Uukuniemi Phlebovirus Assembly and Secretion Leave a Functional Imprint on the Virion Glycome

Max Crispin,a David J. Harvey,a,b,c David Bitto,b Steinar Halldorsson,b Camille Bonomelli,a Matthew Edgeworth,c James H. Scrivens,a Juha T. Huiskonen,b Thomas A. Bowdenb

Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdoma; Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdomb; School of Life Sciences, University of Warwick, Coventry, United Kingdomc

Uukuniemi virus (UUKV) is a model system for investigating the genus Phlebovirus of the Bunyaviridae. We report the UUKV glycome, revealing differential processing of the Gn and Gc virion glycoproteins. Both glycoproteins display poly-N-acetyllactosamines, consistent with virion assembly in the medial Golgi apparatus, whereas oligomannose-type glycans required for DC-SIGN-dependent cellular attachment are predominant on Gc. Local virion structure and the route of viral egress from the cell leave a functional imprint on the phleboviral glycome.

The genus Phlebovirus, in the family Bunyaviridae, includes approximately 70 arboviruses with a near-worldwide distribution, many of which are zoonotic and of significance to human health (1). Although Rift Valley fever virus (RVFV) is endemic in many parts of Africa and the Middle East (2, 3), other phleboviruses, such as the Heartland virus (HRTV) (4–6) and severe fever thrombocytopenia syndrome virus (SFTSV) (7, 8), have only recently emerged in North America and China, respectively. The emergence of the highly pathogenic SFTSV (fatality rates near 30%), for example, has been rapid, with known lineages originating approximately 100 to 150 years ago (9). Although this genus is a subject of intensive research (10–15), there are currently no specific therapeutics to prevent or treat Phlebovirus infection in humans. Furthermore, a detailed understanding of the posttranslational modifications of the virion surface is lacking.

Uukuniemi virus (UUKV) was first isolated in 1960 from ticks in southeast Finland (16) and has been adopted as a prototype for studying phlebovirus ultrastructure (17, 18) and pathobiology (19). In addition to ticks, UUKV has been serologically detected in humans, cows, birds, reindeer, and rodents (20, 21). Like all other phleboviruses, UUKV is enveloped and possesses a negative-sense genome which is divided into three segments, S, M, and L. The glycoprotein precursor, which is encoded by the M segment, is cotranslationally cleaved in the endoplasmic reticulum (ER) by cellular proteases into two transmembrane glycoproteins, Gn (~70 kDa) and Gc (~65 kDa), both of which are required for host cell entry (22). X-ray crystallographic analysis of the Gc glycoprotein from the closely related RVFV has revealed a class II fusion glycoprotein architecture (23). The structure of the Gn glycoprotein remains unknown.

Phleboviruses enter host cells through receptor-mediated endocytosis (24, 25). Entry into mammalian dendritic cells is thought to be instigated through an initial viral attachment interaction between virion glycoprotein-associated oligomannosetype glycans and a tetrameric C-type lectin, DC-SIGN (26, 27). UUKV Gn and Gc both contain four N-linked glycosylation sequences. It is unknown whether both viral glycoproteins are involved in lectin-mediated cellular attachment.

Studies using baby hamster kidney 21 (BHK-21) cells as a model system to examine posttranslational modifications on UUKV have revealed that both Gn and Gc contain endoglycosidase H-resistant and -sensitive N-linked glycans (26, 28, 29). Following upon these earlier electrophoretic analyses, we performed a complete glycomic analysis of the N-linked glycans displayed by UUKV. UUKV was propagated by infection of BHK-21 cells at a multiplicity of infection of 0.1, and the cells were maintained with Glasgow minimal essential medium supplemented with 10% tryptose phosphate broth and 5% fetal bovine serum at 37°C in an atmosphere containing 5% CO2. Media containing secreted UUKV were collected 42 h following infection. Cell supernatants were clarified and virions were concentrated by ultracentrifugation through a 20% sucrose cushion, as previously described (30). Virus pellets were resuspended in neutral-pH buffer.

The purity and sample integrity of concentrated UUKV virions were verified by electrophoretic analysis (Fig. 1A) and electron cryo-microscopy (cryo-EM) (Fig. 1B), respectively. Consistent with previous structural analyses of phleboviruses (17, 31–33), electron micrographs revealed spherical virions, with glycoprotein spikes extending from the viral membrane. Binding of purified UUKV virions to recombinant DC-SIGN ectodomain was confirmed by ELISA, demonstrating the functional integrity of the virions in the context of receptor recognition (Fig. 1C and D). These data confirmed that our UUKV was of sufficient quality and purity to warrant mass-spectrometric analysis of virion-associated N-linked glycosylation (Fig. 1E).

To study the N-linked glycome of UUKV, SDS-PAGE gel bands corresponding to the Gn and Gc glycoproteins were excised and digested with PNGase F, as previously described (34, 35). Gn and Gc glycans were subjected to ion mobility mass spectrometry (electrospray ionization) and collision-induced dissociation (CID) analysis, a highly sensitive method which can separate con-
mass spectrometry was carried out in negative-ion mode with a Waters Synapt G2 traveling wave ion mobility mass spectrometer (Waters MS Technologies, Manchester, United Kingdom). We resolved singly, doubly, and triply charged glycan ions by the computational mining of a Waters Driftscope plot, which displays m/z versus drift time (Fig. 1E). The mass of each glycan was used as a fingerprint to reveal monosaccharide composition. Negative-ion fragmentation analysis confirmed these assignments and enabled accurate assignment of isomers (37–40). A representative analysis of five glycan ions is presented in Fig. 2.

The ESI mass spectra of the isolated Gn and Gc glycans are shown in Fig. 3 and 4, respectively, and reveal that although both glycoproteins display a mixture of fully processed and underprocessed glycans, Gc has a greater level of underprocessed glycans than Gn (Man5–9GlcNAc2; green peaks in Fig. 3 and 4). The total spectrum of Gn was dominated by complex-type structures (Fig. 3A), with a prominent population of disialylated, core-fucosylated biantennary glycans (m/z 1,183.9). Smaller populations of monosialylated mono- and biantennary structures were also observed, together with a number of hybrid- and oligomannose-type structures. This spectrum contrasts that of the total spectrum of Gc (Fig. 4A), which had only a minor population of disialylated complex-type glycans and larger populations of lesser-processed hybrid- and oligomannose-type glycans (e.g., Man5Gal1GlcNAc3 and Man5–9GlcNAc2, respectively). These differences in glycan composition are also reflected in our electrophoretic analysis, where the relatively sharp band of Gc correspondingly exhibited more homogenous and less biosynthetically processed glycans than the more diffuse band of Gn (Fig. 1A).

The Driftscope plot (Fig. 1E) demonstrated that many glycan species were suppressed in the total ion spectrum of Gn, with a prominent population of disialylated, core-fucosylated biantennary glycans (m/z 1,183.9). Smaller populations of monosialylated mono- and biantennary structures were also observed, together with a number of hybrid- and oligomannose-type structures. This spectrum contrasts that of the total spectrum of Gc (Fig. 4A), which had only a minor population of disialylated complex-type glycans and larger populations of lesser-processed hybrid- and oligomannose-type glycans (e.g., Man5Gal1GlcNAc3 and Man5–9GlcNAc2, respectively). These differences in glycan composition are also reflected in our electrophoretic analysis, where the relatively sharp band of Gc correspondingly exhibited more homogenous and less biosynthetically processed glycans than the more diffuse band of Gn (Fig. 1A).
spectra (Fig. 3A and 4A), particularly in the analysis of Gn. Analysis of singly charged populations (Fig. 3B and Fig. 4B) enabled detailed examination of glycans that were obscured by the more dominant populations. The improved signal-to-noise ratio achieved by this extraction process enabled additional low-abundance structures to be detected, and we were able to resolve a minor population of oligomannose-type structures on Gn (e.g., m/z 1,817.5). These results reveal that Gc displays a greater abundance of oligomannose-type glycans, yet both Gn and Gc exhibit ligands for DC-SIGN. However, it is unknown which of these are accessible for lectin recognition during cell entry.

Steric occlusion of N-linked glycans can impose compositional constraints upon the viral glycome through the inhibition of glycan biosynthesis in the host cell (35). This can be achieved through intramolecular glycan-glycan or glycan-protein interactions, as illustrated by the glycosylation of gp120 from human immunodeficiency virus type 1 (HIV-1) (41). Similarly, glycan-protein interactions have a functional role for dengue virus, leading to the formation of oligomannose-type glycans and a productive interaction with DC-SIGN (42).

It is possible to postulate which enzymatic steps are most sensitive to disruption due to the physical presentation of glycans.
during UUKV biogenesis. In contrast to the competing reactions that occur in the medial and late Golgi apparatus, the early stages of glycan processing in the ER and cis-Golgi are comparably linear (43). In our analysis of both UUKV Gn and Gc, there is no evidence that any one step of glycan biosynthesis is absolutely inhibited. However, the presence of the Man_{6–9}GlcNAc_{2} series, particularly on Gc, indicates reduced sensitivity to ER α-mannosidase I and Golgi α-mannosidases IA to -C (Fig. 3 and 4). Similarly, the

![Mass-spectrometric analysis of N-linked glycans from UUKV Gn.](http://jvi.asm.org/)

FIG 3 Mass-spectrometric analysis of N-linked glycans from UUKV Gn. (A) Raw electrospray ionization spectrum; (B to D) corresponding spectra of isolated glycans with singly (B), doubly (C), and triply (D) charged ions. Fragment ions are annotated with an encircled F. Neutral glycans form [M+H₂PO₄]⁻ ions. Sialylated glycans form [M–H]⁺ (singly charged), [M–H₂]²⁺ (doubly charged), and [M–H₃]³⁺ (triply charged) ions. Peaks corresponding to Man_{6–9}GlcNAc_{2} are green. Symbols used for glycan structures are defined in the legend to Fig. 2.
presence of Man$_5$GlcNAc$_2$ indicates an inefficiency of GlcNAc transferase (GnT) I (Fig. 3 and 4). Finally, the presence of hybrid-type glycans on Gc, which are typically at very low abundance, can be attributed to lessened sensitivity to Golgi α-mannosidase II (43). Our comparison of Gn and Gc glycan composition shows that Gn exhibits more highly processed glycans than Gc and is therefore more likely to be accessible to processing enzymes.

Due to the presence of complex-type glycans on both glyco-
proteins, we deduce that the underprocessed glycans arise as a result of steric occlusion, rather than differential transit through the host cell. Driftscope analysis of doubly and triply charged ions enabled identification of glycan structures not previously reported for phleboviruses (Fig. 3C and D; Fig. 4C and D). In both spectra of Gn and Gc glycans, we observed a small population of large and highly processed poly-N-acetyllactosamine extensions. Poly-N-acetyllactosamines have been observed on the nonstructural NS1-B glycoprotein of influenza B virus, on a variety of isolates derived from a range of cell types (44). Such structures have also been observed on macrophage-derived HIV-1 (45) and HIV-2 (46) as well as on the small hydrophobic protein of human and bovine respiratory syncytial viruses derived from bovine nasal turbinate cells and HEP-2 cells, respectively (47).

Poly-N-acetyllactosamine structures arise through the dual action of medial-Golgi apparatus-resident B1-4-galactosyltransferase and GnT V (which catalyzes the transfer of GlcNAcβ1-6 to galactose). Although no functional role has been ascribed to phleboviral poly-N-acetyllactosamine structures, we suggest that their presence provides a marker for phlebovirus biosynthesis and is indicative of prolonged glycan residence time in the medial Golgi apparatus (48). This hypothesis is supported by previous studies by Nabi et al., which revealed a direct correlation between the rate of Golgi-residence egress and the extent of poly-N-acetyllactosamine formation (49, 50). This observation is entirely consistent with established pathways of UUKV glycoprotein biosynthesis and assembly, where Gn-Gc heterodimers (51), produced in the ER, are retained in the medial Golgi apparatus as a result of a Golgi retention signal in the cytoplasmic tail of Gn (52, 53). Such prolonged localization during phleboviral assembly is also consistent with viral budding taking place in the ERGIC (ER-Golgi intermediate compartment) and Golgi apparatus (54, 55).

Here, through the application of ion mobility mass spectrometry, we have structurally characterized the glycans presented on the Gn and Gc glycoproteins from the mature UUKV virion. Surprisingly, we observed that both glycoproteins display a range of glycans spanning from ER-associated oligomannose-type to large and highly processed poly-N-acetyllactosamine structures. We show that even though the major class of glycosylation on Gn was of the highly processed complex type, there were small populations of hybrid- and oligomannose-type glycans. In contrast, Gc was dominated by DC-SIGN-binding, oligomannose-type glycans, with remaining structures primarily of the hybrid type.

Viral glycan structure and composition are key determinants in virus-host pathobiology and may be modulated by both the virus and the host (35). In the case of UUKV phlebovirus, our analysis defined populations of mannose-terminating glycan structures on the virion surface and demonstrated direct recognition of the virion by DC-SIGN, consistent with C-type lectin cell attachment (26). We also observed two examples of differential processing of the Gn and Gc glycoproteins. First, despite exiting more slowly from the ER than Gn (28) and thus having longer exposure to α-mannosidas, Gc showed a higher proportion of oligomannose-type glycans than Gn. Second, despite being ostensibly exposed to processing enzymes during virion assembly in the Golgi apparatus, Gc exhibited somewhat smaller poly-N-acetyllactosamine extensions than Gn. These observations lead us to propose that structural constraints limit UUKV glycan processing, predominantly on the Gc glycoprotein.

There is an interesting paradox that steric occlusion drives the formation of oligomannose-type glycans while not precluding the productive interaction of these same glycans with cellular receptors. This may arise because glycan processing is highly sensitive to intramolecular glycan-protein interactions. For example, the occlusion of a single glycan branch may prevent processing of the entire glycan, leaving functionally important termini exposed for receptor recognition. Alternatively, this phenomenon may arise because cellular receptors are smaller than glycan processing enzymes. The immunological properties of oligomannose-type glycans are also of interest. They can be potent activators of the innate immune system and as immunologically “self” structures do not elicit a strong antibody response (56). Although potent neutralizing antibodies have now been identified that recognize mixed glycan–protein epitopes (57), one may expect a limited antibody response against oligomannose-type glycans.

In conclusion, we suggest that the extremes of glycan processing result from a combination of local viral protein architecture and the route of virus egress through the cell. Given the correlation between the biosynthetic pathway and the observed glycan structures, we postulate that low-abundance poly-N-acetyllactosamines are a conserved feature of the Phlebovirus genus. Our glycomic analysis reveals virion-directed glycosylation strategies for host cell entry, provides a sensitive reporter for the route of virion assembly, and refines the antigenic surface of phleboviruses.

ACKNOWLEDGMENTS

BHK cells and UUKV were kindly provided by Anna Överby. We thank Raymond Dwek, David Stuart, and E. Yvonne Jones for helpful discussions.

M.C. is supported by the International AIDS Vaccine Initiative and CHAVI-ID. M.C. is a Fellow of Oriel College, Oxford. We thank the Wellcome Trust (grant number 090532/Z/09/Z, 089026/Z/09/Z to T.A.B.), the Academy of Finland (grant numbers 130750 and 218080 to J.T.H.), and the MRC (MR/L009528/1 to T.A.B.) for funding.

REFERENCES

1. Elliott RM. 2008. Bunyaviruses: general features, p 390–399. In Mahy BWJ, Van Regenmortel M (ed), Encyclopedia of virology, 3rd ed, vol. I. Elsevier Academic Press, Oxford, United Kingdom.

2. Geisbert TW, Jahrling PB. 2004. Exotic emerging viral diseases: progress and challenges. Nat. Med. 10:511–512. http://dx.doi.org/10.1038/nm1142.

3. Bakhly HH, Memish ZA. 2003. Rift Valley fever: an uninvited zoonosis in the Arabian peninsula. Int. J. Antimicrob. Agents 21:153–157. http://dx.doi.org/10.1016/S0924-8579(02)00295-9.

4. Xing Z, Schefers J, Schwabenlander M, Jiao Y, Liang M, Qi X, Li C, Goyal S, Cardona CJ, Wu X, Zhang Z, Li D, Collins J, Murtough MP. 2013. Novel bunyavirus in domestic and captive farmed animals, Minnesota, USA. Emerg. Infect. Dis. 19:1487–1489. http://dx.doi.org/10.3201/eid1909.130165.

5. Savage HM, Godsey MS, Jr, Lambert A, Panaida NA, Burkhhalter KL, Harmon JR, Lash RR, Ashley DC, Nicholson WL. 2013. First detection of heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods. Am. J. Trop. Med. Hyg. 89:445–452. http://dx.doi.org/10.4269/ajtmh.13-0209.

6. McMullan LK, Folk SM, Kelly AJ, MacNeil A, Goldsmith CS, Metcalfe MG, Batten BC, Albarino CG, Zaki SR, Rollin PE, Nicholson WL, Nichol ST. 2012. A new phlebovirus associated with severe febrile illness in Missouri. N. Engl. J. Med. 367:834–841. http://dx.doi.org/10.1056/NEJMoa1203378.

7. Zhang YZ, He YW, Dai YA, Xiong Y, Zheng H, Zhou DI, Li J, Sun Q, Luo XL, Cheng YL, Qin XG, Tian JH, Chen XP, Yu B, Jin D, Guo WP, Li W, Wang W, Peng JS, Zhang GB, Zhang S, Chen XM, Wang Y, Li MH, Li Z, Lu S, Ye C, de Jong MD, Xu J. 2012. Hemorrhagic fever caused by a novel Bunyavirus in China: pathogenesis and correlates of fatal
outcome. Clin. Infect. Dis. 54:527–533. http://dx.doi.org/10.1093/cid/cir804.
8. Zhang YZ, Zhou DJ, Xiong Y, Chen XP, He YY, Sun Q, Yu B, Li J, Dai YA, Tian JH, Qin XC, Jin D, Cui Z, Luo XL, Li W, Lu S, Wang W, Peng JS, Guo WP, Li MH, Li ZJ, Zhang S, Chen C, Wang Y, de Jong MD, Xu J. 2008.107:58–88. http://dx.doi.org/10.1007/s11224-12.12.
8. Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S. 2013. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J. Virol. 87:4384–4394. http://dx.doi.org/10.1128/JVI.02628-12.
28. Kuismanen E. 1984. Posttranslational processing of Uukuniemi virus glycoproteins G1 and G2. J. Virol. 51:806–812. 29. Pesonen M, Kuismanen E, Pettersson RF. 1982. Monosaccharide sequence of protein-bound glycan of Uukuniemi virus. J. Virol. 41:390–400. 30. Pedersen TD, Bitto D, Mclees A, Yeromonahos C, Elliott RM, Huiskonen JT. 2013. Orthobunyavirus ultrastructure and the curious tripodal glycoprotein spike. PLoS Pathog. 9:e1003374. http://dx.doi.org/10.1371/journal.ppat.1003374.
31. Huiskonen JT, Overby AK, Weber F, Grünwald K. 2009. Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN-GC glycoprotein heterodimers. J. Virol. 83:3762–3769. http://dx.doi.org/10.1128/JVI.02483-08.
32. Froomberg AN, Sherman MB, Mancini R, Bitto D, Holbrook MR, Watkinson SJ. 2008. Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J. Virol. 82:10341–10348. http://dx.doi.org/10.1128/JVI.01191-08.
33. Sherman MB, Freiberg AN, Holbrook MR, Watkinson SJ. 2009. Single-particle cryo-electron microscopy of Rift Valley fever virus. Virology 387:11–15. http://dx.doi.org/10.1016/j.virology.2009.02.038.
34. Küster B, Wheeler SF, Hunter AP, Dwek RA, Harvey DJ. 1997. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250:802–101. http://dx.doi.org/10.1006/abio.1997.2199.
35. Crispin M, Harvey DJ, Bitto D, Bonomelli C, Edgeworth M, Scrivens JH, Huiskonen JT, Bowden TA. 2014. Structural plasticity of the Semliki Forest virus glycome upon interspecies transmission. J. Proteome Res. 13:1702–1712. http://dx.doi.org/10.1021/pr401162k.
36. Harvey DJ, Sobott F, Crispin M, Wrobel A, Bonomelli C, Vasilievic S, Scanlan CN, Scrivens JH. 2015. Ion mobility mass spectrometry for extracting spectra of N-glycans directly from incubation mixtures following glycan release: application to glycans from engineered glycoforms of intact, folded HIV gp120. J. Am. Soc. Mass Spectrom. 26:58–59. http://dx.doi.org/10.1007/s13361-010-0053-z.
37. Harvey DJ. 2005. Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16:647–659. http://dx.doi.org/10.1016/j.jasms.2005.01.006.
38. Harvey DJ. 2005. Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16:631–646. http://dx.doi.org/10.1016/j.jasms.2005.01.005.
39. Harvey DJ. 2005. Fragmentation of negative ions from carbohydrates: part 1. Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 16:622–630. http://dx.doi.org/10.1016/j.jasms.2005.01.004.
40. Harvey DJ, Royle L, Radcliffe CM, Rudd PM, Dwek RA. 2008. Structural and quantitative analysis of N-glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal. Biochem. 376:64–60. http://dx.doi.org/10.1016/j.ab.2008.01.025.
41. Dooris KJ, Bonomelli C, Harvey DJ, Vasilievic S, Dwek RA, Burton DR, Crispin M, Scanlan CN. 2010. Envelope glycosyls of immunodeficiency viros are almost entirely oligomannose antigens. Proc. Natl. Acad. Sci. U. S. A. 107:13800–13805. http://dx.doi.org/10.1073/pnas.10078107.
42. Pokidyshova E, Zhang Y, Battistel AJ, Bator-Kelly CM, Chipman PR, Xiao C, Gregorio GG, Hendrickson WA, Kuhl RJ, Rossmann MG. 2006. Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell 124:485–493. http://dx.doi.org/10.1016/j.cell.2005.11.042.
43. Kornfeld R, Kornfeld S. 1985. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54:631–664. http://dx.doi.org/10.1146/annurev.bi.54.070185.032135.
44. Williams MA, Lamb RA. 1988. Polylactosaminoglycan modification of a small integral membrane glycoprotein, influenza B virus NB. Mol. Cell. Biol. 8:1186–1196.
45. Willey RL, Shibata R, Freed EO, Cho MW, Martin MA. 1996. Differential glycosylation, virion incorporation, and sensitivity to neutralizing antibodies of human immunodeficiency virus type 1 envelope produced
46. Liedtke S, Adamski M, Geyer R, Pfutzner A, Rubsam-Waigmann H, Geyer H. 1994. Oligosaccharide profiles of HIV-2 external envelope glycoprotein: dependence on host cells and virus isolates. Glycobiology 4:477–484. http://dx.doi.org/10.1093/glycob/4.4.477.

47. Anderson K, King AM, Lerch RA, Wertz GW. 1992. Polylactosaminoglycan modification of the respiratory syncytial virus small hydrophobic (SH) protein: a conserved feature among human and bovine respiratory syncytial viruses. Virology 191:417–430. http://dx.doi.org/10.1016/0042-6822(92)90203-2.

48. Chen L, Zhang N, Adler B, Browne J, Freigen N, Pierce M. 1995. Preparation of antisera to recombinant, soluble N-acetylglucosaminyltransferase V and its visualization in situ. Glycoconj. J. 12:813–823. http://dx.doi.org/10.1007/BF00731243.

49. Nabi IR, Dennis JW. 1998. The extent of polylactosamine glycosylation of MDCK LAMP-2 is determined by its Golgi residence time. Glycobiology 8:947–953. http://dx.doi.org/10.1093/glycob/8.9.947.

50. Nabi IR, Rodriguez-Boulan E. 1993. Increased LAMP-2 polylactosamine glycosylation is associated with its slower Golgi transit during establishment of a polarized MDCK epithelial monolayer. Mol. Biol. Cell 4:627–635. http://dx.doi.org/10.1091/mcb.4.6.627.

51. Persson R, Pettersson RF. 1991. Formation and intracellular transport of a heterodimeric viral spike protein complex. J. Cell Biol. 112:257–266. http://dx.doi.org/10.1083/jcb.112.2.257.

52. Anderson AM, Melin L, Bean A, Pettersson RF. 1997. A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein. J. Virol. 71:4717–4727.

53. Overby AK, Popov VL, Pettersson RF, Neve EP. 2007. The cytoplasmic tails of Uukuniemi virus (Bunyaviridae) G(N) and G(C) glycoproteins are important for intracellular targeting and the budding of virus-like particles. J. Virol. 81:11381–11391. http://dx.doi.org/10.1128/JVI.100767-07.

54. Overby AK, Popov V, Neve EP, Pettersson RF. 2006. Generation and analysis of infectious virus-like particles of Uukuniemi virus (Bunyaviridae): a useful system for studying bunyavirus packaging and budding. J. Virol. 80:10428–10435. http://dx.doi.org/10.1128/JVI.10362-06.

55. Jantti J, Hilden P, Ronka H, Makiranta V, Keranen S, Kuismannan E. 1997. Immunocytochemical analysis of Uukuniemi virus budding compartments: role of the intermediate compartment and the Golgi stack in virus maturation. J. Virol. 71:1162–1172.

56. Dunlop DC, Bonomelli C, Mansab F, Vasiljevic S, Doores KJ, Wormald MR, Palma AS, Feizi T, Harvey DJ, Dwek RA, Crispin M, Scanlan CN. 2010. Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans. Glycobiology 20:812–823. http://dx.doi.org/10.1093/glycob/cwp020.

57. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfeld RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Maroszan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Oghara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA. 2011. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103. http://dx.doi.org/10.1126/science.1213256.

58. Reeves PJ, Callewaert N, Contreras R, Khorana HG. 2002. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK290S stable mammalian cell line. Proc. Nat. Acad. Sci. U. S. A. 99:13419–13424. http://dx.doi.org/10.1073/pnas.212519299.

59. Aricescu AR, Lu W, Jones EY. 2006. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D. 62:1243–1250. http://dx.doi.org/10.1107/S0907444906029799.

60. Harvey DJ, Merry AH, Royle L, Campbell MP, Dwek RA, Rudd PM. 2009. Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9:3786–3801. http://dx.doi.org/10.1002/pmic.200900096.

61. Domon B, Costello CE. 1988. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5:397–409. http://dx.doi.org/10.1007/BF01049915.