Lymphedema in survivors of breast cancer (Review)

LIN HE*, HUILI QU*, QIAN WU and YUHUA SONG

Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China

Received June 29, 2019; Accepted November 7, 2019

DOI: 10.3892/ol.2020.11307

Abstract. The tremendous improvement of survival in patients with breast cancer can be attributed to several treatment strategies, but these strategies also lead to the occurrence of breast cancer-related lymphedema (BCRL). BCRL is regularly associated with factors such as axillary lymph node dissection and local lymph node radiotherapy and manifests as an increase of >10% in the volume of affected limbs. Being overweight or having obesity (body mass index ≥25 kg/m²), an excessive number of positive lymph nodes (>8) and capsular invasion by a tumor are additional risk factors for lymphedema. It is worth assessing the risk before surgery as this can prevent the occurrence of BCRL at the initial stage of breast cancer management. The clinical utility of many diagnostic tools and lymphedema surveillance allows early stage and even subclinical BCRL to be diagnosed, and allows real-time monitoring of the disease. The early diagnosis of BRCL allows treatment at an early stage, which is beneficial to the reduction of excess limb volume and the improvement of quality of life. At present, the major therapeutic methods of BCRL include complex decongestive therapy, pneumatic compression devices, participating in exercise, microsurgery and liposuction, each of which alleviates lymphedema effectively. No medications for treatment of BCRL have yet been developed. However, the recent findings on the success of molecular therapy in animal models may remedy this deficiency. Furthermore, the volume reduction of swollen limbs without swelling rebound by transplanting autologous stem cells has been successfully reported in some pilot studies, which may provide a new technique for treating BCRL. This review aimed to discuss the pathogenesis, clinical manifestation, risk factors, advantages and disadvantages of diagnostic tools, lymphedema surveillance and the characteristics of traditional and newly emerging BCRL treatments.

Contents
1. Introduction
2. Pathogenesis
3. Risk factors
4. Prevention
5. Diagnosis and surveillance
6. Treatment
7. Conclusions

1. Introduction

Survival improvement in breast cancer has been attained using surgical treatment, radiotherapy and targeted therapy, however, patients experience discomfort related to treatment related complications including breast cancer-related lymphedema (BCRL) (1). The first common consequence of trauma, infection, surgery or irradiation injury is BCRL, especially in lymphadenectomy, and this manifests as regionalized damage to the normal vasculature and an increase in limb volume by ≥10% (2). BCRL severely affects the quality of life of patients due to lifestyle and occupational alterations, changes in functional status, as well as changes in psychosocial and economic aspects (3-10). Survivors of breast cancer suffer from a perpetual risk of BCRL occurrence, with an average time of 14.4 months after treatment (11,12) and an estimated risk of 14‑40% after treatment completion (13). Sentinel node sampling techniques lower the risk estimation to 6‑10% (14). Clinical manifestations of BCRL vary widely and include swelling, pain, discomfort, reduced joint dexterity due to fibrosis and hardening of affected tissues, as well as enhanced infection risk caused by static protein-rich amniotic fluid fostering bacteria. According to the National Comprehensive Cancer Network Guidelines for Survivorship, Lymphedema 2018.1 (15), lymphedema can be categorized into 4 stages as presented in Table I. In the earliest stage of BCRL, slight changes occur in the surface architecture of arms or hands of patients accompanied by feelings of limb heaviness, discomfort or both (Fig. 1A and B). The first common site of swelling is the forearm, which is usually soft and the swelling disappears by external compression. Initial swelling may also occur in the axilla, scapular region or breast. In the moderate-to-advanced stage, limb edema is no longer relieved by lifting it or by external pressure; the affected area may become larger and show a peau d'orange appearance (Fig. 2A and B). Clinical symptoms vary according to the severity and course of BCRL.

*Contributed equally

Key words: lymphedema, swelling, breast cancer
BCRL is a natural process that ranges from initial swelling to progressive structural malformation, often occurring over a period of several weeks or months (16).

The purpose of the present review is to discuss the pathogenesis, risk factors, prevention, diagnosis and surveillance, as well as the traditional and new therapeutic approaches for BCRL.

2. Pathogenesis

The pathogenesis for lymphedema remains unclear, however, the traditional view of lymphatic obstruction is insufficient to explain the generation of lymphedema. There are three linked newly-presented hypotheses about the pathogenesis of BCRL.

The hypothesis of lymphatic failure. In a normal physiological state, there is a dynamic equilibrium between lymphatic load and transport capacity that makes the lymphatic system effective at absorbing and transporting lymphatic fluid back to the venous system (17). Lymphatic load refers to the volume of lymphatic fluid, which predominately includes interstitial water and protein filtrate. Transport capacity is the maximum lymphatic volume that can be transported by the lymphatics in a given period of time. However, when the transport capacity is inadequate to meet the needs of lymphatic load, lymphatic failure occurs and gives rise to interstitial edema (Fig. 3) (17).

The hemodynamic hypothesis. Total arm blood flow (volume x blood flow/ml) is increased in the swollen arm, but blood flow per unit volume is not elevated, causing the vasodilatation of existing resistance vessels and capillary angiogenesis near existing vessels. Capillary angiogenesis can augment the surface area of the vascular bed size, which, along with total arm blood flow, positively facilitates capillary filtration in the whole limb. When the filtration load exceeds the outflow of liquid from the tissue, edema of the limb is further aggravated, forming a vicious circle (Fig. 3) (18).

The interstitial hypothesis. Since Lymphatic failure leads to a decrease of the interstitial fluid velocity, and subsequent lymphatic regeneration and increased lymphatic vascular endothelial growth factor C (VEGF-C) (19). Lymphatic growth requires the binding of VEGF-C to the VEGF receptor (VEGFR) (20). When blood flow is absent, the increased VEGF-C diffuses to the VEGFR on blood vessels, inducing vascular endothelial growth and increasing the vascular bed size to promote capillary filtration (20). This contributes to an increased interstitial fluid volume and interstitial pressure, and the imbalance of hydrostatic pressure difference between the lymphatics and the interstitium (21). These factors in turn elicit the fluid flow towards those lymphatics, thus curtailing the production of VEGF-C and finally reaching a stable state (Fig. 3) (21). Due to the deterioration of lymphatic failure, the fluid flow rate decreases again, which induces production of VEGF-C and the cycle repeats until a new stable equilibrium is reached.

3. Risk factors

Currently, there is no reliable way of distinguishing patients who are likely to develop lymphedema, but a consensus has been reached on some well-defined risk factors, including axillary lymph node dissection (ALND), which is associated with early-onset disease (22), regional lymph node radiotherapy, which is related to late-onset disease (22), high body mass index (BMI) at the time of breast cancer diagnosis (BMI ≥25 kg/m²) (23), a high number of positive lymph nodes (>8) (24) and capsular invasion of the tumor (24).

In order to reduce the incidence rate and avoid the occurrence of BCRL, a position statement by the National Lymphedema Network has outlined the recommended preventive measures, including the avoidance of flight, trauma, skin infection, extreme temperature, venipuncture (such as blood draws) and limb compression such as blood pressure readings on the affected arm (25). However, two clinical studies demonstrated that injection, flight, blood draws and blood pressure readings were not significantly associated with the increase in arm volume, indicating that they are not risk factors for BCRL (23,26). By contrast, Clark et al (27) demonstrated that hospital skin puncture was a high-risk factor for the development of BCRL.

Similarly, it remains controversial whether age and chemotherapy are risk factors for BCRL. Previous reports have suggested that younger survivors are more likely to experience lymphedema (28,29) because they tend to have more aggressive tumors and more intensive therapy, but some studies have indicated that older age is a high-risk factor (30,31). Other studies have shown that age is not associated with BCRL (32,33). It was demonstrated that women treated with chemotherapy, specifically with taxane-based chemotherapy were more likely to develop lymphedema (34,35), but with inconsistent results (36). Extreme temperature and hypertension are risk factors for BCRL that have been confirmed in certain studies (37,38), however, further investigation is required. A study attempted to explore whether race affected the occurrence of BCRL, and it found that black women may have a higher prevalence of BCRL than white women (28 vs. 21%), although the results were not statistically significant (39).

There may be a genetic predisposition for BRCL. Studies have identified several single nucleotide polymorphisms associated with the development of secondary lymphedema within the genes for hepatocyte growth factor, Met protooncogene, gap junction protein y2, interleukin (IL)-1A, IL-4, IL-6, IL-10, IL-13, VEGF-C, NF-κB, lymphocyte cytosolic protein 2, neutropilin 2, spleen-associated tyrosine kinase, vascular cell adhesion molecule 1, forhead box C2, VEGFR2, VEGFR3 and RAR-related orphan C (40,41). By identifying patients with breast cancer who harbor these molecular biomarkers, numerous precautionary measures can be taken before surgery to reduce the incidence of BCRL.

4. Prevention

In the initial stage of breast cancer management, especially before surgery, the assessment of risk factors and a selection of appropriate surgical scenarios are available to prevent the occurrence of BCRL (42). The BCRL rate is significantly reduced in patients who receive lumpectomy compared with those who receive total mastectomy or modified radical mastectomy (43). Historically, complete ALND is the standard treatment of axillary intervention for certain patients,
including pregnant women, male patients, patients with inflammatory breast tumor or those requiring mastectomy or receiving systemic neo-adjuvant chemotherapy. In recent years, advances have been made in identifying the population of patients who really need ALND. Findings demonstrate that axillary lymph node biopsy (ALNB) is a reliable and safe approach for predicting the status of residual nodes following systematic neo-adjuvant chemotherapy (44-46). Axillary intervention for patients undergoing mastectomy can be downgraded to sentinel lymph node dissection (47), and those who are eligible for lumpectomy can choose a feasible modality of ALNB (48), that does not increase the incidence of lymphedema (49). Axillary radiotherapy may effectively replace complete ALND to control disease relapse and metastasis in patients who have had mastectomy or y lumpectomy (50), and potentially in elderly (>70 years) patients with node-negative luminal breast cancer who have undergone lumpectomy and tamoxifen treatment (51). The long-term recurrence of early-stage breast cancer is associated with biological characteristics instead of anatomical factors; therefore, avoidance of axillary intervention purely for the optimization of prognosis is suggested (52,53).

In 2007, two clinical studies introduced a pioneering technique for mapping lymphatic drainage in the axillary region called axillary reverse mapping (ARM) (54,55). ARM can be used to identify the lymphatic drainage of the upper extremities and the breast by injecting blue dye into the arm during the ALND procedure, resulting in the exclusive removal of lymphatics of the breast and the preservation of lymphatics of the arm to avoid the incidence of lymphedema caused by resection of arm lymphatics. This technique is underpinned by the assumption that the lymphatic drainage of the arm and breast are separate in the axillary region but are anatomically interconnected (56). An increasing body of clinical trials has confirmed a significantly lower incidence rate of BCRL in women undergoing ARM during ALND procedure compared with those receiving ALND alone (57-59). However, it is necessary to consider oncological safety when the arm nodes are conserved, particularly for patients with sentinel lymph node-positivity, as the co-localization of arm nodes and sentinel lymph nodes is as great as 27%, which is a key factor in metastasis (60). Fortunately, the risk of metastasis can be lowered if patients with sentinel lymph node receive neo-adjuvant chemotherapy (61).

Stage	Affected area	Limb
0, latent/subclinical	Lymphatic dysfunction without swelling	A feeling of heaviness or fatigue may exist
1, spontaneously reversible	The accumulation of fluid and protein causing swelling; pitting edema may be overt; increased girth, heaviness, and/or stiffness	Swelling that subsides with elevation
2, irreversible	Spongy tissue consistency; less evidence of pitting edema as swelling aggravation; tissue fibrosis and increased fat deposition leads to increased girth and stiffness	Swelling that does not subside with elevation
3, lymphostatic elephantiasis	Severely dry, scaly, thickened skin; increased swelling and girth	Non-pitting edema; fluid leakage and blisters are common

Figure 1. Early stage of breast cancer-related lymphedema. (A) Swollen hand; (B) swollen arm.

Table I. Stages of lymphedema.
5. Diagnosis and surveillance

Accurate diagnosis of BCRL depends on a combination of assessments that include risk evaluation, physical condition and objective examination of patients (1). The common subjective clinical symptoms are pain, swelling, numbness, arm heaviness, stiffness of affected segments and impaired joint activity, but not all patients experience these symptoms (1). Those
the detection of lymphedema is not recommended by CT for lymphatic vessel interruption or obstruction maybe dete-
ercessive water retention in subcutaneous tissue and reasons
ficity in detecting delayed lymphatic drainage (85.7 vs. 66.7%) (75). In some instances, the
Compared to lymphoscintigraphy, MRI has a higher speci-
especially when it is coupled with edema in fat tissue (1).
DXA is effective and credible in quantifying the soft-tissue
In 2000, a modality was added to the diagnosis tools for lymphedema called BIS which measures the volume
extracellular fluid via detecting a physical reaction to an
impressed electrical current (65). In comparison to conven-
tional methods, the measurement of BIS is more objective and
specific (80-99%) (66-69), with a wide range of sensitivity
(30-100%) (66-70), but a higher false-negative rate (36%) (71). Notably, BIS permits identification of lymphedema earlier,
when it is in the subclinical stage, and tracks disease progres-
sion persistently, making timely intervention of lymphedema a reality (72). Timely intervention dramatically reduces the
incidence rate of lymphedema from 36.4 to 4.4% (72).

DXA is effective and credible in quantifying the soft-tissue
masses of the upper and lower extremities and the composition
of arms, including fat, lean and bone mineral masses (73). Compared with BIS and limb circumference measurements,
DXA has similar precision in detecting the percentage differ-
ences between the affected and unaffected arms (73). Moreover,
DXA has superior repeatability in volume measurement yields
compared with the measurements of limb circumference and
water displacement, particularly in the affected arm, but not in
the unaffected arm (74).

MRI has been used for decades to diagnose lymphedema,
especially when it is coupled with edema in fat tissue (1). Compared to lymphoscintigraphy, MRI has a higher speci-
ficity in detecting delayed lymphatic drainage (85.7 vs. 66.7%)
and greater sensitivity for delineating the architecture of
lymphatic vessels (100 vs. 83.3%) (75). In some instances, the
excessive water retention in subcutaneous tissue and reasons
for lymphatic vessel interruption or obstruction maybe deter-
moved by this technique (1). Nevertheless, MRI is expensive
and cannot achieve real-time diagnosis (76). Commonly,
the detection of lymphedema is not recommended by CT
or ultrasonography (US) due to their low sensitivity, but
CT can be used to assess the excessive growth of fibrous
tissue during the procedure of lymphedema (77). The low
sensitivity of ultrasound can be attributed to several factors,
including excessive edema, tissue fibrosis caused by irradi-
ation injury and focal short-section vein occlusion beneath the
clavicle or in the deep pelvis (1). Venous obstruction occurs
concurrently with chronic lymphedema, with an incidence
rate of 4.6%, and may be falsely evaluated by US as a nega-
tive result owing to technical difficulties (78). Fortunately,
this problem is solved by color Doppler imaging that can be
used to visualize vessels with a diameter of only 1-2 mm, thus
enabling the detection of the anatomy and function of
damaged veins (78).

Provided that the aforementioned approaches cannot
affirm the diagnosis, the standard recommendation is to apply
radioactive lymphoscintigraphy, a nuclear medicine imaging
technique that allows visualization of lymphatic drainage
into the axillary lymph nodes by subcutaneous injection of
radiolabeled sulfur colloid into the hand (79). A tardive axil-
ary visualization coupled with dermal lymphangiectasia will
occur if there is lymphedema (79). Early-stage lymphoscin-
tigraphy is an effective diagnostic tool; however, it has many
disadvantages such as radiation exposure, low resolution,
high costs and increased invasiveness (1). Lymphography is a
closer, systematic method to evaluate limb edema and lymph
circulation without radiation exposure (71). Lymphography has
higher specificity and sensitivity, and longer tracking
capabilities, ranging from subclinical to more advanced
stages, compared with lymphoscintigraphy (77,80-82). Of
note, the greatest advantage of lymphography is that it can be
used for the real-time monitoring of lymphatic vessels during
surgery, albeit not in a perfect way (82). For example, if the
lymph vessels beneath the subcutaneous level of the skin are
thicker than 2 cm, observation cannot be achieved by ICG
lymphography (82). The advantages and disadvantages of
all the diagnosis tools for lymphedema are summarized in
Table II.

Lymphedema surveillance can be used to identify and
diagnose subclinical or early-stage disease, providing the
opportunity for early intervention and treatment of BCRL (83).
Prospective interval surveillance greatly optimizes the
costs (84), reduces the observed incidence (72) and can reverse
and prevent the progression of BCRL (85-87). Data using direct
provider costs of surveillance demonstrate that it has potential
to reduce direct treatment costs of BCRL management (84);
however, for improving assessment, further data on the indi-
direct costs must be reported. At present, there are four main
techniques for the surveillance of BCRL: Water displacement,
perometry, tonometry and BIS. Water displacement is labo-
rious, time-consuming and not suitable for massive, continuous
surveillance. Perometry, optical assessment of limb volume,
is less time-consuming but more expensive. Tonometry is a
noninvasive method that can detect subclinical interstitial
dema via continuously measuring the dielectric constant
in affected tissue and evaluating moisture content (88). BIS
is more specific, but lacks sensitivity, and it may be the most
frequently utilized modality (71). However, no widely adopted
consensus has been reached regarding which technique is the
best for the surveillance of BCRL.
6. Treatment

It is widely believed that the optimal management to efficiently relieve lymphedema is complex decongestive treatment (CDT), lymphatic physiotherapeutic intervention including manual lymph drainage (MLD), skin care, physical exercise, long-term education on self-management of lymphedema, compression bandages and sleeve or stocking compression (1). Lymphoscintigraphy of upper limbs is a valid tool to predict the prognosis of this combined strategy. CDT can be provided with a commercialized product called Linfadren®, which is a mixture of diosmin, coumarin and arbutin, to further improve its efficacy without any adverse events (89). Obesity reduces the effectiveness of CDT (90). Every treatment method for lymphedema has been gradually defined into explicitness. MLD, a universal treatment for lymphedema is a massage technique that uses a special rhythmic pumping through gentle, directed stretching of skin to massage the affected area and stimulate lymphatic contractility, thus enhancing lymphatic drainage (1). A meta-analysis found that, compared with other treatments such as physical exercise, skin care and compression therapy, additional MLD was unlikely to achieve a significant reduction in the volume of the affected limb (91). Of note, heterogeneity across the analyzed studies was considerable and the sample size was limited. Paradoxically, a subgroup analysis in a Cochrane systematic review demonstrated that MLD was safe and, when used in combination with compression bandages, may provide additional benefits of swelling reduction for BCRL compared with the use of compression bandages alone, particularly for patients with mild-to-moderate disease (92). Compression bandages used with a compression garment can significantly reduce the volume of the edematous limb compared with the usage of a compression garment alone (1). Generally, the bandaging method involves a spiral-bandaging method and a figure-of-eight method (93). The figure-of-eight method is a more effective approach in maintaining the correct position, is more comfortable for the patient and has a replacement frequency of either 5 times per week over a 4-week period or once per 2 days over a 3-week period (93). Precast adjustable compression systems, a novel technique that can be easily used and removed by patients, may be an effective alternative to compression bandages due to similar effects on reducing excess limb volume (94). When the affected limb reaches a minimum volume, self-care can be accepted by the patient (1). A myriad of advantages is attained by a CDT approach that reduces edema volume, intensity of pain and arm heaviness, reinforces lymphatic function, improves quality of life and lowers the incidence of cellulitis (95-97).

The use of adjuvant tools such as a pneumatic compression device (PCD) provides additional benefits in managing lymphedema that is associated with reduction of outpatient

Table II. Advantages and disadvantages of diagnosis tools for LE.

Diagnosis tools	Advantages	Disadvantages
Perometry; LC; WD	Standard method for diagnosing LE	Results vary widely and are not highly reliable, with no evaluation of arm tissue composition
Radionuclide lymphoscintigraphy	Diagnose LE in its early stage	Radiation exposure, low resolution, high cost, increased invasiveness, no real-time monitoring
Indocyanine green lymphography	Real-time monitoring without radiation exposure, high specificity and sensitivity, tracking ranging from subclinical to more advanced stage	Cannot observe deep lymphatics when the thickness of subcutaneous tissue covering them is ≥2 cm
Magnetic resonance imaging	Diagnoses LE coupled with edema in adipose tissue, high specificity and sensitivity	High cost without real-time monitoring
Computed tomography	Assess LE coupled with the excessive growth of fibrous tissue	Low sensitivity, no real-time monitoring
Color Doppler imaging	Assess LE coupled with venous obstruction	Low sensitivity, no real-time monitoring
Bioimpedence spectroscopy	Real-time monitoring, high objectivity and specificity, tracking ranging from subclinical to more advanced stage	Wide range of sensitivity, high false-negative rate
Dual energy X-ray absorption	Quantify the soft-tissue masses and composition of arms; more repeatable to measure volume of LE arm than LC and WD	Unknown

LC, limb circumference; WD, water displacement; LE, lymphedema.
Cancer-related and non-cancer-related lymphedema, demonstrated analysis demonstrated that this adjunctive modality yields pneumatic compression, more garment chambers and a higher with multiple inflatable compartments to deliver external compressor, and it is designed for home use them (98). Currently, the most advanced PCD uses a calibration, gradient compressor, and it is designed for home use with multiple inflatable compartments to deliver external pneumatic compression, more garment chambers and a higher level of adjustability and programmability (99). A retrospective analysis demonstrated that this adjunctive modality yields significant clinical and economic effectiveness in treating cancer-related and non-cancer-related lymphedema, demonstrated by a reduction in the adjusted rate of cellulitis, the usage of lymphedema-related manual therapy, outpatient visits and total lymphedema-related costs per patient, excluding medical equipment costs (99).

It is widely known that a sedentary lifestyle leads to being overweight or obese, factors that are associated with an increased incidence of BCRL (14). Participation in physical exercise during and after treatment for breast cancer can ameliorate psychosocial and physical conditions, resulting in active lifestyles with optimized survival (100). Traditionally, patients with lymphedema or who are at risk for lymphedema tend to reduce physical exercise due to concerns about disease exacerbation (100). Some preliminary studies have indicated that exercise neither causes lymphedema nor worsens the disease (101-105). A slowly progressive weight-lifting program does not increase the rate of lymphedema compared with no exercise, and aerobic exercise, resistance training, stretching, yoga, qigong and pilates are also safe (101,105). Under specific circumstances, resistance training can even substantially improve the lymphedema state and may prevent the development of secondary lymphedema in patients (106).

There are a variety of surgical techniques for lymphedema, including debulking resection, liposuction, lymphatic-venous ‘end-to-end’ anastomoses (LVA) and vascularized lymph node (VLN) transplantation with the advent of microsurgery (1). Typically, LVA is only used in the early-stage of the disease, but despite this limitation it reduces limb volume or circumference effectively and improves quality of life (107-109). LVA also has other advantages such as reducing trauma, lowering the risk of complications and it can be performed under local anesthesia (110,111). After a 1-year follow-up of women undergoing LVA, >56.5% of anastomoses are still patent (109).

A new program, called the ‘Lymphedema Microsurgical Preventive Healing Approach (LYMPHA)’, combines the LVA technique with the surgery of ALND, which anastomoses the collateral branch of the axillary vein to the lymphatics of the arm, with a low incidence rate of lymphedema of 4.05% (112,113). An altered and simplified version of LYMPHA used during the surgery of ALND dramatically decreases the lymphedema rate to 3% compared with ALND alone, which has a higher rate of 13% (114). Two pilot studies proposed a new technique called ‘dynamic-lymphaticovenular anastomosis,’ which uses preoperative dynamic imaging of the forearm to determine the incision points followed by microsurgery of LVA (115,116). This technique achieves significant reduction of excess limb volume compared with conventional LVA and results in no swelling rebound after postoperative degradation or removal of compression garments in a 12 month follow up period (115,116).

VLN transfer is a promising technique for treating moderate-to-advanced stage lymphedema, and it has the ability to lower the clinical grade, attenuate limb circumference, reduce the incidence of cellulitis and improve the quality of life in patients (117). However, it requires a strict observation

Treatment method	Characteristics
Complex decongestive therapy	Reinforces lymphatic function; improves quality of life; reduces edema volume, intensity of pain and arm heaviness and the incidence of cellulitis
Pneumatic compression device	Reduces frequency of outpatient services and hospitalizations; reduces the usage of LE-related manual therapy, LE-related costs and incidence of cellulitis
Physical exercise	Does not cause or worsen LE in patients; ameliorates patients psychosocial and physical conditions; results in patients having active lifestyles with optimized survival
Lymphatic-venous ‘end-to-end’ anastomoses	Can only be used in the early-stage of LE; reduces limb volume or circumference; improves quality of life; minimizes trauma; lowers the risk of complications; can be performed under local anesthesia
Vascularized lymph node transfer	Can only be used in the moderate-to-advanced stage of LE; reduces limb volume or circumference and the incidence of cellulitis; improves quality of life; donor-site lymph edema is a potential complication
Liposuction	Removes excess adipose tissue; improves lymph flow; increases blood flow to the skin; reduces the incidence of erysipelas and cellulitis

LE, lymphedema.
of the donor site because donor site lymphedema is the most serious complication after this surgery (117). Patient selection and scrupulous assessment of donor and recipient sites prior to VLN transplantation are key factors for surgical success. This concern may be removed by the technique of vascularized groin lymph node (VGLN) flap transplantation (118). Findings revealed VGLN flap harvesting does not cause iatrogenic lymphedema at the donor site, but this surgery cannot be performed in patients with a high risk of lower limb lymphedema due to obesity, pre-existing lower limb edema or previous pelvic surgery (118). Of note, the limitations of LVA and VLN procedures have to be emphasized, as they are complex and can only be provided by experts at tertiary care centers.

CDT is not an effective treatment for chronic massive lymphedema with excess adipose tissue, as adipose tissue cannot be eliminated through compression alone (1). Microsurgery often fails to attain complete limb reduction because the newly formed adipose tissue persisting under the skin of the patient with longstanding non-pitting lymphedema is not resected. These perplexities are solved by the use of liposuction, which can remove excess adipose tissue, resulting in complete reduction of lymphedema (1). Liposuction is effective in removing chronic non-pitting limb lymphedema with a large volume, which can be completely attenuated in 1-3 months, with no recurrence of arm swelling observed in long-term follow-up (119-123). Ample evidence suggests that women with lymphedema who undergo liposuction followed by compression bandages or compression garments achieve significant benefits, as the mean reduction of excess limb volume ranges from 101-118% (124-126) and can be maintained at >100% during 21 years of follow-up (127). In addition, liposuction improves lymph flow (128), increases blood flow to the skin so that it is approximately equal to the flow in a normal arm (129), and it does not injure the existing lymphatic vessels within the affected limb (122,130). These characteristics significantly reduce the incidence of erysipelas and cellulitis (131). The complications from liposuction are limited, with a very low incidence rate; paresthesia of the skin is the most typical complication and fades away within 3-6 months (132), and fibrous tissue increases in some cases, specifically in women with a male distribution of body fat (132). The characteristics of current treatment scenarios for lymphedema are summarized in Table III.

Previous findings illustrated that no medication has the capacity to reduce lymphedema, as the lymphatic flow could not be improved by any drugs, including diuretics that change microvascular fluid filtration by increasing the excretion of sodium chloride and water (96). With a greater understanding of the molecular mechanisms that control lymphatic function, lymphedema may be reversed. The first potential medication for the treatment of BCRL is reported to be in phase I trials (133). An increasing number of lymphedema therapy-related preclinical investigations are performed in animal models of lymphatic disease in which the genes encoding VEGF-C or VEGF-D are transferred into the animal by adenoviruses or adeno-associated viruses (134,135). This technique results in the development of many new lymphatic capillaries and reduces edema following an initial promotion of lymphatic extravasation (136). Following VEGF-C therapy, the injured collecting lymphatic vessels in mice undergo regeneration of lymphatic capillaries, which subsequently remodel, differentiate and mature into functional vessels (137). Similarly, surgery-based damage of lymphatic vasculature in pigs can be effectively repaired by VEGF-C therapy, which greatly enhances the function and structural stability of transferred lymph nodes (138). The combined program of the microsurgery of VLN transfer followed by VEGF-C treatment may be also equally beneficial in patients with lymphedema to foster lymphatic microvascular anastomoses.

The success of stem cell therapy involving the transplantation of autologous mononuclear stromal cells derived from adipose tissue, muscle and bone marrow to alleviate lymphedema has been reported in certain preclinical studies (139-141), and this has opened up a potential new field of treatment for this disease. In two pilot studies, injection of adipose-derived regenerative cells into the axillary region with fat grafting was well-tolerated, and only a paucity of lipo-suction-related adverse events occurred transiently (142,143). After 6-12 months of follow-up, lymphedema was alleviated, without rebound of the swelling limb (143). However, these promising results of autologous stem cell therapy from the two studies must be investigated in humans with RCTs. If the results in humans are positive, increasing number of patients with lymphedema could benefit from this surgery.

7. Conclusions

BCRL exerts a negative impact on the quality of life of survivors of breast cancer. Precautionary measures and earlier lymphedema surveillance combined with effective diagnostic tools, such as BIS or ICG lymphography, are effective in reducing the incidence of lymphedema and providing more opportunities for intervention and treatment in subclinical and early-stages, especially in high-risk patients. In a variety of treatment strategies, the combination of CDT, PCD and appropriate physical exercise can contribute to women having an apparent reduction of excess limb volume and improvement of quality of life. Of the surgical techniques, the usage of VLA in the early-stage of disease, VLN transplantation in the moderate-to-advanced stage and liposuction when lymphedema is coupled with excess adipose tissue can reduce swollen limb volume to normal, and be maintained long-term without rebound of swelling. Recently, molecular therapy and autologous stem cell transplantation have been shown to successfully alleviate lymphedema in preclinical studies, which may lead to the development of novel targeted therapies for BCRL in the future.

Acknowledgements

The authors would like to acknowledge Dr Han Qin (Department of Sport Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China) for providing the map of lymphatics of the breast.

Funding

No funding was received.
Availability of data and materials
Not applicable.

Authors' contributions
LH made substantial contributions to the conception of the review, HQ produced software that was used in the work, QW drafted the manuscript and substantively revised it, and YS contributed to the writing of the manuscript.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Rockson SG: Lymphedema after Breast Cancer Treatment. N Engl J Med 379: 1937-1944, 2018.
2. Armer JM, Ballman KV, McCall L, Armer NC, Sun Y, Udmuangpia T, Hunt KK, Mittendorf EA, Byrd DR, Julian TB and Boughhey JC: Lymphedema symptoms and limb measurement changes in breast cancer survivors treated with neoadjuvant chemotherapy and axillary dissection: Results of American college of surgeons oncology group (ACOSOG) Z1071 (Alliance) substudy. Support Care Cancer 27: 493-503, 2019.
3. Velanovich V and Szymanski W: Quality of life of breast cancer patients with lymphedema. Am J Surg 177: 184-187, 1999.
4. Casley-Smith JR and Casley-Smith JR: Modern treatment of lymphoedema II. The benzopyrones. Australas J Dermatol 33: 69-74, 1992.
5. MM H: Functional and psychosocial aspects of lymphedema in women treated for breast cancer. Innov Breast Cancer Care 3: 97-100, 17-18.
6. Armer JM and Mallinckrodt BR: Post-breast cancer treatment lymphedema: The secret epidemic. Phlebolog 9: 334-341, 2002.
7. Carter BJ: Women's experiences of lymphedema. Oncol Nurs Forum 24: 875-882, 1997.
8. Newman ML, Brennan M and Passik S: Lymphedema complicated by pain and psychological distress: A case with complex treatment needs. J Pain Symptom Manage 12: 376-379, 1996.
9. Passik SD and McDonald MV: Psychosocial aspects of upper extremity lymphedema in women treated for breast carcinoma. Cancer 83 (12 Suppl American): 2817-2820, 1998.
10. Tobin MB, Lacey HJ, Meyer L and Mortimer PS: The psychological morbidity of breast cancer-related arm swelling. Psychological morbidity of lymphedema. Cancer 72: 3248-3252, 1993.
11. DiSipio T, Rye S, Newman B and Hayes S: Incidence of unilateral arm lymphedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol 14: 500-515, 2013.
12. Specht MC, Miller CL, Russell TA, Horick N, Skolny MN, O'Toole JA, Jammallo LS, Brunelle C, O'Toole JA, Sitzia J and Harlow W: Incidence and risk of arm oedema following treatment for breast cancer: A three-year follow-up study. JQM 98: 333-348, 2005.
13. Galzer BM, Vacek PM, O'Brien P and Secker-Walker RH: Factors associated with arm swelling after breast cancer surgery. J Womens Health (Larchmt) 12: 921-930, 2003.
14. Armer J and Fu MR: Age differences in post-breast cancer lymphedema signs and symptoms. Cancer Nurs 28: 200-207, 2005.
15. Larson D, Weinstein M, Goldberg I, Silver B, Recht A, Cady B, Silen W and Harris JR: Edema of the arm as a function of the extent of axillary surgery in patients with stage I-II carcinom a of the breast treated with primary radiotherapy. Int J Radiat Oncol Biol Phys 12: 1575-1582, 1986.
16. Engel J, Kerr J, Schlesinger-Raab A, Sauer H and Holzel D: Axilla surgery severely affects quality of life: Results of a 5-year prospective study in breast cancer patients. Breast Cancer Res Treat 79: 47-57, 2003.
17. Pritchard ED, Naughton MJ, McCoy TP, Case LD and Abbott JM: The epidemiology of arm and hand swelling in premenopausal breast cancer survivors. Cancer Epidemiol Biomarkers Prev 16: 775-782, 2007.
18. Pritchard ED, Patterson MP, Hill LR, Lipssett JA, Desai RR, Vora N, Wong JY and Luk KH: Arm lymphedema in patients treated conservatively for breast cancer: Relationship to patient age and axillary node dissection technique. Int J Radiat Oncol Biol Phys 12: 2079-2083, 1986.
19. Cariati M, Bains SK, Grootendorst MR, Syauy A, Peters AM, Mortimer P, Ellis P, Harries M, Van Hemelrijck M and Puchnoothram AD: Adjuvant taxanes and the development of breast cancer-related arm lymphedema. Br J Surg 102: 1071-1078, 2015.
35. Penn IW, Chang YC, Chuang E, Chen CM, Chung CF, Kuo CY and Chuang TY: Risk factors and prediction model for persistent breast-cancer-related lymphedema: A 5-year cohort study. Breast Cancer Res Treat 151: 393-403, 2015.

36. Czernicza SA, Ward LC and Kilbreath SL: Breast cancer-related arm lymphedema: Fluctuation over six months and the effect of the weather. Lymphat Res Biol 14: 148-155, 2016.

37. Rockson SG: Precipitating factors in lymphedema: Myths and realities. J Surg Oncol 92: Suppl 1: S2-S24, 2011.

38. Meeske KA, Sullivan-Halley J, Smith AW, McTiearan A, Baumgartner KB, Harlan LC and Bernstein LR: Risk factors for arm lymphedema following breast cancer diagnosis in Black women and White women. Breast Cancer Res Treat 113: 383-391, 2016.

39. Visser J, van Geel M, Cornelissen AJM, van der Hulst RRJ and Qiu SS: Breast cancer-related lymphedema and genetic predisposition: A systematic review of the literature. Lymphat Res Biol 17: 288-293, 2019.

40. Newman B, Loz P, kedda MA, Francois M, Ferguson K, Janda M, Yenal P, Spurdele AB and Hayes SC: Possible genetic predisposition to lymphedema after breast cancer. Lymphat Res Biol 10: 2-13, 2012.

41. Tandra P, Kallam A and Krishnamurthy J: Identification and management of lymphedema in patients with breast cancer. J Clin Oncol 35: 561-564, 2017.

42. Giordano SH, Burstein HJ, Cyr A, Elias AD, Farrar WB, Forero A, Poppema S, Bugarin K, Mcconney AL and Scott-Conner C: The risk of developing sentinel lymph node vs observation after axillary UltraSouND (European institute of oncology of milan (SOUND): Sentinel node vs observation after axillary UltraSouND). Breast 21: 678-681, 2012.

43. Cardoso F, van’t Veer LJ, Bogarts J, Slaets L, Viale G, Delaloge S, Pierga Y, Brain E, Causeret S, Delorenzi M, et al: 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375: 717-729, 2016.

44. Sproaro JA, Gray RJ, Makower DF, Pritchard KI, Alain KS, Hayes DF, Geyer CE Jr, Dees EC, Perez EA, Holm AM, et al: Considerations for clinical oncology clinical practice guideline update. J Clin Oncol 22 (Suppl 3): S370-S375, 2015.

45. Cernicza SA, Ward LC, Refshauge KM, Beith J, Lee MJ, York S and Kilbreath SL: Assessment of breast cancer-related arm lymphedema--comparison of physical measurement methods and self-report. Cancer Invest 28: 54-62, 2010.

46. Cormier JN, Xing Y, Zanelli I, Askev RL, Stewart BR and Anderson JM: Minimal limb volume change has a significant impact on breast cancer survivors. Lymphology 42: 161-175, 2009.

47. Thompson M, Kourouian S, Henry-Tillman R, Adkins L, Mumford S, Westbrook KC and Klimberg VS: Axillary reverse mapping (ARM): A new concept to identify and enhance lymphatic preservation. Ann Surg Oncol 14: 1890-1895, 2007.

48. Pasko JL, DeSnyder SM, Klimberg S, et al: Considerations for clinical oncology clinical practice guideline update. J Clin Oncol 35: 561-564, 2017.

49. Thompson M, Kourouian S, Henry-Tillman R, Adkins L, Mumford S, Westbrook KC and Klimberg VS: Axillary reverse mapping (ARM): A new concept to identify and enhance lymphatic preservation. Ann Surg Oncol 14: 1890-1895, 2007.

50. Nos C, Lesieur B, Clough KB and Lecuru F: Blue dye injection in the arm in order to conserve the lymphatic drainage of the arm in breast cancer patients requiring an axillary dissection. Ann Surg Oncol 14: 2490-2496, 2007.

51. Pavlišta D and Eliska O: Analysis of direct oil contrast lymphography of upper limb lymphatics traversing the axilla - a lesson from the past - contribution to the concept of axillary reverse mapping. Eur J Surg Oncol 38: 390-394, 2012.

52. Gennaro M, Maccauro M, Sigari C, Casalini P, Bedoli L, Corsi AR, Catani E and Bombardieri E: Selective axillary dissection after axillary reverse mapping to prevent breast-cancer-related lymphedema. Eur J Surg Oncol 39: 1341-1345, 2013.
84. Stout NL, McGuiire KP, Diego EJ, McAluliffe PF, Bonaventura M, Ahrendt GM, DeGore L and Johnson R: The importance of detection of subclinical lymphedema for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection: A prospective observational study. Lymphat Res Biol 12: 289-294, 2014.

73. Newman AL, Rosenthal L, Towers A, Hodgson P, Shay CA, Tidhar D, Vigano A and Kilgour RD: Determining the precision of dual energy x-ray absorptiometry and bioelectric impedance surveillance for the assessment of breast cancer-related lymphedema. Lymphat Res Biol 11: 104-109, 2013.

72. Gjorup C, Zerahn B and Hendel HW: Assessment of volume measurement of breast cancer-related lymphedema by three methods: Circumference measurement, water displacement, and dual energy x-ray absorptiometry. Lymphat Res Biol 8: 111-119, 2010.

71. Baes JS, Yoo RE, Choi SH, Park SO, Chang H, Suh M and Cheon GJ: Evaluation of lymphedema in upper extremities by MR lymphangiography: Comparison with lymphoscintigraphy. Magn Reson Imaging 49: 63-70, 2018.

70. Partsch H: Practical aspects of indirect lymphography and lymphoscintigraphy. Lymphat Res Biol 1: 71-73; discussion 73-74, 2003.

69. Mihara M, Haru H, Araki J, Kikuchi K, Narushima M, Yamamoto T, Iida T, Yoshishita M, Murai N, Mitsu K, et al: Indocyanine green lymphography (ICG) lymphography is superior to lymphoscintigraphy for diagnostic imaging of early lymphedema of the upper limbs. PloS One 7: e38182, 2012.

68. Szuba A, Razavi M and Rockson SG: Diagnosis and treatment of concomitant venous obstruction in patients with secondary lymphedema of the upper limbs. J Vasc Interv Radiol 13: 799-803, 2002.

67. Rockson SG: Lymphedema after breast cancer treatment. N Engl J Med 360: 694, 2019.

66. Chen WF, Zhao H, Yamamoto T, Hara H and Ding J: Indocyanine green lymphographic evidence of surgical efficacy following microsurgical and supermicrosurgical lymphedema reconstructions. J Reconstr Microsurg 32: 688-698, 2016.

65. Yamamoto T, Matsuda N, Doi K, Oshima A, Yoshishita M, Todokoro T, Ogata F, Mihara H, Narushima M, Iida T and Koshima I: The earliest finding of indocyanine green lymphography in asymptomatic limbs of lower extremity lymphedema patients secondary to cancer: The modified dermal backflow stage and concept of subclinical lymphedema. Plast Reconstr Surg 128: 314e-321e, 2011.

64. Yamamoto T, Yoshishita H, Narushima M, Yamamoto N, Hayashi A and Koshima I: Indocyanine green lymphography findings in primary leg lymphedema. Eur J Vasc Endovasc Surg 49: 95-102, 2015.

63. Torres Lacomba M, Yuste Sánchez MJ, Zapico Goñi A, Prieto Merino D, Mayoral del Moral O, Cerezo Téllez E and Prieto Merino D: The cutaneous, net clinical, and health economic benefits of advanced pneumatic compression devices in patients with breast cancer-related lymphedema: A systematic review and meta-analysis of randomized controlled trials. Oncol Res Treat 37: 170-174, 2014.

62. Karaca-Mandic P, Hirsch AT, Rockson SG and Ridner SH: Rockson SG: The cutaneous, net clinical, and health economic benefits of advanced pneumatic compression devices in patients with lymphedema. JAMA Dermatol 151: 1187-1193, 2015.

61. Hayes SR, Reul-Hirche H and Turner J: Exercise and secondary lymphedema of the upper limbs. PLoS One 7: e38182, 2012.

60. Shao Y, Qi K, Zhou QH and Zhong DS: Intermittent pneumatic compression pump for breast cancer-related lymphedema: A systematic review and meta-analysis of randomized controlled trials. Oncol Res Treat 37: 170-174, 2014.

59. Lane K, Jespersen D and McKenzie DC: The effect of a whole body exercise programme and dragon boat training on arm volume and arm circumference in women treated for breast cancer. Eur J Cancer Care (Engl) 14: 353-358, 2005.

58. McKenzie DC and Kalda AL: Effect of upper extremity exercise on breast cancer-related lymphedema: A pilot study. J Clin Oncol 21: 463-466, 2003.

57. Boccardi FM, Ansaldi F, Bellini C, Accogli S, Taddei G, Murdaca G, Campisi CC, Villa G, Icardi G, Durando P, et al: Prospective evaluation of a prevention protocol for lymphedema following surgery for breast cancer. Lymphology 42: 1-9, 2009.

56. Box RC, Reul-Hirche HM, Bullock-Saxton JE and Furnival CM: Phlebotomy after breast cancer surgery: Results of a randomised controlled study to minimise lymphedema. Breast Cancer Res Treat 75: 51-64, 2002.

55. Czerniec SA, Ward LC and Kilbreath SL: Assessment of breast cancer-related lymphedema: Safety, potential benefits, and research issues. Med Sci Sports Exerc 41: 483-489, 2009.

54. Ahmed RL, Thomas W, Yee D and Schmitz KH: Randomized controlled trial of weight training and lymphedema in breast cancer survivors. J Clin Oncol 24: 2765-2772, 2006.

53. Harris SR and Bent-Vermonton SL: Challenging the myth of exercise-induced lymphedema following breast cancer: A series of case reports. J Surg Oncol 74: 98-99: Discussion 98-100, 2000.

52. Lane K, Jespersen D and McKenzie DC: The effect of a whole body exercise programme and dragon boat training on arm volume and arm circumference in women treated for breast cancer. Eur J Cancer Care (Engl) 14: 353-358, 2005.

51. McKenzie DC and Kalda AL: Effect of upper extremity exercise on breast cancer-related lymphedema: A pilot study. J Clin Oncol 21: 463-466, 2003.

50. Panchik D, Masco S, Zinnikas P, Hillriegel B, Lauder T, Suttmann E, Chinchilli V, McBeth M and Hermann W: Effect of exercise on breast-cancer-related lymphedema: What the lymphatic surgeon needs to know. J Reconstr Microsurg 35: 37-45, 2019.

49. Karacim M, Hasenohrl T, Neubauer M and Crevenna R: Resistance exercise and secondary lymphedema in breast cancer survivors—a systematic review. Support Care Cancer 24: 98-99, 2016.

48. Markku Lehto, Leung N, Allen VB and Furniss D: Surgical interventions for the prevention or treatment of lymphoedema after breast cancer treatment. Cochrane Database Syst Rev 2: CD001433, 2019.

47. Cornelissen AJM, Beugels J, Ewalds L, Heuts EM, Keuter XHA, Piatkowski A, van der Hulst RWRJ and Quo Shao SS: Effect of lymphaticovenous anastomosis in breast cancer-related lymphedema: A review of the literature. Lymphat Res Biol 16: 426-434, 2018.
109. Winters H, Tielman HJP, Verhulst AC, Paulus VAA, Slater NJ and Ulrich DJO: The long-term patency of lymphaticovenular anastomosis in breast cancer-related lymphedema. Ann Plast Surg 82: 196-200, 2019.

110. Granzow JW, Soderberg JM, Kaji AH and Dauphine C: Review of current surgical treatments for lymphedema. Ann Surg Oncol 21: 1195-1201, 2014.

111. Chan VS, Narushima M, Hara H, Yamamoto T, Mihara M, Pappalardo M, Patel K and Cheng MH: Vascularized lymph node transplantation for breast cancer-related lymphedema: Over 4 years follow-up. Microsurgery 34: 421-424, 2014.

112. Boccadoro F, Casabona F, De Cian F, Friedman D, Murelli F, Puglisi M, Campisi CC, Molinaro L, Spinaci S, Dessalvi S and Campisi C: Lymphatic microsurgical preventing healing approach (LYMPHA) for primary surgical prevention of breast cancer-related lymphedema: Over 4 years follow-up. Ann Surg Oncol 16: 703-708, 2009.

113. Ozmen T, Lazarro M, Zhou Y, Vinyard A and Avisar E: Evaluation of simplified lymphatic microsurgical preventing healing approach (S-LYMPHA) for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection. Ann Surg 270: 1156-1160, 2019.

114. Khan AA, Hernan I, Adamthwaite JA and Ramsey KWD: Feasibility study of combined dynamic imaging and lymphaticovenular anastomosis surgery for breast cancer-related lymphedema. Br J Surg 106: 100-110, 2019.

115. Seki Y, Kajitani A, Yamamoto T, Takeuchi T, Terashima T and Kurogi N: The dynamic-lymphaticovenular anastomosis method for breast cancer-treatment-related lymphedema: Creation of functional lymphaticovenular anastomoses with use of preoperative dynamic ultrasonography. J Plast Reconstr Aesthet Surg 72: 62-77, 2019.

116. Pappalardo M, Patel K and Cheng MH: Vascularized lymph node transfer for treatment of extremity lymphedema: An overview of current controversies regarding donor sites, recipient sites and outcomes. J Surg Oncol 117: 1420-1431, 2018.

117. Liu HL, Pang SY and Lee CC: Donor limb assessment after vascularized groin lymph node transfer for the treatment of breast cancer-related lymphedema: Clinical and lymphoscintigraphy findings. J Plast Reconstr Aesthet Surg 72: 216-224, 2019.

118. Brorson H and Svensson H: Liposuction combined with controlled compression therapy reduces arm lymphedema more effectively than controlled compression therapy alone. Plast Reconstr Surg 102: 1058-1067; discussion 1068, 1998.

119. Brorson H and Svensson H: Complete reduction of lymphedema of the arm by liposuction after breast cancer. Scand J Plast Reconstr Hand Surg 31: 137-143, 1997.

120. Brorson H, OK, Olsson G and Svensson B: Liposuction of postmastectomy arm lymphedema completely removes excess volume: A thirteen-year study (Quad erat demonstrandum). Eur J Lymphol 17: 9, 2007.

121. Brorson H, Svensson H, Norrgren K and Thorssen O: Liposuction reduces arm lymphedema without significantly altering the already impaired lymph transport. Lymphology 31: 156-172, 1998.

122. Brorson H: Liposuction in lymphedema treatment. J Reconstr Microsurg 32: 56-65, 2016.

123. Lamprou DA, Voesten HG, Damstra RJ and Wikkeling OR: Circumferential suction-assisted lipectomy in the treatment of primary and secondary end-stage lymphedema of the leg. Br J Surg 104: 84-89, 2017.

124. Damstra RJ, Voesten HG, Kinkert P and Brorson H: Circumferential suction-assisted lipectomy for lymphedema after surgery for breast cancer. Br J Surg 96: 899-864, 2009.

125. Schaverien MV, Munro KJ, Baker PA and Munnoch DA: Liposuction for chronic lymphoedema of the upper limb: 5 Years of experience. J Plast Reconstr Aesthet Surg 65: 935-942, 2012.