Construction of prognostic predictor by comprehensive analyzing alternative splicing events for Colon adenocarcinoma

Yaqi Qu
Saanxi Provincial People’s Hospital

Yujia Chen
Hebei Medical University

Le Zhang
Saanxi Provincial People’s Hospital

Lifei Tian (awdcv789@163.com)
Saanxi Provincial People’s Hospital

Research

Keywords: Colon adenocarcinoma, alternative splicing, prognostic risk score, different expression genes

Posted Date: July 27th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-24721/v2

License: Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on September 3rd, 2020. See the published version at https://doi.org/10.1186/s12957-020-02010-7.
Abstract

Background: Colon adenocarcinoma (COAD) is one of the most common malignant tumors, with high incidence and mortality rates worldwide. Reliable prognostic biomarkers are needed to guide clinical practice.

Methods: Comprehensive gene expression with alternative splicing (AS) profiles for each patient were downloaded using the SpliceSeq database from The Cancer Genome Atlas. Cox regression analysis was conducted to screen for prognostic AS events. The R package limma was used to screen differentially expressed genes (DEGs) between normal and tumor samples in the COAD cohort. A Venn plot analysis was performed between DEGs and prognostic AS events, and the DEGs that co-occurred with prognostic AS events (DEGAS) were identified. The top 30 most-connected DEGAS in protein–protein interaction analysis were identified through Cox proportional hazards regression to establish prognostic models.

Results: In total, 350 patients were included in the study. A total of 22,451 AS events were detected, of which 2,004 from 1,439 genes were significantly associated with survival time. By overlapping these 1,439 genes with 6,455 DEGs, 211 DEGs with AS events were identified. After construction of the protein–protein interaction network, the top 30 hub genes were included in a multivariate analysis. Finally, a risk score based on 12 genes associated with overall survival was established (P < 0.05). The area under the curve was 0.782. The risk score was an independent predictor (P < 0.001).

Conclusions: By exploring survival-associated AS events, a powerful prognostic predictor consisting of 12 DEGAS was built. This study aims to propose a novel method to provide treatment targets for COAD and guide clinical practice in the future.

Introduction

Colorectal cancer (CRC) is the third most common cancer and the third most common cause of tumor-related death. The incidence and mortality rate of CRC have increased dramatically over the past three decades in China because of changes in lifestyle factors [1]. CRC includes colon adenocarcinoma (COAD) and rectal adenocarcinoma. COAD is one of the main causes of cancer-associated deaths worldwide [2]. Approximately 41% of all CRCs occur in the proximal colon, with approximately 22% involving the distal colon and 28% involving the rectum. The prognosis of COAD is less than satisfactory; over 1.8 million new COAD cases and 881,000 deaths occurred in 2018 [3]. Therefore, there is a need to discover new molecules capable of identifying pre-cancerous lesions.

Alternative splicing (AS), a post-transcriptional process that modifies more than 90% of all human genes, contributes significantly to the diversity of the transcriptome and the resultant proteome [4,5]. Exonic regions of the pre-mRNA are spliced together, and intronic regions are removed to form the final mRNA products. There is increasing evidence that the transcript variants of a gene may have opposing roles and that widespread splicing disorders are one of the molecular markers of tumorigenesis and participate in
many oncogenic processes, including proliferation, invasion and metastasis, apoptosis, hypoxia, metabolism, angiogenesis, and immune escape [6,7].

It is generally believed that dysregulation of gene expression plays an important role in the genesis and development of tumors, and studies in this area have led to improvements in diagnosis and identification of prognostic biomarkers and new therapeutic targets by analyzing the expression level of genes in various types of cancer [8,9]. Various studies have shown that specific siRNAs, IncRNAs, and miRNAs affect the tumorigenesis and prognosis of COAD [10, 11]. Some gene modifications such as acetylation and N6-methyladenosine are also research hotspots in the field of COAD [12,13]. However, these studies have largely ignored AS of genes. Therefore, our understanding of functionally important splicing events that contribute to tumorigenesis and the mechanisms that lead to aberrant splicing in COAD is very limited.

In this study, we aimed to explore the role of RNA AS events in the progression of COAD. To provide a deeper insight into the tumor biology, this study further explored the relationship between those molecules and the prognosis of COAD to gain a better understanding of prognostic AS events in COAD.

Methods

Data collection of AS events and data analysis

The Cancer Genome Atlas (TCGA), a large-scale cancer genomic project based on next-generation sequencing and microarrays to discover molecular aberrations at the DNA, RNA, protein, and epigenetic levels, started approximately 10 years ago to discover major genetic alterations in large cohorts of selected tumors, specifically those of brain, lung, and ovarian cancer. The RNA-seq data of the COAD cohort was obtained from the TCGA data portal. The SpliceSeq tool from TCGA was used to obtain the mRNA splicing pattern, known as AS, of COAD samples from the TCGA database. In SpliceSeq, a value known as Percent Spliced In ranging from 0 to 1, was calculated for each detected AS event in a gene. The R package UpSetR (version 1.3.3) was used to generate an UpSet plot for quantitative analysis of interactive sets between seven AS types.

Data on the clinical parameters of the COAD cohort were downloaded from TCGA. To rule out the effects of surgery leading to death, patients with incomplete clinical information and a survival time of less than 30 days were excluded from the cohort. Finally, 350 patients with COAD with full clinical follow-up data were included in the study.

Screening for survival-associated AS events in the COAD cohort

Univariate Cox analysis was conducted to determine survival-associated AS events for COAD (P < 0.05).

Screening for differentially expressed genes (DEGs) in the COAD cohort
The R package limma was used to search for DEGs between normal and COAD test subjects. The cutoff criteria were an adjusted P-value of <0.05 and a logFC value of ≥ 1 or ≤ -1. A volcano map was drawn to show the criteria for selecting differential genes using the R package ggplot2. A hierarchical clustering heat map of DEG expression was visualized with the R package pheatmap.

Overlap between survival-associated AS genes and DEGs

The overlap between survival-associated AS genes and DEGs was screened using Funrich (http://www.funrich.org/), and Venn diagrams were used to identify DEGs with survival-associated AS. Specific genes that were differentially expressed and occurred with AS events were obtained. We termed these genes as “differentially expressed genes overlapping with AS events (DEGAS)” hereafter.

Functional enrichment of DEGs by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses

Metascape (http://metascape.org/gp/index.html#/main/step1), an online analysis tool suite with the function of Integrated Discovery and Annotation, mainly provides typical batch annotation and GO term enrichment analysis to highlight the most relevant GO terms associated with a given gene. GO and KEGG pathway enrichment analyses were used to identify DEGAS using Metascape. $P < 0.05$ was considered statistically significant.

Construction of prognostic models for the COAD cohort

The top 30 most-connected DEGAS in the protein–protein interaction (PPI) network were identified using Cytoscape (version 3.6.1). Multivariate Cox regression analysis was used to assess the prognostic value of DEGAS for overall survival (OS). We constructed a prognostic model using the sum of DEGAS expression levels weighted by the regression coefficient ($\hat{\beta}$) from multivariate analysis: (see Equation 1 in the Supplementary Files)

$$\text{risk score} = \sum_{i=1}^{n} \hat{\beta}_i \times \text{exp}_i$$

where n is the total DEGAS sequence number in the risk score, i is the sequence number of DEGAS in risk score, exp_i is the expression of DEGAS, and $\hat{\beta}_i$ is the regression coefficient of gene i in the multivariate Cox regression analysis. The median score was used as a cutoff value to classify patients with COAD into low-risk and high-risk groups.

Survival analyses were assessed using the Kaplan–Meier (KM) method and the two-tailed log-rank test. The efficiency of the predictive model was further assessed using receiver operating characteristic (ROC) curves with the survivalROC package in R. The area under the curve (AUC) of the ROC curves was calculated. All analyses were performed using R software (version 3.6.1).

The risk score was combined with clinical factors using univariate and multivariate Cox regression to identify whether it could be used as an independent prognostic predictor for survival time. The results were represented as forest plots generated by the forestplot R package.
Networks of survival-associated AS genes and splicing factors

The expression of splicing factor genes in the mRNA splicing pathway was investigated by analysis of the level 3 mRNA-seq data in TCGA. Next, the correlation between survival-associated splicing factors and DEGAS was analyzed using the Spearman test. Cytoscape software was used to construct the interaction network. P < 0.01 and coefficient = 0.6 were used as the inclusion criteria.

Data analysis and generation of graphs

Results

Overview of AS events in COAD

Comprehensive AS events were identified in seven splicing types: exon skip (ES), mutually exclusive exon (ME), retained intron (RI), alternate promoter (AP), alternate terminator (AT), alternate donor site (AD), and alternate acceptor site (AA) (Figure 1A). Overall, 22,451 AS events were detected, consisting of 74 ME in 74 genes, 1,661 RI in 1,187 genes, 1,682 AD in 1,309 genes, 1,999 AA in 1,574 genes, 4,696 AT in 2,770 genes, 3,972 AP in 2,325 genes, and 8,367 ES in 4,430 genes (Figure 1B and 2A).

AS events associated with survival time

The results of univariate Cox regression analysis showed that 2,004 AS events in 1,439 genes were significantly associated with OS (P < 0.05), including 10 ME in 10 genes, 158 RI in 149 genes, 105 AD in 104 genes, 140 AA in 134 genes, 517 AT in 330 genes, 448 AP in 323 genes, and 586 ES in 518 genes (Figure 2B). The top 20 of each AS type with the smallest P value are presented in Figure 3. As depicted in the plot, one gene may contain more than one type of AS event.

DEGs related to survival-associated AS events

A total of 6,455 DEGs were identified from the TCGA COAD cohort, including 4,558 genes that were significantly upregulated and 1,897 genes that were significantly downregulated (Figure 4; P < 0.01, fold-change > 1). To identify DEGAS, we overlapped the 6,445 DEGs and 1,439 survival-associated AS genes. As a result, 211 DEGs were identified that overlapped with survival-associated AS events. The results are presented as a Venn diagram in Figure 5A). Principal component analysis (PCA) was performed on the DEGAS to comprehensively characterize them (Figure 5B-5H). Multivariate Cox regression analysis was performed to evaluate the prognostic effects of DEGAS. In COAD, AD, RI, AT, AA, ES, and AP had an AUC > 0.65, and ES had the most satisfactory performance (AUC = 0.98), while ME had the worst performance (AUC = 0.595; Figure 5 I and 5J).

Construction and analysis of PPI network

To explore the interactions among DEGAS, a string database was mapped for the most significant prognostic genes with a score > 0.4 using Cytoscape (Figure 6A). Different type of AS events
werewas shown by different colors.The results indicated that the majority of DEGAS showed PPIs and participated in different biological processes. The top 30 DEGAS that connected with the greatest number of nodes in the PPI network and were, therefore, considered to be the most important were identified through PPI analysis using the DMHC algorithm in Cytoscape software,(Figure 6C).

Functional enrichment analysis

GO and KEGG analyses of the 211 DEGs were performed using Metascape (Figure 6B). The enrichment results of GO analysis performed using Metascape showed that DEGs with survival-associated AS events were mainly enriched in chordate embryonic development, response to inorganic substances, ncRNA processing, regulation of cell–cell adhesion, neurotransmitter metabolic processes, response to oxygen levels, deoxyribonucleoside metabolic processes, nuclear division, tRNA metabolic processes, regulation of growth, cellular response to hormone stimulus, response to estradiol, carbohydrate derivative transport, cellular response to acid chemical, fatty acid metabolic processes, positive regulation of cell cycle, kinase activity, protein methyltransferase activity, regulation of cellular response to stress, and oxidoreductase activity. KEGG analysis indicated that DEGAS were mainly enriched in purine metabolism (hsa00230), fatty acid metabolism (hsa01212), cocaine addiction (hsa05030), ovarian steroidogenesis (hsa04913), longevity regulating pathway-multiple species (hsa04213), cell cycle (hsa04110), HTLV-I infection (hsa05166), RNA degradation (hsa03018), focal adhesion (hsa04510), cytokine–cytokine receptor interaction (hsa04060), and the hippo signaling pathway (hsa04390).

Construction of prognostic models

We obtained 30 hub DEGAS from the PPI network and used them to perform a multivariate Cox regression analysis. Regression coefficients from the multivariate Cox analysis were used to construct a risk score and develop a prognostic model to predict OS. Twelve genes (EZH2, coefficient = -3.36021; NEDD4L, coefficient = -3.59895; PRMT1, coefficient = 12.4729; LAS1L, coefficient = 5.054636; PBK, coefficient = 6.15113; KIF2C, coefficient = -16.7546; NCAPD3, coefficient = -9.33565; TRAIP, coefficient = -3.85844; PUS7, coefficient = -3.51065; COL1A1, coefficient = 4.254234; NUSAP1, coefficient = -3.00095; MKI67, coefficient = 1.669178) were included in the signature. General information on the 12 genes is shown in Table 1. The risk score was defined as the sum of the expression of each gene multiplied by its coefficients. The risk score was calculated for each patient. We used the median risk score as the cutoff value to classify patients into low-risk and high-risk groups. The gene expression and survival status of each patient were ranked by the risk score values of the prognostic signature (Figure 7A). A KM curve was plotted to indicate the correlation between the risk score and OS of patients with COAD (P_{log-rank} = 2.188e-06, Figure 7B). The time-dependent ROC curve showed a promising performance in terms of OS prediction (P < 0.05, AUC = 0.782, Figure 7C).
The results of univariate and multivariate Cox regression analysis showed that the risk score was effective at predicting the OS of patients with CRC [HR in univariate analysis = 1.051 (95% CI 1.035–1.067), HR in multivariate analysis = 1.042 (1.026–1.060); P < 0.001; Table 2; Figure 7D,7E]. The details of risk score together with other clinical elements based on ROC curve analysis are shown in Figure 7G). PCA of all patients with COAD was performed to display the characteristics of each patient (Figure 8A).

Table 1
General information of the 12 genes in the prognostic risk score.

Gene stable ID	Gene name	Gene type	Chromosome	Gene start (bp)	Gene end (bp)
ENSG00000142945	KIF2C	protein coding	1	44739704	44767767
ENSG00000183763	TRAIP	protein coding	3	49828595	49856584
ENSG00000126457	PRMT1	protein coding	19	49676166	49688450
ENSG00000091127	PUS7	protein coding	7	105456501	105522271
ENSG0000001497	LAS1L	protein coding	X	65512582	65534806
ENSG00000137804	NUSAP1	protein coding	15	41332841	41381050
ENSG00000069399	MKI67	protein coding	19	44742620	44760044
ENSG00000148773	PBK	protein coding	10	128096659	128126423
ENSG000000108821	COL1A1	protein coding	17	50184096	50201649
ENSG00000106462	EZH2	protein coding	7	148807374	148884344
ENSG00000049759	NEDD4L	protein coding	18	58044226	.58401540
ENSG00000151503	NCAPD3	protein coding	11	134150113	134225461

Table 2
Univariate and multivariate Cox regression analyses of the gene signature and overall survival of ccRCC patients.

N	Univariate analysis	Multivariate analysis				
	HR	95% CI	P	HR	95% CI	P
age	<=60	260	1	< 0.001	1	0.045
	> 60	247	1.694	1.236–2.322	1.384	1.008–1.906
gender	female	174	0.957	0.694–1.318	1.106	0.799–1.532
	male	333	1	0.787	1	0.543
stage	I/II	307	1	< 0.001	1	< 0.001
	III/IV	200	1.637	1.495–1.792	3.522	2.510–4.941
Risk score	low	254	1	< 0.001	1	< 0.001
	high	253	1.089	1.060–1.118	2.911	2.017–4.202

Discussion

Splicing factor-regulated network construction

By analyzing level 3 mRNA-seq data from TCGA, a total of 28 splicing factors associated with survival time of patients were identified (Figure 8B).
AS is a biological process that produces many different splicing isoforms from one pre-mRNA to exert various biological functions. Abnormal AS has been identified as a molecular trigger for cancer [14]. Various studies have shown that the transcript variants of a gene may have opposing roles, and AS is known to be a key factor in cancer progression, including proliferation, apoptosis, invasion, angiogenesis, and metabolism [15,16]. For example, an EGFR splice variant, lacksexon 4 (de4 EGFR), was found to constitutively activate downstream pathways to promote cancer cell proliferation and metastasis in glioma, prostate cancer, and ovarian cancer tissues [17]. PKM2, an embryonic splice isoform resulting from mutually exclusive AS of the PKM pre-mRNA, is re-expressed in many types of tumors and regulates cancer cell metabolism and tumor growth [18]. Because of the potential significance of AS in cancer biology, its clinical relevance in malignancies has received extensive attention. Moreover, it has been clarified recently that cancer-specific splice variants may potentially be used as diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets. However, previous studies have mainly focused on single genes, and there has been no comprehensive assessment of the prognostic power of AS events in COAD. In the current study, AS profiles were analyzed and used to construct a regulatory network for COAD using TCGA data. Several prognostic AS events/genes were identified, which could provide potential treatment targets for patients with COAD.

We obtained gene expression and AS profile from TCGA database which has generated large amounts of genomics and proteomics data characterizing the molecular landscape of more than 11 000 tumors across 33 cancer types. TCGA data provide unprecedented opportunities for systematic investigation of cancer mechanisms at multiple molecular and regulatory layers and has been used in numerous cancer studies [19]. Then, we investigated DEGs between normal and tumor samples. It has been shown that DEGs are related to the activation of various typical tumorigenesis-related pathways and are widely used in oncology research [20]. AS gives rise to multiple mRNA variants from a single gene, changing the expression level of the corresponding gene [21]. Therefore, we expect AS events occurring in DEGs to be particularly important in the progression of tumorigenesis, and they could, therefore, provide potential treatment targets for patients with COAD. Differential expression of mRNA amplifies or reduces the effect of AS events; therefore, we chose DEGAS as an object for research. We overlapped DEGs and survival-related AS genes to obtain DEGAS. Univariate and multivariate regression analyses were performed, and 12 DEGAS were identified. Based on 12 hub DEGAS, a prognostic risk score model was constructed. The prognostic risk score based on AS events showed a good efficacy in predicting the prognosis of patients with COAD.

Among the 12 DEGAS, EZH2 was demonstrated to be a master regulator of cancer-associated epigenetic disorders by Makoto et al. [22]. Manipulation of EZH2/PRC2 may, therefore, be a promising avenue for cancer therapy. Wang et al. [23] reported that NEDD4L plays a critical role in the regulation of cellular processes such as apoptosis, transport, and metastasis and is downregulated in several types of cancers. Song et al. [24] demonstrated that PRMT1 expression promoted the growth of pancreatic cancer-derived cells both in vitro and in vivo and is significantly correlated with pancreatic ductal adenocarcinoma tumor size and prognosis in postoperative patients. Ma et al. demonstrated that over-expression of PBK promotes autophagy and enhances cisplatin resistance via the ERK/mTOR signaling pathway in high-
grade serous ovarian carcinoma. Gan et al. [25] reported that \textit{KIF2C} is a target gene of miR-325-3p, which has been shown to be a tumor suppressor in non-small-cell lung cancer. Yuan et al. [26] reported that over-expression of \textit{NCAPD2/3} promotes the release of pro-inflammatory cytokines by modulating the IKK/NF-κB signaling pathway. Han et al. [27] reported that \textit{TRAIP} is crucial in early mitotic progression and chromosome alignment defects in the metaphase. According to Brouwer et al. [28], \textit{PUS7} is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA, and \textit{PUS7} variants can lead to neurological defects. Liu et al. [29] showed that increased \textit{COL1A1} expression is associated with poor survival, and \textit{COL1A1} knockdown inhibited metastasis of breast cancer cells. Cordon et al. demonstrated that \textit{NUSAP1} promotes invasion and metastasis of prostate cancer [30]. \textit{MKI67}, encoding the proliferation marker protein Ki-67, is correlated with the progression of several cancers such as laryngeal squamous cell cancer, gastroenteropancreatic neuroendocrine tumors, and cervical cancer [31,32]. These results demonstrate that most of the genes identified play an important role in the development of cancer.

In this study, we aimed to investigate novel clinical biomarkers and therapeutic approaches, which could eventually be used to implement novel therapeutic strategies against COAD. We also highlighted the potential involvement of splicing factors in COAD in our analysis. The splicing correlation network revealed obvious trends whereby the majority of favorable prognosis AS events were positively correlated with the expression of splicing factors, whereas adverse prognosis AS events were negatively correlated with the expression of splicing factors. Accordingly, the question of whether downregulation of specific splicing factors would give rise to reduced favorable prognosis AS events and increased adverse prognosis AS events requires further investigation through functional experiments.

Conclusions

By analyzing the relationship between AS events/genes and patient prognosis, we found that AS events may be predictors of COAD prognosis. Twelve potential genes (\textit{EZH2}, \textit{NEDD4L}, \textit{PRMT1}, \textit{LAS1L}, \textit{PBK}, \textit{KIF2C}, \textit{NCAPD3}, \textit{TRAIP}, \textit{PUS7}, \textit{COL1A1}, \textit{NUSAP1}, and \textit{MKI67}) were identified from the interaction network and correlation analysis between AS events and gene expression. Many of these genes are involved in the development of cancer. Based on multivariate analysis for survival, the 12 genes may be used as biomarkers for the classification of COAD prognosis at AS event and gene expression levels.

List Of Abbreviations

AA, alternate acceptor site; AD, alternate donor site; AP, alternate promoter; AS, alternative splicing; AT, alternate terminator; AUC, area under the curve; COAD, colon adenocarcinoma; CRC, colorectal cancer; DEG, differentially expressed gene; DEGAS, differentially expressed gene overlapping with alternative splicing event; ES, exon skip; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ME, mutually exclusive exon; PPI, protein–protein interaction; RI, retained intron; ROC, receiver operating characteristic; TCGA, the Cancer Genome Atlas.
Declarations

Ethics approval and consent to participate

The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. This study complied with the Declaration of Helsinki and was approved by Ethics Committees of Shaanxi Provincial People's Hospital.

Conflicts of interest

All the authors declare that they have no competing interests.

Consent for publication

The authors have no interests ethical, legal and financial conflicts related to the article. All authors read and approved the manuscript to publish.

Availability of Data and Materials

RNA-seq data was downloaded from TCGA COAD cohort, and mRNA splicing pattern data was obtained by the SpliceSeq tool from TCGA. All the data was available from TCGA (https://tcga-data.nci.nih.gov/tcga/), and we are willing to provide our analysis data.

Authors’ contributions

(I) Conception and design: Lifei Tian and Yaqi Qu.

(II) Administrative support: Lifei Tian.

(III) Collection and assembly of data: Yaqi Qu, Peng Guo.

(IV) Data analysis and interpretation: Peng Guo.

(V) Manuscript writing: Yaqi Qu and Peng Guo.

(VI) Final approval of manuscript: All authors.

Funding

There is no Funding.

Acknowledgements

Not available.
References

1. Yang Y, Zhang J, Weiss NS, et al. The consumption of chili peppers and the risk of colorectal cancer: a matched case-control study. World J Surg Oncol. 2019. 17(1): 71.

2. Dong L, Ding C, Zheng T, et al. Extracellular vesicles from human umbilical cord mesenchymal stem cells treated with siRNA against ELFN1-AS1 suppress colon adenocarcinoma proliferation and migration. Am J Transl Res. 2019. 11(11): 6989-6999.

3. Cheng L, Eng C, Nieman LZ, Kapadia AS, Du XL. Trends in colorectal cancer incidence by anatomic site and disease stage in the United States from 1976 to 2005. Am J Clin Oncol. 2011. 34(6): 573-80.

4. Chen Z, Song J, Chen L, et al. Characterization of TTN Novex Splicing Variants across Species and the Role of RBM20 in Novex-Specific Exon Splicing. Genes (Basel). 2018. 9 (2).

5. Wang H, 0000-0002-8535-5358 AO, Wang H, et al. Highly sensitive and multiplexed quantification of mRNA splice variants by the direct ligation of DNA probes at the exon junction and universal PCR amplification. Chem Sci. 2017. 8(5): 3635-3640.

6. Hsiao TH, Lin CH, Lee TT, et al. Verifying expressed transcript variants by detecting and assembling stretches of consecutive exons. Nucleic Acids Res. 2010. 38(20): e187.

7. Zhang C, Dower K, Zhang B, et al. Computational identification and validation of alternative splicing in ZSF1 rat RNA-seq data, a preclinical model for type 2 diabetic nephropathy. Sci Rep. 2018. 8(1): 7624.

8. Sakuma K, Sasaki E, Kimura K, et al. HNRNPLL stabilizes mRNA for DNA replication proteins and promotes cell cycle progression in colorectal cancer cells. Cancer Sci. 2018. 109(8): 2458-2468.

9. Fischer PA, Baas H. Therapeutic efficacy of R-(-)-deprenyl as adjuvant therapy in advanced parkinsonism. J Neural Transm Suppl. 1987. 25: 137-47.

10. Guo Y, Bao Y, Yang W. Regulatory miRNAs in Colorectal Carcinogenesis and Metastasis. Int J Mol Sci. 2017. 18(4).

11. Yoo W, 0000-0002-1434-8097 AO, Shah DV, Chih MY, Gustafson DH. A smartphone-based support group for alcoholism: Effects of giving and receiving emotional support on coping self-efficacy and risky drinking. Health Informatics J. 2019 : 1460458219888403.

12. Liu X, Liu L, Dong Z, et al. Expression patterns and prognostic value of m(6)A-related genes in colorectal cancer. Am J Transl Res. 2019. 11(7): 3972-3991.

13. Chen X, Wang C, Jiang Y, et al. Bcl-3 promotes Wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduct Target Ther. 2020. 5(1): 52.
14 Lee CC, Chang WH, Chang YS, et al. 4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells. Sci Rep. 2017. 7(1): 7290.

15 Genov N, Basti A, 0000-0002-0153-2784 AO, Abreu M, 0000-0003-0626-7999 AO, Relógio A. Temporal Splicing Switches in Elements of the TNF-Pathway Identified by Computational Analysis of Transcriptome Data for Human Cell Lines. Int J Mol Sci. 2019. 20(5).

16 Siveen KS, Prabhu KS, Parray AS, et al. Evaluation of cationic channel TRPV2 as a novel biomarker and therapeutic target in Leukemia-Implications concerning the resolution of pulmonary inflammation. Sci Rep. 2019. 9(1): 1554.

17 Wang H, Zhou M, Shi B, et al. Identification of an exon 4-deletion variant of epidermal growth factor receptor with increased metastasis-promoting capacity. Neoplasia. 2011. 13(5): 461-71.

18 Yang W, Lu Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. 2013. 339(2): 153-8.

19 Cannovo N, Guarino R, Fedeli P. Ethical and deontological aspects of pediatric biobanks: the situation in Italy. Cell Tissue Bank. 2020.

20 Pizzollo J, Nielsen WJ, Shibata Y, et al. Comparative Serum Challenges Show Divergent Patterns of Gene Expression and Open Chromatin in Human and Chimpanzee. Genome Biol Evol. 2018. 10(3): 826-839.

21 Hernando CE, García Hourquet M, de Leone MJ, et al. A Role for Pre-mRNA-PROCESSING PROTEIN 40C in the Control of Growth, Development, and Stress Tolerance in Arabidopsis thaliana. Front Plant Sci. 2019. 10: 1019.

22 Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol. 2017. 29(5): 375-381.

23 Wang X, Duan J, Fu W, et al. Decreased expression of NEDD4L contributes to NSCLC progression and metastasis. Biochem Biophys Res Commun. 2019. 513(2): 398-404.

24 Song C, Chen T, He L, et al. PRMT1 promotes pancreatic cancer growth and predicts poor prognosis. Cell Oncol (Dordr). 2019.

25 Gan H, Lin L, Hu N, et al. KIF2C exerts an oncogenic role in nonsmall cell lung cancer and is negatively regulated by miR-325-3p. Cell Biochem Funct. 2019. 37(6): 424-431.

26 Yuan CW, Sun XL, Qiao LC, et al. Non-SMC condensin I complex subunit D2 and non-SMC condensin II complex subunit D3 induces inflammation via the IKK/NF-kappaB pathway in ulcerative colitis. World J Gastroenterol. 2019. 25(47): 6813-6822.
27 Park IS, Jo KS, Won HS, Kim H. Dimerization of TRAF-interacting protein (TRAIP) regulates the mitotic progression. Biochem Biophys Res Commun. 2015. 463(4): 864-9.

28 de Brouwer APM, Abou JR, Kortel N, et al. Variants in PUS7 Cause Intellectual Disability with Speech Delay, Microcephaly, Short Stature, and Aggressive Behavior. Am J Hum Genet. 2018. 103(6): 1045-1052.

29 Liu J, Shen JX, Wu HT, et al. Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov Med. 2018. 25(139): 211-223.

30 Gordon CA, Gong X, Ganesh D, Brooks JD. NUSAP1 promotes invasion and metastasis of prostate cancer. Oncotarget. 2017. 8(18): 29935-29950.

31 Nowinska K, Chmielewska M, Piotrowska A, et al. Correlation between levels of expression of minichromosome maintenance proteins, Ki-67 proliferation antigen and metallothionein I/II in laryngeal squamous cell cancer. Int J Oncol. 2016. 48(2): 635-45.

32 Krtinic D, Zivadinovic R, Jovic Z, et al. Significance of the Ki-67 proliferation index in the assessment of the therapeutic response to cisplatin-based chemotherapy in patients with advanced cervical cancer. Eur Rev Med Pharmacol Sci. 2018. 22(16): 5149-5155.

Figures
Figure 1

Characterization of seven types of AS in the study. (A) Overview of seven types AS events, Mutually Exclusive Exons (ME), Exon Skip (ES), Retained Intron (RI), Alternate Terminator (AT), Alternate Promoter (AP), Alternate Acceptor site (AA), and Alternate Donor site (AD). (B) Number of AS events from 350 COAD patients.
Figure 2

UpSet plots of AS events in COAD. (A) The distributions of seven different types of AS events from 350 COAD patients. (B) The distributions of the seven different types of survival associated AS events in COAD.
Figure 3

Screening for prognosis-related AS events. (A) Volcano Plot shows significance of prognosis-related AS events. (B-H) Bubble charts showing significance of top 20 prognosis-related AS events in seven different types.
Figure 4

Screening for DEGs. (A) Volcano Plot shows significance of DEGs in COAD. (B) Heatmap of DEGs expression between tumor and normal sample.
Figure 5

Characterization of DEGAS. (A) The Venn diagram exhibits the intersection of survival AS and DEGs. (B-H) Principal Component Analysis (PCA) for seven types of DEGAS. (I) ROC curves among seven types of survival associated AS events. (J) ROC curves among seven types of DEGAS.
Figure 6

Functional enrichment analysis. (A) Gene interaction networks of DEGAS generated by Cytoscape. (B) GO and KEGG functional enrichment analysis of DEGAS generated by Metascape. (C) Top 30 hub DEGAS in PPI network.
Figure 7

Construction of prognostic risk score model. (A) Risk score plot, heatmap of prognostic DEGAS in risk score, survival time and status for COAD patients. (B) Kaplan-Meier curve of the risk score. (C) ROC curve of the risk score. (D) Univariate Cox analysis of clinical parameters and risk score. (E) Multivariate Cox regression analysis of clinical parameters and risk score. (F) Clinical parameters and risk score of each COAD patients. (G) ROC curves with AUCs of clinical parameters and risk score.
Figure 8

PCA analysis and splicing factor correlation network. (A) PCA analysis of each COAD patient according to risk score. (B) Splicing correlation network in COAD. Expression of 28 survival associated splicing factors (blue triangles) were positively (red line)/negatively (green line) correlated with the PSI values of 12 DEGAS (green dots) or adverse prognosis AS events (red dots).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Dataandmaterials.rar
- Equation1.pdf