A Generalization of Binomial Exponential-2 Distribution: Copula, Properties and Applications

Naif Alotaibi \(^1\,*\) and Igor V. Malyk \(^2\)

\(^1\) Department of Mathematics and Statistics-College of Science, Imam Mohammad ibn Saud, Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
\(^2\) Department of Mathematics and Informatics, Yuriy Fedkovych Chernivtsi National University, 28 Universytetska Street, 58012 Chernivtsi, Ukraine; i.malyk@chnu.edu.ua

* Correspondence: nmaalotaibi@imamu.edu.sa

Received: 26 July 2020; Accepted: 7 August 2020; Published: 10 August 2020

Abstract: In this paper, we propose a new three-parameter lifetime distribution for modeling symmetric real-life data sets. A simple-type Copula-based construction is presented to derive many bivariate- and multivariate-type distributions. The failure rate function of the new model can be “monotonically asymmetric increasing”, “increasing-constant”, “monotonically asymmetric decreasing” and “upside-down-constant” shaped. We investigate some of mathematical symmetric/asymmetric properties such as the ordinary moments, moment generating function, conditional moment, residual life and reversed residual functions. Bonferroni and Lorenz curves and mean deviations are discussed. The maximum likelihood method is used to estimate the model parameters. Finally, we illustrate the importance of the new model by the study of real data applications to show the flexibility and potentiality of the new model. The kernel density estimation and box plots are used for exploring the symmetry of the used data.

Keywords: type-II half-logistic; binomial exponential-2 distribution; moments; maximum likelihood estimation; Morgenstern family; symmetry; Clayton Copula

1. Introduction

The monotonicity asymmetric failure (hazard) rate function (HRF) of a certain lifetime probabilistic distribution has an important role in modeling real lifetime data. Distributions with the “monotonicity increasing” failure rate (MIFR) function have useful real applications in “pricing” and “supply” chain contracting problems. The MIFR property is a well-known and useful concept in “dynamic programming”, “reliability theory” and other areas of applied probability and statistics (see [1,2]). The paper [3] introduced a new two-parameter lifetime model with MIFR named the binomial-exponential-2 (BE2) model, which is constructed as a model of a random sum (RSm) of independent exponential random variables (RVs) when the sample size has a “zero truncated binomial” distribution. The BE2 distribution can be used as an alternative to the Weibull (W), gamma (Gam), exponentiated exponential (EE), and weighted exponential (WhE) distributions in real life applications.

The survival function (SF) of the binomial exponential-2 (BE2) distribution is given by

\[
\overline{G}_{BE2}(y) = \left(1 + \frac{\theta \alpha y}{2 - \theta} \right) e^{-\alpha y} \quad \begin{cases} 1 \quad (0 \leq \theta \leq 1), \\ 0 \quad (y > 0), \end{cases}
\] (1)

where \(\alpha > 0 \) is a scale parameter, \(G_{BE2}(y) = 1 - \overline{G}_{BE2}(y) \) is the cumulative distribution function (CDF) of the BE2 model and \(\theta \) is a shape parameter. It is easy to show that the SF in (1) is increasing in
0 ≤ θ ≤ 1 where \(e^{-ay} \leq \overline{G}_{BE2}(y) \leq (ay + 1)e^{-ay} \) (see [2]). The probability density function (PDF) corresponding to (1) is

\[
g_{BE2}(y) = \left[1 + \frac{\theta}{2 - \theta} (ay - 1) \right]\alpha e^{-ay},
\]

which can be expressed as

\[
g_{BE2}(y) = \frac{\alpha}{2 - \theta} [2(1 - \theta) + ay \theta]e^{-ay}.
\]

Since \(\frac{\partial}{\partial \theta} \) is negative, the \(\log[g_{BE2}(y)] \) is “concave” for all \(a \) and \(0 ≤ \theta ≤ 1 \). As a result, \(g_{BE2}(y) \) is “log-concave” and “unimodal”. Additionally, the PDF (2) can be written as

\[
g_{BE2}(y) = \pi(\theta)\alpha e^{-ay} + \pi(\theta)c^2 y e^{-ay},
\]

where

\[
\pi(\theta) = \frac{2}{2 - \theta} (1 - \theta) \text{ and } \pi(\theta) = 1 - \pi(\theta)\pi(\theta) = \frac{2}{2 - \theta} (1 - \theta) \text{ and } \pi(\theta) = 1 - \pi(\theta).
\]

The BE2 model is a mixture of the standard exponential (with parameter \(\alpha \)) model and standard gamma model (with shape parameter 2 and scale parameter \(\theta \)); when \(\theta = 0 \), we get the standard exponential model, and when \(\theta = 1 \), the BE2 model reduces to the Gam model. In the last few decades, many new G families of continuous distributions have been developed. One of the most famous ones is called the new type II half-logistic (TIIHL-G) family (see [4]). According to [4], the CDF of the TIIHL-G family of distributions is given by

\[
F_{\lambda, \Psi}(y) = \frac{2G_{\Psi}(y)^\lambda}{1 + G_{\Psi}(y)^\lambda},
\]

where \(G_{\Psi}(y) \) is the baseline CDF depending on a parameter vector \(\Psi \) and \(\lambda > 0 \) is an additional shape parameter. For each baseline \(G_{\Psi}(y) \), we can generate a new TIIHL model using (4). The corresponding PDF to (4) is given by

\[
f_{\lambda, \Psi}(y) = 2\lambda G_{\Psi}(y)G_{\Psi}(y)^{\lambda-1}\left[1 + G_{\Psi}(y)^\lambda\right]^{-2},
\]

where \(g_{\Psi}(y) = dG_{\Psi}(y)/dy \) is the baseline PDF. Equation (5) will be most tractable when \(G_{\Psi}(y) \) and \(g_{\Psi}(y) \) have simple expressions. The survival function, the failure (hazard) rate function and the quantile function are \(F_{\lambda, \Psi}(y) = \frac{1-G_{\Psi}(y)^\lambda}{1+G_{\Psi}(y)^\lambda}, h_{\lambda, \Psi}(y) = \frac{2g_{\Psi}(y)G_{\Psi}(y)^{\lambda-1}}{1-G_{\Psi}(y)^\lambda}, \) and \(Q(u) = G^{-1}\sqrt{\frac{u}{2\Psi}}. \)

Equations (4) and (5) are used for generating the new model.

2. The New Model and Its Motivation

In this section, we introduce the three-parameter type II half-logistic binomial exponential 2 (TIIHLBE2) distribution. Substituting from (1) into (4), the CDF of the TIIHLBE2 (or expanded BE2 “EBE” for short) model can be expressed as

\[
F_{\lambda, \alpha, \theta}(y) = \frac{2\left[1 - \left(1 + \frac{\theta ay}{2 - \theta}\right)e^{-ay}\right]^\lambda}{1 - \left(1 + \frac{\theta ay}{2 - \theta}\right)e^{-ay}\lambda}.
\]

The corresponding PDF is given by

\[
f_{\lambda, \alpha, \theta}(y) = \frac{2\lambda \alpha e^{-ay} \left(1 + \frac{(ay - 1)\theta}{2 - \theta}\right) \left[1 - \left(1 + \frac{\theta ay}{2 - \theta}\right)e^{-ay}\right]^\lambda}{\left[1 - \left(1 + \frac{\theta ay}{2 - \theta}\right)e^{-ay}\lambda\right]^2}.
\]
Here and henceforth, an RV Y having PDF (7) is denoted by $Y \sim \text{EBE}(\lambda, \alpha, \theta)$. For the EBE distribution, the HRF can be derived as

$$h_{\lambda, \alpha, \theta}(y) = \frac{2\lambda \alpha e^{-\theta y} \left(1 + \frac{\theta y - 1}{1 + \theta y} e^{-\theta y}
ight)}{\left[1 - \left(1 + \frac{\theta y}{1 + \theta y} e^{-\theta y}\right)\right]}.$$

(8)

Figure 1 presents some plots of the PDF of the EBE model for some different values of the parameters λ, α and θ. We note that the new PDF can be “right skewed” with different shapes of “skewness” and “kurtosis”.

Figure 2 gives the plots of the HRF of the EBE distribution. We note that the new HRF can be “increasing”, “increasing-constant”, “decreasing” and “upside-down-constant” shaped. Thus, the new model may be useful in modeling different shapes of real data.

Figure 1. Plots of the probability density function (PDF) of EBE distribution.

Figure 2. Plots of the HRF of the EBE distribution.
3. Copula under the EBE Model

3.1. Bivariate EBE (BivEBE) Type via Renyi’s Entropy

Following [5], the joint CDF (JCDF) of the “Renyi’s entropy Copula” can be expressed as
\[C(u,v) = y_2 u + y_1 v - y_1 y_2; \]
then, the associated BivEBE will be \(\mathcal{H}(t_1, t_2) = \mathcal{H}(F_{\tilde{V}_1}(y_1), F_{\tilde{V}_2}(y_2)) \)
where \(\tilde{V}_1 \) and \(\tilde{V}_2 \) are the parameter vectors for \(F_{\tilde{V}_1}(y_1) \) and \(F_{\tilde{V}_2}(y_2) \), respectively.

3.2. BivEBE Type Using “Farlie-Gumbel-Morgenstern” (FGM) Copula

Consider the JCDF of the bivariate FGM copula, where \(\mathcal{H}_\Delta(u,v) = uv(1 + \Delta w) \), for every \(\Delta \in [-1,1] \). The marginal functions are \(u = F_1(y_1) \in [0,1] \) and \(v = F_2(y_2) \in [0,1] \). The unknown parameter \(\Delta \) is a dependence parameter, and for every \(u, v \in [0,1] \), \(\mathcal{H}_\Delta(u,v) = C_\Delta(0,v) = 0 \), which is the “grounded minimum” property, and \(\mathcal{H}_\Delta(u,1) = u \) and \(\mathcal{H}_\Delta(1,v) = v \), which is “grounded maximum” property. \(\tilde{u} = \tilde{u}_{\tilde{V}_1} = 1 - F_{\tilde{V}_1}(y_1) \) and \(\tilde{v} = \tilde{v}_{\tilde{V}_2} = 1 - F_{\tilde{V}_2}(y_2) \) are then set.

Then, \(F(y_1, y_2) = \mathcal{H}(F_{\tilde{V}_1}(y_1), F_{\tilde{V}_2}(y_2)) \). The joint PDF can be derived from

\[h_\Delta(u,v) = \Delta u^\ast v^\ast + 1 \] \((\ast \ast = 1-2\ast + \ast^2) \)

or from

\[f(y_1, y_2) = h\left(F_{\tilde{V}_1}(y_1), F_{\tilde{V}_2}(y_2)\right) f_{\tilde{V}_1}(y_1) f_{\tilde{V}_2}(y_2). \]

For more details, see [6–12].

3.3. BivEBE Type via “Modified FGM” (MFGM) Copula

The modified JCDF of the bivariate FGM copula can be expressed as

\[\mathcal{H}_\Delta(u,w) = uw + \Delta \tilde{O}(u) \tilde{\varphi}(w), \]

where \(\tilde{O}(u) = u \tilde{O}(u) \) and \(\tilde{\varphi}(w) = w \tilde{\varphi}(w) \), where \(\tilde{O}(u) \) and \(\tilde{\varphi}(w) \) are two absolutely continuous functions on \((0,1)\) where \(\tilde{O}(0) = \tilde{O}(1) = \tilde{\varphi}(0) = \tilde{\varphi}(1) = 0 \). Let

\[\alpha = \inf \left\{ \frac{\partial}{\partial u} \tilde{O}(u) : C_1 \right\} < 0, \beta = \sup \left\{ \frac{\partial}{\partial u} \tilde{O}(u) : C_1 \right\} < 0, \]

\[\xi = \inf \left\{ \frac{\partial}{\partial w} \tilde{\varphi}(w) : C_2 \right\} > 0, \eta = \sup \left\{ \frac{\partial}{\partial w} \tilde{\varphi}(w) : C_2 \right\} > 0. \]

Then,

\[\min(\beta \alpha, \eta \xi) \geq 1, \]

where

\[\tilde{O}(u) + u \frac{\partial}{\partial u} \tilde{O}(u) =, \]

\[C_1 = \left\{ u \in (0,1) : \frac{\partial}{\partial u} \tilde{O}(u) \text{ exists} \right\}, \]

and

\[C_2 = \left\{ w \in (0,1) : \frac{\partial}{\partial w} \tilde{\varphi}(w) \text{ exists} \right\}. \]

3.3.1. BivEBE-FGM (Type-I) Model

The BivEBE-FGM (Type-I) model can be derived directly using

\[\mathcal{H}_\Delta(u,w) = \Delta \tilde{O}(u) \tilde{\varphi}(w) + uw, \]
3.3.2. BivEBE-FGM (Type-II) Model

Consider $O(u)$ and $\varphi(w)$ that satisfy all the conditions stated earlier where

$$O(u)|_{\Delta_1 > 0} = u^{\Delta_1}(1 - u)^{1 - \Delta_1} \quad \text{and} \quad \varphi(w)|_{\Delta_2 > 0} = v^{\Delta_2}(1 - w)^{1 - \Delta_2}.$$

The corresponding BivEBE-FGM (Type-II) copula can be derived from

$$C_{\Delta_1, \Delta_2}(u, w) = u\varphi(w) + \theta_{\Delta_1, \Delta_2}uv,$$

3.3.3. BivEBE-FGM (Type-III) Model

Consider $O(u)$ and $\varphi(w)$ that satisfy all the conditions stated earlier where

$$O(u) = u[\log(1 + u)] \quad \text{and} \quad \varphi(w) = w[\log(1 + w)].$$

In this case, one can also derive a closed form expression for the associated CDF of the BivEBE-FGM (Type-III).

3.3.4. BivEBE-FGM (Type-IV) Model

The JCDF of the BivEBE-FGM (Type-IV) model can be derived from

$$H(u, w) = uF_1(w) - F_1(u)F_1(w).$$

3.4. BivEBE Type via Clayton Copula

The Clayton Copula can be considered as

$$H(u_1, u_2) = \left(\frac{u_1^{-\Delta} + u_2^{-\Delta} - 1}{\Delta\log(\Delta)}\right)^{-\frac{1}{\Delta}} |_{\Delta \in [0, \infty[}.$$

Let $T \sim \text{EBE}(V_1)$ and $W \sim \text{EBE}(V_2)$. Set $u_1 = u(t) = F_{V_1}(t)|_{V_1 > 0}$ and $u_2 = u(w) = F_{V_2}(w)|_{V_2 > 0}$. Then, the BivEBE-type distribution can be derived from $F(t, w) = H(F_{V_1}(t), F_{V_2}(w))$. A straightforward n-dimensional extension from the above will be $H(u_i) = \left[1 - n + \sum_{i=1}^{n} u_i^{-\Delta}\right]^{-\frac{1}{\Delta}}$. Many other useful details can be found in [13–22].

4. Properties

4.1. Expansions and Quantile Function (QF)

Consider the series representation

$$\left(\frac{\omega_1}{\omega_2} + 1\right)^{-\omega_3} = \sum_{i=0}^{\infty} \left(\frac{\omega_1}{\omega_2}\right)^i \binom{\omega_3 + i - 1}{i} \left(\frac{\omega_1}{\omega_2}(1 + \omega_3)\right)^i.$$ (9)

expanding $\left[1 + \left(1 + \frac{\omega_y}{2\theta}\right)e^{-ax}\right]^{-2}$, we can write (7) as

$$f(y) = 2\lambda \sum_{i=0}^{\infty} (-1)^i (i + 1)e^{-\theta y} \left[1 - \left(1 + \frac{\theta y}{2 - \theta}\right)e^{-\theta y}\right]^{i(i+1)-1}. \quad (10)$$
Then, consider the power series expansion
\[
\left(1 - \frac{\omega_1}{\omega_2}\right)^{\omega_3 - 1} = \sum_{j=0}^{\infty} \left(-\frac{\omega_1}{\omega_2}\right)^j \binom{\omega_3 - 1}{j} \left(\omega_1 \omega_2 \right)^j.
\] (11)

Using (11) in Equation (10), and after some algebra, the PDF of EBE can be written as
\[
f(y) = 2\lambda 2^{\alpha} \sum_{i,j=0}^{\infty} (-1)^i (i+1) \frac{\lambda(i+1) - 1}{j} \left(1 + \frac{\alpha y - 1}{2 - \theta}\right) \left(1 + \frac{\theta \alpha y}{2 - \theta}\right)^j e^{-\alpha(1+j)y},
\]

Then, we have
\[
\left(1 + \frac{\theta \alpha y}{2 - \theta}\right)^j = \sum_{\kappa=0}^{\infty} \binom{j}{\kappa} \left(\frac{\theta \alpha}{2 - \theta}\right)^\kappa y^\kappa,
\]
therefore, the PDF of the EBE model becomes
\[
f(y) = \sum_{\kappa=0}^{\infty} C_\kappa \Pi_{\theta,\alpha}^{ij,k}(y),
\]
where
\[
C_\kappa = 2\lambda \sum_{i,j=0}^{\infty} \alpha^{1+\kappa} (-1)^i (i+1) \frac{\lambda(i+1) - 1}{j} \binom{j}{\kappa} \frac{\theta^\kappa}{(2 - \theta)^{1+\kappa}}.
\]

And
\[
\Pi_{\theta,\alpha}^{ij,k}(y) = \left[2(1-\theta) y^\kappa + \theta \alpha y^{\kappa+1}\right] e^{-\alpha(1+j)y},
\]

The QF of the EBE model is given by the real solution of the following equation:
\[
\left(1 + \frac{\theta \alpha y_q}{2 - \theta}\right) e^{-\alpha y_q} + \left(\frac{q}{2 - \theta}\right)^{\frac{1}{\lambda}} = 1,
\] (12)

where the above equation has no closed form solution in y_q, so we have to use a numerical technique.

4.2. Moments

Theorem 1. If $Y \sim$ EBE (λ, α, θ), then the r^{th} moment of Y is given by
\[
\mu_r'(y) = \sum_{\kappa=0}^{\infty} C_\kappa \Gamma(r+\kappa+1),
\] (13)

where
\[
C_\kappa' = C_\kappa \frac{2\alpha(1+j)(1-\theta) + \theta \alpha (r+\kappa+1)}{[\alpha (1+j)]^{r+\kappa+2}}.
\]

Proof. Let Y be an RV following the EBE distribution. The r^{th} ordinary moment can be obtained using the well-known formula
\[
\mu_r'(y) = \int_0^\infty f(y) y^r dy = \sum_{\kappa=0}^{\infty} C_\kappa \int_0^\infty y^r \Pi_{\theta,\alpha}^{ij,k}(y) dy,
\]
then

\[\mu'_r(y) = \sum_{\kappa=0}^{\infty} C_{\kappa} \int_{0}^{\infty} \left[2(1 - \theta)y^{r+\kappa} + \theta \alpha y^{r+\kappa+1} \right] e^{-\alpha(1+j)y} dy. \]

Setting \(x = \alpha(1 + j)y \), after some algebra, we obtain

\[\mu'_r(y) = \sum_{\kappa=0}^{j} C_{\kappa} \Gamma(r + \kappa + 1). \quad (14) \]

If we set \(r = 1 \), we obtain the mean of the EBE distribution. Variance, skewness and kurtosis measures can be easily derived from the well-known relationships. Three-dimensional plots of the skewness and kurtosis of the EBE model are presented in Figures 3 and 4.

![Figure 3. Three-dimensional plot for the skewness of the EBE model.](image)

![Figure 4. Three-dimensional plot for the kurtosis of the EBE model.](image)

These plots indicate that both measures depend very much on the shape parameter \(\theta \). The first four moments and the skewness and kurtosis of the EBE distribution for different values of parameters are represented in Table 1.
Table 1. Moments, skewness and kurtosis of the EBE model.

α	θ	λ	µ′_1	µ′_2	µ′_3	µ′_4	Skewness	Kurtosis
0.5	0.5	0.5	1.066	3.009	16.07	149.755	2.752	12.349
0.5	0.7	0.7	1.660	4.313	23.29	277.509	2.189	9.1470
0.6	0.7	1.5	2.414	4.008	14.47	125.278	1.669	9.2000
0.7	0.3	2.7	2.273	2.749	8.148	60.481	1.627	6.8450
1.5	0.5	0.5	0.243	0.316	0.545	1.589	2.753	12.231
1.5	0.2	0.7	0.381	0.294	0.458	1.269	2.539	11.139
2.6	0.2	1.5	0.404	0.149	0.121	0.233	1.929	8.0020
2.7	0.4	2.7	0.626	0.195	0.153	0.325	1.571	6.3250

Theorem 2. The moment generating function $M_Y(\tau)$ of the EBE is given by

$$M_Y(\tau) = \sum_{\kappa=0}^{\infty} C^{(r,\tau)}_{\kappa} \Gamma(\kappa + 1),$$

where

$$C^{(r,\tau)}_{\kappa} = C_\kappa \frac{2(1-\theta)\alpha(1+j)-\tau + \theta \alpha(\kappa+1)}{[\alpha(1+j)]^{\kappa+2}}.$$

Proof. Starting with

$$M_Y(\tau) = E(e^{\tau Y}) = \int_0^{\infty} e^{\tau y} f(y) dy,$$

then

$$M_Y(\tau) = \sum_{\kappa=0}^{\infty} C_\kappa \int_0^{\tau} \left[2(1-\theta)y^{\kappa+1} + \theta \alpha y^{\kappa+2} \right] e^{-\alpha(1+j)y} dy,$$

finally, we get

$$M_Y(\tau) = \sum_{\kappa=0}^{\infty} C^{(r,\tau)}_{\kappa} \Gamma(\kappa + 1).$$

In the same way, the characteristic function of the EBE distribution becomes

$$\phi_Y(\tau) = M_Y(i\tau)$$

where $i = \sqrt{-1}$ is the unit imaginary number. □

4.3. Incomplete Moments

The s^{th} lower and upper incomplete moments of Y are defined by

$$v_{s,Y}(\tau) = E(Y^s | Y < \tau) = \int_0^\tau y^s f(y) dy,$$

and

$$v_{s,Y}(\tau) = E(Y^s | Y > \tau) = \int_\tau^{\infty} y^s f(y) dy,$$

respectively, for any real $s > 0$. The s^{th} lower incomplete moment of the EBE distribution is

$$v_{s,Y}(\tau) = \int_0^\tau y^s f(y) dy = \sum_{\kappa=0}^{\infty} C_\kappa \int_0^\tau \left[2(1-\theta)y^{\kappa+1} + \theta \alpha y^{\kappa+2} \right] e^{-\alpha(1+j)y} dy,$$
then
\[
v_{s,Y}(\tau) = \sum_{k=0}^{\infty} C_k \left[c_{(s,j)}^{(1)} \gamma(s + \kappa + 1, \alpha (1 + j) \tau) + c_{(s,j)}^{(2)} \gamma(s + \kappa + 2, \alpha (1 + j) \tau) \right],
\]
where
\[
c_{(\Delta,j)}^{(1)} = 2(1 - \theta) \frac{1}{[\alpha (1 + j)]^{\alpha + \kappa + 1}} c_{(\Delta,j)}^{(2)} = \theta \alpha \frac{1}{[\alpha (1 + j)]^{\alpha + \kappa + 2}}
\]
and \(\gamma(s, \tau) = \int_{\tau}^{\infty} y^{1-e^{-y} dy} \) is the lower incomplete gamma function. Similarly, the \(s_{jh}\) upper incomplete moment of the EBE distribution is
\[
\eta_{s}(\tau) = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} C_k \left[c_{(s,j)}^{(1)} \zeta(s + \kappa + 1, \alpha (1 + j) \tau) + c_{(s,j)}^{(2)} \zeta(s + \kappa + 2, \alpha (1 + j) \tau) \right],
\]
where
\[
\zeta(s, \tau) = \int_{\tau}^{\infty} e^{-y} y^{-1} dy,
\]
is the upper incomplete gamma function.

4.4. Mean Deviation and Bonferroni and Lorenz Curve

The mean deviations about the mean \(\mu = E(Y)\) and the mean deviations about the median \(M\) can be written as
\[
\delta_1(y) = 2[\mu F(\mu) - \omega(\mu)] = \int_{0}^{\infty} f(y) |y - \mu| dy,
\]
and
\[
\delta_2(y) = \mu - 2 \omega(M) = \int_{0}^{\infty} f(y) |y - M| dy,
\]
respectively, where
\[
\omega(d) = \int_{0}^{d} y f(y) dy = \sum_{k=0}^{\infty} C_k \left[c_{(1,j)}^{(1)} \gamma(\kappa + 2, \alpha (1 + j) d) + c_{(1,j)}^{(2)} \gamma(\kappa + 3, \alpha (1 + j) d) \right].
\]
The Lorenz curve for a positive RV \(Y\) is defined as
\[
L(p) = \frac{1}{\mu} \int_{0}^{h} y f(y) dy = \frac{\omega(h)}{\mu} = \frac{1}{\mu} \sum_{k=0}^{\infty} C_k \left[c_{(1,j)}^{(1)} \gamma(\kappa + 2, \alpha (1 + j) h) + c_{(1,j)}^{(2)} \gamma(\kappa + 3, \alpha (1 + j) h) \right],
\]
where \(h = G^{-1}(p).\) Additionally, the Bonferroni curve is defined by
\[
B(p) = \frac{1}{\mu p} \int_{0}^{h} y f(y) dy = \frac{\omega(h)}{\mu p} = \frac{1}{\mu p} \sum_{k=0}^{\infty} C_k \left[c_{(1,j)}^{(1)} \gamma(\kappa + 2, \alpha (1 + j) h) + c_{(1,j)}^{(2)} \gamma(\kappa + 3, \alpha (1 + j) h) \right],
\]
4.5. Residual Life and Reversed Residual Life Functions

The \(r_{th}\) moment of the residual life via the general formula is given by
\[
\mu_{r,Y}(\tau) = E\left(\left(Y - \tau \right)^r \right)_{(Y > \tau)} = \frac{1}{F(\tau)} \int_{\tau}^{\infty} f(y) (y - \tau)^r dy \bigg|_{(r \geq 1)}
\]
then

\[\mu_{r,Y}(\tau) = \frac{1}{F(\tau)} \sum_{h=0}^{r} \sum_{k=0}^{\infty} C_k \left(-1 \right)^{r-h} \binom{r}{h} \int_{\tau}^{\infty} \left[c_{(r,j)}^{(1)} \zeta(r + \kappa + 1, \alpha(1 + j)\tau) + c_{(r,j)}^{(2)} \zeta(r + \kappa + 2, \alpha(1 + j)\tau) \right] \]

The mean residual life (MRL) of the EBE distribution is given by

\[\mu_{1,Y}(\tau) = \frac{1}{F(\tau)} \sum_{k=0}^{\infty} C_k \left(-1 \right)^{r-h} \binom{r}{h} \int_{\tau}^{\infty} \left[c_{(1,j)}^{(1)} \zeta(\kappa + 2, \alpha(1 + j)\tau) + c_{(1,j)}^{(2)} \zeta(\kappa + 3, \alpha(1 + j)\tau) \right] - \tau \]

The \(r \)th order moment of the reversed residual life can be obtained by the well-known formula

\[m_{r,Y}(\tau) = E((\tau - Y)^r) = \frac{1}{F(\tau)} \int_0^\tau f(y)(\tau - y)^r dy \bigg|_{y \leq \tau}. \]

Applying the binomial expansion of \((\tau - y)^r\) and substituting \(f_{\lambda,\alpha,\theta}(y) \) given by (7) into the above formula gives

\[m_{r,Y}(\tau) = \frac{1}{F(\tau)} \sum_{r=0}^{\infty} \sum_{k=0}^{r} \binom{r}{k} (-1)^{r-k} \int_{\tau}^{\infty} \left[2(1 - \theta) y^{r+k} + \theta \alpha y^{r+k+1} \right] e^{-\alpha(1+j)y} dy, \]

then

\[m_{r,Y}(\tau) = \frac{1}{F(\tau)} \sum_{k=0}^{\infty} C_k \left(-1 \right)^{r-h} \binom{r}{h} \int_{\tau}^{\infty} \left[\sum_{j=1}^{r} c_{(r,j)}^{(1)} \gamma(r + \kappa + 1, \alpha(1 + j)\tau) + c_{(r,j)}^{(2)} \gamma(r + \kappa + 2, \alpha(1 + j)\tau) \right], \]

where

\[\gamma(s,p) = \int_0^p w^{s-1} e^{-w} dw, \]

is the lower incomplete gamma function. The mean waiting time of the EBE distribution is given by

\[m_1(\tau) = \tau - \frac{1}{F(\tau)} \sum_{k=0}^{\infty} C_k \left[c_{(1,j)}^{(1)} \gamma(\kappa + 2, \alpha(1 + j)\tau) + c_{(1,j)}^{(2)} \gamma(\kappa + 3, \alpha(1 + j)\tau) \right]. \]

Using \(m_{1,Y}(\tau) \) and \(m_{2,Y}(\tau) \), one can obtain the “variance” and the “coefficient of variation” of the reversed residual life of the EBE distribution.

5. Estimation and Inference

Let \(Y_1, Y_2, \ldots, Y_n \) be a random sample of size \(n \) from EBE \(\psi \). The log likelihood function for the vector of parameters \(\lambda, \alpha \) and \(\theta \) can be written as

\[\log L = n \log(2\lambda) + n \log(2 - 2\theta) - a \sum_{i=1}^{n} y_i + (\lambda - 1) \sum_{j=1}^{n} \log(1 - m_i) - 2 \sum_{j=1}^{n} \log \left[1 + (1 - m_i)^{\lambda} \right] \]

where \(m_i = 1 + \frac{\partial \log y_i}{\partial \theta} \) and \(s_i = e^{-\lambda y_i} \). The associated score function is given by

\[U_n(\psi) = \left[\frac{\partial \log L}{\partial \lambda}, \frac{\partial \log L}{\partial \alpha}, \frac{\partial \log L}{\partial \theta} \right]^T. \]

The \(\log L \) in (17) can be maximized by solving the nonlinear likelihood equations obtained by differentiating (17). The components of the score vector are given by
\[U_{\lambda} = \frac{\partial \log L}{\partial \lambda} = \frac{n}{\lambda} + \sum_{i=1}^{n} \log(1 - m_i s_i) - 2 \sum_{i=1}^{n} \frac{(1 - m_i s_i)^\lambda \log(1 - m_i s_i)}{1 - (1 - m_i s_i)\lambda}, \]

\[U_{\alpha} = \frac{\partial \log L}{\partial \alpha} = \frac{n}{\alpha} - \sum_{i=1}^{n} y_i + (\lambda - 1) \sum_{i=1}^{n} \frac{s_i \left[a m_i \frac{y_i}{1 - m_i s_i} \right]}{1 - (1 - m_i s_i)^{\lambda - 1}} \]

\[-2 \lambda \sum_{i=1}^{n} \frac{s_i [1 - m_i s_i]^{1-\lambda}}{1 + (1 - m_i s_i)^{\lambda}} \]

\[U_{\theta} = \frac{\partial \log L}{\partial \theta} = \frac{n}{\alpha - \beta} - 2(\lambda - 1) \sum_{i=1}^{n} \frac{y_i}{\left(\beta - \alpha \right)^2} + (\lambda - 1) \sum_{i=1}^{n} \frac{\alpha \log(y_i) y_i e^{-\alpha y_i} - y_i^\beta}{1 - e^{-\alpha y_i} y_i^\beta} \]

\[-4 \lambda \sum_{i=1}^{n} \frac{\alpha y_i}{\left(\beta - \alpha \right)^2} \left[1 - m_i s_i \right]^{\lambda - 1} \]

\[\left[1 - e^{-\alpha y_i} y_i^\beta \right] \]

\[\lambda \left[1 - m_i s_i \right] \]

\[+ \left(\lambda - 1 \right) \sum_{i=1}^{n} \frac{\alpha \log(y_i) y_i e^{-\alpha y_i} - y_i^\beta}{1 - e^{-\alpha y_i} y_i^\beta} \]

\[-4 \lambda \sum_{i=1}^{n} \frac{\alpha y_i}{\left(\beta - \alpha \right)^2} \left[1 - m_i s_i \right]^{\lambda - 1} \]

6. Simulation

The “inverse transform algorithm” is used to generate random data from the EBE distribution. We generated samples of sizes \(n = 50, 100, 200, 500 \) and 1000, and the simulations were repeated \(N = 1000 \) times from the EBE model for some parameter values. Tables 2 and 3 give the mean square errors (MSEs) and the biases, respectively. The average values of estimates (AVs), estimated average length (EAL) and the coverage probability (CP) are listed in Tables 4–6, respectively. From Table 2, we note that the AVs of estimates approach the initial values as \(n \to \infty \), the MSEs for each parameter decrease to zero as \(n \to \infty \), and the coverage lengths for each parameter decrease to zero as \(n \to \infty \). From Table 3, we note that the biases for each parameter are generally positive and decrease to zero as \(n \to \infty \), and the coverage probabilities for each parameter approach the nominal level as \(n \to \infty \).

Table 2. Mean square errors (MSEs) for \(n = 50, 100, 200, 500 \) and 1000.

\(n \)	\(\lambda \)	\(\alpha \)	\(\theta \)	MSEs
50	0.5	0.5	0.5	0.11892, 0.23647, 0.06169
100	0.08304, 0.17158, 0.04192			
200	0.05794, 0.12764, 0.02949			
500	0.03636, 0.0876, 0.01866			
1000	0.02595, 0.06105, 0.01325			
50	0.7	0.7	0.7	0.08813, 0.17030, 0.08578
100	0.06136, 0.11879, 0.05894			
200	0.04320, 0.08131, 0.04139			
500	0.02764, 0.04874, 0.02616			
1000	0.01964, 0.03346, 0.01856			
50	0.7	0.3	2.7	0.06866, 0.12976, 0.18044
100	0.04885, 0.08743, 0.12657			
200	0.03427, 0.08270, 0.08909			
500	0.02180, 0.03709, 0.05538			
1000	0.01550, 0.02515, 0.03903			
50	0.7	0.3	2.7	0.07211, 0.13178, 0.29484
100	0.05105, 0.09550, 0.20625			
200	0.03537, 0.07094, 0.14854			
500	0.02227, 0.04645, 0.09524			
1000	0.01545, 0.03457, 0.06935			
50	0.5	0.5	0.5	0.11892, 0.23647, 0.06169
100	0.08304, 0.17158, 0.04192			
200	0.05794, 0.12764, 0.02949			
500	0.03636, 0.0876, 0.01866			
1000	0.02595, 0.06105, 0.01325			
Table 3. Biases for $n = 50, 100, 200, 500$ and 1000.

n	λ	α	θ	MSEs
50	0.5	0.5	0.5	0.18356, 0.31326, 0.06034
100	0.14037	0.29166	0.02491	
200	0.10718	0.27047	0.00952	
500	0.07427	0.22547	0.00392	
1000	0.05854	0.18297	0.00431	
50	0.5	0.7	0.7	0.13103, 0.32039, 0.16804
100	0.09571	0.29243	0.12804	
200	0.07617	0.25160	0.11495	
500	0.05278	0.17909	0.10177	
1000	0.03559	0.11151	0.09647	
50	0.6	0.7	1.5	0.11728, 0.32816, 1.12796
100	0.09252	0.29394	1.03834	
200	0.07715	0.27919	0.98811	
500	0.05480	0.21775	0.91763	
1000	0.03922	0.17326	0.88793	
50	0.7	0.3	2.7	0.16086, 0.36788, 2.90744
100	0.13715	0.35482	2.70484	
200	0.10661	0.32348	2.66995	
500	0.08491	0.27404	2.64048	
1000	0.07009	0.22686	2.72810	
50	0.5	0.5	0.5	0.18356, 0.31326, 0.06034
100	0.14037	0.29166	0.02491	
200	0.10718	0.27047	0.00952	
500	0.07427	0.22547	0.00392	
1000	0.05854	0.18297	0.00431	

Table 4. Average values (AVs) for $n = 50, 100, 200, 500$ and 1000.

n	λ	α	θ	MSEs
50	0.5	0.5	0.5	0.55465, 0.50616, 0.52281
100	0.53818	0.51109	0.50207	
200	0.52237	0.48520	0.49930	
500	0.50325	0.47041	0.49911	
1000	0.49813	0.46471	0.50127	
50	0.5	0.7	0.7	0.50550, 0.58874, 0.72531
100	0.49190	0.60765	0.70470	
200	0.48878	0.63157	0.69991	
500	0.49378	0.66331	0.69945	
1000	0.49624	0.67996	0.70161	
50	0.6	0.7	1.5	0.57701, 0.58491, 1.52331
100	0.58530	0.61671	1.51090	
200	0.57826	0.61435	1.50499	
500	0.58310	0.65758	1.47994	
1000	0.58988	0.68285	1.47548	
50	0.7	0.3	2.7	0.74776, 0.45747, 2.49293
100	0.74369	0.44427	2.46686	
200	0.72548	0.39578	2.51294	
500	0.71662	0.36901	2.54710	
1000	0.70309	0.31662	2.62308	
50	0.5	0.5	0.5	0.55465, 0.50616, 0.52281
100	0.53818	0.51109	0.50207	
200	0.52237	0.48520	0.49930	
500	0.50325	0.47041	0.49911	
1000	0.49813	0.46471	0.50127	
Table 5. Estimated average lengths (EALs) for $n = 50, 100, 200, 500$ and 1000.

n	λ	α	θ	MSEs
50	0.5	0.5	0.5	0.46616, 0.92696, 0.24180
100	0.32550	0.67258	0.16431	
200	0.22713	0.50034	0.11560	
500	0.14251	0.33226	0.07514	
1000	0.10172	0.23930	0.05195	
50	0.5	0.7	0.7	0.34545, 0.66757, 0.33625
100	0.24054	0.46565	0.23104	
200	0.16935	0.31873	0.16226	
500	0.10834	0.19105	0.10255	
1000	0.07700	0.13116	0.07274	
50	0.6	0.7	1.5	0.26914, 0.50864, 0.70733
100	0.19150	0.34271	0.49614	
200	0.13434	0.24579	0.34924	
500	0.08545	0.14539	0.21710	
1000	0.06077	0.09860	0.15300	
50	0.7	0.3	2.7	0.28268, 0.51657, 1.15574
100	0.20011	0.37434	0.80847	
200	0.13865	0.27809	0.58226	
500	0.08730	0.18209	0.37332	
1000	0.06055	0.13552	0.27184	

Table 6. Coverage probabilities (CPs) for $n = 50, 100, 200, 500$ and 1000.

n	λ	α	θ	MSEs
50	0.5	0.5	0.5	0.82686, 0.71564, 0.79176
100	0.76642	0.65414	0.75986	
200	0.69834	0.57143	0.79418	
500	0.66517	0.51762	0.82334	
1000	0.57302	0.51648	0.81022	
50	0.5	0.7	0.7	0.81610, 0.73529, 0.76823
100	0.78664	0.58513	0.72796	
200	0.73695	0.52505	0.62213	
500	0.72222	0.47172	0.60909	
1000	0.74675	0.49449	0.61361	
50	0.5	0.7	1.5	0.63454, 0.50188, 0.00000
100	0.51110	0.28606	0.00000	
200	0.42228	0.23378	0.00000	
500	0.31797	0.22104	0.00000	
1000	0.29115	0.20381	0.00000	
50	0.7	0.3	2.7	0.082686, 0.71564, 0.79176
100	0.76642	0.65414	0.75986	
200	0.69834	0.57143	0.79418	
500	0.66517	0.51762	0.82334	
1000	0.57302	0.51648	0.81022	
7. Modeling Stress-Rupture Life of Kevlar 49/Epoxy Strands Data

In this section, we illustrate the performance of the EBE distribution as compared to some alternative distributions using a real data application. The goodness-of-fit (GOF) statistics for this distribution are compared with other competitive distributions, and the maximum likelihood estimations (MLEs) of the distribution parameters are determined numerically. We compare the fits of the EBE distribution with the Burr type X (Burr X) distribution, Burr type XII (Burr XII) distribution, beta log logistic Weibull distribution (BLLW), beta Weibull log logistic (BWLL) and beta log logistic, beta linear failure rate geometric (ELFRG), exponentiated linear failure rate geometric (ELFRG), beta Rayleigh (BR), and beta Weibull geometric distributions (BWG) (see [23]). In order to compare the distributions, we consider the measures of GOF including the Akaike Information Criterion (C_1), Bayesian Information Criterion (C_2), Consistent Akaike Information Criterion (C_4) and Hannan–Quinn Information Criterion (C_3) statistics.

The following real data set represents the stress-rupture life of Kevlar 49/epoxy strands that are subjected to constant sustained pressure at the 90% stress level until all have failed that were provided by [24], given as 0.01, 0.08, 0.09, 0.09, 0.10, 0.02, 0.02, 0.03, 0.03, 0.05, 0.43, 0.52, 0.54, 0.56, 0.60, 0.60, 1.00, 0.06, 1.34, 0.10, 1.45, 1.50, 1.51, 0.63, 0.72, 0.99, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 4.20, 4.69, 7.89, 0.07, 0.07, 0.36, 0.38, 0.40, 0.65, 0.67, 0.68, 0.79, 0.80, 0.80, 0.83, 0.72, 0.42, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 1.01, 1.02, 1.03, 0.72, 0.73, 0.79, 0.85, 0.90, 0.92, 0.95, 1.05, 0.11, 0.24, 0.29, 0.34, 0.35, 1.10, 1.10, 1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 0.11, 0.01, 0.02, 1.40, 1.43 and 1.33. Table 7 gives the MLE for all the models corresponds to the failure times data set. Table 8 shows the statistics for the failure times of the Kevlar data set. Figure 5 gives the kernel density estimation and box plot for exploring the symmetry of the stress-rupture life data. Figure 6 provides the fitted PDF in the left panel and fitted CDF in the right panel.

Table 7. The MLE for all the models corresponds to the failure times data set.

Model	Estimates
Burr X	a 0.462891
Burr XII	a 1.14571
ELLG	a 1.211659
BLLG	a 0.581650
EBE	α θ λ
BLLGW	α β
BWLLG	a 0.70773

Table 8. Statistics for failure times of Kevlar data set.

Model	−2 logL	C_1	C_2	C_3	C_4
EBE	143.3996	149.4100	152.3784	152.3784	149.6087
Burr XII	145.4801	149.4801	154.4119	152.4660	149.6229
BLLGW	204.0771	214.0771	227.1527	219.3705	214.7087
BWLLG	204.8205	214.8205	227.8961	220.1139	215.4521
Burr X	285.8730	287.8730	290.3389	288.8659	287.9200
ELLG	587.6830	591.6830	596.9133	593.8004	591.8055
BLLG	462.1078	468.1078	175.9531	471.2838	468.3552
8. Conclusions

A new three-parameter lifetime distribution is proposed and studied. A simple-type Copula-based construction is presented to derive many bivariate- and multivariate-type distributions. We investigated some of mathematical properties such as the ordinary moments, moment generating function and conditional moment. Bonferroni and Lorenz curves and mean deviations are discussed. Residual life and reversed residual functions are also obtained. Some bivariate- and multivariate-type extensions are proposed. The maximum likelihood method is used to estimate the model parameters. Finally, we illustrate the importance of the new model by studying real data applications to show the flexibility and potentiality of the new model.
Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors acknowledge the College of Science at Al Imam Mohammad Ibn Saud Islamic University, Saudi Arabia, for supporting this project.

Conflicts of Interest: The authors declare no conflict of interest regarding the publication of this paper.

References

1. Shaked, M.; Shanthikumar, J. *Stochastic Orders*; Springer: New York, NY, USA, 2007.
2. Bakouch, H.S.; Jazi, M.A.; Nadarajah, S.; Dolati, A.; Roozegar, R. A lifetime model with increasing failure rate. *Appl. Math. Model.* 2014, 38, 5392–5406. [CrossRef]
3. Asgharzadeh, A.; Bakouch, H.S.; Habibi, M. A generalized binomial exponential 2 distribution: Modeling and applications to hydrologic events. *J. Appl. Stat.* 2016, 44, 2368–2387. [CrossRef]
4. Soliman, A.H.; Elgarhy, M.A.E.; Shakil, M. Type II Half Logistic Family of Distributions with Applications. *Pak. J. Stat. Oper. Res.* 2017, 13, 245. [CrossRef]
5. Pougaza, D.B.; Mohammad-Djafari, A. Maximum entropies copulas. In *AIP Conference Proceedings*; American Institute of Physics: College Park, MD, USA, 2011; Volume 1305, pp. 329–336.
6. Morgenstern, D. Einfache beispiele zweidimensionaler verteilungen. *Mitteilungsblatt Math. Stat.* 1956, 8, 234–235.
7. Farlie, D.J.G. The performance of some correlation coefficients for a general bivariate distribution. *Biometrika* 1960, 47, 307–323. [CrossRef]
8. Johnson, N.L.; Kotz, S. On some generalized Farlie–Gumbel–Morgenstern distributions. *Commun. Stat. Theory* 1975, 4, 415–427. [CrossRef]
9. Johnson, N.L.; Kotz, S. On some generalized Farlie-Gumbel-Morgenstern distributions-II: Regression, correlation and further generalizations. *Commun. Stat. Theory* 1977, 6, 485–496. [CrossRef]
10. Gumbel, E.J. Bivariate logistic distributions. *J. Am. Stat. Assoc.* 1961, 56, 335–349. [CrossRef]
11. Gumbel, E.J. Bivariate exponential distributions. *J. Am. Stat. Assoc.* 1960, 55, 698–707. [CrossRef]
12. Gupta, R.C.; Gupta, R.D. Proportional reversed hazard rate model and its applications. *J. Stat. Plan Inference* 2007, 137, 3525–3536. [CrossRef]
13. Alizadeh, M.; Ghosh, I.; Yousof, H.M.; Rasekhi, M.; Hamedani, G.G. The generalized odd generalized exponential family of distributions: Properties, characterizations and applications. *J. Data Sci.* 2017, 15, 443–466.
14. Alizadeh, M.; Rasekhi, M.; Yousof, H.M.; Hamedani, G.G. The transmuted Weibull G family of distributions. *Hacet. J. Math. Stat.* 2018, 47, 1–20. [CrossRef]
15. Al-Batnai, A.A.; Elbatal, I.; Yousof, H.M. A new flexible three-parameter model: Properties, Clayton Copula, and modeling real data. *Symmetry* 2020, 12, 440. [CrossRef]
16. Al-Batnai, A.A.; Elbatal, I.; Yousof, H.M. A new three parameter Fréchet model with mathematical properties and applications. *J. Taibah Univ. Sci.* 2020, 14, 265–278. [CrossRef]
17. Mansour, M.; Yousof, H.M.; Shehata, W.A.; Ibrahim, M. A new two parameter Burr XII distribution: Properties, Copula, different estimation methods and modeling acute bone cancer data. *J. Nonlinear Sci. Appl.* 2020, 13, 223–238. [CrossRef]
18. Yadav, A.S.; Goual, H.; Alotaibi, R.M.; Ali, M.M.; Yousof, H.M. Validation of the Topp-Leone-Lomax model via a modified Nikulin-Rao-Robson goodness-of-fit test with different methods of estimation. *Symmetry* 2020, 12, 57. [CrossRef]
19. Yousof, H.M.; Butt, N.S.; Alotaibi, R.; Rezk, H.; Alomani, A.G.; Ibrahim, M. A new compound Fréchet distribution for modeling breaking stress and strengths data. *Pak. J. Stat. Oper. Res.* 2019, 15, 1017–1035. [CrossRef]
20. Yousof, H.M.; Mansoor, M.M.; Alizadeh, M.; Afify, A.Z.; Ghosh, I.; Afify, A.Z. The Weibull-G Poisson family for analyzing lifetime data. *Pak. J. Stat. Oper. Res.* 2020, 16, 131–148. [CrossRef]
21. Ibrahim, M.; Yadaw, A.S.; Yousof, A.S.; Goual, H.; Hamedani, G.G. A new extension of Lindley distribution: Modified validation test, characterizations and different methods of estimation. Commun. Stat. Appl. Methods 2019, 26, 473–495. [CrossRef]

22. Goual, H.; Yousof, H.M.; Ali, M.M. Validation of the odd Lindley exponentiated exponential by a modified goodness of fit test with applications to censored and complete data. Pak. J. Stat. Oper. Res. 2019, 15, 745–771. [CrossRef]

23. Bidram, H.; Behboodian, J.; Towhidi, M. The Beta Weibull-Geometric Distribution. J. Stat. Comput. Simul. 2013, 83, 52–67. [CrossRef]

24. Cooray, K.; Ananda, M. A Generalization of the Half-Normal Distribution with Application to Lifetime Data. Commun. Stat. Theory Methods 2008, 37, 1323–1337. [CrossRef]

25. Korkmaz, M.C.; Yousof, H.M.; Ali, M.M. Some theoretical and computational aspects of the odd Lindley Fréchet distribution. İstatistikçiler Dergisi: İstatistik ve Aktüerya 2017, 10, 129–140.

26. Korkmaz, M.C.; Yousof, H.M. The one-parameter odd Lindley exponential model: Mathematical properties and applications. Stoch. Qual. Control 2017, 32, 25–35. [CrossRef]

27. Korkmaz, M.C.; Alizadeh, M.; Yousof, H.M.; Butt, N.S. The generalized odd Weibull generated family of distributions: Statistical properties and applications. Pak. J. Stat. Oper. Res. 2018, 14, 541–556. [CrossRef]

28. Korkmaz, M.C.; Yousof, H.M.; Rasekhi, M.; Hamedani, G.G. The Odd Lindley Burr XII Model: Bayesian Analysis, Classical Inference and Characterizations. J. Data Sci. 2018, 16, 327–353.

29. Korkmaz, M.C.; Yousof, H.M.; Hamedani, G.G. The exponential Lindley odd log-logistic-G family: Properties, characterizations and applications. J. Stat. Theory Appl. 2018, 17, 554–571. [CrossRef]

30. Hamedani, G.G.; Yousof, M.H.; Rasekhi, M.; Alizadeh, M.; Najibi, S.M. Type I general exponential class of distributions. Pak. J. Stat. Oper. Res. 2018, 14, 39–55. [CrossRef]

31. Hamedani, G.G.; Altun, E.; Korkmaz, M.C.; Yousof, H.M.; Butt, N.S. A new extended G family of continuous distributions with mathematical properties, characterizations and regression modeling. Pak. J. Stat. Oper. Res. 2018, 14, 737–758. [CrossRef]

32. Yousof, H.M.; Korkmaz, Ç.M.; Hamedani, G.G. The odd Lindley Nadarajah-Haghighi distribution. J. Math. Comput. Sci. 2017, 7, 864–882.

33. Hamedani, G.G.; Rasekhi, M.; Najibi, S.M.; Yousof, H.M.; Alizadeh, M. Type II general exponential class of distributions. Pak. J. Stat. Oper. Res. 2019, 15, 503–523. [CrossRef]

34. Sen, S.; Korkmaz, M.C.; Yousof, H.M. The quasi xgamma-Poisson distribution. Theory Appl. Stat. Inf. 2018, 18, 65–76.

35. Mansour, M.; Rasekhi, M.; Ibrahim, M.; Aidi, K.; Yousof, H.M.; Elrazik, E.A. A New Parametric Life Distribution with Modified Bagdonavičius–Nikulin Goodness-of-Fit Test for Censored Validation, Properties, Applications, and Different Estimation Methods. Entropy 2020, 22, 592. [CrossRef]

36. Ibrahim, M.; Yousof, H.M. A new generalized Lomax model: Statistical properties and applications. J. Stat. Sci. 2020, 18, 190–217.

37. Khalil, M.G.; Hamedani, G.G.; Yousof, H.M. The Burr X exponentiated Weibull model: Characterizations, mathematical properties and applications to failure and survival times data. Pak. J. Stat. Oper. Res. 2019, XV, 141–160. [CrossRef]

38. Korkmaz, M.C.; Altun, E.; Yousof, H.M.; Hamedani, G.G. The odd power Lindley generator of probability distributions: Properties, characterizations and regression modeling. Int. J. Stat. Probab. 2019, 8, 70–89. [CrossRef]

39. Nascimento, A.D.C.; Silva, K.F.; Cordeiro, G.M.; Alizadeh, M.; Yousof, H.M. The odd Nadarajah-Haghighi family of distributions: Properties and applications. Stud. Scientiarum Math. Hung. 2019, 56, 1–26. [CrossRef]

40. Yousof, H.M.; Majumder, M.; Jahanshahi, S.M.A.; Ali, M.M.; Hamedani, G.G. A new Weibull class of distributions: Theory, characterizations and applications. J. Stat. Res. Iran 2018, 15, 45–83. [CrossRef]

41. Korkmaz, M.C.; Yousof, H.M.; Hamedani, G.G.; Ali, M.M. The Marshall–Olkin generalized G Poisson family of distributions. Pak. J. Stat. 2018, 34, 251–267.

42. Ibrahim, M. The generalized odd Log-logistic Nadarajah Haghighi distribution: Statistical properties and different methods of estimation. J. Appl. Prob. Stat. 2020, 15, 61–84.

43. Aryal, G.R.; Ortega, E.M.; Hamedani, G.G.; Yousof, H.M. The Topp Leone generated Weibull distribution: Regression model, characterizations and applications. Int. J. Stat. Probab. 2017, 6, 126–141. [CrossRef]
44. Aryal, G.R.; Yousof, H.M. The exponentiated generalized-G Poisson family of distributions. *Econ. Qual. Control* **2017**, *32*, 1–17. [CrossRef]

45. Goual, H.; Yousof, H.M. Validation of Burr XII inverse Rayleigh model via a modified chi-squared goodness-of-fit test. *J. Appl. Stat.* **2019**, *47*, 1–32.

Sample Availability: The data used to support the findings in this study are included within the paper.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).