Update in the understanding of altitude-induced limitations to performance in team-sport athletes

François Billaut,1 Robert J Aughey2,3

ABSTRACT
The internationalism of field-based team sports (TS) such as football and rugby requires teams to compete in tournaments held at low to moderate altitude (~1200–2500 m). In TS, acceleration, speed and aerobic endurance are physical characteristics associated with ball possession and, ultimately, scoring. While these qualities are affected by the development of neuromuscular fatigue at sea level, arterial hypoxaemia induced by exposure to altitude may further hinder the capacity to perform consecutive accelerations (CAC) or sprint endurance and thereby change the outcome of a match. The higher the altitude, the more severe the hypoxaemia, and thus, the larger the expected decline in aerobic endurance, CAC and match running performance. Therefore, it is critical for athletes and coaches to understand how arterial hypoxaemia affects aerobic endurance and CAC and the magnitude of decline they may face at altitude for optimal preparation and increased chances of success. This mini review summarises the effects of acute altitude/hypoxia exposure on aerobic endurance, CAC and activity profiles of TS athletes performing in the laboratory and during matches at natural altitude, and analyses the latest findings about the consequences of arterial hypoxaemia on the relationship between peripheral perturbations, neural adjustments and performance during repeated sprints or CAC. Finally, we briefly discuss how altitude training can potentially help athletes prepare for competition at altitude.

INTRODUCTION
The internationalism of field-based team sports (TS) such as football and rugby means it is increasingly common for athletes to compete in tournaments that are held at low to moderate altitude (~1200–2500 m). For example, much of the 2010 FIFA World Cup host country, South Africa, is located at 1200 m with Johannesburg—the host city of the opening and final games—located at 1740 m. Furthermore, of the last 19 football World Cup tournaments since 1930, eight hosting countries were located at altitude, and the recent youth World Cup tournament for the under 17 (U17) as well as U20 age groups were held in moderate altitude venues (Mexico City, Mexico and Manizales, Colombia).

Field-based TS are largely endurance-based,1–3 albeit interspersed with bouts of high-intensity activity and numerous explosive bursts requiring high speed and power.4–5 Although the number of sprints (where players reach a high velocity, eg, greater than 6.94 m/s)6 performed in matches is relatively low,7,8 speed and acceleration qualities are associated with ball possession and, ultimately, scoring.7 Laboratory studies have shown that when arterial hypoxaemia—defined as a 3% reduction in arterial blood O2 saturation (SaO2) below pre-exercise level10 develops, several physiological responses are affected (eg, phosphocreatine (PCr) resynthesis, Na+, K+-ATPase enzyme activity, cerebral oxygenation and neural drive) that hinder the capacity to perform consecutive accelerations (CAC) and work at high intensity.11–13 Although current field evidence is scarce,14 this hypoxaemia-induced impairment in CAC is quite likely to limit TS match running performance at altitude. This presents a marked disadvantage for the ‘away’ team, especially if their normal place of residence is at sea level.15

Quantifying the extent of running performance decrement at low to moderate altitude would provide coaches with valuable knowledge to prepare TS athletes to better compete under hypoxic conditions. Therefore, the aims of this mini review are to (1) provide updates about the effects of acute altitude/hypoxia exposure on aerobic endurance, CAC and activity profiles of TS athletes performing in the laboratory and during matches, (2) analyse the latest findings about the consequences of arterial hypoxaemia on the complex relationship between peripheral perturbations, neural adjustments and performance regulation during repeated sprints, and (3) highlight the altitude-training methods that may help attenuate some of these decrements when competing at altitude. Such a review could be useful to guide the practice of many athletes around the world in maximising their preparation to cope with running performance decrement at altitude.

ACTIVITY PROFILES OF TS
Understanding the activity profiles of TS athletes and the bioenergetics systems that contribute to energy production during matches is necessary to comprehend the potentially negative effects of altitude on athletes’ performances. This section only provides brief synopses of the key performance determinants during TS matches, which have been dealt with elsewhere in this supplement16 and in previous reviews.14,17

Typical match movement characteristics
Movements in TS matches can be measured through Global Positioning System (GPS),4 or other systems’ and activity profile variables, expressed in metres per minute of match time (m/min), which typically include total distance, standing, walking, jogging, striding and sprinting.2–4 Striding and sprinting are categorised as ‘high-intensity activities’, while standing, walking and jogging, which occur in between high-intensity bouts to recover from these bouts, are described as ‘low-intensity
activities. Intensity, however, is dependent on an individual’s perception of effort, and ‘activity’ can include movements such as accelerating or leaping for ball possession. As this review focuses on movement characteristics, walking and jogging will be referred to as low-velocity running (LVR, 0.01–4.16 m/s), and striding and sprinting as high-velocity running (HiVR, 4.17–10 m/s). In addition, the frequency of maximal accelerations per minute (≥2.78 m/s²) can be quantified.

Soccer athletes, for example, regularly repeat short, high-intensity efforts, interspersed with longer intervals of rest or sub-maximal exercise over ≥30 min. The typical distance covered by top-class centre-midfielders is 9–13 km/match, which is comprised of 70% low-intensity activity and 150–250 brief intense actions (average sprint distances of 10–20 m). Australian footballers cover the highest distances in field sports, up to 15 km in finals matches, and undertake up to 30% of this distance as HiVR. In addition to these locomotive activities, athletes must perform other energy-demanding activities (eg, jumping, moving while controlling the ball and tackling) during matches that require them to accelerate. These high-intensity movements and accelerations often occur in response to cues such as ball movement or opponents’ actions. Such movements are typically short and, when started from a low velocity, have not been traditionally accounted for in match analysis research.

In fact, analysis from elite soccer athletes reveals that 85% of accelerations (≥2.78 m/s²) do not exceed the determined HiVR threshold. Thus, in match analysis studies that only report movements occurring at high velocities, accelerations are often excluded. A recent study demonstrated a 15-fold increase in high-intensity actions over the course of a match when combining sprint bouts and accelerations in the analysis. It is imperative to consider these short actions, as they are energetically the most challenging during a match and thus contribute greatly to total energy expenditure in a match.

Characteristics of elite team-sport athletes

Elite TS athletes must adapt to varied physical demands during the course of a match. Typically, athletes compete on average at 70% of their maximal aerobic O₂ uptake (VO₂ max), and cover an average distance of 9–13 km/match. This suggests that, in addition to the intermittent high-intensity nature of TS, high aerobic power is important for success. In fact, while elite TS athletes do not exhibit the specific physical/physiological capacities of elite endurance and sprint athletes, they do possess high levels of ‘aerobic’ and ‘anaerobic’ potentials.

EXERCISING AND COMPETING AT ALTITUDE

Paradoxically, although TS athletes regularly compete at altitude, our knowledge of the effects of hypoxia on performance is almost exclusively based on endurance athletes performing endurance exercise. Understanding what physical components and how activity profiles are affected by altitude in TS athletes specifically is critical, and this quest is supported, for example, by the FIFA. To remain specific to TS, we report the studies that have used TS athletes exclusively as participants.

Match activity profiles at altitude

Owing to the large distance covered in games and the numerous accelerations to be performed, competing at altitude is likely to exacerbate fatigue in TS athletes and influence the outcome of matches. In fact, field data demonstrate large inequalities in the probability to win for a sea-level team playing against a home team at moderate/high altitude.

The first study, to the best of our knowledge, to report altitude-induced performance decrement analysed match data from the official game statistics of the 2010 FIFA World Cup held in South Africa, where 64 matches were played by 105 teams at sea level, 660, 1200–1400 and 1401–1753 m. The results show a 3.1% lower total distance covered by teams during matches played at 1200–1400 and 1401–1753 m, compared with those played at sea level. Interestingly, however, the players’ top-running speed was not different across altitudes, suggesting that at least single high-intensity work capacity is well maintained during matches. More recent data collected in preparation for the 2011 FIFA U20 World Cup corroborate these findings, reporting that the total running distance and LVR were reduced by 9% and 8%, respectively, during matches played 4 days after arrival in Denver, Colorado (1600 m), compared with sea-level matches. Interestingly, this study also indicates a 15% reduction in HiVR at altitude. Furthermore, a rolling 5 min sample period was used to identify the peak 5 min period of the match and the 5 min period occurring immediately after the peak 5 min period, which gives an indication of transiently lower output, possibly fatigue, during matches. With this technique, there was a 21% reduction in peak HiVR as well as HiVR in the subsequent 5 min stanza (5–15%) at 1600 m than at sea level. While the frequency of accelerations performed during matches was not clearly affected at this low altitude, the acceleration frequency in the 5 min subsequent to the peak 5 min period dropped considerably (51%) at 1600 m, suggesting transient neuromuscular fatigue. Other data consolidate the finding that altitude hinders TS athletes’ running performance during matches; the recent International Study on Soccer at Altitude 3600 m (ISA3600), in this supplement, also reports compelling negative effects of high altitude on soccer players, independent of whether they are high-altitude or sea-level natives.

It is also worth considering that findings from controlled lab studies do not translate directly to match performance of players at altitude. TS are complex and chaotic, whereas laboratory studies are well controlled, with known work and rest durations. Participants in those studies can plan their physical output with some certainty. TS athletes, however, may preserve their capacity to perform the hardest actions, such as CAC, in matches by modulating the amount of low-intensity activity undertaken, especially in the face of environmental challenges like altitude. Therefore, laboratory studies cannot accurately predict the changes in match activity that actually occur in TS situations. Keeping this in mind, it is therefore critical when considering the effects of, for example, altitude on match running that the running profile of players is measured during competition. Sporting regulatory bodies should allow these data to be collected in all matches to assist in our understanding.

Collectively, these first data collected on TS athletes competing at altitude are in good agreement with the scarce evidence available on simulated TS athlete performances at natural altitude. For example, compared with sea-level activity, the performance of rugby athletes during a 20 m shuttle run (4%) and a rugby-specific repetitive power test (16%) is decreased at 1550 and 1700 m, respectively.

Laboratory studies

Owing to its high-energy demand, the skeletal muscle is sensitive to changes in partial pressure of O₂. Laboratory-based research indicates that a reduction in systemic O₂ delivery contributes to curtailment of CAC and repeated-sprint ability through varied metabolic and neuromuscular mechanisms. For
example, total mechanical work during ten 10 s cycle sprints interspersed with 30 s of rest was reduced (−8%) in hypoxic (FiO2 0.13, ∼3600 m) versus normoxic conditions. In hypoxia, a ∼9-fold to 10-fold increase in deoxygenation of active muscles (assessed via near-infrared spectroscopy) occurs rapidly during the first repetition of a series of sprints, and is relatively similar in normoxia and hypoxia, the results have been interpreted to mean that the level of muscle deoxygenation per se, and presumably muscle O₂ extraction, is unlikely to limit CAC. On the other hand, the capacity of the muscle to get reoxygenated during recovery periods between efforts has been incriminated in the performance decline in hypoxia. For instance, impaired muscle O₂ supply has been associated with hindered PCr resynthesis. Interventions that reduce (eg, hypoxia) or prevent (eg, blood flow occlusion) O₂ supply to muscles reduce and prevent, respectively, PCr resynthesis. Furthermore, the reoxygenation rate of the skeletal muscle has similar recovery kinetics to PCr after exercise. Therefore, since PCr resynthesis is one of the main factors in performance during repeated efforts, the slower repletion of this critical substrate is a key mechanism by which hypoxia impairs TS athletes’ running performance at altitude.

Other studies have demonstrated greater anaerobic energy release and metabolic perturbations after single-sprint and repeated-sprint exercise in hypoxia. This suggests that sprinting in hypoxia leads to greater and/or earlier metabolic fatigue (and presumably muscle fatigue) than in normoxia. Another factor that could contribute to exacerbated fatigue and lower intermittent HiVR at altitude is the downregulation of the Na⁺, K⁺-ATPase in hypoxia. For instance, when Na⁺, K⁺-ATPase are inhibited, the Na⁷/K⁺ leak-to-pump ratio is increased, muscle tetanic force is depressed and muscle fatigue is accelerated. Furthermore, the influence of the build-up of energy metabolites such as inorganic phosphate and hydrogen ions on force development and calcium sensitivity, which is accelerated in hypoxia, has been well established during exercise. Although no data are available, particularly on sprint exercise, it is quite likely that these mechanisms are at play during TS matches at altitude and contribute to hinder HiVR.

The effects of hypoxia on the nervous system function have been well described, but once again, data collected from sprint exercise are very limited. A greater attenuation of CAC may come from intermittent hypoxic training (IHT) in which athletes exercise in hypoxia. The resynthesis of PCr—known as a key metabolic pathway for CAC—may be positively impacted by adding a hypoxic stimulus during training. In fact, IHT involving a single leg extension results in faster PCr resynthesis after high-intensity exercise than similar training in normoxia. The authors hypothesised that the faster PCr resynthesis observed after IHT was probably due to an enhanced muscle O₂ delivery. Since hypoxia impairs the muscle reoxygenation capacity, which is directly linked to PCr resynthesis, it is possible that an IHT block that can accelerate the repletion of this substrate would benefit the recovery of power output and, therefore, CAC at altitude.

Preparing to face hypoxic challenges

Adaptations potentially favourable to high-intensity exercises and CAC may come from intermittent hypoxic training (IHT) in which athletes exercise in hypoxia. The resynthesis of PCr—known as a key metabolic pathway for CAC—may be positively impacted by adding a hypoxic stimulus during training. In fact, IHT involving a single leg extension results in faster PCr resynthesis after high-intensity exercise than similar training in normoxia. The authors hypothesised that the faster PCr resynthesis observed after IHT was probably due to an enhanced muscle O₂ delivery. Since hypoxia impairs the muscle reoxygenation capacity, which is directly linked to PCr resynthesis, it is possible that an IHT block that can accelerate the repletion of this substrate would benefit the recovery of power output and, therefore, CAC at altitude.

Compared with sea-level training, IHT induces additional metabolic stress and provoke specific molecular adaptations. The lower O₂ partial pressure in muscle tissue during IHT may induce a larger upregulation of the hypoxia-inducible factor 1α, which has in turn been shown to increase the fibre cross-sectional area, oxidative enzyme activity, mitochondrial density and capillary/fibre ratio. Recently, the idea was put forward that IHT involving sprint exercise would increase blood perfusion, thereby enhancing O₂ utilisation and improving the behaviour of fast-twitch fibres. Molecular adaptations in muscle tissue together with higher blood perfusion (presumably via nitric oxide-mediated vasodilatation mechanisms) after IHT could also positively influence sprint endurance in hypoxic environments and increase the chances of success for an ‘away’ team residing at sea level.
Reducing the general impact of altitude

Teams aiming at reducing the general impact of hypoxia when travelling at altitude for a match should seek acclimatisation to the altitude of the match.14 15 In this situation, the most effective strategy is likely to stage several days to weeks at the altitude of the match, particularly if travel across multiple time zones is also required.13 37 For example, it was recently reported that the negative impact of an altitude of 1600 m on total distance covered during a match (~9.1%) and HHR (~15.2%) in youth TS athletes was progressively reversed after only 6 days of residence at this low altitude (total distance: 6.2%, HHR: 18.3%).22 For moderate altitude (2000–3000 m), 1–2 weeks may be suitable to maximise physiological acclimatisation (eg, O2 transport and acid–base balance),68 although such data are not available in a population of TS athletes. Competition at high altitude (>3000 m) poses other challenges. However, there is evidence of incomplete acclimatisation in TS athletes after more than 2 weeks at altitude.69–70

CONCLUSIONS

There are numerous hypoxia-induced, negative physiological perturbations that suggest that TS athlete activity will be reduced at altitude. These perturbations are central (ie, within the central nervous system) and peripheral (ie, within the skeletal locomotor muscles) in nature, and both reduce CAC as well as exacerbate fatigue in repeated-sprint tasks at altitude. However, these studies do not have strong ecological validity for the reality of the chaotic nature of TS, where athletes may engage in strategies to protect the capacity to perform hard tasks. A combination of field and laboratory studies is therefore required to provide a clearer answer to the effects of altitude on field-based TS athletes.

REFERENCES

1 Aughey RJ. Increased high-intensity activity in elite Australian football finals matches. Int J Sports Physiol Perform 2011;6:367–79.
2 Bradley PS, Sheldon W, Wooster B, et al. High-intensity running in English Premier League soccer matches. J Sports Sci 2009;27:159–68.
3 Buchheit M. Repeated-sprint performance in team sport players: associations with measures of aerobic fitness, metabolic control and locomotor function. Int J Sports Med 2011;32:1–10.
4 Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform 2011;6:295–310.
5 Osgnach C, Poser S, Bernardini R, et al. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc 2010;42:170–8.
6 Aughey RJ, Falloon C. Real-time versus post-game GPS data in team sports. J Sci Med Sport 2010;13:348–9.
7 Mohr M, Krustup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci 2003;21:519–28.
8 Varley MC, Aughey RJ. Acceleration profiles in elite Australian soccer. Int J Sports Med 2013;34:34–9.
9 Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal orientation in soccer: a new match analysis approach. Int J Sports Physiol Perform 2013;6:295–301.
10 Dempsey JA, Wegner PD. Exercise-induced arterial hypoxemia. J Appl Physiol 1999;86:997–1006.
11 Balsom PD, Gaitanos GC, Ekblom B, et al. Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiol Scand 1994;152:279–95.
12 Billaut F, Smith KJ. Prolonged repeated-sprint ability is related to arterial O2 desaturation in man. Int J Sports Physiol Perform 2010;5:197–209.
13 Smith KJ, Billaut F. Influence of cerebral and muscle oxygenation on repeated-sprint ability. Eur J Appl Physiol 2010;109:989–99.
14 Billaut F, Gore CJ, Aughey RJ. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med 2012;42:751–67.
15 Gore CJ, McSharry PE, Hewitt AJ, et al. Preparation for football competition at moderate to high altitude. Scand J Med Sci Sports 2008;18(Suppl 1):85–95.
16 Bishop DI, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med 2013;47:17–23.
17 Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med 2011;41:673–94.
18 Di Salvo V, Gregson W, Atkinson G, et al. Analysis of high intensity activity in Premier League soccer. Int J Sports Med 2009;30:205–12.
19 Smolander M, Bishop D, Dawson B, et al. Physiological and metabolic responses of repeated-sprint activities: specific to field-based team sports. Sports Med 2005;35:1025–44.
20 Marcossa SM. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart and lungs. J Appl Physiol 2009;106:2060–2.
21 Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of integrative central neural regulation of effort and fatigue during exercise in humans. Br J Sports Med 2004;38:511–14.
22 Ganivcak LA, Hammond K, Varley MC, et al. Lower running performance and exacerbated fatigue in soccer played at 1600 m. Int J Sports Physiol Perform 2013;11:1362.
23 Bangsbo J, Mohr M, Krustup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci 2006;24:665–74.
24 Rampinini E, Coutts AJ, Castagna C, et al. Variation in top level soccer match performance. Int J Sports Med 2007;28:1018–24.
25 Deutsch MU, Kearney GA, Rehner NJ. Time—motion analysis of professional rugby union players during match-play. J Sports Sci 2007;25:461–72.
26 Deutsch MU, Maw GJ, Jenkins D, et al. Heart rate, blood lactate and kinematic data of elite cols (under-19) rugby union players during competition. J Sports Sci 1998;16:561–70.
27 Bangsbo J. The physiology of soccer—with special reference to intensity intermittent exercise. Acta Physiol Scand Suppl 1994;619:1–155.
28 Amann M, Kayser B. Nervous system function during exercise in hypoxia. High Alt Med Biol 2009;10:149–64.
29 Amann M, Eldridge MW, Looping AT, et al. Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 2006;575:937–52.
30 Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med 2001;31:533–57.
31 Kayser B, Nardi M, Binzoni T, et al. Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. J Appl Physiol 1994;76:634–40.
32 Noakes TD. Factors “limiting” exercise performance in hypoxia. Med Sci Sports Exerc 1996;28:191–2.
33 Wehrli JP, Hallen J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol 2006;96:404–12.
34 Bartos P, Salthin B, Dvorak J. Consensus statement on playing football at different altitude. Scand J Med Sci Sports 2008;18(Suppl 1):96–9.

Contributors FB and RJA have both contributed to the writing and the editing of the manuscript.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/
Nassis GP. Effect of altitude on football performance: analysis of the 2010 FIFA World Cup Data. *J Strength Cond Res* 2013;27:703–7.

Aughey RJ, Hammond K, Varley MC, et al. Soccer activity profile of altitude versus sea-level natives during acclimatisation to 3600 m (ISA3600). *Br J Sports Med* 2013;47:107–113.

Hamlin S, Jenkins D. Factors affecting the rate of phosphocreatine resynthesis during repeated-sprint exercise. *Int J Sports Physiol Perform* 2012;7:59–67.

Billaut F, Buchheit M. Repeated-sprint performance and vastus lateralis oxygenation: effect of limited O2 availability. *Scand J Med Sci Sports* 2013;23:e185–93.

McMahon S, Jenkins D. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. *PLoS ONE* 2012;7:e51977.

Billaut F, et al. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. *PLoS ONE* 2012;7:e51977.

McArdle WD, Katch FI, Katch VL. *Exercise Physiology: Energy, Nutrition, and Human Performance*. New York: Lippincott Williams & Wilkins; 2008.

Hogan MC, Richardson RS, Haseler LJ. Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. *J Appl Physiol* 2003;94:268–76.

Wood MR, Hinckson EA, Hamlin MJ, et al. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. *PLoS ONE* 2012;7:e51977.

Dillon GH, Waldrop TG. In vitro responses of caudal hypothalamic neurons to graded hypoxia. *Am J Physiol Regul Integr Comp Physiol* 2006;291:R746–58.

Nassis GP. Effect of altitude on football performance: analysis of the 2010 FIFA World Cup Data. *J Strength Cond Res* 2013;27:703–7.

Aughey RJ, Hammond K, Varley MC, et al. Soccer activity profile of altitude versus sea-level natives during acclimatisation to 3600 m (ISA3600). *Br J Sports Med* 2013;47:107–113.

Wood MR, Hinckson EA, Hamlin MJ, et al. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. *PLoS ONE* 2012;7:e51977.

McArdle WD, Katch FI, Katch VL. *Exercise Physiology: Energy, Nutrition, and Human Performance*. New York: Lippincott Williams & Wilkins; 2008.

Hogan MC, Richardson RS, Haseler LJ. Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. *J Appl Physiol* 2003;94:268–76.

Billaut F, Buchheit M. Repeated-sprint performance and vastus lateralis oxygenation: effect of limited O2 availability. *Scand J Med Sci Sports* 2013;23:e185–93.

McMahon S, Jenkins D. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. *PLoS ONE* 2012;7:e51977.