Supporting Information: The Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase.

Ryan Weber† and Martin McCullagh*,‡

†Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
‡Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074, United States

E-mail: martin.mccullagh@okstate.edu
System Setup

The extent of the largest principle component of the protein was calculated to confirm that the size of the simulation box is large enough to prevent interactions between periodic images of the protein. As shown in Table S1, the extent of the protein is 104(2) Å maintaining a 16 Å gap between periodic images for the smallest simulation box size providing a large enough buffer as a 12 Å interaction cutoff is used.

Table S1. The average extent of the largest principle axis of the nsp13 protein and the size of the simulation box for each ligand bound state.

System	Length (Å)	Box Length (Å)	Number of Water Molecules
Apo	104(2)	131.0(1)	70834
ATP	110(3)	130.6(2)	70452
ssRNA	105(2)	130.9(1)	70728
ssRNA+ATP	104(2)	130.9(1)	70724

Model Corroboration

To provide support that the initial structures of the ATP, ssRNA, and ssRNA+ATP ligand-bound states of nsp13 are suitable we compare the contacts in the simulations to the contacts in the crystal structures of other SF1 helicases with ssRNA and ATP bound. The ssRNA contacts are shown in Table S2 and the ATP contacts are shown in Table S3.

Table S2. Residues from motifs Ia, IV, and V in contact with RNA phosphates (≤ 5.0 Å) for various SF1 RNA-bound helicase protein crystal structures and the percentage of frames where the corresponding nsp13 residues are in contact with RNA phosphates for both the RNA and RNA+ATP systems.

motif	Upf1 (2XZL)	IGHMBP2 (4B3G)	nsp13	RNA	RNA+ATP
Ia	SER 461	SER 244	SER 310	83.15%	84.25%
Ia	ASN 462	ASN 245	HIE 311	83.68%	83.61%
IV	PRO 731	PRO 540	PRO 514	17.82%	1.34%
IV	TYR 732	TYR 541	TYR 515	97.35%	55.16%
IV	GLU 793	ASN 542	ASN 516	66.49%	54.30%
V	SER 761	SER 563	SER 535	0.27%	0.00%
V	ALA 764	ASP 565	VAL 533	44.14%	0.12%
Table S3. Residues from motifs I, II, III, V and VI in contact with ATP or MG$_{2+}$ (\leq 5.0 Å) for various SF1 ATP-bound helicase protein crystal structures and the percentage of frames where the corresponding nsp13 residues are in contact with ATP or MG$_{2+}$ for both the ATP and RNA+ATP systems.

motif	motif	Upf1 (2GJK)	nsp13	ATP	RNA+ATP
I	GLY 492	GLY 282	8.93%	29.54%	
I	PRO 493	PRO 283	97.18%	99.99%	
I	PRO 494	PRO 284	98.28%	100.00%	
I	GLY 495	GLY 285	100.00%	100.00%	
I	THR 496	THR 286	100.00%	100.00%	
I	GLY 497	GLY 287	100.00%	100.00%	
I	LYS 498	LYS 288	100.00%	100.00%	
I	THR 499	SER 289	100.00%	100.00%	
I	VAL 500	HIE 290	100.00%	100.00%	
II	ASP 636	ASP 374	60.07%	50.49%	
II	GLU 637	GLU 275	0.46%	30.70%	
III	GLN 665	GLN 404	15.39%	73.33%	
V	GLY 831	GLY 538	63.19%	80.30%	
V	ARG 832	SER 539	36.77%	19.22%	
V	GLU 833	GLU 540	99.27%	84.46%	
VI	ARG 865	ARG 567	100.00%	99.95%	
VI	ARG 867	LYS 569	80.17%	45.12%	

ssRNA Binding Strength

Inter-domain distance analysis of the Apo, ATP, ssRNA, and ssRNA+ATP states show that when nsp13 binds ATP there is a widening of the RNA-binding cleft. To measure the change in binding strength between nsp13 and ssRNA the linear interaction energy (Table S4) and root-mean-square fluctuation of the RNA phosphates (Table S5) are calculated for the ssRNA and ssRNA+ATP systems. The error in both analyses are too large to differentiate between the two systems. Figure S1 shows the labeling of the RNA phosphates and the highly conserved motifs of nsp13.
Table S4. Average linear interaction energy between each phosphate and protein residues within 12 Å for the ssRNA and ssRNA+ATP systems.

Phosphates	ssRNA	ssRNA+ATP
P0	-97(18)	-94(12)
P1	-122(21)	-126(17)
P2	-103(23)	-143(28)
P3	-130(16)	-144(57)
P4	-124(24)	-95(44)
P5	-112(24)	-63(26)
P6	-48(26)	-39(37)

Table S5. RMSF of each phosphate for the ssRNA and ssRNA+ATP systems.

Phosphates	ssRNA	ssRNA+ATP
P0	1.316(0.465)	2.495(1.028)
P1	1.211(0.220)	1.857(0.458)
P2	1.042(0.191)	1.520(0.606)
P3	0.849(0.178)	1.177(0.523)
P4	0.879(0.205)	1.012(0.038)
P5	1.328(0.268)	1.322(0.214)
P6	2.427(0.812)	2.204(0.994)
Figure S1. Representative structure of nsp13 with ssRNA bound. Motifs I (orange), Ia (violet), II (magenta), III (blue), IV (red), V (yellow), VI (green), and each phosphate in the ssRNA backbone is highlighted and labeled. The ZBD and Stalk domain are removed for clarity.

Inter-domain Distances

The inter-domain distances between domains 1A, 2A, and 1B were calculated for the Apo, ATP, ssRNA, and ssRNA+ATP ligand-bound states of nsp13. The distributions of the 1A–1B, 2A–1B, and 1A–2A distances for each ligand-bound state are shown in Figure S2(a-c), respectively.
Figure S2. Probability density of the center-of-mass separation distance between domains (a) 1A–1B, (b) 1A–2A, and (c) 2A–1B of the nsp13 Apo, ATP, ssRNA, and ssRNA+ATP ligand-bound states. (d) Structural depiction of the center-of-mass of domains 1B (magenta), 1A (green), and 2A (cyan)
Gaussian Mixture Model and Linear Discriminant Analysis

Figure S3 shows the Silhouette, CH, and DB scores for cluster sizes ranging from two clusters to ten clusters for the RNA-binding cleft distances. Based on the maximums of the Silhouette and CH scores and minimums of the DB score a cluster size of four was chosen. Linear discriminant analysis (LDA) was utilized to differentiate between the 4 states in the RNA-binding cleft and the ATP-pocket. Table S6 shows the α-carbon of the residues used to represent the position of each motif used in the LDA. The LD1 and LD2 vectors for the RNA-binding cleft and the ATP pocket are shown in Table S7 and Table S8, respectively.

![Figure S3](image)

Figure S3. (a) Silhouette, (b) Calinski-Harabasz, and (c) Davies-Bouldin scores for various number of clusters from GMM clustering of the RNA-binding cleft.

Motif	Residue
I	GLN 281
Ia	HID 311
II	ILE 375
IV	ASN 516
V	ASP 534
VI	ARG 567

Table S6. Residues used as the position of each motif utilized by the linear discriminant analysis in calculating the difference between states S1, S2, S3, and S4.
Table S7. Coefficients for each distance used in the linear discriminant analysis to describe the RNA-binding cleft for LD1 and LD2.

LDA Coefficients		
Residues	LD1	LD2
IV – P	-0.424	0.335
IV – Ia	-0.095	-0.657
Ia – P	1.859	-0.050

Table S8. Coefficients for each distance used in the linear discriminant analysis to describe the ATP-pocket for LD1 and LD2.

LDA Coefficients		
Residues	LD1	LD2
I – V	0.931	-1.080
I – Ia	-1.173	1.427
Ia – V	-0.520	-0.318
II – V	-0.765	0.207
II – VI	-0.096	0.020
IV – V	-0.373	-0.067
V – VI	-1.024	0.509
V – P	0.646	0.244
Motif V–ssRNA Contacts

Table S9 shows the percentage of frames that motif V was in contact with each ssRNA phosphate. If any residue of motif V was within 5 Å of an ssRNA phosphate than it was considered a contact. The phosphates are labeled relative to the phosphate bound by motif Ia. Table S10 shows the average separation distance between each residue in motif V and the closest ssRNA phosphate.

Table S9. Percentage of frames where motif V is bound (≤ 5.0 Å) to each ssRNA phosphates. Phosphates are labeled relative to the phosphate motif Ia is binding, where motif Ia is binding P_n.

Residues	S1	S2	S3	S4
P_n	0.88%	0.46%	0.10%	7.02%
P_{n−1}	53.60%	77.07%	62.50%	44.14%
P_{n−2}	43.92%	12.35%	1.87%	0.39%
P_{n−3}	0.56%	0.01%	0.00%	0.00%

Table S10. Average separation distance and standard deviation between all residues in motif V with ssRNA phosphates for states S1, S2, S3, and S4.

Residues	S1	S2	S3	S4
Val 533	16(2)	17(2)	18.6(6)	19.2(8)
ASP 534	12(2)	13(2)	14.6(7)	15(1)
SER 535	11(1)	12(2)	12.7(8)	15(1)
SER 536	6(2)	8(1)	9.9(9)	10(1)
GLN 537	7(1)	8(2)	10.1(5)	10.8(6)
GLY 538	4(2)	6(3)	7.4(7)	7.9(8)
SER 539	4.3(6)	4.6(9)	4.8(5)	5.1(6)
GLU 540	7.1(9)	7(2)	7.9(9)	8.6(5)
References

1. Chakrabarti, S.; Jayachandran, U.; Bonneau, F.; Fiorini, F.; Basquin, C.; Domcke, S.; Le Hir, H.; Conti, E. Molecular Mechanisms for the RNA-Dependent ATPase Activity of Upf1 and Its Regulation by Upf2. *Mol. Cell* **2011**, *41*, 693–703.

2. Lim, S. C.; Bowler, M. W.; Lai, T. F.; Song, H. The Ighmbp2 helicase structure reveals the molecular basis for disease-causing mutations in DMSA1. *Nucleic Acids Res.* **2012**, *40*, 11009–11022.

3. Cheng, Z.; Muhlrad, D.; Lim, M. K.; Parker, R.; Song, H. Structural and functional insights into the human Upf1 helicase core. *EMBO J.* **2007**, *26*, 253–264.