Effect of Propargylic Substituents on Enantioselectivity and Reactivity in Ruthenium-Catalyzed Propargylic Substitution Reactions: A DFT Study

Ken Sakata,* Yuuri Uehara, Shiona Kohara, Takeshi Yoshikawa, and Yoshiaki Nishibayashi

ABSTRACT: We recently proposed a transition-state model for asymmetric propargylic substitution reactions of propargylic alcohols catalyzed by optically active thiolate-bridged diruthenium complexes [Chem. – Asian J. 2021, 16, 3760–3766]. In the present study, we further examined the effects of propargylic substituents on both enantioselectivity and reactivity in the propargylic substitution reactions via ωB97X-D-level density functional theory (DFT) calculations. When the propargylic alcohol bears a methyl group at the propargylic position, we obtained results that contrast with the result of our previous study on propargylic alcohols without methyl groups. This result indicates that methyl group substitution at the propargylic position reverses the stereoselectivity. Substitution of a trifluoromethyl group for a methyl group was suggested to result in higher enantioselectivity. The obtained results are consistent with the experimental study on enantioselective propargylic phosphinylation reactions reported by our group.

INTRODUCTION

The catalytic asymmetric propargylic substitution reaction of propargylic alcohols or their derivatives is an efficient tool for constructing a stereocenter at the propargylic position. Since Nishibayashi et al. reported the asymmetric propargylic alkylation reaction of propargylic alcohols with acetone in the presence of an optically active thiolate-bridged diruthenium complex (1) (Scheme 1), transition metal- and organocatalyzed enantioselective propargylic substitution reactions have been gradually developed. In our previous study, we examined the reaction of ruthenium–allenylidene complex 3a, which is generated from an optically active thiolate-bridged diruthenium complex [Cp*RuCl(SR*)]2 (Cp*R* = η5-C5Me5, SR* = (R)-SCH(Et)-C6H4Ph2) (1a) and 1-phenylprop-2-yn-1-ol (2a), with prop-1-ene-2-ol, which is the enol isomer of acetone. We used ωB97X-D-level DFT calculations to clarify the origin of the enantioselectivity in the reaction of 2a with acetone catalyzed by 1a or 1b (Scheme 2). By exploring a variety of transition-state structures for the nucleophilic attack of enol on the γ-carbon (Cγ) atom at the ruthenium–allenylidene complex, we revealed that the number of lower-energy structures leading to the major R-product ((R)4a) is larger than that of the structures leading to the minor S-product ((S)4a), which indicates stereoselectivity in the allenylidene moieties.

A variety of nucleophiles, such as N,N-dimethylaniline, furan, indole, 1,5-enyne, and 2-naphthol, were experimentally applied for the enantioselective propargylic substitution reactions catalyzed by 1a or 1b, and the reactions of 2a provided the major products that were obtained by the attack of the nucleophiles from the same direction of the allenylidene.
ligand (A-face attack in Scheme 3). However, our group recently reported the diruthenium-catalyzed reaction between phosphine oxide and propargylic alcohol bearing a trifluoromethyl group at the propargylic position (Scheme 4) and found the major product obtained by the attack of the nucleophile from the different direction (B-face attack in Scheme 3).

Thus, the effects of propargylic substituents on the stereoselectivity and reactivity of propargylic substitution reactions catalyzed by the diruthenium complex 1a are next target of our studies. Based on findings obtained in our previous DFT studies, we, in the present study, examine model propargylic substitution reactions of propargylic alcohols 2b and 2c (R’ = Me and CF₃, respectively, in Scheme 2) catalyzed by diruthenium complex 1a.

RESULTS AND DISCUSSION

Complexes

The ruthenium–allenylidene complex plays an important role as the key intermediate in the diruthenium-catalyzed propargylic substitution reactions. For 3a, six equilibrium structures with weak intramolecular interactions between the terminal phenyl group in the thiolate ligand and the phenyl group in the allenylidene, Iₓ (x = a–f), were observed in our previous calculations, and the difference in free energy between these structures was relatively small (Figure 1).

For 3b, six structures Iₓ₊ (x = a–f) were identified, as was true of 3a (Figures 1 and S1). Structure Iₐ, which has an intramolecular CH/π interaction between the terminal phenyl group of the thiolate ligand and the phenyl group of the allenylidene, corresponds to structure Iₐ observed via X-ray crystallography for 3a (Figure S2 shows the noncovalent interaction (NCI) plot). The distance between the hydrogen atom of the terminal phenyl group of the thiolate ligand and the phenyl ring of the allenylidene is 2.75 Å, which is slightly shorter than that in Iₐ, 2.80 Å (Figure S1). The structure Iₐ₊ has a π−π interaction between the terminal phenyl group of the thiolate ligand and the phenyl group of the allenylidene ligand instead of a CH/π interaction. The distance between two phenyl rings is 3.82 Å, which is also shorter than that of Iₐ, 3.84 Å. These results indicate that the electron-donating methyl group enhances CH/π and π−π interactions. Iₐ₊ is slightly lower in free energy than Iₐ by 1.5 kcal/mol, showing almost the same energy difference as those in 3a (Iₐ is lower than Iₐ by 1.5 kcal/mol; Figure 1). In the Iₐ₊ structure, which corresponds to Iₐ, the methyl group moves away from the terminal phenyl group of the thiolate ligand, while the Cᵢ−H bond in allenylidene interacts with the terminal phenyl group of the thiolate ligand in Iₐ. Thus, the

Scheme 2. Examined Reaction Pathway of Ruthenium–Allenylidene Complex 3, Which Is Generated from 1a and Propargyl Alcohol 2, with Prop-1-ene-2-ol

![Scheme 2](image)

Scheme 3. Definition of the Faces at the Cᵢ Position of the Allenylidene Ligand in the Present Study

In the cases of R’ = H, CH₃, and CF₃, A- and B-faces correspond to Si- and Re-faces, respectively.

Scheme 4. Propargylic Phosphinylation Reaction of Propargylic Alcohol Bearing Trifluoromethyl Groups at the Propargylic Position with Diphenylphosphine Oxide in the Presence of 1a or 1b

![Scheme 4](image)

R’	Reaction	1a	1b
H	82 %, 74 %ee		
Me	89 %, 91 %ee		
energy of I_{Mc} relative to I_{Mb}, 3.2 kcal/mol, is higher than that of I_c relative to I_b, 2.1 kcal/mol. In the I_{Md}, I_{Me}, and I_{Mf} structures, meanwhile, the allenylidene moiety is rotated, and the ortho-C–H bond in the phenyl group of the allenylidene interacts with the chloride ligand, which coordinates to the ruthenium atom different from the atom attached to the allenylidene ligand. The energies of I_{Md} and I_{Me} relative to I_{Mb} are 1.4 and 3.4 kcal/mol, respectively, which are slightly higher than the relative energies of 3a (0.5 and 1.5 kcal/mol), while I_{Mf} has almost the same relative energy as I_{Mb} (0.2 kcal/mol). The CH/π interactions between one of the methyl C–H bonds in the allenylidene ligand and the terminal phenyl group in the thiolate ligand and the interactions between the ortho-C–H bond of the phenyl group in the allenylidene and the chloride ligand were observed in I_{Me} (Figure S2 for the NCI plot; the distance between the hydrogen atom and the terminal phenyl group in the thiolate ligand is 2.55 Å).

For $3c$, seven equilibrium structures I_{Fx} were obtained because two structures corresponding to the structure I_{Mb}, I_{Fb}, and I_{Fb}', were identified (Figures 1 and S1). Among the seven structures, I_{Fb} and I_{Fb}' were found to have lower energies (the energies relative to I_{Fb} are −0.7 and −1.3 kcal/mol, respectively). These structures, in which the trifluoromethyl group is directed to the other side of the chloride ligand, avoid

Figure 1. Structures of ruthenium–allenylidene complexes I_{x}, I_{Mx}, and I_{Fx} for 3a, 3b, and 3c, respectively ($x = a–f$). The relative Gibbs free energies, ΔG^{333K}, are listed (kcal/mol).

Figure 2. Transition-state structures for the reaction of ruthenium–allenylidene complex 3b. The Gibbs free energies relative to TS_{MB5dd} at 333 K, $\Delta \Delta G^{333K}$, are given in parentheses (kcal/mol).

energy of I_{Mc} relative to I_{Mb}, 3.2 kcal/mol, is higher than that of I_c relative to I_b, 2.1 kcal/mol. In the I_{Md}, I_{Me}, and I_{Mf} structures, meanwhile, the allenylidene moiety is rotated, and the ortho-C–H bond in the phenyl group of the allenylidene interacts with the chloride ligand, which coordinates to the ruthenium atom different from the atom attached to the allenylidene ligand. The energies of I_{Md} and I_{Me} relative to I_{Mb} are 1.4 and 3.4 kcal/mol, respectively, which are slightly higher than the relative energies of 3a (0.5 and 1.5 kcal/mol), while I_{Mf} has almost the same relative energy as I_{Mb} (0.2 kcal/mol). The CH/π interactions between one of the methyl C–H bonds in the allenylidene ligand and the terminal phenyl group in the thiolate ligand and the interactions between the ortho-C–H bond of the phenyl group in the allenylidene and the chloride ligand were observed in I_{Me} (Figure S2 for the NCI plot; the distance between the hydrogen atom and the terminal phenyl group in the thiolate ligand is 2.55 Å).

For $3c$, seven equilibrium structures I_{Fx} were obtained because two structures corresponding to the structure I_{Mb}, I_{Fb}, and I_{Fb}', were identified (Figures 1 and S1). Among the seven structures, I_{Fb} and I_{Fb}' were found to have lower energies (the energies relative to I_{Fb} are −0.7 and −1.3 kcal/mol, respectively). These structures, in which the trifluoromethyl group is directed to the other side of the chloride ligand, avoid

Figure 1. Structures of ruthenium–allenylidene complexes I_{x}, I_{Mx}, and I_{Fx} for 3a, 3b, and 3c, respectively ($x = a–f$). The relative Gibbs free energies, ΔG^{333K}, are listed (kcal/mol).

Figure 2. Transition-state structures for the reaction of ruthenium–allenylidene complex 3b. The Gibbs free energies relative to TS_{MB5dd} at 333 K, $\Delta \Delta G^{333K}$, are given in parentheses (kcal/mol).
the repulsive interactions between the fluoride atoms in the trifluoromethyl group and the chloride ligand. In addition, the interactions of the fluoride atom with not only the hydrogen atoms of a pentamethylcyclopentadienyl ligand but also the hydrogen of the ethyl group in the other thiolate ligand were observed (Figure S2). The NCI plot also indicates the CF/π interaction between a C–F bond and the terminal phenyl group of the thiolate ligand in IFC. Thus, a trifluoromethyl group undergoes dispersion interactions with the C–H bond and phenyl group in the surrounding ligands.

These results show that methyl or trifluoromethyl substitution certainly affects the structures of ruthenium–allenylidene complexes, but the effects are relatively small from a free energy point of view. The energy differences between the obtained equilibrium structures are within 3.4 and 2.1 kcal/mol for 3b (IFC––IHC) and 3c (IFC––IFC), respectively (2.1 kcal/mol for 3a). Thus, further examinations of the transition-state structures for the attack of nucleophiles are required to clarify the enantioselectivity in the catalytic substitution reaction.

Transition-State Structures. In our previous study, we explored 56 transition-state structures for the attacks of the enol isomer on 3a and found that the nucleophile attacks from the direction of the chloride ligand to either the A-face (Si-face) or the B-face (Re-face) of the allenylidene moiety. In the A-face attack, two conformations of the terminal phenyl group in the thiolate ligand are possible, while only one conformation leads to the B-face attack. We concluded that the difference leads to the preferential formation of the R-product ((R)4a) over the S-product ((S)4a) in terms of probability distributions (enantiomeric excess was calculated to be 27% ee).

As in the case with 3a, we investigated 56 transition-state structures for attacks of enol to 3b (TS\textsubscript{MANY} and TS\textsubscript{MBANY}) in which enol attacks from A- and B-faces, respectively (n = 1–7; y, z = d or u (showing the direction of the ethyl group in thiolate ligands)); Figures S4–S7. Among the calculated transition-state structures, TS\textsubscript{MB4dd} which corresponds to the B-face attack, has the lowest Gibbs free energy at 333 K (Figure 2). The other transition states corresponding to the B-face attack, TS\textsubscript{MB3dd} and TS\textsubscript{MB4dd} have almost the same free energies (the free energies relative to TS\textsubscript{MB4dd} \(\Delta G^{333 K} \), are 0.2 and 0.5 kcal/mol, respectively.) In contrast, the energies of the transition states where enol attacks from the A-face, TS\textsubscript{MADd} and TS\textsubscript{MADd} are slightly higher in free energies than TS\textsubscript{MB4dd} (\(\Delta G^{333 K} \) are 3.1 and 2.8 kcal/mol, respectively), although TS\textsubscript{MADd} has almost the same free energy (\(\Delta G^{333 K} = 0.1 \) kcal/mol).

The obtained results indicate that the effect of the methyl group in the transition-state structures for the A-face attack is different from that in the structures for the B-face attack. In the transition states for the A-face attack, the methyl group of the allenylidene ligand faces the terminal phenyl group of the thiolate ligand. The structures with conformation H at the terminal phenyl group of the thiolate ligand (Figure 2), TS\textsubscript{MADd} and TS\textsubscript{MADdd} are sterically more inconvenient than the structures with conformation V, TS\textsubscript{MADdd} and TS\textsubscript{MADdd} which increases their relative free energies. In contrast, the steric repulsions caused by the methyl group are relatively smaller in the transition states for the B-face attack because the methyl group is directed in the opposite direction of the terminal phenyl group of the thiolate ligand. Moreover, the dispersion interactions between the phenyl group in the allenylidene and the terminal phenyl group of the thiolate ligand increase slightly upon the introduction of the methyl group. Thus, the methyl moiety located away from the terminal phenyl group of the thiolate ligand lowers the relative energies of these structures compared with those in the transition states corresponding to the A-face attack (Table 1).

Among the transition-state structures with lower free energies, the structures that provide the S-product ((S)4b) through the B-face attack (TS\textsubscript{MB4dd} and TS\textsubscript{MB4dd}) are larger in number than those providing the R-product ((R)4b) through the A-face attack (TS\textsubscript{MADdd}). Thus, (S)4b is preferentially formed over (R)4b based on the probability distributions (Table 1), and the enantiomeric excess is estimated to be 40% ee. This result is in contrast with our previous results that the number of lower-energy structures leading to the R-product ((R)4a) is larger than that of the structures leading to the S-product ((S)4a) in the case of the reaction of 3a. This result suggests that the substitution of a methyl group for a propargylic hydrogen atom in propargylic alcohol makes the stereoselectivity inverse.

We further calculated transition-state structures for the attack of enol to 3c (TS\textsubscript{FANY} for structures giving the S-product through the A-face attack and TS\textsubscript{FMBany} for structures giving the R-product through the B-face attack; Figures S4, S8, S9, and S10). Among the structures, TS\textsubscript{FB4dd} has the lowest free energy, and the structure having the second lowest energy, TS\textsubscript{FB3dd} is higher in energy than TS\textsubscript{FB4dd} by 2.0 kcal/mol (Table 1). Compared to the corresponding transition states TS\textsubscript{B4dd} and TS\textsubscript{B4dd}, the location of enol in TS\textsubscript{B4dd} slips slightly from the direction of the chloride ligand to that of the other terminal phenyl group in the thiolate ligand, and the fluoride atom at the trifluoromethyl group interacts with the C(sp\(^3\))–H bond of the terminal phenyl group in the thiolate.

Table 1. Relative Gibbs Free Energy \(\Delta G^{333 K} \) and Boltzmann Distribution for Lower-Energy Transition State Structures

x	\(\Delta G^{333 K} \) (kcal/mol)	exp \(\Delta G^{333 K} \)	\(\Delta G^{333 K} \) (kcal/mol)	exp \(\Delta G^{333 K} \)	\(\Delta G^{333 K} \) (kcal/mol)	exp \(\Delta G^{333 K} \)
B5dd	–0.03	1.049	0.0	1.000	2.4	0.025
A3dd	0.0	1.000	0.1	0.840	3.8	0.003
A2dd	0.5	0.506	3.1	0.010	3.0	0.010
A4dd	0.9	0.251	2.8	0.015	6.1	0.000
A5dd	1.6	0.087	2.0	0.052	4.9	0.001
A3du	1.9	0.060	3.6	0.004	9.0	0.000
B3dd	2.0	0.045	0.2	0.725	2.0	0.046
B4dd	4.2	0.002	0.5	0.465	0.0	1.000

\(^a \text{TS}_{\text{ANY}} \) and \(^b \text{TS}_{\text{MB}} \) correspond to \(^b \text{TS}_{\text{ANY}} \) and \(^b \text{TS}_{\text{MB}} \) respectively, in ref 6. \(^b R \) is the gas constant.
Effects of Substituents on Reactivities. Finally, we examined the effects of substituents on the electrophilicity of the C\textsubscript{γ} atom in ruthenium–allenylidene complexes 3b and 3c. In the reaction of 3a, the energy of TS\textsubscript{A3dd} relative to (Ib + acetone), ΔG333K, was reported to be 26.7 kcal/mol (Figure 4a). \(^6\) The corresponding relative energies of TS\textsubscript{MB94dd} and TS\textsubscript{FB4dd} were 35.5 and 31.5 kcal/mol, respectively, which are much higher than that of TS\textsubscript{A3dd} (Figure 4b,c). \(^{15}\) Although the LUMO of I\textsubscript{Fe} had the lowest energy level among three ruthenium–allenylidene complexes (−3.93, −3.80, and −4.21 eV for I\textsubscript{Fe}, I\textsubscript{Mb}, and I\textsubscript{Fe} respectively; Figure 5), the population of the C\textsubscript{γ} atom in the LUMO of I\textsubscript{Fe} was the smallest because of the polarization of π-orbitals in the allenylidene moiety caused by the electronegative trifluoromethyl group (0.320, 0.322 and 0.290 for I\textsubscript{Fe}, I\textsubscript{Mb}, and I\textsubscript{Fe} respectively). \(^{17}\) These two factors determine the order in electrophilicity of the C\textsubscript{γ} atom. \(^{20}\)

CONCLUSIONS

Based on our previous research on the transition-state model for the asymmetric propargylic substitution reactions catalyzed by optically active thiolate-bridged diruthenium complexes, we examined the effects of propargylic substituent (methyl or trifluoromethyl group) on both the enantioselectivity and reactivity of the reactions via ωB97X-D-level DFT calculations. Calculations showed that methyl or trifluoromethyl substitution affected the structures of ruthenium–allenylidene complexes, but the effects were found to be relatively small from a free energy point of view. Thus, transition-state structures for the attack of nucleophiles were explored. In the case of propargylic alcohol bearing a methyl group at the propargylic position, the number of lower-energy structures through the B-face attack was larger than that of the structures through the A-face attack. This result contrasts with the results of our previous work, which studied reactions of a propargylic alcohol without a methyl group, indicating that the methyl group substitution at the propargylic position reverses the enantioselectivity. In the case of trifluoromethyl group substitution, the specific transition-state structure for the B-face attack was found to be much lower in free energy than other structures because of the interactions of fluoride atoms with C–H bonds of other ligands. The evidence suggested that the substitution of a trifluoromethyl group for a methyl group at the propargylic position results in higher enantioselectivity. However, methyl or trifluoromethyl substitution was found to make the electrophilicity of the C\textsubscript{γ} atom in ruthenium–allenylidene complexes lower.

COMPUTATIONAL DETAILS

DFT calculations were carried out with the Gaussian 09\(^{22}\) program package. Geometry optimization and analytical vibrational frequency analysis were performed via the restricted Kohn–Sham DFT using the long-range corrected (LC) hybrid density functional with empirical dispersion corrections (ωB97X-D).\(^{23,24}\) In the numerical integration, a larger grid (superfinegrid) was used. \(^{25}\) Pople’s 6-31G(d) basis set was used for the H, C, N, O, F, S, and Cl atoms,\(^{26}\) and the SDD basis set with the effective core potential was used for the Ru atom\(^{27}\) for the Gaussian basis functions (6d type polarization functions). The solvent effects of acetone were estimated by the polarizable continuum model with integral equation formalism (IEF-PCM)\(^{27}\) for the gas-phase optimized structures. For the IEF-PCM calculations, the SDD basis set was used for the Ru ligand (the distances between the hydrogen atom and the fluoride atom are 2.66 and 2.71 Å, respectively, shown in Figure 3a). The other fluoride atom also interacts with not only the hydrogen atom of the ethyl group at the other thiolate ligand (the distance between the hydrogen atom and the fluoride atom is 2.56 Å) but also the hydrogen atoms of the pentamethycyclopentadienyl ligand (the distance between the hydrogen atoms and the fluoride atom is 2.75 and 2.79 Å). These interactions and the π–π interactions lower the free energy of the transition state compared to those of other structures (Figure 3b for NCI plot). As a result, the B-face attack leading to the R-product ([R]4c) is favorable compared to the A-face attack leading to the S-product ([S]4c), as is the case for the attack of enol on 3b, and the enantiomeric excess was estimated to increase (97% ee). This result indicates that replacing the methyl group at the propargylic position with a trifluoromethyl group leads to a higher enantioselectivity. This result is consistent with the recent experimental results of asymmetric propargylic phosphinylation reactions between propargylic alcohol bearing a trifluoromethyl group at the propargylic position and diphenylphosphine oxide catalyzed by 1a or 1b, where phosphorous acid, a tautomer of phosphine oxide, has been supposed to be a nucleophile (Scheme 4).\(^7\) The computational and experimental results suggest that not the nucleophile but the substituent at the propargylic position of propargylic alcohols controls the enantioselectivity of diruthenium-catalyzed propargylic substitution reactions.

Figure 3. (a) Transition-state structure TS\textsubscript{FB4dd}. The distances are given in Å. (b) NCI plot around the terminal phenyl group in TS\textsubscript{FB4dd}. Green surfaces show van der Waals interactions.
atom and the 6-311++G(d,p) basis set (5d-type polarization functions) was used for other atoms. The Gibbs free energy at 333 K was estimated by the IEF-PCM energy and the gas-phase thermal value (ωB97X-D(IEF-PCM)/(SDD,6-311++G(d,p))/ωB97X-D/(SDD,6-31G(d))). The method used in the present study was the same as that used in our previous study.6

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c04645.

Tables listing the energies and geometries and figures containing structures (PDF)

AUTHOR INFORMATION

Corresponding Author

Ken Sakata — Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan; orcid.org/0000-0002-6920-0735; Email: ken.sakata@phar.toho-u.ac.jp

Authors

Yuuri Uehara — Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan

Shiona Kohara — Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan

Takeshi Yoshikawa — Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan; orcid.org/0000-0002-7489-5252

Figure 4. Relative Gibbs free energy diagrams, ΔG^{333K}, for the reaction pathways via (a) TS_{A3dd}, (b) TS_{MB5dd}, and (c) TS_{FB4dd} at the ωB97X-D(IEF-PCM)/(SDD,6-311++G(d,p))/ωB97X-D/(SDD,6-31G(d)) level of theory (kcal/mol). Reaction pathway (a) was reported in ref 6.17

Figure 5. LUMOs of ruthenium–allenylidene complexes I_B, I_Mb, and I_Fe. The population of the C_γ atom in the LUMO is shown in parentheses.

ACS Omega 2022, 7, 36634−36642
Yoshiaki Nishibayashi – Department of Applied Chemistry,
School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; orcid.org/0000-0001-9739-9588

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c04645

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific Research (Nos. JP20H05671 and 20K05532) from JSPS. The computation was performed using the Research Center for Computational Science, Okazaki, Japan (Project: 22-IMS-C053).

■ REFERENCES

(1) (a) Nishibayashi, Y. Development of asymmetric propargylic substitution reactions using transition metal catalysts. Chem. Lett. 2021, 50, 1282–1288. (b) Tsuji, H.; Kawatsuma, M. Transition-metal-catalyzed propargylic substitution of propargylic alcohol derivatives bearing an internal alkyne group. Asian J. Org. Chem. 2020, 9, 1924–1941. (c) Zhang, D.-Y.; Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 2015, 56, 283–295. (d) Nishibayashi, Y. Transition-metal-catalyzed enantioselective propargylic substitution reactions of propargylic alcohol derivatives with nucloephiles. Synthesis 2012, 2012, 489–503. (e) Ding, C.-H.; Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 2011, 111, 1914–1937. (f) Detz, R. J.; Hiemstra, H.; van Maarseveen, J. H. Catalyzed propargylic substitution. Eur. J. Org. Chem. 2009, 2009, 6263–6276. (g) Ljungdahl, N.; Kann, N. Transition-metal-catalyzed propargylic substitution. Angew. Chem., Int. Ed. 2009, 48, 642–644. (2) Inada, Y.; Nishibayashi, Y.; Uemura, S. Ruthenium-catalyzed asymmetric propargylic substitution reactions of propargylic alcohols with acetone. Angew. Chem., Int. Ed. 2005, 44, 7715–7717. (3) (a) Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y. Ruthenium-catalyzed enantioselective propargylation of aromatic compounds with propargylic alcohols via allenylidene intermediates. Angew. Chem., Int. Ed. 2007, 46, 6488–6491. (b) Smith, S. W.; Fu, G. C. Nickel-catalyzed asymmetric cross-couplings of racemic propargylic halides with arylic reagents. J. Am. Chem. Soc. 2008, 130, 12645–12647. (c) Fukumizu, K.; Miyake, Y.; Nishibayashi, Y. Ruthenium-catalyzed enantioselective carbon–carbon bond forming reaction via allenylidene–ene process: synthesis of chiral hydroxyalkenes. Org. Lett. 2011, 13, 3448–3451. (d) Lia, Z.-Z.; Hou, X.-L.; Zhang, Y.; Hu, X.-H.; Gong, L.-Z. N-Heterocyclic carbene/copper cooperative catalysis: synergistic catalysis. Angew. Chem., Int. Ed. 2011, 50, 2041–2044. (e) Gómez, J. E.; Guo, W.; Gaspa, S.; Kleij, A. Copper-catalyzed synthesis of γ-amino acids featuring quaternary stereocenters. Angew. Chem., Int. Ed. 2017, 56, 15035–15038. (f) Shemet, A.; Carreira, E. M. Total synthesis of (+)-rhazinilam and formal synthesis of (+)-aporphine and (+)-aporphine: asymmetric copper-catalyzed propargylic substitution. Org. Lett. 2017, 19, 5529–5532. (4) (a) Ota, Y.; Kondo, A.; Terada, M. Enantioselective intramolecular Nicholas reaction catalyzed by chiral phosphoric acid: enantioconvergent synthesis of seven-membered cyclic ethers from racemic diols. Angew. Chem., Int. Ed. 2018, 57, 13917–13921. (b) Fu, Z.; Deng, N.; Su, S.-N.; Li, H.; Li, R.-Z.; Zhang, X.; Liu, J.; Niu, D. Diastereo- and enantioselective propargylation of SH-thiazol-4-ones and SH-oxazol-4-ones as enabled by Cu/Zn and Cu/Ti catalysis. Angew. Chem., Int. Ed. 2018, 57, 15217–15221. (c) Watanabe, K.; Miyazaki, Y.; Okubo, M.; Zhou, B.; Tsuji, H.; Kawatsuma, M. Nickel-catalyzed asymmetric propargylic amiation of propargyl carbonates bearing an internal alkyne group. Org. Lett. 2018, 20, 5448–5451. (d) Gómez, J. E.; Cristófol, A.; Kleij, A. W. Copper-catalyzed enantioselective construction of tertiar propargylic sulfones. Angew. Chem., Int. Ed. 2019, 58, 3903–3907. (e) Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J. Asymmetric propargylic radical cyanation enabled by dual photogenerordex and copper catalyst. J. Am. Chem. Soc. 2019, 141, 6167–6172. (f) Zhang, Z.-G.; Li, H.; Geng, R.-L.; Song, J.; Chen, X.-H.; Gong, L.-Z. N-Heterocyclic carbene/copper cooperative catalysis for the asymmetric synthesis of spiropinoxides. Angew. Chem., Int. Ed. 2019, 58, 12190–12194. (g) Gao, X.; Chen, R.; Xiao, Y.-L.; Wan, X.-L.; Zhang, X. Copper-catalyzed highly enantioselective difluorokylation of secondary propargyl sulfonates with difluorooxenes. Chem. 2019, 5, 2987–2999. (h) Liu, S.; Nakajima, K.;
Nishibayashi, Y. Copper-catalysed enantioselective intramolecular etherification of propargylic esters: synthetic approach to chiral isocoumarins. RSC Adv. 2019, 9, 18918–18922. (i) Peng, L.; He, Z.; Xu, X.; Guo, C. Cooperative Ni/Cu-catalyzed asymmetric propargylic alkylation of aldimine esters. Angew. Chem., Int. Ed. 2020, 59, 14270–14274. (j) Li, R.-Z.; Liu, D.-Q.; Niu, D. Asymmetric O-propargylation of secondary aliphatic amines. Nat. Catal. 2020, 3, 672–680. (k) Huo, H.; Gorsline, B. J.; Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 2020, 367, 559–564. (l) Chang, X.; Zhang, J.; Peng, L.; Guo, C. Collective synthesis of acetylenic pharmaceuticals via enantioselective Nickel/ Lewis acid-catalyzed propargylic alkylation. Nat. Commun. 2021, 12, No. 299. (m) Tsuji, H.; Shimizu, Y.; Miyazaki, Y.; Kawatsura, M. Nickel-catalyzed asymmetric propargylic amination of propargyl carbonates with aniline derivatives. Chem. Lett. 2020, 50, 1002–1005.

(5) a) Saha, S.; Schneider, C. Directing group assisted nucleophilic substitution of propargylic alcohols via o-quinone methide intermediates: Brønsted acid catalyzed, highly enantio- and diastereoselective synthesis of 7-alkynyl-12a-acetamido-substituted benzoanthenes. Org. Lett. 2015, 17, 648–651. (b) Chen, M.; Sun, J. How understanding the role of an additive can lead to an improved synthetic protocol without an additive: organocatalytic synthesis of chiral diarylmethyl alkenes. Angew. Chem., Int. Ed. 2017, 56, 11966–11970. (c) Wendlandt, A. E.; Vangal, P.; Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic S$_2$1 reaction. Nature 2018, 556, 447–451. (d) Bai, J.-F.; Yasumoto, K.; Kano, T.; Maruoka, K. Asymmetric synthesis of chiral 1,4-enynes through organocatalytic alkenylation of propargyl alcohols with trialkenyboroxines. Angew. Chem., Int. Ed. 2019, 58, 8898–8901. (e) Kikuchi, J.; Takano, K.; Ota, Y.; Umemiya, S.; Terada, M. Chiral Brønsted acid catalyzed asymmetric propargylic substitution reaction of racemic secondary propargylic alcohols with thiols. Chem. – Eur. J. 2020, 26, 11112–11128. (f) Ma, Y.; Liu, X.; Mao, Y.; Huang, J.; Ma, S.; Liu, L. Redox deracemization of diarylmethyl alkynes. Org. Chem. Front. 2020, 7, 2526–2530. (g) Li, F.; Chen, X.; Liang, S.; Shi, Z.; Li, P.; Li, W. Organocatalytic site- and stereoselective 1,6-additions of N-aryl-3-oxobutanamides to propargyl aza-allenes. Org. Chem. Front. 2020, 7, 3446–3451.

(6) Sakata, K.; Goto, Y.; Yoshikawa, T.; Nishibayashi, Y. Enantioselectivity in ruthenium-catalyzed propargylic substitution reactions of propargyl alcohols with acetone: a DFT study. Chem. – Asian J. 2021, 16, 3760–3766.

(7) Liu, S.; Tanabe, S.; Kuriyama, S.; Sakata, K.; Nishibayashi, Y. Ruthenium-catalyzed enantioselective propargylic phosphorylation of propargyl alcohols with phosphoryl oxides. Angew. Chem., Int. Ed. 2021, 60, 11231–11236.

(8) Sakata, K.; Miyake, Y.; Nishibayashi, Y. A DFT study on the reaction pathways for carbon–carbon bond-forming reactions between propargyl alcohols and alkenes or ketones catalyzed by thiolate-bridged diruthenium complexes. Chem. – Asian J. 2009, 4, 81–88.

(9) a) Nishibayashi, Y.; Milton, M. D.; Inada, Y.; Yoshikawa, M.; Wakiijii, I.; Hidai, M.; Uemura, S. Ruthenium-catalyzed propargylic substitution reactions of propargyl alcohols with oxygen-, nitrogen-, and phosphorus-centered nucleophiles. Chem. – Eur. J. 2005, 11, 1433–1451. (b) Miyake, Y.; Uemura, S.; Nishibayashi, Y. Catalytic propargylic substitution reactions. ChemCatChem 2009, 1, 342–356. (10) a) Ammal, S. C.; Yoshikai, N.; Inada, Y.; Nishibayashi, Y.; Nakamura, E. Synergistic dinuclear effects in propargylic substitution reaction catalyzed by thiolate-bridged diruthenium complex. J. Am. Chem. Soc. 2005, 127, 9428–9438. (b) Sakata, K.; Nishibayashi, Y. Mechanism and reactivity of catalytic propargylic substitution reactions via metal–alleneidene intermediates: a theoretical perspective. Catal. Sci. Technol. 2018, 8, 12–25.

(11) a) Conteras-Garcia, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D. N.; Yang, W. NCIPLOT4: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. (b) Boto, R. A.; Peccati, F.; Laplaza, R.; Quan, C.; Carbone, A.; Piquemal, J.-P.; Maday, Y.; Conteras-Garcia, J. NCIPLOT4: fast, robust, and quantitative analysis of noncovalent interactions. J. Chem. Theory Comput. 2020, 16, 4150–4158.

(12) The examination for the model substitution reaction of the hydrogen atom for the terminal phenyl group in the ruthenium-allenyldene complex fixed with the structures indicates that the interactions between the allenylidene complex and the terminal phenyl group of the thiolate ligand in I_{3m} and I_{6b} are slightly larger than those in I_{3} and I_{6} respectively. See Figure S3.

(13) For the complexation energy which consists of two energy terms, the destabilization caused by the deformation of two fragments (DEF), i.e., the cationic diruthenium complex and allenylidene ligand, and the stabilization by the interaction between the two fragments (INT), see Table S3.

(14) In I_{3m} and I_{3}, the trifluoromethyl group is directed to the chloride ligand. Thus, the trifluoromethyl group intends to keep away from the chloride ligand. The direction away from the chloride ligand in I_{3} is different from that in I_{3m}.
(25) Hehre, W. J.; Radom, L.; Schleyer, P. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.

(26) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted *ab initio* pseudopotentials for the first row transition elements. *J. Chem. Phys.* 1987, 86, 866−872.

(27) (a) Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utiliziaon of ab initio molecular potentials for the previson of solvent effects. *Chem. Phys.* 1981, 55, 117−129. (b) Scalmani, G.; Frisch, M. Continuous surface charge polarizable continuum models of solvation. I. General formalism. *J. Chem. Phys.* 2010, 132, No. 114110.