Probe-type of superconductivity by impurity in materials with short coherence length: the s-wave and η-wave phases study

Andrzej Ptok¹,4 and Konrad Jerzy Kapcia²,3

¹ Institute of Physics, University of Silesia, 40-007 Katowice, Poland
² Electron States of Solids Division, Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, 61-614 Poznań, Poland
³ Condensed Matter Theory Sector, International School for Advanced Studies (SISSA), via Bonomea 265, I-34136, Trieste, Italy

E-mail: aptok@mmj.pl and konrad.kapcia@amu.edu.pl

Received 19 September 2014
Accepted for publication 3 February 2015
Published 13 March 2015

Abstract

The effects of a single non-magnetic impurity on superconducting states in the Penson–Kolb–Hubbard model have been analyzed. The investigations have been performed within the Hartree–Fock mean field approximation in two steps: (i) the homogeneous system is analyzed using the Bogoliubov transformation, whereas (ii) the inhomogeneous system is investigated by self-consistent Bogoliubov-de Gennes equations (with the exact diagonalization and the kernel polynomial method). We analysed both signs of the pair hopping, which correspond to s-wave and η-wave superconductivity. Our results show that an enhancement of the local superconducting gap at the impurity-site occurs for both cases. We obtained that Cooper pairs are scattered (at the impurity site) into the states which are from the neighborhoods of the states, which are commensurate ones with the crystal lattice. Additionally, in the η-phase there are peaks in the local-energy gap (in momentum space), which are connected with long-range oscillations in the spatial distribution of the energy gap, superconducting order parameter (SOP), as well as effective pairing potential. Our results can be contrasted with the experiment and predicts how to experimentally differentiate these two different symmetries of SOP by the scanning tunneling microscopy technique.

Keywords: superconductivity, pair hopping, disorder

(Some figures may appear in colour only in the online journal)

1. Introduction

The Penson–Kolb–Hubbard (PKH) model is one of the conceptually simplest phenomenological models for studying correlations and for description of superconductivity (SC) in narrow-band systems with short-range, almost unretarded pairing. In general, impurities destroy or worsen desirable SC properties, but sometimes can induce new interesting phenomena.

The cuprates and iron-pnictides are examples of superconductors with short coherence length. Moreover, such systems are highly inhomogeneous and the role of impurities on SC could be crucial. In both groups of materials the superconducting state itself is generated by chemical doping which inevitably disorders the samples, and second, local probes of the quasi-particle states near the impurity sites can provide important information on the underlying system [1, 2]. In discussed materials the physical properties change by doping, the result of which is phase transition. The phase diagrams for these materials include antiferromagnetically ordered (AF), metallic (non-ordered) and superconducting (SS) phases. With increasing concentration of current carriers the AF phase is vanishing first, then the SS phase occurs in the defined range of doping [3, 4]. The other interesting
feature of these compounds are effects introduced by (non-magnetic) impurities such as e.g. inhomogeneity superconducting state [5–7], pining of vortexes [7, 8], modification persistent current in superconducting ring [9], and induced spin density waves [10]. Notice that the effects of non-magnetic impurities in the above materials are qualitatively different than in conventional superconductors, any perturbation that does not lift the Kramer degeneracy of these states does not affect the mean-field superconducting transition temperature.

The pair-hopping term (J) was proposed in [11, 12] and can be derived from a general microscopic tight-binding Hamiltonian, where the Coulomb repulsion may lead to the pair hopping interaction \(J = \langle \sigma | e^{|r_1 - r_2|} | \sigma \rangle \) [13–22]. In such a case J is positive (repulsive model J > 0, favoring \(\eta \)-wave SC), but in this case the magnitude of J is very small. However, the effective attractive form (J < 0, favoring s-wave SC) is also possible (as well as an enhancement of the magnitude of J > 0) and it can originate from the coupling of electrons with intersite (intermolecular) vibrations via modulation of the hopping integral or from the on-site hybridization term in the general periodic Anderson model (cf. e.g. [4, 15, 17–22] and references therein). It can also be included in the effective models for Fermi gas in an optical lattice in the strong interaction limit [23]. The role of J interaction in a multiorbital model is of a particular interest because of its presence in the iron pnictides [24]. It should be stressed that the Hubbard model in bipartite lattice has been rigorously proved to have \(\eta \)-wave states as eigenstates [25]. Moreover, \(\eta \)-wave pairing has been found as a mechanism of superconductivity in a large class of models of strongly correlated electron system (extended Hubbard models) [26]. Notice also that it has been found that SC originating from the J > 0 interaction is unique in that it is robust against the orbital (diamagnetic) pair breaking mechanism [22].

In this paper we investigate a role of single non-magnetic impurity on SS states (s-wave as well as \(\eta \)-wave). We obtain the spatial distribution of local energy gap (and its Fourier transform), superconducting order parameter (SOP) as well as effective pairing potential. We also propose an experimental method that can determine what type of superconductivity (s-wave or \(\eta \)-wave) occurs in the material.

2. Model and technique

We explore a two-dimensional square lattice of a size \(N_x \times N_y \) with the periodic boundary conditions, where we assume the possibility of the hopping of (i) electrons (with amplitude t) and (ii) pairs of electrons (with amplitude J) between nearest neighbors (NN). Electrons with opposite spin at the same site interact with energy \(U \) (inter-site Coulomb interaction). The schematic illustration of the model is shown in figure 1. In the model we also introduce the diagonal disorder induced by non-magnetic impurities. The Hamiltonian of the system in the real space can be described as \(H = H_0 + H_{\text{int}} \), where:

\[
H_0 = \sum_{\langle \sigma \rangle \sigma} \left\{ -t + (V_i - \mu) \right\} c_{i\sigma}^\dagger c_{i\sigma},
\]

\[
H_{\text{int}} = U \sum_i c_+^i c_-^i c_+^i c_-^i + J \sum_{\langle \sigma \rangle \sigma} c_+^i c_-^j c_+^j c_-^i.
\]

\(\sum_{\langle i,j \rangle} \) restricts the summation to NN, \(c_\sigma \) (\(c_\sigma^\dagger \)) are annihilation (creation) operators of electron at the \(i \)th site with spin \(\sigma = \{ \uparrow, \downarrow \} \). \(\mu \) is chemical potential and \(V_i \) is non-magnetic impurity potential at the \(i \)th site. The electron hopping amplitude (t) will be taken as a scale of energy in the system.

In the mean-field Hartree–Fock approximation [4] the interaction Hamiltonian (2) takes a form:

\[
H_{\text{int}}^{\text{HF}} = U \sum_i \left(\Delta_i^+ c_+^i c_-^i + H.c. \right) - U \sum_j \Delta_j^+ \Delta_j
\]

\[
+ J \sum_{\langle i,j \rangle} \left(\Delta_i^+ c_+^i c_-^j + H.c. \right) - J \sum_{\langle i,j \rangle} \Delta_i^+ \Delta_j,
\]

where we introduce dimensionless SOP \(\Delta_i = \langle c_+^i c_-^i \rangle \). Thus, in an inhomogeneous system at every site the effective (local) energy gap exists, which value is determined by

\[
D_i = U\Delta_i + J \sum_{\langle i,j \rangle} \Delta_j.
\]

This quantity is connected with the effective pairing potential defined as \(U_{\text{eff}}^{\text{eff}} = D_i/|\Delta_i| \), which is also not a constant value in a heterogeneous system. To analyze the gap distribution in the momentum space we also introduce its Fourier transform (FT) defined as

\[
D_k = \frac{1}{N_x N_y} \sum_{i} D_i \exp(-ik \cdot n),
\]

where \(k \) denotes a momentum of a Cooper pair.

The further analyses are performed in two steps: (i) the homogeneous system is analyzed using the Bogoliubov transformation, whereas (ii) the inhomogeneous system is investigated by self-consistent Bogoliubov-de Gennes (BdG) equations in real space approach [27] (with the exact diagonalization and the kernel polynomial method [28, 29]). Both approaches will be described briefly below.

2.1. Homogeneous system

In a general case the SS state is characterized by the formation of the Cooper pairs with total momentum \(\mathbf{Q} \). In the case \(\mathbf{Q} \neq \mathbf{0} \), the SS state will be called the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state [30–32]. Notice that the
\(Q = 0 \equiv (0, 0) \) case (favouring by \(J < 0 \)) corresponds to \(s \)-wave SC (BCS-like SC), whereas \(Q = \Pi \equiv (\pi, \pi) \) (favouring by \(J > 0 \)) corresponds to \(\eta \)-wave SC [17], in which the SOP alternates from one site to the neighboring one. In particular, for a square lattice one can distinguish two sublattices in which the phase of SOP will differ by \(\pi \), whereas e.g. for a triangular lattice one can distinguish three sublattices in which the phase of SOP will differ by \(2\pi/3 \) [33]. In the homogeneous system only the component \(D_k \) (equation (5)) with \(k = 0 \) or \(k = \Pi \) is non-zero (\(s \)- or \(\eta \)-wave, respectively). Thus, in a homogeneous system (\(V_i = 0 \)) the SOP can be derived as \(\Delta_i = \Delta_0 \exp (iQ \cdot r_i) \). Moreover, it has been shown that flux quantization and the Meissner effect appear in the \(s \)-wave as well as in the \(\eta \)-wave SS state [34]. The mean-field Hamiltonian \(H^{\text{HF}} = H_0 + H^{\text{HF}_0} \) in the momentum space takes the form [35]:

\[
H^{\text{HF}} = \sum_{k} \left(-t_{k} - \mu \right) c_{k, \sigma}^\dagger c_{k, \sigma} + U^{\text{eff}}_{Q} \sum_{k} \left(\Delta_0 c_{-k+Q, \uparrow}^\dagger c_{k, \downarrow} + H.c. \right) - U^{\text{eff}} N |\Delta_0|^2, \quad (6)
\]

where \(\gamma_k = 2 \left(\cos (k_x) + \cos (k_y) \right) \), \(U^{\text{eff}}_{k} = U + Jt_{k} \) is an effective pairing interaction in the momentum space, and \(N = N_x N_y \). Moreover, in this case \(U^{\text{eff}}_{k} = U^{\text{eff}} \). Using the Bogoliubov transformation [36, 37] one can obtain a spectrum of the Hamiltonian as

\[
\mathcal{E}_{k, \pm} = \left(E_{k1} - E_{-k1} + Q_{1} \right)/2 \pm \sqrt{\left(E_{k1} + E_{-k1} + Q_{1} \right)^2/4 + \left| U^{\text{eff}}_{Q} \right| |\Delta_0|^2}, \quad (7)
\]

where \(E_{k} = -t_{k} - \mu \) (independently of the spin \(\sigma \) in an absence of an external magnetic field). Straightforward calculations lead to the following form of the grand canonical potential \(\Omega = -k_{B} T \ln \left\{ \text{Tr} \left[\exp (-\beta H^{\text{HF}}) \right] \right\} \):

\[
\Omega = -k_{B} T \sum_{k, \tau=\pm} \ln \left\{ 1 + \exp \left(-\beta \mathcal{E}_{k, \tau} \right) \right\} - U^{\text{eff}} N |\Delta_0|^2 + \sum_{k} E_{k1}, \quad (8)
\]

where \(\beta = 1/k_{B} T \), \(k_{B} \)—the Boltzmann constant, \(T \)—absolute temperature. Notice that equation (8) is also valid for the inhomogeneous system, but in that case the Hamiltonian spectrum can only be determined numerically. The ground state for fixed model parameters is founded by a minimization of \(\Omega \) with respect to \(|\Delta_0| \). It enables, among others a founding of the ground state phase diagram (cf figure 2), from which we choose values of model parameters to further numerical calculation in inhomogeneous system.

2.2. Inhomogeneous system

The superconducting states in an inhomogeneous system are described by the following mean-field single particle Hamiltonian written in Nambu space:

\[
H = \sum_{\langle ij \rangle} \left(c_{i\uparrow}^\dagger c_{j\downarrow}^\dagger \mathbf{\Delta}^\dagger - c_{i\downarrow} c_{j\uparrow} \mathbf{\Delta} \right) + \sum_{i} \left(\mu \delta_{ij} - V_{ij} \bar{\delta}_{ij} \right) \left(c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger - c_{i\downarrow} c_{i\uparrow} \right), \quad (9)
\]

The off-diagonal elements \(\mathbf{\Delta}^\dagger = \delta_{ij} \left(U\Delta_i + J(\sum_{k} \delta_{ik}) \right) \) are the on-site SOP at the site \(i \), while the diagonal elements \(H_{ij} = -t_{ij} + (V_{i} - \mu) \delta_{ij} \) are the single particle Hamiltonian in the presence of a given configuration of impurities.

The inhomogeneous system described by equation (9) can be solved using the Bogoliubov–Valatin transformation:

\[
c_{ij} = \sum \left(u_{ia} v_{ia}^\dagger - \sigma v_{ia}^\dagger u_{ia}^\dagger \right), \quad (10)
\]

where \(u_{ia} \) and \(v_{ia} \) are the quasi-particle operators, \(u_{ia} \) and \(v_{ia} \) are the BdG eigenvectors. One can obtain the self-consistent BdG equations in real space:

\[
\mathcal{E}_{a} \left(u_{\text{on}} v_{\text{on}} \right) = \sum_{\langle ij \rangle} \left(H_{ij} \mathbf{\Delta}^\dagger - \mathbf{\Delta} \right) \left(u_{\text{on}} v_{\text{on}} \right), \quad (11)
\]

where \(H_{ij} \) and \(\mathbf{\Delta} \) have been defined previously. The on-site SOP are given by:

\[
\Delta_i = \left(c_{i\uparrow} c_{i\downarrow}^\dagger \right) = \sum_{\langle \rangle} \left(u_{\text{on}} v_{\text{on}}^\dagger \right) \left(\mathcal{E}_{a} - u_{\text{on}} v_{\text{on}}^\dagger f \left(\mathcal{E}_{a} \right) \right), \quad (12)
\]

where \(f(E) = 1/(\exp(\beta E) + 1) \) is the Fermi–Dirac distribution function.

This method enables one to determine the SOP in an inhomogeneous system in a self-consistent way [5, 6, 9, 38–44]. Because it is necessary to solve eigenproblem (11) of the Hamiltonian, the method can be used for systems of a size of

\[\text{ Figure 2. The ground state phase diagram of the model in homogeneous system (} V_i = 0.0, \mu = 0.0, \text{ and } k_B T = 10^{-7}) \]. White dashed lines show (indicatively) boundaries of the phases. The colour intensity indicates a value of the superconducting order parameter \(\Delta_0 \).\]
the order 40×40. Thus we also implement the kernel polynomial method [28, 29], which is the extension of BdG equations in the Chebyshev polynomial basis [45–52]. Such a method is iterative and enables to determine SOP in systems, whose size is limited by computing time and allows to analyse the systems of larger sizes in our case. Below we briefly discuss the main ideas of this approach.

The Chebyshev polynomials can be written as $\phi_k(x) = \cos[k \arccos(x)]$ and satisfy the recurrence relation:

$$
\phi_0(x) = 1, \quad \phi_1(x) = x, \\
\phi_{k+1}(x) = 2x\phi_k(x) - \phi_{k-1}(x), \quad (k > 1).
$$

(13)

The polynomials $\phi_k (k = 0, 1, \ldots)$ are orthonormal basis with interval $[-1, 1]$:

$$
\delta(x - x') = \sum_{n=0}^{\infty} \frac{W(x)}{w_k} \phi_k(x) \phi_k(x'), \quad x \in [-1, 1]
$$

(14)

$$
W(x) = \frac{1}{\sqrt{1 - x^2}}, \quad w_k = \frac{\pi(1 - \delta_{k0})}{2}.
$$

(15)

To obtain eigenvectors of Hamiltonian (9) in the basis of function ϕ_k one needs to scale its matrix representation:

$$
H' = (H - bI)/a, \quad e_f = (E_f - b)/a

\quad a = (E_{\text{max}} - E_{\text{min}})/2, \quad b = (E_{\text{max}} + E_{\text{min}})/2,
$$

(16)

where $E_{\text{min}} \leq E_f \leq E_{\text{max}}$ is the range of eigenenergies of Hamiltonian H. H' is a scaled Hamiltonian with (also scaled) dimensionless eigenvalues $e_f \in [-1, 1]$. Using the constant $2N_x N_y$-dimensional real vectors $[e(i)]_f = \delta_{i,f}$ and $[h(i)]_f = \delta_{i,k N_x N_y}$, we obtain

$$
\Lambda_f = \{e_{ij} e_{lj}\} = \sum_{n=0}^{\infty} e^{(i)} h_n(i) \frac{T_n}{w_n},
$$

(17)

where

$$
T_n = \int_{-1}^{1} dx f(ax + b)W(x)\phi_n(x),
$$

$$
e_n(i) = \phi_n(H') e(i), \quad h_n(i) = \phi_n(H') h(i).
$$

(18)

A sequence of the vector $q_n \equiv \phi_n(H'q)$ ($q = e(i), h(i)$) is recursively generated by:

$$
q_{n+1} = 2H q_n - q_{n-1} \quad (n \geq 2),

q_i = \phi_i(H'q), \quad q_0(H') = q.
$$

(19)

T_n does not depend on the index i. Therefore, the calculation of T_n can be done before any other calculations. The use of the recurrence formula leads to a self-consistent calculation of the BdG equations, without any diagonalization of H.

The sum in (17) is truncated to a certain cutoff M and such an abrupt truncation generally results in unwanted Gibbs oscillations. For this reason all coefficients T_n must be multiplied by damping factors g_n. A possible choice of the damping factors can be found in [28].

3. Results and discussion

We analyze the two-dimensional square lattice of a size $N_x N_y$ with the periodic boundary conditions at $k_B T = 10^{-5}$ and $\mu = 0.0\ell$ (it corresponds to electron concentration $n = 1$ independently of the other model parameters).

3.1. Homogeneous system

Using the mean-field approach (with Bogoliubov transformation) described before, we obtain the J/ℓ versus U/ℓ phase diagram for the homogeneous system ($V_i = 0$) of size 600×600 shown in figure 2. The diagram is nonsymmetric with respect to $J = 0$ and consists of three regions, separated by dashed lines, in which different phases occur. The η-wave SC can occur only for $J > 0$, whereas the s-wave SS phase can be stable for $J < 0$ as well as for $J > 0$ (in the restricted range). A necessary condition for SS phases occurrence is $U_{\ell}^0 < 0$ (or $U_{\ell}^{\eta} < 0$), thus the regions of SS phases must be restricted at least by lines $U \pm 4J = 0$, which are also the boundaries of the phases occurrence determined by minimization of Ω for half-filling ($\mu = 0$). They are denoted by dashed lines in figure 2. However, one should notice that in a general case of $\mu \neq 0$ the SS (s- or η-wave) phases are stable only if $|U_{\ell}^{\eta}|$ is higher than some critical value and the boundary of stability of the particular phases determined by minimization of Ω are moved towards lower values of U/ℓ.

On the diagram in figure 2 the value of SOP $|\Delta_0|$ is also shown. It should be stressed that computations in the real space and the momentum spaces give the same results.

3.2. Inhomogeneous system

Next we analyze the system of the size 40×40 with a single impurity $V_i = V_{\text{imp}} = 2.0\ell$ located at the center site of the system with coordinates $(N_x/2, N_y/2)$ ($V_i = 0$ at other sites). In figure 3 there are shown the dependencies (as a function of lattice site) of local effective energy gap Δ_i (equation (4)).

The panels in that figure, respectively for s-wave and η-wave SC, are obtained for the same (approximately) distance from the boundaries with non-ordered phase (for a given phase) shown in figure 2 (denoted there as dashed lines). It corresponds to a constant value of $U_{\ell}^{\eta, s}$ at a particular homogeneous phase ($U_{\ell}^{\eta, s} = -4.5$ for s-wave SS phase and $U_{\ell}^{\eta, s} = -6.1$ for η-wave SS phase; values of the model parameters presented at the top of each panel). Such a choice of the values of $U_{\ell}^{\eta, s}$ in the particular phases correspond also to (approximately) the same values of SOP in both SS phases.

The $|D_{\text{imp}}|/|D_i|$ at the impurity site initially for attractive U is smaller than $|D_{\text{imp}}|/|D_i|$ far away from the impurity. It increases with increasing U and finally $|D_{\text{imp}}| > |D_i|$ for repulsive U. The valley at the impurity site vanishes faster (its wave phase it extends over a larger space (over a larger number of sites). Notice also that spatial variability of $|D_i|$ is bigger in the η-wave phase than in the s-wave phase (cf figure 4 for the system size of 150 \times 150). These effects are
Figure 3. Energy gap $|D_t|$ for chosen U and J (as labelled) in the s-wave and η-wave phases (left and right panels, respectively) as a function of lattice site for $\mu = 0.0$ t, $V_{\text{imp}} = 2.0t$ and $k_B T = 10^{-5} t$ (the system of a size 40 \times 40). Only the central region (of a size of 10 \times 10) of the system is shown.
better visible for the larger sizes of the system and are discussed in detail below.

From equation (5) one can obtain the distribution of the effective energy gap in the momentum space. In the homogeneous system with the SOP of s-wave or η-wave type all Cooper pairs have the same momentum Q_0 or Π_0, respectively, and only Φ_k with $k = Q$ are nonzero. In the presence of the impurity V_{imp}, the Cooper pair are scattered at

Figure 4. Plots of energy gap $|\Delta|$ (a) and (b), its Fourier transform $|\Delta_k|$ (c) and (d), superconducting order parameter Δ_i (e) and (f), and effective pairing interaction U_{ij}^{eff} (g) and (h) as a function of lattice site for the s-wave ($U = 2.0t$ and $J = -2.0t$) and η-wave phase ($U = 2.0t$ and $J = 2.0t$)—left and right panels, respectively. Results for the system of a size 150×150 ($\mu = 0.0t, V_{\text{imp}} = 2.0t$ and $k_B T = 10^{-2}$). Only the central region (of a size of 30×30) of the system is shown.
the impurity site and thus in the system there are also pairs with $Q \neq \Pi, \mathbf{0}$, respectively (cf figures 4(c) and (d)). In particular, for the η-wave case, there are pairs with momentum near $Q = \mathbf{0}$ without distinguished direction (smooth central peak at figure 4(d)). Moreover, one can also separate pairs with momentum in the $[1, \pm 1]$-direction (four peaks) located near the central peak. These peaks are associated with long-range oscillations of gap in real space in $[1, \pm 1]$-direction (figure 4(b)). The narrow peaks of D_k at $[\pm \pi, \pm \pi]$ still exist (associated with purely η-wave Cooper pairs with $Q = \Pi$), but they are not shown in figure 4(d) explicitly, because their magnitudes are much bigger. It is also visible that Cooper pairs with $Q = \Pi$ are scattered into states with momenta in neighbourhoods of $Q = \Pi$ (smooth broad peaks).

In the case of the s-wave phase we observe the scattering at the impurity site of the Cooper pairs with $Q = \mathbf{0}$ into states with momentum nearby $Q = \mathbf{0}$ without distinguished direction (figure 4(c), smooth peak at $k = \mathbf{0}$). Moreover, in the presence of the impurity in the system, D_k has also four smooth peaks at $[\pm \pi, \pm \pi]$, which means that the electrons associated with η-wave superconductivity become an important component of pair states. Notice, the narrow peak of D_k at $[0, 0]$ still exists (associated with purely s-wave Cooper pairs with $Q = \mathbf{0}$), but it is not shown in figure 4(c) explicitly, because its magnitude is much bigger. Concluding this part let us stress that in the presence of the impurity in both the s- and η-wave cases (i) the narrow primary peaks at $k = \mathbf{0}$ or $k = Q$, respectively are broadened and (ii) new peaks at $k = \Pi$ or $k = \mathbf{0}$, respectively appear in D_k, but only at the η-wave SS phase are the peaks connected with long-range oscillations of the energy gap in real space present.

It is also interesting to discuss the spatial distribution of the SOP Δ_i and effective pairing potential U_{eff} in both (i.e. s-wave and η-wave) cases, although they can not be experimentally measured in contrast to the local effective gap $|D_i|$. The SOP is reduced at the impurity site in the both cases (figures 4(e)–(f)). The behavior of U_{eff} is rather unusual, because its value is enhanced at the impurity site (figures 4(g)–(h)). In is also worth nothing that similar long-range oscillations of both these quantities (i.e. Δ_i and U_{eff} in the $[1, \pm 1]$-direction in the real space (similarly as these for D_i) are far more visible in the η-phase than in the s-wave phase.

The different values of the on-site impurity potential V_{imp} have also been investigated. However, the value of V_{imp} has no influence on the main qualitative results of the paper. The long-range oscillations of the energy gap (an other quantities analyzed) in real space (in the $[1, \pm 1]$-direction) occurs in the η-wave phase, whereas in the s-wave phase they are absent. Only the quantitative changes are introduced by varying the value of V_{imp} (the changes of magnitudes of the oscillations).

Contrasting our results with the effects of impurities on superconducting the FFLO phase has interesting results. In this phase Cooper pairs have non-zero total momentum. It is generally believed that that phase is very sensitive to inhomogeneities [53] because of the scattering of Cooper pairs on impurities. However, some kind of disorder in the system can lead to stabilization of the FFLO phase [38]. The off-diagonal disorder can also lead to a local increase of SOP at impurity.

4. Summary and final remarks

In this article we have analyzed the influence of the non-magnetic impurity on superconducting properties (both s- and η-wave) in the materials with local electron pairing. We have shown that the scattering of Cooper pairs at the non-magnetic impurity is into the states which are from the neighborhoods of the states corresponding to the orderings commensurate with the crystal lattice. Additionally, in the η-phase there are peaks in the (Fourier transform of) local superconducting gap, which are connected with long-range oscillations of the local energy gap, SOP as well as effective pairing potential in the real-space distribution of these quantities (see also with [54]). It is also interesting that the energy gap is enhanced at the impurity site for sufficiently large $|J|$, even if the on-site interaction U is repulsive.

Notice that we do not consider the charge and magnetic orderings. They can both occur for $U > 0$ (charge ordering can also be present for $U < 0$) [4, 17, 20, 55–57]. The more realistic analyses of the impurity impact on these states will be a topic of further works.

The results presented in this paper can be verified, for example, by scanning tunneling microscopy (STM) technique. This technique can be used to study impurity states in superconductors. As a first test of theories, this allows a direct comparison of local electronic features in tunneling characteristics with the theoretical predictions for the density of states and superconducting local gap (for a review see e.g. [1, 6] and references therein). Thus, in correspondence with our theoretical results for the local effective gap, the STM spectroscopy can be useful to distinguish s-wave and η-wave superconductivity in real materials. The results of this paper can give a proposal how to differentiate these two phases experimentally.

Acknowledgments

We would like to thank Yuki Nagai for suggestions about practical realization of calculation presented in [50]. The authors thank Stanisław Robaszkiewicz for very fruitful discussions and comments. KJK is supported by National Science Centre (Poland)—the doctoral scholarship No. DEC-2013/08/T/ST3/00012 and by European Social Found—Operational Programme ‘Human Capital’—POKL.04.01.01-00-133/09-00.

References

[1] Balatsky A V, Vekhter I and Zhu J X 2006 Rev. Mod. Phys. 78 373
[2] Alloul H, Bobroff J, Gabay M and Hirschfeld P J 2009 Rev. Mod. Phys. 81 45
[3] Johnston D C 2010 Adv. Phys. 59 803
[4] Micnas R, Ranninger J and Robaszkiewicz S 1990 Rev. Mod. Phys. 62 113
[5] Maśka M M, Śledź Z, Czajka K and Mierzejewski M 2007 Phys. Rev. Lett. 99 147006
