Daily Evapotranspiration of *Guzmania ‘Irene’* and *Vriesea ‘Carly’* Bromeliads Produced in a Shaded Greenhouse

Richard C. Beeson, Jr. and Jianjun Chen

Mid-Florida Research and Education Center and Department of Environmental Horticulture, Institute of Food and Agriculture Sciences, University of Florida, 2725 S. Binion Road, Apopka, FL 32703

Additional index words. actual evapotranspiration (ETA), bromeliad daily water use, daily water requirements, ornamental foliage plants, water need index (WNI)

Abstract. Bromeliads are important ornamental foliage plants, but until now, their daily water use during production was unknown. Using a canopy closure model developed for container-grown woody ornamental plants, in this study we investigated actual evapotranspiration (ETA) of *Guzmania ‘Irene’* and *Vriesea ‘Carly’* from tissue-cultured liners grown in 15-cm containers to marketable sizes in a shaded greenhouse. The mean daily ETA of *Guzmania ‘Irene’* ranged from 4.02 to 66.35 mL per plant, and the mean cumulative ETA was 16.66 L over a 95-week production period. The mean daily ETA of *Vriesea ‘Carly’* varied from 3.98 to 59.89 mL per plant, and the mean cumulative ETA was 15.52 L over the same production period as the *Guzmania* cultivar. The best-fit models for predicting daily ETA of the two bromeliads were developed, which had correlation coefficients (r) of 0.79 for *Guzmania ‘Irene’* and 0.68 for *Vriesea ‘Carly’*. The success in the model of ETA for both bromeliads suggested that the canopy closure model was equally applicable to container-grown ornamental foliage plants produced in greenhouse conditions. The daily ETA and cumulative ETA values represent research-based information on water requirements, and, when applied, could improve irrigation practices in bromeliad production. This study also showed that roots per se of the two epiphytic bromeliads were able to absorb water and nutrients from a peat-based container substrate and support their complete life cycles.

The Bromeliaceae family comprises more than 3000 species across 58 genera that are largely native to tropical North and South America (Stevens, 2013). Their exotic appearance, graceful symmetry, and potential for year-round flowering make bromeliads among the most sought-after plants in the world (Henny and Chen, 2003). Among them, *Aechmea Ruiz & Pav.*, *Cryptanthus Otto & A. Dietr.*, *Guzmania Ruiz & Pav.*, *Neoregelia L.B. Smith*, *Nidularium Lem.*, *Tillandsia L.*, and *Vriesea Lindl.* are important ornamental foliage plants (Chen et al., 2005). It is estimated that nearly 60 million potted bromeliad plants are sold annually worldwide, of which 60% are *Guzmania* (Vanhoutte et al., 2016) and 15% are *Vriesea* cultivars (Vanhoutte et al., 2017).

Bromeliads have many unique characteristics, including epiphytism, water-absorbing leaf trichome, tank habit, and crassulacean acid metabolism (CAM), that enable them to survive under various harsh environmental conditions (Leroy et al., 2016). More than 60% of bromeliads are epiphytes (Zotz, 2013). Epiphytic bromeliads have two life forms: tank bromeliads, whose leaves spiral and arrange to form a rosette cup or tank where they accumulate water and organic debris, and atmospheric bromeliads, whose leaves are narrow and do not serve as a reservoir (Benzing, 2000; Givnish et al., 2007). Leaf hair or foliar trichomes are specialized for water and nutrient absorption and are called absorptive trichomes (Zotz, 2013).

Both *Guzmania* and *Vriesea* are tank bromeliads and considered to be C3 plants (Pierce et al., 2001) with exception of some *Guzmania* that are facultative CAM species (Freschi et al., 2010). Their growth and development under protected culture may be different from their wild habitats. Commercially, they are produced in soilless substrates under climate-controlled greenhouses and supplied with ample water and nutrients. A recent study showed that roots of two cultivars of *Vriesea* are able to absorb much more water than trichome in commercial production conditions (Vanhoutte et al., 2017). Roots of *Vriesea* have been shown to possess root hairs, a vascular system, and an endodermis (Proenca and Sajo, 2008; Reinert and Mereilles, 1993), implying that the roots are capable of taking up water and nutrients. Gas exchange and plant growth of *Guzmania lingulata* (L.) Mez. fertilized through roots were comparable with those fertigated through tank (Silva et al., 2017).

With current commercial production practices, irrigation of bromeliads has been primarily based on growers’ experience. A common problem with the production of container-grown plants has been overirrigation, resulting in not only poor aeration in container substrates but also nutrient leaching (Chen et al., 2001). This holds true in bromeliad production, where daily water requirements have not been quantified for any bromeliad species. To increase irrigation efficiency, Beeson (2004) proposed a canopy closure model for estimating ETA of container-grown woody ornamental plants as a basis for precision irrigation. Based on the relationships of ETA, potential evapotranspiration (ETD), and projected canopy area (PCA) of a given species, a water need index (WNI) or plant factor (Kjelgren et al., 2000) was calculated, which is a function of canopy closure of a group of plants, relating individual plant ETA to plant size and canopy ventilation and radiation (Beeson, 2005). Daily ETD was calculated using the Campbell Scientific version of the Penman–Monteith equation, whereas ETA was determined by an autonomous weighing lysimeter system (Beeson, 2011). The model has been used to quantify daily ETA of several woody ornamental plants including *Ligustrum japonicum* (Beeson, 2004), *Viburnum odoratissimum* (Beeson, 2010a, 2010b), *Rhaphiolepis indica* (Beeson, 2012), as well as foliage plants *Asplenium nidus* L. and *Chamaedorea elegans* Mart. (Chen and Beeson, 2013), and *Calathea G. Mey. ‘Silhouette’ and Stromanthe sanguinea* Sund. (Beeson and Chen, 2018). Irrigation of container-grown plants based on daily water use has been documented to reduce nursery runoff volume and nutrient load without reducing plant growth (Hagen et al., 2014; Pershey et al., 2015).

The objectives of this study were to determine ETA of *Guzmania* and *Vriesea* from tissue-cultured liners grown in 15-cm containers to marketable sizes in a shaded greenhouse and to develop models to predict daily ETA rates. It is anticipated that such effort could provide research-based information for improving irrigation efficiency during bromeliad production.

Materials and Methods

Experimental location. This study was carried out in an 80% shaded greenhouse at the University of Florida’s Mid-Florida Research and Education Center (MREC) in Apopka. A Florida Automated Weather Network (FAWN, https://fawn.ifas.ufl.edu/) station at MREC is about 46 m east of the shaded greenhouse. The station provided readings of air temperatures at three elevations (0.6, 1.8, and 9.1 m), soil temperature, wet bulb temperature, dew point, relative humidity, rainfall, and wind speed every 15 min daily as well as daily evapotranspiration outside the greenhouse. The outside ETD was calculated based on the Campbell
Scientific Program (Campbell Scientific, 1991) which uses the full ASCE Penman–Monteith equation (Jensen et al., 1990).

Data collection system. The miniature weighing lysimeter system described by Beeson (2011) was used in this study. The system was composed of a control/data collection board connected to mini lysimeters. The control board consisted of a CR10X data logger, SDM-AM16-32 multiplexer, and SDM-CD16AC relay control module (Campbell Scientific Inc., Logan, UT) for receiving and storing data from the mini-lysimeters. Each mini-lysimeter included a load cell (SSM-50-AJ; Interface Inc., Scottsdale, AZ) suspended from a miniature tripod with a plant support suspended from the load cell. All load cells were calibrated with a seven-point curve using known masses. The data logger program recorded the mass of each lysimeter every half hour and stored it for later retrieval. At midnight, the program determined that day’s ETA for each lysimeter later retrieval. At midnight, the program lysimeter every half hour and stored it for logger program recorded the mass of each point curve using known masses. The data collection system. Data collection was initiated within a week after transplanting. Canopy measurements of widest width, width perpendicular to the widest width, and average height were recorded every 3 weeks on the lysimeter plants and adjacent four plants for each replication. The two widths of each plant were multiplied to estimate the two-dimensional PCA (i.e., canopy footprint). When PCA was multiplied by the average height, canopy volume, or growth index, was estimated (Henny et al., 2009), assuming the three-dimensional canopy resembled a rectangular box. Plant water-use efficiency was calculated as total dry matter produced (g) by actual amount of water used (ET_A) (Stanhill, 1987).

Bromeliad plant production. Tissue cultured liners of Guzmania ‘Irene’ and Vriesea ‘Carly’ were transplanted singly into 15-cm containers (1.6 L) filled with a peat-based substrate composed of 60% Canadian peat, 20% vermiculite, and 20% perlite by volume. Plants were fertilized by top dressing 5 g of a controlled-release fertilizer (CRF) (Osmocote 19N–2.18P–7.47K, 8–9 months; The Scotts Co., Marysville, OH) per container 3 weeks after potting. The same amount of the CRF was applied 42 weeks later. The experiment was arranged as a completely randomized block design with four replications. In each block, 15 plants of a species were arranged in five rows with three plants per row in an offset pattern and spacing of 30 cm between pots. The center plant was placed in a suspension-weighing lysimeter, and the four closest plants to the lysimeter plant were designated as the interior plants for repeated canopy measurements. Plants were grown in a shaded greenhouse under a maximum photosynthetic active radiation of 200 μmol.m–2.s–1.

Air temperature, relative humidity, wind, and solar radiation required for calculation of reference evapotranspiration (ET_0) were collected with an automated Weatherhawk weather station (Campbell Scientific, Inc.) inside the middle of the greenhouse 50 cm above the lysimeter tripods. The algorithm used to calculate ET_0 was the same as that used in more robust outside weather stations based on Campbell Scientific equipment (Campbell Scientific, 1991). This was installed to evaluate the hypothesis that although the use of the Penman–Monteith equation inside a greenhouse violates the basis of Penman–Monteith, the thermodynamic associations of heat and random movement of water molecules within leaves and plant canopies would still mimic that of leaves outside nonetheless.

Data collection. Data collection was initiated within a week after transplanting. Canopy measurements of widest width, width perpendicular to the widest width, and average height were recorded every 3 weeks on the lysimeter plants and adjacent four plants for each replication. The two widths of each plant were multiplied to estimate the two-dimensional PCA (i.e., canopy footprint). When PCA was multiplied by the average height, canopy volume, or growth index, was estimated (Henny et al., 2009), assuming the three-dimensional canopy resembled a rectangular box. Plant water-use efficiency was calculated as total dry matter produced (g) by actual amount of water used (ET_A) (Stanhill, 1987).

Modeling plant water use. ET_A, ET_O, and PCA were used to evaluate the suitability of the percent canopy closure (%CC) model (Beeson, 2004, 2010a, 2010b) for determining water use of greenhouse-grown bromeliads. To summarize, %CC at each measurement was calculated by adding half the PCA of each of the four border plants to the PCA of the lysimeter plant and dividing the sum by allocated bench space for each plant (929 cm² in this study). Because plants were not respaced, canopies could become overlapped with plant growth. Thus, overlapping could result in calculation of %CC greater than 100%. For each lysimeter plant, ET_A was recorded for 7 d and converted to a depth by dividing with its average PCA (cm²). ET_A (cm) was then normalized by dividing with its corresponding ET_D (cm) each day, and then averaged over the 7 d to calculate WNI using the equation of [WNI = (ET_A/PCA)/ET_D] for each lysimeter plant at each measurement date. Calculated WNI values of the four lysimeter replicates for each date were plotted against their corresponding %CC values. The plot was fitted to a three-parameter exponential decay curve using SigmaPlot (Version 10; SPSS Inc., Chicago, IL). An equation for the nonlinear line was derived using a three-level inverse polynomial equation (Version 10; SPSS Inc.).

Results

Reference evapotranspiration. The ET_D (ET_O-GH) values in the shaded greenhouse were ≈12% of that outside the shaded greenhouse as measured by the FAWN station. Solar radiation in the shaded greenhouse was around 15% that of outdoor conditions, and relative humidity was normally higher inside the greenhouse. Although there was no measurable wind, air movement occurred during most afternoons from early spring until late fall due to operation of evaporative cooling fans. Temperatures in the shaded greenhouse were also more moderate than outside conditions, with minimums set at 18.3 °C for heating and 32.2 °C for evaporative cooling. ET_D was highest in April and May (days 90 to 150), declined the rest of the period with the onset of summer rains, then shorter days. In Central Florida, April and May tend to have the highest vapor pressure deficits (VPD) due to mostly clear skies and low humidities resulting from the near absence of rainfall. Evaporative cooling during this period often is insufficient to maintain low VPD.

!Image

Fig. 1. Roots of Guzmania ‘Irene’ (A) and Vriesea ‘Carly’ (B) 3 months after growing in 15-cm containers filled with a peat-based substrate. Both plants had well-developed roots when watered through drip irrigation to the substrate not into the tank or cup.

HortScience Vol. 53(12) December 2018 1815
Root growth. To assess root growth of two bromeliad species watered through drip irrigation, plants were pulled from containers 3 months after potting. Both species had well-established roots systems. Many roots had penetrated the substrate, with white, healthy roots appearing in the interface of container wall and substrate, and some had root hairs (Fig. 1).

Shoot growth. *Guzmania ‘Irene’* was potted in Nov. 2006 and harvested in Sept. 2008, when they had reached a size suitable for commercial marketing. Leaves were glossy green with a mean length of 40 cm. Canopy heights and widths of *Guzmania ‘Irene’* increased linearly (data not shown), but its growth index increased polynomially (Fig. 2A). *Guzmania ‘Irene’* produced 10 to 15 fuchsia–magenta bracts, which are modified leaves. At harvest, mean canopy height and width were 45.6 cm and 71.9 cm, respectively. It had a mean of 33.3 leaves and a total leaf area of 4,067.4 cm². Shoot and root fresh weights were 176.2 g and 12.7 g, and corresponding dry weights were 29.1 g and 2.4 g, respectively. *Guzmania ‘Irene’* had a water use efficiency of 1.9 (Table 1).

Vriesea ‘Carly’ was potted concurrently with *Guzmania ‘Irene’* in Nov. 2006 and harvested in Sept. 2008 when a marketable size was attained. ‘Carly’ has green and stiff leaves with a mean length of 16 cm. Canopy heights of *Vriesea ‘Carly’* increased linearly, and widths increased polynomially (data not shown). Growth index increased linearly (Fig. 2B). *Vriesea ‘Carly’* has yellow and red flower spikes. Mean canopy height and width at the time of harvest were 22 cm and 26.3 cm, respectively. ‘Carly’ produced 28.9 leaves with a total leaf area of 1,583.5 cm². Shoot and root fresh weights were 48.7 g and 9.6 g; shoot and root dry weights were 8.5 g and 2.0 g, respectively. Water use efficiency of *Vriesea ‘Carly’* was 0.7 (Table 1).

Actual evapotranspiration. The mean cumulative ETA for *Guzmania ‘Irene’* was 16.66 L per plant during the entire production period. At the beginning of the experiment, mean ETA ranged from 5.91 to 17.74 mL per plant per day (Fig. 3A). Beginning in Feb. 2007, mean ETA increased more than 2-fold over the next 50 d, ranging from 23.66 to 35.49 mL per day. During the summer months of 2007, mean ETA averaged around 29.57 mL per day but ranged from 6.21 to 51.37 mL per day during this period. The variability in ETA is likely due to highly fluctuation in cloud cover during the summer rainy season. Mean ETA began declining in August (day 300) to reach a low in Dec. 2007, comparable with that of the first December in 2006. Mean ETA again began increasing from late January 2008 to the summer of 2008. Mean ETA was quite variable during this period, ranging from 4.02 to 66.35 mL per day. The decline in Aug. 2008 mirrored that measured the previous year.

The mean cumulative ETA value was 15.52 L for *Vriesea ‘Carly’*. Initial daily ETA for individual plants ranged from 7.64 mL to 32.93 mL (Fig. 3B). This declined quickly to 4.48 to 11.83 mL per day by the middle of

Table 1. Plant growth measurements at harvest by species. Plants were harvested when they had reached common commercial canopy sizes along with flowers.

Species	Mean leaf no.	Leaf area (cm²)	Shoot fresh wt (g)	Root fresh wt (g)	Shoot dry wt (g)	Root dry wt (g)	Water use efficiency (g/L)
Guzmania ‘Irene’	33.3 ± 1.2	4,067.4 ± 268.8	176.2 ± 6.9	12.7 ± 2.7	29.1 ± 2.2	2.4 ± 0.4	1.9
Vriesea ‘Carly’	28.9 ± 4.2	1,583.5 ± 295.3	48.7 ± 8.7	9.6 ± 1.8	8.5 ± 1.7	2.0 ± 0.4	0.7

Values represent the means plus ± with four replications except for water use efficiency.

Water use efficiency is the ratio of total dry weight (g) to total amount of water used (L).
mean ET$_A$ averaged around 29.57 mL per day but ranged from 7.5 to 59.89 mL per day during this period. Mean ET$_A$ began declining in August (day 300) to reach a low in Dec. 2007, comparable with that of the first December and ‘Irene’. Mean ET$_A$ again began increasing in late January 2008 to a median mean ET$_A$ of 32.53 mL per day during the summer of 2008. Mean ET$_A$ was variable during this period, ranging from 3.98 mL to 47.32 mL per day. The sharp decline in Aug. 2008 also mirrored that measured the previous year.

Data analysis and modeling. Application of the %CC model (Beeson, 2010a) was successful for both bromeliads with the best fit model presented in Table 2. The significance of r^2 values (0.79 and 0.68 for Guzmania and Vriesea, respectively) for both equations suggested that the two species exhibited strong relationships between WNI and the level of canopy closure. As derived, equations predict the water use of individual plants. If means could have been derived from these individual plant measurements, such that the relationships were derived for populations of plants, the r^2 would have been higher and predictions of overall crop water use would be more certain.

For both Guzmania ‘Irene’ and Vriesea ‘Carly’, the WNI coefficients declined with increasing plant growth, indicated by the increase in %CC (Fig. 4A and B). In brief, this decline in WNI was due to increases in canopy boundary layer resistance as plant foliage expanded and filled in the gaps between containers. At near 100% canopy closure, transpiration of all but the upper leaves become decoupled from the air above the canopy, resulting in 40% decreases in whole plant transpiration outdoors (Beeson, 2010a). Conversely random removal of $\approx 33\%$ plant canopy coverage had been shown to increase individual plant transpiration by 40% (Beeson, 2010a).

Discussion

Agricultural use of fresh water has been under rigorous scrutiny due to irrigation, accounting for up to 62% of freshwater use, including 68% of groundwater and 29% of surface water withdrawals in the United States (Kenny et al., 2009). Container-grown plant production is an extensive water user within the realm of agriculture (Beeson, 2011; Chen et al., 2001, 2003). Plants are grown in confined volumes filled with artificial substrates, which are watered frequently to avoid drought stress. Irrigation frequency and quantity, however, is largely based on grower’s intuition or experience. As a result, plants are often overirrigated (Belayneh et al., 2013). Overirrigation not only reduces substrate aeration but also results in excess runoff and leaching of nutrients, primarily nitrogen (N) and phosphorus (P). Movement of N and P in waterways could potentially

Fig. 3. Mean daily actual evapotranspiration (ET$_A$) of Guzmania ‘Irene’ (A) and Vriesea ‘Carly’ (B) grown in 15-cm containers during production from tissue-cultured liners to marketable sizes. Each point is the mean of four plant replicates. The horizontal axis is marked with days after transplanting and calendar day.

Table 2. Best-fit models for predicting daily ET$_A$ values of Guzmania ‘Irene’ and Vriesea ‘Carly’ grown in 15-cm containers from tissue-cultured liners to marketable sizes.

Species	Model equation	r^2
Guzmania ‘Irene’	WNI = 0.110 + 0.695%CC – 0.132%CC2 – 0.051%CC3	0.79
Vriesea ‘Carly’	WNI = –3.222 + 5.207%CC – 1.685%CC2 – 0.182%CC3	0.68

ET$_A$ = actual evapotranspiration; r^2 = correlation coefficient; WNI = water need index; %CC = percent canopy closure.
contaminate ground and/or surface water (Chen et al., 2001). Thus, irrigation based
on plant growth requirements is increasingly important for sustainable production of
container-grown ornamental plants.

The present study shows that plants differ almost daily in water requirements. ET$_A$
values varied from 4.02 to 66.35 mL for Guzmania ‘Irene’ and 3.98 mL to 59.89 mL for
Vriesea ‘Carly’ over a 95-week production period. The variation, however, does
exhibit an identical pattern regardless of plant species: a slight increase in ET$_A$ in Nov. 2006
that was due to plant establishment after transplanting and then a decrease in the
winter; a substantial increase in early Feb. 2007 and a decrease in late August; and an
increase again in late Jan. 2008 and decreased in late August (Fig. 3). The pattern generally
coincided with the seasonal changes in Central Florida, suggesting that the growth of
these two bromeliads was synchronized by weather conditions, even though they grew in
a shaded greenhouse. A difference between the two species is that the daily ET$_A$ values of
Guzmania from Mar. to Aug. 2008 were much higher than those of Vriesea. This could be related to the emergence of bracts of Guzmania, where 10 to 15 modified fuchsia–magenta leaves appeared, which
might have much high transpiration than a compact single spike of Vriesea.

The cumulative ET$_A$ values of Guzmania ‘Irene’ (16.66 L) and Vriesea ‘Carly’ (15.52
L) were comparable with those our previous studied Asplenium nidus (7.95 L) and Chamadenorea elegans (6.43 L) (Chen and Beeson, 2013) as well as Calathea G. Mey. ‘Silhouette’ (4.84 L) and Stromanthe sanguinea Sond. (6.81 L) (Beeson and Chen, 2018) if considering the production time. The production
time for the two bromeliads was 665 d compared with 294 d for both A. nidus and C. elegans, 224 d for Calathea, and 231 d for Stromanthe. Commercial production of Guzmania and Vriesea in 15-cm containers usually takes less than 250 d, during which ethylene is used to force flowering. In our study, we did not use ethylene; plants flowered
naturally, which resulted in a prolonged production time. Another note is that Guzmania ‘Irene’ and Vriesea ‘Carly’ varied greatly in leaf areas, shoot, and root dry weights (Table 1), but their cumulative ET$_A$ only differed by 1.1 L. This could be due in part to the faster growth rate of Guzmania ‘Irene’, as illustrated in Fig. 1, and higher water use efficiency (1.9) (Table 1), whereas Vriesea ‘Carly’ growth was slower with a water use efficiency of 0.7. Another reason is that leaves of Guzmania ‘Irene’ were much longer than Vriesea ‘Carly’ (40 cm vs. 16 cm). Guzmania ‘Irene’ reached canopy closure much quicker (Fig. 4A) than Vriesea ‘Carly’ (Fig. 4B). The continuous growth of Guzmania ‘Irene’ caused increased overlapping of leaves, resulting
reduced transpiration and the demand for water, as shown in Fig. 4A. In contrast, the
appearance of 10 to 15 bracts after May 2008 increased transpiration; thus, ET$_A$ of Guzmania ‘Irene’ was higher compared with Vriesea ‘Carly’ during the same period. Nevertheless, the application of the canopy closure model was successful for both bromeliads, and the best-fit model is presented in Table 2. The r^2
values for the WNI as a function of %CC were high, 0.79 for Guzmania ‘Irene’ and 0.68 for
Vriesea ‘Carly’. Results from this study, along with the previous reports (Beeson and Chen, 2018; Chen and Beeson, 2013) suggest that the canopy closure model and WNI developed
for woody ornamental plants are suitable for modeling daily water requirements of
canopy closure model and WNI developed for container-grown foliage plants in greenhouse
conditions. As far as we know, this is the first report on the daily water use of bromeliads.
This study provides important information for commercial production of both Guzmania and
Vriesea and probably other bromeliads.

This study also showed that roots of both Guzmania ‘Irene’ and Vriesea ‘Carly’ were
functional. Since plants were fertilized by topdressing a CRF on substrate and watered
via drip irrigation and not through tank, water and nutrients must have been taken up through roots. As shown in Fig. 1, both Guzmania ‘Irene’ and Vriesea ‘Carly’ indeed had well-developed root systems. Interestingly, root systems of many tank bromeliads, such as
Tillandsioideae species in general, often are classified as nonabsorptive and mainly serving

Fig. 4. Inverse polynomial relationship between percent canopy closure (%CC) and the water need index (WNI) for Guzmania ‘Irene’ (A) and Vriesea ‘Carly’ (B). Data points are four plant replicates, and equation for the best-fit line presents in Table 2.

1818 HORTSCIENCE VOL. 53(12) DECEMBER 2018
to anchor these plants (Benzing, 2000), whereas foliar trichomes are essential for water and nutrient absorption from the tank solution (Inselsbacher et al., 2007). Our results showed that epiphytic bromeliads, when cultivated in a substrate, emitted new roots that are functional. Vanhoutte et al. (2017) also showed that roots of Vriesea are important for water and nutrient absorption. The importance of trichomes in water and nutrient absorption could be due to the evolutionary adaptation of epiphytic bromeliads in the wild. The ability of cultivated bromeliad roots to take up water and nutrients suggest great physiological plasticity of epiphytic bromeliads in adaptation to commercial cultivation. Breeding of bromeliads for ornamental purposes also may select plant roots not only for anchoring plants but also for effective absorption of water and nutrient for commercial production.

In conclusion, the canopy closure model and WNI developed for woody ornamental plants are suitable for modeling daily water requirements of container-grown foliage plants in greenhouse conditions. The daily ET₀ established for Guzmania and Vriesea could be used as references for developing optimal irrigation recommendations for commercial bromeliad production. Development of WNI models for other groups of bromeliads will allow conservation of commercial production from rooted cuttings to market size plants in 11.4-L containers. HortScience 45:1260–1264.

Beeson, R.C., Jr. 2011. Suspension lysimeter systems for quantifying water use and modulating water stress for crops grown in organic substrates. Agr. Water Mgt. 98:967–976.

Beeson, R.C., Jr. 2012. Development of a simple reference evapotranspiration model for irrigation of woody ornamentals. HortScience 47:264–268.

Beeson, R.C., Jr., and J. Chen. 2018. Quantification of daily water requirements of container-grown Calathea and Stromanthe produced in a shaded greenhouse. Water 10:1194.

Belayneh, B.E., J.D. Lea-Cox, and E. Lichtenberg. 2013. Costs and benefits of implementing sensor-controlled irrigation in a commercial pot-in-pot container nursery. HortTechnology 23:760–769.

Benzing, D. 2000. Bromeliaceae: Profile of an Adaptive Radiation. Cambridge University Press, Cambridge, UK.

Campbell Scientific. 1991. Application Note 4-D. Campbell Scientific Ltd., Logan, UT.

Chen, J. and R.S. Beeson, Jr. 2013. Actual evapotranspiration of Asplenium nidus and Chamaedorea elegans during production from liners to marketable plants. Acta Hort. 990:339–344.

Chen, J., R.C. Beeson, Jr., T.H. Yeager, R.H. Stamps, and L.A. Felter. 2003. Evaluation of captured rainwater and irrigation runoff for greenhouse foliage and bedding plant production. HortScience 38:228–233.

Chen, J., Y. Huang, and R.D. Caldwell. 2001. Best management practices for minimizing nitrate leaching from container-grown nurseries. The Scientific World 1(52):96–102.

Chen, J., D.B. McConnell, D.L. Norman, and R.J. Henny. 2005. The foliage plant industry. Hort. Rev. 31:47–112.

Freschi, L., C.A. Takahashi, C.A. Cambuia, T.R. Semprebom, A.B. Cruz, P.T. Mioto, L.M. Versieux, A. Calvente, S.R. Latansio-Aidar, M.P.M. Aidar, and H. Mercier. 2020. Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage. J. Plant Physiol. 167:526–533.

Givnish, T.J., K.C. Millam, P.E. Berry, and K.J. Systma. 2007. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23:3–26.

Hagen, E., S. Mamuthubi, A. Fulcher, and R. Geneve. 2014. Comparing substrate moisture-based daily water use and on-demand irrigation regimes for oakleaf hydrangea grown in two container sizes. Scientia Hort. 179:132–139.

Henny, R.J. and J. Chen. 2003. Cultivar development of ornamental foliage plants. Plant Breed. Rev. 23:245–290.

Henny, R.J., J.R. Holm, J. Chen, and M. Scheiber. 2009. In vitro induction of tetraploids in Dieffenbachia × ‘Star Bright M-1’ by colchicine. HortScience 44:646–650.

Inselsbacher, E., C.A. Cambuia, A. Richter, C.F. Stange, H. Mercier, and W. Wanek. 2007. Microbial activities and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. New Phytol. 175:311–320.

Jensen, M.E., R.D. Burman, and R.G. Allen. 1990. Evapotranspiration and irrigation water requirements. 28 Aug. 2018. <http://agris.fao.org/agrisearch/search.do?recordID=US199910106366>.

Kenny, J.F., N.L. Barber, S.S. Hutson, K.S. Linsey, J.K. Lovelace, and M.A. Maupin. 2009. Estimated water use in the United States in 2005. U.S. Dept. Interior. U.S. Geol. Surv. Circ. 1344.

Kjelgren, R.C., R.C. Beeson, Jr., D.R. Pittenger, and D.T. Montague. 2016. Simplified landscape irrigation demand estimation: Slide rules. Appl. Eng. Agr. 32:363–378.

Leroy, C., J.F. Carrias, R. Céréghino, and B. Corbarà. 2016. The contribution of microorganisms and metazoa to mineral nutrition in bromeliads. J. Plant Ecol. 9:241–255.

Pershey, N.A., B.N. Cregg, J.A. Andresen, and R.T. Fernandez. 2015. Irrigating based on daily water use reduces nursery runoff volume and nutrient load without reducing growth of four conifers. HortScience 50:1553–1561.

Pierce, S., K. Maxwell, H. Griffiths, and K. Winter. 2001. Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. Amer. J. Bot. 88:1371–1389.

Proença, S.L. and M.G. Sajo. 2008. Rhizome and root anatomy of 14 species of Bromeliaceae. Rodriguesia 59:113–128.

Reinert, F. and S. Mereilles. 1993. Water acquisition strategy shifts in the heterophyllous saxicole bromeliad Vriesea gigantea (Wawra) Wawra. Selbyana 14:80–88.

Silva, K.G., E.A. da Silva, M.L. Ferreira, S. Kanashiro, P.B. de Camargo, and A.R. Tavares. 2017. Gas exchange and chlorophyll a fluorescence parameters of ornamental bromeliads. Ornament. Hort. 23:400–406.

Stanhill, G. 1987. Water use efficiency. Adv. Agron. 39:53–85.

Stevens, P. 2013. Angiosperm Phylogeny Website Version 13. 20 June 2018. <http://www.mobot.org/MOBOT/research/APweb/>.

Vanhoutte, B., J. Ceusters, and M. Prof. 2016. The tubing phenomenon in commercial cultivation of Guzmania: Morphology, physiology and anatomy. Scientia Hort. 205:112–118.

Vanhoutte, B., L. Schenkels, J. Ceusters, and M.P. De Prof. 2017. Water and nutrient uptake in Vriesea cultivars: Trichomes vs. roots. Environ. Explo. Hort. 136:21–30.

Zotz, G. 2013. The systematic distribution of vascular epiphytes—a critical update. Bot. J. Linn. Soc. 171:453–481.