Reaction mechanism in odd-even staggering of reaction cross sections

Satoru Sasabe, Takuma Matsumoto, Shingo Tagami, Naoya Furutachi, Kosho Minomo, Yoshifumi R. Shimizu, and Masanobu Yahiro

1Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
2Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
(Dated: May 8, 2013)

Introduction. Interaction cross section σ_1 and reaction cross section σ_R are an important tool of determining radii of unstable nuclei. Actually, the halo structure as an exotic property was reported for unstable nuclei like ^{11}Li through analyses of measured σ_1 [1,2]. Very recently, σ_1 was measured for Ne isotopes [3] and it is suggested by the analyses [4,5] that ^{31}Ne is a halo nucleus with large deformation.

The difference between σ_1 and σ_R is considered to be small for scattering of unstable nuclei at intermediate energies [6]. The reaction cross section is nearly proportional to a radius of projectile; for example, see Ref. [6] for detailed analyses. Meanwhile, it is well known that pairing correlations are important particularly in even-N nuclei. The correlations become essential in weakly bound nuclei, since they are not bound without the correlations. Effects of the correlations on nuclear radii of unstable nuclei were investigated by the Hartree-Fock Bogoliubov (HFB) method [7]. In the mean-field picture, the correlations make the quasi-particle energy larger and hence reduce the root-mean-square radius of the HFB density. Obviously, this effect is conspicuous for unstable nuclei with the separation energy smaller than the gap energy. Thus, the pairing correlation suppresses the growth of halo structure for even-even unstable nuclei. This is now called the pairing anti-halo effect.

The pairing anti-halo effect is an interesting phenomenon, but any clear evidence is not shown for the effect yet. Very recently, however, Hagino and Sagawa suggested that observed odd-even staggerings of σ_R are possible evidence of the effect [8-10]. They introduced the staggering parameter [10]

$$\gamma_3 = -\frac{\sigma_R(A) - 2\sigma_R(A + 1) + \sigma_R(A + 2)}{2},$$

(1)

where the mass number A of projectile is assumed to be even. In Ref. [8], the staggering was analyzed with the HFB method for $^{30,31,32}\text{Ne}+^{12}\text{C}$ scattering at 240 MeV/A [3] and with the three-body model for $^{14,15,16}\text{C}+^{12}\text{C}$ scattering at 83 MeV/A [11]. The analyses are successful in reproducing observed staggerings [3,11], although the reaction calculations are based on the Glauber model.

In this paper, we reanalyze not $^{30,31,32}\text{Ne}$ but $^{14,15,16}\text{C}$ scattering in order to focus our attention on the reaction mechanism, since ^{15}C has a simpler structure than ^{31}Ne in the sense that the first excited energy of ^{14}C as a core nucleus is much larger than that of ^{30}Ne. For $^{14,15,16}\text{C}$, γ_3 is 163 ± 52 mb and about 10% of $\sigma_R(15\text{C}) = 1319 \pm 40$ mb [11]. Thus, the pairing anti-halo effect may be comparable with the projectile-breakup and nuclear-medium effects that are not taken into account in the previous analysis. Therefore, we investigate these effects on the staggering, using the continuum-discretized coupled-channels method (CDCC) [12-14]. CDCC for two-body (three-body) projectiles is often called three-body (four-body) CDCC; in the naming the target degree of freedom is taken into account. This is the first application of four-body CDCC to ^{16}C.

Theoretical framework. Following Ref. [8], we assume the $n + ^{14}\text{C}$ two-body model for ^{15}C and the $n + n + ^{14}\text{C}$ three-body model for ^{16}C. The three-body model of ^{16}C is a simple model for treating pairing correlations between extra two neutrons. In the present calculation, breakup reactions of ^{15}C and ^{16}C on ^{12}C are described by the $n + ^{14}\text{C} + ^{12}\text{C}$ three-body model and the $n + n + ^{14}\text{C} + ^{12}\text{C}$ four-body model, respectively. The Schrödinger equation is defined as

$$(H - E)\Psi = 0$$

(2)

for the total wave function Ψ, where E is an energy of the total system. The total Hamiltonian H is defined by

$$H = K_R + U + h,$$

(3)

where h denotes the internal Hamiltonian of ^{15}C or ^{16}C, R is the center-of-mass coordinate of the projectile relative to a ^{12}C target. The kinetic energy operator associated with R is
represented by K_{R}, and U is the sum of interaction between the constituents in the projectile and the target defined as

$$U = U_{n}(R_{n}) + U_{14C}(R_{14C}) + \frac{e^{2}Z_{P}Z_{T}}{R},$$

(4)

for 15C and

$$U = U_{n_{1}}(R_{n_{1}}) + U_{n_{2}}(R_{n_{2}}) + U_{14C}(R_{14C}) + \frac{e^{2}Z_{P}Z_{T}}{R},$$

(5)

for 16C, where U_{x} is the nuclear part of the optical potential between x and 12C as a function of the relative coordinate R_{x}.

The optical potential U_{x} is constructed microscopically by folding the Melbourne g-matrix nucleon-nucleon interaction [15] with densities of x and 12C. For 12C, the proton density is obtained phenomenologically from the electron scattering [16], and the neutron density is assumed to be the same as the proton one, since the proton root-mean-squared (RMS) radius deviates from the neutron one only by less than 1% in the HFB calculation. For 15C, the matter density is determined by the HFB calculation with the Gogny-D1S interaction [17], where the center-of-mass correction is made in the standard manner [6]. As shown latter, the total reaction cross section calculated with the folding 14C-12C potential U_{14C} is good agreement with the experimental data for the 14C + 12C scattering at 83 MeV/A. The Melbourne g-matrix folding method is successful in reproducing nucleon-nucleus and nucleus-nucleus elastic scattering systematically [16-14]. The folding potentials thus obtained include the nuclear-medium effect. CDCC with these microscopic potentials is the microscopic version of CDCC.

In the present system, Coulomb breakup is quite small, since the projectile (P) and the target (T) are light nuclei and hence the Coulomb barrier energy between P and T is much smaller than the incident energy considered here. We then neglect Coulomb breakup, as shown in Eq. (5), where Z_{P} and Z_{T} are the atomic numbers of nuclei P and T, respectively.

The $n-^{14}$C interaction in h of 15C is taken as the same interaction as in Ref. [3], which well reproduces the properties of ground and 1st-excited states in 15C. For the $n + n + ^{14}$C system, we use the Bonn-A interaction [19] between two neutrons and take the same $n-^{14}$C interaction as mentioned above. Furthermore the effective three-body interaction is introduced to reproduce the measured binding energy of 16C. Eigenstates of h are obtained with numerical techniques of Ref. [22], that is, the orthogonality condition is imposed. Now we introduce the dimensionless staggering parameter Γ_{rds} for the RMS radii \bar{r} of P and T:

$$\Gamma_{rds} = \frac{\bar{R}^{2}(A + 1) - [\bar{R}^{2}(A) + \bar{R}^{2}(A + 2)]/2}{[\bar{R}^{2}(A + 2) - \bar{R}^{2}(A)]/2},$$

(6)

with

$$\bar{R}(A) = \bar{r}(A) + \bar{r}(T).$$

(7)

Here $\Gamma_{rds} \geq 1$ when $\bar{r}(A + 1) \geq \bar{r}(A + 2)$. Matter radii of 14,15,16C are summarized in Table I. The present two- and three-model yields $\Gamma_{rds} = 1.3$ for 14,15,16C.

In CDCC, eigenstates of h consist of finite number of discrete states with negative energies and discretized-continuum states with positive energies. The Schrödinger equation (2) is solved in a modelspace P spanned by the discrete and discretized-continuum states:

$$P(H - E)\Psi_{CDCC} = 0.$$

(8)

Following Ref. [22], we obtain the discrete and discretized continuum states by diagonalizing h in a space spanned by the Gaussian basis functions. This discretization is called the pseudo-state method. The elastic and discrete breakup S-matrix elements are obtained by solving the CDCC equation (8) under the standard asymptotic boundary condition [12, 23]. In actual calculations, we neglect the projectile spin, since the effect on σ_{R} is small. We take the angular momentum between n and 14C for breakup states of 15C up to g-wave, and 0^{+} and 2^{+} breakup states of 16C.

Now we define the dimensionless staggering parameter also for σ_{R}:

$$\Gamma_{R} = \frac{\sigma_{\gamma_{3}}}{|\sigma_{R}(A + 2) - \sigma_{R}(A)|/2},$$

(9)

where $\Gamma_{R} = 0$ when $\sigma_{R}(A + 1) = |\sigma_{R}(A + 2) + \sigma_{R}(A)|/2$ and $\Gamma_{R} = 1$ when $\sigma_{R}(A + 1) = \sigma_{R}(A + 2)$. When the absolute value of the elastic S-matrix element, $|S_{\gamma_{3}}(L)|$, is 0 for orbital angular momenta L corresponding to the nuclear interior and 1 for those to the nuclear exterior, it is satisfied that $\sigma_{R}(A) \propto \bar{R}^{2}(A)$ [18]. In the black-sphere scattering, Eq. (9) is reduced to $\Gamma_{R} = \Gamma_{rds}$. Once this condition is satisfied, Γ_{R} does not depend on an incident energy E_{in}. Three types of models are considered to investigate the nuclear-medium and projectile-breakup effects on σ_{R}.

- **Model I** is the T-matrix single-folding model that has no nuclear-medium and projectile-breakup effects. The U_{x} are constructed from the Melbourne g-matrix nucleon-nucleon interaction at zero density. The single-channel calculation is done in [8].

- **Model II** is the g-matrix single-folding model that has the nuclear-medium effect but not the projectile-breakup effect. This is the same as Model I, but the density dependence of the Melbourne g-matrix is properly taken.

- **Model III** is the model that has both the nuclear-medium and the projectile-breakup effect. CDCC calculations

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
 & $\bar{r}^{(14}{C)}$ [fm] & $\bar{r}^{(15}{C)}$ [fm] & $\bar{r}^{(16}{C)}$ [fm] \\
\hline
Calc. & 2.51a & 2.87a & 2.83a \\
Exp. & 2.53b & 2.90b & 2.81b \\
\hline
\end{tabular}
\caption{Matter radii of 14,15,16C.}
\end{table}
are done for 15,16C scattering, but the g-matrix single-folding model is taken for 14C scattering, since 14C is a tightly-bound system.

Results. Figure 1 shows σ_R for 14,15,16C$^{+12}$C scattering at 83 MeV/A. Triangle, circle and square symbols stand for the results of Model I, II and III, respectively. Model III well reproduces the experimental data [11], whereas Model I largely overestimates them; here the data are plotted with 2-σ error (95.4% certainty). The nuclear-medium and projectile-breakup effects are thus important for σ_R. Model III yields $\Gamma_R = 0.77$ that is deviated from $\Gamma_{\text{rels}} = 1.3$. When the breakup effect is switched off from Model III, σ_R is reduced from squares to circles. This reduction is most significant for 15C, so that Γ_R is reduced from 0.77 to 0.56. Furthermore, when the medium effect is switched off from Model II, the σ_R are enhanced by about 10% from circles to triangles for all the cases of 14,15,16C. More precisely, the enhancement is 13% for 14,16C but 15% for 15C, and consequently, Γ_R increases from 0.56 to 0.83 by neglecting the medium effect. Thus the breakup and medium effects are nearly canceled for Γ_R. The resultant value $\Gamma_R = 0.83$ is still considerably deviated from $\Gamma_{\text{rels}} = 1.3$. This means that the present scattering are not the black-sphere scattering (BSS) exactly. This effect is referred to as “non-BSS effect” in this paper and is explicitly investigated below.

![Figure 1](image1.png)

FIG. 1: (Color online) Reaction cross sections σ_R for 14,15,16C$^{+12}$C scattering at 83 MeV/A. Triangle, circle and square symbols stand for results of Model I, II and III, respectively. The experimental data are taken from Ref. [11].

Figure 2 shows the absorption probability $P(L) = 1 - |S_0(L)|^2$ and the partial reaction cross section $\sigma_R(L) = (2L + 1)P(L)\pi/K^2$ as a function of L, where iK is an initial momentum of the elastic scattering. Here Model I is taken. For all the 14,15,16C scattering, $P(L)$ behaves as not a step function but a logistic function. Thus the scattering are not the BSS exactly. Furthermore, L dependences of the $P(L)$ are different among the three projectiles at $60 \lesssim L \lesssim 150$ corresponding to the peripheral region of a 12C target. As a consequence of the difference, σ_R is not proportional to R^2 properly. In fact, 15C has a larger RMS radius than 16C, but 15C scattering has a smaller $\sigma_R(L)$ than 16C one at $70 \lesssim L \lesssim 120$ because of the fact that the volume integral of the imaginary part of the single-folding potential $\langle \varphi_0 | U | \varphi_0 \rangle$ is smaller for 15C projectile than for 16C projectile; here φ_0 is the projectile ground-state wave function.

![Figure 2](image2.png)

FIG. 2: (Color online) L dependence of (a) the absorption probability $P(L)$ and (b) the partial reaction cross section for 14,15,16C$^{+12}$C scattering at 83 MeV/A. Model I is taken.

Figure 3 shows E_{in}-dependence of Γ_R. Triangle, circle and square symbols correspond to the results of Model I, II and III, respectively, whereas the solid straight line denotes Γ_{rels}. The deviation of triangles from the solid straight line shows the non-BSS effect, the deviation of circles from triangles does the nuclear-medium effect, and the deviation of squares from circles comes from the projectile-breakup effect. As E_{in} goes up, the breakup effect decreases rapidly, but the non-BSS effect increases. The nuclear-medium effect also decreases but very slowly. Thus the non-BSS and medium effects are important for Γ_R at higher E_{in} around 250 MeV/A. At lower E_{in} from 50 to 80 MeV/A, meanwhile, the medium and breakup effects are nearly canceled, so that the non-BSS effect becomes most significant for Γ_R. Since the non-BSS effect is smaller at lower E_{in}, we can conclude that lower-incident energy scattering are a good probe of evaluating Γ_{rels} from σ_R.

As mentioned above, the non-BSS effect becomes large as E_{in}. This can be understood as follows. In the high E_{in} where the eikonal approximation is valid, σ_R is proportional to the volume integral of the imaginary part $\langle \varphi_0 | W | \varphi_0 \rangle$ of
where $\langle \varphi_0 | U | \varphi_0 \rangle$ \cite{14,24}, since

$$
\sigma_R = \int d^2b [1 - |\langle \varphi_0 | S | \varphi_0 \rangle|^2]
= -\frac{2}{\hbar v_0} \int d^3R \langle \varphi_0 | W | \varphi_0 \rangle
$$

(10)

with

$$
S = \exp \left[-\frac{i}{\hbar v_0} \int_{-\infty}^{\infty} dZU \right],
$$

(11)

where v_0 is the incident velocity of P and $R = (b, Z)$. Equation (10) shows that $\sigma_R(A + 2) - \sigma_R(A) = 2(\sigma_R(A + 1) - \sigma_R(A))$ and hence $\Gamma_R = 0$.

Summary. The present microscopic version of three- and four-body CDCC calculations reproduces σ_R for 14,15,16C4,12C scattering at 83 MeV/A. The projectile-breakup effect is significant for 15C scattering and appreciable for 16C scattering, whereas the nuclear-medium effect is sizable for all the 14,15,16C scattering. In general, the σ_R-staggering Γ_R is deviated from the radius-staggering Γ_{rds} by the non-BSS, nuclear-medium and projectile-breakup effects. At lower E_{in} from 50 to 80 MeV/A, the breakup and medium effects are nearly canceled and the remaining non-BSS effect is rather small for Γ_R. Therefore, the lower-E_{in} scattering are a good probe of evaluating Γ_{rds} from σ_R. At high E_{in}, meanwhile, the non-BSS effect is significant, whereas the nuclear-medium and projectile-breakup effects are small or negligible. The non-BSS effect largely reduces Γ_R from Γ_{rds}. Thus the radius-staggering Γ_{rds} is masked by the non-BSS effect at high E_{in}. This means that if experimental data show a large value of Γ_R, the corresponding radius-staggering Γ_{rds} is even large. A good example is the σ_R-staggering for 30,31,32Ne scattering at 250 MeV/A. Thus Γ_R is a good quantity to find exotic properties of unstable nuclei.

The authors would like to thank Fukuda and Yamaguchi for helpful discussions. This work has been supported in part by the Grants-in-Aid for Scientific Research of Monbukagakusho of Japan and JSPS.

[1] I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. B206, 592 (1988). I. Tanihata, J. Phys. G 22, 157 (1996).

[2] A. Ozawa et al., Nucl. Phys. A691, 599 (2001).

[3] M. Takechi et al., Phys. Lett. B707, 357 (2012).

[4] K. Minomo, T. Sumi, M. Kimura, K. Ogata, Y. R. Shimizu and M. Yahiro, Phys. Rev. C 84, 034602 (2011).

[5] K. Minomo, T. Sumi, M. Kimura, K. Ogata, Y. R. Shimizu and M. Yahiro, Phys. Rev. Lett. 108, 052503 (2012).

[6] T. Sumi, K. Minomo, S. Tagami, M. Kimura, T. Matsumoto, K. Ogata, Y. R. Shimizu and M. Yahiro, Phys. Rev. C 85, 064613 (2012).

[7] K. Bennaceur, J. Dobaczewski and M. Ploszajczak, Phys. Lett. B496, 154 (2000).

[8] K. Hagino and H. Sagawa, Phys. Rev. C 84, 011303 (2011).

[9] K. Hagino and H. Sagawa, Phys. Rev. C 85, 014303 (2012).

[10] K. Hagino and H. Sagawa, Phys. Rev. C 85, 037604 (2012).

[11] D.Q. Fang et al., Phys. Rev. C69, 034613 (2004).

[12] M. Kamimura, M. Yahiro, Y. Iseri, Y. Sakuragi, H. Kameyama, and M. Kawai, Prog. Theor. Phys. Suppl. 89, 1 (1986).

[13] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Rawitscher, and M. Yahiro, Phys. Rep. 154, 125 (1987).

[14] M. Yahiro, K. Ogata, T. Matsumoto, and K. Minomo, Prog. Theor. Exp. Phys. 2012, 01A206 (2012).

[15] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis, and J. Raynal, in Advances in Nuclear Physics, edited by J. W. Negele and E. Vogt (Plenum, New York, 2000) Vol. 25, p. 275.

[16] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

[17] J. F. Berger, M. Girod and D. Gogny, Comput. Phys. Commun. 63, 365 (1991).

[18] S. Hashimoto, M. Yahiro, K. Ogata, K. Minomo and S. Chiba, Phys. Rev. C 83, 054617 (2011).

[19] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

[20] T. Matsumoto, T. Egami, K. Ogata, Y. Iseri, M. Kamimura, and M. Yahiro, Phys. Rev. C 73, 051602(R) (2006).

[21] L.A. Schaller, L. Schelling, T.Q. Phan, G. Piller, A. Ruetschi, and H. Schneuwly Nucl. Phys. A379, 523 (1982).

[22] T. Matsumoto, T. Kamizato, K. Ogata, Y. Iseri, E. Hiyama, M. Kamimura, and M. Yahiro, Phys. Rev. C 68, 064607 (2003).

[23] R. A. D. Piyadasa, M. Yahiro, M. Kamimura, and M. Kawai, Prog. Theor. Phys. 81, 910 (1989).

[24] M. Yahiro, K. Ogata and K. Minomo, Prog. Theor. Phys. 126, 167 (2011) [arXiv:1103.3976 [nucl-th]].