Coronavirus Disease-19 and Dentistry: A Review

Fareedi Mukram Ali1*, Kishor Patil2, Elnur Ibrahim Albashir1, Abdulhamid Aidarous Alamir1

1College of Dentistry, Oral and Maxillofacial Surgery Jazan, Jazan, Saudi Arabia; 2SMBT Dental College and Hospital and Post Graduate Research Center, Oral Pathology and Microbiology, Sangamner, Maharashtra, India

Abstract

Novel coronavirus (nCoV) is a novel form of virus with a new strain identified recently in humans. Common clinical signs and symptoms primarily consist of fever, cough, and breathing difficulties. In severe cases, it can result in pneumonia, severe acute respiratory syndrome, kidney failure, and even death. It is important to follow all infection control measures in prevention of the nCoV from spreading and controlling the epidemic situation. The risk of cross infection can be high between dental practitioners and patients due to the features of dental clinical settings. Here, we are summarizing the nCoV related information and infection control measures to be followed in dental practice.

Introduction

The pandemics of coronavirus disease (COVID-19) started from Wuhan, China, last December and Chinese Center for Disease Control and Prevention [1] on January 8, 2020, officially announced a novel form of coronavirus (nCoV) as the causative agent. It was first named as 2019-nCoV, but later officially as severe acute respiratory syndrome nCOV 2 (SARS-CoV-2) [2]. Now, it has become a major health problem not only for China but also majority of countries around the world [3]. The World Health Organization on January 30 announced that COVID-19 outbreak is a public health emergency of international concern [2], [4], and β-CoV mainly infect the respiratory, gastrointestinal, and central nervous system of humans and mammals, while γ-CoV and δ-CoV mainly infect the birds [7].

SARS-CoV and the Middle East respiratory syndrome CoV explored in 2002–2003 and in 2012, respectively, belong to the β-CoV. The virus explored in Wuhan, SARS-CoV-2, also belongs to the β-CoV [11].

The genome nucleotide sequence uniqueness was 96.2% between nCoV detected in the bat Rhinolophus affinis from Yunnan Province, China, and SARS-CoV-2, indicating the natural host of SARS-CoV-2 is the R. affinis bat [7].

However, the genome sequence similarity was 99% to the nCoV isolated from pangolins, indicating that these are the most likely intermediate host of SARS-CoV-2 [2], [7].

Characteristics of Virus

SARS-CoV-2 is a zoonotic virus [2]. nCoVs are from the family of Coronaviridae, of the order Nidovirales. It has genome of large, single, and plus-stranded RNA [5], [6]. There are four genera of nCoVs, namely, α-CoV, β-CoV, γ-CoV, and δ-CoV. The α-CoV and β-CoV mainly infect the respiratory, gastrointestinal, and central nervous system of humans and mammals, while γ-CoV and δ-CoV mainly infect the birds [7].

Incubation Period

An average of 5–6 days is the estimated incubation period of COVID-19. There is evidence that it might be as long as 14 days, which is now the universally adopted duration for medical surveillance.
and quarantine of potentially exposed or exposed persons [2].

People at High Risk of Infection

1. Peoples of all ages are usually susceptible to COVID-19. Healthcare workers and other individuals who are in close contact with patients of symptomatic and asymptomatic COVID-19 are at higher risk of SARS-CoV-2 infection [2].
2. Patients with most severe disease were more likely to have hypertension respiratory disease and cardiovascular disease [8].
3. In other studies, obesity and smoking were associated with increased risks [9], [10].

Common Symptoms

The characteristics symptoms of the patients were fever, cough, and myalgia or fatigue with abnormal chest computed tomography (CT). The less common symptoms were sputum production, headache, hemoptysis, and diarrhea [7].

Oral Manifestations

- Ulcerations (unilateral palatal ulcerations) or blistering in the oral cavity
- 52% – changes in taste sensation 56.25%
- – dry mouth 11% – pain in muscles of mastication
- Necrotizing periodontal disease
- Oral reddish lesions and ulcerations
- Smell and taste loss (chemosensory dysfunction)

- Reported as possible signs and symptoms in confirmed case of COVID-19 by Sinadinos and Shelswell [11]
- Reported as major changes in study by Biadsee et al. [12]
- Patel and Woolley in their letter to the editor proposed this can be an oral manifestation in patients with COVID-19 [13]
- Soares et al. [14] and Chaux-Bodard et al. [15] in their letter to the editor marked in patients of COVID-19
- Reported by Pedrosa et al. [16]

Source of Transmission

1. Patients with symptomatic COVID-19 have been the main source of transmission [2]
2. Asymptomatic patients in their incubation period [2].

Epidemiology

- Interpersonal transmission occurs mainly through respiratory droplets and contact transmission [2], [7].
- Studies have suggested that 2019-nCoV may be airborne through aerosols produced during medical procedures. However, the aerosol transmission route and the fecal–oral transmission route worried by the public still required to be further studied and confirmed [2], [7].

Spread in Dental Clinics

Eyes, nose, and oral cavity as the “T” zone in the maxillofacial region being the main entry for the virus into an individual, alerts all dental professionals while doing any procedures [17].

Dental care settings invariably carry the increased risk of 2019-nCoV infection due to the following reasons (Table 1 and Figure 1).

Table 1: Risk factors in dental clinic settings

Risk factor	Description
Have more face-to-face communication with patients	[2],[7]
Everyday exposure to saliva, blood, and other body fluids	[2],[7]
Handling of the sharp instruments	[2],[7]
Contact with droplets and aerosols	[18]
Direct contact with patient materials	[19]
Indirect contact with contaminated instruments and/or environmental surfaces	[20]

Infection Control in Dental Practice

In the early stages of COVID-19, the viral load in the saliva was constantly found high than that in the
Diagnosis and Laboratory Tests

1. The diagnosis of COVID-19 can be based on a combination of [31]
 • Clinical symptoms
 • CT imaging findings (seen in severe infection patients), and
 • Laboratory tests: For example, reverse transcriptase polymerase chain reaction (RT-PCR) tests on respiratory tract specimens using nasopharyngeal, oropharyngeal, and blood samples.

2. It should be mentioned that a single negative RT-PCR test result from suspected patients does not rule out infection. Clinically, we should be alert of patients with an epidemiologic history, COVID-19-related symptoms, and/or positive CT imaging results [31]

3. Saliva was found to be even more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs [32].

Treatment

In the present scenario, there has been no confirmation from randomized controlled trials to suggest any particular anti-nCoV treatment. Thus, the management consists of measures such as controlling the source of infection; lower the risk of infection transmission; and also provide early diagnosis, isolation, and supportive care for affected patients [9].

Conclusion

Although dental clinics have been closed during the epidemic, a large number of emergency patients need dental treatment. We have summarized the virology of 2019-nCoV, possible transmission routes and its control in dental clinics.

References

1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382:1199-207.
2. Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: Challenges for global health governance. JAMA. 2020;323(8):709-10. https://doi.org/10.1001/jama.2020.1097
PMid:31999307

3. Meng L, Hua F, Bian Z. Coronavirus disease 2019 (COVID-19): Emerging and future challenges for dental and oral medicine. J Dent Res. 2020;99(9):481-7. https://doi.org/10.1177/0022034520914246
PMid:32162995

4. Aldahlawi S, Afifi IK. COVID-19 in dental practice: Transmission risk, infection control challenge, and clinical implication. Open Dent J. 2020;14:348-54. https://doi.org/10.2174/1874210602014010348

5. Fehr AR, Perlman S. Coronaviruses: An overview of their virology of 2019-nCoV, possible transmission routes and its control in dental clinics.

6. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: Evolving the largest RNA virus genome. Virus Res. 2006;117(1):17-37. https://doi.org/10.1016/j.virusres.2006.01.017
PMid:16503362

7. Peng XX, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020;12(9). https://doi.org/10.1038/s41368-020-0075-9

8. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. https://doi.org/10.1016/j.ijid.2020.03.017
PMid:32173574

9. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical
characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. https://doi.org/10.1001/jama.2020.1585
PMid:32031570

10. Jordan RE, Adab P, Cheng KK. Covid-19: Risk factors for severe disease and death. BMJ. 2020;368:m1198. https://doi.org/10.1136/bmj.m1198
PMid:32217618

11. Sinadinos A, Shelswell. Oral ulceration and blistering in patients with COVID-19. JAMA. 2020;323(11):1061-9. https://doi.org/10.1001/jama.2020.1585
PMid:32031570

12. Biadsee A, Biadsee A, Kassem F, Dagen O, Masarwa S, Ormianer Z. Olfactory and oral manifestations of COVID-19: Sex-related symptoms-a potential pathway to early diagnosis. Otolaryngol Head Neck Surg. 2020;163(4):722-8. https://doi.org/10.1177/0194599820934380
PMid:32539587

13. Patel J, Woolley J. Necrotizing periodontal disease: Oral manifestation of COVID-19. Oral Dis. 2020;???:1-2. https://doi.org/10.1111/odi.13462
PMid:32506662

14. Soares CD, Carvalho RA, Carvalho KA, Carvalho MG, Almeida OP. Letter to editor: Oral lesions in a patient with Covid-19. Med Oral Patol Oral Cir Bucal. 2020;25(4):e563-4. https://doi.org/10.4317/medoral.24044
PMid:32593587

15. Chaux-Bodard AG, Deneuve S, Desoutter A. Oral manifestation of Covid-19 as an inaugural symptom? J Oral Med Oral Surg. 2020;26(2):18. https://doi.org/10.1051/jmbo/2020011

16. Pedrosa MS, Sipert CR, Nogueira FN. Salivary glands, saliva and oral findings in COVID-19 infection. Pesqui Bras Odontopediatr Clín Integr. 2020;20(Supp 1):e0104. https://doi.org/10.1590/pboci.2020.112

17. Whaites E. Essentials of Dental Radiography and Radiography. 2nd ed. Edinburgh: Churchill-Livingstone; 1996. p. 107-13.

18. Robb ND, Crothers AJ. Sedation in dentistry. Part 2: Management of the gagging patient. Dent Update. 1996;23(5):182-6.
PMid:8948179

19. Wenzel RP, Edmond MB. Managing SARS amidst uncertainty. N Engl J Med. 2003;348(20):1947-8. https://doi.org/10.1056/nejmp030072 PMID: 12748313

20. Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H, et al. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J Korean Med Sci. 2020;35(20):e195. https://doi.org/10.3346/jkms.2020.35.e195
PMid:32449329

21. Liu L, Wei Q, Alvarez X, Wang H, Du Y, Zhu H, et al. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J Virol. 2011;85(8):4025-30. https://doi.org/10.1128/jvi.02292-10
PMid:21289121

22. Alharbi A, Alharbi S, Alqaid S. Guidelines for dental care provision during the COVID-19 pandemic. Saudi Dent J. 2020;32(4):181-6. https://doi.org/10.1016/j.sdentj.2020.04.001
PMid:32292260

23. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-20. https://doi.org/10.1056/nejmoa1211721
PMid:23075143

24. Thabet FA, Chehab M, Bafaaqih H, Al Mohaimeed S, Middle East respiratory syndrome coronavirus in children. Saudi Med J. 2015;36(4):484-6. https://doi.org/10.15537/smj.2015.4.10243
PMid:25828287

25. Villani FA, Aiuto R, Paglia L, Re D. COVID-19 and dentistry: Prevention in dental practice, a literature review. Int J Environ Res Public Health. 2020;17(12):4609. https://doi.org/10.3390/ijerph17124609
PMid:32604906

26. Sabino-Silva R, Jardim AC, Siqueira L. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin Oral Investig. 2020;24(4):1619-21. https://doi.org/10.1007/s00784-020-03248-x
PMid:32078048

27. Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva is More Sensitive for SARS-CoV-2 Detection in COVID-19 Patients than Nasopharyngeal Swabs. New York: Medrxiv; 2020. https://doi.org/10.3410/f.737795545.793573919