OBJECTIVE — Flicker light–induced retinal vasodilation may reflect endothelial function in the retinal circulation. We investigated flicker light–induced vasodilation in individuals with diabetes and diabetic retinopathy.

RESEARCH DESIGN AND METHODS — Participants consisted of 224 individuals with diabetes and 103 nondiabetic control subjects. Flicker light–induced retinal vasodilation (percentage increase over baseline diameter) was measured using the Dynamic Vessel Analyzer. Diabetic retinopathy was graded from retinal photographs.

RESULTS — Mean ± SD age was 56.5 ± 11.8 years for those with diabetes and 48.0 ± 16.3 years for control subjects. Mean arteriolar and venular dilation after flicker light stimulation were reduced in participants with diabetes compared with those in control subjects (1.43 ± 2.10 vs. 3.46 ± 2.36%, P < 0.001 for arteriolar and 2.83 ± 2.10 vs. 3.98 ± 1.84%, P < 0.001 for venular dilation). After adjustment for age, sex, diabetes duration, fasting glucose, cholesterol and triglyceride levels, current smoking status, systolic blood pressure, and use of antihypertensive and lipid-lowering medications, participants with reduced flicker light–induced vasodilation were more likely to have diabetes (odds ratio 19.7 [95% CI 6.5–59.1], P < 0.001 and 8.14 [3.1–21.4], P < 0.001, comparing lowest vs. highest tertile of arteriolar and venular dilation, respectively). Diabetic participants with reduced flicker light–induced vasodilation were more likely to have diabetic retinopathy (2.2 [1.2–4.0], P = 0.01 for arteriolar dilation and 2.5 [1.3–4.5], P = 0.004 for venular dilation).

CONCLUSIONS — Reduced retinal vasodilation after flicker light stimulation is independently associated with diabetes status and, in individuals with diabetes, with diabetic retinopathy. Our findings may therefore support endothelial dysfunction as a pathophysiological mechanism underlying diabetes and its microvascular manifestations.

Diabetes Care 32:2075–2080, 2009

Diabetes affects more than 240 million individuals worldwide, and diabetic retinopathy is the leading cause of blindness in the working-age population in most developed countries (1). There is increasing recognition that early endothelial dysfunction plays a key role in the pathogenesis of diabetes (2) and the development of subsequent microvascular complications (3). In support of endothelial dysfunction in diabetic retinopathy (4) are studies showing relationships of diabetic retinopathy with cardiovascular diseases, including stroke, coronary heart disease, and heart failure, independent of traditional risk factors (5–7). Diabetic retinopathy has also been linked with subclinical manifestations of vascular diseases such as coronary artery calcification and cardiac remodeling (5). However, clinical and epidemiological studies have not found consistent associations of serum markers of endothelial dysfunction (e.g., soluble vascular adhesion molecule-1) with diabetic retinopathy, with some reporting positive associations (8,9), but others not finding any (10,11).

The response of retinal vessels to diffuse luminance flicker can be measured noninvasively (12) and may reflect endothelial function of the retinal circulation because it has been demonstrated that nitric oxide is released in the retinal vasculature when it is stimulated by flicker light (13). One recent study showed that individuals with diabetes and diabetic retinopathy have reduced flicker-induced retinal vasodilation but did not control for concomitant risk factors including hyperglycemia, hypertension, and diabetes duration (14). In our current study, we sought to clarify whether flicker light–induced vasodilation is impaired in patients with diabetes and in those with diabetic retinopathy, signs independent of major risk factors.

RESEARCH DESIGN AND METHODS — We conducted a hospital-based clinical study between October 2006 and April 2008, prospectively recruiting 224 Caucasian/white participants with diabetes (85 with type 1 diabetes and 139 with type 2 diabetes) from the diabetic eye clinics at the International Diabetes Institute (Melbourne, VIC, Australia) and 103 white nondiabetic control subjects from the general eye clinics at the Royal Victorian Eye and Ear Hospital (Melbourne, VIC, Australia). Control subjects were consecutive patients seen at the hospital among individuals without diabetes and any retinal or eye pathological conditions. Individuals were excluded from participation if they were aged >70 years, were of nonwhite ethnic background, had a history of epilepsy or glaucoma, had previous vitreal surgery, and/or had a cataract on examination.

All participants and control subjects had a standardized clinical examination, measurement of blood chemistry, retinal photographs, and assessment of flicker-induced vasodilation using the Dynamic Vessel Analyzer (DVA; IMEDOS, Jena, Germany). Tenets of the Declaration of
Helsinki were followed, institutional review board approval was granted, and written informed consent was obtained from all participants.

Flicker light–induced retinal vasodilation

The DVA measures retinal vessel dilation in response to diffuse luminance flicker (12). Examination was conducted in a half-light room. The participant focused on the tip of a fixation bar within the retinal camera while the fundus was examined under green light. An arteriolar and venular segment between one-half and two disc diameters from the margin of the optic disc were selected. The mean diameters of the arterial and venous vessel segments were calculated and recorded automatically. Baseline vessel diameter was measured for 50 s, followed by a provocation with flicker light of the same wavelength for 20 s and then a nonflicker period for 80 s. This measurement cycle was repeated twice, with a total duration of 350 s/eye. When the eye blinked or moved, the system automatically stopped the measurement and restarted it once the vessel segments were automatically reidentified.

Retinal arteriolar and venular dilation in response to flicker light was calculated automatically by the DVA software. It was represented as an average increase in the vessel diameter in response to the flicker light during the three measurement cycles and was defined as the percent increase relative to the baseline diameter size.

Measurement of static retinal vessel diameter

In addition to quantifying the flicker-induced vasodilation, we assessed overall static arteriolar and venular diameter using a computer-assisted program. Details of the digital image preparation are described elsewhere (15). In brief, diameters of the largest six arterioles and venules passing through the circular zone between one-half and one disc diameter away from the optic disc margin were summarized as the central retinal arteriolar equivalent and central retinal venular equivalent using the Parr-Hubbard formula further modified by Knudtson and colleagues (15).

Assessment of diabetes

Fasting blood samples were drawn from participants at suburban pathology centers for measurement of fasting blood glucose level within 2 weeks of their eye testing. All participants with diabetes were patients recruited from the diabetic eye clinics and were managed with oral hypoglycemic medications and/or insulin. Control subjects (individuals without diabetes) had confirmed nondiabetic status based on a lack of history of diabetes and fasting glucose <7.0 mmol/l (126 mg/dl).

Assessment of diabetic retinopathy

In participants with diabetes, diabetic retinopathy was graded from fundus photographs at the Centre for Eye Research Australia, by graders masked to clinical details. For each eye, a retinopathy severity score was assigned based on modification of the Airlie House Classification system (16). For our analysis, levels 10, 11, and 12 were defined as no diabetic retinopathy, 14 to 20 as minimal nonproliferative diabetic retinopathy (NPDR), 31 and 41 as early to moderate NPDR, and 51–80 as severe NPDR (proliferative diabetic retinopathy).

Assessment of other risk factors

A detailed questionnaire was used to obtain participant information, including past medical history, current cigarette smoking, and the use of antihypertensive and lipid-lowering medications. Hypertension was defined as systolic blood pressure (SBP) >140 mmHg, diastolic blood pressure (DBP) >90 mmHg, or current use of antihypertensive medications. Dyslipidemia was defined as cholesterol >5.5 mmol/l or triglyceride >2.0 mmol/l or current use of lipid-lowering medications. Height and weight were measured to determine BMI. Fasting blood samples were drawn from participants at suburban pathology centers for fasting blood glucose level, cholesterol and triglyceride levels, and A1C within 2 weeks of their eye testing.

Statistical analysis

We compared flicker light–induced retinal vasodilation between individuals with diabetes and control subjects and in individuals with diabetes between those with and without DR. Flicker-induced arteriolar/venular dilation was analyzed as percent increase over baseline diameter, both as a continuous measure and in categories (tertiles). Data from both right and left eyes were used. Multiple logistic regression models were constructed using the generalized estimating equation models to account for correlation between the right and left eyes and to assess the odds of diabetes (vs. nondiabetic control subjects) or diabetic retinopathy (vs. no diabetic retinopathy among subjects with diabetes), comparing the lower versus upper tertiles of flicker light–induced arteriolar and venular dilation. In addition, multiple linear regression models were used to estimate the mean difference in arteriolar and venular dilation. We initially adjusted for age, sex, and fasting blood glucose level (model 1) and further adjusted for duration of diabetes (in analysis of diabetic patients), use of antihypertensive and lipid-lowering medications, current smoking status, SBP, and cholesterol and triglyceride levels (model 2). Analyses were performed in Stata (version 10.1; StataCorp, College Station, TX).

RESULTS

Selected characteristics of normal control subjects (n = 103), participants with diabetes (n = 224, 85 with type 1 and 139 with type 2 diabetes), and those with (n = 144) and without (n = 80) diabetic retinopathy are shown in Table 1. Mean ± age was 56.5 ± 11.8 years in subjects with diabetes and 48.0 ± 16.3 years in control subjects. The proportion of men was similar for participants with diabetes (41.6%) and control subjects (39.4%). Compared with nondiabetic control subjects, participants with diabetes were less likely to be current smokers but had higher BMI and were more likely to have hypertension, dyslipidemia, lower DBP, and lower total cholesterol levels. Compared with those with type 1 diabetes, individuals with type 2 diabetes were older, had greater BMI, but a shorter duration of diabetes, and were more likely to have hypertension and dyslipidemia (data not shown). In participants with diabetes, those with diabetic retinopathy had a longer duration of diabetes, had higher SBP, and were more likely to have hypertension. In addition, participants with diabetes had wider static arteriolar diameter than nondiabetic control subjects, whereas those with diabetic retinopathy had wider retinal venules than those without (Table 1).

Flicker light–induced retinal vasodilation was reduced in participants with diabetes compared with that in control subjects (Table 2). Flicker light–induced arteriolar dilation was 1.43 ± 2.10% in participants with diabetes and 3.46 ± 2.36% in normal control subjects (P < 0.001 after adjustment for age, sex, fasting glucose, cholesterol and triglyceride levels, use of antihypertensive and lipid-lowering medications, and current smok-
and, among participants with diabetes, those with and without diabetic retinopathy (P = 0.09).

Table 1—Participant characteristics (age-adjusted means and proportions) comparing participants with diabetes and normal control subjects, and, among participants with diabetes, those with and without diabetic retinopathy

Groups	n	Mean dilation	Age- and sex-adjusted	Multivariable adjusted*		
		(Reference)	Mean difference (95% CI)	P	Mean difference (95% CI)	P
Arteriolar						
Control subjects	103	3.46	(Reference)	<0.001	(Reference)	<0.001
Diabetic patients	224	1.43	-1.87 (-1.43 to -2.31)	<0.001	-1.58 (-1.05 to -2.11)	<0.001
Type 1 diabetes	1.57	-1.99 (-1.46 to -2.52)	<0.001	-1.71 (-1.10 to -2.32)	<0.001	
Type 2 diabetes	1.24	-1.78 (-1.29 to -2.27)	<0.001	-1.48 (-0.90 to -2.07)	<0.001	
Diabetic retinopathy severity						
None	1.76	(Reference)	-0.37 (0.29 to -1.03)	0.28	-0.53 (0.16 to -1.22)	0.13
Minimal NPDR	1.39	-0.75 (-0.23 to -1.28)	0.005	-0.85 (-0.29 to -1.40)	0.003	
Early-moderate NPDR	1.01	-0.51 (0.15 to -1.16)	0.13	-0.58 (0.12 to -1.28)	0.10	
Severe NPDR	1.24	2.83	-0.98 (-0.57 to -1.39)	<0.001	-1.07 (-0.56 to -1.57)	<0.001
		2.84	-1.11 (-0.62 to -1.61)	<0.001	-1.36 (-0.78 to -1.94)	<0.001
		2.83	-0.88 (-0.42 to -1.34)	<0.001	-0.83 (-0.27 to -1.38)	0.004
Venular						
Control subjects	3.98	(Reference)	-0.98 (-0.57 to -1.39)	<0.001	-1.07 (-0.56 to -1.57)	<0.001
Diabetic patients	2.83	-1.11 (-0.62 to -1.61)	<0.001	-1.36 (-0.78 to -1.94)	<0.001	
Type 1 diabetes	2.84	-0.88 (-0.42 to -1.34)	<0.001	-0.83 (-0.27 to -1.38)	0.004	
Type 2 diabetes	2.83	-0.98 (-0.57 to -1.39)	<0.001	-1.07 (-0.56 to -1.57)	<0.001	
Diabetic retinopathy severity						
None	3.19	(Reference)	-0.49 (0.10 to -1.09)	0.10	-0.10 (0.60 to -0.79)	0.78
Minimal NPDR	2.94	-1.11 (-0.63 to -1.58)	<0.001	-0.67 (-0.11 to -1.23)	0.02	
Early-moderate NPDR	2.40	-1.16 (-0.55 to -1.77)	<0.001	-0.65 (0.06 to -1.35)	0.07	

Data are %. *Adjustment for age, sex, fasting cholesterol and triglyceride levels, use of antihypertensive and lipid-lowering medications, current smoking status, and fasting glucose (for analysis of diabetic retinopathy severity).
Table 3—Associations between reduced flicker-induced arteriolar and venular dilation and diabetes

Dynamic flicker-induced dilation	Arteriolar	Venular	Diabetes							
	n*	Tertiles	Range (%)	%	Model 1	P	Model 2	P	Model 3	P
Arteriolar	173	Lowest	≤0.6	89.0	12.6 (5.54–28.7)	<0.001	19.7 (6.53–59.1)	<0.001	19.5 (6.30–60.2)	<0.001
	182	Middle	0.7–2.9	76.9	7.76 (3.75–16.1)	<0.001	11.2 (4.29–29.3)	<0.001	11.16 (4.22–29.5)	<0.001
	178	Highest	≥3.0	45.5	1.00 (Reference)	—	1.00 (Reference)	—	1.00 (Reference)	—
Venular	178	Lowest	≤2.1	86.5	4.67 (2.19–9.96)	<0.001	8.14 (3.09–21.4)	<0.001	8.03 (3.05–21.2)	<0.001
	177	Middle	2.2–3.7	67.8	1.17 (0.64–2.14)	0.62	1.43 (0.66–3.13)	0.37	1.40 (0.64–3.08)	0.40
	182	Highest	≥3.8	56.0	1.00 (Reference)	—	1.00 (Reference)	—	1.00 (Reference)	—

Data are ORs (95% CI) unless indicated otherwise. Model 1: adjusted for age, sex, and fasting blood glucose level. Model 2: adjusted for covariates in model 1 plus diabetes duration, use of antihypertensive and lipid-lowering medications, current smoking status, SBP, and fasting cholesterol and triglyceride levels. Model 3: adjusted for covariates in model 2 plus static retinal arteriolar or venular diameter. *n indicates number of eyes.

Table 4—Associations between reduced flicker-induced arteriolar and venular dilation and diabetic retinopathy

Dynamic flicker-induced dilation	Arteriolar	Venular	Diabetic retinopathy							
	n*	Tertiles	Range (%)	%	Model 1	P	Model 2	P	Model 3	P
Arteriolar	121	Lowest	≤0.3	60.3	2.52 (1.46–4.36)	0.001	2.19 (1.19–4.03)	0.01	2.02 (1.09, 3.74)	0.03
	127	Middle	0.4–1.8	55.9	1.92 (1.13–3.27)	0.02	1.88 (1.04–3.41)	0.04	1.81 (0.99, 3.31)	0.05
	127	Highest	≥1.9	43.3	1.00 (Reference)	—	1.00 (Reference)	—	1.00 (Reference)	—
Venular	120	Lowest	≤1.7	67.5	3.14 (1.82–5.45)	<0.001	2.45 (1.33–4.49)	0.004	2.41 (1.30, 4.67)	0.005
	122	Middle	1.8–3.3	53.3	1.54 (0.91–2.60)	0.11	1.33 (0.75–2.38)	0.33	1.36 (0.75, 2.44)	0.31
	134	Highest	≥3.4	39.6	1.00 (Reference)	—	1.00 (Reference)	—	1.00 (Reference)	—

Data are ORs (95% CI) unless indicated otherwise. Model 1: adjusted for age, sex, and fasting blood glucose level. Model 2: adjusted for covariates in model 1 plus diabetes duration, use of antihypertensive and lipid-lowering medications, current smoking status, SBP, and fasting cholesterol and triglyceride levels. Model 3: adjusted for covariates in model 2 plus static retinal arteriolar or venular diameter. *n indicates number of eyes.
this flicker-induced vasodilation in healthy individuals. In addition, impaired response to flicker light stimulation in individuals with hypertension could be restored by angiotensin II subtype 1 receptor blockade (20). However, this finding has been documented only in individuals without diabetes. It was hypothesized previously that the decreased endothelial dysfunction in subjects with diabetes is associated with impaired nitric oxide action because of its inactivation resulting from increased oxidative stress and that abnormal nitric oxide metabolism is related to advanced diabetic microvascular complications (21). This hypothesis is supported by recent data demonstrating similar retinal arteriolar and venular dilation after a single sublingual dose of 0.8 mg nitroglycerin between 20 patients with insulin-treated diabetes with no or only mild NPDR and 20 healthy age-matched control subjects (22). However, it is becoming increasingly clear that neuronal cells of the retina are also affected by diabetes, resulting in dysfunction and degeneration (23), and diabetic retinopathy is a disease of both retinal neurons and microcirculation (24). Because retinal blood flow is coupled with neuronal activity (25), reduced flicker light–induced vasodilation can thus also reflect neurodegeneration (17,24).

In our study, significantly reduced flicker light–induced vasodilation was observed in diabetic subjects with diabetic retinopathy compared with those without diabetic retinopathy. This relationship appeared to be stronger among individuals with type 1 diabetes than among those with type 2 diabetes, given the similar distribution of diabetic retinopathy severity between the two groups. This observation could be due to longer diabetes duration in those with type 1 diabetes (mean 22.1 years for type 2 diabetes vs. 12.6 years for type 2 diabetes), resulting in possibly a greater level of impairment of retinal vascular autoregulation (26), endothelial damage (26), or neurodegeneration (17,24). Alternatively, the underlying mechanisms of diabetic retinopathy may be different in type 1 and type 2 diabetes.

The strengths of this study include quantitative measures of retinal vasodilation after flicker light stimulation, assessment of diabetic retinopathy from fundus photographs using standardized grading protocols, and one researcher (T.T.N.) performing all DVA measurements. Limitations of this study should also be noted. First, the cross-sectional nature of the study provides no temporal information on the associations reported. Second, our findings are only applicable to individuals with diabetes who are aged ≥70 years. Third, we have no measurement of retinal neuronal function. Thus, further longitudinal studies are needed to ascertain cause and effect and to correlate flicker-induced vasodilation with retinal neuronal functions using tests such as electroretinography.

In summary, we demonstrated a reduction in flicker light–induced retinal vasodilation in individuals with diabetes and, among those with diabetes, in those with retinopathy signs. These findings further support the concept that early endothelial dysfunction is a likely key pathophysiological mechanism that underlies diabetes and its microvascular complications.

Acknowledgments — This study was supported by a Diabetes Australia Research Trust Grant (to T.T.N., J.J.W., and T.Y.W.).

W.V. is a chief information officer and shareholder of Imedos. Imedos is the maker and distributor of Dynamic Vessel Analyzer used in this study and other devices for retinal vessel analysis.

No other potential conflicts of interest relevant to this article were reported.

References
1. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA 2007;298:902–916
2. Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 2004;291:1978–1986
3. Stehouwer CD, Lambert J, Donker AJ, van Hinsbergh VW. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc Res 1997;34:55–68
4. Porta M. Endothelium: the main actor in the remodelling of the retinal microvasculature in diabetes. Diabetologia 1996;39:739–744
5. Cheung N, Wong TY. Diabetic retinopathy and systemic vascular complications. Prog Retin Eye Res 2008;27:161–176
6. Nguyen TT, Wang JI, Wong TY. Retinal vascular changes in pre-diabetes and pre-hypertension: new findings and their research and clinical implications. Diabetes Care 2007;30:2708–2715
7. Cheung N, Wang JI, Klein R, Couper DJ, Sharrett AR, Wong TY. Diabetic retinopathy and the risk of coronary heart disease: the Atherosclerosis Risk in Communities Study. Diabetes Care 2007;30:1742–1746
8. Matsumoto K, Sera Y, Ueki Y, Inukai G, Niio E, Miyake S. Comparison of serum concentrations of soluble adhesion molecules in diabetic microangiopathy and macroangiopathy. Diabet Med 2002;19:822–826
9. van Hecke MV, Dekker JM, Nijpels G, Moll AC, Heine RJ, Bouter LM, Polak BC, Stehouwer CD. Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn Study. Diabetologia 2005;48:1300–1306
10. Siemianowicz K, Francuz T, Gminski J, Telega A, Syzdol M. Endothelium dysfunction markers in patients with diabetic retinopathy. Int J Mol Med 2005;15:499–505
11. Spijkerman AM, Gall MA, Tarnow L, Twisk JW, Lauritzen E, Lund-Andersen H, Emes J, Parving HH, Stehouwer CD. Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in type 2 diabetes. Diabet Med 2007;24:969–976
12. Nagel E, Vilser W, Lanzi I. Age, blood pressure, and vessel diameter as factors influencing the arterial flicker response. Invest Ophthalmol Vis Sci 2004;45:1486–1492
13. Donner GT, Garhofer G, Kiss B, Polska E, Polak K, Riva CE, Schmetterer L. Nitric oxide regulates retinal vascular tone in humans. Am J Physiol Heart Circ Physiol 2003;285:H631–H636
14. Mandecka A, Dawczynski J, Blum M, Muller N, Kloos C, Wolf G, Vilser W, Hoyer H, Muller UA. Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care 2007;30:3048–3052
15. Wong TY, Knudtson MD, Klein R, Klein BE, Meuer SM, Hubbard LD. Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors. Ophthalmology 2004;111:1183–1190
16. Diabetic Retinopathy Study Research Group. Design, methods, and baseline results: a modification of the Airlie House classification of diabetic retinopathy (DRS report number 7). Invest Ophthalmol Vis Sci 1981;21:1b–226b
17. Garhofer G, Zawinka C, Resch H, Kothy P, Schmetterer L, Dorner GT. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol 2004;88:887–891
18. Buerk DG, Riva CE, Cрантsoon SD. Nitric oxide has a vasodilatory role in cat optic nerve head during flicker stimuli. Microvasc Res 1996;52:13–26
19. Kondo M, Wang L, Bill A. The role of ni-
tric oxide in hyperaemic response to flicker in the retina and optic nerve in cats. Acta Ophthalmol Scand 1997;75: 232–235
20. Delles C, Michelson G, Harazny J, Oehmer S, Hilgers KF, Schmieder RE. Impaired endothelial function of the retinal vasculature in hypertensive patients. Stroke 2004;35:1289–1293
21. Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res 2007;26: 205–238
22. Weigert G, Pemp B, Garhofer G, Karl K, Petzl U, Wolzt M, Schmetterer L. Nitroglycerin-mediated retinal vasodilation is maintained in patients with diabetes (E-Abstract). Invest Ophthalmol Vis Sci 2008;49
23. Kern TS, Barber AJ. Retinal ganglion cells in diabetes. J Physiol 2008;586:4401–4408
24. Bloomgarden ZT. Diabetic retinopathy. Diabetes Care 2008;31:1080–1083
25. Mulligan SJ, MacVicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 2004;431: 195–199
26. Wong TY, Mitchell P. The eye in hypertension. Lancet 2007;369:425–435