Novel microsatellites for *Cypseloides fumigatus*, cross-amplifiable in *Streptoprocne zonaris*

Renata Neves Biancalana¹²⁴, Fabio Raposo do Amaral¹ & Cibele Biondo¹

¹ Centro de Ciências Naturais e Humanas, Programa de Pós-graduação em Evolução e Diversidade, Universidade Federal do ABC. São Bernardo do Campo, SP, Brazil.
² Current address: Programa de Pós-graduação em Zoologia, Universidade Federal do Pará/Museu Paraense Emílio Goeldi, Belém, PA, Brazil.
³ Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo. Diadema, SP, Brazil.
⁴ Corresponding author: renata.biancalana@gmail.com

Received on 26 February 2019. Accepted on 26 July 2019.

ABSTRACT: Based on microsatellite prospecting, we isolated and characterized 21 microsatellite markers for the Sooty Swift (*Cypseloides fumigatus*) and tested the cross-amplification in the White-collared Swift (*Streptoprocne zonaris*). Both species are New World species included in the Apodidae family. From these 21, only 13 loci were polymorphic in the Sooty Swift, and their levels of polymorphism were surprisingly low compared to related species. Cross-amplification in the White-collared Swift was successful for 11 loci of the 13 polymorphic found for the Sooty Swift, but seven were monomorphic and four were biallelic. The microsatellites described here could be useful in future genetic population studies for Sooty Swifts and related species.

KEY-WORDS: Cypseloidinae, Sooty Swift, Ultraconserved elements (UCEs), White-collared Swifts.

Sooty Swifts, *Cypseloides fumigatus*, and White-collared Swifts, *Streptoprocne zonaris*, are New World apodid species. Whereas the White-collared Swift has a wide distribution, ranging from southern USA to southwestern Argentina, the Sooty Swift ranges from Argentina to Bolivia, Brazil and Paraguay (Chantler 1999). Both species present highly aerial behavior and are frequently seen foraging and nesting together (Marín & Stiles 1992, Pearman *et al*. 2010, Biancalana *et al*. 2012, Biancalana 2014 & 2015). Their nest in colonies, usually next to waterfalls and wet caves. Like other swift species they are philopatric, returning to use the same nest site over several years (Marín & Stiles 1992, Collins & Foerster 1995, Biancalana, pers. obs.). Here, we describe and characterize 13 novel polymorphic microsatellites for the Sooty Swift. In addition, we cross-amplified 11 of the 13 loci in the White-collared Swift from which seven were monomorphic and four were biallelic.

Microsatellite prospecting was based on off-target sequences obtained through sequence capture and next-generation sequencing of Ultraconserved Elements (UCEs), as described in Amaral *et al*. (2015). Genomic DNA was obtained from a muscle sample from a Sooty Swift individual deposited at the *Laboratório de Genética e Evolução Molecular de Aves* (Universidade de São Paulo USP, Brazil – LGEMA #11411), collected at Ortigueira, Paraná state (24°12’S; 50°55’W) using the Qiagen DNeasy kit (Valencia, CA) with an RNase treatment. Sequencing was performed at Rapid Genomics (Gainesville, FL, USA). The contigs obtained were screened for perfect di-, tri-, tetra-, penta-, and hexa-nucleotide with at least five repeats using QDD (Meglécz *et al*. 2010). QDD and Primer3 (Koressaar & Remm 2007, Untergasser *et al*. 2012) were used to design primers with default parameters and minimum fragment length of 100 bp. Each forward primer was designed with a M13 sequence (CACGACGTGTAAACGCAG) added to its 5’ end in order to pair with a third fluorescently labeled primer, according to the universal labeling method described by Bourin-Ganache *et al*. (2001).

For the characterization of the prospected microsatellites, 34 samples of Sooty Swifts were collected: 19 at Intervales State Park (ISP, Ribeirão Grande, São Paulo state, Brazil) and 15 at Sussuapara Canyon (SC, Ponte Alta do Tocantins, Tocantins state, Brazil). Both sites are known to have nests of the species and are monitored since 2010 (SC) and 2012 (ISP). To check the cross-amplification for White-collared Swifts, 10 adult samples were collected at ISP. Adults were mist netted and nestlings were captured in their nests and returned after sampling. Blood samples were collected from the brachial vein using microcapillary tubes and stored in absolute ethanol under room temperature. Genomic DNA was extracted from whole blood with a salt protocol adapted
from Aljanabi & Martínez (1997).

PCRs were carried out in volumes of 12 μl containing 1.5 μl of extracted DNA (30–50 ng/μl), 0.2 mM of dNTPs, 1 x PCR buffer, 3 pmol of the reverse primer, 1 pmol of forward primer, 2 pmol of FAM/HEX M13 primer, 2.5 mM of MgCl₂ and 0.5 U of Taq Polymerase (Sinapce, Inc.). Thermocycling conditions consisted of 95°C (5 min), 35 cycles at 94°C (30 s), T°C (30 s), 72°C (30 s) with a final extension at 72°C (10 min). The optimal annealing temperature for each primer pair was determined using a temperature gradient cycle from 56 to 64°C with a 2°C difference between steps. PCR products were visualized on a 1.5% agarose gel using a 100 bp ladder. Successful PCR products were genotyped on an ABI 3730 (Applied Biosystems) automated sequencer and analyzed with GeneMarker 2.7.0 (Softgenetics).

We used GenALEX 6.5 (Peakall & Smouse 2012) to estimate the number of alleles, and expected and observed heterozygosities. GENEPOP 4.2 (Raymond & Rousset 1995, Rousset 2008) was used to search for deviations from Hardy-Weinberg and linkage equilibrium. Benjamini & Yekutieli (2001) correction was applied to adjust the critical values for multiple comparisons. The search for null alleles and the estimation of their frequencies was done using MICRO-CHECKER 2.2.3 (van Oosterhout et al. 2004).

A total of 423 microsatellites were prospected for the Sooty Swift. From these, 138 (32.6%) were linked to UCEs regions and were discarded from primer design as they may be under purifying selection (Harvey et al. 2016) and are possibly monomorphic. From the remaining 285 microsatellites, we designed primers for 21 perfect loci (Table 1). Most were dinucleotides (81.0%), followed by trinucleotides (14.3%) and one pentanucleotide (4.8%). From the 21 loci tested in the 34 samples of Sooty Swifts, 16 were successfully amplified in Sooty Swifts (Table 1). Although the loci Cyps23 and Cyps34 successfully amplified, they did not produce consistent genotypes due to an excess of stutter bands. Thirteen loci were polymorphic with the number of alleles ranging from 2 to 8 (mean ± SD: 3.3 ± 0.43, Table 1). Observed heterozygosities ranged from 0.03 to 0.56 (mean Ho ± SD: 0.16 ± 0.05) and expected heterozygosities from 0.03 to 0.67 (mean He ± SD: 0.25 ± 0.06, Table 1). These heterozygosities were low when compared to that of phylogenetically close species, though the microsatellites used in the reference literature where not the same as those designed and tested in this study (Lance et al. 2009, González et al. 2010, Oyler-McCance et al. 2011, Gutiérrez-Rodriguez et al. 2013, Sanvicente et al. 2016; Table 2). Several attempts of amplification using two hummingbird microsatellites developed in other studies, Acya3-3 and Hxan07 (Gutiérrez-Rodriguez et al. 2013, Sanvicente et al. 2016), were done by RNB, with different settings of temperature and thermocycling conditions, but resulted in no amplifications for Sooty and White-collared Swifts.

The test on Hardy-Weinberg equilibrium (HWE) for each locus revealed deviations in 5 loci after Benjamini & Yekutieli (2001) correction (Cyps8, Cyps14, Cyps26, Cyps33, and Cyps35 – Table 1). The following loci had evidence of null alleles (with their respective frequencies): Cyps8 (0.237), Cyps14 (0.281), Cyps24 (0.156), Cyps26 (0.310), and Cyps33 (0.279). Among 91 paired loci, four cases of linkage disequilibrium were detected for the loci Cyps8 and Cyps12, Cyps12 and Cyps25, Cyps14 and Cyps26, and Cyps24 and Cyps35 [P < 0.01 after Benjamini & Yekutieli (2001) correction]. The deviations to HWE might be caused by the presence of null alleles in some loci (Cyps8, Cyps14, Cyps26, Cyps33 and Cyps36), or due to population substructure, since samples were collected in different localities. The cross-amplification of the prospected loci in White-collared Swifts was successful for 11 of them. However, the loci were either monomorphic or biallelic (Table 1). Locus Cyps9, that did not amplify in Sooty Swifts, was successfully amplified for White-collared Swifts.

The low polymorphism found in Sooty Swift microsatellites may result from many factors, ranging from loci linked to conserved regions to ecological and historical factors. Milot et al. (2007) suggested, for example, that some life history traits associated with demographic patterns may result in a small effective population size, that in long periods of time can result in loss of genetic diversity. This means that not only bottlenecks might be the main cause for low genetic variability in birds (Amos & Harwood 1998). Because Sooty Swifts usually establish small populations (ranging from two to ten individuals in general), exhibits philopatry, presents a long breeding period and raises just one chick per year (Biancalana et al. 2012, Biancalana 2015), the population might be suffering from inbreeding and/or might naturally have low genetic variability. Alternatively, population size variation due to historical factors - as climate change in the past - could also explain low genetic variation. Additional studies will be important to test alternative scenarios related to the low nuclear variation found here. The microsatellites described here will be useful to explore both ecology and evolution of Sooty Swift and closely related species.

ACKNOWLEDGEMENTS

We are grateful to R.G. Lima for collecting the specimen used to prospect the microsatellites, and C.Y. Miyaki for loaning the tissue sample under her care at LGEMA (Laboratório de Genética e Evolução Molecular de Aves,
Table 1. Characterization of 21 microsatellite loci isolated from *Gypeloides fumigatus* and their cross-amplification in *Streptoprocne zonaris*

Locus	Primer sequence (5′-3′)	GenBank accession No.	Repeat motif	\(T_a \) (°C)	\(n_a \)	Size range (bp)	\(H_s \)	\(H_e \)	\(P \)-value	\(T_z \) (°C)	\(n_z \)	Size range (bp)
Cyps3	F: TGCCCCAGGGCCTCTAAAGTA											
R: GCCACATAGAGACGACAGAA	MF568530 (AG)\(_a\)	58	2	282–286	0.032	0.032	-	NSA	-	-		
Cyps8	F: GGCTTGACCATGAGACCAT											
R: CAACATTGTCCTGATGACG	MF568531 (CT)\(_a\)	60	3	107–129	0.029	0.189	0.0001*	60	1	121		
Cyps9	F: GGTGATGTCTATTCCCCCTCT											
R: TTGAGAATGCGAGAAGTATCA	MF579401 (AGC)\(_a\)	NSA	-	-	-	-	-	52	2	76–97		
Cyps12	F: GAGGCTGGAGAAGAGTCGTC											
R: ACCCTGCTGTCAAGGTTT	MF579402 (AG)\(_a\)	58	3	179–193	0.118	0.112	1	58	2	179–181		
Cyps14	F: AGGGGTGGAGATCAGACTCA											
R: AGTCCCTTCCCTTCTGCT	MF579403 (AC)\(_a\)	58	3	128–142	0.125	0.420	0.0000*	NSA	-	-		
Cyps20	F: CATGGCTTCCTCTTCTCTGT											
R: TGGGATGACCTTTTCTCTGT	MF579404 (TG)\(_a\)	58	3	102–130	0.212	0.195	1	58	2	109–131		
Cyps22	F: CCCTCTGAGACCATTTCTCTGT											
R: GGCACAGAGGAGAGAAA	MF579405 (CT)\(_a\)	58	2	203–207	0.065	0.062	1	58	1	203		
Cyps23	F: CGGCTAATCAGCAAGAGAAA											
R: CCTATGGCTGCTCTGTAC	MF579406 (GA)\(_a\)	62	-	-	-	-	-	62	-	-		
Cyps24	F: GACAGAAGACCTTGCAGTG											
R: TGAGACCGAGCTGTCTTCT	MF579407 (CA)\(_a\)	64	4	200–208	0.138	0.219	0.0239	64	-	-		
Cyps25	F: CATCTCCAGGTTGTTCTGTGT											
R: AGTTGGAGAAAGACACAG	MF579408 (AG)\(_a\)	56	3	232–240	0.067	0.065	1	56	2	228–232		
Cyps26	F: AGGAAAGAGCCCTCTGCAAT											
R: TGGGGGACGAGAAGCTGT	MF579409 (TC)\(_a\)	56	8	129–173	0.200	0.610	0.0000*	56	1	149		
Cyps27	F: AAATGCTGGCAGAATGCTTG											
R: CCCTGCTTCTCACCAGAC	MF579410 (TG)\(_a\)	NSA	-	-	-	-	-	NSA	-	-		
Cyps28	F: CAAACATCTGACACCCCCTTCTT											
R: CTGACACTGCGACACAG	MF579411 (GT)\(_a\)	56	1	153	-	-	-	60	1	151		
Cyps30	F: GTATTCAATGAGAGAATAATGTTGAT											
R: TGAAGGTCTAAAGCTCTTAA	MF579412 (AAT)\(_a\)	56	4	229–241	0.071	0.103	0.0506*	NSA	-	-		
Cyps31	F: GGCATATGGGTTGACACTT											
R: GATCGCTCTCCAAATGTG	MF579413 (TA)\(_a\)	NSA	-	-	-	-	-	NSA	-	-		
Cyps32	F: GGAGTAGGAGAGAGCACAGC											
R: ATCGACACTGAGGCCCCTAG	MF579414 (GAG)\(_a\)	NSA	-	-	-	-	-	NSA	-	-		
Cyps33	F: TATTTCTCTTTGAGGGGCTGT											
R: CACACTGTAACCACCCCTTG	MF579415 (TG)\(_a\)	62	3	148–156	0.035	0.235	0.0000*	NSA	-	-		
Cyps34	F: GTCTGGGAAACTGTACCCTT											
R: AGACTGGGACCACAGGAT	MF579416 (TG)\(_a\)	60	-	-	-	-	-	60	1	161		
Cyps35	F: GGCCATTATTAAATGAGGACGATG											
R: G CCTGTTGGGACTAAAGAT	MF579417 (CT)\(_a\)	58	4	149–155	0.560	0.671	0.0059*	58	1	149		
Cyps36	F: GGGATGCTACGTAAGAGG											
R: TTCTTGCAGCAACTTTGAGA	MF579418 (GA)\(_a\)	58	3	152–156	0.535	0.638	0.3839	58	1	152		
Cyps37	F: TGATTAAAGGACACCTTTCTAGTC											
R: CCAGCCACACCTTCTTCTG | MF579419 (AAAAC)\(_a\) | NSA | - | - | - | - | - | NSA | - | - |

Forward (F) and reverse (R) primer sequence, \(T_a \) annealing temperature, NSA no successful amplification, \(n_a \) number of alleles, observed \((H_s) \) and expected \((H_e) \) heterozygosity, \(P \)-value of the Hardy-Weinberg equilibrium test. * Significant values, considering Benjamini & Yekutieli (2001) correction (\(P < 0.015 \)).
Table 2. Comparison of the number of alleles ranges, mean observed (H_o) and expected (H_e) heterozygosities between microsatellite loci developed for Cypseloides fumigatus and that developed for some hummingbird species.

Family	Species	Number of loci	n_a	H_o	H_e	Reference
Apodidae	Cypseloides fumigatus	13	2–8	0.156	0.254	This study
Trochilida	Hylocharis xanthusi	16	3–10	0.68	0.7	Sanvicente et al. 2016
Trochilida	Hylocharis leucotis	14	2–8	0.35	0.41	Sanvicente et al. 2016
Trochilida	Calypte costae	14	2–6	0.49	0.53	Sanvicente et al. 2016
Trochilida	Campylopterus curvipesnis	10	2–13	0.529	0.610	González et al. 2010
Trochilida	Amazilia cyanopephala	10	2–13	-	-	Gutiérrez-Rodríguez et al. 2013
Trochilida	Selasphorus platycercus	10	2–16	-	-	Oyler-McCance et al. 2011
Trochilida	Trochilus spp.	15	2–10	-	-	Lance et al. 2009

USP). This work was funded by FAPESP (grants 2011/50143-7, 2011/23155-4 and 013/50297-0), NASA and National Science Foundation (grant DOB 1343578), CNPq (grant 479760/2012-8), and Association of Field Ornithologists (Alexander F. Skutch Award). We are also grateful to CNPq Process 312697/2018-0. This study was funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES

Aljanabi S.M. & Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25: 4692–4693.

Amral F.R., Neves L.G., Resende Jr. M.F.R., Mobili F., Miyaki C.Y., Pellegrino K.C.M. & Biondo C. 2015. Ultraconserved elements sequencing as a low-cost source of complete mitochondrial genomes and microsatellite markers in non-model amniotes. PLoS One 10: e0138446.

Amos W. & Harwood J. 1998. Factors affecting levels of genetic diversity in natural populations. Philosophical Transactions of the Royal Society of London B: Biological Sciences 353: 177–186.

Benjamini Y. & Yekutiel D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29: 1165–1188.

Biancalana R.N. 2014. Breeding biology of the White-collared Swift Streptoprocne zonaris in southeastern Brazil. Revista Brasileira de Ornitologia 22: 341–346.

Biancalana R.N. 2015. Breeding biology of the Sooty Swift (Cypseloides fumigatus) in São Paulo, Brazil. Wilson Journal of Ornithology 127: 402–410.

Biancalana R.N., Nogueira W., Bessa R., Pioli D., Albano C. & Lees A.C. 2012. Range extensions and breeding biology observations of the Sooty Swift (Cypseloides fumigatus) in the states of Bahia, Goiás, Minas Gerais and Tocantins. Revista Brasileira de Ornitologia 20: 87–92.

Boutin-Ganache I., Raposo M., Raymond M. & Deschepper C.F. 2001. M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. BioTechniques 31: 24–27.

Chantler P. 1999. Family Apodidae (swifts). In: del Hoyo J., Elliott A. & Sargatal J. (eds.). Handbook of the birds of the world, v. 5 (harmouls to hummingbirds). Barcelona: Lynx Editions.

Collins C.T. & Foerster K.S. 1995. Nest site fidelity and adult longevity in the Black Swift (Cypseloides niger). North American Bird 20: 11–14.

González C., Gutiérrez-Rodríguez C. & Ornelas J.F. 2010. Isolation, characterization and cross species amplification of microsatellite loci in a lek-breeding hummingbird (Campylopterus curvipesnis, Trochilidae). Molecular Ecology Resources 10: 232–236.

Gutiérrez-Rodríguez C., Covarrubias S., González C. & Ornelas J.F. 2013. Isolation, characterization and cross amplification of microsatellite loci in the azure-crowned hummingbird (Amazilia cyanopephala, Trochilidae). Permanent Genetic Resources added to Molecular Ecology Resources Database 01 February 2013–31 March 2013. Molecular Ecology Resources Primer Development Consortium. Molecular Ecology Resources 13: 760–762.

Harvey M.G., Smith B.T., Glenn T.C., Faircloth B.C. & Brumfield R.T. 2016. Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Systematic Biology 65: 910–924.

Koressaar T. & Remm M. 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics 23: 1289–1291.

Lance S.L., Hagen C., Glenn T.C., Brumfield R.T., Stryjewski K.F. & Graves G.R. 2009. Fifteen polymorphic microsatellite loci from Jamaican streamertail hummingbirds (Trochilus). Conservation Genetics 10: 1195–1198.

Marin M. & Stiles F.G. 1992. On the biology of five species of swifts (Apodidae, Cypseloidinae) in Costa Rica. Proceedings of the Western Foundation of Vertebrate Zoology 4: 287–351.

Meglécz E., Costedoat C., Dubut V., Gilles A., Malausa T., Pech N. & Martin J.F. 2010. QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26: 403–404.

Milot E., Weimerskirch H., Duchesne P. & Bernatchez L. 2007. Surviving with low genetic diversity: the case of albatrosses. Proceedings of the Royal Society of London B: Biological Sciences 274: 779–787.

Oyler-McCance S.J., Fike J.A., Talley-Farnham T., Engelman T. & Engelman F. 2011. Characterization of ten microsatellite loci in the Broad-tailed Hummingbird (Selasphorus platycercus). Conservation Genetics Resources 3: 351–353.

Peckall R. & Smouse P.E. 2012. GenAlEx 6.5; genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28: 2537–2539.

Pearman M., Areta J.L., Roessler I. & Bodrati A. 2010. Confirmation of the Sooty Swift (Cypseloides fumigatus) in Argentina with nots

Revista Brasileira de Ornitologia 27(3): 2019
on its nest placement, seasonality, and distribution. *Ornitología Neotropical* 21: 351–359.
Raymond M. & Rousset F. 1995. GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. *Journal of Heredity* 86: 248–249.
Rousset F. 2008. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. *Molecular Ecology Resources* 8: 103–106.
Sanvicente C.G.-R., Rodríguez-Estrella R., Lozano-Garza O.A. & García-De-Léon F.J. 2016. Genetic diversity of the endemic Xantus’ Hummingbird using 16 novel polymorphic microsatellite loci, and their cross amplification between six related species. *Open Journal of Genetics* 6: 19–27.
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M. & Rozen S.G. 2012. Primer3 – new capabilities and interfaces. *Nucleic Acids Research* 40: e115.
Van Oosterhout C., Hutchinson W.F., Wills D.P.M. & Shipley P. 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes* 4: 535–538.

Associate Editor: Gustavo S. Cabanne.