Predictive model for early diagnosis of keratoconus

CURRENT STATUS: UNDER REVIEW

GRACIA CASTRO-LUNA graci@ual.es
Universidad de Almería
Corresponding Author
ORCiD: 0000-0001-6928-9728

ANTONIO PÉREZ-RUEDA
Universidad De Almería Facultad de Ciencias de la Educacion Enfermeria y Fisioterapia

DOI: 10.21203/rs.2.21162/v1

SUBJECT AREAS
 Ophthalmology

KEYWORDS
 keratoconus, corneal topography, high order aberrations, coma
Abstract

Background To describe the topographic, pachymetric and aberrometry characteristics in patients with keratoconus, subclinical keratoconus/forme fruste and normal corneas. Calculate a diagnostic model of subclinical keratoconus/forme fruste.

Methods The design was a cross-sectional study. It included 205 eyes from 188 patients distributed in 82 normal corneas, 40 subclinical keratoconus/forme fruste and 83 established keratoconus The topographic, pachymetric and aberrometry variables obtained by rotary Scheimpflug camera (Pentacam® type) were analyzed. A descriptive and bivariate analysis of the recorded data was performed. A diagnostic model of subclinical keratoconus/forme fruste was calculated.

Results Statistically significant differences were obtained when comparing normal corneas with subclinical keratoconus/forme fruste in variables of vertical asymmetry and corneal thickness. The regression model was calculated with the minimum corneal thickness and the anterior coma to 90° and posterior coma to 90°.

Conclusions The diagnosis of subclinical keratoconus/forme fruste depends on the central corneal thickness, and two aberrometric topographic parameters the anterior coma to 90° and posterior coma to 90°.

Background

Keratoconus is an asymmetrical bilateral eye disease¹ in which corneal thinning and protrusion occurs in the form of a generally lower temporal cone. This corneal deformation produces a significant decrease in visual quality.

It usually appears in adolescence, progressing into the third or fourth decade.¹ Although of unknown etiology, it has been related to genetic factors² such as environmental factors³ – ⁴.
The incidence and prevalence of keratoconus are very variable. It has been seen that in Europe, the frequency would be between 5 and 23 per 100,000 people/year and the average prevalence would be 54 per 100,0005. In a recent study it was observed that the prevalence of keratoconus in southern Spain was 30 per 100,000.6

The diagnosis of keratoconus is clinical. Therefore, it is established when a patient presents progressive loss of vision that is not corrected with glasses and is accompanied by biomicroscopic findings in the exploration.

However, there are two entities known as Subclinical Keratoconus and Forme Fruste Keratoconus (SCKC/FFKC), which are included as early stages of the disease, where visual acuity is usually preserved.5

Throughout history, several classifications of clinical keratoconus have been used; the Amsler-Krumeich classification has been the most widely used.24,28 Alió-Shabayek modified it including coma-like corneal aberrations.8 However, there is no adequate classification to determine the stage of this pathology at an early stage.

Corneal topography is a non-invasive diagnostic test that allows to know the surface of the cornea. It was established that this is the best method of diagnosis in incipient keratoconus.9 The Oculus Pentacam® system provides the anterior and posterior topographic, pachymetric and aberrometry maps.

The anterior corneal surface is the most important refractive component of the eye, and it aberrations are very useful in the diagnosis of the corneal disease.8,12,20,24,25 However, studies of aberrations of the posterior surface are discordant and inconclusive.9,13,14,29,30

The study of corneal aberrations in incipient stages has allowed us to affirm that the anterior coma to 90º is the one that most discriminates them from healthy
corneas. Parameters as minimum corneal thickness, posterior coma, forcefoil and spherical aberration would also have an influence.

It has been analyzed that corneal aberrations, especially the anterior coma to 90° and its influence in the visual quality of patients with keratoconus.

The study of the wavefront has a great importance for the early diagnosis of keratoconus and the determination of variables that influence visual acuity. The main objective of this study is to establish a predictive model of early diagnosis in keratoconus with topographic variables obtained by Pentacam®.

Methods

A cross-sectional study was carried out to analyses the topographic, pachymetric and aberrometry variables obtained by rotary Scheimpflug camera (Pentacam® type) from patients diagnosed with keratoconus, SCKC/FFKC and normal corneas in the Ophthalmology Service at the Torrecárdenas University Hospital (Almería, Spain) between February 2018 and February 2019. The data have been collected from the Pentacam® clinical database.

Participants have been previously informed of the data to be taken and have signed an informed consent authorizing the use of their data anonymously. The ethical principles for medical research on human beings of the Declaration of Helsinki have been followed.

Total of 188 patients was distributed in 3 groups.

Group 1: Healthy patients without corneal pathology,

Group 2 Patients with SCKC/FFKC. This group included patients with any altered corneal topography but without clinical signs of disease and clinical keratoconus in the contralateral eye

Group 3 Patients with keratoconus. They must present at least one biomicroscopic
alteration of the anterior segment (central thinning with Fleischer's ring and Vogt's striae) and the topography compatible with corneal ectasia. In patients with bilateral keratoconus, one of the eyes had been taken randomly.

The exclusion criteria were to have any systemic or ocular pathology and any ocular surgical intervention, including intrastromal rings and cross-linking.

A complete ophthalmological examination was performed in all cases.

Uncorrected visual acuity (UCVA) and best corrected visual acuity (BCVA) were collected with Snellen's chart (decimal scale). Objective refraction obtained by an autorefractometer (KR8900, Topcon, Japan) biomicroscopy (Carl Zeiss Meditec AG, Jena, Germany) and fundus were examined.

A corneal topographic analysis was performed on all patients by the same trained physician, under the same dark conditions and a pupil diameter of 6 mm. Patients with soft contact lenses didn't wear them for three weeks and the gas-permeable rigid lenses for at least five weeks before the test. The examination was performed with the rotary camera Scheimpflug (Pentacam® AXL, Oculus Optikgeräte, Wetzlar, Germany).

The following variables were collected:

Corneal topography of the anterior face: minor curvature (K1), major curvature (K2), mean curvature (Km), maximum curvature (KMAX), asphericity (Q), vertical asymmetry index (VAI); corneal topography of the posterior face: minor curvature (K1), major curvature (K2), mean curvature (Km) and asphericity (Q), central corneal thickness (CCT), minimum corneal thickness (MCT) with its coordinates (x,y) mean square root of total aberrations (Total RMS), mean square root of high order aberrations (HOA RMS), secondary corneal astigmatism to 0º (Z2^2) and to 45º (Z2^-2), anterior horizontal coma to 0º, posterior horizontal coma to 0º, total horizontal corneal coma to 0º (Z3^1), anterior vertical coma to
90°, posterior vertical comato90°, total vertical corneal coma to 90° (Z3⁻¹), trefoil to 0° (Z3⁻³), trefoil to 30° (Z3³), tetrafoil to 0° (Z4⁴), tetrafoil to 22.5° (Z4⁻⁴) and spherical aberration (Z4⁰).

Statistical analysis was performed using the software for Windows SPSS (version 25.0, SPSS, Chicago, Illinois, USA) and R (version 3.5.1).

Results

The study compared 205 eyes divided into three study groups, the distribution of which is shown in Table 1. There were no statistically significant differences in laterality or sex between the groups.

There were statistically significant differences between the three groups (p < 0.05, Kruskal-Wallis) for the sphere, cylinder, spherical equivalent and BCVA (decimal scale). Also, there were statistically significant differences between group 1 and 2 for the sphere (p = 0.012, U Mann-Whitney), (Table 1).

Means and standard deviations were calculated for the different variables. Those of more considerable clinical significance are presented in Table 2.

Table 1: Demographic characteristics

	Normal	KCSC/KCFF	KC	SCKC/FFKC Vs Controls P Value*	Controls Vs KC P Value*
Patients n (%)	82 (39.8)	40 (19.4)	83 (40.3)		
Eye					
Right	41 (50.0)	19 (47.5)	54 (65.1)		0.078
Left	41 (50.0)	21 (52.5)	29 (34.9)		
Sex					
Male	36 (43.9)	23 (57.5)	40 (48.2)		0.369
Female	46 (56.1)	17 (42.5)	43 (51.8)		
Sphere (D)	-0.36 ± 3.02 [-8; 4.50]	-1.06 ± 1.71 [-5.50; 3]	-3.71 ± 4.71 [-16;6]	0.012	< 0.01
Cylinder (D)	-1.82 ± 2.15 [-6; 3.75]	-1.19 ± 0.99 [-2.50; 2.75]	-2.95 ± 1.46 [-6;1]	0.059	< 0.01
Spherical equivalent (D)	-1.38 ± 3.23 [-10; 5.50]	-1.73 ± 1.62 [-5.50; 2.25]	-4.84 ± 4.61 [-18; 4.50]	0.251	< 0.01
BCVA (decimal scale)	0.97 ± 0.07 [0.7;1]	0.99 ± 0.06 [0.7;1]	0.6 ± 0.29 [0.05; 1]	0.219	< 0.01
p<0.05

Table 2. Main Pentacam indices and bivariate analysis
	Controls	SCKC/FFKC	KC	SCKC/FKC Vs Controls	KC Vs Controls
	p Value	p Value			
Anterior surface topography					
Km	43.55±1.43	43.37±1.55	48.26±4.644	0.616	
KMAX	45.49±1.92	45.91±1.97	55.14±7.657	<0.01	
VAI	0.16±0.08	0.28±0.14	0.79±0.509	<0.01	
Posterior surface topography					
Km	-6.246±0.220	-6.148±0.343	-7.15±0.947	<0.01	
Pachymetry					
CCT	543.76±36.42	515.20±27.59	466.92±55.94	<0.01	
MCT	538.52±37.03	503.67±26.62	456.93±50.65	<0.01	
Corneal Aberrometry					
RMS HOA	0.52±0.23	0.69±0.31	1.74±1.02	<0.01	
Ant Coma 90º	0.01±0.20	0.49±0.43	-2.06±1.51	<0.01	
Post Coma 90º	-0.01±0.05	0.11±0.10	0.53±0.386	<0.01	
Coma 90º	0.01±0.21	-0.40±0.32	-1.88±1.413	<0.01	
Trefoil 0º	0.03±0.18	0.08±0.22	0.09±0.34	0.396	<0.01
Spherical aberration	0.20±0.14	0.18±0.16	-0.279±0.75	0.204	<0.01
Early diagnosis of Keratoconus:
Our main objective in the study would be to be able to differentiate between healthy patients (group 1) and patients with SCKC/FFKC (group 2). Therefore, we consider normal corneas and SCKC/FFKC as a dichotomous dependent variable. Independent variables included MCT, anterior coma to 90° and posterior coma to 90°
Table 3 presents the equation variables accompanied by their statistical significance and their OR (Exp (β)) with the 95% confidence interval and the variance inflation factor to evaluate the collinearity between the variables

Table 3: Regression model coefficients for the diagnosis of subclinical keratoconus

	Estimate β	Exp β (OR)	Std. Error	P value	VIF
(Intercept)	19.25789	2.31E+08	6.20707	0.001918	
MCT	-0.04001	9.61E-01	0.01198	0.000838	1.25
COMA.POST.90	19.92046	4.48E+08	6.90491	0.003915	1.82
COMA.ANT.90	-2.62811	7.22E-02	1.53268	0.086397	1.53

The Hosmer and Lemeshow goodness of fit test (GOT) (p=0.566) indicated that the proposed model was correctly calibrated.
Table 4 shows a contingency table of observed cases versus predicted cases.

Table 4: Contingency table of observed cases versus predicted cases

	low	high
outcome		
0	79	3
1	9	31

The AUC (Area Under Curve) of the ROC (Receiver Operating Characteristics) curve for the binary logistic regression model was 0.92 (IC 95% 0.86 – 0.98) in the diagnosis of subclinical keratoconus/forme fruste (Figure 1)

Discussion
Detection of SCKC/FFKC has always been a challenge for ophthalmologists, especially
when there are no clinical signs or symptoms in the patient.

The rotary camera Scheimpflug (Pentacam®) [13, 14, 20, 23, 25, 26, 30], has been used to
diagnose keratoconus in daily clinical practice. The topographic parameters of clinical
keratoconus are recognizable. However, it is not easy to diagnose subclinical keratoconus
based on topographic variables. This study calculates a diagnostic model based on the
aberrometry data of the anterior and posterior corneal surface provided by the Pentacam
The selection of the sample was made that there were no differences between the age
groups [12–15, 17, 19, 21, 24, 29], sex [14, 21, 22, 29], and laterality [21, 22]. In Koçamis et al.
study [22], there were significant differences for age between keratoconus (26.19 ± 7.90)
and healthy (30.88 ± 7.57).

Pupillary dilatation is a parameter modifying aberrometry results [27]. In this study, it was
prefixed in 6 mm. In previous studies [8, 12–14, 20, 23, 29], Hondur et al. [27] established it in
5 mm.

Many studies have been made between healthy patients with Keratoconus [8, 10, 12–14, 20,
22, 24, 27] or healthy patients with SCKC/FFKC [15, 17, 19, 21, 23, 26, 28–31]. The purpose in most
of them was to analyze the topographic parameters to find differences between a healthy
patient and an incipient corneal ectasia without symptoms.

Different classification methods have been used: Amsler-Krumeich [24, 27, 28], Alió and
Shabayek [13, 20], KISA % index [21] or KSS [29].

All this methodological variability leads to an outstanding selection and classification bias
that it must be taken into account when making comparisons between studies.

If we analyze the refractive parameters of our study, statistically significant differences
were obtained between the three groups analyzed for the sphere, the cylinder and the
spherical equivalent (p < 0.05, Kruskal-Wallis), as in other studies19, 30. However, when comparing normal corneas with SCKC/FFKC, we obtained statistically significant differences only for the sphere (p = 0.012, U Mann-Whitney).

Saadand Gatine17 obtained that the mean of the sphere was significantly higher in their normal group than in their SCKC/FFKC group (p < 0.001). Reddy et al19 obtained statistically significant differences for the cylinder (p < 0.001) not obtaining these differences for the sphere (p = 0.08). However, Naderanet al29 found no statistically significant differences for sphere (p = 0.136) or cylinder (p = 0.108).

Statistically significant differences were observed between the visual acuity of the three groups, not existing between normal corneas and SCKC/FFKC. These values are consistent with previous studies8, 20, 22, 27, 30, 31.

A bivariate analysis has been performed between normal corneas and SCKC/FFKC. Statistically significant differences were only obtained for variables of vertical asymmetry, coma to 90° and corneal thickness (p < 0.05).

According to Bührenet al15, the anterior coma to 90° would be the most useful parameter to differentiate normal corneas from SCKC/FFKC. Other parameters such as the posterior coma to 90° and the minimum corneal thickness would not exceed the value of the anterior surface.

When the corneal coma to 90° was analyzed in absolute value, we found that it was higher in SCKC/FFKC (\textdagger\textless 0.404| ± 0.319) than in normal (0.0123 ± 0.209), but lower than in keratoconus (\textdagger\textless 1.877| ± 1.413). This value indicates that group 2 included those patients with a very early stage of keratoconus and that the parameter corneal coma to 90° had increased with the natural history of the disease17. The negative sign of the corneal coma to 90° refers to the lower decenteration of the cone in the axis of ordinate17.
More recently, Naderanet al29 and Xu et al30 indicated the importance of posterior surface aberrations to differentiate normal SCKC/FFKC corneas. In the first study, they obtained that the values for posterior coma to 90° of the healthy group were 0.032 ± 0.363 and for the SCKC/FFKC group were 0.193 ± 0.264 with statistically significant differences between groups (p = 0.003, U Mann-Whitney). In our database, the posterior coma to 90° for normal corneas were –0.008 ± 0.049 and for SCKC/FFKC were 0.112 ± 0.103, (p < 0.05, U Mann-Whitney).

The relationship between coma-like aberrations of the anterior surface and the degree of manifest keratoconus is well known.8, 12, 22, 24−27 Piñero et al13 were the first to attempt to characterize the posterior corneal surface and its aberrations in patients with normal corneas and keratoconus, finding results that were not concordant by the optical theory of the corneal surface.

In this study in the healthy patients were obtained values of anterior coma to 90° of 0.001 ± 0.225 and posterior coma to 90° of 0.319 ± 0.372 while in keratoconus were –1.754 ± 0.976 and –3.692 ± 1.81 respectively. If we analyze the results of our study, in healthy patients the anterior coma to 90° were 0.009 ± 0.200 and posterior coma to 90° were-0.008 ± 0.049, and in keratoconus, we obtained –2.073 ± 1.513 and 0.536 ± 0.386 respectively. In our case, the anterior parameters, in absolute value, were higher than the posterior ones, which is concordant with the corneal optical theory.

For Buhrenet al15, the minimum corneal thickness was the most discriminating pachymetric parameter between normal corneas and SCKC/FFKC. However, he concluded that the posterior surface was not discriminate as to the anterior surface, and this surface was not sufficient for the diagnosis of the subclinical entity. Safarzadeh et al28 reflected that minimum corneal thickness and posterior corneal elevation would be the best
parameters for differentiating suspicious keratoconus from healthy eyes. Although other authors17, 21, 30 have established binary logistic models, it is the first report of a simple diagnostic model to obtain the probability of having or not having subclinical keratoconus using parameters obtained from the Pentacam® topographer.

Conclusions

The diagnosis of subclinical keratoconus/forme fruste depends on the minimum corneal thickness, and two aberrometric topographic parameters the anterior coma to 90° and posterior coma to 90°.

Abbreviations

SCKC/FFKC
Subclinical Keratoconus /Forme Fruste Keratoconus
MCT
Minimum Corneal Thickness
UCVA
Uncorrected Visual Acuity
BCVA
Best Corrected Visual Acuity
Km
Mean curvature (Km),
Kmax
maximum curvature (KMAX),
Q
asphericity
VAI
vertical asymmetry index
Total RMS
mean square root of total aberrations
HOA RMS
mean square root of high order aberrations
AUC
Area Under Curve
ROC curve
Receiver Operating Characteristics curve

Declarations

Ethics approval and consent to participate
All procedures performed in studies involving human participants were by the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its comparable ethical standards. Ethical approval by Ethics Committee Torrecárdenas Universitary Hospital. The committee’s reference number is 19/2019

Informed consent: Informed consent was obtained from all individual participants included in the study

Consent for publication
Not Applicable

Availability of data and material
The datasets generated and/or analysed during the current study are available in the KERATOCONUS repository, Castro de Luna, Gracia; Perez Rueda, Antonio (2020), “KERATOCONUS”, Mendeley Data, V2, doi: 10.17632/t2yzmb4c7s.2

Competing interests
The authors declare no competing interests

Fundings
No funding was obtained for this study

Authors' contributions
GCL has contributed in the design of this study and has calculated the statistical data
APR has collected the data

Acknowledgements
Not Applicable

References

1. Mas Tur V, MacGregor C, Jayaswal R, O'Brart D, Maycock N. A review of keratoconus: Diagnosis, pathophysiology, and genetics. SurvOphthalmol. 2017 Nov; 62(6):770–83.

2. Moussa S, Grabner G, Ruckhofer J, Dietrich M, Reitsamer H. Genetics in Keratoconus – What is New? Open Ophthalmol J. 2017; 11(Suppl-1, M4):201–10.

3. Naderan M, Shoar S, Rezagholizadeh F, Zolfaghari M, Naderan M. Characteristics and associations of keratoconus patients. Contact Lens Anterior Eye. 2015; 38(3):199-205.

4. Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The Genetic and Environmental Factors for Keratoconus. Biomed Res Int. 2015.

5. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: A review. Contact Lens Anterior Eye. 2010; 33 (4):157–66.

6. Fernández-Barrientos Y, Gismero-Moreno S, Lorenzo-Soto M. Estimated prevalence and clinical characteristics of keratoconus in the healthcare setting of the Hospital Costa del Sol, Spain. J Emmetropia. 2014; 5: 15–21.

7. Huseynli S, Abdulaliyeva F. Evaluation of Scheimpflug Tomography Parameters in Subclinical Keratoconus, Clinical Keratoconus and Normal Caucasian Eyes. TürkOftalmolDerg. 2018; 48(3):99–108.

8. Alió JL, Shabayek MH. Corneal higher-order aberrations: a method to grade keratoconus. J Refract Surg. 2006; 22(6):539-45.

9. Gomes JAP, Tan D, Rapuano CJ, Belin MW, Ambrósio R, Guell JL, Malecaze F, Nishida K, Sangwan VS. Global Consensus on Keratoconus and Ectatic Diseases. Cornea. 2015; 34(4):359–69.

10. Mounir A, El Saman IS, Anbar M. The Correlation between Corneal Topographic
Indices and Corneal High Order Aberrations in Keratoconus. Med Hypothesis Discov Innov Ophthalmol. 2019; 8(1):1-6.

11. Oliveira CM, Ferreira A, Franco S. Wavefront analysis and Zernike polynomial decomposition for evaluation of corneal optical quality. J Cataract Refract Surg. 2012; 38(2):343-56.

12. Maeda N, Fujikado T, Kuroda T, Mihashi T, Hirohara Y, Nishida K, Watanabe H, Tano Y. Wavefront aberrations measured with a Hartmann-Shack sensor in patients with keratoconus. Ophthalmology. 2002; 109(11):1996–2003.

13. Piñero DP, Alió JL, Alesón A, Escaf M, Miranda M. Pentacam posterior and anterior corneal aberrations in normal and keratoconic eyes. Clin Exp Optom. 2009; 92(3):297-303.

14. Nakagawa T, Maeda N, Kosaki R, Hori Y, Inoue T, Saika M, Mihashi T, Fujikado T, Tano Y. Higher-order aberrations due to the posterior corneal surface in patients with keratoconus. Investig Ophthalmol Vis Sci. 2009; 50(6):2660–5.

15. Bühren J, Kook D, Yoon G, Kohnen T. Detection of subclinical keratoconus by using corneal anterior and posterior surface aberrations and spatial thickness profiles. Investig Ophthalmol Vis Sci. 2010; 51(7):3424-32.

16. Alió JL, Piñero DP, Alesón A, Teus MA, Barraquer RI, Murta J, Maldonado MJ, Castro de Luna G, Gutiérrez R, Villa C, et al. Keratoconus-integrated characterization considering anterior corneal aberrations, internal astigmatism, and corneal biomechanics. J Cataract Refract Surg. 2011; 37(3):552–68.

17. Saad A, Gatinel D. Evaluation of total and corneal wavefront high order aberrations for the detection of forme fruste keratoconus. Investig Ophthalmol Vis Sci. 2012; 53(6):2978-92.

18. Bruce AS, Catania LJ. Clinical applications of wavefront refraction. Optom Vis Sci.
19. Reddy JC, Rapuano CJ, Cater JR, Suri K, Nagra PK, Hammersmith KM. Comparative evaluation of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J Cataract Refract Surg. 2014; 40(4):582–92.

20. Bernal Reyes N, Arias Díaz A, Camacho Rangel LE. Aberraciones corneales anteriores y posteriores medidas mediante imágenes de Scheimpflug en el queratocono en niños. RevMexOftalmol. 2015; 89(4):210–8.

21. Prakash G, Suhail M, Srivastava D. Predictive Analysis between Topographic, Pachymetric and Wavefront Parameters in Keratoconus, Suspects and Normal Eyes: Creating Unified Equations to Evaluate Keratoconus. Curr Eye Res. 2016; 41(3):334–42.

22. Kocamış Sİ, Çakmak HB, Çağil N, Toklu Y. Investigation of the Efficacy of the Cone Location and Magnitude Index in the Diagnosis of Keratoconus. Semin Ophthalmol. 2016; 31(3):203–9.

23. Bilen NB, Hepşen IF, Arce CG. Correlation between visual function and refractive, topographic, pachymetric and aberrometry data in eyes with keratoconus. Int J Ophthalmol. 2016; 6–7.

24. Colak HN, Kantarci FA, Yıldırım A, Tatar MG, Goker H, Uslu H, Gurler B. Comparison of corneal topographic measurements and high order aberrations in keratoconus and normal eyes. Contact Lens Anterior Eye. 2016; 39(5):380–4.

25. Delgado S, Velazco J, Delgado Pelayo RM, Ruiz-Quintero N. Correlación de aberraciones de alto orden en la cara anterior de la córnea y el grado de queratocono medidas con cámara de Scheimpflug. Arch Soc Esp Oftalmol. 2016; 91(7):316–9.

26. Hashemi H, Beiranvand A, Yekta A, Maleki A, Yazdani N, Khabazkhoob M. Pentacam
top indices for diagnosing subclinical and definite keratoconus. J Curr Ophthalmol. 2016;28(1):21–6.

27. Hondur G, Cagil N, Sarac O, Ozcan ME, Kosekahya P. Pupillary Offset in Keratoconus and its Relationship with Clinical and Topographical Features. Curr Eye Res. 2017; 42(5):708-12.

28. Safarzadeh M, Nasiri N. Anterior segment characteristics in normal and keratoconus eyes evaluated with a combined Scheimpflug/Placido corneal imaging device. J Curr Ophthalmol. 2016; 28(3):106-11.

29. Naderan M, Jahanrad A, Farjadnia M. Ocular, corneal, and internal aberrations in eyes with keratoconus, forme fruste keratoconus, and healthy eyes. Int Ophthalmol. 2018; 38(4):1565–73.

30. Xu Z, Li W, Jiang J, Zhuang X, Chen W, Peng M, Wang J, Lu F, Shen M, Wang Y. Characteristic of entire corneal topography and tomography for the detection of subclinical keratoconus with Zernike polynomials using Pentacam. Sci Rep. 2017; 7(1):1–10.

31. Aksoy S, Akkaya S, Özkurt Y, Kurna S, Açikalin B, Şengör T. Topography and Higher Order Corneal Aberrations of the Fellow Eye in Unilateral Keratoconus. Turkish J Ophthalmol. 2018; 48(5):274-5.

Figures
Figure 1

the ROC (Receiver Operating Characteristics) curve for the regression model