

I. INTRODUCTION

Quantum bits, or qubits, that are encoded into internal states of trapped ions are an interesting system for Quantum Information Processing (QIP) studies [1,2]. Internal states of trapped ions can be well isolated from the environment, and very long coherence times are possible [2,3,4,5]. The internal states of several ion-qubits can be deterministically entangled, and quantum gates can be carried out between two ion-qubits [6,7,8,10,11,12].

Among different choices of internal states, qubits that are encoded into pairs of ground state hyperfine or Zeeman states benefit from negligible spontaneous decay rates [2]. The small energy separation between the two states of such qubits (typically in the radio-frequency or microwave domain) allows for phase coherence between a local oscillator and a qubit superposition state over relatively long times [2,1,13,14].

The quantum gates that are performed on hyperfine ion-qubits typically use laser beams. Since light couples only very weakly to the electron spin, spin manipulations rely instead on the spin-orbit coupling of levels that are typically excited non resonantly through allowed electric dipole transitions. Spin manipulations therefore require a finite amplitude in the excited electronic state, and spontaneous scattering of photons from the laser beams during the gate is inevitable.

Fault-tolerant quantum computation demands that the error in a single gate is below a certain threshold. Current estimates of the fault-tolerance error threshold range between 10^{-2} to 10^{-4} [15,16,17]. These estimates rely on specific noise models and error-correction protocols and should be considered as guidelines only. However, the general view is that for fault tolerance to be practical, the error probability in quantum gates should be at least as small as 10^{-4}. It is, therefore, worth exploring the limitations to the fidelity of quantum gates performed on trapped ions with laser light, using this level of error as a guideline [18].

In his 1975 paper [19], Mollow showed that the effect of a quantum coherent field on an atom is equivalent to that of a classical field plus a quantum vacuum field. The error due to the interaction with light can be categorized into two parts. The first is the error due to noise in classical laser parameters, such as intensity or phase [2,20]. The second part originates from the quantum nature of the electromagnetic field and is due to vacuum fluctuations, i.e. the spontaneous scattering of photons [21,22].

A. Ion-qubit levels and transitions

Most ion species considered for QIP studies have a single valence electron, with a $^{2}S_{1/2}$ electronic ground state, and $^{2}P_{1/2}$ and $^{2}P_{3/2}$ electronic excited states. Some of the ions also have D levels with lower energy than those of the excited state P levels. Ions with a non zero nuclear spin also have hyperfine structure in all of these levels. A small magnetic field is typically applied to remove the degeneracy between different Zeeman levels. Here we consider qubits that are encoded into a pair of hyperfine levels of the $^{2}S_{1/2}$ manifold. Figure 1 illustrates a typical energy level structure.

To allow for a straightforward comparison between different ion species, we investigate qubits that are based on clock transitions, i.e. a transition between the $|F = I - 1/2, m_F = 0 \rangle \equiv | \uparrow \rangle$ and $|F = I + 1/2, m_F = 0 \rangle \equiv | \downarrow \rangle$ hyperfine levels in the $S_{1/2}$ manifold of ions with a half odd-integer nuclear spin I, at a small magnetic field. For this transition, the total Raman and Rayleigh photon scattering rates, as well as the Rabi frequency, are independent of I, and the comparison between different ion species depends only on other atomic constants.

Suppositions encoded into these states are also more resilient against magnetic field noise [3,5,11]. Even though our quantitative results apply only to this configuration, for other choices of hyperfine or Zeeman qubit states (including those with $I = 0$) the results will not change significantly.
Gates are assumed to be driven by pairs of Raman beams detuned by Δ from the transition between the $S_{1/2}$ and the $P_{1/2}$ levels (See Fig. 1). We further assume that the Raman beams are linearly polarized and Raman transitions are driven by both σ_+ photon pairs and σ_- photon pairs. The two beams in a Raman pair are designated as red Raman (r) and blue Raman (b) by their respective frequencies. In the following we also assume that Δ is much larger than the hyperfine and Zeeman splitting between levels in the ground and excited states.

The Rabi frequency between the two clock states is\cite{23}

$$\Omega_R = \frac{g_b g_r}{3} (b_- r_+ - b_+ r_-) \frac{\omega_I}{\Delta (\Delta - \omega_I)}, \quad (1)$$

where $g_{b/r} = |E_{b/r}|/|P_{3/2}, F = I + 3/2, m_F = F| \cdot \hat{d} \cdot \hat{\sigma}_+ / |S_{1/2}, F = I + 1/2, m_F = F)|/2\hbar$, $E_{b/r}$ is the peak electric field of the b or r beam at the position of the ion, respectively, and $\hat{d} \cdot \hat{\sigma}_+$ is the right circular component of the electric dipole operator. The right and left circular polarization components of the b and r beams are b_+/r_+ and b_-/r_-, respectively. The $P_{1/2}$ and $P_{3/2}$ excited levels are separated by an angular frequency ω_I.

The total spontaneous photon scattering rate from these beams is given by\cite{23}

$$\Gamma_{\text{total}} = \frac{\gamma}{3} \left[g_b^2 (b_+^2 + b_-^2) + g_r^2 (r_+^2 + r_-^2) \right] \left[\frac{1}{\Delta^2} + \frac{2}{(\Delta - \omega_I)^2} \right]. \quad (2)$$

Here γ is the natural linewidth of the $P_{1/2}$ and $P_{3/2}$ levels\cite{27}. We now assume linearly polarized Raman beams with $b_- = b_+ = r_- = -r_+ = 1/\sqrt{2}$\cite{23}. We further assume $g_b = g_r \equiv g$. The time for a π rotation is

$$\tau_\pi = \frac{\pi}{2\Omega_R}. \quad (3)$$

Combining Eq. (1), (2) and (3), the probability to scatter a photon during τ_π is given by

$$P_{\text{total}} = \left(\frac{\pi\gamma}{\omega_I} \right)^2 \frac{2\Delta^2 + (\Delta - \omega_I)^2}{\Delta (\Delta - \omega_I)} \left[\frac{1}{\Delta^2} + \frac{2}{(\Delta - \omega_I)^2} \right]. \quad (4)$$

The dashed line in Fig. 2 shows P_{total} vs. Δ, where the laser detuning is expressed in units of the excited state fine-structure splitting, and the scattering probability is given in units of γ/ω_I. The total scattering probability has a global minimum of

$$P_{\text{min}} = 2\sqrt{2}\pi\gamma/\omega_I, \quad (5)$$

when the laser detuning is between the two fine-structure manifolds ($\Delta = (\sqrt{2} - 1)\omega_I$). The asymptotic value of P_{total} for large positive or negative detuning

$$P_{\infty} = 3\pi\gamma/\omega_I, \quad (6)$$

is only slightly larger than the global minimum.

Previous studies estimated decoherence by assuming that any photon scattering will immediately decohere a hyperfine superposition\cite{23}. Under this assumption the lowest possible gate error equals P_{min} and ions with a small γ/ω_I ratio benefit from a lower gate error minimum.

Two kinds of off-resonance photon scattering occur in the presence of multiple ground states. Inelastic Raman scattering which transfers population between ground states, and Rayleigh elastic scattering which does not change ground state populations. Since no energy or angular momentum are exchanged between the photon and the ion internal degrees of freedom, no information about the qubit state is carried away by a Rayleigh scattered photon. Rayleigh scattering, therefore, does not necessarily lead to decoherence\cite{23,24,25}. This was experimentally shown in\cite{23} where, when of equal rate from both qubit levels, off-resonance Rayleigh scattering of photons did not affect the coherence of a hyperfine superposition. Decoherence in the presence of light was shown to be dominated by Raman scattering. The guideline used in\cite{23} is therefore overly pessimistic.
of the ion-qubit internal state. Following a spontaneous Raman scattering event the ion-qubit is projected into one of the ground states in the $S_{1/2}$ manifold. For ions with low lying D levels, Raman scattering events can also transfer the ion from the qubit levels into one of the D levels.

A. Single-qubit gate

For a single qubit gate we choose to look at the fidelity of a π rotation around the x-axis of the Bloch sphere, represented by the Pauli operator $\hat{\sigma}_x$. This gate is assumed to be driven by a co-propagating Raman beam pair, where the frequency difference between the beams equals the frequency separation between the two qubit states ω_0. It is straightforward to generalize this case to other rotations.

As a measure of the error in the rotation, we use the fidelity of the final state (characterized by density matrix ρ_{final}) produced by the erroneous gate as defined by

$$ F = \langle \Psi | \hat{\rho}_{\text{final}} | \Psi \rangle, \quad (7) $$

where $| \Psi \rangle$ is the ideal final state. Given an initial state $| \Psi_{\text{init}} \rangle$, $| \Psi \rangle$ can be written as

$$ | \Psi \rangle = \hat{\sigma}_x | \Psi_{\text{init}} \rangle. \quad (8) $$

In the presence of off-resonance Raman scattering, the density matrix that describes the state of the qubit after the gate has the form

$$ \hat{\rho}_{\text{final}} = (1 - P_{\text{Raman}}) | \Psi \rangle \langle \Psi | + \hat{\rho}_c. \quad (9) $$

The erroneous part of the density matrix $\hat{\rho}_c = \sum_{i} w_i | i \rangle \langle i |$, is composed of projectors into different levels $| i \rangle$ of lower energy. Here $P_{\text{Raman}} = \sum_i w_i$ is the probability for a spontaneous Raman scattering event to occur during the gate.

Note that some Raman scattering events keep the ion within the qubit manifold. Using Eq. (7) the contribution of $\hat{\rho}_c$ to the fidelity is positive and not strictly zero. For simplicity, we neglect this contribution and put a lower bound on the gate fidelity

$$ F \geq 1 - P_{\text{Raman}}. \quad (10) $$

In what follows we assume this expression to be an equality. The error in the gate due to spontaneous Raman photon scattering is hence given by the Raman scattering probability

$$ \epsilon \equiv 1 - F \equiv P_{\text{Raman}}. \quad (11) $$

We first examine the error due to Raman scattering back into the $2S_{1/2}$ manifold ϵ_S. The Raman scattering rate back into the $S_{1/2}$ manifold is calculated to be

$$ \Gamma_{\text{Raman}} \equiv \frac{2 \gamma}{9} \left[g_0^2 (b_x^2 + b_y^2) + g_1^2 (r_x^2 + r_+^2) \right] \left[\frac{\omega_0}{\Delta(\Delta - \omega)} \right]^2. \quad (12) $$
For the same laser parameters as above, the probability to scatter a Raman photon during the gate is

$$P_{\text{Raman}} = \frac{2\pi\gamma}{3g^2} \frac{\omega_f}{|\Delta(\Delta - \omega_f)|} = \epsilon_S. \quad (13)$$

The solid line in Fig. 2 shows P_{Raman} vs. Δ. The Raman scattering probability decays quadratically with Δ for $|\Delta| \gg \omega_f$. Qualitatively, this is because Raman scattering involves a rotation of the electron spin. Electron spin rotations are achieved through the spin-orbit coupling in the excited state. This coupling has opposite sign contributions from the two fine-structure levels. Therefore as we detune far compared to the fine structure splitting, those two contributions nearly cancel [24].

Using Eq. (13) we can write

$$P_{\text{Raman}} = \frac{2\pi\gamma|\Omega_R|}{g^2} \frac{\omega_f}{\pi w_0^2 \epsilon_0}. \quad (14)$$

The ratio γ/g^2 can be expressed in terms of atomic constants, and the peak electric field amplitude E at the position of the ion [23],

$$\frac{\gamma}{g^2} = \frac{4\hbar \omega_{3/2}^3}{3\pi \epsilon_0 c^3 E^2}. \quad (15)$$

Here $\omega_{3/2}$ is the frequency of the transition between the $S_{1/2}$ and the $P_{3/2}$ levels (D2 line), ϵ_0 is the vacuum permittivity, and c is the speed of light. Assuming Gaussian laser beams, at the center of the beam

$$E^2 = \frac{4P}{\pi w_0^2 \epsilon_0 g^2}. \quad (16)$$

Here P is the power in each of the Raman beams and w_0 is the beam waist at the position of the ion. The probability to scatter a single Raman photon can be written as

$$P_{\text{Raman}} = \frac{2\pi|\Omega_R|\hbar \omega_{3/2}^3 w_0^2}{3c^2 P} = \epsilon_S. \quad (17)$$

This result is essentially the same as Eq. (5) of [26]. We can now rearrange this expression to put an upper bound on the required power for a desired gate speed and error

$$P = \frac{2\pi}{3\epsilon_S} \left(\frac{2\pi w_0}{\lambda_{3/2}}\right)^2 \frac{\omega_{3/2}|\Omega_R|}{c^2}. \quad (18)$$

where $\lambda_{3/2} = c/\omega_{3/2}$.

Assume that the ratio of the beam waist to the transition wavelength is constant for different ion species. In this case, the power needed to obtain a given Rabi frequency and to keep the error below a given value would scale linearly with the optical transition frequency. A more realistic assumption might be that the Raman beam waist is not diffraction limited and is determined by other experimental considerations, such as the inter-ion distance in the trap or beam pointing fluctuations. In this case, assuming that w_0 is constant, the required power would scale as the optical transition frequency cubed. Either way, ion species with optical transitions of longer wavelength are better suited in the sense that less power is required for the same gate speed and error requirements. In addition, high laser power is typically more readily available at longer wavelengths. Finally, we note that the error is independent of the fine-structure splitting as long as we have sufficient power to drive the transition. The transition wavelengths of different ions are listed in Table I.

Figure 3 shows the laser power needed per Raman beam for a given error due to spontaneous Raman scattering into the $S_{1/2}$ manifold [obtained using Eq. (18)]. Different lines correspond to different ion species (see legend). Here we assume Gaussian beams with $w_0 = 20 \mu m$, and a Rabi frequency $\Omega_R/2\pi = 0.25 MHz$ ($\tau_\pi = 1 \mu sec$). Figure 3 shows the laser power in each of the Raman beams vs. the error in a single ion gate (π rotation) due to Raman scattering back into the $S_{1/2}$ manifold (obtained using Eq. (18)). Different lines correspond to different ion species (see legend). Here we assume Gaussian beams with $w_0 = 20 \mu m$, and a Rabi frequency $\Omega_R/2\pi = 0.25 MHz$ ($\tau_\pi = 1 \mu sec$). Figure 3 shows the laser power needed per Raman beam for a given error due to spontaneous Raman scattering into the $S_{1/2}$ manifold. We here assume $\Omega_R/2\pi = 0.25 MHz$ ($\tau_\pi = 1 \mu sec$), and $w_0 = 20 \mu m$. Different lines correspond to the different ion species listed on the figure legend. Table I lists the error in a single ion-qubit gate due to Raman scattering back into the $S_{1/2}$ manifold for the same parameters as in Fig. 3, and assuming 10 mW in each of the Raman beams. The power P_0 needed in each of the gate beams for $\epsilon_S = 10^{-4}$ is also listed in the table. As can be seen, ions with shorter transition wavelength require a larger detuning and accordingly higher laser power to maintain a low gate error. For most ions, a few milliwatts of laser power is enough to reduce the gate error to below 10^{-4}.

Equation (18) can be solved to give the required detuning values for a given ϵ_S. The number of such detuning values comes from the number of crossings of a horizontal line, set at the desired error level, with the solid curve in Fig. 2. When ϵ_S is higher than the minimum P_{Raman}
inside the fine-structure manifold, i.e. $\epsilon_S > 8\pi\gamma/3\omega_I$ (see Fig. 2), then four different detuning values yield the same ϵ_S, two outside and two inside the fine-structure manifold. When ϵ_S is lower than this value, only two detuning values, both of which are outside the fine-structure manifold, yield ϵ_S. Those detuning values Δ that are below the $S_{1/2} \rightarrow P_{1/2}$ transition ($\Delta < 0$) and correspond to $\epsilon_S = 10^{-4}$ are listed in Table I for different ions. For most ions Δ_0 is in the few hundred gigahertz range, and its magnitude is much smaller than ω_I.

We now consider the error for various ions caused by Raman scattering into low lying D levels, ϵ_D. As transitions between levels in the S and the D manifolds do not necessarily involve electron spin rotations, the error suppression discussed preceding Eq. (13) will not occur. Instead, Raman scattering rate into the D levels will be given by the total scattering rate times a fixed branching ratio f. When driven resonantly the $P_{1/2}$ and $P_{3/2}$ levels decay to the D manifold with different (but often similar) branching ratios. Here we assume that for a detuning large compared to the fine-structure splitting, the branching ratio is essentially independent of the laser detuning and is given by the average of the two resonant branching ratios [46, 47]. Table II lists f, for various ion species, obtained from [48, 49, 50, 51, 52]. The error due to Raman scattering into D levels is given by

$$\epsilon_D = fP_{\text{total}}.$$ \hspace{1cm} (19)

Using Eq. (13) we can write the ratio of the errors due to Raman scattering into the different manifolds

$$\frac{\epsilon_D}{\epsilon_S} = \frac{3f}{2} \left(\frac{2\Delta^2 + (\Delta - \omega_I)^2}{\omega_I^2} \right).$$ \hspace{1cm} (20)

For $|\Delta| < \omega_I$, Raman scattering error is dominated by scattering back into the $S_{1/2}$ levels. For ions with $1/f \gg 1$ the two errors become comparable at a detuning $\Delta \approx \sqrt{2}\omega_I/3\sqrt{7}$. When the detuning becomes large compared to the fine-structure splitting, scattering into low-lying D levels dominates. For most ions considered here, $|\Delta_0| < \omega_I$ and (perhaps with the exception of 137Ba$^+$) ϵ_S is the more dominant source of error. The ratios ϵ_D/ϵ_S when $\epsilon_S = 10^{-4}$ (i.e. $\Delta = \Delta_0$) are given in Table II for different ions.

Due to the asymptotic value of the total scattering rate in the $|\Delta| \gg \omega_I$ limit (Eq. (6)), ϵ_D has an asymptotic value which gives a lower bound to the Raman scattering error

$$\epsilon_{\Delta\infty} = \frac{3\pi\gamma f}{\omega_I}.$$ \hspace{1cm} (21)

Table II lists $\epsilon_{\Delta\infty}$ for various ions. For all ion species considered this value is below the assumed estimates for the fault tolerance threshold.
A universal quantum gate set is complete with the addition of two-qubit entangling gates. During the last few years there have been several proposals and realizations of two ion-qubit gates [8, 9, 10, 11, 12, 53, 54, 55]. Here we focus on gates that use spin-dependent forces in order to imprint a geometric phase on certain collective spin states [8, 9, 11, 12, 53, 54]. We examine only gates that are implemented with a continuous non-resonant pulse rather than those using multiple short pulses [56]. Again, to compare different ion species we examine ion-qubits that are encoded into hyperfine clock states. When the laser detuning is large compared to the hyperfine splitting, the differential light force between clock levels is negligible [4, 57]. However, a phase gate can be applied between spin states in the rotated basis (superpositions of clock states that lie on the equatorial plane of the Bloch sphere) [53, 54]. In this scheme the ions traverse a trajectory in phase space that is conditioned on their mutual spin state (in the rotated basis [11]. The phase the ions acquire is proportional to the total area enclosed in phase space. This geometric phase gate was demonstrated in [8] and was realized on clock states in [11].

This form of phase gate is implemented with two different Raman fields that are slightly off-resonance with upper and lower motional sidebands of the spin-flip transition. For simplicity, we assume here that the gate is driven by two independent pairs of Raman beams, i.e. a total of four beams. Most experimental implementations of this phase gate thus far have used a three-beam geometry [8, 11]. It is straightforward to generalize the treatment below to the three-beam case.

Typical conditions for the gate are such that the angular frequency difference between the beams is \((\omega_0 + \omega_{\text{trap}} - \delta)\) in one Raman pair and \((\omega_0 - \omega_{\text{trap}} + \delta)\) in the other. Here \(\omega_{\text{trap}}\) is the angular frequency of the normal mode that the gate excites and \(\delta\) is the Raman field detuning from that motional sideband. Under these conditions the ions will traverse a trajectory in phase space for a gate duration of \(\tau_{\text{gate}} = 2\pi K/\delta\). Typically \(|\delta|\) is chosen to be much smaller than \(\omega_{\text{trap}}\) to avoid coupling to the pure spin flip ("carrier") transition or the motional "spectator" mode, and \(K\) is usually chosen to be 1 to minimize the gate time.

Figure 4 depicts the assumed geometry of the laser beams. The two beams comprising each Raman pair intersect at right angles at the position of the ions, such that the difference in their wave vectors is parallel to the trap axis. With this choice, the Raman fields couple, to a very high degree, only to the motion along the trap axis. The beam polarizations are assumed to be linear, perpendicular to each other and to the magnetic field. Wavy arrows illustrate examples of photon scattering directions.

As in the single-qubit case, Raman scattering will project one of the ion quibits into one of its states below the P manifold. In the appropriate basis the ideal gate operation is represented by [8, 11]

\[
\hat{U} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & e^{i\phi} & 0 & 0 \\
0 & 0 & e^{i\phi} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

where typically \(\phi = \pi/2\). The output state is \(|\Psi\rangle = \hat{U}|\Psi_{\text{init}}\rangle\). The density matrix following the erroneous gate will be of the form

\[
\hat{\rho}_{\text{final}} = (1 - 2\rho_{\text{Raman-gate}})|\Psi\rangle\langle\Psi| + \hat{\rho}_c,
\]

where \(\rho_{\text{Raman-gate}}\) is the probability that one of the ions scattered a Raman photon during the gate [58, 59]. For a gate consisting of \(K\) circles, the Raman detuning \(\delta\) is chosen such that the gate time is given by [53]

\[
\tau_{\text{gate}} = \frac{\pi}{2\Omega_k |\eta|} \sqrt{K} = \tau_{\pi} \frac{\sqrt{K}}{\eta}.
\]

Here \(\eta = \Delta k z_0\) is the Lamb-Dicke parameter, where \(\Delta k = \sqrt{2}k_L\) is the wave vector difference between the two beams that drive the gate (for the particular geometry of Fig. 4), and \(k_L\) is the laser beam wave vector.
magnitude. The root mean-square of the spatial spread of the ground state wave function of one ion for the normal mode that the gate excites is

\[z_0 = \sqrt{\hbar/4M\omega_{\text{trap}}}, \]

(25)

where \(M \) is the mass of an individual ion. The single ion carrier Rabi frequency \(\Omega_0 \) is given in Eq. (1).

Using similar considerations to those used in the single ion gate and, as before, neglecting any (positive) contribution of \(\rho_z \) to the fidelity, we can set an upper bound for the power needed for a certain error in the gate due to Raman photon scattering into \(S_{1/2} \) levels

\[P = \frac{2\pi}{3\epsilon_S} \left(\frac{\omega_0}{\lambda_{3/2}} \right)^2 |\Omega_0| \frac{4\sqrt{K}}{\eta}. \]

(26)

This required gate power is \(4\sqrt{K/\eta} \) times larger than that needed for the same error in the single-ion qubit \(\pi \) rotation given in Eq. (13). The factor of \(\sqrt{K/\eta} \) is due to the longer two-ion-qubit gate duration compared to single qubit rotations, and the factor of 4 is due to the presence of two ions and the pair of required Raman fields.

When comparing different ion species we can fix different parameters, depending on experimental constraints or requirements. For example, here we choose as fixed parameters the beam waist \(w_0 \) (for the reasons given above), the gate time \(\tau_{\text{gate}} \) (assuming a certain computation speed is desired), and the mode frequency \(\omega_{\text{trap}} \) (which sets the time scale for various gates). With these choices, heavier ions pay the price of smaller \(\eta \) and therefore higher power requirements per gate due to longer gate time and error. A different approach would be to choose \(\eta \) fixed, in which case heavier ions will need a lower \(\omega_{\text{trap}} \). For a fixed gate time a lower \(\omega_{\text{trap}} \) leads to stronger, off-resonant, coupling of the Raman fields to the carrier or the other motion channel “spectator” mode, and, therefore, to a larger error due to this coupling \(\Delta_{\text{total}} \). The Lamb-Dicke parameters for the different ions for \(\omega_{\text{trap}}/2\pi = 5 \) MHz are listed in Table III.

With the choice where \(w_0, \tau_{\text{gate}}, \) and \(\omega_{\text{trap}} \) are fixed, we can write

\[P = \frac{8\pi^2}{3\epsilon_S} \frac{K}{\tau_{\text{gate}}} w_0^2 \omega_{3/2}^2 M \omega_{\text{trap}}. \]

(27)

Or equivalently,

\[\epsilon_S = \frac{8\pi^2}{3P} \frac{K}{\tau_{\text{gate}}} w_0^2 \omega_{3/2}^2 M \omega_{\text{trap}}. \]

(28)

Figure 5 shows the power needed vs. error in a two-qubit gate due to Raman scattering back into the \(S_{1/2} \) manifold for \(w_0 = 20 \) \(\mu \)m, \(\tau_{\text{gate}} = 10 \) \(\mu \)s, \(\omega_{\text{trap}}/2\pi = 5 \) MHz and \(K = 1 \). Table III lists \(\epsilon_S \) for the various ion species and the same laser parameters as Fig. 4 assuming a power of 10 mW is used in each of the four Raman beams. Alternatively, the power \(P_0 \) and the detuning \(\Delta_0 \) needed in each of the gate beams for \(\epsilon_S = 10^{-4} \) are also listed in the table. Here, heavier ions need a larger detuning and correspondingly higher laser power to maintain a low gate error. For most ion species, hundreds of milliwatts of laser power per beam and a detuning comparable or even larger than \(\omega_{\text{trap}} \) are needed to reduce the gate error to the \(10^{-4} \) level.

As in the one-ion gate, Raman scattering into low lying D levels will add to the gate error. This error is given by

\[\epsilon_D = 2f P_{\text{total-gate}} = \frac{4\sqrt{K}}{\eta} f P_{\text{total}}. \]

(29)

Here \(P_{\text{total-gate}} \) is the probability that one of the ions scattered a photon during the two-qubit gate, and \(P_{\text{total}} \) is the one-qubit gate scattering probability given in Eq. (4). Since both the Raman and the total scattering probabilities increase by the same factor as compared to the one-qubit gate, the ratio of the two errors \(\epsilon_D/\epsilon_S \) will remain the same as given by Eq. (20). Table III lists \(\epsilon_D/\epsilon_S \) for the different ions when \(\epsilon_S = 10^{-4} \). Notice that for \(\epsilon_S = 10^{-4} \) some ions require \(|\Delta_0| \gtrsim \sqrt{2\omega_{\text{trap}}/3\sqrt{f}} \). For those ions \(\epsilon_D \) is no longer negligible compared to \(\epsilon_S \).

Scattering into a low lying D level will, again, set a lower bound on the total error. Combining Equations (20) and (6) we find this lower bound to be

\[\epsilon_D = \frac{3\pi\gamma f}{\omega_{\text{trap}}} \frac{4\sqrt{K}}{\eta}. \]

(30)

Table III lists \(\epsilon_D \) for the different ion species.

Ion	\(\epsilon_S/10^{-4} \)	\(P_0/\text{mW} \)	\(\Delta_0/2\pi \text{(THz)} \)	\(\epsilon_D/\epsilon_S \)	\(\epsilon_D/\epsilon_{\infty}/10^{-4} \)	\(\eta \)
\(^{10}\text{Be}^+\)	3.6	36	-1.20	N.A.	N.A.	0.194
\(^{40}\text{Ca}^+\)	11.1	111	-7.28	N.A.	N.A.	0.130
\(^{48}\text{Ca}^+\)	13.6	136	-10.42	1.01	1.06	0.071
\(^{67}\text{Zn}^+\)	41.1	411	-24.96	N.A.	N.A.	0.11
\(^{87}\text{Sr}^+\)	26.5	265	-20.34	0.52	0.50	0.048
\(^{111}\text{Cd}^+\)	64.3	643	-35.74	N.A.	N.A.	0.081
\(^{139}\text{Ba}^+\)	37.4	374	-30.67	1.65	1.46	0.034
\(^{171}\text{Yb}^+\)	37.5	375	-32.89	0.01	0.001	0.038
\(^{199}\text{Hg}^+\)	149.7	1497	-49.52	0.003	0.001	0.078
III. RAYLEIGH SCATTERING ERROR

Since Rayleigh photon scattering is elastic, no energy or angular momentum is transferred between the photons’ and the ions’ internal degrees of freedom. Therefore, these degrees of freedom remain uncorrelated. Rayleigh scattering does not necessarily lead to direct spin decoherence.

In situations where Rayleigh scattering rates from the two ion-qubit states are different, Rayleigh scattering of photons will eventually measure the qubit state and lead to decoherence. In fact, the most common ion-qubit detection method relies on state selective Rayleigh scattering of photons on a cycling transition. In most Raman gates, however, the laser is detuned from resonance by much more than the qubit levels’ energy separation, $\Delta \gg \omega_0$, and the laser polarization is typically linear to suppress differential Stark shifts. Under these conditions Rayleigh scattering rates from the two qubit levels are almost identical and the error due to the rate difference is negligible. For the clock transition qubit states considered here, Rayleigh scattering rates are almost identical, regardless of the laser polarization (for more details on this error see subsection III.B).

The main effect of Rayleigh scattering is the momentum recoil it imparts to the ion-qubit. For a single-qubit gate, the Raman beams are usually arranged in a co-propagating geometry. In this configuration, since the Lamb-Dicke parameter is very small ($\eta \simeq (\omega_0/\omega_{3/2})K_L z_0$), the effect of ion motion is negligible on the gate operation. Therefore, Rayleigh scattering has a negligible effect on single-qubit gates.

In the two-qubit phase gate, a mode of motion is excited that is entangled with the two-ion collective spin state. In this case, recoil from photon scattering perturbs the ion’s motion through phase space and contributes to the gate error. The ion-qubit trajectory is distorted in two ways. The larger distortion arises from the direct recoil momentum displacement. A second, much smaller, distortion arises from the contribution of the recoil to the appearance of nonlinearities in the gate operation due to deviations from the Lamb-Dicke regime (see subsection III.B).

In subsection III.A we calculate the error in a two-qubit gate due to direct recoil phase-space displacement. In subsection III.B we elaborate on the two other sources of error mentioned above, namely errors due to uneven Rayleigh scattering rates and errors due to deviations from the Lamb-Dicke regime.

A. Rayleigh scattering recoil error

In elastic Rayleigh scattering, energy and momentum are not exchanged between the ions’ and the photons’ internal degrees of freedom. However, momentum and energy are exchanged between the photons’ and the ions’ external degrees of freedom. The scattered photon direction will be different from that of the laser beam, causing the ion to recoil. This recoil acts on the ion-qubit as a phase-space momentum displacement, distorting the ion’s trajectory through phase space and causing an error in the entangling-gate phase. Note that the momentum imparted to the ion (and therefore the deviation from the desired gate phase) and the momentum that is carried by the scattered photon (namely its scattering direction) are correlated. From this point of view the gate infidelity again arises due to the entanglement between the scattered photons’ and ions’ (this time external) degrees of freedom (for more details on this point of view see Appendix A).

In the Lamb-Dicke regime (for a thermal state $\eta \sqrt{2\bar{n} + 1} \ll 1$, where \bar{n} is the average mode population), the gate operation can be approximated as a series of finite displacements in phase space

$$\hat{U} = \prod_{k=1}^{N} \hat{D}(\Delta \alpha_k).$$

(31)

Displacements through phase space, $\Delta \alpha_k$, are conditioned on the joint spin state of the two ions, and depend on the gate parameters. For certain gate parameters, the displacement is zero for the two parallel spin states $|\uparrow \uparrow\rangle$ and $|\downarrow \downarrow\rangle$, and non zero with opposite sign for the $|\uparrow \down\rangle$ and $|\down \uparrow\rangle$ states, where \uparrow and \down hereafter refer to the rotated basis rather than the clock levels. Using the com-
mutation relations between phase space displacements
\[\hat{D}(\alpha)\hat{D}(\beta) = \hat{D}(\alpha + \beta)e^{i\text{Im}(\alpha\beta^*)}, \]
(32)
we can write the gate operation as a single displacement times an overall phase
\[\hat{U} = \hat{D}\left(\sum_{k=1}^{N} \Delta\alpha_k\right)e^{i\text{Im}\left(\sum_{j=2}^{N} \Delta\alpha_j \sum_{l=1}^{j-1} \Delta\alpha_l\right)}, \]
(33)
where \(N \) is the total number of infinitesimal displacements. When the net displacement is zero, i.e. \(\sum_{k=1}^{N} \Delta\alpha_k = 0 \), the two-ion motion returns to its initial state and spin and motion are disentangled at the end of the gate. The gate operation on the affected spin states can be written as
\[\hat{U} = \hat{I}e^{i\phi}. \]
(34)
The phase acquired,
\[\phi = \text{Im}\left(\sum_{j=2}^{N} \Delta\alpha_j \sum_{l=1}^{j-1} \Delta\alpha_l\right), \]
(35)
is the same for the \(|\uparrow\downarrow\rangle\) and \(|\downarrow\uparrow\rangle\) states and proportional to the encircled phase-space area. Figure 6 shows an example for the trajectory traversed in phase space during an ideal gate in a reference frame rotating at the mode frequency \(\omega_{\text{trap}} \).

In the presence of laser light there is a finite probability \(P_{\text{Rayleigh-gate}} \) that a Rayleigh photon will be scattered by one of the ions during the gate [58].
The probability for a Rayleigh scattering event to occur during a single-qubit gate is given by the difference between Eq. (4) and Eq. (13)
\[P_{\text{Rayleigh}} = \frac{\pi\gamma}{\omega_l} \left(\frac{3\Delta^2 - 2\Delta\omega_l + \omega_l^2/3}{|\Delta(\Delta - \omega_l)|} \right). \]
(36)
Since in the limit of \(|\Delta| \gg \omega_l\) all scattering events are Rayleigh scattering, \(P_{\text{Rayleigh}} \) and \(P_{\text{total}} \) have the same asymptotic value \(P_\infty \).
Using Eq. (36) and the factor for the extra required power in the two-qubit gate
\[P_{\text{Rayleigh-gate}} = \frac{4\sqrt{K\pi\gamma}}{\eta\omega_l} \left(\frac{3\Delta^2 - 2\Delta\omega_l + \omega_l^2/3}{|\Delta(\Delta - \omega_l)|} \right). \]
(37)
The effect on the ion motion would be that of momentum recoil
\[\hat{U}_{\text{recoil}} = e^{iq\cdot \hat{r}_i}. \]
(38)
Here \(q = k_l - k_{\text{Scat}} \) is the wave vector difference between the scattered photon and the laser beam from which it was scattered, and \(\hat{r}_i \) is the position operator of the ion that scattered the photon (\(i = 1, 2\)). We will neglect recoil into directions other than along the trap axis. We can write the position operator for for ion \(i \) along this axis as
\[\hat{z}_i = Z_i + z_0(\hat{a}_0 + \hat{a}_0^\dagger) + z_1(\hat{a}_1 + \hat{a}_1^\dagger), \]
(39)
where \(Z_i \) is the equilibrium position of the ion and \(z_0/1, \hat{a}_0/1 \) and \(\hat{a}_0/1 \) are the root mean-square of the ground state spatial spread, and the creation and annihilation operators, respectively, of the two motional modes 0 and 1. We assume the gate is performed by exciting mode 0. Recoil into mode 1 does not distort the gate dynamics directly. This part of the photon recoil will add minutely to the gate error through its contribution to the gate nonlinearity discussed in section III B. We neglect this contribution for the moment and write the recoil operation as
\[\hat{U}_{\text{recoil}} = e^{iq_z z_0(\hat{a}_0 + \hat{a}_0^\dagger)} \equiv e^{\beta^\dagger \hat{a}_0 - \beta \hat{a}_0^\dagger} \equiv \hat{D}(\beta), \]
(40)
where \(q_z \) is the projection of \(q \) along the trap axis, and \(\beta = iq_z z_0 \).

The recoil action on the two-ion crystal is, therefore, a momentum displacement \(\beta \) in phase space. The magnitude of \(\beta \) depends on the wave-vector difference between the scattered photon and the beam from which it was scattered, and the projection of this momentum difference along the trap axis. Since the same recoil displacement is applied to all spin states, motion will still be disentangled from spin at the end of the gate. Errors are therefore due to the change in area encircled in phase space. Figure 6b illustrates a gate trajectory that is distorted due to photon recoil.

The erroneous gate can be again written as a sum of displacements, those due to the gate drive and \(\beta \), which
Writing displacements as a function of the gate time,

\[\hat{U}_e = \prod_{k=M+1}^N \hat{D}(\Delta \alpha_k) \hat{D}(\beta) \prod_{l=1}^M \hat{D}(\Delta \alpha_l). \]

(41)

By use of the commutation relation [32], the gate is written as

\[\hat{U}_e = \hat{D}(\beta) e^{i(\phi + \Delta \phi)}, \]

(42)

where the phase error \(\Delta \phi \) is determined to be

\[\Delta \phi = \text{Im} \left[\beta \sum_{l=1}^M \Delta \alpha_l^* + \sum_{k=M+1}^N \Delta \alpha_k \beta^* \right]. \]

(43)

Writing displacements as a function of the gate time

\[\Delta \alpha_k = \Delta \alpha(t_k) \rightarrow \frac{\partial \alpha(t)}{\partial t} dt, \]

(44)

we can write the phase error as a function of the gate displacement before and after the scattering time \(t_{\text{scat}} \)

\[\Delta \phi = \text{Im} \left[\beta \int_0^{t_{\text{scat}}} \frac{\partial \alpha^*(t)}{\partial t} dt + \beta^* \int_{t_{\text{scat}}}^{t_{\text{gate}}} \frac{\partial \alpha(t)}{\partial t} dt \right]. \]

(45)

Since \(\alpha(t_{\text{gate}}) = \alpha(0) = 0 \) we get

\[\Delta \phi = \text{Im} [\beta \alpha^*(t_{\text{scat}}) - \beta^* \alpha(t_{\text{scat}})]. \]

(46)

Since the accumulated displacement at the moment the photon was scattered \(\alpha(t_{\text{scat}}) \) is of equal magnitude but opposite sign for the \(\mid \uparrow \downarrow \rangle \) and \(\mid \downarrow \uparrow \rangle \) states, we get

\[\Delta \phi_{\uparrow \downarrow} = -\Delta \phi_{\downarrow \uparrow} = \Delta \phi. \]

(47)

The erroneous gate can be therefore represented by the operator

\[\hat{U}_e = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{i(\phi + \Delta \phi)} & 0 & 0 \\ 0 & 0 & e^{i(\phi - \Delta \phi)} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

(48)

The final state fidelity following the erroneous gate depends on \(|\Psi_{\text{init}}\rangle \).

\[|\Psi_{\text{init}}\rangle = \mu |\uparrow \rangle + \kappa |\uparrow \downarrow \rangle + \gamma |\downarrow \rangle + \delta |\downarrow \downarrow \rangle, \]

(49)

and using Eq. [7], we can write for the gate fidelity

\[F = \left| \mu \right|^2 + e^{i\Delta \phi} |\kappa|^2 + e^{-i\Delta \phi} |\gamma|^2 + |\delta|^2 \right|^2, \]

(50)

The most relevant fidelity for fault tolerance considerations is that averaged over all possible initial states. The fidelity we calculate here is that due to the worst-case input state, that is the input state that minimizes Eq. [50]. The worst-case fidelity is clearly smaller than the average fidelity and therefore gives a conservative estimate to the gate error [62]. The worst-case fidelity for this kind of error was calculated in [63]. For \(\Delta \phi/\phi < 1 \) it is

\[F = \cos^2 \Delta \phi. \]

(51)

This minimal fidelity is the result of an input state with \(|\kappa|^2 = |\gamma|^2 = 1/2 \).

Photon scattering occurs in only a small fraction \(P_{\text{Rayleigh-gate}} \) of the gates. Averaging over all gates performed, we get

\[F_{\text{gate}} = 1 - P_{\text{Rayleigh-gate}} \left(1 - \langle \cos^2 \Delta \phi \rangle \right) \equiv 1 - \epsilon_R, \]

(52)

where the brackets correspond to an average over all possible \(\Delta \phi \)'s, i.e. due to different values of \(\beta \) and different scattering times.

To perform the above average we need to explicitly write the different displacements. In the rotating frame the cumulative gate displacement after a time \(t \) can be written as [3, 53]

\[\alpha(t) = \frac{i}{2 \sqrt{K}} [e^{-i \delta t} - 1] e^{i \Phi_L}, \]

(53)

where \(\Phi_L \) is the gate phase, determined by the optical phase difference between the gate beams at the ion’s position. In the rotating frame, the recoil displacement can be written as

\[\beta = |\beta| e^{i \omega_{\text{trap}} t}. \]

(54)

Substituting equations [54] and [53] into Eq. [46], we can write the averaged term in the fidelity

\[\langle \cos^2 \Delta \phi \rangle = \frac{\delta}{2 \pi} \int_{|\beta| = 0}^{2 \pi} d|\beta| S(|\beta|) \cos^2 \left[\frac{|\beta|}{\sqrt{K}} [\cos(\omega_{\text{trap}} + \delta) t - \Phi_L - \cos(\omega_{\text{trap}} t - \Phi_L)] \right] |d|\beta|. \]

(55)

Here we assume that the probability of scattering at different time intervals during the gate is uniform. The
probability distribution for different recoil displacement magnitude $|\beta|$ is given by $S(|\beta|)$, which is determined by the geometry of the Raman beams with respect to the trap axis and the probability distribution of photon scattering directions.

With the laser beam configuration assumed in Fig.4, recoil due to photon absorption can be imparted only at 45$^\circ$ to the trap axis, whereas recoil due to photon emission can be imparted in any direction. The maximum allowed displacement following an absorption-emission cycle is therefore

$$|\beta|_{\text{max}} = k_L z_0 (1 + \sqrt{2}) / \sqrt{2} = \eta (1 + \sqrt{2}).$$ (56)

For proper gate operation we require $\eta \ll 1$; thus we expand Eq. (55) in powers of $|\beta|$, including terms to order $|\beta|^2$. Further, since typically $\delta/\omega_{\text{trap}} \ll 1$, we neglect terms proportional to $\delta/\omega_{\text{trap}}$. With these approximations the gate fidelity is independent of Φ_L and is given by

$$F_{\text{gate}} = 1 - P_{\text{Rayleigh-gate}} (|\beta|^2 / 2 K).$$ (57)

Here $\langle |\beta|^2 \rangle$ is the average of the recoil displacement magnitude squared

$$\langle |\beta|^2 \rangle = \int_0^{|\beta|_{\text{max}}} S(|\beta|)|\beta|^2 |d|\beta|.$$ (58)

For the assumed laser beam configuration, the light field polarization will oscillate rapidly during the gate between left/right circular and linear at the ions’ position. Therefore, the scattering probability will average to be isotropic. For the beam configuration illustrated in Fig.4 in spherical-polar coordinates,

$$\langle |\beta|^2 \rangle = \frac{1}{8\pi} \int_0^{2\pi} \int_0^{\pi} \left(\frac{1}{\sqrt{2} + \cos \theta} \right)^2 \sin \theta d\theta d\phi.$$ (59)

Here the \hat{z} ($\theta = 0$) direction is chosen parallel to the trap axis. We find

$$\langle |\beta|^2 \rangle = \frac{5}{12} \eta^2.$$ (60)

Combining Eqs. (52), (57), (60) and (37), the Rayleigh error can be written as

$$\epsilon_R = \frac{5 \pi \eta \gamma}{6 \sqrt{K} \omega_f} \left(\frac{3 \Delta^2 - 2 \Delta \omega_f + \omega_f^2 / 3}{|\Delta(\Delta - \omega_f)|} \right).$$ (61)

The ratio of ϵ_R to ϵ_S is therefore

$$\frac{\epsilon_R}{\epsilon_S} = \frac{5 \eta^2}{16 K} \left(\frac{3 \Delta^2 - 2 \Delta \omega_f + \omega_f^2 / 3}{\omega_f^2} \right).$$ (62)

Table IV lists ϵ_R/ϵ_S for different ion species for $\omega_{\text{trap}}/2\pi=5$ MHz and a single-circle ($K=1$) gate, at a detuning where $\epsilon_S = 10^{-4}$. For most ions considered here, the gate error is still dominated by Raman scattering at this level.

For laser beam detuning large compared to the excited state fine-structure splitting ($\Delta \gg \omega_f$) scattering is dominated by Rayleigh events. In this limit, the probability that a Rayleigh photon will be scattered during the gate is

$$P_{\text{Rayleigh-gate}} = \frac{4\sqrt{K} P_\infty}{\eta}.$$ (63)

The recoil error in a two-qubit gate is therefore asymptotically bound by

$$\epsilon_{R, \infty} = \frac{5 \pi \eta \gamma}{2 \sqrt{K} \omega_f} = \frac{5 \pi^2 \gamma}{\omega_f \lambda_{3/2}} \sqrt{\frac{\hbar}{2 M \omega_{\text{trap}} K}}.$$ (64)

Table IV lists $\epsilon_{R, \infty}$ for different ion species for $\omega_{\text{trap}}/2\pi=5$ MHz and a single-circle ($K=1$) gate. With the exception of 9Be$^+$, the error due to photon recoil in a two-ion-qubit gate is below 10^{-4}. For this error heavier ions benefit due to their smaller recoil.

It is possible to reduce ϵ_R by choosing a smaller η/\sqrt{K} (by increasing the trap frequency and/or performing multiple-circles gates). Correspondingly more laser power, proportional to K/η^2, is then required in order not to increase the Raman scattering error ϵ_S or reduce the gate speed.

B. Other Rayleigh scattering errors

In section IIIA we calculated the error due to the recoil imparted to the ion-qubit during Rayleigh photon scattering. As noted, Rayleigh scattering of photons adds two more contributions to the gate error.

The first contribution ϵ_δ is due to a difference in the Rayleigh scattering rates from the two ground state levels. Assume that the Rayleigh scattering rate is Γ_{Rayleigh} from one qubit level and $\Gamma_{\text{Rayleigh}} + d\Gamma$ from the other.

Ion	ϵ_R/ϵ_S	$\epsilon_{R, \infty}/10^{-4}$
9Be$^+$	1.442	1.51
24Mg$^+$	0.142	0.154
49Ca$^+$	0.0168	0.0187
64Zn$^+$	0.0172	0.0193
87Sr$^+$	0.0030	0.0034
111Cd$^{+}$	0.0040	0.0044
133Ba$^+$	0.0010	0.0011
171Yb$^+$	0.0006	0.0006
199Hg$^+$	0.0015	0.0012
A measurement of the qubit level will be conclusive once the difference in the number of photons that are scattered is larger than the standard deviation of the number of photons scattered from each level. Since the number of photons that are scattered follows a Poisson distribution, a measurement will occur after photons have been scattered for a time \(t \) such that

\[
d\Gamma t > \sqrt{\Gamma_{\text{Rayleigh}} t}.
\]

The error rate is, therefore, given by \(d\Gamma^2 / \Gamma_{\text{Rayleigh}} \), and the error during a gate by

\[
\epsilon_{\delta} = (d\Gamma / \Gamma_{\text{Rayleigh}})^2 P_{\text{Rayleigh}}.
\]

For the above gate parameters, the difference in scattering rates is due solely to the difference in detuning between the two qubit levels. For \(\Delta \gg \omega_1 \), which is typically required to reduce other scattering errors to low levels, this error can be approximated by \(\epsilon_{\delta} \approx (\omega_1 / \Delta)^2 P_{\text{Rayleigh}} \). The contribution of \(\epsilon_{\delta} \) to the total error at a realistic laser detuning is very small. We performed an accurate calculation of the difference in the scattering rates between the two clock levels, and verified that indeed, for all ion species and laser detunings discussed above, \(\epsilon_{\delta} \) is negligible.

A second source of Rayleigh scattering error is through the contribution of the recoil momentum displacement to non-linearities of the gate evolution. The gate error due to non-linearities was calculated in [61] and in the present context is proportional to \(P_{\text{Rayleigh}} \), which is the variance of the motional modes distribution due to recoil. The recoil momentum displacement magnitude is of order \(\eta \). Therefore, starting from the ground state and following a single scattering event, \(\text{Var}(n) \approx \eta^2 \). The gate error due to this effect will be proportional to \(P_{\text{Rayleigh}} \eta^2 \propto \eta^4 \), and significantly smaller than other scattering errors discussed above.

IV. DISCUSSION

We have calculated the errors due to photon scattering in a single-pulse single-qubit gates and two-qubit phase-gates implemented with stimulated Raman transitions. These errors present a fundamental limit to the gate fidelity in trapped-ion QIP experiments that use these kinds of gates, and should be a significant factor when choosing a specific ion as a quantum information carrier for fault-tolerant quantum computing schemes.

Three main errors occur from spontaneously scattering photons during a gate. Two errors are due to Raman scattering either back into the \(S_{1/2} \) manifold (\(\epsilon_S \)) or to low-lying D levels (\(\epsilon_{D} \)). The third error is due to the Rayleigh scattering recoil during a two-qubit gate (\(\epsilon_{\delta} \)). For most ions currently considered for QIP experiments, the dominant error for realistic laser parameters is \(\epsilon_S \). This error can be typically reduced to below current estimates for the fault-tolerance threshold with the use of relatively high (but probably attainable) laser power. This makes the availability of high power laser sources at the relevant wavelength important. This error is also reduced for ions with a relatively large \(S \rightarrow P \) transition wavelength.

Among those three errors, only \(\epsilon_D \) cannot be reduced below a certain value by the use of higher laser intensity. Therefore, it may eventually be advantageous to choose ions that do not have low lying D levels. However, for most ions considered here, \(\epsilon_D \) is still small at realistic laser parameters compared to the other Raman error \(\epsilon_S \).

The masses of the different ions play an interesting role in the scattering error. Since it is harder to transfer momentum to heavier ions, they suffer from a larger \(\epsilon_S \) in two-qubit gates (or alternatively from the need for more laser power for a given gate speed and error level). For the same reason, lighter ions suffer from a larger Rayleigh recoil error \(\epsilon_R \). Examining Eqs. (A5) and (B4), the Raman error scales as \(w_0^2 M \omega_{\text{trap}} \) and the Rayleigh error scales as \(1 / \omega_t \sqrt{M \omega_{\text{trap}}} \) (neglecting differences in wavelength and natural linewidths). Since both \(w_0 \) and \(\omega_t \) are generally larger for heavier ions, the Raman error is larger and Rayleigh error is smaller for heavier ions by more than is indicated by the kinetic argument above. Since for most ions \(\epsilon_S \) is the dominant error, lighter ions seem to currently have a lower overall error due to photon scattering. Also, because both errors are a function of \(M \omega_{\text{trap}} \) lighter ions will reach the same error level and power requirements with a higher \(\omega_{\text{trap}} \) when compared to heavier ions. This allows for faster gate operation. For a given trap geometry and applied potentials, the axial trap frequency scales as \(1 / \sqrt{M} \) and the radial trap frequencies scale as \(1 / M \). For the ion crystal to remain along the axial trap direction the radial frequencies have to be larger than the axial frequencies; therefore the limiting frequency is the radial frequency. In this case, \(M \omega_{\text{trap}} \) is independent of the ions’ mass. Heavier ions under these conditions will have a lower \(\omega_{\text{trap}} \), leading to slower gate operation.

In conclusion, to minimize the effect of scattering on the fidelity of trapped-ion-qubit gates, one needs to strike a balance between the desirable characteristics of long wavelength, light mass, the availability of high power laser sources and, if possible, the lack of low lying D levels when choosing a specific ion as a quantum information carrier.

Finally, we remind the reader that here we have focused on hyperfine ion-qubits and gates that rely on off-resonant Raman transitions applied in a continuous pulse. Other kinds of trapped-ion gates or qubits could have different limitations on the gate fidelity due to spontaneous photon scattering.

We thank E. Knill for many insightful discussions and comments, J. Home, J. Amini and A. Sørensen for helpful comments. This work is supported by DTO and NIST. Contribution of NIST; not subject to US copyright.
APPENDIX A: DEPHASING VS. ENTANGLEMENT WITH DIFFERENT PHOTON MODES

In section 111 we calculated the error due to Rayleigh photon scattering without considering the scattered photon degrees of freedom. Rather, we considered dephasing due to the random phase that is generated by the scattered photon’s recoil.

As noted, we can also view the gate error caused by Rayleigh scattering of photons as arising from the entanglement between the photon and the ion-qubit external degrees of freedom. For example, a photon that is scattered during the gate, while the two spin wave packets are displaced from each other, can be collected by an ideal imaging system. Since the two-ion collective spin is entangled with their position, the position at which the photon is detected at the image plane can give “which-way” information, thereby measuring the ions’ spin, collapsing the entanglement, and acquiring an error in the gate. Experiments investigating atomic decoherence due to this effect were performed in neutral-atom interferometers 64, 65. This effect was also calculated in 66 for a single ion in a superposition of two different motional coherent states.

The general equivalence of these two points of view (dephasing vs. entangling with the environment) was explained in 67. Here we show this equivalence for the trapped ion case where the ion is undergoing an (ideally) spin-dependent closed loop displacement. For simplicity we examine the case of a single ion; it is, however, straightforward to generalize the following proof to the case of two ions.

We first calculate the final state fidelity by examining entanglement with the photon modes. As in the two-qubit gate, a single ion in a superposition of two different spin states and is cooled to the motional ground state:

\[|\Psi\rangle = \left(\frac{1}{\sqrt{2}} |\uparrow\rangle + \frac{1}{\sqrt{2}} |\downarrow\rangle \right) \otimes |0\rangle_M \otimes |0\rangle_k. \]

(A1)

Here kets with subscript M represent motional states, and kets with the subscript k the different photon modes, which are initially empty (neglecting the laser mode). The ion is subsequently driven by an oscillating force which is detuned from its motional resonance. The direction of force is opposite for the two different spin states. Ideally the two spin states would traverse opposite circular trajectories in phase space (in a frame rotating at the motional mode frequency). At the end of the gate drive, both parts of the superposition (ideally) return to the ground state of motion, and acquire the same geometric phase \(\phi_{\text{gate}} \), which is proportional to the phase-space area encircled. The state at the end of the ideal gate drive is

\[|\Psi_{\text{ideal}}\rangle = e^{i\phi_{\text{gate}}} \left(\frac{1}{\sqrt{2}} |\uparrow\rangle + \frac{1}{\sqrt{2}} |\downarrow\rangle \right) \otimes |0\rangle_M \otimes |0\rangle_k. \]

(A2)

Now assume the ion scattered a photon during the gate drive. Immediately before the scattering event, the gate evolution produces

\[|\Psi\rangle = \left(\frac{1}{\sqrt{2}} e^{i\phi} |\uparrow\rangle |\alpha\rangle + \frac{1}{\sqrt{2}} e^{i\phi} |\downarrow\rangle |\alpha\rangle \right) \otimes |0\rangle_k, \]

(A3)

where \(\pm\alpha \) are the conditional phase-space displacement for the two spin states (we have dropped the subscript \(M \) and \(\phi \) is the geometric phase accumulated by the time of scattering. Immediately after scattering, a single photon is created in mode \(k' \) and the ion correspondingly recoils:

\[|\Psi\rangle = \frac{1}{4\pi} \int \delta(E_{k'}) \left(\frac{1}{\sqrt{2}} e^{i\phi} e^{i\mathbf{q}' \cdot \mathbf{r}} |\uparrow\rangle |\alpha\rangle + \frac{1}{\sqrt{2}} e^{i\phi} e^{i\mathbf{q}' \cdot \mathbf{r}} |\downarrow\rangle |\alpha\rangle \right) \right) \otimes |1\rangle_{k'} \otimes |0\rangle_k \otimes |0\rangle_{k'}. \]

(A4)

Here \(\mathbf{q}' = \mathbf{k} - \mathbf{k}_L \) is the wave vector difference between the scattered photon and the laser beam. The delta-function \(\delta(E_{k'}) \) enforces energy conservation. The electromagnetic field is now represented by a superposition of states in which a single photon was scattered into a certain mode while all other modes are empty. Each part of this superposition is correlated with the corresponding momentum recoil operator acting on the trapped ion. Recoil into directions other than the trap axis will give rise to motion which is common to both parts of the superposition, and can therefore be traced over. We, therefore, neglect recoil into the dimensions other than the trap axis direction, and approximate \(e^{i\mathbf{q}' \cdot \mathbf{r}} \simeq e^{i\mathbf{q}' z} \), where \(\mathbf{q}' = \mathbf{q}'_z \cdot \mathbf{z} \). By use of Eq. (10) this momentum recoil can be written as a phase space displacement \(e^{i\mathbf{q}' z} = D(\beta') \), where \(\beta' = i\mathbf{q}' z_0 \), and \(z_0 \) is the root mean-square of the ground state spatial spread. Using Eq. (32) we add the recoil to the gate displacement and the state after scattering can be written as

\[|\Psi\rangle = \frac{1}{4\pi} \int \delta(E_{k'}) \left(\frac{1}{\sqrt{2}} e^{i\phi} e^{i\mathbf{q}' \cdot \mathbf{r}} |\uparrow\rangle |\alpha + \beta\rangle + \frac{1}{\sqrt{2}} e^{i\phi} e^{i\mathbf{q}' \cdot \mathbf{r}} |\downarrow\rangle |\alpha + \beta\rangle \right) \otimes |k'\rangle dk'. \]

(A5)

Since the total gate displacement is equal to zero, the remaining part of the gate displacement is \(\mp\alpha \) (depending of the spin state). Using Eq. (32) again, we can write the state of the system after the gate has completed

\[|\Psi\rangle = \frac{1}{4\pi} \int \delta(E_{k'}) \left(\frac{1}{\sqrt{2}} e^{i\phi_{\text{gate}}} e^{-i\text{Im}(\alpha\beta^* + \alpha^* \beta)} |\uparrow\rangle |\beta\rangle + \frac{1}{\sqrt{2}} e^{i\phi_{\text{gate}}} e^{i\text{Im}(\alpha\beta^* - \alpha^* \beta)} |\downarrow\rangle |\beta\rangle \right) \otimes |k'\rangle dk'. \]

(A6)

We can now define the gate phase-error \(\Delta \phi' = \text{Im}(\alpha\beta^* - \alpha^* \beta') \), and write the corresponding density operator
\[\rho = \frac{1}{2(4\pi)^3} \int \delta(E_{k'}) \delta(E_{k''}) \left(e^{-i\Delta \phi'} e^{i\Delta \phi''} | \uparrow \rangle \langle \uparrow | + e^{i\Delta \phi'} e^{-i\Delta \phi''} | \downarrow \rangle \langle \downarrow | + e^{-i\Delta \phi'} e^{-i\Delta \phi''} | \uparrow \rangle \langle \downarrow | + e^{i\Delta \phi'} e^{i\Delta \phi''} | \downarrow \rangle \langle \uparrow | \right) \otimes | \beta' \rangle \langle \beta' | \otimes | k' \rangle \langle k'' | dk'dk''. \]

\[\rho = \frac{1}{8\pi} \int \delta(E_{k'}) \left(\frac{1}{2} | \uparrow \rangle \langle \uparrow | + \frac{1}{2} | \downarrow \rangle \langle \downarrow | + \frac{1}{2} e^{-i2\Delta \phi'} | \uparrow \rangle \langle \downarrow | + \frac{1}{2} e^{i2\Delta \phi'} | \downarrow \rangle \langle \uparrow | \right) \otimes | \beta' \rangle \langle \beta' | dk'. \]

Since we have no information about the mode into which the photon was scattered, we reduce the above density matrix with a trace over the photon modes, using \(\text{tr}(|k' \rangle \langle k''|) = 4\pi \delta(k' - k'') \),

\[F = \frac{1}{2} + \frac{1}{2} \langle \cos(2\Delta \phi') \rangle = \langle \cos^2(\Delta \phi') \rangle, \]

where averaging is performed with respect to all of the photon modes:

\[\langle \cos^2(\Delta \phi') \rangle = \frac{1}{4\pi} \int \delta(E_{k'}) \cos^2(\Delta \phi') dk'. \]

We now turn to calculating the fidelity looking only at dephasing as in Sec. III A i.e. loss of fidelity due to the photon scattering random phase. The gate output state is then

\[|\Psi_{\text{ideal}}\rangle = e^{i\phi_{\text{gate}}} \left(\frac{1}{\sqrt{2}} | \uparrow \rangle + \frac{e^{i\Delta \phi}}{\sqrt{2}} | \downarrow \rangle \right), \]

where \(\Delta \phi \) is the random scattering phase (Eq. (A10)). The fidelity of this state with respect to the ideal gate output state is identical to that calculated considering entanglement with the photon modes in Eq. (A9).

[1] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[2] D. J. Wineland et. al., J. Res. Nat. Inst. Stand. Tech. 103, 259 (1998).
[3] Ch. Wunderlich and Ch. Balzer, Adv. At. Mol. Opt. Phys. 49, 293 (2003).
[4] C. Langer et. al., Phys. Rev. Lett. 95, 060502 (2005).
[5] D. Lucas, private communication.
[6] D. Leibfried et. al., Nature 438, 639 (2005).
[7] H. Häffner et. al., Nature 438, 643 (2005).
[8] C. A. Sackett et. al., Nature 404, 256 (2000).
[9] D. Leibfried et. al., Nature 422, 412 (2003).
[10] F. Schmidt-Kaler et. al., Nature 422, 408 (2003).
[11] P. C. Haljan et. al., Phys. Rev. A 72, 062316 (2005).
[12] J. P. Home et. al., New J. Phys. 8, 188 (2006).
[13] J. J. Bollinger et. al., IEEE Trans. Instrum. Measurement 40, 126 (1991).
[14] P. T. H. Fisk, M. J. Sellars, M. A. Lawm, C. Coles, A. G. Mann, and D. G. Blair, IEEE Trans. Instrum. Meas. 44, 113 (1995).
[15] A. M. Steane, Phys. Rev. A 68, 042322 (2003).
[16] B. W. Reichardt, arXiv:quant-ph/0406025 (2004).
[17] E. Knill, Nature 434, 39 (2005).
[18] M. B. Plenio and P. L. Knight, Proc. R. Soc. Lond. A 453, 2017 (1997).
[19] B. R. Mollow, Phys. Rev. A 12, 1919 (1975).
[20] S. Schneider and G. J. Milburn, Phys. Rev. A 57, 3748 (1998).
[21] W. M. Itano, Phys. Rev. A, 68, 046301 (2003).
[22] A. Silberfarb and I. H. Deutsch, Phys. Rev. A 69, 042308 (2004).
[23] D. J. Wineland et. al., Phil. Trans. R. Soc. Lond. A 361, 1349 (2003).
[24] R. A. Cline, J. D. Miller, M. R. Matthews and D. J. Heinzen, Opt. Lett. 19, 207 (1994).
[25] B. R. Ozeri et. al., Phys. Rev. Lett. 95, 030403 (2005).
[26] J. Gea-Banacloche, arXiv:quant-ph/0504187 (2005).
[27] Here we assume, that \(| \gamma \rangle \) is the same for the \(P_{1/2} \) and the \(P_{1/2} \) levels. This is a reasonable assumption for most ions considered. For the heavier ions in Table II the difference can be 10 % to 30 %. The values for \(| \gamma \rangle \) given in the table and used in the calculations are those of the \(P_{1/2} \) level.
[28] T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Rev. 188, 76 (1969).
[29] W. Ansbacher, Y. Li and E. H. Pinnington, Phys. Lett. A 139, 165 (1989).
[30] R. N. Gosselin, E. H. Pinnington and W. Ansbacher, Phys. Rev. 188, 76 (1969).
bacher, Phys. Rev. A 38, 4887 (1988).
[31] R. Mayo, M. Ortiz and J. Campos, Eur. Phys. J. D. 37, 181 (2006).
[32] E. H. Pinninigton, R. W. Berends and M. Lumsden, J. Phys. B 28, 2095 (1995).
[33] D. L. Moehring et. al., Phys. Rev. A 73, 023413 (2006).
[34] E. H. Pinninigton, G. Rieger and J. A. Kernaehan, Phys. Rev. A 56, 2421 (1997).
[35] E. H. Pinninigton et. al., Can. J. Phys. 66, 960 (1988).
[36] D. J. Wineland, J. J. Bollinger, J. M. Itano, Phys. Rev. Lett. 50, 628 (1983).
[37] W. M. Itano and D. J. Wineland, Phys. Rev. A 24, 1364 (1981).
[38] F. Arbes et. al., Z. Phys. D 31, 27 (1994).
[39] S. N. Panigrahy, R. W. Dougherty, T. P. Das and J. Andriessen, Phys. Rev. A 44, 121 (1991).
[40] H. Sunaoshi et. al., Hyperfine Interact. 78, 241 (1993).
[41] U. Tanaka et. al., Phys. Rev. A 53, 3982 (1996).
[42] R. Blatt and G. Werth, Phys. Rev. A 25, 1476 (1982).
[43] R. Blatt, H. Schnatz and G. Werth, Phys. Rev. A 48, 1601 (1992).
[44] D. J. Berkeland et. al., Phys. Rev. Lett. 80, 2089 (1998).
[45] The photon density of states and, hence, the scattering rate will change as the emission wavelength varies with the laser detuning. For most ions considered the fine-structure splitting is small compared to the distance between the P and the D levels and therefore this will be a small effect. This is not the case however for 199Hg$^+$ and 171Yb$^+$, and therefore for these ions this evaluation of ϵ_D is only approximate.
[46] In situations where the detuning is not large compared to ω it would be more accurate to average the branching ratios of the two P levels with weights corresponding to their excitation probability. For most ions considered here (excluding 199Hg$^+$ and 171Yb$^+$) the difference in branching ratios is small; we, therefore, take a non-weighted average.
[47] A. Gallagher, Phys. Rev. 157, 24 (1967).
[48] W. M. Itano, J. C. Bergquist, R. G. Hulet and D. J. Wineland, Phys. Rev. Lett. 59, 2732 (1987).
[49] A. Gallagher, Phys. Rev. A 11, 1223 (1975).
[50] C. Roos, Ph.D. Thesis, Universität Innsbruck (2000).
[51] G. Werth, Metrologia 22, 190 (1986).
[52] A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 (1999).
[53] E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 59, R2539 (1999).
[54] G. J. Milburn et. al., Fortschr. Phys. 48, 9, 801 (2000).
[55] J. J. García-Ripoll, P. Zoller and J. I. Cirac, Phys. Rev. Lett. 91, 157901 (2003).
[56] P. J. Lee et. al. J. Opt. B 7, S371 (2005).
[57] A. Gallagher, Phys. Rev. A 11, 1223 (1975).
[58] C. Roos, Ph.D. Thesis, Universit¨ at Innsbruck (2000).
[59] G. Werth, Metrologia 22, 190 (1986).
[60] E. Solano, R. L. de Matos Filho, and N. Zagury, Phys. Rev. A 59, R2539 (1999).
[61] G. J. Milburn et. al., Fortschr. Phys. 48, 9, 801 (2000).
[62] J. J. García-Ripoll, P. Zoller and J. I. Cirac, Phys. Rev. Lett. 91, 157901 (2003).
[63] P. J. Lee et. al. J. Opt. B 7, S371 (2005).
[64] A. Sørensen and K. Mølmer, Phys. Rev. A 62, 022311 (2000).
[65] For realistic parameters $P_{scat} << 1$; therefore we neglect the possibility that more than one photon is scattered during the gate.
[66] A. Sørensen and K. Mølmer, Phys. Rev. A 67, 062318 (2003).
[67] A. Sørensen and K. Mølmer, Phys. Rev. A 67, 062318 (2003).
[68] For a small phase-error, the error averaged over all possible input states is a factor of 2 lower than the worst-case input error.
[69] M. ˇSašura and A. M. Steane, Phys. Rev. A. 67, 062318 (2003).
[70] M. S. Chapman et. al., Phys. Rev. Lett. 75, 3783 (1995).
[71] M. Mei and M. Weitz, Phys. Rev. Lett. 86, 559 (2001).
[72] J. M. Feagin, Phys. Rev. A 73, 022108 (2006).
[73] A. Stern, Y. Aharonov and Y. Imry, Phys. Rev. A 41, 3436 (1990).