Comparative functional anatomy of hindlimb muscles and bones with reference to aquatic adaptation of the sea otter

Kent MORI1,2*, Satoshi SUZUKI3, Daisuke KOYABU2, Junpei KIMURA4, Sung-Yong HAN5 and Hideki ENDO2

1)Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113–0033, Japan
2)The University Museum, The University of Tokyo, Tokyo 113–0033, Japan
3)Fukui City Museum of Natural History, Fukui 918–8006, Japan
4)Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 151–742, Korea
5)Korean Otter Research Center, Hwacheon-gun, Gangwon-do 209–821, Korea

(Received 11 October 2014/Accepted 19 January 2015/Published online in J-STAGE 9 February 2015)

ABSTRACT. Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.

KEY WORDS: hindlimb, muscle, mustelidae, sea otter, swimming locomotion
doi: 10.1292/jvms.14-0534; J. Vet. Med. Sci. 77(5): 571–578, 2015

The purpose of this study is to clarify the sea otter (Enhydra lutris) as a complete aquatic species, based on its unique hindlimb morphology and functional adaptations. Previous investigators have morphologically described the muscles and skeleton of E. lutris appendages [2, 15–17], but there have been no comparative morphological studies between E. lutris and other closely related species in the Mustelidae family, except for one study on bone density [13]. Enhydra lutris has often been morphologically compared with pinnipeds and described as intermediate between terrestrial species and pinnipeds [17, 35, 36, 38]. However, to clarify the evolutionary adaptation of E. lutris from a terrestrial habitat to a complete aquatic lifestyle, its appendages should be functionally and morphologically compared with less aquatic species to which it is phylogenetically closely-related [34].

Such closely related species in the Mustelidae family include the Japanese weasel (Mustela itatsi), the Siberian weasel (M. sibirica), the American mink (Neovison vison) and the Eurasian river otter (Lutra lutra). These species and E. lutris show different levels of dependence on terrestrial and semi-aquatic ecology. M. itatsi and M. sibirica are closely related species, which diverged each other about 1.6 million years ago [30]. M. itatsi preys on fish in rivers [18], whereas M. sibirica does not [32, 37]. Further, N. vison and L. lutra depend on fish for 5–70% [1, 6, 7] and for 80% over [4] of their diets, respectively. Enhydra lutris feeds on sea urchins, octopus, clams and fish [20, 24]. These findings demonstrate that although M. itatsi, N. vison, L. lutra and E. lutris all hunt underwater for aquatic prey, they show differences in the degree of aquatic resources use.

The hindlimb structures act as the main propulsion generator during submerged swimming in highly aquatic Mustelidae species [8, 11, 12, 39, 40]. Therefore, by comparing the hindlimb bones and muscles of E. lutris with the four other Mustelidae species that show different levels of dependence on terrestrial and semi-aquatic ecology, we can investigate the functional and morphological gradations from a terrestrial habitat to an aquatic lifestyle [13]. Also, examining such closely related species might minimize any phylogenetic influences on hindlimb morphology.

MATERIALS AND METHODS

Specimens: Hindlimb bones were measured in 83 individuals among the five species, and also, 26 individuals were dissected in order to weigh the hindlimb muscle mass. The specimens used in this study are listed in Supplementary Table 1. We used only male specimens of M. itatsi and M. sibirica and omitted female specimens, because of their strong sexual dimorphism. In particular, it was pointed out...
that the feeding ecology of the female of M. itatsi differed from that of the males [19]. There is a possibility that the female of M. itatsi does not use the aquatic resources. Both male and female specimens of the other three species were used, since their both sexes also depend on the aquatic habitat [3, 20, 26].

Muscle mass and skeletal length measurements: Muscle mass was recorded since it is considered to be proportional to the maximum power generated by the muscle [5]. The hindlimb muscle nomenclature used in the present study and equivalent names used in previous studies are listed in Supplementary Table 2 [9, 14, 16, 21]. All carcasses had been frozen at −20°C until dissection. During dissection, the left-side hindlimb muscles were exposed. Some of the muscles were fused and could not be divided; so 28 muscle groups were used for the measurements (Table 1). The pressemembranosus muscle was not used in the analysis, because it was absent in some specimens of N. vison. The hindlimb muscles were removed from the carcasses. Then, adipose and connective tissues were removed before the muscles were weighed to the nearest 0.001 g using an electronic balance (UX420H, Shimadzu Corp., Kyoto, Japan). Eleven osteological characteristics were measured to the nearest 0.1 mm using calipers (Fig. 1 and Table 2). The measurements were used to examine the relationships between hindlimb morphological characteristics and ecological aquatic tendency in Mustelidae. The tests included interspecific pair-wise comparisons, principal components analysis (PCA) and partial Mantel tests. The muscle masses were divided by the geometric means (GM) calculated from obtained 27 masses of muscle groups, except for SOL, since E. lutris lacks SOL. The bone measurements were divided by the GM of femoral length (FL), tibial length (TL) and pelvic length (PL). Analysis of variance (ANOVA) was conducted to detect significant differences in the muscular and skeletal measurements between the five species. Homogeneity of variance was tested using the Bartlett’s test for post-hoc comparisons. Pair-wise

Definition of aquatic tendency: Aquatic tendency was defined using the dietary data of each species based on the weight ratios of fish remnants in total feces weight in the four species, except for E. lutris [4, 6, 18, 22, 37]. The percentages of consumed fish and aquatic tendencies were calculated and listed in Table 2 [9, 14, 16, 21]. All carcasses had been frozen at −20°C until dissection. During dissection, the left-side hindlimb muscles were exposed. Some of the muscles were fused and could not be divided; so 28 muscle groups were used for the measurements (Table 1). The presemembranosus muscle was not used in the analysis, because it was absent in some specimens of N. vison. The hindlimb muscles were removed from the carcasses. Then, adipose and connective tissues were removed before the muscles were weighed to the nearest 0.001 g using an electronic balance (UX420H, Shimadzu Corp., Kyoto, Japan). Eleven osteological characteristics were measured to the nearest 0.1 mm using calipers (Fig. 1 and Table 2). The measurements were used to examine the relationships between hindlimb morphological characteristics and ecological aquatic tendency in Mustelidae. The tests included interspecific pair-wise comparisons, principal components analysis (PCA) and partial Mantel tests. The muscle masses were divided by the geometric means (GM) calculated from obtained 27 masses of muscle groups, except for SOL, since E. lutris lacks SOL. The bone measurements were divided by the GM of femoral length (FL), tibial length (TL) and pelvic length (PL). Analysis of variance (ANOVA) was conducted to detect significant differences in the muscular and skeletal measurements between the five species. Homogeneity of variance was tested using the Bartlett’s test for post-hoc comparisons. Pair-wise

Muscle mass and skeletal length measurements: Muscle mass was recorded since it is considered to be proportional to the maximum power generated by the muscle [5]. The hindlimb muscle nomenclature used in the present study and equivalent names used in previous studies are listed in Supplementary Table 2 [9, 14, 16, 21]. All carcasses had been frozen at −20°C until dissection. During dissection, the left-side hindlimb muscles were exposed. Some of the muscles were fused and could not be divided; so 28 muscle groups were used for the measurements (Table 1). The presemembranosus muscle was not used in the analysis, because it was absent in some specimens of N. vison. The hindlimb muscles were removed from the carcasses. Then, adipose and connective tissues were removed before the muscles were weighed to the nearest 0.001 g using an electronic balance (UX420H, Shimadzu Corp., Kyoto, Japan). Eleven osteological characteristics were measured to the nearest 0.1 mm using calipers (Fig. 1 and Table 2). The measurements were used to examine the relationships between hindlimb morphological characteristics and ecological aquatic tendency in Mustelidae. The tests included interspecific pair-wise comparisons, principal components analysis (PCA) and partial Mantel tests. The muscle masses were divided by the geometric means (GM) calculated from obtained 27 masses of muscle groups, except for SOL, since E. lutris lacks SOL. The bone measurements were divided by the GM of femoral length (FL), tibial length (TL) and pelvic length (PL). Analysis of variance (ANOVA) was conducted to detect significant differences in the muscular and skeletal measurements between the five species. Homogeneity of variance was tested using the Bartlett’s test for post-hoc comparisons. Pair-wise
RESULTS

Muscle mass measurements: The mean values, standard errors and interspecific significant differences of the 28 muscle weight measurements that were scaled by geometric mean are shown in Table 4. In ANOVA, there were significant differences between species for the muscle groups, except for SMCR, SAR, GLA, TCREHL, PLA, FDL and PESB. Interspecific pair-wise comparison analyses also revealed significant differences in the relative mass of the muscle groups between species (Table 5). There were significant differences between E. lutris and at least one other species for 18 muscle groups (GSFCTFL, GMPI, OE, OIGE, QF, RF, V3, BFSTTE, SMCR, SMCA, GLA, ADD, F13, GLAT, GMED, FHL, POP and SOL) (Table 4). Some muscle groups showed significant differences between E. lutris and all four other species. For example, the masses of GSFCTFL, GMPI, OE, F13 and POP muscle groups were significantly larger in E. lutris than in the other four species, but those of RF, SMCA, ADD and SOL were significantly smaller. In the case of SOL, this is because it does not exist in E. lutris. Notably, in four muscle groups (GSFCTFL, RF, ADD and F13), the only significant difference was between E. lutris and the other four species.

Not all muscle groups in E. lutris were significantly different to all four other species. For example, the GMED muscle group was significantly larger in E. lutris than in L. lutra, M. itatsi and M. sibirica, but not significantly different to that of N. vison. Some other muscle groups were smaller in E. lutris than in some of the other species; QF, SMCR, GLA and FHL muscle groups were significantly smaller than those of L. lutra; OIGE, V3, GLA, GLAT and FHL were significantly smaller than those of N. vison; OIGE, QF, V3, SMCR and FHL were significantly smaller than those of M. itatsi; and OIGE, QF, V3, BFSTTE, GLA and GLAT were significantly smaller than those of M. sibirica.

There were also significant differences between the muscle masses of the four other species. For example, the masses of 19 muscle groups in L. lutra were statistically significantly different from at least one other species (ILPS, GSFCTFL, GMPI, GPAC, OE, OIGE, QF, RF, V3, BFSTTE, SMCR, SMCA, GLA, ADD, F13, GMED, FHL, POP and SOL). The mass of GMPI in L. lutra was larger than in N. vison, but that of OIGE was smaller. Also, L. lutra had significantly larger OE and GMED muscle mass than M. itatsi, but smaller ILPS, OIGE and SMCA muscle groups. Furthermore, in comparison to M. sibirica, L. lutra had
larger GPAC, OE and GMED muscle groups, but smaller ILLPS, OIGE, V3 and BFSTTE muscle groups.

For *N. vison*, 16 muscle groups showed statistically significant differences from at least one other species (GSFCTFL, GMPI, GPAC, OE, OIGE, RF, V3, BFSTTE, SMCA, GLA, ADD, FI3, GMED, FHL, POP and SOL). V3 and SMCA were significantly smaller than those of *M. itatsi*; GPAC, POP and SOL were significantly smaller than those of *M. sibirica*; V3 and BFSTTE were significantly lower than those of *M. sibirica*.

M. itatsi and *M. sibirica* indicated statistically significant differences from at least one species in 17 muscle groups (ILLPS, GSFCTFL, GMPI, GPAC, OE, OIGE, QF, RF, V3, SMCR, SMCA, ADD, FI3, GMED, FHL, POP and SOL) and 18 muscle groups (ILLPS, GSFCTFL, GMPI, GPAC, OE, OIGE, QF, RF, V3, BFSTTE, SMCA, GLA, ADD, FI3, GLAT, GMED, POP and SOL), respectively. However, the only significant difference between *M. itatsi* and *M. sibirica* was for GPAC, which was significantly larger in *M. itatsi*.

No exclusive significant differences were observed between *L. lutra* and the three Mustelidae species, except for *E. lutris* in a comparison between *E. lutris* and the others.

Although no significant differences were detected, *L. lutra* tended to have relatively larger distal hindlimb muscles (TCREHL, PLA and PESB) than those of the other species.

PC1 accounted for 47.4% of the variance and primarily separated *E. lutris* from the other species (Fig. 2 and Table 5). PC1 was negatively correlated with OIGE, FI3, POP and GSFCTFL, but it was positively correlated with V3, RF and SMCA. PC2 accounted for 13.2% of variance in the dataset and primarily separated *L. lutra* and *N. vison* from the other species. PC2 was negatively correlated with PESB and TCREHL, but it was positively correlated with ILLPS and SAR.

Table 6 shows the results of the partial Mantel test using the ecological, phylogenetic and morphological matrices prepared from PCA scores of the muscular weights. The coefficient of correlation between morphology (PC1) and ecology was 0.70 (*P*<0.05).

Table 4. Mean values, standard deviations and interspecific significant differences of measurements for geometric mean scaled muscle masses

Groups	Enhydra lutris mean SD	Lutra lutra mean SD	Neovison vison mean SD	Mustela itatsi mean SD	Mustela sibirica mean SD
ILLPS	1.75 0.32	1.23 0.14	1.59 0.25	2.03 0.20	1.82 0.31
GSFCTFL	3.16 0.32	1.75 0.09	1.64 0.20	1.73 0.11	1.82 0.19
GMPI	4.07 0.38	2.23 0.14	1.79 0.14	1.93 0.17	1.98 0.28
GPAC	0.42 0.09	0.34 0.05	0.32 0.04	0.27 0.03	0.22 0.02
OGE	0.99 0.15	0.56 0.05	0.50 0.04	0.45 0.06	0.41 0.05
QF	0.08 0.03	0.18 0.01	0.14 0.04	0.18 0.03	0.24 0.05
RF	1.30 0.20	1.90 0.14	1.99 0.20	2.09 0.07	2.20 0.27
V3	2.13 0.41	2.97 0.35	3.35 0.08	3.61 0.09	3.93 0.26
BFSTTE	5.02 0.46	5.62 0.34	5.53 0.47	5.98 0.57	6.66 0.40
SMCR*	1.95 0.14	2.62 0.25	2.31 0.31	2.30 0.19	2.55 0.34
SMCA	1.16 0.11	2.48 0.18	2.26 0.16	3.13 0.22	3.14 0.52
SAR*	2.10 0.39	1.70 0.15	1.84 0.25	2.12 0.32	2.11 0.31
GLA*	1.03 0.19	1.54 0.22	1.81 0.29	1.41 0.08	1.56 0.18
PEC	0.44 0.06	0.35 0.06	0.33 0.04	0.27 0.12	0.35 0.05
ADD	1.98 0.16	2.67 0.22	2.67 0.23	2.62 0.29	2.61 0.19
TCREHL*	1.14 0.48	1.43 0.14	1.27 0.06	1.22 0.09	1.23 0.11
TCA	0.61 0.32	0.33 0.05	0.30 0.04	0.25 0.06	0.26 0.08
FI3	1.29 0.09	0.77 0.11	0.82 0.06	0.77 0.04	0.70 0.05
EDL	0.76 0.12	0.64 0.10	0.56 0.03	0.59 0.04	0.50 0.05
GLAT	1.13 0.11	1.23 0.08	1.41 0.10	1.39 0.15	1.59 0.24
GMED	2.39 0.13	2.05 0.10	1.68 0.49	1.71 0.09	1.76 0.15
PLA*	1.13 0.14	1.21 0.05	1.10 0.12	1.13 0.08	1.17 0.05
FHL	0.54 0.05	0.91 0.06	1.03 0.12	0.91 0.07	0.91 0.31
FDL*	0.26 0.05	0.28 0.05	0.30 0.05	0.34 0.05	0.26 0.05
POP	0.51 0.02	0.30 0.04	0.34 0.02	0.29 0.04	0.24 0.03
PESB*	1.01 0.16	1.10 0.20	1.04 0.11	0.89 0.21	0.88 0.24
SOL	0.00 0.00	0.17 0.03	0.25 0.05	0.16 0.01	0.14 0.02

Muscle groups are defined in Table 1. Asterisks indicate no significant differences between the 5 species for that muscle group (*P*<0.05). a) SD, standard deviations. b) vs., species that showed significant differences in univariate ANOVA tests at the *P*<0.05 level using Games-Howell’s tests post hoc procedure (*E. lutris*, *L. lutra*, *V. vison*, *M. itatsi*, *M. sibirica*).
being the shortest in *E. lutris*. In contrast, PL was longer in these species with more aquatic tendency and was longest in *E. lutris*. IL was significantly larger in *E. lutris* than in the other species.

The percentage of variation explained by PC1 was 84.4%, which separated the samples into the following four plots on the basis of descending scores; *E. lutris*, *Lutra lutra*, *Neovison vison* and lastly both *Mustela* (Fig. 3 and Table 8). Both FL and TL correlated negatively with PC1, whereas FGT, FEB, TSL, PL and IL correlated positively. The percentage of variation explained by PC2 was 8.9%, and a separation of plots was found between *E. lutris* and both *Neovison vison* and *Lutra lutra*. *Mustela itatsi* and *Mustela sibirica* had intermediate scores and were not separated from other species. The factor loading of TSL correlated negatively with PC2.

Table 9 shows the results of the partial Mantel tests of the ecological, phylogenetic and morphological matrices. The coefficient of correlation conditioned on the phylogeny between the morphology (PC1) and the ecology was 0.89 (P<0.05).

DISCUSSION

Several studies have reported on the swimming motion of *E. lutris* [17, 36, 40], but no studies have described sequence data of the swimming motion and the movements of each hindlimb joint. Howell [17] studied the hindlimb skeleton of *E. lutris* and predicted that its submerged swimming motion differed from that of pinnipeds. He suggested that the swimming motion of *E. lutris* includes placing the feet horizontally to the rear with the soles up, one either side of the tail and oscillating them in the sagittal plane, in a motion similar to that of whale flukes. He suggested that the swimming motion of *E. lutris* is characterized by dorsoventral undulation of the trunk and by movements of both hindpaws in the dorsoventral direction, with the soles facing dorsally and/or caudally. However, Howell [17] did not comment on the movements of the hindlimb joints. Our results are consistent with the action predicted by Howell [17]. The GSFTFL, GMPI, OE, F13 and POP muscle groups are proportionately

![Fig. 2. Plot of PC1 and PC2 scores of muscle masses for the five mustelid species. PC1; the first principal component. PC2; the second principal component. Numbers in parentheses represent the percentage of the variation explained by the component.](image-url)
approximately two times larger in *E. lutris* than in the other species, but the RF, SMCA and ADD are significantly smaller in *E. lutris* than in the other species (Table 4). These results indicate that *E. lutris* utilizes GSFCFL, GMPI, OE, FI3 and POP more powerfully than the other four species since muscle mass is proportional to work capacity [5]. Therefore, we suggest that during submerged swimming, the power-stroke phase of *E. lutris* comprises abduction of the femur by the GSFCFL and GMPI muscles, medial rotation of the crus by the POP group, eversion movements of the ankle and also abduction of the fifth toe or extension of interdigital web by the FI3 group, in the FI3 group the peroneus brevis and the peroneus longus enable abduction of the fifth toe, and the peroneus digiti quinti extends the interdigital digit. The gluteus superficialis, gluteofemoralis and tensor fasciae latae muscles in the GSFCFL group are fused in *E. lutris* [16, 17]. This muscle group covers the lateral side of the hip joint; it attaches the lateral femoral ridge of the inferior border of the greater trochanter to the upper border of the lateral femoral condyle [16]. Therefore, GSFCFL may act as an abductor of the hip joint. In addition, it is pointed out that the piriformis muscle of *E. lutris* acts as an abductor on femur [16]. Movement of these three muscles at the hip, knee and ankle joints is not required for running on land. Therefore, the greater mass and power of these muscles in *E. lutris* suggests that these movements of the hindlimb are used for the swimming motion of this species.

The other mustelids are equipped with large muscles in the distal part of the hindlimbs (TCA, EDL, GMED and PESB), according to their aquatic tendency (Table 4). However, the evolutionary specializations observed in *E. lutris* were not observed in *M. sibirica*, *M. itatsi*, *N. vison* or *L. lutra*. The hindlimb morphology of terrestrial and semi-aquatic mustelids is regarded as a continuum. The North American river otter (*Lontra canadensis*) swims using dorsoventral movement of the trunk, whereas seals swim using lateral movement of the trunk [10]. It is possible that none of the five species examined in this study swim using lateral movement of the trunk. The swimming motion of *M. itatsi* and *M. sibirica* has not yet been studied, but Dunstone described the swimming motion of *N. vison*, which used all four limbs with either diagonally opposite legs simultaneously under the body [8]. We suspect that the swimming motion of both of these mustelids may be similar to that of *N. vison*, as the hindlimb muscle distribution morphologically resembles in these species. Terrestrial animals run on the ground with an anterior–posterior motion of the appendages under the trunk. Therefore, the results of our study suggest that the semi-aquatic animals investigated in this study swim with a motion similar to terrestrial running.

Table 7. Mean values, standard deviations and interspecific significant differences of geometric mean scaled bones measurements

Items	*Enhydra lutris*	*Lutra lutra*	*Neovison vison*	*Mustela itatsi*	*Mustela sibirica*										
	n¹	mean SD¹	n²	mean SD²	n³	mean SD³	n⁴	mean SD⁴	n⁵	mean SD⁵					
FL	13	0.81 ± 0.01	L VS	10	0.92 ± 0.01	E VS	10	1.01 ± 0.01	E LS	26	1.05 ± 0.01	E LS	24	1.09 ± 0.01	E LS
FGT	13	0.31 ± 0.01	L VS	10	0.28 ± 0.01	E VS	10	0.26 ± 0.00	E LS	23	0.23 ± 0.01	E LV	24	0.23 ± 0.01	E LV
FAPD	13	0.10 ± 0.01	V VS	5	0.09 ± 0.00	V S	10	0.07 ± 0.00	E LS	24	0.08 ± 0.01	E LV	24	0.08 ± 0.00	E V
FMLD	13	0.14 ± 0.01	L VS	5	0.10 ± 0.01	E VS	10	0.08 ± 0.01	E L	24	0.08 ± 0.00	E LV	24	0.08 ± 0.00	E L
FEB	13	0.24 ± 0.01	V VS	10	0.23 ± 0.01	V S	10	0.20 ± 0.01	E LS	23	0.19 ± 0.01	E LV	24	0.18 ± 0.01	E LV
TL	13	0.93 ± 0.01	L VS	10	0.99 ± 0.02	E VS	10	1.06 ± 0.01	E LS	26	1.06 ± 0.01	E LS	24	1.04 ± 0.01	E LV
TSL	13	0.44 ± 0.02	I S	10	0.44 ± 0.02	V S	10	0.42 ± 0.01	I S	26	0.39 ± 0.02	E LS	24	0.38 ± 0.02	E LV
TAPD	13	0.10 ± 0.01	V VS	5	0.10 ± 0.01	V S	9	0.08 ± 0.01	E L	24	0.08 ± 0.01	E LV	24	0.08 ± 0.01	E L
TMLD	13	0.07 ± 0.01	V VS	5	0.07 ± 0.00	V S	9	0.06 ± 0.00	E L	24	0.06 ± 0.00	E L	24	0.06 ± 0.00	E L
PL	13	1.32 ± 0.02	L VS	10	1.10 ± 0.03	E VS	10	0.94 ± 0.01	E LS	26	0.90 ± 0.01	E LS	24	0.89 ± 0.01	E LV
IL	13	0.59 ± 0.03	L VS	10	0.49 ± 0.02	E	10	0.49 ± 0.01	E	26	0.48 ± 0.01	E	23	0.48 ± 0.01	E

The abbreviations of measurements are defined in Table 2. a) n, sample size. b) SD, standard deviations. c) vs., species that showed significant differences in univariate ANOVA tests at the *P*<0.05 level using Games-Howell’s tests post hoc procedure (E, *Enhydra lutris*, L, *Lutra lutra*, V, *Neovison vison*, I, *Mustela itatsi*, S, *Mustela sibirica*).

Fig. 3. Plot of PC1 and PC2 scores of bone measurements for the five mustelid species. PC1; the first principal component. PC2; the second principal component. Numbers in parentheses represent the percentage of the variation explained by the component. □ *Enhydra lutris*, ◇, *Lutra lutra*, ◆, *Neovison vison*, ▲, *Mustela itatsi*, ●, *Mustela sibirica*. Filled symbols indicate mean values of each species.
Table 8. Factor loadings of bone measurements in PCA

Abbreviations	PC1	PC2	PC3
FL	-0.98	-0.02	0.00
FGT	0.96	-0.06	-0.13
FEB	0.94	-0.17	-0.23
TL	-0.93	-0.22	0.10
TSL	0.75	-0.62	0.22
PL	0.99	0.13	-0.01
IL	0.87	0.38	0.30
EV	5.91	0.62	0.22
PVE	84.39	8.88	3.10
CPVE	84.39	93.27	96.37

The abbreviations of bone measurements are defined in Table 2. a) EV, Eigen values. b) PVE, The percentage of the variation explained. c) CPVE, The cumulative percentage of the variation explained.

Table 9. The P values of partial Mantel test of bone measurements

Abbreviations	PC1	PC2	PC3
FL	0.89	0.64	0.45
FGT	0.45	0.88	0.60
FEB	0.45	0.88	0.60
TL	0.45	0.88	0.60
TSL	0.45	0.88	0.60
PL	0.45	0.88	0.60
IL	0.45	0.88	0.60
EV	0.45	0.88	0.60
PVE	0.45	0.88	0.60
CPVE	0.45	0.88	0.60

Taylor [38] compared the roughness of iliac crest of E. lutris with that of harbor seal (Phoca vitulina) and L. ca-nadens is qualitatively, and noticed more aquatic species held rougher crest. He suggested that the sartorius muscles (SAR), which originate from the crest, for adducting the femur were augmented in size with the increase in importance of the hindlimbs as a paddle from his observations. This aquatic adaptation tendency referred to by Taylor was not observed in any of the five species examined in our result, which showed no significant differences. Although, the mean SAR value in E. lutris (mean value 2.10) was proportionately larger than that of L. lutra (mean value 1.70), the mean values in other three mustelids: N. vison, 1.84; M. itatsi, 2.12 and M. sibirica, 2.11, were relatively larger than that in L. lutra. These data show that the aquatic tendency is not associated with the size increasing of SAR that was proposed by Taylor [38], at least not in Mustelidae.

Various studies have shown femoral shortening in aquatic or semi-aquatic animals [28, 29, 33, 35, 38]. Samuels et al. [29] reported that femoral shortening brought the pad-dling limb closer to the body and thus reduced induced drag during the recovery stroke when swimming. In our study, we also found femoral shortening (lower FL values) in E. lutris and L. lutra species which had higher aquatic tendency (Table 7). Additionally, it is interesting to note the significant difference in FL between M. itatsi (mean value 1.05) and M. sibirica (mean value 1.09), which hunts fishes but it does not well adapt to swimming, although both species diverged each other about 1.6 million years ago [30]. The shortening of femur enables the foot to close to the body axis [35]. It seems that the closing contributes to efficient swimming.

Smith and Savage [31] suggested that more aquatically adapted animals possess smaller gluteus and larger ischio-pubic muscles, which include the semimembranosus, biceps femoris, semitendinosus and tenuissimus after comparing the iliac length in proportions to the pelvic bones among a marten (Martes sp.), a river otter (Lutra sp.) and a seal (Phoca sp.). However, our results do not support this suggestion since E. lutris had the largest relative mass of gluteus muscles, and it and L. lutra also had smaller relative mass of the semimembranosus, biceps femoris, semitendinosus and tenuissimus muscles (Table 4). In addition, the IL length value of E. lutris (mean value 0.59) was significantly much larger than that of the other four species (mean value; L. lutra and N. vison, 0.49; M. itatsi and M. sibirica, 0.48) (Table 7). There are morphological differences, since the body of seal moves bilaterally, but that of both E. lutris and L. lutra moves dorsoventrally when they swim [35]. The difference between the results of Smith and Savage and ours was caused by following reason: E. lutris developed their gluteal muscles and became to aquatic; however, seals adopt another development for aquatic.

In conclusion, our muscle and bone measurement analyses revealed that the hindlimb morphology of the mustelids has obvious functional and morphological relationships with their ecology rather than with their phylogen (Tables 6 and 9). We could confirm that E. lutris had unique hindlimb morphological characteristics compared to the other Mustelidae. In our study, we defined the aquatic tendency of each species from ecological information. Based on this information, we defined E. lutris as having full aquatic tendency, whereas the other four species had semi-aquatic or fully terrestrial tendencies. Furthermore, the muscle and bone analyses indicated morphological differences associated with hip joint abductors between E. lutris and the four other species that were categorized as terrestrial or semi-aquatic species. Therefore, we suggest the hindlimb of E. lutris clearly reflects their complete aquatic lifestyle. This hindlimb structure has resulted in E. lutris acquiring a more abductable femur, as it evolved away from the other semi-aquatic mustelidae and their need to partly survive on land. The E. lutris abductable femur may enable the species to develop maneuverability when they swim by raising the center of mass near to the body axis, the same as the shortening of femur. We conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids. The semi-aquatic species share similar muscle proportions with terrestrial rather than with aquatic species.

ACKNOWLEDGMENTS. We thank the following people for access to specimens: Shin-ichiro Kawada for access to specimens from the collections of The National Museum of Nature and Science, Tokyo; Hajime Taru for access to specimens from the collections of Kanagawa Prefectural Museum of Natural History; Darrin Lunde for access to specimens from the collections of the National Museum of
Natural History, Smithsonian Institute; Sadao Ihara of Ohu University and the staff of the Oita Marine Palace Aquarium UMITAMAGO for providing specimens. Further thanks are due to Mikiko Abe of Osaka City University, and also Satoshi Kawaguchi and Sen-ichi Oda of Okayama University of Science for access to their private collections. Finally, we also thank Eun-Young Noh, Hanchan Park and Jinwoh Oh for preparation of specimens.

REFERENCES

1. Bartoszewicz, M. and Zalewski, A. 2003. American mink, Mustela vison diet and predation on waterfowl in the Słonki Reserve, Western Poland. Folia Zool. (Brno) 52: 225–238.
2. Berta, A. and Morgan, G. S. 1985. A new sea otter (Carnivora: Mustelidae) from the late Miocene and early Pliocene (Hemiphilian) of North America. J. Paleol. 59: 809–819.
3. Birks, J. D. S. and Dunstone, N. 1985. Sex-related differences in the diet of the mink Mustela vison. Ecography 8: 245–252. [CrossRef]
4. Blanco-Garido, F., Prenda, J. and Narvaez, M. 2008. Eurasian otter (Lutra lutra) diet and prey selection in Mediterranean streams invaded by centrarchid fishes. Biol. Invasions 10: 641–648. [CrossRef]
5. Brand, P. W., Beach, R. B. and Thompson, D. E. 1981. Relative tension and potential excision of muscles in the forearm and hand. J. Hand. Surg. Am. 6: 209–219. [Medline] [CrossRef]
6. Brzezinski, M. 2008. Food habits of the American mink Mustela vison in the Mazurian Lakeland, Northeastern Poland. Mamm. Biol. 73: 177–188.
7. Day, M. and Linn, I. 1972. Notes on the food of feral mink Mustela vison in England and Wales. J. Zool. 167: 463–473. [CrossRef]
8. Dunstone, N. 1980. Swimming and diving behavior of the mink (Mustela vison Schreber). Carnivore 2: 56–61.
9. Evans, H. E. 1993. Miller’s Anatomy of the Dog. 3rd ed., Saunders, Philadelphia.
10. Fish, F. E. 1994. Association of propulsive swimming mode with behavior in river otters (Lutra canadensis). J. Mammal. 75: 989–997. [CrossRef]
11. Fish, F. E. 1996. Transitions from drag-based to lift-based propulsion in mammalian swimming. Am. Zool. 36: 628–641.
12. Fish, F. E. and Baudinette, R. V. 2008. Energetics of swimming by the ferret: Consequences of forelimb paddling. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 150: 136–143. [Medline] [CrossRef]
13. Fish, F. E. and Stein, B. R. 1991. Functional correlates of differences in bone density among terrestrial and aquatic genera in the family Mustelidae (Mammalia). Zoomorphology 110: 339–345. [CrossRef]
14. Fish, F. E. 1942. The Osteology and Myology of the California River Otter, Stanford University Press, Redwood city.
15. Gambarjan, P. and Karapetjan, W. 1961. Besonderheiten im Bau des Seelöwen (Eumetopias jubatus) der Baikalrobbe (Phoca sibirica) und des Seeotters (Enhydra lutris) in Anpassung an die Fortbewegung im Wasser. Zool. Jahrb. 79: 123–148 (in German with English abstract).
16. Howard, L. D. 1975. Muscular anatomy of the hind limb of the sea otter (Enhydra lutris). Proc. Calif. Acad. Sci. 4th Series 40: 335–416.
17. Howell, A. B. 1930. Aquatic Mammals: Their Adaptations to Life in the Water, Dover, New York.
18. Kaneko, Y., Shibuya, M., Yamaguchi, N., Fujii, T., Okumura, T., Matsubayashi, K. and Hioki, Y. 2009. Diet of Japanese weasels (Mustela itatsi) in a sub-arboreal landscape: Implications for year-round persistence of local populations. Mammal Study 34: 97–105. [CrossRef]
19. Kawada, S. 2001. Two species of mustelid carnivores caught by mole-traps. Special Public. Nagoya Soc. Mammal. 3: 39–40.
20. Kenyon, K. W. 1969. The Sea Otter in the Eastern Pacific Ocean, Dover, New York.
21. Klingener, D. 1979. Laboratory Anatomy of the Mink, William C Brown, Dubuque.
22. Kvitk, R. G., Bowlby, C. E. and Staedler, M. 1993. Diet and foraging behavior of sea otters in southeast Alaska. Mar Mamm. Sci. 9: 168–181. [CrossRef]
23. Legendre, P. and Legendre, L. 1998. Numerical Ecology, 2nd ed., Elsevier, Amsterdam.
24. Love, J. A. 1990. Sea Otters, Whittet Books, London.
25. Marmi, J., Lopez-Giraldez, J. F. and Domingo-Roura, X. 2004. Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zoo. Sci. 33: 481–499. [CrossRef]
26. Nowak, R. M. 1999. Walker’s Mammals of the World. 6th ed. Johns Hopkins University Press, Baltimore.
27. R Core Team. 2013: R: A Language and Environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from http://www.R-project.org.
28. Samuels, J. X. and Valkenburgh, B. V. 2008. Skeletal indicators of locomotor adaptations in living and extinct rodents. J. Morphol. 269: 1387–1411. [Medline] [CrossRef]
29. Samuels, J. X., Meachen, J. A. and Sakai, S. A. 2013. Postcranial morphology and the locomotor habits of living and extinct carnivores. J. Morphol. 274: 121–146. [Medline] [CrossRef]
30. Sato, J. J., Wolsan, M., Prevosti, F. J., D’Elia, G., Begg, C., Begg, K., Hosoda, T., Campbell, K. L. and Suzuki, H. 2012. Evolutionary and biogeographic history of weasel-like carnivorans (Musteliodae). Mol. Phylogenet. Evol. 63: 745–757. [Medline] [CrossRef]
31. Smith, J. M. and Savage, R. J. G. 1956. Some locomotory adaptations in mammals. J. Linnean. Soc. London Zool. 42: 603–622.
32. Sasaki, H. and Ono, Y. 1994. Habitat use and selection of the Siberian weasel Mustela sibirica coreana during the non-mating season. J. Mammal. Soc. Jpn. 19: 21–32.
33. Stein, B. R. 1988. Morphology and allometry in several genera of semiaquatic rodents (Ondatra, Nectomys, and Otzoymys). J. Mammal. 69: 500–511. [CrossRef]
34. Stein, B. R. 1989. Bone-density and adaptation in semiaquatic mammals. J. Mammal. 70: 467–476. [CrossRef]
35. Tarasoff, F. J. 1972. Comparative aspects of the hind limbs of the river otter, sea otter, and seals. pp. 333–359. In: Functional Anatomy of Marine Mammals (Harrison, R. J. ed.), Academic Press, New York.
36. Tarasoff, F. J., Bisaillon, A., Pierard, J. and Whitt, A. P. 1972. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mamallia). Can. J. Zool. 50: 915–929. [Medline] [CrossRef]
37. Tata, M. and Doi, T. 1994. Comparative analyses on food habits of Japanese marten, Siberian weasel and leopard cat in the Tsushima islands, Japan. Ecol. Res. 9: 99–107. [CrossRef]
38. Taylor, W. P. 1914. The problem of aquatic adaptation in the carnivora: as illustrated in the osteology and evolution of the sea-otter. Univ. Calif. Publ. Geol. 7: 465–495.
39. Williams, T. M. 1983. Locomotion in the North American mink, a semi-aquatic mammal. J. Swimming energetics and body drag. J. Exp. Biol. 103: 155–168. [Medline]
40. Williams, T. M. 1989. Swimming by sea otters – adaptations for low energetic cost locomotion. J. Comp. Physiol. A 164: 815–824. [Medline] [CrossRef]