Why Does the Severity of COVID-19 Differ With Age?
Understanding the Mechanisms Underlying the Age Gradient in Outcome Following SARS-CoV-2 Infection

Petra Zimmermann, MD, PhD*†‡§ and Nigel Curtis, FRCPCH, PhD‡§¶

Although there are many hypotheses for the age-related difference in the severity of COVID-19, differences in innate, adaptive and heterologous immunity, together with differences in endothelial and clotting function, are the most likely mechanisms underlying the marked age gradient. Children have a faster and stronger innate immune response to SARS-CoV-2, especially in the nasal mucosa, which rapidly controls the virus. In contrast, adults can have an overactive, dysregulated and less effective innate response that leads to uncontrolled pro-inflammatory cytokine production and tissue injury. More recent exposure to other viruses and routine vaccines in children might be associated with protective cross-reactive antibodies and T cells against SARS-CoV-2.

There is less evidence to support other mechanisms that have been proposed to explain the age-related difference in outcome following SARS-CoV-2 infection, including pre-existing immunity from exposure to common circulating coronaviruses, differences in the distribution and expression of the entry receptors ACE2 and TMPRSS2, and difference in viral load.

Key Words: 2019 novel coronavirus, ACE2, antibodies, coagulation, endothelium, heterologous, immune system, outcome, pre-existing immunity, severity

(Pediatr Infect Dis J 2022;41:e36–e45)

Compared with adults, and in contrast to other respiratory viruses, children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), generally are asymptomatic or have mild disease with a significantly lower hospitalization rate and mortality.1,2

We have previously reviewed hypotheses for the age-related difference in the severity of coronavirus disease 2019 (COVID-19), separating them into factors that put adults at higher risk and those that protect children.4 Since then, more evidence has become available to support some of the hypotheses and make others less likely.

Here, we provide an updated review of the mechanisms that might explain the marked age gradient in the severity of COVID-19 (Table 1 and Figure 1).

Accepted for publication November 3, 2021
From the *Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland, †Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland, ‡Department of Paediatrics, The University of Melbourne, Parkville, Australia, §Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, Australia, and ¶Infectious Diseases Research Group, Murdoch Children’s Research Institute, Melbourne, Australia. Disclosures: The authors have no conflicts of interest to disclose.

P.Z. drafted the initial manuscript. N.C. contributed to the writing and critical revision of the manuscript, and both authors approved the final manuscript as submitted.

Address for correspondence: Petra Zimmermann, MD, PhD, Faculty of Science and Medicine, University of Fribourg, Route des Armes 41, 1700 Fribourg, Switzerland. E-mail: petra.zimmermann@unifr.ch

MECHANISMS WHICH ARE MORE LIKELY TO CONTRIBUTE TO THE AGE-RELATED DIFFERENCE IN SEVERITY OF COVID-19

Differences in Innate Immunity
Mucosal Innate Immunity

The control of SARS-CoV-2 requires an optimal early innate immune response. Children have a more robust innate immune response in their nasal mucosa when infected with SARS-CoV-2.9 Melanoma differentiation-associated protein 5 (MDA5) has been identified as the major pattern recognition receptor for SARS-CoV-2 on epithelial cells.10,11 Retinoic acid-inducible gene (RIG)-I plays an additional minor role.10,12 Children have a stronger innate immune response to SARS-CoV-2 by way of a higher basal expression of MDA5 and RIG-I on nasal epithelial cells, macrophages and dendritic cells.9 The activation of MDA5 and RIG-I leads to the activation of interferon regulatory factor (IRF) 3 which subsequently results in production of interferon (IFN)-alpha.13 Although the expression of these pattern recognition receptors is similar in children and adults after five days of infection, an early response is necessary to quickly control SARS-CoV-2.

Interferon (IFN)-alpha and -gamma are important components of the early innate immune response against SARS-CoV-2.14,15 Children infected with SARS-CoV-2 have a higher expression of genes associated with IFN and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome signaling in their nasal epithelial cells, particularly in ciliated cells.9,16 The expression of these genes is associated with strong antiviral activity against SARS-CoV-2.17,18 It has been hypothesized that, in contrast to infections with other respiratory viruses such as respiratory syncytial virus or influenza, there is a narrow window of opportunity for cells to express IFNs before SARS-CoV-2 shuts off the antiviral system.9,15,19,20

Compared with adults, healthy children also have much higher numbers of immune cells in their upper respiratory tract, especially cells of the innate immune system, such as neutrophils and natural killer cells.21,22 In adults, infection with SARS-CoV-2 leads to a large influx of immune cells to the upper respiratory tract that is not observed in children.9 However, SARS-CoV-2-infected children have a more pronounced activation of CCL3 and C-X-C chemokine receptor (CXCR) 1/2 expression in neutrophils in the upper respiratory tract.9 Furthermore, children have higher levels of certain cytokines and chemokines (specifically, IFN-alpha 2, IFN-gamma, C-X-C motif chemokine ligand 10 (CXCL10), interleukin (IL)-1beta, IL-8 and IL-17) in their nasal fluid.16,24

Systemic Innate Immunity

In comparison to children with other common respiratory viral infections, those with COVID-19 have a greater change in innate and T cell-mediated immune responses over time.25 Children with SARS-CoV-2 infection show a marked reduction in myeloid cells.26 They have low levels of dendritic cells, natural killer cells and classical (CD14+CD16-) intermediate (CD14+CD16+) and non-classical (CD14+CD16+) monocytes in blood.26 Adults with COVID-19, especially severe COVID-19, also have low levels of dendritic and
TABLE 1. Summary of Mechanisms Proposed to Contribute to the Age-Related Difference in the Severity of COVID-19

Mechanisms with the strongest supporting evidence to date	Differences in innate immunity	Differences in adaptive immunity	3. Heterologous immunity and off-target effects of vaccines	Differences in the endothelium and clotting function	Mechanisms with less supporting evidence to date
In response to SARS-CoV-2, children have:	• a stronger mucosal innate immune response, which helps clear the virus\(^a,4,25,20,24\)	• higher lymphocyte counts with a higher proportion of naïve T cells, T regulatory cells and T follicular helper cells\(^{30,32}\)	• more recently been vaccinated with BCG, MMR, Tdap and other vaccines which might offer indirect protection against COVID-19\(^{4,38,70,75,76,86,97}\)	• less prone to endothelial damage and abnormal clotting\(^{128}\)	1. Pre-existing immunity from exposure to commonly circulating human coronaviruses
• lower levels of neutrophils, which have been associated with microangiopathy and thrombosis\(^{27,29}\)	• differences in cytokines levels with a lower tendency to develop a cytokine storm\(^{26,29,32,35}\)	• frequent recurrent or concurrent infections which might induce an enhanced state of activation of the immune system\(^{101}\)	2. ACE2 and TMPRSS2	2. ACE2 and TMPRSS2	
• differences in cytokines levels with a lower tendency to develop a cytokine storm\(^{26,29,32,35}\)	3. A stronger mucosal innate immune response, which helps clear the virus\(^a,4,25,20,24\)	• higher lymphocyte counts with a higher proportion of naïve T cells, T regulatory cells and T follicular helper cells\(^{30,32}\)	• higher lymphocyte counts with a higher proportion of naïve T cells, T regulatory cells and T follicular helper cells\(^{30,32}\)	• differences in cytokines levels with a lower tendency to develop a cytokine storm\(^{26,29,32,35}\)	

Mechanisms with the weakest supporting evidence to date

1. **Pre-existing immunity from exposure to commonly circulating human coronaviruses**
 - Although antibodies against HCoVs can be cross-reactive, they might not be cross-neutralizing\(^{20,25,49,58,115–118}\)
 - Role of cross-reactive T cells in relation to SARS-CoV-2 also remains unclear\(^{21,122,126}\)
 - There is conflicting evidence on whether children or adults have higher levels of antibodies and T cells cross-reactive between HCoVs and SARS-CoV-2\(^{25,118,129–130}\)

2. **ACE2 and TMPRSS2**
 - There is conflicting evidence on whether children have lower numbers and different distribution of ACE2 and TMPRSS2 across body sites\(^{2,9,23,24,57,49,106–108}\)
 - ACE2-angiotensin system is affected by many factors other than age\(^{16,40,137,160,166–170}\)
 - ACE2-angiotensin system is complex and also involved in regulating immune responses\(^{171}\)

3. **Viral load**
 - Children and adults have similar viral loads and shedding from the respiratory tract\(^{24,20,101}\)
 - Children and adults have similar viral loads and shedding from the respiratory tract\(^{24,20,101}\)

Differences in Adaptive Immunity

Mucosal Adaptive Immunity

SARS-CoV-2-specific immunoglobulin (Ig) A and IgG levels in nasal fluid have mostly been reported to be similar in children and adults.\(^{16}\) However, one study in adults reported that specific IgA levels in nasal fluid were inversely correlated with age.\(^{4,38}\) A small study showed that children can have IgA in their saliva without having had a positive respiratory SARS-CoV-2 polymerase chain reaction, which raises the possibility that a local immune response might prevent the establishment of an infection.\(^{45}\) One hypothesis for this is that individuals might be protected from SARS-CoV-2 due to pre-existing immunity to commonly circulating human coronaviruses (HCoVs).\(^{46}\) Adding to the evidence that mucosal immunity is important for controlling SARS-CoV-2 are the results from a study showing that adults who remain seronegative after mild COVID-19 have IgA antibodies with neutralizing activity in nasal fluid and saliva.\(^{44}\)

Systemic Adaptive Immunity

In relation to adaptive immunity, rapid and coordinated appearance of SARS-CoV-2-specific CD4+ and CD8+ T cells in blood is associated with faster clearance of SARS-CoV-2 and milder COVID-19.\(^{4,38}\) Children with COVID-19 have higher lymphocyte counts, with a higher proportion of innate lymphoid and non-clonally expanded naïve T cells in the blood.\(^{5,49}\) Children also have higher numbers of T follicular helper cells, which are important for an early antibody response.\(^{5,49}\) Furthermore, they have lower T cell responses to S and ORF1 proteins and reduced CD4+ T cell effector memory.\(^{46,35,49,50}\) Results of T cell responses against N and spike proteins are conflicting with some studies showing lower levels in children\(^{36}\) and others higher levels.\(^{16,35,49}\)

Adults infected with SARS-CoV-2 typically have a decreased lymphocyte count, with reduced numbers of naïve CD4+ and CD8+, T regulatory and memory T cells.\(^{31–35}\) One study reported that acute and memory SARS-CoV-2-specific CD4+ cells increase with age.\(^{40}\) T cell exhaustion with impaired effector activity has been observed in adults with severe COVID-19.\(^{24,34}\) Poor and uncoordinated T cell responses, in addition to a scarcity of naïve T cells have been found in elderly adults and are associated with poor outcomes from COVID-19.\(^{24,54,55}\)

\(^{a}\) ACE2, angiotensin-converting enzyme 2; BCG, Bacillus Calmette-Guerin; COVID-19, coronavirus disease 2019; HCoVs, human coronaviruses; MMR, measles-mumps-rubella; ORF, open reading frame; SARS-CoV-2, severe acute respiratory tract coronavirus 2; Tdap, tetanus-diphtheria-pertussis; TMPRSS2, transmembrane serine protease 2.
In children, during COVID-19, genes associated with B cell activation are expressed earlier. In relation to differences in levels of SARS-CoV-2-specific antibodies between children and adults, the evidence is conflicting. An early increase of IgA, IgM and, to a lesser extent IgG, is associated with asymptomatic and mild SARS-CoV-2 infection. An early rise in antibodies is observed in children. One study reported that infants have lower serum SARS-CoV-2-specific IgG levels compared with older children, another that children have lower serum SARS-CoV-2 neutralizing antibody levels compared with adults and one that adults with severe COVID-19 have higher levels of specific IgA antibodies. Another study reported children were less likely than adults to seroconvert to SARS-CoV-2. However, there are also studies which report higher levels of specific IgG in children compared with adults.

Figure 1. Mechanisms proposed to contribute to the age-related difference in the severity of COVID-19.

Heterologous Immunity and Off-Target Effects of Vaccines

Heterologous immunity describes immune responses generated by an antigen providing immunity against other (unrelated) pathogens. This includes innate and adaptive immune responses and can result from natural infection or vaccination. COVID-19 severity is reported to be lower in individuals who have been vaccinated with measles-mumps-rubella (MMR) or tetanus-diphtheria-pertussis (Tdap) vaccine. As children have generally been more recently vaccinated with these vaccines, this might contribute to the age-related difference in COVID-19 severity.

MMR vaccines contain attenuated enveloped ribonucleic acid (RNA) viruses that have glycoprotein spikes, similar to SARS-CoV-2 and also share other sequence homologies. Cross-reactive epitopes have also been found between antigens included in Tdap and SARS-CoV-2. It has therefore been hypothesized that MMR and Tdap vaccination might lead to cross-protective antibodies and T cells that protect against COVID-19. In one small prospective study, MMR-vaccinated participants who later developed COVID-19, all had a mild course. Another, much larger case-control study, showed that MMR vaccination might have a protective effect against COVID-19 in males but not females. A case-control study in children also showed that children vaccinated with a measles-containing vaccine had lower infection rates with SARS-CoV-2 and, if infected, had milder symptoms. Another study found that the outcome of COVID-19 inversely correlated with levels of rubella-specific antibodies and another with levels of mumps-specific antibodies. An interim analysis of an ongoing randomized control trial (RCT) of MMR to reduce SARS-CoV-2 infection and severity in health care workers reported that MMR reduces the risk of symptomatic infection.

A second RCT to investigate the influence of MMR on the severity of COVID-19 is also ongoing. In individuals after SARS-CoV-2 infection or after COVID-19 vaccination, enhanced in vitro T cell responses to components of the MMR and Tdap vaccine have been found. Identical
T cell receptor clonotypes can be found on T cells activated by SARS-CoV-2, Tdap or MMR antigens, consistent with heterologous immunity. Another study reports that antibodies induced by inactivated poliovirus vaccination bind the RNA-dependent RNA polymerase of SARS-CoV-2 and inhibit infection of Vero cells in vitro.

Another vaccine proposed to provide beneficial effects against COVID-19 is Bacillus Calmette-Guérin (BCG). Ecologic studies claim to identify an association between countries’ BCG vaccination policy and their COVID-19 rates and severity. But such studies are subject to confounding by timing of the study in relation to the epidemic in each country, lockdown and other mitigation measures, testing and reporting rates, and are also limited by inaccurate BCG vaccination status reporting. Furthermore, it is unlikely that the beneficial effects of BCG vaccination last for many years as they are likely abrogated by the impact of intervening vaccines and other factors that also modulate the immune system. Consistent with this, some ecologic studies and retrospective case-control studies have not found any protection against COVID-19 from BCG given many decades earlier. One RCT in the elderly reported that BCG reduced the incidence and severity of COVID-19. Larger RCTs of BCG to reduce the severity of COVID-19 are ongoing.

Children infected with SARS-CoV-2 often have co-infections with other viruses (including commonly circulating HCoVs). Frequent recurrent or concurrent infections could induce an enhanced state of activation of the immune system, including epigenetic changes inducing trained immunity, making it more effective in clearing SARS-CoV-2.

Differences in the Endothelium and Clotting Function

Widespread endothelial injury and coagulation activation by SARS-CoV-2 is a key feature of severe COVID-19. This is associated with thromboembolisms, such as deep vein thrombosis and pulmonary emboli, as well as arterial thrombosis or microvascular thrombosis. When SARS-CoV-2 binds to the ACE2 receptor, the expression of the receptor is downregulated, resulting in increased levels of angiotensin II, which is associated with inflammation, endothelial dysfunction and a procoagulant state. Endothelial damage leads to the release of plasminogen activator inhibitor 1 and to the activation of tissue factor, which leads to further inflammation and induction of the thrombotic cascade. This increases endothelial damage and platelet activation. Platelets express both ACE2 and TMPRSS2 and can therefore be directly activated by SARS-CoV-2.

The endothelium in children is less “pre-damaged” compared with adults and the coagulation system also differs, which makes children less prone to abnormal clotting. In adults with COVID-19, the overall rate of venous thrombosis is approximately 14 to 20%, and of arterial thrombosis 2%. Higher rates are observed in adults admitted to intensive care. Thrombotic coagulopathy has been observed in SARS-CoV-2-infected children of all age groups, often occurring during hospitalization and despite thromboprophylaxis, and is associated with a high mortality of up to 28%. Although the incidence is less well described in children, it is much lower than in adults. One study reports rates of 2% in children with COVID-19 and 7% in children with PIMS-TS. Children above the age of 12 years, those with cancer or a central venous catheter are at higher risk for thromboembolic events. Of note, however, thromboembolic events have also been observed in children with asymptomatic SARS-CoV-2 infections.

MECHANISMS WHICH ARE LESS LIKELY TO CONTRIBUTE TO THE AGE-RELATED DIFFERENCES IN SEVERITY OF COVID-19

Pre-existing Immunity from Commonly Circulating Human Coronaviruses

Commonly circulating human coronaviruses (HCoV-229E, -HKU1, -NL63 and -OC43) are responsible for approximately 6 to 8% of acute respiratory tract infections and most individuals develop immunity to HCoVs during childhood. Individuals who have not been infected with SARS-CoV-2 can therefore have cross-reactive, neutralizing and non-neutralizing antibodies, and T cells against the S protein (up to 5%), N protein (up to 24%) and ORF regions of SARS-CoV-2. Seroprevalence depends on geographical location.

Despite seroconversion at an early age, re-infections with HCoVs later in life are common. There is conflicting evidence on whether children or adults have higher levels of cross-reactive antibodies and T cells. Some studies report that levels of neutralizing and non-neutralizing cross-reactive antibodies, as well as cross-reactive T cells, increase with age, while other studies report higher levels of these antibodies in SARS-CoV-2-uninfected children and adolescents or no differences between age groups. One study found higher cross-reactive IgA and IgG levels in healthy elderly adults and higher IgM levels in healthy children, suggesting that children have a less-experienced but more polyreactive humoral immunity.

Delayed production of neutralizing antibodies during a SARS-CoV-2 infection is associated with increased mortality. Antibodies against commonly circulating HCoVs are boosted during a SARS-CoV-2 infection. Importantly, however, although antibodies against HCoVs can be cross-reactive, they do not necessarily protect against SARS-CoV-2, as they are not necessarily cross-neutralizing. One study, however, reported that a recent documented history of a common cold caused by HCoV is associated with lower rate of admission to intensive care unit and lower mortality from COVID-19. Another study showed a correlation between pre-existing antibodies against HCoV-OC43 and COVID-19 severity, but not between antibodies against HCoV-NL63, -229E and -HKU1, indicating that cross-protection might differ between different HCoVs and SARS-CoV-2. Consistent with this, one study found higher antibody levels against HCoV-229E but not -OC43, and higher levels of cross-reactive antibodies in children compared with adults. SARS-CoV-2 and HCoV-NL63 both use ACE2 as an entry receptor. However, sequencing data shows SARS-CoV-2 is more closely related to HCoV-OC43 and -HKU1 than -NL63 and -229E. There is a region coding for 11 amino acids that is highly conserved between SARS-CoV-2 and all four HCoVs, which overlaps with the S2 fusion peptide in SARS-CoV-2. It has been suggested that cross-reactive antibodies against S2 might provide neutralizing activity and protection against SARS-CoV-2. One study reported that pre-existing S2-specific antibodies against HCoV-OC43 are associated with mild COVID-19. These antibodies are more frequently present in children and adolescents. Another study found cross-reactive antibodies against SARS-CoV-2 ORF-1 in pre-pandemic samples, but not against protein S or N. The presence of these antibodies was associated with milder COVID-19. As discussed above, higher antibody levels against ORF (IFN antagonists) are found in children with COVID-19 compared with adults. This could indicate that antibodies against ORF play a role in controlling SARS-CoV-2.
COVID-19 through antibody-dependent enhancement (ADE). In ADE, pre-existing non-neutralizing antibodies can bind to virions, which can then more easily enter and replicate in macrophages and granulocytic cells, leading to higher viral loads. To date, there is scant evidence for ADE in COVID-19.

T cells that are cross-reactive between commonly circulating HCoVs and SARS-CoV-2 have been identified in a number of studies. In one study more than half of participants with no known exposure to SARS-CoV-2 had T cell activity against SARS-CoV-2. There is a correlation between levels of specific IgA and IgG and specific T cell responses. Few studies have compared T cell immunity against HCoVs in different age groups, but one study reported lower levels of T cells against HCoVs in older adults. However, as with cross-reactive antibodies, the role of cross-reactive T cells in relation to SARS-CoV-2 remains unclear.

It has been postulated that different distribution of ACE2 and TMPRSS2 across body sites between children and adults, as well as lower affinity of ACE2 for SARS-CoV-2 in children, contribute to the age-related differences in the severity of COVID-19. However, the many studies on this topic report conflicting results. Some studies report lower expression of ACE2 and TMPRSS2 in the nasal epithelium in children compared with adults, but others did not find age-related differences. One study reported that the expression of neuropilin-1 (NRP1), a protein that promotes virus interaction with ACE2, is lower in the nasal epithelium of children. A study in adults showed that ACE2 and TMPRSS2 in the oral mucosa are higher in elderly compared with young adults. Conflicting results have also been reported for the expression of ACE2 and TMPRSS2 in lungs. Some studies report that the expression of ACE2 and TMPRSS2 in lungs increases with age, while others report a higher expression of ACE2 in lungs in children compared with elderly adults or no difference between the age groups.

Intestinal expression of TMPRSS2 and NRP1 has been reported to be similar between children and adults, while intestinal ACE2 expression might be higher in children, which might explain the higher frequency of gastrointestinal symptoms in this age group.

The conflicting results on the expression of ACE2 and TMPRSS2 reflect the fact that the ACE2-angiotensin system is complex. Apart from age, the ACE2-angiotensin system is affected by many other factors, including genetics, sex, smoking, diet, vitamin D, body-mass index, drugs and comorbidities including diabetes mellitus, chronic obstructive pulmonary disease and hypertension. ACE2 is not only an entry receptor for SARS-CoV-2 but also plays an important role in regulating immune responses, especially in the lungs. After SARS-CoV-2 enters cells, ACE2 receptors are down-regulated, which prevents them from converting angiotensin II to angiotensin (1–7). The consequent excess of angiotensin II might be partly responsible for the organ injury in COVID-19, as serum levels of angiotensin II are significantly elevated in SARS-CoV-2-infected patients and there is a positive correlation with viral load and lung damage.

Viral Load

There is little evidence to support the hypothesis that viral load is responsible for age-related differences in COVID-19 severity. Viral load in the respiratory tract has been associated with transmission risk, disease severity and mortality of COVID-19. Children and adults are mostly reported to have similar viral loads and shedding from the respiratory tract. However, one study found significantly greater viral loads in nasopharyngeal samples from children less than 5 years of age compared with older children or adults, and there are also studies which report lower viral loads in children compared with adults. An increased viral load in blood has also been associated with increased disease severity and increased cytokine storm.

CONCLUSIONS

There are many hypotheses for the age-related difference in the severity of COVID-19, and it is likely that the explanation for the marked age gradient is multifactorial. The proposed mechanisms that relate specifically to the pathogenesis of SARS-CoV-2 seem more likely to be important than those that would also apply to other viral infections for which a similar age gradient is not seen. The latter include, for example, differences in vitamin D and melatonin levels, and chronic cytomegalovirus infection.

Differences in innate, adaptive and heterologous immunity, as well as differences in the endothelial and clotting function, are the most likely mechanisms to explain the observed age gradient in COVID-19. Children have a faster and stronger immune reaction to SARS-CoV-2, especially in the nasal mucosa, involving IFN signaling and the NLRP3 inflammasome, which is able to rapidly control the virus. In contrast, adults can have an overactive, dysregulated and ineffective innate response leading to uncontrolled pro-inflammatory cytokine production and tissue injury. Children also have a higher proportion of innate lymphoid and non-clonally expanded naïve T cells in the blood, while the elderly can have poor and uncoordinated T cell responses with additional scarcity of naïve T cells. More recent MMR and other vaccines might lead to protective cross-reactive antibodies and T cells against SARS-CoV-2, as well as the nasal mucosa, involving IFN signaling and the NLRP3 inflammasome, which is able to rapidly control the virus.

It is likely that the age gradient in severity of COVID-19 is multifactorial. Apart from age, the ACE2-angiotensin system is complex. Differences in innate, adaptive and heterologous immunity, as well as differences in the endothelial and clotting function, are the most likely mechanisms to explain the observed age gradient in COVID-19. Children have a faster and stronger immune reaction to SARS-CoV-2, especially in the nasal mucosa, involving IFN signaling and the NLRP3 inflammasome, which is able to rapidly control the virus. In contrast, adults can have an overactive, dysregulated and ineffective innate response leading to uncontrolled pro-inflammatory cytokine production and tissue injury. Children also have a higher proportion of innate lymphoid and non-clonally expanded naïve T cells in the blood, while the elderly can have poor and uncoordinated T cell responses with additional scarcity of naïve T cells. More recent MMR and other vaccines might lead to protective cross-reactive antibodies and T cells against SARS-CoV-2, as well as the nasal mucosa, involving IFN signaling and the NLRP3 inflammasome, which is able to rapidly control the virus.

Mechanisms which are less likely to explain the age-related differences in COVID-19 are pre-existing immunity from commonly circulating HCoVs and differences in the expression of ACE2 and TMPRSS2, although evidence can be found both for and against these hypotheses. Studies investigating antibodies and T cells against HCoVs in children and adults also report conflicting results. Furthermore, it has not been proven that cross-reactivity between HCoVs and SARS-CoV-2 leads to cross-protection. Studies which have investigated the expression of ACE2 and TMPRSS2 in children and adults also report conflicting results. Moreover, the ACE2-angiotensin system is complex and influenced by many other internal and external factors other than age. Although viral load is associated with COVID-19 severity and mortality, viral load between children and adults is similar, meaning this is also unlikely to contribute to the age-related difference in severity of COVID-19.

It is likely that the age gradient in severity of COVID-19 results from both factors that protect children and factors that make
the elderly more susceptible. It is possible that following exposure to SARS-CoV-2, immunologic factors in children are important in preventing infection or controlling the virus after infection, and age-related differences in endothelial cell clotting function are more important in putting the elderly at risk of the complications of COVID-19 that lead to higher mortality.

SARS-CoV-2 is constantly mutating with new variants becoming better at evading host defenses; understanding the mechanisms underlying the age-related difference in the severity of COVID-19 will provide key insights into its pathogenesis and opportunities for prevention and treatment.

REFERENCES

1. Götzinger F, Santiago-García B, Noguera-Julián A, et al.; ptbnet COVID-19 Study Group. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health. 2020;4:653–661.

2. Zimmermann P, Curtis N. Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr Infect Dis J. 2020;39:355–368.

3. Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 2020;174:882–889.

4. Ludwigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;109:1088–1095.

5. Uka A, Buettcher M, Bernhard-Stirnemann S, et al. Factors associated with hospital and intensive care admission in paediatric SARS-CoV-2 infection: a prospective nationwide observational cohort study [published online ahead of print May 27, 2021]. Eur J Pediatr. doi: 10.21203/rs.3.rs-71179/v1.

6. Ward JL, Harwood R, Smith C, et al. Risk factors for severe clinical admission and death amongst children and young people admitted to hospital with COVID-19 and PIMS-TS in England during the first pandemic year. medRxiv. Preprint posted online July 5, 2021. doi: 10.1101/2021.07.01.21259785.

7. Zimmermann P, Curtis N. COVID-19 in children, pregnancy and neonates: a review of Epidemiologic and Clinical Features. Pediatr Infect Dis J. 2020;39:469–477.

8. Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections [published online ahead of print December 1, 2020]. Arch Dis Child. doi: 10.1136/archdischild-2020-330338.

9. Loske J, Röhmel J, Lukassen S, et al. Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children [published online ahead of print August 18, 2021]. Nat Biotechnol. doi: 10.1038/s41587-021-01037-9.

10. Rebbendene A, Valadão ALC, Tauciet M, et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol. 2021;95:e02415–e02420.

11. Yin X, Riva L, Pu Y, et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep. 2021;34:108628.

12. Thorne LG, Reuschl AK, Zuliani-Alvarez L, et al. SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation. EMBO J. 2021;e107826.

13. Sampao NG, Chauveau L, Hertzog J, et al. The RNA sensor MDA5 detects SARS-CoV-2 infection. Sci Rep. 2021;11:13638.

14. Park A, Iwasaki A. Type I and Type III Interferons - induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 2020;27:870–878.

15. Kim YM, Shin EC. Type I and III interferon responses in SARS-CoV-2 infection. Exp Mol Med. 2021;53:750–760.

16. Pierce CA, Sy S, Galen B, et al. Natural mucosal barriers and COVID-19 in children. JCI Insight. 2021;6:148694.

17. Pfänder S, Mar KB, Michalidis E, et al. LY4E impairs coronavirus fusion and confers immune control of viral disease. Nat Microbiol. 2020;5:1330–1339.

18. Martin-Sancho L, Lewinski MK, Pache L, et al. Functional landscape of SARS-CoV-2 cellular restriction. Mol Cell. 2021;81:2656–2668.e8.

19. Xia H, Shi PY. Antagonism of Type I interferon by severe acute respiratory syndrome coronavirus 2. J Interferon Cytokine Res. 2020;40:543–548.

20. Kumar A, Ishida R, Striets T, et al. SARS-CoV-2 nonstructural protein 1 inhibits the interferon response by causing depletion of key host signaling factors. J Virol. 2021;95:e00237-20.

21. Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol. 2020;202:193–209.

22. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036–1045.e9.

23. Winkley K, Banatvala J, Bradley T, et al. Immune cell residency in the nasal mucosa may partially explain respiratory disease severity across the age range. Sci Rep. 2021;11:15927.

24. Zhu Y, Chew KY, Karawita AC, et al. Pediatric nasal epithelial cells are less permissive to SARS-CoV-2 replication compared to adult cells. bioRxiv. Preprint posted online March 8, 2021. doi: 10.1101/2021.03.08.434300.

25. Neeland MR, Bannister S, Clifford V, et al. Children and adults in a household cohort study have robust longitudinal immune responses following SARS-CoV-2 infection or exposure. Front Immunol. 2021;12:741639.

26. Neeland MR, Bannister S, Clifford V, et al. Innate cell profiles during the acute and convalescent phase of SARS-CoV-2 infection in children. Nat Commun. 2021;12:1084.

27. Carsetti R, Zaffina S, Piano Mortari E, et al. Different innate and adaptive immune responses to SARS-CoV-2 infection of asymptomatic, mild, and severe cases. Front Immunol. 2021;11:61030.

28. Bordallo B, Bellas M, Cortez AF, et al. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60:50.

29. Bordoni V, Sacchi A, Cimini E, et al. An inflammatory profile correlates with decreased frequency of cytotoxic cells in Coronavirus Disease 2019. Clin Infect Dis. 2020;71:2272–2275.

30. Narasimhan PB, Marcovecchio P, Hamers AAJ, et al. Nonclassical monocytes in health and disease. Annu Rev Immunol. 2019;37:439–456.

31. Gruber CN, Patel RS, Trachtman R, et al. Mapping systemic inflammation and antibody responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell. 2020;183:982–995.e14.

32. Bartsch YC, Wang C, Zohar T, et al. Humoral signatures of protective and pathological SARS-CoV-2 infection in children. Nat Med. 2021;27:454–462.

33. Li H, Chen K, Liu M, et al. The profile of peripheral blood lymphocyte subsets and serum cytokines in children with 2019 novel coronavirus pneumonia. J Infect. 2020;81:115–120.

34. Jacques FH, Apecdael E. Immunopathogenesis of COVID-19: summary and possible interventions. Sci Transl Med. 2020;12:eabc5487.

35. Vono M, Huttner A, Lemelie S, et al. Robust innate immune responses to SARS-CoV-2 in children resolve faster than in adults without compromising adaptive immunity. Cell Rep. 2021;37:109773.

36. Goenka A, Halliday A, Gregorova M, et al. Young infants exhibit robust acute and convalescent phase of SARS-CoV-2 infection in children. Pediatr Infect Dis J. 2021;40:543–548.
65. Gil A, Kenney LL, Mishra R, et al. Vaccination and heterologous cross-reactive immune responses toward the common cold human Coronavirus and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Mini-Review and a Marine Study. Microorganisms. 2021;9:1643.

64. Balz K, Trassl L, Härtel V, et al. Virus-induced T-cell-mediated heterologous cross-reactivity. Cell Rep. 2021;34:108728.

63. Messina NL, Zimmermann P, Curtis N. The impact of vaccines on heterologous adaptive immunity and vaccine development. Front Immunol. 2021;12:934477–e03920.

62. Hachim A, Gu H, Kavian O, et al. The SARS-CoV-2 antibody landscape is lower in magnitude for structural proteins, diversified for accessory proteins with potentially important, but implications uncertain. Front Immunol. 2021;10:62–69.

61. Wang Y, Zhang L, Sang L, et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest. 2020;130:5235–5244.

60. Sananez I, Raiden SC, Algieri SC, et al. A poor and delayed anti-SARS-CoV-2 IgG response is associated to severe COVID-19 in children. EBioMedicine. 2021;72:103615.

59. Qin C, Zhou H, Lu H, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71:762–768.

58. Rydzynski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183:996–1012.e19.

57. Takahashi T, Ellingson MK, Wong P, et al.; Yale IMpACT Research Team. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588:315–320.

56. Sananez I, Raiden SC, Algieri SC, et al. A poor and delayed anti-SARS-CoV-2 IgG response is associated to severe COVID-19 in children. EBioMedicine. 2021;72:103615.

55. Márakasova E, Baranova A. MMR vaccine and COVID-19: measles protein homology may contribute to cross-reactivity or to complement activation and inflammation. mBio. 2021;12:e03447–e03420.

54. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183:996–1012.e19.

53. Islam N, Khunti K, Majedee A. COVID-19, seasonal influenza and measles: potential triple burden and the role of flu and MMR vaccines. J R Soc Med. 2020;113:485–486.

52. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potentially important, but implications uncertain. Front Immunol. 2020;11:3316–3321.

51. Compilamento BA, Engineer L, Jiang Y, et al. Poliovirus vaccination induces a homural immune response that underlie COVID-19 disease outcomes. Nature. 2020;588:315–320.

50. Márakasova E, Baranova A. MMR vaccine and COVID-19: measles protein homology may contribute to cross-reactivity or to complement activation and inflammation. mBio. 2021;12:e03447–e03420.

49. Fazolo T, Lima K, Fontoura JC, et al. Strong anti-viral responses in pediatric COVID-19 patients. Front Immunol. 2020;11:e02628–e02620.

48. Yoshida M, Worlock KB, Huang N, et al. The local and systemic response to SARS-CoV-2 infection in children and adults. medRxiv. Preprint posted online October 18, 2021. doi: 10.1101/2021.10.17.21265121.

47. Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells in children infected with Dampen septic inflammation associated with COVID-19 infection? medRxiv. Preprint posted online April 20, 2020. doi: 10.1101/2020.04.10.20053207.

46. Sealy RE, Hurwitz JL. Cross-reactive immune responses toward the common cold human Coronavirus and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Mini-Review and a Marine Study. Microorganisms. 2021;9:1643.

45. Tan AT, Lister M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 2021;34:108728.

44. Yoshida M, Worlock KB, Huang N, et al. The local and systemic response to SARS-CoV-2 infection in children and adults. medRxiv. Preprint posted online March 15, 2021. doi: 10.1101/2021.03.09.21253012.

43. Fazolo T, Lima K, Fontoura JC, et al. Strong anti-viral responses in pediatric COVID-19 patients in South Brazil. medRxiv. Preprint posted online April 16, 2021. doi: 10.1101/2021.04.13.21255139.

42. Cohen CA, Li APY, Hachim A, et al. SARS-CoV-2 specific T cell responses are lower in children and increase with age and time after infection. Nat Commun. 2021;12:4678.

41. Wu H, Zhu H, Yuan C, et al. Clinical and immune features of hospitalized pediatric patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China. JAMA Netw Open. 2020;3:e2010895.

40. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1–9.

39. Qin C, Zhou H, Lu H, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71:762–768.

38. Rydzynski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183:996–1012.e19.

37. Takahashi T, Ellingson MK, Wong P, et al.; Yale IMpACT Research Team. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020;588:315–320.

36. Sananez I, Raiden SC, Algieri SC, et al. A poor and delayed anti-SARS-CoV-2 IgG response is associated to severe COVID-19 in children. EBioMedicine. 2021;72:103615.

35. Toh ZQ, Anderson J, Mazarakis N, et al. Reduced seroconversion in children compared to adults with mild COVID-19. medRxiv. Preprint posted online October 18, 2021. doi: 10.1101/2021.10.17.21265121.

34. Roden K, Dalovich AC, Becker M, et al. Typically asymptomatic but with robust antibody formation: Children’s unique humoral immune response to SARS-CoV-2. medRxiv. Preprint posted online July 22, 2021. doi: 10.1101/2021.07.20.21260863.

33. Márquez-González H, López-Martínez B, Parra-Ortega J, et al. Analysis of the behaviour of Immunoglobulin G antibodies in children and adults co-convalescing from severe acute respiratory syndrome-Coronavirus-2 infection. Front Pediatr. 2021;9:671831.

32. García-Beltran WF, Lam EC, Astudillo MG, et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell. 2021;184:476–488.e11.

31. Wang Y, Zhang L, Sang L, et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest. 2020;130:5255–5254.

30. Hachim A, Gu H, Kavian O, et al. The SARS-CoV-2 antibody landscape is lower in magnitude for structural proteins, diversified for accessory proteins and stable long-term in children. medRxiv. Preprint posted online January 4, 2021. doi: 10.1101/2021.01.03.21249180.

29. Messina NL, Zimmermann P, Curtis N. The impact of vaccines on heterologous adaptive immunity. Clin Microbiol Infect. 2019;25:1484–1493.

28. Balse K, Trapil L, Hårtel V, et al. Virus-induced T cell-mediated heterologous immunity and vaccine development. Front Immunol. 2020;11:513.

27. Gil A, Kenney LL, Mishra R, et al. Vaccination and heterologous immunity: educating the immune system. Trans R Soc Trop Med Hyg. 2015;109:62–69.

26. Pollard AJ, Finn A, Curtis N. Non-specific effects of vaccines: plausible and potentially important, but implications uncertain. Arch Dis Child. 2017;102:1077–1081.

25. Mysore V, Cullere X, Settles ML, et al. Protective heterologous T cell immunity in COVID-19 induced by the trivalent MMR and Tdap vaccine antigens. Med (N Y). 2021;2:1050–1071.e7.

24. Netea MG, Giamarellos-Bourboulis EJ, Dominguez-Andrés J, et al. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181:969–977.

23. Marakasova E, Baranova A. MMR vaccine and COVID-19: measles protein homology may contribute to cross-reactivity or to complement activation and inflammation. mBio. 2021;12:e03447–e03420.
91. Sayed A, Challa KT, Arja S. Epidemiological differences of COVID-19 over the world. Cureus. 2020;12:e16316.
92. Fuku M, Kawaguchi K, Matsuurra H. Does TB vaccination reduce COVID-19 infection risk? Evidence from a regression discontinuity analysis. medRxiv. Preprint posted online April 22, 2020. doi: 10.1101/2020.04.13.20064287.
93. Hensel J, McAndrews KM, McGrail DJ, et al. Exercising caution in correlating COVID-19 incidence and mortality rates with BCG vaccination policies due to variable rates of SARS-CoV-2 testing. medRxiv. Preprint posted online April 11, 2020. doi: 10.1101/2020.04.08.20056051.
94. Hamiel U, Koezer E, Youngster I. SARS-CoV-2 rates in BCG-vaccinated and unvaccinated young adults. JAMA. 2020;323:2340–2341.
95. Pepin J, Labbé AC, Caragianan A, et al. Does BCG provide long-term protection against SARS-CoV-2 infection? A case-control study in Quebec, Canada [published online ahead of print August 11, 2020]. Vaccine. doi: 10.1016/j.vaccine.2021.08.019.
96. Tsilika M, Taks E, Dolianitis K, et al. Activate-2: a double-blind randomized trial of BCG vaccination against COVID-19 in individuals at risk. medRxiv. Preprint posted online May 24, 2021. doi: 10.1101/2021.05.20.21257520.
97. Pittet LF, Messina NL, Gardiner K, et al; BRACE trial Consortium Group. BCG vaccination to reduce the impact of COVID-19 in healthcare workers: Protocol for a randomised controlled trial (BRACE trial). BMJ Open. 2021;11:e205210.
98. ClinicalTrials.gov. BCG and COVID. Available at https://clinicaltrials.gov/ct2/results?cond=BCG+COVID. Accessed November 28, 2021.
99. Wu Q, Xing Y, Shi L, et al. Coinfection and other clinical characteristics of COVID-19 in children. Pediatrics. 2020;146:e20200961.
100. Kim D, Quinn J, Pinsky B, et al. Rates of Co-infection between SARS-CoV-2 and SARS, and uninfected controls. Nature. 2020;584:457–462.
101. Braun J, Loyal L, Frentsch M, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020;587:270–274.
102. Saletti G, Gerlach T, Jansen JM, et al. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Sci Rep. 2020;10:21447.
103. Meckiff BJ, Ramirez-Suástegui C, Fajardo V, et al. Immune surveillance and regulatory T cells to SARS-CoV-2-reactive CD4+ T cells in COVID-19. Cell. 2020;183:1340–1353.e16.
104. Isaacs D, Flowers D, Clarke JR, et al. Epidemiology of coronavirus respiratory infections. Arch Dis Child. 1983:58;500–503.
105. Monto AS, Lim SK. The Tecumseh study of respiratory illness. VI. Frequency of and relationship to breakthrough of coronavirus infection. J Infect Dis. 1974;129:271–276.
106. Gorse GJ, Donovan MM, Patel GB. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus-associated illnesses. J Med Virol. 2020;92:512–517.
107. Bacher P, Rosati E, Esser D, et al. Pre-existing T memory cell as a risk factor for severe 1 COVID-19 in the elderly. medRxiv. Preprint posted online September 18, 2020. doi: 10.1101/2020.09.15.20188896.
108. Ng KW, Faulkner N, Cornish GH, et al. Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020;370:1339–1343.
109. Selva KJ, van de Sandt CE, Lemke MM, et al. Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nat Commun. 2021;12:2037.
110. Lucas C, Klein J, Sundaram ME, et al.; Yale IMPACT Research Team. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nat Med. 2021;27:1178–1186.
111. Nguyen-Contant P, Embong AK, Kanagatiah P, et al. S protein-reactive IgG and memory B cell humoral production after human SARS-CoV-2 infection includes broad-reactivity to the S2 subunit. mbio. 2021;10:e01991-e01920.
112. Song G, He WT, Callaghan S, et al. Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat Commun. 2021;12:2938.
113. Ly H, Wu NC, Tsang OT, et al. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. Cell Rep. 2020;31:107725.
114. Mura M, Sterlin D, Anna F, et al. Pre-COVID-19 humoral immunity to common coronaviruses does not confer cross-protection against SARS-CoV-2. medRxiv. Preprint posted online August 15, 2020. doi: 10.1101/2020.08.14.20173393.
115. To KK, Cheng VC, Cai JP, et al. Seroprevalence of SARS-CoV-2 in Hong Kong and in residents evacuated from Wuhan province, China: a multicentre study. Lancet Microbe. 2020;1:e111–e118.
116. Huang AT, Garcia-Carreras B, Hitchings MDT, et al. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun. 2020;11:4704.
117. Khan S, Nakajima R, Jain A, et al. Analysis of serologic cross-reactivity between common human coronaviruses and SARS-CoV-2 using Coronavirus antigen microarray. bioRxiv. Preprint posted online March 25, 2020. doi: 10.1101/2020.03.24.006544.
118. Sagar M, Reiffer K, Rossi M, et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J Clin Invest. 2021;131:143380.
141. Guo L, Wang Y, Kang L, et al. Cross-reactive antibody against human coronavirus OC43 spike protein correlates with disease severity in COVID-19 patients: a retrospective cohort study. Emerg Microbes Infect. 2021;10:1162.

142. Tamminen K, Salminen M, Blazevic V. Seroconversion and SARS-CoV-2 cross-reactivity of endemic coronavirus OC43 and 229E antibodies in Finnish children and adults. Clin Immunol. 2021;229:108782.

143. Gussow AB, Auslander N, Faure G, et al. Genomic determinants of pathogenicity in SARS-CoV-2 and other human coronaviruses. Proc Natl Acad Sci USA. 2020;117:15193–15199.

144. Schulien I, Kemming J, Oberhardt V, et al. Characterization of pre-COVID-19 SARS-CoV-2 variants in children. Emerg Infect Dis. 2021;27:1336–1345.

145. Kaplon P, Wang C, Bartsch Y, et al. Early cross-coronavirus reactive signatures of protective humoral immunity against COVID-19. bioRxiv. Preprint posted online May 12, 2021. doi: 10.1101/2021.05.11.445609.

146. Tirado SM, Voon KJ. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003;16:69–86.

147. Beretta A, Cranage M, Zepito D. Is cross-reactive immunity triggering COVID-19 immunopathogenesis? Front Immunol. 2021;12:567710.

148. Peng Y, Mentzer AJ, Liu G, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020;52:971–977.e3.

149. Schultien I, Kemming J, Oberhardt V, et al. Characterization of pre-existing SARS-CoV-2-specific CD8+ T cells. Nat Med. 2021;27:78–85.

150. Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020;52:971–977.e3.

151. Nel A, Bilich T, Heitmann JS, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. 2021;22:74–85.

152. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11:11620.

153. Muese C, Lukeck MD, Eraslan G, et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. Preprint posted online April, 2020. doi: 10.1101/2020.04.19.0490524.

154. Li Y, Zhou W, Yang L, et al. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Rev. 2020;72:1083–1093.

155. Bunyavanchish, S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 gene polymorphism and inflammatory activity with essential hypertension in different gender: a case-control study. Medicine (Baltimore). 2018;97:e12917.

156. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV and SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Immunol. 2021;22:74–85.

157. Li X, Liu T, Su Z, et al. Viral load dynamics and disease severity in children infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;369:m1443.

158. Miller EH, Zuckier J, Castor D, et al. Pretest symptom duration and cycle threshold values for Severe Acute Respiratory Syndrome Coronavirus 2 reverse-transcription polymerase chain reaction predict Coronavirus Disease 2019 mortality. Open Forum Infect Dis. 2021;8:ofab003.

159. Pujadas E, Chaudhry F, McBride R, et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir Med. 2020;8:70.

160. Chen PZ, Bobrovitz N, Premji Z, et al. Transmission of COVID-19 immunopathogenesis? Viral Immunol. 2003;16:69–86.

161. Heald-Sargent T, Muller WJ, Zheng X, et al. Age-related differences in viral load across the respiratory tract, sex, and disease severity for adult and pediatric COVID-19. ELife. 2021;10:e65774.

162. Jones TC, Mühlemann B, Veith T, et al. An analysis of SARS-CoV-2 viral load distribution in the upper respiratory tract of children and adults with early acute COVID-19. JAMA. 2020;323:2427–2429.

163. Zheng S, Yan J, Yu F, et al. Viral load by patient age. medRxiv. Preprint posted online June 9, 2020. doi: 10.1101/2020.06.08.20125484.

164. Baggio S, L’Huillier AG, Yerly S, et al. Shedding SARS-CoV-2 via droplets and aerosols. ELife. 2021;10:e65774.

165. Medeiros MP, Larrasoaña-Verdejo I, et al. Sampling strategies for SARS-CoV-2 RNA detection during COVID-19 pandemic: a systematic review. J Med Virol. 2021;93:1261–1268.

166. Yang C, Liu H, Li X, et al. Evolutionary mechanisms of SARSCoV-2 in children. medRxiv. Preprint posted online September 29, 2020. doi: 10.1101/2020.05.25.20110890.

167. Wooster L, Nicholson CJ, Sigurslid HH, et al. Polymorphisms in the ACE2 locus associate with severity of COVID-19 infection. medRxiv. Preprint posted online June 22, 2020. doi: 10.1101/2020.06.18.20131512.
187. Shaw AC, Joshi S, Greenwood H, et al. Aging of the innate immune system. *Curr Opin Immunol*. 2010;22:507–513.

188. Mahbub S, Brubaker AL, Kovacs EJ. Aging of the Innate Immune System: An Update. *Curr Immunol Rev*. 2011;7:104–115.

189. Palmer DB. The effect of age on thymic function. *Front Immunol*. 2013;4:316.

190. Ongrádi J, Kövesdi V. Factors that may impact on immunosenescence: an appraisal. *Immun Ageing*. 2010;7:7.

191. Caruso C, Buffa S, Candore G, et al. Mechanisms of immunosenescence. *Immun Ageing*. 2009;6:10.

192. Aspinall R, Andrew D. Thymic involution in aging. *J Clin Immunol*. 2000;20:250–256.

193. Franceschi C, Garagnani P, Parini P, et al. Inflammmaging: a new immune-metabolic viewpoint for age-related diseases. *Nat Rev Endocrinol*. 2018;14:576–590.

194. Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. *Ann NY Acad Sci*. 2000;908:244–254.

195. Bastard P, Rosen LB, Zhang Q, et al. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. *Science*. 2020;370:eabd4585.