Development and evaluation of a technique for in vivo monitoring of 60Co in human lungs

J Q de Mello1, E A Lucena1, A L A Dantas1 and B M Dantas1

Instituto de Radioproteção e Dosimetria-CNEN

E-mail: jquince@bolsista.ird.gov.br, eder@ird.gov.br, adantas@ird.gov.br, bmdantas@ird.gov.br

Abstract: 60Co is a fission product of 235U and represents a risk of internal exposure of workers in nuclear power plants, especially those involved in the maintenance of potentially contaminated parts and equipment. The control of 60Co intake by inhalation can be performed through in vivo monitoring. This work describes the evaluation of a technique through the minimum detectable activity and the corresponding minimum detectable effective doses, based on biokinetic and dosimetric models of 60Co in the human body. The results allow to state that the technique is suitable either for monitoring of occupational exposures or evaluation of accidental intake.

1. Introduction

60Co is a synthetic radioactive isotope with a half-life of 5.27 years, produced artificially in nuclear reactors. Measurable quantities are also produced as a by-product of typical nuclear power plant operation and may be detected externally when leaks occur.

60Co is the result of multiple stages of neutron activation of iron components of the reactor structure. It decays to the stable isotope 60Ni, emitting β particle. The activated nickel nucleus emits two γ rays with energies of 1.17 and 1.33 MeV [1]. Such emissions represent a risk of occupational internal exposure to workers involved in the handling and maintenance of parts and equipment potentially contaminated in nuclear power units.

Internal monitoring procedures aimed to identify and quantify intakes by inhalation can be performed through in-vivo measurements in laboratories so-called whole-body counters. The In-Vivo Monitoring Laboratory of IRD is able to perform this type of measurement using a NaI(Tl)8x4 scintillation detector installed in a heavy shielded room [2].

This work describes the standardization and evaluation of the sensitivity of a technique for the in-vivo measurement of 60Co in human lungs.

2. Materials and Methods

The calibration of the detection system is performed using a LLNL thorax phantom [3] containing a certified 60Co lung phantom. The procedure allows obtaining the calibration factor, which correlates the net count rate in specific regions of interest (ROI) and the activity present in the phantom. This parameter is necessary to calculate the activity content in the lungs of an individual measured in-vivo.
2.1. Determination of the calibration factor

The LLNL thorax containing a pair of lung phantoms with a total of 33574 Bq of 60Co was placed on the monitoring chair located inside the shielded room of the IRD whole-body counter and the NaI(Tl)8x4 detector was positioned horizontally at a distance of 2 cm between the surface of the phantom and the front face of the crystal, as shown in Figure 1.

A series of five counts of 300 seconds was performed at the standard geometry and the spectra saved for subsequent calculations. Figure 2 is a γ spectrum of 60Co showing the two characteristic peaks of 1.17 and 1.33 MeV. Three regions-of-interest (ROI) were defined including a range of channels of [347-408] for the first peak, [414-470] for the second and a third region of [347-470], including both peaks. An additional count of an inert phantom was also performed for the calculation of the net count rate in these regions of interest.

![Figure 1. Calibration setup for the measurement of 60Co in the lungs using NaI(Tl)8x4](image)

![Figure 2. Gama spectrum of 60Co obtained with a NaI(Tl) scintillation Detector](image)

After the series of counts were completed, the calibration factors (CF) in each ROI was calculated. The CF is expressed as the ratio between the average net count rate of the five counts, in cps, and the activity of the phantom, in Bq, as follows:

$$\text{CF}_{\text{cps/Bq}} = \frac{\text{cps}}{A}$$

Where: cps is the net count rate (averaged cps of the phantom subtracted by background count rate) and A (Bq) = 60Co activity content of the lung phantom.

2.2. Evaluation of sensitivity

The evaluation of the sensitivity of the method is based on the calculation of the minimum detectable activity and the corresponding minimum detectable intake and the minimum detectable effective dose, using the biokinetic and dosimetric models of 60Co in human body applied to a realistic internal exposure scenario [4]. The MDA of the method is calculated as follows [5]:

$$\text{MDA} =$$
$$MDA = \frac{4.65\sqrt{N}}{E \times T} + \frac{3}{E \times T}$$

(2)

Where: $N =$ Total counts of the background in 300 seconds; $CF =$ Calibration Factor (cps/Bq) and $T =$ count time.

The Minimum Detectable Intake (MDI), is a function of the MDA and depends on the exposure scenario and time elapsed between intake and the in-vivo measurement. It is calculated as follows:

$$MDI = \frac{MDA}{m(t)_{inh}}$$

(3)

Where: $MDA =$ Minimum Detectable Activity (Bq) and $m(t) =$ Retention fraction for inhalation in the thoracic compartment.

The last parameter to be calculated is the Minimum Detectable Effective Dose. It is based on the MDI and in the dose coefficients associated, $e(g)$, to the corresponding intake scenario adopted in the simulation. It is calculated as follows:

$$MDED_{Bq} = MDI_{inh} \times e(g)_{inh}$$

(4)

Where: $MDI =$ Minimum Detectable Intake (Bq) and $e(g)_{inh} =$ Dose coefficients (mSv/Bq).

The values of “$m(t)$” and “$e(g)$”, used for the calculations of the MDI and the MDED are presented in Table 1. In this work it has been used m(t) values corresponding to 1 day after the intake and the dose coefficient, $e(g)$, corresponding to AMAD of inhaled particles of 1 μm and 5 μm. Such values are available in the Publication 78 of the ICRP [4] and can also be generated for specific exposure scenarios and times through the software AIDE [6].

Table 1. Biokinetic and dosimetric parameters of the 60Co model used for the calculation of the Minimum Detectable Intakes and the Minimum Detectable Effective Doses.

Intake Scenario	Retention fractions in thoracic compartment	Total Retention Fraction in 1 day	Dose Coefficient (mSv/Bq)			
	m(t) (Bq/Bq)					
	Bronchial	Bronchiolar	Alveolar	m(t) (Bq/Bq)		
1 μm/ Type S	6.07x10$^{-4}$	9.33x10$^{-3}$	1.06x10$^{-1}$	1.21x101	2.88x10$^{-3}$	
5 μm / Type S	6.09x10$^{-3}$	5.34x10$^{-3}$	5.28x10$^{-2}$	6.42x10$^{-2}$	1.66x10$^{-5}$	
1 μm / Type M	5.45x10$^{-3}$	8.36x10$^{-3}$	9.48x10$^{-2}$	1.09x10$^{-1}$	9.61x10$^{-6}$	
5 μm / Type M	5.46x10$^{-3}$	4.78x10$^{-3}$	4.73x10$^{-2}$	5.75x10$^{-2}$	7.13x10$^{-6}$	

In order to be considered useful for internal dosimetry purposes, the technique should, at least, be able to detect an activity that would result in an effective dose below 1 mSv per year for the most likely internal exposure scenario [7].

3. Results and discussion
Table 2 presents the count rates, the calibration factors and the MDA for the three ROI. The ROI #3 was elected for subsequent calculations since it has shown to be the most sensitive based on its corresponding MDA.

Table 2. Results of the calibration of the NaI(Tl)8x4 detector for in vivo measurement of 60Co in the lungs, using three regions of interest

Count #	ROI 1	ROI 2	ROI 3
1	167121	142423	313991
2	167309	143071	314674
3	165739	141771	311731
4	166133	142073	312491
5	166269	142602	313139

Mean: 166269 +/- 672, 142423 +/- 498, 313139 +/- 1169

	ROI 1	ROI 2	ROI 3
cps	553 +/- 2	474 +/- 2	1042 +/- 4
CF (cps/Bq)	0.01648 +/- 0.00024	0.01412 +/- 0.00021	0.03104 +/- 0.00045
AMD (Bq)	8.1	7.5	5.7

Table 3 presents the values of MDI and MDED derived from the MDA, considering four possible intake scenarios via inhalation in which it has been assumed AMADs of 1 and 5 μm and solubility classes in lung fluid suggested in ICRP Publication 78 [4] as Type S and Type M.

Table 3. Minimum Detectable Intakes and Minimum Detectable Effective Doses assuming four exposure scenarios.

Scenario	MDI (Bq)	MDED (μSv)
1 μm / Type S	46.95	1.35
5 μm / Type S	88.74	1.47
1 μm / Type M	52.48	50.4
5 μm / Type M	99.06	70.6

The most critical internal exposure scenario in terms of radiological risk to the workers would be the intake via inhalation of a particle with AMAD of 1 μm and solubility class Type S. In this case a higher fraction of the inhaled particles would be deposited in the thoracic region - bronchial (BB), bronchiolar (bb) and alveolar–interstitial (AI) – which is the most radiosensitive, resulting in a higher health risk.

4. Conclusions
Based on the criteria for the evaluation of sensitivity adopted in this work it can be stated that the proposed technique is able to detect an activity of 60Co in the lungs derived from an intake via inhalation that would result in a committed effective dose in the order of microsieverts. Such values are far below the Registry Level suggested by the IAEA and established by the National Regulatory Board. The results obtained in this work allow concluding that the proposed technique is sensitive enough for the control of intakes of 60Co via inhalation. The technique is suitable for in vivo monitoring of workers in nuclear power stations in special tasks performed during reactor maintenance. It can also be useful for the evaluation of accidental intakes.

5. Acknowledgment
The authors would like to thank the support of FINEP /MCTI (Project 01.10.0650.01)

6. Reference
[1] US EPA [http://www.epa.gov/radiation/radionuclides/cobalt.html#wheredoes Radiation Protection: Cobalt. Accessed 30/07/2015
[2] Oliveira CAN, Lourenço MC, Dantas BM, Lucena EA and Laurer GR 1989 “The IRD/CNEN whole body counter: Background and calibration results” Radiat. Prot. Dosm. 29 (3) 203
[3] Spitz, H.B, Glover, S., Liu, N., Smith, B., Hickman, D., Kruchten, D. & Anderson, L 1994 Measurement of the attenuation coefficient for Livermore thoracic phantom lungs fabricated using contemporary materials. Health Phys., v.67, n.1, p.39-46
[4] International Commission On Radiological Protection (ICRP) 1998 Publication 78: Individual Monitoring for Internal Exposure of Workers
[5] Health Physics Society (HPS) 1996 Performance Criteria for Radiobioassay, N13.30
[6] Bertelli, L., Melo, D. R.; Lipsztein, J., Cruz-Suarez, R. 2008 “AIDE – Internal Dosimetry Software”. Radiation Protection Dosimetry 130(3), p. 358-367
[7] International Atomic Energy Agency (IAEA) 1999 Assessment of Occupational Exposure Due to Intakes of Radionuclides – Safety Standards Series, no. RS-G-1.2, IAEA