Brief description of the flavor-changing neutral scalar interactions at two-loop level

R. Gaitán¹ and J. A. Orduz-Ducuara²
Departamento de Física,
FES-Cuautitlán Izcalli, UNAM
C.P. 54740,
Estado de México, México.
E-mail: ¹rgaitan@unam.mx, ²jaorduz@ciencias.unam.mx

Abstract. In this letter we show a general description about flavor-changing neutral currents (FCNC) mediated by scalars. The analysis is extended at two-loop level for the Two-Higgs Doublet Model type-III because others models have strong constraints on its parameters, even at high orders of the perturbation. For this letter we focus on the standard model, calculating the amplitude for the $h \rightarrow \gamma\gamma$ process and discussing the results briefly.

To be published in Journal of Physics Conference Series (IOP). Joint Proceedings of the XV Mexican Workshop on Particles and Fields & the XXX Annual Meeting of the Division of Particles and Fields of the Mexican Physical Society

1. Introduction
The standard model (SM) of particles has awesome results: the experimental measurements and the theoretical results match very well. The observables are calculated using the Feynman diagrams. For instance, to obtain the decay width or the cross section, we need the Lagrangian or the Feynman rules (vertices and propagators of the model). In general, the SM extensions increase the vertex and propagators number. SM extensions are built to explore New Physics (NP) and describe unexplored phenomena. NP includes proposals as beyond standard model (BSM), it involves new particles, new interactions and new dimensions; for explaining or responding to the unsolved questions.

We can extend the gauge, fermion or scalar sector. Focusing on the last one, the simplest possibility to extend the SM is the Two-Higgs Doublet Model (THDM), which introduces a doublet scalar field plus the SM doublet. Theoretical motivations to enlarge the scalar sector could explain, e.g., the CP violation and the flavor-changing neutral currents (FCNC) in the gauge sector [1].

The rich phenomenology for the THDM has been widely studied by different theoretical and phenomenological groups. Some reports show interesting results for the Flavor-changing (FC) [2–4], an analysis at one-loop level for the pseudoscalar appears in [5], and at two loops in the lepton sector is found in [6]. Several experimental reports are dedicated to the exotic physics searching for new particles coming from a variety of models [7–13].

The purpose of this paper is to further explore the FC mediated by scalar bosons at loop-level. We were inspired by the recent experimental results (e.g., refs. [14,15]) and for theoretical
motivations on the scalar sector. We are aware of the strong constraints on loop-level and its low contributions in the processes and, even, in the loop-level with FC mediated by scalar bosons; but we shall expect a more general description for the neutral scalar interactions and their constraints [16, 17], which are so-called flavor-changing neutral scalar interactions (FCNSI), though they can be found as flavor-changing scalar currents (FCSC). We shall analyze the amplitudes at loop-level to have a new perspective for these processes. As known, GIM mechanism controls the neutral currents at tree-level. It means that processes with flavor-changing mediated by vector bosons are constrained because of the orthogonality of the CKM matrix [18, 19]. We would like to know whether it is similar for flavor-changing mediated by scalar bosons.

Our goal is to provide an analysis on the equation of the amplitude at two-loop level in general and for the SM and THDM to explain the FCNSI and its contribution, if any, for these kind of processes. We are motivated by the next generation of colliders where it would be possible to explore the couplings in the $\gamma\gamma$-processes [20]. We will use the THDM-III because it has flavor-changing neutral current (FCNC) transitions mediated by scalar bosons even at tree-level. We expect this document be the first of a series of papers about the flavor-changing and scalars at high-loop level.

We organize this paper as follow: section 2 describes the lagrangian for the model and its systematic implementation by the computer. In section 3, we show the results at two-loop level for the amplitude and in section 4 we leave a brief discussion and conclusions.

2. Model

There are two versions of THDM, labeled as type I and type II, with invariance under $Z_2$ discrete symmetry which ensures CP conservation in the scalar sector. In the first case, all quarks acquire mass through one doublet whereas in type II one doublet gives mass to the up-type quarks while the other doublet gives mass to the down-type quarks. In the type III both doublets simultaneously give masses to all quarks. In the THDM-III, it is possible to have flavor-changing considering parameters, which may induce FCNSI; those parameters are free. There is FCNSI as long as the diagonalization of the fermion mass matrices does not ensure the diagonalization of each of the Yukawa matrices [1, 21].

2.1. Lagrangian for the THDM

For the THDM-III, the general potential is given by [3]:

$$V(\Phi_1\Phi_2) = \lambda_1(\Phi_1^\dagger\Phi_1 - v_1^2)^2 + \lambda_2(\Phi_2^\dagger\Phi_2 - v_2^2)^2 + \lambda_3[(\Phi_1^\dagger\Phi_1 - v_1^2)(\Phi_2^\dagger\Phi_2 - v_2^2)]^2 + \lambda_4[(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2) - (\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1)] + \lambda_5[Re(\Phi_1^\dagger\Phi_2) - v_1v_2]^2 + \lambda_6[Im(\Phi_1^\dagger\Phi_2)]^2$$

where $\lambda_i$ are real, $v_i$’s are the vacuum expectation values and $\Phi_i$’s are the Higgs doublets.

The Yukawa sector for the THDM-III is

$$\mathcal{L}_{YS}^{THDM-III} = Y_1^u \bar{Q}_L^0 \Phi_1^0 u_R^0 + Y_2^u \bar{Q}_L^0 \Phi_2^0 u_R^0 + Y_1^d \bar{Q}_L^0 \Phi_1^0 d_R^0 + Y_2^d \bar{Q}_L^0 \Phi_2^0 d_R^0 + h.c.$$  

where $Y_i$ are the Yukawa couplings and $Q_L^0 = \left(\begin{array}{c} u_L^0 \\ d_L^0 \end{array}\right)$, $\bar{Q}_L^0 = \left(\begin{array}{c} \bar{u}_L^0 \\ \bar{d}_L^0 \end{array}\right)$, $\Phi_1 = \left(\begin{array}{c} \phi_1^+ \\ \phi_1^- \end{array}\right)$, $\Phi_2 = \left(\begin{array}{c} \phi_2^+ \\ \phi_2^- \end{array}\right)$. 

2
\[
\left(\phi_2^+, \phi_2^0, \phi_2^-\right), \quad i\sigma_2 \Phi^*_j = \left(\phi_1^+, -\phi_1^0, \phi_1^-\right) \quad \text{and} \quad \phi_i = \frac{1}{\sqrt{2}}(v_i + \phi_i^0 + i\chi_i). \]

Then we obtained,
\[
\mathcal{L}_{Y_{THDM-III}}^{Y_{THDM-III}} = \mathcal{L}_{Y_{NS}}^{Y_{THDM-III}} + \mathcal{L}_{Y_{CS}}^{Y_{THDM-III}} + h.c.
\]

where the neutral-sector is
\[
\mathcal{L}_{Y_{NS}}^{Y_{THDM-III}} = Y_1 u_L\phi^{*}_1 u_R + Y_2 d_L\phi^{*}_2 d_R + Y_3 d_L\phi^{*}_2 d_R + Y_4 d_L\phi^{*}_2 d_R
\]

and the charged-sector is
\[
\mathcal{L}_{Y_{CS}}^{Y_{THDM-III}} = +Y_1 u_L(-\phi^-) u_R + Y_2 d_L(-\phi^-) d_R + Y_3 d_L\phi^{*}_2 d_R + Y_4 d_L\phi^{*}_2 d_R.
\]

We will use the neutral sector for this paper. In this sector the interaction between fermions and scalar is given by the Yukawa couplings \((Y_f)\); in general, this is
\[
g_h f f \sim Y_f \sim m_f
\]

where \(g_h f f\) is the coupling, which represents the vertex between the Higgs and pair of fermions. In the SM the coupling is given by
\[
g_h^{SM} = Y_f^{SM} = \sqrt{\frac{m_f}{v}}
\]

where \(m_f\) is fermion mass and \(v\) is the vacuum expectation value (VEV). For the THDM, after the spontaneous symmetry breaking the mass matrix is given by
\[
m_f = \frac{1}{\sqrt{2}}(v_1 Y^{f}_1 + v_2 Y^{f}_2)
\]

where we have two VEV’s \(v_1\) and \(v_2\), which are related by: \(\frac{v_2}{v_1} = \tan \beta\). In a general form, the eq. (5) is non-diagonal, and it can be made by:
\[
(U^f_f)^\dagger m_f (U^f_R) = \tilde{m}_f
\]

It is important to note that the widetilde over the quantities means the flavor basis. Besides, in general, \(U\) is orthogonal and \(Y^f\) could be complex. So it is possible to have mixing between the mass (fermions) eigenstates at tree level. Considering the Yukawa matrices Hermitian, the mass eigenstates are
\[
f = U^f_f f'
\]

where \(f\) can be \(u, d\)–type quarks and \(l\) leptons. Then the mass matrix is given by
\[
\tilde{m}_f = \frac{1}{\sqrt{2}}(v_1 Y^f_1 + v_2 Y^f_2)
\]

where, \(Y^f_1 = U^f_L Y^f_1 U^f_R\).

In order to reduce the free parameters, one can rewrite the eq.(5) as:
\[
Y^f_1 = \sqrt{2} \frac{m_f}{v \cos \beta} - \tilde{Y}^f_2 \tan \beta.
\]

Sometimes Yukawa couplings are defined in terms on \(\tilde{\chi}_{ij}\) parameters [5]; namely,
\[
\tilde{Y}^f_{ij} = \sqrt{2} \frac{m_i m_j}{v} \tilde{\chi}_{ij}^f,
\]

where \(m_i\) and \(m_j\) are the fermion masses, and \(\tilde{\chi}_{ij}^f\) are free parameters. This specific pattern is known as Cheng & Sher ansatz [22]. Through this mechanism it is possible to have FCNSI at tree-level. This relation has been used in different papers; e.g. [2, 5, 24].

In the next subsection we show the scheme to obtain the amplitude.
2.2. Methods
We calculate the amplitude at two-loop level. We represent the scheme in fig. 1.

Figure 1. This scheme shows the path to follow for obtaining the amplitude at two-loop level, using SARAH [25–27], FeynCalc and FeynArts [28]. We implemented the THDM-III and FV and use different commands to exclude field points, isolating a process with Higgs boson, which has $m_h \sim 126$ GeV, and mediated by virtual Higgs boson.

Next section shows the results for the $h \rightarrow \gamma \gamma$ process at two-loop level, considering the flavor-changing mediated by a SM-like scalar boson.

3. Results
We implemented the THDM-III with the flavor-changing in SARAH for the process represented by fig. 2.

Figure 2. The Feynman diagram for the process $h \rightarrow \gamma \gamma$ at two-loop level; note FC in the loop mediated by the scalar. We do not draw the adjoint process.

The amplitude is given by

$$\mathcal{M}_2(\phi \rightarrow V'V) = -\frac{i}{256\pi^8 m_h^2} \prod_{\lambda=1}^{6} P_{\lambda} \text{Tr}(\mathcal{M}^{\mu_1 \mu_2}_{2}) \epsilon^{\mu_1 *}(p_2) \epsilon^{\mu_2 *}(p_3)$$

(11)

where the product of the propagators is

$$\prod_{\lambda=1}^{6} P_{\lambda} = (r_{q_1} - r_1)(r_{q_2} - r_{m})(r_{p_1 q_2} - r_{m})(r_{q_1 q_2} - 1)(r_{p_2 p_3 q_1} - r_n)(r_{p_2 q_1 q_2} - r_{m})$$

(12)

with $r_i = \frac{m_i^2}{m_h^2}$, $r_{p_i p_j} = \frac{(p_i - p_j)^2}{m_h^2}$, $r_{q_i q_j} = \frac{(q_i + q_j)^2}{m_h^2}$, $r_{p_i p_j q_k} = \frac{(p_i + p_j + q_k)^2}{m_h^2}$ and $r_{p_i p_j q_k} = \frac{(p_i + p_j - q_k)^2}{m_h^2}$. $p_1$ is the momentum for the scalar boson, $p_{2,3}$ are the momentum of the particles in the final
state and $q_{1,2}$ are the momentum for the loops. The tensorial amplitude is

$$M_2^{\mu_1 \mu_2} = \kappa^{\text{SM}} (m_m + \gamma_1 P_{q_2 p_3}) \gamma^{\mu_1} (P_L + P_R)$$

$$+ (m_m + \gamma_2 P_{q_3 p_1}) \gamma^{\mu_2} (P_L + P_R)$$

$$+ (m_m + \gamma_3 q_2^{\nu_3}) (P_L + P_R)$$

$$+ (m_m + \gamma_4 q_1^{\nu_1}) (P_L + P_R)$$

where $\kappa^{\text{SM}} = (-ie)^2 \left( -\frac{m_m}{2 \mu M_{\text{SM}}} \right)^3$ and $P_{q_2 p_3} = (q_2 - p_2 - p_3)^{\nu_3}$, $P_{q_3 p_1} = (q_2 - p_3)^{\nu_2}$, and $P_{q_1 p_2} = -(p_2 - p_3 - q_1)^{\nu_1}$. In eq. (13) is possible to reduce the $(P_R + P_L)$ terms, however these could contain the model-dependent parameters. It is shown simply the general expression for the SM, and the results for the THDM will be reported soon elsewhere.

4. Discussion and conclusions

The discovery of the Higgs boson and exploration of its properties generate great interest in the scientific community. Theoretically, there are challenges to calculate at two- or multi-loop level associated to ultraviolet, infrared and mass singularities. Besides the integration for multi-loop, there are unexplored models with FCNSI at technical calculations at one-loop have been developed [32–34], even there are some numerical methods to calculate at this level [32–34]; however there are unexplored models with FCNSI at high-loop level. We expect that high-loop level studies can be interesting tests for the NP.

In this paper, we discuss $h \to \gamma \gamma$ decay. This kind of process may be explored by the future generation of colliders. The enhanced measurements could show more information about the FC mediated by scalars and the Yukawa couplings.

Acknowledgments

JO thanks to postdoctoral scholarships at DGAPA-UNAM and RED-FAE 2015, and we also acknowledge support from CONACYT-SNI (Mexico) and the PAPIIT-IN113916 project.

References

[1] Branco G C, Ferreira P M, Lavoura L, Rebelo M N, Sher M and Silva J P 2012 Phys. Rept. 516 1–102 (Preprint 1106.0034)
[2] Arroyo, Marco and Diaz-Cruz, J Lorenzo and Diaz, Enrique and Orduz-Ducuara, Javier A 2013 (Preprint 1306.2343)
[3] Hernandez-Sanchez J, Moretti S, Noriega-Papaqui R and Rosado A 2013 JHEP 07 044 (Preprint 1212.6818)
[4] Diaz-Cruz J L, Noriega-Papaqui R and Rosado A 2005 Phys. Rev. D71 105014 (Preprint he-ph/0410391)
[5] Diaz-Cruz J L, Honorato C G, Orduz-Ducuara J A and Perez M A 2014 Phys. Rev. D90 095019 (Preprint 1403.7541)
[6] Harnik R, Kopp J and Zupan J 2013 JHEP 03 026 (Preprint 1209.1397)
[7] CMS Collaboration (CMS) 2016 CMS-PAS-EXO-16-017
[8] Aad, Georges and others (ATLAS) 2015 Eur. Phys. J. C75 79 (Preprint 1410.5404)
[9] CMS Collaboration (CMS) 2016 CMS-PAS-HIG-16-006
[10] ATLAS collaboration 2015 ATLAS-CONF-2015-061
[11] CMS Collaboration (CMS) 2016 CMS-PAS-EXO-16-008
[12] Aad, Georges and others (ATLAS) 2013 Phys. Lett. B719 242–260 (Preprint 1210.6604)
[13] Aad, Georges and others (ATLAS) 2015 JHEP 07 157 (Preprint 1502.07177)
[14] Khachatryan, Varden and others (CMS) 2015 Phys. Lett. B749 337–362 (Preprint 1502.07400)
[15] CMS Collaboration (CMS) 2016 CMS-PAS-HIG-16-005
[16] Kopp J 2016 51st Rencontres de Moriond on EW Interactions and Unified Theories La Thuile, Italy, March 12-19, 2016 (Preprint 1605.02865)
[17] Orduz-Ducuara, J A and Gaitán, R Manuscript in process
[18] Olive K A et al. (Particle Data Group) 2014 Chin. Phys. C38 090001
[19] Quang H K and Pham X Y 1998 Elementary particles and their interactions: concepts and phenomena
[20] Ginzburg I and Krawczyk M 2013 (Preprint 1310.5881)
[21] Sher M 2000 Phys. Lett. B487 151–154 (Preprint hep-ph/0006159)
[22] Cheng T P and Sher M 1987 Phys. Rev. D35 3484
[23] Gañán R, Martínez R and Montes de Oca J H 2015 (Preprint 1503.04391)
[24] Gomez-Bock M and Noriega-Papaqui R 2006 J. Phys. G32 761–776 (Preprint hep-ph/0509353)
[25] Staub F 2015 Adv. High Energy Phys. 2015 840780 (Preprint 1503.04200)
[26] Staub F 2014 Comput. Phys. Commun. 185 1773–1790 (Preprint 1309.7223)
[27] Vicente A 2015 (Preprint 1507.08349)
[28] Hahn, Thomas 2001 Comput. Phys. Commun. 140 418–431 (Preprint hep-ph/0012260)
[29] Catani, Stefano and Gleisberg, Tanju and Krauss, Frank and Rodrigo, German and Winter, Jan-Christopher 2008 JHEP 09 065 (Preprint 0804.3170)
[30] Gonsalves, Richard J 1983 Phys. Rev. D28 1542
[31] Feynman R P 2000 World Sci. Ser.20th Cent. Phys. 27 pp.1–600
[32] Borowka, S and Heinrich, G and Jones, S P and Kerner, M and Schlenk, J and Zirke, T 2015 Comput. Phys. Commun. 196 470–491 (Preprint 1502.06595)
[33] Buchta, Sebastian and Chachamis, Grigorios and Draggiotis, Petros and Rodrigo, German 2015 (Preprint 1510.00187)
[34] Cutkosky R E 1960 J. Math. Phys. 1 429–433