Recent advances in systemic therapy for hepatocellular carcinoma

Huajun Zhang1, Wuyang Zhang2, Longying Jiang1,3* and Yongheng Chen1,4*

Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumors in the world. Therapeutic options for advanced HCC are limited. Systemic treatment, especially with conventional cytotoxic drugs, is usually ineffective. For more than a decade, sorafenib has been the only systemic drug that has been proven to be clinically effective for treating advanced HCC. However, over the past three years, the rapid progress of molecular targeted therapies has dramatically changed the treatment landscape for advanced HCC. Immune checkpoint therapies are now being incorporated into HCC therapies, and their combination with molecular targeted therapy is emerging as a tool to enhance the immune response. In this review, we summarize the development and progress of molecular targeted agents and immunotherapies in HCC.

Keywords: Hepatocellular carcinoma, Molecular targeted therapy, Immunotherapies, Combination

Background
Worldwide, liver cancers are predicted to rank sixth for incident cases and be the third leading cause of cancer-related death in 2020, with approximately 905,677 new cases and 830,180 deaths each year (Fig. 1A-C) [1]. Based on annual estimates, the World Health Organization predicts that more than 1.3 million people will die from liver cancer by 2040 (Fig. 1D) [2]. HCC is the most frequently occurring tumor among all primary liver cancers, accounting for 75%-85% of cases [3]. HCC is usually diagnosed at an advanced stage, for which there remain limited effective treatment options [4]. When applying palliative treatment at an advanced stage, the median post-diagnostic survival ranged from 6 to 12 months [5]. Systemic treatments may benefit patients with advanced-stage HCC [6].

Until 2007, there were no effective treatment options for patients diagnosed with advanced-stage disease or those who transitioned into advanced-stage disease after other treatments failed [7]. Sorafenib is the first and only systemic drug approved by the U.S. Food and Drug Administration (FDA) as standard treatment for advanced HCC between 2007 and 2016. However, rapid advances during the last 3 years have led to the approval of other molecular targeted drugs and several immune checkpoint inhibitors (ICIs), which have been added as therapeutic tools for advanced HCC (Tables 1, 2 and 3). In addition, the recent successful combination of atezolizumab and bevacizumab marks an important change in the first-line treatment of HCC (GO30140, NCT NCT02715531) [8]. To date, systemic therapy for advanced HCC includes molecular targeted therapy, immune checkpoint inhibitors, or a combination of both (Fig. 2).

In this review, we present a summary of systemic drugs already approved for use in advanced HCC and those that have shown positive results in preclinical or clinical trials, providing a perspective on the future of advanced HCC therapies.
Agents approved by the FDA

Molecular targeted therapies

Over the last few decades, advances in molecular cell biology have greatly contributed to our knowledge of the molecular mechanisms of tumorigenesis and its progression, which in turn provides opportunities for the development of novel molecular targeted agents that inhibit molecular abnormalities as promising cancer treatments [9]. At present, molecular targeted therapy mainly includes tyrosine kinase inhibitors (TKIs) and/or monoclonal antibodies.

Sorafenib

Sorafenib is an oral TKI that targets the angiogenesis and proliferation pathways of tumors by blocking vascular endothelial growth factor receptor (VEGFR) 1–3, platelet-derived growth factor receptor (PDGFR) β-pathways, and Raf-MEK-ERK signaling, all of which participate in the pathogenesis of HCC (Fig. 4) [11, 12].

At ASCO 2007, the results of the SHARP (Sorafenib Hepatocellular Carcinoma Assessment Randomized Protocol; NCT00105443) were reported, which demonstrated the effectiveness of sorafenib against HCC. The primary endpoints were overall survival (OS) and time to symptomatic progression. Compared to the placebo group, the sorafenib treatment group had significantly prolonged OS (median OS 10.7 vs. 7.9 months, hazard ratio [HR]=0.69; 95% confidence interval [CI], 0.55–0.87; p<0.0001), while the time to symptomatic progression was not significantly different between the two groups (median time 4.1 vs. 4.9 months, HR=1.08, p=0.77). Statistically significant differences were found for secondary endpoints: the median time to radiologic progression improved by 3 months (5.5 vs. 2.8 months, P<0.001), and the sorafenib group had a higher disease-control rate than the placebo group (43% vs. 32%, P = 0.002).

Common adverse effects observed in the sorafenib group included diarrhea, weight loss, hand-foot skin reactions, alopecia, anorexia, and voice changes, which were more frequent than those in the placebo group (P<0.001). Notably, 97% of the patients included in this trial were assessed as Child-Pugh liver function class A [13]. Based on these data, sorafenib was approved by the U.S. FDA in November 2007 for advanced HCC as first-line standard treatment.

Although sorafenib has a notable survival benefit in patients with advanced HCC, it has yet to be maintained. Owing to adverse events (AEs), many patients receiving sorafenib suffer from disease progression after dosage reductions or discontinuing treatment [14, 15]. In addition, 27% of patients in the SHARP trial had no initial response to sorafenib [13]. This reveals that resistance to sorafenib (both primary and acquired) greatly limits its survival benefit. In a study predicting survival
in advanced HCC patients who permanently discontinued sorafenib, the median post-sorafenib survival was only 4.1 (95% CI 3.3-4.9) months. Liver decompensation, performance status (PS), tumor progression, and/or extrahepatic tumor spread were significantly associated with post-sorafenib survival [16].

Lenvatinib

As first-line treatment, most drugs subsequently tested in phase III trials failed to improve the prognosis compared to sorafenib; they also did not improve survival compared with placebo as second-line therapy. These drugs include erlotinib [17], brivanib [18], sunitinib [19], linifanib [20], everolimus [21], and tivantinib [22] (Fig. 4, Table 1). Insufficient antitumor activity, toxicity in a cirrhosis state, and inadequate patient selection were cited as reasons for these failures. Sorafenib has remained the sole effective first-line treatment option for over a decade until lenvatinib was finally proven to be non-inferior to sorafenib in terms of OS [23].

Lenvatinib is a small molecule inhibitor of VEGFR 1–3, fibroblast growth factor receptor (FGFR) 1–4, PDGF Ra, KIT, and RET (Fig. 4)[24, 25]. Targeting the FGF signaling pathway in HCC differentiates lenvatinib from sorafenib.

In a multicenter, randomized, phase III, noninferiority trial (REFLECT; NCT01761266), lenvatinib exhibited non-inferiority in overall survival compared with sorafenib (mOS, 13.6 vs. 12.3 months, HR=0.92, 95% CI, 0.79–1.06). All secondary efficacy endpoints in REFLECT were statistically significantly improved: the median progression-free survival (mPFS) was longer in the lenvatinib group than in the sorafenib group (mPFS, 7.3 vs. 3.6 months, HR=0.65, p< 0.0001); the median time to progression (mTTP) was
7.4 months in the lenvatinib group compared to 3.7 months in the sorafenib group (HR=0.61, \(p<0.0001\)); and the objective response rate was better (ORR, 18.8% vs. 6.5%, \(p<0.0001\)) based on the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 after masked independent imaging review [23]. Based on the REFLECT results, the U.S. FDA approved lenvatinib for the first-line treatment of patients with advanced HCC on August 16, 2018 [26].

Regorafenib

Regorafenib is an oral inhibitor that inhibits many angiogenic and tumorigenic kinases, such as VEGFR1–3, tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 (TIE2), PDGFRβ, FGFR1, BRAF, RET, and KIT (Fig. 4) [27]. Regorafenib may exert a more far-reaching antiangiogenic activity owing to a combined blockade of the VEGFR2 and TIE2 pathways, which is supported by the results from a preclinical study by Tsai and Lee [28] showing a cooperative effect when combining anti-TIE2 and sorafenib, leading to an observed increase in overall survival in a melanoma model.

On April 27, 2017, the U.S. FDA expanded the indication for regorafenib as a second-line treatment for advanced HCC patients previously treated with sorafenib [29]. Approval was based on a randomized, placebo-controlled international phase III trial designed to assess the safety and efficacy of regorafenib in patients with HCC progressing during sorafenib treatment (RESORCE; NCT01774344) [30]. Regorafenib had a longer OS than placebo (mOS, 10.6 vs. 7.8 months, HR=0.63, \(p<0.0001\)) and prolonged progression-free survival and time to progression by mRECIST (mPFS 3.1 vs. 1.5 months, HR=0.46, \(p<0.0001\); mTTP was 3.2 vs. 1.5 months, HR=0.44, \(p<0.0001\)). The regorafenib group had an ORR of 11% versus 4% compared to the placebo group (\(p=0.0047\)), and the disease control rate (DCR) was 65% versus 35% (\(p<0.0001\)). Of note, the RESORCE trial was performed in patients who had progressed on prior sorafenib treatment; thus, the efficacy of regorafenib among sorafenib-intolerant patients has not yet been determined.

Additional analyses from the RESORCE trial suggested that regorafenib might offer clinical benefits independent of the latest sorafenib dose or the time to progression after previous sorafenib treatment and that the occurrence of AEs was independent of the last sorafenib dose [31]. Multiple clinical trials are currently evaluating the efficacy of regorafenib together with ICIs (Table 3).

Cabozantinib

Cabozantinib is a small-molecule tyrosine kinase inhibitor of MET and VEGFR 1-3, RET, KIT, AXL, and FLT3, all of which are associated with tumor pathogenesis (Fig. 4) [32, 33]. Cabozantinib has remarkable antitumor activity in HCC through dual inhibition of MET and VEGFR2 [33].

Table 2 ICI monotherapy for advanced HCC

ICI	Setting	Target	Phase	Name/NCT No.	Results	Approval Status
Tremelimumab	1st/2nd	CTLA-4	II	NCT01008358	/	/
Durvalumab	1st/2nd	PD-L1	I/II	NCT01693562	/	/
Nivolumab	2nd	PD-1	I/II	CheckMate-040	ORR 20%, mPFS 4.0 months	Conditional second-line, 2017
Nivolumab	1st		III	CheckMate-459	ORR 15%, mPFS 16.4 months	/
Pembrolizumab	1st/2nd	PD-1	II	KEYNOTE-224	ORR 17%, mOS 12.9 months, mPFS 4.9 months, mTTP 4.9 months	Conditional second-line, 2018
Pembrolizumab	2nd		III	KEYNOTE-240	ORR 18.3%, DCR 61.9%, mOS 13.9 months, mPFS 3.3 months	/
Pembrolizumab	2nd		III	KEYNOTE-394	/	/
Pembrolizumab	2nd		III	KEYNOTE-937	/	/
Tislelizumab	1st	PD-1	III	RATIONALE-301	/	/
Camrelizumab	2nd	PD-1	II	NCT02989922	ORR 14.7%, 6-month OS 74.4%	/

Abbreviations: DCR disease control rate, ORR objective response rate, mOS median overall survival, mPFS median progression-free survival, mTTP median time to progression.
In an international, phase III double-blinded trial, 773 patients who progressed on no more than two prior systemic treatments including sorafenib were randomized to cabozantinib or placebo (CELESTIAL; NCT01908426). The primary endpoint of the CELESTIAL trial was that OS was significantly improved (mOS 10.2 vs. 8.0 months, HR=0.76, p=0.005). The secondary efficacy endpoints of the trial showed that cabozantinib significantly improved

Regimen	Setting	Phase	Name/NCT No.	Results	Approval Status
ICI + MKI					
Nivolumab + Ipilimumab	2nd	I/II	CheckMate-040	ORR 32%, DCR 54%, mOS 22.2 months	Conditional second-line, 2020
Nivolumab + Sorafenib	1st	III	CheckMate-9DW	/	/
Nivolumab + Lenvatinib	1st	II	NCT03418922	/	/
Nivolumab + BMS986253	1st	II	NCT04050462	/	/
Nivolumab + Cabozantinib	2nd	I/II	NCT02705105	/	/
Nivolumab + Galunisertib	2nd	Ib/II	NCT02423343	/	/
Nivolumab + Relatlimab	2nd	II	NCT04567615	/	/
Nivolumab + Cabozantinib	neoadjuvant	Ib	CaboNivo/ NCT03299946	/	/
Pembrolizumab + Regorafenib	1st	Ib	NCT03347292	/	/
Pembrolizumab + Lenvatinib	1st	Ib	KEYNOTE524/ NCT03006926	ORR 46%, mPFS 9.3 months, mOS 22 months	/
Pembrolizumab + Lenvatinib	1st	III	LEAP-002/NCT03713593	/	/
Atezolizumab + Bevacizumab	1st	Ib	GO30140	ORR 36%, mPFS 5.6 vs. 3.4 months (compared to atezolizumab monotherapy, p=0.011)	/
Atezolizumab + Cabozantinib	1st	III	IMbrave150	ORR 29.8%, mOS 19.2 vs. 13.4 months (compared to sorafenib, HR 0.66, p=0.0009)	First-line treatment, 2020
Avelumab + Axitinib	1st	I	NCT03289533	ORR 31.8%, mPFS 3.8 months	/
Avelumab + Regorafenib	2nd	I/II	REGOMUNE/ NCT03475953	/	/
Durvalumab + Cabozantinib	2nd	Ib	NCT03539822 (CAMILLA)	/	/
Durvalumab + Ramucirumab	2nd	I	NCT02572607	/	/
Durvalumab + tivozanib	1st	Ib/II	DEDUCTIVE/ NCT03970616	lb: 2 of 7 achieving PR	/
Camrelizumab + Apatinib	1st	I	NCT02942329	ORR 50%, mPFS 5.8 months	/
Camrelizumab + Apatinib	2nd	II	RESCUE/ NCT03463876	/	/
Emibetuzumab + amucirumab	2nd	I/II	NCT02082210	/	/
IBI310 + Sintilimab	1st	III	NCT04720716	/	/
Durvalumab + Tremelimumab	1st/2nd	I/II	NCT02519348	ORR 24%, mOS 18.7 months	/
Durvalumab + Tremelimumab	1st	III	HIMALAYA/ NCT03298451	/	/

Abbreviations: ICI immune checkpoint inhibitor, MKI multikinase inhibitor, ORR objective response rate, mOS median overall survival, mPFS median progression-free survival, mTTP median time to progression, PR partial response.
the PFS and ORR according to RECIST v1.1 (mPFS was 5.2 vs. 1.9 months, HR=0.44, \(p<0.001 \); ORR was 4% vs. < 1%, \(p=0.009 \)). Sixty-eight percent of patients in the cabozantinib group and 36% of patients in the placebo group experienced grade 3 or 4 AEs [34]. Based on these results, on January 14, 2019, the U.S. FDA approved cabozantinib for patients with HCC who had previously received sorafenib treatment [35]. Several trials evaluating the combinations of cabozantinib and ICIs in patients with advanced HCC are ongoing, including in combination with nivolumab and atezolizumab (Table 3).

Of note, in the CELESTIAL trial, 192 (27%) patients had received two previous systemic anticancer drugs, meaning that cabozantinib was used as third-line therapy. Within this subgroup, the OS was not significantly different (mOS 8.6 months vs. 8.6 months). However, cabozantinib improved the PFS (mPFS 3.7 vs. 1.9 months, HR=0.58, 95% CI, 0.41-0.83), suggesting that advanced HCC patients could use cabozantinib as a possible third-line option [34].

Ramucirumab

Ramucirumab, a humanized recombinant IgG1 monoclonal antibody, selectively binds to VEGFR-2, preventing activation of the VEGF pathway (Fig. 4) [36], and it showed anti-tumor activity in advanced HCC in a phase II trial [37]. A prospective study focusing on ramucirumab applied to treat the progression of advanced HCC while on sorafenib (REACH; NCT01140347) showed that ramucirumab did not lead to a significant improvement in OS compared to placebo (mOS 9.2 vs. 7.6 months, HR =0.87, \(p=0.14 \)). However, in a subgroup with high baseline \(\alpha \)-fetoprotein (AFP) concentrations (≥ 400 ng/mL), ramucirumab significantly prolonged the OS with a median OS of 7.8 months vs. 4.2 months (HR=0.67, \(p=0.006 \)) [38].

To further investigate this result, the biomarker-driven REACH-2 trial (NCT02435433) was designed, evaluating ramucirumab versus placebo in advanced HCC patients with elevated AFP levels (≥400 ng/mL) who received prior sorafenib treatment. The primary endpoint of the REACH-2 trial showed that compared to the placebo group, OS was longer in the ramucirumab group (mOS 8.5 vs. 7.3 months, HR=0.71, \(p=0.0199 \)). Ramucirumab also increased the PFS (mPFS 2.8 vs. 1.6 months, HR=0.45, \(p<0.0001 \)), time to radiographic progression (mTTP 3.0 vs. 1.6 months, HR=0.42, \(p<0.0001 \)), and disease control rate (59.9% vs. 38.9%, \(p=0.0006 \)). REACH-2 was the first phase III trial to successfully screen for therapeutic candidates with biomarkers among patients with advanced HCC [39].

Based on these results, on May 10, 2019, the U.S. FDA authorized ramucirumab as a second-line treatment for HCC patients whose AFP was no less than 400 ng/mL [40].

Monotherapy with immune checkpoint inhibitors

The success of anti-cytotoxic T lymphocyte associated antigen 4 (CTLA-4) antibodies in blocking immune checkpoints in advanced melanoma patients offers hope
for immunotherapy of tumors. HCC carcinogenesis is typically accompanied by chronic liver inflammation, and HCC could be immunogenic [41]. In general, immune tolerance occurs in HCC mainly due to myeloid-derived suppressor cells (MDSCs), alterations of immune checkpoint molecules (such as CTLA-4 and programmed cell death protein-1 [PD-1]), and enrichment of T-regulatory cells (Tregs) [42]. The first evidence showing that ICIs could make a significant difference in HCC treatment came from a phase II trial in which the safety and antitumor activity of tremelimumab (CTLA-4 blockade) supported further studies in patients with advanced HCC who developed HCV-induced cirrhosis [43] (Table 2). In addition, other clinical trials of ICI monotherapy for HCC have been performed (Table 2).

Nivolumab

Nivolumab, a monoclonal antibody, blocks the PD-1 signaling pathway (Figs. 3 and 4) and restores the anti-tumor immune activity. It has been authorized by the U.S. FDA for application in several tumors (e.g., melanoma, non-small cell lung cancer [NSCLC], and kidney cancer) [44]. CheckMate 040 (NCT01658878), a noncomparative phase I/II trial, was designed to investigate the safety and efficacy of nivolumab for advanced HCC patients by escalating and expanding the dose of the medication. Prior sorafenib was allowed. Safety and tolerability represented the primary endpoints for the dose-escalation phase (n=48), while ORR was the primary endpoint for the dose-expansion phase (n=214). During the dose-escalation phase, the safety profile of nivolumab was evaluated, and the patients’ tolerability of the medication was acceptable: 25% of the patients (12 of 48) had grade 3 or 4 treatment-related adverse events (TRAEs), and the incidence of TRAEs appeared to be dose-independent. In the dose-expansion phase, the ORR was 20% (42 of 214 patients, 95% CI, 15-26), with thirty-nine partial responses and three complete responses. The median duration of response was 9.9 months, and the mPFS was 4.0 months (95% CI, 2.9-5.4). Seventy-nine of 138 patients (57%) had their disease under control, with most disease stabilizations lasting for at least 6 months. Among uninfected untreated patients, the ORR was 23%, and the nine-month overall survival rate was 82%, which supported that...
nivolumab deserved further investigation as first-line therapy for advanced HCC patients [45]. Based on the ORR and the durable objective responses, on September 22, 2017, the U.S. FDA accelerated the approval of nivolumab to treat HCC patients who were first treated with sorafenib [46].

Another research team studied first-line treatment (nivolumab vs. sorafenib) for advanced HCC patients through a randomized and multicenter phase III study (CheckMate 459; NCT02576509) and reported its data at the 2019 Congress of European Society for Medical Oncology (ESMO). The primary endpoint, OS, was not statistically significant, as the mOS was 16.4 and 14.7 months in the nivolumab group and sorafenib group, respectively (HR = 0.85, \(p = 0.0752 \)). Interestingly, patients receiving nivolumab had a higher complete response rate (ORR, 15% vs. 7%, respectively). Eighty-one patients (22%) taking nivolumab and 179 patients (46%) taking sorafenib had grade 3/4 TRAEs [47]. Although the above findings may not influence the current standard treatment, they give us insight that immunotherapy may also have a position in the first-line treatment for advanced HCC.

Pembrolizumab
Pembrolizumab, a monoclonal antibody blocking PD-1 (Figs. 3 and 4), has demonstrated potent anti-tumor activity and tolerable safety across many cancers [48], and its efficacy and safety were evaluated in advanced HCC patients via a nonrandomized, multicenter phase II trial (KEYNOTE-224; NCT02702414). KEYNOTE-224 revealed that 18 of 104 patients displayed an objective response (17%, 95% CI, 11–26) as per RECIST v1.1, with 1 (1%) achieving a complete response and 17 (16%) achieving a partial response. The median response duration was not reached (range 3.1–14.6+ months), the mTTP and mPFS were both 4.9 months, mOS was 12.9 months (95% CI, 9.7–15.5), and 54% of responding patients had response durations over 12 months [49]. Based on the above data, on November 9, 2018, pembrolizumab received accelerated approval by the U.S. FDA for patients with HCC progressing on sorafenib [50]. At the 2021 ASCO Gastrointestinal Cancer conference, the results of the KEYNOTE-224 cohort 2, which enrolled patients with advanced HCC without prior systemic therapy, were reported: the ORR was 16% (95% CI, 7-29), DCR was 57% (0 CR, 16% PR, 41% SD), mPFS was 4 months (95% CI, 2-6), and mOS was 17 months (95% CI, 8-NA). Based on these results, pembrolizumab monotherapy exhibited durable anti-tumor activity and promising overall survival, supporting further evaluation of pembrolizumab as a first-line treatment for advanced HCC [51].

Following KEYNOTE-224, a double-blind, randomized, phase III study (KEYNOTE-240; NCT02702401) was designed to further assess the safety and efficacy of
pembrolizumab treatment. The results of KEYNOTE-240 were updated at the 2021 ASCO GI Conference: the mOS was 13.9 vs. 10.6 months compared to placebo (HR=0.771, 95% CI 0.617–0.964), mPFS was 3.3 vs. 2.8 months compared to placebo (HR=0.703, 95% CI 0.559–0.885), ORR was 18.3% for the pembrolizumab group and 4.4% for the placebo group, DCR was 61.9% vs. 53.3% compared to placebo, and the median TTP was 4.0 vs. 2.8 months [52]. The clinical activity of pembrolizumab was again demonstrated by KEYNOTE-240, confirming the findings from KEYNOTE-224, thus supporting its accelerated approval by the FDA. Two other phase III trials evaluating pembrolizumab as second-line therapy are currently ongoing (KEYNOTE-394 and KEYNOTE-937, Table 2). Pembrolizumab combined with molecular targeted drugs are now being evaluated through several phase I/II trials (Table 3).

Combination therapy
To achieve a more satisfactory therapeutic response rate than ICI monotherapy, combination therapies based on ICIs are being developed to treat cancer. In 2018, Larkin et al. discovered through the CheckMate067 trial that the use of combined nivolumab and ipilimumab (CTLA-4 inhibitor) was more effective than monotherapy in patients with advanced melanoma [53]. Possible mechanisms for this combination therapy are as follows: 1) blocking the CTLA-4 pathway in lymph nodes increases the activation and proliferation of T cells, leading to CD8+ T cell infiltration; 2) blocking the PD-1/PD-L1 pathway not only maintains the killing capacity of cytotoxic T lymphocytes (CTLs) [44] but also improves the ability of antigen-presenting cells to present tumor-associated antigens; and 3) given the high expression of CTLA-4 and PD-1 on Tregs, the combination of these two inhibitors indirectly reduces the immunosuppressive tumor microenvironment (TME) (Fig. 3A) [54].

Another area of interest is the combination of TKIs with ICIs. It is worth noting that molecular targeted agents (sorafenib, lenvatinib, regorafenib, cabozantinib, and ramucirumab) with beneficial effects on survival in patients with HCC all share the same characteristics, that is, anti-angiogenesis, highlighting the importance of this hallmark in cancer treatment [55]. The restoration of tumor vascular function may help to enhance the ability of other drugs (e.g., ICIs) that can be used in combination with anti-angiogenic molecules to kill tumor cells [56, 57]. TKIs with antiangiogenic activity exert immunomodulatory effects on the TME [58], which include promoting dendritic cell (DC) maturation [59], enhancing T cell trafficking and function [10], and reversing the hypoxia-induced immunosuppressive effect in tissue [60] (Fig. 3B).
There are many growth factors involved in tumor angiogenesis, the most important of which is the vascular endothelial growth factor (VEGF) family [74]. In addition to the mentioned inhibitors targeting VEGFR that have been approved by the FDA (sorafenib, lenvatinib, regorafenib, cabozantinib, and ramucirumab), there are several anti-VEGFR agents currently in clinical trials. Tivozanib is a potent VEGF 1–3 TKI with relatively lesser effects on KIT and PDGFRβ and it has dose-dependent activity against HCC in vivo [75]. According to the existing NCT01835223 data (Table 1) [76], tivozanib showed an ORR (per RECIST v1.1) of 21%, mOS of 9 months (90% CI, 5.4–27.8), mPFS of 24 weeks, and a 1-year OS rate of 40%. Unfortunately, the study did not proceed to stage 2 due to not meeting the prespecified statistical plan. However, tivozanib had better anti-tumor efficacy than sorafenib and lenvatinib as first-line therapy, with ORRs of 21% vs. 6.5% (sorafenib) and 18.8% (lenvatinib), respectively. Since small molecular inhibitors can at least partially reverse immune dysfunction, the combination of tivozanib and ICIs is a promising option. As previously mentioned, a trial of tivozanib in combination with durvalumab is currently ongoing (Table 3).

In addition, at the 2020 ASCO Virtual Scientific Program, two other TKIs designed by Chinese companies reported exciting phase III results. In a first-line treatment setting, donafenib (ZGDH3, NCT02645981, Table 1) had a significantly longer overall survival than sorafenib: the mOS was 12.1 vs. 10.3 months (HR=0.831, P=0.0363) (Table 1). Additionally, donafenib exhibited favorable safety and tolerability compared to sorafenib: drug-related AEs of grade ≥3 occurred in 37.5% of patients in the donafenib group versus 49.7% in the sorafenib group (P=0.0018), and the incidence of treatment interruptions due to drug-related AEs was 30.3% in the donafenib group compared to 42.5% in the sorafenib group (P=0.0013) [77].

Apatinib has been investigated as second-line therapy in Chinese advanced HCC patients through a phase III study AHELP (NCT02329860, Table 1), which showed significantly longer OS and PFS compared to placebo and exhibited a tolerable safety profile. The mOS was 8.7 vs. 6.8 months (HR=0.785, P=0.0476), the mPFS was 4.5 vs. 1.9 months (HR=0.471, P<0.0001), the ORR was 10.7% vs. 1.5% per RECIST v1.1, and no new safety signals were noted [78].

c-MET
c-Met is a receptor tyrosine kinase for hepatocyte growth factor (HGF) [79], and abnormalities in c-Met are found in approximately 50% of HCC patients [80]. Aberrant c-MET activity is involved in HCC progression [81] and may lead to treatment resistance toward sorafenib [82]. c-MET inhibitors can be categorized into selective and nonselective. Nonselective c-MET inhibitors (e.g., tivantinib and cabozantinib) may exert anti-tumor effects, mainly owing to the inhibition of non-c-MET targets, and an “off-target” effect is associated
with increased toxicity [83]. Conversely, selective c-MET inhibitors (e.g., tepotinib and capmatinib) are being tested in HCC and are thought to have reduced toxicity. Both selective and nonselective agents are being investigated in different trials for potential use in HCC patients as first- or second-line therapy (NCT01988493, NCT02115373, NCT01737827, NCT01964235, Table 1). Decaens et al. reported data of NCT02115373, showing that tepotinib was well tolerated and that the recommended phase 2 dose (500 mg) reached its primary endpoint in the phase 2 study: the 12-week PFS was 63.3% (one-sided binomial exact test: \(P < 0.0001 \)) [84]. Selective c-MET inhibitors are more promising drug candidates. There are also ongoing studies evaluating the safety and tolerability of c-MET inhibitors combined with ICIs (NCT02795429, NCT02082210, Table 3).

TGFβ

The TGFβ pathway has dual anti- and pro-tumoral activities in cancer cells: in the early stage, it is beneficial for promoting cell cycle arrest and apoptosis [85], while in the advanced stage, it promotes tumor progression and metastasis by enhancing cell motility, epithelial-to-mesenchymal transition (EMT), invasiveness and stemness [86]. In addition, TGFβ signaling is a major modulator of immune cell proliferation, differentiation, development, and survival [87], which suppresses CD8+ T cells, NK cells, and DCs and increases CD4+CD25+ Tregs by promoting the differentiation of M2-type macrophages [88], leading to immunosuppression in HCC. Microenvironmental remodeling by TGFβ creates a beneficial microenvironment for tumor development and metastasis [86]. These findings provide a rationale for blocking TGFβ signaling in HCC treatment, especially in immunotherapy. Galunisertib (LY2157299) is a TGFβ receptor 1 inhibitor [89] that has been studied as monotherapy and combined with sorafenib in extensive phase I/II trials for HCC [90].

Endoglin

Endoglin (also known as CD105), a type 1 intact transmembrane glycoprotein, is a co-receptor for TGF-β ligands and plays an important role in fibrogenesis and angiogenesis [91]. Endoglin is mainly found in immature tumor vascular endothelial cells and contributes to tumor angiogenesis [92, 93]. Endoglin microvascular density has an essential and independent prognostic role in recurrent or metastatic HCC patients [94], and circulating serum endoglin could be detected in HCC patients [93, 95, 96], suggesting that endoglin may be a prognostic marker for HCC patients; however, it still needs further study. TRC105 (carotuximab) is an anti-endoglin antibody, yet it did not show adequate monotherapy efficacy in the phase II trial (NCT01375569) of TRC105 for post-sorafenib HCC patients [97]. The combination of TRC105 and sorafenib (NCT01306058) showed an ORR of 21% per RECIST at all four dose levels, with a mOS of 15.5 months and a mTTP of 3.8 months [98]. At the 2019 ASCO GI, Raghav et al. reported that TRC105 + sorafenib had encouraging signs of activity, with durable partial responses in 1 of 5 patients thus far in phase II (NCT01806064) [99].

FGF19/FGFR4

Among the family of tyrosine kinase receptors, fibroblast growth factor receptor 4 (FGFR4) is mostly expressed in the liver [100]. FGF19, one of the three endogenous FGFs, binds with the highest affinity to FGFR4 [101], and the FGF19 expression level is frequently reported to be associated with HCC prognosis [102]. After activation of the FGFR4 signaling pathway, HCC cells undergo proliferation, EMT, anti-apoptosis, angiogenesis, invasion, and drug resistance through activating four downstream pathways: PI3K/AKT/mTOR, RAS/RAF/MAPK, PLCγ/DAG/PKC, and GSK3β/β-catenin [103]. Abnormal expression of FGF19/FGFR4 promotes the development of HCC [102], making it a promising therapeutic target. Despite the relatively low selectivity of pan-FGFR inhibitors against FGFR4 [104], some TKIs specifically targeting FGF19/FGFR4 are being tested in different phases of clinical trials (Table 1) [105], among which the most promising candidate is BLU-554.

In a phase I trial (NCT02508467) to escalate and expand doses, fisogatinib (BLU-554) produced a clinical response in FGF19-positive patients with advanced HCC: the ORR per RECIST v1.1 was 17% (11 of 66 patients) in FGF19-positive patients and 0% in the FGF19-negative group; 53% of TRAEs in this study were grade 1/2, which were tolerable. This trial validates the effectiveness of blocking the FGF19/FGFR4 axis and the biomarker potential of FGF19 to screen HCC patients [106]. Another FGFR4 inhibitor, FG401, has been investigated as monotherapy or in combination with PDR001 (NCT02325739).

CSF-1/CSF-1R

 Colony-stimulating factor 1 (CSF-1) is a cytokine mainly produced by tumor cells that recruits macrophages under pathological conditions [107]. When CSF-1/CSF-1R is activated, tumor-associated macrophages (TAMs) secrete growth factors that contribute to tumor growth or metastasis, leading to a higher rate of recurrence [108, 109]. Ao et al. found that PLX3387 (CSF-1R inhibitor, also called pexidartinib) exhibited antitumor activity in both xenograft and allograft HCC models [110], and depletion of TAMs by drugs enhanced the antitumor effects of sorafenib [111]. Several TKIs targeting the CSF-1/CSF-1R axis are now being studied for treating advanced solid tumors, including HCC, such as...
pexidartinib (NCT02452424), chiauranib (NCT03245190), TPX-0022 (NCT03993873), and BLZ945 (NCT02829723).

Immune checkpoint therapies in clinical trials

Currently, two immune checkpoint inhibitors have been approved by FDA for the HCC treatment, both of which are PD-1 monoclonal antibodies. In addition to these approved therapies, there are a variety of promising immune checkpoints therapies in clinical trials.

PD-1 and PD-L1 inhibitors

In addition to nivolumab and pembrolizumab, there are a number of PD-1 inhibitors and PD-L1 inhibitors in clinical trials, including: (1) PD-1 inhibitors, such as tislelizumab versus sorafenib as first-line treatment (RATIONALE 301, NCT03412773), camrelizumab (SHR-1210) as second-line treatment (NCT02989922, 2) PD-L1 inhibitors, namely durvalumab (NCT01693562, NCT03847428), and avelumab (NCT03389126). According to Qin et al. [112], the ORR of camrelizumab was 14.7%, and the 6-month OS was 74.4%. Lee et al. reported the results of a phase II trial of avelumab monotherapy, which demonstrated moderate efficacy and good tolerance with an ORR of 10%, DCR of 73.3%, mTTP of 4.4 months, and mOS of 14.2 months (Table 2) [113]. Except for these two trials, no other trials have reported any results yet.

Other immune checkpoint inhibitors

In addition to the well-known PD-1/PD-L1 and CTLA-4, a series of inhibitory immune checkpoint molecules involved in the immune tolerance of HCC have been reported, including lymphocyte activation gene 3 (LAG-3) [114], T cell immunoglobulin mucin-3 (TIM-3)/galectin-9 (GLA-9) [115], T cell immunoglobulin and ITIM domain (TIGHT) [116], and adenosine A2a receptor. Zhou et al. [114] found that a PD-L1 inhibitor in combination with a TIM-3, LAG-3, or CTLA-4 inhibitor results in a revitalization of in vitro tumor-infiltrating lymphocyte (TIL) responses in most patients and further enhances its effect compared to PD-L1 monotherapy. The use of drugs targeting TIM-3/GLA-9 is well summarized in Ref [117]. Next-generation ICIs targeting LAG-3, TIM-3, and TIGHT are expected to provide survival benefits for HCC patients.

Agonists of co-stimulatory checkpoint pathways

Immune checkpoints include inhibitory pathways and co-stimulatory pathways. Agonists of co-stimulatory checkpoint pathways such as OX40, GITR, ICOS, CD27, and CD28 are under investigation for treating solid tumors, which have also been summarized in Ref [118]. PF-04518600 is an OX4 agonist antibody. In 2020, the results of a phase I trial (NCT02315066) investigating its safety and tolerability in patients with advanced HCC were published, showing that PF-04518600 was well-tolerated overall and provided meaningful disease control [119]. Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is believed to promote the function of effector T cells and inhibit the function of Tregs [120]. Beek et al. found that agonistic targeting GITR enhances the function of tumor-infiltrating T cells in HCC, suggesting that it could be a promising target for immunotherapy [121]. Several antibodies targeting GITR including INCAGN01876 (NCT03126110), BMS-986156 (NCT04021043), and TRX518 (NCT02628574, NCT03861403) are being studied for solid tumors involving HCC.

Combination therapies in clinical trials

Regorafenib enhances the killing effect of T cells by modulating various immunoreactive molecules, helping to present antigens, and triggering T cell differentiation and accumulation [122]. Tumor-associated macrophages associated with angiogenesis in the TME are characterized by TIE2 expression, which is strongly associated with cancer cell intravasation into the circulatory system [123]. This evidence provided a rationale to combine regorafenib and pembrolizumab as first-line treatment for advanced HCC, which is being studied in a multicenter dose-escalation phase IIb trial (NCT03347292, Table 3). Meanwhile, lenvatinib combined with pembrolizumab has shown promising antitumor activity and manageable toxicity in unresectable HCC through a phase Ib clinical trial (KEYNOTE-524/NCT03006926, Table 3), which supported a Breakthrough Therapy designation granted by the FDA in July 2019 [124]. Efficacy data from KEYNOTE-524 showed an ORR of 46% (95% CI, 36–56.3%) per mRECIST, the mPFS was 9.3 months (95% CI, 5.6–9.7) and mOS was 22 months (95% CI, 20.4–NE) [125]. As a single-arm study, lenvatinib + pembrolizumab from KEYNOTE-524 did not show evidence of meaningful improvement over approved therapies; therefore, a phase III trial is currently assessing the efficacy and safety of this combination compared to lenvatinib + placebo as a first-line option (LEAP-002/NCT03713593, Table 3).

Cabozaatinib not only modulates peripheral and intra-tumor immune landscapes but also induces changes in the phenotype of MC38-CEA tumor cells, thereby increasing their vulnerability to cytotoxic effects mediated by T cells [126]. Immunogenic and immune subset modulations of cabozanatinib support its clinical investigation in combination with immunotherapy. Multiple active trials are evaluating the efficacy of cabozanatinib in combination with nivolumab/atezolizumab, including the COSMIC-312 phase III trial (NCT03755791, Table 3).

To improve the ORR over single-use nivolumab, a series of different combinations are being tested in clinical trials (Table 3), including sorafenib (NCT03439891), lenvatinib (NCT03418922), BMS-986253 (IL-8 inhibitor,
Avelumab (a PD-L1 inhibitor) is being investigated in combination with axitinib/regorafenib via phase 1/2 trials (NCT03289533, NCT03475953, Table 3). VEGF Liver 100 (NCT03289533) is a phase Ib trial to evaluate the safety and efficacy of avelumab + axitinib (VEGFR inhibitor) as a first-line treatment in advanced HCC patients. At the 2019 ASCO GI Cancer, Kudo et al. reported the interim results of VEGF Liver 100: the ORR per mRECIST was 31.8% (95% CI, 13.9–54.9%), and the mPFS was 3.8 months (95% CI, 1.9–7.3) [127].

Camrelizumab was tested in combination with apatinib (VEGFR-2, RET, c-kit inhibitor) for treating advanced HCC patients in NCT02942329 [128]. At the data cutoff (June 15, 2018), 8 of 16 evaluable HCC patients achieved a partial response, with an ORR of 50% (95% CI, 24.7–75.4%). This combination has been evaluated in a phase III trial as a first-line treatment (NCT03764293) versus sorafenib and a phase II trial as a second-line treatment (NCT03463876) (Table 3).

A study investigating tivozanib (selective VEGFR 1–3 TKI) in combination with durvalumab for untreated advanced HCC updated its phase Ib data at the 2021 ASCO GI Conference. NCT03970616 (Table 3) enrolled 7 patients and found that untreated advanced HCC patients tolerated this combination well, with two of them achieving a partial response [129]. The phase II portion of the study is ongoing.

The results of NCT02519348 (Table 3), which evaluated durvalumab (D) combined with tremelimumab (T) in advanced HCC patients, have been reported at the 2020 ASCO Virtual Scientific Program, showing that T300+D (T 300 mg + D 1500 mg 1 dose followed by D Q4 weekly) provided the best benefit-risk profiles. The confirmed ORR by RECIST v1.1 in T300 + D was 24% (95% CI, 14.9–35.3%), mOS was 18.7 months (95% CI, 10.8–NR), and grade 3/4 TRAEs were observed in 26 patients (35.1%) in T300 + D [130]. T300 + D and durvalumab monotherapy are being investigated in the HIMALAYA trial (NCT03298451) as first-line treatment for advanced HCC patients. Besides, this phase trial evaluating the efficacy and safety of IBI310 (CTLA-4 inhibitor) plus sintilimab (PD-1 inhibitor) versus sorafenib as first-line treatment for advanced HCC is currently recruiting (NCT04720716, Table 3).

Antibody-drug conjugates (ADCs)

Antibody-drug conjugates (ADCs) consist of a monoclonal antibody against a tumor associated antigen (TAA) on the surface of cancer cells that is conjugated to a cytotoxic drug (known as the payload) through a chemical linker [131]. This directed delivery strategy combines the precision of antibody targeting to antigens with the effective cell-killing activity of the payload, resulting in reduced systemic exposure and thus reduced toxicity [132]. ADCs are one of the rapidly growing areas in cancer drug development, with five ADCs having been approved by the FDA for clinical use (Adcetris, Kadcyla, Besponsa, Mylotarg, and Polivy) and over 100 ADCs being evaluated in clinical trials [133]. The discovery of a series of HCC-specific TAAs provides the rationale for applying ADCs in HCC treatment: glypican-3 (GPC3) [134], AFP, epithelial cell adhesion molecule (EpCAM) [135], tumor endothelial marker 1 (TEM1, or endothialin) [136], MAGE-A, NY-ESO-1 [137], and claudin-6 (CLDN6) [138]. In the past, there were pre-clinical studies of the anti-tumor effects of Anti-CD147 ILs-DOX [139], G7mAb-DOX [140], and MetFabDOX [141] in HCC, as well as phase I/II trial (NCT01631552) of IMMU-132 [142] in solid tumors including HCC. Recently, Fu et al. designed and synthesized two anti-GPC3 ADCs with duocarmycin SA and pyrrolobenzodiazepine, which were named hYP7-DC and hYP7-PC, and demonstrated that these two ADCs had antitumor activity against both GPC3-positive HCC cell lines and xenograft models [143]. The hYP7-DC was also found to have synergistic effects with gemcitabine, and hYP7-PC induced tumor remission in a mouse model. Kong et al. developed a novel ADC drug, CLDN6-DM1 (DM1 being referred to as mertansine), and the preclinical data of CLDN6-DM1 showed robust antitumor effects against HCC cell lines and a xenograft mouse model, both as monotherapy and combined with sorafenib [144] (Table 4). All these efforts provide a new strategy for the treatment of HCC. Clinical trials of ADCs for HCC treatment in the near future are being anticipated.

Chimeric Antigen Receptor T Cells (CAR-T)

CAR is a fusion protein consisting of an antigen-binding domain (usually referring to the extracellular portion of the antibody), the signaling domains of the T cell receptor (TCR) chain, and additional co-stimulatory domains (e.g., CD28, OX40, CD137); therefore, CAR recognition is independent of major histocompatibility complex (MHC) restriction. Loss of MHC-associated antigen presentation by tumor cells is a key mechanism of cancer immune escape [148], and one strategy to overcome this escape is to genetically engineer autologous T cells with CAR, expand CAR T cells in vitro and infuse them back into patients to attack cancer cells [149]. In 2017, tisagenlecleucel (KYMRIAH) [150, 151] and axicabtagene ciloleucel (Yescarta) [152, 153] received successive FDA approval as CAR-T therapy for the treatment of acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Breyanzi (lisocabtagene maraleucel) became the third FDA-approved CAR-T therapy in 2021 for certain types of non-Hodgkin lymphoma, including diffuse large B-cell lymphoma [154, 155]. Positive results of CAR-T therapy in hematologic malignancies raised hope for CAR-T therapy against solid tumors.
BiTEs are believed to possess remarkable efficacy for tumor immunotherapy because of their mini size, high flexibility, and high-affinity binding between effector and target cells [162]. Blinatumomab, an anti-CD19/CD3-BiTE, has been successful in treating hematologic malignancies and was approved by the FDA for treating acute lymphocytic leukemia [163]. Zhang et al. reported that the anti-EpCAM BiTE 1H8/CD3 had effective antitumor activity against HCC cells both in vitro and in vivo [145]. Kebenko et al. [146] reported a phase I study of solitomab (MT110, targeted EpCAM and CD3, NCT00635596) for advanced solid tumors. The study was associated with dose-limiting toxicities, based on which it failed to escalate the dose to potentially therapeutic levels. ERY974 [147], an anti-GPC3/CD3 BiTE, had been evaluated for safety and efficacy in GPC3+ HCC patients in a phase I trial (NCT02748837), with no results yet (Table 4). To improve the efficiency of BiTEs and reduce on-target off-tumor toxicities, the identification of target molecules abundantly expressed by tumor cells compared to nonmalignant cells is necessary. In addition, BiTEs face the complex TME of solid tumors and drug resistance due to the loss of the target antigen expression. These are all key issues to be addressed in the future.

Suggested systemic treatment strategies

Recently, approved systemic agents do offer more options for the treatment of advanced HCC patients; however, the lack of head-to-head comparative studies between first- and second-line regimens for systemic treatment has led to confusion when making clinical decisions. Thus, systematic review and network meta-analysis are particularly important at this stage. A meta-analysis of 14 clinical trials conducted by Sonbol et al. showed that atezolizumab + bevacizumab was superior in the first-line setting compared to sorafenib (HR=0.58), lenvatinib (HR=0.63), and nivolumab (HR=0.68). In the second-line setting, all drugs showed a PFS benefit compared with placebo, with only regorafenib and cabozantinib converting to OS benefit. In addition, cabo- zantinib and regorafenib showed a PFS advantage over ramucirumab and pembrolizumab, but only regorafenib had a statistically significant OS benefit compared to ramucirumab (HR=0.71). For patients with advanced HCC whose AFP levels were at or above 400 ng/mL, there was no significant difference in PFS or OS among regorafenib, cabo- zantinib, and ramucirumab [164]. Park et al. incorporated 13 first-line studies and 11 second-line studies to obtain similar results. In first-line therapies, atezolizumab + bevacizumab had the greatest OS benefit, while lenvatinib had the greatest ORR benefit. In second-line therapies, cabo- zantinib had the greatest PFS benefit and ORR benefit compared to placebo [165]. In 2020, ASCO assembled an expert panel to perform a

Antibody-drug conjugates	Payload	Target	Stage	Reference
ADCs	doxorubicin	CD147	preclinical	[139]
IILS-DOX	doxorubicin	CD24	preclinical	[140]
G/mAb-DOX	doxorubicin	c-MET	preclinical	[141]
MetFab-DOX	SN-38	Trop-2	phase I	[142]
IMMU-132	duocarmycin SA	GPC3	preclinical	[143]
hYP7-DC	pyrolobenzodiazepine	CLDN6	preclinical	[144]
G7mAb-DOX	doxorubicin	CD24	preclinical	[139]
IMMU-132	SN-38	Trop-2	phase I	[142]
hYP7-PC	pyrolobenzodiazepine	CLDN6	preclinical	[144]

Table 4 Antibody-drug conjugates and bispecific T cell engagers for HCC treatment

Bispecific T cell engagers	T cell receptor	Stage	Reference	
1H8/CD3 BiTEs	EpCAM	CD3	preclinical	[145]
solitomab	EpCAM	CD3	phase I	[146]
ERY974 BiTEs	GPC3	CD3	phase I	[147]

| Abbreviations: CLDN6, Claudin6; EpCAM, epithelial cell adhesion molecule; GPC3, glypican-3; TAA, tumor associated antigen; Trop-2, trophoblast cell surface antigen-2 |

In preclinical studies, engineered GPC3-CAR-T cells could effectively eliminate GPC3-positive HCC cells in HCC xenograft mouse models, demonstrating their clinical potential for treatment [157–159]. There are currently 20 clinical trials in progress testing CAR-T therapy for HCC, 12 of which target glypican-3 (GPC-3) (Table 5). In 2020, Shi et al. [160] reported two sequential phase I studies, NCT02395250 and NCT03146234, which showed that GPC3-CAR-T cells have an initial safety profile and anti-tumor activity in advanced HCC patients. There were two confirmed partial responses of 13 patients, and one patient with sustained stable disease exhibited long-term survival (44.2 months). The 6-month, 1-year, and 3-year OS rates were 50.3%, 42.0%, and 10.5%, respectively, with a mOS of 278 days (95% CI, 48–615 days). There were no grade 3/4 neurotoxicity or CAR-T-related infusion reactions. In addition, CAR-T cells against other antigens are under investigation: anti-c-MET/ PD-L1 (NCT03672305 and NCT03638206), anti-DR5 (NCT03941626 and NCT03638206), anti-EGFR (NCT03941626 and NCT03638206), anti-CD147 (NCT03993743), anti-ET1402 (NCT03349255), anti-NKG2D (NCT04550663), anti-mucin1 (NCT02587689), and anti-EpCAM (NCT03013712).

Bispecific T cell Engager (BiTE)

BiTEs are generated by two different single-chain variable fragments (scFvs) covalently linked by small peptides which are derived from the antigen-binding domains of anti-CD3 and anti-TAA antibodies [161]. BiTEs are believed to possess remarkable efficacy for...
systematic review of published phase III trials and to develop evidence-based clinical practice guidelines for systemic therapy of advanced HCC [166]. According to these guidelines, atezolizumab + bevacizumab is the standard treatment for most patients with advanced HCC in Child-Pugh grade A and Eastern Cooperative Oncology Group Performance Status (ECOG PS) 0–1, the details of which are shown in Fig. 5. For patients with contraindications to immunotherapy, sorafenib or lenvatinib is preferred for first-line treatment.

Conclusions

Undoubtedly, the systemic treatments of advanced HCC have ushered in prime time (Fig. 4). Angiogenesis and immune evasion are two common features of cancers [167]. As a pioneer in the era of immune combination therapy, the atezolizumab + bevacizumab regimen is the first combination proven to be more effective than sorafenib in the first-line treatment of advanced HCC, which is regarded as a milestone and an encouraging breakthrough in the treatment of advanced HCC. Notably,

Table 5 Ongoing studies investigating CAR-T for HCC

Study Title	Registration ID	Phase	Status	Results/Notes
GPC3-targeted CAR-T Cell for Treating GPC3 Positive Advanced HCC	NCT04121273	1	Recruiting	
Anti-GPC3 CAR T for Treating Patients with Advanced HCC	NCT02395250	1	Completed	6-month OS:50.3%; 1-year OS: 42.0%; 3-year OS: 10.5%; mOS: 278days (95% CI:48-615 days); 2 PRs, 1 SD
CAR-GPC3 T Cells in Patients with Refractory Hepatocellular Carcinoma	NCT03146234	/	Completed	
Glypican 3-specific Chimeric Antigen Receptor Expressing T Cells for Hepatocellular Carcinoma (GLYCAR)	NCT02905188	1	Recruiting	
GPC3-CAR-T Cells for the Hepatocellular Carcinoma	NCT04506983	1	Not yet recruiting	
Anti-GPC3 CAR-T for Treating GPC3-positive Advanced Hepatocellular Carcinoma (HCC)	NCT03084380	1/2	Unknown	
A Study of GPC3 Redirected Autologous T Cells for Advanced HCC	NCT02715362	1/2	Unknown	
A Study of GPC3-targeted T Cells by Intratumor Injection for Advanced HCC (GPC3-CART)	NCT03130712	1/2	Unknown	
GPC3-CAR-T Cells for Immunotherapy of Cancer with GPC3 Expression	NCT03198546	1	Recruiting	
4th Generation Chimeric Antigen Receptor T Cells Targeting Glypican-3	NCT03980288	1	Recruiting	
Chimeric Antigen Receptor T Cells Targeting Glypican-3	NCT03884751	1	Recruiting	
Clinical Study of Redirected Autologous T Cells with a Chimeric Antigen Receptor in Patients with Malignant Tumors	NCT03302403	/	Not recruiting	
Clinical Study on the Efficacy and Safety of c-Met/PD-L1 CAR-T Cell Injection in the Treatment of HCC	NCT03672305	1	Unknown	
A Study of CD147-targeted CAR-T by Hepatic Artery Infusions for Very Advanced Hepatocellular Carcinoma	NCT03993743	1	Recruiting	
Clinical Study of ET1402L1-CAR T Cells in AFP Expressing Hepatocellular Carcinoma	NCT03349255	1	Terminated	Will study new T-cell construct for the same indication
Autologous CAR-T/TCR-T Cell Immunotherapy for Solid Malignancies	NCT03941626	1/2	Recruiting	
NKG2D CAR-T (KD-025) in the Treatment of Relapsed or Refractory NKG2D+ Tumors	NCT04550663	1	Not yet recruiting	
Phase I/II Study of Anti-Mucin1 (MUC1) CAR T Cells for Patients with MUC1+ Advanced Refractory Solid Tumor	NCT02587689	1/2	Unknown	
A Clinical Research of CAR T Cells Targeting EpCAM Positive Cancer	NCT03013712	1/2	Unknown	
Autologous CAR-T/TCR-T Cell Immunotherapy for Malignancies	NCT03638206	1/2	Recruiting	

Clinical trials were searched by keywords “HCC” and “CAR-T” on ClinicalTrials.gov, retrieved on May 1st, 2021. Withdrawn trials were excluded. Abbreviations: mOS, median overall survival; PR, partial response; SD, stable disease
with atezolizumab + bevacizumab being promoted as a preferred first-line treatment [164-166], the following questions arise: are the existing second-line treatment options still valid? Can the existing first-line TKIs become the second-line treatment after immunotherapy? These points remain to be addressed by future studies. As mentioned earlier, several phase III trials in the first-line setting are underway (e.g., CheckMate-9DW, LEAP2, COSMIC-312, HIMALAYA, Table 3), and the potential first-line treatment options are likely to continue to increase, making clinical decisions more challenging.

Our review not only lists the new drugs approved by FDA for HCC treatment, but also summarizes novel drug candidates under investigation. Selective inhibitors of VEGFR, c-MET, TGFβ, endoglin, and FGFR4 have shown good tolerability and efficacy in phase I/II or phase III studies, making these compounds promising for future treatment. In the field of immunotherapy, in addition to targeting PD-1/PD-L1 and CTLA-4, an increasing number of ICIs, such as LAG-3, TIM-3, and GITR, are gradually demonstrating their efficacy. Meanwhile, as more and more HCC-specific TAAs are identified, other immunotherapeutic approaches, including ADCs, CAR-T, and BiTEs, are being further developed.

The development of new drugs for HCC treatment may not be as impressive as for some other tumors, and few predictive biomarkers have yet been identified (except AFP for ramucirumab and perhaps FGF19 for FGFR4 inhibitors). Based on the results of recent clinical trials, it seems that a single drug may not be sufficient for the treatment of HCC [168], therefore combination therapy represents a major research direction for the systemic treatment of advanced HCC. In addition, it is important to find biomarkers that can predict the treatment response to guide systemic therapy strategy. With the continued development of new therapeutic strategies, it is expected that the treatment outcomes for HCC will be greatly improved in the future.

Fig. 5 Suggested systemic treatment strategies for advanced HCC. This algorithm is derived from recommendations of “Systemic Therapy for Advanced Hepatocellular Carcinoma: ASCO Guideline” [166]
Abbreviations
ADCs: Antibody-drug conjugates; AEs: Adverse events; ASCO: American society of clinical oncology; BITE: Bispecific T cell engager; CAR-T: Chimeric antigen receptor T Cells; CI: Confidence interval; CTLA-4: Cytotoxic T lymphocyte associated antigen 4; DCR: Disease control rate; FGF: Fibroblast growth factor; FGFR: Fibroblast growth factor receptor; HCC: Hepatocellular carcinoma; HR: Hazard ratio; ICIs: Immune checkpoint inhibitors; MDSCs: Myeloid-derived suppressor cells; ORR: Objective response rate; OS: Overall survival; PDGFR: Platelet-derived growth factor receptor; PFS: Progression-free survival; RECIST: Response evaluation criteria in solid tumors; TAMS: Tumor-associated macrophages; TLRs: Tyroline kinase inhibitors; TME: Tumor microenvironment; TRAEs: Treatment-related adverse events; Tregs: T-regulatory cells; TTP: Time to progression; VEGFR: Vascular endothelial growth factor receptor

Acknowledgments
Not applicable.

Authors’ contributions
H.Z. reviewed the relevant literature and completed the figures and tables, and wrote the manuscript. Y.C. offered main direction and significant guidance for this manuscript. H.Z., W.Z., and L.J. revised the manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by the National Natural Science Foundation of China (Grants No. 81570537 and No. 81974074 to Y.C.).

Availability of data and materials
The materials supporting the conclusion of this review have been included within the article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Oncology, NHIC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. 2Clinical skills training center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. 3Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. 4National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.

Received: 28 July 2021 Accepted: 26 September 2021
Published online: 09 January 2022

References
1. Cancer Today [https://gco.iarc.fr/today/home]. Accessed 20 Feb 2021.
2. Cancer Tomorrow [https://gco.iarc.fr/tomorrow]. Accessed 20 Feb 2021.
3. Bittencourt J, Ferlay J, Siegel RL, Torre LA, Jemal A. Cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(3):394–424.
4. Sim HW, Knox J. Hepatocellular carcinoma in the era of immunotherapy. Curr Probil Cancer. 2018;42(1):40–8.
5. Alaparthi AK, Khan Z, Alloghi A, Said Ahmed TS, Ashraf M, Hammadou DM. Hepatocellular carcinoma: Molecular Mechanisms and Targeted Therapies. Medicina (Kaunas). 2019;55(9).
6. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016;2:16018.
7. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–14.
8. Lee MS, Ryuoo BY, Hsu CH, Numata K, Stein S, Verret W, et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): an open-label, multicentre, phase 1b study. Lancet Oncol. 2020;21(6):808–20.
9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
10. Mosséta M, Busato D, Baboci L, Cintio FD, Toffoli G, Bo MD. New Insight into Therapies Targeting Angiogenesis in Hepatocellular Carcinoma. Cancers (Basel). 2019;11:188.
11. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/ MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7009–10.
12. Chang YS, Adrane J, Trail PA, Levy J, Henderson A, Xue D, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 2007;59(5):561–74.
13. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.
14. Cheng AL, Kang YK, Chen Z, Tao CQ, Qin S, Kim J, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34.
15. Lavareno M, Calibbogio G, Piscaglia F, Zavaglia C, Greco A, Villa E, et al. Field practice study of sorafenib therapy for hepatocellular carcinoma: a prospective multicenter study in Italy. Hepatology. 2011;54(6):2055–63.
16. Lavareno M, Calibbogio G, Bolato M, Della Corte C, Maidi M, Barbara M, et al. Predictors of survival in patients with advanced hepatocellular carcinoma who permanently discontinued sorafenib. Hepatology. 2015;62(3):784–91.
17. Zhu AX, Rosmorduc O, Evans TR, Ross PJ, Santoro A, Carillo FJ, et al. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2015;33(15):5559–66.
18. Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol. 2013;31(28):3517–24.
19. Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, et al. Sunlitinib versus sorafenib in advanced hepatocellular cancer. results of a randomized phase II trial. J Clin Oncol. 2013;31(32):4067–75.
20. Canap C, Qin S, Huang WT, Chung II, Pan H, Cheng Y, et al. Linifanib versus Sorafenib in patients with advanced hepatocellular carcinoma: results of a randomized phase III trial. J Clin Oncol. 2013;31(22):2752–7.
21. Zhu AX, Kudo M, Assenat E, Cattan S, Kang YK, Lim HY, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014;312(1):57–67.
22. Rimassa L, Assenat E, Peck-Radosavljevic M, Pracht M, Zagonel V, Mathurin P, et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018;19(5):682–93.
23. Kudo M, Finni R, Qin S, Han RH, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10125):1163–73.
24. Matsuji M, Funahashi Y, Uenaka T, Watanabe T, Tsuruoka A, Asada M, Multi- kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 kinase. Clin Cancer Res. 2008;14(17):5459–65.
25. Yamamoto Y, Matsuji M, Matsushita T, Obashi H, Miyazaki K, Nakamura K, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vas Cell. 2014;2016;
26. FDA approves lenvatinib for unresectable hepatocellular carcinoma [https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-lenvatinib-unresectable-hepatocellular-carcinoma].
27. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, et al. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129(1):245–55.
41. FDA approves ramucirumab for hepatocellular carcinoma https://www.fda.gov/drugs/fda-approves-cabozantinib-hepatocellular-carcinoma

42. Spratlin JL, Cohen RB, Edans M, Gore L, Camidge DR, Dabbs S, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1128F), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28(5):780–7.

43. Zhu AX, Finn RS, Mulcahy M, Gurler J, Sun W, Schwartz JD, et al. A phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2013;19(23):6614–23.

44. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015;16(7):859–70.

45. Zhu AX, Kang YK, Yen CJ, Lyu BY, Yen CY, Poon R, Pastorelli D, et al. Ramucirumab for hepatocellular carcinoma (FDA approves ramucirumab for hepatocellular carcinoma)

46. Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2019;60(5):1756–82.

47. Lu C, Dong D, Zhang B, Zheng W, Wang X, Chen Z, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Oncol. 2019;13(1):108130.

48. Sangro B, Gomez-Martín C, de la Mata M, Inarainaequi M, Garnala E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.

49. Kudo M. Immune Checkpoint Inhibition in Hepatocellular Carcinoma: Basics and Ongoing Clinical Trials. Oncology. 2017;92(5):502.

50. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 2/3 dose escalation and expansion trial. Lancet. 2017;389(10068):2492–502.

51. FDA grants accelerated approval to nivolumab and ipilimumab combination for hepatocellular carcinoma https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma.

52. Motzer RJ, Nani N, McDermott DF, Arlén Frontera O, Melicher B, Choueiri TK, et al. Nivolumab plus ipilimumab versus nivolumab in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet. 2016;17(1):1558–68.

53. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1b, multicohort study. Lancet Oncol. 2017;18(11):131–41.

54. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglittera M, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol. 2018;36(8):773–9.

55. FDA grants accelerated approval to nivolumab and ipilimumab combination for hepatocellular carcinoma https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma.

56. Motzer RJ, Nani NM, McDermott DF, Arlen Frontera O, Melicher B, Choueiri TK, et al. Nivolumab plus ipilimumab versus nivolumab in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet. 2016;17(1):1558–68.

57. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1b, multicohort study. Lancet Oncol. 2017;18(11):131–41.

58. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglittera M, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol. 2018;36(8):773–9.

59. FDA grants accelerated approval to nivolumab and ipilimumab combination for hepatocellular carcinoma https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-and-ipilimumab-combination-hepatocellular-carcinoma.

60. Motzer RJ, Nani NM, McDermott DF, Arlén Frontera O, Melicher B, Choueiri TK, et al. Nivolumab plus ipilimumab versus nivolumab in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet. 2016;17(1):1558–68.
inhibits human hepatocellular carcinoma cells growing in an orthotopic mouse model. Liver Int. 2009;29(2):284–90.

69. Siegel AB, Cohen El, Ocean A, Lehrer D, Goldenberg A, Knox JJ, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol. 2008;26(18):2992–8.

70. Boige V, Malka D, Bourdjem D, Droomain C, Baey C, Jacques N, et al. Efficacy, safety, and biomarkers of single-agent bevacizumab therapy in patients with advanced hepatocellular carcinoma. Oncologist. 2012;17(8):1063–72.

71. Finn RS, Qin S, Ikeda M, Gallie PR, Ducrues M, Kim TY, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382(20):1894–905.

72. FDA approves atezolizumab plus bevacizumab for unresectable hepatocellular carcinoma [https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-plus-bevacizumab-unresectable-hepatocellular-carcinoma]. Accessed 29 May 2020.

73. Finn SQ RS, Ikeda M, Gallie PR, Ducrues M, Kim T-Y, Lim HY, et al. IM布拉®: Updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). J Clin Oncol. 2021;39(suppl 33):abstr 267.

74. Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to Modulate Antitumor Carcinoma. Br J Cancer. 2019;121(7):963–70.

75. Feng Bi SQ, Shanzhi G, Bai Y, Chen Z, Wang Z, Ying J, et al. Donafenib in patients with advanced hepatocellular carcinoma (HCC). J Hematol Oncol. 2020;13:85.

76. Fountzilas C, Gupta M, Lee S, Krishnamurthi S, Estfan B, Wang K, et al. A phase II study of TRC105 in patients with hepatocellular carcinoma who have progressed on sorafenib. United European Gastroenterol J. 2015;3(5):453–61.

77. Lu X, Chen H, Patterson AV, Smaill JB, Ding K. Fibroblast Growth Factor Receptor 4 (FGFR4) Selective Inhibitors as Hepatocellular Carcinoma Therapy. Advances and Prospects. J Med Chem. 2019;62(6):2905–15.

78. Dai S, Zhou Z, Chen X, Xu G, Chen Y. Fibroblast Growth Factor Receptors: Structures and Small Molecule Inhibitors. Cells. 2019;8(6).

79. Jeng KS, Sheen IS, Lin SS, Leu CM, Chang CF. The Role of Endoglin in Hepatocellular Carcinoma. Int J Mol Sci. 2021;22:6.

80. Wikström P, Lisbrant JF, Stattin P, Egevad L, Bergh A. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate. 2002;51(4):268–75.

81. Henry-Berger J, Mouzat K, Baron S, Bernabeu C, Marceau G, Saru JP, et al. Endoglin (CD105) expression is regulated by the liver X receptor alpha (NR1H3) in human trophoblast cell line JAR. Biol Reprod. 2008;78(6):968–75.

82. Yang LT, Lu WQ, Huang GW, Wang W. Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer. 2006;6:110.

83. Elnemr DM, Abdel-Azeem HA, Labib HA, Abo-Taleb FM. Clinical relevance of serum endoglin level in Egyptian hepatocellular carcinoma patients. Clin Lab. 2012;58(9–10):1023–8.

84. Teama S, Fawzy A, Teama S, Helal A, Dwish AD, Elbata T, et al. Increased Serum Endoglin and Transforming Growth Factor β1 mRNA Expression and Risk of Hepatocellular Carcinoma in Cirrhotic Egyptian Patients. Asian Pac J Cancer Prev. 2016;17(5):2429–34.

85. Duffy AG, Ulahannan SV, Cao L, Rahma OE, Kleinier RE, et al. Phase II study of TRC105 in patients with hepatocellular carcinoma who have progressed on sorafenib. United European Gastroenterol J. 2015;3(5):453–61.

86. Duffy AG, Ma C, Ulahannan SV, Rahma OE, Mavrou-Routher OS, Cao L, et al. Phase I and Preliminary Phase II Study of TRC105 in Combination with Sorafenib in Hepatocellular Carcinoma. Clin Cancer Res. 2017;23(16):4631–43.

87. RTL KPSR, Paluri RK, Moody K, Simpson B, Adams BJ, Theuer CP. Ahmed Omar Kaseb: An open-label phase Ib/2 trial of TRC105 plus sorafenib in patients with advanced/metastatic hepatocellular carcinoma (HCC) (NCT01806064). J Clin Oncol. 2019;37(suppl 34):abstr 268.

88. Hughes SE. Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochim Cytochem. 1997;45(7):1005–19.

89. Lee S, Choi J, Mohany J, Souza LP, Tomer F, Pardon E, et al. Structures of β-klotho reveal a ‘zip code’ like mechanism for endothrine FGF signaling. Nature. 2018;553(7689):501–5.

90. Wu X, Ge H, Lemoen B, Vorderfecht S, Weizsamm J, Hecht R, et al. FGFR1-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem. 2010;285(8):5165–70.

91. Lu X, Chen H, Patterson AV, Small JB, Ding K. Fibroblast Growth Factor Receptor 4 (FGFR4) Selective Inhibitors as Hepatocellular Cancer Therapy: Advances and Prospects. J Med Chem. 2019;62(6):2905–15.

92. Dai S, Zhou Z, Chen X, Xu G, Chen Y. Fibroblast Growth Factor Receptor FGFRs: Structures and Small Molecule Inhibitors. Cells. 2019;8(6).

93. Yue S, Lu Y, Chen X, Wang J, Lu M, Chen Y, et al. FGFR-TB resistance in cancer current status and perspectives. J Hematol Oncol. 2021;14(1):23.

94. Kim RD, Sarker D, Meyer T, Yau T, Macarrulla T, Park JW, et al. First-in-Human Phase I Study of Fosigatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. Cancer Discov. 2019;9(12):1696–707.

95. Jia JB, Wang WQ, Sun HC, Zhu XD, Liu L, Zhuang PY, et al. High expression of macrophage colony-stimulating factor-1 receptor in peritumoral liver tissue is associated with poor outcome in hepatocellular carcinoma after curative resection. Oncol Lett. 2010;5(7):732–43.

96. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.

97. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.

98. Ao Y, Zhu XD, Chai ZT, Cai H, Zhang YY, Zhang KZ, et al. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Mol Cancer Ther. 2017;16(8):1544–54.

99. Zhang W, Zhu XD, Sun HC, Xiong YQ, Zhuang PY, Xu HX, et al. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin Cancer Res. 2010;16(13):3240–30.

100. Qin S, Ren Z, Meng Z, Chen Z, Chai X, Xiong J, et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020;21(4):571–80.
nnouncements/fda-approves-new-treatment-adults-relapsed-or-refractory-la-
range-b-cell-lymphoma]. Accessed 5 Feb 2021.
156. Dal Bo M, De Mattia E, Baboci L, Mezzalira S, Cecchin E, Assaraf YG, et al.
New insights into the pharmacological, immunological, and CAR-T-cell
approaches in the treatment of hepatocellular carcinoma. Drug Resist
Updat. 2020;51:100702.
157. Batta SA, Rath I, Guo L, Courtney AN, Florence J, Balzeau J, et al. Glypican-
3-Specific CAR T Cells Coexpressing IL15 and IL21 Have Superior Expansion
and Antitumor Activity against Hepatocellular Carcinoma. Cancer Immunol
Res. 2020;8(3):309–20.
158. Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, et al. Development of T cells
redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin
Cancer Res. 2014;20(24):6418–28.
159. Wu X, Luo H, Shi B, Di S, Sun R, Su J, et al. Combined Antitumor Effects of
Sorafenib and GPC3-CAR T Cells in Mouse Models of Hepatocellular
Carcinoma. Mol Ther. 2019;7(8):1483–94.
160. Shi D, Shi Y, Kaseb AO, Qi X, Zhang Y, Chi J, et al. Chimeric Antigen
Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma:
Results of Phase I Trials. Clin Cancer Res. 2020;26(15):3979–89.
161. Felices M, Lenvik TR, Davis ZB, Miller JS, Vallera DA. Generation of BiKEs and
TriKEs to Improve NK Cell-Mediated Targeting of Tumor Cells. Methods Mol
Biol. 2016;1441:333–46.
162. Goebeler ME, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat
Rev Clin Oncol. 2020;17(7):418–34.
163. Ma W, Wu L, Zhou F, Hong Z, Yuan Y, Liu Z. T Cell-Associated
Immunotherapy for Hepatocellular Carcinoma. Cell Physiol Biochem. 2017;
41(2):609–22.
164. Sonbol MB, Riaz IB, Naqui SAA, Almquist DR, Mina S, Almasri J, et al.
Systemic Therapy and Sequencing Options in Advanced Hepatocellular
Carcinoma: A Systematic Review and Network Meta-analysis. JAMA Oncol.
2020;6(12):e204930.
165. Park R, Lopes da Silva L, Nissaiorakam V, Riano I, Williamson S, Sun W, et al.
Comparison of Efficacy of Systemic Therapies in Advanced Hepatocellular
Carcinoma: Updated Systematic Review and Frequentist Network Meta-
Analysis of Randomized Controlled Trials. J Hepatocell Carcinoma. 2021;8:
145–54.
166. Gordon JD, Kennedy EB, Abou-Alfa GK, Beg MS, Brovver ST, Gade TP, et al.
Systemic Therapy for Advanced Hepatocellular Carcinoma: ASCO Guideline.
J Clin Oncol. 2020;38(36):4317–45.
167. Chen DS, Huirwitz H. Combinations of Bevacizumab With Cancer
Immunotherapy. Cancer J. 2018;24(4):193–204.
168. Faire V, Rimassa L, Finn RS. Molecular therapies for HCC: Looking outside
the box. J Hepatol. 2020;72(2):342–52.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.