ARBITRARY ORIENTATIONS OF HAMILTON CYCLES IN DIGRAPHS

LOUIS DEBIASIO, DANIELA KÜHN, THEODORE MOLLA, DERYK OSTHUS AND AMELIA TAYLOR

Abstract. Let n be sufficiently large and suppose that G is a digraph on n vertices where every vertex has in- and outdegree at least $n/2$. We show that G contains every orientation of a Hamilton cycle except, possibly, the antidirected one. The antidirected case was settled by DeBiasio and Molla, where the threshold is $n/2 + 1$. Our result is best possible and improves on an approximate result by Häggkvist and Thomason.

1. Introduction

A classical result on Hamilton cycles is Dirac’s theorem [3] which states that if G is a graph on $n \geq 3$ vertices with minimum degree $\delta(G) \geq n/2$, then G contains a Hamilton cycle. Ghouila-Houri [4] proved an analogue of Dirac’s theorem for digraphs which guarantees that any digraph of minimum semidegree at least $n/2$ contains a consistently oriented Hamilton cycle (where the minimum semidegree $\delta^0(G)$ of a digraph G is the minimum of all the in- and outdegrees of the vertices in G). In [8], Keevash, Kühn and Osthus proved a version of this theorem for oriented graphs. Here the minimum semidegree threshold turns out to be $\delta^0(G) \geq (3n - 4)/8$. (In a digraph we allow two edges of opposite orientations between a pair or vertices, in an oriented graph at most one edge is allowed between any pair of vertices.)

Instead of asking for consistently oriented Hamilton cycles in an oriented graph or digraph, it is natural to consider different orientations of a Hamilton cycle. For example, Thomason [13] showed that every sufficiently large strongly connected tournament contains every orientation of a Hamilton cycle. Häggkvist and Thomason [7] proved an approximate version of Ghouila-Houri’s theorem for arbitrary orientations of Hamilton cycles. They showed that a minimum semidegree of $n/2 + n^{5/6}$ ensures the existence of an arbitrary orientation of a Hamilton cycle in a digraph. This improved a result of Grant [5] for antidirected Hamilton cycles. The exact threshold in the antidirected case was obtained by DeBiasio and Molla [2], here the threshold is $\delta^0(G) \geq n/2 + 1$, i.e., larger than in Ghouila-Houri’s theorem. In Figure 1, we give two digraphs G on $2m$ vertices which satisfy $\delta^0(G) = m$ and have no antidirected Hamilton cycle, showing that this bound is best possible. (The first of these examples is already due to Cai [1].)

Theorem 1.1 (DeBiasio & Molla, [2]). There exists an integer m_0 such that the following hold for all $m \geq m_0$. Let G be a digraph on $2m$ vertices. If $\delta^0(G) \geq m$, then G contains an antidirected Hamilton cycle, unless G is isomorphic to F^1_{2m} or F^2_{2m}. In particular, if $\delta^0(G) \geq m + 1$, then G contains an antidirected Hamilton cycle.

In this paper, we settle the problem by completely determining the exact threshold for arbitrary orientations. We show that a minimum semidegree of $n/2$ suffices if the Hamilton cycle is not antidirected. This bound is best possible by the extremal examples for Ghouila-Houri’s

Date: August 11, 2014.

The research leading to these results was partially supported by the Simons Foundation, Grant no. 283194 (Louis DeBiasio), as well as by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreements no. 258345 (D. Kühn) and 306349 (D. Osthus).
In digraphs F_{2m}^1 and F_{2m}^2, A and B are independent sets of size $m - 1$ and bold arrows indicate that all possible edges are present in the directions shown.

Theorem 1.2. There exists an integer n_0 such that the following holds. Let G be a digraph on $n \geq n_0$ vertices with $\delta^0(G) \geq n/2$. If C is any orientation of a cycle on n vertices which is not antidirected, then G contains a copy of C.

Kelly [9] proved an approximate version of Theorem 1.2 for oriented graphs. He showed that the semidegree threshold for an arbitrary orientation of a Hamilton cycle in an oriented graph is $3n/8 + o(n)$. It would be interesting to obtain an exact version of this result.

2. Proof sketch

The proof of Theorem 1.2 utilizes the notion of robust expansion which has been very useful in several settings recently. Roughly speaking, a digraph G is a robust outexpander if every vertex set S of reasonable size has an outneighbourhood which is at least a little larger than S itself, even if we delete a small proportion of the edges of G. A formal definition of robust outexpansion is given in Section 4. In Lemma 4.4 we observe that any graph satisfying the conditions of Theorem 1.2 must be a robust outexpander or have a large set which does not expand, in which case we say that G is ε-extremal. Theorem 1.2 was verified for the case when G is a robust outexpander in [12] based on the approach of Kelly [9]. This allows us to restrict our attention to the ε-extremal case. We introduce three refinements of the notion of ε-extremality: ST-extremal, AB-extremal and $ABST$-extremal. These are illustrated in Figure 2, the arrows indicate that G is almost complete in the directions shown. In each of these cases, we have that $|A| \sim |B|$ and $|S| \sim |T|$. If G is ST-extremal, then the sets A and B are almost empty and so G is close to the digraph consisting of two disjoint complete digraphs on $n/2$ vertices. If G is AB-extremal, then the sets S and T are almost empty and so in this case G is close to the complete bipartite digraph with vertex classes of size $n/2$ (thus both digraphs in Figure 1 are AB-extremal). Within each of these cases, we further subdivide the proof depending on how many changes of direction the desired Hamilton cycle has. Note that in the directed setting the set of extremal structures is much less restricted than in the undirected setting.

The main difficulty in each of the cases is covering the exceptional vertices, i.e., those vertices with low in- or outdegree in the vertex classes where we would expect most of their neighbours to lie. When G is AB-extremal, we also consider the vertices in $S \cup T$ to be exceptional and, when G is ST-extremal, we consider the vertices in $A \cup B$ to be exceptional. In each case we
find a short path P in G which covers all of these exceptional vertices. When the cycle C is close to being consistently oriented, we cover these exceptional vertices by short consistently oriented paths and when C has many changes of direction, we will map sink or source vertices in C to these exceptional vertices (here a sink vertex is a vertex of indegree two and a source vertex is a vertex of outdegree two).

An additional difficulty is that in the AB- and $ABST$-extremal cases we must ensure that the path P uses a balanced number of vertices from each of A and B. Once we have found P in G, the remaining vertices of G (i.e., those not covered by P) induce a balanced almost complete bipartite digraph and one can easily embed the remainder of C using a bipartite version of Dirac’s theorem. When G is ST-extremal, our aim will be to split the cycle C into two paths P_S and P_T and embed P_S into the digraph $G[S]$ and P_T into $G[T]$. So a further complication in this case is that we need to link together P_S and P_T as well as covering all vertices in $A \cup B$.

This paper is organised as follows. Sections 3 and 4 introduce the notation and tools which will be used throughout this paper. In Section 4.3 we describe the structure of an ε-extremal digraph and formally define what it means to be ST-, AB- or $ABST$-extremal. The remaining sections prove Theorem 1.2 in each of these three cases: we consider the ST-extremal case in Section 5, the AB-extremal case in Section 6 and the $ABST$-extremal case in Section 7.

3. Notation

Let G be a digraph on n vertices. We will write $xy \in E(G)$ to indicate that G contains an edge oriented from x to y. If G is a digraph and $x \in V(G)$, we will write $N^+_G(x)$ for the outneighbourhood of x and $N^-_G(x)$ for the inneighbourhood of x. We define $d^+_G(x) := |N^+_G(x)|$ and $d^-_G(x) := |N^-_G(x)|$. We will write, for example, $d^+_G(x) \geq a$ to mean $d^+_G(x), d^-_G(x) \geq a$. We sometimes omit the subscript G if this is unambiguous. We let $\delta^0(G) := \min\{d^+(x), d^-(x) : x \in V(G)\}$. If $A \subseteq V(G)$, we let $d^+_A(x) := |N^+_G(x) \cap A|$ and define $d^-_A(x)$ and $d^+_A(x)$ similarly. We say that $x \in V(G)$ is a sink vertex if $d^+(x) = 0$ and a source vertex if $d^-(x) = 0$.

Let $A, B \subseteq V(G)$ and $xy \in E(G)$. If $x \in A$ and $y \in B$ we say that xy is an AB-edge. We write $E(A, B)$ for the set of all AB-edges and we write $E(A)$ for $E(A, A)$. We let $e(A, B) := |E(A, B)|$ and $e(A) := |E(A)|$. We write $G[A, B]$ for the digraph with vertex set $A \cup B$ and edge set $E(A, B) \cup E(B, A)$ and we write $G[A]$ for the digraph with vertex set A and edge set $E(A)$. We say that a path $P = x_1 x_2 \ldots x_q$ is an AB-path if $x_1 \in A$ and $x_q \in B$. If $x_1, x_q \in A$, we say that
P is an A-path. If $A \subseteq V(P)$, we say that P covers A. If P is a collection of paths, we write $\bigcup_{P \in \mathcal{P}} V(P)$.

Let $P = x_1x_2 \ldots x_q$ be a path. The length of P is the number of its edges. Given sets $X_1, \ldots, X_q \subseteq V(G)$, we say that P has form $X_1X_2 \ldots X_q$ if $x_i \in X_i$ for $i = 1, 2, \ldots, q$. We will use the following abbreviation

$$(X)^k := XX \ldots X. \text{ \scriptsize{k times}}$$

We will say that P is a forward path of the form $X_1X_2 \ldots X_q$ if P has form $X_1X_2 \ldots X_q$ and $x_ix_{i+1} \in E(P)$ for all $i = 1, 2, \ldots, q-1$. Similarly, P is a backward path of the form $X_1X_2 \ldots X_q$ if P has form $X_1X_2 \ldots X_q$ and $x_{i+1}x_i \in E(P)$ for all $i = 1, 2, \ldots, q-1$.

A digraph G is oriented if it is an orientation of a simple graph (i.e., if there are no $x, y \in V(G)$ such that $xy, yx \in E(G)$). Suppose that $C = (u_1u_2 \ldots u_n)$ is an oriented cycle. We let $\sigma(C)$ denote the number of sink vertices in C. We will write $(u_iu_{i+1} \ldots u_j)$ to denote the subpath of C from u_i to u_j. In particular, (u_iu_{i+1}) may represent the edge u_iu_{i+1} or $u_{i+1}u_i$. We say that an edge (u_iu_{i+1}) is a forward edge if $(u_iu_{i+1}) = u_iu_{i+1}$ and a backward edge if $(u_iu_{i+1}) = u_{i+1}u_i$. We say that a cycle is consistently oriented if all of its edges are oriented in the same direction (forward or backward). We define a consistently oriented subpath P of C in the same way. We say that P is forward if it consists of only forward edges and backward if it consists of only backward edges. A collection of subpaths of C is consistent if they are all forward paths or if they are all backward paths. We say that a path or cycle is antidisjoint if it contains no consistently oriented subpath of length two.

Given C as above, we define $d_C(u_i, u_j) := |j - i|$. For a subpath $P = (u_iu_{i+1} \ldots u_k)$ of C, we call u_i the initial vertex of P and u_k the final vertex. We write $(u_iP) := (u_iu_{i+1} \ldots u_k)$ and $(Pu_j) := (u_iu_{i+1} \ldots u_j)$. If P_1 and P_2 are subpaths of C, we define $d_C(P_1, P_2) := d_C(v_1, v_2)$, where v_i is the initial vertex of P_i. In particular, we will use this definition when one or both of P_1, P_2 are edges. Suppose P_1, P_2, \ldots, P_k are internally disjoint subpaths of C such that the final vertex of P_i is the initial vertex of P_{i+1} for $i = 1, \ldots, k-1$. Let x denote the initial vertex of P_1 and y denote the final vertex of P_k. If $x \neq y$, we write $(P_1P_2 \ldots P_k)$ for the subpath of C from x to y. If $x = y$, we sometimes write $C = (P_1P_2 \ldots P_k)$.

We will also make use of the following notation: $a \ll b$. This means that we can find an increasing function f for which all of the conditions in the proof are satisfied whenever $a \leq f(b)$. It is equivalent to setting $a := \min\{f_1(b), f_2(b), \ldots, f_k(b)\}$, where each $f_i(b)$ corresponds to the maximum value of a allowed in order that the corresponding argument in the proof holds. However, in order to simplify the presentation, we will not determine these functions explicitly.

4. Tools

4.1. Hamilton cycles in dense graphs and digraphs. We will use the following standard results concerning Hamilton paths and cycles. Theorem 4.1 is a bipartite version of Dirac’s theorem. Proposition 4.2 is a simple consequence of Dirac’s theorem and this bipartite version.

Theorem 4.1 (Moon & Moser, [11]). Let $G = (A, B)$ be a bipartite graph with $|A| = |B| = n$. If $\delta(G) \geq n/2 + 1$, then G contains a Hamilton cycle.

Proposition 4.2. (i) Let G be a digraph on n vertices with $\delta^0(G) \geq 7n/8$. Let $x, y \in V(G)$ be distinct. Then G contains a Hamilton path of any orientation between x and y.

(ii) Let $m \geq 10$ and $G = (A, B)$ be a bipartite digraph with $|A| = m + 1$ and $|B| = m$. Suppose that $\delta^0(G) \geq (7m + 2)/8$. Let $x, y \in A$. Then G contains a Hamilton path of any orientation between x and y.
Proof. To prove (i), we define an undirected graph G' on the vertex set $V(G)$ where $uv \in E(G')$ if and only if $uv, vu \in E(G)$. Let G'' be the graph obtained from G' by contracting the vertices x and y to a single vertex x' with $N_{G''}(x') := N_{G'}(x) \cap N_{G'}(y)$. Note that \[\delta(G'') \geq (n-1)/2 = |G''|/2. \]

Hence G'' has a Hamilton cycle by Dirac’s theorem. This corresponds to a Hamilton path of any orientation between x and y in G.

For (ii), we proceed in the same way, using Theorem 4.1 instead of Dirac’s theorem. \qed

4.2. Robust expanders. Let $0 < \nu \leq \tau < 1$, let G be a digraph on n vertices and let $S \subseteq V(G)$. The ν-robust outneighbourhood $RN_{\nu,G}^+(S)$ of S is the set of all those vertices $x \in V(G)$ which have at least νn inneighbours in S. G is called a robust (ν, τ)-outexpander if $|RN_{\nu,G}^+(S)| \geq |S| + \nu n$ for all $S \subseteq V(G)$ with $\tau n < |S| < (1 - \tau)n$.

Recall from Section 1 that Kelly [9] showed that any sufficiently large oriented graph with minimum semidegree at least $(3/8 + \alpha)n$ contains any orientation of a Hamilton cycle. It is not hard to show that any such oriented graph is a robust outexpander (see [10]). In fact, in [9], Kelly observed that his arguments carry over to robustly expanding digraphs of linear degree. Taylor [12] has verified that this is indeed the case, proving the following result.

Theorem 4.3 ([12]). Suppose $1/n < \nu < \tau < 1$. Let G be a digraph on n vertices with $\delta^0(G) \geq \eta n$ and suppose G is a robust (ν, τ)-outexpander. If C is any orientation of a cycle on n vertices, then G contains a copy of C.

4.3. Structure. Let $\epsilon > 0$ and G be a digraph on n vertices. We say that G is ϵ-extremal if there is a partition A, B, S, T of its vertices into sets of sizes a, b, s, t such that $|a-b|, |s-t| \leq 1$ and $\epsilon(A \cup S, A \cup T) < \epsilon n^2$.

The following lemma describes the structure of a graph which satisfies the conditions of Theorem 1.2

Lemma 4.4. Suppose $0 < 1/n < \nu < \tau, \epsilon < 1$ and let G be a digraph on n vertices with $\delta^0(G) \geq n/2$. Then G satisfies one of the following:

(i) G is ϵ-extremal;
(ii) G is a robust (ν, τ)-outexpander.

Proof. Suppose that G is not a robust (ν, τ)-outexpander. Then there is a set $X \subseteq V(G)$ with $\tau n \leq |X| \leq (1 - \tau)n$ and $|RN_{\nu,G}^+(X)| \leq |X| + \nu n$. Define $RN^+ := RN_{\nu,G}^+(X)$. We consider the following cases:

Case 1: $\tau n \leq |X| \leq (1/2 - \sqrt{\nu})n$.

We have
\[|X|/2 \leq e(X, RN^+) + e(X, RN^+) \leq |X||RN^+| + \nu n^2 \leq |X||RN^+| + \nu n/\tau, \]
so $|RN^+| \geq (1/2 - \nu/\tau)n \geq |X| + \nu n$, which gives a contradiction.

Case 2: $(1/2 + \nu)n \leq |X| \leq (1 - \tau)n$.

For any $v \in V(G)$ we note that $d_X^-(v) \geq \nu n$. Hence $|RN^+| = |G| \geq |X| + \nu n$, a contradiction.

Case 3: $(1/2 - \sqrt{\nu})n < |X| < (1/2 + \nu)n$.

Suppose that $|RN^+| < (1/2 - 3\nu)n$. Since $d^0(G) \geq n/2$, each vertex in X has more than $3n$ outneighbours in RN^+. So there is a vertex $v \notin RN^+$ with more than $3\nu n |X|/n > \nu n$ inneighbours in X, this is a contradiction. Therefore,

$$
(1/2 - 3\nu)n < |RN^+| < |X| + \nu n < (1/2 + 2\nu)n.
$$

Write $A_0 := X \setminus RN^+$, $B_0 := RN^+ \setminus X$, $S_0 := X \cap RN^+$ and $T_0 := \overline{X} \cap RN^+$. Let a_0, b_0, s_0, t_0, respectively, denote their sizes. Note that $|X| = a_0 + s_0$, $|RN^+| = b_0 + s_0$ and $a_0 + b_0 + s_0 + t_0 = n$. It follows from (1) and the conditions of Case 3 that

$$
(1/2 - \sqrt{3})n \leq a_0 + s_0, b_0 + t_0, b_0 + s_0, a_0 + t_0 \leq (1/2 + \sqrt{3})n
$$

and so $|a_0 - b_0|, |s_0 - t_0| \leq 2\sqrt{3}n$. Note that

$$
e(A_0 \cup S_0, A_0 \cup T_0) = e(X, RN^+) < \nu n^2.
$$

By moving at most $\sqrt{3}n$ vertices between the sets A_0 and B_0 and $\sqrt{3}n$ between the sets S_0 and T_0, we obtain new sets A, B, S, T of sizes a, b, s, t satisfying $|a - b|, |s - t| \leq 1$ and $e(A \cup S, A \cup T) \leq \varepsilon n^2$. So G is ε-extremal.

4.4. Refining the notion of ε-extremality. Let $n \in \mathbb{N}$ and $\varepsilon, \varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \eta_1, \eta_2, \tau$ be positive constants satisfying

$$
1/n < \varepsilon \ll \varepsilon_1 \ll \varepsilon_2 \ll \eta_1 \ll \tau \ll \varepsilon_3 \ll \varepsilon_4 \ll \eta_2 \ll 1.
$$

We now introduce three refinements of ε-extremality. Let G be a digraph on n vertices.

Firstly, we say that G is ST-extremal if there is a partition A, B, S, T of $V(G)$ into sets of sizes a, b, s, t such that:

- (P1) $a \leq b, s \leq t$;
- (P2) $\lfloor n/2 \rfloor - \varepsilon_3 n \leq s, t \leq \lfloor n/2 \rfloor + \varepsilon_3 n$;
- (P3) $d^0(G|S), d^0(G|T) \geq \eta_2 n$;
- (P4) $d^+_S(x) \geq n/2 - \varepsilon_3 n$ for all but at most $\varepsilon_3 n$ vertices $x \in S$;
- (P5) $d^+_T(x) \geq n/2 - \varepsilon_3 n$ for all but at most $\varepsilon_3 n$ vertices $x \in T$;
- (P6) $a + b \leq \varepsilon_3 n$;
- (P7) $d^+_T(x), d^+_S(x) > n/2 - 3\varepsilon_2 n$ and $d^-_S(x), d^-_T(x) \leq 3\eta_2 n$ for all $x \in A$;
- (P8) $d^-_S(x), d^-_T(x) > n/2 - 3\varepsilon_2 n$ and $d^+_S(x), d^+_T(x) \leq 3\eta_2 n$ for all $x \in B$.

Secondly, we say that G is AB-extremal if there is a partition A, B, S, T of $V(G)$ into sets of sizes a, b, s, t such that:

- (Q1) $a \leq b, s \leq t$;
- (Q2) $\lfloor n/2 \rfloor - \varepsilon_3 n \leq a, b \leq \lfloor n/2 \rfloor + \varepsilon_3 n$;
- (Q3) $\delta^0(G|A, B) \geq n/50$;
- (Q4) $d^+_B(x) \geq n/2 - \varepsilon_3 n$ for all but at most $\varepsilon_3 n$ vertices $x \in A$;
- (Q5) $d^+_A(x) \geq n/2 - \varepsilon_3 n$ for all but at most $\varepsilon_3 n$ vertices $x \in B$;
- (Q6) $s + t \leq \varepsilon_3 n$;
- (Q7) $d^-_A(x), d^-_B(x) \geq n/50$ for all $x \in S$;
- (Q8) $d^-_B(x), d^-_A(x) \geq n/50$ for all $x \in T$;
- (Q9) if $a < b$, $d^+_B(x) < n/20$ for all $x \in B$; $d^-_B(x) < n/20$ for all $x \in S$ and $d^+_B(x) < n/20$ for all $x \in T$.

Thirdly, we say that G is $ABST$-extremal if there is a partition A, B, S, T of $V(G)$ into sets of sizes a, b, s, t such that:
(R1) \(a \leq b, s \leq t; \)
(R2) \(a, b, s, t \geq \tau n; \)
(R3) \(|a - b|, |s - t| \leq \varepsilon_1 n; \)
(R4) \(\delta^0(G[A, B]) \geq \eta_1 n; \)
(R5) \(d^+_{A \cup S}(x), d^-_{A \cup S}(x) \geq \eta_1 n \) for all \(x \in S; \)
(R6) \(d^+_{A \cup T}(x), d^-_{B \cup T}(x) \geq \eta_1 n \) for all \(x \in T; \)
(R7) \(d^-_{B}(x) \geq b - \varepsilon^{1/3} n \) for all but at most \(\varepsilon_1 n \) vertices \(x \in A; \)
(R8) \(d^+_{A}(x) \geq a - \varepsilon^{1/3} n \) for all but at most \(\varepsilon_1 n \) vertices \(x \in B; \)
(R9) \(d^+_{B \cup S}(x) \geq b + s - \varepsilon^{1/3} n \) and \(d^-_{A \cup S}(x) \geq a + s - \varepsilon^{1/3} n \) for all but at most \(\varepsilon_1 n \) vertices \(x \in S; \)
(R10) \(d^+_{A \cup T}(x) \geq a + t - \varepsilon^{1/3} n \) and \(d^-_{B \cup T}(x) \geq b + t - \varepsilon^{1/3} n \) for all but at most \(\varepsilon_1 n \) vertices \(x \in T. \)

Proposition 4.5. Suppose

\[
\frac{1}{n} \ll \varepsilon \ll \varepsilon_1 \ll \varepsilon_2 \ll \eta_1 \ll \tau \ll \varepsilon_3 \ll \varepsilon_4 \ll \eta_2 \ll 1
\]

and \(G \) is an \(\varepsilon \)-extremal digraph on \(n \) vertices with \(\delta^0(G) \geq n/2. \) Then there is a partition of \(V(G) \) into sets \(A, B, S, T \) of sizes \(a, b, s, t \) satisfying (P2)–(P8), (Q2)–(Q9) or (R2)–(R10). Moreover, if \(A, B, S, T \) satisfies (Q2)–(Q9), we also have that \(a \leq b. \)

Proof. Consider a partition \(A_0, B_0, S_0, T_0 \) of \(V(G) \) into sets of sizes \(a_0, b_0, s_0, t_0 \) such that \(|a_0 - b_0|, |s_0 - t_0| \leq 1 \) and \(e(A_0 \cup S_0, A_0 \cup T_0) < \varepsilon n^2. \) Define

\[
X_1 := \{ x \in A_0 \cup S_0 : d^+_{B_0 \cup S_0}(x) < n/2 - \sqrt{\varepsilon n} \},
\]

\[
X_2 := \{ x \in A_0 \cup T_0 : d^+_{B_0 \cup T_0}(x) < n/2 - \sqrt{\varepsilon n} \},
\]

\[
X_3 := \{ x \in B_0 \cup T_0 : d^+_{A_0 \cup T_0}(x) < n/2 - \sqrt{\varepsilon n} \},
\]

\[
X_4 := \{ x \in B_0 \cup S_0 : d^+_{A_0 \cup S_0}(x) < n/2 - \sqrt{\varepsilon n} \}
\]

and let \(X := \bigcup_{i=1}^4 X_i. \) We now compute an upper bound for \(|X|. \) Each vertex \(x \in X_1 \) has \(d^+_{A_0 \cup T_0}(x) > \sqrt{\varepsilon n}, \) so \(|X_1| \leq \varepsilon n^2/\sqrt{\varepsilon n} = \varepsilon n. \) Also, each vertex \(x \in X_2 \) has \(d^+_{A_0 \cup S_0}(x) > \sqrt{\varepsilon n}, \) so \(|X_2| \leq \sqrt{\varepsilon n}. \) Observe that

\[
|A_0 \cup T_0||n/2 - \varepsilon n^2| \leq e(B_0 \cup T_0, A_0 \cup T_0)
\]

\[
\leq (n/2 - \sqrt{\varepsilon n})|X_3| + |A_0 \cup T_0||B_0 \cup T_0| - |X_3|
\]

which gives

\[
|X_3|(|A_0 \cup T_0| - n/2 + \sqrt{\varepsilon n}) \leq |A_0 \cup T_0||B_0 \cup T_0| - n/2 + \varepsilon n^2 \leq 2\varepsilon n^2.
\]

So \(|X_3| \leq 2\varepsilon n^2/(\sqrt{\varepsilon n}/2) = 4\sqrt{\varepsilon n}. \) Similarly, we find that \(|X_4| \leq 4\sqrt{\varepsilon n}. \) Therefore, \(|X| \leq 10\sqrt{\varepsilon n}. \)

Case 1: \(a_0, b_0 < 2\tau n. \)

Let \(Z := X \cup A_0 \cup B_0. \) Choose disjoint \(Z_1, Z_2 \subseteq Z \) so that \(d^+_{B_0}(x) \geq 2\eta_2 n \) for all \(x \in Z_1 \) and \(d^+_{B_0}(x) \geq 2\eta_2 n \) for all \(x \in Z_2 \) and \(|Z_1 \cup Z_2| \) is maximal. Let \(S := (S_0 \setminus X) \cup Z_1 \) and \(T := (T_0 \setminus X) \cup Z_2. \) The vertices in \(Z \setminus (Z_1 \cup Z_2) \) can be partitioned into two sets \(A \) and \(B \) so that \(d^+_{A}(x), d^+_{B}(x) \geq n/2 - 3\eta_2 n \) for all \(x \in A \) and \(d^+_{S}(x), d^+_{T}(x) \geq n/2 - 3\eta_2 n \) for all \(x \in B. \) The partition \(A, B, S, T \) satisfies (P2)–(P8).

Case 2: \(s_0, t_0 < 2\tau n. \)

Partition \(X \) into four sets \(Z_1, Z_2, Z_3, Z_4 \) so that \(d^+_{B_0}(x) \geq n/5 \) for all \(x \in Z_1; d^+_{A_0}(x) \geq n/5 \) for all \(x \in Z_2; d^+_{B_0}(x), d^+_{A_0}(x) \geq n/5 \) for all \(x \in Z_3 \) and \(d^+_{B_0}(x), d^+_{A_0}(x) \geq n/5 \) for all \(x \in Z_4. \) Then set \(A_1 := (A_0 \setminus X) \cup Z_1, B_1 := (B_0 \setminus X) \cup Z_2. \)
Assume, without loss of generality, that $|A_1| \leq |B_1|$. To ensure that the vertices in B satisfy (Q9), choose disjoint sets $B', B'' \subseteq B_1$ so that $|B' \cup B''|$ is maximal subject to: $|B' \cup B''| \leq |B_1| - |A_1|$, $d_{B_0}^+(x) \geq n/20$ for all $x \in B'$ and $d_{B_1}^+(x) \geq n/20$ for all $x \in B''$. Set $B := B_1 \setminus (B' \cup B'')$, $S_1 := (S_0 \setminus X) \cup Z_3 \cup B'$ and $T_1 := (T_0 \setminus X) \cup Z_4 \cup B''$. To ensure that the vertices in $S \cup T$ satisfy (Q9), choose sets $S' \subseteq S_1$, $T' \subseteq T_1$ which are maximal subject to: $|S'| + |T'| \leq |B| - |A_1|$, $d_{B_0}^+(x) \geq n/20$ for all $x \in S'$ and $d_{B_1}^+(x) \geq n/20$ for all $x \in T'$. We define $A := A_1 \cup S' \cup T'$, $S := S_1 \setminus S'$ and $T := T_1 \setminus T'$. Then $a \leq b$ and (Q2)–(Q9) hold.

Case 3: $a_0, b_0, s_0, t_0 \geq 2\tau n - 1$.

The case conditions imply $a_0, b_0, s_0, t_0 < n/2 - \tau n$. Then, since $\delta^0(G) \geq n/2$, each vertex must have at least $2\eta_1 n$ inneighbours in at least two of the sets A_0, B_0, S_0, T_0. The same holds when we consider outneighbours instead. So we can partition the vertices in X into sets Z_1, Z_2, Z_3, Z_4 so that: $d_{B_0}^+(x) \geq 2\eta_1 n$ for all $x \in Z_1$; $d_{A_0}^-(x) \geq 2\eta_1 n$ for all $x \in Z_2$; $d_{B_0 \cup S_0}^+(x), d_{A_0 \cup S_0}^-(x) \geq 2\eta_1 n$ for all $x \in Z_3$ and $d_{A_0 \cup T_0}^+(x), d_{B_0 \cup T_0}^-(x) \geq 2\eta_1 n$ for all $x \in Z_4$. Let $A := (A_0 \setminus X) \cup Z_1$, $B := (B_0 \setminus X) \cup Z_2$, $S := (S_0 \setminus X) \cup Z_3$ and $T := (T_0 \setminus X) \cup Z_4$. This partition satisfies (R2)–(R10).

The above result implies that to prove Theorem 1.2 for ε-extremal graphs it will suffice to consider only graphs which are ST-extremal, AB-extremal or ABST-extremal. Indeed, to see that we may assume that $a \leq b$ and $s \leq t$, suppose that G is ε-extremal. Then G has a partition satisfying (P2)–(P10), (Q2)–(Q10) or (R2)–(R10) by Proposition 4.5. Note that relabelling the sets of the partition (A, B, S, T) by (B, A, T, S) if necessary allows us to assume that $a \leq b$. If $s \leq t$, then we are done. If $s > t$, reverse the orientation of every edge in G to obtain the new graph G'. Relabel the sets (A, B, S, T) by (A, B, T, S). Under this new labelling, the graph G' satisfies all of the original properties as well as $a \leq b$ and $s \leq t$. Obtain C' from the cycle C by reversing the orientation of every edge in C. The problem of finding a copy of C in G is equivalent to finding a copy of C' in G'.

5. **G is ST-extremal**

The aim of this section is to prove the following lemma which settles Theorem 1.2 in the case when G is ST-extremal.

Lemma 5.1. Suppose that $1/n \ll \varepsilon_3 \ll \varepsilon_4 \ll \eta_2 \ll 1$. Let G be a digraph on n vertices such that $\delta^0(G) \geq n/2$ and G is ST-extremal. If C is any orientation of a cycle on n vertices, then G contains a copy of C.

We will split the proof of Lemma 5.1 into two cases based on how close the cycle C is to being consistently oriented. Recall that $\sigma(C)$ denotes the number of sink vertices in C. Observe that in any oriented cycle, the number of sink vertices is equal to the number of source vertices.

5.1. C has many sink vertices, $\sigma(C) \geq \varepsilon_4 n$. The rough strategy in this case is as follows. We would like to embed half of the cycle C into $G[S]$ and half into $G[T]$, making use of the fact that these graphs are nearly complete. At this stage, we also suitably assign the vertices in $A \cup B$ to $G[S]$ or $G[T]$. We will partition C into two disjoint paths, P_S and P_T, each containing at least $\sigma(C)/8$ sink vertices, which will be embedded into $G[S]$ and $G[T]$. The main challenge we will face is finding appropriate edges to connect the two halves of the embedding.

Lemma 5.2. Suppose that $1/n \ll \varepsilon_3 \ll \varepsilon_4 \ll \eta_2 \ll 1$. Let G be a digraph on n vertices with $\delta^0(G) \geq n/2$. Suppose A, B, S, T is a partition of $V(G)$ satisfying (P2)–(P10). Let C be an oriented cycle on n vertices with $\sigma(C) \geq \varepsilon_4 n$. Then there exists a partition S^*, T^* of the vertices
of G and internally disjoint paths R_1, R_2, P_S, P_T such that $C = (P_SR_1P_TR_2)$ and the following hold:

(i) $S \subseteq S^*$ and $T \subseteq T^*$;
(ii) $|P_T| = |T^*|$;
(iii) P_S and P_T each contain at least $\varepsilon_4 n/8$ sink vertices;
(iv) $|R_i| \leq 3$ and G contains disjoint copies R_i^G of R_i such that R_1^G is an ST-path, R_2^G is a TS-path and all interior vertices of R_i^G lie in S^*.

In the proof of Lemma 5.2 we will need the following proposition.

Proposition 5.3. Suppose that $1/n \ll \varepsilon_3 \ll \varepsilon_4 \ll \eta \ll 1$. Let G be a digraph on n vertices with $\delta^0(G) \geq n/2$. Suppose A, B, S, T is a partition of $V(G)$ satisfying (P7)–(P8).

(i) If $a = b \in \{0, 1\}$ then there are two disjoint edges between S and T of any given direction.
(ii) If $A = \emptyset$ then there are two disjoint TS-edges.
(iii) If $a = 1$ and $b \geq 2$ then there are two disjoint TS-edges.
(iv) There are two disjoint edges in $E(S, T \cup A) \cup E(T, S \cup B)$.

Proof. Let

$$S' := \{x \in S : N_A^+(x), N_B^-(x) = \emptyset\} \text{ and } T' := \{x \in T : N_A^+(x), N_B^-(x) = \emptyset\}.$$

First we prove (i). If $a = b \in \{0, 1\}$ then it follows from (P7)–(P8) that $|S'|, |T'| \geq n/4$. Since $s \leq t$, it is either the case that $s \leq (n-1)/2 - b$ or $s = t = n/2 - b$. If $s \leq (n-1)/2 - b$ choose any $x \neq y \in S'$. Both x and y have at least $n/2 - ((n-1)/2 - b - 1 + b) = 2$ inneighbours and outneighbours in T, so we find the desired edges. Otherwise $s = t = n/2 - b$ and each vertex in S' must have at least one inneighbour and at least one outneighbour in T and each vertex in T' must have at least one inneighbour and at least one outneighbour in S. It is now easy to check that (i) holds. Indeed, König’s theorem gives the two required disjoint edges provided they have the same direction. Using this, it is also easy to find two edges in opposite directions.

We now prove (ii). Suppose that $A = \emptyset$. We have already seen that the result holds when $B = \emptyset$. So assume that $b \geq 1$. Since $s \leq (n-b)/2$, each vertex in S must have at least $b/2 + 1$ inneighbours in $T \cup B$. Assume for contradiction that there are no two disjoint TS-edges. Then all but at most one vertex in S must have at least $b/2$ inneighbours in B. So $e(B, S) \geq bn/8$ which implies that there is a vertex $v \in B$ with $d_S^+(v) \geq n/8$. But this contradicts (P8). So there must be two disjoint TS-edges.

Suppose that $a = 1$ and $b \geq 2$. Since $s \leq (n-b-1)/2$, each vertex in S must have at least $(b+1)/2$ inneighbours in $T \cup B$. Assume that there are no two disjoint TS-edges. Then all but at most one vertex in S have at least $(b-1)/2$ inneighbours in B. So $e(B, S) \geq nb/12$ which implies that there is a vertex $v \in B$ with $d_S^+(v) \geq n/12$ which contradicts (P8). Hence (ii) holds.

For (iv), we observe that $\min\{s+b, t+a\} \leq (n-1)/2$ or $s+b = t+a = n/2$. If $s+b \leq (n-1)/2$ then each vertex in S has at least two outneighbours in $T \cup A$, giving the desired edges. A similar argument works if $t+a \leq (n-1)/2$. If $s+b = t+a = n/2$ then each vertex in S has at least one outneighbour in $T \cup A$ and each vertex in T has at least one outneighbour in $S \cup B$. It is easy to see that there must be two disjoint edges in $E(S, T \cup A) \cup E(T, S \cup B)$. \hfill \square

Proof of Lemma 5.2. Observe that C must have a subpath P_1 of length $n/3$ containing at least $\varepsilon_4 n/3$ sink vertices. Let $v \in P_1$ be a sink vertex such that the subpaths (P_1v) and (vP_1) of P_1 each contain at least $\varepsilon_4 n/7$ sink vertices. Write $C = (v_1v_2 \ldots v_n)$ where $v_1 := v$ and write $k' := n - t$.

Case 1: \(a \leq 1\)

If \(a = b\), set \(S^* := S \cup A \cup B\), \(T^* := T\), \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). By Proposition 5.3, \(G\) contains a pair of disjoint edges between \(S\) and \(T\) of any given orientation. So we can map \(v_nv_1\) to a \(TS\)-edge and \((v_{k-1}v_{k+1})\) to an edge between \(S\) and \(T\) of the correct orientation such that the two edges are disjoint.

Suppose now that \(b \geq a + 1\). By Proposition 5.3, we find two disjoint \(TS\)-edges \(e_1\) and \(e_2\). If \(v_{k-1}\) is not a source vertex, set \(S^* := S \cup A \cup B\), \(T^* := T\), \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). Map \(v_nv_1\) to \(e_1\). If \(v_{k-1}v_{k+1} \in E(C)\), map \(R_1\) to a path of the form \(SST\) which uses \(e_2\). Otherwise, since \(v_{k-1}\) is not a source vertex, \(R_1\) is a forward path. Using (H8), we find a forward path of the form \(SBT\) for \(R_1^G\).

So let us suppose that \(v_{k-1}\) is a sink vertex. Let \(b_1 \in B\) and set \(S^* := S \cup A \cup B\) \(\setminus\{b_1\}\) and \(T^* := T \cup \{b_1\}\). Let \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). We know that \(v_nv_1, v_{k-1}v_{k+1} \in E(C)\), so we can map these edges to \(e_1\) and \(e_2\).

In each of the above, we define \(P_S\) and \(P_T\) to be the paths, which are internally disjoint from \(R_1\) and \(R_2\), such that \(C = (P_SR_1P_TR_2)\). Note that (i)–(iv) are satisfied.

Case 2: \(a \geq 2\)

Apply Proposition 5.3 to find two disjoint edges \(e_1, e_2 \in E(S, T \cup A) \cup E(T, S \cup B)\). Choose any distinct \(x, y \in A \cup B\) such that \(x\) and \(y\) are disjoint from \(e_1\) and \(e_2\).

First let us suppose that \(v_{k-1}\) is a sink vertex. If \(e_1, e_2 \in E(S, A) \cup E(T, S \cup B)\), set \(S^* := S \cup A \cup B\), \(T^* := T\), \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). If \(e_1 \in E(T, S \cup B)\), use (H3) and (H8) to find a path of the form \(S(S \cup B)T\) which uses \(e_1\) for \(R_1^G\). If \(e_1 \in E(S, A)\), we use (H2) to find a path of the form \(SAT\) using \(e_1\) for \(R_1^G\). In the same way, we find a copy \(R_2^G\) of \(R_2\). If exactly one of \(e_1, e_2\) lies in \(E(S, T)\), set \(S^* := (S \cup A \cup B) \setminus \{x\}\), \(T^* := T \cup \{x\}\), \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). Then \(v_nv_1\) can be mapped to \(e_2\) and we use \(e_1\) to find a copy \(R_1^G\) of \(R_1\) as before. If both \(e_1, e_2 \in E(S, T)\), set \(S^* := (S \cup A \cup B) \setminus \{x, y\}\), \(T^* := T \cup \{x, y\}\), \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). Then map \(v_nv_1\) and \(v_{k-1}v_{k+1}\) to the edges \(e_1\) and \(e_2\).

Suppose now that \((v_{k-1}v_{k+1})\) is a consistently oriented path. If \(e_2 \notin E(S, T)\), let \(S^* := S \cup A \cup B\), \(T^* := T\), \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). And if \(e_2 \in E(S, T)\), let \(S^* := (S \cup A \cup B) \setminus \{x\}\), \(T^* := T \cup \{x\}\), \(R_1 := (v_{k-1}v_{k+1})\) and \(R_2 := (v_nv_1)\). Then use the edge \(e_2\) to find a copy \(R_2^G\) of \(R_2\) as above. We use (H2) or (H8) to map \(R_1\) to a backward path of the form \(SAT\) or a forward path of the form \(SBT\) as appropriate.

We let \(P_S\) and \(P_T\) be paths which are internally disjoint from \(R_1\) and \(R_2\) such that \(C = (P_SR_1P_TR_2)\). Then (i)–(iv) are satisfied.

It remains to consider the case when \(v_{k-1}\) is a source vertex. We now consider the vertex \(v_{k-1}\) instead of \(v_{k+1}\). Note that \(C\) cannot contain two adjacent source vertices, so either \(v_{k-1}\) is a sink vertex or \((v_{k-2}v_{k}v_{k-1})\) is a backward path. We proceed as previously. Note that when we define the path \(P_T\) it will have one additional vertex and so we must allocate an additional vertex from \(A \cup B\) to \(T^*\), we are able to do this since \(a + b > 3\).

Apply Lemma 5.2 to \(G\) to obtain internally disjoint subpaths \(R_1, R_2, P_S\) and \(P_T\) of \(C\) as well as a partition \(S^*, T^*\) of \(V(G)\). Let \(R_i^G\) be copies of \(R_i\) in \(G\) satisfying the properties of the lemma. Write \(R^*\) for the set of interior vertices of the \(R_i^G\). Define \(G_S := G[S^* \setminus R^*]\) and \(G_T := G[T^*]\). Let \(x_T\) and \(x_S\) be the images of the final vertices of \(R_1\) and \(R_2\) and let \(y_S\) and \(y_T\) be the images of the initial vertices of \(R_1\) and \(R_2\), respectively. Also, let \(V_S := S^* \cap (A \cup B)\) and \(V_T := T^* \cap (A \cup B)\).

The following proposition allows us to embed copies of \(P_S\) and \(P_T\) in \(G_S\) and \(G_T\). The idea is to greedily find a short path which will contain all of the vertices in \(V_S\) and \(V_T\) and any
vertices of “low degree”. We then use that the remaining graph is nearly complete to complete the embedding.

Proposition 5.4. Let \(G_S, P_S, P_T, x_S, y_S, x_T \) and \(y_T \) be as defined above.

(i) There is a copy of \(P_S \) in \(G_S \) such that the initial vertex of \(P_S \) is mapped to \(x_S \) and the final vertex is mapped to \(y_S \).

(ii) There is a copy of \(P_T \) in \(G_T \) such that the initial vertex of \(P_T \) is mapped to \(x_T \) and the final vertex is mapped to \(y_T \).

Proof. We prove (i), the proof of (ii) is identical. Write \(P_S = (u_1u_2\ldots u_k) \). An averaging argument shows that there exists a subpath of \(P_S \) of order at most \(\varepsilon n \) containing at least \(\sqrt{\varepsilon n} \) sink vertices.

Let \(X := \{ x \in S : d^+_S(x) < n/2 - \varepsilon n \text{ or } d^-_S(x) < n/2 - \varepsilon n \} \). By (P4), \(|X| \leq \varepsilon n \) and so, using (P3), we see that every vertex \(x \in X \) is adjacent to at least \(\eta n/2 \) vertices in \(S \setminus X \). So we can assume that there is a copy of \(C \) in \(G \) which covers all vertices in \(S \setminus X \) and consider these vertices instead.

Let \(u'_1 \) be the initial vertex of \(P \) and \(u'_k \) be the final vertex. Define \(m_1 := d_{P_S}(u_1, u'_1) + 1 \) and \(m_2 := d_{P_S}(u'_1, u_k) + 1 \). Suppose first that \(m_1, m_2 > \eta n \). We greedily find a copy \(P^G \) of \(P \) in \(G \) which covers all vertices in \(V_S \cup X \) such that \(u'_1 \) and \(u'_k \) are mapped to vertices \(s_1, s_2 \in S \setminus X \). This is possible since any two vertices in \(X \) can be joined by a path of length at most three of any given orientation, by (P3) and (P4), and we can use each vertex in \(V_S \) as the image of a sink or source vertex of \(P \). Partition \((V(G_S) \setminus V(P^G)) \cup \{ s_1, s_2 \} \), arbitrarily, into two sets \(L_1 \) and \(L_2 \) of size \(m_1 \) and \(m_2 \) respectively so that \(s_1, x_S \in L_1 \) and \(s_2, y_S \in L_2 \). Consider the graphs \(G_i := G_S[L_i] \) for \(i = 1, 2 \). Then (P4) implies that \(\delta(G_i) \geq m_i - \varepsilon n - \varepsilon n \geq 7m_i/8 \). Applying Proposition 4.2(i), we find suitably oriented Hamilton paths from \(s_1 \) to \(x_S \) in \(G_1 \) and \(s_2 \) to \(y_S \) in \(G_2 \) which, when combined with \(P \), form a copy of \(P_S \) in \(G_S \) (with endvertices \(x_S \) and \(y_S \)).

It remains to consider the case when \(m_1 < \eta n \) or \(m_2 < \eta n \). Suppose that the former holds (the latter is similar). Let \(P' \) be the subpath of \(P_S \) between \(u_1 \) and \(u'_k \). So \(P \subseteq P' \). Similarly as before, we first greedily find a copy of \(P' \) in \(G_S \) which covers all vertices of \(X \cup V_S \) and then extend this to an embedding of \(P_S \).

Proposition 5.4 allows us to find copies of \(P_S \) and \(P_T \) in \(G_S \) and \(G_T \) with the desired endvertices. Combining these with \(R_1^G \) and \(R_2^G \) found in Lemma 5.2 we obtain a copy of \(C \) in \(G \). This proves Lemma 5.1 when \(\sigma(C) \geq \varepsilon n \).

5.2. \(C \) has few sink vertices, \(\sigma(C) < \varepsilon n \).

We will call a consistently oriented subpath of \(C \) which has length 20 a long run.

Proposition 5.5. Suppose that \(1/n \ll \varepsilon \ll 1 \) and \(n/4 \leq k \leq 3n/4 \). Let \(C \) be an oriented cycle with \(\sigma(C) < \varepsilon n \). Then we can write \(C \) as \((u_1u_2\ldots u_n)\) such that there exist:

(i) Long runs \(P_1, P_2 \) such that \(P_1 \) is a forward path and \(d_C(P_1, P_2) = k \),

(ii) Long runs \(P'_1, P'_2, P'_3, P'_4 \) such that \(d_C(P'_i, P'_{i+1}) = \lfloor n/4 \rfloor \) for \(i = 1, 2, 3 \).

Proof. Let \(P \) be a subpath of \(C \) of length \(n/8 \). Let \(Q \) be a consistent collection of vertex disjoint long runs in \(P \) of maximum size. Then \(|Q| \geq 2\varepsilon n \), with room to spare. We can write \(C \) as \((u_1u_2\ldots u_n)\) so that the long runs in \(Q \) are forward paths.

Suppose that (i) does not hold. For each \(Q_i \in Q \), let \(Q'_i \) be the path of length 20 such that \(d_C(Q_i, Q'_i) = k \). Since \(Q'_i \) is not a long run, \(Q'_i \) must contain at least one sink or source vertex. The paths \(Q'_i \) are disjoint so, in total, \(C \) must contain at least \(|Q|/2 \geq \varepsilon n > \sigma(C) \) sink vertices, a contradiction. Hence (i) holds.
We call a collection of four disjoint long runs \(P_1, P_2, P_3, P_4 \) good if \(P_1 \in \mathcal{Q} \) and \(d_C(P_i, P_{i+1}) = \lfloor n/4 \rfloor \) for all \(i = 1, 2, 3 \). Suppose \(C \) does not contain a good collection of long runs. In particular, this means that each long run in \(\mathcal{Q} \) does not lie in a good collection. For each path \(Q_i \in \mathcal{Q} \), let \(Q_{i,1}, Q_{i,2}, Q_{i,3} \) be subpaths of \(C \) of length 20 such that \(d_C(Q_i, Q_{i,j}) = j\lfloor n/4 \rfloor \). Since \(\{Q_i, Q_{i,1}, Q_{i,2}, Q_{i,3}\} \) does not form a good collection, at least one of the \(Q_{i,j} \) must contain a sink or source vertex. The paths \(Q_{i,j} \) where \(Q_i \in \mathcal{Q} \) and \(j = 1, 2, 3 \) are disjoint so, in total, \(C \) must contain at least \(|\mathcal{Q}|/2 \geq \varepsilon n > \sigma(C) \) sink vertices, which is a contradiction. This proves (ii).

\[\square\]

Proposition 5.6. Let \(G \) be a digraph on \(n \) vertices with \(\delta^0(G) \geq n/2 \). Let \(d \geq 0 \) and suppose \(A, B, S, T \) is a partition of \(V(G) \) into sets of size \(a, b, s, t \) with \(t \geq s \geq d + 2 \) and \(b = a + d \). Then \(G \) contains a collection \(M \) of \(d + 1 \) edges in \(E(T, S \cup B) \cup E(B, S) \) satisfying the following. The endvertices of \(M \) outside \(B \) are distinct and each vertex in \(B \) is the endvertex of at most one \(TB \)-edge and at most one \(BS \)-edge in \(M \). Moreover, if \(e(T, S) > 0 \), then \(M \) contains a TS-edge.

Proof. Let \(k := t - s \). We define a bipartite graph \(G' \) with vertex classes \(S' := S \cup B \) and \(T' := T \cup B \) together with all edges \(xy \) such that \(x \in S', y \in T' \) and \(yx \in E(T, S \cup B) \cup E(B, S) \). We claim that \(G' \) has a vertex cover \(X \) of size \(|X| < d + 2 \). To prove the claim, suppose that \(G' \) has a vertex cover \(X \) of size \(|X| > d + 2 \). Then \(|X \cap S'| < (d - k)/2 + 1 \) or \(|X \cap T'| < (d + k)/2 + 1 \). Suppose that the former holds and consider any vertex \(t_1 \in T \setminus X \). Since \(\delta^+(G) \geq n/2 \) and \(a + t = (n - d + k)/2 \), \(t_1 \) has at least \((d - k)/2 + 1\) outneighbours in \(S' \). But these vertices cannot all be covered by \(X \). So we must have that \(|X \cap T'| < (d + k)/2 + 1 \). Consider any vertex \(s_1 \in S \setminus X \). Now \(\delta^-(G) \geq n/2 \) and \(a + s = (n - d - k)/2 \), so \(s_1 \) must have at least \((d + k)/2 + 1\) inneighbours in \(T' \). But not all of these vertices can be covered by \(X \). Hence, any vertex cover of \(G' \) must have size at least \(d + 2 \) and so König’s theorem implies that \(G' \) has a matching of size \(d + 2 \).

If \(e(T, S) > 0 \), either the matching contains a TS-edge, or we can choose any TS-edge \(e \) and at least \(d \) of the edges in the matching will be disjoint from \(e \). This corresponds to a set of \(d + 1 \) edges in \(E(T, S \cup B) \cup E(B, S) \) in \(G \) with the required properties. \[\square\]

We define a good path system \(\mathcal{P} \) to be a collection of disjoint \(S \)- and \(T \)-paths such that each path \(P \in \mathcal{P} \) is consistently oriented, has length at most six and covers at least one vertex in \(A \cup B \). Each good path system \(\mathcal{P} \) gives rise to a modified partition \(A_\mathcal{P}, B_\mathcal{P}, S_\mathcal{P}, T_\mathcal{P} \) of the vertices of \(G \) (we allow \(A_\mathcal{P}, B_\mathcal{P} \) to be empty) as follows. Let \(\text{Int}_S(\mathcal{P}) \) be the set of all interior vertices on the \(S \)-paths in \(\mathcal{P} \) and \(\text{Int}_T(\mathcal{P}) \) be the set of all interior vertices on the \(T \)-paths. We set
\[A_\mathcal{P} := A \setminus V(\mathcal{P}), B_\mathcal{P} := B \setminus V(\mathcal{P}), S_\mathcal{P} := (S \cup \text{Int}_S(\mathcal{P})) \setminus \text{Int}_T(\mathcal{P}) \text{ and } T_\mathcal{P} := (T \cup \text{Int}_T(\mathcal{P})) \setminus \text{Int}_S(\mathcal{P})\]

and say that \(A_\mathcal{P}, B_\mathcal{P}, S_\mathcal{P}, T_\mathcal{P} \) is the \(\mathcal{P} \)-partition of \(V(G) \).

Lemma 5.7. Suppose that \(1/n \ll \varepsilon_3 \ll \varepsilon_4 \ll \eta_2 \ll 1 \). Let \(G \) be a digraph on \(n \) vertices with \(\delta^0(G) \geq n/2 \). Suppose \(A, B, S, T \) is a partition of \(V(G) \) satisfying (F1)–(F8). Let \(C \) be a cycle on \(n \) vertices with \(\sigma(C) < \varepsilon_4 n \). Then one of the following holds:

- There exist internally disjoint paths \(P_S, P_T, R_1, R_2 \) such that:
 - (i) \(C = (P_S R_1 P_T R_2) \);
 - (ii) \(|P_T| = t^*\);
 - (iii) \(R_1 \) and \(R_2 \) are paths of length two and \(G \) contains disjoint copies \(R_i^G \) of \(R_i \) whose interior vertices lie in \(V(G) \setminus T \). Moreover, \(R_1^G \) is an \(ST \)-path and \(R_2^G \) is a \(TS \)-path.
- There exist internally disjoint paths \(P_S', P_T', P_{S_2}, P_{T_2}, R_1, R_2, R_3, R_4 \) such that:
 - (i) \(C = (P_S R_1 P_T R_2 P_{S_2} R_3 P_{T_2} R_4) \).
(ii) \(|P_T| + |P'_T| = t^*\) and \(|P_S|, |P'_S|, |P_T|, |P'_T| \geq n/8\);
(iii) \(R_1, R_2, R_3, R_4\) are paths of length two and \(G\) contains disjoint copies \(R^G_i\) of \(R_i\) whose interior vertices lie in \(V(G) \setminus T\). Moreover, \(R^G_1\) and \(R^G_3\) are ST-paths and \(R^G_2\) and \(R^G_4\) are TS-paths.

Furthermore, \(G\) has a good path system \(\mathcal{P}\) such that the paths in \(\mathcal{P}\) are disjoint from each \(R^G_i\), \(\mathcal{P}\) covers \((A \cup B) \setminus \bigcup V(R^G_i)\) and the \(\mathcal{P}\)-partition \(A_\mathcal{P}, B_\mathcal{P}, S_\mathcal{P}, T_\mathcal{P}\) of \(V(G)\) satisfies \(|T_\mathcal{P}| = t^*\).

Proof. Let \(d := b - a\) and \(k := t - s\).

We first obtain a good path system \(\mathcal{P}_0\) covering \(A \cup B\) as follows. Apply Proposition 5.5(i) to obtain a collection \(M_0\) of \(d + 1\) edges as described in the proposition. Let \(M \subseteq M_0\) of size \(d\) such that \(M\) contains a TS-edge if \(d \geq 1\) and \(e(T,S) > 0\). We use each edge \(e \in M\) together with properties (P3), (P5) and (P8) to cover one vertex in \(B\) by a consistently oriented path of length at most six as follows. If \(e \in E(T,B)\) and \(e\) is disjoint from all other edges in \(M\), find a consistently oriented path of the form \(TBT\) using \(e\). If \(e \in E(B,S)\) and \(e\) is disjoint from all other edges in \(M\), find a consistently oriented path of the form \(SBS\) using \(e\). If \(e \in E(T,S)\), we note that (P8) allows us to find a consistently oriented path of length three between any vertex in \(B\) and any vertex in \(T\). So we can find a consistently oriented path of the form \(SB(T)^3S\) which uses \(e\). Finally, if \(e \in E(T,B)\) and shares an endvertex with another edge \(e' \in M \cap E(B,S)\) we find a consistently oriented path of the form \(SB(T)^3BS\) using \(e\) and \(e'\). So \(M\) allows us to find a good path system \(\mathcal{P}_1\) covering \(d\) vertices in \(B\).

Label the vertices in \(A\) by \(a_1, a_2, \ldots, a_a\) and the remaining vertices in \(B\) by \(b_1, b_2, \ldots, b_b\). We now use (P5)–(P8) to find a consistently oriented path \(L_i\) covering each pair \(a_i, b_i\). If \(1 \leq i \leq \lceil(4a + k)/8\rceil\), cover the pair \(a_i, b_i\) by a path of the form \(SBTAS\). If \(\lceil(4a + k)/8\rceil < i \leq a\) cover the pair \(a_i, b_i\) by a path of the form \(TASBT\). Let \(\mathcal{P}_2 := \bigcup_{i=1}^a L_i\).

We are able to choose all of these paths so that they are disjoint and thus obtain a good path system \(\mathcal{P}_0 := \mathcal{P}_1 \cup \mathcal{P}_2\) covering \(A \cup B\). Let \(A_\mathcal{P}_0, B_\mathcal{P}_0, S_\mathcal{P}_0, T_\mathcal{P}_0\) be the \(\mathcal{P}_0\)-partition of \(V(G)\) and let \(t' := |T_\mathcal{P}_0|, s' := |S_\mathcal{P}_0|\).

By Proposition 5.5(i), we can enumerate the vertices of \(C\) so that there are long runs \(P_1, P_2\) such that \(P_1\) is a forward path and \(d_C(P_1, P_2) = t'\). We will find consistently oriented ST- and TS-paths for \(R^G_1\) and \(R^G_2\) which depend on the orientation of \(P_2\). The paths \(R_1\) and \(R_2\) will be consistently oriented subpaths of \(P_1\) and \(P_2\) respectively, whose position will be chosen later.

Case 1: \(b \geq a + 2\).

Suppose first that \(P_2\) is a backward path. If \(\mathcal{P}_1\) contains a path of the form \(SB(T)^3BS\), let \(b_0\) and \(b'_0\) be the two vertices in \(B\) on this path. Otherwise, let \(b_0\) and \(b'_0\) be arbitrary vertices in \(B\) which are covered by \(\mathcal{P}_1\). Use (P8) to find a forward path for \(R^G_1\) which is of the form \(S\{b_0\}T\). We also find a backward path of the form \(T\{b'_0\}S\) for \(R^G_2\). We choose the paths \(R^G_1\) and \(R^G_2\) to be disjoint from all paths in \(\mathcal{P}_0\) which do not contain \(b_0\) or \(b'_0\).

Suppose now that \(P_2\) is a forward path. If \(a \geq 1\), consider the path \(L_1 \in \mathcal{P}_2\) covering \(a_1 \in A\) and \(b_1 \in B\). Find forward paths of the form \(S\{b_1\}T\) for \(R^G_1\) and \(T\{a_1\}\) for \(R^G_2\), using (P7) and (P8), which are disjoint from all paths in \(\mathcal{P}_0 \setminus \{L_1\}\). Finally, we consider the case when \(a = 0\). Recall that \(e(T,S) > 0\) by Proposition 5.3(ii) and so \(M\) contains a TS-edge. Hence there is a path \(P' \in \mathcal{P}_0\) of the form \(SB(T)^3S\) covering a vertex \(b_0 \in B\) and \(t_1s_1 \in E(T,S)\), say. We use (P8) to find forward paths of the form \(S\{b_0\}T\) for \(R^G_1\) and \(\{t_1\}\{s_1\}S\) for \(R^G_2\) which are disjoint from all paths in \(\mathcal{P}_0 \setminus \{P'\}\).

Obtain the good path system \(\mathcal{P}\) from \(\mathcal{P}_0\) by removing all paths meeting \(R^G_1\) or \(R^G_2\). Let \(A_\mathcal{P}, B_\mathcal{P}, S_\mathcal{P}, T_\mathcal{P}\) be the \(\mathcal{P}\)-partition of \(V(G)\) and \(t^\star := |T_\mathcal{P}|\). The only vertices which could have moved to obtain \(T_\mathcal{P}\) from \(T_\mathcal{P}_0\) are interior vertices on the paths in \(\mathcal{P}_0 \setminus \mathcal{P}\), so \(|t^\star - t'| \leq 2 \cdot 5 = 10|\).
Thus we can choose R_1 and R_2 to be subpaths of length two of P_1 and P_2 so that $|P_T| = t^*$, where P_S and P_T are defined by $C = (P_SR_1P_TR_2)$.

Case 2: $b \leq a + 1$.

Case 2.1: $a \leq 1$.

If $a = b$, by Proposition [5.3][1] we can find disjoint $e_1, e_2 \in E(S,T)$ and disjoint $e_3 \in E(S,T)$, $e_4 \in E(T,S)$. Note that $P_0 = P_2$, since $a = b$, so we may assume that all paths in P_0 are disjoint from e_1, e_2, e_3, e_4. If P_2 is a forward path, find a forward path of the form SST for R_1^G using e_3 and a forward path of the form TSS for R_2^G using e_4. If P_2 is a backward path, find a forward path of the form SST for R_1^G using e_1 and a backward path of the form TSS for R_2^G using e_2. In both cases, we choose R_1^G and R_2^G to be disjoint from all paths in P_0.

If $b = a + 1$, note that there exist $e_1 \in E(S,T)$ and $e_2 \in E(T,S)$. (To see this, use that $\delta^0(G) \geq n/2$ and the fact that (P7) and (P8) imply that $|\{x \in S : N^+_A(x), N^-_B(x) = 0\}| \geq n/4$.)

We may assume that all paths in P_2 are disjoint from e_1, e_2. Let $b_0 \in B$ be the vertex covered by the single path in P_1. Find a forward path of the form $S\{b_0\}T$ for R_2^G, using (P8). Find a consistently oriented path of the form TSS for R_2^G which uses e_1 if P_2 is a backward path and e_2 if P_2 is a forward path. Choose the paths R_1^G and R_2^G to be disjoint from the paths in $P_0 \setminus P_1 = P_2$.

In both cases, we obtain the good path system \mathcal{P} from P_0 by removing at most one path which meets R_1^G or R_2^G. Let A_P, B_P, S_P, T_P be the \mathcal{P}-partition of $V(G)$ and let $t^* := |T_P|$. The only vertices which could have moved to obtain T_P from T_{P_0} are interior vertices on the path in $P_0 \setminus P$ if $P_0 \neq P$, so $|t^* - t'| \leq 5$. So we can choose subpaths R_1 of P_1 so that $|P_T| = t^*$, where P_S and P_T are defined by $C = (P_SR_1P_TR_2)$.

Case 2.2: $2 \leq a \leq k$.

If P_2 is a forward path, consider $a_1 \in A$ and $b_1 \in B$ which were covered by the path $L_1 \in \mathcal{P}_0$. Use (D7) and (D8) to find forward paths, disjoint from all paths in $P_0 \setminus \{L_1\}$, of the form $S\{b_1\}T$ and $T(a_1)S$ for R_1^G and R_2^G respectively.

Suppose now that P_2 is a backward path. We claim that G contains $2 - d$ disjoint ST-edges. Indeed, suppose not. Then $d^+_A(x) \leq 1 - d$ for all but at most one vertex in S. Note that $b + s = (n - k + d)/2$, so $d^+_A(x) \geq (k - d)/2 + 1$ for all $x \in S$. So

$$e(S,A) \geq (s - 1)((k - d)/2 + 1 - (1 - d)) = (s - 1)(k + d)/2 \geq nk/8 \geq na/8.$$

Hence, there is a vertex $x \in A$ with $d^+_A(x) \geq n/8$, contradicting (D7). Let $E = \{e_i : 1 \leq i \leq 2 - d\}$ be a set of $2 - d$ disjoint ST-edges. We may assume that P_2 is disjoint from E.

If $a = b$, use (D3) to find a forward path of the form SST using e_1 for R_1^G and a backward path of the form TSS using e_2 for R_2. If $b = a + 1$, let $b_0 \in B$ be the vertex covered by the single path in P_1. Use (D3) and (D8) to find a forward path of the form $S\{b_0\}T$ for R_1^G and a backward path of the form TSS using e_1 for R_2^G. We choose the paths R_1^G and R_2^G to be disjoint from all paths in P_2.

In both cases, we obtain the good path system \mathcal{P} from P_0 by removing at most one path which meets R_1^G or R_2^G. Let A_P, B_P, S_P, T_P be the \mathcal{P}-partition of $V(G)$ and $t^* := |T_P|$. The only vertices which could have moved to obtain T_P from T_{P_0} are interior vertices on the path in $P_0 \setminus P$ if $P_0 \neq P$, so $|t^* - t'| \leq 5$. Thus we can choose R_1 and R_2 to be subpaths of length two of P_1 and P_2 so that $|P_T| = t^*$, where P_S and P_T are defined by $C = (P_SR_1P_TR_2)$.

Case 2.3: $a \geq 2, k$.

We note that
\[
 t' - s' = |(T \cup \text{Int}_T(P_0)) \setminus \text{Int}_S(P_0)| - |(S \cup \text{Int}_S(P_0)) \setminus \text{Int}_T(P_0)| \\
= |(T \cup \text{Int}_T(P_2)) \setminus \text{Int}_S(P_2)| - |(S \cup \text{Int}_S(P_2)) \setminus \text{Int}_T(P_2)| + c \\
= (t + 3a - 4[(4a + k)/8]) - (s + 4[(4a + k)/8] - a) + c \\
= 4a + k - 8[(4a + k)/8] + c
\]
where \(-7 \leq c \leq 1\) is a constant representing the contribution of interior vertices on the path in \(P_1\) if \(b = a + 1\) and \(c = 0\) if \(b = a\). In particular, this implies that \(|t' - s'| \leq 15\) and
\[
(n - 15)/2 \leq s', t' \leq (n + 15)/2.
\]
Apply Proposition 5.5(ii) to find long runs \(P'_i, P''_i, P'_3, P'_4\) such that \(d_C(P'_i, P''_{i+1}) = \lfloor n/4 \rfloor\) for \(i = 1, 2, 3\). Let \(x_i\) be the initial vertex of each \(P'_i\). If \(\{P'_i, P''_{i+1}\}\) is consistent for some \(i \in \{1, 2\}\), consider \(a_1 \in A, b_1 \in B\) which were covered by the path \(L_1 \in P_0\). If \(P'_i, P''_{i+2}\) are both forward paths, let \(R^G_i\) and \(R^G_{i+2}\) be forward paths of the form \(S\{b_1\}T\) and \(T\{a_1\}\) respectively. If \(P'_i, P''_{i+2}\) are both backward paths, let \(R^G_i\) and \(R^G_{i+2}\) be backward paths of the form \(S\{a_1\}T\) and \(T\{b_1\}\) respectively. Choose the paths \(R^G_i\) and \(R^G_{i+2}\) to be disjoint from the paths in \(P := P_0 \setminus \{L_1\}\). Let \(A_P, B_P, S_P, T_P\) be the \(P\)-partition of \(V(G)\) and let \(t^* := |T_P|\). The only vertices which could have been added or removed to obtain \(T_P\) from \(T_{P_0}\) are interior vertices on \(L_1\) so \((n - 15)/2 - 3 \leq t^* \leq (n + 15)/2 + 3\). Then we can choose \(R_1\) and \(R_2\) to be subpaths of length two of \(P'_i\) and \(P''_{i+2}\) so that \(|P_T| = t^*\), where \(P_S, P_{T}\) are defined so that \(C = (P_S R_1 P_T R_2 R_{15})\).

Figure 3. A good collection of long runs.

Consider the vertices \(a_i \in A\) and \(b_i \in B\) covered by the paths \(L_i \in P_0\) for \(i = 1, 2\). Let \(P := P_0 \setminus \{L_1, L_2\}\) and let \(A_P, B_P, S_P, T_P\) be the \(P\)-partition of \(V(G)\). Let \(t^* := |T_P|\). The only vertices which can have been added or removed to obtain \(T_P\) from \(T_{P_0}\) are interior vertices on the paths \(L_1\) and \(L_2\), so \((n - 15)/2 - 6 \leq t^* \leq (n + 15)/2 + 6\). Find a forward path of the form \(S\{b_1\}T\) for \(R^G_i\). Then find backward paths of the form \(T\{b_2\}S\) and \(S\{a_1\}T\) for \(R^G_{i+2}\) and \(R^G_{i+3}\) respectively. Finally, find a forward path of the form \(T\{a_2\}S\) for \(R^G_{i+4}\). We can choose the paths \(R^G_i\) to be disjoint from all paths in \(P\). Since \(P'_i\) and \(P''_i\) are of length 20 we are able to find subpaths \(R_1, R_2, R_3, R_4\) of \(P'_1, P''_1, P'_3, P'_4\) so that \(|P_T| + |P'_T| = t^*\), where \(P_S, P', P_T, P'_T\) are defined so that \(C = (P_S R_1 P_T R_2 P'_S R_3 P'_T R_4)\). \(\square\)
In order to prove Lemma 5.1 in the case when \(\sigma(C) < \varepsilon_4n \), we first apply Lemma 5.7 to \(G \). We now proceed similarly as in the case when \(G \) has many sink vertices (see Proposition 5.4) and so we only provide a sketch of the argument. We first observe that any subpath of the cycle of length \(100\varepsilon_4n \) must contain at least

\[
\left\lceil \frac{100\varepsilon_4n}{21} \right\rceil - 2\varepsilon_4n > 2\varepsilon_3n \geq a + b \geq |P|
\]

disjoint long runs. Let \(s_1 \) be the image of the initial vertex of \(P \). Let \(P^*_S \) be the subpath of \(P \) formed by the first \(100\varepsilon_4n \) edges of \(P \). We can cover all \(S \)-paths in \(P \) and all vertices \(x \in S \) which satisfy \(d^+_S(x) < n/2 - \varepsilon_3n \) or \(d^-_S(x) < n/2 - \varepsilon_3n \) greedily by a path in \(G \) starting from \(s_1 \) which is isomorphic to \(P^*_S \). Note that (2) ensures that \(P^*_S \) contains \(|P| \) disjoint long runs. So we can map the \(S \)-paths in \(P \) to subpaths of these long runs. Let \(P^*_S \) be the path formed by removing from \(P \) all edges in \(P^*_S \).

If Lemma 5.7(i) holds and thus \(P \) is the only path to be embedded in \(G[S] \), we apply Proposition 4.2(ii) to find a copy of \(P^*_S \) in \(G[S] \), with the desired endvertices. If Lemma 5.7(ii) holds, we must find copies of both \(P \) and \(P' \) in \(G[S] \). So we split the graph into two subgraphs of the appropriate size before applying Proposition 4.2(i) to each. We do the same to find copies of \(P_T \) (or \(P'_T \) and \(P'_T \)) in \(G[T] \). Thus, we obtain a copy of \(C \) in \(G \). This completes the proof of Lemma 5.1.

6. \(G \) is AB-extremal

The aim of this section is to prove the following lemma which shows that Theorem 1.2 is satisfied when \(G \) is AB-extremal.

Lemma 6.1. Suppose that \(1/n \ll \varepsilon_3 \ll 1 \). Let \(G \) be a digraph on \(n \) vertices with \(\delta^0(G) \geq n/2 \) and assume that \(G \) is AB-extremal. If \(C \) is any orientation of a cycle on \(n \) vertices which is not antidirected, then \(G \) contains a copy of \(C \).

If \(b > a \), the next lemma implies that \(E(B \cup T, B) \) contains a matching of size \(b - a + 2 \). We can use \(b - a \) of these edges to pass between vertices in \(B \) whilst avoiding \(A \) allowing us to correct the imbalance in the sizes of \(A \) and \(B \).

Proposition 6.2. Suppose \(1/n \ll \varepsilon_3 \ll 1 \). Let \(G \) be a digraph on \(n \) vertices with \(\delta^0(G) \geq n/2 \). Suppose \(A, B, S, T \) is a partition of \(V(G) \) satisfying (G1)-(G9) and \(b = a + d \) for some \(d > 0 \). Then there is a matching of size \(d + 2 \) in \(E(B \cup T, B) \).

Proof. Consider a maximal matching \(M \) in \(E(B \cup T, B) \) and suppose that \(|M| \leq d + 1 \). Since \(a + s \leq (n - d)/2 \), each vertex in \(B \) has at least \(d/2 \) inneighbours in \(B \cup T \). In particular, since \(M \) was maximal, each vertex in \(B \setminus V(M) \) has at least \(d/2 \) inneighbours in \(V(M) \). Then there is a \(v \in V(M) \subseteq B \cup T \) with

\[
\frac{d_B^+(v)}{2} \geq \frac{(b - 2|M|)}{2} \geq \frac{n}{20},
\]

contradicting (G9). Therefore \(|M| \geq d + 2 \).

6.1. Finding an exceptional cover. We say that \(P \) is an exceptional cover of \(G \) if \(P \subseteq G \) is a copy of a subpath of \(C \) and

(EC1) \(P \) covers \(S \cup T \);
(EC2) both endvertices of \(P \) are in \(A \);
(EC3) \(|A \setminus V(P)| + 1 = |B \setminus V(P)| \).
We will use the following notation when describing the form of a path. If $X,Y \in \{A,B\}$ then we write $X * Y$ for any path which alternates between A and B whose initial vertex lies in X and final vertex lies in Y. For example, $A * A(ST)^2$ indicates any path of the form ABAB \ldots ASTST.

Suppose that P is of the form $Z_1Z_2 \ldots Z_m$, where $Z_i \in \{A,B,S,T\}$. Let $Z_{i_1},Z_{i_2}, \ldots, Z_{i_j}$ be the appearances of A and B, where $i_j < i_{j+1}$. If $Z_{i_j} = A = Z_{i_{j+1}}$, we say that $Z_{i_{j+1}}$ is a repeated A. We define a repeated B similarly. Let rep(A) and rep(B) be the numbers of repeated As and repeated Bs, respectively. Suppose that P has both endvertices in A and P uses $\ell + \text{rep}(B)$ vertices from B. Then P will use $\ell + \text{rep}(A) + 1$ vertices from A (we add one because both endvertices of P lie in A). So we have that

$$|B \setminus V(P)| - |A \setminus V(P)| = b - a - \text{rep}(B) + \text{rep}(A) + 1.$$

Given a set of edges $M \subseteq E(G)$ we define the graph G_M whose vertex set is $V(G)$ and whose edge set is $E(A,B \cup S) \cup E(B,A \cup T) \cup E(T,A) \cup E(S,B) \cup M \subseteq E(G)$. Informally, in addition to the edges of M, G_M has edges between two vertex classes when the bipartite graph they induce in G is dense.

Proposition 6.3. Suppose $1/n \ll \varepsilon_3 \ll \varepsilon_4 \ll 1$. Let G be a digraph on n vertices with $\delta^0(G) \geq n/2$. Suppose A,B,S,T is a partition of $V(G)$ satisfying $(Q1)$–$Q9$. If $\sigma(C) < \varepsilon_4 n$, then there is an exceptional cover of G of length at most $21 \varepsilon_4 n$.

Proof. Let $d := b - a$. Let P be any subpath of C of length $20 \varepsilon_4 n$. Let Q be a maximum consistent collection of disjoint paths of length three in P, such that $d_C(Q,Q') \geq 7$ for all distinct $Q,Q' \in Q$. Then

$$|Q| \geq \left(\frac{20 \varepsilon_4 n}{7} - 2 \varepsilon_4 n\right)/2 > 4 \varepsilon_3 n > d + s + t.$$

If necessary, reverse the order of all vertices in Q so that the paths in Q are forward paths. Apply Proposition 6.2 to find a matching $M \subseteq E(B \cup T, B)$ of size d and write $M = \{e_1, \ldots, e_m, f_{m+1}, \ldots, f_d\}$, where $e_i \in E(B)$ and $f_i \in E(T,B)$. Map the initial vertex of P to any vertex in A. We will greedily find a copy of P in G_M which covers M and $S \cup T$ as follows.

Note that, by (Q5), we can cover each edge $f_i \in M$ by a forward path of the form BTA. By (Q7), each of the vertices in S can be covered by a forward path of the form ASB. Similarly, (Q8) allows us to find a forward path of the form BTA covering each vertex in T. Moreover, note that (Q2)–(Q5) allow us to find a path of length three of any orientation between any pair of vertices $x \in A$ and $y \in B$ using only edges from $E(A,B) \cup E(B,A)$. So we can find a copy of P which covers every edge in M and every vertex in $(S \cup T) \setminus V(M)$ by a copy of a path in Q and which has the form

$$(A * BB)^m(A * BTB)^{d-m}(A * ASB)^s(A * BT)^{t-d+m}A * X,$$

where $X \in \{A,B\}$. We may assume that $X = A$ by extending the path P by one vertex if necessary. Let P^G denote this copy of P in G.

Now (EC1) and (EC2) hold. It remains to check (EC3). Observe that P^G contains no repeated As and exactly d repeated Bs, these occur in the subpath of P^G of the form $(A * BB)^m(A * BTB)^{d-m}$. By (Q5), we see that

$$|B \setminus V(P^G)| - |A \setminus V(P^G)| = 1,$$

so (EC3) is satisfied. Hence P^G forms an exceptional cover. □
Let P be a subpath of C and let m be the number of sink vertices in P. Suppose that P_1, P_2, P_3 is a partition of P into internally disjoint paths such that $P = (P_1 P_2 P_3)$. We say that P_1, P_2, P_3 is a **useful tripartition** of P if there exist $Q_i \subseteq V(P_i)$ such that:

- P_1 and P_2 have even length;
- $|Q_i| \geq \lceil m/12 \rceil$ for $i = 1, 2, 3$;
- all vertices in $Q_1 \cup Q_3$ are sink vertices and are an even distance apart;
- all vertices in Q_2 are source vertices and are an even distance apart.

Note that a useful tripartition always exists. We say that Q_1, Q_2, Q_3 is a **sink/source set** for the tripartition P_1, P_2, P_3. We say that an initial subpath $L \subseteq P_2$ is a link if L has even length and, if, writing x for the initial vertex and y for the final vertex of L, the paths $(P_2 x)$ and $(y P_2)$ each contain at least $|Q_2|/3$ elements of Q_2.

Proposition 6.4. Let $1/n \ll \varepsilon \ll \eta \ll \tau \leq 1$. Let G be a digraph on n vertices and let A, B, S, T be a partition of $V(G)$. Let S_A, S_B be disjoint subsets of S and T_A, T_B be disjoint subsets of T. Let $a := |A|$, $b := |B|$, $s_A := |S_A|$, $s_B := |S_B|$, $t_A := |T_A|$, $t_B := |T_B|$ and let $a_1 \in A$. Suppose that:

(i) $a, b \geq \tau n$;
(ii) $s_A, s_B, t_A, t_B \leq \varepsilon n$;
(iii) $\delta^+(G[A, B]) \geq \eta n$;
(iv) $d^+_B(x) \geq b - \varepsilon n$ for all but at most εn vertices $x \in A$;
(v) $d^+_A(x) \geq a - \varepsilon n$ for all but at most εn vertices $x \in B$;
(vi) $d^+_{A}(x) \geq \eta n$ for all $x \in S_A$, $d^+_{B}(x) \geq \eta n$ for all $x \in S_B$, $d^-_{A}(x) \geq \eta n$ for all $x \in T_A$ and $d^-_{B}(x) \geq \eta n$ for all $x \in T_B$.

Suppose that P is a path of length at most $\eta^2 n$ which contains at least $200 \varepsilon n$ sink vertices. Let P_1, P_2, P_3 be a useful tripartition of P with sink/source set Q_1, Q_2, Q_3. Let $L \subseteq P_2$ be a link. Suppose that $G \setminus (S_A \cup S_B \cup T_A \cup T_B)$ contains a copy L^G of L which is an AB-path if $d_C(P, L)$ is even and a BA-path otherwise. Let r_A be the number of repeated As in L^G and r_B be the number of repeated Bs in L^G. Let G' be the graph with vertex set $V(G)$ and edges

$E(A, B \cup S_A) \cup E(B, A \cup T_B) \cup E(T_A, A) \cup E(S_B, B) \cup E(L)$.

Then G' contains a copy P^G of P such that:

- $L^G \subseteq P^G$;
- P^G covers S_A, S_B, T_A, T_B;
- a_1 is the initial vertex of P^G;
- The final vertex of P^G lies in B if P has even length and A if P has odd length;
- P^G has $s_A + t_A + r_A$ repeated As and $s_B + t_B + r_B$ repeated Bs.

Proof. We may assume, without loss of generality, that the initial vertex of P lies in Q_1. If not, let x be the first vertex on P lying in Q_1 and greedily embed the initial segment $(P x)$ of P starting at a_1 using edges in $E(A, B) \cup E(B, A)$. Let a_1' be the image of x. We can then use symmetry to relabel the sets A, B, S_A, S_B, T_A, T_B, if necessary, to assume that $a_1' \in A$.

We will use (vi) to find a copy of P which covers the vertices in $S_A \cup T_B$ by sink vertices in $Q_1 \cup Q_3$ and the vertices in $S_B \cup T_A$ by source vertices in Q_2. We will use that $|Q_i| \geq 15 \varepsilon n$ for all i and also that (iii)–(v) together imply that G' contains a path of length three of any orientation between any pair of vertices in $x \in A$ and $y \in B$. Consider any $q_1 \in Q_1$ and $q_2 \in Q_2$. The order in which we cover the vertices will depend on whether $d_C(q_1, q_2)$ is even or odd (note that the parity of $d_C(q_1, q_2)$ does not depend on the choice of q_1 and q_2).
Suppose first that $d_C(q_1, q_2)$ is even. We find a copy of P in G' as follows. Map the initial vertex of P to a_1. Then greedily cover all vertices in T_B so that they are the images of sink vertices in Q_1, using a path P^G_1 which is isomorphic to P_1 and has the form $(A*B T_B B)^{t_B} A*A$. Let x_L be the initial vertex of L and y_L be the final vertex. Let x^*_L and y^*_L be the images of x_L and y_L in L^G. Cover all vertices in S_B so that they are the images of source vertices in Q_2 using a path isomorphic to (P_2x_L) which starts from the final vertex of P^G_1 and ends at x^*_L. This path has the form $(A*BS_B B)^{t_B} A*X$, where $X := A$ if $d_C(P, L)$ is even and $X := B$ if $d_C(P, L)$ is odd. Now use the path L_G. Next cover all vertices in T_A so that they are the images of source vertices in Q_2 using a path isomorphic to $(y_L P_2)$ whose initial vertex is y^*_L. This path has the form $Y*A(B*A T_A A)^{t_A} B*B$, where $Y := B$ if $d_C(P, L)$ is even and $Y := A$ if $d_C(P, L)$ is odd. Let P^G_2 denote the copy of P_2 obtained in this way. Finally, starting from the final vertex of P^G_2, find a copy of P_3 which covers all vertices in S_A by sink vertices in Q_3 and has the form $(B*AS_A A)^{t_A} B*B$ if P (and thus also P_3) has even length and $(B*AS_A A)^{t_A} B*A$ if P (and thus also P_3) has odd length. If $d_C(q_1, q_2)$ is odd, we find a copy of P which covers T_B, T_A, $V(L^G)$, S_B, S_A (in this order) in the same way. Observe that P^G has $s_A + t_A + r_A$ repeated As and $s_B + t_B + r_B$ repeated Bs, as required.

Lemma 6.5. Suppose $1/n \ll \varepsilon_3 \ll \varepsilon_4 \ll 1$. Let G be a digraph on n vertices with $\delta^G \geq n/2$. Suppose A, B, S, T is a partition of $V(G)$ satisfying (Q1)–(Q9). If C is an oriented cycle on n vertices, C is not antidirected and $\sigma(C) \geq \varepsilon_4 n$, then there is an exceptional cover P of G of length at most $2\varepsilon_4 n$.

Proof. Let $d := b - a$, $k := t - s$ and $r := s + t$. Since $\sigma(C) \geq \varepsilon_4 n$, we can use an averaging argument to guarantee a subpath Q' of C of length at most $\varepsilon_4 n$ such that Q' contains at least $2\sqrt{\varepsilon_3} n$ sink vertices. Let Q be an initial subpath of Q' which has odd length and contains $\sqrt{\varepsilon_3} n$ sink vertices.

Case 1: $a < b$ or $s < t$.

We will find disjoint sets of vertices S_A, S_B, T_A, T_B, of sizes s_A, s_B, t_A, t_B respectively, and a matching $M' = E \cup E'$ such that the following hold:

(E1) $S_A \cup S_B = S$ and $T_A \cup T_B = T \setminus V(E')$;
(E2) $E \subseteq E(B), |E| \leq d$;
(E3) $E' \subseteq E(B \cup T, B) \cup E(A, A \cup T)$ and $1 \leq |E'| \leq 2$;
(E4) Let $p := |E' \cap E(B)| - |E' \cap E(A)|$, then $s_A + t_A + d = s_B + t_B + p + |E|$.

We find sets satisfying (E1)–(E4) as follows. Suppose first that n is odd. Note that we can find a matching $M \subseteq E(B \cup T, B)$ of size $d + 1$. Indeed, if $a < b$ then M exists by Proposition 6.2 and if $a = b$ and $s < t$, we use that $a + s < n/2$ and $\delta^G \geq n/2$ to find M of size $d + 1 = 1$. Fix one edge $e \in M$ and let $E' := \{e\}$. There are $r' := r - |V(E') \cap T|$ vertices in $S \cup T$ which are not covered by E'. Set $d' := \min\{r', d - p\}$ and let $E \subseteq (M \setminus E') \cap E(B)$ of size $d - p - d'$. Suppose that n is even. If $a < b$ by Proposition 6.2 we find a matching M of size $d + 2$ in $E(B \cup T, B)$. Fix two edges $e_1, e_2 \in M$ and let $E' := \{e_1, e_2\}$. Choose r', d' and E as above.

If n is even and $a = b$, then $a + s = b + s = (n - k)/2 \leq n/2 - 1$. So $d_{A \cup T}(x) \geq k/2$ for each $x \in A$ and $d_{B \cup T}(x) \geq k/2$ for each $x \in B$. Either we can find a matching M of size two in $E(B \cup T, B) \cup E(A, A \cup T)$ or $t = s + 2$ and there is a vertex $v \in T$ such that $A \subseteq N^-(v)$ and $B \subseteq N^+(v)$. In the latter case, move v to S to get a new partition satisfying (Q1)–(Q9) and the conditions of Case 2. So we will assume that the former holds. Let $E' := M$, $E := \emptyset$, $r' := r - |V(E') \cap T|$ and $d' := -p$.

ARBITRARY ORIENTATIONS OF HAMILTON CYCLES IN DIGRAPHS 19

In each of the above cases, note that \(d' \equiv r' \mod 2 \) and \(|d'| \leq r' \). So we can choose disjoint subsets \(S_A, S_B, T_A, T_B \) satisfying (E1) such that \(s_A + t_A = (r' - d')/2 \) and \(s_B + t_B = (r' + d')/2 \). Then (E4) is also satisfied.

We construct an exceptional cover as follows. Let \(L_1 \) denote the oriented path of length two whose second vertex is a sink and let \(L_2 \) denote the oriented path of length two whose second vertex is a source. For each \(e \in E' \), we find a copy \(L(e) \) of \(L_1 \) or \(L_2 \) covering \(e \). If \(e \in E(A) \) let \(L(e) \) be a copy of \(L_1 \) of the form \(AAB \), if \(e \in E(B) \) let \(L(e) \) be a copy of \(L_1 \) of the form \(ABB \), if \(e \in E(A, T) \) let \(L(e) \) be a copy of \(L_1 \) of the form \(ATB \) and if \(e \in E(T, B) \) let \(L(e) \) be a copy of \(L_2 \) of the form \(ATB \). Note that for each \(e \in E' \), the orientation of \(L(e) \) is the same regardless of whether it is traversed from its initial vertex to final vertex or vice versa. This means that we can embed it either as an \(AB \)-path or a \(BA \)-path.

Let \(a_1 \) be any vertex in \(A \) and let \(e_1 \in E' \). Let \(r_A \) and \(r_B \) be the number of repeated \(A \) and \(B \)s, respectively, in \(L(e_1) \). So \(r_A = 1 \) if and only if \(e_1 \in E(A) \), otherwise \(r_A = 0 \). Also, \(r_B = 1 \) if and only if \(e_1 \in E(B) \), otherwise \(r_B = 0 \). Consider a useful tripartition \(P_1, P_2, P_3 \) of \(Q \). Let \(L \subseteq P_2 \) be a link which is isomorphic to \(L(e_1) \). Let \(x \) denote the final vertex of \(Q \). Using Proposition 6.4 (with \(2e_3, e_4, 1/4 \) playing the roles of \(e, \eta, \tau \)), we find a copy \(Q^G \) of \(Q \) covering \(S_A, S_B, T_A, T_B \) whose initial vertex is \(a_1 \). Moreover, \(L(e_1) \subseteq Q^G \subseteq G_{\{e_1\}} \subseteq G_M \), the final vertex \(x^G \) of \(Q^G \) lies in \(A \), \(Q^G \) has \(s_A + t_A + r_A \) repeated \(A \)s and \(s_B + t_B + r_B \) repeated \(B \)s. If \(|E'| = 2 \), let \(e_2 \in E' \setminus \{e_1\} \). Let \(Q'' := (xQ') \). Let \(y \) be the second source vertex in \(Q'' \) if \(e_2 \in E(T, B) \) and the second sink vertex in \(Q'' \) otherwise. Let \(y^- \) be the vertex preceding \(y \) on \(C \) and let \(q := d_C(x, y^-) \). Find a path in \(G \) whose initial vertex is \(x^G \) which is isomorphic to \((Q''y^-)\) and is of the form \(A \ast A \) if \(q \) is even and \(A \ast B \) if \(q \) is odd, such that the final vertex of this path is an endvertex of \(L(e_2) \). Then use the path \(L(e_2) \) itself. Let \(Z := B \) if \(q \) is even and \(Z := A \) if \(q \) is odd. Finally, extend the path to cover all edges in \(E \) using a path of the form \(Z \ast B(A \ast ABB)_{E[A]} \) which is isomorphic to an initial segment of \((y^+Q'^n) \). Let \(P \) denote the resulting extended subpath of \(C \), so \(Q \subseteq P \subseteq Q'' \). Let \(P^G \) be the copy of \(P \) in \(G_M \).

Note that (EC1), and (EC2) hold. Each repeated \(A \) in \(P^G \) is either a repeated \(A \) in \(Q^G \) or it occurs when \(P^G \) uses \(L(e_2) \) in the case when \(e_2 \in E(A) \). Similarly, each repeated \(B \) in \(P^G \) is either a repeated \(B \) in \(Q^G \) or it occurs when \(P^G \) uses \(L(e_2) \) in the case when \(e_2 \in E(B) \) or when \(P^G \) uses an edge in \(E \). Substituting into (3) and recalling (E4) gives

\[
|B \setminus V(P^G)| - |A \setminus V(P^G)| = b - a - (s_B + t_B + |E| + |E' \cap E(B)|) + (s_A + t_A + |E' \cap E(A)|) + 1
= d - (s_B + t_B + |E|) - p + (s_A + t_A) + 1 = 1.
\]

So (EC3) is satisfied and \(P^G \) is an exceptional cover.

Case 2: \(a = b \) and \(s = t \).

If \(s = t = 0 \) then any path consisting of one vertex in \(A \) is an exceptional cover. So we will assume that \(s, t \geq 1 \). We say that \(C \) is close to antidirected if it contains an antidirected subpath of length 500\(e_3 \cdot n \).

Case 2.1: \(C \) is close to antidirected.

If there is an edge \(e \in E(T, B) \cup E(B, S) \cup E(S, A) \cup E(A, T) \) then we are able to find an exceptional cover in the graph \(G_{\{e\}} \). We illustrate how to do this when \(e = t_1b_1 \in E(T, B) \), the other cases are similar. Since \(C \) is close to but not antidirected, it follows that \(C \) contains a path \(P \) of length 500\(e_3 \cdot n \) which is antidirected except for the initial two edges which are oriented consistently. Let \(s_1 \in S \). If the initial edge of \(P \) is a forward edge, let \(P' \) be the subpath of \(P \) consisting of the first three edges of \(P \) and find a copy \((P')^G \) of \(P' \) in \(G \) of the form \(A\{s_1\} BA \). If
the initial edge of P is a backward edge, let P' consist of the first two edges of P and let $(P')^G$ be a backward path of the form $B\{s_1\}A$. Let P'' be the subpath of P formed by removing from P all edges in P'.

Let $x^G \in A$ be the final vertex of $(P')^G$. Set $S_A := S \setminus \{s_1\}$, $T_B := T \setminus \{t_1\}$ and $S_B, T_A := \emptyset$. Let P_1, P_2, P_3 be a useful tripartition of P''. As in Case 1, let L_2 denote the oriented path of length two whose second vertex is a source. Let $L \subseteq P_2$ be a link which is isomorphic to L. Moreover, the final vertex of P'' is mapped to $A \cup B$ and (P''^G) has $s_A = s - 1$ repeated As and $t_B = t - 1$ repeated Bs. Let P^G be the path $(P'^G) \cup (P''^G)$.

Then P^G satisfies (EC1) and we may assume that (EC2) holds, by adding a vertex in A as a new initial vertex and/or final vertex if necessary. The repeated As and Bs in P^G are precisely the repeated As and Bs in (P''^G). Therefore, (3) implies that (EC3) holds and P^G forms an exceptional cover.

Let us suppose then that $E(T, B) \cup E(B, S) \cup E(S, A) \cup E(A, T)$ is empty. If $S = \{s_1\}, T = \{t_1\}$ then, since $\delta^B(G) \geq n/2$, G must contain the edge s_1t_1 and edges a_1s_1, b_1t_1 for some $a_1 \in A, b_1 \in B$. Since C is not antidirected but has many sink vertices we may assume that C contains a subpath $P = (wvxyz)$ where $wv, vx, yz \in E(C)$. We use the edges a_1s_1, s_1t_1, b_1t_1, as well as an additional AB- or BA-edge, to find a copy P^G of P in G of the form $ABTBA$. The path P^G forms an exceptional cover.

If $s = t = 2$ and $e(S) = e(T) = 2$, we find an exceptional cover as follows. Write $S = \{s_1, s_2\}, T = \{t_1, t_2\}$. We have that $s_is_j, t_it_j \in E(G)$ for all $i \neq j$. Note that C is not antidirected, so C must contain a path of length six which is antidirected except for its initial two edges which are consistently oriented. Suppose first that the initial two edges of P are forward edges. Let $a_1 \in A$ be an innighbour of s_1. Note that s_2 has an innighbour in T, without loss of generality t_1. Let $b_1 \in B$ be an innighbour of t_2 and $a_2 \in A$ be an outneighbor of b_1. We find a copy P^G of P which has the form $ASTTBA$ and uses the edges $a_1s_1, s_1t_2, t_1t_2, b_1t_2, b_1a_2$, in this order. If the initial two edges of P are backward, we instead find a path of the form $ATTSSBA$. Note that in both cases, P^G satisfies (EC1) and (EC2). P^G has no repeated As and Bs and (3) implies that (EC3) holds. So P^G forms an exceptional cover.

So let us assume that $s, t \geq 2$ and, additionally, $e(S) + e(T) < 4$ if $s = 2$. There must exist two disjoint edges $e_1 = t_1s_1, e_2 = s_2t_2$ where $s_1, s_2 \in S$ and $t_1, t_2 \in T$ (since $\delta^B(G) \geq n/2$ and $E(T, B) \cup E(B, S) \cup E(S, A) \cup E(A, T) = \emptyset$). We use these edges to find an exceptional cover as follows. We let $S_A := S \setminus \{s_1, s_2\}, T_B := T \setminus \{t_1, t_2\}, s_A := |S_A|$ and $t_B := |T_B|$. We use e_1 and e_2 to find an antidirected path P^G which starts with a backward edge and is of the form

$$A\{t_1\}\{s_1\}A(B \ast AS_A A)^{\ast a}B \ast B\{s_2\}\{t_2\}B(A \ast BT_B B)^{\ast b}A.$$

The length of P^G is less than $50\varepsilon_3n$. So, as C is close to antidirected, C must contain a subpath isomorphic to P^G. We claim that P^G is an exceptional cover. Clearly, P^G satisfies (EC1) and (EC2). For (EC3), note that P^G contains an equal number of repeated As and repeated Bs. Then (3) implies that $|B \cap V(P^G)| = |A \cap V(P^G)| + 1$.

Case 2.2: C is far from antidirected.

Recall that Q is a subpath of C of length at most ε_4n containing at least $\sqrt{\varepsilon_3n}$ sink vertices. Let Q be a maximum collection of sink vertices in Q such that all vertices in Q are an even distance apart, then $|Q| \geq \sqrt{\varepsilon_3n}/2$. Partition the path Q into 11 internally disjoint subpaths so that $Q = (P_1^\prime P_2^\prime P_2^\prime \ldots P_5^\prime P_5^\prime P_5^\prime)$ and each subpath contains at least $300\varepsilon_3n$ elements of Q. Note that each P_i^\prime has length greater than $500\varepsilon_3n$ and so is not antidirected, that is, each P_i^\prime must contain a consistently oriented subpath P''_i of length two. At least three of the P_i^\prime must
form a consistent set. Thus there must exist \(i < j \) such that \(d_C(P''_i, P''_j) \) is even and \(\{P''_i, P''_j\} \) is consistent. We may assume, without loss of generality, that \(P''_i, P''_j \) are forward paths and that the second vertex of \(P_i \) is in \(Q \). Let \(P \) be the subpath of \(Q \) whose initial vertex is the initial vertex of \(P_i \) and whose final vertex is the final vertex of \(P_j'' \).

We will find an exceptional cover isomorphic to \(P \) as follows. Choose \(s_1 \in S \) and \(t_1 \in T \) arbitrarily. Set \(S_A := S \setminus \{s_1\} \) and \(T_B := T \setminus \{t_1\} \). Map the initial vertex of \(P \) to \(A \). We find a copy of \(P \) which maps each vertex in \(S_A \) to a sink vertex in \(P_i \) and each vertex in \(T_B \) to a sink vertex in \(P_j \). If \(d_C(P_i, P_j'' \) is even, \(P_i'' \) is mapped to a path \(L' \) of the form \(A\{s_1\}B \) and \(P_j'' \) is mapped to a path \(L'' \) of the form \(B\{t_1\}A \). If \(d_C(P_i, P_j'' \) is odd, \(P_i'' \) is mapped to a path \(L' \) of the form \(B\{t_1\}A \) and \(P_j'' \) is mapped to a path \(L'' \) of the form \(A\{s_1\}B \). Thus, if \(d_C(P_i, P_j'' \) is even, we obtain a copy \(P^G \) which starts with a path of the form \(A(B * AS_A A)^* A B * A \), then uses \(L' \) and continues with a path of the form \(B * (A * BT_B B)^* A * B \). Finally, the path uses \(L'' \). The case when \(d_C(P_i, P_j'' \) is odd is similar. (EC1) holds and we may assume that (EC2) holds by adding one vertex to \(P \) if necessary. Note that \(P^G \) contains an equal number of repeated \(A \)s and \(B \)s, so (3) implies that (EC3) holds and \(P^G \) is an exceptional cover. \(\square \)

We now use Proposition 6.3 and Lemma 6.5 to prove Lemma 6.1.

Proof of Lemma 6.1. Let \(P \) be an exceptional cover of \(G \) of length at most \(21 \varepsilon_4 n \), guaranteed by Proposition 6.3 or Lemma 6.5. Let

\[
X := \{v \in A : d_B^+(v) < n/2 - \varepsilon_3 n \text{ or } d_B^-(v) < n/2 - \varepsilon_3 n \}\]

\[
Y := \{v \in B : d_A^+(v) < n/2 - \varepsilon_3 n \text{ or } d_A^-(v) < n/2 - \varepsilon_3 n \}.
\]

(4) and (5) together imply that \(|X \cup Y| \leq 2 \varepsilon_3 n \). Together with (EC3), this allows us to cover the vertices in \(X \cup Y \) by any orientation of a path of length at most \(\varepsilon_4 n \). So we can extend \(P \) to cover the remaining vertices in \(X \cup Y \) (by a path which alternates between \(A \) and \(B \)). Let \(P' \) denote this extended path. Thus \(|P'| \leq 22 \varepsilon_4 n \). Let \(x \) and \(y \) be the endvertices of \(P' \). We may assume that \(x, y \in A \setminus X \). Let \(A' := (A \setminus V(P')) \cup \{x, y\} \) and \(B' := B \setminus V(P') \) and consider \(G' := G[A', B'] \). Note that \(|A'| = |B'| + 1 \) by (EC3) and

\[
d^0(G') \geq n/2 - \varepsilon_3 n - 22 \varepsilon_4 n \geq (7|B'| + 2)/8.
\]

Thus, by Proposition 4.2(ii), \(G' \) has a Hamilton path of any orientation between \(x \) and \(y \) in \(G \). We combine this path with \(P' \), to obtain a copy of \(C \). \(\square \)

7. **G is ABST-extremal**

In this section we prove that Theorem 1.2 holds for all ABST-extremal graphs.

Lemma 7.1. Suppose that \(1/n < \varepsilon < \varepsilon_1 < \eta_1 < \tau < 1 \). Let \(G \) be a digraph on \(n \) vertices with \(d^0(G) \geq n/2 \) and assume that \(G \) is ABST-extremal. If \(C \) is any orientation of a cycle on \(n \) vertices which is not antidirected, then \(G \) contains a copy of \(C \).

We will again split the proof into two cases, depending on how many changes of direction \(C \) contains. The following lemma allows us to find an exceptional cover (defined in Section 6.1) when \(C \) is close to consistently oriented. Recall that a long run is a consistently oriented path of length 20.
Lemma 7.2. Suppose $1/n \ll \varepsilon \ll \varepsilon_1 \ll \varepsilon_2 \ll \eta_1 \ll \tau \ll 1$. Let G be a digraph on n vertices with $\Delta^+(G) \geq n/2$. Suppose A, B, S, T is a partition of $V(G)$ satisfying (R7) and (R10). Let C be an oriented cycle on n vertices. If $\sigma(C) < \varepsilon_2 n$, then G has an exceptional cover P such that $|V(P) \cap (A \cup B)| \leq 2\eta_1^2 n$.

Proof. Let $s^* := s - \varepsilon_2 n$ and $d := b - a$. Define $S' \subseteq S$ to consist of all vertices $x \in S$ with $d^+_{B \cup S}(x) \geq b + s - \varepsilon_1/3 n$ and $d^+_{A \cup S}(x) \geq a + s - \varepsilon_1/3 n$. Define $T' \subseteq T$ similarly. Note that $|S \setminus S'|, |T \setminus T'| \leq \varepsilon_1 n$ by (R9) and (R10).

We may assume that the vertices of C are labelled so that the number of forward edges is at least the number of backward edges. Let $Q \subseteq C$ be a forward path of length two, this exists since $\sigma(C) < \varepsilon_2 n$. If C is not consistently oriented, we may assume that Q is immediately followed by a backward edge. Define $e_1, e_2, e_3 \in E(C)$ such that $d_C(e_1, Q) = s^*$, $d_C(Q, e_2) = s^* + 1$, $d_C(Q, e_3) = 2$. Let $P_0 := (e_1 C e_2)$.

If at least one of e_1, e_2 is a forward edge, define paths P_T and P_S of order s^* so that $P_0 = (e_1 P_T Q P_S e_2)$. In this case, map Q to a path Q^G in G of the form $T' ABS'$. If e_1 and e_2 are both backward edges, our choice of e_3 is also a backward edge. Let P_T and P_S be defined so that $P_0 = (e_1 P_T Q e_3 P_S e_2)$. So $|P_T| = s^*$ and $|P_S| = s^* - 1$. In this case, map $(Q e_3)$ to a path Q^G of the form $T' ABS'$.

Let $p_T := |P_T|$ and $p_S := |P_S|$. Our aim is to find a copy P_0^G of P_0 which maps P_S to $G[S]$ and P_T to $G[T]$. We will find P_0^G of the form F as given in Table 1. Let M be a set of $d + 1$

e_1	forward	e_2	forward	
F	$B(T)^{p_T} A(S)^{p_S} B$	$B(T)^{p_T} A(S)^{p_S} A$	$A(T)^{p_T} A(S)^{p_S} B$	$A(T)^{p_T} A(S)^{p_S} A$

Table 1. Proof of Lemma 7.2. P_0^G has form F.

edges in $E(T, B \cup S) \cup E(B, S)$ guaranteed by Proposition 5.6. We also define a subset M' of M which we will use to extend P_0^G to an exceptional cover. If e_1, e_2 are both forward edges, choose $M' \subseteq M$ of size d. Otherwise let $M' := M$. Let $d' := |M'|. Let M'_1 be the set of all edges in M' which are disjoint from all other edges in M' and let $d'_1 := |M'_1|$. So $M' \setminus M'_1$ consists of $(d' - d'_1)/2 =: d'_2$ disjoint consistently oriented paths of length two.

We now fix copies e_1^G and e_2^G of e_1 and e_2. If e_1 is a forward edge, let e_1^G be a BT^*-edge, otherwise let e_1^G be a T^*A-edge. If e_2 is a forward edge, let e_2^G be a S^*B-edge, otherwise let e_2^G be an AS^*-edge. Let t_1 be the endpoint of e_1^G in T', s_2 be the endpoint of e_2^G in S' and let $t_2 \in T$ and $s_1 \in S'$ be the endpoints of Q^G. Let v be the final vertex of e_2^G and let $X \in \{A, B\}$ be such that $v \in X$.

We now use (R5), (R6), (R9) and (R10) to find a collection \mathcal{P} of at most $3\varepsilon_2 n + 1$ consistently oriented paths which cover the edges in M' and the vertices in $S' \setminus T$ and $T' \setminus T$. \mathcal{P} uses each edge $e \in M'_1$ in a forward path P_e of the form $B(S \cup T)^j B$ for some $1 \leq j \leq 4$ and \mathcal{P} uses each path in $M' \setminus M'_1$ in a path of the form $B(S \cup T)^j B(S \cup T)^j B$ for some $1 \leq j, j' \leq 4$. The paths P_e are pairwise disjoint. The remaining vertices in $S' \setminus T$, $T' \setminus T'$ are covered by disjoint forward paths in \mathcal{P} of the form $A(S)^j B$ or $B(T)^j A$, for some $1 \leq j \leq 3$. Let $S'' \subseteq S \setminus (V(\mathcal{P}) \cup \{s_1, s_2\})$ and $T'' \subseteq T \setminus (V(\mathcal{P}) \cup \{t_1, t_2\})$ be sets of size at most $2\varepsilon_2 n$ so that $|S''| + p_S = |S \setminus V(\mathcal{P})|$ and $|T''| + p_T = |T \setminus V(\mathcal{P})|$. Note that $S'' \subseteq S'$ and $T'' \subseteq T'$. So we can cover the vertices in S'' by forward paths of the form ASB and we can cover the vertices in T'' by forward paths of the form BTA. Let \mathcal{P}' be a collection of disjoint paths thus obtained. Let P_1 be the subpath of order $\eta_1^2 n$ following P_0 on C. Note that P_1 contains at least $\sqrt{\varepsilon_2 n}$ disjoint long runs. Each path
in \(\mathcal{P} \cup \mathcal{P}' \) will be contained in the image of such a long run. So we can find a copy \(P^G_1 \) of \(P_1 \) starting from \(v \) which uses \(\mathcal{P} \cup \mathcal{P}' \) and has the form
\[
X \ast AX_1X_2 \ldots X_{d_1} Y_1Y_2 \ldots Y_{d_2} Z_1Z_2 \ldots Z_tB \ast Y
\]
for some \(\ell \geq 0 \) and \(Y \in \{A, B\} \), where
\[
X_i \in \{B(S \cup T)^jB \ast A : 1 \leq j \leq 4\}, \quad Y_i \in \{B(S \cup T)^jB(S \cup T)^jB \ast A : 1 \leq j, j' \leq 4\}
\]
and
\[
Z_i \in \{BA(S \cup T)^jB \ast A, B(S \cup T)^jA \ast A : 1 \leq j \leq 3\}.
\]

Let \(S' \) be the set of uncovered vertices in \(S \) together with the vertices \(s_1, s_2 \) and let \(T' \) be the set of uncovered vertices in \(T \) together with \(t_1 \) and \(t_2 \). Write \(G_S := G[S'] \) and \(G_T := G[T'] \). Now \(\delta^0(G_T) \geq t - \sqrt{2}n \geq \frac{7|G_T|}{8} \) and so \(G_T \) has a Hamilton path from \(t_1 \) to \(t_2 \) which is isomorphic to \(P_T \), by Proposition 4.2. Similarly, we find a path isomorphic to \(P_S \) from \(s_1 \) to \(s_2 \) in \(G_S \). Altogether, this gives us the desired copy \(P^G_0 \) of \(P_0 \) in \(G \). Let \(P^G := P^G_0P^G_1 \).

We now check that \(P^G \) forms an exceptional cover. Clearly (EC1) holds and we may assume that \(P^G \) has both endvertices in \(A \) (by extending the path if necessary) so that (EC2) is also satisfied. For (EC3), observe that \(P^G_1 \) contains exactly \(d_1' + 2d_2' = d' \) repeated \(B \)s, these occur in the subpath of the form \(X_1X_2 \ldots X_{d_1'}Y_1Y_2 \ldots Y_{d_2'} \) covering the edges in \(M' \). If \(e_1 \) and \(e_2 \) are both forward edges, then, consulting Table 1, we see that \(P^G_0 \) has no repeated \(A \) and that there are no other repeated \(A \)s or \(B \)s in \(P^G \). Recall that in this case \(d' = d \), so (3) gives \(|B \setminus V(P^G)| - |A \setminus V(P^G)| = d - d' + 1 = 1 \). If at least one of \(e_1, e_2 \) is a backward edge, using Table 1, we see that there is one repeated \(A \) in \(P^G_0 \) and there are no other repeated \(A \)s or \(B \)s in \(P^G \). In this case, we have \(d' = d + 1 \), so (3) gives \(|B \setminus V(P^G)| - |A \setminus V(P^G)| = d - d' + 1 + 1 = 1 \). Hence \(P^G \) satisfies (EC3) and forms an exceptional cover. Furthermore, \(|V(P^G) \cap (A \cup B)| \leq 2\eta^2 n \).

In Lemma 7.4, we find an exceptional cover when \(C \) contains many sink vertices. The proof will use Proposition 6.4 and the following result which allows us to find short \(AB \)- and \(BA \)-paths of even length. We will say that an \(AB \)- or \(BA \)-path \(P \) in \(G \) is usful if it has no repeated \(A \)s or \(B \)s and uses an odd number of vertices from \(S' \cup T \).

Proposition 7.3. Suppose \(1/n < \varepsilon < \varepsilon_1 < \eta_1 \ll \tau \ll 1 \). Let \(G \) be a digraph on \(n \) vertices with \(\delta^0(G) \geq n/2 \). Suppose \(A, B, S, T \) is a partition of \(V(G) \) satisfying (R7)–(R10). Let \(L_1 \) and \(L_2 \) be oriented paths of length eight. Then \(G \) contains disjoint copies \(L^G_1 \) and \(L^G_2 \) of \(L_1 \) and \(L_2 \) such that each \(L^G_i \) is a useful path. Furthermore, we can specify whether \(L^G_i \) is an \(AB \)-path or a \(BA \)-path.

Proof. Define \(S' \subseteq S \) to be the set consisting of all vertices \(x \in S \) with \(d^+_S(x) \geq \eta_1 n/2 \). Define \(T' \subseteq T \) similarly. Note that \(|S \setminus S'|, |T \setminus T'| \leq \varepsilon_1 n \) by (R9) and (R10). We claim that \(G \) contains disjoint edges \(e, f \in E(B \cup T, S') \cup E(A \cup S, T') \). Indeed, if \(a + s < n/2 \) it is easy to find disjoint \(e, f \in E(B \cup T, S') \), since \(\delta^0(G) \geq n/2 \). Otherwise, we must have \(a + s = b + t = n/2 \) and so each vertex in \(S' \) has at least one inneighbour in \(B \cup T \) and each vertex in \(T' \) has at least one inneighbour in \(A \cup S \). Let \(G' \) be the bipartite digraph with vertex classes \(A \cup S \) and \(B \cup T \) and all edges in \(E(B \cup T, S') \cup E(A \cup S, T') \). The claim follows from applying König’s theorem to the underlying undirected graph of \(G' \).

We demonstrate how to find a copy \(L^G_i \) of \(L_1 \) in \(G \) which is an \(AB \)-path. The argument when \(L^G_i \) is a \(BA \)-path is very similar. \(L^G_1 \) will have the form \(A \ast B(T)^i(S)^j(T)^kA \ast B \) or \(A \ast A(T)^i(S)^j(T)^kB \ast B \), for some \(i, j, k \geq 0 \) such that \(i + j + k \) is odd. Note then that \(L^G_1 \) will have no repeated \(A \)s or \(B \)s.
First suppose that L_1 is not antidirected, so L_1 has a consistently oriented subpath L' of length two. We will find a copy of L_1, using (R9)–(R10) to map L' to a forward path of the form ASB or BTA or a backward path of the form BSA or ATB. More precisely, if L' is a forward path, let L_1^G be a path of the form $A \ast ASB \ast B$ if $d_C(L_1, L')$ is even and a path of the form $A \ast BTA \ast B$ if $d_C(L_1, L')$ is odd. If L' is backward, let L_1^G be a path of the form $A \ast ATB \ast B$ if $d_C(L_1, L')$ is even and a path of the form $A \ast SBA \ast B$ if $d_C(L_1, L')$ is odd.

Suppose now that L_1 is antidirected. We will find a copy L_1^G of L_1 which contains e. If $e \in E(B, S')$, we use (R9) and the definition of S' to find a copy of L_1 of the following form. If the initial edge of L_1 is a forward edge, we find L_1^G of the form $A(S)^3B \ast B$. If the initial edge is a backward edge, we find L_1^G of the form $AB(S)^3A \ast B$. If $e \in E(A, T')$ we will use (R10) and the definition of T' to find a copy of L_1 of the following form. If the initial edge of L_1 is a forward edge, we find L_1^G of the form $A(T)^3B \ast B$. If the initial edge is a backward edge, we find L_1^G of the form $AB(T)^3A \ast B$.

If L_1 is antidirected and $e \in E(T, S')$, we will use (R6), (R9), (R10) and the definition of S' to find a copy of L_1 containing e. If the initial edge of L_1 is a forward edge, find L_1^G of the form $AB(S)^3(T)^{2h-1}A \ast B$, where $1 \leq h \leq 2$. If the initial edge is a backward edge, find L_1^G of the form $A(T)^{2h-1}(S)^3B \ast B$, where $1 \leq h \leq 2$. Finally, we consider the case when $e \in E(S, T')$. If the initial edge of L_1 is a forward edge, we find L_1^G of the form $AB(S)^{2h-1}(T)^2A \ast B$, where $1 \leq h \leq 2$. If the initial edge of L_1 is a backward edge, we find L_1^G of the form $A(T)^{2h-1}(S)^2B \ast B$, where $1 \leq h \leq 2$.

We find a copy L_1^G of L_2 (which is disjoint from L_1^G) in the same way, using the edge f if L_2 is an antidirected path.

Lemma 7.4. Suppose $1/n \ll \varepsilon \ll \varepsilon_1 \ll \varepsilon_2 \ll \eta_1 \ll \tau \ll 1$. Let G be a digraph on n vertices with $\delta^0(G) \geq n/2$. Suppose A, B, S, T is a partition of $V(G)$ satisfying (R7)–(R10). Let C be an oriented cycle on n vertices which is not antidirected. If $\sigma(C) \geq \varepsilon_2n$, then G has an exceptional cover P such that $|V(P) \cap (A \cup B)| \leq 5\varepsilon_2n$.

Proof. Let $d := b - a$. Define $S' \subseteq S$ to be the set consisting of all vertices $x \in S$ with $d_S^+(x) \geq \eta_1n/2$ and define $T' \subseteq T$ similarly. Let $S'' := S \setminus S'$ and $T'' := T \setminus T'$. Note that $|S''| \geq |T''| \leq \varepsilon_1n$ by (R9) and (R10). By (R5), all vertices $x \in S''$ satisfy $d_A^+(x) \geq \eta_1n/2$ or $d_B^+(x) \geq \eta_1n/2$ and, by (R6), all $x \in T''$ satisfy $d_A^-(x) \geq \eta_1n/2$ or $d_B^-(x) \geq \eta_1n/2$. In our proof below, we will find disjoint sets $S_A, S_B \subseteq S$ and $T_A, T_B \subseteq T$ of suitable size such that

\begin{align}
(4) & \quad d_A^+(x) \geq \eta_1n/2 \text{ for all } x \in S_A \text{ and } d_B^+(x) \geq \eta_1n/2 \text{ for all } x \in S_B; \\
(5) & \quad d_B^-(x) \geq \eta_1n/2 \text{ for all } x \in T_B \text{ and } d_A^-(x) \geq \eta_1n/2 \text{ for all } x \in T_A.
\end{align}

Note that (R6) implies that all but at most ε_1n vertices from S could be added to S_A or S_B and satisfy the conditions of (4). Similarly, (R10) implies that all but at most ε_1n vertices in T are potential candidates for adding to T_A or T_B so as to satisfy (5). We will write $s_A := |S_A|, s_B := |S_B|, t_A := |T_A|$ and $t_B := |T_B|$.

Let $s := s - \lceil \sqrt{\varepsilon_1n} \rceil$ and let $\ell := 2[\varepsilon_2n] - 1$. If C contains an antidirected subpath of length ℓ, let Q_2 denote such a path. We may assume that the initial edge of Q_2 is a forward edge by reordering the vertices of C if necessary. Otherwise, choose Q_2 to be any subpath of C of length ℓ such that Q_2 contains at least $\varepsilon_1^{1/3}n$ sink vertices and the second vertex of Q_2 is a sink. Let Q_1 be the subpath of C of length ℓ such that $d_C(Q_1, Q_2) = 2s^* + \ell$. Note that if Q_1 is antidirected then Q_2 must also be antidirected. Let e_1, e_2 be the final two edges of Q_1 and let f_1, f_2 be the
initial two edges of Q_2 (where the edges are listed in the order they appear in Q_1 and Q_2, i.e., $(e_1e_2) \subseteq Q_1$ and $(f_1f_2) \subseteq Q_2$). Note that f_1 is a forward edge and f_2 is a backward edge.

Let Q' be the subpath of C of length 14 such that $d_C(Q', Q_2) = s^*$. If Q' is antidirected, let Q be the subpath of Q' of length 13 whose initial edge is a forward edge. Otherwise let $Q \subseteq Q'$ be a consistently oriented path of length two. We will consider the three cases stated below.

Case 1: Q_1 and Q_2 are antidirected. Moreover, $\{e_2, f_1\}$ is consistent if and only if n is even.

We will assume that the initial edge of Q is a forward edge, the case when Q is a backward path of length two is very similar. We will find a copy Q''^G of Q which is a $T'S'$-path. If Q is a forward path of length two, map Q to a forward path Q''^G of the form $T'AS'$. If Q is antidirected, we find a copy Q''^G of Q as follows. Let Q'' be the subpath of Q of length eight such that $d_C(Q, Q''^*) = 3$. Recall that a path in G is useful if it has no repeated As or Bs and uses an odd number of vertices from $S \cup T$. Using Proposition 7.3, we find a copy $(Q''^G)^*$ of Q'' in G which is a useful AB-path. We find Q''^G which starts with a path of the form $T'ABA$, uses $(Q''^G)^*$ and then ends with a path of the form BAS'. Let q_S and q_T be the numbers of interior vertices of Q''^G in S and T, respectively.

If n is even, let $e := e_2$ and, if n is odd, let $e := e_1$. In both cases, let $f := f_1$. The assumptions of this case imply that e and f are both forward edges. Let $P := (Q_1CQ_2)$ and let P_T and P_S be subpaths of C which are internally disjoint from e, f and Q and are such that $(eCf) = (eP_TQP_Sf)$. Our plan is to find a copy of P_T in $G[T]$ and a copy of P_S in $G[S]$. Let $p_T := |P_T|$ and $p_S := |P_S|$. If Q is a consistently oriented path we have that $q_S, q_T = 0$ and $p_S + p_T = d_C(e, f) - 1$. If Q is antidirected, then $q_S + q_T$ is odd and $p_S + p_T = d_C(e, f) - 12$. So in both cases we observe that

\[
(6) \quad p_S + p_T + q_S + q_T \equiv d_C(e, f) - 1 \equiv n \mod 2.
\]

Choose S_A, S_B, T_A, T_B to satisfy (4) and (5) so that $S'' \setminus V(Q''^G) \subseteq S_A \cup S_B$, $T'' \setminus V(Q''^G) \subseteq T_A \cup T_B$, $s = s_A + s_B + p_S + q_S$, $t = t_A + t_B + p_T + q_T$ and $s_A + t_A + d = s_B + t_B$. To see that this can be done, first note that the choice of s^* implies that $s - p_S - q_S \geq \sqrt{\varepsilon_1n}/2 > |S''| + d$ and $t - p_T - q_T \geq \sqrt{\varepsilon_1n}/2 > |T''| + d$. Let $r := s + t - (p_S + p_T + q_S + q_T)$. So r is the number of vertices in $S \cup T$ which will not be covered by the copies of P_T, P_S or Q. Then (6) implies that

\[
r \equiv s + t - n \equiv d \mod 2.
\]

Thus we can choose the required subsets S_A, S_B, T_A, T_B so that $s_A + t_A = (r - d)/2$ and $s_B + t_B = (r + d)/2$. Note that (6) and the choice of s^* also imply that $s_A + s_B + t_A + t_B \leq 2\sqrt{\varepsilon_1n}$.

Recall that Q_1 is antidirected. So we can find a path $(Q_1e)^G$ isomorphic to (Q_1e) which covers the vertices in T_A by source vertices and the vertices in T_B by sink vertices. We choose this path to have the form

\[
X \ast A(BAT_AA \ast A)^{t_A}(BT_BB \ast A)^{t_B}B \ast BT',
\]

where $X \in \{A, B\}$. Observe that $(Q_1e)^G$ has t_A repeated As and t_B repeated Bs. Find a path Q_2^G isomorphic to Q_2 of the form

\[
S'B \ast A(BAS_AA \ast A)^{s_A}(BS_BB \ast A)^{s_B}B \ast B
\]

which covers all vertices in S_A by sink vertices and all vertices in S_B by source vertices. Q_2^G has s_A repeated As and s_B repeated Bs. If Q is backward, the main difference is that we let $e := e_1$ if n is even and let $e := e_2$ if n is odd. We let $f := f_2$ so that e and f are both backward edges and we map Q to a backward path Q''^G of the form $T'BS'$. Then (6) holds and we can proceed similarly as in the case when Q is a forward path.
We find copies of P_T in $G[T']$ and P_S in $G[S']$ as follows. Greedily embed the first $\sqrt{\varepsilon} l n$ vertices of P_T to cover all uncovered vertices $x \in T'$ with $d^+(x) \leq t - \varepsilon^{1/3} n$ or $d^-(x) \leq t - \varepsilon^{1/3} n$. Note that, by (R10), there are at most $\varepsilon l n$ such vertices. Write $P_T^t \subseteq P_T$ for the subpath still to be embedded and let t_1 and t_2 be the images of its endvertices in T. Let T^* denote the sets of so far uncovered vertices in T together with t_1 and t_2 and define $G_T := G[T^*]$. We have that $\delta^0(G_T) \geq t - \varepsilon^{1/3} n - 3\sqrt{\varepsilon} l n \geq 7|G_T|/8$, using (R12), and so we can apply Proposition 4.2(ii) to find a copy of P_T^t in G_T with the desired endpoints. In the same way, we find a copy of P_S in $G[S']$. Together with Q^G, $(Q_1 e)^G$ and Q_2^G, this gives a copy P^G of P in G such that $|V(P^G) \cap (A \cup B)| \leq 5\varepsilon l n$.

The path P^G satisfies (EC1) and we may assume that (EC2) holds, by extending the path by one or two vertices, if necessary, so that both of its endvertices lie in A. Let us now verify (EC3). All repeated A’s and B’s in P^G are repeated As and Bs in the paths $(Q_1 e)^G$ and Q_2^G. So in total, P^G has $s_A + t_A$ repeated As and $s_B + t_B$ repeated Bs. Then (EC3) gives that P^G satisfies

$$|B \setminus V(P^G)| = |A \setminus V(P^G)| = d - (s_B + t_B) + (s_A + t_A) + 1 = 1.$$

So (EC3) is satisfied and P^G is an exceptional cover.

Case 2: There exists $e \in \{e_1, e_2\}$ and $f \in \{f_1, f_2\}$ such that $\{e, f\}$ is consistent and $n - d_{C}(e, f)$ is even.

Let v be the final vertex of e. Recall the definitions of a useful tripartition and a link from Section 6. Consider a useful tripartition P_1, P_2, P_3 of (vQ_2) and let Q_1, Q_2, Q_3 be a sink/source set. Let $L \subseteq P_2$ be a link of length eight such that $d_{C}(v, L)$ is even. If Q is a consistently oriented path, use Proposition 7.3 to find a copy L^G of L which is a useful BA-path if e is forward and a useful AB-path if e is backward. Map Q to a path Q^G of the form $T'AS'$ if Q is a forward path and $T'BS'$ if Q is a backward path. If Q is antidirected, let Q'' be the subpath of Q of length eight such that $d_{C}(Q, Q'') = 3$. Using Proposition 7.3 we find disjoint copies $(Q'')^G$ of Q'' and L^G of L in G such that $(Q'')^G$ is a useful AB-path and L^G is as described above. We find Q^G which starts with a path of the form $T'ABA$, uses $(Q'')^G$ and then ends with a path of the form BAS'. Let q_S be the number of interior vertices of Q^G and L^G in S and let q_T be the number of interior vertices of Q^G and L^G in T. Note that in all cases, Q^G is a $T'S'$-path with no repeated As or Bs.

Let $P := (eCQ_2)$ and let $P_0 := (eCf)$. Define subpaths P_T and P_S of C which are internally disjoint from Q, e, f and are such that $P_0 = (ePTQPSf)$. Let $p_T := |P_T|$ and $p_S := |P_S|$. Our aim will be to find a copy P_0^G of P_0 which uses Q^G and maps P_T to $G[T]$ and P_S to $G[S]$. P_0^G will have the form F given in Table 2. We fix edges e^G and f^G for e and f. If e is a forward edge, then choose e^G to be a BT'-edge and f^G to be an $S'B$-edge. If e is a backward edge, let e^G be a $T'A$-edge and f^G be an AS'-edge. We also define a constant d' in Table 2 which will be used to ensure that the final assignment is balanced. So, if r_A and r_B are the numbers of repeated As and Bs in P_0^G, respectively, we will have $r_A - r_B = d' - d$.

Initial edge of Q	forward	forward	backward	backward
e	F	BT^tPSB	AT^tPSA	BT^tBS^PSB
d'	d	$d + 2$	$d - 2$	d

Table 2. Proof of Lemma 7.4. Cases 2 and 3: P_0^G has form F, where A denotes an A-path with no repeated As or Bs.
Note that
\[(7)\quad p_T + p_S + q_T + q_S \equiv d_C(e, f) \equiv n \mod 2.\]
The number of vertices in \(S \cup T\) which will not be covered by \(P_0^G\) or \(L^G\) is equal to \(r := s + t - (p_T + p_S + q_T + q_S)\) and \((7)\) implies that
\[r \equiv s + t - n \equiv d \equiv d' \mod 2.\]
Also note that the choice of \(s^*\) implies that \(s - p_S - q_S \geq \sqrt{1/2} > |S'\| + d'\) and \(t - p_T - q_T \geq \sqrt{1/2} \geq |T'| + d'\). Thus we can choose sets \(S_A, S_B, T_A, T_B\) satisfying \((4)\) and \((5)\) so that \(S'' \setminus V(Q^G \cup L^G) \subseteq S_A \cup S_B, \quad T'' \setminus V(Q^G \cup L^G) \subseteq T_A \cup T_B, \quad s = s_A + s_B + p_S + q_S, \quad t = t_A + t_B + p_T + q_T\) and \(s_A + t_A + d' = s_B + t_B\). \((R3)\) and the choice of \(s^*\) imply that \(s_A + s_B, t_A + t_B \leq 2\sqrt{1/2} n\).

Recall that \(v\) denotes the final vertex of \(f\) and let \(v^G\) be the image of \(v\) in \(G\). If \(v^G \in A\) (i.e., if \(e\) is backward), let \(v' := v\) and \((v')^G := v^G\). If \(v^G \in B\), let \(v'\) denote the successor of \(v\) on \(C\). If \(v'v' \in E(C)\), map \(v'\) to an outneighbour of \(v^G\) in \(A\) and, if \(v'v' \in E(C)\), map \(v'\) to an inneighbour of \(v^G\) in \(A\). Let \((v')^G\) be the image of \(v'\). Then we can apply Proposition \(6.4\) with \(2\sqrt{1/2}, 1, 2, \tau/2\), \((v')^G\) playing the roles of \(\epsilon, \eta, \tau, \alpha_1\), to find a copy \((v'Q_2)^G\) of \((v'Q_2)^G\) which starts at \((v')^G\), covers \(S_A, S_B, T_A, T_B\) and contains \(L^G\). Note that we make use of \((1)\) and \((5)\) here. We obtain a copy \((vQ_2)^G\) of \((vQ_2)^G\) (by combining \(v^G(v')^G\) with \((v'Q_2)^G\) if \(v' \neq v\)) which has \(s_A + t_A\) repeated \(A\) and \(s_B + t_B\) repeated \(B\).

We find copies of \(P_T\) in \(G[T]\) and \(P_S\) in \(G[S]\) as in Case 1. Combining these paths with \((vQ_2)^G, e^G, Q^G\) and \(f^G\), we obtain a copy \(P^G\) of \(P\) in \(G\) such that \(|V(P^G) \cap (A \cup B)| \leq 3\epsilon n|n|\)

The path \(P^G\) satisfies \((EC1)\) and we may assume that \((EC2)\) holds, by extending the path if necessary to have both endvertices in \(A\). All repeated \(A\) and \(B\) in \(P^G\) occur as repeated \(A\) and \(B\) in the paths \(P_0^G\) and \((vQ_2)^G\) so we can use \((3)\) to see that
\[|B \setminus V(P^G)| - |A \setminus V(P^G)| = d - (s_B + t_B) + (d' - d) + (s_A + t_A) + 1 = 1.\]
Therefore, \((EC3)\) is satisfied and \(P^G\) is an exceptional cover.

Case 3: The assumptions of Cases 1 and 2 do not hold.

Recall that \(f_1\) is a forward edge and \(f_2\) is a backward edge. Since Case 2 does not hold, this implies that \(e_2\) is a forward edge if \(n\) is even (otherwise \(e := e_2\) and \(f := f_2\) would satisfy the conditions of Case 2) and \(e_2\) is a backward edge if \(n\) is odd (otherwise \(e := e_2\) and \(f := f_1\) would satisfy the conditions of Case 2). In particular, since Case 1 does not hold, this in turn implies that \(Q_1\) is not antidirected. We claim that \(Q_1 \setminus \{e_2\}\) is not antidirected. Suppose not. Then it must be the case that \(e_1, e_2\) is consistent. If \(e_1\) and \(e_2\) are forward edges (and so \(n\) is even), then \(e := e_1\) and \(f := f_1\) satisfy the conditions of Case 2. If \(e_1\) and \(e_2\) are both backward edges (and so \(n\) is odd), then \(e := e_1\) and \(f := f_2\) satisfy the conditions of Case 2. Therefore, \(Q_1 \setminus \{e_2\}\) is not antidirected and must contain a consistently oriented path \(Q_1'\) of length two.

Let \(e := e_2\). If \(n\) is even, let \(f := f_1\) and, if \(n\) is odd, let \(f := f_2\). In both cases, we have that \(f, f\) is consistent. Let \(P := (Q_1'CQ_2)\) and \(P_0 := (ePf)\). Let \(P_T\) and \(P_S\) be subpaths of \(C\) defined such that \(P_T = (eP_TQ_P S_f)\) and \(P_S = (P_T)|S_P|\). Our aim is to find a copy \(P_0^G\) which is of the form given in Table 2. We also define a constant \(d'\) as in Table 2. So if \(r_A\) and \(r_B\) are the numbers of repeated \(A\)s and \(B\)s in \(P_0^G\) respectively, then again \(r_A - r_B = d' - d\).

Let \(v\) be the final vertex of \(f\). Consider a tripartition \(P_1, P_2, P_3\) of \((vQ_2)\) and a link \(L \subseteq P_2\) of length eight such that \(d_C(\pi, L)\) is even. Proceed exactly as in Case 2 to find copies \(Q^G\) and \(L^G\) of \(Q\) and \(L\). Use \((R4)\), \((R9)\) and \((R10)\) to fix a copy \((Q_1'C\pi)^G\) of \((Q_1'C\pi)\) which is disjoint from \(Q^G\) and \(L^G\) and is of the form given in Table 3. Note that the interior of \((Q_1'C\pi)^G\) uses exactly one vertex from \(S \cup T\) and \((Q_1'C\pi)^G\) has no repeated \(A\) or \(B\). Write \((Q_1)^G\) for the image of
\[Q_1' \]

We also fix an edge \(f^G \) for the image of \(f \) which is disjoint from \(Q^G, L^G \) and \((Q_1'Ce)^G \) and is an \(S'B \)-edge if \(e \) is forward and an \(AS' \)-edge if \(e \) is backward. Let \(q_3 \) be the number of interior vertices of \(Q^G, L^G \) and \((Q_1')^G \) in \(S \) and let \(q_T \) be the number of interior vertices of \(Q^G, L^G \) and \((Q_1')^G \) in \(T \).

Note that \(p_S + p_T + q_S + q_T \equiv d_C(e, f) - 1 \equiv n \mod 2 \). Using the same reasoning as in Case 2, we find sets \(S_A, S_B, T_A, T_B \) satisfying (4) and (5) such that \(S'' \setminus V(Q^G \cup L^G \cup (Q_1')^G) \subseteq S_A \cup S_B, T'' \setminus V(Q^G \cup L^G \cup (Q_1')^G) \subseteq T_A \cup T_B, s = s_A + s_B + p_S + q_S, t = t_A + t_B + p_T + q_T \) and \(s_A + t_A + d'' = s_B + t_B \). (R3) and the choice of \(s^* \) imply that \(s_A, t_A, s_B, t_B \leq 2\sqrt{\varepsilon n} \). Recall that \(v \) denotes the final vertex of \(f \). Similarly as in Case 2, we now use Proposition 6.4 to find a copy \((vQ_2)^G \) of \((vQ_2)\) which covers \(S_A, S_B, T_A, T_B \), contains \(L^G \) and has \(s_A + t_A \) repeated As and \(s_B + t_B \) repeated Bs.

We find copies of \(P_T \) in \(G[T] \) and \(P_S \) in \(G[S] \) as in Case 1. Together with \((Q_1'Ce)^G, Q, f^G \) and \((vQ_2)^G \), these paths give a copy \(P^G \) of \(P \) in \(G \) such that \(|V(P^G) \cap (A \cup B)| \leq 5\varepsilon n \). The path \(P^G \) satisfies (EC1) and we may assume that (EC2) holds, by extending the path so that both endvertices lie in \(A \) if necessary. All repeated As and Bs in \(P^G \) occur as repeated As and Bs in the paths \(P_0^G \) and \((vQ_2)^G \), so we can use (3) to see that

\[|B \setminus V(P^G)| - |A \setminus V(P^G)| = d - (s_B - t_B) - (d - d') + (s_A + t_A) + 1 = 1. \]

So (EC3) is satisfied and \(P^G \) is an exceptional cover.

We now use this exceptional cover to find a copy of \(C \) in \(G \).

Proof of Lemma 7.1. Apply Lemma 7.2 or Lemma 7.3 to find an exceptional cover \(P \) of \(G \) which uses at most \(2n/\varepsilon \) vertices from \(A \cup B \). Let \(P' \) be the path of length \(\sqrt{\varepsilon n} \) following \(P \). Extend \(P' \) by a path isomorphic to \(P' \), using this path to cover all \(x \in A \) such that \(d_B^+(x) \leq b - \varepsilon^{1/3}n \) or \(d_B^-(x) \leq b - \varepsilon^{1/3}n \) and all \(x \in B \) such that \(d_A^+(x) \leq a - \varepsilon^{1/3}n \) or \(d_A^-(x) \leq a - \varepsilon^{1/3}n \), using only edges in \(E(A, B) \cup E(B, A) \). Let \(P^* \) denote the resulting extended path.

We may assume that both endvertices \(a_1, a_2 \) of \(P^* \) are in \(A \) and also that \(d_B^+(a_1) \geq b - \varepsilon^{1/3}n \) (by extending the path if necessary). Let \(A^*, B^* \) denote those vertices in \(A \) and \(B \) which have not already been covered by \(P^* \) together with \(a_1 \) and \(a_2 \) and let \(G' := G[A^*, B^*] \). We have that \(|A^*| = |B^*| + 1 \) and \(3\varepsilon n^2 \geq (7|B^*| + 2)/8 \). Then \(G^* \) has a Hamilton path of any orientation with the desired endpoints by Proposition 4.2(ii). Together with \(P^* \), this gives a copy of \(C \) in \(G \).

References

[1] M.C. Cai, A counterexample to a conjecture of Grant. Discrete Math. 44(1) (1983), 111.
[2] L. DeBiasio and T. Molla, Semi-degree threshold for anti-directed Hamilton cycles, [arXiv:1308.0269] preprint.
[3] G.A. Dirac, Some theorems on abstract graphs, *Proc. London Math. Soc.* 2 (1952), 69–81.
[4] A. Ghouila-Houri. Une condition suffisante d’existence d’un circuit Hamiltonien, *C.R. Acad. Sci. Paris* 25 (1960), 495–497.
[5] D. Grant. Antidirected Hamilton cycles in digraphs, *Ars Combinatoria* 10 (1980), 205–209.
[6] R. Häggkvist and A. Thomason, Oriented Hamilton cycles in oriented graphs, *Combinatorics, Geometry and Probability*, Cambridge University Press (1997), 339–353.
[7] R. Häggkvist and A. Thomason, Oriented Hamilton cycles in digraphs, *Journal of Graph Theory* 20 (1995) 471–479.
[8] P. Keevash, D. Kühn and D. Osthus, An exact minimum degree condition for Hamilton cycles in oriented graphs, *Journal of the London Math. Soc.* 79 (2009) 144–166.
[9] L. Kelly, Arbitrary orientations of Hamilton cycles in oriented graphs, *The Electronic Journal of Combinatorics* 18 (2011).
[10] D. Kühn and D. Osthus. Hamilton decompositions of regular expanders: A proof of Kelly’s conjecture for large tournaments, *Advances in Math.* 237 (2013) 62–146.
[11] J. Moon and L. Moser, On Hamiltonian bipartite graphs, *Israel J. Math.* 1 (1963), 163–165.
[12] A. Taylor, The regularity method for graphs and digraphs, MSci thesis, School of Mathematics, University of Birmingham, [arXiv:1406.6531] (2013).
[13] A. Thomason, Paths and cycles in tournaments, *Proc. American Math. Soc.* 296 (1986), 167–180.

Louis DeBiasio
Department of Mathematics
Miami University
Oxford
OH 45056
USA

E-mail address: debiasld@miamioh.edu

Daniela Kühn, Deryk Osthus, Amelia Taylor
School of Mathematics
University of Birmingham
Edgbaston
Birmingham
B15 2TT
UK

E-mail addresses: {d.kuhn, d.osthus, amt908}@bham.ac.uk

Theodore Molla
Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana
IL 61801
USA

E-mail address: molla@illinois.edu