Dissection of tumour and host cells from target organs of metastasis for testing gene expression directly \textit{ex vivo}

M Rocha, K Haxel, M Bucur, V Schirrmacher and V Umansky

Tumor Immunology Program, Division of Cellular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.

Summary We report on a new methodology which allows the direct analysis \textit{ex vivo} of tumour cells and host cells (lymphocytes, macrophages, endothelial cells) from a metastasised organ (liver or spleen) at any time point during the metastatic process and without any further \textit{in vitro} culture. First, we used a tumour cell line transduced with the bacterial gene lacZ, which permits the detection of the procaryotic enzyme β-galactosidase in eukaryotic cells at the single cell level thus allowing flow adhesion cell sorting (FACS) analysis of tumour cells from metastasised target organs. Second, we established a method for the separation and enrichment of tumour and host cells from target organs of metastasis with a high viability and reproducibility. As exemplified with the murine lymphoma ESb, this new methodology permits the study of molecules of importance for metastasis or anti-tumour immunity (adhesion, costimulatory and cytotoxic molecules, cytokines, etc.) at the RNA or protein level in tumour and host cells during the whole process of metastasis. This novel approach may open new possibilities of developing strategies for intervention in tumour progression, since it allows the determination of the optimal window in time for successful treatments. The possibility of direct analysis of tumour and host cell properties also provides a new method for the evaluation of the effects of immunisation with tumour vaccines or of gene therapy.

Keywords: lymphoma; tumour–host interaction; \textit{ex vivo} analysis; genetic change

The interaction between tumour and host cells determines to a large extent the outcome, namely tumour growth and progression towards metastases or tumour arrest, dormancy or rejection. Most of the studies published so far on interactions of tumour cells and host cells were made \textit{in vitro} and dealt with aspects such as cell adhesion, proliferation, invasiveness, cytotoxicity or cytokine production. Since the microenvironment in tissue culture differs in many respects from that \textit{in vivo}, new approaches for \textit{in vivo} studies of tumour–host cell interactions are of utmost importance in cancer research.

To elucidate the metastatic phenotype, approaches have been made to relate, for instance, cell surface molecules expressed on the tumour cell lines from tissue culture to their propensity to generate metastases \textit{in vivo} (Nicolson 1982, 1987). Several authors have reported that certain steps of the metastatic cascade are rate limiting (Hart et al., 1989; Fidler, 1990; Fidler and Radinsky, 1990; Kerbel, 1990; Fidstad, 1993). To produce metastases, tumour cells must complete each of the sequential steps in the pathogenesis of cancer metastasis. Each discrete step appears to depend on the interaction between tumour cells and multiple host factors (i.e. the microenvironment of the tumour) and to be regulated by transient or permanent changes in DNA, RNA or proteins of multiple genes. Against this background, the need for comprehensive \textit{in vivo}/\textit{ex vivo} studies on tumour–host interactions and their kinetics in relevant model systems becomes obvious.

We have established a new method allowing the \textit{ex vivo} isolation of tumour and host cells (tumour microenvironment) at any time point during the metastatic process and without any further \textit{in vitro} culture. We chose as a model the ESbL lymphoma, transduced with the lacZ gene. This allows the detection of tumour cells at the single cell level either in frozen sections from target organs (liver, spleen, etc.) by staining with 5-bromo-4-cloro-3 indoyl-β-D-galactopyranoside (X-Gal) or as live cells after tissue dissociation staining with fluorescein-di-β-galactopyranoside (FDG) (Krüger et al., 1994a). In this ESbL-lacZ tumour model, intradural tumour growth and liver metastasis development followed three distinct phases: a first exponential growth phase, a transient plateau phase and a second expansion phase. The plateau phase was characterised by a constant tumour diameter, correlating with a constant low amount of metastasis in the liver. This phase was followed by an aggressive second expansion phase leading to macroscopic metastases in multiple visceral organs and to death of the animals within a few days (Krüger et al., 1994b). These different phases of the metastatic process provide a good model for the investigation of the influence of tumour–host interactions during metastasis and of ways of modulating it. The plateau phase allows the study of the mechanisms of immunoresistance and tumour control. The second expansion phase allows the study of the mechanisms of breakdown of immunoresistance and perhaps molecules of importance in metastatic progression.

Materials and methods

Mice, cell lines and cell injections

DBA/2 mice were obtained from Ifla Credo (Lyon, France) and used at 6–12 weeks of age. lacZ-transduced ESbL cells (clone L-Cl.5s) were cultured as described (Krüger et al., 1994a). Cells were washed in phosphate-buffered saline (PBS) and adjusted to the appropriate concentration. For standard intradural injection, 2 × 10^6 cells were injected into the animal’s cutis at the shaved flank of anaesthetised [Rompun (0.1%)–Ketanest (0.25%)]–PBS diluted 1:1:3 (vol) animals.

Isolation of tumour and sinusoidal cells from metastatic livers

Cell isolation was performed as described (Rocha et al., 1996). Briefly, livers from anaesthetised tumour-bearing mice were washed \textit{in situ} by perfusion through the portal vein at 37°C with 10 ml z modified Eagle medium (MEM) containing 15 mM Hepes at a flow rate of 3 ml min^-1. Tissue digestion was carried out during perfusion with 10 ml of α-MEM/Hepes containing 0.05% pronase E (Boehringer Mannheim, Germany) at 1 ml min^-1 and then with 15 ml.
of the same medium containing 0.03% pronase E, collagenase A (from Clostridium hystolyticum, Boehringer Mannheim). After perfusion, livers were minced and stirred in 13 ml α-MEM/Hepe containing 0.04% pronase E, 0.04% collagenase and 0.0004% DNAase (Sigma Chemical Co., USA) at 37°C for 10 min. The cell suspension was then filtered through a nylon gauze and centrifuged at 300 g for 10 min. To remove cell debris and erythrocytes, the cell pellet was centrifuged at 14,000 g for 15 min in α-MEM/Hepe containing 17.5% (v/v) metrizamide (Sigma Chemical Co.), followed by washing of the top layer with α-MEM/Hepe at 300 g for 10 min.

Antibody staining of tumour and sinusoidal cells

About 1 × 10^6 cells were washed in PBS buffer supplemented with 5% fetal calf serum (FCS) and incubated at 4°C for 10 min with first antibodies. The following rat anti-mouse monoclonal antibodies were used as culture supernatants: anti-CD4 (clone GK 1.5); E-selectin (clone 21KC10), specific for endothelial cells; and anti-macrophage antibody (F4/80). After washing, cells were incubated with the second antibody (F(ab')2, goat anti-rat, mouse Ig absorbed, R-phycocerythrin conjugated, Gibco BRL). Control cells were incubated with FACS buffer instead of the antibody, before staining with the second antibody.

FDG staining and FACS analysis of tumour and host cells

After antibody staining, sinusoidal cells were washed in PBS supplemented with 5% FCS and incubated in 100 ml PBS/FCS at 37°C for 10 min. Quantification of liver metastases was performed at the single cell level by loading and staining with FDG (fluorescein-di-β-D-galactopyranoside) as described (Krüger et al., 1994b). Cells were loaded by hypotonic shock with 100 ml of prewarmed FDG (Molecular Probes, Inc., Eugene, OR, USA) in water, mixed, vortexed and incubated for 1 min at 37°C. Ice-cold 5% FCS/PBS (1.8 ml) was then added, the cells were kept for 10 min on ice and treated for 5 min before analysis with 1.5 μM propidium iodide (final concentration). Flow adhesion cell sorting (FACS) analysis was performed using a FACSScan (Becton-Dickinson). About 30,000 cells per sample were simultaneously measured for FSC and integrated side scatter (SSC) as well as green (FL1) and red (FL2 and FL3) fluorences (expressed as logarithm of the integrated fluorescence light). Recordings were made only on propidium iodide-negative (viable) cells of the red (FL3) fluorescence, excluding aggregates whose FSCs were out of range. Ex vivo expression of cell surface molecules was analysed by histograms of red fluorescence (FL2) distribution plotted as number of cells (y-axis) vs fluorescence intensity (x-axis) for the different tumour and sinusoidal cell populations.

Isolation of liver endothelial cells

After isolation of liver sinusoidal and tumour cells, they were cultured on type 1 collagen-coated plastic Petri dishes in α-MEM supplemented with 10% FCS at 37°C in an incubator under 5% carbon dioxide/air. Two sample supernatants were collected and adherent cells (endothelial cells) were scraped off with a rubber spatula, counted, pelleted, snap frozen in liquid nitrogen and kept at −70°C for RNA studies. Purity of Kupffer cell population was evaluated as described (Umansky et al., 1995).

Isolation of lymphocytes and tumour cells from metastatic livers

Separation of tumour cells from lymphoid cells was performed by FDG staining and flow cytometry cell sorting. FDG staining was performed as described (Krüger et al., 1994b). About 5 × 10^6 cells per sample of isolated tumour and lymphoid cells which remained after the two adhesion steps described above, were washed in PBS with FCS and incubated at 37°C for 10 min. Then, 100 ml of prewarmed FDG (Molecular Probes, Eugene, OR, USA) in water were added to the cell suspension and incubated for 4 min at 37°C (hypotonic shock). Cold 5% FCS/PBS (1.8 ml) was then added, the cells were kept for 10 min on ice and stained with 1.5 μM propidium iodide (final concentration). Sorting was performed using a FACS Vantage sorter (Becton-Dickinson, Heidelberg, Germany). A window for sorting was defined in the FDG-positive cells (tumour cells) excluding dead cells and debris with propidium iodide. Flow rate was 3000–5000 cells s⁻¹ and sorted cells were collected in sterile tubes containing RPMI with 20% FCS. After centrifugation of the total collected fractions, tumour cells and lymphocytes, pellets were snap frozen in liquid nitrogen and kept at −70°C until use for RNA extraction.

RNA extraction, hybridisation and densitometric quantitation

Cell pellets were homogenised with 0.2 ml of RNA-Clean (Angewandte Gentechnologie Systeme, Heidelberg, Germany) per 2 × 10⁶ cells and RNA extraction performed by the chloroform/phenol technique. Extracted RNA was precipitated with isopropanol, the pellet washed in ethanol, dried under vacuum and resuspended in DEPC treated water. Quantity of RNA was measured by absorbance at 260 nm. Total isolated RNA was denatured and spotted onto a nitrocellulose filter using a dot blot apparatus and fixed by UV cross-linking with vacuum (Heraeus). Membranes were prehybridised for 2 h at 42°C in solution containing 1% formamide, 20 × saline sodium citrate (SSC) and 1% sodium dodecyl sulphate (SDS). Hybridisation was performed in the same solution for 24–48 h at 42°C with the cDNA probes. The following cDNA probes were used for hybridisation: MHc class II, α and β chain (kindly provided by Dr F Momburg), ICAM-1 and integrin α4 chain (kindly provided by Dr P Altevogt). cDNA inserts were labelled with [32P] at a specific activity of about 2 × 10⁶ c.p.m. per μg DNA by oligolabelling kit (Pharmacia, Sweden). After hybridisation, filters were washed three times for 30 min with SSC and SDS at 68°C. Membranes were exposed to O-MAT films (Kodak, Germany) at −70°C. Expression of the mRNA was quantified by densitometry of autoradiograms using the Adobe Photoshop Program and the SCAN analysis program from Macintosh with Image software. Results were calculated from the ratio of the average areas between the specific mRNA transcripts and the β-actin mRNA transcripts.

Results

Identification and analysis of ex vivo isolated tumour and sinusoidal cells during lymphoma metastasis by flow cytometry

The number of sinusoidal cells obtained per mouse liver was 5–8 × 10⁶ depending on factors such as age and weight of the mice and size of the liver. In the case of metastatic livers, the total amount of sinusoidal and tumour cells was 20–25 × 10⁶ per mouse. Viability was higher than 93% in both cases. After antibody incubation and FDG staining, we analysed tumour cells and sinusoidal cells by flow cytometry. Figure 1 shows the analysis of sinusoidal and tumour cells
isolated from metastatic livers at day 28 after tumour injection. At this time point the percentage of tumour cells in the liver is 40–50% of the total sinusoidal cell population (Krüger et al., 1994b). Contour plots of the total population were analysed following loading and staining with FDG. Tumour cells were identified as green fluorescence-positive cells (R2) and compared with the non-fluorescent cells, which represent the sinusoidal cell population (R1). Different sinusoidal cell populations were identified as previously described (Rocha et al., 1995) and gated for separate analysis. Further characterisation of the gated populations was achieved by cell surface staining with rat monoclonal antibodies (MAbs) and dye-labelled secondary anti-rat Ig reagents. As can be seen from the profiles in Figure 1, CD4 was positive in the first region (lymphoid cells), E-selectin in the second region (endothelial cells) and F4/80 in the third region (Kupffer cells). Tumour cells could be easily distinguished as FDG-positive cells (Figure 1), although the hypotonic shock treatment also slightly changed the profiles of the normal cell populations. Combining FDG staining of tumour cells and MAb staining, we recently demonstrated up-regulation of the expression of surface molecules, such as LFA-1 and ICAM-1, on liver metastases. Further antibody blocking experiments suggested that these adhesion molecules were of importance for metastatic expansion in the liver (Rocha et al., 1996).

Isolation and enrichment of tumour and host cell populations from metastatic organs for studies at the transcriptional level

After in vivo liver perfusion and metrizamide gradient centrifugation, the isolated total sinusoidal cell population

![Flow cytometric analysis of ex vivo isolated cells from a metastasised liver, 28 days after intradermal transplantation of ESb1-lacZ lymphoma cells.](image)

Figure 1 Flow cytometric analysis of ex vivo isolated cells from a metastasised liver, 28 days after intradermal transplantation of ESb1-lacZ lymphoma cells. a and b, Contour plots of forward scatter vs green fluorescence (FL1) of isolated cells without (a) or with (b) FDG loading. Tumour cells were identified in b as green fluorescence-positive cells (R2) and compared with normal host sinusoidal cells (R1). R3 represents the total population. c, Two-parameter slice plots of forward side scatter of the sinusoidal population from b. R4 represents lymphocytes, R5 endothelial cells and R6, Kupffer cells. Identity of the gated populations, R4–R6, is shown by the FACS profiles below for indirect immunofluorescence staining with CD4 (positive in R4, lymphoid cells), E-selectin (positive in R5, endothelial cells) and F4/80 (positive in R6, Kupffer cells). Tumour cells were identified as fluorescence positive after hypotonic loading with FDG. Controls included cells with or without FDG loading or with and without first antibody. In each column, the left histogram represents the non-specific binding of PE-conjugated second antibody and the right histograms the specific binding of the indicated MAb to the same cells. When two histograms match, specific binding is negligible or absent. Numbers indicate the percentage of positive cells with the respective antibodies.
The remaining non-adherent cell suspension was a mix of lymphocytes and lacZ-tagged tumour cells. FDG loading of the cell suspension and FACS cell separation was performed as described in Materials and methods. At day 28 after intradermal ESBL-lacZ tumour cell inoculation, the number of tumour cells in the liver approximated 15–25% of the total population and that of the lymphocytes about 10–15% (Figure 2).

As a second metastasised organ we investigated the spleen. Spleen macrophages were isolated from the single cell suspension by plastic adherence. The remaining supernatant, containing lymphocytes and tumour cells, was stained with FDG and sorted as described above.

Figure 3 shows examples of the analysis of gene expression of different cellular subsets isolated from metastatic spleens or livers. Lymphocytes isolated from control spleens and from metastatic spleens at the plateau phase (day 16) and at the end of the metastatic process (day 28) showed differences at the RNA level with regard to expression of distinct molecules, such as MHC class II α chain (Figure 3a and b). The signal obtained with MHC class II α chain cDNA or other probes was compared with β-actin as internal standard and transformed into expression units. Lymphocytes at day 28 of the metastatic process (column 3) expressed only 46% of the α chain in comparison with lymphocytes from normal control mice (column 1). Spleen macrophages isolated at day 28 (row 4) expressed 80% class II α chain in comparison with controls (column 2). Column 5 shows the expression of MHC class II α chain in splenic lymphocytes and macrophages together from day 28 metastasised organs and column 6 represents the expression of class II α chain by the sorted tumour cells.

Liver endothelial cells were isolated from metastatic livers at day 16 or day 28 after tumour cell inoculation. The expression of different RNA molecules was compared with cells from two different experiments and time points (day 16, columns 8 and 9; day 28, column 10). As shown in Figure 3c and d, expression of ICAM-1 was down-regulated at day 16 in both experiments (40% and 35% respectively) and less so at day 28, compared with the control. This differential expression if ICAM-1 in endothelial cells isolated from metastatic livers at different time points has been observed previously also at the protein level (Rocha et al., 1996).

Analysis of Kupffer cells (Figure 3e and f), isolated at the same time points (day 16 and 28) showed no significant changes in the expression of ICAM-1 molecules. The study of the expression of MHC class II molecules (β-chain) in Kupffer cells from day 16 (columns 12 and 13) and day 29 (columns 14 and 15) compared with the control (column 11) showed that there was a slight up-regulation of expression of this molecule at day 16 after tumour injection.

Isolated tumour cells were studied for the expression of different molecules potentially involved in metastasis formation. We found differences, as shown in Figure 3g and h, in expression of VLA-4 RNA in tumour cells from tissue culture (column 17) and that of tumour cells from day 16 (column 18) or day 28 (column 19). Results show that the expression of VLA-4 is down-regulated in tumour cells in vivo at both time points. To prove that the FDG technique did not miss some in vivo revertant tumour cells, we performed a control experiment as follows: we isolated host and tumour cells from metastatic livers at day 28, when tumour load is 50% of the total population. After long-term culture only tumour cells should survive. Therefore, if the in vivo isolated cells kept the lacZ gene, all the remaining tumour cells in the culture should have it, since it is genetically transferred. If after this time in culture we found FDG-negative cells, it would mean that some of these tumour cells lost the lacZ gene during in vivo development.
Ex vivo analysis of tumour cells and host cells during lymphoma

M Rocha et al

Spleen cells

Liver endothelial cells

Kupffer cells

Tumour cells

MHC class II (α)

ICAM-1

MHC class II (β)

VLA-4
FDG staining after one culture showed that 99.5% of the cells were FDG-positive cells and no revertant cells were missed by the FDG technique.

In conclusion, our method provides a new tool to study expression changes at the RNA and protein level of molecules potentially involved in metastasis progression or inhibition.

Discussion
Organotropism, i.e. the preference of certain cancers to metastasise to certain organs and tissue-specific metastasis patterns are quite often seen in clinic samples and in experimental tumour models. Both phenomena underline the importance of local microenvironmental factors for the development of metastases (Fidler, 1986; Liotta, 1986; Hoffman, 1992). Several studies correlated phenotypic features of tumour cells before being injected into animals with the final outcome of metastasis and formed the basis for terms such as the 'metastatic phenotype' (Kerböl 1990; Fidler, 1990). Also, in recent years the concept of 'dynamic heterogeneity' was introduced. It suggests that the metastatic phenotype, although it is a genetically controlled trait, is inherently dynamic or unstable (Weiss et al., 1980; Ling et al., 1985; Vaage, 1988). Because of this phenotypic instability, an adequate methodology has to be established for direct typing of tumour cells at distinct stages of the metastatic process without in vitro culture.

We have established a new methodology for the study of tumour-host interactions in the metastatic process. Firstly, we used a tumour cell line transduced with the bacterial gene lacZ, to study tumour-host interactions, for instance during micrometastasis, minimal residual disease or tumour dormancy. Secondly, we have established a method allowing the separation of tumour and host cells from the liver and spleen with a high viability (93–95%) and reproducibility which can be used for different target organs. This permits the direct characterisation of ex vivo isolated cells without further in vitro culture. Control experiments in reisolated and cultured tumour cells showed that the FDG technique is very specific and sensitive, since all the tumour cells express the lacZ gene after being grown in vivo. This excludes the possibility of the existence of lacZ-revertant tumour cells which could not be detected and quantified as tumour cells.

The described technique provides the possibility of studying molecules involved in the metastatic process at two different levels, mRNA and protein (for instance, adhesion molecules, homing receptors, immune stimulatory molecules, etc.). Malignant cells disseminate from a locally growing tumour to other sites by means of adhesion molecules (e.g. LFA-1, ICAM-1, VLA-4) and homing receptor molecules (e.g. MEL-14) which are used by haemopoietic normal cells for traffic and localisation in various organs or at sites of inflammation. It has been suggested, for example, that the adhesion of melanoma cells to activated endothelium is mediated by VLA-4 receptors, thus implicating this adhesion molecule in metastatic process (Garofalo et al., 1995). Our results, however, showed that the VLA-4 molecule was down-regulated in the ESBL-lacZ tumour cells when injected into syngeneic animals. Evidence that LFA-1 and ICAM-1 are involved in metastasis has also been presented (Zahalka et al., 1993; Harning et al., 1993). In support of these observations, we have recently shown by using this new methodology that the expression of LFA-1 and ICAM-1 molecules was up-regulated during the progressive phase of tumour growth and metastasis in the ESBL-lacZ lymphoma model (Rocha et al., 1996). Consequently, a strategy was developed to apply antibodies against these adhesion molecules before the final progressive phase of tumour growth started. Such experiments resulted in complete inhibition of tumour progression in vivo (Rocha et al., 1996).

The results from Figure 3 show that the expression of adhesion molecules such as ICAM-1 in endothelial cells or VLA-4 in metastasising tumour cells is regulated in vivo at the RNA level. This method of analysis may thus provide a possibility of determining which molecules and which window in time may be suited for therapeutic intervention.

Other molecules such as costimulatory molecules, MHC class I or class II and CD80 (B7-1), which have been reported to be important in the recognition of the tumour cells by the immune system (Becker et al., 1993; Chen et al., 1992), can also be studied by this method during the whole process of tumour growth and metastasis. The observed down-regulation of MHC class II RNA in lymphocytes from metastatic spleens at a late stage of metastasis could lead to a decrease of recognition of tumour-associated antigens on tumour cells, hampering an effective immune response.

Northern and slot blot techniques allowed the study of molecules of importance in metastasis. There have been numerous reports showing that the metastatic potential of tumours may correlate directly with the expression level of distinct genes. Some genes coded for adhesion and costimulatory molecules (Becker et al., 1993; Chen et al., 1992), others for growth factors, growth factor receptors, enzymes or multidrug resistance (bFGF, EGFR, type IV collagenase or mdr-1) (Fidler, 1995). In this study, the differential expression of genes coding for VLA-4, ICAM-1 and MHC class II on tumour and host cells was closely associated with metastatic progression or growth retardation.

The technique provides new possibilities of using ex vivo isolated cells for different purposes. Ex vivo isolated metastasised tumour cells can be used for cell–cell interaction studies with different host cells, for investigation of cytokine and growth factor production and as target cells in cytotoxicity assays with ex vivo isolated lymphocytes or macrophages. Endothelial and Kupffer cells provide a tool for adhesion studies with tumour cells (Asumendi et al., 1996) and for evaluation of the production of different cytokines and cytotoxic molecules. One example of cytotoxic substances produced by activated host cells is nitric oxide (NO) (Rocha et al., 1995; Umansky et al., 1995). NO has been identified recently as an effector molecule of cytotoxicity mediated by macrophages and endothelial cells (Hibbs et al., 1988). Its toxic effect is a result of inhibition of DNA synthesis and of
mitochondrial respiration in tumour target cells (Moncada et al., 1991). Lymphocytes can be used to investigate cytokine production, in proliferation assays and as a tool for different therapeutic interventions.

In conclusion, we should like to point out the potential of this methodology. It allows the direct ex vivo analysis of gene expression (RNA or protein) in tumour and host cells at every time point during tumour growth and metastasis. This experimental approach opens a broad possibility for studies of the basic mechanisms of tumour development, for example: (1) evaluation of vaccination effects in target organs; (2) determination of the right window in time for cancer therapy; and (3) investigation of the effects of transferred immune cells, tissues or organs on the host, for instance in the processes of graft vs leukemia and graft vs host disease (Schirrmacher et al., 1995). Work is now in progress on the establishment of methods allowing the separation of host and tumour cells from human primary tumours and metastasis.

Acknowledgements

The authors wish to thank Dr P Altevogt (Division of Cellular Immunology, DKFZ) and Dr F Momburg (Division of Molecular Immunology, DKFZ) for providing us with the constructs for hybridisation. This work was partially supported by an EC grant (Human capital and mobility programme) (Dr Marian Rocha).

References

ASUMENDI A, CALVO F, HERNANDEZ JJ, ALVAREZ A, ROCHA M AND VIDALVANACLOCHA F. (1996). Cancer cell surface mannosidases terminals and their receptors in liver and bone marrow sinusoidal endothelium contribute to B16 melanoma cell adhesion and metastasis. Lab. Invest. (in press).

BECKER JC, BRABLETZ T, CZERNY C, TERMEER C AND BROCKER EB. (1993). Tumor escape mechanisms for immunosurveillance: induction of unresponsiveness in specific MHC-restricted CD4+ human T cell clone by the autologous MHC class II + melanoma. Int. Immunol., 5, 1501–1506.

CHEN L, ASHE S, BRADY WA, HELLSTROM I, HELLSTROM KE, LEDBETTER JA, MCGOVERN P AND LINSLEYS PS. (1992). Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell, 71, 1093–1098.

FIDLER IJ. (1986). Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metast. Rev., 5, 29–49.

FIDLER IJ. (1990). Critical factors in the biology of human cancer metastasis: Twenty-eight GHA Clones Memorial Award Lecture. Cancer Res., 50, 6130–6138.

FIDLER IJ. (1995). Multiparametric in situ messenger RNA hybridization analysis to detect metastasis-related genes in surgical specimens of human colon carcinomas. Clin. Cancer Res., 1, 1095–1102.

FIDLER IJ AND RADINSKY R. (1990). Genetic control of cancer metastasis (editorial). J. Natl. Cancer Inst., 82, 166–168.

FOUSTAD O. (1993). Metastatic ability of cancer cells: phenotypic and genotypic characteristics and role of the micro-environment. In New Frontiers in Cancer Castration. Iversen OH (ed.) pp. 349–358. Taylor & Francis: Washington DC.

GAROFALO A, CHIVIRI RGS, FOGLIENI C, FOGOTT R, MORTARINI R, MARTIN-PADURA I, ANICHI A, GEARING AJ, SANCHEZ-MADRID F, DEJANA E AND GIAVARRI Z. (1995). Involvement of the very late antigen 4 integrin in melanoma in interleukin 1-1 augmented experimental metastasis. Cancer Res., 55, 414–419.

HARNING R, MYERS C AND MELRUZZI VJ. (1993). Monoclonal antibodies to lymphocyte function-associated antigen-1 inhibit invasion of human lymphoma and lymphoma metastasis of murine lymphoma. Clin. Exp. Metast., 11, 337–342.

HART IR, GOODE NT AND WILSON RE. (1989). Molecular aspects of the metastatic cascade. Biochim. Biophys. Acta, 989, 65–84.

HIBBS JB, TAINTOR R, VAVRIN Z AND RYCHLIN EM. (1988). Nitrergic oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun., 157, 87–94.

HOFFMANN RM. (1992). Patient like models of human cancer in mice. Current Persp. Mol. Cell. Oncol., 1, 311–326.

KERBEL RS. (1990). Growth dominance of the metastatic cancer cell: cellular and molecular aspects. Adv. Cancer Res., 55, 87–132.

KRÜGER A, UMANSKY V, ROCHA M, HACKER HJ, SCHIRRMACHER V AND VON HOEGEN P. (1994a). Pattern and load of spontaneous liver metastasis dependent on host immune status studied with lacZ transduced lymphoma. Blood, 84, 3166–3174.

KRÜGER A, SCHIRRMACHER V AND VON HOEGEN P. (1994b). Scattered micrometastasis visualized at the single cell level: detection and re-isolation of lacZ labeled metastasized lymphoma cells. Int. J. Cancer, 58, 1–10.

LING V, CHAMBERS AF, HARRIS JF AND HILL RP. (1985). Quantitative genetic analysis of tumour progression. Cancer Metast. Rev., 4, 173–194.

LITTA L. (1986). Tumor invasion and metastasis: role of extracellular matrix. Rhoads Memorial Award Lecture. Cancer Res., 46, 173–194.

MONCADA S, PALMER RJ AND HIGGS EA. (1991). Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev., 43, 109–134.

NICOLSON GL. (1982). Cancer metastasis: organ colonization and the cell surface properties of malignant cells. Biochim. Biophys. Acta, 695, 113–176.

NICOLSON GL. (1987). Tumor cell instability, diversification and progression to the metastatic phenotype: From oncogene and oncoprotein expression. Cancer Res., 47, 1473–1487.

ROCHA M, KRÜGER A, VAN ROOIJEN N, SCHIRRMACHER V AND UMANSKY V. (1995). Liver endothelial cells participate in T-cell dependent host resistance to lymphoma metastasis by production of nitric oxide in vivo. Int. J. Cancer, 55, 405–408.

ROCHA M, KRÜGER A, UMANSKY V, VON HOEGEN P, NAORD AND SCHIRRMACHER V. (1996). Dynamic expression changes of adhesion and costimulatory molecules determine pattern and load of lymphoma liver metastasis. Clin. Cancer Res. (in press).

SCHIRRMACHER V, BECKHOVE P, KRÜGER A, ROCHA M, UMANSKY U, FITCHNER KP, HULL W, ZANGEMEISTER-WITTKE U, GRIESBACH A, JURIANZ K AND VON HOEGEN P. (1995). Effective immune rejection of advanced metastasized cancer. Int. J. Oncol., 6, 503–521.

SMEDSROD R, PERTOFT H, EGGERTSEN G AND SUNDSTROM C. (1985). Functional and morphological characterization of cultures of Kupfer cells and liver endothelial cells prepared by means of density separation in Percoll, and selective substrate adherence. Cell Tissue Res., 241, 739–749.

UMANSKY V, ROCHA M, KRÜGER A, VON HOEGEN P AND SCHIRRMACHER V. (1995). In situ activated macrophages are involved in host resistance to lymphoma metastasis by production of nitric oxide. Int. J. Oncol., 7, 33–40.

VAAGE J. (1988). Metastasizing potentials of mouse mammary tumours and their metastases. Int. J. Cancer, 41, 855–858.

WEISS L, ORR FW AND HORN KV. (1980). Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis. Clin. Exp. Metast., 7, 127–167.

ZALHAKA MA, OKON E AND NAORD D. (1993). Blocking lymphoma invasiveness with a monoclonal antibody directed against the β chain of leucocyte adhesion molecule (CD18). J. Immunol., 150, 4466–4477.