BERT self-attention, which achieves better performances than the corresponding individual models.

7 Joint Models

In this section we discuss joint models of parsing, focusing only on the final goal being the parsing task. The studies of jointly modeling syntax-semantic parsing as well as a targeted downstream task will be introduced in the next section. The development of joint models is mainly motivated by the error propagation problem of the preconditioned tasks. POS tagging is one of the major preconditioned tasks, as POS tags are one kind of valuable feature source for parsing. Before POS tagging, several languages such as Chinese require word segmentation as a prerequisite step. Parsing is generally performed based on words, while sentences of these languages do not have explicit word boundaries. In summary, here we briefly investigate two kinds of joint models: joint POS tagging and parsing, joint segmentation & tagging and parsing, and we show their relationship in Figure 7.

Noticeably, there are several studies for joint syntactic and semantic parsing. The dependency-based joint models have been already described in Section 4.1. Thus, one can refer to there for details. For joint constituent parsing and semantic role labeling, there are very few studies. The representative work is Li et al. (2010) [197], which is the first work of this kind by using sophisticated manually-crafted features. The work shows that their joint model is able to give better performances for both Chinese constituent parsing and SRL.

7.1 Joint POS Tagging and Parsing

For joint POS tagging and constituent parsing, the chart-based PCFG parsing naturally performs the two tasks concurrently [9, 10, 12], where POS tags can be directly induced from the bottom lexical rules. Based on the transition-based framework, joint POS tagging and constituent parsing can be easily achieved by the shift operation with one additional parameter to indicate the POS tag of the processing word. Wang and Xue (2014) [198] investigate the joint task and present a number of non-local features. Li et al. (2011) [199] propose the first joint model of POS tagging and dependency parsing based on graph factoring, where the basic scoring units are augmented with POS tags. Li et al. (2012) [200] enhance the model with better learning strategies. Hatori et al. (2011) [201] is the first transition-based model for joint POS tagging and dependency parsing. Bohnet and Nivre (2012) [202] extend the transition-based model for non-projective dependency parsing. The two kinds of models achieve comparable performances for both tasks.

Under the neural setting, Alberti et al. (2015) [203] investigate the model of Bohnet and Nivre (2012) [202] with neural features. Zhang and Weiss (2016) [204] suggest a joint POS tagging and dependency parsing model by stack propagation. Yang et al. (2017) [205] further investigate the neural joint task with LSTMs by using graph-based and transition-based frameworks, respectively. In fact, the importance of joint modeling has been largely weakened as parsing without POS tags can also obtain strong performance which is close...
to the same model with POS tags [76].

7.2 Joint Segmentation, Tagging and Parsing

The task of joint segmentation, tagging and parsing is majorly targeted to Chinese parsing. The series of this work starts very early [206] by character-level parsing. Later, Zhao (2009) [207] demonstrate that Chinese dependency parsing based on characters is better, which can naturally perform the three tasks. Recently, Hatori et al. (2012) [208] propose a transition-based joint model for word segmentation, POS tagging and dependency parsing. Li and Zhou (2012) [209] suggest a similar transition-based joint model by using indivisible subwords as well as their internal structures. Zhang et al. (2013) [210] and Zhang et al. (2014) [211] conduct character-level constituent and dependency parsing by extending word-level annotations into characters, achieving state-of-the-art performances for both tasks under the discrete setting. All the four models exploit transition-based framework. Zhang et al. (2015) [212] propose the first work by using graph-based inference, with efficient hill-climb decoding.

Zheng et al. (2015) [213] is the first work of adopting neural networks for character-level constituent parsing, achieving comparable with the state-of-the-art discrete model by a simple convolutional neural network. Li et al. (2018) [214] present a neural model for character-level dependency parsing. Yan et al. (2019) [215] propose a strong joint model for word segmentation and dependency parsing only, state-of-the-art biaffine parser and pretrained BERT are exploited in this work. Under the neural network, the joint framework might be highly challenging, as the baselines are strong and meanwhile neural networks can learn global high-level features implicitly.

8 Parser Application

When a well-trained syntactic/semantic parser is available, how to use it effectively to benefit for downstream applications is one important topic in the parsing community, which is also related to the verification of the usefulness of syntactic and semantic parsing. In fact, the topic has been extensively studied, and the parsing outputs have been demonstrated effective for a number of tasks such as semantic role labeling [216, 217], relation extraction [218, 219], sentiment analysis [7, 220] and machine translation [5, 221]. The exploration methods have major changes from the statistical discrete models to the neural models. Here we briefly summarize the mainstream approaches of parser exploration in terms of the two settings.

8.1 Feature-Based Statistical Methods

Under the traditional statistical setting, the exploration of parser resorts to manually-crafted discrete features, which are mostly designed sophisticatedly according to the targeted tasks. We briefly summarize the widely-adopted features here. For constituent trees, such features include non-terminal categories, CFG rules, phrase-level word ngrams, syntax paths to the root or some other word, the matching with a completed phrase. For dependency trees, dependency-based ngrams, dependency labels, dependency paths are widely-used features. All these kinds of features are further adapted to various tasks aiming to get most of the parsing information effectively [6, 7, 216, 222, 223]. Besides, the tree-kernel based approach can also be good alternatives [218, 224, 225, 226, 227]. Several approaches suggest using multiple heterogeneous parsers for better performances, including the integration of constituent and dependency parsers as well as parsers trained on heterogeneous treebanks [228].

8.2 Representation Learning with Neural Networks

One simple method to use parsing features based on neural networks is to embed all the atomic features, and then exploit sophisticated neural networks to compose them automatically. The most representative method of this kind is the path-based LSTMs, which exploit LSTM over sequential-level constituent or dependency paths [229, 230]. The recent tendency of using the end-to-end framework for the majority of NLP tasks leads to universal representations based on parser outputs. We build a universal encoder with structural outputs of a parser, and then adapt them to different tasks by decoders, as shown by Figure 8. There are several ways to build the encoder. Here we divide the methods into four types: recursive neural network; linearization-based; implicated structural-aware word representations and graph neural networks (GNN).

![Figure 8](image)

The recursive neural network is one natural method to model tree-structural outputs, which composes a tree input from bottom-to-up or top-to-down incrementally. We can use various composition operations leading to more sophisticated tree-level neural networks such as tree convolutions suggested by Mou et al. (2015) [231] and Tree-LSTM proposed by Tai et al. (2015) [220]. All these related studies
give improved performances for a range of tasks [232, 233].

The key idea of the linearization-based methods is to convert structural inputs into a sequence of symbols, and then adopt standard sequential encoders to model the new sequence directly [234, 235]. Usually, the conversion can be referred to as the linearization process of transition-based parsers, or we can incrementally traverse a tree or graph in different ways. The method has received fewer concerns which might be due to its extreme simplicity, although it is effective and meanwhile much efficient [221].

The implicit structural-aware word representations, firstly presented by Zhang et al. (2017) [236] for relation extraction, are similar to the idea of contextualized word representations, which exploit the hidden outputs of a well-pretrained parser as inputs for the downstream tasks [221, 237]. This method can also efficiently represent structural information such as syntax and semantics. Besides, the method can be easily adapted to the multi-task-learning strategy for parser application [217], while parser requires to be jointly trained in multi-task-learning.

Recently, there are grown interests on the topic of graph neural networks, which can be naturally applied to encode structural syntactic and semantic graphs. Indeed, there have been several studies already by using either graph convolutional networks or graph attention networks [238, 239, 240], and all these works demonstrate the effectiveness of GNN for structure encoding.

9 Corpus and Shared Tasks

Finally, we review the work of corpus development in syntactic and semantic parsing, which is critical to the performance of supervised parsing. There are several classical treebanks such as the Penn Treebanks of English and Chinese languages, which greatly promote the development of the parsing community. In fact, there are treebanks for a range of languages, and here we focus majorly on the Chinese and English treebanks. In addition, there are a number of shared tasks, which also offer valuable corpora for syntactic and semantic parsing.

9.1 Penn Treebank

The English Penn Treebank (PTB) by Marcus et al. (1993) [241] could be the most famous resource for syntactic parsing, which annotates bracketed syntactic phrase structures for over 40,000 sentences covering about 4.5 million words. In addition, Xue et al. (2005) [242] annotate the Penn Treebank for the Chinese language, for short as CTB, and now there are over 130,000 sentences with phrase-structure annotations covering over 2 million words. Both the two datasets have annotated POS tags as well, which are important to automatic syntactic parsing. For Chinese, gold-standard word segmentation has been annotated in CTB as well.

The two datasets are also converted into dependency treebanks for dependency parsing, which could be achieved by rule-based head lexicalization over the constituent trees [60, 70, 243, 244, 245]. Recently, Stanford dependencies have been exploited the most popularly especially for the English language, where the conversion rules are relatively more fine-grained [246] and meanwhile can reflect more syntactic and semantic phenomena.

There are several small-scale treebanks with the same annotation guideline as PTB, which can be useful resources for domain adaption studies of constituent and dependency parsing, regarding that PTB are focused on the news genre data. For example, the Brown Treebank is exploited most frequently for cross-domain parsing as the literature genre. Tateisi et al. (2005) [247] offer a treebank of the biomedical domain. The two treebanks are targeted to researches on constituent parsing. Recently, Kong et al. (2014) [248] annotate a treebank for twitter texts based on dependency grammar.

9.2 Universal Dependencies

The present of Universal Dependencies (UD) has received great attention for facilitating multilingual researches, which aims to develop cross-linguistically consistent treebank annotation for multiple languages. UD can capture similarities as well as idiosyncrasies among typologically different languages such as English-alike languages, morphologically-rich languages and pro-drop languages. The development of UD is initially based on Stanford typed dependencies [249] and the universal Google dependency scheme [250, 251]. Now it goes through several versions [252, 253], with significant changes on the guidelines, also supporting language-specific extensions when necessary. Currently the UD treebank version 2.5 includes 157 treebanks over 90 languages. Besides multilingual dependency parsing, there is an increasing tendency to exploit them for evaluating monolingual dependency parsing based on the datasets as well [62, 78].

9.3 Chinese Treebank

For the Chinese languages, treebank development has been concerned by several studies besides the CTB. The Sinica Treebank has offered phrase-structural syntactic trees over about 360,000 words in traditional Chinese [254]. Qiang (2004) [255] release a constituent treebank covering about one million words for simplified Chinese. Zhan (2012) [256] also annotate constituent trees over a scale of 0.9 mil-
lion words for Chinese. The guidelines of all these phrase-
structural treebanks are quite different.

There are several treebank resources directly based on the dependency structure, as it is believed that dependency grammar is simpler and easier to be developed. Liu et al. (2006) [257] and Che et al. (2012) [258] construct a Chinese dependency treebank consuming over 1.1 million words. Qiu et al. (2014) [259] create a multi-view Chinese dependency treebank containing 14,463 sentences, which is further augmented with predicate-argument information by Qiu et al. (2016) [260] for a semantic-oriented dependency treebank. Most recently, Li et al. (2019) [162] release a large scale Chinese dependency treebank covering about 3 million words as well as different domains, including news, web blogs, literature texts.

9.4 Shared Tasks

Nearly all the shared tasks are focused on dependency parsing, and most of which devote to multilingual parsing with the support of several treebanks in different languages. These shared tasks, on the one hand, can evaluate the current state-of-the-art parsing models, and on the other hand offer valuable datasets for parsing, facilitating the future research work.

The ConLL06 organizes the first shared task for dependency parsing involving 13 languages [261], and domain adaptation is considered later in ConLL07 [262]. At ConLL08 and ConLL09, semantic dependencies extracted from SRL are integrated, leading to joint syntactic-semantic parsing [54, 115]. Recently, the shared task on ConLL 2017 starts to adopt universal dependencies for dependency parsing [263], and at ConLL 2018, 82 UD treebanks in 57 languages are included for evaluation [264]. Besides ConLL, SANCL 2012 organizes a shared task on parsing English web text [265], which offers a benchmark dataset for cross-domain dependency parsing in English. In addition, the NLPC 2019 shared task on cross-domain dependency parsing also offers a valuable dataset in Chinese [266].

The above shared tasks focus on syntactic dependency parsing. For semantic dependency parsing, Che et al. (2012) [267] present the first shared task to Chinese texts in SemEval, where dependency trees are used in the evaluation. Che et al. (2016) [114] start to use dependency graphs for formal semantic representation. For the English language, Oepen et al. (2014) [113] organize a shared task for broad coverage semantic parsing by using three distinct dependency-based semantic formalizations. Dependency graphs are exploited to represent various semantics. Oepen et al. (2015) [55] extend the shared task of (Oepen et al., 2014) [113] with more languages including Chinese and Czech. Oepen et al. (2019) [268] cover more topics of semantic graph parsing for deep semantics, including not only dependency-based graphs, but also several other formalizations such as UCCA and AMR.

10 Conclusion and Future Directions

In this article, we made a thorough review of the past work of syntactic and semantic parsing focusing on constituent parsing and dependency parsing. Traditional statistical models, as well as currently-dominant neural network methods, were both summarized. First, for the parsing models, neural network methods with pretrained contextualized word representations have achieved top performances for almost all datasets. There is a growing tendency to use simple encoder-decoder frameworks for parsing, so that well-investigated training strategies can be applied. Second, broad-coverage semantic parsing is receiving increasing attention, which might be the next stage hop topic. The task performances are now gradually acceptable thanks to the neural network models as well as the development of linguistic resources.

The cross-domain and cross-lingual settings are important scenarios for parsing, which are difficult to be resolved yet play the key role to the real applications. For the cross-domain setting, there is still a large demand for resources. While for cross-lingual parsing, there exist a number of methods. A comprehensive and fair comparison of these methods as well as their integrations might be valuable. In addition, the difference between cross-domain and cross-language is becoming smaller because of the universal word representations. One can regard cross-lingual parsing as a special case of cross-domain technically.

The importance of joint models is decreasing. By using neural networks, global features across different tasks can be directly captured by sophisticated neural structures such as deep LSTM and self-attention, and on the other hand, we can build one share encoder across tasks to reduce the influence of error propagation. For parser application, which might be regarded as the reverse direction of joint models, neural network encoders can lead to highly effective and elegant universal representations with syntactic and semantic information. Also, all current state-of-the-art methods still require a comprehensive and fair comparison.

Finally, treebank development is the major source of the advances of syntactic and semantic parsing, which might be the most difficult and highly valuable job. In particular, the semantic knowledge of one sentence can have several different views. Comprehensive annotations require extremely-high costs. How to effectively perform treebank annotation is one task deserved investigation.

For future directions, there is still a lot of work left to
be followed. Most importantly, parsing with more complex grammars would receive increasing attention, although this survey is no covered. For syntactic parsing, the performances of CCG, HPSG and LFG parsing are still unsatisfactory, especially for non-English languages. For semantic parsing, the dependency-based grammar is not enough for rich semantics, even being relaxed with graph constraints. Non-lexicalized nodes are necessary to express several complicated semantics. Thus, AMR, UCCA and MRS could be promising for practical deep semantic parsing. Based on the CFG and dependency grammars, the cross-domain and cross-lingual settings are deserved to be concerned, which can be further unified. Lightly-supervised or zero-shot models might be practical solutions. For the joint models as well as parser applications, multi-task-learning and pretraining might become more popular architectures for adaption.

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) grants 61602160 and 61762211.

References

1 Christopher D Manning and Hinrich Schütze. Foundations of statistical natural language processing. 1999.
2 Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency parsing. Synthesis Lectures on Human Language Technologies, 1(1):1–127, 2009.
3 Zong Chengqing. Statistical Natural Language Processing. Tsinghua University Press, 2013.
4 Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd (draft) ed.). Prentice Hall PTR, 2019.
5 Kenji Yamada and Kevin Knight. A syntax-based statistical translation model. In Proceedings of ACL, pages 523–530, 2001.
6 Yee Seng Chan and Dan Roth. Exploiting syntactic-semantic structures for relation extraction. In Proceedings of ACL, pages 551–560, 2011.
7 Huang Zou, Xinhua Tang, Bin Xie, and Bing Liu. Sentiment classification using machine learning techniques with syntax features. In Proceedings of CSCI, pages 175–179. IEEE, 2015.
8 James Henderson. Discriminative training of a neural network statistical parser. In Proceedings of ACL, pages 95–102, 2004.
9 Michael Collins. Three generative, lexicalised models for statistical parsing. In Proceedings of ACL, pages 16–23, 1997.
10 Eugene Charniak. A maximum-entropy-inspired parser. In NAACL, 2000.
11 David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for parsing. In Proceedings of NAACL, pages 152–159, 2006.
12 Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In Proceedings of NAACL, pages 404–411, 2007.
13 David Hall, Greg Durrett, and Dan Klein. Less grammar, more features. In Proceedings of ACL, pages 228–237, 2014.
14 Kenji Sagae and Alon Lavie. A classifier-based parser with linear-time complexity. In Proceedings of the Ninth IWPT, pages 125–132, 2005.
15 Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and accurate shift-reduce constituent parsing. In Proceedings of ACL, pages 434–443, 2013.
16 Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing with compositional vector grammars. In ACL, pages 455–465, 2013.
17 Greg Durrett and Dan Klein. Neural CRF parsing. In Proceedings of ACL-IJCNLP, pages 302–312, 2015.
18 Mitchell Stern, Jacob Andreas, and Dan Klein. A minimal span-based neural constituency parser. In Proceedings of ACL, pages 818–827, 2017.
19 Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. In Proceedings of ACL, pages 2676–2686, 2018.
20 Zhiguo Wang, Haitao Mi, and Nianwen Xue. Feature optimization for constituent parsing via neural networks. In Proceedings of ACL-IJCNLP, pages 1138–1147, 2015.
21 Taro Watanabe and Eiichiro Sumita. Transition-based neural constituent parsing. In Proceedings of ACL-IJCNLP, pages 1169–1179, 2015.
22 Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network grammars. In Proceedings of NAACL, pages 199–209, 2016.
23 James Cross and Liang Huang. Span-based constituency parsing with a structure-label system and provably optimal dynamic oracles. In Proceedings of EMNLP, pages 1–11, 2016.
24 Jiangming Liu and Yue Zhang. In-order transition-based constituent parsing. TACL, 5:413–424, 2017.
25 Daniel Fried and Dan Klein. Policy gradient as a proxy for dynamic oracles in constituency parsing. In Proceedings of ACL, pages 469–476, 2018.
26 Nikita Kitaev and Dan Klein. Tetra-tagging: Word-synchronous parsing with linear-time inference. arXiv preprint arXiv:1904.09745, 2019.
27 Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessandro Sordoni, Aaron Courville, and Yoshua Bengio. Straight to the tree: Constituency parsing with neural syntactic distance. In Proceedings of ACL, pages 1171–1180, 2018.
28 Zhiyang Teng and Yue Zhang. Two local models for neural constituent parsing. In Proceedings of COLING, pages 119–132, 2018.
29 David Vilares, Mostafa Abdou, and Anders Søgaard. Better, faster, stronger sequence tagging constituent parsers. In Proceedings of NAACL, pages 3372–3383, 2019.

30 Junru Zhou and Hai Zhao. Head-driven phrase structure grammar parsing on Penn treebank. In Proceedings of ACL, pages 2396–2408, 2019.

31 Khalil Mrini, Franck Dernoncourt, Trung Bui, Walter Chang, and Ndapa Nakashole. Rethinking self-attention: An interpretable self-attentive encoder-decoder parser. arXiv preprint arXiv:1911.03875, 2019.

32 Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of ACL, pages 423–430, 2003.

33 Richard Socher, Christopher D Manning, and Andrew Y Ng. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010 deep learning and unsupervised feature learning workshop, pages 1–9, 2010.

34 David Gaddy, Mitchell Stern, and Dan Klein. What’s going on in neural constituency parsers? an analysis. In Proceedings of NAACL, pages 999–1010, 2018.

35 Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of NAACL, pages 2227–2237, 2018.

36 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL, pages 4171–4186, 2019.

37 Adwait Ratnaparkhi. A linear observed time statistical parser based on maximum entropy models. In Proceedings of EMNLP, 1997.

38 Yue Zhang and Stephen Clark. Transition-based parsing of the chinese treebank using a global discriminative model. In IWPT, pages 162–171, 2009.

39 Michael Collins. Discriminative training methods for hidden markov models: Theory and experiments with perceptron algorithms. In EMNLP, pages 1–8, 2002.

40 James Cross and Liang Huang. Incremental parsing with minimal features using bi-directional LSTM. In Proceedings of ACL, pages 32–37, 2016.

41 Maximin Coavoux and Benoît Crabbé. Neural greedy constituent parsing with dynamic oracles. In Proceedings of ACL, pages 172–182, 2016.

42 Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency parsing. In Proceedings of COLING, pages 959–976, 2012.

43 Maximin Coavoux, Benoît Crabbé, and Shay B. Cohen. Unlexicalized transition-based discontinuous constituency parsing. TACL, 7:73–89, 2019.

44 Daniel Fernández-González and Carlos Gómez-Rodríguez. Faster shift-reduce constituent parsing with a non-binary, bottom-up strategy. Artificial Intelligence, 275:559–574, 2019.

45 Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. Grammar as a foreign language. In Advances in neural information processing systems, pages 2773–2781, 2015.

46 Do Kook Choe and Eugene Charniak. Parsing as language modeling. In Proceedings of EMNLP, pages 2331–2336, 2016.

47 Carlos Gómez-Rodríguez and David Vilares. Constituent parsing as sequence labeling. In Proceedings of EMNLP, pages 1314–1324, 2018.

48 David Vilares, Michalina Strzyz, Anders Søgaard, and Carlos Gómez-Rodríguez. Parsing as pretraining. arXiv preprint arXiv:2002.01685, 2020.

49 Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. In NIPS, pages 5754–5764, 2019.

50 David McClosky, Eugene Charniak, and Mark Johnson. When is self-training effective for parsing? In Proceedings of COLING, pages 561–568, 2008.

51 Marie Candito and Benoît Crabbé. Improving generative statistical parsing with semi-supervised word clustering. In Proceedings of IWPT, pages 138–141, 2009.

52 Michael Collins and Terry Koo. Discriminative reranking for natural language parsing. Computational Linguistics, 31(1):25–70, 2005.

53 Liang Huang. Forest reranking: Discriminative parsing with non-local features. In Proceedings of ACL, pages 586–594, 2008.

54 Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, and et al. The CoNLL-2009 shared task: Syntactic and semantic dependencies in multiple languages. In Proceedings of CoNLL 2009: Shared Task, pages 1–18, 2009.

55 Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan Hajic, and Zdenka Uresova. SemEval 2015 task 18: Broad-coverage semantic dependency parsing. In Proceedings of SemEval, pages 915–926, 2015.

56 Joakim Nivre and Ryan McDonald. Integrating graph-based and transition-based dependency parsers. In Proceedings of ACL, pages 950–958, 2008.

57 Ryan McDonald, Koby Crammer, and Fernando Pereira. Online large-margin training of dependency parsers. In Proceedings of ACL, pages 91–98, 2005.

58 Xavier Carreras. Experiments with a higher-order projective dependency parser. In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, 2007.

59 Joakim Nivre. An efficient algorithm for projective dependency parsing. In Proceedings of IWPT, 2003.

60 Hiroyasu Yamada and Yuji Matsumoto. Statistical dependency analysis with support vector machines. In Proceedings of 8th IWPT, 2003.

61 Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. Seq2seq dependency parsing. In Proceedings of COLING, pages 3203–3214, 2018.
Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano, and Joakim Nivre. Deep contextualized word embeddings in transition-based and graph-based dependency parsing - a tale of two parsers revisited. In Proceedings of EMNLP-IJCNLP, pages 2755–2768, 2019.

Ryan McDonald and Fernando Pereira. Online learning of approximate dependency parsing algorithms. In Proceedings of EACL, 2006.

Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-supervised dependency parsing. In Proceedings of ACL, pages 595–603, 2008.

Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. Improving dependency parsing with subtrees from auto-parsed data. In Proceedings of EMNLP, pages 570–579, 2009.

Bernd Bohnet. Top accuracy and fast dependency parsing is not a contradiction. In Proceedings of COLING, pages 89–97, 2010.

Terry Koo and Michael Collins. Efficient third-order dependency parsers. In Proceedings of ACL, pages 1–11, 2010.

Xuezhe Ma and Hai Zhao. Fourth-order dependency parsing. In Proceedings of COLING, pages 785–796, 2012.

Joakim Nivre. Algorithms for deterministic incremental dependency parsing. Computational Linguistics, 34(4): 513–553, 2008.

Yue Zhang and Stephen Clark. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing. In Proceedings of EMNLP, pages 562–571, 2008.

Yue Zhang and Joakim Nivre. Transition-based dependency parsing with rich non-local features. In Proceedings of ACL, pages 188–193, 2011.

Wenzhe Pei, Tao Ge, and Baobao Chang. An effective neural network model for graph-based dependency parsing. In Proceedings of ACL-IJCNLP, pages 313–322, 2015.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. Probabilistic graph-based dependency parsing with convolutional neural network. In Proceedings of ACL, pages 1382–1392, 2016.

Wenhui Wang and Baobao Chang. Graph-based dependency parsing with bidirectional LSTM. In Proceedings of ACL, pages 2306–2315, 2016.

Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate dependency parsing using bidirectional LSTM feature representations. TACL, 4:313–327, 2016.

Timothy Dozat and Christopher D Manning. Deep bidirectional attention for neural dependency parsing. arXiv preprint arXiv:1611.01734, 2016.

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng Li, and Luo Si. Self-attentive biaffine dependency parsing. In Proceedings of IJCAI, pages 5067–5073, 2019.

Tao Ji, Yuanbin Wu, and Man Lan. Graph-based dependency parsing with graph neural networks. In Proceedings of ACL, pages 2475–2485, 2019.

Danqi Chen and Christopher Manning. A fast and accurate dependency parser using neural networks. In Proceedings of EMNLP, pages 740–750, 2014.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. Transition-based dependency parsing with stack long short-term memory. In Proceedings of ACL-IJCNLP, pages 334–343, 2015.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen. A neural probabilistic structured-prediction model for transition-based dependency parsing. In Proceedings of ACL-IJCNLP, pages 1213–1222, 2015.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based neural networks. In Proceedings of ACL, pages 2442–2452, 2016.

Miguel Ballesteros, Chris Dyer, Yoav Goldberg, and Noah A. Smith. Greedy transition-based dependency parsing with stack LSTMs. Computational Linguistics, 43(2):311–347, 2017.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng, Graham Neubig, and Eduard Hovy. Stack-pointer networks for dependency parsing. In Proceedings of ACL, pages 1403–1414, 2018.

Eliyahu Kiperwasser and Yoav Goldberg. Easy-first dependency parsing with hierarchical tree LSTMs. TACL, 4:445–461, 2016.

Michalina Strzyz, David Vilaras, and Carlos Gómez-Rodríguez. Viable dependency parsing as sequence labeling. In Proceedings of NAACL, pages 717–723, 2019.

Ryan McDonald. Discriminative learning and spanning tree algorithms for dependency parsing. PhD thesis, University of Pennsylvania, 2006.

Bernd Bohnet. Very high accuracy and fast dependency parsing is not a contradiction. In Proceedings of the 23rd COLING, number August, pages 89–97, 2010.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank tensors for scoring dependency structures. In Proceedings of ACL, pages 1381–1391, 2014.

Carlos Gómez-Rodríguez and Joakim Nivre. Divisible transition systems and multiplanar dependency parsing. Computational Linguistics, 39(4):799–845, 2013.

Joakim Nivre. Non-projective dependency parsing in expected linear time. In Proceedings of ACL-IJCNLP, pages 351–359, 2009.

Francesco Sartorio, Giorgio Satta, and Joakim Nivre. A transition-based dependency parser using a dynamic parsing strategy. In Proceedings of ACL, pages 135–144, 2013.

Hirosi Noji and Yusuke Miyao. Left-corner transitions on dependency parsing. In Proceedings of COLING, pages 2140–2150, 2014.
94 Liang Huang and Kenji Sagae. Dynamic programming for linear-time incremental parsing. In Proceedings of ACL, pages 1077–1086, 2010.
95 Marco Kuhlmann, Carlos Gómez-Rodríguez, and Giorgio Satta. Dynamic programming algorithms for transition-based dependency parsers. In Proceedings of ACL, pages 673–682, 2011.
96 Yoav Goldberg, Francesco Sartorio, and Giorgio Satta. A tabular method for dynamic oracles in transition-based parsing. *TACL*, 2:119–130, 2014.
97 Carlos Gómez-Rodríguez, Francesco Sartorio, and Giorgio Satta. A polynomial-time dynamic oracle for non-projective dependency parsing. In Proceedings of EMNLP, pages 917–927, 2014.
98 Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved transition-based parsing by modeling characters instead of words with LSTMs. In Proceedings of EMNLP, pages 349–359, 2015.
99 Miryam de Lhoneux, Miguel Ballesteros, and Joakim Nivre. Recursive subtree composition in LSTM-based dependency parsing. In Proceedings of NAACL, pages 1566–1576, 2019.
100 Daniel Fernández-González and Carlos Gómez-Rodríguez. A dynamic oracle for linear-time 2-planar dependency parsing. In Proceedings of NAACL, pages 386–392, 2018.
101 Weiwei Sun and Xiaojun Wan. Data-driven, PCFG-ffi based and pseudo-PCFG-based models for Chinese dependency parsing. *TACL*, 1:301–314, 2013.
102 Yoav Goldberg and Michael Elhadad. An efficient algorithm for easy-first non-directional dependency parsing. In Proceedings of NAACL, pages 742–750, 2010.
103 Guangyou Zhou, Jun Zhao, Kang Liu, and Li Cai. Exploiting web-derived selectional preference to improve statistical dependency parsing. In Proceedings of ACL, pages 1556–1565, 2011.
104 Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. Word representations: A simple and general method for semi-supervised learning. In Proceedings of ACL, pages 384–394, 2010.
105 Wenliang Chen, Yue Zhang, and Min Zhang. Feature embedding for dependency parsing. In Proceedings of COLING, pages 816–826, 2014.
106 Wenliang Chen, Daisuke Kawahara, Kiyotaka Uchimoto, Yujie Zhang, and Hitoshi Isahara. Dependency parsing with short dependency relations in unlabeled data. In Proceedings of IJCNLP, 2008.
107 Wenliang Chen, Min Zhang, and Haizhou Li. Utilizing dependency language models for graph-based dependency parsing models. In Proceedings of ACL, pages 213–222, 2012.
108 Anders Søgaard and Christian Rishøj. Semi-supervised dependency parsing using generalized tri-training. In Proceedings of COLING, pages 1065–1073, 2010.
109 Zhenghua Li, Min Zhang, and Wenliang Chen. Ambiguity-aware ensemble training for semi-supervised dependency parsing. In Proceedings of ACL, pages 457–467, 2014.
110 Zhengu Li, Ting Liu, and Wanxiang Che. Exploiting multiple treebanks for parsing with quasi-synchronous grammars. In *ACL*, pages 675–684, 2012.
111 Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. A universal framework for inductive transfer parsing across multi-typed treebanks. In Proceedings of *COLING*, pages 12–22, 2016.
112 Xinzhou Jiang, Zhenghua Li, Bo Zhang, Min Zhang, Sheng Li, and Luo Si. Supervised treebank conversion: Data and approaches. In Proceedings of *ACL*, pages 2706–2716, 2018.
113 Stephan Oepen, Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina Ivanova, and Yi Zhang. SemEval 2014 task 8: Broad-coverage semantic dependency parsing. In Proceedings of the 8th SemEval, pages 63–72, 2014.
114 Wanxiang Che, Yanqiu Shao, Ting Liu, and Yu Ding. SemEval-2016 task 9: Chinese semantic dependency parsing. In Proceedings of SemEval, pages 1074–1080, 2016.
115 Mihaí Surdeanu, Richard Johansson, Adam Meyers, Lluís Márquez, and Joakim Nivre. The conll 2008 shared task on joint parsing of syntactic and semantic dependencies. In *CoNLL 2008*, pages 159–177, 2008.
116 Wenxiang Che, Zhenghua Li, Yongqiang Li, Yuhang Guo, Bing Qin, and Ting Liu. Multilingual dependency-based syntactic and semantic parsing. In Proceedings of CoNLL 2009, pages 49–54, 2009.
117 Richard Johansson. Statistical bistratal dependency parsing. In Proceedings of *EMNLP*, pages 561–569, 2009.
118 Ivan Titov, James Henderson, Paola Merlo, and Gabriele Musillo. Online graph planarisation for synchronous parsing of semantic and syntactic dependencies. In *IJCAI*, 2009.
119 James Henderson, Paola Merlo, Ivan Titov, and Gabriele Musillo. Multilingual joint parsing of syntactic and semantic dependencies with a latent variable model. *Computational Linguistics*, 39(4):949–998, 2013.
120 Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Greedy, joint syntactic-semantic parsing with stack LSTMs. In Proceedings of ConLL, pages 187–197, 2016.
121 Xavier Lluís, Xavier Carreras, and Lluís Márquez. Joint arc-factored parsing of syntactic and semantic dependencies. *TACL*, 1:219–230, 2013.
122 Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and Xiaojun Wan. Peking: Building semantic dependency graphs with a hybrid parser. In Proceedings of the SemEval, pages 927–931, 2015.
123 Mariana SC Almeida and André FT Martins. Lisbon: Evaluating turbosemanticparser on multiple languages and out-of-domain data. In Proceedings of the SemEval,
Hao Peng, Sam Thomson, and Noah A. Smith. Deep multitask learning for semantic dependency parsing. In Proceedings of ACL, pages 2037–2048, 2017.

Yuxuan Wang, Wanxiang Che, Jiang Guo, and Ting Liu. A neural transition-based approach for semantic dependency graph parsing. In AAAI, 2018.

Timothy Dozat and Christopher D. Manning. Simpler but more accurate semantic dependency parsing. In Proceedings of ACL, pages 484–490, 2018.

Xinyu Wang, Jingxian Huang, and Kewei Tu. Second-order semantic dependency parsing with end-to-end neural networks. In Proceedings of ACL, pages 4609–4618, 2019.

Weiwei Sun, Yantao Du, Xin Kou, Shuoyang Ding, and Xiaojun Wan. Grammatical relations in Chinese: GB-ground extraction and data-driven parsing. In Proceedings of ACL, pages 446–456, 2014.

Sam Thomson, Brendan O’Connor, Jeffrey Flanigan, David Bamman, Jesse Dodge, Swabha Swayamdipta, Nathan Schneider, Chris Dyer, and Noah A. Smith. CMU: Arc-factored, discriminative semantic dependency parsing. In Proceedings of SemEval, pages 176–180, 2014.

Marco Kuhlmann and Peter Jonsson. Parsing to non-crossing dependency graphs. TACL, 3:559–570, 2015.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiaojun Wan. Parsing to 1-endpoint-crossing, pagerneumber-2 graphs. In Proceedings of ACL, pages 2110–2120, 2017.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiaojun Wan. Quasi-second-order parsing for 1-endpoint-crossing, pagerneumber-2 graphs. In Proceedings of EMNLP, pages 24–34, 2017.

Weiwei Sun, Yantao Du, and Xiaojun Wan. Parsing for grammatical relations via graph merging. In Proceedings of ConLL, pages 26–35, 2017.

Weiwei Sun, Junjie Cao, and Xiaojun Wan. Semantic dependency parsing via book embedding. In Proceedings of ACL, pages 828–838, 2017.

Corentin Ribeyre, Éric Villemonte de la Clergerie, and Djamé Seddah. Alpage: Transition-based semantic graph parsing with syntactic features. In Proceedings of SemEval, pages 97–103, 2014.

Jenna Kanerva, Juhan Jutel, and Filip Ginter. Turkul: Semantic dependency parsing as a sequence classification. In Proceedings of SemEval, pages 965–969, 2015.

Kenji Sagae and Jun’ichi Tsujii. Shift-reduce dependency DAG parsing. In Proceedings of COLING, pages 753–760, 2008.

Alper Tokgöz and Gülşen Eryiğit. Transition-based dependency dag parsing using dynamic oracles. In Proceedings of the ACL-IJCNLP: Student Research Workshop, pages 22–27, 2015.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun Wan. Transition-based parsing for deep dependency structures. Computational Linguistics, 42(3):353–389, 2016.

Daniel Gildea, Giorgio Satta, and Xiaochang Peng. Cache transition systems for graph parsing. Computational Linguistics, 44(1):85–118, 2018.

Jan Buys and Phil Blunsom. Robust incremental neural semantic graph parsing. In Proceedings of ACL, pages 1215–1226, 2017.

Željko Agić and Alexander Koller. Potsdam: Semantic dependency parsing by bidirectional graph-tree transformations and syntactic parsing. In Proceedings of SemEval, pages 465–470, 2014.

Natalie Schluter, Anders Søgaard, Jakob Elming, Dirk Hovy, Barbara Plank, Héctor Martínez Alonso, Anders Johansen, and Sigrid Klerke. Copenhagen-malmö: Tree approximations of semantic parsing problems. In Proceedings of SemEval, pages 213–217, 2014.

Željko Agić, Alexander Koller, and Stephan Oepen. Semantic dependency graph parsing using tree approximations. In In Proceedings of IWCS, 2015.

David McClosky, Eugene Charniak, and Mark Johnson. Reranking and self-training for parser adaptation. In Proceedings of the ACL, pages 337–344, 2006.

Kenji Sagae. Self-training without reranking for parser domain adaptation and its impact on semantic role labeling. In Workshop on Domain Adaptation for Natural Language Processing, pages 37–44, 2010.

Daisuke Kawahara and Kiyotaka Uchimoto. Learning reliability of parses for domain adaptation of dependency parsing. In Proceedings of IJCNLP, 2008.

Wenliang Chen, Youzheng Wu, and Hitoshi Isahara. Learning reliable information for dependency parsing adaptation. In Proceedings of COLING, pages 113–120, 2008.

Juntao Yu, Mohab Elkaref, and Bernd Bohnet. Domain adaptation for dependency parsing via self-training. In Proceedings of the IWPT, pages 1–10, 2015.

Mark Steedman, Rebecca Hwa, Stephen Clark, Miles Osborne, Anoop Sarkar, Julia Hockenmaier, Paul Ruhlen, Steven Baker, and Jeremiah Crim. Example selection for bootstrapping statistical parsers. In Proceedings of NAACL, pages 236–243, 2003.

Kenji Sagae and Jun’ichi Tsujii. Dependency parsing and domain adaptation with LR models and parser ensembles. In Proceedings of EMNLP-ConLL, pages 1044–1050, 2007.

Barbara Plank and Gertjan van Noord. Effective measures of domain similarity for parsing. In Proceedings of ACL, pages 1566–1576, 2011.

Haitong Yang, Tao Zhuang, and Chengqing Zong. Domain adaptation for syntactic and semantic dependency parsing using deep belief networks. TACL, 3:271–282, 2015.

David McClosky, Eugene Charniak, and Mark Johnson. Automatic domain adaptation for parsing. In Proceedings of
155 Roi Reichart and Ari Rappoport. Self-training for enhancement and domain adaptation of statistical parsers trained on small datasets. In *Proceedings of ACL*, pages 616–623, 2007.
156 Hal Daumé III. Frustratingly easy domain adaptation. In *Proceedings of ACL*, pages 256–263, 2007.
157 Jenny Rose Finkel and Christopher D. Manning. Hierarchical Bayesian domain adaptation. In *Proceedings of NAACL*, pages 602–610, 2009.
158 Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In *Proceedings of ICML*, pages 1180–1189, 2015.
159 Motoki Sano, Hitoshi Manabe, Hiroshi Noji, and Yuji Matsumoto. Adversarial training for cross-domain universal dependency parsing. In *Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies*, pages 71–79, 2017.
160 Vidur Joshi, Matthew Peters, and Mark Hopkins. Extending a parser to distant domains using a few dozen partially annotated examples. In *Proceedings of ACL*, pages 1190–1199, 2018.
161 Daniel Flanery and Shinsuke Mori. Combining active learning and partial annotation for domain adaptation of a japanese dependency parser. In *Proceedings of IWPT*, pages 11–19, 2015.
162 Zhenghua Li, Xue Peng, Min Zhang, Rui Wang, and Luo Si. Semi-supervised domain adaptation for dependency parsing. In *Proceedings of ACL*, pages 2386–2395, 2019.
163 Daniel Zeman and Philip Resnik. Cross-language parser adaptation between related languages. In *Proceedings of the IJCNLP-08 Workshop on NLP for Less Privileged Languages*, 2008.
164 Ryan McDonald, Slav Petrov, and Keith Hall. Multisource transfer of delexicalized dependency parsers. In *Proceedings of EMNLP*, pages 62–72, 2011.
165 Shay B. Cohen, Dipanjan Das, and Noah A. Smith. Unsupervised structure prediction with non-parallel multilingual guidance. In *Proceedings of EMNLP*, pages 50–61, 2011.
166 Tahira Naseem, Regina Barzilay, and Amir Globerson. Selective sharing for multilingual dependency parsing. In *Proceedings of ACL*, pages 629–637, 2012.
167 Oscar Täckström, Ryan McDonald, and Jakob Uszkoreit. Cross-lingual word clusters for direct transfer of linguistic structure. In *Proceedings of NAACL*, pages 477–487, 2012.
168 Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. Cross-lingual dependency parsing based on distributed representations. In *Proceedings of ACL-IJCNLP*, pages 1234–1244, 2015.
169 Yuan Zhang and Regina Barzilay. Hierarchical low-rank tensors for multilingual transfer parsing. In *Proceedings of EMNLP*, pages 1857–1867, 2015.
170 Michael Wick, Pallika Kanani, and Adam Pocock. Minimally-constrained multilingual embeddings via artificial code-switching. In *AAAI*, 2016.
171 Tal Schuster, Ori Ram, Regina Barzilay, and Amir Globerson. Cross-lingual alignment of contextual word embeddings, with applications to zero-shot dependency parsing. In *NAACL*, pages 1599–1613, 2019.
172 Yuxuan Wang, Wanxiang Che, Jianguo, Yijia Liu, and Ting Liu. Cross-lingual BERT transformation for zero-shot dependency parsing. In *Proceedings of EMNLP-IJCNLP*, pages 5721–5727, 2019.
173 Shijie Wu and Mark Dredze. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In *Proceedings of EMNLP-IJCNLP*, pages 833–844, 2019.
174 Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. *arXiv preprint arXiv:1901.07291*, 2019.
175 Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. Emerging cross-lingual structure in pretrained language models. *arXiv preprint arXiv:1911.01464*, 2019.
176 Benjamin Snyder, Tahira Naseem, and Regina Barzilay. Unsupervised multilingual grammar induction. In *Proceedings of ACL-IJCNLP*, pages 73–81, 2009.
177 Wenbin Jiang, Qun Liu, and Yajuan Lv. Relaxed cross-lingual projection of constituent syntax. In *Proceedings of EMNLP*, pages 1192–1201, 2011.
178 Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara Cabez, and Ocan Kolak. Bootstrapping parsers via syntactic projection across parallel texts. *Natural language engineering*, 11(3):311–325, 2005.
179 Zhenghua Li, Min Zhang, and Wenliang Chen. Soft cross-lingual syntax projection for dependency parsing. In *Proceedings of COLING*, pages 783–793, 2014.
180 Xuezhe Ma and Fei Xia. Unsupervised dependency parsing with transferring distribution via parallel guidance and entropy regularization. In *Proceedings of ACL*, pages 1337–1348, 2014.
181 Michael Schlichtkull and Anders Søgaard. Cross-lingual dependency parsing with late decoding for truly low-resource languages. In *Proceedings of EACL*, pages 220–229, 2017.
182 Mohammad Sadegh Rasooli and Michael Collins. Density-driven cross-lingual transfer of dependency parsers. In *EMNLP*, pages 328–338, 2015.
183 Željko Agić, Anders Johannsen, Barbara Plank, Héctor Martínez Alonso, Natalie Schlutер, and Anders Søgaard. Multilingual projection for parsing truly low-resource languages. *TACL*, 4:301–312, 2016.
184 Wenbin Jiang, Qun Liu, and Thepchai Supnithi. Joint learning of constituency and dependency grammars by decomposed cross-lingual induction. In *AAAI*, 2015.
185 Jörg Tiedemann, Željko Agić, and Joakim Nivre. Tree-
bank translation for cross-lingual parser induction. In Proceedings of the EMNLP, pages 130–140, 2014.
187 Jörg Tiedemann and Zeljko Agić. Synthetic treebanking for cross-lingual dependency parsing. JAIR, 55:209–248, 2016.
188 Meishan Zhang, Yue Zhang, and Guohong Fu. Cross-lingual dependency parsing using code-mixed TreeBank. In Proceedings of EMNLP-IJCNLP, pages 997–1006, 2019.
189 Mohammad Sadegh Rasooli and Michael Collins. Cross-lingual syntactic transfer with limited resources. TACL, 5:279–293, 2017.
190 Dingquan Wang and Jason Eisner. Synthetic data made to order: The case of parsing. In Proceedings of EMNLP, pages 1325–1337, 2018.
191 Mohammad Sadegh Rasooli and Michael Collins. Low-resource syntactic transfer with unsupervised source reordering. In Proceedings of NAACL, pages 3845–3856, 2019.
192 David A Smith and Noah A Smith. Bilingual parsing with factored estimation: Using English to parse Korean. In Proceedings of EMNLP, pages 49–56, 2004.
193 David Burkett and Dan Klein. Two languages are better than one (for syntactic parsing). In Proceedings of EMNLP, pages 877–886, 2008.
194 Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Many languages, one parser. TACL, 4:431–444, 2016.
195 Aaron Smith, Bernd Bohnet, Miryam de Lhoneux, Joakim Nivre, Yan Shao, and Sara Stymne. 82 treebanks, 34 models: Universal dependency parsing with multi-treebank models. In Proceedings of CoNLL, pages 113–123, 2018.
196 Dan Kondratyuk and Milan Straka. 75 languages, 1 model: Parsing universal dependencies universally. In Proceedings of EMNLP-IJCNLP, pages 2779–2795, 2019.
197 Junhui Li, Guodong Zhou, and Hwee Tou Ng. Joint syntactic and semantic parsing of Chinese. In Proceedings of ACL, pages 1108–1117, 2010.
198 Zhiguo Wang and Nianwen Xue. Joint POS tagging and transition-based constituent parsing in Chinese with non-local features. In Proceedings of ACL, pages 733–742, 2014.
199 Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wenliang Chen, and Haizhou Li. Joint models for Chinese POS tagging and dependency parsing. In Proceedings of EMNLP, pages 1180–1191, 2011.
200 Zhenghua Li, Min Zhang, Wanxiang Che, and Ting Liu. A separately passive-aggressive training algorithm for joint POS tagging and dependency parsing. In Proceedings of COLING, pages 1681–1698, 2012.
201 Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Incremental joint POS tagging and dependency parsing in Chinese. In Proceedings of IJCNLP, pages 1216–1224, 2011.
202 Bernd Bohnet and Joakim Nivre. A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing. In Proceedings of EMNLP-ConLL, pages 1455–1465, 2012.
203 Chris Alberti, David Weiss, Greg Coppola, and Slav Petrov. Improved transition-based parsing and tagging with neural networks. In Proceedings of EMNLP, pages 1354–1359, 2015.
204 Yuan Zhang and David Weiss. Stack-propagation: Improved representation learning for syntax. In Proceedings of ACL, pages 1557–1566, 2016.
205 Liner Yang, Meishan Zhang, Yang Liu, Maosong Sun, Nan Yu, and Guohong Fu. Joint pos tagging and dependency parsing with transition-based neural networks. TASLP, 26(8):1352–1358, 2017.
206 Xiaqiang Luo. A maximum entropy Chinese character based parser. In Michael Collins and Mark Steedman, editors, Proceedings of EMNLP, pages 192–199, 2003.
207 Hai Zhao. Character-level dependencies in Chinese: Usefulness and learning. In Proceedings of EACL, pages 879–887, 2009.
208 Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Incremental joint approach to word segmentation, POS tagging, and dependency parsing in Chinese. In Proceedings of ACL, pages 1045–1053, 2012.
209 Zhonguo Li and Guodong Zhou. Unified dependency parsing of Chinese morphological and syntactic structures. In EMNLP, pages 1445–1454, 2012.
210 Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting Liu. Chinese parsing exploiting characters. In Proceedings of ACL, pages 125–134, 2013.
211 Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting Liu. Character-level Chinese dependency parsing. In Proceedings of ACL, pages 1326–1336, 2014.
212 Yuan Zhang, Chengtao Li, Regina Barzilay, and Kareem Darwish. Randomized greedy inference for joint segmentation, POS tagging and dependency parsing. In Proceedings of NAACL, pages 42–52, 2015.
213 Xiaqing Zheng, Haoyuan Peng, Yi Chen, Pengjing Zhang, and Weniqiang Zhang. Character-based parsing with convolutional neural network. In Proceedings of IJCAI, 2015.
214 Haonan Li, Zhisong Zhang, Yuqi Ju, and Hai Zhao. Neural character-level dependency parsing for chinese. In Proceedings of AAAI, 2018.
215 Hang Yan, Xipeng Qiu, and Xuanjing Huang. A unified model for joint chinese word segmentation and dependency parsing. arXiv preprint arXiv:1904.04697, 2019.
216 Richard Johansson and Pierre Nugues. Dependency-based semantic role labeling of PropBank. In Proceedings of EMNLP, pages 69–78, 2008.
217 Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. Linguistically-informed self-attention for semantic role labeling. In Proceedings of EMNLP, pages 5027–5038, 2018.
218 Min Zhang, Jie Zhang, and Jian Su. Exploring syntactic features for relation extraction using a convolution tree kernel. In Proceedings of NAACL, pages 288–295, 2006.
219 Makoto Miwa and Mohit Bansal. End-to-end relation extraction using LSTMs on sequences and tree structures. In Proceedings of ACL, pages 1105–1116, 2016.
220 Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations from tree-structured long short-term memory networks. In Proceedings of ACL-IJCNLP, pages 1556–1566, 2015.
221 Meishan Zhang, Zhenghua Li, Guohong Fu, and Min Zhang. Syntax-enhanced neural machine translation with syntax-aware word representations. In Proceedings of NAACL, pages 1151–1161, 2019.
222 Yang Liu, Qun Liu, and Shouxun Lin. Tree-to-string alignment template for statistical machine translation. In Proceedings of the COLING/ACL, pages 609–616, 2006.
223 Likun Qiu and Yue Zhang. ZORE: A syntax-based system for Chinese open relation extraction. In Proceedings of EMNLP, pages 1870–1880, 2014.
224 Wanxiang Che, Min Zhang, Ting Liu, and Sheng Li. A hybrid convolution tree kernel for semantic role labeling. In Proceedings of the COLING/ACL, pages 73–80, 2006.
225 Xiaofeng Yang, Jian Su, and Chew Lim Tan. Kernel-based pronoun resolution with structured syntactic knowledge. In Proceedings of the COLING/ACL, pages 41–48, 2006.
226 GuoDong Zhou, Min Zhang, Dong Hong Ji, and QiaoMing Zhu. Tree kernel-based relation extraction with context-sensitive structured parse tree information. In Proceedings of EMNLP-ConLL, pages 728–736, 2007.
227 Min Zhang and Haizhou Li. Tree kernel-based SVM with structured syntactic knowledge for BTG-based phrase reordering. In Proceedings of EMNLP, pages 698–707, 2009.
228 Richard Johansson and Pierre Nugues. The effect of syntactic representation on semantic role labeling. In Proceedings of COLING, pages 393–400, 2008.
229 Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, and Zhi Jin. Classifying relations via long short term memory networks along shortest dependency paths. In Proceedings of EMNLP, pages 1785–1794, 2015.
230 Michael Roth and Mirella Lapata. Neural semantic role labeling with dependency path embeddings. In Proceedings of ACL, pages 1192–1202, 2016.
231 Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. Discriminative neural sentence modeling by tree-based convolution. In Proceedings of EMNLP, pages 2315–2325, 2015.
232 Xingxing Zhang, Liang Lu, and Mirella Lapata. Top-down tree long-term memory networks. In Proceedings of NAACL, pages 310–320, 2016.
233 Zhiyang Teng and Yue Zhang. Head-lexicalized bidirectional tree LSTMs. TACL, 5:163–177, 2017.
234 Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang, and Guodong Zhou. Modeling source syntax for neural machine translation. In Proceedings of ACL, pages 688–697, 2017.
235 Shuangzhi Wu, Ming Zhou, and Dongdong Zhang. Improved neural machine translation with source syntax. In Proceedings of IJCAI 2017, pages 4179–4185, 2017.
236 Meishan Zhang, Yue Zhang, and Guohong Fu. End-to-end neural relation extraction with global optimization. In Proceedings of EMNLP, pages 1730–1740, 2017.
237 Nan Yu, Meishan Zhang, and Guohong Fu. Transition-based neural RST parsing with implicit syntax features. In Proceedings of COLING, pages 559–570, 2018.
238 Joost Basting, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an. Graph convolutional encoders for syntax-aware neural machine translation. In Proceedings of EMNLP, pages 1957–1967, 2017.
239 Yuhao Zhang, Peng Qi, and Christopher D. Manning. Graph convolution over pruned dependency trees improves relation extraction. In Proceedings of EMNLP, pages 2205–2215, 2018.
240 Diego Marcheggiani, Joost Basting, and Ivan Titov. Exploiting semantics in neural machine translation with graph convolutional networks. In Proceedings of NAACL, pages 486–492, 2018.
241 Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.
242 Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha Palmer. The penn chinese treebank: Phrase structure annotation of a large corpus. NLE, 11(2):207–238, 2005.
243 Richard Johansson and Pierre Nugues. Extended constituent-to-dependency conversion for English. In Proceedings of NODALIDA, pages 105–112, 2007.
244 Richard Johansson and Pierre Nugues. Lth: semantic structure extraction using nonprojective dependency trees. In SemEval, pages 227–230, 2007.
245 Li Zhenghua, Che Wanxiang, and Liu Ting. A study on the conversion of phrase-structural trees into dependencies. Journal of Chinese Information Processing, 22(6):14–19, 2008.
246 Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. Generating typed dependency parses from phrase structure parses. In LREC, volume 6, pages 449–454, 2006.
247 Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and Jun’ichi Tsujii. Syntax annotation for the genia corpus. In Proceedings of IJCNLP, pages 222–227, 2005.
248 Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta, Archna Bhatia, Chris Dyer, and Noah A. Smith. A dependency parser for tweets. In
Proceedings of EMNLP, pages 1001–1012, 2014.

249 Marie-Catherine De Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip Ginter, Joakim Nivre, and Christopher D Manning. Universal stanford dependencies: A cross-linguistic typology. In LREC, volume 14, pages 4585–4592, 2014.

250 Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. In Proceedings of the LREC, 2012.

251 Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, and et al. Universal dependency annotation for multilingual parsing. In Proceedings of ACL, pages 92–97, 2013.

252 Joakim Nivre, Željko Agić, Maria Jesus Aranzabe, Masayuki Asahara, Aitziber Atutxa, Miguel Balles-teros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Cristina Bosco, et al. Universal dependencies 1.2. 2015.

253 Joakim Nivre, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus Aranzabe, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth Augustinus, et al. Universal dependencies 2.1. 2017.

254 Keh-Jiann Chen, Chi-Ching Luo, Ming-Chung Chang, Feng-Yi Chen, Chao-Jan Chen, Chu-Ren Huang, and Zhao-Ming Gao. Sinica treebank: Design criteria, representational issues and implementation, chapter 13, 2003.

255 ZHOU Qiang. Annotation scheme for chinese treebank. Journal of Chinese information processing, 18(4):1–8, 2004.

256 Weidong Zhan. The application of treebank to assist chinese grammar instruction: a preliminary investigation. Journal of Technology and Chinese Language Teaching, 3(2):16–29, 2012.

257 Ting Liu, Jinshan Ma, and Sheng Li. Building a dependency treebank for improving chinese parser. Journal of Chinese Language and Computing, 16(4):207–224, 2006.

258 Wanxiang Che, Zhenghua Li, and Ting Liu. Chinese dependency treebank 1.0 ldc2012t05. Philadelphia: Linguistic Data Consortium, 2012.

259 Likun Qiu, Yue Zhang, Peng Jin, and Houfeng Wang. Multi-view Chinese treebanking. In Proceedings of COLING, pages 257–268, 2014.

260 Likun Qiu, Yue Zhang, and Meishan Zhang. Dependency tree representations of predicate-argument structures. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

261 Sabine Buchholz and Erwin Marsi. CoNll-x shared task on multilingual dependency parsing. In CoNLL-X, pages 149–164, 2006.

262 Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. The CoNLL 2007 shared task on dependency parsing. In Proceedings of EMNLP-ConLL, pages 915–932, 2007.

263 Daniel Zeman, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip Ginter, and et al. CoNLL 2017 shared task: Multilingual parsing from raw text to universal dependencies. In Proceedings of the CoNLL 2017, pages 1–19, 2017.

264 Daniel Zeman, Jan Hajič, Martin Popel, Martin Pothast, Milan Straka, Filip Ginter, Joakim Nivre, and Slav Petrov. CoNLL 2018 shared task: Multilingual parsing from raw text to universal dependencies. In Proceedings of ConLL, pages 1–21, 2018.

265 Slav Petrov and Ryan McDonald. Overview of the 2012 shared task on parsing the web. In SANCL, 2012.

266 Xue Peng, Zhenghua Li, Min Zhang, Rui Wang, Yue Zhang, and Luo Si. Overview of the nlpcc 2019 shared task: cross-domain dependency parsing. In NLPCC, pages 760–771. Springer, 2019.

267 Wanxiang Che, Meishan Zhang, Yanqiu Shao, and Ting Liu. Semeval-2012 task 5: Chinese semantic dependency parsing. In Proceedings of SemEval 2012, pages 378–384, 2012.

268 Stephan Oepen, Omri Abend, Jan Hajic, Daniel Herschcovitch, Marco Kuhlmann, Tim O’Gorman, Nianwen Xue, Jayeol Chun, Milan Straka, and Zdenka Uresova. MRP 2019: Cross-framework meaning representation parsing. In Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning, pages 1–27, Hong Kong, 2019.