Global transcriptome analysis reveals potential genes associated with genic male sterility of rapeseed (Brassica napus L.)

Jianxia Jiang1, Pengfei Xu2†, Junying Zhang1, Yanli Li1, Xirong Zhou1, Meiyan Jiang1, Jifeng Zhu1, Weirong Wang1, and Liyong Yang1*

1Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China, 2Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

Rapeseed is the third leading source of edible oil in the world. Genic male sterility (GMS) lines provide crucial material for harnessing heterosis for rapeseed. GMS lines have been widely used successfully for rapeseed hybrid production. The physiological and molecular mechanism of pollen development in GMS lines of rapeseed (Brassica napus L.) need to be determined for the creation of hybrids and cultivation of new varieties. However, limited studies have focused on systematically mining genes that regulate the pollen development of GMS lines in B. napus. In the present study, to determine the stage at which pollen development begins to show abnormality in the GMS lines, we performed semi-thin section analysis of the anthers with five pollen development stages. The results indicated that the abnormal pollen development in DGMS lines might start at the meiotic stage, and abnormal pollen development in RGMS lines probably occurred before the tetrad stage. To investigate the critical genes and pathways involved in pollen development in GMS lines, we constructed and sequenced 24 transcriptome libraries for the flower buds from the fertile and sterile lines of two recessive GMS (RGMS) lines (6251AB and 6284AB) and two dominant GMS (DGMS) lines (4001AB and 4006AB). A total of 23,554 redundant DEGs with over two-fold change between sterile and fertile lines were obtained. A total of 346 DEGs were specifically related to DGMS, while 1,553 DEGs were specifically related to RGMS. A total of 1,545 DEGs were shared between DGMS and RGMS. And 253 transcription factors were found to be differentially expressed between the sterile and fertile lines of GMS. In addition, 6,099 DEGs possibly related to anther, pollen, and microspore development processes were identified. Many of these genes have been reported to be involved in anther and microspore developmental processes. Several DEGs were speculated to be key genes involved in the regulation of fertility. Three differentially expressed genes were randomly selected and their expression levels were verified by quantitative PCR.
Introduction

Brassica napus L. is an evolutionarily young allopolyploid (AACC) brassicaceous species, which was derived from Brassica rapa and Brassica oleracea ~7,500 years ago by natural hybridization and chromosome doubling (Wang et al., 2011; Chalhoub et al., 2014). Rapeseed is the third leading source of edible oil in the world. Rapeseed oil has high oleic acid, linoleic acid, and linolenic acid content and with low erucic acid and glucosinolate contents. Through natural and artificial selection, rapeseed has become a multipurpose crop (i.e., vegetable and oil for human; forage crop for livestock) (Allender and King, 2010). China is a supplier of rapeseed and is the oldest country that is involved in the cultivation of rapeseed in the world. The annual rapeseed plantation area and total output of oilseed yield in China have always been at the forefront of the world (Wang et al., 2007). The improvement of yield is mainly attributed to the large-scale application of hybrid rapeseed. More than 60% of rapeseed production involves hybrid rapeseed. The main resource used in heterosis in rapeseed contains genic male sterility (GMS), cytoplasmic male sterility (CMS), self-incompatibility, and chemical male sterility (Kaul, 1988).

GMS contains dominant GMS (DGMS) and recessive GMS (RGMS), which retain complete and stable male sterility. In cabbage (B. oleracea var. capitata), a male-sterile line (79-399-3) that carries a dominant QTL (Ms-cd-1) for male sterility was identified from line 79-399. This QTL causes abnormal callose degeneration and arrest of microspore cell division at the tetrad stage (Lou et al., 2007). Eventually, a novel gene (Bol357N3) was identified as a candidate gene for Ms-cd1 (Liang et al., 2017). In rapeseed, DGMS and RGMS are widely used for hybrid rapeseed production (Fu, 2008). In 2005, Song et al. found multiple alleles in one locus inheritance in the DGMS line 609AB. In this model, Mf, Ms, and ms are three alleles at the same locus, with a relationship of $M_f > M_s > m_s$. The recessive allele is associated with normal fertility. Multiple-allele DGMS is widely used for hybrid rapeseed seed production through the construction of a three-line hybrid system (Song et al., 2006; Liu et al., 2008). In the RGMS system, most inbred lines can restore their fertility and hybrids with strong heterosis are easily bred. In 1998, 9012AB was used in a three-line hybrid production system, and its male sterility was thought to be controlled by three independent genes, namely, BnMs3, BnMs4, and BnRf (Chen et al., 1998). In 2012, Dong et al. demonstrated that the BnMs4 locus is an actual allele of BnRf, which was designated as BnRfβ. The allele from 9012A was designated as BnRfα, and the allele from temporary maintainer was designated as BnRfγ. BnRfβ was dominant over BnRfα, and BnRfγ was dominant over BnRfβ (Dong et al., 2012). In total, the DGMS and RGMS lines are valuable resource, and they have been used successfully for rapeseed hybrid production in the world.

As a male gametophyte, pollen participates in sexual reproduction in flowering plants and directly influences seed generation (McCormick, 2004). Pollen development is a complex process that involves the formation of microsporocyte in the anther, male meiosis, and microspores being released from the tetrads, pollen wall development, and pollen maturation. Then, the mature pollen grains are released after anther dehiscence (Gómez et al., 2013). Fertility and pollen development involve many regulatory pathways and related genes. In Arabidopsis, 13,977 male gametophyte-expressed mRNAs were identified using Affymetrix ATH1 genome arrays. Among these mRNAs, 1,355 specific mRNAs were identified as male gametophyte-specific transcripts, including AtPAB3 (At1g22760), AtPAB6 (At3g16380), AtPAB7 (At1g36660), AteIF2-B3 (At3g07920), AteIF4G-1like (At4g30880), and AteIF6-2 (At2g39820) (Honys and Twell, 2004). Two transcription factor genes AMS and A1BZIP34 control pollen wall formation during Arabidopsis anther or pollen development (Sorensen et al., 2003; Gibalova et al., 2009; Xu et al., 2010). Five transcription factors (MYB80, MSI, AMS, DYT1, and TDF1) regulate tapetum development and further

(qRT-PCR). The results of qRT-PCR largely agreed with the transcriptome sequencing results. Our findings provide a global view of genes that are potentially involved in GMS occurrence. The expression profiles and function analysis of these DEGs were provided to expand our understanding of the complex molecular mechanism in pollen and sterility development in B. napus.

**KEYWORDS**

Brassica napus L., rapeseed, transcriptome, genic male sterility, pollen development

**Abbreviations:** GMS, Genic male sterility; RGMS, recessive genic male sterility; DGMS, dominant genic male sterility; CMS, cytoplasmic male sterility; GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, Differentially expressed genes; qRT-PCR, Quantitative real-time polymerase chain reaction.
influence the development of microspores by controlling callose dissolution, pollen extine formation, and tapetal programmed cell death (Zhang et al., 2006; Yang et al., 2007; Zhang et al., 2007; Zhu et al., 2008; Gu et al., 2014). In Brassica campestris, through comparative transcriptome analysis and ChIP-sequencing, 8,288 genes were differentially expressed in at least one stage of sterile floral buds compared with the fertile buds of B. campestris. Among these DEGs, Bra016531 was associated with tapetum development and function during pollen development (Shen et al., 2019). Moreover, various genes in B. campestris are involved in pollen development, such as BcMF2 (Huang et al., 2009), BcMF3 (Liu et al., 2006), BcMF4 (Liu et al., 2006), up to BcMF23 (Lin et al., 2017). Among these genes, BcMF6 (Zhang et al., 2008), BcMF2 (Huang et al., 2009), and BcMF9 (Huang et al., 2009) are polygalacturonase genes, which participate in pollen extine or intine development. BcMF21 is involved in pollen extine development and germination (Jiang et al., 2014). In B. napus, a global dynamic transcriptome programming of rapeseed anther was performed at different development stages. The results indicated that 35,470 transcripts were expressed in at least one of the anther development stages from the pollen mother cell stage to the mature pollen stage, suggesting that much more genes that are involved in pollen development need to be studied (Li et al., 2016). These findings provide important information for understanding the gene regulatory networks of pollen development. However, the mechanisms of pollen development are still incomplete, and more studies are needed.

In the present study, two RGMS lines (6251AB and 6284AB) and two DGMS lines (4001AB and 4006AB) were used to systematically explore the genes involved in pollen development in GMS lines. First, morphological differences were observed in the flower organs of the fertile and sterile lines. Semi-thin section was conducted to determine the stage at which pollen development begins to show abnormality in the sterile lines. Thereafter, 24 transcriptome libraries were constructed and sequenced for the flower buds from the fertile and sterile lines. DEGs between the fertile and sterile line were screened, and their expression differences were analyzed by transcriptome sequencing. Then, the gene function and related special pathway of the DEGs were analyzed using GO classification and KEGG annotation analysis. Additionally, DEGs that are specifically related to DGMS or RGMS and the shared DEGs involved in both DGMS and RGMS were identified. The differentially expressed TFs were investigated. Screening of DEGs that may be involved in anther and microspore development was conducted and the potential gene functions were analyzed according to the functions of their orthologous Arabidopsis genes. Several potential key DEGs involved in RGMS and DGMS were speculated. These findings would provide a foundation for evaluating the complex molecular mechanisms in pollen development and GMS occurrence in Brassica crops.

Materials and methods

Plant materials

The two recessive genic male sterile lines (6251AB and 6284AB) and two dominant genic male sterile lines (4001AB and 4006AB) of B. napus were used in this study and planted in the experimental farm of Zhuhang comprehensive experimental station of Shanghai Academy of Agricultural Sciences. The 6251A and 6284A lines are male sterile lines, and 6251B and 6284B are fertile lines. The 4001A and 4006A lines are male sterile lines, and 4001B and 4006B are fertile lines (Jiang et al., 2021). During flowering stage, floral buds at five developing stages were sampled, which were corresponding five pollen development stages (stage I, pollen mother cell stage; stage II, tetrad stage; stage III, uninucleate microspore stage; stage IV, binucleate microspore stage; and stage V, mature pollen stage) based on the bud size (Huang et al., 2008). The floral buds at five developing stages were harvested from more than 10 plants of the eight lines, including 6251A, 6251B, 6284A, 6284B, 4001A, 4001B, 4006A, and 4006B. Then, the samples were quickly frozen in liquid nitrogen and stored at −80°C. Three independent biological replicates were collected for each kind of sample.

Flower morphology and cytological observation of GMS lines

At the flowering stage, the four floral organs of a complete flower were observed under a stereomicroscope (Leica, Germany). Twenty flowers from different lines were collected for measurement. The difference was validated by t test (N=20, \( P<0.05 \)). The flower buds at five pollen development stages based on the bud size (Huang et al., 2008) were collected and stored in 70% formalin–acetic acid–alcohol fixative solution at 4°C. Semi-thin section observation was performed using the flower buds at five pollen development stages at Wuhan Servicebio Technology Co., Ltd.

Library construction and illumina sequencing

Total RNA was extracted using TRIzol reagent (Invitrogen, USA). For each kind of sample, three biological replicates were employed. RNA samples were with an OD260/OD280 ratio of 2.0. Mix equal amounts of RNA from flower buds at five developmental stages. A total content of more than 2 µg were qualified for transcription library construction (Lin et al., 2019; Huang et al., 2020). Twenty-four sequencing libraries (three biological replicates each for “6251A”, “6251B”, “6284A”,...
Results

Morphological and cytological characterization of the fertile and sterile lines

The DGMS (4001AB, 4006AB) and RGMS (6251AB, 6284AB) lines were planted in the field under the same environment. The plant phenotypes of the A and B lines were observed along with their development processes. No significant difference was observed in the growth status during the vegetative growth among different GMS lines. For each GMS line, the flower development in A line was abnormal compared with that in B line (Figure 1). Five main traits of flower organs were examined at representative stages, including sepal length, petal length, petal width, stamen length, and pistil length. For all the four GMS materials (4001AB, 4006AB, 6251AB, and 6284AB), the A lines had shorter sepal, petal, stamen, and narrower petal than the B line. In 6251AB, the A line pistils were shorter, while in other GMS materials, the pistil lengths were not significantly different between the A and B lines (Figure 2).

To determine the stage at which the abnormality of pollen development began in the GMS lines, we chose 4001AB and 6251AB, which represent the DGMS and RGMS lines, respectively, and conducted semi-thin section analysis of anthers at five pollen development stages. For 4001AB, no difference and abnormality were detected between 4001A and 4001B at the pollen mother cell stage (Figures 3A, F). At the tetrad stage, 4001B could form normal tetrads, but 4001A did not (Figures 3B, G). At the unineucleate and binucleate microspore stages, the microspores in 4001B were round and full, showing one and two obvious nucleates, respectively (Figures 3H, I). At the trinucleate microspore stage, all the microspores in 4001B could form normal mature pollen grains (Figure 3)). However, in 4001A, the tetrad stage and later stages were not observed. The abnormal pollen mother cells were gradually degraded, and eventually only a little inclusion remained in the pollen sac of 4001A (Figures 3B, C, D, E). Therefore, abnormal pollen development in 4001A might start at the meiotic stage.

For 6251AB, no abnormality was detected in the A and B line at the pollen mother cell stage (Figures 3K, F). At the tetrad stage, 6251B could form normal tetrads (Figure 3Q). While no tetrads were observed in 6251A, and the tapetal cells were aberrant, swollen and had excess vacuolization (Figure 3L). And the cell contents were messed up in pollen sac (Figure 3L). At the unineucleate microspore stage, the microspores in 6251B developed normally (Figure 3R), while the anther cells showed structural defects and the tapetal cells were degraded and messed up with other degradants in 6251A (Figure 3M). At the binucleate and trinucleate microspore stage,
the anthers shrunk seriously and stained into dark blue with degradants (Figures 3N, O). In 6251B, the anthers and microspores were round and full. The microspores developed well and eventually formed normal mature pollen grains (Figures 3S, T). Therefore, abnormal pollen development in 6251A might occur before the tetrad stage.

Transcriptome sequencing and correlation analysis

To identify mRNAs related to pollen and fertile development in DGMS and RGMS lines, transcriptome sequencing was conducted. The flower buds from the sterile (4001A, 4006A) and fertile (4001B, 4006B)
4006B) lines were collected. The flower buds of the sterile (6251A, 6284A) and fertile (6251B and 6284B) lines were also collected. Three biological replicates were employed for each sample. In total, 24 cDNA libraries were prepared for transcriptome sequencing. As shown in Table 1, 186 G clean bases were obtained, and the clean bases of each library ranged from 5.88 G to 9.46 G with Q30 > 92.86% and GC > 44.41%. The clean reads were then mapped to the *B. napus* reference genome (http://brassicadb.cn/) with a mapping rate of 89.73%–91.07%. The mapping rate of the unique reads ranged from 86.23% to 87.32%, while the mapping rate of the multi-mapped reads was less than 5% (Table 1). To visualize the underlying structure of the RNA-seq data and emphasize the high degree of correlation between biological replicates, principal component analysis (PCA) and Pearson correlation were performed using the fragments per kilobase of transcript per million mapped reads (FPKM) value. Excellent correlations were observed between A and B lines for each GMS material (Figure S1A). Moreover, PCA analysis showed that the data collected from the fertile and sterile lines of DGMS and RGMS lines could be clearly separated. The three biological replications were concentrated well (Figure S1B). Therefore, the RNA-seq data were considered reliable for subsequent analysis.

**Differentially expressed genes analysis**

The FPKM value of transcripts was used for identifying DEGs (|log2 (fold change)| ≥1, q value < 0.05 and FDR< 0.01) between the fertile and sterile lines (4001B vs. 4001A, 4006B vs. 4006A, 6251B vs. 6251A, and 6284B vs. 6284A). Finally, 23,554 redundant DEGs were obtained. Among these DEGs, 4,820 DEGs were obtained in 4001AB, including 4,251 upregulated genes and 569 downregulated genes in 4001B, compared with 4001A. In total, 4,257 DEGs were obtained in 4006AB, including 3,857 upregulated genes and 400 downregulated genes in 4006B, compared with 4006A. In addition, 6,093 DEGs (5,230 upregulated and 863 downregulated) and 8,384 DEGs (7,347 upregulated and 1,037 downregulated) were obtained in 6251AB and 6284AB, respectively (Figure 4; Table S1). The number of upregulated genes was higher than that of downregulated genes. To explore the DEGs involved in the DGMS and RGMS lines, we conducted a Venn diagram analysis. Based on the comparison between 4001AB and 4006AB, 2,214 (37.6%) genes were commonly upregulated, and 52 (5.7%) genes were commonly downregulated (Figures 5A, B). In addition, 4,196 (50.1%) genes were commonly upregulated, and 283 (17.5%) genes were commonly downregulated in the two RGMS lines (6251AB and 6284AB) (Figures 5C, D). To intuitively show the differences and similarities of the DEGs in flower buds from different GMS lines, we performed hierarchical clustering to represent the expression of DEGs (Figure 6; Table S2). The results showed a significant difference in gene expression profile among the four GMS groups. Most of the DEGs were obviously upregulated in B lines. Some genes were barely expressed in A lines, but they were highly expressed in B lines (Figure S2A). Therefore, a large number of DEGs may play a positive regulatory role in pollen development.
GO function and KEGG pathway analysis of differentially expressed gene

In the present study, an FDR of < 0.05 was used to pick significantly enriched GO terms. The annotated genes were divided into three major functional categories, namely, biological processes (BP), cellular components (CC), and molecular functions (MF, Table S3). The main GO terms were significantly enriched in biological processes. For the DEGs in DGMS (4001AB, 4006AB), the GO terms were significantly enriched in cell wall organization or biogenesis (GO:0071554), external encapsulating structure organization (GO:0045229), cell wall organization (GO:0071555), single-organism carbohydrate metabolic process (GO:0044723), and lipid biosynthetic process (GO:0008610, Figures 7A, B). Interestingly, for the down-regulated DEGs in 4001B, some GO terms related to pollen development, pollination, and fertilization were significantly enriched, including pollination (GO:0009856), pollen-pistil interaction (GO:0009875), and recognition of pollen (GO:0048544) (Figure 7A). The relevant genes included SDR1 (BnaA07g25970D), ARK2 (BnaA07g25960D), RKS2-1 (BnaC08g42100D), RKS2-2 (BnaC08g42090D), and SD1-29 (BnaC01g29480D, Table S3).

KEGG pathway analysis was conducted to investigate whether the DEGs were involved in special pathways. For all the four GMS lines, the most significantly enriched pathway was phenylpropanoid biosynthesis (ath00940). For DGMS lines (4001AB and 4006AB), the most significantly enriched pathway was phenylpropanoid biosynthesis (ath00940), followed by phenylalanine metabolism (ath00360), protein processing in endoplasmic reticulum (ath04141), zeatin biosynthesis (ath00908), and butanoate metabolism (ath00650, Figure 7E). For RGMS lines (6251AB and 6284AB), the most significantly enriched pathways were highlighted in phenylpropanoid biosynthesis (ath00940), pentose and glucuronate interconversions (ath00040), starch and sucrose metabolism (ath00500), cysteine and methionine metabolism (ath00250), and fructose and mannose metabolism (ath00501), among which the last three were significantly enriched in both 6251AB and 6284AB.

Sample: sample name; clean_reads: the number of clean reads, the single-ended meter; clean_bases: the number of clean data; Q30: Q-score of clean data ≥30; GC_pct: the percentage of GC-content in clean data; total_map: the number of reads mapped to the reference genome and its percentage in clean reads; unique_map: the number of reads mapped to the only location of the reference genome and its percentage in clean reads.

---

**TABLE 1** The alignment statistics result with the reference genome for all samples.

| sample     | clean_reads | clean_bases | Q30 | GC_pct | total_map | unique_map |
|------------|-------------|-------------|-----|--------|-----------|------------|
| 628A1      | 45948332    | 6.89G       | 92.86 | 45.3   | 41362911  | (90.02%)   |
| 628A2      | 62088566    | 9.31G       | 93.88 | 45.24  | 56097765  | (90.35%)   |
| 628A3      | 57424400    | 8.61G       | 93.58 | 45.33  | 52102792  | (90.73%)   |
| 628B1      | 39172350    | 5.88G       | 93.51 | 45.31  | 3561954  | (90.96%)   |
| 628B2      | 51054958    | 7.66G       | 93.91 | 45.06  | 46436011  | (90.95%)   |
| 628B3      | 55453498    | 8.32G       | 93.31 | 45.13  | 50727612  | (90.66%)   |
| 625A1      | 56355344    | 8.45G       | 93.76 | 45.82  | 51289259  | (90.01%)   |
| 625A2      | 48132688    | 7.22G       | 93.47 | 45     | 45331171  | (90.02%)   |
| 625A3      | 59591480    | 8.94G       | 94.21 | 45.39  | 54021703  | (90.65%)   |
| 625B1      | 41147282    | 6.17G       | 94.09 | 45.52  | 37455212  | (91.03%)   |
| 625B2      | 48823854    | 7.32G       | 94.19 | 45.12  | 44199783  | (90.53%)   |
| 625B3      | 60574856    | 9.09G       | 93.39 | 45.46  | 55133378  | (91.02%)   |
| 4001A1     | 47587290    | 7.14G       | 93.73 | 45.38  | 43222164  | (90.83%)   |
| 4001A2     | 44763242    | 6.71G       | 94.18 | 45.1   | 40603971  | (90.72%)   |
| 4001A3     | 56108092    | 8.42G       | 94.09 | 45.3   | 50858746  | (90.64%)   |
| 4001B1     | 54664558    | 8.2G        | 94.07 | 45.18  | 49625443  | (90.81%)   |
| 4001B2     | 55660646    | 8.35G       | 93.88 | 45.09  | 50444058  | (90.63%)   |
| 4001B3     | 47664592    | 7.15G       | 95.78 | 45.41  | 43809491  | (91.07%)   |
| 4006A1     | 50508724    | 7.58G       | 94.02 | 44.6   | 45460051  | (89.9%)    |
| 4006A2     | 46000888    | 6.9G        | 93.89 | 44.11  | 41278231  | (87.93%)   |
| 4006A3     | 51603244    | 7.74G       | 94.1  | 44.67  | 46358491  | (88.83%)   |
| 4006B1     | 59526718    | 8.39G       | 93.99 | 44.46  | 50375272  | (90.07%)   |
| 4006B2     | 46003008    | 6.09G       | 94.32 | 44.73  | 36936999  | (90.91%)   |
| 4006B3     | 63088340    | 9.46G       | 94.01 | 44.66  | 57140191  | (90.57%)   |

Sample: sample name; clean_reads: the number of clean reads, the single-ended meter; clean_bases: the number of clean data; Q30: Q-score of clean data ≥30; GC_pct: the percentage of GC-content in clean data; total_map: the number of reads mapped to the reference genome and its percentage in clean reads; unique_map: the number of reads mapped to the only location of the reference genome and its percentage in clean reads.
(ath00270), and arachidonic acid metabolism (ath00590) (Figure 7F). Based on the comparison between DGMS and RGMS, two KEGG terms were shared, namely, phenylpropanoid biosynthesis (ath00940) and zeatin biosynthesis (ath00908, Table S4). Therefore, a subset of genes potentially played roles in both DGMS and RGMS lines.

Identification of DEGS specifically related to DGMS or RGMS

In the present study, a subset of DEGs was obtained between the A and B line of DGMS lines. However, these genes did not show differential expression between the A and B line in RGMS.
These genes were identified as DGMS-related genes, which might specifically function in DGMS. A total of 346 genes were DGMS-related genes, such as BnaC07g11890D (HRS1 HOMOLOG3, HHO3) and BnaA02g29090D (Figures S2B, C). According to the similar screening method as above, 1,553 genes were identified as RGMS-related genes, such as BnaA03g22110D and BnaA07g32020D. Both of the two genes were differentially expressed between the A and B line in RGMS, but they showed similar expression levels between the A and B line in DGMS (Figures S2D, E).

**Identification of shared DEGs related to both DGMS and RGMS**

To identify the candidate genes involved in both DGMS and RGMS, we compared the DEGs identified in DGMS (4001AB and 4006AB) and RGMS (6251AB and 6284AB). In total, 1,545 DEGs were shared between DGMS and RGMS (Figure 8A). GO enrichment analysis of the 1,545 DEGs showed that they were mainly enriched in single-organism carbohydrate metabolic process (GO:0044723), external encapsulating structure organization
To display the expression differences of the shared DEGs in RGMS and DGMS, we selected eight genes and calculated their expression levels by using FPKM values, which were AGL18, AGL66, AGL104, LBD27, ACA7, BnaAnng17790D, BnaC08g05830D, and BnaA07g33840D (Figures 9 and S3).

**Identification of differentially expressed TFs**

To explore the differentially expressed TFs in GMS lines, we downloaded all the *B. napus* transcription factors from BnTIR (http://yanglab.hzau.edu.cn/bntir), and they were compared to all the DEGs. As a result, 253 differentially expressed TFs were found, and they belong to several gene families, such as C2H2, WOX, LBD, WRKY, MYB, and NAC (Figures 8C, D; Table S5). As DEGs, some had higher expression levels in A lines than in B lines. For example, BnaC07g13550D (a WRKY family TF) was significantly differentially expressed between the A and B lines in the four GMS lines, and much more transcripts accumulated in the A lines (Figure 8D). In addition, 48 MYB TFs were differentially expressed between A and B lines, and the proportion (48/253) was larger than the other TFs. BnaA04g28790D was an MYB TF with significantly different expression level in 6251AB and 6284AB lines (Figure 8D). Some
transcription factors may be involved in the regulation of anther and microspore development.

Analysis of potential key DEGs involved in GMS

To investigate the potential DEGs related to pollen development processes, 13,031 Arabidopsis genes related to anther, pollen, and microspore development were downloaded from TAIR website (https://www.arabidopsis.org/index.jsp). And 6,099 homologous DEGs in B. napus were identified, which might be involved in anther, pollen and microspore development (Table S6). KEGG enrichment analysis of these 6,099 DEGs was performed. A total of 1,073 DEGs were enriched in 27 significantly pathways (p-value <0.05, p-adjusted <0.05, q-value <0.05) (Table S7). The Top 20 pathways were used to draw the KEGG map (Figure 10).
Table 2, we excluded genes with lower expression in advance, and listed 74 highly credible candidate genes related to GMS. Their homologous genes in Arabidopsis have been reported in previous studies to be involved in anther and microspore developmental processes, such as anther cell differentiation, tapetum development, pollen mother cell and microspore division, meiosis process, sporopollenin biosynthesis, pollen exine formation, and pollen maturation process. Based on the functions of these Arabidopsis genes, we speculated the 74 DEGs might be also involved in the anther and microspore developmental processes.

In previous studies, MS5 (BnaA08g25920D) was a key gene that caused sterility in B. napus. It participated in meiosis progression by regulating chromosome configuration during early prophase I (Xin et al., 2016). DMC1 and Fu played important roles during meiosis process in Arabidopsis (Oh et al., 2005; Muyt et al., 2009). In our transcriptome data, MS5, DMC1, and Fu were differentially expressed in DGMS (Table 2). And the abnormal pollen development in our sterile lines of DGMS arose from the meiosis process. Therefore, MS5, DMC1, and Fu may be key genes involved in the fertility regulation of DGMS.

MS3 and Rf were key genes controlling fertility in RGMS of B. napus, and the abnormal vacuolization of the tapetum during the tetrad stage was associated with male sterility (Wan et al., 2010; Deng et al., 2016). We found the expression level of MS3 (BnaC09g41260D) decreased in both 6251A and 6284A. And Rf was also differentially expressed in 6251AB and 6284AB. Coincidentally, abnormal vacuolization of
## TABLE 2 Potential functional analysis of DEGs possibly involved in anther and microspore development.

| Classification          | Locus (Brassica napus) | Log₂FoldChange | Arabidopsis thaliana | References |
|-------------------------|-------------------------|----------------|----------------------|------------|
|                         | Locus                   | A             | A                    | A         | A         | AT2G07280 | EMS1, EXS | A putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in Arabidopsis anther. EMS1 controls anther cell differentiation. | Zhao et al., 2002; Huang et al., 2016 |
| Anther cell differentiation | BnaA10g23720D          | /             | /                    | /         | -1.60     |          |          |                                                   |
|                         | BnaA03g50230D          | /             | /                    | /         | 1.38      | AT4G30520 | CIK3      | Encodes SARK (senescence-associated receptor-like kinase). It is one of a group of LRR-RLKs, designated as CIKs. | Cui et al., 2018 |
|                         | BnaA01g06550D          | /             | /                    | /         | 1.35      |          |          |                                                   |
|                         | BnaA10g04110D          | 1.61          | 1.74                 | /         | 1.22      | AT2G31210 | BHLH091   | Basic_helix-loop-helix (bHLH) DNA-binding superfamily protein                                                   |
| Tapetum development     | BnaA03g23380D          | -4.22         | /                    | /         | 1.86      | AT2G16910 | AMS       | Encodes a basic helix-loop helix transcription factor involved in tapetal cell death and pollen development. Loss of function mutations are male sterile. | Xu et al., 2010 |
|                         | BnaC03g246740D         | /             | -1.31                | /         |          |          |          |                                                   |
|                         | BnaA07g03340D          | /             | 2.22                 | 1.50      | /         |          |          |                                                   |
|                         | BnaC02g12480D          | /             | /                    | /         | -1.38     | AT2G56110 | MS188, MYB103, MYB80 | Encodes a member of the R2R3 MYB transcription factor gene family that is required for anther development by regulation tapetum development, callose dissolution and exine formation. | Zhang et al., 2007; Lu et al., 2020 |
|                         | BnaAnng24260D          | /             | /                    | /         | -2.43     | AT4G21330 | DYT1      | Encodes a bHLH transcription factor strongly expressed in the tapetum. dyt1 mutant exhibits abnormal anther morphology beginning at anther stage 4. | Zhang et al., 2006 |
|                         | BnaC01g12730D          | -2.95         | /                    | /         | -1.90     |          |          |                                                   |
|                         | BnaC06g01060D          | -1.44         | 1.31                 | /         |          | AT1G44970 | PRX9      | Encodes a class III peroxidase that is genetically redundant with PRX40. PRX9 and PRX40 are extensin peroxidases essential for maintaining tapetum and microspore cell wall integrity during Arabidopsis anther development. | Jacobowitz et al., 2019 |
|                         | BnaA10g28250D          | /             | /                    | /         | -1.78     | AT4G16270 | PRX40     | Encodes a class III peroxidase that is genetically redundant with PRX9. | Jacobowitz et al., 2019 |
|                         | BnaA10g17520D          | /             | /                    | /         | -1.30     | AT4G16270 | PRX40     |                                                   |
|                         | BnaC01g21870D          | /             | /                    | /         | -1.44     | AT4G31210 | ATIC40    | chloroplast protein import (Tic40)                                             |
|                         | BnaC09g41260D (MS3)    | /             | 9.99                 | 8.86      | /         | AT2G16620 | ATTIC40   |                                                   |
|                         | BnaA10g00190D (Rf)     | /             | -1.09                | -1.86     | /         | AT1G37910 | MTH5C70-I | mitochondrial heat shock protein 70-1                                                   |
|                         | BnaC03g51750D          | /             | 7.85                 | 7.33      | /         | AT2G62320 | MYB99     | MYB99 controls the exclusive production of tapetum di-glycosylated flavonoids and hydroxycinnamic acid amides. | Battat et al., 2019 |
|                         | BnaA06g13740D          | /             | /                    | /         | 3.08      | AT1G19530 | RGAT1     |                                                   |

(Continued)
### TABLE 2 Continued

| Classification | DEGs (Brassica napus) | Arabidopsis thaliana | References |
|----------------|----------------------|----------------------|------------|
| Locus          | Log₂FoldChange       | Locus                | Gene name  | Functional Description |
|                | 4001B/4006B/6251B/6284B/ |                      |            |                         |
| BnaA07g36770D  | 6.63 / 6.47 / 12.86  | AT3G24520 BCP1       |            | Male fertility gene acting on tapetum and microspore |
|                |                      |                      |            | Qian et al., 2021      |
| BnaA03g22590D  | / / 1.00 1.02        | AT5G06100 MYB33      |            | MYB domain protein 33   |
|                |                      |                      |            | Xu et al., 1995        |
| BnaA10g40900D  | 2.68 / 1.06 /        | AT5G22260 MS1        |            | RING/FYVE/PHD_zinc_finger_superfamily_protein |
|                |                      |                      |            | Lu et al., 2020        |
| BnaA03g22910D  | 4.29 5.87 7.51 6.68  | AT1G02050 LAP6       |            | Chalcone and stilbene synthase family protein |
|                |                      |                      |            | Jiang et al., 2021     |
| BnaC03g26980D  | 3.58 6.53 7.72 6.95  | AT4G00040            |            | Chalcone and stilbene synthase family protein |
|                |                      |                      |            | Xu et al., 2010        |
| BnaA02g13290D  | / 5.70 6.09         | AT1G24400 LHT2       |            | High-affinity transporter for neutral and acidic amino acids, expressed in tapetum tissue of anthers |
|                |                      |                      |            | Colcombet et al., 2005 |
| Pollen mother  |                      |                      |            |                         |
| cell and       |                      |                      |            |                         |
| microspore     |                      |                      |            |                         |
| division       |                      |                      |            |                         |
| BnaC01g42830D  | 6.64 6.75 4.81 7.01  | AT3G47870 SCP, ASL29, LBD27 |            | Required for normal cell division during pollen development. Mutant has extra cell in pollen of vegetative cell identity. |
|                |                      |                      |            | Oh et al., 2011        |
| BnaAnng17790D  | 9.39 8.87 6.11 7.92  | AT4G20050 QRT3      |            | Encodes a polygalacturonase that plays a direct role in degrading the pollen mother cell wall during microspore development. |
|                |                      |                      |            | Preuss et al., 1994; Rhee and Somerville, 1998; Rhee et al., 2003; Ogasawara et al., 2009 |
| BnaA01g10390D  | / 1.94 /            | AT5G55590 QRT1       |            | Encode a pectin methylesterase (PME) required for pectin degradation of the cell wall surrounding the pollen mother cell during pollen development. |
|                |                      |                      |            | Aarts et al., 1997     |
| Metosis process|                      |                      |            |                         |
|                |                      |                      |            |                         |
| BnaCinng16401D | / 1.84 /            | AT5G35590 QRT1       |            | Encode a pectin methylesterase (PME) required for pectin degradation of the cell wall surrounding the pollen mother cell during pollen development. |
| BnaA10g09760D | / / 2.01            | AT3G11980 MS2        |            | Jojoba acyl CoA reductase-related male sterility protein-play specific roles during microspores released from tetrad. |
|                |                      |                      |            | Aarts et al., 1997     |
| BnaC05g41210D  | / 2.26 1.86         | AT3G22290 SHOCJ      |            | Encodes a protein with similarity to XPF endonucleases. Loss of function mutations have defects in meiosis. |
|                |                      |                      |            | Macaisne et al., 2008  |
| BnaA05g27080D  | / 1.86 1.57         | AT5G52290             |            | Expression of the AIDMC1 is restricted to pollen mother cells in anthers and to megaspore mother cells in ovules. |
|                |                      |                      |            | Muyt et al., 2009      |
| Sporopollenin  |                      |                      |            |                         |
| biosynthesis   |                      |                      |            |                         |
| BnaA03g22910D  | 4.29 5.87 7.52 6.68  | AT4G00040            |            | Chalcone and stilbene synthase family protein |
|                |                      |                      |            | Xu et al., 2010        |

(Continued)
| Locus          | Log₂FoldChange | Locus Gene name | Functional Description                          | References         |
|---------------|----------------|-----------------|------------------------------------------------|--------------------|
| BnaC03g26980D | 3.58           | AT1G68540        | NAD(P)-binding Rossmann-fold superfamily protein | Wang et al., 2018   |
| BnaA10g19830D | /              | TKPR2, CCRL6    |                                                  |                    |
| BnaA07g27190D | /              | AT1G68540        | UPEX1 is arabinogalactan b-(1,3)-galactosyltransferase involved in the formation of pollen exine. | Dobritsa et al., 2011 |
| BnaC06g30130D | /              | At1g33430        | UPEX1 is arabinogalactan b-(1,3)-galactosyltransferase involved in the formation of pollen exine. | Dobritsa et al., 2011 |
| BnaC05g28280D | /              | AT2G30710        | Ypt/Rab-GAP domain of gyp1p superfamily protein  |                    |
| BnaC05g28280D | /              | AT1G68540        |                                                  |                    |
| BnaC09g14100D | /              | AT4g14080        | O-Glycosyl hydrolases family 17 protein.        |                    |
| BnaC03g17060D | /              | AT1G68540        |                                                  |                    |
| BnaC04g29090D | /              | AT2G02970        | APY6 Encodes a putative apyrase involved in pollen exine pattern formation and anther dehiscence. | Yang et al., 2013   |
| BnaC07g22030D | /              | AT3G15100        | PIN8 Encodes an auxin transporter with a strong expression in a male gametophyte. Mutant studies reveal a role for auxin transport in regulating pollen development and function. | Bosco et al., 2012  |
| BnaA06g33910D | /              | AT5G16530        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |
| BnaC09g43680D | /              | AT1G75930        | EXL6 Extracellular lipase_6                       | Xu et al., 2014     |
| BnaA06g29150D | 7.03           | AT2G29940        | ABCG31 ABCG9 and ABCG31 participate in Pollen Fitness and the Deposition of Steryl Glycosides on the Pollen Coat | Choi et al., 2014   |
| BnaC03g26220D | /              | AT2G02970        | APY6 Encodes a putative apyrase involved in pollen exine pattern formation and anther dehiscence. | Yang et al., 2013   |
| BnaC09g43680D | /              | AT5G16530        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |
| BnaA06g29150D | 6.25           | AT3G15100        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |
| BnaA02g17590D | 2.94           | AT3G15100        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |
| BnaC03g26220D | /              | AT3G15100        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |
| BnaA02g13560D | /              | AT3G15100        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |
| BnaC09g43680D | /              | AT5G16530        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |
| BnaA02g13560D | /              | AT3G15100        | PIN5 Encodes PINS, an atypical member of the PIN family. It acts together with PIN8 in affecting pollen development and auxin homeostasis. | Ding et al., 2012   |

(Continued)
the tapetum was also found in 6251A. So MS3 and Rf were probably key genes in RGMS. In addition, many other genes involved in tapetum development were specifically differentially expressed in RGMS. These genes included AMS (BnaC07g05950D, BnaA07g03340D), MYB99 (BnaC03g51750D), MYB33 (BnaA03g22590D), and LHT2 (BnaA02g13290D). Therefore, MS3 (BnaC09g41260D), Rf, AMS, MYB99, MYB33, and LHT2 may be key genes involved in the fertility regulation of RGMS.

Validation of differentially expressed genes by qRT-PCR

qRT-PCR was conducted to verify the expression levels of three randomly selected DEGs, namely, BnaA03g02100D, BnaA03g52460D, and BnaAnng37210D in 4001AB, 4006AB, 6251AB, and 6284AB, respectively. These three genes were upregulated in the fertile lines, which largely agreed with the expression trend in transcriptome results (Figure 11). The qRT-
PCR results validated the accuracy and reliability of the obtained transcriptome data.

Discussion

Rapeseed is one of the primary sources of vegetable oil for human nutrition in the world, which occupies an important position in China’s edible oil supply. In recent years, transcriptome sequencing has been widely used for the identification of candidate genes related to various agronomic traits of rapeseed, which greatly facilitate the identification of functional genes underlying important yield and quality traits and offer abundant resources for breeding excellent rapeseed varieties. By using transcriptome and proteome analyses, the molecular mechanisms underlying changes in oil storage under drought stress in *B. napus* were revealed. Lots of major genes involved in ABA signal transduction, such as BnaA06g40220D, BnaA03g13020D, BnaA01g23120D, and BnaA05g08020D, were highly expressed under drought stress (Li et al., 2021). Long et al. used transcriptome analysis to explore salt-stress-responding genes by using digital gene expression (DGE) at 0, 3, 12 and 24 h after H2O (control) and NaCl treatments on *B. napus* roots at the germination stage. A total of 163 genes were differentially expressed at all the time points. These genes were new candidate salt-stress-responding genes, which may function in novel putative nodes in the molecular pathways of salt stress resistance (Long et al., 2015). Li et al. performed a global dynamic transcriptome programming of rapeseed anther at different development stages. The transcriptome sequencing results revealed that 35,470 transcripts were expressed in at least one of the anther development stages from the pollen mother cell stage to the mature pollen stage (Li et al., 2016). Therefore, much more genes that are involved in pollen development need to be discovered.

In our study, the potential genes related to pollen development and the formation of genetic male sterility were identified by constructing and sequencing 24 transcriptome libraries for the flower buds from the fertile and sterile lines of two RGMS and two DGMS lines. A total of 23,554 redundant DEGs with over two-fold change between sterile and fertile lines were obtained, including 4,820 DEGs (4,251 upregulated and 569 downregulated) in 4001AB, 4,257 DEGs (3,857 upregulated and 400 downregulated) in 4006AB, 6,093 DEGs (5,230 upregulated and 863 downregulated) in 6251AB, and 8,384 DEGs (7,347 upregulated and 1,037 downregulated) in 6284AB. The number of DEGs identified in our study was much more than those in previous studies. Our findings provide a global view of genes that are potentially involved in GMS occurrence. In the four GMS lines, the number of upregulated genes was much greater than the number of downregulated genes. A similar phenomenon was also observed in previous reports (Wu et al., 2007). Maybe this phenomenon in our study was caused by the following reasons. The fertile and sterile plants of the homozygous GMS two-type line have similar genetic background (Li et al., 1988). Consequently, the fertile and sterile plants should have a similar gene expression pattern before the key stage (tetrad stage) for fertility control. Thereafter, the male gametes of the sterile lines began to stop its development at the meiotic stage or pre-tetrad stage, and its tapetum and pollen mother cell also began to degrade to form empty pollen sacs. As a result, a large number of pollen development-related genes had low or undetectable expression levels.
expression in the sterile lines, while most of them were normally expressed in fertile lines. Therefore, the number of up-regulated genes in fertile lines was significantly greater than the down-regulated genes. To verify the expression of genes in transcriptome sequencing, three genes were randomly selected, and their expression levels were analyzed by qRT-PCR. The results of qRT-PCR largely agreed with the transcriptome sequencing results.

In our sequencing results, 2,214 upregulated DEGs and 52 downregulated DEGs were shared between 4001AB and 4006AB. And 4,196 upregulated DEGs and 283 downregulated DEGs were shared between 6251AB and 6284AB. In total, 1,545 DEGs were shared between the two DGMS and RGMS lines. We found the DEGs shared between two DGMS lines or two RGMS lines were not too much. In theory, the same dominant sterility genes cause sterility of 4001A and 4006A. And the same recessive sterility genes cause sterility of 6251A and 6284A. However, the genetic backgrounds of 4001AB and 4006AB, or the genetic backgrounds of 6251AB and 6284AB, are very different. Their flowering period and agronomic characters are also quite different. Perhaps these factors lead to the small number of DEGs shared between two fertile and sterile lines.

In previous studies, many Arabidopsis genes have been reported to be involved in anther and microspore development processes. To investigate the potential DEGs related to pollen development processes, 13,031 Arabidopsis genes related to anther, pollen, and microspore development were downloaded from TAIR website. And 6,099 homologous genes related to pollen development processes, 13,031 Arabidopsis genes reported to be involved in anther and microspore development were sequenced for the two DGMS and RGMS lines. Based on the results, a large number of DEGs were shared between the two DGMS and RGMS lines. We found the abnormal pollen development in our sterile lines contributed to the article and approved the submitted version.

Conclusions

This study revealed that the abnormal pollen development in DGMS lines might start at the meiotic stage, and abnormal pollen development in RGMS lines probably occurred before the tetrad stage. In total, 24 transcriptome libraries were constructed and sequenced for the flower buds from the fertile and sterile lines of RGMS and DGMS. Based on the results, a large number of DGEs was obtained. Some DEGs were candidate genes for rapeseed breeding, and they are expected to provide new insight into the molecular mechanisms underlying GMS.

Data availability statement

The datasets presented in this study can be found in online repositories. The name of the repository and accession number can be found below: SRA, NCBI; PRJNA879090.

Author contributions

JJ and LY conceived the project and research plan. JJ drafted the manuscript. JJ and PX analyzed the sequencing data, performed the experiments, and finished the manuscript. JYZ, XZ, and JFZ planted and observed the DGMS plants. YL, MJ, and WW planted and observed the RGMS plants. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by grants from the National Key Research and Development Program of China (Grant
No.2018YFD0100602), National Modern Agricultural Industry Technology System (Grant No. CARS-12), and Shanghai Agriculture Applied Technology Development Program, China (Grant No.T20210219).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Aarts, M. G., Hodge, R., Kalantidis, K., Florack, D., Wilson, Z. A., Mulligan, B. J., et al. (1997). The arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. 12, 615–623. doi: 10.1046/j.1365-313X.1997.00615.x

Adamczyk, B. J., and Fernandez, D. E. (2009). MIKC+ MADS domain heterodimers are required for pollen maturation and tube growth in arabidopsis. Plant Physiol. 149 (4), 1713–1723. doi:10.1104/pp.109.15806

Allender, C. J., and King, G. J. (2010). J. origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol. 10, 54. doi:10.1186/1471-2229-10-54

Ariizumi, T., Hatakeyama, K., Hinata, K., Inatsugi, R., Nishida, I., Sato, S., et al. (2010). Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in arabidopsis thaliana. Plant J. 69, 170–181. doi:10.1111/j.1365-313X.2010.04218.x

Battat, M., Einat, A., Rogachev., I., Hanhineva, K., Fernandez, D. E. (2009). MIKC* MADS domain reductases in elongation/condensation complexes. Plant J. 62, 310–324. doi:10.1111/j.1365-313X.2009.04153.x

Bosco, C. D., Dvorzhenko, A., Liu, X., Woerner, N., Rensch, T., Eismann, M., et al. (2012). The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J. 71, 860–870. doi:10.1111/j.1365-313X.2012.05037.x

Chalhoub, B., Denoeld, F., Liu, S., Parkin, J. A., Tang, H., Wang, X., et al. (2014). Early alkaloid phylogenetic evolution in the post-neotrophic brassica napus oilseed genome. Science 345, 950–953. doi:10.1126/science.1253435

Cheng, H., Song, S., Xiao, L., Sui, H. M., Cheng, Z., Xie, D., et al. (2009). Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in arabidopsis. PLoS Genet. 5 (3), e1000440. doi:10.1371/journal.pgen.1000440

Chen, F. X., Hu, B. C., Li, C., Li, Q. S., Chen, W. S., and Zhang, M. L. (1998). Genetic studies on GMS in brassica napus L. 1. inheritance of recessive GMS line 9002A (in Chinese). Acta Agron. Sin. 24, 431–438.

Chen, Y. J., Yang, X. X., Li, W. C., and Zhao, S. Q. (2020). Knockdown of the DEG4 family member RUS4 impairs stamen development and pollen maturation in arabidopsis. Plant Sci. 310, 110645. doi:10.1016/j.plantsci.2020.110645

Choi, H., Ohyama, K., Kim, Y. Y., Jin, J. Y., Lee, S. B., Yamaoka, Y., et al. (2014). The role of arabidopsis ABCG29 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. Plant Cell 26 (1), 310–324. doi:10.1105/tpc.113.118935

Colombo, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C. E., and Schroeder, J. I. (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17 (12), 3350–3361. doi:10.1105/tpc.105.036731

Cui, Y., Hu, C., Zhi, Y., Cheng, K., Li, X., Wei, Z., et al. (2018). CIK receptor kinases determine cell fate specification during early anther development in arabidopsis. Plant Cell 30 (10), 2383–2401. doi:10.1105/tpc.18.00586

Cui, J., You, C. J., Zhu, E. G., Huang, Q., Ma, H., and Chang, F. (2016). Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell 28 (5), 1078–1093. doi:10.1105/tpc.15.00986

Ding, Z. H., Li, X., Wang, Z. Z., Jiang, Y. F., Wan, L. L., Dong, F. M., et al. (2016). Map–based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRfb, a male sterility gene, in brassica napus. Theor. Appl. Genet. 129, 53–64. doi:10.1007/s00122-015-2608-8

Ding, Z., Wang, B., Moreno, I., Duplakovi, N., Simon, S., Carraro, N., et al. (2012). ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in arabidopsis. Nat. Commun. 3, 941. doi:10.1038/ncomms1941

Dobretza, A. A., Geanconteri, A., Shrestha, J., Carlson, A., Kooyers, N., Goeper, D., et al. (2011). A large-scale genetic screen in arabidopsis to identify genes involved in pollen exine production. Plant Physiol. 157 (2), 947–970. doi:10.1104/pp.111.179523

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.1004781/full#supplementary-material

SUPPLEMENTARY FIGURE 1
Pearson correlation and principal component analysis. (A) Representative correlation plots between A and B lines. Plots display between log_{FPKM} (FPKM), normalized read counts. (B) PCA of the transcriptome expression profiler among samples. Genotype is represented by different color. The relationships are calculated by FPKM values.

SUPPLEMENTARY FIGURE 2
Analysis of the expression levels of DEGs. (A) The downregulated genes in A lines of GMS, numbers in each box are FPKM values. Genes specifically involved in DGMS (B and C) and RGM5 (D and E). The expression levels are calculated by FPKM values. Significant differences were calculated by performing paired t-test between the FPKM values of A and B lines. **P < 0.01, “ns” means no significant difference.

SUPPLEMENTARY FIGURE 3
Shared DEGs possibly involved in GMS. (A–C) BnaAnmg17790D, BnaC08g05850D, and BnaA07g33840D were selected, and their expression levels were calculated using FPKM values. Significant differences were calculated by performing a paired t-test between FPKM values of A and B lines. **P < 0.01. (D) Analysis of the expression levels of MYB TFs. Numbers in each box are FPKM values.

Frontiers in Plant Science 19

Publisher note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

No conflicts of interest were declared.

Financial relationships that could potentially impact this work are declared.

Received: 25 September 2022; Accepted: 13 November 2022; Published: 30 November 2022.

Copyright © 2022 Jiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Novel polygalacturonase gene, is required for both brassica campestris intine and PloS Genet. its receptor EMS1 in arabidopsis. gametophyte development in arabidopsis. cabbage (Brassica campestris ssp. pekinensis) using RNA-seq. The polygalacturonase gene BcMF2 from brassica campestris is associated with 10,342 differences between the male-sterile mutant bcms and wild-type brassica. doi: 10.1371/journal.pgen.1003933

Gomez, J. F., Talle, B., and Wilson, Z. A. (2015). Anther and pollen development: A conserved developmental pathway. J. Interm. Plant Biol. 57, 876–891. doi: 10.1111/jipb.12425

Huang, L., Cao, J. S., Yu, X. L., Xiang, C., and Fei, Y. J. (2006). Expression of an allele BcMsF3 affects microsporogenesis and pollen tube growth in arabidopsis. Agr. Sci. China 5, 339–345. doi: 10.1007/s11679-009-9493-z

Liu, J., Lu, W., and He, Q. B. (2008). Genetic analysis and molecular mapping of gene associated with dominant genic Male sterility in rapeseed (Brassica napus l.). Genome Biol. 9 (11), e1003933. doi: 10.1186/gb-2008-9-11-e393

Jiang, J. J., Dong, H., Yao, L. N., Zhang, Z. X., and Cao, J. S. (2014). BalticZIP34 is required for arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 70, 581–601. doi: 10.1007/s11103-009-9493-y

Liu, L. S., Qian, X. Y., and Wu, Z. H. (1988). Genetic male sterility in rape (B.napus l.) conditioned by interaction of genes at two loci. Can. J. Plant Sci. 68, 1115–1118. doi: 10.4149/cjps-1988-132

Huang, L., Cao, J., Yu, X. L., Xiang, C., and Fei, Y. J. (2006). Expression of an allele BcMsF2 affects microsporogenesis and pollen tube growth in arabidopsis. Agr. Sci. China 5, 339–345. doi: 10.1007/s11679-009-9493-z

Liu, J., Lu, W., and He, Q. B. (2008). Genetic analysis and molecular mapping of gene associated with dominant genic Male sterility in rapeseed (Brassica napus l.). Genome Biol. 9 (11), e1003933. doi: 10.1186/gb-2008-9-11-e393

Jiang, J. J., Dong, H., Yao, L. N., Zhang, Z. X., and Cao, J. S. (2014). BalticZIP34 is required for arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 70, 581–601. doi: 10.1007/s11103-009-9493-y

Mericco, S. (2004). Control of male gametophyte development. Plant Cell 16, 514–515. doi: 10.1091/mb.15-10-2004-04854

McCormick, S. (2004). Control of male gametophyte development. Plant Cell 16, 514–515. doi: 10.1091/mb.15-10-2004-04854

Muyt, A. D., Pereira, L., Vezon, D., Chelysheva, L., Gendrot, G., Chambon, A., et al. (2009). A high throughput genetic screen identifies new early meiotic recombination functions in arabidopsis thaliana. PLoS Genet. 5, e1000564. doi: 10.1371/journal.pgen.1000564

Ogawa, M., Kay, P., Wilson, S., and Swain, S. M. (2009). ARABIDOPSIS DEHISCENCE ZONE POLYGalACTuronase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during dehiscence in arabidopsis. Plant Cell 21 (1), 216–233. doi: 10.1105/tpc.108.063768

Ogawa, M., Kay, P., Wilson, S., and Swain, S. M. (2009). ARABIDOPSIS DEHISCENCE ZONE POLYGalACTuronase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during dehiscence in arabidopsis. Plant Cell 21 (1), 216–233. doi: 10.1105/tpc.108.063768

Ogawa, M., Kay, P., Wilson, S., and Swain, S. M. (2009). ARABIDOPSIS DEHISCENCE ZONE POLYGalACTuronase1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during dehiscence in arabidopsis. Plant Cell 21 (1), 216–233. doi: 10.1105/tpc.108.063768

Li, J., Hong, D. F., He, J. P., Ma, L., Wan, L. L., Liu, P. W., et al. (2012). Map-based cloning of a recessive genic male sterility locus in brassica napus l. and development of its functional marker. Theor. Appl. Genet. 125, 223–234. doi: 10.1007/s00122-012-2182-5

Lin, S., Huang, L., Yu, X. L., Xiong, X. P., Yue, X. Y., Liu, T. T., et al. (2017). Characterization of BcMF2 delta and BcMF2b, two putative pectin methyltransferase genes related to pollen development in brassica campestris ssp. chinensis. Mol. Biol. Rep. 44, 139–148. doi: 10.1007/s11033-016-0490-z

Long, W. H., Zou, X. L., and Zhang, X. K. (2015). Transcriptome analysis of canola (Brassica napus l.) under salt stress at the germination stage. PLoS One 10 (2), e0116217. doi: 10.1371/journal.pone.0116217

Liu, L., Xiang, C., and Cao, J. S. (2006). BcMF4 gene, encoding a leucine-rich repeat protein, plays a role in male fertility in Chinese cabbage-pak-choi. J. Chin. 28, 1428–1434. doi: 10.1111/j.1744-094X.2006.01381.x

Liu, L. C., Cao, J. S., Yu, X. L., Xiang, C., and Fei, Y. J. (2006). Expression of an allele BcMsF3 affects microsporogenesis and pollen tube growth in arabidopsis. Agr. Sci. China 5, 339–345. doi: 10.1007/s11679-009-9493-z

Liu, J., Lu, W., and He, Q. B. (2008). Genetic analysis and molecular mapping of gene associated with dominant genic Male sterility in rapeseed (Brassica napus l.). Genome Biol. 9 (11), e1003933. doi: 10.1186/gb-2008-9-11-e393

Liu, J., Lu, W., and He, Q. B. (2008). Genetic analysis and molecular mapping of gene associated with dominant genic Male sterility in rapeseed (Brassica napus l.). Genome Biol. 9 (11), e1003933. doi: 10.1186/gb-2008-9-11-e393

Liu, L. C., Cao, J. S., Yu, X. L., Xiang, C., and Fei, Y. J. (2006). Expression of an allele BcMsF3 affects microsporogenesis and pollen tube growth in arabidopsis. Agr. Sci. China 5, 339–345. doi: 10.1007/s11679-009-9493-z
The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation in the recessive genic male sterile brassica napus L. Line 9012A.

Jiang et al. 10.3389/fpls.2022.1004781

Wu, J., Shen, J., Mao, X., Liu, K., Wei, L., Liu, P., et al. (2007). Isolation and analysis of differentially expressed genes in dominant genic male sterility (d.gms) brassica napus l. using subtractive PCR and cDNA microarray. Plant Sci. 172 (2), 204–211. doi: 10.1016/j.plantsci.2006.08.010

Xia, C., Wang, Y., Liang, Y., Niu, Q. K., Tan, X. Y., Chu, L. C., et al. (2014). The ARID-HMG DNA-binding protein AHMGBr5 is required for pollen tube growth in arabidopsis thaliana. Plant J. 79 (5), 741–756. doi: 10.1111/tpj.12582

Xin, Q., Shen, Y., Li, X., Liu, W., Wang, X., Han, X., et al. (2016). MSS mediates early meiotic progression and its natural variants may have applications for hybrid production in brassica napus. Plant Cell 28, 1263–1278. doi: 10.1105/tpc.15.01018

Xu, J., Ding, Z. W., Vizcay-Barrena, G., Shi, J. X., Liang, W. Q., Yuan, Z., et al. (2014). ABORTED MICROSPORES acts as a master regulator of pollen wall formation in arabidopsis. Plant Cell 26 (4), 1544–1556. doi: 10.1105/tpc.112.122986

Xu, H., Knox, R. B., Taylor, P. E., and Singh, M. B. (1995). Bp1, a gene required for male fertility in arabidopsis. J. Plant Biol. 38, 3095–3101. doi: 10.1242/dev.02463

Xu, H. M., Dong, C. X., Chen, F., Huang, J. X., Lou, X. Y., and Zhao, J. Y. (2015). Transcriptome analysis of brassica napus pod using RNA-seq and identification of lipid-related candidate genes. BMC Genomics 16, 858. doi: 10.1186/s12864-015-2062-7

Xu, J., Yang, C., Yuan, Z., Zhang, D., Gondwe, M. Y., Ding, Z., et al. (2010). The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in arabidopsis thaliana. Plant Cell 22, 91–107. doi: 10.1105/tpc.109.071803

Yang, C., Vizcay-Barrena, G., Conner, K., and Wilson, Z. A. (2007). MALE STERILITY 1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19, 3530–3548. doi: 10.1105/tpc.107.054981

Yang, J., Wu, J., Romanovicz, D., Clark, G., and Roux, S. J. (2013). Co-Regulation of exine wall patterning, pollen fertility and anther dehiscence by arabidopsis upyrase 6 and 7. Plant Physiol. Bioch. 69, 62–73. doi: 10.1016/j.plaphy.2013.04.022

Zhang, Q., Huang, L., Liu, T., Yu, X., and Cao, J. S. (2008). Functional analysis of a pollen-expressed polygalacturonase gene BcM6 from Chinese cabbage (Brassica campestris L. sp. chinensis makino). Plant Cell Rep. 27, 1207–1215. doi: 10.1007/s00299-008-0541-x

Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, L., et al. (2014). The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in arabidopsis. Plant Cell 26, 2939–2961. doi: 10.1105/tpc.114.127282

Zhang, W., Sun, Y., Timofejeva, L., Chen, C., Grossniklaus, U., and Ma, H. (2006). Regulation of arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133, 528–538. doi: 10.1242/dev.03254

Zhang, Z. B., Zhu, J., Gao, J. F., Wang, C., Li, H., Li, H., et al. (2007). Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in arabidopsis. Plant J. 52, 528–538. doi: 10.1111/j.1365-313X.2007.02524.x

Zhao, D. Z., Wang, G. F., Speak, B., and Ma, H. (2002). The excess microsporocytes1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the arabidopsis anther. Dev. Genes. 16, 2021–2031. doi: 10.1007/s00427-002-097902

Zhu, J., Shen, H., Li, H., Gao, J. F., Jiang, H., Wang, C., et al. (2008). Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in arabidopsis. Plant J. 55, 266–277. doi: 10.1111/j.1365-313X.2008.03500.x

Zhu, J., Yuan, S., Wei, G., Qian, D., Wu, X., Ia, H., et al. (2014). Annexin is essential for pollen development in arabidopsis. Mol. Plant 7, 751–754. doi: 10.1093/mp/osl171