EUS-Guided FNA for Diagnosis of Pancreatic Cystic Lesions: a Meta-Analysis

Qi-Xian Wang a Jun Xiao a Matthew Orange b Hu Zhang a You-Qing Zhu a

aDepartment of Gastroenterology and Hubei Provincial Center of Clinical Study for Digestive Diseases; Zhongnan Hospital; Wuhan University School of Medicine; Wuhan, Hubei, China
bDepartment of Physical Education and Human Performance, Central Connecticut State University, New Britain, CT (USA)

Key Words
EUS-FNA • Diagnosis • Pancreatic cystic lesions • Malignancy

Abstract
Background: Preoperative diagnosis of pancreatic cystic lesions (PCLs) must be reliable as the current standard treatment, major or total pancreatectomy, dramatically affects quality of life. Additionally, early diagnosis of malignancy is essential to an improved prognosis. The diagnostic accuracy of fluid analysis using endoscopic ultrasonography-guided fine-needle aspiration (EUS-FNA) has been demonstrated in pancreatic solid lesions. The utility of this technique in the diagnosis of PCLs is still unknown. Methods: A comprehensive search was performed in multiple databases. Studies differentiating benign and malignant PCLs via EUS-FNA were included in this meta-analysis. The quality of diagnostic accuracy studies (QUADAS) was adopted to evaluate the selected studies. Pooled sensitivity, specificity, likelihood ratio, diagnostic odds ratio, and summary receiver operating characteristic (sROC) curve analyses were conducted. Two main classification types of malignancy were characterized and analyzed. We also generated a subgroup analysis of available clinical factors. Publication bias was evaluated by Begg's and Egger's tests. Results: Sixteen studies containing 1024 subjects have been published. The pooled sensitivity for malignant cytology according to classification 1 was 0.51 (95% CI, 0.45-0.58), and pooled specificity was 0.94 (95% CI, 0.92-0.96). When the detected PCLs were identified as classification 2, suspicious malignancy or potential malignancy, sensitivity and specificity were similar, 0.52 (95% CI, 0.46-0.57) and 0.97 (95% CI, 0.95-0.98) respectively. Conclusion: This meta-analysis demonstrates that EUS-FNA is a reliable clinical tool for the diagnosis of PCLs. However, a more accurate algorithm is needed to reduce various biases and to improve the sensitivity of EUS-FNA in the detection of malignant PCLs.
Introduction

Pancreatic cystic lesions (PCLs) comprise a diverse group of histopathologic bodies possessing varying degrees of malignancy. The majority of PCLs (80%-90%) are pseudocysts (PC), the remainder are mucinous neoplasms (MCNs, including mucinous cystadenomas (MCyA) and mucinous cystadenocarcinomas (MCyA-CA)), intraductal papillary mucinous neoplasms (IPMN), or serous cystadenomas (SCyA) [1-3]. In the premalignant stage, the five-year survival rate for patients with MCNs and IPMNs is nearly 100%. With the development of an invasive carcinoma, the survival rate drops significantly, down to 37.5%-57.5% [4]. Most PCLs, save for SCyA, are recommended for resection due to their tendency to be malignant. However, a dilemma arises with patients at an increased risk for postsurgical complications. For this reason, it will be beneficial to determine malignancy of PCLs before operations.

As a minimally invasive diagnostic tool, endoscopic ultrasonography-fine needle aspiration (EUS-FNA) provides investigators with cyst fluid for chemical and cytological analyses [5]. As the cytology may assist diagnosis of PCLs, thus providing surgeons with critical information, EUS-FNA has recently attracted more attention, particularly to those interested in researching pancreatic cystic neoplasms.

The international consensus guidelines for management of IPMN and MCN have proposed to include examination by way of EUS-FNA [6]. However, as PCLs, as a category, contain more lesions of the PC and MCyA types than IPMN/MCN, misdiagnoses by various image modalities, including EUS-FNA, occur. As a result, despite published literature evaluating EUS-FNA on pancreatic mucinous neoplasm, and meta-analysis suggesting that it achieved low sensitivity and high specificity [7], it is still necessary to conduct a meta-analysis evaluating the use of EUS-FNA in detecting malignancy of PCLs.

Materials and Methods

Study selection and subgroup categories

Prior to conducting a literature search, we agreed to include only those studies that met all of the following criteria: (1) analyzed cytology from EUS-FNA on subjects for diagnosis of pancreatic cystic lesions (or separately reported PCLs from others); (2) published in English; (3) utilized, as a gold standard, surgical histology or clinical follow-up of at least 6 months to confirm EUS-FNA findings [8, 9]; (4) included at least 15 patients with cystic neoplasm; (5) presented sufficient data for the calculation of sensitivity and specificity.

We excluded studies that met any of the following criteria: (1) review articles, case reports, letters to the editor, brief communications, or rapid communications; (2) studies that used specimens from CT guided or abdominal ultrasound or from percutaneous puncture; (3) studies that used conclusions from EUS-FNA as the gold standard without final confirmation by histology or clinical follow-up; (4) studies with insufficient data; (5) studies that did not analyze cytology results, but instead based conclusions solely on EUS-FNA cyst fluid analysis; (6) studies in which “Y” of QUADAS analysis was less than 8 of 14.

Ambiguity regarding definite malignancy of cytology diagnoses occurred because, while some articles reported PCLs as malignant, others reported cytology diagnoses as non-diagnostic, benign, atypical, suspicious, potential, or malignant. To avoid divergence of positive results and to reduce any intrinsic heterogeneity (showed in Table 1), we predefined two classifications similar to those of Hewitt [8]. Classification 1—a highly stringent analysis based only on malignant cytology results; classification 2—a cautious evaluation method aiming to recognize a larger number of malignant results, that is, classify atypical and suspicious cytology results as malignant results. The histopathological determination of malignancy also referred to this classification. Additional information from each article was collected, including publication year, location, number of medical centers, patients and clinical experts, study design and time interval from EUS-FNA to pathological diagnosis, needle size, average number of needles for each case, successful aspiration rate, age, ratio of male: female patients, and the presence of an onsite cytopathologist. Subsequently, subgroup analysis was performed based on the obtained information.
Table 1. Unified standard of malignancy classification of FNA cytology (applied to clinical terminal diagnosis as well)

Classification 1	Classification 2	
Negative	simple cyst, pseudocyst, atypical, serous cystadenoma, low/moderate dysplasia, non-diagnostic	
pseudocyst, serous cystadenoma, non-diagnostic, low-grade/moderate dysplasia, mucinous cystadenoma or borderline neoplasm, atypical or suspicious for malignancy, all unclear described and premalignant IPMN/MCN	non-diagnostic, low/moderate dysplasia, non-diagnostic	
Positive	high-grade dysplasia, carcinoma in situ, invasive carcinoma	high-grade dysplasia, invasive carcinoma, suspicious for malignancy, described as potential malignant (mucinous cystadenoma, intraductal papillary mucinous tumor, cystic islet cell tumor, cystic adenocarcinoma), solid pseudopapillary tumor

Literature search

A comprehensive search of literature published through May of 2014 was performed in multiple databases, including PubMed, Medline, Scopus, Web of Science, EMBase and the Cochrane Library. Search terms used were “‘endoscopic ultrasound-guided fine needle aspiration’ OR ‘(eus’ AND ‘fna’) OR ‘eus fna’” AND “(pancreas’ OR ‘pancreatic’) AND cystic”. In order to expand our search, we also inspected and included relevant articles mentioned by the studies originally identified by our parameters. Articles from the same research institutions and same authors were cautiously investigated to avoid data duplication.

Two investigators (Xiao J and Wang XQ) independently searched the literature, screened studies that met our criteria, and discussed their findings in order to reach an agreement. The aforementioned investigators and a third (Zhang H), each independently extracted data from these studies. Any disagreements during this procedure were resolved by an arbiter (Zhu IQ).

Quality of studies

The quality of diagnostic accuracy studies (QUADAS) tool [10] was adopted in order to evaluate the selected studies. In this assessment, 14 items were evaluated and each was either valued as “yes,” when positive or “no,” when unsupported or “unclear” due to unavailable and/or insufficient information.

Statistical methods

First, we performed this meta-analysis by calculating pooled sensitivity, specificity, positive likelihood ratio (LR), negative LR, and diagnostic odds ratio (DOR). Heterogeneity among various studies was assessed using χ^2 statistics [11, 12]. I^2>50% was considered significant heterogeneity, while research in which I^2<50% was considered statistically homogeneous. The “DerSimonian-Laird” method was used as a random-effect model whenever there was found to be significant heterogeneity. To the contrary, when there was no significant heterogeneity, the “Mantel-Haenszel” pooling method, a fixed-effect model, was applied [13]. Secondly, a summary receiver operating characteristic (sROC) curve was drawn. A value for the area under the curve (AUC) close to 1 would indicate that EUS-FNA is a well-validated tool for diagnosis of PCLs. Next, meta-regression analysis was performed to explore potential causes of heterogeneity according to the characteristics of the study. The Spearman coefficient, reflecting the correlation between log(sensitivity) and log (1-specificity), was performed to test the threshold effect. Finally, subgroup analyses [14] and analysis of sensitivity were performed. Each of these described statistical procedures was performed using Meta-DiSc freeware software version 1.4 (Ramony Cajal Hospital, Madrid, Spain).

Publication bias analysis was performed using the Begg’s [15] and Egger’s [16] tests with Stata software version 11.0 (Stata Corporation, College Station, Texas). When a count of zero occurred in the dataset, a continuity correction of 0.5 was applied to all values in order to permit subsequent calculations [7]. A continuity corrected P<0.05 indicated the presence of publication bias.

Results

Systematic review

The original search, using the previously defined search terms, yielded 247 studies, among which, 126 were thoroughly reviewed. We retrieved 18 articles published between
Fig. 1. Flowchart demonstrating the algorithm for identifying papers suitable for inclusion.

Table 2. Characteristics of included studies and the derived 2x2 table. NA: not available; m: month; y: year; * data for classification 2; # data from studies that combine cytology with cystic fluid analysis

Studies	Classification	Location	Center	Experts participated EUS-FNA	Design	Duration	Cytopathologist	Needle
Maker AV[20]	1	USA	2	NA	Retrospective	91 m	NA	22
Maker AV[28]*	2							
Zhan XB[20]	1	China	1	2	Retrospective	53 m	YES	19,22
Zhan XB[20]* #	1							
Ozmen D[27]*	1 or 2	Turkey	1	2	Retrospective	57 m	NA	22
Zhai H[19]	1	USA	1	2	Retrospective	17 y	NA	NA
Linder [D17]* #	1	USA	1	1	Retrospective	53 m	NA	19,22
Linder [D17]* #	2							
Cagno L[29]*	1 or 2	USA	1	NA	Prospective	>9 y	NO	19,22
Sawhney MS[25]	1	USA	1	1	Retrospective	1 y	NA	22,25
Brandwein SL[26]	1	USA	1	1	Retrospective	3 y	partly	22
Zhang S[50]	1	USA	1	2	Retrospective	63 m	YES	NA
Zhang S[50]*	2							
Pang [CI23]	1	USA	1	1	Retrospective	14 y	partly	NA
Pang [CI23]* #	2							
Pittman MB[24]*	1 or 2	USA	NA	Retrospective	NA	NA	NA	NA
Attarasanaya S[22]	1 or 2	USA	1	7	Retrospective	100 m	YES	22
Maire F[21]*	1	France	1	1	Retrospective	12 y	NA	22
Maire F[21]*	1							
Pais SA [18]	1	USA	1	6	Retrospective	112 m	YES	22
Quan H[31]*	2	USA	1	NA	Retrospective	77 m	NA	22
Sedlack R[32]*	2	USA	1	NA	Retrospective	98 m	NA	22
Frossard LI[33]	2	France	1	NA	Retrospective	48 m	NA	22
Woolf KM[34]*	2	England	1	3	Retrospective	6 y	NA	NA

2001 and 2014 for final analysis (see Fig. 1 for a detailed screening flow chart). A total of 1024 patients, with a median number of 57 (range 20-198) per study, were included in...
our meta-analysis. Time interval for the selected studies ranged from 1 to 17 years. Of the 18 articles, 17 were retrospective studies, 12 covered almost all types of PCLs, 3 studies excluded IPMN [17-19], and 3 [18, 20, 21] specifically studied IPMN. As obtaining cytological samples from EUS-FNA may not have been the original intention of many of these studies, the ratio of qualified aspiration varies; some reached 100% [18, 20, 22-26], but, even at its lowest, it was within 66% [27]. Detailed information from each article is summarized in Table 2. There were no reports of severe complications during any of the procedures in the included articles.

Quality of studies

detailed information regarding quality of the selected studies is listed in Table 3. Items 2, 3, 7, and 12 are those most commonly valued "yes;" items 4 and 11 are those most often valued "unclear;" the remaining items are those most frequently valued "no." Overall, each selected study scored "yes" on 8-13 items, suggesting good quality of data collection.

Meta-analysis

Cytology classification 1. Forest plots of sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, DOR, and the sROC curve of EUS-FNA-based cytology, or cytology combined with cystic fluid analysis, are shown in Fig. 2. Here, we classified high-grade dysplasia and carcinoma in situ, or invasive carcinoma, as the determinant of a positive result. As shown in Fig. 2, pooled sensitivity and specificity are 51% (95% CI, 0.45-0.58) (Fig. 2a) and 94% (95% CI, 0.92-0.96) (Fig. 2b) respectively. If both sensitivity (74.6%) and specificity (80.1%) is >50%. As such, we conducted a more cautious analysis using a random-effect model. The asymmetrical sROC curve (Fig. 2e), displaying a "shoulder arm" distribution pattern, suggested to us the presence of threshold effect. Further analysis enhanced this judgment. For instance, Spearman’s rank coefficient is 0.514 with a significant P value of 0.042. The AUC for classification 1 is 0.90 (standard error = 0.0276), indicating that EUS-FNA has a great value for diagnosing malignant PCLs. For this classification, the pooled positive LR is 7.62 (4.58-12.67), the pooled negative LR is 0.50 (0.39-0.64), and the DOR is 23.91 (14.09-40.59).
Table 3. Quality of studies using the QUADAS tool. Y, Yes; N, no; U, unclear. Item 1. Was the spectrum of patients representative of the patients who will receive the test in practice? Item 2. Were selection criteria clearly described? Item 3. Is the reference standard likely to correctly classify the target condition? Item 4. Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the two tests? Item 5. Did the whole sample or a random selection of the sample receive verification by using a reference standard of diagnosis? Item 6. Did patients receive the same reference standard regardless of the index test result? Item 7. Was the reference standard independent of the index test? Item 8. Was the execution of the index test described in sufficient detail to permit replication of the test? Item 9. Was the execution of the reference standard described in sufficient detail to permit its replication? Item 10. Were the index test results interpreted without knowledge of the results of the reference standard? Item 11. Were the reference standard results interpreted without knowledge of the results of the index test? Item 12. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice? Item 13. Were the same clinical data available when test results were interpreted as would be available when the test is used in practice? Item 14. Were withdrawals from the study explained?

Items	1	2	3	4	5	6	7	8	9	10	11	12	13	14	¥%
Maker AV	Y	Y	Y	U	Y	Y	Y	Y	N	U	U	Y	Y	Y	71
Zhang S	Y	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	93
Zhang XB	N	Y	Y	Y	Y	Y	Y	U	U	Y	Y	Y	Y	Y	79
Zhai J	Y	Y	Y	Y	Y	Y	Y	Y	U	U	Y	Y	Y	86	
Pais SA	N	Y	Y	Y	Y	Y	Y	Y	Y	U	U	Y	Y	Y	93
Oguz D	Y	Y	Y	U	Y	N	Y	N	Y	Y	Y	Y	Y	Y	71
Sawhney MS	Y	Y	Y	Y	Y	Y	Y	Y	Y	U	U	Y	Y	Y	99
Lindor JD	Y	Y	Y	U	N	Y	Y	Y	N	Y	Y	Y	Y	Y	79
Eliginer S	Y	Y	Y	Y	Y	Y	Y	N	N	Y	Y	Y	Y	Y	79
Brandwein SL	Y	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	93
Attasaranay S	Y	Y	Y	U	Y	Y	Y	Y	N	U	U	N	Y	Y	64
Maire F	N	Y	Y	U	Y	Y	Y	N	Y	N	U	N	N	N	57
Frossard JL	Y	Y	Y	Y	N	N	Y	Y	N	Y	Y	Y	Y	Y	71
Pang JC	Y	Y	Y	Y	N	N	Y	N	U	U	Y	Y	Y	Y	64
Woof KM	Y	Y	Y	U	U	U	U	Y	N	Y	Y	Y	Y	Y	99
Pitman MB	Y	Y	Y	U	U	Y	Y	Y	Y	Y	Y	Y	Y	Y	93
Sadelack R	Y	Y	Y	U	U	Y	U	Y	U	U	N	Y	Y	Y	64
Qian X	Y	Y	Y	Y	N	Y	Y	N	U	U	Y	Y	Y	Y	64

Cytology classification 2. Forest plots of sensitivity and other indices were also generated for classification 2. In this classification, we defined PCLs suspicious for malignancy, and those identified as potentially malignant (mucinous cystadenoma, cystic adenocarcinoma, intraductal papillary mucinous tumor, cystic islet cell tumor, solid pseudopapillary tumor), as positive results. There were 12 suitable studies for this analysis. We found that the pooled sensitivity and specificity increased to 52% (95% CI, 0.46-0.57) (Fig 3a) and 0.97 (95% CI, 0.95-0.98) (Fig 3b), that12 is 92.1%, and that specificity is 71.1%. Mannel-Haenszel and DerSimonian-Laird methods were selected for pooling. The sROC curve (Fig 3e) does not show a “shoulder arm” distribution pattern, and Spearman’s correlation coefficient is 0.238 (P=0.457). As a result, we conclude that there is no threshold effect. The AUC is 0.9482 (standard error = 0.0152), the pooled positive LR is 8.83 (5.53-14.08), the pooled negative LR is 0.64 (0.51-0.80), and the DOR is 22.35 (8.74-57.13) for classification 2.

Subgroup analyses and meta-regression

We pre-identified several potential sources of heterogeneity: sample size; location of study; single versus multiple medical centers; study design (prospective versus retrospective); number of performers; time interval; EUS-FNA needle size; whether or not cytopathologists were onsite; average age of patient; ratio of male to female patients; Y of QUADAS; successful aspiration rate.
According to classification 2, where atypical and suspiciously malignant PCLs, in addition to high-grade dysplasia and carcinoma were considered positive results, no threshold effect is present. In order to explore the potential sources of heterogeneity, meta-regression analysis of these subgroups was performed (see Table 4).

We analyzed each of the subgroups classified by the 13 potential factors listed above, and, as RDOR for male to female patients is 4.78 (95% CI, 1.14, 20.00) (P=0.035), concluded that gender may be one of the factors that caused heterogeneity. Our analysis indicates that the gender ratio of patients may cause a difference to diagnostic accuracy of up to 4.78 fold. Four studies with a ratio of male to female patients below 1, have a lower pooled sensitivity (0.38) than studies in which the ratio is above 1 (0.62) or is unknown (0.57). Specificity, however, does not vary significantly (below 1=0.97, above 1=0.98, unknown=0.96). The DOR is 15.41 for studies in which the male to female ratio is below 1, 228.05 in studies above 1, and 15.84 when the gender ratio is unknown.

Other factors, described below, can also reduce heterogeneity to within an acceptable range, but our meta-regression analysis did not reveal significant P values. For studies of
Table 4. Predefined subgroup analysis of indices (with 95% confidence intervals) and subsequent meta-regression on DOR (for classification 2)

Subgroup	No. of studies	Pooled sensitivity	P%	Pooled specificity	P%	Pooled DOR	P%	RDOR	P value
Classification 1	18	51(45.58)	74.6	94(92.96)	80.1	23.90(14.09,40.59)	0		
Classification 2	12	52(46.57)	92.1	97(95.98)	17.1	2.28(0.74,57.13)	48.9		
Sample size ≥50	8	55(49.61)	94.6	96(94.98)	31.0	29.61(8.70,100.79)	62.9	1.00(0.99,1.02)	0.617
<40	4	39(27.52)	40.9	100(92.10)	0	12.29(2.89,64.09)	0		
Location									
USA	9	45(37.49)	88.6	97(94.98)	27	14.51(8.33,35.52)	37.3	3.37(2.72,4.10)	0.304
other countries	3	83(73.91)	93.3	98(90.10)	0	115.55(62.12,189.3)	46.9		
Centers									
Single	11	54(48.69)	92.5	97(95.98)	23	25.61(9.55,68.65)	51.5		
Multiple	1	28(12.49)	NA	100(100.10)	NA	3.64(1.76,4.76)	NA		
Design									
Retrospective	11	56(50.62)	92.4	97(95.98)	23.2	26.02(8.26,81.93)	53.6		
Prospective	1	38(26.50)	NA	96(91.99)	NA	15.42(5.27,16.01)	NA		
Length of studies									
<100 months	9	58(52.65)	92.5	97(94.99)	36.7	34.33(8.21,14.52)	58.0	0.39(0.36,1.02)	0.267
≥160 months	3	35(25.45)	92.5	96(91.98)	0	12.37(5.57,8.94)	0		
Needle type									
22	6	61 (52.69)	92.6	98(94.10)	0	30.99(6.50,157.90)	40.6		
Unknown	4	33 (24.43)	97	97(93.99)	66.7	8.57(3.36,21.86)	85.3		
19 or 22	2	58 (48.67)	98	96(91.98)	0	95.06(4.80,61.74)	4.78(1.14,26.0)	0.035	
Ratio of male to female	≥1	2	62 (50.73)	98.1	98 (94.10)	77.8	220.05(14.41,317.16)	43.4	
Unknown	<1	4	38 (29.48)	92.9	97 (94.99)	1.5	15.94(5.34,14.19)	52.7	
Successful aspiration rate	≥0.9, <1	5	36 (24.10)	98.0	95 (94.99)	19.9	15.52(3.39,333.32)	0	
0–0.9	4	48 (38.76)	94.3	95 (98.99)	46.6	44.88(3.91,51.23)	72.3		
Unknown	3	49 (42.55)	91.6	97 (94.99)	33.6	17.17(3.57,54.85)	44.5		
Whether cytopathologist onsite or not	Yes	3	33 (26.94)	95 (94.98)	30.6	0.95 (25.7,18.77)	0		
Unknown	8	61 (54.67)	94.1	98 (95.10)	4	49.99(11.67,241.16)	45.7		
Net	1	37 (28.50)	NA	96 (91.99)	NA	14.52(5.23,16.01)	NA		
Average age of patients in each study	Available	6	48 (41.55)	92.5	97 (95.99)	29	34.35(6.2,116.52)	45.9	
Unknown	6	57 (49.66)	92.9	96 (91.98)	1.5	15.84(5.34,6.18)	53.7		
QIADAS of included studies	≥10	5	48 (41.56)	93.5	96 (95.96)	57.6	24.87(5.8,108.61)	62.8	
≤10	7	56 (48.64)	92.1	97 (94.99)	0	22.07(5.53,88.08)	44.2		
Experts participated to performing EUS-FNA	≥2	4	46 (32.61)	96 (90.00)	46.8	10.56(3.73,33.08)	1.3		
1	2	75 (61.86)	97.5	98 (92.98)	0	73.64(40.12,1299)	89.1		
Unknown	6	48 (41.55)	94	98 (91.98)	20.7	24.51(6.13,97.07)	45.3		

Sensitivity analysis

We performed sensitivity analysis by identifying the studies that produced edge values as shown in Figure 2 and Figure 3. After excluding the studies of Zhang [30], Linder [17].
heterogeneity remains. This indicates that the pooled diagnostic value of the included studies is stable and reliable.

After exclusion of the studies by Linder [17] and Frossard [33] in classification 2, the remaining studies are homogeneous. However, the sensitivity declines to 0.36, with I² of 0, and specificity is 0.97, with I² of 28.3%. The DOR is 11.76, with I² of 0. Combining subgroup and meta-regression analyses indicates that factors such as gender, sample size, interval time, and others may affect the ability of EUS-FNA to evaluate pre-malignancy and malignancy of PCLs.

Publication bias analysis

The Begg’s funnel plot is symmetric (Fig. 4a). Additionally, valuation of publication bias (Fig. 4b) by Begg’s (P=0.174) and Egger’s (P=0.078) tests indicates that publication bias did not affect the pooled diagnostic accuracy of this meta-analysis.
Discussion

Due to its malignancy or its potential to be malignant, patients with pancreatic mucinous neoplasm are recommended to undergo resection therapy [35]. However, for patients with high risk of postsurgical complications, the preoperative determination of malignancy is critical for management of these lesions. We can most benefit from modern medicine if malignant PCLs are removed or monitored and benign PCLs are not exposed to unwarranted surgery or surveillance. Therefore, we are in need of exploring a more accurate and less invasive diagnostic tool. After a comprehensive meta-analysis of diagnostic accuracy, we have demonstrated that EUS-FNA can accurately confirm the presence of malignancy, but does not perform well at excluding malignant or premalignant pancreatic lesions. In clinic
practice, the majority of patients diagnosed with benign lesions such as simple cyst by other convenient inspection before, they do not carry out EUS-FNA and will not undergo surgical resection. Statistically, this have in some degree led to lower sensitivity falsely unavoidably. Thus, EUS-FNA reasonably deserves a higher sensitivity than we have, here, concluded.

In this study, we first conservatively defined only high-grade dysplasia and carcinoma as positive results; we then cautiously classified premalignant and suspicious lesions as positive results. Between these two categories, the sensitivity (94% vs. 97%), specificity (51% vs. 52%), DOR (23.90 vs. 22.35), and AUC (0.9009 vs. 0.9482) varies little. Subgroup analysis reveals gender as a factor that causes heterogeneity between studies, as those with more female than male patients have a lower sensitivity (38% vs. 62%). Studies grouped by other factors (seen in Table 4) are partially heterogeneous. This suggests that pooling of data is appropriate, but that improvement by meta-regression was not always statistically significant. Given that there are an insufficient number of multicenter, randomized controlled trials, these subgroup factors may, in fact, be critical.

Although several large sample studies reported primary complications of 1-3.6% [36-39] for PCLs, higher than that of solid pancreatic lesions, none of included studies reported severe complications during EUS-FNA.

In order to interpret the results of this study, the following strengths and limitations must be considered: 1) each study has its own descriptions for malignancy, gold standard of diagnosis, study design, and localization of pancreas, allowing for divergence between the studies themselves; 2) some important factors (such as size of cyst) are not available in each study, making further analysis difficult; 3) cultivation of a qualified operator is a costly endeavor; and the experience of this operator has a great impact on the results [40]; 4) the obtained samples are often bloody and contaminated by the gastrointestinal tract [41]; 5) EUS-FNA based cytology, unlike CT and MRI, cannot detect distant metastatic disease.

To date, most studies have focused on either pancreatic solid lesions or mucinous pancreatic neoplasm. There are a limited number of studies that focus primarily on pancreatic cystic lesions. Thus, this is the first meta-analysis to evaluate the diagnostic accuracy of EUS-FNA in all types of pancreatic cystic lesions. Our results are similar to previous meta-analysis that evaluated the diagnostic accuracy of EUS-FNA in differentiation of mucinous from non-mucinous pancreatic neoplasms [7]. This study demonstrated a sensitivity and specificity of 0.54 and 0.93 because non-mucinous pancreatic neoplasms belong to the larger category of pancreatic cystic lesions and mostly develop into malignant bodies.

Advantages such as being minimally invasive, possessing higher accuracy than CT or MRI [42], and having a lower cost and lower specimen requirement (than EchoBrush) [43], may lead to increased use of EUS-FNA in diagnosis of cystic pancreatic lesions. In addition, pseudocysts and some benign cystic lesions can be treated by aspiration and drainage [44]. Furthermore, a combination of genetic markers, molecular analysis, and DNA analysis of affiliated samples obtained from EUS-FNA will enhance the accuracy of cytology.

In order to further investigate the validity of cytology from EUS-FNA for the early diagnosis and prediction of prognosis in PCLs, future studies will consider additional practical factors. We hope that a more reasonable algorithm of EUS-FNA will be developed to confirm the value of this promising tool in the management of pancreatic cystic lesions.

Disclosure Statement

The authors have declared that no competing interests exist.

Acknowledgements

This study is supported by The Natural Science Foundation of Hubei Province (No.2012FFB04303).
References

1. Fernandez-del CC, Warshaw AL: Cystic tumors of the pancreas. Surg Clin North Am 1995;75:1001-1016.
2. Warshaw AL, Rutledge FL: Cystic tumors mistaken for pancreatic pseudocysts. Ann Surg 1987;205:393-398.
3. Balthazar EJ, Chako AC: Computed tomography of pancreatic masses. Am J Gastroenterol 1990;85:343-349.
4. Suzuki Y, Atomi Y, Sugiyama M, Isaji S, Inui K, Kimura W, Sunamura M, Furukawa T, Yanagisawa A, Aiyama J, Takada T, Watanabe H, Suda K: Cystic neoplasms of the pancreas: A Japanese multinstitutional study of intraductal papillary mucinous tumor and mucinous cystic tumor. Pancreas 2004;28:241-246.
5. Oh HC, Kim MH, Hwang CY, Lee TY, Lee SS, Seo DW, Lee SK: Cystic lesions of the pancreas: Challenging issues in clinical practice. Am J Gastroenterol 2008;103:229-239, 228, 240.
6. Tanaka M, Fernandez-del CC, Adsay V, Chari S, Falconi M, Jang JY, Kimura W, Levy P, Pitman MB, Schmidt CM, Shimizu M, Wolfgang CL, Yamaguchi K, Yamao K: International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology 2012;12:183-197.
7. Thornton GD, McPhail MJ, Nayagam S, Hewitt MJ, Vlavianos P, Monahan KJ: Endoscopic ultrasound guided fine needle aspiration for the diagnosis of pancreatic cystic neoplasms: A meta-analysis. Pancreatology 2013;13:48-57.
8. Hewitt MJ, McPhail MJ, Possamai L, Dhar A, Vlavianos P, Monahan KJ: EUS-guided FNA for diagnosis of solid pancreatic neoplasms: A meta-analysis. Gastrointest Endosc 2012;75:319-331.
9. Mei M, Ni J, Liu D, Jin P, Sun L: EUS elastography for diagnosis of solid pancreatic masses: A meta-analysis. Gastrointest Endosc 2013;77:578-589.
10. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J: The development of QUADAS: A tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25.
11. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ 2003;327:557-560.
12. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539-1558.
13. Deeks JJ: Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests. BMJ 2001;323:157-162.
14. DeVille WL, Buntinx F, Bouter LM, Montori VM, de Vet HC, van der Windt DA, Bezemer PD: Conducting systematic reviews of diagnostic studies: Didactic guidelines. BMC Med Res Methodol 2002;2:9.
15. Begg CB, Mazumdar M: Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088-1100.
16. Egger M, Davey SG, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629-634.
17. Linder JD, Geenen JE, Catalano MF: Cyst fluid analysis obtained by EUS-guided FNA in the evaluation of discrete cystic neoplasms of the pancreas: A prospective single-center experience. Gastrointest Endosc 2006;64:697-702.
18. Pais SA, Attasaranya S, Leblanc JK, Sherman S, Schmidt CM, DeWitt J: Role of endoscopic ultrasound in the diagnosis of intraductal papillary mucinous neoplasms: Correlation with surgical histopathology. Clin Gastroenterol Hepatol 2007;5:489-495.
19. Zhai J, Sarkar R, Ylagon L: Pancreatic mucinous lesions: A retrospective analysis with cytohistological correlation. Diagn Cytopathol 2006;34:724-730.
20. Zhan XB, Wang B, Liu F, Ye XF, Jin ZD, Li ZS: Cyst fluid carcinoembryonic antigen concentration and cytology by endosonography-guided fine needle aspiration in predicting malignant pancreatic mucinous cystic neoplasms. J Dig Dis 2013;14:191-195.
21. Maire F, Voitot H, Aubert A, Palazzo L, O'Toole D, Couvelard A, Levy P, Vidaud M, Savanet A, Ruszniewski P, Hammel P: Intraductal papillary mucinous neoplasms of the pancreas: Performance of pancreatic fluid analysis for positive diagnosis and the prediction of malignancy. Am J Gastroenterol 2008;103:2871-2877.
22. Attasaranya S, Pais S, LeBlanc J, McHenry L, Sherman S, DeWitt JM: Endoscopic ultrasound-guided fine needle aspiration and cyst fluid analysis for pancreatic cysts. JOP 2007;8:553-563.
23. Pang JC, Minter RM, Kwon RS, Simeone DM, Roh MH: The role of cytology in the preoperative assessment and management of patients with pancreaticobiliary tract neoplasms. J Gastrointest Surg 2013;17:501-510.
24. Pitman MB, Genevay M, Yaeger K, Chebib I, Turner BG, Mino-Kenudson M, Brugge WR: High-grade atypical epithelial cells in pancreatic mucinous cysts are a more accurate predictor of malignancy than “positive”
cytology. Cancer Cytopathol 2010;118:434-440.

25 Sawhney MS, Devarajan S, O’Farrel P, Curie MS, Kundu R, Vollmer CM, Brown A, Chuttani R, Pleskow DK: Comparison of carcinoembryonic antigen and molecular analysis in pancreatic cyst fluid. Gastrointest Endosc 2009;69:1106-1110.

26 Brandwein SL, Farrell JJ, Centeno BA, Brugge WR: Detection and tumor staging of malignancy in cystic, intraductal, and solid tumors of the pancreas by EUS. Gastrointest Endosc 2001;53:722-727.

27 Oguz D, Oztas E, Kalkan IH, Tayfar O, Cicek B, Aydog G, Kurt M, Beyazit Y, Etlik D, Nadir I, Sahin B: Accuracy of endoscopic ultrasound-guided fine needle aspiration cytology on the differentiation of malignant and benign pancreatic cystic lesions: A single-center experience. J Dig Dis 2013;14:132-139.

28 Maker AV, Lee LS, Raut CP, Clancy TE, Swanson RS: Cytology from pancreatic cysts has marginal utility in surgical decision-making. Ann Surg Oncol 2008;15:3187-3192.

29 Cizginer S, Turner BG, Bilge AR, Karaca C, Pitman MB, Brugge WR: Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts. Pancreas 2011;40:1024-1028.

30 Zhang S, Defrias DV, Alasadi R, Naja R: Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA): Experience of an academic centre in the USA. Cytopathology 2010;21:35-43.

31 Qian X, Hecht JL: Pancreatic fine needle aspiration. A comparison of computed tomographic and endoscopic ultrasonographic guidance. Acta Cytol 2003;47:723-726.

32 Sedlack R, Affi A, Vazquez-Quezeseo E, Norton ID, Clain JE, Wiersema MJ: Utility of EUS in the evaluation of cystic pancreatic lesions. Gastrointest Endosc 2002;56:543-547.

33 Frassoldi JL, Amoural P, Amoural G, Palazzo L, Amaral S, Soldan M, Girotra E, Spahr I, Hadengue A, Fabre M: Performance of endosonography-guided fine needle aspiration and biopsy in the diagnosis of pancreatic cystic lesions. Am J Roentgenol 2003;180:1516-1524.

34 Woolf KM, Liang H, Sletten ZJ, Russell DK, Bonfiglio TA, Zhou Z: False-negative rate of endoscopic ultrasound-guided fine-needle aspiration for pancreatic solid and cystic lesions with matched surgical resections as the gold standard: One institution’s experience. Cancer Cytopathol 2013;121:449-458.

35 Jacobson BC, Baron TH, Adler DG, Davila RE, Egan J, Hirota WK, Leighton JA, Qureshi W, Rajan E, Zuckerman MJ, Fanelli R, Wheeler-Harbaugh J, Faigel DO: ASGE guideline: The role of endoscopy in the diagnosis and management of cystic lesions and inflammatory fluid collections of the pancreas. Gastrointest Endosc 2005;61:363-370.

36 Green FG, Hawes RH, Swihart TJ, Ikenberry SO, Lehman GA: Endoscopic ultrasound-guided fine-needle aspiration biopsy using linear array and radial scanning endosonography. Gastrointest Endosc 1999;45:243-250.

37 Carrara S, Arcidiacono PG, Mezzi G, Pertrone MC, Boemo C, Testoni PA: Pancreatic endoscopic ultrasound-guided fine needle aspiration: Complication rate and clinical course in a single centre. Dig Liver Dis 2010;42:520-523.

38 Lee LS, Saltzman JR, Bounds BC, Pomeross JM, Brugge WR, Thompson CC: EUS-guided fine needle aspiration of pancreatic cysts: A retrospective analysis of complications and their predictors. Clin Gastroenterol Hepatol 2005;3:231-236.

39 Al-Haddad M, Raimondo M, Woodward T, Krishna M, Pungpapong S, Noh K, Wallace MB: Safety and efficacy of cytology brushings versus standard FNA in evaluating cystic lesions of the pancreas: A pilot study. Gastrointest Endosc 2007;65:894-898.

40 Eloubeidi MA, Tamhane A: EUS-guided FNA of solid pancreatic masses: A learning curve with 300 consecutive procedures. Gastrointest Endosc 2005;61:700-708.

41 Thosani N, Thosani S, Qiao W, Fleming JB, Bhutani MS, Guha S: Role of EUS-FNA-based cytology in the diagnosis of mucinous pancreatic cystic lesions: A systematic review and meta-analysis. Dig Dis Sci 2010;55:2756-2766.

42 Khoshab MA, Kim K, Lennon AM, Shin EJ, Tignor AS, Amatue SK, Singh VK, Wolfgang CL, Hruban RH, Canto MI: Should we do EUS/FNA on patients with pancreatic cysts? The incremental diagnostic yield of EUS over CT/MRI for prediction of cystic neoplasms. Pancreas 2013;42:717-721.

43 Bruno M, Bosco M, Carucci P, Pacchioni D, Repici A, Mezzabotta I, Pellicano R, Fadda M, Saracco GM, Bussolati G, Rizzetto M, De Angelis C: Preliminary experience with a new cytology brush in EUS-guided FNA. Gastrointest Endosc 2009;70:1220-1224.

44 Brugge WR, Lewandrowski K, Lee-Lewandrowski E, Centeno BA, Szydlo T, Regan S, Del CC, Warshaw AL: Diagnosis of pancreatic cystic neoplasms: A report of the cooperative pancreatic cyst study. Gastroenterology 2004;126:1330-1336.