Finite groups in which every self-centralizing subgroup is a TI-subgroup or subnormal or has p'-order *

Jiangtao Shi

School of Mathematics and Information Sciences, Yantai University, Yantai 264005, P.R. China

Abstract

We first give complete characterizations of the structure of finite group G in which every subgroup (or non-nilpotent subgroup, or non-abelian subgroup) is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$. Furthermore, we prove that every self-centralizing subgroup (or non-nilpotent subgroup, or non-abelian subgroup) of G is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$ if and only if every subgroup (or non-nilpotent subgroup, or non-abelian subgroup) of G is a TI-subgroup or subnormal or has p'-order. Based on these results, we obtain the structure of finite group G in which every self-centralizing subgroup (or non-nilpotent subgroup, or non-abelian subgroup) is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$.

Keywords: self-centralizing; TI-subgroup; subnormal; p'-order; non-nilpotent subgroup; non-abelian subgroup

MSC(2010): 20D10

1 Introduction

Throughout this paper all groups are assumed to be finite. Suppose that G is a group and H a subgroup of G, then H is termed to be a TI-subgroup of G if $H^g \cap H = 1$ or H for each $g \in G$. It is clear that the TI-subgroup and the subnormal subgroup are two relatively independent concepts in group theory. For TI-subgroups, Walls [12] classified groups in which every subgroup is a TI-subgroup. As a generalization, Shi and Zhang [6, Theorem 2] characterized groups of even order in which every subgroup of even order is a TI-subgroup. As a generalization, Shi and Zhang [6, Theorem 2] characterized groups of even order in which every subgroup of even order is a TI-subgroup. For subnormal subgroups, [4, Theorem 5.2.4] indicated that a group G is nilpotent if and only if every subgroup of G is subnormal. In [2] Ebert and Bauman characterized groups in which every subgroup is subnormal or abnormal. Kurdachenko and Smith [3] investigated general groups in which every subgroup is either subnormal or self-normalizing. In [1] Theorem 1] Ballester-Bolinches and Cossey described groups in which every subgroup is supersolvable or subnormal.

*This work was supported by Shandong Provincial Natural Science Foundation, China (ZR2017MA022 and ZR2020MA044) and NSFC (11761079).

E-mail address: jiangtaoshi@126.com (J. Shi).
Combined the TI-property and the subnormality of subgroups together Shi and Zhang [5, Theorem 1] gave a complete characterization of groups in which every subgroup is a TI-subgroup or subnormal. Combined the nilpotence, the normality and the order of subgroups together Shi, Li and Shen [9, Theorems 1.3, 1.4 and Theorem 1.7] investigated group G in which every maximal subgroup is nilpotent or normal or has p'-order for a fixed prime divisor p of $|G|$. Furthermore, Shi [10, Theorem 1.1] obtained a complete characterization of group G in which every maximal subgroup is nilpotent or a TI-subgroup or has p'-order for a fixed prime divisor p of $|G|$.

In this paper, motivated by above researches, combining the TI-property, the subnormality and the order of subgroups together we have the following result whose proof is given in Section 2.

Theorem 1 Suppose that G is a group and p a fixed prime divisor of $|G|$. Then every subgroup of G is a TI-subgroup or subnormal or has p'-order if and only if one of the following statements holds:

1. every subgroup of G of order divisible by p is subnormal in G;
2. $p = 2$, $G = Z_q \rtimes \langle a \rangle$ is a Frobenius group with kernel Z_q and complement $\langle a \rangle$, where q is an odd prime and $o(a)$ is an even number;
3. $p > 2$, $G = Z_q^r \rtimes (P \times H)$ is a Frobenius group with kernel Z_q^r and complement $P \times H$, where $q \neq p$ and $r \geq 1$, $P \in Syl_p(G)$ and P is cyclic, H is either a cyclic group or a direct product of a quaternion group Q_8 and a cyclic group of odd order, and every non-identity subgroup of P acts irreducibly on Z_q^r;
4. $p > 2$, $G = Z_q^r \rtimes (Z_p \rtimes H)$ is a Frobenius group with kernel Z_q^r and complement $Z_p \rtimes H$, where $q \neq p$ and $r > 1$, $Z_p \in Syl_p(G)$, H is either a cyclic group or a direct product of a quaternion group Q_8 and a cyclic group of odd order such that $[Z_p, H] \neq 1$, and Z_p acts irreducibly on Z_q^r.

In [7, Theorem 1 and Corollary 2] Shi characterized groups in which every non-abelian subgroup is a TI-subgroup or subnormal. In this paper, as a further generalization and extension, assume that every non-nilpotent subgroup (or non-abelian subgroup) of a group G is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$, arguing as in the proof of Theorem 1 we can obtain the following Theorem 2 and Theorem 4 here we omit their proofs.

Theorem 2 Suppose that G is a group and p a fixed prime divisor of $|G|$. Then every non-nilpotent subgroup of G is a TI-subgroup or subnormal or has p'-order if and only if one of the following statements holds:

1. every non-nilpotent subgroup of G of order divisible by p is subnormal in G;
2. $p > 2$, $G = Z_q^r \rtimes (Z_p \rtimes H)$ is a Frobenius group with kernel Z_q^r and complement $Z_p \rtimes H$, where $q \neq p$ and $r > 1$, $Z_p \in Syl_p(G)$, H is either a cyclic group or a direct product of a quaternion group Q_8 and a cyclic group of odd order.
product of a quaternion group Q_8 and a cyclic group of odd order such that $[Z_p, H] \neq 1$, and Z_p acts irreducibly on Z_q^r.

The following corollary is a direct consequence of Theorem 2.

Corollary 3 Suppose that G is a group and p the smallest prime divisor of $|G|$. Then every non-nilpotent subgroup of G is a TI-subgroup or subnormal or has p'-order if and only if every non-nilpotent subgroup of G of order divisible by p is subnormal in G.

Theorem 4 Suppose that G is a group and p a fixed prime divisor of $|G|$. Then every non-abelian subgroup of G is a TI-subgroup or subnormal or has p'-order if and only if one of the following statements holds:

1. every non-abelian subgroup of G of order divisible by p is subnormal in G;
2. $p > 2$, $G = Z_q^r \rtimes (P \times H)$ is a Frobenius group with kernel Z_q^r and complement $P \times H$, where $q \neq p$ and $r > 1$, $P \in \text{Syl}_p(G)$ and P is cyclic, H is a direct product of a quaternion group Q_8 and a cyclic group of odd order, and every non-identity subgroup of P acts irreducibly on Z_q^r;
3. $p > 2$, $G = Z_q^r \rtimes (Z_p \times H)$ is a Frobenius group with kernel Z_q^r and complement $Z_p \rtimes H$, where $q \neq p$ and $r > 1$, $Z_p \in \text{Syl}_p(G)$, H is either a cyclic group or a direct product of a quaternion group Q_8 and a cyclic group of odd order such that $[Z_p, H] \neq 1$, and Z_p acts irreducibly on Z_q^r.

Let G be a group and H a subgroup of G, then H is said to be self-centralizing in G if $C_G(H) \leq H$. As an extension of [7, Theorem 1 and Corollary 2], Sun, Lu and Meng [11, Theorem 1.1] proved that if every self-centralizing non-abelian subgroup of a group G is a TI-subgroup or subnormal then every non-abelian subgroup of G is subnormal. Furthermore, Shi and Li [8, Theorem 1 and Theorem 2] investigated groups in which every self-centralizing non-nilpotent subgroup is a TI-subgroup or subnormal.

According to above results, it is natural and interesting to characterize the structure of group G in which every self-centralizing subgroup (or non-nilpotent subgroup, or non-abelian subgroup) is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$. In this paper, we obtain the following Theorem 5 which can indicate the equivalent relation between group G in which every self-centralizing subgroup is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$ and group G in which every subgroup is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$.

Theorem 5 Suppose that G is a group and p a fixed prime divisor of $|G|$. Then every self-centralizing subgroup of G is a TI-subgroup or subnormal or has p'-order if and only if every subgroup of G is a TI-subgroup or subnormal or has p'-order.

The proof of Theorem 5 is given in Section 3.

Arguing as in proof of Theorem 5, we can also obtain the following two results, here we omit their proofs.
Theorem 6 Suppose that G is a group and p a fixed prime divisor of $|G|$. Then every self-centralizing non-nilpotent subgroup of G is a TI-subgroup or subnormal or has p'-order if and only if every non-nilpotent subgroup of G is a TI-subgroup or subnormal or has p'-order.

Theorem 7 Suppose that G is a group and p a fixed prime divisor of $|G|$. Then every self-centralizing non-abelian subgroup of G is a TI-subgroup or subnormal or has p'-order if and only if every non-abelian subgroup of G is a TI-subgroup or subnormal or has p'-order.

Remark 8 Theorems 1, 2, 4, 5, 6, and 7 give the structure of group G in which every self-centralizing subgroup (or non-nilpotent subgroup, or non-abelian subgroup) is a TI-subgroup or subnormal or has p'-order for a fixed prime divisor p of $|G|$.

2 Proof of Theorem 1

Proof. We first prove the necessity part.

Assume that G has at least one subgroup of order divisible by p that is not subnormal in G. Let M be the largest subgroup of G of order divisible by p that is not subnormal in G, one must have $M = N_G(M)$. Since M is a TI-subgroup of G by the hypothesis, we get that G is a Frobenius group with complement M. Let N be the kernel, then $G = N \rtimes M$.

Let $P \in \text{Syl}_p(M)$, obviously $P \in \text{Syl}_p(G)$. Note that the order of the subgroup $N \rtimes P$ is divisible by p. By the hypothesis, $N \rtimes P$ is a TI-subgroup of G or subnormal in G. For the case when $N \rtimes P$ is a TI-subgroup of G, one has $N \rtimes P \leq G$ since $(N \rtimes P)^g \cap (N \rtimes P) = (N^g \rtimes P^g) \cap (N \rtimes P) = (N \rtimes P^g) \cap (N \rtimes P) \geq N \neq 1$ for each $g \in G$. It follows that $P = (N \cap M)P = (N \rtimes P) \cap M \leq M$. For another case when $N \rtimes P$ is subnormal in G, one has that P is subnormal in M and then $P \leq M$ since $P \in \text{Syl}_p(M)$. Thus we always have $P \leq M$. By Schur-Zassenhaus theorem (see [4, Theorem 9.1.2]), M has a subgroup H such that $M = PH$ and $P \cap H = 1$, that is $M = P \rtimes H$.

Claim 1: M is maximal in G. It is clear that $M \leq N_G(P) < G$. Let K be a maximal subgroup of G such that $M \leq N_G(P) \leq K$. If $M < K$, by the choice of M, one has that K is subnormal in G. Then $K \leq G$. By Frattini-argument, one has $P \leq G$, a contradiction. Thus $M = N_G(P) = K$ is maximal in G.

By Claim 1, N is a minimal normal subgroup of G. Since N is nilpotent by [4, Theorem 10.5.6(i)], one has that N is an elementary abelian group. Assume $N = Z_q^r$, where $q \neq p$ and $r \geq 1$.

Claim 2: H is nilpotent. If $H = 1$, H is obvious nilpotent. Next assume $H > 1$. For any maximal subgroup H_1 of H, $N \rtimes (P \rtimes H_1)$ is a maximal subgroup of G of order divisible by p. By the hypothesis, $N \rtimes (P \rtimes H_1)$ is a TI-subgroup of G or subnormal in G. Arguing as above, we can get $H_1 \leq H$. By the choice of H_1, one has that H is nilpotent.
Claim 3: By conjugation every non-identity subgroup of P acts irreducibly on N. Otherwise, assume that P_i is a non-identity subgroup of P and N_i is a non-trivial subgroup of N such that P_i normalizes N_i. Then $N_i \rtimes P_i$ is a subgroup of G of order divisible by p. By the hypothesis, $N_i \rtimes P_i$ is a TI-subgroup of G or subnormal in G. One has that $N_i \rtimes P_i$ is also a TI-subgroup of $N \rtimes P_i$ or subnormal in $N \rtimes P_i$. For the case when $N_i \rtimes P_i$ is a TI-subgroup of $N \rtimes P_i$. Note that $N_i \trianglelefteq N \rtimes P_i$ since N is abelian. Then $(N_i \rtimes P_i)^g \cap (N_i \rtimes P_i) = (N_i^g \rtimes P_i^g) \cap (N_i \rtimes P_i) = (N_i \rtimes P_i^g) \cap (N_i \rtimes P_i) \trianglerighteq N_i \neq 1$ for each $g \in N \rtimes P_i$. It follows that $N_i \rtimes P_i \trianglelefteq P_i \trianglelefteq N \rtimes P_i$, one has either $N_i \rtimes P_i \leq N$ or $N < N_i \rtimes P_i$. It is obvious that both of them are impossible. For another case when $N_i \rtimes P_i$ is subnormal in $N \rtimes P_i$. Assume that $N_i \rtimes P_i = L_0 \triangleleft L_1 \triangleleft \cdots \triangleleft L_s = N \rtimes P_i$ is a subnormal subgroups series, where $s \geq 1$. Observing that $N \ntrianglelefteq L_0$ but $N \trianglelefteq L_s$. Let m be the smallest number from 1 to s such that $N \leq L_m$ but $N \ntrianglelefteq L_{m-1}$. Since $L_0 \leq L_m$ but $L_0 \ntrianglelefteq N$, one has $N \lhd L_m$. Then $L_m = N \rtimes (L_m \cap P_i)$ is also a Frobenius group with kernel N and complement $L_m \cap P_i \trianglerighteq 1$. Since $L_{m-1} \trianglelefteq L_m$, one has either $L_{m-1} \leq N$ or $N < L_{m-1}$. It is also obvious that both of them are impossible. Hence every non-identity subgroup of P acts irreducibly on N.

Case I: Assume $p = 2$. Take an element e of order 2 in P. Since $C_G(N) = N$ as G being a Frobenius group, e induces a fixed-point-free automorphism of N of order 2. One has $g^e = g^{-1}$ for each non-identity element $g \in N$. Note that every non-identity subgroup of P acts irreducibly on N. It follows that $N = Z_q$. By N/C-theorem, $M \cong G/N = N_G(N)/C_G(N) \trianglelefteq \text{Aut}(N)$ is a cyclic group. One has $G = Z_q \rtimes \langle a \rangle$, where $o(a)$ is an even number.

Case II: Assume $p > 2$.

Subcase (1): Assume that the order of every maximal subgroup of M is divisible by p. Arguing as above, one can get that every maximal subgroup of M is normal in M. Then M is nilpotent. One has $M = P \times H$ and then $G = Z_q^x \rtimes (P \times H)$. Since $p > 2$, P is cyclic by [4, Theorem 10.5.6(ii)]. Let M_0 be any non-trivial subgroup of $P \times H$ of order divisible by p, then $M_0 = (M_0 \cap P) \times (M_0 \cap H)$, where $M_0 \cap P > 1$. By the hypothesis, M_0 is a TI-subgroup of G or subnormal in G. Arguing as above, M_0 cannot be subnormal in G. Then M_0 is a TI-subgroup of G and so M_0 is also a TI-subgroup of M. If M_0 is not normal in M, then $N_M(M_0) < M$. Let $M_1 \trianglelefteq M$ such that $N_M(M_0)$ is maximal in M_1, then $N_M(M_0) \trianglelefteq M_1$. Take $x \in M_1 \setminus N_M(M_0)$, one has $M_0 \cap M_0^x = 1$. Note that $M_0^x \trianglelefteq (N_M(M_0))^x = N_M(M_0)$. Thus $M_0 M_0^x = M_0 \times M_0^x$. It follows that $(M_0 \cap P)(M_0 \cap P)^x = (M_0 \cap P) \times (M_0 \cap P)^x$, this contradicts that P is cyclic. Thus every non-trivial subgroup of M of order divisible by p is normal in M. It follows that every non-trivial subgroup of H is normal in H. Then H is a Dedekind group (see [4, Theorem 5.3.7]). Moreover, since every Sylow t-subgroup of H is cyclic if $t > 2$ and cyclic or a generalized quaternion group if $t = 2$ by [4, Theorem 10.5.6(ii)])], it follows that H is cyclic or a direct product of a quaternion group Q_8 and a cyclic group of odd order.
Subcase (2): Assume that M has a maximal subgroup M_2 of p'-order and $M_2 \not\unlhd M$. Then $M = P \rtimes M_2$. Note that $M = P \rtimes H$, we can assume $M_2 = H$. By the maximality of H, one has that P is a minimal normal subgroup of M. Since P is cyclic by [4, Theorem 10.5.6(ii)]), it follows that $P = Z_p$. Then $M = Z_p \rtimes H$. Arguing as in Subcase (1), one can get that H is cyclic or a direct product of a quaternion group Q_8 and a cyclic group of odd order.

In the following we prove the sufficiency part.

(a) Suppose that G is a group belonging to case (1), the proof is trivial.

(b) Suppose that G is a group belonging to case (2). Let A be any subgroup of G of even order. If $Z_q < A$, then $A = A \cap (Z_q \times \langle a \rangle) = Z_q \times (A \cap \langle a \rangle) \subseteq Z_q \times \langle a \rangle = G$. If $Z_q \not\subseteq A$, then $(q, |A|) = 1$. Since $\langle a \rangle$ is a Hall-subgroup of G and G is obvious solvable, we can assume $A \leq \langle a \rangle$ by [4, Theorem 9.1.7]. It is easy to see that $N_G(A) = \langle a \rangle$ since $\langle a \rangle$ is maximal in G. Then $A^g \cap A \leq \langle a \rangle^g \cap \langle a \rangle = 1$ for each $g \in G \setminus N_G(A) = G \setminus \langle a \rangle$, one has that A is a TI-subgroup of G.

(c) Suppose that G is a group belonging to case (3). Let A be any subgroup of G of order divisible by p. If $Z_q^r < A$, then $A = A \cap (Z_q^r \times (P \times H)) = Z_q^r \times (A \cap (P \times H)) \subseteq Z_q^r \times (P \times H) = G$. If $Z_q^r \not\subseteq A$, since $A \cap P \neq 1$ and every non-identity subgroup of P acts irreducibly on Z_q^r, one has that $Z_q^r \cap A = 1$ and $P \times H$ is maximal in G. Then we can assume $A \leq P \times H$. Note that $P \times H$ is a Dedekind-group and $A \not\unlhd G$. One has $N_G(A) = P \times H$. Therefore, $A^g \cap A \leq (P \times H)^g \cap (P \times H) = 1$ for each $g \in G \setminus N_G(A) = G \setminus (P \times H)$. It implies that A is a TI-subgroup of G.

(d) Suppose that G is a group belonging to case (4). Let A be any subgroup of G of order divisible by p. If $Z_q^r < A$, then $A = A \cap (Z_q^r \times (Z_p \times H)) = Z_q^r \times (A \cap (Z_p \times H)) = Z_q^r \times (Z_p \times (A \cap H)) \subseteq Z_q^r \times (Z_p \times H)$ since H is a Dedekind-group. If $Z_q^r \not\subseteq A$, arguing as above, one has that $Z_q^r \cap A = 1$ and $Z_p \times H$ is a maximal subgroup of G. We can assume $A \leq Z_p \times H$. Then $A = A \cap (Z_p \times H) = Z_p \times (A \cap H) \subseteq Z_p \times H$. It follows that $N_G(A) = Z_p \times H$. One has that $A^g \cap A \leq (Z_p \times H)^g \cap (Z_p \times H) = 1$ for each $g \in G \setminus N_G(A) = G \setminus (Z_p \times H)$. It shows that A is a TI-subgroup of G.

\[\square \]

3 Proof of Theorem 5

Proof. We only need to prove the necessity part.

Suppose that the theorem is false. Assume that K is the largest subgroup of G of order divisible by p that is neither a TI-subgroup of G nor subnormal in G, then for any subgroup L of G satisfying $L > K$ we have that L is a TI-subgroup of G or subnormal in G. It follows that K is not self-centralizing in G by the hypothesis and then $K < N_G(K)$.

Considering the following subgroups series: $K < N_G(K) = K_1 \leq N_G(K_1) = K_2 \leq N_G(K_2) = K_3 \leq N_G(K_3) = \cdots = K_{t-1} \leq N_G(K_{t-1}) = K_t \leq N_G(K_t) \leq \cdots$.

6
(1) Suppose that there exists a positive integer \(t \geq 1 \) such that \(N_G(K_t) = G \). It follows that \(K \) is subnormal in \(G \), a contradiction.

(2) Suppose that for any positive integer \(t \geq 1 \) we have \(N_G(K_t) < G \). Note that \(G \) is a finite group. It follows that there must exist a positive integer \(t \geq 1 \) such that \(K_t = N_G(K_t) < G \), which implies that \(K_t \) is self-centralizing in \(G \). It is obvious that \(K_t > K \). Arguing as in (1), \(K_t \) cannot be subnormal in \(G \). Then \(K_t \) is a non-normal TI-subgroup of \(G \) by the hypothesis. Moreover, since \(K_t = N_G(K_t) \), one has that \(G \) is a Frobenius group with complement \(K_t \). Let \(N \) be the kernel of \(G \), then \(G = N \rtimes K_t \).

Claim I: \(K_t \) is either nilpotent or non-nilpotent and \(K_t = Z_p \rtimes M \), where \(Z_p \in \text{Syl}_p(K_t) \), \(M \) is nilpotent and \(M \) has \(p' \)-order satisfying \([Z_p, M] \neq 1\).

Suppose that \(K_t \) is non-nilpotent, then \(K_t \) has at least one non-normal maximal subgroup. Let \(M \) be a non-normal maximal subgroup of \(K_t \), then \(N \rtimes M \) is a non-normal maximal subgroup of \(G \). It follows that \(N \rtimes M \) is self-centralizing in \(G \) since \(N \rtimes M = N_G(N \rtimes M) \). Assume \(p \mid |M| \), then \(p \mid |N \rtimes M| \). By the hypothesis, \(N \rtimes M \) is a TI-subgroup of \(G \) or subnormal in \(G \). If \(N \rtimes M \not\trianglelefteq G \), then \(N \rtimes M \) is a non-normal TI-subgroup of \(G \). However, since \((N \rtimes M)^g \cap (N \rtimes M) = (N^g \rtimes M^g) \cap (N \rtimes M) = (N \rtimes M^g) \cap (N \rtimes M) \geq N > 1 \) for each \(g \in G \), it follows that \(N \rtimes M \trianglelefteq G \), a contradiction. Therefore \(N \rtimes M \trianglelefteq G \). One has \(M = (N \cap K_t)M = (N \rtimes M) \cap K_t \trianglelefteq K_t \), a contradiction. Thus \(p \nmid |M| \). Let \(P \in \text{Syl}_p(K_t) \), arguing as above, one has \(P \trianglelefteq K_t \). Then \(K_t = P \rtimes M \). Since \(M \) is maximal in \(K_t \), \(P \) is a minimal normal subgroup of \(K_t \), which implies that \(P \) is an elementary abelian group. Moreover, since \(K_t \) is a complement of Frobenius group \(G \), by [4, Theorem 10.5.6(ii)] one can get that \(P \) must be a cyclic group of prime order. Let \(P = Z_p \), then \(K_t = Z_p \rtimes M \). Moreover, arguing as above, one can obtain that every maximal subgroup of \(M \) is normal in \(M \) and then \(M \) is nilpotent.

Claim II: \(K \trianglelefteq K_t \).

Case (i): Assume that \(K_t \) is nilpotent. If \(K_t \) is cyclic, then \(K \trianglelefteq K_t \). Next assume that \(K_t \) is non-cyclic. Let \(P \in \text{Syl}_p(K_t) \).

If \(p = 2 \), take an element \(x \) of \(P \) of order \(2 \). Then \(x \) induces a fixed-point-free automorphism of \(N \). It follows that \(N \) is an abelian group of odd order and \(g^2 = g^{-1} \) for each non-identity element \(g \in N \). Let \(g \) be an element of \(N \) of prime order, then \(\langle g \rangle \rtimes \langle x \rangle \) is also a Frobenius group of order divisible by \(2 \). Since \(C_G(\langle g \rangle \rtimes \langle x \rangle) \leq C_G(\langle g \rangle) \cap C_G(\langle x \rangle) = N \cap C_G(\langle x \rangle) = C_N(\langle x \rangle) = 1 < \langle g \rangle \rtimes \langle x \rangle \), \(\langle g \rangle \rtimes \langle x \rangle \) is self-centralizing in \(G \). By the hypothesis, \(\langle g \rangle \rtimes \langle x \rangle \) is a TI-subgroup of \(G \) or subnormal in \(G \). It follows that \(\langle g \rangle \rtimes \langle x \rangle \) is a TI-subgroup of \(N \rtimes \langle x \rangle \) or subnormal in \(N \rtimes \langle x \rangle \). (a) Assume that \(\langle g \rangle \rtimes \langle x \rangle \) is a TI-subgroup of \(N \rtimes \langle x \rangle \). Since \((\langle g \rangle \rtimes \langle x \rangle)^y \cap (\langle g \rangle \rtimes \langle x \rangle) = (\langle g^y \rangle \rtimes \langle x^y \rangle) \cap (\langle g \rangle \rtimes \langle x \rangle) = (\langle g \rangle \rtimes \langle x^y \rangle) \cap (\langle g \rangle \rtimes \langle x \rangle) \geq \langle g \rangle \neq 1 \) for each \(y \in N \rtimes \langle x \rangle \), one has \(\langle g \rangle \rtimes \langle x \rangle \trianglelefteq N \rtimes \langle x \rangle \). It follows that \(N < \langle g \rangle \rtimes \langle x \rangle \) as \(\langle g \rangle \rtimes \langle x \rangle \not\trianglelefteq N \). Therefore \(N = N \cap (\langle g \rangle \rtimes \langle x \rangle) = \langle g \rangle (N \cap \langle x \rangle) = \langle g \rangle \). By \(N/C \)-theorem, \(K_t \cong G/N = N_G(N)/C_G(N) \leq \text{Aut}(N) \) is cyclic. It follows that \(K_t \) is cyclic and then \(K \trianglelefteq K_t \). (b) Assume that \(\langle g \rangle \rtimes \langle x \rangle \) is subnormal in \(N \rtimes \langle x \rangle \). We claim \(N \leq \langle g \rangle \rtimes \langle x \rangle \).
Otherwise, assume \(N \not\leq \langle g \rangle \times \langle x \rangle \). Let \(\langle g \rangle \times \langle x \rangle = L_0 < L_1 < \cdots < L_{u-1} < L_u = N \times \langle x \rangle \) be a subnormal subgroups series, where \(u \geq 1 \). Since \(N \not\leq L_0 \) and \(N \leq L_u \), there must exist a positive integer \(v \) where \(1 \leq v \leq u \) such that \(N \not\leq L_{v-1} \) and \(N \leq L_v \). Note that \(\langle g \rangle \times \langle x \rangle \not\leq N \), one has \(N < L_v \). Then \(L_v = N \times (L_v \cap K_t) \), where \(L_v \cap K_t > 1 \). It follows that \(L_v \) is a Frobenius group with complement \(N \). Since \(L_{v-1} < L_v \) and \(N \not\leq L_{v-1} \), one has \(L_{v-1} < N \), which implies that \(\langle g \rangle \times \langle x \rangle = L_0 < N \), a contradiction. Thus \(N \not\leq \langle g \rangle \times \langle x \rangle \).

Arguing as above, one has \(N = \langle g \rangle \) and then \(K_t \) is cyclic. One also has \(K \leq K_t \).

If \(p > 2 \), let \(P_2 \in \text{Syl}_2(K_t) \). Since \(K_t \) is non-cyclic, \(P_2 \) is a generalized quaternion group of order \(4n \) by [1] Theorem 10.5.6(ii)], where \(n \geq 2 \). Then \(K_t = R \times P_2 \), where \(R \) is a cyclic group of order divisible by \(p \). Let \(P_2 = \langle a, b \mid a^n = b^2, a^{2n} = 1, b^{-1}ab = a^{-1} \rangle \), one has \(Z(P_2) = a^n = b^2 \). For any non-identity subgroup \(Q \) of \(P_2 \), it is easy to see that \(C_G(R \times Q) = R \times Z(P_2) \leq R \times Q \) and then \(R \times Q \) is self-centralizing in \(G \). By the hypothesis, \(R \times Q \) is a TI-subgroup of \(G \) or subnormal in \(G \). Arguing as above, \(R \times Q \) cannot be subnormal in \(G \). Then \(R \times Q \) is a TI-subgroup of \(G \). It follows that \(R \times Q \) is a TI-subgroup of \(K_t \). If \(R \times Q \not\subseteq K_t \), then there exists \(g \in K_t \) such that \((R \times Q)^g \cap (R \times Q) = 1 \). However, \((R \times Q)^g \cap (R \times Q) = (R \times Q) \cap (R \times Q) = (R \times Q^g) \cap (R \times Q) \geq R \not\leq 1 \), a contradiction. Therefore \(R \times Q \leq K_t \). It follows that \(Q \leq P_2 \). By the choice of \(Q \), one has that \(P_2 \) is a Dedekind-group. Then \(K_t = R \times P_2 \) is a Dedekind-group. It follows that \(K \leq K_t \).

Case (ii): Assume \(K_t = Z_p \times M \), where \(M \) is nilpotent, \(p \nmid |M| \) and \([Z_p, M] \neq 1 \). Since \(p \nmid |K| \), one has \(Z_p \leq K \). Then \(K = K \cap (Z_p \times M) = Z_p \times (K \cap M) \). If \(M \) is cyclic, it is obvious that \(Z_p \times (K \cap M) \leq Z_p \times M \), that is \(K \leq K_t \). If \(M \) is non-cyclic, then \(M = T \times P_2 \), where \(T \) is cyclic and \(P_2 \) is a generalized quaternion group. For any non-identity subgroup \(Q \) of \(P_2 \), \(Z_p \times (T \times Q) \) is a subgroup of \(K_t \) of order divisible by \(p \). Moreover, it is clear that \(C_G(Z_p \times (T \times Q)) \leq Z_p \times (T \times Q) \), that is \(Z_p \times (T \times Q) \) is self-centralizing in \(G \). By the hypothesis, \(Z_p \times (T \times Q) \) is a TI-subgroup of \(G \) or subnormal in \(G \). Arguing as in case (i), one can get that \(P_2 \) must be a quaternion group of order 8 and then \(M = T \times P_2 \) is a Dedekind-group. It follows that \(K = Z_p \times (K \cap M) \leq Z_p \times M = K_t \).

By claim II, one has \(K_t \leq N_G(K) \). It follows that \(N_G(K) = K_t \) as \(N_G(K) = K_t \leq K_t \). Since \(K^g \cap K \leq K^g \cap K_t = 1 \) for each \(g \in G \backslash N_G(K) = G \backslash K_t = G \backslash N_G(K_t) \), one has that \(K \) is a TI-subgroup of \(G \), a contradiction.

It implies that our assumption is not true and so every subgroup of \(G \) is a TI-subgroup or subnormal or has \(p' \)-order.

\[\square \]

References

[1] A. Ballester-Bolinches and John Cossey, Finite groups with subgroups supersoluble or subnormal, Journal of Algebra 321 (2009) 2042-2052.
[2] Gary Ebert and Steven Bauman, A note on subnormal and abnormal chains, Journal of Algebra 36(2) (1975) 287-293.

[3] Leonid A. Kurdachenko and Howard Smith, Groups with all subgroups either subnormal or self-normalizing, Journal of Pure and Applied Algebra 196(2-3) (2005) 271-278.

[4] D.J.S. Robinson, A Course in the Theory of Groups (Second Edition), Springer-Verlag, New York, 1996.

[5] Jiangtao Shi and Cui Zhang, Finite groups in which every subgroup is a subnormal subgroup or a TI-subgroup, Archiv der Mathematik 101(2) (2013) 101-104.

[6] Jiangtao Shi and Cui Zhang, Finite groups in which some particular subgroups are TI-subgroups, Miskolc Mathematical Notes 14(3) (2013) 1037-1040.

[7] Jiangtao Shi, Finite groups in which every non-abelian subgroup is a TI-subgroup or a subnormal subgroup, Journal of Algebra and Its Applications 18(8) (2019) 1950159 (4 pages).

[8] Jiangtao Shi and Na Li, Finite groups in which every self-centralizing subgroup is nilpotent or subnormal or a TI-subgroup, Czechoslovak Mathematical Journal 71(146) (2021) 1229-1233.

[9] Jiangtao Shi, Na Li and Rulin Shen, Finite groups in which every maximal subgroup is nilpotent or normal or has \(p' \)-order, submitted.

[10] Jiangtao Shi, Finite groups in which every maximal subgroup is nilpotent or a TI-subgroup or has \(p' \)-order, submitted.

[11] Yuqing Sun, Jiakuan Lu and Wei Meng, Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups, Journal of Algebra and Its Applications 20(3) (2021) 2150040 (5 pages).

[12] G.L. Walls, Trivial intersection groups, Archiv der Mathematik 32 (1979) 1-4.