Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COPD is characterized by a progressive deterioration of lung function and mental and physical comorbidities such as depression, dystrophy, and heart failure.1 The data suggest that COPD imposes an enormous burden on patients, health-care professionals, and society. COPD contributes to morbidity and mortality and to a significant use of health-care resources and expense on a global scale; this is especially true in developing countries.2-4 The burden of COPD in China is currently greater than that found in developed countries. This is probably due to greater exposure to epidemic risk factors, an imbalance in economic development, and health-care disparities between urban and rural areas. The reported prevalence of COPD morbidities and genetic susceptibility varies widely among geographic regions in China, and there is still a great need to learn more about the disease burden of COPD. In this review, we analyzed available studies on COPD in China, including data on prevalence, mortality, disease burden, risk factors, diagnosis, and patient management, to improve awareness of COPD and highlight its importance to facilitate the implementation of public health policies.
Epidemiology

Prevalence

There is still a need for well-designed nationwide epidemiologic studies of COPD in China. A population-based, cross-sectional survey of COPD conducted between 2002 and 2004 showed that the overall prevalence of the disease in people aged >40 years was 8.2%, which would result in a COPD patient population of >43 million in that time period. It was reported that the prevalence of COPD varied widely among locations across the country, from 5% to 13% (Table 1). Most locations had a higher prevalence of COPD than the World Health Organization model-estimated prevalence for China (6.7%) and the reported prevalence rates in Western countries (4%-10%). But the cross-sectional survey of COPD results were consistent with the pooled prevalence (meta-analysis) of the Western Pacific Region (9.0%). The crude prevalence of COPD was significantly higher in men than in women (8.3%-18.9% vs 3.8%-7.1%), in rural areas than in urban areas (4.4%-16.7% vs 6.7%-8.3%), in the elderly, and in nonsmoking rural women. These differences were associated with gender, smoking status, biomass fuel use, occupational dust exposure, socioeconomic status, and availability of health-care resources. It was reported that approximately two-thirds of the patients were underdiagnosed, and the prevalence of diagnosed COPD in rural areas was apparently lower than that in urban areas, suggesting an inferior diagnostic rate in rural areas.

Mortality and Hospitalization

The Global Burden of Disease study conducted in 2004 showed that about 3 million people die of COPD each year, of which 1.8 million deaths occur in middle-income countries. COPD is expected to become the third leading cause of death globally by 2030, trailing only ischemic heart disease and cerebrovascular disease. According to data published by the Chinese Ministry of Health, COPD ranks as the fourth leading cause of death in urban areas and third leading in rural areas. Both crude and age-adjusted COPD mortality rates have fluctuated but have displayed a decreasing trend from 1990 (Fig 1A), which is probably because of improved management of COPD, upgraded technologies, and awareness of the disease.

Another nationwide, large-scale, long-term prospective cohort study between 1990 and 2000 demonstrated that COPD-related mortality was 27.3 for men and 21.3 for women per 100,000 persons >40 years of age, making COPD the seventh leading cause of death in men and eighth leading in women. When cor pulmonale deaths with documented COPD history were included, COPD-related mortality increased to 179.9 for men and to 141.3 for women per 100,000 persons. Both rates were much higher than the corresponding estimated rates in the Asia-Pacific region (64-92 per 100,000 population in men and 21-35 per 100,000 population in women). It was reported that COPD-related mortality was higher in rural areas than in urban areas, mainly because of the unavailability of health-care resources and more exposure to indoor air pollution. Another finding showed that COPD-related mortality in northern China was higher than in other locations; the higher mortality rate in the north might be associated with a colder climate, more use of biomass fuel, heavier outdoor air pollution, and lower socioeconomic status. Although mortality rates fell, hospitalization rates continued to rise in the last decade. Hospitalization rates for COPD jumped from 1.0% in 1998 (urban vs rural was 1.4% vs 0.8%) to 1.6% in 2008 (urban vs rural was 1.5% vs 1.6%). Correspondingly, the gap between rural and urban areas narrowed (Fig 1B). This is partially a result of the increase in incidence but it also indicates that patients in rural areas are more aware of COPD, and that resources for rural residents have been increasing. The hospitalization rate trend is consistent with that of other Asian countries.

Burden of COPD

COPD treatments are extremely costly in China and impose an enormous economic burden on both families and society. Health-care expenses were investigated with person-to-person interviews in a cross-sectional survey conducted among 723 COPD outpatients in six large cities in China. It was found that the annual direct medical expense for urban patients in 2006 was $1732.24 per patient, whereas the estimated indirect expense spent on nutraceuticals, transportation, and end-of-life care was $231.6 per patient. Total expense for one COPD patient ($1963.8) accounted for 40% of the average family’s total income ($4849.8). Evidence showed that the cost of COPD was strongly correlated with the severity of disease and that hospitalization acted as a major contributor to total cost. It was suggested that reducing hospitalization frequency through better management could result in a crucial decrease in health-care expenses. Moreover, the burden of COPD has been underestimated consistently because of premature mortality and impaired productivity of patients and their family members. The overall disease burden, measured by disability-adjusted life years (DALYs), was predicted to double over the next 2.5 decades worldwide, at which point COPD would move from the 13th-highest cause of DALYs...
In 2002, about 30% of the world’s cigarettes were manufactured and consumed in China, which had worldwide to the seventh-highest by 2030. The burden of COPD in China was greater than that in developed Western countries, and it ranked second among chronic diseases as a leading cause of DALYs lost in 2001 (Fig 2).

Table 1 — COPD Prevalence in Various Provinces in China

Study/Year	City/Province	Age, y	N	Diagnostic Criteria	Prevalence, %	Risk Factors
Tang et al/2001	Anhui	≥ 35	29,319	Physician diagnosis	7.2/4.7, 4.4/6.7	Gender; smoking; age of starting smoking; sites of inhaling smoke; time of heating; dust exposure; marital status; pepper consumption
Xu et al/2005	Nanjing/Jiangsu	≥ 35	29,319	Post-BD spirometry	15.9/4.8, 12.0/7.4	Gender; age; living condition; smoking; TACS
Liu et al/2005	Guangdong	≥ 40	3,286	Post-BD spirometry		Gender; age; smoking; biomass fuel use; ventilation in the kitchen; family history; respiratory infection during childhood
Shan and Chen/2007	Tianjin	≥ 40	3,008	Post-BD spirometry	18.9/6.5, 16.7/8.0	Gender; living condition; educational level; ventilation in the kitchen and living room; smoking; TACS; occupational exposure
Ma et al/2005	Shanghai	≥ 65	1,214	Post-BD spirometry		Gender; age; smoking; family history; living condition; educational level; smoking; TACS; occupational exposure
Cai et al/2009	Shihlin/Yunnan	≥ 45	6,006	Physician diagnosis	8.3/5.1, 6.7/...	Gender; age; biomass fuel exposure
Wang et al/2005	Shaoguan/Guangdong	≥ 40	1,468	Post-BD spirometry	18.3/7.1, 12.0/...	Smoking; age; frequent cough during childhood; biomass fuel exposure
Yao et al/2005	Yanqing/Beijing	≥ 40	1,624	Post-BD spirometry	15.1/3.8, 9.1/...	Gender; age; smoking; family history; frequent cough before age 14 y; BMI
Jiang et al/2007	Hubei	≥ 40	1,883	Post-BD spirometry	13.7/6.6, 9.9/...	Gender; age; smoking; cooking time; family history; frequent cough before age 14 y; BMI
Chen et al/2008	Lianjiang/Guangdong	≥ 40	1,368	Post-BD spirometry	11.1/4.3, 7.0/...	Gender; age; smoking; BMI; biomass fuel exposure; ventilation in the kitchen; occupational exposure; respiratory infection during childhood; family history
Li et al/2009	Chongqing	≥ 40	1,518	Post-BD spirometry	23.0/7.5, 12.8/...	Smoking; biomass fuel exposure
Hong et al/2009	Changsha/Hunan	≥ 15	8,243	Spirometry	7.6/2.6, 5.3/4.8	Smoking; biomass fuel exposure; gender; family history; educational level
Zhang et al/2006	Qingdao/Shandong	≥ 40	410	Spirometry	7.9/5.9, 6.9/...	Age; smoking; biomass fuel exposure; living area; family history; BMI
Hou et al/2007	Shenyang/Jinzhou/Liaoning	≥ 40	1,100	Post-BD spirometry		Age; family history; low BMI

Data collected from literature covered by SCI or Chinese Core Journals. Postbronchodilator FEV1/FVC of 70% was defined as COPD according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) diagnostic criteria. BD = bronchodilator; F = female; M = male; Ph = physician diagnosis; R = rural; T = total; TACS = total amount of cigarettes smoked; U = urban. *Rural areas or urban areas.

Tobacco Smoking

In 2002, about 30% of the world’s cigarettes were manufactured and consumed in China, which had
an estimated(275,499),(318,506) million smokers; furthermore, the prevalence of smoking in women has been increasing (Fig 3). In addition, there has been a steady increase in the rate of household second-hand smoke exposure, and the rate of passive smoking among nonsmoking females has increased to 82.5%. Taking all smokers and passive smokers into consideration, 72% of Chinese aged > 15 years were tobacco exposed. Individuals who were less educated, poorer, and employed in stressful jobs were more likely to be heavy smokers and less likely to quit than were wealthier, better-educated individuals. Smoking the Chinese pipe was once prevalent in rural areas, but only a minority of people do it today. Smokers consumed cheaper cigarettes but spent a larger proportion of their personal income on smoking. The cost of cigarettes per pack varied from $0.294 to $33.971 in China. Smoking has been recognized as the most important causative factor in the pathogenesis of COPD. In 2005, a total of 673,000 deaths were attributed to smoking in China, whereas 268,000, 146,200, and 66,500 deaths were attributed to cancer, cardiovascular disease, and respiratory disease, respectively. In another case-control study, conducted from 2000 to 2001 in Nanjing, a significant dose-response relationship between COPD and total amount of cigarettes smoked was detected after adjusting for other risk factors. The study further showed that women smokers were more susceptible to COPD.

Because of a diversity of methodologies and exposure assessment criteria, there are conflicting results regarding an association between passive smoking and the risk of COPD. The aim of the Biobank Cohort Study was to demonstrate that the high prevalence of COPD among Chinese nonsmokers is the result of a positive dose-response relationship between passive smoking exposure and any respiratory symptom. It was estimated that 1.9 million excessive deaths from COPD without smoking could be attributed to passive smoking. In contrast to these findings, no significant association between COPD and passive smoking was revealed in other localized surveys.

In the survey conducted by Yang et al, about 74% of the smokers indicated that they did not want to quit, which may be partly because of ignorance about the harmful effects of smoking. About 20% of the smokers had intended to quit smoking at least once, of which about one-half reverted to smoking. Smoking cessation has been the most cost-effective intervention in COPD management, and the importance of effective tobacco-control programs cannot be emphasized too strongly. Men and women who stopped smoking in 2003 were expected to lower their absolute risks of COPD by 56% and 63% after 5 years relative to those who continued smoking. Antismoking education should focus the public’s attention on the risk of active and passive smoking, as well as the expense of smoking, especially among the poor.

Use of Biomass Fuels

The use of biomass fuels has been considered one of the most important risk factors for COPD. Men and women who are exposed to biomass smoke have an odds ratio of 4.30 and 2.73, respectively, for developing COPD, relative to those not exposed to biomass smoke. It was reported that solid fuels, such as wood, crop residues, and coal, were used in > 70% of Chinese households, whereas in rural areas, the rate increased to 90%. In a cluster disproportional random sampling survey performed in populations aged > 40 years in urban and rural areas in Guangdong, COPD prevalence among rural nonsmoking women was found to be significantly higher than that among urban nonsmoking women (7.2% vs 2.5%). Univariate analysis showed a significant association between COPD and exposure to biomass fuel for cooking.

Table 2—Laws Related to Smoking Control in China

Laws Related to Smoking Control	Year	Content
Regulations on management of public places	1987	Prohibit smoking in public places
Law of the People’s Republic of China on the Prevention of Minors to Commit Crime	1999	Parents and teachers should educate minors not to smoke; Business units should not sell cigarettes to minors
Law of the People’s Republic of China on Tobacco Sales	1991	Forbid or restrict cigarette smoking on public conveyances or in public places; dissuade adolescents from smoking and forbid primary and middle school students from smoking
Law of the People’s Republic of China on Advertisement	1994	Smoking-related advertisements are prohibited through media or in any public places; all smoking-related advertisements should include the following label: “smoking is harmful to health”
Law of the People’s Republic of China on the Protection of Minors, article 11	2006	The sale of cigarettes to minors is banned; no smoking in schools, kindergartens or any other places where minors are present
Framework Convention on Tobacco Control	2006	Raise taxes on cigarettes; prohibit smoking in public places; warning notices or pictures of fearful consequences of smoking are printed on the cigarette packets

© 2011 American College of Chest Physicians

"Minors" as used in this law refers to citizens under the age of 18 y.
uted to the combined effect of smoking and solid-fuel use, whereas 26 million deaths from COPD will be avoided by reducing smoking and solid-fuel use with intermediate magnitude. Halving solid-fuel use would lower the annual number of COPD cases by 2.2 million in men and by 4.3 million in women. Along with rapid development of the economy and urbanization in most rural areas, indoor air pollution and ventilation in the kitchen would be gradually improved and the negative influence of biomass fuel use on health would be expected to decrease.

Genetic Susceptibility

COPD is a complex condition resulting from the interaction of environmental and genetic factors. Familial clustering was reported in the studies of COPD in China. Several gene polymorphisms have been investigated in the Chinese population, but there is a need for further clarification and confirmation. Individuals with α1-antiprotease deficiency had a markedly increased risk of developing COPD in Europe, whereas few patients with α1-antiprotease deficiency developed COPD in China. Another case-control study among the Han population in southwest China failed to obtain evidence of the contribution of SERPINE2 polymorphism to COPD susceptibility, although it has been accepted as a candidate gene in other populations. It was suggested that there might be other genetic factors involved in the development of COPD in the Chinese population.

Microsomal epoxide hydrolase is an enzyme that potentially reduces oxidative stress by detoxifying epoxide compounds such as those found in cigarette smoke. An updated meta-analysis of 16 studies on such hydrolase polymorphisms in COPD in the Asian population suggested that the slow activity phenotype of the enzyme is associated with an increased risk of COPD, and the fast activity phenotype is a protective factor in the development of COPD. Genetic polymorphism in Heme oxygenase-1, one of the antioxidant enzymes, was found to be associated with the severity of COPD in southwest China. γ-Glutamylcysteine synthetase and 8-hydroxy-guanine glycosylase both play roles in the antioxidant defenses, and both were reported to be not associated with susceptibility to COPD in a southern Chinese population. Polymorphisms of IL-27 gene, matrix metalloproteinase-9 gene, tumor necrosis factor-α, and aquaporin were demonstrated to play roles in susceptibility to COPD. Clara cell 16 kDa secretory protein, which plays a potential role in the control of inflammatory response, was not found to be associated with the development of COPD. The study of gene polymorphisms might be helpful in defining patient...
subgroups, leading to the development of different approaches to the prevention and treatment of COPD.

Others

Studies have shown that smoking and the individual’s socioeconomic status are correlated to the influence of occupational exposure on COPD prevalence. 79-73 Studies have investigated green tea as an antioxidant in the treatment of COPD and have found that its use might prevent the occurrence of the disease. 74 There is a need to evaluate how tea drinking or other dietary habits may influence the development or treatment of COPD in China. Malnutrition may aggravate dyspnea and exercise intolerance in COPD patients by weakening respiratory muscle strength. Low BMI was reported to be closely connected with a high incidence of COPD, 75,76 as well as an increased hospitalization rate and poor prognosis. 77,78 Outdoor air pollution is also considered an important risk factor for COPD, evidenced by the fact that ambient concentrations of air pollutants have an adverse effect on hospital admissions for COPD. 79 Another case-control analysis of air pollution and daily mortality in Shanghai showed an association between air pollution and mortality with COPD and cardiovascular causes. 80 The results confirmed the deleterious role played by the current air pollution level in COPD, especially in large cities like Shanghai. In addition, low educational level, chronic cough or respiratory infection in childhood, low socioeconomic status, and reduced physical activities have all been reported to contribute to the increased incidence of COPD independently or jointly.

MANAGEMENT OF COPD IN CHINA

A national strategy for the management of COPD, drafted by the Chinese Medical Association, was first published in 2002 and then updated annually. 81 Doctors are also encouraged to adopt the GOLD (Global Initiative for Chronic Obstructive Lung Disease) guideline for the care of patients with COPD. 1 Despite widely disseminated evidence-based clinical practice guidelines, current knowledge of primary care physicians and management of patients with COPD remain suboptimal. 82-84 Barriers to the implementation of guidelines are multifarious, whether physician related or patient related.

Delayed Diagnosis and Intervention

A lack of awareness about biomarkers and risk factors for COPD among physicians had led to delayed diagnosis and interventions for patients. Early diagnosis may help patients quit smoking and lead to the adoption of effective therapies to prevent progression of COPD. However, more than one-third (35.3%) of COPD patients were asymptomatic, whereas only one-third of subjects with GOLD stage I COPD were diagnosed with respiratory disease. 85 In a recent study, the diagnosis of COPD was made in 148 of the 1,624 subjects aged 40 years in five villages of northern China according to the standards set in the GOLD guideline, whereas none of the patients had ever been diagnosed previously. 86 Another retrospective study demonstrated that only 15.9% of the patients in southern China were diagnosed with mild-degree COPD, whereas most of the patients were at a severe or extremely severe stage when first diagnosed. 86 This could be attributed to the fact that most Chinese patients, especially those in rural areas with major health-care disparities, are used to bottling up their discomfort until the development of significant symptoms and/or exacerbations.

Diagnosis Without Spirometry

Physicians continue to diagnose and manage patients with COPD without verifying the diagnosis and assessing the severity with spirometry. According to GOLD guidelines, spirometry is the gold standard in the measurement of airflow limitation because of its reliable, simple, safe and inexpensive grading, monitoring, and assessing of the disease. However, less than one-third of COPD diagnoses were made with the aid of spirometry 87 and in some rural areas none of the...
patients diagnosed with COPD received a spirometry test. In 185 previously diagnosed COPD patients, 67 were confirmed by spirometry based on diagnostic criteria, 47 had normal lung function, and 63 had mixed ventilation disorder. Profound underuse of spirometry was considered to be a barrier to decent care of Chinese COPD patients. Barriers hindering use of spirometry in clinical practice include ignorance of the crucial role of spirometry, facility inaccessibility, and limited budgets, especially in most of the primary care settings.

Patient Self-Management of COPD

Patients are not knowledgeable about how to manage their COPD. Health education on self-management for patients should be taken into account to reduce the frequency and severity of exacerbations and to improve quality of life. However, COPD patients were found to lack general knowledge about the disease. For example, the term “COPD” was recognized by <30% of the patients who regularly visited hospitals, whereas an even lower number of rural patients recognized the term. Patients also lacked awareness of COPD risk factors, the importance of lung function tests, inhalation therapy, and oxygen therapy. About 20% of patients were current smokers, of which 23% did not know the harmful effect of smoking on the disease. Unfortunately, no health education program was available in rural areas, although all patients were willing to read information about COPD. Patients took the initial advice for smoking cessation from primary care physicians, so there is a great need to implement evidence-based guidelines and demand that physicians take immediate action. Studies in some urban hospitals demonstrated that 64.5% of the COPD patients quit smoking after application of general interventions, whereas the cessation rate of the control group was only 28%. Underuse of home oxygen therapy, lung function training, and nutrition support among patients also suggested the necessity of patient education to facilitate comprehensive rehabilitation.

Physician Recommendations

The recommendations made by physicians often do not meet the standard of the GOLD guidelines. According to the GOLD guidelines, bronchodilators, including β₂-agonists, anticholinergics, and methylxanthines, should be the basic agents for all patients, whereas inhaled corticosteroids are recommended only for patients with moderate/severe airflow obstruction and/or frequent exacerbations. An investigation of the application of pharmacologic therapy conducted in six cities, using face-to-face interviews among 723 patients with stable COPD and 258 pulmonary physicians, showed that expectorants were the most often prescribed medications, followed by β₂-agonists and anticholinergics. Instead of long-acting bronchodilators, more than one-half of the patients were prescribed short- or medium-acting bronchodilators, which was inconsistent with the guidelines. Most of the physicians underused oxygen therapy, noninvasive intermittent positive pressure ventilation, and antiinflammation therapy. Only 20% of the primary care physicians were fully knowledgeable about pharmacologic therapies for COPD.

Prospects

COPD represents a challenging issue because of its impact on both personal and public health and its economic consequences. There is an urgent need to understand the present and future burden of COPD in China from well-designed epidemiologic studies on its prevalence and morbidity. Because of ethnic differences, studies on genetic susceptibility to COPD among the Chinese population should be carried out to improve prevention and lead to early diagnosis. Because China is the world’s largest cigarette manufacturer and because it is the world’s largest consumer of cigarettes, there is a great challenge to restrict and regulate smoking in China with an intent to reduce the burden of COPD. During the last decade, smoking prevention and cessation programs have been implemented widely and preliminary results have been observed (Tables 2, 3). However, there are many factors affecting the execution of smoking laws and regulations by the government. Rural workers, teenagers, and women with high or rising rates of smoking need to be targeted specifically for tobacco-control measures. The existing public health policies should be strengthened and new strategies, including raising taxes and the price of cigarettes, should be put into effect. On the other hand, physicians should take the leading role in the fight against smoking. It has been found that about 40% of male physicians are current smokers, which adds to the difficulty of smoking control.

Table 3—Smoking Control Mechanisms in China

| Smoking control is required for the criterion of “national clean city” |
| Smoking is prohibited in public places |
| Knowledge that “smoking is harmful to health” is spread through media |
| Attend international smoking cessation contest, encourage the building of a no smoking community and no smoking unit |
| Smoking by teenagers is reduced through laws or local regulations and school-based prevention programs |
| Doctors are encouraged to give up smoking to raise society’s awareness of its harmful effects |
| Smoking cessation clinic has been set up |
Another challenge is delayed diagnosis and under-estimation of frequent exacerbations in the management of COPD. Screening by spirometry is impractical in most primary care settings and rural areas, indicating the urgent need for disease-specific biomarkers to facilitate early diagnosis and identify high-risk populations. Management techniques of COPD should take into consideration cultural variations and mental and physical comorbidities, such as psychologic depression. Comorbidities could influence patients’ quality of life, increase hospitalization, and reduce survival. The role played by finances should also be taken into account to improve the poor management of COPD. For example, the cost for drug therapy ($443-$738 per year) in the maintenance phase is a huge economic burden for families and individuals, especially for rural residents. Less than 40% of patients with chronic hypoxemia use oxygen therapy because the cost ($517 per year) is too high. It is necessary to implement a community-based comprehensive intervention, which requires support from national polices, to ensure the availability of medical resources, such as essential drugs, equipment, and human resources, and to improve the affordability of COPD therapy for patients. Continuous educational programs on quality-improving skills and management strategies should be more effective and comprehensive in China to improve health-care quality and physicians’ clinical practice skills and to reduce health-care disparities among regions and economic groups.

ACKNOWLEDGMENTS

Financial/nonfinancial disclosures: The authors have reported to CHEST that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

Other contributions: We express our special appreciation to Mr Mark Danderson for his valuable comments and editorial assistance.

REFERENCES

1. Rabe KF, Hard S, Anzueto A, et al; Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532-555.
2. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.
3. Halbert BJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006;28(3):523-532.
4. World Health Organization. The global burden of disease: 2004 update. The World Health Organization Web site. http://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html. 2004. Accessed December 2006.
5. Zhong N, Wang C, Yao W, et al. Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med. 2007;176(8):753-760.
6. Tang G, Yuan F, Pang Y, et al. Survey on prevalence and risk factors of COPD in rural areas in Anhui province [in Chinese]. Chin J Tuberc Respir Dis. 2001;24(4):245.
7. Xu F, Yin XY, Zhang M, Shen H, Lu L, Xu Y. Prevalence of physician-diagnosed COPD and its association with smoking among urban and rural residents in regional mainland China. Chest. 2005;128(4):2818-2823.
8. Liu S, Wang X, Wang D, et al. Epidemiologic analysis of COPD in Guangdong province [in Chinese]. Zhonghua Yi Xue Za Zhi. 2005;85(11):747-752.
9. Shan S, Chen B. Epidemiology Investigation of chronic obstructive pulmonary disease in city and country of Tianjin [in Chinese]. Med J Tianjin Univ. 2007;35(7):488-490.
10. Ma R, Cheng Q, Yao D, et al. Epidemiologic survey of chronic obstructive pulmonary disease in the elders in Shanghai. Acad J Shanghai Second Med Univ. 2005;25(5):521-524.
11. Cai L, Zhao K, Tang P. Analysis on burden of chronic obstructive pulmonary disease in rural Kunming [in Chinese]. Chin J Prev Control Chronic Dis. 2009;17(1):80-81.
12. Wang X, Zhou Y, Zeng X, et al. Study on the prevalence rate of chronic obstructive pulmonary disease in northern part of Guangdong province [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2005;26(3):211-213.
13. Yao W, Zhu H, Shen N, et al. Epidemiologic data of chronic obstructive pulmonary disease in Yanqing County in Beijing [in Chinese]. Beijing Da Xue Xue Bao. 2005;37(2):121-125.
14. Jiang R, Luo D, Huang C, et al. Study on the prevalence rate and risk factors of chronic obstructive pulmonary disease in rural community population in Hubei province [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2007;28(10):976-979.
15. Chen H, Su W, Chen X. Epidemiologic survey and risk factors analysis of COPD in People aged 40ys or older in rural areas of Lianjiang, Guangdong [in Chinese]. J Guangdong Med. 2008;26(5):560-564.
16. Li Q, Liao X, Zhang Q. Epidemiological sampling survey on chronic obstructive pulmonary disease in urban area of Chongqing. Chin J Respir Crit Care Med. 2009;8(1):12-15.
17. Hong XQ, Xiao SY, Dai AG. Epidemiic Situation and Risk Factors Analysis of COPD in Partial Areas of Hunan Province. Human Province, China: Central-South University; 2009.
18. Zhang YM, Li YC. Epidemiologic Investigation of Risk Factors of COPD in Peripheral Rural of Qingdao, Shandong Province, China: Qingdao University; 2006.
19. Hou G, Li M, Feng X, et al. Epidemiologic analysis of COPD in rural females in Liaoning province. Chin Med Univ. 2007;36(6):671-691.
20. Regional COPD Working Group. COPD prevalence in 12 Asia-Pacific countries and regions: projections based on the COPD prevalence estimation model. Respiratory. 2003;8(2):192-198.
21. Halbert RJ, Isonaka S, George D, Iqbal A. Interpreting COPD prevalence estimates: what is the true burden of disease? Chest. 2003;123(5):1684-1692.
22. Chinese Ministry Of Health. The top-ten disease-specific rates and causes of death among urban and rural residents. The Ministry of Health of the People’s Republic of China Web site. http://www.moh.gov.cn/publicfiles/business/htmlfiles/zxgzt/ptjnj/200908/42635.htm. 2008. Accessed October 2009.
23. He J, Gu DF, Wu XG, et al. Major causes of death among men and women in China. N Engl J Med. 2005;353(11):1124-1134.
24. Reilly KH, Gu DF, Duan XF, et al. Risk factors for chronic obstructive pulmonary disease mortality in Chinese adults. Am J Epidemiol. 2008;167(8):998-1004.
25. Tan WC, Seale P, Ip M, et al. Trends in COPD mortality and hospitalizations in countries and regions of Asia-Pacific. *Respirology*. 2009;14(1):90-97.

26. Tan WC, Ng TP. COPD in Asia: where East meets West. *Chest*. 2008;133(2):517-527.

27. Chiang CH. Cost analysis of chronic obstructive pulmonary disease in a tertiary care setting in Taiwan. *Respirology*. 2008;13(5):689-694.

28. He QY, Zhou X, Xie CM, et al. Impact of chronic obstructive pulmonary disease on quality of life and economic burden in Chinese urban areas [in Chinese]. *Zhonghua Jie He He Hu Xi Za Zhi*. 2009;32(4):253-257.

29. Chinese Center for Disease Control and Prevention. Report on Chronic Disease in China. 2006. http://wenku.baidu.com/view/9113c5aedd3383c4bb4cd274.html. Accessed December 2006.

30. Wipfli H, Samet JM. Global economic and health benefits of tobacco control: part I. *Clin Pharmacol Ther*. 2009;86(3):263-271.

31. Yang G, Ma J, Chen AP, Brown S, Taylor CE, Samet JM. Smoking among adolescents in China: 1998 survey findings. *Int J Epidemiol*. 2003;34(3):1103-1110.

32. Anderson Johnson C, Palmer PH, Chou CP, et al. Tobacco use among youth and adults in Mainland China: the China Seven Cities Study. *Public Health*. 2006;120(12):1156-1169.

33. Mao R, Li XM, Stanton B, et al. Psychosocial correlates of cigarette smoking among college students in China. *Health Educ Res*. 2009;24(1):105-118.

34. Wang CP, Ma SJ, Xu XF, Wang JF, Mei CZ, Yang GH. The prevalence of household second-hand smoke exposure and its correlated factors in six counties of China. *Toh Control*. 2009;18(2):121-126.

35. Han JX, Ma L, Zhang HW, et al. A cross sectional study of passive smoking of non-smoking women and analysis of influence factors on women passive smoking [in Chinese]. *Wei Sheng Yan Jiu*. 2006;35(5):609-611.

36. Zhang H, Cai BQ. The impact of tobacco on lung health in China. *Respirology*. 2003;8(1):17-21.

37. Hesketh T, Lu L, Jun YX, Mei WH. Smoking, cessation and expenditure in low income Chinese: cross sectional survey. *BMC Public Health*. 2007;7(29):29.

38. Martin P, Glasgow H, Patterson J. Chronic obstructive pulmonary disease (COPD): smoking remains the most important cause [abstract]. *N Z Med J*. 2005;118(1213):U1409.

39. Xu F, Yin XM, Shen HB, Xu Y, Ware RS, Owen N. Better understanding of the influence of cigarette smoking and indoor air pollution on chronic obstructive pulmonary disease: a case-control study in Mainland China. *Respirology*. 2007;12(6):881-807.

40. Yin F, Jiang CQ, Cheng KK, et al. Passive smoking exposure and risk of COPD among adults in China: the Guangzhou Biobank Cohort Study. *Lancet*. 2007;370(9559):751-757.

41. Menezes AM, Hallal PC. Role of passive smoking on COPD risk in non-smokers. *Lancet*. 2007;370(9559):716-717.

42. Yang G, Ma J, Liu N, Zhou LN. Smoking and passive smoking in Chinese. 2002 [in Chinese], *Zhonghua Liu Xing Bing Xue Za Zhi*. 2005;26(2):77-83.

43. Cheng Y, Jin Y, Gu H, Zhao C. Prevalence survey of smoking pattern among peasants in China [in Chinese]. *Wei Sheng Yan Jiu*. 2003;32(4):366-368,406.

44. Lin HH, Murray M, Cohen T, Colijn C, Ezzati M. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. *Lancet*. 2008;372(9648):1473-1483.

45. Lin HH, Murray M, Cohen T, Colijn C, Ezzati M, Kurtipek E, et al. Obstructive airway diseases in women exposed to biomass smoke. *Environ Res*. 2005;96(1):93-98.

46. Pérez-Padilla R, Regalado J, Vedal S, et al. Exposure to biomass smoke and chronic airway disease in Mexican women. A case-control study. *Am J Respir Crit Care Med*. 1996;154(3 Pt 1):701-706.

47. Kinaz K, Kart L, Demir R, et al. Chronic pulmonary disease in rural women exposed to biomass fumes. *Clin Invest Med*. 2003;26(5):243-248.

48. Liu SM, Zhou YM, Wang XP, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. *Thorax*. 2007;62(10):859-897.

49. Hu GP, Zhou YM, Tian J, et al. Risk of COPD from exposure to biomass smoke: a metaanalysis. *Chest*. 2010;138(1):20-31.

50. Han JX, Zhang HW, et al. The risk factors for chronic obstructive pulmonary disease in females in Chinese rural areas [in Chinese]. *Zhonghua Nei Ke Za Zhi*. 2006;45(12):974-979.

51. Chapman RS, He XZ, Blair AE, Lan Q. Improvement in household stoves and risk of chronic obstructive pulmonary disease in Xuanwei, China: retrospective cohort study. *BMJ*. 2005;331(7524):1050-1052.

52. Yang GH, Zhong NS. Effect on health from smoking and use of solid fuel in China. *Lancet*. 2008;372(9648):1445-1446.

53. Lieberman J, Winter B, Sastre A. Alpha 1-antitrypsin Pi-types and lung cancer in Spain. *Clin Pharmacol Ther*. 2009;86(3):263-271.

54. Yang GH, Ma JM, Chen AP, et al. Smoking cessation in China: findings from the 1996 national prevalence survey. *Tob Control*. 2001;10(2):170-174.

55. Pérez-Padilla R, Regalado J, Vedal S, et al. Exposure to biomass smoke and chronic airway disease in Mexican women. A case-control study. *Am J Respir Crit Care Med*. 1996;154(3 Pt 1):701-706.

56. Kinaz K, Kart L, Demir R, et al. Chronic pulmonary disease in rural women exposed to biomass fumes. *Clin Invest Med*. 2003;26(5):243-248.

57. Liu SM, Zhou YM, Wang XP, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. *Thorax*. 2007;62(10):859-897.

58. Hu GP, Zhou YM, Tian J, et al. Risk of COPD from exposure to biomass smoke: a metaanalysis. *Chest*. 2010;138(1):20-31.

59. Han JX, Zhang HW, et al. The risk factors for chronic obstructive pulmonary disease in females in Chinese rural areas [in Chinese]. *Zhonghua Nei Ke Za Zhi*. 2006;45(12):974-979.

60. Chapman RS, He XZ, Blair AE, Lan Q. Improvement in household stoves and risk of chronic obstructive pulmonary disease in Xuanwei, China: retrospective cohort study. *BMJ*. 2005;331(7524):1050-1052.

61. Yang GH, Zhong NS. Effect on health from smoking and use of solid fuel in China. *Lancet*. 2008;372(9648):1445-1446.

62. Lieberman J, Winter B, Sastre A. Alpha 1-antitrypsin Pi-types and lung cancer in Spain. *Clin Pharmacol Ther*. 2009;86(3):263-271.

63. Yang GH, Ma JM, Chen AP, et al. Smoking cessation in China: findings from the 1996 national prevalence survey. *Tob Control*. 2001;10(2):170-174.

64. Pérez-Padilla R, Regalado J, Vedal S, et al. Exposure to biomass smoke and chronic airway disease in Mexican women. A case-control study. *Am J Respir Crit Care Med*. 1996;154(3 Pt 1):701-706.

65. Kinaz K, Kart L, Demir R, et al. Chronic pulmonary disease in rural women exposed to biomass fumes. *Clin Invest Med*. 2003;26(5):243-248.

66. Liu SM, Zhou YM, Wang XP, et al. Biomass fuels are the probable risk factor for chronic obstructive pulmonary disease in rural South China. *Thorax*. 2007;62(10):859-897.
with the presence of chronic obstructive pulmonary disease: a meta-analysis [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi. 2007;30(8):585-594.

66. Sakao S, Tatsunami K, Igarhi H, Shinoh Y, Shirasawa H, Kuriyama T. Association of tumor necrosis factor alpha gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):420-422.

67. Jiang L, He B, Zhao MW, Ning LD, Li XY, Yao WZ. Association of gene polymorphisms of tumour necrosis factor-alpha and interleukin-13 with chronic obstructive pulmonary disease in Hun nationality in China. Chin Med J (Engl). 2005;118(7):541-547.

68. Ning YG, Ying BW, Han SX, Wang B, Wang X, Wen F. Polymorphisms of aquaporin5 gene in chronic obstructive pulmonary disease in a Chinese population. Swiss Med Wkly. 2008;138(39-40):573-578.

69. Wang K, Feng YL, Wen FQ, et al. Decreased expression of human aquaporin-5 correlated with mucus overproduction in airways of chronic obstructive pulmonary disease. Acta Pharmacol Sin. 2007;28(8):1166-1174.

70. Zhou Y, Wang C, Yao WZ, et al. Occupational exposure to dust/fumes is contributed to chronic obstructive pulmonary disease and respiratory symptoms. Chin J Respir Crit Care Med. 2009;8(1):6-11.

71. Hu YP, Pan JS, Wang XJ. An epidemiologic survey of chronic obstructive pulmonary disease among coke oven workers. J Environ Occup Med. 2003;20(3):191-194.

72. Hu Y, Chen B, Yin Z, Jia L, Zhou Y, Jin T. Increased risk of chronic obstructive pulmonary diseases in coke oven workers: interaction between occupational exposure and smoking. Thorax. 2006;61(4):290-295.

73. Wang XR, Yang E, Wang M, Wang Z. Respiratory impairments due to dust exposure: a comparative study among workers exposed to silica, asbestos, and coalmine dust. Am J Ind Med. 1997;31(5):495-502.

74. Rahman, I. I. Kilty. Antioxidant therapeutic targets in COPD. Curr Drug Targets. 2006;7(6):707-720.

75. Ran PX, Wang C, Yao WZ. A study of correlation of body mass index with COPD and quality of life [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi. 2007;30(1):18-22.

76. Huang Z, Luo Q, Ling M. The correlation between body mass index and pulmonary function in patients with chronic obstructive pulmonary disease. J Clin Palm Med. 2009;14(1):14-16.

77. Xue B, Yang C, Li X. The impact of body mass index on the prognosis of COPD. J Clin Palm Med. 2008;13(3):281-282.

78. Du YJ, Luo Y, Luo Z. The relationship between body mass index and hospitalization in patients with COPD. J Med Theor Pract. 2007;20(2):183-184.

79. Viegi G, Maio S, Pistelli F, Baldacci S, Carrozza L. Epidemiology of chronic obstructive pulmonary disease: health effects of air pollution. Respirology. 2006;11(5):523-532.

80. Kan HD, Chen BH. A case-crossover analysis of air pollution and daily mortality in Shanghai. J Occup Health. 2003;45(2):119-124.

81. Respiratory Diseases Branch of Chinese Medical Association. A national guideline for the diagnosis, management, and prevention of chronic obstructive pulmonary disease in China. Chin J Tuberc Respir Dis. 2007;30(1):8-17.

82. Zhang HQ, Li YQ, Qin H. Survey on diagnosis and treatment of chronic obstructive pulmonary disease in physicians working in local hospitals in Shanghai. Shanghai Med J. 2008;31(11):806-811.

83. Liu Z, Gu YT, Cai Y. Investigating physician master the significance of pulmonary function in the diagnosis of COPD. Chin Clin Med. 2004;11(1):39-41.

84. Lou PA, An XH, Zhang, L. Analyzing the difference of the knowledge between men and women COPD patients for COPD in rural area. Chin J Health Care Med. 2009;11(3):198-201.

85. Shen N, Yao WHSC, Zhu H. Patient’s perspective of chronic obstructive pulmonary disease in Yangzou County of Beijing. Chin J Tuberc Respir Dis. 2008;31(3):206-208.

86. Li ZP, Huang JQ, Tang KJ. Retrospective studies on 713 cases chronic obstructive pulmonary disease [in Chinese]. Zhonghua Lin Xing Bing Xue Za Zhi. 2003;24(8):722-724.

87. He Q, Zhao Q. Spirometry utilization for COPD in several provinces in China. Chin J Tuberc Respir Dis. 2003;26(1):39-40.

88. Li XF, Zhang FY, Hang JQ. Pulmonary function tests in diagnosis of chronic obstructive pulmonary disease. Clin Focus. 2009;24(5):387-389.

89. Sin DD, Tan WC. Breaking down the “Great Wall” of COPD care in China. Am J Respir Crit Care Med. 2007;176(8):732-733.

90. Chen L, Zhang G, Lin S. The effect of health education on lung function and quality of life among stabilized patients with chronic obstructive pulmonary disease. Chin J Epidemiol. 2005;26(10):808-810.

91. Xie GQ, Cheng XS, Xu XS, et al. Effects of comprehensive interventions in community on smoking, chronic bronchitis, and asthma in rural areas of Beijing [in Chinese]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2005;27(1):92-98.

92. Chen K. Survey on Awareness Degree of COPD Patients. Liaoning Province: China Medical University; 2009.

93. Yan LH, Leng BZ, Xu B. The cognition and requirement for health education of COPD. Zhong Guo Chu Ji Wei Sheng Bao Jian. 2009;23(2):62-63.

94. Zhang X, Xu L, Zhou XY. Survey on oxygen therapy among elderly stabilized patients with COPD. Morden Prev Med. 2008;35(11):2196-2200.

95. Chen Y, Wu S, Xiang C. Current status of long-term domiciliary oxygen therapy in patients with chronic obstructive pulmonary disease. Chin J Modern Med. 2007;17(21):2658-2660.

96. Lou PA, Yu JX, An XH, et al. Disease perception and awareness in patients with chronic obstructive pulmonary disease in rural Xuzhou. Chin J General Practitioners. 2009;8(3):157-159.

97. He Q, Zhou X, Xie C. The investigation of the treatment conditions in stable COPD patients in partial cities in China. Chin J Practic Intern Med. 2009;29(4):354-357.

98. Zhang RB, He QY. Awareness of knowledge of COPD by doctors in district and community hospitals. Chin J Prev Control Chronic Dis. 2009;17(1):61-63.

99. Zhu WH, Yang L, Jiang QG, et al. Characteristics of smokers and predictors of quitting in a smoking cessation clinic in Guangzhou, China. J Public Health (Oxf.). 2010;32(2):267-276.

100. The laws in China. The fz-china Web site. http://www.fz-china.com/fz-china/law.php?n=fl. Accessed June 2009.

101. Jiang H, Li X, Wu X. Smoking behavior of Chinese physicians. Chin J Prev Control Chronic Dis. 2009;17(3):224-227.

102. Price DB, Tinkelman DG, Nordyke RJ, Isonaka S, Halbert RJ. COPD Questionnaire Study Group. Scoring system and clinical application of COPD diagnostic questionnaires. Chest. 2006;129(6):1531-1539.

103. Price DB, Tinkelman DG, Halbert RJ, et al. Symptom-based questionnaire for identifying COPD in smokers. Respiration. 2006;73(3):285-295.