CTAG-Containing Cleavage Site Profiling to Delineate *Salmonella* into Natural Clusters

Le Tang1,2,3, Wei-Qiao Liu1,4, Xin Fang1,2,3, Qiang Sun1,2,3, Song-Ling Zhu1,2,3, Chun-Xiao Wang1,2,3, Xiao-Yu Wang1,2,3, Yong-Guo Li3,5, Da-Ling Zhu2,6, Kenneth E. Sanderson4, Randal N. Johnston7, Gui-Rong Liu1,2,3,5, Shu-Lin Liu1,2,3

1 Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China, 2 Department of Biopharmaceutical Sciences, Harbin Medical University, Harbin, China, 3 HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China, 4 Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Canada, 5 Department of Infectious Diseases of First Affiliated Hospital, Harbin Medical University, Harbin, China, 6 College of Pharmacy, Daqing Campus, Harbin Medical University, Daqing, China, 7 Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada

Abstract

Background: The bacterial genus *Salmonella* contains thousands of serotypes that infect humans or other hosts, causing mild gastroenteritis to potentially fatal systemic infections in humans. Pathogenically distinct *Salmonella* serotypes have been classified as individual species or as serological variants of merely one or two species, causing considerable confusion in both research and clinical settings. This situation reflects a long unanswered question regarding whether the *Salmonella* serotypes exist as discrete genetic clusters (natural species) of organisms or as phenotypic (e.g., pathogenic) variants of a single (or two) natural species with a continuous spectrum of genetic divergence among them. Our recent work, based on genomic sequence divergence analysis, has demonstrated that genetic boundaries exist among *Salmonella* serotypes, circumscribing them into clear-cut genetic clusters of bacteria.

Methodologies/Principal Findings: To further test the genetic boundary concept for delineating *Salmonella* into clearly defined natural lineages (e.g., species), we sampled a small subset of conserved genomic DNA sequences, i.e., the endonuclease cleavage sites that contain the highly conserved CTAG sequence such as TCTAGA for XbaI. We found that the CTAG-containing cleavage site sequences could be used to resolve the genetic boundaries as reliably and efficiently as whole genome sequence comparisons but with enormously reduced requirements for time and resources.

Conclusions: Profiling of CTAG sequence subsets reflects genetic boundaries among *Salmonella* lineages and can delineate these bacteria into discrete natural clusters.

Introduction

Since the first isolation of a *Salmonella* pathogen from a typhoid patient in 1881, more than 2500 different *Salmonella* types have been documented [1,2]. Based on their differences in the somatic (O) and flagellar (H) antigens, the *Salmonella* bacteria are classified into serotypes by the Kauffmann-White scheme [3]. Initially, the *Salmonella* serotypes were treated as individual species each having a Latinized scientific name such as *Salmonella typhi* and *Salmonella typhimurium*, but in the 1980s all *Salmonella* serotypes were combined into one species (*Salmonella enterica* [4]) or two species (*Salmonella enterica* and *Salmonella bongori* [5]) as serological variants (serovars [6]) due largely to the extraordinarily high genetic similarity among them, which has caused confusion in research and clinical settings. Indeed, all *Salmonella* serotypes have very similar genetic backgrounds as revealed by DNA-DNA re-association [7], comparison of genome structures [8,9] and genomic sequencing [10–12], but on the other hand they may differ radically in pathogenic properties. For example, whereas many *Salmonella* serotypes may cause self-limited gastroenteritis (such as *S. typhimurium*, *S. enteritidis*, etc.) or may be virtually non-pathogenic to humans, a few may elicit potentially fatal systemic infections, such as *S. typhi* that causes typhoid [13]. The dynamic and confusing *Salmonella* taxonomy reflects long lasting uncertainties about the phylogenetic status of *Salmonella*: do they dwell in nature as discrete genetic clusters of organisms or as phenotypic variants of a single (or two) natural species with a continuous spectrum of genetic divergence among them?
To examine this issue, we have tested two hypotheses: first, that all Salmonella serotypes form a common gene pool in which DNA exchange occurs readily so that each member has an equal chance to become a different pathogen (e.g., infecting a different host species or causing a different disease) by acquiring appropriate genetic material and incorporating it into the genome; and second, that each Salmonella type (e.g., a serological or pathogenic type) is already an established biological unit, members of which have a common and highly stable genome structure as a result of natural selection over long evolutionary time.

If the first hypothesis is correct, all Salmonella serotypes should be combined into just one species. If the second hypothesis is correct, each Salmonella type is a genetically well-defined natural species. The first hypothesis would be supported by demonstration of a continuous spectrum of genetic divergence among different Salmonella types and, conversely, the second hypothesis would be validated by demonstration of clear-cut genetic boundaries among different Salmonella types as a result of genetic isolation and independent accumulation of mutations over long evolutionary time. Findings that support either hypothesis will lead to novel insights into the population structure of Salmonella and the mechanisms of divergence that have occurred during their adaptation to different environments (e.g., a particular host) during their evolution. A key step towards an answer is to elucidate whether the individual Salmonella types can be grouped into discrete, well separated genetic clusters. The classical method for Salmonella differentiation is serological typing, but a serotype may be polyphyletic. For example, the antigentic formula of 6,7:c:1,5 is common to multiple distinct pathogens, e.g., S. paratyphi C, S. choleraesuis and S. typhimurium, which infect different hosts or cause different diseases. Furthermore, based on serotyping only, one cannot judge whether the Salmonella serotypes are genetically well isolated from one another or whether some might be genetic “intermediates” between other serotypes.

Recently, we provided evidence showing that Salmonella exist in discrete genetic clusters isolated by clear-cut genetic boundaries [14]. However, that work was based on whole genome analysis. To further test the robustness of the genetic boundary concept in delineating Salmonella into clearly defined natural lineages (e.g., species), we sampled a small subset of conserved genomic DNA sequences, i.e., the endonuclease cleavage sites that contain the CTAG sequence such as TCTAGA for XbaI. As enteric bacteria tend to eliminate the short sequence CTAG by the Very Short Patch (VSP) repair mechanism [15], endonuclease cleavage sites containing CTAG are scarce and highly conserved in Salmonella. We found that profiling of the CTAG-containing cleavage sequences could resolve the genetic boundaries as reliably and efficiently as whole genome analyses but with enormously reduced requirements for time and resources.

Results

Monophyletic Salmonella serotypes have highly conserved cleavage patterns by CTAG-containing endonucleases

It has been well documented that wild type strains of a monophyletic Salmonella type are genetically well defined natural isolates, e.g., S. typhimurium [16], S. typhi [17] or S. paratyphi A [18], in contrast to the diverse cleavage patterns seen in polyphyletic serotypes such as S. paratyphi B [19]. However, when we looked at S. gallinarum, known as a monophyletic Salmonella type, we saw considerable diversity of cleavage patterns among wild type strains for the endonucleases that have CTAG in the cleavage sites, as illustrated by AvrII cleavage in Figure 1. To determine whether the diversity of cleavage patterns was created by nucleotide base changes (leading to addition or deletion of cleavage sites) or by genomic rearrangements (changing the lengths of DNA fragments between the cleavage sites), we compared the genome structures of these strains. Analysis of incomplete I-CeuI cleavage products of the bacterial genomes showed that these strains had their genomes rearranged in several

Figure 1. Diversity of cleavage patterns with AvrII among S. gallinarum wild type strains. Lanes: 1, molecular size marker (λDNA concatemer); 2, RKS5078; 3, SGSC2423; 4, SGSC2292; 5, SGSC2293; 6, R1481; 7, R1482; 8, R1483; 9, SARB21; 10, 287/91. S. pullorum RKS5078 (Lane 2) is included here for a comparison with the S. gallinarum strains. doi:10.1371/journal.pone.0103388.g001
ways by recombination between
rrn operons (Figure 2; for details
about I-CeuI and
rrn-mediated genomic rearrangements, see
[8,20]), suggesting that at least part of the diverse cleavage patterns have resulted from genomic rearrangements.

Next, we needed to determine whether the genomic rearrangements have just altered the lengths between pairs of AvrII sites or might have disrupted any of the AvrII cleavage sites (it is highly unlikely that genomic rearrangements may create new CTAG-containing cleavage sites). For this, we compared two representative

S. gallinarum strains, SARB21 and 287/91 (Figure 3), which were previously mapped [21] or sequenced [22], respectively. We analyzed the genome maps of the two strains by matching the homologous cleavage sites between them for XbaI and AvrII, in addition to I-CeuI. We found that, as expected, most of the cleavage pattern differences between

S. gallinarum SARB21 and 287/91 could be accounted for by two inversions (one between
rrnH and
rrnG and one between
rrnD and
rrnC) and one translocation (I-CeuI Fragment D), all of which massively altered the lengths of homologous genomic DNA segments flanked by the CTAG-containing endonuclease cleavage sites (Figure 4). The
rrnH-rrnG inversion made XbaI Fragments C and I to join, forming Fragments C’+I’ and ‘C+I’XbaI C391 and I248 missing

and XbaI C’+I’ 614 and ‘C+I’ 25 appearing in strain SARB21 relative to 287/91), along with corresponding changes in AvrII cleavage (See Figures 3 and 4). The I-CeuI Fragment D translocation and
rrnD-rrnC inversion resulted in XbaI Fragment B533 splitting to B’ and ‘B, with B’ joining H’ to become B’+ H’488, and a truncated ‘B160 fusing with ‘H+F to create a 483 kb segment, along with corresponding changes in AvrII cleavage (See Figures 3 and 4). The only unique AvrII cleavage site is present in strain 287/91 at about 3250 kb from gene
thrL (Figure 4, indicated by the open arrowhead), probably as a result of a mutation in the corresponding AvrII cleavage site in strain SARB21 rather than creation of an AvrII cleavage site in strain 287/91.

Conservation of CTAG-containing endonuclease cleavage sites within other representative

Salmonella serotypes

To assess the extent of conservation of the CTAG-containing endonuclease cleavage sites, we conducted systematic comparisons of the cleavage locations on the genome for XbaI among strains of representative
Salmonella serotypes, numbering the cleavage sites sequentially according to their locations on the genome of
S. typhimurium LT2. Cleavage sites present in any strains but not in
LT2 were not numbered. As exemplified by the six *S. typhimurium* strains, the XbaI cleavage sites were highly conserved within a *Salmonella* lineage, consistent with the findings by the PFGE techniques. LT2 has 27 XbaI cleavage sites numbered XbaI 1–27 (Table 1), most of which were conserved among all six compared *S. typhimurium* strains. Of particular significance, as many as over one third of the 27 XbaI cleavage sites fell in intergenic sequences, strongly suggesting the potential importance of these sequences. Among the six *S. typhimurium* strains, we found two kinds of differences in XbaI sites: presence/absence and presence/degneracy. The non-conserved XbaI cleavage sites have largely resulted from recent insertions such as prophages or phage remnants (Supplementary Table S1). The sequence degeneracy of the XbaI cleavage sites can be illustrated by XbaI 9, which was present in LT2 but not in any of the other five *S. typhimurium* strains due to nucleotide substitution, changing the XbaI cleavage site TCTAGA to TCCCAGA and leading to the replacement of leucine in LT2 by proline in the other five *S. typhimurium* strains.

Within each of the other *Salmonella* serotypes analyzed, the CTAG-containing cleavage sites were also highly conserved, with the main differences among the wild type strains being additional cleavage sites in prophages or genomic islands (Supplementary Table S1). For example, *S. heidelberg* SL476 had three large genomic islands, 58, 30 and 42 kb in size, respectively, all containing multiple XbaI cleavage sites; the 42 kb island, present in *S. heidelberg* SL476 but not in *S. heidelberg* B182, contained as many as seven additional XbaI cleavage sites within a 20 kb region (Supplementary Table S1). Other endonucleases (e.g., SpeI)

Figure 3. XbaI and AvrII cleavage patterns of *S. gallinarum* strains 287/91 and SARBR21 after PFGE separation. (A) XbaI cleavage. Lanes: 1, SARBR21; 2, 287/91; 3, \(\lambda\)DNA as molecular size marker. (B) AvrII cleavage. Lanes: 1, \(\lambda\)DNA as molecular size marker; 2, SARBR21; 3, 287/91. Letter designations are for strain 287/91; the same letters are used for homologous fragments in strain SARBR21. In the designation of fragments in SARBR21, C' means a fragment homologous to C in 287/91 but truncated on the right-hand part by genomic rearrangement, and C means truncation on the left-hand part of the fragment.

doi:10.1371/journal.pone.0103388.g003
having CTAG in the cleavage sites had similar situations as XbaI (data not shown). The overall conservation of the CTAG-containing endonuclease cleavage sequences in the Salmonella genomes makes it possible to use these endonucleases for the identification of Salmonella isolates. For this, the distinctness of cleavage patterns of endonucleases with CTAG in the cleavage sequences across different Salmonella serotypes (or lineages; a monophyletic Salmonella serotype is equivalent to “a Salmonella lineage” but a polyphyletic Salmonella serotype contains two or more Salmonella lineages) would have to be documented.

CTAG endonuclease cleavage patterns are distinct across Salmonella lineages

Across the 13 Salmonella serotypes analyzed, cleavage patterns for the endonucleases that contain CTAG in the cleavage sites were drastically different and the sites at different genomic locations also had different levels of conservation; here we take XbaI cleavage as an example to illustrate the levels of conservation of the CTAG-containing sequences at different genomic locations. First of all, the XbaI cleavage sites within the tRNA encoding sequences had the highest level of conservation among the 13 Salmonella serotypes and even E. coli strain K12 as illustrated previously (Fig. 4 in [23]). Of great interest, XbaI 3 within an intergenic sequence (between STM1377–STM1378) is also conserved among the 13 Salmonella serotypes and E. coli strain K12; the potential biological function encoded by this genomic region is now under scrutiny. XbaI 4, 16 and 17, located in intergenic sequences between STM1622–STM1623, STM3405–STM3406 and STM3443–STM3444, respectively, are conserved in all analyzed Salmonella strains; characterization of these intergenic sequences for their potential roles in bacterial biology might provide novel insights into the evolution of bacteria. XbaI 26 in STM4362 (hflX) is conserved in all analyzed Salmonella strains, and XbaI 7, located in an intergenic sequence between STM2394–STM2394, is conserved in all Salmonella subgroup I strains analyzed here. Most other XbaI cleavage sites are specific either to one or a subset of Salmonella lineages (Supplementary Table S1). SpeI and other endonucleases having CTAG in the cleavage sites had similar general patterns as XbaI (data not shown). The distinct profiles of the CTAG-containing endonuclease cleavage sequences among the Salmonella serotypes make it possible to use these enzymes for delineating Salmonella into genetically well defined natural clusters, which would have to be further validated by comparisons between CTAG-containing cleavage site profiling and genome sequence information.

Distinct CTAG-containing cleavage profiles to delineate Salmonella into natural lineages: correlation with core genome-based phylogenetics

The high levels of conservation of the CTAG-containing cleavage sequences as exemplified by the distinct XbaI cleavage patterns in different Salmonella lineages suggest that profiling of such sequences may be used to delineate Salmonella into discrete natural lineages. To validate this, we conducted hierarchical clustering analysis on the XbaI cleavage profiling data among the Salmonella strains (Supplementary Table S2). Based on this analysis, we constructed a phylogenetic tree (Figure 5) and compared it to the core genome-based tree (Figure 6); the two trees revealed essentially the same phylogenetic relationships among the Salmonella strains.

Discussion

In this study, we sampled a tiny portion of highly conserved sequences of the Salmonella genome, i.e., the CTAG-containing
No.	Gene ID	Start	End	LT2	140285	D23580	SL1344	ST474	UK1
1	STM0557	61404	616456	615218	615912	654028	614706	614706	615911
2	STM1331–STM1332	1409765	1410086	1409947	1419923	1406459	1366800	1366800	1368113
3	STM1377–STM1378	1459616	1459925	1459627	1469603	1456139	1416479	1416479	1417994
4	STM1622–STM1623	1711483	1711701	1711569	1721546	1704084	1668422	1668422	1669738
5	STM2093	217120	2175112	2174259	2225811	2197914	2171974	2171974	2174004
6	STM2292	2399433	2400215	2399521	2451074	2423187	2397237	2399266	2399266
7	STM2394–STM2394	2505894	2506054	2506054	2557606	2529720	2503770	2503770	2505799
8	STM2584–STM2585	2730470	2731355	2730547	2782100	2754927	2728264	2728264	2730311
9	STM2616	2762064	2762627	2762627	2790858	2800431	2790858	2800431	2802188
10	STM2658	2799958	2800030	2800030	2818163	2790985	2800431	2800431	2802188
					2824797	2824797			
11	STM2742	2880444	2881637	2880896	2901121	2873861	2903461	2903461	2849374
12	STM2747	2887401	2888219	2887451	2907676	2880416	2900106	2900106	2855929
13	STM2767	2908420	2909402	2908601	2928836	2901586	2931177	2931177	2877089
14	STM2767	2908420	2909402	2909761	2929996	2902746	2932337	2932337	2878249
15	STM3397	3570307	3570379	3570365	3584223	3593463	3591847	3591847	3531830
16	STM3405–STM3406	3576805	3576935	3576883	3590741	3599981	3598365	3598365	3538348
17	STM3443–STM3444	3597851	3597922	3597875	3611733	3620973	3619357	3619357	3593400
18	STM3594–STM3595	3765983	3766163	3766042	3779743	378912	3787367	3787367	3737350
19	STM3646	3833687	3834661	3834463	3848154	3857340	3855778	3855778	3795761
20	STM3714–STM3715	3910705	3910806	3910806	3924498	3933683	3923120	3923120	3872105
21	STM3785	3984439	3985182	3984523	3998215	4007398	4005836	4005836	3945822
22	STM3846–STM3847	4053276	4054076	4053903	4067596	4076779	4075214	4075214	4015203
23	STM3890	4101759	4101831	4101769	4115462	4124645	4123077	4123077	4063068
24	STM4178	4396303	4396375	4396313	4409893	4419063	4417645	4417645	4357499
25	STM4285	4525350	4527497	4526230	4539772	4548929	4547522	4547522	4487378
26	STM4362	4604955	4606235	4606231	4619062	4628219	4626812	4626812	4566668
27	STM4524	477606	4779015	4778149	4790982	4800127	4798732	4798732	4738586

Notes:
- No.: XbaI cleavage sites numbered according to their appearance order in LT2 starting from the “beginning” of the genome, i.e., gene thrL.
- Gene ID: One gene ID, such as STM0557, means that the XbaI cleavage site falls in a gene; two gene IDs, such as STM1331–STM1332, mean that the XbaI cleavage site falls in an intergenic region between two genes.
- Start and End: start and end nucleotide positions, respectively of a gene or an intergenic region between two genes.
- doi:10.1371/journal.pone.0103388.t001
endonuclease cleavage sequences, as genomic signatures to probe the genetic uniqueness of individual *Salmonella* lineages and further test our hypothesis that bacteria dwell in nature as discrete genetic clusters. Findings from this may help evaluate and validate the genetic boundary concept, which is the core of our hypothesis. The highly similar genetic backgrounds in sharp contrast to the radical pathogenic differences among *Salmonella* make this genus of bacteria an ideal model for testing the hypothesis and for the studies of pathogenic evolution that turns benign organisms into infectious agents.

The topic on bacterial diversification, evolution and speciation has been a focus of extensive discussions, especially by investigators viewing from different angles and using different methods [24–32]. Originally, we initiated this work on the comparison between *S. typhimurium* and *S. typhi*, the former causing self-limiting gastroenteritis but the latter eliciting deadly typhoid fever in humans, to look for distinct genomic features that can be used to unambiguously divide them into discrete bacterial clusters, which, if demonstrated to exist, we call “natural species”, as they should be clusters of bacteria (“species”) formed by natural selection. We recently recognized and characterized clear-cut genomic divergence between them [33], which we defined as the genetic boundary. Such genetic boundaries have been documented in a broad range of bacteria, such as *Yersinia* and *Staphylococcus* [14]. In this study, we demonstrate that the selected subset of highly conserved sequences could reveal the genetic boundaries as clearly and reliably as whole genome analyses.

Compared to the whole genome strategies, CTAG-containing sequence profiling for *Salmonella* has several advantages. First, CTAG-containing cleavage sequence profiling by PFGE requires much less time and resources than genome sequencing strategies but still provides adequate information to delineate *Salmonella* into discrete genetic clusters, which is especially important when very large numbers of bacterial strains are involved; and second, the collection and analysis of CTAG-containing sequence data profiled by PFGE can be conducted in virtually any molecular biology laboratory equipped with the PFGE apparatus. Additionally, like whole genome sequences, the CTAG-containing cleavage sequence profiles are also objective and can be compared between laboratories and between platforms used. One case to be pointed

Figure 5. Phylogenetic tree constructed with the XbaI cleavage data based on numbers of conserved sites shared by subsets of the bacteria

doi:10.1371/journal.pone.0103388.g005
out here is that monophyletic *Salmonella* serotypes like *S. gallinarum* may have diverse PFGE patterns (Fig. 1) of cleavage by XbaI or other endonucleases that have CTAG-containing cleavage sites, which may reduce the value of CTAG-containing endonuclease cleavage sequence profiling. However, even in such cases, well over 50% of the cleavage bands on PFGE are similar among the wild type strains, so creating no ambiguity.

We chose profiling the CTAG-containing endonuclease cleavage sequences to probe the *Salmonella* genomes for their genetic distinction also because it is a very useful and efficient method for a broad range of studies. For example, in addition to delineating the bacteria into discrete genetic clusters (i.e., natural species), which is our primary objective of this study, the profiling has a particular advantage in tracking the evolutionary scenarios of the *Salmonella* lineages, because the CTAG-containing sequences, though highly conserved in *Salmonella*, have been in the process of being eliminated from the genome by the VSP repair mechanism [15]. Assuming that all remaining CTAG-containing sequences through natural selection should be very important, we anticipated to see the gradual degeneracy processes of the CTAG-containing sequences among *Salmonella* as a whole. Specifically, the levels of conservation of the CTAG-containing sequences can
be stratified by comparing their presence and degeneracy status (substitution of any of the CTAG nucleotides by transition or transversion) among the Salmonella lineages. For example, five XbaI cleavage sites are conserved not only across all Salmonella lineages compared in this study but also in E. coli (Supplementary Table S1). Other XbaI cleavage sites are either conserved among the Salmonella lineages but not in E. coli, or among Salmonella subgroup I lineages but not in other subgroups, or among strains of the same lineage, or specific to only particular strains of even the same lineage (such cases, they are mostly in prophages or genomic islands). The differential profiles of the CTAG-containing cleavage sequences make each of the Salmonella lineages unique for identification, and the different patterns of sequence degeneracy among the Salmonella lineages (Supplementary Table S2) may provide important clues for their strategies in adapting to different environments (e.g., different host species).

Based on our results, we speculate the following evolutionary scenario that makes a small subset of highly conserved sequences to remain as a reliable and informative genetic signature of individual lineages. During the long process of CTAG elimination [15], each Salmonella lineage (dwelling in its own gene pool, [32]) accumulates nucleotide substitutions independently, leading to gradual degeneracy of the CTAG sequences in a particular way specific to each of the Salmonella lineages. Detailed analysis of the substituting and substituted nucleotides during the process of CTAG sequence degeneracy should provide novel insights into the evolutionary processes of Salmonella lineages.

Table 2. Bacterial strains used in this studya.

Strain	Accession number	Reference
S. typhimurium LT2	AE006468	[23]
S. typhimurium 140285	CP001363	
S. typhimurium SL1344	FQ312003	
S. typhimurium D23580	FN424405	
S. typhimurium ST4/74	CP002487	
S. typhimurium UK/1	CP002614	
S. typhi Ty2	AE014613	[17]
S. typhi CT18	NC_003198	
S. typhi P-stx-12	NC_016832	
S. paratyphi A ATCC9150	CP000026	[18]
S. paratyphi A AKU_12601	FM200053	
S. paratyphi C RK54594	CP000857	[12,36]
S. agona SL483	CP001138	
S. dublin CT_02021853	CP001144	
S. dublin SD3246	CM001151	
S. enteritidis P125109	AN933172	
S. pullorum RKS5078	CP003047	[21,37]
S. gallinarum 287/91	AM933173	[22]
S. gallinarum SGSC2423	N/A	
S. gallinarum SGSC2292	N/A	
S. gallinarum SGSC2293	N/A	
S. gallinarum R1481	N/A	
S. gallinarum R1482	N/A	
S. gallinarum R1483	N/A	
S. gallinarum SARB21	N/A	
S. choleraeuis A50	CM001062	
S. choleraeuis SC-B67	AE017220	
S. heidelberg B182	NC_017623	
S. heidelberg SL476	CP001120	
S. newport SL254	CP001113	
S. schwarengrund CVM19633	CP001127	
S. arizonae RKS2980	CP000880	
S. arizonae RKS2893	CP006693	
S. bongori NCTC 12419	FR877557	
S. bongori RKS3044	CP006692	

aSee more detailed information on these bacterial strains at www.ucalgary.ca/~kesander.

bN/A means that the bacterial strain is not sequenced and the genome sequence was not needed for this study.

doi:10.1371/journal.pone.0103388.t002
strategy and mechanisms during the adaptation process of individual Salmonella pathogens, especially regarding their interaction with the host that they infect. We conclude that CTAG-containing sequence profiling can be used to unambiguously and efficiently delineate Salmonella into distinct genetic lineages, which are equivalent to the natural species of bacteria.

Materials and Methods

Bacterial strains

Bacterial strains used in this study along with the accession numbers of the sequenced genomes, are listed in Table 2; more detailed information on these bacteria can be found at the Salmonella Genetic Stock Center (http://www.ucalgary.ca/~kesander/). Bacteria were grown overnight at 37°C with shaking in Luria-Bertani (LB) broth or on LB plates. Stock cultures were stored at ~70°C in LB broth with 25% glycerol.

Reagents and PFGE analyses of genomic DNA

I-CeuI, XbaI and AvrII were purchased from New England Biolabs, and proteinase K was from Roche. Most other reagents were from Sigma. Bacterial genomic DNA isolation, endonuclease cleavage with I-CeuI, XbaI and AvrII, and separation of the cleavage fragments were described previously [8,17,34]. Briefly, PFGE was used to separate DNA fragments cleaved by the endonucleases, and I-CeuI partial cleavage was used to lay out the overall genome structure of bacteria. PFGE was done in a CHEF DR II electrophoresis system (BioRad) at 5.6 V/cm with 0.5×TBE buffer as the running buffer.

Materials and Methods

Genomic and statistics analysis tools

We determined the phylogentic relationships of the bacteria based on their differences in the numbers of conserved CTAG-containing endonuclease cleavage sites common to subsets of Salmonella strains or sequence identity of genes common to them using the neighbor-joining (NJ) method, and the tree construction was done with MEGA4.0.2 [33] and CLUSTALW. The statistical analyses were performed by using software SPSS v20.

Supporting Information

Table S1 Profiles of XbaI cleavage sites in representative Salmonella genomes.

(XLS)

Table S2 Numbers of XbaI cleavage sites common to pairs of the Salmonella genomes.

(XLS)

Author Contributions

Conceived and designed the experiments: SLL. Performed the experiments: LT WQF CXW XYW. Analyzed the data: LT XF QS SLZ. Contributed reagents/materials/analysis tools: YGL DLZ KES RNJ GRL. Wrote the paper: SLL.

References

1. Popoff MY, Bockemuhl J, Gheseling LL (2004) Supplement 2002 (no. 46) to the Kauffmann-White scheme. Research in microbiology 155: 568–570.
2. Popoff MY, Le Minor LE (2005) Genus XXXIII. Salmonella. In: J. B. Bremer, N. R. Krieg and J. T. Stanley, editors. Bergey’s Manual of Systematic Bacteriology. Springer, pp. 764–799.
3. Edwards PR, Kauffmann F (1952) A simplification of the Kauffmann-White scheme. Am J Clin Pathol 22: 692–697.
4. Rees MW, Evans GM, Heiba AA, Pikktayd BD, Farmer JJ (1989) Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. Journal of clinical microbiology 27: 313–320.
5. Le Minor I (1984) Genus III. Salmonella. In: N. R. Krieg, editor editors. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins. pp. 427–458.
6. Liu SL, Hessel A, Sanderson KE (1995) Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci U S A 90: 6674–6678.
7. Liu SL, Schyervers AB, Sanderson KE, Johnston RN (1999) Bacterial phylogenetic clusters revealed by genome structure. Journal of bacteriology 181: 6747–6755.
8. Liu SL, Sanderson KE, Sprieth J, Cifionn SW, Latreille P, et al. (2001) Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852–856.
9. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848–852.
10. Liu WQ, Feng Y, Wang Y, Zou QH, Chen F, et al. (2009) Salmonella paratyphi C: genetic divergence from Salmonella cholerasuis and pathogenic convergence with Salmonella typhi. PLoS ONE 4: e3190.
11. Parry CM, Henz TT, Dougan G, White NJ, Farrar J (2002) Trypoph fever. N Engl J Med 347: 1770–1782.
12. Tang L, Li Y, Deng X, Johnston RN, Liu GR, et al. (2013) Defining natural species of bacteria: clear-cut genomic boundaries revealed by a turning point in nucleotide sequence divergence. BMC Genomics 14: 489.
13. Bhagwat AS, McClelland M (1992) DNA mismatch correction by Very Short Patch repair may have altered the abundance of oligonucleotides in the E. coli genome. Nucleic Acids Res 20: 1663–1668.
31. Koeppel AF, Wertheim JO, Barone L, Gentile N, Krizanc D, et al. (2013) Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME J 7: 1080–1091.
32. Tang L, Liu SL (2012) The 3Cs provide a novel concept of bacterial species: messages from the genome as illustrated by Salmonella. Antonie Van Leeuwenhoek 101: 67–72.
33. Tang L, Wang CX, Zhu SL, Li Y, Deng X, et al. (2013) Genetic boundaries to delineate the typhoid agent and other Salmonella serotypes into distinct natural lineages. Genomics 102: 331–337.
34. Liu SL (2007) Physical mapping of Salmonella genomes. Methods Mol Biol. pp. 39–58.
35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
36. Liu WQ, Liu GR, Li JQ, Xu GM, Qi D, et al. (2007) Diverse genome structures of Salmonella paratyphi C. BMC Genomics 8.
37. Feng Y, Xu HF, Li QH, Zhang SY, Wang CX, et al. (2012) Complete genome sequence of Salmonella enterica serovar pullorum RK5078. Journal of bacteriology 194: 744.