A new humanitarian relief logistic network for multi-objective optimization under stochastic programming

Peiman Ghasemi1 • Fariba Goodarzian2,3 • Ajith Abraham2,4

Accepted: 9 May 2022 / Published online: 3 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

Millions of affected people and thousands of victims are consequences of earthquakes, every year. Therefore, it is necessary to prepare a proper preparedness and response planning. The objectives of this paper are i) minimizing the expected value of the total costs of relief supply chain, ii) minimizing the maximum number of unsatisfied demands for relief staff and iii) minimizing the total probability of unsuccessful evacuation in routes. In this paper, a scenario based stochastic multi-objective location-allocation-routing model is proposed for a real humanitarian relief logistics problem which focused on both pre- and post-disaster situations in presence of uncertainty. To cope with demand uncertainty, a simulation approach is used. The proposed model integrates these two phases simultaneously. Then, both strategic and operational decisions (pre-disaster and post-disaster), fairness in the evacuation, and relief item distribution including commodities and relief workers, victim evacuation including injured people, corpses and homeless people are also considered simultaneously in this paper. The presented model is solved utilizing the Epsilon-constraint method for small- and medium-scale problems and using three metaheuristic algorithms for the large-scale problem (case study). Empirical results illustrate that the model can be used to locate the shelters and relief distribution centers, determine appropriate routes and allocate resources in uncertain and real-life disaster situations.

Keywords Humanitarian relief logistics • Distribution planning • Simulation-optimization model • Meta-heuristic algorithms

1 Introduction

Current statistics and information show that unexpected terrestrial, oceanic and atmospheric phenomena are increasing and cause massive human and financial losses worldwide [32]. The great amounts of human and financial losses caused by natural disasters indicate the need to prepare for the disaster [30]. Disasters led to many economic and social challenges and issues. The Haiti earthquake had affected at least three million people and had killed between 217,000 and 230,000 [28]. Disasters like earthquakes impose human, financial and natural losses on society, economy, and nature [9, 48]. Therefore, efficient and comprehensive planning is needed in order to tackle and overcome the damage and losses caused by the earthquake [52]. In order to minimize the human and financial costs of the earthquake, the comprehensive recognition of the relief process and disaster relief supply chain is essential [38].

The amount of storage of relief commodities and the location of facilities are among the plans that are considered in the pre-disaster preparation phase [35]. Besides, the routing, allocation, and distribution problems of relief commodities are essential and significant in the response phase [26, 51]. Lack of attention to these problems can be the main obstacle to an effective response to the disaster [12, 25]. In this paper, to estimate the demand, first, the urban infrastructure that is affected by the earthquake is identified. Thus, the infrastructures interact with each other using the simulation approach is calculated and finally, the demand is considered as an uncertain parameter.
A new multi-objective mathematical model is developed for pre-disaster and post-disaster phases. In the first phase, the Distribution Centers (DCs), the location, and the capacity of them are determined. In this research, three sorts of DCs are considered in terms of capacity, which include small DC (capacity from 2000 to 30,000), medium DC (capacity from 30,000 to 40,000), and large DC (capacity from 40,000 and 50,000). In the second phase, the allocation of the affected areas to cemeteries for transferring corpses and people to hospitals, routing the items from DCs to shelters and the victims’ evacuation from affected areas to shelters, and the allocation of the hospitals to affected areas for dispatching relief staff are provided. The proposed model integrates these two phases and made simultaneously. A customized Non-Dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm (SPEA-II), and Pareto Envelope based on Selection Algorithm (PESA-II) as well as an efficient Epsilon-constraint approach are utilized for solving the presented mathematical programming model and to find Pareto solutions. A real case study is considered to validate the presented model.

The rest of the paper is addressed as follows: In Section 2, the literature review in the humanitarian relief logistic network field and solution methods are explained. The problem definition and mathematical modeling are discussed in Sections 3 and 4, respectively. In Sections 5 and 6, solution methods and real application are represented. Eventually, the conclusion and future works are reported in Section 7.

2 Literature review

The process of scheduling, organizing, and planning the resources to provide relief to affected humans by disasters is called emergency logistics [41]. Since the 1960s, the number of disasters has grown increasingly, affecting an increasing number of humans [49]. Due to uncertainties, emergency logistics is a challenging problem. Location-allocation-routing problems are considered an important and significant problem in the field of humanitarian logistics. Balcik and Beamon [4] used a covering location model considering capacity and budgetary constraints to provide relief commodities. They presented a multi-commodity scenario-based model in the response phase to maximize the level of demand coverage. Hence, their proposed model for a numerical example is solved by the exact method. The results indicate the efficiency of the presented model. Hong et al. [27] focused on the location of the DCs and the emergency supplies in disaster planning to increase disaster supply chain reliability. The proposed model for the case study in the US Southeast Region is solved using a heuristic approach. Jia et al. [29] formulated models to specify the optimal locations of emergency medical service (EMS) facilities such as air attacks. Authors provided a schedule in the preparation phase based on Petri net for a possible earthquake in Lushan/China. The presented deterministic, single-commodity, and single-period model was solved by the exact method and the results indicated its proper performance. Nedjati et al. [45] presented a deterministic, bi-objective routing and location problem of DCs in disaster preparedness and response phases. Replenishment at Intermediate Depots (CLRPR) was considered. The time window for the transportation of relief commodities, as well as the load and unload time for commodities, were considered in their study. To solve the NP-hard complexity, the NSGA-II algorithm was used.

Balcik [5] designed a deterministic mathematical model for site selection and routing decisions for assessment teams after the occurrence of a disaster (recovery phase). Their proposed model was solved by the Tabu search algorithm. The case study of this research was Van earthquake in Turkey in 2011. Goli et al. [22] presented a framework for supply chain managers in disaster, who face similar problems in other environments. The results indicated that trust and good communications were positive factors in performance of supply chain in the disaster scenario.

Tavana et al. [55] provided a multi-echelon, multi-commodities deterministic model to design the logistics network and location of warehouses in pre-disaster situations. Commodity inventory and routing of perishable commodities were of the problems that have been considered in the post-disaster phase. Their proposed mixed-integer linear programming (MILP) model was solved by utilizing the NSGA-II algorithm and Epsilon-constraint approach for a real case study. Nikoo et al. [46] presented a multi-objective deterministic model to design the transportation network for the response phase under possible earthquake in Tehran Province (Iran). The considered goals included identifying the optimal routes and the length of each route, as well as minimizing the response time. To solve the proposed model, a combination approach of lexicography and weighting was used. The results indicated the importance of decreasing the relief time in the early hours of the disaster due to the coming of voluntary aid to the affected area. Vahdani et al. [59] extended a stochastic mathematical model for the location of the DCs and warehouses of relief commodities. In their research, in the first phase, strategic decisions such as location and the establishment of DCs, and in the second phase, operational decisions such as routing, determining the reliability of the routes, observing the time window of each route were considered. Tili et al. [58] investigated the routing of relief ambulances during the earthquake. The traffic constraint is considered as one of the contributions of their research. The injured people were divided into two categories of outpatient and severely injured people. The objective of this research was to minimize the relief time for both injured categories in each scenario. The case study consisted of 30 injured people, 7 ambulances, and 4
care centers in Jendouba city of Tunisia. Noham and Tzur [47] offered a scenario-based mathematical model for supply chain network management before and after the disaster. A new Mixed-Integer Linear Programming (MIP) model was formulated along with maximizing the number of allocated commodities per time unit. Also, the p-median approach was used to minimize the coverage radius. The case study considered was 49 potential scenarios for an earthquake in Israel. Maharjan and Hanaoka [43] suggested a model for the location of the temporary hubs under earthquake conditions in order to minimize costs and unsatisfied demands for injured people. To solve this two-objective model, the fuzzy weighting strategy was utilized. The case study was Nepal’s earthquake in 2015.

Liu et al. [42] formulated a mathematical model to minimize costs and unmet demand in post-disaster conditions (prevention phase). Uncertainties in demand and relief time were among the contributions of their study. Authors designed a two-echelon model including temporary facilities and affected areas serviced by helicopters. Accordingly, the proposed model for a case study in Sichuan province in China is provided and is solved by using a precise algorithm. Habibi-Kouchaksaei et al. [24] presented a bi-objective, multi-echelon, and scenario-based model for supply chain management under disaster conditions (response phase). The proposed supply chain consisted of three levels: supply centers, processing, and DCs. The real case study considered in Mazandaran province/Iran and a robust optimization approach was utilized to solve it. Ghasemi et al. [19, 20] presented a multi-period and multi-objective mathematical model for location and allocation affected areas to hospitals. They considered the types of injured along with the destruction of established centers during an earthquake that was one of their contributions. Minimizing supply chain costs while minimizing the shortage of relief commodities has been their research aim. Their proposed model was solved using NSGA-II and modified multiple-objective particle swarm optimization approaches. The case study was in the city of Tehran and the results indicated the satisfactory performance of their proposed model.

Du et al. [13] provided a reliable p-center facility location to minimize costs in natural disasters (preparedness phase). Two approaches of constraint generation and Bender’s dual cutting plane were used for solving the proposed model. To assess the performance of the stochastic model, the presented approach was compared with a reliable p-median problem and a stochastic p-center problem. Tirkolaee et al. [56] presented a bi-objective mathematical model for disaster rescue units’ allocation and scheduling. Considering the effect of learning in the disaster management problem was one of the contributions of their paper. They applied robust optimization technique and multi-choice goal programming to cope with uncertainty of model. The case study was considered to be Mazandaran/Iran. Khalilpourazari et al. [33] presented an efficient blood supply chain network in disaster. They considered multi-echelon supply chain consist of donors, blood collection centers (permanent and temporary), regional blood centers, local blood centers, regional hospitals, and local hospitals. The main goals of the model were minimizing total transportation time and cost while minimizing unfulfilled demand. The model was solved using neural-learning method. The case study was considered to be earthquake in the Iran–Iraq border in 2017.

Ergün et al. [14] presented a game theoretical model for emergency logistic planning. The main goal of their paper was maximizing the transferred commodity. The case study was considered to be earthquake in Istanbul. The results indicated the proper performance of the proposed model. Alizadeh et al. [2] presented a multi-period model for locating relief facilities in natural disaster situations. The main purpose of their research is to maximize the coverage of hospitals and distribution centers. The Lagrangian approach has been used to solve the proposed model. The results of the case study indicate that increasing demand reduces the level of coverage of the regions. Zhan et al. [60] proposed a mathematical model for locating and allocating relief bases in the face of supply-demand uncertainty. One of the main goals of the research was to minimize the shortage and unsatisfied demand. The case study was for Zhejiang Province in southern China. The Particle Swarm Optimization approach was used to solve their model. The results showed that with increasing number of suppliers, the amount of unsatisfied demand decreases. Cavdur et al. [6] proposed new strategies for distributing relief goods and human resources in times of crisis. Therefore, a two-stage model for locating and allocating temporary relief centers was presented. The first stage was the pre-disaster phase and the second stage was the post-disaster phase. Minimizing chain costs was done in the first phase and allocating resources to centers in the second phase. The results of the sensitivity analysis of the case study indicated that with increasing demand, allocation costs increase exponentially. Ghasemi et al. [18] presented a location-routing-inventory decisions in humanitarian relief chain. The proposed network included affected areas, suppliers, distribution centers, and hospitals. It should be noted that in the second stage, a cooperative game theory of coalition type was considered, which resulted in synergies that minimize the relief golden time. Also, to validate the model, a real case study is provided for a possible earthquake in Tehran.

Hence, the details of the recent papers in the field of location- allocation-routing problems in disaster relief are shown in Table 1.

The main contributions of this research in comparison with examined papers are summarized in Table 2.
NO	Authors	Decision Type	Planning Level	Type of model								
		Prevention	Preparedness	Strategic	Deterministic	Fuzzy	Stochastic	Scenario based	Robust optimization	Single-objective	Bi-level	Multi-objective
1	Nedjati et al. [45]	*	*	*	*			*	*	*	*	
2	Balcik [5]	*	*	*	*	*		*	*	*	*	
3	Tavana et al. [55]	*	*	*	*	*		*	*	*	*	
4	Nikoo et al. [46]	*	*	*	*	*		*	*	*	*	
5	Vahdani et al. [59]	*	*	*	*	*		*	*	*	*	
6	Thli et al. [58]	*	*	*	*	*		*	*	*	*	
7	Noham and Tzur [47]	*	*	*	*	*		*	*	*	*	
8	Maharjan and Hanaoka	*	*		*	*			*	*	*	
9	Liu et al. [42]	*	*	*	*	*		*	*	*	*	
10	Habibi-Kouchaksaraei et al. [24]	*							*	*	*	
11	Ghasemi et al. [19, 20]	*	*	*	*	*		*	*	*	*	
12	Du et al. [13]	*	*	*	*	*		*	*	*	*	
13	Tirkolaee et al. [56]	*	*	*	*	*		*	*	*	*	
14	Khalilpourazar et al. [33]	*	*	*	*	*			*	*	*	
15	Ergün et al. [14]	*	*	*	*	*			*	*	*	
16	Zhan et al. [60]	*	*	*	*	*			*	*	*	
17	Cavdur et al. [6]	*	*	*	*	*			*	*	*	
18	Ghasemi et al. [18]	*	*	*	*	*			*	*	*	
19	This Paper	*	*	*	*	*			*	*	*	

NO	Type of Problem	Type of Commodities	Example	Type of Objective Function	Solution procedure									
	Location	Allocation	Routing	Inventory	Numerical	Case Study	Minimize Cost	Min unsuccessful evacuation	Fairness evacuation	Min unsatisfied demands	Min time	Exact heuristic	Meta heuristic	Simulation
1	*	*	*	*	*			*	*	*	*	*	*	*
2	*	*	*	*	*			*	*	*	*	*	*	*
3	*	*	*	*	*			*	*	*	*	*	*	*
4	*	*	*	*	*			*	*	*	*	*	*	*
5	*	*	*	*	*			*	*	*	*	*	*	*
6	*	*	*	*	*			*	*	*	*	*	*	*
7	*	*	*	*	*			*	*	*	*	*	*	*
8	*	*	*	*	*			*	*	*	*	*	*	*
9	*	*	*	*	*			*	*	*	*	*	*	*
10	*	*	*	*	*			*	*	*	*	*	*	*
11	*	*	*	*	*			*	*	*	*	*	*	*
3 Problem definition

The main goal of the disaster relief system is to organize injured people and equipment in order to send relief efficiently. The candidate locations of DCs are determined. An optimal number of DCs and shelters should be determined and located. The demand points should be served by them. In this research, first, using the system dynamic approach, the interaction structure of the urban infrastructures in the event of an earthquake is drawn. Using this structure, the demand for relief commodities is estimated. The estimated distribution functions enter the mathematical model as the uncertain parameter in the simulation phase.

In this study, a new mathematical programming is developed to model the aforementioned situation in relief logistics network. Then, the suitable solution for the proposed model in presence of uncertainty is to be found using optimization techniques.

The disaster relief logistics network is assumed to consist of five main parts as 1) areas affected by disaster; 2) hospitals; 3) cemeteries; 4) shelters; and 5) DCs in this research (see Fig. 1). In this paper, the probability of the routes being destructed or blocked after the earthquake is considered. In the event of an earthquake, depending on its severity, there is a risk of the routes being destructed or blocked due to the traffic during rush hours. The values of this parameter will be changed based on the type of scenario (time and severity of the earthquake), the active fault, and the type of route (Asphalt Street, alley, dirt road, highway, freeway, etc.). For example, the probability of successful evacuation for a 7-magnitude earthquake on the highway is 85% and for the dirt road 45%.

All of the aforementioned tasks should be done within a limited time window after the occurrence of the disaster, which is called the golden time. The relief and rescue operations may become useless after the golden time. Therefore, the proposed model of this study determines the optimal locations for establishing shelters and DCs in the pre-disaster phase. Also, the suggested model determines the victims’ evacuation flow (from affected areas to shelters), relief staff flow, injured people flow (from affected areas to hospitals), corpse flow (from affected areas to cemeteries), relief commodity flow (from DCs to shelters), best routes for the evacuation of victims, distribution of relief items, and the allocation of the vehicles to these flows in the post-disaster phase.

3.1 Research framework

Figure 2 shows the research framework. In the first step, the basic infrastructures are identified in the event of an earthquake and their interactions are determined by the system dynamics. Then, the designed structure is simulated using Enterprise Dynamic simulation software. The output of this step is the estimate of distribution functions of relief...
commodities containing medicine, tents, food, and water. The distribution functions of relief commodities enter the mathematical model as input. In the second step, the mathematical model is presented for pre- and post-disaster phases. The purpose of this step is to plan location, allocation, distribution, and routing in order to minimize costs and unmet demand and maximize the probability of successful passage through routes. In the next step, the stochastic mathematical model presented by SCCPA is converted to a deterministic model. Finally, in the last step, the model is solved and optimized by three heuristic algorithms.

3.2 Simulation structure

Here, the system dynamic structure of an earthquake is shown in Fig. 3. The considered main branches include the destruction of factory buildings, the destruction of houses, the reduction of the financial utility of companies, the outbreak of infectious diseases such as COVID-19, and the difficult conditions of the suppliers of relief commodities. Other considered infrastructures include transportation, water, fuel, financial and banking infrastructures, and so on. As can be seen, the infrastructure of roads and bridges is destroyed by the occurrence of the earthquake. Destruction of these infrastructures leads to the destruction of the transportation infrastructure and the reduction of the transportation capacity. Reduced transportation capacity leads to reduced port operations and also, logistics delays in the supply of raw materials. Eventually, logistics delays, as well as the destruction of factory buildings, cause damage to industries and products. Finally, the output of the simulation model can estimate the demand for the required relief commodities. The demand parameter is entered into the stochastic mathematical model as the uncertainty parameter after being estimated by the simulation model.

Table 2 Contributions in this paper

No	Contributions
1.	Considering fairness in the evacuation. In this research, in order to observe justice in the evacuation, the priority level for seriously injured, homelessness, and death was defined. This makes the model more flexible and closer to the real world.
2.	A large number of studies formulated their problem assuming single commodity, while in the time of disaster, we will have several essential commodities that must be distributed such as water, food, medicine, and relief tents. In some cases, these goods should be distributed simultaneously, so the model should be formulated as multi-commodity. In this research a variety of relief commodities were considered.
3.	Using three objective functions simultaneously, including: 1) minimizing the expected value of the total costs of relief supply chain, 2) minimizing the maximum number of unsatisfied demands for relief staff and 3) minimizing the total probability of unsuccessful evacuation in routes.
4.	Integration of location, allocation, and routing sub-problems in a unique model in the field of relief logistic planning.
5.	Considering relief item distribution including commodities and relief workers and victim evacuation including injured people, corpses and homeless people simultaneously.
6.	Considering the scenario based and stochastic uncertainty in the model simultaneously. This parameter was estimated by a simulation method.

![Fig. 1 The schematic view of relief logistic supply chain](image-url)
3.3 Simulation model

Enterprise Dynamics (ED) software is a powerful software for simulating discrete event processes that were first developed by the Dutch company INCONTROL in 2003. ED is object-oriented software for modeling, simulating, visualizing, and controlling dynamic processes. The atoms present in this package have the ability to cover all the mentioned processes and due to the flexibility in their performance according to the needs of the model maker, this ability has reached its maximum. ED atoms are designed to implement systems and designs formed in the mind as easily as possible and with the necessary details in the software [53]. In this research, simulation input data were obtained from JICA (Japan International Cooperation Agency). As shown in Figs. 4, server atoms, a source, and a sink are used. The demand server is utilized to estimate the distribution functions of relief commodities. Intended entities include earthquake signals in Richter. AvgContent (cs) is used for performance measurement (PFM).

In the simulation model, the inputs for various atoms are different. For example, here the inputs of the two atoms “Electric Grid trans-lines” and “factory building damaged” are described. The settings and inputs of the “factory building damaged” atom are based on Coburn and Spence [10]. This atom estimates the damage caused by the destruction of buildings according to Eq. (1):

\[HC = R_{I_1} \cdot R_{I_2} \cdot R_{I_3} \cdot R_{I_4} \cdot (PI + (1-PI) \cdot CI) \]

(1)

In (1), \(HC \) determines the human casualties in buildings after an earthquake. \(R_{I_1} \) shows the number of trapped people in demolished buildings. \(R_{I_2} \) indicates the percent of the building’s residents. \(R_{I_3} \) specifies the number of collapsed buildings. \(R_{I_4} \) indicates the number of occupants of each building based on statistical data. \(PI \) represents the loss ratio after building demolition. Finally, the \(CI \) illustrates the proportion of injured who die before rescue teams arrive at the scene.

Also, the HAZUS damage function is used to study the “Electric Grid trans-lines” atom. Equation (2) shows the amount of earthquake damage to power lines (RR):

\[RR = 0.3 \times 0.0001 \times PGV^{2.25} \]

(2)

Finally, the “Demand” atom has been used to estimate the number of needed commodities. In this study, it is assumed that each homeless person needs 5 l of water, 2.5 kg of food, 0.2 tents, and 0.5 kg of medicine. Moreover, the 4DScript codes written in the “Demand: medicine” atom for relief commodities are as follows (Warm up period = 1000 hours, observation period = 10,000 hours). The warm up period is the time that the simulation will run before starting to collect results. This allows the Queues (and other aspects in the model) to get into a steady state before data are collected.
simulation) to get into conditions that are typical of normal running conditions in the simulated system [54].

Server

Demand : Trigger on entry

\[= 0.5 \times (\text{AvgContent} (\text{AtomByName}([\text{Medicine}], \text{Model}))) \]

4 Mathematical formulation

In this section, firstly, the notations of mathematical modeling are introduced. Then, the mathematical model is developed and discussed. The main assumptions of the proposed problem are reported in Table 3.
4.1 Indices, parameters, and decision variables

In this sub-section, the sets and indices are provided in Table 4. Table 5 presents the used parameters in the offered model. In addition, the decision variables in the proposed mathematical modeling are stated in Table 6.

\[
\begin{align*}
\text{Minimize } f_1 &= \left\{ \sum_{x=1}^{X} \sum_{y=1}^{Y} \text{f}_{\text{ocp}} \times \text{lco} \right\} + \left\{ \sum_{y=1}^{Y} \sum_{x=1}^{X} \text{vc}_{\text{p}} \times \text{cap} \right\} + \left\{ \sum_{y=1}^{Y} \sum_{x=1}^{X} \text{f}_{\text{ed}} \times \text{lco} \right\} \\
+ \sum_{y=1}^{Y} \sum_{x=1}^{X} \text{ved} \times \text{pro} \left(\sum_{d=1}^{D} \sum_{k=1}^{K} \text{dis}_{\text{dk}} \times \text{vlcd}_{\text{dk}} \right) + \sum_{d=1}^{D} \sum_{k=1}^{K} \text{lng}_{\text{dk}} \times \text{vlcm}_{\text{dk}} \right) + \sum_{d=1}^{D} \sum_{k=1}^{K} \text{dis}_{\text{dx}} \times \text{vlcd}_{\text{dx}} + \sum_{d=1}^{D} \sum_{k=1}^{K} \text{dis}_{\text{kx}} \times \text{vlcm}_{\text{kx}} \left(\sum_{z=1}^{Z} \sum_{l=1}^{L} \text{dis}_{\text{zl}} \times \text{vlcd}_{\text{zl}} \right) \\
+ \left\{ \text{Maximize } \sum_{x=1}^{X} \sum_{y=1}^{Y} \sum_{e=1}^{E} \text{ncps}_{\text{dx}} \times \text{mnc}_{\text{dx}} \right\} \sum_{z=1}^{Z} \sum_{l=1}^{L} \text{dis}_{\text{zl}} \times \text{vlcd}_{\text{zl}} + \left\{ \sum_{e=1}^{E} \text{ncps}_{\text{dx}} \times \text{mnc}_{\text{dx}} \right\} \sum_{z=1}^{Z} \sum_{l=1}^{L} \text{dis}_{\text{zl}} \times \text{vlcm}_{\text{zl}} \right) \\
+ \left\{ \sum_{s=1}^{S} \sum_{r=1}^{R} \text{maximize } \{ \text{sh}_{\text{rs}} \} \right\} \end{align*}
\]

4.2 Mathematical modeling

The formulation of the multi-objective location-allocation-routing problem mathematical modeling in the relief DCs network is as follows:

\[
\begin{align*}
\text{Minimize } f_2 &= \sum_{x=1}^{X} \text{Pro}_{\text{x}} \times \sum_{r=1}^{R} \text{maximize } \{ \text{sh}_{\text{rs}} \} \end{align*}
\]

\[
\begin{align*}
\text{Minimize } f_3 &= \sum_{s=1}^{S} \sum_{e=1}^{E} \sum_{d=1}^{D} \sum_{k=1}^{K} \sum_{z=1}^{Z} \sum_{l=1}^{L} \left\{ \text{Pro}_{\text{x}} \times \left((1 - \text{prs}_{\text{dx}})^{\text{e}} \times \text{path}_{\text{dx}}^{\text{e}} + (1 - \text{prs}_{\text{dx}})^{\text{e}} \times \text{path}_{\text{dx}}^{\text{e}} + (1 - \text{prs}_{\text{dx}})^{\text{e}} \times \text{path}_{\text{dx}}^{\text{e}} \right) \right\} \\
+ \left\{ \text{ncps}_{\text{dx}} \leq \text{MBig} \times \sum_{e=1}^{E} \sum_{d=1}^{D} \text{path}_{\text{dx}}^{\text{e}} \times \text{prs}_{\text{dx}}^{\text{e}} \forall d, s \right\} \\
\end{align*}
\]

Constraints:

\[
\begin{align*}
\text{nld}_{\text{dx}} \leq \text{MBig} \times \sum_{e=1}^{E} \text{path}_{\text{dx}}^{\text{e}} \times \text{prs}_{\text{dx}}^{\text{e}} \forall d, k, s \\
\text{nwp}_{\text{dxz}} \leq \text{MBig} \times \sum_{e=1}^{E} \text{path}_{\text{dxz}}^{\text{e}} \times \text{prs}_{\text{dxz}}^{\text{e}} \forall d, h, z, s \\
\end{align*}
\]
Table 4 Sets and indices

Index	Definition
A	Set of corpses (\(a \in A\))
B	Set of cemeteries indexed by (\(b \in B\))
D	Set of locations affected by disaster indexed by (\(d \in D\))
E	Set of paths for evacuation indexed by (\(e \in E\))
F	Counter set of the number of doctors (\(f \in F\))
G	Set of homeless people (\(g \in G\))
H	Set of injured people types indexed by (\(h \in H\))
I	Set of relief items indexed by (\(i \in I\))
J	Set of capacity category for DCs indexed by (\(j \in J\))
K	Set of shelters indexed by (\(k \in K\))
L	Set of DCs indexed by (\(l \in L\))
N	Counter set of the number of nurses (\(n \in N\))
Q	Counter set of the number of Mortuary transport drivers (\(q \in Q\))
R	Set of relief staff indexed by (\(r \in R\))
S	Set of possible discrete scenarios indexed by (\(s \in S\))
T	Time horizon indexed by (\(t \in T\))
V	Set of vehicle types indexed by (\(v \in V\))
Z	Set of hospitals indexed by (\(z \in Z\))

\[
\sum_{e=1}^{E} \text{path}_{ikse} \leq \text{locsh}_{kse} \quad \forall d, k, s \tag{11}
\]

\[
\frac{D}{d=1} \text{nwp}_{hds} \leq \text{caps}_{ds} \quad \forall k, s \tag{12}
\]

\[
\left\{ \left(\frac{D}{d=1} \text{nwp}_{hds} \right) \times \text{nd}_{i,k} \right\} = \text{dmr}_{ikds} \quad \forall k, t, i, s \tag{13}
\]

\[
\text{ndc}_{rds} - \text{nrs}_{rd} = \text{srp}_{rd} - \text{sh}_{rd} \quad \forall d, r, s \tag{14}
\]

\[
\sum_{l=1}^{L} \frac{\text{rit}_{lik}^r - \text{rit}_{lk}^r}{l=1} \text{dmr}_{ikds} = \text{srp}_{ikds} - \text{sh}_{ikds} \quad \forall k, i, t, s \tag{15}
\]

\[
\frac{D}{d=1} \text{nwp}_{hds} \leq \text{caps}_{ds} \quad \forall k, s \tag{12}
\]

\[
\frac{L}{l=1} \text{rit}_{lik}^r = \left(\frac{1}{l=1} \text{capdc}_{i,j} \times \text{locdc}_{ljs} \times \text{co}_{i} \right) \quad \forall l, k, t, s \tag{17}
\]

\[
\left(\sum_{z=1}^{Z} \text{nwp}_{hds} \right) + \text{sh}_{hds} = \text{njp}_{hds} \quad \forall d, h, s \tag{18}
\]

\[
\sum_{z=1}^{Z} \text{nwp}_{hds} \leq \text{njp}_{hds} \quad \forall d, h, s \tag{19}
\]

\[
\sum_{k=1}^{K} \text{nwp}_{hds} = \text{nhp}_{ds} \quad \forall d, s \tag{20}
\]

\[
\sum_{b=1}^{B} \text{crp}_{hds} = \text{ncrps}_{ds} \quad \forall d, s \tag{21}
\]

\[
\sum_{j=1}^{J} \text{locdc}_{ljs} \leq 1 \quad \forall l, s \tag{22}
\]

The objective function (3) minimizes the expected value of the total costs of the relief supply chain. It includes the total costs of pre-disaster activities (including fixed costs and variable costs of establishing shelters and DCs) and the costs of post-disaster activities (including fixed costs and variable costs of transportation vehicles). The second part of the objective function is to decrease the maximum cost of relief. The expression \(\text{njp}_{hds} / \left(\sum_{f=1}^{F} \text{njd}_{ldf} \times s_{df} \right)\) specifies the time of serving the injured people. The expression \(\sum_{t=1}^{T} \text{path}_{dts} \times \text{td}_{ts}\) calculates the total transportation time of the injured people. The difference of this amount from golden time (72 hours) indicates the amount of time violation from the relief. Multiplying the amount of time violation in the priority factor and the cost of not giving relief \(w_{cosh}\) to the injured person determines the cost of serving the injured person. Similarly, subsequent expressions show the cost of not serving the homeless people and the corpses. The amount of golden time for serving the homeless is 100 hours and for the corpses, 120 hours. The priority weighting factor of injured people determines the priority level of people in relief. Accordingly,
the priority factor for serious injury, homelessness and death is 0.6, 0.3 and 0.1, respectively. These values are based on Ghasemi et al. [19]. Accordingly, the first objective function also guarantees fairness in evacuation.

The objective function (4) shows to decrease the maximum number of unsatisfied demands for relief staff in each affected area under all scenarios. The objective function (5) minimizes the total probability of unsuccessful evacuation in routes. It
Table 6 Decision variables and their definitions

Decision variables	Definition
capsks	Capacity of shelter k in scenario s
crpabs	Number of corpses transferred from affected area d to cemetery b in scenario s (person)
dmrkls	Quantity of relief commodity type i required in shelter k at time t in scenario s (unit)
locdcjgs	1 if DC with capacity category j is located at candidate DC in scenario s; 0 otherwise
locshkls	1 if shelter is located at candidate shelter k in scenario s; 0 otherwise
ndeckz	Number of relief staff type r dispatched from hospital z to affected area d in scenario s (person)
nhldks	Number of homeless people shipped from affected area d to shelter k in scenario s (person)
nwpkshz	Number of injured people type h transferred from affected area d to hospital z in scenario s (person)
pathekd	1 if path e from affected area d to shelter k is chosen in scenario s; 0 otherwise
pathezi	1 if path e from affected area d to hospital z is chosen in scenario s; 0 otherwise
pathkfi	1 if path e from affected area d to cemetery b is chosen in scenario s; 0 otherwise
ritki	Amount of relief item itransferred from DC l to shelter k at time t in scenario s (unit)
shckans	Amount of shortage (unsatisfied demand) of relief commodity i at shelter k at time t in scenario s (unit)
shskds	Amount of shortage (unsatisfied demand) of relief staff r at affected area d in scenario s (person)
shwhd	Number of affected people type h not serviced in affected area d in scenario s (person)
srpsd	Number of surplus relief staff type r exist at affected area d in scenario s (person)
srpskd	Amount of surplus commodity type i exist at shelter k at time t in scenario s
vlcdcik	Number of vehicle v moving from affected area d to cemeteries b for carrying corpses in scenario s (vehicle)
vlcdqik	Number of vehicle v moving from affected area d to hospital f for carrying injured people in scenario s (vehicle)
vlcnej	Number of vehicle v moving from DC l to shelter k at time t for carrying relief commodities in scenario s (vehicle)
vlcqfik	Number of vehicle v moving from hospital z to affected area d for carrying relief staff in scenario s (vehicle)
vlcsefik	Number of vehicle v moving from affected area d to shelter k for carrying homeless people in scenario s (vehicle)

should be noted that the probability of successful evacuation in routes has been estimated by road construction experts and earthquake engineers who have sufficient experience in route strength. Therefore, the third objective function seeks to reduce the probability of crossing routes with less reliability. For example, if in scenario S there are two routes among the affected area and the shelter with probability of successful evacuation \(prs^e_{dks} \) equal to 0.3 and 0.6, then the model selects the route with the highest probability of successful evacuation. In fact, the third objective function minimizes the possibility of an unsuccessful evacuation.

According to the parameters\(pro_s, prs^e_{dks}, prs^e_{dzi}, prs^e_{dbs} \) are of the probability type and the binary variables \(path^e_{dks}, path^e_{dzi}, \) and \(path^e_{dbs} \) are scalable, so the objective function is of the probability type.

Constraints (6–8) prevent the use of paths between two nodes that do not exist. Constraints (9)–(11) guarantee only one evacuation path is chosen between two nodes. Given the constraints (9)–(11) and the structure of the model, transportation in this problem is possible only between two points; for example, between hospital and affected area, shelter and affected area, cemetery, and affected area. So, given that the allocation of these locations to vehicles is one-to-one, and knowing that the creation of a sub-tour requires at least three nodes; there is no need to write the sub-tour constraint separately in the problem. So, given the nature of the problem, and as it is clear in the results, no loop formation is possible in the route of vehicles. Constraint (12) shows the capacity constraint for shelters. Constraint (13) satisfies the demand of each shelter. The unsatisfied demand for relief staff at affected areas is investigated in constraint (14). Constraint (15) guarantees unsatisfied demand for commodities at shelters. Constraint (16) shows the dispatched relief staff does not exceed the available relief staff of the current hospital. Constraint (17) indicates the dispatched commodities do not exceed the available commodities of current DC. Constraint (18) determines unserved injured people in affected areas. Constraint (19) illustrates the amount of injured people dispatched from a specific affected area does not exceed the number of injured people from that affected area. Constraint (20) ensures that all the homeless people are evacuated from affected areas. Constraint (21) shows all corpses are transferred from affected areas. Constraint (22) prevents establishing more than one DC at any node. Constraint (23) indicates the establishment of a new shelter before transferring homeless people. Constraint (24) represents a new shelter should be opened before it is used. Constraint (25) ensures that the volume capacity of vehicles. Constraint (26) shows the weight capacity of vehicles. Constraint (27) displays the maximum
allowed capacity of the hospitals. Constraint (28) ensures that the corpses of each affected area are carried to allowed cemeteries. The number of corpses considering the capacity of vehicles, the number of injured people considering the capacity of vehicles, and the number of relief staff considering the capacity of vehicles, respectively are shown in constraints (29)–(32). Constraints (33)–(34) indicate the type of decision variables.

4.3 Stochastic chance constraint programming

In this study, Stochastic Chance Constraint Programming Approach (SCCPA) has been used to convert stochastic model to deterministic model. This approach was stated by Charnes and Cooper [7]. Numerous and successful applications of this approach have been reported. Many papers have been used the SCCPA to convert stochastic technique to deterministic model [1, 21, 39, 40]. Assume that is the symbol of an uncertain parameter and is the number of objective functions. Also assume at least one of the parameters of or is defined as stochastic parameter. Therefore, the uncertain model is considered as follows:

\[\min f_k = E \left(\frac{a_{ij}}{d_{ij}} \right) \geq \alpha_i \]

\[i = 1, 2, \ldots, m \]

\[z = (z_1, \ldots, z_n) \]

\[z \in S \]

\[z \geq 0 \]

(35)–(39)

where shows the benefit ratio of decision variable in objective function. and indicate the technology coefficient of decision variable in constraint, the right hand side of constraint , and decision variable, respectively.

Finally, the deterministic result of the general model for the maximum and minimum states is as Eqs. (40)–(42):

\[E \left(\sum_{j=1}^{n} d_{ij} z_j - f_k \right) - \varphi^{-1}(1-\alpha_i) \sqrt{\text{Var} \left(\sum_{j=1}^{n} d_{ij} z_j - f_k \right)} \geq 0 \quad k = 1, \ldots, K \]

\[f_k = \min \sum_{j=1}^{n} d_{ij} z_j \]

\[E \left(\sum_{j=1}^{n} d_{ij} z_j - f_k \right) + \varphi^{-1}(\alpha_i) \sqrt{\text{Var} \left(\sum_{j=1}^{n} d_{ij} z_j - f_k \right)} \leq 0 \quad k = 1, \ldots, K \]

(40)–(41)

(Moreover,)

\[f_k^+ = \max d_{ij} z_j \]

\[E \left(\sum_{j=1}^{n} a_{ij} z_j - h_i \right) - \varphi^{-1}(1-\alpha_i) \sqrt{\text{Var} \left(\sum_{j=1}^{n} a_{ij} z_j - h_i \right)} \geq 0 \quad i = 1, 2, \ldots, m \]

(42)

Based on Eq. 13, the multi-objective chance constraint model can be converted as a deterministic model at \(\alpha \)% level as constraint (43):

\[\left(\sum_{j=1}^{n} \text{nl}_{dk} \right) \cdot E \left(\text{nd}_{ls} \right) + \varphi^{-1}(1-\alpha_i) \cdot \sqrt{\text{Var} \left(\text{nd}_{ls} \right)} = \text{dm}_{ls} \quad \forall k, t, i, s \]

(43)

where and illustrate mean and variance of Normal distribution function estimated by simulation model (see Table 20 in section 7.1.1), \(\alpha \) shows normal distribution at confidence level \(\pm \alpha \)%, and \(\varphi \) indicates standard normal distribution, with zero mean and unit variance.

5 Proposed solution methods

Since the proposed problem is NP-hard, to solve mathematical modeling, the meta-heuristic algorithms are employed in this paper. The NSGA-II, SPEA-II, and PESA-II algorithm and Epsilon-constraint method are utilized to solve the model in different sizes.

5.1 Proposed NSGA-II

The NSGA-II is one of the methods widely utilized by managers and engineers for solving multi-objective problems [36]. This algorithm has shown great accuracy in finding solutions to large-scale problems by examining most of the possible states which by humans is almost impossible.

5.1.1 Chromosome representation

In this research, there are \(h \) (\(h = 1, \ldots, H \)) injured people, \(v \) (\(v = 1, \ldots, V \)) vehicles, and finally \(m \) (\(m = 1, \ldots, M \)) number of predetermined points and a candidate for the establishment of DCs and shelters for distribution of commodities. There is also a chromosome with \(2V + H \) genes. This chromosome is shown in Fig. 5.

Designed chromosome consists of 3 sections. The number of genes in the first section of this chromosome is \(V \), and is filled with random numbers between 1 and \(M \). Repeated numbers are allowed in the first section, which means that several vehicles are allocated to a DC and a shelter (see Fig. 5). The second section of the chromosome is designed to have \(V \)
genes, and its alleles are integer and non-repetitive random numbers from 1 to \(M \). Non-repeatability of alleles of the second section means that injured people can’t be served more than once by a vehicle. For example, as shown in Fig. 5, the second section of the chromosome has 4 genes and is completed with numbers from 1 to 9. According to the second section of the chromosome, the first vehicle visits the fourth injured person on its first move, the second vehicle visits the fifth injured person on its first move, and eventually, the fourth vehicle visits the second injured person on its first move. As it is obvious, the second section of the chromosome is relevant to the first injured person that each vehicle visits. The third section of the chromosome has \(H \) genes, which are shown with non-repetitive numbers like the first section. This section shows the serving sequence to the injured people.

5.1.2 Crossover operator

A double-point crossover operator is designed for generating off-springs using three-part chromosome on the basis of a crossover probability. Figure 6 indicates the schematic view of the proposed crossover operator.

5.1.3 Mutation operator

As shown in Fig. 7, the mutation operator performed its duty according to mutation rate. The two genes are considered in the third section of the designed chromosome (for example, genes between \(2V + 1 \) and \(2V + H \)). Then, as shown in Fig. 7, the swap operator changes the alleles of the desired genes.

5.1.4 Stopping criterion

If any of the following two conditions are met, the algorithm stops:
1. If a certain number of iterations are satisfied.
2. If there is no improvement after a certain number of iterations.

5.2 Proposed SPEA-II

SPEA-II is an efficient algorithm that employs an external archive to store the non-dominated solutions which is found while searching the algorithm. Hence, Zitzler et al. [63] proposed the SPEA-II algorithm for the first time. The framework of this algorithm is described below:

Step 1. Generating an initial population of solutions \(P_0 \) and set \(E_0 = \emptyset \)
Step 2. Computing the fitness of each solution \(i \) in set \((P_i \cup E_i) \) according to the Eq. (44).

- First, calculate an initial fitness of solution \(i \) based on Eq. (44):
\[R(i) = \sum_{j \in P_t \cup E_t, j > i} s(j) \] \hspace{1cm} (44)

where \(j > i \) means that the \(j \) solution overcomes on the \(i \) solution. Also, \(s(j) \) shows the strength of the solutions, which is obtained from Eq. (45). Indeed, calculate the number of solutions that are dominated by \(i \).

\[s(i) = |\{j| j \in P_t \cup E_t, i > j\}| \] \hspace{1cm} (45)

- Calculate the congestion of the \(i \) solution according to the Eq. (46):

\[D(i) = \frac{1}{\sigma^2_i + 2} \] \hspace{1cm} (46)

where \(\sigma^2_i \) is the distance among \(i \) solution and \(k \)th neighborhood is close to it.

- Finally, the fitness value is obtained from the sum an initial fitness value and congestion of the \(i \) solution:

\[F(i) = R(i) + D(i) \] \hspace{1cm} (47)

Step 3. Copying all non-dominated solutions in the set \((P_t \cup E_t)\) to \(E_{t+1}\).

Step 4. If provided stop conditions, the algorithm stops and returns \(E_{t+1}\) solutions.

Step 5. Using the binary tournament method, the parent is selected of sets \(E_{t+1}\).

Step 6. Employing crossover and mutation operators on parent and generating offspring as many as \(N_P\). Offspring copy to the set \(P_{t+1}\) and add to the counter value of one unit and go to step 2.

It should be noted that this algorithm utilizes the same approach of crossover and mutation as described in Sections 5.1.3 and 5.1.4.

5.3 Proposed PESA-II

One of the most well-known multi-objective algorithms is the second version of the Pareto envelps based selection algorithm (PESA-II), which utilizes genetic algorithm operators to generate new solutions. The PESA-II was introduced by Corne et al. [11]. In the following, the steps of this algorithm describe:

Step 1. Starts with a random initial population \((P_0)\) and sets the external archive \((E_0)\) equal to empty and the \(t = 0\) counter.

Step 2. Divides the solution space to hypercube \(n^k\), so \(n\) is the number of networks in each axis of the objective functions and \(k\) is the number of objectives.

Step 3. Combines non-dominated solutions archive \(E_t\) with new solutions of \(P_t\).

Step 4. If the stop condition is met, stop and indicate the final \(E_t\).

Table 7 The different size of the problems

Problem number	Problem Size	Affected location	shelter	DC	Hospital	cemetery
1	Small	3	3	3	3	2
2	Small	4	5	4	5	3
3	Small	5	7	7	7	4
4	Small	6	8	6	8	5
5	Small	7	9	7	9	6
6	Medium	8	13	10	12	7
7	Medium	10	18	15	15	8
8	Medium	14	22	20	20	11
9	Medium	18	24	25	25	13
10	Medium	20	26	30	30	14
Step 5. By setting \(P_t = \emptyset \), solutions of \(E_t \) is select for combining and mutation based on congestion information of hypercube. This selection is made utilizing the roulette wheel so that the probability of choosing hypercubes with a smaller population is more. Use the combination and mutation to generate offspring \(N_p \) and copy it into \(P_{t+1} \).

Step 6. Set \(t \) to \(t+1 \) and go to the step 3.

For further details of PESA-II and SPEA-II algorithms could refer to references Gadhvi et al. [17]; Anusha and Sathiaseelan [3]; Kumar and Guria [37]; Moayedikia [44]; Chen and Li [8].

5.4 Epsilon-constraint method

The Epsilon-constraint method is one the most successful exact multi-objective optimization techniques. In the Epsilon-constraint method, one of the objective functions will be selected to be optimized and the other objective functions will act as the constraints [15].

In mathematical terms, If \(f_j(x) \in \{1, \ldots, k\} \) the \(j \)th objective function chosen to be optimized, the multi-objective optimization is replaced with the following single objective optimization problem:

\[
\begin{align*}
\text{Minimize} & \ f_j(x) \quad j \in \{1, \ldots, k\} \\
\text{s.t.} & \ f_i(x) \leq \varepsilon_i, \quad \forall i \in \{1, \ldots, k\}, i \neq j \\
& \quad \quad \quad x \in S
\end{align*}
\]

where, \(S \) is the feasible solution space, and \(\varepsilon_i \) is the upper bound of \(i \)th objective function. One advantage of the Epsilon-constraint approach is that it can be achieved effective points in a non-convex Pareto curve. Therefore, the decision maker can change the upper bounds \(\varepsilon_i \) to achieve weak Pareto optima [31]. There are several successful applications of the Epsilon-constraint approach (see [50]).

6 Computational experiments

According to the problem is NP-hard, the Epsilon-constraint approach is not capable for solving the proposed problem on a large-scale. According to Table 7, sample problems are classified into two groups of small and medium. In addition, the value of the proposed parameters is reported in Table 8. Therefore, after proving the efficiency of proposed meta-heuristic algorithms for small- and medium-scale problems, the proposed meta-heuristic algorithms are used to find the Pareto front of large-scale problems.

The Epsilon-constraint method is coded in GAMS 24 and three meta-heuristic algorithms are coded in MATLAB R2020a software on a 2.3 GHz laptop computer with 4 GB of RAM using Win 7, 64bit. Due to the nonlinearity of the proposed model for small- and medium-scale, the model is solved with BARON solver. The proposed meta-heuristic algorithms codes were run using several combinations of
parameters to obtain the optimum configuration of parameters. The proper configurations of parameters for NSGA-II, SPEA-II, and PESA-II are listed in Table 9.

Tables 10 and 11 show the efficiency of proposed Epsilon-constraint and meta-heuristic algorithms in small and medium-scale problems. The first column of the table indicates the number of problems. The first 5 problems are small-scale problems and the problems of 5 to 10 are medium-scale problems.

As shown in Table 11, the error average of the objective functions for the NSGA-II is 0.03, 0.63, and 0.6, for the SPEA-II approach is 0.06, 1.63, and 2.13, and for the PESA-II approach is 0.04, 1.29, and 1.58, respectively. As is known, the error rate of the NSGA-II is less than SPEA-II and PESA-II algorithms.

According to the obtained error values, efficiency and reliability of NSGA-II algorithm for small and medium-scale problems are proven. The maximum mean error in the NSGA-II algorithm is 0.63%. So, with this argument, the proposed NSGA-II method can be trusted to solve large-scale problems.

Figure 8 indicates the outcomes of CPU time for small- and medium-scale problems according to the presented methods. The comparison between the CPU time of NSGA-II, PESA-II, and SPEA-II methods shows that the NSGA-II CPU time is lower. Also, the CPU time of the Epsilon-constraint approach for small- and medium-size problems has increased exponentially, which proves the NP-hardness of the proposed model.

Table 9 Fitted parameters of the suggested algorithms

Algorithms	Mutation Rate (A)	Crossover Rate (B)	Pop Size (C)	Max Iteration (D)
NSGA-II	0.05, 0.06, 0.07	0.4, 0.5, 0.6	80, 90, 100	100, 200, 300
SPEA-II	0.07, 0.08, 0.09	0.6, 0.7, 0.8	80, 90, 100	100, 200, 300
PESA-II	0.07, 0.08, 0.09	0.7, 0.8, 0.9	80, 90, 100	100, 200, 300

Table 10 The results of Epsilon-constraint for small and medium size test problems

No	Epsilon-constraint	f1	f2	f3	Time(s)
1	35,473.2	126.6	13.7	2	
2	35,498.6	134.9	14.7	26	
3	35,532.0	148.9	16.2	52	
4	35,546.9	163.5	16.9	93	
5	35,551.7	172.3	18.7	142	
6	56,788.8	246.0	28.6	1397	
7	56,798.4	258.9	29.9	1387	
8	56,836.2	270.7	32.4	3742	
9	56,864.4	283.3	34.4	4981	
10	56,892.7	289.6	35.5	6429	

Table 11 The results of meta-heuristic algorithms for small and medium-size test problems

No	PESA-II	Error %	f1	f2	f3	Time(s)
1	35,473.2		126.6	13.7	2	
2	35,498.6		134.9	14.7	26	
3	35,546.9		186.9	16.9	93	
4	35,551.7		212.3	18.7	142	
5	56,788.8		246.0	28.6	1397	
6	56,798.4		258.9	29.9	1387	
7	56,836.2		270.7	32.4	3742	
8	56,864.4		283.3	34.4	4981	
9	56,892.7		289.6	35.5	6429	
10	56,938.7		295.1	36.1	649	
6.1 Taguchi method

This sub-section sets out an experimental design for controlling and tuning the algorithm’s parameters. In this paper, the Taguchi approach is used to tune the parameters of the algorithms set out. For more details about this method, interested researchers can examine a few papers related to the Taguchi method, such as Tirkolaee et al. [57]; Goodarzian et al. [23], etc.

The Signal-to-Noise ratio (S/N) is used to analyze the experiment. The S/N value expresses the degree of scatter around a certain value or, in other words, how our solutions have changed across several experiments. To obtain the S/N value, there are three equations, each of which applies to specific conditions.

\[SB = \frac{1}{n} \sum (y_i)^2 \]
(49)

\[LB = \frac{1}{n} \sum \left(\frac{1}{n} \right) (y_i)^2 \]
(50)

\[NB = \frac{1}{n} \sum (y_i - y_0)^2 \]
(51)

Moreover, the Taguchi approach mechanism focuses on the sort of solution. Therefore, the solution obtained that is relevant to three Eqs. (49)–(51) of this method is divided into three groups including the smaller is better (see Eq. (49)), larger is better (see Eq. (50), and the nominal is better (see Eq. (51)). In the proposed model, objective functions are a type of minimization, to control the parameters of the algorithm set out, the smaller better is used. Thus, Eq. (52) shows the S/N ratio value set out in this paper.

\[\frac{S}{N} = -10 \times \log \left(\frac{\sum_{i=1}^{n} Y_i^2}{n} \right) \]
(52)

where \(n \) shows the orthogonal array as well as \(y_0 \) represents the value of the solution for the orthogonal array.

Since the scale of objective functions in each example is various, they could not be used directly. Accordingly, the Relative Percent Deviation (RPD) is used for each example to solve this problem. The RPD value for the data is obtained using Eq. (53).

\[RPD = \frac{\text{Alg}_{\text{sol}} - \text{Min}_{\text{sol}}}{\text{Min}_{\text{sol}}} \times 100 \]
(53)

where \(\text{Min}_{\text{sol}} \) and \(\text{Alg}_{\text{sol}} \) show the achieved best solution and the values of the achieved objective for each iteration of the experiment in a provided example, respectively. Therefore, the mean RPD is computed for each experiment after transforming the values of the objective to RPDs.

The provided levels with the factors (the algorithm’s parameters) are reported in Table 12, which for algorithm’s factors, three levels are provided. It should be noted that the Taguchi approach reduces the total number of tests by presenting a set of orthogonal arrays to control the proposed algorithms in a reasonable time. This approach suggests L9 for three VNS, GWO, and MGWO (see Table 12) obtained by Minitab Software.

Therefore, the output of the S/N ratio should be analyzed by Minitab Software to detect the best levels for each algorithm (see Figs. 9, 10 and 11). Where the S/N index has

L9	A	B	C	D
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	2
reached its minimum, the levels can be selected as the optimal levels.

The RPD is also used to confirm the selected best factors based on S/N ratios. Figure 9 shows the outcomes of RPD for each parameter level. It is clear that the RPD shows the best factors in Fig. 12, which confirm the same outcomes as S/N ratios.

6.2 Metrics to evaluate algorithm efficiency

In order to assess the efficiencies of the multi-objective meta-heuristic algorithms, two assessment metrics are utilized as follows.

- Spacing: measures the standard deviation of the distances between solutions of the Pareto front [62].
- Mean ideal distance (MID): measures the convergence rate of Pareto fronts up to a certain point (0, 0) [61].

Results of the comparison of four methods of epsilon-constraint, NSGA-II, SPEA-II, and PESA-II methods using the metrics of MID and SM are shown in Table 13.

As shown in Table 13, samples 1 to 5 are small-scale samples and samples 6 to 10 are in medium-scale. In each group of samples, the problem scale increases gradually with increasing the sample number. Gradually, with the increase in the scale of the problem to sample number 5, the difference remains almost the same. But from the sample 5, due to the increase in the scale of the problem from small to medium, significant changes are made in the values of the metrics. For example, the SM value of the NSGA-II method increases from 0.383 to 0.426, and the MID for NSGA-II increases from 6.44 to 6.63.

The mean value of SM for the NSGA-II method is 0.402, for the SPEA-II algorithm is 0.4944, and for the PESA-II algorithm is 0.5106. This suggests that Spacing Metric for NSGA-II is slightly better than the two presented meta-heuristic algorithms. Moreover, it can be concluded that the
outcomes of MID and SM for NSGA-II are slightly better than the other two presented meta-heuristic algorithms for small- and medium-scale problems.

In order to use the solution space in a better way, the number of Pareto solutions is considered to be 50. If the number of calculated Pareto solutions is more than 50, only the best 50 solutions are selected by the crowding distance operator.

Moreover, a set of statistical comparisons between the proposed meta-heuristic algorithms according to the assessment metrics are performed to realize which the presented meta-heuristic is the best. Furthermore, the attained outputs of the suggested problems are transformed to Relative Deviation Index (RDI) that is calculated based on Eq. (54):

\[
RDI = \frac{|Alg_{sol} - Best_{sol}|}{Max_{sol} - Min_{sol}} \times 100
\]

(54)

where \(Best_{sol}\) shows the best solution between the algorithms. \(Alg_{sol}\) indicates the value of the objective function. \(Min_{sol}\) and \(Max_{sol}\) illustrate the minimum and maximum values of the proposed assessment metrics. Accordingly, the confidence interval of 95% for the assessment metrics in the algorithms set out is conducted to analyze the efficiency of the presented meta-heuristics statistically. Figure 13 depicts the means plot and LSD intervals for the proposed meta-heuristics.

It should be noted that the lower value of RDI is better. In Fig. 13, in terms of the spacing and MID metrics, the value of RDI for NSGA-II is lower than the PESA-II and SPEA-II algorithms and indicates has the best statistical performance. But, PESA-II has the high value of the RDI and shows the worst performance.

7 Real application

In this section, a real case study is introduced and discussed according to the proposed problem. The proposed model and solution procedures are applied. The results and some analysis of the results are further investigated.

7.1 Case study

Iran is one of Asia’s most populous and developing countries. Tehran is the capital of Iran and has about 9 million people. Tehran is among the rapid growing cities in Asia. Tehran is divided into 22 regions, 134 areas and 374 neighborhoods. The 2017 census shows that region 6 has the highest density with 434 people per hectare. Region 7 with 402 people per hectare is next. Regions 1, 4 and 8 with an average density of 250 people per hectare are among the relatively densely populated regions. Figure 14 shows the density ratio of buildings in the 22 regions of Tehran city on its faults. Due to the location of these two regions on the faults of Tehran city, the high population density in these two regions and the location of many organizations and schools in them, they are among the most vulnerable regions of Tehran. Therefore, due to the explanations presented; these two regions are considered as case studies. Regions 6 and 7 are the most populated and most crowded regions of Tehran including 36 hospitals complexes. Map of regions 6 and 7 of Tehran is presented in Fig. 15, which includes 35 candidate locations for establishing shelters, 45 candidate locations for establishing DCs, 36 hospitals, 30 affected areas and 20 cemeteries.

It is clear that in Fig. 15, the \(H\) points indicate the location of the hospitals, the \(D\) points display candidate locations for setup DCs, \(C\) points indicate the cemetery locations, \(A\) points show affected areas and \(S\) points show the candidate location for setup shelters.

Table 14 shows the scenarios of this research and their probability of occurrence. The probability of occurrence of each scenario is obtained by examining the time and severity of earthquakes in Tehran over the past 200 years [34].
This research has considered six scenarios based on the severity of the earthquake and the time of its occurrence. As is clear, disaster happening in the rush hour causes more financial costs and human casualties than happening in a low-
Next, the calculated mean distribution functions by Minitab 19.2020.1 software and the function fitting process are estimated. Figure 16 shows the simulation results. According to this figure, the distribution functions of demand including food, water, medicine, and tents are estimated. The estimated distribution functions for food, water, medicine, and tent goods are normal, with correlation coefficients of 0.985, 0.990, 0.950, and 0.975, respectively.

After estimating the distribution functions of relief commodities, its mean and standard deviation are determined by the function fitting approach in Minitab 19.2020.1 software. Table 20 shows the simulation output. In this table, the average and standard deviation of relief commodities in each scenario are specified. For example, in the second scenario, the amount of required medicine follows a Normal distribution with an average of 156,208 kg and a standard deviation of 562.5.

The validation of a simulation model indicates whether the model shows a true reflection of real-world performance. To prevent variability, the simulation model was run 100 times for 10,000 hours and the average performance of the model was reported. Figure 17 shows a comparison between the performance of the simulation model and the real-world. The results of the real-world are taken from the historical data of similar earthquakes in the region.

Figure 17 shows the validation of the simulation model. The vertical axis shows the estimated value of the relief commodities. It can be said, with a 95% confidence interval, that the simulation model has had a real estimate of the real-system.

In Table 21, there are 10 optimal solutions to illustrate the effective performance of the NSGA-II, SPEA-II, and PESA-II.

As it is clear that the quality of the solutions of the NSGA-II and the CPU time of this algorithm are better than the other two meta-heuristic algorithms. Figure 18 shows the results of CPU time for large-scale problems (case study) according to the three meta-heuristic algorithms.

NO	MID NSGA-II	SPEA-II	PESA-II	NSGA-II	SPEA-II	PESA-II	NSGA-II	SPEA-II	PESA-II
1	6.21	7.67	8.76	0.363	0.456	0.478			
2	6.26	7.79	8.91	0.369	0.476	0.483			
3	6.33	8.12	9.12	0.372	0.489	0.497			
4	6.36	8.39	9.36	0.375	0.491	0.505			
5	6.44	8.49	9.44	0.383	0.495	0.512			
6	6.65	8.65	9.49	0.426	0.500	0.516			
7	6.65	8.69	9.63	0.428	0.502	0.519			
8	6.67	8.76	9.66	0.433	0.506	0.523			
9	6.69	8.81	9.71	0.436	0.512	0.531			
10	6.76	8.92	9.78	0.440	0.523	0.542			

Table 13 The results of the obtained assessment metrics of the proposed algorithms
According to the stated arguments, the NSGA-II is better and more robust than the other two meta-heuristic algorithms. In the following, the case study will be solved with this algorithm.

Figure 19 shows the number of homeless people allocated to each shelter under various scenarios. The labels of each graph show the number of the affected area. As can be seen, the number of shelters established in the first and second scenarios is 20 and 24, for the third and fourth scenarios, 26 and 31, and for the fifth and sixth scenarios, 34. So, with the increase in severity of the earthquakes, the need for shelters increases as well. It is also clear that the number of people
Table 14 The scenarios investigated in the case study

Scenario	Probability of Occurrence	Time of occurrence	Richter
Scenario1	0.12	Low Traffic	5≤Richter<6
Scenario2	0.26	High Traffic	
Scenario3	0.1	Low Traffic	6≤Richter<7
Scenario4	0.17	High Traffic	
Scenario5	0.23	Low Traffic	7≤Richter<8
Scenario6	0.12	High Traffic	

Table 15 The number of homeless and injured people and corpses (person)

affected area	corpses	Injured people	Homeless people					
	Scenario1	Scenario2	Scenario1	Scenario2				
	First type of injuries	Second type of injuries	First type of injuries	Second type of injuries				
1	671	528	275	116	185	336	726	287
2	252	415	453	386	338	508	451	886
3	164	541	170	149	478	733	478	1088
4	583	148	445	462	743	279	536	865
5	283	565	489	270	357	734	431	226
6	424	521	227	124	342	339	729	718
7	400	251	433	481	485	360	725	671
8	235	446	231	474	452	466	1013	648
9	520	301	326	269	176	150	331	952
10	179	681	437	383	386	440	898	751
11	337	104	385	500	474	609	508	826
12	455	609	257	146	728	632	277	697
13	114	344	299	194	163	562	963	447
14	694	241	443	217	302	665	565	358
15	443	167	432	157	703	534	901	478
16	401	636	241	320	667	466	735	740
17	190	248	276	179	486	537	1064	358
18	130	196	430	381	630	377	679	730
19	616	672	289	124	186	449	972	883
20	673	244	307	138	499	518	295	794
21	601	342	327	107	253	273	625	843
22	334	456	500	117	597	206	602	401
23	666	514	158	148	532	158	1079	231
24	581	365	263	415	820	240	1065	715
25	278	344	205	338	625	167	679	630
26	605	540	398	500	217	752	668	414
27	294	211	413	488	315	313	644	840
28	397	541	193	112	487	616	214	954
29	581	360	223	500	214	333	787	398
30	528	177	348	193	808	827	633	1088
transported to shelters in scenarios 5 and 6 is higher than in other scenarios. Shelters number 16 and 18 are the most active and most important shelters as all of the scenarios transfer 276 and 251 homeless people to these two shelters, respectively.

Table 16 The number of required relief personnel (person)

Affected area	Required relief personnel	First scenario	Second scenario	Required relief personnel	First scenario	Second scenario
	Doctor Nurse Relief staff					
1	135 266 139	130 109 77	16	90 76 265	103 140 130	
2	129 132 114	122 111 115	17	79 90 167	85 254 215	
3	147 270 142	79 106 121	18	145 75 108	153 119 185	
4	127 160 56	127 60 105	19	84 135 217	55 251 86	
5	127 281 62	93 65 99	20	126 118 121	191 103 75	
6	135 260 102	114 85 111	21	60 104 211	189 189 157	
7	115 174 124	135 97 71	22	86 96 269	98 200 136	
8	120 187 100	110 116 69	23	98 139 147	159 164 229	
9	146 139 114	133 124 71	24	139 93 97	80 213 184	
10	117 110 99	68 81 124	25	53 62 119	82 106 213	
11	137 112 133	79 56 65	26	74 72 202	144 166 256	
12	118 271 56	148 60 146	27	83 123 140	76 117 184	
13	137 179 58	150 121 95	28	128 109 270	52 123 181	
14	144 248 104	114 142 136	29	67 76 169	181 276 133	
15	121 222 144	139 124 93	30	149 90 70	112 84 266	

Table 17 The capacity of hospitals for dispatching relief personnel (person)

Scenario/Hospital	Scenario1	Scenario2	Scenario/Hospital	Scenario1	Scenario2
	Doctor Nurse Relief staff				
1	38 42 9	48 22 8	19	12 12 7	18 41 17
2	14 17 30	58 22 29	20	26 20 25	37 22 11
3	25 37 16	15 41 24	21	27 19 32	32 42 21
4	20 44 14	39 44 12	22	12 8 28	37 9 10
5	35 22 14	23 44 19	23	21 8 24	38 19 14
6	22 12 18	38 29 14	24	36 43 27	29 44 28
7	53 38 22	14 30 17	25	14 21 14	12 29 13
8	33 39 14	38 29 11	26	17 9 25	34 39 5
9	35 16 18	44 9 31	27	28 42 15	35 43 9
10	37 40 26	13 36 16	28	20 13 27	32 37 11
11	13 23 28	21 19 9	29	29 25 10	37 32 26
12	48 15 16	17 23 23	30	31 22 19	24 11 15
13	10 33 26	40 40 12	31	36 21 15	22 28 19
14	48 41 25	40 25 31	32	23 29 11	36 44 4
15	29 16 28	32 38 22	33	37 15 14	18 43 4
16	48 42 19	32 41 12	34	12 12 7	37 18 29
17	14 17 30	38 22 8	35	26 20 25	18 41 17
18	25 37 16	58 22 29	36	27 19 32	37 22 11
Figure 20 shows how DCs are established based on their capacity in each scenario. In the first and second scenarios, 31 and 29 DCs are established, respectively. In the first scenario, 3, 17, and 11 DCs are established in small-, medium- and large-scale, respectively, and in the second scenario, 5, 14, and 9 DCs, in small-, medium- and large-scale, respectively. Also, in the fifth scenario, 41 DCs are established, which include 23, 11, and 7 centers, in small-, medium- and large-scale, respectively. As you can see, the number of DCs established in scenarios with more severe earthquakes (scenarios 5 and 6) is far greater than their number for scenarios with less severe earthquakes (scenarios 1 and 2). Also, in scenarios with more severe earthquakes, there is a great tendency to establish more DCs with small capacity, and in scenarios with less severe earthquakes, there is a tendency to establish fewer DCs with large capacity.

7.1.2 Sensitivity analysis

According to Fig. 21, as the capacities of the DCs increase, the cost will increase, too. The increase in the size of the capacity causes not establishing the new DCs. Hence, the fixed cost of the establishment will be decreased. This reduction continues up to a certain point. As the capacities increases, the numbers of established DCs are reduced and transportation costs are increased.

According to this figure, scenario 6 (earthquake of 7–8 magnitude during rush hour) will cost more than other scenarios. According to the explanations given in this scenario, there is a tendency to establish more DCs with small and medium

Scenario/Hospital	Scenario1	Scenario2		
First type of injuries	Second type of injuries	First type of injuries	Second type of injuries	
1	28	61	36	25
2	38	16	41	26
3	35	20	30	49
4	42	18	54	60
5	64	63	52	42
6	20	30	23	85
7	26	48	31	65
8	37	29	57	53
9	47	54	22	38
10	44	18	32	57
11	22	67	41	25
12	38	28	20	45
13	20	71	55	42
14	52	62	36	73
15	20	62	21	72
16	23	61	30	18
17	60	16	54	25
18	50	20	52	26

Table 18 The capacity of hospitals for acceptance of injured people (person)

Scenario/ Hospital	Scenario1	Scenario2		
First type of injuries	Second type of injuries	First type of injuries	Second type of injuries	
1	28	61	36	25
2	38	16	41	26
3	35	20	30	49
4	42	18	54	60
5	64	63	52	42
6	20	30	23	85
7	26	48	31	65
8	37	29	57	53
9	47	54	22	38
10	44	18	32	57
11	22	67	41	25
12	38	28	20	45
13	20	71	55	42
14	52	62	36	73
15	20	62	21	72
16	23	61	30	18
17	60	16	54	25
18	50	20	52	26

Table 19 Estimating the amount of required tent in scenario 1

No.	Mean								
1	50,075	15	50,110	29	50,122	43	50,065	57	50,102
2	50,080	16	49,978	30	50,111	44	49,902	58	50,012
3	49,965	17	49,974	31	49,908	45	49,950	59	50,071
4	49,976	18	50,060	32	50,003	46	50,094	60	50,062
5	50,076	19	50,123	33	49,996	47	50,025	61	50,139
6	49,977	20	50,089	34	50,127	48	50,050	62	49,942
7	50,089	21	49,972	35	50,093	49	50,008	63	50,122
8	50,096	22	49,914	36	49,916	50	49,927	64	50,144
9	50,076	23	50,087	37	49,911	51	49,916	65	49,977
10	50,001	24	49,987	38	50,056	52	49,968	66	50,012
11	49,950	25	50,040	39	50,020	53	50,058	67	50,110
12	50,122	26	50,111	40	50,002	54	50,079	68	50,109
13	50,119	27	50,111	41	50,130	55	49,956	69	49,984
14	50,064	28	50,040	42	49,934	56	49,955	70	49,938
capacities. The same behavior is also seen in scenario 5. In the first scenario (earthquake of 5–6 magnitude), there is a tendency to establish fewer DCs with large capacity. In these two scenarios, the cost slope is less than other scenarios.

The probability of existence of the routes and its impact on the third objective function is analyzed and shown in Fig. 22. According to Fig. 22, as the probability of the successful evacuation (the probability of routes being safe) increases, the value of third objective function (i.e., risk) decreases. Figure 22 shows the behavior of the third objective function for different scenarios when the probability of successful evacuation increases. Here, for all scenarios, three probabilities of successful evacuation are considered between 0 and 0.3, 0.3–0.6 and 0.6–0.9. In general, in all scenarios, with the increase of probability of successful evacuation, the value of the third objective function (risk of the routes) decreases. Also, the effect of increasing the probability of successful evacuation in reducing the value of the objective function in scenarios 5 and 6 is higher than other scenarios. This means that the effect of safe routes in more severe earthquakes is more than their effect in less severe earthquakes (scenarios 1 and 2).

8 Conclusion and future works

A new integrated stochastic multi-objective location-allocation-routing supply chain logistic programming model in disaster situations was proposed which has helped to design both pre-disaster and post-disaster plans. In order to integrate strategic and operational decisions, a new multi-objective mathematical model was presented for disaster relief management. The proposed model was used in a case study in two regions of Tehran Province in Iran. In this study, disaster relief decisions are considered at both strategic and operational levels for managers. Based on the decisions on the location of shelters, the location of DCs, and the allocation of capacity to them are stated as strategic decisions. Decisions on routing, the number of injured people, homeless people, and corpses who were transferred to the hospitals, shelters, and cemeteries,

Table 20	The results of simulation					
Scenarios/Commodities	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
(Average, St. Deviation)						
Water	(1,250,000,79.25)	(1,562,000,220.5)	(1,935,800,841.71)	(2,665,000,0.63)	(5,432,500,3108)	(6,853,500,2364.1)
Tent	(50,040,19.6)	(62,480,161)	(77,430,342)	(106,650,1025.3)	(217,320,155.1)	(274,140,2036.9)
Medicine	(125,013,145.5)	(156,208,562.5)	(193,580,628)	(266,505,1534.5)	(543,250,761.2)	(685,352,1675)
Food	(625,020,55.40)	(781,030,901.65)	(967,900,1025.3)	(1,332,515,3784.5)	(2,716,250,3100)	(3,426,755,1099)
the number of commodities sent from the DCs to the shelters, and so on are selected as operational decisions. The simulation approach has been used to estimate the demand for relief commodities. In this way, the basic urban infrastructure has been identified and their interaction with each other during the earthquake has been calculated. The simulation results show that the demand for food, water, medicine, and tents follows the Normal distribution function with correlation coefficients of 0.985, 0.990, 0.950, and 0.975. Also, the validation results of the simulation model indicate that with a 95% confidence interval, it will have an accurate estimate of the real system. The estimated value is entered into the mathematical model and converted to a deterministic model by using the stochastic chance constraint programming approach.

Table 21 The results of the suggested case study

No	NSGA-II	SPEA-II	PESA-II									
	f_1	f_2	f_3	Time(s)	f_1	f_2	f_3	Time(s)	f_1	f_2	f_3	Time(s)
1	94,326.2	417.6	53.4	48	96,789.1	671.6	78.9	65	97,433.2	695.2	85.3	71
2	94,328.2	416.4	53.6	50	97,455.3	679.4	79.5	69	97,561.1	712.3	89.2	78
3	94,327.4	416.6	53.5	53	98,567.5	689.6	81.3	75	99,564.2	726.1	92.3	81
4	94,328.8	416.5	54.5	54	99,456.1	691.5	87.3	78	99,872.3	754.3	97.3	84
5	94,325.7	416.9	52.8	54	99,678.4	696.2	91.1	82	102,398.4	765.1	101.2	91
6	94,327.7	416.1	52.7	62	104,561.7	716.1	95.7	86	107,511.2	789.2	104.4	98
7	94,328.9	415.8	53.0	66	108,921.2	734.3	97.8	91	116,771.4	802.9	108.9	103
8	94,327.8	416.5	52.6	69	112,097.2	745.9	99.7	93	126,581.1	821.8	112.7	109
9	94,326.4	417.7	52.2	73	114,396.3	755.1	101.4	96	129,896.2	834.6	117.4	119
10	94,325.7	416.5	54.6	79	128,901.4	768.3	107.2	98	129,945.6	867.1	121.1	139
Ave	94,327.3	416.6	53.2	61.2	106,082.4	714.8	91.99	83.3	110,753.47	776.86	102.98	97.3

Fig. 17 Comparison between results obtained by simulation and real system
The results of strategic and operational decisions extracted from the case study are presented in the following. Decisions on the number of established DCs and their capacity determination are of the strategic decisions. Also, decisions on how to

![Fig. 18](image)
The results of CPU time for large-scale problems of the presented meta-heuristic algorithms

![Fig. 19](image)
Homeless people allocated to each shelter under each scenario
transfer the homeless people from the affected areas to the shelters are considered as the operational decisions. The proposed model included three objectives as minimization of the expected value of the total costs of the relief supply chain,
minimization of the maximum amount of unsatisfied demand for relief staff, minimization of the total probability of unsuccessful evacuation in routes. The destruction of facilities, infrastructures, and routes, also the amount of road traffic due to the disaster, and the severity of the disaster are considered. Four multi-objective algorithms, namely, NSGA-II, PESA-II, SPEA-II, and Epsilon-constraint methods were utilized to solve the suggested model. The outcomes of the solution in small and medium-sized problems indicate that the quality of the solutions and the average CPU time for the NSGA-II is better and more powerful than the other two meta-heuristic algorithms. Therefore, the case study has been solved using this algorithm.

A sensitivity analysis was performed to investigate the efficiency of the proposed model against the volatility of important parameters. The outcomes of the sensitivity analysis illustrated by increasing the severity of the earthquake (scenarios 5 and 6), more DCs with less capacity will be needed. This causes the significant spacing of DCs in the region. Also, less severe earthquakes (scenarios 1 and 2) required the establishment of fewer DCs with more capacity.

This research will help managers and decision-makers to simultaneously make strategic decisions before a disaster occurs and operational decisions during a disaster. Hence, determining the optimal capacity of established shelters and DCs helps managers to deal with possible shortages during the disaster. In addition, estimating the demand for relief commodities has always been one of the major concerns of disaster relief managers and decision-makers. Then, the proposed simulation approach and determining the demand distribution function of relief commodities such as water, food, tents, and medicine can increase the readiness of managers to cope with the inherent uncertainty of earthquakes.

According to the research results, the higher the magnitude of the earthquake, the higher the costs and loss of life, and the more relief commodities are needed. Moreover, managers are advised to be properly prepared for relief operations in such
situations, especially during high traffic, which increases the severity of the damage. It is also essential for managers to know that as the magnitude of an earthquake increases, especially during high traffic, the capacity of established DCs increases dramatically.

There is also the possibility of destruction and blockage of roads during high-magnitude earthquakes. Therefore, managers are suggested to strengthen the main urban routes. The location of potential points for the establishment of shelters and DCs should also be given the strength of the paths leading to it. This can greatly reduce the likelihood of an unsuccessful evacuation.

Finally, in order to observe justice in the evacuation, fast triage operations are recommended to decision-makers. Depending on the different evacuation priorities for the injured, the homeless, and the dead, a quick triage can speed up the evacuation operation and prevent further casualties.

The following points are recommended for future research:

- considering other phases of disaster relief management: for example, incorporating uncertainty in recovery operations and waste collection with disaster remnants,
- considering a cooperative game for relief groups so that with their cooperation, the golden time of rescue and its costs are reduced,
- using the other meta-heuristic algorithms such as multi-objective simulated annealing, multi-objective particle swarm optimization, etc.

The research limitations are as follows:

- As there was no official database for some parts of cost elements, the expert’s estimations were asked to help. The questions about the cost for establishing distribution centers and shelters have been categorized and the estimated costs have been entered into the mathematical model.
- Usually, numerous runs are required for each simulation model, and this can lead to high costs for using a computer. Simulation also requires access to a computer system equipped with features such as high RAM and CPU.

References

1. Aghdam FH, Kalantari NT, Mohammadi-Ivatloo B (2020) A stochastic optimal scheduling of multi-microgrid systems considering emissions: a chance constrained model. J Clean Prod 275:122965
2. Alizadeh R, Nishi T, Bagherinejad J, Bashiri M (2021) Multi-period maximal covering location problem with capacitated facilities and modules for natural disaster relief services. Appl Sci 11(1): 397
3. Anusha M, Sathiaseelan JGR (2016) An empirical study on multi-objective genetic algorithms using clustering techniques. International Journal of Advanced Intelligence Paradigms 8(3): 343–354
4. Balcik B, Beamon BM (2008) Facility location in humanitarian relief. Int J Logist 11(2):101–121
5. Balcik B (2017) Site selection and vehicle routing for post-disaster rapid needs assessment. Transportation research part E: logistics and transportation review 101:30–58
6. Cavdur F, Kose-Kucuk M, Sebatli A (2021) Allocation of temporary disaster-response facilities for relief-supplies distribution: a stochastic optimization approach for Afterdisaster uncertainty. Natural Hazards Review 22(1):05020013
7. Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79
8. Chen G, Li J (2019) A diversity ranking based evolutionary algorithm for multi-objective and many-objective optimization. Swarm and Evolutionary Computation 48:274–287
9. Chowdhury S, Emelogu A, Marufuzzaman M, Nurre SG, Bian L (2017) Drones for disaster response and relief operations: a continuous approximation model. Int J Prod Econ 188:167–184
10. Coburn AW, Spence RJ (2002) Earthquake protection (p. 420). Wiley, Chichester
11. Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation 3(2):283–290
12. Diabat A, Jebali A (2020) Multi-product and multi-period closed loop supply chain network design under take-back legislation. Int J Prod Econ 231:107–118
13. Du B, Zhou H, Leus R, (2020) A two-stage robust model for a reliable p-center facility location problem. Transp Res B Methodol 158:1–16
14. Ergün S, Usta P, Gök SZA, Weber GW (2021) A game theoretical approach to emergency logistics planning in natural disasters. Ann Oper Res:1–14
15. Eydi A, Bakhtiari M (2017) A multi-product model for evaluating and selecting two layers of suppliers considering environmental factors. RAIRO-Operations Research 51(4):875–902
A new humanitarian relief logistic network for multi-objective optimization under stochastic programming

16. Firuzi E, Ansari A, Hosseini KA, Rashidabadi M (2019) Probabilistic earthquake loss model for residential buildings in Tehran, Iran to quantify annualized earthquake loss. Bull Earthq Eng 17(5):2383–2406

17. Gadhvi B, Savsani V, Patel V (2016) Multi-objective optimization of vehicle passive suspension system using NSGA-II, SPEA2 and PESA-II. Procedia Technology 23(2016):361–368

18. Ghasemi P, Goodarzian F, Muñuzuri J, Abraham A (2021) A cooperative game theory approach for location-routing-inventory decisions in humanitarian relief chain incorporating stochastic planning. Appl Math Model 104:750–781

19. Ghasemi P, Khalili-Damghani K, Hafezalkotob A, Raissi S (2019a) Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake). In: Stochastic optimization model for distribution and evacuation planning (a case study of Tehran earthquake). Socio-Economic Planning Sciences, p 100745

20. Ghasemi P, Khalili-Damghani K, Hafezalkotob A, Raissi S (2019b) Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning. Appl Math Comput 350:105–132

21. Ghasemi P, Khalili-Damghani K, Hafezalkotob A, Raissi S (2020) Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake). Socio Econ Plan Sci 71:100745

22. Goli A, Bakhshi M, Babaei Tirkolaei E (2017) A review on main challenges of disaster relief supply chain to reduce casualties in case of natural disasters. Journal of Applied Research on Industrial Engineering 4(2):77–88

23. Goodarzian F, Ghasemi P, Gunasekaran A, Taleizadeh AA, Abraham A (2021) A sustainable-resilience healthcare network for handling COVID-19 pandemic. Ann Oper Res:1–65

24. Habibi-Kouchaksaraei M, Paydar MM, Asadi-Gangraj E (2018) Designing a bi-objective multi-echelon robust blood supply chain in a disaster. Appl Math Model 55:583–599

25. Haghjoo N, Tavakkoli-Moghaddam R, Shahmoradi-Moghadam H, Rahimi Y (2020) Reliable blood supply chain network design with facility disruption: a real-world application. Eng Appl Artif Intell 90:103493

26. Hawe GI, Coates G, Wilson DT, Crouch RS (2015) Agent-based simulation of emergency response to plan the allocation of resources for a hypothetical two-site major incident. Eng Appl Artif Intell 46:336–345

27. Hong X, Lejeune MA, Noyan N (2015) Stochastic network design for disaster preparedness. IIE Trans 47(4):329–357

28. Hosseini SA, de la Fuente A, Pons O (2016) Multi-criteria decision-making method for assessing the sustainability of post-disaster temporary housing units technologies: a case study in barn, 2003. Sustain Cities Soc 20:38–51

29. Jia H, Ordoñez F, Dessouky M (2007) A modeling framework for facility location of medical services for large-scale emergencies. IIE Trans 39(1):41–55

30. Jia L, Kefan X (2015) Preparation and scheduling system of emergency supplies in disasters. Kybernetes 44:423–439

31. Khalili-Damghani K, Nojavan M, Tavana M (2013) Solving fuzzy multidimensional multiple-choice knapsack problems: the multi-start partial bound enumeration method versus the efficient epsilon-constraint method. Appl Soft Comput 13(4):1627–1638

32. Khalili-Damghani K, Tavana M, Ghasemi P (2022) A stochastic bi-objective simulation-optimization model for cascade disaster location-allocation-distribution problems. Ann Oper Res 309(1):103–141

33. Khalilpourazari S, Soltanzadeh S, Weber GW, Roy SK (2020) Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study. Ann Oper Res 289(1):123–152

34. Khojasteh SB, Macit I (2017) A stochastic programming model for decision-making concerning medical supply location and allocation in disaster management. Disaster Medicine and Public Health Preparedness 11(6):747–755

35. Khorsí M, Chaharsoghi SK, Bozorgi-Amiri A, Kashana AH (2020) A multi-objective multi-period model for humanitarian relief logistics with Split delivery and multiple uses of vehicles. J Syst Sci Syst Eng 29(3):360–378

36. Kropat E, Weber GW, Tirkolaei EB (2020) Foundations of semialgebraic environment networks. Journal of Dynamics & Games 7(4):253–268

37. Kumar M, Guri A (2017) The elitist non-dominated sorting genetic algorithm with inheritance (i-NSGA-II) and its jumping gene adaptations for multi-objective optimization. Inf Sci 382:15–37

38. Lawrence JM, Hosssain NUI, Jaradat R, Hamilton M (2020) Leveraging a Bayesian network approach to model and analyze supplier vulnerability to severe weather risk: a case study of the US pharmaceutical supply chain following hurricane Maria. Int J Disaster Risk Reduct 49:101–116

39. Li P, Arelano-Garcia H, Wozny G (2008) Chance constrained programming approach to process optimization under uncertainty. Comput Chem Eng 32(1–2):25–45

40. Lim GJ, Rungta M, Davishan A (2019) A robust chance constraint programming approach for evacuation planning under uncertain demand distribution. ISE Transactions 51(6):589–604

41. Liu J, Xie K (2017) Emergency materials transportation model in disasters based on dynamic programming and ant colony optimization. Kybernetes 46:656–671

42. Liu Y, Lei H, Zhang D, Wu Z (2018) Robust optimization for relief logistics planning under uncertainties in demand and transportation time. Appl Math Model 55:262–280

43. Maharjan R, Hanaoka S, (2018) “A multi-actor multi-objective optimization approach for locating temporary logistics hubs during disaster response”. J Human Logistics Supply Chain Manag 8(1):2–21

44. Moayedikia A (2018) Multi-objective community detection algorithm with node importance analysis in attributed networks. Appl Soft Comput 67:434–451

45. Nedjati A, Izbirak G, Arkat J (2017) Bi-objective covering tour location routing problem with replenishment at intermediate depots: formulation and meta-heuristics. Comput Ind Eng 110:191–206

46. Nikoo N, Babaei M, Mohaymany AS (2018) Emergency transportation network design problem: identification and evaluation of disaster response routes. International journal of disaster risk reduction 27:7–20

47. Noham R, Tzur M (2018) Designing humanitarian supply chains by incorporating actual post-disaster decisions. Eur J Oper Res 265(3):1064–1077

48. Oksuz MK, Satoglu SI (2020) A two-stage stochastic model for location planning of temporary medical centers for disaster response. International Journal of Disaster Risk Reduction 44:101426

49. Özdamar L, Ertém MA (2015) Models, solutions and enabling technologies in humanitarian logistics. Eur J Oper Res 244(1):55–65

50. Rahimi M, Baboli A, Rekik Y (2017) Multi-objective inventory routing problem: a stochastic model to consider profit, service level and green criteria. Transportation Research Part E: Logistics and Transportation Review 101:59–83

51. Ransikarbum K, Mason SJ (2016) Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration. Int J Prod Econ 182:324–341

52. Ransikarbum K, Mason SJ (2016) Goal programming-based post-disaster decision making for integrated relief distribution and early-stage network restoration. Int J Prod Econ 182:324–341

53. Shahabi A, Raissi S, Khalili-Damghani K, Rafiei M (2021) Designing a resilient skip-stop schedule in rapid rail transit using...
a simulation-based optimization methodology. Oper Res 21(3): 1691–1721

54. Shirazi H, Kia R, Ghasemi P (2021) A stochastic bi-objective simulation-optimization model for plasma supply chain in case of COVID-19 outbreak. Appl Soft Comput 112:107725

55. Tavana M, Abtahi AR, Di Caprio D, Hashemi R, Yousefi-Zenouz R (2018) An integrated location-inventory-routing humanitarian supply chain network with pre-and post-disaster management considerations. Socio Econ Plan Sci 64:21–37

56. Tirkolaee EB, Aydın NS, Ranjbar-Bourani M, Weber GW (2020) A robust bi-objective mathematical model for disaster rescue units allocation and scheduling with learning effect. Comput Ind Eng 149:106790

57. Tirkolaee EB, Goli A, Ghasemi P, Goodarzian F (2022) Designing a sustainable closed-loop supply chain network of face masks during the COVID-19 pandemic: Pareto-based algorithms. J Clean Prod 333:130056

58. Tili T, Abidi S, Krichen S (2018) A mathematical model for efficient emergency transportation in a disaster situation. Am J Emerg Med 36(9):1585–1590

59. Vahdani B, Veysmoradi D, Noori F, Mansour F (2018) Two-stage multi-objective location-routing-inventory model for humanitarian logistics network design under uncertainty. International journal of disaster risk reduction 27:290–306

60. Zhan SL, Liu S, Ignatius J, Chen D, Chan FT (2021) Disaster relief logistics under demand-supply incongruence environment: a sequential approach. Appl Math Model 89:592–609

61. Zitzler E, Thiele L (1998) September. Multi-objective optimization using evolutionary algorithms—a comparative case study. In International conference on parallel problem solving from nature (pp. 292–301). Springer, Berlin, Heidelberg

62. Zitzler E (1999) Evolutionary algorithms for multi-objective optimization: methods and applications, vol 63. Shaker, Ithaca

63. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-report 2(1):103

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peiman Ghasemi is a lecturer of Logistics, Tourism and Service Management department at German University of Technology in Oman (GUtech), Muscat, Oman. He holds MSc and PhD in Industrial Engineering at the Islamic Azad University, South-Tehran Branch in Iran. His research interests include soft computing, fuzzy sets and systems, meta-heuristic methods, data envelopment analysis, and applied operations research. He has published more than 100 papers in high quality peer reviewed international journals and conferences.