Using genetic markers to orient the edges in quantitative trait networks: the NEO software

Steve Horvath
dissertation work of Jason Aten

Aten JE, Fuller TF, Lusis AJ, Horvath S (2008) Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Systems Biology 2008, 2:34. April 15.
Using SNPs for learning directed networks

- Question: Can genetic markers help us to dissect causal relationships between gene expression- and clinical traits?
- Answer: yes, using the paradigm of Mendelian randomization
- Many authors have addressed this question both in genetics and in genetic epidemiology.
Motivating example

• Assume a high correlation between cholesterol levels C and the gene expression profile Exp of an unknown gene.

• Question: is the gene upstream (causal) or downstream (reactive) of cholesterol? Do high levels of the gene expression Exp cause high cholesterol levels C or the other way around?

• Answer: Genetic markers can be used to infer the directionality (orient the edge between Exp and C) if these markers are associated with either cholesterol or with the gene expression or both.
Fundamental paradigm of biology can be used for inferring causal information

- Sequence variation \rightarrow gene expression (messenger RNA) \rightarrow protein \rightarrow clinical traits
- SNPs are “causal anchors”

 SNP \rightarrow gene expression
The edge orienting problem: unoriented edges between the gene expressions and physiologic traits

Edges between traits and gene expressions are not yet oriented.

Note that the orientation of edges involving SNPs are obvious since SNPs form “causal anchors”
The solution to the edge orienting problem

Edges are directed. A score, which measures the strength of evidence for this direction, is assigned to each directed edge.
NEO software

Input Data

• A set of quantitative variables (traits)
 – e.g. many physiological traits, blood measurements, gene expression data

• SNP marker data (or genotype data)

Output

• Scores for assessing the causal relationship between correlated quantitative variables
Output of the NEO software

NEO spreadsheet summarizes LEO scores and provides hyperlinks to model fit logs
- graph of the directed network
Correlation and causation

• Background: by comparing correlation coefficients one can sometimes infer causal information.
 – The saying that “correlation does not imply causation” should be changed to “correlation does not always imply causation”
• A causal graph implies statements about the relationship of the pairwise correlations.
• More generally it implies statements about the likelihood of a corresponding structural equations model.
• Several good introductory books, e.g. Shipley
NEO Network Edge Orienting

is a set of algorithms, implemented in R software functions, which compute scores for causal edge strength

• LEO – compares local structural equation models; the more positive the score, the stronger the evidence
Candidate common pleiotropic anchors (CPA) versus candidate orthogonal candidate anchors (OCA) for the edge A-B

a. Single anchor (pleiotropic QTL) edge orienting
b. Common pleiotropic anchor (CPA) edge orienting
c. Orthogonal causal anchor (OCA) edge orienting
Single marker causal models between traits A and B

Multi-marker causal models
Computing the model chi-square test p-value for assessing the fit

The following function is minimized to estimate the model based covariance matrix $\Sigma(\theta)$

$$F(\theta) = \ln |\Sigma(\theta)| - \ln |S| + \text{trace}(S\Sigma(\theta)^{-1}) - m$$

where m denote the number of variables.

Denote the minimizing value by $\hat{\theta}$.

Then following follows a chi-square distribution

$$\chi^2 = (N - 1)F(\hat{\theta}) \approx \chi^2\left(\frac{m(m-1)}{2} - t\right)$$

which can be used to compute a p-value for the causal model. The higher the p-value, the better the causal model fits the data.
Causal models and corresponding model fitting p-values for a single marker M and the edge A-B.

\[P(M \rightarrow A \rightarrow B) = P(\text{model 1}) \text{ where} \]

\[P(M \rightarrow B \rightarrow A) = P(\text{model 2}) \text{ where} \]
LEO.NB.SingleMarker(A→B) = \log_{10}(\text{RelativeFit})

compares the model fitting p-value of A→B
with that of the Next Best model

LEO.NB.SingleMarker(A \rightarrow B)

= \log_{10}(\frac{P(M \rightarrow A \rightarrow B)}{\text{Model fitting p-value of the next best model}})

where the model fitting p-value
of the next best model is given by
max(P(M \rightarrow B \rightarrow A), P(A \leftarrow M \rightarrow B),
P(M \rightarrow A \leftarrow B), P(A \rightarrow B \leftarrow M))
Overview Network Edge Orienting

1) Merge genetic markers and traits
2) Specify manually genetic markers of interest, or invoke automated marker selection & assignment to trait nodes
 Automated tools:
 • greedy & forward-stepwise SNP selection;
3) Compute Local-structure edge orienting (LEO) scores to assess the causal strength of each A-B edge
 • based on likelihoods of local Structural Equation Models
 • integrates the evidence of multiple SNPs
4) For each edge with high LEO score, evaluate the fit of the underlying local SEM models
 • fitting indices of local SEMs: RMSEA, chi-square statistics
5) Robustness analysis
 with regard to automatic marker selection;
6) Repeat analysis for next A-B edge
Robustness analysis

Fsp27 is a causal driver of a biologically important co-expression module

- LEO.NB(Fsp27->MEblue) with respect to different choices of genetic markers sets (x-axis)
- Here we used automatic SNP selection to determine whether Fsp27 is causal of the blue module gene expression profiles.
- Both LEO.NB.CPA and LEO.NB.OCA scores show that the relationship is causal.
Multi edge simulations

\[E_1 \rightarrow E_2 \]
\[E_1 \rightarrow E_3 \]
\[E_3 \leftarrow \text{HiddenConfounder} \rightarrow E_4 \]
\[E_4 \rightarrow \text{Trait} \]
\[\text{Trait} \rightarrow E_5. \]
Conclusion

• Genetic markers allow one to derive causality tests that can be used to assess the causal relationships between different traits.

• Systems genetic approaches that combine network methodology with traditional gene mapping approaches promise to bridge the chasm between sequence and trait information.

• An integrated gene screening approach can be used to find highly connected intramodular hub genes that are upstream of clinically interesting modules.
Software and Data Availability

- R software tutorials etc can be found online
- www.genetics.ucla.edu/labs/horvath/aten/NEO/
- Google search
 - weighted co-expression network
 - “WGCNA”
 - “co-expression network”
- http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork
Acknowledgement

• Doctoral dissertation work of Jason Aten
• (Former) lab members: Peter Langfelder, Jun Dong, Tova Fuller, Ai Li, Wen Lin, Anja Presson, Bin Zhang, Wei Zhao

• Collaborators
• Mice: Jake Lusis, Tom Drake, Anatole Ghazalpouri