Isolation, genotyping and antimicrobial susceptibility of pathogenic Escherichia coli serotypes in ready to eat foods

F. KARADAL, N. ERTAS ONMAZ, H. HIZLISOY, S. AL, N. TELLI, Y. YILDIRIM, Z. GONULALAN

doi: 10.12681/jhvms.21790

Copyright © 2019, F. KARADAL, N. ERTAS ONMAZ, H. HIZLISOY, S. AL, N. TELLI, Y. YILDIRIM, Z. GONULALAN

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0.

To cite this article:

KARADAL, F., ERTAS ONMAZ, N., HIZLISOY, H., AL, S., TELLI, N., YILDIRIM, Y., & GONULALAN, Z. (2019). Isolation, genotyping and antimicrobial susceptibility of pathogenic Escherichia coli serotypes in ready to eat foods. Journal of the Hellenic Veterinary Medical Society, 70(3), 1661–1668. https://doi.org/10.12681/jhvms.21790
Isolation, genotyping and antimicrobial susceptibility of pathogenic *Escherichia coli* serotypes in ready to eat foods

F. Karadal*¹, N. Eertas Onmaz², H. Hizlisoy³, S. AF, N. Telli¹, Y. Yildirim², Z. Gonulalan²

¹Department of Food Processing, Bor Vocational School, Nigde Omer Halisdemir University, Nigde, Turkey
²Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
³Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
⁴University of Selcuk, Vocational School of Technical Sciences, Konya, Turkey

ABSTRACT. In this study, pathogenic *Escherichia coli* serotypes (*E. coli* O157:H7, O26, O111) and their molecular proximity and antimicrobial susceptibility were investigated in RTE foods. A total of 240 samples; consist of 105 stuffed mussel, 56 meatless cig kofte, 54 Russian salad, 25 cheese halva, were analyzed. The conventional culture and serotyping methods for determination of the organisms were performed and further confirmation by PCR was carried out. Confirmed *E. coli* O157 isolates were genotyped by the enterobacterial repetitive intergenic consensus (ERIC)-PCR. Antibacterial susceptibility testing of the isolates was performed by disc diffusion method. *E. coli* was detected in 7 (2.9 %) of 240 samples, including 3 (5.5%) Russian salad, 3 (2.8%) stuffed mussel, 1 (4 %) cheese halva. Two isolates from Russian salad, 1 from stuffed mussel and 1 from cheese halva were identified as *E. coli* O157 . In addition, stuffed mussel isolate was found to carry stx1 and hlyA genes whereas one Russian salad isolate carried the stx1 gene. *E. coli* isolates were found to be resistant to amoxycillin/clavulonic acid, gentamicin and ciprofloxacin, at the rate of 29%, 14% and 29 %, respectively. Only one (14 %) isolate from stuffed mussel was classified as multidrug resistant to three antimicrobials. Furthermore, the isolates, related to O157 and O157:H7, presented different ribotypes in this study. The results provide useful data for the development of public health policy concerning the potential presence of pathogenic antimicrobial resistant *E. coli* serotypes in RTE foods. Strict surveillance of RTE foods at retail points for emerging pathogens, their antimicrobial resistance patterns and the potential likelihood of cross-contamination is required.

Keywords: Antimicrobial susceptibility, cheese halva, ERIC-PCR, meatless cig kofte, Russian salad, EHEC, stuffed mussel.
INTRODUCTION

In recent years, ready to eat (RTE) food consumption has increased because of rapid population growth and the modern lifestyle; longer working hours, increasing women’s participation in the labour market and the change in cooking and eating habits (Tudoran et al., 2012; Oz et al., 2014). RTE foods do not generally require serious pretreatment process and are shelf-stable, delicious, inexpensive and easily accessible to consumers (Spencer, 2005; Jaroni et al., 2010). However, these types of foods present important microbiological risk since they have been implicated as vehicles of food borne microorganisms including Escherichia coli (Ateş et al., 2011; Kochakkhani et al., 2016).

E. coli, a member of Enterobacteriaceae family, is the main inhabitant of human and animal guts. They have been accepted as the indicator microorganisms of contamination with fecal and enteric pathogens (Montville et al., 2012). Although most E. coli strains are nonpathogenic, some are known to be responsible for serious human gastrointestinal diseases, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Virulence factors such as shiga toxins (stx1 and stx2), enterohemolysin (hlA) and intimin (eaeA) play an important role in the pathogenesis of these diseases (Bruyand et al., 2018). Three major surface antigens, O (somatic), H (flagellar) and K (capsule) antigens, are used to serologically to differentiate the E. coli isolates (Montville et al., 2012). Shiga toxin producing E. coli (STEC) strains are the non-O157 strains (O26, O45, O103, O104, O111, O121, O145) and contain O157: H7, the most important serotype (Paton and Paton, 1998; Durso et al., 2005). Although E. coli O157: H7 serogroup is responsible for most cases of STECs in humans, it is reported that non O157 STEC strains are increasingly causing diseases (Montville et al., 2012; Bruyand et al., 2018).

Antimicrobial resistance of E. coli has been traced world-wide in RTE foods (Musgrove et al., 2006; Zhao et al., 2012; Kochakkhani et al., 2016). Studies on antimicrobial resistant E. coli serotypes indicate that increasing antibiotic resistance has become a clinical and public health problem because of complications of treatment of infections caused by E. coli (Karlowsky et al, 2002).

Although there are studies focusing on the presence of E. coli and other pathogens in RTE foods (Bingol et al., 2008; Ateş et al., 2011; Cokal et al., 2012; Taban, 2012; Delikanli et al., 2014; Secim et al., 2017), to our knowledge, this study is the first report concerning the detection and genotyping of pathogenic E. coli serotypes in cheese halva, meatless cig kofte, Russian salad and stuffed mussel in Turkey. Studies on the pathogenic E. coli serotypes in RTE foods need to continue in order to complete food safety requires. For this reason, present study aimed to trace the current condition of toxin-producing E.coli contamination in RTE foods based on their prevalence, antimicrobial resistance and phylogenetic relationship.

MATERIALS AND METHODS

The samples of the study were purchased, weekly from January to March 2018, from supermarkets of Nigde and Kayseri cities of Central Anatolia/Turkey. A total of 240 RTE samples including 105 stuffed mussel, 56 meatless cig kofte, 54 Russian salad and 25 cheese halva from fishmongers, meatless cig kofte stores, grocery stores, restaurants and supermarkets (Table 1) were randomly collected. All samples were taken under aseptic conditions and transferred to the laboratory within 2 hours under the cold chain. Mix of stuffed mussels were removed from the shells before analysed.

Reference strains

E. coli O 157 NCTC 12900 (National Collection of Type Cultures 12900) reference strain was used as a positive control for isolation, identification and detection of virulence factors of E. coli O157: H7.

Table 1. RTE food samples	N	Ingredients	Obtained from
Stuffed mussel	105	Mytilus galloprovincialis meat with mixed of spices, oil, salt and boiled rice in the cockleshells.	Fishmongers, street vendors, cig kofte stores
Meatless cig kofte	56	Bulgur (pounded wheat) mixed with salt, tomato paste, onions, garlic and spices.	Cig kofte stores
Russian salad	54	Boiled peas, carrots and potatoes with cucumber pickles mixed in mayonnaise	Restaurants, supermarkets, grocery stores.
Cheese halva	25	Salt-free fresh cheese is melted and mixed with sugar, flour and semolina on the fire.	Restaurants, supermarkets, grocery stores.
Bacterial isolation

A 25 g of each sample was transferred aseptically to 225 mL Trypticase Soy Broth (mTSB, CM129 Oxoid, UK) containing novobiocin (20 g/ml, SR0181E Oxoid, UK) and incubated at 37 °C for 18-24 h. Then, one loopful of enrichment cultures was inoculated onto Chromocult agar (CHROM agar O157, EE222, DRG International, Paris, France) and sorbitol MacConkey Agar (SMAC Agar-109202; Merck KGaA, Darmstadt, Germany) supplemented with 0.05 mg of cefixime and 2.5 mg of tellurite (CT Supplement 109202, Merck KGaA, Darmstadt, Germany). Plates were incubated at 37 °C for 24 h. After incubation, five suspected \textit{E. coli} and \textit{E. coli} O157 colonies were subcultured to blood agar (Oxoid, CM0271) for conducting confirmatory biochemical tests (indole, methyl red, Voges-Proskauer, citrate, urease, sorbitol fermentation and carbohydrate fermentation tests). Subsequently, they were further processed for serological identification (Chapman and Siddons, 1996; Dontorou et al., 2003).

Serological analysis

All suspected isolates were tested with \textit{E. coli} O157, \textit{E. coli} H7 antiserum (221591, Difco), and \textit{E. coli} O157 latex agglutination kit (DR0620M, Oxoid) according to the manufacturer’s recommendations.

DNA extraction

Total genomic DNA extraction from the isolates was performed using a commercial DNA extraction kit (Oxygen Bioscience, Union City, CA, USA) in accordance with the manufacturer’s instructions.

Confirming \textit{E. coli} isolates

The universal forward primer targeting the 3’ portion of \textit{trpB} which, together with non-specific \textit{trpA} reverse primer (trpA2.r, table 2), yields a 489 bp product from all \textit{E. coli} strains was included in the reaction as an internal control as mentioned by Clermont et al. (2008).

PCR analysis for the detection of \textit{fliC}7, \textit{rfbO111}, \textit{wzx-wzyO26} and \textit{rfbO157} genes

The primer pairs for \textit{fliC}7, \textit{rfbO111}, \textit{wzx-wzyO26} and \textit{rfbO157} genes and the PCR assay conditions were performed in reference to Sarimehmetoglu et al. (2009), (Maurer et al. (1999), Paton and Paton (1998) and Durso et al. (2005), respectively.

| Table 2. Primers and PCR amplification products used in this study |
|-----------------|-----------------|-------------------|-----------------|
| PCR Reaction | Target gene | Primer | Sequence (5′-to 3′) | Size of PCR ampl. (bp) | Reference |
| Internal control| \textit{trpB} | \textit{trpA} | CGGCGATAAAAGACATCTTC | 489 | Clermont et al. (2008) |
| | \textit{trpA} | \textit{trpA2.r} | GCAACGCGCCCTGGCCGAAG | 625 | Sarimehmetoglu et al (2009) |
| H7 | \textit{fliCh7} | FLICH7-F | GCCGTCGTCGAGTTCTATCGAC | 420 | Maurer et al. (1999) |
| LPS O157 | \textit{rfbO157}| PF8 | CGTGTGATGTTGTTTGG | 596 | Durso et al. (2005) |
| O26 | \textit{wzx-wzyO26} | wzx-wzyO26F | AAATTAGAAGCCGCTTCATC | 210 | Fratamico et al. (2000) |
| O111 | \textit{rfbO111}| O111F | TAGAGAAATTATCAAGTTTCTTCC | 406 | Paton and Paton (1998) |
| Shiga-like toxin 1 | \textit{stx1} | SLTI-F | GTGAAATCTGGAAGGTTGGTATACAA | 484 | Fratamico et al. (2000) |
| Shiga-like toxin 2 | \textit{stx2} | SLTI-R | GCTATTCTGAGTCAACGAAAATAC | 397 | Fratamico et al. (2000) |
| Intimin | \textit{eaeA} | AE22 | ATTTTCTTCTCTTCATTACA | 669 | Fratamico et al. (2000) |
| Enterohemolysin | \textit{hlyA} | MFS1-F | ACGATGTTGGTTATTCGGA | 166 | Fratamico et al. (2000) |
Detection of virulence genes \((stx1, stx2, eaeA \text{ and } hlyA)\) by Multiplex PCR

Multiplex PCR (mPCR) targeting virulence genes of \(E.\ coli\) O157: H7, comprising \(stx1, stx2, eaeA\) and \(hlyA\) (Table 2) was carried out in a study conducted by Fratamico et al. (2000).

Electrophoresis of all amplified products was carried out in 1.5\% agarose gel containing 0.06\% ethidium bromide for 50 minutes at 100 V (EC250-90, Thermo, Pittsburgh, Pa., USA) and visualized on a U.V transilluminator (Vilber Lourmat, Marne La Vallee, France).

ERIC-PCR

The ERIC-PCR was carried out on four isolates identified as EHEC. The total 50 µL of PCR mixture prepared including of 1xPCR buffer (Vivantis, Chino, CA, USA), 0.2 Mm dNTP mix (Vivantis), 4 mM MgCl\(_2\) (Vivantis), 5 U Taq polymerase (Vivantis), 25 pmol each primer and 1and 1µL target DNA. ERIC-PCR was performed under the following conditions: initial denaturation at 94 °C for 5 min, 94 °C for 1 min, 25 °C for 1 min, and 72 °C for 2 min (Technne TC-512, Keison Products, Chelmsford, Essex, UK). The amplified product were subjected to electrophoresis at 100 V for 1h on 2 % agarose gel and was monitored by visual inspection under UV light for distinct DNA profiles (Houf et al., 2002). Banding patterns were photographed and analysed by scoring presence (1) or absence (0) of bands for prediction of similarity. Dendrogram was made by construction of a phylogenetic tree using the online software dendrogram construction utility, DendroUPGMA (http://genomes.urv.cat/UPGMA) (Garcia-Vallvé and Puigbo, 2002).

Antimicrobial susceptibility

Antimicrobial susceptibility of all \(E.\ coli\) isolates were tested using disk diffusion methods for Amoxicillin/Clavulanic acid (AMC) (30 µg), Ciprofloxacin (CIP) (5 µg), Gentamicin (GEN) (10 µg), Meropenem (MER) (10 µg) and Trimethoprim/ sulfamethoxazole (STX) (25 µg) according to EUCAST guidelines (European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoint tables v. 8.1; http://www.eucast.org v.8.1, accessed: 12.08.2018).

Table 3. Results for pathogenic \(E.\ coli\) serotypes, their virulence genes from RTE foods

RTE food samples	N	n(%)	rfbO157	fliCh7	rfbO111	wzx-wzyO26	stx1	stx2	hlyA	eaeA
Stuffed mussel	105	3 (2.8%)	1(0.95%)	1(0.95%)	-	-	1(0.95%)	1(0.95%)	-	
Cig kofte	56	-	-	-	-	-	-	-	-	-
Russian salad	54	3 (5.5%)	2 (3.7%)	-	-	-	-	1 (1.85%)	-	-
Cheese halva	25	1 (4%)	1 (4%)	1 (4%)	-	-	-	-	-	-

n: Detected \(E.\ coli\) by trpA gene

Table 4. Antimicrobial susceptibility profiles of \(E.\ coli\) isolates

Antibiotics	Diameter of the inhibition zones of \(E.\ coli\) according to EUCAST, 2018 (mm)	Zone of inhibition (mm) in this study	
Amoxicillin/clavulanic acid (AMC)	19	16 ±0.00 (71\%)	29\%
Ciprofloxacin (CIP)	26	26±0.05 (71\%)	29\%
Gentamicin (GEN)	17	18±0.00 (86\%)	14\%
Meropenem (MER)	22	28±0.00 (100\%)	-
Trimethoprim/ sulfamethoxazole (STX)	14	19±0.00 (100\%)	-

S: Susceptible, R: Resistant
RESULTS

Seven (2.9%) out of 240 RTE samples were found positive as a result of conventional culture methods and were confirmed by PCR. Furthermore, of the 7 E. coli isolates, 2 (3.7%) from Russian salad were identified as E. coli O157 based on PCR and serotyping and 1 (1.85%) of them found to carry stx1 gene. E. coli O157:H7 was detected in 2 (0.83%) out of 240 samples including 1 (0.95%) stuffed mussel and 1 (4%) cheese halva. One isolate from stuffed mussel were found to harbour the stx1 and hlyA genes (As shown in Table 3). However, E. coli O111 and O26 were not detected in any sample.

![Agarose gel electrophoresis of PCR products of pathogenic E. coli isolates and their virulence genes.](image1.png)

The results of antibiotic susceptibility test have been summarized in Table 4. All isolates of E. coli were highly sensitive to MER and STX. Resistance to AMC occurred in 2 (29%) E. coli isolates from stuffed mussel, one of which was multidrug resistant to three antibiotics (AMC, CIP and GEN). Furthermore, stx1 gene carrying E. coli O157 isolate obtained from Russian salad was found to be resistant to CIP.

![Phylogenetic tree of pathogenic E. coli isolates from Russian salad (A and B), stuffed mussel (C), cheese halva (D).](image2.png)

DISCUSSION

The RTE foods, frequently preferred by the consumers in recent years, are pre-cooked or prepared and packaged with a suitable material and often require minimal preparation (Spencer, 2005). Wide range of RTE foods, that can be bought from markets, street vendors, restaurants and stores, may contain a variety of microorganisms, while many of which are harmless, some are dangerous (Elobeid et al. 2014; Jaroni et al., 2008). In this study, pathogenic E. coli serotypes (E. coli O157:H7, O26, O111) was carried out from RTE foods in Central Anatolia region. The content of RTE foods examined in the study are raw and cooked materials, plants, cheese and shellfish with high protein, spices and sauces (Table 1).

Stuffed mussel is a highly consumed traditional shellfish in Turkey. Reported results demonstrated that 3 of 105 (2.85%) stuffed mussel were found to
be positive interns of *E. coli* and one of them was defined as O157 H7 (0.95%) containing *stx*1 and *hlyA* genes. It was found that one *E. coli* strain was resistant to three antibiotics (AMC, CIP and CN); other *E. coli* strain was resistant to only AMC. Studies on the microbiological quality of stuffed mussels in Turkey demonstrated that they may be contaminated with some foodborne pathogens including *E. coli* however no investigation is available on pathogenic *E. coli* serotypes in stuffed mussels samples (Bingol et al., 2008; Hampikyan et al., 2008; Ateş et al., 2011; Kokatepe et al., 2016). Similar to our results Surendraraj et al. (2010) in India also reported 8.3 % of shrimp samples were contaminated with EHEC isolates which were positive for *eaeA, stx* and *hlyA* genes with low incidence of multiple antibiotic resistance. Prakasan et al. (2018) recently reported 33.33% of shellfish samples were contaminated with Shiga toxin-producing *E. coli*. *Mytilus galloprovincialis* is a filter feeding organism which collects pathogenic microorganisms and different harmful residues including heavy metals and agricultural waste, as well as organic materials from the coastal and estuarine environments. In addition, high amino acid content, high pH (approximately 6.55) and high water activity (0.98) of mussels facilitate to colonization and transmission of *E. coli* and other pathogens (Sengor et al., 2004; Gourmelon et al. 2006). However preparation of the stuffed mussels includes cooking period that is high enough to kill most vegetative cells (Kisla ve Uzgun, 2008). According to Kisla ve Uzgun (2008), stuffed mussels were commonly exposed to unsuitable environmental conditions such as soil, dust, insects, flies etc and high ambient temperatures during retail sale for long times. We also collected stuffed mussel samples from fishmongers which was an outside sale under unsuitable environmental conditions. Furthermore, stuffed mussel mix (spices, oil, salt and boiled rice) is stuffed with hand in the cockleshells (Ates et al., 2011). *E. coli* is classified as faecal coliform and presence of this bacteria in the samples may indicate errors and omissions in handling, lack of sanitary practices by foodhandlers and possible cross-contaminations.

In this study, *E. coli* O157:H7 was isolated from only 1 of 25 (4 %) cheese halva samples. According to literature screening, there is no research related to *E. coli* O157:H7 in cheese halva in Turkey. Nevertheless Secim et al. (2017) investigated presence of *E. coli* in cheese halva samples and reported no contamination. The presence of *E. coli* has been investigated in cheese desserts in some studies; Cokal et al. (2012) and Secim et al. (2017) reported that no *E. coli* contamination in Hosmerim desserts. The significance of *E. coli* O157:H7 contamination in milk and cheese samples has previously been reviewed (Zweifel et al., 2010; Lynch et al., 2012). As the cheese halva is a heat-treated dessert, the presence of *E. coli* O157:H7 in cheese halva might have originated from post heating contamination during packaging process or personnel. Although *E. coli* is inactivated by some barrier factors like heat treatment in the processed foods, subsequent cross contamination could be of concern (Wahi et al., 2006).

In the present study, 3 Russian salad samples (5.5%) were found positive for *E. coli*, 2 of which (3.7%) were determined as *E. coli* O157 with *stx*1 gene and CIP resistance was detected in one of them. Russian salad is a mayonnaise based salad. Although mayonnaise is relatively resistant to microbial spoilage due to its low pH, it is known that *E. coli* and pathogenic *E. coli* serotypes have inducible acid resistance mechanisms. A study by Zhao and Doyle (1993) revealed that *E. coli* O157:H7 can survive at 5°C in mayonnaise for several weeks, in case of unsuitable manufacturing practices or any type of cross-contamination (contaminated vegetables in salad, dirty kitchen equipments, food handlers etc) of mayonnaise. In this study, Russian salad samples were bought from restaurants and grocery stores in which ready to eat foods were sold at retail without package. The contamination may be associated with unhygienic ingredients of salad, food handlers, utensils and contact surfaces.

In our study, no *E. coli* or pathogenic *E. coli* serotypes was detected in meatless cig köfte samples. Although meatless cig köfte can serve as a vector for the transmission of some human pathogens (Taban, 2012; Delikanli et al. 2014), no reports are available about the examination of *E. coli* O157:H7 in meatless cig köfte samples. Several studies have demonstrated that garlic, spices and onion which are meatless cig köfte ingredients are able to inhibit pathogenic *E. coli* serotype growth, depending on the concentration, storage time and temperature (Koidis et al., 2000; Kim and Kim, 2007; Rounds et al., 2013).

In this study, one isolate found to carry *stx*1 and one isolate *hly*A gene. These results for detection rates of toxin genes were higher than the study conducted by Cho et al. (2010) which showed absence of the *stx* genes of street-vended foods in Korea. However, Gupta et al. (2012) reported from India the preva-
lence of stx1 and stx2 genes of RTE fish product were 5.55% and 7.4% respectively, higher than our results. The pathogenicity of E. coli serotypes are related to their virulence factors, shiga toxins, enterohemolysin and intimin. Enterohemolysin (encoded by the hlyA gene) causes the lysis of erythrocytes, which provide iron uptake in the intestinal environment (Dontorou 2003). Shiga toxins (Stx 1, 1c, 2, 2c, 2d, 2dact, 2e, 2f) are the primary virulence factor of pathogenic E. coli serotypes which can be defined as the locus enterocyte effacement (LEE) of the adherence system (Obrig 2010). Stx lead to inflammatory and thrombogenic changes in the endothelial cells causing HUS and thrombotic microangiopathy (TMA), especially effects kidneys and other potential organs (Bryuand et al., 2018). E. coli O111 and O26 were not detected in any sample in our study. In contrast, the current results were reported by Hassanin et al. (2014), for RTE meat and chicken products, the rates of O111 and O26 serotypes were between 6.7-33.3%.

Results of this study demonstrated that MER and STX were the most effective agents against E. coli with susceptibility rate of 100%. Recent studies have also been describing STX and MER resistant E. coli isolates (Campos et al., 2013; Rasheed et al. 2014; Lima et al. 2017; Ye et al., 2018) in RTE foods. Of the 7 E. coli isolates examined, we found an overall prevalence of 42% (n=3) isolates showed resistance rate to AMC (29%), CIP (29%) and GEN (14%) (Table 4). This result is in accordance with those reported by Lima et al. (2017) and Baloch et al. (2017) as 13.3% and 17.6% resistance rate respectively. The existence of multidrug resistant strain could create serious threat to the patients because of transferring antimicrobial resistance genes to other pathogens and to humans through food.

The prevalence of pathogenic E. coli serotypes always should be carefully evaluated in RTE foods. To our knowledge, no study concerning the prevalence of pathogenic E. coli serotypes in RTE foods, including the detection of virulence genes, genotyping and antimicrobial susceptibility, has been conducted previously in Turkey. Results of the study would be useful for monitoring of pathogenic, antibiotic resistant E. coli serotypes and for providing information about possible role of RTE foods acting as a vehicle for this pathogen.

CONFLICT OF INTEREST
None declared by the authors.

REFERENCES

Ates M, Ozkizilcik A, Tabakoglu C (2011) Microbiological analysis of stuffed mussels sold in the streets. Indian J Med Microbiol 51(3):350-354.
Baloch AB, Yang H, Feng Y, Xi M, Wu Q, Yang Q, Tang J, He X, Xiao Y, Xia X (2017) Presence and Antimicrobial resistance of Escherichia coli in Ready-to-Eat Foods in Shaanxi, China. J Food Prot 80(3):420-424.
Bingol EB, Colak H, Hampikyan H, Muratoglu K (2008) The microbiological quality of stuffed mussels (Midye Dolma) sold in Istanbul. Brit Food J 110(11):1079-1087.
Bruyand M, Mariani-Kurdjian P, Gouali M, de Valk H, King LA, Hello SL, Bonacorsi S, Loirat C (2018) Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med Mal Infect 48:167-174.
Campos J, Mourao J, Pestana N, Peixe L, Novais C, Antunes P (2013) Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. Int J Food Microbiol, 166 (3), 464–470.
Chapman PA, Wright DJ, Siddons CA (1996) A comparison of immunomagnetic separation and direct culture for the isolation of verocytotoxin-producing Escherichia coli O157 from bovine faeces. J Med Microbiol 40:424-427.
Cho Ji, Cheung CY, Lee SM, Ko S I, Kim K H, Hwang IS, Kim SH, Cho SY, Lim CJ, Lee KH, Ha SD, Kim KS (2011) Assessment of microbial contamination levels of street-vended foods in Korea. J. Food Safety, 31: 41-47.
Clermont O, Lescat M, O’Brien LC, Gordon DM, Tenaillon O, Denamur E (2008) Evidence for a human-specific Escherichia coli clone. Environ Microbiol 10:1000–1006.
Cody SH, Glynn MK, Farrar JA, Cairns KL, Griffin PM, Kobayashi J, et al. (1999) An outbreak of Escherichia coli O157:H7 infection from unpasteurized commercial apple juice. Ann Intern Med 130:202-209
Cokal Y, Dagdelen A, Cenet O, Günsen U (2012) Presence of L. monocytogenes and some bacterial pathogens in two Turkish traditional foods, Mihalic cheese and Hosmerim dessert. Food Contol 26:337-340.
Delikanti B, Sommez B, Ozdemir Y (2014) Microbiological quality of the meat-free cig köfte consumed in Bursa City center. Harran Univ J Fac Vet Med 3(1):13-17.
Dontorou A, Papadopoulou C, Filioussis G, Economou V, Apostolou I, Zakkas G, Salamoura A, Kansozidou A, Levidiotou S (2003) Isolation of Escherichia coli O157:H7 from foods in Greece. Int J Food Microbiol 82: 273-279.
Duro LM Bono JL, Keen JE (2005) Molecular serotyping of Escherichia coli O157:H7 from foods in Greece. Int J Food Microbiol 82: 273-279.
Lima CM, Souza IEGL, Bagi LK, Pepe TA (2000) multiplex polymerase chain reaction assay for rapid detection and identification of *Escherichia coli* O157:H7 in foods and bovine feces. J Food Protect 63:1032-1037.

Gourmelon M, Montet MP, Lozach S, Le Mennec C, Pompempey M, Beutin L, Vernoy, Rozand C (2006) First isolation of Shiga toxin 1d producing *Escherichia coli* variant strains in shellfish from coastal areas in France. J Appl Microbiol 100: 85-97.

Gupta B, Ghatik S, Gill JPS (2013) Incidence and virulence properties of *E. coli* isolated from fresh fish and ready-to-eat fish products. Vet. World 6(1): 5-9.

Hampikyan H, Ulusoy B, Bingöl EB, Çolak H, Akhan M (2008) Determination of microbiological quality of some grilled food, salad and appetizers. Türk Mikrobiyol Soc 38:87-94 (article in Turkish with an abstract in English).

Hassanin FS, Reham A, Amin, Shawky NA, Gomaa WM (2014) Incidence and virulence properties of *E. coli* species from ready to eat food in Benha Veterinary Medical Journal 27(1): 84-91.

Houf KL, De Zutter, Van Hoof J, Vandamme P (2002) Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl Environ Microbiol 68:2172-2178

Jaroni D, Ravishankar S, Juneya V (2010) Chapter 1: Microbiology of ready-to-eat foods. In: Hwang A. and Huang L (Eds), Ready-to-Eat Foods Microbial Concerns and Control Measures. Boca Raton: CRC Press, pp.1-60.

Karlovsky JA, Kelly LJ, Thornsberry C, Jones ME Sahm DF (2002) Trends in antimicrobial resistance among urinary tract infection isolates of *Escherichia coli* from female outpatients in the United States. Antimicrob. Agents Chemother 46: 2540–2545

Kim JS, Kim Y (2007) The inhibitory effect of natural bioactives on the growth of pathogenic bacteria. Nutr Res Pract 1: 273-278

Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME Sahm DF (2002) Trends in antimicrobial resistance among urinary tract infection isolates of *Escherichia coli* from female outpatients in the United States. Antimicrob. Agents Chemother 46: 2540–2545

Kam JS, Kim Y (2007) The inhibitory effect of natural bioactives on the growth of pathogenic bacteria. Nutr Res Pract 1: 273-278

Kisla D, Uzgun Y (2008) Microbiological evaluation of stuffed mussels. J Food Sci 22: 195-202.

Koizumi H (2010) Detection of *Escherichia coli* O157:H7 during manufacture and storage of Indian stuffed mussels (*Mytilus galloprovincialis* L). 6:129 – 152

Kocatepe A, Taslaya G, Turan H Kaya Y (2016) Microbiological investigation of wild, cultivated mussels (*Mytilus galloprovincialis* L. 1819) and stuffed mussels in Sinop Turkey. Ukrakan Food Journal 5 (2):299-305.

Kochakhani H, Dehghan P, Moosavi MH, Sarmadi B (2016) Occurrence, molecular detection and antibiotic resistance profile of *Escherichia coli* O157: H7 isolated from ready-to-eat vegetable salads in Iran. Pharm Sci 22: 195-202.

Lima CM, Souza IEGL, Dos Santos Alves T, Leite CC, Evangelista-Barreto NS, de Castro Almeida RC (2017) Antimicrobial resistance in diarrheagenic *Escherichia coli* from ready-to-eat foods. J Food Sci Technol 54:3612-3619.

Lynch M, O’Connor L, Fox EM, Jordan K, Murphy M (2012) Verocytotoxigenic *Escherichia coli* O157, O111, O26, O103, O145 in Irish dairy cattle and raw milk: prevalence and epidemiology of emergent stains. Zoonoses Public Health 59: 264-271.

Maurer JJ, Schmidt D, Petrosko P, Sanchez S, Bolton L, Lee MD (1999). Development of primers to O-antigen biosynthesis genes for specific detection of *Escherichia coli* O157 by PCR. Appl Environ Microbiol 65: 2954-2960.

Montville TJ, Matthews KR, Kiel KE (2012) Food Microbiology an Introduction, In: Chapter 12, Enterohemorrhagic *Escherichia coli*. Washington, USA: ASM Press, 3rd Edition, p.170-87.

Obrig TG (2010) *Escherichia coli* shiga toxin mechanisms of action in renal disease. Toxins 2: 2769–2794.

Oz V, Karadayi S, Cakan H, Karadayi B, Cevik FE (2014) Assessment of microbiological quality of ready-to-eat foods in Istanbul, Turkey J Food Agric Environ 12:56-60

Paton AW, Paton JC (1998) Detection and characterization of Shiga toxinogenic *Escherichia coli* by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol 36:598–602

Prakasan S, Prabhakar P, Lekshmi M, Nayak BB, Kumar S (2018) Isolation of Shiga toxin-producing *Escherichia coli* harboring variant Shiga toxin genes from seafood. Vet World 11: 379-385.

Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z, Jamil K (2014) Antimicrobial drug resistance in strains of *Escherichia coli* isolated from food sources. Rev Inst Med Trop Sao Paulo 56(4):341–346.

Rounds L, Havens CM, Feinstein Y, Friedman M, Ravishankar S (2013) Concentration-dependent inhibition of *Escherichia coli* O157:H7 and heterocyclic amines in heated ground beef patties by apple and olive extracts, onion powder and clove bud oil. Meat Sci 94(4):461-467.

Rasimhmetoglu B, Aksoy MH, Ayaz ND, Ayaz Y, Kugulu O, Kaplan YZ (2009). Detection of *Escherichia coli* O157:H7 in ground beef using immunomagnetic separation and multiplex PCR. Food Control 20: 357-361.

Secim Y, Ucar G (2017) Evaluation of the desserts; which are husserim, cheese halva, kunafa produced in Turkish cuisine -in aspect of tourism. IJSSER 3(5): 1478-1484

Sengor GF, Kalafatoglu H, Gun H (2004) The determination of microbial flora, water activity and chemical analyses in smoked, canned muslces (*Mytilus galloprovincialis*, L.). Turk J Vet Anim Sci 28: 793-797.

Spencer KC (2005) Chapter 12: Modified atmosphere packaging of ready-to-eat foods. In: Han J.H. (ed) Innovations in food packaging. Elsevier, USA, pp. 185-203.

Surendraraj A, Thampuran N, Joseph TC (2010) Molecular screening, isolation, and characterization of enterohemorrhagic *Escherichia coli* O157:H7 from retail shrimp J Food Protec 73 (1): 97–103.

Taban MB (2012) *Listeria monocytogenes* in cig kofte without meat: A novel bulgur ball product. J Food Agric Environ 10(2): 130-132, Todoran AA, Fischer ARH, van Trijp HCM, Grunert K, Krystallis A, Esbjerg L (2012) Overview of consumer trends in food industry, retailer and consumer acceptance of promising novel technologies and collaborative innovation management, Retailer and Consumer Acceptance of Promising Novel Technologies and Collaborative Innovation Management, Deliverable D2.1 p.8.

Wahi S, Bansal S, Ghosh M, Ganguli A (2006) Growth and survival of *Escherichia coli* O157:H7 in commercial mayonnaise. J Food Prot 69: 780-783

Zhao T, Doyle MP (1993) Fate of Enterohemorrhagic *Escherichia coli* O157:H7 in foods and bovine feces. J Food Protect 63:1032-1037.