Purinergic signalling: from discovery to current developments

Geoffrey Burnstock1,2

1Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK
2Department of Pharmacology, The University of Melbourne, Australia

New Findings

- What is the topic of this review?
 This is a personal historical review about the discovery and the main conceptual advances leading to our current understanding of purinergic signalling. The contributions of leading figures in the field are acknowledged. It includes the discovery of purinergic neuromuscular and synaptic transmission, cotransmission, the identification of P1 (adenosine), P2X nucleotide ion channel and P2Y nucleotide G protein-coupled receptors, the identity of ectonucleotidases and release of ATP from cells by mechanical stimulation and mechanosensory transduction.

- What advances does it highlight?
 It highlights the pathophysiology of purinergic signalling and recent therapeutic developments.

This lecture is about the history of the purinergic signalling concept. It begins with reference to the paper by Paton & Vane published in 1963, which identified non-cholinergic relaxation in response to vagal nerve stimulation in several species, although they suggested that it might be due to sympathetic adrenergic nerves in the vagal nerve trunk. Using the sucrose gap technique for simultaneous mechanical and electrical recordings in smooth muscle (developed while in Feldberg’s department in the National Institute for Medical Research) of the guinea-pig taenia coli preparation (learned when working in Edith Büllbring’s smooth muscle laboratory in Oxford Pharmacology), we showed that the hyperpolarizations recorded in the presence of antagonists to the classical autonomic neurotransmitters, acetylcholine and noradrenaline, were inhibitory junction potentials in response to non-adrenergic, non-cholinergic neurotransmission, mediated by intrinsic enteric nerves controlled by vagal and sacral parasympathetic nerves. We then showed that ATP satisfied the criteria needed to identify a neurotransmitter released by these nerves. Subsequently, it was shown that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. The receptors for purines and pyrimidines were cloned and characterized in the early 1990s, and immunostaining showed that most non-neuronal cells as well as nerve cells expressed these receptors. The physiology and pathophysiology of purinergic signalling is discussed.

(Received 14 August 2013; accepted after revision 16 September 2013; first published online 27 September 2013)

Corresponding author
G. Burnstock: University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK and Department of Pharmacology, The University of Melbourne, Australia. Email: g.burnstock@ucl.ac.uk

The 2013 Paton Prize Lecture was given on 25 July 2013 at IUPS 2013 in Birmingham, UK.

© 2013 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Non-adrenergic, non-cholinergic (NANC) transmission

I completed my PhD, supervised by J. Z. Young, about fish gut motility. It involved simple techniques of organ bath pharmacology and histology, and I needed to learn more sophisticated techniques. Wilhelm Feldberg kindly invited me to join his Department of Physiology at the Medical Research Institute, Mill Hill, to learn electrophysiology in 1957. Together with Ralph Straub, we developed the sucrose gap technique to record correlated changes in electrical and mechanical activity of smooth muscle (Burnstock & Straub, 1958). When Edith Bülbring heard about our results, she invited me to join her smooth muscle group in the Department of Pharmacology, Oxford University, where they had been finding microelectrode recording from spontaneously active smooth muscle cells difficult. There I studied the effect of the classical neurotransmitters, acetylcholine and noradrenaline (NA), on the guinea-pig taenia coli preparation, which was the experimental model of an innervated smooth muscle preparation favoured by her group (Burnstock, 1958a,b).

I was then appointed to be a Senior Lecturer in the Department of Zoology in Melbourne, Australia, after spending a year with Ladd Prosser at the University of Illinois on a Rockefeller Fellowship. I set up the sucrose gap apparatus and began a very enjoyable collaboration in the Department of Physiology with Mollie Holman, whom I had met in Oxford. One day, together with my first postgraduate student, Graham Campbell, and Max Bennett, a part-time electronic technician, we transmurally stimulated the taenia coli in the presence of atropine and after degeneration of sympathetic nerves with 6-hydroxydopamine. We expected to see direct stimulation of the smooth muscle, resulting in depolarization and contraction, but to our surprise the response was hyperpolarization in response to single pulses, and hyperpolarization and relaxation in response to a train of pulses (Fig. 1A). We felt that we were on to something important (see Burnstock, 2004), but the interpretation was debated internationally. At that time, in the early 1960s, I was fortunate in having a Japanese postdoctoral fellow working with me, whose friend in Japan was one of the authors of a paper about TTX

Figure 1. Changes in membrane potential and mechanical response recorded with a sucrose gap method
A, hyperpolarizations recorded in smooth muscle of the atropinized guinea-pig taenia coli in response to transmural stimulation of the intramural nerves remaining after degeneration of the adrenergic nerves by treatment of the animal with 6-hydroxydopamine (250 mg kg\(^{-1}\) i.p. for 2 successive days) 7 days previously. Upper trace shows responses to low-frequency stimulation (1 s\(^{-1}\)). Note the individual hyperpolarizations and rebound excitation (spike and contraction) following cessation of stimulation. Lower trace shows stimulation at higher frequencies, illustrating summed hyperpolarization and relaxation. [Reproduced from Burnstock (1972) with permission from the American Society for Pharmacology and Experimental Therapeutics.] B, transmural field stimulation (0.5 ms, 0.033 Hz, 8 V) of the taenia coli evoked transient hyperpolarizations in the presence of atropine (0.3 \(\mu\)M) and guanethidine (4 \(\mu\)M). Tetrodotoxin (TTX; 3 \(\mu\)M) added to the superfusing Krebs solution (applied at arrow) rapidly abolished the response to transmural field stimulation, establishing that the hyperpolarizations were inhibitory junction potentials in response to non-adrenergic, non-cholinergic (NANC) neurotransmission. [Reproduced from Burnstock (1986), reproduced with kind permission of Blackwell Publishing.]

Figure 2. Photographs of Albert Szent-Györgyi and Pamela Holton

© 2013 The Authors. *Experimental Physiology* published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Figure 3. Evidence that ATP satisfied the criteria for its establishment as a neurotransmitter in the guinea-pig taenia coli and urinary bladder

A, left-hand side shows responses of the guinea-pig taenia coli to NANC inhibitory nerve stimulation (NS; 1 Hz, 0.5 ms pulse duration, for 10 s at supramaximal voltage) mimicked by ATP (2×10^{-6} M). Atropine (1.5×10^{-7} M), guanethidine (5×10^{-6} M) and sodium nitrite (7.2×10^{-4} M) were present. [From Burnstock & Wong (1978), reproduced with kind permission of the Nature Publishing Group.]

A, right-hand side shows a comparison of the NANC contractile responses of the guinea-pig bladder strip to intramural nerve stimulation (NS; 5 Hz, 0.2 ms pulse duration and supramaximal voltage) mimicked by exogenous ATP (8.5μM). Atropine (1.4μM) and guanethidine (3.4μM) were present throughout. [From Burnstock et al. (1978), reproduced with kind permission of the Nature Publishing Group.]

B, effect of changing the calcium ion (Ca^{2+}) concentration on the release of ATP (measured with the firefly luciferin/luciferase technique) from the guinea-pig isolated bladder strip during stimulation of NANC nerves. Upper trace is a mechanical recording of changes in tension (in grams) during intramural nerve stimulation.

© 2013 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
extracted from the puffer fish. He sent us some TTX, which was known to block nerve conduction but not affect smooth muscle activity. It completely blocked the hyperpolarizations (Fig. 1B), so we realized that they were inhibitory junction potentials in response to NANC neurotransmission (Burnstock et al. 1964). Later, I worked together with Mike Rand, during a sabbatical visit to the School of Pharmacy in London, and we showed...

{stimulation (NS; 20 Hz, 0.2 ms pulse duration, supramaximal voltage for 20 s). Lower histograms show the concentration of ATP in consecutive 20 s fractions of the superfusate. The Ca\(^{2+}\) concentration in the superfusate varied as follows: 2.5 (normal Krebs; a) 0.5 (b), 0.25 (c) and 2.5 mM (d). The successive contractions were separated by 60 min intervals as indicated by the breaks in the mechanical trace. Atropine (1.4 \(\mu\)M) and guanethidine (3.4 \(\mu\)M) were present throughout. [From Burnstock et al. (1978), reproduced with kind permission of the Nature Publishing Group.] C, the effect of \(\alpha,\beta\)-methylene ATP \((\alpha,\beta\)-meATP\) receptor desensitization on the responses to nerve stimulation (↑), ATP (open triangles) and histamine (Hist). Atropine (1 \(\mu\)M) and guanethidine (3.4 \(\mu\)M) were present throughout. Top panel shows control responses. Bottom panel shows that \(\alpha,\beta\)-me ATP desensitization, reached by five successive applications (filled triangles) at approximately 4 min intervals, completely abolished nerve-mediated (↑) and ATP-induced responses (open triangles); However, histamine-induced contraction was only slightly reduced. [Reproduced from Kasakov & Burnstock (1983), with permission.]
that the NANC responses were mediated by intrinsic inhibitory neurones that were innervated by vagal and sacral parasympathetic nerves (Burnstock et al. 1966).

Purinergic transmission

The next question was whether we could identify the transmitter involved in NANC neurotransmission. We followed the advice of Sir John Eccles and Sir William Paton that several criteria need to be satisfied to identify a neurotransmitter, as follows: synthesis and storage in the nerve terminals; exogenous responses that mimic those to nerve stimulation; release during nerve stimulation by a Ca$^{2+}$-dependent mechanism; inactivation of the released transmitter by ectoenzymes or by an uptake mechanism; and identification of an antagonist that blocks both the response to nerve stimulation and the exogenously applied transmitter. Neuropeptides, monoamines and amino acids were explored, but none satisfied the criteria. However, I then read two papers, one by Drury & Szent-Györgyi (1929) that described extracellular actions of purines on the heart and blood vessels and a later paper by Pamela Holton (Holton, 1959) showing release of ATP during antidromic stimulation of sensory nerves supplying the rabbit ear artery (Fig. 2). David Satchell and I showed that ATP satisfied the criteria both for NANC

![Figure 5. Evidence for ATP as a cotransmitter with noradrenaline in sympathetic nerves supplying the guinea-pig vas deferens](image)

A, excitatory junction potentials (EJPs) in response to repetitive stimulation of sympathetic nerves (white dots) in the guinea-pig vas deferens. The upper trace records the tension, the lower trace the electrical activity of the muscle recorded extracellularly by the sucrose gap method. Note both summation and facilitation of successive junction potentials. At a critical depolarization threshold, an action potential is initiated, which results in contraction. [From Burnstock & Costa (1975), reproduced with permission of Chapman and Hall.]

B, the effect of α_β-methylene ATP (α_β-mATP) on EJPs recorded from the guinea-pig vas deferens (intracellular recording). The control responses to stimulation of the motor nerves at 0.5 Hz are shown on the left. After at least 10 min in the continuous presence of α_β-mATP, EJPs were recorded using the same stimulation parameters. The EJPs were abolished in the presence of α_β-mATP ($3 \times 10^{-6} M$). [Reproduced from Sneddon & Burnstock (1984), with permission of Elsevier.]

C, spritzed ATP, but not noradrenaline (NA), mimicked the EJP recorded in the vas deferens [Reproduced from Burnstock & Verkhratsky (2012), with permission of Springer.]

![Figure 6. Schematic diagram of sympathetic cotransmission](image)

Adenosine triphosphate released from small agranular vesicles and noradrenaline (NA) released from small granular vesicles (SGV) act on P2X and α_1-adrenoceptors on smooth muscle, respectively. ATP acting on inotropic P2X receptors evokes excitatory junction potentials (EJPs), increase in $[\text{Ca}^{2+}]_i$ and fast contraction, while occupation of metabotropic α_1-adrenoceptors leads to production of inositol trisphosphate (InsP$_3$), increase in $[\text{Ca}^{2+}]_i$ and slow contraction. Neuropeptide Y (NPY) stored in large granular vesicles (LGV) acts on release both as a prejunctional inhibitory modulator of ATP and NA release and as a postjunctional modulatory potentiator of the actions of ATP and NA. Nucleotidases are released from nerve varicosities, and are also present as ectonucleotidases to break ATP down to adenosine (ADO), which acts as a prejunctional modulator of ATP and NA via A_1 receptors. Noradrenaline is also a prejunctional modulator via α_2-adrenoceptors. [Modified from Burnstock (2009c), and reproduced with permission from Elsevier.]

© 2013 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
inhibitory neurotransmission in the gut and for NANC excitatory neurotransmission in the urinary bladder (Fig. 3; Burnstock et al. 1970). I invented the word ‘purinergic’, ATP being a purine nucleotide, in a review 2 years later, and launched the purinergic signalling hypothesis (Fig. 4; Burnstock, 1972).

This concept met with strong opposition during the following 20 years, perhaps because ATP was well established as an intracellular energy source and it seemed unlikely that such a ubiquitous molecule would also be involved in extracellular signalling. For example, when I left Australia for University College London in 1975, the Professor of Medicine referred to me at my farewell party as ‘the inventor of the purimagine hypothesis’. Also at workshops at international meetings, two or three opponents were each given 10 min to explain their opposition to purinergic signalling, while I had 10 min to defend it. Von Euler gave me some exceptionally good advice when a scientist at one of these meetings said, ‘I am going to devote my life to destroying the purinergic hypothesis’. Firstly, negative people vanish and secondly, if experiments are presented that are claimed to negate your hypothesis, be scrupulously objective in seeing if they fit your, or any other hypothesis.

Purinergic cotransmission

Von Euler’s advice was relevant when, on sabbatical leave at University of California, Los Angeles with Che Su and John Bevan, we discovered that ATP was released from sympathetic nerves as well as from NANC nerves supplying smooth muscle of the taenia coli (Su et al. 1971). I was initially disconcerted by this new finding, but when the sun rose in the morning, I wondered whether ATP was being released as a cotransmitter with NA. I published a controversial Commentary in Neuroscience entitled: ‘Do some nerve cells release more than one transmitter?’ (Burnstock, 1976) after my arrival at University College London that challenged what was known as Dale’s Principle (one nerve, one transmitter) formulated by Eccles (what Dale actually proposed was that the same transmitter was released from both central and peripheral terminals of primary sensory neurones). Mollie Holman and I recorded excitatory junction potentials in smooth muscle cells of the guinea-pig vas deferens in response to stimulation of sympathetic nerves in 1960 (Burnstock & Holman, 1960, 1961; Fig. 5A). We were surprised that the excitatory junction potentials were not abolished by adrenoceptor antagonists, given that NA was assumed to be the sole neurotransmitter in sympathetic nerves at that time. It was not until over 20 years later when Peter Sneddon joined my research group that we showed that αβ-methylene ATP, which desensitizes the nucleotide receptor (Kasakov & Burnstock, 1983), blocked the excitatory junction potentials (Sneddon & Burnstock, 1984; Fig. 5B,C). Thus, it was established that ATP was released as a cotransmitter with NA from sympathetic nerves (Fig. 6; Burnstock, 1990). The cotransmitter concept was also initially contested, but it is now well established that every nerve, in both the peripheral and
central nervous systems, uses ATP as a cotransmitter (Burnstock, 2012c; Table 1).

Purinergic receptors

Identification of the membrane receptors that respond to purine nucleotide and nucleoside messengers was the next conceptual step. In 1978, from hints in the literature and some simple experiments, I recognized that there were different receptor families for adenosine (called P1 receptors) and for ATP and ADP (called P2 receptors; Burnstock, 1978). The P1 receptors were antagonized by methylxanthines. Some of the earlier ambiguities in the literature were clarified. For example, while it was known early that there were ectoenzymes that rapidly degraded ATP to adenosine, it was unclear whether a response to ATP was mediated by P2 or by P1 receptors after breakdown to adenosine. This allowed us to update the original model of purinergic neurotransmission, where P2 receptors were the postjunctional receptors, while prejunctional P1 purinoceptors mediated autoregulatory negative feedback of transmitter release. In a Loewi-inspired experiment carried out in 1966, we showed that ATP mimicked the release of transmitter in the upper taenia coli preparation, while adenosine mimicked the response of the lower preparation to the perfusate after breakdown of ATP by ectoenzymes (Burnstock et al. 2010). The P2 receptors were subdivided into P2X and P2Y families based on pharmacology in 1985 (Burnstock & Kennedy, 1985).

However, the turning point for widespread acceptance of purinergic signalling came in the early 1990s when the receptors to purines and pyrimidines were cloned and characterized. Four P1 receptor subtypes were identified, i.e. A1, A2A, A2B, and A3 (see Daly, 1985; Fredholm et al. 2001). In 1993, together with my old friend Eric Barnard, an expert in the cloning of nicotinic receptors, we cloned the first ATP receptor, which was a G protein-coupled receptor that we named P2Y1 (Webb et al. 1993). At about the same time, David Julius and his colleagues in San Francisco cloned a P2Y2 receptor (Lustig et al. 1993). The following year, the first two P2X ion channel receptors were cloned and characterized (Brake et al. 1994; Valera et al. 1994). These P2 receptors were later divided formally into P2X ionotropic and P2Y metabotropic receptor families (Abbracchio & Burnstock, 1994). This is compared with receptors to other neurotransmitters in Table 2. The G protein-coupled P1 and P2Y receptors typically had seven transmembrane domains and extracellular and intracellular C-terminals. However, the P2X ion channel was different from the other neurotransmitter ion channel receptors, with two transmembrane domains and inner N- and C-terminals (North, 1996; Fig. 7). Some of the scientists making important contributions to our knowledge of P1, P2X and P2Y receptors are shown in Figs S1, S2 and S3, respectively. Seven subtypes of the P2X receptor and eight subtypes of the P2Y receptor have been cloned and characterized and some receptor subtype-selective agonists and antagonists identified (see Tables 3 and 4). Three P2X receptor units form the cation pore, as either a homomultimer or a heteromultimer (Nicke

![Figure 7. Structure of P2X receptors with respect to that of other channels](image-url)
et al. 1998; North, 2002; Burnstock, 2007a). An important conceptual advance was made when the crystal structure of the P2X4 receptor was presented (Kawate et al. 2009; Fig. 8).

The initial focus was about purinergic signalling in excitable tissues, but with employment of immunohistochemistry, it became clear that most non-neuronal cells in the body express multiple purinoceptor subtypes (Table 5). Some of the scientists involved in these discoveries are shown in Fig. S4. This raises questions about the different roles of subtypes and their interactions.
Table 4. Characteristics of P2Y receptors

Receptor	Main distribution	Agonists	Antagonists	Transduction mechanisms
P2Y₁	Epithelial and endothelial cells, platelets, immune cells, osteoclasts, brain	MRS2365, ADP, UTP	AR-C67085, ADP/S	G_i protein-mediated PLC inhibition
P2Y₂	Immune cells, epithelial and endothelial cells, kidney tubules, osteoblasts	MeSADP = Ap_i(8-B)	AR-C126313, suramin	PLC inhibition
P2Y₄	Endothelial cells, placenta, spleen, thymus	2-amido-DUTP = UTP₅S	ATP (human)	PLC activation
P2Y₆	Airway and intestinal epithelial cells, placenta, T cells, thymus, microglia (activated)	UTP = ATP	ATP	PLC activation

Modified and updated from Burnstock (2003), with permission.

Abbreviations: A3PSP, adenosine-3′-5′-bisphosphate; ADP, adenosine 5′-diphosphate; ADP/S, adenosine-5′- (β-thio)-diphosphate; 5′-AMPS, 5′-O-thiophosphorothioic acid; Ap_i, adenosine 5′-triphosphate; ATP, adenosine 5′-triphosphate; 2MeSATP, adenosine 5′-(βγδ)triphosphate; NAD, NADP; ADP, ADP/5′-diphosphate; ADP_S, adenosine 5′-diphosphate; G_i and possibly G_S, PLC-β activation; NaADP, sodium ADP; G_i and possibly G_S, PLC activation; G_i, G_S, PLC inhibition of adenylate cyclase.

© 2013 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
The molecular structure of ion channel receptors for ATP in primitive invertebrates, such as *Dictyostelium* and *Schistosoma*, as well as green algae, is remarkably similar to that for P2X receptors in mammals (Agboh *et al.* 2004; Fountain *et al.* 2007, 2008; Fountain & Burnstock, 2009), suggesting that ATP was one of the earliest extracellular messengers (see Burnstock & Verkhratsky, 2009). ATP signalling has also been identified in plants (see Demidchik *et al.* 2003, 2011; Kim *et al.* 2006; Clark & Roux, 2009).

Purinergic synaptic transmission in ganglia and brain

All the early studies were focused on purinergic neuromuscular transmission. However, purinergic synaptic neurotransmission was reported in 1992 between neurones in ganglia (Evans *et al.* 1992; Silinsky *et al.* 1992) and in the brain (Edwards *et al.* 1992).

Table 5. Principal P1 and P2 receptors expressed by non-neuronal cells

Smooth muscle	P2X1, P2X2, P2X4, P2X7, P2Y1, P2Y2
Cardiac muscle	P2X1–6, P2Y2 (plus P2X7 and P2Y1 in isolated ventricle myocytes)
Skeletal muscle	P2X1–6, P2Y1, P2Y2, P2Y4, P2Y6 (transiently expressed during development)
Osteoblasts	P2X7, P2Y1, P2Y2
Cartilage	P2X2, P2Y1, P2Y2, A2A, A2B
Keratinocytes	P2X2, P2X3, P2X5, P2X7, P2Y1, P2Y2, P2Y4, A2B
Fibroblasts	P2X7, P2Y1, P2Y2, A2A
Adipocytes	P2X1, P2Y1, P2Y2, P2Y4, A1
Epithelial cells	P2X4, P2X5, P2X6, P2X7, P2Y1, P2Y2, P2Y6, P2Y11, A1, A2A, A3
Hepatocytes	P2Y1, P2Y2, P2Y4, P2Y6, P2Y13, A2A, A3
Glial cells	P2X1–7, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, A1, A2
Sperm	P2X2, P2X7, P2Y2, A1
Endothelial cells	P2X1, P2X4, P2Y1, P2Y2, P2Y4, P2Y6, A1, A2A
Erythrocytes	P2X2, P2X4, P2X7, P2Y1
Platelets	P2X1, P2Y1, P2Y12, A2A
Immune cells	(lymphocytes, neutrophils, macrophages, basophils, mast cells, eosinophils, osteoclasts, microglia, dendritic cells)
Exocrine cells	P2X1, P2X4, P2X7, P2Y1, P2Y2, P2Y4, A1, A2A
Endocrine cells	P2X1–7, P2Y2, P2Y4, A1, A2A, A2B, A3
Special senses	P2X1, P2X2, P2X3, P2X7, P2Y2, P2Y4, A1
Inner ear	P2X2, P2X7, P2Y2, A1, A2, A3
Eye	P2X2, P2X3, P2Y1, A1
Tongue	P2X2, P2X4, P2Y1, P2Y2, A2A, A3

This was an important conceptual step because most neuroscientists were interested in synaptic rather than neuromuscular transmission, and the purinergic concept reached many of them for the first time.

Short- and long-term (trophic) purinergic signalling

An important advance was the recognition that purines and pyrimidines are involved in long-term signalling of cell proliferation, differentiation and death during development and regeneration, as well as short-term purinergic signalling in neurotransmission, neuromodulation, secretion, chemotraction and platelet

© 2013 The Authors. *Experimental Physiology* published by John Wiley & Sons Ltd on behalf of The Physiological Society.
aggregation (see Abbracchio & Burnstock, 1998; Burnstock & Verkhratsky, 2010). In blood vessels, for example, ATP released from perivascular sympathetic nerves excites smooth muscle via P2X receptors, while ATP released from endothelial cells during shear stress produced by changes in blood flow and by hypoxia acts on endothelial P2Y and some P2X receptors to release nitric oxide, resulting in vasodilatation. This illustrates short-term dual control of vascular tone by purines (Fig. 9), and the leading scientists involved are shown in Fig. S5. In addition, ATP and adenosine mediate long-term signalling during embryonic development, angiogenesis, restenosis following angioplasty and atherosclerosis (see Burnstock, 2002, 2008; Erlinge & Burnstock, 2008; Fig. 10).

Release of ATP and purinergic mechanosensory transduction

It was assumed for many years that the main source of ATP acting on purinoceptors was damaged or dying cells. However, it is now clear that ATP is released, without causing damage, from many cell types, including endothelial and urothelial cells, astrocytes, macrophages, osteoblasts and odontoblasts, in response to gentle mechanical disturbance, hypoxia and some agents (Bodin

Figure 9. A schematic representation of short-term purinergic signalling, showing the interactions of ATP released from perivascular nerves and from the endothelium (Endoth.) controlling vascular tone

Adenosine triphosphate is released from endothelial cells during hypoxia to act mainly on endothelial P2Y receptors, leading to the production of endothelium-derived relaxing factor (EDRF; nitric oxide) and subsequent vasodilatation (−). In contrast, ATP released as a cotransmitter with noradrenaline (NA) from perivascular sympathetic nerves at the adventitia (Advent.)-muscle border produces vasoconstriction (+) via P2X receptors on the muscle cells. Adenosine (ADO), resulting from breakdown of ATP by ectoenzymes, later produces vasodilatation by direct action on the muscle via P1 receptors and acts on the perivascular nerve terminal varicosities to inhibit transmitter release. [From Burnstock (1987), reproduced with permission from S. Karger AG, Basel.]

Figure 10. Schematic overview of purinergic signalling mechanisms that regulate long-term, trophic effects

Extracellular nucleotides and nucleosides bind to purinergic receptors coupled to signal-transducing effector molecules. Activation of the effectors leads to generation of second messengers and/or stimulation of protein kinases that regulate expression of genes needed for long-term, trophic actions. In some cases, P2X receptors, such as P2X7, are also coupled to protein kinase cascades and can mediate proliferation and apoptosis. Cell-specific and/or receptor subtype-specific differences are likely to account for variations in signalling pathways and functional outcomes. It should be noted that the list of elements is not meant to be all-inclusive. Other protein kinases, e.g. MEK, P3K, are upstream of the listed kinases involved in purinergic signalling, while others are downstream, e.g. p70S6K. In addition, dashed arrows indicate that not all listed elements are activated by the upstream component, e.g. not all P1 receptors are coupled to all listed effectors. Abbreviations: AC, adenylyl cyclase; AP-1, activator protein-1; CaMK, calcium–calmodulin protein kinase; CREB, cyclic AMP response element binding protein; DG, diacylglycerol; GSK, glycogen synthase kinase; IP3, inositol trisphosphate; MAPKs, mitogen-activated protein kinases (including extracellular signal-regulated protein kinase (ERK), p38 MAPK and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)); MEK, MAPK/ERK kinase; NO, nitric oxide; PG, prostaglandin; P3K, phosphoinositide 3-kinase; PI-PLC, phosphatidylinositol-specific phospholipase C; PKA, protein kinase A; PKC, protein kinase C; PLA, phospholipase A2; PLD, phospholipase D; and STAT3, signal transducer and activator of transcription-3. [Modified from Burnstock (2007b), with permission from the American Physiological Society.]
& Burnstock, 2001; Lazarowski et al. 2011; Lazarowski, 2012). Scientists involved are shown in Fig. S6. This release underlies the purinergic mechanosensory transduction that is involved in a variety of physiological events, including bone remodelling and visceral pain (Burnstock, 1999, 2007b; Orriss et al. 2010). The mechanism of ATP transport from cells appears to be a combination of vesicular exocytosis and connexin and pannexin hemichannels (see Lazarowski, 2012).

Ectonucleotidases

Ectoenzymes are involved in the breakdown of released ATP into ADP, AMP, adenosine, inosine and hypoxanthine (see Zimmermann, 2006; Yegutkin, 2008). These enzymes include ectonucleoside triphosphate diphosphohydrolases, nucleotide pyrophosphatase/phosphodiesterases, alkaline phosphatases, 5′-nucleotidase and monoamine oxidase (see Fig. 11; Fig. S7 shows the leading figures in these studies).

Synergism between growth factors and purines during nerve regeneration and stem cell activation

Synergism between purines and trophic factors was shown in studies of the transplantation of the myenteric plexus into the brain (Tew et al. 1994, 1996). These studies were originally designed to explore enteric nerves as a possible source for replacement of missing messengers, such as dopamine, for Parkinson’s disease, but the myenteric plexus was shown to cause a marked proliferation of nerve fibres in the corpus striatum. An analysis, using co-culture of striatal neurones with various elements of the myenteric plexus and enteric neurotransmitters, showed that a growth factor released by enteric glial cells
Figure 13. Purinergic mechanosensory transduction

A, schematic representation of the hypothesis for purinergic mechanosensory transduction in tubes (e.g. ureter, vagina, salivary duct, bile duct and gut) and sacs (e.g. urinary bladder, gall bladder and lung). It is proposed that distension leads to release of ATP from epithelium lining the tube or sac, which then acts on P2X3 and/or P2X2/3 receptors on subepithelial sensory nerves to convey sensory/nociceptive information to the CNS. [From Burnstock (1999), reproduced with permission from Blackwell Publishing.]

B, schematic diagram of a novel hypothesis about purinergic mechanosensory transduction in the gut. It is proposed that ATP released from mucosal epithelial cells during moderate distension acts preferentially on P2X3 and/or P2X2/3 receptors on low-threshold subepithelial intrinsic sensory nerve fibres (labelled with calbindin) to modulate enteric reflexes. The ATP released during extreme (colic) distension also acts on P2X3 and/or P2X2/3 receptors on high-threshold extrinsic sensory nerve fibres [labelled with isolectin B4 (IB4)] that send messages via the dorsal root ganglia (DRG) to pain centres in the CNS. [From Burnstock (2001), reproduced with permission from Wiley.]
works synergistically with ATP (via adenosine) and NO released from NANC inhibitory nerves to promote nerve regeneration (Höpker et al. 1996). Later studies have extended this concept (Guarnieri et al. 2004; Neary & Zimmermann, 2009).

Stem cells express purinoceptors, and synergism between purines and growth factors appears to be important for stem cell differentiation (see Burnstock & Ulrich, 2011; Ulrich et al. 2012).

Purinergic pathophysiology and therapeutic potential

There is an increase in the ATP component of cotransmission in pathological conditions, including inflammation and stress. For example, while the purinergic component in parasympathetic nerves supplying the rodent bladder is about 50%, in the healthy human bladder it is minimal. However, in interstitial cystitis, outflow obstruction and neurogenic bladder dysfunction, the purinergic component increases.
to up to 40% (see Burnstock, 2011). There are also reports of a significantly greater cotransmitter role for ATP in sympathetic nerves supplying blood vessels in spontaneously hypertensive rats (Erlinge & Burnstock, 2008).

Platelet aggregation is mediated by ADP acting via P2Y\textsubscript{1} and P2Y\textsubscript{12} receptors. A major clinical contribution was made when clopidogrel, which is currently widely used against stroke and thrombosis, was found to block P2Y\textsubscript{12} receptors (Gachet, 2006; Fig. 12).

Soaking sperm in a solution containing ATP is being used to improve the effectiveness of in vitro fertilization (Rossato et al. 1999). Involvement of P2X receptors in most of the steps involved in spermatogenesis in developing testes is being explored as a therapeutic approach to contraception (Glass et al. 2001).

A hypothesis was presented in The Lancet proposing the involvement of purinergic signalling in the initiation of pain (Burnstock, 1996\textsubscript{a}). It was proposed that P2X3 receptors, expressed on nociceptive nerve endings, were stimulated by ATP released as a cotransmitter from sympathetic nerves during causalgia and reflex sympathetic dystrophy. It was also suggested that ATP was released from endothelial cells in the microvasculature supplying the heart, skeletal muscle and cerebral vessels to activate nociceptive sensory nerve fibres during angina, ischaemia and migraine. There are high levels of ATP in tumour cells, and release from damaged cells may be involved in cancer pain. Later, purinergic mechanosensory transduction was identified (Burnstock, 1999), including its involvement in the initiation of visceral pain (Fig. 13; Burnstock, 2009\textsubscript{b}, 2012\textsubscript{b}). Kazu Inoue and colleagues showed that in neuropathic pain there was increased expression of P2X4 receptors on microglia, and neuropathic pain was reduced by antagonists to this receptor or after their removal (Tsuda et al. 2004). Later, antagonists to P2X7 and P2Y\textsubscript{12} receptors expressed on microglia were also shown to reduce neuropathic pain (Burnstock, 2009\textsubscript{b}). Leading figures who have worked on purinergic signalling and pain are shown in Fig. S8.

Purinergic signalling also occurs in bone development and regeneration, and therapeutic strategies are being developed for osteoporosis (Orriss et al. 2010) and also for kidney disease (Bailey et al. 2007; Taylor et al. 2009). There is evidence for a role for purines and pyrimidines in normal behaviour, including learning and memory, sleep and arousal, locomotion and feeding (see Burnstock et al. 2011). Investigations of the roles of purinergic signalling in disorders of the brain are also in progress. These include trauma following accidents, surgery, stroke and ischaemia, neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and Huntington’s, as well as multiple sclerosis, epilepsy and neuropsychiatric disorders, such as depression, anxiety and schizophrenia (see Burnstock et al. 2011). Leading scientists working in the CNS field are shown in Fig. S9 and those working on the special senses in Fig. S10.

It was recognized early that ATP was effective against cancer (Rapaport, 1983). Studies have extended these findings, showing that P2Y\textsubscript{1} and P2Y\textsubscript{2} receptors modulate proliferation in most tumours, that P2X5 receptors mediate differentiation resulting in antiproliferation, while P2X7 receptors mediate apoptotic death of tumour cells (Fig. 14; White & Burnstock, 2006; Shabbir & Burnstock, 2009; Burnstock & Di Virgilio, 2013).
It has been proposed that purinergic signalling is a major factor in the physiological mechanism responsible for the effects of acupuncture (see Burnstock, 2009a). It was suggested that the mechanical stimulation by twisting needles in the skin and tongue or heat or electrical currents leads to release of ATP from keratinocytes and from mast cells that accumulate in the region of acupuncture needles. The ATP then activates sensory nerves in the skin via P2X3 receptors that relay messages via interneurones to the brainstem, where they modulate the activity of motor neurones that control autonomic function and interrupt pain pathways leading to the conscious pain centres in the cortex.

Concluding comments

The remarkable growth of papers published about purinergic signalling via ATP since 1972 is shown in Fig. 15. Therapeutic approaches to pathological disorders include the development of selective P1 and P2 receptor subtype agonists and antagonists, inhibitors of extracellular ATP breakdown, and enhancers and inhibitors of ATP transport. Small molecule purinergic drugs that are orally bioavailable and stable in vivo are beginning to be developed by medicinal chemists (see Baqi et al. 2010; Gever et al. 2010; Burnstock, 2011; Burnstock & Kennedy, 2011). The leading medicinal chemists in this field are shown in Fig. S11.

Call for comments

Readers are invited to give their opinion on this article. To submit a comment, go to: http://ep.physoc.org/letters/submit/expphysiol/99/1/16.

References

Abbracchio MP & Burnstock G (1994). Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64, 445–475.

Abbracchio MP & Burnstock G (1998). Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78, 113–145.

Aghob KC, Webb TE, Evans RJ & Ennion SJ (2004). Functional characterization of a P2X receptor from Schistosoma mansoni. J Biol Chem 279, 41650–41657.

Abbracchio MP, Burnstock G, Verkhovsky A & Zimmermann H (2009). Purinergic signalling in the nervous system: an overview. Trends Neurosci 32, 19–29.

Bailey MA, Shirley DG, King BF, Burnstock G & Unwin RJ (2007). Extracellular nucleotides and renal function. In The Kidney: Physiology and Pathophysiology, ed. Alpern RJ & Herbert SCG, pp. 425–443. Elsevier, San Diego.

Baqi Y, Lee SY, Iqbal J, Ripphausen P, Lehr A, Scheif AB, Zimmermann H, Bajorath J & Muller CE (2010). Development of potent and selective inhibitors of ecto-5′-nucleotidase based on an anthraquinone scaffold. J Med Chem 53, 2076–2086.
Burnstock G (2009a). Acupuncture: a novel hypothesis for the involvement of purinergic signalling. *Med Hypotheses* **73**, 470–472.

Burnstock G (2009b). Purinergic mechanosensory transduction and visceral pain. *Mol Pain* **5**, 69.

Burnstock G (2009c). Cotransmission. In *Encyclopedia of Neuroscience*, ed. Squire LR, pp. 247–254. Academic Press, Oxford.

Burnstock G (2011). Therapeutic potential of purinergic signalling for diseases of the urinary tract. *BJU Int* **107**, 192–204.

Burnstock G (2012a). Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. *Bioessays* **34**, 218–225.

Burnstock G (2012b). Targeting the visceral purinergic system for pain control. *Curr Opin Pharmacol* **12**, 80–86.

Burnstock G (2012c). Cotransmission. In *Primer of the Autonomic Nervous System*, 3rd edition, ed. Robertson D, Biaggioni I, Burnstock G, Low P & Paton JF, pp. 27–34. Academic Press, Oxford.

Burnstock G, Campbell G, Bennett M & Holman ME (1964). Innervation of the guinea-pig taenia coli: are there intrinsic inhibitory nerves which are distinct from sympathetic nerves? *Int J Neuropharmacol* **3**, 163–166.

Burnstock G, Campbell G & Rand MJ (1966). The inhibitory innervation of the taenia of the guinea-pig caecum. *J Physiol* **182**, 504–526.

Burnstock G, Campbell G, Satchell D & Smythe A (1970). Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. *Br J Pharmacol* **40**, 668–688.

Burnstock G, Cocks T, Crowe R & Kasakov L (1978). Purinergic innervation of the guinea-pig urinary bladder. *Br J Pharmacol* **63**, 125–138.

Burnstock G & Costa M (1975). *Adrenergic Neurones: Their Organisation, Function and Development in the Peripheral Nervous System*. pp. 1–225. Chapman and Hall, London.

Burnstock G & Di Virgilio F (2013). Purinergic signalling in cancer. *Purinergic Signal* [Epub ahead of print 25/6/13]. DOI 10.1007/s11302-013-9372-5

Burnstock G, Fredholm BB, North RA & Verkhratsky A (2010). The birth and postnatal development of purinergic signalling. *Acta Physiol (Oxf)* **199**, 93–147.

Burnstock G & Holman ME (1960). Autonomic nerve-smooth muscle transmission. *Nature* **187**, 951–952.

Burnstock G & Holman ME (1961). The transmission of excitation from autonomic nerve to smooth muscle. *J Physiol* **155**, 115–133.

Burnstock G & Kennedy C (1985). Is there a basis for distinguishing two types of P2-purinoceptor? *Gen Pharmacol* **16**, 433–440.

Burnstock G & Kennedy C (2011). P2X receptors in health and disease. In *Purine and Pyrimidine Receptor Pharmacology*, ed. Jacobson KA & Linden J, pp. 333–372. Academic Press, Burlington.

Burnstock G, Krügel U, Abbracchio MP & Illes P (2011). Purinergic signalling: from normal behaviour to pathological brain function. *Prog Neurobiol* **95**, 229–274.

Burnstock G & Straub RW (1958). A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. *J Physiol* **140**, 156–167.

Burnstock G & Ulrich H (2011). Purinergic signalling in embryonic and stem cell development. *Cell Mol Life Sci* **68**, 1369–1394.

Burnstock G & Verkhratsky A (2009). Evolutionary origins of the purinergic signalling system. *Acta Physiol (Oxf)* **195**, 415–447.

Burnstock G & Verkhratsky A (2010). Long-term (trrophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. *Cell Death Dis* **1**, e9.

Burnstock G & Verkhratsky A (2012). *Purinergic Signalling and the Nervous System*, Springer, Heidelberg/Berlin.

Burnstock G & Wong H (1978). Comparison of the effects of ultraviolet light and purinergic nerve stimulation on the guinea-pig taenia coli. *Br J Pharmacol* **62**, 293–302.

Clark G & Roux SJ (2009). Extracellular nucleotides: ancient signaling molecules. *Plant Sci* **177**, 239–244.

Daly JW (1985). Adenosine receptors. *Adv Cyclic Nucleotide Protein Phosphorylation Res* **19**, 29–46.

Demidchik V, Nichols C, Olinyk M, Dark A, Glover BJ & Davies JM (2003). Is ATP a signaling agent in plants? *Plant Physiol* **133**, 456–461.

Demidchik V, Shang Z, Shin R, Colaco R, Laohavisit A, Shabala S & Davies JM (2011). Receptor-like activity evoked by extracellular ADP in Arabidopsis root epidermal plasma membrane. *Plant Physiol* **156**, 1375–1385.

Drury AN & Szent-Györgyi A (1929). The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. *J Physiol* **68**, 213–237.

Edwards FA, Gibb AJ & Colquhoun D (1992). ATP receptor-mediated synaptic currents in the central nervous system. *Nature* **359**, 144–147.

Erlinge D & Burnstock G (2008). P2 receptors in cardiovascular physiology and disease. *Purinergic Signal* **4**, 1–20.

Evans RJ, Derkach V & Surprenant A (1992). ATP mediates fast synaptic transmission in mammalian neurons. *Nature* **357**, 503–505.

Fountain SJ & Burnstock G (2009). An evolutionary history of P2X receptors. *Purinergic Signal* **5**, 269–272.

Fountain SJ, Cao L, Young MT & North RA (2008). Permeation properties of a P2X receptor in the green algae *Ostreococcus tauri*. *J Biol Chem* **283**, 15122–15126.

Fountain SJ, Parkinson K, Young MT, Cao L, Thompson CR & North RA (2007). An intracellular P2X receptor required for osmoregulation in *Dictyostelium discoideum*. *Nature* **448**, 200–203.

Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN & Linden J (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. *Pharmacol Rev* **53**, 527–552.

Gachet C (2006). Regulation of platelet functions by P2 receptors. *Annu Rev Pharmacol Toxicol* **46**, 277–300.
Gever JR, Rothschild S, Henningsen R, Martin R, Hackos D, Panicker S, Rubas W, Oglesby I, Dillon MP, Milla ME, Burnstock G & Ford APDW (2010). AF-353, a novel, potent orally bioavailable P2X3/P2X2/3 receptor antagonist. *Br J Pharmacol* **160**, 1387–1398.

Glass R, Bardini M, Robson T & Burnstock G (2001). Expression of nucleotide P2X receptor subtypes during spermatogenesis in the adult rat testes. *Cells Tissues Organs* **169**, 377–387.

Guarnieri S, Fanò G, Rathbone MP & Mariggiò MA (2004). Cooperation in signal transduction of extracellular guanosine 5′ triphosphate and nerve growth factor in neuronal differentiation of PC12 cells. *Neuroscience* **128**, 697–712.

Holton P (1959). The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. *J Physiol* **145**, 494–504.

Höpker VH, Saffrey MJ & Burnstock G (1996). Neurite outgrowth of striatal neurons *in vitro*: involvement of purines in the growth promoting effect of myelenteric plexus explants. *Int J Dev Neurosci* **14**, 439–451.

Kasakov L & Burnstock G (1983). The use of the slowly degradable analog, α,β-methylene ATP, to produce desensitisation of the P2− purinoceptor: effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. *Eur J Pharmacol* **86**, 291–294.

Kawate T, Michel JC, Birdsong WT & Gouaux E (2009). Crystal structure of the ATP-gated P2X4 ion channel in the closed state. *Nature* **460**, 592–598.

Kim SY, Sivaguru M & Stacey G (2006). Extracellular ATP in plants. Visualization, localization, and analysis of physiological significance in growth and signaling. *Plant Physiol* **142**, 984–992.

Kunapuli SP & Daniel JL (1998). P2 receptor subtypes in the cardiovascular system. *Biochim Biophys Acta* **128**, 371–381.

Lazarowski ER (2012). Vesicular and conductive mechanisms of nucleotide release. *Purinergic Signal* **8**, 359–373.

Lazarowski ER, Sesma JI, Seminario-Vidal L & Kreda SM (2011). Molecular mechanisms of purine and pyrimidine nucleotide release. *Adv Pharmacol* **61**, 221–261.

Lustig KD, Shiau AK, Brake AJ & Julius D (1993). Expression cloning of an ATP receptor from mouse neuroblastoma cells. *Proc Natl Acad Sci U S A* **90**, 5113–5117.

Neary JT & Zimmermann H (2009). Trophic functions of nucleotides in the central nervous system. *Trends Neurosci* **32**, 189–198.

Niciea A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutshler E & Schmalzing G (1998). P2X3 and P2X7 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. *EMBO J* **17**, 3016–3028.

North RA (1996). P2X purinoceptor plethora. *Semin Neurosci* **8**, 187–195.

North RA (2002). Molecular physiology of P2X receptors. *Physiol Rev* **82**, 1013–1067.

Orriss IR, Burnstock G & Arnett TR (2010). Purinergic signalling and bone remodelling. *Curr Op Pharmacol* **10**, 322–330.

Paton WD & Vane JR (1963). Analysis of the responses of the isolated stomach to electrical stimulation and to drugs. *J Physiol* **165**, 10–46.

Rapaport E (1983). Treatment of human tumor cells with ADP or ATP yields arrest of growth in the S phase of the cell cycle. *J Cell Physiol* **114**, 279–283.

Rossato M, La Sala GB, Balasini M, Taricco F, Galeazzi C, Ferlin A & Foresta C (1999). Sperm treatment with extracellular ATP increases fertilization rates in in-vitro fertilization for male factor infertility. *Hum Reprod* **14**, 694–697.

Shabbir M & Burnstock G (2009). Purinergic receptor-mediated effects of adenosine 5′-triphosphate in urological malignant diseases. *Int J Urol* **16**, 143–150.

Shabbir M, Thompson CS, Jarmulowicz M, Mikhailidis DP & Burnstock G (2008). Effect of extracellular ATP on the growth of hormone refractory prostate cancer *in vivo*. *BJU Int* **102**, 108–112.

Silinsky EM, Gerzanich V & Vanner SM (1992). ATP mediates excitatory synaptic transmission in mammalian neurones. *Br J Pharmacol* **106**, 762–763.

Sneddon P & Burnstock G (1984). Inhibition of excitatory junction potentials in guinea-pig vas deferens by α,β-methylene-ATP: further evidence for ATP and noradrenaline as cotransmitters. *Eur J Pharmacol* **100**, 85–90.

Su C, Bevan JA & Burnstock G (1971). [3H]Adenosine triphosphate: release during stimulation of enteric nerves. *Science* **173**, 337–339.

Taylor SRJ, Turner CM, Elliott JJ, Hewitt R, Pickering M, Cook HT, Burnstock G, Pusey CD, Unwin R & Tam FWK (2009). P2X7-deficiency ameliorates accelerated nephrotic nephritis in mice. *J Am Soc Nephrol* **20**, 1275–1281.

Tew EMM, Anderson PN, Saffrey MJ & Burnstock G (1994). Transplantation of the postnatal rat myenteric plexus into the adult rat corpus striatum: an electron microscopic study. *Exp Neurol* **129**, 120–129.

Tew EMM, Saffrey MJ, Anderson PN & Burnstock G (1996). NADPH-diaphorase containing enteric neurones survive for a year in the adult rat striatum. *Neuroreport* **7**, 958–960.

Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S & Inoue K (2004). Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. *Glia* **45**, 89–95.

Ulrich H, Abbracchio MP & Burnstock G (2012). Extrinsic purinergic regulation of neural stem/progenitor cells: implications for CNS development and repair. *Cell Stem Cell* **8**, 755–767.

Valera S, Hussy N, Evans RJ, Adani N, North RA, Surprenant A & Buell G (1994). A new class of ligand-gated ion channel defined by P2X₅ receptor for extra-cellular ATP. *Nature* **371**, 516–519.

Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, Burnstock G & Barnard EA (1993). Cloning and functional expression of a brain G-protein-coupled ATP receptor. *FEBS Lett* **324**, 219–225.

White N & Burnstock G (2006). P2 receptors and cancer. *Trends Pharmacol Sci* **27**, 211–217.

Yegutkin GG (2008). Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. *Biochim Biophys Acta* **1783**, 673–694.
Zimmermann H (2001). Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52, 44–56.
Zimmermann H (2006). Nucleotide signaling in nervous system development. Pflugers Arch 452, 573–588.

Additional information

Competing interests
None declared.

Funding
None declared.

Supporting Information

The following supporting information is available in the online version of this article.

Figure S1. Photographs of leading figures in the P1 receptor field.

Figure S2. Photographs of leading figures in the P2X receptor field.

Figure S3. Photographs of leading figures in the P2Y receptor field.

Figure S4. Photographs of some leading scientists in the purinergic signalling of excitable tissues field.

Figure S5. Photographs of leading scientists involved in the vascular purinergic signalling field.

Figure S6. Photographs of leading scientists involved in ATP release mechanisms.

Figure S7. Photographs of leading figures in the ectonucleotidase field.

Figure S8. Photographs of leading figures in the purinergic signalling pain field.

Figure S9. Photographs of leading figures in the CNS purinergic signalling field.

Figure S10. Photographs of leading figures in the special senses purinergic signalling field.

Figure S11. Photographs of leading medicinal chemists in the purinergic signalling field.
Author/s:
Burnstock, G

Title:
Purinergic signalling: from discovery to current developments

Date:
2014-01-01

Citation:
Burnstock, G. (2014). Purinergic signalling: from discovery to current developments. EXPERIMENTAL PHYSIOLOGY, 99 (1), pp.16-34. https://doi.org/10.1113/expphysiol.2013.071951.

Persistent Link:
http://hdl.handle.net/11343/259029

License:
CC BY-NC-ND