Analysis of some metallic elements and metalloids composition and relationships in parasol mushroom *Macrolepiota procera*

Jerzy Falandysz¹ · Atindra Sapkota² · Anna Dryżalowska¹ · Małgorzata Mędyk¹ · Xinbin Feng²

Received: 20 September 2016 / Accepted: 27 April 2017 / Published online: 17 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract The aim of the study was to characterise the multi-elemental composition and associations between a group of 32 elements and 16 rare earth elements collected by mycelium from growing substrates and accumulated in fruiting bodies of *Macrolepiota procera* from 16 sites from the lowland areas of Poland. The elements were quantified by inductively coupled plasma quadrupole mass spectrometry using validated method. The correlation matrix obtained from a possible 48 × 16 data matrix has been used to examine if any association exits between 48 elements in mushrooms foraged from 16 sampling localizations by multivariate approach using principal component (PC) analysis. The model could explain up to 93% variability by eight factors for which an eigenvalue value was ≥1. Absolute values of the correlation coefficient were above 0.72 (significance at \(p < 0.05 \)) for 43 elements. From a point of view by consumer, the absolute content of Cd, Hg, Pb in caps of *M. procera* collected from background (unpolluted) areas could be considered elevated while sporadic/occasional ingestion of this mushroom is considered safe. The multivariate functional analysis revealed on associated accumulation of many elements in this mushroom. *M. procera* seem to possess some features of a bio-indicative species for anthropogenic Pb but also for some geogenic metals.

Keywords Foraging · Fungi · Heavy metals · Trace elements · Mushrooms · Poland

Introduction

Macrolepiota procera (Scop., commonly known as Field Parasol, Parasol Mushroom or Shaggy Parasol, is a saprobe. It is edible and widely collected in temperate regions and sub-tropical regions such as India, Thailand, China or Pakistan and across Europe (Kuldo et al. 2014; Melgar et al. 2016; Stefanović et al. 2016a; Širić et al. 2016; Xiaolan 2009). The pileus of *M. procera* are highly valued by locals. This is because of the taste and aroma of the cooked fresh individuals—sautéed, roasted, fried in butter or grilled, roasted with eggs or stuffed and broiled. According to some cooking recipes, the dried caps of *M. procera* could be re-soaked in fresh water and both; the flesh and macerate (liquid) can be used for a dish. Frying of *M. procera* with butter or vegetable oil can to some degree result in leakage of elements out of a fleshy cap as was observed for fried *Cantharellus cibarius* and *Boletus edulis* and radiocaesium (\(^{137}\)Cs) (Steinhauser and Steinhauser 2016). Nevertheless, caps of *M. procera* before frying are usually surrounded in flour, then in a drooping egg. Hence, any serious leakage of bio- or toxic elements out of a cap (or prepared dish) seems unlikely. Re-soaking of dried caps of *M. procera* in fresh water can have a more pronounced influence on possible leakage out of minerals but no figures are available. Blanching (parboiling) can decrease content of minerals in cooked mushrooms and also pickling, while a fate of a particular element can be different and highly dependent on its chemical form, localization within cells and type of chemical bonds made (Drewnowska et al. 2017a, 2017b; Falandysz and Drewnowska 2017).
M. procera prefers lighted and warm places. Especially in calcareous and sandy soils that are well-drained in forests, meadows and gardens (Rizal et al. 2015). In Asia, Macrolepiota species such as M. procera, M. dolichaula (Berk. & Broome) Pegler & R.W. Rayner, M. gracilenta (Krombh.) Wasser are consumed by locals for their essential microminerals, macroelements, metalloids and toxic metals contents in the fruiting bodies (Baptista et al. 2009; Falandysz et al. 2007a; Gucia et al. 2016a, b, c; Sarikurkcue et al. 2015). Due to its bioaccumulating property, many researchers are continuously investigating Macrolepiota species commonly collected by locals for their essential microminerals, macrominerals, metalloids and toxic metals contents in the fruiting bodies (Baptista et al. 2009; Falandysz et al. 2007a; Gucia et al. 2012a, b; Řanda et al. 2005).

This study attempts to investigate fruiting bodies of M. procera for its co-occurrence and associations between metallic elements and metalloids such as Ag, As, Ba, Be, Bi, Cd, Co, Cs, Cu, Ga, Ge, Hf, Hg, In, Li, Mo, Nb, Ni, Pb, Rb, Sb, Sn, Sr, Ta, Th, Ti, Tl, U, V, W, Zn, Zr and rare earth elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) accumulated in caps and stipes.

Materials and methods

Fruiting bodies of M. procera were collected from 16 different sites from the lowland areas in northern and central regions of Poland: Włocławek - outskirts (forests) (52° 39’ 33” N 19° 04’ 05” E) [site 1; Fig. 1]; Pomerania, Lębork (54° 33’ N 17° 45’ E) [site 2]; Warmia land, Olszyn/Szczytno (53° 47’ N 20° 30’ E/53° 33’ 46” N 20° 59’ 7” E) [3]; Trójmiejski Landscape Park—Gdańsk-Wrzeszcz (54° 22’ 10.1” N 18° 35’ 47.0” E) [site 4]; Augustów Primeval Forest (53° 87’ 28” 0 N 22° 97’ 43”0 E) [site 5]; Tuchola Pinewoods, Luby (53° 42’ 30” N 18° 22’ 53” E) [6]; Wdzydze Landscape Park (54° 00’ 47” N 17° 54’ 04” E) [7]; Warmia land, Sarnów (53° 39’ 33.78” N 19° 35’ 16.83” E) [site 8]; Toruń—outskirts (forests) (53° 01’ 20” N 18° 36’ 40” E) [site 9]; Vistula River Sand-bar, Stegna (54° 19’ 35” N 19° 6’ 44” E) [10]; Nadwarciańska Forest (52° 12’ 00” N 17° 54’ 00” E) [site 11]; Warmia land, Jeziorka lake— island of Gierszak (53° 43’ 23.24” N 19° 36’ 46.80” E) [site 12]; Zielonka near Poznań forests (52° 33’ 13” N 17° 06’ 49” E) [site 13]; Tuchola Pinewoods, Osie (53° 35’ 57” N 18° 20’ 41” E) [site 14]; Kukawy/Goreń region (52° 33’ 52” N 19° 11’ 42” E/52° 31’ 50” N 19° 17’ 22” E) [site 15] and Bydgoszcz forests (53° 7’ N 18° 0’ E) [site 16] (Fig. 1, Table 1). The sites of M. procera collection can be considered as background (unpolluted) and without local or regional major emitters of heavy metals in forests of the lowland Poland. A major branch of metallurgy and ore mining industry is localized in the central (iron mill near Warszawa, Fig. 1) and southern regions of Poland (Brzezicza-Cirocka et al. 2016).

Soils at the forested areas of the lowland Poland are podzolic soils which were formed by pine and mixed/pine forests and of mesopholic deciduous and coniferous forests in the zone of warm-temperate climate and are slightly acidic (Degórski 2004). Typical soils there are podzols, pseudopodzols and rusty soils poor in nutrients and developed from fluvioglacial sands with a texture of sands and somewhere in the outskirts of lakes and rivers with peats, peat-muck soils and vertisols. The tree covers are dominated by needle trees such as Pinus sylvestris L. and in lower proportion with Picea abies (L.) H. Karst., Larix decidua Mill., Betula pendula Roth, Betula pubescens Ehrh., Alnus glutinosa (L.) Gaertn., Quercus robur L., Quercus petraea, (Matt.) Liebl., Fagus sylvatica L. (Statistical Office 2014). Each composite sample of caps and whole fruiting bodies consisted of 10 to 30 individuals.
Place, year, number of specimens and morphological part	Ag	As	Ba	Be	Bi	Cd	Co	Cs	Cu	Ga	Ge	Hf	Hg	In	Li	Mo			
Augustów Primeval Forest, 2001 (n=15; c) [5]	1.9	0.93	5.4	0.019	0.046	9.4	0.23	0.097	83	0.18	0.033	0.50	2.8	0.0011	0.23	0.45			
Pomerania, Łębork, 2003 (n=30; c) [2]	1.4	0.69	1.7	0.0080	0.021	2.4	0.31	0.034	130	0.12	0.022	0.022	2.5	0.0047	0.038	0.42			
TLP, 2001 (n=23; c) [4]	0.86	0.47	2.5	0.0083	0.058	0.75	0.084	0.039	57	0.13	0.025	0.20	0.19	0.0018	0.73	0.37			
Vistula River Sand-bar, Stęgna, 2003 (n=10; c) [10]				0.98	0.43	0.10	0.021	0.065	4.3	0.092	0.051	99	0.16	0.027	0.025	2.0	0.0023	0.48	0.49
WLP, 1994/2001 (n=21; c) [7]	1.0	0.61	4.4	0.021	0.064	1.8	0.18	0.041	96	0.18	0.040	0.049	1.1	0.0021	1.0	0.44			
Warmia land, Gieszów, (n=15; c) [12]	0.72	0.64	3.1	0.015	0.031	1.1	0.13	0.022	75	0.14	0.028	0.034	2.0	0.0029	0.94	0.39			
Warmia land, Samówiek, 2001 (n=11; c) [8]	0.65	0.37	2.0	0.0056	0.010	0.065	0.056	0.013	83	0.12	0.022	0.021	1.5	0.0017	0.49	0.35			
Olsztyn/Szczytno, 2002 (n=25; c) [3]	0.94	0.86	0.85	0.0086	0.0067	1.7	0.24	0.030	82	0.097	0.014	0.0045	1.9	0.0030	0.019	0.44			
Tuchola Pinewoods, Łuży, 1995 (n=15; c) [6]	2.5	1.3	3.3	0.013	0.0041	2.2	0.16	0.036	100	0.14	0.030	0.022	2.0	0.0027	2.7	0.42			
Wloclawek— outskirts (forests), 2004 (n=15; c) [1]	4.1	1.0	3.7	0.021	0.0035	0.52	0.070	0.032	80	0.15	0.048	0.029	1.8	0.0052	0.74	0.22			
Toruń— outskirts (forests), (n=15; c) [9]	0.83	0.49	0.40	0.0013	0.0019	1.3	0.062	0.045	81	0.15	0.036	0.018	2.8	0.0027	2.0	0.44			
Nadwarciańska Forest, 1999 (n=15; c) [11]	1.2	0.56	0.85	0.0088	0.0044	0.84	0.034	0.036	83	0.083	0.014	0.0032	2.2	0.0039	0.012	0.34			
Zielonka near Poznań, 2001 (n=15; c) [13]	7.9	5.4	5.2	0.023	0.0034	0.73	0.053	0.028	100	0.14	0.057	0.19	1.1	0.0035	0.094	1.4			
Mean	1.9	1.1	3.9	0.014	0.0063	2.1	0.13	0.039	88	0.14	0.030	0.024	2.0	0.0029	0.62	0.61			
SD	2.0	1.3	2.4	0.006	0.0073	2.4	0.09	0.020	17	0.03	0.012	0.014	0.5	0.0012	0.85	0.28			
Tuchola Pinewoods, Osie, 2000 (n=15; w) [14]	1.9	0.54	5.3	0.020	0.067	1.9	0.12	0.029	110	0.17	0.038	0.032	1.6	0.0036	0.90	0.38			
Kukawy/Góra region, 2001 (n=15; w) [15]	1.1	0.66	2.2	0.0045	0.0043	1.1	0.13	0.041	110	0.11	0.024	0.015	1.4	0.0043	0.35	0.37			
Bydgoszcz— outskirts, 2001 (n=15; w) [16]	2.0	0.49	5.6	0.020	0.0047	1.0	0.18	0.037	93	0.19	0.043	0.030	1.3	0.0019	0.70	0.38			
Mean	1.3	0.56	4.4	0.015	0.025	1.3	0.14	0.036	100	0.16	0.038	0.026	1.4	0.0033	0.65	0.38			
SD	0.5	0.09	1.9	0.009	0.036	0.3	0.03	0.006	9	0.04	0.010	0.009	0.1	0.0012	0.28	0.01			

Table 1: Elements in fruit bodies of *M. procera* (mg kg⁻¹ dry biomass)
The fungal biomass dehydrated and grounded into a fine powder before analysis was dried at a temperature of 65 °C for 12 h and a subsample (about 200-mg samples made in duplicate) was mixed with 3 mL solution of ultrapure concentrated nitric acid (HNO₃, 65%) and 1 mL of ultrapure hydrofluoric acid (HF) in a polytetrafluoroethylene tubes (PTFE). Then, the tubes were screw tightened in stainless steel jackets and placed in an oven at 150 °C for 78 h. The solutions obtained were evaporated to dryness at 110 °C, to remove the excess of HF (Bi et al. 2007). Then, it was dissolved in 1 mL of HNO₃ to make the final volume up to 50 mL, which was then transferred to a sample tube. As an internal standard, rhodium (Rh) (10–20 μg/L) was added to the samples prior to the Quadruple ICM-MS analysis (The Quadrupole-ICP-MS ELAN DRC-e; PerkinElmer, Waltham, MA, USA). In order to achieve good analytical quality control, quality assurance and blanks of certain certified reference materials were examined. Each element was measured three times and the values of relative standard deviation (RSD) were within 5% in the samples and the certified values for certified reference materials (CRM) (Liang and Grégoire 2000). The CRMs used were citrus leaves (GBW 10020) and soil (GBW 07405) produced by the Institute of Geophysical and Geochemical Exploration, China (Shi et al. 2011).

The computer software Statistica, version 10.0 (Statsoft Polska, Kraków, Poland), was used for statistical analysis of data and for graphical presentation of the results of two dimensional multiple scatter plot relationships between the variables.

Results and discussion

Toxic metallic elements and metalloids

Cadmium (Cd), mercury (Hg) and lead (Pb) are common constituents of *M. procera* and they occurred in caps at 2.1 ± 2.4 mg kg⁻¹ db (arithmetic mean plus standard deviation) (Cd), 2.0 ± 0.5 mg kg⁻¹ db (Hg) and 2.8 ± 1.4 mg kg⁻¹ db (Pb) (Table 1). If assume that Cd, Hg and Pb remain in the flesh of caps, when they are sautéed, roasted, fried in butter, grilled or roasted with eggs, a single mushroom dish (100 to 300 g) certainly will provide an elevated quantity of each heavy metal (0.021–0.063 mg of Cd per capita, 0.02–0.06 mg Hg per capita and 0.028–0.084 mg Pb per capita). Hence, frequent eating of caps of *M. procera* could be not recommended. Nevertheless, unknown is the bioaccessibility of Cd, Pb and Hg contained in caps of *M. procera* for humans.

Contamination with toxic Cd and Pb of edible mushrooms is regulated in the European Union but not in the case of Hg, As or any other inorganic contaminant. The maximum limit of Cd established is 0.2 mg kg⁻¹ fresh product (2.0 mg kg⁻¹ in dried product)—assuming moisture content is at 90% in...
Cd, i.e., in caps, concentration levels were well below 10 mg kg\(^{-1}\) dried product (Table 1). An exception were individuals collected from the Augustowska Primeval Forest site which contained Cd in caps at 9.4 mg kg\(^{-1}\) dry biomass (Table 1). The Augustowska Primeval Forest region is considered as pristine (green lungs) and localized faraway of major emitters of heavy metals. A possible explanation for elevated concentration level of Cd in mushrooms can be because of a

Table 2 Factor loadings (Varimax normalized)

Variables	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
Li	0.24	-0.16	-0.08	0.23	0.28	0.72	-0.12	0.09
Be	0.76	0.52	0.08	0.12	0.11	-0.08	0.00	-0.07
Sc	0.58	-0.08	0.18	0.08	0.25	-0.65	-0.08	0.00
V	0.01	0.93	-0.07	-0.09	-0.06	-0.01	-0.05	-0.24
Co	0.04	-0.20	0.23	-0.15	0.19	0.03	0.84	-0.11
Ni	0.02	-0.05	0.32	-0.07	0.79	0.19	0.04	-0.02
Cu	0.08	0.15	-0.07	-0.58	0.52	0.15	0.24	-0.37
Zn	-0.01	0.95	0.00	-0.05	0.05	-0.16	-0.12	0.03
Ga	0.94	0.13	0.22	0.10	-0.04	0.06	0.12	-0.03
Ge	0.63	0.74	-0.01	0.01	-0.11	0.09	0.00	0.13
As	-0.15	0.95	0.05	0.16	0.12	-0.03	-0.06	-0.07
Rb	-0.11	0.56	0.33	0.05	0.07	-0.19	0.70	0.23
Sr	0.92	0.08	0.14	-0.11	-0.07	-0.03	-0.19	-0.02
Y	0.97	0.05	0.17	-0.03	0.03	0.10	-0.06	0.03
Zr	0.80	0.10	0.23	0.01	-0.10	0.02	0.37	-0.18
Nb	0.92	0.02	-0.18	0.17	-0.12	0.18	0.03	-0.10
Mo	-0.02	0.96	0.00	0.06	0.06	-0.15	-0.08	0.09
Ag	0.06	0.97	0.00	-0.06	0.10	-0.01	0.12	-0.05
Cd	0.29	-0.12	0.87	0.01	0.18	-0.15	0.19	-0.10
In	-0.30	0.35	-0.12	-0.77	0.07	0.10	0.05	0.08
Sn	-0.05	0.35	-0.13	0.86	0.10	0.05	0.06	0.08
Sb	0.44	0.24	0.81	-0.13	-0.06	-0.06	0.11	0.07
Cs	0.26	-0.08	0.93	0.00	0.08	0.01	0.13	0.13
Ba	0.80	-0.13	0.20	0.02	0.31	-0.27	-0.19	0.04
La	0.92	-0.01	0.26	-0.04	0.00	0.21	0.08	-0.15
Ce	0.92	-0.03	0.19	-0.02	0.01	0.25	0.09	-0.19
Pr	0.92	0.03	0.22	-0.03	0.01	0.23	0.04	-0.18
Nd	0.94	-0.04	0.15	0.03	0.06	0.22	0.01	-0.15
Sm	0.97	-0.10	0.10	0.05	0.02	0.16	0.03	-0.07
Eu	0.93	0.15	0.12	-0.07	-0.15	0.11	-0.01	-0.12
Gd	0.95	-0.12	0.19	0.04	0.09	0.15	0.04	-0.01
Tb	0.96	-0.07	0.19	0.03	0.06	-0.02	0.00	-0.02
Dy	0.95	-0.08	0.22	0.06	0.09	-0.03	-0.10	0.01
Ho	0.97	-0.03	0.14	-0.05	0.00	-0.10	0.06	0.05
Er	0.98	0.03	0.08	-0.04	-0.01	-0.11	-0.05	0.09
Tm	0.93	0.25	0.08	-0.05	-0.03	-0.17	-0.01	0.11
Yb	0.97	0.06	0.07	-0.10	-0.07	-0.13	-0.04	0.08
Lu	0.96	0.11	-0.01	-0.05	-0.06	-0.09	0.01	0.20
Hf	0.78	0.06	0.27	0.12	-0.12	0.03	0.37	-0.13
Ta	0.50	-0.33	0.19	-0.11	-0.06	0.62	0.04	0.08
W	0.37	0.77	-0.12	-0.03	-0.24	0.19	0.05	0.32
Tl	0.15	-0.28	0.66	0.04	-0.12	0.20	0.52	0.07
Pb	0.51	0.12	0.73	0.10	0.27	0.02	-0.01	0.09
Bi	0.33	-0.07	-0.19	-0.12	-0.13	-0.12	-0.03	-0.76
Th	0.87	0.05	0.13	0.25	0.13	0.30	0.05	-0.01
U	0.93	0.07	0.08	0.21	0.20	0.07	0.00	0.00
Ti	0.90	0.00	-0.01	-0.07	-0.01	0.02	0.08	-0.21
Hg	-0.06	0.16	-0.02	0.06	0.89	-0.13	0.18	0.13

In italics are the significant loadings used for each principal component
specific geochemistry of a soil parent material there, but this was not studied.

M. procera from the five sites contained Pb in caps at concentration level in the range of 3.3–6.1 mg kg\(^{-1}\) dry product (Table 1), which exceeded a limit set for farmed mushrooms mentioned earlier. Maximum contamination with Pb was similar to Cd in mushrooms from the Augustowska Primaeval Forest.

Also, silver (Ag) occurred in caps of *M. procera* at content comparable to what was observed for Cd, Hg, Pb, i.e., at 1.9 ± 2.0 mg kg\(^{-1}\) db. An intake of Ag per capita could be similar as is for Cd, Hg and Pb. Silver, like Cd, Hg and other chalcophile elements, has affinity to sulphur. The elements Ag, Cd and Hg are well bio-concentrated by *M. procera* and several other mushrooms (Chudzyński et al. 2011; Falandysz et al. 1994; Stefanović et al. 2016a, 2016b). Arsenic (As) was in caps at 1.1 ± 1.3 mg kg\(^{-1}\) db (Table 1), which was at relatively low concentration level while compounds of As were not studied. The inorganic compounds of As are most toxic while much less or almost non-toxic are considered organic arsenic compounds—they can be found in various (species-specific) proportion in mushrooms but can be well accumulated by fungi from a soil polluted with As (Falandysz and Rizal 2016; Falandysz et al. 2017a). There is no other data available on As in *M. procera* from background areas of Poland.

Available data on antimony (Sb) and thallium (Tl) in *M. procera* are scarce (Falandysz et al. 2001). In this study, Sb was in caps of *M. procera* at 0.017 ± 0.014 mg kg\(^{-1}\) db and Tl at 0.027 ± 0.017 mg kg\(^{-1}\) db, which are negligible quantities if compared to other toxic chalcophile elements mentioned earlier. In a view of the human consumer, there is a deficit of information on a possible absorption rate of a particular metallic elements and metalloids contained in cooked caps of this mushroom, when ingested. For example, the bioavailability of Cd from the blanched or pickled mushroom *Cantharellus cibarius* is considered to be not greater than 20% (unpublished, JF).

Other elements determined can be considered largely as natural compounds absorbed from the geochemical background that occurred at typical but not elevated concentration levels in *M. procera*. For example, the chalcophile elements determined such as gallium (Ga), germanium (Ge), indium (In), tin (Sn) and bismuth (Bi) were at the small contents in caps. They contained them (in mg kg\(^{-1}\) db), respectively, at 0.14 ± 0.03 (Ga), 0.030 ± 0.012 (Ge), 0.0029 ± 0.0012 (In), 0.19 ± 0.07 (Sn) and 0.0063 ± 0.0076 (Bi). A chalcophile copper (Cu) and zinc (Zn) were both the major trace elements in caps, which contained Cu at 88 ± 17 mg kg\(^{-1}\) db and Zn at 69 ± 26 mg kg\(^{-1}\) db (Table 1). Copper and zinc tend to
accumulate similarly in the hymenophore and the rest of the fruiting body of *M. procera* (Alonso et al. 2003). Regardless of the contents of toxic elements such as Cd, Pb and Hg, the caps of *M. procera* seem a good source of Cu and Zn.

The alkali metals such as lithium (Li), rubidium (Rb) and caesium (Cs) were in caps at $0.62 \pm 0.85 \text{ mg kg}^{-1} \text{ db}$ (Li), $33 \pm 17 \text{ mg kg}^{-1} \text{ db}$ (Rb) and $0.039 \pm 0.020 \text{ mg kg}^{-1} \text{ db}$ (Cs). For lithium there was a wide span of values for the sites and range from 0.012 to 2.7 mg kg$^{-1}$ db (Table 1). There is no other data published on the element Li in *M. procera* to confirm observation from this study. Both Rb and Cs (stable 133Cs) were at a small content in *M. procera*, while much richer in both elements are mycorrhizal mushrooms (Falandysz and Borovická 2013). A low status of stable 133Cs (and also Rb) in fruiting bodies of *M. procera*, when related to certain other mushrooms, seem to explain a low susceptibility of this mushroom for contamination with radioactive caesium ($^{134/137}$Cs).

The alkali earth metals such as beryllium (Be), strontium (Sr) and barium (Ba) highly differed in their content in *M. procera*. The element Be occurred in caps at $0.014 \pm 0.006 \text{ mg kg}^{-1} \text{ db}$, the Sr was at $0.88 \pm 0.37 \text{ mg kg}^{-1} \text{ db}$ and the Ba was at $3.9 \pm 2.4 \text{ mg kg}^{-1} \text{ db}$. Data on Ba in *M. procera* provided in this study (Table 1) showed on a greater content, when compared to results for *M. procera* obtained by argon plasma atomic emission spectroscopy (Ouzouni and Riganakos 2007).

Other elements for which are available a few sets of data on their occurrence and accumulation by fungi in fruiting bodies are cobalt (Co), nickel (Ni), thorium (Th), titanium (Ti), uranium (U) and vanadium (V) (Aloupi et al. 2011; Baumann et al. 2014; Borovicka et al. 2011; Falandysz et al. 2007b; Vetter and Siller 1997; Randa et al. 2005). Among mushrooms that were studied so far, the Fly Agaric *Amanita muscaria* (L.) Lam. was identified as the specific accumulator of vanadium, while not one specifically efficiently accumulated Co, Ni, Th, Ti or U. The caps of *M. procera* contained Co at $0.13 \pm 0.09 \text{ mg kg}^{-1} \text{ db}$, Ni at $0.31 \pm 0.01 \text{ mg kg}^{-1} \text{ db}$, Th at $0.029 \pm 0.013 \text{ mg kg}^{-1} \text{ db}$, U at $0.0091 \pm 0.0045 \text{ mg kg}^{-1} \text{ db}$, Ti at $29 \pm 9 \text{ mg kg}^{-1} \text{ db}$, and V at $1.3 \pm 0.6 \text{ mg kg}^{-1} \text{ db}$.

The obtained results for elements such as hafnium (Hf), which occurred in caps at $0.024 \pm 0.014 \text{ mg kg}^{-1} \text{ db}$, tantalum (Ta) at $0.016 \pm 0.005 \text{ mg kg}^{-1} \text{ db}$ and wolfram (W) at $0.021 \pm 0.009 \text{ mg kg}^{-1} \text{ db}$. They all agree with a single result obtained for a whole fruiting body of *M. procera* from the Czech Republic and obtained by neutron activation analysis (Randa and Kucera 2004).
Absent in the available literature are data on occurrence in *M. procera* of the metallic elements such as molybdenum (Mo), niobium (Nb) and zirconium (Zr). Those elements occurred in caps at 0.61 ± 0.28 mg kg$^{-1}$ db (Mo), 0.051 ± 0.023 mg kg$^{-1}$ db (Nb) and 1.1 ± 0.6 mg kg$^{-1}$ db (Zr) (Table 1).

Multivariate analysis of data

A possible relationship between 48 metallic elements (including data on rare earth elements) (Falandysz et al. 2017b) and metalloids accumulated in caps and whole fruiting bodies by fungus *M. procera* collected at 16 spatially distributed places in the northern and central regions of Poland has been examined using the principal component (PC) analysis (Wyrzykowska et al. 2001). In this multivariate approach, the results from examination of possible 48×16 data matrix are summarised in Table 2 (results for 48×13 data matrix obtained separately for caps are not shown). This was possible to explain up to 93% variability in the 48×16 data matrix by eight factors as well as up to 96% variability in the 48×13 data matrix by eight factors for which an eigenvalue value was ≥ 1. Absolute values of the correlation coefficient were above 0.72 (significance at $p < 0.05$) for 43 elements in the 48×16 data matrix and above 0.70 for 42 elements in the 48×13 data matrix.

The PC1 was under influence by variables associated with positively correlated Ba, Be, Ce, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Sm, Sr, Tb, Th, Ti, Tm, U, Y, Yb and Zr, which are largely the lithophile elements that are characterised by similar chemical properties—alkaline earth metals (Be, Ba, Sr), which, together with Mg and Ca, have all a somewhat similar chemical and physical properties (Tabouret et al. 2010). The Be, Ba and Sr are more or less alike to Ca in the environment and biological systems and Sr can displace Ca. In the PC1 associations, positively correlated were also the rare earth elements (RREs) which are similar to Ca and all have similar chemical and physical properties and tend to exist together. The PC1 was also under the influence by variables associated with positively correlated some other elements (Y, Zr, Nb, U, Th, Ti) and also Ga. The PC2 was under the influence by positively correlated Ag, As, Ge, Mo, V, W and Zn, and PC 3 by variables with positively correlated Cd, Cs, Pb and Sb. The PC4 was influenced by variables associated with negatively correlated element indium (In) and positively correlated Sn, the PC5 was with positively correlated Ni and Hg, the PC6 was with Li, the PC7 was with Co and the PC8 with negatively correlated Bi (Table 2). The associations among the elements determined and places of mushroom collection in the factor space as a PCA are presented graphically in Figs. 1 and 2.

M. procera as a decomposer absorbs inorganic compounds from a digested decaying plant matter in soils and from the soil solution. Hence, a significant difference in content of the particular element in mushroom between the sampling localization could be largely associated with geochemistry of the soil parent material and content of a particular element and their availability or co-absorption, composition of decaying plant matter and anthropogenic pollution.

The localization Trzebiesia near Poznań—no. 13 on a map (associated with PC2) was separated due to significantly elevated content of Ag, As, Mo, V and Zn in *M. procera* (Figs 1a and Fig. 2a). Contrary, the localization Samków in a forested and agricultural region of the Warmia land—no. 8 on a map (associated with PC 3) was separated due to small content of Cd, Cs, Pb and Sb in mushrooms (Fig. 2a and Fig. 3a). The localization of the Augustów Primeval Forest—no. 5 (associated with PC3) was characterised by elevated content of Cd, Pb and Sb, which could be related to known a deep in the ground deposits of some metal ores there. This localization was also associated with PC4 by small content of Sn and in mushrooms.

For the localization near Łuby in the Tuchola Pinewoods (no. 6) was strong relationship between Hg and Ni (associated with PC 5). The localization of Kościerzyna (no. 7) because of Li (PC6); the localization Lebork (no. 2), because of Co (associated with PC7), and the localization Island Gienszak (no. 12) because of Bi (associated with PC8) (Figs 1 and 2, Table 2).

Conclusion

M. procera foraged from the background areas could be characterised by elevated content of toxic Cd, Hg and Pb in edible caps of the fruting bodies while less of As, which is a species-specific feature. Since caps of *M. procera* are cooked without blanching, which could, to some degree, reduce the content of As, Cd, Hg and Pb, a frequent eating of this mushroom may be not desired. Also, toxic Sb and Tl were in *M. procera* at small but probably typical concentrations. *M. procera* seem to possess some features of a bio-indicative species for anthropogenic Pb but also for some geogenic metallic elements. The bio-elements Cu and Zn but also several other elements were in *M. procera* in a narrow range of concentration levels that can be explained by a lack of major environmental problems with heavy metals in the regions examined.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
References

Alonso J, García MÁ, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44:180–188

Aloupi M, Koutrotios G, Kouloussaris M, Kalogeropoulos N (2011) Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotox Environ Saf 78:184–194

Baptista P, Ferreira S, Soares E, Coelho V, de Lourdes BM (2009) Tolerance and stress response of Macrolepiota procera to nickel. J Agric Food Chem 57:7145–7152

Baumann N, Arnold T, Haferburg G (2014) Uranium contents in plants and mushrooms grown on a uranium-contaminated site near Ronneburg in Eastern Thuringia/Germany. Env Sci Poll Res 21:6921–6929

Bi X, Feng X, Yang Li, Xi X, Sin GP, Qui G, Qian X, Li F, He T, Li P, Liu T, Fu Z (2007) Heavy metals in an impacted wetland system: a typical case from southwestern China. Sci Total Environ 387:257–268

Borovička J, Kubrova J, Rohovec J, Randa Z, Dunn CE (2011) Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations? Biometals 24:837–845

Brzezicha-Cirocka J, Mleczek M, Niedzielski P, Kala E, Roszak M, Osiej I, Falandysz F (2017) Concentrations of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Scient Polonae, Technol Alim 12:203–210

Chudzyński K, Jarzyńska G, Stefańska A, Falandysz J (2011) Mercury content and bio-concentration potential of Slippery Jack, Suillus lietus, mushroom. Food Chem 125:986–990

Degórski M (2004) Regional differences of podzolic soil properties in central and northern Europe. Roečn Glib 55:59–70

Drewnowska M, Falandysz J, Chudzińska M, Hanč A, Saba M, Baralkiewicz D (2017a) Leaching of arsenic and sixteen metallic elements from Amanita fulva mushrooms after food processing. LWT – Food Sci Technol, doi:10.1016/j.lwt.2017.04.066

Drewnowska M, Hanč A, Baralkiewicz D, Falandysz J (2017b) Pickling of chanterelle Cantharellus cibarius mushrooms highly reduce cadmium contamination. Environ Sci Poll Res: submitted

Falandysz J, Borovička J (2013) Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks. Appl Microbiol Biotechnol 97:477–501

Falandysz J, Drewnowska M (2017) Cooking can decrease mercury contamination of a mushroom meal: Cantharellus cibarius and Amanita fulva. Environ Sci Poll Res 24, doi:10.1007/s11356-017-8933-5

Falandysz J, Rizal LM (2016) Arsenic and its compounds in mushrooms: a review. J Environ Sci Health C 34:217–232

Falandysz J, Bona H, Danisiewicz D (1994) Silver content of wild-grown parasol mushroom (Macrolepiota procera) – a review. J Environ Sci Health C 34:217–232

Falandysz J, Szymczyk K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki S-I (2001) ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam 18:503–513

Falandysz J, Lipka K, Kawano M, Brzostowski A, Dadej M, Jedrusiak A, Puzyn T (2003) Mercury content and its bioconcentration factors at Łukta and Morag, Northeastern Poland. J Agric Food Chem 51:2832–2836

Falandysz J, Gucia M, Mazar A (2007a) Content and bioconcentration factors of mercury by Parasol Mushroom Macrolepiota procera. J Environ Sci Health Part A 42:735–740

Falandysz J, Kuntit T, Kubota R, Lipka K, Mazar A, Falandysz JJ, Tanabe S (2007b) Selected elements in Fly Agaric Amanita muscaria. J Environ Sci Health Part A 42:1615–1623

Falandysz J, Zhang J, Wiejak A, Baralkiewicz D, Hanč A (2017a) Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymeric soils from SW China. Ecotox Environ Saf 142:497–502

Falandysz J, Sapkota A, Mędyk M, Feng X (2017b) Rare earth elements in parasol mushroom Macrolepiota procera. Food Chem 221:24–28

Garcia MA, Alonso J, Melgar MJ (2009) Lead in edible mushrooms levels and bioaccumulation factors. J Hazard Mat 167:777–783

Gaćecka M, Rzymski P, Mleczek M, Siwulski M, Budzyńska S, Magdziak Z, Niedzielski P, Sobieralski K (2017) The relationship between metal composition, phenolic acid and flavonoid content in Imleria badia from non-polluted and polluted areas. J Environ Sci Health Part B 52:171–177

Gucia M, Kojta AK, Jarzyńska G, Rafal E, Roszk M, Osięj J, Falandysz J (2012a) Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Poll Res 19:416–431

Gucia M, Jarzyńska G, Kojta AK, Falandysz J (2012b) Temporal variability in twenty chemical elements content of Parasol Mushroom (Macrolepiota procera) collected from two sites over a few years. J Environ Sci Health Part B 47:81–98

Kraśniska G, Falandysz J (2016) Mercury in Orange Birch Bolete Leccinum versipelle and soil substratum: bio-concentration by mushroom and probable dietary intake by consumers. Environ Sci Poll Res 23:860–869

Kuldo E, Jarzyńska G, Gucia M (2014) Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. Ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. Chem Papers 68:484–492

Liang Q, Grégoire DC (2000) Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostand Newslett 24:51–63

Mędyk M, Chudzińska M, Baralkiewicz D, Falandysz J (2017) Specific accumulation of cadmium and other trace elements in Sarcodon imbricatus using ICP-MS with a chemometric approach. J Environ Sci Health Part B 52:361–366

Melgar MJ, Alonso J, García M (2009) Mercury in edible mushrooms and soil. Bioconcentration factors and toxicological risk. Sci Total Environ 407:5328–5334

Melgar MJ, Alonso J, García MA (2016) Cadmium in edible mushrooms from NW Spain: Bioconcentration factors and consumer health implications. Food Chem Toxicol 88:13–20

Mleczek M, Magdziak Z, Gołąb P, Siwulski M, Stuper-Szablewska K (2013) Concentrations of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Scent Poloniae, Technol Alim 12:203–214

Rzymski P, Magdziak Z, Gaćecka M, Niedzielski P, Kalał P, Siwulski M, Rzymski P, Zalicka S, Sobieralski K (2016a) Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom Boletus badius (Fr. Fr. from unpolluted and polluted areas. Environ Sci Poll Res 23:2069–20618

Rzymski P, Magdziak Z, Gołąb P, Siwulski M, Gaćecka M, Rzymski P, Magdziak Z, Sobieralski K (2016b) Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ Sci Poll Res 23:16280–16295

Ouzouni P, Riganakos K (2007) Nutritional value and metal content profile of Greek wild edible fungi. Acta Aliment 36:103–149

Randa Z, Kučera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem 266:99–107

Randa Z, Soukal L, Mizera J (2005) Possibilities of the short-term thermal and epithermal neutron activation for analysis of macrocyctes (mushrooms). J Radioanal Nucl Chem 264:67–76
Rizal LM, Hyde KD, Chukeatirote E, Chamyuang S (2015) Proximate analysis and mineral constituents of *Macrolepiota dolichaula* and soils beneath its fruiting bodies. Mycosphere 6:414–420. doi: 10.5943/mycosphere/6/4/3

Saba M, Falandysz J, Nnorom IC (2016a) Accumulation and distribution of mercury in fruiting bodies by fungus *Suillus luteus* foraged in Poland, Belarus and Sweden. Environ Sci Poll Res 23:2749–2757

Saba M, Falandysz J, Nnorom IC (2016b) Mercury determination in *Suillus bovinus* mushroom: accumulation, distribution, probable dietary intake. Environ Sci Poll Res 23:14549–14559

Saba M, Falandysz J, Nnorom IC (2016c) Evaluation of vulnerability of *Suillus variegatus* and *Suillus granulatus* mushrooms’ to sequester mercury in fruiting bodies. J Environ Sci Health Part B 51:640–545

Širić I, Humar M, Kasap A, Boro M, Pohleven F (2015) Metal concentration and antioxidant activity of edible mushrooms from Turkey. Food Chem 175:549–555

Shi W, Feng X, Zhang G, Yin R, Zhao Z, Wang J (2011) High-precision measurement of mercury isotope ratios of atmospheric deposition over the past 150 years recorded in a peat core taken from Hongyuan, Sichuan Province, China. Chin Sci Bull 56:877–882

Širić I, Humar M, Kasap A, Kos I, Boro M, Pohleven F (2016) Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environ Sci Poll Res 23:18239–18252

Statistical Office (2014) Forests in Poland, Belarus, Lithuania and Ukraine in 2010. Statistical Office, Białystok. https://www.google.pl/search?q=gatunki+drzewa+w+polsce&ie=utf-8&oe=utf-8&client=firefox-b&gfe_rd=cr&ei=GALvWNGej1O0V8wf2g634Dw#q=major+tree+species+in+polsish+forests&start=10 (retrieved on April 13, 2017)

Stefanović V, Trišković J, Mutić J, Tešić Ž (2016a) Metal accumulation capacity of Parasol Mushroom (*Macrolepiota procera*) from Rasina region (Serbia). Environ Sci Poll Res 23:13178–13190

Stefanović V, Trišković J, Djurdjić S, Vukojević V, Tešić Ž, Mutić J (2016b) Study of silver, selenium and arsenic concentration in wild edible mushroom *Macrolepiota procera*, health benefit and risk. Environ Sci Poll Res 23:22084–22098

Steinhauser G, Steinhauser V (2016) A simple and rapid method for reducing radiocesium concentrations in wild mushrooms (Cantharellus and Boletus) in the course of cooking. J Food Prot 79:1995–1999

Tabouret H, Bareille G, Claverie F, Pécheuxran C, Prouzet P, OF D (2010) Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: application to the European eel (*Anguilla anguilla*) in the Adour basin, South West France. Mar Environ Res 70:35–45

Vetter J, Siller I (1997) Ásványi anyagok mennyiségének alakulása a gomba termőtestben (*Macrolepiota procera*). Mikolódiai Közlemények 36:33–39

Woźniak W (2009) Production and quality appraisal of mycelium of parasol mushroom *Macrolepiota procera* (Scop. ex Fr.) Sing. Herba Polonica 55:285–291

Wyrzykowska B, Szymczyk K, Ichihashi H, Falandysz J, Skwarzee B, Yamasaki S (2001) Application of ICP sector field MS and principal component analysis for studying interdependences among 23 trace elements in Polish beers. J Agric Food Chem 49:3425–3431

Xiaolan M (2009) Macrofungi of China <www.sciencep.com>, Beijing. ISBN978–7–03-024413-0