Structure Learning in Graphical Models from Indirect Observations

Hang Zhang ¹ Afshin Abdi ¹ Faramarz Fekri ¹

Abstract
This paper considers learning of the graphical structure of a p-dimensional random vector $X \in \mathbb{R}^p$ using both parametric and non-parametric methods. Unlike the previous works which observe x directly, we consider the indirect observation scenario in which samples y are collected via a sensing matrix $A \in \mathbb{R}^{d \times p}$, and corrupted with some additive noise w, i.e., $Y = AX + W$. For the parametric method, we assume X to be Gaussian, i.e., $x \in \mathbb{R}^p \sim N(\mu, \Sigma)$, $\mu \in \mathbb{R}^p$, and $\Sigma \in \mathbb{R}^{p \times p}$. For the first time, we show that the correct graphical structure can be correctly recovered under the indefinite sensing system ($d < p$) using insufficient samples ($n < p$). In particular, we show that for the exact recovery, we require dimension $d = \Omega(p^{0.8})$ and sample number $n = \Omega(p^{0.8} \log^3 p)$. For the nonparametric method, we assume a nonparanormal distribution for X rather than Gaussian. Under mild conditions, we show that our graph-structure estimator can obtain the correct structure. We derive the minimum sample number n and dimension d as $n \geq (\text{deg})^4 \log^5 n$ and $d \gtrsim p + (\text{deg} \cdot \log(d - p))^{3/4}$, respectively, where deg is the maximum Markov blanket in the graphical model and $\beta > 0$ is some fixed positive constant. Additionally, we obtain a non-asymptotic uniform bound on the estimation error of the CDF of X from indirect observations with inexact knowledge of the noise distribution. To the best of our knowledge, this bound is derived for the first time and may serve as an independent interest. Numerical experiments on both real-world and synthetic data are provided to confirm the theoretical results.

1. Introduction

Graphical models provide a general framework of representing the dependency relations among random variables. They have a broad spectrum of applications in biology, natural language processing and computer vision (Koller & Friedman, 2009; Friedman, 2004), etc. For an arbitrary random vector $X \in \mathbb{R}^p$, we can construct a graphical model $G = (V, E)$ by associating each entry X_i with a node $v_i \in V$ and adding an edge $e = (v_i, v_j)$ to the edge set E if X_i and X_j are conditionally dependent given other random variables, where X_i and X_j denote the ith and jth entry of X, respectively.

Discovery of the graph structure from a collection of direct observations of X has been studied in the past (Ravikumar et al., 2011; Cai et al., 2011; Liu et al., 2009; 2012; Zhao et al., 2014; Xu & Gu, 2016; Fan et al., 2017). However, direct observations of the desired signal is not always possible. Instead, the signal has to be measured indirectly. Such a measurement model arises frequently in many practical applications, such as biomedical sensing (Müller et al., 2008) where direct measurements of some desired molecules such as miRNAs are too expensive. Further, one commonly encountered problem is that the observations are contaminated with measurement noise, which leads to inaccurate estimation of the graphical structure. Inspired by these challenges, we consider the graph structure recovery under an indirect linear measurement scenario from the desired signal as

$$Y^{(s)} = A X^{(s)} + W^{(s)}, \quad 1 \leq s \leq n,$$

where $Y^{(s)}$ denotes the sth measurement, $A \in \mathbb{R}^{d \times p}$ denotes the sensing matrix, and $W \in \mathbb{R}^d$ denotes the sensing noise. Our goal is to learn the pair-wise independence relation (structure) of an undirected graphical model, i.e., Markov random fields, from the observations $\{Y^{(s)}\}_{1 \leq s \leq n}$ using both parametric and non-parametric approaches.

In the parametric scenario, random vector $X \in \mathbb{R}^p$ satisfies the Gaussian distribution, i.e., $X \sim N(0, \Sigma)$, and hence a Gaussian Graphical Model (GGM). While for the nonparametric method, we assume random vector X follows the nonparanormal distribution, i.e., the joint distribution $g(X)$ exhibits a Gaussian distribution $N(\mu, \Sigma)$, i.e., X behaves as multivariate Gaussian after some transformation $g(X) = [g_1(X_1) \cdots g_p(X_p)]^T$. Let Θ be the inverse of the covariance matrix Σ. It is known that conditional independency relation of X is completely incorporated into matrix Θ. In other words, we have $\Theta_{i,j} = 0$ iff X_i and X_j are independent given the rest of entries $X_{\setminus \{i,j\}}$. Hence our goal of learning the graphical structure reduces to detecting the support set S of Θ, where $S \triangleq \{(i,j) \mid \Theta_{i,j} \neq 0, \forall i \neq j\}$. This property of precision matrix lays the foundation for many algorithms that
learn the graphical structure.

1.1. Related Works.

To the best of our knowledge, our work is the first to consider learning the undirected graphical model structure of a high dimensional signal X from possibly low dimensional indirect observations of X. In the following, we separately review the related work regarding the parametric and non-parametric scenarios.

Parametric Scenario. Learning GGM when the data samples are directly observed has been extensively studied in the literature, e.g., (Ravikumar et al., 2011; Cai et al., 2011). Both works assumed an sparse precision matrix Θ and propose to recover its support set with ℓ_1-relaxation. In (Ravikumar et al., 2011), the authors proposed gLasso, which can be regarded as an M-estimator (Wainwright, 2019) (Chap. 9). The basic assumption is that the ground-truth signal lies within a certain low-dimensional space. By minimizing the negative log-likelihood plus some specific regularizers, one can reconstruct the signal from insufficient samples. Different from (Ravikumar et al., 2011), (Cai et al., 2011) proposed CLIME, a constrained convex optimization framework to estimate sparse precision matrix Θ. Instead of maximizing the likelihood, the authors first obtain an empirical covariance matrix $\hat{\Sigma}_n$ and then force Θ to approximate its inverse. Other variations of GGM-learning such as GGM with hidden variables (Chandrasekaran et al., 2010; Mazumder & Hastie, 2012), and GGM with an unknown block structure (Marlin & Murphy, 2009) have been proposed when some prior information or constraints on the structure exist. For detailed discussions, please refer to (Tibshirani et al., 2015; Wainwright, 2019).

Non-parametric Scenario. The most related works on the nonparametric learning of graphical models are (Liu et al., 2009; 2011; 2012; Zhao et al., 2014; Xu & Gu, 2016; Fan et al., 2017).

The works by (Liu et al., 2009; 2012; Xue et al., 2012; Zhao et al., 2014) considered a similar problem as ours, that is the discovery of the graphical structure with nonparanormal distributed random vector X. However, they assumed direct observations of X and without any measurement noise. The differences across the above works lie in the estimation method of the covariance matrix. In (Liu et al., 2009), the covariance matrix is estimated via the CDF estimator; while in (Xue et al., 2012), it is estimated by the Spearman’s rho estimator. In an independent work, (Liu et al., 2012) pointed out the covariance matrix can be estimated by Kendall’s tau estimator as well. Later, (Zhao et al., 2014) proposed a projection based algorithm to accelerate the estimator in (Liu et al., 2012). Apart from the graphical models following the nonparanormal distribution, other types of works include the graph with forest structure (Liu et al., 2012), the graph with the elliptical distribution (Xu & Gu, 2016), and latent Gaussian copula model (Fan et al., 2017), etc.

Another line of research is the density deconvolution which dates at least back to (Zhang, 1990; Fan, 1991; Masry, 1991), where kernel-based estimators are proposed for the noise with infinite support set. To improve the performance for the noise with finite support, a ridge-parameter method is proposed in (Hall & Meister, 2007). Similar work includes (Dattner et al., 2011; Trong & Phuong, 2019). The work by (Youndje & Wells, 2008) generalized (Masry, 1991) and gave a data-driven method to select the optimal bandwidth. Apart from the kernel-based methods, (Pensky & Vidakovic, 1999) presented a projection-based method based on the Meyer-type wavelets, which adapts to the super-smooth noise. Notice that the above works all assume perfect knowledge of the noise distribution. Later, (Dattner & Reiser, 2013; Kappus & Mabon, 2014) and (Phuong, 2020) studied the unknown noisy case but required repeated measurements to estimate the distribution of the noise. In contrast, our setting assumes inexact knowledge of the noise and requires no extra step for the noise estimation. More importantly, our setting is focused on indirect measurements.

1.2. Contributions

To the best of our knowledge, our work is the first on estimating the graphical structure under an indirect measurement scenario. We also provide the theoretical analysis of our estimation.

- For the parametric scenario, we show the correct graphical structure can be recovered under the indefinite sensing system ($d < p$) using insufficient samples ($n < p$). Specifically, we require the sample number $n = \Omega(p^{0.8} \log^4 p)$ and the dimension $d = \Omega(p^{0.8})$, which suggests with fewer samples than signal length p, we can still recover the graph structure of a high dimensional signal from its low dimensional observations ($d < p$).

- For the non-parametric scenario, we propose an estimator for the graphical structure together with the sufficient conditions for the correct recovery. We show that the sample number n must be at least $n \gg (\text{deg})^4 \log^4 n$, where deg denotes the maximum Markov blanket in the graph. Further, we obtain a lower bound on the dimension as $d \gg p + (\text{deg})^\beta/4 \log^{\beta/4}(d - p)$, where $\beta > 0$ is some fixed positive constant to be defined.

- Additionally, our work is the first to consider the deconvolution estimator for the CDF with limited knowledge of the noise distribution. Compared with the previous work (Dattner & Reiser, 2013; Kappus & Mabon, 2014; Phuong, 2020), our work does not assume per-
We start with a formal restatement of the sensing relation reading as
\[Y^{(s)} = AX^{(s)} + W^{(s)}, \quad 1 \leq s \leq n. \]
where \(Y^{(s)} \in \mathbb{R}^d \) is the \(s \)-th reading, \(A \in \mathbb{R}^{d \times p} \) is the sensing matrix with each entry \(A_{ij} \) being a standard normal RV, i.e., \(A_{ij} \sim \mathcal{N}(0, 1) \), and \(W^{(s)} \) denotes the measurement noise with each entry \(W_i \) being a Gaussian RV with zero mean and variance \(\sigma^2 \), i.e., \(W_i \sim \mathcal{N}(0, \sigma^2) \).

We assume that most entries of \(X \) are pair-wise conditionally independent, which is widely used in previous works such as (Ravikumar et al., 2011; Cai et al., 2011; Liu et al., 2009). Our goal is to uncover the undirected graphical structure (or pair-wise independence) of \(X \) from the samples \(\{Y^{(s)}\}_{1 \leq s \leq n} \). Before proceeding, we first introduce the notations.

Notations. We denote \(c, c_0, c_1 > 0 \) as arbitrary fixed positive constants. Notice that the specific values may not be necessarily identical even if they share the same name. For arbitrary real numbers \(a, b \), we denote \(a \preceq b \) if there exists some \(c_0 > 0 \) such that \(a \leq c_0 b \). Similarly, we define \(a \succeq b \). We write \(a \asymp b \) when \(a \preceq b \) and \(a \succeq b \) hold simultaneously. The maximum of \(a \) and \(b \) is denoted as \(a \lor b \); while the minimum is denoted as \(a \land b \).

An arbitrary matrix \(M \in \mathbb{R}^{m \times m} \), we denote \(M_i \) as its \(i \)-th column and \(M_{i,j} \) as the \((i,j) \)-th entry. Its Frobenius norm \(\|M\|_F \) is defined as \(\sqrt{\sum_{i,j} M_{i,j}^2} \) and the operator norm \(\|M\|_{op} \) is defined as \(\max_{\|u\|_2 = 1} \|Mu\|_2 \).

Furthermore, we define \(\|M\|_{1,1} = \max_{\|u\|_1 = 1} \|Mu\|_2 \). Two special cases are \(\|M\|_{1,1} \) and \(\|M\|_{\infty,\infty} \), which can be written as \(\|M\|_{1,1} = \max_{i} \sum_{j} |M_{i,j}| \), and \(\|M\|_{\infty,\infty} = \max_{j} \sum_{i} |M_{i,j}| \), respectively. Moreover, we define \(\|M\|_{1,\text{off}} = \sum_{i \neq j} |M_{i,j}|, \) \(\|M\|_{\text{off},\text{off}} = \sum_{i \neq j} M_{i,j}^2, \) and \(\|M\|_{\infty,\text{off}} = \max_{i \neq j} |M_{i,j}| \), respectively.

For the covariance matrix \(\Sigma \), we denote its inverse as \(\Theta \). The support set \(S \) is defined as \(\{(i, j) : \Theta_{i,j} \neq 0, \forall i \neq j\} \) and its complement is denoted as \(\Omega \). Moreover, we define the maximum Markov blanket in the graphical model as \(\text{deg} \), or equivalently the maximum of the non-zero entries among columns of \(\Theta \), i.e., \(\text{deg} = \max_{i} |\Theta_{i,\cdot}| \), where \(\Theta_i \) denotes the \(i \)-th column of \(\Theta \). The parameter \(\kappa_S \) is defined as \(\max_{i} \sum_{j} |\Sigma_{i,j}| \). Furthermore, we define the Fisher information matrix of \(\Theta \) as \(\Gamma = \Theta \circ \Theta \), where \(\circ \) is the kroncker product (Golub & Van Loan, 2012). The parameter \(\kappa_F \) is defined as \(\left\| (\Gamma_{SS})^{-1} \right\|_{\infty,\infty} \), where \(S \) is the support set and \(\Gamma_{SS} \) is the sub-matrix of \(\Gamma \) such that its rows and columns lie within the set \(S \).

3. Parametric Method

For the parametric scenario, we assume random vector \(X \in \mathbb{R}^p \) follows the Gaussian distribution with zero mean and covariance \(\Sigma^2 \), i.e., \(X \sim \mathcal{N}(0, \Sigma) \). We focus on the scenario where the sensing matrix \(A \in \mathbb{R}^{d \times p} \) is underdetermined, namely, \(d < p \). In other words, we wish to recover the graphical model of a high dimensional \(X \) from its low dimensional observations \(Y \). To avoid measurements being dominated by one or a small group of \(X_i \)'s, we assume that \(\text{Var}(X_i) = 1, 1 \leq i \leq p \). Our proposed estimator to reconstruct the graphical structure is illustrated in Alg. 1. The analysis of the estimator is given in the following.

3.1. Properties of Graphical Structure Estimator:

Parametric Case

We will show that a correct graphical structure can be obtained when the penalty coefficient \(\lambda_{\text{param}} \) in (5) is properly chosen. The core of the analysis lies in the following lemma.

Lemma 1. The property \(\|\hat{\Sigma}^{\text{param}}_{\text{SS}} - \Sigma^2\|_{\infty} \leq \tau_{\infty} \) holds with probability \(1 - o(1) \), where \(\hat{\Sigma}^{\text{param}}_{\text{SS}} \) is defined in (4), and the threshold parameter \(\tau_{\infty} \) is written as

\[
\tau_{\infty} = \frac{c_0 \sqrt{d \log p}}{d + 1} \max_{z} \left[\frac{c_1 \log p}{d + 1} + \frac{c_2 p}{\sqrt{n(d + 1)}} \right] \left[\frac{c_3 p}{\sqrt{d + 1}} + \frac{c_4 p \log p}{\sqrt{n(d + 1)}} \right] \left[1 + c_7 \left(\sqrt{\frac{d}{n}} \lor \frac{n}{d} \right) \right].
\]
Adopting a similar proof method as in (Ravikumar et al., 2011), we can obtain the conditions (cf. Thm. 1) for the correct recovery of graphical structure under Assumption 1. For the conciseness of presentation, we refer the details to (Ravikumar et al., 2011) and omit them in this work.

Algorithm 1 Estimation of the Graphical Structure via the Parametric Method.

Input: Samples \(\{Y^{(i)}\}_{i=1}^{n} \in \mathbb{R}^{p} \) and sensing matrix \(A \in \mathbb{R}^{d \times p} \).

Stage I: Estimate the covariance matrix \(\tilde{\Sigma}_{n}^{\text{param}} \) as

\[
\tilde{\Sigma}_{n}^{\text{param}} = \frac{1}{n} \sum_{i=1}^{n} Y^{(i)} Y^{(i) \top} - \frac{1}{d + 1} A \top \left(\frac{1}{n} \sum_{i=1}^{n} Y^{(i)} Y^{(i) \top} \right) A_{\text{off}},
\]

where \([\cdot]_{\text{off}}\) denotes the operation of picking non-diagonal entries.

Stage II: Obtain \(\hat{\Theta}^{\text{param}} \) as

\[
\hat{\Theta}^{\text{param}} = \arg\min_{\Theta \geq 0} \log \det(\Theta) + \text{Tr}(\tilde{\Sigma}_{n}^{\text{param}} \Theta) + \lambda_{\text{param}} \| \Theta \|_{1,\text{off}},
\]

where \(\lambda_{\text{param}} > 0 \) is some positive constants.

Output: Estimated precision matrix \(\hat{\Theta}^{\text{param}} \).

Theorem 1. Let \(\tau\infty \lesssim \frac{\theta}{(p + \theta)(\log\frac{\|\tilde{\Sigma}_{n}^{\text{param}}\|_{\text{off},F}}{\theta})} \) and set \(\lambda_{\text{param}} = 8\tau\infty/\theta \). Then the property \((\hat{\Theta}^{\text{param}})_{i,j} = 0 \) holds for all \((i,j) \) outside the support set \(S \), i.e., \((i,j) \in S^{c} \) with probability \(1 - o(1) \). Furthermore, if \(\min_{(i,j) \in S} |\hat{\Theta}^{\text{param}}_{i,j}| \geq 2\kappa_{\text{param}}(1 + 8\theta^{-1})^{\tau\infty} \), then \(\text{sign}(\hat{\Theta}^{\text{param}}) = \text{sign}(\Theta) \) with probability \(1 - o(1) \).

This theorem proves that our proposed Alg. 1 can detect all conditionally independent pairs (the graph edges) provided that the non-zero elements \(\Theta^{\natural}_{i,j}, (i,j) \in S \), are not too small, i.e., the absolute value of non-zero elements in \(\Theta^{\natural} \) are above some fixed threshold.

3.2. Discussions

In the following, we provide more insights regarding: (i) the minimum sample size \(n \) and (ii) the minimum projection dimension \(d \). An illustration of the infeasible region of \(n \) and \(d \) is plotted in Fig. 1, where the infeasible region is marked with color red.

Minimum Sample Size \(n \). In the high-dimensional setting, it is desirable to reduce the sample number \(n \) to less than the dimension of signal \(p \), i.e., \(n < p \).

Treating parameters \(\theta, \kappa_{\Sigma}, \kappa_{\Gamma} \) as some positive constants, Thm. 1 requires that \(\log n \) to be some positive constant, from which we can obtain the minimum sample size \(n \gtrsim \sqrt{\log p} \). For the case of indefinite sensing matrix \(A \in \mathbb{R}^{d \times p} (d < p) \), we need to increase the sample number \(n \) to the order of \(\Omega(\log^{2}(\log p)^{3}) \), which is obtained by setting \(d = cp \), where \(0 < c < 1 \) is some positive constant. When \(d \) reduces to \(\Omega(p^{0.8}) \), we need to further inflate the sample number \(n \) to be at least \(\log^{2}(\log p)^{3} p^{0.8} \), which is still less than the order \(p \).

Minimum Projection Dimension \(d \). We investigate the minimum projection dimension \(d \) and proves the possibility of exact recovery of graph with an indefinite sensing matrix \(A \). Under the high-dimensional setting where we require \(n \leq p \), we need \(d \) to be at least

\[
d \gtrsim \sqrt{\deg \cdot \log p} \cdot \frac{\|\Sigma\|_{\text{off},F}}{\sqrt{\deg}} \vee \sigma^{2} \cdot \log p \vee p^{3/4} (\log p)^{1/3} \sqrt{\log p} \cdot \left(\max_{i} \|\Sigma_{i}^{\natural}\|^{2}_{2} \right).
\]

Using above, we can confirm that \(d \) is less than \(p \) given that \(\|\Sigma^{\natural}\|_{\text{off},F} = O(p) \) and \(\max_{i} \|\Sigma_{i}^{\natural}\|_{2} = O(\sqrt{p}) \). If \(\|\Sigma^{\natural}\|_{\text{off},F} \) is some fixed positive constant, we can reduce the dimension \(d \) to \(\sqrt{\deg} \cdot p^{3/4}(\log p)^{1/3} \), approximately of the order \((\deg)^{1/2} p^{3/4} \).

4. Non-parametric Method

We begin the discussion with some background knowledge on the nonparanormal distribution.

4.1. Background

Definition 1 (Nonparanormal). We call a set of random variables \(X = [X_{1} \cdots X_{p}]^{\top} \) follows the nonparanormal distribution, namely, \(X \sim \text{NPN}(g, \mu, \Sigma) \), if there exists a set of functions \(\{g_{j}\}_{1 \leq j \leq p} \) such that \(Z = [g_{1}(X_{1}) \cdots g_{p}(X_{p})]^{\top} \) has Gaussian distribution, i.e., \(Z \sim \text{N}(\mu, \Sigma) \).

Assume that \(X \) satisfies the nonparanormal assumption, i.e., \(X \sim \text{NPN}(g, \mu, \Sigma) \). Let \(\Theta \) be the inverse matrix of the covariance matrix \(\Sigma \).

Lemma 2 (Lemma 3 in (Liu et al., 2009)). Random variables \(X_{i} \) and \(X_{j} \) are pairwise conditionally independent, i.e., \(X_{i} \perp X_{j} | X_{\setminus i,j} \), iff \(\Theta_{i,j} = 0 \).
Thus, the pair-wise independence relation across the entries of \(X \) is fully incorporated into the matrix \(\Theta \). Denote the marginal distribution function of the \(i \)th entry \(X_i \) as \(F_i(\cdot) \) and define the function \(h_i(x) = F_i^{-1}(F_i(x)) \), where \(F_i(\cdot) \) is the CDF of the standard normal RV, namely, \(F_i(\cdot) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\cdot} e^{-t^2/2} dt \). According to (Liu et al., 2009), we can estimate function \(g_i(\cdot) \) by estimating function \(h_i(\cdot) \), from which we can conclude the bottleneck in estimating the graphical structure lies in the estimation of the CDF functions, i.e., \(F_i(\cdot), 1 \leq i \leq p \). Different from the previous work (Liu et al., 2009), our sensing relation assumes noisy indirect measurements instead of noiseless direct measurements, which bring extra difficulties.

4.2. Estimator Design Intuition

Compared with the parametric learning method, we need to have a reliable estimation of the transform function \(g(\cdot) \) in the presence of the measurement noise \(W \). To handle such an issue, we relax the constraint that sensing matrix \(A \) is under-determined, where extra measurements are conducted \((d > p) \) to suppress the sensing noise.

Remark 2. Consider the direct noisy measurement reading as \(Y^{(s)} = X^{(s)} + W^{(s)} \). Previous works (Fan, 1991; Zhang, 1990) suggest that the error of estimating the CDF \(X_i \) from \(Y^{(s)} \) is at least \(\inf \hat{F}_i(x) - F_i(x) \geq c_0 \text{log}(n)^{-c_1} \) for a fixed point \(x \), which means significant number of samples are required.

Remark 3. In fact, whether a compressive sensing system, i.e., \(d < p \), can be used to estimate the transform function \(g(\cdot) \) still remains an open-problem.

The basic idea of our estimator is to first transform the sensing relation in (2) to the additive model such that \(\hat{X}^{(s)} = X^{(s)} + \hat{W}^{(s)} \), where \(\hat{W}^{(s)} \) is defined as \((A^\top A)^{-1} A^\top W^{(s)} \). Then our task reduces to estimating the marginal CDF from the samples \(\hat{X}^{(s)} \), which is contaminated by the noise \(\hat{W}^{(s)} \). This problem can be broadly categorized as the density deconvolution problem in statistics. When comparing with the previous work, instead of relying on full knowledge, we only use some inexact knowledge of the distribution of \(W^{(s)} \). To put more specifically, we can compute its mean and the approximated value of its variance as

\[
E(\hat{W}_i) = 0, \quad \text{Var}(\hat{W}_i) \approx \frac{\sigma^2}{d-p}, \quad (11)
\]

where \(\hat{W}_i \) denotes the \(i \)th entry of the noise \(\hat{W} \). Whereas the previous work such as (Zhang, 1990; Fan, 1991; Masry, 1991; Hall & Meister, 2007) assumes perfect knowledge of the distributions of \(W \), and the work (Dattner & Reiser, 2013; Kappus & Mabon, 2014; Phuong, 2020) disregards the distribution but requires extra steps to estimate the variance of noise \(\{\hat{W}^{(s)}\}_{1 \leq s \leq n} \). The computation procedure

Algorithm 2 Estimation of the Graphical Structure via the Non-parametric Method.

Input: Samples \(\{Y^{(i)}\}_{i=1}^n \in \mathbb{R}^p \) and sensing matrix \(A \in \mathbb{R}^{d \times p} \).

Stage I. We reconstruct the values \(\hat{X}^{(s)} \) via the least-squares (LS) estimator as

\[
\hat{X}^{(s)} = \arg \min_X \|Y^{(s)} - AX\|_2. \quad (6)
\]

Stage II. We estimate the marginal distribution function \(\hat{F}_i(\cdot) \) for the \(i \)th entry from the samples \(\{\hat{X}_i^{(s)}\}_{1 \leq s \leq n} \) as

\[
\hat{F}_i(x) = \frac{1}{2} - \frac{1}{n\pi} \sum_{s=1}^n \int_0^\infty \frac{\sin \left[t(\hat{X}_i^{(s)} - x)\right]}{t} \times \frac{\exp \left(-\frac{x^2}{2(d-p)}\right)}{\exp \left(-\frac{x^2}{2(d-p)}\right) + \gamma t^n} dt, \quad (7)
\]

where \(\gamma > 0 \) and \(a > 1 \) are some fixed positive constants. Then we truncate the estimated CDF function as

\[
\hat{F}_i^\alpha(x) = \begin{dcases}
\delta_{n,d,p}, & \hat{F}_i(x) \leq \delta_{n,d,p}; \\
\hat{F}_i(x), & \delta_{n,d,p} \leq \hat{F}_i(x) \leq 1 - \delta_{n,d,p}; \\
1 - \delta_{n,d,p}, & \hat{F}_i(x) \geq 1 - \delta_{n,d,p},
\end{dcases} \quad (8)
\]

where \(\delta_{n,d,p} > 0 \) is some pre-determined parameter.

Stage III. First, we estimate the mean \(\hat{m}_i \) and the variance \(\hat{v}_i \) as

\[
\hat{m}_i = \frac{1}{n} \sum_{s=1}^n \hat{X}_i^{(s)}; \\
\hat{v}_i = \sqrt{\frac{1}{n-1} \sum_{s=1}^n (\hat{X}_i^{(s)} - \hat{m}_i)^2 - \frac{n}{n-1} \frac{\sigma^2}{d-p}},
\]

Then we estimate the covariance matrix \(\Sigma_n^{\text{non-param}} \) as

\[
\Sigma_n^{\text{non-param}} = \frac{1}{n} \sum_{s=1}^n (\hat{h}(\hat{X}^{(s)}) - \tilde{\mu})(\hat{h}(\hat{X}^{(s)}) - \tilde{\mu})^\top, \quad (9)
\]

where the \(i \)th entry of \(\hat{h} \) is defined as \(\hat{h}_i(x) = \hat{m}_i + \hat{v}_i \Phi^{-1}(\hat{F}_i^\alpha(x)) \), and \(\tilde{\mu} \) is the estimated mean of \(\hat{h}(\cdot) \), namely, \(n^{-1} \sum_{s=1}^n \hat{h}(\hat{X}^{(s)}) \).

Stage IV. We reconstruct the matrix \(\Theta \) as

\[
\Theta^{\text{non-param}} = \arg \min_{\Theta} -\log \det(\Theta) + \text{Tr} \left(\Theta \Sigma_n^{\text{non-param}} \right) + \lambda_{\text{non-param}} \|\Theta\|_{1,\text{off}}, \quad (10)
\]

where \(\lambda_{\text{non-param}} > 0 \) is some positive constant for the regularizer \(\|\Theta\|_1 \).

Output: Estimated matrix \(\Theta^{\text{non-param}} \).
of (11) is deferred to the supplementary material and the details of the estimator is summarized in Alg. 2.

4.3. Properties of CDF Estimator

This subsection investigates the properties of the marginal CDF estimator in (7) where each entry \(X_i \) is within the region \([0, 1]\). We begin the discussion by presenting the assumptions.

Definition 2 (Density family \(\mathcal{F}_{\alpha,L} \)). The density family \(\mathcal{F}_{\alpha,L} \) is defined as the set of all distributions whose density functions \(f(\cdot) \) and characteristic functions \(\phi(\cdot) \) possess the following properties:

- The functions \(f(\cdot) \) satisfy \(\int_{-\infty}^{\infty} x^2 f(x)dx < \infty \);
- The characteristic functions \(\phi(\cdot) \) satisfy \(\int_{-\infty}^{\infty} |\phi(t)|^2 (1 + t^2)dt \leq L \), where \(\alpha \) is a positive constant controlling the smoothness of the corresponding PDF.

Notice that these assumptions may have been widely used in previous work (Trong & Phuong, 2019; Phuong, 2020). Many usual distributions belong to this density family, e.g., Cauchy distribution, Gaussian distribution, etc. In addition, we need the following two assumptions.

Assumption 2. For an arbitrary entry \(X_i \), we assume its distribution belongs to the density family \(\mathcal{F}_{\alpha,L} \) such that \(\alpha > -\frac{1}{2} \).

Assumption 3. For an arbitrary entry \(X_i \), we assume its density function \(f_i(\cdot) \) is bounded by some constant \(L_f \), i.e., \(|f_i(\cdot)| \leq L_f\).

Setting the parameter \(a \) as some fixed positive constant and using \(\gamma \approx \log(np) \left(\frac{\sigma^2}{d-p} \right)^{a/4} \), we can prove that the estimation error of the CDF estimator converges to zero with high probability, which is formally stated in the following theorem.

Theorem 4. Under the Assumptions 2 and 3, the estimator error can be bounded as

\[
\sup_{x \in [0,1]} |\hat{F}_i(x) - \tilde{F}_i(x)| \leq (\log n)\varepsilon_x + c_1\sqrt{\varepsilon_x} + c_2\sqrt{n},
\]

for \(1 \leq i \leq p \) with probability exceeding \(1 - o(1) \) when setting \(\gamma \approx \log(np) \left(\frac{\sigma^2}{d-p} \right)^{a/4} \). The parameter \(\varepsilon_x \) is defined as

\[
\varepsilon_x \triangleq \frac{\log^{2/\alpha}(np)}{\sqrt{d-p}} + \frac{\log^2(np)}{(d-p)^{a/4}} + \left(\frac{\sigma^2}{d-p} \right)^{2a+1} + \frac{1}{n},
\]

where \(a > 1 \) is some pre-determined positive constant.

To the best of our knowledge, this is the first non-asymptotic uniform bound on the estimation error of a CDF deconvolution estimator with inexact knowledge of the noise variance.

4.4. Properties of the Graphical Structure Estimator: Non-Parametric Case

The technical challenges of this analysis can be divided as two parts: (i) choosing the appropriate truncation parameter \(\delta_{n,d,p} \) in (8); and (ii) estimating the covariance matrix with the noisy samples \(\{y^{(s)} \}_{1 \leq s \leq n} \).

Denote the oracle empirical covariance matrix \(\Sigma_{n,\text{non-param}} \) as

\[
\Sigma_{n,\text{non-param}} \triangleq \frac{1}{n} \sum_{s=1}^{n} h(x^{(s)})h(x^{(s)})^\top - \left(\frac{n^{-1} \sum_{s=1}^{n} h(x^{(s)})}{n^{-1} \sum_{s=1}^{n} h(x^{(s)\top})} \right)^\top,
\]

where \(h(\cdot) \) denotes the oracle estimator of the transform functions in Def. 1. The core of the analysis lies on bounding the estimation error of the covariance matrix in terms of the \(\ell_\infty \). In comparison with the previous work (Liu et al., 2009), we cannot directly access the samples \(\{X^{(s)} \}_{1 \leq s \leq n} \). Instead, we have to use the perturbed samples \(\{\tilde{X}^{(s)} \}_{1 \leq s \leq n} \), which will lead to additional errors in the estimation of the covariance matrix. How to bound these errors constitutes the technical bottleneck.

Define \(\beta \) as \(\frac{1}{2} \wedge \frac{d}{4} \wedge \frac{2a+1}{4} \) and set \(\delta_{n,d,p} \) in (8) as

\[
\delta_{n,d,p} = \frac{c_0}{(\log n)^{1/4}} + \frac{c_1 \log(2np)}{\sqrt{(d-p)(d-p)^{\beta/4}}}
\]

Then we conclude

Theorem 5. Under the Assumptions 2 and 3, the following bound

\[
\left\| \Sigma_{n,\text{non-param}} - \Sigma_{n,\text{non-param}}^\Theta \right\|_\infty \leq \sqrt{\log n} \sqrt{\log(d-p)}
\]

holds with probability exceeding \(1 - o(1) \), where \(\delta_{n,d,p} \) is set as (15), \(\beta \) is defined as \(\frac{1}{2} \wedge \frac{d}{4} \wedge \frac{2a+1}{4} \), and \(\Sigma_{n,\text{non-param}} \) and \(\Sigma_{n,\text{non-param}}^\Theta \) are defined in (14) and (9), respectively.

Having obtained the covariance matrix \(\Sigma_{n,\text{non-param}} \), we estimate the graphical structure of \(X \) by plugging \(\Sigma_{n,\text{non-param}} \) into the graphical lasso estimator (Tibshirani et al., 2015), which is put in (10). Adopting the same strategy as in Thm. 1, we can obtain the conditions for the correct recovery of graphical structure under Assumptions 1, 2, and 3. With a slight abuse of notations, we redefine the support set \(S \), the parameters \(\delta_\Sigma \), \(\kappa_\Sigma \), and \(\kappa_\Sigma \) with the covariance matrix \(\Sigma^\Theta \) and matrix \(\Theta^\delta \) that are correspond to the non-paramormal distribution. We can then show the following results on the graph recovery.

Theorem 6. Let \(\lambda_{\text{non-param}} \approx \theta^{-1} \left(\log n \right)^{1/4} \sqrt{\log((d-p)^{\beta/4}} \). Provided that
\[
\sqrt{\log n \lor \log(d - p)} \left(\sqrt{\frac{\log n}{n^{1/4}}} \lor \sqrt{\frac{\log(d - p)}{(d - p)^{3/4}}} \right) \lesssim \frac{\theta}{(\theta + 8)(\deg) \cdot \kappa \nu \kappa r}. \tag{16}
\]

the property \((\Theta_{\text{non-param}})_{i,j} = 0 \text{ for all } (i, j) \text{ outside the support set } S, \text{i.e., } (i, j) \in S^c, \text{ holds with probability } 1 - o(1), \text{ where } \beta \triangleq \frac{1}{2} \land \frac{1}{4} \land 2 \alpha \geq 1. \) Furthermore, if
\[
\min_{(i,j) \in S} \left| \Theta_{\text{non-param}}^{ij} \right| \geq 2\kappa \nu (1 + 8\theta^{-1}) \sqrt{\log n \lor \log(d - p)} \times \left(\sqrt{\frac{\log n}{n^{1/4}}} \lor \sqrt{\frac{\log(d - p)}{(d - p)^{3/4}}} \right),
\]

then \(\text{sign}(\Theta_{\text{non-param}}) = \text{sign}(\Theta^i) \text{ with probability } 1 - o(1).\)

4.5. Discussions

Following the same logic as in the discussion of the parametric method, we can obtain the minimum sample number \(n\) in terms of dimension \(d\), and length \(p\) from (16). Treating parameters \(\theta, \deg, \kappa \nu, \text{ and } \kappa r\) as some constants, the condition (16) requires the left-hand side to be constant.

Minimum Sample Size \(n\). We can show that
\[
n \gtrsim (\deg)^4 \log^2 n \left(\log^2 n \lor \log^2(d - p) \right).
\]

In contrast, the previous work (Liu et al., 2009) only requires the sample number \(n\) to satisfy
\[
n \gtrsim (\deg)^4 \log^2(n).
\]

Hence our result experience a loss of up to \(\log^2(d - p) \lor 1\). Since this inflation is closely related to the dimension \(d\), we conclude the loss is due to the indirect measurement scheme.

Minimum Projection Dimension \(d\). For the dimension \(d\), we require
\[
d \geq p + (\deg)^{3/4} \log^{3/8}(d - p) \left(\log^{3/8} n \lor \log^{3/8}(d - p) \right),
\]

which is a slightly larger than the dimension \(p\). To the best of our knowledge, this is the first condition involving the dimension \(d\) for the nonparametric learning of the graphical structure. Whether we can use a compressive sensing system, namely, \(d < p\), for the nonparametric method still remains an open-problem.

Having showed that the correct graphical structure can be obtained under mild conditions, next we will present some numerical experiments to validate our theoretical analysis.

5. Simulation Results

This section presents the numerical results, which applies to both the synthetic and the real-world data. Due to the space limit, we only put a subset of our numerical experiments and leave the rest to the supplementary material.

5.1. Synthetic Data

We adopt the classical setting as (Tibshirani et al., 2015) (9.5, P 252), where the ground-truth matrix \(\Theta^i\) is set as \((i)\) \(\Theta^i_{\delta ij} = \rho_1\) if \(i = j\); \((ii)\) \(\Theta^i_{\delta ij} = \rho_2\) if \(|i - j| = 1\); and \((iii)\) \(\Theta^i_{\delta ij} = 0\) otherwise. The corresponding edge set is denoted as \(E^i\). Simulations with other types of graphs are referred to the supplementary material.

Parametric Method. We set \(\rho_1 = 1\) and \(\rho_2 = 0.4\). First we create samples \(X^{(i)}\) and then mask it by the sensing relation \(Y^{(i)} = AX^{(i)} + W^{(i)}\), where \(A_{ij} \overset{i.i.d.}{\sim} N(0, 1)\) and \(W^{(i)} \sim N(0, \sigma^2 I_{n \times n})\). Using Alg. 1, we reconstruct \(\hat{\Theta}^{\text{param}}\) and evaluate it with the recall rate and precision rate with the results being put in Fig. 5.

![Figure 2. The signal dimension p is fixed as 2000. We study the impact of sample size n on the recall rate (Left) on the precision rate (Right).](image)

We confirm that the edge of graphical model can be selected correctly with high probability even when the dimension of the projection space is much lower than the dimension of the signal. In addition, we notice a threshold effect on \(n\) when \(\sigma^2 = 1\). This can be explained by the parameter \(\tau_{\infty}\) in (3), which contains the term \(c_4 \sigma^2 \log^2 p / d + c_7 \left(\sqrt{\frac{d}{n}} \lor \frac{d}{n} \right)\). If \(d\) is not high enough, this term is still lower-bounded by \(c_6 \sigma^2 \log p / d\) even as \(n \to \infty\), which means a large \(\tau_{\infty}\) and further the violation of the conditions in Thm. 1.

From Fig. 5, we confirm that the edge of graphical model can be selected correctly with high probability even when the dimension of the projection space is much lower than the dimension of the signal. In addition, we notice a threshold effect on \(n\) when \(\sigma^2 = 1\) in 5. This can be explained by the parameter \(\tau_{\infty}\) in (3), which contains the term \(c_4 \sigma^2 \log^2 p / d + c_7 \left(\sqrt{\frac{d}{n}} \lor \frac{d}{n} \right)\). If \(d\) is not high enough, this term is still lower-bounded by \(c_6 \sigma^2 \log p / d\) even as \(n \to \infty\), which means a large \(\tau_{\infty}\) and further the violation of the assumption in Thm. 1.

Generally speaking, we find larger sample size \(n\), higher
dimension d, and lower noise variance σ^2 contribute to the more accurate edge selection, which is consistent with our intuition and verifies Thm. 1.

Non-Parametric Method. In Fig. 3, we compare the algorithms for the uniform distribution where the marginal distribution of each entry is uniformly within the region $[0, 1]$. We can see that our method has a significant improvement when comparing with the method in (Liu et al., 2009) (a widely-used baseline).

![Figure 3](image_url)

Figure 3. We study the impact of noise with $p = 50$ and $d = 200$. Liu refers to the method in (Liu et al., 2009); Liu + LS refers to first performing denoising with our method (i.e., least square) followed by (Liu et al., 2009), which estimates the CDF without density deconvolution. We believe the performance gap will increase with a larger noise variance.

In addition, we evaluate the performance with the following three types of marginal distribution for the RV X:

- uniform distribution within the region $[0, 1]$;
- exponential distribution, i.e., e^{-z} for $z \geq 0$;
- Gaussian mixture, i.e., $0.25 \sum_{i=1}^{4} \mathcal{N}(\mu_i, 10^{-2})$, where $\mu_i \in \{\pm 0.25, \pm 0.5\}$.

Due to the spatial limit, we leave the numerical results to the supplementary material, which suggests our algorithm has an improvement in both the recall rate and precision rate.

5.2. Real-World Data

We now consider the real-world databases, which consists of 5 databases: Carolina Breast Cancer (GSE148426) with 2497 samples (patients) (Bhattacharya et al., 2020), Lung Cancer (GSE137140) with 3924 samples (Asakura et al., 2020), Ovarian Cancer (GSE106817) with 4046 samples (Yokoi et al., 2018), Colorectal Cancer (GSE115513) with 1513 samples (Slattery et al., 2016), and Esophageal Squamous Cell Carcinoma (GSE122497) with 5531 samples (Sudo et al., 2019). Each database is divided into two categories, i.e., **Healthy group** and **Patients**, where the measurements are given as the concentration of miRNAs. The miRNAs are known to have dependency among each other, i.e., a non-diagonal precision matrix, and hence there is an underlying graphical model describing these dependency structure based on the associated precision matrix.

The sensing matrix $A \in \mathbb{R}^{d \times p}$ is assumed to be $A_{ij} \overset{i.i.d.}{\sim} \mathcal{N}(0, 1)$ and the variance of the measurement noise is set to one, $W_{i|d} \overset{i.i.d.}{\sim} \mathcal{N}(0, 1)$. The goal is to reconstruct the underlying dependency graph among miRNAs.

Evaluation. We adopt the nonparametric method for the evaluation due to its wider applications. The precision matrix Θ learned with noiseless direct measurements using the method in (Liu et al., 2009) is assumed to be the ground-truth. We evaluate the performance of our estimator in both the recall rate and precision rate of the edge selection. The results are shown in Tab. 4. These experiments confirm that our estimator can obtain the correct dependency relation with high-probability.

d/p	GSE148426	GSE137140	GSE148426	GSE137140
Recall Rate				
2	0.9494	0.8892	0.9424	0.9692
5	1	0.9950	1	0.9692
10	1	1	1	1
12	1	1	1	1
15	1	1	1	1
20	1	1	1	1
Precision Rate				
2	1	1	0.9704	0.9692
5	0.9080	0.9900	0.9205	0.9692
10	0.9080	0.9341	0.9205	0.9420
12	0.9080	0.9475	0.9329	0.9420
15	0.9080	0.9566	0.9456	0.9420
20	0.9518	0.9613	0.9586	0.9420

6. Conclusions

This is the first work on learning of the graphical structure with noisy indirect measurements, where both the parametric and non-parametric methods are investigated. For the parametric method, we considered the Gaussian graphical model and learned the graphical structure by using only indirect low-dimensional observations, i.e., the observations obtained via compressive sensing of the desired signal. For the non-parametric method, we relaxed the gaussian distribution to the nonparamormal distribution. We established a non-asymptotic uniform bound on the errors of the CDF estimation. To the best of our knowledge, this is the first such results on the CDF error bounds when only limited information exists regarding the noise distribution. For both scenarios, we showed our estimator can generate the correct graphical structure under mild conditions, from which the relation between the sample number n, the signal dimension p, and the projection dimension d are obtained. In

"Only a part of the results are put here and the rest results are left to the supplementary due to the spatial limit."
addition, we provided numerical experiments, using both synthetic and real world miRNA data, to corroborate the correctness of our theoretical results.

References

Asakura, K., Kadota, T., Matsuzaki, J., Yoshida, Y., Yamamoto, Y., Nakagawa, K., Takizawa, S., Aoki, Y., Nakamura, E., Miura, J., et al. A mirna-based diagnostic model predicts resectable lung cancer in humans with high accuracy. *Communications biology*, 3(1):1–9, 2020.

Bhattacharya, A., Hamilton, A. M., Troester, M. A., and Love, M. I. Decompress: tissue compartment deconvolution of targeted mrna expression panels using compressed sensing. *bioRxiv*, 2020. doi: 10.1101/2020.08.14.250902. URL https://www.biorxiv.org/content/early/2020/08/17/2020.08.14.250902.

Boucheron, S., Lugosi, G., and Massart, P. *Concentration Inequalities: A Nonasymptotic Theory of Independence*. Oxford University Press, 2013.

Cai, T., Liu, W., and Luo, X. A constrained ℓ_1 minimization approach to sparse precision matrix estimation. *Journal of the American Statistical Association*, 106(494):594–607, 2011.

Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. Latent variable graphical model selection via convex optimization. In 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1610–1613. IEEE, 2010.

Dattner, I. and Reiser, B. Estimation of distribution functions in measurement error models. *Journal of Statistical Planning and Inference*, 143(3):479–493, 2013.

Dattner, I., Goldenshluger, A., and Juditsky, A. On deconvolution of distribution functions. *The Annals of Statistics*, pp. 2477–2501, 2011.

Fan, J. On the optimal rates of convergence for nonparametric deconvolution problems. *The Annals of Statistics*, pp. 1257–1272, 1991.

Fan, J., Liu, H., Ning, Y., and Zou, H. High dimensional semiparametric latent graphical model for mixed data. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79(2):405–421, 2017.

Friedman, N. Inferring cellular networks using probabilistic graphical models. *Science*, 303(5659):799–805, 2004.

Golub, G. H. and Van Loan, C. F. *Matrix computations*, volume 3. JHU Press, 2012.

Hall, P. and Meister, A. A ridge-parameter approach to deconvolution. *The Annals of Statistics*, 35(4):1535–1558, 2007.

Hastie, T., Tibshirani, R., and Friedman, J. *The elements of statistical learning: data mining, inference, and prediction*. Springer Science & Business Media, 2009.

Janson, S. et al. *Gaussian hilbert spaces*, volume 129. Cambridge university press, 1997.

Kappus, J. and Mabon, G. Adaptive density estimation in deconvolution problems with unknown error distribution. *Electronic journal of statistics*, 8(2):2879–2904, 2014.

Koller, D. and Friedman, N. *Probabilistic graphical models: principles and techniques*. 2009.

Koltchinskii, V. *Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: Ecole d’Eté de Probabilités de Saint-Flour XXXVIII-2008*, volume 2033. Springer Science & Business Media, 2011.

Liu, H., Lafferty, J., and Wasserman, L. The nonparamormal: Semiparametric estimation of high dimensional undirected graphs. *Journal of Machine Learning Research*, 10(10), 2009.

Liu, H., Xu, M., Gu, H., Gupta, A., Lafferty, J., and Wasserman, L. Forest density estimation. *Journal of Machine Learning Research*, 12(Mar):907–951, 2011.

Liu, H., Han, F., Yuan, M., Lafferty, J., Wasserman, L., et al. High-dimensional semiparametric gaussian copula graphical models. *The Annals of Statistics*, 40(4):2293–2326, 2012.

Marlin, B. M. and Murphy, K. P. Sparse gaussian graphical models with unknown block structure. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pp. 705–712, 2009.

Masry, E. Multivariate probability density deconvolution for stationary random processes. *IEEE Transactions on Information Theory*, 37(4):1105–1115, 1991.

Mazumder, R. and Hastie, T. The graphical lasso: New insights and alternatives. *Electronic journal of statistics*, 6:2125, 2012.

Müller, J., Kuttler, C., and Hense, B. A. Sensitivity of the quorum sensing system is achieved by low pass filtering. *Biosystems*, 92(1):76–81, 2008.

Pensky, M. and Vidakovic, B. Adaptive wavelet estimator for nonparametric density deconvolution. *The Annals of Statistics*, 27(6):2033–2053, 1999.
Phuong, C. X. Deconvolution of cumulative distribution function with unknown noise distribution. *Acta Applicandae Mathematicae*, 170(1):483–514, 2020.

Ravikumar, P., Wainwright, M. J., Raskutti, G., Yu, B., et al. High-dimensional covariance estimation by minimizing ℓ_1-penalized log-determinant divergence. *Electronic Journal of Statistics*, 5:935–980, 2011.

Rockafellar, R. T. *Convex analysis*. Number 28. Princeton university press, 1970.

Slattery, M. L., Herrick, J. S., Pellatt, D. F., Stevens, J. R., Mullany, L. E., Wolff, E., Hoffman, M. D., Samowitz, W. S., and Wolff, R. K. Microrna profiles in colorectal carcinomas, adenomas and normal colonic mucosa: variations in mirna expression and disease progression. *Carcinogenesis*, 37(3):245–261, 2016.

Sudo, K., Kato, K., Matsuzaki, J., Boku, N., Abe, S., Saito, Y., Daiko, H., Takizawa, S., Aoki, Y., Sakamoto, H., et al. Development and validation of an esophageal squamous cell carcinoma detection model by large-scale microrna profiling. *JAMA network open*, 2(5):e194573–e194573, 2019.

Talagrand, M. *Upper and lower bounds for stochastic processes: modern methods and classical problems*, volume 60. Springer Science & Business Media, 2014.

Tibshirani, R., Wainwright, M., and Hastie, T. *Statistical learning with sparsity: the lasso and generalizations*. Chapman and Hall/CRC, 2015.

Trong, D. D. and Phuong, C. X. Deconvolution of a cumulative distribution function with some non-standard noise densities. *Vietnam Journal of Mathematics*, 47(2):327–353, 2019.

Tulino, A. M., Verdú, S., and Verdu, S. *Random matrix theory and wireless communications*. Now Publishers Inc, 2004.

Vershynin, R. High dimensional probability, 2016.

Wainwright, M. J. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019.

Xu, P. and Gu, Q. Semiparametric differential graph models. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, pp. 1072–1080, 2016.

Xue, L., Zou, H., et al. Regularized rank-based estimation of high-dimensional nonparanormal graphical models. *The Annals of Statistics*, 40(5):2541–2571, 2012.

Yokoi, A., Matsuzaki, J., Yamamoto, Y., Yoneoka, Y., Takahashi, K., Shimizu, H., Uehara, T., Ishikawa, M., Ikeda, S.-i., Sonoda, T., et al. Integrated extracellular microrna profiling for ovarian cancer screening. *Nature communications*, 9(1):1–10, 2018.

Youndjé, É. and Wells, M. T. Optimal bandwidth selection for multivariate kernel deconvolution density estimation. *Test*, 17(1):138–162, 2008.

Zhang, C.-H. Fourier methods for estimating mixing densities and distributions. *The Annals of Statistics*, pp. 806–831, 1990.

Zhao, T., Roeder, K., and Liu, H. Positive semidefinite rank-based correlation matrix estimation with application to semiparametric graph estimation. *Journal of Computational and Graphical Statistics*, 23(4):895–922, 2014.
7. Analysis of Covariance Matrix Estimation via Parametric Method

For the convenience of analysis, we rescale the sensing matrix \tilde{A} such that $\tilde{A}_{ij} \sim N(0, d^{-1})$.

Lemma 3. Consider the covariance estimator $\hat{\Sigma}_n$ which reads

$$\hat{\Sigma}_n = 1 + \frac{d}{d + 1} \left[\tilde{A}^\top \left(\frac{1}{n} \sum_{i=1}^{n} Y(i)^\top Y(i) \right) \tilde{A} \right],$$

(17)

where $(\cdot)_{\text{off}}$ denotes the operation of picking non-diagonal entries. We then have $\|\hat{\Sigma}_n - \Sigma^2\|_\infty \leq \tau_\infty$ holding with probability at least $1 - c_0 p^{-1} - c_1 p^2 e^{-c_2 d} - c_3 p^2 e^{-c_4 d}$.

We begin the analysis by redefining the following events,

$$\mathcal{E}_1 \triangleq \left\{ 1 - c_0 \frac{\log p}{d} \leq \|\tilde{A}_i\|_2 \leq 1 + c_0 \frac{\log p}{d}, \; \forall i \right\};$$

$$\mathcal{E}_2 \triangleq \left\{ |\langle \tilde{A}_i, \tilde{A}_j \rangle| \leq \sqrt{\frac{\log p}{d}} \sqrt{\frac{\log p}{d}}, \; \forall i \neq j \right\};$$

$$\mathcal{E}_3 \triangleq \left\{ \|\Sigma_n - \Sigma^2\|_\infty \leq \frac{\log p}{n} \right\};$$

$$\mathcal{E}_4(B) \triangleq \left\{ \|\sum_{i \neq 1} B_i \tilde{A}_i\|_2 \leq \sqrt{\sum_{i \neq 1} B_i^2} \right\}, \quad \text{where } B \in \mathbb{R}^p \text{ is a fixed vector}.$$

Additionally, we define $\Psi(\mathcal{E})$ as $\mathbb{E}(\mathcal{E})$. Moreover, our analysis focuses on the region when $d \gg \log p$.

7.1. Main Structure

Having collected all the lemmas, we turn to the proof of Lemma 1. Notice that by the definition of our estimator, $\|\Sigma_n - \Sigma^2\|_\infty = \max_{i \neq j} \left| \left(\Sigma_n \right)_{i,j} - \Sigma^2_{i,j} \right|$. Hence, we only consider the off-diagonal entries, which gives

$$\|\hat{\Sigma}_n - \Sigma^2\|_{\text{off}, \infty} = \|\tilde{A}^\top \left(\frac{1}{n} \sum_{i=1}^{n} Y(i)^\top Y(i) \right) \tilde{A} - \Sigma^2\|_{\text{off}, \infty} \leq \left(\frac{d}{d + 1} \right) \left(\tilde{A}^\top \Sigma_n \tilde{A} \right) \|\tilde{A} - \Sigma^2\|_{\text{off}, \infty} + \frac{2d}{n(d + 1)} \|\tilde{A}^\top \left(\sum_{i=1}^{n} W(i)^\top W(i) \right) \tilde{A}\|_{\text{off}, \infty}$$

$$\leq \left(\frac{d}{d + 1} \right) \left(\tilde{A}^\top \Sigma_n \tilde{A} \right) \|\tilde{A} - \Sigma^2\|_{\text{off}, \infty} + \frac{2d}{n(d + 1)} \|\tilde{A}^\top \left(\sum_{i=1}^{n} W(i)^\top W(i) \right) \tilde{A}\|_{\text{off}, \infty}$$

$$\leq \left(\frac{d}{d + 1} \right) \left(\tilde{A}^\top \Sigma_n \tilde{A} \right) \|\tilde{A} - \Sigma^2\|_{\text{off}, \infty} + \frac{2d}{n(d + 1)} \|\tilde{A}^\top \left(\sum_{i=1}^{n} W(i)^\top W(i) \right) \tilde{A}\|_{\text{off}, \infty}$$

where Σ_n is defined as $n^{-1} \left(\sum_{i=1}^{n} X(i)^\top X(i) \right)$, and in (1) we use $d/(d + 1) E_{A,X} (\tilde{A}^\top \tilde{A} \Sigma_n \tilde{A}^\top \tilde{A}) = \Sigma^2$. Then we separately upper-bound ϑ_1, ϑ_2, and ϑ_3 conditional on the event $\bigcap_{i=1}^{n} \mathcal{E}_i$. For the conciseness in notations, define
Z = \tilde{A} \Sigma_n \text{param} \tilde{A}^\top \tilde{A}. Therefore \vartheta_1 = \|Z - EZ\|_{\text{off}, \infty}$. For an arbitrary entry $Z_{i,j}$, we can expand it as

$$Z_{i,j} = \sum_{\ell_1, \ell_2} (\Sigma_n \text{param})_{\ell_1, \ell_2} \langle \tilde{A}_i, \tilde{A}_{\ell_1} \rangle \langle \tilde{A}_j, \tilde{A}_{\ell_2} \rangle, \quad i \neq j.$$

Compared to the existing work (Ravikumar et al., 2011), our analysis of Z_{ij} involves fourth-order Gaussian chaos (Talagrand, 2014), which exhibits heavy tails, and constructs the major obstacle.

Stage I: Bounding ϑ_1. To obtain upper bound on ϑ_1, we first adopt the union bound and obtain

$$P(\vartheta_1 \geq \delta) = P(\max_{i \neq j} |Z_{i,j} - EZ_{i,j}| \geq \delta) \leq \sum_{i \neq j} P(|Z_{i,j} - EZ_{i,j}| \geq \delta, i \neq j).$$

Then our focus is to bound the probability $P(|Z_{i,j} - EZ_{i,j}| \geq \delta, i \neq j)$. Without loss of generality, assume that $i = 1$ and $j = 2$ and expand $Z_{1,2}$ as $\sum_{t=1}^5 T_t$, which reads

$$T_1 \triangleq (\Sigma_n \text{param})_{1,2} \|\tilde{A}_1\|_2^2 \|\tilde{A}_2\|_2^2;$$

$$T_2 \triangleq (\Sigma_n \text{param})_{2,1} \langle \tilde{A}_1, \tilde{A}_2 \rangle^2;$$

$$T_3 \triangleq \sum_{\ell \neq 1, 2} (\Sigma_n \text{param})_{2,\ell} \|\tilde{A}_2\|_2^2 \langle \tilde{A}_1, \tilde{A}_\ell \rangle + \sum_{\ell \neq 1} (\Sigma_n \text{param})_{\ell,1} \|\tilde{A}_1\|_2^2 \langle \tilde{A}_2, \tilde{A}_\ell \rangle;$$

$$T_4 \triangleq \sum_{\ell \neq 1, 2} (\Sigma_n \text{param})_{\ell,\ell} \langle \tilde{A}_1, \tilde{A}_\ell \rangle \langle \tilde{A}_2, \tilde{A}_\ell \rangle;$$

$$T_5 \triangleq \sum_{\ell_1, \ell_2 \neq 1, 2} (\Sigma_n \text{param})_{\ell_1, \ell_2} \langle \tilde{A}_1, \tilde{A}_{\ell_1} \rangle \langle \tilde{A}_2, \tilde{A}_{\ell_2} \rangle.$$

Now, we separately bound the deviations $|T_i - ET_i|, 1 \leq i \leq 5$. First, we have

$$|T_1 - ET_1| = |(\Sigma_n \text{param})_{1,2}| \times \|\tilde{A}_1\|_2^2 \|\tilde{A}_2\|_2^2 - 1|$$

$$\overset{\mathcal{O}}{\leq} |(\Sigma_n \text{param})_{1,2}| \times \|\tilde{A}_1\|_2 \|\tilde{A}_2\|_2 - 1| \times \left(\|\tilde{A}_1\|_2 \|\tilde{A}_2\|_2 + 1\right)$$

$$\overset{\mathcal{O}}{\leq} |(\Sigma_n \text{param})_{1,2}| \times \sqrt{\frac{\log p}{d}} \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right) \times \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right)$$

$$\overset{\mathcal{O}}{\leq} |(\Sigma_n \text{param})_{1,2}| \sqrt{\frac{\log p}{d}} \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right) \times \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right) \times \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right)$$

$$\overset{\mathcal{O}}{\leq} |(\Sigma_n \text{param})_{1,2}| \frac{\log p}{d} \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right) \times \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right) \times \left(\|\tilde{A}_1\|_2 + \|\tilde{A}_2\|_2\right)$$

where in (2) and (3) we condition on event \mathcal{E}_1, (4) is due to $d \gg \log p$, and (5) is by the definition of event \mathcal{E}_3.

For $|T_2 - ET_2|$, by invoking Lemma 8,

$$|T_2 - ET_2| \overset{\mathcal{O}}{\leq} |(\Sigma_n \text{param})_{2,1}| \times \left(\frac{\log p}{d} + \sqrt{\frac{\log p}{d^2}}\right) \overset{\mathcal{O}}{\leq} \frac{\log p}{d}$$

holds with probability exceeding $1 - 2p^{-\alpha}$, where (6) is because $d \gg \log p$, and (7) is due to event \mathcal{E}_3.

We continue to bound $|T_3 - \mathbb{E}T_3|$ by

$$
|T_3 - \mathbb{E}T_3| \leq \left\| \bar{A}_1 \right\|^2_2 + \sum_{\ell \neq 2} \left\langle A_{\ell}^2, \delta_{\ell} \right\rangle + \left\| \bar{A}_2 \right\|^2_2 \times \left(1 + c_0 \log \frac{p}{d} \right)^2 \left\| \left(\sum_{\ell \neq 1} \left(\sum_{\ell \neq 1} \delta_{\ell} \right)^2 \right)^{1/2} \delta_{\ell} \right\|_2
$$

which holds with probability exceeding $1 - c_0 p^{-3} - c_1 e^{-c_2 d}$, where in (8) we invoke Lemma 9, in (9) we use that $\sum_{\ell \neq 1} \delta_{\ell} \delta_{\ell} \delta_{\ell}$ is symmetric and $d \gg \log p$, and (8) is due to event \mathcal{E}_3.

To bound $|T_3 - \mathbb{E}T_3|$, we invoke Lemma 10,

$$
|T_3 - \mathbb{E}T_3| \leq \sum_{\ell > 2} \left(\mathbb{E} \left(\delta_{\ell} \right) \right)^2 \mathbb{E} \left(\log \frac{p}{d} \right)^2 \left\| \delta_{\ell} \right\|^2_2 + \left(1 + c_0 \log \frac{p}{d} \right)^2 \left\| \left(\sum_{\ell > 2} \left(\sum_{\ell \neq 1} \delta_{\ell} \delta_{\ell} \delta_{\ell} \right)^2 \right)^{1/2} \delta_{\ell} \right\|_2
$$

holds with probability exceeding $1 - 2p^{-3}$, where \mathbb{E} is by definition of event \mathcal{E}_3.

The deviation $|T_5 - \mathbb{E}T_5|$ is bounded via Lemma 11, which gives

$$
|T_5 - \mathbb{E}T_5| \leq \frac{\log p}{d} \left(1 + c_0 \right)^2 \left\| \Sigma \right\|^2_{off,F} \leq \frac{\log p}{d} \left(1 + c_1 p \right) \left(\left\| \Sigma \right\|^2_{off,F} + \sqrt{p \log p} \right),
$$

with probability exceeding $1 - 4p^{-3} - e^{-c_0 p}$, where in (8) we condition on event \mathcal{E}_3.

Combining (19), (20), (21), (22), and (23), we conclude that

$$
|Z_{i,j} - \mathbb{E}Z_{i,j}| \leq \frac{\log p}{d} \left(\left\| \Sigma \right\|^2_2 + \left\| \Sigma \right\|^2_2 \right)^2 + \frac{\log p}{d} \left(1 + c_1 p \right) \left\| \Sigma \right\|^2_{off,F} + \sqrt{p \log p} \left(1 + c_1 p \right)
$$

with probability $1 - c_0 p^{-3} - c_1 e^{-c_2 d} - c_3 e^{-c_4 p}$. We conclude the proof by plugging into (18) and $\left\| \Sigma_{\text{param}} - \Sigma \right\|^2_{off,\infty} \leq \left\| \Sigma_{\text{param}} - \Sigma \right\|^2_{\infty} \leq \sqrt{\log p/n}$ according to event \mathcal{E}_3.

Stage II: Bounding \overline{v}_2. We rewrite \overline{v}_2 as $\left\| \Sigma_{\text{param}} - \Sigma \right\|^2_{off,\infty}$ and invoke event \mathcal{E}_3.

Stage III: Bounding \overline{v}_3. This stage is completed by invoking Lemma 12. Combing the above three stages will then yield the proof.

7.2. Supporting Lemmas

We first compute the values of $\Psi(\mathcal{E}_i)$, $1 \leq i \leq 3$.
Lemma 4. $\Psi(\mathcal{E}_1) \geq 1 - 2p^{-1}$.

Proof. We conclude that

$$
P\left(\left\| \tilde{A}_i \right\|_2 - 1 \geq c_0 \sqrt{\frac{\log p}{d}}, \exists 1 \leq i \leq p\right) \leq pP\left(\left\| \tilde{A}_i \right\|_2 - 1 \geq c_0 \sqrt{\frac{\log p}{d}}\right) \overset{\text{1}}{\leq} 4p \exp\left(-2d \times \frac{\log p}{d}\right) = 2p^{-1},
$$

where $\overset{\text{1}}{=}$ is due to the properties of χ^2 distribution.

Lemma 5. Conditional on \mathcal{E}_1, we have $\Psi(\mathcal{E}_2) \geq 1 - 2p^{-1}$.

Proof. Due to the independence between \tilde{A}_i and \tilde{A}_j, where $i \neq j$. We can condition on \tilde{A}_i and view $\langle \tilde{A}_i, \tilde{A}_j \rangle$ as a Gaussian RV with mean zero and variance $d^{-1} \left\| \tilde{A}_i \right\|_2^2$, namely, $N\left(0, d^{-1} \left\| \tilde{A}_i \right\|_2^2\right)$. Then we conclude that

$$
\Psi\left(\overline{\mathcal{E}}_2 \mid \mathcal{E}_1\right) \overset{\text{1}}{=} \leq p^2 \Psi\left(| \langle \tilde{A}_i, \tilde{A}_j \rangle | \geq \delta \mid \mathcal{E}_1\right) \overset{\text{2}}{=} \leq 2p^2 \left(\Phi\left(-\frac{\sqrt{d\delta}}{\left\| \tilde{A}_i \right\|_2}\right) \times \Psi(\mathcal{E}_1)\right)
$$

$$
\overset{\text{3}}{=} \leq 2p^2 \left(\exp\left(-\frac{d\delta^2}{2 \left\| \tilde{A}_i \right\|_2^2}\right) \times \Psi(\mathcal{E}_1)\right) \overset{\text{4}}{=} \leq 2p^2 \exp\left(-\frac{d\delta^2}{2 \left(1 + c_0 \log p/d\right)}\right),
$$

where $\overset{\text{1}}{=}$ is due to the union bound, in $\overset{\text{2}}{=}$ we denote $\Phi(t) = 1/\sqrt{2\pi} \int_{-\infty}^{t} e^{-x^2/2}dx$, the CDF of the normal distribution, $\overset{\text{3}}{=}$ is because $\Phi(x) \leq e^{-x^2/2}$, and $\overset{\text{4}}{=}$ is according to event \mathcal{E}_1.

In the end, we complete the proof by setting δ as $c_1 \left(\sqrt{\frac{\log p}{d}} \vee \sqrt{\frac{\log p}{d}}\right)$, which yields $\Psi(\overline{\mathcal{E}}_2 \mid \mathcal{E}_1) \leq 2p^{-1}$. \qed

Lemma 6. $\Psi(\mathcal{E}_3) \geq 1 - 4p^{-1}$.

Proof. The proof can be found in the proof of Thm. 1 and Thm. 4 in (Cai et al., 2011).

Lemma 7. For an arbitrary fixed vector $B \in \mathbb{R}^p$, we have $\Psi(\mathcal{E}_4(B)) \geq 1 - e^{-0.8d}$.

Proof. Notice that $\sum_{\ell \neq 1} B_\ell \tilde{A}_\ell$ is a vector satisfying $N\left(0, d^{-1} \left(\sum_{\ell \neq 1} B_\ell^2\right) \mathbf{I}\right)$. Hence, $\frac{d}{\sum_{\ell \neq 1} B_\ell^2} \left\| \sum_{\ell \neq 1} B_\ell \tilde{A}_\ell \right\|_2^2$ is a χ^2 RV with freedom d, which suggests

$$
P\left(\left\| \sum_{\ell \neq 1} B_\ell \tilde{A}_\ell \right\|_2^2 \geq 4 \left(\sum_{\ell \neq 1} B_\ell^2\right)\right) = P\left(\frac{d}{\sum_{\ell \neq 1} B_\ell^2} \left\| \sum_{\ell \neq 1} B_\ell \tilde{A}_\ell \right\|_2^2 \geq 4d\right) \overset{\text{1}}{=} \leq \exp\left(-\frac{d}{2} (\log 4 - 3)\right) \leq e^{-0.8d},
$$

where $\overset{\text{1}}{=}$ is due to the properties of χ^2 distribution. \qed

Lemma 8. Conditional on event \mathcal{E}_1,

$$
\left| \sum_{\ell \neq 1} B_\ell \langle \tilde{A}_1, \tilde{A}_\ell \rangle \right|^2 - d^{-1} \left(\sum_{\ell \neq 1} B_\ell^2\right) \leq \frac{1}{d} \left(\sqrt{\log p} \sqrt{\sum_{\ell \neq 1} B_\ell^2} \vee (\log p) \left(\max_{\ell \neq 1} |B_\ell|\right)\right) + \frac{\sum_{\ell \neq 1} B_\ell^2}{d} \sqrt{\frac{\log p}{d}}
$$

holds with probability exceeding $1 - 2p^{-3}$, for an arbitrary fixed vector $B \in \mathbb{R}^p$.

Lemma 9. Proof. First, we decompose the above term as
\[
\left| \sum_{\ell \neq 1} B_\ell \left(\tilde{A}_1, \tilde{A}_\ell \right)^2 - d^{-1} \left(\sum_{\ell \neq 1} B_\ell \right) \right|
\]
\[
\leq \frac{\|\tilde{A}_1\|_2^2}{d} \sum_{\ell \neq 1} B_\ell \left(\sqrt{d} \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle \right)^2 - \sum_{\ell \neq 1} B_\ell \left| \sum_{\ell \neq 1} B_\ell \left| \|\tilde{A}_1\|_2^2 - 1 \right| \right|
\]
\[
\overset{\text{(1)}}{\leq} \frac{1}{d} \left(1 + c_0 \sqrt{\frac{\log p}{d}} \right) \sum_{\ell \neq 1} B_\ell \left(\sqrt{d} \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle \right)^2 - \sum_{\ell \neq 1} B_\ell \left| \sum_{\ell \neq 1} B_\ell \right| \sqrt{\frac{\log p}{d}}
\]
\[
\overset{\text{(2)}}{\leq} \frac{T}{d} + \frac{\sum_{\ell \neq 1} B_\ell}{d} \sqrt{\frac{\log p}{d}}
\]
where (1) is due to the definition of event E_1, and (2) is because $d \gg \log p$. Our following analysis focuses on upper-bounding T. First we define A as $A = [A_2 \cdots A_d]^T$, where $A_i = \sqrt{d} \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle / \|\tilde{A}_1\|_2$. Then we can rewrite T as
\[
T = \sum_{\ell \neq 1} B_\ell A_\ell^2 = A^T \text{diag}(B_\ell)_{\ell \neq 2} A.
\]
Due to the independence between \tilde{A}_1 and \tilde{A}_ℓ, $\ell \neq 1$, we can condition \tilde{A}_1 and can view A_i as a Gaussian RV satisfying $N(0, 1)$. Invoking the Hanson-Wright inequality (Theorem 6.2.1 in (Vershynin, 2016)), we conclude that
\[
P (T \geq \delta) \leq 2 \exp \left(-c \left(\frac{\delta^2}{\|\text{diag}(B_\ell)_{\ell \neq 1}\|_F^2} \wedge \frac{\delta}{\|\text{diag}(B_\ell)_{\ell \neq 1}\|_{\text{op}}} \right) \right).
\]
Setting δ as $(c_0 \sqrt{\log p} \sqrt{\sum_{\ell \neq 1} B_\ell^2}) \vee c_1 (\log p \times \max_{\ell \neq 1} |B_\ell|)$, we conclude that $P(T \geq \delta) \leq 2p^{-3}$ and complete the proof.

\[\square\]

Lemma 9. Given a fixed vector $B \in \mathbb{R}^p$, \[
\left| \sum_{\ell \neq 1} B_\ell \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle \right| \lesssim \sqrt{\frac{\log p}{d}} \sqrt{\sum_{\ell \neq 1} B_\ell^2},
\]
holds with probability at least $1 - p^{-3} - e^{-0.8d}$.

Proof. Due to the independence between \tilde{A}_1 and \tilde{A}_ℓ, where $\ell \neq 1$. We condition on \tilde{A}_ℓ and view $\sum_{\ell \neq 1} B_\ell \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle$ as a Gaussian distributed RV $N \left(0, d^{-1} \left\| \sum_{\ell \neq 1} B_\ell \tilde{A}_\ell^2 \right\|_2^2 \right)$. Then we obtain
\[
P \left(\left| \sum_{\ell \neq 1} B_\ell \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle \right| \gtrsim \sqrt{\frac{\log p}{d}} \sqrt{\sum_{\ell \neq 1} B_\ell^2} \right)
\]
\[
= P \left(\left| \sum_{\ell \neq 1} B_\ell \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle \right| \gtrsim \sqrt{\frac{\log p}{d}} \sqrt{\sum_{\ell \neq 1} B_\ell^2} \right) \times \Psi(E_4(B))
\]
\[
+ P \left(\left| \sum_{\ell \neq 1} B_\ell \left\langle \tilde{A}_1, \tilde{A}_\ell \right\rangle \right| \gtrsim \sqrt{\frac{\log p}{d}} \sqrt{\sum_{\ell \neq 1} B_\ell^2} \right) \times \Psi(E_3(B)).
\]
The proof is then completed by separately bounding T_1 and T_2. For term T_1, we have

$$T_1 \overset{\circled{1}}{=} \mathbb{E}_{A_\ell} \exp \left(-\frac{c \log p (\sum_{\ell \neq 1} B_{\ell}^2)}{\| \sum_{\ell \neq 1} B_\ell A_1 \|^2_2} \right) \times \Psi (E_4 (B)) \overset{\circled{2}}{=} \exp \left(-\frac{3 \log p (\sum_{\ell \neq 1} B_{\ell}^2)}{\sum_{\ell \neq 1} B_{\ell}^2} \right),$$

where $\circled{1}$ is due to the tail bound for the Gaussian RV $\sum_{\ell \neq 1} B_\ell \langle \tilde{A}_1, \tilde{A}_\ell \rangle$ conditional on \tilde{A}_ℓ, and $\circled{2}$ is according to the definition of $E_4 (B)$. For term T_2, we have $T_2 \leq \Psi (E_3 (B)) \leq e^{-0.8d}$. Summarizing the above analysis finishes the proof.

\[\square\]

Lemma 10. Conditional on events E_1, E_2, we have

$$\left| \sum_{\ell \neq 1, 2} B_\ell \langle \tilde{A}_1, \tilde{A}_\ell \rangle \langle \tilde{A}_2, \tilde{A}_\ell \rangle \right| \leq \frac{\sum_{\ell > 2} B_\ell}{d} \sqrt{\frac{\log p}{d}} + \frac{\sqrt{\log p d}}{d} \left[\sqrt{\sum_{\ell > 2} B_{\ell}^2} \vee \left(\sqrt{\log p (\max_{\ell} |B_\ell|)} \right) \right],$$

hold with probability at least $1 - 2p^{-3}$ for an arbitrary fixed vector $B \in \mathbb{R}^p$.

Proof. First we rewrite the term $\sum_{\ell \neq 1, 2} B_\ell \langle \tilde{A}_1, \tilde{A}_\ell \rangle \langle \tilde{A}_2, \tilde{A}_\ell \rangle$ as

$$\sum_{\ell \neq 1, 2} B_\ell \langle \tilde{A}_1, \tilde{A}_\ell \rangle \langle \tilde{A}_2, \tilde{A}_\ell \rangle = \sum_{\ell \neq 1, 2} \tilde{A}_\ell^\top \left(B_\ell \tilde{A}_1 \tilde{A}_2^\top \right) \tilde{A}_\ell.$$

Then we concatenate the vectors $\tilde{A}_\ell, \ell \neq 1, 2$ to a vector of length $d(p - 2)$ and denote it as \vec{A}. Hence the summarization can be rewritten as

$$\sum_{\ell \neq 1, 2} \tilde{A}_\ell^\top \left(B_\ell \tilde{A}_1 \tilde{A}_2^\top \right) \tilde{A}_\ell = \vec{A}^\top \Lambda \vec{\Lambda},$$

where Λ is a block-diagonal matrix whose ith block is $B_{i+2} \tilde{A}_1 \tilde{A}_2^\top, 1 \leq i \leq p - 2$. Due to the independence between $\tilde{A}_\ell, 1 \leq \ell \leq p$, we first condition on \tilde{A}_1, \tilde{A}_2 and perform the following decomposition

$$\left| \sum_{\ell \neq 1, 2} B_\ell \langle \tilde{A}_1, \tilde{A}_\ell \rangle \langle \tilde{A}_2, \tilde{A}_\ell \rangle \right| \leq d^{-1} \left(\left| \tilde{A}_1 \right|^2 \left| \tilde{A}_2 \right| \sum_{\ell \neq 1, 2} B_\ell \right) + \left| \sum_{\ell \neq 1, 2} \vec{A}^\top \Lambda \vec{\Lambda} - \sum_{\ell \neq 1, 2} B_\ell \tilde{A}_1 \tilde{A}_2^\top \tilde{A}_\ell \right|.$$

The upper-bound for ϑ_1 is relatively easy, which reads as

$$\vartheta_1 \leq \sum_{\ell > 2} B_\ell \times \sqrt{\frac{\log p}{d}}.$$

The following analysis focus on bound ϑ_2. Since ϑ_2 also reads as

$$\vartheta_2 = \left| \sum_{\ell \neq 1, 2} \vec{A}^\top \Lambda \vec{\Lambda} - \sum_{\ell > 2} \vec{A}^\top \Lambda \vec{\Lambda} \right|,$$

we can invoke the Hanson-Wright inequality (Theorem 6.2.1 in [Vershynin, 2016]) and obtain

$$\mathbb{P} (\vartheta_2 \geq \delta) \leq 2 \exp \left(-c \left(\frac{\delta^2}{\| \Lambda \|^2_F} \wedge \delta \frac{\| \Lambda \|_{op}}{\log p} \right) \right),$$

where \tilde{A}_1, \tilde{A}_2 are viewed as constants. We complete the proof by setting δ as

$$\delta \approx \left(\sqrt{\log p \| \Lambda \|^2_F} \right) \vee (\log p \| \Lambda \|_{op}).$$
which yields $P(\vartheta_2 \geq \delta) \leq 2p^{-3}$. The specific values of $\|A\|_F$ and $\|A\|_{op}$ are computed as

$$\|A\|_F^2 = \left(\sum_{\ell > 2} B_{\ell}^2\right) \left\|\tilde{A}_1 \tilde{A}_1^\top\right\|_F^2 \overset{\text{(1)}}{=} \left(\sum_{\ell > 2} B_{\ell}^2\right) \text{Tr} \left(\tilde{A}_2 \tilde{A}_2^\top \tilde{A}_1 \tilde{A}_1^\top\right),$$

$$\|A\|_{op} = \max_{\ell} |B_{\ell}| \left\|\tilde{A}_1 \tilde{A}_1^\top\right\|_{op} \overset{\text{(4)}}{=} \max_{\ell} |B_{\ell}| \times \left\|\tilde{A}_1 \tilde{A}_2^\top\right\|_2 \leq \max_{\ell} |B_{\ell}|,$$

where in (1) we use $\|M\|_F^2 = \text{Tr}(M^T M)$ for arbitrary matrix M, in (2) we use $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, in (3) we condition on event E_1, and in (4) we use $\|u v^\top\|_{op} = \|u\|_2 \|v\|_2$ for arbitrary vectors u, v.

Lemma 11. We have

$$\left| \sum_{\ell_1, \ell_2 \neq 1,2} B_{\ell_1, \ell_2} \langle \tilde{A}_1, \tilde{A}_{\ell_1} \rangle \langle \tilde{A}_2, \tilde{A}_{\ell_2} \rangle \right| \lesssim \frac{\log p}{d} \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \sqrt{\sum_{i \neq 1, 2} B_{ij}^2},$$

holds with probability exceeding $1 - 4p^{-3} - e^{-os p}$ for a fixed matrix B.

Proof. We begin the proof by first rewriting $\sum_{\ell_1, \ell_2 \neq 1,2} B_{\ell_1, \ell_2} \langle \tilde{A}_1, \tilde{A}_{\ell_1} \rangle \langle \tilde{A}_2, \tilde{A}_{\ell_2} \rangle$ as $\tilde{A}_1^\top \Lambda \tilde{A}_2$, where Λ is defined as

$$\Lambda \triangleq \sum_{\ell_1 \neq 1, 2} \sum_{\ell_2 \neq 1, 2, \ell_1} B_{\ell_1, \ell_2} \tilde{A}_{\ell_1} \tilde{A}_{\ell_2}^\top.$$

The whole proof procedure can be divided into the following stages.

Stage I. Due to the independence across \tilde{A}_{ℓ_1}, we have

$$P \left(\left| \tilde{A}_1^\top \Lambda \tilde{A}_2 \right| \geq \delta \right) \leq P \left(\left| \tilde{A}_1^\top \Lambda \tilde{A}_2 \right| \geq \delta, \left\|\Lambda \tilde{A}_2\right\|_2 \leq \delta_1 \right) + P \left(\left\|\Lambda \tilde{A}_2\right\|_2 \geq \delta_1 \right) \overset{\text{(1)}}{\leq} 2 \exp \left(-\frac{d \delta^2}{2 \delta_1^2} \right) + P \left(\left\|\Lambda \tilde{A}_2\right\|_2 \geq \delta_1 \right),$$

where in (1) we first condition on \tilde{A}_{ℓ_1}, $(\ell > 2)$ and view $\tilde{A}_1^\top \Lambda \tilde{A}_2$ as a Gaussian RV satisfying $N \left(0, d^{-1} \left\|\Lambda \tilde{A}_2\right\|_2^2\right)$.

Stage II. To bound the probability $P \left(\left\|\Lambda \tilde{A}_2\right\|_2 \geq \delta_1 \right)$, we need to upper bound the Frobenius norm $\|A\|_F$. First we define two matrices, namely, \tilde{A} and \tilde{B}, for the conciseness of notation, which reads

$$\tilde{A} \triangleq \begin{bmatrix} \tilde{A}_3 & \cdots & \tilde{A}_p \end{bmatrix}, \quad (\tilde{B})_{i,j} \triangleq \begin{cases} B_{i+2,j+2}, & \text{if } i \neq j; \\ 0, & \text{otherwise}. \end{cases}$$

Easily we can verify Λ is equivalent to Λ as $\Lambda \tilde{A} \tilde{A}^\top \Lambda$, which gives

$$\|\Lambda\|_F = \left\|\tilde{A} \tilde{A}^\top \tilde{A} \right\|_F \overset{\text{(2)}}{=} \left\|\tilde{A} \right\|_{op}^2 \left\|\tilde{B}\right\|_F \overset{\text{(3)}}{\leq} \left\|\tilde{A}\right\|_{op}^2 \left\|\tilde{B}\right\|_F,$$

where in (2) we adopt the relation $\|M_1 M_2\|_F \leq \|M_1\|_{op} \|M_2\|_F$ such that M_1, M_2 are arbitrary matrix, and in (3) we use the relation $\left\|\tilde{A}\right\|_{op}^2 \leq \left\|\tilde{A}\right\|_{op}^2$ in Corol. 2.4.2 (Golub & Van Loan, 2012) since \tilde{A} can be viewed as a sub-matrix of \tilde{A}.
Hence we conclude that
\[
P \left(\| \mathbf{A} \|_F \geq \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right)
\]
\[
\leq P \left(\| \mathbf{A} \|_F \geq \frac{p}{d} \| \mathbf{B} \|_F, \| \mathbf{A} \|_{\text{op}} \geq \sqrt{\frac{\co d p}{d}} \right) + P \left(\| \mathbf{A} \|_F \geq \frac{p}{d} \| \mathbf{A} \|_{\text{op}} \geq \sqrt{\frac{\co d p}{d}} \right) \leq e^{-\co d p},
\]
where \co is due to Thm. 6.1 in (Wainwright, 2019).

Stage III. We bound $P \left(\| \mathbf{A} \mathbf{A}^\top \|_2 \geq \delta_1 \right)$ by splitting it as
\[
P \left(\| \mathbf{A} \mathbf{A}^\top \|_2 \geq \delta_1 \right) = \underbrace{P \left(\| \mathbf{A} \mathbf{A}^\top \|_2 \geq \delta_1, \| \mathbf{A} \|_F \geq \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right)}_{\leq P \left(\| \mathbf{A} \|_F \geq (1 + c_0 \sqrt{\frac{p}{d}})^2 \| \mathbf{B} \|_F \right)} + P \left(\| \mathbf{A} \mathbf{A}^\top \|_2 \geq \delta_1, \| \mathbf{A} \|_F < \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right). \tag{25}
\]

Notice that the first term is bounded in Stage II, we focus on bounding the second term in this stage, which proceeds as
\[
P \left(\| \mathbf{A} \mathbf{A}^\top \|_2 \geq \delta_1, \| \mathbf{A} \|_F < \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right)
\]
\[
\leq \mathbb{E} \left(d \left| \mathbf{A} \mathbf{A}^\top \right|_2^2 - \| \mathbf{A} \|_F^2 \right) \geq \delta_2, \| \mathbf{A} \|_F < \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right)
\]
\[
\leq 2 \exp \left(-2 \left(\frac{\delta_2}{\| \mathbf{A} \|_{\text{op}}^\top \mathbf{A} \|_F^2} \right)^{\frac{1}{2}} \right) \times 1 \left(\| \mathbf{A} \|_F < \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right)
\]
\[
\leq 2 \exp \left(-2 \left(\frac{\delta_2}{\| \mathbf{A} \|_{\text{op}}^\top \mathbf{A} \|_F^2} \right)^{\frac{1}{2}} \right) \times 1 \left(\| \mathbf{A} \|_F < \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right)
\]
\[
\leq 2 \exp \left(-2 \left(\frac{\delta_2}{\| \mathbf{A} \|_{\text{op}}^\top \mathbf{A} \|_F^2} \right)^{\frac{1}{2}} \right) \times 1 \left(\| \mathbf{A} \|_F < \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right)
\]
\[
\leq 2p^{-3}, \tag{26}
\]

where in \circledast we require $d \delta_2^2 \geq \| \mathbf{A} \|_F^2 + \delta_2$, \circledast is due to the Hanson-Wright inequality (cf. Thm. 6.2.1 in (Vershynin, 2016)), and in \circledast we set δ_2 as $(1 + c_0 \sqrt{\frac{p}{d}})^4 \log p \| \mathbf{B} \|_F^2$.

Combining (24), (25), and (26), we set δ_1, δ as $c \sqrt{\log p/d} (1 + c_0 \sqrt{\frac{p}{d}})^2 \| \mathbf{B} \|_F$ and $c_3 \delta \approx \sqrt{\log p/d \delta_1}$, respectively, which yields
\[
P \left(\| \mathbf{A} \mathbf{A}^\top \|_2 \geq \left(1 + c_0 \sqrt{\frac{p}{d}} \right)^2 \| \mathbf{B} \|_F \right) \leq 4p^{-3} + e^{-\co d p},
\]
and completes the proof.

Lemma 12. Conditional on the event \mathcal{E}_1, we have
\[
P \left[\sum_{i=1}^{n} \mathbf{W}^{(i)} \mathbf{W}^{(i)^\top} \right] \mathbf{A} \gtrsim c_0 \sigma^2 \left(1 + c_1 \sqrt{\frac{\log p}{d}} \right) \sqrt{\frac{\log p}{d}} \left(1 + c_2 \left(\sqrt{\frac{d}{n}} \sqrt{\frac{d}{n}} \right) \right) \leq p^{-4} + c_3 e^{-c_4 d}
\]
with fixed i, j. \hfill \square
Proof. First we define the matrix \(\hat{\Xi}_n \) as \(\frac{1}{n} \sum_{i=1}^{n} \mathbf{W}^{(i)} \mathbf{W}^{(i)\top} \) for the conciseness of notation. Then we upper-bound \(\tilde{\mathbf{A}}_i \tilde{\Xi}_n \tilde{\mathbf{A}}_j, i \neq j \) as

\[
\begin{align*}
\mathbb{P}\left(\|\tilde{\mathbf{A}}_i \tilde{\Xi}_n \tilde{\mathbf{A}}_j\|_2 \geq \delta\right) & \leq \mathbb{P}\left(\|\tilde{\mathbf{A}}_i \tilde{\Xi}_n \tilde{\mathbf{A}}_j\|_2 \geq \delta_1\right) + \exp\left(-\frac{d\delta^2}{2\delta_1^2}\right) \\
& \leq \mathbb{P}\left(\|\tilde{\Xi}_n\|_{\text{op}} \|\tilde{\mathbf{A}}_j\|_2 \geq \delta_1\right) + p^{-4} \leq \mathbb{P}\left(\|\tilde{\Xi}_n\|_{\text{op}} \geq \delta_2\right) + p^{-4} \\
& \leq \mathbb{P}\left(\|\tilde{\Xi}_n - \sigma^2 \mathbf{I}\|_{\text{op}} \geq c_2\sigma^2 \left(\frac{d}{n} \vee \sqrt{\frac{d}{n}}\right)\right) + p^{-4} \leq p^{-4} + c_0 e^{-c_1 d},
\end{align*}
\]

where in (1) we exploit the independence between \(\tilde{\mathbf{A}}_i \) and \(\tilde{\mathbf{A}}_j \) when \(i \neq j \) and treat \(\tilde{\mathbf{A}}_i \tilde{\Xi}_n \tilde{\mathbf{A}}_j \) as a Gaussian RV with mean zero and variance \(d^{-1} \|\tilde{\Xi}_n\|_2^2 \), in (2) we use the fact \(\delta = 2\delta_1 \sqrt{2 \log p/d} \), and in (3) we condition on event \(\mathcal{E}_1 \) and set \(\delta_1 \geq \delta_2 \left(1 + c_0 \sqrt{\log p/d}\right) \), (4) is because \(\delta_2 = \sigma^2 \left(1 + c_2 \left(\frac{d}{n} \vee \sqrt{\frac{d}{n}}\right)\right) \), and in (5) we use Thm. 6.5 in (Wainwright, 2019). The proof is then completed by setting \(\delta \) as

\[
\delta = c_0 \sigma^2 \left(1 + c_1 \sqrt{\frac{\log p}{d}}\right) \sqrt{\frac{\log p}{d}} \left(1 + c_2 \left(\sqrt{\frac{d}{n}} \vee \frac{d}{n}\right)\right).
\]

\[\square\]

7.3. Insight Behind the Design of the Covariance Matrix Estimator

We now explain the rational behind the covariance matrix estimators of \(\mathbf{X} \) that we use in the graphical structure estimation via the parametric method. For this purpose, we exploit the statistical properties of \(\tilde{\mathbf{A}} \).

We approximate data samples, \(\hat{\mathbf{X}}^{(i)} \)'s, as \(\hat{\mathbf{X}}^{(i)} = \tilde{\mathbf{A}} \tilde{\Xi}_n \tilde{\mathbf{A}}^{(i)} = \tilde{\mathbf{A}} \mathbf{Y}^{(i)} \), \(1 \leq i \leq n \). Due to the assumption on sensing matrix \(\tilde{\mathbf{A}} \), we have \(\mathbb{E}_\tilde{\mathbf{A}} \hat{\mathbf{X}}^{(i)} = \mathbf{X}^{(i)} \). Hence, we can view the samples \(\{\hat{\mathbf{X}}^{(i)}\}^{n}_{i=1} \) as a “perturbed” version of the true data points \(\{\mathbf{X}^{(i)}\}^{n}_{i=1} \). Hence, we propose to estimate the covariance matrix of \(\mathbf{X} \) from \(\{\hat{\mathbf{X}}^{(i)}\}^{n}_{i=1} \). Following the above approach, a naive covariance estimator is given as

\[
\hat{\Sigma}_{n,1} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{X}}^{(i)} \hat{\mathbf{X}}^{(i)\top} = \tilde{\mathbf{A}} \mathbf{Y}^{(i)} \mathbf{Y}^{(i)\top} \tilde{\mathbf{A}}.
\]

However, through numerical experiments, we observed that this estimator performs poorly. To improve the performance of \(\hat{\Sigma}_{n,1} \), we first analyze its properties thoroughly and then refine the estimator.

7.3.1. Theoretical Properties

First, we evaluate the mean and variance of the naive covariance estimator \(\hat{\Sigma}_{n,1} \).

Lemma 13. The mean of the naive covariance estimator is given by

\[
\mathbb{E}_{\tilde{\mathbf{A}}, \mathbf{X}} \hat{\Sigma}_{n,1} = \frac{d+1}{d} \Sigma + \frac{p}{d} \mathbf{I} + \sigma^2 \mathbf{I}.
\]

Proof. Due to the independence between \(\mathbf{X} \) and \(\tilde{\mathbf{A}} \), we first condition on \(\tilde{\mathbf{A}} \) and take expectation w.r.t \(\mathbf{X}, \mathbf{W} \), which gives

\[
\mathbb{E}_{\mathbf{X}, \mathbf{W}} \hat{\Sigma}_{n,1} = \tilde{\mathbf{A}} \Sigma \tilde{\mathbf{A}}\top + \sigma^2 \tilde{\mathbf{A}}\top \tilde{\mathbf{A}}.
\]
Then we conclude that
\[
\mathbb{E}_A \left(\bar{A}^T \Sigma \bar{A}^T \right)_{ij} = \mathbb{E}_A \sum_{\ell_1, \ell_2} \Sigma_{\ell_1, \ell_2}^2 \left(\bar{A}_{\ell_1, i} \right) \left(\bar{A}_{\ell_2, j} \right) + \sigma^2 \mathbb{I}(i = j)
\]

\[
= \mathbb{E}_A \sum_{\ell_1, \ell_2} \Sigma_{\ell_1, \ell_2}^2 \left(\sum_{\ell_3} \bar{A}_{\ell_3, \ell_1} \bar{A}_{\ell_3, i} \right) \left(\sum_{\ell_4} \bar{A}_{\ell_4, \ell_2} \bar{A}_{\ell_4, j} \right) + \sigma^2 \mathbb{I}(i = j)
\]

\[
= \sum_{\ell_1, \ell_2, \ell_3, \ell_4} \Sigma_{\ell_1, \ell_2}^2 \mathbb{E}_A \left(\bar{A}_{\ell_3, i} \bar{A}_{\ell_4, j} \right) + \sigma^2 \mathbb{I}(i = j)
\]

\[
= d^{-2} \left[\sum_{\ell_1, \ell_2, \ell_3} \Sigma_{\ell_1, \ell_2}^2 + (i = j) \left(\sum_{\ell_1} \Sigma_{\ell_1, \ell_1}^2 \right) \right] + \sigma^2 \mathbb{I}(i = j)
\]

\[
= (1 + d^{-1}) \Sigma_{i, i}^2 + d^{-1} \left(\sum_{\ell} \Sigma_{\ell, \ell}^2 \right) \mathbb{I}(i = j) + \sigma^2 \mathbb{I}(i = j),
\]
which completes the proof with the fact \(\Sigma_{\ell, \ell}^2 = 1 \). In (1), we use the Wick’s theorem, which is listed as Thm. 10 for the sake of self-containing.

Then we study the variance \(\text{Var}_A \hat{\Sigma}_{n, 1} \), which is listed as the following. Due to the complex formula of the variance, we only consider the noiseless case, namely, \(\sigma^2 = 0 \).

Lemma 14. Consider the noiseless case where \(\sigma^2 = 0 \), we have \(\text{Var}_A (\hat{\Sigma}_{n, 1})_{i,j} = \Omega(d^{-1}) + \Omega(d^{-1}) \mathbb{I}(i = j) + \Omega(d^{-2}) \).

The detailed proof is given in the appendix. We use results of Lemma 13 to improve our naive covariance estimator in two perspectives: bias correction and variance reduction.

Proof. With the relation \(\text{Var}_A \hat{\Sigma}_{n, 1} = \mathbb{E}_A (\hat{\Sigma}_{n, 1})_{i,j}^2 - \left(\mathbb{E}_A \hat{\Sigma}_{n, 1} \right)_{i,j}^2 \), we complete the proof by invoking Lemma 13 and Lemma 15. The following context focuses on proving Lemma 15.

Lemma 15. We have
\[
\mathbb{E}_A (\hat{\Sigma}_{n, 1})_{i,j}^2 = \left(\Sigma_n \right)_{i,j}^2 + d^{-1} \left[\| (\Sigma_n)_{i} \|^2_2 + \| (\Sigma_n)_{j} \|^2_2 + 4(\Sigma_n)_{i,j}^2 + 2(\Sigma_n)_{i,j} \right]
\]

\[
+ d^{-2} \left[2 ((\Sigma_n)_{i}, (\Sigma_n)_{j}) \text{Tr}(\Sigma_n) + 4(\Sigma_n)_{i,j}^2 + 2\| (\Sigma_n)_{i} \|^2_2 + 2\| (\Sigma_n)_{j} \|^2_2 + \Sigma_n \| F^2_2 + 7(\Sigma_n)_{i,j}^2 \right]
\]

\[
+ d^{-3} \left[3\| (\Sigma_n)_{i} \|^2_2 + 3\| (\Sigma_n)_{j} \|^2_2 + 2 ((\Sigma_n)_{i,j} + (\Sigma_n)_{j,i}) \text{Tr}(\Sigma_n) + \text{Tr}^2(\Sigma_n) + 2(\Sigma_n)_{i,j} + 4(\Sigma_n)_{i,j}^2 \right]
\]

\[
+ d^{-1} \mathbb{I}(i = j) \left[\| (\Sigma_n)_{i} \|^2_2 + 2(\Sigma_n)_{i,j} \text{Tr}(\Sigma_n) \right]
\]

\[
+ d^{-2} \mathbb{I}(i = j) \left[11 ((\Sigma_n)_{i}, (\Sigma_n)_{j}) + \text{Tr}^2(\Sigma_n) + 6(\Sigma_n)_{i,j} \text{Tr}(\Sigma_n) \right]
\]

\[
+ d^{-3} \mathbb{I}(i = j) \left[12 ((\Sigma_n)_{i}, (\Sigma_n)_{j}) + 8(\Sigma_n)_{i,j} \text{Tr}(\Sigma_n) + \text{Tr}^2(\Sigma_n) + 2\| \Sigma_n \|^2_2 \right].
\]

Proof. The proof procedure is fundamentally the same as the steps in computing \(\mathbb{E}_X \Sigma_n \) param but is more involved (requires computing over 100 terms).
We begin the proof with the following expansion
\[
\mathbb{E} \left[(\tilde{\Theta} \Sigma_n \tilde{\Theta})_{ij} \right]^2 = \sum_{\ell,\ell'} (\Sigma_n_{\ell,\ell'}) E \left(\tilde{A}_{\ell,\ell} \tilde{A}_{\ell',\ell'} \right)
\]

Then we expand the term \(E \left(\tilde{A}_{\ell,\ell} \tilde{A}_{\ell',\ell'} \right) \) via the Wick’s Theorem, which is also listed as Thm. 10 for the sake of self-containing. Additionally, we need to divide \(d^4 \) for the following result.

\[
\square
\]

7.3.2. Estimator Refinement

Bias Correction. First we note that the naive estimator is biased \(\mathbb{E} \tilde{\Sigma}_{n,1} \neq \Sigma^b \). Adopting ideas similar to the moment estimator, we correct the bias of the estimator via
\[
\tilde{\Sigma}_{n,2} \triangleq \frac{d}{d+1} \tilde{A}^\top \left(\frac{1}{n} \sum_{i=1}^{n} Y^{(i)} Y^{(i)\top} \right) \tilde{A} - \frac{p + d\sigma^2}{d+1} I.
\]
It can be easily verified that \(\mathbb{E} \tilde{\Sigma}_{n,2} = \Sigma^b \).

Variance Reduction. To further improve the performance of the covariance estimator, we perform variance reduction. From Lemma 14, we observe that the diagonal entries \((\Sigma_{n,2})_{i,i} \) have a higher variance than non-diagonal entries. On the other hand, there is no need for estimating \(\text{diag}(\Sigma^b) \) since by the assumptions, we know that the diagonal elements of the covariance matrix are 1. Therefore, we suggest refining the estimator \(\tilde{\Sigma}_{n,2} \) by fixing its diagonal entries to 1, i.e., the resulting refined covariance estimator is given as
\[
\hat{\Sigma}_{n} = I + \frac{d}{d+1} \mathbb{E} \left[\tilde{A}^\top \left(\frac{1}{n} \sum_{i=1}^{n} Y^{(i)} Y^{(i)\top} \right) \tilde{A} \right]_{\text{off}}, \tag{27}
\]
where \((\cdot)_{\text{off}} \) denotes the operation of picking non-diagonal entries. It can be easily verified that the estimator \(\hat{\Sigma}_{n} \) in (27) is unbiased.

8. Proof of Thm. 1

The analysis is based on primal-dual method, which is adapted from (Ravikumar et al., 2011). First we write the optimality condition for (5) as
\[
\hat{\Sigma}_{n} = \tilde{\Theta}_{\text{param}}^{-1} + \lambda_{\text{param}} G = 0, \tag{28}
\]
where \(G \) is the sub-gradient (Rockafellar, 1970) of \(\| \tilde{J} \|_{1,\text{off}} \) and is defined as
\[
G_{ij} \triangleq \begin{cases} \text{sgn}(\tilde{J}_{i,j}) & \text{if } (\tilde{J}_{i,j}) \neq 0; \\ \in [-1, 1], & \text{otherwise.} \end{cases}
\]
for \(i \neq j \). However, because of the complexity of (28), directly bounding the deviation \(\| \tilde{J} - J^b \|_{\infty} \) can be difficult. Instead, we construct a pair \((\tilde{J}, G) \) which satisfies: (i) \(G \) is the sub-differential of \(\| \tilde{J} \|_{1,\text{off}} \); and (ii) the pair \((\tilde{J}, G) \) satisfies the condition in (28). Then we show it coincides with the solution of (5). The basic rational is as follows. First we verify that \(\tilde{J} \) is the unique solution of (28). Since our constructed pairs \((\tilde{J}, G) \) satisfies the condition in (28), which corresponds to the solution in (5) exclusively, we can hence show the constructed pair \((\tilde{J}, G) \)
is the identical solution of (5), namely, \((\hat{\Theta}_{\text{param}}, G)\). Afterwards we can upper bound \(\|\hat{\Theta}_{\text{param}} - \Theta^\dagger\|_\infty\) by investigating \(\|\Theta_{\text{param}} - \Theta^\dagger\|_\infty\), which is more amenable for the analysis as following.

Stage I: construct \(\tilde{\Theta}_{\text{param}}\). We construct the primal-dual witness solution \((\tilde{\Theta}_{\text{param}}, \tilde{G})\) assuming the support set \(S\) is given as a prior. This step can further be divided into three stages, as illustrated in the main context. First we construct the support set \(S\). For the entries \((i, j)\) restricted to the set \(S\), we set them as

\[
(\tilde{\Theta}_{\text{param}})|_S = \arg\min_{\Theta = \Theta > 0, \Theta_{S^c} = 0} -\log \det \Theta + \left(\sum_{i, j} \Theta_{i, j}\right) + \lambda_{\text{param}} \|\Theta\|_{1,\text{off}}.
\]

For the rest of entries \((\tilde{\Theta}_{\text{param}})|_{S^c}\), we set them to be zero values. Then we construct the sub-differential \(\tilde{G}\) corresponding to the matrix \(\tilde{\Theta}_{\text{param}}\). For the entry \((i, j)\) in \(S\), we set \(\tilde{G}_{i, j} = \text{sign}(\tilde{\Theta}_{\text{param}})_{i, j}\). For the entry \((i, j)\) that is outside of the support set \(S\), we set \(\tilde{G}_{i, j}\) as

\[
\tilde{G}_{i, j} = \lambda^{-1}_{\text{param}} \left(\left(\tilde{\Theta}_{\text{param}}\right)^{-1}_{i, j} - \left(\sum_{i, j} \Theta_{i, j}\right)_{i, j} \right).
\]

The goal of this step is to ensure that \((\tilde{\Theta}_{\text{param}}, \tilde{G})\) satisfies (28). As illustrated in the main context, we have the pair \((\tilde{\Theta}_{\text{param}}, \tilde{G})\) coincides with the solution of (28) once \(|\tilde{G}_{i, j}| < 1\) for the entry \((i, j)\) in \(S^c\). The following step focuses on showing \(|\tilde{G}_{i, j}| < 1\).

Stage II: construct \(\tilde{G}\). For the entry \((i, j)\) in \(S\), we set \(\tilde{G}_{i, j} = \text{sign}(\tilde{\Theta}_{\text{param}})_{i, j}\). For the entry \((i, j)\) that is outside of the support set \(S\), we set \(\tilde{G}_{i, j}\) as

\[
\tilde{G}_{i, j} = \lambda^{-1}_{\text{param}} \left(\left(\tilde{\Theta}_{\text{param}}\right)^{-1}_{i, j} - \left(\sum_{i, j} \Theta_{i, j}\right)_{i, j} \right).
\]

The goal of this step is to ensure that \((\tilde{\Theta}_{\text{param}}, \tilde{G})\) satisfies (28).

Stage III: verify \(\tilde{G}\) to be the sub-differential of \(\|\tilde{\Theta}_{\text{param}}\|_{1,\text{off}}\). In the following analysis, we verify that \(|\tilde{G}_{i, j}| < 1\), which yields the upper-bound on \(\|\tilde{\Theta}_{\text{param}} - \Theta^\dagger\|_\infty\) as a byproduct. We first need the necessary lemmas from (Ravikumar et al., 2011).

Lemma 16 (Lemma 6 in (Ravikumar et al., 2011)). Suppose that \(r \triangleq 2\kappa_{\Gamma} \left(\|\sum_{n} \Theta_{n}\|_\infty + \lambda_{\text{param}}\right) \leq 1 \wedge (\kappa_\Sigma^{\gamma_{\Gamma}})^{-1} / 3\kappa_{\Sigma}\deg\), then \(\|\tilde{\Theta}_{\text{param}} - \Theta^\dagger\|_\infty \leq r\).

Lemma 17 (Lemma 5 in (Ravikumar et al., 2011)). Provided that we have \(\|\tilde{\Theta}_{\text{param}} - \Theta^\dagger\|_\infty \leq (3\kappa_{\Sigma}\deg)^{-1}\), then

\[
\left\| \tilde{\Theta}_{\text{param}}^{-1} - \Theta^{\dagger^{-1}} \left(\tilde{\Theta}_{\text{param}} - \Theta^\dagger \right) \Theta^{\dagger^{-1}} \right\|_\infty \leq \frac{3}{2} \deg \cdot \kappa_{\Sigma}^3 \left\| \tilde{\Theta}_{\text{param}} - \Theta^\dagger \right\|_\infty^2.
\]

Lemma 18 (Lemma 4 in (Ravikumar et al., 2011)). If we have

\[
\left\| \sum_{n} \Theta_{n} - \Theta^\dagger \right\|_\infty \lor \left\| \tilde{\Theta}_{\text{param}}^{-1} - \Theta^{\dagger^{-1}} \left(\tilde{\Theta}_{\text{param}} - \Theta^\dagger \right) \Theta^{\dagger^{-1}} \right\|_\infty \leq \theta_{\text{param}} / \theta,
\]

we conclude that \(|\tilde{G}_{i, j}| < 1\).

Now, setting \(\lambda_{\text{param}} = 8\tau_{\infty} / \theta\), first we verify the conditions in Lemma 16. We have

\[
r \leq \frac{1}{2} \left(1 + 8\theta^{-1} \right) \kappa_{\Gamma} \tau_{\infty} \leq 2 \left(3\kappa_{\Sigma}\deg \right)^{-1} \left(1 \wedge (\kappa_{\Sigma}^{\gamma_{\Gamma}})^{-1} \right),
\]

where in (1) we use \(\|\sum_{n} \Theta_{n} - \Theta^\dagger\|_\infty \leq \tau_{\infty}\) from Lemma 3, and in (2) we use the assumptions of \(\tau_{\infty}\) in Theorem 1. Then we conclude that

\[
\|\tilde{\Theta}_{\text{param}} - \Theta^\dagger\|_\infty \leq 2\kappa_{\Gamma} \left(\|\tilde{\Theta}_{\text{param}} - \Theta^\dagger\|_\infty + \frac{8\tau_{\infty}}{\theta} \right) \leq (3\kappa_{\Sigma}\deg)^{-1}.
\]
Invoking Lemma 17, we have
\[\left\| \Theta_{\text{param}}^{-1} - \Theta^2 - 1 + \Theta^2 - 1 \left(\Theta_{\text{param}} - \Theta^2 \right) \Theta^2 - 1 \right\| \leq \frac{3}{2} \deg \times \kappa_3^2 \tau^2 \leq \tau, \]
where \(\ominus \) is due to the requirement of \(\tau \) in Theorem 1. In the end, we verify the condition in Lemma 18.
\[\theta \lambda_{\text{param}} / 8 = \tau \geq \left\| \Theta_{\text{param}} - \Theta^2 \right\| \wedge \left\| \Theta_{\text{param}}^{-1} - \Theta^2 - 1 + \Theta^2 - 1 \left(\Theta_{\text{param}} - \Theta^2 \right) \Theta^2 - 1 \right\|, \]
which concludes that \(\Theta_{\text{param}} \) is identical to the solution \(\Theta_{\text{param}} \).

Step IV: bound the error. For the entries \((i, j) \in S^c\) outside the support set \(S \), we have \(\Theta_{\text{param}}(i, j) \) to be zero due to the construction method of \(\Theta_{\text{param}} \). For the entries \((i, j) \in S\) inside the support set, we first upper-bound the element-wise deviation \(\left\| \Theta_{\text{param}} - \Theta^2 \right\| \) as
\[\left\| \Theta_{\text{param}} - \Theta^2 \right\| = \left\| \Theta_{\text{param}} - \Theta^2 \right\| \leq 2 \kappa \tau (1 + 8 \theta^{-1}) \tau, \]
where \(\ominus \) is due to Lemma 16 and has been verified in Step II. Then we prove sign(\(\Theta_{\text{param}} \)) reaches the ground truth once \(\min_{(i, j) \in S^c} \Theta_{i, j} \geq 2 \kappa \tau (1 + 8 \theta^{-1}) \tau \). W.l.o.g. we assume \(\Theta_{i, j} > 0 \) for \((i, j) \in S\). Then we have
\[\Theta_{\text{param}}(i, j) \geq \left| \Theta_{i, j} \right| - \left| \Theta_{\text{param}} - \Theta^2 \right| \geq \left| \Theta_{i, j} \right| - \left\| \Theta_{\text{param}} - \Theta^2 \right\| \geq 0, \]
and complete the proof, where \(\ominus \) is due to the assumption on \(\min_{(i, j) \in S^c} \Theta_{i, j} \) and (29).

9. Analysis of the CDF Estimation

9.1. Notations

For the conciseness of notation, we drop the subscript \(\ell \) in the marginal CDFs \(F_{\ell}(\cdot) \), \(\hat{F}_{\ell}(\cdot) \), and entry \(\hat{X}_{\ell}(s) \), and denote them as \(F(\cdot) \), \(\hat{F}(\cdot) \), and \(\hat{X}(s) \), respectively. We define the approximate characteristics function \(\hat{\phi}\hat{\omega}(t) \) as
\[\hat{\phi}\hat{\omega}(t) \triangleq \exp \left(-\frac{\sigma^2 t^2}{2(d - p)} \right). \]

Additionally, we construct the function \(\hat{F}(\cdot) \) as
\[\hat{F}(x) = \frac{1}{2} - \frac{1}{\pi} \int_0^\infty \frac{1}{3} \left[\frac{\phi\hat{\omega}(t) \hat{\phi}\hat{\omega}(t) e^{-jtx}}{\phi\hat{\omega}(t) e^{-jtx} + \gamma t^a} \right] dt, \]
where the characteristic function \(\phi\hat{\omega}(\cdot) \) denotes the ground-truth characteristics function of the noise \(\hat{w} \), and the function \(\hat{\phi}\hat{\omega}(\cdot) \) is defined as \(n^{-1} \sum_{s=1}^n e^{-jtx(s)} \).

Let the term \(\Delta_{\ell}(s) \) be
\[\Delta_{\ell}(s) = \frac{1}{\pi} \int_0^\infty \frac{1}{3} \left(\frac{\phi\hat{\omega}(t) \hat{\phi}\hat{\omega}(t) e^{-jtx}}{\phi\hat{\omega}(t) e^{-jtx} + \gamma t^a} \right) dt - \mathbb{E} \left[\frac{1}{\pi} \int_0^\infty \frac{1}{3} \left[\frac{\phi\hat{\omega}(t) e^{-jtx}}{\phi\hat{\omega}(t) e^{-jtx}} \right] dt \right]. \]

Our goal is to obtain the uniform convergence rate of the CDF estimator \(\left\| \hat{F} - F \right\| \), which is written as
\[\left\| \hat{F} - F \right\| = \sup_{x \in [0, 1]} \left| \hat{F}(x) - F(x) \right| = \sup_{x \in [0, 1]} \frac{1}{n} \sum_{s=1}^n \Delta_{\ell}(s) \triangleq \Delta_{\ell}. \]
Before proceed, we define the event \(\mathcal{E}_w \) as

\[
\mathcal{E}_w \triangleq \left\{ \left| \mathbb{E}(\hat{w}_i)^2 - \frac{\sigma^2}{d-p} \right| \leq \frac{\sigma^2}{5(d-p)}, \quad \forall 1 \leq i \leq p \right\},
\]

(31)

where \(\hat{w}_i \) denotes the \(i \)th entry of the noise \(\hat{W} \).

The parameter \(\gamma \) is set as \(c_0 \log(np) \left(\frac{\alpha^2}{d-p} \right)^{a/4} \) and the number \(a > 1 \) is some fixed positive constant.

9.2. Proof of Thm. 4

Proof. We decompose the probability \(\sup_x \Delta_x \geq \mathbb{E} \sup_x \Delta_x + t \) as

\[
P \left(\left| \sup_x \Delta_x - \mathbb{E} \sup_x \Delta_x \right| \geq t \right) \leq \mathbb{E} \left(\mathbb{I}(\mathcal{E}_w) + \mathbb{E} \left[\left(\left| \sup_x \Delta_x - \mathbb{E} \sup_x \Delta_x \right| \geq t \right) \mathbb{I}(\mathcal{E}_w) \right] \right).
\]

The first term \(\mathbb{E} \mathbb{I}(\mathcal{E}_w) \) is investigated in Lemma 19; while the second term is bounded with the Talagrand inequality (cf. Thm. 2.6 in (Koltchinskii, 2011)), which is stated as

\[
\mathbb{E} \mathbb{I} \left(\left| \sup_x \Delta_x - \mathbb{E} \sup_x \Delta_x \right| \geq t \right) \leq \mathbb{E} \left[\exp \left(- \frac{nt}{KU} \log \left(1 + \frac{nC_U}{V} \right) \right) \mathbb{I}(\mathcal{E}_w) \right],
\]

where \(C_U \) is the uniform bound for \(\Delta_x^{(s)} \), i.e., \(\left| \Delta_x^{(s)} \right| \leq C_U \) for all \(x \) and \(s \), and the variance \(V \) satisfies

\[
V \geq n \sup_{x \in \mathbb{R}} \mathbb{E} |\Delta_x|^2 + 16C_U \cdot \left(\mathbb{E} \sup_x |\Delta_x| \right).
\]

Setting \(t = V \log n/n \), we conclude

\[
\sup_x \Delta_x \leq \mathbb{E} \sup_x \Delta_x + \frac{cV \log n}{n}
\]

holds with probability exceeding \(1 - O(n^{-c}) \). The following context focuses on computing the values of \(C_U, \mathbb{E} \sup_x \Delta_x \), and \(\mathbb{E} \sup_x |\Delta_x|^2 \) conditional on event \(\mathcal{E}_w \) in (31).

Step I. We show there exists some positive constant \(C_U \) such that \(|\Delta_x^{(s)}| \leq C_U \) for all \(x \) and \(s, 1 \leq s \leq n \) (cf. Lemma 21);

Step II. We prove that \(\mathbb{E} \sup_x \Delta_x \leq \mathbb{E} \Delta_x + c_0/\sqrt{n} \), where \(c_0 \) is some positive constant. With the symmetrization inequalities (cf. Lemma 11.4 in (Boucheron et al., 2013)), we obtain

\[
\mathbb{E} \sup_x \left(\Delta_x - \mathbb{E} \Delta_x \right) \leq \mathbb{E} \sup_x \frac{2}{n} \sum_{s=1}^{n} \varepsilon_s \Delta_x^{(s)},
\]

where \(\{\varepsilon_s\} \) are the Rademacher RVs, i.e., \(\mathbb{P}(\varepsilon_s = \pm 1) = 1/2, 1 \leq s \leq n \). With regarding the empirical process \(n^{-1} \left(\sum_s \varepsilon_s \Delta_x^{(s)} \right) \), we have

\[
\mathbb{E} e^{\lambda n^{-1} \left(\sum_s \varepsilon_s (\Delta_x^{(s)} - \Delta_x^{(s)}_0) \right)} \overset{\text{(1)}}{=} \prod_{s=1}^{n} \mathbb{E} \exp \left[\frac{\lambda \varepsilon_s}{n} (\Delta_x^{(s)} - \Delta_x^{(s)}_0) \right] \overset{\text{(2)}}{=} \prod_{s=1}^{n} \mathbb{E} \exp \left[\frac{n}{2} \left(\Delta_x^{(s)} - \Delta_x^{(s)}_0 \right)^2 \right],
\]

where in (1) we exploit the independence across the samples, in (2) we use the fact that \(\varepsilon_s \) is a Rademacher RV and the Hoeffding’s lemma (Boucheron et al., 2013) (Lemma 2.2).

Invoking the Dudley’s entropy integral (cf. Corol 13.2 in (Boucheron et al., 2013)), which is also listed as Thm. 9 for the sake of self-containing, we conclude

\[
\mathbb{E} \sup_{x, \varepsilon_s} \frac{1}{n} \sum_{s=1}^{n} \varepsilon_s \Delta_x^{(s)} \leq \frac{1}{\sqrt{n}} \int_0^{2c_0} \sqrt{\mathcal{H}([0,1], \delta)} \, d\delta \overset{\text{(3)}}{=} \frac{1}{\sqrt{n}} \int_0^{2c_0} \left(1 + \sqrt{\log \frac{c_0}{t}} \right) \, d\delta \approx \frac{1}{\sqrt{n}},
\]

(33)
where \(\mathcal{H}([0,1], \delta) \) denotes the \(\delta \)-entropy number (Boucheron et al., 2013), in \(3 \) we upper-bound the \(\delta \)-entropy number \(\mathcal{H}([0,1], \delta) \) as \(c_0 + c_1 \log (b/\delta) \) (cf. Example 5.24 in (Wainwright, 2019)). The proof is then completed by combining (32) and (33).

Step III. We set the variation \(V \) as

\[
V = n \sup_{x \in \mathbb{R}} \mathbb{E} |\Delta_x|^2 + \frac{c_0}{\sqrt{n}} + c_1 \sqrt{\mathbb{E} \Delta^2} \geq n \sup_{x \in \mathbb{R}} \mathbb{E} |\Delta_x|^2 + \frac{c_0}{\sqrt{n}} + c_1 \mathbb{E} \Delta_x
\]

where in (4) we use the fact \(\mathbb{E} \Delta_x \leq \sqrt{\mathbb{E} \Delta^2} \), and in (5) we use the results in Step II such that \(\mathbb{E} \sup_x \Delta_x \leq \mathbb{E} \Delta_x + c_0/\sqrt{n} \). Invoking Lemma 19 and Lemma 22 will complete the proof.

\[\square \]

9.3. Supporting Lemmas

Lemma 19. The event \(E_w \) in (31) holds with probability exceeding \(1 - 2pe^{-c_0p} \), where \(c_0 \) is some fixed positive constants.

Proof. Perform SVD for \(A \) as \(A = USV^\top \), we can rewrite the product \((A^\top A)^{-1} A^\top \) as

\[
(A^\top A)^{-1} A^\top = VS^{-2}V^\top VS^\top U^\top = VS^{-1}U^\top.
\]

Then the \(i \)th entry of \(\hat{W} \) can be written as \(a_i^\top U^\top W \), where \(a_i \) as

\[
a_i = [\lambda_1^{-1}V_{i1} \ldots \lambda_p^{-1}V_{ip}],
\]

and \(\lambda_i \) is the \(i \)th singular value of \(S \), and \(V_{ij} \) is the \((i, j) \)th entry of the matrix \(V \). Since each entry \(A_{ij} \) is iid standard normal RV, i.e., \(A_{ij} \sim N(0,1) \), we conclude that its eigenvalues \(\{\lambda_i\}_{1 \leq i \leq p} \) are independent from its eigenvectors \(V \), which is uniformly distributed on a Haar measure (Tulino et al., 2004). Hence we can rewrite \(a_i \) as a product as \(S^{-1}g_i\|g_i\|_2 \), where \(g_i \) is a Gaussian distributed RV with zero mean and unit variance, namely, \(g_i \sim N(0, I_{p \times p}) \).

First, we define the event \(\mathcal{E}_g \) as

\[
\mathcal{E}_g \triangleq \left\{ \exists 1 \leq i \leq p, \text{ s.t. } \|g_i\|_2 - p \geq p/4 \right\}.
\]

Then we bound \(\mathbb{E} \mathbb{I}(\mathcal{E}_w) \) as

\[
\mathbb{E} \mathbb{I}(\mathcal{E}_w) \leq \mathbb{E} \mathbb{I}(\mathcal{E}_g) + \mathbb{E} \mathbb{I}(\mathcal{E}_w \cap \mathcal{E}_g),
\]

where \(\mathbb{I} \) denotes the complement of the event. Due to the fact that \(g \) is a Gaussian RV such that \(g \sim N(0, I) \), we invoke Lemma 30 and bound the first term as \(\mathbb{E} \mathbb{I}(\mathcal{E}_g) \leq 2pe^{-c_0p} \). While for the second term, we first compute the expectation \(\mathbb{E} \|S^{-1}g_iU^\top W\|^2 \) as

\[
\mathbb{E} \|S^{-1}g_iU^\top W\|^2 = \sigma^2 \mathbb{E} \|S^{-1}g_i\|^2 = \sigma^2 \|S^{-1}\|_F^2.
\]

Invoking the Marcenko-Pastur law in (Tulino et al., 2004) (cf. Thm. 2.35, which is also listed as Lemma 8 for the self-containing of paper), we have

\[
\|S^{-1}\|_F^2 = \sum_{i=1}^p \lambda_i^{-2} p \int_{L(\tau)}^{U(\tau)} t^{-1} \left[(1 - \tau^{-1}) + \mathbb{I}(t) + \sqrt{t - L(\tau)(U(\tau) - t)} \right] dt
\]

\[
= \frac{p}{d} \times \frac{1}{1 - \tau} = \frac{p}{d - p},
\]
where τ is defined as p/d, function $L(\cdot)$ is defined as $(1 - \sqrt{\gamma})^2$, and function $U(\cdot)$ is defined as $(1 + \sqrt{\gamma})^2$. Hence we have $\mathbb{E}\|S^{-1}gU^Tw\|^2_2 = \mathbb{E}\|S^{-1}\|\sigma^2 = p\sigma^2/(d - p)$ and will show $\mathbb{E}\mathbb{1}(\mathcal{E}_w \cap \mathcal{E}_g)$ to be zero. This is because

$$
\mathbb{E}\left[\frac{\|S^{-1}gU^TW\|^2_2}{\|g\|^2_2}\mathbb{1}(\mathcal{E}_g)\right] \overset{(1)}{=} \frac{4}{3p}\mathbb{E}\|S^{-1}gU^TW\|^2_2 = \frac{4\sigma^2}{3(d - p)},
$$

where (1) is due to the definition of \mathcal{E}_g. Similarly we can show

$$
\mathbb{E}\left[\frac{\|S^{-1}gU^TW\|^2_2}{\|g\|^2_2}\mathbb{1}(\mathcal{E}_g)\right] \leq \frac{4}{5p}\mathbb{E}\|S^{-1}gU^TW\|^2_2 = \frac{4\sigma^2}{5(d - p)},
$$

which suggests that \mathcal{E}_w will always hold, and complete the proof.

Lemma 20. Conditional on the event \mathcal{E}_w in (31), we have

$$
\left|\hat{\phi}_w(t) - \phi_w(t)\right| \lesssim \frac{\log^2(n)p\sigma^2t^2}{d - p} e^{-\frac{\sigma^2t^2}{2}},
$$

where $\hat{\phi}_w(t)$ and $\phi_w(t)$ denotes the estimated characteristic function and the ground-truth characteristic function of $\hat{\omega}_i$, respectively.

Proof. Notice that the characteristic function of the Gaussian $N(0, \text{Var})$ is written as

$$
\phi_{\text{Var}}(t) = \exp\left(-\frac{(\text{Var})t^2}{2}\right).
$$

Then we conclude that

$$
\left|\hat{\phi}_w(t) - \phi_w(t)\right| = \left|\exp\left(-\frac{\sigma^2t^2}{2(d - p)}\right) - \exp\left(-\frac{\hat{\sigma}^2t^2}{2}\right)\right|
\overset{(1)}{=} \left|\frac{\sigma^2}{(d - p)} - \hat{\sigma}^2\right|t^2
\overset{(2)}{=} \frac{\log^2(n)p\sigma^2t^2}{d - p} e^{-\frac{\sigma^2t^2}{2}},
$$

where $\hat{\sigma}^2$ is defined as the ground-truth variance of the noise $\hat{\omega}$, (1) is because of the relation $|e^{-z_1} - e^{-z_2}| \leq |z_1 - z_2| |e^{-z_1} + e^{-z_2}|/2$ for arbitrary z_1 and z_2, (2) is because of event \mathcal{E}_w.

Lemma 21. Setting $\gamma \asymp \log(n)p\left(\frac{\sigma^2}{a^2}\right)^{a/4}$, we conclude $|\Delta_x^{(s)}| \lesssim 1$ for all s, $1 \leq s \leq n$, where $\Delta_x^{(s)}$ is defined in (30).

Proof. We verify that $\Delta_x^{(s)}$ to be bounded by some constant, which is written as

$$
\Delta_x^{(s)} \leq \left|\frac{1}{\pi} \int_0^\infty \frac{1}{t^3} \left(\frac{\hat{\phi}_w(-t)}{\hat{\phi}_w(t)} \exp\left(\frac{jt}{\hat{X}}(s) - t^a\right)\right) dt\right| + F(x) \lesssim t_\perp.
$$

Defining the term t_\perp as $(2\gamma)^{-1/\alpha}$, we split the whole region $(0, \infty)$ as three disjoint sub-regions $\mathcal{R}_1 = (0, t_\perp)$ and
Then we separately bound the terms \(T_1 \) and \(T_2 \).

Step I. We can bound term \(T_1 \) as

\[
T_1 = \int_{\mathcal{R}_1} \frac{1}{\sqrt{t}} \mathbb{E} \left[\frac{\hat{\phi}_{\mathcal{G}}(-t)}{|\hat{\phi}_{\mathcal{G}}(t)|^a} \left(\exp \left(j t \hat{X}(s) - j tx \right) \right) \right] \left(1 + \sum_{k=1}^{\infty} \left(1 - \left(\frac{|\hat{\phi}_{\mathcal{G}}(t)|^a}{\gamma t^a} \right)^k \right) \right) dt
\]

\[
\leq \int_{\mathcal{R}_1} \frac{\sin \left(t \left(\hat{X}(s) - x \right) \right)}{t} dt + \int_{\mathcal{R}_1} \frac{1}{t} \sum_{k=1}^{\infty} \left(\frac{\sigma^2 t^2}{d - p} \right)^k dt \leq 1 + \sum_{k=1}^{\infty} \frac{1}{2k} \left(\frac{\sigma^2 t^2}{d - p} \right)^k \leq 1,
\] \hspace{1cm} (36)

where in \(\mathbb{1} \) we use the fact \(|\hat{\phi}_{\mathcal{G}}(t)|^2 \vee \delta t^a \geq 1 - \frac{2 \sigma^2 t^2}{d - p} \) for \(t \in \mathcal{R}_1 \), in \(\mathbb{2} \) we use the fact \(\sup_{t>0} \left| \int_0^t \sin(u)/udu \right| \leq 3 \), and \(\mathbb{3} \) is because \(\sigma^2 t^2 \leq \sqrt{d - p}(\log(np) - \frac{d}{2}) \leq \frac{d - p}{2} \) and hence \(\sum_{k=1}^{\infty} \frac{1}{2k} \left(\frac{\sigma^2 t^2}{d - p} \right)^k \leq \sum_{k=1}^{\infty} \left(\frac{\sigma^2 t^2}{d - p} \right)^k \leq 1 \).

Step II. For term \(T_3 \), we have

\[
T_2 \leq \int_{\mathcal{R}_2} \frac{\hat{\phi}_{\mathcal{G}}(-t)}{|\hat{\phi}_{\mathcal{G}}(t)|^{2a} \vee \delta t^a} dt \leq \int_{\mathcal{R}_2} \frac{1}{t^{1/2}} dt = \int_{\mathcal{R}_2} \frac{1}{a} \sqrt{\frac{\sigma^2}{d - p}} = \frac{1}{\sqrt{2a}} \leq 1,
\] \hspace{1cm} (37)

where \(\mathbb{4} \) is because \(\hat{\phi}_{\mathcal{G}}(\cdot) \leq 1 \), and complete the proof by summing (34), (35) and (37).

- \(\mathbb{2} \)

Lemma 22. Under the setting of Thm. \(\mathbb{4} \), we have

\[
\mathbb{E}(\Delta_x)^2 \leq \frac{\log^{2/a}(np)\sigma}{\sqrt{d - p}} + \frac{(\log(np))^2}{(d - p)^{3/2}} + \left(\frac{\sigma^2}{d - p} \right)^{2a+1} + \frac{1}{n},
\]

when \(\gamma \geq \log(np) \left(\frac{\sigma^2}{d - p} \right)^{a/4} \).

Proof. The proof largely follows (Phuong, 2020). However, extra measurements are required to estimate the characteristic function \(\hat{\phi}_{\mathcal{G}}(\cdot) \) in (Phuong, 2020), which leads to a simple form of the error \(|\hat{\phi}_{\mathcal{G}}(t) - \phi_{\mathcal{G}}(t)| \) only depending on the number of extra measurements. While our setting does not need these additional measurements and the error \(|\hat{\phi}_{\mathcal{G}}(t) - \phi_{\mathcal{G}}(t)| \) varies with \(t \).

With the decomposition

\[
\mathbb{E} \left| \hat{F}(x) - F(x) \right|^2 \leq 2\mathbb{E} \left| \hat{F}(x) - \hat{F}(x) \right|^2 + 2\mathbb{E} \left| \hat{F}(x) - F(x) \right|^2,
\]
we complete the proof by invoking Lemma 23 and Lemma 24.

Lemma 23. Under the setting of Thm. 4, we can upper-bound the deviation $\mathbb{E} \left| \hat{F}(x) - \overline{F}(x) \right|$ as

$$
\mathbb{E} \left| \hat{F}(x) - \overline{F}(x) \right| \lesssim \frac{\log^{2/\alpha} (np) \sigma}{\sqrt{\alpha - p}},
$$

when setting $\gamma \approx \log(n) \left(\frac{\sigma^2}{np} \right)^{a/4}$.

Proof. First we expand the term $\hat{F}(x) - \overline{F}(x)$ as

$$
\hat{F}(x) - \overline{F}(x) = \frac{1}{\pi} \int_0^{\infty} \frac{1}{t} \left[\left(\frac{\hat{\phi}_\gamma(-t)}{|\hat{\phi}_\gamma(t)|^2 \sqrt{\gamma t^a}} - \frac{\hat{\phi}_\gamma(-t)}{|\hat{\phi}_\gamma(t)|^2 \sqrt{\gamma t^a}} \right) \overline{\phi}_\gamma(t) e^{-itx} \right] dt
$$

where in (1) we define $D(t)$ as

$$
D(t) \triangleq \frac{\hat{\phi}_\gamma(-t)}{|\hat{\phi}_\gamma(t)|^2 \sqrt{\gamma t^a}} - \frac{\hat{\phi}_\gamma(-t)}{|\hat{\phi}_\gamma(t)|^2 \sqrt{\gamma t^a}}.
$$

According to (Phuong, 2020), it satisfies the relation

$$
|D(t)| \leq \frac{2\varepsilon_E(t)}{\sqrt{|\hat{\phi}_\gamma(t)|^2 \sqrt{\gamma t^a}} \cdot \sqrt{|\hat{\phi}_\gamma(t)|^2 \sqrt{\gamma t^a}}} + \frac{\varepsilon_E(t)}{|\hat{\phi}_\gamma(t)|^2 \sqrt{\gamma t^a}},
$$

where $\varepsilon(t)$ is defined as $\left| \hat{\phi}_\gamma(t) - \phi_\gamma(t) \right|$, which is upper bounded by Lemma 20.

Define the terms I_1 and I_2 as

$$
I_1 \triangleq \mathbb{E} \left(\frac{1}{n\pi} \int_0^{t_\perp} \frac{1}{t} \sum_{s=1}^n \sin \left(t \left(\hat{X}^{(s)} - x \right) \right) dt \right)^2,
$$

$$
I_2 \triangleq \mathbb{E} \left(\frac{1}{n\pi} \int_{t_\perp}^{\infty} \frac{1}{t} \sum_{s=1}^n \sin \left(t \left(\hat{X}^{(s)} - x \right) \right) dt \right)^2,
$$

respectively, where t_\perp is defined as $((d-p)/\sigma^2)^{1/4} \log^{1/\alpha} (np)$. We upper-bound the term $\mathbb{E} \left| \hat{F}(x) - \overline{F}(x) \right|^2$ as

$$
\mathbb{E} \left| \hat{F}(x) - \overline{F}(x) \right|^2 \leq 2I_1 + 2I_2.
$$

Stage I. We bound the term I_1 as

$$
I_1 \lesssim \left(\frac{1}{\pi} \int_0^{t_\perp} \frac{1}{t} \sum_{s=1}^n \left| t \left(\hat{X}^{(s)} - x \right) \right| dt \right)^2 \lesssim \left(\int_0^{t_\perp} |D(t)| dt \right)^2,
$$

where in (2) we use the fact $\sin(\cdot) \leq |\cdot|$, in (3) we use the fact $|\hat{X}^{(s)} - x| \leq 1$ for all s, $1 \leq s \leq n$.

Notice in the region \mathcal{R}_1, we can lower bound the function $\phi_\gamma(\cdot) \geq c_1$ as
where in ④ we use the fact that \(|\phi(t)\|_{\|\|}\) is non-increasing. Then we invoke (38) and bound \(D(t)\) as \(|D(t)| \lesssim \varepsilon_{E}(t)\), since \(|\phi(t)|^2 \vee \gamma t^a \geq |\phi(t)|^2 \geq 1\). Hence term \(I_1\) is upper-bounded as

\[
I_1 \leq \left[\int_{0}^{1} \frac{\sigma^2 \log^2(n)p)^2}{d-p} e^{-\frac{2\sigma^2}{d-p} t^2 dt} \right]^2 \lesssim \log^4(n)p \left(\int_{0}^{\log^1/4(np)(d-p)^{1/4}} \xi^2 e^{-\xi^2/2} d\xi \right)^2,
\]

where in ⑤ we use the substitution \(\xi = \sigma t/\sqrt{d-p}\).

Stage II. We define the function \(\Lambda(t)\) as

\[
\Lambda(t) = \frac{1}{n} \sum_{s=1}^{n} \sin \left[t \left(\langle \hat{X}^s \rangle - x \right) \right] - \Im \left(\phi \langle \hat{\hat{X}} \rangle e^{-jt\gamma} \right),
\]

and bound the term \(I_2\) as

\[
I_2 = \mathbb{E} \left[\int_{t_1}^{\infty} \frac{D(t)}{t} \left[\Lambda(t) + \Im \left(\phi \langle \hat{\hat{X}} \rangle e^{-jt\gamma} \right) \right] \right]^2 \lesssim I_{2,1} + I_{2,2},
\]

where \(I_{2,1}\) and \(I_{2,2}\) are defined as

\[
I_{2,1} \equiv \mathbb{E} \left[\int_{t_1}^{\infty} \frac{D(t)}{t} \Im \left(\phi \langle \hat{\hat{X}} \rangle e^{-jt\gamma} \right) \right]^2,
\]

\[
I_{2,2} \equiv \mathbb{E} \left[\int_{t_1}^{\infty} \frac{D(t)\Lambda(t)}{t} \right]^2.
\]

Notice that within region \(R_2\), we can upper-bound \(|D(t)|\) as \(|D(t)| \lesssim \varepsilon_{E}(t)/\gamma t^a\) and hence

\[
I_{2,1} \leq \left[\int_{t_1}^{\infty} \left| \frac{\phi \langle \hat{\hat{X}} \rangle}{t} \right| \sqrt{\mathbb{E}|D(t)|^2 t} dt \right]^2 \lesssim \left[\int_{t_1}^{\infty} \frac{\sqrt{\mathbb{E}|D(t)|^2}}{t} dt \right]^2 \lesssim \left(\int_{t_1}^{\infty} \frac{\varepsilon_{E}(t)\gamma t^a}{\gamma t^a} dt \right)^2,
\]

where in ⑥ we use the fact \(|\phi \langle \hat{\hat{X}} \rangle| \leq 1\), in ⑦ we use the bound \(|D(t)| \leq \varepsilon_{E}(t)/\gamma t^a\), and in ⑧ we use the assumption \(a > 1\).

Afterwards, we bound term \(I_{2,2}\) as

\[
I_{2,2} \leq 2\mathbb{E} \left[\int_{t_1}^{\infty} \int_{t_1}^{\infty} \frac{D(u)D(v)\Lambda(u)\Lambda(v)}{uv} du dv \right] \lesssim 2 \int_{t_1}^{\infty} \int_{t_1}^{\infty} \sqrt{\mathbb{E}|D(u)|^2 \mathbb{E}|D(v)|^2} \cdot \mathbb{E} (\Lambda(u)\Lambda(v)) du dv.
\]
According to Lemma 5.1 in (Phuong, 2020), we can bound the term $\mathbb{E}(\Lambda(u)\Lambda(v))$ as

$$
\mathbb{E}(\Lambda(u)\Lambda(v)) = \frac{1}{2n} \left[\Re \left(e^{i(u-v)t} \phi_X(u-v) \right) - \Re \left(e^{-i(u+v)x} \phi_X(u+v) \right) - 2 \Im \left[e^{-iux} \phi_X(u) \cdot \Im e^{-iux} \phi_X(u) \right] \right]
$$

$$
\leq \frac{1}{2n} \left[|\phi_X(u+v)| + |\phi_X(u-v)| + 2 |\phi_X(u)| |\phi_X(v)| \right] \leq \frac{2}{n},
$$

where in \mathcal{O} we use the fact $|\phi_X(\cdot)| \leq 1$.

Following the same strategy as above, we can upper-bound $|D(t)|$ as $|D(t)| \leq \frac{\varepsilon E(t)}{\gamma u}$ and hence

$$
\sqrt{\mathbb{E}|D(u)|^2} \sqrt{\mathbb{E}|D(v)|^2} \leq \frac{\varepsilon E(u)\varepsilon E(v)}{\gamma^2 u a v^a}.
$$

Combining the above then yields the bound

$$
I_{2,2} \leq \frac{1}{n\gamma^2} \int_{t_1}^\infty \int_{t_2}^\infty \frac{\varepsilon E(u)\varepsilon E(v)}{u^{1+a}v^{1+a}} du dv = \frac{\log^{4/3}(np)\sigma^{2+a}}{n(d-p)}.
$$

To sum up, we have

$$
I_2 = I_{2,1} + I_{2,2} \leq \frac{\log^{2/3}(np)\sigma^{1+\frac{2}{3}}}{d-p} + \frac{\log^{4/3}(np)\sigma^{2}}{n(d-p)} \leq \frac{\log^{2/3}(np)\sigma}{\sqrt{d-p}},
$$

and complete the proof by combining it with (39) and (40).

\[\square \]

Lemma 24. Under the setting of Thm. 4, we can upper-bound the deviation $|\tilde{F}(x) - F(x)|$ as

$$
\mathbb{E}\left|\tilde{F}(x) - F(x)\right|^2 \leq \frac{(\log(np))^2}{(d-p)^2} + \left(\frac{\sigma^2}{d-p} \right)^{2+a} + \frac{1}{n},
$$

when setting $\gamma = \log(np) \left(\frac{\sigma^2}{d-p} \right)^{a/4}$.

Proof. We decompose the deviation $\mathbb{E}|\tilde{F}(x) - F(x)|^2$ as the the bias and variance, which are defined respectively as

$$
\text{Bias} \triangleq \left| \mathbb{E} \tilde{F}(x) - F(x) \right|^2,
$$

$$
\text{Variance} \triangleq \mathbb{E}\left| \tilde{F}(x) - \mathbb{E}\tilde{F}(x) \right|^2.
$$

The following context separately bound the bias and variance.

Bounding bias. We rewrite the difference $\mathbb{E}\tilde{F}(x) - F(x)$ as

$$
\mathbb{E}\tilde{F}(x) - F(x) = \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{t} \Im \left[\left(\frac{\left| \phi_\varphi(t) \right|^2}{\left| \phi_\varphi(t) \right|^2 + \gamma t^a} \right) - \phi_X(t) \right] e^{-itx} dt,
$$

which yields

$$
\text{Bias} \leq \frac{1}{\pi^2} \left[\int_{0}^{\infty} \left| \phi_X(t) \right| \left| \phi_\varphi(t) \right|^2 \left(\left| \phi_\varphi(t) \right|^2 + \gamma t^a \right) e^{-itx} dt \right]^2
$$

$$
\leq \frac{1}{\pi^2} \left[\int_{0}^{\infty} \left| \phi_X(t) \right| \left(1 - \frac{\left| \phi_\varphi(t) \right|^2}{\left| \phi_\varphi(t) \right|^2 + \gamma t^a} \right) dt \right]^2
$$

$$
\leq \int_{0}^{\infty} \left| \phi_X(t) \right| \left(1 - \frac{\left| \phi_\varphi(t) \right|^2}{\left| \phi_\varphi(t) \right|^2 + \gamma t^a} \right) dt + \int_{\infty}^{\infty} \left| \phi_X(t) \right| \left(1 - \frac{\left| \phi_\varphi(t) \right|^2}{\left| \phi_\varphi(t) \right|^2 + \gamma t^a} \right) dt \leq J_1^2 + J_2^2,
$$

where $t_{□}$ is defined as $c_0 \left(\frac{d-p}{\sigma^2} \right)^{1/8}$, and terms J_1 and J_2 are defined as

$$J_1 \triangleq \int_{t_{□}}^{t_{□}} \left| \frac{\phi_X(t)}{t} \right| 1 - \left| \frac{\phi_\varnothing(t)}{\phi_\varnothing(t)} \right|^2 \sqrt{\gamma t^a} \, dt,$$

$$J_2 \triangleq \int_{t_{□}}^{\infty} \left| \frac{\phi_X(t)}{t} \right| 1 - \left| \frac{\phi_\varnothing(t)}{\phi_\varnothing(t)} \right|^2 \sqrt{\gamma t^a} \, dt,$$

respectively. For the term J_1, we have

$$1 - \frac{|\phi_\varnothing(t)|^2}{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a}} \leq \frac{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a} - |\phi_\varnothing(t)|^2}{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a}} \leq \frac{\gamma t^a}{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a}} \leq \frac{\gamma t^a}{c_R},$$

where in $①$ we use the relation $|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a} - |\phi_\varnothing(t)|^2 \leq \gamma t^a$; in $②$ we use the fact $|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a} \geq c_R$ in the regime $[0, t_{□})$, which can be easily verified. Then we obtain

$$J_1 \leq \int_{0}^{t_{□}} \left| \frac{\phi_X(t)}{t} \right| \gamma t^a \, dt = \gamma \int_{0}^{t_{□}} t^{a-1} \, dt = \gamma \frac{t_{□}^a}{a} \lesssim \frac{\sigma^2 \log(np)}{(d-p)^2 a}. \tag{41}$$

Afterwards, we bound term J_2 as

$$J_2 \leq \int_{t_{□}}^{\infty} \left| \frac{\phi_X(t)}{t} \right| \gamma t^a \, dt \lesssim t_{□}^{-(2a+1)/16} \lesssim \left(\frac{\sigma^2}{d-p} \right)^{2a+1}, \tag{42}$$

where in $③$ we use the Lemma 6 from (Phuong, 2020) since $\phi_X(\cdot)$ satisfies the Assumption 2. Combining (41) and (42) then yields

$$\text{Bias} \lesssim \frac{(\log(np))^2}{(d-p)^2 a} + \left(\frac{\sigma^2}{d-p} \right)^{2a+1}. \tag{43}$$

Bounding variance. We bound the mean $\text{Var} \tilde{F}(x)$ as

$$\text{Var} \tilde{F}(x) = \text{Var} \left[\frac{1}{\pi} \int_{0}^{\infty} \frac{1}{t} 3 \left(\frac{\phi_\varnothing(-t)}{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a}} \tilde{\phi}_X(t)e^{-iJt} \right) \, dt \right]$$

$$\lesssim 2 \left[\int_{0}^{\infty} 3 \left(\frac{\phi_\varnothing(-t)}{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a}} \tilde{\phi}_X(-x)e^{-iJt} \right) \, dt \right]^2 \leq \frac{2}{n\pi^2} (K_1 + K_2),$$

where in $④$ we use the bound $\text{Var}(\cdot) \leq \mathbb{E}(\cdot)^2$, and the terms K_1 and K_2 are defined as

$$K_1 \triangleq \mathbb{E} \left[\int_{0}^{t_{□}} \frac{1}{t} 3 \left(\frac{\phi_\varnothing(-t)}{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a}} \tilde{\phi}_X(-x) \right) \, dt \right]^2,$$

$$K_2 \triangleq \mathbb{E} \left[\int_{t_{□}}^{\infty} \frac{1}{t} 3 \left(\frac{\phi_\varnothing(-t)}{|\phi_\varnothing(t)|^2 \sqrt{\gamma t^a}} \tilde{\phi}_X(-x) \right) \, dt \right]^2.$$
and \(t_{\perp} \) is defined as \((2\gamma)^{-1/\alpha}\). First, we bound \(K_1 \) as

\[
K_1 = \mathbb{E} \left[\int_0^{t_{\perp}} \frac{1}{t} \delta \left(\phi_{\bar{w}}(t) e^{\delta (\bar{X} - x)} \left(1 + \sum_{k=1}^{\infty} \left(1 - \left(|\phi_{\bar{w}}(t)|^2 \vee \gamma t^a \right)^k \right) \right) \right) dt \right] \\
\leq \mathbb{E} \left[\int_0^{t_{\perp}} \frac{1}{t} \delta \left(\phi_{\bar{w}}(t) e^{\delta (\bar{X} - x)} \right) dt \right] + \mathbb{E} \left[\int_0^{t_{\perp}} \frac{1}{t} \sum_{k=1}^{\infty} \left(1 - \left(|\phi_{\bar{w}}(t)|^2 \vee \gamma t^a \right)^k \right) dt \right] \\
\leq \mathbb{E} \sup_{r > 0} \left[\int_0^r \frac{\sin t}{t} \right] \left[\int_0^{t_{\perp}} \frac{1}{t} \right] \left[\sum_{k=1}^{\infty} \left(\frac{\sigma^2 t^2}{d - p} \right) \right] \leq 1, \tag{44}
\]

where in \(\circ \) we use the fact \(|\phi_{\bar{w}}(t)|^2 \vee \delta t^a \geq 1 - \frac{\epsilon_1 \sigma^2 t^2}{d - p} \) for \(t \in (0, t_{\perp}) \), and in \(\circ \) we use \(\sigma^2 t^2 \asymp \sqrt{d - p} \). Now, we bound the term \(K_2 \) as a product of two terms reading as

\[
K_2 = \mathbb{E} \left[\int_{t_{\perp}}^{\infty} \int_{t_{\perp}}^{\infty} \frac{1}{uv} \left(\phi_{\bar{w}}(-u) \phi_{\bar{w}}(-v) e^{\delta (u + v) (\bar{X} - x)} \right) du dv \right] \\
\leq \mathbb{E} \left[\int_{t_{\perp}}^{\infty} \int_{t_{\perp}}^{\infty} \frac{1}{uv} \left(\phi_{\bar{w}}(u) \phi_{\bar{w}}(v) \right) \left(\frac{1}{|\phi_{\bar{w}}(u)|^2 \vee \gamma u^a} \right) \left(\frac{1}{|\phi_{\bar{w}}(v)|^2 \vee \gamma v^a} \right) du dv \right] \\
\leq \frac{1}{\gamma^2} \mathbb{E} \left[\int_{t_{\perp}}^{\infty} \frac{1}{t^{a+1}} \right] \leq \frac{1}{a^2 \gamma^2 t_{\perp}^2} \asymp 1. \tag{45}
\]

Combining (44) and (45) generates

\[
\text{Var} \bar{F}(x) \lesssim n^{-1}. \tag{46}
\]

And the proof is completed by combining (43) and (46).

\[\square \]

10. Analysis of the Graphical Structure Model

Denote the empirical covariance matrix \(\Sigma_n \) as

\[
\Sigma_n^{\text{non-param}} \triangleq \frac{1}{n} \sum_{s=1}^{n} h(X^{(s)}) h(X^{(s)})^\top - \left(\frac{1}{n} \sum_{s=1}^{n} h(X^{(s)}) \right) \left(\frac{1}{n} \sum_{s=1}^{n} h(X^{(s)}) \right)^\top,
\]

where \(h(\cdot) \) denotes the oracle estimator of the transform functions in Def. 1. We first analyze the estimation error of the covariance matrix \(\Sigma_n^{\text{non-param}} \) in terms of the infinity norm \(\ell_\infty \).

Theorem 7. Under the Assumption 2 and Assumption 3, we have

\[
\left\| \Sigma_n^{\text{non-param}} - \hat{\Sigma}_n^{\text{non-param}} \right\|_{\infty} \lesssim \sqrt{\log n} \sqrt{\log (d - p)} \left(\frac{\sqrt{\log n}}{n^{1/4}} \vee \frac{\sqrt{\log (d - p)}}{(d - p)^{3/4}} \right),
\]

with probability exceeding \(1 - o(1) \), where \(\delta_{n,d,p} \) is set as (15), \(\beta \) is defined as \(\beta = \frac{1}{2} \wedge \frac{a}{4} \wedge \frac{2a + 1}{4} \), and \(\hat{\Sigma}_n^{\text{param}} \) is defined in (9).

The proof largely follows (Liu et al., 2009). However, we cannot directly access the samples \(\{X^{(s)}\}_{1 \leq s \leq n} \) and have to use the perturbed samples \(\{\hat{X}^{(s)}\}_{1 \leq s \leq n} \) instead. This will lead to additional errors in estimating the covariance matrix and how to bound these errors constitutes the technical bottleneck.
10.1. Notations

We assume that the correct estimation of $m_i = 0$ and $v_i = 1$ w.l.o.g. Let $h_i(x) = \Phi^{-1}(F_i(x))$, where $(-)^{-1}$ denotes the inverse of the function. For the conciseness of the notation, we define $\tilde{\varphi}_i$, $\hat{\varphi}_i$, and φ_i as

$$
\tilde{\varphi}_i \equiv h_i(\tilde{X}_i); \\
\hat{\varphi}_i \equiv h_i(X_i); \\
\varphi_i \equiv h_i(X_i).
$$

The (i, j)th entries of the corresponding covariance matrices $\Sigma_n^{\text{non-param}}$, $\hat{\Sigma}_n$, Σ_n are written as

$$
\left(\Sigma_n^{\text{non-param}}\right)_{i,j} = \frac{1}{n} \sum_{s=1}^{n} \varphi_i^{(s)} \varphi_j^{(s)} - \tilde{\mu}_i \tilde{\mu}_j; \\
\left(\hat{\Sigma}_n\right)_{i,j} = \frac{1}{n} \sum_{s=1}^{n} \varphi_i^{(s)} \varphi_j^{(s)} - \tilde{\mu}_i \tilde{\mu}_j; \\
\left(\Sigma_n\right)_{i,j} = \frac{1}{n} \sum_{s=1}^{n} \varphi_i^{(s)} \varphi_j^{(s)} - \mu_i \mu_j.
$$

Moreover, we define two regions R_E and R_M as

$$
R_E \triangleq \left[-c_L \log(n \vee (d-p)), -c_L \log n \vee \log(d-p) \right] \bigcup \left(c_L \log(n \vee (d-p)), c_L \log n \vee \log(d-p) \right]; \\
R_M \triangleq \left[-c_L \log(n \vee (d-p)), c_L \log(n \vee (d-p)) \right].
$$

10.2. Proof of Thm. 7

Proof. We bound the deviation between $\Sigma_n^{\text{non-param}}$ and $\hat{\Sigma}_n$ as

$$
\left\| \Sigma_n^{\text{non-param}} - \hat{\Sigma}_n \right\|_\infty \leq \left\| \Sigma_n^{\text{non-param}} - \Sigma_n \right\|_\infty + \left\| \Sigma_n - \hat{\Sigma}_n \right\|_\infty.
$$

Step I. For the first term T_1, we invoke the triangle inequality and have

$$
\left\| \Sigma_n^{\text{non-param}} - \Sigma \right\|_\infty \leq \max_{i,j} \frac{1}{n} \sum_{s=1}^{n} \left| \tilde{\varphi}_i^{(s)} \hat{\varphi}_j^{(s)} - \varphi_i^{(s)} \varphi_j^{(s)} \right| + \left\| \mu_i \mu_j - \tilde{\mu}_i \tilde{\mu}_j \right\|_\infty.
$$

Following a similar strategy that is used in (Liu et al., 2009), we focus on the first term as the second term is of higher order.

We bound the value of $\max_{i,j} n^{-1} \left| \sum_{s=1}^{n} \tilde{\varphi}_i^{(s)} \hat{\varphi}_j^{(s)} - \varphi_i^{(s)} \varphi_j^{(s)} \right|$ as

$$
P \left(\max_{i,j} n^{-1} \left| \sum_{s=1}^{n} \tilde{\varphi}_i^{(s)} \hat{\varphi}_j^{(s)} - \varphi_i^{(s)} \varphi_j^{(s)} \right| \geq \theta \right) \\
\leq p^2 E \left[n^{-1} \left| \sum_{s=1}^{n} \tilde{\varphi}_i^{(s)} \hat{\varphi}_j^{(s)} - \varphi_i^{(s)} \varphi_j^{(s)} \right| \geq \theta \right] 1 \left(\varphi_i^{(s)} \in R_E \bigcup R_M, \forall 1 \leq s \leq n, 1 \leq i \leq p \right) \\
+ np E \left| \varphi_i^{(s)} \notin R_E \bigcap R_M, \exists 1 \leq s \leq n, 1 \leq i \leq p \right| .
$$
Following a classical procedure as in (Boucheron et al., 2013), we can show the second probability
\(\mathbb{E} \left(\varphi_i(s) \notin \mathcal{R}_E \cap \mathcal{R}_M \right) \) is no greater than \(e^{-c_0(n \wedge (d - p))} \). For the conciseness of notation, we define the deviation \(\delta_i(s) \) as
\[
\delta_i(s) = \varphi_i - \varphi_i(s).
\]
Then the summary \(n^{-1} \left(\sum_{s=1}^{n} \delta_i(s) \right) \mathbb{1} \left(\varphi_i(s) \in \mathcal{R}_E \cup \mathcal{R}_M, \forall 1 \leq s \leq n, 1 \leq i \leq p \right) \) can be decomposed as
\[
\frac{1}{n} \sum_{s=1}^{n} \delta_i(s) = \frac{1}{n} \sum_{s=1}^{n} \delta_i(s) \mathbb{1}[C_1(s)] + \frac{1}{n} \sum_{s=1}^{n} \delta_i(s) \mathbb{1}[C_2(s)] + \frac{2}{n} \sum_{s=1}^{n} \delta_i(s) \mathbb{1}[C_3(s)],
\]
where the events \(C_1(s), C_2(s), \) and \(C_3(s) \) are defined as
\[
C_1(s) ≜ \begin{cases}
\varphi_i \in \mathcal{R}_E, \varphi_j \in \mathcal{R}_E & \text{if } i \neq j \\
\varphi_i \in \mathcal{R}_E, \varphi_j \notin \mathcal{R}_E & \text{if } i = j
\end{cases},
\]
\[
C_2(s) ≜ \begin{cases}
\varphi_i \in \mathcal{R}_M, \varphi_j \in \mathcal{R}_M & \text{if } i \neq j \\
\varphi_i \in \mathcal{R}_M, \varphi_j \notin \mathcal{R}_M & \text{if } i = j
\end{cases},
\]
\[
C_3(s) ≜ \begin{cases}
\varphi_i \in \mathcal{R}_E, \varphi_j \in \mathcal{R}_M & \text{if } i \neq j \\
\varphi_i \in \mathcal{R}_E, \varphi_j \notin \mathcal{R}_M & \text{if } i = j
\end{cases},
\]
respectively, where the definitions of \(\mathcal{R}_E \) and \(\mathcal{R}_M \) can be found in (47).

In the following, we will separately bound the three terms and show \(n^{-1} \sum_{s=1}^{n} \delta_i(s) \leq \vartheta \), where the quantities \(\vartheta_1 \) and \(\vartheta_2 \) are defined in (48) and (50), respectively. The analysis of the first term \(T_{1,1} \) and second term \(T_{1,2} \) is deferred to Lemma 25 and Lemma 26, respectively; while that of the third term \(T_{1,3} \) is omitted due to their similarities of Lemma 25 and Lemma 26.

Step II. The second term \(T_2 \) is upper-bounded in Lemma 27. The analysis is in the same spirit as the above procedure but requires some modifications.

\textbf{Lemma 25.} We have
\[
\frac{1}{n} \sum_{s=1}^{n} \delta_i(s) \mathbb{1}[C_1(s)] \leq 2c_0 \left[n^{-c_i} \vee (d - p)^{c_i} \right] (\log n \vee \log(d - p))^{1/2} \leq \vartheta_1,
\]
with probability exceeding \(1 - c_2 n^{-c_3} \wedge (d - p)^{-c_4} - c_5 n^{-c_6} \), where the parameters \(c_i \) are some fixed constant, \(0 \leq i \leq 6 \).

\textbf{Proof.} Invoking the union bound, we obtain
\[
\mathbb{P} \left(\frac{1}{n} \sum_{s=1}^{n} \delta_i(s) \mathbb{1}[C_1(s)] \geq 2c_0 \left[n^{-c_i} \vee (d - p)^{c_i} \right] (\log n \vee \log(d - p))^{1/2} + \mathbb{E} \left(\sum_{s=1}^{n} \mathbb{1}[C_1(s)] \right) \right) \leq \mathbb{E} \left(\max_i \sum_{s=1}^{n} \delta_i(s) \geq (\log n \vee \log(d - p))^1 \mathbb{1}[C_1(s)] \right),
\]
where \(\vartheta \) is defined as
\[
\vartheta = 2c_0 \left[n^{-c_i} \vee (d - p)^{c_i} \right] \sqrt{\log n \vee \log(d - p)},
\]
and in \(\odot \) we use the union bound.

With the relation
\[
\sum_{s=1}^{n} \delta_i(s) \geq \sum_{s=1}^{n} \mathbb{1}[C_1(s)] \mathbb{1}[C_1(s)],
\]
where complete the proof.

$$P_1 \leq n \cdot P_e \left(\frac{c_U \sqrt{(d-p) \log n}}{\log n \log (d-p)} \right) \leq n \cdot \left(c_U \sqrt{(d-p) \log n} \right) \leq n^{-c} \wedge (d-p)^{-c},$$

where Eq. 2 is due to Lemma 28.

While for probability P_2, we have

$$P \left(\sum_{s=1}^n \left[\frac{1}{n} \right] \left[\varphi_i^{(s)} \in \mathcal{R}_E \right] \left[\varphi_i^{(s)} \in \mathcal{R}_E \right] \right) \leq \frac{1}{n} \left[\sum_{s=1}^n \left[\varphi_i^{(s)} \in \mathcal{R}_E \right] \right] \leq \frac{1}{n} \left[\sum_{s=1}^n \left[\varphi_i^{(s)} \in \mathcal{R}_E \right] \right] \leq \frac{1}{n} \left[\sum_{s=1}^n \mathbb{E} \left(\varphi_i^{(s)} \in \mathcal{R}_E \right) \right] \leq \exp \left(-\frac{n}{2} \left[\varphi_i^{(s)} \in \mathcal{R}_E \right] \right)^2,$$

where in Eq. 3 we use the Hoeffding’s inequality (cf. Thm. 2.8 in (Boucheron et al., 2013)). Notice that the probability

$$P \left(\varphi_i^{(s)} \in \mathcal{R}_E \right) = \frac{2}{\sqrt{2\pi}} \int_{e^{c_U \sqrt{(d-p) \log n}}}^\infty e^{-t^2/2} dt \leq \sqrt{\frac{2}{\pi}} e^{-\frac{c_U \sqrt{(d-p) \log n}}{(d-p)^{1/4}}} \sqrt{\log n \log (d-p)} \leq c_0 \left[n^{-c_1} \wedge (d-p)^{-c_1} \right] \sqrt{\log n \log (d-p)},$$

where $0 < c_1 < 1/2$ is some fixed positive constant. Recalling the value of φ in Eq. 49, we have

$$P \left(\sum_{s=1}^n \left[\frac{1}{n} \right] \left[\varphi_i^{(s)} \in \mathcal{R}_E \right] \right) \leq \exp \left(-c_0 n^{-1/2} \log n \right) \ll n^{-c},$$

and complete the proof.

Lemma 26. We have

$$\frac{1}{n} \left| \sum_{s=1}^n \delta_i^{(s)} \right| \leq \frac{\sqrt{\log n}}{n^{1/4}} \sqrt{\log (d-p)} \leq \varphi_2,$$

with probability exceeding the probability $1 - p^2 \exp \left(-\frac{c_0 n \log n}{(d-p)^{1/4}} \right) - p^2 n^{-c_3} - 2p^3 e^{c_4 p} - 4n^{-c_5} p^{-c_6}$, where β is defined as $\frac{1}{2} \wedge \frac{2}{3} \wedge \frac{2a+1}{4}$.

Proof. For each term $\delta_i^{(s)}$, we can decompose it as

$$\delta_i^{(s)} = \left(\varphi_i^{(s)} - \varphi_i^{(s)} \right) \left(\varphi_j^{(s)} - \varphi_j^{(s)} \right) + \varphi_i^{(s)} \left(\varphi_j^{(s)} - \varphi_j^{(s)} \right) + \varphi_j^{(s)} \left(\varphi_i^{(s)} - \varphi_i^{(s)} \right).$$

Then we can decompose the summary as

$$\frac{1}{n} \left| \sum_{s=1}^n \delta_i^{(s)} \right| \leq \frac{1}{n} \left| \left(\varphi_i^{(s)} - \varphi_i^{(s)} \right) \left(\varphi_j^{(s)} - \varphi_j^{(s)} \right) \right| \left(C_2^{(s)}(i, j) \right) \left| \left(\varphi_i^{(s)} - \varphi_i^{(s)} \right) \right| \left(C_2^{(s)}(i, j) \right) \left| \left(\varphi_j^{(s)} - \varphi_j^{(s)} \right) \right| \left(C_2^{(s)}(i, j) \right) \left| \left(\varphi_j^{(s)} - \varphi_j^{(s)} \right) \right| \left(C_2^{(s)}(i, j) \right).$$
Our next goal is to investigate the behavior of \(\sup_i \left| \tilde{\varphi}_i^{(s)} - \hat{\varphi}_i^{(s)} \right| \mathbb{I} \left[C_2^{(s)}(i,j) \right] \). Define the event \(\mathcal{E}_F(\cdot) \) as
\[
\mathcal{E}_F(i) = \left\{ \delta_{n,d,p} \leq \tilde{F}_i^{(s)} \leq 1 - \delta_{n,d,p} \right\}, \quad 1 \leq i \leq n.
\]
We have
\[
\mathbb{P} \left(\frac{1}{n} \sum_{i=1}^{n} \delta_i^{(s)} \mathbb{I} \left[C_2^{(s)}(i,j) \right] \geq \vartheta_2 \right) \leq \mathbb{P} \left(\sup_i \left| \tilde{\varphi}_i^{(s)} - \hat{\varphi}_i^{(s)} \right| \mathbb{I} \left[C_2^{(s)}(i,j) \right] \geq \vartheta_2 \right)
\leq p^2 \mathbb{E} \left(\mathbb{I} \left\{ C_2^{(s)}(i,j) \right\} \mathcal{E}_F(i) \right) + p^2 \mathbb{E} \left(\mathbb{I} \left\{ C_2^{(s)}(i,j) \right\} \mathcal{E}_F(i) \right).
\]
Easily we can verify that \(\delta_{n,d,p} \) satisfy the relation
\[
2\delta_{n,d,p} \leq 1 - \Phi \left(c_L \sqrt{\log n \lor \log(d - p)} - \sqrt{\varepsilon_x} \right),
\]
where \(\varepsilon_x \) is defined in (13). Invoking Lemma 29, we can bound term \(T_1 \) as
\[
T_1 \leq 2 \exp \left(-2n \left(1 - \delta_{n,d,p} - \Phi \left(c_L \sqrt{\log n \lor \log(d - p)} - \sqrt{\varepsilon_x} \right) \right)^2 \right) \leq 2 \exp(-2n\delta_{n,d,p}^2)
\leq 2 \exp \left(\frac{c_0 \sqrt{n}}{\log^2 n} - \frac{c_1 n \log(4n)}{\log(d - p)(d - p)^{3/2}} \right).
\]
Conditional on event \(\mathcal{E}_F(i) \), we study the term \(T_1 \) by investigating the difference \(\tilde{\varphi}_i^{(s)} - \hat{\varphi}_i^{(s)} \). We assume \(\tilde{F}_i^{(s)}(X_i^{(s)}) \geq F_i(X_i^{(s)}) \) w.l.o.g. According to the mean value theorem, we have
\[
\tilde{\varphi}_i^{(s)} - \hat{\varphi}_i^{(s)} = \Phi^{-1} \left(\tilde{F}_i^{(s)}(X_i^{(s)}) \right) - \Phi^{-1} \left(F_i(X_i^{(s)}) \right) = \left(\Phi^{-1} \right)' (\xi) \left| \tilde{F}_i^{(s)}(X_i^{(s)}) - F_i(X_i^{(s)}) \right|
\]
where \(\xi \) is some point such that \(F_i(X_i^{(s)}) \leq \xi \leq \tilde{F}_i^{(s)}(X_i^{(s)}) \). Due to the fact that \(X_i^{(s)} \in \mathcal{R}_M \) and conditional on event \(\mathcal{E}_F(i) \), we conclude \(\delta_n \leq \xi \leq 1 - \delta_n \) and hence
\[
\left| \left(\Phi^{-1} (\xi) \right)' \right| \leq \left| \left(\Phi^{-1} (1 - \delta_{n,d,p}) \right)' \right| \lor \left| \left(\Phi^{-1} (1 - \delta_{n,d,p}) \right)' \right| = \left| \left(\Phi^{-1} (1 - \delta_{n,d,p}) \right)' \right|
\leq \frac{1}{\phi(\Phi^{-1} (1 - \delta_{n,d,p}))} \leq \exp \left(\frac{1}{2} \left(\Phi^{-1} (1 - \delta_{n,d,p}) \right)^2 \right) \overset{(1)}{\leq} \frac{1}{\delta_{n,d,p}},
\]
where \((1)\) is due to Lemma 31 and the fact that \(\delta_{n,d,p} \to 0 \). Set \(\vartheta_2 \) such that
\[
\vartheta_2 \delta_{n,d,p} \geq (\log n) \varepsilon_x + \frac{c_0}{\sqrt{n}} + c_1 \sqrt{\varepsilon_x},
\]
where \(\varepsilon_x \) is defined in (13). We invoke Thm. 4 and conclude
\[
T_1 \leq \mathbb{P} \left(\left| \tilde{F}_i^{(s)}(X_i^{(s)}) - F_i(X_i^{(s)}) \right| \geq \delta_{n,d,p} \vartheta_2 \right) \leq n^{-c_3} + 2pe^{-c_4p} + 4n^{-c_5}p^{-c_6}.
\]
Recalling the definition of \(\delta_{n,d,p} \) in (15), we conclude \(\vartheta_2 \) to be approximately
\[
\vartheta_2 \approx \frac{\sqrt{\log n}}{n^{1/4}} \lor \frac{\sqrt{\log(d - p)}}{(d - p)^{3/4}},
\]
where \(\beta \) is defined as \(\frac{1}{2} + \frac{1}{4} + \frac{2\epsilon + 1}{4} \).
Lemma 27. Under the Assumption 3, we have
\[
\|\Sigma_n^{\text{non-param}} - \bar{\Sigma}_n\|_{\infty} \lesssim \sqrt{\log n} \vee \log(d-p) \left(\frac{\sqrt{\log n}}{n^{1/4}} \vee \frac{\sqrt{\log(d-p)}}{(d-p)^{3/4}} \right) + L \sigma (\log n \vee \log(d-p)) \delta_{n,d,p} \equiv \vartheta_3,
\]
with probability exceeding \(1 - e^{-c_0(n \wedge (d-p))} - e^{-c_1 n}\).

Proof. The proof conditions on the event
\[
\left| \hat{\varphi}_i^{(s)} \right| \lesssim c_U \sqrt{\log n} \vee \log(d-p),
\]
holds for all \(s\) and \(i\) with probability exceeding \(1 - e^{-c_0(n \wedge (d-p))}\).

Following the same argument as in Thm. 7, our analysis focus on the error \(n^{-1} \sum_{s=1}^n \left(\hat{\varphi}_i^{(s)} \hat{\varphi}_j^{(s)} - \varphi_i^{(s)} \varphi_j^{(s)} \right)\). Adopting the decomposition such that
\[
\hat{\varphi}_i^{(s)} \hat{\varphi}_j^{(s)} - \varphi_i^{(s)} \varphi_j^{(s)} = \varphi_i^{(s)} \left(\hat{\varphi}_j^{(s)} - \varphi_j^{(s)} \right) + \varphi_j^{(s)} \left(\hat{\varphi}_i^{(s)} - \varphi_i^{(s)} \right) + \left(\hat{\varphi}_i^{(s)} - \varphi_i^{(s)} \right) \left(\hat{\varphi}_j^{(s)} - \varphi_j^{(s)} \right),
\]
we have
\[
\frac{1}{n} \sum_{s=1}^n \left(\hat{\varphi}_i^{(s)} \hat{\varphi}_j^{(s)} - \varphi_i^{(s)} \varphi_j^{(s)} \right) = \frac{1}{n} \sum_{s=1}^n \left(\hat{\varphi}_i^{(s)} \left(\hat{\varphi}_j^{(s)} - \varphi_j^{(s)} \right) \right) + \frac{1}{n} \sum_{s=1}^n \left(\varphi_j^{(s)} \left(\hat{\varphi}_i^{(s)} - \varphi_i^{(s)} \right) \right) + \frac{1}{n} \sum_{s=1}^n \left(\left(\hat{\varphi}_i^{(s)} - \varphi_i^{(s)} \right) \left(\hat{\varphi}_j^{(s)} - \varphi_j^{(s)} \right) \right).
\]

We only need to analyze the behavior of the terms \(T_1\) and \(T_2\), since the term \(T_3\) is of higher order. Conditional on the event discussed in Thm. 4, we have
\[
\left| \hat{\varphi}_i^{(s)} - \varphi_i^{(s)} \right| = \left| (\Phi^{-1}(\xi)) \left| \hat{F}^{\pi}(\hat{X}_i^{(s)}) - \hat{F}^{\pi}(X_i^{(s)}) \right| \leq \frac{1}{\delta_{n,d,p}} \left| \hat{F}^{\pi}(\hat{X}_i^{(s)}) - \hat{F}^{\pi}(X_i^{(s)}) \right| \leq \frac{1}{\delta_{n,d,p}} \left[\hat{F}^{\pi}(\hat{X}_i^{(s)}) - F(\hat{X}_i^{(s)}) \right] + \left| F(\hat{X}_i^{(s)}) - F(X_i^{(s)}) \right| \left| F(X_i^{(s)}) - \hat{F}^{\pi}(X_i^{(s)}) \right| \leq \frac{2}{\delta_{n,d,p}} \left[(\log n)\varepsilon_x + \frac{c_0}{\sqrt{n}} + c_1 \sqrt{\varepsilon_x} \right] + \frac{L}{\delta_{n,d,p}} \frac{\sum_{s=1}^n |\hat{w}_i^{(s)}|}{n\delta_{n,d,p}},
\]
where \((\cdot)\) is because of the Lipschitz property in Assumption 3. Then we obtain
\[
T_1 \lesssim \frac{2\sqrt{\log n} \vee \log(d-p)}{\delta_{n,d,p}} \left((\log n)\varepsilon_x + \frac{c_0}{\sqrt{n}} + c_1 \sqrt{\varepsilon_x} \right) + \frac{L}{\delta_{n,d,p}} \frac{\sum_{s=1}^n |\hat{w}_i^{(s)}|}{n\delta_{n,d,p}},
\]
\[
T_1 \lesssim \frac{2\sqrt{\log n} \vee \log(d-p)}{\delta_{n,d,p}} \left(\sqrt{\frac{\log n}{n^{1/4}}} \vee \sqrt{\frac{\log(d-p)}{(d-p)^{3/4}}} \right) + \frac{L}{\delta_{n,d,p}} \frac{\sum_{s=1}^n |\hat{w}_i^{(s)}|^2}{n},
\]
where in \((\cdot)\) we plug in the definition of \(\varepsilon_x\) in (13), that is,
\[
T_{1,1} \approx 2\sqrt{\log n} \vee \log(d-p) \left(\sqrt{\frac{\log n}{n^{1/4}}} \vee \sqrt{\frac{\log(d-p)}{(d-p)^{3/4}}} \right).
\]
Since the $w^{(s)}_i$ is approximately Gaussian distribution with mean zero and $\sigma^2/(d-p)$ variance, we have $(d-p)/\sigma^2 \sum_{s=1}^{n} |w^{(s)}_i|^2$ be ξ^2-RV with freedom n, which means $\sum_{s=1}^{n} |w^{(s)}_i|^2 \leq 2n\sigma^2/(d-p)$ holds with probability at least $1 - e^{-cn}$. To sum up, we obtain

$$T_1 \lesssim \sqrt{\log n \lor \log(d-p)} \left(\frac{\log n}{n^{1/4}} \lor \frac{\log(d-p)}{(d-p)^{3/4}} \right) + \frac{L\sigma}{\delta_{n,d,p}} \frac{\sqrt{\log n \lor \log(d-p)}}{\sqrt{\log n \lor \log(d-p)}}$$

and complete the proof.

10.3. Supporting Lemmas

Lemma 28. For all possible i ($1 \leq i \leq n$), we conclude

$$\sup_{t \in \mathcal{R}_E} \left| \Phi^{-1} \left(\hat{F}^n_i(t) \right) - \Phi^{-1}(F_i(t)) \right| \leq 2cU \sqrt{\log n \lor \log(d-p)},$$

where \mathcal{R}_E is defined in (47).

Proof. We conclude that

$$\left| \Phi^{-1} \left(\hat{F}^n_i(t) \right) - \Phi^{-1}(F_i(t)) \right| \leq \left| \Phi^{-1}(F_i(t)) \right| + \left| \Phi^{-1} \left(\hat{F}^n_i(t) \right) \right|.$$

For the first term, we have

$$\left| \Phi^{-1}(F_i(t)) \right| \leq cU \sqrt{\log n \lor \log(d-p)},$$

according to the definitions of \mathcal{R}_E. Meanwhile for the second term $\left| \Phi^{-1} \left(\hat{F}^n_i(t) \right) \right|$, we have

$$\Phi^{-1} \left(\hat{F}^n_i(t) \right) \overset{(1)}{\leq} \Phi^{-1}(1 - \delta_{n,d,p}) \overset{(2)}{\leq} \sqrt{2 \log \frac{1}{1 - \delta_{n,d,p}}} \overset{(3)}{\leq} cU \sqrt{\log n \lor \log(d-p)},$$

where in (1) we exploit the fact $\hat{F}^n_i(t) \leq 1 - \delta_{n,d,p}$, in (2) we invoke Lemma 11 in (Liu et al., 2009) (cf. Lemma 31), and in (3) we use the fact that $\delta_{n,d,p} \geq \frac{1}{n} \lor \frac{1}{d-p}$.

Lemma 29. Provided that $\delta_{n,d,p} \leq 1 - \Phi \left(cL \sqrt{\log n \lor \log(d-p)} \right) - \sqrt{\varepsilon_x}$, we can bound the probability

$$\mathbb{P} \left(\hat{F}_i(g_i(cL \sqrt{\log n \lor \log(d-p)})) \geq 1 - \delta_{n,d,p} \right) \leq \exp \left(-2n \left(1 - \delta_{n,d,p} - \Phi \left(cL \sqrt{\log n \lor \log(d-p)} \right) - \sqrt{\varepsilon_x} \right)^2 \right);$$

$$\mathbb{P} \left(\hat{F}_i(g_i(-cL \sqrt{\log n \lor \log(d-p)})) \leq \delta_{n,d,p} \right) \leq \exp \left(-2n \left(1 - \delta_{n,d,p} - \Phi \left(cL \sqrt{\log n \lor \log(d-p)} \right) - \sqrt{\varepsilon_x} \right)^2 \right),$$

where ε_x is defined in (13).

Proof. We have

$$\mathbb{P} \left(\hat{F}_i(g_i(cL \sqrt{\log n \lor \log(d-p)})) \geq 1 - \delta_{n,d,p} \right)$$

$$= \mathbb{P} \left(\hat{F}_i(g_i(cL \sqrt{\log n \lor \log(d-p)})) - \mathbb{E} \hat{F}_i(g_i(cL \sqrt{\log n \lor \log(d-p)})) \geq 1 - \delta_{n,d,p} - \mathbb{E} \hat{F}_i(g_i(cL \sqrt{\log n \lor \log(d-p)})) \right)$$

$$\leq \exp \left[-2n \left(1 - \delta_{n,d,p} - \mathbb{E} \hat{F}_i(g_i(cL \sqrt{\log n \lor \log(d-p)})) \right)^2 \right].$$
The term is bounded as
\[
1 - \delta_{n,d,p} - \mathbb{E}\tilde{F}_i\left(g_i(c_L\sqrt{\log n \lor \log(d-p)})\right)
\geq \left| 1 - \delta_{n,d,p} - F_i\left(g_i(c_L\sqrt{\log n \lor \log(d-p)})\right) \right| - \left| F_i\left(g_i(c_L\sqrt{\log n \lor \log(d-p)})\right) - \mathbb{E}\tilde{F}_i\left(g_i(c_L\sqrt{\log n \lor \log(d-p)})\right) \right|
= \left| 1 - \delta_{n,d,p} - \Phi\left(c_L\sqrt{\log n \lor \log(d-p)}\right) \right| - \sqrt{\epsilon_x}.
\]

Similarly, we can prove
\[
\mathbb{P}\left(\tilde{F}_i(g_i(-c_L\sqrt{\log n \lor \log(d-p)})) \leq \delta_{n,d,p}\right) \leq \exp\left(-2n\left(1 - \delta_{n,d,p} - \Phi\left(c_L\sqrt{\log n \lor \log(d-p)}\right) - \sqrt{\epsilon_x}\right)^2\right).
\]

11. Additional Simulations

This section presents additional simulation results with synthetic data. Here we adopt different underlying structures of Θ^2 and study the performance of our algorithm.

11.1. Synthetic data with parametric method

We adopt the same graph construction in the main context.

![Graphs showing recall rate vs. sample size for different signal dimensions and variances.](image)

Figure 4. We study the impact of sample size n on the recall rate. The signal dimension p is fixed as 2000.

11.2. Synthetic data with non-parametric method

This subsection uses the same setting as that in the main context but evaluates the performance of our estimator via the recall rate and the precision rate of the edge selection, which is shown in Tab. 2.
We study the impact of sample size n on the precision rate. The signal dimension p is fixed as 2000.

We construct the sparse precision matrix Θ as

$$
\Theta_{i,j} = \begin{cases}
\rho_1, & \text{if } i = j; \\
\rho_2, & \text{if } |i - j| = 1; \\
0, & \text{otherwise},
\end{cases}
$$

which is previously adopted in (Ravikumar et al., 2011). The corresponding edge set of is denoted as E. We fix the signal length p as 100 and evaluate the performance with the following three types of marginal distribution for the random vector X:

- uniform distribution within the region $[0, 1]$;
- exponential distribution, i.e., e^{-z} for $z \geq 0$;
- Gaussian mixture, i.e., $0.25 \sum_{i=1}^{4} N(\mu_i, 10^{-2})$, where $\mu_i \in \{\pm0.25, \pm0.5\}$.

We set ρ_1 and ρ_2 as 1 and 0.4, respectively. For the baseline in 3, we assume the underlying distribution of X to be jointly Gaussian. With direct observations, we learn the graphical structure with graphical lasso. The recall rate and precision rate is shown in 3. For the uniform and exponential distribution, our algorithm has a significant improvement in terms of both the recall rate and precision rate. While for mixture Gaussian, the improvement is modest. This phenomenon may justify the approximation of mixture Gaussian with Gaussian distribution, which is widely used in the field of coding theory, machine learning, etc.

11.3. Real-World Data

We now consider the real-world databases, which consists of 5 databases: Carolina Breast Cancer (GSE148426) with 2497 samples (patients) (Bhattacharya et al., 2020), Lung Cancer (GSE137140) with 3924 samples (Asakura et al., 2020), Ovarian Cancer (GSE106817) with 4046 samples (Yokoi et al., 2018), Colorectal Cancer (GSE115513) with 1513 samples (Slattery et al., 2016), and Esophageal Squamous Cell Carcinoma (GSE122497) with 5531 samples (Sudo et al., 2019).
Each database is divided into two categories, i.e., Healthy group and Unhealthy group, where the measurements are given as the concentration of miRNAs. The miRNAs are known to have dependency among each other, i.e., a non-diagonal precision matrix, and hence there is an underlying graphical model describing these dependency structure based on the associated precision matrix.

Preprocess For each database, there are multiple types of data, namely, healthy vs non-healthy, benign cancer vs non-benign cancer, etc. Based on the labels, we first divide the whole dataset into two types of data and separately preprocess them. For each type, we split the data into the training and testing sets given as the concentration of miRNAs. The miRNAs are known to have dependency among each other, i.e., a non-diagonal precision matrix.

Training Using the training set D_{train}^i, which are directly observed from the desired signal (miRNAs), we first select the penalty coefficients in graphical lasso via cross-validation. Then estimate the precision matrix via the graphical Lasso and use it as the baseline Θ_i, $i \in \{1, 2\}$ as they are obtained through direct observation. We denote Θ_1 for D^1 while Θ_2 for D^2. Then we mask the training set with the synthetic sensing matrix A and create indirect observation of data. Last we estimate the precision matrix $\hat{\Theta}_i$, from the indirect observations, i.e., $A D_{\text{train}}^i$ using M-gLasso, $i \in \{1, 2\}$.

Testing Notice that the ground-truth precision matrix Θ_i^2, $i \in \{1, 2\}$ cannot be obtained in the real-world applications, even with the direct observations. Hence a direct comparison between Θ_i^2 and $\hat{\Theta}_i$ cannot be performed. To evaluate the performance of the algorithm, we take an indirect way by using quadratic discriminant analysis (Hastie et al., 2009) to perform classification in the testing set $\{D_{\text{test}}^i \cup D_{\text{test}}^2\}$, with the estimated matrix $\hat{\Theta}_i$, $i \in \{1, 2\}$. Then we compare with the classification accuracy when using Θ_i, $i \in \{1, 2\}$. The summary of the classification rates are shown in Tab. ??.

Discussion From the tables we conclude that our estimated precision matrix $\hat{\Theta}_i$ achieves almost the same classification accuracy with the baseline Θ_i when $d = p$, and is only a slightly worse when $d = 0.5p$, i.e., the dimension of the projection space under the indirect observation is half of the dimension of the signal space. In some special cases, we even see some improvements with indirect observations. One possible reason is that the features are mixed by sensing matrix A, which lead to better quantities for the classification.

Table 2. Recall rate and precision rate. The signal length p is fixed as 100 and σ^2 is fixed as 1.0. The sample number corresponding to the baseline is set as 175, the maximum sample number.

n	Uniform	Exponential	Gauss Mixture			
Recall Rate	Precision Rate	Recall Rate	Precision Rate	Recall Rate	Precision Rate	
$d = 200$						
100	0.9315	0.9257	0.9839	0.9029	0.9732	0.9114
115	0.9342	0.9527	0.9866	0.9043	0.9758	0.9331
130	0.9369	0.9555	0.9906	0.9323	0.9826	0.9363
145	0.9450	0.9655	0.9946	0.9375	0.9866	0.9534
160	0.9490	0.9756	0.9946	0.9527	0.9866	0.9638
175	0.9490	0.9793	0.9946	0.9504	0.9879	0.9712
$d = 300$						
100	0.9584	0.9347	0.9852	0.9074	0.9852	0.9176
115	0.9651	0.9400	0.9799	0.9070	0.9906	0.9191
130	0.9812	0.9545	0.9919	0.9276	0.9933	0.9290
145	0.9812	0.9549	0.9933	0.9333	0.9933	0.9298
160	0.9852	0.9597	0.9973	0.9411	0.9946	0.9376
175	0.9839	0.9656	0.9973	0.9458	0.9960	0.9513
$d = 500$						
100	0.9745	0.9455	0.9812	0.9097	0.9879	0.9126
115	0.9758	0.9758	0.9866	0.9320	0.9893	0.9320
130	0.9758	0.9813	0.9919	0.9467	0.9906	0.9343
145	0.9826	0.9826	0.9946	0.9470	0.9933	0.9477
160	0.9879	0.9879	0.9946	0.9502	0.9946	0.9537
175	0.9893	0.9893	0.9973	0.9619	0.9960	0.9604
Baseline	0.3356	0.1834	0.3765	0.0497	0.8188	0.8538
Recall rate of edge selection on real-world databases, namely, GSE8426 (Bhattacharya et al., 2020), GSE137140 (Asakura et al., 2020), GSE106817 (Yokoi et al., 2018), GSE115513 (Slattery et al., 2016), and GSE122497 (Sudo et al., 2019). The precision matrix Θ learned by direct observations is assumed to be the ground-truth.

Table 4. Recall rate of edge selection on real-world databases, namely, GSE8426 (Bhattacharya et al., 2020), GSE137140 (Asakura et al., 2020), GSE106817 (Yokoi et al., 2018), GSE115513 (Slattery et al., 2016), and GSE122497 (Sudo et al., 2019). The precision matrix Θ learned by direct observations is assumed to be the ground-truth.

Table 3. Recall rate and precision rate. The signal length p is fixed as 100 and σ^2 is fixed as 1.0. The sample number corresponding to the baseline is set as 175, the maximum sample number.

Table 3

$d = 200$	Uniform Recall Rate	Uniform Precision Rate	Exponential Recall Rate	Exponential Precision Rate	Gauss Mixture Recall Rate	Gauss Mixture Precision Rate
100	0.9315	0.9257	0.9389	0.9029	0.9732	0.9114
115	0.9342	0.9527	0.9866	0.9403	0.9758	0.9331
130	0.9369	0.9555	0.9906	0.9323	0.9826	0.9363
145	0.9450	0.9655	0.9946	0.9375	0.9866	0.9534
160	0.9490	0.9756	0.9946	0.9527	0.9866	0.9638
175	0.9490	0.9793	0.9946	0.9504	0.9879	0.9712

$d = 300$	Uniform Recall Rate	Uniform Precision Rate	Exponential Recall Rate	Exponential Precision Rate	Gauss Mixture Recall Rate	Gauss Mixture Precision Rate
100	0.9584	0.9347	0.9852	0.9074	0.9852	0.9176
115	0.9651	0.9400	0.9799	0.9070	0.9906	0.9191
130	0.9812	0.9545	0.9919	0.9276	0.9933	0.9290
145	0.9812	0.9549	0.9933	0.9333	0.9933	0.9298
160	0.9852	0.9597	0.9973	0.9411	0.9946	0.9376
175	0.9839	0.9656	0.9973	0.9458	0.9960	0.9513

$d = 500$	Uniform Recall Rate	Uniform Precision Rate	Exponential Recall Rate	Exponential Precision Rate	Gauss Mixture Recall Rate	Gauss Mixture Precision Rate
100	0.9745	0.9455	0.9812	0.9097	0.9879	0.9126
115	0.9758	0.9758	0.9866	0.9320	0.9893	0.9320
130	0.9758	0.9813	0.9919	0.9467	0.9906	0.9343
145	0.9826	0.9826	0.9946	0.9470	0.9933	0.9477
160	0.9879	0.9879	0.9946	0.9502	0.9946	0.9537
175	0.9839	0.9893	0.9973	0.9619	0.9960	0.9604

Baseline: 0.3356 0.1834 0.3765 0.0497 0.8188 0.8538

12. Useful Facts about Probability Inequalities and Random Matrices

For the self-containing of this paper, we list some useful facts about probability inequalities and random matrices in this section.

Lemma 30 ([Wainwright, 2019] (Example 2.11, P29)). For a χ^2-RV Z with ℓ degrees of freedom, we have

$$
\Pr\left(|Z - \ell| \geq t\right) \leq 2 \exp\left(-\frac{t^2}{2\ell} \wedge \frac{t}{8}\right), \quad \forall \, t \geq 0.
$$

Theorem 8 (Theorem 2.35 in [Tulino et al., 2004]). For a $d \times p$ matrix A whose entries are independent zero-mean real RVs with variance d^{-1} and fourth moment of order $O(d^{-2})$, we have the empirical distribution of the eigenvalues of $A^T A$ converge to the distribution with density

$$
\frac{2}{\pi t} e^{-\frac{1}{2t}} dt, \quad t > 0.
$$
Furthermore, we have

$$f_\tau(x) = \left[0 \vee (1 - \tau^{-1})\right] \mathbb{1}(x) + \frac{\sqrt{\left\lfloor (1 + \sqrt{\tau})^2 - x \right\rfloor \vee 0}}{2\pi x},$$

as d and p approaches to infinity with $p/d \to \tau$.

Theorem 9 (Corol. 13.2 in Boucheron et al., 2013). Consider a totally bounded pseudo-metric space $(\mathcal{T}, \text{dist}(\cdot, \cdot))$. Provided a collection of RVs $\{Z_u\}_{u \in \mathcal{T}}$ satisfying

$$\mathbb{E} e^{\lambda (Z_u - Z_{u_0})} \leq \frac{\nu \lambda^2 \text{dist}^2(u, v)}{2}, \quad \forall \lambda \geq 0,$$

we have

$$\mathbb{E} \sup_u (Z_u - Z_{u_0}) \leq 12 \sqrt{\nu} \int_0^{\text{diam}(\mathcal{T})/2} \sqrt{\mathcal{H}(\delta, \mathcal{T})} d\delta,$$

where $\mathcal{H}(t, \mathcal{T})$ denotes the δ-covering entropy with pseudo-metric $\text{dist}(\cdot, \cdot)$, and $\text{diam}(\cdot) \triangleq \sup \text{dist}(u, u_0)$ is the diameter of the set \mathcal{T}.

Lemma 31 (Lemma 11 in Liu et al., 2009). Denote the distribution function and density function of the standard normal RV as $\Phi(\cdot)$ and $\phi(\cdot)$, respectively. We have

$$(\Phi^{-1})'(\eta) = \frac{1}{\phi(\Phi^{-1}(\eta))}.$$

Furthermore, we have

$$\Phi^{-1}(\eta) \leq \sqrt{2 \log \frac{1}{1 - \eta}},$$

for $\eta \geq 0.99$.

Theorem 10 (Wick’s theorem, Thm. 1.28 (P11) in Janson et al., 1997). Considering the centered jointly normal variables $\xi_1, \xi_2, \cdots, \xi_n$, we conclude

$$\mathbb{E} (\xi_1 \xi_2 \cdots \xi_n) = \sum_{\text{all possible disjoint pairs } (i_k, j_k) \text{ of } [n]} \mathbb{E}(\xi_{i_k} \xi_{j_k}).$$

Notice that the variables $\{\xi_i\}_{1 \leq i \leq n}$ are not necessarily different nor independent. To illustrate this theorem, we consider two special cases. First we let $\xi_1 = \xi_2 = \xi_3 = \xi_4 = \xi \sim N(0, 1)$, then we have

$$\mathbb{E}\xi^4 = \mathbb{E}(\xi^4) = \mathbb{E}(\xi_1^4) = \mathbb{E}(\xi_2^4) + \mathbb{E}(\xi_3^4) + \mathbb{E}(\xi_4^4) + \mathbb{E}(\xi_1 \xi_2) \mathbb{E}(\xi_3 \xi_4) + \mathbb{E}(\xi_1 \xi_3) \mathbb{E}(\xi_2 \xi_4) + \mathbb{E}(\xi_1 \xi_4) \mathbb{E}(\xi_2 \xi_3) = 3.$$

Second we consider the case where n is odd. Since we cannot partition $\{1, 2, \cdots, n\}$ into disjoint pairs (ξ_{i_k}, ξ_{j_k}), we always have $\mathbb{E}(\xi_1 \cdots \xi_n) = 0$.

Table 5. Precision rate of edge selection on real-world databases, namely, GSE148426 (Bhattacharya et al., 2020), GSE137140 (Asakura et al., 2020), GSE106817 (Yokoi et al., 2018), GSE115513 (Slattery et al., 2016), and GSE122497 (Sudo et al., 2019). The precision matrix Θ learned by direct observations is assumed to be the ground-truth.

d/p	Healthy group	Unhealthy group								
	GSE148426	GSE137140	GSE106817	GSE115513	GSE122497	GSE148426	GSE137140	GSE106817	GSE115513	GSE122497
2	1	0.9548	0.9704	0.9205	0.9456	1	0.9548	0.9704	0.9205	0.9456
5	0.9080	0.9000	0.9207	0.9205	0.9456	1	0.9080	0.9000	0.9207	0.9205
10	0.9080	0.9341	0.9207	0.9205	0.9456	1	0.9080	0.9341	0.9207	0.9205
12	0.9080	0.9475	0.9237	0.9329	0.9456	1	0.9080	0.9475	0.9237	0.9329
15	0.9080	0.9566	0.9299	0.9420	0.9456	1	0.9080	0.9566	0.9299	0.9420
20	0.9518	0.9613	0.9393	0.9535	0.9613	1	0.9518	0.9613	0.9393	0.9535

Asakura et al., 2020, GSE106817 (Yokoi et al., 2018), GSE115513 (Slattery et al., 2016), and GSE122497 (Sudo et al., 2019). The precision matrix Θ learned by direct observations is assumed to be the ground-truth.