Reduction in hypoxia-reoxygenation-induced myocardial mitochondrial damage with exogenous methane

Dávid Kurszán Jász1 | Ágnes Lilla Szilágyi1 | Eszter Tuboly1 | Bálint Baráth1 | Anett Roxána Mártón1 | Petra Varga1 | Gabriella Varga1 | Dániel Érces1 | Árpád Mohácsi2 | Anna Szabó2 | Renáta Bozó3 | Kamilla Gömöri4 | Anikó Górbe4 | Mihály Boros1 | Petra Hartmann1

1Institute of Surgical Research, University of Szeged, Szeged, Hungary
2MTA–SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, Szeged, Hungary
3Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
4Department of Biochemistry, University of Szeged, Szeged, Hungary

Correspondence
Petra Hartmann, Institute of Surgical Research, University of Szeged, H-6724 Szeged, Pulz u. 1, Hungary.
Email: hartmann.petra@med.u-szeged.hu

Funding information
The study was funded by National Research Development and Innovation Office grant NKFI K120232 and NKFIH-1279-2/2020. It was further supported by the Economic Development and Innovation Operative Programme Grant (GINOP-2.3.2-15-2016-00015), Human Resource Development Operational Programme (EFOP-3.6.2-16-2017-0006).

Abstract
Albeit previous experiments suggest potential anti-inflammatory effect of exogenous methane (CH4) in various organs, the mechanism of its bioactivity is not entirely understood. We aimed to investigate the potential mitochondrial effects and the underlying mechanisms of CH4 in rat cardiomyocytes and mitochondria under simulated ischaemia/reperfusion (sI/R) conditions. Three-day-old cultured cardiomyocytes were treated with 2.2% CH4-artificial air mixture during 2-hour-long reoxygenation following 4-hour-long anoxia (sI/R and sI/R + CH4, n = 6-6), with normoxic groups serving as controls (SH and SH + CH4; n = 6-6). Mitochondrial functions were investigated with high-resolution respirometry, and mitochondrial membrane injury was detected by cytochrome c release and apoptotic characteristics by using TUNEL staining. CH4 admixture had no effect on complex II (CII)-linked respiration under normoxia but significantly decreased the complex I (CI)-linked oxygen consumption. Nevertheless, addition of CH4 in the sI/R + CH4 group significantly reduced the respiratory activity of CII in contrast to CI and the CH4 treatment diminished mitochondrial H2O2 production. Substrate-induced changes to membrane potential were partially preserved by CH4, and additionally, cytochrome c release and apoptosis of cardiomyocytes were reduced in the CH4-treated group. In conclusion, the addition of CH4 decreases mitochondrial ROS generation via blockade of electron transport at CI and reduces anoxiareoxygenation-induced mitochondrial dysfunction and cardiomyocyte injury in vitro.

Keywords
anoxia, cardiomyocytes, complex I, methane, mitochondrial membrane potential, mitochondrial respiration, reoxygenation
1 | INTRODUCTION

Ischaemic heart disease is a leading cause of death worldwide. The underlying pathophysiology is multifactorial, but mitochondrial dysfunction, is thought to be the common denominator in ischaemia or ischaemia/reperfusion (I/R)-mediated cardiomyocyte-damaging events.1,2

Methane (CH₄) forms part of the gaseous environment, which maintains the metabolism within living aerobic cells. Though it is considered to be biologically inert, several studies have demonstrated bioactivity for exogenous CH₄ in animal models of ischaemia and inflammation,3–5 and accumulating experimental data suggest that exogenous CH₄ can influence mammalian energy homeostasis as well.3–6 More importantly, the administration of CH₄ has improved cardiac function, reduced the level of necroenzymes and prevented myocardial fibrosis and remodelling in acute and chronic rodent models of myocardial infarction.4 Whereas these results suggest a causal link between increased CH₄ input and the hypoxia-induced oxido-reductive stress response, the subcellular mechanisms of action are still unclear.

The major goal of this study was to outline a mitochondrial pathway, which explains the bioactivity of CH₄. In designing our experiments, we took into account that CH₄ can easily traverse cell membranes and that the molecules move down their concentration gradient into subcellular compartments.7 Further, previous findings have demonstrated that CH₄ treatment can preserve adenosine-triphosphate (ATP) production after I/R injuries to the liver and eyes.5,6 Therefore, these results strengthened the view that the mitochondrion is among the expected intracellular targets of CH₄ and led us to hypothesize that increased exogenous CH₄ input can influence the respiratory activity of cardiac mitochondria.8

Against this background, we carried out a sequential exploration of the mitochondrial effects of exogenous CH₄ in normoxic and simulated I/R environments using a high-resolution respirometry (HRR) system to quantify the electron transport chain (ETC) responses. Ischaemia can impair the mitochondrial respiration and other oxygen-dependent cellular functions, leading to reversible or irreversible structural damage; therefore, we also detected cell viability and apoptosis of cardiomyocytes as final outcomes.

2 | MATERIALS AND METHODS

2.1 | Photoacoustic spectroscopy (PAS) measurement of CH₄ concentration

The dynamics of the CH₄ concentration changes were detected by photoacoustic spectroscopy (PAS), as described previously.9 Briefly, PAS is a special mode of spectroscopy, which measures optical absorption indirectly via the conversion of absorbed light energy into acoustic waves. The set-up allows for online measurements of CH₄ concentrations with a minimum detectable concentration of 0.25 ppm. The CH₄ concentration in the medium was measured over a period of 120 min, and samples were taken every 2 min.

2.2 | Cardiomyocyte cell culture

Neonatal rat cardiac myocytes (NRMCs) were isolated, as described previously.10 Briefly, 1-3-day-old Wistar rats were sacrificed by cervical dislocation, and the hearts were excised and collected in ice-cold phosphate-buffered saline. After the atria were removed, the ventricles were minced with scissors and digested with 0.25% trypsin for 25 min. The cell suspension was centrifuged at 2000 rpm for 15 min at 4°C. Pelleted cells were pre-plated for 90 min at 37°C to separate the cardiac myocyte-enriched fraction. Cardiac myocytes were collected and counted in a Burker chamber and plated into 24-well plates (7 × 10⁴ cells/well) and into 75 cm² flasks (4 × 10⁶ cells/flask). Cells were harvested in Dulbecco’s Modified Eagle’s growth medium (DMEM) supplemented with a 10% foetal bovine serum (FBS), 1% glutamine and 1% antibiotic/antimycotic solution for 24 hours, and then, the medium was changed to 1% FBS-containing growth medium to promote the differentiation of the cardiomyocytes. At the end of the three-day isolation protocol, the phenotype of NRMCs corresponds to that of cardiomyocytes isolated from adult rats. The cardiac myocytes were kept in a normoxic incubator to maintain physiological conditions (37°C, 5% CO₂ and 95% air).

2.3 | Isolation of cardiac mitochondria

Adult Sprague Dawley rats were anaesthetized with sodium pentobarbital (45 mg/kg ip) to harvest the heart. The hearts were homogenized with a glass Potter homogenizer, and the mitochondria were isolated with Gnaiger’s method.11 The isolated mitochondria were suspended in a 2.5 mL mitochondrial respiration medium (MiRo5) for respirometric analysis and were treated as follows: 2 hours normoxia (95% air and 5%CO₂) or anoxia (100%N₂) was followed by re-oxygenation (with or without CH₄) for 30 minutes. At the end of the experiments, mitochondrial function was tested.

2.4 | Experimental protocols

The experiments were performed in two series using either intact NRMCs (Study I) or isolated cardiac mitochondria (Study II). In the first series, three-day-old cardiac myocytes were subjected to 4 hours simulated ischaemia (sI). The cells were kept in a hypoxic chamber (37°C, 95% N₂ and 5% CO₂), and the culture medium was changed to a hypoxic solution (in mM: NaCl 119, KCl 5.4, MgSO₄ 1.3, NaH₂PO₄ 1.2, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 5, MgCl₂ 0.5, CaCl₂ 0.9, Na lactate 20; bovine serum albumin (BSA) 0.1%, 310 mOsm/L, pH = 6.4). This was followed by a 2h-reoxygenation period (R) in a culture medium when cells were kept under either normoxic conditions (37°C, artificial
was followed by a 2h-reoxygenation period in the normoxic in-

2.5 mmol/L creatine-monohydrate and 0.1% BSA at pH 7.4), which

4 groups, respectively) (n=1 2-1 6 ). In the control groups, the m-

ternal chamber (Figure S3).

Examination of mitochondrial functions

High-resolution respirometry with an Oxygraph-2k (Oroboros

Instruments, Innsbruck, Austria) was used to examine the oxygen

consumption of the NRMCs and isolated cardiac mitochondria in

various mitochondrial metabolic states, mitochondrial hydrogen per-

oxide (H₂O₂) production and changes to mitochondrial membrane

potential. The mitochondrial protein content of the samples was de-

termined by Lowry’s method.

Coupling control protocol

Before the mitochondrial metabolic states were examined, a cell per-

meabilization protocol of the NRMCs was applied in the respirom-

eter chamber (Figure S3).

Next, we applied a coupling control protocol to the permeabil-

ized NRMCs. First, endogenous routine respiration was defined

without substrates. Then, the cells were permeabilized with digi-

tonin, and the oxidative phosphorylation capacity (OxPhos, State 3)

of the NRMCs was measured by adding 10 mmol/L succinate (Succ)

and 5 mmol/L ADP substrates. Subsequently, ATP-independent res-

piration was measured using 0.5 μmol/L oligomycin (Omy). Maximal

mitochondrial respiratory capacity was then measured by titration

of 1 μmol/L carbonyl cyanide p-trifluoromethoxy-phenyl-hydrazine

(FCCP). Finally, residual oxygen consumption (ROX) was determined

by adding 1 μmol/L rotenone (Rot) and 1 μmol/L antimycin-A (Ama).

Mitochondrial hydrogen peroxide (H₂O₂) production

In this series, mitochondrial H₂O₂ release as a marker of reactive

oxygen species (ROS) (ie superoxide anion) production was moni-

tored fluorimetrically with the Amplex Red/horseradish peroxidase

system, whereby Amplex Red (non-fluorescent) is oxidized to re-

sorufin. H₂O₂ production was calibrated with known amounts of

H₂O₂. In this setup, ROS release was investigated by adding oxidiz-

ing substrates (20 mmol/L glutamate, 10 mmol/L malate, 10 mmol/L

succinate, 5 mmol/L ADP) to the mitochondria. On isolated mito-

ochondria, the reverse electron transport (RET)-initiated H₂O₂ flux

was measured when mitochondria were incubated with 10 mmol/L

succinate; it was then blocked by the addition of 1 μmol/L rotenone.

The residual oxygen consumption was estimated after addition of

1 μmol/L antimycin-A (inhibitor of CIII) to exclude the effects of oxi-

dative side reactions. Then, free radical leak was also determined as

the percentage of oxygen consumption diverted to the production of

H₂O₂ in State 3.

Mitochondrial membrane potential

Mitochondrial membrane potential was measured fluorimetri-

cally using the fluorophore safranin. First, we added 1 μmol/L Rot,

10 mmol/L succinate and 1 μmol/L FCCP. Finally, ROX was deter-

mined by adding 1 μmol/L antimycin-A (Ama). Extramitochondrial

Ca²⁺ movement (as it indicates strong correlation with membrane

potential[23]) was examined with the use of blue fluorescence sensor

of HRR (excitation 465 nm; gain for sensor: 1000 and polarization

voltage: 500 mV) (Figure S4).

Detection of cytochrome c oxidase activity

Cytochrome c oxidase activity was calculated via the time-dependent

oxidation of cytochrome c at 550 nm, as described previously.

Briefly, a cytochrome c stock solution was freshly prepared by dis-

solving 10.6 mg cytochrome c (Sigma-Aldrich, Budapest, Hungary) in

20 mL distilled water. The cytochrome c was then reduced by adding

50 μL 0.1 mol/L sodium dithionite, with the absorbance of the solu-

tion determined at 550 nm; the photometer was calibrated to this

level. Heart samples were homogenized with a Potter grinder in 10x

ice-cold Miro5 medium and then centrifuged at 800 g for 5 minutes

at 4°C. 50 μL supernatant was added to 2.5 mL cytochrome c stock

solution, and the decrease in optical density at 550 nm was meas-

ured spectrophotometrically during 1 minute intervals at 0, 30 and

60 minutes.
2.10 | TUNEL and DAPI staining

Apoptosis of the NRMCs was detected with the TUNEL method. First, the cell number was detected, and then, a cytocentrifuge (6 minutes, 600 rpm, 50,000 cells/slide) was used to create cytospin samples. Samples (n = 6 each) were analysed for apoptotic cell staining with In Situ Cell Death Detection Kit TMR red (Roche, Cat. No. 12 156 792 910). The cytospin samples were fixed in 4% paraformaldehyde for 60 minutes and then permeabilized on ice for 2 minutes in 0.1% Triton X-100 in 0.1% sodium citrate. We used one part enzyme solution and nine parts label solution for the TUNEL reaction mixture according to the manufacturer’s instructions. The cytospin samples were incubated in the dark for 60 minutes at 37°C in a humidified atmosphere, followed by DAPI staining (Sigma-Aldrich, Cat. No. 10236276001). For each experimental series, one negative control (incubated only with the label solution) and one positive control (digested with DNase I (Quiagen, Cat. No. 79254) together with the TUNEL reaction mixture), and three normal (only with the TUNEL mixture) samples were used. Three pictures were taken of each sample (negative control, positive control and three normal samples each) in each experimental series with a Zeiss AxioImager.Z1 microscope at 20× magnification. The number of apoptotic cells per field of view (524.19 μm × 524.19 μm) was determined with Image J 1.47 software.

2.11 | Cell viability assay and lactate dehydrogenase (LDH) release

The NRMCs were incubated with 1 μmol/L calcein acetoxyethyl ester (Sigma-Aldrich, Cat. No. 56496 calcein-AM, Sigma, St. Louis, MO) dissolved in dimethyl sulfoxide at room temperature for 30 minutes to assess cell viability. Fluorescence intensity was measured with a fluorescence plate reader (Fluostar Optima, BMG Labtech, Ortenberg, Germany). Cell viability was compared with that of vehicle control. Cytotoxicity was also measured with the level of LDH released from the damaged cells into the medium culture with the available commercial LDH activity assay kit (Sigma-Aldrich, Cat. No. MAK066 Sigma-Aldrich, Budapest, Hungary) according to the manufacturer’s instructions.

3 | RESULTS

3.1 | CH₄ concentrations

The background CH₄ concentration in the airspace of the incubation chambers was 1.46 ± 94.95 ppm, and a rapid two orders of increase (to 1.5 × 10⁶ ± 58.12 ppm) was detected after the start of persufflation with a 2.2% CH₄-artificial air mixture. This concentration was steadily maintained during the 2 hours re-oxygenation period (Figure 1A,B). The dissolved CH₄ concentration was 1.46 ± 76 381 ppm in the cell culture medium and 1.41 ± 61 314 ppm in the MiRo 5 respiration medium 5 minutes following CH₄ persufflation (Figure 1C,D).

3.2 | Effect of CH₄ on the mitochondrial functions of the neonatal rat cardiomyocytes (NRMCs)

The coupling control protocol provides an opportunity to analyse the leak respiration of the mitochondria. As a result, significantly lower
OxPhos was measured in the sI/R group in comparison with the normoxia group (19.17 ± 9.37 pmol/s*mL vs. 50.51 ± 12.87 pmol/s*mL; \( P < .001 \)) (Figure 2A). CH\textsubscript{4} treatment in the sI/R + CH\textsubscript{4} group significantly enhanced oxygen consumption (to 40.88 ± 15.08 pmol/s*mL; \( P = .004 \)) (Figure 2A). The leak respiration decreased during sI/R (13.54 ± 2.66 pmol/s*mL; \( P < .001 \)); however, it was ameliorated as a result of CH\textsubscript{4} administration in the sI/R + CH\textsubscript{4} group (19.94 ± 3.15 pmol/s*mL; \( P < .001 \)) (Figure 2A). The CH\textsubscript{4} treatment in the sI/R + CH\textsubscript{4} group significantly enhanced oxygen consumption (to 40.88 ± 15.08 pmol/s*mL; \( P = .004 \)) (Figure 2A). The leak respiration decreased during sI/R (13.54 ± 2.66 pmol/s*mL; \( P < .001 \)); however, it was ameliorated as a result of CH\textsubscript{4} administration in the sI/R + CH\textsubscript{4} group (19.94 ± 3.15 pmol/s*mL; \( P < .001 \)) (Figure 2A). The CH\textsubscript{4} incubation had no effect on the free radical leak in the normoxia + CH\textsubscript{4} group compared with the normoxia group (3.97 ± 2.80 vs. 2.91 ± 0.64; \( P > .05 \)) (Figure 2B).

### 3.3 Apoptosis, cytochrome c oxidase activity and viability of NRMCs

Neonatal rat cardiac myocytes were marked with TUNEL/DAPI staining to examine the presence of apoptosis. As expected, few TUNEL-positive cells were observed in the normoxia and normoxia + CH\textsubscript{4} groups (26 ± 9% and 26.3 ± 12% of cells, respectively; \( P = 1.00 \)) (Figure 3A–B,E). sI/R was accompanied by an increased TUNEL positivity (sI/R: 52.4 ± 12% of cells) (Figure 3C,E), which was diminished as a result of CH\textsubscript{4} incubation (sI/R + CH\textsubscript{4}: 20.1 ± 16.4 of cells; \( P = .01 \)) (Figure 3D,E). The mitochondrial cytochrome c oxidase activity was determined with a spectrophotometric analysis. Remodelling the mitochondrial membrane during I/R results in cytochrome c release to the cytosol; therefore, this event can be considered an indicator of mitochondrial membrane damage. In the normoxia + CH\textsubscript{4} group, the enzyme activity did not change in response to CH\textsubscript{4} incubation.

![Figure 2](image-url)
as compared to the normoxia group (0.39 ± 0.17 vs. 0.37 ± 0.24; P = .992) (Figure 3F). In contrast, sI/R was accompanied by increased cytochrome c oxidase activity (1.43 ± 0.13; P < .001) (Figure 3F), which was diminished as a result of CH₄ incubation (0.48 ± 0.15; P < .001) (Figure 3F).

Cardiomyocyte viability was determined with a calcein-based viability assay (Figure 4A). During the measurements, calcein passed through the cell membrane and hydrolysed to green fluorescent calcein because of the endogenous esterases in the living cells. Compared with the normoxia group, the CH₄ treatment led to a small drop in viability in the normoxia+CH₄ group (93.48 ± 14.32 vs. 83.89 ± 12.91; P = .891) (Figure 4B). Because of sI/R, the number of living cells decreased, a change shown by the significantly reduced calcein fluorescent intensity (61.74 ± 9.76; P = .041). Cell death because of sI/R was prevented with the CH₄ treatment in the sI/R+CH₄ group (86.63 ± 12.03; P = .003) (Figure 4B).

In the case of the LDH activity assay, there was no difference in this parameter between the two normoxic groups (0.22 ± 0.12
vs. 0.35 ± 0.11; P = .15) (Figure 4C). The LDH concentration was significantly lower in the sI/R + CH₄ group than in the sI/R group (0.42 ± 0.10 vs. 0.68 ± 0.12; P = .041) (Figure 4C).

3.4 | Effects of CH₄ on isolated cardiac mitochondria

Changes to mitochondrial membrane potential have been characterized by means of the potential-sensitive fluorophore safranin. Substrates of respiratory complexes induced a significant hyperpolarization in the mitochondrial membrane under normoxic conditions (Figure 5A). In contrast, hyperpolarization was eliminated in the AR group. Substrate-induced changes in membrane potential were partially preserved by CH₄ supplementation (Figure 5A). CH₄ applied during the anoxic period lowered the amount of H₂O₂ production in leak states (Figure 5B). In terms of oxygen consumption, we investigated complex I and succinate-semialdehyde dehydrogenase (complex II)-linked respiration separately. CH₄ significantly decreased the oxygen consumption of complex I, whereas it had no effect on complex II-linked respiration under normoxic conditions. In contrast, CH₄ treatment in the sI/R + CH₄ group significantly improved the oxygen consumption of complex II compared with complex I (Figure 5B).

4 | DISCUSSION

Our primary aim was to outline a possible mechanism linked to the in vivo biological efficacy of CH₄. The expected mitochondrial effects of CH₄ have been characterized by HRR, and we have shown that the administration of CH₄ reduces the sI/R-related mitochondrial ETC disturbance and mitigates subsequent apoptotic consequences. Of importance, CH₄ preserved mitochondrial membrane potential (a marker of the integrity of the inner mitochondrial membrane) and decreased cytochrome c release (a sign of the integrity of the outer mitochondrial membrane) as well.

According to current knowledge, CH₄ is not involved in catabolic or metabolic biochemical processes in the eukaryotic cell. Interestingly, in a pre-clinical model of myocardial infarction, CH₄ treatment significantly improved the cardiac function and reduced the apoptosis of cardiomyocytes. The anti-apoptotic and anti-oxidative effects of CH₄ have been demonstrated in other I/R settings as well. These data all suggest that the underlying mechanism of action is intimately connected with the mitochondrial functions.

Excessive oxidative stress is a major component of sI/R, and the mitochondrial ETC is a dominant source of ROS generation. Likewise, the majority of superoxide production is linked to complex I early in reperfusion. This notion has been supported by studies showing that ischaemic preconditioning or pre-treatment with
reversible complex I inhibitors can limit ROS generation and cardiac IR injury.\textsuperscript{14,16} In this primary mitochondrial model of cardiac IR injury, we investigated mitochondrial coupling states with HRR. We tracked mitochondrial ROS production with HRR by using the fluorescent dye Amplex Red, and, in parallel, the mitochondrial membrane potential was measured using the potential-sensitive fluorescence dye safranin. The respiratory activity of complex I remained stunned in the reoxygennation phase in line with the overwhelming ROS production. In the presence of CH\textsubscript{4}, the complex I-linked respiration decreased in both control and simulated ischaemia-damaged mitochondria, but there were no changes in the presence of rotenone, an irreversible complex I inhibitor. This suggests that CH\textsubscript{4} treatment reduced ROS generation via a partial blockade of electron transport in complex I. It should be added that two sites for superoxide production have recently been explored on respiratory complex I, the ubiquinone (Q)-binding and flavin sites.\textsuperscript{15} The superoxide production at the flavin site is linked to the forward electron transport, and its rate depends on the reduction state of the matrix nicotinamide adenine dinucleotide (NAD) pool. More importantly, the Q-binding site produces superoxide at much higher rates than the flavin site, driven by the reverse electron transport (RET) from complex II into complex I during reoxygennation.\textsuperscript{17} In isolated cardiac mitochondria, the underlying mechanism of RET is the accumulation of succinate during hypoxia and its subsequent rapid oxidation at reoxygennation in the presence of a high membrane potential.\textsuperscript{18} Rotenone, an irreversible inhibitor of electron transport at the Q-binding site has been demonstrated to exert cardioprotection by decreasing RET in the early phase of reperfuison.\textsuperscript{19} Based on our results, the active site of CH\textsubscript{4} is, as in the case of rotenone, distal to the flavin site, because it enhances mitochondrial ROS generation when the electrons enter complex I from NADH, but it inhibits ROS generation by RET from complex II. Large membrane potential is a prerequisite to drive the electrons against the gradient of redox potentials from complex II into complex I. It has been demonstrated in isolated mitochondria that only a 5\% reduction in mitochondrial membrane potential will reduce peroxide production by 95\%.\textsuperscript{19} Any manipulation of the RET pathway could potentially influence the end outcome of ROS production, even by lowering the driving hyperpolarization of the mitochondrial membrane potential. In our system, the addition of normoxic CH\textsubscript{4} slightly decreased the substrate-induced hyperpolarization in control mitochondria, in contrast to the preservative effect seen in the case of the anoxia-damaged membrane.

Next, the role of complex I and complex II in the post-anoxic cardiac mitochondrial respiration was addressed in more detail. As a result of CH\textsubscript{4} treatment, respiration was inhibited when glutamate + malate was used as a complex I substrate but not with succinate as a complex II substrate. This finding suggested that the addition of CH\textsubscript{4} resulted in a decreased electron flux through complex I but did not alter the succinate oxidation through complex II. Based on these findings, the drop in net ROS production from mitochondria with preserved succinate oxidation in the presence of CH\textsubscript{4} is most likely directly related to the inhibition of complex I. However, CH\textsubscript{4} appears to provide a blockade of electron transport in complex I in contrast to a complete blockade of oxidative metabolism during reoxygennation.

Mitochondrial complex I has two conformations with different catalytic activities: an active state (A) and a deactivated state (D), which are present in A/D equilibrium at a ratio of 9:7 under physiological conditions.\textsuperscript{20} The A/D transition occurs during ischaemia/anoxia as an intrinsic mechanism, which produces a rapid response of the mitochondrial ETC to oxygen deprivation.\textsuperscript{21} Modulating factors of the A/D transition include the availability of oxygen, the reduced NAD pool in the matrix, the temperature and the pH. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation because of the rapid burst of respiration following reoxygennation.\textsuperscript{12,22} The transient preservation of complex I in the D-form was implemented as a successful strategy against reperfuison injury in the post-ischaemic brain and heart.\textsuperscript{13,23,24} Though the entire NAD pool is reduced under ischaemic/anoxic conditions, the nucleotide at the flavin site could be rapidly decreased by the RET directly from ubiquinol at the beginning of reoxygennation. However, the D-form of the enzyme is unable to catalyse the RET, and therefore, de-activation may act as a protective valve by preventing reduction in the enzyme from downstream. Both the D-form of complex I and the rotenone-inhibited enzyme have restricted access to the quinone-binding pocket near the iron-sulphur cluster.\textsuperscript{25} The functional outcome of this is, on the one hand, similar to the blockade of forward electron transfer within the A-form by a molecule of rotenone-like inhibitor bound at the quinone site. On the other hand, the RET occurring in the D-form of the enzyme can also be restricted because of ubiquinol onto the iron-sulphur cluster, thereby eliminating the ROS formation.\textsuperscript{21,26} (Figure 6).

In this study, CH\textsubscript{4} treatment restricted the forward electron transfer within complex I in control mitochondria whereas effectively restricting RET in post-anoxic mitochondria. It can be concluded that besides other mitochondrial sites, interactions with complex I certainly occupies a key position in the protective mechanism of CH\textsubscript{4} treatment against sI/R injury. It is likely that this action includes conformational changes in respiratory complex I rather than direct interaction with a membrane-associated binding site. Earlier notions about the molecular mechanism by which CH\textsubscript{4} exerts a non-specific action were linked to the physical properties of the molecule. Hydrocarbon gases may modulate the structure and function of biological membranes, which has been demonstrated in lipid bilayer models in vitro\textsuperscript{27,28} and in animal models in vivo.\textsuperscript{29,30} As the smallest hydrocarbon molecule, CH\textsubscript{4} may interact with the cell membrane, leading to haemolysis in erythrocytes in a concentration-dependent manner.\textsuperscript{27} In our study, a non-specific action of CH\textsubscript{4} was demonstrated by increased OxPhos capacity and ameliorated leak respiration in the sI/R + CH\textsubscript{4} group, linked to the preserved membrane integrity and electron transfer capacity of mitochondria. It should be added that further, targeted in vitro studies may reveal further insights (eg on the involvement of ATP synthase), but this was beyond the scope of the current protocol. Conformational changes ranging from localized motions
of side chains to global structural changes are required for small molecules, even gases, to gain access to their target binding site. Therefore, research on this patient has shifted significantly towards the interaction of gases and proteins with membrane-mediated conformational change. Typical examples include anesthetic gases, which have previously been known to exert their effect through the disruption of the membrane, yet accumulate and bind to multiple modulation sites of cellular membrane-embedded ion channels. Isoflurane and barbiturates have been identified to partition first in the lipid membrane and then bind to the transmembrane domain of the nicotinic acetylcholine receptor. In line with this, halothane has shown demonstrable effects on acetylcholine-activated ion channel kinetics through its conformational changes.

5 | CONCLUSION

We have presented our first data on the effects of CH₄ on transient anoxia-induced respiratory changes in cardiomyocyte cultures. Evidence suggests that CH₄ treatment decreases myocyte injury through reduced ROS generation via blockade of electron transport in complex I and improved inner mitochondrial membrane integrity. Further in vivo studies are needed to investigate whether the administration of CH₄ would provide a way to attenuate the potentially harmful mitochondrial consequences of hypoxia-reoxygenation insults.

ACKNOWLEDGEMENT

The authors are grateful to Nikolett Beretka and Csilla Mester for their skilful assistance.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

Kurszán Jász: Conceptualization (equal); data curation (lead); formal analysis (equal); investigation (lead); methodology (lead); project administration (equal); validation (equal); visualization (lead); writing-original draft (equal). Ágnes Lilla Szilágyi: Conceptualization (equal); data curation (equal); formal analysis (equal); funding acquisition (equal); investigation (equal); methodology (equal); project administration (equal); writing-original draft (equal). Eszter Tuboly: Investigation (supporting); methodology (equal); project administration (equal); software (supporting). Bálint Baráth: Conceptualization (equal); data curation (equal); investigation (equal); methodology (equal); project administration (equal); software (supporting); supervision (supporting); writing-original draft (supporting). Anett Roxána Márton: Data curation (equal); investigation (equal); methodology (equal); project administration (equal); visualization (lead); writing-original draft (equal). Petra Varga: Conceptualization (supporting); investigation (supporting); project administration (supporting); writing-original draft (supporting). Gabriella Varga: Resources (supporting); software (supporting); supervision (supporting). Dániel Érces: Resources (supporting); software (supporting); supervision (supporting). Árpád Mohácsi: Investigation (equal); methodology (equal); project administration (equal); resources (equal); software (equal); supervision (supporting). Anna Szabó: Data curation (equal); resources (equal); software (equal); validation (equal); visualization (lead). Kamilla Gömöri: Conceptualization (equal); investigation (equal); methodology (equal); project administration (equal); validation (equal). Anikó Görbe: Conceptualization (equal); funding acquisition (equal); resources (equal); software (equal); supervision (equal); validation (equal); visualization (equal). Mihály Boros: Conceptualization (equal); resources (equal); software (equal); supervision (equal); validation (equal); writing-original draft (equal); writing-review and

FIGURE 6 The effects of CH₄ on complex I. The mechanism of protection likely included a blockade of the electron transport in complex I and decreased ROS generation. Reversible deactivation of mitochondrial complex I is an intrinsic mechanism, which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. However, subsequent reoxygenation leads to ROS generation due to the rapid burst of respiration. Under normoxic conditions, a high level of nicotinamide adenine dinucleotide hydride (NADH) can drive forward electron flow with superoxide generation at the flavin mononucleotide moiety located near the NADH binding subunit. During reoxygenation, reverse electron flow driven by a reduced ubiquinone (ubiquinol) pool and high proton motive force can generate ROS when electrons flow back from ubiquinol to Complex I. CH₄ treatment restricts the forward electron transfer within complex I in control mitochondria while effectively inhibiting RET in post-ischaemic mitochondria.
ed (equal). Petra Hartmann: Conceptualization (supporting); data curation (supporting); methodology (supporting); project administration (supporting); resources (lead); supervision (lead); validation (lead); writing-original draft (supporting); writing-review and editing (equal).

ETHICAL APPROVAL
The experimental protocol was in accordance with EU Directive 2010/63 for the protection of animals used for scientific purposes, and it was approved by the National Scientific Ethics Committee on Animal Experimentation (National Competent Authority) under licence number V./.148/2013. This study also complied with the criteria in the US National Institutes of Health Guidelines for the Care and Use of Laboratory Animals.

CONSENT FOR PUBLICATION
Not applicable.

DATA AVAILABILITY STATEMENT
The data are all presented in the manuscript.

ORCID
Dávid Kurszán Jász https://orcid.org/0000-0003-3700-5668

REFERENCES
1. Lucas AMB, de Lacerda Alexandre JV, Araújo MTS, et al. Diazoxide modulates cardiac hypertrophy by targeting H$_2$O$_2$ generation and mitochondrial superoxide dismutase activity. *Curr Mol Pharmacol*. 2020;13:76-83. https://doi.org/10.2174/187446721626661907231 44006

2. Tahrir FG, Langford D, Amini S, et al. Mitochondrial quality control in cardiac cells: Mechanisms and role in cardiac cell injury and disease. *J Cell Physiol*. 2019;234:8122-8133. https://doi.org/10.1002/jcp.27597

3. Boros M, Ghyycz M, Érces D, et al. The anti-inflammatory effects of methane. *Croat Med J*. 2012;4:1269-1278. https://doi.org/10.1097/CCM.0b013e318283da05

4. Chen O, Ye Z, Cao Z, et al. Methane attenuates myocardial ischemia injury in rats through anti-oxidative, anti-apoptotic and anti-inflammatory actions. *Free Radic Biol Med*. 2016;90:1-11. https://doi.org/10.1016/j.freeradbiomed.2015.11.017

5. Strifler G, Tuboly E, Szél E, et al. Inhaled Methane limits the mitochondrial electron transport chain dysfunction during experimental liver ischemia-reperfusion injury. *PLoS One*. 2016;11:e0146363. https://doi.org/10.1371/journal.pone.0146363

6. Wang R, Sun Q, Xia F, et al. Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush. *Exp Eye Res*. 2017;159:49-57. https://doi.org/10.1016/j.exer.2017.03.008

7. Boros M, Keppler F. Methane production and bioactivity-a link to oxido-reductive stress. *Front Physiol*. 2019;10:1244. https://doi.org/10.3389/fphys.2019.01244

8. Mészáros AT, Szilágyi ÁL, Juhász L, et al. Mitochondria as sources and targets of methane. *Front Med*. 2017;4:1-7. https://doi.org/10.3389/fmed.2017.00195

9. Tuboly E, Szabó A, Erős G, et al. Determination of endogenous methane formation by photoacoustic spectroscopy. *J Breath Res*. 2013;7:046004. https://doi.org/10.1088/1752-7155/7/4/046004

10. Borbe A, Gircz Z, Szunyog A, et al. Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. *Basic Res Cardiol*. 2010;105:643-650. https://doi.org/10.1007/s00395-010-0097-0

11. Gnaiger E. Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology. *Adv Exp Med Biol*. 2003;543:39-55. https://doi.org/10.1007/978-1-4419-8997-0_4

12. Chowdhury SR, Djordjevic J, Albensi BC, Fernyhough P. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. *Biosci Rep*. 2015;36(1):e00286. https://doi.org/10.1042/BSR20150244

13. Chouchani ET, Methner C, Nadtochiy SM, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. *Nat Med*. 2013;19:753-759. https://doi.org/10.1038/nm.3212

14. Teixeira G, Abrial M, Portier K, et al. Synergistic protective effect of cyclosporin A and rotenone against hypoxia-reoxygenation in cardiomyocytes. *J Mol Cell Cardiol*. 2013;56:55-62. https://doi.org/10.1016/j.yjmcc.2012.11.023

15. Treberg J, Quinlan CL, Brand MD, et al. Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxido-reductase (complex I). *J Biol Chem*. 2011;286:27103-27110. https://doi.org/10.1074/jbc.M111.252502

16. Xu A, Szczepanek K, Maceyka MW, et al. Transient complex I inhibition at the onset of reperfusion by extracellular acidification decreases cardiac injury. *Am J Physiol - Cell Physiol*. 2014;306:C1142-C1153. https://doi.org/10.1152/ajpcell.00241.2013

17. Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. *Nature*. 2014;515:431-435. https://doi.org/10.1038/nature13909

18. Korge P, John SA, Calmettes G, et al. Reactive oxygen species production induced by pore opening in cardiac mitochondria: the role of complex II. *J Biol Chem*. 2017;292:9896-9905. https://doi.org/10.1074/jbc.M116.768325

19. Votyakova TV, Reynolds J. Nm-dependent and independent production of reactive oxygen species by rat brain mitochondria. *J Neurochem*. 2001;79:266-277. https://doi.org/10.1046/j.1471-4159.2001.00548.x

20. Gorenkova N, Robinson E, Grieve DJ, et al. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia. *Antioxid Redox Signal*. 2013;19:1459-1468. https://doi.org/10.1089/ars.2012.4698

21. Babot M, Birch A, Labarbara P, et al. Characterisation of the active/de-active transition of mitochondrial complex I. *Biochim Biophys Acta*. 2014;1837:1083-1092. https://doi.org/10.1016/j.bbadis.2014.02.018

22. Lesnfsky EJ, Chen Q, Moghaddas S, et al. Blockade of electron transport during ischemia protects cardiac mitochondria. *J Biol Chem*. 2004;279:47961-47967. https://doi.org/10.1074/jbc.M4097200

23. Kim M, Stepanova A, Niatsetskaya Z, et al. Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury. *Free Radic Biol Med*. 2018;124:517-524. https://doi.org/10.1016/j.freeradbiomed.2018.06.040

24. Methner C, Chouchani ET, Buonincontri G, et al. Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. *Eur J Heart Fail*. 2014;16:712-717. https://doi.org/10.1002/ejhf.100

25. Zickermann V, Wirth C, Nasiri H, et al. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. *Science*. 2015;347:44-49. https://doi.org/10.1126/science.1259859

26. Dröse S, Stepanova A, Gallk A, et al. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. *Biochim Biophys Acta*. 2016;1857:946-957. https://doi.org/10.1016/j.bbadis.2015.12.013
27. Batliwala H, Somasundaram T, Uzgiris EE, et al. Methane-induced haemolysis of human erythrocytes. Biochem J. 1995;307:433-438. https://doi.org/10.1042/bj3070433
28. Miller KW, Hammond L, Porter EG, et al. The solubility of hydrocarbon gases in lipid bilayers. Chem Phys Lipids. 1977;20:229-241. https://doi.org/10.1016/0009-3084(77)90039-1
29. Bondarenko V, Wells M, Xu Y, et al. Solution NMR studies of anesthetic interactions with ion channels. Methods Enzymol. 2018;603:49-66. https://doi.org/10.1016/bs.mie.2018.01.018
30. Mayne CG, Arcario MJ, Mahinthichaichan P, et al. The cellular membrane as a mediator for small molecule interaction with membrane proteins. Biochim Biophys Acta - Biomembr. 2016;1858:2290-2304. https://doi.org/10.1016/j.bbamem.2016.04.016
31. Shaikh SA, Li J, Enkavi G, et al. Visualizing functional motions of membrane transporters with molecular dynamics simulations. Biochemistry. 2013;52:569-587. https://doi.org/10.1021/bi301086x
32. Brannigan G, LeBard DN, Henin J, et al. Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain. Proc Natl Acad Sci USA. 2010;107:14122-14127. https://doi.org/10.1073/pnas.1008534107
33. Dodson BA, Braswell LM, Miller KW. Barbiturates bind to an allosteric regulatory site on nicotinic acetylcholine receptor-rich membranes. Mol Pharmacol. 1987;32:119-126.
34. Sokoll MD, Davies LR, Bhattacharyya B, et al. Halothane and isoflurane alter acetylcholine activated ion channel kinetics. Eur J Pharmacol. 1989;173:27-34. https://doi.org/10.1016/0014-2999(89)90005-8

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.