Finally, regardless of their respiratory support patients who are admitted to hospital from home with suspicion of having COVID-19-associated respiratory failure, should be closely monitored for deterioration. An emergency care pathway including an escalation plan and ceiling of care should be discussed and documented on arrival.

References
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33. http://dx.doi.org/10.1056/NEJMoa2001017.
2. Cohen E, Kuo DZ, Agrawal R, Berry JG, Bhagat SKM, Simon TD, et al. Children with medical complexity: an emerging population for clinical and research initiatives. Pediatrics. 2011;127:529–38. http://dx.doi.org/10.1542/peds.2010-0910.
3. Srivastava R, Downie J, Hall J, Reynolds G. Costs of children with medical complexity in Australian public hospitals. J Paediatr Child Health. 2016;52:566–71. http://dx.doi.org/10.1111/jpc.13152.
4. Poponick JM, Jacobs I, Supinski G, DiMarco AF. Effect of upper respiratory tract infection in patients with neuromuscular disease. Am J Respir Crit Care Med. 1997;156:659–64. http://dx.doi.org/10.1164/ajcc.156.2.9611029.
5. Gregoretti C, Navalesi P, Ghannadian S, Carlucci A, Pelosi P. Choosing a ventilator for home mechanical ventilation. Breathe. 2013;9:394–409. http://dx.doi.org/10.1138/20734735.042312. European Respiratory Society.
6. Hull J, Aniapravan R, Chan E, Chatwin M, Forton J, Gallagher J, et al. British Thoracic Society guideline for respiratory management of children with neuromuscular weakness. Thorax. 2012;67 Suppl 1:11–40. http://dx.doi.org/10.1136/thoraxjnl-2012-201964.
7. Gregoretti C, Pelosi P, Chidini G, Bignamini E, Calderini E. Non-invasive ventilation in pediatric intensive care. Minerva Pediatr. 2010;62:437–58.
8. Hui DS, Chow BK, Lo T, Ng SS, Ko FW, Gin T, et al. Exhaled air dispersion during noninvasive ventilation via helmets and a total facemask. Chest. 2015;147:1336–43. http://dx.doi.org/10.1378/chest.14-1934.
9. Gregoretti C, Foti G, Beltrame F, Giugiaro PM, Biolino P, Burbi L, et al. Pressure control ventilation and mivinatracheotomy in treating severe flail chest trauma. Intensive Care Med. 1995;21:1054–6. http://dx.doi.org/10.1007/BF01700674.
10. Simonds AK, Hanak A, Chatwin M, Morrell M, Hall A, Parker KH, et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess. 2010;14:131-72, http://dx.doi.org/10.3310/hta14460-02.
11. Conti G, Spinazzola G, Gregoretti C, Ferrone G, Cortegiani A, Festa O, et al. Comparative bench study evaluation of different infant interfaces for non-invasive ventilation. BMC Pulm Med. 2018;18:57. http://dx.doi.org/10.1186/s12890-018-0620-x.
12. Ippolito M, Vitale F, Accurso G, Iozzo P, Gregoretti C, Giarratano A, et al. Medical masks and Respirators for the Protection of Healthcare Workers from SARS-CoV-2 and other viruses. Pulmonology. 2020, http://dx.doi.org/10.1016/j.pulmoe.2020.04.009.
13. Ippolito M, Gregoretti C, Cortegiani A, Iozzo P. Counterfeit filtering facepiece respirators are posing an additional risk to health care workers during COVID-19 pandemic. Am J Infect Control. 2020, http://dx.doi.org/10.1016/j.ajic.2020.04.020.
14. Ippolito M, Iozzo P, Gregoretti C, Grasselli G, Cortegiani A. Facepiece filtering respirators with exhalation valve should not be used in the community to limit SARS-CoV-2 diffusion. Infect Control Hosp Epidemiol. 2020;1–2, http://dx.doi.org/10.1017/ice.2020.244.
15. Kampf G, Todt D, Pfeander S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104:246–51, http://dx.doi.org/10.1016/j.jhin.2020.01.022.

I. Espositoa, M. Chatwinb, G. Accursoc, D. Accursof, A. Cortegiani, C. Gregorettid, E. Bignamin

a AOU Città della Salute e della Scienza di Torino SC Pneumologia Presidio Regina Margherita, Turin, Italy
b Clinical and Academic Unit of Sleep & Breathing, Royal Brompton & Harefield NHS Foundation Trust, London, UK
c Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), Section of Anaesthesia, Analgesia, Intensive Care and Emergency, Policlinico Paolo Giaccone, University of Palermo, Italy
d Corresponding author.
E-mail addresses: espiere75@gmail.com (I. Esposito)
, m.chatwin@rbht.nhs.uk (M. Chatwin), giuseppe.accursore86@gmail.com (G. Accursos), andrea.cortegiani@unipa.it (A. Cortegianif), cesare.gregoretti@unipa.it (C. Gregorettig), elisabetta.bignamini@gmail.com (E. Bignamin)।

9 May 2020
Available online 16 July 2020
https://doi.org/10.1016/j.pulmoe.2020.06.010
2531-0437 © 2020 Sociedade Portuguesa de Pneumologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Functional impairment during post-acute COVID-19 phase: Preliminary finding in 56 patients

Dear Editor,

Rehabilitation in a bedded setting is estimated to be needed in 4% of 2019 novel Coronavirus (COVID-19) patients discharged from hospital, especially from Intensive Care Unit (ICU).1

Functional impairment of patients surviving the COVID-19 acute phase has been poorly described, and the only available information is provided by experts2 or inferred from patients with other clinical conditions (e.g., Acute Respiratory Failure-ARF).3 Two recent studies suggested that early, post-hospitalization rehabilitative interventions would be recommended.4,5

Aim of this study is to assess the clinical and functional presentation of post-acute COVID-19 patients at admission for inpatient rehabilitation. All consecutive COVID-19 patients admitted to undergo inpatient rehabilitation at Isti-
The Functional 100-best, perceived formed: 6MWT, Scale.

CIRS, MRCm, SBC, 6MWT, 1STS, balance total VS. total number scores of ICS.

Maugeri, Ventilation; (0, −40) (10.6) (9.9) or SD IQR. Invasive andortic treatment for ARF (Invasive Mechanical Ventilation (IMV), Non-Invasive mechanical Ventilation (NIV), and oxygen), comorbidities (Cumulative Illness Rating Scale (CIRS)) gender and age.

Table 1 Baseline characteristics of 56 patients surviving the acute COVID-19 phase.

	All	IMV (n = 24)	NIV (n = 11)	Oxygen (n = 21)	p-Value
Males, n (%)	39 (69.6)	19 (79.2)	7 (63.6)	13 (61.9)	0.40
Age, years	69.4 (9.9)	64.5 (8.7)	71.6 (7.6)	73.8 (10.2)	0.004b
LoS, days	48.0 (17.4)	57.9 (14.2)	42.5 (15.5)	39.4 (16.4)	0.0004c
BMI, kg/m²	25.3 (23.2–27.4)	24.9 (23.2–28.9)	23.9 (20.4–30.1)	25.6 (23.9–27.3)	0.67
FIO₂	0.21 (0.21–0.24)	0.21 (0.21–0.21)	0.21 (0.21–0.28)	0.21 (0.21–0.21)	0.24
PaO₂, mmHg	82.4 (73.3–95.4)	83.3 (74.2–100.5)	79 (67–92.9)	84.4 (76.5–93.4)	0.73
PaCO₂, mmHg	34.1 (32.4–38.3)	32.8 (31.6–35.1)	33.4 (32.3–38.4)	34.7 (33.4–39.6)	0.05
pH	7.44 (7.42–7.45)	7.431 (7.42–7.456)	7.44 (7.40–7.46)	7.439 (7.406–7.447)	0.61
CIRS CI	1.7 (0.3)	1.6 (0.2)	1.7 (0.3)	1.7 (0.3)	0.81
CIRS SI	3.4 (1.5)	3.3 (1.2)	3.6 (1.5)	3.6 (1.8)	0.74
Bi	68.7 (28.0)	62.6 (26.3)	74.3 (25.9)	74.7 (30.9)	0.39
Bd	20 (11–40)	26.5 (12.5–46.5)	22 (17–34)	13 (9–27)	0.21
SBC	20.4 (10.6)	20.5 (10.7)	17 (8.4)	22.9 (11.9)	0.46
SPPB total score	0.5 (0–6)	0 (0–5)	0 (0–6)	0 (2–8)	0.34
SPPB balance testing	1.6 (1.8)	1.5 (1.8)	1.7 (2.0)	1.5 (1.6)	0.94
SPPB walk	0 (0–3)	0 (0–2)	0 (0–3)	1 (0–3)	0.55
SPPB stands	0 (0–1)	0 (0–1)	0 (0–1)	0 (0–1)	0.55
MRC Quadriceps	3.9 (0.9)	3.9 (0.9)	4.3 (0.8)	3.7 (0.8)	0.34
MRC Biceps	4.1 (0.8)	4.2 (0.8)	4.2 (1.0)	3.9 (0.8)	0.53
1STS, number of stands	0 (0–10)	0 (0–0)	0 (0–9)	9 (0–17)	0.006d
6MWT, meters	0 (0–0)	0 (0–0)	0 (0–0)	0 (0–0)	0.84
EuroQol-VAS	60.6 (19.1)	54.8 (17.6)	68.6 (21.5)	63.0 (18.2)	0.10

Deviation from normal value:

- σ SPPB total score (n = 50) 9 (4–9) 9 (5–9) 9 (4–9) 8 (5–9) 0.81
- σ 1STS, number of stands 33 (23.5–35.0) 35 (34–35) 33(26–35) 25 (16–35) 0.002e
- σ 6MWT, meters 482 (419–539) 515.5 (464.5–568.5) 483 (383–537) 457 (369–481) 0.004f
- σ SBC (n = 21) 7.9 (5.3) 7.3 (5.8) 8.7 (4.8) 7.8 (5.7) 0.90
- σ MRCm Quadriceps (n = 15) 1 1 1 1 –
- σ MRCm Biceps 1 1 1 1 –

Value are expressed as number, mean or median SD or IQR.

Legend: IMV: Invasive Mechanical Ventilation; NIV: Non invasive Mechanical Ventilation; LoS: length of stay; BMI: body mass index; FIO₂: fraction of inspired oxygen; PaO₂: partial pressure of oxygen; PaCO₂: partial pressure of carbon dioxide; CIRS: Cumulative Illness Rating Scale including the comorbid index (CI) and the severity index (SI); Bi: Barthel index; activity of daily life; Bd: Barthel dyspnoea; SBC: Single Breath Counting; SPPB: Short Physical Performance Battery; MRCm: Medical Research Council Muscular; 1STS: One Minute Sit to Stand; 6MWT: six minute walk test; EuroQol-VAS: Euro Quality of Life with visual analogue scale. Sidak and Bonferroni multiple comparison tests were performed.

- a Estimation of variability of the outcome in relation to reference values.
- b IMV VS. Oxygen p-value = 0.004.
- c IMV VS. Oxygen p-value = 0.02; IMV VS. Oxygen p-value = 0.001.
- d IMV VS. Oxygen p-value = 0.002.
- e IMV VS. Oxygen p-value = 0.0008.
- f MV VS. Oxygen p-value = 0.004.
Qualitative and quantitative variables were described with absolute and relative (percentage) frequencies and means (standard deviations, SD) or medians (interquartile ranges, IQR), depending on their normal or non-normal distribution, respectively. Demographic, epidemiological, and clinical variables were compared, stratifying by ICU stay and gender. Chi-squared or Fisher exact test was used for qualitative variables; analysis of variance or Kruskall–Wallis was computed for quantitative variables with a normal or non-normal distribution, respectively. CIRS and LoS were correlated with key clinical variables (Spearman’s correlation) and were ranked according to the Chan’s classification. A p-value <0.05 was considered statistically significant.

All 56 patients showed a reduced Bi and EuroQoL-VAS and increased Bd (Table 1). Overall 27/56 (48.2%) patients had a total SPPB score of 0, 22/56 (39.3%) between 1 and 8, and 7/56 (12.5%) ≥9. The SPPB ‘standing balance’ was less than 4 in 40 (71.4%) patients. Only 19/56 (33.9%) completed the 1STS test with a median (IQR) number of 14 (9.3–19.8) repetitions. The majority (53, 94.6%) could not perform the 6MWT and 5.4% covered a mean (SD) distance of 423.7 (34.8) m, around 70% of the Enright predicted value.

No statistically significant differences were found for clinical and functional data between males and females.

Patients previously treated with IMV were younger (p-value: 0.004), experienced a longer LoS (p-value: 0.0004), and had worse 1STS (p-value: 0.006) when compared with patients previously treated with oxygen (Table 2).

Furthermore, a statistically significant fair correlation was found between LoS and Bi, Bd, SBC and EuroQoL-VAS and between age and MRC quadriceps oriented to a worse functional and symptomatic status.

The results of the present study show that COVID-19 survivors can have an impairment of functional and muscular performance, dyspnea, as well as impaired perceived health status. Patients who underwent IMV were younger, had a longer LoS and could not perform any exercise test.

Our patients, without acute respiratory failure, showed more clinical complications (i.e., reduced ability to carry out daily living activities and moderate dyspnea, even at rest) when compared with another cohort, which included respiratory failure survivors with an average SPBB < 4.9.

Our findings are consistent with those of recent studies, where post-acute COVID-19 patients suffer from dyspnea and severe disability. Although information about fatigue is missing in our study; a recent review underlined this as an important outcome in pulmonary rehabilitation. These data support the rationale for pulmonary rehabilitation, being effective in reducing dyspnea and fatigue, improving exercise capacity and quality of life.

In conclusion, our preliminary data suggest indication for previously hospitalized COVID-19 patients to undergo a comprehensive clinical and functional assessment to identify those who are likely to benefit from rehabilitation. However, future studies in this field are also needed about potential effects of pulmonary rehabilitation.

Conflicts of interest

The authors have no conflicts of interest to declare.

Acknowledgements

The authors wish to thank all staff (nurses, physiotherapists, physicians) of the Pulmonary Rehabilitation department Istituti CliniciScientifici Maugeri, Tradate, who make this study possible.

References

1. Murray A, Gerada C, Morris J. https://www.hsj.co.uk/commissioning/we-need-a-nightingale-model-for-rehab-after-covid-19/-7027335.article. [Accessed 21 August 2020] We need a Nightingale model for rehab after covid-19; 2020.

2. Vitacca M, Lazzeri M, Guifanti E, Frigerio P, D’Abrosca F, Gianola S, et al. Italian suggestions for pulmonary
Non-invasive ventilation through a nasal interface during transoesophageal echocardiogram in a high-risk chronic patient

Dear Editor,

Non-invasive ventilation (NIV) has been an efficient strategy for ventilatory support and sedation related respiratory failure prevention during endoscopic procedures in high-risk patients. However, there is not enough evidence concerning the ideal pressure setting and choice of interface, mainly in home mechanical ventilated patients that have different interface options.¹

We report the use of NIV in a high-risk chronic patient undergoing transoesophageal echocardiography (TEE) under sedation using her own home care ventilated nasal interface with intentional leaks (Mirage FX™, ResMed, Australia).

The patient was a 31-year-old woman, 45 kg weight, with a previous medical history of cystic fibrosis, chronic respiratory failure and end-stage kidney disease. She was on home mechanical ventilation with high ventilatory dependency (>18 h/day) in spontaneous/timed (ST) bi-level pressure cycled mode [inspiratory positive airway pressure (IPAP) of 17 cmH₂O; expiratory positive airway pressure (EPAP) of 4 cmH₂O; backup respiratory rate (RR) of 16 cpm], alternating between oro-nasal and nasal interface during sleep and daytime, respectively, continuous oxygen (O₂) therapy (2 L/min) and haemodialysis through a catheter placed in the right atrium.

She was hospital admitted due to fluid overload and fever of unknown origin. Aetiological investigation isolated a Meticillin-susceptible Staphylococcus aureus in blood cultures without evidence of respiratory or urinary tract infection. Transthoracic echocardiogram showed a mass in the right atrium in relation to the catheter, requiring TEE characterisation.

Monitoring during TEE included non-invasive blood pressure and pulse oximetry (SpO₂). NIV was applied with ST bi-level pressure cycled mode using an acute hospital ventilator with an O₂ blender permitting a fraction of inspired oxygen (FiO₂) of 100% (Trilogy 202™, Philips Respironics, Pennsylvania, United States). The interface was patient’s home care ventilated nasal mask. Sedation was performed with intravenous midazolam — intended sedation level of -3 in the Richmond Agitation Sedation Scale (RASS).