Width Parameterizations for Knot-free Vertex Deletion on Digraphs

Stéphane Bessy
Université de Montpellier - CNRS, LIRMM, Montpellier, France
stephane.bessy@lirmm.fr

Marin Bougeret
Université de Montpellier - CNRS, LIRMM, Montpellier, France
marin.bougeret@lirmm.fr

Alan D. A. Carneiro
Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
aaurelio@ic.uff.br

Fábio Protti
Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
fabio@ic.uff.br

Uéverton S. Souza
Universidade Federal Fluminense - Instituto de Computação, Niterói, Brazil
ueverton@ic.uff.br

Abstract

A knot in a directed graph $G$ is a strongly connected subgraph $Q$ of $G$ with at least two vertices, such that no vertex in $V(Q)$ is an in-neighbor of a vertex in $V(G) \setminus V(Q)$. Knots are important graph structures, because they characterize the existence of deadlocks in a classical distributed computation model, the so-called OR-model. Deadlock detection is correlated with the recognition of knot-free graphs as well as deadlock resolution is closely related to the Knot-Free Vertex Deletion (KFVD) problem, which consists of determining whether an input graph $G$ has a subset $S \subseteq V(G)$ of size at most $k$ such that $G[V \setminus S]$ contains no knot. Because of natural applications in deadlock resolution, KFVD is closely related to Directed Feedback Vertex Set. In this paper we focus on graph width measure parameterizations for KFVD. First, we show that: (i) KFVD parameterized by the size of the solution $k$ is $W[1]$-hard even when $p$, the length of a longest directed path of the input graph, as well as $\kappa$, its Kenny-width, are bounded by constants, and we remark that KFVD is para-NP-hard even considering many directed width measures as parameters, but in FPT when parameterized by clique-width; (ii) KFVD can be solved in time $2^{O(tw)} \times n$, but assuming ETH it cannot be solved in $2^{o(tw)} \times n^{O(1)}$, where $tw$ is the treewidth of the underlying undirected graph. Finally, since the size of a minimum directed feedback vertex set ($dfv$) is an upper bound for the size of a minimum knot-free vertex deletion set, we investigate parameterization by $dfv$ and we show that (iii) KFVD can be solved in FPT-time parameterized by either $dfv + \kappa$ or $dfv + p$; and it admits a Turing kernel by the distance to a DAG having an Hamiltonian path (another parameter larger than $dfv$). Results of (iii) cannot be improved when replacing $dfv$ by $k$ due to (i).

2012 ACM Subject Classification Design and analysis of algorithms → Parameterized complexity and exact algorithms; Mathematics of computing → Graph theory

Keywords and phrases Knot, deadlock, width measure, FPT, $W[1]$-hard, directed feedback vertex set

Funding Supported by Grant E-26/203:272/2017, Rio de Janeiro Research Foundation (FAPERJ) and by Grant 303726/2017-2, National Council for Scientific and Technological Development (CNPq).

Acknowledgements We thank Ignasi Sau for introducing Alan Carneiro to Stéphane Bessy and Marin Bougeret.

1 corresponding author
1 Introduction

The study of the Knot-Free Vertex Deletion problem emerges from its application in resolution of deadlocks, where a deadlock is detected in a distributed system and then a minimum cost deadlock-breaking set must be found and removed from the system. More precisely, distributed computations are usually represented by directed graphs called wait-for graphs. In a wait-for graph $G = (V, E)$, the vertex set $V$ represents processes, and the set $E$ of directed arcs represents wait conditions \[^4\]. An arc exists in $E$ directed away from $v_i \in V$ towards $v_j \in V$ if $v_i$ is blocked waiting for a signal from $v_j$. The graph $G$ changes dynamically according to a set of prescribed rules (the deadlock model), as the computation progresses. In essence, the deadlock model governs how processes should behave throughout computation, i.e., the deadlock model specifies rules for vertices that are not sinks (vertices with at least one out-neighbor) in $G$ to become sinks \[^4\] (vertices without out-neighbors). The two main classic deadlock models are the AND model, in which a process $v_i$ can only become a sink when it receives a signal from all the processes in $N^+(v_i)$, where $N^+(v_i)$ stands for the set of out-neighbors of $v_i$ (a conjunction of resources is needed); and the OR model, in which it suffices for a process $v_i$ to become a sink to receive a signal from at least one of the processes in $N^+(v_i)$ (a disjunction of resources is sufficient). Distributed computations are dynamic, however deadlock is a stable property, in the sense that once it occurs in a consistent global state of a distributed computation, it still holds for all the subsequent states. Therefore, as is typical in deadlock studies, $G$ represents a static wait-for graph that corresponds to a snapshot of the distributed computation in the usual sense of a consistent global state \[^13\]. Thus, the motivation of our work comes from deadlock resolution, where deadlocks are detected into a consistent global state $G$, and must be solved through some external intervention such as aborting one or more processes to break the circular wait condition causing the deadlock.

Deadlock resolution problems differ according to the considered deadlock model, i.e., according to the graph structure that characterizes the deadlock situation. In the AND-model, the occurrence of deadlocks is characterized by the existence of cycles \[^4\]. Therefore, deadlock resolution by vertex deletion in the AND-model corresponds precisely to the well-known Directed Feedback Vertex Set (DFVS) problem, proved to be NP-hard in the seminal paper of Karp \[^24\], and proved to be FPT in \[^14\]. On the other hand, the occurrence of deadlocks in wait-for graphs $G$ working according to the OR-model are characterized by the existence of knots in $G$ \[^3\]. A knot in a directed graph $G$ is a strongly connected subgraph $Q$ of $G$ with at least two vertices such that there is no arc $uv$ of $G$ with $u \in V(Q)$ and $v \notin V(Q)$. Thus, deadlock resolution by vertex deletion in the OR-model can be viewed as the following problem.

**Knot-Free Vertex Deletion (KFVD)**

**Instance:** A directed graph $G = (V, E)$; a positive integer $k$.

**Question:** Determine if $G$ has a set $S \subseteq V(G)$ such that $|S| \leq k$ and $G[V \setminus S]$ is knot-free.

Notice that a digraph $G$ is knot-free if and only if for any vertex $v$ of $G$, $v$ has a path to a sink.

In \[^12\], Carneiro, Souza, and Protti proved that KFVD is NP-complete; and, in \[^11\], it was shown that KFVD is W[1]-hard when parameterized by $k$.

KFVD is closely related to DFVS not only because of their relation to deadlocks, but also some structural similarities between them: the goal of DFVS is to obtain a direct acyclic graph (DAG) via vertex deletion (in such graphs all maximal directed paths end at a sink); the goal of KFVD is to obtain a knot-free graph, and in such graphs for every vertex $v$ there exists at least one maximal path containing $v$ that ends at a sink. Finally, every directed feedback vertex set is a knot-free vertex deletion set; thus an optimum for DFVS provides an upper bound for KFVD. Although Directed Feedback Vertex Set is a well-known problem, this is not the case of Knot-Free Vertex Deletion, which we propose to analyze more deeply in this work.

Let $S$ be a solution for KFVD, and let $Z$ be the set of sinks in $G[V \setminus S]$. One can see that any
\(v \in V \setminus S\) has a path (that does not use any vertex in \(S\)) to a vertex in \(Z\). Thus, KFVD can be seen as the problem of creating a set \(Z\) of sinks (doing at most \(k\) vertex removals) such that every remaining vertex has a path (in \(G[V \setminus S]\)) to a vertex in \(Z\). In this paper, we denote the set of deleted vertices by \(S\), and the set of sinks in \(G[V \setminus S]\) by \(Z\).

To get intuition on KFVD, note that the choice of the vertices to be removed must be carefully done, since the removal of a subset of vertices can turn some strongly connected components into new knots that will need to be broken by the removal of some internal vertices. Ideally, it is desirable to solve the current knots by removing as few vertices as possible for each knot, without creating new ones. Unfortunately, the generation of other knots can not always be avoided.

In [10][2], Carneiro, Souza, and Protti present a polynomial-time algorithm for KFVD in graphs with maximum degree three. They also show that the problem is NP-complete even restricted to planar bipartite graphs \(G\) with maximum degree four. Later, in [11], a parameterized analysis of KFVD is presented, where it was shown that: KFVD is W[1]-hard when parameterized by the size of the solution; and it can be solved in \(2^{ \log \varphi k \cdot O(1)}\) time, but assuming SETH it cannot be solved in \((2 - \varepsilon)^{k \cdot O(1)}\) time, where \(\varphi\) is the size of the largest strongly connected subgraph.

Since the introduction of directed treewidth, much effort has been devoted to identify algorithmically useful digraph width measures [26]. Useful width measures imply polynomial time tractability for many combinatorial problems on digraphs of constant width. Since KFVD is W[1]-hard when parameterized by \(k\), in this paper we investigate the ecology of width measures in order to find useful parameters to solve KFVD in FPT time. First, taking \(k\) as parameter, we show that KFVD remains W[1]-hard even on instances with both longest directed path and K-width bounded by constants. From the same reduction, it follows that KFVD is para-NP-hard even considering many width measures as parameters, such as directed treewidth and DAG-width. Contrasting with the hardness of KFVD on several directed width measure parameterizations, we show that KFVD is FPT when parameterized by the clique-width of the underlying undirected graph; and it can be solved in \(2^{\omega(n)} \cdot n^{O(1)}\) time, where \(\omega(n)\) is the treewidth of the underlying undirected graph. After that, we consider the most natural width parameter related to KFVD, the size of a minimum directed feedback vertex set (dfv). Such a parameter is at the same time a measure of the distance from the input graph to a DAG as well as an upper bound for the size of a minimum knot-free vertex deletion set. We show that KFVD can be solved in FPT time either parameterized by dfv and K-width, or dfv and the length of a longest directed path. The complexity of KFVD parameterized only by dfv remains open. Finally, we present a polynomial Turing kernel when we are given a special directed feedback vertex set whose removal gives a DAG having a directed Hamiltonian path.

In the rest of this section we give necessary definitions and concepts used in this work. In Section 2 we present some useful observations and preliminary results. In Section 3 we discuss digraph width measures and show the W[1]-hardness. In Section 4 we discuss the consequences of treewidth parameterization. In Section 5 we explore the directed feedback vertex set number as a parameter. Finally, Section 6 considers the parameterization by distance to a DAG having a Hamiltonian path.

**Additional notation.** We use standard graph-theoretic and parameterized complexity notations and concepts, and any undefined notation can be found in [9][17]. We consider here directed graphs. Given a vertex \(v\) and a subset of vertices \(Z\), we say that there is a path from \(v\) to \(Z\) if \(v\) and \(Z\) can be connected by a directed path. For \(v \in V(G)\), let \(D(v)\) denote the set of descendants of \(v\) in \(G\), i.e., nodes that are reachable from \(v\) by a non-empty directed path. Given a set of vertices \(C = \{v_1, v_2, \ldots, v_p\}\) of \(G\), we define \(D(C) = \bigcup_{i=1}^{p} D(v_i)\). Let \(A(v)\) denote the set of ancestors of \(v\) in \(G\), i.e., nodes that reach \(v\) through a non-empty directed path. We also define \(A[v] = A(v) \cup \{v\}\), and given a set of vertices \(C = \{v_1, v_2, \ldots, v_p\}\) of \(G\), we define \(A(C) = \bigcup_{i=1}^{p} A(v_i)\). For a vertex \(v\) of \(G\), the out-neighborhood of \(v\) is denoted by \(N^+(v) = \{u | vu \in E\}\), and given a set of vertices
Thus, $G$ is an SCC. A knot in a directed graph $G$ is an SCC $Q$ of $G$ with at least two vertices such that there is no arc $uv$ of $G$ with $u \in V(Q)$ and $v \notin V(Q)$. Finally, a sink (resp. a source) of $G$ is a vertex with out-degree 0 (resp. in-degree 0). Given a subset of vertices $S$, we denote $G_S = G[S]$ and $\bar{S} = V \setminus S$. Thus, $G_{\bar{S}}$ denote the graph obtained by removing $S$.

We denote by $dfv(G)$ the size of a minimum directed feedback vertex set of $G$. We generally use $F$ to denote a directed feedback vertex set and by $R$ the remaining subset, i.e., $R = V \setminus F$. The length of a longest directed path of $G$ is denoted by $\rho(G)$. The Kenny-width [13] or K-width of $G$ is denoted by $\kappa(G)$ and is the maximum number of distinct directed $st$-paths in $G$ over all pairs of distinct vertices $s,t \in V(G)$, where two $st$-paths are distinct iff they do not use the exact same set of arcs. For any function $g$ (like $dfv$, $\kappa$, $p$), $g(G)$ will be denoted simply by $g$ when the considered graph $G$ can be deduced from the context. In what follows we denote by $g$-KFVD the KFVD problem parameterized by $g$ ($g = k$ denotes the parameterization by the solution size).

## 2 Preliminaries

In this section we present some useful remarks and reduction rules. Remind that in the decision version of the problem we are given $G$ and a positive integer $k$.

The first observation is immediate, as if we can make the graph acyclic, then it will be knot-free.

- **Observation 1.** If $k \geq dfv(G)$ then $G$ is a yes-instance.

The two others observations are less obvious but rather natural.

- **Observation 2.** Let $S$ be a solution with set of sinks $Z$ in $G_{\bar{S}}$, and $s \in S$. Let $S' = S \setminus \{s\}$ and $Z'$ be the set of sinks of $G_{\bar{S}}$. If there is a path from $s$ to $Z'$ in $G_{\bar{S}}$, then $S'$ is also a solution.

**Proof.** Let $u \in V(G_{\bar{S}})$. Let us prove that $u$ has a path to $Z'$ in $G_{\bar{S}}$. If $u = s$ then it is clear by assumption. Suppose now that $u \neq s$. As $S$ is a solution, let $P$ be a $uz$-path in $G_{\bar{S}}$ from $u$ to a sink $z \in Z$. As $V(G_{\bar{S}}) \subseteq V(G_S)$, $P$ still exists in $G_S$. Thus, if $z \in Z'$ we are done. Otherwise, it implies that there is $s \in N^+(z)$ such that $P' = (u, \ldots, z, s)$ is a $us$-path in $G_{\bar{S}}$. As $s$ has a path to $Z'$ in $G_{\bar{S}}$, we obtain the desired result.

Informally, after deleting a vertex $s$, we can add $s$ back to the graph when it is certain that $s$ has a path to a sink in the current graph. This is detailed by the following lemma and its corollary.

- **Lemma 1.** Let $S$ be a solution with set of sinks $Z$ in $G_{\bar{S}}$. If there exists $s \in S$ with $s \notin N^+(Z)$, then $S' = S \setminus \{s\}$ is also a solution.

**Proof.** Let $Z'$ be the set of sinks of $G_{\bar{S}}$. According to Observation 2, it suffices to prove that there is a path from $s$ to $Z'$ in $G_{\bar{S}}$. If $s$ is a sink in $G_{\bar{S}}$ we are done. Otherwise, there exists an arc $su$ in $G_{\bar{S}}$, with $u \in V(G_{\bar{S}})$. As $S$ is a solution, either $u$ is a sink and we are done, or, there exists a $uz$-path $P$ in $G_{\bar{S}}$ with $z \in Z$. As $V(G_{\bar{S}}) \subseteq V(G_S)$, $P$ still exists in $G_S$, and $s \notin N^+(Z)$, $z$ is still a sink in $G_{\bar{S}}$.

The following corollary is immediate.

- **Corollary 2.** In any optimal solution $S$ with set of sinks $Z$ in $G_{\bar{S}}$, we have $N^+(Z) = S$.

- **Observation 3.** Let $S$ be a knot-free vertex deletion with set of sinks $Z$ in $G_{\bar{S}}$. If $|S| \leq k$ then for any vertex $v$ with $d^+(v) > k$ it holds that $v \notin Z$.

To complete the previous observations, we can design two general reduction rules.

- **Reduction Rule 1.** If $v \in V(G)$ is an SCC of size one then remove $A[v]$.
Proof. Let \( G' \) be the graph obtained by removing \( A[v] \). Let of first show that \((G, k)\) is a yes-instance implies that \((G', k)\) is also a yes-instance. Let \( S \) be a solution of \( G \) of size at most \( k \) with set of sinks \( Z \) in \( G \). Let \( S' = S \setminus A[v] \) and \( z' \) the set of sinks in \( G' \). Let us prove that every \( u \in V(G_z') \) has a path of \( z' \) in \( G_z' \). As \( u \) is also in \( V(G_z) \), there is a \( u \)-\( z \)-path \( P \) in \( G_z \) where \( z \in Z \). As \( u \notin A[v] \), \( V(P) \cap A[v] = \emptyset \) and thus, the path \( P \) still exists in \( G_z' \). Moreover, \( u \notin A[v] \) implies that \( N^+(z') \cap A[v] = \emptyset \) and thus that \( N^+(z') \subseteq S' \), implying that \( z \in Z' \).

Let us now consider the reverse implication, and let \( S' \) be a solution of \( G' \) of size at most \( k \) with set of sinks \( Z' \) in \( G_z' \), and prove that \( S' \) is a solution of \( G \). Let us start with \( u \in V(G_z' \setminus A[v]) \). As \( S' \) is a solution of \( G' \) and \( u \in V(G_z') \), there is \( u \)-\( z' \)-path \( P' \) in \( G_z' \), where \( z' \in Z' \), and this path still exists in \( G_z \). As \( N^+(z') \cap A[v] = \emptyset \), \( z' \) is still a sink in \( G_z \) and we are done. Consider now a vertex \( u \in V(G_z') \cap A[v] \). As \( S' \cap A[v] = \emptyset \), there is \( u \)-\( v \)-path \( P \) in \( G_z \). If \( N^+(v) \subseteq S' \) then \( v \) is a sink in \( G_z \) and we are done. Otherwise, let \( w \in N^+(v) \setminus S' \). As \( w \) is a SCC of size 1, \( N^+(w) \cap A[v] = \emptyset \), implying that \( w \in V(G_z') \setminus A[v] \), and thus according to the previous case \( w \) has a path to a sink in \( G_z \).

The previous reduction rule removes in particular sources and sinks, as they are SCC’s of size one.

\[ \Rightarrow \text{Reduction Rule 2. \ Let } U_i \text{ be a strongly connected component of } G \text{ with strictly more than } k \text{ out-neighbors in } G[V \setminus V(U_i)]. \text{ Then we can safely remove } A[U_i]. \]

\[ \Rightarrow \text{Proof. \ Let } G' \text{ be the graph obtained by removing } A[U_i]. \text{ Let us first show that } (G, k) \text{ is a yes-instance implies that } (G', k) \text{ is also a yes-instance. Let } S \text{ be a solution of } G \text{ of size at most } k \text{ and } Z \text{ the set of sinks in } G. \text{ Let } S' = S \setminus A[U_i] \text{ and } Z' \text{ the set of sinks in } G_{z, i}'. \text{ Using the same argument (replacing } A[v] \text{ by } A[U_i] \text{ as in the first part of proof of Reduction 1) we get that every } u \in V(G_{z, i}') \text{ has a path of } z' \text{ in } G_{z, i}'. \text{ Let us now consider the reverse implication, and let } S' \text{ be a solution of } G' \text{ of size at most } k \text{ with set of sinks } Z' \text{ in } G_{z, i}', \text{ and prove that } S' \text{ is a solution of } G. \text{ Let us start with } u \in V(G_{z, i}' \setminus A[v]). \text{ As } S' \text{ is a solution of } G' \text{ there is } u \text{-} z' \text{-path } P' \text{ in } G_{z, i}' \text{, where } z' \in Z', \text{ and this path still exists in } G_{z, i}'. \text{ As } N^+(z') \cap A[U_i] = \emptyset, \text{ } z' \text{ is still a sink in } G_{z, i}' \text{ and we are done. Consider now a vertex } u \in V(G_{z, i}') \cap A[U_i]. \text{ As } S' \cap A[U_i] = \emptyset, \text{ there is } u \text{-} v \text{-path } P \text{ in } G_{z, i}'. \text{ As } U_i \text{ has strictly more than } k \text{ out-neighbors in } G(V \setminus V(U_i)), \text{ there is arc from } U_i \text{ to } w \in V(G_{z, i}') \text{ and thus according to the previous case } w \text{ has a path to a sink in } G_{z, i}'. \]

### 3 W[1]-hardness and directed width measures

\( k \)-KFVD was shown to be W[1]-hard using a reduction from \( k \)-\textsc{Multicolored Independent Set} (\( k \)-\textsc{MIS}) \cite{bessy2021knot}. However, the gadget used in this reduction to encode each color class has a longest directed path of unbounded length. First, we remark that it is possible to modify the reduction in order to prove that \( k \)-KFVD is W[1]-hard even if the input graph \( G \) has longest path length and \( K \)-width bounded by constants.

\[ \Rightarrow \text{Theorem 3. \ There is a polynomial-time reduction, preserving the size of the parameter, from } k \text{-MIS to } k \text{-KFVD such that the resulting graph has longest directed path of length at most } 5 \text{ and } K \text{-width equal to } 2. \]

\[ \Rightarrow \text{Proof. \ Let } (G', k) \text{ be an instance of } \textsc{Multicolored Independent Set}, \text{ and let } V^1, V^2, \ldots, V^k \text{ be the color classes of } G'. \text{ We construct an instance } (G, k) \text{ of } \textsc{Knot-Free Vertex Deletion} \text{ with bounded longest path length and } K \text{-width as follows.} \]

1. for each \( v_i \in V(G') \), create a directed cycle of size two with the vertices \( w_i \) and \( z_i \) in \( G \);
2. for a color class \( V^j \) in \( G' \), create one vertex \( u_j \);
3. for each vertex $z_i$ in $G$ corresponding to a vertex $v_i$ of the color class $V^j$ in $G'$, create an arc from $z_i$ to $u_j$ and from $u_j$ to $z_i$.

4. for each edge $w_t$ in $G$ corresponding to a vertex $v_t$ of the color class $V^j$ in $G'$, create an arc from $u_j$ to $w_t$.

5. for each edge $e_p = (v_i, v_j)$ in $G'$ create a set $X_p$ with two artificial vertices $x'_p$ and $x''_p$ and the arcs $x'_p x''_p$ and $x''_p x'_p$.

6. for each artificial vertex $x'_p$, create an edge from $x'_p$ towards $z_i$ in $G$.

Finally, set $Y_j = \{w_i, z_i : v_i \in V^j\} \cup \{u_j\}$. $Y_j$ is the set of vertices of $G$ corresponding to the vertices of $G'$ in the same color class $V^j$. Notice that, the longest path of $G$ has at most 5 vertices, and for any pair $s, t$ in $V(G)$ there are at most 2 distinct directed $st$-paths in $G$.

Now, suppose that now $S'$ is a $k$-independent set with exactly one vertex of each set $V^j$ of $G'$. By construction, $G$ has $k$ knots which are $G[Y_1], \ldots, G[Y_k]$. Thus, at least $k$ vertex removals are necessary to make $G$ free of knots. We set $S = \{z_i | v_i \in S'\}$ and show that $G[V \setminus S]$ is knot-free. For $j = 1, \ldots, k$ the vertex $w_j$ is a sink in $G \setminus S$, and every vertex of $Y_j \setminus S$ still reaches $w_j$. Now, as $S'$ is a $k$-independent set of $G'$ each set $X_p$ in $G$ is adjacent to at least one vertex that is not in $S$. Hence, each $X_p$ will still have at least one arc pointing outside $X_p$, i.e., no new knots are created, and $G \setminus S$ is knot-free.

Conversely, suppose that $G$ has a set of vertices $S$ of size $k$ such that $G[V \setminus S]$ is knot-free. In particular $S$ has to contain exactly one vertex of each of the knot $Y_j$, for $j = 1, \ldots, k$. Since at least one sink has to be created in order to unite the knot $Y_j$, and since the only vertices of $Y_j$ with only one out-neighbor are the $w$’s ones, $S$ has to contain a vertex $z_i$ of each set $Y_1, \ldots, Y_k$. Moreover by deleting one vertex $z_i$ in a knot $Y_j$, the vertex $w_j$ is turned into sink and every other vertex of the same knot still has a path to $w_j$. Since $G[V \setminus S]$ is knot-free, no new knots are created by the deletion of $S$; thus, every SCC $X_p$ will still have at least one arc pointing outside it. So, we set $S' = \{v_i | z_i \in S\}$. Since each SCC $X_p$ corresponds to an edge of $G'$, and at least one vertex of each edge of $G'$ is not in $S'$, the set $S'$ contains no pair of adjacent vertices. Moreover, $S'$ is composed by one vertex of each knot, which corresponds to a color of $G'$. Therefore, $S'$ is a multicolored independent set of $G'$.

Since $k$-MIS is $\mathcal{W}[1]$-hard, the following holds.

**Corollary 4.** $k$-KFVD is $\mathcal{W}[1]$-hard even if the input graph has longest directed path of length at most 5 and K-width equal to 2.

After the introduction of the notion of directed treewidth (dtw) [23], a large number of width measures in digraphs were developed, such as: cycle rank [29] (cr); directed pathwidth [2] (dpw); zig-zag number [25] (zn); Tree-Zig-Zag number [20] (Tzn); Kelly-width [22] (Kelw); DAG-width [6] (dagw); D-width [29] (Dw); weak separator number [26] (s); entanglement [7] (ent); DAG-depth [18] (ddp). However, if a graph problem is hard when both the longest directed path length and the K-width are bounded, then it is hard for all these measures (see Figure 1).

Therefore, from the reduction presented in Theorem 3 we can observe that KFVD is para-NP-hard with respect to all these width measures, and $k$-KFVD is $\mathcal{W}[1]$-hard even on inputs where such width measures are bounded. Thus, it seems to be extremely hard to identify nice width parameters for which KFVD can be solved in FPT-time or even in XP-time. Fortunately, there remain some parameters for which, at least, XP-time solvability is achieved. One of them is the directed feedback vertex set number (dfv). This invariant is an upper bound on the size of a minimum knot-free vertex deletion set, so XP-time algorithms are trivial. This parameter is discussed in more detail in Section 5.

Another interesting width parameter for directed graphs $G$ that is not bounded by a function of the K-width and the length of a longest directed path is the clique-width of $G$. Courcelle et al. [16]
showed that every graph problem definable in $L_{\text{in}}$EMSOL can be solved in time $f(w) \times n^{O(1)}$ on graphs with clique-width at most $w$, when a $w$-expression is given as input. Using a result of Oum [27], the same follows even if no $w$-expression is given.

▶ Proposition 5 (see [15]). There is a monadic second-order formula expressing the following property of vertices $x, y$ and of a set of vertices $X$ of a directed graph $G$:

"$x, y \in X$ and there is a directed path from $x$ to $y$ in the subgraph induced by $X$."

From Proposition 5 one can show that KFVD is $L_{\text{in}}$EMSOL-definable. Thus Theorem 6 holds.

▶ Theorem 6. KFVD is FPT when parameterized by clique-width of the underlying undirected graph $G$.

Proof. From Proposition 5 we can construct (using shortcuts) a formula $\psi(G, S)$ such that "$S$ is knot-free vertex deletion set of $G$" $\iff \psi(G, S)$, as follows:

$$\exists Z \subseteq V \left[ \forall v \in Z (\forall w \in V(\text{arc}(v, w) \implies w \in S)) \wedge \forall u \in \{V \setminus S\} (\exists s \in Z (\text{there is a directed } V \setminus S\text{-path from } u \text{ to } s)) \right]$$

Since $\psi(G, Z)$ is an MSOL$_1$-formula, the problem of finding $\min(Z) : \psi(G, Z)$ is definable in $L_{\text{in}}$EMSOL. Thus we can find $\min(Z)$ satisfying $\psi(G, Z)$ in time $f(cw) \times n^{O(1)}$.

The fixed-parameter tractability for clique-width parameterization implies fixed-parameter tractability of KFVD for many other popular parameters. For example, it is well-known that the clique-width of a directed graph $G$ is at most $2^{2^{2^{2^{tw(G)}}}} + 1$, where $tw(G)$ is the treewidth of the underlying undirected graph (see [15] Proposition 2.114). However, although Theorem 5 implies the FPT-membership of the problem parameterized by the treewidth of the underlying undirected graph, the dependence on $tw(G)$ provided by the model checking framework is huge. So, it is still a pertinent question whether such a parameterized problem admits a single exponential algorithm, which is discussed in Section 4.

### 4 The treewidth of the underlying undirected graph as parameter

Given a tree decomposition $T$, we denote by $t$ one node of $T$ and by $X_t$ the vertices contained in the bag of $t$. We assume, without loss of generality, that $T$ is a nice tree decomposition (see [17]), that is, we assume that there is a special root node $r$ such that $X_r = \emptyset$ and all edges of the tree are directed.
towards $r$ and each node $t$ has one of the following four types: Leaf, Introduce vertex, Forget vertex, and Join.

Based on the following results we can assume that we are given a nice tree decomposition of $G$.

**Theorem 9.** [17] There exists an algorithm that, given an $n$-vertex graph $G$ and an integer $k$, runs in time $2^{O(k)} \times n$ and either outputs that the treewidth of $G$ is larger than $k$, or constructs a tree decomposition of $G$ of width at most $5k + 4$.

**Lemma 8.** [17] Given a tree decomposition $(T, |X_r|_{v \in V(T)})$ of $G$ of width at most $k$, one can in time $O(k^2 \cdot \max(|V(T)|, |V(G)|))$ compute a nice tree decomposition of $G$ of width at most $k$ that has at most $O(k|V(G)|)$ nodes.

Now we are ready to use a nice tree decomposition in order to obtain an FPT-time algorithm with single exponential dependency on $tw(G)$ and linear with respect to $n$.

**Theorem 9.** **Knot-Free Vertex Deletion** can be solved in $2^{O(n)} \times n$ time, but assuming ETH there is no $2^{o(n)} n^{O(1)}$ time algorithm for KFVD, where $tw$ is the treewidth of the underlying undirected graph of the input $G$.

**Proof.** Let $T = (T, |X_r|_{v \in V(T)})$ be a nice tree decomposition of the input digraph $G$, with width equal to $tw$. First, we consider the following additional notation and definitions: $t$ is the index of a bag of $T$; $G_t$ is the graph induced by all vertices $v \in X_t$ such that either $t' = t$ or $t' \in X_t$ is a descendant of $X_t$ in $T$; Given a knot-free vertex deletion set $S$, for any bag $X_t$ there is a partition of $X_t$ into $S_t, Z_t, F_t, B_t$ where
- $S_t$ (removed) is the set of vertices of $X_t$ that are going to be removed ($S_t = S \cap X_t$);
- $Z_t$ (sinks) is the set of vertices of $X_t$ that are going to be turned into sinks after the removal of $S$;
- $F_t$ (free/released) is the set of vertices of $X_t$ that, after the removal of $S$, are going to reach a sink that belongs to $V(G_t)$;
- $B_t$ (blocked) is the set of vertices of $X_t$ that, after the removal of $S$, are going to reach no sink that belongs to $V(G_t)$;

Let $Y \subseteq X_t$. We denote by $A_t(Y)$ the set of vertices in $F_t$ that reach some vertex of $Y$ in the graph induced by $V(G_t) \setminus S_t$.

The recurrence relation of our dynamic programming has the signature $C[t, S_t, Z_t, F_t, B_t]$, representing the minimum number of vertices in $G_t$ that must be removed in order to produce a graph such that for every remaining vertex $v$ either $v$ reaches a vertex in $B_t$ (meaning it may still be released in the future) or $v$ reaches a vertex that became a sink (possibly the vertex itself), where every vertex in $S_t$ is removed, every vertex in $Z_t$ becomes a sink, every vertex in $F_t$ will have a path to a sink in $G_t$, and $S_t, Z_t, F_t, B_t$ form a partition of $X_t$. Notice that the generated table has size $4^{|S|} \times tw \times n$, and when $t = r$, $X_r = \emptyset$ and therefore $C[r, \emptyset, \emptyset, \emptyset, \emptyset]$ contains the size of a minimum knot-free vertex deletion set of $G_r = G$.

The recurrence relation for each type of node is described as follows.

First, notice that if $v \in Z_t$ and there is an out-neighbor $w$ of $v$ that is not in $S_t$, there is an inconsistency, i.e. $w$ must be deleted (must belong to $S_t$). In addition, if $v \in B_t$ but has an out-neighbor in $Z_t \cup F_t$, there is another inconsistency ($v$ is not blocked), and if $v \in F_t$ but the removal of $S_t \cup B_t$ turns $v$ into an isolated vertex, $v$ is not released, and it must belong to $B_t$. For the inconsistent cases, $C[t, S_t, Z_t, F_t, B_t] = +\infty$. Such cases can be recognized and treated by simple preprocessing in linear time on the size of the table. Therefore, we consider next only consistent cases.

**Leaf Node:** If $X_t$ is a leaf node then $X_t = \emptyset$. Therefore

$$C[t, \emptyset, \emptyset, \emptyset, \emptyset] = 0.$$
Insertion Node: Let $X_i$ be a node of $T$ with a child $X_f$ such that $X_f = X_r \cup \{v\}$ for some $v \notin X_r$. We have the following:

$$C[t, S_i, Z_i, F_i, B_i] = \begin{cases} 
1) \text{ case } v \in S_i : & C[t', S_i \setminus \{v\}, Z_i, F_i, B_i] + 1, \\
2) \text{ case } v \in Z_i : & \min_{A \subseteq A_0} [C[t', S_i, Z_i \setminus \{v\}, F_i \setminus \{A' \cup \{v\}\}, B_i \cup A']], \\
3) \text{ case } v \in F_i : & \min_{A \subseteq A_0} [C[t, S_i, Z_i, F_i \setminus \{A' \cup \{v\}\}, B_i \cup A']], \\
4) \text{ case } v \in B_i : & C[t', S_i, Z_i, F_i, B_i \setminus \{v\}]
\end{cases}$$

Recall that $A_v(v)$ is the set of vertices in $F_i$ that reach $v$ in the graph induced by $V(G_i) \setminus S_i$, i.e., the set of vertices that can be released by $v$ if it was blocked in $G_r$. Also note that, for simplicity, we consider only consistent cases, thus in case 2 it holds that $N^v(v) \cap S_i \subseteq S_i$, in case 3 it holds that $N^v(v) \cap (Z_i \cup F_i) \neq \emptyset$, and in case 4 it holds that $N^v(v) \cap (Z_i \cup F_i) = \emptyset$.

Forget Node: Let $X_i$ be a forget node with a child $X_f$ such that $X_f = X_r \setminus \{v\}$, for some $v \in X_r$. The forget node selects the best scenario considering all the possibilities for the forgotten vertex, discarding cases that lead to non-feasible solutions. In this problem, unfeasible cases are identified when the forgotten vertex $v$ of $X_r$ was blocked and reached no other node in $B_i$. Hence:

- If $N^v(v) \cap B_i \neq \emptyset$ then
  $$C[t, S_i, Z_i, F_i, B_i] = \min \begin{cases} 
C[t', S_i \cup \{v\}, Z_i, F_i, B_i], \\
C[t', S_i, Z_i \cup \{v\}, F_i, B_i], \\
C[t', S_i, Z_i, F_i \cup \{v\}, B_i], \\
C[t', S_i, Z_i, F_i, B_i \cup \{v\}]
\end{cases}$$

- If $N^v(v) \cap B_i = \emptyset$ then
  $$C[t, S_i, Z_i, F_i, B_i] = \min \begin{cases} 
C[t', S_i \cup \{v\}, Z_i, F_i, B_i], \\
C[t', S_i, Z_i \cup \{v\}, F_i, B_i], \\
C[t', S_i, Z_i, F_i \cup \{v\}, B_i], \\
C[t', S_i, Z_i, F_i, B_i \cup \{v\}]
\end{cases}$$

Join Node: Let $X_i$ be a join node with children $X_{i_1}$ and $X_{i_2}$, such that $X_i = X_{i_1} = X_{i_2}$. For any optimal knot-free vertex deletion set $S$ of $G$ it holds that $V(G_i) \cap S = \{V(G_{i_1}) \cap S\} \cup \{V(G_{i_2}) \cap S\}$. Clearly, if $S_i \subseteq S$ then we can assume that $S_i = S_{i_1} = S_{i_2}$. In addition, $Z_i = Z_{i_1} = Z_{i_2}$ otherwise we will have an inconsistency. Also note that a vertex is released in $G_i$ if it reaches a vertex (possibly the vertex itself) that is released either in $G_{i_1}$ or $G_{i_2}$. Thus:

$$C[t, S_i, Z_i, F_i, B_i] = \min_{A_i(F' \cup F'')} \{C[t, S_i, Z_i, F_i, B_i''] - |S_i|, A_i(F' \cup F''') = F_i\}$$

Note that $A_i(F' \cup F''')$ is the set of vertices that either are released in $G_{i_1}$ ($i \in \{1, 2\}$) or can be released in $G_i$ by vertices of $F' \cup F''$, even if they are blocked in both $G_{i_1}$ and $G_{i_2}$; this can occur, for example, if a blocked vertex $v$ reaches another blocked node $w$ in $G_{i_1}$, and in $G_{i_2}$ vertex $w$ is released.

Now, in order to run the algorithm, one can visit the bags of $T$ in a bottom-up fashion, performing the queries described for each type of node. Since the reachability between the vertices of a bag can be stored in a bottom-up manner on $T$, one can fill each entry of the table in $2^{O(n)}$ time, and as the table has size $2^{O(n)} \times n$, the dynamic programming can be performed in time $2^{O(n)} \times n$. 


Regarding correctness, let \( S^* \) be a minimum knot-free vertex deletion set of a digraph \( G \) with a tree decomposition \( T \). Let \( S^*_1, Z^*_1, F^*_1, B^*_1 \) be a partition of the vertices of \( X_t \) into removed, sinks, released and blocked, with respect to \( G_t \) after the removal of \( S^* \). Note that \( S^*_1 = X_t \cap S^* \).

**Fact 1.** There is no vertex \( w \in V(G_t) \setminus X_t \) such that \( w \) reaches a vertex \( v \in B^*_1 \) in \( G[V(G_t) \setminus S^*] \) and \( w \in S^* \). Otherwise, since every vertex in \( B^*_1 \) will reach a sink that is not in \( G_t \), by Observation 2 one can remove from \( S^* \) every vertex that reaches \( B^*_1 \) in \( G[V(G_t) \setminus S^*] \), obtaining a subset of \( S^* \) which is also a knot-free vertex deletion set, contradicting the fact that \( S \) is minimum.

This fact implies that the paths considered to compute \( A_t(v) / A_t(F^* \cup F^*)' \) can in fact be used to release blocked vertices. Similarly, Fact 2 also holds.

**Fact 2.** Let \( \tilde{S} \) be a set for which the minimum is attained in the definition of \( C[t; S^*_1, Z^*_1, F^*_1, B^*_1] \). Then \( \tilde{S} \cup (S^* \setminus V(G_t)) \) is also a solution (which is minimum) for KFVD. Otherwise, from \( \tilde{S} \cup (S^* \setminus V(G_t)) \) we can also obtain a knot-free vertex deletion set smaller than \( S^* \), which is a contradiction.

Fact 2 implies that we have stored enough information. At this point, the correctness of the recursive formulas is straightforward.

Finally, to show a lower bound based on ETH, we can transform an instance \( F \) of 3-SAT into an instance \( G_F \) of KFVD using the polynomial reduction presented in [11, Theorem 4], obtaining in polynomial time a graph with \( |V| = 2n + 2m \), and so \( tw = O(n + m) \). Therefore, if KFVD can be solved in \( 2^{o(n + m)}(n + m)^{O(1)} \) time, then we can solve 3-SAT in \( 2^{o(n + m)}(n + m)^{O(1)} \) time, i.e., ETH fails.

# 5 The size of a minimum directed feedback vertex set as parameter

Recall that \( k \)-KFVD is \( W[1] \)-hard (for fixed K-width and longest directed path) and that, as noticed in Observation 1, we can assume \( k < dfv(G) \). This motivates us to determining the status of \( dfv \)-KFVD. In this section, we present two FPT-algorithms. Both with the size of a minimum directed feedback vertex set as parameter but with an aggregate parameter, the K-width, \( \kappa(G) \), for the first one and the length of a longest directed path, \( p(G) \), for the second one. Since finding a minimum directed feedback vertex set \( F \) in \( G \) can be solved in FPT-time (with respect to \( dfv \)) [14], we consider that \( F \), a minimum DFVS, is given. Namely, we show that both \( (dfv, k) \)-KFVD and \( (dfv, p) \)-KFVD are FPT.

At this point, we need to define the following variant of KFVD.

**Disjoint Knot-Free Vertex Deletion (Disjoint-KFVD)**

**Instance:** A directed graph \( G = (V, E) \); a subset \( X \subseteq V \); and a positive integer \( k \).

**Question:** Determine if \( G \) has a set \( S \subseteq V(G) \) such that \( |S| \leq k \), \( S \cap X = \emptyset \) and \( G[V \setminus S] \) is knot-free.

We call forbidden vertices the vertices of the set \( X \). It is clear that Disjoint-KFVD generalizes KFVD by taking \( X = \emptyset \).

Let us now define two more steps that are FPT parameterized by \( dfv \) and that will be used for both \( (dfv, k) \)-KFVD and \( (dfv, p) \)-KFVD. The next step will allow us to consider that the vertices of \( F \) are forbidden. We need the following straightforward observation.

**Observation 4.** Let \( (G, k) \) be an instance of KFVD and \( v \in V(G) \).

\[ \begin{array}{ll}
\text{if } (G, k) \text{ is a yes-instance and there exists a solution } S \text{ with } v \in S, \text{ then } (G \setminus \{v\}, k - 1) \text{ is a yes-instance} \\
\text{if } (G \setminus \{v\}, k - 1) \text{ is a yes-instance then } (G, k) \text{ is a yes-instance}
\end{array} \]

**Branching 1 (On the directed feedback vertex set \( F \)).** Let \( (G, F, k) \) be an instance of \( dfv \)-KFVD. In time \( 3^{dfv} \times O(n) \) we can build \( 3^{dfv} \) instances \( (G', F'_1, X', k') \) of \( dfv \)-Disjoint-KFVD as follows. We consider all possible partitions of \( F \) into three parts: \( F_1 \), the set of vertices of \( F \) that will not be
removed (i.e., they become forbidden); $F_2$, the set of vertices in $F$ that will be removed; and $F_3$, the set of vertices in $F$ that will be turned into sinks. For each such a partition (indicated by the index $i$), we remove the set $Y_i = F_2' \cup N^+(F_1')$ of vertices and we apply exhaustively Reduction Rules 1 and 2 (see Section 2). We denote by $G'$ the obtained graph, $X' = F_1'$, and $k' = |Y|$. According to Observation 4 it is clear that $(G, F, k)$ is a yes-instance of $dfv$-$KFDV$ if and only if one of the instances $(G', F_1', X', k')$, $1 \leq i \leq 3^{dfv}$, of $dfv$-$Disjoint$-$KFDV$ is a yes instance. Since there are at most $3^{dfv}$ partitions of $F$, the branching reduction can be performed in FPT time. Although at this point $X' = F_1'$, in the next steps some vertices of $V(G) \setminus F_1$ may become forbidden and therefore should be added to $X'$. Also, from this point forward, we assume that we are given an instance $(G, F_1', X, k')$ of $dfv$-$Disjoint$-$KFDV$.

Notice that after applying Reduction Rule 1 (Section 2), each strongly connected component of $G$ is at least of size two. Thus, each of them must contain at least one cycle; therefore, the number of strongly connected components of $G$ is bounded by $dfv$. Moreover, for any strongly connected component $U$ of $G$, Reduction Rule 2 gives an upper bound for the number of vertices in $N^+(V(U))$ (i.e., vertices that are not in $U$ but it is out-neighbour of some vertex in $U$). This implies that $G$ has at most $dfv \times d f v \leq 2 \times dfv^2$ such vertices between its strongly connected components. This observation leads to a branching rule.

Branching 2 (On strongly connected components). Let $S_H$ be the set of vertices that are extremities of arcs between the strongly connected components of $G$. We have $|S_H| \leq 2 \times dfv \times d f v \leq 2 \times dfv^2$ and we can branch in FPT-time trying all possible partitions of $S_H$ into two sets: $S_1$, the set of vertices to be deleted in $G$ such that $|S_1| \leq k$; and $S_2 = S_H \setminus S_1$, the set of vertices marked as forbidden, and then added into $X$.

Notice that this step involves a $2^{|S_H|}$ branching. At this point, we may consider that we have an instance $(G, F, X, k)$ where $F \subseteq X$ and such that for any arc $uv$ between two SCC’s $U_i$ and $U_j$, $\{u, v\} \subseteq X$. We call such an instance as a 

Lemma 10 (After cleaning of Branching 2). If there is an algorithm running in time $g(dfv) \times poly(n)$ for $dfv$-$Disjoint$-$KFDV$ restricted to nice instances that are strongly connected, then there is an FPT algorithm running in time $g(dfv) \times poly(n) \times c.n.\log(dfv)$ (where $c$ is a constant) to solve $dfv$-$Disjoint$-$KFDV$ for any nice instance.

Proof. Let $(G, F, X, k)$ be a nice instance and $S$ be a solution. Let $\mathcal{U} = \{U_1, \ldots, U_s\}$ be the partition of $V(G)$ where each $U_i$ is an SCC, and let $\mathcal{K} = \{U_i : U_i$ is a knot$\}$. Without loss of generality we can assume that $\mathcal{K} = \{U_{s-t}, \ldots, U_s\}$ for some $t \leq s$. Let $S_i = S \cap U_i$. Notice that if $S$ is a solution then for any $i \in [s]$, $S_i$ is a solution of $(G(U_i), F \cap U_i, X \cap U_i, |S_i|)$. Moreover, for any solutions $S'_i$ to $(G(U_i), F \cap U_i, X \cap U_i, |S'_i|)$ where $\sum_{i=1}^s |S'_i| \leq k$, $S' = \bigcup_{i=1}^s S'_i$ will be a solution to $(G, F, X, k)$ because vertices of some $U_j \notin \mathcal{K}$ will still have a path to a set $U_i \in \mathcal{K}$ in $G_{G'}$ since any arc between two SCC’s has forbidden endpoints. Thus, given a nice instance $(G, F, X, k)$ and an algorithm $A$ for a nice instance restricted to one SCC, for any $U_i \in \mathcal{K}$ we perform a binary search to find the smallest $k_i$ such that $A(G(U_i), F \cap U_i, X \cap U_i, k_i)$ answers yes, and we answer yes iff $\sum_{i=1}^s k_i \leq k$.

From Lemma 10 we may assume that we have an instance $(G, F, X, k)$ such that $F \subseteq X$ and $G$ is strongly connected (there is only one SCC). We call such an instance as a super nice instance.

5.1 Combining DFVS-number and K-width

In this section, we prove that $(dfv, k)$-$Disjoint$-$KFDV$ restricted to super nice instances is FPT.

Let $F = \{v_1, \ldots, v_{dfv}\}$. For every pair of integers $i, j$ with $1 \leq i, j \leq dfv$ we define $H_{i,j}$ as the $(i, j)$-connectivity set, that is, the set of vertices which are contained in a directed path from $v_i$ to $v_j$.
in the induced subgraph $G[V \setminus (F \setminus \{v_i, v_j\})]$ (if $i = j$ then $H_{ij}$ is the set of vertices contained in a cycle in $G[V \setminus (F \setminus \{v_i\})]$). Let us define a set $B$ on which we will later branch in a way to ensure connectivity among different connectivity sets. We start with $B = \emptyset$, and then, for each possible pair of connectivity sets $H_{ij}, H_{i'j'}$ we increase $B$ as follows:

- i) add $N^*(H_{ij} \setminus H_{i'j'}) \cap H_{i'j'}$ to $B$.
- ii) add $N^*(H_{ij} \cap H_{i'j'}) \cap (H_{i'j'} \setminus H_{ij})$ to $B$.
- iii) add $N^*(H_{i'j'} \setminus H_{ij}) \cap H_{ij}$ to $B$.
- iv) add $N^*(H_{i'j'} \cap H_{ij}) \cap (H_{ij} \setminus H_{i'j'})$ to $B$.

For a given pair of connectivity sets, in each of the items i), ii), iii) and iv) the number of added vertices to $B$ is at most $k$. For instance, let $y_1, \ldots, y_l$ be the vertices added by item i), where each $y_s \in N^*(H_{ij} \setminus H_{i'j'}) \cap H_{i'j'}$. By definition, there exist vertices $x_1, \ldots, x_l$ of $H_{ij} \setminus H_{i'j'}$ such that $x_s y_s$ are arcs of $G$ for $s = 1, \ldots, l$. Notice that while the $y_s$’s are distinct, the $x_s$’s are not forced to be so.

For any $s \in \{1, \ldots, l\}$, there exists a path $P_s$ in $H_{i'j'}$ from $y_s$ to $v_f$, and such a path does not intersect $H_{ij} \setminus H_{i'j'}$. In the same way, by finding a path $Q_s$ from $v_f$ to $x_s$ for every $s \in \{1, \ldots, l\}$, we form $l$ distinct paths $P_s Q_s$, from $v_f$ to $x_s$, implying $l \leq k$, the K-width of $G$. So, as there are $dfv^2$ different connectivity sets, at the end of the process $B$ contains at most $k \times dfv^2$ vertices. Figure 2 shows examples of vertices to be added in $B$ regarding the interaction of two different connectivity sets.

![Figure 2](image)

- a) two connectivity sets with no intersection. b) an intersection with two vertices belonging to both connectivity sets. c) two connectivity sets $H_{ij}$ with $i = j$. Vertices to be added in $B$ are marked in blue.

Next we establish our last branching rule.

► Branching 3 (On the connectivity sets). We branch by partitioning $B$ into three parts: $B_1$, the set of vertices that will not be removed (i.e. they become forbidden); $B_2$, the set of vertices that will be removed; and $B_3$, the set of vertices that will become sinks. Since $|B| \leq k \times dfv^2$, we branch at most $3^\ast dfv^4$ times.

At this point, without loss of generality, one can assume that none of the above branching and reductions rules are applicable. Hence, the analysis boils down to the case where $F \cup B \subseteq X$, meaning that all the vertices of $F \cup B$ are forbidden to be deleted or become sinks, and $G$ is strongly connected.

► Observation 5 (The consequences of Branching[5]). Let $G$ be a graph for which no Reduction Rules[1] and 2 or Branching Rules[1] or 3 can be applied. Let $H_{ij}$ and $H_{i'j'}$ be two different connectivity arc sets in $G$. If there is an arc from $H_{ij} \setminus H_{i'j'}$ to $H_{i'j'} \setminus H_{ij}$ or $H_{ij} \setminus H_{i'j'}$ to $H_{i'j'} \setminus H_{ij}$ in $G[H_{ij} \cup H_{i'j'}]$, then the head vertex of such an arc is a forbidden vertex.

We now aim to show that, for any vertex $v^*$ such that $v^*$ can be turned into a sink, that is, $N^*(v^*) \cap X = \emptyset$ and $d^*(v^*) \leq k$, the deletion of $N^*(v^*)$ is sufficient for $G$ to become knot-free.

► Lemma 11. Let $(G, F, X, k)$ be an instance of $(dfv, k)$-Disjoint-KFVD such that $G$ is strongly connected and none of the branching and reduction rules can be applied. If there is a vertex $v^*$ with no forbidden out-neighbors, then $G[V \setminus N^*(v^*)]$ is knot-free.
Proof. Let \((G, F, k, X)\) and \(v^*\) as stated. Denote by \(G'\) the resulting graph, i.e., \(G' = G[V \setminus N^+(v^*)]\). For contradiction, assume that \(G'\) contains a knot \(K\). As \(G\) is strongly connected, \(K\) was not a knot in \(G\), implying that there exists an arc \(xy\) of \(G\) such that \(x \in V(K)\) and \(y \in N^+(v^*)\). Notice that \(v^* \notin F\) since vertices from \(F\) cannot become sinks and \(y \notin X\), since \(y\) has to be deleted in order to \(v^*\) to become a sink. Let us now define a connectivity set containing both \(y\) and \(v^*\). Let \(s\) be any source of the DAG \(G[V \setminus F]\) such that there is a \(sv^*\) path in \(G[V \setminus F]\), and let \(z\) be any sink of \(G[V \setminus F]\) such that there is a \(zv\) path in \(G[V \setminus F]\). As \(G\) is strongly connected, there exist arcs \(v_i\) and \(v_j\) such that \(\{v_i, v_j\} \subseteq F\) and we get that \([v_i, v_j] \subseteq H_{ij}\). Notice that \(i = j\) is possible. Similarly, as \(G(V(K))\) is strongly connected, it contains a cycle \(C\) containing \(x\) and thus there exists a connectivity set \(H_{ij}\) containing a path \(P\) from \(v_i\) to \(v_j\) which is a subpath of \(G(V(K))\) containing \(x\), and with \([v_k, v_l] \subseteq V(K)\). Notice first that \(v^*, y \notin F\). In addition, \(v^*\) is not a vertex of \(H_{ij}\), otherwise there would exist a path \(P'\) from \(v_i\) to \(v^*\) containing no vertex of \(F \setminus \{v_k\}\), which is not possible. Indeed, either \(V(P') \cap N^+(v^*) = \emptyset\) and we would get that \(K\) is not a knot, or \(V(P') \cap N^+(v^*) \neq \emptyset\), implying that there is a cycle with no vertex of \(F\). Thus, as \(y\) was not a forbidden vertex, it means that \(y \notin H_{ij}\) otherwise the arc \(v^*y\) would go from \(H_{ij} \setminus H_{ij}\) to \(H_{ij} \setminus H_{ij}\) and \(y\) should be forbidden by Branching\(^3\) item \(i\). Then we have \(y \in H_{ij} \setminus H_{ij}\). Similarly, we have \(x \notin H_{ij} \setminus H_{ij}\), otherwise by item \(ii\) of Branching\(^3\) vertex \(y\) would be forbidden. Finally \(x \in H_{ij} \setminus H_{ij}\) and \(y \in H_{ij} \setminus H_{ij}\), since \((H_{ij} \setminus H_{ij}) \subseteq H_{ij}\), and by item \(iii\) of Branching\(^3\) vertex \(y\) would again be a forbidden vertex, a contradiction.

In conclusion, by Lemma\(^{11}\) we can find in polynomial time the optimum solution for \(G\) we choose \(v^*\) with minimum out-degree.

\(\triangleright\) **Theorem 12.** **Knot-free Vertex Deletion** can be solved in \(2^{O(dfv(K))} \times n^{O(1)}\).

Proof. Let us now compute the running time of the overall algorithm. First notice that applying Branchings 1 and 2 results in \(3^{dfv} \times 2^{2^{dfv}}\) branches. Branching 3 can be done in time \(3^{\kappa \cdot dfv}\), but may re-create several SCC’s, forcing us to apply again Branching 2 and reduction rules again, but decreasing \(k\). This implies that the total running time is \(3^{dfv} \times (2^{2^{dfv}} 3^{\kappa \cdot dfv} k) \times n^{O(1)}\), thus the result holds.

\(\triangleright\) **5.2 Combining DFVS-number and length of a longest directed path**

In this subsection we investigate the length of a longest path and \(dfv(G)\) as aggregate parameters.\(^{13}\)

\(\triangleright\) **Lemma 13.** \((dfv, p)\)-Disjoint-KFVD on super nice instances can be solved in \(2^{O(dfv)} p^{O(dfv)} \times n^{O(1)}\).

Proof. Let \((G, F, X, k)\) be a super nice instance. Recall that the directed feedback vertex set \(F\) is a set of forbidden vertices \((F \subseteq X)\) and \(G\) is strongly connected. The proof is by induction on \(|F|\). If \(|F| = 1\), then, for any vertex \(v\) of \(V(G) \setminus F\) that can be turned into a sink, \(N^+(v)\) will be a solution set for \(G\). Therefore, the optimum solution can be found in polynomial time. Assume now that \(|F| \geq 2\) and denote \(F\) by \(\{v_1, \ldots, v_{|F|}\}\). As \(G\) is strongly connected, there exists a path \(P_1\) of length at most \(p\) from \(v_1\) to \(v_2\) and a path \(P_2\) of length at most \(p\) from \(v_2\) to \(v_1\). Denote by \(\mathcal{C}\) the digraph \(G(V(P_1) \cup V(P_2))\); it is strongly connected, contains \(v_1\) and \(v_2\) and at most \(2p\) vertices. Since the number of vertices in \(\mathcal{C}\) is bounded, we may branch \(2p + 1\) times by trying to guess a vertex that will be deleted in \(\mathcal{C}\). Each time a vertex of \(\mathcal{C}\) will be guessed as deleted, the parameter \(k\) will decrease by one. So, \(k\) will decrease in all branches, except in the one where we guess that no vertex is deleted, and then where all the vertices of \(\mathcal{C}\) are forbidden. In this case, \(\mathcal{C}\) is a strongly connected component whose vertices are all forbidden and containing at least two vertices of \(F\). So, we contract \(\mathcal{C}\) to obtain a new instance \(G'\). Formally, we remove \(V(\mathcal{C})\) from \(G\), add a new vertex \(v_{\mathcal{C}}\), and for all vertices of \(\mathcal{C} \setminus X\) having at least one in-neighbor (resp. out-neighbor) in \(\mathcal{C}\), we add an arc from \(v_{\mathcal{C}}\) (resp. to \(v_{\mathcal{C}}\)) to this vertex. Let \(F'\) be the set \(\{v_{\mathcal{C}}\} \cup F \setminus V(\mathcal{C})\) and notice that \(F'\) is a directed feedback vertex set
Lemma 15

Proof. Assume by contradiction that $u$ is still a solution of $G$, and conversely. Then, we apply Branchings 1 and 2 to obtain a super nice instance equivalent to $(G', F', k', X')$, and we can apply the induction hypothesis. So at each branching, either the parameter $k$ decreases by at least one or the size of $F$ decreases by at least one. As both values are bounded above by $d f v$, we branch consecutively at most $2 d f v$ times. And since Branching rules 1 and 2 create at most $3 d f v \times 2^{2 d f v}$ branches, and branching on cycle $C$ creates $2 p + 1$ branches, the total number of branches is $(3 d f v \times 2^{2 d f v} \times (2 p + 1))^{2 d f v} = 2^{O(d f v) p \times O(d f v)}$, and we get the desired running time.

Given that we can obtain a super nice instance in $2^{O(d f v)} p \times O(d f v)$, it holds that Knot-free Vertex Deletion can be solved in time $2^{O(d f v)} p \times O(d f v) \times n^{O(1)}$.

6 Distance to DAG having a Hamiltonian path

In this section we present a polynomial Turing kernel when we are given a special directed feedback vertex set whose the removal returns an acyclic graph having a directed Hamiltonian path.

Lemma 14 (Single sink along a path). Let $G$ be a directed graph, and let $R \subseteq V(G)$ such that $G[R]$ is a DAG. Let $P$ be any path in $R$. Then in a minimum knot-free vertex deletion set $S$ of $G$ with set of sinks $Z$ in $G_5$, we have $|Z \cap V(P)| \leq 1$.

Proof. Assume by contradiction that $|Z \cap V(P)| \geq 2$. Let $P = (v_1, \ldots, v_p)$, and let $i_1, i_2$ be the indices of two consecutive vertices of $Z \cap V(P)$, or more formally such that $i_1 < i_2$, $\{v_{i_1}, v_{i_2}\} \subseteq Z \cap V(P)$, and for any $i \in \{i_1, i_2\}, v_i \in V(P) \setminus Z$. Let $P' = (v_{i_1}, \ldots, v_{i_2})$ be the $v_{i_1} v_{i_2}$ subpath of $P$.

Let $u = N^+(v_{i_1}) \cap V(P)$. Observe that $u \neq v_{i_2}$ (as otherwise $v_{i_2}$ would be in $S$ and not in $Z$) and that $u \in S$. Let $S_{P'} = S \cap V(P')$. Observe that $S_{P'} \neq \emptyset$ as it contains $u$. Let $v$ be the last (in the order of $P'$) vertex of $S_{P'}$. Notice that $v \notin N^+(v_{i_2})$ because $P$ is in the DAG $R$. Thus, we get that $v_{i_2}$ is still a sink in $G_5$. (where $S' = S \setminus \{v\}$), and by Lemma 14, we conclude that $S'$ is still a solution, which is a contradiction.

Lemma 15 (Useless vertices). Let $B$ be a subset of vertices of $G$. Let $G'$ be the graph obtained by applying the following operation for every $v \in B$ (in any order): remove $v$ and add all arcs between $N^-(v)$ to $N^+(v)$ (removing any loop which could appear).

1. if there exists an optimal solution $S$ with set of sinks $Z$ in $G_5$ such that $B \cap (S \cup Z) = \emptyset$, then $S$ is still a solution of $G$.
2. for any solution $S$ of $G'$, $S$ is still a solution of $G$.

Proof. The proof is by induction on $|B|$. Let us start with $B = \{v\}$. 1). Let us prove first that $S$ is still a solution of $G'$. Let $Z'$ be the set of sinks of $G'$. Notice that $v \notin S$ implies that $N^-(v) \cap Z = \emptyset$. Let $u \in V(G')$. As $S$ is a solution of $G$, let $P$ be a $u z$-path in $G_5$ with $z \in Z$. Notice first that as $N^-(v) \cap Z = \emptyset$, we know that $z \notin N^-(v)$. As $v \notin Z$, we also get that $z \neq v$, implying that $z \in Z'$. If $v \notin V(P)$, then this path still exists in $G'$ and we are done. Otherwise, $P$ contains the subpath $v_1 v_2$ with $v_1 \in N^-(v)$ and $v_2 \in N^+(v)$. Replacing this subpath by $v_1 v_2$ (which is an arc in $G'$), we get a $u z$-path in $G'$ with $z \in Z'$.

2). Let us now prove that for any solution $S'$ of $G'$ with set of sinks $Z'$ in $G_5$, $S'$ is still a solution in $G$. Let $Z$ be the set of sinks in $G_5$. Let us first consider a vertex $u \neq v$ and prove that there exists a $u z$-path in $G_5$. As $S'$ is a solution of $G'$ there exists a $u z$-path in $G'$ with $z \in Z'$. First, remove any two consecutive vertices $v_1, v_2$ in $P$ such that $v_1 \in N^-(v)$ and $v_2 \in N^+(v)$, and replace them by...
Lemma 16. Let \( G \) be a directed graph and \( F, R \) be a partition of \( V(G) \). In polynomial time we can construct a graph \( G' \) with \(|F|\) vertices such that

- if \((G', k)\) is a yes-instance then \((G, k)\) is a yes-instance;
- if \((G, k)\) is a yes-instance and there exists an optimal solution \( S \) with set of sinks \( Z \) in \( G \) such that \( R \cap Z = \emptyset \), then \((G', k)\) is a yes-instance.

Proof. Let us partition \( F \) into \( F_{\leq k} = \{ v \in F \text{ s.t. } |N^+(v) \cap R| \leq k \} \) and \( F_{> k} = F \setminus F_{\leq k} \). Let \( A = R \cap N^+(F_{\leq k}) \) and \( B = R \setminus A \). Notice that there may be some arcs from \( F_{> k} \) to \( A \), but not from \( F_{> k} \) to \( B \). Define \( G' \) by applying Lemma 15 on set \( B \). We get that \( G' \) has \(|F|\) vertices, and that if \((G', k)\) is a yes-instance then \((G, k)\) is a yes-instance. Suppose now that \((G, k)\) is a yes-instance and there exists an optimal solution \( S \) with set of sinks \( Z \) in \( G \) such that \( R \cap Z = \emptyset \). According to Observation 5, \( F_{\leq k} \cap Z = \emptyset \). Thus, as \( R \cap Z = \emptyset \) and \( N^+(Z) = S \), we get that \( B \cap S = \emptyset \) and Lemma 15 gives us the desired property.

Proposition 17. Suppose \( V(G) \) is partitioned into \( F \) and \( R \) where \( R \) is a DAG with a Hamiltonian path. Then, there is a polynomial Turing kernel with \( O(|F|k) \) vertices.

Proof. Let \( S \) be an optimal solution with set of sinks \( Z \) in \( G \). By Lemma 14, and since \( R \) has an Hamiltonian path \( P \), we get that \(|Z \cap V(P)| = |Z \cap R| \leq 1\). Informally, we will guess (among \(|R| \leq n \) choices) the potential vertex in \( Z \cap R \), move it to \( F \), and apply the previous kernel. Thus, for each of these \( n \) choices we will obtain a shrinked input of size \( O(|F|k) \) that we can solve using an oracle, and we will answer yes iff one of these \( n \) reduced instances is a yes-instance. More formally, let \( R = \{ v_1, \ldots, v_l \} \). For any \( i \), let \( F_i = F \cup \{ v_i \} \), \( R_i = R \setminus \{ v_i \} \) and \( G'_i \) the graph obtained by applying Lemma 16 on \( F_i, R_i \). As \(|G'_i| \leq O(|F|k)\), we can make an oracle call on each \( G'_i \) to get an answer \( a_i \) and output yes iff one of the \( a_i \) is yes. If \((G, k)\) is a yes-instance (and \( S, Z \) the associated solution), then there exists \( i \) such that \( R_i \cap Z = \emptyset \), implying that \((G'_i, k)\) will be a yes-instance and that we will return yes. On the other side, if a \( (G'_i, k) \) is a yes-instance then by Lemma 16 we get that \((G, k)\) is a yes-instance.

References

1. Saeed Akhoondian Amiri, Lukasz Kaiser, Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Graph searching games and width measures for directed graphs. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.
2. János Barát. Directed path-width and monotonicity in digraph searching. Graphs and Combinatorics, 22(2):161–172, 2006.
3. V. C. Barbosa, A. D. A. Carneiro, F. Protti, and U. S. Souza. Deadlock models in distributed computation: Foundations, design, and computational complexity. In Proceedings of the 31st ACM SIGAPP Symposium on Applied Computing, pages 538–541, 2016.
4. Valmir C Barbosa. The Combinatorics of Resource Sharing. In Models for Parallel and Distributed Computation, pages 27–52. Springer, 2002.
Valmir C Barbosa and Mario RF Benevides. A graph-theoretic characterization of AND-OR deadlocks. Technical Report COPPE-ES-472/98, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 1998.

Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdržálek. The dag-width of directed graphs. *Journal of Combinatorial Theory, Series B*, 102(4):900 – 923, 2012.

Dietmar Berwanger and Erich Grädel. Entanglement – a measure for the complexity of directed graphs with applications to logic and games. In Franz Baader and Andrei Voronkov, editors, *Logic for Programming, Artificial Intelligence, and Reasoning*, pages 209–223, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Hans L Bodlaender, Pål Grønås Drange, Markus S Dregi, Fedor V Fomin, Daniel Lokshhtanov, and Michal Pilipczuk. An 5n 5-approximation algorithm for treewidth. *SIAM Journal on Computing*, 45(2):317–378, 2016.

John Adrian Bondy and Uppaluri Siva Ramachandra Murty. *Graph theory with applications*, volume 290. Macmillan, 1976.

Alan Diêgo Aurélio Carneiro, Fábio Protti, and Uéverton S. Souza. Deletion graph problems based on deadlock resolution. In *The 23rd International Computing and Combinatorics Conference, COCOON 2017, Hong Kong, China, August 3-5, 2017. Lecture Notes in Computer Science*, volume 10392, pages 75–86. Springer, 2017.

Alan Diêgo Aurélio Carneiro, Fábio Protti, and Uéverton S Souza. Fine-grained parameterized complexity analysis of knot-free vertex deletion – A deadlock resolution graph problem. In *The 24th International Computing and Combinatorics Conference, COCOON 2018, Qingdao, China, July 2-4, 2018. Lecture Notes in Computer Science*, volume 10976, pages 84–95. Springer, 2018.

Alan Diêgo Aurélio Carneiro, Fábio Protti, and Uéverton S Souza. Deadlock resolution in wait-for graphs by vertex/arc deletion. *Journal of Combinatorial Optimization*, 37(2):546–562, 2019.

K Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states of distributed systems. *ACM Transactions on Computer Systems*, 3:63–75, 1985.

Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter algorithm for the directed feedback vertex set problem. *Journal of the ACM (JACM)*, 55(5):21, 2008.

Bruno Courcelle and Joost Engelfriet. *Graph structure and monadic second-order logic: a language-theoretic approach*, volume 138. Cambridge University Press, 2012.

Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. *Theory of Computing Systems*, 33(2):125–150, 2000.

Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshhtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer, 2015.

Robert Ganian, Petr Hliněný, Joachim Kneis, Alexander Langer, Jan Obdržálek, and Peter Rossmananth. Digraph width measures in parameterized algorithmics. *Discrete applied mathematics*, 168:88–107, 2014.

Robert Ganian, Petr Hliněný, Joachim Kneis, Daniel Meister, Jan Obdržálek, Peter Rossmanith, and Somnath Sikdar. Are there any good digraph width measures? In *International Symposium on Parameterized and Exact Computation*, pages 135–146. Springer, 2010.

Hermann Gruber. Digraph complexity measures and applications in formal language theory. *Discrete Mathematics & Theoretical Computer Science*, 14(2):189–204, 2012.

Richard C Holt. Some deadlock properties of computer systems. *ACM Computing Surveys (CSUR)*, 4(3):179–196, 1972.

Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions, games, and orderings. *Theoretical Computer Science*, 399(3):206 – 219, 2008. Graph Searching.

Thor Johnson, Neil Robertson, P.D. Seymour, and Robin Thomas. Directed tree-width. *Journal of Combinatorial Theory, Series B*, 82(1):138 – 154, 2001.

Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger, editors, *Complexity of Computer Computations*, The IBM Research Symposia Series, pages 85–103. Springer US, 1972.

Mateus de Oliveira Oliveira. Subgraphs satisfying mso properties on z-topologically orderable digraphs. In *International Symposium on Parameterized and Exact Computation*, pages 123–136. Springer, 2013.
26 Mateus de Oliveira Oliveira. An algorithmic metatheorem for directed treewidth. *Discrete Applied Mathematics*, 204:49–76, 2016.

27 Sang-Il Oum. Approximating rank-width and clique-width quickly. *ACM Transactions on Algorithms*, 5(1):10:1–10:20, 2008.

28 Roman Rabinovich and Lehr-und Forschungsgebiet. *Complexity measures of directed graphs*. PhD thesis, RWTH Aachen University, 2008.

29 Mohammad Ali Safari. D-width: A more natural measure for directed tree width. In Joanna Jędrzejowicz and Andrzej Szepietowski, editors, *Mathematical Foundations of Computer Science 2005*, pages 745–756, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.