Ocimum Species as Potential Bioresources against COVID-19: A Review of Their Phytochemistry and Antiviral Activity

Dorothée D. Tshilanda¹, Etienne M. Ngoyi¹, Carlos N. Kabengele¹, Aristote Matondo¹, Gedeon N. Bongo²,³, Clement L. Inkoto², Clement M. Mbadiko², Benjamin Z. Gbolo²,³, Emmanuel M. Lengbiye², Jason T. Kilembe¹, Domaine T. Mwanangombo¹, Giresse N. Kasiama¹, Damien S. T. Tshibangu¹, Koto-te-Nyiwa Ngbolua²,³ and Pius T. Mpiana¹*

¹Department of Chemistry, Faculty of Sciences, University of Kinshasa, P.O.Box 190, Kinshasa XI, Democratic Republic of the Congo.
²Department of Biology, Faculty of Sciences, University of Kinshasa, P.O.Box 190, Kinshasa XI, Democratic Republic of the Congo.
³Department of Basic Sciences, Faculty of Medicine, University of Gbado-Lite, P.O.Box 111, Gbado-Lite, Democratic Republic of the Congo.

Authors’ contributions

This work was carried out in collaboration of all authors. Authors CMM, KTNN and PTM wrote the first draft of the manuscript. Authors BZG, JTK, DSTT, CLI, EML, DTM and GNK collected information on plants bioactivity. Authors AM, EMN and DDT collected information on plant phytochemistry. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJPR/2020/v5i430143

Received 12 August 2020
Accepted 27 October 2020
Published 27 November 2020

ABSTRACT

Aim: The aim of this work was to review literature data reported on some species of the Ocimum genus regarding their phytochemistry and antiviral potential in order to show how Ocimum species might be used in the management of COVID-19.

*Corresponding author: Email: pt.mpiana@unikin.ac.cd, ptmpiana@gmail.com;
1. INTRODUCTION

The world population is currently being challenged by several viral infections of which the most recent is the one of COVID-19. Coronavirus belongs to the β-coronaviridae family called Severe Acute Respiratory Syndrome (SARS-CoV-2) which causes several thousand deaths around the globe. Reported for the first time in 2019 in the city of Wuhan in China, COVID-19 has been declared a global health emergency by the World Health Organization (WHO) [1]. SARS-CoV-2 is a RNA virus that appears under an electron microscope in the form of a crown due to the spike of glycoproteins that surrounds it. This spike has been reported to be the major part of the SARS-CoV-2 virulence due to its capacity of binding the virus and the host cell. Having being bound, the virus membrane fuses with the host cell and allows the virus genome to enter the human cell and start the multiplication which leads to the infection. Having a diameter between 60-140 nm, studies on its mode of action have shown that it attacks the cells of the respiratory system [1,2].

Relying on the genome sequence and modeling of the protease structure of the virus, the scientific community has proposed a list to the Food and Drug Administration (FDA) approved drugs namely Sofosbuvir, Ribavirin, Lopinavir/Ritonavir, Chloroquine, etc., which can be used for the management of COVID-19 patients. Unfortunately, the efficiency of these drugs is still under debate though Chloroquine has been adopted in the treatment of COVID-19 patients [3].

The treatment of viral diseases has always been a major challenge for humans because viruses are capable of continuously producing resistance that can make ineffective the drugs used. Due to the inefficiency of drugs used against this viral pandemic, the globe solely relies on the availability of a COVID-19 vaccine. In the same frame than the new SARS-CoV-2 virus, there are no vaccines available for several viral pathologies though for some viruses like rabies, measles, polio, smallpox, hepatitis, vaccines have shown a real success. Considering this situation, there is an urgent need of searching for new molecules having antiviral potential and which can be accessible at lower cost. In fact, medicinal plants have been used as alternative for the treatment of several ailments, and thus constitute a real factory for the production of secondary metabolites, which have antiviral potential [4-8].

Henceforth, the ethnopharmacology constitutes an alternative approach for the discovery of effective antiviral agents [9,10]. Among the plants that have shown antiviral properties, there is the species of Ocimum genus that belongs to Lamiaceae family. Ocimum is one of the largest genus in the Lamiaceae family, which includes more than 150 aromatic species and is considered as a source of essential oils (EO). Due to their use in food and medicine, the most cultivated species are O. africanum Lour., O. americanum L., O. basilicum L., O. gratissimum L., O. canum, O. minimum L., and O. tenuiflorum L. [11,12]. The aim of this review was to describe the phytochemistry and the antiviral activities of few species of Ocimum genus against some viruses. This antiviral potential may be noted and

Keywords: Ocimum sp; COVID-19; antiviral activity; SARS-CoV-2; phytochemistry.
needed for the management of SARS-CoV-2 virus.

2. METHODOLOGY

Data published on EO and extracts of some species of Ocimum genus for their phytochemistry and antiviral activity have been collected in the online bibliographic databases, such as: PubMed, PubMed Central, Science Direct, SCIELO, DOAJ, Science alert, Semantic scholar and Google scholar.

3. RESULTS AND DISCUSSION

3.1 Results

3.1.1 Phytochemistry

The biological activities of aromatic plants are due to the chemical compounds that these species contain. Several studies have identified and isolated many EO compounds and extracts from certain Ocimum species (Table 1).

The table presents the chemical composition of most used species of the genus Ocimum.

Fig. 1 displays chemical structures of some EO compounds and extracts of some species of Ocimum species.

3.1.2 Antiviral activity

EO play an important role in inhibiting the multiplication of some viruses as reported in the literature. Compounds such as methyl chavicol, trans-anethole, eugenol, methyl-eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllenes oxide, γ-terpinen, 4-allylanisole, dihydrocarvone, D-limonene, cuminyl aldehyde, cuminol, camphor, camphene, isoborneol, L-bornyl acetate, 2-decanol, 2-heptanol, methylheptane, nerol, isopulegol, citral are present in EO of certain species of the genus Ocimum, but few have been reported to be responsible for the antiviral activity against HSV-1, HSV-2, parainfluenza type-3 (PI-3), hepatitis C virus (HCV), enterovirus 71 (EV71), adenovirus (ADV), Bovine herpes virus (BHV-1), human rotavirus (RV) [62-65].

Caamal-Herrera et al. reported that the methanol and dichloromethane extracts of O. americanum, O. basilicum and O. sanctum exhibited an anti-HSV activity before, during and after the adsorption [66]. While Tang et al. and Ghoke et al. (2018) demonstrated the antiviral activity of O. sanctum methanol extract (terpenoids and polyphenols) against DENV 1 and H9N2 respectively [67].

Table 1. Four major constituents of EO and some molecules of the extracts of most used plants of Ocimum genus

Plant species	Chemical compounds	Major constituents of EO (%)	References
O. americanum (canum)	Geranial (28.58), neral (20.16), linalool (12.15), nerol (7.15).	Linalool (28.6), estragol (21.7), (E) methylcinnamate (14.5), α-	[13]
	Linalool (53.8), limonen (22.2), eugenol (9.5), α-cardinol (2.4).		[14]
	1,8-cineol trans-methylcinnamate (79.7), cis-methylcinnamate (5.8),trans-α-bergamotene (4.8), β-caryophylene (3.8).		[15]
	Carbohydrate (639.6), crude fibers (170.0), crude proteins (0.40), vitamin C (0.05), Ca (50.72), K (18.76), Na (9.58), P (7.59), Mg (4.26), Fe (1.85), Zn (0.13), Mn (0.10), Cd (0.01), Pb (0.02)		[17]
	Phenolic acids: rosmarinic acid, lithospermic acid, vanillic acid, p-coumaric acid, hydroxybenzoic acid, syringic acid, caffeic acid, ferulic acid, cinnamic acid, sinapic acid.		[18]
	Dichloromethane extract: oleanolic acid Methanolic extract : rosmarinic acid		[19]
O. basilicum	Methyl chavicol (35.72), Linalool (21.25), epi-α-cadinol (8.02), α-bergamotene (6.56)		[20]
	Linalool (55.55), 1,8-cineol (11.67), β-farnesene (7.10), α-Guaiene (6.14)		[21]
	Linalool (28.6), estragol (21.7), (E) methylcinnamate (14.5), α-		[22]
cadinol (7.1), Linalool (46), eugenol (16), 1,8-cineol (6.2), trans-α-beragamotene (3.6).

Linalool (36 ± 2.6), eugenol (14.2 ± 3.4), eucalyptol (11.4 ± 2.2), trans-α-bergamotene (9.0 ± 0), Linalool (52.4a et 72.3b), methyl chavicol (19.5a et 3.1b), T-cadinol (4.9a et 8.6), (Z)-β-Farnesene (2.3 b).

Macro and micronutrients (ppm)

Element	Value (ppm)
Ca	(17.46)
Mg	(2.66)
Na	(289.13)
K	(28.77)
K	(397.57)
Mg	(0.42)
Ca	(195.02)
P	(196.05)
Na	(81.34)
K2	(0.30)
Ca2	(0.15)
Mg2	(0.14)
Na2	(0.11)
Mn2	(0.05)
Zn2	(0.03)
Fe2	(0.003)
Cu2	(0.003)
Ni2	(0.0027)
Th2	(0.0018)
Rib2	(0.0014)
Carbohydrates	(649.8)
Protein	(33.3)
Fat	(85.0)
Fiber	(95.2)

Other compounds

Methanolic extract: ursolic acid 0.27% to 0.38

Methanolic extract: rosmarinic acid

Methanolic extract: rosmarinic acid, lithospermic acid, vanillic acid, p-coumaric acid.

Flavonoids (kampferol), malic acid, tartaric acid, caffeic acid, Chicoric acid, caftaric acid.

O. campechianum

Constituents of essential oils (%)

- Eugenol (46.5), methyl eugenol (12), trans-β-caryophyline (11.9), germacrene D (10.2).
- Methyl eugenol (53.9), trans-β-caryophyline (13.0), α-bulnecene (5.4), germacren D (3.4).
- Methyl eugenol (60.6 to 69.5), eugenol (32.2 to 60.6), elemicine (0.2 to 65.9), 1,8-cineol (0.9 to 19.7).
- 1,8-cineole (20.3), β-caryophyline (14.0), β-elemene (11.1), caryophylen oxide (8.2).

Other compounds

Aqueous extracts: 5-dimethyl nobiletin, 5-dimethyl sinensetin, luteolin, methyl rosmarinate, rosmarinic acid.

O. gratissimum

Major Constituents of EO (%)

- Eugenol (43.2), 1,8-cineol (12.8), β-selinene (9.0), trans-β-caryophyline (6.4).
- Thymol (48.1), p-cymene (12.5), γ-terpinen (5.8), β-bisabolene (4.0).
- Thymol (53.2), γ-terpinen (25.7), eugenol (12.7), p-cymene (7.3).
- Eugenol (68.81), methyl eugenol (13.21), cis-ocimene (7.47), germacrene D (4.25).

Macro and micronutrients (g/kg)

Element	Value (g/kg)
K2	(5.56)
Ca2	(4.25)
P2	(0.39)
Carbohydrates	(0.04)
Protein	(0.03)
Fat	(0.009)
K2	(0.30)
Ca2	(0.15)
Mg2	(0.14)
Na2	(0.11)
Mn2	(0.05)
Zn2	(0.03)
Fe2	(0.003)
Cu2	(0.003)
Ni2	(0.0027)
Th2	(0.0018)
Rib2	(0.0014)
Carbohydrates	(503.5)
Protein	(91.0)
Fat	(42.3)
Fiber	(39.2)
Protein	(31.4)
Fat	(9.2)

References:

1. Tshilanda et al.; *IJPR*, 5(4): 42-54, 2020; Article no.IJPR.60559
2. [23]
3. [24]
4. [25]
5. [26]
6. [27]
7. [28]
8. [29]
9. [30]
10. [31]
11. [32]
12. [33]
13. [34]
14. [35]
15. [36]
16. [37]
17. [38]
18. [39]
19. [40]
20. [41]
21. [42]
22. [43]
23. [44]
Other compounds

Extract/Component	Compound
Methanolic extract:	ursolic acid (1.04%)
Aqueous extract:	L-caftaric acid, L-chicoric acid, eugenyl-β-d-glucopyranoside and vicenin-2
Methanolic extract:	Rosmarinic acid, cafeic acid
Ethyl acetate extract:	ursolic acid

O. citriodorum

Major constituents of EO (%)

- Geranial (31.2), neral (21.8), nerol (14.58), linalool (7.20)
- Nerol (23.1), geranial (15.77), methyl chavicol (9.45), linalool (9.42)

Macro and micronutrients (ppm)

- Mg (0.35), K (149.85), Ca (188.3), P (80.44), Na (90.34), thiamin, riboflavin, niacin

O. kilimandscharicum guerke

Major constituents of EO (%)

- Camphor (56.9), 1,8-cineol (14.6), limonen (9.46), terpinen-4-ol (6.59)
- Linalool (41), camphor (17), 1,8-cineol (10), limonen (5)

Other compounds

- Betulinic acid.
- Rosmarinic acid, lithospermic acid, vanillic acid, p-coumaric acid, hydroxybenzoic acid, syringic acid, caffeic acid, ferulic acid, cinnamic acid, dihydroxyphenyllactic acid, sinapic acid.

O. micranthum

Eugenol (46.55), β-elemene (9.06), 1,8-cineole (5.08), cis-octacimene (2.69).

Eugenol (64.8), (E)-β-caryophyline (14.3), bicyclogermacrene (8.1), α-humilene (2.3).

β-caryophyline (19.26), eugenol (20.5), 1,8-cineole (20.02), γ-elemene (14.44).

Eugenol (64.8), (E)-β-caryophyllene (14.3), bicyclogermacrene (8.1), elemicin (2.0).

O. selloi

Major constituents of EO (%)

- Methyl chavicol (55.3), *trans*-anethole (34.2), *cis*-anethole (3.9), caryophyllene (2.1).
- Methyl chavicol (93.3), β-caryophyline (2.2), germacrene D (1.3), spathulenol (1.3).

Other compounds

- Methanolic extract: Ursolic acid (0.45%).
- Rosmarinic acid, lithospermic acid, vanillic acid, p-coumaric acid, hydroxybenzoic acid, syringic acid, caffeic acid, ferulic acid, cinnamic acid, dihydroxyphenyllactic acid, sinapic acid.
O. Tenuiflorum (Sanctum) | **Major constituents of EO (%)**
--- | ---
β-Bisabolene (20.99), 1,8-cineole (20.78), eugenol (15.70), γ-elemene (10.47). Camphor (31.52), eucalyptol (18.85), eugenol (13.77), ocimene (7.12). Eugenol (22.0), β-elemene (19.2), β-caryophyllene (19.1), germacrene D (5.03). Eugenol (58.20), germacrene D (11.68), cis-β-ocimene (10.79), β-caryophyllene (4.31). Eucalyptol (18.85), eugenol (13.77), camphor (31.52). [53] [54] [55] [56]

Macro and micronutrients (ppm)
- Mn (61.75), Zn (32.38), Cu (14.48), Ni (5.67).
- Mg (1.8 to 4.8), K (49.8 to 3969.4), Ca (35.98 to 1950.2), P (1005.4 to 1960.5), Na (269.4 to 813.4), Fe (2.2 to 161.8), Zn (0.8 to 1), protein (33), carbohydrate (45), thiamin (4.8), riboflavin (2.4), niacin (2.7).
- K (52.60), Na (680), Zn (81.66), Mn (51.35), Cu (12.31), P (10.90), Mg (1.05), Ca (1.00), crude fibers (90.900), crude proteins (174.500).

Other compounds
- Methanolic extract: Ursolic acid (2.02%).
- Oleanolic acid, rosmarinic acid, ursolic acid, luteoline.
- Apigenin, myrcetine, vicenine, kaempferol.
- Methanolic extract: orientine, vicenine and luteoline.
- Ethanolic extract: Luteoline, orientine, ursolic acid, apigenin-7-oglucuronide, luteolin-7-O-glucuronide, isorientine, aesculine, triaccontanolferulate, vallinin acid, gallic acid, cincneol, stigmasterol, caffeic acid, 4-hydroxybenzoic acid, chlorogenic acid, procatechic acid, phenylpropanegluicoside, β-stigmasterol.

Fig. 1. Chemical structures of some molecules identified in EO and isolated from extracts of some species of *Ocimum* genus
Aqueous and ethanol extracts of *O. basilicum* demonstrated an antiviral activity against ADV-3 (174.1 µg/mL and >1000 µg/mL respectively), ADV-8 (129.6 µg/mL and > 200 µg/mL respectively) and ADV-11 (129.1 µg/mL and 91.9 µg/mL respectively). While the ursolic acid isolated from *O. basilicum* displayed an antiviral activity against ADV-8 with 50% of inhibition with a concentration of 4.2 µg/mL [68].

Table 2 summarizes some *Ocimum* species that have demonstrated antiviral effect against several DNA and RNA viruses.

Plants species	Chemical components	Mode of action	Type of virus	References
O. basilicum	1,8-cineole, Camphor, Thymol.	Destruction of the viral envelope preventing entry of the virus into the host cell.	HSV 1 et 2 (DNA enveloped virus)	[69]
	Eugenol, Eugenol epoxide	Inhibition of virus replication	HIV-1 (RNA non-enveloped virus)	[70]
	Apigenine	Inhibition of virus replication	HSV, ADV-3,8, 8, 11 (DNA non-enveloped virus), HBV (DNA enveloped virus), EV (RNA non-enveloped virus), CVB1 (RNA non-enveloped virus)	[71]
	Linalool		ADV-3,8,11, HBV, EV, CVB1	
	Ursolic acid		ADV-8,11, HSV, HBV, EV, CVB1	
O. sanctum	Ursolic acid, Eugenol, 1,8-cineole	Inhibition of virus replication	HSV-1,2	[66]
	Rosmarinic acid	Inhibition of replication and protease.	HSV-1,2	[71]
O. gratissimum	Eugenol	Inhibition of virus replication	HSV-1,2	[34,72]
	Thymol	Direct destruction of the virion	HSV-1	[16,73]
O. campechianum	β-caryophyllene	Inhibition of virus replication	HSV-1,2	[13,74]
	1,8-cineole	Nucleocapsid (N) protein destruction of the virus	IBV	[36,75]
O. americanum (canum)	Rosmarinic acid	inhibit viral IRES	EV71	[46,76]
	Oleanolic acid	inhibits the HIV-1 protease	HIV-1	[19]
O. citriodorum	Caffeic acid	Inhibit the multiplication	HSV-1	[46,77]
	Linalool	Not determined	AVD-II	[21]
O. kilimands charicum guerke	1,8-cineole	Inhibit the multiplication	IBV	[47]
	Terpinen-4-ol		HSV-1	[74]
O. micranthum	Ursolic acid	Inhibit the multiplication	HCV (RNA)	[30]
O. selloi	Trans-Anethole	Inhibit the multiplication	HSV-1,2	[74]

HHV: Human Herpes Virus, VACV: Vaccinia Virus, IHNV: Infectious Hematopoietic Necrosis Virus, OMV: Oncorhynchus Masou Virus, BHV-1: Bovine Herpes Virus-1
3.1.3 Toxicological activities

Ocimum species have been in different traditional recipes to prevent and cure many diseases. Most plants belonging to this family are generally edible. Given their phytochemical composition rich in secondary metabolites and nutrients, all these molecules can at a certain degree of concentration, have a certain intrinsic toxicity towards animals. Few studies reported that the species of the genus *Ocimum* may or may not present a slight toxicity, which depends on geographical parameters [78, 79].

3.2 Discussion

Knowing that most species of the genus *Ocimum* are responsible for several biological activities, this review confirms their antiviral activity which is due to their varied chemical composition and which depends on the geographical distribution and ecological conditions.

Several pure compounds isolated and identified from EO extracts (eugenol, methyleugenol, carvacrol, linalool, 1,8-cineole, apigenin, ursolic acid, oleanolic acid, luteoline, quercetin) and from certain species of the *Ocimum* genus have showed activity against certain DNA and RNA viruses like HSV, HIV, NDV, DENV, CMV, CVB, HPAI (H5N1), EV71, HBV, etc., some of which cause respiratory and gastrointestinal disorders [68].

Others compounds such as campferol, quercetin, apigenin, catechin and ursolic acid generally found in *Ocimum* species are potential inhibitors of SARS-CoV-2 protease, which would suggest that these species have an anti SARS-CoV-2 effect [80, 81].

Molecular docking is an important tool that explores non covalent interactions mainly hydrogen bonds, π/π and van der Waals interactions that are established between proteins and ligands [82, 83]. Kumar et al. have carried out molecular docking calculations on some compounds derived from *O. sanctum* (methyl eugenol, rosmarinic acid, oleanolic acid and ursolic acid) and found that these compounds bind to the spike glycoproteins of the SARS-CoV-2, thus preventing attachment of the virus to the host cell and viral replication [84].

It should be noted that, despite the variable chemical composition depending on geographic parameters, most species of the genus *Ocimum* are used for their innumerable biological activities including antiviral activity. In addition, at least two majority molecules found respectively in EO and in the extracts of some species cited in this study, have been reported to have antiviral activity, which would indicate that all these species could be used against viral diseases including COVID-19.

4. CONCLUSION

The main objective of this study was to collect information on phytochemistry and the ability of a few species of the *Ocimum* genus to treat certain viral diseases.

Confronting this new coronavirus, the lack of effective therapy and vaccine, the urgency is imperative to find alternatives. Beside the barrier measures recommended by WHO and which are of strict and compulsory application for limiting the spread of SARS-CoV-2, scientific work is directed towards medicinal plants for their capacity to strengthen the immune system and to search for the antiviral potential.

The involvement of certain molecules contained in essential oils and extracts of species of the *Ocimum* genus in the inhibition of the attachment of glycoproteins on the surface of SARS-CoV-2 allows the prevention of viral replication and thus strengthens the immune system. *Ocimum* species may be considered as potential candidates in the management of COVID-19.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

Clement M. Mbadiko thanks International Foundation for Science (IFS) and Pius T Mpiana the TWAS and the Swedish International Development Agency (SIDA) for the grant.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Imran A, Alharbi OML. COVID-19: Disease, management, treatment and social impact. Science of the Total Environment; 2020. Preprint. DOI:https://doi.org/10.1016/j.scitotenv.2020.0.138861

2. Rajapaksa RMH, Perera BT, Nisansala MJ, Perera WPRT, Dissanayake KGC. Potential of inhibiting the receptor binding mechanism of SARS-CoV-2 using phytochemical extracts of medicinal herb: Molecular docking study. Global Journal of Engineering Science and Research Management; 2020. DOI: https://doi.org/10.5281/zenodo.3766184

3. Yonesi M, Rezaeizadeh A. Plants as a prospective source of natural anti-viral compounds and oral vaccines against COVID-19 coronavirus; 2020. DOI: 10.20944/preprints202004.0321.v1

4. Mbadiko MC, Inkoto LC, Gbolo BZ, Lengbiye ME, Kilembe JT, Matondo A, et al. A mini review on the phytochemistry, toxicology and antiviral activity of some medically interesting zingiberaceae species. J Complement and Alternative Medic Res. 2020;9(4):44-56. DOI: 10.9734/JOCAMR/2020/V9I430150

5. Adesina SK, Johnny II, Olayiwola G. Plants in respiratory disorders II- antitussives, A review. BJPR, 2017;16(3):1-21. DOI: 10.9734/BJPR/2017/32974

6. Mpiana PT, Ngbolua KN, Tshibangu DST, Kilembe JT, Gbolo BZ, Mwanangombo DT, et al. Identification of potential inhibitors of SARS-CoV-2 main protease from Aloe vera compounds: A molecular docking study. Chem Phys Lett. 2020;754:137751. DOI: 10.1016/J.CPLETT.2020.137751

7. Ngbolua KN, Mbadiko MC, Matondo A, Bongo NG, Inkoto LC, Gbolo BZ, et al. Review on ethno-botany, virucidal activity, phytochemistry and toxicology of Solanum genus: Potential bio-resources for the therapeutic management of Covid-19. Eur J of Nutrition and Food Safety. 2020;12(7):35-48. DOI: 10.9734/EJNFS/2020/v12i730246

8. Bekut M, Brkić S, Kladar N, Dragović G, Božin B. Potential of selected lamiaceae plants in anti(retro)viral therapy. Pharmacological Research; 2017. DOI:https://doi.org/10.1016/j.phrs.2017.12.016

9. Chattopadhyay D, Naik TN. Antivirals of ethnomedicinal origin: Structure-activity relationship and scope. Mini-Reviews in Medicinal Chemistry. 2007;7:275-301.

10. Mpiana PT, Ngbolua KN, Tshibangu DST, Kilembe JT, Gbolo BZ, Mwanangombo DT, et al. Aloe vera (L.) Burm. F. as a potential anti COVID-19 plant: A mini review of its antiviral activity. Eur J Med Plants. 2020;31(8):86-93. DOI: 10.9734/EJMP/2020/v31i830261

11. Sekar K, Thangaraj S, Saravana SB, Harisaranraj R, Suresh K. Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum basilicum. J of Phytology. 2009;1(6):408–413.

12. Nagaia A, Ligia ML, Déborah YAC. Influence of viral infection on essential oil composition of Ocimum basilicum (Lamiaceae). NPC. 2011;6(8):1189–1192.

13. Carovic’-Stanko K, Orlic’ S, Politeo O, Strikic’-F, Kolak I, Milos M. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chemistry. 2010;119:196-201. DOI: 10.1016/j.foodchem.2009.06.010

14. Belong P, Ntonga PA, Bakwo EMF, Foko GAD, Tamesse JL. Chemical composition and residue activities of Ocimum canum Sims and Ocimum basilicum L essential oils on adult female Anopheles funestus ss. J of Animal & Plant Sciences. 2013;9(1):2854-2863.

15. Mpiana PT, Tshilanda DD, Onyamboko DV, Tshibangu DST, Ngbolua KN, Tsalu PV. In vitro antioxidant activity of essential oil and polar and non-polar extracts of Ocimum canum from Mbuji-Mayi (DR Congo). J of Advancement in Medical and Life Sciences. 2015;3. DOI: 10.15297/JALS.V3I3.04

16. Pushapa R, Nishant R, Navin K, Town C. Antiviral potential of medecinal plants: An overview. Int. Res. J. Pharm.2013;4(6).

17. Aluko BT, Oloyede OI, Afolayan AJ. Phytochemical and nutrient compositions of the leaves of Ocimum canum sims. African J of biotech.2012;11:63.

18. Lukmanul FH, Boopathy R. Antioxidant property of selected Ocimum species and their secondary metabolite content. J of Medicinal Plants Res. 2008;2(9):250-257.

19. Tshilanda DD, Inkoto CL, Mpongu K, Mata S, Mutwale PK, Tshibangu DST, et al. Microscopic studies, phytochemical and biological screenings of Ocimum canum.
27. Daniel VN, Daniang IE, Nimyel ND. Phytochemical analysis and mineral elements composition of Ocimum basilicum obtained in JOS Metropolis, Plateau State, Nigeria. IJET-IJENS. 2011;11(6):135-137.

28. Bariyah S, Ahmed D, Aujla M. Comparative analysis of Ocimum basilicum and Ocimum sanctum: Extraction techniques and urease and alpha-amylase inhibition. Pak. J. Chem. 2012;2(3):134-141.

29. Pachkore GL, Dhale DA. Phytochemicals, vitamins and minerals content of three Ocimum species. Int J of Science Innovations and Discoveries. 2012;2(1):201-207.

30. Silva MGV, Vieira IGP, Mendes FNP, Albuquerque IL, dos Santos RN, Silva FO, et al. Variation of ursolic acid content in eight Ocimum Species from Northeastern Brazil. Molecules. 2008;13:2482-2487. DOI: 10.3390/molecules13102482

31. Tshilanda DD, Mutwale PK, Onyamboko DNV, Babady PB, Tsalu PV, Tshibangu DST, et al. Chemical fingerprint and anti-sickling activity of rosmarinic acid and methanolic extracts from three species of Ocimum from DR Congo. Journal of Biosciences and Medicines. 2016;4:59-68.

32. Javanmardi J, Khalighi A, Kashi A, Bais HP, Vivanco JM. Chemical characterization of basil (Ocimum basilicum L.) found in local accessions and used in traditional medicines in Iran. J. Agric. Food Chem. 2002;50(21):5878–5883.

33. Lee J, Scagel CF. Chicoric acid found in basil (Ocimum basilicum L.) leaves. DOI:https://doi.org/10.1016/j.foodchem.2008.12.075

34. Benitez NP, Meléndez EML, Stashenko EE. Eugenol and methyl eugenol chemotypes of essential oil of species Ocimum gratissimum L. and Ocimum campechianum Mill. from Colombia. Journal of Chromatographic Science. 2009;47.

35. Brand YM, Roa-Linares VC, Betancur-Galvis LA, Durán-García DC, Stashenko E. Antiviral activity of Colombian labiatae and verbenaceae family essential oils and monoterpenes on human herpes viruses. Journal of Essential Oil Research. 2016;28(2):130-137. DOI: 10.1080/10412905.2015.1093556

36. Zoghbi MGB, Oliveira J, Andrade EHA, Trigo JR, Fonseca RCM, Rocha AES. Variation in volatiles of Ocimum campechianum Mill. and Ocimum gratissimum L. cultivated in the North of Brazil.
Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complementary and Alternative Medicine. 2017; 17(60):1-10. DOI: 10.1186/s12906-017-1587-5

Pandey S, Singh SK, Kumar N, Manjhi R. Antiviral, antiprotozoal, antimalarial and insecticidal activities of Ocimum gratissimun L. Asian Journal of Pharmaceutical Research and Development. 2017; 5(5):1-9.

Dolly G, Ndhi S, Shweta R, Shikha A. Ocimum kilimandscharicum: A systematic review. Journal of Drug Delivery & Therapeutics. 2012; 2(3):45-52.

Kashyap CP, Ranjeet K, Vikrant A, Vipin K. Therapeutic potency of Ocimum Kilimandschharicum Guerke - A review. Global Journal of Pharmacology. 2011; 5(3):191-200.

Joshi RK. Chemical composition, In vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, O. sanctum and their major constituents. Indian J Pharm Sci. 2013; 75(4):457–462.

Kasem MM. Micropropagation and in vitro secondary metabolites production of Ocimum species. J. Plant Production. 2017; 8(4):473–484.

Sacchetti M, Maietti M, Mariavittoria R, Manfredini B. Composition and functional properties of the essential oil of Amazonian basil, Ocimum micranthum willd., Labiatae in comparison with commercial essential oils. J of Agricultural and Food Chemistry. 2004; 52(11):3486-3491. DOI: 10.1021/jf035145e

Silva MGV, Matos FJA, Lopes PRO, Silva FO, Holanda MT. Composition of essential oils from three Ocimum species obtained by steam and microwave distillation and supercritical CO2 extraction. ARKIVOC. 2004; 6:66-71.

Saharkhz MJ, Kamyab AA, Kazerani NK, Zomorodian K, Pakshir K, Rahimi MJ. Chemical compositions and antimicrobial activities of Ocimum sanctum L. essential oils at different harvest stages. Jundishapur J Microbiol. 2015; 8(1): e13720. DOI: 10.5812/jjm.13720

Yamani HA, Pang EC, Mantri N, Deighton MA. Antimicrobial activity of tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria. Front. Microbiol. 2016.
essential oils from selected umbelliferae

55. Ahmeda AH, Hussein K, Alsyarib AH, Ibrahimc HM, Lebnane Altanobi. Chemotaxonomy and spectral analysis (GC/MS and FT-IR) of essential oil composition of two *Ocimum basilicum* L. varieties and their morphological characterization. Jordan Journal of Chemistry. 2017;12(3):147-160.

56. Chand RR, Jokhan AD, Gopalan RD. Bioactivity of selected essential oils from medicinal plants found in Fiji against the spiralling whiteflies (*Aleurodicus dispersus* Russell). Adv. Hortic. Sci. 2016;30(3):165-174.

57. Vidhani SI, Vyas VG, Parmar HJ, Bhalani VM, Hassan MM, Gaber A, et al. Evaluation of some chemical composition, minerals fatty acid profiles, antioxidant and antimicrobial activities of tulsi (*Ocimum sanctum*) from India. American Journal of Food Science and Technology. 2016;4(2):52-57.

58. Bhowmik S, Chowdhury S, Kabir M, Ali M. Chemical composition of some medicinal plant products of indigenous origin. Bangladesh Veterinarian. 2008;25(1):32-39. DOI:https://doi.org/10.3329/bvet.v25i1.4616

59. Tan PV, Mezui C, Enow-Oro E, Njikam N, Dimo T, Bitolog P. Teratogenic effects, acute and sub chronic toxicity of the leaf aqueous extract of *Ocimum suave* Wild (Lamiaceae) in rats. J of Ethnopharmacology. 2008;115:232–237.

60. Tang LIC, Ling APK, Koh RY, Chye SM, Voon KGL. Screening of anti-dengue activity in methanolic extracts of medicinal plants. BMC Complementary and Alternative Medicine. 2012;12(3):1-10.

61. Bano N, Ahmed A, Tanveer M, Khan GM, Ansari MT. Pharmacological evaluation of *Ocimum sanctum*. J Bioequiv Availab. 2017;9:387-392. DOI: 10.4172/jbb.1000330

62. Aboughe SA, Aworet RRRS, Eypele CMM. Some properties of the medicinal plants essential oils of Gabon. Phytothérapie; 2014. DOI: 10.1007/s10298-014-0905-z

63. Orhan IE, Özçelik B, Kartal M, Kan Y. Antimicrobial and antiviral effects of essential oils from selected umbelliferae and labiatae plants and individual essential oil components. Turk J. Biol. 2012;36:239-246.

64. Shynu M, Saini B, Sharma B, Gupta LK, Gupta PK. *Ocimum tenuiflorum* possesses antiviral activity against bovine herpes virus-1. Indian J Virol. 2006;17(28):28-34.

65. Pilau MR, Alves SH, Weiblen R, Arenhart S, Cueto A, Lovato LT. Antiviral activity of the *Lippia graveolens* (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Brazilian Journal of Microbiology. 2011;42:1616-1624.

66. Caamal-Herrera O, Muñoz-Rodriguez D, Madera-Santana T, Azamar-Barrios JA. Identification of volatile compounds in essential oil and extracts of *Ocimum micranthum* Wild leaves using GC/MS. International Journal of Applied Research in Natural Products. 2008;9(1):31-40.

67. Ghoke SS, Sood R, Kumar N, Pateriya AK, Bhatia S, Mishra A, et al. Evaluation of antiviral activity of *Ocimum sanctum* and *Acacia arabica* leaves extracts against H9N2 virus using embryonated chicken egg model. BMC Complementary and Alternative Medicine. 2018;18(174):1-10. DOI: 10.1186/s12906-018-2238-1

68. Amber R, Adnan M, Tariq A, Mussarat S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J of Pharmacy and Pharmacology. 2017;69:109-122.

69. Kubića TF, Alves SH, Weiblen R, Lovato TL. *In vitro* inhibition of the bovine viral diarrhoea virus by the essential oil of *Ocimum basilicum* (basil) and monoterpenes. Brazilian Journal of Microbiology. 2014;45(1):209-214.

70. Behbahani M, Mohabatkhar H, Soltani M. Anti-HIV-1 activities of aerial parts of *Ocimum basilicum* and its parasite *Cuscuta campestris*. J. Antivir. Antiretrovir. 2013;5:57-61.

71. Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of *Ocimum basilicum*. Clinical and Experimental Pharmacology and Physiology. 2005;32:811-816.

72. Benencia F, Courréges MC. *In vitro* and *in vivo* activity of eugenol on human herpes virus. Phytother. Res. 2000;14:495–500.

73. Lai WL, Chuang HS, Lee MH, Wei CH, Lin CF, Tsai YC. Inhibition of herpes simplex virus type 1 by thymol-related...
monoterpenoids. Planta Med. 2012;78:1636–1638.
74. Akram A, Jürgen R, Schnitzler P. Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytother. Res; 2009. DOI: 10.1002/ptr
75. Yang Z, Wu N, Fu Y, Yang G, Wang W, Zu Y, et al. Anti-Infectious Bronchitis Virus (IBV) activity of 1,8-cineole: Effect on Nucleocapsid (N) protein. J of Biomolecular Structure and Dynamics. 2010;28(3):323-330.
76. Chung YC, Hsieh FC, JuLin Y, Wu TY, Lin CW, Lin CT, et al. Magnesium lithospermate B and rosmarinic acid, two compounds present in Salvia miltiorrhiza, have potent antiviral activity against enterovirus infections. Eur J of Pharmacology. 2015;755:127–133.
77. Ikeda K, Tsujimoto K, Uozaki T, Nishide M, Suzuki Y, Koyama AH, et al. Inhibition of multiplication of herpes simplex virus by caffeic acid. Int J of Mol Med. 2011;28:595-598.
78. Rasekh HR, Hosseinzadeh L, Mehri S, Kaml-Neja M, Aslani M, Tanbakoosazan F. Safety assessment of Ocimum Basilicum hydroalcoholic extract in wistar rats: Acute and subchronic toxicity studies. Iran J Basic Med Sci. 2012;15:1.
79. Effram K, Jacks TW, Sodipo O. Histopathological studies on the toxicity of Ocimum gratissimum leave extract on some organs of rabbit. Afr. J. Biomed. Res. 2001;6:21–25.
80. Mishra AK, Tewari SP. In silico screening of some naturally occurring bioactive compounds predicts potential inhibitors against SARS-CoV-2 (COVID-19) protease. ArXiv preprint arXiv:2004;2020.01634, 2020-arxiv.org.
81. Matondo A, Kilembe JT, Mwanangombo DT, Nsimba BM, Gbolo BZ, Bongo GN, et al. Facing COVID-19 via anti-inflammatory mechanism of action: Molecular docking and pharmacokinetic studies of six anti-inflammatory compounds derived from Passiflora edulis. Research Square preprint, 2020. DOI: 10.21203/rs.3.rs-87703/v1
82. Kasende OE, Matondo A, Muya JT, Scheiner S. Interaction between temozolomide and HCl: Preferred binding sites. Comput Theor Chem. 2016;1075:82–86. DOI:http://dx.doi.org/10.1016/j.comptc.2015.11.017
83. Kasende OE, Matondo A, Muya JT, Scheiner S. Interactions between temozolomide and guanine and its S and Se-substituted analogues. Int J Quantum Chem. 2017;117:157–169. DOI: 10.1002/qua.25294
84. Kumar AP, Singh P, Nath NT. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pacific Journal of Tropical Biomedicine. 2014;4(9):682-694.