Copper oxide nanostructured thin films processed by SILAR for optoelectronic applications

Md Abdul Majed Patwary, Md Alauddin Hossain, Bijoy Chandra Ghos, Joy Chakrabarty, Syed Ragibul Haque, Sharmin Akther Rupa, Jamal Uddin and Tooru Tanaka

The lack of high-functioning p-type semiconductor oxide material is one of the critical challenges that face the widespread performance of transparent and flexible electronics. Cu$_2$O nanostructured thin films are potentially appealing materials for such applications because of their innate p-type conductivity, transparency, non-toxicity, abundant availability, and low-cost fabrication. This review summarizes current research on Cu$_2$O nanostructured thin films deposited by the SILAR technique. After a brief introduction to the advantages of Cu$_2$O semiconductor material, diverse approaches for depositing and growing such thin films are discussed. SILAR is one of the simplest deposition techniques in terms of better flexibility of the substrate choice, the capability of large-area fabrication, budget-friendly, deposition of stable and adherent film, low processing temperature for the film fabrication as well as reproducibility. In addition, various fabrication parameters such as types of copper salts, pH of precursors, number of cycles during immersion, annealing of as-deposited films, doping by diverse dopants, and growth temperature affect the rate of fabrication with the structural, electrical, and optical properties of Cu$_2$O nanostructured thin films, which led the technique unique to study extensively. This review will include the recent progress that has recently been made in different aspects of Cu$_2$O processed by the SILAR. It will describe the theory, mechanism, and factors affecting SILAR-deposited Cu$_2$O. Finally, conclusions and perspectives concerning the use of Cu$_2$O materials in optoelectronic devices will be visualized.

1. Introduction

1.1 Background

Copper (Cu) and copper oxide (Cu$_2$O) thin films have been studied extensively due to their potential application in semiconductor technology long before the Ge and Si era started, and researchers have faced much more difficult to work with this oldest material ever. The n-type window layer semiconductors such as ZnO, ITO, FTO, and GaN with large bandgap energies have already achieved outstanding optical as well as electronic transport properties. Consequently, the effort of detecting new, prospective p-type absorber layers for optoelectronics devices has led to intensive research.

Cu$_2$O semiconductors are very attractive and have been broadly studied in both theoretical analysis and investigations into applied executions of nano or optoelectronic devices due to their chemically stable nature, nontoxicity, relative abundance, potential particle size effects, excellent performance as a catalyst, and fulfill all the requirements for low-cost manufacturing at ambient conditions, which have high potential usage in energy storage, conversion, and next-generation rechargeable lithium-ion batteries. Furthermore, Cu$_2$O nanostructures are extensively used in other diverse applications, including photovoltaics, photodetectors, nanofluid, energetic materials, field emissions, supercapacitors, biosensors, gas sensors, photocatalysis, removal of inorganic pollutants, and magnetic storage media.

Both the Cu$_2$O and CuO show direct transition nature with a direct band gap of around 2.1 and 1.5 respectively, having a high extension coefficient of above 10^5 cm$^{-1}$. Since the theoretical limit of the energy conversion efficiency of Cu$_2$O and CuO is as high as 20 and 29%, respectively under air mass (AM) 1.5 solar illumination, numerous efforts were done to increase the efficiency of Cu$_2$O solar cells, but the performance remains very poor. In the case of Cu$_2$O solar cells, it is not more than 8.1%, whereas in the case of CuO it is lower and still about 3%. Toward the large area fabrication, it is crucial to establish the thin film growth technique for Cu$_2$O. Thus, the research of Cu$_2$O thin films has both high-tech and scientific consequences.
Cu$_2$O nanostructured thin films have been synthesized by various approaches like electrodeposition, electron beam evaporation, magnetron sputtering, molecular beam epitaxy, sol-gel, solution growth, spin coating, successive ionic layer adsorption and reaction (SILAR), thermal evaporation, and vapor deposition. Among all the deposition methods, SILAR is one of the simplest methods in terms of better flexibility on substrate choice, the capability of large area fabrication and deposition of the stable and adherent film, low processing temperature for film fabrication as well as reproducibility. This technique is very budget friendly since it does not require any sophisticated equipment. Moreover, various fabrication parameters such as pH, annealing temperature and time, doping elements, the concentration of precursor solutions, and temperature of the precursor solutions affect the rate of fabrication as well as the structural, optical, and electrical properties of the fabricated thin films led the technique unique to study in an extensive manner.

More than a few reviews of different aspects of Cu$_2$O-based optoelectronics have been published based on the fabrication technique but still no such report for the SILAR technique. This paper concerns the progress that has recently been made in diverse aspects of Cu$_2$O-based thin films processed by the SILAR method, following the introduction in section one, several deposition techniques are reviewed in section two. The third section of this paper describes the theory and mechanism of deposition of the stable and adherent film. Moreover, various fabrication parameters such as pH, annealing temperature and time, doping elements, the concentration of precursor solutions, and temperature of the precursor solutions affect the rate of fabrication as well as the structural, optical, and electrical properties of the fabricated thin films led the technique unique to study in an extensive manner.

More than a few reviews of different aspects of Cu$_2$O-based optoelectronics have been published based on the fabrication technique but still no such report for the SILAR technique. This paper concerns the progress that has recently been made in diverse aspects of Cu$_2$O-based thin films processed by the SILAR method, following the introduction in section one, several deposition techniques are reviewed in section two. The third section of this paper describes the theory and mechanism of deposition of the stable and adherent film. Moreover, various fabrication parameters such as pH, annealing temperature and time, doping elements, the concentration of precursor solutions, and temperature of the precursor solutions affect the rate of fabrication as well as the structural, optical, and electrical properties of the fabricated thin films led the technique unique to study in an extensive manner.

More than a few reviews of different aspects of Cu$_2$O-based optoelectronics have been published based on the fabrication technique but still no such report for the SILAR technique. This paper concerns the progress that has recently been made in diverse aspects of Cu$_2$O-based thin films processed by the SILAR method, following the introduction in section one, several deposition techniques are reviewed in section two. The third section of this paper describes the theory and mechanism of deposition of the stable and adherent film. Moreover, various fabrication parameters such as pH, annealing temperature and time, doping elements, the concentration of precursor solutions, and temperature of the precursor solutions affect the rate of fabrication as well as the structural, optical, and electrical properties of the fabricated thin films led the technique unique to study in an extensive manner.

Table 1 Crystallographic properties of Cu$_2$O and CuO

Parameters	Cu$_2$O	CuO
Unit cell	a = b = c = 4.26 Å	a = 4.6837 Å, b = 3.4226 Å, c = 5.1288 Å
Space group	Pn3m (224)	C2/c (15)
Bond length, Å	Cu–O = 1.849	1.96
	O–O = 3.68	2.62
	Cu–Cu = 3.012	2.90
Cell volume, Å3	77.83	81.08
Formula weight	143.14	79.57
Density, g cm$^{-3}$	5.749–6.140	6.515
Melting point, °C	1235	1201

1.2 Properties of copper oxides (Cu$_2$O)

Cu$_2$O exists as a simple cubic Bravais lattice with a space group of (Pn3m) or (O4h). Each unit cell consists of six atoms, the four Cu atoms are in a face-centered cubic lattice while the two O atoms are at the tetrahedral positions creating a body-centered cubic sublattice. Thus, O atoms are fourfold coordinated with Cu atoms as closest neighbors, and Cu atoms are linearly coordinated with two O atoms as closest neighbors as shown in Table 1. On the other hand, the unit cell of CuO fits into a monoclinic structure with the space group C2/c and the lattice parameters are represented in the table (PDF No. 89-5898). In each CuO unit, there exist four Cu–O bonds. As demonstrated in the table, in a unit, each Cu atom is surrounded by the four closest coplanar O atoms. The four O atoms are positioned at the angles of an almost rectangular parallelogram, which then unites another two O atoms to shape a highly distorted octahedron. The O atom is enclosed by the four closest Cu atoms positioned at the angle of a tetrahedron.

1.3 Band-structure calculation

Ab initio calculations are mandatory to understand the optical and electronic properties of the Cu$_2$O systems. But there is a challenge for standard ab initio investigations based on DFT for both Cu$_2$O and CuO. The exchange–correlation function is the crucial ingredient in the theoretical description. Fig. 1 and 2 represent the band structures, density of states (DOS), and partial density of states (PDOS) of the Cu$_2$O and CuO compounds. The results were simulated for both Cu$_2$O and CuO unit cells using CASTEP software within the LDA + U and the calculated bandgaps were found as 1.647 and 1.52 eV respectively.
2. Thin film deposition process

2.1 Physical deposition methods

The physical deposition methods have diverse techniques to attain thin films with good quality. It can be summarized with the raw materials, deposition conditions as well as cost of production as shown in Table 2.

2.2 Chemical deposition methods

Likewise, diverse chemical deposition techniques with the deposition condition, raw materials, cost of production, the usual use of substrate etc. are discussed in Table 3 as shown below:

2.3 Advantages and disadvantages of deposition techniques

Till now, a lot of deposition techniques are available to fabricate high-quality thin films having diverse applications. For a better understanding, the advantages, and disadvantages of some of the chemical deposition techniques such as chemical bath deposition (CBD), atomic layer deposition (ALD) as well as spin coating are summarized to understand the potentiality of the SILAR method in Table 4.

Fig. 1 Band structures of Cu$_2$O and CuO unit cells are drawn by CASTEP using LDA + U.

Fig. 2 DOS and PDOS of Cu$_2$O and CuO unit cells are drawn by CASTEP using LDA + U.
3. Theory and mechanism of SILAR process

SILAR is an extensively applied technique to fabricate high-quality metal oxide or halide thin films.\(^\text{84,85}\) During deposition, successive ionic layer adsorption and reaction of the ions take place at the solid–solution interface of the substrate. Thus, the thin film of the compound, \(\text{A}_x\text{B}_y\) is deposited onto the substrate surface by dint of the adsorbed cations, \(x\text{A}^{p+}\) and anions, \(y\text{B}^{q-}\) due to the following heterogeneous chemical reaction:

\[
 x[A(L_n)]^{p+} + p\text{P}^{q+} + q\text{Q}^{q-} + y\text{B}^{q-} \rightarrow \text{A}_x\text{B}_y + q\text{Q}^{q+} + p\text{P}^{q+}
\]

where, \(x, p, q, y\) and \(p^+, x^+, y^+, q^-\) are the number and charges of the corresponding ions \(\text{A}\) (metal ions), \(\text{P}\) (cationic precursor), \(\text{Q}\) (anionic precursor) and \(\text{B}\) (anions) respectively.\(^\text{85,86}\) Sometimes, the ligands, \(L_n\) are a necessity to complete the reaction.\(^\text{87–90}\)

In the case of \(\text{Cu}_2\text{O}\) film deposition mechanism, salts of \(\text{Cu}^{2+}\) are used to deposit copper oxide thin films. In most of the research on \(\text{Cu}_2\text{O}\), firstly copper(I) thiosulfate complex is formed by the redox reaction between \(\text{Cu}^{2+}\) and \(\text{S}_2\text{O}_3^{2-}\) ions which results in a colorless solution. The corresponding reactions are:

Oxidation half-reaction:

\[
 2\text{S}_2\text{O}_3^{2-} \rightarrow \text{S}_4\text{O}_6^{2-} + 2e^{-}
\]

Reduction half-reaction:
Techniques	Raw materials	Chemical deposition	Substrate	Film quality	Budget	Ref.
Chemical deposition	Cu(NO$_3$)$_2$, CH$_3$OH, triethanolamine, hydrazine hydrate	Rotating speed: 200 °C; Annealing temperature: 200–400 °C	Glass	Good	Low	53 and 54
	Cu, HNO$_3$, HF, C$_2$H$_5$OH, Na$_2$SO$_4$, CH$_3$COOH$_3$	Temperature: 30 °C; Molar ratio: HNO$_3$:HF-10:1 to 135:1; HNO$_3$ conc: 0–1.2 mmol L$^{-1}$; Water bath time: 2–6 days; Water-bath temperature: 10–45 °C	Cu	Excellent	Low	36 and 37
Chemical vapor deposition (CVD)	Cu dipivaloylmethanate, Cu(C$_2$H$_5$O$_2$)$_2$, O$_2$	Temperature: 30–80 °C; Applied potential: –0.1 to –0.4 V; Deposition time: 45 min	Si wafer	Glass	High	61–63
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, C$_6$H$_5$Na$_3$O$_7$; KOH	pH: 11; Time: 20–60 min; Applied potential: 0.4 V; Temperature: 30 °C	FTO			
	Cupric acetate, sodium acetate, CH$_3$COOH, NaOH	Temperature: 20, 55 °C; Applied potential: –0.1 to –0.4 V; Deposition time: 45 min	Ti	Excellent	Low	57–60
	CuSO$_4$, 5H$_2$O, lactic acid, NaOH	Temperature: 30 and 60 °C; Applied potential: –150 to –800 mV	Ti			
	CuSO$_4$, 5H$_2$O, tri-sodium citrate dehydrate, C$_6$H$_5$Na$_3$O$_7$; KOH	pH: 11; Time: 20–60 min; Applied potential: 0.4 V; Temperature: 30 °C	FTO			
	CuSO$_4$, 5H$_2$O, CH$_3$COONa, Na$_2$SO$_4$, CH$_3$COOH$_3$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, (CH$_3$)$_2$CHOH	Temperature: 200–350 °C; Applied potential: 0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, C$_6$H$_5$Na$_3$O$_7$; KOH	pH: 11; Time: 20–60 min; Applied potential: 0.4 V; Temperature: 30 °C	FTO			
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, (CH$_3$)$_2$CHOH	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
	Cu(CH$_3$COO)$_2$, H$_2$O, Cu$_2$H$_2$O$_6$	Temperature: 200–350 °C; Applied potential: –0.4 V; Deposition time: 45 min	Glass	Excellent	Low	55 and 56
Table 3 (Contd.)

Techniques	Raw materials	Conditions	Substrate	Film quality	Budget Ref.
Atomic layer deposition (ALD)	Cu(CH₃COO)₂·H₂O, Cu(CH₃COO)₂·H₂O vapor	Temperature: 180–220 °C, Rector pressure: 10 mbar, N₂, H₂O and O₂ flow rate: 400 sccm, Deposition cycles: 500–7000	Glass Si	Excellent	64 and 65
	Cu(II)-bis-(dimethylamino-2-propoxide), O₃	pO₂: 34 Pa, Substrate temperature: 112–165 °C, Deposition cycles: 500–10000	SiO₂/Si		

Table 4 Involved advantages and disadvantages of the deposition techniques

Techniques	Merits	Demerits
CBD	Simple and cost effective	Precipitation occurs in the bath causing serious problems
	Stoichiometric deposition⁶⁶	Materials are lost⁷⁰
	Low fabrication temperature	Films are badly cohered onto the substrate
	Capability of depositing large area films (≈10 cm²)⁶⁷	Produces powdery films
	Various types of substrates are used⁶⁸	Failed to control film thickness
	Tuning film qualities by controlling growth parameters	Deposited films are contaminated though organic additives
	Deposition of ternary and quaternary compounds⁶⁹	Opposite ions present in the reaction bath
	Facile and economical	Perfect adsorption of ions requires on the substrate surface
	Potentiality to grow large-surface films (≈10 cm²)⁷¹	Substrate surface must be balanced completely through precursor solution⁷³
	Reproducibility	
	Any kind of substrate can be used	
	No need to use sophisticated instrument or vacuum pump	
	No precipitation occurs in the bath	
	Synthesis of doped, ternary, and quaternary compounds	
	Does not need premium quality target	
	Controlling on film thickness	
	Avoid unnecessary heating	
	Minimization of dislocation density by controlling deposition parameters⁷²	
	Fabricated stable and sticky films⁷⁶	
SILAR		
ALD		
Spin coating	Dominated over film thicknesses	
	Easy and effortless	
	Affordable	
	Fabricated stable cohered films	
	Deficit of coupled variables	
	Reproducibility⁷⁸,⁷⁹	
	Ability to use thermally unstable precursors due to slow degradation⁸⁴,⁸⁵	
	Layer by layer film deposition	
	Deposition can be performed at relatively low temperature	
	Soft substrates can be used	
	Sluggish deposition process	
	Highly refined substrate is required	
	Instrument and substrate are highly priced	
	Several trials required to set optimize film growth condition	
	Process is restricted to non-volatile compounds	
	Unfavorable for heat sensitive biological substrates⁷⁶,⁷⁷	
	Hindered to use multiple substrates at a time	
	Restricted to utilize big substrate	
	Low material productivity	
	Inexpensive with respect to photoresist and substrate size	
	95–98% materials are wasted⁸⁰	
	Less effective in nanotechnology due to quick drying⁸¹	
Overall reaction:

$$2\text{Cu}^{2+} + 4\text{S}_2\text{O}_3^{2-} \rightarrow 2[\text{Cu(S}_2\text{O}_3)]^- + \text{S}_4\text{O}_6^{2-}$$

In the above reactions, $[\text{Cu(S}_2\text{O}_3)]^-$ the complex solution is regarded as the cationic precursor solution (cold solution) while NaOH is the anionic precursor solution, which is being kept at 70 °C (hot solution). When the substrate is immersed in the hot solution, OH$^-\,$ ions are adsorbed onto the substrate and subsequently dipping into the cold solution results in the adsorption of Cu$^+$ ions. Thus, one SILAR cycle is completed and Cu$_2$O thin film is formed due to the reaction between Cu$^+$ and OH$^-\,$ ions. Rinsing is carried out after every immersion to exclude loosely adhered particles. The number of cycles as well as dipping time varies based on required film thicknesses. Corresponding reactions are given below and the growth mechanism is schematically represented in Chart 1.

$$[\text{Cu(S}_2\text{O}_3)]^- \rightarrow \text{Cu}^+ + 2\text{S}_2\text{O}_3^{2-}$$

$$2\text{Cu}^+ + 2\text{OH}^- \rightarrow \text{Cu}_2\text{O(s)} + \text{H}_2\text{O}$$

Therefore, a basic SILAR cycle comprises four different steps. The steps are represented in the following chart:

Consequently, a SILAR cycle covers four diverse steps on the surface, associating alternative immersion of the substrate into cationic and anionic precursor solution followed by rinsing in each immersion cycle to remove loosely adhered particles as demonstrated in Chart 2 and discussed below:

3.1 **Adsorption**
First SILAR stage forms the Helmholtz double layer owing to the initial adsorption of the cationic precursor such as Cu$^+$ on the substrate surface. This layer is generally composed of two charged layers, the positively charged, Cu$^+$, inner layer and the negatively charged, $(\text{S}_2\text{O}_3)^{2-}$, outer layers.

3.2 **Rinsing I**
In the second stage, extra adsorbed ions, Cu$^+$ and $(\text{S}_2\text{O}_3)^{2-}$, are rinsed away from the diffusion layer towards the bulk solution and a hypothetical monolayer is formed, resulting in a saturated electrical double layer.

3.3 **Reaction**
In the reaction step, the anions, OH$^-\,$, from the anionic precursor solution are entered into the scheme. A solid
substance, Cu₂O, is synthesized on the interface due to the low stability of the material. This procedure pays the reaction of Cu⁺ species with the anionic precursor such as OH⁻.

3.4 Rinsing II

In the final SILAR cycle, the extra and unreacted species such as (S₂O₃)²⁻, Na⁺ as well as by-products of the reaction from the diffusion layer are removed leaving expected thin films.

The above deposition process involved alternate immersion of the substrate into cationic and anionic precursor solution followed by rinsing in every immersion cycle to eliminate loosely adhered particles.³⁶ Fig. 3 represents the synthesis of copper(i) oxide nanorod thin films in presence of NaCl using the SILAR deposition system.³⁷ Earlier to the film deposition, the colorless copper–thiosulfate complex was made ready by mixing 10 mL 1 M copper(II) sulfate and 40 mL 1 M sodium thiosulfate into a 100 mL volumetric flask. Then, in addition to DI water, the required amount of NaCl electrolyte was further added to the same flask and the produced complex solution was the cold solution. Meanwhile, 2 M NaOH solution was kept constant at 70 °C and treated as the hot solution. The substrate such as soda lime glass was then alternatively submerged in cold and hot solutions respectively for the required time interval and completed one SILAR cycle. To fabricate a thin film, this procedure was repeated for up to several immersion cycles.

The formation of Cu₂O nanorod thin films in presence of a NaCl electrolyte at various concentrations were discussed by using SEM micrographs as shown in Fig. 4. The film fabricated with no NaCl electrolyte demonstrated pencil-thin, and crack-free nanorod with an overgrown cluster in some areas on the substrate surface, as also detected in our earlier study.³⁷ When 2 mmol of NaCl of the electrolyte was introduced into the solution, the crowded nanorods were developed, and the formation of nanorods enhanced with the increase in the concentration of NaCl to 4 mmol, showing a larger size and shape as observed in the Fig. 4(c). Very rough, tiny and dense spherical grains as well as some overgrown clusters were seen with an additional increase in the concentration of NaCl to 6 mmol. Such an overgrown cluster was produced due to the coalescence of the particles.³⁸ Characteristically distributed, clear, and larger-sized spherical grains were revealed with further addition of NaCl electrolyte of 8 mmol. Thus, the NaCl...
electrolyte has the potential impact to change the surface morphologies from nanorods to spherical grains. The growth of Cu₂O nanorod thin films was sensitive to the concentration of salts added as also stated for CuO. The growth of Cu₂O nanostructures was increased gradually with the rise of NaCl concentration but until a limit. Such phenomena signify that NaCl concentration will consequence in similar morphology of the product and perform key roles in governing the size and

Table 5 Raw materials are used for the formation of CuₓO thin films by the SILAR method

Formation	Cationic precursors	Complexing agents	Anionic precursors	Ref.
Cu₂O	Cu(CH₃COO)₂·H₂O	Na₂S₂O₃·5H₂O	NaOH	96
	CuSO₄·5H₂O	Na₂S₂O₃·5H₂O	NaOH	96
	Cu(NO₃)₂·3H₂O	Na₂S₂O₃·5H₂O	NaOH	96
	CuCl₂·2H₂O	Na₂S₂O₃·5H₂O	NaOH	96
	CuCl₂·2H₂O	NH₃	H₂O₂	97
CuO	CuCl₂·2H₂O	NH₃	H₂O	98
	Cu(CH₃COO)₂·nH₂O	NH₄CH₃COO	H₂O	99

Fig. 4 SEM images of the samples fabricated at (a) 0 mmol, (b) 2 mmol, (c) 4 mmol, (d) 6 mmol, and (e) 8 mmol of NaCl electrolyte.
shape of the Cu$_2$O nanorods. Moreover, the steric hindrance caused by salt concentration might have affected the micelle aggregates, and these effects collected the assemblies of the products. More investigations are ongoing to elucidate the mechanisms for the growth process caused by the novel anticipated route.

4. Factors affecting SILAR deposition process

4.1 Types of copper salts

In the SILAR technique, Cu$_x$O thin films were studied and fabricated by using different copper salts as summarized in Table 6:

Table 6 Properties of Cu$_x$O thin films deposited by varying solution pH applying SILAR method

pH	Cationic	Anionic	To alter pH	Phase formed	Thickness (nm)	Crystallite (nm)	Band gap (eV)	Resistivity \times 103 (Ω cm)	Ref.
2.35	[Cu(S$_2$O$_3$)$_2$]$^+$	2 M NaOHa	H$_2$SO$_4$	Cu$_2$O	340	17	2.05	0.21	36
3.45	2 M NaOHa	CH$_3$COOH	729	21	2.10	0.18			
4.50	2 M NaOH	CH$_3$COOH	800	15-22	2.30	72	37		
5.10	2 M NaOH	CH$_3$COOH	1000		2.28	103			
6.20	2 M NaOH	CH$_3$COOH	1800		2.43	742			
7.33	2 M NaOHa	-	1130	18	2.15	0.37	36		
7.33	1 M NaOH	-	336	13	2.16	0.18			
7.95	2 M NaOH	-	1477	15-22	2.42	21.9	37		
9.0	[Cu(NH$_3$)$_4$]$^{2+}$	H$_2$O	CuO	42	37.4	1.61	—	105	
9.5	H$_2$O	-	67	22.4	1.49	—			
10.0	H$_2$O	-	85	22.9	1.49	—			
10.0	H$_2$O	H$_2$SO$_4$	520	14	2.17	6.5	94		
10.5	H$_2$O	H$_2$SO$_4$	590	21	2.07	5.5			
11.0	H$_2$O	H$_2$SO$_4$	680	27	2.02	4.0			
11.5	H$_2$O	H$_2$SO$_4$	770	30	1.99	4.25			
12.0	H$_2$O	H$_2$SO$_4$	820	36	1.89	4.5			

a OP = optimized precursor (2 M NaOH).
Table 5. Generally, most of the studies were done by using CuSO$_4$·5H$_2$O as a basic salt for the formation of Cu$_2$O thin films, whereas CuCl$_2$·2H$_2$O was used for the formation of CuO thin films. The mechanism of both salts was discussed elsewhere in this article.

Altindemir et al. examined CuSO$_4$·5H$_2$O with the other three different salts such as (CH$_3$COO)$_2$·H$_2$O, Cu(NO$_3$)$_2$·3H$_2$O and...
CuCl$_2$·2H$_2$O to fabricate Cu$_2$O thin films. Field emission-scanning electron microscope (FE-SEM) photographs of the deposited Cu$_2$O thin films were demonstrated in Fig. 5(a)–(d). The deposited Cu$_2$O thin film using the (CH$_3$COO)$_2$Cu·H$_2$O salt demonstrated the cauliflower-like pattern having zero voids between the grains as seen from the images whereas, in the case of the CuSO$_4$·5H$_2$O salt, the grain size of the film showed the spherical form having no voids between the grains as in Fig. 5(a) and (b). The grain of the Cu$_2$O thin film deposited using the Cu(NO$_3$)$_2$·3H$_2$O salt revealed both cauliflower-like and rod shapes as in Fig. 5(c) whereas by means of the CuCl$_2$·2H$_2$O salt showed the cauliflower-like shape with discrete spaces between the grains as in Fig. 5(d).

On the other hand, CuCl$_2$·2H$_2$O salt was employed to fabricate CuO thin films using NH$_3$ as a complexing agent. But Chatterjee and co-workers utilized H$_2$O$_2$ as an oxidizing agent with CuCl$_2$·2H$_2$O and NH$_3$ solution to fabricate Cu$_2$O thin films instead of CuO thin films. Similarly, Cu(CH$_3$COO)$_2$·nH$_2$O and NH$_3$·CH$_3$COO solution could be the potential choice to fabricate CuO thin films.

4.2 pH of the precursor solution

Impact of solution pH on the properties of Cu$_2$O nanostructured thin films deposited by SILAR was studied in the pH scale range from 2.35 to 12 as shown in Table 6. The study was accomplished by controlling the pH of cationic and anionic precursor solutions by adjusting the additional acid and/or bases such as H$_2$SO$_4$, CH$_3$COOH, NaOH and NH$_3$·H$_2$O.

To optimize the growth condition to fabricate the FTO/Cu$_2$O/ZnO heterojunction solar cell, Farhad and co-workers extensively studied the effect of pH in between 2.35 and 7.95. During the study, the Cu$_2$O thin films have grown by slightly modifying the original SILAR method, just by eliminating step 2 as shown in Chart 1 and named the technique as modified SILAR method. 10% H$_2$SO$_4$ and CH$_3$COOH were added dropwise into cationic precursor solution to adjust solution pH, as well as the concentration of anionic precursor (NaOH), was also varied (1–2 M). The addition of CH$_3$COOH into the optimized precursor solution (OP + CH$_3$COOH) improved the quality of the crystal having a larger crystallite size of 21 nm whereas H$_2$SO$_4$ played the opposite role. Strong H$_2$SO$_4$ etches film thickness and it decreased with decreasing pH of the cationic precursor solution. From the SEM micrograph it is observed that the optimized solution (OP ~ 2 M NaOH) showed compacted and larger spherical grains (D ~ 231–259 nm) while the non-optimized solution (1 M NaOH) revealed irregular surface morphology with tiny grains (D ~ 164 nm) which is as shown in Fig. 6. Grain size and band gap decreased with decreasing pH of cationic precursor solution such as 259–164 nm and 2.16–2.05 eV respectively. The electrical resistivity varies in the range of 0.18–0.38 kΩ cm and among optimized solutions OP + CH$_3$COOH showed the lowest resistivity. The resistivity of the modified SILAR grown samples had (1–5) order magnitudes less than those deposited by Nair and Ristov’s SILAR, and electrodeposition method.

To justify further the effects of CH$_3$COOH and rinsing steps, Farhad and co-workers again deposited thin films at pH 4.50–7.95 by adding CH$_3$COOH into cationic precursor solutions. It is seen that film deposited without any rinsing step showed the lowest band gap due to the high film thickness and vice versa which is shown in Fig. 7(a). pH 5.10 which was maintained by adding CH$_3$COOH exhibited a larger and densely packed grain size (~300–530 nm) compared to pH 7.95 where no use of
Cu₂O 50 550 16 3.72 6.82 2.11 106

and 70 °C in the pH range from 8 to 11. At RT, the pure Cu₂O heterojunction shows diode-like characteristics thin phase exists with pH 8, while mixed phases of Cu the optimum temperature for the growing phase of pure Cu₂O pH 11. Whereas, at 70 °C, only the pure Cu²O phase was control of the properties of Cu₂O thin films.

Umeri and coworkers described the effect of pH and growth temperature during the deposition of Cu₂O thin films at RT and 70 °C in the pH range from 8 to 11. At RT, the pure Cu₂O phase exists with pH 8, while mixed phases of CuO appeared at pH 11. Whereas, at 70 °C, only the pure Cu₂O phase was deposited in the pH region of 8–11, which indicates that 70 °C is the optimum temperature for the growing phase of pure Cu₂O thin films as also supported by other reported results. At 70 °C, the optical band gap (E₉) rises from 1.85 to 2.0 eV with the rise of pH from 8 to 11, while the trend showed the opposite at RT and declines from 2.0 to 1.6 eV with the rise of pH. This might be because of the change in the composition from Cu₂O to CuO. From SEM micrographs, it is seen that at RT, the compact thin film was produced with pH 8 with an overgrown cluster in some spaces and when the pH increased to 11, overgrown cluster formation was diminished, and network-like nanofibers were observed. Conversely, at 70 °C and pH 9, a fiber-like nanofiber structure was formed, that looked like the morphology of films grown at RT with pH 11. Consequently, uniform, overgrown clusters free of close-packed and interconnected nanofibers of Cu₂O were observed at 70 °C and pH 11 with a band gap of 2.0 eV. Thus, temperature-dependent pH has a significant controlling overgrowth and properties of the deposited films.

Likewise, Cu₂O, the influence of pH on the physical properties of CuO thin films was investigated by Visalakshi et al. The pH (~10–12) of the cationic precursor solution was maintained by adding concentrated NH₄OH. Film thickness, crystallite size, and texture coefficient rise with the rising pH of cationic precursor solution but dislocation density and strain decreases. SEM images concluded that pH 10 and 10.5 exhibited cluster-like surface morphologies due to the coalescence of the grains but when it reached pH 11, uniformly distributed spherical grains were observed. At pH > 11 the agglomeration of the grains occurs which outcomes in larger grain size. The optical transmittance and band gap (2.17–1.89 eV) reduces with increasing pH. The resistivity decreases initially from 6.5 × 10⁻³ to 4.0 × 10⁻⁴ Ω cm with increasing pH from 10 to 11, then further increases with increasing pH. As represented in Fig. 8(a), with the increase of solution pH from 11 to 12, the carrier concentration decreases from 7.1 × 10¹⁴ to 4.8 × 10¹³ cm⁻³ which is in good agreement with the obtained result by Saravanakannan et al. Conversely, the mobility is first declined to pH 11; then, it is raised for further growth in pH. The decrease in mobility may be owing to the scattering formed at grain boundaries. The decrease in resistivity of the film synthesized at high pH may be attributable to the growth in film thickness without voids, whereas the rise in resistivity and decrease in carrier concentration and mobility detected at low pH may be owing to the existence of bulky voids. However, almost different properties were exhibited when the sample was annealed at 400 °C for 2 hours after deposition reported by Gençylmez and co-workers.

4.3 Number of cycles during deposition

The film characteristic is closely related to the number of immersions of the substrates into the precursor solution. In
almost all studies, the number of cycles is generally kept constant to understand the other properties of the Cu$_2$O films. There are few investigations where the effect of the number of cycles on the fabrication of Cu$_2$O films is discussed, as summarized in Table 7. It is obvious that with the increase of immersion cycles thickness of the films increase.

The surface SEM morphologies of m-SILAR deposited Cu$_2$O films in the top of the FTO substrates using 40, 60, and 80 immersion cycles were shown in Fig. 9(a)–(c). Throughout the area investigated, the surface morphology of all films was seen to be compact as well as coherently carpets. However, the Cu$_2$O film grown with 40 immersion cycles demonstrated fiber-like microstructures with small grains of around 200 nm. Instead, thin films having 60 and 80 immersion cycles exhibited bigger spherically shaped grains of size around (200–550) and (350–650) nm respectively as shown in Fig. 9(b) and (c). This reflection recommends that grain size develops as the thickness increases with the increase of immersion cycles. As can be seen from Table 7 and Fig. 9(d), the optical bandgap of the Cu$_2$O thin films deposited at pH ~ 7.95 using 20 cycles (film thickness ~ 654 nm), 40 cycles (film thickness ~ 1130 nm), 60 cycles (film thickness ~ 1200 nm) as well as 80 cycles (film thickness ~ 1477 nm) were calculated to be ~2.48, ~2.45, ~2.41 and ~2.38 eV respectively. Obviously, there is a decreasing trend of optical bandgap with increasing film as represented in Fig. 9(d), probably due to the bigger grains usually existing in the thicker films, which verifies the results stated by Nair et al.

Fig. 10(a)–(c) demonstrates the Cu$_2$O nanostructured films fabricated with different dipping cycles of the nanorods spread homogeneously on the substrate surface, showing a large number of grains with fine particle edges. As seen from morphological studies and Table 7, 50 cycles grown sample has a smaller crystallite size and higher dislocation density with good nanorod morphology. For light absorption, although it has an opportunity for a larger surface area to the photoelectrode, due to the presence of considerable grain boundaries, it creates recombination problems in the film. So, the electron trapping at the surface and in the intergrain boundaries lowered the efficiency value of the film grown through 50 cycles. The samples deposited by 75 and 100 cycles have comparatively better crystallite size and lower dislocation density, which leads to reduce grain boundaries. Due to the drop in grain boundary resistance, the photogenerated...
charge carriers can significantly reduce the recombination losses. The cell was fabricated as ITO/ZnO NRs/Cu$_2$O/Al with varied efficiency mainly due to the number of cycles of the films shown in Fig. 11. Even though the attained efficiency of the ZnO/Cu$_2$O heterojunction was lower, the efficiency was high in the samples deposited at high cycles such as 100. Hence, the effect of the film thickness on cell performance was evidenced by the enhancement of efficiency due to the substantial development of crystallinity and absorbance of Cu$_2$O films.

4.4 Effect of bath temperature

Fig. 12(a) illustrates the deposition of the thin films grown by varying bath temperatures of anionic precursors as a function of the immersion cycles. The figure demonstrated that the fabrication rate reduced as the immersion cycle proceeds characteristically at 10 nm per cycle. In the case of fabrication using the alkali solution at 90 °C, the production was faster, and the film thickness was >0.3 μm with 20 cycles of immersions, whereas, at 70 °C, the film growth slightly falls after 20 immersions. For the films fabricated with NaOH solution temperature of 50–90 °C, the photo response curves were given for a range of thicknesses as demonstrated in Fig. 12(b). Irrespective of the solution temperature, the dark current and the photocurrent logged in the films were comparable for the films with thicknesses smaller than 0.1 mm. The values were higher in samples fabricated using NaOH solution at 70 °C having films of higher thickness. The measured electrical conductivity of a 0.15 μm film is about $5 \times 10^{-4} \Omega^{-1} \text{ cm}^{-1}$. And it was found
that the increase of film thickness of two orders increases the conductivity by nearly two orders.

The structural parameters, elemental composition, and optical band gap for different bath temperature of Cu$_2$O films are given in Table 8, studied by Baig et al.112 It is seen from the table that when the temperature climbed from 40 to 80 °C, the size of grain increased from 16.78 to 18.84 nm whereas strain in the crystal lattice was reduced. The fall in strain signifies that the imperfection in the crystal lattice with the rising temperature was decreased. The SEM images of Cu$_2$O thin films deposited on ITO substrate with different anionic bath temperatures are demonstrated in Fig. 13. From the figures, with the rise of anionic bath temperature the structure of the wire became compact compared to that at 40 °C. Likewise, the oxygen concentration was decreased with an increase in temperature as observed in Energy-dispersive X-ray spectroscopy (EDS) value of Cu$_2$O film in Table 8. Further, the photocatalytic activity for water splitting by the deposited Cu$_2$O thin films at different temperatures was studied in a photochemical cell and the result revealed that film grown at 80 °C had a higher current ratio with respect to the other two samples and the photocurrent produced by that sample is relatively steady (figure in 5.2 section).

4.5 Addition of additives

The influence of the different additives on the surface morphological characteristics of CuO films was studied by using SEM. Fig. 14 illustrates the SEM images of the CuO thin films fabricated in the solution containing additives such as coumarin, saccharin, and sodium dodecyl sulfate (SDS) having different concentrations. In the first step without coumarin, Fig. 14(a) there were plate-like CuO nanostructures that homogenously cover the entire surface. Then, the nanostructures start to change their shapes with the increase of coumarin concentration, form some clusters on the surface and lose their homogeneity. From Fig. 14(b), in the case of

Table 8 Structural parameters, elemental composition (EDS), and optical band gap for different bath temperatures of Cu$_2$O films

Bath temperature (°C)	D (nm)	Dislocation density ($\delta \times 10^{14}$ m$^{-2}$)	Micro strain (ε)	Atomic (%)	Band gap (eV)	
40	16.78	35.51	0.007025	50.75	49.25	2.25
60	17.10	34.19	0.006892	56.45	43.55	2.14
80	18.84	28.17	0.006193	61.76	38.24	2.07

Fig. 12 Samples in NaOH solution (a) at different temperatures as a function of film thickness and immersions. (b) At the designated temperatures to record the photocurrent response of the Cu$_2$O thin films of different thicknesses.111 [Light source: tungsten–halogen, intensity of illumination: 1 kW m$^{-2}$, time length: 60–180 s, bias: 1 V applied across Ag print electrodes 5 mm (long) \times 5 mm (separation)].
saccharin, it was observed that all the samples have nearly the same morphology that is they are all composed of plate-like nanostructures as in ref. 113. On the other hand, the homogeneity of the films deteriorates with increasing saccharin concentration. In the case of SDS, Fig. 14(c) demonstrates that the fabricated CuO thin films were adhered and spread well onto the substrate surface without SDS. With the addition of SDS and its concentration, the surface morphology of the CuO film was changed dramatically. From this viewpoint, the discrepancy of SDS molar concentration impressed the morphology of the surface of all the fabricated thin films. This variation in morphology may be owing to the electrostatic interaction between Cu$^{2+}$ and CH$_3$(CH$_2$)$_{11}$OSO$_3^–$. SDS may affect particle growth as well as morphology after nucleation. Thus, during the crystallization process, the SDS can affect nucleation.114

Through UV-Vis’s spectrophotometer study, it was clear that both the optical band gap and the transmission spectra were affected by the additive concentration. The band gap, as well as spectral transmittance values of the films, were decreased for the higher content of both coumarin and saccharin,115,116 while showing the opposite tendencies in the case of SDS. The optical bandgap energy of both organic (coumarin and saccharin) additives decreased from around 1.50 to 1.27 eV, while increased from 1.32 to 1.49 eV for inorganic SDS, with the increasing concentration of the additives.117

4.7 Annealing of as-deposited films

Annealing is a vital parameter to control the phases of the deposited thin films. Both the phases of Cu$_2$O could be synthesized by changing the atmospheric condition (air, vacuum) and temperature of annealing as summarized in Table 10. Here, air or oxygen$^{37,101,119-122}$ annealing of the SILAR-grown films has been studied more extensively than vacuum annealing.123 Recently, SILAR deposited Cu$_2$O films are mainly studied between 75 to 500 °C$^{37,101,119-124}$ in presence of air or N$_2$. The study revealed that Cu$_2$O phase was stable until 250 °C120,122 though Farhad and co-workers showed a mixed phase of both Cu$_2$O and CuO at 250 °C37 due to the pH effect, while Ozaslan et al. showed a mixed phase even at 500 °C.122 The CuO phase could be found at 300 °C128 by annealing of Cu$_2$O or even could be deposited by using NH$_3$ solution (pH = 10) with the reaction of CuCl$_2$ at ambient temperature.124

Amudhavalli and co-workers successfully showed the increasing trend of the crystallite size of copper oxides with the increase of annealing temperature while depositing the films at 0.5 M NaOH. Fig. 16 demonstrated the change of resistivity, mobility, and carrier concentration of copper oxide (Cu$_2$O and CuO) phases with annealing temperature as shown by Ozaslan et al.123 It is found that the carrier concentration was decreased from 3.07 × 1017 to 6.61 × 1015 cm$^{-3}$ with increasing annealing temperature from 70 to 500 °C respectively. The hole mobility of the films was increased from 4.20 to 31.87 cm2 V$^{-1}$ s$^{-1}$ with decreasing the carrier concentration, while the electrical resistivity of the films decreased with annealing temperature, inducing the increment in the conductivity of the films. Nair et al. observed the high conductivity of the CuO film produced by air annealing of a 0.15 μm Cu$_2$O film at 400 °C is high about 7.2 × 10$^{-3}$ Ω$^{-1}$ cm$^{-1}$.
4.8 Doping by diverse dopants

Tuning of the structural, electrical, and optical properties of SILAR-deposited Cu$_2$O films through Fe, Eu, Zn, Co, B, Mg, Ni, and Pb doping has been reported extensively by several authors. The summary of the effect of doping on SILAR-deposited Cu$_2$O films is represented in Table 11. Interestingly, in the case of

![Fig. 14 SEM images of CuO nanostructured thin films as a function of different additive concentrations, such as (a) coumarin, (b) saccharin, and (c) SDS.](image)

TEA concentration M%	Crystallite (nm)	Thickness (nm)	Bandgap (eV)	Conductivity (σ) x 10^{-6} (Ω cm)^{-1}	Resistivity (ρ) x 10^{4} Ω cm	FOM x 10^{-12} Ω^{-1}
0	19.95	797	1.33	2.67	3.74	149
0.25	19.80	387	1.57	1.05	9.50	786
0.50	18.92	199	1.67	0.07	149	37.2
1.00	17.47	101	2.00	0.02	509	1.70

Table 9 Properties of CuO thin films as a function of TEA concentrations
Cu₂O film fabrication, the reactants were the same except for the doping materials such as Fe, Eu, Zn, and Co. Similarly, during Co, B, Mg, and Pb doping into CuO films, the reactants were also the same except in the case of Ni doping.

In the case of Co or Fe doping, the crystallite size of the films of Cu₂O decreased between 62.83 and 28.44 nm when the concentration of the doped material increased gradually, whereas it showed an opposite trend in the case of Zn doping. Interestingly, Fe, Eu, Zn and Co doping into Cu₂O rises the bandgap of the material a little in every case. On the other hand, in the case of Co and B doping into CuO films, the bandgap deceased while it was increased for Mg and Pb doping.

The films prepared at high doped Cu₂O thin films such as 5% Eu showed a low resistivity value of 1 × 10³ Ω cm as shown in Fig. 17. The Hall mobility and carrier concentration values in such cases are 0.52 cm² V⁻¹ s⁻¹ and 13.8 × 10¹⁵ cm⁻³, respectively.

Fig. 18(a) shows the current density–voltage (J–V) characteristics of the ZnO/Cu₂O heterojunction solar cells prepared using the Eu-doped Cu₂O thin films. The Vₘₐₓ was increased with increasing Eu content from 265 mV (1% Eu) up to 332 mV (5% Eu). The conversion efficiency can be enhanced by dropping recombination centers avoiding lattice-mismatch defects, and by reducing the resistance of Cu₂O. The ionic radius of Eu³⁺ ion was 0.109 nm whereas, Cu⁺ is 0.077 nm. Therefore, Eu³⁺ ion could not be incorporated by substitution rather it was incorporated as an interstitial creating getter center. It overwhelms the recombination losses and thus advances current levels and improved Eu doping levels.

Fig. 18(b) illustrates the band structure as well as carrier transport of the deposited p–n junction. As there was much difference between conduction and valence band offsets triggering effective separation of charge carriers, a built-in potential barrier was developed. When the light was absorbed onto the device photocarriers were generated and drifted to the respective electrodes depending upon the applied potential causing current conduction. As an acceptor dopant, impurity levels of Eu were adjacent to the valence band edge. In the case of ZnO, the green luminescence at 535 nm could be produced by the diffused Cu ion and replacing Zn. The VOC, which was atop the valence band whereas the Zn vacancy was [VZn] in an acceptor level, which occurred at 0.8 eV. Nevertheless, the ZnO coated over Eu: Cu₂O performed as a passivation layer improving the Voc and declining the consequence of impurity center-mediated recombination losses.

Magnetic measurements were performed by employing a vibration sample magnetometer (VSM) at ambient temperature for both Fe and Co-doped Cu₂O. Undoped Cu₂O has a diamagnetic property. The outcome agrees with Fig. 19(a) and (b) which demonstrate the change of magnetization against the applied magnetic field (M–H). In the case of Co-doped Cu₂O, undoped and minimum doped such as 1 and 2 wt%, films showed diamagnetic (high magnetization) behavior whereas, at the maximum doped such as 10 wt%, the films showed ferromagnetic (low magnetization) properties. The diamagnetic order was Cu₂-xCoₓO (x = 0 > 1 > 2 > 5 > 10 wt%). The ferromagnetic behavior was possibly due to the intrinsic coupling (Co–Co) between the atoms of doped material. Similarly, in the case of 1% Fe doped Cu₂O at 305 K, the film showed diamagnetic properties. An increase of the Fe-doping (2 wt%), slightly altered the diamagnetic property because of the increased hole concentrations and further doping of Fe ions (5 wt%), the film showed anti-ferromagnetic behavior. With the increase in the concentration of Fe, both the number of Fe³⁺–Cu²⁺ pairs and the hole concentrations increased and consequently, the crystallite size reduced.

Lobinsky and co-workers studied the cyclic voltammograms of the nickel foam electrode with Ni-doped CuO nanolayers in a potential space between 0 and 550 mV vs. Ag/AgCl electrode at the scanning rates of 5, 10, 15 and 20 mV s⁻¹ as shown in Fig. 20. Two of the redox reactions on the anodic curve took place in the layer, including the Cu⁺ → Cu²⁺...
transformation at 310 mV while the Ni\(^{2+} \rightarrow \text{Ni}^{3+}\) at 390 mV at a scan rate of 5 mV s\(^{-1}\). The proportionality of currents to scan rate delivers data that the film is sufficiently thick, and the charge transfer rate was restricted by the diffusion of charge carriers in the film.\(^{134}\)

Inset of Fig. 21 demonstrates the specific capacitance of the Ni-doped CuO nickel foam electrode, which was found from charge–discharge curves, and it was 154 mA h g\(^{-1}\) (1240 F g\(^{-1}\)) at the current densities of 1 A g\(^{-1}\).\(^{135}\) The high value of the specific capacitance of the sample can be explained based on the good conductivity of CuO and the substantial role of Ni atoms in

Table 10
Annealing of the SILAR grown Cu\(_x\)O nanostructured thin films

Anionic salt, NaOH (M)	Time	Temperature	Crystal phase	Crystallite [nm]	Band gap (eV)	Ref.				
Cu\(_2\)SO\(_4\) \(\cdot\) 5H\(_2\)O + NaOH + Na\(_2\)S\(_2\)O\(_3\) \(\cdot\) 5H\(_2\)O	0.5	20	20	70	200–400	As deposited: Cu\(_2\)O	27.76	—	119	
	200 °C: Cu\(_2\)O	14	2.20							
	300 °C: Cu\(_2\)O + CuO	14	2.20							
	400 °C: CuO	14–26	1.35							
	350 °C: CuO	14–26	1.35							
	200 °C: Cu\(_2\)O	14	2.20							
	300 °C: Cu\(_2\)O	14	2.20							
	350 °C: CuO	14–26	1.35							
	300 °C: Cu\(_2\)O + CuO	14	2.20							
	400 °C: CuO	14–26	1.35							
	350 °C: CuO	14–26	1.35							
1	30	20	60	70	200–400	As deposited: Cu\(_2\)O	14	2.20	120	
	200 °C: Cu\(_2\)O	14	2.20							
	300 °C: Cu\(_2\)O + CuO	14	2.20							
	350 °C: CuO	14–26	1.35							
	400 °C: CuO	14–26	1.35							
1	30	20	60	50–90	250–400 [air, N\(_2\)]	As deposited: Cu\(_2\)O	~18	2.10	122	
	200 °C: Cu\(_2\)O	14	2.20							
	300 °C: Cu\(_2\)O + CuO	14	2.20							
	400 °C: CuO	14–26	1.35							
2	40	2	60	70	100–500	As deposited: Cu\(_2\)O	—	2.57	123	
	100 °C: Cu\(_2\)O	14	2.20							
	300 °C: Cu\(_2\)O (2.27%) + CuO (97.73%)	—	2.52							
	500 °C: Cu\(_2\)O (1%) + CuO (99%)	—	2.52							
2	40–80	60–180	70	75–350	As deposited: Cu\(_2\)O	15–22	2.42	37		
	75 °C: Cu\(_2\)O	14	2.20							
	150 °C: Cu\(_2\)O	14	2.17							
	200 °C: Cu\(_2\)O	14	2.17							
	250 °C: Cu\(_2\)O + CuO	14	2.17							
	350 °C: Cu\(_2\)O + CuO (1 h)	14	2.17							
	350 °C: CuO (3 h)	14	2.17							
2	60	5	60	70	350	As deposited: Cu\(_2\)O	15–22	2.42	37	
	350 °C: Cu\(_2\)O + CuO (1 h)	14–21	2.42							
CuCl\(_2\) + NH\(_3\)OH + H\(_2\)O\(_2\)	—	2–10	30	30	RT	20–500	As deposited: Cu\(_2\)O	14	2.17	124
	100 °C: Cu\(_2\)O	14	2.22							
	150 °C: Cu\(_2\)O	14	2.17							
	450 °C: CuO	16	1.43							
	500 °C: CuO	16	1.44							
	400 °C: CuO	16	1.44							
	100 °C: Cu\(_2\)O	14–21	2.30							
CuCl\(_2\) + NH\(_3\) solution (pH = 10)	—	80	30	30	—	200–400	As deposited: CuO	11.09	1.17	126
	200 °C: CuO	12.05	1.29							
	300 °C: CuO	13.86	1.30							
	400 °C: CuO	14.88	1.36							
pseudo-capacity. The capacity retention of the Ni foam electrode with Ni-doped CuO nanolayers after 1000 charge-discharge cycles at a current density of 2 A g⁻¹ was retained at 92%, showing good cycling stability of the material as presented in Fig. 21. High cycling stability could be described by the feature morphology of ultrathin nanocrystals of CuO which deliver fast diffusion of ions on the electrode surface and while not being ruined in the charge-discharge process.

5. Applications

The optoelectronic properties of SILAR synthesized thin films have shown outstanding performance in diverse applications, for instance, photovoltaics,¹⁴¹ supercapacitors,¹⁴²,¹⁴₃ photoelectrochemical water splitting,¹⁴⁴ gas sensors¹⁴⁵,¹⁴₆ and many more. The method appears to be easier and represents an efficient way to manufacture devices. Some of the potential applications such as antibacterial activities, supercapacitors, surface wettability and photoelectrochemical water splitting in presence of Cu₂O nanostructured thin films will be discussed in the following section.

5.1. Antibacterial activities

To control pathogens, nanoparticles are in great demand due to their huge applications in the health industries. Results achieved from nanocrystalline Cu₂O nano-thin films fabricated by Dhanabal et al. possessed substantial antimicrobial activity against the experienced human pathogen at a maximum inhibition zone of 16 mm against Gram-positive Staphylococcus aureus.¹⁴⁷ The surface morphological studies exhibited that the needle-shaped grains which play a crucial role in the antibacterial activity of the fabricated Cu₂O films by SILAR technique as shown in Fig. 22(a) and (b). The synthesized Cu₂O thin film can exhibit antibacterial activity from 18 to 24 hours of incubation time. The bacterial growth will decrease with the increase in the concentrations of nanoparticles, which may be the cause of the reduction of voids affording space for the growth of bacteria that remains resistant to the pathogenic bacterial strain.

5.2. Water splitting

Cu₂O was considered a good candidate for photoelectrochemical (PEC) water splitting due to its abundance, low price, and high stability in aqueous solution.¹⁴⁷,¹⁴⁸ Baig et al. fabricated Cu₂O at a high bath temperature of 80 °C by SILAR which showed high photocurrent and good stability¹¹¹ as discussed earlier. The photocatalytic activity for water splitting of the Cu₂O thin film was studied with the photochemical system containing Pt (counter), Ag/AgCl (reference), Cu₂O (working electrode) and KCl (pH = 13.6) as electrolytes. PCE data shown in Fig. 23 revealed that samples synthesized at 80 °C have a higher current ratio and produced a stable photocurrent compared to the other samples by using a 300 W Xenon lamp (PLSXE300/300UV).

5.3. Surface wettability study

The surface wettability study of films determines its capability to interact with ions when immersed into electrolyte by measuring the contact angle with liquid electrolyte as shown in Fig. 24.¹⁴⁹ If the contact angle is >90°, then the film surface is hydrophobic, while for <90°, it is hydrophilic. For better interaction of electrolyte ions, the contact angle must be as low as possible with the electroactive site on the thin film surface.¹⁵⁰,¹⁵¹ Fig. 24 (A1, A2, A3, and A4) signifies the image of the contact angle with the surface of the film. The observed angles of CuO thin films with 50, 60, 70 and 80 SILAR cycles were 65°, 58°, 50°, and 43°, respectively. The observed CuO films were hydrophilic in nature, as the contact angles for CuO decline with the rise in SILAR cycles, which will allow more interaction of electroactive sites of the CuO on the film surface.

5.4. Super capacitive behavior

The electrochemical impedance, as well as super capacitive properties, of SILAR synthesized CuO thin films are studied by Patil et al.¹⁵² The synthesized CuO thin film showed the lowest charge transfer resistance of 41.45 Ω cm⁻² with the highest specific capacitance of 184 F g⁻¹ at the scan rate of 50 mV s⁻¹ and demonstrated 83% capacitive retention after 5000 cycles. Super capacitive performance of the film was verified using cyclic voltammetry (CV) in 1 M KOH electrolytes in a three-electrode cell equipped with CuO (working electrode), Pt (counter electrode) and saturated Ag/AgCl (reference electrode). As shown in Fig. 25, the CVs were studied with a potential window of 0 to 0.6 V/Ag/AgCl at several scan rates such as 10, 20, 50 and 100 mV s⁻¹.

To examine the charge-discharge properties of CuO, the chronoamperometry technique was applied. Fig. 26(a) demonstrates galvanostatic charge-discharge curves at various current densities for CuO and signify a good capacitive behavior of CuO electrode as ref. 152. In Fig. 26(b), the difference of specific capacitance with various scan rates was displayed, which enhanced exponentially with decreasing scan rate.¹⁵³ The electrochemical stability of CuO film electrode was examined by applying...
CVs at a scan rate of 100 mV s\(^{-1}\) for 5000 cycles. Fig. 26(c) demonstrated the cyclic voltammetry scan of CuO\(_{\text{lm}}\) electrode over the 1st to 5000th cycles and confirmed cyclic stability of 83\% over 5000 cycles. By using the Ragone plot, the highest values of specific power and specific energy were measured as 3 and 14.1 W h kg\(^{-1}\), respectively, using the GCD technique at a current density of 1 mA cm\(^{-2}\) for CuO electrode attained in the potential range from 0 to 0.5 V as shown in Fig. 26(d).

Moreover, the electrochemical investigation of Ni-doped CuO nanolayers modified with Ni foam electrodes synthesized by Lobinsky \textit{et al.} revealed the specific capacitance of 154 mA h g\(^{-1}\) (1240 F g\(^{-1}\)) at a current density of 1 A g\(^{-1}\), as already discussed in the doping section. Thus, SILAR-grown CuO material can be potential usage as an electroactive resource for alkaline batteries and pseudo-capacitors.

5.5. Photoelectrochemical characterization

The photo-responsive performance of m-SILAR grown CuO/FTO electrodes was studied by Farhad and co-workers, through transient surface photovoltage under periodic illumination of a green LED by a HITACHI VG-4429 generator with \(\sim 0.1\) Hz\^-square wave for ‘5 s ON and 5 s OFF’ cycle.\(^{34}\) The generated surface photovoltage of the CuO/FTO electrode was observed by a Keithley SMU 2450 by employing CuO/FTO...

Table 11
Cu\(_2\)O nanostructured materials grown in presence of different dopants with their properties

Product	Dopant	Material	Amount	Cycle	Crystallite (nm)	Grain (nm)	Bandgap (eV)	Ref.
Reactants: CuSO\(_4\) \(5\)H\(_2\)O + NaOH + Na\(_2\)S\(_2\)O\(_3\) \(5\)H\(_2\)O	Fe: Cu\(_2\)O	FeSO\(_4\) (wt\%)	0	30	62.83	—	1.80	128
			1		59.80	2.10		
			2		41.83	2.36		
			5		36.40	2.45		
	Eu: Cu\(_2\)O	Eu(NO\(_3\))\(_2\) \(5\)H\(_2\)O (at\%)	1	100	27	—	2.08	129
			3		24	2.26		
			5		21	2.41		
	Zn: Cu\(_2\)O	ZnSO\(_4\) (wt\%)	0	50	18	—	2.34	130
			1		30	2.35		
			2		39	2.37		
			3		52	2.38		
			5		69	2.41		
			10		44	2.39		
	Co: Cu\(_2\)O	CoSO\(_4\) (wt\%)	0	30	62.83	—	1.94	127
			1	53.30	2.03			
			2	48.47	2.12			
			5	39.24	2.18			
			10	28.44	2.47			
Reactants: CuCl\(_2\) \(2\)H\(_2\)O + H\(_2\)O + NH\(_3\)	Co: CuO	CoCl\(_2\) \(6\)H\(_2\)O (at\%)	0	10	22.7	70	1.53	132
			0.5	15.7	44	1.47		
			1	13.6	42	1.45		
			2	13.1	36	1.41		
			3	12.6	32	1.38		
			4	12.2	38	1.36		
			5	12.9	45	1.52		
			1	13.1	42	1.48		
			2	14.2	38	1.43		
			3	15.9	30	1.39		
	B: CuO	H\(_3\)BO\(_4\) (at\%)	0	10	12.9	45	1.52	131
			1	13.1	42	1.48		
			2	14.2	38	1.43		
			3	15.9	30	1.39		
	Mn: CuO	Mn(NO\(_3\))\(_2\) (at\%)	0	10	—	9.94	1.42	133
			1	7.83	1.98			
			2	8.21	2.08			
			3	9.76	2.20			
			5	9.76	2.20			
			10	8.98	1.65			
	Pb: CuO	Pb(NO\(_3\))\(_2\) (at\%)	0	10	—	9.94	1.43	135
			1	17.22	1.80			
			2	16.21	1.76			
			4	15.79	1.72			
			8	13.07	1.68			
			16	8.98	1.65			
Reactants: Cu(CH\(_3\)COO)\(_2\) \(n\)H\(_2\)O + H\(_2\)O + NH\(_4\)CH\(_3\)COO	Ni: CuO	Ni(CH\(_3\)COO)\(_2\) \(n\)H\(_2\)O	30	—	10–15	—	134	
thin films as a working electrode, a graphite rod as a counter electrode and 0.1 M Na₂SO₄ aqueous solution as an electrolyte as established in Fig. 27(a) and (b). In the presence of an aqueous electrolyte, upon 2500 s LED exposure of the photocathode, the estimated V_{oc} for the samples grown with the non-optimized precursor, optimized precursor, and optimized precursor with CH₃COOH precursor solutions, were observed as 247 ± 38 mV, 36.0 ± 2.0 mV and 47 ± 8 mV respectively. The large V_{oc} value projected for optimized precursor film revealed a better Schottky junction produced at Cu₂O/electrolyte interface, consequently, advocating a better optoelectronic quality of Cu₂O thin film. The transient surface photovoltage and V_{oc} retention for 5000 s, advocating better stability of the SILAR fabricated Cu₂O thin films in aqueous electrolyte.

Fig. 17 Resistivity, carrier concentration and mobility for Eu doped Cu₂O films.

Fig. 18 (a) 1%, 3% and 5% Eu doped thin films having current–voltage characteristics of ITO/ZnO NRs/Eu: Cu₂O/Al cell, (b) carrier transport and band structure of p–n junction.

Fig. 19 Magnetic behavior of (a) Co-doped (b) Fe-doped Cu₂O thin films.
Fig. 20 CVA curves for nickel foam electrode with Ni-doped CuO nanolayers at a scan rate of 5, 10, 15 and 20 mV s$^{-1}$.\(^{135}\)

Fig. 21 The cycling stability for the Ni Foam electrode with Ni-doped CuO nanolayers at 2 A g$^{-1}$ whereas the inset graph represents galvanostatic charge–discharge curves of the electrode with Ni-doped CuO nanolayers.\(^{135}\)

Fig. 22 (a) TEM (b) SEM images of the Cu$_2$O grains showing needle-shaped uniformity on the surface.\(^{146}\)

Fig. 23 PEC measurement of Cu$_2$O thin films at different bath temperatures.\(^{111}\)

Fig. 24 Study of surface wettability of CuO thin films,\(^{149}\) (A1) 50 SILAR cycles, (A2) 60 SILAR cycles, (A3) 70 SILAR cycles and (A4) 80 SILAR cycles.

Fig. 25 Cyclic voltammograms of CuO with various scan rates of 1 M KOH electrolyte.\(^{149}\)
Fig. 26 (a) Representation of galvanostatic charge–discharge curves of CuO at diverse current densities. (b) Change of specific capacitance with scan rate (c) study of stability of CuO thin films (d) specific energy versus specific power of Ragone plot.

Fig. 27 (a) A representation of the transient surface photovoltage measurement system; (b) measurement of a typical Cu2O/FTO electrode in a PEC with 0.1 M Na2SO4 electrolyte followed by real-time measurement in SMU 2450 demonstrating the shape of the LED modulated transient surface photovoltage.
6. Conclusion

In summary, Cu$_2$O thin films have been extensively studied and are receiving profound attention because of their fascinating properties and promising uses in a variety of fields. In this article, an inclusive review of the state-of-the-art research activities of diverse Cu$_2$O thin films was represented based on the SILAR method. This technique has fascinated substantial attention because of its simplicity and low cost, demands less time, and is fit for the large-scale growth of Cu$_2$O. The morphology, as well as diverse properties of Cu$_2$O, can be monitored by altering the number of SILAR cycles, the pH of precursor solutions, types of salt, bath temperature, annealing, doping, and the dipping time allowed for reactions. However, the technique does not yet allow for precise control of Cu$_2$O particle sizes, which can affect the power conversion efficiency in optoelectronic devices. The main limitation of this technique is the high rate of surface roughness as well as less study of the defects in the deposited sample which is very important to control the optical as well as electrical properties in optoelectronics. Having the optimum amount of the deposited Cu$_2$O is a very significant factor in improving optoelectronic performance. Thus, the inclusion of ligands, complexing agents and surfactants in the precursor solution employed during the SILAR growth could advance the stability of Cu$_2$O. Precise control of Cu$_2$O fabrication could accelerate multiple exciton generation effects, leading to a development of overall efficiency.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is funded by Comilla University and University Grants Commission, Bangladesh. The authors like to acknowledge the assistance and scientific contribution from the Department of Chemistry, Comilla University, Cumilla 3506, Bangladesh, as well as the collaborative support from the Department of Electrical and Electronics Engineering, Saga University, Japan and Center for Nanotechnology, the Department of Natural Sciences, Coppin State University, Baltimore, MD, USA.

References

1 S. S. Jeong, A. Mittiga, E. Salza, A. Masci and S. Passerini, Electrodeposited ZnO/Cu$_2$O heterojunction solar cells, *Electrochim. Acta*, 2008, 53, 2226–2231.
2 K. P. Musselman, A. Marin, L. Schmidt-Mende and J. L. MacManus-Driscoll, *Adv. Funct. Mater.*, 2012, 22, 2202, DOI: 10.1002/adfm.201102263.
3 Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu and S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications, *Prog. Mater. Sci.*, 2014, 60, 208–337.
4 M. K Song, S. Park, F. M. Alamgir, J. Cho and M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives, *Mater. Sci. Eng., R.*, 2011, 72, 203–252.
5 V. V. Kislyuk and O. P. Dimitriev, Nanorods and nanotubes for solar cells, *J Nanosci. Nanotechnol.*, 2008, 8, 131–148.
6 K. H. Yoon, W. J. Choi and D. H. Kang, *Thin Solid Films*, 2000, 372, 250, DOI: 10.1016/S0040-6090(00)01058-0.
7 T. Minami, Y. Nishi and T. Miyata, Efficiency enhancement using a Zn$_{1-x}$Ge$_x$O thin film as an n-type window layer in Cu$_2$O based heterojunction solar cells, *Appl. Phys. Express*, 2016, 9, 052301, DOI: 10.7567/APEX.9.052301.
8 S. B. B. Wang, C. H. H. Hsiao, S. J. J. Chang, K. T. T. Lam, K. H. H. Wen and S. C. C. Hung, A CuO nanowire infrared photodetector, *Sens. Actuators, A*, 2011, 171, 207–211.
9 X. Wei, H. Zhu, T. Kong and L. Wang, Synthesis, and thermal conductivity of Cu$_2$O nanofluids, *Int. J. Heat Mass Transfer*, 2009, 52, 4371–4374, DOI: 10.1016/j.ijheatmasstransfer.2009.03.073.
10 L. P. Zhou, B. X. Wang, X. F. Peng, X. Z. Du and Y. P. Yang, On the specific heat capacity of CuO nanofluid, *Adv. Mech. Eng.*, 2010, 1–4.
11 C. Rossi, K. Zhang, D. Esteve, P. Alphonse, P. Tailhades and C. Vuhlas, Nanoenergetic materials for MEMS: a review, *J. Micromech. Microeng.*, 2007, 16, 919–931.
12 Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim and V. B. C. Tan, Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films, *Nanotechnology*, 2005, 16, 88–92.
13 P. S. Selvamani, J. J. Vijaya, L. J. Kennedy, B. Saravanakumar and M. Bououdina, High-performance supercapacitor based on Cu$_2$O/MoS$_2$/rGO nanocomposite, *Mater. Lett.*, 2020, 275, 128095, DOI: 10.1016/j.matlet.2020.128095.
14 X. Zhang, W. Shi, J. Zhu, D. Kharistal, W. Zhao and B. Lalia, High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes, *ACS Nano*, 2011, 5, 2013–2019.
15 M. M. Rahman, A. J. Saleh Ahammad, J. H. Jin, S. J. Ahn and J. J. Lee, A comprehensive review of glucose biosensors based on nanocoated metal-oxides, *Sensors*, 2010, 10, 4855–4886.
16 Q. Huang, X. Lin, C. Lin, Y. Zhang, S. Hu and C. Wei, A high performance electrochemical biosensor based on Cu$_2$O-carbon dots for selective and sensitive determination of dopamine in human serum, *RSC Adv.*, 2015, 5, 54102–54108, DOI: 10.1039/C5RA05433H.
17 M. Hadiyan, A. Salehi and H. Mirzanejad, Gas sensing behavior of Cu$_2$O and CuO/Cu$_2$O composite nanowires synthesized by template-assisted electrodeposition, *J. Korean Ceram. Soc.*, 2021, 58, 94–105, DOI: 10.1007/s43207-020-00088-z.
18 K. J. Choi and H. W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues, *Sensors*, 2010, 10, 4083–4099.
19 M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shionohara, A. Tanaka, J. N. Kondo and K. Domen, Cu$_2$O as
a photocatalyst for overall water splitting under visible light irradiation, *Chem. Commun.*, 1998, 357–358, DOI: [10.1039/A7074401].

20 J. Liu, J. Jin, Z. Deng, S. Z. Huang, Z. Y. Hu and L. Wang, Tailoring CuO nanostructures for enhanced photocatalytic property, *J. Colloid Interface Sci.*, 2012, 384, 1–9.

21 I. Ali, New generation adsorbents for water treatment, *Chem. Rev.*, 2012, 112, 5073–5091.

22 X.-Y. Yu, R.-X. Xu, C. Gao, T. Luo, Y. Jia and J.-H. Liu, Novel 3D hierarchical cotton-candy-like CuO: surfactant-free solvothermal synthesis and application in As(III) removal, *ACS Appl. Mater. Interfaces*, 2012, 4, 1954–1962.

23 S. Satheeskumar, S. Vadivel, K. Dhanabalan, A. Vasuhi, A. T. Ravichandran and K. Ravichandran, Enhancing the structural, optical and magnetic properties of Cu2O films deposited using a SILAR technique through Fe-doping, *J. Mater. Sci.: Mater. Electron.*, 2018, 29, 9354–9360, DOI: [10.1007/s10854-018-9866-7].

24 R. Kumar, Y. Diamant and A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetas, *Chem. Mater.*, 2000, 12, 2301–2305.

25 W. Shockley and H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, *J. Appl. Phys.*, 1961, 32, 510, DOI: [10.1063/1.176034].

26 A. Bhumik, A. Haque, P. Karnati, M. F. N. Taufique, R. Patel and K. Ghosh, Copper oxide-based nanostructures for improved solar cell efficiency, *Thin Solid Films*, 2014, 572, 126–133, DOI: [10.1016/j.tsf.2014.09.056].

27 Y. C. Zhou and J. A. Switzer, *Mater. Res. Innovations*, 1998, 2, 22, DOI: [10.1007/s101900500505].

28 V. Figueiredo, E. Elangovan, G. Goncalves, N. Franco, E. Alves, S. H. K. Park, R. Martins and E. Fortunato, *Phys. Status Solidi A*, 2009, 206(9), 2143, DOI: [10.1002/pssa.200881797].

29 M. A. M. Patwary, M. Ohishi, K. Saito, Q. Guo, K. M. Yu and T. Tanaka, *ECS J. Solid State Sci. Technol.*, 2021, 10, 065019, DOI: [10.1149/2142-8777/ac09a8].

30 M. A. M. Patwary, C. Y. Ho, K. Saito, Q. Guo, K. M. Yu, W. Walukiewicz and T. Tanaka, *J. Appl. Phys.*, 2020, 127, 085302, DOI: [10.1063/1.5144205].

31 M. A. M. Patwary, K. Saito, Q. Guo, T. Tanaka, K. M. Yu and W. Walukiewicz, Nitrogen Doping Effect in Cu2O Thin Films Fabricated by Radio Frequency Magnetron Sputtering, *Phys. Status Solidi B*, 2020, 257(2), 1900363, DOI: [10.1002/pssb.201900363].

32 R. Kita, K. Kawaguchi, T. Hase, T. Koga, R. Itti and T. Morishita, *J. Mater. Res.*, 1994, 9, 1280, DOI: [10.1557/JMR.1994.1280].

33 M. Y. Lin, C. Yu Lee, S. C. Shiu, I. J. Wang, J. Y. Sun, W. H. Wu, Y. Hong Lin, J. S. Huang and C. F. Lin, Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells, *Organ. Electron.*, 2010, 11, 1828–1834.

34 L. Zheng and X. Liu, Solution-phase synthesis of CuO hierarchical nanostructures at near-neutral pH and near-room temperature, *Mater. Lett.*, 2007, 61, 2222–2226, DOI: [10.1016/j.matlet.2006.08.063].

35 S. Baturay, A. Tombak, D. Batibay and Y. S. Ocak, n-Type conductivity of CuO thin films by metal doping, *Appl. Surf. Sci.*, 2019, 477, 91–95, DOI: [10.1016/j.apsusc.2017.12.004].

36 S. F. U. Farhad, M. A. Hossain, N. I. Tanvir, R. Akter, M. A. M. Patwary, M. Shahjahan and M. A. Rahman, Structural, optical, electrical, and photo electrochemical properties of cuprous oxide thin films grown by modified SILAR method, *Mater. Sci. Semicond. Process.*, 2019, 95, 68–75, DOI: [10.1016/j.mssp.2019.02.014].

37 S. F. U. Farhad, S. Majumder, M. A. Hossain, N. I. Tanvir, R. Akter and M. A. M. Patwary, Effect of Solution pH and Post-annealing temperatures on the Optical Bandgap of the Copper Oxide Thin Films Grown by modified SILAR Method, *MRS Adv.*, 2019, 4(16), 937–944, DOI: [10.1557/adv.2019.139].

38 L. S. Huang, S. G. Yang, T. Li, B. X. Yu, Y. W. Du, Y. N. Lu and S. Z. Shi, *J. Cryst. Growth*, 2004, 260, 130, DOI: [10.1016/j.jcrysgro.2003.08.012].

39 T. Maruyama, *Ipn J. Appl. Phys.*, 1998, 37, 4099, DOI: [10.1143/JJAP.37.4099].

40 B. C. Ghos, S. F. U. Farhad, M. A. M. Patwary, S. Majumder, M. A. Hossain, N. I. Tanvir, M. A. Rahman, T. Tanaka and Q. Guo, Influence of the Substrate, Process Conditions and Post-annealing Temperature on the Properties of ZnO Thin Films Grown by the Successive Ionic Layer Adsorption and Reaction Method, *J. ACS Omega*, 2021, 6(4), 2666–2674, DOI: [10.1021/acs.omega.0c04837].

41 B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th. Sander, C. Reind, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bla sing, A. Krost, S. Shokovets, C. Mü ller and C. Ronning, Binary copper oxide semiconductors: From materials towards devices, *Phys. Status Solidi B*, 2012, 249(8), 1487–1509, DOI: [10.1002/pssb.201248128].

42 M. Heinemann, B. Eifert and C. Heiliger, Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu2O3, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2013, 87, 115111.

43 M. F. Al-kuhaili, Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O), *Vacuum*, 2008, 82, 623–629, DOI: [10.1016/j.vacuum.2007.10.004].

44 V. Sravanthi1, T. Srikanth, A. S. Reddy, P. S. Reddy and C. S. Reddy, Electron Beam Evaporated Copper Oxide Thin Films, *IJSR J. Eng.*, 2018, 8, 82–87.

45 S. F. U. Farhad, D. Cherns, J. A. Smith, N. A. Fox and D. J. Fermin, Pulsed laser deposition of single-phase n- and p-type Cu2O thin films with low resistivity, *Mater. Des.*, 2020, 193, 108848, DOI: [10.1016/j.matdes.2020.108848].

46 K. Kawaguchi, R. Kita, M. Nishiyama and T. Morishita, Molecular beam epitaxy growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of...
CuO, J. Crystal Growth, 1994, 143, 221–226, DOI: 10.1016/0022-0248(94)90059-0.

47. H. Uchiyama, Y. Hasegawa, H. Morita, A. Kurokouchi, K. Wada and T. Komine, Thermoelectric property of Cu2O thin film deposited by Reactive Ion Plating method, 25th International Conference on Thermoelectrics, 2006, pp. 379–381, DOI: 10.1109/ICT.2006.331276.

48. C. L. Chu, H. C. Lu, C. Y. Lo, C. Y. Lai and Y. H. Wang, Physical properties of copper oxide thin films prepared by dc reactive magnetron sputtering under different oxygen partial pressures, Phys. B, 2009, 404, 4831–4834, DOI: 10.1016/j.physb.2009.08.185.

49. A. H. Shukor, H. A. Alhattab and I. Takano, Electrical and optical properties of copper oxide thin films prepared by DC magnetron sputtering, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 2020, 38, 012803, DOI: 10.1116/15315158.

50. M. A. Matrawy, K. Saito, Q. Guo and T. Tanaka, Influence of oxygen flow rate and substrate positions on properties of Cu-oxide thin films fabricated by radio frequency magnetron sputtering using pure Cu target, Thin Solid Films, 2019, 675, 59–65, DOI: 10.1016/j.tsf.2019.02.026.

51. D. S. C. Halin, I. A. Talib, A. R. Daud and M. A. A. Hamid, Effect of Annealing Atmosphere on the Morphology of Copper Oxide Thin Films Deposited on TiO2 Substrates Prepared by Sol-Gel Process, Key Eng. Mater., 2013, 594–595, 113–117, DOI: 10.4028/KEM.594-595.115.

52. Y. F. Lim, C. S. Chua, C. J. J. Lee and D. Chi, Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting, Phys. Chem. Chem. Phys., 2014, 16, 25928–25934, DOI: 10.1039/C4CP03241A.

53. P. B. Ahirrao, B. R. Sankapal and R. S. Patil, Nanocrystalline p-type-cuprous oxide thin films by room temperature chemical bath deposition method, J. Alloys Compd., 2011, 509, 5551–5554, DOI: 10.1016/j.jallcom.2011.02.016.

54. J. Y. Yao, L. Yan, G. Y. Peng, M. D. Qing and Z. F. Xin, Photoelectric properties of Cu2O thin films prepared by room-temperature water bath, Mater. Res. Express, 2017, 4, 036404, DOI: 10.1088/2053-5334/aa0021.

55. W. H. Lan, C. W. Tsai, S. Y. Lee, W. M. Chao, M. C. Shih, Y. C. Chou, Y. D. Wu, Y. T. Hsu, Electrical properties of cuprous oxide thin films fabricated by ultrasonic spray pyrolysis, 17th Opto-Electronics and Communications Conference, 2012, pp. 669–670, DOI: 10.1109/OECC.2012.6276783.

56. T. Kosugi and S. Kaneko, Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films, J. Am. Ceram. Soc., 1998, 81(12), 3117–3124, DOI: 10.1111/j.1551-2916.1998.tb02746.x.

57. S. Bijani, L. Martinez, M. Gabás, E. A. Dalchiele and J. R. R. Barrado, Low-Temperature Electrodeposition of Cu2O Thin Films: Modulation of Micro-Nanostructure by Modifying the Applied Potential and Electrolytic Bath pH, J. Phys. Chem. C, 2009, 113, 19482–19487, DOI: 10.1021/jp905952a.

58. M. A. Hossain, R. Al-Gaashani, H. Hamoudi, M. J. Al Marri, I. A. Hussein, A. Belaidi, B. A. Merzougui, F. H. Alharbi and N. Tabet, Controlled growth of Cu2O thin films by electrodeposition approach, Mater. Sci. Semicond. Process., 2017, 63, 203–211, DOI: 10.1016/j.mssp.2017.02.012.

59. W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, Y. Li, L. Zhang, Y. Sui, X. Zhou, H. Chen and G. Zou, Electrodeposition of Cu2O films and their photoelectrochemical properties, CrystEngComm, 2011, 13, 2871–2877, DOI: 10.1039/C0CE00829J.

60. W. Siripala, Electrodeposition of n-type Cuprous Oxide Thin Films, ECS Trans., 2008, 11(9), 1–10.

61. T. Maruyama, Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate, Sol. Energy Mater. Sol. Cells, 1998, 56, 85–92, DOI: 10.1016/S0927-0248(98)00128-7.

62. D. Chua, S. B. Kim, K. Li and R. Gordon, Low temperature chemical vapor deposition of cuprous oxide thin films using a Copper(I) amidinate precursor, ACS Appl. Energy Mater., 2019, 2(11), 7750–7756, DOI: 10.1021/acsenerm.9b01683.

63. S. Eisermann, A. Kronenberger, A. Laufer, J. Bieber, G. Haas, S. Lautenschlager, G. Homm, P. J. Klar and B. K. Meyer, Phys. Status Solidi A, 2012, 209(3), 531–536, DOI: 10.1002/pssa.201127493.

64. T. Ivonen, M. J. Heikilla, G. Popov, H. E. Nieminen, M. Kaipio, M. Kemell, M. Mattinen, K. Meinander, K. Mizohata, J. Raisanen, M. Ritala and M. Leskela, Atomic Layer Deposition of Photoconductive CuO Thin Films, ACS Omega, 2019, 4(6), 11205–11214, DOI: 10.1021/acsomega.9b01351.

65. A. Tamm, A. Tarre, V. Verchenko and H. S. R. Stern, Atomic Layer Deposition of Superconducting CuO Thin Films on Three-Dimensional Substrates, Crystals, 2020, 10(8), 650–659, DOI: 10.3390/cryst10080650.

66. Y. F. Nicolau, Solution deposition of thin solid compound films by a successive ionic-layer adsorption and reaction process, Appl. Surf. Sci., 1985, 22/23, 1061–1074, DOI: 10.1016/0169-4332(85)90241-7.

67. G. Regmi, A. Ashok and S. Velumani, Large Area (10 x 10 cm²) production of CdS buffer layer for solar cells by chemical bath method, 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 2020, pp. 1–6, DOI: 10.1109/CCE50788.2020.9299158.

68. P. A. Sachin, R. S. Devan, D. S. Patil, A. V. Moholkar, M. G. Gang, Y. R. Ma, J. H. Kim and P. S. Patil, Improved solar cell performance of chemo-synthesized cadmium selenide pebbles, Electrochim. Acta, 2013, 98, 244–254.

69. F. G. Hone and T. Abza, Short review of factors affecting chemical bath deposition method for metal chalcogenide thin films, Int. J. Thin Film. Sci. Technol., 2019, 8(2), 43–53.

70. H. M. Pathan and C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bull. Mater. Sci., 2004, 27, 85–111, DOI: 10.1007/BF02708491.

71. B. R. Sankapal, R. S. Mane and C. D. Lokhande, Successive ionic layer adsorption and reaction (SILAR) method for the deposition of large area (~10 cm²) tin disulfide (SnS₂) thin
films, *Mater. Res. Bull.*, 2000, 35(12), 2027–2035, DOI: 10.1016/s0025-5408(00)00405-0.

72 S. Visalakshi, R. Kannan, S. Valanarasu, A. Kathalingam and S. Rajashabala, Studies on optical and electrical properties of SILAR-deposited CuO thin films, *Mater. Res. Innovations*, 2016, 11(1), 146–151, DOI: 10.1080/14328917.2016.1194586.

73 M. Sasagawa and Y. Nosaka, Studies on the effects of Cd ion sources and chelating reagents on atomic layer CdS deposition by successive ionic layer adsorption and reaction (SILAR) method, *Phys. Chem. Chem. Phys.*, 2001, 3(16), 3371–3376, DOI: 10.1039/b101075i.

74 P. O. Owirho, R. Akbarzadeh, D. Pan, R. A. Maarten Coetzee and T. C. Jen, New development of atomic layer deposition: processes, methods and applications, *Sci. Technol. Adv. Mater.*, 2019, 20(1), 465–496, DOI: 10.1080/14686996.2019.1599694.

75 S. M. George, Atomic Layer Deposition: An Overview, *Chem. Rev.*, 2010, 110(1), 111–131, DOI: 10.1021/cr900056b.

76 M. Leskelä and M. Ritala, Atomic layer deposition chemistry: Recent developments and future challenges, *Angew. Chem.*, 2003, 42(45), 5548–5554, DOI: 10.1002/anie.200301652.

77 Molecular Beam Epitaxy & Atomic Layer Deposition Systems. SVT Associates.

78 N. Sahu, B. Parija and S. Panigrahi, Fundamental understanding and modeling of spin coating process: A review, *Ind. J. Phys.*, 2009, 83(4), 493–502.

79 A. N. Nguyen, J. Solard, H. T. Nong, C. B. Osman, A. Gomez, V. Bockléée, S. Tencé-Girault, F. Schoenenstein, M. Simon-Sorbed, A. E. Carrillo and S. Mercero, Spin Coating and Micro-Patterning Optimization of Composite Thin Films Based on PVDF, *Materials*, 2020, 13, 1342.

80 M. D. Tyona, A theoretical study on spin coating technique, *Adv. Mater. Res.*, 2013, 2(4), 195–208, DOI: 10.12989/amr.2013.2.4.195.

81 https://www.osilla.com/pages/spin-coating.

82 N. Asim, S. Ahmadi, M. A. Alghoul, F. Y. Hammadi, K. Saeedfar and K. Sopian, Research and development aspects on chemical preparation techniques of nanocrystalline CdS thin films, *Cryst. Growth Des.*, 2007, 7(3), 467–470, DOI: 10.1021/cg060480r.

83 Y. Wang and A. Hu, Carbon quantum dots: synthesis, properties and applications, *J. Mater. Chem. C*, 2014, 2, 6921–6939, DOI: 10.1039/C4TC00988F.

84 B. R. Sankapal, A. Ennaoui, T. Guminiskaya, T. Dittrich, W. Bohne, J. Röhrich, E. Strub and M. Ch. Lux-Steiner, Characterization of p-CuI prepared by the SILAR technique on Cu-tape/n-CuInS2 for solar cells, *Thin Solid Films*, 2005, 480–481, 142–146, DOI: 10.1016/j.tsf.2004.11.020.

85 H. M. Pathan and C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, *Bull. Mater. Sci.*, 2004, 27, 85–111, DOI: 10.1007/BF02708491.

86 S. S. Ouyamo, M. S. Nyagba, S. Ambrose and S. Ojo, Optical properties of copper(i) oxide thin films synthesized by SILAR technique, *IOSR J. Appl. Phys.*, 2014, 6, 102–110, DOI: 10.9790/4861-063102105.

87 K. Mageshvari and R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method, *Mater. Sci. Semicond. Process.*, 2012, 16, 337–343, DOI: 10.1016/j.mssp.2012.09.016.

88 M. Mehrabian, Optical and photovoltaic properties of ZnS nanocrystals fabricated on Al/ZnO films using the SILAR technique, *J. Opt. Technol.*, 2016, 83, 422–428.

89 C. García, S. Dávila, G. Jardón, F. Flores, R. Bon and Y. V. Vorobiev, Characterization of PbS films deposited by successive ionic layer adsorption and reaction (SILAR) for CdS/PbS solar cells application, *Mater. Res. Express*, 2020, 7, 015530, DOI: 10.1088/2053-5930/ab685c.

90 K. Manikandan, C. Dilip, P. Mani and J. J. prince, Deposition and Characterization of CdS Nano Thin Film with Complexing Agent Triethanolamine, *American Journal of Engineering and Applied Sciences*, 2015, 8, 318–327, DOI: 10.3844/ajeassp.2015.318.327.

91 M. Ristov and G. Sinadinovski, Chemical deposition of Cu2O thin films, *Thin Solid Films*, 1985, 123, 63–67.

92 M. T. S. Nair, L. Guerrero, O. L. Arenas and P. K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics, *Appl. Surf. Sci.*, 1999, 150, 143–151, DOI: 10.1016/S0169-4322(99)00239-1.

93 M. A. Hossain, S. F. U. Farhad, N. I. Tanvir, J. H. Chang, M. A. Rahman, T. Tanaka, Q. Guo, J. Uddin and M. A. M. Patwary, *R. Soc. Open Sci.*, 2022, 9, 211899, DOI: 10.1098/rsos.211899.

94 R. D. Umeri, R. U. Osuji and F. I. Ezema, Synthesis and characterization of copper oxide thin films using successive ionic layer adsorption reaction (SILAR) method, *J. Chem. Mater. Res.*, 2016, 8(6), 68–76.

95 Y. Liu, Y. Chu, Y. Zhuo, M. Li, L. Li and L. Dong, Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils, *Crysl. Growth Des.*, 2007, 7(3), 467–470, DOI: 10.1021/cg060480r.

96 G. Altindemir and C. Gümüs, Cu2O thin films prepared by using four different copper salts at a low temperature: An investigation of their physical properties, *Mater. Sci. Semicond. Process.*, 2020, 104, 104805.

97 S. Chatterjee, S. K. Saha and A. J. Pal, Formation of all-oxide solar cells in atmospheric condition based on CuO thin-films grown through SILAR technique, *Sol. Energy Mater. Sol. Cells*, 2016, 147, 17–26.

98 M. Yuksel, J. R. Pennings, F. Bayansal and J. T. W. Yeow, Effect of B-doping on the morphological, structural and optical properties of SILAR deposited CuO films, *Phys. B*, 2020, 599, 412578, DOI: 10.1016/j.physb.2020.412578.

99 A. A. Lobinsky and M. V. Kaneva, Synthesis Ni-doped CuO nanorods via Successive Ionic Layer Deposition method and their capacitive performance, *Nanosyst.: Phys., Chem., Math.*, 2020, 11(5), 608–614, DOI: 10.17586/2220-8054-2020-11-5-608-614.

100 H. M. Pathan and C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer
adsorption and reaction (SILAR) method, Bull. Mater. Sci., 2004, 27, 85–111, DOI: 10.1007/BF02708491.

101 S. Majumder, N. I. Tanvir, B. C. Ghos, M. A. M. Patwary, M. A. Rahman, M. A. Hossain and S. F. U. Farhad, Optimization of the growth conditions of Cu$_2$O thin films and subsequent fabrication of Cu$_2$O/ZnO heterojunction by m-SILAR method, WIECON-ECE, 2020, DOI: 10.1109/WIECON-ECE52138.2020.9397989.

102 M. Ristov and G. Sinadinovski, Chemical deposition of Cu$_2$O thin films, Thin Solid Films, 1985, 123, 63–67.

103 S. Visalakshi, R. Kannan, S. Valanarasu, A. Kathalingam and S. Rajashabala, Studies on optical and electrical properties of SILAR-deposited CuO thin films, Mater. Res. Innovations, 2016, 11(1), 146–151, DOI: 10.1080/14328917.2016.1194586.

104 V. Saravanakannan and T. Radhakrishnan, Structural, electrical and optical characterization of CuO thin films prepared by spray pyrolysis technique, Int. J. Chem. Tech. Res., 2014, 6, 306–310.

105 O. Gencyilmaz and T. Taşköprü, Effect of pH on the synthesis of CuO films by SILAR method, J. Alloys Compd., 2016, 695, 1205–1212, DOI: 10.1016/j.jallcom.2016.10.247.

106 N. Soundaram, R. Chandramohan, S. Valanarasu, R. Thomas and A. Kathalingam, Studies on SILAR deposited Cu$_2$O and ZnO films for solar cell applications, J. Mater. Sci.: Mater. Electron., 2015, 26, 5030–5036, DOI: 10.1007/s10854-015-0205-0.

107 D. Ozaslan, O. M. Özkendir, M. Gunes, Y. Ufuktepe and C. Gumus, Study of the electronic properties of Cu$_2$O thin films by X-ray absorption spectroscopy, Optik, 2018, 157, 1325–1330, DOI: 10.1016/j.ijjile.2017.12.119.

108 O. Daoudi, A. Elmadani, M. Lharch and M. Fahoume, A new efficient synthesis of CuO thin films using modified SILAR method, Opt. Quantum Electron., 2020, 52, 413, DOI: 10.1007/s11082-020-02530-2.

109 K. Mageshwari and R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method, Mater. Sci. Semicond. Process., 2013, 16(2), 337–343.

110 O. Daoudi, Y. Qachaou, A. Raidou, K. Nouneh, M. Lharch and M. Fahoume, Study of the Physical Properties of CuO Thin Films Grown by Modified SILAR Method for Solar Cells Applications, Superlattices Microstruct., 2018, 127, 93–99, DOI: 10.1016/j.spmi.2018.03.006.

111 M. T. S. Nair, L. Guerrero, O. L. Arenas and P. K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics Applied Surface Science, 1999, 150, 143–151.

112 F. Baig, Y. H. Khattaka, B. M. Soucasea, S. Beg and S. Ullah, Effect of anionic bath temperature on morphology and photo-electrochemical properties of Cu$_2$O deposited by SILAR, Mater. Sci. Semicond. Process., 2018, 88, 35–39, DOI: 10.1016/j.mssp.2018.07.031.

113 F. Bayansal, S. Kahraman, G. Cankaya, H. S. Guder and H. M. Cakmar, Growth of homogenous CuO nanostructured thin films by a simple solution method, J. Alloys Compd., 2011, 509, 2094–2098, DOI: 10.1016/j.jallcom.2010.10.146.

114 V. Rajendran, J. Gajendiran, Preparation, and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method, Mater. Res. Bull., 2014, 56, 2014134–2014137, DOI: 10.1016/j.materresbull.2014.05.002.

115 F. Bayansal, B. Sahan, M. Yüksel, N. Biyikli, H. A. Çetinkara and H. S. Güder, Influence of coumarin as an additive on CuO nanostructures prepared by successive ionic layer adsorption and reaction (SILAR) method, J. Alloys Compd., 2013, 566, 78–82, DOI: 10.1016/j.jallcom.2013.03.018.

116 F. Bayansal, B. Sahan, M. Yüksel and H. A. Çetinkara, SILAR-based growth of nanostructured CuO thin films from alkaline baths containing saccharin as additive, Mater. Lett., 2013, 98, 197–200, DOI: 10.1016/j.matlet.2013.02.030.

117 R. Aydin and H. Cavusoglu, Influence of sodium dodecyl sulfate as a surfactant on the microstructural, morphological and optoelectronic characteristics of SILAR deposited CuO thin films, Mater. Res. Express, 2019, 6, 086403, DOI: 10.1088/2053-1591/ab1a08.

118 H. Cavusoglu and R. Aydin, Complexing agent triethanolamine mediated synthesis of nanocrystalline CuO thin films at room temperature via SILAR technique, Superlattices Microstruct., 2019, 128, 37–47, DOI: 10.1016/j.spmi.2019.01.011.

119 K. Amudhavalli, N. Neelakandapillai and M. Nagarajan, Synthesis of Cu$_2$O by SILAR and the impact of Annealing on the Structural Properties, Int. J. Sci. Eng. Manage., 2018, 3, 494–497.

120 N. Serin, T. Serin, S. Horzum and Y. Celik, Annealing effects on the properties of copper oxide thin films prepared by chemical deposition, Semicond. Sci. Technol., 2005, 20, 398–401. https://iosscience.iop.org/0268-1242/20/5/012.

121 M. R. Johan, M. S. M. Suan, N. L. Hawari and H. A. Ching, Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition, Int. J. Electrochem. Sci., 2011, 6, 6094–6104.

122 M. T. S. Nair, L. Guerrero, O. L. Arenas and P. K. Nair, Chemically deposited copper oxide thin films: structural, optical and electrical characteristics, Appl. Surf. Sci., 1999, 150, 143–151.

123 D. Ozaslan, O. Erken, M. Gunes and C. Gumus, The effect of annealing temperature on the physical properties of Cu$_2$O thin film deposited by SILAR method, Phys. B, 2020, 580, 411922, DOI: 10.1016/j.physb.2019.411922.

124 S. Chatterjee, S. K. Saha and A. J. Pal, Sol. Energy Mater. Sol. Cells, 2016, 147, 17.

125 M. Abdel Rafea and N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique, J. Phys. D: Appl. Phys., 2009, 42, 015413, p. 6.

126 T. C. Tasdemirci, Copper Oxide Thin Films Synthesized by SILAR: Role of Varying Annealing Temperature, Electron. Mater. Lett., 2020, 16, 239–246, DOI: 10.1007/s13391-020-00205-4.
127 K. Dhanabal, A. T. Ravichandran, K. Ravichandran, S. Valanarasu and S. Mantha, Effect of Co doped material on the structural, optical and magnetic properties of Cu2O thin films by SILAR technique, J. Mater. Sci.: Mater. Electron., 2016, 28, 4431–4439, DOI: 10.1007/s10584-016-6072-2.

128 S. Satheeskumar, S. Vadivel, K. Dhanabal, A. Vasuhi, A. T. Ravichandran and K. Ravichandran, Enhancing the structural, optical and magnetic properties of Cu2O films deposited using a SILAR technique through Fe-doping, J. Mater. Sci.: Mater. Electron., 2018, 29, 9354–9360, DOI: 10.1007/s10584-018-8966-7.

129 N. Soundaram, R. Chandramohan, R. David Prabu, S. Valanarasu, K. Jayadheepan, A. Kathalingam, M. S. Hamdy, A. M. Alhanash and K. S. Al-Namshah, Preparation of Eu-doped Cu2O thin films using different concentrations by SILAR and their heterojunction property with ZnO, J. Electron. Mater., 2019, 48, 4138–4147, DOI: 10.1007/s11664-019-07174-x.

130 A. T. Ravichandran, K. Dhanabal, K. Ravichandran, R. Mohan, K. Karthika, A. Vasuhi and B. Muralidharan, Tuning the structural and optical properties of SILAR-deposited Cu2O films through Zn doping, Acta Metall. Sin., 2019, 28(8), 1041–1046, DOI: 10.1007/s40195-015-0292-y.

131 M. Yuksel, J. R. Pennings, F. Bayansal and J. T. W. Yeow, Effect of B-doping on the morphological, structural and optical properties of SILAR deposited CuO films, Phys. B, 2020, 599, 412578, DOI: 10.1016/j.physb.2020.412578.

132 F. Bayansal, T. TaşKöprü, B. Nyamin ŞAhin and H. A. C. Etinkara, The Minerals, Metals & Materials Society and ASM International, 2014.

133 Y. Gülen, F. Bayansal, B. Sahin, H. A. Cetinkara and H. S. Güder, SciVerse ScienceDirect, 2013.

134 F. Bayansal, Y. Gülen, B. Sahin, S. Kahraman and H. A. Cetinkara, CuO nanostructures grown by the SILAR method: influence of Pb-doping on the morphological, structural and optical properties, J. Alloys Compd., 2014, 619, 378–382, DOI: 10.1016/j.jallcom.2014.09.085.

135 A. A. Lobinsky and M. V. Kavea, Synthesis Ni doped CuO nanorods via Successive Ionic Layer Deposition method and their capacitive performance, Nanosyst.: Phys., Chem., Math., 2020, 11(5), 608–614.

136 J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition, J. Appl. Electrochem., 2004, 34, 687.

137 S. Shyamal, P. Haja, H. Mandal, A. Bera, D. Sariket, A. K. Satpati, M. V. Malashechonak, A. V. Mazanik, O. V. Korolik, A. I. Kulak, E. V. Skorb, A. Maity, A. E. Streletssov and C. Bhattacharya, Chem. Eng. J., 2018, 335, 676.

138 N. H. Ke, P. T. K. Loan, D. A. Tuan, H. T. Dat, C. V. Tran and L. Y. T. Hung, The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method, J. Photochem. Photobiol., A, 2017, 349, 100, DOI: 10.1016/j.jphotochem.2017.09.016.

139 D. P. Joseph, T. P. David, S. P. Raja and C. Venkateswaran, Mater. Charact., 2008, 59, 1137.

140 J. Antony, Y. Qiang, M. Faheem, D. Meyer, D. E. McCready and M. H. Engelhard, Ferromagnetic semiconductor nanoclusters: Co-doped Cu2O, Appl. Phys. Lett., 2007, 90, 013106.

141 S. Chatterjee and A. J. Pal, Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures, J. Phys. Chem. C, 2016, 120, 1428, DOI: 10.1021/acs.jpcc.5b11540.

142 M. R. Das, A. Mukherjee, P. Maiti, S. Das and P. Mitra, Studies on multifunctional properties of SILAR synthesized CuO thin films for enhanced supercapactor, photocatalytic and ethanol sensing applications, J. Electron. Mater., 2019, 48, 2718–2730, DOI: 10.1007/s11664-019-06940-1.

143 G. S. Gund, D. P. Dubal, S. S. Shinde and C. D. Lokhande, Architectured Morphologies of Chemically Prepared NiO/MWCNTs Nanohybrid Thin Films for High Performance Supercapacitors, ACS Appl. Mater. Interfaces, 2014, 6, 3176, DOI: 10.1021/am404422g.

144 X. Zhong, H. He, J. Du, Q. Ren, J. Huang, Y. Tang, J. Wang, L. Yang, F. Dong and L. Bian, Boosting solar water oxidation activity and stability of BiVO4 photoanode through the Co-catalytic effect of CuCoO2, Electrochim. Acta, 2019, 304, 301, DOI: 10.1016/j.electacta.2019.02.101.

145 B. Sahin and T. Kaya, Facile preparation and characterization of nanostructured ZnO/CuO composite thin film for sweat concentration sensing applications, Mater. Sci. Semicond. Process., 2021, 121, 105428, DOI: 10.1016/j.mssp.2020.105428.

146 K. Dhanabal, A. T. Ravichandran, A. Vasuhi, R. Chandramohan, P. Karthick and S. Mantha, Effect of annealing based on the structural, optical, morphological and antibacterial activities of copper oxide thin films by SILAR technique, Int. J. Thin Films Sci. Technol., 2022, 11(1), 65–72, DOI: 10.18576/ijtfs/110108.

147 V. Scuderi, G. Amiard, S. Boninelli, S. Scalese, M. Mirtillo, P. M. Sberna, G. Impellizzeri and V. Privitera, Photocatalytic activity of CuO and Cu2O nanowires, Mater. Sci. Semicond. Process., 2016, 42, 89–93.

148 X. Bai, L. Ma, Z. Dai and H. Shi, Electrochemical synthesis of p-Cu2O/n-TiO2 heterojunction electrode with enhanced photoelectrocatalytic activity, Mater. Sci. Semicond. Process., 2018, 74, 319–328.

149 A. S. Patil, M. D. Patil, G. M. Lohar, S. T. Jadhav and V. J. Fulari, Super capacitive properties of CuO thin films using modified SILAR method, Ionics, 2016, 23, 1–8, DOI: 10.1007/s11581-016-1921-9.

150 V. S. Kumbhar, A. C. Lokhande, N. S. Gaikwad and C. D. Lokhande, One-step chemical synthesis of samarium telluride thin films and their supercapacitive properties, Chem. Phys. Lett., 2016, 645, 112–117, DOI: 10.1016/j.cplett.2015.12.042.

151 S. A Mahadik, F. D. Pedraza and B. P. Relekar, Synthesis and characterization of superhydrophobic-
superoleophilic surface, *J. Sol-Gel Sci. Technol.*, 2016, 78, 475–481, DOI: [10.1007/s10971-016-3974-7](https://doi.org/10.1007/s10971-016-3974-7).

152 W. G. Pell and B. E. Conway, Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge, *J. Power Sources*, 2001, 96, 57–67, DOI: [10.1016/S0378-7753(00)00682-0](https://doi.org/10.1016/S0378-7753(00)00682-0).

153 D. P. Dubal, G. S. Gund, C. D. Lokhande and R. Holze, Decoration of sponge-like Ni(OH)\(_2\) nanoparticles onto MWCNTs using an easily manipulated chemical protocol for supercapacitors, *ACS Appl. Mater. Interfaces*, 2013, 5(7), 2446–2454, DOI: [10.1021/am3026486](https://doi.org/10.1021/am3026486).