Transition to zero resistance in a two dimensional electron gas driven with microwaves

Jason Alicea and Leon Balents
Physics Department, University of California, Santa Barbara, CA 93106

Matthew P. A. Fisher and Arun Paramekanti
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106

Leo Radzihovsky
Department of Physics, University of Colorado, Boulder, CO 80309

(Dated: December 28, 2021)

High-mobility two-dimensional electron gases (2DEGs) subject to a perpendicular magnetic field exhibit novel physics when driven with microwave radiation. Zudov et al. first demonstrated that the longitudinal resistance develops dramatic radiation-induced oscillations at low temperatures (T \approx 1 \text{K}) and low magnetic fields (B \approx 1 \text{Kg}). These oscillations are periodic in 1=B, with the period set by the ratio of the microwave and cyclotron frequencies. In contrast, the Hall resistance is nearly unaffected by the microwaves, although small radiation-induced Hall oscillations have recently been observed. More spectacular is the observation, made independently by Mani et al. and Zudov et al., that in even higher-mobility samples the oscillations become sufficiently large that the minima of the resistance oscillations develop into zero resistance states — the measured resistance vanishes within experimental accuracy over a range of magnetic fields and radiation intensities. Subsequent experiments have confirmed this result and also observed a similar effect in Corbino samples, where zero-conductance states have been measured.

On the theoretical front, several groups have carried out microscopic calculations of the resistance taking into account photon-assisted impurity scattering and radiation-induced changes in the distribution function. Although these mechanisms are quite different, both capture the resistance oscillations with the correct period and phase at low radiation intensity. At higher intensities, however, these calculations predict a negative resistance in regions of magnetic field where the experiments find a zero resistance state.

The missing ingredient needed to connect the microscopic theory with the experiments was the observation of Andreev et al. that a state characterized by a negative longitudinal resistance, quite independent of its microscopic origin, is unstable to current fluctuations. They argued that this instability leads to an inhomogeneous state where the system spontaneously develops domains of current with magnitude \lowering \j, where \lowering \j corresponds to a vanishing longitudinal resistivity, i.e. \lowering \j (\lowering \j) = 0. Applying an external current then merely reorganizes the domain sizes in order to accommodate the additional current, leading to zero measured resistance over a range of bias current as observed experimentally. In the absence of an applied current, since the system has a large Hall resistance, this picture indicates that spontaneous current domains in the zero resistance state should reveal themselves through spontaneous Hall voltages transverse to the domains. Willett et al. have indeed measured spontaneous voltages between internal and external contacts with no applied current, which lends support to this idea.

The experiments together with the microscopic calculations and phenomenological arguments provide strong evidence for the existence of a nonequilibrium phase transition from a normal state with nonzero resistance to a zero resistance state whose detailed properties remain largely unexplored. In this paper, we attempt to gain an understanding of the nature of this transition, and to learn about the properties of the zero resistance state.

PACS numbers: 73.40.-c, 73.43.-f, 78.67.-n
resistance state.

A. Strategy

We begin with the observation that while the microscopic mechanism for how radiation induces the transition to a zero resistance state is a matter of some debate, this knowledge is not crucial for studying universal properties close to the phase transition. Indeed, in order to study the long-wavelength, low-frequency dynamics near the transition it is sufficient to identify the appropriate hydrodynamic variables and construct the most general local equations of motion for them consistent with symmetries and conservation laws. The magnetic field, temperature, microwave radiation, and quantum effects will determine the various parameters of this theory; these may be calculated in principle from a microscopic approach, but we do not attempt to do this here. Our idea will be to view the equations of motion as a non-equilibrium analogue of Landau-Ginzburg-Wilson theory. We will use them to study universal physics near the phase transition, going beyond mean field theory by including nonlinearities and fluctuations within a renormalization group framework.

In the vicinity of the transition into the zero resistance state in the 2DEG, the relevant hydrodynamic degrees of freedom are the current density \(j(x,t) \) and the charge density \(n(x,t) \), which are constrained by a continuity equation,

\[
\frac{\partial n}{\partial t} + \nabla \cdot j = 0; \tag{1}
\]

that enforces local charge conservation.

The dynamics of the current density \(j(x,t) \) is governed by a nonequilibrium equation of motion (akin to the Navier-Stokes equation) for a 2D charged fluid in a perpendicular magnetic field. Because of the nonequilibrium nature of the system (microwave-driven 2D liquid electron) the equation for \(j \) includes non-conservative forces, i.e., those not derivable from a free energy functional. Hence, the generic symmetry-allowed form of the equation for the current density is only restricted by the translational and rotational invariances in the plane. Keeping the leading order (at long length and time scales) terms in powers of the charge and current densities and their gradients leads to

\[
\frac{\partial j}{\partial t} + \frac{\partial}{\partial x} j + \frac{\partial}{\partial y} j + \frac{\partial}{\partial z} j = 0; \tag{2}
\]

As we will discuss in more detail below, terms appearing on the right-hand side of the above equation are forces that determine the local acceleration (\(\theta \cdot j(x,t) \)) of the electron fluid, each having a simple physical interpretation. The \(\frac{\partial}{\partial x} \) terms are the linear and nonlinear longitudinal resistivities (frictional drag forces on the electron fluid). The \(\frac{\partial}{\partial y} \) terms describe viscous forces associated with a nonuniform flow and the \(\frac{\partial}{\partial z} \) term is the Lorentz force on the charged moving electron fluid. The \(\frac{\partial}{\partial y} \) terms are convective-like nonlinearities, where the absence of Galilean invariance permits more general types of convective terms in addition to the conventional \(\frac{\partial}{\partial x} \) terms, with generic (symmetry unrestricted) values of these couplings.

Here, the potential \(\Theta_j \) is determined by the density via

\[
\frac{\partial \Theta_j}{\partial n} = \nabla \cdot (n \nabla \phi); \tag{3}
\]

For long-range interactions, \(\nabla \cdot (n \nabla \phi) \) is the Coulomb potential. For a screened interaction, we can set \(\nabla \cdot (n \nabla \phi) \equiv \phi \), so that \(\Theta_j \). With this, the \(\frac{\partial}{\partial x} \) and \(\frac{\partial}{\partial y} \) terms incorporate Fick’s law (diffusion down a local chemical potential gradient), with the latter accounting for a density-dependent diffusion coefficient. Similarly, \(\frac{\partial}{\partial x} \) and \(\frac{\partial}{\partial y} \) account for the lowest order density-dependence of the linear resistivity and the Lorentz force.

In addition, we have included in Eq. (2) a zero-mean white noise force with a correlator

\[
\langle h(x,t) (r^2) y^2 \rangle = 2g \langle x \rangle (x \cdot y) \langle r \rangle \langle t \rangle \langle \hat{y} \rangle; \tag{4}
\]

Apart from thermal noise, this incorporates the effect of microscopic fluctuations that arise from the coarse graining implicit in our formulation. Since we are dealing with a system far from equilibrium, the strength \(g \) of the noise is not fixed by the fluctuation-dissipation relation, but is an independent quantity.

Focusing on the terms \(\theta_j \equiv \frac{\partial}{\partial x} j \) in Eq. (3), it is clear that (i) for large positive values of \(x \), the zero current state is stable and current fluctuations decay exponentially, while (ii) for large negative values of \(x \), current fluctuations grow exponentially and the zero current state is unstable. Thus, as \(x \) changes from positive to negative (in the experiments tunable by a microwave power and/or frequency), Eqs. (1-2) describe the phase transition from a conventional resistive state for \(x > 0 \) to a nonequilibrium steady state with spontaneous currents for \(x < 0 \).

As we will argue in Section II, this set of equations can potentially describe various types of current and density ordering, including circulating current states and domain patterns of current and density. In this paper our main focus will be on the nature of the transition into a time-independent steady state with possible density and current domains since, given the observations of Willett et al., this appears to be relevant to the 2DEG experiments. We defer to future work questions regarding the detailed nature of the ordered state in this case, as well as a study of the phase transition into the circulating state.

A quite different theoretical motivation for studying this problem arises from the observation that the current and density evolution equations studied here reduce, for \(B = 0 \) and short range interactions, to the continuum equations used to investigate the problem of “flocking” in that case, the system has been shown to develop an expectation value for the particle current, thus spontaneously breaking the continuous rotational symmetry even in two spatial dimensions. This is
particularly striking since the Mermin-Wagner theorem forbids such symmetry breaking in \(d = 2 \) for classical equilibrium systems. This ‘violation’ was identified as arising from nonlinear convective terms which are only allowed in nonequilibrium systems, and turn out to be relevant for this problem in dimensions \(d < 4 \). Much is known about the universal dynamics in the flocking state in \(d = 2 \), but the nature of the phase transition into this state has not been addressed analytically. The question we study is equivalent to asking: What is the fate of the flocking transition and the flocking state in two dimensions in the presence of a magnetic field that breaks time-reversal symmetry? As we show, one can make more progress in this modified problem. This ‘flocking’ point of view is also useful for carrying out numerical simulations, since many simple particle models for flocking have been studied in the absence of a magnetic field and can be adapted to our problem, although we do not pursue this here.

B. Summary of the paper

We begin in Section II by showing how some terms in Eq. (2) can be related to the full nonlinear resistivity. We do this by formally expanding the relation

\[
E \delta x = \nabla \cdot \left(\frac{\delta x}{\tau} \right) + \nabla \cdot \mathbf{J} = \frac{\delta x}{\tau} - \nabla \cdot \mathbf{J}
\]

at low frequency and wavevector, and for small current and potential fluctuations. Here \(\nabla \) and \(\tau \) represent the diagonal and Hall resistivities, and the electric field \(E \) is determined via the electrostatic potential, i.e. \(E = \nabla \phi \). Upon Fourier transforming back to real space, one can arrive at an equation with a form similar to Eq. (2). This proves to be a useful exercise since we can then relate different possible forms of the frequency and wavevector dependent resistivity in the presence of microwaves to the model parameters appearing in Eq. (2) and therefore to the kinds of ordered states which might emerge from our description. More importantly, this helps us to identify the correct set of critical modes near the phase transition into these putative ordered states. Specifically, we show that if the resistivity is an increasing function of frequency at low frequency, so that the zero resistance state is achieved when the DC resistance first goes negative, then a time-independent steady state with inhomogeneous density would result. The only critical mode near the transition into this state involves density fluctuations accompanied by current fluctuations that balance the Lorentz force. Since the current and density are tied to one another in this mode, one can re-express current fluctuations in terms of the density. Inserting the resulting expression into the continuity equation results in an equation of motion involving only the density at the critical point.

This equation of motion for the density at the critical point depends on terms involving the absolute magnitude of the density, as well as terms that depend only on density gradients. We warm up in Section III by analyzing a model which neglects terms that depend on the absolute magnitude of the density, and is instead invariant under shifting the density by a constant. This model is expected to describe physics on short length scales where the density does not vary appreciably from its mean so that such terms can be safely ignored. In the ‘ordered phase’ of this model the system develops a uniform current with a transverse density gradient that balances the Lorentz force. We show that this state is stable to small fluctuations, and discuss the ‘Goldstone mode’ associated with the spontaneously broken rotational symmetry. The ordered state described by this model is argued to be relevant for the experiments at short length scales \(L < L_{c1} \), where \(L_{c1} \) is estimated to be roughly 1 mm, comparable to sample sizes used in the experiments. We then turn to the critical properties of this model, considering both short- and long-range interactions. With short-range interactions, we show that the upper critical dimension is \(d_{c2} = 2 \). In this case, we use dynamical renormalization group calculations to demonstrate that the Gaussian fixed point has a finite-volume basin of attraction; hence, a finite fraction of initial nonlinear couplings all flow to zero upon renormalization. In such cases, the transition is continuous and governed to a good approximation by mean field theory. Various scaling relations should hold near the transition in this regime. For instance, at fixed magnetic field strength and in the absence of an applied voltage, below the transition, the spontaneous current \(j_0 \) should scale with the microwave power \(P \) as

\[
j \propto P \quad E \propto P \quad \text{as} \quad P \to 0
\]

where \(P \to 0 \) and \(P_{c} \) is the critical microwave power at which the longitudinal resistance first vanishes. Approaching the transition from the resistive side, with \(P < P_{c} \), we expect a universal scaling relation to hold between the imposed current \(j \) and the induced longitudinal electric field,

\[
j \propto P \quad E \propto P \quad \text{as} \quad P \to 0
\]

where \(f(x) \) is a scaling function with the properties that \(f(\lambda x) \propto x \) as \(\lambda \to 0 \), and \(f(\lambda x) \propto x \) as \(\lambda \to 1 \). The behavior as \(\lambda \to 0 \) recovers the linear response result, \(j / E \), in the resistive phase, with a resistivity \(E_{c} \propto j \). The behavior for \(\lambda \to 1 \) leads to a universal longitudinal nonlinear IV characteristic

\[
j \propto P \quad E^{-1/\lambda} \quad \text{as} \quad P \to P_{c}
\]

at the transition, \(P = P_{c} \), with mean-field value of \(\lambda = 3 \) for a current-biased experiment. We then show that long-range interactions appear to drive the transition first-order. The experimental signatures of the Goldstone mode in the ‘ordered phase’ and the mean field transition with short range interactions are qualitatively discussed in Section V.

In Section IV we analyze the phase transition in the more general model, where terms that depend on the absolute magnitude of the density are taken into account. These terms, which become important on length scales \(L > L_{c2} \), are argued to drive the transition first-order with either short- or long-range interactions based on renormalization group calculations. We derive an expression for \(L_{c2} \) that depends on the density- and wavevector-dependent resistivity, and suggest that microscopic calculations may be used to estimate this.
length. Experimental consequences of the first-order phase transition for sample sizes larger than L_{c2} are briefly noted in Section V.

II. DERIVING AND SIMPLIFYING THE EQUATIONS OF MOTION

A. “Microscopic derivation” of equations of motion

Before we turn to the analysis of the phases and transitions described by the set of Eqs. (14), let us consider a derivation of some terms in the equation of motion for \mathbf{j} in Eq. (2).

We begin with the linear response relation

$$E(\mathbf{k};\omega) = D(\mathbf{k};\omega)\mathbf{j}(\mathbf{k};\omega) + H(\mathbf{k};\omega)\mathbf{j}(\mathbf{k};\omega)$$

where D and H represent the diagonal and Hall resistivities, the electric field E is determined from the electrostatic potential via $E = \mathbf{r}$, and \mathbf{j} is the antisymmetric tensor.

We know from experiments that $H(0;\omega) = 0$ even in the presence of microwave radiation. We are interested in the case where the dissipative part of the microscopic diagonal resistivity becomes negative. With increasing microwave intensity, this would first happen at some particular wavevector \mathbf{k} and frequency ω. Two specific cases for the behavior of $D(\mathbf{k};\omega)$ are illustrated in Fig. 1.

If \mathbf{k} is small, we can access the resistivity minimum shown in Fig. 1 by expanding $D(\mathbf{k};\omega) = D(0;\omega) + \frac{1}{2} \mathbf{k}^2$ in a Taylor series as:

$$D = D(0;\omega) + 1! \left(\frac{\partial D}{\partial \omega} \right) + \frac{1}{2} \left(\frac{\partial^2 D}{\partial \omega^2} \right) + \frac{1}{3} \left(\frac{\partial^3 D}{\partial \omega^3} \right) + \frac{1}{4} \left(\frac{\partial^4 D}{\partial \omega^4} \right) + \cdots$$

where the frequency derivatives and coefficients are evaluated at $\mathbf{k} = 0; \omega = 0$. Using this expansion inside Eq. (9), and assuming that the Hall resistivity is independent of wavevector and frequency in the regime of interest, we find the following relations between the coefficients in Eq. (2) and the microscopic linear response resistivity,

$$r = D(0;0) = G$$

$$\omega^2 = \frac{2}{G}$$

$$\omega = 1G$$

$$\omega = 2G$$

$$\omega = 3G$$

$$\omega = H(0;0) = G$$

where G is important role in the ordering.

B. Identifying critical modes and simplifying the equations of motion

On general grounds, one would expect that the type of order that develops near the transition should depend on where the minimum of 1 occurs in $(\mathbf{k};\omega)$ space. The resistance will in general depend on both \mathbf{k} and ω, and close to the transition will only be negative in a small region of frequencies and wavevectors about the minimum. Modes away from the minimum remain stable. Two possibilities for where this minimum occurs as a function of frequency are sketched in Fig. 1. If the minimum occurs at zero frequency as in Fig. 1(a), then zero-frequency modes that become critical at the transition should give rise to a time-independent ordered state (e.g., static domains of current). If on the other hand the minimum occurs at a non-zero frequency as in Fig. 1(b), then finite-frequency modes should give rise to a state ordered at finite frequency (e.g., circulating currents). In either case, the wavevector at which the minimum occurs would determine the wavevector at which the system orders. Thus, the signs of 1 and ω, which determine whether the minimum of 1 occurs at zero (or nonzero) wavevector and frequency, should play an important role in the ordering.

To make this more concrete, let us consider the mode structure in the disordered state, where \mathbf{j} and \mathbf{n} represent fluctuations about a stable zero-current state. We will start with the case $1 > 0$ and focus on wavevectors \mathbf{k} with 0 since the resistivity is minimized when $\mathbf{k} = 0$. The modes obtained from the

FIG. 1: Schematic behavior of the real part of ρ when (a) $\omega < 0$ and (b) $\omega > 0$. Using this expansion and comparing with the non-linear terms in Eq. (2), we find

$$u = u = G$$

$$\omega = \omega = G$$

$$\omega = \omega = G$$

As we shall see below, the type of ordering expected to emerge from our description depends on the frequency and wavevector dependence of the resistivity – measuring these in the disordered phase close to the transition would offer clues to the nature of the zero resistance state.

We can similarly match some of the non-linear terms in Eq. (2) as follows. Let us take $\mathbf{k} = 0; \omega = 0$ and consider the non-linear resistivity that depends in general on the local potential and the current magnitude, namely,

$$D(\mathbf{j};\omega) = D(0;0) + u D(\mathbf{j};\omega) + H(\mathbf{j};\omega)$$

where G is important role in the ordering.

We can similarly match some of the non-linear terms in Eq. (2) as follows. Let us take $\mathbf{k} = 0; \omega = 0$ and consider the non-linear resistivity that depends in general on the local potential and the current magnitude, namely,
linearized equations of motion are given by

\[! = \frac{i}{\omega} + \frac{x^2}{\omega_0^2} !_0^2 !_c + 2 \frac{x}{\omega_0} \\
+ \frac{1}{\omega} \left(k^2 V (k) \right) !_0^2 \]

(22)

\[!_D = \frac{i}{\omega} + \frac{2}{\omega_0^2} V (k) k^2 + \frac{1}{\omega} \left(k^4 V^2 (k) \right); \]

(23)

where \(V (k) \) is the Fourier-transform of the interaction potential \(V (\omega) \). Equation (22) is only written out to order \(!_0 \) for simplicity. We only want to consider here the effect of adding a small frequency dependence to the resistivity, so the exact expression is not important. The modes in Eq. (22) correspond to current fluctuations that circulate due to the magnetic field as they dissipate. The associated density fluctuations for these modes vanish in the \(\omega = 0 \) limit. Equation (23) represents a diffusive mode involving both current and density fluctuations that survive in the \(\omega = 0 \) limit. These current fluctuations are undetected by the magnetic field because the Lorentz force is balanced by an electric field set up by density fluctuations.

In order for the zero-current state to be stable, the imaginary part of these frequencies must be negative so that fluctuations are damped exponentially in time. For the diffusive mode, stability requires \(x > 0 \). The circulating current modes are stable when \(\omega < \omega_0^2 \omega = 0 \), assuming \(\omega_0^2 = \omega_0^2 \) for simplicity. Violation of either inequality renders the zero-current state of the system unstable to current fluctuations. Since \(\omega = 0 \), this instability occurs approximately where the longitudinal resistivity changes sign, consistent with the findings of Andreev et al.

As the longitudinal resistance tends to zero and the ordered state is approached, the circulating current modes become critical before the diffusive mode if \(!_0 > 0 \). (Note that since these modes propagate at a finite frequency, this is consistent with the above discussion on the frequency-dependence of the longitudinal resistivity.) Once the circulating current modes become unstable, the system should undergo a transition into an ordered state where circulating currents spontaneously develop but the density remains uniform. If \(!_0 < 0 \), however, the diffusive mode becomes critical while the circulating current modes remain damped. In this case one would expect the system to undergo a transition into a phase with nonuniform density and spontaneous currents ordered at zero wavevector. A distinguishing characteristic of the latter phase would be the development of voltages resulting from the nonuniform density. Since spontaneous voltages in the absence of a net current have indeed been observed in the ordered state, the case \(!_0 < 0 \) seems to be the experimentally relevant one. We consequently focus on the transition into the density-ordered state and leave an analysis of the circulating-current state to future studies.

These same ideas can be applied to the case \(x < 0 \), where the resistivity is minimized at finite wavevector. Assuming \(\omega > 0 \), one is then interested in wavevectors with magnitude close to \(k_0 = (\frac{1}{2} \sqrt{2} \omega_0) \) corresponding to the resistivity minimum. Since we can no longer perturb in \(k \), we cannot in general write down simple expressions for the modes in the disordered state. We will therefore focus on the point where the resistance at zero frequency and \(k = k_0 \) drops to zero since this simplifies the mode structure. (This happens when \(x = \frac{1}{2} \sqrt{2} \).) A critical diffusive mode then emerges whose frequency is given to lowest order by

\[!_D = \frac{i}{\omega} + \frac{2}{\omega_0^2} V (k_0) + \frac{1}{\omega_0^2} \]

(24)

where \(k = j k \). The circulating current modes to lowest order are

\[! = \frac{2}{\omega_0^2} j = 2 \]

(25)

where \(j = \frac{1}{2} \sqrt{2} \omega_0 \). We have set \(!_0^2 = 0 \) here since the modes already do not become critical simultaneously. In the limit where the \(k_0 \) term is dominant in Eq. (25), the square root is positive. We will assume that \(\omega = 0 \) so that these modes remain damped when the diffusive mode becomes critical since this appears to be the experimentally relevant situation. As the resistivity decreases further, one would expect the diffusive mode to give rise to a time-independent state with nonuniform density ordered at wavevector \(k_0 \).

It follows from the preceding discussion that only the diffusive mode should be important for describing the transition into a nonuniform density phase ordered at either zero or finite wavevector. Since the circulating current modes have a finite damping rate when the diffusive mode becomes critical, they can be neglected provided we focus on frequencies smaller than their decay rate. This provides a large simplification in that it allows us to eliminate the currents altogether and obtain a theory in terms of the density alone. Physically, this is possible because at long times scales the current and density fluctuations are dominated by a diffusive mode characterized by a gradient of the density fluctuations that just balances the Lorentz force associated with the current fluctuations. One would thus expect to be able to write the ‘fast’ current in terms of the ‘slow’ density. This can be done by dropping the time derivatives on the left-hand side of Eq. (2) compared to \(\omega_0 \) and then solving order by order for the current as a function of the density. Inserting the resulting expression into the continuity equation yields a decoupled equation of motion for the density alone. The transition within this simplified description of the system will be analyzed in Sections III and IV for the case of zero wavevector ordering; finite-wavevector ordering is briefly mentioned in Section V but will not be studied in detail here.

III. TRANSITION TO DENSITY-ORDERED STATE AT ZERO WAVEVECTOR WITH \(! = const \), SYMMETRY
A. Ordered state and linearized theory of fluctuations

When \(\tau < 0 \), the ordered state within a model with \(+ \text{ const.}\) symmetry consists of a uniform current

\[
\hat{j} = \frac{\text{const.}}{\sqrt{\pi j}} y \hat{x};
\]

(26)

where the direction \(\hat{x} \) is spontaneously picked out. To balance the associated Lorentz force requires an electric field given by

\[
E_0 = \tau_0 = (\text{const.}) \hat{j} \hat{x};
\]

(27)

We have assumed here that \(\hat{j} \) is small in some sense so that, for instance, terms in the equation of motion proportional to \(\hat{j} \hat{j} \) can be neglected compared to the \(y \hat{j} \) term. To further simplify things, terms such as \(\tau \hat{j} \) that would arise from expanding the longitudinal resistivity to higher order in the potential have also been neglected. Their presence only alters quantitative properties of the ordered state. For instance, a uniform current still develops, but with a modified magnitude.

To establish a connection with the experiments, note that the longitudinal resistance at zero wavevector and frequency is proportional to \(\tau \hat{j} \hat{j} \). The spontaneous current \(\hat{j}_0 \) therefore corresponds to a vanishing longitudinal resistance as seen experimentally. This is also consistent with the results of Andreev \textit{et al.} that show that a stable state must have spontaneous current-carrying state is \(\hat{j} \hat{j} \). To analyze the stability of the ordered state, we consider fluctuations about the uniform current state by writing \(\hat{j} = \hat{j}_0 + \hat{j} \) and \(\tau_0 = \tau + \tau \), where \(\tau \) is given in Eq. (26) and \(\tau_0 \) corresponds to the potential \(\tau_0 \) given in Eq. (27). In the linearized equations of motion for \(\hat{j} \) and \(\tau \), there are two damped modes in the \(\tau_0 \) limit with frequencies

\[
i_0 = i\sqrt{\frac{\tau_0}{\text{const.}}} \hat{j} \hat{j};
\]

(28)

Since the ordered state breaks rotational symmetry, there is also a Goldstone mode with frequency \(\text{const.} \) whose real and imaginary parts are given by

\[
\text{Re} \hat{\omega}_0 = \frac{\tau_0}{\text{const.}} k^2 V(k)
\]

(29)

\[
\text{Im} \hat{\omega}_0 = \frac{\tau_0}{\text{const.}} \frac{g}{k^2} \left(\frac{\tau_0^2}{k^2} \frac{2}{1 + k^2} \right)
\]

(30)

where \(k_x \) and \(k_y \) are the components of \(k \) perpendicular and parallel to \(\tau \), respectively. Note that the damping within this mode is anisotropic. In particular, fluctuations with wavevector parallel to \(\tau \), which produce long-wavelength variations in the direction of \(\hat{j} \), relax much more slowly than fluctuations with wavevector perpendicular to \(\tau \).

To see if the ordered state is stable to fluctuations, one needs to calculate the mean-squared fluctuations of \(\hat{j} \) \(\tau \) and \(\tau \), averaged over the noise. A divergence of either of these quantities would signal the destruction of the ordered state. We compute these quantities within the linearized theory, focusing only on fluctuations arising from the Goldstone mode for simplicity. (Long-wavelength fluctuations arising from the \(\tau_0 \) modes will be finite since they have a nonzero damping rate as \(\tau_0 \).) Denoting the current fluctuations parallel and perpendicular to \(\tau \) by \(\hat{j} \) and \(\hat{j} \), respectively, we find

\[
\text{h} \hat{j} \left(\tau \right) \hat{j} \left(\tau \right) \hat{j} = \frac{\tau_0}{\text{const.}} \frac{g}{k^2} \left(\frac{\tau_0^2}{k^2} \frac{2}{1 + k^2} \right)
\]

(31)

\[
\text{h} \hat{j} \left(\tau \right) \tau = \frac{\tau_0}{\text{const.}} \frac{g}{k^2} \left(\frac{\tau_0^2}{k^2} \frac{2}{1 + k^2} \right)
\]

(32)

where \(\tau_0 = 2u \) and \(g \) is the noise strength. Equation (31) is obviously finite with either short-range interactions \(V(k) \) \(\text{const.} \) or long-range interactions \(V(k) \) \(1=k \) since the integrand itself is not infrared divergent. With long-range interactions, the integrand in Eq. (32) is infrared divergent. However, this divergence is integrable in 2D, leading to finite transverse current fluctuations. The mean-squared density fluctuations are given by

\[
\text{h} \hat{\tau} \left(\tau \right) \hat{\tau} = \frac{\tau_0}{\text{const.}} \frac{g}{k^2} \left(\frac{\tau_0^2}{k^2} \frac{2}{1 + k^2} \right)
\]

(33)

Again, since the infrared divergence in Eq. (33) is integrable with either short- or long-range interactions, the density fluctuations are also finite. Hence we conclude that, for sufficiently low noise, \(g \), the spontaneous current-carrying state is stable to current and density fluctuations with either short- or long-range interactions.

The state characterized by Eqs. (26) and (27) can clearly not exist in arbitrarily large samples since the density would eventually become negative on one side of the sample. For a given spontaneous current \(\hat{j}_0 \), one can estimate the maximum sample length \(L_{\text{c1}} \) below which this is a sensible ordered state by finding how large the sample can be before the density change becomes comparable to the mean density. We do this by assuming that the electron-electron interactions are screened so that the electric field is given by the gradient in the electrochemical potential \(\phi \). If \(\phi \) is the change in between the
edges of a sample of length L, then the magnitude of the electric field is $E = \text{e}E_F$, where e is the electron charge. Regions of density variation comparable to the mean density will appear if E_F, where E_F is the Fermi energy. Setting $E = E_F$ and using Eq. \(27\), we get

$$L_{c1} = \frac{E_F}{e}\rho_j$$

(34)

where we have identified $\rho_j = \frac{\text{e}}{\text{h}}$.

Note that as the mean-field critical point is approached, $J = 0$ and so L_{c1} diverges. One might therefore be tempted to conclude that the model with $\rho_j \neq 0$ correctly describes the physics at the transition at all length scales. We stress that this is not necessarily the case. In computing L_{c1}, we have only demanded that no unphysical features such as negative density arise in this minimal model. What we have not done is compute the characteristic length (which can be smaller than L_{c1} above) below which terms that depend on the magnitude of ρ_j play a negligible role. We will elaborate further on this in the following subsection.

We now estimate L_{c1} using parameters measured by Willett et al.\cite{Willett1985} in order to get a feel for this length scale. In their experiments, carried out on GaAs/AlGaAs samples, the density is $n = 2 \times 10^{11}$ cm$^{-2}$, from which we estimate $E_F = 5$ meV. In a 20GHz microwave field the primary zero resistance state occurs at $B = 0.8$ kG, where $B = \text{m}e\text{B} = 125$. From spontaneous voltages that develop in this zero resistance region, they estimate a spontaneous current of roughly 5 Å flowing between the center and edge in square samples of length 0.4 mm. Assuming a single domain between these contacts, we find $\rho_j = 25$ Amm$^{-2}$. Putting these parameters together, we estimate the critical length for to be $L_{c1} = 1$ mm. In samples with dimension larger than L_{c1}, terms in the equation of motion involving the magnitude of ρ_j must be taken into account to produce a sensible ordered state. Such terms would prevent the density from becoming arbitrarily large and negative, and would lead to inhomogeneous currents and densities.

Determining the corresponding current-carrying ordered state on these longer length scales is an interesting problem that we do not address here.

B. Transition with short-range interactions

Having discussed an example of a stable ordered state that arises from a model with $\rho_j \neq 0$ + constant symmetry when $\rho_j < 0$, we now turn to the critical properties of system at the phase transition. We begin with the simplest case of short-range interactions.

As discussed in Section II, our analysis is greatly simplified by assuming that near the critical point circulating current modes remain damped while the diffusive mode becomes critical. Focus only on the diffusive mode enables us to write the current in terms of the density and use the continuity equation to write an effective theory involving only the density. Imposing the symmetry $\rho_j \neq 0$ + constant, the resulting equation of motion takes the form

$$0 = \theta_n \rho_j^2 + \nu \rho_j^2 + D \rho_j^4 + r \rho_j^4 + \rho_j^2 (\theta \rho_j^2 + \nu \rho_j^2)$$

(35)

where $D > 0$ and ρ_j is a Gaussian noise source with variance $2g^2$. The transition occurs at $\rho_j = 0$ (within mean-field theory), so we will take $\rho_j = 0$ from now on. Since we are considering short-range interactions here, $\rho_j = n$. Quartic and higher order terms in ρ_j have been neglected since they contain at least five gradient operators and are therefore irrelevant in two dimensions.

The upper critical dimension for this model is $d_{uc} = 2$ for the case of short-range interactions. We use dynamical renormalization group techniques\cite{Wilson1975, Wilson1974} to deduce whether the nonlinearities appearing in Eq. (35) are marginally relevant or irrelevant in two dimensions. This procedure is facilitated by the use of the Martin-Siggia-Rose (MSR) formalism\cite{Martin1974}. The essence of this formalism is that one introduces a 'partition function' Z that is useful for obtaining various correlation functions, namely

$$Z = \int D\rho_j (\theta \rho_j^2 + \nu \rho_j^2 + D \rho_j^4 + r \rho_j^4 + \rho_j^2 (\theta \rho_j^2 + \nu \rho_j^2)) \; ; \quad (36)$$

This imposes the equation of motion as a constraint on all possible spacetime 'trajectories' of $\rho_j(t)$. The ellipsis indicates all nonlinearities appearing in Eq. (35). This functional delta-function constraint is implemented through an auxiliary field $n(r,t)$ so that Z can be written as

$$Z = \int D\rho_j Dn e^{in\rho_j n^0 + \text{const.}} \; ; \quad (37)$$

$$Z = \int D\rho_j Dn e^{in\rho_j n^0 + \text{const.}} \; ; \quad (38)$$

where constants have been absorbed into the integration measure for n. A useful feature of this method is that the noise averaging can now be easily performed, with the result that

$$Z = \int Z_{\rho_j} n \rho_j \rho_j^0 \rho_j^0 + i \rho_j^0 (\rho_j n)^2 \; ; \quad (39)$$

in the 'action' S. This leads to an MSR action expressed in terms of the fields $n; r; n^0$ and no noise terms. One can then implement the renormalization group transformation using standard field theory techniques as follows. First, the action S is written in Fourier space with an ultraviolet cutoff cutoff reflecting the coarse-graining of the fields. One then integrates out fields with wavevectors q such that $\text{cutoff} < q < \text{cutoff}$, where $\text{cutoff} > 1$. This results in an effective action with a reduced cutoff cutoff. To restore the initial cutoff, one then rescales wavevectors, frequencies, and the fields according to

$$k^0 = s k$$

(40)

$$t^0 = t s^4$$

(41)

$$n^0(k^0; t^0) = s n(k; t)$$

(42)

$$\rho_j^0(k^0; t^0) = s \rho_j(k; t)$$

(43)
By setting $g = 1 + d'/d$, one then obtains differential recursion relations that specify how the effective coupling constants for the long-scale degrees of freedom “flow” as short-scale degrees of freedom are integrated out. In the present paper these recursion relations will be calculated to one-loop order.

In anticipation of finding a stable Gaussian fixed point, we choose the rescaling exponents to take on their mean-field values: $z = 4$, $\gamma = 6$, and $\alpha = 4$. (Since there is no small parameter at our disposal, the only possible controlled fixed point must be Gaussian.) These exponents keep the noise strength g^2 fixed under renormalization since diagrammatic corrections to g^2 vanish at one-loop order. To simplify the flow equations for the remaining coupling constants, we define the following dimensionless parameters:

$$
\begin{align*}
1 &= (\frac{e^{-D}}{3}) (4 & 3) \\
2 &= (\frac{e^{-D}}{3}) 2 \\
3 &= (\frac{e^{-D}}{3}) 3 \\
4 &= 1 \\
5 &= 2 \\
\end{align*}
$$

where $g = 4 D^2$. The flow equations in terms of these parameters are

$$
\begin{align*}
\theta_D &= \frac{1}{2} D \\
\theta_1 &= \frac{3}{2} (1 + 13) 1 + 3 (4 + 4) 2 + 5 (4 + 4) 3 \\
\theta_2 &= \frac{1}{2} (4 + 4) 2 + \frac{1}{4} (3 + 7) 1 + \frac{1}{4} (3 + 7) 1 \\
\theta_3 &= \frac{3}{2} (1 + 12) 3 \\
\theta_4 &= (1 + 9) 4 + \frac{2}{5} \\
\theta_5 &= (1 + 10) 5 \\
\end{align*}
$$

At this point we would like to identify the basin of attraction for the Gaussian fixed point under consideration. That is, for a given set of initial conditions for θ_i, we would like to know whether these parameters all flow to zero as $t \to \infty$. While it is straightforward to check this numerically, it is difficult to draw general conclusions either analytically or from the numerics due to the five-dimensional parameter space and the fact that Eqs. (44) through (51) are all coupled. In the subspace with $\gamma = 0$, one can show analytically that the Gaussian fixed point is stable to all perturbations within that subspace. In the full parameter space with $\gamma \neq 0$, we have shown that a finite-volume region of initial conditions corresponds to stable trajectories where each θ_i flows to zero. The asymptotic solution for such trajectories is given by

$$
\begin{align*}
&1 \quad (Q = 11) \quad 1 \quad (Q = 242) \quad 10^{11}; \\
&2 \quad (Q = 11) \quad 15 \quad 11, \\
&3 \quad (Q = 11) \quad 15 \quad 11, \\
&4 \quad (Q = 11) \quad 15 \quad 11, \\
&5 \quad (Q = 11) \quad 15 \quad 11, \\
\end{align*}
$$

where C_i are arbitrary constants. One can verify the stability of these flows by perturbing around this solution. According to Eq. (51), the subdiffusion constant grows asymptotically as $D_0 \propto t^{-1}$ along these trajectories, where D_0 is a constant. The asymptotic behavior of the original coupling constants is given by

$$
\begin{align*}
&1 \quad 2^{11}; \\
&2 \quad 3^{11}; \\
&3 \quad 4^{11}; \\
&4 \quad 5^{11}; \\
&5 \quad 6^{11}, \\
\end{align*}
$$

where $J_1(\kappa)$ is a Bessel function of the first kind. Note that the current becomes a function correlated in the limit that $t \to \infty$. Since the interactions are only marginally irrelevant, they will give rise to logarithmic corrections to these correlation functions, which will not be computed here.

So far we have focused only on the case where the coupling constants flow to zero upon renormalization. Even outside of this marginally stable region, the couplings are still only marginally relevant, and therefore grow only logarithmically with length scale. In fact, we have seen numerically that many trajectories that initially flow toward the Gaussian fixed point eventually diverge from it, but do so only after many renormalization group iterations. In these instances, it may be very difficult to resolve deviations from mean-field theory either numerically or experimentally and the transition may appear continuous even in the presence of the marginally relevant couplings.
C. Is this model valid near the transition?

We will now discuss when the model with \(+ \text{const.} \) symmetry and short-range interactions is expected to be appropriate for describing the physics at the transition. Consider adding the term \(\varepsilon \left(r^2 \right) \) to Eq. 35, which is the most relevant nonlinearity that violates this symmetry. This term can be traced back to the \(r^2 \) term in Eq. 12. We define a dimensionless coupling constant \(\sim = \Theta \), where \(\Theta \) is the subdiffusion constant. If we interpret the equation of motion as arising from a Taylor expansion of the resistivity, then we can write

\[
\sim = \frac{\Theta}{D} = \Theta \frac{r}{D} = \Theta k^2 \quad : \quad (55)
\]

One expects \(\sim \) to be small in a not-too-dirty electron gas, since in a pure system \(\Theta \) is already non-vanishing at any nonzero wavevector (contributing to the denominator), while the numerator vanishes by Galilean invariance in this limit. However, this term is strongly relevant in two dimensions. Hence, even if one starts with \(\sim 1 \), in an infinite system this coupling constant will eventually become much greater than unity under renormalization. Ignoring this term will certainly not be valid in this case, so one would need to appeal to the full equation of motion to describe the transition. In a finite system, however, one is interested in reducing the cutoff to roughly \(1 \approx L \), where \(L \) is the system size, so the growth of the coupling constant will be bounded. The model with \(+ \text{const.} \) symmetry will provide a reasonable description of the transition as long as \(L \) is sufficiently small that \(\sim \) does not become of order 1. Under a tree-level renormalization group iteration, the renormalized coupling constant \(\sim \) grows according to \(\sim = \sim_0 \), where \(\sim_0 \) is the initial cutoff, this can be expressed as

\[
\sim_0 = \sim_0 \cdot \Theta_{r} = \sim_0 \Theta_{r} : \quad (56)
\]

We take \(\sim_0 = 1 = L_{c2} \) and \(\sim_0 = 1 = L_{r} \), where \(L_{c2} \) is the inelastic mean free path. For the samples used in the experiments, \(\sim_0 = \frac{1}{4} \) and \(\sim_0 = \frac{1}{4} \), which is comparable to the transport mean free path estimated from the mobility at a temperature of 1K. This is about an order of magnitude smaller than the sample lengths.

To estimate the critical length scale \(L_{c2} \) below which the model is valid, we set \(\sim_0 = 1 \), leading to

\[
L_{c2} = \frac{1}{4} \frac{\sim_0}{\sim_0} : \quad (57)
\]

We note that if \(\sim \sim 1 \), say around \(\sim 1 \), then the critical length \(L_{c2} \) would already be comparable to the sample sizes studied in the experiments. A serious estimate of this length would require a microscopic calculation of the resistivity \(\sim \) in the presence of microwaves to compute the bare value of \(\sim \) via Eq. 55 and would be valuable.

D. Transition with long-range interactions

We have seen in the case of short-range interactions above that a finite-volume region of initial couplings are marginally irrelevant and flow to zero upon coarse-graining. Next, we discuss the fate of these flows when long-range interactions are turned on. This case is relevant experimentally due to the absence of metallic gates in the experiments conducted so far, leading to unscreened Coulomb interactions.

Consider again the equation of motion given in Eq. 35, with \(\varepsilon_1 = \frac{1}{4} \varepsilon_2 \varepsilon_2 \). With long-range Coulomb interactions, the Fourier-transformed interaction potential (in two dimensions) is \(\varepsilon_{~(k)} = \frac{\sim}{k^2} \). The upper critical dimension in this case is \(d_{c\varepsilon} = 4 \). Since we are interested in the transition in \(d = 2 \) dimensions, one option is to carry out an expansion in \(d = 3 \) dimensions. This approach is complicated by the need to generalize the interactions in Eq. 33 to higher dimensions. Alternatively, one can perform an expansion by writing \(\varepsilon_{~(k)} = 1 \sim \sim k \), with \(k \). The upper critical dimension is then \(d_{c\varepsilon} = 2 + \). We will adopt the latter approach since we can then work directly in \(d = 2 \) dimensions and thereby avoid generalizing the equation of motion.

We use the dynamical renormalization group as outlined above to calculate the flow equations at one-loop order and to lowest order in \(\sim \). As in the short-range case, there are no diagrammatic corrections to the noise strength \(\sim \) at one-loop. To keep \(\sim \) fixed under renormalization, we take the rescaling exponent \(\sim = (4 + z) \sim 2 \). Similarly, we choose the exponent \(z = 2 \) to fix the coefficient of \(\sim \) to be unity in Eq. 33.

To simplify the flow equations for the remaining parameters, we again use the dimensionless coupling constants defined in Eq. 44 (with \(g = 4 \sim \sim D \)). The subdiffusion constant then flows according to

\[
\theta_{r} = \left(2 + 4 + \sim_0 = 2 \right) D : \quad (58)
\]

For convenience we choose \(z = 4 \) fixed.

With this choice of rescaling exponents, the flow equations for the parameters \(i \) are

\[
\theta_{1} = \left(\frac{3}{2} \sim_0 + 13 \right) \sim_0 = 3 \sim_0 + 4 + 2 \sim_0 : \quad (59)
\]

\[
\theta_{2} = \left(\frac{3}{2} \sim_0 + 7 \right) \sim_0 = 2 + \frac{1}{4} \sim_0 = 7 \sim_0 = 5 \sim_0 : \quad (60)
\]

\[
\theta_{3} = \left(\frac{3}{2} \sim_0 + 4 \right) \sim_0 = 3 \sim_0 = 3 \sim_0 : \quad (61)
\]

\[
\theta_{4} = \left(\sim_0 + 9 \right) \sim_0 = 4 + 2 \sim_0 : \quad (62)
\]

\[
\theta_{5} = 5 \sim_0 + 10 \sim_0 : \quad (63)
\]

In the case of short-range interactions we found that there are stable trajectories where all the coupling constants go asymptotically to zero. This clearly cannot happen in the case of finite-range interactions due to the \(\sim \) terms above. Instead, we search for fixed points of the form \(\sim_0 = a_i \), where \(a_i \) are constants. One can easily show that all such fixed points are unstable. We interpret this lack of a stable fixed point as signaling a first-order transition. Thus, we conclude that
the continuous transition that can occur with short-range interactions is driven first-order by the presence of long-range interactions of the form $\propto k^2$, with 1.

This result may seem surprising initially since one might expect long-range interactions to suppress density fluctuations and thereby further stabilize the Gaussian fixed point. For instance, in the linearized equation of motion the density diffuses faster with long-range interactions. A competing effect, however, is that density fluctuations can interact nonlocally through the nonlinear terms. Thus, density fluctuations in one region of the sample can further induce fluctuations over long distances. This can lead to positive feedback of these density fluctuations via the nonlinearities, which evidently drives the transition first-order.

IV. TRANSITION TO DENSITY-ORDERED STATE AT ZERO WAVEVECTOR IN THE FULL ROTATIONALLY INVARIANT MODEL

The model considered above with $\propto + \text{const.}$ symmetry is only appropriate for describing physics up to a certain length scale. For instance, in the ordered state with a given uniform current, regions of negative density appear if the sample is too large. We estimate this length scale to be roughly 1mm using parameters from Willett’s experiments. On larger scales, terms in the equation of motion depending on the magnitude of \propto, which prevent the density from becoming negative, must be taken into account. As discussed above, at the transition, the leading term involving the magnitude of \propto (i.e., the $2\propto$ term in Eq. (2)) is strongly relevant in two dimensions. The dimensionless coupling constant for this term therefore grows under renormalization. In a finite system, the growth of this coupling is limited by the system size L and the wavevector cutoff q of order $1=L$. Neglecting terms depending on the magnitude of \propto becomes an invalid approximation when the system size is sufficiently large that this renormalized dimensionless coupling becomes of order unity.

To describe physics in samples with linear dimensions larger than these length scales, one must therefore relax the $\propto + \text{const.}$ symmetry and appeal to the full equation of motion in Eq. (2) without any additional symmetries. This is the subject of the present section. Identifying the ordered state that develops in this case is nontrivial, so we will focus only on the transition to the ordered state, considering both short- and long-range interactions.

A. Transition with short-range interactions

When we relax the $\propto + \text{const.}$ symmetry, Eq. (2) generalizes to

$$0 = \theta_z r + \Delta r^2 + D r^4 r^0 \propto (r); \quad (64)$$

where $D > 0$ and $^0\propto$ is a Gaussian noise source with variance $2\Delta^2$. In this subsection we consider short-range interactions, so $\propto = n$. The transition in the linearized theory occurs at $e = 0$ since the diffusive mode becomes unstable when $\propto < 0$. Other nonlinearities are in principle present in Eq. (64), but they are less relevant than the \propto^2 term and can be neglected provided we work near the upper critical dimension.

To derive Eq. (64), we solved for the current in terms of the density assuming two spatial dimensions. However, the interaction is strongly relevant in two dimensions, so to study its effects we need to to continue this model to higher dimensions. We initially adopt the most naive way of doing this continuation; namely, we simply assert that Eq. (64) is valid in d dimensions. In the case of short-range interactions the upper-critical dimension for the nonlinearity is then $d_{uc} = 6$.

We have carried out an ε-expansion in $d = 6$ dimensions to obtain the renormalization group flow equations to one-loop order. Rather than go through the details of the calculation, we will merely state that these equations lack a stable fixed point, which we interpret as signaling a first-order transition. A more direct route to this conclusion can be obtained by observing that Eq. (64) is identical to the equation of motion for an equilibrium model with a conserved order parameter. That is, it (Eq. (64)) can be rewritten as

$$\theta_z n = r^2 \frac{F}{n} n + r^0; \quad (65)$$

with the “free energy” given by

$$F = \frac{1}{2} \int r^2 \Delta n^2 + D \propto n^2 + \frac{1}{3} n^3 + \frac{1}{2} \frac{\propto}{2} n^4; \quad (66)$$

The term proportional to \propto that results from Eq. (65) is irrelevant at the upper critical dimension and has therefore been excluded from Eq. (64). We will assume $\propto = 0$ for simplicity, although this is not essential. Figure 2 depicts the free energy density \propto as a function of uniform density n for three different values of \propto. When $\propto = 2\propto_c$, the free energy is minimized when $n = 0$ as illustrated by the solid curve. At $\propto = \propto_c$, the free energy has two degenerate minima as shown in the dashed curve. Below \propto_c, the free energy is minimized by a nonzero value of n. This situation is represented by the
dotted line for \(\varepsilon = 0 \). When \(\varepsilon \) decreases below \(\varepsilon_c \), the density will therefore jump discontinuously from zero to minimize the “free energy”. This signals the onset of a first-order transition, consistent with our renormalization group results. Note that the transition occurs at a finite value of \(\varepsilon \), preempting the apparent transition (a “spinodal”) at \(\varepsilon = 0 \) expected from the linear theory. As Fig.\(\text{a} \) demonstrates, the point \(\varepsilon = 0 \) actually corresponds to a spinodal decomposition where the system goes from being metastable to globally unstable at \(n = 0 \).

These results hold only near \(d = 6 \). We can reduce the upper critical dimension of the model by considering a spatially anisotropic continuation of Eq. (64) to higher dimensions. To do this, we can start by continuing Eq. (64) to \(d \) dimensions and taking the resistance at zero wavevector and frequency to be anisotropic. That is, write

\[
x_j \neq x_k \quad x_k \neq x_j
\]

in Eq. (64), where \(x_j \) is the current in the \(x \)-y plane and \(x_k \) represents the current in the additional \(d \) \(k \) dimensions. We will be interested in tuning the resistance \(r_{ij} \) in the \(x \)-y plane to zero while leaving the resistance \(r_{kk} \) for the remaining directions positive. We can then eliminate the current in favor of the density as before to obtain

\[
0 = \partial_t n + \varepsilon x_k^2 + D \gamma_r \varepsilon^4 \gamma_r (n + 2k) ; \quad (68)
\]

where \(n \), \(D \), \(\gamma_r \), and \(\varepsilon \) are the constants. We have also only retained the \(x \)-y \((\text{in-plane}) \) components of the noise \(\varepsilon \), as noise components in the additional \(d \) \(k \) dimensions are irrelevant. Similarly, we have omitted nonlinear terms involving \(x_k \) since, due to the high anisotropy of the harmonic terms, these are clearly less relevant than the corresponding terms involving only \(\varepsilon \) derivatives.

The upper critical dimension for this model is \(d_{uc} = 4 \). We have performed a one-loop expansion in \(d = 4 \) dimensions to one-loop order. Once again, we find that the model lacks a stable fixed point. Thus, even near \(d = 4 \) dimensions, the transition still appears to be first-order.

It seems quite likely that the transition is first-order in \(d = 2 \) dimensions as well. In the model with \(\varepsilon \) + constant symmetry and short-range interactions, we showed in the previous section that one could have a continuous transition in \(d = 2 \) dimensions. Terms that violate the \(\varepsilon \) + constant symmetry appear then to always drive the transition first-order.

We propose the following simple physical interpretation for this. We have been analyzing the transition at zero wavevector and zero frequency, where one expects long-wavelength fluctuations to become critical at the transition to give rise to an ordered state with uniform, static current. Such an ordered state must be accompanied by a density gradient transverse to the current to balance the Lorentz force. We have already argued that such a state cannot exist in the thermodynamic limit because the density would become arbitrarily large and negative at the edges of the sample. The only terms in the equation of motion that sense these unphysical features are precisely those terms that depend on the magnitude of the density. In the thermodynamic limit, these terms must therefore induce a first-order transition into some other state, such as a state ordered at finite wavevector or a phase-separated state. A direct transition from a uniform isotropic liquid to a modulated (finite wavevector) smectic state can also be argued to be first-order on quite general grounds.\(^{24,25,26} \)

\section*{B. Transition with long-range interactions}

Finally, let us consider the effect of long-range interactions. We saw in the model with \(\varepsilon + \text{constant} \) symmetry that turning on long-range interactions drove the transition first-order. In the present case, the transition is already first-order with short-range interactions, so it seems rather likely that the transition will remain so with long-range interactions. This is indeed what we find based on a renormalization group analysis. We will therefore only outline the calculation and state the results.

Consider Eq. (64) with \(n = R \), \(\varepsilon \), \(\gamma_r \), and \(\gamma_k \) = 1. Both once again, the interaction is strongly relevant as an ordered state can exist. We will therefore outline the calculation and state the results.

\section*{V. DISCUSSION AND SUMMARY}

The focus of this paper has been on the physics near the transition to zero resistance state in 2DEGs driven with microwave radiation. Our goal was to understand the long-distance, long-time properties of the system taking into account noise and fluctuation effects within a nonequilibrium hydrodynamic theory involving the electron current and density. We specifically focused on the transition to a time-independent, density-ordered state that occurs when the microscopic resistance first becomes negative at \(\kappa = 0 \); \(\gamma \) = 0. The long wavelength subdiffusive density fluctuations are the only critical modes at this transition. We analyzed two models involving the density mode: (i) Model-I, characterized by an imposed symmetry under a global uniform shift of the density, valid only on sufficiently small length scales, and (ii) Model-II, which is most general rotationally invariant model with no additional symmetries.

The ordered state in Model-I consists of a uniform current and a transverse Hall electric field that balances the Lorentz force. This state was shown to be stable within a linearized theory of fluctuations about the ordered state.

We argued that the uniform-current steady state in Model-I cannot exist in arbitrary large samples since the uniform Hall field would eventually lead to regions of negative density. Using parameters from Willett’s experiments, we estimated that samples with dimension smaller \(L_{cl} \) = 1mm can support this state. To describe the ordered state in larger samples, one must
include terms that depend on the magnitude of the density, which would prevent the density from becoming arbitrarily large and negative.

Since the ordered state in Model-I breaks continuous rotational symmetry, there is an associated Goldstone mode corresponding to long-wavelength fluctuations of the current transverse to the uniform current flow direction. We suggest that a possible way of detecting this Goldstone mode might be to use surface acoustic waves in the zero resistance regime. A surface acoustic wave at the right wavelength and frequency should couple to this excitation, leading to anomalous shifts in the velocity and intensity of the wave.

The transition to this ordered state in Model-I was analyzed both in the case of short- and long-range interactions using dynamical renormalization group methods. This model is valid for describing the transition on length scales \(L < L_{c2} \), which we think could be comparable to sample sizes in current experiments as discussed in Section III C, although it would be valuable to have an estimate from microscopic calculations. With long-range interactions, we showed that Model-I undergoes a first-order transition. However, with short-range interactions, we showed that in two dimensions the Gaussian fixed point in Model-I has a finite-volume basin of attraction. That is, a finite-volume region of initial nonlinear couplings all flow to zero upon renormalization. The transition in these cases is of the mean field type. In particular, mean-field theory predicts a continuous transition to the ordered state. Additionally, the density subdiffuses at the critical point, with a frequency given by \(! / \omega_c \). This subdiffusion should lead to large density fluctuations and hence large voltage fluctuations at the transition. It may be interesting to observe this in samples with metallic gates, so that the Coulomb interactions are screened. Although it may be difficult to quantitatively test the mean-field predictions, one could perhaps measure voltage correlations at contacts placed along the perimeter of the sample. These voltages should behave similarly to the density-density correlations given in Eq. (52). Qualitatively, one should at least observe large voltage fluctuations since the density is critical and subdiffusive at the transition.

We next turned to an analysis of the transition in the more generic Model-II, which includes terms that depend explicitly on the magnitude of the density. We found that the transition within this model is always first-order independent of whether interactions are short- or long-range, at least near the upper-critical dimension of the theory. The physical mechanism for this first-order transition is as follows. If the resistance minimum occurs at \(k = \pi = 0 \), then one would expect long-wavelength fluctuations to give to a time-independent state with a uniform current and transverse Hall field. As mentioned above, such a state cannot exist in arbitrarily large samples since regions of negative density would eventually appear. The role of terms that depend on the magnitude of the density is to prevent such unphysical features from arising. These terms consequently force a first-order transition into a more complicated ordered state.

The experiments conducted so far were carried out using samples without metallic gates, leading to unscreened Coulomb interactions. The transition in these systems is therefore predicted to be first-order, which should have measurable consequences. In particular, one would expect discontinuous jumps in various observable quantities such as spontaneous currents, voltages, and local magnetizations that develop at the transition. We realize that these jumps may be difficult to measure experimentally. Another possibly more controlled way of detecting a first-order signature might be to measure the critical current above which the zero-resistance state disappears. If one approaches the transition from the ordered state (by, say, changing the magnetic field) then the critical current should drop discontinuously from some finite value to zero if the transition is indeed first-order.

There are several future directions one could pursue with the theory presented here that we believe would be interesting and may provide further insight into the remarkable physics of driven 2DEGs. Regarding the transition to zero resistance, we have considered only the simplest case where the resistance minimum occurs at \(k = \pi = 0 \). It may be interesting to generalize our results for this case to include static disorder to see how it affects the transition. One could also analyze the transition at finite frequency where a time-dependent state such as circulating currents would arise. Additionally, one could consider the transition at zero frequency but nonzero wavenumber \(k_0 \). In this case one would be interested in wavevectors \(k \) such that \(\kappa \cdot k_0 \ldots \kappa_0 \). If the equation of motion was derivable from a free energy of the form

\[
F = \sum_{q} q(q) n(q) \frac{\partial}{\partial q} \left(\sum_{\{q\}} q(q) n(q) \right) + \sum_{q, q_2} q(q) n(q) q(q_2) n(q_2) + \sum_{q, q_2, q_3} q(q) n(q) q(q_2) n(q_2) q(q_3) n(q_3)
\]

then we know that the cubic term drives the transition first-order based on analogies with the solidification of an isotropic liquid. Even in the case where the cubic term vanishes, the transition is still driven first-order by fluctuations. Due to the presence of nonequilibrium terms, however, the equation of motion will not be derivable from a free energy. Nonequilibrium effects could cause dramatic deviations from the equilibrium theory, and at present it is unclear what effect such terms will have on the transition.

Another avenue one could pursue with this theory is to address the properties of the ordered state away from the transition in Model-II. Numerical studies may be best suited for this purpose especially since the ordered state is likely to be inhomogeneous and not analytically tractable. One possible route is to generalize the numerics on the flocking transition done by Vicsek et al. to include a magnetic field and interactions.

Finally, we note that while early numerical work on the flocking transition in the absence of a magnetic field indicated a continuous phase transition, some recent simulations on larger system sizes hint at a weak first-order transition. If true, this would be consistent with the transition continuing to be first-order in the presence of a magnetic field for large enough systems as argued in this paper.
Acknowledgments

The authors gratefully acknowledge Michael Cross, Jim Eisenstein, Matt Foster, Hsiu-Hau Lin and R. Rajesh for useful discussions. This work was supported by the National Science Foundation through a Graduate Research Fellowship (J. A.) and grants DMR-9985255 (L. B. and A. P.), PHY-9907949 (A. P. and M. P. A. F.), DMR-0210790 (M. P. A. F.), and DMR-0321848 (L. R.). We also acknowledge funding from the Packard Foundation (L. B., A. P., and L. R.) and the Alfred P. Sloan Foundation (L. B. and A. P.).

Electronic address: aliceaj@physics.ucsb.edu
Electronic address: balents@physics.ucsb.edu
Electronic address: mpaf@kitp.ucsb.edu
Electronic address: arun@kitp.ucsb.edu
Electronic address: radzihov@colorado.edu

1. M. A. Zudov, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. Rev. B 64, 201311 (2001).
2. S. A. Studenikin, M. Potemski, P. T. Coleridge, A. S. Sachrajda, and Z. R. Wasilewski, Solid State Commun. 129, 341 (2004).
3. R. G. Mani, V. Narayanamurti, K. von Klitzing, J. H. Smet, W. B. Johnson, and V. Umansky, Phys. Rev. B 69, 161306 (2004).
4. R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Johnson, and V. Umansky, Nature (London) 420, 646 (2002).
5. M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 90, 046807 (2003).
6. S. I. Dorozhkin, JETP Lett. 77, 577 (2003).
7. R. L. Willett, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 93, 026804 (2004).
8. C. L. Yang, M. A. Zudov, T. A. Knuuttila, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 91, 096803 (2003).
9. V. I. Ryzhii, Sov. Phys. Solid State 11, 2078 (1970).
10. V. I. Ryzhii, R. A. Suris, and B. S. Shchamkhalova, Sov. Phys. Semicond. 20, 1299 (1986).
11. A. C. Durst, S. Sachdev, N. Read, and S. M. Girvin, Phys. Rev. Lett. 91, 086803 (2003).
12. X. L. Lei and S. Y. Liu, Phys. Rev. Lett. 91, 226805 (2003).
13. X. L. Lei, J. Phys.: Condens. Matter 16, 4045 (2004).
14. M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 69, 035303 (2004).
15. I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov, cond-mat/0310668 (2003).
16. I. A. Dmitriev, A. D. Mirlin, and D. G. Polyakov, cond-mat/0403598 (2004).
17. A. V. Andreev, I. L. Aleiner, and A. J. Millis, Phys. Rev. Lett. 91, 056803 (2003).
18. J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
19. J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
20. N. D. Mermin and H. Wagner, 1966, 17, 1133 (1966).
21. D. Forster, D. R. Nelson, and M. J. Stephen, Phys. Rev. A 16, 732 (1977).
22. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
23. P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423 (1973).
24. S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702 (1978).
25. S. A. Brazovskii, Sov. Phys. JETP 41, 85 (1975).
26. The first order transition can be explicitly demonstrated for an equilibrium system, and is likely to remain so even in the nonequilibrium case.
27. A. Wixforth, J. P. Kotthaus, and G. Weimann, Phys. Rev. Lett. 56, 2104 (1986).
28. R. L. Willett, M. A. Paalanen, R. R. Ruel, K. W. West, L. N. Pfeiffer, and D. J. Bishop, Phys. Rev. Lett. 65, 112 (1990).
29. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).
30. G. Gregoire and H. Chaté, Phys. Rev. Lett. 92, 25702 (2004).