Mortality records (1979–2011) shed light on threats to Asian Elephants *Elephas maximus* Linnaeus, 1758 (Mammalia: Proboscidea: Elephantidae) in Nilgiris, southern India

Priya Davidar¹, Clément Rosset², Pratheesh Chacko Mammen³, Jean Philippe Puyravaud⁴, Rajeev Srivastava⁵ & Belinda Wright⁶

¹,² Department of Ecology and Environmental Sciences, Pondicherry University, Kalapet, Pondicherry 605014, India
² 2550 rue Saint Exupery, 38420 Le Versoud, France
³ Additional Principal Chief Conservator of Forests, Tamil Nadu Forest Academy, Coimbatore, Tamil Nadu 641003, India
⁴ Wildlife Protection Society of India (WPSI), 5-25 Panchsheel Park, New Delhi 110017, India
⁵ pdavidar@gmail.com (corresponding author), rossetclement@yahoo.com, pratheeshmammen@gmail.com, jp.puyravaud@gmail.com, srivastavaraj3@yahoo.com, belinda@wpsi-india.org

Abstract: We compiled records of 291 elephant deaths over a 33-year period (1979–2011) from the Mudumalai Tiger Reserve and the reserved forests of Nilgiri North and South divisions of southern India from the databases of the Tamil Nadu Forest Department, the Wildlife Protection Society of India and the Nilgiri Wildlife and Environment Association. We tested the null hypothesis that the causes of elephant deaths would not differ with time, by gender and with level of protection. We classified records by gender and age: adults (≥15 years), sub adults (5–15 years), juveniles (>1–<5) and calves (≤ 1). We organised records over 3-decade periods. The database consisted of 209 adults (≥15 years), 27 sub adults (5–15 years), 33 juveniles (>1–<5) and 22 calves (≤ 1). MTR had the maximum records (148) followed by NND (138) and NSD (4). The median age of death was 20 years for adult males and 30 years for adult females. Mean survival time for adult males was 22.45 years, and 31.84 for females. Poaching was responsible for the majority of deaths (40%), particularly of male elephants (82%), and unknown causes (31%) for the majority of female deaths (66%). Human-caused deaths, which included poaching and some accidents, averaged 72% between 1979 and 2000 and decreased to 22% during 2001–2011. Deaths due to unknown causes and diseases increased from 28% in 1979-1989 to 69% in 2001–2011. Relative to estimated population size, deaths attributed to poaching was higher in NND (47%) than in MTR (34%). The causes of death differed by region. In conclusion, the elephant population in the Nilgiris is at risk and needs stringent protection; the mortality database should be systematised; forensic capabilities upgraded, and detection of carcasses improved.

Keywords: Asian Elephant, endangered species, India, ivory poaching, Mudumalai Tiger Reserve, Nilgiri Biosphere Reserve, Nilgiri North Division, wildlife forensics.

DOI: http://dx.doi.org/10.11609/JoTT.o4332.7436-42

Editor: Mewa Singh, University of Mysore, Mysuru, India. **Date of publication:** 26 June 2015 (online & print)

Manuscript details: Ms # o4332 | Received 13 February 2015 | Finally accepted 01 June 2015

Citation: Davidar, P., C. Rosset, P.C. Mammen, J.P. Puyravaud, R. Srivastava & B. Wright (2015). Mortality records (1979–2011) shed light on threats to Asian Elephants *Elephas maximus* Linnaeus, 1758 (Mammalia: Proboscidea: Elephantidae) in Nilgiris, southern India. Journal of Threatened Taxa 7(8): 7436–7442; http://dx.doi.org/10.11609/JoTT.o4332.7436-42

Copyright: © Davidar et al. 2015. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

Funding: US Fish and Wildlife Service (ASE-0485).

Competing interests: The authors declare no competing interests.

For **Author Details and Author Contribution** see end of this article.

Acknowledgements: This study was funded by a grant from the US Fish and Wildlife Service (ASE-0485) to study elephant habitats of the Nilgiri Biosphere Reserve. We thank the Tamil Nadu Forest Department (TNFD) for granting us permission to carry out this study. We especially grateful to the Field Director, Mudumalai Tiger Reserve, the Divisional Forest Officers of the Nilgiri North and South Divisions for permitting access to their database. The field staff of TNFD helped track documents and location of carcasses. Mr. Wilfred Lamuel and Mr. J. Duraimurugan provided field support, and Mr. Tito Joseph collated data from WPSI’s wildlife crime database.
INTRODUCTION

The Asian Elephant *Elephas maximus* is under threat of extinction from habitat loss and poaching (Lomolino & Channell 1995; Choudhury et al. 2008) and now survives in fragmented habitats which decrease its long-term viability (Leimgruber et al. 2003). India is estimated to host approximately 60% of all Asian Elephants (Riddle 2010). The largest population, estimated to be around 6000 elephants, is in the Nilgiris-Eastern Ghats (NEG) region of southern India, which is around 15000km² in area (Baskaran 2013).

Ivory poaching, habitat loss and fragmentation are major threats to elephant populations in India (Leimgruber et al. 2003; Choudhury et al. 2008), and while ivory poaching has recently declined, its impact on sex ratios still lingers (Baskaran 2013). Armbruster et al. (1999) showed that there is a lag period before a slowly-declining species such as the Asian Elephant can be driven to extinction. Therefore, it is crucial to identify and ameliorate threats before they become serious. In this study we examined mortality records of 291 Asian elephants from the Mudumalai Tiger Reserve (MTR), the Nilgiri North Division (NND) and Nilgiri South Division (NSD), which are contiguous forests and form part of the Nilgiris-Eastern Ghats elephant range in southern India. The database covered a period of 33 years (1979–2011), which included a period of intensive ivory poaching in the 80s, 90s and early 2000s (Daniel et al. 1987; Prasad 2000), probably causing about 45–68 % of male elephant (tusker) deaths in Tamil Nadu (Sukumar 1989).

Illegal killings for the ivory trade are a source of elephant mortality, and the MIKE program (Monitoring the Illegal Killing of Elephants) was established to assess trends in illegal killings in range states to help CITES (Convention on International Trade in Endangered Species, http://www.cites.org) policy on ivory trade (Burn et al. 2011). Moreover this data being from forests contiguous to two MIKE sites (Burn et al. 2011) could augment understanding threats to this population.

We looked at: (1) patterns and causes of elephant mortality over time, by age class, gender and across areas with different levels of protection; and (2) human-caused deaths over time and in reserves with differing levels of protection. We tested the null hypothesis that causes of death would not differ over time, with age, gender, and levels of protection.

MATERIALS AND METHODS

Study area

The databases were from the contiguous forests of the Mudumalai Tiger Reserve (321km²), the Nilgiri North Division (448km²) and the Nilgiri South Division (199km²), which together cover an area of 968km² (Fig. 1). MTR being a Tiger Reserve falls under IUCN category II (National Park), whereas NND and NSD consist of Reserved Forests (Indian Forest Act 1927, http://envfor.nic.in/legis/forest/forest4.html) which come under IUCN category V (protected landscape) if they are buffer zones of protected areas (http://www.iucn.org/about/work/programmes/gpap_home/gpap_quality/gpap_pacategories, viewed 26 January 2015).

MTR is located along the west of the Nilgiris District, and is contiguous with the Reserved Forests (RF) of NND towards the east and the northern slopes of the upper Nilgiri Plateau and has an average elevation of ~950m. The higher altitude RFs (> 2000m) towards the west and south such as Upper Bhavani, Korakundah, Kundah, and Naduvattam fall under the NSD and have a matrix of montane evergreen forests, grasslands and plantations (Fig. 1).

The database

We compiled the database from the regional offices of the Tamil Nadu Forest Department (TNFD, http://www.forests.tn.nic.in/WildBiodiversity/np_mnp.html); the Wildlife Protection Society of India, New Delhi (WPSI, http://www.wpsi-india.org/wpsi/index.php) and the Nilgiri Wildlife and Environment Association (NWEA, http://en.wikipedia.org/wiki/Nilgiri_Wildlife_and_Environment_Association). There were 183 records from TNFD, 82 from WPSI and nine from NWEA. Seventeen records were common to TNFD and WPSI.

The records included information on the date when the animal was discovered, its sex, estimated age and age category (adult, sub adult, juvenile or calf), the range/beat/division in which it was found, and possible causes of death. For some sites verification was done using range office records.

The causes of death were described in official records as ‘one female elephant of 32 years died at this place suffered injuries. Post-mortem done. Death due to internal haemorrhage. Bullet found’ etc. In 248 instances, the records noted the case as ‘wildlife offense’ and listed as ‘poaching’, ‘disease’, ‘electrocution’, ‘hit by vehicle’, ‘others’, ‘unknown’ and minor categories such as ‘fell off rock’, ‘injured’. From the wildlife offense listed and the reason for the death as per official veterinarian
report, we deduced the cause of death and grouped the records into six categories: ‘poaching’, ‘accident’, ‘attack by wild male’, ‘disease’, ‘other’ and ‘unknown’. Accidental deaths were caused by vehicle hits, electrocution, falling down when negotiating steep slopes. In some cases the wildlife offense under which the death was categorized differed from the reason for the death. Comparing both sources of information we shifted 15 cases from wildlife offense category ‘unknown’ and ‘others’ to disease, six cases from ‘attack by wild male’, ‘others’ and ‘unknown’ to poaching since the elephants had been noted as having been shot or tusks removed, six cases from unknown’ and ‘others’ to ‘accident’ since the animals had been electrocuted or suffered shock, hemorrhage and had collapsed. For instance, in many cases of death by trauma or disease, the wildlife offense was left blank or listed as ‘other’, in which case we placed these either under ‘disease’ or ‘accident’. In the case of an obvious disease, it was noted as such, and in the case of trauma such as hemorrhage and internal wounds, it was marked as ‘accident’. Cases of possible death due to colon compaction and caecal impaction was left blank or listed as ‘unknown’ in the wildlife offense category, and was placed under ‘disease’ in our database. The category ‘other’ included old elephants, females that died while calving, and calves that had lost their mothers or had been abandoned.

Patterns of mortality over time

The data were arranged in chronological order from the earliest to the latest record and grouped into 11-year intervals: 1979–1989, 1990–2000 and 2001–2011 called ‘decades’ for simple usage. Based on the information given each record was classified as that of a calf (≤1 year), juvenile (>1 to <5 years), sub adult (5-15 years) and adult (≥15 years), (after Sukumar & Santipillai 1993). We assessed whether the number of deaths, and their reported causes had changed over the three decades.

Comparison of mortality in male and female elephants

We compared the causes of deaths between adult male and female elephants. Where estimated age was noted, we assessed the median age of death and conducted a survivorship analysis.

Comparison of mortality with levels of protection.

We tested whether patterns of mortality and the
reported causes differed between MTR and NND over the three decades. We compared the following regions: 1. Mudumalai Tiger Reserve, 2. the Gudalur region, 3. the Masinagudi-Mavinahalla-Chemenatham belt, 4. Bokkapuram-Singara, 5. Nilgiris south, 6. Sigur-Anaikatti, 7. Coonoor-Kallar, to see whether they differed with regard to causes of death. We did not use data from NSD due to paucity of records.

Patterns of human caused deaths over the years
All poaching cases and 13 of the accidents such as electrocution, and hit by vehicles came under ‘human caused deaths’. We assessed whether the proportion of human caused deaths had changed over time.

Data analyses
The data were analysed using non-parametric statistics. Categories with fewer than five samples were not included in the analysis. We used the survival analysis to assess mean age of death for adult males and females. All analyses were conducted using SYSTAT (SPSS 2000).

RESULTS

General patterns
The majority of records were of adults (209, 72%), followed by juveniles (33, 11%), sub adults (27, 9%) and calves (22, 8%). Of 151 records with estimates of age, 70 (46%) were adults, 43 were calves and juveniles (<5 years) and the rest were sub adults (Fig. 2). Among adults mortality was highest between 20–30 years of age with a decrease after around 35 years (Fig. 2).

The deaths were attributed to poaching (117, 40%), unknown causes (91, 31%), diseases (38, 13%), accidents (35, 12%) and other minor categories (Table 1). In the ‘unknown’ category 14 carcasses were found in highly decomposed state and therefore a cause could not be attributed. There were significant differences in the causes of mortality by age categories (Non parametric ANOVA (Friedman two-way analysis \(=8.38, \text{df}=3, p =0.038\)), Table 1), with adults succumbing disproportionately to poaching (45%).

Patterns of mortality over time
Overall, elephant deaths increased over time, from 57 in 1979–1989 to 120 in 1990–2000 and 113 in 2001–2011. Deaths due to poaching were highest in 1990 to 2000 (65%) and decreased to 10% in 2001–2011, whereas those due to unknown causes increased significantly from 26% in 1979-1989 to 44% in 2001–2011 (\(\chi^2 = 37.56, \text{df}=2, p<0.0001\)), and diseases increased from 2% in 1979-89 to 25% in 2001–2011 (Table 2). The maximum age reported in the records did not significantly increase.
Table 3. Total records of elephant deaths in Mudumalai Tiger Reserve, and the Reserved Forests of the Nilgiri North and South Divisions over 33 years (1979-2011), with population estimates from literature (Davidar et al. ms) and the percentage of deaths attributed to poaching in MTR and NND.

Forest Sector	Area (km²)	Estimated population size N	Total deaths	Deaths attributed to poaching	% poached
Mudumalai Tiger Reserve	321	~643 (Baskaran 2013)	148	50	34
Nilgiri North Division	448	~419 (Baskaran 2013)	138	65	47
Nilgiri South Division	199	Not known	4	1	-
Total	968	~1000	290	116	40

Table 4. Regional differences in causes of death among wild elephants in the Mudumalai Tiger Reserve (MTR), and Reserved Forests (RF) of the Nilgiris ($\chi^2=19.49$, df=3, $p = 0.0002$). Attack by wild elephants and ‘other’ causes were not included in the chi square analysis.

Causes	Bokkapuram-Singara	Coonoor-Kellar	Gudalur	MTR	Masinagudi-Mavinhal	Nilgiris south	Sigur-Anaikatti	Total
Accident	2	6	5	10	7	3	2	35
Attack wild elephant	0	0	0	2	0	0	2	4
Disease	0	1	1	26	7	0	3	38
Other	0	0	2	3	1	0	0	6
Poaching	2	5	16	50	8	1	34	116
Unknown	7	2	2	57	11	0	12	91
Total	11	14	26	148	34	4	53	290

Figure 3. Elephant death records over three decades from Mudumalai Tiger Reserve (MTR), Nilgiri North Division (NND) and Nilgiri South Division (NSD) forests. The number of records differed significantly between MTR and NND ($\chi^2=15.69$, df=2, $p = 0.0004$).

Comparison of mortality in male and female elephants

The estimated ages of adult males and females differed significantly ($\chi^2=43.62$, df=1, $p<0.0001$). Attack by wild elephants and ‘other’ causes were not included in the chi square analysis. Between 2001 and 2011, 52% of young adults around 20–40 years of age died due to unknown causes, and 24% succumbed to caecal and colon impaction.

Figure 4. Comparison of human caused deaths over the years ($\chi^2=61.41$, df=2, $p<0.0001$) and between MTR and NND ($\chi^2=5.05$, df=2, $p=0.079$).
Mortality records of Asian Elephants in Nilgiris

Davidar et al.

viability of this population in the midst of inhospitable intensive agriculture are serious threats. Maintaining the high human densities, expansion of settlements and within a matrix of human dominated landscapes where for the long term survival of the species. This range lies for the long term survival of the species. This range lies from around 71% in 1979–2000, to 22% in 2001–2011 (χ^2=61.41, df=2, p <0.0001). The overall proportion of human-caused deaths was 42% in MTR and 54% in NND, but differed only marginally when the three decades were compared (χ^2=5.05, df=2, p=0.079, Fig. 4).

Patterns of human caused deaths over the years

Overall human-caused deaths significantly declined to intestinal compaction. Plastics are ubiquitous in the Nilgiri District despite a ban, and are widely dispersed by tourists and tourism operators (What ails the Nilgiris, http://www.keralatourismwatch.org/node/130, viewed 23 July 2013). Plastics cause digestive impaction in livestock (Remi-Adewunmi et al. 2004), and wildlife (Beck & Barros 1991; Moser & Lee 1992; Jacobsen et al. 2010; Kumar & Dhar 2013).

The limitations of the study were that the analyses were confined to recorded deaths whereas many deaths particularly those of younger elephants, and deaths in more remote areas, would not have been detected. Similarly, difficulties in ageing elephants could bias survivorship. In conclusion, detection of deaths need to be improved through regular patrols throughout the reserves; database on elephant deaths should be systematised; forensic capabilities upgraded and elephant populations monitored.

REFERENCES

Armbruster, P., P. Fernando & R. Lande (1999). Time frames for population viability analysis of species with long generations: an example with Asian Elephants. Animal Conservation 2: 69–73.

Baskaran, N. (2013). An overview of Asian Elephants in the Western Ghats, southern India: implications for the conservation of Western
Mortality records of Asian Elephants in Nilgiris

Davidar, P., M. Arjunan, P.C. Mammen, J.P. Garrigues, J.P. Puyravaud & E.R.C. Davidar (2012). Elephant, *Elephas maximus* Linnaeus (Proboscidea: Elephantidae) migration paths in the Nilgiri Hills, India in the late 1970s. *Journal of Threatened Taxa* 5(14): 4854–4870; http://dx.doi.org/10.11609/jott.c3634.4854-70

Baskaran, N., U. Anbarasan & G. Agoramoorthy (2012). India's biodiversity hotspot under anthropogenic pressure: A case study of Nilgiri Biosphere Reserve. *Journal for Nature Conservation* 20: 56–61; http://dx.doi.org/10.1016/j.jnc.2011.08.004

Beck, C.A. & N.B. Barros (1991). The impact of debris on the Florida manatee. *Marine Pollution Bulletin* 22: 508–510; http://dx.doi.org/10.1016/0025-326X(91)90406-I

Burn, R.W., F.M. Underwood & J. Blanc (2011). Global trends and factors associated with the illegal killing of elephants: A hierarchical Bayesian analysis of carcass encounter data. *PLoS ONE* 6(9): e24165; http://dx.doi.org/10.1371/journal.pone.0024165

Choudhury, A., D.K.L. Choudhury, A.A. Desai, J.W. Duckworth, P.S. Easa, A.J.T. Johnsingh, P. Fernando, S. Hedges, M. Gunawardena, F. Kurt, U. Karanth, A. Lister, V. Menon, H. Riddle, A. Rubel & E. Wikramanayake (2008). IUCN SSC Asian Elephant Specialist Group. (http://www.iucnredlist.org/details/7140/0, viewed 25 July 2013).

Clubb, R., M. Rowcliffe, P. Lee, K.U. Mar, C. Moss & G.J. Mason (2008). Compromised survivorship in zoo elephants. *Science* 322: 1649; http://dx.doi.org/10.1126/science.1164298

Daniel, J.C., A.A. Desai, N. Sivaganesan & S. Ramesh Kumar (1987). *The Study of Some Endangered Species of Wildlife and Their Habitats* - The Asian Elephant. Report of the Bombay Natural History, September, BNHS, Bombay.

Davidar, P., M. Arjunan, P.C. Mammen, J.P. Garrigues, J.P. Puyravaud & K. Roessingh (2007). Forest degradation in the Western Ghats biodiversity hotspot: resource collection, livelihood concerns and sustainability. *Current Science* 93: 1573–1578.

Davidar, P., S. Sahoo, P.C. Mammen, P. Acharya, J.P. Puyravaud, M. Arjunan, J.P. Garrigues & K. Roessingh (2010). Assessing the extent and causes of forest degradation in India: Where do we stand? *Biological Conservation* 143: 2937-2944; http://dx.doi.org/10.1016/j.biocon.2010.04.032

Davidar, E.R.C., P.R. Davidar, P. Davidar & J.P. Puyravaud (2012). Elephant, *Elephas maximus* Linnaeus (Proboscidea: Elephantidae) migration paths in the Nilgiri Hills, India in the late 1970s. *Journal of Threatened Taxa* 5(14): 3284–3293; http://dx.doi.org/10.11609/jott.c3634.3284-93

Desai, A.A. (1991). The home range of elephants and its implications for management of the Mudumalai Wildlife Sanctuary, Tamil Nadu. *Journal of the Bombay Natural History Society* 88: 145–156.

Desai, A.A. & N. Baskaran (1996). Impact of human activities on the ranging behavior of elephants in the Nilgiri Biosphere Reserve, south India. *Journal of the Bombay Natural History Society* 93: 559–569.

Jacobsen, J.K., L. Massey & F. Gulland (2010). Fatal ingestion of floating net debris by two Sperm Whales (*Physeter macrocephalus*). *Marine Pollution Bulletin* 60: 765–767; http://dx.doi.org/10.1016/j.marpolbul.2010.03.008

Kumar, V. & P. Dhar (2013). Foreign body impaction in a captive Sambhar (*Rusa unicolor*). *Veterinary World* 6: 49–50; http://dx.doi.org/10.5455/vetworld.2013.49-50

Leimgruber, P., J.B. Gagnon, C. Wemmer, D.S. Kelly, M.A. Songer & E.R. Selig (2003). Fragmentation of Asia's remaining wildlands: implications for Asian Elephant conservation. *Animal Conservation* 6: 347–359; http://dx.doi.org/10.1017/S1367943003003421

Lomolino, M.V. & R. Channell (1995). Splendid isolation: patterns of geographic range collapse in endangered mammals. *Journal of Mammalogy* 76: 335–347; http://dx.doi.org/10.2307/1382345

Moser, M.L. & D.S. Lee (1992). A fourteen-year survey of plastic ingestion by western North Atlantic seabirds. *Colonial Waterbirds* 15: 83–94.

Prasad, M.M. (2000). Where Does the Forest Begin? *Economic and Political Weekly* 4138–4140.

Remi-Adejumobi, B.D., E.O. Gyang & A.O. Osinowo (2004). Abattoir survey of foreign body rumen impaction small ruminants. *Nigerian Veterinary Journal* 25: 32–38; http://dx.doi.org/10.4314/nvj.v25i2.3472

Richards, N. (ed.) (2011). Carbofuran and Wildlife Poisoning: A Global Perspectives and Forensic Approaches. John Wiley & Sons Inc.

Silori, C.S. & B.K. Mishra (2001). Assessment of livestock grazing pressure in and around the elephant corridors in Mudumalai Wildlife Sanctuary, south India. *Biodiversity and Conservation* 10: 2181–2195; http://dx.doi.org/10.1023/A:1013285920656

SPSS Inc. (2000). SYSTAT, Version 10. SPSS Inc., Chicago, IL.

Sukumar, R. (1989). *The Asian Elephant: Ecology and Management*. Cambridge University Press.

Sukumar, R. & C. Santapillai (1993). Asian Elephant in Sumatra; population and habitat viability analysis. Gojeh 11: 59–63.

The Indian Forest Act (1927). *http://envfor.nic.in/legis/forest/forest4.html* (viewed 09 February 2015).

Author Details: Priya Davidar is a Professor at Pondicherry University and is an ecologist and conservation biologist presently working on endangered species such as the Asian Elephant and Nilgiri Tahr. CLÉMENT ROSSIAT conducted the preliminary landscape analysis and is now working as Quality, Environmental health and Safety manager for a research department specialised in natural risk in Grenoble, France. His love for wildlife and his passion for protecting endangered and threatened species inspired him to study ecology and to contribute to conservation of taxa. JEAN PHILIPPE PUYRAVAUD is interested in conservation planning at the landscape level for endangered species and prepared the map. PRATHIJEESH CHACKO MAMMEN carried out research on land use changes and attitudes towards elephants among local communities in the Nilgiri Biosphere Reserve, and helped collate the database from the records of the Tamil Nadu Forest Department. RAKESH SWARNAWARA IFS, Additional Principal Chief Conservator of Forests, Government of Tamil Nadu is currently the Director of the Tamil Nadu Forest Academy at Coimbatore. He served as a Field Director of the Tamil Nadu Forest Department. Rajeev Srivastava IFS, Additional Principal Chief Conservator of Forests, Government of Tamil Nadu is currently the Director of the Tamil Nadu Forest Department. Pratheesh Chacko Mammen prepared the first draft of the manuscript and all the authors contributed to subsequent drafts.

Author Contribution: Priya Davidar prepared the first draft of the manuscript and all the authors contributed to subsequent drafts.