Let there be Light Dark Matter: The gauged $U(1)_{\mu}\!-\!L_\tau$ case

Patrick Foldenauer

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

(Dated: September 20, 2018)

As experimental null results increase the pressure on heavy weakly interacting massive particles (WIMPs) as an explanation of thermal dark matter (DM), it seems timely to explore previously overlooked regions of the WIMP parameter space. In this work we extend the minimal gauged $U(1)_{\mu}\!-\!L_\tau$ model studied in [1] by a light (MeV-scale) vector-like fermion χ. Taking into account constraints from cosmology, direct and indirect detection we find that the standard benchmark of $M_V=3m_\chi$ for DM coupled to a vector mediator is firmly ruled out for unit DM charges. However, exploring the near-resonance region $M_V \gtrsim 2m_\chi$ we find that this model can simultaneously explain the DM relic abundance $\Omega h^2 \approx 0.12$ and the $(g-2)_\mu$ anomaly. Allowing for small charge hierarchies of $\lesssim O(10)$, we identify a second window of parameter space in the few-GeV region, where χ can account for the full DM relic density.

INTRODUCTION

The advent of the Standard Model of particle physics (SM) [2–4] was one of the biggest milestones in physics. The excellent agreement of its predictions with data have allowed physicists to embark on an era of precision studies of physics at the smallest scales accessible. Nevertheless, there are some hints for physics beyond the Standard Model (BSM), one of the most intriguing ones being the $\sim O(10)$ anomaly above 5σ compared to $E821$ [9] thereby potentially pushing the significance of the EDGES anomaly presented in [40] requires a charge hierarchy of at least $O(10^2)$, we do not introduce any charge hierarchies larger than already present in the SM (i.e. $O(10)$). Instead we focus on the case of $Q_\chi = 1$. iii) We include and calculate the full set of constraints on the associated hidden photon A' presented in [1].

THE MODEL

In the literature such a scenario has been studied for heavy (weak-scale) DM [34–39]. In this work, however, we explore the MeV mass range. Recently, a similar scenario has been considered in [40]. However, our work differs in three crucial aspects: i) We fully take into account unavoidable loop-induced kinetic mixing $-\epsilon'/2 \hat{F}_{\mu\nu} \hat{X}^{\mu\nu}$ of the hidden photon with the SM hypercharge boson [41]. Not only does the mixing have important observational consequences (especially in the hadronic sector), but setting it to zero also requires quite some amount of fine tuning in order to exactly cancel all higher-order loop-contributions. ii) While the scenario explaining the EDGES anomaly presented in [40] requires a charge hierarchy of at least $O(10^2)$, we do not introduce any charge hierarchies larger than already present in the SM (i.e. $O(10)$). Instead we focus on the case of $Q_\chi = 1$. iii) We include and calculate the full set of constraints on the associated hidden photon A' presented in [1].

Let there be Light Dark Matter: The gauged $U(1)_{\mu}\!-\!L_\tau$ case

Patrick Foldenauer

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

(Dated: September 20, 2018)

As experimental null results increase the pressure on heavy weakly interacting massive particles (WIMPs) as an explanation of thermal dark matter (DM), it seems timely to explore previously overlooked regions of the WIMP parameter space. In this work we extend the minimal gauged $U(1)_{\mu}\!-\!L_\tau$ model studied in [1] by a light (MeV-scale) vector-like fermion χ. Taking into account constraints from cosmology, direct and indirect detection we find that the standard benchmark of $M_V=3m_\chi$ for DM coupled to a vector mediator is firmly ruled out for unit DM charges. However, exploring the near-resonance region $M_V \gtrsim 2m_\chi$ we find that this model can simultaneously explain the DM relic abundance $\Omega h^2 \approx 0.12$ and the $(g-2)_\mu$ anomaly. Allowing for small charge hierarchies of $\lesssim O(10)$, we identify a second window of parameter space in the few-GeV region, where χ can account for the full DM relic density.

INTRODUCTION

The advent of the Standard Model of particle physics (SM) [2–4] was one of the biggest milestones in physics. The excellent agreement of its predictions with data have allowed physicists to embark on an era of precision studies of physics at the smallest scales accessible. Nevertheless, there are some hints for physics beyond the Standard Model (BSM), one of the most intriguing ones being the $\sim O(10)$ anomaly above 5σ compared to $E821$ [9] thereby potentially pushing the significance of the EDGES anomaly presented in [40] requires a charge hierarchy of at least $O(10^2)$, we do not introduce any charge hierarchies larger than already present in the SM (i.e. $O(10)$). Instead we focus on the case of $Q_\chi = 1$. iii) We include and calculate the full set of constraints on the associated hidden photon A' presented in [1].

THE MODEL

In the literature such a scenario has been studied for heavy (weak-scale) DM [34–39]. In this work, however, we explore the MeV mass range. Recently, a similar scenario has been considered in [40]. However, our work differs in three crucial aspects: i) We fully take into account unavoidable loop-induced kinetic mixing $-\epsilon'/2 \hat{F}_{\mu\nu} \hat{X}^{\mu\nu}$ of the hidden photon with the SM hypercharge boson [41]. Not only does the mixing have important observational consequences (especially in the hadronic sector), but setting it to zero also requires quite some amount of fine tuning in order to exactly cancel all higher-order loop-contributions. ii) While the scenario explaining the EDGES anomaly presented in [40] requires a charge hierarchy of at least $O(10^2)$, we do not introduce any charge hierarchies larger than already present in the SM (i.e. $O(10)$). Instead we focus on the case of $Q_\chi = 1$. iii) We include and calculate the full set of constraints on the associated hidden photon A' presented in [1].

In this letter we are not studying the scalar breaking of the $U(1)_{\mu}\!-\!L_\tau$ and treat m_χ and $M_{A'}$ as free parameters.

1 In this letter we are not studying the scalar breaking of the $U(1)_{\mu}\!-\!L_\tau$ and treat m_χ and $M_{A'}$ as free parameters.
of [1]). We follow Appendix A of [1] to canonically normalize the kinetic terms and rotate to the mass basis of the hidden photon denoted by A'. As we are only interested in the light regime $M_{A'} < M_Z$, the hidden photon will only decay into fermionic final states with partial decay widths

$$\Gamma_{A' \rightarrow f f} = M_{A'} \frac{g_{\mu \tau}^2 Q_f^2 N_f^f}{12 \pi} \sqrt{1 - \frac{4m_f^2}{M_{A'}^2} \left(1 + \frac{2m_f^2}{M_{A'}^2}\right)}.$$ \hspace{1cm} (2)

Here m_f, Q_f and N_f^f denote the fermion mass, μ-charge and number of colors. For the left-handed massless neutrinos one has to set $m_f = 0$ and divide by a factor of 2. For electrons one has to replace $g_{\mu \tau} Q_f \rightarrow \epsilon_{\mu \tau}(q^2)e$. As the A' couples to hadrons only via kinetic mixing we make use of the measured ratio of hadronic to muonic final states $R(s) = \sigma(e^+e^- \rightarrow \text{had})/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ [42, 43] to parametrize the hadronic partial width as

$$\Gamma_{A' \rightarrow \text{had}} = \epsilon_{\mu \tau} (M_{A'}^2)^2 \Gamma_{\gamma^* \rightarrow \mu^+\mu^-} R(M_{A'}^2),$$ \hspace{1cm} (3)

where $\Gamma_{\gamma^* \rightarrow \mu^+\mu^-}$ is the partial width of a virtual photon γ^* of mass $M_{A'}$. Compared to the hadron width $\Gamma_{A',0}$ of the minimal model studied in [1], the total width is increased by the $\chi\chi$ contribution $\Gamma_{A'} = \Gamma_{A',0} + \Gamma_{A' \rightarrow \chi\chi}$. The additional $\chi\chi$ channel will also increase the invisible branching fraction of the A', making this scenario more sensitive to invisible searches.

As we are exploring the near resonance region $m_\chi \lesssim M_{A'}/2$ we have to perform the full thermal integral when calculating the thermally averaged annihilation cross section $\langle \sigma v \rangle$ of the DM particle χ [44]. This is found to be [45]

$$\langle \sigma v \rangle_{\text{CM}} = \frac{x}{2 \left[K_1^2(x) + K_2^2(x)\right]} \times \int_2^{\infty} dz \frac{z^2}{a(x^2)}(z^2 - 4)z^2 K_1(z \times x),$$ \hspace{1cm} (4)

where $x = m_\chi/T$, $z = \sqrt{3}/m_\chi$ and $K_n(x)$ are the modified Bessel functions of the second kind. The cross section of the process $\chi\chi \rightarrow f f$ can be expressed as

$$\sigma_{A'}(s) = \frac{g_{\chi A'}^2 g_{f A'}^2 N_f^f}{12 \pi} \sqrt{\frac{s - 4m_f^2}{s - 4m_\chi^2}} \times \frac{s^2 + 2(m_\chi^2 + m_f^2)s + 4m_\chi^2 m_f^2}{s^2 (s - M_{A'}^2)^2 + \Gamma_{A'}^2 M_{A'}^2},$$ \hspace{1cm} (5)

with $g_{\chi A'}$ and $g_{f A'}$ denoting the couplings of the A' to the particles χ and f in the mass basis.

Relic density We have implemented our model in Feynrules [46] and solve the Boltzmann equation

$$\dot{n}_\chi + 3Hn_\chi = -\frac{\langle \sigma v \rangle}{2} (n_\chi^2 - n_{\chi,\text{eq}}^2)$$ \hspace{1cm} (6)

tracking the time-evolution of the DM number density n_χ numerically with MadDM v.3.0 [47]. This way we obtain the freeze-out temperature x_f at chemical decoupling and relic abundance $\Omega_\chi h^2$ of the DM particle χ.

Kinetic decoupling After chemical decoupling the DM is still kept in local thermal equilibrium with the SM plasma by elastic scattering processes and tracks the plasma temperature T [48]. Only after elastic scattering has become inefficient the two sectors are kinetically decoupled and the temperature of the DM gas will evolve as that of non-relativistic matter. In [49] the DM temperature evolution $T_\chi(T)$ has been derived to be

$$\frac{T_\chi}{T} = 1 - \frac{z^{1/(n + 2)}e^z}{n + 2} \Gamma \left[\frac{1}{n + 2}, z \right] \times \frac{n + 1}{n + 2},$$ \hspace{1cm} (7)

where a is a constant proportional to the leading order expansion coefficient c_6 of the zero-momentum elastic scattering amplitude $|M|^2_{z=0} \propto c_6(\omega/m_\chi)^n$ and n the scaling exponent. Finally, one can use the relation

$$\frac{T_{kd}}{m_\chi} = \left(\frac{a}{n + 2}\right)^{1/(n + 2)} \Gamma \left[\frac{n + 1}{n + 2}\right]^{-1}$$ \hspace{1cm} (8)

to obtain the decoupling temperature T_{kd}.

DARK MATTER CONSTRAINTS

In this section we discuss the various constraints on the DM parameter space shown in Figs. 1 and 2.

CMB A significant increase in the post-recombination ionization would be visible as extra free electrons and photons broadening the last scattering surface of the CMB photons, thus modifying their temperature and polarization power spectra [50]. The amount of additional energy released per unit volume [51] is quantized as

$$\frac{dE}{dtdV}(z) = 2g_{\text{crit}}^2 c^2 \Omega_c (1 + z)^6 P_{\text{ann}}(z),$$ \hspace{1cm} (9)

with the model-dependent annihilation parameter $P_{\text{ann}}(z) = f(z)\langle \sigma v \rangle/m_\chi$. The efficiency factor $f(z)$ characterizing the fraction of rest mass energy released into the gas [51, 52] depends a priori on the redshift z. However, $f(z)$ is to good approximation independent of z and has been calculated for electron and photon final states in [53]. Using these, a mass-dependent effective efficiency
factor quantizing the amount of energy proceeding into photons and electrons can be calculated,

\[f_{\text{eff}}(m_\chi) = \frac{1}{2m_\chi} \int_0^{m_\chi} E dE \left[2f_{\text{eff}}^{e-}(E) \left(\frac{dN}{dt} \right)_e^\gamma + f_{\text{eff}}^{e+}(E) \left(\frac{dN}{dt} \right)_e^\gamma \right]. \tag{10} \]

The annihilation parameter has recently been constrained to \(P_{\text{ann}} < 3.5 \times 10^{-28} \text{cm}^3\text{s}^{-1} \text{GeV} \) by Planck results [11], constituting an improvement of about 17% over previous results [54]. For \(m_\chi > 5 \text{ GeV} \) we have used this bound together with the effective efficiency factors \(f_{\text{eff}} \) provided in [53] to robustly constrain \(\langle \sigma v \rangle \).

For \(m_\chi < 5 \text{ GeV} \) we have applied the more conservative estimate of \(\langle \sigma v \rangle / m_\chi < 5.1 \times 10^{-27} \text{cm}^3\text{s}^{-1}\text{GeV} \) (rescaled by the 17% improvement from Planck) derived in [55].

Big Bang Nucleosynthesis (BBN) As \(\chi \) couples to neutrinos via the \(A' \) it will reheat the neutrino gas once it becomes non-relativistic at a temperature \(T \sim m_\chi [56] \). This increases the effective number of neutrinos \(N_{\text{eff}} \) and thus the neutrino-to-photon temperature ratio \(T_{\nu}/T_\gamma \) compared to the SM, resulting in a higher expansion rate \(H \) of the universe. If the reheating happens during BBN, this manifests in an elevated helium relic abundance \(Y_2 \) and deuterium-to-hydrogen ratio \(D/H \) in the late universe.

These deviations from their respective SM predictions have been confronted with Planck results for light Dirac fermions in [57, 58]. The analysis of [58] excludes extra fermions \(\chi \) with masses below \(m_\chi^{\text{BBN}} = 9.28 \text{ MeV} \) assuming that \(\chi \) has been in thermal equilibrium with the neutrinos throughout BBN.

This constraint is not applicable anymore once the DM particle starts to decouple kinetically from the neutrino gas at BBN temperatures of \(T_{\text{BBN}} \approx 1 \text{ MeV} \). Therefore, we have scanned the decoupling temperature \(T_{kd} \) of \(\chi \) as a function of the coupling \(g_{\mu \tau} \) by use of Eq. (8) and only show the limit where \(T_{kd}(g_{\mu \tau}) \leq T_{\text{BBN}} \).

Dwarf galaxies Dwarf spheroidal galaxies in our local group exhibit rather significant DM densities [59]. Given their local DM densities \(\rho_{\text{DM}}(r) \) the flux of gamma ray photons observed in a solid angle \(\Delta \Omega \) at Fermi-LAT is given by [60]

\[\phi_\gamma(\Delta \Omega) = \frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\chi}} \int_{E_{\text{min}}}^{E_{\text{max}}} \frac{dN_\gamma}{dE_\gamma} dE_\gamma \times \int_{\Delta \Omega} \int_{\text{L.o.s.}} \rho_{\text{DM}}(r)^2 d\Omega'. \tag{11} \]

The second term is the line-of-sight integral through the DM distribution, the so-called \(J \)-factor, and only depends on astrophysics. Hence, provided knowledge of the differential photon yield per DM annihilation \(dN_\gamma/dE_\gamma \), one can place limits on \(\langle \sigma v \rangle \) from DM annihilation into the different channels in dwarf galaxies [60, 61].

Cosmic ray positron flux The cosmic ray positron fraction has been measured with the AMS-02 detector [62, 63]. Decays of DM particles source additional positron injection described by the source term [64]

\[Q_\gamma = \frac{1}{2} \langle \sigma v \rangle \left(\frac{\rho_{\chi}}{m_{\chi}} \right)^2 \sum_f \frac{dN_f}{dE}, \tag{12} \]

where \(dN_f/dE \) denotes the produced positron spectrum from a \(f \) final state. The AMS-02 data has been used in [55] to set an upper limit on \(\langle \sigma v \rangle \) for different final states, with the most stringent one coming from the muon channel for \(U(1)_{L_\mu - L_\tau} \).

Neutrino production Neutrino detectors with a good energy resolution and low threshold are sensitive to the neutrino flux generated in annihilations of MeV-scale DM. The Super-Kamiokande water Cherenkov detector was used to set limits on the thermal cross section [65]. In a recent study the sensitivity of the planned Hyper-Kamiokande experiment has been explored [66].

Electron scattering Kinetic mixing of the hidden photon with the SM photon leads to a non-zero elastic DM-electron scattering cross section [67]

\[\bar{\sigma}_e = \frac{16\pi m_{\chi}^2 m_{\tau}^2}{(m_{\mu}^2 + m_{\tau}^2)^2} \left(\frac{q^2}{m_{\tau}^2} \right)^2 \left(\frac{m_{\mu}^2}{m_{\tau}^2} \right) \tag{13} \]

where \(m_{\chi} \) denotes the electron-DM reduced mass.

SuperCDMS [68] can search for DM-electron scattering events to constrain the DM-electron scattering cross section.

Nuclear scattering Similar to electrons, kinetic mixing induces a non-zero elastic DM-nucleon scattering [69]

\[\sigma_N = \frac{1}{A} \int d^2 q_{\mu \tau} \epsilon_{\mu \tau}^2(q^2) \mu_{\chi N} f_N^{(A')} \left(\frac{f_{\chi N}^{(A')}}{M_A^2} - \frac{f_{\chi N}^{(Z)}}{M_Z^2 - M_{A}^2} \right)^2, \tag{14} \]

with the reduced DM-nucleon mass \(\mu_{\chi N} \) and

\[f_N^{(X)} = 1 \int \frac{[Z(2g_{\mu X} + g_{\nu X}) + (A - Z)(g_{\mu X} + 2g_{\nu X})] \times}{A} \]
HIDDEN PHOTON CONSTRAINTS

We briefly summarize the most important hidden photon constraints, which are discussed in detail in our previous article [1].

As the A' couples to neutrinos and electrons it contributes to the in-medium plasmon decay $\gamma^* \rightarrow \nu \nu$. This can be constrained from the good agreement of SM white dwarf cooling with observations [71]. Furthermore, the agreement of the measured cross section of neutrino trident production $\nu N \rightarrow \nu N \mu^+ \mu^-$ with its SM prediction [72–74] puts strong limits on the A' parameter space [30]. Likewise, the measured elastic $\nu - e$ scattering cross section with the Borexino detector constrains $g_{\mu T}$ [75].

The BaBar [76] and CMS [77] searches for four-muon final states put quite stringent constraints on the hidden photon of a muonic force. The proposed muon runs of both NA64 [78, 79] and LDMX [40, 80] could exclude large parts of the A' parameter space from a missing energy search. Similarly, SHiP [81, 82] will be able to test very small couplings from a search for the visible A' decays.

Finally, it has been shown [28] that a $U(1)_{L_{\mu} - L_{\tau}}$ boson can potentially explain the observed shift $\Delta a_{\mu} = (2.87 \pm 0.80) \times 10^{-9}$ [5, 7, 8] of the muon anomalous moment.

RESULTS

In the following we discuss our results summarized in Figs. 1 and 2.

In Fig. 1 we compare the standard benchmark (SB) scenario of $m_{\chi}/M_{A'} = 0.33$ (upper panels) to a near-resonance (NR) scenario with $m_{\chi}/M_{A'} = 0.45$ (lower panels) for a DM charge of $Q_{\chi} = 1$. The grayscale contours (dotted lines) in the left (right) panels show current (projected) hidden photon constraints. The constraints from white dwarf cooling (WD), neutrino trident production (NTP), and elastic neutrino scattering experiments (Borexino, COHERENT, CharmII) are completely insensitive to the DM χ. Constraints from visible decay searches (e.g. BaBar/CMS 4μ, SHiP) are generally weakened due to the reduced visible branching fraction of the A' compared to the minimal case of [1]. Conversely, constraints from invisible searches (e.g. NA64 μ, LDMX M^3) become more stringent.

The colored contours (solid lines) in the left (right)
panels represent current (projected) DM limits. While at low masses the most stringent limit is the one from \(N_{\text{eff}} \) at BBN (yellow), the high-mass region is most constrained by the Xenon1T (magenta) limit on kinetic-mixing-induced DM-nucleon scattering. In the intermediate-mass region a combination of measurements of gamma rays at FermiLAT (cyan), positron fluxes at AMS-02 (brown) and energy injection into the CMB (blue) at Planck yield the most constraining limit on \(\chi \) and the 4\(\mu \) searches at BaBar and CMS on \(A' \).

The red curve represents points where \(\Omega_\chi = \Omega_\text{DM} \). Points above the red curve correspond to \(\chi \) being a sub-component of DM. First, we note that in the SB an explanation of \(\Omega_\text{DM} \) is twofold: first, \(\chi \) which do not leave any imprint on the CMB in this mass region grows upon increasing the ratio \(Q/4 \) for 100% branching fraction into taus. From the inset plot in the lower left panel of Fig. 1 (the DM relic abundance can be explained for 28 \(\lesssim M_\chi \lesssim 50 \) GeV derived in [55] is twofold: first, \(\chi \) by increasing the charge to \(Q \) for 100% branching fraction into taus. From the inset plot in the lower left panel of Fig. 1) the DM relic abundance can be explained for 28 \(\lesssim M_\chi \lesssim 50 \) MeV.

In the NR case, however, we can accommodate a simultaneous explanation of \(\Omega_\text{DM} \) and the \((g - 2)_\mu \) anomaly for 20 \(\lesssim M_\chi \lesssim 85 \) MeV with unit charge\(^3\) (see inset plot in the lower left panel of Fig. 1). This region is not excluded by the CMB bound, in particular it is also unaffected by the theoretical maximum CMB bound (dotted blue in the lower left panel of Fig. 1) obtained from assuming that visible annihilation products inject all of their energy into the CMB. This low-mass region will be plausible at the future muon beam experiments NA64\(\mu \) [79] and LDMX M\(^3\) [40].

While excluded for \(Q_\chi = 1 \) by the recent CMS 4\(\mu \) search [77], there is still a window for a high-mass explanation of \(\Omega_\text{DM} \) at 16.5 \(\lesssim M_\chi \lesssim 30 \) GeV\(^4\) for \(Q_\chi = 3 \) or higher (see Fig. 2). Interestingly, this region grows upon increasing the ratio \(m_\chi/M_\chi \) up to \(m_\chi = M_\chi/2 \). The reason for this region reaching below the model-independent lower mass bound of \(m_\chi \gtrsim 20 \) GeV derived in [55] is twofold: first, \(\chi \) has a sizable invisible annihilation branching fraction into neutrinos, which do not leave any imprint on the CMB in this mass range [55]. Second, our FermiLAT bound is conservative in the sense that we have used the limit \(\langle \sigma v \rangle \) obtained for 100% branching fraction into taus. From the inset plot of Fig. 2 we can see that this high-mass region can be tested by the future XenonNT [83] and Darwin experiments [70].

\[^{3}\] We note that for mass ratios \(m_\chi/M_\chi < m_\chi^{\text{BBN}}/2\mu \approx 0.044 \) an explanation of \((g - 2)_\mu \) is excluded by the \(N_{\text{eff}} \) bound.

\[^{4}\] In the intermediate-mass region of 3 \(\lesssim M_\chi \lesssim 5 \) GeV \(\Omega_\text{DM} \) is also not yet excluded. However, this is most probably an artifact of our conservative estimate of the CMB bound below \(m_\chi = 5 \) GeV [55].

FIG. 2. Same as lower left panel of Fig. 1, but with \(Q_\chi = 3 \).

Summing up, we have seen that while the SB scenario is not capable of explaining DM with unit charges, in the NR case \(\Omega_\text{DM} h^2 \) and \((g - 2)_\mu \) can simultaneously be explained and tested at future muon beam dump facilities.

The author is grateful to Giorgio Arcadi, Martin Bauer, Björn-Malte Schäfer, Sebastian Schenk and especially Jörg Jäckel for many helpful and inspiring discussions. The author thanks Michael Russell for valuable comments on this manuscript. The author also acknowledges support from the DFG via the GRK 1940 ”Particle Physics beyond the Standard Model”.

* Email: foldenauer@thphys.uni-heidelberg.de

[1] M. Bauer, P. Foldenauer and J. Jaeckel, JHEP 1807, 094 (2018) [arXiv:1803.05466[hep-ph]].
[2] S. L. Glashow, Nucl. Phys. 22, 579 (1961).
[3] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
[4] A. Salam, Conf. Proc. C 680519, 367 (1968).
[5] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. D 73, 072003 (2006) [hep-ex/0602035].
[6] F. Jegerlehner and A. Nyffeler, Phys. Rept. 477, 1 (2009) [arXiv:0902.3360[hep-ph]].
[7] M. Davier, A. Hoecker, B. Malanescu and Z. Zhang, Eur. Phys. J. C 71, 1515 (2011) [Eur. Phys. J. C 72, 1874 (2012)] [arXiv:1010.4180[hep-ph]].
[8] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G 38, 085003 (2011) [arXiv:1105.3149[hep-ph]].
[9] J. Grange et al. [Muon g-2 Collaboration], arXiv:1501.06858[physics.ins-det].
[10] F. Zwicky, Helv. Phys. Acta 6, 110 (1933) [Gen. Rel. Grav. 41, 207 (2009)].
[11] N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209[astro-ph.CO].
[12] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and F. S. Queiroz, Eur. Phys. J. C 78, no. 3, 203 (2018) [arXiv:1703.07364[hep-ph]].
[69] J. A. Evans, S. Gori and J. Shelton, JHEP 1802, 100 (2018) [arXiv:1712.03974[hep-ph]].

[70] J. Aalbers et al. [DARWIN Collaboration], JCAP 1611, 017 (2016) [arXiv:1606.07001[astro-ph.IM]].

[71] H. K. Dreiner, J. F. Fortin, J. Isern and L. Ubaldi, Phys. Rev. D 88, 043517 (2013) [arXiv:1303.7232[hep-ph]].

[72] D. Geiregat et al. [CHARM-II Collaboration], Phys. Lett. B 245, 271 (1990).

[73] S. R. Mishra et al. [CCFR Collaboration], Phys. Rev. Lett. 66, 3117 (1991).

[74] T. Adams et al. [NuTeV Collaboration], In *Vancouver 1998, High energy physics, vol. 1* 631-634 [hep-ex/9811012].

[75] Y. Kaneta and T. Shimomura, PTEP 2017, no. 5, 053B04 (2017) [arXiv:1701.00156[hep-ph]].

[76] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 94, no. 1, 011102 (2016) [arXiv:1606.03501[hep-ex]].

[77] A. M. Sirunyan et al. [CMS Collaboration], [arXiv:1808.03684[hep-ex]].

[78] S. N. Gninenko, N. V. Krasnikov and V. A. Matveev, Phys. Rev. D 91, 095015 (2015) [arXiv:1412.1400[hep-ph]].

[79] S. N. Gninenko and N. V. Krasnikov, Phys. Lett. B 783, 24 (2018) [arXiv:1801.10448[hep-ph]].

[80] A. Berlin, N. Blinov, G. Krnjaic, P. Schuster and N. Toro, arXiv:1807.01730[hep-ph].

[81] M. Anelli et al. [SHiP Collaboration], arXiv:1504.04956[physics.ins-det].

[82] S. Alekhin et al., Rept. Prog. Phys. 79, no. 12, 124201 (2016) [arXiv:1504.04855[hep-ph]].

[83] E. Aprile et al. [XENON Collaboration], JCAP 1604, no. 04, 027 (2016) [arXiv:1512.07501[physics.ins-det]].