Abstract

In this paper, we address sorting networks that are constructed from comparators of arity $k > 2$. I.e., in our setting the arity of the comparators – or, in other words, the number of inputs that can be sorted at the unit cost – is a parameter. We study its relationship with two other parameters – n, the number of inputs, and d, the depth.

This model received considerable attention. Partly, its motivation is to better understand the structure of sorting networks. In particular, sorting networks with large arity are related to recursive constructions of ordinary sorting networks. Additionally, studies of this model have natural correspondence with a recent line of work on constructing circuits for majority functions from majority gates of lower fan-in.

Motivated by these questions, we initiate the studies of lower bounds for constant-depth sorting networks. More precisely, we consider sorting networks of constant depth d and estimate the minimal k for which there is such a network with comparators of arity k. We prove tight lower bounds for $d \leq 4$. More precisely, for depths $d = 1, 2$ we observe that $k = n$. For $d = 3$ we show that $k = \lceil \frac{n}{2} \rceil$. As our main result, we show that for $d = 4$ the minimal arity becomes sublinear: $k = \Theta(\frac{n^2}{3})$. This contrasts with the case of majority circuits, in which $k = O(\frac{n^2}{3})$ is achievable already for depth $d = 3$. To prove these results, we develop a new combinatorial technique based on the notion of access to cells of a sorting network.

1 Introduction

A sorting network receives an array of numbers and outputs the same numbers in the non-decreasing order. It consists of comparators that can swap any two numbers from the array if they are not in the non-decreasing order. The main parameters of a sorting network are the size, that is, the number of comparators, and the depth, that is, the number of layers in the network, where each layer consists of several comparators applied to disjoint pairs of variables. Sorting networks are a classical model in theoretical computer science with vast literature devoted to them, see, for example [4, 1, 22, 26, 24, 16, 28, 7], see also the Knuth’s book [17] and the Baddar’s and Batcher’s book [3]. Despite considerable efforts, still there are many open problems related to sorting networks.
In this paper, our main interest is the depth of sorting networks. There is a folklore $(2 - o(1)) \log_2 n$ depth lower bound for networks sorting n numbers. It was improved by Yao [32] and later by Kahale et al. [16] with the current record about $3.27 \log_2 n$. As for upper bounds, a construction with $O(\log n)$ depth was given in [1] and is usually referred to as the AKS sorting network. However, this construction is very complicated and impractical due to a large constant hidden in the O-notation. There are some simplifications and improvements of this construction [26, 28], but they did not make it practical. On the other hand, there are several simple and practical constructions of depth $\Theta(\log^2 n)$ [17, 4, 24].

One could also consider sorting networks with comparators that have $k > 2$ inputs. We will call them k-sorting networks. They appear in the literature since 70s, the setting is mentioned already in the Knuth’s book [17, Problem 5.3.4.54], followed by numerous works [30, 25, 5, 23, 9, 21, 29, 11, 33]. They are usually studied to better understand the structure of ordinary sorting networks. More specifically, they are closely related to recursive constructions of sorting networks. Having a good construction of a k-sorting network, one can apply it to its own comparators, getting a construction with smaller k, until eventually k becomes 2, and we get an ordinary sorting network.

Any k-sorting network with n inputs must have depth at least $\log_k n$ because otherwise outputs cannot be connected to all n inputs. Parker and Parbery [25] constructed a simple and potentially practical k-sorting network of depth $\leq 4 \log^2_k n$ (in case when n is an integral power of k). At the same time, as Chvátal shows in his lecture notes [8], the AKS sorting network also generalizes to this setting, giving a construction of depth $O(\log_k n)$. However, as with the AKS sorting network itself, this construction is complicated and impractical. So the search for simple constructions continues.

There is a related setting of computing majority function by monotone Boolean circuits. Majority function receives as input a sequence of n bits and outputs 1 if and only if more than a half of the inputs are 1’s. Monotone Boolean circuits consist of AND and OR gates of fan-in 2. There is a quest of constructing a monotone Boolean circuit for majority which is simple and practical and has depth $O(\log n)$. Note that it can only be easier than an analogous quest for sorting networks. This is because a sorting network can be transformed into a monotone Boolean circuit which computes majority and has the same depth. Indeed, if we restrict inputs to $\{0, 1\}^n$, then each comparator can be simulated by a pair of AND and OR gates (AND computes the minimum of two Boolean inputs and OR computes the maximum). And the majority is just the median bit of the sorted array. In particular, we get an $O(\log n)$-depth monotone circuit for majority from the AKS sorting network. Yet again, the resulting circuit has the same disadvantages as the AKS construction. But in contrast to sorting networks, there is an alternative construction of a monotone depth-$O(\log n)$ Boolean circuit for majority due to Valiant [31]. His construction is simple and has a reasonable constant hidden in the O-notation, but it is randomized. It was partially derandomized and made closer to practice by Hoory, Magen and Pitassi [13]. But still all known fully deterministic constructions that are simple and practical are of depth $\Theta(\log^2 n)$.

Just as with sorting networks, we can consider circuits for majority function that are constructed from threshold gates of fan-in at most k. A threshold gate is a Boolean function that first sorts its input bits in the non-decreasing order, and then outputs the ith one from the beginning, for some fixed $1 \leq i \leq k$. For $k = 2$, AND and OR are the only two threshold functions. In general, there are k threshold functions of fan-in k. By taking one copy of each, we get a comparator of arity k. Thus, as in the case $k = 2$, a k-sorting network can be transformed into a circuit of the same depth which computes majority and consists of threshold gates of fan-in k. In other words, constructing a k-sorting network can only be harder than constructing a circuit for majority with threshold gates of fan-in k.
There is a line of work, initiated by Kulikov and Podolskii [19], which addresses the following question: given d and n, what is the minimal k for which there exists a circuit with threshold gates of fan-in k, which has depth d and computes majority on n bits? The paper [19] shows that, up to a polylogarithmic factor, $k \geq n^{14/(7d+6)}$. In subsequent works, special attention was given to the case $d = 2$. In this case, the lower bound of [19] is $k \geq n^{14/20}$. It was improved to $k \geq n^{7/5}$ by Engels et al. [10]. Then a linear lower bound $k \geq n/2 - o(n)$ was obtained by Hrubes et al. [14]. An upper bound $k \leq 2n/3 + O(1)$ was given in [6, 27]. Let us also mention an upper bound $k \leq n - 2$ for circuits that only use majority gates [18, 2].

Now, for $d \geq 3$ the situation is less clear. For $d = 3$, the paper [19] gave an upper bound $k = O(n^{2/3})$. In turn, their lower bound in this case is of order $n^{14/27}$. We are not aware of any non-trivial upper bound for $d \geq 4$.

It is worth mentioning a paper by Hrubes and Rao [15], where they study a more general problem of computing Boolean functions by depth-2 circuits, consisting of arbitrary functions of small fan-in as gates. Recently, Lecomte, Ramakrishnan and Tan [20] obtained tight lower bounds for majority function in this model.

Our results

We address the question analogous to the question of [19], but in the context of k-sorting networks. Namely, given d and n, we seek for the smallest k for which there exists a k-sorting network with n inputs and depth d. Of course, any lower bound for threshold circuits is also a lower bound for k-sorting networks. However, by exploiting a special structure of sorting networks, we obtain stronger lower bounds. More specifically, we obtain matching upper and lower bounds for d up to 4 (while for threshold circuits it is open already for $d = 3$). For $d = 1, 2$ we show that k must be equal to n. For $d = 3$ we show that the optimal k is equal to $\lceil n/2 \rceil$. Finally, for $d = 4$ we show that $k = \Theta(n^{2/3})$.

Comparing our results with the previous ones (see Figure 1), we get that constructing sorting networks is strictly harder than threshold circuits for $d = 2, 3$. Indeed, for $d = 2$ a non-trivial threshold circuit exists, while a non-trivial sorting network does not. For $d = 3$, there exists a construction with sub-linear k in the model of threshold circuits, but not in the model of sorting networks. It seems likely that there is a gap for $d = 4$ as well. Indeed, for sorting networks the optimal k is $\Theta(n^{2/3})$, while for threshold circuits we have an upper bound $O(n^{2/3})$ already for $d = 3$.

We also obtain a lower bound $k \geq (n/2)^{1/[d]}$ for arbitrary d. It is only slightly better than the lower bound of [19] (and their lower bound, unlike ours, is for threshold circuits). For large d, both lower bounds are close to $n^{2/d}$. On the other hand, our proof is much simpler.

Let us also discuss our results in the context of recursive constructions of sorting networks. Assume that for some $0 < \gamma < 1$ and for some constant d, we have a construction of an n^γ-sorting network with n inputs and depth d. We can apply this construction to its own comparators. Namely, we replace each comparator by a sorting network with n^γ inputs and depth d, whose comparators now are of arity $(n^\gamma)^\gamma = n^{\gamma^2}$. As a result, we get an n^{γ^2}-sorting network with n inputs and depth d^2. By iterating this, we eventually get an ordinary 2-sorting network of depth $O((\log n)^{\theta})$, where $\theta = \log_{1/\gamma} d$.

We raise the following question: do there exist $0 < \gamma < 1$ and $d \in \mathbb{N}$ with $\theta = \log_{1/\gamma} d < 2$ such that for all n there exists an n^γ-sorting network with n inputs and depth d^2? Our motivation is to find out, whether there exists a recursive construction of a 2-sorting network of depth $O((\log n)^{2-\varepsilon})$, for some $\varepsilon > 0$. Our results answer negatively to this question for
43:4 Constant-Depth Sorting Networks

Arity	Depth	$d=1$	$d=2$	$d=3$	$d=4$	arbitrary d
networks	$k=n$	$k=n$	$k=[n/2]$	$k=\Theta(n^{2/3})$	$k\geq (n/2)^{1/\gamma}$	
circuits	$k=n$	$\frac{n}{2}\leq k\leq \frac{2n}{3}$	$k=O(n^{2/3})$	$k=\tilde{\Omega}(n^{7/17})$	$k\geq \tilde{\Omega}(n^{14/7d+6})$	

Figure 1 Comparison of our results for sorting networks with previous results for threshold circuits.

d up to 4. Indeed, for $d=2,3$ our lower bound on k is linear in n, while in our problem γ has to be smaller than 1. Now, for $d=4$ our lower bound is $\gamma \geq 2/3$, while in order for $\theta = \log_{1/\gamma} 4$ to be smaller than 2, the value of γ has to be smaller than $1/2$.

We see no indication, however, that the answer to our question is negative for $d=5$, let alone larger d's. There is a possibility that at a relatively small depth d (say, about 10) hides a construction that would give us an ordinary sorting network with nearly logarithmic depth. Therefore, we believe that extending our results to larger d's would improve our understanding of sorting networks.

The rest of the paper is organized as follows. In Section 2 we provide the necessary preliminary information, introduce the main techniques and use it to obtain the first results – a bound for arbitrary depth and bounds for depth 1 and 2. In Section 3 we prove the results on sorting networks of depth 3. In Section 4 we prove the result on sorting networks of depth 4.

2 The Techniques and Initial Results

We start with some terminology related to sorting networks. A depth-d network with n inputs consists of $d+1$ arrays enumerated from 1 to $d+1$, each having n cells. We imagine these arrays arranged from left to right, see Figure 2 for an example. We denote cells in the arrays by $c_{a,b}$ for $a=1,\ldots,d+1$ and $b=1,\ldots,n$. Cells $c_{1,b}$ are input cells, each of these cells can contain an arbitrary integral number. We will refer to cells $c_{d+1,b}$ as output cells of the network.

Next, between any two consecutive arrays of cells there is a *layer of comparators*. They are enumerated from 1 to d, so the ath layer is between the ath array and the $(a+1)$st array. Formally, a layer of comparators is a partition of the set $\{1,2,\ldots,n\}$ into subsets called *comparators*. The maximal size of a comparator over all layers is called the *arity* of the network (we usually denote the arity by k).

If $I \subseteq \{1,2,\ldots,n\}$ is a comparator from the ath layer, then it is applied to the cells $c_{a,i}, i \in I$ (we will refer to these cells as input cells of I). It sorts their values in the non-decreasing order and writes the results into the cells $c_{a+1,i}, i \in I$ (we will refer to them as output cells of I). In this way, given an assignment of the input cells of the network, one inductively (from left to right) defines the values of the remaining cells of the network. We say that a network is *sorting* if for any input the array with index $d+1$ (one with the output cells) is sorted.
Figure 2 A sorting network with $n = 8$, $d = 3$, $k = 4$. There are 4 arrays of cells going from left to right. The arrow shows the ordering of the arrays (it goes from small to large indices). The comparators of the network are given by the colors of circles over the lines. For example, the second layer has two comparators – the dark gray one has as inputs the 1st, the 2nd, the 5th, and the 6th cell of the second array, and the light gray one has as inputs the 3rd, the 4th, the 7th, and the 8th cell of the second array.

Sometimes, to avoid overusing indices of the arrays, we will refer to cells of the ath array as cells after the ath layer (of comparators) or before the $(a + 1)$st layer. For example, input cells are cells before the first layer and cells of the $(d + 1)$st array are cells after the last layer.

In our upper bound for $d = 3$ we will employ the following classical principle.

▶ **Lemma 1** (Zero-one principle [17]). A network with n inputs sorts all integer sequences in the non-decreasing order if and only if it sorts all sequences from $\{0, 1\}^n$ in the non-decreasing order.

By this principle, when constructing sorting networks, we can assume that each input cell receives either 0 or 1. In fact, we consider only binary inputs in our lower bounds as well.

In the rest of this section, we discuss our technique. It relies on the notion of access.

▶ **Definition 2.** Let N be a network, c be one of its cells and $x \in \{0, 1\}^n$ be an input to N. We say that we have access to c on x if the following two conditions hold. First, the value of c on x is 0. Second, there exists $x' \in \{0, 1\}^n$, obtained from x by changing some coordinate with 0 to 1, such that the value of c on x' is 1.

For example, on any input, before the first layer we have access to all cells that contain 0. If the network sorts all inputs correctly, then after the last layer we have access to a single cell with 0 – one with the largest index.

The following lemma establishes access stability.

▶ **Lemma 3.** Consider an arbitrary network (not necessarily one which sorts all inputs correctly) and an arbitrary cell c in it. Assume that we have access to c on some input $x \in \{0, 1\}^n$. Next, consider arbitrary $x' \in \{0, 1\}^n$, obtained from x by changing some coordinate with 0 to 1. Then, unless the value of c on x' is 1, we have access to c on x'.

Essentially, this lemma says the following. Consider an arbitrary network and some input to it. Assume that we have access to some cell c on this input. Next, imagine that we start flipping some input bits from 0 to 1. Then the only way we can lose access to c is when c gets value 1.
43:6 Constant-Depth Sorting Networks

Proof of Lemma 3. We have to show that if the value of c on x' is 0, then we have access to c on x'. Since we have access to c on x, there exists $y \in \{0,1\}^n$, obtained from x by changing some coordinate with 0 to 1, such that the value of c on y is 1. Assume that x' is the result of flipping the ith coordinate of x from 0 to 1. Similarly, assume that y is the result of flipping the jth coordinate of x from 0 to 1. Note that $x' \neq y$ because the value of c is 0 on x' and 1 on y. Hence, $i \neq j$. Let $z \in \{0,1\}^n$ be a vector, obtained from x by flipping x_i and x_j from 0 to 1. If we write down x, x', y, z one below another, they will look as follows:

	\ldots	i	j	\ldots
x		0	0	\ldots
x'		1	0	\ldots
y		0	1	\ldots
z		1	1	\ldots

Since the value of c on y is 1, the value of c on z is also 1. This is because z can be obtained from y by flipping the ith coordinate from 0 to 1. And when we flip one of the inputs to the network from 0 to 1, none of the cells which had 1 can get 0. Indeed, assume for contradiction that an output of some comparator becomes 0. Then one of the inputs to this comparator must also become 0. Going backwards, we conclude that one of the inputs to the network becomes 0. However, we only changed some input bit from 0 to 1, not the other way around.

To conclude, the value of c on z is 1, and z can be obtained from x' by flipping the jth coordinate from 0 to 1. Hence, we have access to c on x'.

Since any output of a sorting network depends on all of its inputs, for any sorting network we have that $k \geq n^{1/d}$. Otherwise the fan-in is just not enough to connect every input to an output. We can improve this lower bound almost quadratically using access stability.

Theorem 4. For any sorting network with parameters n, k and d we have $k \geq \left(\frac{n}{2}\right)^{\frac{1}{d/2}}$.

Proof. We define an auxiliary directed graph over our network. Its nodes are cells of the network. Next, for each comparator C, we draw a directed edge from every input cell of C to every output cell of C. We say that two cells are connected if there is a directed path between them in the graph.

Each non-input cell c is connected to at most k cells in the previous array (these are input cells of the comparator which has c as an output). Observe that the value of c is determined by the values of these k cells. Each of these k cells is connected to at most k cells in the array 2 steps to the left of c. More generally, in an array i steps to the left of c, there are at most k^i cells connected to c, and their values determine the value of c. Similarly, if we make i steps to the right of c, there will be at most k^i cells connected to c.

We proceed to the proof of the theorem. Assume for contradiction that $k < \left(\frac{n}{2}\right)^{1/(d/2)}$. Then $k^{d/2} < n/2$. Fix an arbitrary cell c after the $\lfloor d/2 \rfloor$th layer to which we have access on $(0,0,\ldots,0)$ (such c exists because if we change the first input bit from 0 to 1, one of the cells after the $\lfloor d/2 \rfloor$th layer becomes 1). Starting from $(0,0,\ldots,0)$, we switch input cells that are not connected to c from 0 to 1, one by one. There are more than $n/2$ of them, because c is connected to at most $k^{d/2} < n/2$ input cells. Indeed, k is the arity of our network, and there are $\lfloor d/2 \rfloor$ layers of comparators between c and the input cells. Thus, we will make more than $n/2$ switches.

During this, the last array (one with the output cells) is getting filled with 1’s. It does it in the descending order, due to the fact that our network is sorting. Namely, the last cell of the array gets 1 first, then the cell before the last cell, and so on. After the ith switch, the cell getting 1 is the ith one from the end.
We claim that the last \(n/2 \) cells of the last array are connected to \(c \). This will be a contradiction, because \(c \) can be connected to at most \(k^{d/2} < n/2 \) output cells (there are \(d − \lfloor d/2 \rfloor = \lceil d/2 \rceil \) layers between \(c \) and the last array).

To prove this, we take any \(i \leq n/2 \) and show that \(c_i \) (a cell of the last array which is the \(i \)th one from the end) is connected to \(c \). Consider the moment before the \(i \)th switch. Currently, the last \(i − 1 \) cells of the last array are filled with 1’s and the rest of the cells there are filled with 0’s. Since we were switching only those input cells that are not connected to \(c \), the value of \(c \) is still 0. Hence, by Lemma 3, we still have access to \(c \). Therefore, it is possible to change the value of \(c \) from 0 to 1 by flipping one of the input bits. If we do this, the value of \(c_i \) must also change from 0 to 1 (the last array must remain sorted). This means that \(c \) and \(c_i \) are connected. This is because when we flip one of the inputs to the network from 0 to 1, all cells that change their value are connected. Indeed, every array gets exactly one more cell with 1. And if we consider two adjacent arrays and two cells in them that change their value, these two cells must go to the same comparator (one cell as an input, and the other one as an output). Hence, there must be an edge between these two cells.

For the rest of our results we will use the following method of lower bounding the fan-in.

\begin{definition}
Let \(m \) and \(n \) be arbitrary natural numbers. We call a sequence of vectors \(x^1, x^2, \ldots, x^m \in \{0,1\}^n \) a growing branch if for every \(1 \leq i < m \) we have that \(x^{i+1} \) is obtained from \(x^i \) by changing some coordinate with 0 to 1.
\end{definition}

\begin{lemma}
Consider any sorting network with \(n \) inputs. Assume that there exists a growing branch \(x^1, x^2, \ldots, x^{k-1} \in \{0,1\}^n \) of length \(k − 1 \) such that for every \(i = 1, \ldots, k − 1 \) there exist at least 2 cells before the last layer to which we have access on \(x^i \). Then the arity of one of the comparators from the last layer is at least \(k \).
\end{lemma}

\begin{proof}
Consider any growing branch \(x^1, \ldots, x^{k-1} \in \{0,1\}^n \) satisfying assumptions of the lemma. Let \(S_i \) be the set of cells before the last layer to which we have access on \(x^i \). By assumptions of the lemma, \(|S_i| \geq 2 \) for every \(1 \leq i \leq k − 1 \). Set \(S = S_1 \cup S_2 \cup \ldots \cup S_{k−1} \).

First, we show that \(|S| \geq k \). Second, we show that all cells from \(S \) go to the same comparator in the last layer. So this comparator must have arity at least \(k \).

As for the first claim, for every \(i < k − 1 \) consider a cell before the last layer which becomes 1 when we switch from \(x^i \) to \(x^{i+1} \). On one hand, we have access to this cell on \(x^i \). On the other hand, we do not have access to it on \(x^{i+1}, \ldots, x^{k−1} \) (simply because this cell equals 1 on these inputs). Hence, for every \(i < k − 1 \), we have \(|S_i \setminus (S_{i+1} \cup \ldots \cup S_{k−1})| \geq 1 \).

Thus,
\[
|S| \geq |S_1 \setminus (S_2 \cup \ldots \cup S_{k−1})| + \ldots + |S_{k−2} \setminus S_{k−1}| + |S_{k−1}| \\
\geq k − 2 + |S_{k−1}| \geq k.
\]

As for the second claim, note first that for every \(1 \leq i \leq k − 1 \) all cells from \(S_i \) go to the same comparator. Indeed, otherwise we have access to 2 different output cells on \(x^i \).

To show that actually all cells from \(S \) go to the same comparator in the last layer, we show that \(S_i \cap S_{i+1} \neq \emptyset \) for every \(1 \leq i < k − 1 \). Indeed, \(S_i \) contains at least 2 cells. One of them stays 0 when we switch from \(x^i \) to \(x^{i+1} \). By Lemma 3, we do not lose access to this cell after the switch. Hence, this cell is also in \(S_{i+1} \).

As a simple illustration of this method, we show that the arity of any sorting network of depth \(d \leq 2 \) is maximal possible.

\begin{proposition}
For any sorting network with parameters \(n, k \) and \(d \leq 2 \) we have \(k = n \).
\end{proposition}
Proof. For \(d = 1 \), in a network with \(k < n \), output cells would be disconnected with some input cells.

Suppose now there is a network with \(d = 2 \) and \(k < n \). Call an input to our sorting network proper if at least 2 comparators from the first layer receive at least one cell with 0 on this input. Observe that we have access to at least 2 cells before the last (that is, after the first) layer on any proper input. Indeed, if a comparator from the first layer receives at least one cell with 0, then we have access to one of the outputs of this comparator. Now, on a proper input we have this for at least 2 different comparators.

To finish the argument, we construct a growing branch of length \(n - 1 \), consisting of proper inputs. By Lemma 6, this shows that \(k \) must be equal to \(n \).

Consider the all-zeros input \((0, 0, \ldots, 0)\). It is proper because \(k < n \), which means that there are at least 2 comparators in the first layer, and all of them receive only 0’s. Fix two input cells going to different comparators in the first layer. Now we can add 1’s to all other cells one by one. Clearly, each input in the resulting growing branch is proper.

This way we add 1’s in this manner until their number is \(n - 2 \). The resulting growing branch of proper inputs will have length \(n - 1 \).

\[\square \]

3 Depth 3

Theorem 8. The minimal \(k \) for which there exists a sorting network with parameters \(n, k \) and \(d = 3 \) is \(k = \lceil n/2 \rceil \).

The rest of this section is devoted to the proof of this theorem.

Upper bound

It is enough to obtain the upper bound for even \(n \). Indeed, if \(n \) is odd, then just take a sorting network with parameters \(n + 1, k = (n + 1)/2 = \lceil n/2 \rceil \), \(d = 3 \) and plug-in 1 into the last input cell. The last cells of all the other arrays will also be 1. So we can just “disconnect” all these cells from the comparators they go in. The resulting network correctly sorts all sequences from \(\{0, 1\}^n \), and its arity can only be smaller than in the initial network.

From now on, we assume that \(n \) is even. We employ the Batcher’s odd-even mergesort [17]. Unfortunately, it gives us arity \(n/2 + 1 \) when \(n \) is not divisible by 4. To obtain the optimal arity, we have to modify it a bit. The idea is to merge even elements with odd elements, instead of merging even with even and odd with odd.

In more detail, we represent arrays as tables of the form:

\[
\begin{array}{cccc}
a_{1,1} & a_{2,1} & a_{3,1} & \ldots \\
a_{1,2} & a_{2,2} & a_{3,2} & \ldots \\
\end{array}
\]

where the ordering of the cells is as follows:

\[a_{1,1}, a_{1,2}, a_{2,1}, a_{2,2}, a_{3,1}, a_{3,2}, \ldots, a_{n/2,1}, a_{n/2,2}. \]

In the first layer, we sort both rows. Then we sort the following two sets of cells: \(T_0 = \{a_{i,j} \mid i + j \text{ is even}\} \) and \(T_1 = \{a_{i,j} \mid i + j \text{ is odd}\} \). For example, \(T_0 \) and \(T_1 \) look as follows for \(n = 10 \):

\[
\begin{align*}
a_{1,1} & \in T_0 & a_{2,1} & \in T_1 & a_{3,1} & \in T_0 & a_{4,1} & \in T_1 & a_{5,1} & \in T_0 \\
a_{1,2} & \in T_1 & a_{2,2} & \in T_0 & a_{3,2} & \in T_1 & a_{4,2} & \in T_0 & a_{5,2} & \in T_1
\end{align*}
\]
Finally, in the third layer, we sort all columns, that is, $a_{1,1}$ and $a_{1,2}$, $a_{2,1}$ and $a_{2,2}$, and so on. Description of the network is finished. We note that the arity of its first two layers is $n/2$, while the arity of the last layers is just 2.

We now prove that this network is sorting. First, we show that the number of 0’s in T_0 and the number of 0’s in T_1 always differ by at most 1 after the first layer. For this consider two rows separately. Both rows are sorted after the first layer. In the first row, the number of 0’s in T_0 is either equal to the number of 0’s in T_1 (if the number of 0’s in the row is even), or is greater by 1 (if the number of 0’s in the row is odd). For the second row, the number of 0’s in T_0 is either equal to the number of 0’s in T_1 or is less by 1. In total, the number of 0’s in T_0 and T_1 differs by at most 1.

After the second layer, T_1 and T_0 are sorted. This means that if we go from left to right, first we see some number of columns with two 0’s. Then there might be a column with 0 and 1, but only if the number of 1’s in T_1 and the number of 1’s in T_0 differ by 1. After this, there are only columns with two 1’s. Therefore, our array is already almost sorted. The only problem is that the column with 0 and 1 might have 1 on the top. But this will be fixed after the third layer.

Lower bound

For any sorting network of depth 3 we show the following: if all its comparators from the first and the second layer are of arity less than $\lceil n/2 \rceil$, then one of the comparators from the last layer has arity at least $\lfloor n/2 \rfloor + 2$. Since $\lfloor n/2 \rfloor + 2 > \lceil n/2 \rceil$, this establishes our lower bound.

We use Lemma 6. First, we consider the all-zeroes input. Then we start adding 1’s to it. This gives a growing branch of inputs. We will do this in such a way that for at least $\lfloor n/2 \rfloor + 1$ inputs in a row, there will be access to at least 2 cells before the last layer.

To have access to 2 different cells before the last layer (that is, after the second layer), it is sufficient to have access to 2 cells after the first layer that go to different second-layer comparators. Indeed, if we have access to some cell c, then we also have access to one of the outputs of the comparator c goes to (namely, to the last 0-output of this comparator). So we reduced our task to the following. For at least $\lfloor n/2 \rfloor + 1$ inputs in a row, we should have access to 2 cells after the first layer that go to different second-layer comparators.

Take any input. Consider cells after the first layer that get value 0 on this input. In the argument, we represent these cells as colored cubes that are arranged in vertical stacks (see Figure 3). Namely, for each first-layer comparator C there is a stack which consists of cubes corresponding to 0-outputs of C. In each stack, the order in which cubes go from the bottom to the top is the same as the order of the corresponding cells. In particular, on top of each stack we have the last 0-output of the comparator in question.

Next, we assign a distinct color to each comparator from the second layer. We do this to define a coloring of our cubes. Namely, given a cube c, its color is defined as follows. First, we consider the cell which is identified with c. This cell is an input to some second-layer comparator. The color of this comparator will be the color of c.

We have access to a cell after the first layer if and only if it is the last 0-output of some first-layer comparator. Such cells are represented by the top cubes of our stacks. Recall that we want to have access to 2 cells after the first layer that go to different second-layer comparators. This means to have 2 top cubes of different colors.

1 This claim is quite tight: we gave a construction in which the arity of the first two layers was $\lceil n/2 \rceil$, while the arity of the third layer was just 2.
Figure 3 Stacks of cubes. The first stack comes from the dark gray comparator in the first layer. It has two 0-outputs that both go to dark gray comparator in the second layer. So both cubes in the first stack are dark gray. The second stack comes from the light gray comparator in the first layer. One of its 0-outputs (one with the largest index) goes to the light gray comparator in the second layer. So the top cube in the second stack is light gray.

Now, adding 1’s to our input is equivalent to removing the top cubes one by one in some order. Indeed, assume we change the value of one of the input cells from 0 to 1. Consider a first-layer comparator C this cell goes to. The last 0-output of C now gets 1. Values of other cells after the first layer do not change. This just means that the top cube of the stack assigned to C gets removed.

Since the arity of any first-layer comparator is less than $\lceil n/2 \rceil$, each vertical stack has less than $\lceil n/2 \rceil$ cubes. Similarly, since the arity of any second-layer comparator is less than $\lceil n/2 \rceil$, for each color there are less than $\lceil n/2 \rceil$ cubes of this color. Thus, our task reduces to the following Cubes problem.

Cubes problem. There are n cubes, arranged in several vertical stacks. Each cube has a color. Each stack has less than $\lceil n/2 \rceil$ cubes (or equivalently, less than half of the cubes). For each color, there are less than $\lceil n/2 \rceil$ cubes (or equivalently, less than half of the cubes) of this color.

In one step, we can remove a cube from the top of one of the stacks. Show that there exists a way of removing cubes such that at least $\lfloor n/2 \rfloor + 1$ times in a row, not necessarily right from the start, there exist 2 top cubes of different colors (we stress that at different moments this might be different cubes).
Solution of the problem. We call a stack monochromatic if all its cubes are of the same color. For notation convenience, we set \(m = \lfloor n/2 \rfloor \). Our argument can be split into the following two lemmas.

▶ Lemma 9. There is a way of removing at most \(\lfloor m/2 \rfloor - 1 \) cubes from the initial configuration of cubes such that as the result we either have that

there exist 2 monochromatic stacks of different colors;

or that

\[
\begin{align*}
\text{(A)} & \quad \text{there exist 2 top cubes of different colors,} \\
\text{(B)} & \quad \text{there are at least 3 stacks, and at least 2 stacks are non-monochromatic.}
\end{align*}
\]

▶ Lemma 10. Consider any configuration of cubes which satisfies either (A) or (B). There exists an algorithm of removing cubes from this configuration for which the following holds: (a) when the algorithm stops, at most \(\lfloor m/2 \rfloor + 1 \) cubes are left; (b) throughout the execution of the algorithm (in particular, when the algorithm stops), there exist 2 top cubes of different colors.

Let us explain why these two lemmas imply a solution to our problem. First, using Lemma 9, we remove \(s \leq \lfloor m/2 \rfloor - 1 \) cubes so that now our configuration satisfies either (A) or (B). There are \(n - s \) cubes left. Then we apply the algorithm of Lemma 10. When it finishes, there are \(r \leq \lfloor m/2 \rfloor + 1 \) cubes left. So \(t = n - s - r + 1 \) times in a row we had 2 top cubes of different colors. It remains to show that \(t \geq \lfloor n/2 \rfloor + 1 \).

Proof of Lemma 9. If the initial configuration already satisfies (A), there is nothing left to do. Assume from now on that it does not. Then all the monochromatic stacks are of the same color. This implies that there are at least 2 non-monochromatic stacks. Indeed, otherwise there is at most one non-monochromatic stack, it has less than half of the cubes, so the color of the monochromatic stacks occupies more than half of the cubes.

Note, that there are at least 3 different stacks because each stack has less than half of the cubes.

Now, if initially there exist 2 top cubes of different colors, then the initial configuration already satisfies (B). Assume from now one that initially all top cubes have the same color. Take any 2 non-monochromatic stacks. Both of them contain a cube whose color differs from the top cubes. In both stacks, mark the highest cube with this property (so that all cubes above them have the same color as all the top cubes). Among the two marked cubes select one which has the least distance to the top (that is, one which has the least number of cubes above it in its stack). Remove all the cubes above the selected one. Now it is on the top. It remains to explain two things: why do we remove at most \(\lfloor m/2 \rfloor - 1 \) cubes, and why does the resulting configuration satisfy either (A) or (B).

Why do we remove at most \(\lfloor m/2 \rfloor - 1 \) cubes. Consider cubes above the marked ones. It is sufficient to show that there are at most \(m - 2 \) of them (then one of the marked cubes has at most \(\lfloor (m - 2)/2 \rfloor = \lfloor m/2 \rfloor - 1 \) cubes above it). Assume for contradiction that there
are at least \(m - 1 \) of them. As we pointed out, all of them have the same color as all the top cubes. Besides the two stacks under consideration, there exists at least one more stack, and its top cube also has the same color. So we already have at least \((m - 1) + 1 = \lceil n/2 \rceil\) cubes of the same color, which is impossible.

Why does the resulting configuration satisfy either (A) or (B). Due to the selected cube, now we have cubes of different colors on the top. There are still at least 3 non-empty stacks, because we did not make any of the stacks empty. If there are at least 2 non-monochromatic stacks, then we have (B). Assume now that there is at most 1 non-monochromatic stack. Initially, we had at least 2 non-monochromatic stacks. Hence, the stack with the selected cube became monochromatic (other stacks did not change). There are at least 3 stacks, at most 1 is non-monochromatic, so besides the stack with the selected cube there is at least one more monochromatic stack \(S \). The top cube of \(S \) was on the top initially, therefore its color differs from the color of the selected cube. So \(S \) and the stack with the selected cube are two monochromatic stacks of different colors. Hence, we have (A).

\[\Box \]

Proof of Lemma 10. We call a configuration of cubes **terminal** if one of the following conditions holds:

- there are at most 2 cubes;
- there are exactly 3 non-empty stacks, one with exactly one cube (let the color of this cube be \(c \)), and each of the other 2 stacks is as follows: it has at least 2 cubes, the color of the top cube is different from \(c \), and all the other cubes of this stack are colored in \(c \).

We show that it is possible to reach a terminal configuration while maintaining a property that there exist 2 top cubes of different colors. Let us explain why is this sufficient to establish the lemma. If there are at most 2 cubes, then, since \([m/2] + 1 \geq 2\), there is nothing left to do\(^2\). Assume now that the second condition from the definition of a terminal configuration holds. There are at most \(m - 1 \) cubes colored in \(c \). Hence, one of the non-monochromatic stacks has at most \([m - 2]/2\) - 1 cubes colored in \(c \). On the other hand, all its non-top cubes are colored in \(c \), so its size is at most \([m/2]\). This non-monochromatic stack and the stack of size 1 provide 2 top cubes of different colors, regardless of what happens with the third stack. So if remove all cubes from the third stack, we will be left with at most \([m/2] + 1\) cubes, as required.

Now we show how to reach a terminal configuration. Our algorithm repeatedly does the following. In any configuration, it first tries to remove a cube in such a way that the resulting configuration satisfies (A). If this is impossible, the algorithm tries to remove a cube in such a way that the resulting configuration satisfies (B). If this is impossible as well, the algorithm “gets stuck”.

The algorithm maintains the OR of (A) and (B). So it also maintains the existence of 2 top cubes of different colors, as both (A) and (B) imply this. We now show that if \(C \) is a configuration after the algorithm got stuck, then \(C \) is terminal. We know that \(C \) satisfies either (A) or (B), but no cube can be removed from it in such a way that (A) or (B) still holds.

If \(C \) satisfies (A), then there are at most 2 cubes. Indeed, consider two monochromatic stacks of different colors. If one of these stacks has at least 2 cubes, then we can take the top cube from it, and we will still have (A), which is impossible. So both stacks are of size 1. If there were other stacks, we could take something from them, and we would still have (A). This shows that there are just 2 cubes.

\[^2 \text{Here we assume that } n \geq 2, \text{ but sorting networks for } n = 1 \text{ do not make much sense.} \]
Assume now that C satisfies (B) but not (A). We show that C satisfies the second condition of the definition of a terminal configuration.

Due to (B), there are at least 2 non-monochromatic stacks in C. We claim that there are exactly 2 non-monochromatic stacks. Indeed, assume for contradiction that there are at least 3 non-monochromatic stacks. It is possible to remove the top cube from one of them so that on the top we still have 2 different colors. We will also have at least 2 non-monochromatic stacks and at least 3 stacks in total (one cannot make a non-monochromatic stack empty in one step). So will still have (B), which is impossible.

So in C there are exactly 2 non-monochromatic stacks. As in C there are at least 3 stacks, C must have monochromatic stacks. Since C does not satisfy (A), all monochromatic stacks of C are of the same colors. We claim that there is exactly 1 monochromatic stack, and it has exactly 1 cube (let c denote its color). Indeed, assume that this is not the case. Then take something from the monochromatic stacks. There will still be 2 non-monochromatic stacks and something else. The set of colors on the top will not change because all monochromatic stacks are of the same color. So our configuration will still satisfy (B), which is impossible.

To summarize, C consists of 1 separate cube of color c and 2 non-monochromatic stacks. Denote these two stacks by S_1 and S_2. Since C satisfies (B), on the top we have 2 cubes of different colors. W.l.o.g., the top cube of S_1 is colored not in c. Remove the top cube of S_2. We still have 2 top cubes of different colors. Since the resulting configuration does not satisfy (B), the stack S_2 must have become monochromatic. Moreover, its must be now colored in c, because otherwise the resulting configuration satisfies (A). In other words, all the cubes of S_2, except the top one, must be colored in c. The top cube of S_2 must be colored differently from c, because S_2 is non-monochromatic. So S_2 is as in the definition of a terminal configuration.

Recall that we have shown this for S_2 assuming that the color of the top cube of S_1 differs from c. We have established that the color of the top cube of S_2 differs from c. Hence, we can now apply a similar argument to S_1 to show that this stack is also as in the definition of a terminal configuration.

\[\square\]

4 Depth 4

\[\blacktriangle\] **Theorem 11.** The minimal k for which there exists a sorting network with parameters n, k and $d = 4$ is $k = \Theta(n^{2/3})$.

The rest of the section is devoted to the proof of this theorem.

Upper bound

The upper bound is implicit in [22]. Leighton there gives a sorting algorithm called ColumnSort. It can be converted into a sorting network of depth $d = 4$ and arity $k = \Theta(n^{2/3})$. Namely, the input array in ColumnSort is represented as an $O(n^{2/3}) \times O(n^{1/3})$ matrix. There are 4 steps in the algorithm when it sorts each column of the matrix. Each of these steps can be seen as a layer of comparators of arity $O(n^{2/3})$ (this is how many entries are in each column). Between these 4 steps, ColumnSort performs some permutations of the entries of the matrices, but these permutations do not depend on the values of the entries. So, these permutations just define how entries are partitioned between the comparators.
Lower bound

Suppose there is a depth-4 sorting network such that all its comparators from the first 3 layers have arity at most $t = \frac{n^{2/3}}{100}$. We show that one of the comparators from the fourth layer has arity $\Omega\left(\frac{n^{2/3}}{100}\right)$. As in the previous proof, we start with the all-zeros input, and then we add 1's to our input one by one. By Lemma 6, it is enough to have access to at least 2 cells before the last layer (or, equivalently, after the third layer) for at least $\Omega\left(\frac{n^{2/3}}{100}\right)$ consecutive steps. In turn, to have access to at least 2 different cells after the third layer, it is sufficient to have access to 2 cells after the second layer that go to different third-layer comparators.

First, it is convenient for us to assume that all first-layer comparators have arity at least t and at most $3t$. We can achieve this by joining some first-layer comparators. Namely, while there are at least 2 comparators with arity less than t, we join them into one comparator of arity less than $2t$. If there is already just 1 comparator with arity less than t, we can add it to any comparator of arity less than $2t$.

The resulting network still sorts all inputs correctly. Indeed, let N_1 denote our initial network (we know that it is sorting) and let N_2 be our network after we joined some first-layer comparators. Consider any input $x \in \{0,1\}^n$ and let $x' \in \{0,1\}^n$ be the result of applying the first layer of comparators of N_2 to x. We have to show that the rest of the layers of N_2 sort x'. To see this, give x' as an input to N_1. Observe that the first layer of comparators does not do anything to x', because x' is already sorted inside the first-layer comparators of N_2, and first-layer comparators of N_1 are subsets of those of N_2. Hence, x' will be sorted by subsequent layers of N_1. It remains to notice that N_2 coincides with N_1 after the first layer.

The rest of the argument is again presented in terms of cubes, see Figure 4. Fix an arbitrary input to our network. We will have two sets of cubes assigned to this input. Cubes from the first set will be identified with cells after the first layer that get value 0 on this input. As before, we split these cubes into vertical stacks. Each stack corresponds to one of the comparators of the first layer. More specifically, for each comparator of the first layer, we stack its 0-outputs upon each other as cubes. The order in which they go from the bottom to the top coincides with their order in the network, and on the top we have a cell with the largest index. Additionally, we label these cubes by numbers from 1 to a, where a is the number of second-layer comparators. Namely, each of these cubes is assigned the index of the comparator this cube (or rather the corresponding cell) goes to in the second layer.

Now, cubes from the second set will be colored. Namely, we first assign a distinct color to each of the comparators from the third layer. Then every cube from the second set is colored into the color of the comparator this cube (or rather the corresponding cell) goes to in the third layer.

Observe that the number of cubes from the first set that are labeled by i coincides with the size of the ith stack from the second set. Indeed, the first number is the number of 0-inputs to the ith second-layer comparator, and the second number is the number of 0-outputs of this comparator. Additionally, the size of any first-set stack is from t to $3t$, and the size of any second-set stack is at most t, because of the arity of the comparators from the first two layers. Finally, for any color, there are at most t cubes of this color because any comparator from the third layer has arity at most t.

As in the previous proof, adding 1's to an input is equivalent to removing top cubes from the first set. Now, what happens with cubes from the second set in this process? Assume that we remove some top cube from the first set. Let its label be i. This means that some
Second-layer comparators are given by numbers 1 and 2, whereas other comparators are given by colors. The first set of cubes is on the left. For example, the first stack there comes from the dark gray first-layer comparator. It has two 0-outputs, one with a smaller index goes to the 1st second-layer comparator, and one with a larger index goes to the 2nd second-layer comparator. So, the cubes are labeled by 1 and 2. The second set of cubes is on the right. They are colored according to the same principles as in the case of depth 3, but one layer to the right. Additionally, next to each stack we write the index of the corresponding second-layer comparator.

As a result, the last 0-output of the i-th second-layer comparator also switches from 0 to 1. This means that the top cube of the i-th second-set stack gets removed.

In other words, if we have a cube from the first set which is on the top and whose label is i, then we also have access to the top cube of the i-th second-set stack. Now, our goal is to maintain access to 2 second-set cubes of different colors for \(\Omega(n^{2/3}) \) steps (because having different colors means going into different third-layer comparators). That is, our task reduces to the following problem.

The second cubes problem. There are \(n \) left cubes and \(n \) right \(^3\) cubes. Left cubes are labeled by numbers from \(\{1, 2, \ldots, a\} \). Right cubes are colored. All \(2n \) cubes are arranged in vertical stacks. We do not mix left and right cubes. That is, there are two types of stacks: those that consist of left cubes (we call them left stacks) and those that consist of right cubes (we call them right stacks). There are exactly \(a \) right stacks, they are indexed by numbers from 1 to \(a \).

\(^3\) We will use an intuition from Figure 4, where numbered cubes are on the left and colored cubes are on the right.
There are the following restrictions. First, for every $1 \leq i \leq a$, the size of the ith right stack must be equal to the number of left cubes with label i. Next, define $t = \frac{n^{2/3}}{100}$. Each left stack must have size from t to $3t$, and each right stack must have size at most t. Finally, for each color, there must be at most t right cubes that have this color.

At one step, we can remove the top cube of one of the left stacks. If we remove a cube with label $i \in \{1, \ldots, a\}$, then we are also obliged to remove the top cube from the ith right stack (and we cannot remove any other cubes in this step).

If there is a top left cube whose label is i, we say that it gives access to the colors of the top cube of the ith right stack. Show that there is a way of removing cubes such that $\Omega(n^{2/3})$ times in a row (not necessarily right from the start) we have access to at least 2 different colors.

Solution of the problem. Let m be the number of left stacks. Since each left stack has from t to $3t$ cubes, we have that $m = \Theta(n/t) = \Theta(n^{1/3})$. Set $l = \lfloor n^{1/3} \rfloor$. In each left stack, choose a random consecutive substack of length l (uniformly and independently for each stack).

Lemma 12. With positive probability, for every $i \in \{1, \ldots, a\}$, there will be less than $m/10$ substacks with i-labeled cubes.

Proof. Fix $i \in \{1, \ldots, a\}$. Let a_j be the number of i-labeled cubes in the jth left stack. Note that $a_1 + \ldots + a_m$ is the size of the ith right stack. Hence, this sum does not exceed t.

Let p_j for $j = 1, \ldots, m$ be the probability that the jth substack contains an i-labeled cube. We claim that $p_j \leq \frac{2^j a_j}{t}$. This is because $\frac{2^j a_j}{t}$ is an upper bound on the expected number of i-labeled cubes in the jth substack. Indeed, since the size of any left stack is at least t, the number of l-length substacks in each of them is at least $t - l + 1$. On the other hand, each cube is covered by at most l substacks. So, an i-labeled cube from the jth stack falls into a random l-length substack with probability at most $\frac{t - l + 1}{l}$. In turn, $\frac{l - 1}{l} \leq \frac{2}{t}$ because $l = \Theta(n^{1/3})$ and $t = \Theta(n^{2/3})$. Multiplying $\frac{2^j a_j}{t}$ by the number of i-labeled cubes in the jth stack, we obtain an upper bound on the expected number of i-labeled cubes in the jth substack.

So, the expected number of substacks with i-labeled cubes is

\[
p_1 + \ldots + p_m = \frac{2a_1}{t} + \ldots + \frac{2^m a_m}{t} \leq 2l.
\]

By Hoeffding’s inequality [12, Theorem 2], the probability that this number exceeds $3l$ is

\[
\exp\left\{-\Omega\left(\frac{l^2}{m}\right)\right\} = \exp\left\{-\Omega\left(\frac{t^2}{m}\right)\right\} = \exp\{-\Omega(n^{1/3})\}
\]

(recall that $m = \Theta(n^{1/3})$ and $l = \Theta(n^{1/3})$). Therefore, by the union bound, with positive probability the number of substacks with i-labeled cubes is at most $3l$ for every $i \in \{1, \ldots, a\}$. It remains to notice that $3l$ is smaller than $m/10$. This is because there are n left cubes, and each left stack has at most $3t$ cubes, so the number of left stacks is $m \geq n/(3l) = \frac{100}{3} n^{1/3} = \frac{100}{3} \cdot 3n^{1/3} = \frac{300}{3} n^{1/3} \Rightarrow 3l \leq 3n^{1/3} \leq \frac{9}{100} \cdot m < m/10$.

We fix any choice of substacks such that there are less than $m/10$ substacks with i-labeled cubes, for every $i \in \{1, \ldots, a\}$. First, remove all cubes above these substacks. Then we will start taking cubes from the substacks. It is prohibited to take the last cube from any of the substacks. We will call a substack with only 1 cube left exhausted.

Let S denote the set of colors to which we currently have access. Our goal is to have $|S| \geq 2$ for $\Omega(n^{2/3})$ times in a row. We achieve this as follows. If $|S| \geq 3$, we take an arbitrary cube, unless all substacks are exhausted. Note that this can decrease $|S|$ by at
most 1. Indeed, the cube that we have removed gave access to just one color. Now, if \(|S| \leq 2\), consider any \(|S| \) left cubes that establish access to \(S \). Let their labels be \(i \) and \(j \) (if \(|S| = 1\), we have \(i = j \)). If possible, remove any left cube which belongs to a non-exhausted substack and whose label differs from \(i \) and \(j \). Observe that we can only add a new color to \(S \) because we still have access to old colors through the same cube, and nothing was taken from the \(i \)th and from the \(j \)th right stacks. In particular, when \(|S| \leq 2\), the size of \(S \) cannot decrease.

Note that unless \(m/2 \) substacks are already exhausted, it is still possible to take one more cube according to the above rules. Indeed, if \(|S| \geq 3\), then we need just 1 non-exhausted substack. Now, if \(|S| \leq 2\), then we can take one more cube unless all top cubes of non-exhausted substacks have labels \(i \) or \(j \). This can happen only if either at least \(m/4 \) substacks have \(j \)-labeled cubes or at least \(m/4 \) substacks have \(j \)-labeled cubes. But this is impossible due to our choice of substacks.

These considerations show that we get stuck only if we have already taken at least \(m/2 \cdot (l - 1) \) cubes. Another observation is that once the size of \(S \) became larger than 1, it can never become 1 again. So we can have \(|S| = 1\) for some number of steps in the beginning, and then we will always have \(|S| \geq 2\). Finally, note that we can have \(|S| = 1\) for at most \(t \) steps. Indeed, throughout the whole period when \(|S| = 1\), we have access to the same color \(c \) (recall that when \(|S| \leq 2\), colors cannot be removed from \(S \), only a new color can be added). Each time we make a step, we remove some right cube whose color is \(c \), otherwise we would have had access to another color. But there are at most \(t \) cubes whose color is \(c \).

Thus, we will have \(|S| \geq 2\) for at least \(m/2 \cdot (l - 1) - t \) steps. Since \(m \geq n/(3t) \), \(l = \lfloor n^{1/3} \rfloor \) and \(t = \frac{n^{2/3}}{102} \), the quantity \(m/2 \cdot (l - 1) - t \) is \(\Omega(n^{2/3}) \).

References

1. Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in \(c \log n \) parallel sets. Comb., 3(1):1–19, 1983. doi:10.1007/BF02579338.
2. Kazuyuki Amano and Masafumi Yoshida. Depth two \((n - 2)\)-majority circuits for \(n\)-majority. Preprint, 2017. URL: https://www.cs.gunma-u.ac.jp/~amano/paper/maj.pdf. doi:10.1587/transfun.E101.A.1543.
3. S.W.A.H. Baddar and K.E. Batcher. Designing Sorting Networks: A New Paradigm. Springer Link: Bücher. Springer New York, 2012. URL: https://books.google.ru/books?id= NKxnXyKECAEC. doi:10.1007/978-1-4614-1851-1_1.
4. Kenneth E. Batcher. Sorting networks and their applications. In American Federation of Information Processing Societies: AFIPS Conference Proceedings: 1968 Spring Joint Computer Conference, Atlantic City, NJ, USA, 30 April - 2 May 1968, volume 32 of AFIPS Conference Proceedings, pages 307–314. Thomson Book Company, Washington D.C., 1968. doi:10.1145/1468075.1468121.
5. Richard Beigel and John Gill. Sorting \(n \) objects with a \(k \)-sorter. IEEE Trans. Computers, 39(5):714–716, 1990. doi:10.1109/12.53587.
6. Bauwens Bruno. Personal communication, 2017.
7. Daniel Bundala and Jakub Zavodny. Optimal sorting networks. In Adrian-Horia Dediu, Carlos Martín-Vide, José Luis Sierra-Rodríguez, and Bianca Truthe, editors, Language and Automata Theory and Applications - 8th International Conference, LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings, volume 8370 of Lecture Notes in Computer Science, pages 236–247. Springer, 2014. doi:10.1007/978-3-319-04921-2_19.
8. V. Chvátal. Lecture notes on the new aks sorting network. Technical report, Rutgers University, 1992.
9. Robert Cypher and Jorge L. C. Sanz. Cubesort: A parallel algorithm for sorting \(N \) data items with \(s \)-sorters. J. Algorithms, 13(2):211–234, 1992. doi:10.1016/0196-6774(92)90016-6.
Christian Engels, Mohit Garg, Kazuhisa Makino, and Anup Rao. On expressing majority as a majority of majorities. *SIAM J. Discret. Math.*, 34(1):730–741, 2020. doi:10.1137/18M1223599.

Qingshi Gao and Zhiyong Liu. Sloping-and-shaking. *Science in China Series E: Technological Sciences*, 40(3):225–234, 1997. doi:10.1007/BF02916597.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13–30, 1963. doi:10.1080/01621459.1963.10500830.

Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for the majority function. In *Proceedings of the 9th international conference on Approximation Algorithms for Combinatorial Optimization Problems*, and 10th international conference on Randomization and Computation, pages 410–425, 2006. doi:10.1007/11830924_38.

Pavel Hrubes, Sivaramakrishnan Natarajan Ramamoorthy, Anup Rao, and Amir Yehudayoff. Lower bounds on balancing sets and depth-2 threshold circuits. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, *46th International Colloquium on Automata, Languages, and Programming*, ICALP 2019, July 9–12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 72:1–72:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.72.

Pavel Hrubes and Anup Rao. Circuits with medium fan-in. In David Zuckerman, editor, *30th Conference on Computational Complexity*, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pages 381–391. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CCC.2015.381.

Nabil Kahalé, Frank Thomson Leighton, Yuan Ma, C. Greg Plaxton, Torsten Suel, and Endre Szemerédi. Lower bounds for sorting networks. In Frank Thomson Leighton and Allan Borodin, editors, *Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing*, 29 May-1 June 1995, Las Vegas, Nevada, USA, pages 437–446. ACM, 1995. doi:10.1145/225058.225178.

Donald Ervin Knuth. *The art of computer programming, , Volume III*, 2nd Edition. Addison-Wesley, 1998. URL: https://www.worldcat.org/oclc/312994415.

Yu. A. Kombarov. On depth two circuits for the majority function. In *Proceedings of Problems in theoretical cybernetics*, pages 129–132. Max Press, 2017.

Alexander S. Kulikov and Vladimir V. Podolskii. Computing majority by constant depth majority circuits with low fan-in gates. *Theory Comput. Syst.*, 63(5):956–986, 2019. doi:10.1007/s00224-018-9900-3.

Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The composition complexity of majority. In Shachar Lovett, editor, *37th Computational Complexity Conference*, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 19:1–19:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.19.

Donald Ervin Knuth. *The art of computer programming, , Volume III*, 2nd Edition. Addison-Wesley, 1998. URL: https://www.worldcat.org/oclc/312994415.

Yu. A. Kombarov. On depth two circuits for the majority function. In *Proceedings of Problems in theoretical cybernetics*, pages 129–132. Max Press, 2017.

Alexander S. Kulikov and Vladimir V. Podolskii. Computing majority by constant depth majority circuits with low fan-in gates. *Theory Comput. Syst.*, 63(5):956–986, 2019. doi:10.1007/s00224-018-9900-3.

Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The composition complexity of majority. In Shachar Lovett, editor, *37th Computational Complexity Conference*, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 19:1–19:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.19.

De-Lei Lee and Kenneth E. Batcher. A multiway merge sorting network. *IEEE Trans. Parallel Distributed Syst.*, 6(2):211–215, 1995. doi:10.1109/71.342136.

Frank Thomson Leighton. Tight bounds on the complexity of parallel sorting. *IEEE Trans. Computers*, 34(4):344–354, 1985. doi:10.1109/TC.1985.5009385.

Toshi Nakatani, Shing-Tsaan Huang, Bruce W. Arden, and Satish K. Tripathi. K-way bitonic sort. *IEEE Trans. Computers*, 38(2):283–288, 1989. doi:10.1109/12.16506.

Ian Parberry. The pairwise sorting network. *Parallel Process. Lett.*, 2:205–211, 1992. doi:10.1142/S0129626492000337.

Bruce Parker and Ian Parberry. Constructing sorting networks from k-sorters. *Inf. Process. Lett.*, 33(3):157–162, 1989. doi:10.1016/0020-0190(89)90196-8.

Michael S Paterson. Improved sorting networks with O(log N) depth. *Algorithmica*, 5(1):75–92, 1990. doi:10.1007/BF01840378.

Gleb Posobin. Computing majority with low-fan-in majority queries. *CoRR*, abs/1711.10176, 2017. arXiv:1711.10176, 2017. doi:10.48550/arXiv.1711.10176.
Joel Seiferas. Sorting networks of logarithmic depth, further simplified. *Algorithmica*, 53(3):374–384, 2009. doi:10.1007/s00453-007-9025-6.

Feng Shi, Zhiyuan Yan, and Meghanad D. Wagh. An enhanced multiway sorting network based on n-sorters. In *2014 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2014, Atlanta, GA, USA, December 3-5, 2014*, pages 60–64. IEEE, 2014. doi:10.1109/GlobalSIP.2014.7032078.

S. S. Tseng and Richard C. T. Lee. A parallel sorting scheme whose basic operation sorts N elements. *Int. J. Parallel Program.*, 14(6):455–467, 1985. doi:10.1007/BF00991185.

Leslie G. Valiant. Short monotone formulae for the majority function. *J. Algorithms*, 5(3):363–366, 1984. doi:10.1016/0196-6774(84)90016-6.

Andrew Chi-Chih Yao. Bounds on selection networks. *SIAM J. Comput.*, 9(3):566–582, 1980. doi:10.1137/0209043.

Lijun Zhao, Zhiyong Liu, and Qingshi Gao. An efficient multiway merging algorithm. *Science in China Series E: Technological Sciences*, 41(5):543–551, 1998. doi:10.1007/BF02917030.