LC-MS/MS and GC-MS/MS cross-checking analysis method for 247 pesticide residues in sweet pepper (Capsicum annuum)

Ji Eun Lee¹, Sung Ho Jang¹, Suel Hye Hur, Han Yeol Bang, In-kyung Bae, and Ho Jin Kim

¹Gyeongnam Provincial Office National Agricultural Products Quality Management Service, Busan, Korea; ²Experiment Research Institute National Agricultural Products Quality Management Service, Gimcheon Korea; ³National Institute for Korean medicine development, Department of Public Infrastructure Operation Korean Medicine Manufacture Center Korea Daegu

ABSTRACT
A simultaneous analysis method using LC-MS/MS and GC-MS/MS was developed for improving the analysis accuracy of various pesticide residues. Samples spiked with 247 and 34 pesticide residues were analyzed by LC-MS/MS and GC-MS/MS, respectively. The method was verified by measuring sensitivity, linearity, selectivity, precision, and accuracy. LC-MS/MS LOD and LOQ values were determined to be 0.03–0.5 μg/kg, and 0.6–1.5 μg/kg, respectively, while the corresponding values for GC-MS/MS were found to be 0.9–2.0 μg/kg and from 3.0–5.7 μg/kg, respectively. Most of the 34 common residues had recovery rates of 70–120%. The results showed that the developed method can be a reliable and more accurate than the general multi component analysis method.

Introduction
The use of pesticides in agriculture has become unavoidable as technology becomes increasingly specialized, as they increase productivity. However, the increasing use of pesticides threatens the environment and human and animal health when directly exposed.¹ Pesticides enter the body through various channels, such as oral intake through food and water, as well as absorption through the skin. The degree of the adverse impact of exposure to pesticides depends on the exposure duration and quantity.² Long-term exposure to pesticides has been associated with diseases, such as multiple sclerosis and cancer, as well as various chronic conditions.³ In addition, when the pesticide involved is highly complex, the associated toxicity may be much worse owing to interactions between substances.⁴ Hence, methods for analyzing pesticides should be continuously researched and developed to ensure that agricultural products are safe.

Sweet pepper (Capsicum annuum) contains a large quantity of beneficial compounds, including carotenoids and phenolics. Sweet pepper has recently been reported to show anti-cancer effects against some tumors and antioxidant effects against some specific chronic conditions.⁵ Various factors, such as the pH and lipid contents of vegetables and fruits, can affect the analysis of pesticide residues. Analysis is also affected by the matrix effect of pigments, such as the green chlorophyll pigment.⁶ Therefore, fruits and vegetables need to be suitably pretreated before being analyzed.

QuEChERS is one such pretreatment method; it is a simple and rapid pretreatment method that uses a highly sensitive mass spectrometer and is mainly used for multiclass and multi residue analyses.⁷⁻⁹ Contrary to the existing pesticide residue analysis methods, the QuEChERS method can easily be...
developed and used to analyze pesticide metabolites.[10–12] Many global studies are directed toward the development of further methods for the analysis of pesticide multi residues by the simultaneous application of GC/MS/MS and LC/MS/MS.[13]

Various methods can be used to analyze pesticide residues, such as thin-layer chromatography (TLC)[14] and mass spectrometry[15], however, simultaneous multi residue analysis is chiefly conducted using LC and GC coupled with mass spectrometry.[16,17] Interestingly, more than 200 types of multi residue can be analyzed using a single instrument. GC-MS/MS is mainly used for such analysis because it advantageously minimizes signal interference from a complex sample matrix[18] and can separate highly lipophilic substances, such as chlorothalonil and endosulfan.[13] Some recently introduced pesticides have polar components; in addition, they are thermolabile and difficult to volatilize. Consequently, LC-MS/MS is used for such pesticides because it is difficult to accurately analyze them by high-temperature GC.[19] However, very few studies have investigated simultaneous analysis by considering the characteristics of both types of instrument. Therefore, a simultaneous analysis method that uses both types of instrument needs to be developed.

We hypothesized that the simultaneous use of LC/MS/MS and GC/MS/MS can be used more accurately analyze various pesticide residues. In this study, we established efficient qualitative and quantitative methods for analyzing pesticide residues in sweet pepper. The method involved first pretreating the sweet pepper by QuEChERS and then comparing the results obtained by each analysis method. Effectiveness was also verified by applying and monitoring the relevant experimental method.

Materials and methods

Samples
Sweet pepper was purchased directly from a local market in Busan (South Korea). Forty samples of sweet pepper were used. All samples were stored at −4°C.

Chemicals and reagents
A total of 247 pesticide residues, used as analysis standards, were purchased from AccuStandard (New Haven, USA). Formic acid (98%) and ammonium formate (99.995%) were purchased from Sigma–Aldrich (Steinheim, Germany). Acetonitrile, used for sample extraction and purification, and Lichrosolv*, used as a solvent, were purchased from Merck KGaA (Darmstadt, Germany). The QuEChERS Extraction Kit (magnesium sulfate: 98.5–101.5%; sodium chloride: ≥99.5%; sodium citrate: 99.9%; disodium citrate sesquihydrate: 99%) and 2 mL of QuEChERS dispersive SPE (primary secondary amine (PSA), octadecysilane end-capped, magnesium sulfate; 98.5–101.5%) used for purification was obtained from Agilent (Boblingen, Germany).

Pretreatment method (sample preparation)
The sample pretreatment method is shown in Fig. S1. The sample was first homogenized using a grinder (T 25 digital ULTRA-TURRAX*, IKA), and the resulting sample was used as the blank sample. After weighing 10 g of the pulverized sample, 10 mL of acetonitrile was added to each weighed sample and shaken for 1 min. Thereafter, 4 g of anhydrous magnesium sulfate, 1 g of sodium chloride, 1 g of sodium citrate, and 0.5 g of disodium citrate sesquihydrate were added to the sample solution, followed by vigorous shaking for 1 min using a rotary mixer (DE/VIVA, Collomix). Subsequently, centrifugation was performed for 5 min at 3,700 rpm using a 5920 R centrifuge (Eppendorf). For LC-MS/MS analysis, the centrifuged supernatant was filtered through a 0.2-μm syringe filter (Whatman, PTFE) and used as the test solution. For GC-MS/MS analysis, 1 mL of the supernatant was used with 25 mg PSA and 150 mg MgSO\textsubscript{4}. The supernatant was placed in a dispersive tube filled with SPE and shaken for 1 min, after which it was centrifuged at 12,000 rpm for 1 min and filtered through a 0.2-μm syringe filter (Whatman, PTFE).
Standard solution preparation

Individual standard solutions of 247 pesticide residues were prepared in ACN at a concentration of 1000–10000 μg/L. Working solutions (10–100 μg/L) were prepared by diluting the stock solution with a blank sample. The matrix matching calibration standard solution was prepared by mixing the matrix matching working standard solution with an additional blank sample extract to reach a multi compound concentration of 0.005–1 mg/L. All standard solutions were stored in glass bottles at ~20°C.

The method used to prepare calibration curves for standard substances matched with metrics. Concentrations of 1–20 μg/L were used, and each calibration curve was prepared using five points. The interference effect was reduced by diluting the concentration by a factor of 10 for sample analysis. The preparation of GC-matched standard Calibration curves were obtained using five points (5–100 μg/L). The medium tends to interfere less in GC than LC; therefore, GC experiments were conducted without dilution.

Instrument analysis conditions

The analysis conditions for the LC-MS/MS and GC-MS/MS instruments are shown in Table 1. A Triple Quad 4500 instrument (AB Sciex) was used for LC-MS/MS, with Multiqiant 3.0.2 software used for data processing. A GCMS-TQ8050 instrument (Shimazu) was used for GC-MS/MS, with Lab Solution Insight software used for data processing.

Method validation

Method validation was performed following the guidelines set by the European Commission,[20] the International Conference on Harmonization,[21] the International Union of Pure and Applied Chemistry,[22] EURACHEM guidelines,[23] and the Guide to the Expression of Uncertainty in Measurement.[24] Methods were validated for linearity, sensitivity, selectivity, accuracy, precision, and measurement uncertainty.

Results and discussion

Simultaneous multi component analysis

Table 2 shows the LC-MS/MS multiple reaction monitoring (MRM) results for 247 pesticide residues found in sweet pepper. The MRM results for 34 residues subjected to GC analysis are shown in Table 3. Quantitative analysis of the residues was carried out within the 162.9–890.4 Da range for LC and the 121.0–354.0 m/z range for GC. Qualitative residues analysis was conducted within the 51.1–567.3 Da range for LC and the 72.10–335.0 m/z range for GC. In the case of GC, the accuracy of material analysis improved when several reference ions were used for a specific material.

Method validation

The developed LC-MS/MS and GC-MS/MS analysis methods were verified for sensitivity, linearity, selectivity, precision and accuracy to confirm their effectiveness for the analysis of pesticide residues in sweet pepper (Tables 4 and 5). The matrix effect (ME), which affects recovery-rate measurements, can result from various factors, such as equipment conditions and solvent composition, and is known to interfere with the detection of specific pesticides. The ME for sweet pepper was found to be less than 20% at the 0.25 mg/kg level; hence, the ME does not significantly affect the detection of pesticide residues.[19]

The sensitivity of the developed method was evaluated by determining the limits of detection (LOD) and quantification (LOQ). The LOD and LOQ values were determined from the response and slope of each regression equation at signal-to-noise ratios (S/N) of 3:1 and 10:1, respectively, under
chromatographic conditions. The LOD values for LC-MS/MS and GC-MS/MS were found to be 0.03–0.5 μg/kg and 0.9–2.01 μg/kg, respectively, while the LOQ values were determined to be 0.6–1.5 μg/kg and 3.0–5.7 μg/kg, respectively. More details are found in Tables 4 and 5.

Linearity was evaluated by constructing external calibration curves using the standard mixture of each residue. Calibration curves were obtained from analytic peak area as determined at five concentrations (LC: 1, 2.5, 5, 10, and 20 μg/L, GC: 5, 10, 25, 50, and 100 μg/L). The respective concentration of each mixed standard solution was injected in triplicate, with values of the regression parameters calculated from the results. Coefficients of determination (R² > 0.99) were obtained for all the compounds studied. These results reveal that external standard calibration can be used for quantitative purposes.

Selectivity was determined by the presence or absence of interfering peaks in the chromatography window. As shown in Tables 4 and 5, 247 pesticide residues were observed within 30 min of sample injection. All identified peaks showed satisfactory selectivities and were successfully separated. Thus, we confirmed LC-MS/MS and GC-MS/MS selectivity. Method precision was then determined by measuring intra- and interday precision values. For intraday precision, solutions of pesticide residues were analyzed three times within one day, while for interday precision, solutions were examined in triplicate on three consecutive days. Precision is expressed as the percentage of the relative standard deviation (%RSD). The overall LC-MS/MS %RSD and GC-MS/MS %RSD values for intraday precision were found to be <4.9% and <5.1%, respectively, while the interday values are <5.3% and <4% (Tables 4 and 5, respectively). Accuracy was evaluated by adding mixed standard solutions at two

Instrument	AB Sciex Triple Quad 4500 LC/MS with Agilent 1290 series HPLC
Column	Capcell core C18, 2.1 × 150 mm, 2.7 μm
Mobile phase A	5 mM ammonium formate & 0.1% formic acid in water
Mobile phase B	5 mM ammonium formate & 0.1% formic acid in methanol

Table 1. Analytical conditions of LC-MS/MS and GC-MS/MS.

Gradient program	Time (min)	A (%)	B (%)	Flow (mL/min)
Initial		85	15	0.3
1		85	15	0.3
1.5		40	60	0.3
10		10	90	0.3
12		10	90	0.3
12.1		2	98	0.3
16		2	98	0.3
16.1		85	15	0.3
20		85	15	0.3

Injection volume: 10 μL
Column temperature: 40°C
Sample Tray Temp.: 10°C
Ionization mode: ESI positive
Scan type: MRM mode
Instrument: GCMS-TQ8050
Column: Rxi-5sil, 30 m × 0.25 mm i.d., 0.25 μm
Flow rate: Helium (99.999%) at 1.5 mL/min
Injection vol., mode: 1 μL, splitless
Column oven

Temperature (°C)	Rate (°C/min)	Hold (min)	Total (min)
90	3	3	
120	20	0	4.5
300	8	3	30

Source temperature: 280°C
Ionization: Electron ionization (EI), 70 eV
Scan mode: MRM (Multiple Reaction Monitoring) mode
Table 2. Parameters for the analysis of 247 pesticide residues using LC-MS/MS.

No	Compounds	Q1 Mass	Q3 Mass	DP^a	EP^b	CE^c	CXP^d
1	Abamectin B1	890.4	305.2	51	10	29	8
		890.4	567.3	51	10	19	26
2	Acephate	184	157	161	10	29	12
		184	169	161	10	33	14
3	Acetamiprid	223.1	125.9	70	10	28	15
		223.1	99.1	70	10	50	15
4	Alachlor	270	238	26	5.5	15	5
		270	162	26	5	15	5
5	Aldicarb	208	116	56	5	9	8
		208	89	56	5	19	6
6	Ametoctradin	276.2	176.2	66	4.5	49	4
		276.2	149.2	66	4.5	49	4
7	Amisulbrom	466	227.1	66	7.5	27	4
		466	108.1	66	7.5	33	4
8	Azimsulfuron	425	182.1	31	7.5	23	5
		425	156.1	31	7.5	45	5
9	Azinphos-methyl	318	132	31	5	19	5
		318	160	31	7.5	19	5
10	Azoxystrobin	404.1	372.1	36	5	19	9
		404.1	344.1	36	5	31	7
11	Bendiocarb	224	108.9	26	10	27	4
		224	167.1	26	10	15	4
12	Benfuresate	256.941	163	96	10	19	12
		256.941	121	96	10	31	8
13	Bensulfuron-methyl	410.9	149	36	7.5	27	5
		410.9	119.1	36	7.5	53	5
14	Benthiavalicarb-Isopropyl	382.1	180.1	46	8.5	39	5
		382.1	116.2	46	8.5	29	5
15	Benzobicyclon	447	257.1	61	9	37	4
		447	229.1	61	9	51	4
16	Benzoxydim	364.1	199.2	26	4.5	17	5
		364.1	105.2	26	4.5	31	5
17	Bitertanol	338.2	99.1	46	5	21	5
		338.2	70	46	5	19	5
18	Boscalid	343	307	71	10	27	11
		343	140	76	10	27	7
19	Bromacil	261.1	205	26	7.5	21	4
		261.1	188.2	26	7.5	41	4
20	Buprofezin	306.2	201.3	26	8	17	5
		306.2	116.2	26	8	21	5
21	Cadusafos	271.1	159.1	31	9.5	19	5
		271.1	97.1	31	9.5	49	5
22	Cafenstrole	351.2	100.2	31	9	19	5
		351.2	72.1	31	9	39	5
23	Carbaryl	202.1	145.1	31	10	16	4
		202.1	127.1	31	10	39	4
24	Carbendazim	192.1	160.1	51	10.5	27	7
		192.1	132	51	10.5	41	5
25	Carbofuran	222.1	123	30	10	29	3
		222.1	165.1	30	10	17	3

(Continued)
No	Compounds	Q1 Mass	Q3 Mass	DP^a	EP^b	CE^c	CXP^d
26	Carboxin	236.2	143.1	26	6.5	21	4
		236.2	86.9	26	6.5	35	4
27	Carfenozzone-ethyl	412	366	60	10	23	14
		412	346	60	10	33	12
28	Carpropamide	334.1	139.1	36	8	29	5
		334.1	103.1	36	8	57	5
29	Chlorantraniliprole	481.6	283.9	51	7	23	9
		481.6	450.9	51	7	25	9
30	Chlorfluazuron	540	382.9	66	7.5	31	9
		540	158.2	66	7.5	33	7
31	Chlorpyrifos	350	97	46	5	43	5
		350	198	46	7	43	5
32	Chlorsulfuron	358	141	41	9	23	5
		358	167.1	41	9	25	5
33	Chromafenozide	395.2	175.1	31	4.5	21	5
		395.2	147.2	31	4.5	61	5
34	Clethodim	360.1	164	36	7	27	7
		360.1	77	36	7	99	5
35	Clofentezine	303	138.1	31	8.5	19	5
		303	102.1	31	8.5	55	5
36	Clomazone	240.1	125	41	10.5	29	4
		240.1	99.1	41	10.5	59	4
37	Clothianidin	250.1	168.9	60	10	20	10
		250.1	132	60	10	20	10
38	Cyazofamid	325.1	107.9	31	6	19	5
		325.1	261	31	6	15	7
39	Cyclosulfamuron	422.1	261.1	46	9.5	23	4
		422.1	218.1	46	9.5	37	4
40	Cyflufenamid	413.2	203.2	36	6	53	4
		413.2	241.2	36	6	33	4
41	Cyhalofop-butyl	358.2	256.1	41	12	17	5
		358.2	120.2	41	12	35	5
42	Cymoxanil	199.1	128.2	30	13	11	6
		199.1	111	30	4	23	5
43	Cyproconazole(I)	292	70	36	10.5	35	4
		292	125.1	36	10.5	39	4
44	Cyproconazole(II)	292	70.1	36	9.5	35	4
		292	125	36	9.5	37	4
45	Cyprodinil	226.2	93.1	61	6.5	51	4
		226.2	77.1	61	6.5	63	4
46	Dichlorvos(DDVP)	221	109.1	41	5.5	23	5
		221	127	41	5.5	21	5
47	Demeton-S-Methyl	231.2	89.2	25	8	15	19
		231.2	61	25	10	37	10
48	Diazinon	305.2	169.2	46	9.5	27	5
		305.2	153.2	46	9.5	29	5
49	Diethofencarb	268	226	31	10	15	9
		268	180	26	10	23	8
50	Difenoconazole	406	251	41	10	23	13
		406	337	86	9	23	13

(Continued)
No	Compounds	Q1 Mass	Q3 Mass	DP	Ep	CE	CXP
51	Diflubenzuron	311	158.1	36	5	19	5
		311	141.1	36	5	45	5
52	Dimepiperate	264.2	146.2	36	4.5	17	5
		264.2	119.2	36	4.5	21	5
53	Dimethametryn	255.8	186.2	51	10	29	4
		255.8	96.1	51	10	43	4
54	Dimethenamide	276.1	244.1	36	4.5	19	7
		276.1	168.3	36	4.5	31	5
55	Dimethoate	230	198.9	31	6.5	13	5
		230	125	31	6.5	27	5
56	Dimethomorph(E)	388	301.1	61	9	25	5
		388	165.2	61	9	45	5
57	Dimethomorph(z)	388.1	301.1	61	9	25	5
		388.1	165.2	61	9	45	5
58	Dimethylvinphos	331	127.1	36	8.5	19	5
		331	170.1	36	8.5	47	5
59	Diniconazole	326	70	61	9.5	41	5
		326	159	61	9.5	41	5
60	Dinotefuran	202.931	129	46	10	17	10
		202.931	86.88	46	10	15	8
61	Diphenamid	240.2	134.2	51	10.5	27	5
		240.2	165.1	51	10.5	55	5
62	Dithiopyr	402.3	354	100	5	23	26
		402.3	272	100	7	37	6
63	Diuron	233.1	72.1	46	8.5	35	5
		233.1	160.1	46	8.5	35	5
64	Dymron	269.1	151.2	31	10.5	19	4
		269.1	119.1	31	10.5	27	4
65	Edifenphos	311.1	109.1	46	4.5	41	5
		311.1	111.1	46	4.5	29	5
66	EPN	324.1	157.1	46	5.5	29	7
		324.1	296	46	5.5	17	7
67	Esprocarb	266.2	91.1	41	4.5	33	5
		266.2	65.1	41	4.5	79	5
68	Ethaboxam	320.9	183.1	61	7.5	35	6
		320.9	200.1	61	7.5	33	8
69	Ethiofencarb	226.1	106.9	21	10	21	3
		226.1	164.1	21	10	11	4
70	Ethofenprox	394.3	177.2	31	6.5	21	5
		394.3	135.2	31	6.5	33	5
71	Ethoprophos	243.1	131	41	5	27	5
		243.1	97.1	41	5	43	5
72	Ethoxysulfuron	399	217.9	36	7.5	33	7
		399	260.9	36	7.5	21	7
73	Etoxazole	360.2	141.1	56	12	43	5
		360.2	63	56	12	129	5
74	Etrimfos	293.1	125.1	46	7.5	33	5
		293.1	265	46	7.5	21	7
75	Fenamiphos	304.2	217.2	41	7	31	4
		304.2	202.1	41	7	47	4

(Continued)
No	Compounds	Q1 Mass	Q3 Mass	DP^a	Ep^b	CE^c	CXP^d
76	Fenarimol	331	268	61	9.5	27	7
		331	81	66	9	27	7
77	Fenazaquin	307.2	161.2	51	9.5	19	5
		307.2	147.1	51	9.5	59	5
78	Fenbuconazole	337.2	125.1	56	9	41	5
		337.2	70	56	9	35	5
79	Fenhexamid	301.8	96.9	101	5	29	6
		301.8	142.9	101	5	41	12
80	Fenobucarb	208.1	95.2	27	10	19	4
		208.1	152	27	10	11	4
81	Fenothiocarb	254.2	72	31	6	27	5
		254.2	160.1	31	6	15	5
82	Fenoxanil	328.9	302	131	5	15	10
		328.9	188.8	131	5	33	12
83	Fenoxaprop-ethyl	362	288	51	10.5	23	4
		362	121.1	51	10.5	37	4
84	Fenoxycarb	302.2	116.2	36	7.5	15	5
		302.2	256.2	36	7.5	17	7
85	Fenpyroximate	422	366	26	10	23	15
		422	135	16	10	41	7
86	Fenthion	279.1	169.2	46	5	23	5
		279.1	247.1	46	5	17	7
87	Fentrazamide	350.1	154.2	26	10	17	4
		350.1	83.1	26	10	31	4
88	Ferimzone(z)	255.2	132	46	4.5	27	11
		255.2	124.2	46	4.5	27	11
89	Ferimzone(e)	255.2	91	41	6.5	47	4
		255.2	132.1	41	6.5	29	4
90	Flonicamid	230	203.1	101	10	23	20
		230	148	101	10	37	4
91	Fluacrypyrim	427	145.1	31	3	33	5
		427	205.1	31	3	17	7
92	Flubendiamide	683.1	407.9	26	8	27	18
		683.1	255.9	26	8	87	6
93	Flucetosulfuron	487.8	156.1	36	4	27	5
		487.8	273	36	4	35	9
94	Fludioxonil	266.1	229	11	7	21	4
		266.1	158.3	11	7	47	4
95	Flufenacet	364.1	152.2	31	7.5	25	5
		364.1	194.3	31	7.5	17	5
96	Flufenoxuron	489	158.1	51	8	27	5
		489	141.1	51	8	71	5
97	Flumioxazin 1	354.9	326.9	80	6	29	14
		354.9	299.2	80	10	33	14
98	Fluopicolide	383	173	51	5	35	4
		383	109	51	5	91	6
99	Flupyradifurone	288.846	125.9	91	10	25	10
		288.846	90	91	10	57	6
100	Fluopyram	397	173.2	46	9	41	4
		397	208.1	46	9	35	4

(Continued)
No	Compounds	Q1 Mass	Q3 Mass	DP^a	EP^b	CE^c	CXP^d
101	Fluquinconazole	375.9	307.1	51	7.5	33	7
		375.9	108	51	7.5	69	5
102	Flusilazole	316.1	165.2	61	8.5	39	5
		316.1	247.1	61	8.5	23	7
103	Flutolanil	324	262	41	8	23	5
		324	242	46	5	23	5
104	Fluxapyroxad	381.968	362	96	10	21	12
		381.968	342	96	10	31	12
105	Forchlorfenuron	248.1	129	41	8	21	5
		248.1	155.1	41	8	19	5
106	Fosthiazate	284.1	104.2	36	7	29	5
		284.1	228.1	36	7	15	5
107	Furathiocarb	383.2	195.2	41	7.5	23	5
		383.2	252.1	41	7.5	17	5
108	Gibberellic acid	364.2	239.1	31	6.5	21	5
		364.2	221.2	31	6.5	29	5
109	Halosulfuron-methyl	435	182.1	31	10.5	29	4
		435	139.1	31	10.5	63	6
110	Haloxyfop	362.917	317	101	10	25	10
		362.917	288.9	101	10	35	10
111	Hexaconazole	314.1	70	56	10	39	5
		314.1	159.1	56	10	43	5
112	Hexaflumuron	461	158.2	51	8	25	5
		461	141.1	51	8	59	5
113	Hexazinone	253.2	171.1	31	6	23	4
		253.2	71.1	31	6	45	4
114	Hexythiazox	353.1	228	36	6.5	23	9
		353.1	168.1	36	6.5	37	7
115	Imazalil	296.9	159.2	51	8.5	33	5
		296.9	69	51	8.5	35	5
116	Imazosulfuron	413	153	36	9.5	19	4
		413	156.1	36	9.5	23	4
117	Imibenconazole	411	125	48	5	50	5
		411	171	48	5	28	5
118	Imicyafos	305.1	201.1	51	9	31	4
		305.1	235.2	51	9	25	4
119	Imidacloprid	256	209	25	4	21	8
		256	175	25	4	25	8
120	Inabenfide	339.1	321.1	46	7.5	23	4
		339.1	80.1	46	7.5	49	4
121	Iprobenfos	289.2	91.1	36	5	27	5
		289.2	205.1	36	5	15	7
122	Iprovalicarb	321.2	119.1	26	8.5	35	5
		321.2	203.2	26	8.5	15	7
123	Isoprocarb	194.2	95.2	31	9	19	5
		194.2	137.1	31	9	13	5
124	Isoprothiolane	291.1	231.1	31	4.5	15	7
		291.1	189.1	31	4.5	27	5
125	Isopyrazam	360.2	244.2	56	9.5	33	4
		360.2	320.3	56	9.5	29	6

(Continued)
No	Compounds	Q1 Mass	Q3 Mass	DP^a	Ep^b	CE^c	CXp^d
126	Kresoxim-methyl	314	131.1	86	5.4	27	10
		314	116	86	7	19	8
127	Linuron	249	160	46	8	23	5
		249	182.1	46	8	19	5
128	Lufenuron	510.9	158	91	8	23	10
		510.9	141	91	8	61	10
129	Malathion	330.895	127.1	61	10	17	20
		330.895	98.7	61	10	33	16
130	Mandipropamid	411.8	328.1	36	7.5	21	7
		411.8	125	36	7.5	47	5
131	Mefenacet	299.1	148.2	41	5	19	5
		299.1	120.2	41	5	35	5
132	Mepanipyrim	224	106	56	12	35	5
		224	77	56	11	35	5
133	Mepronil	270.2	119.1	51	8	31	5
		270.2	91.2	51	8	53	5
134	Metalaxyl	280.2	220.2	36	5	17	5
		280.2	160.2	36	5	31	5
135	Metamifop	441.1	288	61	8	23	7
		441.1	180.2	61	8	27	5
136	Metazosulfuron	476.1	182	40	5	23	12
		476.1	295	40	9	23	20
137	Metconazole	320.2	70	51	7	43	5
		320.2	125	51	7	61	5
138	Methabenzthiazuron	222.1	165.2	36	8	23	5
		222.1	150.1	36	8	45	5
139	Methidathion	303.1	145.1	36	9.5	27	5
		303.1	85.1	36	9.5	15	7
140	Metolachlor	284.2	252.1	31	4.5	21	4
		284.2	176.3	31	4.5	35	4
141	Methiocarb	226.2	121	31	11	23	5
		226.2	169.2	31	11	13	5
142	Methomyl	162.9	105.9	51	10	15	8
		162.9	88	51	10	11	4
143	Methoxyfenozide	369.3	149.2	26	4.5	21	5
		369.3	133.1	26	4.5	31	5
144	Metobromuron	259	169.9	41	5	23	4
		259	148.1	41	5	23	4
145	Metolcarb	166.2	109.2	26	9.5	15	5
		166.2	94.1	26	9.5	39	5
146	Metrafenone	409	209.1	26	4.5	23	4
		409	227	26	4.5	29	4
147	Metribuzin	215.2	187.2	41	6	25	4
		215.2	60	41	6	63	4
148	Mevinphos	225.2	127.1	21	9	23	4
		225.2	193.2	21	9	13	4
149	Milbemectin A3	511.3	95.1	46	7.5	47	4
		511.3	105.1	46	7.5	89	6
150	Milbemectin A4	525.4	55.1	46	5.5	93	6
		525.4	91	46	5.5	109	6

(Continued)
No	Compounds	Q1 Mass	Q3 Mass	DP^a	EP^b	CE^c	CXP^d
151	Molinate	188	126.1	56	8	17	10
152	Monocrotophos	224.1	127.1	26	9.5	21	5
153	Myclobutanil	289.2	70	46	5	27	5
154	Napropamide	272.2	129.2	46	9	21	5
155	Nicosulfuron	411	182.2	41	7	29	4
156	Novaluron	492.7	158.1	46	8	27	4
157	Nuarimol	315	251.9	76	10	29	18
158	Ofurace	282.1	160.2	46	5	31	5
159	Omethoate	214.1	125	26	6	31	4
160	Oxadiazon	362	220	21	4.5	31	5
161	Oxadixyl	279.2	219.2	36	9	15	7
162	Oxamyl	237	72	31	10	25	4
163	Oxaziclomefon	376	190.1	46	6.5	21	5
164	Paclobutrazole	294	70	36	10	39	4
165	Penconazole	284.1	159.1	41	7	39	5
166	Pencycuron	329	125	46	5.5	33	5
167	Pendimethalin	282.2	211.9	16	4.5	19	4
168	Penoxsulam	484	195	100	10	35	8
169	Penthiopyrad	360.1	276	46	9.5	21	4
170	Pentoxyzone	354.2	133	36	4.5	25	5
171	Phenthoate	321.1	79.1	36	6	55	5
172	Phorate	261.1	74.9	11	7.5	23	2
173	Phosalone	367.9	181.8	106	8	23	14
174	Phosphamidone	300.1	127.1	46	5	25	5
175	Phoxim	299.1	129	31	9	17	5

(Continued)

^a DP: Declustered parent mass
^b EP: Extracted parent mass
^c CE: Conclusivity of evidence
^d CXP: Conclusivity of x-ray peak
Table 2. (Continued).

No	Compounds	Q1 Mass	Q3 Mass	DP	EP	CE	CXP
176	Picoxystrobin	368.1	145.1	26	7	29	4
		368.1	205.2	26	7	17	4
177	Piperophos	354.1	171	51	6.5	29	7
		354.1	255	51	6.5	19	9
178	Pirimicarb	239.2	72.1	33	10	34	4
		239.2	182.2	33	10	21	3
179	Pirimiphos-methyl	306.2	164.2	56	9.5	29	5
		306.2	108.2	56	9.5	39	5
180	Probenazole	224.2	51.1	31	9	113	6
		224.2	63.1	31	9	111	6
181	Prochloraz	375.9	308.2	56	6	15	6
		375.9	70.1	56	5	47	4
182	Profenofos	373	302.7	46	7	23	7
		373	128	46	7	59	5
183	Prometryn	242.2	158	46	9.5	33	4
		242.2	200.2	46	9.5	27	4
184	Propamocarb	189.2	102.2	36	7.5	23	5
		189.2	74	36	7.5	35	5
185	Propanil	218.1	162.1	46	9	19	5
		218.1	127.1	46	9	37	5
186	Propaquizafop	444.1	100.1	41	6	33	4
		444.1	56	41	6	51	4
187	Propiconazole	342.1	159.1	46	8	43	4
		342.1	69	46	8	35	4
188	Propxur	210.2	111.1	26	8.5	19	5
		210.2	93.1	26	8.5	33	5
189	Pyraclofos	361.1	138.1	61	8	55	5
		361.1	111.1	61	8	85	5
190	Pyraclostrobin	388	163	11	10	29	8
		388	194	11	10	19	8
191	Pyrazolate	438.9	172.9	96	10	25	12
		438.9	91	96	10	57	8
192	Pyrazophos	374	222.2	56	5	27	5
		374	194.2	56	5	43	5
193	Pyribenzoxim	610.1	180.1	101	5	11	8
		610.1	413.2	101	5	11	8
194	Pyributicarb	330.9	180.9	10	6	19	8
		330.9	108	10	6	39	8
195	Pyridaben	365	147	56	7	31	5
		365	309	51	10	31	5
196	Pyridaphenthion	341.1	189.1	46	10	33	4
		341.1	205.1	46	10	31	4
197	Pyrifluquinazon	465.1	423.1	61	10.5	27	8
		465.1	107.2	61	10.5	45	4
198	Pyriftalid	319.2	139.2	56	7	41	4
		319.2	83.1	56	7	65	4
199	Pyrimethanil	200.2	107.2	56	10	31	5
		200.2	82.1	56	10	35	5
200	Pyrimidifen	378.1	184.2	56	9.5	31	5
		378.1	150.2	56	9.5	45	5

(Continued)
Table 2. (Continued).

No	Compounds	Q1 Mass	Q3 Mass	DP^a	EP^b	CE^c	CXP^d
201	Pyriminobac-methyl(E)	362.1	330.1	36	9	19	7
202	Pyriminobac-methyl(Z)	362.1	330.2	26	9	21	4
203	Pyrimisulfan	420.1	370	36	8	23	6
204	Pyriproxyfen	322	96	16	10	21	7
205	Pyroquilon	174.1	132	61	9.5	31	5
206	Quinalphos	299.1	97.1	36	5.5	51	4
207	Quinmerac	222.1	204	31	8.5	19	5
208	Quinoclamine	208.1	105.1	61	9	33	5
209	Quizalofop-ethyl	373.1	299.2	61	6.5	25	4
210	Saflufenacil	501.1	198	46	10	59	6
211	Sethoxydim	328.2	178.1	41	6	25	7
212	Silafuofen	426.2	287.2	16	8	21	4
213	Simeconazole	294.2	73.1	31	5	47	4
214	Simetryn	214.2	124.1	46	4.5	27	4
215	Spinetoram(j)	748.5	142.2	61	8	45	4
216	Spinetoram(L)	760.5	142.2	66	9.5	43	4
217	Spirodiclofen	410.8	71.1	46	5.5	35	5
218	Spiromesifen	371	273	60	5	17	20
219	Spirotetramat	374.055	215.9	76	10	45	8
220	Sulfoxaflor	278	174.2	26	10.5	17	4
221	Tebuconazole	308	70	56	10.5	41	5
222	Tebufenozone	353	133.1	21	6.5	29	4
223	Tebufenpyrad	334.2	145.2	76	9	37	5
224	Tebupirimfos	319.2	277.2	46	5	19	7
225	Teflubenzuron	380.9	141.1	46	6.5	57	5

(Continued)
No	Compounds	Q1 Mass	Q3 Mass	DP^a	Ep^b	CE^c	CXP^d
226	Terbuthylazine	230.1	174.2	46	8	21	7
		230.1	104	46	8	43	5
227	Terbutryn	242.3	186.1	41	8.5	27	4
		242.3	91	41	8.5	37	4
228	Tetraconzole	372	159	36	10	47	5
		372	70	41	10	37	9
229	Thenylchlor	324.2	127.1	26	5	21	5
		324.2	97.1	26	5	59	5
230	Thiabendazole	202.1	175.1	56	8.5	33	7
		202.1	131.1	56	8.5	43	5
231	Thiacloprid	253.1	126.1	41	5	27	11
		253.1	186.1	81	12	19	10
232	Thiamethoxam	292	211.2	26	10	17	5
		292	181.2	26	10	27	5
233	Thiaclorpyr	397.1	377.1	61	10.5	27	9
		397.1	335.1	61	10.5	31	7
234	Thidiazuron	221.1	102	41	7	19	5
		221.1	128	41	7	25	5
235	Thifensulfuron	388	167.1	41	8.5	21	5
	methyl	388	204.9	41	8.5	33	7
236	Thiobencarb	258.1	125	41	6.5	27	5
		258.1	89.3	41	6.5	67	5
237	Thiodicarb	355.1	88	30	6	29	12
		355.1	108	30	5	23	6
238	Tiadinil	267.9	100.9	31	10	27	7
		267.9	100.4	31	10	25	5
239	Tolclofos-methyl	301	124.9	41	4.5	23	4
		301	175	41	4.5	35	4
240	Triadimefon	294.1	197.2	51	5	19	5
		294.1	225	51	5	19	5
241	Triazophos	314.1	162.2	41	9	27	5
		314.1	119.2	41	9	47	5
242	Tricyclazole	190.1	163.1	61	11.5	31	5
		190.1	136	61	11.5	37	5
243	Trifloxystrobin	409	186	11	10	23	8
		409	206	11	10	21	8
244	Triflumizole	346.1	278	36	10	15	7
		346.1	73	36	10	23	5
245	Triflumuron	359.1	156.1	51	9.5	23	7
		359.1	139.1	51	9.5	45	5
246	Uniconazone	292.1	70	46	4.5	41	4
		292.1	125.1	46	4.5	39	4
247	Vamidothion	288.053	146	36	10	15	10
		288.053	118	36	10	33	12

^a Declustering Potential Energy
^b Enterance Potential Energy
^c Collision Energy
^d Collision Cell Exit Potential Energy
Table 3. Parameters for the analysis of 34 pesticide residues using GC-MS/MS.

No	Compound	Ch1 m/z	CE	Ch2 m/z	CE	Ch3 m/z	CE
1	Alachlor	160.00 > 131.00	20	188.00 > 160.00	15	188.00 > 131.00	15
2	Ametocarb	246.00 > 174.00	30	176.00 > 121.00	30		
3	Benfuresate	163.00 > 121.00	10	163.00 > 107.00	15		
4	Chlorantraniliprole	278.00 > 249.00	25	278.00 > 215.00	30		
5	Chlorflurenuron	323.00 > 305.90	27	321.00 > 304.00	10		
6	Cyprodin	224.00 > 208.00	25	224.00 > 118.00	40		
7	Difenconazole	323.00 > 265.00	15	325.00 > 267.00	18		
8	Dimethoate	125.00 > 79.00	10	229.00 > 87.00	10		
9	Dimethylvinphos	295.00 > 109.00	15	109.00 > 79.00	10	297.00 > 109.00	15
10	EPN	169.10 > 140.90	8	169.10 > 77.00	22		
11	Fenthioncarb	160.00 > 72.00	15	72.10 > 56.00	15		
12	Fenoxanil	189.00 > 125.00	15	293.00 > 198.00	15		
13	Fenthiom	278.00 > 109.00	15	125.00 > 79.00	10		
14	Flumioxazine	354.00 > 326.00	10	354.00 > 176.00	15		
15	Fluopyram	173.00 > 145.00	15	223.00 > 196.00	15	223.00 > 187.00	10
16	Imibenconazole	125.00 > 89.00	20	125.00 > 99.00	20		
17	Methidation	145.00 > 85.00	5	145.00 > 58.00	15		
18	Metolachlor	162.00 > 133.00	15	238.00 > 162.00	10	162.00 > 134.00	10
19	Metribuzin	198.00 > 82.00	20	198.00 > 89.00	20		
20	Pendimethalin	252.10 > 162.10	10	252.00 > 208.00	5	252.00 > 191.00	5
21	Pentiopyrad	177.00 > 101.00	20	302.00 > 152.00	5		
22	Phorate	121.00 > 65.00	10	260.00 > 75.00	5	260.00 > 231.00	5
23	Phosalone	182.00 > 111.00	20	121.00 > 65.00	10		
24	Picocystatin	335.00 > 173.00	10	335.00 > 303.00	10	303.00 > 157.00	20
25	Prochloraz	180.00 > 138.00	10	310.00 > 70.00	10		
26	Prometryn	241.00 > 184.00	10	184.00 > 69.00	20	241.00 > 226.00	10
27	Propiconazole	173.00 > 145.00	20	259.00 > 69.00	10	259.00 > 191.00	10
28	Silafluoren	179.00 > 151.00	10	286.00 > 258.00	15		
29	Simeconazole	121.00 > 101.00	15	211.00 > 195.00	10	211.00 > 121.00	10
30	Simetryn	213.00 > 170.00	10	213.00 > 185.00	10	170.00 > 155.00	10
31	Spiromesifen	272.00 > 254.00	10	272.00 > 209.00	15	254.00 > 209.00	10
32	Tebuirimfos	152.00 > 123.00	15	261.00 > 137.00	15	318.00 > 152.00	20
33	Terbutryn	185.00 > 170.00	10	241.00 > 185.00	5	226.00 > 96.00	20
34	Tolclofos-methyl	265.00 > 250.00	20	265.00 > 93.00	20	250.00 > 220.00	15

a Collision Energy

Table 4. Uncertainty of measurement of sample weight and final volume.

Parameter	Value (xi)	Source	Type	u(xi)	uc	ur	
Sample weight	10.0847	Scales	Certification	B	0.000150	0.000160	0.000016
			Readability	A	0.000029		
			Stability	A	0.000049		
Final volume	10	Pipette 1st	Certification	B	0.006000	0.008485	0.000849
		Pipette 2nd	Certification	B	0.006000		

Concentrations (high: 20.0 μg/kg and low: 5.0 μg/kg) (Tables 4 and 5). All tests were performed in triplicate. Recovery rates were found to be 70.0–120.0%, which indicate that the methods are highly accurate. Based on the validation data discussed so far, we conclude that the developed method shows excellent linearity, sensitivity, selectivity, accuracy, and precision for the simultaneous analysis of pesticide residues.
Comparing the LC-MS/MS and GC-MS/MS results

The recovery rates of 34 pesticide residues were obtained for cross-checking purposes (Figure 1). The recovery rates of dimethylinphos and tolclofos-methyl by LC and prochloraz and penoxanil by GC were relatively low. However, the test method discussed above is considered appropriate because all 34 ingredients showed recovery rates of between 70% and 120%, which meets the guidelines of the International Food Standards Committee (according to which recovery rates should be 60–120%).[25,26]
In addition, in order to compare the analysis results obtained using the two devices, measurement uncertainty based on a 20 µg/kg addition recovery-rate experiment was evaluated, the results of which are shown in Figure 2. There are three main parameters to consider, namely sample amount, final total amount, and calibration curve concentration. Since the same sample pretreatment method was used, the sample volume and final total volume uncertainty are the same in each method, with differences between measurement uncertainties arising from calibration curve concentration uncertainties, as shown in Tables S1, S2 and S3. After each relative standard uncertainty was calculated to obtain the relative composite standard uncertainty, the expanded uncertainty was calculated at the 95% confidence level by multiplying the final result of each test method by the k value. The total final results and expanded uncertainties are summarized in Table S4. Expanded uncertainties of 5.2 – 15.1%, based
Monitoring
Pesticide residues in 40 sweet pepper samples purchased from the market (Busan) were cross-checked using the analysis method described above. Out of 247 pesticide residues, 29, including acetamiprid and azoxystrobin, were found to be chief residues. An average of 4.5, a minimum of 0, and a maximum of 11 pesticide residues were detected in the 40 sweet pepper samples, with the total amounts of the detected components ranging between 0.028 and 13.075 ppm. Fluopyram showed the lowest detection frequency and content, at 0.028 ppm, which was qualified and quantified through cross-checking in this study. In addition, sample number 37 contained 0.01 ppm of chlorantraniliprole, the lowest concentration in a single-component sample. Importantly, we efficiently and accurately detected chlorantraniliprole through cross-checking. Because cross-checking enables the quantification and qualification of residues frequently found in sweet pepper, such as flonicamid and spirotetramat, the developed experimental method can be used for the simultaneous multi-component analysis of pesticide residues in sweet pepper.

Conclusion
This study cross-checked pesticide residues generally found in sweet pepper through simultaneous analysis and by comparison using LC-MS/MS and GC-MS/MS. The sweet pepper samples were pretreated using the QuEChERS method. A total of 247 pesticide residues were analyzed by LC-MS/MS, GC-MS/MS. In addition, 34 pesticide residues were qualitatively and quantitatively identified, and analyzed to determine their recovery rates and measurement uncertainties. The results reveal that the simultaneous analysis method can effectively detect pesticide residues. Analysis of the 34 residues revealed recovery rates that differ, depending on the device type, although the data are still within the appropriate range. Hence, the cross-checking analysis method can be used to effectively detect a number of pesticides. We expect that pesticide-residues analysis accuracy will be improved by applying the method to a wider range of pesticides.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References
[1] Lechenet, M.; Dessaint, F.; Py, G.; Makowski, D.; Munier-Jolain, N. Reducing Pesticide Use while Preserving Crop Productivity and Profitability on Arable Farms. Nature Plants. 2017, 3(3), 17008. DOI: 10.1038/nplants.2017.8.
[2] Hernandez, A. F.; Parron, T.; Tsatsakis, A. M.; Requena, M.; Alarcon, R.; Lopez-Guarnido, O. Toxic Effects of Pesticide Mixtures at a Molecular Level: Their Relevance to Human Health. Toxicology. 2013, 307, 136–145. DOI: 10.1016/j.tox.2012.06.009.
[3] Hernández, A. F.; Gil, F.; Pla, A.; Gómez, A.; Lozano, D.; Parrón, T.; Requena, M., and Alarcón, R. Emerging Human Health Concerns from Chronic Exposure to Pesticide Mixture. In Toxicology Letters, 205S, 2011; pp S2–S18. https://doi.org/10.1016/j.toxlet.2011.05.020

[4] Damalas, C. A.; Koutoulous, S. D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics, 2016, 4(1). DOI: 10.3390/toxics4010001.

[5] Kim, J. S.; Ahn, J.; Lee, S. J.; Moon, B.; Ha, T. Y.; Kim, S. Phytochemicals and Antioxidant Activity of Fruits and Leaves of Paprika (Capsicum Annuum L. Var. Special) Cultivated in Korea. J. Food Sci. 2011, 76(2), C193–C198. DOI: 10.1111/j.1750-3841.2010.01891.x.

[6] González-Curbelo, M. Á.; Socas-Rodríguez, B.; Herrera-Herrera, A. V.; González-Sálam, J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Á. Evolution and Applications of the QuEChERS Method. TrAC Trends Anal. Chem. 2015, 71, 169–185. DOI: 10.1016/j.trac.2015.04.012.

[7] Guan, H.; Brewer, W. E.; Garriss, S. T.; Morgan, S. L. Disposable Pipette Extraction for the Analysis of Pesticides in Fruit and Vegetables Using Gas Chromatography/mass Spectrometry. J. Chromatogr. A. 2010, 1217(12), 1867–1874. DOI: 10.1016/j.jchroma.2010.01.047.

[8] Ju, O. J.; Kwon, H. Y.; Park, B. J.; Kim, C. S.; Jin, Y. D.; Lee, J. B.; Im, G. J. Analysis of 236 Pesticides in Apple for Validation of Multiresidue Method Using QuEChERS Sample Preparation and PTV-GC/TOFMS Analysis. The Korean Journal of Pesticide Science. 2011, 15, 401–416.

[9] Kwon, H. Y.; Kim, C. S.; Park, B. J.; Jin, Y. D.; Son, K.; Hong, S. M.; Im, G. J. Multiresidue Analysis of 240 Pesticides in Apple and Lettuce by QuEChERS Sample Preparation and HPLC-MS/MS Analysis. The Korean Journal of Pesticide Science. 2011, 15, 417–433.

[10] Koessukwiwat, U.; Lehotay, S. J.; Mastovska, K.; Dorweiler, K. J.; Leepapitboon, N. Extension of the QuEChERS Method for Pesticide Residues in Cereals to Flaxseeds, Peanuts, and Doughs†. J. Agric. Food Chem. 2010, 58(10), 5950–5958. DOI: 10.1021/jf102988b.

[11] Seo, E. K.; Kim, T. K.; Hong, S. M.; Kwon, H. Y.; Kwon, J. H.; Son, K.; Kim, D. H.; Analysis of Systemic Pesticide Imidacloprid and Its Metabolites in Pepper Using QuEChERS and LC-MS/MS. The Korean Journal of Pesticide Science. 2013, 174, 264–270. DOI: 10.7585/kips.2013.17.4.264.

[12] Hernandez, A. F.; Parron, T.; Tsatsakis, A. M.; Requena, M.; Alarcon, R.; & Lopez-Guarnido, O. (2013). Toxic Effects of Pesticide Mixtures at a Molecular Level: Their Relevance to Human Health. Toxicology, 307, 136–145.10.1016/j.tox.2012.06.009

[13] Chamkasem, N.; Ollis, L. W.; Harmon, T.; Lee, S.; Mercer, G. Analysis of 136 Pesticides in Avocado Using a Modified QuEChERS Method with LC-MS/MS and GC-MS/MS. J. Agric. Food Chem. 2013, 61(10), 2315–2329. DOI: 10.1021/jf304191c.

[14] Sherma, J.; Review of Advances in the Thin Layer Chromatography of Pesticides: 2008–2010. Journal of Environmenetal Scienceand Health, Part B. 2011, 467, 557–568. DOI:10.1080/03601234.2011.586589.

[15] Cai, T.; Zhang, L.; Wang, H.; Zhang, J.; Guo, Y. Assisted Inhibition Effect of Acetylcholinesterase with N-octyl Phosphonic Acid and Application in High Sensitive Detection of Organophosphorous Pesticides by Matrix-assisted Lasers Desorption/ionization Fourier Transform Mass Spectrometry. Anal. Chim. Acta. 2011, 706(2), 291–296. DOI: 10.1016/j.aca.2011.08.035.

[16] Lu, D.; Yang, Y.; Luo, X.; Sun, C. A Fast and Easy GC-MS/MS Method for Simultaneous Analysis of 73 Pesticide Residues in Vegetables and Fruits. Anal. Methods. 2013, 5(7), 1721–1732. DOI: 10.1039/C3AY26425D.

[17] Sadowska-Rociek, A.; Surma, M.; Cieslik, E. Application of QuEChERS Method for Simultaneous Determination of Pesticide Residues and PAHs in Fresh Herbs. Bull. Environ. Contam. Toxicol. 2013, 90(4), 508–513. DOI: 10.1007/s00128-012-0951-x.

[18] Zhang, F.; Yu, C.; Wang, W.; Fan, R.; Zhang, Z.; Guo, Y. Rapid Simultaneous Screening and Identification of Multiple Pesticide Residues in Vegetables. Anal. Chem. 2012, 757, 39–47. DOI: 10.1021/acs.analchem.2a00484.

[19] Lee, S. W.; Choi, J. H.; Cho, S. K.; Yu, H. A.; Abd El-Aty, A. M.; Shim, J. H. Development of a New QuEChERS Method Based on Dry Ice for the Determination of 168 Pesticides in Paprika Using Tandem Mass Spectrometry. J. Chromatogr. A. 2011, 1218(28), 4366–4377. DOI: 10.1016/j.chroma.2011.05.021.

[20] European Commission. (2017). Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. 21–22 November 2017. Rev.0

[21] Branch, Sarah K.; (2005). Guidelines from the International Conference on Harmonisation (ICH). Journal of Pharmaceutical and Biomedical Analysis, 38(5), 798–805.10.1016/j.jpba.2005.02.037.

[22] Thompson, M.; Ellison, S. L.; Wood, R. (2002). Harmonized Guidelines for Single-laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure and Applied Chemistry, 74, 835–855.10.1351/pac200274050835.

[23] EURACHEM. Quantifying Uncertainty in Analytical Measurement 3rd; EURACHEM: London, UK, 2012.

[24] ISO. Uncertainty of Measurement – Part 3: Guide to the Expression of Uncertainty in Measurement (GUM: 1995); Geneva: Switzerland, 2008.

[25] Codex Alimentarius Commission. (2003). Guidelines on Good Laboratory Practice in Residue Analysis. PP. 25 CAC/GL 40-1993, Rev.1.

[26] Codex Alimentarius Commission. Guidelines on Measurement Uncertainty. In Pp. 8 Cac/gl 54-2004, 2017.