X-ray Crystallographic and Site-directed Mutagenesis Analysis of the Mechanism of
Schiff-Base Formation in Phosphonoacetaldehyde Hydrolase Catalysis†‡

Marc C. Morais§, Guofeng Zhang‖, Wenhai Zhang‖, David B. Olsen#, Debra Dunaway-
Mariano‖,* and Karen N. Allen§,*

§Department of Physiology and Biophysics, Boston University School of Medicine,
Boston, Massachusetts 02118-2394

‖Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131

† Coordinates have been deposited in the Protein Data Bank, with accession codes XXX
and XXX for the unliganded and vinyl sulfonate bound wild-type phosphonatase
structures, respectively.

‡ This work was supported by NIH Grant GM61099 to K.N.A and D.D.-M.

*Correspondence should be addressed to K.N.A. at allen@med-xtal.bu.edu or D.D.-M. at
dd39@unm.edu

Current address: Merck Research Laboratories, Biological Chemistry, WP26-265
West Point PA 19486

Author information:

Karen N. Allen Debra Dunaway-Mariano
Department of Physiology and Biophysics Department of Chemistry
Boston University School of Medicine University of New Mexico
715 Albany Street Albuquerque, NM, 87131
Boston, MA 02118-2394
Tel: 617-638-4398 Tel: 505-277-3383
Fax: 617-638-4285 Fax: 505-277-6202
Email: allen@med-xtal.bu.edu Email: dd39@unm.edu

Keywords: Schiff-base formation, acid/base catalysis, structural enzymology, HAD
superfamily

Running Title: Mechanism of Phosphonatase Catalysis
FOOTNOTES

1 Abbreviations are: phosphonatase, phosphonoacetaldehyde hydrolase; Pald, phosphonoacetaldehyde; DTT, dithiothreitol; Hepes, N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid; KDPG, 2-keto-3-deoxy-6-phosphogluconate; NADH, dihydronicotinamide adenine dinucleotide; NCS, non-crystallographic symmetry; rmsd, root-mean square deviation; vs03, vinyl sulfonate.

The pdb accession numbers are 1RQL for the vinyl sulfonate (vs03) complex structure, and 1RQN for the native structure.
ABSTRACT
Phosphonoacetaldehyde hydrolase (phosphonatase) catalyses the hydrolytic P-C bond cleavage of phosphonoacetaldehyde (Pald) to form orthophosphate and acetaldehyde. The reaction proceeds via a Schiff-base intermediate formed between Lys53 and the Pald carbonyl. This paper examines the mechanism by which *Bacillus cereus* phosphonatase catalyzes Schiff-base formation. The X-ray crystal structures of the wild-type phosphonatase complexed with Mg(II) alone or with Mg(II) plus vinyl sulfonate (a phosphonoethyl enamine analog) were determined to 2.8Å and 2.4Å, respectively. These structures were used to determine the identity and positions of active-site residues surrounding the Lys53 ammonium group and the Pald carbonyl. These include Cys22, His56, Tyr128, and Met49. Site-directed mutagenesis was then employed to determine whether or not these groups participate in catalysis. Based on rate contributions, Tyr128 and Cys22 were eliminated as potential catalytic groups. The Lys53 ε-amino group, positioned for reaction with the Pald carbonyl, forms a hydrogen bond with water120. Water120 is also within hydrogen-bond distance of an imidazole nitrogen of His56 and the sulfur atom of Met49. Kinetic constants for mutants indicated that His56 (1000-fold reduction in k_{cat}/K_m upon Ala substitution) and Met49 (17,000-fold reduction in k_{cat}/K_m upon Leu substitution) function in catalysis of Schiff-base formation. Based on these results, it is proposed that a network of hydrogen bonds between Lys53, water120, His56 and Met49 facilitate proton transfer from Lys53 to the carbinolamine intermediate. Comparison of the vinyl sulfonate complex versus unliganded structures indicated that association of the cap and core domains is essential for the positioning of the Lys53 for attack at the Pald carbonyl, and that substrate binding at the core domain stabilizes cap domain binding.
Naturally occurring phosphonates return to the phosphate pool via the action of P-C bond lyases or hydrolases (for a recent review see (1)). Simple alkylphosphonates (e.g., methylphosphonate) are processed by homolytic P-C bond cleavage catalyzed by a membrane-associated multienzyme complex called “C-P lyase” (2). β-Carbonoalkylphosphonates, which contain polarized P-C bonds, undergo heterolytic bond cleavage reactions catalyzed by phosphonohydrolases. Known phosphonohydrolases include phosphonoacetate hydrolase (3), phosphonopyruvate hydrolase (4), and the topic of this paper, phosphonoacetaldehyde hydrolase (phosphonatase) (5).

Phosphonatase catalyzes the dephosphonylation of phosphonoacetaldehyde (Pald) by using an active-site amine (Lys53) to convert the substrate aldehyde group to an iminium ion prior to P-C bond cleavage (Figure 1). The leaving group is the low energy, Lys53-Nε-ethylenamine. In earlier work, the Schiff-base formed between Lys53 and the acetaldehyde product had been trapped, and identified, by reduction of the iminium ion accumulated under steady-state conditions (6). Consistent with the role of the active site Lys53 in Schiff-base formation, mutation to Arg resulted in total loss of catalytic activity (7).

Phosphonatase shares the use of electrophilic catalysis by Schiff-base formation with numerous C-C bond-cleaving enzymes including acetoacetate decarboxylase, transaldolase, and Class I aldolases (for review see reference (8)). Model studies of amine versus enzyme (acetoacetate decarboxylase) catalyzed decarboxylation of acetoacetate have shown that Schiff-base formation with the enzyme active site amine is at least 1000-fold faster than with the solvated amine (8-11). The rate difference derives in part from the ability of the enzyme to shuttle protons to and from the reaction site.
As illustrated in Figure 2, the solution reaction proceeds via the attack of the neutral amine on the reactant carbonyl carbon to form a dipolar intermediate (12). The proton moves from nitrogen to oxygen in the dipolar intermediate to form the neutral carbinolamine. The nonbonding electrons on the nitrogen of the carbinolamine serve to expel the hydroxide, and form the protonated Schiff-base. In the enzyme active site, a proton can be removed from the Lys-Nε-ammonium group, facilitating nucleophilic attack on the substrate carbonyl and, further along the reaction pathway, a proton can be delivered to the carbinolamine hydroxyl group as it is expelled en route to Schiff-base formation.

The aim of this study was to determine whether or not such proton transfers are occurring in the phosphonatase catalytic mechanism by, first, determining the proximity of active-site acid/base groups relative to the reaction center using X-ray crystallographic techniques. These residues were then evaluated as possible acid/base catalyst by replacing them via site-directed mutagenesis, and measuring the catalytic efficiency of the mutant enzyme. In this paper, the results of the structure-function study are reported, and a mechanism for Schiff base formation in phosphonatase catalysis is proposed.

MATERIALS & METHODS

Preparation of wild-type and mutant phosphonatase.

Pald was prepared according to the published procedure (13). The wild-type B. cereus enzyme was prepared from the E. coli clone as previously described (7,14). The mutant genes were generated by the polymerase chain reaction using the plasmid pKK223-3, containing the wild-type phosphonatase gene (7), as template. The C22A,
C22S, M49L, H56A, Y128A, Y128F, and Y128F/C22S phosphonatase mutants were purified using the same procedure used to purify the wild-type enzyme (7) in yields of 10-20 mg/g cell paste. The chromatographic behavior, solubility, and stability to storage of the mutants were similar to that of the wild-type enzyme.

Steady-state Kinetic Constants

The K_m and V_{max} values for wild-type and mutant phosphonatases were determined from the initial velocity data measured as a function of Pald concentration (0.5-10K_m). The 1 ml reaction solutions contained Pald, 10 mM MgCl$_2$, 0.15 mM NADH and 5 units of alcohol dehydrogenase dissolved in 50 mM K$^+$-Hepes (pH 7.5, 25°C). The concentration of phosphonatase used was in the range of 0.02-2.0 µM, depending on the mutant studied. Reactions were monitored at 340 nm ($\Delta \varepsilon = 6,200 \text{ M}^{-1} \text{ cm}^{-1}$) for the conversion of acetaldehyde and NADH to ethanol and NAD$^+$. The initial velocity data were analyzed using eq 1:

$$V_0 = \frac{V_{max} \ [A]}{K_m + \ [A]}$$

where $[A]$ is the substrate concentration, V_0 is the initial velocity, V_{max} is the maximum velocity and K_m is the Michaelis constant. The k_{cat} was calculated from V_{max} and the enzyme concentration using the equation $k_{cat} = \frac{V_{max}}{[E]}$. The enzyme concentration was determined using the Bradford method (15).

The K_i of vinyl sulfonate (vso$_3$) was determined by measuring the initial velocity of phosphonatase-catalyzed hydrolysis of Pald as a function of substrate concentration (25-300 µM) and vso$_3$ concentration (0, 2 and 4-fold K_i). The K_i value was calculated from the initial velocity data by using the rate equation for competitive inhibition:

$$v = \frac{VS}{[K_m(1 + I/K_i) + S]}$$

(2)
where \(v \) is the initial velocity, \(V \) is the maximal velocity, \(S \) is the concentration of the substrate, \(K_M \) is the Michaelis constant for the substrate, and \(I \) is the concentration of the inhibitor.

Crystallization and Data Collection

Wild-type phosphonatase was concentrated to 10 mg protein/ml in 1 mM K\(^+\)Hepes, 10 mM MgCl\(_2\), and 0.1 mM DTT (pH 7.5, 4°C). Protein crystals were obtained by using the vapor-diffusion method with hanging-drop geometry at 18°C, as previously described for crystallization of the wild-type enzyme (16) (viz., 10 µl each of protein solution and well solution consisting of 30% PEG 4000, 100 mM Tris-HCl, pH 7.4, and 100 mM MgCl\(_2\)). Large (0.4 mm per side) crystals grew within a week. For the vso\(_3\) bound structure, 5 mM vso\(_3\) was added to the well solution during crystallization. Before data collection, crystals were soaked (1-12 hours) in well solution plus 20% glycerol, and frozen in a stream of nitrogen gas cooled by liquid nitrogen at -180°C. Data were collected on beamline X12B at Brookhaven National Laboratory’s National Synchrotron Light Source using a 60 mm MAR detector (to 2.8 Å resolution for the crystal of the phosphonatase-Mg(II) complex and to 2.4 Å for the phosphonatase-Mg(II)-vso\(_3\) complex.

The **DENZO** and **SCALEPACK** programs (17) were used for data indexing, reduction, and scaling. Crystals of both complexes were monoclinic, and belong to space group C2. Crystals of the phosphonatase-Mg(II) complex had unit-cell dimensions of \(a=210.13\text{Å}, \ b=45.18\text{Å}, \ c=63.64\text{Å} \) and \(\beta=105.1° \), and crystals of the phosphonatase-Mg(II)-vso\(_3\) complex were isomorphous, with unit-cell dimensions of \(a=209.97\text{Å}, \)
$b=45.27\text{Å}, c=64.63\text{Å}$ and $\beta=104.9^\circ$. Assuming a Matthew's coefficient of 2.3, the unit-cell dimensions are consistent with a dimer in the asymmetric unit for both crystals (18).

Structure Solution and Refinement

The molecular replacement method was used to phase the data sets (19,20). The 3.0 Å structure of the phosphonatase-Mg(II)-tungstate complex (pdb accession code 1FEZ (14)), with tungstate and water molecules removed, was positioned in the C2 cell with the program AMoRE (20) using data between 10.0 and 4.2 Å. The previously solved structure showed that phosphonatase exists in an open and a closed conformation of the cap domain relative to the core domain, therefore combinations of open and closed monomers were used as the search model. The dimer model corresponding to one “open” and one “closed” monomer resulted in the best initial AMoRE solution, as well as the lowest R-factor after rigid-body refinement.

The initial molecular replacement solutions for the structures were subjected to one round of simulated annealing using slow-cool torsional molecular dynamics as implemented in CNS excluding 7% of the data for the calculation of R_{free} (21). Iterative cycles of minimization against the X-ray terms as implemented in CNS followed by manual rebuilding using the graphics program O (22) using 2Fo-Fc and Fo-Fc maps were performed until R_{free} ceased to decrease. The final models incorporated 256 out of 267 possible amino acids for both structures. Residues 1-4 and 261-267 were not visible in the electron-density map of any structure, and were omitted from the final model. At this stage, group B-factors were refined, followed by refinement of individual B-factors. NCS restraints (300 kcal mol$^{-1}$ Å$^{-2}$ in initial rounds and 50 kcal mol$^{-1}$ Å$^{-2}$ in the final round) between the two monomers in the dimer were used in all stages of refinement. Waters
were added with the automated water-picking program in CNS using a 3.0σ cutoff in Fo-Fc maps (60 total for the phosphonatase-Mg(II) structure and 123 total for the phosphonatase-Mg(II)-vso3 structure). A model of vso3 was built in the program QUANTA (Molecular Simulations Inc.) and fit into the active site of the enzyme using a 2Fo-Fc simulated annealing omit map and a Fo-Fc map. Relevant refinement statistics are given in Table 1. Analysis of the Ramachandran plot of the final model showed good geometry as defined by PROCHECK (23) for both structures. Connolly (solvent accessible) surfaces were calculated using the program VOIDOO (24).
RESULTS AND DISCUSSION

Structures of phosphonatase complexed with Mg(II) and Mg(II) plus vso₃

The structures of these two phosphonatase complexes were determined to 2.8Å and 2.4Å resolution, respectively. Both structures are homodimers of 30 kDa subunits, as is the structure of the phosphonatase-Mg(II)-tungstate complex described previously (14). In each structure, both subunits contain a Mg(II) ligand. In the phosphonatase-Mg(II)-vso₃ structure, only one of the two subunits contain the vso₃ ligand. Occupancy of a single subunit was also observed in the phosphonatase-Mg(II)-tungstate complex, in which only one of the two subunits contained tungstate.

The phosphonatase subunit observed in the structures reported here, and in the phosphonatase-Mg(II)-tungstate complex reported previously, consists of a cap domain (residues 21-99) and a larger core domain (residues 5-20 and 100-260) (Figure 3a). Both Mg(II) and vso₃ bind to the core domain. The sulfono group of the vso₃ binds to the same site in the core domain as tungstate (an analog of the orthophosphate product) binds in the phosphonatase-Mg(II)-tungstate complex (14). The Schiff base forming Lys53 is located on the cap domain.

The core domain has an α/β-type structure consisting of a centrally located six-stranded antiparallel β-sheet (β4-β3-β1-β5-β6-β7) surrounded by six α-helices. The "cap domain" is inserted between the first β-strand (β1) and the first α-helix (α6) of the core domain through two flexible, solvated linker regions (residues: 20-24 (L1) and 99-104 (L2). The cap domain consists of an anti-parallel, five-helix bundle. Helices α1, α3, and α4 are all approximately three-turn helices, whereas α2 and α5 are two and five turn helices, respectively. Helices α2, α3, and the short loop between them point towards the core domain of the protein and form one half of the subunit interface. The residues that
make up the other half of the subunit interface are positioned on loops connecting the strands of the \(\beta \)-sheet within the core domain.

In the published phosphonatase-Mg(II)-tungstate complex, the subunit that contains the tungstate ligand assumes a “closed” conformation in which the cap domain is bound to the core domain. The subunit that contains only the Mg(II), assumes an “open” conformation in which the cap and core domains are separated. The structure of the phosphonatase-Mg(II) complex reveals one subunit in the open conformation and one subunit in the closed conformation. This is also true of the phosphonatase-Mg(II)-vso\(_3\) structure, in which the subunit that contains the vso\(_3\) ligand is in the closed conformation. The \(\alpha \)-carbons of the subunits of the phosphonatase-Mg(II) complex can be superimposed on those of the phosphonatase-Mg(II)-vso\(_3\) structure, having the same conformation (i.e., “open” or “closed”) with a rmsd of 0.61 Å. Therefore, it is apparent that the vso\(_3\) ligand does not induce a change in backbone conformation within the core domain or cap domain.

Solution studies have indicated that vso\(_3\) (and tungstate) binding stabilizes the closed conformation (25). Here we observe that vso\(_3\) (or tungstate) binding is not necessary for formation of the closed conformation (i.e., both open and closed conformations are seen in the phosphonatase-Mg(II) complex), however only the closed conformation is observed when the core domain active site is complexed with ligand. Conversion of the open to the closed conformation involves the movement of the cap and core domains as “rigid bodies” with the residues of the two linkers (23-26 and 90-94) acting as a mechanical hinge (see Figure 3b). The movement of the cap domain with respect to the core domain produces a rotation of 22 degrees (calculated with the program...
DynDom (26)), resulting in a change in position of residues at the top of the cap domain by as much as 10.3 Å (measured by the position of the $\text{C}\alpha$ of residue 75). The difference in the backbone positions of the Schiff base-forming Lys53 and surrounding residues is in the range of 3-4 Å.

The catalytically active conformation is the *closed* conformation. The catalytic site is formed by residues from the core and cap domains, which in turn must be associated to exclude solvent. For the open conformer, the calculated Connolly surface map delineates more than one path by which substrate and product association/dissociation can be achieved. In contrast, in the closed conformation, there is no pathway connecting the active site to bulk solvent. In fact, the only pocket large enough to accommodate solvent lies within the active site, coinciding with the binding site of the vso3. This result suggests that substrate binds to the open form of the enzyme, and that catalysis follows conversion to the closed conformer.

Active Site Residues

The electron density map of the active-site region of the phosphonatase-sulfonate-Mg(II)-vso3 is shown in stereo in Figure 4a, and a view of the entire active-site is shown in Figure 4b. Importantly, two ordered, active-site water molecules (Wat111 and Wat120) are clearly seen in the phosphonatase-Mg(II)-vso3 structure that were not previously observed in the structure of the phosphonatase-Mg(II)-tungstate complex (solved at 3.0 Å resolution). Two additional water molecules in the phosphonatase-Mg(II) complex replace the two sulfonate oxygens of vso3 ligand in the phosphonatase-Mg(II)-vso3 structure.

Vso3, which competes with Pald for the core domain binding site, has a $K_i = 1.79 \pm 0.03$ mM at pH 7.0. The phosphonatase-Mg(II)-vso3 complex may “roughly” resemble the Lys53-N-ethylene-Asp8-phosphate enzyme intermediate that is formed by Asp8
catalyzed dephosphonylation of the Schiff base formed between Pald and Lys53 (Figure 1). Figure 4c shows the-active site model in which Pald is substituted for the vso3. Because both the tungstate ligand and the sulfono group of the vso3 ligand occupy the same binding site, the Pald phosphonyl binding site is certain. The carbon chain of the Pald fits well into the space occupied by the vinyl group of the vso3 ligand and the amino acid side chains and water molecules that surround it are easily identified.

From the active-site model, it can be seen that Lys53 is positioned for nucleophilic attack on the Pald carbonyl carbon and that the Pald carbonyl oxygen is within hydrogen bond distance of Wat120. Wat120 is also in close proximity to the Lys53 Ne-amine group, the His56 ring nitrogen, and the Met49 sulfur atom. The functional groups of Cys22 and Tyr128 (and Wat111) are peripheral to the reaction center (~6 Å from the Pald carbonyl oxygen), but they do nevertheless contribute to its microenvironment. Based on an alignment of the eight known phosphonatase sequences, His56, Met49 and Tyr128 are shown to be stringently conserved, but Cys22 is not (in 7 sequences it is replaced by Ser). To evaluate their contributions to catalysis, His56, Met49, Cys22 and Tyr128 were replaced by site-directed mutagenesis.

Site-directed mutagenesis of potential catalytic groups

From previous studies, carried out with the phosphonatase from *Samonella typhimurium*, it is known that replacement of the Schiff-base forming Lys with Arg removes all catalytic activity (7). *B. cereus* phosphonatase mutant proteins were purified and characterized and the catalytic constants resulting from the amino acid substitutions of residues surrounding the Lys53 are reported in Table 2. Cys22 and Tyr128 were mutated separately, and then, together. The k_{cat}/K_m for C22A was 100-fold less than that
of the wild-type enzyme while the k_{cat}/K_m of C22S mutant was only 10-fold less. Thus, it appears that the size and polarity of the Cys22 side chain (approximated in the C22S mutant, but not in the C22A mutant) is important but not essential. The acidity of the thiol group, crucial if the residue is to function in acid/base catalysis, cannot be considered a key factor in catalysis, because the C22S mutant retains 10% wild-type activity in *B. Cereus* phosphonatase and because Ser functions in place of Cys22 in other phosphonatases.

The k_{cat}/K_m value for Y128F phosphonatase was 10-fold smaller than that of wild-type phosphonatase and the k_{cat}/K_m value for Y128A was 230-fold smaller. The space filling character of the aromatic ring, which was retained in the Y128F mutant but not in the Y128A mutant, is therefore considered to be important for efficient catalysis. The rate contribution of the side-chain hydroxyl group (a factor of 10) was, however, too small to support its role in acid/base catalysis.

Interestingly, the effects of amino-acid substitution at both sites were not additive. The k_{cat}/K_m of the Y128F/C22S double mutant was only 10-fold less than that of wild-type phosphonatase. We have concluded that Cys22 and Tyr128 (and the Wat111 that forms a hydrogen bond to the hydroxyl of the Tyr ring) do not play important roles in catalysis, i.e., they do not function as acid/base catalysts.

The replacement of Met49 with Leu resulted in a 17,000-fold reduction in k_{cat}/K_m. The space-filling property of the M49 side chain was retained in the M49L mutant, but the potential for interaction between the sulfur atom and W120 was obviated. The replacement of His56 with Ala, and the resulting loss of acid/base and/or hydrogen-
bonding function, resulted in a 1000-fold reduction in k_{cat}/K_m. Thus, both His56 and Met49 are thought to play important roles in catalysis.

Schiff-base Formation

The structure of the phosphonatase active site with Mg(II) and modeled Pald (Figure 4c) indicates that the Ne-amino group of Lys53 is positioned for attack at the Pald carbonyl. Tyr128 (with bound Wat111) and Cys22 are, however, too far removed from the two reacting groups to function as acid or base catalysts. Indeed, the Y128F/C22S double mutant retains 10% of the wild-type phosphonatase activity. Based on their unfavorable orientation and small rate contribution, Tyr128 and Cys22 were eliminated as possible acid/base catalytic groups.

There is, in fact, only a single group within hydrogen bonding distance of Lys53 and the Pald carbonyl oxygen, and that is Wat120. Wat120 is also within hydrogen bonding distance of the His56 ring nitrogen and proximal (~3.5 Å) to the Met49 sulfur atom. Mutation of His56 to Ala (to remove groups capable of forming hydrogen bonds) and Met49 to Leu (to remove the sulfur group but to partially preserve the hydrophobic and space filling properties of the Met side chain) resulted in significant losses (1,000-fold and 17,000-fold, respectively) in catalytic efficiency. Thus, based on their favorable positioning within the active site, and on their large rate contribution, these two residues were judged to play important roles in catalysis of Schiff-base formation.

Two mechanisms for Schiff-base formation consistent with these results are illustrated in Figure 5. The mechanism presented in Figure 5a will be discussed first. As the cap domain closes over the core domain (see Figure 2b), His56, Lys53, and Met49 are removed from bulk solvent and placed into the active-site of the core domain where Pald
and Mg(II) are bound. The charged Lys53 \(\text{N}^\varepsilon - \text{ammonium group (pK}_a = 9.3 \) in open enzyme conformer (25)) may lose a proton to His56, to which it is connected via the bridging Wat120. The pK\(_a\) difference in the solvated Lys53 and His56 may be reduced by the active-site environment, with the proton stabilized on the His56 ring, not on the Lys53 nitrogen (see discussion below). The Wat120 forms a hydrogen bond with the Pald carbonyl and with the M49 sulfur atom, thus extending the hydrogen-bond network that originates from His56.

The attack of the neutral Lys53 at the substrate carbonyl produces the dipolar intermediate described earlier (see Figure 5). Spontaneous proton movement from nitrogen to oxygen generates the carbinolamine intermediate. Proton transfer from the protonated His56 to the hydroxide-leaving group of the carbinolamine via Wat120 accompanies Schiff-base formation. The protonated Schiff-base will serve as the electron sink in the ensuing attack of the Asp12 carboxylate on the phosphonyl phosphorus (Figure 1).

An alternate, and kinetically equivalent, route to the dipolar intermediate is shown in Figure 5b. Here, the reaction begins from an active-site configuration in which the Lys53, rather than the His56, is protonated. Wat120 would function as general base, deprotonating the Lys53 as it attacks the Pald carbonyl.

Phosphonatase shares the use of electrophilic catalysis by Schiff-base formation with numerous C-C bond-cleaving enzymes including acetoacetate decarboxylase, transaldolase and Class I aldolases (for review see reference (8)). How do the mechanisms proposed for Schiff base formation in phosphonatase compare to those of the C-C bond lyases? For instance, acetoacetate decarboxylase (27-29) and fructose
(bis)phosphate aldolase (30-32) employ electrostatic forces to destabilize the protonated Lys N_ε-amino group. Adjacent to the Schiff-base forming Lys residue, resides a more basic Lys (positioned in a polar environment that favors the ammonium form of the amine). Because of charge-charge repulsion, only the more basic of the two Lys residues will be protonated at physiological pH. Thus, the Schiff-base forming Lys will be neutral and able to function as a nucleophile.

The Lys53 of phosphonatase is located at the N-terminal of an α-helix where it is placed under the influence of the positive pole of the helix macrodipole. In the open conformer, where the Lys53 is solvated, the pK_a of the Lys is reduced from the expected value of 10.5 (33) to 9.3 (25). In the closed conformation, wherein nonpolar side chains surround Lys53, the positive charge on the N_ε will be further destabilized. The proton may be more effectively accommodated on the neighboring basic residue, i.e. His56. Environmental factors e.g., the microenvironment and the extensive hydrogen-bond network that incorporates the proton on the His56 ring (comprised of the ring $\text{N}(1)\text{H}$ of the His56, the backbone carbonyl of Ala45, the $\text{N}(3)\text{H}$ hydrogen bond to Wat120 and the hydrogen bond between Wat120 and the sulfur atom of Met49) may serve to increase the basicity of His56 to a value greater than that of Lys53 when the enzyme is in the closed conformation. Consequently, at neutral pH (Figure 5a), which is both the pH optimum for catalysis (34) and the prevailing pH in the cell, His56 is charged and Lys53 is not.

The alternate catalytic strategy (depicted in Figure 5b) requires His56 to be neutral and, through the hydrogen-bonded Wat120, act as a general base for removal of the proton from the N_ε-ammonium group of the Lys53 as it approaches the substrate carbonyl. This mechanism is similar to those used by D-2-deoxyribose-5-phosphate
aldolase (35) and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (36). These enzymes utilize an aspartate bound water, and a glutamate, respectively, to deprotonate the Schiff-base forming lysine.

An interesting distinction between the catalytic strategies of phosphonatase and the Class I aldolases is in the selection of the acid group used to deliver a proton to the hydroxy group of the carbinolamine intermediate. D-2-deoxyribose-5-phosphate aldolase (35), KDPG aldolase (36), fructose 1,6-(bis)phosphate aldolase (30-32) and transaldolase (37) employ a protonated glutamate or aspartate residue (directly, or via a bridging water molecule) as acid catalyst in the dehydration of the carbinolamine. In contrast, the phosphonatase Asp12, which is positioned for backside, in-line attack at the phosphonyl group of the Schiff-base intermediate, is not positioned to protonate the carbinolamine hydroxyl group, as is required for catalysis of the preceding dehydration step. Thus, in phosphonatase, acid catalysis is performed by His56-W120, while nucleophilic catalysis is achieved with Asp12, located some distance from the Lys53-Pald carbonyl reaction center.
Conclusions

The X-ray crystallographic structure determination of the phosphonatase-Mg(II) and phosphonatase-Mg(II)-vinylsulfonate complexes reported here and the phosphonatase-Mg(II)-tungstate, reported earlier (14), show that phosphonatase can exist in a cap domain- core domain open conformer and in a cap domain-core domain closed conformation. The conformer interconversion occurs through movement in the hinge region of the solvated inter-domain linkers. In the open conformation, the cap and core domains are separated to allow solvent access to the active site of the core domain. In this conformation, the enzyme can bind substrate and release product. The closed conformation is required for catalysis. In this conformation, the cap and core domains are bound, thereby sealing the active site from solvent. In addition, it is in the closed conformation that three essential residues from the cap domain are positioned within the active site of the core domain. These residues include the Schiff base forming Lys53 and the two residues (Met49 and His56) that bind Wat120. Wat120 is positioned for proton relay, to and from the reaction center. The electrostatic environment of the active site of the closed conformer appears to stabilize the protonated ring of His56 and destabilize the protonated ammonium group of Lys53. It is therefore tempting to propose a mechanism of catalysis in which a proton is transferred from the Lys53 to His56 upon domain-domain closure. This transfer facilitates nucleophilic attack of the Lys53 nucleophilic attack on the Pald carbonyl carbon and protonation of the carbonyl oxygen via the His56-Wat120 dyad. The composite picture of Schiff base formation in phosphonatase is unique. It represents yet another answer to the problem of catalysis of Schiff base formation, which is not available to the solution reaction.
Table 1: Data Collection, Refinement statistics and stereochemical quality of the final models for phosphonatase bound to Mg(II) alone and to Mg(II) and vs03.

	Mg(II) Complex	Mg(II)-vs03 Complex
Data Collection Statistics		
Resolution range (Å)	∞-2.8	∞-2.4
Number of unique reflections	13,003	20,810
Completeness (%)^a	85.0(57.6)	96.7 (99.3)
I/(σ(I))^a	8.5(2.01)	11.5(3.18)
R_{merge}^{a,b} (%)	10.0(46.2)	8.7(36.0)

Refinement and Model Statistics		
Number of reflections used in refinement	12,399	17,343
Final R_{work}^c	0.254	0.242
Final R_{free}^d	0.287	0.274
Average B value (Å²)	54.4	36.0
main-chain	52.1	33.3
side-chain	56.3	38.7
Rmsd from ideality		
Bond lengths (Å)	0.009	0.009
Bond angles (degrees)	1.40	1.43
Dihedral angles (degrees)	20.96	21.69
B rmsd for bonded atoms (Å²)		
main-chain	8.4	4.5
side-chain	9.2	6.8
Estimated coordinate error (Å)	0.44	0.44

^aStatistics for the outermost shell (2.95-2.80 and 2.36-2.40 for the unliganded and liganded phosphonatase are given in parenthesis.

^bR_{merge} = Σ_{hkl}Σ_i | I_{hkl,i} - <I_{hkl}> | I | / Σ_{hkl}Σ_i | I_{hkl,i} | , where <I_{hkl}> is the mean intensity of the multiple I_{hkl,i} observations for symmetry related reflections.

^cR_{work} = Σ_{hkl}|F_{obs} - F_{calc}| / Σ_{hkl}|F_{obs}|

^dR_{free} = Σ_{hkl}Σ_T|F_{obs} - F_{calc}| / Σ_{hkl}|F_{obs}|, where the test set T includes 7% of the data.
Table 2. The Steady–State Kinetic Constants for Wild-type and Mutant Phosphonatase.

Enzyme	k_{cat} (s$^{-1}$)	K_m (µM)	k_{cat}/K_m (s$^{-1}$ M$^{-1}$)
Wild-type	$1.5 \pm 0.1 \times 10^1$	33 ± 2	5.0×10^5
Y128F	2.21 ± 0.02	45 ± 2	4.9×10^4
Y128A	$7.73 \pm 0.03 \times 10^{-2}$	35 ± 3	2.2×10^3
C22A	1.95 ± 0.04	530 ± 20	3.7×10^3
C22S	2.26 ± 0.09	33 ± 5	6.9×10^4
Y128F/C22S	2.11 ± 0.03	33 ± 2	6.4×10^4
H56A	$7.5 \pm 0.1 \times 10^{-2}$	145 ± 6	5.2×10^2
M49L	$1.5 \pm 0.1 \times 10^{-1}$	$5.1 \pm 0.3 \times 10^3$	2.9×10^1

a Reactions contained Pald, 10 mM MgCl$_2$, 0.15 mM NADH and 5 units/ml alcohol dehydrogenase in 50 mM K$^+$-Hepes (pH 7.5, 25 °C). The concentration of phosphonatase used was in the range of 0.02-2 µM, depending on the mutant studied.
FIGURE LEGENDS

Figure 1. The reaction pathway of phosphonatase-catalyzed hydrolytic P-C bond cleavage of Pald.

Figure 2. Mechanism of Schiff-base formation between an amine and a ketone in aqueous solution (12).

Figure 3. The three-dimensional structure of wild-type Bacillus cereus phosphonatase (pdb accession code 1FEZ). A) Ribbon diagram of the “open conformation” of the wild-type enzyme complexed with Mg(II). Coloring scheme: red cap domain, blue core domain, green linkers, yellow Lys53, cyan Mg(II). B) Coil diagram of the overlay of the enzyme-Mg(II) complex in the “open conformation” (red backbone, K53 yellow) and the enzyme-Mg(II)-tungstate complex in the “closed conformation” (blue backbone, K53 grey). Mg(II) is shown in cyan to mark the active site.

Figure 4. Active site region of the vso3 phosphonatase complex A) in stereo with the 2Fo-Fc electron-density map (contoured at 2σ) around the ligand depicted as blue cages and B) showing residues surrounding both the Schiff-base lysine and Mg²⁺ cofactor. The amino-acid residues are depicted as ball and stick and the Mg²⁺ as a cyan sphere. C) the active site model generated by docking the Pald into the active site of (b).
Figure 5. Two possible mechanisms for phosphonatase catalyzed Schiff-base formation under consideration. **A)** His56 is protonated in the enzyme-substrate complex. **B)** Proton is stationed on Lys53 is protonated in the enzyme-substrate complex.
References

1. Kononova, S. V., and Nesmeyanova, M. A. (2002) Biochemistry (Mosc) 67, 184-195
2. Wackett, L. P., Shames, S. L., Venditti, C. P., and Walsh, C. T. (1987) J Bacteriol 169, 710-717
3. McMullan, G., and Quinn, J. P. (1994) J Bacteriol 176, 320-324
4. Ternan, N. G., and Quinn, J. P. (1998) Biochim Biophys Res Commun 248, 378-381
5. La Nauze, J. M., Rosenberg, H., and Shaw, D. C. (1970) Biochim Biophys Acta 212, 332-350
6. Olsen, D. B., Hepburn, T. W., Moos, M., Mariano, P. S., and Dunaway-Mariano, D. (1988) Biochemistry 27, 2229-2234
7. Baker, A. S., Ciocci, M. J., Metcalf, W. W., Kim, J., Babbitt, P. C., Wanner, B. L., Martin, B. M., and Dunaway-Mariano, D. (1998) Biochemistry 37, 9305-9315
8. Allen, K. N. (1998) in Comprehensive Biological Catalysis (Sinnnot, M., ed), pp. 135-172, Academic press, New York
9. Guthrie, J. P. (1972) J. Am. Chem. Soc. 94, 7024-7029
10. Guthrie, J. P., and Westheimer, F. H. (1967) Fed. Proc., Fed. Amer. Soc. Exp. Biol. 26, 562
11. Marion H. O'Leary, and Baughn, R. L. (1972) J. Am. Chem. Soc. 94, 626-630
12. Jencks, W. P. (1969) Catalysis in Chemistry and Enzymology, McGraw Hill Inc.
13. Isbell, A. F., Englert, L. F., and Rosenberg, H. (1969) J. Org. Chem. 34, 755-756
14. Morais, M. C., Zhang, W., Baker, A. S., Zhang, G., Dunaway-Mariano, D., and Allen, K. N. (2000) Biochemistry 39, 10385-10396
15. Bradford, M. M. (1976) Anal Biochem 72, 248-254
16. Morais, M. C., Baker, A. S., Dunaway-Mariano, D., and Allen, K. N. (2000) Acta Crystallogr D Biol Crystallogr 56 (Pt 2), 206-209
17. Otwinowski, Z., and Minor, W. (1997) Methods Enzymol. 276, 307-326
18. Matthews, B. W. (1985) Methods Enzymol 114, 176-187
19. Rossmann, M. G. (1990) Acta Crystallogr A 46 (Pt 2), 73-82
20. Navaza, J. (2001) Acta Crystallogr D Biol Crystallogr 57, 1367-1372
21. Brunger, A. T. (1992) Nature 355, 472-474
22. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard. (1991) Acta Crystallogr A 47 (Pt 2), 110-119
23. Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) J. Appl. Cryst. 26, 283-291
24. Kleywegt, G. J., and Jones, T. A. (1994) Acta Cryst D50, 178-185
25. Zhang, G., Mazurkie, A. S., Dunaway-Mariano, D., and Allen, K. N. (2002) Biochemistry 41, 13370-13377
26. Collaborative Computational Project Number 4 Acta Cryst. (1994) D50, 760-768
27. Schmidt, D. E., Jr., and Westheimer, F. H. (1971) Biochemistry 10, 1249-1253
28. Kokesh, F. C., and Westheimer, F. H. (1971) J Am Chem Soc 93, 7270-7274
29. Highbarger, L. A., Gerlt, J. A., and Kenyon, G. L. (1996) Biochemistry 35, 41-46
30. Maurady, A., Zdanov, A., de Moissac, D., Beaudry, D., and Sygusch, J. (2002) J Biol Chem 277, 9474-9483
31. Choi, K. H., Mazurkie, A. S., Morris, A. J., Utheza, D., Tolan, D. R., and Allen, K. N. (1999) *Biochemistry* **38**, 12655-12664
32. Choi, K. H., Shi, J., Hopkins, C. E., Tolan, D. R., and Allen, K. N. (2001) *Biochemistry* **40**, 13868-13875
33. Voet, D., and Voet, J. G. (1995) *Biochemistry*, John Wiley & Sons
34. Olsen, D. B., Hepburn, T. W., Lee, S. L., Martin, B. M., Mariano, P. S., and Dunaway-Mariano, D. (1992) *Arch Biochem Biophys* **296**, 144-151
35. Heine, A., DeSantis, G., Luz, J. G., Mitchell, M., Wong, C. H., and Wilson, I. A. (2001) *Science* **294**, 369-374
36. Allard, J., Grochulski, P., and Sygusch, J. (2001) *Proc Natl Acad Sci U S A* **98**, 3679-3684
37. Jia, J., Schorken, U., Lindqvist, Y., Sprenger, G. A., and Schneider, G. (1997) *Protein Sci* **6**, 119-124
Figure 1
Figure 2
Figure 3b
Figure 4b
Figure 4c
Figure 5a
Figure 5b
X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis
Marc C. Morais, Guofeng Zhang, Wenhai Zhang, David B. Olsen, Debra Dunaway-Mariano and Karen N. Allen

J. Biol. Chem. published online December 10, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M312345200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts