Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaO\(_x\) interface

Sheikh Ziaur Rahaman\(^1\), Siddheswar Maikap\(*\), Ta-Chang Tien\(^2\), Heng-Yuan Lee\(^3\), Wei-Su Chen\(^3\), Frederick T Chen\(^3\), Ming-Jer Kao\(^3\) and Ming-Jinn Tsai\(^3\)

Abstract

Excellent resistive switching memory characteristics were demonstrated for an Al/Cu/Ti/TaO\(_x\)/W structure with a Ti nanolayer at the Cu/TaO\(_x\) interface under low voltage operation of ±1.5 V and a range of current compliances (CCs) from 0.1 to 500 μA. Oxygen accumulation at the Ti nanolayer and formation of a defective high-κ TaO\(_x\) film were confirmed by high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photo-electron spectroscopy. The resistive switching memory characteristics of the Al/Cu/Ti/TaO\(_x\)/W structure, such as HRS/LRS (approximately 10\(^4\)), stable switching cycle stability (>10\(^6\)) and multi-level operation, were improved compared with those of Al/Cu/TaO\(_x\)/W devices. These results were attributed to the control of Cu migration/dissolution by the insertion of a Ti nanolayer at the Cu/TaO\(_x\) interface. In contrast, CuO\(_x\) formation at the Cu/TaO\(_x\) interface was observed in an Al/Cu/TaO\(_x\)/W structure, which hindered dissolution of the Cu filament and resulted in a small resistance ratio of approximately 10 at a CC of 500 μA. A high charge-trapping density of 6.9 × 10\(^{16}\) /cm\(^2\) was observed in the Al/Cu/Ti/TaO\(_x\)/W structure from capacitance-voltage hysteresis characteristics, indicating the migration of Cu ions through defect sites. The switching mechanism was successfully explained for structures with and without the Ti nanolayer. By using a new approach, the nanoscale diameter of Cu filament decreased from 10.4 to 0.17 nm as the CC decreased from 500 to 0.1 μA, resulting in a large memory size of 7.6 T to 28 Pbit/sq in. Extrapolated 10-year data retention of the Ti nanolayer device was also obtained. The findings of this study will not only improve resistive switching memory performance but also aid future design of nanoscale nonvolatile memory.

Keywords: Ti nanolayer, Nanoscale, Resistive memory, Nanofilament, Charge-trapping.

Background

Recently, many resistive switching random access memory (ReRAM) devices containing oxides such as SrTiO\(_3\) [1-3], Al\(_2\)O\(_3\) [4], NiO\(_x\) [5-7], Na\(_{0.5}\)Bi\(_{0.5}\)TiO\(_3\) [8], ZnO [9,10], Ta\(_2\)O\(_5\) [11], ZrO\(_2\) [12-15], GdO\(_x\) [16,17], HfO\(_x\) [18,19], and TiO\(_x\) [21-23] have been reported for future nanoscale nonvolatile memory applications. However, the resistive switching mechanism of ReRAM devices is currently debated. On the other hand, conductive-bridge ReRAM devices with different solid-electrolytes, such as GeSe\(_x\) [24-27], GeS [28,29], Ta\(_2\)O\(_5\) [30,31], ZrO\(_2\) [32], SiO\(_2\) [33], AgS [34,35], HfO\(_2\) [36,37], SrTiO\(_3\) [38], and Cu-Te/Al\(_2\)O\(_3\) [39] have also been reported by several groups. In these cases, silver (Ag) or copper (Cu) metal can be used as one of the electrodes to mobilize Ag\(^+\) or Cu\(^{2+}\) ions. Under an external bias on Ag or Cu electrode, metallic filament can be formed (or dissolved) into solid-electrolyte films. In general, Cu is a more preferable material than Ag because it is used as an interconnection metal in computer motherboards. High-κ Ta\(_2\)O\(_5\) is considered the most promising as a resistive switching material. [30,31] Therefore, a resistive switching memory device with a Cu/TaO\(_x\)/W structure could be desirable but also may have the drawback of copper oxidation (CuO\(_x\)) at the Cu/TaO\(_x\) interface, which can hinder resistive switching characteristics. Moreover, controlling Cu ion transportation and recovery under external bias is difficult. Tada et al. [40] reported resistive switching memory based on a dual layered TiO\(_x\)/TaSiO\(_x\) solid-

*Correspondence: sidhu@mail.cgu.edu.tw
1Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan
Full list of author information is available at the end of the article

© 2012 Rahaman et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
electrolyte under a high current compliance (CC) of 800 μA and a large operation voltage of 2.5 V. To prevent CuOx formation as well as promote easier Cu filament formation/dissolution through the high-κ TaOx solid-electrolyte, a Ti nanolayer at the Cu/TaOx interface is a promising approach to design an Al/Cu/Ti/TaOx/W resistive switching memory device, which has not been reported to date. Furthermore, Ti has good adhesion behavior and provides a good Cu diffusion barrier. The Gibbs free energies of TiO2, Ta2O5, CuO, and Cu2O films at 300 K are −889.5, −760.75, −129.7, and −149.0 kJ/mole, respectively [41], suggesting that the Ti nanolayer can be easily oxidized compared with the other possible materials. Therefore, a Ti nanolayer will consume more oxygen from the TaOx layer and will form TiO2/TaOx. Consequently, the Cu electrode will not form a CuO layer at the Cu/TaOx interface because of this greater oxygen consumption at the Ti nanolayer. This also has the benefit of easily controlling Cu migration and collection through the resulting higher defective high-κ TaOx solid-electrolyte under external bias. In this study, excellent resistive switching memory characteristics were observed in the proposed Al/Cu/Ti/TaOx/W structure with a Ti nanolayer at the Cu/TaOx interface annealed at 350°C in ambient N2 compared with a similar structure without a Ti nanolayer. This configuration will be useful for complementary metal-oxide-semiconductor (CMOS) processing after back end of line. The fabricated Al/Cu/Ti/TaOx/W structure memory device with a small area of 150 × 150 nm2 was observed by high-resolution transmission electron microscopy (HRTEM), X-ray photo-electron spectroscopy (XPS), and energy dispersive X-ray (EDX). In addition, the migration and collection (or formation/dissolution) of Cu ions through the defective TaOx solid-electrolyte under external bias, as well as its switching mechanism, were determined from capacitance-voltage (C-V) hysteresis. Improved resistive switching memory performance of the Al/Cu/Ti/TaOx/W structure compared with that of the Al/Cu/TaOx/W structure was also obtained, such as repeatable switching cycles with maintenance of a high resistance ratio (approximately 106), long extrapolated program and erase endurance of > 106 cycles, multi-level capability, and extrapolated 10 y data retention. Furthermore, Cu nanofilament diameters were calculated under current compliances (CCs) of 0.1 to 500 μA using a new approach. A large memory size of 28 Pbit/sq in. was achieved with a small nanofilament diameter of 0.17 nm under a CC of 0.1 μA.

Methods

Tungsten (W) metal was used as the bottom electrode (BE) and was deposited by sputtering onto SiO2/Si substrate. The thickness of the SiO2 layer was approximately 200 nm whereas that of the W layer was approximately 100 nm. A further SiO2 layer, which had a thickness of approximately 150 nm, was then deposited on the W/SiO2/Si substrates. A small device with an area of 150 × 150 nm2 was fabricated by lithography. Photoresist was coated on the patterned wafers and both the active and top electrode (TE) regions of the memory device were then exposed for a lift-off process. A high-κ Ta2O5 solid-electrolyte with a thickness of 18 nm was deposited from pure Ta2O5 granules using an E-gun evaporator. The resulting high-κ Ta2O5 solid-electrolyte film was mixed with Ta metal (i.e., TaOx where x < 2.5), as characterized by XPS. Cu, which provided mobile ions, was deposited at a layer thickness of approximately 50 nm by a thermal evaporator. A 160-nm-thick layer of aluminum (Al) was then deposited in situ using the same thermal evaporator to protect the Cu surface layer from oxidation by the external environment. The total thickness of the top electrode (Cu + Al) was approximately 200 nm. Finally, the lift-off process was performed to obtain the resistive switching memory device. Cu mobile ions play a major role in the Al/Cu/TaOx/W structure resistive switching memory device (device S1). In this S1 device, Cu is oxidized at the Cu/TaOx interface and hinders the resistive switching memory performance. Therefore, Cu oxidation is expected to be avoided by inserting a Ti nanolayer at the Cu/TaOx interface. A thin Ti layer with a thickness of approximately 3 nm was deposited in situ using an E-gun evaporator and Ti granules during the described process to obtain a device with an Al/Cu/Ti/TaOx/W structure (device S2). The memory devices were annealed by rapid thermal annealing at 350°C in ambient N2 for 1 min. Oxygen accumulated in the Ti nanolayer and formed a TiOx nanolayer, as characterized by XPS. More than twenty resistive switching memory devices were fabricated and measured randomly to determine and compare their memory performance. The microstructures and thicknesses of all layers were investigated by HRTEM at 200 keV. The memory devices were observed by TEM using an FEI Helios-400 s system (FEI Co., Hillsboro, OR, USA) with a Ga+ ion source at an operating voltage of 5 kV. All layers and materials were characterized by both XPS and EDX. TaOx and TiOx films were analyzed by XPS using an Al (Kα) monochrome X-ray source at 1,486.6 eV (Figure 1). The analysis area was 650 μm in diameter, and the base vacuum in the analytic chamber was 1 × 10−9 Torr. All spectra were calibrated using a reference C1s peak at 284.6 eV. Memory characteristics, such as current–voltage (I-V), C-V, read endurance, and retention were measured using an HP4156C semiconductor parameter analyzer and HP4284A LCR meter (Agilent Technologies Inc., Santa Clara, CA, USA). The frequency applied during the C-V measurements was 1 MHz. The capacitance was measured in parallel capacitance-conductance mode. The bias applied to the TE and the BE was grounded during I-V
metal (i.e., $\mathrm{TaO_x}$ where $x < 2.5$). The peak height ratios of the $\mathrm{Ta\,4f_{7/2}}$, $\mathrm{Ta\,4f_{5/2}}$, and $\mathrm{Ta_2O_5\,4f_{5/2}}$ core levels for the w/o Ti samples with respect to the $\mathrm{Ta_2O_5\,4f_{7/2}}$ peak height were 0.03, 0.03, and 0.77, respectively, while those for the w/ Ti samples were 0.27, 0.16, and 0.77, respectively. This also suggests that the Ta content was higher in the w/ Ti samples than in the w/o Ti samples. Furthermore, the $\mathrm{TiO_2\,2p_{3/2}}$ binding energy in the w/ Ti samples was 459.57 eV (Figure 1b), which is close to that reported in previous studies [43,44]. These results indicate that a higher Ta metal content was present in the w/ Ti sample because of oxygen migration from the $\mathrm{TaO_x}$ film to the Ti film, resulting in $\mathrm{TiO_x/TaO_x}$ bilayers. Because of this oxygen migration property of the Ti nanolayer, the Cu layer was expected to be protected from oxidation at the Cu/$\mathrm{TaO_x}$ interface. In addition, the high-κ $\mathrm{TaO_x}$ solid-electrolyte is expected to be more defective, which will lead to improve resistive switching memory characteristics in the $\mathrm{Al/Cu/Ti/\mathrm{TaO_x}/W}$ structure compared with the $\mathrm{Al/Cu/\mathrm{TaO_x}/W}$ structure. The resulting Cu oxidation and memory characteristics are explained below.

Figure 2a shows a typical TEM image of an $\mathrm{Al/Cu/\mathrm{TaO_x}/W}$ resistive switching memory device (S1) of approximately $1 \times 1 \mu$m in size. The thicknesses of the W, Cu, and Al layers were approximately 100, 50, and 160 nm, respectively. A rough interface between the Cu and $\mathrm{TaO_x}$ layer was observed by HRTEM (Figure 2b,c), attributed to the formation of copper oxide in an approximately 3-nm-thick $\mathrm{CuO_x/TaO_x}$ mixture layer at the Cu/$\mathrm{TaO_x}$ interface. Considering the Gibbs free energies [41], the formation of $\mathrm{CuO_x}$ at the Cu/$\mathrm{TaO_x}$ interface is not possible. However, a $\mathrm{CuO_x/TaO_x}$ mixture was expected to form at the Cu/$\mathrm{TaO_x}$ interface during the device fabrication process. We have attempted to overcome this problem but in our experience to date it is difficult to avoid because the Cu first diffuses into the $\mathrm{TaO_x}$ layer and then intermixes, forming a $\mathrm{CuO_x/TaO_x}$ layer. Therefore, Ti barrier layer for Cu diffusion is generally used for interconnection of CMOS. Because of the observed thin (<3 nm) intermixing layer and the existence of the same materials (Cu and $\mathrm{TaO_x}$) on both sides of this interfacial layer, the exact composition at the Cu/$\mathrm{TaO_x}$ interface was not easy to determine in this report. Further study is needed to investigate the formation and composition of the Cu/$\mathrm{TaO_x}$ interface. The high-κ $\mathrm{TaO_x}$ film had a thickness of approximately 18 nm and appeared amorphous (Figure 2d). Figure 3a shows a TEM image of the device with a Ti nanolayer at the Cu/$\mathrm{TaO_x}$ interface (S2). The device size was approximately 150×150 nm. All layers were covered well at the active and outer regions of the device (Figure 3b,c). Oxygen accumulated in the Ti layer as expected, resulting in an approximately 3-nm-thick $\mathrm{TiO_x}$ nanolayer on the high-κ

Figure 1 XPS spectra of (a) Ta 4f and (b) Ti 2p core-level electrons.
Figure 2 TEM and HRTEM images of Al/Cu/TaO₆/W structure. (a) TEM image of an Al/Cu/TaO₆/W structure. Enlarged images with (b) scale bars of 50 nm and (c) 10 nm. (d) HRTEM image from (a) with a scale bar of 10 nm.

Figure 3 TEM image of an Al/Cu/Ti/TaO₆/W structure. (a) HRTEM images on (b) outside and (c) inside of the structure shown in (a).
TaO$_x$ solid-electrolyte. This accumulated oxygen originated from the TaO$_x$ layer and formed a more defective TaO$_x$ solid-electrolyte. The composition of all layers was also confirmed by EDX (Figure 4). The spectra in Figure 4 are labeled with corresponding positions in Figures 2 and 3. The observed Cu, W/Ta, W, Ta, and Ti signals had energies of approximately 0.94, 1.72, 8.38, 9.36, and 4.54 keV, respectively. The Cu count in the TaO$_x$ layer w/ Ti nanolayer was lower than that in the layer w/o Ti nanolayer at an energy of 0.94 keV (108 vs. 228, respectively). The oxygen counts at an approximate energy of 0.52 keV were 17, 238, 129, and 378 for W, TaO$_x$ w/o Ti, TaO$_x$ w/ Ti, and pure Ti layers, respectively. The oxygen count in the Ti nanolayer was the highest of any layer in the resistive switching memory device. These findings suggest that the Ti nanolayer is easily oxidized, which is in agreement with the Gibbs free energy, resulting in the formation of TiO$_x$ on the TaO$_x$ solid-electrolyte. TiO$_x$ nanolayer formation at the Cu/TaO$_x$ interface improved resistive switching memory characteristics as described below.

Figure 5 shows a typical I-V hysteresis loop for the Al/Cu/Ti/TaO$_x$/W resistive switching memory device (S2). Ten consecutive switching cycles at a CC of 100 μA are indicated by arrows 1 to 4. The pristine device had a high resistance state (HRS) with a leakage current of 5.26 nA at a read voltage (V$_{read}$) of +0.1 V. When the bias voltage applied to the top electrode was larger than the SET voltage of +0.6 V, Cu filament formed in the TaO$_x$ solid-electrolyte and induced a low resistance state (LRS) through a chemical reduction process (Cu$^{z+}$ + ze$^-$ → Cu, where z is 1 or 2). By applying a negative voltage of approximately −0.6 V, the Cu filament was dissolved or reverted to the TE through a chemical oxidation process (Cu → Cu$^{z+}$ + ze$^-$), and the device was reverted to a HRS. The SET voltage varied between 0.2 and 0.6 from cycle-to-cycle and device-to-device (data not shown). It has previously been shown that a higher formation voltage (e.g. >5 V) is not needed to observe resistive switching characteristics of the pristine device [45]. It is interesting to note that the value of the RESET current (I$_{RESET}$) increased as the number of switching cycles increased. No RESET current was observed for the first switching cycle of the pristine device. These results suggested that the filament diameter is very thin (or unstable) during the first switching cycle. When the number of switching cycles was increased to 10, the RESET current reached approximately −3.9 μA, and a stable filament was formed, suggesting that Cu migration was controlled by the TiO$_x$ layer. In this case, the initial filament formation of a pristine device depends on a few switching cycles rather than the formation voltage, which is commonly needed for a ReRAM device. Therefore, this provides an advantage for future real applications of Cu metallic filament resistive switching memory devices. The present device also only requires very low operation voltage of ±1 V with a current of only a few nanoamperes. Although it has been reported that Cu nanofilament has been successfully formed in solid-electrolyte, Cu migration in solid-electrolyte has not been described in the literature to date. To address this point, C-V hysteresis characteristics were measured to obtain an understanding of the solid-electrolyte under external bias.

Figure 6 shows the typical C-V hysteresis characteristics for both resistive switching memory devices under sweeping voltages from −1 V → +1.6 V → −2.5 V. The typical size of the device (A) was 8 × 8 μm. The switching
cycle is indicated by arrows 1 \rightarrow 3. The capacitances of pristine S1 and S2 devices at HRS were approximately 14.5 and 13.5 pF, respectively, at a V_{read} of +0.1 V. The capacitances at LRS were very high at approximately 1.87 and 2.03 nF for the S1 and S2 devices, respectively, under SET operation at a V_{read} of +0.1 V. This result was likely due to the movement of Cu ions through defect sites, which were trapped in the defective high-κ TaO$_x$ solid-electrolyte (i.e., Cu filament formation). The charge-trapping density was calculated from C-V hysteresis characteristics using the Equation 1 below [46].

$$N_{\text{charge}} = \frac{\Delta V \cdot C_{\text{LRS}}}{q \cdot A},$$

where ‘q’ ($= 1.602 \times 10^{-19}$ C) is the electronic charge and ‘A’ is the area of the resistive switching memory device. The hysteresis memory windows (ΔV) were approximately 3.4 and 3.5 V for the S1 and S2 devices, respectively. The charge-trapping densities of the S1 and S2 resistive switching memory devices were approximately 6.2×10^{16} and 6.9×10^{16}/cm2, respectively. C-V was measured using a 4284A LCR meter (Agilent Technologies Inc., Santa Clara, CA, USA). This system does not have capacitance compliance function. To confirm the capacitance values, more than fifty devices on each wafer were measured randomly. The Ti nanolayer of the Cu/TaO$_x$ device (S2) had a higher charge-trapping density due to trapping of more Cu ions at the defect sites of the TaO$_x$ solid-electrolyte, which improved the resistive switching performance as described below.

Figure 7 shows the typical I-V hysteresis loops for both resistive switching memory devices. One hundred consecutive switching cycles are indicated by arrows 1 to 5 under a CC of 500 μA. The S1 memory devices showed a leakage current of approximately 1.5 pA at a V_{read} of +0.1 V for a pristine device, lower than that of the S2 devices (23 pA) (Figure 7a,b). Average values (\pm standard deviations (SD)) of the leakage currents for the S1 and S2 memories were 1.5 (4.7) and 180 (10.7) pA, respectively (Figure 7c). Because of a higher charge-trapping density (Figure 6), the
average leakage current of the S2 memory devices was higher than that of the S1 devices. The HRS currents at a V_{read} of +0.1 V increased after the second cycle to approximately 32 and 0.57 μA for S1 and S2 devices, respectively. The lower HRS current of the S2 devices compared with that of the S1 devices was attributed to a longer filament length remaining in the S1 devices. This suggests that the recovery of Cu ions in the S2 devices was caused by a higher amount of defects in the TaO$_x$ layer. The SET voltages of the S1 devices showed larger variation (+0.3 to 0.9 V) compared with those of the S2 devices (0.23 to 0.5 V). In addition, the I_{RESET} of the S2 devices was lower than that of the S1 devices (100 vs. 1,000 μA, respectively); this was because of the control of Cu migration by the Ti nanolayer at the Cu/TaO$_x$ interface. The average device-to-device LRS values (± SD) of the S1 and S2 devices were 5.5×10^2 (3.2 × 102) and 8.4×10^2 (3.4 × 102) Ω, respectively, and the average HRS (± SD) values were 5.9×10^3 (4.0 × 103) and 3.2×10^7 (10.4 × 107) Ω, respectively (Figure 8a,b). For cycle-to-cycle, the average LRS values (± SD) of the S1 and S2 devices were 1.6×10^2 (1.3 × 102) and 8.2×10^2 (0.88 × 102) Ω, respectively, whereas the average HRS (± SD) values were 7.1×10^3 (1.34 × 103) and 7.4×10^3 (1.5 × 103) Ω, respectively. The resulting resistance ratios (HRS/LRS) of the S1 and S2 devices were approximately 10 and 3.8 × 104 for device-to-device and 44 and 9 × 103 for cycle-to-cycle, respectively. The resistance ratio of the S1 device was smaller than that of the S2 (10 vs. 104, respectively), which was attributed to the smaller gap (i.e., dissolved filament length) between the Cu electrode and remaining filament. Because of Cu ion migration under external bias, the filament formation/dissolution can be explained with the following hypothesis. Considering the charge-trapping phenomenon shown in Figure 6, the Cu ions (as positive charges) are transported through the defect sites into the high-κ TaO$_x$ solid-electrolyte under external bias. These ions are then trapped in the defect sites (starting from the W BE) and consequently neutralized by electrons from the BE. This causes metallic Cu filament to grow from the BE and form a conical-type metallic filament between the BE and TE (Figure 9a), a different mechanism to that recently reported for ZnO [10]. Under RESET operation, the Cu filament then starts to dissolve from the Cu/TaO$_x$ interface (Figure 9b) because the electric field at the Cu/TaO$_x$ interface will be higher as a result of its conical-shape. In this case, under negative bias to the TE, the filament Cu ions are transported through the similar defect sites into the high-κ TaO$_x$ solid-electrolyte. The Cu ions then either capture electrons from the TE, resulting in neutralization or return to the Cu electrode. In this case, the Cu ions will partially return to the Cu electrode because of the copper oxide present at the Cu/TaO$_x$ interface. On the other hand, the Cu filament forms, and ions migrate through the TaO$_x$ solid-electrolyte easily because of the higher charge-trapping density (i.e., defect sites), as shown in Figure 9c. It is clear that the observed lower diameter of the Cu filament is due to the Ti nanolayer at the Cu/TaO$_x$ interface controlling the migration of Cu ions under SET operation. Therefore, one of the major reasons that the control of the Cu ion mobilization is easier in the device with Ti is because of the higher defective TaO$_x$ solid-electrolyte. Under RESET operation, either the filament is almost dissolved (Figure 9d) or the gap length (i.e., the length between the Cu electrode and the remaining filament, or length of filament dissolution) in the S2 devices is longer than that of the S1 devices. The longer gap length of the S2 devices produced a higher resistance ratio (approximately 104 vs. 10, respectively) than that exhibited by the S1 devices because of the easier dissolution of the Cu filament through the defective TaO$_x$ solid-electrolyte. Through observation of several switching cycles (Figure 8),
we found that the standard deviation of HRS for the S2 devices was larger than that for the S1 devices (1.5 × 10^7 vs. 1.34 × 10^4 Ω, respectively), which was attributed to the longer gap length. However, the SD of LRS for the S2 devices was smaller than that for the S1 devices (88 vs. 130 Ω, respectively) because of the Ti nanolayer controlling Cu ion migration. Therefore, LRS dispersion was better in S2 devices compared with S1 devices. It is also interesting to note that under a CC of 500 μA, the LRS of the S2 devices was higher than that of the S1 devices (840 vs. 550 Ω, respectively) because of the series resistance effect of Ti acting as a Cu barrier layer. Notably, the observed longer gap length in the S2 devices was attributed to either easier dissolution of the Cu filament or higher amount of electron injection from the Cu electrode through the Ti nanolayer. It has been reported that the electron affinities of Ta_2O_5 and TiO_2 films with respect to the Si conduction band are 3.77 [47] and 3.15 eV, respectively [32,47]. Therefore, our results indicate that the barrier height at the Cu/Ta_2O_5 interface was reduced because of the Ti nanolayer, increasing electron injection from the Cu electrode. Similar barrier height lowering at the TiO_x/ZrO_2 interface and improved resistive switching memory performance were reported by Li et al. [48]. These findings suggest that Cu recovery from the filament through the TaO_x solid-electrolyte is easier in the device with Ti. The defective high-κ TaO_x solid-electrolyte, Cu ion migration control, and lower barrier height of the Ti nanolayer at the Cu/TiO_x interface in the Al/Cu/Ti/TaO_x/W structure were therefore expected to maintain repeatable and improved resistive switching memory characteristics, as described below.

Figure 10 shows the dependence of average LRS with CC ranging from 0.1 to 500 μA for the S2 devices. The LRS decreased linearly with increasing CC. The observed control of LRS by the device operation current was independent of the device size, which confirms the filamentary conduction mechanism proposed for the present resistive switching memory device. The average (median) value of LRS under a CC of 1 μA was approximately 147 (145) kΩ for a typical device of 150 × 150 nm. All LRS data were captured from several devices within the same cycle number. As a comparison, the LRS value of Ag-GeSe solid-electrolyte is approximately 140 kΩ at a CC of 1 μA [28]. The resistance at LRS can be expressed in relation to CC by Equation 2

\[R_{LRS} = \frac{0.175}{CC}. \]

The average LRS determined for the present S2 devices was slightly higher than that previously reported (0.14 /CC), which was due to both the series resistance of the Ti nanolayer and use of a different solid-electrolyte. Considering the cylindrical shape of the Cu filament, its diameter can be calculated from Equation 3,

\[R_{LRS} = \frac{\rho_{\text{filament}} L}{\pi D^2} \]

where \(L \) is the length (thickness of high-κ TaO_x solid-electrolyte, approximately 18 nm), \(\rho_{\text{filament}} \) is the resistivity
(approximately 200 μΩ•cm [49]), Φ is the cross-sectional area, and D is the diameter of the Cu filament. Using R_{LRS} and CC as obtained from equations 2 and 5, respectively, the filament diameter was found to decrease linearly with CC (Figure 10). The nanoscale filament diameter was 10.4 to 0.17 nm as the CC decreased from 500 to 0.1 μA. These calculated filament diameters were generally consistent with those in some reports [26,32,50] but were slightly different than others in the literature [33,51], which may be due to different solid-electrolytes and structures used. The observed small diameter of 1.7 Å at a small CC of 0.1 μA indicates that this device will be scalable beyond the atomic scale in the future. Under a CC of 500 μA, a high resistance ratio of $>10^4$ was obtained after 10^6 cycles, whereas under a low CC of 0.1 μA, a smaller ratio of 2 to 3 was obtained and there was no collapse even after 10^5 cycles. Figure 12b shows typical data retention characteristics as well as $>10^5$ extrapolated data retention under a CC of 200 μA, performed at 25 °C. A high resistance ratio of $>10^4$ was obtained after the extrapolated data retention, which will be of great advantage in future nanoscale low power nonvolatile resistive switching memory applications.

Figure 11 shows typical program/erase (P/E) endurance characteristics of the resistive switching memory devices. The S2 device had improved switching cycles, with P/E voltage of $+1.4/-1.2$ V, pulse width of 500 μs, and P/E current of $+300/-500$ μA (Figure 11b). An extrapolated P/E endurance of $>10^5$ cycles with a resistance ratio of >20 was observed for the S2 devices, whereas the S1 device collapsed at 3.2×10^6 cycles. This result was attributed to the Ti nanolayer at the Cu/TaOx interface in the S2 devices. Excellent read endurance characteristics of the Al/Cu/Ti/TaOx/W memory device were obtained even after $>10^5$ cycles under a read voltage of $+0.1$ V and CCs of 0.1 and 200 μA (Figure 12a). Under a CC of 200 μA, a high resistance ratio of $>10^4$ was obtained after 10^6 cycles, whereas under a low CC of 0.1 μA, a smaller ratio of 2 to 3 was obtained and there was no collapse even after 10^5 cycles. Figure 12b shows typical data retention characteristics as well as $>10^5$ extrapolated data retention under a CC of 200 μA, performed at 25 °C. A high resistance ratio of $>10^4$ was obtained after the extrapolated data retention, which will be of great advantage in future nanoscale low power nonvolatile resistive switching memory applications.
Cu/TaO₂ interface. The LRS increased linearly with decreasing CC in the range 500 to 0.1 μA, which resulted in a decrease of the Cu nanofilament diameter from 10.4 to 0.17 nm. These results suggest that a large memory size of 28 Pbit/sq in. at a small CC of 0.1 μA will be possible for the present devices for future nanoscale (0.17 nm) nonvolatile memory applications.

Competing interests
The authors declare that they have no competing interests.

Acknowledgments
This work was supported by the National Science Council (NSC), Taiwan, under contract number: NSC-98-2221-E-182-052-MY3. We are grateful to NSC, Taiwan for their support. The authors are also grateful to MUSCORPS Co., Ltd., and MA-tek, Hsinchu for their HRTEM support and discussion of our resistive switching memory devices. The authors are grateful to Prof. M. N. Kozicki, Arizona State University, USA for his insightful suggestions in this study.

Author details
1Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Rd., Kwei-Shan, Tao-Yuan 333, Taiwan. 2Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan. 3Electronic and Opto-Electronic Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.

Authors’ contributions
S2R carried out the device fabrication, measurement, and data analysis under the instruction of SM. TCT performed the XPS measurements. HYL, WSC, FTC, MKJ, and MJT performed via structure design and fabrication. All the authors contributed to the preparation and revision of the manuscript. All authors read and approved the final manuscript.

Received: 19 March 2012 Accepted: 26 June 2012
Published: 26 June 2012

References
1. Waser R, Aono M: Nanionics-based resistive switching memories. Nat Mater 2007, 6:833–840.
2. Sawa A: Resistive switching in transition metal oxides. Mater Today 2008, 11:28–36.
3. Sun X, Li G, Chen L, Shi Z, Zhang W: Bipolar resistance switching characteristics with opposite polarity of Au/SrTiO₃/Ti memory cells. Nanoscale Res Lett 2011, 6:599.
4. Wu Y, Lee B, Wang HSP: Al₂O₃-based RRAM using atomic layer deposition (ALD) with 1-μA reset current. IEEE Electron Dev Lett 2010, 31:1449–1451.
5. Ielmini D, Spiga S, Nardi F, Cagli C, Lamperti A, Cianci E, Fanciulli M: Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices. J Appl Phys 2011, 109:034506.
6. Panda D, Dhar A, Ray SK: Nonvolatile and unipolar resistive switching characteristics of pulsed laser ablated NiO films. J Appl Phys 2010, 108:104513.
7. Son JY, Shin YH, Kim H, Jang HH: NiO resistive random access memory nanocapacitor array on graphene. ACS Nano 2010, 4:2655–2658.
8. Zhang T, Zhang X, Ding L, Zhang W: Study on resistance switching properties of NiO thin films using impedance spectroscopy. Nanoscale Res Lett 2009, 4:1309–1314.
9. Chiu FC, Li PW, Chang WW: Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films. Nanoscale Res Lett 2012, 7:176.
10. Peng S, Zhuge F, Chen X, Zhu X, Hu B: Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Appl Phys Lett 2012, 100:072101.
11. Strachan JP, Ribeiro GM, Yang JJ, Zhang MX, Mao F, Goldfarb I, Holt M, Rose V, Williams RS: Spectromicroscopy of tantalum oxide memristors. Appl Phys Lett 2011, 98:242114.
12. Lin CY, Wang SY, Lee DY, Tseng TY: Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J Electrochem Soc 2008, 155:H615–H619.

13. Lin CY, Wu CY, Lee TC, Yang FL, Hu C, Tseng TY: Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Trans Nanotechnol 2007, 28:366–368.

14. Zuo Q, Long S, Liu Q, Zhang S, Wang Q, Li Y, Wang Y, Liu M: Self-regulating effect in gold nanocrystal-embedded zirconia oxide resistive memory. J Appl Phys 2009, 106:073724.

15. Lin CC, Chang YP, Lin HB, Lin CH: Effect of non-lattice oxygen on ZrO2-based resistive memory structure. Nano Res Lett 2012, 7:187.

16. Cao X, Li X, Gao X, Yu W, Liu X, Zhang Y, Chen L, Cheng X: Forming-free colossal resistive switching effect in rare-earth-oxide GaD3O5films for memristor applications. J Appl Phys 2009, 106:073723.

17. Jana D, Malikap S, Tien TC, Lee HY, Chen WS, Kao MJ, Tsai MJ: Formation polarity dependent improved resistive switching memory performance using IrOxnano-dots in Al2O3/WOxstructure. Jpn J Appl Phys 2012, 51. (In press).

18. Lee HY, Chen PS, Wang CC, Malikap S, Tseng PJ, Lin CH, Lee LS, Tsai MJ: Low-power switching of nonvolatile resistive memory using hafnium oxide. Jpn J Appl Phys 2006, 45:2175–2179.

19. Son JY, Kim DY, Kim H, Maeng WJ, Shin YS, Shin YH: A HfOxthin film resistive switch based on conducting atomic force microscopy. Electrochem Solid State Lett 2011, 14:H111–H113.

20. Son JY, Shin YH, Kim H, Jang HM: NO resistive random access memory with nanocapacitor for Gigabit-scale non-volatile memory. ACS Nano 2010, 4:2655–2658.

21. Kim KM, Choi BJ, Hwang CS: Localized switching mechanism in resistive switching of atomic-layer-deposited TiOxthin films. Appl Phys Lett 2007, 90:242906.

22. Yang JJ, Pickett MD, Liu X, Ohlberg DA, Stewart DR, Williams RS: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol 2008, 3:429–433.

23. Kim GH, Kim KM, Seok JY, Lee MH, Song SJ, Hwang CS: Influence of the interconnection line resistance and performance of a resistive cross bar array memory. J Electrochem Soc 2010, 157:G211–G215.

24. Kozicki MN, Park M, Mitkova M: Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnol 2005, 4:331–338.

25. Linn E, Roszein R, Kugeler C, Waser R: Complementary resistive switches for passive noncrossbar memories. Nat Mater 2010, 9:403–407.

26. Rahaman SZ, Malikap S, Chiu HC, Lin CH, Wu TY, Chen YS, Tseng PJ, Chen F, Kao MJ, Tsai MJ: Bipolar resistive switching memory using Cu metal filament in GaD3O5solid electrolyte. Electrochem Solid State Lett 2010, 13:H159–H162.

27. Yu S, Wong HSP: Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans Electron Dev 2011, 58:1352–1360.

28. Kozicki MN, Gopalan C, Balakrishnan M, Park M, Mitkova M: Non-volatile memory based on solid electrolytes. In: Proceedings 2004 Non-Volatile Memory Technology Symposium; 2004:10–14.

29. Bruchhaus R, Honal M, Symanczyk R, Kund M: Selection of optimized materials for CBRAM based on HT-XRD and electrical test results. J Electrochem Soc 2009, 156:H725–H733.

30. Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M: Electronic transport in Ta2O5resistive switch. Appl Phys Lett 2007, 91:092110.

31. Tsurowska T, Terabe K, Hasegawa T, Valov I, Waser R, Aono M: Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches. Adv Funct Mater 2012, 22:70–77.

32. Liu Q, Long S, Lv H, Wang W, Niu J, Huo Z, Chen J, Liu M: Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 2010, 4:6162–6168.

33. Schindler C, Weidcs M, Kozicki MN, Waser R: Low current resistive switching in CuSOxcolloids. Appl Phys Lett 2008, 92:122901.

34. Hasegawa T, Terabe K, Tsurowska T, Aono M: Atomic switch: atom/ion movement controlled devices for beyond Von-Neumann computers. Adv Mater 2012, 24:252–267.

35. Wang D, Liu L, Kim Y, Huang Z, Pantel D, Hesse D, Alexe M: Fabrication and characterization of extended arrays of Ag/SiAg nanodot resistive switches. Appl Phys Lett 2011, 98:243109.

36. Wang Y, Liu Q, Long S, Wang W, Wang Q, Zhang M, Zhang S, Li Y, Zuo Q, Yang J, Liu M: Investigation of resistive switching in Cu-doped HfOxthin film for multilevel non-volatile memory applications. Nanotechnology 2010, 21:045202.

37. Nagata T, Haermori M, Yamashita Y, Yoshikawa H, Iwashita Y, Kobayashi K, Chikyow T: Bias application hard x-ray photoelectron spectroscopy study of forming process of Cu/HfOx/Pt resistive random access memory structure. Appl Phys Lett 2011, 99:232107.

38. Yan XB, Li K, Yin J, Xia YD, Guo HX, Chen L, Liu ZG: The resistive switching mechanism of Ag–SiO2Pt memory cells. Electrochem Solid State Lett 2010, 13:H87–H89.

39. Gou L, Opsomer K, Degraeve R, Muller R, Detavernier C, Wouters DJ, Jurczak M, Attirme L, Kitti JA: Influence of the Cu–Te composition and microstructure on the resistive switching of Cu/Te/Al2O3Si cells. Appl Phys Lett 2011, 99:053502.

40. Tada M, Sakamoto T, Banno N, Aono M, Hada H, Kasa N: Nonvolatile crossbar switch using TiOx-Ta2O5-Solid electrolyte. IEEE Trans Electron Dev 2010, 57:1987–1995.

41. Birks N, Meier GH, Pettis FS: Introduction To The High Temperature Oxidation Of Metals. Cambridge: Cambridge University Press; 2006. http://www.doitpoms.ac.uk/tlplib/ellingham_diagrams/interactive.php.

42. Chang JP, Steigerwald ML, Fleming RM, Opila RL, Allen GB: Thermal stability of Ta2O5in metal–oxide–metal capacitor structures. Appl Phys Lett 1999, 74:3705–3707.

43. Malikap S, Wang TY, Tseng PJ, Lin CH, Tien TC, Lee LS, Yang JR, Tsai MJ: Band offsets and charge storage characteristics of atomic layer deposited high-k HfOx/TiOxmultilayers. Appl Phys Lett 2007, 90:262901.

44. Moulder JF, Stickle WF, Sobal PE, Bomben KD: Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, MN: Perkin-Elmer Corp; 1992.

45. Banerjee W, Malikap S, Rahaman SZ, Prakash A, Tien TC, Li WC, Yang JR: Improved resistive switching memory characteristics using core-shell IrOx-nano-dots in Al2O3/WO3bilayer structure. J Electrochem Soc 2012, 159:H177–H182.

46. Malikap S, Das A, Wang TY, Tien TC, Chang LB: High-k HfOxnanocrystal memory capacitors prepared by phase separation of atomic-layer deposited HfOx/Al2O3nanomixtures. J Electrochem Soc 2009, 156:H289–H32.

47. Luo ZJ, Guo X, Ma TP, Tamagawa T: Temperature dependence of gate currents in thin Ta2O5and TiOxfilms. Appl Phys Lett 2001, 79:2803–2804.

48. Li Y, Long S, Lv H, Liu Q, Wang Y, Zhang S, Liu W, Zhang K, Xie H, Liu S, Liu M: Improvement of resistive switching characteristics in ZrO2film by embedding a thin TiOxlayer. Nanotechnology 2011, 22:254028.

49. Rahaman SZ, Malikap S, Chen WS, Lee HY, Chen FT, Tien TC, Tai MI: Impact of TaOxnanolayer at the GeSex/W interface on resistive switching memory performance and investigation of Cu nanofilament. J Appl Phys 2012, 111: in press.

50. Nosein R, Meier M, Breuer U, Kugeler C, Waser R: Electroforming and resistance switching characteristics of silver-doped MSQ with inert electrodes. IEEE Trans Nanotech 2011, 10:338–343.

51. Hsiung CP, Liao HW, Gan JT, Wu TB, Hwang JC, Chen F, Tai MI: Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano 2010, 4:5414–5420.

Cite this article as: Rahaman et al.: Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOxinterface. Nanoscale Research Letters 2012 7:345.