LST: Lexicon-Guided Self-Training for Few-Shot Text Classification

Hazel Kim†† Jaeman Son†† Yo-Sub Han†

††Yonsei University, Seoul, Korea
†Equal Contribution

Abstract

Self-training provides an effective means of using an extremely small amount of labeled data to create pseudo-labels for unlabeled data. Many state-of-the-art self-training approaches hinge on different regularization methods to prevent overfitting and improve generalization. Yet they still rely heavily on predictions initially trained with the limited labeled data as pseudo-labels and are likely to put overconfident label belief on erroneous classes depending on the first prediction. To tackle this issue in text classification, we introduce LST, a simple self-training method that uses a lexicon to guide the pseudo-labeling mechanism in a linguistically-enriched manner. We consistently refine the lexicon by predicting confidence of the unseen data to teach pseudo-labels better in the training iterations. We demonstrate that this simple yet well-crafted lexical knowledge achieves 1.0-2.0% better performance on 30 labeled samples per class for five benchmark datasets than the current state-of-the-art approaches.

1 INTRODUCTION

Due to the high acquisition cost of labeled data, semi-supervised learning is in demand for natural language processing tasks. Self-training, one of the earliest semi-supervised methods, has led to significant improvements in text classification when there is a limited number of labeled data. Self-training uses a teacher model trained from the labeled data and creates pseudo-labels for unlabeled data, which are often larger than the labeled data [Scudder, 1965; Yarowsky, 1995]; we call this a pseudo-labeling mechanism.

Recent self-training approaches adopt several intricate methods within the pseudo-labeling mechanism and regularize well on the unseen data: (1) manipulating a loss term computed on labeled or unlabeled data to generalize the model better for unseen data [Berthelot et al., 2019; Laine and Aila, 2017b; Rasmus et al., 2015]; (2) re-weighting samples to select potentially more informative and representative unlabeled data [Wang et al., 2020; Panagiotis Mastoropoulos, 2019; Li et al., 2019; Chang et al., 2017]; (3) adding noise while augmenting data to reduce overfitting under high confidence values [Verma et al., 2019; Xie et al., 2020a]. Despite their empirical success, these techniques are often wieldy and complicated to implement.

We propose Lexicon-Guided Self-Training (LST): a simple self-training method that uses a guidance of lexicon to teach the pseudo-labeling mechanism in a linguistically-enriched manner. We build the lexicon with a golden labeled data to guide the whole process of learning. While training models, we inject more data augmented with lexical knowledge to the lexicon. We observe that the more refined lexicon outperforms the state-of-the-art approaches employing self-training with various combinations of complex mechanisms. We target a simpler yet more accurate approach that leads to the following benefits:

- We show that the lexicon, in addition to the teacher model confidence, enhances the reliability of pseudo-labels by manipulating a loss term.
- We demonstrate that the lexicon selectively samples and possesses more informative unlabeled data to influence the teacher model in a way in which it generates favorable pseudo-labels to the student model.
- We further show that data augmentation using lexical knowledge such as WordNet builds the lexicon powerful to unseen examples on par with initially annotated data. The lexical knowledge includes semantically different levels of word hierarchy: synonymy, hypernymy, hyponymy, and antonymy.

We verify our method using five benchmark data consisting of different numbers of classes. The experimental results confirm that LST outperforms state-of-the-art performance.
in text classification when labeled data is scarce and unlabeled data is abundant.

2 RELATED WORK

Our approach incorporates a reliable pseudo-labeling mechanism using a lexicon, and improves a few-shot self-training for text classification. Self-training is a semi-supervised method based on a teacher-student framework [Xie et al., 2020b]. The teacher model, trained from labeled data, creates pseudo-labels for unlabeled data. Then we re-train the model using both the initial labeled data and the pseudo-labeled data. The resulting model becomes a student model that would have a better performance than the teacher model.

Self-training achieves significant improvements especially when a pseudo-labeling mechanism generalizes the model well on unseen data. Current high-performance methods include 1) confidence regularization on the teacher model to obtain better pseudo-labels, 2) selective sampling on the unlabeled data to determine which examples influence the teacher model first, and 3) injecting noise to the model to adapt well on the unseen data. We review these methods and illustrate how our lexicon would improve previous approaches to achieve better performance.

2.1 CONFIDENCE REGULARIZATION

The essence of self-training is entropy minimization, leading teacher model outputs to be sharp pseudo-labeled data and student model outputs to be as sharp as labeled data. Yet the initially ideal teacher model does not always generate perfect pseudo-labels, and a precise prediction from the student model does not guarantee impeccable accuracy [Zheng and Yang, 2020]. Accordingly, trusting all selected pseudo-labels as ground truth can lead to overconfident mistakes and propagated errors [Zou et al., 2019]. This issue motivates a confidence regulator to prevent infinite entropy minimization only on annotated data the teacher model initially predicts more confident [Berthelot et al., 2019]. Instead, many researches [Laine and Aila, 2017b; Rasmus et al. 2015; Kumar et al. 2010] demonstrate that entropy minimization that is computed on unlabeled data, in addition to labeled ones, encourages the model to output confident predictions and generalize well on the unseen data. Another method [Li et al., 2019; Zou et al., 2019] is to generate soft pseudo-labels that redistribute a certain amount of confidence to other classes. Even though the confidence on the pseudo-labels is expected to be precise, the soft pseudo-labels attenuate the misleading effect brought by incorrect or ambiguous supervision. Prior researches indeed show that self-training without regularization is unfavorable to seeking incentives for the model to change and outputs the original model as an optimal capability to do so [Kumar et al., 2020].

2.2 SELECTIVE SAMPLING

An important ingredient for self-training is the unannotated data [Du et al., 2020]. Self-training builds a model for identifying and utilizing potentially informative and representative unlabeled samples [Panagiota Mastoropoulou, 2019]. Recent approaches use sample selection to generate more confident pseudo-labels, critical to enhance the learning performance. Sample selection uses the easiness of the samples to inform a learning schedule like training on easy concepts first followed by complex ones. Sample selection leverages teacher confidence [Bengio et al., 2009; Kumar et al., 2010] or uncertainty estimates [Mukherjee and Awadallah, 2020] to assess the easiness of a sample. Prior researches demonstrate the model performance depends on training on either easy or complex concepts first. Sample re-weighting [Wang et al., 2020] is another approach to achieve the same goal by mitigating error propagation from noisy pseudo-labels.

2.3 NOISE INJECTION

The role of noise has shown to be consistency regularization [Sohn et al., 2020]. Consistency regularization imposes a constraint on a model to make it harder to memorize the training data and generalize better to unseen data. This procedure enforces the model insensitive to the noise by minimizing consistency loss computed on both original and noised data [Berthelot et al., 2019]. Accordingly in self-training, noise injection to the student aims to make the student learn beyond the teacher’s knowledge. While a powerful unnoised, labeled data is necessary for the teacher model to produce high-quality pseudo-labels, those labels with noise lead the student model to have prediction consistency across unseen data [Zhang et al., 2018]. When applied to unlabeled data, noise has an important benefit of enforcing invariances in the decision function on both labeled and unlabeled data [Xie et al., 2020b]. Noise such as stochastic depth, dropout, and data augmentation plays an important role in enabling the student model to have a better capacity than the teacher in self-training.

Data augmentation creates new data by applying a transformation to an example without changing its label [Xie et al., 2020b]—this becomes a helpful way of injecting noise in self-training [Verma et al., 2019; Xie et al., 2020b]. Strong augmentation methods generate diverse examples that share the same ground-truth labels with original examples. Such data augmentation methods include bidirectional language model-based replacement by randomly replacing target words [Kobayashi 2018] and BERT masked language model-based replacement by predicting new words using the context [Wu et al., 2019; Ng et al., 2020]. Another approach without model-based is a simple word replacement using synonyms, neighbor words or superior words through large-scale lexical database such as WordNet [Miller, 1995].
3 LEXICON-GUIDED SELF-TRAINING

We extend the traditional self-training to use a lexicon, which is a set of representative words for each class in a specific domain. The lexicon, crafted by frequent occurrence of semantically important words, enhances the reliability of the pseudo-labeling mechanism. The lexicon in self-training becomes an additional criteria for selecting data to fulfill qualifications of 1) being a pseudo-label, 2) being the next unlabeled example, and 3) being a meaningful noise added to the student model. With the guidance of lexicon, our approach iteratively executes the following procedures until the model converges to a certain standard of performance outcome.

3.1 LEXICON CONSTRUCTION

A lexicon is a set of representative words for a class. Our lexicon construction is as follows. For each example, we choose the top \(n \) words that have the highest attention scores in a fine-tuned BERT-LSTM classifier because these words are closely associated with the corresponding class label. Among the selected words, we remove words that appear in examples with different classes; in other words, we only keep the words with distant classes. Because high attention scores do not necessary imply representative words for text classification, we also consider the word frequency. For each class, we count the number of word occurrences in all examples of the class, and select the top \(k\% \) frequent words—the selected words are a lexicon of the class.

3.2 PSEUDO-LABELING GUIDED BY LEXICON

LST performs a pseudo-label estimation under a unified loss minimization problem using lexicon. Pseudo-labels are treated as discrete learnable latent variables being either one-hot or all-zero [Zou et al., 2019]. Given a target example \(x_t \) from unlabeled target domain data \(X_T \), we compute a target label \(\hat{y}_t = (\hat{y}_{t1}, ..., \hat{y}_{tC}) \) with respect to labeled data \((x_s, y_s) \) from source domain \((X_S, Y_S) \). This step of computing target label \(\hat{y}_t \) is for generating pseudo-labels by a teacher model. Then, we make the teacher model as a student. We train the student model with both labeled data \((x_s, y_s) \) and pseudo-labeled data \((x_t, \hat{y}_t) \), to tune the network weights \(w \) using \(p(c|x;w), \) a classifier’s softmax probability for class \(c \). Here we explain two steps of generating initial pseudo-labels from a teacher model before they go to the loop of iterating the teacher-student learning procedure: (1) teacher model optimization; (2) pseudo-label generation.

(a) Teacher Model Optimization. As for the first step, we fix \(Y_s \), and train a teacher model with labeled data. We optimize the teach model by fixing \(Y_s \) and solving:

\[
w = \min \left(-\sum_{x \in S} \sum_{k=1}^{C} y^{(c)}_k \log p(c|x_s;w) \right).
\]
Algorithm 1: Lexicon-Guided Self-Training (LST)

Continue pre-training language model on task-specific unlabeled data;
Fine-tune model f^w with parameters w on task-specific small labeled data with Equation (1);
Construct an initial lexicon using labeled data with Equation (2);
while not converged do
 for $x_t \in X_T$ do
 Follow pseudo-labeling procedure with teacher model confidence f^w and lexicon regulator R_{lex} with Equations (3), (4), and (5):
 Pseudo-label on x_t using the model f^w with Equation (6);
 end
 for $\{\hat{y}_t, x_t\} \in T$ do
 Inject noise to the lexicon using lexical knowledge for data augmentation;
 end
 Re-train the model f^w with the augmented data and update parameters w with Equation (7);
 Extract refined words and update the lexicon;
 Make the student model as a teacher with Equation (8);
end

(b) Pseudo-Label Generation. Using the initial teacher model, we generate pseudo-labels for unlabeled data and construct a lexicon. We obtain a lexicon in this procedure following the construction methods explained in Section 3.1. The potential pseudo-labels filtered through the model prediction now consider a lexicon as the next criteria to meet. We can ultimately show the entropy minimization for generating initial pseudo-labels from the teacher model using Equation (2). We fix w and solve:

$$\hat{y}_T = \min \left(-\sum_{c=1}^{C} R_{lex}(\hat{y}_t^{(c)}) \log \frac{P(c|x_t;w)}{\lambda_c} \right)$$

s.t. $\hat{y}_t \in \Delta^{C-1} \cup \{0\}, \forall t.$

Note that the feasible set of pseudo-label is either $\{0\}$ or a probability simplex Δ^{C-1}. Each example having a one-hot value of $\hat{y}_t^{(c)}$ as a valid probability can work as a selected pseudo-label, while examples with a value of $\{0\}$ for $\hat{y}_t^{(c)}$ cannot. The model minimizes the entropy via selecting pseudo-labels between \hat{y}_t and $\{0\}$ using the model confidence with a parameter for sample selection λ_c and lexicon regulator $R_{lex}(\hat{y}_t^{(c)})$. The selected pseudo-labels lower the entropy of a single example t by checking $E(\hat{y}_t)$ as shown in Equation (3).

$$\hat{y}_t = \begin{cases} \hat{y}_t & \text{if } E(\hat{y}_t) < E(\{0\}); \\
0 & \text{otherwise.} \end{cases}$$

The entropy value $E(\hat{y}_t)$ depends on the parameter λ_c and the lexicon regulator $R_{lex}(\hat{y}_t^{(c)})$ as shown in Equation (4). The parameter λ_c is critical to control the sample selection.

The class $c = \arg \max_{c} \left\{ \frac{p(c|x_t;w)}{\lambda_c} \right\}$ labels each selected example when the example’s predication is confident enough. The pseudo-label on the example is valid when the value of $p(c|x_t;w)$ is greater than the parameter value λ_c. The less confident one with the example’s predication value less than the parameter λ_c cannot be a pseudo-labeled example and our model does not select it.

$$E(\hat{y}_t) = \min \left(-\sum_{c=1}^{C} R_{lex}(\hat{y}_t^{(c)}) \log \frac{p(c|x_t;w)}{\lambda_c} \right)$$

s.t. $c = \arg \max_{c} \left\{ \frac{p(c|x_t;w)}{\lambda_c} \right\}$ and $p(c|x_t;w) > \lambda_c.$

In addition to the model confidence, each selected example x_t has to contain at least τ number of lexicon words. The lexicon confirms the validity of pseudo-labels on those selected examples depending on whether the examples contain sufficient lexicon words as evidences of the label. Since the lexicon consists of words that fulfill the minimum threshold—certain number of occurrences with high attention scores within the source domain (X_S, Y_S), the lexicon regulator $R_{lex}(\hat{y}_t^{(c)})$ works as another qualification for strengthening our pseudo-labeling mechanism.

$$R_{lex}(\hat{y}_t^{(c)}) = \begin{cases} \hat{y}_t^{(c)} & \text{if } \sum_{z_t \in X_t} \text{count}(z_t|x_t^{lex}) \geq \tau; \\
0 & \text{otherwise.} \end{cases}$$

Note that the lexicon regulator only depends on pseudo-labels \hat{y}_t. In other words, the lexicon guides the pseudo-labeling mechanism and influences the overall self-training in the following three steps:
Confidence Regularization with Lexicon Words The lexicon performs as a regulator $R_{lex}(\hat{Y}_T)$, which determines whether to label on a certain example depending on the informativeness of a pseudo-label \hat{y}_t.

$$
\min_{\hat{y}_t} L_{CR} = L_{stu}(w, \hat{Y}_T) + R_{lex}(\hat{Y}_T)
= - \sum_{i=1}^{C} \sum_{c=1}^{K} s_t^{(c)} \log p(c|x_t; w) \\
- \sum_{i \in T} \left(\sum_{c=1}^{C} \alpha^{(c)}(\hat{y}_t) \log p(k|x_t; w) - R_{lex}(\hat{y}_t) \right),
$$

Equation (6)

The regulator determines whether a candidate pseudo-label is qualified to be a final pseudo-label at the corresponding epoch. This helps the teacher model generate more reliable pseudo-labels.

Data Augmentation with Lexical Knowledge We compute the student model’s predicted class distribution on an augmented version of given pseudo-labels from the teacher model. We improve the informativeness of pseudo-labels via lexical knowledge using WordNet denoted by $\alpha(\cdot)$.

$$
\min_w L_{DA} = L_{stu}(w, \alpha(\hat{Y}_T))
= - \sum_{i \in T} \sum_{k=1}^{K} y_t^{(k)} \log p(k|x_t; w) \\
- \sum_{i \in T} \sum_{k=1}^{K} \alpha(\hat{y}_t^{(k)}) \log p(k|\alpha(\hat{x}_t); w).
$$

Equation (7)

We replace words in an example sentence with relevant words, which preserve the label-compatibility. More specifically, the replacement method works over four different actions by exploring the lexical knowledge from WordNet: synonymy, hypernymy, hyponymy, and antonymy. Unlike other research, we employ the antonym of antonym to generate more diverse samples by keeping the label compatibility. We augment the data by uniformly executing replacement actions per each example.

With the augmented version of pseudo-labels, the student model trains and produces the updated weight values—this re-trained model is the teacher model for the next pseudo-labeling mechanism in self-training.

Selective Sampling with Lexical Attention The previous iteration provides useful weight values for sample selection since the augmented version of confident pseudo-labels enable the student model to focus on more informative examples.

Since the student model becomes a teacher model, the updated model is able to selectively sample useful unseen data and generate candidate pseudo-labels for the next iteration. The lexicon regulator performs just like the previous iteration does in the teacher model by Equation (6).

$$
\min_{\hat{y}_t} L_{SS} = L_{stu}(w, \alpha(\hat{Y}_T)) + R_{lex}(\alpha(\hat{Y}_T))
= - \sum_{i \in T} \left(\sum_{k=1}^{K} \alpha^{(k)}(\hat{y}_t) \log p(k|x_t; w) - R_{lex}(\alpha(\hat{y}_t)) \right).
$$

Equation (8)

This procedure keeps taking the augmented information about pseudo-labels into account while updating the teacher model and refining the lexicon until the model converges. The consistently refined lexical knowledge in the lexicon improves the overall self-training mechanism.

4 EXPERIMENTS

We evaluate the proposed approach with respect to five benchmark datasets: IMDB [Maas et al., 2011], SST-2 [Socher et al., 2013], Elec [McAuley and Leskovec, 2013], AG News [Zhang et al., 2015], and DBpedia [Zhang et al., 2015].

We compare our method and state-of-the-art methods for data augmentation (SSMBA) and few-shot text classification (UDA, UST).

Table 1: Dataset summary (#W: avg. word per text)

Dataset	Class	Train	Test	#W
SST-2	2	67K	1.8K	10
IMDB	2	25K	25K	235
Elec	2	25K	25K	108
AG News	4	120K	7.6K	40
DBpedia	14	560K	70K	51

4.1 EXPERIMENT SETTING

We follow the conventional implementation recommendations for self-training (ST) methods for fair ST evaluations. In particular, this means we use the same model and training algorithm in the same codebase for all experiments regarding ST. We use the same pre-trained language model BERT as our base encoder or classifier to compare Classic ST, UDA [Xie et al., 2020a], UST [Mukherjee and Awadallah, 2020], and SSMBA [Ng et al., 2020] with LST.

We use the BERT-based-uncased model (12-layer, 768-hidden, 12-heads, 110M parameters) followed by LSTM (768-hidden) with attention layer. We predict the class label by using the attention weights for each word and exploring the context vector that captures the entire input sequence to selectively focus on semantically meaningful words. For
Table 2: Accuracy comparison of different models for text classification on five benchmark datasets

Dataset	All train	30 labeled data per class for training and for validation
SST-2	92.12	69.79, 84.81, 83.58, 87.69, 66.70, 87.64 (1.63)
IMDB	91.7	73.03, 78.97, 89.30, 89.21, 76.10, 89.87 (1.05)
Elec	93.46	82.92, 89.92, 89.64, 91.27, 78.61, 90.24 (1.48)
AG News	92.12	80.74, 84.62, 85.92, 88.19, 86.13, 89.24 (0.78)
DBpedia	99.26	97.77, 98.39, 96.88, 98.57, 98.64, 98.74 (0.23)
Average	93.73	80.85, 87.34, 89.06, 91.00, 81.13, 91.14 (1.03)

this, we apply ReLU (0.1) activation and dropout (0.3) to the context vector and then feed it into linear layer. We use the AdamW optimizer with a learning rate 1e-5 and a weight decay of 0.01. We set $n = 3$ and $k = 10$ specified in the lexicon construction in Section 3.1. We set the confidence threshold λ_k as 0.8 for all benchmark datasets and a matching threshold τ as 2 for all but SST-2, in which we set as 1. This is because most data in SST-2 are very short compared with the other benchmark datasets and, thus, it is more appropriate to choose less number of words than the others. We train the model with a batch size of 16 for 30 epochs and apply the early stopping via validation loss per each epoch. We measure the model performance at the point when we have the highest validation accuracy.

Unless otherwise noted, all our experiments use the same number of limited labeled data: we randomly select 30 examples per class from the unlabeled pool for training and development, respectively. For each benchmark dataset, we repeat the evaluation three times and report the average.

4.2 BASELINES

BERT is one of the most popular pre-trained language models and shows the state-of-the-art performance for various natural language processing tasks [Devlin et al., 2019]. We adopt BERT as our base encoder or teacher model, hence compare it with LST as a baseline.

Classic Self-Training (ST) starts with a base teacher model trained on the labeled data, and the pseudo-labeled data trains a student model [Yarowsky, 1995]. The student-teacher training procedure repeats till the model converges. Our baseline copies student model parameters to use as the teacher model during ST.

UDA leverages back-translation for data augmentation in ST. UDA follows similar principles as virtual adversarial training [Miyato et al., 2017] and consistency training [Laine and Aila, 2017; Sajjadi et al., 2016] such that the model considers the noise injection to improve the performance. Unlike other baselines, this approach requires auxiliary resources using neural machine translation system to generate the back-translation.

UST adopts Bayesian active learning by disagreement [Houlsby et al., 2011] using stochastic dropout to select a set of unlabeled examples that maximize the information gain between predictions and the model posterior. UST [Mukherjee and Awadallah, 2020] minimizes the model variance not only by focusing more on unlabeled examples difficult to predict but by measuring the predictive variance to selectively focus on pseudo-labeled examples that the teacher is more confident on.

SSMBA is a self-supervised manifold based data augmentation [Ng et al., 2020], generating pseudo-labels by using denoising auto-encoders (DAE) [Bengio et al., 2013]. SSMBA uses masked language models [Devlin et al., 2019; Liu et al., 2019] as DAEs to sample meaningful examples from the underlying natural language distribution and to corrupt and reconstruct the examples as an augmented input. Ng et al. [2020] used SSMBA+CNN for evaluating the data augmentation performance. In our empirical study, SSMBA+BERT shows better performance than SSMBA+CNN when there is few labeled data. Hence, for fair comparison, we choose SSMBA+BERT for baseline.

4.3 RESULTS AND ANALYSIS

Table 2 shows that LST sets the new state-of-the-art for few-shot text classification. We observe that UST and LST all perform reasonably well. However, UST requires another dataset to learn more information about the unlabeled pool whereas LST follows a more traditional few-shot ST setting—few labeled data and abundant unlabeled data. In other words, LST guarantees a similar or better performance with less amount of data.

LST substantially outperforms UDA and SSMBA on all of the benchmark datasets. The lexicon constructed for LST performs better than the auxiliary resource of back transla-
tion for UDA in terms of data augmentation for few-shot text classification. Even though SSMBAS has a robust data augmentation method for the out-of-domain problem, LST works better than SSMBAS when there is extremely limited labeled data. This confirms that our approach is a better solution for the low-resource setting.

We use a fully supervised BERT baseline to measure the highest accuracy we could obtain with abundant labeled data. We also train a BERT baseline only with 30 labeled data to compare with other approaches employing ST mechanism trained on the same number of labeled data to test the performance of few-shot learning. On all of benchmark datasets, LST outperforms BERT and ST with the limited labeled data. LST outputs pretty competitive accuracy compared with all trained BERT with fully supervised approach.

LST outputs the best performance on datasets consisted of multiple classes for topic classifications such as AG News or DBpedia. For the binary classification, LST shows very competitive accuracy on Elec and SST-2, and the best accuracy on IMDB. Note that IMDB has the largest number of words per text among the benchmark sets. This confirms that LST performs well when there are diverse and sufficient number of words, which then help to build an effective lexicon for more accurate text classification.

Table 3: Different frequency ratio k% for the lexicon

	1%	10%	50%	100%
SST-2	86.37	87.64	84.45	84.68
IMDB	87.64	89.87	88.34	84.37
Elec	88.08	90.24	87.15	86.42
AG News	88.12	89.24	87.88	87.43
DBpedia	98.47	98.74	98.55	98.34

Word Selections for Lexicon Refinement In general, frequent words with high attention scores are representative words for its data and the corresponding class. Yet it might not be desirable to use all frequent words for lexicon. Thus, we study the problem of choosing a right amount of frequent words for the lexicon refinement for better performance. Once we collect top three words from each text that have the highest attention score, we sort these words by their occurrences and select only the top k% words for lexicon. In our experiment summarized in Table 3, we set k = 1, 10, 50, 100 and compute their accuracy.

For k = 1, most words in the refined lexicon are highly confident words, yet a relatively small size of lexicon have a smaller coverage on unlabeled data and do not utilize unlabeled data enough. We achieve the best performance when k = 10; here we have enough confident words and a lexicon of reasonable size. On the other hand, as k increases, the performance decreases. This is Because we become to have less confident words as k increases, the lexicon also becomes less accurate. Then, there are more noisy pseudo-labels, which produce more accumulated errors.

The lexicon refinement with frequent words often prevents the lexicon falling into a trap of being corrupted because words with high attention scores are not necessarily the representative words for the corresponding classes. Also, it is crucial to select not all but a proper fraction of words (e.g., 10%) to avoid the problem of adding noisy pseudo-labels too much.

4.4 Ablation Study

Since LST leverages the lexicon for ST, we perform an ablation study to understand how lexicon helps LST obtain state-of-the-art results. We focus on comparing LST with and without data augmentation to highlight the impact of lexicon itself in ST and to confirm the usefulness of data augmentation using lexical knowledge.

Table 3 shows that LST without data augmentation still outperforms BERT and ST on all the datasets. LST without lexicon improves the average accuracy by 3% compared to ST. The performance improvement confirms that the refined lexicon produces a more reliable pseudo-labeling mechanism and improves the accuracy. Note the accuracy gains obtained from the lexicon is all higher than that of UDA, a data augmentation method for consistent learning, by more than 3%. We believe that the lexicon already plays a critical role in guiding the ST as a confidence regulator for the model confidence and as a selective sampler for the unseen data.

Moreover, the lexical knowledge increases the performance of lexicon approximately by 1% by augmenting more informative data. Due to this data, the student model and lexicon become to have better ability to identify meaningful data from the unseen data pool. The augmentation consistently provides more accurate pseudo-labeling mechanism while iterating the learning procedure.

5 Conclusions

We have introduced LST, a self-training method that utilizes a lexicon to guide few-shot text classification tasks in a linguistically-enriched manner. LST has enhanced the traditional self-training with the following components and obtained the state-of-the-art performance:

1. Confidence regularization. The refined lexicon prevents relying on the model confidence only, and guides as an additional criteria to be confident on new pseudo-labels candidates. Because the lexicon contains words learned from the annotated data, it works as a guidance to improve self-training performance.
Table 4: Accuracy comparison of different combinations of LST modules

Combination	SST-2	IMDB	Elec	AG News	DBpedia	Average
BERT (LM)	69.79	73.03	82.92	80.74	97.77	80.85
ST + LM	84.81	78.97	89.92	84.62	98.39	87.34
ST + LM + lexicon	87.04	88.51	90.36	88.26	98.28	90.49
ST + LM + lexicon + aug. (= LST)	87.64	89.87	90.76	89.24	98.74	91.25

2. Selective sampling on unlabeled data. The lexicon produces high confidence values on more informative pseudo-labels and optimizes models to gain a better learning ability on meaningful unlabeled data.

3. Noise injection using lexical knowledge. The lexicon becomes powerful to guide the learning mechanism on the unseen data by enriching the lexical knowledge in lexicon.

On the whole, the simple but performant lexicon significantly improves self-training mechanism in few-shot text classification.

References

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning, volume 382, pages 41–48, 2009.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-encoders as generative models. In Proceedings of the 27th Annual Conference on Neural Information Processing Systems 2013, pages 899–907, 2013.

David Berthelot, Nicholas Carlini, Ian J. Goodfellow, Nicolas Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Proceedings of the Annual Conference on Neural Information Processing Systems 2019, pages 5050–5060, 2019.

Haw-Shiuan Chang, Erik G. Learned-Miller, and Andrew McCallum. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Proceedings of the Annual Conference on Neural Information Processing Systems 2017, pages 1002–1012, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4171–4186, 2019.

Jingfei Du, Edouard Grave, Beliz Gunel, Vishrav Chaudhary, Onur Celebi, Michael Auli, Ves Stoyanov, and Alexis Conneau. Self-training improves pre-training for natural language understanding. CoRR, abs/2010.02194, 2020.

Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for classification and preference learning. CoRR, abs/1112.5745, 2011.

Sosuke Kobayashi. Contextual augmentation: Data augmentation by words with paradigmatic relations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 452–457, 2018.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understanding self-training for gradual domain adaptation. In Proceedings of the 37th International Conference on Machine Learning, pages 5468–5479, 2020.

M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. In Proceedings of the 24th Annual Conference on Neural Information Processing Systems 2010, pages 1189–1197, 2010.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017a.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In Proceedings of the 5th International Conference on Learning Representations, 2017b.

Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin Zhou, Shibiao Zheng, Tat-Seng Chua, and Bernt Schiele. Learning to self-train for semi-supervised few-shot classification. In Proceedings of the Annual Conference on Neural Information Processing Systems 2019, pages 10276–10286, 2019.

Yinhua Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 142–150, 2011.

Julian J. McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimensions with review text. In *Proceedings of the Seventh ACM Conference on Recommender Systems*, pages 165–172, 2013.

George A. Miller. WordNet: A lexical database for English. *Computational Linguistics*, volume 38, pages 39–41, 1995.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a regularization method for supervised and semi-supervised learning. *CoRR*, abs/1704.03976, 2017.

Subhabrata Mukherjee and Ahmed Hassan Awadallah. Uncertainty-aware self-training for text classification with few labels. *CoRR*, abs/2006.15315, 2020.

Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi. SSMBBA: self-supervised manifold based data augmentation for improving out-of-domain robustness. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*, pages 1268–1283, 2020.

Emmelea Panagiota Mastoropoulou. Enhancing deep active learning using selective self-training for image classification, 2019.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised learning with ladder networks. In *Proceedings of the Annual Conference on Neural Information Processing Systems 2015*, pages 3546–3554, 2015.

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic transformations and perturbations for deep semi-supervised learning. *CoRR*, abs/1606.04586, 2016.

H. J. Scudder. Probability of error of some adaptive pattern-recognition machines. *IEEE Transactions on Information Theory*, 11(3):363–371, 1965.

Richard Socher, Alex Perelygin, jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*, pages 1631–1642, 2013.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In *Proceedings of the Annual Conference on Neural Information Processing Systems 2020*, 2020.

Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz. Interpolation consistency training for semi-supervised learning. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence*, pages 3635–3641, 2019.

Yaqing Wang, Subhabrata Mukherjee, Haoda Chu, Yuancheng Tu, Ming Wu, Jing Gao, and Ahmed Hassan Awadallah. Adaptive self-training for few-shot neural labeling. *CoRR*, abs/2010.03680, 2020.

Jason W. Wei and Kai Zou. EDA: easy data augmentation techniques for boosting performance on text classification tasks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing*, pages 6381–6387, 2019.

Xing Wu, Shangwen Lv, Liangjun Zang, Jizhong Han, and Songlin Hu. Conditional BERT contextual augmentation. In *Proceedings of the 19th International Conference on Computational Science*, volume 11539 of *Lecture Notes in Computer Science*, pages 84–95, 2019.

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation for consistency training. In *Proceedings of the Annual Conference on Neural Information Processing Systems 2020*, 2020a.

Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and Quoc V. Le. Self-training with noisy student improves imagenet classification. In *Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10684–10695, 2020b.

Jingjing Xu, Liang Zhao, Hanqi Yan, Qi Zeng, Yun Liang, and Xu Sun. LexicalAT: Lexical-based adversarial reinforcement training for robust sentiment classification. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing*, pages 5517–5526, 2019.

David Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In *Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics*, pages 189–196, 1995.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In *Proceedings of the 6th International Conference on Learning Representations*, 2018.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classification. In *Proceedings of the Annual Conference on Neural Information Processing Systems 2015*, pages 649–657, 2015.
Zhedong Zheng and Yi Yang. Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. CoRR, abs/2003.03773, 2020.

Yang Zou, Zhiding Yu, Xiaofeng Liu, B. V. K. Vijaya Kumar, and Jinsong Wang. Confidence regularized self-training. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, pages 5981–5990, 2019.