Sulfate aerosols have long been implicated as a primary forcing agent of climate change and mass extinction in the aftermath of the end-Cretaceous Chicxulub bolide impact. However, uncertainty remains regarding the quantity, residence time, and degree to which impact-derived sulfur transited the stratosphere, where its climatic impact would have been maximized. Here, we present evidence of mass-independent fractionation of sulfur isotopes (S-MIF) preserved in Chicxulub impact ejecta materials deposited in a marine environment in the Gulf Coastal Plain of North America. The mass anomalous sulfur is present in Cretaceous–Paleogene event deposits but also extends into Early Paleogene sediments. These measurements cannot be explained by mass conservation effects or thermochemical sulfate reduction and therefore require sulfur-bearing gases in an atmosphere substantially different from the modern. Our data cannot discriminate between potential source reaction(s) that produced the S-MIF, but stratospheric photolysis of SO2 derived from the target rock or carbonyl sulfide produced by biomass burning are the two most parsimonious explanations. Given that the ultimate fate of both of these gases is oxidation to sulfate aerosols, our data provide direct evidence for a long hypothesized primary role for sulfate aerosols in the postimpact winter and global mass extinction.

K-Pg extinction | sulfur isotopes | mass-independent fractionation | mass extinction | sulfur cycle

The Chicxulub impact 66 Mya rearranged the balance of Earth’s biosphere. From a human perspective, this was arguably the most important moment in Earth’s history, as not only did an estimated 76% of all marine animal species and 40% of genera go extinct (1, 2) but mammals capitalized on an ecological vacuum and diversified to dominance in its wake (3, 4). Asteroid impacts are a relatively common occurrence in Earth history, yet in the instance of the Cretaceous–Paleogene (K-Pg) boundary, unequivocal evidence links a bolide impact to one of the largest mass extinctions of the Phanerozoic (5). What sets the Chicxulub event apart?

The Chicxulub impact vaporized evaporite and organic matter–bearing marine carbonates, injecting sulfur-bearing gases into the atmosphere in addition to CO2, soot, and dust (6–9), potentially magnifying its effects. Atmospheric sulfur rapidly forms sulfate aerosols, which, if lofted into the stratosphere, scatter incoming solar radiation and can prolong planetary-scale cooling for many years after the impact-generated plume has dissipated (10, 11). Thus, sulfate aerosol–induced global cooling, sulfuriac acid rain, and reduction of surface light for photosynthesis have been proposed as primary kill mechanisms following the K-Pg impact (5, 7, 8, 12, 13). Estimates of sulfur ejected during the K-Pg event range from 30 to 540 Gt, and climate models that account for this sulfur suggest 2 to 8°C global cooling of Earth’s surface for up to 13 y (10). Recent data from the Chicxulub peak ring suggest that these sulfur loads may have been vastly underestimated (6), raising the potential for even more severe consequences. Their impact on climate, however, depends on the height of injection into the atmosphere. Long-term cooling only occurs if generated aerosols form in the stratosphere, where they have residence times of years to decades. By contrast, tropospheric aerosols are efficiently removed in a matter of weeks. Additional constraints on sulfur mass, plume chemistry, and height of injection are thus needed to better estimate the effects of the Chicxulub impact on climate.

Mass-independent fractionation of sulfur isotopes (S-MIF) occurs during a number of gas-phase reactions (14–16). The S-MIF record has revolutionized the quantification of oxygen in Earth’s atmosphere during the Archean and Early Paleoproterozoic, where S-MIF signatures are well-preserved in the rock record prior to the Great Oxidation Event (GOE), 2.43 billion years ago (17, 18). By contrast, S-MIF produced in oxic atmospheres is erased by the subsequent redox cycling of sulfur and the large reservoir size of sulfate at Earth’s surface, where mass-dependent fractionation (MDF)
and S2). The underlying Maastrichtian Corsicana Formation and overlying Danian Kincaid Formation mudstones above P0 Zone have Δ34S and Δ36S values that are similar to marine sulfates from the End Cretaceous (31). The δ34S values of these sulfides range from −41.4 to +23.6‰. The Δ34S-enrichment contained within the ejecta materials (mean of +7.6‰) is offset from the encasing strata and suggest that the sulfur was derived from the target rock evaporites (32). Previous efforts to evaluate the presence of impactor-derived elemental sulfur with expected Δ34S, δ33S, and δ36S values near 0‰ were unsuccessful in identifying an extraterrestrial sulfur source in the Brazos River impact deposits (33). Rather, the results of a single sample for multiple sulfur isotope analyses were interpreted to be consistent with a terrestrial, microbially mediated sulfur cycle signal with δ33S, δ34S, and δ36S values that were −12.97, −24.89, and −46.4‰, respectively. On their own, the small Δ33S (−0.07‰) and Δ36S (+0.12‰) anomalies measured in that study were not considered diagnostic of an S-MIF origin. However, when taken in the context of our larger dataset, the results of Heymann et al. (33) are entirely consistent with our results from within the ejecta materials (Fig. 1).

Discussion

Small but measurable Δ33S values (generally 0 ± 0.10‰) are relatively common in modern sedimentary and aqueous settings and in rocks of Late Proterozoic and Phanerozoic Age. The majority of small-magnitude Δ33S anomalies are rooted in biogeochemical sulfur cycling and are not the result of atmospheric processes causing mass-independent fractionation. If atmospheric S-MIF is to be confirmed, the range of mass-dependent processes capable of producing anomalies in Δ33S (and Δ36S, although these are much less well constrained) must first be ruled out.

MDF during microbial sulfur cycling can cause small deviations in Δ33S (34–36). Equilibrium fractionations result in an

Geologic Setting

The S-MIF signal is archived in rocks of the US Gulf Coastal Plain, ∼1,300 km from the impact site. Upper Cretaceous and lower Paleogene sediments exposed along the Brazos River and its tributaries in Falls County, Texas, comprise an exceptionally well-preserved and continuous succession across the K–Pg boundary (24–27), reflecting open marine deposition ∼100 km from shore (28) and close to the mouth of the remnant Western Interior Seaway. Marine muds of the Cretaceous Corsicana Formation are capped by clastic deposits interpreted to be the result of postimpact seismicity, tsunami activity, storms, and atmospheric fallout and contain abundant carbonate lapilli and ejecta spherules (28, 29). The overlying Paleogene Kincaid Formation represents a return to normal marine sedimentation. The sampled sections along Darting Minnow Creek (DMC) encompass the uppermost Maastrichtian Corsicana Formation, the K–Pg event deposit, and the Littig Member of the Kincaid Formation. Sampled intervals of the Littig Member contain microfossils diagnostic of Danian planktonic foraminiferal Zone P0 and calcareous nannofossil Zone NP1, deposited during the initial 40,000 y following the impact, extending into the Pτ Zone (Fig. 1 and SI Appendix) (30).

Results

The abundance of sulfur in the impact sequences ranges from 0.4 to 5.1 weight percent (wt. %) and is highly variable compared to background mudstones, which range from 0.7 to 1.4 wt. %. The molar organic carbon to total sulfur ratios (Corg:Stot) within the impact debris average 0.9 and are significantly lower than the bounding mudstones which average 3.8 (SI Appendix, Tables S1 and S2). Chromium-reducible sulfur phases from the DMC rocks have Δ35S signatures that are as low as −0.32‰, within the postimpact depositional sequence and persist into lowermost Paleogene (P0 Zone) mudstones that immediately overlie impact-related event deposits. These Δ35S values are significantly offset from the Maastrichtian and Danian marine sulfides that range from +0.02 to +0.08‰, with a mean Δ35S value of +0.04‰. The Δ36S values range from +2.12 to −0.67‰, (Figs. 1 and 2 and SI Appendix, Tables S1 and S2).
exponential relationship between $\delta^{33}S$ and $\delta^{34}S$, whereas mixing between pyrite pools within metabolic networks are linear, causing small deviations in $\Delta^{34}S$ from the predicted reference array. At the ecosystem level, these mass conservation effects (MCE) are the product of multistep sulfur cycling via processes such as sulfate reduction, sulfur oxidation, and sulfur compound disproportionation acting on seawater sulfate. MCE can produce deviations in $\Delta^{33}S$ and $\Delta^{36}S$ that are recognizable by their small magnitude and by characteristic ^{33}S-^{34}S-^{36}S systematics (34–37). To explore the possibility of MCE in the context of our data, we employed a sulfur cycle box model that includes sulfate reduction, sulfide/sulfur oxidation, and sulfur disproportionation. The results of the model yield a range of $\delta^{33}S$ values for resulting sulfides that encompass the Maastrichtian and the majority of the Paleogene samples, consistent with MDF of sulfur isotopes via a active marine sulfur cycle. However, this model cannot reproduce the negative $\Delta^{33}S$ values from the impact deposits or the lowermost Paleogene (Fig. 2A), requiring additional sulfur-cycling processes.

Previous work has also demonstrated that small, negative $\Delta^{33}S$ values ($\sim -0.1\%^{\text{CTD}}$) can be produced during mixing between pyrite produced by near-quantitative reduction of marine sulfate (small apparent fractionation and sulfur isotope compositions equivalent to marine sulfate) and pyrite produced by a similar marine sulfur cycle (large apparent fractionation and sulfur isotope compositions offset from sulfate). This process has been proposed to explain small, negative $\Delta^{33}S$ values in End Permian sediments and interpreted to represent an incursion of sulfidic waters associated with the P-T transition event (38). We explored this possibility for the K-Pg by using a mixing model, in which sulfur with an isotopic composition of Late Maastrichtian seawater (31) is mixed with pyrite of a range of isotopic compositions derived from our marine sulfur–cycling model (encircled by the lower dashed lines in Fig. 2A). If similar mixing processes were the primary explanation for our data, we would expect this mixing model to encompass all of our $\Delta^{33}S/\Delta^{34}S$ data (Fig. 2A). However, these mixing models can only reproduce some of our data and largely require mixing with extreme end members of biologically produced pyrite from the ocean model to do so, which might not be realistic. Overall, these mixing models cannot reproduce the majority of the $\Delta^{33}S$ values associated with impact deposits, again requiring other sulfur-cycling processes.

Left without a realistic scenario whereby the impact deposit sulfur isotope values can be produced via mass-dependent, sulfur-cycling processes alone, we next explore processes known to produce S-MIF. Thermochemical sulfate reduction (TSR) is the only nonatmospheric process that has been shown to induce large S-MIF. TSR is caused by a magnetic isotope effect, which only affects odd number isotopes, producing positive $\Delta^{33}S$ values up to $+13\%^{\text{CTD}}$ without a corresponding $\Delta^{34}S$ anomaly (39). The rocks of the Corsicana and Kincaid formations are thermally immature and display no veining or other geologic evidence of postdepositional, hydrothermal alteration that might induce TSR. Critically, the DMC section shows $\Delta^{34}S$ values that are negatively correlated to $\Delta^{33}S$ (Fig. 3), inconsistent with magnetic isotope effects formed during TSR.

By exclusion of a suitable, biological, mixing, or thermochemical mechanism, the negative $\Delta^{33}S$ values of the Brazos River impact event deposits and lowermost Paleogene samples must have been produced by gas-phase reactions between S-bearing gases, a number of which have been demonstrated to create mass-independent sulfur isotope anomalies (16, 23). Stratospheric injection of sulfur gases during Plinian-style volcanic eruptions produce $\Delta^{33}S$ anomalies that range from $+2$ to $-2\%^{\text{CTD}}$ in sulfate aerosols that are preserved in ice cores (19–21). The ice core records display an evolution in $\Delta^{33}S$ values that are consistent with spatial and temporal separation during oxidation of SO_2 to sulfate that maintains an isotopic mass balance in $\Delta^{33}S$, following the evolution of eruption-derived sulfates across multiple years (21). While photochemical models remain unable to fully predict multiple sulfur isotopes using known fractionation factors (40), production of S-MIF has been experimentally demonstrated to arise from SO_2 photolysis and self-shielding under modern stratospheric conditions (15), providing a reasonable, potential analog for the postimpact atmosphere.

A candidate source for S-MIF could be sulfur liberated during extensive biomass burning (6, 8, 15). Biomass burning impacts small-magnitude S-MIF on resulting combustion products, with $\Delta^{33}S$ values as low as -0.19^{CTD} observed in combustion experiments (41). Though a potential contributor, a direct, biomass-burning signal alone would only have been capable of achieving the $\Delta^{33}S$ values we observe in the Brazos sediments if biomass-derived sulfur was the dominant sedimentary source.
For example, the sulfur isotope record in South Pole snow pits for carrying an S-MIF signature that is geologically relevant. Formed during biomass burning provide a more likely candidate for the transformation products of OCS produced during biomass burning (42, 43). OCS is a tropospherically inert gas that can be produced in an oxygenated Phanerozoic atmosphere. Instead, the sulfur isotope record, it is possible that this only partially preserves the S-MIF record due to temporal or spatial heterogeneities.

The slope between Δ^{36}S and Δ^{33}S values in our K-Pg sediments further supports an atmospherically produced S-MIF signal. Multiple sulfur isotope values in sediments deposited under oxic atmospheres generally have steep Δ^{36}S/Δ^{33}S slopes (~-8) consistent with MCE from MDF processes, as observed in the post-GOE geologic record (36). A lower slope is typical of anoxic atmospheres (-0.9 ± 0.1) (15, 45), as observed in pre-GOE Δ^{36}S/Δ^{33}S relationships and predicted by theory (16). The preimpact Maastrichtian and later Danian samples display a Δ^{36}S/Δ^{33}S slope of -8.3 ± 2, consistent with MDF deposits (Fig. 3B). By contrast, the Δ^{36}S/Δ^{33}S relationship in the K-Pg impact event samples from Brazos River has a shallower Δ^{36}S/Δ^{33}S slope of -5.6 ± 0.5 (Fig. 3B), resting between the canonical Archean Δ^{36}S/Δ^{33}S slope and the MDF slope. The relationship between Δ^{36}S and Δ^{33}S in our samples does not follow the typical Archean slope of -0.9 ± 0.1, but there is no reason to expect this relationship would be produced in an oxygenated Phanerozoic atmosphere. Instead, the Δ^{36}S/Δ^{33}S slope in our data is consistent with those measured in recently deposited, volcanic sulfate aerosols from ice cores and volcanic ash layers (-2 to -6) (19, 46), suggesting a similar S-MIF formation pathway within the stratosphere, with or without mixing. It is possible that the unique slope in the impact-associated deposits compared to the surrounding strata is the result of a unique, stratospheric chemistry in the aftermath of the Chicxulub impact. However, we should note that even high-resolution studies of modern, volcanically produced S-MIF do not always resolve an isotopic mass balance, and despite the relative completeness of the Brazos River sedimentary record, it is possible that this only partially preserves the S-MIF record due to temporal or spatial heterogeneities.

In an oxidizing Cretaceous and Paleogene atmosphere (47), redox cycling of sulfur sourced from the atmosphere and the size of the marine sulfate reservoir (48) limit the likelihood that S-MIF signatures could be easily preserved. For example, even the largest volcanic eruptions of the last millennium increase the concentrations of sulfates in glacial ice by no more than 10 μM (21). Therefore, the preservation of S-MIF in marine sediments requires a quantity and flux of atmospherically derived S-MIF to the basin sufficient to overwhelm the sulfur isotope composition of the local sulfate flux to the sediments (49) and any sulfur within the ejecta that was deposited too rapidly to accumulate an S-MIF signature (e.g., spherules and lapilli) or was not subject to the effects of impact-related conflagrations.

Fig. 3. Orthogonal data regression (17) showing Δ^{36}S/Δ^{33}S slopes and 3e CIs of the regression (shaded region) for Maastrichtian and Paleogene samples (A) and for samples with ejecta materials within the impact event bed deposits and the sample from the basal Paleogene that overlaps the event bed deposits (B).

which is unlikely. Rather, the fate of the sulfur aerosols that are formed during biomass burning provide a more likely candidate for carrying an S-MIF signature that is geologically relevant. For example, the sulfur isotope record in South Pole snow pits have Δ^{33}S anomalies up to $+1.6\%_{oo}$ much larger than those observed for Plinian-style eruptions and are the result of massive, biomass-burning events (22). The biomass-burning Δ^{33}S anomalies are carried in stratospheric sulfate aerosols that are the transformation products of OCS produced during biomass burning (42, 43). OCS is a tropospherically inert gas that can transit the tropopause where OCS is oxidized to SO$_2$ in the stratosphere, ultimately resulting in the formation of high-altitude sulfate aerosols (42) that carry MIF signatures and are distributed globally (22).

Another potentially important source of sulfur following the impact was that in close association with fossil organic matter in the target rock (9), either as pyrite or organic sulfur. Organic matter–associated sulfur could have been pyrolyzed or burned and followed a reaction path similar to biomass burning, or it could have been incorporated into the ejecta plume and ultimately oxidized to SO$_2$ and photolyzed in the stratosphere. Therefore, while the presence of S-MIF in our samples cannot distinguish between these possible atmospheric sulfur sources, our data provide direct, empirical evidence that sulfate aerosols were in the stratosphere, as previously only suggested by impact theory (7, 44).

Unlike the subannually resolved records in ice cores (19–21), the DMC rocks only record a negative anomaly in Δ^{33}S, which raises questions regarding isotopic mass balance, given the lack of a compensatory, positive Δ^{33}S shift. In order to quantitatively address this, we employed an additional Monte Carlo isotope-mixing model to examine the cumulative, sedimentary signature of mixing preevent sulfur with an atmospherically produced Δ^{33}S signal similar to that observed in ice cores (Fig. 2B). Notably, this model requires atmospheric end members with Δ^{33}S values varied between $+1$ to $-1\%_{oo}$ to capture the entirety of the K-Pg impact deposit data. The $+1$ to $-1\%_{oo}$ range of Δ^{33}S values in our model is consistent with those observed during Plinian-style volcanic eruptions and periods of enhanced biomass burning, so both mechanisms remain plausible for the production of S-MIF signatures in the aftermath of the Chicxulub impact. However, we should note that even high-resolution studies of modern, volcanically produced S-MIF do not always resolve an isotopic mass balance, and despite the relative completeness of the Brazos River sedimentary record, it is possible that this only partially preserves the S-MIF record due to temporal or spatial heterogeneities.

The slope between Δ^{36}S and Δ^{33}S values in our K-Pg sediments further supports an atmospherically produced S-MIF signal. Multiple sulfur isotope values in sediments deposited under oxic atmospheres generally have steep Δ^{36}S/Δ^{33}S slopes (~-8) consistent with MCE from MDF processes, as observed in the post-GOE geologic record (36). A lower slope is typical of anoxic atmospheres (-0.9 ± 0.1) (15, 45), as observed in pre-GOE Δ^{36}S/Δ^{33}S relationships and predicted by theory (16). The preimpact Maastrichtian and later Danian samples display a Δ^{36}S/Δ^{33}S slope of -8.3 ± 2, consistent with MDF deposits (Fig. 3B). By contrast, the Δ^{36}S/Δ^{33}S relationship in the K-Pg impact event samples from Brazos River has a shallower Δ^{36}S/Δ^{33}S slope of -5.6 ± 0.5 (Fig. 3B), resting between the canonical Archean Δ^{36}S/Δ^{33}S slope and the MDF slope. The relationship between Δ^{36}S and Δ^{33}S in our samples does not follow the typical Archean slope of -0.9 ± 0.1, but there is no reason to expect this relationship would be produced in an oxygenated Phanerozoic atmosphere. Instead, the Δ^{36}S/Δ^{33}S slope in our data is consistent with those measured in recently deposited, volcanic sulfate aerosols from ice cores and volcanic ash layers (-2 to -6) (19, 46), suggesting a similar S-MIF formation pathway within the stratosphere, with or without mixing. It is possible that the unique slope in the impact-associated deposits compared to the surrounding strata is the result of a unique, stratospheric chemistry in the aftermath of the impact, but these values have almost certainly been modified by mixing with existing non-MIF–bearing marine sulfate.

In an oxidizing Cretaceous and Paleogene atmosphere (47), redox cycling of sulfur sourced from the atmosphere and the size of the marine sulfate reservoir (48) limit the likelihood that S-MIF signatures could be easily preserved. For example, even the largest volcanic eruptions of the last millennium increase the concentrations of sulfates in glacial ice by no more than 10 μM (21). Therefore, the preservation of S-MIF in marine sediments requires a quantity and flux of atmospherically derived S-MIF to the basin sufficient to overwhelm the sulfur isotope composition of the local sulfate flux to the sediments (49) and any sulfur within the ejecta that was deposited too rapidly to accumulate an S-MIF signature (e.g., spherules and lapilli) or was not subject to the effects of impact-related conflagrations.
The location proximal to the impact, a relatively restricted circulation in an embayment at the mouth of the remnant Western Interior Seaway, and the large drainage area to water volume ratio within the embayment likely maximized the potential for preservation of these S-MIF anomalies. In addition, the persistence of an S-MIF signal into the lowermost Paleogene deposits requires that a repository of atmospherically derived sulfur remained on the continent, supplying an enhanced, MIF-bearing riverine sulfate input for upwards of 10 ka after the primary deposition to the drainage basin (50). We explore the feasibility of a persistent postimpact S-MIF flux scenario via a simple consideration of residence times. On the basis of estimates for the persistence of sulfate aerosols in the atmosphere, the flux of riverine sulfate, and the size of the marine sulfate reservoir, we estimate that S-MIF production and rainout could persist for 30 y with global coverage (SI Appendix).

While the atmosphere was certainly perturbed for a significant amount of time, S-MIF generation would occur on different timescales depending on the mechanism. If the S-MIF were generated during SO₂ photolysis with access to shortwave ultraviolet light, it is estimated that all of the sulfur would have been oxidized to sulfate within months (10). Biomass burning, by contrast, would provide S-MIF for as long as there was biomass to burn, but it is reasonable to expect that this interval of time would have been relatively short, on the order of days (15). Significant uncertainties remain, but it is clear that at least some of the S-MIF was generated in the earliest stages following the impact, given that S-MIF anomalies were included within the proximal and intermediate ejecta deposits that would have blanketed North America and elsewhere. The bulk of the MIF-bearing, soluble sulfate minerals would not have been preserved in place and would have weathered into the basin at variable rates over the subsequent years, providing nonsteady-state riverine fluxes of S-MIF-bearing sulfate into the Gulf Coastal Plain. We estimate that if 10% of the generated impact sulfur (4 × 10¹⁶ g) landed on North America and was available for weathering over 10⁴ years, this would increase riverine sulfate flux to the basin by an order of magnitude, with residence times similar to that of ocean freshet, providing a unique opportunity for the preservation of an S-MIF signal into basin Paleogene deposits, as we observe (Fig. 1).

Despite these uncertainties, the Brazos River S-MIF data reveal constraints regarding the role of climatically reactive sulfur species in the postimpact environment. Sulfur has long been implicated in the environmental disturbance in the aftermath of the impact and as one of the primary causes of the extinction. However, these ideas have remained largely theoretical given lack of constraints on the timing of sulfate aerosol formation, the timescale of their removal, and the predominant sulfur species (7, 8). While our data do not preclude the presence of the more rapidly removed SO₃ (51), the S-MIF signatures provide the geochemical fingerprint that confirms the formation of stratospheric sulfate aerosols derived from impact-generated SO₂ and/or biomass burning. The presence of the S-MIF signatures throughout the K-Pg event deposit suggests that S-MIF production occurred during the earliest stages of the impact fallout and was not limited by lofting of sunlight-blocking dust and soot (7, 8). The persistence of the S-MIF signatures above the ejecta beds into the basal Danian sediments suggest that climatic effects of sulfate aerosols may have been longer than currently modeled estimates (8).

Given that the S-MIF anomalies in our samples are only found in rocks that contain ejecta materials and in the sediments immediately overlying the K-Pg sequence, we attribute this signal solely to the effects of the Chicxulub impact on the sulfur cycle, rather than to contemporaneous volcanism from the Deccan Traps Large Igneous Province, which are concentrated in the periods before and after the impact event (52, 53). It is thought that climatic effects of volcanically released CO₂ and SO₂ during Deccan eruptions were most apparent during the ~300 ka prior to the K-Pg boundary (54, 55). From the perspective of S-MIF, it is clear that the Mastrichtian record from Brazos River is characterized by a sulfur cycle that fits well within the Phanerozoic normal (Fig. 1). If sulfur gases were an important component of the early eruptive phase of the Deccan Traps prior to the impact, it is likely they were limited to tropospheric sulfur aerosols, which have relatively short residence times (weeks as opposed to years), limited distance of travel, and therefore limited ability to force cooling and affect the global sulfur cycle. By contrast, the lowest S-MIF values at Brazos River (Fig. 1) are within the interval in which there is evidence for significant cooling coincident with iridium (Ir) anomalies (56). The recognition of S-MIF in the Brazos River K-Pg event deposit confirms that sulfate aerosols were an integral component of the postimpact winter that was the proximate cause of the global mass extinction at the K-Pg boundary.

Materials and Methods

Sample Materials. Field-collected rock samples were removed from trenched and cleared outcrops and placed in labeled cotton or plastic bags. A suite of samples was collected from a small push core made at outcrop, subsequently sampled in the laboratory. Samples were dried and cleaned of exogenous debris. Materials selected for further analyses had any external surfaces removed by rock saw or knife to reveal unweathered surfaces and were subsequently powdered with a ball mill or mortar and pestle where appropriate.

Sulfide Extraction Methods. Sulfide extractions were performed in the Geochemistry Laboratory at the University of St Andrews and in the Geochemistry, Palaeoclimatology and Palaeoeceanography (GAPP) Laboratory at Syracuse University using the chronium reduction method (57). Because of high, extractable sulfur contents of the ejecta bed samples, we utilized 0.1 to 1.0 g powdered sample. Sample powders were loaded into condenser reaction vessels that are swept with nitrogen gas to remove atmospheric O₂. Samples were tested for the presence of acid-volatile sulfide with the addition of 20 mL 6 N hydrochloric acid and subsequently treated with 20 mL 1 M sodium chloride and refluxed for at least 2 h to ensure complete reaction of chromous-reducible sulfides. The resulting sulfide was trapped in a silver nitrate solution, and precipitates of silver sulfide were allowed to cure in the silver nitrate solution for at least 24 h, collected, rinsed with deionized water, dried, weighed, and stored in glass vials until analysis.

δ²⁴S Analysis Methods. The sulfur isotope compositions of silver sulfides were measured in the GAPP Laboratory at Syracuse University using an Elemental Isotope Cube elemental analyzer (EA) coupled to an Isoprime 100 isotope ratio mass spectrometer. Samples were loaded into tin capsules with vanadium pentoxide accelerator. EA conditions were as follows: helium purge was set for 45 s; oxidation and reduction reactor temperatures were 1,100 °C and 650 °C, respectively; helium carrier gas flow was 230 mL/min; the O₂ pulse was set for 75 s; and the SO₂ trap was heated to 230 °C. Samples were run comiled with International Atomic Energy Agency reference materials S1 (−30.3‰), S2 (+22.7‰), and S3 (−32.2‰). Generated SO₂ is analyzed as neoformed SO₄²⁻, resulting in better reproducibility compared to SO₂ analysis (58). Sample and standard data were corrected to accepted values for the reference materials using the correction scheme described in Coplen et al. (59). Reproducibility for replicate samples and standards was often better than ±0.2‰ but is reported here as ±0.2‰, reflecting the known isotope composition of the reference materials used in this study.

PNAS 2022 Vol. 119 No. 14 e2119194119
https://doi.org/10.1073/pnas.2119194119 5 of 7
Sulfur and Organic Carbon Abundance Methods. Total sulfur and organic carbon contents were measured using EA conditions described in δ34S Analysis Methods on crushed samples for total sulfur and on decarbonated samples for organic carbon content. Decarbonation was achieved using buffered acetic acid (pH 4). Calibration of the EA for S and C content was achieved using a sulfanilamide standard material (Elementar) (18.62 wt. % S and 41.84 wt. % C). Reproducibility of the S and C content is 0.5% relative SD for sulfanilamide in nitrogen-carbon-sulfur mode on the Elementar EA.

SF6 Production and Analysis Methods. Sulfur isotope ratios (32S/34S, 34S/32S, and 36S/32S) are reported using the standard delta notation (6) showing per mil (‰) deviations from international standard Vienna Canion-Diablo Troilitie (V-CDT), as follows:

\[\delta^{34}S = \left(\frac{34S_{sample}}{32S_{VCDT}} \right) \times 1000 \]

where 34S is 33, 34, or 36. Minor S isotopes are further expressed using \(\Delta^{33}S \) and \(\Delta^{34}S \) notation, as the following:

\[\Delta^{33}S = 33S_{sample} - 33S_{VCDT} \]
\[\Delta^{34}S = 34S_{sample} - 34S_{VCDT} \]

Minor S isotope analyses (\(\Delta^{33}S \) and \(\Delta^{34}S \)) were conducted in the St Andrews Isotope Geochemistry laboratories at the University of St Andrews, using a modified Curie-point pyrolysis sulfur fluorination line, as described in Warke et al. (17). Briefly, 0.3 to 0.6 mg Ag2S was weighed out into an iron-nickel-cobalt alloy pyrolyl with \(\geq 50 \) times excess CoF3 and placed in a boroilicate glass tube with \(\sim 1 \) optical NaF crystals to consume HF. The reaction tube was placed in a JHP-22 Curie-point pyrolyzer (Japan Analytical Industry), evacuated to vacuum, and flash heated to 590°C for 297 s to produce SF6 gas. The product gas was introduced into a bespoke vacuum line, in which it was purified through sequential cryogenic capture and gas chromatography. The purified SF6 was analyzed with a dedicated Finnigan MAT 253 dual-inlet mass spectrometer at m/z values of 127, 128, 129, and 131 (32SF6, 33SF6, 34SF6, and 36SF6), and assumed values for the reference SF6 gas relative to the V-CDT scale are 32S = 5.865‰, \(\Delta^{33}S = 0.013 \)‰, and \(\Delta^{34}S = -0.252 \)‰ (18). The \(\Delta^{33}S \) and \(\Delta^{34}S \) values for IAEA-S1 produced by this method (n = 80) are 0.115 ± 0.015‰ and -0.581 ± 0.172‰ (mean ± 1σ), respectively, consistent with standard values published in the literature (60, 61). The precision of a single measurement was typically in the range of 0.01‰ for \(\Delta^{33}S \) and 0.1‰ for \(\Delta^{34}S \).

Description of Atmospheric Sulfate Mass Balance Estimates. We estimate between 6 to 10×10^6 g sulfate in the basin using estimates of paleobasin size (0.14% of Earth surface area and 85-m water depth (28, 62)) and Maastrichtian seawater sulfate concentrations which range from 2 to 10 mM (48, 63–66). The current Gulf of Mexico catchment area is ~1% of Earth’s surface area, assuming 1% of the total modern riverine sulfate (55) predicts a background riverine sulfate flux to the basin of 4 × 10^12 g/Sy for a first-order sulfate residence time against terrestrial rivers of \(\sim 10^4 \) y. By contrast, the estimated rate of influx to the Brazos River region of the Gulf Coastal Plain (\(\sim 10^5 \) m³/y to Western Interior seaway (67)) provides a sulfate residence time against marine refresh of 10^2 to 10^3 y, which therefore would have controlled the preimpact basinal sulfate concentration. Total sulfur volatilization was conservatively estimated at 4 × 10^12 g/S, but this would not have been uniformly distributed over the globe, giving the clear difference in the thickness of K-Pg boundary deposits with proximity to the Chicxulub crater (1). Proximal (<1,500 km) sites in the Gulf of Mexico (such as Brazos River) contain decimeter thick, coarse-grained event deposits, with ejecta spherules, shocked minerals, and lapilli along with sedimentological features indicative of rapid deposition, overlain by multiple minor Ir anomalies representing later atmospheric fallout of particulate material. Intermediate sites in the Western Interior of the United States and Canada show 1- to 10-cm thick boundary deposits, while distal (Europe, Africa, Asia, and Pacific Ocean) sites contain only 2- to 5-mm thick event deposits, with ejecta virtually coincident with a single Ir anomaly. While sedimentation rates and timing remain debated at many sites, it is clear that far more ejecta material was deposited closer to the impact than farther afield, and it likely contained abundant sulfur derived from the Chicxulub impact, similar to the Brazos River sediments. While explicit timescales are not resolvable from the current stratigraphy, our most basal Paleogene sulfur isotope data suggest continental weathering of sulfur MIF-bearing material deposited in the ~30-y postimpact continued to influence the basin into the earliest Paleogene. While uncertainties in these calculations are undoubtedly large, conservative mass balance estimates are consistent with riverine sulfur input, influencing the basin for 10^4 y following the impact.

Data Availability. All study data have been uploaded to the Dryad open access database (https://doi.org/10.5061/dryad.0zpc8670h) and are also included in the article and/or SI Appendix.

Acknowledgments. We are indebted to the Mullinax Family of Brazos Rose Ranch, who granted permission for fieldwork on their land. We also thank Kayla Irizary, Matthew Garb, Neil Landman, Anastasia Rashkova, Corinne Myers, Benjamin Uveges, and Shibajiboty Das for assistance in the field and for useful discussions; Steve Thurston for photographic assistance; Tommaso Di Rocco, Stephen Pepi and Samuel Crace for assistance with S-MIF analyses; and James Farquhar and the St Andrews MIF In Atmospheres and Syrcause PaleoX groups for helpful discussions. This project has received funding from the NSF (Grant EAR 1455258 to C.K.J.), the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant 678812 to M.W.C.), and a University of St Andrews Global Fellowship (to C.K.J.).

1. D. Jablonski, Extinctions in the fossil record. Philos. Trans. R. Soc. Lond. B Biol. Sci. 344, 11-17 (1994).
2. K. R. Bambach, A. H. Knoll, S. C. Wang. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522-542 (2004).
3. J. Alroy, The fossil record of North American mammals: Evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107-118 (1999).
4. T. J. D. Halliday, P. Upholch, A. Goswami, Erenchians estimated elevated evolutionary rates in the immediate aftermath of the Cretaceous-Paleogene mass extinction. Proc. Biol. Sci. 283, 20153026 (2016).
5. P. Schulte et al., The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214-1218 (2010).
6. S. P. S. Gulick et al., Expedition 364 Scientists, The first day of the Cenozoic. Proc. Natl. Acad. Sci. U.S.A. 116, 19342-19351 (2019).
7. O. B. Toon, C. Bardene, R. Garcia, Designing global climate and atmospheric chemistry models for 1 and 10 km diameter asteroid impacts using the properties of ejecta from the K-Pg impact. Atmos. Chem. Phys. 16, 13185-13212 (2016).
8. C. R. Tabor, C. G. Bardene, B. O. Toon, Causes and climatic consequences of the impact winter at the Cretaceous-Paleogene boundary. Geophys. Res. Lett. 47, e30217 (2020).
9. S. L. Lyons et al., Organic matter from the Chicxulub crater exacerbated the K-Pg impact winter. Proc. Natl. Acad. Sci. U.S.A. 117, 25237-25233 (2020).
10. E. Pirazzoli, A. N. Hahn, L. C. Scan, Chicxulub and climate: Radiative perturbations of impact-produced S-bearing gases. Astrobiology 3, 99-118 (2003).
11. K. O. Pope, K. H. Baines, A. C. Ocampo, A. B. Ivanov, Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model. Earth Planet. Sci. Lett. 128, 719-725 (1994).
12. M. J. Hennehan et al., Rapid ocean acidification and protected Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl. Acad. Sci. U.S.A. 116, 22500-22504 (2019).
25. T. A. Hansen, B. Upshaw, E. G. Kaufman, W. Gose, Patterns of molluscan extinction and recovery across the Cretaceous-Tertiary Boundary in East Texas: Report on new outcrops. Cretac. Res. 14, 685–706 (1993).
26. M. B. Hart et al., The Cretaceous-Paleogene Boundary on the Brazos River, Texas: New sections and revised interpretations. Gulf Coast Assoc. Geol. Soc. J. 1, 69–80 (2012).
27. J. D. Witts et al., Cephalopods from the Cretaceous-Paleogene (K-Pg) boundary interval on the Brazos River, Texas, and extinction of the ammonites. Am. Mus. Novit. 2020, 1–52 (2021).
28. T. E. Yaney, C. Liu, Impact-induced sediment deposition on an offshore, mud-substrate continental shelf: Cretaceous-Paleogene boundary, Brazos River, Texas, U.S.A. J. Sediment. Res. 83, 354–367 (2013).
29. T. E. Yaney, R. N. Guillermette, Carbonate accretory lapilli in distal deposits of the Chicxulub impact event. Geol. Soc. Am. Bull. 120, 1105–1118 (2008).
30. P. Schulte, R. Speijer, H. Mie, A. Konig, The Cretaceous-Paleogene (K-Pg) boundary at Brazos, Texas: Sequence stratigraphy, depositional events and the Chicxulub impact. Sediment. Geol. 184, 77–109 (2006).
31. A. L. Masterson, B. A. Wing, A. Paytan, J. Fanquhar, D. T. Johnston, The minor sulfur isotope composition of Cretaceous and Cenozoic seawater sulfate. Geochim. Cosmochim. Acta 31, 779–788 (2016).
32. D. A. Kring, M. J. Whitehouse, M. Schmieder, Microbial sulfur isotope fractionation in the chixulub hydrothermal system. Astrobiology 21, 103–114 (2021).
33. D. Heymann et al., Geochemical markers of the Cretaceous-Tertiary boundary event at Brazos River, Texas, USA. Geochim. Cosmochim. Acta 62, 173–181 (1998).
34. A. L. Zerkle, J. Fanquhar, D. T. Johnston, R. P. Cox, D. E. Canfield, Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim. Cosmochim. Acta 73, 291–306 (2009).
35. D. T. Johnston, Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth Sci. Rev. 106, 161–183 (2011).
36. S. Ono, B. Wing, D. Johnston, J. Fanquhar, D. Rumble, Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70, 2238–2252 (2006).
37. J. Fanquhar, D. T. Johnston, B. A. Wing. Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction. Geochim. Cosmochim. Acta 71, 5862–5875 (2007).
38. G. Zhang et al., Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Proc. Natl. Acad. Sci. U.S.A. 114, 1806–1810 (2017).
39. H. Oduro et al., Evidence of magnetic isotope effects during thermochromical sulfate reduction. Proc. Natl. Acad. Sci. U.S.A. 108, 17635–17638 (2011).
40. M. W. Claire et al., Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere. Geochim. Cosmochim. Acta 141, 365–380 (2014).
41. C. W. Liu, J. Savarino, H. Cachier, M. H. Thiemens, Sulfur (33S(V-CDT), 34S, 35S, 36S) and oxygen (16O, 17O, 18O) isotopic ratios of primary sulfate produced from combustion processes. Tellus B Chem. Phys. Meteorol. 54, 193–200 (2002).
42. P. J. Crutzen, The possible importance of COS for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73–76 (1976).
43. C. Bruhl, J. Leiveveld, P. J. Cozeen, H. Tost, The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos. Chem. Phys. 12, 1239–1253 (2012).
44. E. Pierazzo et al., Ozone perturbation from medium-size asteroid impacts in the ocean. Earth Planet. Sci. Lett. 299, 263–272 (2010).
45. G. Izen et al., Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc. Natl. Acad. Sci. U.S.A. 114, E2571–E2579 (2017).
46. I. N. Bindeman, J. M. Eiler, B. A. Wing, J. Farghur, Rare sulfur and triple oxygen isotope geochmstry of volcanogenic sulfate aerosols. Geochim. Cosmochim. Acta 71, 2326–2343 (2007).
47. I. J. Glasspool, A. C. Scott, Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3, 627–630 (2010).
48. J. D. Witts et al., The impact of the Cretaceous-Paleogene (K-Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica. Geochim. Cosmochim. Acta 230, 1–18 (2018).
49. F. Pasquier, R. N. Bryant, D. A. Fike, I. Halevy, Strong local, not global, controls on marine pyrite sulfur isotopes. Sci. Adv. 7, eabb7403 (2021).
50. T. C. Reinhard, N. J. Planavsky, T. W. Lyons, Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).
51. S. Ohno et al., Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nat. Geosci. 7, 279–282 (2014).
52. C. J. Sprain et al., The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).
53. B. Schiønne et al., U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).
54. P. M. Hull et al., On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).
55. A. Schmidt et al., Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2015).
56. J. Vellekoop et al., Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc. Natl. Acad. Sci. U.S.A. 111, 7537–7541 (2014).
57. J. M. Eiler, R. Raiswell, J. T. Westrich, C. M. Reaves, R. A. Berner, The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).
58. K. A. Bysbys, S. D. Golding, E. Young, B. S. Kamber, Simultaneous determination of δ34S(δ34S) and δ34S(34S(34S)) using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Commun. Mass Spectrom. 18, 2765–2769 (2004).
59. T. B. Coplen et al., New guidelines for δ34S measurements. Anal. Chem. 78, 2439–2441 (2006).
60. C. Defouilloy, P. Cartigny, N. Assayag, F. Moyner, J.-A. Barrat, High-precision sulfur isotope composition of metastable meteorites and implications of the formation and evolution of their parent bodies. Geochim. Cosmochim. Acta 172, 393–409 (2015).
61. T. Ueno, S. Aoyama, Y. Endo, F. Matsu-ura, J. Foreil, Rapid quadruple sulfur isotope analysis at the sub-microamole level by a flash heating with CTF. Chem. Geol. 419, 29–35 (2015).
62. L. Wiederer, R. P. Speijer, Stable seafloor conditions, sea level and food supply during the latest Maastrichtian at Brazos River, Texas. Mar. Micropaleontology 121, 41–51 (2015).
63. R. V. Demico, T. K. Lowenstein, L. A. Harde, R. J. Spencer, Model of seawater composition for the Phanerozoic. Geology 33, 877–880 (2005).
64. M. N. Timofeeff, T. K. Lowenstein, M. A. M. da Silva, N. B. Harris, Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochim. Cosmochim. Acta 70, 1977–1994 (2006).
65. U. G. Wortmann, A. Paytan, Rapid variability of seawater chemistry over the past 130 million years. Science 337, 334–336 (2012).
66. J. J. Algeo, G. M. Luo, H. Y. Song, T. W. Lyons, D. E. Canfield, Reconstruction of secular variation in seawater sulphate concentrations. Biogeosciences 12, 2131–2151 (2015).
67. R. Slingerland et al., Eutaxine circulation in the Turonian Western Interior seaway of North America. Geol. Soc. Am. Bull. 108, 941–952 (1996).