Strongyloidiasis—An Insight into Its Global Prevalence and Management

Santhosh Puthiyakunnon¹, Swapna Boddu¹, Yiji Li¹, Xiaohong Zhou¹, Chunmei Wang¹, Juan Li², Xiaoguang Chen¹*¹

¹Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China, ²Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

Abstract

Background: Strongyloides stercoralis, an intestinal parasitic nematode, infects more than 100 million people worldwide. Strongyloides are unique in their ability to exist as a free-living and autoinfective cycle. Strongyloidiasis can occur without any symptoms or as a potentially fatal hyperinfection or disseminated infection. The most common risk factors for these complications are immunosuppression caused by corticosteroids and infection with human T-lymphotropic virus or human immunodeficiency virus. Even though the diagnosis of strongyloidiasis is improved by advanced instrumentation techniques in isolated and complicated cases of hyperinfection or dissemination, efficient guidelines for screening the population in epidemiological surveys are lacking.

Methodology and Results: In this review, we have discussed various conventional methods for the diagnosis and management of this disease, with an emphasis on recently developed molecular and serological methods that could be implemented to establish guidelines for precise diagnosis of infection in patients and screening in epidemiological surveys. A comprehensive analysis of various cases reported worldwide from different endemic and nonendemic foci of the disease for the last 40 years was evaluated in an effort to delineate the global prevalence of this disease. We also updated the current knowledge of the various clinical spectrum of this parasitic disease, with an emphasis on newer molecular diagnostic methods, treatment, and management of cases in immunosuppressed patients.

Conclusion: Strongyloidiasis is considered a neglected tropical disease and is probably an underdiagnosed parasitic disease due to its low parasitic load and uncertain clinical symptoms. Increased infectivity rates in many developed countries and nonendemic regions nearing those in the most prevalent endemic regions of this parasite and the increasing transmission potential to immigrants, travelers, and immunosuppressed populations are indications for initiating an integrated approach towards prompt diagnosis and control of this parasitic disease.

Introduction

Strongyloides stercoralis, one of the most common and globally distributed human pathogens of clinical importance, infects 30–100 million people worldwide [1]. S. fuelleborni, another species of the same genus, is found sporadically in Africa and Papua New Guinea [2]. Strongyloidiasis is endemic in Southeast Asia, Latin America, sub-Saharan Africa, and parts of the Southeast United States [3]. Unique characteristics of this nematode are its immense ability to persist and replicate within a host for decades while producing minimal or no symptoms and its potential to cause life-threatening infections by dissemination and hyperinfection in debilitated and immune-compromised patients [4].

After its first report in 1876 from the feces of French soldiers with diarrhea who were returning from the old Indochina region, the disease was known for many years as “Cochin-China diarrhea” [5], which describes the most common gastrointestinal manifestations, such as epigastric pain and watery diarrhea, of this parasitic infection [6]. It took more than a century to trace most of the basic biology of this nematode and its extravagant ability to disseminate in host tissues, thereby leading to a spectrum of clinical complications.

In this review, we analyze the various case reports since 1970 from different parts of endemic and nonendemic foci of S. stercoralis to delineate a comprehensive global survey of this parasitic infection. We have focused more details on the different diagnostic methods followed by the investigators in various case reports and discussed some recent novel methods in serological and molecular diagnosis towards the aim of establishing guidelines for diagnosis to decipher the global prevalence of this disease.

Epidemiology and Global Prevalence of Strongyloidiasis

Strongyloidiasis is an emerging global infection that is underestimated in many countries [7]. The prevalence of this disease has been on the increase, especially in southern, eastern and central Europe, the islands of the Caribbean, Southeast Asia, Latin America, and sub-Saharan Africa. In nonendemic regions of the world, it is mainly diagnosed in individuals who were prisoners during World War II and in immigrants from endemic countries [8]. Males, people working with soil (such as in coal mines and...
farms), people of white race, patients with altered cellular immunity (especially those on long-term steroid therapy), patients with lymphoma, allograft transplant recipients, travelers to areas of endemcity, and other institutionalized individuals are at the greatest risk of acquiring this disease [9,10]. A strong association is seen between strongyloidiasis and concurrent immunosuppressive diseases such as human T cell lymphotropic virus-1 (HTLV-1) [11], human immunodeficiency virus (HIV) infection, and hematological malignancies [12,13].

Global prevalence of *S. stercoralis* has been on the increase in the past few years, especially in many known endemic areas of the disease (Figure 1). The continued increase in infection rate is solely attributed to poor personal hygiene, insufficient drinking water supply, unsatisfactory sanitary measures, and lack of knowledge about the disease in high-risk populations. Many isolated case reports on the emergence of the disease in different parts of the world that are nonendemic for the disease are being published. Most of these case studies are associated with patients with immunosuppressive diseases, those on corticosteroid therapy, organ transplant recipients, and patients with hematological malignancies or other debilitating diseases. Newer diagnostics and endoscopies are being implemented widely to diagnose strongyloidiasis in many complicated clinical cases. Serological screening and molecular methods like polymerase chain reaction (PCR) are slowly becoming popular and are used in parallel with routine diagnostic screening methods. A comprehensive analysis of the case reports from different areas of endemcity and none-endemcity was carried out in an effort to highlight the importance of implementing the most appropriate diagnostic methods to delineate the global prevalence of this disease (Table 1).

A statistical analysis carried out in our lab [14] showed a total of 106 detailed cases reported from China since the first documented case from Guangxi Province in 1973 up until 2012. A total of 67 cases were reported in the past 10 years (2001 to 2011), which exceeds the cumulative cases reported in the 30 years before this period and indicates the increasing rate of emergence of strongyloidiasis in China.

Globally, prevalence rates of strongyloidiasis are as high as 50% in certain areas where moist soil and improper disposal of human waste cocist, especially in West Africa, the Caribbean, Southeast Asia, tropical regions of Brazil, Cambodia, and temperate regions of Spain [15]. Southeast Asia appears to have the highest endemic percentage, and it is highly prevalent in some tropical aboriginal communities in Australia [16]. Although strongyloidiasis is uncommon in the United States, endemic foci exist in rural areas of the southeastern states and the Appalachian region (especially in eastern Tennessee, Kentucky, and west Virginia) and in Puerto Rico [17]. A higher prevalence rate is seen among patients in long-term institutionalized care (mental health facilities and prisons), in immigrants and refugees from tropical and subtropical countries [18], and in veterans of World War II and the Vietnam War [19].

Among the immigrant population, a high prevalence rate of 38% was reported in Southeast Asian immigrants in Washington, D.C. [20]. A Canadian epidemiological study revealed 11.8% incidence of infection in the Vietnamese population and a much higher seroprevalence of 76.6% in Cambodian immigrants [21]. Sudanese Lost Boys and Girls and Somali Bantu refugees demonstrated 46% and 23% seropositive rates, respectively [22]. High rates of larva currens are reported in Latin America. A stool serosurvey conducted in a community in the Peruvian Amazon region found an 8.7% incidence rate of *S. stercoralis* [23]. Although strongyloides infection is represented in all ages, infection initially occurs in childhood, as children are more likely to play outdoors in contaminated soil with bare feet [24].

Figure 1. Map showing the global prevalence of *S. stercoralis* infection. The map was constructed using the data from the table, with the highest percentage prevalence of reported case studies and screening among populations from different countries that are endemic and none-endemic regions of the disease.
doi:10.1371/journal.pntd.0003018.g001
Table 1. Global survey of prevalence of *S. stercoralis* in endemic and nonendemic regions of the disease.

Country/Location	Number of Specimens Analyzed	*S. stercoralis* Prevalence %	Year (References)	Diagnostic Methods Used in Reported Studies
Argentina	36	83.3	1993 [90]	Direct stool examination
Argentina	154	50.5	2003 [91]	Direct stool examination
Argentina	42	50	2010 [92]	Direct fresh stool examination, Ritchie’s method, and agar plate culture (APC)
Argentina	225	29.4	2010 [70]	Agar plate culture, Harada-Mori filter paper culture, Baermann concentration and ELISA based on crude antigen (CrAg-ELISA), and LIPS
Brazil	634	6.6	2011 [93]	Agar plate culture, Baermann-Moraes (BM), and spontaneous sedimentation
Brazil	160	1.3	2008 [94]	Baermann methods modified by Moraes and Lutz
Brazil	503	6.7	2008 [95]	Direct stool examination using the techniques of Faust, Lutz, Rugai, et al.
Brazil	120	30.1	2006 [96]	Baermann and Hoffman methods, indirect fluorescent antibody (IFA) test, ELISA, and western blotting
Brazil	200	2.5	1999 [97]	Direct stool examination
Brazil	900	13	1998 [98]	Baermann-Moraes and Lutz methods
Brazil	650	3.85	1999 [13]	Direct stool examination
Brazil	343	15.45	1995 [99]	Direct stool examination
Belgium	2,591	0.92	2009 [74]	Direct stool examination, Baermann concentration method, antigen detection and multiplex real-time PCR
Cote d’Ivoire	6,952	0.1	2006 [100]	Kato-Katz (K-K) technique
Canada	232	24.7	1990 [101]	Direct stool examination and ELISA
Canada	1,605	0.43	1993 [102]	Stool examination and serological tests
China	1,397	14	2012 [14]	Direct stool examination and other clinical specimens from patients
Ethiopia	1,239	13	2000 [103]	Direct stool examination and Baermann methods
Ethiopia	384	12	2010 [104]	Direct saline mount, formol-ether and water-emergence techniques
Ethiopia	378	7.4	2009 [105]	Direct stool examination, formol-ether technique
France	1,001	1.4	1997 [106]	Direct analyses by Kato and Ritchie methods
France	800	6.4	1996 [107]	Direct analysis by Kato-Katz method and routine microscopy
Ghana	212	17.9	2009 [73]	Baermann sedimentation tests, duplicate coprocultures, and real-time PCR
Honduras	427	16.4	1993 [108]	Direct smear, a modified Baermann technique, and agar plate culture
Italy	5,351	0.07	2011 [109]	Direct microscopy, culture, and ELISA
Italy	132	2.8	2009 [110]	Indirect fluorescent antibody test
Iran	13,915	0.03	2009 [111]	Modified formalin-ethyl acetate sedimentation technique accompanied with trichrome stain
Iran	782	2.04	2011 [71]	Agar plate culture and PCR (single and nested)
Country/Location	Number of Specimens Analyzed	S. stercoralis Prevalence %	Year (References)	Diagnostic Methods Used in Reported Studies
------------------------	------------------------------	-----------------------------	-------------------	---
Iran	150	42	2010 [112]	Stool examination by formalin-ether and Kato-Katz techniques
Israel	106	0.9	1992 [113]	Direct stool examination and ELISA
Jamaica	312	24.2	1995 [86]	Stool examination and serology
Kuwait	11,230	0.46	2004 [114]	Direct stool examination and ELISA
Laos PDR	664	19	1998 [115]	Agar plate culture and Kato-Katz thck smear method
Mexico	200	1	1997 [116]	Direct stool examination
Nigeria	4,470	35.2	1997 [117]	Direct stool examination
Nigeria	227	5.3	2004 [118]	Stool wet preparation and formal-ether concentration methods
Peru	83	28.91	1999 [119]	Baermann concentration technique modified by Lumberas
Peru	256	0.87	2009 [120]	Direct microscopy of feces and by rapid sedimentation technique
Romania	294	6.9	1995 [121]	Direct stool examination
Romania	35	30	1989 [122]	Direct microscopy, culture, and Jejunal biopsy
Spain	250	12.4	2003 [123]	Detection of larvae of triple stool samples
Spain	16,607	0.9	2001 [124]	Direct microscopy, agar plate culture, and tissue biopsy
Sierra Leone	1,164	3.8	1995 [125]	Direct stool examination
Sudan	275	3.3	1998 [126]	Formal-ether concentration techniques
Thailand	491	11.2	1989 [127]	Direct stool examination
Thailand	332	28.9	2003 [128]	Agar plate culture technique and modified formalin-ethyl acetate concentration technique (MFECT)
Thailand	100	28	2010 [49]	Formalin-ether concentration technique (FECT)
Tanzania	1,085	22.2	1999 [129]	Direct smear, agar plate culture, formalin-ether sedimentation technique, and the filter-paper method
Tanzania	368	10.2	2009 [130]	Kato-Katz, Koga agar plate, and Baermann techniques
Tanzania	342	10.5	2008 [131]	Kato-Katz, Koga agar plate, and Baermann techniques
Tanzania	1,078	1.6	2009 [132]	Direct stool examination and formalin-ether concentration methods
United Kingdom -Liverpool	2,072	12	2004 [19]	Microscopy and culture of stool or duodenal fluid and ELISA
US-North Carolina	172	7.5	2009 [133]	Direct stool microscopy and serology
US-Tennessee	225	8.4	1992 [134]	Agar plate and formalin-ethyl acetate concentration method
US-Kentucky	125	4	1965 [135]	Stool examination
US-Kentucky	561	3	1982 [10]	Stool examination
US-Kentucky	3,271	2.5	1982 [10]	Stool examination
US-West Virginia	4,566	0.4	2000 [136]	Concentration techniques followed by iodine-stained smear examination and sputum culture
US-Maryland	51	3.9	1981 [137]	Stool examination
Most of the epidemiological studies to assess the prevalence of infection in a population were carried out by microscopic screening of the stool samples (either single or multiple) to find larvae or by one of the concentration and culture methods. The discovery of immune responses has been increased in many studies after implementing serological screening or by using molecular methods in immunocompromised patients or high-risk groups. Recently, a real-time PCR method targeting the small subunit of a ribosomal RNA (rRNA) gene was developed for the detection of Strongyloides DNA in fecal samples, including an internal control to detect inhibition of the amplification process. Novel methods of diagnosis like luciferase immunoprecipitation system assays based on recombinant antigens that are 100% sensitive may be a promising alternative to routine diagnostic methods which are less sensitive. These newer methods may hopefully enhance routine diagnosis of *S. stercoralis* infection in the future.

Biology of the Parasite

Genus *Strongyloides* is classified in the order Rhabditida, and most of the 52 species are soil-dwelling, microbicidal nematodes that do not infect human beings. Other than *S. stercoralis* and *S. fuelleborni*, two more species, *S. myopotami* and *S. procynos*, are reported to infect animal hosts and may be responsible for zoonotic infections [25]. The adult female worm is a slender, almost transparent worm that measures 2.2 to 2.5 mm long, has a diameter of 50 μm, and lives in tunnels between enteroctytes in the small intestine. Parasitic males, although they do exist, do not have any role in human infections and are easily eliminated from the intestine [26,27].

Pathophysiology and Life Cycle

S. stercoralis exhibits a complex and unique developmental phase with two distinct life cycles: a free-living heterogonic cycle and a parasitic life cycle completed in the same host [28]. In the free-living phase, during the development of nonparasitic adults, both males and females occur in soil, which maintains infestation of the soil (Figure 2). The parasitic phase allows noninfective new larvae to molt in the human host into infective filariform larvae, which then penetrate the intestine and set up a new cycle, leading to autoinfection or hyperinfection to increase the worm burden without exogenous reinfection [29]. This autoinfective phase is responsible for the decade-long persistence of infection in untreated hosts.

Human infection is mainly acquired by the filariform larvae penetrating the skin or mucous membranes either from autoinfection or from infected soil by a fecal-oral route [30]. At their portal of entry, larvae usually cause petechial hemorrhagic rash, which is followed by intense pruritis, edema, and congestion [31]. Larvae migrating through lymphatics and venules reach pulmonary circulation and produce hemorrhages in pulmonary capillaries. The larvae make their way farther into alveolar spaces and cause inflammatory responses associated with eosinophilic infiltration terminating in pneumonitis [32]. Finally, larvae crawl up the respiratory tract and are swallowed, thereby reaching the intestine.

Maturation of larvae into adult females occurs in the small bowels after two molts, and the emerged females produce eggs via parthenogenesis [33]. These parasitic females may live up to five years to continue their reproductive cycle. The eggs hatch in the intestine into noninfective rhabditiform larvae, which may be passed through stool into the environment to continue the heterogonic free-living phase in the soil. The excreted larvae in stool thus form the mainstay of laboratory diagnosis of infection and are also responsible for autoinfection after transforming into infective filariform larvae [34].

1. Autoinfection

Autoinfection is unique to *S. stercoralis* within the genus and also among other genera of intestinal parasites of vertebrates and accounts for it being a serious pathogen of humans. Premature transformation of noninfective larvae into infective larvae establishes a parasitic developmental phase within the host, and it can be maintained throughout the host’s life by repeated migratory cycles without exit from the primary host [30]. Infective filariform larvae reenter circulation by penetrating the mucosa of the colon or small intestine and cause internal autoinfection or the larvae penetrate the perianal skin and cause external autoinfection [28]. External autoinfection in most cases leads to the development of

Country/Location	Number of Specimens Analyzed	S. stercoralis Prevalence %	Year (References)	Diagnostic Methods Used in Reported Studies
US-Maryland	339	0.6	1986 [138]	Single direct stool examination
US-Louisiana	8,458	0.4	1974 [139]	Stool examination by direct and concentration methods
US-Chicago, Illinois	358	1.7	1975 [140]	Single direct stool examination
US-New York	10,072	1	1975 [141]	Stool concentration method and sputum examination for larvae
US-Seattle, Washington	201	2.5	1995 [142]	Direct stool examination
US-Atlanta, Georgia	150	46	2007 [143]	Direct stool examination and serology
US-Ohio	700	3.71	1987 [144]	ELISA and fresh stool examination for larvae
US-Maryland	128	38	1987 [145]	Stool examination and Serology
US-Minneapolis, Minnesota	1,291	11.69	2007 [39]	Direct stool examination
Vietnam	3,197	0.84	1970 [146]	Direct stool examination and sedimentation technique

doi:10.1371/journal.pntd.0003018.t001
larva currens. After entering the circulation, larvae are carried to the lungs and repeat the cycle, which accounts for the frequent recurrence and chronicity of disease to endemic areas of disease [35]. Autoinfection, which is otherwise kept in check by the host immune response in healthy individuals, usually occurs in patients with impaired cell-mediated immunity [36]. Autoinfection gives rise to the two most severe forms of strongyloidiasis: hyperinfection syndrome (HIS) and disseminated strongyloidiasis (DS).

2. Hyperinfection syndrome

Hyperinfection syndrome denotes a phenomenon in which a tremendous increase in the number of worms leads to excessive worm burden without the spread of larvae outside the usual migration pattern. The worms are detectable in extraintestinal regions, especially in the lungs, and the detection of larvae in stool and/or sputum is the hallmark in diagnosis of hyperinfection [37]. Generally, the hyperinfection ensues from the enormous multiplication of infective larvae and their migration in the immunosuppressed state, but it is not always true, as some authors have also described hyperinfection syndrome in immunocompetent patients [38].

The clinical manifestation of hyperinfection syndrome is classified, based on the origin, into gastrointestinal and extraintestinal disease mainly involving the respiratory tract. Risk factors for developing hyperinfection include corticosteroid therapy, stem-cell transplantation, alcoholism, HIV, and HTLV-1 infection. Pulmonary symptoms such as pulmonary infiltrates, diffuse alveolar hemorrhage (DAH), and respiratory failure develop in patients, which, if not treated, turn out to be fatal. The high mortality in hyperinfection is often due to negligence and lack of familiarity of health care providers in recognizing the need for parasite screening before advocating empirical corticosteroid therapy [39].

3. Disseminated strongyloidiasis

Disseminated strongyloidiasis involves widespread dissemination of larvae to extraintestinal organs that are outside the realm of the parasite’s ordinary life cycle. Multiple organs are affected, including the lungs, liver, heart, kidneys, endocrine organs, and central nervous system [40]. In severe disseminated disease, translocation of enteric bacteria may lead to polymicrobial bacteremia and occasionally meningitis with enteric pathogens. The bacteria may be carried on the migrating filariform larvae or may enter the circulation through intestinal ulcers. Major complaints are fever, abdominal pain and distension, weight loss, vomiting, cough, anemia, and hemoptysis [41]. Disseminated strongyloidiasis may not always occur as a fatal outcome of hyperinfection syndrome. Disseminated infection with bloody pericardial effusion has been reported in a nonimmunosuppressed patient without manifestations of hyperinfection syndrome [42]. This clinical finding is relatively common in high-risk populations, which are frequently misdiagnosed with gram-negative septicemia or acute respiratory distress syndrome.

4. Acute and chronic strongyloidiasis

In acute strongyloidiasis, patients become symptomatic immediately after exposure, and the symptoms may last up to several weeks [43]. Acute infection is generally characterized by gastrointestinal (GI) and pulmonary symptoms. GI symptoms such as diarrhea, anorexia, and abdominal pain begin about 2 weeks after infection, with larvae detectable in stool after 3 to 4 weeks. Pulmonary symptoms such as tracheal irritation, cough, and bronchitis begin much earlier than GI symptoms as larvae migrate through the lungs within a few days after exposure. Chronic infection with S. stercoralis is often asymptomatic [44]. In symptomatic patients, major complications are due to chronic gastrointestinal manifestations such as diarrhea, constipation, and intermittent vomiting. Dermatological manifestations like urticarial, petechial, and purpuric rashes and larva currens are also common.

Diagnostic Challenges

The diagnosis of strongyloidiasis requires a high degree of suspicion, as most of the patients with the infection do not show distinctive clinical features and laboratory and imaging findings often turn out to be nonspecific [45]. Multiple clinical findings appear with fatal outcomes after treatment with steroids for a severe disease of unknown etiology and are later confirmed as a case of disseminated strongyloidiasis. Clinicians should be aware that the clinical spectrum of infection may lead to pulmonary infiltrates, acute respiratory distress syndrome, small bowel obstruction, and multisystem organ failure. Clinical correlation of the symptoms with travel and residence history and imported strongyloidiasis should be considered in travelers to and immigrants from endemic areas. Furthermore, the possibility of strongyloidiasis should always be considered in immunocompromised patients who suddenly deteriorate; delay in diagnosis frequently results in death, despite intense treatment [16].

Diagnosis of strongyloides hyperinfection is relatively easy because of the high number of larvae that are seen in stool smears and usually seen in sputum. Many have reported unexpected findings of the larvae in ascites fluids and blood smears [46]. Direct stool examination in saline and Lugol’s iodine stain has been used for mass screening of a population in many epidemiological surveys, but a single direct stool examination alone is always inadequate, as evidenced by many reports of hyperinfection with negative stool screening exams. As the egg output compared to other parasitic helminths is too low, a single stool exam is only about 50% sensitive for making diagnosis and even lower in chronic asymptomatic patients [47].

Other methods of diagnosis include Baermann’s and formalin-ethyl acetate concentration techniques, with improved sensitivity of stool exams. Blood agar plate culture method is also preferred due to high sensitivity and ease of implementation. In a comparative study carried out to determine the efficacy of diagnostic methods, agar plate culture method (APC) has shown high sensitivity, more than 96% compared to direct fecal smear, formalin-ether concentration techniques, and Harada Mori’s filter paper culture methods [48]. It is essential to examine stool samples repeatedly to achieve correct diagnosis, and a negative result does not always indicate the absence of infection [47,48]. Peripheral eosinophilia (>600/mL) represents an immune response to larvae migrating through host tissues and is common during acute infection (as high as 75% to 80%), intermittent during chronic infection (often the only abnormal laboratory test), and frequently absent in severe strongyloidiasis and in the immunocompromised host [44].

1. Microscopy and culture of stool

S. stercoralis larvae are secreted in feces, and the finding of them may be intermittent. Larvae are usually passed in stool approximately 1 month after skin penetration. The eggs of the parasite are not usually found in feces; instead, they hatch immediately to larvae within the intestine, and the larvae are released in stool to undergo the heterogenic phase of development in soil [49]. S. fuelleborni infection in children sheds eggs rather than larvae in
feces and is easily diagnosed using microscopic techniques. Direct smear examination of stool in saline and Lugol's iodine stain has been used to discern larvae in stool and is performed as a definitive diagnostic test. Most epidemiological screenings rely only on this method even though direct wet mounts yield very low larvae (sensitivity up to 30%) on many occasions. Hence, it is mandatory to screen multiple samples, and this should be performed with one of the concentration methods, which may increase sensitivity up to 70% to 80%. More than 90% sensitivity for stool samples is seen if seven or more samples are examined [50].

Concentration methods like formalin-ethyl acetate, Harada-Mori techniques, and Baermann concentration increase the yield and are much more sensitive than single stool smears [51]. A modified formalin-ether concentration technique using fresh stool without a preservative, a short-term formalin exposure, use of wire mesh instead of gauze, and a five-minute centrifugation has shown more efficiency in larval yield compared to the conventional method with the usual parameters [49]. In the Harada-Mori technique, filter paper containing fresh fecal material is placed in a test tube with water that soaks the filter paper by capillary action. Incubation at 30°C provides conditions suitable for the development of larvae, which migrate to the filter paper [47].

Baermann concentration method exploits the tendency of worms and larvae to migrate from a solid into a surrounding liquid medium (hydrotopism) when stimulated by a slightly elevated temperature (thermotropism) and then to settle to the substratum. In this technique, a comparatively large amount of sample can be screened, and the chances of finding different larval stages as well as adults are higher [52]. In the agar culture method, the stool sample is placed on the nutrient agar or blood agar plate and incubated for 48 hours. Serpiginous tracks of bacterial growth along the paths of crawling larvae become apparent after 1 to 2 days of incubation, and motile larvae can be easily visualized with the aid of a dissecting microscope [47,53]. Agar plate culture method is preferred due to its high sensitivity and ease of implementation in standard microbiological laboratories and also for detection of larvae from samples like sputum, bronchial aspirates, and other body fluids [54]. Although laborious and time consuming, it is proven to be more than four times as efficient as direct smear procedures for detection of larvae in stool [48].

String test (Entero test), once popular, is seldom used for collection of larvae from the patient's duodenum [55]. The reported sensitivity ranges from 40% to 90%. This method, which creates inconvenience for the patient, is gradually being replaced by more sensitive duodenal aspiration or histological examination of duodenal or jejunal biopsy [54,56].

2. Endoscopy and histological features

Gastrointestinal endoscopy may range from normal-appearing mucosa to severe duodenitis and colitis showing edematous mucosa, white villi, and erythematous mucosa. In most cases of pulmonary hyperinfection, the larvae are identified with duodenal biopsy. Duodenal biopsy and histopathologic examination identified larvae in 71.4% of immunosuppressed patients [57]. Thus, in addition to stool analysis, endoscopic observation and biopsies are very important [58]. In disseminated strongyloides infection, larvae can be recovered from extraintestinal sites, including sputum, bronchoalveolar fluid [59], cerebrospinal fluid (CSF) [60], urine [61], ascites, gastroesophageal biopsy, and skin biopsy [62,63]. CSF analysis shows elevated protein levels, decreased glucose levels, and pleocytosis with neutrophilic predominance, and a gram stain performed may exhibit various bacterial flora.
3. Serological testing

Serological assays are now widely available; moreover, due to increased sensitivity, they have the potential to be used in multiple helminthic infections. Several immunodiagnostic methods have been developed over the years with limited success, including skin testing with larval extracts, indirect immunofluorescence using fixed larvae, filarial complement fixation testing, radioallergosorbent testing for specific immunoglobulin E (IgE), gelatin particle indirect agglutination (GPIA), western blot analysis, and enzyme-linked immunosorbent assay (ELISA) for immunoglobulin G (IgG) antibodies [47]. Strongyloides-specific antibodies may be used for serologic follow-up, which may indicate reoconversion after successful therapy. ELISA testing has been shown to detect the disease in approximately 85% to 90% of patients (sensitivity of 82% to 95%) [65]; however, its sensitivity may be lower in severely immunocompromised patients and does not distinguish past and present infection in endemic areas of disease.

The strongyloides antibody test shows cross-reactivity with other helminth infections such as filariasis, ascariasis, and acute schistosomiasis. These antibodies can persist for a long time in the host; hence, a differential diagnosis of symptomatic strongyloidiasis is unavoidable in most endemic areas of this disease [66]. An enzyme immune assay for anti-strongyloides IgG may be a good option for rapid diagnosis when a stool examination result is negative as well as in immunosuppressed patients.

A luciferase immunoprecipitation assay described recently may eventually prove to be more accurate than ELISA testing [67]. This luciferase immunoprecipitation system (LIPS) was developed against an antibody to a recombinant strongyloides antigen (NIE). When compared with NIE-ELISA, LIPS showed improved specificity and after a second antigen, S. stercoralis immunoreactive antigen (SsIR), was used in combination, it resulted in a 7-fold difference between positive and negative values. Moreover, it did not show any signs of cross-reactivity with serum from filarial infected patients, which accounts for a major drawback in most serological assays. If made cost-effective and widely available, LIPS could be a substitute used in the effective screening of patients, performing more rapidly and specifically than ELISA. In a comparative evaluation study conducted in endemic regions of Thailand, the gelatin particle agglutination test also was judged to be more practical as a screening test than conventional ELISA [68].

4. Molecular diagnosis

Polymerase chain reaction assays for intestinal parasites, including strongyloides, are increasingly being used on fecal DNA samples, with enhanced specificity and sensitivity of detection. In a recently conducted study, multiplex PCR reactions with specific primers for protozoa and another primer set for helminthes were used. The PCR products obtained were hybridized to beads linked to internal oligonucleotide probes and detected on a Luminex platform. This multiplex PCR bead assay showed 83% and 100% sensitivity and specificity compared with parent multiplex real-time PCR assays and provides a sensitive diagnostic screen for a large panel of intestinal parasites [69].

Most conventional serological diagnosis, like ELISA, is based on crude antigen from parasite extracts. Newer techniques such as the luciferase immunoprecipitation system assays based on recombinant antigens were devised and showed the highest specificity (97.8%) and 100% sensitivity [70] when compared with conventional ELISA. Molecular diagnosis based on detection of specific copro-DNA in stool by a single PCR method amplifying a short (100 base pair) target showed greater efficiency (100%) for detection of S. stercoralis in fecal samples compared to agar plate culture and nested PCR, which amplifies a larger target [71]. In most PCR-based assays, a frequently observed factor that decreases the efficiency of detection is the presence of PCR inhibitors, which are relatively common in stool samples; this is more critical for assays of samples with lower parasite DNA [72]. This is resolved by increasing the amount of feces used for the PCR assay by concentration of stool by acid-ether prior to DNA extraction [71].

A real-time PCR method targeting the small subunit of the rRNA gene was developed for detection of S. stercoralis DNA in fecal samples. The use of this assay could facilitate monitoring the prevalence and intensity of infection in helminth interventional programs, as this real-time PCR also includes an internal control to detect inhibition of the amplification process by fecal contaminants [73]. This assay showed a 2-fold increase in the detection rate when compared with the Baermann sedimentation method and could be an alternative to less sensitive conventional screening methods.

In another recent study, a multiplex real-time PCR, when compared with microscopic examination and antigen detection in travelers and migrants, showed increased detection rates from 0.1% to 0.8% [74]. A growing number of routine diagnostic laboratories are implementing multiplex real-time PCR for detection of intestinal parasites, and these assays can be extended specifically to screening travelers and migrants for S. stercoralis. If implemented effectively, these emerging new technologies certainly may enhance the diagnosis of strongyloides infection in the future.

Prevention and Treatment Strategies

The aim of pharmacotherapy in strongyloidiasis is to eradicate the infection, reduce morbidity and mortality, and prevent hyperinfection and disseminated complications. Several antihelminthic drugs are available for this purpose, though few are recommended for established infection. Most of these drugs allow selective interference in the biological and metabolic pathways of the adults in relatively small doses. The effectiveness of many of these antihelminthic agents against larvae is poor, and they are more effective only when established infection occurs.

Thiabendazole, albendazole, and mebendazole are used for the treatment of acute and chronic strongyloidiasis [75] but showed varied results in many drug trials [76]. Albendazole has a high-affinity binding capacity to free beta-tubulin in parasite cells, thereby inhibiting tubulin polymerization. This eventually results in loss of cytoplasmic microtubules and thus decreases adenosine triphosphate (ATP) production in worms, ultimately leading to energy depletion, immobilization, and death. Mebendazole inhibits microtubule formation and causes worm glucose depletion but shows variable efficacy against strongyloides. Even though used successfully to treat a number of patients with S. stercoralis hyperinfection, decreased accessibility due to poor absorption of the drug by migrating larvae may be the reason for its variable efficacy [77]. These benzimidazoles not only kill adult gut-dwelling stages of the parasite but also sterilize the larvae and eggs to some extent. Thiabendazole was a therapeutic option for strongyloidiasis for quite a long time but has been discontinued due to its unfavorable side effects [75,78].

Ivermectin has now emerged as the drug of choice for acute and chronic strongyloidiasis in intestinal stages, hyperinfection
syndrome, and disseminated strongyloidiasis [79]. It is a semisynthetic derivative of the macrolide mold product avermectin, which binds selectively to glutamate-gated chloride ion channels of invertebrate nerve and muscle cells, thereby increasing the cell membrane permeability with hyperpolarization and causing paralysis and cell death. In patients who are too sick to tolerate or absorb oral (PO) ivermectin, rectal (PR) or subcutaneous (SC) dosing may be effective [80,81]. The eradication rates with ivermectin in many drug trials showed remarkable results and up to a 97% cure rate with even a 2-day course in asymptomatic cases, but in patients with hyperinfection and dissemination, daily drug administration until symptoms resolve with negative laboratory tests for larvae for at least two weeks is recommended [82]. The World Health Organization (WHO)-recommended treatment for strongyloidiasis is either ivermectin (200 μg/kg bodyweight in a single dose) or albendazole (400 mg daily for 3 days) [83]. In a study carried out in Zanzibar, the effect of the two regimens was compared: a cure rate of 82.9% was achieved with ivermectin, while three doses of albendazole cured only 45% of infected individuals [79].

Combination therapy including ivermectin and thiabendazole has been shown to be superior to albendazole alone, and ivermectin is becoming the drug of choice because it has fewer unfavorable side effects [79,84] and a better rate of larval clearance from stool [75]. A newer drug, tribendimidine, remains under investigation in China and shows some promise in the treatment of strongyloidiasis [85].

Patients with hyperinfection are highly infectious and should be treated in isolation because sputum, stool, vomitus, and other body excreta may contain infective (filariform) larvae. Screening family members of patients, treatment in isolation, and following universal precautionary measures to prevent spread of infection to all close associates and to health care workers are mandatory. Improving the living conditions of rural population in areas of endemicity, providing a safe drinking water supply and good sanitary measures, and inculcating knowledge about the disease in high-risk populations help to reduce the infectivity rate in rural populations.

Patients with bacteremia or meningitis following disseminated strongyloidiasis and hyperinfection should be treated with effective antibiotic therapy, and those developing complications of sepsis, shock, and acute respiratory distress syndrome should receive intensive care and critical support. Surgical interventions are suggested in acute cases with peritonitis, bowel obstruction, or infarction in severe disseminated strongyloidiasis.

Empiric corticosteroid therapy in immunosuppressed patients often leads to life-threatening hyperinfection and severe strongyloidiasis. Prompt diagnosis of any strongyloides infection in immunocompromised patients is highly recommended prior to empiric corticosteroid therapy, which otherwise can lead to fatal complications and increased chances of mortality.

Discussion

A definitive diagnosis of strongyloidiasis is usually made by the detection of larvae in stool. However, diagnosis is difficult because of low parasite load and irregular larvae output in the majority of subclinical infections; thus, the true prevalence is often underestimated. Though endemic in some developing countries, strongyloidiasis still poses a threat to the developed world. Increased infectivity rates almost nearing endemic rates of infection in many developed countries among immigrants and travelers and in veterans of war made the spread of infection imminent. In
addition to natural methods of transmission in rural populations caused by poor personal hygiene and contemptible sanitary measures, the zoonotic transmission capacity makes the situation more serious, as domesticated small ruminants act as reservoir hosts of *S. stercoralis*. Novel diagnostic methods and treatment strategies with newer effective drugs are expected to improve epidemiological studies and control efforts for the prevention and treatment of strongyloidiasis. As most cases of hyperinfection syndrome and disseminated strongyloidiasis happen in immunocompromised individuals, especially those taking systemic steroids, clinicians should be aware of the risk factors associated with strongyloides infection prior to administering corticosteroid therapy. Awareness of increased predisposition to strongyloides infection is indispensable when gastrointestinal or pulmonary symptoms are observed in immunocompromised patients.

Many efficient integrated approaches are essential and, depending on the source of infection, infectivity rate in the population, and transmission capacity, should be implemented in the diagnosis, treatment, and management of this disease. This could be possible through a comprehensive analysis with an aim of understanding the infection in endemic regions of the disease and also by a thorough analysis of this emerging infection in immunocompromised populations and other risk groups in nonendemic regions of the disease.

Supporting Information

File S1 Search strategy and selection criteria. (DOCX)

File S2 Endemcity of Strongyloides infections in China. (DOCX)

Acknowledgments

We thank Noel Roberts for his critical review of the manuscript.

References

1. Bethony J, Brooker S, Albonico M, Geiger SM, Loukou A, et al. (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworms. Lancet 367: 1521–1532.
2. Ashford RW, Barinah GB (1989) Strongyloides fuelleborni and similar parasites in animals and man. In: Grove DI, editor. Strongyloidiasis: a major roundworm infection of man. London: Taylor & Francis. pp. 271–296.
3. Genta RM (1989) Global prevalence of strongyloidiasis: critical review with epidemiologic insights into the prevention of disseminated disease. Rev Infect Dis 11: 755–767.
4. Olsen A, van Lieshout L, Marri H, Polderman T, Polman K, et al. (2009) Strongyloidiasis—the most neglected of the neglected tropical diseases? Trans R Soc Trop Med Hyg 103: 967–972.
5. Normand A (1983) Sur la maladie dite diarrhée de Cochinchine. C R Acad Sci Paris 3: 316.
6. Genta RM (1995). *Strongyloides stercoralis*. In: Blaser MJ, Smith PD, Ravdin JM, Greenberg HB, Guerrant RL, editors. Infections of the gastrointestinal tract. New York: Raven Press. pp. 1197–1207.
7. Montes M, Sadowsky C, Barros N (2010) Strongyloides stercoralis: there but not seen. Curr Opin Infect Dis 23: 500–504.
8. Coker AO, Ishikoki RD, Thomas BN, Fagbenro-Beyioku AF, Omidu LA (2000) Zoonotic infections in Nigeria: overview from a medical perspective. Acta Trop 76: 59–63.
9. Marnel F, Guillet A, Holland C (1992) A survey of the intestinal helminths of refugees in Juba, Sudan. Ann Trop Med Parasitol 86: 387–393.
10. Walser PD, Mülder JE, Bansgall GE, Kligore G, Klein M, et al. (1992) Epidemiological features of Strongyloides stercoralis infection in an endemic area of the United States. Am J Trop Med Hyg 31: 313–319.
11. Evering T, Weiss LM (2006) The immunology of parasite infections in immunocompromised hosts. Parasite Immunol 28: 599–565.
12. Sarangarajan R, Rangaswathan A, Belote AH, Tcherkob Y (1997) Strongyloides stercoralis infection in AIDS. AIDS Patients Care STDS 11: 407–414.
13. Ferrreira MS, Nishioka Sde A, Borges AS, Costa-Cruz JM, Rossin IR, et al. (1999) Strongyloides and infection due to human immunodeficiency virus 23 cases at a Brazilian teaching hospital, including seven cases of hyperinfection syndrome. Clin Infect Dis 28: 154–155.
14. Wang C, Xu J, Zhou X, Li J, Yan G, et al. (2013) Strongyloidiasis: an emerging infectious disease in China. Am J Trop Med Hyg 88: 420–425.
15. Ginz D, Sléve KD, Knopp S, Lohouignon LK, Yao KP, et al. (2010) Comparing diagnostic accuracy of Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths. PLoS Negl Trop Dis 4: e754.
16. Johnston FH, Morris PS, Screar R, McCarthy J, Currie B, et al. (2005) Strongyloidiasis: a review of the evidence for Australian practitioners. Aust J Rural Health 13: 247–254.
17. Crocker C, Reporter R, Redlinges M, Muscola L (2010) Strongyloidiasis-related deaths in the United States, 1991–2006. Am J Trop Med Hyg 83: 422–426.
18. Dawson-Hahn EE, Greenberg SL, Domachowske JB, Olson BG (2010) Zoonosis and the prevalence of schistosomiasis and strongyloidiasis in newly arriving epidermic refugees: an examination of Centers for Disease Control and Prevention screening guidelines. J Pediatr 156: 1016–1018.e1.
19. Gill GV, Welch E, Bailey JW, Bell DR, Becherich NJ (2004) Chronic Strongyloides stercoralis infection in former British Far East prisoners of war. QJM 97: 789–795.
20. Nuesch R, Zimmerli L, Stockli R, Gyr N, Christop Hatz FR (2005) Imported strongyloidiasis: a longitudinal analysis of 31 cases. J Travel Med 12: 80–84.
21. Lim S, Katz K, Krajener S, Fukuwa M, Keystone JS, et al. (2004) Complicated and fatal Strongyloides infection in Canadians: risk factors, diagnosis and management. CMAJ 171: 479–484.
22. Keystone JS (2007) Can one afford not to screen for parasites in high-risk immigrant populations? Clin Infect Dis 45: 1316–1318.
23. Tan PP, Kwee M, Gilmah RH, Cordova J, Bern C, et al. (2006) Seroprevalence of strongyloidiasis in the Peruvian Amazon. Am J Trop Med Hyg 74: 97–102.
24. Mood TB, Oberhelman RA (2005) Antiparasitic therapy in children. Pediatr Clin North Am 52: 917–948.
25. Goncalves AL, Machado GA, Goncalves-Pires MR, Ferreira-Junior A, Silva DA, et al. (2007) Evaluation of strongyloidiasis in kennel dogs and keepers by parasitological and serological assays. Vet Parasitol 147: 132–139.
26. Screar R (1989) Identification of species of Strongyloides. In: Grove DI, editor. Strongyloidiasis: a major roundworm infection of man. London: Taylor & Francis.
27. Neva FA (1994) Intestinal nematodes of human beings. In: Neva FA, editor. Basic Clinical Parasitology. Norwalk (Connecticut): Appleton & Lange. pp. 123–128.
28. Viney ME, Lok JK (2007) Strongyloides spp. WormBook, ed. The C. elegans Research Community, WormBook. doi:10.1091/wormbook.1.141.1.
29. Viney ME (1996) Developmental switching in the parasitic nematode *Strongyloides* cast. Proc Biol Sci 263: 201–208.
30. Grove DI (1989) Historical introduction. In: Grove DI, editor. Strongyloidiasis: A Major Roundworm Infection of Man. Philadelphia (Pennsylvania): Taylor & Francis.
31. Ronan SG, Reddy RL, Malanogd JR, Alexander J, Fu T (1989) Disseminated strongyloidiasis presenting as purpura. J Am Acad Dermatol 21: 1123–1125.
32. Berk SL, Verghese A, Alvarez S, Hall K, Smith B (1987) Clinical and epidemiologic features of strongyloidiasis. A prospective study in rural Tennessee. Arch Intern Med 147: 1257–1261.
33. Woodring JH, Hallfall H 2nd, Reed JC (1994) Pulmonary strongyloidiasis: clinical and imaging features. AJR Am J Roentgenol 162: 537–542.
34. Mansfield LS, Niamatali S, Bhopale V, Volk S, Smith G, et al. (1996) Strongyloides stercoralis: maintenance of exceedingly chronic infections. Am J Trop Med Hyg 55: 617–624.
35. Grove DI (1996) Human strongyloidiasis. Adv Parasitol 38: 251–309.
36. Vadlamudi RS, Chi DS, Krishnaswamy G (2006) Intestinal strongyloidiasis and hyperinfection syndrome. Clin Mol Allergy 4: 8.
37. Keiser PJ, Noman TB (2004) Strongyloides stercoralis in the Immunocompromised Population. Clin Microbiol Rev 17: 208–217.
38. Hsain RN, Gordon SM, Longwouth DL, Adal KA (1996) Disseminated Strongyloides stercoralis infection in an immunocompetent patient. Clin Infect Dis 23: 663.
39. Boulware DR, Stauffer WM, Hendel-Paterson BR, Rocha JL, Seet RC, et al. (2007) Maltreatment of Strongyloides infection: case series and worldwide physicians-in-training survey. Am J Med 120: 545, e541–548.
40. Hong IS, Zaidi SY, McEvoy P, Neafie RC (2004) Diagnosis of Strongyloides stercoralis in a peritoneal effusion from an HIV-seropositive man. A case report. Acta Cytol 48: 211–214.
41. Ramdial PK, Hlasthvayo NH, Singh B (2006) Strongyloides stercoralis mesenteric lymphadenopathy: clue to the etiopathogenesis of intestinal pseudo-obstruction in HIV-infected patients. Ann Diagn Pathol 10: 209–214.
42. Galimberti R, Ponton A, Zaputovich FA, Velasquez L, Galimberti G, et al. (2009) Disseminated strongyloidiasis in immunocompromised patients-report of three cases. Int J Dermatol 48: 975–978.
69. Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, Lieshout L, et al. (2011) High sensitivity strongyloidiasis in hospitalised elderly patients with and without cosinophilia. Clin Microbiol Infect 17: 676–682.

70. Verweij JJ, Canales M, Polman K, Ziem J, Brienen EA, et al. (2009) Molecular diagnosis of Strongyloides stercoralis in fecal samples using multiplex real-time PCR. J Trop Med Hyg 102: 511–514.

71. Moghaddamian H, Mirhendi H, Hosseini M, Rokni M, Mowlavi G, et al. (2011) Molecular Diagnosis of Strongyloides stercoralis Infection by PCR Detection of Specific DNA in Human Stool Samples. Iran J Parasitol 6: 23–30.

72. Verweij JJ, Brien E, Ziem J, Vethari L, Bolderman AM, et al. (2007) Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. Am J Trop Med Hyg 77: 685–690.

73. Verweij JJ, Canales M, Polman K, Ziem J, Brienen EA, et al. (2009) Molecular diagnosis of Strongyloides stercoralis in fecal samples using real-time PCR. Trans R Soc Trop Med Hyg 103: 342–346.

74. ten Hove RJ, van Esbroeck M, Vervoort T, van den Ende J, van Lieshout L, et al. (2009) Molecular diagnostics of intestinal parasites in returning travellers. Eur J Clin Microbiol Infect Dis 28: 1045–1053.

75. Gaunt PH, Neva FA, Gao Q, Wang Q, Kimoto S, et al. (2005) Randomized trial of single- and two-dose ivermectin versus thiabendazole for treatment of strongyloidiasis. J Infect Dis 193: 1076–1079.

76. Lui LX, Weller PF (1993) Strongyloidiasis and other intestinal nematode infections. Infect Dis Clin North Am 7: 655–662.

77. Venturi M, Villani WM (1984) [Diagnosed strongyloidiasis in a diabetic patient]. Rev Paul Med 102: 18–23.

78. Zaha O, Hirata T, Kinjo F, Sato A (2000) Strongyloidiasis-progression in diagnosis and treatment. Intern Med 39: 129–136.

79. Marri H, Hajj HJ, Savoli L, Chawya HM, Mgeni AF, et al. (1996) A comparative trial of a single-dose ivermectin versus three days of albendazole for treatment of Strongyloides stercoralis and other soil-transmitted helminth infections in children. Am J Trop Med Hyg 55: 477–481.

80. Fuscio DN, Dossa JA, Salama H, Rafael M, Ramos LO, et al. (2010) Non oral treatment with ivermectin for disseminated strongyloidiasis. Am J Trop Med Hyg 83: 387–393.

81. Bokem DJ, Leoni PA, Perheim LC (1993) Treatment of Strongyloides stercoralis hyperinfection syndrome with thiabendazole administered per rectum. Clin Infect Dis 16: 123–126.

82. Shikaya K, Zaha O, Niimura S, Uchida T, Ohshiro J, et al. (1996) [Clinical study on ivermectin against 125 strongyloidiasis patients]. Kansenshogaku Zasshi 60: 13–28.

83. WHO (2002) Prevention and control of schistosomiasis and soil transmitted helminthiasis. Geneva, Switzerland: World Health Organization. Available: http://www.who.int/whr/WHOTRS912.pdf. Accessed 14 July 2014.

84. Darty A, Hilmarzott I, Mayorga-Sagastume R, Lyagoubi M, Gazotte P, et al. (1994) Treatment of Strongyloides stercoralis infection with ivermectin compared with albendazole: results of an open study of 60 cases. Trans R Soc Trop Med Hyg 88: 344–345.

85. Steimann M, Zhou YN, Du ZW, Jiang YX, Xiao SH, et al. (2008) Trebantidimidine and albendazole for treating soil-transmitted helminths, Strongyloides stercoralis and Taenia spp: open-label randomized trial. PLoS Negl Trop Dis 2: e322.

86. Linder JD, Robinson RD, Terry SJ, Vogel P, Gamm AA, et al. (1995) Age prevalence and household clustering of Strongyloides stercoralis infection in southern Jamaica. Parasitology 110 (Pt 1): 97–102.

87. Marala B, Buing AG, Hol C, Pelgrim R, Blokamp C, et al. (2001) The risk of Strongyloides stercoralis transmission from patients with disseminated strongyloidiasis to the medical staff. J Hosp Infect 49: 222–224.

88. Fardet L, Generace F, Parasiba J, Kettaneh A (2006) Severe strongyloidiasis in corticosteroid-treated patients. Clin Microbiol Infect 12: 945–947.

89. Thompson JR, Berger R (1991) Fatal adult respiratory distress syndrome following successful treatment of pulmonary strongyloidiasis. Chest 99: 772–774.

90. Taranto NJ, Bonomi de Filippi H, Orione O (1993) [Prevalence of Strongyloides stercoralis infection in childhood. Oran, Saha, Argentina]. Bol Chil Parasitol 48: 49–51.

91. Taranto NJ, Caij SP, De Marzi MC, Fernandez MM, Frank FM, et al. (2003) Clinical status and parasitic infection in a Wichí Aboriginal community in Salta, Argentina. Trans R Soc Trop Med Hyg 97: 554–558.

92. Repetto SA, Duran PA, Lasala MB, Gonzalez-Cappa SM (2010) High rate of strongyloidiasis infection, out of endemic area, in patients with eosinophilia and without risk of exogenous reinfections. Am J Trop Med Hyg 82: 1083–1085.

93. Ines Ede J, Souza JN, Santos RC, Souza ES, Santos FL, et al. (2011) Efficacy of praziquantel methods for the diagnosis of Strongyloides stercoralis and hookworm in faecal specimens. Acta Trop 120: 206–210.

94. Machado ER, Santos DS, Coste-Cruz JM (2008) Entroparasites and commensals among children in four peripheral districts of Ubelandia, State of Minas Gerais. Rev Soc Bras Med Trop 41: 581–585.

95. Mine JC, Rosa JA (2008) Frequency of Blastocystis hominis and other intestinal parasites in stool samples examined at the Parasitology Laboratory of the School of Pharmaceutical Sciences at the Sao Paulo State University, Araraquara. Rev Soc Bras Med Trop 41: 565–569.

96. Mendonca SC, Goncalves-Pires MDL R, Rodrigues RM, Ferreira A Jr, Costa-Cruz JM (2006) Is there an association between positive Strongyloides stercoralis serology and diabetes mellitus? Acta Trop 99: 102–103.

97. Caimmer S, Camerino B, Lewis DS (1999) Prevalence of intestinal parasitic infections in patients with acquired immunodeficiency syndrome in Brazil. Int J Infect Dis 3: 203–206.
128. Sithithaworn P, Srisawangwong T, Tesana S, Daenseekaew W, Sithithaworn J, et al. (2009) Epidemiology of Strongyloides stercoralis infections in north-east Thailand: application of the agar plate culture technique compared with the enzyme-immunosorbent assay. Trans R Soc Trop Med Hyg 97: 398–402.

129. Jongwutiwes S, Charoenkorn M, Sitthichareonchai P, Akaaraborvorn P, Putapornpit C (1999) Increased sensitivity of routine laboratory detection of Strongyloides stercoralis and hookworm by agar-plate culture. Trans R Soc Trop Med Hyg 93: 399–400.

130. Knopp S, Mohammed KA, Rollinson D, Sotardh JR, Khamis IS, et al. (2009) Changing patterns of soil-transmitted helminthiases in Tanzani in the context of national helminth control programs. Am J Trop Med Hyg 81: 367–370.

131. Winsberg GR, Sonnenschein E, Dyer AR, Schnadig V, Bonilla E (1975) Laboratory diagnosis of Strongyloides stercoralis and other lymphotropic virus type-1 infection in Peru. Am J Trop Med Hyg 60: 146–149.

132. Buchwald D, Lam M, Hooton TM (1995) Prevalence of intestinal parasites and enteroparasites in children at Uberlandia city, state of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 90: 52–58.

133. Magaru BK, Zeylhe E, Wachira TM (1980) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

134. Salazar SA, Gutierrez C, Berk SL (1995) Value of the agar plate method for the diagnosis of intestinal Strongyloides stercoralis in Yirgalem Hospital, Ethiopia. Mem Inst Oswaldo Cruz 90: 52–58.

135. Ungar BL, Iscoe E, Cutler J, Bartlett JG (1986) Intestinal parasites in a migrant farmworker population. Am J Clin Pathol 85: 153–155.

136. Kitchen LW, Tu KK, Kerns FT (2000) Strongyloides infection in Montagnard refugees after presumptive albendazole therapy. Am J Trop Med Hyg 63: 302–304.

137. Salazar SA, Gutierrez C, Berk SL, Sr (1995) Value of the agar plate method for the diagnosis of intestinal Strongyloides stercoralis. Diagn Microbiol Infect Dis 23: 141–145.

138. Winsberg GR, Sonnenschein E, Dyer AR, Schnadig V, Bonilla E (1975) Laboratory diagnosis of Strongyloides stercoralis and other lymphotropic virus type-1 infection in Peru. Am J Trop Med Hyg 60: 146–149.

139. Hubbard DW, Morgan PM, Yaeger RG, Unglaub WG, Hood MW, et al. (1997) Prevalence of soil-transmitted helminths in the era of preventive chemotherapy: effect of multiple stool sampling and use of different diagnostic techniques. PLoS Negl Trop Dis 2: e331.

140. Eveland LK, Kenney M, Yermakov V (1975) Laboratory diagnosis of Strongyloides stercoralis and other lymphotropic virus type-1 infection in Peru. Am J Trop Med Hyg 60: 146–149.

141. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

142. Buchwald D, Lam M, Hooton TM (1995) Value of the agar plate method for the diagnosis of intestinal Strongyloides stercoralis in Yirgalem Hospital, Ethiopia. Mem Inst Oswaldo Cruz 90: 52–58.

143. Franco-Paredes C, Dismukes R, Nickolls D, Hidron A, Workowski K, et al. (2007) Persistent and untreated tropical infectious diseases among Sudanese refugees in the United States. Am J Trop Med Hyg 77: 635–635.

144. Genta RM, Weesner R, Douce RW, Huitger-O’Conner T, Walzer PD (1987) Strongyloides stercoralis in US veterans of the Vietnam and other wars. JAMA 258: 49–51.

145. Wurmburg GR, Sommerson E, Dyer AR, Schnadig V, Bonilla E (1975) Prevalence of intestinal parasitoses in Latino residents of Chicago. Am J Epidemiol 102: 526–532.

146. Eveland LK, Kerney M, Yermakov V (1975) Laboratory diagnosis of Strongyloides stercoralis and other lymphotropic virus type-1 infection in Peru. Am J Trop Med Hyg 60: 146–149.

147. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

148. Buchwald D, Lam M, Hooton TM (1995) Value of the agar plate method for the diagnosis of intestinal Strongyloides stercoralis in Yirgalem Hospital, Ethiopia. Mem Inst Oswaldo Cruz 90: 52–58.

149. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

150. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

151. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

152. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

153. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

154. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

155. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

156. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

157. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

158. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

159. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

160. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

161. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

162. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

163. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

164. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

165. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

166. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

167. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

168. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.

169. Razzaq AM, Gervais L, Akhtar I, Grewal R (2009) Prevalence of intestinal parasitoses in a rural hospital, Kenya. Am J Trop Med Hyg 29: 129–132.