Integrability of zero-dimensional replica field theories at $\beta = 1$

Pedro Vidal1,2 and Eugene Kanzieper1

1 Department of Applied Mathematics, H.I.T.—Holon Institute of Technology, Holon 5810201, Israel
2 Fakultät für Physik, Universität Bielefeld, Bielefeld 33615, Germany

(Dated: September 5, 2013)

Abstract.—Perhaps the most comprehensive and unifying quantitative description of disordered and quantum chaotic systems can be achieved by using field-theoretic methods. Since the seventies of the last century, a number of such field-theoretic frameworks have been devised. Having different mathematical status and physical areas of applicability, they all rest on the concept of functional field integrals and are known as nonlinear σ models.

In the context of disordered systems, three major formulations of nonlinear σ models exist: the replica2–6, the supersymmetry7–9 and the Keldysh10 models. Of these, replicas is the earliest11 and the most controversial invention that continues to challenge12 both mathematical and theoretical physicists. Decades after debuting in condensed matter physics, an operationally transparent and controllable treatment of replica field theories is barely available13,14 even in the mathematically simplest yet physics motivated setup provided by the random matrix theory15 (RMT). Indeed, it took nearly twenty years to extract some nonperturbative results out of replicas, in both the RMT limit16 and beyond it17. More precisely, adopting the idea of replica symmetry breaking originally devised in the theory of spin glasses18,19, the authors of Ref.16 managed to show that the fermionic20 replicas is capable of producing partially nonperturbative RMT results for the microscopic two-point density-density spectral correlation function

$$
R_2^{(\beta)}(\omega) \approx - \frac{1}{\beta(\pi \omega)^2} + \frac{2T^2(1 + 2/\beta)}{(2\pi \omega)^{2\beta}} \cos(2\pi \omega) + \frac{\delta_{\beta,4}}{2(2\pi \omega)^4} \cos(4\pi \omega).
$$

(1)

Equation (1) describes two-point eigenvalue correlations in ‘infinite-dimensional’ real symmetric ($\beta = 1$), complex Hermitean ($\beta = 2$), or quaternion-real self-dual ($\beta = 4$) random matrices whose spectrum was unfolded so as to make the mean level spacing unity, $\Delta = 1$. On the formal level, $R_2^{(\beta)}(\omega)$ corresponds to the thermodynamic limit

$$
R_2^{(\beta)}(\omega) = \lim_{N \to \infty} \frac{R_2^{(\beta)}(E_1, E_2; N)}{R_1^{(\beta)}(E_1; N)R_1^{(\beta)}(E_2; N)}
$$

(2)

where $E_{1,2} = E \pm \omega R_1^{(\beta)}(E; N)/2$, and a set of finite-$N$ eigenvalue correlation functions is defined as follows:

$$
R_p^{(\beta)}(E; N) = \left(\prod_{\alpha=1}^p \text{Tr}(E_{\alpha} - \mathcal{K}) \right)_{E_{\beta}^{G\delta}E_N}.
$$

(3)

Here, E stands for a set of energy variables, $E = (E_1, \ldots, E_p)$, whilst angular brackets $(\cdot)_{\beta}$ denote averaging over the Gaussian orthogonal ($\beta = 1$), unitary ($\beta = 2$), or symplectic ($\beta = 4$) ensemble of random matrices specified by the normal probability density $\propto \exp(-\text{Tr} \mathcal{K}^2)$ on the space $\mathcal{M}_N(\mathbb{F}_\beta)$ of Hermitean $N \times N$ matrices with real ($\mathbb{F}_1 = \mathbb{R}$), complex ($\mathbb{F}_2 = \mathbb{C}$), or quaternion-real ($\mathbb{F}_4 = \mathbb{H}$) entries.

The validity of Eq. (1), summarizing achievements of the early fermionic replica research, is restricted20 to the energy scales in excess of the mean level spacing, $\omega \gg \Delta = 1$. Notably, several attempts8,9 to reproduce the same result from bosonic replicas did not bear fruit. Yet, within the supersymmetry technique10, the same task of computing the density-density correlation function in the RMT setting was accomplished16 in less than a year and with greater rigour. For the Dyson $\beta = 1$ symmetry class (which will be a focus of this Rapid Communication), the truly nonperturbative eigenvalue density-density correlation function reads16,17 ($\omega > 0$):

$$
R_2^{(1)}(\omega) = \delta(\omega) + 1 - \frac{\left(\sin(\pi \omega) \right)^2}{\pi \omega} - \frac{\partial}{\partial \omega} \left(\frac{\sin(\pi \omega)}{\pi \omega} \right) \int_{\omega}^{\infty} dt \frac{\sin(\pi t)}{\pi t}.
$$

(4)

Sadly, heuristic approaches to nonlinear replica σ models have so far failed to produce the result of such generality.

One of the reasons behind this misfortune of replicas is that they are much more quality demanding in making various approximations and, consequently, are more involved operationally-wise. Such a vulnerability can be attributed to the continuous geometry underlying replica field theories. The latter derives from the very idea of constructing replica generating functionals which associates a physical observable of interest with the $n \to 0$ limit of a collective matrix field \mathbf{Q} arising as a result of...
imaginary n-fold replication of original physical system. Since the dimension of \mathcal{Q} is an integer, $\dim(\mathcal{Q}) \propto n$, taking the replica limit becomes quite an adventure8,9,11,13. For instance, the p point Green function

$$ G_p^{(\beta)}(E; N) = \left(\prod_{\alpha=1}^{p} \text{Tr} (E_\alpha - \mathcal{H})^{-1} \right)_{G^{\beta}E_N} $$

(5)

can formally be recovered from the replica limit

$$ G_p^{(\beta)}(E; N) = \lim_{n \to 0} \frac{1}{np} \frac{\partial^p}{\partial E_1 \cdots \partial E_p} \hat{Z}^{(\beta)}_N(E; N), $$

(6)

where $\hat{Z}^{(\beta)}_N(E; N)$ is either fermionic ($n > 0$) or bosonic ($n < 0$) representation of the replica partition function

$$ Z^{(\beta)}_n(E; N) = \left(\prod_{\alpha=1}^{p} \det^N(E_\alpha - \mathcal{H}) \right)_{G^{\beta}E_N}. $$

(7)

The two representations can be derived from Eq. (7) by using standard field-theoretic methods2,8,13. Alternatively, one may appeal to the RMT duality relations18 which yield, e.g., the fermionic replica partition function ($n > 0$) in the form

$$ \hat{Z}^{(\beta, +)}_{|n|}(E; N) \propto e^{(2/\beta) \text{Tr} [E \otimes \mathbb{1}]} \int [D\mathcal{Q}] e^{-(\beta/2) \text{Tr} \mathcal{Q}^2} \times \det^N \mathcal{Q} e^{-2 \text{Tr} [\mathcal{Q} (E \otimes \mathbb{1})]}, $$

(8)

Here, an integral runs over the matrix field $\mathcal{Q} \in \mathcal{M}_{np}(\mathbb{F}_4(\beta))$ of dimension $\dim(\mathcal{Q}) = np$. The bosonic replica partition function ($n < 0$) whose derivation is more intricate and delicate19 also admits a dual matrix representation18,21 akin to Eq. (8).

The necessity of performing a limiting procedure in the matrix dimension [Eqs. (6) and (8)] highlights an unusual continuous geometry of replica field theories; it ruins a classic notion of matrix, raising both conceptual problems regarding mathematical foundations of nonlinear replica σ models and operational problems of dealing with weird objects where the plain intuition often refuses to work.

To avoid running into an underdeveloped concept of spaces of rational dimension22, one first performs replica calculations for an integer number of replicas in a hope to implement the replica limit $n \to 0$ at a later stage after seeking an analytic continuation away from n integers. For such a continuation to be grounded, one should start with an exact integer–n result. The latter had been unavailable in the early replica studies23–25 that heavily relied on existence of a large spectral parameter $\omega/\Delta \gg 1$ required to justify approximate saddle-point calculation of the replica partition function. The above inequality restricted domain of applicability of Eq. (4), while an approximate character of integer–n calculations led to its questioned26 mathematical status.

The status of nonlinear replica σ models was dramatically uplifted in Refs.21–25 where both fermionic and bosonic versions of zero-dimensional replica field theories were shown to be exactly solvable for $\beta = 2$ symmetry class. The theory of Painlevé transcendent20, the Toda lattice27 and associated τ functions28 lied at the heart of the exact approach to replicas in the elaboration23–25. Later, a complementary – supersymmetric – formulation of replicas was introduced by Splittorff and Verbaarschot29. These authors have argued that the replica limit can efficiently be implemented on the level of supersymmetric Toda lattice equation whose positive and negative branches describe fermionic and bosonic partition functions, respectively. Supersymmetric replicas have greatly simplified calculations of $\beta = 2$ spectral correlation functions through a remarkable fermionic–bosonic factorisation29,30.

In this Rapid Communication, we take one more step towards comprehensive understanding of integrable structures of nonlinear replica σ models by presenting an integrable theory of a supersymmetric variation of zero-dimensional replica field theories for $\beta = 1$ symmetry class that so far denied a nonperturbative treatment. Focussing on the Gaussian orthogonal ensemble (GOE) and building on the theory of Pfaff–KP τ functions28, we shall show that supersymmetric replicas do produce a nonperturbative result Eq. (4) for the GOE two-point density-density correlation function.

Density–density correlation function from supersymmetric replicas.—Specifying the GOE by the normal probability density $\propto \exp(-N \text{Tr} \mathcal{H}^2)$ on $\mathcal{M}_N(\mathbb{F}_1)$, we look for a large–$N$ limit of the replica partition function

$$ Z^{(\beta)}_{1}(E_1; E_2; N) $$

where energy variables $E_{1,2}$ are rescaled as described beneath Eq. (4). A somewhat lengthy calculation31 based on the methods described in Refs.21,32,33 shows that both fermionic and bosonic partition functions admit the large–N factorization

$$ \hat{Z}^{(\pm)}_{|n|}(\omega; N) = N^{2n^2} (4e)^{|n|/N} \cdot \hat{z}^{(\pm)}_{|n|}(\omega), $$

(9)

where $\hat{z}^{(+)}_{m}(\omega)$ is the fermionic partition function,

$$ \hat{z}^{(+)}_{m}(\omega) = c^{(+)}_m \prod_{k=1}^{m} \int_{-1}^{1} d\lambda_k (1 - \lambda_k^2) e^{-i\omega \lambda_k} |\Delta^\lambda_{2m}| \times $$

(10)

whilst $\hat{z}^{(-)}_{m}(\omega)$ is the bosonic one,

$$ \hat{z}^{(-)}_{m}(\omega) = c^{(-)}_m \prod_{k=1}^{m} \int_{-1}^{1} \frac{d\lambda_k}{\sqrt{\lambda_k^2 - 1}} e^{i(\pi \omega/2) \lambda_k} |\Delta^\lambda_{2m}|. $$

(11)

Here, $\omega \mapsto \omega + i0$ is assumed to have an infinitesimally small positive imaginary part, $\Delta^\lambda_{2m} = \prod_{j>k} (\lambda_j - \lambda_k)$ is the Vandermonde determinant,

$$ c^{(+)}_m = \frac{(2\pi)^m G(1/2)}{2^{4m^2 m!} G(2m + 3/2)} \prod_{j=1}^{m} \Gamma(2m + 2j) \Gamma(2j), $$

(12)

and

$$ c^{(-)}_m = \pi^m \frac{2^{2m^2} (2m)!}{\prod_{j=1}^{2m} \Gamma^2(j/2)}. $$

(13)
The notation $G(z)$ stands for the Barnes G-function.

In order to recover the two-point density-density correlation function [Eq. (16)] in infinite-dimensional GOE, $R_0(\omega) = (1/2\pi^2) \Re e g(\omega) - 1/2$, through the replica limit for the corresponding two-point Green function

$$ g(\omega) = -\lim_{n \to 0} \frac{1}{n^3} \frac{\partial^2}{\partial \omega^2} z^{(\pm)}_{|n|}(\omega), \quad (14) $$

one has to find a proper nonperturbative representation of either fermionic or bosonic partition functions, or opt for supersymmetric replica29,35 formulation that will be explored below.

Equation (16), whose derivation will be sketched below, is central to implementing the replica limit Eq. (14). Indeed, assuming that Eq. (16) stays valid for n real, we introduce a small--n expansion

$$ \log \hat{z}_n(\omega) = n f_1(\omega) + n^2 f_2(\omega) + O(n^3) \quad (17) $$

and substitute it into Eq. (16) to realize that $f_1'(\omega)$ should be set to zero34 to ensure existence of the limit Eq. (14). Further, we make use of the boundary conditions for $\hat{z}^{(-)}_{|n|}(\omega)$ at $\omega \to \infty$ [see Eq. (11)] to figure out that $f_1'(0) = -i\pi$. Finally, we combine Eqs. (14) and (17) to observe the relation $g'(\omega) = -f''_2(\omega)$ and subsequently derive from Eq. (16):

$$ g'(\omega) = -\frac{2i\pi}{\omega^2} + \pi^2 \omega^2 \hat{z}_1^{(+)}(\omega) \frac{\partial}{\partial \omega} \log \frac{\hat{z}^{(-)}_{|n|}(\omega)}{\hat{z}_1^{(-)}(\omega)}. \quad (18) $$

Hence, the Green function can solely be expressed in terms of replica partition function for one fermionic $[\hat{z}_1^{(+)}(\omega)]$ and one bosonic $[\hat{z}_1^{(-)}(\omega)]$ flavor. Such a factorization property was first observed in Ref.29 in the context of supersymmetric replicas for $\beta = 2$ matrix models.

To complete the evaluation of $R_2(\omega)$, we use Eqs. (10) and (11) to find out

$$ \hat{z}_2^{(+)}(\omega) = -\frac{4}{\pi^2} S'(\omega), \quad (19) $$

$$ \hat{z}_2^{(-)}(\omega) = \frac{i}{2(\pi \omega)} \int_1^\infty dt e^{i(\pi \omega) t}, \quad (20) $$

where $S(\omega) = \sin(\pi \omega)/(\pi \omega)$. Equations (18) – (20) imply

$$ R'_2(\omega) = \frac{1}{\pi \partial \omega} \Re e \left(\frac{i}{\omega + i0} + \frac{\partial}{\partial \omega} \left(S^2(\omega) + S'(\omega) \int_\omega^\infty dt S(t) \right) \right) \quad (21) $$

or, equivalently,

$$ R_2(\omega) - R_2(\infty) = \delta(\omega) - \left(S^2(\omega) + S'(\omega) \int_\omega^\infty dt S(t) \right) \quad (22) $$

Setting $R_2(\infty)$ to unity concludes our replica derivation of the celebrated nonperturbative formula [Eq. (11)] for the two-point density-density correlation function in infinite-dimensional GOE.

Supersymmetric Pfaff–KP equation.—Since the derivation of the supersymmetric Pfaff–KP equation [Eq. (10)] is quite tedious, below we only sketch its main idea leaving the details for a separate publication. We proceed in four steps.

(i)—First, we define the fermionic and the bosonic τ functions given by

$$ \hat{z}_2^{(+)}(s; t) = \frac{1}{m!} \prod_{k=1}^m \int_{-1}^1 d\lambda_k \left(1 - \lambda_k^2 \right) e^{2s\lambda_k + 2V(t; \lambda_k)} |\Delta_{2m}^\lambda|^4, \quad (23) $$

and ($\Re s > 0$)

$$ \hat{z}_2^{(-)}(s; t) = \frac{1}{(2m)!} \prod_{k=1}^{2m} \int_{-1}^1 \frac{d\lambda_k}{\sqrt{\lambda_k^2 - 1}} e^{-s\lambda_k - V(t; \lambda_k)} |\Delta_{2m}^\lambda|, \quad (24) $$

respectively. Here, $s = -i\pi \omega/2$, whilst $V(t; \lambda) = \sum_{j=1}^m t_j \lambda_j$ is a deformation potential parameterized by
ininitely many parameters $t = (t_1, t_2, \ldots)$. To make connection with the supersymmetric replica partition function $\hat{z}_n(\omega)$, we also construct the supersymmetric τ function

$$\hat{\tau}_{2m}(s; t) = \begin{cases} \hat{\tau}_{2m}^{-}(s; t), & m < 0; \\ \hat{\tau}_{2m}^{+}(s; t), & m = 0; \\ \hat{\tau}_{2m}^{+}(s; t), & m > 0 \end{cases}$$

such that the following projection relation holds:

$$\hat{\tau}_{n}(\omega) = \hat{\tau}_{2n}(s = -i\pi\omega/2; 0).$$

Nonlinear differential operators in the l.h.s. of Eqs. (27) and (28) are known as the first and the second Kadomtsev–Petviashvili operators. Equations (27) and (28) are the $\beta = 1$ analogues of supersymmetric Toda Lattice equations previously discovered in the context of $\beta = 2$ replica field theories.

(iii) Third, given the invariance of $\hat{\tau}_{2m}^{(\pm)}$ under the change of integration variables $\lambda_k \mapsto \mu_k + \epsilon(\mu_k^2 - 1)\mu_k^{\pm1}$ in Eqs. (23) and (24), we observe that the supersymmetric τ function Eq. (25) satisfies an infinite set of Virasoro constraints ($q \geq -1$)

$$\left[\hat{\xi}^{(1)}_{q+2}(t) - \hat{\xi}^{(1)}_{q}(t) + s \left(\frac{\partial}{\partial t_{q+3}} - \frac{\partial}{\partial t_{q+1}} \right) \right] - (q + 2) \frac{\partial}{\partial t_{q+2}} \hat{\tau}_{2m}(s; t) = 0,$$

where

$$\hat{\xi}^{(1)}_{q} = \sum_{j=1}^{\infty} j t_j \frac{\partial}{\partial t_{q+j}} + \frac{1}{2} \sum_{j=0}^{q} \frac{\partial^2}{\partial t_{j} \partial t_{q-j}} + \frac{1}{2} (q + 1) \frac{\partial}{\partial t_{q}}$$

is the $\beta = 1$ Virasoro operator. Equation (29) assumes that $\partial/\partial t_1 = \partial/\partial s$; the operator $\partial/\partial t_0$ should be interpreted as $\partial/\partial t_0 = 2m$.

(iv) Fourth, we combine Eq. (29) with the three lowest Virasoro constraints ($q = -1, 0, +1$) to project $[\BKP_1 + (s/2n)\BKP_2] \log \hat{\tau}_{2n}(s; t)$ onto the hyperplane $t = 0$. Lengthy but straightforward calculations yield the sought Pfaff–KP equation for the supersymmetric replica partition function $\hat{z}_n(\omega)$. This completes our derivation of Eq. (16).

\textbf{Conclusions.}—In this Rapid Communication, we have shown how the ideas of integrability can be utilized to formulate a nonperturbative theory of $\beta = 1$ zero-dimensional replicas in their supersymmetric elaboration. Although a particular emphasis was placed onto the GOE random matrices, the formalism outlined is quite general and should equally apply to other random matrix models (including those appearing in various RMT formulations of quantum chromodynamics), for $\beta = 1$ and $\beta = 4$ symmetry classes which are dual to each other.

Yet, we believe that an understanding of formal structures lurking behind zero-dimensional replica σ models that was accumulated during the past decade takes us one step closer to formulating exact replica theories for more realistic matrix models (e.g., random banded matrices) and physical systems. In connection to the latter, we wish to mention a recent breakthrough in rigorous derivation of heuristic replicas devised in the context of one-dimensional disordered polymers. Concerned with the statistics of free energy fluctuations of a directed polymer, the authors of Refs. 35,36 used a Bethe Ansatz solution of a replicated system of attractive bosons to derive a set of Tracy-Widom laws for the free energy distribution. Interestingly, while the formalism developed in Refs. 35,36 is operationally different from ours [see also Refs. 23,25,29], the underlying concept of both approaches — integrability of a corresponding replicated system — appears to be precisely the same. Given this observation, will it be possible to establish a formal correspondence between the two replica frameworks?

This work was supported by the Israel Science Foundation through the grants No 414/08 and No 647/12.

\begin{enumerate}
 \item F. Wegner, Z. Phys. B 35, 207 (1979); L. Schäfer and F. Wegner, Z. Phys. B 38, 113 (1980).
 \item K. B. Efetov, A. I. Larkin, and D. E. Khmelnitskii, Zh.
\end{enumerate}
3. A. M. Finkelstein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov. Phys. JETP 57, 97 (1983)].

4. K. B. Efetov, Zh. Eksp. Teor. Fiz. 82, 872 (1982) [Sov. Phys. JETP 55, 514 (1982)].

5. J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirnbauer, Phys. Rep. 129, 367 (1985).

6. M. Horbach and G. Schön, Physica A 167, 93 (1990); A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999); C. Chamon, A. W. W. Ludwig, and C. Nayak, Phys. Rev. B 60, 2239 (1999).

7. S. F. Edwards and P. W. Anderson, J. Phys. F: Met. Phys. 5, 965 (1975).

8. J. J. M. Verbaarschot and M. R. Zirnbauer, J. Phys. A: Math. and Gen. 17, 1093 (1985).

9. M. R. Zirnbauer, e-print cond-mat/9903338 (1999).

10. M. Talagrand, Spin Glasses: A Challenge for Mathematicians (Berlin: Springer, 2003); M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (Singapur: World Scientific, 1986).

11. E. Kanzieper, in: The Oxford Handbook of Random Matrices (Amsterdam: Elsevier, 2004).

12. A. Kamenev and M. Mézard, J. Phys. A: Math. and Gen. 32, 4373 (1999); I. V. Yurkevich and I. V. Lerner, Phys. Rev. B 60, 3955 (1999).

13. A. Kamenev and M. M. Mézard, Phys. Rev. B 60, 3944 (1999).

14. For $\beta = 2$, the formula Eq. 1 is exact owing to the Duistermaat-Heckman theorem: J. J. Duistermaat and G. Heckman, Inv. Math. 69, 259 (1982); Inv. Math. 72, 153 (1983). See the argument presented in Ref. 2.

15. K. B. Efetov, Zh. Eksp. Teor. Fiz. 83, 833 (1982) [Sov. Phys. JETP 56, 467 (1982)].

16. F. J. Dyson, J. Math. Phys. 3, 166 (1962); Commun. Math. Phys. 19, 235 (1970); M. L. Mehta, Commun. Math. Phys. 20, 245 (1971).

17. P. Desrosiers, Nucl. Phys. B 817 [PM], 224 (2009).

18. M. R. Zirnbauer, in: Encyclopedia of Mathematical Physics, vol. 5, edited by J. P. Françoise, G. L. Naber and S. T. Tsou, p. 151 (Elsevier: Amsterdam, 2006).

19. Y. Fyodorov, Nucl. Phys. B 621, 643 (2002).

20. Y. Fyodorov and J. P. Keating, J. Phys. A: Math. Gen. 36, 4035 (2003).

21. G. Parisi, Bull. Symbolic Logic 9, 181 (2003); F. H. Stillinger, J. Math. Phys. 18, 1224 (1976).

22. E. Kanzieper, Phys. Rev. Lett. 89, 250201 (2002).

23. E. Kanzieper, in: Frontiers in Field Theory, edited by O. Kovras (New York: Nova Science Publishers, 2005).

24. V. Al. Osipov and E. Kanzieper, Phys. Rev. Lett. 99, 050602 (2007).

25. M. Nouni, Painlevé Equations Through Symmetry (Providence: American Mathematical Society, 2004).

26. E. Date, M. Kashiwara, M. Jimbo, and T. Miwa, in: Nonlinear Integrable Systems – Classical Theory and Quantum Theory, edited by M. Jimbo and T. Miwa (Singapore: World Scientific, 1983).

27. M. Adler and P. van Moerbeke, Ann. Math. 153, 149 (2001).

28. K. Splitteroff and J. J. M. Verbaarschot, Phys. Rev. Lett. 90, 041601 (2003); Nucl. Phys. B 683 [FS], 467 (2004).

29. V. Al. Osipov and E. Kanzieper, Ann. Phys. 325, 2251 (2010).

30. P. Vidal and E. Kanzieper, unpublished (2013).

31. M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).

32. M. Adler and P. van Moerbeke, Adv. Math. 181, 190 (2004).

The equation $f''(\omega) = 0$ can independently be derived by making use of two Pfaff-KP equations obtained from Eqs. (27) and (28) after projecting them onto the hyperplane $t = 0$, see Eq. (29).

33. P. Calabrese, P. Le Doussal, and A. Rosso, Europhys. Lett. 90, 20002 (2010); V. Dotsenko, Europhys. Lett. 90, 20003 (2010).

34. P. Calabrese and P. Le Doussal, Phys. Rev. Lett. 106, 250603 (2011); V. Dotsenko, J. Stat. Mech. P11014 (2012).

35. A. Borodin and I. Corwin, arXiv:1111.4498v4 and references therein.

36. T. Guérué and P. Le Doussal, Europhys. Lett. 100, 26006 (2012).

37. M. Kardar, Nucl. Phys. 290, 582 (1987).