Vulnerability Parameters of Tensor Product of Cycles

V. Sheeba Agnes

Assistant Professor, Department of Mathematics, Annamalai University, Chidambaram 608002

E-mail: juddish.s@gmail.com

Abstract. In this paper, the vulnerability parameters, namely, connectivity, toughness, scattering number, integrity and tenacity of the graph \(C_n \times C_s \), where \(C_n \) denote the cycle of length \(n(\geq 3) \) is determined.

1. Introduction

In this paper, all graphs considered are finite, undirected and simple. Let \(G \) and \(H \) be two simple graphs. The tensor product of \(G \) and \(H \), denoted by \(G \times H \), has vertex set \(V(G \times H) = V(G) \times V(H) \) and edge set \(E(G \times H) = \{(u, v)(x, y) : ux \in E(G) \text{ and } vy \in E(H)\} \). The Cartesian product of \(G \) and \(H \), denoted by \(G \square H \), has the vertex set \(V(G \square H) = V(G) \times V(H) \) and edge set \(E(G \square H) = \{(u, v)(x, y) : u = x \text{ and } vy \in E(H) \text{ or } v = y \text{ and } ux \in E(G)\} \). The wreath product of \(G \) and \(H \), denoted by \(G \circ H \), has vertex set \(V(G \circ H) = V(G) \times V(H) \) and edge set \(E(G \circ H) = \{(u, v)(x, y) : ux \in E(G) \text{ or } u = x \text{ and } vy \in E(H)\} \). For \(S \subseteq V(G) \), \(\langle S \rangle \) denotes the subgraph of \(G \) induced by \(S \). Let \(P_m \) and \(C_m \) denote the path and cycle on \(m \) vertices, respectively and \(K_n \) and \(\overline{K}_n \) denote the complete graph and its complement on \(n \) vertices, respectively.

Let \(\omega(G) \) and \(\tau(G) \) denote the number of components and the order of a largest component of \(G \), respectively. Let \(\kappa(G) \) denote the connectivity of \(G \). A separating set or vertex cut of a connected graph \(G \) is a set \(S \subset V(G) \) such that \(G - S \) is a disconnected graph. The toughness of a graph \(G \), denoted by \(t(G) \), is defined by \(t(G) = \min \left\{ \frac{|S|}{\omega(G - S)} : S \subset V(G) \text{ is a vertex cut of } G \right\} \). A set \(S \) of \(G \) is called a \(t(G) \)-set, if \(\frac{|S|}{\omega(G - S)} = t(G) \). The scattering number of \(G \), denoted by \(s(G) \), is defined by \(s(G) = \max \{ \omega(G - S) - |S| : S \subset V(G) \text{ is a vertex cut of } G \} \). The integrity of a graph \(G \), denoted by \(I(G) \), is defined by \(I(G) = \min \{ |S| + \tau(G - S) : S \subset V(G) \text{ is a vertex cut of } G \} \). The tenacity of a graph \(G \), denoted by \(T(G) \), is defined by \(T(G) = \min \{ \frac{|S| + \tau(G - S)}{\omega(G - S)} : S \subset V(G) \text{ is a vertex cut of } G \} \). The rupture degree of an incomplete graph \(G \) is defined by \(r(G) = \max \{ \omega(G - S) - |S| - \tau(G - S) : S \subset V(G) \text{ is a vertex cut of } G \} \). Notation and definitions which are not given here can be found in [4] or [6].

In this paper, we determine the exact values of some vulnerability parameters such as connectivity,
toughness, scattering number, integrity and tenacity of the graph \(C_r \times C_s \), where \(r, s \geq 3 \) and both \(r \) and \(s \) are odd or they are of different parity.

We quote the following theorems for our future reference.

Theorem 1.1. [13] The graph \(C_m \circ K_n \) has a Hamilton cycle decomposition.

In a personal communication to Paulraja, Goddard informed that the following theorem is known.

Theorem 1.2. The toughness of the graph \(C_m \square C_n \), \(m, n \geq 3 \), is

\[
t(C_m \square C_n) = \begin{cases}
1, & \text{if both } m \text{ and } n \text{ are even,} \\
\frac{mn}{(m-1)(n-1)}, & \text{if both } m \text{ and } n \text{ are odd,} \\
\frac{n}{n-1}, & \text{if } m \text{ even and } n \text{ odd.}
\end{cases}
\]

Theorem 1.3. [19] Let \(G \) be a non-complete connected graph of order \(n \) with the scattering number \(s(G) = s \) and the toughness \(t(G) = t \). Then \(t \leq (n-s)/(n+s) \).

Theorem 1.4. [1] For any graph \(G \), the tenacity of \(G \), \(T(G) \geq t(G) + \frac{1}{\alpha(G)} \), where \(t(G) \) and \(\alpha(G) \) denote the toughness and the independence number of \(G \), respectively.

Theorem 1.5. [5] The integrity of the cycle \(C_n \) is \(I(C_n) = [2\sqrt{n}] \).

Theorem 1.6. [8] The tenacity of the cycle \(C_n \) is

\[
T(C_n) = \begin{cases}
\frac{n+3}{n-1}, & \text{if } n \text{ is odd,} \\
\frac{n+2}{n}, & \text{if } n \text{ is even.}
\end{cases}
\]

2. Vulnerability Parameters of Tensor Product of Cycles

Let \(G = C_r \times C_s \), where \(r \geq 3 \) and \(s \geq 3 \). Let \(V(C_r) = \{u_0, u_1, \ldots, u_{r-1}\} \) and \(V(C_s) = \{v_0, v_1, \ldots, v_{s-1}\} \). Then \(V(G) = V(C_r \times C_s) = \bigcup_{i=0}^{r-1} S_i \bigcup_{i=0}^{s-1} S'_i \), where \(S_i = u_i \times V(C_s) \) stands for \(\{u_i, v_j\}, 0 \leq j \leq s - 1 \) and \(S'_i = V(C_s) \times v_j \) stands for \(\{u_i, v_j\}, 0 \leq i \leq r - 1 \). Clearly, \(S_i \) and \(S'_i \) are independent sets in \(G \). We call \(S_i \) a layer of \(G \) and \(S'_i \) a column of \(G \). We denote \((u_i, v_j) \) by \(w_{ij} \); then \(S_i = \{w_{i0}, w_{i1}, \ldots, w_{i(s-1)}\} \), \(0 \leq i \leq r - 1 \) and \(S'_i = \{w_{0j}, w_{1j}, \ldots, w_{j(s-1)}\} \), \(0 \leq j \leq s - 1 \).

From the structure of \(G = C_r \times C_s \), we can find a set of four internally disjoint paths between any pair of distinct vertices and hence the theorem follows.

Theorem 2.1. For \(r, s \geq 3 \), where \(r \) and \(s \) are odd or they are of different parity, the connectivity of \(C_r \times C_s \) is 4.

If \(G \) is a bipartite graph with bipartition \((X, Y) \), where \(X = \{x_0, x_1, \ldots, x_{n-1}\} \) and \(Y = \{y_0, y_1, \ldots, y_{n-1}\} \) and if \(G \) contains the set of edges \(F_i(X, Y) = \{x_jy_{j+i} | 0 \leq j \leq n - 1, \text{where addition in the subscript is taken modulo } n \} \), \(0 \leq i \leq n - 1 \), then we say that \(G \) has the 1-factor of jump \(i \) from \(X \) to \(Y \). The same 1-factor is said to be of jump \(n - i \) from \(Y \) to \(X \), that is, \(F_{n-i}(Y, X) \), where we assume \(F_n(Y, X) = F_0(Y, X) \).

The following remark is a well known fact in the graph decomposition theory.
Remark 2.2. Let $G \times H$ be a connected graph with $|V(G)| = m$ and $|V(H)| = n$. Assume that the 1-factor of jump r_i, namely, $F_r(S_i \cup S_{i+1})$, where addition is taken modulo m, is contained in $(S_i \cup S_{i+1})$, where S_i is the ith layer of $G \times H$. If n and $\sum_{i=0}^{m-1} r_i$ are relatively prime, then $\bigcup_{i=0}^{m-1} F_r(S_i \cup S_{i+1})$ is a Hamilton cycle of $G \times H$.

Lemma 2.3. For odd $s \geq 3$, the toughness of $P_{2m} \times C_s$ is 1, that is $t(P_{2m} \times C_s) = 1$.

Proof. As $G = P_{2m} \times C_s$ is a bipartite graph, $t(G) \leq 1$. (1)

We shall prove that $t(G) \geq 1$. We prove this by induction on m.

If $m = 1$, the graph $P_2 \times C_s \simeq C_{2s}$, is the cycle of length $2s$ and hence $t(P_2 \times C_s) = 1$.

Assume the result is true for $m - 1$.

Let $G = P_{2m} \times C_s$, $G_1 = P_{2(m-1)} \times C_s$ and $G_2 = P_2 \times C_s$. Then G contains disjoint copies of G_1 and G_2, where we assume the last two layers induce the graph G_2 and the first $2(m-1)$ layers induce the graph G_1. Let S be an arbitrary vertex cut of G. Let $V(G_1) \cap S = S_1$ and $V(G_2) \cap S = S_2$. Then

$$\omega(G - S) = \omega(G - (S_1 \cup S_2)) \leq \omega(G_1 - S_1) + \omega(G_2 - S_2) \leq |S_1| + |S_2|,$$

by induction hypothesis.

Hence $\frac{|S|}{\omega(G - S)} \geq 1$. As S is an arbitrary vertex cut of G,

$t(G) \geq 1$. (2)

By (1) and (2), $t(G) = 1$.

Theorem 2.4. For $r, s \geq 3$, where r and s are odd or they are of different parity, the toughness of $C_r \times C_s$ is $t(C_r \times C_s) = \begin{cases} 1, & r \text{ and } s \text{ are of different parity}, \\ \min \left\{ 1 + \frac{1}{r}, 1 + \frac{1}{s} \right\}, & \text{if } r = 2m + 1 \text{ and } s = 2n + 1. \end{cases}$

Proof. Let $G = C_r \times C_s$, where $r \geq 3$ and $s \geq 3$. Recall that $t(G)$ is defined as $t(G) = \min \left\{ \frac{|S|}{\omega(G - S)} : S \subset V \text{ is a vertex cut of } G \right\}$.

Case 1. r is even and s is odd.

As G is a 4-regular bipartite graph $t(G) \leq 1$. (3)

By Remark 2.2, G is hamiltonian and for a hamiltonian graph toughness is at least 1 and hence by [7], $t(G) \geq 1$. (4)
From (3) and (4), \(t(G) = 1 \).

Case 2. \(r \geq s \), \(r = 2m + 1 \) and \(s = 2n + 1 \).

Subcase 2.1. \(r = s = 2m + 1 \)

As \(C_{2m+1} \times C_{2m+1} \) is isomorphic to \(C_{2m+1} \square C_{2m+1} \), see p106 of [11] and by Theorem 1.2,
\(t(C_{2m+1} \square C_{2m+1}) = 1 + \frac{1}{m} \) and hence the result follows.

SubCase 2.2. \(r > s \)

Let \(S = \bigcup_{i=0}^{m} S_{2i} \). Therefore \(|S| = (m+1)s \) and \(\omega(G - S) = rs - (m+1)s = (2m+1)s - (m+1)s = ms \). Hence

\[
t(G) \leq \frac{|S|}{\omega(G - S)} = \frac{(m+1)s}{ms} = 1 + \frac{1}{m}.
\]

(5)

On the other hand, let \(S \) be a t-set of \(G \) with \(|S| \) maximum.

Claim 1. A t-set \(S \) contains a layer of \(G \).

Without loss of generality, we assume that \(S_{2m+1} \subseteq S \). Let \(G' = G - S_{2m+1} \) and \(S' = S - S_{2m+1} \). Clearly, \(\omega(G' - S') = \omega(G - S) \), since \(G' = G - S_{2m+1} \) is connected; \(|S'| = |S| - s \). Therefore,

\[
\frac{|S|}{\omega(G - S)} = \frac{|S'| + s}{\omega(G' - S')} = \frac{|S'|}{\omega(G' - S')} + \frac{s}{\omega(G' - S')} \\
= \frac{|S'|}{\omega(G' - S')} + \frac{s}{\omega(G' - S')} \\
\geq 1 + \frac{1}{m}, \text{ as } \omega(G' - S') \leq ms \text{ and by Lemma 2.3.}
\]

Consequently, \(S \) gives the minimum value for \(\frac{|S|}{\omega(G - S)} \) and hence \(S \) contains a layer of \(G \).

Claim 2. A t-set \(S \) does not contain a column of \(G \).

Without loss of generality, we assume that \(S_{2n+1} \subseteq S \). Let \(G'' = G - S_{2n+1} \) and \(S'' = S - S_{2n+1} \). Clearly, \(\omega(G'' - S'') = \omega(G - S) \), since \(G'' = G - S_{2n+1} \) is connected; \(|S''| = |S| - r \). Therefore

\[
\frac{|S|}{\omega(G - S)} = \frac{|S''| + r}{\omega(G'' - S'')} = \frac{|S''|}{\omega(G'' - S'')} + \frac{r}{\omega(G'' - S'')} \\
= \frac{|S''|}{\omega(G'' - S'')} + \frac{r}{\omega(G'' - S'')} \\
\geq 1 + \frac{1}{n}, \text{ as } \omega(G'' - S'') \leq rn. \\
\geq 1 + \frac{1}{m}, \text{ as } r > s \text{ and hence } m > n.
\]

Consequently, \(S \) does not give the minimum value for \(\frac{|S|}{\omega(G - S)} \) and this contradicts the assumption of \(S \). Thus \(S \) cannot contain a column of \(G \).
Choose a smallest component H of $G - S$ in such a way that there is a least index p of S'_j such that H has a vertex in S'_p and there is a largest index q of S'_j such that H has a vertex in S'_q. Then H is contained in some $P_k \times C_r$.

Claim 3. The toughness of H is ≥ 1.

Suppose not, then there is a set $A \subset V(G)$ such that $\frac{|A|}{\omega(G - A)} < 1$. Then $|A| < \omega(G - A)$ and hence $|A| \leq \omega(G - A) - 1$. Now $S \cup A$ is a separating set and

$$\frac{|S \cup A|}{\omega(G - (S \cup A))} = \frac{|S| + |A|}{\omega(G - S) - 1 + \omega(G - A)} \leq \frac{|S| + \omega(G - A) - 1}{\omega(G - S) - 1 + \omega(G - A)} < \frac{|S|}{\omega(G - S)}.$$

This implies that there is a separating set $S \cup A$ with $|S \cup A| > |S|$, that gives the minimum value of $t(G)$, which is a contradiction to the assumption of S. Hence the toughness of every such component $H \subset P_k \times C_r$.

Since $P_k \times C_r$ is a bipartite graph, $t(H) = 1$. This is true for every such component H of $G - S$. Then H should be a cycle or an edge. Thus there is a separating set T of G consisting S and the vertices between S'_p and S'_q such that $|T| \geq |S|$ and $\frac{|T|}{\omega(G - T)} < \frac{|S|}{\omega(G - S)}$, which contradicts the assumption of the t-set S of G.

Thus the t-set is the set S that contains a layer of G and $t(G) \geq 1 + \frac{1}{m}$. Hence $t(G) = \frac{m + 1}{m}$. Similarly, if $s \geq r$, then we can show that $t(G) = \frac{m + 1}{m}$. Hence the result follows.

Theorem 2.5. For $r, s \geq 3$, the scattering number of $C_r \times C_s$ is

$$s(C_r \times C_s) = \begin{cases} 0, & \text{if } r \text{ and } s \text{ are of different parity}, \\ -2, & \text{if both } r \text{ and } s \text{ are odd}. \end{cases}$$

Proof. Let $G = C_r \times C_s$, where $r, s \geq 3$. Recall that the scattering number of the graph G is $s(G) = \max \{ \omega(G - S) - |S| : S \subset V(G) \text{ is a vertex cut of } G \}$.

Case 1. r and s are of different parity.

As G is a regular bipartite graph with bipartition, say, (X, Y), then $G - X$ contains $|Y|$ components and hence $\omega(G - X) - |X| = |Y| - |X| = 0$ and so

$$s(G) \geq 0. \quad (6)$$

Since $G = C_r \times C_s$ is a bipartite hamiltonian graph, $t(G) = 1$ so that $\min_{S \subset V} \left\{ \frac{|S|}{\omega(G - S)} \right\} = 1$ and hence $|S| \geq \omega(G - S)$, for every vertex cut S of G. Hence $0 \geq \omega(G - S) - |S|$ for every vertex cut S of G. Consequently,

$$0 \geq \max_{S \subset V} \{ \omega(G - S) - |S| \} = s(G). \quad (7)$$

From (6) and (7), $s(G) = 0$.

Case 2. Both r and s are odd.
Let \(r \geq s \). Let \(A = \{ w_{i-1}(j-1), w_{i-1}(j+1), w_{i+1}(j-1), w_{i+1}(j+1) \} \) for some \(i \) and \(j \). Then \(A \) is a vertex cut of \(G \) with \(|A| = 4 \) and \(\omega(G - A) = 2 \). Hence \(\omega(G - A) - |A| = 2 - 4 = -2 \), and hence,

\[
s(G) \geq -2. \tag{8}\]

Let \(r = 2m + 1 \). Let \(S \) be a vertex cut of \(G \); then \(|S| \geq 4 \), by Theorem 2.1. There is a vertex cut \(S \) with \(\omega(G - S) = 2 \),

\[
\omega(G - S) - |S| \leq 2 - 4 = -2. \tag{9}
\]

Now by Theorem 1.3, for the non-complete connected graph \(G \) of order \(n \), \(s(G) \leq n \left[\frac{1 - \tau(G)}{1 + \tau(G)} \right] \).

Therefore

\[
s(G) \leq (2m + 1)s \left[\frac{-1/m}{2 + 1/m} \right] = -s \leq -3, \quad \text{since } s \geq 3. \tag{10}\]

From (9) and (10), we see that \(\max \{-2, -3\} = -2 \). Therefore

\[
s(G) \leq -2. \tag{11}\]

From (8) and (11), \(s(G) = -2 \).

Theorem 2.6. If \(r \geq s \geq 3 \) and \(s \) is odd, then the integrity of \(C_r \times C_s \) is

\[
I(C_r \times C_s) = \begin{cases}
 s \left\lceil \frac{r}{2} \right\rceil + 1, & \text{if } r \leq 8 \text{ or } r = 10, \\
 s \left\lceil \frac{r}{\sqrt{r}} \right\rceil + \left\lceil \frac{rs - s\sqrt{r}}{\sqrt{r}} \right\rceil, & \text{if } r = 9 \text{ or } r \geq 11.
\end{cases}
\]

Proof. Let \(G = C_r \times C_s \), where \(r \geq s \geq 3 \) and \(s \) odd. Recall that the integrity of the graph \(G \) is

\[
I(G) = \min \{|S| + \tau(G - S) : S \subset V(G) \text{ is a vertex cut of } G\}.
\]

Let \(S \) be an arbitrary vertex cut of \(G \). If \(\tau(G - S) = 1 \), then every component of \(G - S \) is an isolated vertex and hence \(\omega(G - S) \leq s \left\lceil \frac{r}{2} \right\rceil \), the cardinality of a maximum independent set in \(G \). Hence

\[
|S| = rs - \omega(G - S) \geq rs - s \left\lceil \frac{r}{2} \right\rceil = s\left\lceil \frac{r}{2} \right\rceil. \tag{12}\]

Consequently,

\[
|S| + \tau(G - S) \geq s \left\lceil \frac{r}{2} \right\rceil + 1.
\]

If \(\tau(G - S) > 1 \) then, \(S \) cannot contain all the vertices of each of the alternate layers, that is \(S_t, S_{t+2}, S_{t+4}, \ldots, S_{t-2} \); otherwise \(\tau(G - S) = 1 \). \(I(G) \) is minimum only if \(|S|\) and \(\tau(G - S) \) are minimum. For a given separating set \(S \), \(\tau(G - S) \) is minimum only when the components of \(G - S \) have almost equal number of vertices. This is possible only if \(G - S \) contains all the vertices of some consecutive layers of \(G \). Hence \(S \) also contains all the vertices of few layers, say \(x \) layers (not necessarily consecutive). Then \(|S| = sx \) and \(\tau(G - S) \geq \left\lceil \frac{rs - |S|}{x} \right\rceil \). Therefore,

\[
|S| + \tau(G - S) \geq |S| + \left\lceil \frac{rs - |S|}{x} \right\rceil \geq |S| + \left(\frac{rs - |S|}{x} \right) = sx + \frac{rs - sx}{x}.
\]
From (12) and (13), we see that
\[\min_{x \geq 2} \left(s x + \frac{r s - s x}{x} \right). \]
Let \(f(x) = s x + \left(\frac{r s - s x}{x} \right) \). Using calculus, we conclude that \(f(x) \) attains its minimum at \(x = \lceil \sqrt{r} \rceil \).
Therefore
\[|S| + \tau(G - S) \geq s \left\lfloor \sqrt{r} \right\rfloor + \left\lceil \frac{r s - s \left\lfloor \sqrt{r} \right\rfloor}{\left\lceil \sqrt{r} \right\rceil } \right\rceil \text{.} \quad (13) \]

Case 1. \(r \leq 8 \) or \(r = 10 \).
From (12) and (13), we see that \(\min \left\{ s \left\lfloor \frac{r}{2} \right\rfloor + 1, s \left\lfloor \sqrt{r} \right\rfloor + \left\lceil \frac{r s - s \left\lfloor \sqrt{r} \right\rfloor}{\left\lceil \sqrt{r} \right\rceil } \right\rceil \right\} = s \left\lfloor \frac{r}{2} \right\rfloor + 1. \) Therefore,
\[I(G) \geq s \left\lfloor \frac{r}{2} \right\rfloor + 1 \text{.} \quad (14) \]

On the other hand, let \(A = \bigcup_{i=0}^{\left\lfloor \frac{r}{2} \right\rfloor - 1} S_{2i} \). Then \(A \) is a vertex cut of \(G \) with \(|A| = s \left\lfloor \frac{r}{2} \right\rfloor \) and \(\tau(G - A) = 1 \) and so
\[I(G) \leq |A| + \tau(G - A) = s \left\lfloor \frac{r}{2} \right\rfloor + 1 \text{.} \quad (15) \]
Hence from (14) and (15), \(I(G) = s \left\lfloor \frac{r}{2} \right\rfloor + 1 \).

Case 2. \(r = 9 \) or \(r \geq 11 \).
From (12) and (13), we see that \(\min \left\{ s \left\lfloor \frac{r}{2} \right\rfloor + 1, s \left\lfloor \sqrt{r} \right\rfloor + \left\lceil \frac{r s - s \left\lfloor \sqrt{r} \right\rfloor}{\left\lceil \sqrt{r} \right\rceil } \right\rceil \right\} = s \left\lfloor \sqrt{r} \right\rfloor + \left\lceil \frac{r s - s \left\lfloor \sqrt{r} \right\rfloor}{\left\lceil \sqrt{r} \right\rceil } \right\rceil \). Therefore,
\[I(G) \geq s \left\lfloor \sqrt{r} \right\rfloor + \left\lceil \frac{r s - s \left\lfloor \sqrt{r} \right\rfloor}{\left\lceil \sqrt{r} \right\rceil } \right\rceil \text{.} \quad (16) \]

On the other hand, let \(x = \lfloor \sqrt{r} \rfloor \) and \(j = \left\lfloor \frac{x}{2} \right\rfloor \). Let \(S = S_0 \cup S_j \cup S_{2j} \cup \ldots \cup S_{(x-1)j} \) be a vertex cut of \(G \). Then \(|S| = sx\) and \(\tau(G - S) = \left(\left\lfloor \frac{x}{2} \right\rfloor - 1 \right) s \). Therefore
\[|S| + \tau(G - S) = s x + \left(\left\lfloor \frac{r}{x} \right\rfloor - 1 \right) s \leq s \left\lfloor \sqrt{r} \right\rfloor + \left\lceil \frac{r s - s \left\lfloor \sqrt{r} \right\rfloor}{\left\lceil \sqrt{r} \right\rceil } \right\rceil \text{.} \quad (17) \]
Hence from (16) and (17), \(I(G) = s \left\lfloor \sqrt{r} \right\rfloor + \left\lceil \frac{r s - s \left\lfloor \sqrt{r} \right\rfloor}{\left\lceil \sqrt{r} \right\rceil } \right\rceil \). \(\blacksquare \)

Theorem 2.7. For \(r, s \geq 3 \), where \(r \) and \(s \) are odd or they are of different parity, the tenacity of \(C_r \times C_s \) is \(T(C_r \times C_s) = \min \left\{ \frac{s \left\lfloor \frac{r}{2} \right\rfloor + 1}{s \left\lfloor \frac{r}{2} \right\rfloor + 1}, \frac{r \left\lfloor \frac{s}{2} \right\rfloor + 1}{r \left\lfloor \frac{s}{2} \right\rfloor + 1} \right\} \).

Proof. Let \(G = C_r \times C_s \), where \(r, s \geq 3 \). Recall that the tenacity of the graph \(G \) is \(T(G) = \min \left\{ \frac{|S| + \tau(G - S)}{\omega(G - S)} : S \subseteq V \text{ is a vertex cut of } G \right\} \).
Let $r \geq s$. Let $A = \bigcup_{i=0}^{\lceil r/2 \rceil - 1} S_{2i}$. Then A is a vertex cut of G with $|A| = s\lceil r/2 \rceil$ and $\tau(G - A) = 1$. Therefore,

$$T(G) \leq \frac{|A| + \tau(G - A)}{\omega(G - A)} = \frac{s\lceil r/2 \rceil + 1}{s \lceil r/2 \rceil}.$$

(18)

Case 1. r is even and s is odd.

By Theorem 1.4, $T(G) \geq t(G) + \frac{1}{\alpha(G)}$, where $\alpha(G)$ is the maximum cardinality of an independent set of G. We have $t(G) = 1$, when r and s are of different parity. Hence

$$T(G) \geq 1 + \frac{1}{s \lceil r/2 \rceil}, \quad \text{as } \alpha(G) = s \lceil r/2 \rceil,$$

(19)

Case 2. Both r and s are odd $r \geq s$, $r = 2m + 1$ and s is odd.

We have $t(G) = 1 + \frac{1}{m} = 1 + \frac{1}{\lceil r/2 \rceil}$, when $r = 2m + 1$ and s is odd. Hence

$$T(G) \geq 1 + \frac{1}{\lceil r/2 \rceil} + \frac{1}{s \lceil r/2 \rceil}, \quad \text{by Theorem 1.4}$$

$$= \frac{s\lceil r/2 \rceil + 1}{s \lceil r/2 \rceil}.$$

(20)

Hence from (19) and (20),

$$T(G) \geq \frac{s\lceil r/2 \rceil + 1}{s \lceil r/2 \rceil}.$$

(21)

From (18) and (21), we conclude that $T(G) = \frac{s\lceil r/2 \rceil + 1}{s \lceil r/2 \rceil}$, when $r \geq s$.

If $s \geq r$, then in the similar manner we conclude that $T(G) = \frac{r\lceil s/2 \rceil + 1}{r \lceil s/2 \rceil}$.

Hence $T(C_r \times C_s) = \min\left\{ \frac{s\lceil r/2 \rceil + 1}{s \lceil r/2 \rceil}, \frac{r\lceil s/2 \rceil + 1}{r \lceil s/2 \rceil} \right\}$.

3. References

[1] Aytac V 2009 Selcuk J. Appl. Math. 10 107–20
[2] Bagga K, Beineke L, Goddard W, Lipman M and Pippert R 1992 Discrete Appl. Math. 37/38 13–28
[3] Bagga K, Beineke L, Lipman M and Pippert R 1994 Discrete Math. 124 3–12
[4] Balakrishnan R and Ranganathan N 2012 A Text Book of Graph Theory Second Edition (Springer: New York)
[5] Barefoot C A, Roger Entringer and Henda Swart 1987 Cong. Numer. 58 103–14
[6] Bondy J A and Murty U S R 2008 Graph Theory (Springer: GTM 244)
[7] V. Chvátal, 1973, Discrete Math. 5 215–228
[8] Cozzens M, Moazzami D and Stuckle S 1994 J. Combin. Math. Combin. Comput. 16 33–56.
[9] Cozzens M and Moazzami D 1995 Proc. Seventh International Conf. on the Theory and Application of Graphs (Wiley: New York) 1111–22
[10] Goddard W D and H.C. Swart H C 1990 Quaestiones Mathematicae 13 217–32
[11] Hammack R, Imrich W and Klář S 2011 Handbook of Product Graphs (CRC Press: New York)
[12] Kirlangic A 2002 Int. J. Math. Math. Sci. 30 1–8.
[13] Laskar R 1978 Proc. 5th Hungarian Coll. (Keszthely 1976: North Holland) 705–16
[14] Mamut A and Vumar E 2008 Infor. Process. Lett. 106 258–62
[15] Moazzami D 1999 J. Combin. Math. Combin. Comput. 30 23–31
[16] Moazzami D 2011 Discrete Appl. Math. 159 367-380
[17] Paulraja P and Sheeba Agnes V 2013 Opuscula Math. 33, no. 4, 741–50
[18] Paulraja P and Sheeba Agnes V 2013 Discrete Math. Algorithms Appl. 5 1350023
[19] Zhang S and Peng S 2004 Int. J. Comput. Math. 81 291–8