On decay of almost periodic viscosity solutions to Hamilton-Jacobi equations

Evgeny Yu. Panov

Abstract

We establish that a viscosity solution to a multidimensional Hamilton-Jacobi equation with a convex non-degenerate Hamiltonian and Bohr almost periodic initial data decays to its infimum as time $t \to +\infty$.

1 Introduction

In the half-space $\Pi = \mathbb{R}_+ \times \mathbb{R}^n$, $\mathbb{R}_+ = (0, +\infty)$, we consider the Cauchy problem for a first order Hamilton-Jacobi equation

$$u_t + H(\nabla_x u) = 0 \quad (1.1)$$

with merely continuous Hamiltonian function $H(v) \in C(\mathbb{R}^n)$, and with initial condition

$$u(0, x) = u_0(x) \in BUC(\mathbb{R}^n), \quad (1.2)$$

where $BUC(\mathbb{R}^n)$ denotes the Banach space of bounded uniformly continuous functions on \mathbb{R}^n equipped with the uniform norm $\|u\|_\infty = \sup |u(x)|$.

We recall the notions of superdifferential $D^+ u$ and subdifferential $D^- u$ of a continuous function $u(t, x) \in C(\Pi)$:

$$D^+ u(t_0, x_0) = \{ (s, v) = \nabla \varphi(t_0, x_0) \mid \varphi(t, x) \in C^1(\Pi), \quad (t_0, x_0) \text{ is a point of local maximum of } u - \varphi \},$$

$$D^- u(t_0, x_0) = \{ (s, v) = \nabla \varphi(t_0, x_0) \mid \varphi(t, x) \in C^1(\Pi), \quad (t_0, x_0) \text{ is a point of local minimum of } u - \varphi \}.$$

Let us denote by $BUC_{loc}(\bar{\Pi})$ the space of continuous functions on $\bar{\Pi} = C^1 \Pi = [0, +\infty) \times \mathbb{R}^n$, which are bounded and uniformly continuous in any layer $[0, T) \times \mathbb{R}^n$, $T > 0$. Recall the notion of viscosity solution of (1.1), (1.2).
Definition 1. A function $u(t, x) \in BUC_{loc}(\Pi)$ is called a viscosity sub-solution (vsubs. for short) of problem (1.1), (1.2) if $u(0, x) \leq u_0(x)$ and $s + H(v) \leq 0$ for all $(s, v) \in D^+ u(t, x), (t, x) \in \Pi$.

A function $u(t, x) \in BUC_{loc}(\Pi)$ is called a viscosity supersolution (v.supers.) of problem (1.1), (1.2) if $u(0, x) \geq u_0(x)$ and $s + H(v) \geq 0$ for all $(s, v) \in D^- u(t, x), (t, x) \in \Pi$.

Finally, $u(t, x) \in BUC_{loc}(\Pi)$ is called a viscosity solution (v.s.) of (1.1), (1.2) if it is a v.subs. and a v.supers. of this problem simultaneously.

The theory of v.s. was developed in [2, 3]. This theory extended the earlier results of S.N. Kruzhkov [5, 6].

It is known that for each $u_0(x) \in BUC(\mathbb{R}^n)$ there exists a unique v.s. of problem (1.1), (1.2). The uniqueness readily follows from the more general comparison principle.

Theorem 1 (see [3]). Let $u_1(t, x), u_2(t, x) \in BUC_{loc}(\Pi)$ be a v.subs. and a v.supers. of (1.1), (1.2) with initial data $u_{10}(x), u_{20}(x)$, respectively. Assume that $u_{10}(x) \leq u_{20}(x) \forall x \in \mathbb{R}^n$. Then $u_1(t, x) \leq u_2(t, x) \forall (t, x) \in \Pi$.

Corollary 1. Let $u_1(t, x), u_2(t, x) \in BUC_{loc}(\Pi)$ be v.s. of (1.1), (1.2) with initial data $u_{10}(x), u_{20}(x)$, respectively. Then for all $t > 0$

$$\inf(u_{10}(x) - u_{20}(x)) \leq u_1(t, x) - u_2(t, x) \leq \sup(u_{10}(x) - u_{20}(x)).$$

In particular, $\|u_1 - u_2\|_\infty \leq \|u_{10} - u_{20}\|_\infty$.

Proof. Let

$$a = \inf(u_{10}(x) - u_{20}(x)), \quad b = \sup(u_{10}(x) - u_{20}(x)).$$

Obviously, the functions $a + u_2(t, x), b + u_2(t, x)$ a v.s. of (1.1), (1.2) with initial data $a + u_{20}(x), b + u_{20}(x)$, respectively. Since $a + u_{20}(x) \leq u_{10}(x) \leq b + u_{20}(x)$, then by Theorem 1 $a + u_2(t, x) \leq u_1(t, x) \leq b + u_2(t, x) \forall (t, x) \in \Pi$, which completes the proof.

In the case when $H(0) = 0$ constants are v.s. of (1.1). By Corollary 1 with $u_1 = u, u_2 = 0$ we find that a v.s. $u = u(t, x)$ is bounded, namely $\|u\|_\infty \leq \|u_0\|_\infty$. Notice that the requirement $H(0) = 0$ does not reduce the generality because we can make the change $\tilde{u} \rightarrow u + H(0)t$, which provides a v.s. \tilde{u} of the problem $\tilde{u}_t + H(\nabla_x \tilde{u}) - \tilde{H}(0) = 0, \tilde{u}(0, x) = u_0(x)$, with new hamiltonian $\tilde{H}(v) = H(v) - H(0)$ satisfying the desired condition $\tilde{H}(0) = 0$.

We are going to study long time decay property of v.s. to the problem \((\ref{1.1}), (\ref{1.2})\) with almost periodic initial data. Recall that the space \(AP(\mathbb{R}^n)\) of Bohr (or uniform) almost periodic functions is a closure of trigonometric polynomials, i.e. finite sums \(\sum a_\lambda e^{2\pi i \lambda \cdot x}\), in the space \(BUC(\mathbb{R}^n)\) (by \(\cdot \) we denote the inner product in \(\mathbb{R}^n\)). It is clear that \(AP(\mathbb{R}^n)\) contains continuous periodic functions (with arbitrary lattice of periods). Let \(C_R\) be the cube \[\{ x = (x_1, \ldots, x_n) \in \mathbb{R}^n \mid |x|_\infty = \max_{i=1,\ldots,n} |x_i| \leq R/2 \}, \quad R > 0.\]

It is known (see for instance \cite{8}) that for each function \(u \in AP(\mathbb{R}^n)\) there exists the mean value \[\bar{u} = \int_{\mathbb{R}^n} u(x) dx = \lim_{R \to +\infty} R^{-n} \int_{C_R} u(x) dx\]

and, more generally, the Bohr-Fourier coefficients \[a_\lambda = \int_{\mathbb{R}^n} u(x) e^{-2\pi i \lambda \cdot x} dx, \quad \lambda \in \mathbb{R}^n.\]

The set \[Sp(u) = \{ \lambda \in \mathbb{R}^n \mid a_\lambda \neq 0 \}\]

is called the spectrum of an almost periodic function \(u(x)\). It is known \cite{8}, that the spectrum \(Sp(u)\) is at most countable.

Now we assume that the initial function \(u_0(x) \in AP(\mathbb{R}^n)\). Let \(M_0\) be the smallest additive subgroup of \(\mathbb{R}^n\) containing \(Sp(u_0)\). Notice that in the case when \(u_0\) is a continuous periodic function \(M_0\) coincides with the dual lattice to the lattice of periods.

We are going to find an exact condition on the hamiltonian \(H(v)\) for the fulfillment of the decay property \[u(t, x) \Rightarrow c = \text{const} \quad \text{as} \quad t \to +\infty. \quad (1.3)\]

We assume that \(H(0) = 0\) and introduce the following non-degeneracy condition of \(H(v)\) at point \(v = 0\) in “resonant” directions \(\xi \in M_0\)

\[
\forall \xi \in M_0, \xi \neq 0 \quad \text{the functions} \quad s \to H(s\xi)
\]

are not linear in any interval \(|s| < \delta, \delta > 0. \quad (1.4)\]

Notice that the similar condition (non-linearity of resonant components of the flux vector \(f(u)\)) is known to be an exact condition for decay of almost
periodic entropy solutions to scalar conservation laws \(u_t + \text{div}_x f(u) = 0 \), see [11] and, in the periodic case, [4, 9, 10].

Let us demonstrate that requirement (1.4) is necessary for the decay of v.s. of (1.1), (1.2) such that \(Sp(u_0) \subset M_0 \). In fact, if (1.4) fails then there exist a nonzero vector \(\xi \in M_0 \) and a positive \(\delta > 0 \) such that \(H(s\xi) = \alpha s \) for \(|s| \leq \delta \) for some \(\alpha \in \mathbb{R} \). Then the function \(u(t,x) = \frac{\delta}{2\pi} \sin(2\pi(\xi \cdot x - \alpha t)) \) is a classical (and, therefore, a v.s.) of (1.1), (1.2) with initial function \(u_0(x) = \frac{\delta}{2\pi} \sin(2\pi \xi \cdot x) \) because

\[
\nabla_x u(t,x) = s\xi, \quad u_t(t,x) = -s\alpha, \quad s = \delta \cos(2\pi(\xi \cdot x - \alpha t)) \in [-\delta,\delta],
\]

so that \(u_t + H(\nabla_x u) = 0 \). Obviously, \(u_0(x) \) is a periodic function and

\[
Sp(u_0) = \{ k\xi \mid k \in \mathbb{Z}, k \neq 0 \} \subset M_0.
\]

But the decay property is evidently violated.

In the case \(n = 1 \) condition (1.4) reads that \(H(v) \) is not linear in any vicinity of zero. In recent preprint [12] this condition was shown to be sufficient for the decay property.

In this paper we prove the similar result in arbitrary dimension \(n \geq 1 \) but for a convex hamiltonian. Our main results is the following

Theorem 2. Assume that the hamiltonian \(H(v) \) is convex, \(H(0) = 0 \), and condition (1.4) is satisfied. Then the decay property (1.3) holds. Moreover, the limit constant \(c = \inf u_0(x) \).

Notice that in the case of strictly convex hamiltonian condition (1.4) is always satisfied. In this case the statement of Theorem 2 follows from the general results of [5, Theorem 8], [6, Theorem 6], for arbitrary \(u_0(x) \in BUC(\mathbb{R}^n) \).

We also remark that in the case of arbitrary \(H(0) \) decay property (1.3) should be revised as

\[
u(t,x) + H(0)t \Rightarrow c = \text{const} \quad \text{as } t \to +\infty.\]

2 The case of periodic initial function

In the case of convex hamiltonian the unique v.s. \(u(t,x) \) of (1.1), (1.2) can be found by the known Hopf-Lax-Oleinik formula [6, 11]

\[
u(t,x) = \min_{y \in \mathbb{R}^n}[u_0(y) + tH^*((x-y)/t)],
\]

(2.1)
where
\[H^*(p) = \sup_{v \in \mathbb{R}^n} [p \cdot v - H(v)] \quad (2.2) \]
is the Legendre transform of \(H \). To simplify the proofs, we will assume in addition that the following coercivity condition is satisfied (in Remark 1 below we demonstrate how to avoid this condition)
\[H(v)/|v| \to +\infty \quad \text{as} \quad v \to \infty \quad (2.3) \]
(here and in the sequel we denote by \(|v| \) the Euclidean norm of a finite-dimensional vector \(v \)). Under this condition the Legendre conjugate function \(H^*(p) \) is everywhere defined convex function satisfying the coercivity condition:
\[H^*(p)/|p| \to +\infty \quad \text{as} \quad p \to \infty . \]

It is known that for every \(v_0 \in \mathbb{R}^n \) the sub-differential \(D^-H(v_0) \) of a convex function \(H(v) \) on \(\mathbb{R}^n \) coincides with the set
\[\partial H(v_0) = \{ p \in \mathbb{R}^n \mid H(v) - H(v_0) \geq p \cdot (v - v_0) \}, \]
which is a nonempty convex compact in \(\mathbb{R}^n \). By the assumption \(H(0) = 0 \) the conjugate function \(H^*(p) \geq 0 \) and \(H^*(p_0) = 0 \) if and only if \(p_0 \in \partial H(0) \). We fix such \(p_0 \) and introduce the convex set \(\partial H^*(p_0) \). Since \(0 = H^*(p_0) = \min H(p) \) then \(0 \in \partial H^*(p_0) \). By the duality,
\[H(v) = H^{**}(v) = \max_{p \in \mathbb{R}^n} [p \cdot v - H^*(p)]. \]
As readily follows from this relation,
\[H(v) = p_0 \cdot v \quad \forall v \in \partial H^*(p_0). \quad (2.4) \]

We fix \(\varepsilon > 0 \) and introduce the polar set
\[G = (\partial H^*(p_0))' = \{ p \in \mathbb{R}^n \mid p \cdot v \leq \varepsilon \forall v \in \partial H^*(p_0) \}. \quad (2.5) \]
Then \(G \) is a closed convex set and, by the bipolar theorem \[\text{Theorem 14.5}],
\[\partial H^*(p_0) = G' = \{ v \in \mathbb{R}^n \mid p \cdot v \leq \varepsilon \forall p \in G \}. \quad (2.6) \]
Let \(\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n \) be the torus, \(\text{pr} : \mathbb{R}^n \to \mathbb{T}^n \) be the natural projection.

Proposition 1. Let \(G \subset \mathbb{R}^n \) be a convex set such that \(\text{pr}(G) \) is not dense in \(\mathbb{T}^n \). Then there exists \(\xi \in \mathbb{Z}^n \) such that the linear functional \(p \to \xi \cdot p \) is bounded on \(G \).
Proof. Without loss of generality we may suppose that G is a closed convex set and that $0 \in G$. We define the dimension $\dim A$ of any set $A \subset \mathbb{R}^n$ as the dimension of its linear span. Let $m(G)$ be the maximal of such integer m that there exists a convex cone $C \subset G$ of dimension m. Since the trivial cone $\{0\} \subset G$, then $0 \leq m(G) \leq n$. We will prove our statement by induction in the value $k = n - m(G)$. If $k = 0$ then there exists a cone $C \subset G$ of full dimension n. This implies that C contains some ball $B_\delta(x_0) = \{x \in \mathbb{R}^n \mid |x - x_0| \leq \delta \}$. Obviously, $B_{r\delta}(rx_0) = rB_\delta(x_0) \subset C$ for any $r > 0$. In particular, the set $G \supset C$ contains balls of arbitrary radius. This implies that G contains a cube K with side greater than 1. Since $\text{pr}(K) = \mathbb{T}^n$, we conclude that $\text{pr}(G) = \mathbb{T}^n$. Hence in the case $k = 0$ the assumptions that $\text{pr}(G)$ is not dense in \mathbb{T}^n cannot be satisfied and our assertion is true.

Now assume that $k > 0$ and the statement of our proposition holds for all sets G such that $n - m(G) < k$. We have to prove our statement in the case $n - m(G) = k$. Let $C \subset G$ be a cone of maximal dimension $n - k$, L be the linear span of C. By our assumption $K = \text{Cl} \text{pr}(C)$ is a proper compact subset of \mathbb{T}^n. Introduce the set

$$M = \{x \in \mathbb{R}^n \mid \text{pr}(\lambda x) + y \in K \ \forall y \in K, \ \lambda \geq 0 \}.$$

Here $+$ is a standard group operation on the torus \mathbb{T}^n. Since

$$\text{pr}(\lambda(c_1x_1 + c_2x_2)) + y = \text{pr}(\lambda c_1x_1) + (\text{pr}(\lambda c_2x_2) + y) \in K$$

for all $y \in K$, then $c_1x_1 + c_2x_2 \in M$ whenever $x_1, x_2 \in M, c_1, c_2 \geq 0$. This means that M is a convex cone. Let us demonstrate that $-x \in M$ for each $x \in M$. For that we define the standard metric d on \mathbb{T}^n,

$$d(y_1, y_2) = \min\{ |x_1 - x_2| \mid y_i = \text{pr}(x_i), i = 1, 2 \},$$

and introduce for $x_0 \in \mathbb{R}^n$, $y \in K$ the function $f(s) = d(\text{pr}(sx_0) + y, K) = \min_{z \in K} d(\text{pr}(sx_0) + y, z), s \in \mathbb{R}$. It is clear that $f(s)$ is an almost periodic function (as a composition of the continuous periodic function $g(x) = d(\text{pr}(x) + y, K)$ and the linear embedding $s \rightarrow sx_0$). If $x_0 \in M$ then $f(s) = 0$ for all $s \geq 0$. Since $f(s)$ is an almost periodic function, the latter is possible only if $f \equiv 0$. In particular, $\text{pr}(sx_0) + y \in K$ for all $s \leq 0$ and $y \in K$, that is, $-x_0 \in M$. Hence, M is a symmetric convex cone, i.e., it is a linear space. If $x \in C$, $y = \text{pr}(z), z \in C$, then $\text{pr}(\lambda x) + y = \text{pr}(\lambda x + z) \in \text{pr}(C)$. Thus, $\text{pr}(\lambda x) + y \in \text{pr}(C)$ whenever $y \in \text{pr}(C), \lambda \geq 0$. By the continuity of the
group operation we find that $\text{pr}(\lambda x) + y \in K$ for all $y \in K = \text{Cl} \text{pr}(C)$, $\lambda \geq 0$, that is, $x \in M$. We conclude that $C \subset M$. Since M is a linear subspace, it follows that $L \subset M$. Notice that $0 \in K$, $\text{pr}(M) = \text{pr}(M) + 0 \subset K \neq \mathbb{T}^n$. Let $S = \text{Cl} \text{pr}(M) \subset K$. Then S is a proper closed subgroup of \mathbb{T}^n. By Pontryagin duality [13], there exists a character $\chi(y) = e^{2\pi i \xi \cdot y}$, $\xi \in \mathbb{Z}^n$, $\xi \neq 0$, such that $\chi(y)$ $= 1$ on S. It follows that $\xi \cdot x = 0$ for all $x \in M$, and in particular, $\xi \in L^\perp$. If the linear functional $x \rightarrow \xi \cdot x$ is bounded on G, then the desired statement is proved. Assuming the contrary, that is, this functional is not bounded on G, we can find the sequence $p_r \in G$, $r \in \mathbb{N}$, such that $\xi \cdot p_r \rightarrow \infty$ as $r \rightarrow \infty$. We introduce the new convex set $G' = \text{Cl} (L + G)$ and remark that

$$\text{pr}(L + G) = \text{pr}(L) + \text{pr}(G) \subset K + \text{pr}(G) = \text{Cl} \text{pr}(C) + \text{pr}(G) \subset \text{Cl} \text{pr}(C + G) \subset \text{Cl} \text{pr}(G).$$

We utilized that $C + G \subset G$. To prove this inclusion, we fix $x \in C$, $p \in G$ and observe that

$$x + p = \lim_{r \rightarrow \infty} \left(x + \frac{r - 1}{r} p \right),$$

while $x + \frac{r - 1}{r} p = \frac{1}{r} rx + \frac{r - 1}{r} p \in G$ for all $r > 1$ by the convexity of G (notice that $rx \in C \subset G$). Since G is closed, relation (2.8) implies that $x + p \in G$ for each $x \in C$, $p \in G$, as was to be proved.

By (2.7) $\text{Cl} \text{pr}(G') = \text{Cl} \text{pr}(G)$ is a proper subset of \mathbb{T}^n. Let $q_r \in L$ be orthogonal projection of p_r, so that $p_r - q_r \perp L$. Since $\xi \cdot (p_r - q_r) = \xi \cdot p_r \rightarrow \infty$ as $r \rightarrow \infty$, we have $\alpha_r = \| p_r - q_r \| \rightarrow +\infty$ as $r \rightarrow \infty$. Since $0, p_r - q_r \in G'$ then $\lambda(\alpha_r)^{-1}(p_r - q_r) \in G'$ if $\alpha_r > \lambda \geq 0$. Passing to a subsequence if necessary, we can suppose that the sequence of unite vectors $(\alpha_r)^{-1}(p_r - q_r) \rightarrow h$ as $r \rightarrow \infty$. Evidently, $|h| = 1$ and $h \perp L$. Besides, $\lambda h = \lim_{r \rightarrow \infty} \lambda(\alpha_r)^{-1}(p_r - q_r) \in G'$ because the set G' is closed. We find that the cone $C' = L + \{ \lambda h \mid \lambda \geq 0 \} \subset G'$ while $\dim C' = m(G) + 1$. We see that $n - m(G') < k$. By the induction hypothesis there exists a vector $\xi \in \mathbb{Z}^n$, $\xi \neq 0$ such that the corresponding linear functional $x \rightarrow \xi \cdot x$ is bounded on G' and therefore also on $G \subset G'$. We prove the assertion of our proposition for the case $n - m(G) = k$. By the principle of mathematical induction, this completes the proof. \hfill \Box

Corollary 2. Assume that the following non-degeneracy condition holds:

$$\forall \xi \in \mathbb{Z}^n, \xi \neq 0 \text{ the functions } s \rightarrow H(s\xi)$$

are not linear in any vicinity of zero.

(2.9)
Then for each $\varepsilon > 0$ the set $\text{pr}(G)$ is dense in \mathbb{T}^n, where the convex set G is given by (2.3).

Proof. Assuming the contrary and applying Proposition 1 we can find $\xi \in \mathbb{Z}^n$, $\xi \neq 0$, and a positive constant c such that $|\xi \cdot p| \leq c$ for all $p \in G$. In view of (2.6) this implies that $s\xi \in G' = \partial H^*(p_0)$ for $|s| < \delta = \varepsilon/c$. By (2.4) we find that the function $H(s\xi) = sp_0 \cdot \xi$ is linear on the interval $|s| < \delta$. But this contradicts to our assumption. Thus, $\text{pr}(G)$ is dense in \mathbb{T}^n. The proof is complete.

Let $u_0(x) \in C(\mathbb{T}^n)$ be a periodic function (with the standard lattice of periods \mathbb{Z}^n), and $u = u(t,x)$ be the unique v.s. of the problem (1.1), (1.2). Observe that the group M_0 coincides with \mathbb{Z}^n, and condition (1.4) reduces to (2.9). Now, we are ready to prove our main result.

Theorem 3. Under non-degeneracy condition (2.9) a v.s. $u(t,x)$ of (1.1), (1.2) satisfies the following decay property:

$$u(t,x) \Rightarrow c = \min u_0(x) \quad \text{as } t \to +\infty.$$ (2.10)

Proof. We fix $p_0 \in \partial H(0)$, $\varepsilon > 0$ and consider the corresponding set G introduced in (2.3). Since $u_0(y)$ is a uniformly continuous function on the compact \mathbb{T}^n, there exists such $\delta > 0$ that

$$|u_0(y_1) - u_0(y_2)| < \varepsilon \quad \forall y_1, y_2 \in \mathbb{T}^n, d(y_1, y_2) \leq \delta.$$ (2.11)

By Corollary 2 the set $\text{pr}(G)$ is dense in \mathbb{T}^n. Therefore, there exists a finite δ-net $Y = \{y_1, \ldots, y_m\} \subset \text{pr}(G)$. We choose $q_k \in G$ such that $y_k = \text{pr}(q_k)$, $k = 1, \ldots, m$. Let a point $y_s \in \mathbb{T}^n$ be such that $u_0(y_s) = c = \min u_0(y)$. Since Y is a δ-net in \mathbb{T}^n, then for each $(t,x) \in \Pi$ there exists such $k \in \{1, \ldots, m\}$ that

$$d(\text{pr}(x - p_0 t - q_k), y_s) = d(\text{pr}(x - p_0 t - y_s, y_k) \leq \delta.$$ (2.11)

In view of (2.11), $u_0(x - p_0 t - q_k) < u_0(y_s) + \varepsilon = c + \varepsilon$. From (2.11) it follows that

$$u(t,x) \leq u_0(x - p_0 t - q_k) + tH^*((x - (x - p_0 t - q_k))/t) =$$

$$u_0(x - p_0 t - q_k) + tH^*(p_0 + q_k/t) < c + \varepsilon + tH^*(p_0 + q_k/t).$$ (2.12)

Notice also that in view of Corollary 2 with $u_1 = u(t,x)$, $u_2 \equiv 0$, $u(t,x) \geq c$ for all $(t,x) \in \Pi$. From this inequality and (2.12) it now follows that

$$c \leq u(t,x) < c + \varepsilon + \alpha(t).$$ (2.13)
where
\[\alpha(t) = \max_{k=1,\ldots,m} tH^*(p_0 + q_k/t). \]
Since \(H^*(p) \) is a convex function and \(H^*(p_0) = 0 \), there exist limits
\[\lim_{t \to +\infty} tH^*(p_0 + q_k/t), \]
which coincide with directional derivatives \(D_{q_k}H^*(p_0) \). It is known (see [14])
that \(D_{q_k}H^*(p_0) = \max_{v \in \partial H^*(p_0)} q_k \cdot v \).

Thus, \(\lim_{t \to +\infty} \|u(t, \cdot) - c\|_\infty \leq 2\varepsilon \).

To complete the proof it only remains to notice that \(\varepsilon > 0 \) is arbitrary. \(\square \)

Remark 1. The statement of Theorem 1.2 remains valid for arbitrary convex
hamiltonian \(H(v) \), which may not satisfy the coercivity condition (2.3).

Assume first that the initial function \(u_0(x) \) is Lipschitz:
\[|u_0(x) - u_0(y)| \leq L|x - y| \quad \forall x, y \in \mathbb{R}^n, \]
\(L > 0 \) is a Lipschitz constant. By Corollary 1 we have
\[|u(t, x + h) - u(t, x)| \leq \sup |u_0(x + h) - u_0(x)| \leq L|h| \quad \forall x, h \in \mathbb{R}^n, t > 0. \]

Thus, the functions \(u(t, \cdot) \) satisfy the Lipschitz condition with the constant \(L \). Therefore, the generalized gradient \(\nabla_x u \in L^\infty(\Pi, \mathbb{R}^n) \), \(\|\nabla_x u\|_\infty \leq L \).

This readily implies that \(|v| \leq L \) whenever \((s, v) \in D^\pm u(t, x), (t, x) \in \Pi \).

We see that the behavior of \(H(v) \) for \(|v| > L \) does not matter and we can
always improve the convex hamiltonian \(H(v) \) in the domain \(|v| > L \) in such a
way that the corrected hamiltonian satisfies the coercivity assumption. It is
clear that the non-degeneracy condition (2.9) remains valid. By Theorem 3
we conclude that decay property (2.10) holds.

In the general case we construct the sequence \(u_{0k} \in C(T^n), k \in \mathbb{N} \), of
periodic Lipschitz functions such that \(u_{0k} \to u_0 \) as \(k \to \infty \) in \(C(T^n) \). Let
$u_k = u_k(t, x)$ be a v.s. of (1.1), (1.2) with initial data u_{0k}. Then, taking into account Corollary 1, we find that as $k \to \infty$

$$u_k(t, x) \to u(t, x), \quad c_k = \min u_{0k}(y) \to c = \min u_0(y).$$ \hspace{1cm} (2.14)

As was already proved, for each $k \in \mathbb{N}$

$$u_k(t, \cdot) \to c_k \quad \text{as} \quad t \to +\infty.$$

In view of (2.14) we can pass to the limit as $k \to \infty$ in the above relation and derive the desired result (2.10).

We underline that condition (2.9) can be satisfied even for a hamiltonian linear on each of two half-spaces with a common boundary hyper-space.

Example 1. Let $p \in \mathbb{R}^n$ be a nonzero vector. We consider the equation

$$u_t + |\partial_p u| = 0,$$

where $\partial_p u = p \cdot \nabla x u$ is the directional derivative of u. Obviously, the hamiltonian $H(v) = |p \cdot v|$ satisfies (2.9) if and only if $p \cdot \xi \neq 0$ for every $\xi \in \mathbb{Z}^n$, $\xi \neq 0$. This means that the coordinates $p_j, j = 1, \ldots, n,$ of the vector p are linearly independent over the field \mathbb{Q} of rationals.

3 The case of almost periodic initial data

In this section we prove Theorem 2 in the general case $u_0(x) \in AP(\mathbb{R}^n)$.

We will need some simple general properties of v.s. collected in the following lemma.

Lemma 1. (i) If $u(t, x)$ is a v.s. of (1.1), (1.2), then $v = -u(t, x)$ is a v.s. to the problem

$$v_t - H(-\nabla x v) = 0, \quad v(0, x) = -u_0(x);$$

(ii) Let $y = Ax$ be a non-degenerate linear operator on \mathbb{R}^n, $v_0(y) \in BUC(\mathbb{R}^n), v(t, y) \in BUC_{loc}(\Pi)$. Then the function $u(t, x) = v(t, Ax)$ is a v.s. of (1.1), (1.2) with initial data $u_0(x) = v_0(Ax)$ if and only if $v(t, y)$ is a v.s. of the problem

$$v_t + H(A^*\nabla y v) = 0, \quad v(0, y) = v_0(y),$$

10
where A^* is the conjugate operator;

(iii) Let $H(p, q) \in C(\mathbb{R}^n \times \mathbb{R}^m)$. We consider the equation

$$U_t + H(\nabla_x U, \nabla_y U) = 0$$

(3.1)

in the half-space $\{ (t, x, y) \mid t > 0, x \in \mathbb{R}^n, y \in \mathbb{R}^m \}$. Then $U(t, x, y) = u(t, y)$ is a non-depending on x v.s. of (3.1) if and only if $u(t, y)$ is a v.s. of the reduced equation

$$u_t + H(0, \nabla_y u) = 0, \quad (t, y) \in \mathbb{R}_+ \times \mathbb{R}^m.$$

Proof. (i) As is easy to verify, $(s, w) \in D^\pm v(t_0, x_0)$ if and only if $(-s, -w) \in D^\mp u(t_0, x_0)$. Since $u(t, x)$ is a v.s. of (1.1) we obtain that, respectively, $\pm (-s + H(-w)) \geq 0$, i.e., $\mp (s - H(-w)) \geq 0$. By the definition, this means that $v(t, x)$ is a v.s. of the equation $v_t - H(-\nabla_x v) = 0$. Since the initial condition $v(0, x) = -u_0(x)$ is evident, this completes the proof of (i).

Assertion (ii) follows from the fact that (t_0, x_0) is a point of local maximum (minimum) of $u(t, x) - \psi(t, Ax)$, with $\psi(t, y) \in C^1(\Pi)$, if and only if (t_0, Ax_0) is a point of local maximum (minimum) of $v(t, y) - \psi(t, y)$ and from the classical identity $A^* \nabla_y \psi(t, y) = \nabla_x \psi(t, Ax)$, $y = Ax$.

Finally, assertion (iii) readily follows from the evident equalities

$$D^\pm U(t, x, y) = \{ (s, 0, v) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m \mid (s, v) \in D^\pm u(t, y) \}.$$
Proof. Let \(u(t, x, y) \) be a v.s. of \((3.2), (3.3)\), and \(y_0 \in \mathbb{R}^m \). We assume that \(\varphi(t, x) \in C^1(\Pi) \) and \((t_0, x_0) \in \Pi \) is a point of local maximum of \(u^{y_0} - \varphi \). Moreover, replacing \(\varphi \) by \(\varphi(t, x) + (t-t_0)^2 + |x-x_0|^2 + u(t_0, x_0, y_0) - \varphi(t_0, x_0) \), we can suppose, without loss of generality, that \((t_0, x_0) \in \Pi \) is a point of strict local maximum of \(u^{y_0} - \varphi \), and that in this point \(u^{y_0}(t_0, x_0) - \varphi(t_0, x_0) = 0 \). Therefore, there exists \(c > 0 \) such that

\[
\varphi(t, x) - u(t, x, y_0) > c \quad \forall (t, x) \in \Pi, \quad (t-t_0)^2 + |x-x_0|^2 = r^2,
\]

for some \(r \in (0, t_0) \). By the continuity there exists \(h > 0 \) such that \(\varphi(t, x) - u(t, x, y) > c/2 \) for all \((t, x, y) \in \mathbb{R}^n \times \mathbb{R}^m \), \((t-t_0)^2 + |x-x_0|^2 = r^2, |y-y_0| \leq h \). We can choose such \(C_0 > 0 \) that

\[
C_0 h^2 - c > \max\{ u(t, x, y) - \varphi(t, x) \mid (t-t_0)^2 + |x-x_0|^2 \leq r^2, |y-y_0| = h \}.
\]

Then for each natural \(k > C_0 \) the function \(p_k(t, x, y) = \varphi(t, x) + k|y-y_0|^2 \in C^1(\mathbb{R}^+ \times \mathbb{R}^n \times \mathbb{R}^m) \) and satisfies the property

\[
p_k(t, x, y) - u(t, x, y) > c/2 > 0 = p_k(y_0, x_0, y_0) - u(t_0, x_0, y_0)
\]

\(\forall (t, x, y) \in \partial V_{r,h} \), where we denote by \(V_{r,h} \) the domain

\[
V_{r,h} = \{ (t, x, y) \in \mathbb{R}^n \times \mathbb{R}^m \mid (t-t_0)^2 + |x-x_0|^2 < r^2, |y-y_0| < h \}.
\]

In view of \((3.4)\) the point \((t_k, x_k, y_k)\) such that

\[
p_k(t_k, x_k, y_k) - u(t_k, x_k) = \min_{(t, x, y) \in \Pi \cap \partial V_{r,h}} (p_k(t, x, y) - u(t, x, y))
\]

lies in \(V_{r,h} \) and, therefore, it is a point of local maximum of the difference \(u(t, x, y) - p_k(t, x, y) \). Since \(\nabla p_k(t, x, y) = (\partial_t \varphi(t, x), \nabla_x \varphi(t, x), 2k(y-y_0)) \), then by the definition of v.s. of \((3.2)\)

\[
\partial_t \varphi(t_k, x_k) + H(\nabla_x \varphi(t_k, x_k)) \leq 0.
\]

Since \(\min_{(t, x, y) \in \Pi \cap \partial V_{r,h}} (p_k(t, x, y) - u(t, x, y)) \leq p_k(t_0, x_0, y_0) - u(t_0, x_0, y_0) = 0 \), then \(k|y_k - y_0|^2 \leq m = \max_{(t, x, y) \in \Pi \cap \partial V_{r,h}} (u(t, x, y) - \varphi(t, x)) \). In particular \(y_k \to y_0 \) as \(k \to \infty \). Taking into account that \((t_0, x_0) \) is a point of strict local maximum of \(u(t, x, y_0) - \varphi(t, x) \), we derive that \((t_k, x_k) \to (t_0, x_0) \) as \(k \to \infty \). Therefore, it follows from \((3.5)\) in the limit as \(k \to \infty \) that

\[
\partial_t \varphi(t_0, x_0) + H(\nabla_x \varphi(t_0, x_0)) \leq 0.
\]
This means that \(u(t, x, y_0) \) is a v.subs. of (1.1). By the similar reasons we obtain that
\[
\partial_t \varphi(t_0, x_0) + H(\nabla_x \varphi(t_0, x_0)) \geq 0
\]
whenever \((t_0, x_0)\) is a point of strict local minimum of \(u(t, x, y_0) - \varphi(t, x) \), where \(\varphi(t, x) \in C^1(\Pi) \), that is, \(u(t, x, y_0) \) is a v.supers. of (1.1). Thus, \(u(t, x, y_0) \) is a v.s. of (1.1) for each \(y_0 \in \mathbb{R}^m \).

Conversely, assume that \(u^y(t, x) \) is a v.s. of (1.1) for every \(y \in \mathbb{R}^m \). Suppose that \(\varphi(t, x, y) \in C^1(\mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^m) \) and that \((t_0, x_0, y_0)\) is a point of local maximum (minimum) of \(u(t, x, y) - \varphi(t, x, y) \). Then the point \((t_0, x_0)\) is in \(\Pi \) is a point of local maximum (minimum) of \(u^{y_0}(t, x) - \varphi(t, x, y_0) \). Since \(u^{y_0} \) is a v.s. of (1.1) then \(\varphi(t_0, x_0, y_0) + H(\nabla_x \varphi(t_0, x_0, y_0)) \leq 0 \) (respectively, \(\varphi(t_0, x_0, y_0) + H(\nabla_x \varphi(t_0, x_0, y_0)) \geq 0 \)). Hence, \(u(t, x, y) \) is a v.s. of (1.2). To complete the proof it only remains to notice that initial condition (3.3) is satisfied if and only if \(u^y(t, x) \) satisfies (1.2) with initial data \(u_0^y \) for all \(y \in \mathbb{R}^m \).

Now, we can extend the statement of Lemma 1(ii) to the case of arbitrary linear maps.

Proposition 2. Let \(\Lambda : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be a linear map, and \(v(t, y) \) be a v.s. to the problem
\[
v_t + H(\Lambda^* \nabla_y v) = 0, \quad v(0, y) = v_0(y)
\]
in the half-space \((t, y) \in \mathbb{R}_+ \times \mathbb{R}^m \). Then \(u(t, x) = v(t, \Lambda x) \) is a v.s. of original problem (1.1), (1.2) with initial function \(u_0(x) = v_0(\Lambda x) \).

Proof. We introduce the invertible linear operator \(\tilde{\Lambda} \) on the extended space \(\mathbb{R}^{n+m} \), defined by the equality \(\tilde{\Lambda}(x, z) = (x, z + \Lambda x) \). Since \(\tilde{\Lambda}^*(x, y, y) = (x + \Lambda^* y, y) \), equation (3.6) can be rewritten in the form
\[
v_t + H(\tilde{\Lambda}^*(0, \nabla_y v)) = 0,
\]
where \(H(p, q) = H(p), \; p \in \mathbb{R}^n, \; q \in \mathbb{R}^m \). By Lemma 1(iii) the function \(v = v(t, y) \) is a v.s. of equation
\[
v_t + H(\tilde{\Lambda}^*(\nabla_x v, \nabla_y v)) = 0
\]
in the extended domain \((t, x, y) \in \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^m \). Then, by Lemma 1(ii) the function \(u(t, x, z) = v(t, z + \Lambda x) \) is a v.s. of (1.1) considered in the extended domain \((t, x, z) \in \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^m \). Applying Lemma 2 we conclude that
$u^z(t,x) = u(t,x,z)$ is a v.s. of (1.1) for all $z \in \mathbb{R}^m$. Taking $z = 0$ we find that $u(t,x) = v(t,\Lambda x)$ is a v.s. of (1.1). It is clear that $u(0,x) = v_0(\Lambda x) = u_0(x)$, that is, $u(t,x)$ is a v.s. of original problem (1.1), (1.2).

Now we are ready to prove our main Theorem 2.

Proof of Theorem 2. We first assume that the initial function is a trigonometric polynomial $u_0(x) = \sum_{\lambda \in S} a_\lambda e^{2\pi i \lambda \cdot x}$. Here $S = Sp(u_0) \subset \mathbb{R}^n$ is a finite set. Then the subgroup M_0 is a finite generated torsion-free abelian group and therefore it is a free abelian group of finite rank (see [7]). Hence, there is a basis $\lambda_j \in M_0$, $j = 1, \ldots, m$, so that every element $\lambda \in M_0$ can be uniquely represented as $\lambda = \lambda(\bar{k}) = \sum_{j=1}^m k_j \lambda_j$, $\bar{k} = (k_1, \ldots, k_m) \in \mathbb{Z}^m$. In particular, we can represent the initial function as

$$u_0(x) = \sum_{\bar{k} \in J} a_{\bar{k}} e^{2\pi i \sum_{j=1}^m k_j \lambda_j \cdot x},$$

where $J = \{ \bar{k} \in \mathbb{Z}^m \mid \lambda(\bar{k}) \in S \}$ is a finite set. By this representation $u_0(x) = v_0(y(x))$, where

$$v_0(y) = \sum_{\bar{k} \in J} a_{\bar{k}} e^{2\pi i \bar{k} \cdot y}$$

is a periodic function on \mathbb{R}^m with the standard lattice of periods \mathbb{Z}^m while $y = \Lambda x$ is a linear map from \mathbb{R}^n to \mathbb{R}^m defined by the equalities $y_j = \lambda_j \cdot x$, $j = 1, \ldots, m$. We consider the Hamilton-Jacobi equation (3.6). Let $v(t,y)$ be a v.s. of the Cauchy problem for equation (3.6) with initial function $v_0(y)$. Then by Proposition 2 we have the identity $u(t,x) = v(t,\Lambda x)$. Let us verify that the hamiltonian $\tilde{H}(w) = H(\Lambda^* w)$ of equation (3.6) satisfies condition (2.9). Indeed,

$$\tilde{H}(s\xi) = H(s\Lambda^* \xi) = H(s\lambda),$$

where $\lambda = \Lambda^* \xi = \sum_{j=1}^m \xi_j \lambda_j \in M_0$ for each $\xi = (\xi_1, \ldots, \xi_m) \in \mathbb{Z}^m$. Since λ_j, $j = 1, \ldots, m$, is a basis, $\lambda = \Lambda^* \xi \neq 0$ if $\mathbb{Z}^m \ni \xi \neq 0$. By assumption (1.4) for every $\lambda \in M_0$, $\lambda \neq 0$, the function $s \to H(s\lambda)$ is not linear in any vicinity of zero. In view of (3.7) the convex hamiltonian $\tilde{H}(w)$ satisfies the non-degeneracy requirement (2.9) (with dimension m instead of n). By Theorem 3

$$v(t,y) \Rightarrow c = \min v_0(y)$$
as $t \to +\infty$. Since $u_0(x) = v_0(\Lambda x)$, $u(t, x) = v(t, \Lambda x)$, the latter relation reduces to the following one

$$u(t, x) \Rightarrow c = \min v_0(y) \quad \text{as } t \to +\infty.$$

Observe, that the set $\text{pr}(\Lambda(\mathbb{R}^n))$ is dense in \mathbb{T}^m (in particular, this follows from Proposition 1) while $v_0(y) \in C(\mathbb{T}^m)$. Therefore, $c = \min v_0(y) = \inf u_0(\Lambda x) = \inf u_0(x)$, which completes the proof in the case when $u_0(x)$ is a trigonometric polynomial.

The general case of arbitrary $u_0 \in \text{AP}(\mathbb{R}^n)$ will be treated by approximation arguments. There exists a sequence of trigonometric polynomials $u_{0m}(x)$, $m \in \mathbb{N}$, such that $\text{Sp}(u_{0m}) \subset M_0$ and $u_{0m} \Rightarrow u_0$ as $m \to \infty$. For instance, we can choose u_{0m} as the sequence of Bochner-Fejér trigonometric polynomials, see [8]. Let $u_m(t, x)$ be a v.s. of (1.1), (1.2) with initial data u_{0m}. By Corollary 1

$$\|u_m - u\|_\infty \leq \|u_{0m} - u_0\|_\infty \to 0 \quad \text{as } t \to \infty.$$

As we have already established in the first part of the proof, v.s. u_m satisfy the decay property

$$u_m(t, x) \Rightarrow c_m = \inf u_{0m}(x). \quad (3.8)$$

Since $u_m \Rightarrow u$, $c_m \to c = \inf u_0(x)$ as $m \to \infty$, then the assertion of Theorem 2 follows from (3.8) in the limit as $m \to \infty$. \hfill \Box

Remark 2. In the case of concave hamiltonian $H(v)$

$$u(t, \cdot) \Rightarrow c = \sup u_0(x) \quad \text{as } t \to +\infty. \quad (3.9)$$

Indeed, by Lemma 1(i) the function $w = -u(t, x)$ is a v.s. of the problem

$$w_t - H(-w_x) = 0, \quad w(0, x) = -u_0(-x),$$

with the convex hamiltonian $-H(-w)$. By Theorem 2

$$w(t, x) = -u(t, x) \Rightarrow \inf -u_0(x) = -\sup u_0(x) \quad \text{as } t \to +\infty,$$

which reduces to (3.9).

Acknowledgments. The research was carried out under support of the Russian Foundation for Basic Research (grant no. 15-01-07650-a) and the Ministry of Education and Science of Russian Federation (project no. 1.445.2016/1.4).
References

[1] Bardi M., Evans L.C. On Hopfs formulas for solutions of Hamilton-Jacobi equations. Nonlinear Anal. Theory, Meth. and Appl. 1984. Vol. 8, pp. 1373–1381.

[2] Crandall M.G., Lions P.L. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 1983. Vol. 277, pp. 1–42.

[3] Crandall M.G., Evans L.C., Lions P.L. Some properties of viscosity solutions of Hamilton-Jacobi Equations. Trans. Amer. Math. Soc. 1984. Vol. 282(2), pp. 487–502.

[4] Dafermos C.M. Long time behavior of periodic solutions to scalar conservation laws in several space dimensions. SIAM J. Math. Anal. 2013. Vol. 45, pp. 2064–2070.

[5] Kruzhkov S.N. Generalized solutions of nonlinear first order equations with several independent variables, I. Mat. Sb. 1966. Vol. 70(3), pp. 394–415.

[6] Kruzhkov S.N. Generalized solutions of nonlinear first order equations with several independent variables, II. Mat. Sb. 1967. Vol. 72(1), pp. 108-134.

[7] Lang S. Algebra (Revised 3rd ed.). New York: Springer-Verlag, 2002.

[8] Levitan B.M., Zhikov V.V. Almost periodic functions and differential equations. Cambridge University Press, 1982.

[9] Panov E.Yu. On decay of periodic entropy solutions to a scalar conservation law. Ann. Inst. H. Poincaré Anal. Non Linéaire. 2013. Vol. 30, pp. 997–1007.

[10] Panov E.Yu. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Netw. Heterog. Media. 2016. Vol. 11(2), pp. 349–367.

[11] Panov E.Yu. On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property. J. Hyperbolic Differ. Equ. 2016. Vol. 13, pp. 633–659.

[12] Panov E.Yu. On almost periodic viscosity solutions to Hamilton-Jacobi equations. Preprint, [arXiv:1707.00145], 1 Jul 2017.

[13] Pontryagin L.S. Topological groups. Gordon and Breach, 1966.

[14] Rockafellar R.T. Convex Analysis. Princeton University Press, 1970.