ON GROUND STATES OF ROZIKOV MODEL ON THE CAYLEY TREE

G. I. BOTIROV

Abstract. In this paper we consider a model on a Cayley tree which has a finite radius of interactions, the model was first considered by Rozikov. We describe a set of periodic ground states of the model.

The Cayley tree.

The Cayley tree \mathbb{I}_k of order $k \geq 1$ is an infinite tree, i.e., a graph without cycles, such that each vertex of which lies on $k + 1$ edges. Let $\mathbb{I}_k = (V, L, i)$, where V is the set of vertexes of \mathbb{I}_k, L is the set of edges of \mathbb{I}_k, and i is the incidence function associating to each edge $l \in L$ its endpoints $x, y \in V$. If $i(l) = \{x, y\}$, then x and y are called nearest neighboring vertexes, and we write $\langle x, y \rangle$. A collection of the pairs $\langle x_0, x_1 \rangle, \langle x_1, x_2 \rangle, \ldots, \langle x_d, y \rangle$ is called a path from x to y. The distance $d(x, y), x, y \in V$ is the length of the shortest path from x to y in V.

For the fixed $x^0 \in V$ we set $W_n = \{x \in V \mid d(x, x^0) = n\},$ $V_n = \{x \in V \mid d(x, x^0) \leq n\},$ $L_n = \{l = \langle x, y \rangle \in L \mid x, y \in V_n\}.$

It is known (see e.g., [2]) that there exists a one-to-one correspondence between the set V of vertices of the Cayley tree of order $k \geq 1$ and the group G_k, of the free products of $k + 1$ cyclic groups $\{e, a_i\}, i = 1, \ldots, k + 1$ of the second order (i.e. $a_i^2 = e, a_i^{-1} = a_i$) with generators $a_1, a_2, \ldots, a_{k+1}$.

Configuration Space and the model

We consider models where the spin takes values in the set $\Phi = \{1, 2, \ldots, q\}, q \geq 2$. For $A \subseteq V$ a spin configuration σ_A on A is defined as a function $x \in A \rightarrow \sigma_A(x) \in \Phi$; the set of all configurations coincides with $\Omega = \Phi^V$. We denote $\Omega = \Omega_V$ and $\sigma = \sigma_V$. Also we define a periodic configuration as a configuration $\sigma \in \Omega$ which is invariant under a subgroup of shifts $F_k \subset G_k$ of finite index.

More precisely, a configuration $\sigma \in V$ is called F_k– periodic if $\sigma(yx) = \sigma(x)$ for any $x \in G_k$ and $y \in F_k$.
For a given periodic configuration the index of the subgroup is called the period of the configuration. A configuration that is invariant with respect to all shifts is called translational-invariant.

For $A \subset V$ let us define a generalized Kronecker symbol (see [6]) as the function $U(\sigma_A) : \Omega_A \rightarrow \{|A| - 1, |A| - 2, \ldots, |A| - \min\{|A|, |\Phi|\}\}$, by

$$U(\sigma_A) = |A| - |\sigma_A \cap \Phi|,$$

where as before $\Phi = \{1, 2, \ldots, q\}$ and $|\sigma_A \cap \Phi|$ is the number of different values of $\sigma_A(x), x \in A$.

For instance if σ_A is a constant configuration then $|\sigma_A \cap \Phi| = 1$.

Note that if $|A| = 2$, say, $A = \{x, y\}$, then $U(\{\sigma(x), \sigma(y)\}) = \delta_{\sigma(x)\sigma(y)}$,

$$\delta_{\sigma(x)\sigma(y)} = \begin{cases} 1, & \sigma(x) = \sigma(y), \\ 0, & \sigma(x) \neq \sigma(y). \end{cases}$$

Fix $r \in N$ and put $r' = \lceil \frac{r+1}{2} \rceil$, where $\lceil a \rceil$ is the integer part of a. Denote by M_r the set of all balls $b_r(x) = \{y \in V : d(x, y) \leq r'\}$ with radius r', i.e. $M_r = \{b_r(x) : x \in V\}$.

We consider the energy of the configuration $\sigma \in \Omega$ is given by the formal Hamiltonian

$$H(\sigma) = -J \sum_{b \in M_r} U(\sigma_b),$$

where $J \in R$. This Hamiltonian was first considered by Rozikov [6].

Ground states

The ground states for the model defined on \mathbb{Z}^d can, for example, be found in [3], [7].

Definition 1. A configuration φ is called the ground states of relative Hamiltonian H, if

$$U(\varphi_b) = U^{\min} = \min\{U(\sigma_b) : \sigma_b \in \Omega_b\} \text{ for any } b \in M_r.$$

In [1], [5] the ground states of Ising and Potts models with competing interactions of radius $r = 2$ on the Cayley tree were described.

Let $GS(H)$ be the set of all ground states, and let $GS_p(H)$ be the set of all periodic ground states.

Theorem 1. a) If $J > 0$, then for all $r \geq 1$ and $k \geq 2$ the set $GS(H)$ consists only configurations $\{\sigma^{(i)} : i = 1, 2, \ldots, s\}$, where $\sigma^{(i)} \equiv i, \forall x \in V$;
b) Let \(r = 2, J < 0, q \geq 2^m \) and \(k \in \{2^{m-1} - 1, \ldots, q - 2\} \), \(m = 3, 4, \ldots \) then there exists a normal subgroup \(F \) of index \(2^m \), such, that any \(F \)– periodic configuration \(\sigma \) is a ground state for Hamiltonian \(H \) i.e. \(\sigma \in GS_p(H) \).

Proof a) Easily follows from (1), (2) and Definition 1.

b) Since \(J < 0 \) to construct a ground state it is necessary to consider configurations \(\sigma \) with a condition, that \(U(\sigma_b) = 0 \) for all \(b \in M \), i.e. on any ball \(b \in M \) the configuration \(\sigma \) is such that \(\sigma(x) \neq \sigma(y) \) if \(x \neq y \). Therefore we will construct a normal subgroup \(F \) of index \(2^m \) such, that any element of the set \(S_1(e) = \{e, a_1, \ldots, a_{k+1}\} \) is not equivalent (with respect to \(F \)) to each other element of the set. Since \(k + 2 \leq q \) we get \(k \leq q - 2 \). Consider a normal subgroup \(F \) of index \(2^m \), such that \(F = F_{A_1} \cap \cdots \cap F_{A_m} \) where \(F_{A_i} = \{x \in G_k : \sum_{j \in A_i} \omega_j(x) - \text{even}\} \), and \(\omega_x(a_i) \) is the number of letter \(a_i \), in nondeductible word \(x \), \(A_i \subset \{1, \ldots, k+1\}, i = 1, \ldots, m \).

Now we shall construct \(A_i, i = 1, \ldots, m \), so that all elements of any ball \(b \in M \) were from different classes of equivalency.

Let’s consider all possible configurations \(\alpha : \{1, 2, \ldots, m\} \rightarrow \{e, o\} \) (where "e" designates "even" and "o" designates "odd"). Let’s notice, that number of such configurations is equal to \(2^m \). From them choose half, i.e. \(2^{m-1} \) configurations with following properties: or the number of letters "e" in a configuration is more than number of letters "o", or the number of letters "e" in a configuration is equal to number of letters "o" and among the last there are no configurations coinciding at replacement "o" on letters "o". Let’s denote these \(2^{m-1} \) configurations by

\[
\alpha_0 = \{e, e, e, \ldots, e\} = (\alpha_0_1, \alpha_0_2, \ldots, \alpha_0_m)
\]

\[
\alpha_1 = \{o, e, e, \ldots, e\} = (\alpha_1_1, \alpha_1_2, \ldots, \alpha_1_m)
\]

\[
\alpha_2 = \{e, o, e, \ldots, e\} = (\alpha_2_1, \alpha_2_2, \ldots, \alpha_2_m)
\]

\[
\alpha_3 = \{e, e, o, \ldots, e\} = (\alpha_3_1, \alpha_3_2, \ldots, \alpha_3_m)
\]

\[
\ldots \ldots
\]

\[
\alpha_{2^{m-1}} = \{o, e, e, \ldots, o\} = (\alpha_{2^{m-1}}_1, \alpha_{2^{m-1}}_2, \ldots, \alpha_{2^{m-1}}_m).
\]

We can define sets \(A_i, i = 1, 2, \ldots, m \), as follows

\[
A_i = \{j \in \{1, 2, \ldots, k\} : \alpha_{ji} \text{– odd} \} \cup \{k + 1\}, \quad i = 1, 2, \ldots, m.
\]
Let’s notice, that $A_i, i = 1, 2, \ldots m$, make sense if $k + 1 \geq 2^{m-1}$ i.e. $k \geq 2^{m-1} - 1$. Check, that $F = F_{A_1} \cap \cdots \cap F_{A_m}$, constructed by sets (3), satisfies conditions of the theorem. At first we shall prove, that $S_1(e)$ with respect to F divides into different non-equivalent elements: Denote $S_1(x) = \{ y \in V : d(x,y) = 1 \} = \{ x, xa_1, \ldots, xa_{k+1} \}, \gamma_i(x) = |S_1(x) \cap F_i|$. It is enough to prove, that $\gamma_i(x) = 0$ or 1 for any $x \in V$ and $i = 1, \ldots, m$. By our construction one has $\gamma_i(e) \in \{0,1\}$ for any $i = 1,\ldots, m$. Hence, elements of the set $S_1(e)$ are not equivalent to each others, also they are not equivalent to e. Then by Theorem 3 of [4] elements of the set $S_1(x)$ are not equivalent to each others. By Theorem 1 of [4] we get $x \sim xa_i$ (i.e. x and xa_i belong to one class) if and only if $e \sim a_i$. By our construction $e \sim a_i, \forall i = 1, \ldots, k + 1$ hence $x \sim xa_i$; therefore, $\gamma_i(x) = 0$ or 1.

The theorem is proved.

Theorem 2. Let $r = 2$. a) if $J > 0$, then $|GS_p(H)| = q$; b) If $J < 0$, then $|GS_p(H)| = C^{k+2}(k + 2)!$

Proof. Case a) is trivial. In case b) for a given configuration φ_b, for which the energy $U(\varphi_b)$ is minimal, we can use Theorem 1 to construct the periodic configurations σ with period 2^m. In each case, the exact number of such ground states coincides with the number of different configurations σ_b, such that the energy $U(\sigma_b)$ is minimal for any $b \in M$. The theorem is proved.

Acknowledgements. A part of this work was done at the ICTP, Trieste, Italy and the author thanks ICTP for providing finicial support and all facilities (July 2008).

References

1. Botirov G.I., Rozikov U.A. Potts model with competing interactions on the Cayley tree: the contour method // *Theor. Math. Phys.*, (2007), 153, No 1, p. 1423-1433.

2. Ganikhodjaev N.N. *Dokl. Akad. Nauk Resp. Uzbekistan*. (1994), 5, No 4, p. 3-5.

3. Minlos R.A., Introduction to Mathematical Statistical Physics // *Univ. Lecture Ser.*, (2000) 19, AMS, Providence, RI, ISSN 1047-3998.

4. Rozikov U.A. Partition structures of the Cayley tree and applications for describing periodic Gibbs distributions // *Theor. Math. Phys.*, (1997), 113, No 1, p. 929-933
5. Rozikov U.A. Constructive description of ground states and Gibbs measures for Ising model with two-step interactions on Cayley tree // J. Stat. Phys., (2006), 122, No.2, p. 217-235.

6. Rozikov U.A. A contour method on Cayley tree // J. Stat. Phys., (2008), 130, p. 801-813.

7. Sinai Ya.G. Theory of phase transitions: Rigorous Results // Pergamon, Oxford, (1982)