TWO LAPLACIAN ENERGIES AND THE RELATIONS BETWEEN THEM

Ivan Gutman
University of Kragujevac, Faculty of Science,
Kragujevac, Republic of Serbia,
e-mail: gutman@kg.ac.rs,
ORCID ID: https://orcid.org/0000-0001-9681-1550
DOI: 10.5937/vojtehg68-25742; https://doi.org/10.5937/vojtehg68-25742

FIELD: Mathematics (Mathematics Subject Classification: primary 05C50, secondary 05C92)
ARTICLE TYPE: Original Scientific Paper
ARTICLE LANGUAGE: English

Abstract:

Introduction/purpose: The Laplacian energy (LE) is the sum of absolute values of the terms $\mu_i - 2m/n$, where $\mu_i, i=1,2,\ldots,n$, are the eigenvalues of the Laplacian matrix of the graph G with n vertices and m edges. In 2006, another quantity Z was introduced, based on Laplacian eigenvalues, which was also named „Laplacian energy“. Z is the sum of squares of Laplacian eigenvalues. The aim of this work is to establish relations between LE and Z.

Results: Lower and upper bounds for LE are deduced, in terms of Z.

Conclusion: The paper contributes to the Laplacian spectral theory and the theory of graph energies. It is shown that, as a rough approximation, LE is proportional to the term $(Z-4m^2/n)^{1/2}$.

Keywords: Laplacian spectrum (of graph), Laplacian energy.

Introduction

Let M be a real symmetric square matrix of order n. Let $\zeta_1, \zeta_2, \ldots, \zeta_n$ be the eigenvalues of M, and let $\zeta_1 + \zeta_2 + \cdots + \zeta_n = \zeta$. Then the energy of M is defined as (Nikiforov, 2007), (Gutman & Furtula, 2019):

$$E(M) = \sum_{i=1}^{n} \left| \zeta_i - \frac{\zeta}{n} \right|$$

(1)

By using different matrices, one arrives at different „energies“. The first among them is the (ordinary) graph energy, based on the
eigenvalues of the (0,1)-adjacency matrix of a graph (Li et al., 2012),
(Ramane 2020). It was introduced in 1978. Since then, more than 170
various "energies" have been considered in the literature; for details see
(Gutman & Furtula, 2019). In this paper, we are concerned with the
Laplacian energy.

Let G be a simple graph possessing n vertices and m edges. Label
its vertices by v_1, v_2, \ldots, v_n. Let $\deg(v_i)$ be the degree (= number of
first neighbors) of the vertex v_i. The Laplacian matrix of G, denoted by
$L(G)$, is the square matrix of order n, whose (i,j)-element is

$$L(G)_{ij} = \begin{cases} -1 & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\
0 & \text{if } v_i \text{ and } v_j \text{ are not adjacent} \\
det(v_i) & \text{if } i = j \end{cases}$$

For details of the theory of Laplacian matrices and their spectra see
(Grone et al., 1990), (Mohar, 1992), (Merris, 1994).

Let $\mu_1, \mu_2, \ldots, \mu_n$ be the Laplacian eigenvalues of the graph G, i.e.,
the eigenvalues of $L(G)$. Then the Laplacian energy of G is

$$LE = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|. \quad (2)$$

The Laplacian energy was introduced in 2006 by the Chinese
mathematician Bo Zhou and the present author (Gutman & Zhou, 2006).
Since then, its theory was elaborated in due detail, see (Das & Mojallal,
2014), (Pirzada & Ganie, 2015), (Andriantiana, 2016), (Gutman &
Furtula, 2019), (Gutman, 2020), and the references cited therein.

In the same year when the concept of the Laplacian energy was
conceived (Gutman & Zhou, 2006), a paper was published in which an
unrelated Laplacian-spectral quantity was defined, and also named
"Laplacian energy" (Lazić, 2006). The quantity put forward in (Lazić,
2006) is

$$Z = \sum_{i=1}^{n} \mu_i^2. \quad (3)$$

In what follows we refer to Z as to the fake Laplacian energy.

It is evident that Z, Eq. (3), violates the general conditions that an
"energy" needs to satisfy, see Eq. (1). The right-hand side of Eq. (3) is
just the second spectral moment of the Laplacian eigenvalues. Naming it
"energy" was a misnomer. This was immediately recognized by all
The inventors of the Laplacian energy (Gutman & Zhou, 2006), as well as
the scholars who later studied it, were solely interested in its mathematical
properties. However, in recent years, the Laplacian energy has gained
popularity for a variety of technical applications, mainly in the area
of image analysis and pattern recognition (Luyuan et al, 2010),
(Song et al, 2010), (Meng & Xiao, 2011), (Xiao et al, 2011), (Huigang et
al, 2013), (Bai et al, 2014), (Deepa et al, 2016), (Pournami & Govindan,
2017), (Zou et al, 2018). In all the quoted papers, the Laplacian energy
was computed according to Eq. (2).

Not all scholars who work on applications of the Laplacian energy
are experts on its mathematical theory, and some of them seem to have
learned about the Laplacian energy by means of Google search.
Therefore, it happened that in some papers, instead of the true Laplacian
energy, a group of authors used \(Z \), Eq. (3) (Qi et al, 2012), (Qi et al,
2013), (Qi et al, 2015). It may be that there are more such erroneous
works, spread in the non-mathematical literature.

The existence of papers in which the fake Laplacian energy is used,
motivated us to examine the actual (mathematical) relation between \(LE \)
and \(Z \).

Relating the two Laplacian energies

In (Gutman 2020), it was pointed out that the relations

\[
\sum_{i=1}^{n} \mu_i = 2m
\]

and

\[
\sum_{i=1}^{n} \mu_i^2 = 2m + \sum_{i=1}^{n} \deg(v_i)^2
\]

are well known (Grone et al, 1990). There it was shown that

\[
\sum_{i=1}^{n} \mu_i^* = 2m + \sum_{i=1}^{n} \deg(v_i)^2 - \frac{4m^2}{n}
\]
where
\[\mu_i^* = \mu_i - \frac{2m}{n}. \]

Recall that
\[\sum_{j=1}^{n} \mu_j^* = 0 \quad \text{and} \quad \sum_{i=1}^{n} |\mu_i^*| = LE. \quad (4) \]

Bearing in mind Eq. (3), we get
\[Z = 2m + \sum_{i=1}^{n} \text{deg}(v_i)^2 \quad (5) \]

and
\[\sum_{i=1}^{n} \mu_i^* = Z - \frac{4m^2}{n}. \quad (6) \]

Starting with
\[\sum_{i=1}^{n} \sum_{j=1}^{n} (|\mu_i^*| - |\mu_j^*|)^2 \geq 0 \]

and using Eqs. (4) and (6), we get
\[n \sum_{i=1}^{n} \mu_i^* + n \sum_{j=1}^{n} \mu_j^* - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_i^* \cdot |\mu_j^*| = 2n \left(\frac{Z - \frac{4m^2}{n}}{n} \right) - 2LE^2 \geq 0 \]

from which,
\[LE \leq \sqrt{n \left(Z - \frac{4m^2}{n} \right)}. \quad (7) \]

Starting with
\[LE^2 = \left(\sum_{i=1}^{n} |\mu_i^*| \right)^2 = \sum_{i=1}^{n} \mu_i^* + 2 \sum_{i<j} \mu_i^* \cdot |\mu_j^*| \geq \sum_{i=1}^{n} \mu_i^* + 2 \sum_{i<j} \mu_i^* \cdot \mu_j^* \]

and taking into account that because of (4),
\[2 \sum_{i<j} \mu_i^* \cdot |\mu_j^*| = \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_i^* \cdot |\mu_j^*| - \sum_{i=1}^{n} \mu_i^* \cdot \mu_j^* \]
we get
\[LE^2 \geq 2 \sum_{i=1}^{n} \mu_i^2 \]

i.e.

\[LE \geq \sqrt{2 \left(Z - \frac{4m^2}{n} \right)} \] \quad (8)

Combining (7) and (8), we arrive at

\[\sqrt{2 \left(Z - \frac{4m^2}{n} \right)} \leq LE \leq \sqrt{n \left(Z - \frac{4m^2}{n} \right)} \] \quad (9)

Discussion

From the bounds (9), we see that, as a rough approximation, there should exist a linear relation between the Laplacian energy (\(LE\)) and the term \(\sqrt{Z - \frac{4m^2}{n}}\), with \(Z\) standing for the fake Laplacian energy. As the first guess, we may have

\[LE \approx \frac{\sqrt{n} + \sqrt{2}}{2} \sqrt{Z - \frac{4m^2}{n}} \] \quad (10)

The approximation (10), as well as any other approximation based on the bounds (7) and (8), is of poor quality. Namely, in contrast to the Laplacian energy, the right-hand side of (10) is structure-insensitive. This, of course, is the consequence of the structure-insensitivity of the fake Laplacian energy, \(Z\).

For instance, if the graph \(G\) is regular of degree \(r\), then \(Z=nr(r+1)\). If the graph \(G\) has \(n_a\) vertices of degree \(a\), and \(n_b\) vertices of degree \(b\), so that \(n_a + n_b = n\), then

\[Z = \frac{2m-nb}{a-b} a(a+1) + \frac{2m-na}{b-a} b(b+1) \]

and \(Z\) is independent of the parameters \(n_a\) and \(n_b\). Thus, for the chemically important class of (molecular) graphs with vertices of degree two and three, \(Z=6(2m-n)\), independent of any other structural detail. Then the same holds also for the right-hand side of Eq. (10).
References

Andriantiana, E.O.D. 2016. Laplacian energy. In: Gutman, I. & Li, X. (Eds.) Graph Energies - Theory and Applications. Kragujevac: University of Kragujevac, pp.49-80.

Bai, Y., Dong, L., Huang, X., Yang, W., & Liao, M. 2014. Hierarchial segmentation of polarimetric SAR image via non-parametric graph entropy. In: IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, July 13-18. Available at: https://doi.org/10.1109/IGARSS.2014.6947054.

Das, K.C., & Mojallal, S.A. 2014. On Laplacian energy of graphs. Discrete Mathematics, 325, pp.52-64. Available at: https://doi.org/10.1016/j.disc.2014.02.017.

Deepa, G., Praba, B. & Chandrasekaran, V.M. 2016. Spreading rate of virus on energy of Laplacian intuitionistic fuzzy graph. Research Journal on Pharmacy and Technology, 9(8), pp.1140-1144. Available at: https://doi.org/10.5958/0974-360X.2016.00217.1.

Grone, R., Merris, R., & Sunder, V.S. 1990. The Laplacian Spectrum of a Graph. SIAM Journal on Matrix Analysis and Applications, 11(2), pp.218-238. Available at: https://doi.org/10.1137/0611016.

Gutman, I. 2020. New bounds for Laplacian energy. Vojnotehnički glasnik/Military Technical Courier, 68(1), pp.1-7. Available at: https://doi.org/10.5937/vojtehg68-24257.

Gutman, I., & Furtula, B. 2019. Graph Energies: Survey, Census, Bibliography. Kragujevac: Centar SANU. Bibliography.

Gutman, I., & Zhou, B. 2006. Laplacian energy of a graph. Linear Algebra and its Applications, 414(1), pp.29-37. Available at: https://doi.org/10.1016/j.laa.2005.09.008.

Huigang, Z., Xiao, B., Huaxin, Z., Huijie, Z., Jun, Z., Jian, C., & Hanqing, L. 2013. Hierarchical remote sensing image analysis via graph Laplacian energy. IEEE Geoscience Remote Sensing Letters, 10(2), pp.396-400. Available at: https://doi.org/10.1109/LGRS.2012.2207087.

Lazić, M. 2006. On the Laplacian energy of a graph. Czechoslovak Mathematical Journal, 56(4), pp.1207-1213 [online]. Available at: http://cmj.math.cas.cz/cmj56-4/10.html [Accessed: 21 February 2020].

Li, X., Shi, Y., & Gutman, I. 2012. Introduction. In: Graph Energy. New York, NY: Springer Science and Business Media LLC., pp.1-9. Available at: https://doi.org/10.1007/978-1-4614-4220-2_1.

Luyuan, C., Meng, Z., Shang, L., Xiaoyan, M., & Xiao, B. 2010. Shape Decomposition for Graph Representation. In: Lee, R., Ma, J., Bacon, L., Du, W., & Petrìdis, M. (Eds.) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, 295. Berlin, Heidelberg: Springer, pp.1-10. Available at: https://doi.org/10.1007/978-3-642-13265-0_1.
Meng, Z. & Xiao, B. 2011. High-resolution satellite image classification and segmentation using Laplacian graph energy. In: *IEEE Geoscience and Remote Sensing Symposium*, Vancouver, BC, Canada, July 24-29. Available at: https://doi.org/10.1109/IGARSS.2011.6049201.

Merris, R. 1994. Laplacian matrices of graphs: A survey. *Linear Algebra and its Applications*, 197-198, pp.143-176. Available at: https://doi.org/10.1016/0024-3795(94)90486-3.

Mohar, B. 1992. Laplace eigenvalues of graphs—a survey. *Discrete Mathematics*, 109(1-3), pp.171-183. Available at: https://doi.org/10.1016/0012-365X(92)90288-Q.

Nikiforov, V. 2007. The energy of graphs and matrices. *Journal of Mathematical Analysis and Applications*, 326(2), pp.1472-1475. Available at: https://doi.org/10.1016/j.jmaa.2006.03.072.

Pirzada, S., & Ganie, H.A. 2015. On the Laplacian eigenvalues of a graph and Laplacian energy. *Linear Algebra and its Applications*, 486, pp.454-468. Available at: https://doi.org/10.1016/j.laa.2015.08.032.

Pournami, P.N. & Govindan, V.K. 2017. Interest point detection based on Laplacian energy of local image network. In: *International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)*, Chennai, India, March 22-24. Available at: https://doi.org/10.1109/WiSPNET.2017.8299719.

Qi, X., Duval, R.D., Christensen, K., Fuller, E., Spahi, A., Wu, Q., Wu, Y., Tang, W., & Zhang, C. 2013. Terrorist networks, network energy and node removal: A new measure of centrality based on Laplacian energy. *Social Networking*, 2(1), pp.19-31. Available at: https://doi.org/10.4236/sn.2013.21003.

Qi, X., Fuller, E., Luo, R., Guo, G., & Zhang, C. 2015. Laplacian energy of digraphs and a minimum Laplacian energy algorithm. *International Journal on the Foundation of Computer Science*, 26(3), pp.367-380. Available at: https://doi.org/10.1142/S0129054115500203.

Qi, X., Fuller, E., Wu, Q., Wu, Y., & Zhang, C.Q. 2012. Laplacian centrality: A new centrality measure for weighted networks. *Information Science*, 194, pp.240-253. Available at: https://doi.org/10.1016/j.ins.2011.12.027.

Ramane, H.S. 2020. Energy of graphs. In: Pal, M., Samanta, S., & Pal, A. (Eds.) *Handbook of Research on Advanced Applications of Graph Theory in Modern Society*. Hershey, Pennsylvania, USA: IGI Global, pp.267-296.

Song, YZ., Arbelaez, P., Hall, P., Li, C., & Balikai, A. 2010. Finding semantic structures in image hierarchies using Laplacian graph energy. In: Daniilidis, K., Maragos, P. & Paragios N. (Eds.) *Computer Vision – ECCV 2010. ECCV 2010. Lecture Notes in Computer Science*, 6314. Berlin: Springer, pp.694-707. Available at: https://doi.org/10.1007/978-3-642-15561-1_50.

Xiao, B., Song, YZ., & Hall, P. 2011. Learning invariant for object identification by using graph methods. *Computer Vision and Image Understanding*, 115(7), pp.1023-1031. Available at: https://doi.org/10.1016/j.cviu.2010.12.016.
Zou, HL., Yu, ZG., Anh, V., & Ma, YL. 2018. From standard alpha-stable Lévy motions to horizontal visibility networks: dependence of multifractal and Laplacian spectrum. *Journal of Statistical Mechanics Theory and Experiment*, 2018(May) [online]. Available at: https://iopscience.iop.org/article/10.1088/1742-5468/aaac3d/pdf [Accessed: 21 February 2020].
Сажетак:
Увод/цел: Лапласова енергија (LE) јесте сума апсолутних вредности појмова μ_i-2m/n, где су μ_i, $i=1,2,...,n$, сопствене вредности Лапласове матрице графа G са n врхова и m ивица. Године 2006. уведена је друга величина Z, заснована на Лапласовим својственим вредностима, која је такође названа „Лапласова енергија“. Z је сума квадрата Лапласових својствених вредности.

Резултати: Доња и горња граница за LE одређене су као функције од Z.

Закључак: Рад доприноси Лапласовој спектралној теорији и теорији енергије графова. Показано је да је, као груба априкосимација, LE пропорционална са $(Z-4m^2/n)^{1/2}$.

Кључне речи: Лапласов спектар (графа), Лапласова енергија.