Learning Instrumental Variables with Non-Gaussianity Assumptions: Theoretical Limitations and Practical Algorithms

Ricardo Silva
Department of Statistical Science / CSML
University College London
ricardo@stats.ucl.ac.uk

Shohei Shimizu
Institute of Scientific and Industrial Research
Osaka University
sshimizu@ar.sanken.osaka-u.ac.jp

Abstract

Learning a causal effect from observational data is not straightforward, as this is not possible without further assumptions. If hidden common causes between treatment X and outcome Y cannot be blocked by other measurements, one possibility is to use an instrumental variable. In principle, it is possible under some assumptions to discover whether a variable is structurally instrumental to a target causal effect $X \rightarrow Y$, but current frameworks are somewhat lacking on how general these assumptions can be. An instrumental variable discovery problem is challenging, as no variable can be tested as an instrument in isolation but only in groups, but different variables might require different conditions to be considered an instrument. Moreover, identification constraints might be hard to detect statistically. In this paper, we give a theoretical characterization of instrumental variable discovery, highlighting identifiability problems and solutions, the need for non-Gaussianity assumptions, and how they fit within existing methods.

1 CONTRIBUTION

Consider a linear graphical causal model (Spirtes et al., 2000; Pearl, 2000), where given a directed acyclic graph (DAG) G, we define a joint distribution in terms of conditional relationships between each variable V_i and its given parents in G:

$$V_i = \sum_{V_j \in \text{par}_G(i)} \lambda_{ij} V_j + e_i.$$

(1)

That is, each random variable V_i is also a vertex in G, where $\text{par}_G(i)$ are the parents of V_i in G and e_i is an independent error term. Equation (1) is called a structural equation in the sense it encodes a relationship that remains stable under a perfect intervention on other variables. Using the notation of Pearl (2000), we use the index “$\text{do}(V_k = v_k)$” to denote the regime under which some variable V_k is fixed to some level v_k by an external agent. If V_k is a parent of V_i, the differential causal effect of V_k on V_i is given by:

$$\frac{\partial E[V_i \mid \text{do}(V_k = v_k)]}{\partial v_k} = \lambda_{ik}.$$

(2)

Each λ_{ik} will be referred to as a structural coefficient. Our goal is to estimate the differential causal effect of some treatment X on some outcome Y from observational data. If the common hidden causes of these two variables can be blocked by other observable variables, a formula such as the back-door adjustment of Pearl (2000) or the Prediction Algorithm of Spirtes et al. (2000) can be used to infer it. In general, unmeasured confounders of X and Y might remain unblocked.

Figure 1 illustrates one possible DAG containing an instrument, with further details in the next Section.

It is not possible to test whether some observable variable is an IV from its joint distribution with X and Y,
but IV assumptions can be tested under a variety of assumptions by exploiting constraints in the joint distribution of multiple observable variables (Chu et al. 2001; Brito and Pearl 2002; Kuroki and Cal 2005). However, existing contributions on parameter identification do not immediately translate to discovery algorithms. Our contribution are two IV discovery algorithms: a theoretical one, which is complete (in a sense to be made precise) with respect to a widely used graphical characterization of IVs; and a practical one, which although might not be complete, provides a practical alternative to the existing methods as the set of assumptions required is fundamentally different.

The structure of the paper is as follows. In Section 2 we discuss basic concepts of IV modeling and the current state-of-the-art. We assume prior exposure to causal graphical models and structural equation models (Spirtes et al. 2000; Pearl 2000; Bollen 1989), including common concepts in causal graphical models such as d-separation, back-door paths, colliders and active paths. In Section 3, we discuss the theory behind an IV discovery algorithm that is “complete” according to some equivalence class of models. The resulting algorithm has several practical issues, and a more realistic alternative is provided in Section 4, which is then validated experimentally in Section 5.

2 BACKGROUND

We assume a linear DAG causal model with observable variables \(V \cup \{X, Y\} \). \(X \) and \(Y \) do not precede any element of \(V \). \(Y \) does not precede \(X \). The goal is to estimate the differential causal effect of \(X \) on \(Y \).

This task is common in applied sciences, as in many cases we have a particular causal effect \(X \rightarrow Y \) to be estimated, and a set of covariates preceding \(X \) and \(Y \) is available. See Morgan and Winship (2015) for several examples. This is in contrast to the more familiar causal structure discovery tasks in the machine learning literature, where an equivalence class of a whole causal system is learned from data, and where some causal queries may or may not be identifiable (Spirtes et al. 2000). The focus here is on quantifying the strength of a particular causal query with background variables, as opposed to unveiling the directionalities and connections of a causal graph. This allows more focused algorithms that bypass a full graph estimation. This philosophy has been exploited by Entner et al. (2012) as a way of finding possible sets of observable variables that can block the effect of any hidden common cause of \(X \) and \(Y \). It does not, however, provide a causal effect estimate if such a set does not exist.

When unmeasured confounding remains, the existence of a variable such as \(W \) in a system such as the one in Figure 1 will provide an alternative estimator. Using \(\sigma_{ab,s} \) to represent the (conditional) covariance of two variables \(A \) and \(B \) (given set \(S \)), the parameterization in Figure 1 implies \(\sigma_{ux} = \lambda_{uxu}\sigma_{uw}, \sigma_{uy} = \lambda_{uyu}\sigma_{uw} \). It follows that \(\lambda_{yx} = \sigma_{wy}/\sigma_{ux} \). We can estimate \(\sigma_{wy} \) and \(\sigma_{ux} \) from observations, allowing for a consistent estimate of \(\lambda_{yx} \).

A variable that is not an IV may be a conditional IV. This means that if in the corresponding causal graph we find some set \(Z \) that deactivate some relevant paths, then we can identify \(\lambda_{yx} \) as \(\sigma_{wy,z}/\sigma_{ux,z} \). Figure 2(a) illustrates a case. A graphical condition for \(W \) given \(Z \) is described by Brito and Pearl (2002) as follows:

1. \(Z \) does not d-separate \(W \) from \(X \) in \(G \);
2. \(Z \) d-separates \(W \) from \(Y \) in the graph obtained by removing the edge \(X \rightarrow Y \) from \(G \);
3. Z are non-descendants of X and Y in G.

For the rest of the paper, we will call the above condition the graphical criteria for instrumental variable validity, or simply “Graphical Criteria.”

The simple inference methods we just described required knowing the causal graph. That being unavailable, the relevant structure needs to be learned from the data. The lack of an edge in Figure 1 is not testable (Chu et al., 2001), but in a situation such as Figure 2(b), the simultaneous lack of edges $W_1 \rightarrow Y$ and $W_2 \rightarrow Y$ has a testable implication, as in both cases we have $\lambda_{yx} = \sigma_{w_1 y}/\sigma_{w_2 x}$ and $\lambda_{y x} = \sigma_{w_2 y}/\sigma_{w_2 x}$. This leads to what is known as a tetrad constraint,

$$\sigma_{w_1 y}\sigma_{w_2 y} - \sigma_{w_1 x}\sigma_{w_2 y} = 0, \quad (3)$$

which can be tested using observable data. Unfortunately, the tetrad constraint is necessary, but not sufficient, to establish that both elements in this pair of variables are instrumental.

Consider Figure 2(c). It is not hard to show that $\sigma_{w_1 y x}, \sigma_{w_2 z} - \sigma_{w_1 x, z}\sigma_{w_2 y} = 0$. However, the Graphical Criteria for IVs is not satisfied and, indeed, λ_{yx} can be vastly different from $\sigma_{w_1 y x, z}/\sigma_{w_1 x, z}$. The core of our contribution is to show how we can complement conditions such as tetrad constraints with other conditions, tapping into the theory developed for linear non-Gaussian causal discovery introduced in the LiNGAM framework of Shimizu et al. (2006).

2.1 Previous Work

Hoyer et al. (2008) describes a method for inferring linear causal effects among pairs that are also conformed by hidden variables. The method, however, requires large sample sizes and the knowledge of the number of hidden common causes. Although finite, the number of possible differential causal effects that are compatible with the data increases with the number of assumed hidden variables.

The use of tetrad constraints for testing the validity of particular edge exclusions in linear causal models has a long history, dating back at least to Spearman (1904). More recently, it has been used in the discovery of latent variable model structure (Silva et al., 2006; Spirtes, 2013), where structures such as Figure 2(c) emerge but no direct relationships among observables (such as $X \rightarrow Y$) are discoverable. The combination of tetrad constraints and non-Gaussianity assumptions has been exploited by Shimizu et al. (2009), again with the target being relationships among latent variables. Tetrad tests for the validity of postulated IVs were discussed by Kuroki and Cai (2005). The literature on learning algorithms allowing for latent variables has been growing steadily for a long time, including the Fast Causal Inference algorithm of Spirtes et al. (2000) and more recent methods that exploit constraints other than independence constraints (Tashiro et al., 2014; Nowzohour et al., 2015), but none of these methods allow for the estimation of the causal effect of X and Y when there is an unblocked unmeasured confounder between them. Phirumswad and Hoover (2013) introduced an algorithm for IV discovery, but it does not take into account unidentifiability issues that can be solved by exploring constraints other than covariance matrix constraints. Moreover, it attempts to recover a much complex graph than that is necessary to solve this particular question.

2.2 Directions

A recent algorithm for the discovery of instrumental variables has been introduced by Kang et al. (2015). It sidesteps the problems introduced by models such as the one in Figure 2(c) by a clever choice of assumptions: it is assumed that at least half of V are “valid” IVs, by which this means that we can partition V into two sets, $V = W \cup Z$, such that each $W \in W$ is a conditional IV given $Z \cup W \setminus \{W\}$. This is done without knowledge of which variables are valid and which are not. There are situations where this assumption is plausible, and the resulting algorithm (sisVIVE, “some invalid, some valid IV estimator”) is very elegant and computationally efficient.

However, it does not take much to invalidate this assumption even when nearly all of V can be used as instruments. Consider Figure 3 where we have an arbitrary number of IVs W_1, \ldots, W_p that are valid by conditioning on the empty set. None of them are valid by conditioning on Z_0, and in this situation sisVIVE may perform badly. In the following Sections, we introduce an alternative approach that exchanges the “at
Learning Instrumental Variables with Non-Gaussianity Assumptions

Algorithm 1: An algorithm that learns the causal effect of X on Y knowing the joint distribution of all observable random variables. $\text{resproj}(V,S)$ is a function that returns the residual of the least-squares projection of V into row vector S, that is, $V - S \times E[S'TS]^{-1}E[S'TV]$. Function $\text{lm}b(V,S)$ returns a local Markov blanket: all variables $S \in S$ which are not independent of V given $S \setminus S$, which is testable.

3 THEORY

We assume our causal model is a LiNGAM model, a linear structural equation model with independent, non-Gaussian error terms, which may include latent variables (Shimizu et al., 2006). Some of the intermediate results in this Section will not require non-Gaussianity.

Algorithm 1 provides a method for inferring the causal effect of some given X on some given Y, getting as input the joint distribution of $V \cup \{X,Y\}$. This is equivalent to having an oracle that replies yes or no to questions on particular tetrad and independence constraints. The goal is to show how we can provably find the correct causal effect in the limit of infinite data, or to say we cannot identify it (the “NA” return value).

3.1 Preliminaries

Following Spirtes (2013), we call a rank constraint in a matrix M any constraint of the type $\text{rank}(M) \leq r$, where r is known. If M is the cross-covariance submatrix given by variables $\{V_i,V_j\}$ indexing the rows, and $\{V_k,V_l\}$ indexing the columns, then the rank constraint $\text{rank}(M) \leq 1$ implies $\sigma_{ik}\sigma_{jl} - \sigma_{il}\sigma_{jk} = 0$, as the latter is the determinant of M.

We will use this notion in tandem with t-separation (Sullivant et al., 2010). First, let T be a trek from V_i to V_j in a graph be an ordered pair of (possibly empty) directed paths ($P_1; P_2$) where: P_1 has sink (vertex without children in T) V_i; P_2 has sink V_j; and P_1, P_2 have the same source (vertex in T without parents in T). The ordered pair of vertex sets $(C_1; C_j)$ t-separates vertex set V_1 from vertex set V_j if, for every trek $(P_1; P_2)$ from a vertex in V_1 to a vertex in V_j, either P_1 contains a vertex in C_1 or P_2 contains a vertex in C_j. See Spirtes (2013) and Sullivant et al. (2010) for a generalization of this notion and further examples.

One relevant example can be obtained from Figure 2(b). Here, $C_I = \emptyset$ and $C_J = \{X\}$, $V_I = \{W_1, W_2\}$, $V_J = \{X,Y\}$. In Figure 2(c), $C_I = \emptyset$ and $C_J = \{U, Z\}$; $V_I = \{Z, W_1, W_2\}$, $V_J = \{Z, X, Y\}$.

Let Σ_{AB} be the cross-covariance matrix of set A (rows) and set B (columns). The DAG Trek Separation Theorem of Sullivant et al. (2010) says:

Theorem 1 (Trek Separation for DAGs). Let G be a DAG with vertex set V. Let A and B be subsets of V. We have $\text{rank}(\Sigma_{AB}) \leq r$ in all linear structural equation models with graph G if and only if there exist subsets C_A and C_B of V with $|C_A| + |C_B| \leq r$ such that $(C_A; C_B)$ t-separates A from B.

To jump from (testable) rank constraints to (unobservable) constraints in G, we assume our model distribution P is linearly rank-faithful to a DAG G (Spirtes, 2013): that is, every rank constraint holding on a covariance (sub)matrix derived from P is entailed by every linear structural model Markov with respect to G (Spirtes, 2013). Linear faithfulness, the assumption that vanishing partial correlations hold in the distri-
bution if and only if a corresponding d-separation also holds in G (Spirtes et al., 2000), is a special case of rank faithfulness, as t-separation implies d-separation (Sullivant et al., 2010).

3.2 The Role of Non-Gaussianity

In the Graphical Criteria introduced in Section 2 the challenging condition is the second, as the first is easily testable by faithfulness and the third is given by assumption. Another way of phrasing condition 2 is: 2a, there is no active (with respect to Z) back-door path between W and Y, nor any active path that includes a collider, that does not include X; 2b, there is no active directed path from W to Y that does not include X. In the next Section, we will partially address 2b. Here, we exploit non-Gaussianity assumptions to partially tackle 2a. Our proof holds “almost everywhere,” in the sense it holds for all but a (Lebesgue) measure zero subset of the set of possible structural coefficients $A_G = \{\lambda_{ij} \mid V_j \in \text{par}_G(i)\}$.

The motivation for this concept is analogous to the different variations of faithfulness, see the discussion on generic identifiability by Foygel et al. (2011) and Sullivant et al. (2010) for more background on excluding vanishing polynomials that are not a function of the graphical structure. For instance, the completeness of the do-calculus (Shpitser and Pearl, 2006) Huang and Valtorta, 2006) would be of limited relevance if in many models there were other adjustments by conditioning and marginalization that did not follow from the graphical structure. More specifically, linear faithfulness also holds almost everywhere in linear DAG models and it is assumed implicitly.

The main result of this section is the following:

Theorem 2. Let $V \cup \{Y\}$ be a set of variables in a zero-mean LiNGAM model where Y has no descendants. For some $V_i \in V$, let Z be its local Markov blanket (all $S \in V \setminus \{V_i\}$ that are d-connected to V_i given $V \setminus \{S, V_i\}$). Let $r_i \equiv V_i - a^T Z$ be the residual of the least-squares regression of V_i on Z, with a being the corresponding least-squares coefficients. Analogously, let $r_y \equiv Y - b^T V_i - b^T Z$ be the residual of the corresponding least-squares regression. Then, almost everywhere, $r_i \perp \rho_r Y$ if and only if there are no active (with respect to Z) back-door paths between V_i and Y, nor any active path that includes a collider.

The proofs of this and the next result are given in the Supplementary Material.

3.3 Equivalence Class Characterization

Even when using non-Gaussianity, there are still structures which are indistinguishable by Algorithm 1. They form an equivalence class characterized as follows:

Theorem 3 (Downstream Conditional Choke Point Equivalence Class). Suppose the outcome of Algorithm 1 found with respect to some $\{W_i, W_j, Z\}$, is not correct under rank faithfulness and the assumptions of Theorem 2. Then, for each $W \in \{W_i, W_j\}$: (i) there is a directed path from W to Y that is not blocked by $\{X\} \cup Z$; (ii) the possible common ancestors of W and elements in this path are blocked by Z; (iii) this path includes some $Z_0 \notin Z \cup \{W_i, W_j, X\}$, where all directed paths from W to Y in G are blocked by $\{Z_0, X\} \cup Z$; (iv) all directed paths from W to X are blocked by $Z \cup \{Z_0\}$.

The result is that any tuple (W_i, W_j, Z) that satisfies the conditions used by Algorithm 1 in effect belongs to an equivalence class of possible tuples, some of which may provide an incorrect causal effect. The common graphical feature in this equivalence class is what we call a “downstream conditional choke point,” illustrated by vertex U in Figure 2(d). The name “downstream” denotes that this point is a descendant of (W_i, W_j), and has no active back-door paths with them. The name “choke point” is due to the fact that other common causes might exist between X and Y, but no active paths, other than the directed paths passing through this choke point, will exist between Y and (W_i, W_j).2

By isolating this feature, we know how to explain the possible disparities obtained by letting a modified Algorithm 1 return the causal effects implied by each acceptable tuple. By knowing there is a single choke point per pair, which is unconfounded with the “candidate IVs,” and which lies on all unblocked directed paths from W_i to X, more sophisticated algorithms, combined with background knowledge, can be constructed that exploit this piece of information. However, different pairs might have different choke points, and we leave the description of a more complex algorithm for future work. If all tuples agree and we assume there is at least one valid tuple where (W_i, W_j) are indeed IVs conditional on Z, then we are done, as guaranteed by this simple result:

Theorem 4 (Completeness). If there is a pair of observable variables $\{W_i, W_j\}$ are IVs conditioned on

2The literature has characterizations of unconditional choke points (Shafer et al., 1993; Sullivant et al., 2010), relating them to unconditional tetrad constraints. To the best of our knowledge, this is the first time that conditional choke points are explicitly defined and used. This is not a direct reuse of previous results, as the DAG class is not closed under conditioning (Richardson and Spirtes, 2002). Previous results were derived either for DAGs or for special cases of conditioning (Sullivant et al., 2010).
Learning Instrumental Variables with Non-Gaussianity Assumptions

input: Data sample D from the joint distribution of zero-mean random variables V ∪ {X, Y}; A threshold T, defining the size of the background set
output: An estimate of the differential causal effect of X on Y

1 for V_i ∈ V do
2 score_i ← resDependenceScore(D, V_i, V, Y)
3 end
4 Let B be the top T% of V, as ranked by score
5 (W, Z) ← sisVIVE(D, V \ B, B, X, Y)
6 C ← B
7 while TRUE do
8 v* ← argmax_v∈C BScore(D, W, Z, C \ {v}, X, Y)
9 if BScore(…, C \ {v*}) > BScore(…, C) then
10 C ← C \ {v}
11 else
12 break
13 end
14 end
15 (W, Z, dce) ← sisVIVE(D, V \ B, C, X, Y)
16 return dce

Algorithm 2: The algorithm uses dependence measures of residuals under non-Gaussianity assumptions to score which variables are most likely not appropriate as instrumental variables. It then runs sisVIVE in a subset of remaining candidates, with some refinement. Function resDependenceScore returns a quantification of how strongly associated r_i and r_y are after (Markov blanket) least-squares regression of V_i on V \ {V_i}, and Y on V. See main text for further explanations.

some Z according to the Graphical Criteria, and each W ∈ \{W_i, W_j\} has no active back-door path with X given Z, nor any active path that includes a collider, then Algorithm 2 will find one.

Proof of Theorem 4. The test in Step 4 will not reject any such pair by linear faithfulness, as by the Graphical Criteria, Z d-connects the pair to X. The test in Step 14 will not reject any such pair, since by Theorem 2 the test will reject the pair only if there is an active back-door path or a collider path between W and Y. These situations are excluded by the Graphical Criteria, except in the case where such paths exist between W and X, as the concatenation of those with the edge X → Y would exclude W from consideration.

To summarize: Algorithm 1 is sound, in the limit of infinite data, if we assume no downstream conditional choke point exists in the graph. A necessary but not sufficient test to falsify this assumption is by allowing an exhaustive check of all tuples (W_i, W_j, Z) with a minimal Z, and verifying whether they imply the same causal effect. The algorithm is complete in the case where for at least one pair \{W_i, W_j\} the conditioning set Z also blocks active back-door/collider paths into X. This means, for example, that the algorithm will not find answers in models where W and X have common causes that cannot be blocked, even if W is a valid IV by not having common causes with Y. For example, W is a valid IV in the model with paths W → X → Y, W ← U_1 → X ← U_2 → Y, but W will be discarded due to the back-door path between W and Y that is unblocked by not conditioning on X.

4 CHALLENGES AND A PARTIAL SOLUTION

There are two major issues with Algorithm 1. First, testing (conditional) tetrad constraints often lead to many statistical errors, which can be mitigated by some elaborated tricks to take into account the redundancy of some constraints (Silva et al., 2006; Spirtes, 2013). This however leads to a complicated and not necessarily robust method. Second, an exhaustive search is in general not computationally feasible.

Instead, we combine ideas inspired by the theoretical findings of the previous Section with ideas underlying sisVIVE (Kang et al., 2015). One practical issue properly addressed by sisVIVE is that we want to discover as many (conditional) IVs as possible, as typically they individually will be weakly associated with the outcome Y.

Algorithm 2 modifies sisVIVE in the following way. In lines 1-3, we score each variable V_i by estimating its least-squares residual r_i ≡ V_i − a^T V_{-i}, where V_{-i} is the vector formed by the local Markov Blanket of V_i within all remaining variables in V (see definition in Algorithm 1). Least-squares residuals r_{y_i} ≡ Y − b_i V_i − b_i^T V_{-i} are also estimated. We use a measure of dependence between the two residuals to define score_i. In our implementation, tested in the next Section, we used the negative of the p-value of Hoeffding’s independence test between r_i and r_{y_i}, but other measures such as the HSIC (Cretton et al., 2007) could be used instead. The idea is to flag variables which might be linked to Y by “strong” active back-door paths, as motivated by Theorem 2, by marking a proportion of them (as given by parameter T) as unsuitable IV candidates. In our experiments, the proportion is set to 50%.

Line 5 executes sisVIVE for a preliminary run, where we indicate: X and Y, the treatment and outcome variables; a set B, background variables to condition on but not to consider as possible instrumental vari-
ables; and a set $V \setminus B$ which will be split into a set of ("valid") IVs W and a set of ("invalid") conditioning variables Z. As discussed in Section 2, a weak point of sisVIVE is the impossibility of discarding "bad" conditioning variables. At this stage, however, we are still conditioning on all variables, but aiming at avoiding some of the most catastrophic mistakes of including a strongly confounded variable (given everything else) into the pool of IVs.

A refinement takes place in lines 6-14. We shrink a conditional set C initialized with B. Function $BScore$ ("back-door score") aims at measuring how "strong" paths are between elements of W and Y that might go through back-doors or by conditioning on a sequence of colliders that ends in a back-door with Y. The actual implementation of $BScore$, used in the next Section, is simple: for each W_i, estimate residual r_i conditional on $W_{-i} \cup Z \cup C \setminus \{c\}$ and the p-value of its dependence with r_y (defined by least-squares of Y on $W \cup Z \cup C \setminus \{c\}$). The score is the product of all p-values over the elements of W. We then shrink set C to a local optimal. A last run of sisVIVE is then performed, returning the estimated differential causal effect dce.

We are aware of several shortcomings of this algorithm. The algorithm still relies on the underlying assumptions of sisVIVE, but relaxing it to require 50% or more of valid IVs only on the subset $V \setminus B$. All these concerns are valid, but our point is to provide a reasonably simple algorithm that is justified by (i) how Theorem 2 provides a recipe to remove bad conditioning variables for sisVive; (ii) how Theorem 3 justifies relying on further assumptions, adapted from sisVIVE, as non-Gaussianity by itself is shown not to rule out invalid structures. Complex, more refined, algorithms will be object of future work. For now, we will show empirically how even a partial solution such as Algorithm 2 can provide improvements over the state-of-the-art method.

5 EXPERIMENTS

We assess how Algorithm 2 (which we will call B-sisVIVE, as in "back-door protected sisVIVE") compares to other methods in a series of simulations.

The simulations are performed as follows: we generate

4It is a greedy method, and bad local optimal might happen. For instance, once a variable is excluded from the pool of possible IVs, it never goes back. Parameter T should be chosen in a way that we believe a reasonable number of conditional IVs will remain. There is no formal guarantee that in an example such as Figure 3, variable Z_i will be ranked higher than W, by resDependenceScore, although heuristically this is justified by dependences typically decaying as longer paths are traversed in a graph.

synthetic graphs by four groups of variables. Group W are variables which can be used as conditional IVs. Group Z_D are variables which lie on directed paths from W to X and Y. Group Z_C are variables which are children of W and U, the unmeasured confounder between X and Y. Finally, group Z_B are children of U and parents of W. Figure 4 shows an example where $|W| = 3$, $|Z_F| = 1$, $|Z_C| = 1$, $|Z_B| = 1$.

The methods we compare against are: NAIVE1, obtained by least-squares of Y on X, assuming no confounding; NAIVE2, two-stage least squares (TSLS) using all variables as instruments; NAIVE3, regression on X and all other variables, assuming no confounding; ORACLE, using TSLS on the right set of IVs and adjustment set; W-ORACLE, uses W as IVs, but conditions on all of the other variables; S-ORACLE, sisVIVE performed by first correctly removing the set Z_C; SISVIVE, the Kang et al. [2015] algorithm taking all variables as input; B-SISVIVE, our method, with the same input; B-SISNAIVE, a variation of Algorithm 2 by skipping steps 7-14.

All error variables and latent variables are zero-mean Laplacian distributed, and coefficients are sampled from Gaussians, such that the observed variables have a variance of 1. Models are rejected until the causal effect λ_{yx} has an absolute value of 0.05 or more. Coefficients $\lambda_{xa} = \lambda_{ya}$ are fixed at two levels, (0.25, 0.50), the higher the harder, as this makes unmeasured confounding stronger. Sample sizes are set at 100, 1000, 5000. Comparisons are shown in Table 1, with the setup $|W| = 25$, $|Z_F| = 10$, $|Z_B| = 1$, $|Z_C| = 10$. This satisfies the criterion of $|W|$ being more than the number of remaining variables, although only the 11 variables $Z_F \cup Z_B$ should be used.

4More precisely, the children of W are in $\{X\} \cup Z_D \cup Z_C$ and its parents are Z_B and a second latent variable U_w. The children of Z_F are $\{X, Y\}$, its parents are W. The children of Z_C are X, its parents are $\{U\} \cup W$. The children of Z_B are $\{X, Y\} \cup W$ and its parent is only U.

Figure 4: Example of a synthetic graph generated by the template used in Section 2. W1, W2 and W3 are valid IVs conditioned on ZB1 andZF1 only, as conditioning on ZC1 activates the path Wi → ZC1 ← U → Y, which invalidates the instruments.
Learning Instrumental Variables with Non-Gaussianity Assumptions

	100/0.25	1000/0.25	5000/0.25	100/0.50	1000/0.50	5000/0.50
NAIVE1	0.25	0.24	0.24	0.51	0.50	0.51
NAIVE2	0.28	0.27	0.26	0.53	0.54	0.55
NAIVE3	0.22	0.19	0.19	0.40	0.41	0.41
ORACLE	0.12	0.03	0.01	0.22	0.05	0.02
W-ORACLE	0.17	0.09	0.07	0.30	0.20	0.19
S-ORACLE	0.18	0.07	0.03	0.36	0.14	0.05
SISVIVE	0.20	0.13	0.15	0.41	0.38	0.42
B-SISVIVE	0.16	0.16	0.12	0.38	0.33	0.28
B-SISNAIVE	0.18	0.15	0.14	0.38	0.36	0.32

Table 1: Experimental results. Errors are measured by the median absolute difference between the estimated causal effect and true λ_{yx}, over 200 trials in each experimental condition.

The message in Table 1 seems clear. In particular, increasing the amount of confounding can make the problem considerably harder; SISVIVE works very well under the correct assumptions (as seen by the performance of S-ORACLE, which is just SISVIVE given the – usually unknown – information about which variables one should not condition on for validating the possible instrumental variables); otherwise, it can perform poorly (SISVIVE, which does hardly better than some naive approaches); our method (B-SISVIVE) can provide some sizeable improvements over this state-of-the-art method. This is true even in its more straightforward variation, which does not refine its choice of conditioning set but only forbids some variables to be selected as instruments (B-SISNAIVE). We conclude these are important lessons in the estimation of causal effects with observational data.

6 CONCLUSION

Finding instrumental variables is one of the most fundamental problems in causal inference. To the best of our knowledge, this paper provides the first treatment on how this can be systematically achieved by exploiting non-Gaussianity and clarifying to which extent an equivalence class of solutions remains. We then proceeded to show how non-Gaussianity can be exploited in a pragmatic way, by adapting a state-of-the-art algorithm. Finally, we illustrated how improvement can be considerable under some conditions.

We expect that theoretical challenges in instrumental variable discovery can be further tackled by building on the findings shown here. In particular, as also hinted by [Kang et al. (2015)], some of the ideas here raised extend to non-linear (additive) and binary models. Methods developed in [Peters et al. (2014)] can potentially provide a starting point on how to allow for non-linearities in the context of instrumental variables.

More sophisticated graphical criteria for the identification of causal effects in linear systems were introduced by [Brito and Pearl (2002)]. Further work has led to rich graphical criteria to identify causal effects in confounded pairs [Foygel et al. (2011)]. This goes far beyond the standard IV criteria discussed in Section 2. It also opens up the possibility of more elaborated discovery algorithms where back-door blocking [Entner et al. (2012)] and the methods in this paper cannot provide a solution, but how to perform this task in a computationally and statistically tractable way remains an open question.

Code for the procedure and to generate synthetic studies is available at http://www.homepages.ucl.ac.uk/~ucgtrbd/code/iv_discovery.

References

K. Bollen. *Structural Equations with Latent Variables*. John Wiley & Sons, 1989.

C. Brito and J. Pearl. Generalized instrumental variables. *Proceedings of 18th Conference on Uncertainty in Artificial Intelligence*, 2002.

T. Chu, R. Scheines, and P. Spirtes. Semi-instrumental variables: a test for instrument admissibility. *Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI 2001)*, pages 83–90, 2001.

G. Darmois. Analyse g´en´erale des liaisons stochastiques. *Review of the International Statistical Institute*, 21:2–8, 1953.

D. Entner, P.O. Hoyer, and P. Spirtes. Statistical test for consistent estimation of causal effects in linear non-Gaussian models. *Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS 2012)*, pages 364–372, 2012.

R. Foygel, J. Draisma, and M. Drton. Half-trek criterion for generic identifiability of linear structural equation models. *Annals of Statistics*, 40:1682–1713, 2011.
A. Gretton, K. Fukumizu, C. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical test of independence. *Advances in Neural Information Processing Systems*, 20:585–592, 2007.

P. Hoyer, S. Shimizu, A. Kerminen, and M. Palviainen. Estimation of causal effects using linear non-Gaussian causal models with hidden variables. *International Journal of Approximate Reasoning*, 49:362–378, 2008.

Y. Huang and M. Valtorta. Pearl’s calculus of intervention is complete. *Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI 2006)*, pages 217–224, 2006.

H. Kang, A. Zhang, T. Cai, and D. Small. Instrumental variables estimation with some invalid instruments and its application to mendelian randomization. *Journal of the American Statistical Association*, page To appear, 2015.

M. Kuroki and Z. Cai. Instrumental variable tests for directed acyclic graph models. *Tenth workshop on Artificial Intelligence and Statistics (AISTATS 2005)*, 2005.

S. Morgan and C. Winship. *Counterfactuals and Causal Inference: Methods and Principles for Social Research*. Cambridge University Press, 2015.

C. Nowzohour, M. Maathuis, and P. Bühlmann. Structure learning with bow-free acyclic path diagrams. *arXiv:1508.01717*, 2015.

J. Pearl. *Causality: Models, Reasoning and Inference*. Cambridge University Press, 2000.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal discovery with continuous additive noise models. *Journal of Machine Learning Research*, 15:2009–2053, 2014.

P. Phiromswad and K. Hoover. Selecting instrumental variables: A graph-theoretic approach. *Working paper. Available at SSRN: http://ssrn.com/abstract=2318552* or *http://dx.doi.org/10.2139/ssrn.2318552*, 2013.

T. Richardson and P. Spirtes. Ancestral graph Markov models. *Annals of Statistics*, 30:962–1030, 2002.

G. Shafer, A. Kogan, and P. Spirtes. Generalization of the tetratad representation theorem. *DIMACS Technical Report*, 1993.

S. Shimizu, P. Hoyer, A. Hyvärinen, and Antti Kerminen. A linear non-gaussian acyclic model for causal discovery. *Journal of Machine Learning Research*, 7:2003–2030, 2006.

S. Shimizu, P. Hoyer, and A. Hyvärinen. Estimation of linear non-gaussian acyclic models for latent factors. *Neurocomputing*, 72:2024–2027, 2009.

I. Shpitser and J. Pearl. Identification of conditional interventional distribution. *Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence (UAI 2006)*, pages 437–444, 2006.

R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learning the structure of linear latent variable models. *Journal of Machine Learning Research*, 7:191–246, 2006.

W. Skitovitch. On a property of the normal distribution. *Doklady Akademii Nauk SSSR*, 89:217??–219, 1953.

C. Spearman. “General intelligence,” objectively determined and measured. *American Journal of Psychology*, 15:210–293, 1904.

P. Spirtes. Calculation of entailed rank constraints in partially non-linear and cyclic models. *Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI 2013)*, pages 606–615, 2013.

P. Spirtes, C. Glymour, and R. Scheines. *Causation, Prediction and Search*. Cambridge University Press, 2000.

S. Sullivant, K. Talaska, and J. Draisma. Trek separation for Gaussian graphical models. *Annals of Statistics*, 38:1665–1685, 2010.

T. Tashiro, S. Shimizu, A. Hyvärinen, and T. Washio. ParceLiNGAM: A causal ordering method robust against latent confounders. *Neural Computation*, 26:57–83, 2014.

APPENDIX: Supplementary Material

We present here proofs of Theorems 2 and 3. The result for Theorem 2 depends on this standard theorem ([Darmois 1953][15]; [Skitovitch 1953][16]):

Theorem 5. (Darmois-Skitovitch Theorem) Let \(e_1, \ldots, e_n \) be independent random variables, \(n \geq 2 \). Let \(v_1 = \sum_i \alpha_i e_i, v_2 = \sum_i \beta_i e_i \) for some coefficients \(\{\alpha_i\} \), \(\{\beta_i\} \). If \(v_1 \) and \(v_2 \) are independent, then those \(e_j \) for which \(\alpha_j \neq 0 \), \(\beta_j \neq 0 \) are Gaussian.

The idea is that if we assume \(\{e_i\} \) are not Gaussian, \(\{V_1, V_2\} \) share a common source if and only if they are dependent. See [Shimizu et al. 2006][17] [Entner et al. 2012][18] for a deeper discussion on how this theorem is used in causal discovery.

For the main results, we will assume particular algebraic (polynomial) identities implied by the model graph do not vanish at the particular parameter values of the given model (which we called “almost everywhere” results in the theorem). We will in particular consider ways of “expanding” the structural equations...
of each vertex according to exogenous variables, that is, any variable which is either an error term or latent variable (assuming without loss of generality that latent variables have no parents).

For each vertex \(V_k \) in the model, and each exogenous ancestor \(E_m \) of \(V_k \), let \(\mathcal{P}_{km} \) be the set of all directed paths from \(E_m \) to \(V_k \). For each path \(p \in \mathcal{P}_{km} \), define \(\phi_{km} = \prod_j \lambda_{ij} \), the product of all coefficients along this path for \(V_j \) in \(\mathbf{V} \cap p \) where \(V_j = p \cap \text{par}_G(j) \) (that is, \(V_j \) is the parent of \(V_j \) in this path). We multiply coefficients following a sequence \(E_m \rightarrow \cdots \rightarrow V_j \rightarrow V_j \rightarrow \cdots \rightarrow V_k \). From this, \[
V_k = \sum_{E_m \in A_G(k)} \sum_{p \in \mathcal{P}_{km}} \phi_{km} E_m, \quad (4)
\]
where \(A_G(k) \) is the set of exogenous ancestors of \(V_k \), where for \(E_m = e_k \) we have \(\phi_{km} \equiv 1 \) and path \(p \) is given by the single edge \(e_k \rightarrow V_k \). We refer to the idea of expansion a few times in the proofs as a way of describing how the models can be written as polynomial functions of the coefficients \(A_G = \{ \lambda_{ij} \mid V_j \in \text{par}_G(i) \} \).

Overall, for a LiNGAM model \(\mathcal{M} \) with DAG \(G \), we denote by \(X_G \) the set of exogenous variables of \(\mathcal{M} \), and by the expanded graph of \(\mathcal{M} \) the graph \(G \) augmented with the error terms and the corresponding edges \(e_i \rightarrow V_i \) for all observable vertices \(V_i \) in \(G \).

The main result used in the proof of Theorem 2 comes from the following Lemma. Notice that the non-Gaussianity assumption and the Darmois-Skitovitch Theorem are not necessary for its proof.

Lemma 6. Let \(\mathbf{V} \cup \mathbf{U} \) be the set of variables in a zero-mean LiNGAM model \(\mathcal{M} \), where \(\mathbf{U} \) are the latent variables of the model. For some \(V_i \in \mathbf{V} \), let \(V_i \) be \(\mathbf{V} \setminus \{V_i\} \). Let \(r_i \equiv V_i - a^T \mathbf{V} \setminus V_i \) be the residual of the least-squares regression of \(V_i \) on \(\mathbf{V} \setminus V_i \), with \(a \) being the corresponding least-squares coefficients. Then, almost everywhere, \(r_i \) can be written as a linear function of the exogenous variables of \(\mathcal{M} \), \(r_i = \sum_{E_m \in X_G} c_m E_m \), where \(c_m \neq 0 \) if and only if \(V_i \) is d-connected to \(E_m \) given \(\mathbf{V} \setminus V_i \) in the expanded graph of \(\mathcal{M} \).

Proof of Lemma 6. Without loss of generality, assume that each latent variable in \(\mathbf{U} \) has no parents. We will sometimes use \(X_k \) as another representation of any particular model variable (observable, latent or error term), with the index \(k \) indicating particular variables in \(\mathbf{V} \cup \mathbf{U} \) and error terms, depending on the context.

One way of obtaining \(r_i \) is by first performing least-squares regression of each model variable \(X_k \) on \(V_j \) for some \(V_j \neq V_i \) in \(\mathbf{V} \), and calculating residuals \(X_k^{(1)} \). Define \(\mathbf{V}^{(1)} \) as the set of all residuals \(\{X_k^{(1)}\}, k \neq j \). We then repeat the process by regressing on some element of \(\mathbf{V}^{(1)} \setminus \{V_i^{(1)}\} \), iterating until we are left with \(\mathbf{V}^{(n-1)} \) containing the single element \(V_i^{(n-1)} \), where \(n \) is the size of \(\mathbf{V} \) and \(V_i^{(n-1)} = r_i \). The elimination sequence can be arbitrary.

Let \(V_j \) be a vertex in \(\mathbf{V} \cup \mathbf{U} \). Let \(\lambda_{km} \) be the structural coefficient between \(V_k \) and any \(X_m \in \mathbf{V} \cup \mathbf{U} \). We define \(\lambda_{kj} = 0 \) if \(X_j \) is not a parent of \(V_k \).

Let \(V_k = \lambda_{kj} V_j + \sum_{X_m \in \text{par}_G(k) \setminus V_j} \lambda_{km} X_m + e_k \), we have
\[
\sigma_{kj} = \lambda_{kj} \sigma_{jj} + \sum_{X_m \in \text{par}_G(k) \setminus V_j} \lambda_{km} \sigma_{mj} + \sigma_{ekj},
\]
where \(\sigma_{ekj} \) is the covariance of \(e_k \) and \(V_j \) and \(\sigma_{mj} \) here represents the covariance of \(X_m \) and \(V_j \). This implies,
\[
a_{kj}^{(1)} = \lambda_{kj} + \sum_{X_m \in \text{par}_G(k) \setminus V_j} \lambda_{km} a_j^{(1)} + a_{ekj}^{(1)}, \quad (5)
\]
where \(a_{ekj}^{(1)} \) is the least-squares regression coefficient of \(e_k \) on \(V_j \). This means \(V_k^{(1)} = V_k - a_{kj}^{(1)} V_j \) can be written as
\[
V_k^{(1)} = \sum_{X_m \in \text{par}_G(k) \setminus V_j} \lambda_{km} X_m^{(1)} + e_k^{(1)} \quad (6)
\]
with \(X_m^{(1)} \) and \(e_k^{(1)} \) defined analogously.

We can iterate this process until we are left with \(r_i \):
\[
r_i = \sum_{U_k \in \text{par}_G(i) \cap \mathbf{U}} \lambda_{ik} U_k^{(n-1)} + e_i^{(n-1)}, \quad (7)
\]
where \(\mathbf{V} = n \). Variable \(U_k^{(n-1)} \) is the residual of the regression of \(U_k \) on \(\mathbf{V} \setminus U_i \), similarly for \(e_i^{(n-1)} \).

What we will show next is that within \(\{ \} \) each \(U_k^{(n-1)} \) and \(e_i^{(n-1)} \) can be expanded as polynomial functions of \(\Lambda_G \) and \(X_G \), and the end result will contain non-vanishing monomials that are a (linear) function of only the exogenous variables \(E_m \) which are d-connected to \(V_i \) given \(\mathbf{V} \setminus V_i \) in the expanded graph of \(\mathcal{M} \). Since the monomials cannot vanish except for a strict subset of lower dimensionality than that of the set of possible \(\Lambda_G \), the result will hold almost everywhere.

Since we are free to choose the elimination ordering leading to \(r_i \), as they all lead to the same equivalent relation \((7) \), let us define it in a way that a vertex can be eliminated at stage \(t \) only when its has no ancestors in \(\mathbf{V}^{(t-1)} \) (where \(\mathbf{V}^{(0)} \equiv \mathbf{V} \setminus i \)).

For \(t = 1 \), the only exogenous variables which will have a non-zero coefficient multiplying \(V_j \) in the least-squares regression are the parents of \(V_j \) in the ex-
Let $U_k^{(1)}$ be the residual of some latent parent of V_j, \[U_k^{(1)} = U_k - a_{kj} \left(\sum_{E_m \in A_k(j)} \sum_{p \in P_m} \phi_{jmp} E_m \right), \] where $\phi_{jmp} \equiv \lambda_{jm}$ if E_m is a latent variable, or 1 if $E_m = \epsilon_j$. Moreover, $a_{kj} = \lambda_{jk} v_{kk} / \sigma_{jj}$, where v_{kk} is the variance parameter of U and σ_{jj} is a polynomial function of Λ. We can multiply both sides of the equation above by σ_{jj} (as well all equations referring to any $V_k^{(1)}$ or $X_m^{(1)}$ such as (6)) to get a new system of variables that is polynomial in Λ. We will adopt this step implicitly and claim that from (8) we have that $U_k^{(1)}$ can be expanded as parameters that are polynomial functions of Λ. Moreover, it is clear from (8) that there will be at least one non-vanishing monomial containing each E_m. In what follows, we refer to any expression analogous to (8) as the expansion of $U_k^{(t)}$ for $t = 1, 2, \ldots, n - 1$.

We define a DAG $G^{(1)}$ with vertices $X_m^{(1)}$, where $U_k^{(1)}$ will assume as children all and only the $V_k^{(1)}$ such that U_k is a parent of V_k in the original extended graph of the model. That is, $G^{(1)}$ is the extended graph over residuals after the first regression. The respective model $M^{(1)}$ is given by equations of type (6) with parameters coming from Λ.

For any $t > 1$, let $V_j^{(t)}$ be the vertex being eliminated. Each $U_k^{(t)}$ in which $U_k^{(t-1)}$ is a parent of $V_j^{(t-1)}$ in $G^{(t-1)}$ will be a polynomial function of Λ and a linear function the union of the exogenous variables present in the expansion of each parent of $V_j^{(t-1)}$: the expansion analogous to (8) in the new model will always introduce new symbols λ_{jm} into existing monomials, or create new monomials with ϵ_j, as vertex $V_j^{(t-1)}$ had no eliminated descendants up to iteration t. As such, no exogenous variable will be eliminated from the algebraic expansion of the respective $U_k^{(t)}$.

Finally, the expansion of $\lambda_{ik} U_k^{(n-1)}$ in (8) will not cancel any monomial in the expansion of some other $\lambda_{ik} U_k^{(n-1)}$: since U_k and $U_{k'}$ are both parents of V_i, no monomial in the expansion of U_k can differ from a monomial in the expansion of $U_{k'}$ by a factor of $\lambda_{ik} \lambda_{ik'}$. So (8) will depend algebraically on the union of the exogenous terms leading to each $U_k^{(n-1)}$.

To prove the Lemma, we start by pointing out that $U_k^{(n-1)}$ will have a latent/error parent of some V_j in its expansion if and only if there is at least one sequence of vertices (V_c, \ldots, V_j) where V_c is an observable child of U_k and any two consecutive elements in this sequence have at least one common latent parent in G (the sequence can be a singleton, $V_c = V_j$). To see this, notice that the different $U_k^{(t)}$ form an equivalence relation: each $U_k^{(t)}$ with a $V_j^{(t-1)}$ child which is being eliminated at iteration t will include into its expansion the exogenous variables found in the expansion of the other parents of $V_j^{(t-1)}$. This partitions V into sets in which each vertex V_j can “reach” some other vertex V_k by first moving to some $V_{k'}$ which shares a latent parent with V_j and which can “reach” V_k. The latent parents of V are then partitioned according to their observed children.

To finalize the proof, suppose V_i is d-separated from a latent/error parent E_m of V_j given $V \setminus V_i$. This happens if and only if all latent parents of V_i (and E_i) are d-separated from E_m given $V \setminus V_i$. Let U_k be a latent parent of V_i (or its error term). Then U_k cannot have E_m in its expansion. If this was the case, by the previous paragraph U_k would be d-connected to all latent parents of V_j, meaning V_i would be d-connected to them. This implies $c_m = 0$. Conversely, suppose V_i is d-connected to the error term or a latent parents of V_j given $V \setminus V_i$. Then again by the previous paragraph, for any latent parent U_k of V_i, $U_k^{(n-1)}$ will have the latent parents of V_i as terms in its expansion, implying $c_m \neq 0$ almost everywhere. □

We can now prove Theorem 2.

Proof of Theorem 2. Considering the system for $\{V_i, Y\} \cup Z$, we can represent the model in an equivalent way where all latent variables are exogenous. Applying Lemma 6 to both r_i, and Y, and by Theorem 5, these variables will be dependent if and only if they are a non-trivial linear function of at least one common exogeneous variable E_m in the model. By Lemma 6, this happens if and only if V_i is d-connected to E_m given Z and Y is d-connected to E_m given V_i and Z.

If Y is d-connected to E_m given Z only, and since the concatenation of the (V_i, E_m) path with (Y, E_m) path must be by either colliding at the same child of E_m, or connected through some $V_x \leftarrow E_m \rightarrow V_y$, where V_x is in the path connected to V_i (which needs to be into V_j) and V_y is in the path connect to Y (which is into V_j), the theorem holds. If Y is not d-connected to E_m given Z only, then Y must be d-connected to V_i given Z by a path that is into V_i, and the claim again follows. □

The proof of the final result is as follows:
Proof of Theorem 3. Point (i): according to the Graphical Criteria for IVs, there should be an active path from \(W\) to \(Y\) that does not include \(X\), or otherwise the algorithm would return the right answer. This path has to be directed, as any other possible active path based on back-doors or conditioning on colliders has been ruled out by the non-Gaussian residual test (Theorem 2).

Point (ii) is related: if there was an active back-door path between \(W\) and some \(Z_0\) connected to \(Y\) by an active directed path, then the concatenation of the two paths would lead to an active back-door path between \(W\) and \(Y\), contrary to the result of the residual test.

Now we show point (iii). Since \(\sigma_{w,x} \sigma_{w,y} - \sigma_{w,y} \sigma_{w,x} = 0\), the covariance submatrix formed by using \((Z, W_i, W_j)\) as rows and \((Z, X, Y)\) as columns has determinant \(|\Sigma_{ZZ}| = \sigma_{w,x} \sigma_{w,y} - \sigma_{w,y} \sigma_{w,x} = 0\), which follows from standard block matrix decompositions. Rank faithfulness, combined with the Trek Separation Theorem, and the fact that \(Z\) is of minimal size (i.e., there is no proper subset of it satisfying the tests in Algorithm 1), implies there is a pair of sets \((C_{Z \cup \{W_i, W_j\}}, C_{Z \cup \{X, Y\}})\) such that the rank of the covariance submatrix \((Z, W_i, W_j) \times (Z, X, Y)\) is \(|Z| + 1\).

There are (trivial) treks of zero edges between elements of \(Z\), implying all of \(Z\) is necessary for the t-separation to hold. Moreover, as \(Z\) is minimal, it is not possible for a vertex \(Z\) in \(Z\) to be both in \(C_{Z \cup \{W_i, W_j\}}\) and \(C_{Z \cup \{X, Y\}}\), as this would create an active path from \(W\) to \(Y\) colliding at \(Z\), contrary to the tests in the algorithm. Therefore, there is exactly one other vertex not in \(Z\) needed for the t-separation to hold. Then any treks from \(W\) to \(Y\) will have to go through this vertex, which by point (ii) have to be directed paths.

For point (iv): if there is an unblocked path from \(W\) to \(X\) not going through \(Z \cup \{Z_0\}\), this would contradict that \(|(C_{Z \cup \{W_i, W_j\}}, C_{Z \cup \{X, Y\}})| = |Z| + 1\), as there would be no elements left to cover this extra trek. □

Remarks: The assumptions are stronger than, for instance, the ones used in the proofs of Tashiro et al. (2014). A closely related result in that paper is its Lemma 2, a result identifying the dependence between the residual of the regression of a variable on its children. It does not use any variation of the faithfulness assumption. This is because, in their context, it is enough to detect the dependence between the residual and some children. So if some path cancellations take place, some other path cancellations cannot occur. But we need the dependence of our \(r_i\) and every relevant error term, because we cannot claim that \(r_i\) depends on some error terms or latent variables, while \(r_y\) depends on some error terms or latent variables, if these two sets do not overlap. Although some of the ideas by Tashiro et al. (2014) could be used in our context to build partial models and from the deduce instrumental variables, it goes against our framework of solving a particular prediction problem (causal effect of a target treatment-outcome) directly, instead of doing it by recovering parts of a broader causal graph.

Finally, we have not provided an explicit discussion on how to validate the non-Gaussianity assumption by testing the non-Gaussianity of the residuals, as done by Entner et al. (2012). Or, more precisely, showing which assumptions are necessary so that testing non-Gaussianity of the residuals is equivalent to testing non-Gaussianity of the error terms. This is left as future work.