A note on friezes of type Λ_4 and Λ_6

Lukas Andritsch*

February 23, 2018

Abstract

We point out a certain connection between Conway-Coxeter friezes of triangulations and p-angulated generalisation of frieze patterns recently introduced by Holm and Jørgensen in [8]: the friezes of type Λ_p coincide with Conway-Coxeter friezes of certain triangulations for $p = 4$ and $p = 6$ in every odd row.

Contents

1 Settings and Theorem
2 Friezes of type Λ_4 and associated Conway-Coxeter friezes.
3 Friezes of type Λ_6 and associated Conway-Coxeter friezes.
4 Remarks and Outlook

1 Settings and Theorem

Frieze patterns where defined by Coxeter in [6].

Definition 1 Let $n > 0$ be an integer. A frieze pattern of width n consists of $n + 4$ infinite horizontal rows of non-negative real numbers, with an offset between even and odd rows. The rows are numbered 0 through $n + 3$, starting from below, and they satisfy:

(i) Rows number 0 and $n + 3$ consist of zeroes. Rows number 1 and $n + 2$ consist of ones. Rows number 2 through $n + 1$ consist of positive real numbers.

(ii) Each “diamond” $\begin{array}{cc} a & b \\ c & d \end{array}$ satisfies $ad - bc = 1$. Row number 2 (the first non-trivial row from below) is called the quiddity row.

Furthermore, we call any n-tuple of successive entries of the quiddity row quiddity sequence.

Conway and Coxeter proved that triangulations of polygons are in bijection with integral frieze patterns in [4] and [5]. Holm and Jørgensen recently generalized in [8] this relation by studying certain frieze patterns over O_K, the ring of algebraic integers in the field $K = \mathbb{Q}(\lambda_{p_1}, \ldots, \lambda_{p_s})$, for s and λ_{p_i}, $1 \leq i \leq s$ as defined below.

*Mathematics and Scientific Computing, University of Graz, Graz, Austria, lukas.andritsch@uni-graz.at
Definition 2 Let $p \geq 3$ be an integer. A frieze pattern is of type Λ_p if the quiddity row consists of (necessarily) positive integral multiples of

$$\lambda_p = 2 \cos \left(\frac{\pi}{p} \right).$$

One of the main results of [8] is the following theorem:

Theorem 3 There is a bijection between p-angulations of the $(n+3)$-gon and frieze patterns of type Λ_p and width n.

Definition 4 A polygon dissection D of a polygon P is a set of pairwise non-crossing diagonals. It splits P into subpolygons P_1, \ldots, P_s where P_j is a p_j-gon for some p_j. Observe that D is a p-angulation if and only if $p_1 = \cdots = p_s = p$. We denote the set of all p-angular dissections D of a $(p-2)s+2$-gon P by $\mathcal{D}_p((p-2)s+2)$.

A dissection D of P into subpolygons P_i, where P_i is a p_i-gon, is mapped to a frieze pattern F constructed as follows: To each vertex α of P, associate the sum

$$\sum_{P_i \text{ is incident with } \alpha} \lambda_{p_i}.$$

Furthermore, for every vertex α, we associate

$$q_\alpha := |\{P_j \mid P_j \text{ is incident with } \alpha\}|.$$

The quiddity sequence of a frieze pattern of a p-angulation of a $(p-2)s+2$-gon is

$$(\lambda_p q_0, \lambda_p q_1, \ldots, \lambda_p q_{(p-2)s+1}). \tag{1}$$

We will replace the term frieze pattern by frieze for the rest of the note, see [8, Sect.1] for details. Figure 1 shows a 4-angulation $D_0 \in \mathcal{D}_4(10)$ with diagonals $\{1,4\}$, $\{4,9\}$ and $\{5,8\}$. Therefore $q_0 = q_2 = q_3 = q_6 = q_7 = 1$, $q_1 = q_5 = q_8 = q_9 = 2$ and $q_4 = 3$. Figure 2 shows the associated frieze of type Λ_4.

In this note, we consider p-angulations for $p = 4$ and $p = 6$ and want to prove the following theorem:

Theorem 5 Let $p = 4$ or $p = 6$. For every p-angulation D of a polygon P, there exists a uniquely determined triangulation T_D such that the frieze of type Λ_p associated to D and the Conway-Coxeter frieze of T_D coincide in every odd row.
Figure 2: The frieze F_{D_0} of type Λ_4 of D_0 has width 7 (number of non-trivial rows).

2 Friezes of type Λ_4 and associated Conway-Coxeter friezes.

There is a bijection between quadrangulations on the $2s + 2$-gon and noncrossing trees on $s + 1$ vertices as defined in [7].

Definition 6 A noncrossing tree in the regular polygon with $s + 1$ vertices is a set of edges between the vertices of the polygon, with the following properties

- edges do not cross pairwise
- any two vertices are connected by a sequence of edges
- there is no loop made of edges.

We follow [3] for describing this bijection. Assume that the vertices of the $2s + 2$-gon have been coloured black and white alternating. Then every edge of the quadrangulation connects one black and one white vertex. Every quadrangle contains a unique black-black diagonal. The collection of these diagonal edges form a noncrossing tree. Conversely, by drawing a noncrossing tree using the black vertices of the $2s + 2$-gon, one can consider all black-white edges that do not cross the edges of the noncrossing tree. This gives back the quadrangulation. This construction is shown in Figure 3.

Figure 3: The bijection between quadrangulation and noncrossing trees.

Definition 7 To every quadrangulation D of a polygon P we associate the triangulation T_D consisting of diagonals defined by the dissection D of P together with the edges of the corresponding noncrossing tree.
Figure 4: The triangulation T_{D_0} of the dissection D_0.

\[
\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 4 & 1 & 2 & 4 & 4 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 1 & 2 & 3 & 4 & 1 & 2 & 2 & 2 & 1 & 4 \\
8 & 2 & 2 & 5 & 11 & 3 & 1 & 1 & 3 & 7 & 3 & 2 \\
5 & 1 & 3 & 7 & 13 & 5 & 1 & 3 & 7 & 13 & 5 & 1 \\
8 & 2 & 1 & 10 & 8 & 2 & 2 & 2 & 2 & 18 & 5 & 11 \\
3 & 1 & 3 & 7 & 3 & 3 & 3 & 3 & 1 & 5 & 11 & 3 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

Figure 5: The Conway-Coxeter frieze $F_{T_{D_0}}$ of T_{D_0}.

Remark 8

Note that the association $D \mapsto T_D$ from Definition 7 agrees with the map in [1] between 4-gonal dissections and 2-color valid triangulations in many cases, but in general it is different.

Figure 4 shows the associated triangulation of D_0.

For the triangulation T_D associated to a dissection D, define for every vertex $0 \leq \alpha \leq 2s+1$,

\[t_\alpha := |\{P_j \mid P_j \text{ is incident with } \alpha\}|.\]

The quiddity sequence of the Conway-Coxeter frieze is then by definition $(t_0, t_1, \ldots, t_{2s+1})$. Figure 5 shows the Conway-Coxeter frieze of T_{D_0}. Note that every row with an odd number (the initial row of zeros has row number 0) coincide with the frieze F_{D_0} of type Λ_4 in Figure 2.

In order to prove the following Lemma, we need an equivalent combinatorial object to a dissection and its properties (see also [1]). The dual graph of a p-angular dissection D of a polygon P has a vertex for every subpolygon P_j and two vertices are connected by an edge if the corresponding p-gons share a common edge. An ear is a p-gon P_j which consists of $p-1$ boundary edges of P and exactly one diagonal of D. The dual graph of any dissection D of a polygon P is a tree. Every tree has at least two leaves and every leave of the dual graph of D of P corresponds to an ear of D of P.

Recall that for a dissection D of a polygon into s quadrilaterals, q_α denotes the number of quadrilaterals incident with vertex α for $0 \leq \alpha \leq 2s+1$. We can now state the following Lemma:
Lemma 9 For every 4-angulation $D \in \mathcal{D}_4(2s + 2)$ and its associated triangulation T_D, the following equalities hold:

$$t_\alpha = \begin{cases} q_\alpha & \text{if } \alpha \text{ is even} \\ 2q_\alpha & \text{otherwise.} \end{cases} \quad (2)$$

Proof. The proof is done by induction. For $s = 1$, the statement is true. Let $s > 1$ and let $D \in \mathcal{D}_4(2s + 2)$. Let $\{\alpha, \alpha + 3\}$ be an ear of D. Cutting off this ear from D, as shown in Figure 6, gives a 4-gonal dissection D' with $2s$ vertices and hence equation (2) holds for all vertices $\beta \in [0, 2s + 1] \setminus \{\alpha, \alpha + 1, \alpha + 2, \alpha + 3\}$ by induction hypothesis. Denote

Figure 6: Cutting off an ear from D gives a quadrangulation D' on $2s$ vertices. Here α is odd.

the number of triangles and quadrilaterals incident with vertices α and $\alpha + 3$ in $T_{D'}$ and D' by t'_α, q'_α and $t'_{\alpha+3}$, $q'_{\alpha+3}$ respectively. There are 2 cases, as vertex α is either coloured black or white. If α is odd and coloured black, then $t'_\alpha = 2q'_\alpha$ and $t'_{\alpha+3} = q'_{\alpha+3}$. As the triangulation T_D includes the diagonal $\{\alpha, \alpha + 2\}$, we obtain the equations

$$t_\alpha = t'_\alpha + 2 = 2(q'_\alpha + 1)$$
$$t_{\alpha+1} = 1 = q_{\alpha+1}$$
$$t_{\alpha+2} = 2 = 2q_{\alpha+2}$$
$$t_{\alpha+3} = t'_{\alpha+3} + 1 = q'_{\alpha+3} + 1.$$

As the number of incident quadrilaterals increases by 1 only for the 4 vertices $\alpha, \alpha + 1, \alpha + 2, \alpha + 3$ in D compared to D', the claimed equalities (2) hold for all vertices. The arguments in case of even α can be shown analogous. \hfill \square

Proposition 10 Let D be a quadrangulation of P and F_D the associated frieze of type Λ_4. If T_D is the associated triangulation of D and F_{T_D} the corresponding Conway-Coxeter frieze, then F_D and F_{T_D} coincide in every second row.

Proof. Set $\lambda := \lambda_4$. By Lemma 9 the quiddity sequence of T_D for $D \in \mathcal{D}_4(2s + 2)$ is

$$(t_0, t_1, t_2, t_3, \ldots, t_{2s}, t_{2s+1}) = (g_0, 2g_1, q_2, 2g_3, \ldots, q_{2s}, 2g_{2s+1}).$$

The proof consists of the following three steps:

1.) Calculate the row number 3 of the friezes F_D and F_{T_D} by the diamond rule and show that they coincide.

2.) Analyse the entries of the 2 friezes in even rows.

3.) Use 2.) to show that odd rows of the 2 friezes coincide.

5
1.) By using the quiddity sequences given by \(1\) for \(p = 4\), we calculate the third row of both friezes \(F_D\) and \(F_{T_D}\). Let’s consider the following part of the frieze \(F_D\):
\[
\begin{array}{ccccccc}
\cdots & 1 & 1 & 1 & \cdots \\
\cdots & \lambda q_{2k} & \lambda q_{2k+1} & \lambda^2 q_{2k+2} & \lambda q_{2k+3} & \cdots \\
\cdots & \lambda^2 q_{2k} q_{2k+1} - 1 & \lambda^2 q_{2k+1} q_{2k+2} - 1 & \lambda^2 q_{2k+2} q_{2k+3} - 1 & \cdots \\
\end{array}
\]

The corresponding part of the frieze \(F_{T_D}\) is by Lemma \(9\) of the form
\[
\begin{array}{ccccccc}
\cdots & 1 & 1 & 1 & \cdots \\
\cdots & q_{2k} & 2q_{2k+1} & q_{2k+2} & 2q_{2k+3} & \cdots \\
\cdots & 2q_{2k} q_{2k+1} - 1 & 2q_{2k+1} q_{2k+2} - 1 & 2q_{2k+2} q_{2k+3} - 1 & \cdots \\
\end{array}
\]

and as this repeats periodically with period \(2s + 2\) and as \(\lambda^2 = 2\), the third row of the friezes coincide. The numbers are positive integers.

2.) We now want to show the connection between the rows with even numbers of the friezes \(F_D\) and \(F_{T_D}\), although the values of the former are not integers. Let’s assume that there exists a \(j\) s.t. row number \(2j\) of \(F_D\) has the entries
\[
\cdots \lambda a_0 \lambda a_1 \lambda a_2 \lambda a_3 \cdots \lambda a_{2s} \lambda a_{2s+1} \lambda a_0 \cdots (3)
\]

and that row number \(2j\) of \(F_{T_D}\) has entries
\[
\cdots a_0 2a_1 a_2 a_3 \cdots a_{2s} 2a_{2s+1} a_0 \cdots (4)
\]

with \(a_\alpha \in \mathbb{Z}_{>0}\) for \(0 \leq \alpha \leq 2s + 1\). Furthermore assume that the two friezes coincide in row number \(2j + 1\). Note that this assumption is valid for \(j = 1\) as shown above. Then for \(i \in [0, 2s + 1]\) and \(b_i \in \mathbb{Z}_{>0}\) the row number \(2j + 2\) of \(F_D\) and \(F_{T_D}\) is (shown in the third row of each pattern)
\[
\begin{array}{ccccccc}
\cdots & \lambda a_{2k-1} & \lambda a_{2k} & \lambda a_{2k+1} & \lambda a_{2k+2} & \cdots \\
\cdots & b_{2k-2} \lambda a_{2k-1} & b_{2k-1} \lambda a_{2k} & b_{2k} \lambda a_{2k+1} & b_{2k+1} \lambda a_{2k+2} & \cdots \\
\end{array}
\]

and
\[
\begin{array}{ccccccc}
\cdots & 2a_{2k-1} & a_{2k} & 2a_{2k+1} & a_{2k+2} & \cdots \\
\cdots & b_{2k-2} 2a_{2k-1} & b_{2k-1} a_{2k} & b_{2k} \lambda a_{2k+1} & b_{2k+1} \lambda a_{2k+2} & \cdots \\
\end{array}
\]

respectively. Define \(c_k = \frac{b_k b_{k+1}}{2a_{k+1}}\) for \(0 \leq k \leq 2s + 1\) (with \(b_{2s+2} := b_0\) and \(a_{2s+2} := a_0\)). Note that this definition involves a shift of the indices to the right from row number \(2j\) to row number \(2j + 2\). In other words, the diamonds are of the form \(b_k b_{k+1} - 2a_{k+1} c_k = 1\). We obtain that the row number \(2j + 2\) of \(F_D\) and \(F_{T_D}\) is
\[
\cdots \lambda c_0 \lambda c_1 \lambda c_2 \lambda c_3 \cdots \lambda c_{2s} \lambda c_{2s+1} \lambda c_0 \cdots
\]

and
\[
\cdots c_0 2c_1 c_2 2c_3 \cdots c_{2s} 2c_{2s+1} c_0 \cdots
\]

respectively. All values \(c_j\) for \(0 \leq j \leq 2s + 1\) are positive integers. This is trivial for even indices, as all values are entries of a Conway-Coxeter frieze. For odd indices, \(c_{2k-1}\) is a positive integer too by using a well known dependency of entries of a Conway-Coxeter frieze, stated in \([6] (6.6)\). In particular, \(2c_{2k-1}\) fulfills the equation
\[
2c_{2k-1} = t_{2k-1} \cdot b_{2k} - 2a_{2k+1} = 2(q_{2k-1} \cdot b_{2k} - a_{2k+1})
\]
and as q_{2k-1}, b_{2k} and a_{2k+1} are integers, c_{2k-1} is also an integer. It is positive as being an entry of a Conway-Coxeter frieze.

3.) Now assume that there exists a j such that the two friezes coincide in rows number $2j + 1$, and that row number $2j + 2$ of F_{TD} and F_D are of the form ([3]) and ([4]) respectively. Note that this assumption is valid for $j = 1$. For $i \in [0, 2s + 1]$ let $b_i \in \mathbb{Z}_{>0}$. Then row number $2j + 3$ of F_D and F_{TD} has the following entries (shown in the third row of each pattern):

$$\begin{array}{cccccc}
\cdots & \lambda a_{2k} & b_{2k+1} & \lambda a_{2k+1} & b_{2k+2} & \lambda a_{2k+2} & b_{2k+3} & \cdots \\
\cdots & \frac{\lambda^2 q_{2k} q_{2k+1} - 1}{b_{2k+1}} & \lambda a_{2k+1} & \frac{\lambda^2 q_{2k+1} q_{2k+2} - 1}{b_{2k+2}} & \lambda a_{2k+2} & \frac{\lambda^2 q_{2k+2} q_{2k+3} - 1}{b_{2k+3}} & \lambda a_{2k+3} & \cdots \\
\cdots & \frac{2q_{2k+1} q_{2k+2} - 1}{b_{2k+2}} & 2a_{2k+1} & \frac{2q_{2k+2} q_{2k+3} - 1}{b_{2k+3}} & 2a_{2k+2} & \frac{2q_{2k+3} q_{2k+4} - 1}{b_{2k+4}} & 2a_{2k+3} & \cdots \\
\cdots & \cdots
\end{array}$$

As $\lambda^2 = 2$, row number $2j + 3$ of the frieze F_D and F_{TD} coincide. Furthermore, as F_{TD} is an integral frieze arising from a triangulation, all the entries of row $2j + 3$ are positive integers. □

As every triangulation defines a unique Conway-Coxeter frieze, combined with the fact that all even rows are determined (see ([3]) and ([4]) Proof of Proposition [10]) proves Theorem 5 for $p = 4$.

3 Friezes of type Λ_6 and associated Conway-Coxeter frieze.

We use similar arguments as in previous section, but we have to associate different triangulations to a 6-angular dissection $D \in \mathcal{D}_6(4s + 2)$ of a polygon P with $4s + 2$ vertices. Therefore we colour even vertices white and odd vertices black again. Then every diagonal of D connects a black and a white vertex. We triangulate every 6-gon P_α by inserting edges between all pairs of black vertices. An example is shown in Figure 7, where the bold edges are diagonals of D. Let q_α be the number of 6-gons incident with a vertex $0 \leq \alpha \leq 4s + 1$ in D and t_α be the number of triangles incident with vertex α as in previous section. The quiddity sequences of D_1 and T_{D_1} are

$$(\sqrt{3}, 2\sqrt{3}, \sqrt{3}, \sqrt{3}, 3\sqrt{3}, \sqrt{3}, 2\sqrt{3}, \sqrt{3}, 3\sqrt{3}, 2\sqrt{3}, \sqrt{3}, 2\sqrt{3}, \sqrt{3}, 3\sqrt{3})$$

and

$$(1, 6, 1, 3, 1, 3, 3, 2, 3, 1, 3, 1, 6, 1, 6, 1, 3)$$

Figure 7: The triangulation T_{D_1} associated to a 6-angular dissection D_1 (bold diagonals).
respectively. We obtain by the same arguments as in Lemma 9, that for \(T_D \) and \(0 \leq \alpha \leq 4s+1 \),
\[
t_{\alpha} = \begin{cases}
q_{\alpha} & \text{if } \alpha \text{ is even} \\
3q_{\alpha} & \text{otherwise.}
\end{cases}
\] (5)

Defining \(\lambda := \lambda_6 = 2 \cos \left(\frac{\pi}{6} \right) = \sqrt{3} \) and slightly changing the form of rows with even numbers \([4] \) of the frieze \(F_{T_D} \) to
\[
\cdots \ a_0 \ 3a_1 \ a_2 \ 3a_3 \ \cdots \ a_{4s} \ 3a_{4s+1} \ a_0 \ \cdots
\] (6)
we obtain that the friezes \(F_D \) of type \(\Lambda_6 \) and the Conway-Coxeter frieze \(F_{T_D} \) of the assigned triangulation \(T_D \) coincide in every row with odd number by the same calculations as in Proposition \(10 \) and the fact that \(\lambda^2 = 3 \). Hence Theorem 5 is fulfilled for \(p = 6 \).

4 Remarks and Outlook

Similar results for other values of \(p > 3 \) are unlikely, as the values \(\lambda_4 \) and \(\lambda_6 \) are (the only) square roots of integers in the set of all \(\lambda_p \).

This note gives a partial answer to question (i) of \([8]\). A possible connection may arise from complete exceptional sequences over the path algebra of a Dynkin quiver of type \(A_n \), studied by Araya in \([2]\) where a key ingredient are noncrossing trees.

Acknowledgements. The author is supported by the Austrian Science Fund (FWF): W1230, Doctoral Program Discrete Mathematics. He wants to thank his supervisor Karin Baur for her great advice and support and Peter Jørgensen for helpful comments on earlier versions. The work for this paper was done while the author was guest at School of Mathematics at University of Leeds, England. He wants to thank Robert Marsh for the invitation.

References

[1] O. Aichholzer, L. Andritsch, K. Baur, B. Vogtenhuber, Perfect \(k \)-colored matchings and \(k + 2 \)-gonal tilings, Preprint, \texttt{arXiv:1710.06757 [math.CO]}, 2017.
[2] T. Araya, Exceptional sequences over path algebras of type \(A_n \) and non-crossing spanning trees., Algebr. Represent. Theory 16 (2013), no. 1, 239-250.
[3] F. Chapoton, Stokes posets and serpent nests, Discrete Math. Theor. Comput. Sci. 18 (2016), no. 3, Paper No. 18, 30 pp.
[4] J.H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns, The Mathematical Gazette 57 (1973), 87-94.
[5] J.H. Conway, H. S. M. Coxeter, Triangulated polygons and frieze patterns (continued from p. 94), The Mathematical Gazette 57 (1973),175-183.
[6] H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), 297-310.
[7] S. Dulucq, J.-G. Penaud, Cordes, arbres et permutations, Discrete Math. 117 (1993), 89-105.
[8] T. Holm, P. Jørgensen, A \(p \)-angulated generalisation of Conway and Coxeter’s theorem on frieze patterns, Preprint, \texttt{arXiv:1709.09861 [math.CO]}, 2017.

8