THE FLEX DIVISOR OF A K3 SURFACE

VALERY ALEXEEV AND PHILIP ENGEL

ABSTRACT. The flex divisor R_{flex} of a primitively polarized K3 surface (X, L) is, generically, the set of all points $x \in X$ for which there exists a pencil $V \subset |L|$ whose base locus is $\{x\}$. We show that if $L^2 = 2d$ then $R_{\text{flex}} \in |n_dL|$ with

$$n_d = \frac{(2d)!((2d+1)!)}{d^2(d+1)!^2} = (2d+1)C(d)^2,$$

where $C(d)$ is the Catalan number. We also show that there is a well-defined notion of flex divisor over the whole moduli space F_{2d} of polarized K3 surfaces.

1. Introduction

Let (X, L) be a primitively polarized K3 surface of degree $2d$. Recent work of the authors on compactification of the moduli space F_{2d} of such surfaces has highlighted the importance of a canonical choice of polarizing divisor: An algebraically varying choice of divisor $R \in |nL|$ on the generic polarized K3 surface. If this choice of divisor extends over all of F_{2d} then it gives rise to a modular compactification

$$F_{2d} \hookrightarrow \overline{F}_{2d}^R.$$

The compactification is constructed by taking the closure of the space of pairs $(X, \epsilon R)$ in the moduli space of stable slc pairs, for some small $\epsilon > 0$.

By the main theorem of [AE21], the normalization of \overline{F}_{2d}^R is semitoroidal whenever R satisfies a property called recognizability. Thus, the search for modular toroidal compactifications of F_{2d} is intimately related to finding canonical choices of polarizing divisor, and verifying that those choices are recognizable.

One infinite series of divisors, ranging over all degrees $2d$, is the rational curve divisor. On a generic F_{2d} it can be concretely thought of as the set of points $x \in X \subset \mathbb{P}^g$ for which there exists a flex space: A codimension 2 linear subspace of \mathbb{P}^g intersecting X at only the point x.

Claire Voisin suggested to the authors a second series of divisors, which we call here the flex divisor R_{flex}. It was first considered by Welters [Wel81] for a quartic K3 surface, who called it the curve of hyperflexes. On the generic (X, L) it is defined as the set of all points $x \in X$ for which there exists a pencil $V \in |L|$ whose set-theoretic base locus is $\{x\}$. When $|L|$ defines an embedding $X \hookrightarrow \mathbb{P}^g$ with $g = d + 1$, which is the case for generic $(X, L) \in F_{2d}$ when $d \geq 2$, the flex divisor can be concretely thought of as the set of points $x \in X \subset \mathbb{P}^g$ for which there exists a flex space: A codimension 2 linear subspace of \mathbb{P}^g intersecting X at only the point x.

Claire Voisin suggested to the authors a second series of divisors, which we call here the flex divisor R_{flex}. It was first considered by Welters [Wel81] for a quartic K3 surface, who called it the curve of hyperflexes. On the generic (X, L) it is defined as the set of all points $x \in X$ for which there exists a pencil $V \in |L|$ whose set-theoretic base locus is $\{x\}$. When $|L|$ defines an embedding $X \hookrightarrow \mathbb{P}^g$ with $g = d + 1$, which is the case for generic $(X, L) \in F_{2d}$ when $d \geq 2$, the flex divisor can be concretely thought of as the set of points $x \in X \subset \mathbb{P}^g$ for which there exists a flex space: A codimension 2 linear subspace of \mathbb{P}^g intersecting X at only the point x.

Claire Voisin suggested to the authors a second series of divisors, which we call here the flex divisor R_{flex}. It was first considered by Welters [Wel81] for a quartic K3 surface, who called it the curve of hyperflexes. On the generic (X, L) it is defined as the set of all points $x \in X$ for which there exists a pencil $V \in |L|$ whose set-theoretic base locus is $\{x\}$. When $|L|$ defines an embedding $X \hookrightarrow \mathbb{P}^g$ with $g = d + 1$, which is the case for generic $(X, L) \in F_{2d}$ when $d \geq 2$, the flex divisor can be concretely thought of as the set of points $x \in X \subset \mathbb{P}^g$ for which there exists a flex space: A codimension 2 linear subspace of \mathbb{P}^g intersecting X at only the point x.
Our first result hints towards a positive answer on the question of whether R_{flex} is recognizable. Concretely, we show:

Theorem 1.1. There is a canonical choice of divisor R_{flex} varying algebraically over all of \mathbb{F}_{2^d} and giving the flex divisor on the generic K3 surface (X, L).

The theorem is not obvious, because it is not clear if the flex points form a subvariety of X of the expected dimension, which is one. Additionally, the flex divisor may have multiple components and one must determine their multiplicities. Perhaps most importantly, sometimes points in R_{flex} as in Theorem 1.1 are not flex under the naive definition! This occurs on a quartic surface containing a line—the points on the line are not flex according to the naive definition because the relevant pencil V contains the whole line as a base curve. But the line appears as a component of the flex divisor, see Example 3.14.

The flex divisor is notably an example of a constant cycle curve [Huy14]: One whose points all have the same class in the Chow group of zero-cycles $\text{CH}_0(X)$. The method of proof of Theorem 1.1 suggests strongly:

Conjecture 1.2. Let R be a canonical choice of polarizing divisor for \mathbb{F}_{2^d}. If R is a constant cycle curve, then it is recognizable.

A resolution of this conjecture would unify various results about recognizable divisors, such as [AET19], [ABE20], [AE21], and [AEH21].

Our second result is an analogue of the Yau-Zaslow formula. That is, we determine in what multiple of the polarization the flex divisor lives, generalizing known results in the cases $d = 1, 2$.

Theorem 1.3. Let (X, L) be a K3 surface of degree $2d$. Then $R_{\text{flex}} \in |n_dL|$ with

$$n_d = \frac{(2d)!(2d+1)!}{d!(d+1)!^2} = (2d+1)C(d)^2,$$

where $C(d)$ is the Catalan number.

d	1	2	3	4	5	6	7	8	9
n_d	3	20	175	1764	19404	226512	2760615	34763300	449141836

Table 1. Flex divisor classes

Table 1 tabulates the first nine values of n_d. The value $n_1 = 3$ is well-known, see Example 3.13 while the value $n_2 = 20$ has been computed by various authors [Huy14 Prop. 8.8], [Wit14 Cor. 2.4.6].

The summary of the paper is as follows: Section 2 shows that the flex divisor is well-defined and extends to a divisor over all of \mathbb{F}_{2^d} and Section 3 computes the multiple n_d of the primitive polarization in which the flex divisor lives, using intersection theory on the Hilbert scheme $X^{[2d]}$ of the K3 surface.

2. WELL-DEFINEDNESS

Definition 2.1. We say (X, L) is a polarized K3 surface of degree $2d$ if X is a K3 surface with ADE singularities, and $L \to X$ is a primitive, ample line bundle satisfying $L^2 = 2d$.

Let F_{2d} denote the moduli stack of polarized K3 surfaces over \mathbb{C}. It is a smooth, irreducible, Deligne-Mumford stack of dimension 19.
Definition 2.2. A point $x \in X$ is flex if there exists a pencil $V \subset |L|$ whose base locus is the singleton $\{x\}$.

Let L_{K3} denote the unique even, unimodular lattice of signature $(3,19)$ and fix a primitive vector $v \in L_{K3}$ of norm $v^2 = 2d$. Define

$$
\mathbb{D} := \mathbb{P}\{x \in v^\perp \otimes \mathbb{C} \mid x \cdot x = 0, x \cdot \overline{x} > 0\} \text{ and}
$$

$$
\Gamma := \{\gamma \in O(L_{K3}) \mid \gamma(v) = v\}.
$$

By the Torelli theorem, the coarse space of F_{2d} is the arithmetic quotient \mathbb{D}/Γ.

Definition 2.3. A Heegner divisor in \mathbb{D}/Γ is the image of a hyperplane section $w^\perp \cap \mathbb{D}$ for some vector $w \in L_{K3} \setminus \mathbb{Z}v$.

Proposition 2.4. Let $S \subset F_{2d}$ denote the polarized K3 surfaces (X,L) for which there exists a pencil $V \subset |L|$ containing a base curve. Then S is contained in a finite union of Heegner divisors.

Proof. The condition that $|L|$ contain a pencil with a base curve is an algebraic condition, which is easily seen to be closed on F_{2d}.

Let C be the base curve of a pencil $V \subset |L|$. Fix $H \in V$ and note $H = C + D$ for some non-empty effective divisor D. Since L is ample, we have $0 < L \cdot C < 2d$. Thus $|C| \notin ZL$. By the primitivity of L, the rank of $\text{Pic}(X)$ is least 2. Hence any point of S lies in some Heegner divisor. Since S is algebraic, we conclude that S is contained in a finite union of Heegner divisors.

Lemma 2.5. Let (X,L) be a polarized K3 surface. The flex points $\{x \in X \mid x \text{ flex}\}$ form a constructible subset of X of dimension at most 1.

Proof. Constructibility is elementary. To show the second statement, it suffices to make the following observation: Any flex point $x \in X$ lies in the Beauville-Voisin class $[x] = c_X \in CH_0(X)$, defined in [BV04] as the class of any point on a rational curve in X. This follows because:

1. $2d[x] = H_1 \cdot H_2$ for hyperplane sections H_1, H_2 spanning the pencil V,
2. the intersection of two curves is some multiple of c_X [BV04] Thm. 1, and
3. $CH_0(X)$ is torsion-free [Roj80].

If a Zariski-open subset of points of X were flex, we would have that $CH_0(X) = \mathbb{Z}$, contradicting Mumford’s theorem [Mum69] on the uncountability of the Chow group. So the constructible set of flex points has dimension at most 1.

Given a smooth surface X, denote by $X^{[k]}$ the Hilbert scheme of k points on X. Let F_{2d}^{sing} denote the substack of F_{2d} parameterizing singular ADE K3 surfaces, which is also a finite union of Heegner divisors.

Definition 2.6. Define the Zariski open subset $T := F_{2d} \setminus (S \cup F_{2d}^{\text{sing}})$. We assume for the remainder of the text that $(X,L) \in T$, unless otherwise stated.

Let $G := \text{Gr}(g-1, g+1)$ be the Grassmannian of codimension 2 linear spaces in $H^0(X,L)^*$, or equivalently pencils in $|L|$. Consider the map

$$
i : G \to X^{[2d]}, \quad V \mapsto PV \cap X$$

sending a codimension 2 linear space to its scheme-theoretic intersection with X, or equivalently sending a pencil to its scheme-theoretic basic locus.
Proposition 2.7. The mapping \(i : G \to X^{[2d]} \) is a closed immersion.

Proof. First, we show that \(i \) is a set-theoretic embedding. Suppose, for the sake of contradiction, that two pencils \(PV_1 \cap X = PV_2 \cap X \) intersect at the same length \(2d \) subscheme \(Z \subset X \). Consider the set of codimension 2 linear spaces

\[P := \{ V \in G \mid V \supset V_1 \cap V_2 \}. \]

We necessarily have that \(PV \cap X = Z \) for all \(V \in P \) because \(Z \subset PV_1 \cap PV_2 \cap X \). Hence \(i(P) \) consists of a single point. Since \(P \) contains a curve, we conclude that \(i \) contracts a curve. But any morphism from a Grassmannian to a projective variety contracting a curve must be constant. So \(i \) is constant, which is absurd.

Next, we show that the differential \(di \) is injective. Recall that the tangent space \(TV_G = \text{Hom}(V, H^0(X, L)^*/V) \) whereas \(T[Z]X^{[2d]} = \text{Hom}(I_Z/I^2_Z, O_Z) \). We may write \(PV = \{ x \in \mathbb{P}^g \mid s_1(x) = s_2(x) = 0 \} \) for two sections \(s_1, s_2 \in H^0(X, L) \). A tangent vector \(TV_G \) can be represented as the vanishing locus of \((s_1 + et_1, s_2 + et_2) \), where \(t_1, t_2 \in H^0(X, L)/\mathbb{C}s_1 \oplus \mathbb{C}s_2 \). Then \(di \) maps it to \((s_1 \mapsto t_1|_Z, s_2 \mapsto t_2|_Z) \), which uniquely determines an element of \(\text{Hom}(I_Z/I^2_Z, O_Z) \) because \(I_Z = (s_1, s_2) \).

Supposing some nonzero \(\phi \in TV_G \) satisfies \(di(\phi) = 0 \), at least one of \(t_1, t_2 \in H^0(X, L)/\mathbb{C}s_1 \oplus \mathbb{C}s_2 \) is nonzero and satisfies \(t_i|_Z = 0 \). So \(Z \) is contained in the codimension 3 linear space \(\{ x \in \mathbb{P}^g \mid s_1(x) = s_2(x) = t_i(x) = 0 \} \). But then the argument of the first paragraph applies to show \(i \) is constant. Contradiction. \(\square \)

Consider the Hilbert-Chow morphism \(HC : X^{[2d]} \to X^{(2d)} \). Let \(\Delta \subset X^{(2d)} \) be the small diagonal of effective zero cycles of the form \(2d[x] \) for some \(x \in X \). Define a subscheme \(P_{2d} \subset X^{[2d]} \) as the scheme-theoretic fiber \(P_{2d} := HC^{-1}(\Delta) \). Let

\[\text{supp} : P_{2d} \to X \]

be the support morphism, sending a scheme to the point at which it is supported. Finally, let \(i(G) \subset X^{[2d]} \) denote the image of the Grassmannian \(G = \text{Gr}(g - 1, g + 1) \) under the morphism \(i \), endowed with its natural structure of a reduced, smooth subscheme. Finally, we may now describe the flex divisor, at least generically.

Definition 2.8. The flex divisor on a K3 surface \((X, L) \in T\) is the algebraic cycle

\[R_{\text{flex}} := \text{supp}_* [P_{2d} \cap i(G)] \]

Here \(\text{supp}_* \) denotes the proper pushforward of algebraic cycles, and the brackets \([\cdot]\) denote the effective algebraic cycle underlying a subscheme.

Note that the cycle class is being taken in \(P_{2d} \) to make \(\text{supp}_* \) sensible.

Lemma 2.9. The subschemes \(P_{2d} \) and \(i(G) \) intersect properly in \(X^{[2d]} \), i.e. their intersection has pure dimension 1. Furthermore, \([P_{2d}] \cdot [i(G)] = [P_{2d} \cap i(G)]_{X^{[2d]}} \).

Proof. We have that \(i(G) \subset X^{[2d]} \) is a smooth subscheme of dimension \(2d \). By a result of Haïm [Hai08, Prop. 2.10], \(P_{2d} \subset X^{[2d]} \) is a reduced and irreducible Cohen-Macaulay scheme of dimension \(2d + 1 \). Hence, each component of their intersection has dimension at least 1. We claim additionally that each component has dimension at most 1. Note \(\text{supp}(P_{2d} \cap i(G)) \subset X \) by Lemma 2.5.

The restriction of \(\text{supp} \) to \(P_{2d} \cap i(G) \) contracts no curves because no flex point \(x \in X \) has a curve-worth of flex spaces: If \(x \in X \) supported a curve-worth of flex spaces, the morphism \(HC \circ i : G \to X^{(2d)} \) would contract a curve and hence, as
before, G would collapse to a point in $X^{(2d)}$. This is absurd. So $\text{supp}|_{P_{2d} \cap i(G)}$ is finite onto its image in X, which has dimension at most 1.

Hence, each component of $P_{2d} \cap i(G)$ has dimension exactly 1, that is, P_{2d} and $i(G)$ intersect properly. Since $i(G)$ is smooth and P_{2d} is Cohen-Macaulay, [Ful16 Prop. 7.1] gives the second statement. \hfill \Box

Remark 2.10. The proof of Lemma 2.9 implies that every component of the scheme $P_{2d} \cap i(G)$ contributes nontrivially to R_{flex}. Hence, for $(X, L) \in T$, R_{flex} is, as a set, exactly the set of flex points.

Proposition 2.11. Let $u : \mathfrak{X} \to T$ be the restriction of the universal family of polarized K3 surfaces. Then the flex divisors $R_{\text{flex}} \subset \mathfrak{X}$ form a flat subfamily of curves, specializing to R_{flex} on any fiber $X = \mathfrak{X}_t$.

Proof. It suffices to relativize the construction of R_{flex} and check flatness of the resulting family of algebraic cycles.

Let \mathfrak{G} be the relative Grassmannian of codimension 2 linear subspaces of $\mathbb{P}(u_*, \Sigma)^*$ where $\Sigma \to \mathfrak{X}$ is the universal polarization. Let $\mathfrak{X}^{[2d]}$ be the relative Hilbert scheme of $2d$ points, and let \mathfrak{P}_{2d} be the subfamily of the relative Hilbert scheme consisting of schemes supported at a single point of the fiber and i the relative inclusion $\mathfrak{G} \hookrightarrow \mathfrak{X}^{[2d]}$. Let $\text{supp} : \mathfrak{P}_{2d} \to \mathfrak{X}$ be the relative support morphism. Consider the algebraic cycle

$$R_{\text{flex}} := \text{supp}_* [\mathfrak{P}_{2d} \cap i(\mathfrak{G})] \subset \mathfrak{X}.$$

This cycle is a divisor in the smooth DM stack \mathfrak{X}. Any fiber $X = \mathfrak{X}_t \hookrightarrow \mathfrak{X}$ intersects R_{flex} properly by Lemma 2.9. Hence R_{flex} forms a flat family of divisors in \mathfrak{X}.

It remains to show that R_{flex} specializes to R_{flex} as defined above on a fiber $X = \mathfrak{X}_t$. The pushforward supp_* of algebraic cycles and the cycle class map $[\cdot]$ commute with taking fibers over t because the fibers $\mathfrak{X}^{[2d]}_{\mathfrak{X}_t} \hookrightarrow \mathfrak{X}^{[2d]}$ are smoothly immersed and properly intersecting the cycles \mathfrak{G} and \mathfrak{P}_{2d}. Hence, $(R_{\text{flex}})_t = R_{\text{flex}}$. \hfill \Box

Question 2.12. For a sufficiently generic $(X, L) \in F_{2d}$ is R_{flex} an irreducible divisor? What is its geometric genus, generically?

Remark 2.13. Based off [Wel81], Huybrechts [Huy14 Prop. 8.8] shows that when $L^2 = 4$, $R_{\text{flex}} \in [20L]$ is generically irreducible of geometric genus 201. Strangely, this is the genus of a smooth element of $[10L]$. This is not an error: R_{flex} is generically singular for a quartic surface.

We recall now the notion of a constant cycle curve:

Definition 2.14. Let X be a smooth K3 surface, and let $R \subset X$ be a curve. We say that R is a constant cycle curve if every point $p \in R$ represents the same class in $\text{CH}_0(X)$. This definition extends to curves $R \subset X$ in an ADE K3 surface by taking the inverse image of R in the minimal resolution of X.

It is known that if R is constant cycle, then $[p] = c_X \in \text{CH}_0(X)$ for all $p \in R$.

Lemma 2.15. For $(X, L) \in T$, the divisor R_{flex} is a constant cycle curve.

Proof. This follows immediately from Remark 2.10 and items (1), (2), (3) in the proof of Lemma 2.9. \hfill \Box

Lemma 2.16. Let $X \to (C, 0)$ be a family of polarized K3 surfaces and let $R \subset X$ be a flat family of curves over C. Suppose that R_t is a constant cycle curve for all $t \neq 0$. Then $R_0 \subset X_0$ is also a constant cycle curve.
Proof. Replacing \mathcal{X} with a finite base change, there is a simultaneous resolution of singularities which is the minimal resolution on any fiber. So we may assume $\mathcal{X} \to (C, 0)$ is smooth. Any two points $p, q \in R_0$ can be realized as specializations of points over a finite extension of $\mathbb{C}(C)$. The lemma follows because the specializations of rationally equivalent cycles are rationally equivalent [Ful16 Cor. 20.3]. □

Theorem 2.17. Let $u : \mathcal{X} \to F_{2d}$ be the universal K3 surface, $T \subset F_{2d}$ a Zariski open subset, and let $R^* \subset \mathcal{X}^* := \mathcal{X}|_T$ be a flat family of divisors, which is a constant cycle curve $R = R_t$ on every fiber $X = \mathcal{X}_t$. Then R^* extends to a flat family of divisors R over the universal K3 surface $\mathcal{X} \to F_{2d}$.

Proof. Let \mathcal{L} be an extension of $\mathcal{O}_{\mathcal{X}^*}(R^*)$ to \mathcal{X} and define the projective bundle $\mathbb{P}(\mathcal{L}) \to F_{2d}$. By assumption, we have a section of $\mathbb{P}(\mathcal{L})$ over the open subset T defined by R^*. Let $0 \in F_{2d} \setminus T$. Given any arc $(C, 0) \subset F_{2d}$ with $C \setminus \{0\} \subset T$, there is a unique flat family of curves $R \subset \mathcal{X}_{\{0\}}$ extending $R^*|_{C \setminus \{0\}}$.

By Lemma 2.16 the central fiber R_0 is constant cycle. As noted in [Huy14 Sec. 2.3], Mumford’s theorem [Mum69] implies constant cycle curves are rigid. So the flat limit R_0 doesn’t deform as the arc $(C, 0)$ deforms. Since F_{2d} is smooth, in particular normal, we conclude by a well-known argument [AE19 Lem. 3.16] that the section of $\mathbb{P}(\mathcal{L})$ over T extends, as a morphism, over 0. The result follows. □

Corollary 2.18. R_{flex} extends to a flat family of divisors in the universal K3 surface over F_{2d}.

3. Degree of the Flex Divisor

In this section, we compute the degree of the flex divisor. We follow [EG00] as a general reference on the cohomology of Hilbert schemes.

Definition 3.1. Let $n > 0$ be a positive integer and let $\alpha \in H^*(X)$ be a cohomology class of pure degree. Define

$$\mathbb{L} := \bigoplus_{m, k \geq 0} H^m(X^{[k]})$$

The Nakajima (raising) operator $q_{-n}(\alpha) : \mathbb{L} \to \mathbb{L}$ is defined by the following correspondence: Let $a \geq 0$ and define $b := a + n$. Let $X^{[a, b]}$ be the incidence correspondence of nested pairs of zero-dimensional subschemes $Z_1 \subset Z_2 \subset X$ for which $\text{len}
Z_1 = a$ and $\text{len}
Z_2 = b$, and let π_a and π_b be the projections to $X^{[a]}$ and $X^{[b]}$. Let S be the residual support morphism $X^{[a, b]} \to X^{(n)}$ sending

$$S : (Z_1, Z_2) \mapsto \supp(Z_2) - \supp(Z_1)$$

and let $W_{a, b} \subset S^{-1}(\Delta)$ be the irreducible component of $S^{-1}(\Delta)$ which is the Zariski closure of the $Z_1 \subset Z_2$ for which $\supp(Z_1)$ and $\supp(Z_2) - \supp(Z_1)$ are disjoint. Let $s : W_{a, b} \to \Delta \cong X$ denote the restriction of S and let $t : W_{a, b} \to X^{[a]}$ be the inclusion. Then for any $c \in H^r(X^{[a]})$ we define

$$q_{-n}(\alpha)(c) := (\pi_b)_* (\pi_a^* c \cdot t_* s^* \alpha) \in H^{r+2n-2+\deg \alpha}(X^{[b]}).$$

By definition, we declare $H^*(X^{[0]}) = \mathbb{C}1$ where 1 is called the vacuum element.

The bidegree of the operator $q_{-n}(\alpha)$ is $(2n - 2 + \deg \alpha, n)$, where the first degree is cohomological degree, and the second is number of points.
Remark 3.2. Definition \([3.1]\) can be intuitively rephrased as follows: The operator \(q_{-n}(\alpha)\) takes a family of subschemes of length \(n\) (i.e. a cycle in \(X^{[n]}\)) and tacks on a subscheme of length \(n\) supported at a single point lying on the cycle \(\alpha\).

Theorem 3.3 (Nakajima \cite{Nak97}, Grojnowski \cite{Gro96}). Let \(\{e_i\}_{i=1}^{24}\) be a basis of \(H^*(X)\). Then \(q_{-n_1}(e_{i_1}) \cdots q_{-n_k}(e_{i_k}) \mathbf{1}\) (up to reordering operators) are a basis of \(L\).

More precisely, these Nakajima operators extend to an action of the Heisenberg algebra of \(H^*(X)\) on \(L\), which becomes identified with the bosonic Fock space.

Remark 3.4. It follows directly from the definition of the Nakajima operators that \([P_{2d}] = q_{-2d}(\mathbf{1})\). Similarly, the schemes supported on a single point of a hyperplane section \(H \subset X\) have class \(q_{-2d}(h)\mathbf{1}\), with \([H] = h \in H^2(X)\).

Lemma 3.5. The degree of the flex divisor is \(\deg(i^*q_{-2d}(h))\).

Proof. By push-pull formula,

\[
\deg(R_{\text{flex}}) = R_{\text{flex}} \cdot X H := \text{supp}_*[P_{2d} \cap i(G)] \cdot X H = [P_{2d} \cap i(G)] \cdot P_{2d} \supp^* H
\]

Thus \(i^*(q_{-1}(1)2d-1) = 2dq_{-2d}(h)\mathbf{1}\). Then we can apply Lemma \([3.3]\). The first step is set-theoretically clear; the intersection multiplicity \(2d\) follows quickly from the description of the ring structure on \(H^*(X^{[2d]})\) due to Lehn and Sorger \cite{LS03} Thm. 1.1 and Prop. 2.13.

To verify the second step, note that \(q_{-1}(1)2d-1\) is represented by the divisor \(D_H \subset X^{[2d]}\) of schemes whose support intersects \(H \subset X\). Thus \([i^{-1}(D_H)]\) represents \(i^*(q_{-1}(1)2d-1)\). But \(i^{-1}(D_H)\) is simply the locus of codimension 2 linear spaces passing through some point of \(H\). Since \([H]\) is \(2d\) where \(\ell\) is the line class in \(\mathbb{P}^9\), we conclude that \([i^{-1}(D_H)] = 2d\sigma_1\).

Let \(Z \subset X^{[2d]} \times X\) denote the universal subscheme of length \(2d\). Let \(Z_G \subset G \times X\) denote the restriction of this subscheme to \(G\) (along the inclusion \(i\)). Let \(\pi_{X^{[2d]}}\) and \(\pi\) denote the projections from \(X^{[2d]} \times X\) and \(G \times X\) to the first factor, respectively. The tautological bundle \(\mathcal{O}^{[2d]} \rightarrow X^{[2d]}\) is the pushforward \((\pi_{X^{[2d]}})_*\mathcal{O}_Z\) and is a vector bundle of rank \(2d\) on \(X^{[2d]}\). Let \(\mathcal{O}^{[2d]}_G := i^*\mathcal{O}^{[2d]}\) denote the restriction of this vector bundle to the Grassmannian \(G\).

Proposition 3.6. The degree of the flex divisor is \(\sigma_1 \cdot i^*q_{-2d}(\mathbf{1})\).

Proof. The first step is to verify the intersection product

\[
q_{-1}(h)q_{-1}(1)2d-1 \cdot q_{-2d}(1)\mathbf{1} = 2dq_{-2d}(h)\mathbf{1}
\]
on \(X^{[2d]}\) and the second step is to verify that \(i^*(q_{-1}(h)q_{-1}(1)2d-1) = 2d\sigma_1\). Then we can apply Lemma \([3.5]\).

Let \(Z \subset X^{[2d]} \times X\) denote the universal subscheme of length \(2d\). Let \(Z_G \subset G \times X\) denote the restriction of this subscheme to \(G\) (along the inclusion \(i\)). Let \(\pi_{X^{[2d]}}\) and \(\pi\) denote the projections from \(X^{[2d]} \times X\) and \(G \times X\) to the first factor, respectively. The tautological bundle \(\mathcal{O}^{[2d]} \rightarrow X^{[2d]}\) is the pushforward \((\pi_{X^{[2d]}})_*\mathcal{O}_Z\) and is a vector bundle of rank \(2d\) on \(X^{[2d]}\). Let \(\mathcal{O}^{[2d]}_G := i^*\mathcal{O}^{[2d]}\) denote the restriction of this vector bundle to the Grassmannian \(G\).

Proposition 3.7. We have \(i^*q_{-2d}(1) = -2dq_{2d-1}(\mathcal{O}^{[2d]}_G)\).

Proof. Applying \([EG00]\) Thm. 12.4 to the line bundle \(\mathcal{O}\) gives the formula

\[
\sum_n c(\mathcal{O}^{[n]}) = \exp \left(\sum_{m \geq 1} \frac{(-1)^{m-1}}{m} q_m(c(\mathcal{O})) \right).
\]
Note $c(O) = 1$ and that $q_{-m}(1)$ has bidegree $(2m - 2, m)$. So the only term on the right-hand side landing in $H^{2n-2}(X^{[n]})$ is $(-1)^{n-1}q_{-n}(1)$. We conclude

$$t^*q_{-2d}(1) = -2d t^*c_{2d-1}(O^{[2d]}) = -2d c_{2d-1}(O^{[2d]}_G)$$

which follows via commutativity of taking Chern classes with pullback. \[\square\]

Let Q denote the rank 2 universal quotient bundle on G. To compute the Chern class $c_{2d-1}(O^{[2d]}_G)$ we make use of the following exact sequence:

Proposition 3.8. There is a resolution of O_{Z_G} by vector bundles on $G \times X$:

$$0 \to \det(Q^*) \boxtimes (-2L) \to Q^* \boxtimes (-L) \to O \to O_{Z_G} \to 0.$$

Proof. This exact sequence is simply the global version of the Koszul resolution of $O_{X \cap FV}$ where $\mathbb{F}V = \{x \in \mathbb{F}^g \mid s_1(x) = s_2(x) = 0\}$ is a codimension 2 linear space:

$$0 \to (s_1s_2) \to (s_1) \oplus (s_2) \to O_X \to O_{X \cap FV} \to 0.$$

On a given fiber of π the restrictions of $\det(Q^*) \boxtimes (-2L)$ and $Q^* \boxtimes (-L)$ are (s_1s_2) and $(s_1) \oplus (s_2)$ respectively, because $Q^* = \mathbb{C}s_1 \oplus \mathbb{C}s_2$.

Let r_1 and r_2 denote the Chern roots of Q.

Proposition 3.9. $\ch(O^{[2d]}_G) = 2 - (d + 2)e^{-r_1} - (d + 2)e^{-r_2} + (4d + 2)e^{-r_1 - r_2}$.

Proof. Consider the (derived) pushforward $R\pi_*$. of the exact sequence of Proposition 3.8. Computing the derived pushforward sheaves of each term gives

$$R^i\pi_*O_{Z_G} = \begin{cases} O^{[2d]}_G & \text{if } i = 0 \\ 0 & \text{if } i > 0 \end{cases} \quad R^i\pi_*O = \begin{cases} O & \text{if } i = 0, 2 \\ 0 & \text{if } i = 1 \end{cases}$$

$$R^i\pi_*(Q^* \boxtimes (-L)) = \begin{cases} 0 & \text{if } i = 0, 1 \\ Q^* \otimes H^0(X, L)^* & \text{if } i = 2 \end{cases}$$

$$R^i\pi_*(\det(Q^*) \boxtimes (-2L)) = \begin{cases} 0 & \text{if } i = 0, 1 \\ \det(Q^*) \otimes H^0(X, 2L)^* & \text{if } i = 2. \end{cases}$$

The first equation follows from the definition of $O^{[2d]}_G$ and that Z_G is finite over G, and the last three equations all follows from relative Serre duality applied to π. From these computations, and the fact that $h^0(X, L) = d + 2$ and $h^0(X, 2L) = 4d + 2$, we get the following equality in the K-group of G:

$$[O^{[2d]}_G] - 2[O] + (d + 2)[Q^*] - (4d + 2)[\det(Q^*)] = 0.$$

Since the Chern character \ch is a homomorphism from K-theory to cohomology, the proposition follows from the equalities $\ch(O) = 1$, $\ch(Q^*) = e^{-r_1} + e^{-r_2}$, $\ch(\det(Q^*)) = e^{-r_1 - r_2}$. \[\square\]

Corollary 3.10. The total Chern character of $O^{[2d]}_G$ is

$$c(O^{[2d]}_G) = \frac{(1 - r_1 - r_2)^{4d+2}}{(1 - r_1)^{d+2}(1 - r_2)^{d+2}} = \frac{(1 - \sigma_1)^{4d+2}}{(1 - \sigma_1 + \sigma_2)^{d+2}}.$$

Proof. Since $O^{[2d]}_G$ is a vector bundle, we can compute the total Chern character using the splitting principle and the set of “virtual Chern roots”

$$\{-r_1 - r_2, 0, 0\} - \{-r_1, -r_2\}.\quad \{\underbrace{-r_1 - r_2, 0, 0}_{4d+2}, \underbrace{-r_1, -r_2}_{d+2}\}.$$

The theorem then follows from the equalities $r_1 + r_2 = \sigma_1$ and $r_1r_2 = \sigma_2$. \[\square\]
Remark 3.11. Let $X \subset \mathbb{P}^g$ be Cohen-Macaulay of degree d and codimension r. If X intersects any r-plane in \mathbb{P}^g properly, there is a map $\text{Gr}(r+1, g+1) \rightarrow X[4]$ which sends an r-plane to its intersection with X. There is a rank d tautological vector bundle $\mathcal{O}_d \rightarrow X[4]$ and the Chern classes of its pullback to $\text{Gr}(r+1, g+1)$ can be computed in the same manner as above, via the Koszul resolution.

Theorem 3.12. Let $X \subset \mathbb{P}^g$ be a smooth K3 surface embedded by a primitive ample line bundle L of square $L^2 = 2d = 2g - 2$, for which no pencil in $|L|$ has a base curve. Then, the flex divisor satisfies $R_{\text{flex}} \subset |n_dL|$ where

$$n_d = \frac{(2d)!(2d+1)!}{d!^2(d+1)!^2}.$$

Proof. By Propositions 3.6 and 3.7 we have the formula

$$n_d = -\sigma_1 \cdot c_{2d-1}(\mathcal{O}_G^{2d}).$$

From the formula of Corollary 3.10 for $c(\mathcal{O}_G^{2d})$, plus the fact that the minus signs cancel in any contribution to top degree, we conclude

$$n_d = \left[\sigma_1 \cdot \frac{(1 + \sigma_1)^{4d+2}}{(1 + \sigma_1 + \sigma_2)^{d+2}} \right]_{\text{top}}.$$

The Pieri and Giambelli formulae imply that

$$\sigma_1^m \cdot \sigma_2^n = \frac{m!}{(m/2)!(m/2+1)!}$$

when $m + 2n = 2d$ add up to the correct dimension to give a top class on G. After performing binomial expansion in σ_1 then σ_2, collecting terms of top degree, and plugging in the above formula, we get the ugly expression

$$n_d = \sum_{j=0}^{d} \sum_{\ell=1}^{d-j} (-1)^{j+1} \binom{4d+2}{j} \binom{3d-j}{2d+\ell} \binom{2d+\ell}{2(\ell-1)} \binom{2\ell}{\ell+1} \frac{1}{\ell+1}.$$

Applying automated choose identity verification gives the result.

Example 3.13. Let (X, L) be any ADE K3 surface of degree $L^2 = 2$. The linear system $|L|$ defines a $2:1$ morphism from X onto either \mathbb{P}^2 or \mathbb{P}^1 and R_{flex} is naturally the ramification divisor of this map. The double cover of \mathbb{P}^2 is branched in a sextic B. One has $R_{\text{flex}}^2 = B^2/2 = 18 = (3L)^2$, so $n_1 = 3$.

Example 3.14. For a quartic surface, one can compute the flex divisor directly from the definition. Here are some results:

The Fermat quartic $X = V(x_0^4 + x_1^4 + x_2^4 + x_3^4) \subset \mathbb{P}^3$ contains 48 lines. Each line appears with multiplicity one in R_{flex}. The intersections of X with the coordinate hyperplanes $x_i = 0$ appear with multiplicity 2 in R_{flex}. So R_{flex} is cut out by $(x_0^4 + x_1^4)(x_0^4 + x_2^4)(x_0^4 + x_3^4)x_0^2x_1^2x_2^2x_3^2$.

The maximal number of 64 lines on a smooth quartic surface is realized by the Schur quartic $X = V(x_0^4 - x_0x_1^3 + x_2x_3^3 - x_4^3) \subset \mathbb{P}^3$. These lines come in two types. The first type, of which there are 16, are the lines joining the 4 + 4 points lying on the skew lines $V(x_0, x_1), V(x_2, x_3)$. They appear in R_{flex} with multiplicity two, while the remaining 48 lines of the second type appear with multiplicity one. So R_{flex} consists only of lines. Thus X has no “flex points” in the naive sense.
Remark 3.15. Based on the $d = 1$ case, the authors hoped that R_{flex} would be a canonical choice of polarizing divisor living in a reasonably small multiple of the polarization class, at least compared to the rational curve divisor R_{rc}. But in fact, the formula of Theorem 3.12 grows significantly faster than the Yau-Zaslow formula, with the switch occurring between $d = 8$ and $d = 9$. Asymptotically, $n_d \sim 2^{4d+1}/\pi d^2$ while Yau-Zaslow $\sim e^{4\sqrt{d}/\sqrt{2d^2/4}}$.

References

[ABE20] Valery Alexeev, Adrian Brunyate, and Philip Engel, Compactifications of moduli of elliptic K3 surfaces: stable pair and toroidal, arXiv:2002.07127 (2020).

[AE21] Valery Alexeev and Philip Engel, Compact moduli of K3 surfaces, arXiv:2101.12186 (2021).

[AEH21] Valery Alexeev, Philip Engel, and Changho Han, Compact moduli of K3 surfaces with a nonsymplectic automorphisms, Preprint (2021).

[AET19] Valery Alexeev, Philip Engel, and Alan Thompson, Stable pair compactification of moduli of K3 surfaces of degree 2, arXiv:1903.09742 (2019).

[Bea99] Arnaud Beauville, Counting rational curves on K3 surfaces, Duke Mathematical Journal 97 (1999), no. 1, 99–108.

[BV04] Arnaud Beauville and Claire Voisin, On the chow ring of a K3 surface, Journal of Algebraic Geometry 13 (2004), no. 3, 417–426.

[EG00] Geir Ellingsrud and Lothar Göttsche, Hilbert schemes of points and Heisenberg algebras, School on Algebraic Geometry (Trieste, 1999), ICTP Lect. Notes, vol. 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000, pp. 59–100.

[Ful16] William Fulton, Intersection theory, Princeton University Press, 2016.

[Gro96] I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), no. 2, 275–291.

[Hai98] Mark Haiman, (t, q)-catalan numbers and the Hilbert scheme, Discrete Mathematics 193 (1998), no. 1, 201–224.

[Huy14] Daniel Huybrechts, Curves and cycles on K3 surfaces, Algebraic Geometry 1 (2014), 69–106.

[LS03] Manfred Lehn and Christoph Sorger, The cup product of Hilbert schemes for K3 surfaces, Inventiones Mathematicae 152 (2003), no. 2, 305–329.

[Mum69] David Mumford, Rational equivalence of 0-cycles on surfaces, Journal of Mathematics of Kyoto University 9 (1969), no. 2, 195–204.

[Nak97] Hiraku Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Annals of Mathematics 145 (1997), no. 2, 379–388.

[Roj80] AA Rojtman, The torsion of the group of 0-cycles modulo rational equivalence, Annals of Mathematics 111 (1980), no. 3, 553–569.

[Wel81] Gerald E Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, Centrum Voor Wiskunde en Informatica, 1981.

[Wit14] Jakub Witaszek, The geometry of smooth quartics, Master’s thesis, Bonn University, 2014.

[YZ96] Shing-Tung Yau and Eric Zaslow, BPS states, string duality, and nodal curves on K3, Nuclear Physics B 471 (1996), no. 3, 503–512.

Email address: valery@uga.edu

Department of Mathematics, University of Georgia, Athens GA 30602, USA

Email address: philip.engel@uga.edu

Department of Mathematics, University of Georgia, Athens GA 30602, USA