FOUR-DIMENSIONAL LIE ALGEBRAS WITH A
PARA-HYPERCOMPLEX STRUCTURE

NOVICA BLAŽIĆ AND SRDJAN VUKMIROVIĆ

Abstract. The main goal is to classify 4-dimensional real Lie algebras \(g \) which admit a para-hypercomplex structure. This is a step toward the classification of Lie groups admitting the corresponding left-invariant structure and therefore possessing a neutral, left-invariant, anti-self-dual metric. Our study is related to the work of Barberis who classified real, 4-dimensional simply-connected Lie groups which admit an invariant hypercomplex structure.

1. Introduction

Our work is motivated by the work of Barberis [2] where invariant hypercomplex structures on 4-dimensional real Lie groups are classified (see Section 2 for definitions). In that case the corresponding hermitian metric is positive definite and unique up to a positive constant. Our main goal is to classify 4-dimensional real Lie algebras \(g \) which admit para-hypercomplex structures. This is a step toward the classification of the corresponding left invariant structures on Lie groups. In this case the corresponding hermitian pseudo-Riemannian metric determined by the para-hypercomplex structure is also unique up to a constant, but has to be of signature \((2, 2)\). This metric is anti-self-dual (see [4]).

In the paper [1] Andrada and Salamon have shown that any para-hypercomplex structure on a real Lie algebra \(g \) rise to a hypercomplex structure on its complexification \(g^\mathbb{C} \) (considered as a real Lie algebra). They referred to para-hypercomplex structure as complex product structure.

Let us remark that Snow [5] and Ovando [3] classified the invariant complex structures on 4-dimensional, solvable, simply-connected real Lie groups where the dimension of commutators is less than three and equal three, respectively. Since every para-hypercomplex manifold is also complex, the Lie algebras from our classification also appear in their lists.

Let us state the main theorem (proved in Subsection 3.4).

Theorem 1.1. Up to an isomorphism the only 4-dimensional Lie algebras \(g \) admitting an integrable para-hypercomplex structure are listed below.

1. \([X, Y] = Z, [X, W] = W, [Y, W] = -X, [W, X] = Y \),
2. \([X, Y] = W, [Y, W] = -X, [W, X] = Y \),
3. \([X, Y] = Y, [X, W] = W \),
4. \([X, Y] = Z \),

Date: September 19, 2021 phcs19.
1991 Mathematics Subject Classification. 53C50, 53C56, 32M10, 53C26, 53C55.
Key words and phrases. para-hypercomplex structure, hyper-complex structure, complex product structure, metric of neutral signature.

Research partially supported by MNTS, project #1854.
(PHC5) \[[X,Y] = X, \]
(PHC6) \[[X,Y] = Z, \ [X,W] = X + aY + bZ, \ [W,Y] = Y, \]
(PHC7) \[[X,Z] = X, \ [X,W] = Y, \ [Y,Z] = Y, \ [Y,W] = aX + bY, \ a,b \in \mathbb{R}, \]
(PHC8) \[[X,Z] = X, \ [Y,W] = Y, \]
(PHC9) \[[Z,W] = Z, \ [Y,W] = Y, \ [X,W] = cX + aY + bZ, \ c \neq 0, \ a,b \in \mathbb{R}, \]
(PHC10) \[[Y,X] = Z, \ [W,Z] = cZ, \ [W,X] = \frac{1}{2}X + ay + bZ, [W,Y] = (c - \frac{1}{2})Y, c \neq 0. \]

In the previous list the additive basis of algebra \(\mathfrak{g} \) is \((X,Y,Z,W) \), and only the non-zero commutators are given.

In the proof we study separately the cassis defined in the terms of metrics defined on the derived algebra \(\mathfrak{g}' \) by means of the para-hypercomplex structure.

Here is a brief outline of the paper. In Section 2 we first give necessary definitions and prove some basic properties of para-hypercomplex structures and a number of lemmas which we use in the sequel. In Section 3 we step-by-step prove Theorem 1.1. First, in Subsection 3.1 we classify 4-dimensional Lie algebras with a non-trivial center and admitting a para-hypercomplex structure. Further on we suppose that algebra \(\mathfrak{g} \) has a trivial center. In Subsection 3.2 and 3.3 we classify solvable 4-dimensional Lie algebras \(\mathfrak{g} \) admitting a para-hypercomplex structure (Theorems 3.2 and 3.3), and prove some basic properties of para-hypercomplex structures and a number of particular examples of para-hypercomplex structures on algebras PHC1-PHC10. Finally, in Section 4 we compare our results with the results of Barberi [2].

2. Preliminaries

Let \(V \) be a real vector space. A complex structure on \(V \) is an endomorphism \(J_1 \) of \(V \) satisfying the condition

\[J_1^2 = -1. \]

Existence of a complex structure implies that \(V \) has to be of an even dimension. A product structure on \(V \) is an endomorphism \(J_2 \) of \(V \) satisfying the conditions

\[J_2^2 = 1, \quad J_2 \neq \pm 1. \]

A para-hypercomplex structure on \(V \) is a pair \((J_1,J_2) \) of anti-commuting complex structure \(J_1 \) and product structure \(J_2 \), i.e. satisfying the relations

\[J_1^2 = -1, \quad J_2^2 = 1, \quad J_1J_2 = -J_2J_1. \]

If both structures \(J_1 \) and \(J_2 \) are complex then the pair \((J_1,J_2) \) is called a hypercomplex structure on \(V \). In the sequel we concentrate on the case of para-hypercomplex structure.

It is customary to denote \(J_3 = J_1J_2 \). Note that the structure \(J_3 \) is a product structure. The Lie subalgebra of \(\text{End}(V) \) spanned by \(J_1, J_2 \) and \(J_3 \) is isomorphic to \(\mathfrak{sl}_2(\mathbb{R}) \). Any \(x = (x_1,x_2,x_3) \in \mathbb{R}^3 \) defines a structure by the formula

\[J_x := x_1J_1 + x_2J_2 + x_3J_3. \]

Denote by

\[\langle x,y \rangle = x_1y_1 - x_2y_2 - x_3y_3, \]
\[x = (x_1,x_2,x_3), \ y = (y_1,y_2,y_3), \] the inner product in \(\mathbb{R}^3 = \mathbb{R}^{1,2} \) and by

\[x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1) \]
the usual cross product. The structure \(J_x \) is a complex structure provided that
\[
\langle x, x \rangle = x_1^2 - x_2^2 - x_3^2 = 1
\]
and a product structure provided that
\[
\langle x, x \rangle = x_1^2 - x_2^2 - x_3^2 = -1.
\]
Hence, a para-hypercomplex structure \((J_1, J_2)\) defines a 2-sheeted hyperboloid \(\mathbb{B}^- \) of complex structures and a 1-sheeted hyperboloid \(\mathbb{B}^+ \) of product structures.

Proposition 2.1. If \((J_1, J_2)\) is a para-hypercomplex structure on a vector space \(V\), then:

i) \(J_x J_y = -\langle x, y \rangle 1 + J_x \times y\).

ii) The pair \((J_x, J_y)\) \(\in \mathbb{B}^- \times \mathbb{B}^+\) is a para-hypercomplex structure if and only if \(x \perp y\).

Proof: From the relations
\[
J_1 J_2 = J_3 = -J_2 J_1, \quad J_1 J_3 = -J_2 = -J_3 J_1, \quad J_2 J_3 = -J_1 = -J_3 J_2
\]
the statement i) follows by a direct calculation.

Since \(J_x\) is a complex structure and \(J_y\) is a product structure, the pair \((J_x, J_y)\) is a para-hypercomplex structure if and only if \(J_x\) and \(J_y\) anti-commute. Using the relation i) and the anti-commutativity of the cross product we have
\[
0 = J_x J_y + J_y J_x = -2\langle x, y \rangle 1.
\]
Hence, the statement ii) is proved. \(\square\)

The para-hypercomplex structures \((J_1, J_2)\) and \((J_x, J_y)\) are called compatible. An almost para-hypercomplex structure on a manifold \(M\) is a pair \((J_1, J_2)\) of sections of \(\text{End}(TM)\) satisfying the relations \([1]\). It is a para-hypercomplex structure if both structures are integrable, that is, if the corresponding Nijenhuis tensors
\[
N_\alpha(X, Y) = [J_\alpha X, J_\alpha Y] - J_\alpha [X, J_\alpha Y] - J_\alpha [J_\alpha X, Y] \pm [X, Y],
\]
\(\alpha = 1, 2\), vanish on all vector fields \(X, Y\). In this formula sign \(-\) occurs in the case of a complex structure and sign \(+\) occurs in the case of a product structure.

If \(M = G\) is a Lie group we additionally assume that the para-hypercomplex structure is left invariant. This allows us to also describe a para-hypercomplex structure on its Lie algebra \(g\). Hence, a para-hypercomplex structure \((J_1, J_2)\) on \(g\) satisfies both relations \([1]\) and \([2]\).

Proposition 2.2. Let \((J_1, J_2)\) be an integrable para-hypercomplex structure on a Lie algebra \(g\).

i) The product structure \(J_3 = J_1 J_2\) is integrable.

ii) Any compatible para-hypercomplex structure \((J_x, J_y)\) is integrable.

Proof: The statement i) follows from the relation
\[
2N_3(X, Y) = N_1(J_2 X, J_2 Y) + N_2(J_1 X, J_1 Y) - J_1 N_2(J_1 X, Y) - J_2 N_1(J_2 X, Y) +
+ N_2(X, Y) - J_2 N_1(J_2 X, Y) - J_2 N_1(X, J_2 Y) - N_1(X, Y)
\]
where \(N_\alpha\) is the Nijenhuis tensor of the product structure \(J_3\).

To prove ii) denote by \(N_x\) the Nijenhuis tensor corresponding to the structure \(J_x, x = (x_1, x_2, x_3)\). One can check that
\[
N_x = x_1^2 N_1 + x_2^2 N_2 + x_3^2 N_3 + x_1 x_2 (J_3 N_1 + J_3 N_2 + J_3 N_3) +
+ x_2 x_3 (J_1 N_2 - J_1 N_3 - J_1 N_1 J_2) + x_1 x_3 (-J_2 N_1 - J_2 N_3 + J_2 N_2 J_3)
\]
holds, where we have used the notation, for instance
\[J_2N_2J_3(X,Y) = J_2N_2(J_3X, J_3Y). \]
Now, statement ii) follows using statement i). \(\square \)

Let \(g \) be an inner product on the vector space \(V \). A para-hypercomplex structure \((J_1, J_2)\) on \(V \) is called hermitian with respect to \(g \) if
\[
(3) \quad g(J_3X, J_3Y) = -g(X, J_3Y), \quad X, Y \in V
\]
holds, i.e. if both structures \(J_1 \) and \(J_2 \) are hermitian. It is easy to prove that a hermitian complex structure is an isometry and a hermitian product structure is an anti-isometry, i.e.
\[
g(J_1X, J_1Y) = g(X, Y), \quad g(J_2X, J_2Y) = -g(X, Y).
\]
Existence of an anti-isometry implies that the inner product \(g \) must be of neutral, \((n,n)\) signature.

Proposition 2.3. Let \((J_1, J_2)\) be a para-hypercomplex structure hermitian with respect to the scalar product \(g \) on the vector space \(V \).

i) The product structure \(J_3 = J_1J_2 \) is hermitian.

ii) Any compatible para-hypercomplex structure \((J_x, J_y)\) is hermitian.

Proof:

i) If \(J_1 \) and \(J_2 \) are hermitian then \(J_3 \) is hermitian since we have
\[
\langle J_3X, Y \rangle = \langle J_1J_2X, Y \rangle = -\langle J_2X, J_1Y \rangle = \langle X, J_2J_1Y \rangle = -\langle X, J_3Y \rangle.
\]
i) Since the condition of any \(J_x \) to be hermitian is linear with respect to \(x \), the statement ii) follows from the statement i). \(\square \)

Now, we prove some lemmas which will be useful in the sequel.

Lemma 2.1. If \((J_1, J_2)\) is a para-hypercomplex structure on a real 4-dimensional vector space \(V \) then:

i) There is an inner product \(g \) on \(V \), unique up to a non-zero constant, such that the structure \((J_1, J_2)\) is hermitian with respect to \(g \).

ii) Any compatible para-hypercomplex structure \((J_x, J_y)\) determines the same inner product \(g \) on \(V \).

Proof: First, we prove the existence of such an inner product. If \((\cdot, \cdot)\) is an arbitrary inner product on \(V \), then the inner product
\[
(4) \quad g(X, Y) := (X, Y) + (J_1X, J_1Y) - (J_2X, J_2Y) - (J_3X, J_3Y)
\]
satisfies the properties (3).

To see the uniqueness let \(g'(\cdot, \cdot) \) be another inner product on \(V \) satisfying (3). As remarked before both products are of signature \((2,2)\). There exists a vector \(X \) which is not null with respect to the both inner products, for instance
\[
g(X, X) = 1, \quad g'(X, X) = \lambda \neq 0.
\]

The relations (1) and (3) imply that the vectors \(X, J_1X, J_2X, J_3X \) are mutually orthogonal with respect to both inner products. Moreover,
\[
\begin{align*}
g(X, X) &= g(J_1X, J_1X) = 1 = -g(J_2X, J_2X) = -g(J_3X, J_3X) \\
g'(X, X) &= g'(J_1X, J_1X) = \lambda = -g'(J_2X, J_2X) = -g'(J_3X, J_3X).
\end{align*}
\]
Hence, \(g(\cdot, \cdot) = \lambda g'(\cdot, \cdot), \ \lambda \neq 0. \)
ii) According to Proposition 2.3 the structure (J_x, J_y) is hermitian with respect to g. The statement follows from the uniqueness of g (up to a non-zero scalar). □

Remark 2.1. In the light of Lemma 2.1 we see that the notion of null vector N (such that $g(N, N) = 0$) depends only on the hermitian structure (J_1, J_2) and not on a particular inner product.

From the proof of Lemma 2.1 we also obtain the following.

Lemma 2.2. If (J_1, J_2) is a is a para-hypercomplex structure on a real 4-dimensional vector space V then

$$(X, J_1 X, J_2 X, J_3 X)$$

is a basis of V if X is not null.

Lemma 2.3. If N_α is an endomorphism of a 4-dimensional Lie algebra g such that $J_\alpha^2 = \pm 1$ and $(X, J_\alpha X, Y, J_\alpha Y)$ is a basis of g then the corresponding Nijenhuis tensor N_α vanishes if and only if $N_\alpha(X, Y) = 0$.

Proof: One can easily show that $N_\alpha(J_\alpha X, Y) = -J_\alpha N_\alpha(X, Y)$. The lemma follows from the fact that N_α is antisymmetric and bilinear. □

Lemma 2.4. Let (J_1, J_2) be a para-hypercomplex structure on a real 4-dimensional vector space V and let $W \subset V$ be a 2-dimensional subspace. Then there exists a compatible para-hypercomplex structure (J'_1, J'_2) such that:

1. If W is definite (contains no null directions) then $J'_1 W = W$.
2. If W is Lorentz (contains exactly two null directions) then $J'_2 W = W$.
3. If W is totally null (every vector in W is a null vector) then either
 a) $J'_1|_W = 1$, $V = W \oplus J'_1 W$, or
 b) there exists a non-null vector X such that $W = R(J'_1 X + J'_2 X, X - J'_3 X)$, $J(W) = W$ for all $J \in g^\pm$.

4. If the induced metric on W is of rank 1 (W contains exactly one null direction N) then $N = J'_1 X - J'_2 X$ for any given vector $X \in W$, $|X| /= 0$.

Proof of i) and **ii):** Let (X, Y) be a pseudo-orthonormal basis of W ($|X|^2 = -|Y|^2 = 1$ and $(X, Y) = 0$ with respect to the induced inner product on W). Then, according to Lemma 2.2 vectors X, $J_1 X$, $J_2 X$ and $J_3 X$ form a pseudo-orthonormal basis of V and we have $Y = x_1 J_1 X + x_2 J_2 X + x_3 J_3 X$ with $x_1^2 - x_2^2 - x_3^2 = \pm 1$, where $-$ occurs if W is Lorentz and $+$ if W is positive or negative definite. The structure

$$J_x = x_1 J_1 + x_2 J_2 + x_3 J_3$$

preserves W. It is a product structure if W is Lorentz (and we set $J'_2 = J_x$) and a complex structure if W is definite (and we set $J'_1 = J_x$). The second structure can be chosen such that (J'_1, J'_2) forms a compatible para-hypercomplex structure. Note that there cannot exists a product structure preserving a definite W since a product structure is an anti-isometry. Similarly, a complex structure preserving a Lorentz W cannot exist.

Proof of iii) Let $N_1 \in W$ be a null vector. There exists a non-null vector $X \in V$ perpendicular to N_1. Hence

$$N_1 = \alpha J_1 X + \beta J_2 X + \gamma J_3 X$$

and

$$\alpha^2 - \beta^2 - \gamma^2 = 0$$
so \(\alpha \neq 0 \) and we may assume that \(\alpha = 1 \). Then \(J'_2 = \beta J_2 + \gamma J_3 \) is a product structure, the structure \((J'_1, J'_2) \), \(J'_1 = J_1 \) is a compatible para-hypercomplex structure and we have

\[
N_1 = J'_1X + J'_2X.
\]

Any null vector \(aX + bJ'_1X + cJ'_2X + dJ'_3X \) which is orthogonal to the vector \(N_1 \) is of the form

\[
N^\pm = aX + bJ'_1X + bJ'_2X \pm aJ'_3X.
\]

Notice that the vector \(N_1 \) is also of the form \(N^\pm \) and that there exist exactly two null planes \(W^\pm \) containing the vector \(N_1 \). They can be written in the form

\[
W^\pm = \mathbb{R}\langle N_1, N_2^\pm = X \pm J'_3X \rangle.
\]

The plane \(W^- \) is the \(+1 \)-eigenspace of the product structure \(J'_3 \) and the vectors \(N_1, N_2^- \), \(J'_1N_1, J'_2N_2^- \) are independent, so \(V = W^- \oplus J'_1W^- \) and iii)a holds.

In the case of the plane \(W^+ \) one easily checks that \(J'_1W^+ = W^+ = J'_2W^+ \) and hence statement iii)b follows.

Proof of iv) The proof is similar to the first part of the previous proof (with \(N_1 = N \)). \(\square \)

Lemma 2.5. Let \((J_1, J_2) \) be a para-hypercomplex structure on a real 4-dimensional vector space \(V \) and let \(W \subset V \) be a 3-dimensional subspace such that the induced metric is degenerate. For \(N \in W^\perp \) and \(X \in W, \langle X \rangle \) \(\neq 0 \), there exists a compatible para-hypercomplex structure \((J'_1, J'_2) \) on \(V \) such that \(N = J'_1X - J'_2X \) and the arbitrary null vector in \(W \) belongs to the union of two-dimensional planes \(\pi_1 = \mathbb{R}\langle N, J'_1N \rangle \) and \(\pi_- = \{ V \mid J'_3V = -V \} \), i.e.

\[
\text{null}(W) = \{ U \in W \mid |U|^2 = 0 \} = \pi_1 \cup \pi_- = \mathbb{R}\langle N, J'_1N \rangle \cup \{ V \mid J'_3V = -V \}.
\]

Proof: Since we have \(|N|^2 = 0, \langle X \rangle \neq 0, \langle N, X \rangle = 0 \) the existence of a compatible structure \((J'_1, J'_2) \) such that \(N = J'_1X - J'_2X \) follows from the Lemma \(\text{2.4 iv).} \)

Moreover, \(\{ N, J'_1N, X, J'_3X \} \) is a basis of \(W \) and \(\{ N, J'_1N, X, J'_2X \} \) is a basis of \(V \). Thus, for \(U \in \text{null}(W) \) of the form \(U = \alpha N + \beta J'_1N + \gamma X \) we get

\[
0 = |U|^2 = \gamma (\gamma - 2\beta)|X|^2.
\]

The case \(\gamma = 0 \) gives the plane \(\pi_1 = \mathbb{R}\langle N, J_1N \rangle \). For \(\gamma = 2\beta \) one can check that \(J'_3(U) = -U \), so \(U \) belongs to the \(-1\) eigenspace of \(J'_3 \). \(\square \)

3. Lie algebras admitting a para-hypercomplex structure

3.1. Case when \(g \) has a non-trivial center.

In the following theorem the additive basis of the Lie algebra \(g \) is either \(\langle X, Y, Z, W \rangle \) or \(\langle X, Y, N_1, N_2 \rangle \). The vectors \(N_\alpha \) are null vectors.

Theorem 3.1. A 4-dimensional Lie algebra \(g \) admitting a para-hypercomplex structure and with a non-trivial center \(Z(g) \) is one of algebras \(\text{PHC}1-\text{PHC}6 \).

As a consequence of Levi decomposition theorem and the classification of real semisimple Lie algebras the only non-solvable Lie algebras which are 4-dimensional are \(\mathbb{R} \oplus \text{so}(3) \) and \(\mathbb{R} \oplus \text{sl}_2(\mathbb{R}) \). Since they both have a non-trivial center, as a consequence of Theorem \(3.1 \) we have the following corollary.

Corollary 3.1. The only non-solvable, real 4-dimensional Lie algebra admitting a para-hypercomplex structure is \(\mathbb{R} \oplus \text{sl}_2(\mathbb{R}) \).
Proof of Theorem 3.1: In order to prove that these are the only Lie algebras with non-trivial center which admit a para-hypercomplex structure we consider two cases.

Case 1: there exists a non-null central element Z. Let (J_1, J_2) be a para-hypercomplex structure on g and denote

$X = J_1 Z, \ Y = J_2 Z, \ W = J_3 Z.$

Then

$$[X, Y] = aZ + bX + cY + dW.$$ \hspace{1cm} (5)

According to Lemma 2.3 integrability of J_1 is equivalent to

$$0 = N_1(Z, Y) = [X, W] - J_1[X, Y].$$ \hspace{1cm} (6)

Similarly, the integrability of J_2 is equivalent to

$$0 = N_2(X, Z) = [Y, W] - J_2[X, Y].$$ \hspace{1cm} (7)

From the relations (5), (6) and (7) we get

$$[X, W] = -bZ + aX - dY + cW, \ [Y, W] = cZ - dX + aY - bW.$$ \hspace{1cm} (8)

The Jacobi identity is equivalent to

$$0 = [\ [X, Y], W] + [\ [Y, W], X] + [\ [W, X], Y] = 2(-a^2 - b^2 + c^2)Z - 2cdX - 2dbY - 2adW.$$ \hspace{1cm} (9)

If $a = b = c = d = 0$ then the algebra g is abelian, i.e. PHC1. If $a = b = c = 0$ and $d \neq 0$ then after scaling $g \cong R \oplus sl_2(R)$, i.e. PHC2.

If $d = 0$ and $0 \neq c^2 = a^2 + b^2$ then the derived algebra $g' = [g, g]$ of g is 2-dimensional since

$$c[Y, W] = a[X, Y] + b[W, X]$$

It is generated by the vectors $W_1 = [X, Y], \ Y_1 = [W, X]$. The vectors $Z, X_1 = \frac{1}{c} X, \ Y_1$ and W_1 are linearly independent and we get algebra PHC3.

Case 2: all central vectors are null vectors. Denote one of them by N. According to Lemma 2.4 iv), we can assume that $N = J_1 X - J_2 X$ for a non-null vector $X \in g'$. Then the vectors $N, J_1 N, X$ and $J_1 X$ form a basis of g and the structure J_2 expressed in the terms of that basis reads

$$J_2 X = J_1 X - N, \ J_2 J_1 N = N, \ J_2 J_1 X = J_1 N + X, \ J_2 N = J_1 N.$$ \hspace{1cm} (10)

The integrability of the structure J_1 gives the following conditions

$$0 = N_1(X, N) = [J_1 X, J_1 N] - J_1[X, J_1 N].$$ \hspace{1cm} (11)

Since the vectors $N, J_2 N, X$ and $J_2 X$ form a basis of g, the integrability of the product structure J_2 is equivalent to

$$0 = N_2(X, N) = [J_1 X, J_1 N] - J_2[X, J_1 N].$$ \hspace{1cm} (12)

The vector $[X, J_1 N]$ is of the form $[X, J_1 N] = aN + bJ_1 N + cX + dJ_1 X$. Using the relations (11) and (12) we get that

$$X, J_1 N = aN + bJ_1 N + 2bX, \ [J_1 X, J_1 N] = -bN + aJ_1 N + 2bJ_1 X.$$
If we write \([X, J_1 X] = \alpha N + \beta J_1 N + \gamma X + \delta J_1 X\) and impose the Jacobi identity on the vectors \(J_1 N, X\) and \(J_1 X\) we get the following system of equations:

\[-4ab - b^2 - \delta b + \gamma a - a^2 = 0,\]
\[-4b\beta + a\delta + b\gamma = 0,\]
\[b(a + \gamma) = 0,\]
\[b(b - \delta) = 0.\]

The system has three classes of solutions.

1) \(a = 0 = b\). In this case the only non-zero commutator is

\([X, J_1 X] = \alpha N + \beta J_1 N + \gamma X + \delta J_1 X.\)

If \(\gamma = 0 = \delta\), the change of the basis \(Y = J_1 X, N_1 = \alpha N + \beta J_1 N, N_2 \in \mathbb{R}\langle N, J_1 N \rangle\) gives the relations PHC4. If \(\delta \neq 0\) then the change \(Y = \frac{1}{\delta}[X, J_1 X], N_1 = N, N_2 = J_1 N\) gives the relations PHC5. The case \(\delta = 0, \gamma \neq 0\) similarly reduces to the relations PHC5.

2) \(b = \delta \neq 0, a = -\gamma\). This case reduces to the relations PHC3.

3) \(a = \gamma \neq 0\). This immediately gives the commutator relations PHC6. \(\square\)

3.2. Case of solvable Lie algebra \(g\) and \(\dim g' \leq 2\).

Theorem 3.2. Let \(g\) be a 4-dimensional real Lie algebra admitting a para-hypercomplex structure and \(\dim g' = 1\). Then \(g\) is one of the algebras PHC1, PHC2 from Theorem 3.1.

Proof: If \(g\) has a non-trivial center \(\xi\) then from Theorem 3.1 we get the algebras PHC1 and PHC2. Now, as in [2], Proposition 3.2, let \(\xi = \{0\}\) and let \(X\) be a non-zero element of \(g'\). There exists \(Y\) such that \([Y, X] = X\). Then \(g\) decomposes as

\[g = \ker(\text{ad}_X) \cap \ker(\text{ad}_Y) \oplus \mathbb{R}X \oplus \mathbb{R}Y.\]

From the Jacobi identity we get that \(\xi = \ker(\text{ad}_X) \cap \ker(\text{ad}_Y),\) a contradiction. Hence solvable \(g\) without center and with \(\dim g' = 1\) does not exist (this does not depend on the existence of para-hypercomplex structure). \(\square\)

Theorem 3.3. Let \(g\) be a 4-dimensional solvable Lie algebra admitting a para-hypercomplex structure and with \(\dim g' = 2\). If \(g\) has a non-trivial center then \(g\) is algebra PHC2. If \(g\) has a trivial center then \(g\) is one of algebras PHC7-PHC9.

Remark 3.1. Using the notation introduced by Snow [5], these Lie algebras are S11, S8 and S10 respectively. The class S11 contains as a special case the Lie algebra \(\text{aff}(\mathbb{C})\) which is the unique solvable Lie algebra with 2-dimensional derived algebra which admits hypercomplex structure [2].

Proof: Suppose that the center of \(g\) is trivial and that \((J_1, J_2)\) is a para-hypercomplex structure on \(g\). According to Lemma 2.4 and Remark 2.1 the structure \((J_1, J_2)\) determines the inner product on \(g = V\) and the notion of a null vector. As in Lemma 2.4 we have to consider the cases concerning the rank and the signature of the induced inner product on \(g' = W\).

Case i): Induced metric on \(g'\) is definite. Because of Lemma 2.4 i) we may assume that \(g'\) is invariant with respect to the complex structure \(J_1, J_2g' = g',\) and \(g = g' \oplus J_2g'.\) Let \(\{X, J_1 X = Y\}\) be a basis of \(g'\) and \(\{X, Y, J_2X, J_2Y\}\) be a basis
Since dim g and we get algebra PHC7 for a and hence
\begin{equation}
[J_2 X, J_2 Y] = 0, \quad [J_2 X, Y] = [J_2 Y, X].
\end{equation}
Because of the integrability of the complex structure J_1, $N_1(X, J_2 X) = 0$ and
\begin{equation}
[X, J_2 X] = -[Y, J_2 Y].
\end{equation}
For arbitrary vectors V and W in g,
\begin{equation}
[V, W] = \alpha(V, W)X + \beta(V, W)Y,
\end{equation}
where α and β are skew-symmetric bilinear forms on g. From the Jacobi identity we have
\begin{equation}
\alpha(X, J_2 X) = \beta(X, J_2 Y), \quad \alpha(J_2 Y, X) = \beta(X, J_2 X)
\end{equation}
and the bracket in g is determined by $c = \alpha(X, J_2 X)$ and $d = \beta(X, J_2 X)$ as follows:
\begin{equation}
[X, J_2 X] = -[Y, J_2 Y] = cX + dY, \quad [X, J_2 Y] = [Y, J_2 X] = -dX + cY.
\end{equation}
Since dim $g' = 2$, $c^2 + d^2 \neq 0$ and we may choose
\begin{align*}
\tilde{X} &= (c^2 + d^2)^{-1}(cX + dY), \\
\tilde{Y} &= (c^2 + d^2)^{-1}(-dX + cY), \\
\tilde{Z} &= (c^2 + d^2)^{-1}(cJ_2 X - dJ_2 Y), \\
\tilde{W} &= (c^2 + d^2)^{-1}(dJ_2 X + cJ_2 Y),
\end{align*}
and hence
\begin{equation}
[\tilde{X}, \tilde{Z}] = \tilde{X}, \quad [\tilde{Y}, \tilde{Z}] = \tilde{Y}, \\
[\tilde{Y}, \tilde{W}] = -\tilde{X}, \quad [\tilde{Y}, \tilde{W}] = -\tilde{X},
\end{equation}
so we get the algebra PHC7 for $a = -1, b = 0$. Note that $g = \text{aff}(\mathbb{C})$.

Case ii): Induced metric on g' is indefinite, of Lorentz type $(-+)$. Because of Lemma 2(ii) we may assume that g' is invariant with respect to the product structure J_2, $J_2 g' = g'$, and $g = g' \oplus J_1 g'$. Let $\{X, J_2 X = Y\}$ be a basis of g' and $\{X, Y, J_1 X, J_1 Y\}$ be a basis of g. By the integrability of the complex structure J_1, $N_1(X, Y) = 0$ and
\begin{equation}
[J_1 X, J_1 Y] = 0, \quad [J_1 X, Y] = [J_1 Y, X].
\end{equation}
Because of the integrability of the product structure J_2, $N_2(X, J_1 X) = 0$ and
\begin{equation}
[X, J_1 X] = [Y, J_1 Y].
\end{equation}
From the Jacobi identity we have
\begin{equation}
\alpha(X, J_1 X) = \beta(X, J_1 Y), \quad \alpha(J_1 Y, X) = -\beta(X, J_1 X),
\end{equation}
and the bracket in g is determined by $c = \alpha(X, J_1 X)$ and $d = \beta(X, J_1 X)$ as follows:
\begin{equation}
[X, J_1 X] = [Y, J_1 Y] = cX + dY, \quad [X, J_1 Y] = [Y, J_1 X] = dX + cY.
\end{equation}
Since dim $g' = 2$, $c^2 - d^2 \neq 0$ and we may choose
\begin{align*}
\tilde{X} &= (c^2 - d^2)^{-1}(cX + dY), \\
\tilde{Y} &= (c^2 - d^2)^{-1}(-dX + cY), \\
\tilde{Z} &= (c^2 - d^2)^{-1}(cJ_1 X - dJ_1 Y), \\
\tilde{W} &= (c^2 - d^2)^{-1}(dJ_1 X + cJ_1 Y),
\end{align*}
and hence
\begin{equation}
[\tilde{X}, \tilde{Z}] = \tilde{X}, \quad [\tilde{Y}, \tilde{Z}] = \tilde{Y}, \\
[\tilde{Y}, \tilde{W}] = -\tilde{X}, \quad [\tilde{Y}, \tilde{W}] = -\tilde{X},
\end{equation}
and we get algebra PHC7 for $a = 1, b = 0$.

4. FOUR-DIMENSIONAL LIE ALGEBRAS WITH A PARA-HYPERCOMPLEX STRUCTURE
Case iii): g' is a totally null plane. According to Lemma 2.4 iii) we have to consider two geometrically different cases.

In the first case we can assume that $J_2|g'| = 1$ and $g = g' + J_1g'$ holds. If (X, Y) is a basis of g' we have

$$J_2 X = X, \quad J_2 Y = Y, \quad J_2 J_1 X = -J_1 X, \quad J_2 J_1 Y = -J_1 Y.$$

One easily checks that the integrability of the complex structure J_1 is equivalent to the relations

$$[J_1 X, J_1 Y] = 0, \quad [X, J_1 Y] = [Y, J_1 X].$$

It is interesting that the product structure J with respect to J_1 or equivalently

$$(16) \quad (e - d)X' + fY' - cT' = 0, \quad (a - f)X' + bY' - cT' = 0,$$

or equivalently

$$e(e - d) + c(f - a) = 0, \quad ef = bc, \quad af - f^2 + bd - be = 0.$$

If X' is a zero vector then we get the algebra PHC8. Suppose that X' is a non-zero vector. If Y' or T' is a zero vector then we get an algebra PHC7 for $a = 0 = b$.

Suppose that none of the vectors X', Y', Z' is the zero vector. We can suppose that one of the pairs X', Y' and X', T' is independent, say X', T'. If the vectors X' and Y' are collinear then we get the algebra PHC7 for $a = 0, b = 1$. Finally, if the both pairs X', T' and X', Y' are independent then introduce a new basis (X', Y', Z', W') satisfying

$$Z' = \frac{1}{D}(fJ_1 X - bJ_1 Y), \quad W' = \frac{1}{D}(-eJ_1 X + aJ_1 Y),$$

where $D = af - be \neq 0$. In the new basis the commutator relations take the very simple form

$$[X', Z'] = X', \quad [X', W'] = Y', \quad [Y', Z'] = Y', \quad [Y', W'] = \frac{fc - de}{D}X' + \frac{ad - be}{D}Y'.$$

Since X' and Y' are independent then $cf - de \neq 0$, that is, $a \neq 0$ in the algebra PHC7.

In the second case we can assume that (N_1, N_2) is a basis of g' and g' is invariant with respect to J_1, J_2, J_3. Then a possible basis of g is

$$N_1 = J_1 X + J_2 X, \quad N_2 = X - J_3 X, \quad N_3 = J_1 X - J_2 X, \quad N_2 = X + J_3 X.$$

We calculate the structures in terms of that basis:

$$J_1 N_1 = -N_2, \quad J_1 N_3 = -N_4, \quad J_2 N_1 = N_2, \quad J_2 N_3 = -N_4, \quad J_3 N_1 = N_1, \quad J_3 N_2 = -N_2, \quad J_3 N_3 = -N_3, \quad J_3 N_4 = N_4.$$

By the integrability of J_3,

$$J_3[N_1, N_4] = [N_1, N_4], \quad J_3[N_2, N_3] = -[N_2, N_3].$$
Thus,
\[[N_1, N_4] = \mu N_1, \quad [N_2, N_3] = \lambda N_2. \]
The integrability of \(J_1 \) and \(J_2 \) is equivalent to
\[0 = -[N_2, N_4] - \lambda N_1 + \mu N_2 + [N_1, N_3] \]
After imposing the Jacobi identity this reduces to the algebra PHC3.

Case iv): the induced metric on \(g' \) is of rank 1. Denote by \(N \) the null vector belonging to \(g' \) (which is unique up to a scaling constant).

According to Lemma (2.3) iv) we can choose a product structure \(J_2 \) such that for the basis \((X, N)\) of \(g' \) one has
\[N = J_1 X - J_2 X, \quad N \text{ is null.} \]
Then \((X, N, J_1 X, J_1 N)\) is a basis of \(g \). One easily calculates the following relations
\[J_2 X = J_1 X - N, \quad J_2 N = J_1 N. \]
The integrability of \(J_1 \) is equivalent to \(J_1 [X, N] = 0 \), i.e. to the relations
\[[J_1 X, J_1 N] = 0, \quad [X, J_1 N] = [N, J_1 X]. \]
Since \((X, N, J_2 X, J_2 N)\) is a basis of \(g \) the integrability of the product structure \(J_2 \) is equivalent to \(J_2 [X, N] = 0 \) which gives the condition
\[[N, J_1 N] = 0. \]
The commutator relations now read
\[[X, J_1 X] = a X + b N, \quad [X, J_1 N] = c X + d N, \]
where \(a, b, c, d \) are unknown coefficients. The Jacobi identity is now equivalent to the following relations
\[c = 0, \quad d(a - d) = 0. \]
The case \(d = 0 \) gives the algebra with \(\dim g' = 1 \) which we have already discussed. The remaining case \(a = d \neq 0 \), after the change
\[\tilde{Y} = N, \quad \tilde{Z} = J_1 N, \quad \tilde{X} = \frac{1}{a} X, \quad \tilde{W} = \frac{1}{a} J_1 X - \frac{b}{a^2} J_1 N, \]
takes the form
\[[\tilde{Y}, \tilde{Z}] = 0, \quad [\tilde{Y}, \tilde{W}] = \tilde{Y}, \quad [\tilde{X}, \tilde{Z}] = \tilde{Y}, \quad [\tilde{X}, \tilde{W}] = \tilde{X} \]
of the algebra PHC7 for \(a = 0 = b \).

3.3. Case of solvable Lie algebra \(g \) with \(\dim g' = 3 \).

Theorem 3.4. Let \(g \) be a 4-dimensional solvable Lie algebra admitting a para-hypercomplex structure and with \(\dim g' = 3 \). If \(g \) has a nontrivial center it is algebra PHC6, otherwise it is algebra PHC9 or PHC10.

Proof: If the algebra \(g \) is solvable then its derived algebra \(g' \) is nilpotent. Up to isomorphism the only 3-dimensional nilpotent Lie algebras are Abelian algebra and the Heizenberg algebra generated by \(X, Y \) and \(Z \) with nonzero commutator
\[[X, Y] = Z. \]
Let \(g \) be with trivial center, admitting a para-hypercomplex structure \((J_1, J_2)\) and let \((\cdot, \cdot)\) be a compatible inner product on \(g \). First, we discuss the case of \(g' \) being abelian.
Suppose that \mathfrak{g}' is nondegenerate subspace and X is normal vector of \mathfrak{g}'. Then $|X|^2 \neq 0$ and $\mathfrak{g}' = \mathbb{R}\langle J_1 X, J_2 X, J_3 X \rangle$. From the integrability of J_1 and J_2 we have

$$[X, J_\alpha J_\beta X] = J_\alpha [X, J_\beta X],$$

for $\alpha, \beta \in 1, 2, 3$, $\alpha \neq \beta$. Hence, $[X, J_\alpha X] = \lambda J_\alpha$, and we get the algebra PHC9 for $a = 0 = b$. (the Lie algebra corresponding to the real hyperbolic spaces).

Assume now that \mathfrak{g}' is degenerate subspace and N is normal vector of \mathfrak{g}'. Then $|N|^2 = 0$ and $N \in \mathfrak{g}'$. According to Lemma 2.4 iv) we can choose a compatible structure (J_1, J_2) such that $N = J_1 X - J_2 X$ for any $X \in \mathfrak{g}'$, $|X|^2 \neq 0$. Since $J_1 N$ is orthogonal to N we also have $J_1 N \in \mathfrak{g}'$. Hence we may suppose that $\mathfrak{g}' = \mathbb{R}\langle N, J_1 N, X \rangle$. Moreover the $(N, J_1 N, X, J_1 X)$ is a basis of \mathfrak{g}. The integrability of J_1 and J_2 implies

$$[J_1 N, J_1 X] = J_1 [N, J_1 X] = J_2 [N, J_1 X],$$

i.e. $[N, J_1 X] = dN$ and $[J_1 N, J_1 X] = dJ_1 N$, $d \neq 0$ what after scaling reduces to algebra PHC9.

Now we turn to the case when \mathfrak{g}' is Heizenberg algebra. Let $\mathfrak{g}' = \mathbb{R}\langle X, Y, Z \rangle$ and $\mathfrak{g} = \mathbb{R}\langle X, Y, Z, W \rangle$. One can easily check that the center $\mathbb{R}\langle Z \rangle$ is an ideal of \mathfrak{g} and hence

$$[W, Z] = \lambda Z, \; \lambda \neq 0,$$

no matter how the vector W that does not belong to \mathfrak{g}' is chosen. At the other side, independently of the choice of non-central vectors $X, Y \in \mathfrak{g}'$ their commutator is always in the center, i.e.

$$[X, Y] = \mu Z, \; \mu \neq 0.$$

Here, $\mu \neq 0$ since \mathfrak{g}' is not abelian and $\lambda \neq 0$ since otherwise Z would be a non-zero central element of \mathfrak{g}. Hence, it remains to calculate the commutators $[W, X]$ and $[W, Y]$. This approach we use to prove the remaining part of the theorem.

We consider the cases depending on degeneracy of \mathfrak{g}' with respect to the induced compatible metric. Also there are different subcases depending on the norm of a central element of \mathfrak{g}'.

i) Suppose that \mathfrak{g}' is not degenerated, and let W be its normal vector. Denote by $Z = \xi(\mathfrak{g}')$ a non-zero central element of \mathfrak{g}'. As an element of \mathfrak{g}', Z is orthogonal to W. Now we have the following cases.

W and Z have the same sign: Using the Lemma 2.4 i) we may choose a compatible structure (J_1, J_2) such that $Z = J_1 W$. Then the $(J_1 W, J_2 W, J_3 W)$ is a basis of \mathfrak{g}'. After a simple calculation (and scaling) we get the commutator relation:

$$[W, J_1 W] = 2J_1 W, \; [W, J_2 W] = J_2 W, \; [W, J_3 W] = J_3 W, \; [J_2 W, J_3 W] = J_1 W.$$

That is a special form of algebra PHC10.

W and Z have the opposite sign: Using Lemma 2.4 ii) we may choose a compatible structure (J_1, J_2) such that $Z = J_2 W$. Then the $(J_1 W, J_2 W, J_3 W)$ is a basis of \mathfrak{g}'. After a simple calculation (and scaling) we get the commutator relation:

$$[W, J_1 W] = J_1 W, \; [W, J_2 W] = 2J_2 W, \; [W, J_3 W] = J_3 W, \; [J_1 W, J_3 W] = J_2 W.$$

That is again a special form of algebra PHC10.
The center Z of g' is a null vector: We have: $|W|^2 \neq 0$, $|Z|^2 = 0$, $Z \perp X$, so using the Lemma 2.4 iv) we may choose a structure (J_1, J_2) such that
$$N = Z = J_1W - J_2W.$$ Moreover there is a decomposition
$$g = g' \oplus RW = \mathbb{R} \langle N, J_1W, J_3W \rangle \oplus RW.$$ Now we have
$$[J_1W, J_3W] = \lambda N, \ [W, N] = \mu N, \ \lambda, \mu \neq 0.$$ After imposing the integrability condition for the structure (J_1, J_2) we get $\mu = 0$ what is a contradiction. Hence, this case does not give a solution.

ii) Suppose that g' is degenerated, and let $N \in g'$ be its normal vector and $Z \in g'$, a non-zero central element of g'. We now discuss cases depending on the type of vector Z.

Z is a non null vector, $|Z|^2 \neq 0$: Let $X = Z$. Consider the basis:
$$g = \mathbb{R} \langle N, J_1N, X, J_1X \rangle, \ g' = \mathbb{R} \langle N, J_1N, X \rangle.$$ Let $[N, J_1N] = \mu X$ and $[J_1X, X] = \lambda X$. Then
$$(J_1 - J_2)[N, J_1X] = -\mu X.$$ Thus, $\mu = 0$ and g' is Abelian, what is again a contradiction. \ \Box

Z is a null vector, $|Z|^2 = 0$: According to Lemma 2.3 all null vectors of g' are contained in two 2-dimensional planes:
$$\text{null}(g') = \pi_1 \cup \pi_2 = \mathbb{R} \langle N, J_1N \rangle \cup \{V|J_3V = -V\}.$$ We now study three possible cases $Z = N, Z \in \pi_2, Z \in \pi_1$.

$Z = N$ (the normal to g' is a center of g'): Then we have a decomposition:
$$g = \mathbb{R} \langle N, J_1N, X, J_1X \rangle, \ g' = \mathbb{R} \langle N, J_1N, X \rangle.$$ Because of the integrability of para-hypercomplex structure (J_1, J_2) we have
$$[J_1N, X] = \lambda N, \ [J_1X, N] = \mu N, \ [J_1X, X] = aN + bJ_1N + cX, \ \lambda, \mu \neq 0.$$ The Jacobi identity is equivalent to $c = \lambda$. After some scaling we get the algebras PHC10.

$Z \in \pi_2, Z \neq N, (Z$ is λ eigenvector of J_3). Then $Z = aN + b(J_1N + 2X)$ and we have the decomposition:
$$g = \mathbb{R} \langle N, J_1N, Z, J_1Z \rangle, \ g' = \mathbb{R} \langle N, J_1N, Z \rangle.$$ Due to the Heisenberg algebra structure of g' we may assume
$$[Z, J_1Z] = \mu Z, \ [N, J_1N] = \lambda Z, \ \mu, \lambda \neq 0.$$ Because of the integibility of J_1 and J_2 we have
$$[J_1N, J_1Z] = J_1[N, J_1Z] = J_2[N, J_1Z],$$ and then
$$[N, J_1Z] = aN, \ \text{and} \ [J_1N, J_1Z] = \alpha J_1N, \alpha \neq 0.$$ Now, by the Jacobi identity,
$$[N, J_1Z] = \alpha N, \ \ [Z, J_1Z] = 2\alpha Z,$$
$$[J_1N, J_1Z] = \alpha J_1N, \ \ [Y, X] = \lambda Z,$$
$\alpha, \lambda \neq 0$. After scaling it is a special case of relations PHC10.
\(Z \in \pi_1, Z = aN + J_1N, a \in \mathbb{R} \). Consider the decomposition
\[
g = \mathbb{R}\langle N, Z, X, J_1 \rangle, \quad g' = \mathbb{R}\langle N, Z \rangle.
\]
Let \([N, X] = \mu Z\) and \([J_1X, Z] = \lambda Z\). By the integrability,
\[
(J_1 - J_2)[N, J_1X] = 2\lambda Z - 2\mu aN,
\]
what implies \(\lambda = 0\), i.e. \(Z\) is in the center of \(g\). That is a contradiction.

3.4. The proof of Theorem 1.1 According to the Levi decomposition theorem every Lie algebra \(g\) decomposes into direct sum
\[
g = \mathfrak{r} \oplus \mathfrak{s},
\]
where \(\mathfrak{r}\) is maximal solvable ideal (radical) and \(\mathfrak{s}\) is semisimple part. Since \(\mathfrak{so}(3)\) and \(\mathfrak{sl}_2(\mathbb{R})\) are the only semisimple Lie algebras of dimension less or equal to 4, the only non-solvable Lie algebras of dimension four are
\[
\mathbb{R} \oplus \mathfrak{so}(3) \quad \text{and} \quad \mathbb{R} \oplus \mathfrak{sl}_2(\mathbb{R}).
\]
They both have a non-trivial center \(\mathbb{R}\), so from Theorem 3.1 we conclude that the unique non-solvable Lie algebra admitting a para-hypercomplex structure is \(\mathbb{R} \oplus \mathfrak{so}(3)\), i.e. PHC2. Solvable 4-dimensional Lie algebras with nontrivial center and admitting a para-hypercomplex structure are PHC1 and PHC3-PHC6 (Theorem 3.4). Solvable 4-dimensional Lie algebras with trivial center and admitting a para-hypercomplex structure are PHC7-PHC10 (theorems 3.2, 3.3 and 3.4).

It remains to prove that algebras PHC1-PHC10 possess an integrable para-hypercomplex structure. We construct the structures below and leave the reader to check the integrability conditions for \(J_1\) and \(J_2\) and the relations (1) by direct calculation.

PHC1 and PHC2:
\[
J_1Z = X, \quad J_1Y = W, \quad J_2Z = Y, \quad J_2X = -W.
\]

PHC3:
\[
J_1Z = X, \quad J_1Y = W, \\
J_2Z = W - Z, \quad J_2X = X + Y, \quad J_2Y = -Y, \quad J_2W = W.
\]

PHC4 and PHC5:
\[
J_1Z = W, \quad J_1X = Y, \\
J_2Z = W, \quad J_2X = Y - Z, \quad J_2Y = X + W.
\]

PHC7
\[
J_1X = Z, \quad J_1Y = W, \\
J_2X = X, \quad J_2Y = Y, \quad J_2Z = -Z, \quad J_2W = -W
\]

PHC8:
\[
J_1X = -Y, \quad J_1Z = -W, \quad J_2X = Y, \quad J_2Z = -W
\]

PHC6, PHC9 and PHC10:
\[
J_1Z = Y, \quad J_1X = W, \\
J_2Z = Y, \quad J_2X = W - Z, \quad J_2W = X + Y.
\]
\[\square\]
In this section we compare our results with the classification of hypercomplex structures in the paper of Barberis [2]. We see that there are many more 4-dimensional Lie algebras with para-hypercomplex structure than Lie algebras with hypercomplex structure.

Namely, we have the following.

Theorem 4.1. (2) The only 4-dimensional Lie algebras admitting an integrable hypercomplex structure are:

- (HC1) \(\mathfrak{g} \) is abelian,
- (HC2) \([X,Y] = W, [Y,W] = X, [W,X] = Y\),
- (HC3) \([X,Z] = X, [X,W] = Y, [Y,Z] = Y, [Y,W] = -Y, [W,X] = Y\),
- (HC4) \([W,X] = X, [W,Y] = Y, [W,Z] = Z\),
- (HC5) \([W,X] = X, [W,Y] = \frac{1}{2}Y, [W,Z] = \frac{1}{2}Z, [Z,Y] = X\).

The Lie algebra HC2 is isomorphic to \(\mathbb{R} \oplus \mathfrak{so}(3) \) and it does not admit a para-hypercomplex structure. Its counterpart admitting a para-hypercomplex (but not hypercomplex) structure is algebra \(\mathbb{R} \oplus \mathfrak{sl}(2) \) given by the relations PHC2.

No algebra \(\mathfrak{g} \) with \(\dim \mathfrak{g}' = 1 \) admits a hypercomplex structure, while algebras PHC4 and PHC5 admit a para-hypercomplex structure and satisfy \(\dim \mathfrak{g}' = 1 \).

The Lie algebra HC3 is isomorphic to \(\mathfrak{aff}(\mathbb{C}) \) and it is the only Lie algebra with \(\dim \mathfrak{g}' = 2 \) admitting a hyper-complex structure. It also admits a para-hypercomplex structure (PHC7 for \(a = 1, b = -1 \)).

The Lie algebra HC4 corresponds to real hyperbolic space \(\mathbb{R}H^4 \). It admits both hypercomplex and para-hypercomplex structure (PHC9 for \(a = 0, b = 0 \)).

Finally, the Lie algebra HC5 corresponds to complex hyperbolic space \(\mathbb{C}H^2 \). It admits both hypercomplex and para-hypercomplex structure (PHC10 for \(c = 1, a = b = 0 \)).

References

[1] A. Andrada, S Salamon, *Complex Product Structures on Lie Algebras*, preprint math.DG/0305102.

[2] M.L. Barberis, *Hypercomplex Structures on Four-dimensional Lie Groups*, Proc. of AMS, 128 (4) (1997), 1043–1054.

[3] G. Ovando, *Invariant complex structures on solvable real Lie groups*, Manuscripta Math. 103(2000), 19–30.

[4] V. DeSmedt, S. Salamon, *Anti-self-dual metrics on Lie groups*, Proc. Conf. Integrable Systems and Differential Geometry, Contemp. Math. 308(2002), 63–75.

[5] Snow, J. E., *Invariant Complex Structures on Four-dimensional Solvable Real Lie Groups*, Manuscripta Math. 66, (1990), 397–412.

Faculty of Mathematics, University of Belgrade, Studenski trg 16, p.p. 550, 11 000 Belgrade, Yugoslavia

E-mail address: blazicn@matf.bg.ac.yu, vsrdjan@matf.bg.ac.yu