SUSY23 v2.0: an Event Generator for Supersymmetric Processes at e^+e^- Colliders

J. Fujimoto, K. Hikasaa, T. Ishikawa, M. Jimbob, T. Kanekoc, K. Katod, S. Kawabata, T. Kone, M. Kurodae, Y. Kurihara, T. Munehisaf, D. Perret-Gallixg, Y. Shimizu and H. Tanakah

aKEK, Oho, Tsukuba, Ibaraki 305, Japan
bTohoku University, Aoba-ku, Sendai 980-77, Japan
cMeiji-Gakuin University, Kamikurata, Totsuka, Yokohama 244, Japan
dKogakuin University, Nishi-Shinjuku, Tokyo 160, Japan
eSeikei University, Musashino, Tokyo 180, Japan
fYamanashi University, Takeda, Kofu 400, Japan
gLAPP, B.P. 110, Annecy-le-Vieux F-74941 CEDEX, France
hRikkyo University, Nishi-Ikebukuro, Tokyo 171, Japan

Abstract

SUSY23 is a Monte-Carlo package for generating supersymmetric (SUSY) processes at e^+e^- colliders. Twenty-three types of SUSY processes with 2 or 3 final state particles at tree level are included in version 2.0. SUSY23 addresses event simulation requirements at e^+e^- colliders such as LEP. Matrix elements are generated by GRACE with the helicity amplitude method for processes involving massive fermions. The phase space integration of the matrix element gives the total and differential cross sections, then unweighted events are generated. Sparticle widths and decay branching ratios are calculated. Each final state particle may then decay according to these probabilities. Spin correlations are taken into account in the decays of sparticles. Corrections of initial state radiation (ISR) are implemented in two ways, one is based on the electron structure function formalism and the second uses the parton shower algorithm called QEDPS. Parton shower and hadronization of the final quarks are performed through an interface to JETSET.
1. Introduction

The supersymmetric (SUSY) standard model is the most promising extension of the standard model (SM) as it could naturally give a solution to the gauge hierarchy problem. In SUSY model, thanks to the symmetry between bosons and fermions, the quadratic divergences are genuinely cancelled out. The price to pay is the existence of a large number of new particles, SUSY particles (sparticles), yet to be discovered. The most impressive evidence in favor of SUSY may be the unification of gauge couplings in SUSY Grand Unified Theories (GUTs). The Lightest SUSY Particle (LSP) is often proposed as a candidate to the missing mass in the Universe for the cold component of the so-called dark matter. Many peoples consider the "SUSY world" as a plausible scenario for future particle physics prompting the need of event generators.

Although the gauge hierarchy issue set a mass upper bound to SUSY particles of $O(1\text{TeV})$, lighter sparticles are seen as giving more natural solution. So there is a possibility that the sparticles could be discovered at LEP2 in electron-positron collision. While the hadron colliders such as FNAL Tevatron and DESY HERA have already covered larger scattering energies, LEP2 could be the first machine to discover “light” sparticles (the chargino, the slepton or the stop) as the background conditions are far better in electron-positron than in hadron colliders.

SUSY23 is an event generator suitable for detector simulation and data analysis dedicated to SUSY processes in the LEP2 energy range.

It is based on the GRACE system which generates automatically the matrix element in terms of helicity amplitudes (supplied by the CHANEL library) for any processes once the initial and the final states have been specified. In addition, a kinematics library has been developed for each process topology (weeding out multidimensional singularities) for a better convergence of the Monte-Carlo integration over the phase space.

The SUSY23 package is actually a collection of 23 types of SUSY processes at e^+e^- colliders, consisting of 18 final 2-body and 5 final 3-body processes, presented in a coherent and uniform
environment. These processes are

\[e^+ e^- \rightarrow \]

\[\chi_1^+ \chi_1^- \quad \chi_1^0 \chi_2^0 \quad \chi_2^+ \chi_2^- \quad \tilde{\nu}_e \tilde{\nu}_e \quad \tilde{\nu}_\mu \tilde{\nu}_\mu \quad \tilde{\nu}_\tau \tilde{\nu}_\tau \]

\[\tilde{e}_L \tilde{e}_R \quad \tilde{e}_L \tilde{e}_L \quad \tilde{\mu}_L \tilde{\mu}_L \quad \tilde{\tau}_1 \tilde{\tau}_1 \quad \tilde{b}_1 \tilde{b}_1 \]

and

\[e^+ \tilde{e}_R \chi_1^0 \quad e^+ \tilde{e}_L \chi_1^0 \quad e^+ \tilde{\nu}_e \chi_1^- \quad \nu_e \tilde{e}_L \chi_1^- \quad \gamma \chi_1^0 \chi_1^0 \]

Once a process has been selected, the total and differential cross sections are computed with the Monte-Carlo integration package BASES \[7\]. Then SPRING \[7\], a general purpose event generator, provides unweighted events. Some physics results have already been presented in ref.\[8\].

The matrix element generated by GRACE corresponds to the genuine tree level process in the massive case. Initial state radiation corrections, unstable sparticle decays and hadronization must then be introduced to produce realistic event generation. All of them have been implemented in SUSY23.

For the initial state radiation (ISR) two techniques are provided in the program.\[7\] The first one uses the well-known analytic form of \(e^\pm \) structure function \[9\] and the second is based on QEDPS \[10\], a radiative correction generator producing an indefinite numbers of photons according to the parton shower algorithm in the leading-logarithmic (LL) approximation. Originally this algorithm has been developed to simulate QCD parton shower. One important point here is that QEDPS reproduces the radiative photon transverse momentum distributions.

Sparticle widths and decay branching ratios are calculated (see Tables 3~8 in Appendix C). Each final state is then generated according to the branching ratios. In the present version, 2-body and 3-body direct decays as well as some possible cascade decays are included. Note that helicity informations of matrix elements of the direct decays of inos \[\footnote{We use ino as a generic name to represent neutral (neutralinos) and charged (charginos) mixtures of gauginos and higgsinos.}\] are taken into account in evaluating their decays.

We assume that the hadronization of partons can be separated from the hard interaction studied here. Under this assumption, the calculation of cross sections is exact in SUSY23. Final state parton hadronization is performed, in SUSY23, through the mechanism implemented in JETSET \[11\].

This paper is organized as follows. MSSM basics is given in section 2. The structure of the program is discussed in section 3. In section 4, all details about running the program are presented. A summary of the paper can be found in section 5. Four appendices describe the parameters and options which can be changed by the user, the list of all processes and the program installation procedure.

2. Theoretical framework of MSSM

2.1 Particle content

\footnote{ISR is not available for the hard photon process, i.e., \(e^- e^+ \rightarrow \gamma \chi_1^0 \chi_1^0 \).}
The Minimal SUSY Standard Model (MSSM) includes the minimal particle content. That is, there should be at least one new particle (sparticle) for each known particle in the SM and the two Higgs doublets. The additional Higgs doublet must be included in order to give mass to the up- and down-type quarks and to allow for the chiral anomaly cancellation [1].

For quarks and charged leptons there exist two scalar partners per species, while for neutrinos there exists one scalar partner per species. These scalars are called squarks and sleptons, or, generically, sfermions. Before SU(2) × U(1) breaking, the left- and right-sfermions do not mix since they have different SU(2) × U(1) quantum numbers. After the breaking, however, they can mix with each other. In this case the mass eigenstates are parametrized by a mixing angle \(\theta_f \):

\[
\begin{pmatrix}
\tilde{f}_1 \\
\tilde{f}_2
\end{pmatrix} = \begin{pmatrix}
f_L \cos \theta_f + f_R \sin \theta_f \\
-f_L \sin \theta_f + f_R \cos \theta_f
\end{pmatrix}.
\]

Actually this mixing effect is substantial only for the third-generation sfermions, especially for the stops (superpartners of the top quark) owing to the large top mass [12].

The new fermions are either the superpartner of spin-1 gauge bosons (gauginos) or that of spin-0 bosons (higgsinos). They mix each other when SU(2) × U(1) symmetry is broken. The mass eigenstates (inos) are usually mixtures of gaugino and higgsino states. They are called neutralinos \(\chi^0_k \) \((k = 1 \sim 4) \) and charginos \(\chi^\pm_i \) \((i = 1, 2) \), respectively, according to their electric charges. Gluinos \(\tilde{g} \) are free from mixing since the color SU(3) is not broken. As usual, we consider the lightest neutralino \(\chi^0_1 \) as the lightest sparticle (LSP).

MSSM contains two Higgs doublets and five physical Higgs bosons are left after SU(2) × U(1) breaking [13]. They are two CP even \((h^0, H^0) \), one CP odd \((A^0) \) neutral scalars and two charged scalars \((H^\pm) \).

The list of sparticles in the model is shown in Appendix A, where the abbreviated particle names used in the control card and the KF-codes assigned for each sparticles in SUSY23 are also shown.

2.2 Basic parameters of MSSM

The standard model has 18 fundamental parameters to be determined by experiments. The MSSM has a somewhat larger number of parameters. They are classified as (i) gauge couplings, (ii) superpotential parameters and (iii) soft-breaking parameters. In the following, we adopt the notation of the SUSY parameters described in ref. [14].

2.2.1 gauge couplings

The three gauge coupling parameters corresponding to SU(3), SU(2) and U(1) gauge groups are the same as in the SM. All gauge interactions are governed by these couplings. They determine the fermion-sfermion-gaugino interactions and four-point scalar interactions as well as ordinary fermion-fermion-gauge-boson interactions.

2.2.2 superpotential parameters and \(R \)-parity

In the MSSM, ordinary Yukawa interactions are generalized using the superpotential \(W(\hat{\phi}) \), where \(\hat{\phi} \) denotes arbitrary chiral superfield [1]. Renormalizability restricts the functional form of the superpotential to

\[
W(\hat{\phi}) = m_{ij} \hat{\phi}_i \hat{\phi}_j + \lambda_{ijk} \hat{\phi}_i \hat{\phi}_j \hat{\phi}_k.
\]

The parameters \(m_{ij} \) and \(\lambda_{ijk} \) are further constrained by the gauge symmetry and some discrete symmetries.
Later, we use the notation μ which is a coefficient of the term quadratic in Higgs superfields and contributes to the mass terms of higgsinos and Higgs bosons [14].

A well-known discrete, multiplicative symmetry is the R-parity defined by

$$R = (-)^{3(B-L)+2S},$$

(3)

where B, L and S stand for the baryon number, the lepton number and the spin, respectively. This formula implies that all ordinary SM particles have even R-parity, whereas the corresponding superpartners have odd R-parity. Usually we impose the $B-L$ conservation on the MSSM and then the MSSM possesses the R-parity invariance. In SUSY23 only R-parity conserving processes are considered.

2.2.3 soft-breaking parameters

SUSY is not an exact symmetry of nature since our world is not manifestly supersymmetric. In the MSSM the SUSY breaking is induced by the soft-SUSY breaking terms, which do not introduce quadratic divergences. Hence the solution of the naturalness problem remains intact. There are four types of soft breaking terms; (1) gaugino masses M_i ($i = 1 \sim 3$), (2) masses for the sfermions \tilde{m}_f, (3) trilinear term A_f and (4) three Higgs mass terms. The three mass parameters in the last item can be re-expressed in terms of two Higgs vacuum expectation values, v_1 and v_2, and one physical Higgs mass. Here v_1 and v_2 respectively denote the vacuum expectation values of the Higgs field coupled to d-type and u-type quarks.

$$v_1^2 + v_2^2 = (246 \text{ GeV})^2$$

is determined from the experimentally measured W-boson mass, while the ratio

$$\tan \beta = \frac{v_2}{v_1}$$

(4)

is a free parameter of the model.

A generally accepted assumption is that all the three gaugino mass parameters M_i are equal at some grand unification scale M_X. Then the gaugino mass parameters can be expressed in terms of one of them, for instance, M_2. The other two gaugino mass parameters are given by

$$M_1 = \frac{5}{3} \tan^2 \theta_W M_2$$

(5)

$$M_3 = \frac{\alpha_3}{\alpha} \sin^2 \theta_W M_2,$$

(6)

where α and α_3 ($= \alpha_s$) denote the QED and the QCD coupling constants, respectively.

The trilinear terms A_f appear in off-diagonal elements of the mass matrix for sfermions (\tilde{f}_L, \tilde{f}_R). Consequently, it has direct relation to the mass eigenvalues ($m_{\tilde{f}_1}$, $m_{\tilde{f}_2}$) and the mixing angle θ_f. In our formulation, A_f’s ($f = t, b, \tau$) are determined by those mixing parameters (see Eqs.(19), (20) and (21)).

2.3 MSSM parameters in SUSY23

In Appendix B, the input MSSM parameters in SUSY23 are listed. They are

i) gaugino parameters, $(\tan \beta, M_2, \mu)$,

ii) masses of scalar partners of charged leptons in the 1st and 2nd generations, $(m_{\tilde{e}_L}, m_{\tilde{e}_R})$, $(m_{\tilde{\mu}_L}, m_{\tilde{\mu}_R})$,
iii) masses of 1st and 2nd generation squarks, \((m_{u_L}, m_{u_R}, m_{d_R}), (m_{c_L}, m_{c_R}, m_{s_R})\)

iv) masses and mixing angles of charged sfermions in the 3rd generation, \((m_{\tilde{t}_1}, m_{\tilde{t}_2}, \theta_t), (m_{\tilde{b}_1}, m_{\tilde{b}_2}, \theta_b), (m_{\tilde{\tau}_1}, \theta_\tau)\) and \(m_{\tilde{\nu}_e}\).

From the above inputs, the following physical parameters are calculated in SUSY23,

i) masses of \(\chi_i^0 (i = 1 \sim 4)\), the mixing matrix \(\mathcal{O}_N\) and the sign factor \(\eta_i\) of neutralinos,

\[
\chi_{iL}^0 = \eta_i (\mathcal{O}_N)_{ij} \chi_{jL}^0, \quad (7)
\]

\[
\chi_{iR}^0 = \eta_i (\mathcal{O}_N)_{ij} \chi_{jR}^0, \quad (8)
\]

with \(\chi_{iL}^0 = (\tilde{B}_L, \tilde{W}_L^0, \tilde{H}_1^0, \tilde{H}_2^0_L)\).

ii) masses of \(\chi_i^\pm (i = 1 \sim 2)\), the mixing angles \(\cos \phi_L, \cos \phi_R, \sin \phi_L, \sin \phi_R\), sign factor \(\epsilon_R\) of charginos,

\[
\chi_{1L}^- = \tilde{W}_L^- \cos \phi_L + \tilde{H}_1^0 \sin \phi_L, \quad (9)
\]

\[
\chi_{2L}^- = -\tilde{W}_L^- \sin \phi_L + \tilde{H}_1^0 \cos \phi_L, \quad (10)
\]

\[
\chi_{1R}^+ = \tilde{W}_R^- \cos \phi_R + \tilde{H}_2^0 \sin \phi_R, \quad (11)
\]

\[
\chi_{2R}^+ = \epsilon_R (-\tilde{W}_R^- \sin \phi_R + \tilde{H}_2^0 \cos \phi_R), \quad (12)
\]

iii) the gluino mass \(m_{\tilde{g}} (= M_3)\) using Eq.(6),

iv) \(m_{\tilde{\nu}_e}\) and \(m_{\tilde{\nu}_\mu}\) are calculated by the following relations:

\[
m_{\tilde{\nu}_e}^2 = m_{\nu_e}^2 - m_e^2 + m_W^2 \cos 2\beta, \quad (13)
\]

\[
m_{\tilde{\nu}_\mu}^2 = m_{\nu_\mu}^2 - m_\mu^2 + m_W^2 \cos 2\beta. \quad (14)
\]

v) \(m_{\tilde{d}_L}\) and \(m_{\tilde{s}_L}\) are calculated by the following relations:

\[
m_{\tilde{d}_L}^2 = m_{d_L}^2 - m_d^2 - m_u^2 - m_W^2 \cos 2\beta, \quad (15)
\]

\[
m_{\tilde{s}_L}^2 = m_{s_L}^2 - m_s^2 + m_c^2 - m_W^2 \cos 2\beta, \quad (16)
\]

vi) \(m_{\tilde{\tau}_2}\) is given by:

\[
m_{\tilde{\tau}_2}^2 = \cos^2 \theta_\tau m_{\tilde{\tau}_1}^2 + \sin^2 \theta_\tau m_{\tilde{\tau}_2}^2 - m_\tau^2 + m_W^2 \cos 2\beta, \quad (17)
\]

vii) \(m_{\tilde{b}_2}\) is given by:

\[
\cos^2 \theta_t m_{\tilde{t}_1}^2 + \sin^2 \theta_t m_{\tilde{t}_2}^2 - m_t^2 = \cos^2 \theta_b m_{\tilde{b}_1}^2 + \sin^2 \theta_b m_{\tilde{b}_2}^2 - m_b^2 + m_W^2 \cos 2\beta, \quad (18)
\]
3. Features of the program

viii) the trilinear term A_f using formulae as follows

\[A_t = -\frac{1}{2} \sin 2\theta_t \frac{m_{\tilde{t}}^2 - m_{\tilde{b}}^2}{m_t} - \mu \cot \beta \]
\[A_b = -\frac{1}{2} \sin 2\theta_b \frac{m_{\tilde{b}}^2 - m_{\tilde{t}}^2}{m_b} - \mu \tan \beta, \]
\[A_r = -\frac{1}{2} \sin 2\theta_r \frac{m_{\tilde{r}}^2 - m_{\tilde{t}}^2}{m_r} - \mu \tan \beta, \]

Here we briefly discuss the relation between our input parameters and those adopted in the susygen program [15]. As for the gaugino parameters, the sign convention of tan β and μ is different. We use the positive definite μ and tan β can have either positive or negative values. In susygen, on the other hand, positive definite tan β and positive or negative μ are adopted. As there exists a symmetry for the sign of tan β and μ in the MSSM, the negative μ in susygen corresponds to the negative tan β in SUSY23. The definition of gaugino mass M_2 is the same in both generators. As for the left-right mixing of sfermions in the 3rd generation, we take observable masses and mixing angles, $(m_{\tilde{l}_f}, m_{\tilde{r}_f}, \theta_f)$, as inputs. In susygen, on the other hand, more basic model parameters $(m_{\tilde{l}_f}, m_{\tilde{r}_f}, A_f)$ are adopted. The relation between them can be found from Eqs. (19) ~ (21) and the following formula,

\[m_{\tilde{f}_L}^2 = \frac{1}{2} \left[m_{\tilde{f}_L}^2 + m_{\tilde{f}_R}^2 \mp \left((m_{\tilde{f}_L}^2 - m_{\tilde{f}_R}^2)^2 + (2a_f m_f)^2 \right)^{1/2} \right], \]

where $a_t = -(A_t + \mu \cot \beta)$, $a_b = -(A_b + \mu \tan \beta)$ and $a_r = -(A_r + \mu \tan \beta)$. We did not impose low energy mass relations between masses of sfermions determined by the renormalization group equations in some SUSY GUTs because such mass relations sensitively depend on details of a model and boundary conditions for model parameters at the unification scale. In susygen, however, there is an option for the calculation in the framework of the minimal supergravity model [14]. In this model, masses of all sfermions in the 1st and 2nd generations are determined by an input parameter, $m_\infty (= m_0)$, which is the universal soft scalar mass at the unification scale. For convenience of the users, we present an example of relations between observable masses and the parameter m_∞ for the case of $\sin^2 \theta_W = 0.230$,

\[m_{\tilde{u}_L}^2 = m_\infty^2 + 7.26M_\infty^2 + m_u^2 + \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) m_Z^2 \cos 2\beta, \]
\[m_{\tilde{u}_R}^2 = m_\infty^2 + 6.83M_\infty^2 + m_u^2 + \frac{2}{3} \sin^2 \theta_W m_Z^2 \cos 2\beta, \]
\[m_{\tilde{d}_R}^2 = m_\infty^2 + 6.78M_\infty^2 + m_d^2 - \frac{1}{3} \sin^2 \theta_W m_Z^2 \cos 2\beta, \]
\[m_{\tilde{e}_L}^2 = m_\infty^2 + 0.530M_\infty^2 + m_e^2 - \left(\frac{1}{2} - \sin^2 \theta_W \right) m_Z^2 \cos 2\beta, \]
\[m_{\tilde{e}_R}^2 = m_\infty^2 + 0.1515M_\infty^2 + m_e^2 - \sin^2 \theta_W m_Z^2 \cos 2\beta, \]

where $M_\infty = 1.22M_2$ denotes the universal soft gaugino mass at the unification scale.

3. Features of the program
This section covers some important features of the program, the introduction of the initial state radiation, available decay modes of unstable sparticles and the spin correlation in the ino decays.

3.1 Initial state radiation

In the first approach, the simple electron structure function is used. The electron structure function at $O(\alpha^2)$ which is to be convoluted with the cross section for a primary process is given by

$$D(x,s) = \left[1 + \frac{3}{8}\beta + \left(\frac{9}{128} - \frac{\zeta(2)}{8}\right) \beta^2 \right] \frac{\beta}{2} (1-x)^{\beta/2-1} \nu x \ln(1-x) + \frac{1+3x}{1-x} \ln x + (5+x) \right], \quad (28)$$

$$\beta = \frac{2\alpha/\pi}{\ln\left(\frac{s}{m^2_e}\right) - 1}, \quad (29)$$

where s is the square of the total energy of the system and x is the momentum fraction of the electron. Compared with the exact $O(\alpha)$ calculation for s-channel annihilation, the corrected cross section obtained by this function does not contain the so-called K-factor:

$$1 + \frac{\alpha}{\pi}\left(\frac{x^2}{3} - \frac{1}{2}\right) = 1.006480 \cdots. \quad (30)$$

This factor is not included since it is sensible only when the s-channel e^+e^- annihilation takes place.

The basic assumption of the QED Parton Shower method, QEDPS [10], is primarily based on the fact that $D(x,Q^2)$ obeys the Altarelli-Parisi equation, which can be expressed by the integral equation in the leading-logarithmic (LL) approximation

$$D(x,Q^2) = \Pi(Q^2,Q^2_0)D(x,Q^2_0) + \frac{\alpha}{2\pi} \int_{Q^2_0}^{Q^2} \frac{dK^2}{K^2} \Pi(Q^2,K^2) \int_x^{1-\epsilon} \frac{dy}{y} P(y)D(x/y,K^2), \quad (31)$$

where the small quantity ϵ is a cutoff related with the infrared singularity [16] and it will be defined later. In this equation $P(x)$ is the split function noted $P_+(x)$ when regularized at $x = 1$. Q^2_0 is the initial value of Q^2 and a free parameter (of order m^2_e). For simplicity the fine structure constant α is assumed not running with Q^2. The Sudakov factor Π is given by:

$$\Pi(Q^2,Q^2_0) = \exp\left(-\frac{\alpha}{2\pi} \int_{Q^2_0}^{Q^2} \frac{dK^2}{K^2} \int_0^{1-\epsilon} dx P(x)\right). \quad (32)$$

and denotes the probability that an electron evolves from Q^2 to Q^2 without emitting hard photon.

The integral equation (31) can be solved by iteration. It is clear that the emission of n photons corresponds to n iterations. Hence it is possible to regard the process as a stochastic mechanism suggesting the shower algorithm in Ref. [10].

Once an exclusive process is fixed by the algorithm, each branching of a photon is a real process, that is, an electron with x, K^2 decays as: $e^-(x,-K^2) \rightarrow e^-(xy,-K^2') + \gamma(x(1-y),Q^2_0)$. Here Q^2_0 is a cut-off to avoid the infrared divergence and ϵ is given by $\epsilon = Q^2_0/K^2$. The
momentum conservation at the branching gives:

\[-K^2 = -K'^2/y + Q_0^2/(1-y) + k_T^2/(y(1-y)) \]

which in turn determines the photon transverse momentum relative to the parent, \(k_T^2 \), from \(y, K^2, K'^2 \). This technique gives the \(k_T^2 \) distribution as well as the shape of the \(x \)-distribution.

The above algorithm concerns the case where either \(e^- \) or \(e^+ \) radiates photons when the axial gauge vector is chosen along the momentum of the other electron, namely \(e^+ \) or \(e^- \). In the program, however, we use the double cascade scheme to ensure the symmetry of the radiation between \(e^+ \) and \(e^- \) [17]. These two are mathematically equivalent in the LL approximation.

3.2 Sparticle decays

3.2.1 Decay modes

The decay modes shown below are implemented in SUSY23. They are also presented in Tables 3~9 in Appendix C. The decay modes (1)~(8) are applied iteratively as long as the mass relationship between the sparticle and their decay products allows. The spin correlation is considered as is discussed in the next subsection.

(1) lighter chargino (Table 3)

\[\tilde{\chi}_1^- \rightarrow f \tilde{f} \chi_1^0 \]
\[\rightarrow \ell \tilde{\nu}_\ell \rightarrow \ell \ (\tilde{\nu}_\ell \chi_1^0) \]
\[\rightarrow \tilde{\nu}_\ell \ell \rightarrow \tilde{\nu}_\ell \ (\ell \chi_1^0) \]
\[\rightarrow b \tilde{t}_1 \rightarrow b \ (\tilde{t}_1 \chi_1^0) \]

(2) second lightest neutralino (Table 4)

\[\chi_2^0 \rightarrow f \tilde{f} \chi_1^0 \]
\[\rightarrow \ell \tilde{\nu}_\ell \rightarrow \ell \ (\tilde{\nu}_\ell \chi_1^0) \]
\[\rightarrow \nu \tilde{\nu} \rightarrow \nu \ (\nu \chi_1^0) \]

(3) left-handed selectron and smuon (Table 5)

\[\tilde{\ell}_L \rightarrow \ell \chi_1^0 \]
\[\rightarrow \ell \chi_2^0 \rightarrow \ell \ (f \tilde{f} \chi_1^0) \]
\[\rightarrow \nu \chi_1^- \rightarrow \nu \ (f \tilde{f} \chi_1^0) \]

(4) right-handed selectron and smuon (Table 6)

\[\tilde{\ell}_R \rightarrow \ell \chi_1^0 \]
\[\rightarrow \ell \chi_2^0 \rightarrow \ell \ (f \tilde{f} \chi_1^0) \]

(5) lighter and heavier staus (Table 7)

\[\tilde{\tau}_{1,2} \rightarrow \tau \chi_1^0 \]
\[\rightarrow \tau \chi_2^0 \rightarrow \tau \ (f \tilde{f} \chi_1^0) \]
\[\rightarrow \nu_\tau \chi_1^- \rightarrow \nu_\tau \ (f \tilde{f} \chi_1^0) \]
(6) sneutrinos (Table 8)

\[\tilde{\nu}_\ell \rightarrow \nu_{\chi_1^0} \rightarrow \nu_{\chi_2^0} \rightarrow \ell^{-} \chi_1^{-} \rightarrow \ell^{-} (f\bar{f}\chi_1^0) \]

(7) lighter stop (Table 9)

\[\tilde{t}_1 \rightarrow c\chi_1^0 \rightarrow c\chi_2^0 \rightarrow c (f\bar{f}\chi_1^0) \]

\[\rightarrow b\chi_1^{-} \rightarrow b (f\bar{f}'\chi_1^0) \]

(8) lighter sbottom (Table 9)

\[\tilde{b}_1 \rightarrow \bar{b}\chi_1^0 \rightarrow \bar{b}\chi_2^0 \rightarrow \bar{b} (f\bar{f}'\chi_1^0) \]

We assume that squarks in the first and second generations and the gluinos are sufficiently heavy to forbid the charginos, neutralinos, sleptons, stop and sbottom decays in these channels. These are natural assumptions as long as one deal with production processes of the sparticles with mass \(\lesssim 100 \text{GeV} \) in the LEP2 energy regions.

In SUSY23 system, the masses are inspected whether the decay is possible or not. When the channel is open, the decay width is computed.

3.2.2 Spin correlations

The helicity informations of matrix elements in the fermionic 2-body and 3-body decays of the lighter chargino \(\chi_1^- \) and the second lightest neutralino \(\chi_2^0 \) are used in the event generation of their decay products. In other words kinematical distribution of the decay products is sensitive to spin correlations with the mother ino. All decay matrix elements are computed exactly with GRACE in tree approximation.

In the event generation step, the helicity state of inos is selected by the Monte-Carlo method based on the relative cross sections of all possible helicity combinations. Four-momentum vectors of daughter-particle are determined by the decay matrix element of the ino with specified helicity.

4. Structure of the program

The SUSY23 provides event generation for twenty-three SUSY processes as listed in Table 2 in Appendix C, at \(e^+e^- \) colliders with or without radiative corrections. As is shown in Appendix B, there are many options covering theoretical and experimental requirements. Since all program components are distributed as source code, users can select all options by editing the relevant subprograms directly. However, an interface program susy23 is prepared to lighten the user’s burden. It selects and/or corrects the program code which are affected by the various options

\[\text{3. Users must be careful in taking the input mass parameters so that the lightest neutralino } \chi_1^0 \text{ (LSP) should be lighter than charginos and sfermions.} \]

\[\text{4. Please do not confuse the executable module named susy23 with the SUSY23 system itself.} \]
and it creates a “Makefile” according to the user requirements. This procedure is called the source generation phase.

In the integration step, the matrix element of a selected process is integrated over the phase space by the subprogram BASES, which gives the total and differential cross sections and the probability distribution used in the event generation phase. There, the subprogram SPRING samples a point in the phase space and test if it can be accepted as a new event according to its probability. When an event is accepted, the program control returns to the main program, where sparticle decays are performed.

There are, therefore, three steps in the generator SUSY23, the first is the source generation, the second is the integration and the third is the event generation. In addition to the user interface program susy23, the following programs are available in the SUSY23 system:

i) Twenty-three function programs FUNCs for final 3-body or 2-body SUSY processes, each of which calculates the numerical value of the differential cross section for each process.

ii) The kinematics subprogram KINMQQ is called when initial state radiation (ISR) based on QEDPS, the QED parton shower model, is requested. Although KINEMO covers both the case where no ISR is produced and where at most 2 photons can be generated at zero angle following the electron structure function method.

iii) An extended version of the CHANEL library to include MSSM couplings. The CHANEL library calculates the numerical values of Feynman diagrams based on the helicity amplitudes method.

iv) The numerical integration and event generation program package BASES/SPRING v5.1.

v) The main programs, MAINBS and MAINSP, and all program components for the integration and event generation steps.

vi) The subprograms for branching ratios and sparticle decays.

v) The interface programs to JETSET (GR2LND, SP2LND and GRC2SH).

The function of these program components and relationship among them are presented in the next three subsections.

4.1 Source generation step

The user interface program susy23 reads the parameters from the control data file, which contains process selection, type of radiative corrections, SUSY parameters, etc. The complete list of parameters is found in Appendix B. Then susy23 generates the following program code:

i) Three initialization subprograms USRPRM, MODMAS KINIT, USERSP and

ii) A "Makefile".

4.2 Integration step

Before starting the numerical integration, the main program MAINBS invokes an initialization subprogram USER1IN, in which the following subprograms are called in this order:
USRPRM: To define the set of input SUSY parameters and some optional parameters.

SETMAS: To set default values to particle masses and decay widths.

MODMAS: To alter the default values of all parameters defined in **SETMAS**.

AMPARM: To set the coupling constants and other parameters.

KINIT: To set the parameters for the integration, kinematics, cuts and to initialize the histogram package.

The subprograms **SETMAS** and **AMPARM** are generated by the **GRACE** system. By default,ino and charged Higgs masses, as well as ino mixing angles (see Sec.2.3) and all branching ratios, are calculated in the framework of the MSSM. Users can selectively set the values of these parameters and some branching ratios. Only naive consistency checks are made, such as the normalization check of the branching ratios and the mass ordering check, so all modifications on these parameters or branching ratios in the subprograms **USRPRM**, **MODMAS** and **KINIT** are on the users' own responsibility.

The integration program **BASES** calculates the scattering cross section by sampling the function **FUNC** on the allowed phase space segmented by a self adapted grid where finer cells are clustered on the high gradient zones. This is an iterative procedure running until either the maximum number of allowed iteration is reached or the required accuracy is obtained. In the function program **FUNC**, the kinematics subroutine **KINEMO** or **KINMOQ** maps the integral variables into the four-momentum of the final state particles. **KINEMO** is called for reactions with no radiative corrections or those involving the initial state radiation treated with the structure function techniques. **KINMOQ** is called for processes in which radiative corrections are computed with the QED parton shower method. The subprograms **AMPTBL** and **AMPSUM** are further called for calculating the helicity amplitudes and the squared of their sum.

It is recommended to look at the integration result carefully, especially over the convergency behaviors both for the grid optimization and integration steps. When the accuracy of each iteration fluctuates from iteration to iteration or when it jumps up suddenly to a large value compared to the other iterations, the resultant estimate of the integral may not be reliable. There are two possible origins of this behavior; too few sampling points or/and an unsuitable choice of the kinematical variables.

After the numerical integration by **BASES**, the subprograms **BSINFO** and **BHPLOT** are called to print the result of integration and the histograms, respectively. Before terminating the integration procedure the probability distribution of the integrand can be saved in a file named **bases.data** by invoking **BSWRIT**, which is later used for the event generation by **SPRING**.

4.3 Event generation step

The main program, **MAINSP**, handles the event generation step. The subprogram **BSREAD** reads the data file **bases.data** to restore the probability distribution and then the subprogram **USERIN** is called. Each call to **SPRING** generates one event by sampling a point in the phase volume. It first calculates the differential cross section at that point using the same function **FUNC** in the integration step and returns the weight of this sampling point. A weight one event is finally produced using usual unweighting technique. Subsequently, **SUDCAY** handles the sparticle decay. By calling the subprogram **SP2LND**, the event information including the color connection to be used by **JETSET** is stored in the labelled common **LUJETS**.

Then hadronization of quarks and gluons can be performed by calling **LUEXEC**. At the end of the event generation, the routine **SPINFO** and **SHPLOT** are invoked successively for printing event
5. How to run the program

The user should first prepare the control data to define the process, the option flags, the MSSM parameters and the experimental cuts. The user interface program susy23 takes this control data as an input. For example, let’s call the following sequence of lines control.data.

```
process = SW1sw1
energy = 200.0d0
type = tree
hadron = no
tanbe = -2.0d0
xm2 = 50.0d0
xmu = 150.0d0
end
```

The first line specifies the process to be calculated and the second is the center of mass energy in GeV unit. The others are options, whose meanings are given in Appendix B. Then the user may type:

```
% susy23 < control.data
```

If the message “syntax error” is returned, the user must carefully examine the contents of the control data. No file is generated in this case. When the control data is accepted the following message appears:

```
Process is "SW1sw1"
Energy is "200.0d0"
HADRNZ <no>
bye-bye
directory name is SW1sw1
absolute directory name is /home/susy23/prc/SW1sw1
------------------------------------------
cd /home/susy23/prc/SW1sw1
make integ
integ
make spring
spring
------------------------------------------
```

According to the parameters given in the control data, the files, i.e. `usrprm.f`, `modmas.f`, `kinit.f`, `usersp.f` and `Makefile`, are generated in a specified subdirectory (SW1sw1 in this case).

According to the last five lines in the message, users can proceed with the calculations as follows:

i) Change directory by typing:

```
% cd /home/susy23/prc/SW1sw1
```
ii) Create an executable `integ` for the integration by typing:

\[
\% \text{ make integ}
\]

iii) Numerical integration is actually performed by typing:

\[
\% \text{ integ}
\]

The results of integration step are displayed on the console as well as written in an output file `bases.result`. The total cross section in pb and the estimated statistical error are shown on the last line, under Cumulative Result, in the table of the Convergence Behavior for the Integration step. The differential cross sections are also printed as a function of the energy, scattering angle of each particle and invariant masses of any two final particles. The probability distribution of the integrand is written in a file `bases.data` which will be used in the event generation step by `spring`.

iv) Before running the event generation, users may edit `mainsp.f` to set additional parameters if needed and call user’s own analysis routines.

The following is the structure of the generated `mainsp.f`, where four-momentum of all particles are stored in the `common/lujets/` in the JETSET format when subprogram `sp2lnd` is called in the event-loop:

```
Program mainsp
implicit real*8(a-h,o-z)
external func

......................
real*4 p,v
common/lujets/n,k(4000,5),p(4000,5),v(4000,5)
......................
......................
mxtry = 50
dxevnt = 1000
do 100 nevnt = 1, mxevnt

   call spring( func, mxtry )
......................
\*  ------------------
\* call sp2lnd
\*  ------------------
\*  ================================
\* ( user_analysis based on the common lujets )
\*  ================================
\*
100 continue
......................
stop
end
```
v) Create an executable spring for event generation by typing:

```
% make spring
```

vi) Start the event generation by typing:

```
% spring
```

Information on the event generation will be written in the spring.result file. Users should pay attention to the histograms generated in this step. The distributions of the generated events are superimposed with the character “0” on the histograms generated in the integration step. These two distributions should be consistent with each other within the statistical error of the generation. For the detail of the output files of BASES and SPRING, users can consult the Ref.[7].

6. Summary
The SUSY23 system calculates the effective cross section and generates events for one of the twenty-three SUSY processes at e^+e^- colliders listed in Appendix C. It is dedicated to the LEP2 studies. The numbers 2 and 3 in SUSY23 refer to the fact that processes with 2 and also 3 final particles are fully computed at tree level in the massive case. These particles are then allowed to decay producing multi-particle final states. Sparticle widths and decay branching ratios in accordance with this energy range are calculated. In particular, the helicity information for direct decays of spinor sparticles (the lighter chargino and the second lightest neutralino) is handled properly. The produced quarks can be hadronized according to JETSET. Processes with initial radiations can be generated in terms of the electron structure function or the QED parton shower method.

Acknowledgements
The authors would like to thank G. Coignet, S. Rosier-Lees, F. Boudjema, S. Komamiya, S. Asai, P. Bambade and R. Tanaka for their interest and encouragement and colleagues in Minami-Tateya group of KEK for their help. This work was done in the KEK-LAPP collaboration supported in part by Mombusho in Japan under the Grant-in-Aid for International Scientific Research Program No.07044097, and CNRS/IN2P3 in France.

References
[1] For reviews, see, H. Nilles, Phys. Rep. 110 (1984) 1; H. Haber and G. Kane, Phys. Rep. 117 (1985) 75.
[2] U. Amaldi et al., Phys. Rev. D36 (1987) 1385; J. Ellis S. Kelley and D.V. Nanopoulos, Phys. Lett. B249 (1990) 441; P. Langacker and M. Luo, Phys. Rev. D44 (1991) 817; F. Anselmo et al., Nuovo Cimento 104A (1991) 1817; 105A (1992) 1357; A. Zichichi, Talk at 10 Years of SUSY Confronting Experiment, Geneva, Switzerland, 7-9 Sep., 1992
For example, see, L. Roszkowski, "Supersymmetric Dark Matter - A Review", Proceedings of 23rd Workshop of the INFN Eloisatron Project, Erice, 1992, ed. L.Cifarelli and V.A.Khoze, (World Scientific, Singapore, 1993), p. 429.

T. Ishikawa, T. Kaneko, K. Kato, S. Kawabata, Y. Shimizu and H. Tanaka, KEK Report 92-19, 1993, The GRACE manual v1.0; Minami-Tateya collaboration, GRACE User’s manual v1.1, 1994.

M. Kuroda, preprint KEK-CP057, hep-ph/9707446.

H. Tanaka, Comput. Phys. Commun. 58 (1990) 153; H. Tanaka, T. Kaneko and Y. Shimizu, Comput. Phys. Commun. 64 (1991) 149.

S. Kawabata, Comput. Phys. Commun. 41 (1986) 127, ibid., 88 (1995) 309.

M. Jimbo, H. Tanaka, T. Kaneko and T. Kon, Proc. of the INS Workshop ”Physics of e⁺e⁻, e⁻γ and γγ Collisions at Linear Accelerators”, eds. Z. Hioki, T. Ishii and R. Najima, INS-J-181 (1995) p. 215; preprint, hep-ph/9503364, TMCP-95-2 (1995); M. Jimbo, T. Kon, H. Tanaka and T. Kaneko, Proc. of 4th International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics (AIHENP95), eds. B. Denby and D. Perret-Gallix, (World Scientific, Singapore, 1995) p.149; T. Kaneko, H. Tanaka, M. Jimbo, T. Kon and Minami-Tateya collaboration, Proc. of the 3nd Workshop on Physics and Experiments at Linear e⁺e⁻ Colliders, eds. A. Miyamoto, Y. Fujii, T. Matsui and S. Iwata, (World Scientific, Singapore, 1996), Vol. II, p. 579.

A.E. Kuraev, V.S. Fadin, Sov. J. Nucl. Phys. 41 (1985) 466 and DESY Internal report L-Trans-297, 1985.

J. Fujimoto, Y. Shimizu and T. Munehisa, Prog. Theor. Phys. 90 (1993) 177; Prog. Theor. Phys. 91 (1994) 333; T. Munehisa, J. Fujimoto, Y. Kurihara and Y. Shimizu, Prog. Theor. Phys. 95 (1996) 375; Y. Kurihara, J. Fujimoto, T. Munehisa and Y. Shimizu, Prog. Theor. Phys. 96 (1996) 1223.

T. Sjöstrand, Comput. Phys. Commun. 82 (1994) 74.

J. Ellis and S. Rudaz, Phys. Lett. 128B (1983) 248; G. Altarelli and R. Rückl, Phys. Lett. 144B (1984) 126; I. Bigi and S. Rudaz, Phys. Lett. 153B (1985) 335; K. Hikasa and M. Kobayashi, Phys. Rev. D36 (1987) 724.

J. Gunion and H. Haber, Nucl. Phys. B272 (1986) 1.

K. Hikasa, "JLC Supersymmetry Manual", in preparation. Notations are identical to Ref.[1] besides the definition of μ and tan β. In our case, μ is positive definite and tan β has positive or negative values.

S. Katsanevas and P. Morawitz, Physics at LEP2, CERN 96-01, Vol.2 (1996) 328.

R. Odorico, Nucl. Phys. B172 (1980) 157, G. Marchesini and B.R. Webber, Nucl. Phys. B238 (1984) 1.
[17] K. Kato and T. Munehisa, Phys. Rev. D39 (1989) 156.

[18] K. Kato and T. Munehisa, Phys. Rev. D36 (1987) 61, ibid., Comput. Phys. Commun. 64 (1991) 67, K. Kato, T. Munehisa and H. Tanaka, Z. Phys. C54 (1992) 397.
Appendix A. List of sparticles in the MSSM

The list of sparticles in the MSSM is shown in Table 1, which includes abbreviated names used in the control cards and the KF-codes assigned for each particle. As is seen, the keywords in SUSY23 are case-sensitive.

particle	abbrev.	KF code	particle	abbrev.	KF code
\(\chi_1^+ \)	SW1	75	\(\tilde{u}_L \)	SUL	-42
\(\chi_1^- \)	sw1	-75	\(\tilde{u}_R \)	sur	48
\(\chi_2^+ \)	SW2	76	\(\tilde{u}_R \)	SUR	-48
\(\chi_2^- \)	sw2	-76	\(d_L \)	sdl	41
\(\chi_1^0 \)	sz1	71	\(d_L \)	SDL	-41
\(\chi_2^0 \)	sz2	72	\(d_R \)	sdr	47
\(\chi_3^0 \)	sz3	73	\(d_R \)	SDR	-47
\(\chi_4^0 \)	sz4	74	\(\tilde{c}_L \)	scl	44
\(\tilde{g} \)	sgl	70	\(\tilde{c}_L \)	SCL	-44
\(\tilde{e}_L^+ \)	sel	51	\(\tilde{c}_R \)	scr	50
\(\tilde{e}_L^- \)	SEL	-51	\(\tilde{c}_R \)	SCR	-50
\(\tilde{e}_R^- \)	ser	57	\(\tilde{s}_L \)	ssl	43
\(\tilde{e}_R^+ \)	SER	-57	\(\tilde{s}_L \)	SSL	-43
\(\tilde{\nu}_e \)	sne	52	\(\tilde{s}_R \)	ssr	49
\(\tilde{\nu}_e \)	SNE	-52	\(\tilde{s}_R \)	SSR	-49
\(\tilde{\mu}_L \)	sml	53	\(\tilde{t}_1 \)	ST1	-46
\(\tilde{\mu}_L^+ \)	SML	-53	\(\tilde{t}_1 \)	ST1	-46
\(\tilde{\mu}_R \)	smr	58	\(\tilde{t}_2 \)	ST2	62
\(\tilde{\mu}_R^+ \)	SMR	-58	\(\tilde{t}_2 \)	ST2	-62
\(\tilde{\nu}_\mu \)	snm	54	\(\tilde{b}_1 \)	sb1	45
\(\tilde{\tau}_1^- \)	sa1	55	\(\tilde{b}_2 \)	sb2	61
\(\tilde{\tau}_1^+ \)	SA1	-55	\(\tilde{b}_2 \)	SB2	-61
\(\tilde{\tau}_2^- \)	sa2	59	\(h^0 \)	sh1	25
\(\tilde{\tau}_2^+ \)	SA2	-59	\(H^0 \)	sh2	35
\(\tilde{\nu}_\tau \)	sna	56	\(A^0 \)	sh3	36
\(\tilde{\nu}_\tau \)	SNA	-56	\(H^+ \)	sh4	37
\(\tilde{u}_L \)	sul	42	\(H^- \)	SH4	-37

Table 1 Sparticles in SUSY23.

Appendix B. Parameters in control data

In the table below, the default values are underlined and the relation between commands and variable/array in Fortran sources is also described. Variable names are written in bold letters and filenames in italic. All masses and energy parameters are given in GeV.

18
i) Process selection.

```
Process = SW1sw1
```

abbreviation of process name

This specifies the subdirectory name, where subroutines for the process are stored. Table 1 in Appendix C shows the abbreviation of process names.

ii) Center of mass energy.

```
energy = 200.D0
```

CMS energy

w in kinit.f

iii) Control parameters.

```
helicity1 = average, left, right
  Helicity state for the initial electron.

helicity2 = average, left, right
  Helicity state for the initial positron.

type = tree, sf, qedpsi  (Not available for γχ₀¹⁻χ₀¹⁻)
  Type of calculation:
  Without radiation(tree), ISR with structure function(sf) and ISR with QEDPS(qedpsi).
  jqedps in usrpm.f, isr in kinit.f.
  jqedps = 0, isr = 0 without radiation(tree).
  jqedps = 0, isr = 1 for sf.
  jqedps = 1 for qedpsi.
```

iv) Standard Model parameters.

```
decay = yes, no
  Unstable sparticle decays :
  jdecay = 1 or 0 in usrpm.f.

spinacr = yes, no
  Include spin correlations for direct 3-body decays of gauginos :
  jspncr = 1 or 0 in usrpm.f.

qcdcr = yes, no
  Include overall QCD correction factor in squark production :
  jqcdcr = 1 or 0 in usrpm.f.

susyp = yes, no
  (yes) user can selectively set ino masses and mixing angles as well as charged Higgs mass in modmas.f (see next sections)
  (no) all parameters are calculated in the MSSM framework :
  jsusyp = 1 or 0 in usrpm.f.
```
Parameter	Value	Description	Location
amw	80.23D0	W mass	modmas.f
agw	2.08D0	W width	modmas.f
amz	91.19D0	Z mass	modmas.f
agz	2.491D0	Z width	modmas.f
amu	100.0D-3	u-quark mass	modmas.f
amd	100.0D-3	d-quark mass	modmas.f
amc	1.8645D0	c-quark mass	modmas.f
ams	300.0D-3	s-quark mass	modmas.f
amt	174.0D0	top mass	modmas.f
amb	5.0D0	b-quark mass	modmas.f
alphai	128.07D0	α^{-1}	modmas.f
alpha_s	0.12D0	α_s	modmas.f

v) Minimal SUSY Standard Model parameters.

Parameter	Value	Description	Location
tanbe	-2.0D0	$\tan \beta$	usprm.f
xm2	50.0D0	SU(2) gaugino mass	usprm.f
xmu	150.0D0	SUSY Higgs mixing mass μ	usprm.f
vi) Sfermion sector parameters.

Parameter	Value	Description
$xmsel$	95.0D0	left-handed selectron mass \tilde{e}_L : $xmsel$ in $usrprm.f$.
$xmser$	90.0D0	right-handed selectron mass \tilde{e}_R : $xmser$ in $usrprm.f$.
$xmsml$	95.0D0	left-handed smuon mass $\tilde{\mu}_L$: $xmsml$ in $usrprm.f$.
$xmsmr$	90.0D0	right-handed smuon mass $\tilde{\mu}_R$: $xmsmr$ in $usrprm.f$.
$xmsa1$	90.0D0	lighter stau mass $\tilde{\tau}_1$: $xmsa1$ in $usrprm.f$.
$xmsa2$	95.0D0	heavier stau mass $\tilde{\tau}_2$: $xmsa2$ in $usrprm.f$.
$xmsna$	100.0D0	tau-sneutrino mass $\tilde{\nu}_\tau$: $xmsna$ in $usrprm.f$.
tha	pi/2.0D0	mixing angle θ_τ of staus : tha in $usrprm.f$.
$xmsul$	200.0D0	left-handed s u-quark mass \tilde{u}_L : $xmsul$ in $usrprm.f$.
$xmsur$	200.0D0	right-handed s u-quark mass \tilde{u}_R : $xmsur$ in $usrprm.f$.
$xmsdr$	200.0D0	right-handed s d-quark mass \tilde{d}_R : $xmsdr$ in $usrprm.f$.
$xmscl$	200.0D0	left-handed s c-quark mass \tilde{c}_L : $xmscl$ in $usrprm.f$.
$xmscr$	200.0D0	right-handed s c-quark mass \tilde{c}_R : $xmscr$ in $usrprm.f$.
$xmssr$	200.0D0	right-handed s s-quark mass \tilde{s}_R : $xmssr$ in $usrprm.f$.
Variable	Value	Description
------------	-------	-------------
xmst1	80.0D0	lighter stop mass $m_{\tilde{t}_1}$: xmst1 in `usrprm.f`.
xmst2	250.0D0	heavier stop mass $m_{\tilde{t}_2}$: xmst2 in `usrprm.f`.
xmsb1	90.0D0	lighter sbottom mass $m_{\tilde{b}_1}$: xmsb1 in `usrprm.f`.
xmsb2	210.0D0	heavier sbottom mass $m_{\tilde{b}_2}$: xmsb2 in `usrprm.f`. This parameter is calculated in case of `susyp = no`.
tht	1.5D0	mixing angle θ_t of stops: tht in `usrprm.f`.
thb	0.3D0	mixing angle θ_b of sbottoms: thb in `usrprm.f`.
xaa	0.0D0	trilinear coupling A_τ in `modmas.f` in case of `susyp = yes`.
xau	250.0D0	trilinear coupling A_t in `modmas.f` in case of `susyp = yes`.
xad	50.0D0	trilinear coupling A_b in `modmas.f` in case of `susyp = yes`.
vii) Neutralino sector parameters.

For only \texttt{susyp = yes}, the following parameters can be given by users.

If \texttt{susyp = no} is specified, the input for the following parameters are neglected since these are calculated by Eqs.(7) and (8).

| \texttt{amn1} = & 30.0D0 \\
| neutralino mass \(\chi_{1}^{0}\). |
| \texttt{amn2} = & 70.0D0 \\
| neutralino mass \(\chi_{2}^{0}\). |
| \texttt{amn3} = & 200.0D0 \\
| neutralino mass \(\chi_{3}^{0}\). |
| \texttt{amn4} = & 400.0D0 \\
| neutralino mass \(\chi_{4}^{0}\). |

\[
\text{on} = \begin{cases}
1.0D0 & (\text{for } i = 1 \sim 4) \\
0.0D0 & (\text{for } i \neq j, i,j = 1 \sim 4)
\end{cases}
\]

\text{neutralino mixing matrix } O_N \text{ in } modmas.f

\[
\text{sgn} = \begin{cases}
i.1.0D0 & (\text{for } i = 1 \sim 4) \\
i.1.0D0, 0.0D0 & (\text{for } i = 1 \sim 4)
\end{cases}
\]

\text{neutralino sign factor } Re(\eta_i), Im(\eta_i).

viii) Chargino sector parameters.

For only \texttt{susyp = yes}, the following parameters can be given by users.

If \texttt{susyp = no} is specified, the input for the following parameters are neglected since these are calculated by Eqs.(9) \sim (12).

| \texttt{amc1} = & 30.0D0 \\
| chargino mass \(\chi_{1}^{-}\). |
| \texttt{amc2} = & 200.0D0 \\
| chargino mass \(\chi_{2}^{-}\). |
| \texttt{cphl} = & 1.0D0 \\
| chargino mixing matrix \cos \phi_L. |
| \texttt{sphl} = & 0.0D0 \\
| chargino mixing matrix \sin \phi_L. |
| \texttt{cphr} = & 1.0D0 \\
| chargino mixing matrix \cos \phi_R. |
| \texttt{sphr} = & 0.0D0 \\
| chargino mixing matrix \sin \phi_R. |
| \texttt{eps} = & 1.0D0 \\
| chargino sign factor \epsilon_R. |

ix) Experimental cuts.

The numbering convention of particles follows the \texttt{GRACE} scheme, where the initial electron and positron are 1st and 2nd, respectively, and the final particles are numbered 3, 4 and 5. In the process name of Table 2, the order of particles corresponds to this numbering convention. For instance, in the process, \(e^{+} \bar{e}_{R} \chi_{1}^{0}\), the 3rd is \(e^{+}\), the 4th is \(\bar{e}_{R}\) and the 5th is \(\chi_{1}^{0}\).
thecut3 = 180.D0, 0.0D0
Polar angle cut for 3rd particle in degree (backward-angle, forward-angle).
coscut(1:2,1)=cos(thecut3) in kinit.f.

thecut4 = 180.D0, 0.0D0
Polar angle cut for 4th particle in degree (backward-angle, forward-angle).
coscut(1:2,2)=cos(thecut4) in kinit.f.

thecut5 = 180.D0, 0.0D0
Polar angle cut for 5th particle in degree (backward-angle, forward-angle).
coscut(1:2,3)=cos(thecut5) in kinit.f.

Instead of giving a numerical value, the user can use the strings as below:
amass1(i) has the mass for i-th particle and w is the CM energy.

engcut3 = amass1(3), w
Energy cut for 3rd particle (min.,max.)
engyct(1:2,1) in kinit.f

engcut4 = amass1(4), w
Energy cut for 4th particle (min.,max.)
engyct(1:2,2) in kinit.f

engcut5 = amass1(5), w
Energy cut for 5th particle (min.,max.)
engyct(1:2,3) in kinit.f

x) Parameters for integration.

itmx = 5, 10
Iteration numbers: itmx1, itmx2 in kinit.f

acc = 0.1, 0.05
Accuracies in %: acc1, acc2 in kinit.f

ncall = 10000
Sampling points: ncall in kinit.f

xi) Parameters for event generation.

mxtry = 50
Maximum trial numbers: mxtry in usersp.f

mxevnt = 10000
Maximum event numbers: mxevnt in usersp.f

hadron = yes, no
Hadronization with JETSET[11] for event generation:
If yes, then a statement, call luexec is activate in grc2sh.f.

xii) End of description.

end

After the command end any command is neglected.
Appendix C. Process table

The 23 processes included in SUSY23 are listed in Table 2. In the heading, 'abbrev.' and 'dir.' stand for the abbreviated name used in the control card and directory name where the generated code is stored, respectively. In Tables 3 ~ 9, decay modes taken into account in the unstable sparticle decays in SUSY23 are listed. By default, each branching ratio is automatically calculated in the framework of the MSSM. The abbreviated names are used in the control card or kinit.f when users want to set each branching ratio (jbrnch = 1).

process	abbrev.	dir.	process	abbrev.	dir.
e⁺e⁻ →	SW1sw1		e⁺e⁻ →	SA2sa1	
\(\chi^+_1\chi^-_1\)	SW1sw1		\(\tilde{\tau}^+_2\tilde{\tau}^-_1\)	SA2sa1	
\(\chi^0_1\chi^-_1\)	sz1sz2		\(\tilde{\tau}^+_2\tilde{\tau}^-_2\)	SA2sa2	
\(\chi^-_1\chi^-_2\)	sz2sz2		\(\nu_e\tilde{\nu}_e\)	SNEsne	
\(\tilde{\gamma}\chi^0_1\chi^-_1\)	asz1sz1		\(\tilde{\nu}\mu\tilde{\nu}\mu\)	SNsmm	SNsmm
\(\tilde{\nu}_{R}\tilde{\nu}_{R}\)	SERser		\(\nu_e\tilde{\nu}_e\)	Eserszi	
\(\tilde{e}_L^+\tilde{e}_L^-\)	SELsel		\(e^+\tilde{e}_R\chi^0_1\)	Eselszi	
\(\tilde{e}_R^+\tilde{e}_R^-\)	SERsel		\(e^+\tilde{e}_L^+\chi^0_1\)	Eselszi	
\(\tilde{\mu}_{R}\tilde{\mu}_{R}\)	SMRsmr		\(\nu_e\tilde{e}_L^+\chi^0_1\)	Eselszi	
\(\tilde{\mu}_{L}\tilde{\mu}_{L}\)	SMLsm1		\(\tilde{\nu}\nu_{e}\chi^0_1\)	Eselszi	
\(\tilde{\tau}_1^+\tilde{\tau}_1^-\)	SA1sa1		\(b_1\tilde{b}_1\)	SB1sb1	
\(\tilde{\tau}_1^+\tilde{\tau}_2^-\)	SA1sa2		\(\tilde{\tau}_1^+\tilde{\tau}_2^-\)	SB1sb1	

Table 2 Available processes in SUSY23.

process	abbrev.	process	abbrev.
\(\chi^-_1\to e^-\tilde{\nu}_e\chi^0_1\)	swibr(1)	\(\chi^-_1\to \tau^-\tilde{\nu}_{\tau}\)	swibr(8)
\(\chi^-_1\to \mu^-\tilde{\nu}_{\mu}\chi^0_1\)	swibr(2)	\(\chi^-_1\to \tilde{\nu}_e\tilde{e}_L^+\chi^0_1\)	swibr(9)
\(\chi^-_1\to \tau^-\tilde{\nu}_e\chi^0_1\)	swibr(3)	\(\chi^-_1\to \tilde{\nu}_e\tilde{\mu}\chi^0_1\)	swibr(10)
\(\chi^-_1\to \tilde{u}\tilde{d}\chi^0_1\)	swibr(4)	\(\chi^-_1\to \tilde{\nu}_e\tilde{\tau}_1^-\)	swibr(11)
\(\chi^-_1\to \tilde{c}\tilde{s}\chi^0_1\)	swibr(5)	\(\chi^-_1\to \tilde{\nu}_e\tilde{\tau}_2^-\)	swibr(12)
\(\chi^-_1\to e^-\tilde{\nu}_e\)	swibr(6)	\(\chi^-_1\to b\tilde{t}_1\)	swibr(13)
\(\chi^-_1\to \mu^-\tilde{\nu}_{\mu}\)	swibr(7)		

Table 3 Decay processes of lighter chargino \(\chi^-_1\) in SUSY23.
process	abbrev.	process	abbrev.
$\chi_2^0 \to e^- e^+ \chi_1^0$	sn2br(1)	$\chi_2^0 \to \tau^+ \tilde{\tau}^-$	sn2br(16)
$\chi_2^0 \to \mu^- \mu^+ \chi_1^0$	sn2br(2)	$\chi_2^0 \to \tau^- \tilde{\tau}_1^-$	sn2br(17)
$\chi_2^0 \to \tau^- \tau^+ \chi_1^0$	sn2br(3)	$\chi_2^0 \to e^+ \tilde{e}_L^-$	sn2br(18)
$\chi_2^0 \to \nu_e \tilde{\nu}_e \chi_1^0$	sn2br(4)	$\chi_2^0 \to e^- e^+_L$	sn2br(19)
$\chi_2^0 \to \nu_\mu \tilde{\nu}_\mu \chi_1^0$	sn2br(5)	$\chi_2^0 \to \mu^+ \tilde{\mu}_L^-$	sn2br(20)
$\chi_2^0 \to \nu_\tau \tilde{\nu}_\tau \chi_1^0$	sn2br(6)	$\chi_2^0 \to \mu^- \tilde{\mu}_L^+$	sn2br(21)
$\chi_2^0 \to u \tilde{u} \chi_1^0$	sn2br(7)	$\chi_2^0 \to \tau^+ \tilde{\tau}_2^-$	sn2br(22)
$\chi_2^0 \to s \tilde{s} \chi_1^0$	sn2br(8)	$\chi_2^0 \to \nu_e \tilde{\nu}_e$	sn2br(23)
$\chi_2^0 \to b \tilde{b} \chi_1^0$	sn2br(9)	$\chi_2^0 \to \nu_\mu \tilde{\nu}_\mu$	sn2br(24)
$\chi_2^0 \to e^+ \tilde{e}_R^-$	sn2br(10)	$\chi_2^0 \to \tilde{\nu}_e \nu_e$	sn2br(25)
$\chi_2^0 \to \mu^+ \mu^- \chi_1^0$	sn2br(11)	$\chi_2^0 \to \nu_\tau \tilde{\nu}_\tau$	sn2br(26)
$\chi_2^0 \to e^- \tilde{e}_R^+$	sn2br(12)	$\chi_2^0 \to \nu_\mu \tilde{\nu}_\mu$	sn2br(27)
$\chi_2^0 \to \mu^+ \mu^- \chi_1^0$	sn2br(13)	$\chi_2^0 \to \nu_\tau \tilde{\nu}_\tau$	sn2br(28)
$\chi_2^0 \to e^- \tilde{e}_R^+$	sn2br(14)	$\chi_2^0 \to \nu_\mu \tilde{\nu}_\mu$	sn2br(29)
$\chi_2^0 \to \mu^- \tilde{\mu}_R^-$	sn2br(15)	$\chi_2^0 \to \nu_\tau \tilde{\nu}_\tau$	sn2br(30)

Table 4 Decay processes of second lightest neutralino χ_2^0 in SUSY23.

process	$\ell = e$	$\ell = \mu$
$\tilde{\ell}_L \to \tilde{\ell} \chi_1^0$	selbr(1)	smlbr(1)
$\tilde{\ell}_L \to \tilde{\ell} \chi_2^0$	selbr(2)	smlbr(2)
$\tilde{\ell}_L \to \nu_\ell \chi_1^-$	selbr(3)	smlbr(3)

Table 5 Decay processes of left-handed charged sleptons $\tilde{\ell}_L$ in SUSY23.

process	$\ell = e$	$\ell = \mu$
$\tilde{\ell}_R \to \tilde{\ell} \chi_1^0$	serbr(1)	smrbr(1)
$\tilde{\ell}_R \to \tilde{\ell} \chi_2^0$	serbr(2)	smrbr(2)

Table 6 Decay processes of right-handed charged sleptons $\tilde{\ell}_R$ in SUSY23.
Table 7 Decay processes of lighter and heavier staus $\tilde{\tau}$ in SUSY23.

process	abbrev.
$\tilde{\tau}_1^- \to \tau^- \chi^0_1$	sa1br(1)
$\tilde{\tau}_1^- \to \tau^- \chi^0_2$	sa1br(2)
$\tilde{\tau}_1^- \to \nu_\tau \chi$	sa1br(3)
$\tilde{\tau}_2^- \to \tau^- \chi^0_1$	sa2br(1)
$\tilde{\tau}_2^- \to \tau^- \chi^0_2$	sa2br(2)
$\tilde{\tau}_2^- \to \nu_\tau \chi$	sa2br(3)

Table 8 Decay processes of sneutrinos $\tilde{\nu}_\ell$ in SUSY23.

process	$\ell = e$	$\ell = \mu$	$\ell = \tau$
$\tilde{\nu}_\ell \to \nu_{\ell} \chi^0_1$	snebr(1)	snmbr(1)	snabr(1)
$\tilde{\nu}_\ell \to \nu_{\ell} \chi^0_2$	snebr(2)	snmbr(2)	snabr(2)
$\tilde{\nu}_\ell \to \ell \chi^+_1$	snebr(3)	snmbr(3)	snabr(3)

Table 9 Decay processes of 3rd generation squarks \tilde{t}_1 and \tilde{b}_1 in SUSY23.

process	abbrev.
$\tilde{t}_1 \to c_{\chi^0_1}$	st1br(1)
$\tilde{t}_1 \to c_{\chi^0_2}$	st1br(2)
$\tilde{t}_1 \to b_{\chi^+_1}$	st1br(3)
$\tilde{b}_1 \to b_{\chi^0_1}$	sb1br(1)
$\tilde{b}_1 \to b_{\chi^0_2}$	sb1br(2)

Appendix D. Installation

The source code is available by anonymous ftp from ftp.kek.jp in the directory kek/minami/susy23. The SUSY23 system contains the complete set of Fortran sources for 23 processes, the three libraries, i.e., BASES/SPRING, CHANEL and utilities for kinematics. Those source codes are written in FORTRAN77. In addition, SUSY23 provides the interface program to generate a few Fortran source files according to the control data specified by the user. This program is written in C, YACC and LEX. SUSY23 has been developed on HP-UX, but should run on any UNIX platform with a fortran complier.

The procedure of installation is as follows:

1. Editing Makefile.

The following macros in Makefile should be taken care of by users themselves. For example, SU23DIR defines the directory name where SUSY23 is installed. The values of FC and FOPT
define the relevant compiler name and option for your system. The other macros can be left as they are.

SU23DIR = directory where SUSY23 are installed.

PRCDIR = directory where process files are installed.
(default is $(SU23DIR)/prc.)

LIBDIR = directory where libraries are installed.
(default is $(SU23DIR)/lib.)

BINDIR = directory where an executable is installed.
(default is $(SU23DIR)/bin.)

MACHINE = [hpux|hiux|sgi|dec|sun]

FC = FORTRAN compiler command name.

FOPT = FORTRAN compiler options.

CERNLIBS = CERNLIB including the jetset library.

For HP-UX, `-L/cern/pro/lib -ljetset74 -lpacklib -lkernlib -L/lib/pa1.1/ -lm`

2. Compilation.

By executing command `make install` the executable of the interface program(susy23) is generated at **BINDIR**. Furthermore six libraries, BASES/SPRING, CHANEL, kinematics utility library and three susy libraries, are generated in **LIBDIR**.

The sample control data files will be found in the directory **sample**.

TEST RUN OUTPUT

control data

```
Process = Eselsz1
Energy  = 200.0d0
type    = tree
itmx    = 7, 15
ncall   = 10000
hadron  = yes
mxevnt  = 10000
end
```

Followings are the output files from **BASES** and **SPRING**. Only one histogram, the momentum distribution of the particle 3, is shown since the whole output is too lengthy to be included here.
Process: $e^+e^- \rightarrow (3)\text{positron} (4)\text{selectron} (6)\text{neutralino}$

CM Energy (GeV): 200.00000

Mass (Width):
- W-boson: 80.230 (2.080)
- Z-boson: 91.190 (2.491)
- u-quark: 0.100
- d-quark: 0.100
- c-quark: 1.865
- s-quark: 0.300
- t-quark: 174.000
- b-quark: 5.000
- α : $1/128.070$
- α_s: 0.12000

SUSY Parameters
- $\tan(\beta)$ = -2.00
- $SU(2)$ gaugino mass (GeV) = 50.00
- SUSY Higgs parameter (GeV) = 150.00

Sfermions Masses (GeV)
- s-electron (L): 95.000
- s-electron (R): 90.000
- s-neutrino-electron: 95.000
- s-muon (L): 95.000
- s-muon (R): 90.000
- s-neutrino-muon: 95.000
- s-tau (1): 90.000
- s-tau (2): 95.000
- s-neutrino-tau: 100.000

- s-quark (L): 200.000
- s-quark (R): 200.000
- s-d-quark (L): 200.000
- s-d-quark (R): 200.000
- s-u-quark (L): 200.000
- s-u-quark (R): 200.000
- s-s-quark (L): 200.000
- s-s-quark (R): 200.000
- s-t-quark (1): 80.000
- s-t-quark (2): 250.000
- s-b-quark (1): 90.000
- s-b-quark (2): 210.000

Sfermions Mixing Angles (rad.):
- s-tau: 0.000
- s-top: 1.500
- s-bottom: 0.300
trilinear couplings

- $A_{\tau} = 3.000000E+03$
- $A_u = 5.225048E+02$
- $A_d = -1.732713E+04$

Neutralino

- Neutralino masses (GeV) = 27.89, 70.53
- Neutralino mixing matrix (bino bases)
 - $0.962, 0.284, 0.104, 0.036$
 - $-0.207, 0.864, -0.459, -0.018$
 - $-0.122, 0.280, 0.611, -0.731$
 - $-0.187, 0.308, 0.637, 0.681$
- Neutralino sign factor
 - $1.00, 0.00 | 1.00, 0.00 | 1.00, 0.00 | 0.00, 1.00$

Chargino

- Chargino masses (GeV) = 69.60, 181.74
- Chargino mixing matrix
 - $0.85, -0.53$
 - $1.00, 0.09$
- Chargino sign factor = 1.00

Calculated Total Decay width (GeV)

- Chargino1: $3.64E-04$ Chargino2: $0.521E+01$
- Neutralino2: $1.49E-04$ Neutralino3: $3.22E+00$ Neutralino4: $6.62E+00$
- SelectronR: $3.39E+00$ SelectronL: $3.92E+00$
- SmuonR: $3.39E+00$ SmuonL: $3.92E+00$
- Stau1: $3.26E+00$ Stau2: $3.67E+00$
- Sneu_e: $2.72E+00$ Sneu_mu: $2.72E+00$ Sneu_tau: $3.51E+00$
- Stop1: $2.40E-03$ Stop1: $4.69E-01$

Experimental Cuts

- Angle Cuts
 - Particle 3: -1.000 ----> 1.000
 - Particle 4: -1.000 ----> 1.000
 - Particle 5: -1.000 ----> 1.000
- Energy CUT
 - Particle 3: 0.001 ----> 62.246
 - Particle 4: 95.000 ----> 120.618
 - Particle 5: 27.888 ----> 79.382
- Invariant mass CUT
 - Inv. Mass 4-5: 122.888 ----> 199.999
 - Inv. Mass 3-4: 95.001 ----> 172.112
 - Inv. Mass 3-5: 27.889 ----> 105.000

OPTIONS:

- Calculation: TREE
- Width: FIX
Branching Ratios of Sparticles

chargino 1 (sw1)

- EL ne sz1: 0.1774
- MU nm sz1: 0.1774
- TA nt sz1: 0.2171
- UQ DQ sz1: 0.2153
- SQ cq sz1: 0.2129
- ne SEL: 0.0000
- nt SA1: 0.0000
- BQ st1: 0.0000

neutralino 2 (sz2)

- EL el sz1: 0.2747
- MU mu sz1: 0.2747
- TA ta sz1: 0.3367
- NE ne sz1: 0.0200
- NM nm sz1: 0.0200
- NT nt sz1: 0.0136
- UQ uq sz1: 0.0198
- DQ dq sz1: 0.0017
- el seH: 0.0000
- mu smR: 0.0000
- ta sa1: 0.0000
- el seL: 0.0000
- mu smL: 0.0000
- ta sa2: 0.0000
- ne sne: 0.0000
- nm snm: 0.0000
- na sna: 0.0000

selectron L (seL)

- el sz1: 0.5581
- el sz2: 0.1193
- ne sw1: 0.3226

selectron R (seR)

- el sz1: 0.9914
- el sz2: 0.0086

smuon L (smL)

- mu sz1: 0.5581
- mu sz2: 0.1193
- nm sw1: 0.3226

smuon R (smR)

- mu sz1: 0.9914
- mu sz2: 0.0086

stau 1 (sa1)

- ta sz1: 0.6223
- ta sz2: 0.1007
- na sw1: 0.2770

stau 2 (sa2)

- ta sz1: 0.9883
- ta sz2: 0.0115
- na sw1: 0.0002

snu_e (sne)

- ne sz1: 0.0669
- ne sz2: 0.2900
- el sw1: 0.6431

snu_mu (snm)

- nm sz1: 0.0669
- nm sz2: 0.2900
- mu sw1: 0.6431

snu_tau (sna)

- nt sz1: 0.0669
- nt sz2: 0.2900
- tu sw1: 0.6485

stop 1 (st1)

- cq sz1: 0.0000
- cq sz2: 0.0000
- bq sw1: 1.0000

sbottom 1 (sb1)

- bq sz1: 0.1410
- bq sz2: 0.8590
Parameters for BASES

(1) Dimensions of integration etc.
- Number of dimensions: Ndim = 5 (max. 50)
- Number of Wilds: Nwild = 5 (max. 15)
- Number of sample points: Ncall = 9375(real), 10000(given)
- Number of subregions: Ng = 50/variable
- Number of regions: Nregion = 5/variable
- Number of Hypercubes: Ncube = 3125

(2) About the integration variables

i	XL(i)	XU(i)	IG(i)	Wild
1	0.000000E+00	1.000000E+00	1	yes
2	0.000000E+00	1.000000E+00	1	yes
3	0.000000E+00	1.000000E+00	1	yes
4	0.000000E+00	1.000000E+00	1	yes
5	0.000000E+00	1.000000E+00	1	yes

(3) Parameters for the grid optimization step
- Max. # of iterations: ITM1 = 7
- Expected accuracy: Acc1 = 0.1000%

(4) Parameters for the integration step
- Max. # of iterations: ITM2 = 15
- Expected accuracy: Acc2 = 0.0500%

Computing Time Information

(1) For BASES
- Overhead: 0:0:7.46
- Grid Optim. Step: 0:13:41.90
- Integration Step: 0:29:13.41
- Go time for all: 0:43:2.77

(2) Expected event generation time
- Expected time for 1000 events: 17.81 Sec
Convergency Behavior for the Grid Optimization Step

IT Eff	R_Neg	Estimate	Acc %	Estimate	Error	order	Acc %	H: M: Sec		
1	100	0.00	5.295	1.351	E-01	5.295	0.071544	E-01	5.295	0: 1:57.29
2	100	0.00	1.470	1.447	336	1.417	0.020502	E-01	1.417	0: 3:54.83
3	100	0.00	1.211	1.437	373	0.921	0.013232	E-01	0.921	0: 5:52.58
4	100	0.00	1.130	1.441	760	0.714	0.010290	E-01	0.714	0: 7:50.20
5	100	0.00	1.205	1.444	741	0.614	0.008872	E-01	0.614	0: 9:47.20
6	100	0.00	1.171	1.447	447	0.544	0.007871	E-01	0.544	0:11:44.74

Convergency Behavior for the Integration Step

IT Eff	R_Neg	Estimate	Acc %	Estimate	Error	order	Acc %	H: M: Sec		
1	100	0.00	1.159	1.467	078	1.159	0.017002	E-01	1.159	0:15:39.79
2	100	0.00	1.111	1.465	078	0.802	0.011636	E-01	0.802	0:17:37.65
3	100	0.00	1.101	1.465	866	0.648	0.009447	E-01	0.648	0:19:35.01
4	100	0.00	1.119	1.455	106	0.561	0.008164	E-01	0.561	0:21:31.73
5	100	0.00	1.100	1.456	777	0.500	0.007271	E-01	0.500	0:23:28.23
6	100	0.00	1.158	1.454	980	0.459	0.006677	E-01	0.459	0:25:24.70
7	100	0.00	1.146	1.454	232	0.426	0.006195	E-01	0.426	0:27:21.81
8	100	0.00	1.091	1.453	082	0.397	0.005766	E-01	0.397	0:29:18.61
9	100	0.00	1.149	1.455	997	0.377	0.005485	E-01	0.377	0:31:15.24
10	100	0.00	1.202	1.454	854	0.359	0.005230	E-01	0.359	0:33:12.25
11	100	0.00	1.195	1.456	747	0.344	0.005008	E-01	0.344	0:35:8.71
12	100	0.00	1.212	1.465	559	0.331	0.004824	E-01	0.331	0:37:5.18
13	100	0.00	1.248	1.466	161	0.320	0.004662	E-01	0.320	0:39:2.19
14	100	0.00	1.212	1.466	987	0.309	0.004509	E-01	0.309	0:40:58.71
15	100	0.00	1.360	1.467	306	0.302	0.004398	E-01	0.302	0:42:55.31
x	d(Sigma)/dx	0.0E+00	1.5E-03	3.0E-03	4.5E-03					
-----	-------------	---------	---------	---------	---------					
1.000	2.313+-.443 E -S1+00000000000000	I								
1.150	5.546+1.029 E -S1+00000000000000	I								
1.300	8.262+1.265 E -S1+00000000000000	I								
1.450	7.249+1.200 E -S1+00000000000000	I								
1.600	9.100+1.624 E -S1+00000000000000	I								
1.750	8.764+1.639 E -S1+00000000000000	I								
1.900	1.090+-.189 E -41+00000000000000	I								
1.100	6.979+1.197 E -S1+00000000000000	I								
1.200	7.721+1.723 E -S1+00000000000000	I								
1.350	9.019+1.836 E -S1+00000000000000	I								
1.550	9.855+1.129 E -S1+00000000000000	I								
1.650	1.232+-.199 E -41+00000000000000	I								
1.800	1.104+-.197 E -41+00000000000000	I								
1.950	1.120+-.157 E -41+00000000000000	I								
2.100	1.164+-.160 E -41+00000000000000	I								
2.250	1.399+-.159 E -41+00000000000000	I								
2.400	1.648+-.104 E -41+00000000000000	I								
2.550	3.776+-.622 E -41+00000000000000	I								
2.700	2.477+-.081 E -31+00000000000000	I								
2.850	2.739+-.064 E -31+00000000000000	I								
3.000	3.066+-.071 E -31+00000000000000	I								
3.150	4.264+-.083 E -31+00000000000000	I								
3.300	4.362+-.080 E -31+00000000000000	I								
3.450	4.349+-.079 E -31+00000000000000	I								
3.600	4.384+-.070 E -31+00000000000000	I								
3.750	4.419+-.074 E -31+00000000000000	I								
3.900	4.467+-.076 E -31+00000000000000	I								
4.050	4.410+-.071 E -31+00000000000000	I								
4.200	4.453+-.069 E -31+00000000000000	I								
4.350	4.551+-.080 E -31+00000000000000	I								
4.500	4.469+-.080 E -31+00000000000000	I								
4.650	4.402+-.077 E -31+00000000000000	I								
4.800	4.381+-.082 E -31+00000000000000	I								
4.950	4.554+-.084 E -31+00000000000000	I								
5.100	4.503+-.076 E -31+00000000000000	I								
5.250	4.564+-.081 E -31+00000000000000	I								
5.400	4.536+-.075 E -31+00000000000000	I								
5.550	4.380+-.071 E -31+00000000000000	I								
5.700	4.602+-.066 E -31+00000000000000	I								
5.850	4.264+-.071 E -31+00000000000000	I								
6.000	2.521+-.062 E -31+00000000000000	I								
6.150	5.346+-.292 E -51+00000000000000	I								
6.300	0.000+-.000 E 01	I								
6.450	0.000+-.000 E 01	I								
6.600	0.000+-.000 E 01	I								
6.750	0.000+-.000 E 01	I								
6.900	0.000+-.000 E 01	I								
7.050	0.000+-.000 E 01	I								
7.200	0.000+-.000 E 01	I								
7.350	0.000+-.000 E 01	I								
7.500	0.000+-.000 E 01	I								
7.750	0.000+-.000 E 01	I								
8.000	0.000+-.000 E 01	I								
8.250	0.000+-.000 E 01	I								
8.500	0.000+-.000 E 01	I								
8.750	0.000+-.000 E 01	I								
9.000	0.000+-.000 E 01	I								
9.250	0.000+-.000 E 01	I								
9.500	0.000+-.000 E 01	I								
9.750	0.000+-.000 E 01	I								
10.00	0.000+-.000 E 01	I								

Logarithmic Scale indicated by "0"
Number of generated events = 10000
Generation efficiency = 23.794 Percent
Computing time for generation = 443.281 Seconds
 for Overhead = 8.240 Seconds
 for Others = 10.349 Seconds
GO time for event generation = 461.870 Seconds
Max. number of trials MXTRY = 50 per event
Number of miss-generation = 51 times
Original Histogram (ID = 1) for Momentum of Particle 3
Total = 10000 events "*" : Orig. Dist. in Log Scale.

x	d(Sig/dx)	dN/dx
1	1.0E-03	1.0E-04

I E 1 I	.000E 0	0I	I
I .000 I	2.313E -5	7I******** < 0 >	I
I .150 I	5.546E -5	5I**********<0* >	I
I .300 I	8.262E -5	7I**********<0* >	I
I .450 I	7.249E -5	13I************<0 >	I
I .600 I	9.100E -5	31I**********<0* >	I
I .750 I	8.764E -5	10I**********<0* >	I
I .900 I	1.090E -4	13I**********<0* >	I
I 1.150 I	6.979E -5	10I**********<0* >	I
I 1.350 I	9.019E -5	10I**********<0* >	I
I 1.500 I	5.955E -5	17I************<0 >	I
I 1.650 I	1.232E -4	8I*************<0* >	I
I 1.800 I	1.104E -4	3I**********<0* >	I
I 1.950 I	1.120E -4	9I*************<0* >	I
I 2.100 I	1.144E -4	6I*************<0* >	I
I 2.250 I	1.399E -4	11I*************<0* >	I
I 2.400 I	1.648E -4	18I*************<0* >	I
I 2.550 I	3.776E -4	33I*************<0* >	I
I 2.700 I	2.477E -3	231I*************<0* >	I
I 2.850 I	2.739E -3	262I*************<0* >	I
I 3.000 I	3.066E -3	292I*************<0* >	I
I 3.150 I	4.264E -3	416I*************<0* >	I
I 3.300 I	4.362E -3	478I*************<0* >	I
I 3.450 I	4.349E -3	472I*************<0* >	I
I 3.600 I	4.384E -3	439I*************<0* >	I
I 3.750 I	4.491E -3	445I*************<0* >	I
I 3.900 I	4.467E -3	457I*************<0* >	I
I 4.050 I	4.410E -3	480I*************<0* >	I
I 4.200 I	4.453E -3	487I*************<0* >	I
I 4.350 I	4.551E -3	451I*************<0* >	I
I 4.500 I	4.469E -3	447I*************<0* >	I
I 4.650 I	4.402E -3	448I*************<0* >	I
I 4.800 I	4.381E -3	469I*************<0* >	I
I 4.950 I	4.554E -3	458I*************<0* >	I
I 5.100 I	4.503E -3	490I*************<0* >	I
I 5.250 I	4.564E -3	471I*************<0* >	I
I 5.400 I	4.536E -3	473I*************<0* >	I
I 5.550 I	4.380E -3	501I*************<0* >	I
I 5.700 I	4.602E -3	488I*************<0* >	I
I 5.850 I	4.264E -3	413I*************<0* >	I
I 6.000 I	2.521E -3	223I*************<0* >	I
I 6.150 I	5.346E -3	15I************<0 >	I
I 6.300 I	.000E 0	0I	I
I 6.450 I	.000E 0	0I	I
I 6.600 I	.000E 0	0I	I
I 6.750 I	.000E 0	0I	I
I 6.900 I	.000E 0	0I	I
I 7.050 I	.000E 0	0I	I
I 7.200 I	.000E 0	0I	I
I 7.350 I	.000E 0	0I	I
I 7.500 I	.000E 0	0I	I
I 7.650 I	.000E 0	0I	I
I 7.800 I	.000E 0	0I	I
I 8.050 I	.000E 0	0I	I