The Rationale for the Application of Bone Grafts in Periapical Surgery: A Review

Mubashir Baig Mirza

Assistant Professor, Conservative Dental Science Department, College of Dentistry, Prince Sattam bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia.

ABSTRACT

Following periapical surgery, restoration of the destroyed bony architecture is a pre-requisite. Previous studies had shown that supplementing with artificial bone substitutes, growth factors or barrier membranes in the osseous defects is essential in influencing the healing following surgical intervention. This review is intended to focus on whether tissue regeneration with the aid of bone grafts coupled with a membrane barrier will suffice or is there a need for recruiting progenitor/stem cells. A literature search was conducted on several medical databases. All studies that used bone graft following periapical surgery were included. Around 38 relevant articles were selected for this review. Literature shows that the mere use of a membrane barrier and/or bone graft following surgery would not yield the desired outcome. Previous studies show that some substitutes are capable of generating progenitor/stem cells and induce the undifferentiated mesenchymal cells to differentiate. Bone augmentation with the aid of bone graft materials along with biologically active molecules in addition to a mechanical barrier in the form of a membrane would enhance the healing of periapical tissues following periapical surgery. Better bone fill, gain in clinical attachment level is achieved with the use of various grafts as compared to non grafted sites.

Key Words: Endodontics, Periapical surgery, Allogenous bone grafts, PRF, Guided tissue regeneration, Vital tooth

INTRODUCTION

A periapical pathology inevitably results in the presence of a nonvital tooth which is left unattended. This ultimately will result in osseous destruction in the periapical area. It is also a familiar observation that despite an accurately accomplished endodontic treatment failure can be encountered due to microbial infection. This can lead to the formation of a periapical lesion as a result of an inflammatory response to bacterial infection within the root canal. An important goal in periapical surgery is to enrich healing along with removing the unhealthy tissues.

Periapical surgery not only eliminates the unhealthy tissues in the periapical region but also cleanses the root surface along with contouring the surrounding bone. However, few studies have suggested that the healing of the tissues by the newly formed tissue generally fails to fully restore the architecture of the pre-existent bone. The concept of tissue regeneration has been introduced to improve the quality of healing. The kind of cells that repopulates the wound initially determines the quality of healing.

Literature shows that the use of either bone graft materials or incorporation of biologically active molecules in addition to the placement of a mechanical barrier following periapical surgery enhances tissue regeneration in the periapical tissues.

BONE GRAFTS

It is a well-known fact that periapical lesions that are relatively small in size would heal satisfactorily with the aid wound healing but larger lesions would require recruitment of stem cells and their differentiation. In huge osseous defects, insufficient osseous regeneration occurs.

Numerous studies in the past have demonstrated a better outcome with regards to tissue healing following periapical surgery with the aid of regenerative technique using bone graft compared to the same lesions without regenerative techniques. It is believed that a simple enucleation of the periapical cyst usually leaves a bony defect. Because the maxilla demonstrates a relatively high regenerative capacity,
optimal obliteration of this osseous defect in presence of a background of an inflammatory reaction may be hindered. Inadequate or less optimal bone healing results when the regenerative technique is not employed due to the invagination of overlying tissue into the osseous defect, preventing osteogenesis. According to Jansson et al., the survival rates of periapical surgery was found to be 68% in molars and 77% in single-rooted teeth over 10 years. This highlights the fact that augmentation with the aid of bone grafts is essential to facilitate optimal tissue healing in the periapical region following periapical surgery.

Augmented bone graft plays a key role by acting as a template for osteogenesis and slowly resorb to permit replacement by new bone. Bone grafts have either osteogenic, osteoinductive or osteoconductive properties. Hydroxyapatite can be considered to be a very effective alloplastic material particularly in large bone destruction caused by periradicular lesion where it can facilitate effective bone replacement in the later stages as well as provide functional support to the tooth in the initial stages. A recent study evaluated bone regeneration in the periapical region using Platelet-rich fibrin (PRF) and nanocrystalline hydroxyapatite with collagen in combination with PRF and their effects on healing and concluded that the combination of PRF and nanocrystalline hydroxyapatite with collagen produced a significantly faster bone regeneration and that conventional technique and PRF were less predictable with its healing response.

BIOLOGICALLY ACTIVE MOLECULES

PRP play a critical role in enhancing wound healing due to the discharge of some growth factors via α granules. These growth factors generally act both locally and systemically. It increases early wound strength by enhancing collagen synthesis and angiogenesis.

Few studies suggested that the use of a triple antibiotic paste for canal disinfection along with PRF strengthens the effectiveness of sterilization in carious teeth, infected dentin, periapical lesions and necrotic pulp. Huang et al. in his study concluded that PRF can multiply pulp cells in addition to enhancing the expression of osteoprotegerin and Alkaline phosphatase activity. In vitro studies have demonstrated that PRF has shown no cytotoxicity toward many normal cells present in the periapical region. A recent study showed that the PRF membrane has a slow sustained release of growth factors for 7-28 days.

A recent study used PRF with tricalcium phosphate (TCP) bone graft for treating a periapical cyst and advocated that usage of PRF and TCP together would yield enhanced results than the usage of biomaterials alone. Study done by Kes-wani et al on the revascularization of immature pulp apices concluded that PRF acts as a biological connector for neo-angiogenesis and vascularization. This highlights the fact that augmentation with the aid of bone grafts coupled with biologically active molecules is essential to facilitate optimal tissue healing in the periapical region following periapical surgery.

BARRIER MEMBRANES

To prevent invading of the overlying soft tissue into the osseous defect, it is advisable to use a mechanical barrier on top of the defect. This would create an environment for the cells to repopulate into the defect. Resorbable membranes are available alternatives to non-resorbable membranes. They are resorbed by proteolytic enzymes and excreted via kidney. An in vitro study advocated that resorbable membranes stimulate cellular proliferation more than non-resorbable membranes.

Literature shows that collagen membrane coupled with a bone graft significantly enhances the preservation of alveolar bone. Membranes containing greater than 5% metronidazole show antibacterial activity deprived of any cytotoxic effects. Amnion membrane is derived from the human placenta. It incorporates growth factors presenting anti-inflammatory and antimicrobial properties. The thickness of the amnion membrane is less than collagen membranes which assist a proper adaption over the osseous defect. Amnion membrane facilitate the proliferation of endothelial cells and angiogenesis in addition to recruitment of mesenchymal progenitor cells assisting accelerated wound healing.

Inference

The application of graft materials in the form of hydroxyapatite, tricalcium phosphate or xenograft alone would lead to the formation of fibrous encapsulation of the graft material and thereby interfere with the ideal healing in the periapical tissues following surgical intervention. It is believed that a blood clot plays a key role in stabilizes the wound matrix in the event of wound healing. Platelet alpha granules of PRP act as a source of growth factors that facilitate cellular proliferation and bone formation. PRF facilitates the preservation of the integrity of the bone graft material by revascularizing the bone graft particles through neo-angiogenesis. Once PRF starts resorbing slowly it releases growth factors that maintain a viable field to enhance healing. In addition to this placement of a barrier membrane would avoid the invagination of soft tissue into the osseous defect thereby enhancing the wound healing.

RECENT ADVANCES

Conventional periapical surgical generally results in a big osseous defect. With the aid of the 3D printed template, the osseous defect resulted in surgical intervention is limited to 3–4 mm. This confines injury to osseous tissues resulting in less bleeding, less postoperative complications, shorter healing time and better prognosis.37

A recent study employed Cone Beam Computed Tomography(CBCT) imaging, 3D printing technology and a 3D surgical guide designed with computer-aided software. A hollow trephine bur was used to perform the osteotomy, resection of the root, and enucleation of the lesion. The intact cortical plate was salvaged and used as a graft along with plasma-rich fibrin acquired preoperatively from the patient’s blood. The positioning guide allowed the clinicians to precisely achieve targeted tissues and shorten the procedure time. Modified soft tissue management helped achieve a small surgical wound for uneventful healing.38

CONCLUSION

Guided tissue regeneration acts as an adjunct to surgical intervention that can employ an extensive range of biomaterials. Augmentation with the aid of bone graft materials along with biologically active molecules in addition to a mechanical barrier in the form of a membrane would enhance the healing of peripheral tissues following periapical surgery. We conclude that that better bone fill, gain in clinical attachment level are achieved with the use of various grafts as compared to non grafted sites.

ACKNOWLEDGEMENT

Authors acknowledge the enormous help received from the authors whose articles are cited and included in references to this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.

Conflict of Interest: Nil

Source of Funding: Nil

REFERENCES

1. Alnemer NA, Alquthami H, Alotaibi L. The use of bone graft in the treatment of the periapical lesion. Saudi Endod J 2017;7:115-118.

2. Uppada UK, Kalakonda B, Koppolu P, Varma N, Palakurthy K, Manchikanti V, et al. Combination of hydroxyapatite, platelet-rich fibrin and amniotic membrane as a novel therapeutic option in regenerative periapical endodontic surgery: Case series. Int J Surg Case Rep 2017;37:139–144.

3. Gokul K, Arunachalam D, Balasundaram S, Balasundaram A. Validation of bone grafts in a periodontal therapy-A review. Int J Curr Res Rev 2014;6(14):7-16.

4. Bashutski JD, Wang HL. Periodontal and endodontic regeneration. J Endod 2009;35:321-328.

5. Goyal B, Tewari S, Dahan J, Sehgal PK. Comparative evaluation of platelet-rich plasma and guided tissue regeneration membrane in the healing of apicomarginal defects: A clinical study. J Endod 2011;37:773-780.

6. Tsesis I, Rosen E, Tamsen, Taschieri S, Del Fabbro M. Effect of guided tissue regeneration on the outcome of surgical endodontic treatment: A systematic review and meta-analysis. J Endod 2011;37:1039-1045.

7. Taschieri S, Del Fabbro M, Testori T, Saita M, Weinstein R. Efficacy of guided tissue regeneration in the management of through-and-through lesions following surgical endodontics: A preliminary study. Int J Periodontics Restorative Dent 2008;28:265-271.

8. Yoshikawa G, Murashima Y, Wadachi R, Sawada N, Suda H. Guided bone regeneration (GBR) using membranes and calcium sulphate after apicectomy: A comparative histomorphometric study. Int Endod J 2002;35:255-263.

9. Lalabonova H, Daskalov H. Jaw cysts and guided bone regeneration (a late complication after enucleation). J Int Med Assoc Bulg Annu Proc 2013;19:401-403.

10. Twozic, Varghese N, Varughese JM. Prognosis of periapical surgery using bone grafts: A clinical study. J Conserv Dent 2011;14(1):68–72.

11. Jansson L, Ehnevid H, Lindskog S, Blomlöf L. Development of periapical lesions. Swed Dent J 1993;17:85-93.

12. Smith RG, Gassmann CJ, Campbell MS. Platelet-rich plasma: Properties and clinical applications. J Lanc Gen Hosp 2007;2:73–77.

13. Thanikasalam M, Ahamed S, Narayana SS, Bhavani S, Raja-Raman G. Evaluation of healing after periapical surgery using platelet-rich fibrin and nanocrystalline hydroxyapatite with collagen in combination with platelet-rich fibrin. Endodontontology 2018;30:25-31.

14. Elgendy EA, Abo Shady TE. Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony defects. J Indian Soc Periodontol 2015;19:61-65.

15. Nand S, Savirnath A, Kalakonda BB, Uppada UK, Kaimisett S, Priyadarshini E. Platelet concentrates Bioengineering dentistry’s regenerative dreams. J Dent Res Rev 2015;2:86-90.

16. Tischler M. Platelet-rich plasma. The use of autologous growth factors to enhance bone and soft tissue grafts. N Y State Dent J 2002;68:22-24.

17. Windle W 3rd, Teixeira F, Levin L, Sigurdsson A, Trope M. Disinfection of immature teeth with a triple antibiotic paste. J Endod 2005;31:439-443.

18. Anantula K, Annareddy A. Platelet-rich fibrin (PRF) as an autologous biomaterial after an endodontic surgery: Case reports. J NTR Univ Health Sci 2016;5:49-54.

19. DohanEhrenfest DM, de Peppo GM, Doglioli P, Signorato P. Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): A gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors: A golden standard to achieve for all surgical platelet concentrates technologies. Growth Factors 2009:27:63-69.

20. Huang FM, Yang SF, Zhao JH, Chang JY. Platelet-rich fibrin increases proliferation and differentiation of human dental pulp cells. J Endod 2010;36:1628-1632.

21. Jayalakshmi KB, Agarwal S, Singh MP, Vishwanath BT, Krishna A, Agrawal R. Platelet-rich fibrin with ß-tricalcium phosphate-A
novel approach for bone augmentation in chronic periapical lesion: A case report. Case Rep Dent 2012;90:58.
22. Keswani D, Pandey RK. Revascularization of an immature tooth with a necrotic pulp using platelet-rich fibrin: A case report. Int Endod J 2013;46:1096-1104.
23. Villar CC, Cochran DL. Regeneration of periodontal tissues: guided tissue regeneration. Dental Clin North Am 2010; 54:73-92.
24. Rodriguez IA. Barrier membranes for dental applications: A review and sweet advancement in membrane developments. Mouth Teeth 2018;2(1):1-9.
25. Kasaj A, Reichert C, Götz H, Röhrig B, Smeets R, et al. In vitro evaluation of various bioabsorbable and non-resorbable barrier membranes for guided tissue regeneration. Head Face Med 2008;4:22.
26. Kher VK, Bhongade ML, Shori TD, Kolte AP, Dharamthok SB, et al. A comparative evaluation of the effectiveness of guided tissue regeneration by using a collagen membrane with or without decalcified freeze-dried bone allograft in the treatment of infrabony defects: A clinical and radiographic study. J Indian Soc Periodontol 2013;17:484-489.
27. Xue J, He M, Niu Y, Liu H, Crawford A, et al. Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nano fibre membrane. Int J Pharm 2014;475:566-577.
28. Tsesis E. Rosen A. Tamse S. Taschieri, M. Del Fabbro, Effect of guided tissue regeneration on the outcome of surgical endodontic treatment: a systematic review and meta-analysis. J Endod 2011;37:1039–1045.
29. Chen EH, Tofe AJ, A literature review of the safety and biocompatibility of amniontissue. J Impl Adv Clin Dent 2010;2 (3): 67–75.
30. Koob TJ, Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J 2013;10(5):493–500.
31. Chopra A, Thomas BS, Amniotic membrane: a novel material for regeneration and repair. J Biomim Biomater Tissue Eng 2013;18: 1-8.
32. Koob TJ. Angiogenic properties of dehydrated human amnion/chorion allografts: therapeutic potential for soft tissue repair and regeneration. Vas Cell 2014;6:1-10.
33. Stahl SS, From SJ. Histologic and clinical responses to porous hydroxyapatite implants in human periodontal defects. Three to twelve months postimplantation. J Periodontol 1987;58(10):689–695.
34. Su CY, Kuo YP, Tseng YH, Su CH, Burnouf T. In vitro release of growth factors from platelet-rich fibrin (PRF): A proposal to optimize the clinical applications of PRF. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:56–61.
35. Simonpieri AM. Corso D, Sammartino G, Ehrenfest DD. The relevance of Choukroun’s platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using a bone allograft. Part II: Implant surgery, prostodontics, and survival. Implant Dent 2009;18 (3):220–222.
36. Pradeep AR, Bajaj P, Rao NS, Agarwal E, Naik SB. Platelet-rich fibrin combined with a porous hydroxyapatite graft for the treatment of three wall infrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol 2012;83(12):1499-1507.
37. Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health 2018;18:85.
38. Popowicz W, Palatyńska-Ulatowska A, Kohli MR. Targeted Endodontic Microsurgery: Computed Tomography-based Guided Stent Approach with Platelet-rich Fibrin Graft: A Report of 2 Cases. J Endod 2019;45(12):1535-1542.