New Risk Measures “VaR to the Power of t” and “ES to the Power of t” and Distortion Risk Measures

V.B. Minasyan
Higher School of Finance and Management, Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia
https://orcid.org/0000-0001-6393-145X

ABSTRACT
Distortion risk measures have been popular in financial and insurance applications in recent years due to their attractive properties. The aim of the article is to investigate whether risk measures “VaR in the power of t”, introduced by the author, belong to the class of distortion risk measures, as well as to describe the corresponding distortion functions. The author introduces a new class of risk measures “ES to the power of t” and investigates whether it belongs to distortion risk measures, and also describes the corresponding distortion functions. The author used the composite method to design new distortion functions and corresponding distortion risk measures, to prove that risk measures “VaR to the power of t” and “ES to the power of t” belong to the class of distortion risk measures. The paper presents examples to illustrate the relevant concepts and results that show the importance of risk measures “VaR to the power of t” and “ES to the power of t” as subsets of distortion risk measures that allow identifying various financial catastrophic risks. The author concludes that risk measures “VaR to the power of t” and “ES to the power of t” can be used in risk management of companies when assessing remote, highly catastrophic risks.

Keywords: catastrophic risks; distortion risk measures; distortion functions; composite method; coherent risk measures; risk measures “VaR to the power of t”; risk measures “ES to the power of t”

For citation: Minasyan V.B. New risk measures “VaR to the power of t” and “ES to the power of t” and distortion risk measures. Finance: Theory and Practice. 2020;24(6):92-107. (In Russ.). DOI: 10.26794/2587-5671-2020-24-6-92-107

© Minasyan V.B., 2020
ВВЕДЕНИЕ

Мерой риска является отображение ρ множества случайных переменных X, связанных с рисками портфелями активов и/или обязательств (результативных переменных этих портфелей), в действительную прямую R. В последующем обсуждении X будет представляться как величина соответствующих потерь, т. е. положительные значения переменных X будут представляться как потери, в то время как отрицательные значения представляют прибыль. Меры риска искажения представляют собой особую и важную группу мер риска, которую широко используют в финансах и страховании в качестве расчета потребности в капитале и принципов расчета показателей, связанных с апкетитом к риску для регулятора и руководителя компании. Несколько популярных мер риска оказались относящимися к семейству мер риска исказления. Например, ценность под риском (VaR), хвостовая ценность под риском или ожидаемый дефицит (ES) [1–3] и мера исказления Ванга [4]. Меры риска исказления удовлетворяют важнейшим свойствам, которыми должна обладать модель риска: композитный метод, способ смешивания и подход на основе теории копулы (связок). Наше исследование будет использовать результаты данной работы.

Многими исследователями были предложены новые классы мер риска исказления. Например, в качестве расширения VaR и ES J. Belles-Sampera, M. Guillén, M. Santolino [16] предложили новый класс мер риска исказления, названный мерами риска GlueVaR, которые могут быть выражены как комбинация показателей VaR и ES при различных уровнях доверительных вероятностей. Они получили аналитические выражения замкнутой формы для наиболее часто используемых функций распределения в финансах и страховании. При этом, как было показано, подсемейство этих мер риска удовлетворяет свойству хвостовой субаддитивности, которое означает, что преимущества диверсификации могут сохраняться, по крайней мере, в определенных случаях. Применения мер риска GlueVaR, связанные с распределением капитала, были рассмотрены в статье J. Belles-Sampera, M. Guillén, M. Santolino [17].

U. Cherubini, S. Mulinacci [18] предложили класс мер исказления, основанных на заражении от внешней, «сценарной» переменной. Для зависимости от сценария переменной, риск которой моделируется функцией копулы с горизонтально вогнутыми участками, они дают условия выполнения аксиомы когерентности и предлагают примеры мер этого класса на основе функции копулы.

Было бы интересно исследовать взаимоотношение двух классов мер риска: мер риска исказления и мер риска VaR в степени t.

FINANCETP.FA.RU
Автор вводит семейство новых мер риска, названных мерами риска «ES в степени t» (ES(t)|X]) при любой доверительной вероятности p и любом действительном t ≥ 1. Исследовано взаимоотношение двух классов мер риска: искажения и ES в степени t и доказано, что семейство мер ES в степени t является подмножеством множества мер риска искажения. Таким образом, всякая mer риска ES в степени t, при любом t ≥ 1, является мерой риска искажения с определенной функцией искажения. При этом данная функция искажения будет предъявлена.

Ясно, что сложно поверить в то, что есть уникальная mer риска, которая может охватывать все его характеристики. Такой идеальной mer не существует. Более того, поскольку с каждой mer риска ассоциируется единое число, она не может исчерпать всю информацию о риске. Семейство мер риска VaR в степени t, как показано в работе автора [8], позволяет, изменения значение параметра t, исследовать правый хвост распределения потерь с любой точностью, необходимой для данной ситуации, т.е. исследовать хвост распределения настолько тщательно, насколько это необходимо, а для точности настолько тщательно, насколько это необходимо в данных конкретных обстоятельствах. В процессе исследования разумно искать меру риска, которые идеально подходят для конкретной частной проблемы. Так как все предлагаемые мер риска имеют недостатки и ограничены в применении, выбор соответствующей мер риска продолжает оставаться горячей темой в управлении рисками.

MEРы Риска ИСКАЖЕния

Функции искажения

Функция искажения является неубывающей функцией g: [0,1] → [0,1] такая, что g(0) = 0, g(1) = 1. Многие функции искажения g уже были предложены в литературе. Здесь перечислены некоторые часто используемые функции искажения.

Резюме других предлагаемых функций искажения можно найти в работе M. Denuit, J. Dhaene, M. Goovaerts, R. Kaas [12].

- Функция g(x) = 1_{[x<1-p]}(x), где 1_{A} означает функцию индикатора, которая равна 1, когда событие A имеет место, и 0 в противном случае, является вогнутой функцией искажения. Здесь, в приложении, параметр p будет представлять предварительно выбранную доверительную вероятность, с которой предполагается рассчитывать соответствующую меру риска.
- Неполней бета-функция

 \[g(x) = \frac{1}{\beta(a,b)} \int_{0}^{x} t^{a-1} (1-t)^{b-1} dt, \]
 где a > 0 и b > 0 являются параметрами и \(\beta(a,b) = \int_{0}^{1} t^{a-1} (1-t)^{b-1} dt. \)

В частности, при b = 1 получаем степенную функцию искажения g(x) = x^a, а при a = 1 получаем дуальную степенную функцию искажения g(x) = 1−(1−x)^b.

- Степенное искажение g(x) = x^a является вогнутой функцией искажения при 0 < a < 1 и выпуклой функцией искажения при a > 1.
 - Показательное искажение g(x) = \frac{e^{x}-1}{e-1} является выпуклой функцией искажения.
 - Синусоидальное искажение g(x) = \sin\frac{\pi x}{2} является вогнутой функцией искажения.
 - Функция g(x) = xe^{1-x} является вогнутой функцией искажения.
 - Логарифмическое искажение g(x) = \ln(x+1) является вогнутой функцией искажения.

- Искажение Wang g(x) = Φ(Φ^{-1}(x) + Φ^{-1}(p)) при 0 < p < 1, где Φ — функция стандартного нормального распределения. Очевидно, что это возрастающая функция, так как таковыми являются функции Φ(x) и Φ^{-1}(x) и g(0) = Φ(Φ^{-1}(0) + Φ^{-1}(p)) = Φ(−x) = 0 и g(1) = Φ(Φ^{-1}(1) + Φ^{-1}(p)) = Φ(+x) = 1, а g\left(\frac{1}{2}\right) = Φ(Φ^{-1}\left(\frac{1}{2}\right) + Φ^{-1}(p)) = Φ(Φ^{-1}(p)) = p.
 - Искажение с оглядкой g(x) = x^p(1 − p \ln x), p ∈ (0, 1].

- Тождественная функция g(x) = x является наименьшей выпуклой функцией искажения, а также наибольшей выпуклой функцией искажения.
 - g_0(x) = 1_{[x<0]} вогнута на [0,1] и является наибольшей из всех нетождественных вогнутых функций искажения. g_0(x) = 1_{[x<0]} является выпуклой на [0,1] и является наименьшей из всех нетождественных выпуклых функций искажения.
 - Для 0 < p < 1 следует отметить, что g(x) = min\{x, 1/(1−p)\} является наименьшей вогнутой функцией искажения из всех таких, что g(x) ≥ 1_{[x<1−p]}.

94
Меры риска искажения

Пусть \((\Omega, F, P)\) — вероятностное пространство, на котором определены все случайные переменные, представляющие интересующие нас риски. Пусть \(F_X\) — интегральная функция распределения случайной переменной \(X\), а дуальную функцию распределения обозначим как \(F'_X\), т.е. \(F'_X(x) = 1 - F_X(x) = P\{X > x\}\). Пусть \(g\) функция искажения.

Искаженное ожидание случайной переменной \(X\) обозначается \(\rho_g[X]\), и определяется как

\[
\rho_g[X] = \int_0^{+\infty} g(F'_X(x))dx + \int_{-\infty}^{0} [g(F'_X(x)) - 1]dx,
\]

при условии, что, по меньшей мере, один из двух интегралов выше является конечным. Если \(X\) отрицательная случайная переменная, то \(\rho_g[X]\) упрощается до

\[
\rho_g[X] = \int_0^{+\infty} g(F'_X(x))dx.
\]

Следует заметить, что данное определение подразумевает, что в случае, когда функция искажения является тождественной функцией, т.е. \(g(x) = x\), то, как нетрудно проверить, искаженное ожидание совпадает с обычным ожиданием:

\[
\rho_g[X] = \mathbb{E}[X].
\]

Вследствие того, что ожидаемое значение случайной величины считается важнейшим способом оценки будущего значения случайной величины \(X\), естественно предположить, что поскольку риски возникают из-за того или иного отклонения значения случайной величины от ее ожидаемого значения, то меры риска можно смоделировать в виде «искажения» ожидаемого значения с помощью соответствующей функции искажения.

Искаженное ожидание \(\rho_g[X]\) называется мерой риска искажения с функцией искажения \(g\) [19].

Можно, например, доказать, что как впервые было замечено в работе M. Denuit, J. Dhaene, M. Goovaerts, R. Kaas [12], известная мера риска \(\text{VaR}\) [1–3] является искаженной мерой риска, соответствующей функции искажения \(g(x) = 1_{[x,1-p]}\), \(p \in (0,1)\), т.е. справедливо следующее предложение.

Предложение 1 [19]

Для функции искажения \(g(x) = 1_{[x,1-p]}\), \(p \in (0,1)\) в предположении непрерывности функции распределения \(F_X\) соответствующей мерой риска является

\[
\rho_g[X] = \text{VaR}^*_g[X].
\]

J. Dhaene и др. [19] также доказали следующие два важных факта, описывающих связь всех мер риска искажения, получаемых с помощью функций искажения, непрерывных справа на \([0,1)\) или слева на \((0,1]\) с мерами риска \(\text{VaR}\).

Теорема 1

Когда функция \(g\) искажения является непрерывной справа на \([0,1)\), то меру риска искажения \(\rho_g[X]\) можно представить в следующем виде:

\[
\rho_g[X] = \int \text{VaR}^*_g[X]df\gamma(q),
\]

где \(\text{VaR}^*_g[X] = \sup\{x \mid F_X(x) \leq \rho\}\)

Теорема 2

Когда функция искажения \(g\) является непрерывной слева на \((0,1]\), то меру риска искажения \(\rho_g[X]\) можно представить в следующем виде:

\[
\rho_g[X] = \int \text{VaR}^*_g[X]df\gamma(q) = \int \text{VaR}^*_g[X]df\gamma(q),
\]

где \(\text{VaR}^*_g[X] = \inf\{x \mid F_X(x) \geq \rho\}\)

и \(\rho\) является двойственной к \(g\) искажением.

Очевидно, что \(g = \gamma\) и \(g\) непрерывна слева тогда и только тогда, если \(g\) непрерывна справа; \(\rho\) является выпуклой тогда и только тогда, если \(\rho\) является выпуклой.

Меры риска искажения представляют собой особый класс мер риска, которые ввел D. Denneberg [9] и доработал S.S. Wang [4, 20].

Меры риска искажения удовлетворяют множеству свойств, включая положительную однородность, трансляционную инвариантность и монотонность. Мера риска называется когерентной, если он удовлетворяет следующему множеству четырех свойств [11, 21]:

- (M) монотонность: \(\rho(X) \leq \rho(Y)\) при условии, что \(P(X \leq Y) = 1\);
- (P) положительная однородность: для любой положительной константы \(c > 0\) и потери \(X\), \(\rho(cX) = c\rho(X)\);
- (S) субаддитивность: при любых потерях \(X, Y\), тогда \(\rho(X + Y) \leq \rho(X) + \rho(Y)\) ;
- (T) трансляционная инвариантность: если \(c\) — константа, то тогда \(\rho(X + c) = \rho(X) - c\).

Мера риска \(\rho\) называется выпуклой мерой риска, если она удовлетворяет своим монотонности, трансляционной инвариантности и следующему свойству выпуклости:

- (C) выпуклость: \(\rho(\lambda X + (1 - \lambda) Y) \leq \lambda \rho(X) + (1 - \lambda) \rho(Y), 0 \leq \lambda \leq 1\).

Очевидно, что при допущении положительной однородности, монотонности и трансляционной инвариантности выпуклость меры риска эквивалентна субаддитивности.

Известно [19], что другой, после \(\text{VaR}\) мерой риска, которая представляется как мера риска искажения,
является известная мера ES, мера ожидаемого дефицита, условная VaR [1–3], как утверждает следующее предложение.

Предложение 2 [19]
Для функции искажения
\[g(x) = \min(\frac{x}{1 - p}, 1), \quad p \in [0, 1] \]
в предположении не-прерывности функции распределения \(F_X \) соответствующей искаженной мерой риска является
\[\rho^*_g \left[X \right] = ES \left[X \right]. \]
Следующая теорема [17] полезна и может быть использована для упорядочивания мер риска искажения с точки зрения их функций искажения.

Теорема 3 [17]
Если \(g(x) \leq g^*(x) \) для \(x \in [0, 1] \), тогда \(\rho^*_g \left[X \right] \leq \rho^* \left[X \right] \) для любой случайной переменной \(X \).

СЕМЕЙСТВО МЕР РИСКА VaR В СТЕПЕНИ T, t \geq 1. (VaR(1))
Мера риска VaR в настоящее время является, вероятно, второй по наибольшей применяемости мерой рыночного риска как в теории, так и на практике после волатильности (стандартного отклонения). С конца XX в. достаточное применение и в теории, и практике риск-менеджмента нашла меру рыночного риска как в теории, так и на практике после волатильности (стандартного отклонения). С конца XX в. достаточное применение и в теории, и практике риск-менеджмента нашла меру рыночного риска как в теории, так и на практике после волатильности (стандартного отклонения). С конца XX в. достаточное применение.

В работах автора [6, 7] было введено понятие новой меры «VaR в квадрате», VaR(2), которая более консервативно оценивает риски, чем VaR и часто консервативнее, чем ES, оценивая риск как некую пороговую величину, которая не преодолевается с данной вероятностью, (как VaR), а не как некоторое среднее значение из множества «плохих», хвостовых значений потерь, как ES.

Продолжая развивать идеи исследований [6, 7], автор в работе [8] ввел понятие мер риска VaR в любой степени \(t \geq 1 \), и вывел формулы, позволяющие свести расчет VaR(1) к вычислению обычной меры VaR с измененной определенным образом доверительной вероятностью.

Понятие VaR в любой натуральной степени VaR(n)
В работах [6, 7] была введена новая мера риска, дополняющая VaR, отслеживающая хвостовые редко возникающие события, которые связаны с серьезными финансовыми потерями.

Мерой риска VaR в квадрате (VaR(2)) с доверительной вероятностью \(p \) назовем величину, которую не превысят потери при условии превышения ее пороговой величины \(VaR_p \) с доверительной вероятностью \(p \) в течение заданного времени.

В работе [8] была получена следующая вычислительная формула: \(VaR^{(2)}_{p}(X) = VaR_{1-(1-p)^2}(X) \). (2)

Таким образом, для новой меры катастрофических рисков, которую мы называем «VaR в квадрате», в общем случае получена формула для ее вычисления. Надо просто считать меру риска VaR с доверительной вероятностью 1 – (1 – \(p \))^2.

Понятие VaR(2) в работе [8] было обобщено с учетом того, что доверительная вероятность \(p' \) при определении VaR(2), т.е. пороговой величины, которую не превысит прибыль (превысит убыток) при условии непревышения (превышения) VaR, с вероятностью \(p' \), может отличаться от \(p \). Данная мера риска, которую можно назвать «bi-VaR», была обозначена VaR\(_{p,p'}\) и получена следующая вычислительная формула: \(VaR^{(2)}_{p,p'}(X) = VaR_{1-(1-p)(1-p')}(X) \). (3)

Введем понятие мер риск VaR в степени \(n \), где \(n \) — любое натуральное число и приведем формулы для расчета мер риска VaR и степени \(n \), VaR(\(n \)) [8].

Начнем с того, что обычную меру риска VaR представлям в виде:

\[VaR^{(1)}_{p}(X) = VaR_{p}(X) = VaR_n(X), \]
где \(p_1 = 1 - (1-p) \).

Тогда согласно формуле, приведенной выше
\[VaR^{(2)}_{p}(X) = VaR_{p_2}(X), \]
где \(p_2 = 1 - (1-p_1)^2 \).

Тогда, естественно, согласно определению, считать, что «VaR в кубе» — это всего лишь VaR(\(n \)).

Таким образом, получаем, что
\[VaR^{(3)}_{p}(X) = VaR^{(2)}_{p}(X) = VaR_{p_3}(X), \]
где согласно формуле (3) \(p_3 = 1 - (1-p_2)(1-p) \).

Продолжая аналогичным образом, мы введем меру риска «VaR в степени \(n \)» для любого натурального числа \(n \) как VaR(\(n \)), где \(p_{n-1} = 1 - (1-p)^{n-1} \) и получаем,
\[VaR^{(n)}_{p}(X) = VaR^{(n-1)}_{p_{n-1}}(X) = VaR_{p_n}(X), \]
где согласно формуле (3) \(p_n = 1 - (1-p_{n-1})(1-p) \).

В работе [8] было введено понятие мер риска «VaR в степени \(n \)» для любого натурального числа \(n \) и получена формула, сводящая их вычисления к расчету обычной меры риска VaR с измененной определенным образом доверительной вероятностью.
В зависимости от вида задачи, структуры данных, объема данных и других факторов, вычисление оптимальных значений гиперпараметров может производиться различными способами. В данном случае, мы будем использовать метод градиентного спуска для нахождения оптимальных значений гиперпараметров.

Метод градиентного спуска является одним из распространенных методов оптимизации. Он состоит в том, чтобы начиная с произвольной точки, двигаться в направлении, противоположном градиенту целевой функции, вплоть до достижения минимума.

Математически, это можно описать следующим образом:

1. Вычисление градиента целевой функции в текущей точке.
2. Движение в направлении, противоположном градиенту, на некоторое расстояние.
3. Повторение шагов 1 и 2 до достижения условий остановки (например, до достижения определенного уровня точности или до достижения конечного числа итераций).

В нашем случае, целевой функцией является функция потерь, которую мы хотим минимизировать, а градиентом целевой функции будет вектор, показывающий направление, в котором происходит увеличение функции потерь.

При применении метода градиентного спуска, необходимо учитывать, что процесс обучения может быть нестабильным, и результаты могут варьироваться в зависимости от начальной точки и параметров обучения. Однако, в случае, когда гиперпараметры выбраны правильно, метод градиентного спуска может быть эффективным средством поиска оптимальных значений.

Несмотря на то, что метод градиентного спуска может быть эффективным, он также имеет свои недостатки. Например, он может быть чувствителен к размеру и выбору шага обучения, могут возникать проблемы с налипанием (т.е. процесс затухания скорости обучения) и могут появляться проблемы с зависанием (т.е. процесс, при котором обучение замедляется или останавливается). В таких случаях, могут быть использованы различные техники, такие как выбор другой начальной точки, изменение шага обучения, использование других типов градиентных методов или использование других стратегий поиска оптимальных значений гиперпараметров.
ФИНАНСОВЫЕ РИСКИ / FINANCIAL RISKS

$$ES_{p}^{(2)}[X] = \frac{1}{(1-p)^2} \int_{[1-(1-p)t,1]} VaR_{q}[X] dq.$$ (10)

По аналогии с ES в квадрате введем понятие новой переменной риска — ES в степени n, где n — любое натуральное число.

Мерой риска «ES в степени n», которую мы будем обозначать $ES_{p}^{(n)}[X]$, назовем величину ожидаемых хвостовых потерь, превышающих $VaR_{q}^{(n)}[X]$, т.е. по определению $ES_{p}^{(n)}[X] = E[X | X > VaR_{q}^{(n)}[X]].$

Заметим, что так как $VaR_{q}^{(n)}[X] = VaR_{q}^{1-(1-p)n}[X]$, то значение $ES_{p}^{(n)}[X]$ можно получить, усредняя значения соответствующих $VaR_{q}[X]$ по переменной q на отрезке $[1 - (1 - p)q, 1].$

Отсюда в предположении непрерывности распределения потерь получаем следующее полезное представление для $ES_{p}^{(n)}[X]$:

$$ES_{p}^{(n)}[X] = \frac{1}{(1-p)^n} \int_{[1-(1-p)r,1]} VaR_{q}[X] dq.$$ (11)

Заметим, что из формулы (11) получается полезная формула, позволяющая выразить $ES_{p}^{(n)}[X]$ через обычную меру риска ES с измененной определенной доверительной вероятностью:

$$ES_{p}^{(n)}[X] = ES_{1-(1-p)^{-1}}[X].$$ (12)

Теперь введем понятие новой меры риска — ES в степени t, где t — любое действительное число, $t \geq 1$. Представим число t в виде: $t = k + \alpha$, где k — натуральное число, α — действительное число $0 < \alpha < 1$.

Мерой риска «ES в степени t», которую мы будем обозначать $ES_{p}^{(t)}[X]$, назовем величину ожидаемых хвостовых потерь, превышающих $VaR_{q}^{(t)}[X]$, т.е. по определению $ES_{p}^{(t)}[X] = E[X | X > VaR_{q}^{(t)}[X]].$

Заметим, что так как

$$VaR_{p}^{(t)}[X] = VaR_{p}^{1-(1-p)t}[X],$$

то значение $ES_{p}^{(t)}[X]$ можно получить, усредняя значения соответствующих $VaR_{q}[X]$ по переменной q на отрезке $[1 - (1 - p)q, 1].$

Отсюда в предположении непрерывности распределения потерь получаем следующее полезное представление для $ES_{p}^{(t)}[X]$:

$$ES_{p}^{(t)}[X] = \frac{1}{(1-p)^{t}} \int_{[1-(1-p)r,1]} VaR_{q}[X] dq.$$ (13)

Заметим, что из формулы (13) получается полезная формула, позволяющая выразить $ES_{p}^{(t)}[X]$ через обычную меру риска ES, с измененной определенной доверительной вероятностью:

$$ES_{p}^{(t)}[X] = ES_{1-(1-p)^{t}}[X].$$ (14)

Следует заметить, что между всеми введенными мерами риска справедливы следующие соотношения:

$$VaR_{p}[X] \leq ES_{p}[X],$$

$$VaR_{p}^{(1)}[X] \leq ES_{p}^{(1)}[X],...,$$

$$VaR_{p}^{(n)}[X] \leq ES_{p}^{(n)}[X],...,$$

$$ES_{p}[X] \leq ES_{p}^{(2)}[X] \leq ... \leq ES_{p}^{(n)}[X] \leq ...$$

Однако соотношение между мерами риска $ES_{p}^{(n)}[X]$ и $VaR_{p}^{(n)}[X]$ может зависеть от закона распределения X и даже от доверительной вероятности p. [7]

МЕТОДЫ СОЗДАНИЯ НОВЫХ ФУНКЦИЙ ИСКАЖЕНИЯ И МЕР РИСКА ИСКАЖЕНИЯ

Функции искажения могут рассматриваться как отправная точка для построения семейства мер риска искажения. Таким образом, построение и выбор функций искажения играют важную роль в разработке семейств мер риска с различными свойствами. В работе C. Yin, D. Zhu [15] рассматриваются три метода: композитный метод, способы смешивания и копулы, которые позволяют построить новые классы функций и мер искажения с использованием имеющихся в распоряжении функций и мер искажения.

Мы в данной работе будем обсуждать и развивать лишь первый из них — композитный метод.

Композитный метод

Первым подходом к построению функций искажения является композитный метод, в котором применяется композиция функций искажения.

Пусть $h_{1}, h_{2},...$ являются функциями искажения, определенными через $f_{i}(x) = h_{i}(x)$ и сложные функции $f_{n}(x) = f_{n-1}(h_{n}(x)), n = 1, 2,...$. Легко проверить, что $f_{n}(x), n = 1, 2,...$ также являются функциями искажения. Если $h_{1}, h_{2},...$ вогнутые функции искажения, тогда каждая $f_{n}(x)$ вогнута, и они удовлетворяют условиям: $f_{1} \leq f_{2} \leq f_{3} \leq ...$ и соответствующие меры риска удовлетворяют (по Теореме 5) $\rho_{f_{1}}[X] \leq \rho_{f_{2}}[X] \leq \rho_{f_{3}}[X] \leq ...$

Рассмотрим две функции искажения g_{1} и g_{2}.
Если $g_2(x) = \begin{cases} \frac{x}{1-p}, & \text{если } 0 \leq x \leq 1-p, \\ 1, & \text{если } 1-p < x \leq 1, \end{cases}$, тогда мы получим

$$g_p(x) = g_1(g_2(x)) = \begin{cases} g_1\left(\frac{x}{1-p}\right), & \text{если } 0 \leq x \leq 1-p, \\ 1, & \text{если } 1-p < x \leq 1, \end{cases}$$

Соответствующая мера риска $\rho_{g_2}[X]$ является мерой риска искажения хвоста, которая была впервые представлена L. Zhu, H. Li [13] и была переформулирована F. Yang [14]. В частности, известно, что на пространстве непрерывных случайных переменных потерь X функция $\rho_{g_2}[X] = \frac{1}{\ln 2} \int_0^\infty g_p(x) - 1 \cdot P(X \leq x | X > \text{VaR}_p[X]) dx$.

Если $g_1(x) = x^r, 0 < r < 1$ и $g_2(x) = \begin{cases} \frac{x}{1-p}, & \text{если } 0 \leq x \leq 1-p, \\ 1, & \text{если } 1-p < x \leq 1, \end{cases}$, тогда

$$g_{12}(x) = g_1(g_2(x)) = \begin{cases} g_1\left(\frac{x}{1-p}\right), & \text{если } 0 \leq x \leq 1-p, \\ 1, & \text{если } 1-p < x \leq 1, \end{cases}$$

и

$$g_{21}(x) = g_2(g_1(x)) = \begin{cases} \frac{x^r}{1-p}, & \text{если } 0 \leq x \leq (1-p)^\frac{1}{r}, \\ 1, & \text{если } (1-p)^\frac{1}{r} < x \leq 1, \end{cases}$$

Очевидно, $g_1 < g_{21}$ и $g_2 < g_{12}$, так что по теореме 5 $\rho_{g_2}[X] < \rho_{g_{12}}[X]$ и $\rho_{g_{12}}[X] < \rho_{g_{21}}[X]$.

На практике иногда нужно искажить начальное распределение более одного раза.

Рассмотрим несколько других примеров функций искажения, полученных с помощью композитного метода, как композиция известных функций искажения и изучим соответствующие меры искажения риска.

Пример 1

Рассмотрим показательную функцию искажения $g(x) = \frac{e^x - 1}{e - 1}$, которая является выпуклой функцией искажения и индикаторную вогнутую функцию искажения $1_{[x>1-p]}$.

Легко проверить, что композиция любой функции искажения $g(x)$ (в частности данной) с $1_{[x>1-p]}$ в следующем порядке $g \left(1_{[x>1-p]}\right) = 1_{[x>1-p]}$, т.е. не приводит к созданию новой функции искажения. Изменя порядок создания суперпозиции, т.е. рассмотрим функцию искажения вида: $1_{[x>1-p]}(g(x))$.

Но, так как $h(x) = 1_{[x>1-p]}(g(x)) = 1_{[g(x)>1-p]}(x)$ и неравенство $\frac{e^x - 1}{e - 1} > 1 - p$ эквивалентно неравенству $x > \ln(1+(e-1)(1-p))$, то

$$h(x) = 1_{[x>1-p]}(g(x)) = 1_{[g(x)>1-p]}(x) = 1_{[x>1-\ln(1+(e-1)(1-p))]}(x).$$

Тогда согласно Предложению 1 искаженной мерой риска, соответствующей данной функции искажения, оказывается мера $\rho_{g_2}[X] = \text{VaR}_{1-(e-1)(1-p)}[X]$, т.е. известная мера риска VaR с таким образом измененной доверительной вероятностью. Это очень медленно растущая с ростом доверительной вероятности мера риска.

Если взять, например, начальную доверительную вероятность $p = 0.95$, то $\rho_{g_2}[X] \approx \text{VaR}_{0.032}[X]$.

Пример 2

Рассмотрим логарифмическую функцию искажения $g(x) = \ln(1+x) - \ln 2$, которая является выпуклой функцией искажения и индикаторную вогнутую функцию искажения $1_{[x>1-p]}$.

И рассмотрим функцию искажения, построенную с помощью такой суперпозиции: $1_{[x>1-p]}(g(x))$.

Но, так как $h(x) = 1_{[x>1-p]}(g(x)) = 1_{[g(x)>1-p]}(x)$ и неравенство $\frac{\ln(x+1)}{\ln 2} > 1 - p$ эквивалентно неравенству $x > 2^{1-p} - 1$, то

$$h(x) = 1_{[x>1-p]}(g(x)) = 1_{[g(x)>1-p]}(x) = 1_{[x>1-\ln(1+(e-1)(1-p))]}(x).$$

Тогда согласно Предложению 1 искаженной мерой риска, соответствующей данной функции искажения, оказывается мера $\rho_{g_2}[X] = \text{VaR}_{1-(e-1)(1-p)}[X]$.

Если взять, например, начальную доверительную вероятность $p = 0.95$, то $\rho_{g_2}[X] \approx \text{VaR}_{0.032}[X]$.

FINANCETP.FA.RU
Пример 3
Рассмотрим синусоидальную функцию искажения \(g(x) = \sin \frac{\pi}{2} x \), которая является вогнутой функцией искажения и индикаторную вогнутую функцию искажения \(1_{\{x > 1 - p\}} \).

И рассмотрим функцию искажения, построенную с помощью такой суперпозиции: \(1_{\{x > 1 - p\}}(g(x)) \).

Но так как \(1_{\{x > 1 - p\}}(g(x)) = 1_{\{g(x) > 1 - p\}}(x) \) и неравенство \(\sin \frac{\pi}{2} x > 1 - p \) эквивалентно неравенству
\[x > 2 \arcsin(1 - p), \]
то
\[h(x) = 1_{\{x > 1 - p\}}(g(x)) = 1_{\{x > \frac{2}{\pi} \arcsin(1 - p)\}}(x) = 1_{\{x > 1 - \frac{2}{\pi} \arcsin(1 - p)\}}(x). \]

Тогда согласно Предложению 1 искаженной меры риска, соответствующей данной функции искажения, оказывается мера риска VaR с таким образом измененной доверительной вероятностью.

Скорость роста этих мер риска с ростом доверительной вероятности сильно зависит от выбора значения параметра \(\alpha \).

Если взять, например, начальную доверительную вероятность \(p = 0,95 \), то при \(\alpha = 2 \), момент \(X \approx \text{VaR}_{0,025}[X] \) это очень медленно растущая с ростом доверительной вероятности мера риска; при \(\alpha = 1 \), момент \(X \approx \text{VaR}_{0,95}[X] \) это обычная мера риска VaR; а при \(\alpha = \frac{1}{2} \), момент \(X \approx \text{VaR}_{0,9975}[X] \) это быстрорастущая с ростом доверительной вероятности мера риска.

Пример 4
Рассмотрим степенную функцию искажения \(g(x) = x^\alpha \), которая является вогнутой функцией искажения при \(0 < \alpha < 1 \) и выпуклой функцией искажения при \(\alpha > 1 \), и индикаторную вогнутую функцию искажения \(1_{\{x > 1 - p\}} \).

И рассмотрим функцию искажения, построенную с помощью такой суперпозиции: \(1_{\{x > 1 - p\}}(g(x)) \).

Но так как \(1_{\{x > 1 - p\}}(g(x)) = 1_{\{g(x) > 1 - p\}}(x) \) и неравенство \(x^\alpha > 1 - p \) эквивалентно неравенству
\[x > \left(\frac{1 - p}{e} \right)^{\frac{1}{\alpha}}, \]
то
\[h(x) = 1_{\{x > 1 - p\}}(g(x)) = 1_{\{x > \left(\frac{1 - p}{e} \right)^{\frac{1}{\alpha}}\}}(x). \]

Тогда согласно Предложению 1 искаженной меры риска, соответствующей данной функции искажения, оказывается мера риска VaR с таким образом измененной доверительной вероятностью.

Скорость роста этих мер риска с ростом доверительной вероятности сильно зависит от выбора значения параметра \(\alpha \).

Если взять, например, начальную доверительную вероятность \(p = 0,95 \), то при \(p < \frac{1}{e} \) степенной ряд
\[W(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!} x^n = x - x^2 + \frac{3}{2} x^3 - \frac{8}{3} x^4 + \frac{125}{24} x^5 - \ldots \]
получаем $W(-0.0184) \approx -0.0187$ и ввиду этого $\rho_h[X] \approx VaR_{0.9813}[X]$.

Пример 6

Рассмотрим функцию $g(x) = \min\left\{ \frac{x}{1-p}, 1 \right\}$, которая является вогнутой функцией искажения и индикаторную вогнутую функцию искажения $1_{(x>1-p)}(x)$.

И рассмотрим функцию искажения, построенную с помощью суперпозиции: $1_{(x>1-p)}(g(x))$.

Однако

$$h(x) = 1_{(x>1-p)}(g(x)) = \begin{cases} 1, & \text{если } x > (1-p)^2 \\ 0, & \text{если } 0 \leq x \leq (1-p)^2 \end{cases} = 1_{(x>1-p)^2}(x).$$

Заметим, что если ввести в рассмотрение вогнутую функцию искажения $g_2(x) = x^2$, принадлежащую семейству функций искажения, изученных в примере 4, то $1_{(x>1-p)}(g_2(x)) = 1_{(x>1-(1-p)^2)}(x)$. Таким образом, функцию искажения $h(x)$ можно представить и в виде следующей суперпозиции:

$$h(x) = 1_{(x>1-p)}(g_2(x)) = \begin{cases} 1, & \text{если } x > (1-p)^2 \\ 0, & \text{если } 0 \leq x \leq (1-p)^2 \end{cases} = 1_{(x>1-(1-p)^2)}(x).$$

Тогда согласно Предложению 1 искаженной мерой риска, соответствующей данной функции искажения, оказывается мера $\rho_n[X] = VaR_{n-\text{раз}}[X]$, т.е. известная мера риска VaR с таким образом измененной доверительной вероятностью.

Однако, вспомнив формулу (2) для меры VaR в квадрате, получаем:

$$\rho_n[X] = VaR_{n-\text{раз}}^2[X].$$

Таким образом мы выяснили, что новая мера риска VaR в квадрате также принадлежит классу мер риска искажения и она соответствует функции искажения, получаемой в виде суперпозиции функции $1_{(x>1-p)}(x)$ с любой из функций искажения:

$$g(x) = \min\left\{ \frac{x}{1-p}, 1 \right\} \text{ или } g_2(x) = x^2.$$

Можно доказать, что справедливо следующее, более общее предложение.

Предложение 3

Мера риска VaR в степени n (при любом натуральном n) принадлежит классу мер риска искажения и соответствует функции искажения, получаемой в виде любой суперпозиции функции $1_{(x>1-p)}(x)$ с любой из функций искажения: $g(x) = \min\left\{ \frac{x}{1-p}, 1 \right\}$ или $g_n(x) = x^n$ следующего вида:

$$h(x) = 1_{(x>1-p)}(g(g(...(g(x))))) = 1_{(x>1-p)}(g_n(x)), \quad \text{т.е. } VaR_{n-\text{раз}}^n[X] = \rho_n[X].$$

Доказательство

Рассмотрим функцию $g(x) = \min\left\{ \frac{x}{1-p}, 1 \right\}$, которая является вогнутой функцией искажения.

Тогда следующая суперпозиция $1_{(x>1-p)}(g(x))$ также представляет вогнутую функцию искажения вида:

$$g(g(...(g(x)))) = \begin{cases} 1, & \text{если } x > (1-p)^n \\ \frac{x}{(1-p)^{n-1}}, & \text{если } 0 \leq x \leq (1-p)^n, \end{cases}$$

а вогнутая функция искажения

$$h(x) = 1_{(x>1-p)}(g(g(...(g(x)))))$$

представляется в виде:

$$h(x) = 1_{(x>1-p)}(g(g(...(g(x))))) = \begin{cases} 1, & \text{если } x > (1-p)^n \\ 0, & \text{если } 0 \leq x \leq (1-p)^n \end{cases} = 1_{(x>1-(1-p)^n)}(x).$$

Заметим, что если ввести в рассмотрение вогнутую функцию искажения $g_n(x) = x^n$, принадлежащую семейству функций искажения, изученных в примере 4, то, как показано в примере 4, $1_{(x>1-p)}(g_n(x)) = 1_{(x>1-(1-p)^n)}(x) = h(x)$. Таким образом, функцию искажения $h(x)$ можно представить и в виде следующей суперпозиции:

$$h(x) = 1_{(x>1-p)}(g_n(x)) = 1_{(x>1-(1-p)^n)}(x) = 1_{(x>1-(1-p)^n)}(x).$$

Тогда согласно Предложению 1 искаженной мерой риска, соответствующей данной функции
искажения, оказывается мера

\[\rho_p[X] = VaR_{t-(1-p^t)}[X], \]

т. е. известная мера риска VaR, с таким образом измененной доверительной вероятностью.

Однако, вспомнив формулу (4) для меры VaR в степени \(n \), получаем

\[\rho_p[X] = VaR_{t}^{(n)}[X]. \]

Предложение доказано.

Справедливо и более общее утверждение, касающееся мер риска VaR в любой степени \(t \geq 1 \).

Предложение 4

Мера риска VaR в степени \(t \), \(VaR_{t}^{(n)}[X] \) (при любом действительном \(t \geq 1 \)), где \(t \) представлено в виде: \(t = k + \alpha \), где \(k \) — натуральное число, а \(\alpha \) — действительное число, причем \(0 \leq \alpha < 1 \), является искаженной мерой риска, и она получается как мера риска, соответствующая функции искажения, которую можно представить в виде суперпозиции функций искажения

\[l_{(x-1)}(x), \quad g(x) = \min \{ \frac{x}{1 - \alpha p} \} \text{ и} \]

\[g_\alpha(x) = \min \{ \frac{x}{1 - \alpha p} - 1 \} \text{ и} \quad g_{k-1}(x) = x^{k-1} \]

следующими двумя способами:

\[h(x) = l_{(x-1)} \left(g \left(g \left(\ldots \left(g \left(g_\alpha(x) \right) \right) \right) \right) \right) = l_{(x-1)} \left(g_{k-1}(g_\alpha(x)) \right), \]

т. е. \(VaR_{t}^{(k)}[X] = \rho_\alpha[X] \).

Доказательство

Рассмотрим функцию

\[g(x) = \min \{ \frac{x}{1 - \alpha p}, 1 \} \]

и

\[g_\alpha(x) = \min \{ \frac{x}{1 - \alpha p} - 1 \}, \]

которые являются вогнутыми функциями искажения. Тогда следующая суперпозиция

\[g(g(\ldots(g_\alpha(x)) \ldots)) \]

также представляет вогнутую функцию искажения вида:

\[g(g(\ldots(g_\alpha(x)) \ldots)) = \]

\[= \left\{ \begin{array}{ll} 1, & \text{если } x > (1 - p)^{k-1}(1 - \alpha p) \\ \frac{x}{(1 - p)^{k-1}(1 - \alpha p)}, & \text{если } 0 \leq x \leq (1 - p)^{k-1}(1 - \alpha p), \end{array} \right. \]

а вогнутая функция искажения

\[h(x) = l_{(x-1)} \left(g \left(g \left(\ldots \left(g \left(g_\alpha(x) \right) \right) \right) \right) \right) \]

представляется в виде:

\[h(x) = \left\{ \begin{array}{ll} 1, & \text{если } x > (1 - p)^2 \\ \frac{x}{(1 - p)^2}, & \text{если } 0 \leq x \leq (1 - p)^2 \end{array} \right. \]

Используя функцию

\[g_{k-1}(x) = x^{k-1}, \]

функцию искажения \(h(x) \) можно представить и в виде следующей суперпозиции:

\[h(x) = l_{(x-1)} \left(g_{k-1}(g_\alpha(x)) \right) = l_{(x-1)} \left(\frac{x^{k-1}}{(1 - p)^{k-1}(1 - \alpha p)} \right) \]

Тогда согласно Предложению 1 искаженной меры риска, соответствующей данной функции искажения, оказывается мера риска VaR, с такоим образом измененной доверительной вероятностью.

Однако, вспомнив формулу (9) для меры VaR в степени \(t \), получаем:

\[\rho_\alpha[X] = VaR_{t}^{(n)}[X]. \]

Предложение доказано.

Надо сказать, что вообще любая вогнутая функция искажения \(g \) придаёт хвосту распределения больший вес, чем тождественная функция искажения, при этом любая выпуклая функция искажения \(g \) придаёт хвосту распределения меньший вес, чем тождественная функция искажения \(g(\alpha(x)) \).

Предложение доказано.

Функция искажения \(x \) признака, соответствующая данной функции искажения, оказывается мера риска VaR, и она получается как

\[h(x) = \left\{ \begin{array}{ll} 1, & \text{если } x > (1 - p)^2 \\ \frac{x}{(1 - p)^2}, & \text{если } 0 \leq x \leq (1 - p)^2 \end{array} \right. \]

Используя функцию

\[g_{k-1}(x) = x^{k-1}, \]

функцию искажения \(h(x) \) можно представить и в виде следующей суперпозиции:

\[h(x) = l_{(x-1)} \left(g_{k-1}(g_\alpha(x)) \right) = l_{(x-1)} \left(\frac{x^{k-1}}{(1 - p)^{k-1}(1 - \alpha p)} \right) \]

Тогда согласно Теореме 2 искаженной меры риска, соответствующей данной функции искажения, оказывается мера риска VaR, с такоим образом измененной доверительной вероятностью.

Однако, вспомнив формулу (9) для меры VaR в степени \(t \), получаем:

\[\rho_\alpha[X] = VaR_{t}^{(n)}[X]. \]

Предложение доказано.

Надо сказать, что вообще любая вогнутая функция искажения \(g \) придаёт хвосту распределения больший вес, чем тождественная функция искажения, при этом любая выпуклая функция искажения \(g \) придаёт хвосту распределения меньший вес, чем тождественная функция искажения.
нения, оказывается мера, которую можно представить в виде

\[
\rho_h[X] = \int_{[0,(1-p)^n]} VaR_{1-q}[X] 1 - \frac{1}{(1-p)^n} dq + \int_{[0,(1-p)^n]} VaR_{1-q}[X] \times 0 dq =
\]

\[= \frac{1}{(1-p)^n} \int_{[0,(1-p)^n]} VaR_{1-q}[X] dq =
\]

\[= \frac{1}{(1-p)^n} \int_{[0,(1-p)^n]} VaR_{1-q}[X] dq .
\]

Однако, вспомнив формулу (10) для меры ES в квадрате, получаем, что

\[\rho_h[X] = \mathbb{E} [\min \{ x, 1 \}] . \]

То есть мы выяснили, что новая мера риска ES в степени n также принадлежит классу мер риска искажения, и она соответствует описанной функции искажения.

Разберемся теперь в вопросе: является ли мера риска \(ES^n_p[X] \) искаженной мерой риска?

Предложение 5

Мера риска ES в степени n (при любом натуральном n) принадлежит классу мер риска искажения, и она соответствует функции искажения, получаемой в виде любой суперпозиции функций

\[g(x) = \min\left\{ \frac{x}{1-p}, 1 \right\} \] следующего вида:

\[h(x) = g(g(\ldots(g(x))), \text{ т.е. } ES^n_p[X] = \rho_h[X] . \]

Доказательство

Рассмотрим функцию \(g(x) = \min\{ x, 1 \} , \) которая является вогнутой функцией искажения. Тогда следующая суперпозиция \(g(g(\ldots(g(x))) \) также представляет вогнутую функцию искажения вида:

\[h(x) = g(g(\ldots(g(x)))) = \]

\[= \begin{cases}
\frac{x}{1-p^n}, & \text{если } 0 \leq x \leq (1-p)^n, \\
1, & \text{если } (1-p)^n < x \leq 1
\end{cases} ,
\]

а \(h'(x) = \begin{cases}
0, & \text{если } x > (1-p)^n \\
\frac{1}{(1-p)^n}, & \text{если } 0 \leq x \leq (1-p)^n
\end{cases} .
\]

Однако согласно Теореме 2 искаженной мерой риска, соответствующей данной функции искажения \(h(x) \), оказывается мера, которую можно представить в виде

\[\rho_h[X] = \int_{[0,(1-p)^n]} VaR_{1-q}[X] 1 - \frac{1}{(1-p)^n} dq + \int_{[0,(1-p)^n]} VaR_{1-q}[X] \times 0 dq =
\]

\[= \frac{1}{(1-p)^n} \int_{[0,(1-p)^n]} VaR_{1-q}[X] dq =
\]

\[= \frac{1}{(1-p)^n} \int_{[0,(1-p)^n]} VaR_{1-q}[X] dq .
\]

Однако согласно формуле (11) для меры ES в степени n, получаем: \(\rho_h[X] = ES^{(n)}_p[X] . \)

То есть мы выяснили, что новая мера риска ES в степени n также принадлежит классу мер риска искажения, она соответствует описанной функции искажения и представляется в виде обычной меры риска ES с измененной определенной формулой доверительной вероятности.

Предложение доказано.

Разберемся в вопросе: является ли мера риска \(ES^{(n)}_p[X] \) искаженной мерой риска?

Предложение 6

Мера риска ES в степени t при любом действительном \(t \geq 1 \), представленном в виде \(t = k + \alpha, \) где \(k \) — натуральное число, а \(\alpha \) — действительное число, \(0 < \alpha < 1, \) принадлежит классу мер риска искажения, и соответствует функции искажения, получаемой в виде любой суперпозиции функций

\[g(x) = \min\{ x, 1 \} , \] и функции \(g_\alpha(x) = \min\{ x, 1-\alpha p \} \) следующего вида:

\[h(x) = g(g(\ldots(g(_{k-1}(g_\alpha(x)))) , \text{ т.е. } ES^{(n)}_p[X] = \rho_h[X] . \]

Доказательство

Рассмотрим функцию \(g(x) = \min\{ x, 1 \} , \) которая является вогнутой функцией искажения. Тогда следующая суперпозиция также представляет вогнутую функцию искажения вида:
Вспомнив формулу (13) для меры ES в степени t, получаем:

$$\rho_x[X] = \int_{[0,(1-p)^k(1-\alpha p)]} VaR_{1,q}[X] \frac{1}{(1-p)^k(1-\alpha p)} dq + \int_{[(1-p)^k,1]} VaR_{1,q}[X] \times 0 dq = \frac{1}{(1-p)^k(1-\alpha p)} \int_{[0,(1-p)^k(1-\alpha p)]} VaR_{1,q}[X] dq = \frac{1}{(1-p)^k(1-\alpha p)} \int_{[(1-p)^k,1]} VaR_{1,q}[X] dq.$$}

Возможные значения функции искажения $h(x)$ могут быть вычислены по формуле (15) и получаются:

$$ES_p[X] = VaR_p[X] + \frac{1-F_p(VaR_p[X])}{1-p} E[X-VaR_p[X] | X > VaR_p[X]],$$

Данный пример C. Yin, D. Zhu [15] свидетельствует, что меры риска VaR и $ES_p[X]$ могут не различать риски, создаваемые X и Y. При этом приводится пример некоторой меры риска, которая различает их риски. Эта мера совпадает с введенной в данной работе мерой риска $ES_p^{(2)}[X]$.

Пример 7

Рассмотрим две случайные величины X и Y, моделирующие риски с функциями распределения, соответственно:

$$Fx(x) = \begin{cases} 0, & \text{если } x < 0, \\ 0.6, & \text{если } 0 \leq x < 100 \\ 0.975, & \text{если } 100 \leq x < 500 \\ 1, & \text{если } x \geq 500 \end{cases}$$

и

$$FY(x) = \begin{cases} 0, & \text{если } x < 0, \\ 0.6, & \text{если } 0 \leq x < 100 \\ 0.99, & \text{если } 100 \leq x < 1100 \\ 1, & \text{если } x \geq 1100 \end{cases}$$

Тогда, как нетрудно проверить, $E(X) = E(Y) = 50$, $VaR_{0.95}[X] = VaR_{0.95}[Y] = 100$, $VaR_{0.95}[Y] = VaR_{0.95}[Y] = 100$.

ES может быть вычислена по формуле (15) и получается:

$$ES_{0.95}[X] = ES_{0.95}[Y] = 300,$$

$$ES_{0.96}[X] = ES_{0.96}[Y] = 350.$$ Так что когда $p = 0.95$ и $p = 0.96$, то согласно мерам риска VaR и ES обе X и Y имеют одинаковый риск! Однако максимальная потеря для Y (1100) более чем удваивает потерю X (500), и ясно, что риск Y более рискован, чем риск X.

Теперь мы рассмотрим меру искажения ρ_n с функцией искажения $h(x) = g(g(x))$ и

$$g(x) = \begin{cases} x, & \text{если } 0 \leq x \leq 1-p \\ 1, & \text{если } 1-p < x \leq 1, \end{cases}$$

Тогда, как показано в примере 6,
\[\rho_h[X] = \frac{1}{(1-p)^2} \int_{[0,(1-p)^2,1]} VaR_y[X] dq = ES^{(2)}_p[X]. \]

И численно при \(p = 0.95 \)
\[\rho_h[X] = \frac{1}{(0.05)^2} \int_{[0,0.05^2,1]} VaR_y[X] dq = ES^{(2)}_{0.05}[X], \]

t.e.
\[\rho_h[X] = \frac{1}{0.0025} \int_{[0,0.0025^2,1]} VaR_y[X] dq = \frac{500}{0.0025}(1-0.9975) = 500 \]

и
\[\rho_h[Y] = \frac{1}{0.1} \int_{[0,0.1^2,1]} VaR_y[X] dq = \frac{1100}{0.0025}(1-0.9975) = 1100. \]

Значит, при \(p = 0.95 \), \(\rho_h[X] = ES^{(2)}_{0.05}[X] = 500 \) и \(\rho_h[Y] = ES^{(2)}_{0.1}[Y] = 1100 \).

Таким образом, в данном примере мера риска \(\rho_h[X] = ES^{(2)}_p[X] \), различая очевидно различные уровни риска для \(X \) и для \(Y \), оказалась более подходящей в целях риск-менеджмента по сравнению с обычными мерами риска \(VaR \) и \(ES \).

Выводы

В последние десятилетие происходило бурное теоретическое исследование класса мер риска, получивших название мер риска искажения, и в последние годы они стали широко использо-ваться в финансовых и страховых приложениях благодаря своим привлекательным свойствам.

В работах автора были введены в научный оборот и исследованы меры риска «\(VaR \) в степени \(t \)», позволяющие оценивать финансовые риски различной степени катастрофичности. В работе описываем и развиваем композитный метод для создания нового класса функций искажения и соответствующих мер риска искажения.

С использованием данного метода доказано, что меры риска «\(VaR \) в степени \(t \)» принадлежат к классу мер риска искажения, а также описаны соответствующие функции искажения. Автор вводит новый класс мер риска «\(ES \) в степени \(t \)» и доказывается, что они также принадлежат к классу мер риска искажения, и описывает соответствующие функции искажения. Представлены различные примеры для иллюстрации соответствующих понятий и результатов, проявляющих важность мер риска «\(VaR \) в степени \(t \)» и «\(ES \) в степени \(t \)» как подмножеств мер риска искажения, позволяющих выявлять финансовые риски различной степени катастрофичности. Меры риска искажения на настоящий момент изучены достаточно хорошо и обладают многими полезными и удобными свойствами. И, как следствие данного исследования, можно утверждать, что всеми свойствами, которыми обладают меры риска искажения [12], также обладают и семейства мер «\(VaR \) в степени \(t \)» и «\(ES \) в степени \(t \)».

Благодарность

Статья подготовлена по результатам научно-исследовательской работы 4.10 «Исследование способов измерения рисков на корпоративном и макрофинансовом уровне», которое финансировалось в рамках государственного задания Высшей школы финансов и менеджмента Российской академии народного хозяйства и государственной службы, Москва, Россия.

ACKNOWLEDGEMENTS

This article is based on the budgetary-supported research 4.10 "Researching Methods for Measuring Risks at the Corporate and Macrofinancial Levels" according to the state task carried out by the Higher School of Finance and Management, Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia.

СПИСОК ИСТОЧНИКОВ

1. Круи М., Галай Д., Марк Р. Основы риск-менеджмента. Пер. с англ. М.: Юрайт; 2018. 390 с.
2. Hull J. C. Risk management and financial institutions. New York: Pearson Education International; 2007. 576 p.
3. Jorion P. Value at risk: The new benchmark for managing financial risk. New York: McGraw–Hill Education; 2007. 624 p.
4. Wang S. S. A class of distortion operators for pricing financial and insurance risks. The Journal of Risk and Insurance. 2000;67(1):15–56. DOI: 10.2307/255675
5. Szegö G., ed. Risk measures for the 21st century. Chichester: John Wiley & Sons Ltd; 2004. 491 p.
6. Минасян В. Б. Новая мера риска VaR в квадрате и ее вычисление. Случай равномерного и треугольного распределений вероятностей убытков. Управление финансовыми рисками. 2019;(3):200–208.
7. Минасян В. Б. Новая мера риска VaR в квадрате и ее вычисление. Случай общего закона распределения убытков, сравнение с другими мерами риска. Управление финансовыми рисками. 2019;(4):298–320.
8. Минасян В. Б. Новые способы измерения катастрофических рисков: меры “VaR в степени t” и их вычисление. Финансы: теория и практика. 2020;24(3):92–109. DOI: 10.26794/2587–5671–2020–24–3–92–109
9. Denneberg D. Non-additive measure and integral. Dordrecht: Kluwer Academic Publishers; 1994. 178 p. (Theory and Decision Library B. Vol. 27). DOI: 10.1007/978–94–017–2434–0
10. Wang S., Dhaene J. Comonotonicity, correlation order and premium principles. Insurance: Mathematics and Economics. 1998;22(3):235–242. DOI: 10.1016/S 0167–6687(97)00040–1
11. Artzner P., Delbaen F., Eber J.-M., Heath D. Coherent measures of risk. Mathematical Finance. 1999;9(3):203–228. DOI: 10.1111/1467–9965.00068
12. Denuit M., Dhaene J., Goovaerts M., Kaas R. Actuarial theory for dependent risks: Measures, orders and models. Chichester: John Wiley & Sons Ltd; 2005. 440 p. DOI: 10.1002/0470016450
13. Zhu L., Li H. Tail distortion risk and its asymptotic analysis. Insurance: Mathematics and Economics. 2012;51(1):115–121. DOI: 10.1016/j.insmatheco.2012.03.010
14. Yang F. First- and second-order asymptotics for the tail distortion risk measure of extreme risks. Communications in Statistics — Theory and Methods. 2015;44(3):520–532. DOI: 10.1080/03610926.2012.751116
15. Vin C., Zhu D. New class of distortion risk measures and their tail asymptotics with emphasis on Va R. Journal of Financial Risk Management. 2018;7(1):12–38. DOI: 10.4236/jfrm.2018.71002
16. Belles-Sampera J., Guillén M., Santolino M. Beyond value–at–risk: GlueVaR distortion risk measures. Risk Analysis. 2014;34(1):121–134. DOI: 10.1111/risa.12080
17. Belles-Sampera J., Guillén M., Santolino M. GlueVaR risk measures in capital allocation applications. Insurance: Mathematics and Economics. 2014;58:132–137. DOI: 10.1016/j.insmatheco.2014.06.014
18. Cherubini U., Muliniacci S. Contagion-based distortion risk measures. Applied Mathematics Letters. 2014;27:85–89. DOI: 10.1016/j.aml.2013.07.007
19. Dhaene J., Kukush A., Linders D., Tang Q. Remarks on quantiles and distortion risk measures. European Actuarial Journal. 2012;2(2):319–328. DOI: 10.1007/s13385–012–0058–0
20. Wang S.S. Premium calculation by transforming the layer premium density. ASTIN Bulletin: The Journal of the IAA. 1996;26(1):71–92. DOI: 10.2143/AST.26.1.563234
21. Artzner P., Delbaen F., Eber J.-M., Heath D. Thinking coherently. Risk. 1997;10(11):68–71.
22. Corless R. M., Gonnet G. H., Hare D. E.G., Jeffrey D. J., Knuth D. E. On the Lambert W function. Advanced Computational Mathematics. 1996;5(1):329–359. DOI: 10.1007/BF02124750

REFERENCES
1. Crouhy M., Galai D., Mark R. The essentials of risk management. New York: McGraw-Hill Book Co.; 2006. 414 p. (Russ. ed.: Crouhy M., Galai D., Mark R. Osnovy risk-menedzhmenta. Moscow: Urgat; 2006. 414 p.).
2. Hull J. C. Risk management and financial institutions. New York: Pearson Education International; 2007. 576 p.
3. Jorion P. Value at risk: The new benchmark for managing financial risk. New York: McGraw-Hill Education; 2007. 624 p.
4. Wang S.S. A class of distortion operators for pricing financial and insurance risks. The Journal of Risk and Insurance. 2000;67(1):15–36. DOI: 10.2307/255675
5. Szegö G., ed. Risk measures for the 21st century. Chichester: John Wiley & Sons Ltd; 2004. 491 p.
6. Minasyan V.B. A new risk measure VaR squared and its calculation. The case of uniform and triangular loss distributions. Upravlenie finansovymi riskami = Financial Risk Management Journal. 2019;(3):200–208. (In Russ.).
7. Minasyan V.B. A new risk measure VaR squared and its calculation. The case of the general law of loss distribution, comparison with other risk measures. Upravlenie finansovymi riskami = Financial Risk Management Journal. 2019;(4):298–320. (In Russ.).
8. Minasyan V.B. New ways to measure catastrophic financial risk: “VaR to the power of t” measures and how to calculate them. Finansy: teoriya i praktika = Finance: Theory and Practice. 2020;24(3):92–109. (In Russ.). DOI: 10.26794/2587–5671–2020–24–3–92–109
9. Denneberg D. Non-additive measure and integral. Dordrecht: Kluwer Academic Publishers; 1994. 178 p. (Theory and Decision Library B. Vol. 27). DOI: 10.1007/978–94–017–2434–0
10. Wang S., Dhaene J. Comonotonicity, correlation order and premium principles. *Insurance: Mathematics and Economics*. 1998;22(3):235–242. DOI: 10.1016/S 0167–6687(97)00040–1
11. Artzner P., Delbaen F., Eber J.-M., Heath D. Coherent measures of risk. *Mathematical Finance*. 1999;9(3):203–228. DOI: 10.1111/1467–9965.00068
12. Denuit M., Dhaene I., Goovaerts M., Kaas R. Actuarial theory for dependent risks: Measures, orders and models. Chichester: John Wiley & Sons Ltd; 2005. 440 p. DOI: 10.1002/0470016450
13. Zhu L., Li H. Tail distortion risk and its asymptotic analysis. *Insurance: Mathematics and Economics*. 2012;51(1):115–121. DOI: 10.1016/j.insmatheco.2012.03.010
14. Yang F. First- and second-order asymptotics for the tail distortion risk measure of extreme risks. *Communications in Statistics — Theory and Methods*. 2015;44(3):520–532. DOI: 10.1080/03610926.2012.751116
15. Yin C., Zhu D. New class of distortion risk measures and their tail asymptotics with emphasis on Va R. *Journal of Financial Risk Management*. 2018;7(1):12–38. DOI: 10.4236/jfrm.2018.71002
16. Belles-Sampera J., Guilién M., Santolino M. Beyond value-at-risk: GlueVaR distortion risk measures. *Risk Analysis*. 2014;34(1):121–134. DOI: 10.1111/risa.12080
17. Belles-Sampera J., Guilién M., Santolino M. GlueVaR risk measures in capital allocation applications. *Insurance: Mathematics and Economics*. 2014;58:132–137. DOI: 10.1016/j.insmatheco.2014.06.014
18. Cherubini U., Mulinacci S. Contagion-based distortion risk measures. *Applied Mathematics Letters*. 2014;27:85–89. DOI: 10.1016/j.aml.2013.07.007
19. Dhaene J., Kukush A., Linders D., Tang Q. Remarks on quantiles and distortion risk measures. *European Actuarial Journal*. 2012;2(2):319–328. DOI: 10.1007/s13385–012–0058–0
20. Wang S.S. Premium calculation by transforming the layer premium density. *ASTIN Bulletin: The Journal of the IAA*. 1996;26(1):71–92. DOI: 10.2143/AST.26.1.563234
21. Artzner P., Delbaen F., Eber J.-M., Heath D. Thinking coherently. *Risk*. 1997;10(11):68–71.
22. Corless R. M., Gonnet G. H., Hare D. E.G., Jeffrey D. J., Knuth D. E. On the Lambert W function. *Advanced Computational Mathematics*. 1996;5(1):329–359. DOI: 10.1007/BF02124750

\[\text{Информация об авторе / About the author}\]

Виген Бабкенович Минасян — кандидат физико-математических наук, доцент, заведующий кафедрой корпоративных финансов, инвестиционного проектирования и оценки им. М.А. Лимитовского, Высшая школа финансов и менеджмента Российской академии народного хозяйства и государственной службы, Москва, Россия

Vigen B. Minasyan — Cand. Sci. (Phis.-Math.), Assoc. Prof., Head of Limitovskii corporate finance, investment design and evaluation department, Higher School of Finance and Management, Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia

minasyanvb@ranepa.ru, minasyanvb@yandex.ru

Статья поступила в редакцию 02.10.2020; после рецензирования 16.10.2020; принята к публикации 22.10.2020. Автор прочитал и одобрил окончательный вариант рукописи.

The article was submitted on 02.10.2020; revised on 16.10.2020 and accepted for publication on 22.10.2020. The author read and approved the final version of the manuscript.