Acute sensorineural hearing loss resulting from cerebellopontine angle arachnoid cyst

Jonelle M. Petscavage, MD, MPH; James R. Fink, MD; and Felix S. Chew, MD

We present the case of a 49-year-old woman who presented with acute, nonprogressive left sensorineural hearing loss and benign positional vertigo that was associated with an arachnoid cyst of the cerebellopontine angle. The presence of the lesion was documented by MRI examinations that were obtained 7 years apart. Arachnoid cysts at the cerebellopontine angle are usually found incidentally on MRI performed for unrelated reasons. However, if the arachnoid cyst displaces or compresses adjacent cranial nerves, symptoms may result. We review the salient imaging features of arachnoid cysts that allow their differentiation from other lesions of the cerebellopontine angle.

Case report

A 49-year-old woman presented with a seven-year history of nonprogressive, acute left-sided hearing loss. Upon initial presentation, she denied vertigo, headaches, visual disturbance, or other symptoms. Physical examination was normal. Audiology examination demonstrated sensorineural hearing loss in the left ear with no word-recognition abilities. Magnetic resonance imaging (MRI) of the brain without contrast at an outside hospital was dictated as high-signal-intensity T2 mass of the cerebellopontine angle (CPA) representing either an epidermoid cyst or arachnoid cyst. The patient returned 7 years later with new positional vertigo and dizziness. The vertigo waxed and waned, and appeared after activities such as rolling over in bed, looking up to reach a shelf, and bending. On physical examination, the patient had new rotary nystagmus in supine left-ear dependent position.

Figure 1. 49-year-old woman with sensorineural hearing loss. Sagittal T1 image demonstrates a mass isointense to CSF in the prepontine cistern that extends into the suprasellar region. The mass posteriorly displaces the pons, anteriorly bows the pituitary stalk (white arrow), and superiorly displaces the optic chiasm.
Repeat MRI with and without contrast showed no change in a 2.5 x 4.9 x 4.4-cm low-T1 and very-high-T2-signal-intensity mass (Figs. 1 and 2) centered in the prepon-
tine cistern. Signal characteristics mirrored those of cere-
brosplinal fluid (CSF) on all sequences. The lesion extended
into both CPA cisterns and the suprasellar region. The
mass superiorly displaced the optic chiasm and optic nerve,
with anterior bowing of the pituitary stalk (Fig. 1), and lat-\neral bowing of the trigeminal nerve, facial nerve, and vesti-
bulocochlear nerves bilaterally (Fig. 3). There was mild
adjacent-mass effect seen as mild flattening of the anterior
pons. There was no postgadolinium enhancement (Fig. 4)
or restricted diffusion (Fig. 5). Findings were most consistent
with an arachnoid cyst.

Due to patient acceptance of the sensorineural hearing
loss over the 14-year period and unchanged size of the
arachnoid cyst, the patient was referred to a vestibular spe-
cialist to assist with vertigo. No surgical intervention was
planned.

Discussion

Arachnoid cysts are benign, pouch-like congenital lesions
that are postulated to occur from the splitting of embryonic
meninges and thus are filled with CSF (1). They account
for approximately 1% of all intracranial masses, with the ma-


Figure 2. 49-year-old woman with sensorineural hearing
loss. Axial T2 image demonstrates a high-signal-intensity
mass of CSF intensity in the preponotine cistern and CPA
cisterns. There is mild flattening of the anterior pons due to
the mass but no edema.

Figure 3. 49-year-old woman with sensorineural hearing
loss. Axial MR cisternogram image demonstrates the high-
signal-intensity mass, following CSF signal characteristics,
in the CPA and preponotine cisterns. There is a thin mem-
brane marginating the cisternal lesion (white arrow), and
mild lateral and posterior displacement of the vestibulo-
cochlear nerves (black arrow). The mass is not encasing
the nerves or vascular structures, which would be more
typical of an epidermoid cyst than arachnoid cyst.

they are usually asymptomatic, focal neurological symp-
toms may arise when the cysts exhibit displacement of ad-

ejacent cranial nerves or other cisternal structures, such as in

our patient. Differentiation of a symptomatic arachnoid
cyst from a vestibular schwannoma, the most common CPA
tumor to result in sensorineural hearing loss, can easily be
performed with contrast administration. Arachnoid cysts
are nonenhancing lesions, while vestibular schwannomas
exhibit homogeneous, heterogeneous, or (less commonly)
cystic enhancement (4-6).

Bonneville et al. (3, 7) present a schema to characterize
and limit differential diagnosis of CPA tumors based on
presence or absence of enhancement. Nonenhancing le-


Figure 4. 49-year-old woman with sensorineural hearing
loss. Axial T1-weighted image shows the low-signal-inten-
sity mass of CSF intensity in the preponotine cistern and CPA
cisterns. There is no edema associated with the mass.
Due to a composition different from arachnoid cysts, several advanced imaging features can provide reliable differentiation of these entities.

On fluid-attenuated inversion recovery (FLAIR) sequences, arachnoid cysts are isointense to CSF. Epidermoid cysts alternatively demonstrate iso- to hyperintense signal with poor demarcation on FLAIR sequences (9). However, similar FLAIR-signal characteristics may be commonly seen in the posterior fossa cisterns due to CSF-flow artifact. Diffusion imaging is even more specific for discrimination of these lesions. Epidermoid cysts show restricted diffusion relative to CSF, whereas arachnoid cysts do not (10). Differential diagnosis for high signal on diffusion imaging of CPA masses includes epidermoid cysts and most of the solid tumors, except for hemangioendotheliomas, which show low signal on diffusion and high ADC signal (11). Thus, diffusion imaging is mainly helpful to differentiate between epidermoid cysts and arachnoid cysts.

Another available imaging tool for the CPA region is MR cisternography. This technique provides more precise anatomical depiction of lesion margins and relationship to other CPA structures for surgical planning compared to the low resolution of diffusion imaging. On MR cisternography, which is a heavily T2-weighted 3D sequence, epidermoid cysts show hypointensity to CSF, since (unlike arachnoid cysts) they are of mixed composition (12).

In our patient, diffusion-weighted imaging was key to diagnosing the lesion as an arachnoid cyst. Although conservative management was chosen in our case, it is suggested that symptomatic arachnoid cysts be surgically removed (13). However, vestibular symptoms are more likely to resolve, while auditory abnormalities may persist (14). Thus, our patient’s sensorineural hearing loss likely would not have benefited from surgical intervention. Ultimately,
Arachnoid cysts can grow and encroach on adjacent structures, and initially they may be difficult to distinguish from other CPA masses. Use of diffusion-weighted imaging, MR cisternography, and gadolinium can provide a more precise diagnosis for patient management.

References

1. Osborn AG, Preece MT. Intracranial cysts: radiologic-pathologic correlation and imaging approach. *Radiology* 2006; 239:650–664. [PubMed]
2. Starkman SP, Brown TC, Linell EA. Cerebral arachnoid cysts. *J Neuropathol Exp Neurol* 1958;17:484–500. [PubMed]
3. Bonniveille F, Savatovsky J, Chiras J. Imaging of cerebellopontine angle lesion: an update. Part 1: enhancing extra-axial lesions. *Eur Radiol* 2007; 17:2908–2920. [PubMed]
4. Charabi S, Tos M, Thomsen J, Rygaard J, Fundova P, Charabi B. Cystic vestibular schwannoma-clinical and experimental studies. *Acta Otolaryngol Suppl* 2000; 543:11–13. [PubMed]
5. Delsanti C, Regis J. Cystic vestibular schwannomas. *Neurochirurgie* 2004; 50:401–406. [PubMed]
6. Gomez-Brouchet A, Delisle MB, Cognard C, Bonafe A, Charlet JP, Deguine O, Frayssie B. Vestibular schwannomas: correlations between magnetic resonance imaging and histopathologic appearance. *Otol Neurotol* 2001; 22:79–86. [PubMed]
7. Bonniveille F, Savatovsky J, Chiras J. Imaging of cerebellopontine angle lesion: an update. Part 1: enhancing extra-axial lesions. *Eur Radiol* 2007; 17:2472–2482. [PubMed]
8. Bonniveille F, Sarrazin JL, Marsot-Dupuch K, Iffenecker C, Cordoliani YS, Doyon D, Bonniveille JF. Unusual lesions of the cerebellopontine angle: a segmental approach. *Radiographics* 2001; 21:419–438. [PubMed]
9. Liu P, Saida Y, Yoshioka H, Itai Y. MR imaging of epidermoids at the cerebellopontine angle. *Magn Reson Med Sci* 2003; 2:109–115. [PubMed]
10. Dutt SN, Mirza S, Chavda SV, Irving RM. Radiologic differentiation of intracranial epidermoids from arachnoid cysts. *Otol Neurotol* 2002; 23:84–92. [PubMed]
11. Quadery FA, Okamoto K. Diffusion-weighted MRI of haemangioblastomas and other cerebellar tumours. *Neuroradiology* 2003; 45:212–219. [PubMed]
12. Murakami N, Matsushima T, Kuba H, Ikekaki K, Morioka T, Mihoara F, Inamura T, Fukui M. Combining steady-state constructive interference and diffusion weighted magnetic resonance imaging in the surgical treatment of epidermoid tumors. *Neurosurg Rev* 1999; 22:159–162. [PubMed]
13. Samii M, Carvalho GA, Schuhmann MU, Matthies C. Arachnoid cysts of the posterior fossa. *Surg Neurol* 1999;51:376-82. [PubMed]
14. Cadoni G, Agostino S, Volante M, Scipione MS. Sudden cochlear hearing loss as presenting symptom of arachnoid cyst of the posterior fossa. *Acta Otorhinolaryngol Ital.* 2006; 26:115-117. [PubMed]