Le contenu hépatique en fer diffère de façon significative entre les patients en dialyse péritonéale et les patients en hémodialyse

Hepatic iron load differs strikingly between peritoneal dialysis and hemodialysis patients

Note : this is a bi-lingual publication (English version is available at same URL : https://doi.org/10.25796/bdd.v2i4.23613)

Guy Rostoker1,2,*, Mireille Grincelli3, Nasredine Ghali3, Séverine Beaudreuil4, Yves Cohen5 and Belkacem Issad6.

1 Service de Néphrologie et de dialyse, Ramsay-Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart, France.
2 Collège de Médecine des Hôpitaux de Paris.
3 Service de Néphrologie et de dialyse, Centre Hospitalier Marc Jacquet, Melun, France.
4 Service de Néphrologie, dialyse et de transplantation, Centre Hospitalier Universitaire Bicêtre, Kremlin-Bicêtre, France.
5 Service de Radiologie, Ramsay-Santé, Hôpital Privé Claude Galien, Quincy-sous-Sénart, France.
6 Service de Néphrologie et de dialyse, Groupe Hospitalier Pitie-Salpétrière, 75013 Paris, France.

Résumé

Introduction
La surcharge martiale est l’un des sujets les plus controversés dans la prise en charge de l’anémie des patients dialysés. La supplémentation parentérale (IV) en fer est couramment prescrite aux patients en hémodialyse (HD), mais moins fréquemment aux patients traités par dialyse péritonéale (DP). De plus les cibles de ferritine sérique sont beaucoup plus faibles et physiologiques en DP qu’en HD.

Méthodes
Nous avons comparé la concentration hépatique en fer (CHF), mesurée par imagerie par résonance magnétique (IRM), à l’aide de la méthode du rapport signal-intensité (SIR) selon l’Université de Rennes, dans une cohorte de 32 patients en DP résidant en région parisienne (publiée en 2017), avec deux cohortes de patients hémodialyssés français, étudiés de la même manière (119 patients publiés en 2012 et 80 patients supplémentaires publiés en 2014).

Résultats
Une charge hépatique normale en fer (CHF ≤ 50 µmol/g de poids sec) a été observée chez 81,3% des 32 patients de DP (IC: 64,3-91,5%), comparativement à seulement 16% (IC: 10,4-23,7%) dans la première cohorte HD et 35% (IC: 25,4-45,9%) dans la deuxième cohorte HD (p < 0,0001 dans les deux cas ; test X²). Une surcharge légère en fer (50 ≤ CHF ≤ 100 µmol/g) a été observée chez 5 patients de DP et une surcharge importante (CHF > 200 µmol/g) chez un seul patient de DP (qui avait reçu du fer intraveineux (IV)) (3,1% ; IC: 0-17,1%). Inversement, une surcharge en fer importante a été observée chez 30,3% des patients de la première cohorte HD (IC: 22,7-39%) et 11,3% de ceux de la deuxième cohorte HD (IC: 5,8-20,2%) (p = 0,0033 par rapport à la première cohorte ; test X²).

Conclusion
Contrairement à l’hémodialyse, la surcharge en fer est rare et généralement légère chez les patients en dialyse péritonéale.

Keywords : Concentration hépatique en fer; dialyse péritonéale; hémodialyse;IRM hépatique; surcharge martiale.

Summary

Introduction
Iron overload is one of the most controversial topics in the management of anemic dialysis patients. Parenteral iron supplementation is commonly prescribed to hemodialysis (HD) patients but less frequently to peritoneal dialysis (PD) patients. Moreover, ferritin targets are far lower and more physiological in PD than in HD.

Methods
We compared the liver iron concentration (LIC) measured by means of Signal-Intensity ratio (SIR) magnetic resonance imaging (MRI) according to Rennes University method in a cohort of 32 PD patients living in the Paris region published in 2017, with two cohorts of French HD patients studied in the same way (119 patients reported in 2012 and 80 further patients reported in 2014).

Results
Normal hepatic iron load (LIC ≤ 50 µmol/g of dry weight) was observed in 81.3% of the 32 PD patients (CI: 64.3-91.5%), as compared to only 16% (CI: 10.4-23.7%) in the first HD cohort and 35% (CI: 25.4-45.9%) in the second HD cohort (p < 0.0001 for both comparisons; X² test). Mild iron overload (50 < LIC ≤ 100 µmol/g) was found in 5 PD patients and severe overload (LIC > 200 µmol/g) in only one PD patient (who had received IV iron) (3.1%; CI: 0-17.1%). Conversely, severe iron overload was found in 30.3% of patients in the first HD cohort (CI: 22.7-39%) and 11.3% of those in the second HD cohort (CI: 5.8-20.2%) (p = 0.0033 versus the first HD cohort, X² test).

Conclusion
Contrary to hemodialysis patients, iron overload is rare and mostly mild in peritoneal dialysis patients.

Keywords : Hemodialysis; hepatic MRI; iron overload; liver iron concentration; peritoneal dialysis.
INTRODUCTION

La découverte de l’époétine dans les années quatre-vingt fût une révolution thérapeutique pour les patients atteints d’insuffisance rénale terminale (IRT) et pour leurs néphrologues, en permettant de corriger partiellement l’anémie chez la plupart des patients, améliorant ainsi nettement leur qualité de vie, réduisant leur besoin de transfusion sanguine et ainsi le risque de sensibilisation HLA (Human Leucocyte Antigen) [1]. Une supplémentation parentérale en fer est nécessaire, en parallèle, pour assurer la pleine efficacité thérapeutique des agents stimulant l’érythropoïèse (ASE) car la carence en fer est fréquente chez les patients hémodialysés, en raison du transfert massif de fer aux cellules progénitrices érythroïdes pendant le traitement par ASE, et d’une mobilisation insuffisante du fer à partir des sites de stockage (due aux taux élevés d’hepcidine observés lors d’IRT) et du fait d’importantes pertes de sang liées à la technique d’hémodialyse (HD), aggravées par des prélèvements sanguins itératifs de routine pour le suivi de l’état urémique, ainsi que par des saignements occultes digestifs liés à l’entéroïmie urémique [2-5]. Cette dernière perte de sang est augmentée par le recours obligatoire à l’anticoagulation (héparine non fractionnée ou de faible poids moléculaire) pour éviter la coagulation du circuit extra-corporel au cours des séances d’hémodialyse [5, 6].

L’utilisation de fer par voie intraveineuse (IV) chez les patients en HD a considérablement augmenté dans le monde, au cours des quinze dernières années, en raison de sa facilité d’utilisation et de son action rapide et efficace par rapport aux préparations orales, pour traiter la carence martiale vraie et sa capacité à surmonter la carence fonctionnelle en fer, souvent rencontrée dans les cas d’IRT [1-6]. De plus, les produits à base de fer administrés par voie intraveineuse permettent de réaliser des économies d’environ 20 à 30% sur les médicaments onéreux comme les ASE [5-6]. La recommandation du Kidney Disease Outcomes Quality Initiative (KDOQI) aux États-Unis, publiée en 2006 et approuvée par le référentiel de l’ERBP (European Renal Best Practice) de l’European Renal Association (ERA-EDTA) en 2009, a renforcé la définition de la carence en fer dans l’IRT (ferritine < 100 µg/L au lieu de 20 µg/L) et a adopté des critères de réplication en fer plus élevés pour les patients hémodialysés (250 < cible de ferritine < 500 µg/L) [2, 3]. La recommandation de 2012 du Kidney Disease Improving Global Outcomes (KDIGO) a fixé la limite supérieure de ferritine à 500 µg/L pour les patients hémodialysés, en soulignant le risque de carence fonctionnelle en fer pendant le traitement par ASE, ainsi que la capacité du fer par voie intraveineuse, à éviter l’utilisation des ASE et ses effets indésirables [4]. Ces recommandations de bonne pratique qui sont largement suivies par les néphrologues du monde entier, ont clairement contribué à l’utilisation accrue de fer par voie parentérale chez les patients hémodialysés au cours de la dernière décennie [5, 6].

Le foie est le principal site de stockage du fer dans l’organisme et il a été démontré que la concentration hépatique en fer (CHF) était étroitement corrélée avec les réserves totales de fer dans le corps chez les patients présentant une maladie de surcharge en fer [7, 8]. L’imagerie par résonance magnétique (IRM) est devenue ces dernières années, la méthode de référence pour l’estimation non invasive du contenu hépatique en fer, pour le diagnostic des maladies de surcharge en fer et enfin pour le suivi des patients non-insuffisants rénaux présentant une maladie de surcharge en fer, en particulier lors de phlébotomies ou sous traitement par agents chélateurs [7, 8].

Des études radiologiques récentes, menées chez des patients hémodialysés, ont montré une fréquence élevée de surcharge en fer et un lien étroit entre la dose de fer injectée et le risque de surcharge martiale dans ce contexte, remettant ainsi en cause les recommandations actuelles concernant les effets indésirables potentiels des fers intraveineux utilisés à fortes doses répétées, ainsi que la fiabilité des seuils des biomarqueurs du fer et des méthodes de surveillance des réserves de fer chez les patients dialysés [9-12]. Ces résultats ont conduit certains auteurs à proposer une révision de la stratégie d’utilisation du fer IV chez les patients en IRT [10, 12-15]. La surcharge en fer, que l’on pensait très rare, il y a quelques années chez les patients hémodialysés à l’époque des ASE, est de plus en plus reconnue et considérée comme l’un des sujets les plus controversés dans la gestion de l’anémie chez les patients en IRT [9-14]. Une analyse poolée a récemment montré que l’hémiosérose associée à l’hémodialyse concernait jusqu’à 66% des 500 patients, étudiés à l’aide de méthodes radiologiques (échographie, IRM) et des réserves totales de fer dans le corps chez les patients en IRT [7-8].

Comparativement aux patients hémodialysés, les patients en dialyse péritoneale ont moins de pertes de sang [5, 13]; de plus, les cibles de ferritine préconisées par les recommandations actuelles sont moins élevées et plus physiologiques en DP qu’en HD [2-4, 17]. Enfin, alors que presque tous les patients hémodialysés reçoivent du fer IV, peu de patients en dialyse péritoneale sont traités par fer parentéral, et généralement en seconde intention. Dans cette étude, nous avons émis l’hypothèse que la
comparaison du contenu hépatique en fer, étudié par IRM, entre les patients en dialyse péritonéale et les patients en hémodialyse, permettrait d’appréhender l’influence de l’insuffisance rénale terminale sur le métabolisme du fer dans le foie et sur la surcharge martiale.

MATERIEL ET METHODES

Patients et dialyse

Avec le consentement éclairé signé des patients et l’approbation du comité des médicaments, des dispositifs médicaux et des essais cliniques de l’hôpital Claude Galien (COMEDIMS Claude Galien, 9 décembre 2004 et 15 février 2013 [12]), nous avons étudié du 17 juin 2014 au 17 novembre 2015, 32 patients adultes traités depuis au moins deux mois en dialyse péritonéale (dans quatre services de néphrologie de région parisienne: Groupe Hospitalier Pitié-Salpêtrière, Paris; Centre Hospitalier Universitaire Bicêtre, Kremlin-Bicêtre; Centre Hospitalier Marc Jacquet, Melun; Hôpital Privé Claude Galien, Quincy-sous-Sénart) et nous avons analysé leur concentration hépatique en fer à l’aide d’une IRM quantitative sans gadolinium. Les caractéristiques des patients ainsi que les critères d’inclusion et d’exclusion de cette étude ont été publiés et décrits en détail [12, 18].

Le traitement de l’anémie chez ces patients en DP suivait les recommandations de l’ERBP et comprenait, si nécessaire, un ASE et du fer [18]. La cible de ferritine a été fixée à 100 µg/L. En cas de déficit en fer, il était conseillé aux patients de manger de la viande rouge. Un traitement à base de fer par voie orale n’était pas utilisé que si les mesures alimentaires étaient inefficaces ou si la carence en fer était importante. Le fer par voie intra-veineuse n’était utilisé que si le fer par voie orale était inefficace ou mal toléré [18].

Cette cohorte de DP a été comparée à deux autres cohortes de patients de patients hémodialysés, étudiés à l’hôpital Claude Galien [12, 19]. La première cohorte comprenait 119 patients en hémodialyse, sans inflammation importante ni malnutrition et bénéficiant d’une hémodialyse chronique intermittente en biponcture avec bain de bicarbonate, trois fois par semaine (dans le centre de dialyse Claude Galien) avec un dialysat ultra-pur et sur membrane biocompatible à usage unique. Ils ont participé à cette étude transversale prospective de 60 mois du 31 janvier 2005 au 31 janvier 2010 [12]. Ces 119 patients ont fait l’objet d’une publication en 2012, mettant en évidence le risque de surcharge en fer chez les patients hémodialysés [12]. La deuxième cohorte comprenait 80 autres patients en hémodialyse étudiés de la même façon et recrutés du 1er février 2010 au 31 août 2013 à l’hôpital Claude Galien [19]. Ces 80 patients, ainsi que les 119 patients de la première cohorte de HD, ont fait l’objet de deux publications en 2014 et 2015 portant sur la dose potentielle toxique mensuelle de fer IV chez les patients en HD et sur la valeur prédictive des biomarqueurs du fer pour le diagnostic de la surcharge en fer dans ce contexte [19, 20]. Il est à noter que les résultats de notre première étude de patients en HD, nous ont incité à solliciter une révision des recommandations dans ce domaine et à anticiper la nouvelle recommandation européenne de bonne pratique fixant la cible supérieure de la ferritine à 300 µg/L et de la TSAT à 30%, avec la même cible d’hémoglobine de 10-12 g/dL [12, 17, 19]. Cette étude a été enregistrée sur le registre de l’International Standard Randomised Controlled Trial Number (ISRCTN) 80100088 [12, 18-20]. Cette étude est également déclarée à l’Institut National des Données de Santé (INDS) en tant que étude observationnelle (catégorie MR-4) et sa base de données est déclarée à la Commission Nationale de l’Informatique et des Libertés (CNIL) sous les numéros successifs 1875675 (jusqu’en 2018) et 2214279 (depuis l’année 2019).

Imagerie par résonance magnétique quantitative des réserves hépatiques de fer

Nous avons utilisé la méthode d’IRM quantitative par rapport d’intensité de signal, basée sur l’imagerie de contraste T1 et T2⁺ sans gadolinium, établie par Gandon et ses collaborateurs à l’Université de Rennes en 2004 [21]. Dans la mesure du possible, les patients ont reçu leur dernière dose de fer (IV ou orale) au moins une semaine avant l’IRM. Les mesures d’IRM ont été effectuées de manière centralisée dans le service de radiologie de l’hôpital Claude Galien par le même radiologue, qui ignorait les antécédents médicaux des patients (à l’exception de leur modalité de dialyse) et les résultats biologiques.

Chez les adultes sains, le 95ème percentile supérieur de la concentration hépatique en fer (CHF) est estimé à 32 µmol/g de foie sec, mais comme l’IRM hépatique permet de détecter avec une grande précision une surcharge en fer dans le foie dépassant 50 µmol/g de foie sec, la limite supérieure de la charge normale en fer a été fixée à 50 µmol/g pour ces études chez des patients dialysés [12,18-20]. Une surcharge légère en fer est représentée par 50 < CHF ≤ 100 µmol/g de foie sec, les valeurs de 100 < CHF ≤ 200 µmol/g illustrent une surcharge en fer modérée et les valeurs de CHF > 200 µmol/g dénotent une surcharge en fer sévère [21]. Ces seuils de CHF sont basés sur les résultats de données antérieures de biopsies.
hépatiques et correspondent à un risque élevé de complications dans les maladies de surcharge en fer, tels que l’hémoschromatose génétique et l’hémosidérose secondaire [7, 8].

A noter que la méthode d’IRM a été réalisée de manière similaire pour ces trois cohortes sur le même appareil d’IRM Optima™ MR450w (GE Medical Systems, Milwaukee, Wisconsin, USA) fonctionnant avec un champ magnétique de 1,5 Tesla, par le même radiologue (YC) aidé par la même équipe de techniciens, utilisant le même logiciel analytique gratuit disponible sur le site de l’Université Rennes pour les calculs de la CHF.

Markeurs biologiques du métabolisme du fer

L’efficacité du traitement de l’anémie a été estimée par le dosage de l’hémoglobine et la numération des réticulocytes chaque mois, ainsi que par des mesures mensuelles ou trimestrielles (selon les pratiques locales), des biomarqueurs du fer (ferritine, transferrine, fer sérique, saturation de la transferrine (TSAT), récepteurs solubles de la transferrine (sTfR) et protéine C-réactive (CRP)). Tous les bilans sanguins utilisés étaient réalisés en routine, en début de séance de dialyse, en milieu de semaine (chez les patients en hémodialyse), et dans la mesure du possible, les patients ont reçu leur dernière dose de fer au moins une semaine avant le prélèvement [12, 19, 20]. Pour les patients en DP les bilans biologiques étaient effectués au moins sept jours après la dernière perfusion de fer (chez les quelques patients traités par du fer IV) ou une semaine après l’ingestion du dernier comprimé de fer oral [18]. Les analyses statistiques ont été effectuées sur la moyenne des trois valeurs pour chaque biomarqueur, obtenues le mois de l’IRM hépatique, un mois avant et un mois après l’IRM pour les patients hémodialysés et, si ces informations étaient disponibles, de la même manière pour les patients en DP [12, 18-20].

Recherche d’une mutation du gène HFE

Afin d’exclure un rôle physiopathologique des gènes de l’hémochromatose dans les résultats observés, les patients en DP comme ceux en HD présentant une charge hépatique en fer anormale à l’IRM ont été contrôlé pour la mutation majeure du gène HFE C282Y et les mutations génétiques mineures H63D et S65C (après avoir obtenu le consentement éclairé spécifique par écrit pour une analyse génétique, conformément à la loi française). Les tests ont été réalisés par BIOMNIS (Lyon, France) et CERBA (Saint-Ouen-l’Aumône, France), sur la base d’une discrimination allélique, à l’aide d’une Polymérase Chain Reaction (PCR) en temps réel (Chimie Ta-

qMan® ABI PRISM 7000, Roche, France) et d’un kit standardisé [12, 18, 19].

Analyses statistiques

Comme les valeurs ne suivaient pas une distribution gaussienne (test de normalité de Shapiro-Wilk), toutes les données sont exprimées en médiane et son intervalle; les pourcentages sont donnés avec leurs intervalles de confiance à 95% calculés avec la méthode de Wald modifiée [22].

Les différents groupes de patients (patients en DP, première cohorte HD, deuxième cohorte HD) ont été comparés en utilisant une analyse de variance non paramétrique (test de Kruskal-Wallis) pour les variables continues, suivie du post-test de Dunn et le test du khi-deux pour les variables qualitatives [22].

Le logiciel Prism 7 (Graphpad, San Diego, États-Unis) a été utilisé pour tous les tests et les valeurs p < 0,05 ont été considérées comme statistiquement significative [22].

RESULTATS

Caractéristiques des patients

La cohorte des patients de DP étudiée, comprenait 32 adultes français traités en région parisienne; les résultats détaillés de cette cohorte de DP et ceux des deux cohortes de patients en HD ont été publiés précédemment dans d’autres articles [12, 18, 19].

Il existait d’importantes différences dans le traitement de l’anémie entre les patients en dialyse péritonéale et ceux en hémodialyse: 71,9% des patients en DP avaient reçu un ASE, comparativement à 99,2% de la première cohorte d’hémodialysés (p < 0,0001 pour la cohorte DP et la cohorte n°1 et p = 0,0018 pour la cohorte DP et la cohorte n°2 (test X²) (Table I). De même, seuls 12,5% des patients en DP ont reçu du fer IV, comparativement à 95% des patients de la première cohorte HD et 85% des patients de la deuxième cohorte HD (p < 0,0001 par rapport à chaque cohorte HD; test X²) (Table I). L’administration de fer oral était la méthode privilégiée pour les patients en DP (25%; IC: 13 à 42,3%), mais n’a été utilisée chez aucun des patients en HD de l’une ou l’autre cohorte (Table I). Malgré ces différences d’utilisation du fer IV et des ASE, les taux d’hémoglobine étaient similaires chez les patients en DP et les patients en HD des deux cohortes (Table II).
Table I : Caractéristiques et résultats de 2 cohortes de patients hémodialysés et de la cohorte de 32 patients en dialyse péritonéale

Variables	Cohorte Originale (cohorte HD n°1) n = 119	Seconde Cohorte (cohorte HD n°2) n = 80	Patients en DP (cohorte DP n°3) n = 32	Valeur de p au test de Kruskal-Wallis avec post-test de Dunn ou au test du Chi² (comparaison des cohortes 1, 2 et 3)
Age (années)	60 [19 - 87]	70,5 [23 - 91]	64,5 [34 - 92]	p = 0,020; 1/3: p = 0,6201; 2/3: p = 0,6602; 1/2: p = 0,0013
Sexe féminin	38,7 [30,4 - 47,6]	38,8 [28,8 - 49,7]	46,9 [30,9 - 63,6]	1/3: p = 0,5233 au test X²; 2/3: p = 0,2639; 1/2: p = 0,8926
Ancienneté de dialyse (mois)	16 [2 - 95]	8,5 [2 - 66]	12,5 [2 - 52]	p = 0,0015; 1/3: p = 0,3435; 2/3: p > 0,9999; 1/2: p = 0,0011
Traitement par ASE, Pourcentage de patients (%)	99,2 [94,9 - 100]	95 [87,5 - 98,4]	71,9 [54,5 - 84,6]	p < 0,0001; 1/3: p < 0,0001; 2/3: p < 0,0001; 1/2: p = 0,0362
Dose d’ASE (µg/mois)	130 [0 - 566]	157,8 [0 - 775]	59,1 [0 - 150]	1/3: p < 0,0001 au test X²; 2/3: p < 0,0001; 1/2: p = 0,0316
Traitement par fer, Pourcentage de patients (%) (IV ou oral)	95 [89,2 - 97,9]	85 [75,4 - 91,4]	37,5 [22,9 - 54,8]	1/3: p < 0,0001 au test X²; 2/3: p = 0,0011; 1/2: p = 0,0316
Diabète, Pourcentage de patients (%)	22,7 [16 - 31,1]	38,8 [28,8 - 49,7]	34,4 [20,3 - 51,8]	1/3: p < 0,0001 au test X²; 2/3: p = 0,0223
CHF à l’IRM (µmol/g)	100 [5 - 340]	65 [5 - 320]	20 [5 - 230]	p < 0,0001; 1/3: p < 0,0001; 2/3: p < 0,0001; 1/2: p = 0,0005

ASE: Agent Stimulant l’érythropoïèse ; IV : Intraveineux ; IRM : Imagerie par résonance magnétique ; CHF : concentration hépatique en fer.

Les valeurs sont données en médiane et [intervalle].

Table II: Marqueurs biologiques du métabolisme du fer des 2 cohortes de patients hémodialysés et des 32 patients traités par dialyse péritonéale

Variables	Cohorte Originale (cohorte HD n°1) n = 119	Seconde Cohorte (cohorte HD n°2) n = 80	Patients en DP (cohorte DP n°3) n = 32	Valeur de p au test de Kruskal-Wallis avec post-test de Dunn
Hémoglobine (g/dL)	12 [8,4 - 15,1]	11,1 [8,4 - 14,7]	11,5 [8,7 - 16,2]	p = 0,0113; 1/3: p > 0,9999; 2/3: p = 0,2496; 1/2: p = 0,0099
Ferritine sèrique (µg/L)	265,5 [15 - 1383]	145,3 [12 - 2229]	144 [11 - 885]	p = 0,0008; 1/3: p = 0,0225; 2/3: p > 0,9999; 1/2: p = 0,0024
Fer sèrique (µmol/L)	9,7 [3,6 - 26,3]	10,6 [4,2 - 26,3]	13,2 [5,5 - 24,3]	p = 0,0172; 1/3: p = 0,0141; 2/3: p = 0,1094; 1/2: p = 0,8732
Transferrine sèrique (g/L)	1,7 [1,1 - 2,8]	2 [1,2 - 4,5]	2,3 [1,5 - 3,6]	p < 0,0001; 1/3: p < 0,0001; 2/3: p = 0,1266; 1/2: p < 0,0001
Coefficient de saturation de la transferrine (TSAT)(%)	23,1 [6,3 - 72,2]	21,6 [6,5 - 61,2]	23,2 [1,1 - 50]	p = 0,3558; 1/3: p > 0,9999; 2/3: p > 0,9999; 1/2: p = 0,4743
Récepteurs solubles de la transferrine (sTfR) (mg/L)	4,3 [1,4 - 13]	5,4 [0,5 - 12,8]	3,3 [2,3 - 7,9]	p = 0,0019; 1/3: p = 0,3983; 2/3: p = 0,0236; 1/2: p = 0,0122
Protéine C réactive (mg/L)	4,3 [0,3 - 75,9]	3,9 [1 - 107,3]	6,7 [1,3 - 67,6]	p = 0,1551; 1/3: p = 0,2610; 2/3: p = 0,1739; 1/2: p > 0,9999

Les valeurs sont données en médiane et [intervalle].
La concentration hépatique en fer en IRM diffère considérablement entre les patients en dialyse péritonéale et les patients en hémodialyse

La CHF différait significativement entre les 3 cohortes (p < 0,0001 au test de Kruskal-Wallis) (Table I) (Figures 1 et 2). La concentration hépatique en fer à l’IRM était normale (≤ 50 µmol/g) chez 81,3% des 32 patients en DP (IC: 64,3 à 91,5%), contre seulement 16% (IC: 10,4 à 23,7%) des patients de la première cohorte en HD et 35% (IC: 25,4-45,9%) des patients de la deuxième cohorte en HD (p < 0,0001 par rapport à chaque cohorte HD; test X²).

La surcharge en fer à l’IRM était légère (50 < CHF ≤ 100 µmol/g) chez 5 des 6 patients en DP atteints d’hémosidérose (Figures 1 et 2). Seul un des patients de DP (3,1%; IC: 0-17,1%) avait une surcharge en fer sévère en IRM (> 200 µmol/g) (Figures 1 et 2).

En comparaison, les résultats d’IRM ont montré une surcharge en fer sévère (> 200 µmol/g) chez 30,3% des patients de la première cohorte HD (IC: 22,7-39%) et 11,3% de ceux de la deuxième cohorte HD (IC: 5,8-20,2%)(p = 0,0033 par rapport à la première cohorte HD; test X²) (Figure 2). Aucun patient de DP n’avait de surcharge en fer modérée (100 < CHF ≤ 200 µmol/g). Il est intéressant de noter que le seul patient de DP atteint d’une surcharge en fer sévère, avait reçu du fer intraveineux (Figure 3).

La surcharge en fer à l’IRM n’était pas associée aux trois mutations du gène HFE C282Y, H63D et S65C (homozygotes ou hétérozygotes), ni chez les patients de DP, ni chez les patients hémodialysés. Aucun des six patients en DP atteints de surcharge hépatique en fer ne présentait de mutation du gène HFE, alors que la fréquence de ces mutations était faible et similaire chez les patients hémodialysés atteints de surcharge en fer comparative aux patients HD présentant une CHF normale [12, 18, 23].

Il est à noter que les cibles inférieures de ferritine et de TSAT appliquées à la deuxième cohorte en HD par rapport à la première cohorte en HD ont eu un impact substantial sur le risque de surcharge en fer détecté par IRM : la proportion de patients présentant une surcharge en fer dans le foie (CHF > 50 µmol/g) est passée de 84% dans la première cohorte HD à 65% dans la deuxième cohorte HD (p < 0,005 au test de X²) [12, 19]. La surcharge sévère en fer avec des conséquences cliniques potentielles (CHF > 200 µmol/g) a également nettement diminué, passant de 30,3% à 11,3% (p < 0,005 au test de X² [12, 19]).
Figure 2: Répartition de la concentration hépatique en fer à l’IRM dans les 3 cohortes de patients dialysés

Figure 3: Répartition de la concentration hépatique en fer à l’IRM chez 32 patients traités par dialyse péritonéale selon leur mode de traitement par fer
Différences des marqueurs biologiques du métabolisme du fer entre les patients de DP et ceux en HD.

Comme supposé, les patients de la deuxième cohorte HD avaient des taux de ferritine plus bas, similaires à ceux des patients de DP (Table II). Les autres différences notables entre les marqueurs biologiques du fer chez les patients de DP et ceux de la première cohorte HD concernaient le fer sérique (p = 0,0141) et la transferrine (p < 0,0001), malgré des taux proches de protéine C-réactive (Table II).

DISCUSSION

Nous avons mesuré la concentration en fer dans le foie de manière non invasive, au moyen d’une méthode IRM validée (Ratio d’intensité de signal avec l’algorithme de l’Université de Rennes) [8, 21], dans une cohorte de 32 patients français traités par DP, et comparé ces patients en DP avec deux cohortes de patients français hémodialysés (publiées en 2012 et 2014) ; ces patients ont été étudiés avec la même méthode radiologique et par la même équipe de radiologie [12, 18, 19].

Nous avons observé des différences notables dans la charge en fer hépatique entre les patients de DP et ceux en HD : la concentration hépatique en fer était normale chez la plupart des patients de DP (81,3%) mais seulement chez un faible pourcentage de patients en HD (16% dans la première cohorte HD et 35% dans la deuxième cohorte HD, dont la cible de ferritine était inférieure) [12, 18, 19]. En outre, la surcharge en fer était légère chez 5 des 6 patients de DP atteints d’hémosidérOSE ; une surcharge sévère en fer n’était observée que chez un seul patient de DP (3,1%), comparativement à 30,3% des patients de la première cohorte HD et 11,3% de la deuxième cohorte HD. Aucun patient en DP n’avait une surcharge en fer hépatique modérée [12, 18, 19].

L’IRM a apporté une contribution majeure à la connaissance des troubles liés à la surcharge en fer et à la prise en charge des patients non insuffisants rénaux, notamment en permettant une « biopsie radiologique » [7, 8, 24]. L’IRM quantitative a aussi récemment apporté de nouvelles informations sur le métabolisme du fer chez les patients hémodialysés et sur le risque de surcharge en fer [10-13, 16]. La quantification du fer dans le foie, basée sur le rapport d’intensité de signal à l’IRM selon l’algorithme de l’Université de Rennes, a récemment permis de quantifier avec précision la charge en fer chez les patients hémodialysés par comparaison avec l’histologie hépatique quantitative, comme déjà démontré chez les patients non insuffisants rénaux [25].

A noter que l’IRM a été préconisée par certains auteurs pour le suivi des réserves de fer des patients dialysés dans les pays où elle est entièrement remboursée par le système national de santé pour le diagnostic et le suivi des maladies de surcharge en fer comme en France et dans de nombreux autres pays européens ; son coût varie entre 300 et 350 euros, ce qui représente environ le coût d’une séance et demi d’hémodialyse en centre [5, 12, 13]. Le cas des États-Unis est plus complexe puisque le prix d’un examen d’IRM avec honoraires du radiologue avoisine 3000 à 3500 dollars US et que cet examen n’est généralement pas remboursé par Medicare ou Medicaid [12].

Cette étude comparant la CHF chez des patients en DP et en HD fournit des informations supplémentaires sur le rôle respectif de l’insuffisance rénale terminale et du traitement martial parentéral dans la physiopathologie de l’hémosidérOSE associée à la dialyse : la rareté de l’augmentation du contenu en fer du foie observée ici en DP où le fer IV est utilisé en deuxième (ou troisième intention) de traitement et où la cible de ferritine est physiologique par rapport l’HD, renforce l’hypothèse du rôle de l’utilisation de fortes doses de fer IV dans ce contexte et l’absence d’influence de l’insuffisance rénale terminale dans cette complication clinique.

En effet, des analyses de régression logistique binaire antérieures dans ces deux cohortes en HD ont montré que le principal facteur associé à la CHF était la dose mensuelle de fer perfusée (avec l’âge, le sexe et l’hépcidine), qui représentait également environ 33 à 37% de la variance de la CHF au test de corrélation de Spearman (mathématiquement liée au test de corrélation de Pearson) [12, 19, 22]. Il est intéressant de noter que, dans une analyse statistique combinée de ces deux cohortes de patients en HD, la ferritine était aussi corrélée à la CHF (Rho = 0,52 au test de corrélation de Spearman) et avait la meilleure capacité discriminatori dans l’analyse des courbes ROC pour prévoir la surcharge en fer (AUC = 0,77) [20].

De plus, dans notre publication de la première cohorte HD en 2012, nous avions pu démontrer le rôle du fer IV dans la survenue de la surcharge martiale de l’hémodialyse par le suivi longitudinal de 44 patients : chez 11 patients suivis pendant le traitement par fer parentéral, la dose de fer administrée par mois était en forte corrélation avec l’augmentation globale et l’augmentation mensuelle de la concentration en fer du foie (respectivement rho = 0,66 ; p = 0,0306 et rho = 0,85 ; p = 0,0015 ; test Spearman). Chez 33 patients en HD présentant une surcharge en fer, les réserves de fer ont diminué de façon très significative après l’arrêt du fer IV ou après une réduction importante de la dose de fer administrée.
(Médiane de la CHF à l’IRM initiale : 220 µmol/g (CI : 60-340) ; Médiane de la CHF à l’IRM finale : 50 µmol/g (CI : 5-210) ; p < 0,0001, test de Wilcoxon) [12].

Enfin, le rôle de la cible élevée de ferritine dans l’apparition d’une surcharge importante en fer peut également être fortement suspecté compte tenu de la réduction de l’occurrence de tels cas dans la deuxième cohorte HD où des cibles plus faibles de ferritine et de TSAT ont été volontairement appliquées [19].

Le métabolisme du fer diffère nettement entre la dialyse péritonéale et l’hémodialyse : en effet, la DP engendre moins de sources de carence en fer, comme les pertes de sang directement liées à la technique d’hémodialyse et les saignements occultes du tractus gastro-intestinal aggravés par l’anticoagulation des circuits d’hémodialyse [5, 13]. Ce besoin moindre de reconstitution des réserves en fer explique la stratégie plus prudente préconisée pour les patients en DP dans les recommandations actuelles, avec un objectif de ferritine > 100 µg/L et l’utilisation de fer oral pour le traitement de première intention [2-4, 17].

De plus, le fer par voie intraveineuse n’est pas recommandé par les référentiels KDIGO et l’ERBP de l’ERA-EDTA en tant qu’agent permettant une épargne des ASE pour les patients de DP, contrairement aux patients en HD : dans ces référentiels le fer IV est réservé aux patients de DP qui ne tolèrent pas ou répondent insuffisamment au fer oral et pour les patients en DP ayant des besoins élevés en fer [4, 17]. Cela explique pourquoi seule une faible proportion des patients en DP en France et dans de nombreux autres pays, reçoit du fer par voie intraveineuse malgré son efficacité [26, 27, 28].

L’objectif de cette étude était une comparaison de la concentration hépatique du fer mesurée par IRM chez des patients en dialyse péritonéale et en hémodialyse afin de déterminer l’influence réciproque de l’état urémique et du traitement par fer intraveineux sur le métabolisme du fer dans le foie. La teneur normale en fer hépatique, observée ici chez la plupart de nos patients en DP comparativement au faible pourcentage rapporté chez les patients en HD, conforte et renforce l’hypothèse des effets de quantités excessives de fer IV et de l’influence des cibles élevées de ferritine dans la genèse de surcharge en fer iatrogène observée récemment chez une grande proportion de patients hémodialysés (jusqu’à 66%) [9-14, 16].

Les taux sériques normaux de transferrine, observés ici chez les patients en DP, par rapport aux taux plus faibles observés chez les patients en HD, malgré des taux similaires de protéine C-réactive, justifient la réalisation de nouvelles études sur l’éventuelle relation négative entre le fer intraveineux reçu, les réserves de fer en excès et la transferrinémie chez les personnes en insuffisance rénale terminale, comme l’ont suggérés Descombes et Fellay il y a plusieurs années, qui avaient établi un lien entre l’hypotransferrinémie et l’augmentation des taux de ferritine, en plus du rôle classique de l’inflammation et de l’urémie sur la synthèse de la transferrine [29-31].

Enfin, les quelques cas de surcharge légère en fer chez les patients en DP traités par fer oral, suggèrent la possibilité de survenue d’une surcharge martiale liée à une ingestion excessive de fer par voie orale dans l’IRT comme constaté chez des sujets sains [7], ainsi que la capacité de l’érythropoïétine recombinante à augmenter l’absorption intestinale du fer chez les patients en IRT, comme le montre un modèle animal d’insuffisance rénale chronique chez le rat [32]. Ceci suggère la nécessité d’un suivi prudent de la charge hépatique en fer des patients en IRT traités par les nouveaux chélateurs de phosphates dérivés du fer, dont certains sont absorbés [13].

CONCLUSION

Contrairement aux patients en hémodialyse, la surcharge en fer en IRM apparaît rare et généralement modeste chez les patients en dialyse péritonéale. La normalité de la concentration hépatique en fer, observée ici chez la plupart des patients en DP renforce l’hypothèse du rôle des injections excessives de fer intraveineux et des objectifs élevés de répétition avec des cibles hautes de ferritine dans la physiopathologie de la surcharge en fer iatrogène observée récemment chez une grande proportion de patients hémodialysés.

DECLARATIONS D’INTERET

Les auteurs n’ont aucun conflit d’intérêts à déclarer.

Contribution des auteurs

Guy Rostoker a contribué à la conception, au design et à la conduite de l’étude; à l’acquisition des données, la planification et la réalisation de l’étude dans le service de néphrologie et de dialyse de l’Hôpital Privé Claude Galien. Il a supervisé l’analyse statistique, l’interprétation des données et le compte-rendu du travail, et a rédigé l’article.

Nasredine Ghali a contribué à la conception de l’étude et à l’acquisition des données, ainsi qu’à la planification et à la réalisation de l’étude dans le service de dialyse péritonéale du Centre Hospitalier Marc Jacquet.
Séverine Beaudreuil a contribué à l’acquisition de données ainsi qu’à la planification et à la réalisation de l’étude dans le service de dialyse péritonéale de l’hôpital Bicêtre.

Mireille Griuncelli a contribué à l’acquisition, à l’analyse et à l’interprétation des données, ainsi qu’à l’analyse statistique, et a préparé les tables et les figures.

Yves Cohen a contribué à l’acquisition et à l’analyse d’examens centralisés d’IRM.

Belkacem Issad a contribué à la conception, à la conduite et à la supervision de l’étude; à l’acquisition des données, la planification et la réalisation de l’étude dans le service de dialyse péritonéale du Groupe Hospitalier Pitie-Salpêtrière. Il a également participé à la rédaction de l’article.

REFERENCES

1. Hörl WH. Clinical aspects of iron use in the anemia of kidney disease. J Am Soc Nephrol. 2007 Feb;18(2):382-93.

2. KDOQI; National Kidney Foundation. Clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease in adults. Am J Kidney Dis. 2006 May; 47(5 Suppl. 3):S16-85.

3. Locatelli F, Covic A, Eckardt KU, Wiecek A, Vanholder R and on behalf of the ERA-EDTA ERBP Advisory Board. Anaemia management in patients with chronic kidney disease: a position statement by the Anaemia Working Group of European Renal Best Practice (ERBP). Nephrol Dial Transplant. 2009 Feb;24(2):348-54.

4. KDIGO Clinical practice Guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2:279-335.

5. Rottembourg J, Rostoker G. Use of intravenous iron supplementation in chronic kidney disease: interests, limits, and recommendations for a better practice. Nephrol Ther. 2015 Dec;11(7):531-42.

6. Macdougall IC, Bircher AJ, Eckardt KU, et Al; Conference participants. Iron management in chronic kidney disease: conclusions from a « Kidney Disease: Improving Global Outcomes» (KDIGO) Controversies Conference. Kidney Int. 2016 Jan;89(1):28-39.

7. Barton JC, Edwards CQ, Phatak PD, Britton RS, Bacon BR. Handbook of Iron overload disorders. Cambridge University Press; 2010. ISBN 978-0-521-87343-7.

8. Paisant A, d’Assignies G, Bannier E, Bardou-Jacquet E, Gandon Y. MRI for the measurement of liver iron content, and for the diagnosis and follow-up of iron overload disorders. Presse Med. 2017 Dec;46(12Pt2):e279-e287.

9. Canavese C, Bergamo D, Ciccone G, et al. Validation of serum ferritin values by magnetic susceptometry in predicting iron overload in dialysis patients. Kidney Int. 2004 Mar;65(3):1091-8.

10. Ghoti H, Rachmilewitz EA, Simon-Lopez R, et al. Evidence for tissue iron overload in long-term hemodialysis patients and the impact of withdrawing parenteral iron. Eur J Haematol. 2012 Jul;89(1):87-93.

11. Ferrari P, Kulkarni H, Dheda S, et al. Serum iron markers are inadequate for guiding iron repletion in chronic kidney disease. Clin J Am Soc Nephrol. 2011 Jan;6(1):77-83.

12. Rostoker G, Griuncelli M, Loridon C, et al. Hemodialysis-associated hemosiderosis in the era of erythropoiesis-stimulating agents: a MRI study. Am J Med. 2012 Oct;125(10):991-999.e1.

13. Rostoker G, Vaziri ND, Fishbane S. Iatrogenic iron overload in dialysis patients at the beginning of the 21st century. Drugs. 2016 May;76(7):741-57.

14. Vaziri ND. Epidemic of iron overload in dialysis population caused by intravenous iron products: a plea for moderation. Am J Med. 2012 Oct;125(10):951-2.

15. Gaweda AE, Ginzburg YZ, Chait Y, Germin MJ, Aronoff GR, Rachmilewitz E. Iron dosing in kidney disease: inconsistency of evidence and clinical practice. Nephrol Dial Transplant. 2015 Feb;30(2):187-96.

16. Rostoker G, Vaziri ND. Risk of iron overload with chronic indiscriminate use of intravenous iron products in ESRD and IBD populations. Heliyon. 2019 Jul;5(7):e02045.

17. Locatelli F, Bárány P, Covic A, et al and on behalf of the ERA-EDTA ERBP Advisory Board. Kidney disease: Improving global outcomes guidelines on anaemia management in chronic kidney disease: a European Renal Best Practice position statement. Nephrol Dial Transplant. 2013 Jun;28(6):1346-59.
18. Issad B, Ghali N, Beaudreuil S, Griuncelli M, Cohen Y, Rostoker G. Hepatic iron load at magnetic resonance imaging is normal in most patients receiving peritoneal dialysis. Kidney Int Rep. 2017 Jul;2(6):1219-1222.

19. Rostoker G, Griuncelli M, Loridon C, et al. Maximal standard dose of parenteral iron for hemodialysis patients: an MRI-based decision tree learning analysis. PloS One. 2014 Dec;9(12):e115096.

20. Rostoker G, Griuncelli M, Loridon C, et al. Reassessment of iron biomarkers for prediction of dialysis iron overload: an MRI study. PloS One. 2015 Jul 16;10(7):e0132006.

21. Gandon Y, Olivié D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet. 2004 Jan;363(9406):357-62.

22. Sheskin DJ. Handbook of parametric and nonparametric statistical procedures. 4th ed. Boca Raton, USA: Chapman and Hall, Taylor and Francis Group; 2007.

23. Rostoker G, Griuncelli M, Cohen Y. HFE gene mutations are not risk factors for iron overload in European hemodialysis patients. Hemodialysis Int. 2017 Jul;21(3):440-442.

24. Rostoker G. The changing landscape of iron overload disorders at the beginning of the 21st century. Presse Med. 2017 Dec;46(12 Pt 2):e269-e271.

25. Rostoker G, Laroudie M, Blanc R, et al. Signal-intensity-ratio MRI accurately estimates hepatic iron load in hemodialysis patients. Heliyon. 2017 Jan;3(1):e00226.

26. Wish JB. Intravenous iron: not just for hemodialysis patients anymore. Perit Dial Int. 2008 Mar-Apr;28(2):126-9.

27. Li H, Wang SX. Intravenous iron sucrose in peritoneal dialysis patients with renal anemia. Perit Dial Int. 2008 Mar-Apr;28(2):149-54.

28. Issad B, Griuncelli M, Verger C, et al. What do we learn about the “Anemia Module” of the French language Peritoneal Dialysis ? Interest and Results. Bulletin De la Dialyse à Domicile. September 2019; (3):143-9 [On line] URL : https://doi.org/10.25796/bdd.v213.20983 [consulté 2019/11/20].

29. Mercadal L, Metzger M, Haymann JP, et al. A 3-marker index improves the identification of iron disorders in CKD anaemia. PLoS One. 2014 Feb;9(2):e84144.

30. Kirschbaum B. Hypotransferrinemia of chronically hemodialyzed patients. Artif Organs. 1999 Dec;23(12):1047-54.

31. Descombes E, Fellay G. Hypotransferrinemia in chronic hemodialyzed (HD) patients. Artif Organs. 2000 Dec;24(12):988-9.

32. Srai SK, Chung B, Marks J, et al. Erythropoietin regulates intestinal iron absorption in a rat model of chronic renal failure. Kidney Int. 2010 Oct;78(7):660-7.

Reçu le 10/10/19, accepté après révision le 25/11/19, publié le 15/12/19

Open Access : cet article est sous licence Creative commons CC BY 4.0 : https://creativecommons.org/licenses/by/4.0/deed.fr

Vous êtes autorisé à :

*Adapter — copier, distribuer et communiquer le matériel par tous moyens et sous tous formats

Cette licence est acceptable pour des œuvres culturelles libres.

L’Offrant ne peut retirer les autorisations concédées par la licence tant que vous appliquez les termes de cette licence.

Selon les conditions suivantes :

* Attribution — Vous devez créditer l’Œuvre, intégrer un lien vers la licence et indiquer si des modifications ont été effectuées à l’Œuvre. Vous devez indiquer ces informations par tous les moyens raisonnables, sans toutefois suggérer que l’Offrant vous soutient ou soutient la façon dont vous avez utilisé son Œuvre. http://creativecommons.org/licenses/by/4.0/.