Structural Basis for Calcium and Magnesium Regulation of a Large Conductance Calcium-activated Potassium Channel with β1 Subunits*

Received for publication, February 13, 2014, and in revised form, April 21, 2014. Published, JBC Papers in Press, April 24, 2014, DOI 10.1074/jbc.M114.557991

Hao-Wen Liu‡1, Pan-Pan Hou‡1, Xi-Ying Guo‡1, Zhi-Wen Zhao‡, Bin Hu‡, Xia Li‡, Lu-Yang Wang§, Jiuy-Ping Ding‡2, and Sheng Wang‡4

From the ‡Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China and the §Program in Neurosciences and Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada

—Background—

LARGE CONDUCTANCE Ca2+- AND VOLTAGE-ACTIVATED POTASSIUM (BK) CHANNELS, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca2+ sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca2+ and Mg2+ concentrations, we identified two binding sites engaged in intersubunit interactions to regulate the sensitivity of BK to divalent ions.

—Results—

Both electrostatic and hydrophobic sites enhance the calcium sensitivity of BK, whereas the hydrophobic site selectively reduces the magnesium sensitivity.

—Conclusion—

This work provides structural and mechanistic insights into the molecular mechanism of BK(β1) gating.

BKαβ4 channels play critical roles in modulating many physiological activities, such as neurotransmitter release and endocrine secretion in neurons or endocrine cells, contraction of smooth muscle cells, and even frequency tuning in hair cells (1–5). These large conductance channels exhibit a considerable functional diversity with respect to their kinetic behavior, apparent Ca2+ and Mg2+ regulation, and pharmacological sensitivity to toxins (6, 7). The cytosolic domain (CTD) of the BK channel contains multiple divalent ion binding sites, including two Ca2+ binding sites with high and moderate affinity respectively as well as a low affinity Mg2+ binding site (8–10). Functional heterogeneity of native BK-type channels is often imparted by their association with tissue-specific auxiliary β1–β4 subunits. For example, the mSlo1 α subunits and β1 subunits are mostly co-localized in smooth muscle cells in heart and vascular tissues (11–13). These auxiliary subunits share a similar topology of two transmembrane (TM1 and TM2) segments, intracellular N and C termini, and a large extracellular loop (14–18). One BK channel can associate with up to four auxiliary β subunits in 1:1 stoichiometry with mSlo1 α subunits (19, 20). The β1 and β2 subunits of the β family share the highest sequence homology and increase the apparent Ca2+ sensitivity of BK channels (15, 19, 20). Several laboratories have reported that magnesium is also able to activate BK channels at the mSlo1(E374,E399) sites (9, 10), and the locus of the Mg2+ binding domain resides in the cytosolic terminal of S4 between the voltage-sensing domain (VSD) and the first C-terminal regulators of K+ conductance (RCK1) (21). Previous studies have reported that Mg2+ sensitivity of BK is attenuated by β1 (22) and subsequently by β2 but to different extent (23). These reports imply that β subtype-dependent differences in the sensitivity to Ca2+ and Mg2+ are possibly derived from their distinct structures.

Compared with the β2, the β1 only modifies the BK activation without affecting inactivation and rectification, probably due to a lack of the inactivation domain at its N terminus and basic residues distributed around the outer pore (24, 25). Further...
Figure 1. An interaction schematic of mutations of mSlo1 and β1 subunits. Topological interaction maps between mutations of mSlo1 α (bottom) and β1 subunits (top) are displayed. The central panel denotes a partial sequence of β1 and mSlo1. The colored amino acids (red and green) in mSlo1 and in the N terminus of β1 are the regions of α/β interaction, termed the H and E sites, as indicated.

Figure 2. Electrostatic interaction between mSlo1(K392,R393) and β1(E13,T14) determined by double mutant cycle analysis. A, G-V curves were plotted for mSlo1-β1 ($V_{50} = -46.7 \pm 4.8$ mV, $n = 10$; black), mSlo1-β1(E13K,T14K) ($V_{50} = 0.7 \pm 5.5$ mV, $n = 9$; red), mSlo1(K392E,R393D)-β1 ($V_{50} = 178.3 \pm 4.9$ mV, $n = 7$; green), and mSlo1(K392E,R393D)-β1(E13K,T14K) ($V_{50} = 189.0 \pm 6.5$ mV, $n = 6$; blue). Solid lines are single Boltzmann functions fitted to each G-V curve. B, representative currents from each experimental combination, recorded from inside-out patches, activated by voltage steps from -180 mV through $100/200$ mV in increments of 20 mV, as indicated, after a prepulse of 180 mV, in 10μM Ca$^{2+}$. C, the values of V_{50} were obtained in 10, 100, and 300μM Ca$^{2+}$, respectively. D, the ΔG values of mSlo1(K392E,R393D) versus β1(E13K,T14K) are 1.62 ± 0.03, 1.17 ± 0.02, and 1.07 ± 0.02 kcal/mol in 10, 100, and 300μM Ca$^{2+}$, respectively. Error bars, S.D.
thermore, the β2 subunit has been identified to interact with the N terminus, including the S0 segment of Slo1 and the AC region (βA-αC) of the RCK1 domain (21), and the exact binding sites between the mSlo1 α and β2 subunits have recently been identified (26). Several reports reveal that the N terminus and S0 segment play an important role in the function of β1 subunit (27, 28). Cross-linking experiments show that the intracellular deactivation (ΔtH9270) time constants were calculated at 200 mV, respectively.

In order to determine the intracellular activation sites between the mSlo1 α and β1 subunits, we used double mutant cycle analysis to examine interaction based on the changes of free energy between the potential coupling residues. We found two crucial interaction sites on β1, namely an electrostatic enhancing (E) site and a hydrophobic (H) site in the cytosolic region for its coupling to mSlo1 α. We further constructed a computational model of the mSlo1-β1 channel complex in the context of its structural and functional feasibility. Altogether, our results provided a putative working model of the mSlo1-β1 complex, capable to explain both the Ca²⁺ and Mg²⁺ sensitivity of BK(β1) channels.

TABLE 1

Gating kinetics of mutated BK channels

BK channel	τact (ms)	τdcr (ms)
mSlo1-β1	2.4 ± 0.4	10 ± 0.8
mSlo1-β1(E13K,T14K)	4.0 ± 0.6	4.5 ± 0.6
mSlo1(K392E,R393D)-β1	4.2 ± 0.7	0.78 ± 0.2 (200 mV)
mSlo1(K392E,R393D)-β1(E13K,T14K)	3.8 ± 0.4	0.85 ± 0.2 (200 mV)
mSlo1(5D5N)-β1(L5Q,V6Q,M7Q)	7.4 ± 0.8	5.2 ± 0.5
mSlo1(5D5N)-β1(L906Q,L908Q)-β1	15 ± 1.5	5.0 ± 0.4
mSlo1(5D5N)-β1(L906Q,L908Q)-β1(E13K,T14K)	60 ± 3.4	1.4 ± 0.2
mSlo1(5D5N)-β1(K3Q,K4Q)	2.4 ± 0.3	7.4 ± 0.8
mSlo1(5D5N)-β1(K3Q,K4Q)	13 ± 1.0	1.7 ± 0.3
mSlo1(5D5N)-β1(K3Q,K4Q)	30 ± 2.4	2.3 ± 0.4

FIGURE 3. There was no electrostatic interaction between the calcium binding sites and β1(K3,K4). A, representative currents from each experimental combination, recorded from inside-out patches, activated by voltage steps from −160 mV through 100 mV in increments of 20 mV, as indicated; after a prepulse of −180 mV, in 10 μM Ca²⁺. G-V curves were plotted for mSlo1-β1 (V30p = −467 ± 4.8 mV, n = 10; black), mSlo1-β1(K3Q,K4Q) (V30p = −35.1 ± 5.6 mV, n = 8; red), mSlo1(5D5N)-β1 (V30p = 59.1 ± 4.9 mV, n = 7; green), and mSlo1(5D5N)-β1(K3Q,K4Q) (V30p = 62.4 ± 6.0 mV, n = 7; blue). Solid lines, single Boltzmann functions fitted to each G-V curve. C, the values of ΔΔG were plotted for mSlo1(5D5N)-β1(K3Q,K4Q), mSlo1(5D5N)-β1(K3E,K4E), and mSlo1(5D5N)-β1(K3E,K4E), and mSlo1(5D5N)-β1(K3E,K4E). Their values of ΔΔG are 0.3 ± 0.02 kcal/mol for mSlo1(5D5N)-β1(K3Q,K4Q), 0.2 ± 0.02 kcal/mol for mSlo1(5D5N)-β1(K3E,K4E), and 0.1 ± 0.02 kcal/mol for mSlo1(5D5N)-β1(K3E,K4E), and 1 ± 0.02 kcal/mol for mSlo1(5D5N)-β1(K3E,K4E), and 0.1 ± 0.02 kcal/mol for mSlo1(5D5N)-β1(K3Q,K4Q), as indicated. Error bars, S.D.
pulled from borosilicate glass capillaries with resistances of 2–3 megaohms when filled with pipette solution. Experiments were performed using an Axopatch 200B patch clamp amplifier with its software (Axon). Currents were typically digitized at 20 kHz and filtered at 8.5 kHz. During recording, different Ca\(^{2+}\)/H\(^{100}\) and Mg\(^{2+}\)/H\(^{100}\) concentration solutions were applied onto membrane patches via a perfusion pipette containing eight solution channels. The 0 mM Mg\(^{2+}\)/H\(^{100}\) solution contained 160 mM MeSO\(^{3}\)K, 10 mM MgCl\(_2\), 5 mM EGTA, 10 HEPES (pH 7.0). All experiments were performed at room temperature (22–24 °C).

Homology Modeling—The full models of BK channel were built by homology modeling combination with the known partial crystal structure of ion channels (i.e. RCK domains), and then the complex of mSlo1 and h\(\beta\)1 were assembled manually. During the modeling process, the S1-S6 domains were built from MthK (Protein Data Bank entry 1LNQ) and KcSA (Pro-
β1 Modifies BK Channel Activation

BK channel	V_{mV}	Z	ΔZFV_{mV}
mSlo1-L1	169.18	1.02	0.79 ± 0.01
mSlo1-L1	167.62	0.98	-0.04 ± 0.01
mSlo1-L1	166.14	0.96	0.17 ± 0.01
mSlo1-L1	164.66	0.94	-0.01 ± 0.01
mSlo1-L1	162.18	0.92	0.02 ± 0.01
mSlo1-L1	159.70	0.89	-0.03 ± 0.01
mSlo1-L1	157.22	0.86	0.05 ± 0.01
mSlo1-L1	154.74	0.83	-0.07 ± 0.01
mSlo1-L1	152.26	0.80	0.09 ± 0.01
mSlo1-L1	149.78	0.78	-0.11 ± 0.01
mSlo1-L1	147.30	0.75	0.13 ± 0.01
mSlo1-L1	144.82	0.72	-0.15 ± 0.01
mSlo1-L1	142.34	0.69	0.17 ± 0.01
mSlo1-L1	139.86	0.66	-0.19 ± 0.01
mSlo1-L1	137.38	0.63	0.21 ± 0.01
mSlo1-L1	134.90	0.60	-0.23 ± 0.01
mSlo1-L1	132.42	0.57	0.25 ± 0.01
mSlo1-L1	129.94	0.54	-0.27 ± 0.01
mSlo1-L1	127.46	0.51	0.29 ± 0.01
mSlo1-L1	124.98	0.48	-0.31 ± 0.01
mSlo1-L1	122.50	0.45	0.33 ± 0.01
mSlo1-L1	119.12	0.42	-0.35 ± 0.01
mSlo1-L1	116.74	0.39	0.37 ± 0.01
mSlo1-L1	114.36	0.36	-0.40 ± 0.01
mSlo1-L1	111.98	0.33	0.42 ± 0.01
mSlo1-L1	109.60	0.30	-0.45 ± 0.01
mSlo1-L1	107.22	0.27	0.48 ± 0.01
mSlo1-L1	104.84	0.24	-0.51 ± 0.01
mSlo1-L1	102.46	0.21	0.54 ± 0.01
mSlo1-L1	99.08	0.18	-0.57 ± 0.01
mSlo1-L1	96.70	0.15	0.60 ± 0.01
mSlo1-L1	94.32	0.12	-0.63 ± 0.01
mSlo1-L1	91.94	0.09	0.66 ± 0.01
mSlo1-L1	89.56	0.06	-0.69 ± 0.01
mSlo1-L1	87.18	0.03	0.72 ± 0.01
mSlo1-L1	84.80	0.00	-0.75 ± 0.01

The first column shows the corresponding mutations of BK channels. Estimates for the values of V_{mV} and Z for the different mutations were obtained by fitting $G-V$ curves to the Boltzmann equation. The free energy is given by $-\Delta ZFV_{mV}$. Table 2.
Unless otherwise stated, data are presented as mean ± S.D. G-V curves for activation were fitted by the single Boltzmann function with the form, $G/G_{\text{max}} = (1 + \exp((V-V_{50})/\kappa))^{-1}$, where V_{50} is the voltage at which the conductance (G) is half the maximum conductance (G_{max}), and κ is a factor affecting the steepness of the activations.

RESULTS

Determination of the Enhancing Site of mSlo1(β1) Channels—Both β1 and β2 subunits can enhance the Ca$^{2+}$ sensitivity of BK channels (34–37). In previous work, we determined the complementary paired residues mSlo1(K392,R393)-β2(E44,D45) as an enhancing (E) site of BK (β2) channels (26). After comparing the sequences of β1 and β2, we found that a pair of conserved residues, β1(E13,T14), may play a role similar to that of β2(E44,D45). To explore the possible interaction between two groups of residues, we performed thermodynamic double mutant cycle analysis (38–41). Changes of free energy coupling between mutations in pairs of residues located in different subunits were respectively calculated by using a thermodynamic square composed of the WT complex ($\alpha\beta$), the two single mutants ($\alpha^*\beta$ and $\alpha\beta^*$), and the corresponding double mutant ($\alpha^*\beta^*$) (asterisks denote a mutation). The thermodynamic square was described as follows, $\Delta\Delta G = \Delta G_{\alpha^*\beta^*} + \Delta G_{\alpha^*\beta} - \Delta G_{\alpha\beta^*}$. A distinct change of $\Delta\Delta G \geq 1$ kcal/mol would be judged to be coupled; otherwise it was not.

For double mutant cycle analyses, all G-V curves of the mSlo1(K392,R393) versus β1(E13,T14) cycle are shown in Fig. 2A. The corresponding currents, recorded from inside-out patches in 10 μM Ca$^{2+}$, are shown for each mutation (Fig. 2B). The values of V_{50} are −46.7 ± 4.8 mV for mSlo1-β1 (black); 0.7 ± 5.5 mV for mSlo1-β1(E13,K14) (red), which is close to the V_{50} of mSlo1 alone; 178.3 ± 4.9 mV for mSlo1(K392E,R393D)-β1 (blue); and 189.0 ± 6.5 mV for mSlo1(K392E,R393D)-β1(E13,K14) (green). The total change of $\Delta\Delta G$ is about 1.62 kcal/mol, suggesting that there is a strong coupling between the mSlo1(K392,R393) and β1(E13,T14). Similarly, additional experiments in 100 and 300 μM Ca$^{2+}$ reinforce this observation (Fig. 2C). All of the statistics indicate that the $\Delta\Delta G$ for mSlo1(K392,R393) versus β1(E13,T14) is independent to Ca$^{2+}$ (Fig. 2D).

Considering that both mSlo1(K392E,R393D) and β1(E13,K14) exhibited a significant change in kinetics of BK(β1) channel (Table 1) and that the mutant β1(E13,K14) abolished the calcium sensitivity of β1 (Fig. 2C), we conclude that the complementary paired residues mSlo1(K392,R393)-β1(E13,T14) form an E site.

Non-electrostatic Interaction between β1(K3,K4) and Calcium Binding Bowl—There are two different types of residues in the N terminus of the β1 subunit, namely electrostatic type-like β1(K3,K4) and hydrophobic type-like β1(L5,V6,M7). There are many potential residues in the RCK domain of the BK α subunit that may couple with two types of binding sites, but we reason that two prerequisites must be satisfied: accessibility and associability. For the basic residues β1, the acidic ones in the RCK domain of BK α subunit near the β1(K3,K4) are strong candidates, whereas the hydrophobic ones in the RCK domain probably bind to hydrophobic residues β1(L5,V6,M7).

In a previous study, we verified a calcium binding site (i.e. mSlo1(calcium bowl)-β2(K33,R34,K35)) for the BK(β2) channel, which passes the original Ca$^{2+}$ gating force from the calcium bowl to the E site (26). Based on the sequences of β1 and β2, we postulated that the residues β1(K3,K4) might also interact with mSlo1(calcium bowl) as β2(K33,R34,K35) did. To test this, we performed experiments based on double mutant cycle analysis. The representative currents, recorded from inside-out patches in 10 μM Ca$^{2+}$, were shown for each mutation (Fig. 3A). All of the G-V curves required for the mSlo1(5D5N) versus β1(K3,K4) cycle were shown in Fig. 3B. The values of V_{50} were −46.7 ± 4.8 mV for mSlo1-β1 (black), −35.1 ± 5.6 mV for mSlo1-β1(K3Q,K4Q) (red), 59.1 ± 4.9 mV for mSlo1(5D5N)-β1 (blue), and 62.4 ± 6.0 mV for mSlo1(5D5N)-β1(K3Q,K4Q) (green). The total $\Delta\Delta G$ was about 0.2 kcal/mol, suggesting that no significant interaction existed between the mSlo1(calcium bowl) and β1(K3,K4), differing from the case of mSlo1(calcium bowl) and β2(K33,R34,K35). Similar experiments were conducted for mSlo1(5D5N) versus β1(K3E,K4E). Our experiments showed that their $\Delta\Delta G$ was about 0.1 kcal/mol. It is
β1 Modifies BK Channel Activation

A

mSlo1

mSlo1/β 1

mSlo1/β 1(LVM)

mSlo1(L906Q,L908Q)/β 1

mSlo1(L906Q,L908Q)

0 Mg

2 nA

12 nA

20 ms

10 Mg

1 nA

11 nA

50 Mg

1 nA

11 nA

B

G/Gmax

V(mV)

0.0

0.5

1.0

-100

10 Mg

50 Mg

0 Mg

0.0

0.5

1.0

-100

200

V(mV)

C

V_{50}(mM) (mV)

mSlo1

mSlo1/β 1

mSlo1/β 1(LVM)

mSlo1(L906Q,L908Q)/β 1

mSlo1(L906Q,L908Q)

D

V_{50} (mV)

[Ca^2+](mM/L)

0

20

100

0

50
nearly the same as that of mSlo1(5D5N) versus β1(K3Q,K4Q) (Fig. 3C).

We previously reported that the Ca\(^{2+}\) bowl exerted a force onto the S6 gate of BK(β2) via the calcium bowl site (19), raising the possibility that there may be another pathway in β1, distinct from that in β2. To this end, it is necessary to examine the second calcium binding site mSlo1(D362,D367)of BK channel (9). In other words, the mSlo1(D362,D367)–β1(K3,K4) may play a role in regulating the BK gating similar to that of mSlo1(5D5N)–β2(K33,R34,K35) (26). Contrary to our expectation, we found that their ΔG was about 0.1 kcal/mol (Fig. 3C), suggesting that there was no significant interaction between the mSlo1(D362,D367) and the β1(K3,K4).

Taken together, there was no electrostatic interaction between the mSlo1 and the β1(K3,K4).

A Strong Hydrophobic Interaction between mSlo1(L906,L908)–β1(L5,V6,M7)—In a separate set of experiments, we found that the three-hydrophobic mutation β1(L5Q,V6Q,M7Q) made a marked shift of +50 mV in V\(_{50}\) combined with significant changes in gating kinetics (Table 1), implying that these residues might play a role similar to that of β2(K33,R34,K35) (26). To further identify all of the corresponding hydrophobic sites on mSlo1, that may possibly interact with β1(L5,V6,M7), we scanned all of the hydrophobic residues in the RCK regions of mSlo1 surrounding β1(L5,V6,M7) (Fig. 4E) (detailed information is shown in Table 2) and found that the mSlo1(L906,L908), locating behind the calcium bowl, were the only residues possibly interacting with β1(L5,V6,M7). Based on all of the currents as well as the G–V curves of mSlo1(L906,L908) versus β1(L5,V6,M7) (Fig. 4, A and B), we noted that the ΔG of mSlo1(L906Q,L908Q) versus β1(L5Q,V6Q,M7Q), was significantly larger than 1 kcal/mol in 10, 100, and 300 \(\mu\)M Ca\(^{2+}\), suggesting that the mSlo1(L906,L908) strongly coupled with β1(L5,V6,M7), independent of Ca\(^{2+}\) (Fig. 4, C and D). Moreover, when a substitution of glutamine with alanine (Q→A) was conducted, we found that the ΔG of mSlo1(L906A,L908A) versus β1(L5A,V6A,M7A) was about 1.3 kcal/mol (Fig. 4E), nearly the same as mSlo1(L906Q,L908Q) versus β1(L5Q,V6Q,M7Q), whereas no other hydrophobic residues of mSlo1 interact with the β1(L5,V6,M7) with a ΔG ≈ 1 kcal/mol (Fig. 4E). Given that the Leu, Met, and Val in both the mSlo1(L906,L908) and β1(L5,V6,M7) have high hydrophobicity, we defined these residues as an H site.

A Putative Structural Model of BK(β1) Channels—As we described the above, both the E and H sites enhanced the calcium sensitivity of BK channels. To further verify their feasibilities in space structure, we constructed a model of BK channel by homology modeling using the known partial crystal structure of BK channels (i.e. the published crystal structure of RCK domains) and manually assembled mSlo1 and β1 complex (see “Experimental Procedures”), in which the location of β1(TM1) is placed next to both S1 and S2 of Slo1 (Fig. 5A) (29). Based on this information, we noticed in molecular dynamics simulations that the β1(E13,T14) was just located at the top of mSlo1(K392,R393) with a mean distance of about 3.8–4.4 Å in between and that the side chains of three residues β1(L5,V6,M7) were lined in parallel with that of mSlo1(L906,L908), co-localized within close proximity of the residues mSlo1(L906,L908) (Fig. 5B). This suggests that the enhancing force by Ca\(^{2+}\) binding was possibly coming from H→E→PGD, forming a pathway of enhancing Ca\(^{2+}\) sensitivity of BK channels. Along with our experimental results, these simulations led us to suggest that both electrostatic and hydrophobic effects appear to be synergistic for Slo1 α and β1 interactions.

H Site Reducing Magnesium Sensitivity of BK(β1) Channel—Previous studies revealed that the Mg\(^{2+}\) binding site was located in the VSD and cytosolic domain (CTD) interface of mSlo1 (7) and that the β1 reduced the Mg\(^{2+}\) sensitivity by directly altering the structural configuration of the Mg\(^{2+}\) binding site (23). To examine which site, β1(L5,V6,M7) or β1(E13,T14), could affect the Mg\(^{2+}\) sensitivity of BK(β1) channels, we performed experiments in a variety of Mg\(^{2+}\) concentrations and found that the G–V curve showed a leftward shift of 28.5 and 57.1 mV in 10 mM Mg\(^{2+}\), in the presence and absence of β1 subunits, respectively, compared with 0 Mg\(^{2+}\) (Fig. 6, A–C). This indicates that the β1 reduces the Mg\(^{2+}\) sensitivity of BK channels. Here we noticed that the peak currents of BK in Mg\(^{2+}\) experiments varied widely due to the blockage of Mg\(^{2+}\) while the Mg\(^{2+}\) concentrations were elevated. The G–V curve showed a leftward shift of 56.7 mV in 10 mM Mg\(^{2+}\) in the presence of β1(L5,V6,M7,Q,M7Q) (Fig. 6, B and C). Similarly, the G–V curve of mSlo1(L906Q,L908Q)–β1 channels had a leftward shift of 50.4 mV. These results suggest that both the mutants β1(L5Q,V6Q,M7Q) and mSlo1(L906Q,L908Q) could eliminate the β1-induced reduction of Mg\(^{2+}\) sensitivity of BK(β1) channels. Correspondingly, the G–V curve of β1(E13K,T14K) only showed a leftward shift of 30 mV in 10 mM Mg\(^{2+}\), similar to that of the WT β1 (Fig. 6C), indicating that the H site but not the E site affected the Mg\(^{2+}\) sensitivity of BK(β1) channels (Fig. 6D). When Mg\(^{2+}\) was increased to 50 mM, we found even

FIGURE 6. The β1 subunits reducing Mg\(^{2+}\) sensitivity of BK-type channels. A, a macroscopic currents of all of the BK-type channels were acquired from inside-out patches in 0 (top), 10 (middle), and 50 (bottom) mM Mg\(^{2+}\) at 0 Ca\(^{2+}\) as indicated. Currents were elicited by 100-ms voltage steps either ranging from −160 to 200 mV in 20-mV increments at 0 and 10 mM Mg\(^{2+}\) or ranging from −160 to 160 mV in 20-mV increments at 50 mM Mg\(^{2+}\) after a 20-ms prepulse of −180 mV (only the last 2 ms is shown here) and then returned to a depolarization potential of −120 mV. The data were obtained from the same patch in the presence of 0, 10, and 50 mM Mg\(^{2+}\). B, the normalized G–V curves were plotted for various BK-type channels at 0 (left), 10 (middle), and 50 (right) mM Mg\(^{2+}\). The values of V\(_{50}\) are 139.5 ± 5.5 mV (black; n = 9), 73.4 ± 4.6 mV (black; n = 8), and 31.0 ± 3.4 mV (black; n = 7) for mSlo1; 132.7 ± 5.0 mV (red; n = 10), 103.2 ± 4.8 mV (red; n = 8), and 57.1 ± 4.0 mV (black; n = 8) for mSlo1–β1; 194.5 ± 7.5 mV (blue; n = 8), 138.8 ± 4.9 mV (blue; n = 10), and 83.0 ± 4.5 mV (black; n = 7) for mSlo1–β1(LVM); 200.6 ± 6.4 mV (green; n = 12), 150.3 ± 5.1 mV (green; n = 8), and 77.4 ± 3.3 mV (black; n = 9) for mSlo1(L906Q,L908Q)–β1; and 188.2 ± 5.7 mV (pink; n = 11), 134.7 ± 4.9 mV (pink; n = 8), and 90.5 ± 5.1 mV (black; n = 7) for mSlo1(L906Q,L908Q) in the presence of 0, 10, and 50 mM Mg\(^{2+}\), respectively. Corresponding colors are the same as shown in A. Solid lines were fitted to the Boltzmann equation under “Experimental Procedures.” C, the differences of V\(_{50}\) between 0 and 10 mM Mg\(^{2+}\) (or ΔG\(_{10}–0\) mV) were plotted for the BK-type channel as indicated. They are 57 ± 4.5 mV for mSlo1 (black; n = 9), 29 ± 4 mV for mSlo1–β1 (red; n = 8), 56 ± 4.3 mV for mSlo1–β1(LVM) (blue; n = 8), 50 ± 4.2 mV for mSlo1(L906Q,L908Q)–β1 (green; n = 10), 30 ± 4.1 mV for mSlo1–β1(E13K,T14K) (dark red; n = 11), and 54 ± 4.8 mV for mSlo1(L906Q,L908Q) (pink; n = 8), as indicated. D, plots of V\(_{50}\) versus Mg\(^{2+}\) are shown for mSlo1 (black), mSlo1–β1 (red), mSlo1–β1(LVM) (blue), mSlo1(L906Q,L908Q)–β1 (green), and mSlo1(L906Q,L908Q) (pink), as indicated. Error bars, S.D.
that both the β1 and β2 subunits reduce Mg\(^{2+}\) sensitivity (23), we deduce that the perturbation of the Mg\(^{2+}\) binding sites ultimately attenuates the Mg\(^{2+}\) sensitivity of BK(β1) and BK(β2) channels, because the N termini of β1 and β2 binding to the cytosolic domain may enlarge the distance between VSD and CTD.

In conclusion, we demonstrated that the N terminus of β1 contained an H site in addition to the electrostatic sites as previously described in the N terminus of β2 (26). This novel H site of β1 imparts unique function distinct from that of β2, despite their similar sequences, impacting BK gating with a different mechanism. Additionally, our methods developed in this study may help to further explore how other subunits, such as β3 and β4, differentially regulate the sensitivity of BK channels to divalent ions.

REFERENCES

1. Petersen, O. H., and Maruyama, Y. (1984) Calcium-activated potassium channels and their role in secretion. Nature 307, 693–696
2. Brayden, J. E., and Nelson, M. T. (1992) Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256, 532–535
3. Fuchs, P. A., and Murrow, B. W. (1992) Cholinergic inhibition of short (outer) hair cells of the chick's cochlea. J. Neurosci. 12, 800–809
4. Robitaille, R., and Charlton, M. P. (1992) Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J. Neurosci. 12, 297–305
5. Wu, Y. C., Ricci, A. I., and Fettiplace, R. (1999) Two components of transducer adaptation in auditory hair cells. J. Neurophysiol. 82, 2171–2181
6. McManus, O. B., and Magleby, K. L. (1991) Accounting for the Ca\(^{2+}\)-dependent kinetics of single large-conductance Ca\(^{2+}\)-activated K\(^+\) channels in rat skeletal muscle. J. Physiol. 443, 739–777
7. Yang, H., Shi, J., Zhang, G., Yang, J., Delaloye, K., and Cui, J. (2008) Activation of Slo1 BK channels by Mg\(^{2+}\) coordinated between the voltage sensor and RCK1 domains. Nat. Struct. Mol. Biol. 15, 1152–1159
8. Schreiber, M., and Salkoff, L. (1997) A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355–1363
9. Xia, X. M., Zeng, X., and Lingle, C. J. (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418, 880–884
10. Shi, J., Krishnamoorthiy, G., Yang, Y., Hu, L., Chaturvedi, N., Harilal, D., Qin, J., and Cui, J. (2002) Mechanism of magnesium activation of calcium-activated potassium channels. Nature 418, 876–880
11. Tanaka, Y., Meera, P., Song, M., Knaus, H. G., and Toro, L. (1997) Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant α + β subunit complexes. J. Physiol. 502, 545–557
12. Brenner, R., Pérez, G. J., Bonet, A. D., Eckman, D. M., Kosek, J. C., Wiler, S. W., Patterson, A. J., Nelson, M. T., and Aldrich, R. W. (2000) Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature 407, 870–876
13. Plüger, S., Faulhaber, J., Furstenau, M., Lohn, M., Waldschütz, R., Gollasch, M., Haller, H., Luft, F. C., Ehmkne, H., and Pongs, O. (2000) Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca\(^{2+}\) spark/STOC coupling and elevated blood pressure. Circ. Res. 87, E53–E60
14. Behrens, R., Nolting, A., Reimann, F., Schwarz, M., Waldschütz, R., and Pongs, O. (2000) hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEMS Lett. 474, 99–106
15. Brenner, R., Jegla, T. J., Wickenden, A., Liu, Y., and Aldrich, R. W. (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel β subunits, hKCNMB3 and hKCNMB4. J. Biol. Chem. 275, 6453–6461
16. Meera, P., Wallner, M., and Toro, L. (2000) A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca\(^{2+}\)-activated K\(^+\) channel resistant to charybdotoxin and iberiotoxin. Proc. Natl. Acad. Sci.
17. Uebele, V. N., Lagrutta, A., Wade, T., Figueroa, D. J., Liu, Y., McKenney, E., Austin, C. P., Bennett, P. B., and Swanson, R. (2000) Cloning and functional expression of two families of β-subunits of the large conductance calcium-activated K⁺ channel. *J. Biol. Chem.* **275**, 23211–23218

18. Hu, L., Shi, J., Ma, Z., Krishnamoorthy, G., Sieling, F., Zhang, G., Horrigan, F. T., and Cui, J. (2003) Participation of the S4 voltage sensor in the Mg²⁺-dependent activation of large conductance (BK) K⁺ channels. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 10488–10493

19. Ding, J. L., Shi, J., Ma, Z., Krishnamoorthy, G., Sieling, F., Zhang, G., Horrigan, F. T., and Cui, J. (2003) Participation of the S4 voltage sensor in the Mg²⁺-dependent activation of large conductance (BK) K⁺ channels. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 10488–10493

20. Wang, Y. W., Ding, J. P., Xia, X. M., and Lingle, C. J. (2002) Consequences of the stoichiometry of Slo1 α and auxiliary beta subunits on functional properties of large-conductance Ca²⁺-activated K⁺ channels. *J. Neurosci.** 22**, 1550–1561

21. Lee, U. S., and Cui, J. (2010) BK channel activation: structural and functional insights. *Trends Neurosci.* **33**, 415–423

22. Qian, X., and Magleby, K. L. (2003) Beta1 subunits facilitate gating of BK channels by acting through the Ca²⁺, but not the Mg²⁺, activating mechanisms. *Proc. Natl. Acad. Sci. U.S.A.* **100**, 10061–10066

23. Sun, X., Shi, J., Delaloye, K., Yang, X., Yang, H., Zhang, G., and Cui, J. (2013) The interface between membrane-spanning and cytosolic domains in Ca²⁺-dependent K⁺ channels is involved in β subunit modulation of gating. *J. Neurosci.** 33**, 11253–11261

24. Zeng, X. H., Xia, X. M., and Lingle, C. J. (2003) Redox-sensitive extracellular gates formed by auxiliary β subunits of calcium-activated potassium channels. *Nat. Struct. Biol.* **10**, 448–454

25. Chen, M., Gan, G., Wu, Y., Wang, L., Wu, Y., and Ding, J. (2008) Lysine-rich extracellular rings formed by β2 subunits confer the outward rectification of BK channels. *PLoS One** 3*, e2114

26. Hou, P., Zeng, W., Gan, G., Lv, C., Guo, X., Zhang, Z., Liu, H., Wu, Y., Yao, J., Wei, A. D., Wang, S., and Ding, J. (2013) Inter-α/β subunits coupling mediating pre-inactivation and augmented activation of BKCa(β2). *Sci. Rep.* **3**, 1666

27. Wallner, M., Meera, P., and Toro, L. (1996) Determinant for β-subunit regulation in high-conductance voltage-activated and Ca²⁺-sensitive K⁺ channels: an additional transmembrane region at the N terminus. *Proc. Natl. Acad. Sci. U.S.A.* **93**, 14922–14927

28. Morrow, J. P., Zakharov, S. I., Liu, G., Yang, L., Sok, A. I., and Marx, S. O. (2006) Defining the BK channel domains required for β1-subunit modulation. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 5096–5101

29. Liu, G., Zakharov, S. I., Yang, L., Wu, R. S., Deng, S. X., Landry, D. W., Karlin, A., and Marx, S. O. (2008) Locations of the β1 transmembrane helices in the BK potassium channel. *Proc. Natl. Acad. Sci. U.S.A.* **105**, 10727–10732

30. Orio, P., Torres, Y., Rojas, P., Carvacho, I., García, M. L., Toro, L., Valverde, M. A., and Latorre, R. (2006) Structural determinants for functional coupling between the β and α subunits in the Ca²⁺-activated K⁺ (BK) channel. *J. Gen. Physiol.* **127**, 191–204

31. Wu, Y., Yang, Y., Ye, S., and Jiang, Y. (2010) Structure of the gating ring from the human large-conductance Ca²⁺-gated K⁺ channel. *Nature* **466**, 393–397

32. Yuan, P., Leonetti, M. D., Pico, A. R., Hsiung, Y., and Mackinnon, R. (2010) Structure of the human BK channel Ca²⁺-activation apparatus at 3.0 Å resolution. *Science** 329*, 182–186

33. Case, D. A., Darden, T. A., Cheatham, T. E., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A. W., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., Wolf, R. M., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M. J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, M. G., Salomon-Ferrer, R., Sagui, C., Babin, V., Lukchko, T., Gusarov, S., Kovalenko, A., and Kollman, P. A. (2012) *AMBER*, University of California, San Francisco

34. McManus, O. B., Helms, L. M., Pallanck, L., Ganetzky, B., Swanson, R., and Leonard, R. J. (1995) Functional role of the β subunit of high conductance calcium-activated potassium channels. *Neuron* **14**, 645–650

35. Nimigean, C. M., and Magleby, K. L. (1999) The β subunit increases the Ca²⁺ sensitivity of large conductance Ca²⁺-activated potassium channels by retaining the gating in the bursting states. *J. Gen. Physiol.* **113**, 425–440

36. Xia, X. M., Ding, J. P., and Lingle, C. J. (1999) Molecular basis for the inactivation of Ca²⁺- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. *J. Neurosci.* **19**, 5255–5264

37. Wallner, M., Meera, P., and Toro, L. (1999) Molecular basis of fast inactivation in voltage and Ca²⁺-activated K⁺ channels: a transmembrane β-subunit homolog. *Proc. Natl. Acad. Sci. U.S.A.* **96**, 4137–4142

38. Carter, P. J., Winter, G., Wilkinson, A. J., and Fersht, A. R. (1984) The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (*Bacillus stearothermophilus*). *Cell* **38**, 835–840

39. Serrano, L., Horovitz, A., Avron, B., Bycroft, M., and Fersht, A. R. (1990) Protein stability by using double-mutant cycles. *Trends Biochem. Sci.* **15**, 10488–10493

40. Sadovsky, E., and Yifrach, O. (2007) Principles underlying energetic coupling along an allosteric communication trajectory of a voltage-activated K⁺ channel. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 19813–19818