Title
A New Formula for the Pattern Bandwidth of Fabry-Pérot Cavity Antennas Covered by Thin Frequency Selective Surfaces

Permalink
https://escholarship.org/uc/item/40j2r3j6

Journal
IEEE Transactions on Antennas and Propagation, 59(7)

ISSN
0018-926X

Authors
Hosseini, SA
Capolino, F
De Flaviis, F

Publication Date
2011-07-01

DOI
10.1109/tap.2011.2152343

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
measurement. Using only a single transition of impedance transformation, the core layout of the proposed SP feed is uniform and neat. Two topologies of the presented SP feed are provided for the sizes of a $\lambda_e/4$ and a $3\lambda_e/8$. The SP feed of $\lambda_e/4$ can be employed for the case of critical demands on the small element spacing, while the design of $3\lambda_e/8$ can be used for general planar array applications. An example of $3\lambda_e/8$ SP feed with a patch as an element discussed in relation to imperfect performance. The presented SP feed can be extended to a $2^N \times 2^N$ feeding network, and is highly suitable for large-scale PCB arrays with less feed loss due to the shorter transmission line length in the total feeding network.

A New Formula for the Pattern Bandwidth of Fabry-Pérot Cavity Antennas Covered by Thin Frequency Selective Surfaces

S. A. Hosseini, F. Capolino, and F. De Flaviis

Abstract—A new closed form expression is introduced to estimate the 3 dB pattern bandwidth of a Fabry-Pérot cavity antenna covered by a thin frequency selective surface (FSS) radiating at the broadside direction. The new formula has been obtained using reciprocity, transmission line theory, and the susceptance model of the FSS. This formula estimates the 3 dB pattern bandwidth more accurately than previous expressions.

Index Terms—Fabry-Pérot cavity (FPC) antenna, frequency selective surface (FSS), 3 dB pattern bandwidth.

I. INTRODUCTION

A Fabry Pérot cavity (FPC) covered by a partially reflective surface was devised by Von Trentini [1] as a directive antenna. The FPC was later conceived as a grounded dielectric, covered by a denser layer as described in [2]. In [3], two layers of periodic rods made of alumina were placed above a patch antenna to increase its directivity. However, for fabrication reasons it is advantageous to cover the FPC by a frequency selective surface (FSS) made by an array

REFERENCES

[1] T. Teshirogi, M. Tanaka, and W. Chuo, “Wideband circularly polarized array antenna with sequential rotations and phase shifts of elements,” in Proc. Int. Symp. Antennas Propagat. ISAP, Tokyo, Japan, Aug. 1985, pp. 117–120.
[2] J. Huang, “A technique for an array to generate circular polarization using linearly polarized elements,” IEEE Trans. Antennas Propag., vol. 34, no. 9, pp. 1113–1124, Sep. 1986.
[3] P. S. Hall, “Application of sequential feeding to wide bandwidth, circularly polarized microstrip patch arrays,” in Proc. Inst. Elect. Eng., May 1989, vol. 136, pp. 390–398, pt. H.
[4] K. D. Palmer, J. H. Cloete, and J. J. van Tonder, “Bandwidth improvement of circularly polarized arrays using sequential rotation,” in Proc. IEEE Antennas and Propagation Symp., Jul. 1992, vol. 1, pp. 135–138.
[5] U. R. Kraft, “An experimental study on 2 \times 2 sequential-rotation arrays with circularly polarized microstrip radiators,” IEEE Trans. Antennas Propag., vol. 45, no. 10, pp. 1459–1466, Oct. 1997.
[6] A. R. Weiyl and Y. J. Guo, “Circularly polarized ellipse-loaded circular slot array for millimeter-wave WPAN applications,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2862–2870, Oct. 2009.
[7] R. Caso, A. Buffi, M. R. Pino, N. Noppe, and G. Manara, “A novel dual-feed slot-coupling feeding technique for circularly polarized patch arrays,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 183–186, 2010.
[8] K.-F. Hung and Y.-C. Lin, “Novel broadband circularly polarized cavity-backed aperture antenna with traveling wave excitation,” IEEE Trans. Antennas Propag., vol. 58, no. 1, pp. 35–42, Jan. 2010.
[9] S. S. Yang, R. Chair, A. A. Kishik, K. F. Lee, and K. M. Luk, “Study on sequential feeding networks for subarrays of circularly polarized elliptical array antenna,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 321–333, Feb. 2007.
[10] H. Evans, P. Gale, B. Aljibouri, E. G. Lim, E. Korolkeiwicz, and A. Sambell, “Application of simulated annealing to design of serial feed sequentially rotated 2 \times 2 antenna array,” Electron. Lett., vol. 36, no. 24, pp. 1987–1988, Nov. 2000.
[11] K. H. Lu and T.-N. Chang, “Circularly polarized array antenna with corporate-feed network and series-feed elements,” IEEE Trans. Antennas Propag., vol. 53, no. 10, pp. 3288–3292, Oct. 2005.
[12] A. A. Kishik, “Performance of planar four elements array of single-fed circularly polarized dielectric resonator antenna,” Microw. Opt. Technol. Lett., vol. 38, no. 5, pp. 381–384, 2003.
of either metallic patches or slots, as was used for the leaky wave (LW) antennas in [4]–[7]. The thin FSS made of periodic metallic patches or slots has been modeled in [5], [6] as a pure imaginary shunt admittance \(Y = j \beta Y_0 \), where \(Y_0 \) is free space admittance and \(\beta \) is the normalized FSS susceptance, in a transmission line (TL). Based on the mentioned model, general formulas describing the pattern bandwidth (BW), half-power beamwidth, and the maximum radiated electric and magnetic fields as a function of \(\beta \) have been derived in [7], for this class of planar LW antennas. In [8], fundamental radiation properties of this class of LW antennas have been investigated in detail. Among other results, in [7], [8], a closed form formula was introduced to approximate the 3 dB pattern bandwidth of a FPC antenna covered by a thin FSS. The expression yields accurate results only for very large \(\beta \) values. The TL model of the FPC antenna was used in [9] to derive a general expression to calculate the theoretical gain of a FPC antenna fed by either electric or magnetic dipoles. Using the expressions in [9, Appendix A], one can determine that normalized susceptance values of \(|\beta| = 1.5\), and 10 yield gains of 8.5 dB, 19.5 dB, and 25.5 dB for an FPC antenna filled with air, respectively. Therefore, large values of \(\beta \), e.g., \(|\beta| > 10\), would imply gains larger than 25.5 dB. Since FPC antennas constitute a useful design also for planar, low-profile antennas with moderate gains (between 10 and 20 dB for instance), it is believed that a more accurate BW formula is needed for this class of FPC antennas. Therefore, this work provides a better closed form approximation of the 3 dB pattern BW that is also applicable to moderate gain antennas using more precise approximations on the radiated power density. For large gain antennas (i.e., for large \(\beta \) values) this proposed BW expression tends to coincide with that in [7], [8]. Finally, analytical and numerical comparisons are made between the results calculated from the new formula and the numerically computed 3 dB pattern BW.

II. IMPROVED FORMULA FOR THE PATTERN BANDWIDTH

Since the radiation properties of the FPC antenna (directivity, gain, BW, pattern BW) strongly depend on the cavity dimensions and the type of FSS used, the FPC antenna fed by an elementary dipole point-source is analyzed here. Ideally, a FPC antenna can be fed by either an electric elementary dipole inside the cavity at distance \(z = h \), from the ground plane, Fig. 1(a), or by an elementary magnetic dipole on its ground plane as shown in Fig. 1(b) which models a slot on the same plane. The arrows shown in Fig. 1 illustrate the polarization of the elementary electric (a) or magnetic (b) dipoles. The two above-mentioned designs are similar in their radiation characteristics. Although all calculations presented here are based on having the electric current (dipole) positioned in the middle of the cavity, the results achieved are also valid for a FPC antenna fed by a magnetic current.

Utilizing the reciprocity theorem [10], [11], as an alternative to calculate directly the radiated far-field of antenna fed by an electric dipole, the far-field radiation pattern is found by determining the induced electric field at the feeding point in receiving mode, when the antenna is illuminated by a plane-wave. The received field is calculated by using a TL model, as already done in [12]. Therefore, it is assumed without loss of generality that the feeding electric dipole in the middle of the cavity, at \(z = h \), in Fig. 1(a), is oriented along the \(x \) direction. According to reciprocity property detailed in [12, p. 1330], the far-zone \(x \)-polarized electric field \(E_x^\text{eff} \) radiated by an antenna at broadside (\(\theta = 0^\circ \)) is related to the electric field induced at the feeding point \(z = h \), of the antenna in the receiving mode \(E_x^\text{eff} \) due to an incident \(x \)-polarized plane wave \(E_x^\text{inc}(z) = E_0 e^{j k_0 z} \) propagating from the \(z \) direction (Fig. 2), as \(E_x^\text{eff} = E_x^\text{inc} \). The magnitude of the plane-wave is \(E_0 = -j \omega f_0/4(4\pi) \) as calculated using the reciprocity theorem as discussed in [12, p. 1330], \(k_0 = \omega / \sqrt{\varepsilon_\infty} \) is the free space wavenumber and \(\omega \) the radian frequency. The 3 dB pattern BW of a planar FPC antenna, placed in \(xy \)-plane, is evaluated only for the broadside radiation (or reception) direction, i.e., where the antenna radiates (receives) its maximum power at its operational frequency. That is why calculations, here, are restricted to the receiving mode with plane-wave illumination from the \(z \)-direction (Fig. 2). Using the TL model of the receiving antenna [12, p. 1331], the received electric field \(E_x^\text{eff} \) at the point \(z = h \), is modeled by a voltage as \(E_x^\text{eff} = V(z = h) \), produced by an incident traveling wave \(e^{j k_0 z} \) with \(V^+ = E_0 \), as in Fig. 2. Therefore, the far-field radiation by the antenna at broadside is found as

\[
E_x^\text{eff} = V(z = h). \tag{1}
\]

In the TL model \(Z = Z_0 \sqrt{\mu_0 / \varepsilon_\infty} \) is the characteristic impedance of the material filling the cavity, and \(Z_0 = Y_0^{-1} - \sqrt{\mu_0 / \varepsilon_\infty} \) is the free space impedance. A very thin FSS is modeled as a lumped imaginary \(\beta \), where \(\beta = \sqrt{\mu_\infty / \varepsilon_\infty} \). Capacitive and inductive FSSs result in positive and negative \(\beta \) values respectively. The TL voltage induced at the feeding point \(z = h \), of a FPC antenna is calculated as

\[
V = \frac{2V^+}{\sin(k h_\perp)} \left(\frac{\sin(k h_{\parallel})}{1 + j Z_0 B_{\text{tot}}} \right) \tag{2}
\]

where \(k = \omega / v \) is the wavenumber inside the cavity, with \(v = 1 / \sqrt{\mu_\infty \varepsilon_\infty} \), and \(B_{\text{tot}} \) is the total imaginary admittance of the FPC antenna, looking leftward at \(z = h + 0^+ \) (Fig. 2)

\[
B_{\text{tot}} = Y_0 [\beta - \xi_c \cot(k h)] \tag{3}
\]

where \(\xi_c = \sqrt{\varepsilon_\infty / \mu_\infty} \). The broadside radiation power density of a FPC antenna is therefore determined as (detailed in [8])

\[
P = \frac{2V^2}{2Z_0} = \frac{2V_0^2}{\sin^2(k h_{\parallel})} \left(\frac{\sin^2(k h_{\perp})}{1 + Z_0^2 B_{\text{tot}}^2} \right) \tag{4}
\]

The total imaginary admittance \(B_{\text{tot}} \) is zero at the operational frequency \(f_{\text{op}} \) of the FPC antenna (which is defined as the resonance frequency of the FPC), which implies that the resonance height \(h \) is given by

\[
h = \frac{1}{k_{\text{op}}} \tan^{-1} \left(\frac{\xi_c}{k_{\text{op}}} \right) = \frac{\lambda_{\text{op}}}{2} \left(1 + \frac{\xi_c}{\pi h} \right) \tag{5}
\]
where the most-right hand side is an approximation for large values of \(\tilde{b} \). Here, it is assumed that the dipole feed is placed in the center of the cavity \((h_x = \frac{h}{2}, \text{where the cavity electric field is maximum}) \) which, for moderate or high-gain FPC antennas implies that \(\sin(k h_x) \equiv 1 \). Therefore, using (4), the maximum power density at broadside is approximated as

\[
P(\omega_{\text{op}}) \equiv 2\gamma_0 |V|^2 \cdot \frac{\sin^2(\omega_{\text{op}} h/v)}{h^2}.
\] (6)

The relative 3 dB pattern BW is defined as

\[
\text{BW}_{3 \text{ dB}} = \frac{\omega_{\text{op}}^{+} - \omega_{\text{op}}^{-}}{\omega_{\text{op}}}
\] (7)

where \(\omega_{\text{op}}^{\pm} \) are the frequencies that half the power radiated at broadside

\[
P(\omega_{\text{op}}^{\pm}) = \frac{1}{2} P(\omega_{\text{op}}).
\] (8)

Equation (8) can be solved numerically to find the 3 dB pattern BW of the antenna, but without providing for the capability of further analytical investigations. Since for a FPC antenna covered by a thin FSS several radiation parameters can be defined as a function of \(\tilde{b} \) [5]-[8], a closed-form formula is useful in determining the 3 dB pattern BW of the antenna, which can also be employed for further studies to increase the 3 dB pattern BW, as in [13]. Furthermore, general trends can be inferred by inspecting the closed form formula. In order to find the \(\omega_{\text{op}}^{\pm} \) values analytically a few considerations are necessary. Note that the resonance condition \(\tilde{B}_{\text{of}} (\omega_{\text{op}}) = 0 \) for large values of \(\tilde{b} \) also implies that \(\cos(\omega_{\text{op}} h/v) \equiv -1 \) whereas \(\sin(\omega_{\text{op}} h/v) \) is approximated as

\[
\sin \left(\frac{\omega_{\text{op}} h}{v} \right) \equiv -\frac{\tilde{\xi}_r}{\tilde{b}}.
\] (9)

Also, defining \(\Delta = \omega - \omega_{\text{op}} \) and assuming that \(\Delta/\omega_{\text{op}} \) is a small number, i.e., much less than unity, and using the Taylor approximations around the operational frequency of the antenna (i.e., for \(\Delta \equiv 0 \)) one has

\[
\sin \left(\frac{\omega_{\text{op}} h}{v} \right) \equiv -\frac{\tilde{\xi}_r}{\tilde{b}} - \frac{\tilde{h}}{v} \Delta \pm
\] (10-1)

\[
\cos \left(\frac{\omega_{\text{op}} h}{v} \right) \equiv 1 + \frac{\tilde{\xi}_r}{\tilde{b}} + \frac{\tilde{h}}{v} \Delta \pm
\] (10-2)

For thin FSSs modeled as inductive, \(\tilde{b} = -Z_0/(\omega_{\text{op}} L) \), or capacitive, \(\tilde{b} = Z_0 \omega_{\text{op}} C \), shunt loads [5]-[7], we can assume that changes of \(\tilde{b} \) are negligible within the 3 dB BW of the antenna, which is usually narrow. Thus, using (9) and (10), (8) is approximated as \(\Delta^2 + B \Delta + C = 0 \) where

\[
A = \left(\frac{\tilde{h}}{v} \right)^2 \frac{\tilde{h}^4 + 2 \tilde{h}^2 (2 \tilde{\xi}_r^2 + 1) + \tilde{\xi}_r^4}{\tilde{h}^4 + 2 \tilde{h}^2 (2 \tilde{\xi}_r^2 + 1) + \tilde{\xi}_r^4}
\]

\[
B = 2 \tilde{h} \tilde{\xi}_r \left(\frac{\tilde{h}}{v} \right)^2, \quad C = -\tilde{\xi}_r^2.
\] (11)

Solving for \(\Delta \), the upper and lower limits of the 3 dB pattern BW are found as

\[
\Delta^{\pm} = \tilde{\xi}_r \left(\frac{\tilde{h}}{v} \right)^{-1} \pm \sqrt{\frac{\tilde{h}^4 + 2 \tilde{h}^2 (2 \tilde{\xi}_r^2 + 1) + \tilde{\xi}_r^4}{\tilde{h}^4 + 2 \tilde{h}^2 (2 \tilde{\xi}_r^2 + 1) + \tilde{\xi}_r^4}}.
\] (12)

From (7), one has \(\text{BW}_{3 \text{ dB}} = (\Delta^+ - \Delta^-)/\omega_{\text{op}} \), which leads to

\[
\text{BW}_{3 \text{ dB}} = \xi_r \left(\frac{\lambda_{\text{op}}}{\pi \tilde{b}} \right) \sqrt{\frac{\tilde{h}^4 + \tilde{h}^2 (2 \tilde{\xi}_r^2 + 1) + \tilde{\xi}_r^4}{\tilde{h}^4 + 2 \tilde{h}^2 (2 \tilde{\xi}_r^2 + 1) + \tilde{\xi}_r^4}}.
\] (13)

Note that the cavity height \(h \) is determined by (5) and its value also depends on the inductive or capacitive choice of the FSS; in other words, besides the magnitude of \(\tilde{b} \), also its sign affects the resonance value of \(h \). In (13), the ratio \(v/h \) has been equivalently rewritten as \(v/h = \omega_{\text{op}} \lambda_{\text{op}} (2\pi \tilde{b}) \). Note that for very large values of \(\tilde{b} \), which imply high gain FPC antennas, using (5), \(h = \lambda_{\text{op}} / 2 \), and retaining only the \(\tilde{h} \) terms, (13) can be further simplified as

\[
\text{BW}_{3 \text{ dB}} = \left(\frac{2}{\pi \tilde{h}^2} \right) \xi_r
\] (14)

which is the approximated BW formula for high gain antennas covered by a thin FSS obtained in [7], [8].

III. Illustrative Examples

Comparisons are made between the 3 dB pattern BW values calculated analytically using (13) and (14) and the numerical results carried out by full-wave simulations for the same FPC antennas to demonstrate that (13) can be used as design BW estimation with high accuracy. These comparisons also verify the better accuracy of (13) over previously found (14). The comparison is shown in Fig. 3 for negative and positive FSS susceptance \(\tilde{b} \) and for \(\varepsilon_r = 1 \) and \(\mu_r = 1 \), against an “exact” result obtained by solving (8) numerically.

As expected, both (13) and (14) are accurate for high values of \(\tilde{b} \), however for lower susceptance values \(\tilde{b} \), i.e., in case of low-gain FPC antennas, (13) yields more accurate results with respect to (14). Furthermore, one can notice that (13) provides more accurate results also in distinguishing between capacitive and inductive FSSs, while this is not possible with (14). In Table I, the relative 3 dB pattern BW values calculated using (13) and (14) are compared with the numerical results calculated for the same structures simulated by a full-wave (FW) simulation (Ansys HFSS). The comparison is carried out for FPCs with inductive and capacitive low values of the FSS susceptance \(\tilde{b} \), designed at 10 GHz. The simulated FPC antenna is fed by an ideal magnetic dipole (slot) on its ground plane, and covered by an FSS (made of Copper with thickness of 10 \(\mu \text{m} \)) with infinite extent along \(x \) and \(y \). The inductive and capacitive FSSs, with a square FSS-unit-cell of \(12 \times 12 \text{mm}^2 \), are

![Fig. 3. Comparison between “exact” values of the 3 dB pattern BW of a FPC antenna covered by inductive or capacitive FSS and the results calculated from the approximated formulas: our result (13), and previous result (14).](image-url)
respectively made of periodic rectangular slots and strips with width of 5 mm and length \(L\). Different values of FSS susceptance \(b\) are obtained by varying \(L\) (see [14]), i.e., for the inductive FSSs (slots), \(L = 10.93\) mm, \(10.40\) mm, and \(9.48\) mm resulting in \(b = -1.5\), \(-2\), and \(-3\), respectively. While for the capacitive FSSs (strips), \(L = 9.58\) mm, \(10.25\) mm, and \(10.95\) mm resulting in \(b = 1.5, 2\), and \(3\) respectively. Then, the antenna broadside radiation power, gain, and pattern and gain BWs are calculated using the formulas described in [9, Appendix A]. As shown in Table I, the pattern BW values calculated from (13) and those obtained from the full-wave simulation results are in better agreement than the previous BW formula (14) as expected.

The accuracy of (13) is also investigated by considering the example in [15, Table I], in which a FPC antenna fed by a patch (6 × 6 mm\(^2\)) and covered by a finite-size (7 × 28 elements) FSS made of periodic patches (0.95 × 0.1 cm\(^2\)) and FSS-unit-cell size of 1.15 × 0.3 cm\(^2\), was designed at 12.4 GHz for a cavity partially filled with air (12.792 mm, and covered by a finite-size (7 mm, and 10.5 mm resulting in \(b = 1.5\), 2, and 3 respectively. Then, the antenna broadside radiation power, gain, and pattern and gain BWs are calculated using the formulas described in [9, Appendix A].

Table I

\(b\)	\(\text{Max Gain (dB)}\)	\(\text{FW Broadside Gain BW}_{3\text{dB}}(\%)\)	\(\text{FW Broadside Pattern BW}_{3\text{dB}}(\%)\)	\(\text{Apprx. BW}_{3\text{dB}}\)	\(\text{Apprx. BW}_{3\text{dB}}\)
-1.5	10.58	17.9	19.2	23.72	28.29
-2	12.12	11.87	11.38	14.79	15.92
-3	14.86	6.26	5.71	7.07	7.07
1.5	9.22	15.08	13.24	16.24	28.29
2	11.15	9.85	8.68	10.99	15.92
3	14.13	5.13	4.63	5.76	7.07

IV. Conclusion

A new closed form expression (13) was proposed for the estimation of the 3 dB pattern bandwidth of a FPC antenna covered by a thin FSS that, for very high-gain antennas, converges to a previous formula (14) proposed in [7], [8]. Both analytical and numerical comparisons prove the new formula (13) to be a significant improvement over the previous one (14) for medium-gain antennas. The proposed formula is well suited for FPCs covered by either capacitive (patches) or inductive (slots) FSSs, and it is an effective tool for engineers for providing an estimation of the resulting pattern bandwidth before starting a computationally expensive simulation campaign for designing the FPC and FSS.

ACKNOWLEDGMENT

The authors would like to thank Ansys (HFSS) for providing them their simulation tool that was instrumental in this work.

REFERENCES

[1] G. V. Trentini, “Partially reflecting sheet arrays,” *IRE Trans. Antennas Propag.*, vol. AP-4, pp. 666–671, 1956.

[2] D. R. Jackson and N. G. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” *IEEE Trans. Antennas Propag.*, vol. 33, no. 9, pp. 976–987, Sep. 1985.

[3] M. Thevenot, M. S. Denis, A. Reineix, and B. Jecko, “Design of a new photonic cover to increase antenna directivity,” *Microw. Opt. Technol. Lett.*, vol. 22, no. 2, pp. 136–139, July 1999.

[4] A. F. P. Feresidis and I. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” in *Proc. Inst. Elect. Eng. Microw. Antennas Propag.*, Dec. 2001, vol. 148, no. 6, pp. 345–350.

[5] T. Zhao, D. R. Jackson, J. T. Williams, H. D. Yang, and A. A. Oliner, “2-D periodic leaky-wave antennas—Part I: Metal patch design,” *IEEE Trans. Antennas Propag.*, vol. 53, no. 11, pp. 3505–3514, Nov. 2005.

[6] T. Zhao, D. R. Jackson, and J. T. Williams, “2-D periodic leaky-wave antennas—Part II: Slot design,” *IEEE Trans. Antennas Propag.*, vol. 53, no. 11, pp. 3515–3524, Nov. 2005.

[7] T. Zhao, D. R. Jackson, J. T. Williams, and A. A. Oliner, “General formulas for 2-D leaky-wave antennas,” *IEEE Trans. Antennas Propag.*, vol. 53, no. 11, pp. 3525–3533, Nov. 2005.

[8] G. Lovat, P. Burghignoli, and D. R. Jackson, “Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas,” *IEEE Trans. Antennas Propag.*, vol. 54, no. 5, pp. 1442–1452, May 2006.

[9] R. Gardelli, M. Albani, and F. Capolino, “Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement,” *IEEE Trans. Antennas Propag.*, vol. 54, no. 7, pp. 1979–1980, Jul. 2006.

[10] N. G. Alexopoulos, P. B. Katehi, and D. B. Rutledge, “Substrate optimization for integrated circuit antennas,” *IEEE Trans. Microw. Theory Tech.*, vol. 31, no. 7, pp. 550–557, Jul. 1983.

[11] C. A. Balanis, *Antenna Theory: Analysis and Design*. New York: Wiley, 1982, pp. 127–132.

[12] P. Burghignoli, G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, “Directive leaky-wave radiation from a dipole source in a wire-medium slab,” *IEEE Trans. Antennas Propag.*, vol. 56, no. 5, pp. 1329–1339, May 2008.

[13] G. Lovat, P. Burghignoli, F. Capolino, and D. R. Jackson, “Bandwidth analysis of highly-directive planar radiators based on partially-reflecting surfaces,” presented at the EuCAP, Nice, France, Nov. 2006.

[14] S. A. Hosseini, F. Capolino, and F. De Flaviis, “Design of a single-feed 60 GHz planar metallic Fabry-Perot cavity antenna with 20 dB gain,” presented at the IWT2009, Santa Monica, CA, Mar. 2009.

[15] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, “Design of a high-directivity electromagnetic bandgap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate,” *Microw. Opt. Technol. Lett.*, vol. 43, no. 6, pp. 462–467, Dec. 2004.