Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition

Iqra Hameed, Shariq R Masoodi, Shahnaz A Mir, Mudasar Nabi, Khalid Ghazanfar, Bashir A Ganai

Abstract
Diabetes mellitus is increasing at an alarming rate and has become a global challenge. Insulin resistance in target tissues and a relative deficiency of insulin secretion from pancreatic β-cells are the major features of type 2 diabetes (T2D). Chronic low-grade inflammation in T2D has given an impetus to the field of immuno-metabolism linking inflammation to insulin resistance and β-cell dysfunction. Many factors advocate a causal link between metabolic stress and inflammation. Numerous cellular factors trigger inflammatory signalling cascades, and as a result T2D is at the moment considered an inflammatory disorder triggered by disordered metabolism. Cellular mechanisms like activation of Toll-like receptors, Endoplasmic Reticulum stress, and inflammasome activation are related to the nutrient excess linking pathogenesis and progression of T2D with inflammation. This paper aims to systematically review the metabolic profile and role of various inflammatory pathways in T2D by capturing relevant evidence from various sources. The perspectives include suggestions for the development of therapies involving the shift from metabolic stress to homeostasis that would favour insulin sensitivity and survival of pancreatic β-cells in T2D.

Key words: Diabetes mellitus; Inflammation; Insulin resistance; β-cell dysfunction; Adipose tissue

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Immuno-metabolism, the confluence of metabolism and immune system has emerged as a chief breakthrough especially in the field of diabetes mellitus; a metabolic disorder of great magnitude. Activation of immune system by metabolic stress has opened new insights in the pathogenesis and progression of type 2 diabetes (T2D). The link between metabolic overload and activation of the immune system form the core tip of this review. Metabolic stress can cause pathologic activation of the immune system, thus metabolic disorders like T2D manifest and progress as an inflammatory disorder with severe consequences thereof.
INTRODUCTION

Diabetes mellitus, a lifestyle disease affecting 8.3% of the adult population of the world and increasing at an alarming rate, is one of the most common non-communicable diseases of current era[1]. The burden of this disease is immense owing to transition in lifestyle and dietary habits, ageing of the population and urbanization in the setting of a genetically predisposed environment[2]. The fact that the number of subjects with diabetes mellitus has doubled over the past three decades has made this disease a global challenge[3]. The number of diabetes mellitus patients is projected to increase from 382 million in 2013 to 592 million by 2035, denoting a net increase of 55%[1]. The predominant form is type 2 diabetes (T2D) which accounts for nearly 90% of all diabetes cases.

Diabetes mellitus-not so sweet

T2D is a metabolic disorder characterized by insulin resistance and pancreatic β-cell dysfunction as a consequence of unsettled hyperglycemia[4,5]. In response to nutrient spill over in the setting of insulin resistance and eventual β-cell dysfunction, the general fuel homoeostasis of body is altered[2]. Insulin resistance in target tissues and a relative deficiency of insulin secretion from pancreatic β-cells are the major features of T2D. β-cell hyperplasia and hyperinsulinaemia in response to insulin resistance occur in the preclinical period of disease. Relative insulin deficiency as a consequence of failure of β-cells to compensate for insulin resistance, progresses into overt T2D[6].

Metabolic alterations associated with T2D are well characterised by epidemiological and research based studies. The pathogenesis and progression of T2D is ascribed to four mechanisms; increased advanced glycation end product (AGE) formation, increased polyl pathway flux, activation of protein kinase C (PKC) isoforms, and increased hexosamine pathway flux[7]. Till recently no common linking element was apparent for these mechanisms: however, recently production of superoxide emerged as a unifying mechanism for these four pathways. Downstream to oxidative stress, activation of inflammatory pathways has emerged as an imperative link between T2D and inflammation. Since, abundant data have elucidated the role of oxidative stress in T2D pathogenesis. In this review, we will evaluate the inflammatory component of T2D and underscore the link between metabolic alterations in T2D and inflammation.

T2D AS AN INFLAMMATORY CONDITION

Studies investigating the relation between inflammation and T2D have coalesced sufficient data implicating the role of inflammation towards the development of insulin resistance and pathogenesis of T2D[8,9]. Metabolism and immune system were conventionally regarded as two distinctive mechanisms governing nutrient disposal and body defense, respectively. Typically, little was known about the coordination and interplay between these two systems. However, present research has led to combining these distinct entities as studies perceive pathological activation of the immune system as a regulatory mechanism associated with multiple disorders underlying the metabolic syndrome[10]. Potency of steroid hormones as immune suppressors and hyperglycemic inducers, metabolic alterations associated with pyrexia, wasting syndrome initiated by chronic infections and of late, markers of acute-phase response have been associated with insulin resistance, insulin secretion defects, T2D and vascular complications of T2D[8,11-15].

T2D encompasses colossal cellular factors characteristic of triggering inflammatory signalling cascades. A detailed analysis of these molecules cannot be underscored in this review, however their particular roles in T2D has been outlined in Table 1. Consequently, T2D at the moment is considered an inflammatory disorder triggered by disordered metabolism[16]. The probable history of diabetes involves a more or less latent prodromal period followed by progressive deterioration of glucose tolerance culminating into explicit disease. Progression of islet β-cell failure results in hypertrophy of pancreatic islets and proliferation of β-cells. This phase is associated with an inflammatory response precipitating into reduction of cells by apoptosis and fibrosis of islets. In fact, an analogy of sequence of events involving an incipient inflammatory phase is associated with other T2D complications also[17]. Hyperglycemia is regarded as the major upstream mechanism, and micro-inflammation is regarded as the subsequent downstream driving force of diabetes related complications[17]. Epidemiological data advocate that markers of inflammation are predictive of T2D[18]. The role of inflammation in insulin resistance is traced by the integration of metabolism and innate immunity via nutrient-sensing pathways mutual to pathogen-sensing pathways. Components of nutrition (free fatty acids, glucose, and amino acids) signal through collective receptors and pathways in a similar way as pathogens and/or cytokines. Cells of the immune system (macrophages) and metabolism (adipocytes) also share many functions like secretion of cytokines, and trans-differentiation into macrophages. Nutrients can activate macrophages and adipocytes through common receptors, such as toll-like receptors (TLRs) that sense broad classes of molecular structures common to pathogen groups, and are central to innate.

Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes 2015; 6(4): 598-612

Available from: URL: http://www.wjgnet.com/1948-9358/full/v6/i4/598.htm DOI: http://dx.doi.org/10.4239/wjd.v6.i4.598
Table 1 Role of various inflammatory molecules in type 2 diabetes

Category	Molecule	Role
Pro-inflammatory cytokines and signaling molecules	TNF-α	Reduces insulin sensitivity by influencing the phosphorylation state of the insulin receptor
	IL-6	Major pro-inflammatory cytokine that induces inflammation and IR leading to T2D
	CRP	Elevated serum CRP associated with the incidence of T2D
	IL-1	Associated with obesity and IR
	IL-8	Leads to IR via the inhibition of insulin-induced Akt phosphorylation in adipocytes
	IL-1β	Mediates auto-inflammatory process resulting in β-cell death
Transcription factors	NF-κB	Increase the expression of genes encoding cytokines, chemokines, transcription factors and various receptors involved in IR and pathogenesis of T2D
	JNK	Promotes IR through phosphorylation of serine residues in IRS-1
	IKKβ	Leads to IR through transcriptional activation of NF-κB
Adipokines	Leptin	High leptin levels, reflecting leptin resistance predict increased risk of T2D
	Adiponectin	Low levels of this protective adipokine correlate with T2D. Adiponectin is downregulated by TNF-α
	Resistin	Promotes IR and decreases insulin-stimulated glucose transporters in adipose tissue
	Adipsin	Role in maintaining β-cell function
	Visfatin	Hypoglycaemia by reducing glucose release from liver cells and stimulating glucose utilization in adipocytes and myocytes
Chemokines	MCP-1	MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, IR and T2D
	IP-10/CXCL10	Downstream effector of pro-inflammatory cytokines involved in T2D-related complications
Toll like receptor	TLR2 and TLR4	TLR2 and TLR4 play a critical role in the pathogenesis of IR and T2D
Adhesion molecules	E-selectin/P-selectin	Lead to leukocyte recruitment in local tissue and contributes to inflammation, IR and T2D
	ICAM-1/VCAM-1	Alters endothelial and sub-endothelial structure leading to reduced vascular permeability, reduced insulin delivery to peripheral insulin sensitive tissues and ultimately T2D
Nuclear receptors	PPARα, PPARγ, and PPARβ/δ	Mutations in PPAR genes associated with IR and T2D
	VDR	Regulates expression of insulin receptor preferentially by binding as a heterodimer with the RXR to VDREs in the promotar regions of insulin receptor gene

IR: Insulin resistance; CRP: C-reactive protein; T2D: Type 2 diabetes; SOCS-3: Suppressor of cytokine-3 signalling; NF-κB: Nuclear factor κB; JNK: c-Jun NH2-terminal kinase; IRS-1: Insulin receptor substrate; IKKβ: Inhibitor of nuclear factor κB kinase subunit β; MCP: Monocyte chemotactic protein-1; IP-10: Interferon gamma-induced protein 10; CXCL10: Chemokine (C-X-C motif) ligand 10; CCR2: Chemokine (C-C motif) receptor 2; ICAM-1: Intracellular adhesion molecule 1; VCAM-1: Vascular cell adhesion molecule 1; PPAR: Peroxisome proliferator activated receptor; VDR: Vitamin D receptor; RXR: Retinoid X receptor; VDREs: Vitamin D response elements.

Stressed adipocytes produce various cytokines and chemokines promoting immune-cell activation and accumulation in adipose tissue. A pro-inflammatory loop is formed by several macrophages by clustering around adipocytes, particularly with dead adipocytes forming crown-like structures. Sustained accumulation of lipids in adipose tissues results in switching of macrophages from an anti-inflammatory “M2” (alternatively activated) to a pro-inflammatory “M1” (classically activated) phenotype. The skew in balance results in an increased secretion of inflammatory molecules that subsequently stimulate the hypertrophied adipocytes resulting into a pro-inflammatory response. The inflammatory response in macrophages is induced by adipocyte-derived FFAs via TLR or NOD-like receptor family, the pyrin domain containing 3 (NLRP3) dependent pathways. Local hypoxia as a result of vasculature insufficiency in hypertrophied adipocytes has been proposed to stimulate expression of inflammatory genes in adipocytes as well as immune cells. However, the hypothesis lacks confirmation in the situation of human obesity. Instead, mechanisms like ER stress and immunity and inflammation.

ADIPOSE TISSUE AS A SITE OF INFLAMMATION

Clinical and experimental studies show that adipose tissue acts as a site of inflammation. The first insight came from the study on adipose tissue of obese mice exhibiting elevated production of TNF-α. Consequently, increased in adiposity is associated with upregulation of genes encoding pro-inflammatory molecules and associated with accumulation of immune cells. Adipocytes hoard excessive nutrient load and become hypertrophic gradually. Events initiating a pro-inflammatory response involve synergistic contributions of various mechanisms like an increase in nuclear factor κB (NF-κB) and c-Jun NH2-terminal kinase (JNK) activity by hypertrophied adipocytes, endoplasmic reticulum (ER) stress causing altered unfolded protein response (UPR), hypoxic stress in adipose tissue, activation of TLR by excess free fatty acids (FFAs), or increased chylomicron-mediated transport from the gut lumen into the circulation in a lipid-rich diet.

WJD | www.wjgnet.com 600 May 15, 2015 | Volume 6 | Issue 4 |
autophagocytosis have been proposed as origin of local inflammatory signalling pathways in adipose tissue. Recently, the role of the incretin hormone glucose-dependent insulinotropic peptide has also been implicated. In addition to adipose tissue, a pro-inflammatory state in liver and skeletal muscle result in disruption of systemic insulin sensitivity and glucose homeostasis that are characteristic of T2D.

Metabolic inflammation is regulated by critical orchestration of innate and adaptive immune cell interactions. Studies investigating immunometabolism have recognised that the inflammatory status of immune cells is dictated by their metabolic programming, mitigating the progression of T2D. T2D is preceded by an extensive period of disease development, and inflammation has been shown to be a precipitating factor underpinning insulin resistance, preceding T2D. The progression of T2D involves an intricate interplay between metabolism and immunity. The progression of T2D has been causally linked to various types of immune cells but the primary sources of inflammatory effectors contributing to insulin resistance are macrophages. Among various cell types, pre-adipocytes, adipocytes, T cells, dendritic cells and macrophages are major cell types involved in obesity-induced inflammation and insulin resistance. Their prime functions are shown in Figure 1. The key inducers of cytokine release in metabolic organs leading to impaired insulin action are tissue-resident macrophages.

Nutrient overload corresponds to increased infiltration of macrophages in metabolic tissues promoting a pro-inflammatory environment characterised by augmented TNF-α, IL-1β and inducible nitric oxide synthase (iNOS) levels. The accrual of these pro-inflammatory macrophages in metabolic organs like liver, adipose tissue and muscle directly supresses insulin action, thereby promoting hyperglycemia.

ROLE OF INFLAMMATION IN INSULIN RESISTANCE

Insulin is a key endocrine hormone produced by β-cells of pancreatic islets. Insulin is regarded as “hormone of abundance” owing to the array of functions it performs, the effects of which extend from metabolic to mitogenic activity (Figure 2). It is likely that disruption of insulin-mediated pathways will have pleiotropic effects that are not confined to carbohydrate metabolism only. Various mechanism working separately or in synergy have been linked to the development of insulin resistance among which chronic inflammation represents a triggering point.

Inflammation is an important component linking insulin resistance with nutrient overload and increased visceral adipocyte mass. During an insulin-sensitive state, the signalling cascade of insulin upon binding to its receptor results in phosphorylation of tyrosine residues of the insulin receptor substrate 1 (IRS-1) ensuing in downstream insulin signalling. However, in an insulin-resistance state, pro-inflammatory molecules activate various other serine kinases like JNK, inhibitor of NFκB kinase subunit β (IKK-β), extracellular-signal regulated kinase (ERK), ribosomal protein S6 kinase (S6K), mammalian target of rapamycin (mTOR), PKC and glycogen synthase kinase 3β (GSK3β). The activation of these kinases inhibits insulin action by phosphorylating serine residues instead of tyrosine residues in the insulin signalling pathway.

The development of insulin resistance is linked to two prime transcription factor-signalling pathways: JNK and IKKβ/NFκB. Activation of these two pathways involves a series of proinflammatory stimuli, many of which comprise of both activators and upregulators of
NF-κB. In addition, these pathways are also activated by pattern recognition receptors like TLRs and receptors for advanced glycation end products (RAGE). Elevated levels of FFAs result in an increase in diacylglycerol (DAG) that activates PKC isoforms leading to con­comitant activation of JNK and NF-κB pathways. Further stimuli involve production of reactive oxygen species (ROS), ER stress and changes in adiposity.

The mechanisms in development of inflammation-induced insulin resistance are different for JNK and IKKβ. Unlike JNK that phosphorylates the serine residues of IRS-1, IKKβ induces insulin resistance by transcriptional activation of NF-κB. The physiological substrates of IKKβ are IκB protein inhibitors of NF-κB. IKKβ phosphorylation promotes proteosomal degradation of IκBα liberating NF-κB for nuclear translocation where it stimulates the expression of several target genes (Figure 3). The products of these target genes of NF-κB induce insulin resistance. The production of inflammatory molecules further activates JNK and NF-κB pathways promoting a vicious loop of insulin resistance by feed-forward mechanism.

PANCREATIC ISLET INFLAMMATION IN T2D

Increasing evidence suggests the presence of an inflammatory milieu in pancreatic islets in T2D, such as increased cytokine levels, chemokine levels and immune cell infiltration. Evidence of islet inflammation was initially observed in hyperglycemia induced β-cell apoptosis. Recent studies on human islets and monocytes have shown that the combination of hyperglycemia and elevated FFAs induces a more efficient pro-inflammatory phenotype. Various T2D experimental animal models like db/db mice and Goto-Kakisaki rats showed increased infiltration by immune cells in the pancreatic islets. Studies on experimental animal models elucidated islet inflammation and macrophage infiltration as an event occurring as early as eight weeks before the onset of frank diabetes. Recruitment of macrophages is a consequence of phagocytic clearance owing to the death of islet β-cells. Alternately, in a diabetic milieu endocrine cell-derived inflammatory molecules like IL-6 and IL-8 produced in islets are also attributed to increased macrophage infiltration. Production of pro-inflammatory cytokines and secretion of chemokines by β-cells results in a vicious cycle speeding up islet inflammation. In humans, IL-1β secreted by infiltrating immune cells is related to the pathogenic process of T2D, as blockade of IL-1β has been associated with reduced hyperglycemia, improved β-cell function and reduced expression of inflammatory markers. However, recent studies involving human islets have shown that induction of IL-1β plays a role in precipitating the clinical features of diabetes and is unlikely involved in initial pathogenesis. The first study demonstrating the hyperglycemia-induced IL-1β secretion documented a pro-inflammatory response induced by a non-autoimmune mechanism in β-cells. Ex vivo experiments on isolated human islets exposed to high glucose levels showed increased IL-1β production preceding activation of NF-κB, upregulation of Fas, fragmentation of DNA, and reduction
May 15, 2015

ISLET INFLAMMATION AND β-CELL DEATH

Islet tissue sections of T2D subjects show well-defined fibrosis which is a hallmark of the late stage of a chronic inflammatory process. In clinically overt T2D subjects a decreased β-cell mass has been reported indicating a probable role in its pathogenesis. Decreased β-cell mass in T2D has been attributed to pancreatic β-cell apoptosis and to β-cell dedifferentiation. In slowly progressing T2D, the probability of detecting β-cell damage in pancreatic sections is low, thus very few studies on this aspect have been reported. Several mechanisms like amyloid deposition in islets, presence of long-chain FFAs, and chronic hyperglycemia has been implicated in β-cell apoptosis. Sustained gluco-lipotoxic conditions amplifies the β-cell stress responses by potentiating effects of elevated levels of FFAs, glucose causing ER stress and mTORC1 activation. The underlying mechanism for hyperglycemia-induced β-cell apoptosis is attributed to the glucose-induced IL-1β production that upregulates the Fas receptor. FFAs act as important effector molecules causing β-cell dysfunction by lipapoptosis (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abundant saturated FFA in blood (a metabolic cause of programmed cell death). The most abundant saturated FFA in blood is palmitate that is the most abunda
induced lipotoxicity as well as insulin resistance\cite{89,91}. In addition to this, FFA-induced activation of JNK by Src has also been reported in a recent study\cite{92}. These studies show that islet inflammation contributes to β-cell dysfunction.

TRIGGERING OF THE INNATE IMMUNE SYSTEM IN T2D

Nutrient excess in metabolic tissues resulting in metabolic inflammation, i.e., a low-level pro-inflammatory milieu, has emerged as an important factor underlying the development of T2D\cite{11,15,93,94}. Activation of innate immunity in T2D is linked to the activation of TLRs. These receptors have been implicated in diabetes-induced inflammation and vascular complications\cite{95}. TLRs comprise the pattern-recognition receptors characteristic of the innate immune system. Various pathogen-associated molecular patterns (PAMPs) encompassing carbohydrates, proteins, nucleic acids and lipids, are recognised by TLRs followed by initiation of an immune response. TLR2, a receptor for pathogen lipopolysaccharides and TLR4, a receptor of lipopolysaccharides, are activated by FFAs\cite{96,20}. Binding of FFAs to TLRs has been postulated to directly induce a pro-inflammatory response\cite{97,98}. Also, various indirect ways of TLR activation by FFAs has been postulated recently\cite{99}. In vitro studies have demonstrated that, unlike the short chain FFAs, the long chain palmitate and oleate that comprise 80% of circulating FFAs are pro-inflammatory in various cell types\cite{96,98,100,101}. Contemporary studies report the activation of TLR signalling by FFA-induced formation of lipid rafts that favour TLR dimerization in cell membranes\cite{92,103}. Recently, fatty acid transporter CD36 binding to TLR2 and liver-derived glycoprotein fetuin-A binding to TLR4 were identified as endogenous ligands linking FFAs to TLRs, eliciting inflammation and prompting insulin resistance\cite{103,104}. In addition, damage-associated molecular patterns (DAMPs) like high-mobility group box 1 (HMGB1) and AGEs also act as endogenous ligands which are recognised by TLRs, thereby activating pro-inflammatory pathways\cite{105}. TLR2 is responsible for upregulation of inflammatory molecules like NF-κB, myeloid differentiating factor 88 (MyD88) and chemokine (C-C motif) ligand 2 (CCL2)\cite{106}. TLR4 knockout mice have been shown to be protected from insulin resistance as well as from fat-induced inflammation\cite{106}. TLR4 silencing by siRNA technology has been shown to attenuate the hyperglycemia-induced activation of JNK/NF-κB\cite{107}. TLR5 is a receptor for bacterial flagellin that controls metabolic pathways through sensing gut microbiota. TLR5 knockout mice have been reported to exhibit increased adiposity along with hyperphagia, hypertension, hyperlipidemia and insulin resistance\cite{108}. Activation of inflammatory pathways in a TLR-independent mechanism by metabolic stress involves generation of ROS that induce stress kinases and NLRP3 inflammasome (multiprotein complexes responsible for production of bioactive IL-1β) formation\cite{109}.

Both TLR-dependent and TLR-independent mechanisms function in concert. This finding is demonstrated by animal models of diabetes in which there is partly protection of pro-inflammatory cytokine production in case of deficiency of TLR2 or TLR4, whereas deficiency of a universal intracellular docking protein MyD88 required for TLR signalling, exerted total protection\cite{111}. Apart from FFAs, systemic inflammatory responses are also elicited by elevated glucose levels\cite{110}. Sustained hyperglycemia results in non-enzymatic glycation of lipids and proteins resulting in the formation of AGEs. AGEs stimulate the pattern recognition receptor RAGE. Numerous cell types, like macrophages, T cells, smooth muscle cells, neuronal cells, podocytes and cardiomyocytes, express RAGE\cite{111}. RAGE activates the pleiotropic pro-inflammatory transcription factor NF-κB along with stress kinases ERK1 and ERK2\cite{112}. Excessive glucose metabolized by oxidative phosphorylation to ATP results in ROS generation that tends to activate the NLRP3 inflammasome concomitantly with FFAs\cite{107}. This results in release of active IL-1β along with IL-1-dependent cytokine and chemokine production\cite{110}.

FROM INNATE TO ADAPTIVE IMMUNITY IN T2DM

The role of specific or adaptive immunity comes from the recent clinical overlap between type 1 diabetes (T1D) and T2D such as younger age of onset in T2D and increasing body mass index (BMI) coinciding with increased incidence in T1D. Moreover, progressive decrease in β-cell mass observed in T2D and evidence of insulin resistance in T1D has blurred the etiology\cite{113}. The argument supporting the involvement of autoimmunity in islets of T2D patients is evident from the presence of β-cell specific antibodies in nearly 10% of T2D patients and presence T cells reactive to β cell antigens in some patients\cite{114}. The number of autoantigen-responsive T lymphocytes in islets from T2D patients has been reported to correlate with disease progression\cite{114}, however the exact role of islet autoimmunity in T2D requires further studies. A monogenic form of diabetes characterised by typical features of T1D like lean body mass, young age of onset, autoantibodies to β-cells, rapid disappearance of C-peptide and insulin requirement concomitantly with T2D-associated insulin resistance provides genetic support for the overlap between T1D and T2D\cite{115}. The genetic alteration is attributed to an autosomal-dominant mutation in the SIRT1 gene, and the pathogenesis involves β-cell impairment and death, paralleling a state of activation of immune system\cite{115}. As a consequence of insulin resistance, stress induced β-cell death results in the release of autoantigens along with alarmins (endogenous molecules released by necrotic cells causing activation of immune system). Alarmins have potentiating effects of promoting pathologic self-antigen presentation, resulting in enhanced adaptive
immune response[116]. In light of these observations, sirtuins are recognised as novel regulators of immunometabolism in humans. Apart from SIRT1, SIRT2 has been recently linked to cytoskeleton remodeling and activation of NLRP3 in intracellular pathways[117].

Apart from the activation of innate immunity, the contribution of adaptive immune cells in inducing inflammation is now established in T2D at the cellular level.

Experimental animal models of insulin resistance have demonstrated a Th2/Th1 shift in favour of Th1, shifting the Th17/Treg ratio in favour of Th17 and shifting the CD8/CD4 ratio in favour of CD8 and finally reduction of T-cell receptor (TCR) diversity[118-121]. These studies have recently been extrapolated to human subjects[122] and confirm the observation that an increase pro-inflammatory stimuli (IFN-\(\gamma\)) causing M1 phenotype switching of adipose tissue macrophages result in the activation of a Th1 type response[121]. IFN-\(\gamma\) and IL-17 produced by these T cell populations interact directly with adipocytes in addition to contributing to a pro-inflammatory loop in cells of innate immunity. IFN-\(\gamma\) inhibits the JAK-STAT pathway, and IL-17 induces the secretion of IL-6 from adipocytes[123]. These transcription factors control the induction of inflammatory cytokines and chemokines that are known to have a direct link with the development of insulin resistance[128,129].

These transcription factors control the induction of inflammatory cytokines and chemokines that are known to have a direct link with the development of insulin resistance[128,129]. ER stress can also impair insulin signalling by activation of stress kinases (JNK, IKK) that can inhibit insulin receptor substrates by direct phosphorylation. Recently, death protein 5 (DP5) and p53-upregulated modulator of apoptosis (PUMA) have been reported as inducers of \(\beta\)-cell apoptosis by mediating ER stress[130]. ER stress can also cause induction of lipogenic genes that promote lipid accumulation and thereby contributes to the development of lipid-induced insulin resistance[131].

LINK BETWEEN ER STRESS AND INFLAMMATION IN T2D

Activation of ER stress and the UPR forms a convincing hypothesis for the induction of inflammatory pathways in T2D. ER stress in T2D occurs by virtue of nutrient overload, hypoxia and accumulation of unfolded proteins in metabolic organs[227]. Under normal conditions, the flux of proteins through ER is high, and in the setting of insulin resistance or glucotoxicity, a prolonged state of insulin need generates ER stress[125].

Three ER localized sensors control the activation of ER stress and UPR (Figure 4): (1) the double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK); (2) inositol-requiring kinase 1 (IRE1); and (3) activating transcription factor 6 (ATF6).

ER stress by protein overload or accumulation of unfolded proteins causes dissociation of GRP78, and the subsequent binding to unfolded proteins in ER prevents their transport to cis Golgi.

Prominently, UPR activation stimulates inflammatory stress kinases like JNK and IKK and their critical downstream transcriptional targets; activator protein 1 (AP-1) and NF-\(\kappa\)B, respectively[126,127].

These transcription factors control the induction of inflammatory cytokines and chemoattractants that are known to have a direct link with the development of insulin resistance[128,129].

ER stress and UPR pathways

Triggering of inflammatory signals by three pathways of UPR is initiated by activation of JNKs and NF-\(\kappa\)B in B
cells. This activation acts as the linkage point between metabolic and immune pathways since the activation of these very kinases is analogous to that elicited by an immune response\(^9\). JNKs play an important role in T2D, as increased activity has been shown to promote insulin resistance\(^5\).

The first responses for opposing ER stress involve decreasing the translation of proteins. This involves phosphorylation of α subunit of eIF2 by PERK. In humans and mice, loss of PERK expression is linked to dysregulation of the UPR response which is fundamental to ER stress, resulting in increased cell death and T2D\(^1\). A permanent form of neonatal diabetes in humans is related to elevated ER stress markers as a result of a mutation in PERK, confirming the pivotal role of PERK in regulating ER stress during fetal development\(^1\).

A factor in the second pathway of UPR, IRE1, is a prime regulator of ER stress and is highly expressed in the pancreas. An \textit{in vitro} knockdown study on IRE1 signalling showed a decreased synthesis of insulin\(^8\). Upon activation, IRE1 initiates activation of X-box binding protein 1 (XBP1) that leads to upregulation of ER expansion and biogenesis\(^9\). The critical role of XBP1 in achieving an optimal insulin secretion and glucose control was demonstrated in β-cell-specific XBP1-deficient mice that exhibited impaired pro-insulin processing and secretion, reduced β-cell proliferation and hyperactivation of IRE1\(^9\).

The third pathway of UPR involves the activation of ATF6, the basic leucine zipper domain protein, that upregulates PERK1 and IRE1 pathways by suppressing the apoptotic UPR signalling cascade under chronic ER stress. The role of ATF6 activation in β-cell dysfunction has been concluded in studies that showed decreased expression of insulin gene by ER stress-induced ATF6 activation and a decrease in ER chaperones along with induction of apoptosis in ATF6 knockdown insulinoma cells\(^9\).

ACTIVATION OF INFLAMMASOME IN T2D

Inflammasomes are multiprotein complexes in the intracellular machinery responsible for production of bioactive IL-1β in response to multiple stimuli\(^10\). NLRP is a subfamily of Nod-like receptors containing a central nucleotide binding and oligomerization (NACHT) domain with flanking C-terminal leucine-rich repeats (LRRs) and N-terminal caspase recruitment (CARD) or pyrin (PYD) domains\(^11\). The NOD-like receptor family, the pyrin domain containing 3 (NLRP3) inflammasome is in a pathway that controls the production of IL-1β and IL-18\(^11\). Unlike TLR, a potential role of NLR in metabolic abnormalities has not been extensively investigated. NLRP3 forms a constituent of the inflammasomes responsible for maturation and release of IL-1β, and thus is a relevant candidate for metabolic disorders and T2D\(^12\). NLRP3-dependent activation of inflammasomes in diabetes was proposed by studies implicating the release of IL-1β as a consequence of elevated levels of glucose, FFAs and human islet amylopolypeptide (hIAPP)\(^12,13\). However, the effective metabolites involved in activation of inflammasomes are not clearly elucidated yet (Figure 5).

The NLRP3 inflammasome is a general metabolic alarmin stimulated by different endogenous and exogenous stimuli\(^14\). NLRP3 inflammasome activation is augmented in T2D patients\(^15\). Dysregulation of lipid metabolism, paving the way to aberrant lipid accumulation, as well as formation of oxidized LDL and cholesterol, triggers NLRP3 activation\(^16\) similar...
to ER stress that acts as one of the important factors triggering NLRP3 activation\(^{155,156}\). In T2D subjects, increased oxidative stress also contributes to NLRP3 inflammasome activation\(^{157,158}\).

Studies on obesity-induced inflammation and insulin resistance are also indicative of the role of NLRP3. In experimental models of calorie-restricted mice, a positive correlation has been observed between IL-1β/NLRP3 mRNA and body weight\(^{159}\) whereas disruption of NLRP3 gene in obese mice has revealed changes in metabolic profiles. Insulin resistance as a consequence of inflammasome activation is directly related to FFAs and LPS\(^{160}\). Apart from Insulin resistance, activation of inflammasomes is related to β-cell dysfunction, as NLRP3-knockout mice exhibit improved glycemic profiles after consumption of a high-fat diet, likely due to attenuation of IL-1β\(^{161}\). In response to hyperglycemia-induced increased production of ROS, NLRP3 activation occurs as a result of dissociation of thioredoxin interacting protein (TXNIP) from thioredoxin and its subsequent binding to NLRP3\(^{162}\). Nevertheless, shortage of TXNIP has shown effects on glucose metabolism in addition to the NLRP3 activation\(^{159}\). A substantial role of inflammasome activation in β-cell dysfunction was recently reported by ablation of NLRP3 that conferred protection to β-cell function and structure from injury inflicted by metabolic stress\(^{163}\).

Secretion of IL-1β requires two induction stimuli; the first stimulus induces pro-IL-1β expression and the second inflammasome activation. Inflammasome activation triggers caspase-1 resulting in cleavage of pro-IL-1β and release of mature IL-1β. In T2D, the first stimulus comes from minimally-modified LDL in islets which prime the macrophages for processing of IL-1β by activation of TLR4 signalling. Recently, the second stimulus was recognized to regard islet hIAPP, secreted by β-cells in response to high glucose levels\(^{151}\). hIAPP was shown to direct NLRP3 activation by inducing β-cell injury. In islets, interaction of macrophages and β-cells is essential for the activation of inflammasomes. hIAPP, a soluble oligomer induces activation of NLRP3 and subsequent release of IL-1β from macrophages and dendritic cells which are primed with TLR4 agonists like LPS or modified LDL molecules\(^{151}\). The macrophages are attracted to islets by hIAPP-induced synthesis of chemokines (CCL2 and CXCL1). It has been reported that overexpression of hIAPP in islet grafts increases the recruitment of macrophages by 50%\(^{186}\). Recently the activation of inflammasomes in myeloid cells in T2D patients was elucidated. A study on untreated T2D subjects showed upregulation of IL-1β production and maturation in macrophages\(^{153}\). Treatment of macrophages with various alarmins like FFA, hIAPP, HMGBl and ATP resulted in release of inflammasome products. Studies have shown that T2D subjects exhibit elevated levels of circulating alarmin molecules thereby advocating a possible role of these molecules in NLRP3 inflammasome activation in myeloid cells\(^{162}\).

REFERENCES

1. International Diabetes Federation. IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation, 2013. Available from: URL: http://www.idf.org/diabetesatlas

2. Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 2011; 378: 169-181 [PMID: 21705072 DOI: 10.1016/S0140-6736(11)60614-4]

3. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 2010; 87: 4-14 [PMID: 19896746 DOI: 10.1016/j.diabres.2009.10.007]

4. Butler AE, Jansson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102-110 [PMID: 12502499 DOI: 10.2337/diabetes.52.1.102]

5. Ashcroft FM, Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell 2012; 148: 1160-1171 [PMID: 22424227 DOI: 10.1016/j.cell.2012.02.010]

6. Quan W, Jo EK, Lee MS. Role of pancreatic β-cell death and inflammation in diabetes. Diabetes Res Clin Pract 2013; 107 Suppl 3: 141-151 [PMID: 24003931 DOI: 10.10111/dx.s12153]

7. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-820 [PMID: 11742414 DOI: 10.1038/414813a]

8. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41: 1241-1248 [PMID: 9794114 DOI: 10.1007/s001250051058]

9. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116: 1793-1801 [PMID: 16823477 DOI: 10.1172/JCI29069]

10. Donath MY, Dalmas É, Sauter NS, Böni-Schnetzler M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 2013; 17: 860-872 [PMID: 23747245 DOI: 10.1016/j.cmet.2013.05.001]

11. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87-91 [PMID: 7678183 DOI: 10.1126/science.7678183]

12. Maedler K, Serezeg P, Ris F, Oberholzer J, Joller-Jemelka HJ, Spinas GA, Kaiser N, Balban PA, Donath MY. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002; 110: 851-860 [PMID: 12235117 DOI: 10.1172/JCI200215318]

13. Berk BC, Weintaub WS, Alexander RW. Elevation of C-reactive protein in “active” coronary artery disease. Am J Cardiol 1990; 65: 168-172 [PMID: 2296885]

14. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH.

PERSPECTIVES

The concept of chronic low-level inflammation in T2D has given an impetus to the field of immune-metabolism. Elucidation of various cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction has revolutionized insights in the molecular pathogenesis of diabetes. Insights into intricate pathways provide a platform to tackle the distinct pathway without compromising immuno-surveillance. Nutritional and therapeutic interventions aimed at controlling/inhibiting the escalating pro-inflammatory response can help in attenuating the pathogenesis and progression of T2D. Well-designed studies should offer the development of novel targeted therapeutics to deal with the disease burden of T2D and its associated complications.
Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. *N Engl J Med* 1997; 336: 973-979 [PMID: 9077376 DOI: 10.1056/NEJM199704033361401]

Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. *J Am Soc Nephrol* 2008; 19: 433-442 [PMID: 18256353 DOI: 10.1681/ASN.2007091408]

Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. *Nat Rev Immunol* 2011; 11: 98-107 [PMID: 21233852 DOI: 10.1038/nri2925]

Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. *Clin Sci* (Lond) 2013; 124: 139-152 [PMID: 23075333 DOI: 10.1042/CS20121998]

Scheidt NI, Duncan BB, Sharrett AR, Lindberg S, Yang Q, Tan G, Yang D, Chou CJ, Sole J, May 15, 2015, Youm YH, Ravussin A, Gallegos D, Ishikawa K, Camacho A, Barbarroja N, O'Rahilly S, Sethi JK, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in human adipose tissue. *J Clin Invest* 2008; 112: 1796-1808 [PMID: 18467976 DOI: 10.1172/JCI3019246]

Wu H, Ghosh S, Perrard X, Feng L, Garcia GE, Perrard JL, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, Duncan BB, Sharrett AR, Lindberg G, Savage HH, Shoelson SE. Type 2 diabetes as an inflammatory disease. *Am J Physiol Endocrinol Metab* 2011; 301: 1-16 [PMID: 21685304 DOI: 10.1152/ajpendo.004102.2012]

Skurk T, Alberti-Kerber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. *Clin Endocrinol* 2007; 92: 1023-1033 [PMID: 17164304 DOI: 10.1111/j.1365-2265.2006.00105.x]

Ciotti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Fajman A, Lissia W, Tontsch M, Scharpf R, Karsch-Völkmer R, Jacob R. Peroxisome proliferator-activated receptor-gamma overexpression and its influence on adipocyte cholesterol metabolism. *FASEB J* 2002; 16: 1479-1487 [PMID: 11939377 DOI: 10.1096/fj.02-0342fbl]

Lumeng CN, DelPreposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. *Diabetes* 2008; 57: 3239-3246 [PMID: 18289969 DOI: 10.2337/db07-0872]

Prieur X, Mok CY, Velagapudi VR, Núñez V, Fuentes L, Montaner D, Ishikawa K, Camacho A, Barbarroja N, O'Rahilly S, Sethi JK, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in human adipose tissue. *J Clin Invest* 2008; 112: 1796-1808 [PMID: 18467976 DOI: 10.1172/JCI3019246]

Hameed I, Bhargava P, Finucane OM, Connaughton RM, McMorrow AM, McArdle MA, Finucane J, Journals of Nutrition, Medicine, and Therapy. *Am J Physiol Gastrointest Liver Physiol* 2010; 292: E1-13 [PMID: 23092914 DOI: 10.1152/ajpgi.00351.2009]

Bruun P, Castagliuolo J, Di Leo V, Buda A, Pinzani M, Palù G, Martines D. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. *Am J Physiol Gastrointest Liver Physiol* 2007; 292: G518-G525 [PMID: 17023554 DOI: 10.1152/ajpgi.00024.2006]

Hijona E, Hijona L, Arenas JJ, Bujanda L. Inflammatory mediators of hepatic steatosis. *Mediators Inflamm* 2010; 2010: 837419 [PMID: 20306879 DOI: 10.1155/2010/837419]

Varma V, Yao-Borengasser A, Rasoul N, Nolen GT, Phanavanh B, Starks T, Gurley C, Simpson P, McGhee RE, Kern PA, Peterson CA. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. *Am J Physiol Endocrinol Metab* 2009; 296: E1300-E1310 [PMID: 19336664 DOI: 10.1152/ajpendo.00885.2008]

Winer S, Winer DA. The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance. *Immuno Cell Biol* 2012; 90: 755-762 [PMID: 22231651 DOI: 10.1038/isci.2011.110]

Lumeng CN. Innate immune activation in obesity. *Mol Aspects Med* 2013; 34: 12-29 [PMID: 23068074 DOI: 10.1016/j.mam.2012.10.002]

Hotamisligil GS. Inflammation and metabolic disorders. *Nature* 2006; 444: 860-867 [PMID: 17167474 DOI: 10.1038/nature05485]

Hotamisligil GS, Ebry E. Nutrient sensing and inflammation in metabolic diseases. *Nat Rev Immunol* 2008; 8: 923-934 [PMID: 19029988 DOI: 10.1038/nri2449]

Galici S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. *Mol Cell Endocrinol* 2010; 316: 129-139 [PMID: 19723556 DOI: 10.1016/j.mce.2009.08.018]

Bhargava P, Lee CH. Role and function of macrophages in the metabolic syndrome. *Biochem J* 2012; 442: 253-262 [PMID: 22329799 DOI: 10.1042/BJ20111708]

Odegard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. *Nature* 2007; 447: 1116-1120 [PMID: 17515919 DOI: 10.1038/nature05894]
Inflammation in T2D

Hameed I et al. 2009; 4: e4954 [PMID: 19305497 DOI: 10.1371/journal.pone.0004954]

80 Maeder K, Spinas GA, Lehmann R, Sergeev P, Weber M, Fontana A, Kaiser N, Donath MY. Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 2001; 50: 1683-1690 [PMID: 11473025 DOI: 10.2373/diabetes.50.8.1683]

81 Maeder K, Fontana A, Ris F, Sergeev P, Tosco C, Oberholzer J, Lehmann R, Bachmann F, Tasinato A, Spinas GA, Halban PA, Donath MY. FLIP switches Fas-mediated glucose signaling in human pancreatic beta cells from apoptosis to cell replication. Proc Natl Acad Sci USA 2002; 99: 8223-8224 [PMID: 12060768 DOI: 10.1073/pnas.122666292]

82 Weinberg JM. Lipotoxicity. Kidney Int 2006; 70: 1560-1566 [PMID: 16955100 DOI: 10.1038/sj.ki.5001834]

83 Cnop M. Fatty acids and glucolipotoxicity in the pathogenesis of Type 2 diabetes. Biochim Biophys Trans 2008; 36: 348-352 [PMID: 18481955 DOI: 10.1042/BST0360348]

84 Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord 2008; 9: 329-343 [PMID: 18777097 DOI: 10.1007/s11154-008-9101-5]

85 Fonseca SG, Gromada J, Uzan F. Endoplasmic reticulum stress and pancreatic β-cell death. Trends Endocrinol Metab 2011; 22: 266-274 [PMID: 21458293 DOI: 10.1016/j.tem.2011.02.008]

86 Shimabukuro M, Wang MY, Zhou YT, Newgard CB, Unger RH. Protection against lipotoxicity of beta cells through leptin-dependent maintenance of βc-2 expression. Proc Natl Acad Sci USA 1998; 95: 9558-9561 [PMID: 9689119 DOI: 10.1073/pnas.95.16.9558]

87 Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T. Inhibition of carminic palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem 1997; 272: 3324-3332 [PMID: 9013572 DOI: 10.1074/jbc.272.6.3324]

88 Couri CE, Oliveira MC, Stracieri AB, Moraes DA, Pierioni F, Barros GM, Madeira MJ, Malgr emo KC, Foss-Freitas MC, Simões BP, Martinez EZ, Foss MC, Burt RK, Voltarelli JC. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009; 301: 1573-1579 [PMID: 19366701 DOI: 10.1001/jama.2009.470]

89 Koves TR, Wells DI, Lin CY, Lea SM, Trifonov S, Ray S, Majumdar SS, Bhattacharya S. Fetuin-A acts as an inhibitor of endoplasmic reticulum stress. PLoS One 2009; 4: e9581 [PMID: 19305497 DOI: 10.1371/journal.pone.0004958]

90 Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelli C, Vanzulli A, Testolin G, Pozza G, Del Maschio A, Luzi L. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 1999; 48: 1600-1606 [PMID: 10426379 DOI: 10.2337/diabetes.48.8.1600]

91 Holzer RG, Park EJ, Li N, Tran H, Chen M, Choi C, Solinas G, Karin M. Saturated fatty acids induce C-Src clustering within membrane subdomains, leading to JNK activation. Cell 2011; 147: 173-184 [PMID: 21962514 DOI: 10.1016/j.cell.2011.08.034]

92 Steinberg GR, Schertzer JD. AMPK, promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol 2014; 92: 340-345 [PMID: 24638063 DOI: 10.1038/icb.2014.11]

93 Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115: 1111-1119 [PMID: 15864338 DOI: 10.1017/ jci200525102]

94 Jialal I, Huet BA, Kaur H, Chien A, Devaraj S. Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care 2012; 35: 900-904 [PMID: 22357188 DOI: 10.2377/ dc11-2375]

95 Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116: 3015-3025 [PMID: 17053832 DOI: 10.1172/JCI28898]

96 Lee JY, Sohn KH, Rheu SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 2001; 276: 16683-16689 [PMID: 11278967 DOI: 10.1074/jbc.M101169520]

97 Lee JY, Zhao L, Yoon HS, Weatherill AR, Tapping R, Feng L, Lee WH, Fitzgerald KA, Hwang DH. Saturated fatty acid activates but polysaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 2004; 279: 16971-16979 [PMID: 14966134 DOI: 10.1074/jbc.M312990200]
Mohanty P, Viswanathan A, Chaudhuri A, Dandona P. Differential effects of endotoxin, glucose, and orange juice on inflammation, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. *Diabetes Care* 2010; 33: 991-997 [PMID: 20067966 DOI: 10.2337/dc09-1630]

111 Van SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. *J Mol Med* (Berl) 2009; 87: 235-247 [PMID: 19189073 DOI: 10.1007/s00109-009-0439-2]

112 Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. *Diabetologia* 2009; 52: 2251-2263 [PMID: 19636529 DOI: 10.1007/s00125-009-1458-9]

113 Wentworth JM, Fourlanos S, Harrison LC. Reappraising the stereotypes of diabetes in the modern diabeticogenic environment. *Nat Rev Endocrinol* 2009; 5: 483-489 [PMID: 19636326 DOI: 10.1038/nrendo.2009.149]

114 Brooks-Worrell B, Tree T, Manering SI, Dinunio-Bello I, James E, Gottlieb I, Wong S, Zhou Z, Yang L, Cilio CM, Reichow J, Menart B, Rutter R, Schreiner R, Pham M, Petrich de Marquesini L, Lou O, Scetto M, Mallone R, Schlott NC. Comparison of crosreypreservation methods on T-cell responses to islet and control antigens from type 1 diabetic patients and controls. *Diabetes Metab Res Rev* 2011; 27: 737-745 [PMID: 22069253 DOI: 10.1002/dmrr.1245]

115 Bisson-Lauber A, Boi­ni-Schnetzler M, Hubbard BP, Bouzakri K, Brunner A, Cavelli-Worrell C, Keller C, Meyer-Böni M, Meier DT, Brorsson C, Baier A, Strassburg CP, Roche HM, Smyth EM, Reilly MP. Interferon gamma attenuates insulin signaling, lipid storage, and diabetes mellitus in human adipocytes via activation of the JAK/STAT pathway. *J Biol Chem* 2009; 284: 31936-31944 [PMID: 19776010 DOI: 10.1074/jbc.M109.061655]

116 Jagannathan M, McDonnell M, Liang Y, Hasturk H, Hetzel J, Rubin D, Kantarci A, Van Dyke TE, Ganley-Leal LM, Nikolajczyk BS. Toll-like receptors regulate B cell cytokine production in patients with diabetes. *Diabetologia* 2010; 53: 1461-1471 [PMID: 20383694 DOI: 10.1007/s00125-010-1730-2]

117 Kharroubi I, Ladrèire L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. *Endocrinology* 2004; 145: 5087-5096 [PMID: 15297438 DOI: 10.1210/en.2004-0478]

118 Hung JH, Su J, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC, Chang YS, Chen CC, Lai MD. Endoplasmic reticulum stress stimulates the expression of cyclooxgenase-2 through activation of NF-kappaB and gp38 mitogen-activated protein kinase. *J Biol Chem* 2004; 279: 46384-46392 [PMID: 15319438 DOI: 10.1074/jbc.M403568200]

119 Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. *Science* 2000; 287: 664-666 [PMID: 10850002 DOI: 10.1126/science.287.5453.664]

120 O'Neill LA, Bryant CE, Doyle SL. Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. *Pharmacol Rev* 2009; 61: 177-197 [PMID: 19474110 DOI: 10.1124/pr.109.001703]

121 O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. *Immunol Rev* 2008; 226: 10-18 [PMID: 19161412 DOI: 10.1111/j.1600-065X.2008.00701.x]

122 Cunha DA, Igiollo-Esteve M, Gurzov EN, Germano CM, Naamane N, Marlhoff I, Fukaya M, Vanderwinden JM, Gysemans C, Mathieu C, Marsalli L, Marchetti P, Harding HP, Ron D, Eizirik DL, Cnop M. Death protein 5 and p53-upregulated modulator of apoptosis mediate the endoplasmic reticulum stress-mitochondrial dialog triggering lipidotoxicity and human β-cell apoptosis. *Diabetes* 2012; 61: 2763-2775 [PMID: 22773666 DOI: 10.2337/db12-0123]

123 Flaimment M, Hajduck E, Ferre P, Foufelle F. New insights into ER stress-induced insulin resistance. *Trends Endocrinol Metab* 2012; 23: 381-390 [PMID: 2277719 DOI: 10.1016/j.tem.2012.06.003]

124 Medzhitov R. Toll-like receptors and innate immunity. *Nat Immunol* 2001; 1: 135-145 [PMID: 11905821 DOI: 10.1038/35100529]

125 Lanuza-Maseda J, Añévalo ML, Vila C, Barberá A, Gomis R, Caicedes C. In vivo JNK activation in pancreatic β-cells leads to glucose intolerance caused by insulin resistance in pancreas. *Diabetes* 2013; 62: 2308-2317 [PMID: 23434907 DOI: 10.2337/db12-1097]

126 Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D. Diabetes mellitus and exocrine pancreatic dysfunction in per-β mice reveals a role for translational control in secretory cell survival. *Mol Cell* 2001; 7: 1153-1163 [PMID: 11430819 DOI: 10.1016/S1097-0765(01)00647-7]

127 Zhang W, Feng D, Li Y, Iida K, McGrath B, Cavenar DR. PERK EIF2AK3 control of pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis. *Cell Metab* 2006; 4: 491-497 [PMID: 17141632 DOI: 10.1016/j.cmet.2006.11.002]

128 Boyce M, Bryant CF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. *Science* 2005; 307: 935-939 [PMID: 15705885 DOI: 10.1126/science.1101902]

129 Wang R, McGrath BC, Kopp RF, Roe MW, Tang X, Chen G, Cavenar DR. Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin. *J Biol Chem* 2013; 288: 33824-33836 [PMID: 24148383 DOI: 10.1074/jbc.2013060400]

Hameed I et al. Inflammation in T2D

WJD | www.wjgnet.com

611

May 15, 2015 | Volume 6 | Issue 4
lipson KL, Ghosh R, Urano F. The role of IRE1alpha in the degradation of insulin mRNA in pancreatic beta-cells. PLoS One 2008; 3: e1648 [PMID: 18286202 DOI: 10.1371/journal.pone.0001648]

Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M, Mori K. Identification of the G13 (CAMP-response-element-binding protein-related) gene product as an activator transcriptional activator of the mammalian unfolded protein response. Biochem J 2001; 355: 19-28 [PMID: 11256944 DOI: 10.1042/0266-6021]

Lee AH, Cha GC, Iwakoshi NN, Glimcher LH. XBP1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J 2005; 24: 4368-4380 [PMID: 16362047 DOI: 10.1038/sj.emboj.7600903]

Lee AH, Heidtman K, Hotamisligil GS, Glimcher LH. Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci USA 2011; 108: 8885-8890 [PMID: 21555585 DOI: 10.1073/pnas.1009545108]

Seo HY, Kim YD, Lee KM, Min AK, Kim MK, Kim HS, Won KC, Park JY, Lee KU, Choi HS, Park KG, Lee IK. Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases insulin gene expression via up-regulation of orphan nuclear receptor small heterodimer partner. Endocrinology 2008; 149: 3832-3841 [PMID: 18450959 DOI: 10.1210/en.2008-0015]

Teodoru T, Odisho T, Sidorova E, Volchuk A. Pancreatic β-cells depend on basal expression of active ATF6α-p50 for cell survival even under nonstress conditions. Am J Physiol Cell Physiol 2012; 302: C992-1003 [PMID: 22189555 DOI: 10.1152/ajpcell.00160.2011]

Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5: 1249-1255 [PMID: 10545990]

Schroder K, Tschopp J. The inflammasomes. Cell 2010; 140: 821-832 [PMID: 20303873 DOI: 10.1016/j.cell.2010.01.040]

Tannahill GM, O’Neill LA. The emerging role of metabolic regulation in the functioning of Toll-like receptors and the NOD-like receptor Nlrp3. FEBS Lett 2011; 585: 1568-1572 [PMID: 21565193 DOI: 10.1016/j.febslet.2011.05.008]

Wen H, Ting JP, O’Neill LA. A role for the NLRP3 inflammasome in metabolic diseases—did Warburg miss inflammation? Nat Immunol 2012; 13: 352-357 [PMID: 22430788 DOI: 10.1038/ni.2228]

Hanekelaus M, O’Neill LA, Coll RC. Modulatory mechanisms controlling the NLRP3 inflammasome in inflammation: recent developments. Curr Opin Immunol 2013; 25: 40-45 [PMID: 23305783 DOI: 10.1016/j.coi.2012.12.004]

Kufer TA, Sansonetti PJ. NLR functions beyond pathogen recognition. Nat Immunol 2011; 12: 121-128 [PMID: 21245903 DOI: 10.1038/ni.2228]

Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, Abraham E. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279: 7370-7377 [PMID: 14660645 DOI: 10.1074/jbc.M306793200]

Masters SL, Dinne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yohishara E, Chen Z, Mullooy N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nuñez G, Yodoi J, Kahn SE, Lavelle EC, O’Neill LA. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 2010; 11: 897-904 [PMID: 20835230 DOI: 10.1038/ni.1935]

Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010; 327: 296-300 [PMID: 20075245 DOI: 10.1126/science.1184003]

Lee HM, Kim JI, Kim HJ, Shong M, Ku BJ, Jo EK. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013; 62: 194-204 [PMID: 23086037 DOI: 10.2337/db12-0420]

Dauwell P, Kono H, Rayner KJ, Sirois CM, Vladimir G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464: 1357-1361 [PMID: 20428172 DOI: 10.1038/nature08938]

Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y, Igbaria A, Shen S, Nguyen V, Backes BJ, Heinman M, Heintz N, Greengard P, Hui S, Tang Q, Trusina A, Oakes SA, Papa FR. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irredeemable ER stress. Cell Metab 2012; 16: 250-264 [PMID: 22883234 DOI: 10.1016/j.cmet.2012.07.007]

Olsowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, Urano F. Thioredoxin-interacting protein mediates ER stress-induced β-cell death through initiation of the inflammasome. Cell Metab 2012; 16: 265-273 [PMID: 22883234 DOI: 10.1016/j.cmet.2012.07.005]

Lawlor KE, Vince JE. Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria? Biochim Biophys Acta 2014; 1840: 1433-1440 [PMID: 23994945 DOI: 10.1016/j.bjba.2013.08.014]

Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469: 221-225 [PMID: 21243155 DOI: 10.1038/nature09663]

Oka S, Yoshihara E, Bizen-Ab A, Liu W, Watanabe M, Yodoi J, Masutani H. Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 2009; 150: 1225-1234 [PMID: 18974273 DOI: 10.1210/en.2008-0646]

Youm YH, Adjian A, Vandrannagaar B, Sark D, Ravussin A, Dixit VD. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology 2011; 152: 4039-4045 [PMID: 21862613 DOI: 10.1210/en.2011-1326]

Westwell-Roper C, Dai DL, Soubhatcheva G, Potter KJ, van Rooijen N, Ehses JA, Verchere CB. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol 2011; 187: 2755-2765 [PMID: 21813778 DOI: 10.4049/jimmunol.1002854]

Dasu MR, Devaran S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 2010; 33: 861-868 [PMID: 20067962 DOI: 10.2373/dcd9-1799]
