Supporting Information

Copper Promoted One Pot Approach: Synthesis of Benzimidazoles

S N Murthy Boddapati 1,2, Ramana Tamminana 3, Ravi Kumar Gollapudi 1, Sharmila Nurbasha 1, Mohamed E. Assal 1, Osamah Alduhaish 4, Mohammed Rafiq H. Siddiqui 5, Hari Babu Bollikolla 1,2 and Syed Farooq Adil 4

1 Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhar Pradesh, India-522510. 
2 Department of Chemistry, Sir C. R. Reddy College, PG Courses, Eluru, Andhra Pradesh, India-534002.
3 Department of Chemistry, GITAM Deemed to be University, Bengaluru Campus, Karnataka, India-562163.
4 Department of Chemistry, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Kingdom of Saudi Arabia.
*Corresponding authors E-mail: dr.b.haribabu@gmail.com (B. HariBabu); sfadil@ksu.edu.sa (Syed Farooq Adil); oalduhaish@ksu.edu.sa (Osamah Alduhaish)

Mechanism

Based on the experimental evidences and literature reports [1, 2-12] the proposed mechanism for the formation of final product 2-aminophenylbenzimidazole 1a is as follows.

Scheme S1. Proposed mechanism [1]

Initially, the reduction of copper(II) salt with thiourea lead to the in situ generation of copper(I) species [5], which can coordinate with thiourea to afford intermediate P. Next, the intermediate P on deprotonation with base followed by reaction with 2-bromoaniline may provide N-(2-bromophenyl)-guanidine A along with by-products CuS and polysulphide [2] via desulphurization/substitution reactions [3,4]. Oxidative addition of A with copper (I) species (it could be generated from copper (II) species [5] can afford intermediate (i), that may lead to the
formation of intramolecular C-N cyclised product 2-aminobenzimidazole B[6,7] using base. On the other hand, oxidative addition of iodobenzene with copper (I) species lead to the formation of intermediate (ii), which can undergo an intermolecular C-N cross-coupling reaction[8-12] with intermediate B to afford the intermediate (iii) that can complete the catalytic cycle by reductive elimination of final product 2-aminophenylbenzimidazole 1a.

References
1. Kondraganti, L.; Manabolu, S.b.; Dittakavi, R. Synthesis of Benzimidazoles via Domino Intra and Intermolecular C-N Cross-Coupling Reaction. *ChemistrySelect* 2018, 3, 11744-11748.
2. Ramana, T.; Punnyamurthy, T. Preparation of 2-Azido-1-Substituted-1 H-Benz[d] imidazoles Using a Copper-Promoted Three-Component Reaction and Their Further Conversion into 2-Amino and 2-Triazolyl Derivatives. *Chemistry–A European Journal* 2012, 18, 13279-13283.
3. Guin, S.; Rout, S.K.; Gogoi, A.; Nandi, S.; Ghara, K.K.; Patel, B.K. Desulfurization strategy in the construction of azoles possessing additional nitrogen, oxygen or sulfur using a copper (I) catalyst. *Advanced Synthesis & Catalysis* 2012, 354, 2757-2770.
4. Yella, R.; Khatun, N.; Rout, S.K.; Patel, B.K. Tandem regioselective synthesis of tetrazoles and related heterocycles using iodine. *Organic & Biomolecular Chemistry* 2011, 9, 3235-3245.
5. For the reduction of copper (II) salts to copper (I) species using thiourea, see: Bowmaker, G.A.; Hanna, J.V.; Pakawatchai, C.; Skelton, B.W.; Thanyakasirikul, Y.; White, A.H. Crystal structures and vibrational spectroscopy of copper (I) thiourea complexes. *Inorg. Chem.* 2009, 48, 350-368.
6. Wang, X.; Kuang, C.; Yang, Q. Copper-Catalyzed Synthesis of 4-Aryl-1H-1, 3-triazoles from 1, 1-Dibromoalkenes and Sodium Azide. *Eur. J. Org. Chem.* 2012, 424-428.
7. Chiba, S.; Zhang, L.; Ang, G.Y.; Hui, B.W.-Q. Generation of iminyl copper species from α-azido carbonyl compounds and their catalytic C–C bond cleavage under an oxygen atmosphere. *Org. Lett.* 2010, 12, 2052-2055.
8. Tan, B.Y.-H.; Teo, Y.-C. Efficient cobalt-catalyzed C–N cross-coupling reaction between benzamide and aryl iodide in water. *Organic & Biomolecular Chemistry* 2014, 12, 7478-7481.
9. Ma, D.; Lu, X.; Shi, L.; Zhang, H.; Jiang, Y.; Liu, X. Domino Condensation/S-Arylation/Heterocyclization Reactions: Copper-Catalyzed Three-Component Synthesis of 2-N-Substituted Benzothiazoles. *Angew. Chem. Int. Ed.* 2011, 50, 1118-1121.
10. Cahiez, G.; Moyeux, A. Cobalt-catalyzed cross-coupling reactions. *Chem. Rev.* 2010, 110, 1435-1462.
11. Boddapati, S.N.M.; Polam, N.; Mutchu, B.R.; Bollikolla, H.B. The synthesis of arylcyanamides: a copper catalyzed consecutive desulfurization and C-N cross coupling strategy. *New J. Chem.* 2018, 42, 918-922.
12. Boddapati, S.N.M.; Saketi, J.M.R.; Mutchu, B.R.; Bollikolla, H.B.; Adil, S.F.; Khan, M. Copper promoted desulfurization and C-N cross coupling reactions: Simple approach to the synthesis of substituted 2-aminobenzoxazoles and 2,5-disubstituted tetrazole amines. *Arabian Journal of Chemistry*, 2020, 13, 4477-4494.