A REMARK ON THE MODIFIED ZAKHAROV-KUZNETSOV EQUATION IN THREE SPACE DIMENSIONS

AXEL GRÜNROCK

Abstract. The Cauchy Problem for the modified Zakharov-Kuznetsov equation in three space dimensions is shown to be locally well-posed in $H^s(\mathbb{R}^3)$ for $s > \frac{1}{2}$. Combined with the conservation of mass and energy this result implies global well-posedness for small data in $H^1(\mathbb{R}^3)$.

1. Introduction and main result

The Cauchy Problem for the modified Zakharov-Kuznetsov (mZK) equation in two space dimensions

\begin{equation}
\label{mZK2D}
 u_t + \partial_x^3 u + \partial_x \partial_y u + \partial_x (u^3) = 0, \quad u(0, x, y) = u_0(x, y), \quad (x, y) \in \mathbb{R}^2
\end{equation}

has been studied extensively in recent years. Local well-posedness in $H^1(\mathbb{R}^2)$ was obtained in 2003 by Biagioni and Linares, see [1]. Combined with the conservation of mass and energy their local result implies global well-posedness, provided the data are sufficiently small in $L^2(\mathbb{R}^2)$. The local result was generalized to data in $H^s(\mathbb{R}^2)$, $s > \frac{3}{4}$ by Linares and Pastor in [7], the same authors showed global well-posedness in $H^s(\mathbb{R}^2)$, $s > \frac{5}{6}$, under an additional smallness assumption on the L^2-norm of the data [8].

Further progress on the local problem was reached by Ribaud and Vento in [11], who established well-posedness in $H^s(\mathbb{R}^2)$ for $s > \frac{1}{4}$. Since the mZK-equation is a higher dimensional generalization of the modified Korteweg-de Vries equation, for which the Cauchy Problem is known to be ill-posed in the C^0-uniform sense in $H^s(\mathbb{R})$ with $s < \frac{1}{4}$ (see [9]), this may be the best possible result except for the endpoint $s = \frac{1}{4}$. On the other hand the critical space obtained by scaling considerations for mZK in two dimensions is $L^2(\mathbb{R}^2)$. So local well-posedness of [11] in $H^s(\mathbb{R}^2)$ with $0 \leq s \leq \frac{1}{4}$ is still an open problem.

In contrast to the two dimensional case, no results concerning the Cauchy Problem for the mZK-equation in three space dimensions are known, yet. In this short note we shall apply mostly well-known linear and a new bilinear estimate for solutions of the corresponding linear equation to establish the following result.

Theorem 1. The Cauchy-Problem for the modified Zakharov-Kuznetsov equation

\begin{equation}
\label{mZK3D}
 u_t + \partial_x \Delta u + \partial_x (u^3) = 0, \quad u(0, x, y) = u_0(x, y)
\end{equation}

with $x \in \mathbb{R}$ and $y \in \mathbb{R}^2$ is locally well-posed for data $u_0 \in H^s(\mathbb{R}^3)$, provided that $s > \frac{1}{7}$.

2000 Mathematics Subject Classification. Primary: 35Q53. Secondary: 37K40.

Key words and phrases. modified Zakharov-Kuznetsov equation – local and global well-posedness – Fourier restriction norm method.
We remark that from the scaling point of view this theorem covers the whole subcritical range. Combining the above local result with the conservation of mass and energy as in [2] p. 3 we obtain global well-posedness for small data in $H^s(\mathbb{R}^3)$.

Corollary 1. Let $u_0 \in H^s(\mathbb{R}^3)$ with $s \geq 1$. Then there exists $\varepsilon > 0$, such that for $\|u_0\|_{H^s} < \varepsilon$ the local solution of the Cauchy Problem [2] guaranteed by Theorem [7] extends globally in time.

2. Estimates for Free Solutions of the Linear Equation

Let $U_\phi(t)u_0$ denote the solution of the Cauchy Problem for the linear equation

$$u_t + \partial_x \Delta u = 0, \quad u(0, x, y) = u_0(x, y),$$

where $t \in \mathbb{R}$, $x \in \mathbb{R}$, $y \in \mathbb{R}^2$ and $\Delta = \partial_x^2 + \Delta_y$, $\Delta_y = \partial_y^2 + \partial_y^2$. The phase function is given here by $\phi(\xi, \eta) = \xi(\xi^2 + |\eta|^2)$, where $(\xi, \eta) \in \mathbb{R} \times \mathbb{R}^2$ are the dual variables corresponding to $(x, y) \in \mathbb{R} \times \mathbb{R}^2$. Then the Strichartz type estimate

$$\|D_x^{\theta/2} U_\phi u_0\|_{L_t^4 L_{xy}^3} \lesssim \|u_0\|_{L_{xy}^2},$$

is valid for $0 < \varepsilon < 1$, $0 < \theta < (1 + \frac{1}{4})^{-1}$, $\frac{2}{p} = \theta(1 + \frac{1}{4})$ and $\frac{1}{q} = \frac{1 - 2\theta}{2}$. It was obtained by Linares and Saut, see [9, Proposition 3.1]. The L^2-estimate corresponding to $\theta = \frac{1}{2}$ and $\varepsilon = 0$ is excluded in [4] but nonetheless true. In fact, modifying the proof of Theorem 2 in [4] appropriately we obtain the bilinear estimate

$$\|U_\phi u_0 U_\phi v_0\|_{L_{xy}^4} \lesssim \|D_x^{\frac{1}{2}} u_0\|_{L_y^2} \|(D_x)^s v_0\|_{L_y^2},$$

provided $s > \frac{1}{2}$. Especially for $u_0 = v_0$ we get with $P_{\Delta} = F_x^{-1} \chi_{(\xi < 2^s)} F_x$ that

$$\|P_{\Delta} U_\phi u_0\|_{L_t^4 L_{xy}^3} \lesssim \|P_{\Delta} u_0\|_{L_{xy}^3},$$

Rescaling we see that also

$$\|P_{\Delta} U_\phi u_0\|_{L_t^4 L_{xy}^3} \lesssim \|P_{\Delta} u_0\|_{L_{xy}^3},$$

and hence by the Littlewood Paley Theorem

$$\|U_\phi u_0\|_{L_{xy}^4} \lesssim \|u_0\|_{L_{xy}^2}.$$

Apart from the Strichartz type estimates and their bilinear refinement we can rely on a local smoothing effect of Kato type in order to deal with the derivative in the nonlinearity. As was shown by Ribaud and Vento, in the case of the linear ZK equation [3] it reads

$$\|\nabla_{xy} U_\phi u_0\|_{L_t^\infty L_{xy}^3} \lesssim \|u_0\|_{L_{xy}^2},$$

see Proposition 3.1 of [10]. To complement the use of the local smoothing effect we combine a Sobolev embedding in the time variable with the L^4-Strichartz estimate in order to obtain the following maximal function inequality. The argument given below was taken from [5] Proof of Theorem 2.4.

$$\|U_\phi u_0\|_{L_{xy}^4 L_{t}^\infty} \lesssim \|(D_x)^{\frac{1}{2}} U_\phi u_0\|_{L_{xy}^4} \lesssim \|u_0\|_{H^{s}}, \quad s > \frac{3}{4}$$
3. Proof of the local result for modified ZK

Now let \(X_{s,b} \) denote the Bourgain space associated with the phase function \(\phi(\xi,\eta) = \xi(\xi^2 + |\eta|^2) \), more precisely let

\[
X_{s,b} = \{ u \in S'(\mathbb{R}^3) : \| u \|_{X_{s,b}} < \infty \},
\]

where, with \((\xi,\eta,\tau) \in \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R},\)

\[
\| u \|_{X_{s,b}} = \| (\xi,\eta,\tau)^s (\gamma - \phi(\xi,\eta)\hat{u})^b \|_{L^2_{\xi,\eta,\tau}}.
\]

Then by the transfer principle the estimates for free solutions discussed in Section 2 imply corresponding estimates in \(X_{s,b} \) - norms for \(b > \frac{1}{2} \). For example we have

\[
\| u \|_{L^1_{t,x,y}} \lesssim \| u \|_{X_{0,b}}, \tag{9}
\]

\[
\| \nabla_{x,y} u \|_{L^\infty_t L^2_x} \lesssim \| u \|_{X_{0,b}}, \tag{10}
\]

and, for \(s > \frac{1}{2}, \)

\[
\| u \|_{L^3_t L^6_x} \lesssim \| u \|_{X_{s,b}}. \tag{11}
\]

The bilinear estimate (5) is converted into

\[
\| uv \|_{L^2_{x,y}} \lesssim \| D_{x,y}^{-\frac{3}{2}} u \|_{X_{0,b}} \| (D_x)^s v \|_{X_{0,b}}, \tag{12}
\]

where \(s > \frac{1}{2} \) and again \(b > \frac{1}{2} \) are assumed. In the sequel we proceed similar as in \cite{3} Proof of Theorem 2) and combine these estimates with duality and interpolation arguments to obtain the following Proposition, which in turn implies Theorem 1

Proposition 1. For any \(s > \frac{1}{2} \) there exists a \(b' > -\frac{1}{2} \), such that for all \(b > \frac{1}{2} \) the estimate

\[
\| \partial_x (uw) \|_{X_{s,b'}} \lesssim \| u \|_{X_{s,b}} \| v \|_{X_{s,b}} \| w \|_{X_{s,b}}
\]

holds true.

Proof. Dualizing the bilinear estimate (12) we obtain for \(s, b > \frac{1}{2} \)

\[
\| D_{x,y}^{-\frac{3}{2}} (uw) \|_{X_{0,b'}} \lesssim \| u \|_{L^2_{x,y}} \| (D_x)^s v \|_{X_{0,b}}. \tag{13}
\]

Here and in (12) we clearly may replace the \((D_x)^s \) on the right by \((\nabla_{x,y})^s \). Now pointwise estimates on Fourier side give

\[
\| \partial_x (uw) \|_{X_{s,b'}} \lesssim \| D_{x,y}^{-\frac{3}{2}} (D_x^s (\nabla_{x,y})^s u) w \|_{X_{0,b}} + \| D_{x,y}^{-\frac{3}{2}} (D_x^s u ((\nabla_{x,y})^s v) w) \|_{X_{0,b}} + \ldots,
\]

where the dots indicate similar terms. For the first contribution we use first (13) and then (12) to obtain the upper bound

\[
\| (D_x^s (\nabla_{x,y})^s u) w \|_{X_{0,b}} \lesssim \| u \|_{X_{s,b}} \| v \|_{X_{s,b}} \| w \|_{X_{s,b}}.
\]

For the second contribution we start again with (13) and continue with Hölder’s inequality and two applications of (9) to see that it is bounded by

\[
\| (D_x^s u ((\nabla_{x,y})^s v) w) \|_{X_{0,b}} \lesssim \| u \|_{X_{s,b}} \| v \|_{X_{s,b}} \| w \|_{X_{s,b}}.
\]

Thus we have achieved
and third factor. The second contribution is estimated by Kato smoothing for the first and by the maximal function estimate for the second estimate for the third factor. This shows that for
\[\|\langle \nabla \rangle^s u \|_{L^2_{x,t}} \lesssim \|u\|_{X_{s,b}}\|v\|_{X_{s,b}}\|w\|_{X_{s,b}}, \]
where \(s, b > \frac{1}{2} \). It remains to replace the \(-b < -\frac{1}{2}\) on the left by a \(b' > -\frac{1}{2} \). For that purpose we estimate for \(\sigma > \frac{3}{4} \):

\[
\|\langle \nabla xy \rangle^\sigma \partial_x (uvw)\|_{L^2_{x,t}} \lesssim \|\langle \nabla xy \rangle^\sigma \partial_x u\|_{L^2_{x,t}} + \|\partial_x u\|_{L^2_{x,t}} \|\langle \nabla xy \rangle^\sigma v\|_{L^2_{x,t}} + \ldots \\
\lesssim \|\langle \nabla xy \rangle^\sigma \partial_x u\|_{L^2_{x,t}} \|\nabla^\sigma u\|_{L^2_{x,t}} \|\nabla^\sigma v\|_{L^2_{x,t}} \|\nabla^\sigma w\|_{L^2_{x,t}} \\
+ \|\partial_x u\|_{L^2_{x,t}} \|\langle \nabla xy \rangle^\sigma v\|_{L^2_{x,t}} \|\nabla^\sigma u\|_{L^2_{x,t}} \|\nabla^\sigma v\|_{L^2_{x,t}} + \ldots
\]

For the first contribution we get the upper bound \(\|u\|_{X_{s,b}}\|v\|_{X_{s,b}}\|w\|_{X_{s,b}} \) by Kato smoothing for the first and by the maximal function estimate for the second and third factor. The second contribution is estimated by

\[
\|\partial_x u\|_{L^2_{x,t}} \|\langle \nabla xy \rangle^\sigma v\|_{L^2_{x,t}} \|\langle \nabla xy \rangle^\sigma w\|_{L^2_{x,t}} \lesssim \|u\|_{X_{s,b}}\|v\|_{X_{s,b}}\|w\|_{X_{s,b}},
\]
where we have used a Sobolev embedding in \(x \) and the \(L^4 \)-Strichartz estimate for the first, the same Strichartz estimate for the second and the maximal function estimate for the third factor. This shows that for \(b > \frac{1}{2} \) and \(\sigma > \frac{3}{4} \)

\[
\|\langle \nabla xy \rangle^\sigma \partial_x (uvw)\|_{L^2_{x,t}} \lesssim \|u\|_{X_{s,b}}\|v\|_{X_{s,b}}\|w\|_{X_{s,b}}.
\]

Finally interpolation among (14) and (15) gives the claimed estimate.

\[\Box \]

References

[1] Biagioni, H. A.; Linares, F. Well-posedness results for the modified Zakharov-Kuznetsov equation. Nonlinear equations: methods, models and applications (Bergamo, 2001), 181–189, Progr. Nonlinear Differential Equations Appl., 54, Birkhäuser, Basel, 2003
[2] Farah, Luiz; Linares, Felipe, Pastor, Ademir A note on the 2D generalized Zakharov-Kuznetsov equation: local, global, and scattering results. J. Differential Equations 253 (2012), no. 8, 2558-2571
[3] Grünrock, Axel On the Cauchy-problem for generalized Kadomtsev-Petviashvili-II equations. Electron. J. Differential Equations 2009, No. 82, 9 pp
[4] Grünrock, A., Paanthoe, M., Silva, J.: On KP-II type equations on cylinders. Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 6, 2335–2358
[5] Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis: Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J. 40 (1991), 33–69
[6] Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106 (2001), no. 3, 617633
[7] Linares, Felipe; Pastor, Ademir Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation. SIAM J. Math. Anal. 41 (2009), no. 4, 1323–1339
[8] Linares, Felipe; Pastor, Ademir Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation. J. Funct. Anal. 260 (2011), no. 4, 1060–1085.
[9] Linares, Felipe; Saut, Jean-Claude The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete Contin. Dyn. Syst. 24 (2009), no. 2, 547–565
[10] Ribaud, Francis; Vento, Stephane Well-posedness results for the 3D Zakharov-Kuznetsov equation. Preprint, [arXiv:1111.2850v1]
[11] Ribaud, Francis; Vento, Stephane A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations. C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 499–503