An elliptic curve analogue of Pillai’s lower bound on primitive roots

Steven Jin and Lawrence C. Washington

Abstract. Let \(E/\mathbb{Q} \) be an elliptic curve. For a prime \(p \) of good reduction, let \(A(p) \) be the smallest non-negative integer that gives the \(G \)-coordinate of a point of maximal order in the group \(E(\mathbb{F}_p) \). We prove unconditionally that \(A(p) > 0.72 \log \log p \) for infinitely many \(p \), and \(A(p) > 0.36 \log p \) under the assumption of the Generalized Riemann Hypothesis. These can be viewed as elliptic curve analogues of classical lower bounds on the least primitive root of a prime.

1 Introduction

Let \(E/\mathbb{F}_p \) be an elliptic curve. Recall that there exist unique positive integers \(L, M \) such that

\[
E(\mathbb{F}_p) \cong \mathbb{Z}/L\mathbb{Z} \times \mathbb{Z}/M\mathbb{Z}
\]

and \(L \mid M \). Here \(M \) is the maximal order of a point of \(E(\mathbb{F}_p) \). In order to find a point on \(E/\mathbb{F}_p \) of maximal order, a natural strategy is to compute the orders of points with \(x \)-coordinates \(0, 1, 2, \ldots \) and continue until the desired point is found. In practice, this works fairly well. A natural question is how long this process takes in the worst case.

Along these lines, fix an elliptic curve \(E/\mathbb{Q} \) and let \(p \) be a prime of good reduction. Let \(r(E, p) \) denote the minimal \(x \)-coordinate of a point of maximal order in the reduction \(E/\mathbb{F}_p \). The goal of this note is to prove the following two lower bounds on \(r(E, p) \).

Theorem 1.1 Let \(E/\mathbb{Q} \) be an elliptic curve. There are infinitely many primes \(p \) such that

\[
r(E, p) > 0.72 \log \log p.
\]

Theorem 1.2 Let \(E/\mathbb{Q} \) be an elliptic curve. Under GRH, there are infinitely many primes \(p \) such that

\[
r(E, p) > 0.36 \log p.
\]

These results can be viewed as elliptic curve analogues of lower bounds on the least primitive root \(r(p) \) of a prime \(p \). Pillai [14] proved that there is a positive constant \(C \) such that \(r(p) > C \log \log p \) for infinitely many \(p \). Using Linnik’s theorem in Pillai’s proof, Fridlender [6] and Salié [15] improved the result to the following. We include a proof since it inspired the result of the present paper.

2020 Mathematics Subject Classification: 11G20, 14H52.
Keywords: elliptic curves, finite fields.
Theorem 1.3 ([6], [15]) There exists a positive constant C such that $r(p) > C \log p$ for infinitely many p.

Proof Linnik’s theorem says that there exist constants c and L such that every arithmetic progression $a + bn$ with $\gcd(a, b) = 1$ contains a prime $p < c \cdot b^L$. For $x > 0$ large, let $k = \prod \ell$, where the product is taken over all primes $\ell \leq x$. By Linnik’s theorem, there exists a prime $p = 1 \mod 4k$ with $p < c \cdot (4k)^L$. It follows from quadratic reciprocity that every positive prime divisor of k is a quadratic residue for such a prime p. This implies that all positive integers $n \leq x$ are quadratic residues for p and therefore cannot be primitive roots mod p. By the prime number theorem, $\log k \sim x$. Therefore, $r(p) > x \sim \log k > C \log p$

for some constant C that is independent of x. ■

The bound $\log p$ above has been improved to $\log p \log \log p$ by Graham-Ringrose [7] unconditionally and to $\log p \log \log \log p$ by Montgomery [11] under GRH.

For an elliptic curve $E : y^2 = f(x) = x^3 + Ax + B$ with $A, B \in \mathbb{Z}$, we follow a similar approach in the search for a prime p for which $r(E, p)$ is large. First, we force $E(\mathbb{F}_p)$ to have even order by requiring $f(x)$ to factor into linear factors mod p. Next, let N be a large integer. We force all points (x, y) with $0 \leq x \leq N$ to be doubles of other points in $E(\mathbb{F}_p)$. Since $E(F_p)$ has even order, these points cannot have maximal order. Finally, we use an explicit version of the Chebotarev Density Theorem to give an upper bound for p in terms of N, which can be transformed into the desired lower bound for N in terms of p.

It is reasonable to ask what can be said in terms of an upper bound. In the classical setting, bounding $r(p)$ from above is a well-studied problem (see, for instance, [19], [8], [4], and [5]; see [3] for computational issues). The best known bound along these lines is the Burgess bound [2], which states that $r(p) \ll p^{1/4}$. Under GRH, a result of Shoup [16] yields the stronger statement $r(p) \ll \log^6 p$.

Igor Shparlinski has pointed out to us that in the elliptic curve case, one can obtain $r(E, p) = O(p^{1/4 + \epsilon})$ via results from [10]. This is done by using the analogue of the last section of [2] and the technique of Theorem 2 of [10], combined with the estimate of Theorem 1 of [10] for characters supported on $\mathbb{Z}/M\mathbb{Z}$. Computations suggest that the true order of $r(E, p)$ is smaller and that Theorem 1.2 is almost sharp, perhaps missing by no more than a power of $\log \log p$. See Section 3.

2 The Proofs

Proof of Theorems 1.1 and 1.2. Fix $N > 0$. Let E/\mathbb{Q} be an elliptic curve over \mathbb{Q} given by Weierstrass equation

$$y^2 = f(x) = x^3 + Ax + B,$$

where $A, B \in \mathbb{Z}$. We are going to construct a suitable polynomial by constructing several factors and multiplying them together.
Lemma 2.1 Let L/K be an extension of number fields with ring of integers O_L and O_K, respectively. The different $\mathcal{D}_{L/K}$ of L/K is the ideal generated by $\{g'(\alpha)\}$, where α runs through elements of O_L such that $L = K(\alpha)$ and g runs through monic polynomials in $O_K[x]$ satisfying $g(\alpha) = 0$.

Proof See for instance [13, Proposition III.3]. Note that the usual statement of this result requires g to be the minimal polynomial of α. However, if $m(\alpha)$ is the minimal polynomial for α, then $g(x) = m(\alpha)h(x)$ for some $h(x) \in O_K[x]$ and $g'(\alpha) = m'(\alpha)h(\alpha)$, which is in the ideal generated by $m'(\alpha)$. Therefore, including polynomials g that are potentially reducible does not affect the ideal $\mathcal{D}_{L/K}$.

Henceforth, all mentions of discriminants are understood to refer to discriminants over \mathbb{Q}. The following result is probably well-known but we could not find a good reference so we include a proof.
Lemma 2.2 Suppose K/Q is a field extension given as $K = K_1 \cdots K_n$. Then

$$|\text{disc}(K)| \leq \prod_{i=1}^{n} |\text{disc}(K_i)|[K:K_i].$$

Proof (cf. [18]) Consider the tower of fields $Q \subseteq K_1 \subseteq K_1K_2 \subseteq \cdots \subseteq K = K_1K_2 \cdots K_n$. The different of $(K_1K_2 \cdots K_i)/(K_1K_2 \cdots K_{i-1})$ divides the different \mathcal{D}_i of K_i/Q, by Lemma 2.1. Since differents multiply in towers, the different of K/Q divides $\mathcal{D}_1 \mathcal{D}_2 \cdots \mathcal{D}_n$. Taking the norm from K to Q yields the result. ■

Lemma 2.3 Let $f \in \mathbb{Z}[x]$ be a monic polynomial with no repeated roots and let F be the splitting field of f. Let $d = [F : Q]$. Then $\text{disc}(F)^2$ divides $\text{disc}(f)^d$.

Proof Let $f(x) = \prod_{i=1}^{n} (x - \beta_i)$. For $i > 0$, let $K_i = \mathbb{Q}(\beta_1, \beta_2, \ldots, \beta_i)$. Let $f_i(x) = \prod_{j=i+1}^{n} (x - \beta_j)$. Since $K_{i+1} = K_i(\beta_{i+1})$ and $f_i(\beta_{i+1}) = 0$, the different $\mathcal{D}_{K_{i+1}/K_i}$ divides $f'(\beta_{i+1}) = \prod_{j=i+2}^{n} (\beta_{i+1} - \beta_j)$ by Lemma 2.1. Since differents multiply in towers, we have that $\mathcal{D}_{F/Q}$ divides the ideal generated by

$$\prod_{i=0}^{n-2} \prod_{j=i+2}^{n} (\beta_{i+1} - \beta_j) = \prod_{i<j} (\beta_i - \beta_j) = \text{disc}(f)^{1/2}.$$

Squaring and taking norms, we obtain the result. ■

By Lemma 2.3, the discriminant of splitting field K_f of $f(z)$ divides $(4A^3 + 27B^2)^3$. The discriminant of the splitting field K_g of $g(z)$ divides $4 \prod_{i=1}^{m} p_i$. A computation shows that the discriminant of $\xi_j(z)$ is

$$2^{12}(-4A^3 - 27B^2)f(j)^2.$$

Therefore, the discriminant of the splitting field K_j of $\xi_j(z)$ divides $2^{144}(-4A^3 - 27B^2)^{12}f(j)^{24}$.

Lemma 2.4 Let $y^2 = x^3 + Ax + B$ define an elliptic curve over a field L of characteristic not 2 and assume $E(L)$ contains $E[2]$. Let $f \in L$ and let \tilde{L} be the splitting field of $E[2]$. Then $[\tilde{L} : L]$ divides 4.

Proof Let $y' = \sqrt[3]{3 + A}j + B$ and $L' = L(y')$. Then $(j, y') \in E(L')$. Let $(a, b) \in E(L)$ satisfy $2(a, b) = (j, y')$ and let $L'(a, b)$ be the field generated by a and b. Since $E[2] \subseteq E(L')$, all four solutions of $2(a, b) = (j, y')$ have coordinates in $L'(a, b)$, and $\text{Gal}(L'(a, b)/L')$ is isomorphic to a subgroup of $E[2]$. Since $L'(a, b)$ contains the splitting field of $\xi_j(z)$, we conclude that the splitting field has degree over L dividing 8.
Note that $-A^3 - 27B^2$ is a square in L, and therefore the discriminant of $\xi_j(z)$ is a square in L. It follows that the Galois group of $\xi_j(x)$ is a subgroup of A_4, hence has degree dividing 12. Since the degree also divides 8, the degree divides 4.

The splitting field F of $T(z)$ is $K_f K_g K_0 K_1 \cdots K_N$. Therefore,

$$[F : \mathbb{Q}] \leq 6 \cdot 2 \cdot 4^{N+1}.$$

If $K_j = \mathbb{Q}$ for some j, then we can omit that field from our calculations. Therefore, when we apply Lemma 2.2 to the present situation, we can bound the remaining exponents $[F : K_i]$ by $[F : \mathbb{Q}] / 2$ and obtain

$$|\text{disc}(F)| \leq \left(C_E \prod_{0 \leq j \leq N} C'_E |f(j)|^{24} \right)^{6 \cdot 4^{N+1}} \leq \left((C''_E N)^{72(N+1)} \right)^{6 \cdot 4^{N+1}} = (C''_E N)^{432(N+1)4^{N+1}},$$

where $C_E, C'_E,$ and C''_E are constants depending only on the elliptic curve E and where we have bounded $f(j)$ by a constant times N^3.

We now can estimate the smallest prime p that splits completely in F/\mathbb{Q}. A theorem of Ahn and Kwon [1] states that $p < |\text{disc}(F)|^{12577}$. Therefore,

$$\log \log p < \log 12577 + \log \log |\text{disc}(F)| \leq \log 12577 + \log \left(432(N + 1)4^{N+1} \right) + \log \log C''_E N = N \log 4 + o(N) < N / 0.72$$

when N is sufficiently large. But $r(E, p) > N$ for this p, so the proof of Theorem 1.1 is complete.

Assuming the Generalized Riemann Hypothesis for the Dedekind zeta function of F, Lagarias and Odlyzko [12] show that there exists $p < C_0 (\log(|\text{disc}(F)|))^2$ for some $C_0 > 0$. Therefore,

$$\log p < \log C_0 + 2 \log \log |\text{disc}(F)| \leq 2 \log(4)N + o(N) < N / 0.36$$

when N is sufficiently large. Therefore, $r(E, p) > N > 0.36 \log p$ for this p. This completes the proof of Theorem 1.2.

Remark. As the proof indicates, the constants 0.72 and 0.36 can be replaced by any $k_1 < 1 / \log 4$ and $k_2 < 1 / \log 16$, respectively. The constant 12577 in the bound of Ahn and Kwon is also not crucial; the existence of such a constant is enough for our purposes. A recent preprint of Kadiri and Wong [9] improves the constant to 310.
3 Numerical Results

For each of the elliptic curves in this section, we computed $r(E, p)$ as p ran through primes of good reduction less than 3×10^6. If a value was larger than $r(E, q)$ for all $q < p$, we recorded p and $r(E, p)$. The results are given in Tables 1 – 7. We omit the data for primes $p < 100$ since they are too small to consider in the asymptotic behavior. The calculations were done in Sage [17].

The third and fourth columns of each table compare $r(E, p)$ to $\log p \log \log p$ and $\log p (\log \log p)^2$. It is well known that $\log \log p$ grows so slowly that it is often not easy to recognize what power is appropriate. In the present case, the ratio of $\log \log(2 \times 10^6)$ to $\log \log 200$ is 1.6, and this is representative of the range of primes in our data. So the numbers in the third and fourth columns sometimes exhibit a definite increase or decrease when the power of $\log \log p$ is modified. But other times, it is not readily apparent which power is appropriate. For each column, we computed the slope of the least-squares line through the data points and listed the result in the last line of the table. For example, for the fourth column of Table 1, we used the points $(1, 1.49), (2, 0.94), (3, 1.10), \ldots, (14, 1.38)$. The least-squares line has slope .018. In three of the tables, the absolute value of the slope is smaller in the third column and in the other four tables the absolute value of the slope is smaller in the second column. We do not have an explanation for the potential variation of exponents. It seems reasonable to guess that an upper bound of the form $r(E, p) \leq C \log p (\log \log p)^\alpha$ is possible. In other words, the estimate of Theorem 2 is probably sharp, except for powers of $\log \log p$ and smaller contributions. As mentioned in the Introduction, Montgomery [11] showed under GRH that the smallest quadratic non-residue is $\Omega(\log p \log \log p)$. The numerical results for elliptic curves indicate that a similar result is possible for elliptic curves. (Of course the estimate of Theorem 1 is probably not close to sharp, unless GRH is false.)

The first four curves have complex multiplication by $\mathbb{Z}[i], \mathbb{Z}[j], \mathbb{Z}[(1 + \sqrt{-3})/2], \mathbb{Z}[(1 + \sqrt{-7})]/2$, respectively. All of the p that occur are supersingular primes for their respective curves with the exception of $p = 13007$ in Table 4. For these supersingular primes, the group $E(\mathbb{F}_p)$ has order $p + 1$ and is either cyclic or cyclic times a group of order 2. This can be seen as follows. The Frobenius map is given by $\sqrt{-p}$ in the endomorphism ring. If the full n-torsion is contained in $E(\mathbb{F}_p)$, then the Frobenius endomorphism must be congruent to 1 mod n. But $(\sqrt{-p} - 1)/n$ is not integral when $n > 2$. It follows that $E(\mathbb{F}_p)$ is either $\mathbb{Z}/(p + 1)/\mathbb{Z}$, or $\mathbb{Z}/(p + 1)/\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. The latter is always the case for the curve $y^2 = x^3 - x$. However, for the other three curves, only one point of order 2 is in $E(\mathbb{F}_p)$, so the group is cyclic. A cyclic group sometimes has fewer elements of maximal order than a non-cyclic abelian group of the same order. However, it is not clear why almost every example is a supersingular prime.

The curves in the last three tables do not have complex multiplication (the last curve is the Weierstrass form for $X_0(11)$). The values of $r(E, p)$ are somewhat smaller than those for the curves with complex multiplication. Perhaps this reflects the fact that supersingular primes are less frequent, but a good explanation is yet to be found.

The curves in Tables 2 and 7 have non-cyclic 2-torsion over \mathbb{Q}, hence mod each of the primes p considered. This phenomenon seems to cause larger values of $r(E, p)$.

An interesting situation occurs in Tables 1 and 2, where the prime 537599 is in both tables. Note that in Table 1, the group $E(\mathbb{F}_p)$ is cyclic of order 537600 = $2^{10} \cdot 3 \cdot 5^2 \cdot 7$, ...
which is a very smooth number. This lowers the probability that a randomly chosen element is a generator. In fact, $\phi(537600)/537600 = 8/35$. The group for the curve in Table 2 is the product of a cyclic group of order $2^9 \cdot 3 \cdot 5^2 \cdot 7$ times a group of order 2. The probability is again $8/35$ that a randomly chosen element of the group has maximal order. These probabilities are low, but it still seems to be a lucky coincidence that this p occurs in both tables. The smoothness of the group order is probably not the deciding factor. There are several smooth numbers close to each of the primes in our table. For example, the Mersenne prime $2^{19} - 1 = 524287$ yields $r(E, p) = 3$ for $y^2 = x^3 + x$ and $r(E, p) = 4$ for $y^2 = x^3 - x$, and both curves have 2^{19} points. The more relevant property might be the existence of several small prime factors of $n = p + 1$ (in the supersingular case for the present curves) since this makes $\phi(n)/n$ small. But this does not guarantee that $r(E, p)$ is large. An example is $p = 570569$, where $p + 1 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 19$. But $r(E, p) = 6$ for both $y^2 = x^3 + x$ and $y^2 = x^3 - x$. It would be interesting to find a good explanation, if one exists, for the double occurrence of 537599.

Table 1: $y^2 = x^3 + x$

p	$r(E, p)$	$r(E, p)/\log p \log \log p$	$r(E, p)/\log p (\log \log p)^2$
179	21	2.46	1.49
719	22	1.78	0.94
743	26	2.08	1.10
1559	31	2.11	1.06
1931	47	3.07	1.52
5039	51	2.79	1.30
9239	58	2.87	1.30
23399	62	2.67	1.16
23663	79	3.40	1.47
52919	109	4.20	1.76
407879	114	3.45	1.35
537599	116	3.41	1.32
2599559	139	3.49	1.30
2611391	148	3.72	1.38
slope		.140	.018
Table 2: $y^2 = x^3 - x$

p	$r(E, p)$	$(r(E, p)/\log p \log \log p)$	$(r(E, p)/(\log p \log \log p)^2)$
191	20	2.30	1.38
311	22	2.19	1.26
431	27	2.47	1.37
479	37	3.29	1.81
1319	38	2.68	1.36
2351	40	2.51	1.23
3119	60	3.58	1.72
5711	61	3.27	1.51
7559	67	3.43	1.57
13679	84	3.91	1.74
26759	86	3.63	1.56
49871	102	3.96	1.66
115079	123	4.30	1.75
327599	130	4.03	1.58
340031	133	4.10	1.61
504479	157	4.64	1.80
537599	192	5.64	2.19
slope		0.169	0.033

Table 3: $y^2 = x^3 + 1$

p	$r(E, p)$	$(r(E, p)/\log p \log \log p)$	$(r(E, p)/(\log p \log \log p)^2)$
101	28	3.97	2.59
479	40	3.56	1.96
569	45	3.84	2.08
1319	46	3.25	1.65
2999	67	4.02	1.93
38639	105	4.22	1.79
149519	112	3.79	1.53
403079	114	3.45	1.35
1385039	116	3.10	1.17
2837519	144	3.59	1.33
slope		-.041	-.127
An elliptic curve analogue of Pillai's bound

Table 4: \(y^2 = x^3 - 385875x - 113447250 \)

\(p \)	\(r(E, p) \)	\(r(E, p) / \log p \)	\(\log \log p \)	\(r(E, p) / \log p (\log \log p)^2 \)
167	13	1.56		0.95
241	25	2.68		1.57
593	27	2.28		1.23
2063	31	2.00		0.98
3527	38	2.22		1.05
9203	40	1.98		0.90
13007	42	1.97		0.88
13859	59	2.74		1.22
174569	70	2.33		0.93
2798459	78	1.95		0.72
slope		0.018		0.043

Table 5: \(y^2 = x^3 + x + 1 \)

\(p \)	\(r(E, p) \)	\(r(E, p) / \log p \)	\(\log \log p \)	\(r(E, p) / \log p (\log \log p)^2 \)
197	8	0.91		0.55
283	13	1.33		0.77
613	17	1.42		0.77
647	18	1.49		0.80
811	19	1.49		0.78
1187	29	2.09		1.07
21023	31	1.36		0.59
29669	32	1.33		0.57
60317	42	1.59		0.66
76421	48	1.76		0.73
114269	51	1.78		0.73
250993	60	1.91		0.76
2800267	64	1.60		0.59
slope		0.048		−0.005
Table 6: \(y^2 = x^3 - 13392x - 1080432 \)

\(p \)	\(r(E, p) \)	\(r(E, p) / \log p \log \log p \)	\(r(E, p) / \log p (\log \log p)^2 \)
107	18	2.50	1.62
227	25	2.73	1.61
461	28	2.52	1.39
997	30	2.15	1.16
3613	37	2.15	1.02
20173	49	2.16	0.94
77813	51	1.87	0.77
93419	64	2.29	0.94
508213	81	2.39	0.93
2311823	96	2.44	0.91
slope	-0.030	-0.089	

Table 7: \(y^2 = x^3 - 7x + 6 \)

\(p \)	\(r(E, p) \)	\(r(E, p) / \log p \log \log p \)	\(r(E, p) / \log p (\log \log p)^2 \)
101	28	3.97	2.59
1297	30	2.12	1.08
1511	34	2.33	1.17
1873	56	3.68	1.82
12119	68	3.23	1.44
12239	71	3.36	1.50
41039	74	2.95	1.25
47351	75	2.93	1.23
64679	91	3.42	1.42
178559	110	3.65	1.46
393121	142	4.31	1.69
1161599	169	4.59	1.74
2671679	194	4.87	1.81
slope	.140	-0.004	
References

[1] J.-H. Ahn and S.-H. Kwon, An explicit upper bound for the least prime ideal in the Chebotarev density theorem, *Annales de l'Institut Fourier*, 69(3): 1411–1458, 2019.
[2] D. A. Burgess, On character sums and primitive roots, *Proc. London Math. Soc. (3)*, 12: 179–192, 1962.
[3] J. Dubrois and J.-G. Dumas, Efficient polynomial time algorithms computing industrial-strength primitive roots, *Inform. Process. Lett.*, 97(2): 41–45, 2006.
[4] P. Erdős, Least primitive root of a prime, *Bull. Amer. Math. Soc.*, 55: 131–132, 1945.
[5] P. Erdős and H. N. Shapiro, Pacific J. Math., 7(1): 861–865, 1957.
[6] V. R. Fridlender, *Proc. USSR Acad. Sci.*, 66: 351–352, 1949.
[7] S. W. Graham, C. J. Ringrose, Lower bounds for least quadratic non-residues. In *Analytic Number Theory (Allerton Park, IL, 1989)*, Progr. Math., 85, Birkhauser, Boston, MA, 269–309, 1990.
[8] L. K. Hua, On the least primitive root of a prime, *Bull. Amer. Math. Soc.*, 48: 726–730, 1942.
[9] H. Kadiri and P. Wong, Primes in the Chebotarev density theorem for all number fields (with an appendix by Andrew Fiori), arxiv.org/pdf/2105.14181.pdf
[10] D. R. Kohel and I. E. Shparlinski, On Exponential Sums and Group Generators for Elliptic Curves over Finite Fields. In *Algorithmic Number Theory*. Lecture Notes in Computer Science, vol 1838. Springer, Berlin, Heidelberg, 2000.
[11] H. L. Montgomery, *Topics in Multiplicative Number Theory*, Lecture Notes in Math. 227, Springer-Verlag, New York, 1971.
[12] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem. In *Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975)*, 409–464. Academic Press, London, 1977.
[13] S. Lang, *Algebraic number theory*, Graduate Texts in Math, 110, Springer-Verlag, New York, 1986.
[14] S. Pillai, On the smallest primitive root of a prime, *J. Indian Math. Soc.*, 8: 14–17, 1944.
[15] H. Salié, Über den kleinsten positiven quadratischen Nichtrest nach einer Primzahl, *Math. Nachr.*, 3: 7–8, 1949.
[16] V. Shoup, Searching for primitive roots in prime fields, *Math. Comp.*, 58: 369–380, 1992.
[17] W. A. Stein et al., *Sage Mathematics Software (Online version: April 2021)* The Sage Development Team, https://sagecell.sagemath.org.
[18] H. Toyama, A note on the different of the composed field, *Kodai Math. Sem. Rep.*, 7(2): 43–44, 1955.
[19] I. M. Vinogradov, On the least primitive root of a prime, *Dokl. Akad. Nauk, S.S.S.R.*, 7–11, 1930.

Department of Mathematics, University of Maryland, College Park MD 20742, USA.

E-mail: sjin6816@umd.edu, lcw@umd.edu.