Patient safety and quality of care continue to improve in NHS North West following early implementation of the European Working Time Directive

J. COLLUM, J. HARROP, M. STOKES and D. KENDALL

From the Junior Doctor Advisory Team, NHS North West Strategic Health Authority, Manchester, M1 3BN, UK

Address correspondence to J. Collum, Junior Doctors Advisory Team, NHS North West Strategic Health Authority, Piccadilly Place, 3rd Floor, Manchester, M1 3BN, UK. email: josephcollum@hotmail.com

Received 15 February 2010 and in revised form 9 July 2010

Summary

Objectives: NHS North West aimed to fully implement the European Working Time Directive (EWTD) 1 year ahead of the August 2009 national deadline. Significant debate has taken place concerning the implications of the EWTD for patient safety. This study aims to directly address this issue by comparing parameters of patient safety in NHS North West to those nationally prior to EWTD implementation, and during ‘North West-only’ EWTD implementation.

Design: Hospital standardised mortality ratio (HSMR), average length of stay (ALOS) and standardised readmission rate (SRR) in acute trusts across all specialties were calculated retrospectively throughout NHS North West for the three financial years from 2006/2007 to 2008/2009. These figures were compared to national data for the same parameters.

Results: The analysis of HSMR, ALOS and SRR reveal no significant difference in trend across three financial years when NHS North West is compared to England. HSMR and SRR within NHS North West continued to improve at a similar rate to the England average after August 2008. The ALOS analysis shows that NHS North West performed better than the national average for the majority of the study period, with no significant change in this pattern in the period following August 2008. When the HSMRs for NHS North West and England are compared against a fixed benchmark year (2005), the data shows a continuing decrease. The NHS North West figures follow the national trend closely at all times.

Conclusions: The data presented in this study quantitatively demonstrates, for the first time, that implementation of the EWTD in NHS North West in August 2008 had no obvious adverse impact on key outcomes associated with patient safety and quality of care. Continued efforts will be required to address the challenge posed nationally by the restricted working hour’s schedule.

Introduction

Since August 2009, doctors in training in the UK have been required by law to work an average of no >48 h/week, calculated over a 26 week reference period. The legislation underpinning this originated from Europe in 1993 and was originally termed the European Working Time Directive (EWTD). This directive was incorporated into UK law in 1998 under the Working Time Regulations
tern. Moreover, the 2009 postgraduate medical undertaking a traditional 56 h/week working pat-
compliant rota when directly compared to a group error rates amongst doctors working in an EWTD
UK, has demonstrated a marked decrease in medical A prospective study, recently undertaken in the training, service provision and continuity of care
hours, concerns regarding the threat to quality of training, service provision and continuity of care have been aired with regularity. Alongside this, the implicit concern that patient safety could be adversely affected has received widespread press coverage. However, there is no robust evidence to uphold the viewpoint that the adoption of a restricted working hours schedule will impair patient safety, directly or indirectly.

Conversely, there is a body of evidence to support the reduction in doctors working hours with reference to improving patient safety and reducing serious medical error. A number of studies conducted in the USA in recent years provide evidence for increased serious medical error in those working prolonged shifts compared with those undertaking restricted hours. Similarly, an incremental increase in adverse patient safety incidents with successive prolonged shifts, especially night-shifts, has been well demonstrated. The Royal College of Physicians Multidisciplinary Working Group published guidance in 2006 which recommended the cessation of traditional full-shift working practises involving blocks of seven 13-h night-shifts, and endorsed a limit of four successive night-shifts that should be minimized in length where possible.

A prospective study, recently undertaken in the UK, has demonstrated a marked decrease in medical error rates amongst doctors working in an EWTD compliant rota when directly compared to a group undertaking a traditional 56 h/week working pattern. Moreover, the 2009 postgraduate medical education and training board (PMETB) national survey of trainees provides evidence that trainees operating within the 48-h limit are significantly less likely to report serious error.

The EWTD was not the first move to restrict working hours for junior doctors; the New Deal junior doctor contract, agreed in 1991, stipulated maximum shift lengths, maximum weekly working hours (depending on shift type) and outlined minimum rest requirements. This contract embodied the viewpoint that junior doctors, alongside other workers, were entitled to adequate work/life balance and epitomized the wider perspective that ‘tired doctors are not safe doctors’.

The actual implementation of an average 48-h working week represented a significant challenge to the organization and provision of clinical services across the country; in recognition of this, and in order to lead the way in EWTD implementation, NHS North West undertook a project which aimed to implement the EWTD 1 year ahead of the August 2009 deadline.

Although there is now an accumulation of evidence to support the viewpoint that patient safety is improved by restricted working hours amongst doctors, there are no objective UK data examining quantitative parameters of patient safety in an environment where the EWTD limit has been implemented. The unique circumstances existing in the UK from August 2008 allow us to compare the performance of a largely EWTD compliant region (NHS North West) to the rest of England, which had not yet implemented the 48-h limit. These circumstances allow us to test the hypothesis that implementation of the EWTD in the North West has had no adverse impact on several key outcomes associated with patient safety.

This study aims to compare parameters of patient safety in NHS North West to those nationally, prior to EWTD implementation, and after ‘North West-only’ EWTD implementation. In devising this study, we considered hospital standardised mortality ratio (HSMR), average length of stay (ALOS) and standardised readmission rate (SRR) in acute trusts, across all specialties, to be suitable quantitative indicators of patient safety and quality of care.

Methods

Data for this study were collected and analysed by Dr Foster Intelligence. The information is based on the data which is routinely collected from day case and inpatient records throughout the NHS. These data were then extracted for analysis by the Dr Foster Unit at Imperial College London through the secondary users service (SUS). The data were cleaned and anonymized according to established hospital episode statistics (HES) guidelines. HSMR, ALOS and SRR across NHS North West were analysed retrospectively for the three financial years 2006/2007 to 2008/2009 (effectively April 2006 to March 2009). These figures were compared with the national data for the same parameters. No individual patients were identifiable in this study.

The HSMR compares the number of expected deaths with the number of actual deaths in a ratio [(observed deaths/expected deaths) x 100]. The HSMR analysis was performed for acute trusts only, across all specialties. The expected counts are derived using logistic regression and are adjusted for factors to indirectly standardize for
difference in case mix, including: (i) sex, (ii) age group (in 5 year bands up to ≥90), (iii) method of admission (non-elective or elective), (iv) the socio-economic deprivation quintile of the area of residence of the patient (based on the Carstairs Index), (v) primary diagnosis (based on the Clinical Classification System), (vi) co-morbidities (based on Charlson Score), (vii) number of previous admissions, (viii) month of admission (for certain conditions where seasonal variation may be important, e.g. respiratory infection) and (ix) whether a patient is being treated within the specialty of palliative care.

A published methodology for calculation of HSMRs was utilized; however, a detailed description of this methodology is beyond the scope of this article and can be found in our references. ALOS analysis measures the average duration of all patient episodes in hospital across acute trusts, across specialties, from the day of admission to the day of discharge, divided into elective and non-elective groups.

The SRR analysis takes into account the number of emergency readmissions to acute trusts across specialties within 28 days of discharge, where readmission was not part of the planned treatment. The rate is calculated by dividing the observed readmissions by the expected readmissions. Both are indirectly standardized for the following factors: (i) age on admission (in 5 year bands up to ≥90)
(ii) sex, (iii) admission method (non-elective or elective), (iv) socio-economic deprivation quintile of the area of residence of the patient (based on the Carstairs Index), (v) primary diagnosis (based on the Clinical Classification System), (vi) comorbidities (based on Charlson Score) and (vii) year of discharge (financial year).

Results

The HSMRs by month for NHS North West and England are included in table form with associated confidence intervals (Tables 1 and 2). When the HSMR analysis for NHS North West is plotted alongside the national trend, a similar pattern for both can be seen throughout the period of analysis. The green markers in Figure 1 show where the HSMR is statistically low in a given month and red markers show where the HSMR is statistically high. When the HSMRs for NHS North West and England are compared against a fixed benchmark year (2005) the data shows a continuing decrease (Figure 2). The NHS North West figures follow the national trend closely at all times.

The ALOS by month for NHS North West and England are included in table form with associated confidence intervals (Tables 3 and 4). When the ALOS for elective and non-elective patients across NHS North West is plotted alongside the national trend, a similar pattern for both can be seen throughout the period of analysis.

Table 2 North West SHA HSMR by month

Financial year	Financial month	Observed	Expected	Relative risk	Low-confidence limit	High-confidence limit
2006	1	2174	2013.41	107.98	103.48	112.61
2006	2	2524	2426.19	104.03	100.01	108.17
2006	3	2420	2437.93	99.26	95.35	103.30
2006	4	2447	2312.69	105.81	101.66	110.08
2006	5	2385	2371.77	100.56	96.56	104.68
2006	6	2417	2366.47	102.14	98.10	106.29
2006	7	2462	2432.38	101.22	97.26	105.30
2006	8	2551	2517.56	101.33	97.43	105.34
2006	9	2687	2748.30	97.77	94.11	101.54
2006	10	3011	3022.33	99.63	96.10	103.25
2006	11	2932	2732.56	107.30	103.45	111.25
2006	12	2868	2731.41	105.00	101.19	108.92
2007	1	2566	2382.54	107.70	103.57	111.95
2007	2	2447	2435.41	100.48	96.53	104.54
2007	3	2418	2351.75	102.82	98.76	107.00
2007	4	2357	2329.77	101.17	97.13	105.34
2007	5	2391	2322.09	102.97	98.88	107.18
2007	6	2323	2172.73	106.92	102.61	111.35
2007	7	2459	2469.39	99.58	95.68	103.59
2007	8	2478	2474.66	100.14	96.23	104.16
2007	9	2816	2753.61	102.27	98.52	106.11
2007	10	2952	2878.55	102.55	98.89	106.32
2007	11	2618	2600.77	100.66	96.84	104.59
2007	12	2763	2535.65	108.97	104.94	113.11
2008	1	2616	2451.13	106.73	102.68	110.90
2008	2	2464	2382.25	103.43	99.39	107.60
2008	3	2225	2206.16	100.85	96.71	105.13
2008	4	2373	2345.23	101.18	97.15	105.34
2008	5	2224	2181.87	101.93	97.74	106.26
2008	6	2193	2233.20	98.20	94.13	102.40
2008	7	2375	2451.06	96.90	93.04	100.87
2008	8	2611	2520.76	103.58	99.64	107.63
2008	9	3420	3253.10	105.13	101.64	108.71
2008	10	3257	3090.39	105.39	101.80	109.07
2008	11	2481	2560.75	96.89	93.11	100.77
2008	12	2489	2618.48	95.06	91.36	98.86
trend, once again a similar pattern for both can be seen throughout the period of analysis (Figures 3 and 4).

The SRR by month for NHS North West and England are included in table form with associated confidence intervals (Tables 5 and 6). When the SRR for NHS North West is plotted alongside the national trend, once more a similar pattern for both can be seen throughout the period of analysis (Figure 5).

Discussion

For the first time, we present quantitative data which demonstrates that implementation of the EWTD in NHS North West in August 2008 had no adverse impact on key outcomes associated with patient safety and quality of care. HSMR and SRR within the North West continued to improve at a similar rate to the England average after August 2008. The ALOS analysis shows that NHS North West...
performed better than the national average for the majority of the study period, with no significant change in this pattern in the period following August 2008.

When considering the HSMR trends in detail, three seasonal spikes in the death rate during the December to January period in each financial year analysed can be clearly seen; these occur nationally, and the pattern in NHS North West is no different from the national trend. When the NHS North West HSMR across acute trusts amongst elective and non-elective patients was analysed against 2005 benchmarks across the 3-year period, an overall improvement could be seen which matched the rate of overall HSMR improvement for England, and where the North West showed signs of a decline in improvement this is reflected in the national picture. There was no significant variation from the national HSMR trend immediately following EWTD implementation in the North West, or during the whole period of EWTD implementation from August 2008 until March 2009. Moreover, where NHS North West showed signs of a decline in improvement in the HSMR trend, this is reflected in the national picture demonstrating that this decline in improvement cannot be attributed to a localized issue.

The increase in HSMR in the North West in the winter of 2008/2009 should be examined. There is clear evidence to demonstrate that this increase in HSMR was reflected in the national trend, and this can be attributed to the severe winter pressures related to seasonal infection, exacerbation of

Table 3 National ALOS by month

Financial year	Financial month	Non-elective spells	Non-elective bed days	Non-elective Length of stay	Elective spells	Elective bed days	Elective length of stay
2006	1	560155	3583923	6.39	140734	866833	6.16
2006	2	592028	3994076	6.74	156534	986631	6.30
2006	3	581955	3786725	6.50	160436	952493	5.94
2006	4	584265	3695384	6.32	158024	1035406	6.55
2006	5	577935	3641041	6.29	154641	882057	5.70
2006	6	579337	3731810	6.44	156131	995253	6.38
2006	7	586801	3646884	6.21	159991	983971	6.15
2006	8	575032	3567735	6.20	164885	913653	5.54
2006	9	581538	3742329	6.43	146765	2366563	16.13
2006	10	592861	3734395	6.29	151422	879171	5.81
2006	11	540871	3433578	6.34	150222	867518	5.78
2006	12	587685	3712307	6.31	174312	931691	5.35
2007	1	553947	3344440	6.04	138287	879924	6.36
2007	2	585376	3476364	5.94	155913	891688	5.72
2007	3	568208	3397584	5.98	155662	890068	5.72
2007	4	580892	4104503	5.87	156801	895393	5.71
2007	5	575585	3335338	5.79	151315	876260	5.79
2007	6	552812	3076003	5.56	149001	873906	5.87
2007	7	589025	3427231	5.82	162997	880108	5.40
2007	8	571285	3341169	5.85	163992	894850	5.46
2007	9	571093	3211611	5.62	136217	812565	5.97
2007	10	582038	3581722	6.15	151025	807939	5.35
2007	11	552351	3329521	6.03	162077	850297	5.25
2007	12	581393	3333778	5.73	149936	913187	6.09
2008	1	584123	3708291	6.35	156591	984943	6.30
2008	2	598458	3393158	5.67	152879	887117	5.80
2008	3	577853	3366717	5.83	150938	903224	5.99
2008	4	605829	3547541	5.85	162843	924791	5.68
2008	5	578418	3181351	5.50	143983	824624	5.73
2008	6	587079	3449686	5.88	153500	894024	5.82
2008	7	613680	3546111	5.78	166553	955757	5.74
2008	8	584686	3337497	5.71	154400	873669	5.66
2008	9	621547	3716861	5.98	137479	899885	6.55
2008	10	595532	3645558	6.12	140080	804123	5.72
2008	11	554104	3323336	6.00	141818	815710	5.75
2008	12	631338	3648723	5.78	160270	919499	5.73
chronic disease and hospitalization amongst the growing elderly population.20

Although HSMR figures are clearly a headline statistic when considering the impact of EWTD implementation in NHS North West, data concerning ALOS may provide valuable insights when considering the effectiveness of hospital institutions and clinical teams in satisfactorily and efficiently processing patients. Our data reveal a lower ALOS for both elective and non-elective patients at NHS North West in comparison to England throughout the period studied. Where there is a significant increase in the ALOS for England, this is mirrored at NHS North West. There is an uncharacteristic spike in the elective ALOS at the national level in December 2006 but there is also an increase, although much less significant, at NHS North West in the same month. In the period following August 2008, the ALOS for NHS North West continues to follow the national trend, although it remains lower than the national average. Therefore, it is clear that ALOS has not been impacted in any way that can be attributed to EWTD implementation.

Another useful marker to consider alongside the ALOS when assessing the effective provision of care is the SRR. SRR can provide telling data regarding the effectiveness of initial treatments and highlight those instances in which readmission has been required. When the emergency SRR at NHS North West is compared to that of England for the period April 2006 to March 2009, it can be seen that NHS North West plots a similar pattern to that of the

Table 4 North West SHA ALOS by month

Financial year	Financial month	Non-elective spells	Non-elective bed days	Non-elective length of stay	Elective spells	Elective bed days	Elective length of stay
2006 1	87774	567622	6.47	20685	109669	5.30	
2006 2	92023	585158	6.36	23376	112805	4.83	
2006 3	89767	567218	6.32	24043	136044	5.66	
2006 4	90521	537883	5.94	23041	126581	5.49	
2006 5	89401	544906	6.10	22599	116431	5.15	
2006 6	89872	541369	6.02	23068	151777	6.58	
2006 7	91568	535539	5.85	24012	121517	5.06	
2006 8	90001	556121	6.18	25029	120221	4.80	
2006 9	91089	514335	5.65	21339	118453	5.55	
2006 10	93352	565595	6.06	22850	101881	4.46	
2006 11	83742	527236	6.30	22388	113142	5.05	
2006 12	90558	561964	6.21	25936	130449	5.03	
2007 1	88458	517785	5.85	21545	116515	5.41	
2007 2	93483	540777	5.78	24072	118375	4.92	
2007 3	90220	523084	5.80	24237	114878	4.74	
2007 4	93827	523928	5.58	24202	120877	4.99	
2007 5	92812	504355	5.43	23455	104516	4.46	
2007 6	89982	470781	5.23	22848	105349	4.61	
2007 7	95081	529860	5.57	24741	116265	4.70	
2007 8	91414	513817	5.62	25191	119804	4.76	
2007 9	92676	500942	5.41	20771	122160	5.88	
2007 10	93002	552966	5.95	23191	98263	4.24	
2007 11	89292	514865	5.77	24857	114674	4.61	
2007 12	93867	512556	5.46	22277	103858	4.66	
2008 1	92079	546410	5.93	23245	117387	5.05	
2008 2	94081	523647	5.57	22803	110406	4.84	
2008 3	90082	501180	5.56	22522	105430	4.68	
2008 4	94073	520434	5.53	24350	102210	4.20	
2008 5	90485	489887	5.41	21246	91768	4.32	
2008 6	92267	506968	5.50	22395	102585	4.58	
2008 7	97068	532857	5.49	24364	113150	4.64	
2008 8	93119	514145	5.52	22295	97044	4.35	
2008 9	97674	571888	5.86	19441	103441	5.32	
2008 10	91928	547480	5.96	20606	90610	4.27	
2008 11	87712	490865	5.60	21053	92176	4.38	
2008 12	99035	563954	5.71	23726	104921	4.43	
national average. A significant divergence occurs in summer 2007, at which time the SRR in NHS North West rises above the national average. The reason for this is unclear. Similarly, there is a drop in SRR in March 2008 across both England and NHS North West. Again the reason for this is unclear and may be due to a data anomaly, but further investigation of this is beyond the scope of our report. However, it can be stated that the introduction of a 48-h week in NHS North West in August 2008 did not lead to any appreciable trend change in SRR or any significant divergence from the national average.

Much of the credibility of this study rests on the robustness of the HSMR as a measure of patient safety. Since the technique was devised by Jarman et al. in the UK in the 1990s, HSMRs have been utilized worldwide to focus the discussion of patient safety and quality improvement, to monitor the
provision of care over time and to identify opportunities for improvement. It has become an internationally recognized objective measure of quality of care and, in the author’s opinion it is simply the best tool we currently have with which to quantify and monitor the difficult and multifactorial variables that comprise patient safety and quality of care. Indeed, the Canadian Institute for Health Information adopted HSMR analysis as recently as 2005 in order to drive their patient safety and improvement agenda.22 Certainly, the HSMR has its detractors and indeed many researchers do not consider the HSMR to be a suitable measure of, or surrogate marker for, patient safety.23 The pitfalls of HSMR analysis include the possibility for administrative errors such as miscoding and the possibility of missing data. However, missing data or miscoding would be unlikely to account for the clear and consistent trends that we have demonstrated.

The reliability of this article’s claim also depends on the EWTD compliance rate in the North West during the period August 2008 onwards. Robust data exist to demonstrate 94% compliance with a 48-h working week for junior doctors in the North West region of England in August 2008 and this has been published previously.13 Based on a published methodology, EWTD compliance was calculated using New Deal monitoring data.24 In addition, NHS North West did not take the approach of increasing junior doctor numbers and rather directed resources towards sustainable solutions. This did not include any significant targeted increase

Table 5 National SRR by month

Financial year	Financial month	Observed	Expected	Relative risk	Low-confidence limit	High-confidence limit
2006	1	61,778	50,436.30	122.49	121.52	123.46
2006	2	69,239	57,676.69	120.05	119.15	120.94
2006	3	69,512	57,772.29	120.32	119.43	121.22
2006	4	68,292	57,034.15	119.74	118.84	120.64
2006	5	69,390	57,492.49	120.69	119.80	121.60
2006	6	69,258	57,925.42	119.56	118.68	120.46
2006	7	70,851	59,064.74	119.95	119.07	120.84
2006	8	70,930	59,066.35	120.09	119.20	120.97
2006	9	70,354	59,568.54	118.11	117.23	118.98
2006	10	71,602	59,798.56	119.74	118.86	120.62
2006	11	66,482	54,341.69	122.34	121.41	123.27
2006	12	71,075	54,246.35	131.02	130.06	131.99
2007	1	66,259	51,504.84	128.65	127.67	129.63
2007	2	71,337	55,979.51	127.43	126.50	128.37
2007	3	69,016	54,409.31	126.85	125.90	127.80
2007	4	69,220	54,669.00	126.62	125.68	127.56
2007	5	69,665	54,620.95	127.54	126.60	128.49
2007	6	66,477	52,145.72	127.48	126.52	128.46
2007	7	71,847	56,217.44	127.80	126.87	128.74
2007	8	70,196	55,260.18	127.03	126.09	127.97
2007	9	67,946	54,289.95	125.15	124.21	126.10
2007	10	68,555	54,791.32	125.12	124.19	126.06
2007	11	65,051	52,294.03	124.39	123.44	125.35
2007	12	36,592	49,068.08	74.57	73.81	75.34
2008	1	71,841	57,512.20	124.91	124.00	125.83
2008	2	73,254	59,478.17	123.16	122.27	124.06
2008	3	71,054	57,757.49	123.02	122.12	123.93
2008	4	75,171	60,505.15	124.24	123.35	125.13
2008	5	70,552	57,349.53	123.02	122.11	123.93
2008	6	73,810	59,520.53	124.01	123.11	124.91
2008	7	78,443	63,154.74	124.21	123.34	125.08
2008	8	73,663	59,833.17	123.11	122.23	124.01
2008	9	77,125	63,916.94	120.66	119.81	121.52
2008	10	74,663	60,653.37	123.10	122.22	123.98
2008	11	71,691	56,232.84	127.49	126.56	128.43
2008	12	82,032	58,641.91	139.89	138.93	140.85

Downloaded from https://academic.oup.com/qjmed/article-abstract/103/12/929/1582785 by guest on 30 July 2018
in the number of junior doctors, rather resources were directed towards ‘Hospital at Night’ schemes, extended practitioner roles and service reconfiguration; this approach was detailed in the article ‘Achieving the 48 h week for Junior Doctors in the North West’.13

Compliance across England did increase in the period leading up to 1 August 2009, as other trusts across England prepared for the EWTD deadline. Individual Strategic Health Authorities (SHAs), as part of their own quality assurance process, began the collection of compliance data in January 2009.25 This information was shared with the Department of Health, the Academy of Medical Royal Colleges and the medical professions. NHS North West’s own data for January 2009 showed that the North West was advancing at a greater pace than the rest of England. The stated EWTD compliance for England in January 2009 was 72%; this increased to 91% by August 2009. It is therefore clear that, during the period of interest (August 2008–August 2009), the North West had a significantly greater degree of compliance with EWTD than the rest of the country, making our comparison truly valid.

Finally, we recognize that the outcome measures in this article (HSMR, SRR and ALOS) are influenced by a multitude of factors other than the working arrangements of junior doctors and we cannot attribute any changes in these parameters to EWTD.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|l|}
\hline
Financial year & Financial month & Observed & Expected & Relative risk & Low-confidence limit & High-confidence limit \\
\hline
2006 & 1 & 10 039 & 8306.73 & 120.85 & 118.50 & 123.24 \\
2006 & 2 & 11 196 & 9525.46 & 117.54 & 115.37 & 119.74 \\
2006 & 3 & 11 431 & 9523.16 & 120.03 & 117.84 & 122.25 \\
2006 & 4 & 11 157 & 9444.98 & 118.13 & 115.94 & 120.34 \\
2006 & 5 & 11 546 & 9571.94 & 120.62 & 118.43 & 122.84 \\
2006 & 6 & 11 731 & 9690.57 & 121.06 & 118.87 & 123.27 \\
2006 & 7 & 11 875 & 9963.93 & 119.18 & 117.05 & 121.34 \\
2006 & 8 & 11 921 & 9963.52 & 119.65 & 117.51 & 121.81 \\
2006 & 9 & 12 111 & 10076.81 & 120.19 & 118.06 & 122.35 \\
2006 & 10 & 12 245 & 10141.02 & 120.75 & 118.62 & 122.91 \\
2006 & 11 & 11 282 & 9167.29 & 123.07 & 120.81 & 125.36 \\
2006 & 12 & 11 930 & 9090.89 & 131.23 & 128.89 & 133.61 \\
2007 & 1 & 11 473 & 8833.96 & 129.87 & 127.51 & 132.27 \\
2007 & 2 & 12 270 & 9577.94 & 128.81 & 125.85 & 130.39 \\
2007 & 3 & 11 890 & 9267.42 & 128.30 & 126.00 & 130.63 \\
2007 & 4 & 12 263 & 9370.85 & 130.86 & 128.56 & 133.20 \\
2007 & 5 & 12 321 & 9375.06 & 131.42 & 129.11 & 133.76 \\
2007 & 6 & 11 837 & 8980.58 & 131.81 & 129.44 & 134.20 \\
2007 & 7 & 12 474 & 9643.56 & 129.35 & 127.09 & 131.64 \\
2007 & 8 & 12 152 & 9425.46 & 128.93 & 126.65 & 131.24 \\
2007 & 9 & 11 687 & 9417.38 & 124.10 & 121.86 & 126.37 \\
2007 & 10 & 11 942 & 9308.81 & 128.29 & 126.00 & 130.61 \\
2007 & 11 & 11 425 & 9049.09 & 126.26 & 123.95 & 128.59 \\
2007 & 12 & 6465 & 8458.45 & 76.43 & 74.58 & 78.32 \\
2008 & 1 & 12 193 & 9690.92 & 125.82 & 123.60 & 128.07 \\
2008 & 2 & 12 430 & 9985.39 & 124.48 & 122.30 & 126.69 \\
2008 & 3 & 11 878 & 9654.51 & 123.03 & 120.83 & 125.26 \\
2008 & 4 & 12 437 & 9964.42 & 124.81 & 122.63 & 127.03 \\
2008 & 5 & 11 755 & 9579.12 & 122.71 & 120.51 & 124.95 \\
2008 & 6 & 12 411 & 9928.49 & 125.00 & 122.81 & 127.22 \\
2008 & 7 & 13 321 & 10 550.22 & 126.26 & 124.13 & 128.43 \\
2008 & 8 & 12 439 & 10 105.70 & 123.09 & 120.94 & 125.27 \\
2008 & 9 & 12 755 & 10 547.43 & 120.93 & 118.84 & 123.05 \\
2008 & 10 & 12 317 & 9927.88 & 124.06 & 121.88 & 126.28 \\
2008 & 11 & 12 112 & 9426.93 & 128.48 & 126.20 & 130.79 \\
2008 & 12 & 13 654 & 9712.30 & 140.58 & 138.24 & 142.96 \\
\hline
\end{tabular}
\caption{North West SHA SRR by month}
\end{table}
alone. However, our findings do support the hypothesis that implementation of the EWTD in the North West has had no adverse impact on several key outcomes associated with patient safety.

Conclusions
The implications of these findings are widespread; we can state for the first time that EWTD implementation in the North West region of England has had no obvious adverse effect on parameters of patient safety when considering HSMR, SRR and ALOS across acute trusts among elective and non-elective patients. In fact, there has been continued improvement in these parameters from August 2008, and where trends are at odds with expected results, this is mirrored nationally. No localized variance from national trends could be identified at any stage. The authors do not claim that patient safety improved because of the North West’s efforts to fully implement EWTD in August 2008, but simply wish to demonstrate that these activities did not result in any measurable negative impact on our stated outcome measures.

Patient safety is at the heart of the EWTD, and these results provide a firm basis to support a model which sees well-rested, well-supported doctors deployed efficiently and intelligently within a 48-h week. However, continued efforts will be required to address the challenge posed nationally by the restricted working hours schedule; we must endeavour to sustain excellence in postgraduate medical training and prioritize the continual improvement in quality of patient care within the limits of the WTR’s 48-h week.

Acknowledgements
J.C. and D.K. developed the original idea for the study. J.C. wrote the first draft of the article and wrote subsequent drafts after feedback from the other three authors. All four authors gave final approval. We thank Dr Foster Intelligence for processing the data. We also thank Paul Barbour and James Thompson for their comments on earlier drafts of this manuscript.

Funding
NHS North West Strategic Health Authority.

Conflict of interest: None declared.

References
1. Campbell D. Doctors’ leader warns 48-hour week will endanger patients. The Guardian. [http://www.guardian.co.uk/society/2009/apr/11/doctor-working-hours] Accessed 11 April 2009.
2. Letter from John Black to Alan Johnson. [http://www.rcseng.ac.uk/news/docs/Alan%20Johnson%E2%80%99s%20EWTD%20Reply.pdf] Accessed 8 May 2009.
3. Pounder R. Junior doctors’ working hours: can 56 go into 48? Clin Med 2008; 8:126–7.
4. The Royal college of Surgeons. Background Briefing; Surgery and the European Working Time Directive.
5. Landrigan CP, Rothschild JM, Cronin JW, Kaushal R, Burdick E, Katz JT, Speizer FE, et al. Effect of reducing intern’s work hours on serious medical errors in intensive care units. *New Engl J Med* 2004; **351**:1838–48.

6. Barger LK, Ayas NT, Cade BE, Cronin JW, Rosner B, et al. Impact of extended-duration shifts on medical errors, adverse events, and attentional failures. *PloS Med* 2006; **3**:e487.

7. Folkard S, Tucker P. Shift work safety and productivity. *Occup Med* 2003; **53**:95–101.

8. Horrocks N, Pounder R. On behalf of the Multidisciplinary Working Group of the Royal College of Physicians. Designing safer rotas for junior doctors in the 48 hr week. *J R Coll Physicians Lond* 2006;1–23.

9. Cappuccio FP, Bakewell A, Taggart FM, Ward G, ji C, Sullivan JP, et al. Implementing a 48 h EWTD-compliant rota for junior doctors in the UK does not compromise patients’ safety: assessor-blind pilot comparison. *QJM* 2009; **102**:271–82.

10. Postgraduate Medical Education and Training Board. National Training Surveys: key findings 2008-2009, P59. [www.pmetb.org.uk/pmetb] Accessed 14 February 2010.

11. Department of Health, Social Policy and Public Services. New Deal for Junior Doctors. [http://www.dhsspsni.gov.uk/scujuniordoc-2] Accessed 14 February 2010.

12. Dr Wendy Reid, Department of Health. Junior Doctors Across the NHS on Course to Meet New Working Time Target 26th June 2009. [http://www.dh.gov.uk/en/News/Recentstories/DH_101561] Accessed 14 February 2010.

13. Kendall D, Ahmed-Little Y, Johnston M, Cousins D, Sunderland H, Najim O. EWTD – Achieving the 48 hour week for Junior Doctors in the North West. *Br J Healthc Manage* 2009; **15**:127–31.

14. Wen E, Sandovol C, Zelmer J, Webster G. Understanding and using the hospital standardized mortality ratio in Canada: challenges and opportunities. *Healthc Pap* 2008; **8**:26–36.

15. NHS Institute for Improvement and Innovation. Quality and Service Improvement Tools-Length of Stay-Reducing Length of Stay 2008. [www.institute.nhs.uk/quality and service improvement tools/quality and service improvement tools/length of stay.html] Accessed 14 February 2010.

16. Hospital Episode Statistics Online. Readmission Rates and HES. [www.hesonline.nhs.uk/Ease/servelet/ContentServer; jsessionid=3xyl0bm811?siteID=1937&categoryID=927] Accessed 14 February 2010.

17. Morgan O, Baker A. Measuring deprivation in England and Wales using 2001 Carstairs scores. *Health Stat Q* 2006; **31**:28–33.

18. Schneeweiss S, Maclure M. Use of comorbidity scores for control of confounding in studies using administrative databases. *Int J Epidemiol* 2000; **29**:891–8.

19. Dr Foster Unit-Imperial College, Dr Foster Intelligence. Aylin P, Bottle A, Jen M, Middleton S. HSMR Mortality Indicators. [http://www.nhs.uk/NHSEngland/Hospitalmortalityrates/Documents/090424%20MSI(H)%20-%20NHSM%20Choices%20HSMR%20Publication%20-%20%20Presen
tation%20-%20%20Annex%20%20C.pdf] Accessed 14 February 2010.

20. Jordan RE, Hawker JJ, Ayres JG, Adab P, Tunnicliffe W, Olowokure B, et al. Effect of social factors on winter hospital admission for respiratory disease: a case-control study of older people in the UK. *Br J Gen Pract* 2008; **58**:e1–e9.

21. Jarman B, Gault S, Alves B, Hider S, Dolan S, Cook A, et al. Explaining differences in English Hospital death rates using routinely collected data. *Br Med J* 1999; **318**:1515–20.

22. Canadian Institute for Health Information. HSMR: A New Approach for Measuring Hospital Mortality Trends in Canada. Ottawa, CIHI, 2007.

23. Penfold RB, Dean S, Flemmons W, Mofhaff M. Do hospital standardized mortality ratios measure patient safety? HSMRs in the Winnipeg Regional Health Authority. *Healthc Pap* 2008; **8**:8–24.

24. Skills for Health Workforce Projects Team, Doctors Rostering System, DRS Version 3 Rule Book, 2009. [http://www.healthcareworkforce.nhs.uk/working_time_directive/doctors_rostering_system/launch_of_drs_rulebook.html] Accessed 14 February 2010.

25. SHA. Quality Assurance information. January 2009 (shared with the Academy of Medical Royal Colleges).