Electrochemical property and corrosion behavior of multi-directionally forged titanium in fluoride solution

Ginga SUZUKI1, Noriyuki HOSHI2, Katsuhiko KIMOTO2, Hiromi MIURA3, Tohrui HAYAKAWA1 and Chikahiro OHKUBO1

1 Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
2 Department of Oral Interdisciplinary Medicine, Prosthodontics & Oral Implantology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8550, Japan
3 Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
4 Department of Dental Engineering, Tsurumi University School of Dental Medicine 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan

Corresponding author, Ginga SUZUKI; E-mail: suzuki-g@tsurumi-u.ac.jp

Multi-directional forging (MDFing) can improve the various properties of metals and alloys due to the evolution of an ultrafine-grained structure. In the present study, electrochemical properties and corrosion behaviors in a fluoride solution of MDFed pure titanium (MDF-Ti) were evaluated by comparing with conventional coarse-grained pure titanium (Ti). The E_open value of MDF-Ti was significantly higher than that of Ti. However, similar potentiodynamic polarization profiles were obtained for Ti and MDF-Ti. Immersion in NaF solution caused no severe corrosion to Ti or MDF-Ti. However, immersion in acidulate phosphate fluoride solution (APF) revealed that MDF-Ti had better corrosion resistance than Ti at shorter time immersion periods and was more susceptible to corrosion for longer immersion. Significantly less release of titanium was observed for MDF-Ti in shorter immersion periods in APF. In conclusion, MDF-Ti showed similar electrochemical behaviors to Ti and less susceptible to corrosion in shorter time APF immersion.

Keywords: Multi-directional forging, Ultrafine grain, Titanium implant, Corrosion, Fluoride

INTRODUCTION

Commercially pure titanium (Ti) and Ti alloys have been commonly used as orthopedic or dental implants due to their tight bonding property to bone, known as osseointegration11. Ti alloys such as Ti-6Al-4V or Ti-6Al-7Nb have mechanical properties superior to those of Ti. However, it is claimed that released heavy metal ions bring risks of biological problems. For example, vanadium is cytotoxic and is known as a carcinogenic substance39. Aluminum is reported to be associated with the induction of neurotoxicity and neurodegenerative diseases, such as Alzheimer’s disease3). Thus, new titanium alloys such as Ti-Nb-Ta-Zr, Ti-Nb-Sn, or Ti-Mn without vanadium and aluminum have been developed4-7).

Another problem for Ti alloys is differences in the elastic modulus with bone. The elastic modulus of cortical bone was reported to be approximately 10–30 GPa, and that of Ti alloys such as Ti-6Al-4V was approximately 110 GPa4). These differences in elastic modulus can cause the uneven transmission of applied stress at the interface between bone and implant materials, which is called stress shielding; this uneven loading sometimes results in the loosening and/or fracture of titanium implants8,9). Sumitomo et al. investigated the healing of experimental fractures made in rabbit tibiae by bone plates with different elastic moduli and confirmed that elastic moduli of the bone plate will naturally influence the bone tissue reaction10.

On the contrary, decreasing the grain size can induce strengthening of the metallic material without the addition of any alloying elements, which is known as the Hall-Petch relation11-13). There are several methods for decreasing grain size by severe plastic deformation, such as accumulative roll bonding14), high pressure torsion15), equal channel angular pressing (ECAP)16), and multi-directional forging (MDF)17-19). Particularly, MDF is a useful method for preparing large samples, and there is little limitation of the shape, too. A schematic illustration for the MDF method is shown in Fig. 1. Forging strain was repeatedly applied while changing the forging axis as illustrated. Miura et al. applied the MDF method to Ti or magnesium alloys and reported their ultrafine-grained structures and notably high tensile strengths18,19). Transmission electron microscope observation revealed ultrafine-grained structure of MDFed pure titanium (MDF-Ti)19). For example, average grain size and the ultimate tensile strength of MDF-Ti grade 2 were finer than 100 nm and more than 1 GPa. The average grain size of conventional Ti was approximately 30 µm. Hoshi et al. reported that MDF-Ti showed higher tensile strength and Vickers hardness and a lower elastic modulus as compared to conventional pure Ti20). The elastic modulus of MDF-Ti was approximately 50 GPa. Lower elastic modulus was an attractive property of MDF-Ti as a dental implant material. Suzuki et al. investigated the bone response of MDF-Ti by animal experiments and reported that MDF-Ti showed bone response similar to that of Ti after implantation into the cortical bone of rabbits21). Arai et

Color figures can be viewed in the online issue, which is available at J-STAGE.

Received Jun 8, 2018: Accepted Dec 20, 2018
doi:10.4012/dmj.2018-191 JOI JST.JSTAGE/dmj/2018-191
al. also reported that the promotion of osteoblast-like cell proliferation on MDF-Ti was more significant than that on conventional Ti by sulfuric acid treatment\(^{22}\). Ti has superior corrosion resistance due to the passive film formation in the body fluid environment. However, various studies have reported that the corrosion resistance of Ti or Ti alloys decreased with the treatment of a fluoride solution\(^{23-26}\). Corrosion behaviors are influenced by the concentration of fluoride, pH, etc. A decrease of pH caused the corrosion resistance of Ti\(^{27-29}\). MDF-Ti has an ultrafine-grained structure with a significantly high-volume fraction of grain boundaries. It is well known that corrosion takes place preferentially at some specific grain boundaries and, therefore, the change in the corrosion properties of Ti strongly depended on microstructure\(^{30}\). Hence, it is presumed that the corrosion resistance of MDF-Ti will differ from that of Ti. However, there are few reports regarding the behaviors of ultrafine-grained Ti prepared by severe plastic deformation after fluoride treatment. It is very important to investigate the influence of fluoride treatment on MDF-Ti for future dental clinical application.

In the present study, we first electrochemically examined the properties of MDF-Ti and then observed the changes of surface morphologies of MDF-Ti after immersion in two types of fluoride solution with different pH by comparing it with Ti.

MATERIALS AND METHODS

Titanium substrate

An MDF-Ti disk (φ: 15 mm; thickness: 1.0 mm; JIS 2 type; 99.9% mass; Kawamoto Heavy Industries, Hyogo, Japan)\(^{18,19}\) was compared to a commercially available pure Ti disk (φ: 15 mm; thickness: 1.0 mm; JIS 2 type; 99.9% mass; Furuuchi Chemical, Tokyo, Japan). MDF-Ti possesses an ultrafine-grained structure with high dislocation density, whereas the latter is coarse grained and with much lower dislocation density. Both were polished with #800 and #1200 waterproof paper and ultrasonically cleaned in distilled water, ethanol, and distilled water for 15 min. After cleaning, they were stored in a desiccator for one day.

Electrochemical measurement

Electrochemical measurements were performed in accordance with the procedures reported by Takemoto et al.\(^{31,32}\). The apparatus for electrochemical measurement consisted of a potentiostat/galvanostat (Model 263A, EG&G, Princeton Applied Research, USA), a saturated calomel electrode (SCE) as a reference electrode, a platinum plate as a counter electrode, and a sample holder (the exposed area of the specimen was 1.0 cm\(^2\) as a working electrode. A Ti or MDF-Ti disk was mounted on a sample holder. A volume of 500 mL of saline solution (0.9 mass% NaCl) was deaerated with pure nitrogen gas for 30 min before measurement. The open circuit potential (E\(_{\text{open}}\)) was measured after the specimen was immersed in the saline solution for 30 min. The potential dynamic polarization behavior of the specimen was recorded within a scanning range of −1.2 to +2.5 V (vs. SCE) as a scanning rate of 0.33 mV/s. Each measurement was maintained at 37°C. Four specimens were tested for each condition.

Immersion in fluoride solution

The fluoride solution consisted of 2 mass% NaF solution (pH=7.3) and Fluor N solution (Acidulate phosphate fluoride solution (APF), 9,000 ppm, pH=5.3, Bee Brand Medico Dental, Osaka, Japan). Fluor N solution is commonly used as tooth application products for carious prevention.

The Ti or MDF-Ti disk was immersed in 5 mL of each solution at 37°C. For NaF solution, Ti or MDF-Ti disk was immersed at 1, 3, and 7 days. On the contrary, Ti or MDF-Ti disk was immersed at 1, 3, and 6 h, and 1, 3, and 7 days in APF solution. After the immersions in each solution, the disks were rinsed with double-distilled water, and each specimen was dried in a desiccator. The morphology changes of Ti and MDF-Ti in NaF and APF at 1, 3 and 6 h immersion. The surface appearance of each disk before and after immersion in fluoride solution was observed by scanning electron microscopy (SEM; S4000, Hitachi High-Technologies, Tokyo, Japan) at an accelerating voltage of 5 kV after ion coating with gold.

The surface roughness of Ti and MDF-Ti after immersion in NaF or APF before and after immersion in the fluoride solution for 3 days was measured using a shape analyzer laser microscope (VK-X250, KEYENCE, Osaka, Japan). Images were acquired in three-dimensional ranges of decreasing sizes of 10×10 µm\(^2\). Two surface parameters, the three-dimensional arithmetic mean height (Sa), and the developed interfacial area ratio (surface deployment area rate; Sdr) were obtained.

Titanium ion measurements in APF

Released concentrations of titanium from Ti and MDF-Ti...
disk in APF solution were measured with an inductively coupled plasma emission plasma spectrometer (ICP, Vista-MPX, SII, Chiba, Japan)\(^3\). Ti and MDF-Ti disk was polished and cleaned as mentioned above, and were immersed in 10 mL of APF at 37°C. After 1, 3 and 6 h immersion, released concentrations of titanium ion were determined.

Statistical analysis
The results of the electrochemical measurements, surface roughness and released concentrations of titanium ion between Ti and MDF-Ti were evaluated by an unpaired \(t \)-test. Data for surface roughness, \(S_a \), and \(S_d \) of each material before and after immersion in fluoride solution and released concentrations of titanium ion at 1, 3 and 6 h were analyzed using a one-way analysis of variance and a post-hoc Tukey’s test for multiple comparisons among means. Statistical analyses were conducted with OriginPro 9.0 J (OriginLab, Northampton, MA, USA). \(p \) Values of less than 0.05 were considered significant, and data were expressed as the mean±standard deviation (SD).

RESULTS
The potentiodynamic polarization profiles of Ti and MDF-Ti are shown in Fig. 2. Both Ti and MDF-Ti showed similar profiles. Table 1 lists the values of \(E_{\text{open}} \) and the \(I_{0.5} \) obtained from the potentiodynamic polarization curves. The \(E_{\text{open}} \) value of MDF-Ti was significantly higher than that of Ti \((p<0.05)\).

SEM pictures of the surfaces of Ti and MDF-Ti before and after immersion in fluoride solution are shown in Figs. 3–9. Before immersion, roughened surface by polishing was similarly observed on both Ti and MDF-Ti surfaces (Fig. 3). After immersion in NaF solution, the surfaces of Ti and MDF-Ti looked similar, and no distinct corrosion was observed during 7 days of immersion (Figs. 4, 5). Polishing scratches were still identified on both Ti and MDF-Ti surfaces even after immersion for 7 days (arrows in Figs. 4, 5).

On the contrary, APF immersion produced roughened surface of Ti and MDF-Ti by corrosion. Comparing the morphology changes of Ti and MDF-Ti among 1, 3, and 6 h immersion (Figs. 6, 7), Ti showed more roughened surface than MDF-Ti. Polished scratches were identified on MDF-Ti more clear than on Ti (arrows in Fig. 7). Only after 1 day immersion, more severely roughened surfaces of Ti and MDF-Ti were recognized (Figs. 8, 9). More uniform and progressed corrosion, developing complicated three-dimensional pitting structures, was observed on the MDF-Ti surface compared with Ti surface. This is reverse to the above-mentioned result. An ultrafine but three-dimensionally roughened structure was revealed by magnified observations of the macroscopically roughened structure.

	\(E_{\text{open}} \) (V)	\(I_{0.5} \) (µA/cm\(^2\))
Ti	\(-0.34 (0.02)^{a}\)	3.45 (0.57)^{a}\)
MDF-Ti	\(-0.29 (0.02)^{b}\)	3.34 (0.66)^{b}\)

\(^{a,b} \): SD
Different small letters indicate a significant difference between Ti and MDF-Ti \((p<0.05)\).
on the immersed MDF-Ti. Accumulated corrosion products were detected on the Ti surface, but not on the MDF-Ti surface. The above observations clearly indicate corrosion behaviors of MDF-Ti in NaF and APF solutions that are completely different from those of conventional Ti.

Figure 10 shows the titanium ion concentration released from Ti and MDF-Ti after the immersion in APF solution at 1, 3 and 6 h. Ti showed significantly higher titanium concentration than MDF-Ti (p<0.05). During 1
to 6 h immersion, there were no significant differences in titanium concentration for Ti and MDF-Ti ($p>0.05$).

Tables 2 and 3 show the surface roughness measurements. Sa and Sdr values significantly increased after immersion in APF for both Ti and MDF-Ti ($p<0.05$).

NaF immersion caused no significant increase in Sa and Sdr values ($p>0.05$). Comparing Ti and MDF-Ti, MDF-Ti showed Sa and Sdr values significantly greater than those of Ti ($p<0.05$) after immersion in APF. In the case of NaF immersion, there were no significant differences...
in Sa and Sdr values between Ti and MDF-Ti ($p>0.05$).

DISCUSSION

In the present study, we electrochemically examined the properties of MDF-Ti and observed the changes of surface morphologies of MDF-Ti after immersion in two types of fluoride solution with different pH by comparing it with Ti.

First, the electrochemical properties of Ti and MDF-
Ti were evaluated. The significantly higher E_{open} value of MDF-Ti suggested a lower ionization tendency and more stable passive film of MDF-Ti. However, similar potentiodynamic polarization profiles were obtained for Ti and MDF-Ti. It is presumed that there were no distinct differences in the electrochemical properties of Ti and MDF-Ti. In the present study, electrochemical measurements were performed in a saline solution. Electrochemical properties in fluoride solution should be further investigated.

Corrosion by two types of fluoride solution of Ti and MDF-Ti was tested. One solution was a neutral NaF solution and the other an acidic fluoride solution, APF. NaF immersion caused no severe corrosion to either Ti or MDF-Ti. APF immersion is supposed to cause more severe corrosion on Ti and MDF-Ti. Thus, we performed corrosion experiments at shorter immersion periods (1, 3, and 6 h) for Ti and MDF-Ti, in addition to longer immersion periods (1, 3, and 7 days). As supposed, APF caused more severe corrosion to both Ti and MDF-Ti than NaF, which concurs with the findings of previous reports. Ide et al. suggested that the natural electron potential of Ti was decreased by the acidification of the NaF solution. They also insisted that the results of polarization resistance were similar to those of the natural electrode potential and that the decrease in pH decreased the polarization resistance, which readily caused the corrosion reaction with immersion in fluoride solution.

However, the results of shorter immersion periods were opposite to the results of longer immersion periods. Less corrosion of MDF-Ti was recognized for shorter immersion periods, and greater corrosion of MDF-Ti was observed for longer immersion periods. Measurements of titanium ion in APF also supported these results. Significantly less titanium concentration was observed for MDF-Ti in shorter immersion periods in APF. It revealed that MDF-Ti has a better corrosion resistance for early stage of APF immersion. The reason is not still clear, but it is speculated that the difference of passive oxide layer will influence the corrosion resistance. Ultrafine-grained structure of MDF-Ti may be active towards oxidation. Thus, more condensed and thicker passive oxide layer will be produced for MDF-Ti compared with Ti. As a results, MDF-Ti showed better corrosion resistance
Table 2 Arithmetical mean height (Sa) of Ti and MDF-Ti after immersion in NaF or APF (10×10 µm²)

	0 days	3 days in NaF	3 days in APF
Ti	0.23 (0.06)a,A	0.25 (0.04)b,B	0.61 (0.09)b,D
MDF-Ti	0.21 (0.05)b,A	0.21 (0.04)c,C	0.88 (0.20)d,D

(): SD
Different letters indicate a significant difference (p<0.05).
Small letters indicate a difference between before and after immersion in fluoride solution at 3 days with the same material. Large letters indicate a difference between Ti and MDF-Ti at 0 days and after 3 days of immersion in NaF and APF, respectively.

Table 3 Developed interfacial area ratio (Sdr, %) of Ti and MDF-Ti after immersion in NaF or APF (10×10 µm²)

	0 days	3 days in NaF	3 days in APF
Ti	30.31 (7.93)a,A	30.79 (3.54)b,B	178.73 (52.22)b,D
MDF-Ti	27.99 (5.74)c,A	27.35 (5.82)c,C	675.40 (126.66)d,D

(): SD
Different letters indicate a significant difference (p<0.05).
Small letters indicate a difference between before and after immersion in fluoride solution after 3 days with the same material. Large letters indicate a difference between Ti and MDF-Ti at 0 days and after 3 days of immersion in NaF and APF, respectively.

in APF at the early stage of the immersion. But when passive oxide film is destroyed, corrosion progresses along ultrafine crystal grain boundaries for MDF-Ti. As a result, MDF-Ti will be more susceptible to corrosion by acidic fluoride solution for longer immersion periods more than 1 day. The detailed analysis for passive oxide layer of MDF-Ti should be further investigated.

Takemoto et al. reported the formation of titanium-fluoride compounds on the Ti surface32), but present study showed there no corrosion products on MDF-Ti surface after APF immersion. The reason not still clear. But it is presumed that ultrafine-grained structure and uniform multi-directional processing influenced the corrosion mechanism of MDF-Ti including the hydrogen adsorption. More detailed analysis should be needed.

However, in the oral environment, a Ti prosthesis is covered with proteins such as albumin. Some reported that the presence of albumin suppressed the corrosion of titanium28,31-35). It is postulated that albumin adsorption on Ti prevented the attack of fluoride or that the buffering effect of the albumin increased the pH surrounding the Ti materials. Moreover, the time of exposure of Ti prostheses to fluoride solution may be only a few minutes in oral conditions. Uchiyama et al. alternately immersed Ti in fluoride solution and in artificial saliva solution and found no significant differences in color and in surface morphologies of Ti before and after immersion36). In the present study, MDF-Ti showed better corrosion resistance during 6 h immersion. We can conclude that corrosion of MDF-Ti towards acidic fluoride solution will not cause severe damages in clinical conditions. Evaluation of corrosion resistance of MDF-Ti in a condition that simulates the intraoral environment should be needed.

Another point of view of uniform and ultrafine roughened structures of MDF-Ti by fluoride corrosion suggests that acid or alkali treatment will produce similar structures on the surface of MDF-Ti. Arai et al. reported that sulfuric acid treatment of MDF-Ti produced much finer and equiaxed pitting features as compared to those of Ti, and fractal pitting structures regularly and uniformly developed on the surface of MDF-Ti22). Macro and micro roughened structures of MDF-Ti will be expected to exhibit better biocompatibility, for example new bone formation or bone growth. The influence of acid or alkali treatment of MDF-Ti on bony tissue will be further investigated for developing new types of dental implants.

In conclusion, MDF-Ti's electrochemical behaviors are similar to those of Ti, and it is more susceptible to corrosion by acidic fluoride solution. Fluoride corrosion produced uniform and ultrafine roughened pitting structures of MDF-Ti. The pitting structures appeared to be three-dimensionally complicated.

ACKNOWLEDGMENTS

The authors are grateful to Kawamoto Heavy Industries, for supplying multi-directionally forged titanium, and also to Professor Masao YOSHINARI (Tokyo Dental College) and Professor Shinji TAKEMOTO (Iwate Medical University) for helping with the electrochemical measurements. This study was partly supported by JSPS Grant-in-Aid for Scientific Research (B) (KAKENHI) Grant Number JP16H05525.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

REFERENCES

1) Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 2009; 25: 63-74.
2) Domingo JL. Vanadium: a review of the reproductive and developmental toxicity. Reprod Toxicol 1996; 10: 175-182.
3) Bondy SC. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 2010; 31: 575-581.
4) Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 1998; 19: 1621-1639.
5) Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 2008; 1: 30-42.
6) Santos PF, Niinomi M, Cho K, Nakai M, Liu H, Ohtsu N, et al. Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications. Acta Biomater 2015; 26: 366-376.
7) Stenlund P, Omar O, Brohede U, Norgren S, Norlinh B, Johansson A, et al. Bone response to a novel Ti-Ta-Nb-Zr alloy. Acta Biomater 2015; 20: 165-175.
8) Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki T, Fukui H, et al. Development of low rigidity β-type titanium alloy for biomedical applications. Mater Trans 2002; 43: 2970-2977.
9) Glassman AH, Bohyn JD, Tanzer M. New femoral designs: do they influence stress shielding? Clin Orthop 2006; 453: 64-74.
10) Sumitomo N, Noritake K, Hattori T, Morikawa K, Niwa S, Sato K, et al. Experiment study on fracture fixation with a novel Ti-Ta-Nb-Zr alloy. Acta Biomater 2005; 1: 30-42.
11) Hall EO. The deformation and ageing of mild steel: II characteristics of the Lüders deformation. Proc Phys Soc 1951; 64: 742-747.
12) Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst 1953; 174: 25-28.
13) Pande CS, Cooper KP. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog Mater Sci 2009; 54: 689-706.
14) Tsuji N, Ito Y, Saito Y, Minamino Y. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater 2002; 47: 893-899.
15) Valiev RZ, Maxim MY, Bobruk EV, Dalard F. Influence of fluoride concentration on the corrosion of titanium in solution containing fluoride. J Jpn Soc Oral Implant 2017; 30 special issue: 152.
16) Lausman J, Kasemo B, Hansson S. Accelerated oxide grown on titanium implants during autoclaving caused by fluoride contamination. Biomaterials 1985; 6: 23-27.
17) Ozeki K, Oda Y, Sumii T. The influence of fluoride prophylactic agents on the corrosion of titanium and titanium alloys. The Shikawa Gakuho 1996; 96: 293-304.
18) Oda Y, Kawada E, Yoshinari M, Hasegawa K, Okabe T. The influence of fluoride concentration on the corrosion of titanium and titanium alloys. J Dent Mater 1996; 15: 317-322.
19) Nakagawa M, Matsuya S, Udoh K. Effect of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dent Mater J 2002; 21: 83-92.
20) Schaff N, Grossegeat B, Lissac M, Dallard F. Corrosion behavior of pure titanium and its alloys. Dent Mater J 2002; 23: 1995-2002.
21) Ide K, Hattori M, Yoshinari M, Kawada E, Oda Y. The influence of albumin on corrosion resistance of titanium in fluoride solution. Dent Mater J 2003; 22: 359-370.
22) Matono Y, Nakagawa M, Matsuya S, Ishikawa K, Terada Y. Corrosion behavior of pure titanium and titanium alloys in various concentrations of acidulated phosphate fluoride (APF) solutions. Dent Mater J 2005; 21: 104-112.
23) Guillard A, Zhou Q. Effect of microstructures on corrosion properties of CP-Ti for medical applications. 2017 3rd International Conference on Applied Mechanics and Mechanical Automation (AMMA 2017), ISBN: 978-1-60595-479-0, 2017: 310-316.
24) Takemoto S, Hattori M, Yoshinari M, Kawada E, Asami K, Oda Y. Corrosion behavior and surface characterization of Ti-20Cr alloy in a solution containing fluoride. Dent Mater J 2004; 23: 379-386.
25) Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials 2005; 26: 829-837.
26) Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Suppression of fluoride-induced corrosion of titanium by albumin in oral modified environment. J Biomed Mater Res B Appl Biomater 2008; 8: 475-481.
27) Huang HH. Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4V alloy. Biomaterials 2003; 24: 275-282.
28) Uchiyama T, Kobayashi S, Taguchi C, Hayakawa T, Kouno Y, Yamazaki R, et al. The effect of fluoride-containing solutions of pure titanium and its alloy (Ti-6Al-4V). J Dent Med 2006; 56: 126-131.