High prevalence of carpal tunnel syndrome in individuals with rare nerve growth factor-beta mutation

Mikael Ridderström¹, Mats Svantesson², Oumie Thorell²,³,⁴, Theofilos Magounakis⁵, Jan Minde¹,⁶, Håkan Olausson²,³, Saad S. Nagi*²,³,⁴

¹Department of Orthopaedics, Gällivare Hospital, Gällivare, Sweden
²Department of Clinical Neurophysiology, Linköping University, Linköping, Sweden
³Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
⁴School of Medicine, Western Sydney University, Sydney, Australia
⁵Department of Radiology, Piteå Älvdals Hospital, Piteå, Sweden
⁶Department of Surgery and Perioperative Science, Division of Orthopaedics, Umeå University Hospital, Umeå, Sweden

*Corresponding author
Saad S. Nagi
Center for Social and Affective Neuroscience, Linköping University, S-581 85 Linköping, Sweden.
saad.nagi@liu.se

Running title: Carpal tunnel syndrome in HSANV
Abstract

In Sweden, a large family with a point mutation in the nerve growth factor-beta gene has previously been identified. The carriers of this mutation have reduced small-fiber density and selective deficits in deep pain and temperature modalities. The clinical findings in this population are described as hereditary sensory and autonomic neuropathy type V. The purpose of the current study was to investigate the prevalence of carpal tunnel syndrome in hereditary sensory and autonomic neuropathy type V based on clinical examinations and electrophysiological measurements. Further, the cross-sectional area of the median nerve at the carpal tunnel inlet was measured with ultrasonography. Out of 52 known individuals heterozygous for the nerve growth factor-beta mutation in Sweden, 23 participated in the current study (12 males, 11 females; mean age, 55 years; range, 25 to 86 years). All participants answered a health questionnaire and underwent clinical examination followed by median nerve conduction study in a case-control design, and measurement of the nerve cross-sectional area with ultrasonography. The diagnosis of carpal tunnel syndrome was made based on consensus criteria using patient history and nerve conduction study. The prevalence of carpal tunnel syndrome in the hereditary sensory and autonomic neuropathy group was 35% (95% CI 19-55%) or 52% (95% CI 37-74%) depending on whether those individuals who had classic symptoms of carpal tunnel syndrome but negative nerve conduction studies were included or not. Those who had a high likelihood of carpal tunnel syndrome based on classic/probable patient history with positive nerve conduction study had a significantly larger median nerve cross-sectional area than those who had an unlikely patient history with negative nerve conduction study. The prevalence of carpal tunnel syndrome was 10 to 25 times higher in individuals heterozygous for the nerve growth factor-beta mutation than the general Swedish population. Further studies are needed to better understand the underlying pathophysiological mechanisms.

Keywords

Carpal tunnel syndrome, hereditary sensory and autonomic neuropathy type V, nerve conduction, nerve growth factor, ultrasonography

Abbreviations

CTS, carpal tunnel syndrome; CSA, cross-sectional area; HSAN, hereditary sensory and autonomic neuropathy; NCS, nerve conduction study; NGFB, nerve growth factor-beta
Introduction

Hereditary sensory and autonomic neuropathies are rare genetic conditions that can be classified into five subtypes (HSAN I to V) based on their mode of inheritance, natural history, pathology, biochemical and neurophysiological features, and degree of autonomic involvement (Dyck et al., 1983). We have previously identified a large family residing in northern Sweden with a condition best fitting the HSANV subtype (Minde et al., 2004). They have a point mutation in the gene encoding nerve growth factor-beta (NGFB) on chromosome 1p11.2-p13.2, and the pattern of inheritance is autosomal recessive (Einarsdottir et al., 2004).

Individuals with HSANV have a normal cognitive function (Minde et al., 2004). Heterozygous carriers – the focus of the current study – have milder symptoms than their homozygous counterparts, a moderate reduction in Aδ and C fibers in sural nerve biopsies, and the clinical picture ranges from asymptomatic cases to Charcot arthropathy starting in adult life (20 to 30-year-old in some cases) but is most common above 70 years (Minde et al., 2009). In a previous study on the phenotype of heterozygous carriers, a serendipitous finding was that a proportion of them were vulnerable to carpal tunnel syndrome (CTS) (Minde et al., 2009). However, that study was not designed to assess the prevalence of CTS, and the clinical examination was unstructured. Evidence from clinical studies suggests a disturbance in small-fiber function in patients with CTS, including reduced laser-evoked brain potentials (Arendt-Nielsen et al., 1991), increased thermal detection thresholds (Schmid et al., 2014), reduced intraepidermal nerve fiber density (Schmid et al., 2014), and decreased sympathetic skin response (Kiylioglu et al., 2005; cf. Bayrak et al., 2007) and vasomotor function (Wilder-Smith et al., 2003). The prevalence of CTS in the general population in Sweden is estimated to be 2.1 to 3.6% (Atroshi et al., 1999).

CTS is a median nerve compression neuropathy at the wrist presenting as a varied combination of numbness, tingling, and pain in the median nerve territory of the hand that sometimes radiates up the forearm. In mild to moderate cases, the symptoms are intermittent and often worse at night and after physical activity. Severe cases have persistent sensory loss, motor disturbances with weak thumb abduction, and thenar muscle atrophy (Dawson, 1993). Diagnosis is classically made by a combination of patient history, clinical examination, and nerve conduction study (NCS).

Ultrasonography has emerged as a possible adjunct to NCS in the diagnosis of CTS since it is less time consuming and not unpleasant for the patient (Ghasemi-Rad et al., 2014).
CTS, the nerve becomes swollen at the carpal tunnel inlet and a large cross-sectional area (CSA) at this level is a diagnostic feature. Varied concordance with NCS has been shown, good in some studies, and poor in others. Many have tried to establish the best cut-off value for the median nerve CSA at the carpal tunnel inlet in the diagnosis of CTS, but the proposed values vary widely from 6.5 to 15 mm2 (Pinilla et al., 2008; Sarraf et al., 2014).

For epidemiological research, a consensus regarding the classification of CTS was presented by Rempel et al. (1998) where patient history was divided into three categories: classic/probable, possible, and unlikely. This was combined with NCS being either negative or positive. See Tables 1 and 2.

The aim of the current study was to determine the prevalence of CTS in the heterozygous group, using the aforementioned consensus criteria (Rempel et al., 1998), and to measure the CSA of the median nerve at the carpal tunnel inlet with ultrasonography.

Materials and methods

Study group

There are 52 known individuals who are heterozygous for the 1p11.2-p13.2 mutation in Sweden. Of these, four were excluded from the study due to age (under 15 or above 85 years), and another four were excluded because they had previously participated in at least one study and had expressed no interest in further studies. Out of 44 heterozygotes who were invited to participate in the study, 23 volunteered (44% of known heterozygotes), while 29 chose not to participate because of work, study, length of travel, or personal reasons. There were 12 males (52%) and 11 females (48%) in the HSANV group. The mean age was 55 years (range 25–86) and the median age was 59 years. Five relatives without the NGFB mutation also volunteered to participate [1 male, 4 females; mean age, 54 (range 25–72) years; median age, 59 years]; data for these are shown in Supplementary Table 1. To compare NCS data, a group of 30 healthy participants (20–79 years, 18 females, 12 males) served as controls. All volunteers gave informed written consent to participate in the study which was approved by the ethics committee of the Umeå University and complied with the revised Declaration of Helsinki.

Patient history and clinical examination

Each patient received by mail a screening questionnaire regarding their general health, medications, symptoms of neuropathy, and whether their occupation included work with vibrating
tools. Manual work with repetitive wrist motion, forceful hand movements and the use of vibrating tools increase the risk of developing CTS (Newington et al., 2015; Guan et al., 2018).

Clinical examination was performed by a single physician (M.R.) working as an orthopedic surgeon. Patient history was collected and classified as classic/probable, possible, or unlikely for CTS as described in Tables 1 and 2. If the patient previously had surgery for suspected CTS and was relieved of symptoms this was classified as classic/probable CTS. The surgically treated wrists are described separately in the Results.

Clinically all wrists were assessed for Tinel’s sign (positive or negative) and Phalen’s test for 60 s (positive or negative and after how many seconds did the symptoms occur in each hand). Phalen’s test involves a prolonged maximal flexion of the patient’s wrist to see whether this triggers or aggravates paresthesia in the median nerve territory, and Tinel’s sign involves tapping over the carpal tunnel to see whether this elicits paresthesia/tingling (Ghasemi-Rad et al., 2014).

It was also noted whether the patient had symptoms and clinical signs of ulnar entrapment based on patient history with numbness/tingling in an ulnar nerve distribution and/or weakness of ulnar nerve-innervated musculature. During the clinical examination, motor and sensory functions of the ulnar nerve were tested, and Tinel’s test was performed over the nerve in the cubital tunnel as well as in Guyon’s canal. Patients were also asked if they had a history of neck pain and pain radiating down the arm to screen for cervical radiculopathy.

Table 1	Classification of patient history for CTS. Reproduced from Rempel et al. (1998).
Symptoms	Description
Classic/Probable	Numbness, tingling, burning, or pain in at least two digits of digiti I, II, and III. Wrist pain, palm pain, or proximal radiation is allowed.
Possible	Numbness, tingling, burning, or pain in at least one digit of digiti I, II, and III.
Unlikely	No symptoms in digitus I, II, or III.

Table 2	Consensus criteria for CTS based on patient history and NCS. From Rempel et al. (1998)	
Patient history	NCS	Ordinal likelihood of CTS
Classic/Probable	Positive	+++
Possible	Positive	++
Classic/Probable	Negative	+/-
Possible	Negative	-
Nerve conduction studies

NCS was performed by an experienced biomedical technician (O.T.), who was blind to patient history and results from the clinical examination, following a standardized procedure used in clinical practice at the Department of Clinical Neurophysiology at the Linköping University Hospital. The results were analyzed by a clinical neurophysiologist (M.S.). Both motor and sensory studies were done on the median nerve with a comparative sensory study of the ulnar nerve. For motor measurements, stimulation was performed proximal to the wrist, and registration was done over abductor pollicis brevis and abductor digiti minimi muscles for the median and ulnar nerves, respectively. Sensory responses were recorded orthodromic by digital stimulation with ring electrodes and registration proximal to the wrist over the corresponding nerves (third and fourth fingers for the median nerve and the fourth finger for the ulnar nerve; for the fourth finger, the same distance between stimulation and registration was used for both median and ulnar recordings). The electrophysiological diagnosis of CTS was based on a significant difference in sensory conduction velocity between the median and ulnar nerves, i.e. a difference in distal latency of >0.6 ms when stimulating at the fourth digit and recording compound sensory potentials from the median and ulnar nerves. In moderate to severe cases, there was also an increased distal motor latency for the median nerve (>4.2 ms) (Table 3). This is a modified version of the criteria proposed by Bland (2000) in which fewer grades are used, the threshold values are adapted to local experience and instead of using the biphasic sensory response of the fourth finger, the latency difference between the median and ulnar nerves is used to define a very mild carpal tunnel syndrome.

Table 3	Quantitative classification of median nerve dysfunction during NCS
1. Very mild	Increased sensory latency median nerve digit IV >0.6 ms
2. Mild	1+ decreased sensory conduction velocity/amplitude digit III
3. Moderate	2+ increased distal motor latency in median nerve >4.2ms
4. Severe	Same as 3 but with no sensory response

1 No consensus whether it should be classified as CTS or not

Ultrasonography
All ultrasound examinations were performed by a single radiologist (T.M.) with 12 years’ experience of musculoskeletal ultrasound examinations. The radiologist was blinded to the results from the clinical examination and the nerve conduction studies. The examinations were performed using a General Electric Logic E9 ultrasound machine with an ML-6/15 linear array transducer (GE Healthcare, Chicago, IL, USA). All patients were seated during examination with the wrist supported on a gel pad, fingers extended, hand fully supinated, elbows flexed to 90 degrees, and shoulders in a neutral position. Transverse images of the median nerve were obtained at the carpal tunnel inlet at the level of the scaphoid bone. The CSA was measured perpendicular to the nerve using the trace volume function inside the hyperechoic rim of the nerve. Measurements were taken for both right and left wrists.

Statistical analysis

A Chi-square test was used to assess differences between the HSANV and the control group regarding the occurrence of electrophysiological CTS. Kruskal-Wallis and post hoc Dunn’s multiple comparisons tests were used to compare ultrasonography results between patient groups based on the likelihood of CTS. We considered P < 0.05 as statistically significant. Data were analyzed in SPSS (version 25, IBM Corporation, Armonk, NY, USA) and GraphPad Prism (version 6.07, GraphPad Software Inc. La Jolla, CA, USA).

Data availability

Raw data were generated at the Department of Orthopedics, Gällivare Hospital. Derived data supporting the findings of this study are available from the corresponding author on request.

Results

Clinical examination

Out of 23 patients who were tested bilaterally, four (17%) of these previously had surgery for CTS (three bilaterally and one only on the left side) (Table 4). All were relieved of the symptoms they had before surgery and were therefore included in the classic/probable group. The patient who previously had surgery only on the left wrist had now developed classic/probable symptoms on the right wrist. With the inclusion of the surgically treated patients, there were 11 (48%) with a classic/probable history, two (9%) with a possible history, and 10 (44%) with an unlikely history for CTS. All patients in the classic/probable and possible groups have (or previously had) bilateral symptoms.
In the 11 patients with classic/probable CTS, Phalen’s test was positive with a mean time of 32 s (range, 10–60 s). Out of seven surgically treated wrists, six still had a positive Phalen’s test with a mean time of 37 s. In the two patients with a possible history of CTS, one had a negative Phalen’s test on both sides while the other had a negative test on the right side and a positive test after 40 s on the left side. For the 10 patients with an unlikely history of CTS, Phalen’s test was negative in eight and positive in two (one with a bilateral positive result after 40 s, and the other with a positive result after 30 s in the left hand only).

Table 4 Clinical, electrophysiological and ultrasonography results of heterozygotes (cases 1–23)

Case	Gender	Age	Risk factors	CTS surgery	History	Phalen’s R/L	NCS Q R	Q L	CTSC	US R	US L		
1	M	74	-	P	neg/neg	neg/neg	Pos	3	3	++	8	8	
2	F	31	-	U	neg/neg	neg/30s	Neg	0	0	--	9	9	
3	F	52	-	C/P	neg/neg	60s/20s	Neg	0	0	+/-	12	14	
4	M	75	-	C/P	pos/pos	10s/10s	Pos	4	4	+++	16	17	
5	M	75	DM	Bilateral	C/P	pos/neg	60s/30s	Pos	4	++	8	10	
6	F	75	-	P	neg/neg	neg/40s	Neg	32	0	-	9	8	
7	F	57	-	Left	C/P	neg/neg	Pos	4	3	+++	13	11	
8	M	25	VT	U	neg/neg	neg/neg	Neg	0	0	--	7	8	
9	M	58	-	C/P	neg/neg	40s/40s	Neg	0	0	+/-	9	9	
10	M	59	VT	U	neg/neg	neg/neg	Neg	0	0	--	7	8	
11	F	26	Wrist fx	C/P	neg/neg	40s/40s	Neg	0	0	+/-	5	6	
12	M	26	-	U	neg/neg	neg/neg	Neg	0	0	--	8	9	
13	F	55	-	C/P	neg/neg	30s/30s	Neg	0	0	+/-	8	8	
14	M	86	-	U	neg/neg	40s/40s	Pos	4	4	-	8	9	
15	F	64	DM	U	neg/neg	neg/neg	Neg	0	0	--	6	7	
16	M	36	Scaphoid fx	C/P	neg/neg	20s/20s	Pos	3	0	+++R,	8	11	
17	F	61	-	Bilateral	C/P	neg/neg	neg/30s	Pos	2	2	++	8	7
18	M	64	-	U	neg/neg	neg/neg	Neg	0	0	--	6	6	
19	F	82	-	Bilateral	C/P	pos/neg	30s/30s	Pos	4	4	+++	7	8
20	M	59	VT	C/P	neg/neg	45s/15s	Pos	3	4	+++	9	11	
21	M	28	-	U	neg/neg	neg/neg	Neg	0	0	--	6	9	
22	F	70	-	U	neg/neg	neg/neg	Neg	0	0	--	10	10	
23	F	28	-	U	neg/neg	neg/neg	Neg	0	0	--	5	5	

DM, diabetes mellitus; VT, work with vibrating tools; FRX, fracture; C/P, classic/probable; P, possible; U, unlikely; Q, quantity of changes seen on NCS (Table 3); CTSC, the likelihood of CTS based on the consensus criteria (Table 2); US, ultrasonography of median nerve CSA at carpal tunnel inlet (mm²); R, Right; L, Left
A marked decrease in motor amplitudes but close to a normal sensory response does not meet the sensory criteria. A median nerve dysfunction other than CTS was suspected.

Out of the 46 examined wrists, Tinel’s sign was positive in four wrists (right side in two patients with previous bilateral surgery, and bilaterally in one patient with classic/probable history). Marked thenar atrophy was found in one patient with classic/probable history who had a positive Phalen’s test after 10 s bilaterally; the same patient also had symptoms and clinical features of ulnar entrapment in the elbow on the left side. Suspected ulnar entrapment in the elbow was also found in three more patients, two with mild ulnar symptoms bilaterally (one in the classic/probable group and the other in the unlikely group) and one with an affected left side (classic/probable group). Clinically there were no cases with suspected cervical radiculopathy.

The screening questionnaire showed that there were no cases with rheumatic disease or hypothyroidism. BMI and smoking habits were not assessed. Seven patients had other risk factors for CTS, but none had more than one risk factor (Table 4). Two patients had type 2 diabetes mellitus (one in the unlikely group and the other in the classic/probable group who previously had surgery bilaterally). Two patients reported previous wrist surgeries, one for a wrist fracture and the other for a scaphoid fracture (both in classic/probable group). Three patients reported working with vibrating tools (one in the classic/probable group, two in the unlikely group).

Nerve conduction studies

Out of 23 patients, NCS identified 10 (44%) patients fulfilling the electrophysiological criteria for CTS (nine bilateral and one in the right hand only even though the participant had bilateral symptoms). Out of these 19 wrists, the median nerve dysfunction was classified as severe in 11 (58%), moderate in six (32%), and mild in two (10%). Of these 10 patients, seven were in the classic/probable group, one in the possible group and two in the unlikely group. All patients with a history of corrective surgery for CTS fulfilled the NCS diagnostic criteria. For age-matched analysis of NCS controls, two patients who were above 79 years were excluded, leaving eight out of 21 (38%) patients with CTS. In the control group, two out of 30 subjects (7%) were classified as having CTS of a very mild degree. The Chi-square test showed a significant difference (Chi2-score 7.74; P = 0.005) between the groups. NCS data are summarized in Supplementary Table 2.

Prevalence of carpal tunnel syndrome

The result of implementing the consensus criteria for CTS (Rempel et al., 1998) is presented in Table 5. The prevalence of CTS in the HSANV group was eight (35%) or 12 (52%) out of 23 depending on whether the four patients with classic/probable history but negative NCS (cases 3,
9, 11 and 13 in Table 4) were included or not (Table 6). These four cases had, in common, symptoms that were mild and intermittent, yet clinically definitely classic/probable CTS and the physical exam with Phalen’s test was positive.

There were two patients with an unlikely history for CTS but with NCS showing severe median nerve dysfunction bilaterally (cases 10 and 14 in Table 4). However, these did not meet the consensus criteria for CTS diagnosis. There was also one uncertain case (case 6, Table 4) with possible history and a right-sided marked decrease in motor amplitudes of the median nerve on NCS but close to normal sensory response, thus not fulfilling the sensory criteria. A median nerve dysfunction other than CTS was suspected.

Table 5	Likelihood of CTS in the HSANV group based on the consensus criteria				
Likelihood	Number of patients	Female	Male	Mean age (range)	Risk factors
+++	7 (30%)	3 (43%)	4 (57%)	64 (36–82)	3 (43%)
++	1 (4%)	0	1 (100%)	74	0
+/-	4 (17%)	3 (75%)	1 (25%)	48 (26–58)	1 (25%)
-	3 (13%)	1 (33%)	2 (67%)	73 (59–86)	1 (33%)
--	8 (35%)	4 (50%)	4 (50%)	42 (25–70)	2 (25%)
Total	23	11	12	55 (25–86)	7

Table 6	Prevalence of CTS in the HSANV group		
Likelihood	Number of patients	Female	Male
+++ or ++	8 out of 23 (35%)	3 (38%)	5 (63%)
++++, ++ or +/-	12 out of 23 (52%)	6 (50%)	6 (50%)

Ultrasonography

Individual patient data for nerve CSA are shown in Table 4. When all patients were compared based on CTS likelihood, no statistically significant difference in nerve CSA was found (Kruskal-Wallis test: P = 0.1202). Notably, all patients with surgically treated wrists had normal or close to normal CSA (mean 8.4 mm²) despite positive NCS and they were all in the +++ group (Table 4). Therefore, we sub-analyzed the results with the surgically treated wrists excluded, and this revealed a statistically significant difference in nerve CSA between the groups (Kruskal-Wallis test: P = 0.0332). Post hoc analysis revealed a significant difference in CSA between the classic/probable (+++), and unlikely (--) groups (mean ± SD; (+++), 12.3 ± 3.7 mm²; (--), 7.5 ±
1.7 mm²; Dunn’s multiple comparisons test: P = 0.0296). No difference was found for the other patient groups. For nerve CSA of patients’ relatives without the mutation, see Supplementary Table 1.

Table 7 Cross-sectional area at carpal tunnel inlet for the median nerve

Likelihood of CTS	Nerve cross-sectional area	Nerve cross-sectional area (operated wrists excluded)
++++	10.2 ± 3.3 (7.0–17.0) N = 13	12.3 ± 3.7 (8.0–17.0) N = 6
++	8.0 ± 0.0 (8.0) N = 2	None in the group had surgery
+/-	9.1 ± 2.8 (5.0–14.0) N = 9	None in the group had surgery
-	9.8 ± 2.1 (8.0–13.0) N = 6	None in the group had surgery
--	7.5 ± 1.7 (5.0–10.0) N = 16	None in the group had surgery

All values are presented in mm² as mean ± standard deviation (range). N, number of wrists

Discussion

We found that individuals heterozygous for a point mutation in the NGFB gene resulting in HSANV have a very high prevalence of CTS. There was good-to-excellent concordance between patient history, Phalen’s test, and NCS results. Tinel’s sign was not a reliable clinical test for the study group. The data analysis was complicated by the fact that the criteria used (Rempel et al., 1998) did not define a conclusive classification for the +/- group. Depending on whether these were classified as CTS or not, the prevalence of CTS was 10 to 25 times higher (35–52%) for the study group than the general Swedish population (2.1–3.6%) (Atroshi et al., 1999). This finding is consistent with neurophysiological, psychophysical, and histological evidence from clinical studies that the small-fiber function is affected in entrapment neuropathies (Arendt-Nielsen et al., 1991; Schmid et al., 2014).

When the surgically treated wrists were included, we found no statistically significant difference in the median nerve CSA at the carpal tunnel inlet for those with CTS in the HSANV group compared to those without CTS. However, when the surgically treated wrists were excluded, we found a significant difference in the median nerve CSA at the carpal tunnel inlet between the patients who had a high likelihood of CTS based on classic/probable patient history with positive NCS compared to those who had an unlikely patient history with negative NCS. Previous reports on the use of ultrasound in other clinical populations have also shown an increase in CSA of the median nerve in CTS (Pinilla et al., 2008; Sarraf et al., 2014). It remains to be tested whether the same applies to homozygous carriers who have a more severe reduction of...
small fibers than heterozygous carriers, however, none of the three known cases of the homozygous phenotype have CTS (Einarsdottir et al., 2004). The mechanisms underpinning nerve enlargement in response to compression are not entirely clear but based on nerve biopsies likely involve edema, thickening of microvascular walls, and fibrosis at the injury site (reviewed in Rempel et al., 1999).

The current study population did not have abundant risk factors for CTS, but a limitation of the current study is that we did not assess the BMI and smoking habits. However, none of the participants were visibly obese and it seems unlikely that BMI, or smoking habits for that matter, could explain the markedly high prevalence of CTS. Indeed, the reason for a very high prevalence of CTS in heterozygotes for the \textit{NGFB} mutation remains unknown. Diabetic polyneuropathy is associated with an increased risk of CTS (Moon et al., 2020) with several metabolic and vascular factors involved that make the hyperglycemic nerve more susceptible to compression at the carpal tunnel (e.g. Suzuki et al., 1994). CTS is also commonly reported in chemotherapy-induced neuropathy (Miaskowski et al., 2017).

A recent mouse model of HSANV heterozygotes displayed reduced nociception and skin innervation but no learning or memory deficits thus excluding haploinsufficiency as a mechanistic explanation (Testa et al., 2019). A significant reduction in the nerve CSA was found in the HSANV mouse model; the number of myelinated axons were unaffected, but the unmyelinated axons were significantly reduced (Testa et al., 2019). In our patient population, a comparison between CTS positive (+++) and CTS negative (--) patients revealed larger nerve CSA in the CTS condition. The CSA of HSANV patients without CTS was similar to relatives of these patients without the mutation (data in Supplementary Table 1) and the published normative data (e.g. Koyuncuoglu et al., 2005).

When comparing the sensory values of the ulnar nerve of the fourth finger between the HSANV and the control group in a post hoc analysis, there were significant differences in both amplitude and conduction velocity (data in Supplementary Table 2). Since the ulnar nerve does not pass through the carpal tunnel, CTS cannot explain this, and it may reflect a more general nerve vulnerability in the HSANV group. Here, the ulnar recordings were not performed over the elbow, so cubital tunnel syndrome cannot be ruled out – the second most common compression neuropathy after CTS in the upper extremity (Seror and Nathan, 1993). Whether the high prevalence of CTS in HSANV patients is due to focal or polyneuropathy cannot be confirmed from current observations and requires further investigations including conduction studies involving multiple nerves and body sites.
It was previously reported that tactile directional sensibility, a sensitive measure of large (A-beta) fiber function, is normal in HSANV patients (Morrison et al., 2011). In the current study, psychophysical testing according to the protocol defined in the Michigan Neuropathy Screening Instrument (Herman et al., 2012) revealed that most patients were able to detect mechanical stimuli on the great toe, albeit to a variable degree of sensitivity, tested bilaterally using a 128-Hz tuning fork or a 100-mN monofilament (data in Supplementary Table 3). Several of these had foot deformities including Charcot joints. In a recent study, we screened for thermal function and found two patients in this cohort who had no cold (<20°C) or heat pain (>50°C) perception and yet their mechanical pain perception was intact, a feature that from convergent evidence is likely signaled by the large-diameter (A-beta) nociceptors (Nagi et al., 2019).

It might be speculated that due to relative pain insensitivity, the HSANV patients use their wrists with excessive repetitive motion, force, impulsiveness, or in extreme positions leading to repeated microtrauma, the potential role of which has been previously described in osteoarthritis (Radin et al., 1991; Radin, 1995) and is consistent with a high prevalence of osteoarthritis and Charcot arthropathies in this group (Minde et al., 2009). However, further studies on the pathophysiological mechanisms of CTS development in HSANV are needed.

Acknowledgements

We wish to thank Sandra Keränen at the orthopedic clinic, Gällivare hospital, for her help with participant recruitment.

Funding

This work was supported by Region Norrbotten (FOU) and Region Östergötland (Forsknings-ALF). The funding bodies had no role in the design or the execution of this study.

Competing interests

The authors have no competing interests to declare.

References

https://mc.manuscriptcentral.com/braincom
Arendt-Nielsen L, Gregersen H, Toft E, Bjerring P. Involvement of thin afferents in carpal tunnel syndrome: evaluated quantitatively by argon laser stimulation. Muscle Nerve 1991; 14(6): 508-14.

Atroshi I, Gummesson C, Johnsson R, Ornstein E, Ranstam J, Rosen I. Prevalence of carpal tunnel syndrome in a general population. JAMA 1999; 282(2): 153-8.

Bayrak AO, Tilki HE, Coskun M. Sympathetic skin response and axon count in carpal tunnel syndrome. J Clin Neurophysiol 2007; 24(1): 70-5.

Bland JDP. A neurophysiological grading scale for carpal tunnel syndrome. Muscle Nerve 2000; 23(8): 1280-3.

Dawson DM. Entrapment neuropathies of the upper extremities. N Engl J Med 1993; 329(27): 2013-8.

Dyck PJ, Mellinger JF, Reagan TJ, Horowitz SJ, McDonald JW, Litchy WJ, et al. Not 'indifference to pain' but varieties of hereditary sensory and autonomic neuropathy. Brain 1983; 106: 373-90.

Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O, Solders G, et al. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum Mol Genet 2004; 13(8): 799-805.

Ghasemi-Rad M, Nosair E, Vegh A, Mohammadi A, Akkad A, Lesha E, et al. A handy review of carpal tunnel syndrome: From anatomy to diagnosis and treatment. World J Radiol 2014; 6(6): 284-300.

Guan W, Lao J, Gu Y, Zhao X, Rui J, Gao K. Case-control study on individual risk factors of carpal tunnel syndrome. Exp Ther Med 2018; 15(3): 2761-6.

Herman WH, Pop-Busui R, Braffett BH, Martin CL, Cleary PA, Albers JW, et al. Use of the Michigan Neuropathy Screening Instrument as a measure of distal symmetrical peripheral neuropathy in Type 1 diabetes: results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications. Diabet Med 2012; 29(7): 937-44.

Kiylioglu N, Akyol A, Guney E, Bicerol B, Ozkul A, Erturk A. Sympathetic skin response in idiopathic and diabetic carpal tunnel syndrome. Clin Neurol Neurosurg 2005; 108(1): 1-7.

Koyuncuoglu HR, Kutluhan S, Yesildag A, Oyar O, Guler K, Ozden A. The value of ultrasonographic measurement in carpal tunnel syndrome in patients with negative electrodiagnostic tests. Eur J Radiol 2005; 56(3): 365-9.

Miaskowski C, Mastick J, Paul SM, Topp K, Smoot B, Abrams G, et al. Chemotherapy-Induced Neuropathy in Cancer Survivors. J Pain Symptom Manage 2017; 54(2): 204-18.e2.

Minde J, Andersson T, Fulford M, Aguirre M, Nennesmo I, Remahl IN, et al. A novel NGFB point mutation: a phenotype study of heterozygous patients. J Neurol Neurosurg Psychiatry 2009; 80(2): 188-95.

Minde J, Toolanen G, Andersson T, Nennesmo I, Remahl IN, Svensson O, et al. Familial insensitivity to pain (HSAN V) and a mutation in the NGFB gene. A neurophysiological and pathological study. Muscle Nerve 2004; 30(6): 752-60.

Moon HI, Shin J, Kim YW, Chang JS, Yoon SY. Diabetic polyneuropathy and the risk of developing carpal tunnel syndrome: a nationwide, population-based study. Muscle Nerve 2020.

Morrison I, Loken LS, Minde J, Wessberg J, Perini I, Nennesmo I, et al. Reduced C-afferent fibre density affects perceived pleasantness and empathy for touch. Brain 2011; 134(4): 1116–26.

Nagi SS, Marshall AG, Makdani A, Jarocka E, Liljencrantz J, Ridderström M, et al. An ultrafast system for signaling mechanical pain in human skin. Sci Adv 2019; 5(7): eaaw1297.

Newington L, Harris EC, Walker-Bone K. Carpal tunnel syndrome and work. Best Pract Res Clin Rheumatol 2015; 29(3): 440-53.

Pinilla I, Martin-Hervas C, Sordo G, Santiago S. The usefulness of ultrasonography in the diagnosis of carpal tunnel syndrome. J Hand Surg Eur Vol 2008; 33(4): 435-9.

https://mc.manuscriptcentral.com/braincom
Radin EL. Osteoarthrosis--the orthopedic surgeon's perspective. Acta Orthop Scand Suppl 1995; 266: 6-9.
Radin EL, Yang KH, Rieger C, Kish VL, O'Connor JJ. Relationship between lower limb dynamics and knee joint pain. J Orthop Res 1991; 9(3): 398-405.
Rempel D, Dahlin L, Lundborg G. Pathophysiology of nerve compression syndromes: Response of peripheral nerves to loading. JBJS 1999; 81(11): 1600-10.
Rempel D, Evanoff B, Amadio PC, de Krom M, Franklin G, Franzblau A, et al. Consensus criteria for the classification of carpal tunnel syndrome in epidemiologic studies. Am J Public Health 1998; 88(10): 1447-51.
Sarraf P, Malek M, Ghajarzadeh M, Miri S, Parhizgar E, Emami-Razavi SZ. The best cutoff point for median nerve cross sectional area at the level of carpal tunnel inlet. Acta Med Iran 2014; 52(8): 613-8.
Schmid AB, Bland JDP, Bhat MA, Bennett DLH. The relationship of nerve fibre pathology to sensory function in entrapment neuropathy. Brain 2014; 137(12): 3186-99.
Seror P, Nathan PA. Relative frequency of nerve conduction abnormalities at carpal tunnel and cubital tunnel in France and the United States: Importance of silent neuropathies and role of ulnar neuropathy after unsuccessful carpal tunnel syndrome release. Ann Chir Main Memb Super 1993; 12(4): 281-5.
Suzuki E, Yasuda K, Yasuda K, Miyazaki S, Takeda N, Inouye H, et al. 1H-NMR analysis of nerve edema in the streptozotocin-induced diabetic rat. J Lab Clin Med 1994; 124(5): 627-37.
Testa G, Mainardi M, Morelli C, Olimpico F, Pancrazi L, Petrella C, et al. The NGF (R100W) mutation specifically impairs nociception without affecting cognitive performance in a mouse model of hereditary sensory and autonomic neuropathy type V. J Neurosci 2019; 39(49): 9702-15.
Wilder-Smith EP, Fook-Chong S, Chew SE, Chow A, Guo Y. Vasomotor dysfunction in carpal tunnel syndrome. Muscle Nerve 2003; 28(5): 582-6.
Abbreviated summary

In a unique group of heterozygous carriers of a rare mutation in the nerve growth factor-beta gene, we investigated the prevalence of carpal tunnel syndrome and found it to be manifold higher in the carriers than the general Swedish population.
Graphical abstract

260x178mm (300 x 300 DPI)