Reconfiguring colourings of graphs with bounded maximum average degree

Carl Feghali
Department of Informatics,
University of Bergen,
Bergen, Norway
carl.feghali@uib.no

Abstract

The reconfiguration graph $R_k(G)$ of the k-colourings of a graph G has as vertex set the set of all possible k-colourings of G and two colourings are adjacent if they differ in exactly one vertex of G. Let $d, k \geq 1$ such that $k \geq d + 1$. We prove that for every $\epsilon > 0$ and every graph G with n vertices and maximum average degree $d - \epsilon$, $R_k(G)$ has diameter $O(n(\log n)^d)$.
Let k be a positive integer. A k-colouring of a graph G is a function $f : V(G) \rightarrow \{1, \ldots, k\}$ such that $f(u) \neq f(v)$ whenever $(u,v) \in E(G)$. The reconfiguration graph $R_k(G)$ of the k-colourings of a graph G has as vertex set the set of all possible k-colourings of G and two colourings are adjacent if they differ on the colour of exactly one vertex of G.

Given an integer d, a graph G is d-degenerate if every subgraph of G contains a vertex of degree at most d. Expressed differently, G is d-degenerate if there exists an ordering v_1, \ldots, v_n of the vertices in G, called an s-degenerate ordering, such that each v_i has at most d neighbours v_j with $j < i$. The maximum average degree of a graph G is defined as

$$\max \left\{ \frac{2|E(H)|}{|V(H)|} : H \subseteq G \right\}.$$

In particular, if G has maximum average degree less than some positive integer d, then G is $(d-1)$-degenerate.

Consider the following conjecture of Cereceda [3].

Conjecture 1. For every integers k and ℓ, $\ell \geq k + 2$, and every k-degenerate graph G on n vertices, $R_\ell(G)$ has diameter $O(n^2)$.

The conjecture appears difficult to prove or disprove, with the case $k = 1$ only being known despite some efforts; for a recent exposition on the conjecture and the results around it see [4, 1]. The most important breakthrough is Theorem 1 in [1] due to Bousquet and Heinrich, which addresses a number of cases for Conjecture 1, generalising several existing results. For instance, it is shown in [1] that there exists a constant $c > 0$ independent of k such that $R_\ell(G)$ has diameter $(cn)^{k+1}$ for every $\ell \geq k + 2$.

The purpose of this note is to prove the following theorem.

Theorem 1. Let $d, k \geq 1$ such that $k \geq d + 1$. For every $\epsilon > 0$ and every graph G with n vertices and maximum average degree $d - \epsilon$, $R_k(G)$ has diameter $O(n(\log n)^d)$.

Theorem 1 is a generalisation of [2, Theorem 2]. In particular, it has the following immediate consequences. By Euler’s formula, planar graphs, triangle-free planar graphs and planar graphs of girth 5 have maximum average degrees strictly less than, respectively, 6, 4 and $7/2$. Hence Theorem 1 affirms (and is stronger than) Conjecture 1 for planar graphs of girth 5 but is one colour short of confirming the conjecture for planar graphs and triangle-free planar graphs. It nevertheless generalises some best known existing results. More precisely, our theorem subsumes both [2, Corollary 5] and [1, Theorem 1] restricted to planar graphs, as well as [2, Corollary 7] and [6, Corollary 1].

Past results addressing the conjecture for planar graphs can be found in [2, 4, 6, 1]. Our method of proof can be seen as a combination of the ones found in [1, 3].

2
Let us prove the theorem. First, some definitions and lemmas.

Definition 1. Given a graph G, a colouring α of G and a subgraph H of G, let α^H denote the restriction of α to H.

Definition 2. Let G be a graph, and let k be a nonnegative integer. A subset $S \subseteq V(G)$ is a k-independent set of G if S is an independent set of G and every vertex of S has degree at most k in G.

Definition 3. Given positive integers s and t, G is said to have degree depth (s, t) if there exists a partition $\{V_1, \ldots, V_t\}$ of $V(G)$, called an s-degree partition, such that V_1 is an s-independent set of G and, for $i \in \{2, \ldots, t\}$, V_i is an s-independent set of $G - \bigcup_{j=1}^{i-1} V_j$.

Let G be a graph of degree depth (s, t) and with s-degree partition $\{V_1, \ldots, V_t\}$.

Definition 4. An ordering v_1, \ldots, v_n of $V(G)$ is said to be embedded in $\{V_1, \ldots, V_t\}$ if, for every pair $(v_j, v_i) \in V(G) \times V(G)$ such that $v_i \in V_p$ and $v_j \in V_q$, $j < i$ implies $p \leq q$.

Notice that such an ordering is an s-degenerate ordering of G.

Let H be a subgraph of G such that $V(H) \subseteq \bigcup_{j=1}^{h} V_j$ for some index $h \in \{1, \ldots, t\}$. In the next definition, we shall slightly abuse Definition 3.

Definition 5. H is said to have degree depth (s', t) if, for each index $j \in \{1, \ldots, h\}$ and each $v \in V(H) \cap V_j$, vertex v has at most s' neighbours in $\bigcup_{i=j+1}^{t} V_i$.

Informally speaking, the degree depth of H is (s', t) if each vertex of H has at most s' neighbours in G that occur in an independent partite set later in the ordering.

Lemma 1. Let $s, t \geq 0$, and let G be a graph of degree depth (s, t). Any $(s + 2)$-colouring of G can be recoloured to some $(s + 1)$-colouring of G by $O(s^2 t^{s+1})$ recolourings per vertex.

Proof. Let $\{V_1, \ldots, V_t\}$ be an s-degree partition of $V(G)$, and let v_1, \ldots, v_n be an ordering of $V(G)$ that is embedded in $\{V_1, \ldots, V_t\}$.

Let α be an $(s + 2)$-colouring of G, and let $h \in \{1, \ldots, t\}$ be the smallest index such that V_h contains a vertex with colour $s + 2$ under α. Let W denote the subset of vertices of V_h with colour $s + 2$. For each colour $a \in \{1, \ldots, s + 1\}$, define W_a to be the subset of W whose vertices have no neighbour earlier in the ordering with colour a. More formally,

$$W_a = \{v_i \in W : \alpha(v_j) \neq a \text{ for all neighbours } v_j \text{ of } v_i \text{ with } j < i\},$$

and notice that

$$W = \bigcup_{i=1}^{s+1} W_i.$$
since each $v_i \in V(G)$ has at most s neighbours v_j with $j < i$ and there are $s + 2$ colours.

Define $U = \bigcup_{i=1}^{h-1} V_i$.

Claim 1. For each $a \in \{1, \ldots, s + 1\}$, there is a sequence of recolourings such that
- each vertex of $U \cup W_a$ is recoloured $O((2t)^s)$ times,
- no vertex of $V(G) \setminus (U \cup W_a)$ is recoloured,
- at the end of the sequence, no vertex of $U \cup W_a$ has colour $s + 2$.

The claim implies the lemma: applying the sequence described in Claim 1 for each $a \in \{1, \ldots, s + 1\}$, we obtain a colouring in which colour $s + 2$ is not used in $\bigcup_{j=1}^{s} V_j$ by $O(s(2t)^s)$ recolourings. The smallest index h' such that $V_{h'}$ contains a vertex with colour $s + 2$ has now increased; hence at most t such repetitions are needed to obtain a colouring in which colour $s + 2$ is not used in G, so each vertex is recoloured $O(s2^st^{s+1})$ times and the lemma follows.

Proof of Claim. Let $G^* = G[U]$. Thus G^* has degree depth (s', t) for some $s' \in \{0, \ldots, s\}$. To prove the claim, we use induction on s'. The base case $s' = 0$ is trivial so we can assume that $s' = s > 0$ and that Claim 1 and hence the lemma holds for each subgraph H of G^* of degree depth $(s-1, t)$.

Let u_1, \ldots, u_k be an ordering of the vertices of U that is embedded in $\{V_1, \ldots, V_{h-1}\}$. Let us first try to recolour immediately, whenever possible, each vertex of U to colour $s + 2$ starting with u_1 and moving forward towards u_k. Let γ denote the resulting colouring, let $S = \{\gamma(v) = s + 2 : v \in V(G)\}$ and let $H = G[U \setminus S]$.

Subclaim 1. H has degree depth $(s-1, t)$.

Proof of Subclaim. By our choice of h, each vertex $u \in U \cap V_p$ for some $p \in \{1, \ldots, h-1\}$ either satisfies $\gamma(u) = s + 2$ or has a neighbour $u' \in V_q$ for some $q \in \{p+1, \ldots, t\}$ such that $\gamma(u') = s + 2$. This implies the subclaim. □

By the subclaim and our induction hypothesis, we can recolour the restriction γ^H of γ to H to some colouring ζ^H of H in which colour a is not used in H by $O(2^{s-1}t^s)$ recolourings per vertex of H such that no vertex of $V(G) \setminus V(H)$ is recoloured (this sequence of recolourings does not use colour $s + 2$ so we need not worry about adjacencies between H and S).

Let ζ be the colouring of G such that $\zeta(v) = \zeta^H(v)$ if $v \in V(H)$ and $\zeta(v) = \gamma(v)$ if $v \in V(G) \setminus V(H)$. From ζ, we can now immediately recolour each vertex of W_a to colour a. It remains to recolour each vertex of U to a colour distinct from $s + 2$. To do so, we simply repeat the above steps with the roles of a and $s + 2$ interchanged. This takes again $O(2^{s-1}t^s)$ recolourings per vertex of H. Hence each vertex of H is recoloured in total $O(2^st^s)$ times. This proves the claim and hence completes the proof of the lemma. □
We can prove our final lemma, from which Theorem \ref{thm:main} follows easily.

Lemma 2. Let \(s, t \geq 0 \), and let \(G \) be a graph on \(n \) vertices with degree depth \((s, t) \). Then \(R_{s+2}(G) \) has diameter \(O(ns(2t)^{s+1}) \).

Proof. The proof is completely standard. We proceed by induction on \(s \). The base case \(s = 0 \) is trivial, so we can assume that \(s > 0 \) and that the lemma holds for graphs with degree depth \((s - 1, t) \). Let \(\alpha \) and \(\beta \) be \((s + 2)\)-coloured graphs of \(G \), and let \(\{V_1, \ldots, V_t\} \) be an \(s \)-degree partition of \(G \). It suffices to show that we can recolour \(\alpha \) to \(\beta \) by \(O(s(2t)^{s+1}) \) recolourings per vertex. By Lemma 1 we can recolour \(\alpha \) to some \((s + 1)\)-colouring \(\alpha_1 \) of \(G \) and \(\beta \) to some \((s + 1)\)-colouring \(\beta_1 \) of \(G \) by \(O(s2^{s+1}) \) recolourings per vertex.

Let \(v_1, \ldots, v_n \) be an ordering of \(V(G) \) that is embedded in \(\{V_1, \ldots, V_t\} \). Let us recolour \(\alpha_1 \) and \(\beta_1 \) to new colourings \(\alpha_2 \) and \(\beta_2 \) of \(G \) by trying to recolour, from \(\alpha_1 \) and \(\beta_1 \), immediately each vertex of \(G \) to colour \(s + 2 \) starting with \(v_1 \) and moving forward towards \(v_n \). Let \(S = \{ v \in V(G) : \alpha_2(v) = s + 2 (= \beta_2(v)) \} \). As argued in the proof of Lemma 1, the graph \(H = G - S \) has degree depth \((s - 1, t)\) so we can apply our induction hypothesis to recolour \(\alpha_2 \) to \(\beta_2 \) by \(O(s2t^s) \) recolourings per vertex (this sequence of recolourings does not use colour \(s + 2 \) so we need not worry about adjacencies between \(H \) and \(S \)).

Proof of Theorem \ref{thm:main}. Let \(H \) be any subgraph of \(G \), and let \(h = |V(H)| \). An independent set \(I \) of \(H \) is said to be special if \(I \) is a \((d - 1)\)-independent set of \(H \) such that \(|I| \geq \epsilon h/d^2 \). It was shown in \cite{5} that \(H \) contains a special independent set, but we include the short proof for completeness. Let \(S \) be the set of vertices of degree \(d - 1 \) or less in \(H \). The number of vertices of \(S \) is at least \(\epsilon h/d \) since otherwise

\[
\sum_{v \in H} \deg(v) \geq \sum_{v \in H-S} \deg(v) > d \left(h - \frac{\epsilon h}{d} \right) = (d - \epsilon)h,
\]

which contradicts the maximum average degree of \(G \). Let \(I \subseteq S \) be a maximal independent set of \(S \). Then every vertex of \(S - I \) has at least one neighbour in \(I \) and every vertex of \(I \) has at most \(d - 1 \) neighbours in \(S \). Therefore, \(|I| + (d - 1)|I| \geq |S| \geq \epsilon h/d \) and so \(I \) is a special independent set of \(H \), as required.

Therefore there exists a partition \(\{I_1, I_2, \ldots, I_\ell\} \) of \(V(G) \) such that \(I_1 \) is a special independent set of \(G \) and, for \(i \in \{2, \ldots, \ell\} \), \(I_i \) is a special independent set of \(G \setminus \left(\bigcup_{j=1}^{i-1} I_j \right) \). Hence \(G \) has degree depth \((d - 1, \ell)\). But \(\ell = f(n) \) satisfies the recurrence

\[
f(n) \leq f \left(n - \frac{\epsilon n}{d^2} \right) + 1,
\]
implying $\ell = O(\log n)$, by the master theorem. The theorem now follows by Lemma 1 with $t = \log n$ and $s = d - 1$. □

References

[1] N. Bousquet and M. Heinrich. A polynomial version of Cereceda’s conjecture. arXiv, 2019.

[2] N. Bousquet and G. Perarnau. Fast recoloring of sparse graphs. European Journal of Combinatorics, 52:1–11, 2016.

[3] L. Cereceda. Mixing graph colourings. PhD thesis, London School of Economics, 2007.

[4] E. Eiben and C. Feghali. Towards Cereceda’s conjecture for planar graphs. arXiv, 1810.00731, 2018.

[5] C. Feghali. Paths between colourings of sparse graphs. European Journal of Combinatorics, 75:169–171, 2019.

[6] C. Feghali. Reconfiguring 10-colourings of planar graphs. arXiv preprint arXiv:1902.02278, 2019.