Infinitesimal reference frames suffice to determine the asymmetry properties of a quantum system

Rhea Alexander,1,2,* Si Gvirtz-Chen,2 and David Jennings2,1
1Department of Physics, Imperial College London, London SW7 2AZ, UK
2School of Physics and Astronomy, University of Leeds, LS2 9JT, UK

Symmetry principles are fundamental in physics, and while they are well understood within Lagrangian mechanics, their impact on quantum channels has a range of open questions. The theory of asymmetry grew out of information-theoretic work on entanglement and quantum reference frames, and allows us to quantify the degree to which a quantum system encodes coordinates of a symmetry group. Recently, a complete set of entropic conditions was found for asymmetry in terms of correlations relative to infinitely many quantum reference frames. However, these conditions are difficult to use in practice and their physical implications unclear. In the present theoretical work, we show that this set of conditions has extensive redundancy, and one can restrict to reference frames forming any closed surface in the state space that has the maximally mixed state in its interior. This in turn implies that asymmetry can be reduced to just a single entropic condition evaluated at the maximally mixed state. Contrary to intuition, this shows that we do not need macroscopic, classical reference frames to determine the asymmetry properties of a quantum system, but instead infinitesimally small frames suffice. Building on this analysis, we provide simple, closed conditions to estimate the minimal depolarization needed to make a given quantum state accessible under channels covariant with any given symmetry group.

I. INTRODUCTION

Symmetry principles have been extensively studied both in classical and quantum theory, and in particular for Lagrangian dynamics of a quantum system [1]. However, such evolution is a strict subset of the most general kind of physical transformation that quantum theory permits – quantum channels [2]. This more general setting not only includes unitary dynamics, open system dynamics, and the ability to vary the system dimension as it transforms, but it also interpolates between deterministic unitary dynamics and measurements that sharply collapse a quantum system. How symmetry principles constrain quantum channels is therefore a crucial question.

The study of quantum entanglement [3, 4] lead to a much broader conception of physical properties in terms of ‘resources’ relative to a set of quantum channels. This gave a precise way to quantify other fundamental features such as quantum coherence [5–8], thermodynamics [9–11], non-Gaussianity [12, 13], magic states for quantum computing [14, 15], and many more [16]. In particular, the theory of asymmetry provides an information-theoretic means to quantify the degree to which a quantum system breaks a symmetry [6, 17, 18].

Asymmetry sits at the crossroads between abstract quantum information theory and physical laws, and quantifies what has been called ‘unspeakable quantum information’ [19, 20]. This information cannot be transcribed into a data string on paper or in an email, but instead requires the transfer of a system that carries a non-trivial action of the symmetry group, via a symmetric (covariant) quantum channel. Given this, such concepts find application in quantum metrology [21], symmetry-constrained dynamics [17, 22, 23], quantum reference frames [19, 24–28], thermodynamics [29–31], measurement theory [32–36], macroscopic coherence [37], and quantum speed-limits [38]. More recent work has seen a renewed interest in quantum reference frames in a relativistic setting and the problem of time in quantum physics [39–50], as well as applications in quantum computing and covariant quantum error-correcting codes [51–57] where the Eastin-Knill theorem provides an obstacle to transversal gate-sets forming a continuous unitary subgroup [51].

The central question considered in this paper concerns transforming from a quantum state \(\rho \) to another quantum state \(\sigma \) under a symmetry constraint. More precisely, we address the following fundamental question:

Core Question: When is it possible to transform \(\rho_A \) to \(\sigma_B \) under a quantum channel between systems \(A \) and \(B \) that is covariant with respect to a symmetry group \(G \)?

This question addresses the fundamental way in which symmetries constrain quantum theory, and turns out to be surprisingly non-trivial. One might initially conjecture that if we consider the generators \(\{ J_k \} \) of the group representation \(U(g) = \exp[i \sum_k g_k J_k] \) and compute their moments \(\langle J_k^p \rangle := \text{tr}[J_k^p \rho] \) for a given state that this provides an answer to the above question. However, while this intuition is correct in the case of unitary dynamics on pure states, it is false more generally [17]. In the case of the rotation group, for example, it is possible for \(\langle J_k \rangle \) to both increase and decrease under rotationally symmetric operations [17, 22].

Given that a disconnect occurs between the symmetry principle and the generators of the group as observables for mixed quantum states, one might therefore conjecture

* ra4518@ic.ac.uk
that the problem requires an additional entropic accounting, and we must supplement our analysis with the von Neumann entropy $S(\rho)$ of the quantum state (or any general entropies that are a function of the spectrum of the state, such as the Rényi entropies) to determine the solution. Again, this turns out to still be insufficient, and it has been shown that even if we consider all moments of the generators and the entire spectrum of the quantum state ρ, this still does not answer the above question [17]. The missing asymmetry ingredient is instead a non-trivial combination of quantum information aspects and physics specific to the symmetry group.

Recent work [58] has provided a complete set of necessary and sufficient conditions for asymmetry which fully determine the state interconversion structure with respect to a symmetry group G. However, this set of conditions turns out not to be particularly intuitive and moreover forms an infinite set of conditions that must be checked. The present work unpacks these conditions, determines the minimal set of conditions needed and obtains conditions that could be used in practical situations.

A. Main results of the paper

The complete set of asymmetry conditions in [58] are framed in terms of correlations between the given quantum system A and quantum frame systems R that is locally in a state η_R that transforms non-trivially under the group action. These correlations are measured via the single-shot conditional entropy measure $H_{\text{min}}(R|A)$, which is a central quantity in quantum encryption [59]. However, the problem is that the complete set of conditions requires this entropy to be computed for all possible reference frame states η_R, and so the question is whether one can reduce to a much simpler set of conditions for asymmetry theory.

The main results of this work are as follows:

1. We prove that it suffices to consider any closed surface ∂D of reference frame states η_R that contains the maximally mixed state in its interior.

2. We prove that under ε-smoothing a finite number of reference states suffice to determine those states accessible under G-covariant channels.

3. We prove that infinitesimal reference frames suffice to specify asymmetry, and interconversion under G-covariant channels is equivalent to a single entropic minimality condition at the maximally mixed state.

4. We derive $O(d^2)$ closed conditions to estimate the minimal depolarization noise needed to make any given output state σ accessible from a state ρ under G-covariant channels. These essentially take the form

$$\log \|\sigma_\alpha^G\|_1 - D_2(\rho_\alpha^G||G(\rho)) \leq f(d,p),$$

where $\sigma_\alpha^G, \rho_\alpha^G$ are asymmetry modes with respect to the group [60], and $f(d,p)$ is a function depending on the output system dimension, its irrep structure, and the level of depolarization. The function $D_2(X||Y)$ is a generalization of the Sandwichted $\alpha = 2$ Rényi divergence [61, 62].

Results (1–3) show that the structure of reference frame states that determine the asymmetry properties of a system has a range of freedoms. In particular, result (3) is surprising because it is contrary to what is expected from previous work on this topic. Previously, it was natural to conjecture that in order to specify the asymmetry of a state one should make use of reference frame states that encode a group element as distinguishably as possible. Finally, result (4) exploits the general structure analysed to provide conditions, and could find application in describing symmetry-constrained quantum information in concrete settings.

II. SYMMETRY CONSTRAINTS AND RELATIONAL PHYSICS

Quantum entanglement [4] is usually understood as associated with a pre-order \succ on quantum states, defined by a class of quantum channels called Local Operations and Classical Communications (LOCC). The set of states that can be generated under LOCC are called separable states, and any other state is then said to have non-trivial entanglement. The pre-order is defined as $\rho \succ \sigma$ if and only if we can transform from ρ into σ via an LOCC channel. This provides the resource-theoretic formulation of entanglement.

This general perspective on properties of quantum systems can be used in the above problem on transforming between quantum states under a symmetry constraint. Specifically, we can identify a symmetry ordering \succ on quantum states, defined now by $\rho \succ \sigma$ whenever it is possible to transform from ρ into σ via a quantum channel that respects a given symmetry group G. The symmetry pre-order then defines what it means for one quantum state to be more asymmetric than another with respect to the group G.

We can make this precise in the following way. Given a quantum system A, with associated Hilbert space H_A, we denote by $B(H_A)$ the space of bounded linear operators on H_A. A symmetry group G acts on the system via a unitary representation $U(g)$ on H_A. States of A are positive, trace-one operators $\rho \in B(H_A)$, and at the level of the density operator ρ the symmetry group acts as $U_g(\rho) := U(g)\rho U(g)^\dagger$. A quantum channel $\mathcal{E} : B(H_A) \to B(H_B)$ is a completely-positive, trace-preserving map [2] that sends states of an input system A to states of some output system B. A quantum channel \mathcal{E} is then said to
be symmetric, or G–covariant, with respect to a group action if $\mathcal{E}(U(g)\rho U(g)^\dagger) = U(g)\mathcal{E}(\rho)U(g)^\dagger$ for all $g \in G$ and all states ρ of the input system. Expressed purely in terms of composition of channels this amounts to

$$[\mathcal{U}_g, \mathcal{E}] = 0 \text{ for all } g \in G. \quad (2)$$

We then have that $\rho \succ \sigma$ when there is a G–covariant channel \mathcal{E} such that $\sigma = \mathcal{E}(\rho)$. Moreover, a measure of the system’s asymmetry is any real-valued function \mathcal{M} on quantum states such that if $\rho \succ \sigma$ then it must be the case that $\mathcal{M}(\rho) \geq \mathcal{M}(\sigma)$.

A number of measures of asymmetry have been developed, such as relative entropy measures $[28, 63]$, the skew-Fisher information $[17, 18, 64]$, and the purity of the system that relate to the symmetry constraint. However, what is a harder question is whether one can determine a sufficient set of monotones. Any such set of measures would encode all the features of the quantum system that relate to the symmetry constraint.

Very recently $[58]$ just such a complete set of measures has been found, in terms of single-shot entropies. The monotones appearing in these relations are the quantum conditional min-entropies $[59]$, which are defined, for some state Ω_{RA} on a bipartite system RA, as:

$$H_{\min}(R|A)_{\Omega} := -\log \inf_{X_A \geq 0} \{ \text{tr}[X_A] : I_R \otimes X_A \geq \Omega_{RA} \},$$

where the infimum ranges over all positive semidefinite operators X_A on Hilbert space H_A. For any state ρ_A a complete set of measures is then given by

$$H_\eta(\rho) := H_{\min}(R|A)_{\mathcal{G}(\eta \otimes \rho)}, \quad (3)$$

where η_R is an arbitrary quantum state on an external reference frame system R, and the single-shot entropy is evaluated on the bipartite state

$$\mathcal{G}(\eta_R \otimes \rho_A) := \int dg \mathcal{U}_g(\eta_R) \otimes \mathcal{U}_g(\rho_A). \quad (4)$$

In terms of transformations between quantum states under a G–covariant channel, we now have the following result.

Theorem 1. $[58]$ Let A, B, and R be three quantum systems with respective Hamiltonians H_A, H_B and H_R and dimensions d_A, d_B and d_R. Furthermore, let the reference system R be such that $d_R = d_B$ and $H_R = -(H_B)^T$. The state transformation $\rho_A \rightarrow \sigma_B$ is possible under a G–covariant operation if and only if

$$\Delta H_\eta \geq 0, \quad (5)$$

for all states η_R on H_R, where we have defined

$$\Delta H_\eta = H_\eta(\sigma) - H_\eta(\rho), \quad (6)$$

as the difference in entropy between input and output systems.

As shown in the original paper, the infinite set of entropic conditions outlined in Theorem 1 can be reformulated as a semi-definite program that can be solved efficiently for sufficiently low-dimensional quantum systems. However, for larger system sizes it quickly becomes computationally intensive. Moreover, without simplification, working with these expressions analytically is not an option, since we have an infinite set of conditions and the physics involved remains hidden.

A. Appearance of relativistic features in the quantum-information framework

In quantum gravity, one has the Wheeler-de Witt equation $[65]$ that provides a Hamiltonian constraint $H|\Psi\rangle = 0$ for a global wavefunction $|\Psi\rangle$. This in particular implies global time-translation covariance, and raised the question of how observed dynamics are consistent with this condition. One answer to this question was presented by Page and Wootters $[66]$, who argued that time-evolution of subsystems should be properly viewed in terms of relational correlations between subsystems.

The above complete set of entropic conditions for general covariant transformations has links with this formalism. In particular, the following features appear from the quantum information-theoretic treatment when specialised to G being the time-translation group $[58]$:

- External reference frame systems automatically appear in the information-theoretic analysis.
- The Hamiltonians on R and B obey $H_R + H_B^T = 0$ as matrices.
- The properties of any system A that transform non-trivially under the symmetry group are fully described by correlations between R and A.
- A single-shot Page–Wootters condition emerges in the classical reference frame limit in terms of optimal guessing-probabilities of the time parameter.
- Local gauge symmetries can be formulated with a causal structure on asymmetry resources $[67]$.

The appearance of a Page–Wootters condition is surprising. The classical limit here is when reference frame η acts as a good clock, in the sense that one can encode the classical information t into it in such a way that one can discriminate between two different values t_1 and t_2 with high probability.

For this regime, the state $\Omega_{RA} = \mathcal{G}(\eta_R \otimes \rho_A)$ tends to a classical-quantum state, with R behaving as a classical ‘register’ for t. However, it can be shown that for a classical quantum state Ω_{RA}, where R is classical, the single-shot entropy corresponds exactly to an optimal guessing probability $[68]$. More precisely, it can be proved that

$$- \log H_{\min}(R|A)_{\Omega} = p_{\text{opt}}(t), \quad (7)$$
where $p_{\text{opt}}(t)$ is the optimal guessing probability for the value of t, over all generalised POVM measurements, given the state $U(t) \rho U(t)^\dagger$. This provides a refinement of the Page–Wootters formalism.

This interpretation of the $H_{\min}(R|A)_{\Omega}$ terms extends to arbitrary states on R. In the fully general case it quantifies the optimal singlet fraction [68], the degree to which the state Ω_{RA} can be transformed to a maximally entangled (perfectly correlated) state through action on A alone. It is also possible to include thermodynamics into this setting without much complication. For this extension, if we consider varying the state ρ we also smoothly interpolate between free energy–like conditions and clock conditions [58].

The above features come solely from the single-shot quantum-information formalism of the problem, and show that these aspects are fundamental. It therefore motivates a deeper analysis of the complete set of entropic conditions with the aim of unpacking the physical content and determining the minimal information-theoretic conditions with the aim of unpacking the physical content and determining the minimal information-theoretic conditions that describe fully general symmetric transformations of quantum systems.

B. Warm-up example: a curious dependence on reference frame states

It is useful to first illustrate special cases of the $H_{\min}(R|A)$ conditions for the elementary case of channels sending a single qubit to a single qubit under a $U(1)$ covariant symmetry constraint. For concreteness we take this to be time-translation $U(t) = e^{i t H_A}$ under a qubit Hamiltonian $H_A = \sigma_z$, where $(\sigma_x, \sigma_y, \sigma_z)$ are the Pauli matrices for the qubit system.

We must therefore consider an auxiliary qubit reference frame R in a state ρ with $H_R = -\sigma_z$, and compute the conditional min-entropy on the joint state

$$G(\rho_R \otimes \rho_A) = \int_0^{2\pi} dt \frac{d\theta}{2\pi} \mathcal{U}_t(\rho) \otimes \mathcal{U}_t(\rho_A).$$

We also choose $\rho_A = \frac{1}{2}(1 + \frac{1}{2} \sigma_x + \frac{i}{2} \sigma_y)$ and look at how each choice of reference frame state ρ_R constrains the region of quantum states accessible under time-covariant quantum channels. For fixed input state ρ, we define the set

$$\mathcal{T}_\eta := \{ \sigma_A : H_\eta(\sigma) \geq H_\eta(\rho) \}.$$

In other words, \mathcal{T}_η is the region of quantum states the reference frame state η_R classes as admissible for time-covariant transformations. As such, $\sigma \in \mathcal{T}_\eta$ constitutes a necessary, but not sufficient, condition on the pre-order $\rho \succ \sigma$.

The natural first choice for a reference frame state is $\eta_R = |+\rangle\langle+|$: with a uniform superposition over energy eigenstates, this is in a sense the ‘best’ clock state one can find for the qubit in that it can encode a single bit of data about the parameter t, which is the maximum allowed by the Holevo bound [2]. The region S_η in this case is plotted in Fig. (1)(c).

We now consider other choices of reference frame states, and find a surprising result. If we take $\eta_R = |\phi\rangle\langle\phi|$ with $|\phi\rangle$ approaching either $|0\rangle$ or $|1\rangle$, the region \mathcal{T}_η provides a better approximation to the actual region of quantum states accessible under time-covariant channels. This is shown in Fig. (1).

We also find the following striking result: the accessible region is exactly recovered if we consider just two reference frame states $\eta_0 = |\phi_0\rangle\langle\phi_0|$ and $\eta_1 = |\phi_1\rangle\langle\phi_1|$, where η_0 is infinitesimally close to $|0\rangle\langle0|$ and η_1 infinitesimally close to $|1\rangle\langle1|$ (a proof may be found in Appendix G A 1). However, if we took the reference frame states to be exactly equal to these pure symmetric states, then \mathcal{T}_η is the entire Bloch sphere, and the constraints determined by the reference frame state disappear completely!

This suggests that the constraints coming from the reference frame, via the correlations in the state $\Omega(\rho_A)$, have a non-trivial and counter-intuitive dependence on the state η_R. However, this simple example also illustrates that there are significant redundancies in the entropic set of conditions – we have reduced from having
to compute infinitely many conditions to just two conditions. The question then becomes whether such features carry over to more general situations, and to what degree can we reduce the set of reference frames so as to determine the minimal relational data needed to specify the asymmetry of a quantum system with respect to a general group G.

III. SUFFICIENT SURFACES OF REFERENCE FRAME STATES FOR A GENERAL GROUP G

We shall begin our analysis by reducing the set of reference frames needed substantially and establishing high-level results. These shed light on the structure of the problem and lead to our tractable set of conditions in Section V.

A. Basic reference frame redundancies

The entropic conditions in Theorem 1 are over-complete, and contain a large number of redundancies. Firstly, given two reference states η_0 and η_1 on R such that

$$\eta_1 = \mathcal{V}(\eta_0),$$

for some unitary channel \mathcal{V}_R such that

$$[\mathcal{V}_R \otimes \text{id}_A, \mathcal{G}] = 0,$$

then it can be shown (see Appendix B A) that $\Delta H_{\eta_0} = \Delta H_{\eta_1}$ for all possible input and output states. This invariance is a special case of the following lemma, which we prove in Appendix B A:

Lemma 2. Let $\mathcal{V}_R : \mathcal{B}(R) \to \mathcal{B}(R')$ and $\mathcal{W}_A : \mathcal{B}(A) \to \mathcal{B}(A')$ be local isometries that jointly commute with the G-twirl, i.e.

$$[\mathcal{V}_R \otimes \mathcal{W}_A, \mathcal{G}] = 0.$$ \hspace{1cm} (12)

We then have:

$$H_{\mathcal{V}(\eta)}(\mathcal{W}(\rho)) = H_{\eta}(\rho)$$

for any pair of quantum states η and ρ on R and A respectively.

A second set of redundancies comes from considering the asymmetric modes of the input state. Let the asymmetric modes of a state ρ be denoted $\text{modes}(\rho)$. Then it is known [60] that

$$\text{modes}(\sigma) \subseteq \text{modes}(\rho),$$

is a necessary condition for a G-covariant transition from ρ to σ. Moreover, if we assume that the condition Eq. (14) holds, then it suffices to range only over reference frame states η such that $\text{modes}(\eta) = \text{modes}(\rho)$ (a proof is given in Appendix C B).

B. Necessary and sufficient surfaces of reference frame states

It turns out that the entropic set of conditions have a more non-obvious kind of redundancy. Any reference state η can be written in an orthogonal basis of Hermitian operators $\{\frac{1}{d}, X_1, \ldots, X_{d^2-1}\}$ as

$$\eta(x) := \frac{1}{d} + \sum_{k=1}^{d^2-1} x_k X_k,$$ \hspace{1cm} (15)

where $x_k \in \mathbb{R}$ and $\|X_k\|_\infty = \frac{1}{d}$ for all $k \in \{1, \ldots, d^2 - 1\}$ provide coordinates for the state. With this in mind, we now have the following result:

Theorem 3. (Sufficient surfaces of states). Let all states and systems be defined as in Theorem 1. Let ∂D be any closed $d^2 - 2$ dimensional surface in the state space of R that has $\frac{1}{d^2}$ in its interior. The state transformation $\rho \to \sigma$ is possible under a G-covariant channel if and only if

$$\Delta H_\eta \geq 0,$$ \hspace{1cm} (16)

for all reference frame states $\eta \in \partial D$.

A proof is given in Appendix D B, and follows from fact that the conditional min-entropies behave particularly nicely under the application of a partial depolarizing channel on the reference system (see Lemma 18).

Combined with the redundancies of Sec. III A, we have that only a subset of ∂D will produce non-trivial constraints – namely the intersection of ∂D with states having asymmetric modes, quotiented by the action of the unitary sub-group of channels \mathcal{V}_R obeying Equation (11).

C. A finite set of reference states under ε-smoothing

It is natural to consider a ‘smoothed’ version of the asymmetry conditions in which we are limited to some ε-ball resolution around states [59, 69], where an ε-ball around a state τ is defined by

$$B_\varepsilon(\tau) := \{\tilde{\tau} \in \mathcal{B}(\mathcal{H}) : D(\tau, \tilde{\tau}) \leq \varepsilon\},$$ \hspace{1cm} (17)

and D is the generalized trace distance [70]. This is physically motivated by the fact that in any practical experimental scenario, two states that are in a sense close cannot be distinguished up to some finite precision in the measurement apparatus. Here we prove that, if we allow for some ε-probability of error in the transformation, then we can restrict to a finite set of reference frame states.

To perform the ε-smoothing over the reference system, we need the following lemma, which states that the entropic relations are continuous functions of the reference frame state.
A finite set of reference frame states. Given any states, this gives rise to the following result: finite mixed state. It can be shown \cite{71, 72} that there exists a sider only reference frame states of the form Eq. (15). The blue region is define only reference frames – the three surfaces shown all provide the same information. The blue region is the set of symmetric states.

Lemma 4. For any \(\tilde{\eta} \in B_\varepsilon(\eta) \), we have

\[
|\Delta H_{\tilde{\eta}} - \Delta H_\eta| \leq \frac{2d^2\varepsilon}{\ln 2(1 - 2\varepsilon)}.
\]

(18)

Note that if we further restrict \(\tilde{\eta} \) to normalised states and define \(r(\varepsilon) := \frac{2d^2\varepsilon}{\ln 2} \) this simplifies to

\[
|\Delta H_{\tilde{\eta}} - \Delta H_\eta| \leq r(\varepsilon).
\]

(19)

Proof. A proof is given in Appendix E.A.

Therefore, an \(\varepsilon \)-variation in the choice of the reference state \(\eta \) corresponds to an \(\varepsilon \)-small variation in the entropy difference \(\Delta H_\eta \).

A corollary of Theorem 3 is that it is sufficient to consider only reference frame states of the form Eq. (15) that live on the surface of a sphere about the maximally mixed state. It can be shown \cite{71, 72} that there exists a finite \(\varepsilon \)-net \(\{\eta_1, \eta_2, \ldots, \eta_N\} \) covering this set of reference states. This gives rise to the following result:

Theorem 5. Given any \(\varepsilon > 0 \) resolving scale, there is a finite set of reference frame states \(N := \{\eta_k\}_{k=1}^N \) with \(N = O \left((1 + \frac{1}{\varepsilon})d^2 \right) \) that leads to the following cases:

- if \(\Delta H_{\eta_k} < 0 \) for any \(\eta_k \in N \) then \(\rho \rightarrow \sigma \) is forbidden under all \(G \)-covariant quantum channels.

- if \(\Delta H_{\eta_k} \geq r(\varepsilon) \) for all \(\eta_k \in N \) then \(\rho \rightarrow \sigma \) under a \(G \)-covariant quantum channel.

- For each \(\eta_k \in N \) that has \(0 \leq \Delta H_{\eta_k} < r(\varepsilon) \) we can obtain \(O(\varepsilon) \) upper bound estimates of the minimal asymmetry resources needed to realise the transformation.

A proof is provided in Appendix E.B.

This implies that the entropic relation can be checked on a finite number of reference frames states, and furthermore each individual reference frame state can give us some information.

The above result is potentially of interest in numerical studies of low-dimensional systems. However, it does not shed much additional light on the structure of covariant state transformations. Therefore, instead of developing this line further here, we look at a limiting regime of reference frame states that make things clearer. This in turn lead to a more user-friendly set of conditions for ‘smoothed’ interconversions in Section V.

IV. INFINITESIMAL REFERENCE FRAMES AND A SINGLE MINIMALITY CONDITION FOR ASYMMETRY

While we have a finite number of conditions for smoothed asymmetry, these are, by construction, of only approximate validity, and are not very physically informative. The surface condition of Theorem 3 reduces the problem significantly, but still leaves us with an infinite set of reference frames to check.

However we can always take the region \(\mathcal{D} \) in Theorem 3 to be an arbitrarily small region around the maximally mixed state, and so restrict to reference frame states that are arbitrarily close to being trivial, and this does not affect the completeness of the set of reference frames. This then shows that the counter-intuitive features we highlighted in the qubit case are in fact generic and appear for any dimension and any group action.

A statement of this is as follows.

Theorem 6. Given systems \(A \) and \(B \), it is possible to transform a quantum state \(\rho_A \) of \(A \) into a state \(\sigma_B \) of \(B \) under a \(G \)-covariant quantum channel if and only if \(\Delta H_\eta \) has a local minimum at \(\eta_R = \frac{1}{d} \).

Proof. We first note that \(\Delta H_\eta = 0 \) whenever \(\eta_R \) is symmetric (see Lemma 11 in the appendices), and therefore \(\Delta H_\eta = 0 \) when \(\eta_R = \frac{1}{d} \). If we assume \(\rho_A \xrightarrow{G} \sigma_B \), namely \(\rho_A \) can be transformed into \(\sigma_B \) via a \(G \)-covariant channel, then Theorem 1 implies that \(\Delta H_\eta \) has a global minimum at \(\eta_R = \frac{1}{d} \), which must therefore be a local minimum as well. Conversely, if we assume \(\Delta H_\eta \) has a local minimum at \(\eta_R = \frac{1}{d} \), then there exists a neighbourhood \(\mathcal{D} \) around \(\eta_R = \frac{1}{d} \) in which \(\Delta H_\eta \geq \Delta H_{1/d} = 0 \). The conditional entropies are continuous in \(\eta_R \), so we have \(\Delta H_\eta \geq 0 \) on \(\partial\mathcal{D} \) as well. We conclude by Theorem 3 that \(\rho_A \xrightarrow{G} \sigma_B \). Therefore, \(\rho_A \xrightarrow{G} \sigma_B \) if and only if \(\eta_R = \frac{1}{d} \) is a local minimum of \(\Delta H_\eta \).

This result is surprising, since we would expect that ‘optimal’ information would be obtained by evaluating the entropic relations on reference states that are closest to being a “classical” reference frame \cite{19}, namely a state.

Figure 2. (Sufficient surfaces of reference frames). There is extensive freedom in the choice of sufficient reference states. According to Theorem 3, any surface inside the set of all reference states \(S_R \) that encloses the maximally mixed state is a sufficient set of reference frames – the three surfaces shown provide the same information.
again, we characterise reference frame states using the
A. Conical behaviour at the maximally mixed state

\[\langle \phi(g)|\phi(g') \rangle = \delta(g^{-1}g'), \quad (20) \]

for all \(g, g' \in G \).

The use of such a reference frame \(|\phi \rangle \) allows us to ‘relativise’ all symmetries and construct covariant versions of every aspect of quantum theory \[19, 64, 73–76\] This is done via a relativising map

\[A \rightarrow \tilde{A} := \int dg U_g(A) \otimes |\phi(g)\rangle \langle \phi(g)|, \quad (21) \]

which can be viewed as a quantum to classical-quantum channel. In the limit of a classical reference frame with \(\langle \phi(g)|\phi(g') \rangle = \delta(g^{-1}g') \), the mapping becomes reversible via a readout from the classical register. However, for reference frame states that are not classical, the encoding is fundamentally noisy and so it is expected that the asymmetry features of a quantum state are not properly described within the encoding. Theorem 6, however, tells us this is not the case.

This ability to restrict relational data to the case of infinitiesimally small reference frames suggests that asymmetry theory admits a differential geometry description in terms of tangent space of operators at the maximally mixed state. Given that the interconversion of states under \(G \)-covariant channels corresponds to a local minimum condition we might also expect that asymmetry is described by information geometry \[77, 78\], and a single curvature computed from the \(H_{\min}(R|A) \) entropy. This would imply that the asymmetry properties of a system are fully described by a form of quantum Fisher information \[64\].

We find that, for our warm-up example of \(G = U(1) \) on a qubit, something like this does indeed occur. We show in Appendix G A 1 that

\[\rho \rightarrow U(1) \sigma \text{ if and only if } \partial_\theta^2 H_\eta(\eta) \geq 0, \quad \text{at } \theta = 0, \pi, \quad (22) \]

where \(\theta \) is the angle the Bloch vector of \(\eta \) makes with the Z-axis. Therefore we reduce the problem down to checking just two conditions, framed as a curvature term in the angular direction. However, in the radial direction one does not have a smooth variation. Instead, we conjecture that under \(\varepsilon \)-smoothing a complete curvature condition exists in all directions with the angular directions providing the non-trivial constraint. In the next section we give explicit details on this troublesome radial behaviour.

A. Conical behaviour at the maximally mixed state

We now consider the behaviour of the \(H_\eta \) entropies in the neighbourhood of the maximally mixed state. Once again, we characterise reference frame states using the co-ordinate system in Equation 15 as \(\eta(x) \), where the maximally mixed state is located at \(x = 0 \). We further define

\[\Phi_\tau(x) := 2^{-H_\eta(\eta(x))}. \quad (23) \]

and \(\tilde{\Phi}_\tau(x) := \Phi_\tau(x) - \Phi_\tau(0) \), which gives the difference in \(\Phi_\tau \) between the maximally mixed state to the reference state at \(x \).

As a result of Lemma 19, \(\tilde{\Phi}_\tau(x) \) has the following properties:

Lemma 7. Let \(\lambda \geq 0 \). Then for all \(x, \lambda x \in S \), where \(S \) is the set of all co-ordinates corresponding to reference states:

\[\tilde{\Phi}_\tau(\lambda x) = \lambda \tilde{\Phi}_\tau(x) \quad (24) \]

Furthermore,

\[\tilde{\Phi}_\tau(x) \geq 0. \quad (25) \]

Proof. A proof can be found at Appendix F. \(\square \)

We conclude from the above lemma that \(\tilde{\Phi}_\tau(x) \), and consequently \(\Phi_\tau(x) \), is linearly non-decreasing in every direction out of the maximally mixed state. This means \(\Phi_\tau(x) \) will, in general, have a conical form at the maximally mixed state; as a result, unless \(\Delta \Phi(x) \) is completely linear, it too will have a conical form at the maximally mixed state. Using the defining relationship between \(\Phi_\tau(x) \) and the min–entropy, we further derive from Lemma 7 that, for sufficiently small \(\varepsilon \geq 0 \),

\[\Delta H(\varepsilon x) = d\varepsilon \Delta \Phi(x) + o(\varepsilon^2), \quad (26) \]

where \(\Delta \Phi(x) \equiv \Phi_\rho(x) - \Phi_\sigma(x) \). In the neighbourhood of the maximally mixed state, the behaviour of \(\Delta H_\eta \) is thus given by that of \(\Delta \Phi \), and so in this single-shot regime we do not in general have smooth behaviour.

B. Structure of \(\Phi_\tau(x) \) for simple cases

To illustrate this in practice, we now provide two examples on a qubit system for \(G = U(1) \) and \(G = SU(2) \).

1. The case of time–covariant \(U(1) \)

We first present \(\Phi_\tau \) for time-covariant transformations in a non-degenerate qubit. Consider a qubit with the Hamiltonian \(\sigma_z \). The states of this qubit are restricted to transforming among each other exclusively via channels that commute with all time translations \(\{U_t : t \in [0, 2\pi] \} \), where \(U_t(\cdot) = e^{-i\eta t}\cdot e^{i\eta t} \). This set of time-translations form a unitary representation of the group \(U(1) \).

We parameterise an arbitrary state \(\tau \) of this qubit in its energy eigenbasis as:

\[\tau := \begin{pmatrix} p_\tau & c_\tau \\ c_\tau^* & 1 - p_\tau \end{pmatrix} \quad (27) \]
We further use the (scaled) Pauli operators \(\{ \frac{1}{\sqrt{2}}, \frac{i}{\sqrt{2}} \} \) as our basis for characterising reference frame states according to Equation 15. The Bloch vector of a state, \((x, y, z)\), gives its co-ordinates in this basis. A direct computation (see Appendix G A) gives

\[
\Phi_{\tau}(x, y, z) = \frac{|c_{\tau}|^2}{1 - p_{\tau}} \frac{x^2 + y^2}{4z} + \frac{z}{2} + \frac{1}{2}
\]

(28a)

for the region \(0 \leq \frac{x^2 + y^2}{2z} \leq \frac{1 - p_{\tau}}{|c_{\tau}|}\), and

\[
\Phi_{\tau}(x, y, z) = \left(p_{\tau} - \frac{1}{2}\right) z + |c_{\tau}| \frac{\sqrt{x^2 + y^2} + 1}{2}
\]

(28b)

for the region \(\frac{x^2 + y^2}{2z} \geq \frac{1 - p_{\tau}}{|c_{\tau}|}\) and \(\frac{x^2 + y^2}{2z} \leq - \frac{p_{\tau}}{|c_{\tau}|}\), and finally

\[
\Phi_{\tau}(x, y, z) = -\frac{|c_{\tau}|^2}{p_{\tau}} \frac{x^2 + y^2}{4z} - \frac{z}{2} + \frac{1}{2}
\]

(28c)

for the region \(\frac{x^2 + y^2}{2z} \geq \frac{1 - p_{\tau}}{|c_{\tau}|}\) and \(\frac{x^2 + y^2}{2z} \leq - \frac{p_{\tau}}{|c_{\tau}|}\). When neither \(c\) nor \(\sigma\) is symmetric, one can find neighbourhoods around the poles of the Bloch sphere in which \(\Delta \Phi(x)\) is not completely linear if and only if \(\frac{|c_x|^2}{1 - p_x} = \frac{|c_x|^2}{1 - p_x}\) and \(\frac{|c_x|^2}{p_x} = \frac{|c_x|^2}{p_x}\). Since these conditions are equivalent to \(\rho = U_t(\sigma)\) for some \(t\), for arbitrary choices of \(\rho\) and \(\sigma\) we almost always expect a conical singularity in \(\Delta H_\tau\) at \(\eta = \frac{1}{2}\).

This analysis illustrates how the original complete set of entropic conditions has many redundancies. We explicitly see the conical behaviour as \((x, y, z) \rightarrow (0, 0, 0)\) in that

\[
\Phi_{\tau}(\lambda(x, y, z)) = \lambda \left(\Phi_{\tau}(x, y, z) - \frac{1}{2}\right) + \frac{1}{2}
\]

(29)

where \(\lambda\) is a positive scaling factor. Furthermore, because \(U(1)\) is Abelian, we have that \([U_t \otimes 1, G] = 0\) for all \(t\), so Lemma 2 implies, for any \(r \geq 0\), that

\[
\Phi_{\tau}(r \cos(t), r \sin(t), z) = \Phi_{\tau}(r, 0, z),
\]

(30)

and so \(\Phi_{\tau}\) has cylindrical symmetry around the \(z\)-axis. More non-trivially, Lemma 2 may also be applied to \(X \otimes \mathcal{X}\), where \(\mathcal{X}(\cdot) := \sigma_x(\cdot)\sigma_x\), since \([\mathcal{X} \otimes \mathcal{X}, G] = 0\). This means

\[
\Phi_{\mathcal{X}(\tau)}(x, y, z) = \Phi_{\tau}(x, -y, -z)
\]

(31)

According to the parameterisation of \(\tau\) we have chosen, \(\mathcal{X}(\tau)\) means \(c_r \rightarrow c_r^*\) and \(p_r \rightarrow 1 - p_r\). In this way, \(\Phi_{\tau}\) for reference states in the bottom half of the Bloch sphere (i.e. \(z \leq 0\)) can be calculated from \(\Phi_{\mathcal{X}(\tau)}\) for reference states in the top half (\(z \geq 0\)).

Given any \(\rho\) and \(\sigma\), we can look at the minimality condition at \((0, 0, 0)\) and obtain reference frame independent conditions that recover known results [79] on necessary and sufficient conditions for time-covariant transitions in a non-degenerate qubit:

\[
\frac{|c_{\rho}|^2}{1 - p_{\rho}} \geq \frac{|c_{\sigma}|^2}{1 - p_{\sigma}} \quad \text{for} \; p_{\sigma} \geq p_{\rho},
\]

(32)

and

\[
\frac{|c_{\rho}|^2}{p_{\rho}} \geq \frac{|c_{\sigma}|^2}{p_{\sigma}} \quad \text{for} \; p_{\sigma} \leq p_{\rho}.
\]

(33)

Comparing with Eq. (28), this means when \(p_{\sigma} \geq p_{\rho}\), checking \(\Delta \Phi_\eta \geq 0\) for a single reference state with co-ordinates in the range

\[
0 \leq \frac{x^2 + y^2}{2z} \leq \min \left\{ \frac{1 - p_{\rho}}{|c_{\rho}|}, \frac{1 - p_{\rho}}{|c_{\sigma}|} \right\}
\]

(34)

is sufficient to determine whether a covariant transition can occur. Similarly, when \(p_{\sigma} \leq p_{\rho}\), checking \(\Delta \Phi_\eta\) for a single reference state with co-ordinates in the range

\[
0 \geq \frac{x^2 + y^2}{2z} \geq \max \left\{ - \frac{p_{\rho}}{|c_{\rho}|}, - \frac{p_{\sigma}}{|c_{\sigma}|} \right\}
\]

(35)

is sufficient.
2. The case of SU(2)–covariant transformations.

We now consider the case of $G = SU(2)$ on a qubit. In this case, G–covariant channels partially depolarise and may additionally invert the input state about the maximally mixed state [22]. We will continue to write η in its Bloch basis as in the $U(1)$ example, and will parameterise τ as before. Using the simplifying abbreviations $\sigma := (\sigma_x, \sigma_y, \sigma_z)^T$ and $x = (x, y, z)^T$, we have

\[\eta(x) := \frac{1}{2}(1 + x \cdot \sigma), \]
\[\rho(r) := \frac{1}{2}(1 + r \cdot \sigma), \]

Given $x = (x, y, z)$ we define $\mathbf{x} = (x, -y, z)$.

The form of $\Phi_\tau(x)$ is then given by (see Appendix G B):

\[\Phi_\tau(x) = \begin{cases} \frac{1}{2}(1 + \mathbf{x} \cdot r) & \text{if } \mathbf{x} \cdot r \geq 0, \\ \frac{1}{2}(1 - \frac{1}{3}\mathbf{x} \cdot r) & \text{otherwise.} \end{cases} \]

(38)

We see that $\Phi_\tau(x)$ is piecewise linear with the plane $\mathbf{x} \cdot r = 0$ distinguishing the two regions.

Consider an input state ρ and an output state σ that are not maximally mixed. Letting r and s be the Bloch vectors of ρ and σ respectively, this means $r, s \neq 0$. Let us further restrict ourselves to the case where ρ and σ are not located along the same diameter in the Bloch sphere. This implies both $r - s \neq 0$ and that $r - s$ cannot be anti-parallel to s. Therefore, it is always possible to find $\mathbf{x}' \neq 0$ such that \mathbf{x}' lies strictly above both the plane $\mathbf{x} \cdot s = 0$ and the plane $\mathbf{x} \cdot (r - s) = 0$. This means $\mathbf{x}' \cdot r > \mathbf{x}' \cdot s > 0$, (39)

so $\Delta \Phi(\mathbf{x}')$ must be calculated from the top solution in Eq. (38) as

\[\Delta \Phi(\mathbf{x}') = \frac{1}{2} \mathbf{x}' \cdot (r - s) \]

(40)

Conversely, $-\mathbf{x}'$ must lie strictly below both the plane $\mathbf{x} \cdot s = 0$ and the plane $\mathbf{x} \cdot (r - s) = 0$, so $\Delta \Phi(-\mathbf{x}')$ must be calculated from the bottom solution in Eq. (38), which means

\[\Delta \Phi(-\mathbf{x}') = \frac{1}{6} \mathbf{x}' \cdot (r - s). \]

(41)

We must therefore conclude that if ρ and σ are neither maximally mixed nor located along the same diameter of the Bloch sphere, then there exists \mathbf{x}' such that:

\[\Delta \Phi(0) = 0 \neq \frac{2}{3} \mathbf{x}' \cdot (r - s) \]

\[= \Delta \Phi(\mathbf{x}') + \Delta \Phi(-\mathbf{x}') \]

(42)

Since most choices of ρ and σ satisfy these requirements, we see that $\Delta \Phi(x)$ is almost never completely linear. In this example, ΔH_η also almost always has a conical singularity at $\eta = \frac{1}{4}$.

V. ROBUST SYMMETRIC TRANSFORMATIONS OF GENERAL STATES WITH MINIMAL DEPOLARIZATION

In principle the condition given in Theorem 6 gives a complete description of the asymmetry properties of quantum states. However, as the preceding examples have shown, standard tests for local minima are typically not applicable for the functional ΔH_η, and thus computing this necessary and sufficient condition presents a technical challenge which we must leave for future study. Instead, we can adopt a more physical perspective on the problem and look for a complete set of conditions where we weaken the assumptions for the interconversion. For example instead of $\rho \xrightarrow{G} \sigma$ we could ask the question:

What is the minimal amount of depolarization noise we need to add to σ so as to make it accessible from the initial state ρ via a G–covariant channel?

Since the maximally mixed state is invariant for any group action this form applies to all symmetry groups G. It also incorporates robustness. Suppose, for example, that σ was essentially identical to ρ except it has a very small, but non-zero, $O(\varepsilon)$ mode that does not appear in ρ. The strict conditions would say that it is impossible to transform from ρ to σ, yet it is clear that we only require $O(\varepsilon)$ amount of depolarising noise in order to make the transformation possible. Therefore the above question is more physically relevant than the simple ‘yes/no’ question of exact interconversion.

The formulation of the problem therefore involves smoothing our output state with the maximally mixed state:

\[\sigma \rightarrow \sigma_p := (1 - p)\sigma + p\frac{1}{d}, \]

(44)

where p is an error probability, and we wish to estimate

sufficient set of reference states

Figure 4. Constructing state interconversion conditions. If, for a complete set of reference frame states $\{\eta\}$, we construct some family of covariant protocols that transform from a state ρ to $E^\eta(\rho)$ that has a higher overlap with η than σ has with η then it is possible to transform from ρ to σ under a G–covariant channel.
how small p can be so as to make $\rho \xrightarrow{G} \sigma_p$ possible via a covariant quantum channel. As we will see, this set of sufficient conditions has the benefit of being straightforward to compute.

We make use of two core ingredients for our results. First, note that any state ρ is covariant quantum channel. As we will see, this set of labels the basis vector of the given irrep λ, α acts independently on the different modes of the input state such that

$$\rho = \sum_{\lambda, j} \rho^\lambda_j : \rho^\lambda_j = \sum_{\alpha} \text{tr} \left[X_j^{(\lambda, \alpha)\dagger} \rho \right] X_j^{(\lambda, \alpha)},$$

(45)

where λ labels an irreducible representation (irrep) of G, j labels the basis vector of the given irrep λ, α labels any multiplicity degrees of freedom, and the set $\{ X_j^{(\lambda, \alpha)} \}$ form an orthonormal irreducible tensor operator (ITO) basis for $B(\mathcal{H})$ (see Appendix A for details). We denote the trivial irrep of the group by $\lambda = 0$. It was shown Ref. [60] that every G–covariant operation $\mathcal{E} : \mathcal{E}(\rho) = \sigma$ acts independently on the different modes of the input state such that

$$\mathcal{E}(\rho^\lambda_j) = \sigma^\lambda_j,$$

(46)

for any (λ, j). In other words, a G–covariant quantum channel always maps any given mode of the input state to the very same mode of the output state, with no “mixing” between the different modes.

Secondly, we have the Sandwiched α–Rényi divergence $D_\alpha(\rho||\sigma)$ for two states ρ, σ of a quantum system, which is defined as [61, 62]

$$D_\alpha(\rho||\sigma) := \frac{1}{\alpha - 1} \log \text{tr} \left[\sigma^{\frac{1-\alpha}{\alpha}} \rho \sigma^{\frac{-\alpha}{1-\alpha}} \right]^\alpha,$$

(47)

whenever the support of ρ lies in the support of σ, and is infinite otherwise. Our results turn out to be most compactly expressed in terms of the following generalization of the $\alpha = 2$ Sandwiched Rényi divergence, which extends the domain of the first argument to all linear operators in the support of σ, and reproduces the standard definition when that first argument is Hermitian:

$$D_2(X||\sigma) := \log \text{tr} \left(\left[\sigma^{-\frac{1}{2}} X \sigma^{-\frac{1}{2}} \right]^\dagger \left[\sigma^{-\frac{1}{2}} X \sigma^{-\frac{1}{2}} \right] \right).$$

(48)

We now have the following theorem, which gives an estimate of the minimal amount of depolarization needed in order to make a transformation possible under covariant channels.

Theorem 8. Let $0 \leq p \leq 1$ be a probability. There exists a G–covariant channel transforming ρ into $\sigma_p := (1 - p)\sigma + p\frac{1}{d}$ if

$$D_2(\rho^\lambda_j||\mathcal{G}(\rho)) \geq \log g^\lambda_j(\sigma) - \log n^{-1} \left(\lambda_{\min} + \frac{p}{d(1 - p)} \right),$$

(49)

for all $\lambda \neq 0, j$, where λ_{\min} is the smallest non-zero eigenvalue of $\mathcal{G}(\sigma)$, and $g^\lambda_j(\sigma) := \sum_{\alpha} \text{tr}[X_j^{(\lambda, \alpha)\dagger}\sigma]$. The operators $X_j^{(\lambda, \alpha)}$ form an ITO basis for $B(\mathcal{H}_B)$, where \mathcal{H}_B is the Hilbert space of the output system, and n is the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of G on $B(\mathcal{H}_B)$.

A proof is given in Appendix H, and exploits the SDP duality structure for covariant interconversion to determine an admissible range of values for p. This analysis is done by using a family of Pretty Good Measurement schemes [80] that attempt to generate as large a fidelity with the set of all reference frame states η_R as possible. By modifying this general strategy, we anticipate that the results presented here can almost certainly be improved upon, and it would be of interest to study how similar families perform relative to the exact SDP solution to the covariant interconversion problem.

When the input and output systems are the same, we can provide a strengthening of the above conditions to the following form:

Theorem 9. Consider transformations from a quantum system A to itself. Assume for simplicity that $\mathcal{G}(\sigma)$ is full-rank. There exists a G–covariant channel transforming ρ into $\sigma_p := (1 - p)\sigma + p\frac{1}{d}$ if $\rho = \sigma_p$ or if for any $q \in (q^*, 1]$ we have

$$D_2(\rho^\lambda_j||\mathcal{G}(\rho)) \geq \log g^\lambda_j(\sigma_p(q)) - \log n^{-1} \lambda_{\min}(\mathcal{G}[\sigma_p(q)]),$$

(50)
for all \(\lambda \neq 0, j \), where we have \(\sigma_p(q) := \sigma_p - (1 - q)\rho \),
\(q^* := \min\{q \in \mathbb{R}^+ : \mathcal{G}(\sigma_p(q)) \geq 0\} \), \(\lambda_{\min}(\mathcal{G}[\sigma_p(q)]) \) is the smallest eigenvalue of \(\mathcal{G}[\sigma_p(q)] \), and all other terms are as in Theorem 8.

Given that the analysis is built on Pretty Good Measurement schemes for resolving group elements, it is expected that a measure-and-prepare strategy (such as above, or a slightly modified version) will behave well when \(\rho \) has many large modes of asymmetry for the group. While this can be achieved for systems with a large dimension, we find that even for low dimensional systems the conditions perform well. For example, in Fig. (5), we plot the performance of the sufficient condition for the group \(G = U(1) \) of time translations generated by the Hamiltonian \(H = \sigma_z \) for a qubit system in initial state \(\rho = \frac{1}{2}(I + \frac{1}{2}\sigma_x + \frac{1}{2}\sigma_z) \). On the left, we plot the set of output states \(\{\sigma\} \) for which our sufficient condition tells us are accessible from \(\rho \) (pink shaded region) relative to the full set of accessible output states granted by the complete set of conditions stated in Theorem 1 (blue shaded region).

We also note that we can recast our sufficient conditions in terms of familiar norms. We first note that we always have \(g_{\lambda}^j(\sigma) \leq \|\sigma_{\lambda}^j\|_1 \), where \(\|X\|_1 := \text{tr}\left[\sqrt{X^\dagger X}\right] \) is the trace norm. Therefore it follows from Theorem 8 that exists a \(G \)-covariant operation transforming \(\rho \) into \(\sigma \) if
\[
n^{-1}\|\tilde{\sigma}_{\lambda}^j\|_2^2 \geq \|\sigma_{\lambda}^j\|_1^2, \quad \forall \lambda \neq 0, j,
\]
where the notation \(\tilde{\sigma}_{\lambda}^j := \mathcal{G}(\rho)^{-\frac{1}{2}}\rho_{\lambda}^j\mathcal{G}(\rho)^{-\frac{1}{2}} \) and \(\tilde{\sigma} = \sigma_{\lambda_{\min}}^{-1} \), and \(\|X\|_2 := \sqrt{\text{tr}(X^\dagger X)} \) is the Frobenius norm. We note that \(\|\sigma_{\lambda}^j\|_1 \) for \(\lambda \neq 0 \) is a known asymmetry monotone that measures the the degree of asymmetry in the \((\lambda, j) \)-mode of \(\sigma \) [60].

\section{VI. OUTLOOK}

In this work we have shown that the recent complete set of entropic conditions for asymmetry can be greatly simplified, and more importantly, can be converted into useful forms. The fact that the reference frames that are needed to describe asymmetry can be taken to have arbitrarily small modes of asymmetry suggest that a deeper analysis should be possible in terms of differential geometry, as opposed to quantities such as the degree to which a quantum state encodes group data. We expect that this should take the form of a Fisher-like information [17, 18, 64], and in particular it is of interest to see if it is possible to replace the \(H_{\min}(R|A) \) entropy with the conditional von-Neumann entropy \(H(R|A) \), which would allow explicit analytic computations.

Beyond this, a range of other interesting questions exist. For example we have not exploited the duality relations [68, 70] between \(H_{\min}(R|A) \) and \(H_{\max}(R|S) \) where \(S \) is a purifying system for the state \(\Omega_{RA} \). For example, for the case of time-translation symmetry the joint purified state admits two notable forms. The first is an energetic form:
\[
\Omega_{RAS} = \sum_E \sqrt{\Pi(E)}|\varphi(E)\rangle_{RA} \otimes |E\rangle_S
\]
obtained from considering \(\Omega_{RA} = \mathcal{G}(\eta_R \otimes \rho_A) = \sum_E \Pi(E)(\eta_R \otimes \rho_A)\Pi(E) \) as an ensemble of states over energy sectors, \(\Pi(E) \) being the projector onto the energy \(E \) subspace of \(RA \). While the second is a temporal form, given by
\[
\Omega_{RAS} = \int dt \ |\phi(t)\rangle_{RAS},
\]
with \(|\phi(t)\rangle_{RAS} \) being a purification of \(\mathcal{U}_t(\eta_R \otimes \rho_A) \). It would be of interest to explore these two forms and also their connection to entropic uncertainty relations.

Finally, it would also be valuable to see how the explicit conditions given by Theorem 8 and Theorem 9 could be used in concrete settings, such as for covariant quantum error-correcting codes [52–54], thermodynamics [58] or metrology [21]. Moreover, the method of constructing these conditions can certainly be improved upon by using more detailed covariant protocols.

\section{VII. ACKNOWLEDGEMENTS}

We would like to thank Iman Marvian for helpful and insightful discussions, and in particular for pointing out that our depolarization result is compactly expressed in terms of a Sandwiched Rényi divergence. RA is supported by the EPSRC Centre for Doctoral Training in Controlled Quantum Dynamics. SGC is supported by the Bell Burnell Graduate Scholarship Fund and the University of Leeds. DJ is supported by the Royal Society and also a University Academic Fellowship.

[1] E. Noether, *Invarianten beliebiger Differentialausdrücke*, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1918, 37 (1918).
[2] J. Watrous, *The Theory of Quantum Information* (Cambridge University Press, 2018).
[3] M. Plenio and S. Virmani, *An Introduction to Entanglement Measures*, Quantum Information & Computation 7, 1 (2007).
[4] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, *Quantum Entanglement*, Rev. Mod. Phys. 81, 865 (2009).
Appendices

A. NOTATION AND BACKGROUND DETAILS

To any quantum system we have an associated Hilbert space \mathcal{H}, and the set of bounded linear operators on this space denoted by $\mathcal{B}(\mathcal{H})$. Given a group G we denote its representation on \mathcal{H} by $U(g)$ and on $\mathcal{B}(\mathcal{H})$ as \mathcal{U}_g where $\mathcal{U}_g(X) = U(g)XU(g)\dagger$ for any $X \in \mathcal{B}(\mathcal{H})$ and any $g \in G$.

We define $D(\rho, \sigma) := \frac{1}{2}\|\rho - \sigma\|_1 + \frac{1}{2}|\text{tr}\rho - \text{tr}\sigma|$ to be the generalized trace distance between any two $\rho, \sigma \in \mathcal{B}(\mathcal{H})$. We also define $\mathcal{S}_c(\mathcal{H})$ to be the set of all normalized and sub-normalized quantum states on \mathcal{H}.

A quantum channel $\mathcal{E} : \mathcal{B}(\mathcal{H}_A) \rightarrow \mathcal{B}(\mathcal{H}_B)$, from a quantum system A to a quantum system B, is a superoperator that is both trace-preserving and completely positive [2]. A quantum channel is covariant with respect to the group action if we have that

$$\mathcal{E}(\mathcal{U}_g(\rho)) = \mathcal{U}_g(\mathcal{E}(\rho)),$$

for all quantum states $\rho \in \mathcal{B}(\mathcal{H}_A)$ and all $g \in G$. Note here that the group representation of the input and output systems are generally different, and we should strictly write \mathcal{U}_g^A and \mathcal{U}_g^B for each action. However, to simplify notation, we shall use \mathcal{U}_g throughout, as it does not cause ambiguity in practice. The above condition can also be compactly written as $[\mathcal{U}_g, \mathcal{E}] = 0$ for all $g \in G$.

The reference system R for G-covariant transformations from A to B is chosen such that the representation of G on \mathcal{H}_R, the Hilbert space of system R, is dual to its representation on \mathcal{H}_B.

We also make use of an irreducible tensor operator (ITO) basis. An ITO consists of a basis of operators $X_j^{(\lambda,\alpha)} \in \mathcal{B}(\mathcal{H})$ that have the property that

$$\mathcal{U}_g\left(X_j^{(\lambda,\alpha)}\right) = \sum_i v_{ji}^\lambda(g)X_i^{(\lambda,\alpha)},$$

where $(v_{ji}^\lambda(g))$ are the matrix components of the λ–irrep of the group G on \mathcal{H}. The irrep λ may occur with multiplicities, and so we also denote this as (λ, α) where α is a multiplicity label for the irrep. Since $\{X_j^{(\lambda,\alpha)}\}$ form a basis for $\mathcal{B}(\mathcal{H})$ we may decompose any operator, and in particular any quantum state as

$$\rho = \sum_{\lambda,j} \left(\sum_\alpha \text{tr}\left(X_j^{(\lambda,\alpha)}\dagger\right)X_j^{(\lambda,\alpha)}\right) := \sum_{\lambda,j}\rho_j^\lambda,$$

Since each ρ_j^λ transforms irreducibly under the group action $\mathcal{U}_g(\cdot)$, this defines a decomposition of ρ into modes of asymmetry. If \mathcal{E} is a covariant channel, then it does not mix modes, and so

$$\mathcal{E}(\rho_j^\lambda) = \mathcal{E}(\rho)^j_\lambda,$$

for all λ, j. See [60, 64] for more details.

B. PROPERTIES OF MIN-ENTROPIES

In this section we review some useful properties of the conditional min-entropies $H_{\min}(R|A)_\Omega$ and properties that relate to the case of Ω_{RA} being a G-twirled bipartite quantum state.

It proves useful to define the functional $\Phi(M_{RA}) : M_{RA} \mapsto 2^{-H_{\min}(R|A)_M}$ defined on bipartite Hermitian operators M_{RA}:

Definition 10. Let M_{RA} be a Hermitian operator on \mathcal{H}_{RA}. Then we define the argument of the conditional min-entropy of M_{RA}, $\Phi(M_{RA})$, via

$$\Phi(M_{RA}) := \inf_{X_A \geq 0} \{\text{tr}[X_A] : 1_R \otimes X_A - M_{RA} \geq 0\}.$$

We note the following known properties of the functions $\Phi(\cdot)$, proofs of which can be found in [69] or are obvious from the definition.

(P1) (Scalar multiplication). $\Phi(\lambda M_{RA}) = \lambda \Phi(M_{RA})$ for any $\lambda \geq 0$.

(P2) (Convexity). \(\Phi(pM_{RA} + (1-p)N_{RA}) \leq p\Phi(M_{RA}) + (1-p)\Phi(N_{RA}) \) for any \(p \in [0,1] \).

(P3) (Invariance under local isometries). Let \(U_R := U_R \otimes I_A(\cdot)U_R^\dagger \otimes I_A \) and \(V_A := I_R \otimes V_A(\cdot)I_R \otimes V_A^\dagger \) be isometries on subsystems \(R \) and \(A \) respectively. Then \(\Phi(U_R \otimes V_A(M_{RA})) = \Phi(M_{RA}) \).

(P4) (Local data processing inequality). Let \(E_R : \mathcal{B}(\mathcal{H}_R) \to \mathcal{B}(\mathcal{H}_R) \) be a unital CPTP map and \(N_A : \mathcal{B}(\mathcal{H}_A) \to \mathcal{B}(\mathcal{H}_B) \) be a CPTP map, and \(I_X(\cdot) := I_X(\cdot)I_X \) denote the identity channel on system \(X \). Then \(\Phi((E_R \otimes N_A)(M_{RA})) \leq \Phi(M_{RA}) \).

We also introduce the following simplifying notation for the bipartite \(\mathcal{G} \)-twirled states:

\[\Phi_\eta(\tau) := \Phi(\mathcal{G}(\eta_{RB} \otimes \tau_A)), \]

and also \(H_\eta(\tau) := -\log \Phi_\eta(\tau) \).

A. Invariance under local isometries that commute with \(\mathcal{G} \)

Here we prove the following lemma from the main text, which specializes property (P4) to the particular form of the conditional min-entropies appearing in Theorem 1, which are instead equivalent up to local isometries that jointly commute with the \(G \)-twirl on the global system.

Lemma 2. Let \(V_R : \mathcal{B}(\mathcal{H}_R) \to \mathcal{B}(\mathcal{H}_R') \) and \(\mathcal{W}_A : \mathcal{B}(\mathcal{H}_A) \to \mathcal{B}(\mathcal{H}_A') \) be local isometries that jointly commute with the \(G \)-twirl, i.e.

\[[V_R \otimes \mathcal{W}_A, \mathcal{G}] = 0. \]

We then have:

\[H_{V(\eta)}(\mathcal{W}(\rho)) = H_\eta(\rho) \]

for any pair of quantum states \(\eta \) and \(\rho \) on \(\mathcal{H}_R \) and \(\mathcal{H}_A \) respectively.

Proof. By a straightforward appeal to Property (P3), we have

\[\Phi(\mathcal{G}(U_R(\eta) \otimes V_A(\tau))) = \Phi(U_R(\eta) \otimes V_A(\tau)) = \Phi(\mathcal{G}(\eta \otimes \tau)). \]

Since \(H_\eta(\rho) := -\log \Phi(\mathcal{G}(\eta \otimes \rho)) \), this implies

\[H_{U(\eta)}(V(\rho)) = H_\eta(\rho), \]

as claimed.

B. Symmetric input states

Lemma 11. For any input state \(\rho \) on system \(A \) and reference state \(\eta \) on system \(R \), the following identity holds

\[H_{\mathcal{G}(\eta)}(\rho) = H_\eta(\mathcal{G}(\rho)) = H_{\mathcal{G}(\eta)}(\mathcal{G}(\rho)) \]

\[= -\log \| \mathcal{G}(\eta) \|_\infty. \]

Proof. The first two equalities in Eq. (62) straightforwardly follow from the fact that \(\mathcal{G}(\mathcal{G}(\eta) \otimes \rho) = \mathcal{G}(\eta \otimes \mathcal{G}(\rho)) = \mathcal{G}(\mathcal{G}(\eta) \otimes \mathcal{G}(\rho)). \) To show the final equality, we first examine

\[\Phi(\mathcal{G}(\eta) \otimes \mathcal{G}(\rho)) = \inf_{X \geq 0} \{ \text{tr}[X] : \mathbb{1} \otimes X - \mathcal{G}(\eta) \otimes \mathcal{G}(\rho) \geq 0 \} \]

Since \(\mathcal{G}(\eta) \) is Hermitian, it can be diagonalised as \(\mathcal{G}(\eta) := \sum_i \lambda_i |i\rangle\langle i| \) for some basis \(\{ |i\rangle \} \) of the reference system. Working in this basis, we obtain

\[\mathbb{1} \otimes X - \mathcal{G}(\eta) \otimes \mathcal{G}(\rho) = \left(\sum_i |i\rangle \langle i| \otimes X \right) - \left(\sum_i \lambda_i |i\rangle \langle i| \otimes \mathcal{G}(\rho) \right) = \sum_i |i\rangle \langle i| \otimes (X - \lambda_i \mathcal{G}(\rho)) \]

(65)
Therefore, \(\mathbb{1} \otimes X - \mathcal{G}(\eta) \otimes \mathcal{G}(\rho) \geq 0 \) if and only if \(X - \lambda_i \mathcal{G}(\rho) \geq 0 \) for all \(i \), which in turn is true if and only if \(X - \lambda_{\text{max}} \mathcal{G}(\rho) \geq 0 \), where \(\lambda_{\text{max}} \) denotes the largest eigenvalue of \(\mathcal{G}(\rho) \). We can lower-bound the \(\text{tr}[X] \) needed to achieve this by

\[
\text{tr}[X] \geq \lambda_{\text{max}} \text{tr}[\mathcal{G}(\rho)] = \lambda_{\text{max}},
\]

and this minimum can be attained simply by choosing \(X := \lambda_{\text{max}} \mathcal{G}(\rho) \). Therefore,

\[
\Phi(\mathcal{G}(\eta) \otimes \mathcal{G}(\rho)) = \lambda_{\text{max}} = \|\mathcal{G}(\rho_A)\|_\infty \Rightarrow H_{\mathcal{G}(\eta)}(\mathcal{G}(\rho)) = -\log \|\mathcal{G}(\rho)\|_\infty,
\]

which completes the proof.

\[\square\]

C. Dual Formulation

From Eq. (59), we see that \(\Phi_\eta(\tau) \) is defined via a semidefinite programme (SDP). In this subsection, we prove a lemma stating what the dual form of this SDP is, which is convenient for proving several results of this paper, including the depolarization conditions for \(G \)-covariant channels.

Lemma 12. Let \(\mathcal{O}_{\text{cov}} \) be the set of \(G \)-covariant channels from input system \(A \) to output system \(B \). Let \(\eta \) be state of the reference system \(R \) for this transformation, and \(\tau \) be a state of input system \(A \). Then the dual formulation of \(\Phi_\eta(\tau) \) is

\[
\Phi_\eta(\tau) = \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr}(\eta^T \mathcal{E}(\tau)),
\]

Proof. From Lemma 3 in [58], we see that

\[
\Phi_\eta(\tau) = \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \langle \phi_+ | \mathbb{1} \otimes \mathcal{E}[\mathcal{G}(\eta \otimes \tau)] | \phi_+ \rangle,
\]

where \(|\phi_+\rangle := \sum_i |ii\rangle \) for local computational bases \(\{|i\}\) for the reference \(R \) and output system \(B \). We first note that \(|\phi_+\rangle = |\text{vec}(1)\rangle \), which means [2] that

\[
U^*(g) \otimes U(g) |\phi_+\rangle = U^*(g) \otimes U(g) |\text{vec}(1)\rangle = |\text{vec}(U^*(g)1U^T(g))\rangle = |\text{vec}(1)\rangle = |\phi_+\rangle,
\]

where \(U(g) \) is the representation of the group element \(g \) on \(\mathcal{H}_B \), the Hilbert space of \(B \). We therefore see that \(\mathcal{G}(|\phi_+\rangle|\phi_+\rangle) = |\phi_+\rangle|\phi_+\rangle \), which allows us to derive:

\[
\Phi_\eta(\tau) = \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr}(|\phi_+\rangle|\phi_+\rangle \mathcal{E}[\mathcal{G}(\eta \otimes \tau)])
\]

\[
= \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr}(\mathcal{E}[\mathcal{G}(\eta \otimes \tau)])
\]

\[
= \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr} \left(\int dg U^*(g) \otimes U(g) \mathcal{E}[\mathcal{G}(\eta \otimes \tau)] U^T(g) \otimes U^\dagger(g) \right)
\]

\[
= \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr} \left(\int dg U^*(g) \otimes U^\dagger(g) |\phi_+\rangle|\phi_+\rangle \mathcal{E}[\mathcal{G}(\eta \otimes \tau)] \right)
\]

\[
= \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr} \left(\int dg U_{g^{-1}}^* \otimes U_{g^{-1}} |\phi_+\rangle|\phi_+\rangle \mathcal{E}[\mathcal{G}(\eta \otimes \tau)] \right)
\]

\[
= \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr} \left(\sum_{ij} \langle j | \eta | i \rangle \langle j | \mathcal{E}[\tau] | i \rangle \right)
\]

\[
= \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr}(\eta^T \mathcal{E}[\tau]),
\]

as claimed.

\[\square\]
D. Truncation of Output System

The following two Lemmas detail when one can truncate the Hilbert space of the output system without affecting the possibility of interconversion to a particular output state σ. This is of use in our analysis of state interconversion with partial depolarization.

Lemma 13. Let ρ be a state of the input system A, associated to the Hilbert space H_A. Let σ be a state of the output system B, associated to the Hilbert space H_B.

Let H_S be any subspace of H_B with the following two properties:

1. H_S carries its own representation of G, i.e. H_B can be decomposed into $H_B = H_S \oplus H_A$ such that $U_B(g) = U_S(g) \oplus U_A(g)$.

2. The support of σ is contained entirely within H_S, i.e. letting Π_S be the projector onto H_S, $\Pi_S \sigma \Pi_S = \sigma$.

Let H_S be the Hilbert space appropriate to a new output system S truncated from B. Then there exists a G–covariant operation from A to B that takes ρ to σ if and only if there exists a G–covariant operation from A to S that takes ρ to σ.

Proof. Let us first assume that there exists a G–covariant operation $E_{\text{cov}} : B(H_A) \to B(H_B)$ such that $E_{\text{cov}}(\rho) = \sigma$. We then observe that

$$\Pi_S U_B(g) = (1_S \otimes 0_A) (U_S(g) \otimes U_A(g)) = U_S(g) \otimes 0_A = (U_S(g) 1_S) \otimes 0_A = U_S(g) \Pi_S$$

(81)

Therefore, $\Pi_S E_{\text{cov}}(\cdot) \Pi_S$ is a covariant map from $B(H_B)$ to $B(H_S)$. As a result, $\Pi_S E_{\text{cov}}(\cdot) \Pi_S$ is a covariant operation from $B(H_A)$ to $B(H_S)$ such that

$$\Pi_S E_{\text{cov}}(\rho) \Pi_S = \Pi_S \sigma \Pi_S = \sigma.$$ (82)

Conversely, let us now assume that there exists a covariant transformation $F_{\text{cov}} : B(H_A) \to B(H_S)$ such that $F_{\text{cov}}(\rho) = \sigma$. We then extend H_S into the bigger Hilbert space $H_B = H_S \otimes H_A$ such that H_S still forms its own representation of G, i.e. $U_B(g) = U_S(g) \otimes U_A(g)$. Then F_{cov} can be reinterpreted as a covariant channel from $B(H_A)$ to $B(H_B)$.

We therefore conclude that G–covariant interconversion from ρ to σ is unaffected by treating σ as a state of B or as a state of S. \hfill \square

Lemma 14. Given any particular output state σ, it is always possible to truncate the Hilbert space of the output system, H_B, to the support of $G(\sigma)$ without affecting the possibility of G–covariant interconversion.

Proof. The representation of G on H_B splits up in the following way [19]:

$$H_B = \bigoplus_q H_q.$$ (83)

The H_q are known as the charge sectors of H_B, and they each carry an inequivalent representation of G. Each H_q can be further decomposed into a tensor product

$$H_q = M_q \otimes N_q.$$ (84)

The M_q carry inequivalent irreps of G, while the N_q carry trivial representations of G. This means every element g is represented on H_q in the form $U_{M_q}(g) \otimes 1_{N_q}$. As a result, given any pure state $|\psi_q\rangle$ in N_q, $M_q \otimes \text{Span}(|\psi_q\rangle)$ is an irrep of G. Projectors onto irreps of G thus take the form $1_{M_q} \otimes |\psi_q\rangle \langle \psi_q|$.

We note the following properties about the projector $1_{M_q} \otimes |\psi_q\rangle \langle \psi_q|$. Because $M_q \otimes \text{Span}(|\psi_q\rangle)$ is a subspace of H_q,

$$[\Pi_q, 1_{M_q} \otimes |\psi_q\rangle \langle \psi_q|] = 0$$ (85)

For the same reason, Π_q is identity on $M_q \otimes \text{Span}(|\psi_q\rangle)$, which means

$$1_{M_q} \otimes |\psi_q\rangle \langle \psi_q| = \Pi_q (1_{M_q} \otimes |\psi_q\rangle \langle \psi_q|).$$ (86)
A subspace H of H_B lies inside the kernel of σ if and only if $tr(\Pi\sigma) = 0$, where Π is the projector onto H. Therefore, the irrep $M_q \otimes \text{Span}(|\psi_q\rangle)$ lies in the kernel of σ if and only if
\[
\text{tr}((1_{M_q} \otimes |\psi_q\rangle\langle\psi_q|)\sigma) = \text{tr}(\Pi_q (1_{M_q} \otimes |\psi_q\rangle\langle\psi_q|)\sigma)
\]
\[
= \text{tr}(\Pi_q (1_{M_q} \otimes |\psi_q\rangle\langle\psi_q|)\sigma\Pi_q)
\]
\[
= \text{tr}((1_{M_q} \otimes |\psi_q\rangle\langle\psi_q|)\Pi_q\sigma\Pi_q)
\]
\[
= \langle\psi_q|\text{tr}_{M_q}(\Pi_q\sigma\Pi_q)|\psi_q\rangle = 0
\]
where in the first equality we made use of Eq. (86), and in the fourth equality we made use of Eq. (85). This short calculation means $M_q \otimes \text{Span}(|\psi_q\rangle)$ lies inside the kernel of σ if and only if $|\psi_q\rangle$ lies inside the kernel of $tr_{M_q}(\Pi_q\sigma\Pi_q)$.

Let $\{|\psi_{q,i}\rangle\}$ be an orthonormal basis for N_q in which $tr_{M_q}(\Pi_q\sigma\Pi_q)$ is diagonalised. One possible irrep decomposition for H_B is then
\[
H_B = \bigoplus_{q,i} M_q \otimes \text{Span}(|\psi_{q,i}\rangle).
\]

An irrep in this decomposition lies inside the kernel of σ if and only if $|\psi_{q,i}\rangle$ is a basis element for the kernel of $tr_{M_q}(\Pi_q\sigma\Pi_q)$. This means
\[
H^\perp_S := \bigoplus_{q, |\psi_{q,i}\rangle \in \ker[tr_{M_q}(\Pi_q\sigma\Pi_q)]} M_q \otimes \text{Span}(|\psi_{q,i}\rangle) = \bigoplus_{q} M_q \otimes \ker(tr_{M_q}(\Pi_q\sigma\Pi_q))
\]

must lie inside the kernel of σ on H_B. Conversely, the support of σ must lie inside the subspace of H_B that is orthogonal to H^\perp_S, i.e.
\[
H_S = \bigoplus_{q} M_q \otimes \text{supp}[tr_{M_q}(\Pi_q\sigma\Pi_q)]
\]

As we see from the above equation, H_S is also a direct sum over irreps of G and so carries its own representation of G. Thus by Lemma 13, the possibility of interconversion is unaffected if we truncate H_B to H_S.

The action of the G-twirl is given by [19]:
\[
G = \sum_{q} (D_{M_q} \otimes I_{N_q}) \circ P_q,
\]
where $P_q := \Pi_q(\cdot)\Pi_q$ is the projector onto the charge sector H_q, D_{M_q} is the completely depolarising channel on M_q and I_{N_q} is the identity channel on N_q. Therefore,
\[
G(\sigma) = \sum_{q} \frac{1}{d_{M_q}} \otimes \text{tr}_{M_q}(\Pi_q\sigma\Pi_q),
\]

where d_{M_q} is the dimension of M_q. Looking back at Equation (94), we see that $H_S = \text{supp}[G(\sigma)]$. It is therefore always possible to truncate the output Hilbert space to the support of $G(\sigma)$ without affecting possibility of interconversion.

C. REDUNDANCIES IN THE ENTROPIC RELATIONS

Here we consider a few basic redundancies in the infinite set of conditions appearing in Theorem 1. We first note that $H_q(\rho) \leq H_q(\sigma)$ and $\Phi_q(\rho) \geq \Phi_q(\sigma)$ are equivalent conditions, since we have that $\Phi(X) > 0$ for any X that is positive-semidefinite with at least one non-zero eigenvalue [69], and the fact that $-\log(x)$ is monotonic decreasing in x for $x > 0$.

A. Unitaries on the reference

Lemma 2 immediately gives rise to the following corollary.
Corollary 15. If $\eta_1 = \mathcal{V}(\eta_0)$ for any pair of quantum states η_0, η_1 on \mathcal{H}_R and for any unitary $\mathcal{V} : \mathcal{B}(\mathcal{H}_R) \to \mathcal{B}(\mathcal{H}_R)$ such that $[\mathcal{V} \otimes 1, G] = 0$, then $\Delta H_{\eta_0} \geq 0$ if and only if $\Delta H_{\eta_1} \geq 0$.

As an example of this reducency, we can consider the group $G = U(1)$ of time-translations generated by the Hamiltonian H, $U(t) = e^{-iHt}$. Here we have that any reference state η drawn from the set $\{U(t)\eta U(t)^\dagger : \forall t \in [0, 2\pi]\}$ will provide an equivalent constraint.

B. Modes of asymmetry

Given an ITO basis $\{X_{j}^{(\lambda,\alpha)}\}$, which in the following we always take to be orthonormal such that

$$\langle X_j^{(\lambda,\alpha)}, X_k^{(\mu,\beta)} \rangle = \delta_{\lambda,\mu}\delta_{\alpha,\beta}\delta_{j,k},$$

(97)

where $\langle A, B \rangle = \text{tr}[A^\dagger B]$ is the Hilbert-Schmidt inner product on $\mathcal{B}(\mathcal{H})$, we denote by A_j^λ the (λ, j) mode of the operator A

$$A_j^\lambda := \sum_{\alpha} \langle X_j^{(\lambda,\alpha)}, A \rangle X_j^{(\lambda,\alpha)}.$$

(98)

The following gives some basic properties for handling inner products involving modes of asymmetry.

Lemma 16. Let A and B be any two linear operators on \mathcal{H}. Then we have that

$$\langle A_j^\lambda, B_k^\mu \rangle = \delta_{\lambda,\mu}\delta_{j,k} \langle A_j^\lambda, B_k^\mu \rangle$$

(99)

from which it follows that:

$$\langle A, B \rangle = \sum_{\lambda,j} \langle A_j^\lambda, B_j^\lambda \rangle$$

(100)

Proof. Writing out the mode decompositions of A and B in the ITO basis explicitly in the trace product, from the orthonormality of the basis operators $\{X_j^{(\lambda,\alpha)}\}$ we obtain

$$\langle A_j^\lambda, B_k^\mu \rangle = \left\langle \sum_{\alpha} \langle X_j^{(\lambda,\alpha)}, A \rangle X_j^{(\lambda,\alpha)}, \sum_{\beta} \langle X_k^{(\mu,\beta)}, B \rangle X_k^{(\mu,\beta)} \right\rangle$$

(101)

$$= \sum_{\alpha,\beta} \langle X_j^{(\lambda,\alpha)}, A \rangle \langle X_k^{(\mu,\beta)}, B \rangle \langle X_j^{(\lambda,\alpha)}, X_k^{(\mu,\beta)} \rangle$$

(102)

$$= \sum_{\alpha,\beta} \langle X_j^{(\lambda,\alpha)}, A \rangle \langle X_k^{(\mu,\beta)}, B \rangle \delta_{\lambda,\mu}\delta_{j,k} \langle X_j^{(\lambda,\alpha)}, X_k^{(\mu,\beta)} \rangle$$

(103)

$$= \delta_{\lambda,\mu}\delta_{j,k} \left(\sum_{\alpha} \langle X_j^{(\lambda,\alpha)}, A \rangle \langle X_j^{(\lambda,\alpha)}, X_j^{(\lambda,\alpha)} \rangle \sum_{\beta} \langle X_k^{(\mu,\beta)}, B \rangle \langle X_k^{(\mu,\beta)}, X_k^{(\mu,\beta)} \rangle \right)$$

(104)

$$= \delta_{\lambda,\mu}\delta_{j,k} \langle A_j^\lambda, B_k^\mu \rangle,$$

(105)

as required.

An immediate consequence of such a mode decomposition is that if $\text{modes}(\sigma) \subseteq \text{modes}(\rho)$, then it suffices to range only over reference frame states η such that $\text{modes}(\eta) = \text{modes}(\rho)$ in Theorem 1. The reasoning is as follows. Let η have an irrep mode μ that does not occur in ρ. By hermiticity, it also has the irrep mode μ^*. As seen in the following lemma, when computing $\mathcal{G}[\eta \otimes \rho]$, the only mode terms that survive this G-twirl are of the form $\sum_i \eta_i^{\mu^*} \otimes \rho_i^\mu$, which is the unique way to form a singlet from a given irrep.

Lemma 17.

$$\mathcal{G}(\eta \otimes \rho) = \sum_{i,\mu} \eta_i^{\mu^*} \otimes \rho_i^\mu.$$

(106)
Proof. Equation 4.3 of [60] states that

\[\int dg \, v^\lambda_{i,j}(g) v^\mu_{j,i} = \frac{1}{d_\mu} \delta_{i,i'} \delta_{j,j'} \delta_{\lambda^*,\mu}. \]

(107)

Making use of this result, we can then demonstrate that

\[G(\eta \otimes \rho) = \int dg \sum_{\lambda,i,\mu,j} U_g(\eta^\lambda_i) \otimes U_g(\rho^\mu_j) \]

(108)

\[= \int dg \sum_{\lambda,i,\mu,j} \sum_{i',j'} v^\lambda_{i,j}(g) v^\mu_{j,i'} \eta^\lambda_i \otimes \rho^\mu_{j'} \]

(109)

\[= \sum_{\mu,i} \left(\sum_j \frac{1}{d_\mu} \delta_{i,i'} \delta_{j,j'} \delta_{\lambda^*,\mu} \eta^\lambda_i \otimes \rho^\mu_{j'} \right) \]

(110)

\[= \sum_{\mu,i} \left(\sum_j \frac{1}{d_\mu} \right) \eta^\mu_{i'} \otimes \rho^\mu_{j'} \]

(111)

\[= \sum_{\mu,i} \eta^\mu_{i'} \otimes \rho^\mu_{j'} \]

(112)

We conclude from this lemma that if \(\rho \) does not contain a \(\mu \) mode, then \(\eta^\mu_{i'} \) does not contribute to the state \(G[\eta \otimes \rho] \).

If we range over all \(\eta \) contained within a small surface around \(\mathbb{1}/d \), then we obtain a complete set of conditions. We know that \(\eta^\mu_{i'} \) does not contribute to \(\Omega_{RA} \). Now if the region is chosen sufficiently small, we claim that \(\eta' = \eta - \left[\sum_j \left(\eta^\mu_j + \eta^\mu_{j'} \right) \right] \) is still a valid state for \(\mu \neq 0 \), but with the \(\mu \) mode removed. To see this, firstly note that, by orthonormality, the term in the brackets is traceless and so the net result still has trace one. Secondly, by choosing the surface appropriately, the eigenvalues of \(\eta \) can be chosen arbitrarily close to the uniform distribution, and those of the term in bracket made arbitrarily small. Therefore the eigenvalues of the resultant operator \(\eta' \) are all non-negative. Therefore we have a reference frame state \(\eta' \) with the \(\mu \) mode entirely removed, and gives the state joint state \(G[\eta \otimes \rho] \) as did \(\eta \). This implies it suffices to range over reference frame states \(\eta \) with modes the same as \(\rho \).

D. A SUFFICIENT SURFACE OF REFERENCE FRAMES

A. Depolarizing the reference state

Let us define the partially depolarizing channel for some fixed probability \(p \):

\[\Lambda_p[\rho] := p\rho + (1 - p) \frac{\mathbb{1}}{d}. \]

(113)

In general, from (P2) we know that the functional \(\Phi_\eta(\rho) \) is convex in the reference system, i.e., \(\eta = p\eta_0 + (1 - p)\eta_1 \) implies

\[\Phi_\eta(\rho) \leq p\Phi_{\eta_0}(\rho) + (1 - p)\Phi_{\eta_1}. \]

(114)

The following lemma shows that the functional \(\Phi_\eta(\rho) \) behaves linearly when we take convex combinations of the reference state with the maximally mixed state.

Lemma 18. Let all states and systems be defined as in Theorem 1. For any reference state \(\eta_R \) and input state \(\tau_A \), we have

\[\Phi_{\Lambda_p(\eta)}(\tau) = p\Phi_{\eta}(\tau) + (1 - p)\Phi_{\frac{\mathbb{1}}{d}}(\tau) \]

(115)
Proof. Since $\mathbb{1}$ is symmetric for any group G, we have $\mathcal{G}[\Lambda_p(\eta_R) \otimes \tau_A] = p\mathcal{G}[\eta_R \otimes \tau_A] + \frac{1-p}{d} \mathbb{1} \otimes \mathcal{G}[\tau_A]$. Substituting this into Eq. (59) and rearranging terms gives

$$\Phi_{\Lambda_p[\eta]}(\tau) = \inf_{X_A \geq 0} \left\{ \text{tr}[X_A] : \mathbb{1}_R \otimes \left(X_A - \frac{1-p}{d} \mathcal{G}[\tau_A] \right) - p\mathcal{G}[\eta_R \otimes \tau_A] \geq 0 \right\}. \quad (116)$$

For any positive semidefinite operators T_A and Z_{RA}, we have

$$\{X_A : X_A \geq 0, \mathbb{1}_R \otimes [X_A - T_A] - Z_{RA} \geq 0\} = \{X_A : X_A - Y_A \geq 0, \mathbb{1}_R \otimes [X_A - Y_A] - Z_{RA} \geq 0\}. \quad (117)$$

Therefore we can rewrite the feasible set over which we perform the optimization in Eq. (116) as follows

$$\Phi_{\Lambda_p[\eta]}(\tau) = \inf_{X_A \geq 0} \left\{ \text{tr}[X_A] : \mathbb{1}_R \otimes \left(X_A - \frac{1-p}{d} \mathcal{G}[\tau_A] \right) - p\mathcal{G}[\eta_R \otimes \tau_A] \geq 0 \right\} \quad (118)$$

$$= \inf_{Y_A \geq 0} \left\{ \text{tr} \left[Y_A + \frac{1-p}{d}\mathcal{G}[\tau_A] \right] : \mathbb{1}_R \otimes Y_A - p\mathcal{G}[\eta_R \otimes \tau_A] \geq 0 \right\}, \quad (119)$$

where we have defined $Y_A := X_A - \frac{1-p}{d}\mathcal{G}[\tau_A]$. Now since $\text{tr}[\mathcal{G}(\tau_A)] = 1$, we can take the constant term out of the infimum

$$\Phi_{\Lambda_p[\eta]}(\tau) = \inf_{Y_A \geq 0} \left\{ \text{tr}[Y_A] : \mathbb{1}_R \otimes Y_A - p\mathcal{G}[\eta_R \otimes \tau_A] \geq 0 \right\} + \frac{1-p}{d}. \quad (120)$$

Finally we make use of property (P1) to arrive at

$$\Phi_{\Lambda_p[\eta]}(\tau) = p\Phi_{\eta}(\tau) + \frac{1-p}{d}. \quad (121)$$

which concludes the proof. \qed

An automatic consequence of Lemma 18 is that taking a convex mixture of any reference state with the maximally mixed state will not change the entropic relation in Theorem 1, which we state in the following lemma:

Lemma 19. Let all states and systems be defined as in Theorem 1 and let us further define the partially depolarizing quantum channel $\Lambda_p[\rho] := pp + (1-p)\mathbb{1}/d$, where p is a probability and $d := \dim(\mathcal{H}_R)$. Then the following two statements are equivalent for any η:

1. $\Delta H_\eta \geq 0$.
2. $\Delta H_{\Lambda_p[\rho]} \geq 0$ for any $p \in (0,1]$.

Proof. Defining $\Delta \Phi_\eta := \Phi_\eta(\rho) - \Phi_\eta(\sigma)$, Lemma 18 implies that $\Delta \Phi_{\Lambda_p[\eta]} = p\Delta \Phi_\eta$ for any p probability. Therefore, $\Delta \Phi_\eta \geq 0$ if and only if $\Delta \Phi_{\Lambda_p[\eta]} \geq 0$, for any $p \in [0,1]$. Since Φ_η and H_η are monotonically related, this then gives the statement of the lemma. \qed

B. Proof of Theorem 3

We now present a proof of Theorem 3, which we restate here for clarity:

Theorem 3. (Sufficient surfaces of states). Let all states and systems be defined as in Theorem 1. Let $\partial \mathcal{D}$ be any closed $d^2 - 2$ dimensional surface in the state space of R that has $\frac{1}{d}$ in its interior. The state transformation $\rho \rightarrow \sigma$ is possible under a G-covariant channel if and only if

$$\Delta H_\eta \geq 0,$$ \quad (16)

for all reference frame states $\eta \in \partial \mathcal{D}$.

Proof. If the transformation is possible under a G-covariant channel then $\Delta H_\eta \geq 0$ for all states η, and hence in particular for all η restricted to $\partial \mathcal{D}$. Conversely, suppose $\Delta H_\eta \geq 0$ for all $\eta \in \partial \mathcal{D}$. Let η' be an arbitrary quantum state of R that is not the maximally mixed state, and consider the one-parameter family of states $\eta'(p) := \Lambda_p(\eta)$ for $p \in [0,1]$. This defines a continuous line of states connecting η' to the maximally mixed state $\mathbb{1}/d$. Since $\partial \mathcal{D}$ encloses the maximally mixed state the set $\{\eta'(p) : 0 \leq p \leq 1\}$ must either intersect $\partial \mathcal{D}$ for some value p_* with $0 < p_* \leq 1$ or lie entirely within the interior of \mathcal{D}. If the set is entirely inside \mathcal{D} then we can find a quantum state $\eta'' \in \partial \mathcal{D}$ such that $\Delta_{\eta'}[\eta''] = \eta'$ for some $q \in (0,1)$. However from lemma 19 we have that η' and $\eta'(p_*)$ (or η' and η'' for the second case) give equivalent entropic constraints. Since η' was arbitrary it therefore suffices to restrict to states lying solely on the surface $\partial \mathcal{D}$, which completes the proof. \qed
E. SMOOTHED ASYMMETRY THEORY

A. Continuity of entropic relations under variations of the reference state

In this section, we consider the following definition of an \(\varepsilon \)-ball of operators on \(\mathcal{H} \) around some \(\rho \in S_\mathcal{H}(\mathcal{H}) \)

\[
B^\varepsilon(\rho) := \{ \hat{\rho} \in S_\mathcal{H}(\mathcal{H}) : D(\hat{\rho}, \rho) \leq \varepsilon \},
\]

(122)

but we note that all the results derived in this section also apply if we use the purified distance \(P(\cdot, \cdot) \) as our distance measure instead, due to the property \(D(\rho, \sigma) \leq P(\rho, \sigma) \) for all \(\rho, \sigma \) [70].

We also make use of the following theorem, which was proven in Ref. [69].

Theorem 20. (Continuity of min-entropy). Let \(\rho, \sigma \in S_\mathcal{H}(\mathcal{H}_M). \) Then

\[
|H_{\min}(R|A)\rho - H_{\min}(R|A)\sigma| \leq \frac{d_R \min\{d_R, d_A\}}{\ln 2 \min\{\text{tr} \rho, \text{tr} \sigma\}} D(\rho, \sigma),
\]

(123)

where \(D(\rho, \sigma) := \frac{1}{2} \|\rho - \sigma\|_1 + \frac{1}{2} |\text{tr} \rho - \text{tr} \sigma| \) is the generalized trace distance.

Lemma 21. Consider the following bipartite quantum states on \(\mathcal{H}_M \):

\[
\Omega_{RA} := \eta_R \otimes \rho_A, \quad \tilde{\Omega}_{RA} := \tilde{\eta}_R \otimes \rho_A.
\]

(124)

If \(\tilde{\eta} \in B_\varepsilon(\eta) \), then

\[
D(\mathcal{G}[\Omega], \mathcal{G}[\tilde{\Omega}]) \leq \varepsilon.
\]

(125)

Proof. The trace distance is contractive under quantum operations, and thus

\[
\frac{1}{2} \|\mathcal{G}[\Omega] - \mathcal{G}[\tilde{\Omega}]\|_1 \leq \frac{1}{2} \|\Omega - \tilde{\Omega}\|_1 \leq \frac{1}{2} \|\eta - \tilde{\eta}\|_1 \leq \frac{1}{2} \|\eta - \tilde{\eta}\|_1, \quad (126)
\]

(126)

where in the second equality we have used the identity \(\|A \otimes B\|_1 = \|A\|_1\|B\|_1 \). Similarly, since \(\mathcal{G} \) is trace-preserving and \(\text{tr}[A \otimes B] = \text{tr}[A]\text{tr}[B] \), we have

\[
\frac{1}{2} \left| \text{tr} (\mathcal{G}[\Omega]) - \text{tr} (\mathcal{G}[\tilde{\Omega}]) \right| = \frac{1}{2} \left| \text{tr}(\Omega) - \text{tr}(\tilde{\Omega}) \right| = \frac{1}{2} |\text{tr}(\eta) - \text{tr}(\tilde{\eta})|. \quad (129)
\]

Thus, combining results from Eqs. (128) and (129) we find the generalized trace distance between \(\mathcal{G}[\Omega] \) and \(\mathcal{G}[\tilde{\Omega}] \) is upper bounded as

\[
D(\mathcal{G}[\Omega], \mathcal{G}[\tilde{\Omega}]) \leq \left(\frac{1}{2} \|\eta - \tilde{\eta}\|_1 + \frac{1}{2} |\text{tr}(\eta) - \text{tr}(\tilde{\eta})| \right) = D(\eta, \tilde{\eta}). \quad (130)
\]

(130)

Therefore, if \(\tilde{\eta} \in B_\varepsilon(\eta) \) then \(D(\Omega, \tilde{\Omega}) \leq \varepsilon \) immediately follows from Eq. (130), which concludes the proof of Lemma 21.

Lemma 22. If \(\tilde{\eta} \in B_\varepsilon(\eta) \), then

\[
|H_\eta(\tau) - H_{\tilde{\eta}}(\tau)| \leq \frac{d_R^2}{\ln 2} \left(\frac{\varepsilon}{1 - 2\varepsilon} \right),
\]

(131)

where \(H_\eta(\tau) := H_{\min}(R|A)\mathcal{G}[\Omega] \).

Proof. Combining Lemma 21 and Theorem 20 (and using the fact that the \(G \)-twirl is a trace-preserving map) we immediately have that

\[
|H_\eta(\tau) - H_{\tilde{\eta}}(\tau)| \leq \frac{d_R \min\{d_R, d_A\}}{\ln 2 \min\{\text{tr} \Omega, \text{tr} \tilde{\Omega}\}} \varepsilon, \quad (132)
\]
for any $\tilde{\eta} \in \mathcal{B}_\varepsilon(\eta)$. To get the simplified form as stated, we note that $\min\{\text{tr}(\Omega), \text{tr}(\tilde{\Omega})\} = \text{tr}(\tilde{\Omega})$ since Ω is normalised and $\tilde{\Omega}$ is sub-normalized. This then evaluates to

$$\text{tr}(\tilde{\Omega}) = \text{tr}(\tau)\text{tr}(\tilde{\eta}) = \text{tr}(\tilde{\eta}).$$ \hfill (133)

Now $D(\eta, \tilde{\eta}) \leq \varepsilon$ implies $|1 - \text{tr}(\tilde{\eta})| \leq 2\varepsilon$, and therefore

$$\text{tr}(\tilde{\eta}) \geq 1 - 2\varepsilon.$$ \hfill (134)

Substituting Eq. (134) into Eq. (133) thus gives

$$\min\{\text{tr}(\Omega), \text{tr}(\tilde{\Omega})\} \geq 1 - 2\varepsilon.$$ \hfill (135)

Also, clearly $d_R \geq \min\{d_R, d_A\}$. Substituting this and Eq. (135) into Eq. (132) gives

$$|H_\eta(\tau) - H_{\tilde{\eta}}(\tau)| \leq \frac{d_R^2}{\ln 2} \frac{\varepsilon}{1 - 2\varepsilon},$$ \hfill (136)

as claimed. \hfill \Box

We are now able to prove the result presented in the main text:

Lemma 4. For any $\tilde{\eta} \in \mathcal{B}_\varepsilon(\eta)$, we have

$$|\Delta H_{\tilde{\eta}} - \Delta H_\eta| \leq \frac{2d_R^2 \varepsilon}{\ln 2(1 - 2\varepsilon)}.$$ \hfill (18)

Note that if we further restrict $\tilde{\eta}$ to normalised states and define $r(\varepsilon) := \frac{2d_R^2 \varepsilon}{\ln 2}$ this simplifies to

$$|\Delta H_{\tilde{\eta}} - \Delta H_\eta| \leq r(\varepsilon).$$ \hfill (19)

Proof. First note:

$$\Delta H_{\tilde{\eta}} - \Delta H_\eta = [H_{\tilde{\eta}}(\sigma) - H_{\tilde{\eta}}(\rho)] - [H_\eta(\sigma) - H_\eta(\rho)]$$ \hfill (137)

$$= [H_{\tilde{\eta}}(\sigma) - H_\eta(\sigma)] - [H_{\tilde{\eta}}(\rho) - H_\eta(\rho)] := x.$$ \hfill (138)

It then follows immediately from Lemma 22 that for any $\tilde{\eta} \in \mathcal{B}_\varepsilon(\eta)$ we have $|x| \leq \frac{2d_R^2 \varepsilon}{\ln 2(1 - 2\varepsilon)}$, which concludes the proof. \hfill \Box

B. Proof of Theorem 5

First we need the following theorem (e.g. see [71, 72]):

Theorem 23. Let $||\cdot||$ be a norm on \mathbb{R}^d. Then for every $\delta > 0$, the unit sphere $\{x \in \mathbb{R}^d, ||x|| = 1\}$ admits a δ-net, N with respect to the distance measured by $||\cdot||$, of cardinality $|N|$ such that

$$|N| \leq \left(1 + \frac{2}{\delta}\right)^d.$$ \hfill (139)

This theorem implies that there exists an ε-covering of a unit-sphere, with a finite number of elements, and which can be applied to a sphere of reference frame states around the maximally mixed state. We restate the theorem which we seek to prove:

Theorem 5. Given any $\varepsilon > 0$ resolving scale, there is a finite set of reference frame states $N := \{\eta_k\}_{k=1}^N$ with $N = O \left(1 + \frac{1}{\varepsilon}\right)^d\frac{1}{\varepsilon}$ that leads to the following cases:

- if $\Delta H_{\eta_k} < 0$ for any $\eta_k \in N$ then $\rho \rightarrow \sigma$ is forbidden under all G-covariant quantum channels.
- if $\Delta H_{\eta_k} \geq r(\varepsilon)$ for all $\eta_k \in N$ then $\rho \rightarrow \sigma$ under a G-covariant quantum channel.
• For each \(\eta_k \in \mathcal{N} \) that has \(0 \leq \Delta H_{\eta_k} < r(\varepsilon) \) we can obtain \(O(\varepsilon) \) upper bound estimates of the minimal asymmetry resources needed to realise the transformation.

Proof. Given Theorem 3, we choose as our sufficient set of reference frame states the surface

\[
\partial \mathcal{D} = \left\{ \eta : \eta = \frac{1}{d} (I + A), \text{ where } ||A||_{\infty} = 1 \text{ and } \text{tr}(A) = 0 \right\}.
\]

(140)

It is seen by inspection that this gives a closed surface of quantum states that contain the maximally mixed state.

We want an \(\varepsilon \)-net in the \(|| \cdot ||_{1} \) norm, so that for any \(\eta = \frac{1}{d} (I + A) \) in \(\partial \mathcal{D} \) there is an \(\eta_k = \frac{1}{d} (I + A_k) \) in the net such that

\[
D(\eta, \eta_k) = \frac{1}{2} ||\eta - \eta_k||_{1} - \frac{1}{2} |\text{tr}\eta - \text{tr}\eta_k| = \frac{1}{2d} ||A - A_k||_{1} \leq \varepsilon.
\]

(142)

However in finite dimensions all matrix norms are equivalent, and we have that [81]

\[
||A - A_k||_{1} \leq \text{rank}(A - A_k)||A - A_k||_{\infty} \leq \delta d.
\]

(143)

Therefore choosing \(\delta = 2\varepsilon \) ensures that \(D(\eta, \eta_k) \leq \varepsilon \) as required, and we can always find a sufficient set of reference frame states \(\mathcal{N} = \{\eta_k\}_{k=1}^{N} \) such that \(N \leq (1 + 1/\varepsilon)^{d^2-1} \).

We now check the \(\Delta H_{\eta} \) condition on each \(\eta = \eta_k \) in the \(\varepsilon \)-net. If \(\Delta H_{\eta_k} < 0 \) for one of these states then the transformation is impossible. If however we find that

\[
\Delta H_{\eta_k} \geq r(\varepsilon) \text{ for all } \eta_k \in \mathcal{N},
\]

(144)

then we know from the continuity of the function \(\Delta H_{\eta} \), Lemma 4, that this implies that \(\Delta H_{\eta} \geq 0 \) for all reference frame states \(\eta \in \partial \mathcal{D} \). However this is a sufficient set of states (Theorem 3) and therefore we deduce from these \(N \) conditions that the transformation is possible covariantly. The final case of at least one of the \(\eta_k \) conditions giving \(0 \leq \Delta H_{\eta_k} \leq r(\varepsilon) \) can be handled as follows: we can supplement the state \(\rho_A \) with an additional reference frame state \(\chi_{A'} \). If we take \(\chi_{A'} \) to be large and approximating a perfect reference frame state (perfectly encoding the group element) then it is possible to transform to any quantum state covariantly. This does so by reducing the entropy \(H_{\text{min}}(R|AA') \). This can be used to increase \(\Delta H_{\eta_k} \) and ensure that \(\Delta H_{\eta_k} \geq r(\varepsilon) \), from which we can deduce that the transformation is now possible. The state \(\chi_{A'} \) therefore provides an upper bound estimate on the minimal additional asymmetry required to realise the transformation. Since \(r(\varepsilon) = O(\varepsilon) \) the requirement on \(\chi \) is to provide \(O(\varepsilon) \) resources as measured by the single-shot entropy.

\[\square\]

F. THE CONICAL STRUCTURE OF \(\Phi_{\tau}(\mathbf{x}) \) (PROOF OF LEMMA 7)

Lemma 7. Let \(\lambda \geq 0 \). Then for all \(\mathbf{x}, \lambda \mathbf{x} \in \mathcal{S} \), where \(\mathcal{S} \) is the set of all co-ordinates corresponding to reference states:

\[
\tilde{\Phi}_{\tau}(\lambda \mathbf{x}) = \lambda \tilde{\Phi}_{\tau}(\mathbf{x})
\]

(24)

Furthermore,

\[
\tilde{\Phi}_{\tau}(\mathbf{x}) \geq 0.
\]

(25)

Proof. Let \(\mathcal{P} \) be the completely depolarising channel on the reference system, and define \(A(\mathbf{x}) := \sum_{k=1}^{d^2-1} x_k X_k \). Then by Property (P4) of \(\Phi_{\tau}(\mathbf{x}) \), we have:

\[
\Phi \left(\mathcal{G} \left[\left(\frac{1}{d} + A(\mathbf{x}) \right) \otimes \tau \right] \right) \geq \Phi \left(\mathcal{P} \otimes I \circ \mathcal{G} \left[\left(\frac{1}{d} + A(\mathbf{x}) \right) \otimes \tau \right] \right)
\]

(145)

\[
= \Phi \left(\mathcal{G} \left[\mathcal{P} \left(\left(\frac{1}{d} + A(\mathbf{x}) \right) \right) \otimes \tau \right] \right)
\]

(146)

\[
= \Phi \left(\mathcal{G} \left[\frac{1}{d} \otimes \tau \right] \right) \equiv \Phi_{\tau}(0).
\]

(147)
Therefore, \(\tilde{\Phi}_\tau(x) \geq 0 \), as claimed.

Let \(p \) be a probability. Then
\[
p\eta(x) + (1 - p)\frac{1}{d} = \frac{1}{d} + pA(x) + (1 - p)\frac{1}{d} = \frac{1}{d} + A(px)
\]

(148)

Using this equation, we can rewrite Lemma 18 as:

Lemma 24. Let \(p \) be a probability; i.e. \(0 \leq p \leq 1 \). Then for all \(x \in S \):
\[
\Phi_\tau(px) = p\Phi_\tau(x) + \frac{1 - p}{d}
\]

(149)

We then immediately have
\[
\tilde{\Phi}_\tau(px) = p\tilde{\Phi}_\tau(x) + \frac{1 - p}{d} - \frac{1}{d} = p\Phi_\tau(x) - \frac{p}{d} = p\tilde{\Phi}_\tau(x), \forall x \in S.
\]

(150)

Making the change of variables \(x' := px \), we find that the equation above is equivalent to:
\[
\tilde{\Phi}_\tau(x') = p\tilde{\Phi}\left(\frac{1}{p}x'\right) \Rightarrow \frac{1}{p}\tilde{\Phi}_\tau(x') = \tilde{\Phi}_\tau\left(\frac{1}{p}x'\right), \forall \frac{1}{p}x' \in S.
\]

(151)

Since \(1 \leq \frac{1}{p} \leq \infty \), we can combine the facts above and conclude that, for all \(\lambda \geq 0 \) such that \(x, \lambda x \in S \):
\[
\tilde{\Phi}_\tau(\lambda x) = \lambda \tilde{\Phi}_\tau(x),
\]

(152)
as claimed.

\[\square\]

G. Calculating \(\Phi_\tau(x) \) for Covariant Transformations in a Qubit

A. Time-Covariant Transformations (\(U(1) \))

We will consider a qubit with the Hamiltonian \(\sigma_z \), transformations among whose states are limited to those that are symmetric under all time translations \(\{e^{i\sigma_z t} | 0 \leq t < 2\pi\} \). The reference system is then a qubit with Hamiltonian \(-\sigma_z\). We will calculate \(\Phi_\tau(x) \) for an arbitrary state \(\tau \) of this qubit, while reference states are given using the Bloch co-ordinates:
\[
\eta(x,y,z) = \frac{1}{2} + x\frac{\sigma_x}{2} + y\frac{\sigma_y}{2} + z\frac{\sigma_z}{2},
\]

(153)

where the \(\sigma_i \) are the Pauli matrices, and \(x^2 + y^2 + z^2 \leq 1 \). The derivation will be conducted entirely in the energy eigenbasis.

Recall from Eq. (59):
\[
\Phi_\tau(x,y,z) \equiv \Phi_\eta(x,y,z)(\tau) := \inf_{X \geq 0} \{\text{tr}(X) : \mathbb{I} \otimes X - \mathcal{G}(\eta(x,y,z) \otimes \tau) \geq 0\}
\]

(154)

We first introduce this simplifying lemma that allows us to vastly reduce which \(X \) we must consider:

Lemma 25. When calculating \(\Phi_\eta(\tau) \), it is sufficient to minimise over \(X \) such that \(X = \mathcal{G}(X) \).

Proof. Since \(\mathcal{U}_g \) can be regarded as an (active) change of basis, it does not affect the eigenvalues of a Hermitian operator \(K \). Therefore,
\[
K \geq 0 \Rightarrow \mathcal{U}_g(K) \geq 0
\]

(155)
\[
\text{tr}(K) = \text{tr}([\mathcal{U}_g(K)]
\]

(156)

for all \(g \) and Hermitian \(K \). Averaging over the entire group \(G \), we arrive at
\[
K \geq 0 \Rightarrow \mathcal{G}(K) \geq 0
\]

(157)
\[
\text{tr}(K) = \text{tr}([\mathcal{G}(K)]
\]

(158)
If X is a feasible solution, then it obeys the two conic constraints in the SDP defining $\Phi_\eta(\tau)$: $X \geq 0$ and $\mathbb{1} \otimes X - G(\eta \otimes \tau) \geq 0$. In this case, we see immediately from Equation 157 that $G(X)$ also obeys the first constraint. Furthermore, since $G[\mathbb{1} \otimes X - G(\eta \otimes \tau)] = \mathbb{1} \otimes G(X) - G(\eta \otimes \tau)$, applying Equation 157 to $\mathbb{1} \otimes X - G(\eta \otimes \tau)$ shows that $G(X)$ also obeys the second constraint. Therefore, if X is a feasible solution, then so is $G(X)$.

By Equation 158, $G(X)$ produces the same value as X on the objective function to be minimised in the SDP defining $\Phi_\eta(\tau)$. We can thus further conclude that if X is a feasible solution, then $G(X)$ is an equally good feasible solution. It is then sufficient to only minimise over X such that $X = G(X)$ when calculating $\Phi_\eta(\tau)$.

This lemma means we can take X to be diagonal without loss of generality, i.e.

\[
X = \begin{pmatrix} x_1 & 0 \\ 0 & x_2 \end{pmatrix} \Rightarrow \mathbb{1} \otimes X = \begin{pmatrix} x_1 & 0 & 0 & 0 \\ 0 & x_2 & 0 & 0 \\ 0 & 0 & x_1 & 0 \\ 0 & 0 & 0 & x_2 \end{pmatrix}
\] (159)

We have already seen from the main text (Eq. (30)) that $\Phi_\tau(x, y, z)$ is cylindrically symmetric about the z-axis. This means we can restrict our calculation to $x \geq 0, y = 0$, and then equate

\[
\Phi_\tau(x, y, z) = \Phi_\tau(\sqrt{x^2 + y^2}, 0, z)
\] (160)

Having applied this restriction, we further see from Eq. (31) that

\[
\Phi_{\eta, \tau, \sigma_\tau}(x, 0, z) = \Phi_\tau(x, 0, -z),
\] (161)

which means we can additionally restrict our attention to $z \geq 0$. We therefore only need to consider reference states of the form:

\[
\eta = \frac{1}{2} \begin{pmatrix} 1 + z & x \\ x & 1 - z \end{pmatrix}, \quad x, z \geq 0.
\] (162)

Recalling the parameterisation (Eq. (27))

\[
\tau := \begin{pmatrix} p_\tau & c_\tau \\ c_\tau^* & 1 - p_\tau \end{pmatrix}
\] (163)

we calculate

\[
\eta \otimes \tau = \frac{1}{2} \begin{pmatrix} 1 + z & x \\ x & 1 - z \end{pmatrix} \otimes \begin{pmatrix} p_\tau & c_\tau \\ c_\tau^* & 1 - p_\tau \end{pmatrix}
\] (164)

\[= \frac{1}{2} \begin{pmatrix} p_\tau(1 + z) & c_\tau(1 + z) & p_\tau x & c_\tau x \\ c_\tau^*(1 + z) & (1 - p_\tau)(1 + z) & c_\tau^* x & (1 - p_\tau)x \\ p_\tau x & c_\tau x & p_\tau(1 - z) & c_\tau(1 - z) \\ c_\tau^* x & (1 - p_\tau)x & c_\tau^*(1 - z) & (1 - p_\tau)(1 - z) \end{pmatrix}
\] (165)

The G-twirling only leaves elements in $\text{span}(|00\rangle, |11\rangle), \text{span}(|01\rangle)$ and $\text{span}(|10\rangle)$ intact:

\[
G(\eta \otimes \tau) = \frac{1}{2} \begin{pmatrix} p_\tau(1 + z) & 0 & 0 & c_\tau x \\ 0 & (1 - p_\tau)(1 + z) & 0 & 0 \\ 0 & 0 & p_\tau(1 - z) & 0 \\ c_\tau^* x & 0 & 0 & (1 - p_\tau)(1 - z) \end{pmatrix}
\] (166)

Therefore:

\[
\mathbb{1} \otimes X - G(\eta \otimes \tau) = \begin{pmatrix} x_1 - p_\tau \frac{1 + z}{2} & 0 & 0 & -c_\tau \frac{x}{2} \\ 0 & x_2 - (1 - p_\tau) \frac{1 + z}{2} & 0 & 0 \\ 0 & 0 & x_1 - p_\tau \frac{1 + z}{2} & 0 \\ -c_\tau^* \frac{x}{2} & 0 & 0 & x_2 - (1 - p_\tau) \frac{1 + z}{2} \end{pmatrix}
\] (167)

Making a (passive) change of basis so the matrix appears block-diagonal, we obtain:

\[
\mathbb{1} \otimes X - G(\eta \otimes \tau) = \begin{pmatrix} x_1 - p_\tau \frac{1 + z}{2} & -c_\tau \frac{x}{2} & 0 & 0 \\ -c_\tau^* \frac{x}{2} & x_2 - (1 - p_\tau) \frac{1 + z}{2} & 0 & 0 \\ 0 & 0 & x_2 - (1 - p_\tau) \frac{1 + z}{2} & 0 \\ 0 & 0 & 0 & x_1 - p_\tau \frac{1 - z}{2} \end{pmatrix}
\] (168)

The Sylvester Criterion [81] states that a matrix is semi-definite positive if and only if all its upper-left determinants are greater than or equal to 0. This produces the following criteria:
1. \(x_1 \geq p_r \frac{1+z}{2} \).

2. \((x_1 - p_r \frac{1+z}{2})(x_2 - (1-p_r)\frac{1-z}{2}) \geq \frac{|c_r|^2 x^2}{4} \).

3. \(x_2 \geq (1-p_r) \frac{1+z}{2} \).

4. \(x_1 \geq p_r \frac{1-z}{2} \).

Since we have restricted ourselves to \(x \geq 0 \), condition 4 is redundant given condition 1. Furthermore, given any value of \(x_2 \) that satisfies condition 3, the smallest value of \(x_1 \) satisfying condition 1 is

\[
x_1 - p_r \frac{1+z}{2} = \frac{|c_r|^2 x^2}{4} \left(\frac{1}{x_2 - (1-p_r)\frac{1-z}{2}} \right).
\]

We are therefore looking to minimise

\[
x_1 + x_2 = x_2 + \frac{|c_r|^2 x^2}{4} \left(\frac{1}{x_2 - (1-p_r)\frac{1-z}{2}} \right) + p_r \frac{1+z}{2}.
\]

This occurs at

\[
x_2 = (1-p_r) \frac{1-z}{2} \pm |c_r|^2 \frac{x}{2}.
\]

However, \(x_2 \) also has to satisfy condition 3. Therefore, the value \(x_2 \) should take is whichever of the following two

\[
x_2 = \begin{cases}
(1-p_r) \frac{1+z}{2} \\
(1-p_r) \frac{1-z}{2} + |c_r|^2 \frac{x}{2}
\end{cases}
\]

is bigger, which results in

\[
\Phi_r(x \geq 0, y = 0, z \geq 0) = \begin{cases}
\frac{|c_r|^2 x^2 + \frac{1}{2} y^2 + \frac{1}{2}}{1-p_r} & \text{for } \frac{x}{2z} \leq \frac{1-p_r}{|c_r|} \\
\left(p_r - \frac{1}{2} \right) z + |c_r| x + \frac{1}{2} & \text{for } \frac{x}{2z} \geq \frac{1-p_r}{|c_r|}
\end{cases}
\]

Finally, applying Equations 160 and 161, and noting that \(\sigma_z \tau \sigma_x \) translates to \(p_r \rightarrow 1 - p_r \) and \(c_r \rightarrow c_r^* \) in our parameterisation of \(\tau \), we can calculate \(\Phi_r \) for all reference states from the above result as seen in Eq. (28):

\[
\Phi_r(x, y, z) = \begin{cases}
\frac{|c_r|^2 x^2 + \frac{1}{2} y^2 + \frac{1}{2}}{1-p_r} & \text{for } 0 \leq \frac{\sqrt{x^2+y^2}}{2z} \leq \frac{1-p_r}{|c_r|} \\
\left(p_r - \frac{1}{2} \right) z + |c_r| \sqrt{x^2+y^2} + \frac{1}{2} & \text{for } \frac{\sqrt{x^2+y^2}}{2z} \geq \frac{1-p_r}{|c_r|} \text{ and } \frac{\sqrt{x^2+y^2}}{2z} \leq - \frac{p_r}{|c_r|}
\end{cases}
\]

1. **Two entropic conditions suffice to characterise time-covariant transformations in a non-degenerate qubit**

We can alternatively characterise each qubit reference frame state as \(\eta(r, \theta, \phi) \), where \((r, \theta, \phi)^T \) is state’s Bloch vector in spherical polar co-ordinates (radial, polar and azimuthal respectively). Using the standard conversion between spherical and Cartesian co-ordinates \(x = r \sin(\theta) \cos(\phi), y = r \sin(\theta) \sin(\phi) \) and \(z = r \cos(\theta) \), we can rewrite Equation 174 as

\[
\Phi_r(x, y, z) = \Phi_r \left(r \sin(\theta) \cos(\phi), r \sin(\theta) \sin(\phi), r \cos(\theta) \right)
\]

\[
= \begin{cases}
\frac{r |c_r|^2 \tan(\theta) \sin(\phi) + r \cos(\theta) + \frac{1}{2}}{p_r} & \text{for } 0 \leq \frac{\tan(\theta)}{2} \leq \frac{1-p_r}{|c_r|} \\
r \left(p_r - \frac{1}{2} \right) \cos(\phi) + |c_r| \sin(\theta) + \frac{1}{2} & \text{for } \frac{\tan(\theta)}{2} \geq \frac{1-p_r}{|c_r|} \text{ and } \frac{\tan(\theta)}{2} \leq - \frac{p_r}{|c_r|}
\end{cases}
\]
Lemma 26. There exists a time-covariant transformation \(\rho \) to \(\sigma \) in a qubit with Hamiltonian \(\sigma_z \) if and only if
\[
\partial^2_{\theta} (\Delta \Phi_\eta) |_{\theta=0} \geq 0 \quad \text{and} \quad \partial^2_{\theta} (\Delta \Phi_\eta) |_{\theta=\pi} \geq 0
\] (177)
for all \(0 < r \leq 1 \) and \(0 \leq \phi < 2\pi \), where we recall \(\Delta \Phi_\eta := \Phi_{\eta(r,\theta,\phi)}(\rho) - \Phi_{\eta(r,\theta,\phi)}(\sigma) \) and \(\partial_0 := \frac{\partial}{\partial \theta} \). Since \(\Phi_\eta(\tau) \) is monotonically decreasing in \(H_\eta(\tau) \), this is equivalent to
\[
\partial^2_{\theta} (\Delta H_\eta) |_{\theta=0} \geq 0 \quad \text{and} \quad \partial^2_{\theta} (\Delta H_\eta) |_{\theta=\pi} \geq 0,
\] (178)
where we recall \(\Delta H_\eta := H_{\eta(r,\theta,\phi)}(\sigma) - H_{\eta(r,\theta,\phi)}(\rho) \).

Proof. From Eq. (176), we can straightforwardly evaluate:
\[
\partial^2_{\theta} \Phi_\eta(\tau) |_{\theta=0} = \frac{r}{2} \left(\frac{|c_r|^2}{1 - p_r} - 1 \right) \quad \text{and} \quad \partial^2_{\theta} \Phi_\eta(\tau) |_{\theta=\pi} = \frac{r}{2} \left(\frac{|c_r|^2}{p_r} - 1 \right),
\] (179)
from which it immediately follows that
\[
\partial^2_{\theta} (\Delta \Phi_\eta) |_{\theta=0} \geq 0 \iff c_\sigma \leq c_p \sqrt{\frac{1 - p_r}{1 - p_\rho}} \quad \text{and} \quad \partial^2_{\theta} (\Delta \Phi_\eta) |_{\theta=\pi} \geq 0 \iff c_\sigma \leq c_p \sqrt{\frac{p_r}{p_\rho}},
\] (180)
which are known necessary and sufficient conditions for a time-covariant transformation from \(\rho \) to \(\sigma \) in a qubit with the Hamiltonian \(\sigma_z \) [79].

We note that \(\partial_0 (\Delta \Phi_\eta) |_{\theta=0} = 0 \) and \(\partial_0 (\Delta \Phi_\eta) |_{\theta=\pi} = 0 \). At \(r = 1 \), this Lemma can be loosely interpreted as asserting that two pure reference states, infinitesimally close to the energy eigenstates \(|0\rangle \langle 0| \) and \(|1\rangle \langle 1| \) respectively, are sufficient for determining whether time-covariant interconversion is possible between any input and output states in a non-degenerate qubit.

B. Unitarily covariant transformations (\(SU(2) \))

The only channels that are covariant with all unitary transformations on the qubit are [22]:
\[
\mathcal{E}_\lambda(\rho) = \frac{1}{2} (\mathbb{1} + \lambda \mathbf{r} \cdot \sigma),
\] (181)
where \(\lambda \in [-1/3, 1] \), and \(\mathbf{r} \) is the Bloch vector of \(\rho \). Therefore, writing \(\mathbf{x} = (x, -y, z) \) given the Bloch vector \(\mathbf{x} = (x, y, z) \) of \(\eta \), we have that
\[
\text{tr}[\eta^T \mathcal{E}_\lambda(\rho)] = \frac{1}{2} (1 + \lambda \mathbf{x} \cdot \mathbf{r}).
\] (182)

We now want to consider the quantity
\[
\Phi_{\rho}(\mathbf{x}) = \max_{\mathcal{E} \in \mathcal{O}_{\text{cov}}} \text{tr}[\eta^T \mathcal{E}(\rho)] = \max_{\lambda \in [-1/3, 1]} \text{tr}[\eta^T \mathcal{E}_\lambda(\rho)] = \frac{1}{2} (1 + \lambda \mathbf{x} \cdot \mathbf{r}).
\] (183)

By convexity, we can restrict the set of \(\lambda \) that we must optimize over to the extremal values, which gives:
\[
\Phi_{\rho}(\mathbf{x}) = \begin{cases}
\frac{1}{2} (1 + \mathbf{x} \cdot \mathbf{r}) & \text{if } \mathbf{x} \cdot \mathbf{r} \geq 0, \\
\frac{1}{2} (1 - \frac{1}{3} \mathbf{x} \cdot \mathbf{r}) & \text{otherwise}.
\end{cases}
\] (184)

In words, if the Bloch vectors of \(\eta^T \) and \(\rho \) are both located in the hemisphere above the plane perpendicular to the Bloch vector of \(\eta^T \), then the identity channel \(\mathcal{E}_1 = \mathcal{I} \) optimizes the objective function. Otherwise, the channel \(\mathcal{E}_{-\frac{1}{3}} \) which achieves the best inversion of \(\rho \) that can be done covariantly, is optimal.
H. DEPOLARIZATION CONDITIONS

A. Depolarization conditions via the modes of asymmetry

Lemma 27. Let ρ_A, σ_B, and η_R be quantum states on systems A, B, and R, respectively, where $d_R = d_B$. We have $\rho \xrightarrow{G} \sigma$ if for all quantum states η on H_R

$$\langle \eta, \mathcal{E}^\eta(\rho) \rangle \geq \langle \eta, \sigma \rangle,$$

for any family of covariant channels $\mathcal{E}^\eta : S(H_A) \to S(H_B)$ parameterised by η, where $\langle A, B \rangle := \text{tr}[A^\dagger B]$.

Proof. Lemma 3 of the supplemental material of [58] tells us that $\rho \xrightarrow{G} \sigma$ if and only if

$$\Phi_\eta(\rho) \geq \text{tr}[\eta^T \sigma], \forall \eta. \tag{186}$$

From the dual expression for $\Phi_\eta(\rho)$ in Lemma 12, we have the following lower bound on $\Phi_\eta(\rho)$ for any choice of covariant channel \mathcal{E}^η:

$$\Phi_\eta(\rho) \geq \text{tr}[\eta^T \mathcal{E}^\eta(\rho)]. \tag{187}$$

Eqs. (186) and (187) allow us to generate the following sufficient condition, such that if we can find any family of covariant maps \mathcal{E}^η such that

$$\text{tr}[\eta^T \mathcal{E}^\eta(\rho)] \geq \text{tr}[\eta^T \sigma], \forall \eta, \tag{188}$$

or, equivalently

$$\text{tr}[\eta \mathcal{E}^\eta(\rho)] \geq \text{tr}[\eta \sigma], \forall \eta, \tag{189}$$

then we are guaranteed $\rho \xrightarrow{G} \sigma$, which completes the proof.

Lemma 27 and 16 together produce the following corollary:

Corollary 28. We have that $\rho \xrightarrow{G} \sigma$ if for all $\eta \in S(H_R)$,

$$\sum_{\lambda, j} \langle \eta_\lambda, \mathcal{E}^\eta(\rho^\lambda_j) \rangle \geq 0. \tag{190}$$

for some family of covariant channels \mathcal{E}^η.

B. PGM measure-and-prepare channel

For a general group G we have the Pretty Good Measurement [80] POVM:

$$M_{\text{pgm}}(g) := G(\rho)^{-\frac{1}{2}} \rho(g) G(\rho)^{-\frac{1}{2}}, \tag{191}$$

where $\rho(g) := U_g(\rho)$.

Recall $\sigma^\lambda_j = \mathcal{E}(\rho^\lambda_j)$ [60] and $\text{tr}[AB] = \sum_{\lambda, j} \text{tr}[A^\lambda B_j^\lambda]$, we can evaluate the trace product for the PGM measure-and-prepare channel, which prepares $U_g(\tau)$ for an arbitrary state τ when the gth outcome is obtained:

$$\mathcal{E}_{\text{pgm}}(\rho) := \int dg \tau(g) \text{tr}[M_{\text{pgm}}(g)\rho], \tag{192}$$

which, from its form, is manifestly covariant.

We then have that

$$\text{tr}[\eta \mathcal{E}_{\text{pgm}}(\rho)] = \sum_{\lambda, j} \text{tr}[\eta^\lambda \mathcal{E}_{\text{pgm}}(\rho^\lambda_j)] = \sum_{\lambda, j} \int dg \text{tr}[M_{\text{pgm}}(g)\rho^\lambda_j] \text{tr}[\eta^\lambda \tau(g)]. \tag{193}$$
We can write each term in the above equation more compactly in terms of the Hilbert-Schmidt inner product:

$$\langle \eta_j^\lambda, \mathcal{E}_{\text{pgm}}(\rho_j^\lambda) \rangle = \int dg \, \langle \eta_j^\lambda, \tau(g) \rangle \langle \rho_j^\lambda, \overline{\rho}(g) \rangle,$$

where we have defined the scaled variant of $\rho, \overline{\rho}$ as

$$\overline{\rho} := \mathcal{G}(\rho)^{-\frac{1}{2}} \rho \mathcal{G}(\rho)^{-\frac{1}{2}}.$$

We now have the following lemma:

Lemma 29. For any irrep λ and irrep component j we have

$$\langle \eta_j^\lambda, \mathcal{E}_{\text{pgm}}(\rho_j^\lambda) \rangle = f_j^\lambda(\rho) \langle \eta_j^\lambda, \tau_j^\lambda \rangle,$$

where we have introduced the functions $f_j^\lambda(\rho) := [\rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}} \rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}}]^*$.

Proof. We have:

$$\langle \eta_j^\lambda, \mathcal{E}_{\text{pgm}}(\rho_j^\lambda) \rangle = \int dg \, \langle \eta_j^\lambda, \tau(g) \rangle \langle \rho_j^\lambda, \overline{\rho}(g) \rangle = \int dg \, \langle \eta_j^\lambda \otimes \rho_j^\lambda, \tau(g) \otimes \overline{\rho}(g) \rangle = \langle \eta_j^\lambda \otimes \rho_j^\lambda, \mathcal{U}_g(\tau \otimes \overline{\rho}) \rangle = \sum_{i,\mu} \langle \eta_j^\lambda \otimes \rho_j^\lambda, \tau_i^\mu \otimes \overline{\rho}_i^\mu \rangle = \langle \eta_j^\lambda \otimes \rho_j^\lambda, \tau_j^\lambda \otimes \overline{\rho}_j^\lambda \rangle = \langle \eta_j^\lambda, f_j^\lambda(\rho) \rangle,$$

where in going from line 200 to line 201 we have made use of lemma 17. This completes the proof.

We now note the following properties of the functions $f_j^\lambda(\rho)$, which hold for any input state ρ and for all modes labelled by (λ, j):

F1 (Real-valued). $f_j^\lambda(\rho) = f_j^{\lambda^*}(\rho) = [f_j^\lambda(\rho)]^*$.

F2 (Non-negative). $f_j^\lambda(\rho) \geq 0$.

F3 (Trivial irrep). $f_0^\lambda(\rho) = 1$.

Proof of (F1). We note that

$$f_j^\lambda(\rho) = \text{tr}[(\rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}} \rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}})^*] = \text{tr}[\rho_j^{\lambda^*} \mathcal{G}(\rho)^{-\frac{1}{2}} \rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}}] = f_j^{\lambda^*}(\rho)$$

$$= \text{tr}[(\rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}} \rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}})^*] = \text{tr}[\rho_j^{\lambda} \mathcal{G}(\rho)^{-\frac{1}{2}} \rho_j^{\lambda} \mathcal{G}(\rho)^{-\frac{1}{2}}]^* = [f_j^\lambda(\rho)]^*$$

Proof of (F2). We begin by noting that

$$\rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}} \rho_j^\lambda = \left(\rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}} \right) \left(\rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}} \right)^\dagger =: AA^\dagger,$$

where we have defined $A := \rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}}$. Regardless of what A is, any operator of the form AA^\dagger is positive. Since $\mathcal{G}(\rho)^{-\frac{1}{2}}$ is a positive operator as well, this means $\rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}} \rho_j^\lambda \mathcal{G}(\rho)^{-\frac{1}{2}}$ must be positive, so we are guaranteed $f_j^\lambda(\rho) \geq 0, \forall \lambda, j, \rho$.

□
Proof of (F3). We first note

\[G(\rho) = \sum_{\lambda,j} \int dg \, U_g \left(\sum_{\alpha} \text{tr}(X_j^{(\lambda,\alpha)} \rho) X_j^{(\lambda,\alpha)} \right) \]

(208)

\[= \sum_{\lambda,j,j'} \int dg v_{j,j'}^{(\lambda)}(g) \sum_{\alpha} \text{tr}(X_j^{(\lambda,\alpha)} \rho) X_j^{(\lambda,\alpha)} \]

(209)

\[= \sum_{\lambda,j,j'} \left[\int dg v_{j,j'}^{(\lambda)}(g) t_{0,0}^{(\lambda,0)}(g) \right] \sum_{\alpha} \text{tr}(X_j^{(\lambda,\alpha)} \rho) X_j^{(\lambda,\alpha)} \]

(210)

\[= \sum_{\lambda,j,j'} \delta_{\lambda,0} \delta_{j',0} \sum_{\alpha} \text{tr}(X_j^{(\lambda,\alpha)} \rho) X_j^{(\lambda,\alpha)} \]

(211)

\[= \sum_{\alpha} \text{tr}(X_0^{(\alpha,0)} \rho) X_0^{(\alpha,0)} = \rho_0^0. \]

(212)

where in going from line 210 to line 211 we have made use of Equation 107. It then follows that:

\[f_0^0(\rho) = \text{tr}[G(\rho) G(\rho)^{-\frac{1}{2}} G(\rho) G(\rho)^{-\frac{1}{2}}] = \text{tr}[G(\rho)] = 1, \]

(213)

which completes the proof.

\[\square \]

C. Derivation of general conditions

Lemma 30. Let us define components \(t_j^{(\lambda,\alpha)} := \langle X_j^{(\lambda,\alpha)}, \tau \rangle \) and \(s_j^{(\lambda,\alpha)} := \langle X_j^{(\lambda,\alpha)}, \sigma \rangle \). The state \(\rho \) can be transformed into \(\sigma \) covariantly with respect to a symmetry group \(G \) (i.e. \(\rho \overset{G}{\rightarrow} \sigma \)) if there exists a family of valid quantum states

\[\left\{ \forall \theta_j^{(\lambda,\alpha)} \in [0, 2\pi) : \tau_\theta = \sum_{\lambda,\alpha,j} t_j^{(\lambda,\alpha)} X_j^{(\lambda,\alpha)} \right\}, \]

(214)

where each \((\lambda, \alpha, j)\)-component of \(\tau_\theta \) satisfies either:

\[f_j^\lambda(\rho) t_j^{(\lambda,\alpha)} = s_j^{(\lambda,\alpha)}, \quad \text{or,} \]

(215)

\[f_j^\lambda(\rho) \left| t_j^{(\lambda,\alpha)} \right|^2 - \left| s_j^{(\lambda,\alpha)} \right|^2 \geq 0, \quad t_j^{(\lambda,\alpha)} = e^{i\theta_j^{(\lambda,\alpha)}} | t_j^{(\lambda,\alpha)}|. \]

(216)

Proof. We begin with Corollary 28 and make the explicit choice for each member in our family of covariant channels \(\{E^\eta\} \) to be a PGM-and-prepare channel \(E^\eta := E^\eta_{\text{pgm}} \), as defined in Eq. (192). Combined with Lemma 29 this gives rise to the following sufficient condition on the transition \(\rho \overset{G}{\rightarrow} \sigma \):

\[\sum_{\lambda,j} \left\{ \langle \eta_j^\lambda, f_j^\lambda(\rho) \tau_j^\lambda - \sigma_j^\lambda \rangle + \langle \eta_j^{\lambda\ast}, f_j^\lambda(\rho) \tau_j^{\lambda\ast} - \sigma_j^{\lambda\ast} \rangle \right\} \geq 0, \quad \forall \eta. \]

(217)

We emphasise that the choice of preparation state \(\tau \) can vary with \(\eta \), though this dependence has been suppressed in our notation for clarity. We now introduce the simplifying notation \(\mu := \{\lambda, \alpha, j\} \) and define the following coefficients of the states \(\eta, \tau, \) and \(\sigma \) in the ITO basis \(\{X^\mu\} \):

\[n^\mu := \langle X^\mu, \eta \rangle = |n^\mu| e^{i\phi^\mu_\eta}, \]

(218)

\[t^\mu := \langle X^\mu, \tau \rangle = |t^\mu| e^{i\phi^\mu_\tau}, \]

(219)

\[s^\mu := \langle X^\mu, \sigma \rangle = |s^\mu| e^{i\phi^\mu_\sigma}, \]

(220)
such that $\eta_j^\lambda = \sum \alpha \eta_j(\lambda, \alpha)$ etc. By the hermiticity of η, we have $n^{\mu*} := \eta_j^{(\lambda, \alpha)} = \left(\eta_j^{(\lambda, \alpha)}\right)^*$ etc. We further introduce the notation

$$f^{\mu}(\rho) := f_j^{\lambda}(\rho), \forall \alpha.$$

Substituting these definitions into Eq. (217) and using the orthonormality of the ITO basis, $\langle X^\mu, X^\nu \rangle = \delta_{\mu, \nu}$, gives the following sufficient condition:

$$\sum_{\mu} \left[n^{\mu*} \left(f^{\mu}(\rho)t^{\mu} - s^{\mu} \right) + n^\mu \left(f^{\mu}(\rho)t^{\mu*} - s^{\mu*} \right) \right] \geq 0, \quad \forall \eta. \quad (222)$$

This can instead be written as

$$\sum_{\mu} \text{Re}\{n^{\mu*} (f^{\mu}(\rho)t^{\mu} - s^{\mu})\} = \sum_{\mu} \left| n^{\mu*} \right| \text{Re} \left\{ e^{-i\eta^\mu} [f^{\mu}(\rho)t^{\mu} - s^{\mu}] \right\} \geq 0, \quad \forall \eta. \quad (223)$$

We can always choose $X^0 := \frac{1}{\sqrt{d}}$, which means all other ITO basis elements must be traceless. Since we must choose τ to be a valid quantum state, this means we must assign

$$\text{tr}(\tau) = \sum_{\mu} t^{\mu} \text{tr}(X^\mu) = \sqrt{d} t^0 = 1. \quad (224)$$

As σ is a valid quantum state, by similar logic we conclude that $\sqrt{d}s^0 = 1$. Due to (F3), this means Eq. (223) reduces to

$$\sum_{\mu \neq 0} \left| n^{\mu*} \right| \text{Re} \left\{ e^{-i\eta^\mu} [f^{\mu}(\rho)t^{\mu} - s^{\mu}] \right\} \geq 0, \quad \forall \eta. \quad (225)$$

Given any $\nu \neq 0$, there exists a valid reference state $\eta = \sum_{\mu} n^{\mu} X^\mu$ where

$$n^\mu = \begin{cases} \frac{1}{\sqrt{d}} & \text{for } \mu = 0 \\ n \text{ such that } \frac{1}{d} \geq n > 0 & \text{for } \mu = \nu, \nu^* \\ 0 & \text{otherwise}, \end{cases} \quad (226)$$

since these assignments evidently lead to η being Hermitian and trace 1, and we can further verify, for any pure state $|\psi\rangle$ of the reference system, that

$$\langle \psi | \eta | \psi \rangle = \sum_{\mu} n^\mu \langle \psi | X^\mu | \psi \rangle = \frac{1}{d} - n(\langle \psi | X^\nu | \psi \rangle + \langle \psi | X^{\nu^*} | \psi \rangle) \geq \frac{1}{d} - 2n \geq \frac{1}{d} - \frac{2}{2d} = 0 \Rightarrow \eta \geq 0. \quad (227)$$

The only way that Eq. (225) can be satisfied for reference states with components assigned according to Eq. (226) is if for each μ-component, we have

$$\text{Re} \left\{ e^{-i\eta^\mu} [f^{\mu}(\rho)t^{\mu} - s^{\mu}] \right\} \geq 0, \quad \forall \eta. \quad (228)$$

Recall that we are free to choose τ as we like for every η, and our aim here is to derive a set of conditions that are independent of η. For a given component μ, one possible way of satisfying Eq. (228) independently of η is if we can choose a valid quantum state $\tau = \sum_{\mu} t^{\mu} X^\mu$ such that

$$f^{\mu}(\rho)t^{\mu} = s^{\mu}. \quad (229)$$

Alternatively, note that we can rewrite Eq. (228) as follows:

$$f^{\mu}(\rho)t^{\mu} \cos(\varphi^\mu - \varphi^{\mu}) - |s^{\mu}| \cos(\varphi^\mu - \varphi^{\mu}) \geq 0, \quad \forall \eta. \quad (230)$$

Therefore, an alternative way of satisfying the μ-component of the full set of sufficient conditions, is to set the phases of τ such that they cancel those of η

$$\varphi^\mu_\tau = \varphi^\mu_\eta. \quad (231)$$
for all η. Substituting this phase choice on τ into the sufficient condition in Eq. (230) gives
\[f^\mu(\rho)|t^\mu| - |s^\mu| \cos (\varphi^\mu_\sigma - \varphi^\mu_\eta) \geq 0, \quad \forall \eta. \] (232)
Noting that $\max_x \cos x = 1$, we see that the above equation holds for all η if
\[f^\mu(\rho)|t^\mu| \geq |s^\mu|, \] (233)
which together with Eq. (231) gives us a second η-independent way of satisfying the μ-component of Eq. (228). Putting back in our explicit labels $\mu = \{\lambda, \alpha, j\}$, we have that, if the τ we chose at every η was a valid quantum state such that
\[f^\lambda_j(\rho)t^\lambda_j = s^\lambda_j \quad \text{or} \quad f^\lambda_j(\rho)|t^\lambda_j| \geq |s^\lambda_j|, \quad \forall \lambda, j, \alpha, \] (234)
then $\rho \xrightarrow{G} \sigma$, and thus Eq. (234) constitutes a sufficient condition on the transition $\rho \xrightarrow{G} \sigma$, as claimed. \hfill \Box

We now present the following theorem from which Theorem 8 in the main text follows as a corollary.

Theorem 31. Assume without loss of generality (Lemma 14) that $G(\sigma)$ is full-rank. Then there exists a G-covariant operation transforming ρ into σ if
\[\lambda_{\min} n^{-1} f^\lambda_j(\rho) \geq g^\lambda_j(\sigma), \quad \forall \lambda \neq 0, j, \] (235)
where we have defined $f^\lambda_j(\rho) := \text{tr}[\rho^\lambda G(\rho)^{-\frac{1}{2}} \rho^\lambda G(\rho)^{-\frac{1}{2}} g^\lambda_j(\sigma) := \sum_\alpha \left| \text{tr}[X^\lambda_j(\alpha)] \sigma \right|, \quad \lambda_{\min} \text{ as the smallest eigenvalue of } G(\sigma), \text{ and } n \text{ as the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of } G \text{ on } \mathcal{B}(\mathcal{H}_B), \text{ with } \mathcal{H}_B \text{ being the Hilbert space of the output system.}

Proof. We begin by making an explicit choice for $\{\tau_\theta\}$ in Lemma 30 and proceed by showing that each τ_θ corresponds to a valid quantum state.

For the $\lambda = 0$ irrep we always choose
\[t^{(0,\alpha)}_\theta := s^{(0,\alpha)}_0, \quad \forall \alpha, \] (236)
which corresponds to setting $G(\tau_\theta) = G(\sigma)$. Due to (F3), this choice guarantees that all zero mode conditions from Lemma 30 are satisfied for any given σ.

For $\lambda \neq 0$, let us choose
\[t^{(\lambda,\alpha)}_j := e^{i\varphi_j^{(\lambda,\alpha)}} c^{(\lambda,\alpha)}_j \left| s^{(\lambda,\alpha)}_j \right|, \quad c^{(\lambda,\alpha)}_j := \frac{\lambda_{\min}}{n \left(\sum_\alpha \left| s^{(\lambda,\alpha)}_j \right| \right)}, \quad g^{(\lambda,\alpha)}_j := -g^{(\lambda,\alpha)}_j \] (237)
where n is the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of G on $\mathcal{B}(\mathcal{H}_B)$. If τ_θ corresponds to a valid quantum state for all values of $g^{(\lambda,\alpha)}_j$, from Lemma 30 we immediately have the sufficient condition
\[f^\lambda_j(\rho) c^{(\lambda,\alpha)}_j \geq 1, \forall \lambda \neq 0, j, \] (238)
which, with the identification $g^{(\lambda,\alpha)}_j := \sum_\alpha \left| s^{(\lambda,\alpha)}_j \right| = \sum_\alpha \left| \text{tr}[X^{(\lambda,\alpha)}_j(\alpha)] \sigma \right|$, gives the statement of the lemma.

All that is left to do then is demonstrate that these choices of coefficients $t^{(\lambda,\alpha)}_j$ indeed correspond to a valid quantum state τ_θ. We first note that the choice $t^{(0,0)}_0 = s^{(0,0)}_0 = \frac{1}{\sqrt{d}}$ ensures that τ_θ has trace 1. Furthermore, since $\tau_\theta = G(\sigma) + \sum_{\lambda \neq 0, j} t^{(\lambda,\alpha)}_j X^{(\lambda,\alpha)}$, where the $t^{(\lambda,\alpha)}_j$ in the sum have been so chosen that $t^{(\lambda,\alpha)}_j = \left(t^{(\lambda,\alpha)}_j \right)^*$, τ_θ is the sum of two Hermitian operators and so is also Hermitian. All that remains is to verify that τ_θ is positive semidefinite, i.e.,
\[\langle \psi | \tau_\theta | \psi \rangle \geq 0, \] (239)
for any pure state $|\psi\rangle$ of the output system. The left hand side of this expression can be lower bounded in the following way for any $\theta_j^{(\lambda,\alpha)} \in [0, 2\pi)$:

$$
\langle \psi | \tau_\Theta | \psi \rangle = \sum_{\lambda,\alpha,j} t_j^{(\lambda,\alpha)} \langle \psi | X_j^{(\lambda,\alpha)} | \psi \rangle
$$

(240)

(240)

$$
= \sum_{\alpha: \lambda=0} s_0^{0,\alpha} \langle \psi | X_0^{(0,\alpha)} | \psi \rangle + \sum_{\lambda,\alpha,j: \lambda \neq 0} e^{i\theta_j^{(\lambda,\alpha)}} c_j^{\lambda} s_j^{(\lambda,\alpha)} \langle \psi | X_j^{(\lambda,\alpha)} | \psi \rangle
$$

$$
\geq \langle \psi | G(\sigma) | \psi \rangle - \sum_{\lambda,\alpha,j: \lambda \neq 0} c_j^{\lambda} s_j^{(\lambda,\alpha)} \left| \langle \psi | X_j^{(\lambda,\alpha)} | \psi \rangle \right|
$$

(242)

$$
\geq \lambda_{\text{min}} - \sum_{\lambda,\alpha,j: \lambda \neq 0} \frac{\lambda_{\text{min}}}{n} \left(\sum_{\lambda',\alpha'} s_{j'}^{(\lambda',\alpha')} \right) s_j^{(\lambda,\alpha)}
$$

(243)

$$
= \lambda_{\text{min}} - \frac{\lambda_{\text{min}}}{n}
$$

(244)

$$
= \lambda_{\text{min}} - \lambda_{\text{min}} = 0,
$$

(246)

where in the second inequality we have used the fact that the operators $\{X_j^{(\lambda,\alpha)}\}$ are normalized. This confirms that $\tau_\Theta \geq 0$ for all $\theta_j^{(\lambda,\alpha)} \in [0, 2\pi)$, which completes the proof.

The Sandwiched α–Rényi divergence $D_\alpha(\rho||\sigma)$ for two states ρ, σ of a quantum system is defined as [61, 62]

$$
D_\alpha(\rho||\sigma) := \frac{1}{\alpha - 1} \log \text{tr} \left[\sigma^{\frac{1-\alpha}{\alpha}} \rho^{\frac{1-\alpha}{\alpha}} \right]^{\alpha},
$$

(247)

whenever the support of ρ lies in the support of σ, and is infinite otherwise.

In the case of $\alpha = 2$, we extend the domain of the first argument to the set of all linear operators in the support of σ in the following manner:

$$
D_2(X||\sigma) := \log \text{tr} \left(\left[\sigma^{-\frac{1}{2}} X \sigma^{-\frac{1}{2}} \right]^\dagger \left[\sigma^{-\frac{1}{2}} X \sigma^{-\frac{1}{2}} \right] \right).
$$

(248)

When X is Hermitian, which is the case whenever X is a valid quantum state, this extension reduces to the standard definition of the sandwiched α–Rényi divergence for $\alpha = 2$. We can then summarize the theorem above as the following statement, reproduced from the main text:

Theorem 8. Let $0 \leq p \leq 1$ be a probability. There exists a G–covariant channel transforming ρ into $\sigma_p := (1-p)\sigma + p\frac{1}{d}$ if

$$
D_2(\rho^\lambda||G(\rho)) \geq \log g_j^\lambda(\sigma) - \log n^{-1} \left(\lambda_{\text{min}} + \frac{p}{d(1-p)} \right),
$$

(49)

for all $\lambda \neq 0, j$, where λ_{min} is the smallest non-zero eigenvalue of $G(\sigma)$, and $g_j^\lambda(\sigma) := \sum_\alpha \left| \text{tr} [X_j^{(\lambda,\alpha)} \sigma] \right|$. The operators $X_j^{(\lambda,\alpha)}$ form an ITO basis for $\mathcal{B}(\mathcal{H}_B)$, where \mathcal{H}_B is the Hilbert space of the output system, and n is the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of G on $\mathcal{B}(\mathcal{H}_B)$.

Proof. We consider the transition $\rho \xrightarrow{G} \sigma_p$, where $\sigma_p := (1-p)\sigma + p\frac{1}{d}$. We begin by noting that $\lambda_{\text{min}}[G(\sigma_p)] = (1-p)\lambda_{\text{min}} + \frac{p}{d}$ and $g_j^\lambda(\sigma_p) = (1-p)g_j^\lambda(\sigma)$ when $(\lambda, j) \neq (0, 0)$.

Therefore, substituting $\sigma_p := (1-p)\sigma + p\frac{1}{d}$ into Theorem 31 gives the sufficient condition on the transition $\rho \xrightarrow{G} \sigma_p$:

$$
n^{-1} \left(\lambda_{\text{min}} + \frac{p}{d(1-p)} \right) f_j^\lambda(\rho) \geq g_j^\lambda(\sigma), \forall (\lambda, j) \neq (0, 0).
$$

(249)

We now express this in terms of the extended sandwiched α–Rényi divergence $D_\alpha(\rho||\sigma)$ for $\alpha = 2$ defined in Eq. (248), and it is readily checked that $D_2(\rho^\lambda||G(\rho)) = \log f_j^\lambda(\rho)$ for all λ, j. Since $\log(x)$ is monotonic in x, we can re-express Eq. (249) as in the statement of the theorem, completing the proof.

□
When the input system A and output system B are identical, one can, without loss of generality, replace \mathcal{E}^η in Lemma 27 with $(1-q)\mathcal{I} + q\mathcal{E}^\eta$, where q is a probability and \mathcal{I} is the identity channel. The conditions of Lemma 27 are then rewritten as:

$$(1-q)\langle \eta, \rho \rangle + q\langle \eta, \mathcal{E}^\eta(\rho) \rangle \geq \langle \eta, \sigma \rangle, \quad \text{for all } \eta \text{ and any } q \in [0,1],$$

(250)

for an arbitrary family of covariant channels $\{\mathcal{E}^\eta\}$ parameterised by η, which can be rearranged as

$$q\langle \eta, \mathcal{E}^\eta(\rho) \rangle \geq \langle \eta, (\sigma - (1-q)\rho) \rangle, \quad \text{for all } \eta \text{ and any } q \in (0,1],$$

(251)

and so we define

$$\sigma(q) := \sigma - (1-q)\rho,$$

(252)

for any $q \in [0,1]$ for which we require

$$q\langle \eta, \mathcal{E}^\eta(\rho) \rangle \geq \langle \eta, \sigma(q) \rangle, \quad \text{for all } \eta \text{ and any } q \in [0,1].$$

(253)

Therefore, when the input and output systems are the same, Lemma 30 can be upgraded to

Lemma 32. Let us define components $t_j^{(\lambda, \alpha)} := \langle X_j^{(\lambda, \alpha)}, \tau \rangle$ and $s(q)_{j}^{(\lambda, \alpha)} := \langle X_j^{(\lambda, \alpha)}, \sigma(q) \rangle$. When the input system A and the output system B are identical, the state ρ can be transformed into σ covariantly with respect to a symmetry group G (i.e. $\rho \xrightarrow{G} \sigma$) if there exists a family of valid quantum states

$$\left\{ \forall \theta^{(\lambda, \alpha)} \in [0, 2\pi) : \tau_\Theta = \sum_{\lambda, \alpha, j} t_j^{(\lambda, \alpha)} X_j^{(\lambda, \alpha)} \right\},$$

(254)

where each (λ, α, j)-component of τ_Θ satisfies either:

$$q f_j^\lambda(\rho) t_j^{(\lambda, \alpha)} = s(q)_{j}^{(\lambda, \alpha)}, \quad \text{or,}$$

$$q f_j^\lambda(\rho) |t_j^{(\lambda, \alpha)}| - |s(q)_{j}^{(\lambda, \alpha)}| \geq 0, \quad |t_j^{(\lambda, \alpha)}| = e^{i\theta_j^{(\lambda, \alpha)}} |t_j^{(\lambda, \alpha)}|,$$

(255)

(256)

for some probability $q \in [0,1]$.

Proof. The proof follows that of Lemma 30 with $\mathcal{E}^\eta \rightarrow q\mathcal{E}^\eta$ and $\sigma \rightarrow \sigma(q)$. \qed

These conditions are identical to those in Lemma 30 under $f_j^\lambda(\rho) \rightarrow q f_j^\lambda(\rho)$ and $\sigma \rightarrow \sigma(q)$. Making use of this lemma, we find that, when the input and output systems are the same, Theorem 31 can be similarly upgraded to

Theorem 33. Assume that $\mathcal{G}(\sigma)$ is full-rank. When the input and output systems are identical, there exists a G-covariant operation transforming ρ into σ if $\rho \rightarrow \sigma$ or if there exists a probability $q \in (0,1]$ such that

$$\lambda_{\min}(\mathcal{G}(\sigma(q))) n^{-1} f_j^\lambda(\rho) \geq g_j^{\lambda}(\sigma(q)), \quad \forall \lambda \neq 0, j,$$

(257)

and $\mathcal{G}(\sigma(q)) \geq 0$, where we have defined $f_j^\lambda(\rho) := \text{tr}[\rho^2 \mathcal{G}(\rho)^{-\frac{1}{2}} \rho^\dagger \mathcal{G}(\rho)^{-\frac{1}{2}}]$, $g_j^{\lambda}(\sigma(q)) := \sum_{\alpha} \left| \text{tr}[X_j^{(\lambda, \alpha)} \sigma(q)] \right|$, n as the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of G on $\mathcal{B}(\mathcal{H}_B)$, with \mathcal{H}_B being the Hilbert space of the output system, and $\lambda_{\min}(\mathcal{G}(\sigma(q)))$ as the smallest eigenvalue of $\mathcal{G}(\sigma(q))$.

Proof. The only covariantly accessible state at $q = 0$ from ρ is ρ itself. At all other values of q, the proof follows that of Theorem 31 with the substitutions $f_j^\lambda(\rho) \rightarrow q f_j^\lambda(\rho)$ and $\sigma \rightarrow \sigma(q)$, except for the following caveat. The part of that proof demonstrating why τ_Θ is positive relies on $\mathcal{G}(\tau_\Theta)$ being positive, which may not be true for all $q \neq 0$, since we now assign $\mathcal{G}(\tau_\Theta) := q^{-1} \mathcal{G}(\sigma(q))$, but because $q^{-1} \sigma(q)$ or equivalently $\mathcal{G}(\sigma(q))$ may not be positive for all $q \neq 0$, $q^{-1} \mathcal{G}(\sigma(q))$ may not be either. We therefore additionally impose $\mathcal{G}(\sigma(q)) \geq 0$. \qed

By applying Theorem 33 to a partially depolarised version of σ, $\sigma_p := (1-p)\sigma + p \frac{1}{d_S}$, and noting once again that $D_2(\rho^2_{\psi}||\mathcal{G}(\rho)) = \log f_j^\lambda(\rho)$, we obtain Theorem 9 of the main text as an immediate corollary. We note that the assumption of $\mathcal{G}(\sigma)$ being full-rank can be dropped by using Lemma 14 to justify truncating the output Hilbert space to $\text{supp}(\mathcal{G}(\sigma))$, and then redefining $\sigma_p \rightarrow (1-p)\sigma + p \frac{1}{d_S}$, where d_S is the dimension of $\text{supp}(\mathcal{G}(\sigma))$, $\lambda_{\min}[-]$ becomes $\min_{\langle \psi \rangle \in \mathcal{H}_S} \langle \psi | (-) | \psi \rangle$, and n becomes the sum of the dimensions of all distinct non-trivial irreps appearing in the representation of \mathcal{G} on $\mathcal{B}(\text{supp}(\mathcal{G}(\sigma)))$.
