High prevalence of Pfcr7 76T and Pfmdr1 N86 genotypes in malaria infected patients attending health facilities in East Shewa zone, Oromia Regional State, Ethiopia

Jifar Hassen1*, Gezahegn Solomon Alemayehu2, Hunduma Dinka1 and Lemu Golassa3

Abstract

Background: Plasmodium falciparum resistance to series of anti-malarial drugs is a major challenge in efforts to control and/or eliminate malaria globally. In 1998, following the widespread of chloroquine (CQ) resistant P. falciparum, Ethiopia switched from CQ to sulfadoxine–pyrimethamine (SP) and subsequently in 2004 from SP to artemether–lumefantrine (AL) for the treatment of uncomplicated falciparum malaria. Data on the prevalence of CQ resistance markers after more than two decades of its removal is important to map the selection pressure behind the targets codons of interest. The present study was conducted to determine the prevalence of mutations in Pfcrt K76T and Pfmdr1 N86Y codons among malaria-infected patients from Adama, Olenchiti and Metehara sites of East Shewa zone, Oromia Regional State, Ethiopia.

Methods: Finger-prick whole blood samples were collected on 3MM Whatman® filter papers from a total of 121 microscopically confirmed P. falciparum infected patients. Extraction of parasite DNA was done by Chelex-100 method from dried blood spot (DBS). Genomic DNA template was used to amplify Pfcrt K76T and Pfmdr1 N86Y codons by nested PCR. Nested PCR products were subjected to Arthrobacter protophormiae-I (APoI) restriction enzyme digestion to determine mutations at codons 76 and 86 of Pfcrt and Pfmdr1 genes, respectively.

Results: Of 83 P. falciparum isolates successfully genotyped for Pfcrt K76T, 91.6% carried the mutant genotypes (76T). The prevalence of Pfcrt 76T was 95.7%, 92.5% and 84.5% in Adama, Metehara and Olenchiti, respectively. The prevalence of Pfcrt 76T mutations in three of the study sites showed no statistical significance difference (χ² = 1.895; P = 0.388). On the other hand, of the 80 P. falciparum samples successfully amplified for Pfmdr1, all carried the wild-type genotypes (Pfmdr1 N86).

Conclusion: Although CQ officially has been ceased for the treatment of falciparum malaria for more than two decades in Ethiopia, greater proportions of P. falciparum clinical isolates circulating in the study areas carry the mutant 76T genotypes indicating the presence of indirect CQ pressure in the country. However, the return of Pfmdr1 N86 wild-type allele may be favoured by the use of AL for the treatment of uncomplicated falciparum malaria.

Keywords: Plasmodium falciparum, Anti-malarial drug resistance, Pfcrt, Pfmdr1, Ethiopia

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Health Organization (WHO) African Region alone contributed to 95% and 96% of the estimated global malaria cases and deaths, respectively. Children under 5 years of age are the most risk group, accounting for 77% of all malaria deaths globally in 2020. *Plasmodium falciparum* is the major causes of disease and deaths in this region [1].

Plasmodium falciparum developed resistance to every class of anti-malarial drugs to date [2]. Chloroquine resistance (CQR) has been associated with mutations in *P. falciparum* chloroquine resistance transporter (*PfCRT*) gene and in *P. falciparum* multidrug resistance 1 (*Pfmdr1*) gene; however the former is a strong predictor of CQR [3, 4]. In vitro and in vivo studies indicated that substitutions of charged lysine (K) amino acid by uncharged amino acid threonine (T) at amino acid position 76 (K76T) is a primary marker of CQR [3, 4]. Other mutations at amino acid position 72, 74, 75, 97, 152, 163, 220, 271, 326, 356 and 371 have been also identified in *CQR Pfalciparum* in different geographical regions [4, 5]. CQR strains of *P. falciparum* originating from CVMNK (CQ sensitive haplotype) are also characterized by CVIET (mostly in Africa) and SVMNT (Asia and South America) haplotypes spanning codons 72–76 of the *PfCRT* gene [6, 7].

Five point mutations in *Pfmdr1* gene at positions 754, 1049, 3598, 3622 and 4234 result in amino acid changes at codons 86 (N86Y), 184 (Y184F), 1034 (S1034C), 1042 (N1042D) and 1246 (D1246Y), respectively [8]. These mutations have been implicated in increase resistance to CQ, amodiaquine, mefloquine (MQ), quinine (QN) and halofantrine [9]. Out of these mutations N86Y appears to be the most important as it alters the transport activity of the protein and has been implicated as high resistance to CQ [10]. Meanwhile this mutation increases susceptibility to a number of anti-malarial drugs including lumeфанtrine (LUM), MQ and dihydroartemisinin [9]. Strong linkage disequilibrium was observed between *Pfmdr1* N86Y and *PfCRT* K76T alleles in CQR isolates of *P. falciparum* isolates [8]. Amplification of the *Pfmdr1* gene also leads to decreased drug sensitivity to QN, LUM and artemisinin [11].

In Ethiopia, CQ treatment failure for *P. falciparum* and *P. vivax* was reported in 1996 [12]. Then, due to widespread of CQ resistant *P. falciparum*, the country changed its treatment policy from CQ to sulfadoxine–pyrimethamine (SP) in 1998 which in turn was replaced by artemether–lumeфанtrine (AL) for the treatment of uncomplicated falciparum malaria in 2004; however CQ is retained and still continued to be used as a first-line treatment for vivax malaria [6, 13]. Molecular studies from Ethiopia have showed high prevalence of *PfCRT* K76T mutation that ranged from 41.5 to 100% [6, 13, 14]. However, only one study has showed the return of CQ sensitive *P. falciparum* with 84% of *PfCRT* K76T sensitive alleles [15]. On the other hand, in Ethiopia, AL pressure might result in directional selection of *Pfmdr1* variants N86, 184 F and D1246 due to LUM partner drug pressure [6, 13–15]. Therefore, it is important to continue monitoring the prevalence of these markers (*PfCRT* and *Pfmdr1*) that confer resistance to CQ in the hope of possible re-emergence of CQ sensitive *P. falciparum* as previously observed in Malawi [16]. Due to co-existence of *P. falciparum* and *P. vivax*; mixed infections of both parasites are common in Ethiopia [17] that favor the presence of indirect but sustained CQ drug pressure. Therefore, the aim of the present study was to investigate the prevalence of genotypic resistance markers for CQ (*PfCRT* K76T and *Pfmdr1* N86Y) in *P. falciparum* isolates from East Shewa zone, Oromia Regional State, Ethiopia.

Methods

Description of study sites

Cross-sectional health facility based study was conducted at Adama (8° 32’ 31” N and 39° 16’ 33” E), Olenchiti (8° 38’ 16” N and 39° 24’ 19” E) and Metehara (8° 86’ 95” N and 39° 92’ 02” E) health facilities of East Shewa zone, Oromia Regional State, Ethiopia. Adama the capital town of East Shewa zone is found at around 99 km from Addis Ababa, the capital city of Ethiopia. Olenchiti and Metehara towns are found to the East of Adama town at about 25 and 91 km, respectively (Fig. 1). The current study was conducted at purposively selected health facilities due to their physical accessibility to Adama malaria research and diagnostic centre to conduct membrane-feeding assay for another experiment.

The areas are characterized by low altitude (<2000 m above sea level), heavy rainfall pattern from June to August followed by major transmission of malaria from September to December and short rains of February and March contributing for minor malaria transmission from April to May [18]. Geographical location of the study areas in Great Rift Valley, at low altitude, with rainfall pattern and average annual temperature of 16–32 °C make the areas favorable environments for breeding of *Anopheles* mosquitoes, of which *Anopheles arabiensis* is the major malaria vector [19]. Both *P. falciparum* and *P. vivax* co-exist in the area as it is common in different parts of the country.

Blood sample collections and processing

Blood samples from one hundred twenty-one microscopically confirmed *P. falciparum* infected patients were collected between October, 2019 and September, 2021. Inclusion criteria include patients who presented with uncomplicated falciparum malaria and history of fever onset since 24 h of clinical examination. Blood samples
were collected after obtaining consents from *P. falciparum* infected patients or their parents or legal guardians in case of children less than 18 years of age. After consent was obtained patients sex, age and residency were recorded into log-book. Finger-prick blood samples were collected onto microscope slides and Whatman-3MM® filter papers by experienced laboratory technologists. Filter papers were allowed to air dry in horizontal position at room temperature for at least 4 h away from dust, insects and direct sun light. Each filter paper was labelled with patient code and date of collection and kept into zip-locked plastic bags with silica gels to protect the specimens from moisture. These zip-locked plastic bags then packed in a larger plastic bags and stored in refrigerator at 2–8 °C for short period in the field and further stored in deep freezer at −20 °C at Aklilu Lemma...
Institute of Pathobiology for long period until DNA analysis for molecular study.

Microscopic diagnosis and parasite counts

Microscopy diagnosis of both Giemsa-stained thick and thin blood films was conducted according to WHO protocol [20]. At each health facilities slides were read by two experienced laboratory technologists to confirm species identification for *P. falciparum*. In addition slides re-examinations and parasite counts were performed by two WHO certified malaria microscopists at Adama malaria research and diagnostic centre. Further, asexual stages of the parasite per micro-litre (µl) was determined by counting the number of parasites against 200 white blood cells (WBCs) on a thick blood film assuming a total of standard WBCs count of 8000/µl of blood. Density of the parasite was determined by using the following formula [21]:

\[
\text{Parasite density/µl} = \frac{\text{No. of asexual parasites counted} \times 8 \times 10^3 \text{WBCs/µl}}{200 \text{WBCs}}
\]

For comparison with *Pfcrt* K76T wild and mutant alleles, parasitaemia was categorized as low (< 1000 parasites/µl of blood), moderate (1000–9999 parasites/µl of blood) and high (≥10,000 parasites/µl of blood) [22].

Molecular analysis

DNA extraction

Plasmodium falciparum genomic DNA was extracted from dried blood spot (DBS) by Chelex extraction method as described elsewhere [19]. Extracted DNA was transferred into 0.5 ml tubes and stored at −20 °C until further use.

Amplification of the Pfcrt gene

A fragment from *Pfcrt* gene encompassing 76th codon was successively amplified for 83 DNA samples. Nested polymerase chain reaction (PCR) protocol adapted and modified from the work of Mulenga et al. [23]. Briefly, in primary PCR, 20.0 µl reaction mixture consisting of 11.6 µl nuclease free water, 0.2 µl of each forward and reverse primers, 4.0 µl 5X FIREPol® Master Mix (Solis BioDyne) and 1.0 µl of DNA template was used. PCR was conducted in a thermo cycler (VWR) Schmidt, Germany. Amplification was performed under the following conditions: Hot start denaturations at 94°C for 3 min, followed by 30 cycles of 94°C for 30 s, 56 °C for 30 s and 65 °C for 1 min and final elongation at 65 °C for 3 min. Then, the primary PCR was followed with nested PCR. Twenty microlitre reaction mixture consisting of 14.6 µl nuclease free water, 0.2 µl of each forward and reverse primers (Additional file 1), 4.0 µl 5X FIREPol Master Mix (Solis BioDyne) and 1.0 µl of DNA template was used. The nested PCR was conducted as follows: Hot start denaturation at 94°C for 5 min, followed by 40 cycles of 94°C for 30 s, 52°C for 30 s and 65°C for 1 min and lastly, final elongation at 65°C for 3 min.

Amplification of Pfmdr1 gene

Pfmdr1 gene was amplified to identify mutation at codon N86Y according to the protocol described by Fontecha et al. [24] with certain modifications. Briefly, both primary and nested PCRs were conducted in a total reaction volume of 18.0 µl consisting of 11.4 µl ddH2O, 1.0 µl of each forward and reverse primers (Additional file 1), 3.6 µl 5X FIREPol Master Mix and 1.0 µl DNA template. In primary PCR, the target gene was amplified starting with hot start denaturation at 95 °C for 3 min, followed by 20 cycles of 95 °C for 30 s, 52 °C for 30 s and 72 °C for 1 min and lastly, final extension at 60 °C for 5 min. Nested PCR amplification was conducted beginning with hot start denaturation at 95 °C for 3 min, followed by 25 cycles of 95 °C for 30 s, 54 °C for 30 s, 72 °C for 60 s and final extension at 72 °C for 5 min.

For both *Pfcrt* K76T and *Pfmdr1* N86Y codons, PCR conditions were conducted along with nuclease free water (negative control) instead of parasite DNA, 3D7 (CQ sensitive) and K1 (MRA-159G, CQ resistant) clones of *P. falciparum* genomic DNA (positive controls). The two strains were provided by Ethiopian Public Health Institute and Aklilu Lemma Institute of Pathobiology, respectively. Five microlitre of nested PCR products were resolved in 2.0% and 2.5% agarose, type I gel (Sigma Aldrich, USA) stained with ethidium bromide (EtBr) respectively, for *Pfcrt* K76T and *Pfmdr1* N86Y codons. Electrophoresis conditions were conducted at 100 volts for 45 min in a Thermo Scientific apparatus filled with 0.5X TBE buffer solution (BIONEER Corp, Korea). Then, DNA bands were observed through ultra-violet (UV) trans-illuminator (USA). The band sizes were estimated by relating with 100 bp DNA ladder marker (Bionexus). The remaining 15 µl and 13 µl nested PCR products of *Pfcrt* K76T and *Pfmdr1* N86Y, respectively were stored at 2–8 °C until
used for genotyping by restriction fragment length polymorphism (RFLP).

Genotyping of *Pfcrt* K76T and *Pfmdr1* N86Y codons by RFLP of PCR products

Following amplification of the two codons, genotyping by PCR-RFLP was made by digesting the fragments with APoI restriction enzyme (New England Biolabs). Nested PCR products were used without purification procedures as this will represent common situations in malaria settings [25]. Restriction digestion was conducted according to the manufacturer’s protocol. Restriction enzyme digestion was done in 20.0 µl of reaction mixture containing 12.5 µl nuclease free water, 5U ApoI restriction enzyme, 2.0 µl NEBuffer r3.1 and 5 µl nested PCR products. Known positive controls (*Pf*3D7, wild-type and K1, mutant type) and uncut DNA samples were included in the reactions. The enzyme cuts *Pfcrt* 76K and *Pfmdr1* N86 but not *Pfcrt* 76T and *Pfmdr1* 86Y alleles. Cleaved PCR products (bands) of *Pfcrt* K76T and *Pfmdr1* N86Y codons were then visualized with UV trans-illuminator after electrophoresis using 2.0% and 2.5% agarose gel, respectively.

Amplifications of merozoite surface protein-1 (msp-1) gene

For the subsets of samples that amplifications of *Pfcrt* and *Pfmdr1* genes were not successful, *msp-1* gene amplification was made. Thirty-eight samples which were microscopically detected as *P. falciparum* were not amplified particularly for *Pfcrt* K76T codon. In order to verify the presence of intact genes and quality of DNA for those samples, nested PCR targeting *msp-1* of polymorphic region (block-2) was performed as described elsewhere [19].

Statistical analysis

Data were first entered into Microsoft Office Excel ® 2007 (Microsoft Corporation). Comparisons of prevalence of 76T allele and parasite densities across study sites and associations of K76 and 76T alleles with parasite density were performed using Pearson’s Chi-square test of Statistical Package for Social Science (SPSS) (IBM Inc., Chicago, IL, USA) version 26. Fisher exact test was used to test correlation between *Pfcrt* 76T alleles and age groups. Statistical significance was set at a P-value < 0.05.

Results

Socio-demographic and parasitological characteristics of study population

Eighty-three and eighty samples were successfully analysed for *Pfcrt* K76T and *Pfmdr1* N86Y codons, respectively. The patients were aged between 1 and 68 years and the mean age was 23 ± 14.7 years (interquartile range: 13–30). Seventy-percent of the patients were adults older than 15 years of age. Among patients involved in the study 65% and 35% were males and females, respectively. Parasite density ranged from 79 to 157,538 asexual stages/µl of blood, with a parasitaemia geometric mean of 5366 or median 6579 asexual parasites/µl (Table 1).

The average parasites density at Adama, Olenchiti and Metehara sites were 10781.84/µl, 9870.95/µl and 15089.22/µl, respectively; however, the difference is not statistically significant ($\chi^2 = 162.75; P = 0.469$) (Fig. 2).

Table 1 Socio-demographic and parasitological characteristics of the patients recruited in the study (n = 83)

Variables	Values n (%)
Sex	
Males	54 (65)
Female	29 (35)
Age (Years) Mean (SD)	23 ± 14.7
Range (IQR)	1–68 (13–30)
0–4	7 (8.4)
5–14	18 (21.7)
15–30	37 (44.6)
> 30	21 (25.3)
Parasitaemia level	
Geometric mean parasite density (SD)	5366 (25532.89)
Range of parasite density (IQR)	79–157538 (1902.5–20700)
< 1000	15 (18.1)
1000–9999	38 (45.8)
> 10,000	30 (36.1)

IQR: interquartile range; SD: standard deviation
from health centres confirmed for *P. falciparum* isolates were allowed for PCR. Eighty three (68.6%) samples were successfully amplified for *Pfcr* K76T codon; 38 samples were not amplified for the codon. From those samples amplified for *Pfcr* K76T, 80 were found successfully amplified for *Pfmdr* N86Y codon.

Prevalence of *Pfcr* K76T and *Pfmdr* N86Y codons per study site

Digestion of the nested PCR products carrying K76 alleles of *Pfcr* gene with APoI restriction produced 100 and 45 bps, but remained uncut when 76T mutant allele presents (hence a single band of 145 bp) while digestion of N86 allele of *Pfmdr* gene with the same restriction enzyme resulted in 239 and 179 bp fragments (denoting wild-type) (Additional file 2).

Among 83 *P. falciparum* isolates successfully genotyped for *Pfcr* K76T, 91.6% and 8.4% mutant- type allele (76T) and wild-type alleles (K76), respectively were detected (Fig. 3). Accordingly, high prevalence of 76T allele was detected at Adama (95.7%), Olenchiti (84.2%) and Metehara (92.7%) study sites with no statistical significant difference (*P*-value = 0.388). On the other hand low prevalence of wild-type K76 alleles were detected at each health centres (Table 2). Most of them were detected in *P. falciparum* isolates with moderate parasitaemia level (1000–99,999 parasites/µl). Isolates with 76T allele had a higher mean parasite density of 15,420 parasites/µl while those with K76 allele had a mean parasite density of 7623.14 parasites/µl. However, no significant association was observed between parasite density and allele type (**χ**^2^ = 76.53; *P* = 0.620). Eighty nested PCR products of N86Y codons were analysed by restriction enzyme digestion produced N86 (100%) wild-type allele; no 86Y mutant type-allele was detected (Fig. 3).

Prevalence of *Pfcr* 76T allele by gender

Out of 83 isolates successfully genotyped for *Pfcr* K76T codon, 54 and 29 were males and females, respectively. Males were more represented and contributed for higher prevalence (64.5%) of mutant *Pfcr* 76T allele. However, the difference was not statistically significant (*P* = 0.712).

Prevalence of *Pfcr* 76T allele across different age groups per study site

Prevalence of *Pfcr* 76T allele was assessed among age groups at Adama, Olenchiti and Metehara sites. High prevalence of *Pfcr* 76T alleles was detected among 15–30 age groups with frequencies of 56.3%, 45.5% and 42.1% at Olenchiti, Adama and Metehara sites, respectively (Fig. 4). However, no statistical significance difference of 76T alleles were detected among age groups (Fisher’s exact test, *P* = 0.69).

Nested PCR amplification of *Pfmsp*1 for samples not amplified for *Pfcr* K76T and *Pfmdr* N86Y

Out of thirty-eight (38) samples which were not amplified especially for *Pfcr* K76T, 26 (68%) of them were amplified by nested PCR for *Pfmsp*1 allelic families of polymorphic region (Block-2). However, still amplification was unsuccessful for 12 of them.

Discussion

To date, the most important challenge to control and/or eliminate malaria globally is because of emerging and wide-spread anti-malarial drug resistance *Plasmodium* parasites. In this regard a development in drug resistance by *P. falciparum* to series of anti-malarial drugs is the most challenge in fighting malaria for several years [2]. The current study aimed to investigate the prevalence of *Pfcr* K76T and *Pfmdr* N86Y codons, in *P. falciparum* isolates collected from Adama, Olenchiti and Metehara sites of East Shewa zone, Oromia Regional State, Ethiopia.

In this study, high frequencies of *Pfcr* 76T (91.6%) with no significance difference (*P* = 0.388) was reported from the study areas. Wild-type *Pfcr* K76 allele was only

Table 2 Prevalence of *Pfcr* wild-type and mutant alleles at Adama, Olenchiti and Metehara study areas

Codon	Alleles	Adama (N = 23)	Olenchiti (N = 19)	Metehara (N = 41)	P-value
K76		n (%)	n (%)	n (%)	
76T		22 (95.7)	16 (84.2)	38 (92.7)	0.388

N is the total number of isolates exposed to restriction digestion by APoI enzyme, *n* represents total number of alleles.
detected in 8.4% *P. falciparum* isolates. The high proportions of *Pfcr7T* allele in this study is in agreement with studies from various parts of Ethiopia [6, 13, 26]. This persistence of high frequency of 76T allele in Ethiopia may be associated with incomplete withdrawal of CQ as it is currently the first-line anti-malarial drug for the treatment of *P. vivax* which accounts nearly for 40% of malaria cases in Ethiopia. Moreover, the persistence of *vivax* malaria in the form of relapse during dry season may also expose *P. falciparum* to CQ pressure [18]. The dominance of *P. vivax* over *P. falciparum* in the study area was already documented which might contribute for such high frequency of 76T allele [13, 18].

Another potential probable reason for circulations of high frequency of *Pfcr7T* mutant allele in the study areas may be because of the existence of mixed infections of *P. falciparum* and *P. vivax* [17]. Misdiagnosis of malaria [27], such as mixed infections, as *P. vivax* and treating patients with CQ was commonly encountered during the study period (unpublished observations) and this may expose *P. falciparum* to indirect CQ pressure selecting for the mutant genotypes.

To the best of our knowledge, in the present study areas there is no base-line data regarding the prevalence of 76T allele at the time when CQ was replaced with AL. However, 2 years later study conducted by Schunk et al. [28] in Southern Ethiopia showed fixation of 76T in parasite isolates in the area. Ten years later, since the implementation of AL, study conducted at Adama by Golassa et al. [6] revealed fixation of 76T mutant allele in parasite population, however; in the current study wild-type K76 allele was recovered in the frequency of 8.4%. In the current low malaria endemic area [29], the mutant allele still may circulate at high frequencies in parasite populations between human host and *Anopheles* vectors in the study areas. In this low malaria transmission setting, lower rate of sexual recombination parasite genotypes may take place in *Anopheles*
mosquitoes, which might result in more resistant genotypes to be established in the human host. Therefore, malaria transmission involving multiple genotypes is uncommon in low transmission areas. Conversely, in high malaria transmission areas, competition between drug-sensitive and drug-resistant parasites may slow the spread of drug-resistant parasites [23, 30]. Study conducted by Hailemeskel et al. [13] which investigated the prevalence of Pfcr t K76T genotype in low and high malaria endemic areas of Ethiopia [29] showed significantly higher prevalence of 76T and K76 alleles in low and high malaria endemic areas, respectively.

In countries like Ethiopia, CQ drug pressure persists for the treatment of vivax malaria, high frequency of the mutant allele is being reported from Yemen [31], Malaysia [22], Nigeria [32], India [33], Bangladesh [34] and Angola [35]. Conversely, progressive decrease in 76T allele and recovery of K76 allele were documented particularly in sub-Saharan African countries such as Malawi [16] Tanzania [36], Kenya [37] and Uganda [38], where AL is being implemented. Though AL is used as first-line treatment for P. falciparum in Ethiopia, low recovery of wild-type K76 was detected in the study areas may be because of reasons already described above.

In this study, associations of Pfcr t K76T mutation with parasite density, age and gender were investigated. Some studies have associated this mutation with parasite density [22, 31]; while others have found no such associations [39]. In the current study, we have found no association of these mutations with parasite density. On the other hand, the detection of high prevalence of this mutation among 15–30 age groups in this study may be explained by more exposure of these groups to mosquito bite and CQ pressure than others. However, no significant association was found between K76T mutation and age of patients which is in agreement with findings of Atrosh et al. [22] and Edogun et al. [40]. Similarly, no positive association of this mutation with gender was detected in this study.

In this study, P. falciparum clinical isolates analysed carried the wild-type genotypes for Pfmdr1 N86. The return to the wild-type genotypes was successful in the gene under report after cessation of CQ and use of AL for the treatment of uncomplicated falciparum malaria in Ethiopia. No single mutant Pfmdr1 86Y genotype was detected in the study under report. This finding is comparable with the previous reports from different parts of Ethiopia [6, 13, 15, 41]. Study conducted 2 years later after implementation of AL in Ethiopia showed the dominance of 86Y allele over its wild allele counterpart [28]. The current high prevalence of N86 allele (CQ sensitive) showed the survival advantage of wild-type over the mutant type since the implementation of AL for the treatment of falciparum malaria in Ethiopia is evident the selection of this allele by AL elsewhere [42].

In different African countries after adoption of AL for the treatment of falciparum malaria progressive increase in N86 allele and decline in 86Y allele have been documented [43, 44]. In vivo therapeutic studies have showed that N86 wild-type is more prevalent in recurrent infections following AL treatment [45]. In support of this meta-analysis of thirty-one clinical trials have showed a five-fold risk of parasite recrudescence in patients infected with parasites harbouring wild-type N86 allele following treatment with AL compared to patients infected with 86Y mutant parasites [46]. Similarly, allelic replacement study conducted by Veiga et al. [9] revealed that substitution of N86Y mutation with N86 withstands three-four fold higher LUM (partner drug of artemether) and MQ concentrations compared to 86Y residues. Although there is no clear evidence linking N86 allele with treatment failure, high prevalence of this allele in treatment failures in Angola [47] and parasite tolerance to LUM [9, 42], is a clear warning signal for plausible emergence of resistance against AL.

There was unsuccessful nested-PCR amplification for 38 of the samples; particularly for Pfcr t K76T codon as was the case for other studies [48]. However, amplification of Pfmsp1 gene was successful for 26 of them. This indicated that such parasites may have low concentrated intact DNA that could not be amplified. Still, those 12 samples which were not again amplified for Pfmsp1 indicated that they may be microscopically false positive for P. falciparum [27].

Limitations of the study
The current study is not without limitations. Some of the limitations of the study are small sample size analysed due to logistic constraints, lack of data of copy number variations of the Pfmdr1 -86 as parasites possessing multiply copy of the Pfmdr1 N86 showed decreased susceptibility to MQ, artesunate-amodiaquine and LUM [46] and lack of clinical data on the susceptibility of the parasite to LUM that could be obtained from therapeutic efficacy study.

Conclusion
In conclusion, the present study gives an update on the prevalence of K76T and N86Y alleles in the study areas. A reversal of K76 wild-type allele was detected in non-significant proportions while a fixation of N86 allele was investigated across the study areas. The data obtained from this study calls for continuous monitoring anti-malarial drug resistance against falciparum
malaria to maintain efficacy of AL for the treatment of uncomplicated *P. falciparum* malaria. Based on this assessment we also recommend careful monitoring of CQ usage for *P. vivax* treatment.

Abbreviations

ACT: Artemisinin-based combination therapy; AL: Artemether–lumefantrine; CQ: Chloroquine; CQR: Chloroquine resistance; D5B: Dried blood spot; LUM: Lumefantrine; MQ: Mefloquine; QN: Quinine; PCR: Polymerase chain reaction; Pfcrt: *Plasmodium falciparum* chloroquine resistant transporter; Pfmdr1: *Plasmodium falciparum* multigene drug resistance 1; RFLP: Restriction fragment length polymorphism; SP: Sulfadoxine–pyrimethamine; SPSS: Statistical package for social science; WBCs: White blood cells; WHO: World Health Organization.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12936-022-04304-5.

Additional file 1. Primers sequences used in nested PCR for the amplification of *Pfcr* and *Pfmdr1* genes.

Additional file 2. Representative gel image showing digested nested PCR products. (A) K76T codon cleaved with ApoI restriction enzyme run in 2% agarose gel. L = 100 bp DNA ladder marker, lanes 1–9 are samples, lane 10 is uncut control and lane 11 is wild-type control (3D7). (B) N86Y codon cleaved with ApoI restriction enzyme run in 2.5% agarose gel. L = 100 bp ladder, Lanes 1–9 are samples, lane 10 is wild-type pos. cont. (3D7), lane 11 is mutant-type pos. cont. (K1), and lane 12 uncut control.

Acknowledgements

This work is supported by Human, Heredity and Health in Africa (H3Africa) [H3A-18-002]. H3Africa is managed by Science for Africa Foundation (SFA Foundation) in partnership with Wellcome, NIH and AFSPH. We would like to thank participants of this study and laboratory technologists who were involved in collection and examining blood specimen collected from patients attending health facilities. We gratefully acknowledge Oromia Health Bureau for their consent and organizing selected health facilities to collect the data. We would like to extend our gratitude to Aklilu Lemma Institute of Pathobiology who allowed us to use laboratory facilities to perform PCR-RFLP experiments. We also thank Ms. Yergalem Chiwot and Roza Joseph for their assistance in laboratory work.

Author contributions

JH designed the study, performed experiments, analysed data, drafted and wrote draft manuscript. LG and GS organized molecular laboratory platform. GS reviewed the manuscript. HD supervised the work and reviewed the manuscript. LG conceived the idea, designed the study, supervised the overall work, participated in the interpretation of results and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Funding

This work was partially supported by the PAMGEN H3 Africa project (H3A-002/18) through Addis Ababa University, Aklilu Lemma Institute of Pathobiology.

Availability of data and materials

The datasets used and/or analysed for this study are available from the corresponding author on reasonable request.

Declarations

Ethical approval and consent to participate

The study was reviewed and approved by Adama Science and Technology University research and ethical committee (certificate Reference No: REC/02NS/BIO/02/2019). Permission letter was also obtained from Oromia Regional State Health Bureau.

Consent for publication

Not applicable.

Competing interests

Authors declared that they do not have competing interests.

Author details

1Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia. 2Research and Community Service Center, College of Health Science, Defense University, P.O. Box 1419, Bishoftu, Ethiopia. 3Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.

Received: 30 May 2022 Accepted: 27 September 2022

Published online: 07 October 2022

References

1. WHO. World Malaria Report 2021. Geneva: World Health Organization; 2021.
2. Roux AT, Maharaj L, Oyegoke O, Akonyon OP, Adeleke MA, Maharaj R, et al. Chloroquine and sulfadoxine-pyrimethamine resistance in sub-Saharan Africa—a review. Front Genet. 2021;12:668574.
3. Fedick-DA, Nomura T, Talley AK, Cooper RA, Djekunov SM, Ferdig MT, et al. Mutations in the *P. falciparum* digestive vacuole transmembrane protein Pfcr and evidence for their role in chloroquine resistance. Mol Cell. 2000;6:861–71.
4. Djimde A, Pharm D, Ogobara K, Dhoumo MD, Joseph F, et al. A molecular marker for chloroquine resistant *falciparum* malaria. N Engl J Med. 2001;344:257–63.
5. Ibrahim ML, Steenkste N, Khim N, Adam HH, Konate L, Coppee JY, et al. Field-based evidence of fast and global increase of *Plasmodium falciparum* drug resistance by DNA-microarrays and PCR/RFLP in Niger. Malar J. 2009;8:32.
6. Golassa L, Kamugisha E, Ishengoma DS, Baraka V, Shayo A, Baliraine FN, et al. Identification of large variation in Pfcr, Pfmdr-1 and Pfuph-1 markers in *Plasmodium falciparum* isolates from Ethiopia and Tanzania. Malar J. 2015;14:264.
7. Ikegunbami MN, Nkonganyi CN, Thomas BN, Esimone CO, Velavan TP, Ojurongbe O. Analysis of *Plasmodium falciparum* Pfcr and Pfmdr-1 genes in parasite isolates from asymptomatic individuals in Southeast Nigeria 11 years after withdrawal of chloroquine. Malar J. 2019;18:343.
8. Shivastava SK, Gupta RK, Mahanta J, Dubey ML. Correlation of molecular markers, Pfmdr-1N86Y and Pfcr-K76T, with in vitro chloroquine resistant *Plasmodium falciparum* isolated in the malaria endemic states of Assam and Arunachal Pradesh, Northeast India. PLoS ONE. 2014;9:e103848.
9. Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gna N, Uhlemann A, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016;7:11553.
10. Singh G, Singh R, Uthekar AD, Rane K. Gene sequence polymorphisms mutations in *Pfmdr-1* and *Pfcr-1* genes of *Plasmodium falciparum*. Int J Curr Microbiol Appl Sci. 2016;5:451–8.
11. Cui L, Niharika G, S, Nidiaye D, Rathod PK, Rosenthal PJ. Antimalarial drug resistance: literature review and activities and findings of the ICEMR Network. Am J Trop Med Hyg. 2015;93:57–68.
12. Tulu AN, Webber RH, Schellenberg AJS, Bradley DJ. Failure of chloroquine treatment for malaria in the highlands of Ethinc. Trans R Soc Trop Med Hyg. 1996;44:556–7.
13. Hailemeskel E, Meneru T, Shumie G, Behaksa S, Chali W, Keffale M, et al. Prevalence of *Plasmodium falciparum* Pfcr and Pfmdr-1 alleles in settings with different levels of *Plasmodium vivax* co-endemicity in Ethiopia. Int J Parasitol Drugs Drug Resist. 2019;11:8–12.
14. Heuchert A, Adbulseam N, Zeynudin A, Esimone CO, Velavan TP, Tawe R, et al. Molecular markers of anti-malarial drug resistance in Southeast Ethiopia over time: regional surveillance from 2006 to 2013. Malar J. 2015;14:208.
15. Mekonnen SK, Aseffa A, Bekele N, Teklehaimanot T, Clouse RM, Gebre T, et al. Return of chloroquine-sensitive *Plasmodium falciparum* parasites and emergence of chloroquine-resistant *Plasmodium vivax* in Ethiopia. Malar J. 2014;13:244.
16. Kublin JG, Cortese JF, Njunju EM, Mukadam RAG, Wirima JJ, Kazembe PN, et al. Reemergence of chloroquine-sensitive *Plasmodium falciparum* malaria after cessation of chloroquine use in Malawi. *J Infect Dis*. 2003;187:1870–5.

17. Kietema T, Bacha K, Getahun K, Del Portillo HA, Bassat Q. *Plasmodium vivax* epidemiology in Ethiopia 2000–2020: a systematic review and meta-analysis. *PLoS Negl Trop Dis*. 2021;15:e0009781.

18. Golassa L, White MT. Population – level estimates of the proportion of *Plasmodium vivax* blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre. *Malar J*. 2017;16:307.

19. File T, Chekol T, Solomom G, Dinika H, Golassa L. Detection of high frequency of MAD20 allelic variants of *Plasmodium falciparum* merozoite surface protein 1 gene from Adama and its surroundings, Oromia, Ethiopia. *Malar J*. 2021;20:385.

20. WHO. Basic Malaria Microscopy. Part I. Learner’s guide, 2nd Edn. Geneva: World Health Organization; 2010.

21. Nega D, Daniel D, Tefera T, Eshetu T. Prevalence and predictors of asymptomatic malaria parasitemia among pregnant women in the rural surroundings of Arbaminch town. *PLoS ONE*. 2015;10:e0123630.

22. Atrosh WM, Al-Mekhalfi HM, Mahdy MAK, Surin J. The detection of PfCRT and PfMDR1 point mutations as molecular markers of chloroquine drug resistance, Pahang, Malaysia. *Malar J*. 2012;11:251.

23. Mulenga MC, Sitali L, Ciubotariu II, Hawela MB, Hamainza B. Decreased resistance: even after withdrawal of chloroquine use in India. *IJP Drugs Drug Res*. 2011;5:235-41.

24. Ketema T, Bacha K, Getahun K, Del Portillo HA, Bassat Q. Detection of mutations associated with artemisinin resistance at the K13- promoter gene and a near complete return of chloroquine susceptible *falciparum* malaria in Southeast of Tanzania. *Sci Rep*. 2020;10:3500.

25. Chebore W, Zhou Z, Westercamp N, Otieno K, Shi VP, Sergent SB, et al. Assessment of molecular markers of anti-malarial drug resistance among children participating in a therapeutic efficacy study in Western Kenya. *Malar J*. 2020;19:291.

26. Balkagala B, Sakurui-Yatsushiro M, Tachibana SJ, Ikeda M, Yamauchi M, Katoz U, et al. Recovery and stable persistence of chloroquine sensitivity in *Plasmodium falciparum* parasites after its discontinued use in Northern Uganda. *Malar J*. 2020;19:76.

27. Aksoyvah R, Boampong JN, Egyir-Yawson A, Nwaefuna EK, Verner ON, Asare KK. High prevalence of PfCRT K76T mutation in *Plasmodium falciparum* isolates in Ghana. *Acta Trop*. 2014;136:32–6.

28. Edogun HA, Daramola GO, Ojerinde AO, Esan CO, Adegbuyi AT. Prevalence of mutant alleles responsible for chloroquine resistance among *Plasmodium falciparum* isolates in North Central, Nigeria. *J Adv Biol Biotechnol*. 2019;2011–8.

29. Lo E, Hemmings-schroeder E, Yewhalaw D, Nguyen J, Kebede E, Zemene E, et al. Transmission dynamics of co-endemic *Plasmodium vivax* and *Plasmodium falciparum* in Ethiopia and prevalence of anti-malarial resistant genotypes. *PLoS Negl Trop Dis*. 2017;11:e0005906.

30. Otienoburu SD, Maiga-Ascofare O, Schramm B, Jullien V, Jones JJ, Zolla YM, et al. Selection of *Plasmodium falciparum* PfCRT and PfMDR1 polymorphisms after treatment with artesunate–amodiaquine fixed dose combination or arterether–lumefantrine in Liberia. *Malar J*. 2016;15:452.

31. Asare KK, Africa J, Mbata J, Opoku YK. The emergence of chloroquine-sensitive *Plasmodium falciparum* is influenced by selected countries in some parts of the Central Region of Ghana. *Malar J*. 2021;20:447.

32. Chidimatembwe A, Svigel SS, Mayor A, Aide P, Nhara M, Nhambuusa L, et al. Molecular surveillance for polymorphisms associated with artemisinin-based combination therapy resistance in *Plasmodium falciparum* isolates collected in Mozambique. *Malar J*. 2018;17:398.

33. Malmberg M, Ferreira PE, Tarning J, Ursing J, Bjorkman A, et al. Transmission dynamics of artemether–lumefantrine in Angola in 2019. *Antimicrob Agents Chemother*. 2021;65:e01949-20.

34. Schunk M, Kumma WP, Miranda IB, Osman ME, Roewer S, Alano A, et al. Antimalarial drug resistance, Plasmodium vivax, Democratic Republic of Congo: high variability of chloroquine resistance and lack of amodiaquine resistance. *Biotechnol. Biotherap. 2019;20:1–8.

35. Dinhu PR, Nordt H, Candido LM, Ferreira M, Caque C,Continuef l. Continued low efficacy of arterether–lumefantrine in Angola in 2019. *Antimicrob Agents Chemother*. 2021;65:e01949-20.

36. Adamu A, Jada MS, Haruna HI, Yakubu BO, Ibrahim MA, Balogun EO, et al. *Plasmodium falciparum* multidrug resistance gene-1 polymorphisms in Northern Nigeria: implications for the continued use of arterether–lumefantrine in the region. *Malar J*. 2020;19:439.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.