Identification of functional single nucleotide polymorphisms in the branchpoint site

Hung-Lun Chiang 1,2, Jer-Yuarn Wu 2,3 and Yuan-Tsong Chen 1,2,4*

Abstract

Background: The human genome contains millions of single nucleotide polymorphisms (SNPs); many of these SNPs are intronic and have unknown functional significance. SNPs occurring within intron branchpoint sites, especially at the adenine (A), would presumably affect splicing; however, this has not been systematically studied. We employed a splicing prediction tool to identify human intron branchpoint sites and screened dbSNP for identifying SNPs located in the predicted sites to generate a genome-wide branchpoint site SNP database.

Results: We identified 600 SNPs located within branchpoint sites; among which, 216 showed a change in A. After scoring the SNPs by counting the As in the ± 10 nucleotide region, only four SNPs were identified without additional As (rs13296170, rs12769205, rs75434223, and rs67785924). Using minigene constructs, we examined the effects of these SNPs on splicing. The three SNPs (rs13296170, rs12769205, and rs75434223) with nucleotide substitution at the A position resulted in abnormal splicing (exon skipping and/or intron inclusion). However, rs67785924, a 5-bp deletion that abolished the branchpoint A nucleotide, exhibited normal RNA splicing pattern, presumably using two of the downstream As as alternative branchpoints. The influence of additional As on splicing was further confirmed by studying rs2733532, which contains three additional As in the ± 10 nucleotide region.

Conclusions: We generated a high-confidence genome-wide branchpoint site SNP database, experimentally verified the importance of A in the branchpoint, and suggested that other nearby As can protect branchpoint A substitution from abnormal splicing.

Keywords: RNA splicing, Single nucleotide polymorphism, Branchpoint site, Minigene

Background

Precursor messenger RNA (pre-mRNA) splicing is essential for gene expression in eukaryotes [1–3]. Splicing comprises a two-step trans-esterification reaction of intron removal and exon ligation. Splicing depends on the spliceosome, which is a large complex of small nuclear ribonucleoproteins (snRNPs; U1, U2, U4/U6, and U5) and non-snRNPs; these components recognize the target sequence and assemble on the pre-mRNA [4]. The intronic target sequences include a 5' donor site, a 3' acceptor site, a polypyrimidine tract (PPT) upstream of the 3' acceptor, and a branchpoint site upstream of the PPT. The branchpoint contains a conserved splicing signal important for spliceosome assembly and lariat intron formation, with a consensus sequence (YNCTRAY, which differs slightly between species; Y is pyrimidine, N is any nucleotide, and R is purine) [5]. Tools to predict branchpoint sites based on the consensus sequence have been developed [6–10]; more recently, an NGS-based genome-wide study of splicing branchpoints was published [11–13]. Within the consensus branchpoint site sequence YNCTRAY, the well conserved A appears to be the most important one. A previous report showed that IVS4,-22A>G in the LCAT gene, which is an A to G change at the splicing branchpoint, resulted in intron inclusion and exon skipping of the mRNA and caused the Fish-eye disease [14]. There is also a report suggesting that mutations in the branchpoint sequence, especially the adenine (A) may result in aberrant pre-mRNA splicing and give rise to human genetic disorders [15].
There are millions of SNPs in the human genome; many are intronic, and have unknown functional significance. SNPs at the intron branchpoint sites, especially the adenine (A) nucleotide, would presumably affect splicing; however, this has not been systematically studied. It is therefore desirable to create a genome-wide branchpoint site SNP database, and perform functional analysis.

In the present study, we used an in silico splicing prediction program for branchpoint site prediction and combined its predictions with dbSNP data, to create a genome-wide branchpoint site SNP dataset. We experimentally verified the importance of A in the branchpoint, and further suggested that other nearby As may also influence RNA splicing.

Methods
Creating a dataset of SNPs located within branchpoint sites
All exon \((n = 404,454)\) and intron \((n = 363,190)\) sequences of the human genes were collected (human 1000genome v37), and the SROOGLE tool, which is based on two different algorithms, was used to predict branchpoint sites [8]. We were able to predict 338,787 (93.3%) branchpoint sites as output. Next, we screened NCBI's dbSNP for candidate SNPs located within the set of predicted branchpoint sites. Because adenine is the most important nucleotide at the branchpoint site, and 90% of branchpoint sites are upstream 19–37 bp from the 3′ acceptor [12, 13], we scored each SNP by the number of adenines found in the ± 10 nucleotide region (20 nucleotides total) surrounding the SNP. The SNPs identified in the predicted branchpoint sites and reported lariat sequences associated with these SNPs [12] are tabulated in Additional file 1.

Cell lines and genotyping
293T cells were obtained from The Bioresource Collection and Research Center (Hsinchu, Taiwan). Randomly selected EBV-transformed normal control B cell lines \((n = 96)\) were obtained from the Taiwan Han Chinese Cell and Genome Bank [16]. Genomic DNA was extracted from the cell lines using the Gentra Puregene® Blood Kit (Gentra Systems, MN, USA) and genotyped for the SNPs of interest (Additional file 1). All RT-PCR products were gel extracted and sequenced to confirm normal splicing, intron inclusion, and exon skipping forms.

Results
We identified 600 SNPs at the branchpoint sites; among these SNPs, 216 showed a change in adenine. After scoring the SNPs by counting the As in the ± 10 nucleotide region, only four SNPs were identified without any additional As; 17 SNPs had one additional A, and 29 SNPs had two additional As (Additional file 1).

The four SNPs identified without any additional As in the ± 10 nucleotide region were rs13296170, rs12769205, rs75434223, and rs67785924; these SNPs were the candidates most likely to affect RNA splicing (Table 1).

Chromosome	Position	Position	Gene name	SNP ID	Alleles	SNP ± 10 nucleotides sequence	Allele frequency
3	14187698	14187699	XPC	rs2733532	A/G	TCTGATTACT*A*ACCCCTGCCTC	A = 0.363 G = 0.637
9	130689507	130689508	PIP5KL1	rs13296170	A/C	GCCCTCCCTC*A*GCTCCCTGCC	A = 1 C = 0
10	96535124	96535125	CYP2C19	rs12769205	A/G	TCTCCCTCC*A*GTTCGCCTTC	A = 0.670 G = 0.330
16	15835555	15835556	MYH11	rs75434223	A/C	CGTGGGGCTC*A*CCTCCCTCCCT	A = 1 C = 0
19	45854507	45854508	KLC3	rs67785924	–/ACCTC	CTTGCCCTCC*A*CTCCCTCCCTCC	– = 0.079 ACCTC = 0.921
rs13296170, rs12769205, rs75434223, and rs67785924 are located on PIP5KL1 intron6, CYP2C19 intron2, MYH11 intron22, and KLC3 intron12, respectively (Fig. 1). These SNPs were further investigated for their functional significance. Minigenes containing the SNPs of interest were built using 3 exons and 2 introns, except for the CYP2C19 SNP, for which two exons and one intron were used, because intron 3 of CYP2C19 is large in size (4.9 kb).

RT-PCR of cDNAs prepared from 293T cells transfected with different minigene constructs showed that the rs12769205 A allele produced three bands (normal spliced, intron inclusion, and hybrid forms) when A was substituted with guanine (G) in CYP2C19, which spliced majorly in the intron inclusion form with lesser normal form (Fig. 2a). Since this construct comprised two exons and one intron, to make sure there was no exon skipping, we examined mRNA from EBV-transformed B cells carrying different genotypes for the spliced forms. The results showed that B cells had genotype AA spliced in the normal form, AG spliced equally in the normal and intron inclusion forms, and GG spliced mostly in the intron inclusion form (Fig. 2b). The results were further confirmed by using another set of primers such that the forward primer was located on intron 2, and it was noted that AG and GG genotypes spliced in the intron inclusion form (Fig. 2c).

We also studied the minigene constructs for the other three SNPs. When A was substituted with cytosine (C) in rs13296170, PIP5KL1 spliced mostly into the exon skipping form and somewhat into the intron inclusion form, but not into the normal-spliced RNA form (Fig. 3a, lanes 5 and 6). While rs75434223 substituted A with C, MYH11 spliced into the intron inclusion form, and not into the normal spliced form (Fig. 3b, lanes 8 and 9).

The SNP rs67785924 in KLC3 has a normal (wild type) allele containing A and a deletion allele with five missing nucleotides, ACCTC. Both alleles produced normal spliced form, and some intron inclusion form. The level of intron inclusion form in the deletion allele was actually less than that in the normal A allele (Fig. 3b, lanes 2 and 3).

To understand why the deletion allele that did not contain branchpoint A still produces the normally spliced form, we checked the nearby intron sequence and found another As located at the seventh and eighth nucleotides from the branchpoint A (Fig. 4a). We performed the branchpoint site prediction analysis using SROOGLE and Human Splicing Finder [9]; both tools predicted that these two nearby As also lie within the potential consensus branchpoint site sequence and can be used as alternative branchpoints in the deletion allele. We then tested the influence of these two nearby As on splicing using minigene constructs (Fig. 4). In the wild-type allele, when the two nearby AA were changed to AG or GA, RNA spliced majorly in the normal form; when changed to GG, there was a decrease in the normal form and an increase in the intron inclusion form. In the deletion allele, when both AA were changed to GG, there was a further decrease in the normal form accompanied with a further increase in the intron inclusion form (Fig. 4b). These results suggested another As nearby may serve as alternative branchpoints.

The influence of additional As on splicing was further examined for the branchpoint site SNP rs2733532 A/G, which contains three additional As in the ±10 nucleotide (Fig. 5a). This SNP is located in XPC and is reportedly associated with susceptibility to air pollution and childhood bronchitis [17]. In this case, EBV-transformed B cell lines from subjects carrying different genotypes at
Fig. 2 CYP2C19 alternative splicing forms in minigene-transfected 293T and in EBV-transformed B cells carrying different genotypes at SNP rs12769205. CYP2C19 RT-PCR was performed with a 293T cells transfected with minigene of rs12769205, genotype A or G, using EGFP-F and CYP2C19 SalIIR primers, and b cDNA from B cells carrying different genotypes AA, AG, and GG at rs12769205 position using CYP2C19 ex2F and CYP2C19 ex4R primers or c cDNA from B cells using CYP2C19 in2F and CYP2C19 ex4R as primer set. Marker represents the 100-bp DNA ladder and indicated 500-bp site. See Additional file 2: Table S2 for primer sequences.

Fig. 3 PIP5KL1, KLC3, and MYH11 alternative splicing in minigene-transfected 293T cell. RT-PCR was performed in minigene-transfected 293T cells. a PIP5KL1; rs13296170, genotype A or C, was using EGFP-F and PIP5KL1 KpnIR primers. b KLC3 (land 1~5); rs67785924, genotype ACCTC (Wt) or deletion (Del), with EGFP-F and KLC3 BamHIR primers, and MYH11 (land 7~11); rs75434223, genotype A or C, was using EGFP-F and MYH11 BamHIR primers. Marker represents the 100-bp DNA ladder and indicated 500-bp site. See Additional file 2: Table S2 for primer sequences.
the branchpoint site, regardless of genotype (AA, AG, or GG), showed only the normally spliced form (Fig. 5b), suggesting that other As can serve as a branchpoint site.

Discussion

In the present study, we used SROOGLE to predict splice branchpoints and screened dbSNP for SNPs located within the branchpoint sites. Using minigene constructs and, when available, EBV-transformed cell lines carrying different SNP alleles, we experimentally verified that SNPs comprising a change to branchpoint A resulted in abnormal splicing, suggesting that the predicted sites are indeed involved in pre-mRNA splicing, and further confirming the functional importance of A. However, only 20% of the branchpoint sites that we identified had a reported corresponding lariat sequence [12](see Additional file 1). This observation may be understandable given that the number of reported lariat sequences based on next generation sequencing represents only 28% of all introns in the genome [12].

We found only three branchpoint site SNPs that have a single A at the branchpoint site, without additional As nearby. It is possible that organisms evolved to have additional As in the branchpoint site to ensure proper splicing. Additional As in the ±10 nucleotide region may protect SNPs at the branchpoint A from abnormal splicing, by serving as alternative branchpoints. This mechanism has been demonstrated in the present study for SNP rs67785924 and SNP rs2733532 (Figs. 4 and 5). The latter SNP is located on XPC on chromosome 3, and has been reported to be associated with diseases related to air pollution and childhood bronchitis [17].
The risk allele G of the branchpoint SNP A/G resides in the population at a frequency of ~0.637. Both the lariat sequence database and our prediction algorithms classified it as a branchpoint site. However, our experiments demonstrated that this branchpoint A to G SNP did not influence splicing; this observation presumably results from the presence of additional nearby As, which serve as alternative splicing sites; this explanation implies that other mechanisms may be involved in this disease association.

Several algorithms and tools have been used to predict branchpoints [6–10], and surprisingly, no branchpoint site SNP database has been reported. Because minigene constructs are time-consuming and not all SNPs in the branchpoint sites have cell lines available for study, in the present study we have tested only five SNPs, and verified their significance. More functional studies are needed to examine the functional significance of other SNPs, especially those SNPs that do not involve A changes at branchpoints.

In conclusion, we have generated a high-confidence genome-wide branchpoint site SNP database, experimentally verified the importance of A in the branchpoint, and suggested that other nearby As may serve as alternative branchpoints and ensure proper pre-mRNA splicing. These results improve upon the prediction of functional SNPs at branchpoint sites, and inform the study of the SNPs at intron branchpoint sites.

Additional files

Additional file 1: Table S1. Human genome (hg19) coordinates of SNP at branchpoint site. (XLSX 66 kb)

Additional file 2: Table S2. List of primer sequences utilized in the study. (XLSX 10 kb)

Abbreviations

A: Adenine; C: Cytosine; G: Guanine; PPT: Polypyrimidine tract; pre-mRNA: Precursor messenger RNA; SNP: Single nucleotide polymorphism; snRNPs: Small nuclear ribonucleoproteins

Acknowledgements

Not applicable.

Funding

This work was supported by Academia Sinica Genomic Medicine Multicenter Study, Taiwan [40-05-GNM] and National Resource Center for Genomic Medicine MOST 105-2319-B-001-001]. The funding organization had no role in the design or conduct of this research. The authors alone are responsible for the content and writing of the paper.

Availability of data and materials

All data generated of this study are included in this published article and its supplementary information files.

Authors’ contributions

HLC, JYW, and YTC conceived and designed the experiments. HLC performed the experiments and wrote the paper. All authors analyzed the data and approved the final manuscript.

Ethics approval and consent to participate

All study participants provided informed consent, and the study design was approved by the appropriate ethics review board.

Consent for publication

Not applicable.

Competing interests

The authors have no competing interests to declare.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
2. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
3. Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.
4. Department of Pediatrics, Duke University Medical Center, Durham, USA.

Received: 21 August 2017 **Accepted:** 23 October 2017

Published online: 09 November 2017

References

1. Berget SM, Moore C, Sharp PA. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A. 1977;74(8):3171–5.
2. Chow LT, Gelinus RE, Broker TR, Roberts RJ. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell. 1977;12(11):1–8.
3. Gilbert W. Why genes in pieces? Nature. 1978;271(5643):501.
4. Will CL, Luhmann R. Spliceosomes and disease. Cold Spring Harb Perspect Biol. 2011;3(7). doi:10.1101/cshperspect.a003707.
5. Kramer A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem. 1996;65:367–409.
6. Kol G, Lev-Maor G, Ast G. Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum Mol Genet. 2005;14(11):1559–68.
7. Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 2008;18(1):88–103.
8. Schwartz S, Hall E, Ast G. SROOGLE: webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids Res. 2009;37(Web Server issue): W189–92.
9. Desmet FO, Harmou D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(7):e67.
10. Faber K, Glattke KH, Mueller PJ, Risch A, Hotz-Wagenblatt A. Genome-wide prediction of splice-site SNPs in human genes using a new analysis pipeline called AAS sites. BMC bioinformatics. 2011;12(Suppl 4):S2.
11. Taggart AJ, DesSimone AM, Shih JS, Filleoux WR, Fairbrother WG. Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat Struct Mol Biol. 2012;19(7):719–21.
12. Mercer TR, Clark MB, Andersen SB, Brunk ME, Haerty W, Crawford J, Taft RJ, Nielsen LK, Dinger ME, Mattick JS. Genome-wide discovery of human splicing branchpoints. Genome Res. 2015;25(2):290–303.
13. Taggart AJ, Lin CL, Shresta BH, Heintzelman C, Kim S, Fairbrother WG. Large-scale analysis of branchpoint usage across species and cell lines. Genome Res. 2017;27(4):639–49.
14. Kuivenhoven JA, Weibusch H, Pritchard PH, Funke H, Benne R, Assmann G, Kastelic JJ. An intronic mutation in a lariat branchpoint sequence is a direct cause of an inherited human disorder (fish-eye disease). J Clin Invest. 1996;98(2):358–64.
15. Kravtsova J, Lei H, Vorechovsky I. Phenotypic consequences of branchpoint substitutions. Hum Mutat. 2006;27(8):803–13.
16. Pan WH, Fannin CS, Wu JY, Hung YT, Ho MS, Tai TH, Chen YJ, Liao CJ, Yang ML, Cheng AT, et al. H1N1 Chinese cell and genome bank in Taiwan: purpose, design and ethical considerations. Hum Hered. 2006;61(1):27–30.
17. Ghosh R, Rossner P, Honkova K, Dostal M, Sram RJ, Hertz-Picciotto I. Air pollution and childhood bronchitis: interaction with xenobiotic, immune regulatory and DNA repair genes. Environ Int. 2016;87:94–100.