Optimization of Embodied Energy in Bridge Construction

Subrata Aditama K.A. Uda1,2,*, Mochamad Agung Wibowo3, Jati Utomo Dwi Hatmoko3

1PhD Student, Department of Civil Engineering, Diponegoro University, Semarang; and
2Department of Civil Engineering, Faculty of Engineering, Palangka Raya University, Palangka Raya, Indonesia
3Department of Civil Engineering, Faculty of Engineering, Diponegoro University, Semarang, Indonesia

Received August 6, 2020; Revised October 27, 2020; Accepted November 1, 2020

Cite This Paper in the following Citation Styles
(a): [1] Subrata Aditama K.A. Uda, Mochamad Agung Wibowo, Jati Utomo Dwi Hatmoko, "Optimization of Embodied Energy in Bridge Construction," Civil Engineering and Architecture, Vol. 8, No. 6, pp. 1167 - 1177, 2020. DOI: 10.13189/cea.2020.080602.

(b): Subrata Aditama K.A. Uda, Mochamad Agung Wibowo, Jati Utomo Dwi Hatmoko (2020). Optimization of Embodied Energy in Bridge Construction. Civil Engineering and Architecture, 8(6), 1167 - 1177. DOI: 10.13189/cea.2020.080602.

Copyright©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Construction activities consume a lot of energy and produce emissions which damage the environment. Furthermore, bridge construction is one of the infrastructure buildings which consume the largest amount of energy due to the materials, transportation, and heavy equipment used in the process. It is, however, important to reduce the energy consumed at each stage of the construction in order to ensure a decrease in the environmental impacts. This study was conducted to calculate the total energy consumed in a bridge project and the process was optimized to reduce the amount of energy used in the initiation, design, construction, and operation activities. Data were collected through observations of 3 bridge projects in the Central Java region, Indonesia. Furthermore, a reinforced concrete type of bridge was used and the amount of energy at each stage was determined by multiplying the volume of materials, electricity, and fuel used with the energy coefficient. The results showed the total energy generated in bridge projects 1, 2, and 3 was 21,870,543.14 MJ, 16,616,641.09 MJ, and 8,753,712.69 MJ. These values were decreased by 6.55%, 8.73%, and 3.45% respectively after optimization. This means the optimization process was able to effectively minimize the energy used in each activity of the project and also has a positive impact on the implementation of green construction, especially for bridge projects.

Keywords Infrastructure, Project Life Cycle, Bridge Projects, Energy Optimization, Embodied Energy

1. Introduction

Global warming and extreme climate change are caused by environmental pollution and this has led to the implementation of several steps to preserve living things such as the Kyoto Agreement and the 21st Conference of Parties [1]. Meanwhile, construction sector is one of the producers of emissions and pollution from waste materials as evident in the 36% of energy and 40% of emissions produced by the sector and reported by UNEP [2]. China, India, Japan, Indonesia, and Canada contribute the highest quantity of embodied energy and carbon emission in the world [3] while United States of America generates 39% of its emissions from buildings, material production, and construction processes but have lesser percentage in transportation and industrial activities [4]. It is, however, possible to reduce the emissions in the construction sector by applying green building concept to limit its impact on the environment [5].

Green infrastructure is a concept which focuses on the spatial planning and environmental impacts of construction activities [6]. Meanwhile, green road and bridge is the application of green infrastructure constructing roads and bridges as observed in several European and American countries. However, the guidelines and rating system for green bridge assessments provide information on the position of greening implemented in projects [7] and this is necessary considering the positive impact of the concept on the environment and ecosystem of life [8].

Construction projects in Indonesia are dominated by
infrastructure buildings which were valued at Rp 442 trillion in 2018 and placed in the 50th position globally based on the competitive index [9]. This means there is the possibility of higher energy consumption and emissions in the country. Therefore, actions are required to reduce these emissions through the implementation of environmental-friendly and sustainable construction processes.

2. Bridge Construction in Project Life-Cycle Concept

2.1. Project Life Cycle

The project life cycle is a series of developmental activities which include the initiation, design, construction, and maintenance/operation stages of a building. There is, however, a wide variation in these activities based on the type and characteristics of the project and the organization involved. Project Life Cycle (PLC) is part of the Building Life Cycle (BLC) concept which is more focused on the activities conducted during construction as shown in figure 1.

![Figure 1. The Project Life Cycle Concept](image)

Initiation Phase

A project is usually initiated based on the idea of the owner and this serves as the main factor which determines the design and construction. The owner's commitment to the implementation of standards and building specifications which prioritize the green building concept in the contract document is essential to achieve an environmentally-friendly building [10]. The activities associated with the initiation stage include project feasibility studies, plan drawings and specifications, Term of Reference (TOR), Bill of Quantity (BQ), and tenders [11].

Design Phase

The design phase is an important part of achieving the building shape desired by the owner. This stage is significant due to the effect of image and type of material on a building. Moreover, the ability of planners highly depends on its expertise in defining the owner’s project scope and those with poor translational skills usually experience changes in the initial or source of the project, repeated work, schedule delays, and cost overruns. The activities of this stage include the formation of project structure and team, detailed design drawings, the scope of work, technical data, project schedules, worker schedules, material/spending schedules, procedures, and other details. The initial steps to minimize environmental impact are required to be integrated into this planning stage due to its significant importance to the success of the next stage [11].

Construction Phase

The construction phase is the stage for the project implementation and it involves the supply of materials, tools and labor, as well as the implementation of actual construction activities based on the designs approved by the owner. It is the phase for the culmination of development activities using several resources. Meanwhile, the choice of materials, tools, and personnel influences the sustainability of the construction process and quality of the building. Therefore, construction methods and technologies such as Building Information Management (BIM) are used by contractors to control and evaluate each activity in order to reduce time, ensure cost efficiency, and minimize materials used to produce lesser wastes. The use of higher tools, materials, labor, and working capital than required during production have also been reported to have the ability to cause inefficiency and poor building quality. This, therefore, means project quality is highly dependent on workmanship, construction management, completeness, quality of contract documents, and field supervisors [11].

Maintenance/Operational/Closer Phase

The operational and maintenance phase is the final stage of a project. This includes handing over the project to the owner after a feasibility test to guarantee its safety for users. The final site inspection needs to be conducted with the owner’s representatives, planning consultants, supervising consultants, and contractors. Operation manual and handover minutes are, however, one of the outputs of this phase [11].

2.2. Embodied and Operational Energies on Project Life Cycle (PLC)

Embodied and operational energies occur in each building's life cycle. Embodied energy is consumed during project activities as a whole and it includes energy used up in producing and moving materials, transportation activities, and use of tools during construction and building maintenance activities [12]. Meanwhile, operational
energy occurs during building operational activities such as the electricity used, heating, and air conditioning energies and are mostly sourced from fossil fuels. Operational energy has been discovered by some researchers to be the biggest contributor with 80% to total energy consumption in a building’s life cycle [13].

British Standards Institution (BSEN) 15978:2011 also showed that embodied energy consumption starts from the beginning of material production to the end of the building construction while operational energy only occurs when the building is being used as indicated in figure 2.

2.3. Bridge Construction

A bridge is a structural building used in connecting roads between regions which are cut off due to geographical conditions such as rivers, ravines, valleys, and roads [14]. The planning process of building bridges has a high level of difficulty and the five important aspects are the bridge structure, material type, size and aesthetics, existing conditions, and environmental factors [15]. The inclusion of aesthetics and environmental factors provides additional value to the function of the bridge by making it an icon for a region or country it is located [16].

2.3.1. Concrete Bridge Structure

The bridge structure is divided into three main components which are superstructure, substructure, and foundation. Superstructure components are deck and wearing surface, girder, curb, expansion joint, handrail, parapet, and approach. Meanwhile, the elements of the substructure include the bearing, pier, and column or pedestal, abutment, and retaining wall while the components of the foundation are footing and pile [17]. The typical components of a concrete bridge are presented in figures 3 and 4.

![Figure 2. The Boundaries of Embodied Energy and Operational](image)

![Figure 3. The Typical Cross Section of Concrete Bridge Structure](image)
2.3.2. Energy efficiency based on Project Life Cycle (PLC)

Energy can be optimized by ensuring efficiency in each construction activity that is expected to directly reduce emissions and impact on the environment. Moreover, government policies and regulations which prioritize environmental factors in every development process have been reported to have the ability to strengthen the efforts to reduce carbon emissions [10]. Previous study also showed...

Table 1. Several energy optimization efforts based on Project Life Cycle (PLC)

PLC Phase	Optimization of energy and emission activities	References
Initiation	Public policy which prioritizes environmentally friendly buildings.	
Policy to reuse structures in old buildings, especially in government projects.		
The efficiency of energy performance and programs in each construction activity.		
Making policies on Energy Performance Development Guidelines for building construction.	[10],[18],[20],[23],[26]	
Design	Optimizing the layout and building structure system plan	
Flexible and adaptable design		
Optimizing building service component life		
Optimizing the design of building facades and utilizing light and air circulation.		
Low Embodied Energy (EE) Material Planning and the use of recycled materials		
Reusing building parts and elements		
The application of innovative materials with lower environmental impact		
Building planning with consideration for ease of demolition		
Planning process which minimizes the use of high energy consuming materials such as iron, steel, and concrete	[3],[5],[6],[7],[8],[10],[12],[13],[15],[16],[20],[22],[23],[25],[26]	
Construction	Selection of suppliers and distributors of materials close to the project site to reduce transportation energy	
Transportation system planning to reduce Embodied Energy		
Implementation of effective construction methods to avoid wasting materials, time, equipment, and labor		
The application of lightweight construction methods and waste management plans		
Optimization of heavy equipment used during the construction process		
Utilization of the BIM method for effective and efficient construction activities		
Reduction of solar energy usage as the main electricity		
Management of workers to avoid repetitive work or waste of materials and energy		
Selection of an experienced supplier in product packaging and distribution of perishable materials to minimize repeated material shipments		
Application of energy-efficient and low carbon machines as well as the use of skilled and experienced operators		
Implementation of a quality management system for workers in all construction works		
Selection of the shortest path to transport wastes for final disposal	[3],[5],[6],[7],[8],[10],[12],[13],[19],[20],[21],[22],[23],[24],[25],[26]	
Maintenance/Operational/ Closer Project	Application of environmentally friendly alternative energy	
Implementation of renewable energy sources in building operations
Application of energy-efficient sensor systems for lighting, elevators, heating, ventilation, and air conditioning
Application of environmentally friendly and energy-efficient materials for building repair and maintenance activities | [5],[7],[12],[13],[20],[23] |
that the energy used during construction activities produces emissions which contribute to global warming [19].

This is, however, reducible in construction activities starting from the initiation to the building operation stage by using environmentally friendly materials and construction methods [20]. The energy optimization efforts related to PLCs which are obtained from previous literature are presented in table 1.

This study aimed to calculate the amount of energy consumed in three types of bridge projects at different locations and sizes but the same concrete bridge construction method. Moreover, the materials, transportation, and heavy equipment used in construction were optimized.

3. Methodology

A quantitative method was applied in this research to calculate the energy consumption of each activity based on the phases including initiation, design, construction, and operation in the project life cycle. The study was conducted base on 3 bridge projects located in Central Java as case studies and presented in the figure 5. The first case study is the Ganefo Bridge Construction Project in Galeh-Ngrampal, Sragen, the second is the Jagung Bridge Construction Project, Kajen, Pekalongan, and the third is the Miri Bridge Construction Project, Purwantoro, Wonogiri. The detailed description of these projects is shown in table 2.

Table 2. The Project Data Information

Description	Research Data Information
Name of Project	Ganefo Bridge
Location	Sragen
Owner	Public Work Department
Coordinate	7°20'05.0"S 111°03'28.9"E
Length	105 m
Width	7 m
Area	735 m²
Basecamp to location	9.17 km
Type of Construction	Reinforcement Concrete
Type of Floor Layer	Asphalt
Case study	1
Jagung Bridge	Pekalongan
Coordinate	7°01'21.5"S 109°33'01.9"E
Length	200 m
Width	7 m
Area	1400 m²
Basecamp to location	20 km
Type of Construction	Reinforcement Concrete
Type of Floor Layer	Asphalt
Case study	2
Miri Bridge	Wonogiri
Coordinate	7°54'36.7"S 111°15'00.1"E
Length	36 m
Width	6 m
Area	216 m²
Basecamp to location	8.73 km
Type of Construction	Reinforcement Concrete
Type of Floor Layer	Asphalt
Case study	3
The amount of material and fuel used by the construction equipment were determined using building quantity data, a budget plan (BQ), technical specifications, and interviews conducted with the owners, consultants, and contractors. Meanwhile, the inventory of embodied energy coefficient (ICE) data from Bath University (ICE version 1.6a) is presented in table 3 [21].

Table 3. Embodied Energy Coefficient Factor [21]

Type of Material	Embodied Energy Coefficient Factor		
	MJ/Kg	MJ/Litre	MJ/Kwh
Stone	1.2	-	-
Steel Bar	24.6	-	-
Asphalt Pavement	2.41	-	-
Cement	4.6	-	-
Aggregate and Sand	0.1	-	-
Selected Soil	0.45	-	-
Concrete	1.24	-	-
Paint	68	-	-
PVC Pipe	70.6	-	-
Gasoline	-	34.6	-
Kerosene	-	36.7	-
Light Oli	-	38.2	-
A Heavy Oil	-	39.1	-
Electric	-	-	3.6

The formulas in equations 1, 2, and 3 were used to estimate the quantity of energy consumed.

\[
E_e = V_e \times C_F e
\]
\[
E_m = V_m \times C_F m
\]
\[
E_t = V_t \times C_F t
\]

Ee, Em, and Et are the total energy used for electricity, material, and transportation in units of Mega Joule (MJ). Respectively. Meanwhile, CFe, CFm, and CFt are energy coefficient factors in line with the type of sources which are electric (MJ/Kwh), material (MJ/m³), and fuel (MJ/litre).

The amount of energy calculated in this study was based on the criteria listed in table 1 and considered invincible based on the energy footprint observed from the planning stage. The case studies were government projects and this means the initiation activities were conducted in the office. However, the efficiency criteria applied to the bridge project are stated in table 4.

Table 4. Measurement Energy efficiency base on energy footprint on site

Phase	Energy efficiency based on energy footprint on site
Initiation (Owner Office/	Electric Power Reduction – Minimize the number of light Bulbs in the office
Public Work Department)	Electric Power Reduction – Minimize the use of computers, printers, and copiers
	Electric Power Reduction – Minimize the use of air conditioning in the office
	Fuel Saving – Minimize the duration of transportation for project site survey activities
Design (Consultant)	Electric Power Reduction – Minimize the number of light Bulbs in the office
	Electric Power Reduction – Minimize the use of computers, printers, and copiers
	Electric Power Reduction – Minimize the use of air conditioning in the office
	Fuel Saving – Minimize the duration of transportation for project site survey activities
	Fuel Saving – Minimize the duration of transportation during the consultation with owners
Construction (Contractor)	Material replacement – Replace cement with fly ash as a filler in the asphalt mixture.
	Fuel Saving (truck and heavy equipment transport) – Minimize the distance from the Base camp to the project site.
Maintenance/	Electric power reduction– Minimize the number of light Bulbs for outdoor areas or use solar electricity and automatically turn off the light sensor
Operational (User)	Material replacement– Replace cement with fly ash as a filler in the asphalt mixture.
	Fuel Saving (truck and heavy equipment transport) – Minimize the distance from the Base camp to the project site.

4. Results and Discussion

The results of the energy consumed in the bridge project are presented as follow:

Table 5. The Energy Calculation Results on Bridge Projects (MJ)

Cases Phases	Bridge Project 1	Bridge Project 2	Bridge Project 3
Initiation Phase	639,559.20 3%	171,940.20 1%	349,784.20 4%
Design Phase	1,375,191.65 6%	850,482.65 5%	708,156.43 8%
Construction Phase	15,528,993.95 71%	10,098,839.12 61%	6,077,255.67 69%
Operational Phase	4,326,798.35 20%	5,495,379.13 33%	1,618,516.39 19%
Total Energy (MJ)	21,870,543.14 100%	16,616,641.09 100%	8,753,712.69 100%
Table 5 shows the amount of energy consumed in implementing the bridge project. The value at the initiation phase of Project 1 was 639,559.20 MJ, the design phase was 1,375,191.65 MJ, while the construction and operational phases were 15,528,993.95 MJ and 4,326,798.35 MJ respectively. In bridge project 2, the value at the initiation phase was 171,940.20 MJ, the design phase was 850,482.65 MJ while the construction and operational phases were 10,098,839.12 MJ and 5,495,379.13 MJ respectively. Meanwhile, the value for bridge project 3 at the initiation phase was 349,784.20 MJ, the design phase was 708,156.43 MJ while the construction and operational phases were 6,077,255.67 MJ and 1,618,516.39 MJ respectively.

Figure 6 reveals the percentage of embodied energy consumption in each project based on the phases of activities and the initiation phase was found to be <5%, design phase was between 5% - 8% o, construction phase was the highest with an average of 60% - 70% while the operational phase was 19% - 33% of total energy.

Table 6 showed the reduction in consumption after optimization and bridge project 1 was reduced in the initiation phase by 255,358.32 MJ (1.17%), design phase by 322,472 MJ (1.47%), the construction phase was 505,062.07 MJ (2.31%), and operational phase was 350,420.42 MJ (1.60%) while the total energy reduction was recorded to be 1,433,312.80 MJ (6.55%) of the initial value. In bridge project 2, the reduction in the initiation phase was 1,048.32 MJ (0.01%), the design phase was 209,674.80 MJ (1.26%), construction was 999,767.70 MJ (6.02%), and the operational phase was 240,716.81 MJ (1.45%) while the total energy was reduced by 1,451,207.63 MJ (8.73%) of the initial energy consumed.

In the bridge project 3, the amount of energy reduction at the initiation phase was 1,048.32 MJ (0.01%), the design phase was 25,084.20 MJ (0.29%), while each of the construction and operational phases were 130,230.42 MJ (1.49%) and 145,590.09 MJ (1.66%) respectively with a total energy reduction recorded to be 301,953.03 MJ (3.45%) of initial energy consumed. The comparison of the energy consumed before and after energy optimization is presented in figure 7 and 8.

Cases Phases	Bridge Project 1	Bridge Project 2	Bridge Project 3	
Initiation Phase	255,358.32	1,048.32	1,048.32	0.01%
Design Phase	322,472.00	209,674.80	25,084.20	0.29%
Construction Phase	505,062.07	999,767.70	130,230.42	1.49%
Operational Phase	350,420.42	240,716.81	145,590.09	1.66%
Total Energy (MJ)	1,433,312.80	1,451,207.63	301,953.03	3.45%
Figure 7 reveals the percentage of embodied energy minimized through optimization and also that the Bridge 2 was observed to have a significant reduction in the construction phase due to the optimization of the distance of the base camp to the project site from 40 km to 5 km. This subsequently reduced the transportation cost of fuel, materials, and tools.

Figure 8 shows the construction phase consumed the largest amount of embodied energy followed by the operational and design phase while the least was recorded at the initiation stage. The high consumption was associated with the use of materials such as cement, steel, and fuel in heavy equipment and transportation. The optimization was achieved by prioritizing materials with low embodied energy and using environmentally friendly heavy equipment. The energy calculated is, therefore, expected to be used as an evaluation tool by stakeholders, consultants, contractors, and building managers to further minimize the energy consumed by each of the activities.

Table 7 and Figure 9 show the amount of energy consumption expended per area on the bridge building and the values before and after optimization for Bridge Case 1 was 29,755.84 MJ/m² and 27,805.76 MJ/m², Bridge Case 2 was 11,869.03 MJ/m² and 10,832.45 MJ/m² while Bridge Case 3 was 40,524.45 MJ/m² and 39,128.52 MJ/m² respectively. The highest energy was consumed in bridge case 3 despite having the smallest area of 216m². This, therefore, means a small building area has an influence on energy consumption.

The largest percentage of energy reduction was in Bridge Case 2 with 9% followed by Bridge Case 2 with 7% while the least, 3%, was found in Bridge Case 3 as shown in Figure 10. The energy consumption limits on the average construction phase per-building area has been reported by a previous study to be 5.754 MJ/m² [22] while the average operational phase was between 290 MJ/m² - 1,210 MJ/m².
Meanwhile, the energy consumption during the bridge case construction phase 1, 2, and 3 was 21,127.88 MJ/m², 7,213.46 MJ/m², and 28,135.44 MJ/m² while the operational phase was recorded to have consumed 5,866.80 MJ/m², 3,925.27 MJ/m², and 7,493.13 MJ/m² respectively. The energy consumed in these two phases was observed to be greater than the average limit, there, optimization and minimization were required.

Bridge Case 1	Total Energy (MJ) Before Optimization: 21,870,543.14	Area (m²): 735	Total Energy per Area (MJ/m²) Before Optimization: 29,755.84
Bridge Case 2	Total Energy (MJ) Before Optimization: 16,616,641.09	Area (m²): 1400	Total Energy per Area (MJ/m²) Before Optimization: 11,869.03
Bridge Case 3	Total Energy (MJ) Before Optimization: 8,753,712.69	Area (m²): 216	Total Energy per Area (MJ/m²) Before Optimization: 40,526.45

Table 7. Total Embodied Energy Based on Building Area

![Energy Per Area (MJ/m²)](image)

Figure 9. Total Embodied Energy Per-Building Area

![Percentage Reducing Embodied Energy Per-Area](image)

Figure 10. The Percentage of Reducing Embodied Energy Per-Building Area
5. Conclusion

Indonesia is an archipelagic country which geographically has many large rivers spread across all the islands and this means it needs bridges to form road networks to connect the regions. The construction of these bridges depends on the existing conditions of the area as well as the aesthetic aspects which determine the type of the structure either concrete or steel frame to be used.

The findings of this research showed the energy consumption in Bridge Cases 1, 2, and 3 was 21,870,543.14 MJ, 16,616,641.09 MJ, and 8,753,712.69 MJ and reduced by 1,433,312.80MJ (6.55%), 1,451,207.63MJ (8.73%), and 301,953.03MJ (3.45%) after optimization, respectively. Meanwhile the expended area was 29,755.84 MJ/m², 11,869.03 MJ/m², and 40,524.45 MJ/m² with a decrease of 7%, 9%, and 3% respectively after optimization. Therefore, the optimization of energy consumption in each phase through efficient use of electricity, materials, and fuels for transportation as well as the selection of environmentally friendly construction tools have the ability to reduce energy consumption and emissions produced during the building's life cycle.

Acknowledgments

The authors show gratitude to the Department of Public Works of Central Java Province and the Doctoral Program of Faculty of Engineering of Diponegoro University, Indonesia.

REFERENCES

[1] UNFCCC, The Paris Agreement: Conference of the Parties Twenty-first session Paris, 2016, Online available from https://unfccc.int

[2] UNEP, Global Status Report for Buildings and Construction Sector: Towards a zero-emission, efficient and resilient buildings and construction sector, 2019. Online available from https://www.unenvironment.org

[3] O. Tatsu, K. Yokoyama, S.Takao, N.Yokoo, and M.Yamamoto, Introduction of Annex 57 - Evaluation of Embodied Energy and Carbon Dioxide Emissions for Construction Worldwide, World SB 14 Barcelona Conference, Spain, 26-32, 2014.

[4] GABC, the Global Status Report: Towards a zero emission, efficient and resilient buildings, and construction sector, 2017, Online available from https://www.Genevironment.org

[5] GBCI, Greenship Assessment Tool For New Buildings Version 1.2, 2018. Online available from http://www.gbcindonesia.org

[6] F Baró, R Bugter, E Gómez-Baggethun, J Hauck, L Kopperoinen, C Liquete, M Potschin, Green Infrastructure, Openness Synthesis Paper, Vol.1, No. 13, 1-7, 2015.

[7] M Marzouk, A Nouh, M El-Said, Developing green bridge rating system using Simos' procedure, Housing and Building National Research Center (HBRC) Journal, Vol. 10, 176 – 182, 2014.

[8] L.B Cole, T McPherson, C.P Herzog, A Russ, Green Infrastructure Journal, Vol. 27, 261- 270, 2017.

[9] BPS-Statistics Indonesia, Construction in Figures 2019, Online available from http://www.bps.go.id

[10] P. Fuertes, Embodied Energy Policies to Reduce Existing Buildings, International Conference-Alternative and Renewable Energy Quest, AREQ 2017, Spain, Energy Procedia,115, pp. 431 – 439, 2017.

[11] G.D.Oberlender Project Management For Engineering And Construction Third Edition, McGraw-Hill Education, USA, pp. 31-288, 2014.

[12] M. Balouktsi & T.Lützkendorf, Energy efficiency of buildings: the aspect of embodied energy, Energy Technology: Special Issue: Energy, Science & Technology Conference, 4 (1), pp. 31-43, 2016.

[13] T. Ramesh, Prakash R., Shukla K.K. Life cycle energy analysis of buildings: an overview, Energy and Buildings, 42, pp. 1592–1600, 2010.

[14] D Bennett, G Parke, N Hewson, ICE Manual of Bridge Engineering, the history and aesthetic development of bridges, ICE Publishing is a division of Thomas Telford Ltd, London, 2008.

[15] M.S Troitsky, Planning and Design of Bridges 1st Edition, John Wiley & Sons, Inc., New York, 1994.

[16] J. Radic, M Kuster & B Kinel, Structural - Architectural Approach to Bridge Design, Large Structures and Infrastructures for Environmentally Constrained and Urbanized Areas, IABSE Symposium Report, Vol.97, No.22, 8-15, 2010.

[17] W.F Chen and L Duan, Bridge Engineering Handbook, CRC Press LLC, USA, 2000.

[18] British Standards Institution, BSEN 15978, Sustainability of Construction Works Assessment of Environmental Performance of Buildings – Calculation Method, British Standards Institution, London, UK, 2011.

[19] Goggins J., Keane T., Kelly A. The assessment of embodied energy in typical reinforced concrete building structures in Ireland, Energy and Buildings, 42, pp. 735 – 744, 2010.

[20] Wibowo M.A, Uda S.A.K.A. and Zhabrinna, Reducing carbon emission in construction base on project life cycle (PLC), MATEC Web of Conferences 195, 06002, pp. 1-11, 2018.

[21] M. Balouktsi & T.Lützkendorf, Energy efficiency of buildings: the aspect of embodied energy, Energy Technology: Special Issue: Energy, Science & Technology Conference, 4 (1), pp. 31-43, 2016.

[22] A Cuchí, G Wadel, F Lopez and A Sagrera, Guía de la Eficiencia Energética Para Los Administradores de Fincas, Fundación Gas Natural Ltd, Spain, 2007.
[23] BOMA, Energy Guidelines, Building Owners and Managers Association, Melbourne, 1994.

[24] R. Jaques, Energy efficiency building standards project – review of embodied energy, Proceedings of the Embodied Energy: the current state of play Seminar, School of Architecture and Building, Deakin University, Geelong, 51-60, 1996.

[25] M Suzuki, and T Oka, Estimation of life cycle energy consumption and CO2 emission of office buildings in Japan’, Energy and Buildings, Vol. 28, 33-41, 1998.

[26] P.Crowther, Design for disassembly to recover embodied energy, The 16th annual conference on passive and low energy architecture, Melbourne-Brisbane-Cairns, Australia, 95-100, 1999.