Evaluation of the Biogenic Amines and Microbial Contribution in Traditional Chinese Sausages

Lu Li, Dian Zou, Liying Ruan, Zhiyou Wen, Shouwen Chen, Lin Xu, and Xuetuan Wei

Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China, Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China, Carollo Engineers, Inc., Boise, ID, United States

Biogenic amines (BAs) in sausages represent a health risk for consumers, and thus investigating the BAs accumulation mechanism is important to control the BAs. In this study, the BAs profiles of 16 typical Chinese sausage samples were evaluated, and 8 kinds of common BAs were detected from different samples. As a whole, the BAs contents of the majority of Chinese sausage samples were within the safe dosage range, except that the total BAs and histamine concentrations of sample HBBD were above the toxic dosage levels. Furthermore, the bacterial and fungal communities of the Chinese sausage samples were investigated by high-throughput sequencing analysis, and Staphylococcus, Bacillus, Lactococcus, Lactobacillus, Debaryomyces, and Aspergillus were identified as the predominant genera. Accordingly, 13 representative strains were selected from the dominant genera, and their BAs formation and degradation properties were evaluated. Finally, the results of fermented meats model experiment indicated that the Staphylococcus isolates including Staphylococcus pasteuri Sp, Staphylococcus epidermidis Se, Staphylococcus carnosus Sc1, Staphylococcus carnosus Sc2, and Staphylococcus simulans Ss could significantly reduce BAs, possessing the potential as the starter cultures to control the BAs in fermented meat products. The present study not only helped to explain the BAs accumulation mechanism in Chinese sausage, but also developed the candidates for potential BAs control in fermented meat products.

Keywords: biogenic amines, Chinese sausages, microbial communities, formation, degradation

INTRODUCTION

Biogenic amines (BAs) are mainly generated from amino acid decarboxylation by food-related microorganisms and are commonly considered as potential toxic nitrogenous substances in foods (Tabanelli et al., 2014; Suzzi and Torriani, 2015; Gardini et al., 2016). The typical BAs include tryptamine, β-phenethylamine, putrescine, cadaverine, histamine, and tyramine, which are the products of microbial decarboxylation of tryptophan, phenylalanine, ornithine, lysine, histidine and tyrosine, respectively (Russo et al., 2016; Li et al., 2018b). In addition to decarboxylation, deamination of agmatine also generates putrescine (Coton et al., 2010). In general, histamine and tyramine are highly toxic among various BA compounds, and tyramine is usually abundant in...
protein-rich fermented products including cheeses (Mayer and Fiechter, 2018), fermented sausages (Ekici and Omer, 2018), and fish products (Zhang et al., 2013). As a result, the BAs levels have been used as the indicators for food safety and also applied as the quality indexes for good manufacturing practice evaluation (Tasie, 2012; Gardini et al., 2016).

Chinese sausages are traditional fermented meat products in China. Due to their characteristic color, texture, and flavor, Chinese sausages have been popular with a long history in China (Wang et al., 2013). However, the Chinese sausages are traditionally manufactured by spontaneous fermentation with negligible quality and safety control (Lu et al., 2010a). In addition, the ripening of Chinese sausages is a complex biochemical process involving interactions of multiple microbial species, which in turn plays an important role in BAs accumulation (Lu et al., 2010b; Chen et al., 2016). While these microbes usually excrete amino acid decarboxylases to produce BAs, they may also degrade the BAs through their native amine oxidases (Xia et al., 2016; Li et al., 2018b). From this perspective, characterizing the microbes in Chinese sausages and evaluating their BAs production and degradation ability is critical to understand the BAs accumulation mechanism, which is ultimately beneficial to control the BAs to guard the quality and safety of Chinese sausages.

The microbial communities can be characterized by cell culturing, colony counting, denaturing gradient gel electrophoresis, and temperature gradient gel electrophoresis (Yang et al., 2016). Compared to these traditional methods, high-throughput sequencing technology can generate thousands of sequences within a short time to cover the complex microbial communities, and it has been applied to characterize microbial diversity of extremely complex environmental ecosystems (Dalmasso et al., 2016; Portillo and Mas, 2016). For example, a previous report evaluated the microbial communities of Chinese sausages by high-throughput sequencing technology, and the Staphylococcus was identified as the dominant genus (Wang X. et al., 2018). From a practical point of view, however, it is still a challenge on how to utilize this information of microbial communities for improving the quality and safety of the Chinese sausages. An immediately application could be developing an appropriate starter cultures for better control of BAs in Chinese sausages fermentation process. In this study, we evaluated the BAs contents in 16 typical Chinese sausages samples from different regions in China, and the bacteria and fungi communities were identified by 16S and ITS rDNA gene sequencing analysis, respectively. Furthermore, the BAs production and degradation properties of representative strains were evaluated to elucidate the microbial contribution to BAs accumulation and select beneficial candidates for BAs control.

MATERIALS AND METHODS

Samples and Media

Sixteen Chinese sausage samples collected from different geographical locations in China were used in this work. These samples were labeled as SCMS (Meishan), SCCD (Chengdu), GXWZ (Wuzhou), ZJHZ (Hangzhou), JXJGS (Jinggangshan), GDHP (Huangpu), HNXX (Xiangxi), HLJHBE (Haerbin), HBES (Enshi), ZJHJ (Jinhua), JLCC (Changchun), HBB (Baoding), GZZY (Zunyi), AHXC (Xuanchong), NMGTL (Tongliao), and JSRG (Rugao). Each sample was collected in three replicates, and stored at −20°C for further analysis.

The media used in this study included LB medium (peptone 10 g/L, yeast extract 5 g/L, sodium chloride 10 g/L), MRS medium (peptone 10 g/L, beef extract 8 g/L, yeast extract 4 g/L, glucose 20 g/L, diammmonium hydrogen citrate 2 g/L, sodium acetate 5 g/L, K2HPO4 2 g/L, MgSO4 0.2 g/L, MnSO4 0.04 g/L, Tween 80 1 g/L, pH = 5.7), and SDB medium (peptone 10 g/L, glucose 20 g/L, pH = 5.6). Agar (1.5 wt%) was added to prepare the solid medium.

Microbial Community Analysis

The genomic DNA was extracted from the Chinese sausage samples with the E.Z.N.A Soil DNA kit (OMEGA, United States) following the manufacturer’s instructions. The purity of the genomic DNA was confirmed by the subsequent pyrosequencing analysis with 1% agarose gel electrophoresis. Primers 338F (ACTCCTACGGGAGGCAGCA) and 806R (GGACTACHVGGGTWTCTAAT) were designed according to the V3–V4 region of bacterial 16S rRNA gene. Primers ITS1F (CTTGGTCAATTTAGAGGAAGTAA) and 2043R (GCTGCGTTCTTCATCGATGC) were designed based on the ITS1F-ITS2 region of the fungal internal transcribed spacer (ITS). After PCR and purification, a DNA library was constructed and run on the Miseq illumina platform at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China).

Sequencing data was analyzed using the software of Trimmomatic and FLASH. Community estimators were calculated and analyzed using Mothur version v.1.30.1, including richness estimators, Chao1 index, diversity estimators, and Shannon index. The number of operational taxonomic units (OTUs) (with >97% sequences similarity being defined as one OTU) was obtained by Usearch program (version 7.1) using furthest neighbor algorithm and established the phylogenetic tree with the relative abundances of OTUs. Taxonomy was assigned by the Silva Database Project classifier (Quast et al., 2013).

Isolation of Strains From Chinese Sausage Samples

Chinese sausage samples (5 g) were crushed and added with 45 mL sterile water. The mixtures were incubated at 37°C for 40 min in a rotatory shaker with 140 rpm. Samples were then serially diluted (10−1 to 10−6) with the sterile water. For each dilution, 200 μL sample solution was, respectively, plated onto LB plates, MRS plates with 20 g/L CaCO3 and SDB plates with 50 mg/L rifampicin. LB plates were incubated at 37°C for 24 h. SDB plates were cultured at 37°C for 48–72 h (depending on the strains), and MRS agar plates were incubated at 37°C for 48 h. And the colonies with different forms were selected for further analysis.

1http://www.mothur.org/wiki/Schloss_SOP#Alpha_diversity
Strains Identification

Genomic DNA of bacteria was extracted using Gen-EluteTM Kit (Tiangen Biotech Co., Ltd., Beijing, China) following the manufacturer's protocol, and the genomic DNA of fungi was extracted using a SDS-based DNA extraction method described previously (Zhou et al., 1996). The 16S rDNA sequence was amplified using the universal primers of 27f (AGAGTTT GATCMTGGCTCAG) and 1492r (CTACGGTACCTTGTAGCGA), and the ITS fragment was amplified with the universal primers ITS1 (TCCGTAAGTGACCTGCGG) and ITS4 (GCAATATCATAAGCGGGA). The PCR procedure followed the protocols reported previously (Li et al., 2018a,b). The PCR amplicons were sequenced and analyzed using the Blastn program².

Detection of the Genes Related to BAs

PCR amplification were performed to confirm the presence of BAs-related genes of histidine decarboxylase (hdCA), tyrosine decarboxylase (tyrdc), ornithine decarboxylase (odic), agmatine deiminase (aguA and aguD), and lysine decarboxylase (ldc). The primers used in this study were listed in Supplementary Table S1. The PCR procedure followed the protocols reported previously (Guarcello et al., 2016; Li et al., 2018b). The PCR products were analyzed by electrophoresis on a 0.8% agarose gel and revealed under UV after staining with ethidium bromide.

Evaluation of BAs Production and Degradation Properties

The BAs production properties of different strains were characterized by assessing the biotransformation of precursors to corresponding BAs. The strains were cultured in 5 mL LB medium (Bacillus and Staphylococcus), MRS medium (Enterococcus and Lactobacillus) or SDB medium (Candida), and all the media were added with 1 g/L of histidine, tyrosine, tryptophan, phenylalanine, ornithine monohydrochloride, lysine, or agmatine sulfate salt. The BAs concentrations after 48 h incubating were determined. To evaluate the BAs degradation properties, the strains were cultured at 37°C for 12–24 h and then collected by centrifugation at 6000 × g for 5 min. The cell pellets were washed with 0.05 mol/L phosphate buffer (pH = 7), re-suspended to reach OD600 at 0.8 in phosphate buffer (0.05 mol/L) containing 100 mg/L of histamine, tyramine, tryptamine, β-phenethylamine, putrescine, cadaverine, spermidine, and spermine. The cell suspension was then cultured at 37°C for 48 h and the residual BAs in the suspension was determined. The phosphate buffer without cell pellets was applied as control. The BA-degradation rate was calculated as

\[M = [(A - B)/A] \times 100\% , \]

where \(M \) is the BAs degradation percentage, \(A \) and \(B \) are initial and residual BAs concentrations, respectively (Li et al., 2018a,b).

²http://blast.ncbi.nlm.nih.gov/Blast.cgi

Fermented Meat Model Analysis

The model fermented meat was constructed to evaluate the BAs-controlling properties of as-selected strains. In brief, the cells were inoculated into corresponding broth at 37°C for 12 h to reach OD600 of 4.0. The culture was used as the seed (5%, v/w) to be inoculated into a 50 mL sterilized flask with 10 g of fresh pork slices containing 2% salt, 1% glucose and 4% sucrose. The microbe-meat mixture was incubated at 37°C for 7 days to analyze the total BAs, and the meat inoculated with equal volume of sterilized water was used as the control.

Determination of BAs Concentrations

The BAs were extracted and pretreated according to the methods described previously (Li et al., 2018a,b). The BAs were analyzed using an Agilent 1260 HPLC. The separation of the analytes was achieved with a Zorbax Eclipse XDB-C18 (4.6 mm × 250 mm, 5 µm) column in an oven at 30°C. The injection volume was 10 µL. Chromatograms were analyzed at 254 nm. Two reservoirs containing (A) ultrapure water and (B) acetonitrile were used to provide elution solution. The elution flow rate was 1.0 mL/min. The gradient elution program was 0–3 min, \(A/B = 1:1; 3–20 \) min, \(A/B = 1:1 \text{ to } A/B = 1:9; 20–29 \) min, \(A/B = 1:9; 29–32 \) min, \(A/B = 1:9 \text{ to } A/B = 1:1; 32–35 \) min, \(A/B = 1:1 \).

Statistical Analysis

All analysis experiments were conducted at least three replicates. The difference significance was analyzed by one-way ANOVA method using the statistical software SPSS 20.0, and mean values were compared by Tukey’s HSD test at 5%.

RESULTS

BAs Contents in Chinese Sausage Samples

The BAs contents in different Chinese sausage samples were shown in Table 1. Among the sixteen Chinese sausage samples, eight BAs were detected, including tryptamine, β-phenethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, and spermine. Putrescine, cadaverine, tyramine, spermidine, and spermine were the dominant BAs, and they existed in the majority of Chinese sausage samples. Tryptamine, β-phenethylamine and histamine were detected in just several samples. Among sixteen Chinese sausage samples, the total BAs contents were different with each other. HBBD sample had the highest content of the total BAs (1417.57 mg/kg), as well as the highest concentration of tryptamine, β-phenethylamine, putrescine, cadaverine, histamine, or tyramine. On the contrary, ZJHZ sample showed the lowest value of the total BAs concentration (32.24 mg/kg), with only spermidine and spermine detected.

Microbial Communities in Chinese Sausage Samples

After the quality control, a total of 1,351,248 high-quality 16S rRNA gene sequences and 1,490,880 high-quality ITS gene
TABLE 1	The BA contents of Chinese sausage samples.						
Chinese sausage sample	Tryptamine (mg/kg)	Tyramine (mg/kg)	Putrescine (mg/kg)	Cadaverine (mg/kg)	Histamine (mg/kg)	Spermine (mg/kg)	Spermidine (mg/kg)
SCMS	167.1±1.47 b	ND	ND	ND	ND	ND	ND
GYZX	167.1±1.47 b	ND	ND	ND	ND	ND	ND
SCCD	167.1±1.47 b	ND	ND	ND	ND	ND	ND
HBBD	215.4±1.47 b	ND	ND	ND	ND	ND	ND
HXNX	167.1±1.47 b	ND	ND	ND	ND	ND	ND
HJHZ	167.1±1.47 b	ND	ND	ND	ND	ND	ND
JSGJ	167.1±1.47 b	ND	ND	ND	ND	ND	ND
AHXC	167.1±1.47 b	ND	ND	ND	ND	ND	ND
ZJJH	167.1±1.47 b	ND	ND	ND	ND	ND	ND
NMGTL	167.1±1.47 b	ND	ND	ND	ND	ND	ND

Note: Different letters (a, b, c, d, e, f, g, h, i, j, k, l) indicate significantly different means at p < 0.05. Analyses of variance (ANOVA).
samples were used to select the target strains. Meanwhile, *Staphylococcus*, *Bacillus*, and *Lactobacillus* were major genera in most sausages samples, and *Staphylococcus* species were commonly used as the starter cultures in fermented meat products. Therefore, we mainly selected the isolates belonging to *Staphylococcus*, *Bacillus*, and *Lactobacillus*. We obtained 13 isolates, including *Staphylococcus pasteuri* (1 isolate), *Staphylococcus epidermidis* (1 isolate), *Staphylococcus carnosus* (2 isolates), *Staphylococcus simulans* (1 isolate), *Bacillus subtilis* (1 isolate), *Bacillus amylobiiquefaciens* (1 isolate), *Bacillus pumilus*
(1 isolate), Enterococcus faecium (3 isolates), Lactobacillus curvatus (1 isolate), and Candida metapsilosis (1 isolate) (Table 3).

Common BAs-forming genes in 13 isolates were detected to evaluate their potential BAs-producing abilities, and their capabilities for biotransformation of amino acid precursor to corresponding BA were also measured. Figure 3A showed C. metapsilosis Cm and three E. faecium isolates were positive in tyrosine decarboxylase gene detection, and they also showed strong tyramine-producing abilities (Table 4). The ornithine decarboxylase gene was only detected in L. curvatus Lc (Figure 3B), which agreed with the fact that just L. curvatus Lc had the capacity to produce putrescine from ornithine (Table 4). None of the isolates was positive in histidine decarboxylase gene (hdcA), lysine decarboxylase gene (ldc) and agmatine deiminase gene (aguA and aguD) using primers HdC1/HdC2, Cad2F/Cad2R, CadAf/CadAr, AgmSq1/AgmSq2, and AgD1/AgD2. Accordingly, most isolated strains showed no ability to produce histamine, cadaverine and putrescine from histidine, lysine and agmatine, respectively, and just low concentrations were detected from several strains. These results indicated that unknown amine acid decarboxylases or isoenzymes with low activities might exist in some strains, which will be further investigated in the future. On the other hand, more than 60% of the strains produced tryptamine and β-phenethylamine. Among the 13 isolates, S. epidermidis Se and S. simulans Ss showed no capability to generate BAs, and S. pasteuri Sp, B. subtilis Bs, and B. amylopliticus Ba produced low concentrations of BAs, with high contents of BAs observed in the rest isolates.

The 13 isolates were tested for their capabilities of degrading tryptamine, β-phenethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, and spermine. Most isolates

Isolates	Closest strains	Identities (%)	Accession number
Sp	S. pasteuri HN-35	99%	KT003275.1
Se	S. epidermidis 14F	99%	KC920585.1
Sc1	S. carnosus JX-1	99%	MH445557.1
Sc2	S. carnosus CIP103274	99%	NR_114333.1
Ss	S. simulans MR1	99%	CP015642.1
Bs	B. subtilis J2	99%	KT957306.1
Ba	B. amylopliticus 1Y018	100%	JG229807.1
Bp	B. pumilis WM2	99%	KY086970.1
Ef1	E. faecium CAU-200	99%	MF369569.1
Ef2	E. faecium KLAB2	99%	KM497516.1
Ef3	E. faecium KC11	99%	KM497512.1
Lc	L. curvatus GAN	99%	MH194558.1
Cm	C. metapsilosis IFM52611	99%	LC389302.1

Identities: the 16S rDNA and ITS sequences identities of isolated strains with representative strains. Accession number: the GenBank accession number of the 16S rDNA or ITS sequences of the representative strains.
were capable of degrading eight common BAs with different efficiencies (Table 5). As a whole, all the screened strains were able to completely degrade spermine, and they also showed high degradation abilities of putrescine. Among 13 isolates, all the \textit{Staphylococcus} isolates exhibited relatively high degradation abilities for each BA.

Effects of \textit{Staphylococcus} Strains on BAs Accumulation in Model Fermented Meat

Fermentation of sausages is a complex process involving various microbes, thus we constructed a spontaneous fermentation meat model to investigate effects of the strains on BAs control. Above results showed that all the \textit{Staphylococcus} isolates showed high BAs-degradation abilities (Table 4). Moreover, the \textit{Staphylococcus} strains were commonly used as the starter cultures in fermented meat products (Blaiotta et al., 2010; Semedo-Lemsaddek et al., 2016). Therefore, all the \textit{Staphylococcus} isolates were selected for the model fermented meat experiment to evaluate their potential to reduce the BA contents. As shown in Figure 4, the control sample without inoculation of \textit{Staphylococcus} strain showed a high content of the total BAs (3565 mg/kg), which was probably due to the native microbes in meat. And the individual content of BA found in the meat model were indicated in Supplementary Table S2. Compared with the control, the BAs contents of the samples enriched with \textit{S. pasteurii} Sp, \textit{S. epidermidis} Se, \textit{S. carnosus} Sc1, \textit{S. carnosus} Sc2, or \textit{S. simulans} Ss, were reduced (Figure 4). In particular, \textit{S. epidermidis} Se, \textit{S. carnosus} Sc1, \textit{S. carnosus} Sc2, and \textit{S. simulans} Ss revealed relatively high abilities of inhibiting the BAs accumulation in model fermented meat.

DISCUSSION

Excess intake of BAs can cause various harmful effects, for example that histamine can lead to nausea, headache, hot fushes and skin rashes, and tyramine, β-phenylethylamine and tryptamine can cause migraine and hypertensive crises (Suzzi and Gardini, 2003; Del Rio et al., 2017; Doeun et al., 2017). However, BAs have been reported in many fermented foods, and thus evaluating the BAs contents is particularly valuable to indicate the food safety. In this study, eight common BAs were detected in sixteen Chinese sausage samples, and putrescine, cadaverine, tyramine, spermidine, and spermine existed in most of the samples, which was similar with that of previous reports (González-Fernández et al., 2003; Lu et al., 2015). In comparison, putrescine and tyramine were found as major BAs in Italian Sausages (Salami) (Mayr and Schieberle, 2012), and putrescine and cadaverine were at high levels in Danish sausage (Doeun et al., 2017). The total BAs level higher than 1,000 mg/kg in food was considered harmful for human health (Kim et al., 2012). In comparison, the majority of Chinese sausage samples were under the safe level, just the BAs concentration of HBBD sample exceeded the toxic dose (1,000 mg/kg), especially that the histamine content was much higher than toxic level (50 mg/kg) suggested by the United States Food and Drug Administration (Yang et al., 2014). Besides, the concentrations of tyramine in SCMS and HBBD samples were over 100 mg/kg, which might negatively affect human health. Therefore, it is necessary to monitor and control the BAs amounts in Chinese sausages.

Generally speaking, the accumulated BAs in fermented foods mainly depend on two sides, including the BAs formation by amino acids decarboxylases and the BAs degradation by amine oxidases, which were significantly affected by complex microbial communities (Gu et al., 2018; Li et al., 2018a). The marked variable BAs contents in Chinese sausage samples were probably due to the different microbial compositions. Therefore, evaluating the microbial communities and their contribution on BAs formation is particularly valuable to control the BAs in Chinese sausage samples. High-throughput sequencing was used to assess the microbial communities in the sixteen Chinese sausage samples. \textit{Firmicutes} and \textit{Ascomycota} were the predominant phylum in bacteria and fungi, respectively.
TABLE 4 | The BA-producing abilities of the isolated strains with corresponding precursor.

Strain	Tryptamine (mg/L)	β-Phenethylamine (mg/L)	Putrescine (Ornithine monohydrochloride) (mg/L)	Putrescine (Agmatine sulfate salt) (mg/L)	Cadaverine (mg/L)	Histamine (mg/L)	Tyramine (mg/L)	Total (mg/L)
Sp	ND	33.69 ± 6.69 ab	ND	ND	ND	ND	ND	33.69 ± 6.69 a
Se	ND	ND	ND	ND	ND	ND	ND	ND
Sc1	155.83 ± 6.25 c	428.33 ± 31.03 f	ND	ND	ND	18.35 ± 1.24 a	602.51 ± 38.52 c	
Sc2	94.50 ± 3.35 b	166.95 ± 61.51 cd	ND	ND	ND	261.45 ± 64.86 ab		
Ss	ND	ND	ND	ND	ND	ND	ND	ND
Bs	ND	23.53 ± 1.4 ± a	ND	ND	ND	ND	ND	23.53 ± 1.4 ± a
Ba	ND	20.93 ± 2.31 a	ND	0.41 ± 0.17 a	ND	ND	ND	21.34 ± 2.48 a
Bp	274.04 ± 13.69 d	100.44 ± 3.30 bc	ND	ND	ND	ND	ND	374.48 ± 16.99 bc
Ef1	10.05 ± 0.12 a	241.79 ± 3.55 de	ND	7.81 ± 1.82 b	5.74 ± 0.61 b	18.72 ± 1.18 b	1004.38 ± 33.87 bc	
Ef2	6.55 ± 2.62 a	96.66 ± 14.73 abc	ND	6.89 ± 1.69 b	ND	21.29 ± 0.89 b	1218.89 ± 49.39 c	
Ef3	11.14 ± 0.57 a	261.17 ± 41.98 e	ND	6.14 ± 1.68 b	19.68 ± 0.56 b	1081.22 ± 85.36 bc		
Lc	6.22 ± 0.71 a	ND	172.25 ± 2.71	12.12 ± 1.10 c	0.67 ± 0.34 a	ND	ND	191.26 ± 4.86 ab
Crm	7.01 ± 0.07 a	57.33 ± 12.17 ab	ND	ND	9.56 ± 5.35 a	817.84 ± 240.38 bc		

Different letters (a, b, c, d, e) indicate significantly different means at P < 0.05 [analysis of variance (ANOVA)].

TABLE 5 | Profiles of BA-degradation rates of selected strains.

Strain	Tryptamine (%)	β-Phenethylamine (%)	Putrescine (%)	Cadaverine (%)	Histamine (%)	Tyramine (%)	Spermidine (%)	Spermine (%)
Sp	20.60 ± 3.42 cd	16.87 ± 3.12 abc	70.01 ± 5.16 a	23.58 ± 4.57 bc	42.03 ± 5.37 de	29.24 ± 9.45 d	31.72 ± 4.95 d	100
Se	24.54 ± 2.35 d	28.24 ± 6.95 c	63.84 ± 2.09 a	22.47 ± 4.08 bc	43.23 ± 5.69 de	23.25 ± 5.35 cd	22.44 ± 5.72 cd	100
Sc1	21.29 ± 2.22 d	24.08 ± 2.41 bc	69.72 ± 3.17 a	20.43 ± 2.78 abc	41.46 ± 4.68 de	19.64 ± 4.83 bcd	19.21 ± 4.67 bc	100
Sc2	22.46 ± 2.02 d	25.49 ± 1.97 bc	68.97 ± 3.80 a	13.22 ± 3.17 a	32.37 ± 1.80 cd	18.71 ± 2.59 abc	19.29 ± 2.06 bc	100
Ss	18.32 ± 1.25 bcd	16.47 ± 1.93 abc	63.98 ± 2.05 a	17.58 ± 1.03 abc	38.07 ± 4.72 de	14.55 ± 1.75 abc	13.60 ± 0.44 abc	100
Bs	7.50 ± 1.34 a	7.48 ± 1.63 a	65.69 ± 2.93 a	12.07 ± 0.98 a	15.37 ± 2.64 ab	7.45 ± 0.92 a	7.57 ± 1.51 a	100
Ba	20.66 ± 3.03 cd	19.52 ± 3.56 abc	69.50 ± 4.19 a	24.33 ± 3.63 bc	11.08 ± 2.3 a	21.62 ± 2.75 bcd	20.91 ± 2.18 bc	100
Bp	11.95 ± 2.72 ab	14.83 ± 0.97 ab	68.09 ± 2.24 a	16.48 ± 3.11 ab	5.76 ± 1.94 a	13.63 ± 2.80 abc	12.97 ± 1.19 abc	100
Ef1	0.00	0.00	60.59 ± 5.02 a	0.00	36.15 ± 2.20 cde	0.00	0.00	100
Ef2	12.59 ± 0.06 abc	11.09 ± 0.74 a	67.48 ± 4.68 a	17.57 ± 2.66 abc	39.34 ± 2.92 de	13.82 ± 0.44 abc	16.93 ± 0.56 abc	100
Ef3	19.24 ± 4.06 bcd	19.56 ± 3.61 abc	70.67 ± 2.56 a	25.82 ± 3.52 c	47.76 ± 7.45 e	17.94 ± 2.63 bcd	20.26 ± 4.92 bc	100
Lc	0.00	0.00	63.23 ± 6.22 a	0.00	0.00	0.00	0.00	100
Crm	21.43 ± 5.25 d	59.01 ± 9.91 d	67.38 ± 1.60 a	16.80 ± 3.13 abc	24.34 ± 3.68 bcd	10.80 ± 3.03 ab	11.17 ± 3.70 ab	100

Different letters (a, b, c, d, e) indicate significantly different means at P < 0.05 [analysis of variance (ANOVA)].
At the genus level, *Staphylococcus*, *Bacillus*, *Lactococcus*, and *Lactobacillus* were the dominant bacterial genera in most samples. Similar results were also reported that *Staphylococcus* and lactic acid bacteria were the representative genera in fermented meat products (Freiding et al., 2011; Oki et al., 2011; Woraprayote et al., 2016; Wang X. et al., 2018). *Debaryomyces* and *Aspergillus* were the predominant fungal genera in some sausage samples, and these fungi were also reported as the major genera in other meat products (Sørensen et al., 2008; Asefa et al., 2009).

According to the microbial community results, we screened thirteen representative strains from two typical sausage samples with significantly different BAs contents, including *Staphylococcus*, *Bacillus*, *Enterococcus*, *Lactobacillus*, and *Candida*, which were commonly reported in fermented meat products (Vilar et al., 2000; Barrière et al., 2001; Hugas et al., 2003; Matarante et al., 2004; Naidoo and Lindsay, 2010; Rai et al., 2010; Freiding et al., 2011; Zaman et al., 2011; Wang H. et al., 2018). The BA formation abilities of these selected strains were evaluated by gene and biotransformation analysis. Most gene analysis results agreed with biotransformation results. For example, *E. faecium* EF1, EF2, EF3 and *C. metapsilosis* Cm possessed the tyrosine decarboxylase gene, as well as the high tyramine-generating abilities. The ornithine decarboxylase gene was just detected in *L. curvatus* Lc, and identical conclusion was also obtained in biotransformation analysis, which was consistent with a previous study (Li et al., 2018b). Exceptionally, several strains produced low level BA without corresponding decarboxylase gene detected, indicating that unknown amino acid decarboxylase might exist in these strains. All the selected *E. faecium* also showed high capacity of producing β-phenylethylamine, which was similar with previous researches (Marcobal et al., 2006; Li et al., 2018a). These strains with high BAs production properties might be responsible for the accumulation of BAs in Chinese sausage samples. In addition, the BAs degradation abilities of 13 isolates were also analyzed, and the *Staphylococcus* isolates showed relatively high degradation abilities for all BAs. The results indicated that it was possible design of microbial-based solutions to reduce BAs content in fermented food (Capozzi et al., 2012; Latorre-Moratalla et al., 2012; Ladero et al., 2016). Meanwhile, *Staphylococcus* were usually used as the starter cultures for sausages fermentation (Aro et al., 2010; Tabanelli et al., 2012; Aida et al., 2013). Thus, effects of *Staphylococcus* isolates on BAs accumulation were accessed in model fermented meat to select the potential starter culture for BA control. Interestingly, inoculation of *S. pasteurii* Sp, *S. epidermidis* Se, *S. carnosus* Sc1, *S. carnosus* Sc2, and *S. simulans* Ss could significantly reduce the BAs accumulation, and these *Staphylococcus* strains could be used as potential candidates for BAs control in fermented meat products. In previous studies, *S. carnosus* FS19 and *Staphylococcus xylosus* No. 0538 were reported as starter cultures to control the BAs accumulation in fermentation of meat products (Mah and Hwang, 2009; Zaman et al., 2011), and this study also developed novel strains as potential starter cultures for BAs control.

In summary, this study evaluated the BAs profiles of 16 typical Chinese sausage samples, indicating the potential BAs-related safety risk in Chinese sausages. Based on microbial community analysis results, 13 representative strains were selected from the dominant microbial genera, and their contributions to BAs formation and degradation were explained. Moreover, five *Staphylococcus* strains were confirmed to be efficient for BAs control in the fermented meat model. This study not only explained the microbial contribution to BAs accumulation in Chinese sausages, but also provided the potential starter cultures for BAs control in fermented meat products industry.

AUTHOR CONTRIBUTIONS

XW and LL designed the study. DZ and LR executed the experimental work. LL and DZ analyzed the data. XW contributed reagents and materials. LL, XW, ZW, SC, and LX wrote and revised the manuscript. All authors read and approved the final manuscript.

FUNDING

This study was supported by the Open Funds of Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Fundamental Research Funds for the Central Universities (No. 2662016PY121).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00872/full#supplementary-material
Tabanelli, G., Montanari, C., Bargossi, E., Lanciotti, R., Gatto, V., Felis, G., et al. (2003). Biogenic amines in dry fermented sausages: a review. *Int. J. Food Microbiol.* 88, 41–54. doi: 10.1016/S0168-1605(03)00080-1

Suzzi, G., and Torriani, S. (2015). Editorial: biogenic amines in foods. *Front. Microbiol.* 6:472. doi: 10.3389/fmicb.2015.00472

Tabanelli, G., Coloretti, F., Chiavari, C., Grazia, L., Lanciotti, R., and Gardini, F. (2003). Biogenic amines in dry fermented sausages: a review. *Int. J. Food Microbiol.* 88, 41–54. doi: 10.1016/S0168-1605(03)00080-1

Suzzi, G., and Gardini, F. (2003). Biogenic amines in foods. *Front. Microbiol.* 6:472. doi: 10.3389/fmicb.2015.00472

ewpage

Beck, A. M., Halvorsen, T. B., Villy, B., Jorgensen, K. B., and Bue, B. R. (2007). Staphylococci in the processing areas of two different meat products. *Int. J. Food Microbiol.* 107, 112–117. doi: 10.1016/j.ijfoodmicro.2007.06.019

Zhang, Q., Lin, S., and Nie, X. (2013). Reduction of biogenic amine accumulation in traditional Chinese fermented soybean curd. *Food Control* 32, 591–596. doi: 10.1016/j.foodcont.2013.01.029

Wang, X., Zhang, Y., Ren, H., and zhan, Y. (2018). Comparison of bacterial diversity profiles and microbial safety assessment of salami, Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput sequencing. *LWT-Food Sci. Technol.* 90, 108–115. doi: 10.1016/j.lwt.2017.12.011

Worprayote, W., Malila, Y., Sorapukdee, S., Swetswiatana, A., Benjakul, S., and Visessanguan, W. (2016). Bacteriocins from lactic acid bacteria and their applications in meat and meat products. *Meat Sci.* 120, 118–132. doi: 10.1016/j.meatsci.2016.04.004

Xia, X., Zhang, Q., Zhang, B., Zhang, W., and Wang, W. (2016). Insights into the biogenic amine metabolic landscape during industrial semidyry Chinese rice wine fermentation. *J. Agric. Food Chem.* 64, 7385–7393. doi: 10.1021/acs.jafc.6b01523

Yang, J., Ding, X., Qin, Y., and Zeng, Y. (2014). Safety assessment of the biogenic amines in fermented soya beans and fermented bean curd. *J. Agric. Food. Chem.* 62, 7947–7954. doi: 10.1021/jf501772s

Yang, L., Yang, H. L., Tu, Z. C., and Wang, X. L. (2016). High-throughput sequencing of microbial community diversity and dynamics during douchi fermentation. *PLoS One* 11:e0168166. doi: 10.1371/journal.pone.0168166

Zaman, M. Z., Abu Bakar, F., Jinap, S., and Bakar, J. (2011). Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. *Int. J. Food Microbiol.* 145, 84–91. doi: 10.1016/j.ijfoodmicro.2010.11.031

Zhang, Q., Lin, S., and Nie, X. (2013). Reduction of biogenic amine accumulation in silver carp sausage by an amine-negative *Lactobacillus plantarum*. *Food Control* 32, 496–500. doi: 10.1016/j.foodcont.2013.01.029

Zhou, J., Bruns, M. A., and Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. *Appl. Environ. Microbiol.* 62, 316–322. doi: 10.1128/AEM.62.1.316-322.1996

Conflict of Interest Statement: LX was employed by the company Carollo Engineer, Inc.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Li, Zou, Ruan, Wen, Chen, Xu and Wei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided that the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.