Calculating correlation coefficient for Gaussian copula

Qing Xiao*

Abstract
When Gaussian copula with linear correlation coefficient is used to model correlated random variables, one crucial issue is to determine a suitable correlation coefficient ρ_z in normal space for two variables with correlation coefficient ρ_x. This paper attempts to address this problem. For two continuous variables, the marginal transformation is approximated by a weighted sum of Hermite polynomials, then, with Mehler’s formula, a polynomial of ρ_z is derived to approximate the function relationship between ρ_x and ρ_z. If a discrete variable is involved, the marginal transformation is decomposed into piecewise continuous ones, and ρ_x is expressed as a polynomial of ρ_z by Taylor expansion. For a given ρ_x, ρ_z can be efficiently determined by solving a polynomial equation.

Keywords: Gaussian copula, continuous variables, discrete variables, correlation coefficient.

1. Introduction
Gaussian copula has been widely used to model correlated non-normal vector $X = (x_1, \ldots, x_i, \ldots, x_m)^T$ [1, 2]. With the marginal transformation of copula, a non-normal variable x can be mapped to the standard normal space:

$$z = \Phi^{-1}[F(x)],$$

where z is a standard normal variable, $\Phi^{-1}(\cdot)$ is the inverse cumulative distribution function (CDF) of z. $F(\cdot)$ is the CDF of x.

For a correlated random vector, it requires to determine a suitable correlation matrix R_Z in normal space to well represent the dependency structure.

*Corresponding author

Email address: xaoshaojing@shu.edu.cn (Qing Xiao)
of \(\mathbf{X} \). That’s to say, for each correlation coefficient \(\rho_x(i, j) \) \((i \neq j)\) between \(x_i \) and \(x_j \), an appropriate value of \(\rho_z(i, j) \) in \(\mathbf{R}_z \) should be determined.

Rewrite Eq.(1) in an inverse form:

\[
x = F^{-1}[\Phi(z)],
\]

(2)

where \(\Phi(\cdot) \) is the CDF of \(z \). \(F^{-1}(\cdot) \) is the inverse CDF of \(x \). Then, for a given \(\rho_x \) between \(x_i \) and \(x_j \), it has the following relationship with \(\rho_z \):

\[
\rho_x \sigma_i \sigma_j + \mu_i \mu_j = E[x_i x_j] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_i^{-1}[\Phi(z_i)] F_j^{-1}[\Phi(z_j)] \phi(z_i, z_j, \rho_z) dz_i dz_j,
\]

(3)

where \(\mu_i, \mu_j \) denote the means of \(x_i, x_j \), respectively, \(\sigma_i, \sigma_j \) denote the standard deviations respectively. \(\phi(z_i, z_j, \rho_z) \) is the joint PDF of two correlated standard normal variables:

\[
\phi(z_i, z_j, \rho_z) = \frac{1}{2\pi \sqrt{1-\rho_z^2}} e^{-\frac{z_i^2 - 2\rho_x z_i z_j + z_j^2}{2(1-\rho_z^2)}}.
\]

(4)

In most cases, the integral equation in Eq. (3) is difficult to be solved analytically, and numerical methods should be employed to determine \(\rho_z \). If \(x_i \) and \(x_j \) are both continuous random variables, 49 empirical formulae have been derived to calculate \(\rho_z[3] \); three empirical formulae based on Johnson system are also developed[4]. Furthermore, because \(\rho_x \) is a continuous function of \(\rho_z \), which is located in the interval \([-1, 1]\), a root finding method can be used to estimate \(\rho_z \) for a given \(\rho_x \) [5, 6]. If \(x_i \) and \(x_j \) are both discrete random variables, another root finding algorithm is also developed to determine \(\rho_z[7] \).

Except for the empirical formulae, other methodologies are inconvenient to establish the function relationship between \(\rho_z \) and \(\rho_x \), an issue this paper attempts to address. The basic idea is to employ a polynomial of \(\rho_z \) to approximate the function relationship between \(\rho_z \) and \(\rho_x \). With Hermite polynomials and Mehler’s formula, all three possible scenarios: continuous case, discrete case and mixed case are considered. For a given \(\rho_x \), \(\rho_z \) can be efficiently calculated by solving a polynomial equation.
2. Continuous case

If both \(x_i \) and \(x_j \) are continuous variables, represent the transformation in Eq.(2) by:

\[
x = F^{-1} [\Phi(z)] = \sum_{k=0}^{\infty} a_k H_k(z),
\]

(5)

where \(a_k \) \((k = 0, 1, \ldots)\) are undetermined coefficients. \(H_k(z) \) is the \(k \)th-order Hermite polynomial, which is defined by[8]:

\[
H_{k+1}(z) = zH_k(z) - H'_k(z), \quad H_1(z) = z, \quad H_0(z) = 1.
\]

(6)

Hermite polynomial has the following property:

\[
\int_{-\infty}^{+\infty} H_m(z) H_k(z) \phi(z) dz = \begin{cases}
 k! & m = k \\
 0 & m \neq k.
\end{cases}
\]

(7)

Using this property, \(a_k \) can be easily determined. Consider the following equation:

\[
\int_{-\infty}^{+\infty} H_m(z) F^{-1} [\Phi(z)] \phi(z) dz = \int_{-\infty}^{+\infty} H_m(z) \sum_{k=0}^{\infty} a_k H_k(z) \phi(z) dz
\]

\[
= \sum_{k=0}^{\infty} a_k \int_{-\infty}^{+\infty} H_m(z) H_k(z) \phi(z) dz
\]

(8)

If one needs to determine \(a_k \), set \(m = k \), and Eq.(8) becomes:

\[
\int_{-\infty}^{+\infty} H_k(z) F^{-1} [\Phi(z)] \phi(z) dz = a_k \cdot k!,
\]

(9)

then

\[
a_k = \frac{1}{k!} \int_{-\infty}^{+\infty} H_k(z) F^{-1} [\Phi(z)] \phi(z) dz.
\]

(10)

The above integral can be accurately calculated by an \(m \)-point Gauss-Hermite quadrature \((m > k)\).
Using Hermite polynomials defined by Eq.\((6)\), the Mehler’s formula can be expressed as\(9\):

\[
\frac{1}{\sqrt{1 - \rho_z^2}} \exp \left(-\frac{\rho_z^2 (z_i^2 + z_j^2) - 2 \rho_z z_i z_j}{2(1 - \rho_z^2)} \right) = \sum_{k=0}^{\infty} H_k(z_i) H_k(z_j) \frac{\rho_z^k}{k!}.
\]

(11)

Then, \(\phi(z_i, z_j, \rho_z)\) in Eq.\((4)\) can be expressed as:

\[
\phi(z_i, z_j, \rho_z) = \phi(z_i) \phi(z_j) \sum_{k=0}^{\infty} H_k(z_i) H_k(z_j) \frac{\rho_z^k}{k!}.
\]

(12)

Let \(x_i\) and \(x_j\) be approximated by an \(n\)th-order polynomial of \(z_i\) and \(z_j\) respectively:

\[
x_i \approx \sum_{k_i=0}^{n} a_{i,k_i} H_{k_i}(z_i), \quad x_j \approx \sum_{k_j=0}^{n} a_{j,k_j} H_{k_j}(z_j).
\]

(13)

Substitute Eq.\((12)\) and Eq.\((13)\) into Eq.\((3)\):

\[
E[x_i x_j] \approx \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \sum_{k_i=0}^{n} a_{i,k_i} H_{k_i}(z_i) \cdot \sum_{k_j=0}^{n} a_{j,k_j} H_{k_j}(z_j) \cdot \phi(z_i) \phi(z_j) \sum_{k=0}^{\infty} \frac{\rho_z^k}{k!} H_k(z_i) H_k(z_j) dz_i dz_j
\]

\[
= \sum_{k=0}^{\infty} \frac{\rho_z^k}{k!} \sum_{k_i=0}^{n} \sum_{k_j=0}^{n} a_{i,k_i} H_{k_i}(z_i) H_k(z_i) \phi(z_i) dz_i \cdot a_{j,k_j} H_{k_j}(z_j) \phi(z_j) dz_j.
\]

(14)

According to Eq.\((7)\), the coefficient of \(\rho_z^k\) is not zero only if \(k_i = k_j = k\), and it has:

\[
\rho_x \sigma_i \sigma_j + \mu_i \mu_j = E[x_i x_j] \approx \sum_{k=0}^{n} k! a_{i,k} a_{j,k} \rho_z^k.
\]

(15)

As shown in Eq.\((15)\), \(\rho_z\) is expressed as an \(n\)th-order polynomial of \(\rho_z\). For a given \(\rho_x\) between \(x_i\) and \(x_j\), calculate the coefficients \(a_{i,k}\) and \(a_{j,k}\) by Eq.\((10)\), then, solve the polynomial equation in Eq.\((15)\), the valid value of \(\rho_z\) is restricted by:

\[-1 < \rho_z < 1 \text{ and } \rho_z \rho_x > 0.\]

(16)
3. Discrete case

This section develops a method to calculate ρ_z for two discrete variables. Suppose the support of x_i is $[X_{i,1}, X_{i,2}, \ldots, X_{i,k_i}, \ldots, X_{i,N_i}]$. Denote:

$$Z_{i,k_i} = \Phi^{-1}[F_i(X_{i,k_i})], \quad k_i = 0, 1, \ldots, N_i.$$ \hspace{1cm} (17)

where $Z_{i,0} = \Phi^{-1}[F_i(X_{i,0})] = -\infty$. Then:

$$\text{for } Z_{i,k_i-1} < z_i \leq Z_{i,k_i}, \quad x_i = F_i^{-1}[\Phi(z_i)] = X_{i,k_i}, \quad k_i = 1, \ldots, N_i.$$ \hspace{1cm} (18)

Using Eq.(18), Eq.(3) can be expressed as:

$$\rho_x = -\frac{\mu_i \mu_j}{\sigma_i \sigma_j} + \frac{1}{\sigma_i \sigma_j} \sum_{k_i=1}^{N_i} \sum_{k_j=1}^{N_j} X_{i,k_i} X_{j,k_j} \int_{Z_{i,k_i}-1}^{Z_{i,k_i}} \int_{Z_{j,k_j}-1}^{Z_{j,k_j}} \phi(z_i, z_j, \rho_z) dz_i dz_j.$$ \hspace{1cm} (19)

The double integral in Eq.(19) is performed over a rectangular region: $D : Z_{i,k_i-1} \leq z_i \leq Z_{i,k_i}, Z_{j,k_j-1} \leq z_j \leq Z_{j,k_j}$. By Green’s theorem, this double integral can be transformed into curvilinear integral:

$$\rho_x = -\frac{\mu_i \mu_j}{\sigma_i \sigma_j} + \frac{1}{\sigma_i \sigma_j} \sum_{k_i=1}^{N_i} \sum_{k_j=1}^{N_j} X_{i,k_i} X_{j,k_j} \left[\Phi(Z_{i,k_i}, Z_{j,k_j}, \rho_z) + \Phi(Z_{i,k_i-1}, Z_{j,k_j-1}, \rho_z) - \Phi(Z_{i,k_i-1}, Z_{j,k_j}, \rho_z) - \Phi(Z_{i,k_i}, Z_{j,k_j-1}, \rho_z) \right].$$ \hspace{1cm} (20)

where $\Phi(z_i, z_j, \rho_z)$ is the joint CDF of two correlated standard normal variables.

Denote the function relationship between ρ_z and ρ_x as:

$$\rho_x = G(\rho_z).$$ \hspace{1cm} (21)

Take nth-order derivative on both sides of Eq.(20):

$$G^{(n)}(\rho_z) = \frac{1}{\sigma_i \sigma_j} \sum_{k_i=1}^{N_i} \sum_{k_j=1}^{N_j} X_{i,k_i} X_{j,k_j} \left[\phi^{(n-1)}(Z_{i,k_i}, Z_{j,k_j}, \rho_z) + \phi^{(n-1)}(Z_{i,k_i-1}, Z_{j,k_j-1}, \rho_z) - \phi^{(n-1)}(Z_{i,k_i-1}, Z_{j,k_j}, \rho_z) - \phi^{(n-1)}(Z_{i,k_i}, Z_{j,k_j-1}, \rho_z) \right].$$
Consider the Taylor expansion of $G(\rho_z)$:

$$
\rho_x = G(0) + \frac{G'(0)}{1!} \rho_z + \cdots + \frac{G^{(n)}(0)}{n!} \rho_z^n + \cdots, \quad G(0) = 0. \tag{22}
$$

Because Taylor expansion of $\phi(z_i, z_j, \rho_z)$ at $\rho_z = 0$ is:

$$
\phi(z_i, z_j, \rho_z) = \sum_{k=0}^{\infty} \phi^{(k)}(z_i, z_j, 0) \frac{\rho_z^k}{k!},
$$

according to Eq.(12), it has:

$$
\phi^{(n-1)}(z_i, z_j, 0) = H_{n-1}(z_i) H_{n-1}(z_j) \phi(z_i) \phi(z_j). \tag{24}
$$

For two discrete random variables x_i and x_j, the values of Z_{i,k_i-1}, Z_{j,k_j-1}, Z_{i,k_i} and Z_{j,k_j} can be obtained by Eq.(17), then, set $\rho_z = 0$ in Eq.(22), with Eq.(24), $G^{(n)}(0)$ can be easily calculated, and the coefficients of Taylor series in Eq.(23) can be determined. For a given ρ_x, solving the polynomial equation in Eq.(23) gives the value of ρ_z, the valid solution is restricted by Eq.(16).

4. Mixed case

This section develops a method to calculate ρ_z for a given ρ_x between a discrete variable x_i and a continuous variable x_j. Suppose the support of x_i is $[X_{i,1}, \ldots, X_{i,k_i}, \ldots, X_{i,N_i}]$. Using Eq.(17), Eq.(3) can be rewritten as:

$$
\rho_x = -\frac{\mu_i \mu_j}{\sigma_i \sigma_j} + \frac{1}{\sigma_i \sigma_j} \sum_{k_i=1}^{N_i} X_{i,k_i} \int_{-\infty}^{\infty} \int_{Z_{i,k_i-1}}^{Z_{i,k_i}} F_j^{-1}[\Phi(z_j)] \phi(z_i, z_j, \rho_z) dz_i dz_j. \tag{25}
$$

As shown in Eq.(23), ρ_x can be expressed as a polynomial of ρ_z, the problem is to calculate $G^{(n)}(\rho_z)|_{\rho_z=0}$. In Eq.(25), $G^{(n)}(\rho_z)$ is:

$$
G^{(n)}(\rho_z) = \frac{1}{\sigma_i \sigma_j} \sum_{k_i=1}^{N_i} X_{i,k_i} \int_{-\infty}^{\infty} F_j^{-1}[\Phi(z_j)] \left[\int_{Z_{i,k_i-1}}^{Z_{i,k_i}} \frac{\partial^n \phi(z_i, z_j, \rho_z)}{\partial \rho_z^n} dz_i \right] dz_j. \tag{26}
$$
Because:
\[
\frac{\partial \phi(z_i, z_j, \rho_z)}{\partial \rho_z} = \frac{\partial^2 \phi(z_i, z_j, \rho_z)}{\partial z_i \partial z_j},
\]
then:
\[
\int_{Z_{i,k_i}}^{Z_{i,k_i-1}} \frac{\partial^n \phi(z_i, z_j, \rho)}{\partial \rho_z^n} dz_i = \int_{Z_{i,k_i-1}}^{Z_{i,k_i}} \frac{\partial^{n-1} \phi(z_i, z_j, \rho)}{\partial \rho_z^{n-1}} \frac{\partial \phi(z_i, z_j, \rho)}{\partial \rho_z} dz_i
\]
\[
= \int_{Z_{i,k_i-1}}^{Z_{i,k_i}} \frac{\partial^n \phi(z_i, z_j, \rho)}{\partial \rho_z^{n-1} \partial z_j} \frac{\partial \phi(z_i, z_j, \rho)}{\partial \rho_z} dz_i
\]
\[
= \left[\frac{\partial^n \phi(z_{i,k_i-1}, z_j, \rho_z)}{\partial \rho_z^{n-1} \partial z_j} \right]_{Z_{i,k_i-1}}^{Z_{i,k_i}}.
\]

For Hermite polynomials, it holds that:
\[
H_k(z) = z H_{k-1}(z) - H'_{k-1}(z).
\]

Using this property and Eq.(24), it can be derived that:
\[
\frac{\partial^n \phi(z_i, z_j, 0)}{\partial \rho_z^n \partial z_j} = \frac{\partial}{\partial z_j} \left(\frac{\partial^{n-1} \phi(z_i, z_j, 0)}{\partial \rho_z^{n-1}} \right) = -H_{n-1}(z_i, z_j) \phi(z_i, z_j),
\]

In Eq.(28), set \(\rho_z = 0\), using Eq.(30), it has:
\[
\int_{Z_{i,k_i-1}}^{Z_{i,k_i}} \frac{\partial^n \phi(z_i, z_j, 0)}{\partial \rho_z^n} dz_i = -H_n(z_j) \phi(z_j) \left[H_{n-1}(Z_{i,k_i}) \phi(Z_{i,k_i}) - H_{n-1}(Z_{i,k_i-1}) \phi(Z_{i,k_i-1}) \right].
\]

In Eq.(26), set \(\rho_z = 0\), using Eq.(31), it has:
\[
G^{(n)}(0) = -\frac{1}{\sigma_i \sigma_j} \sum_{k_i=1}^{N_i} X_{i,k_i} \left[H_{n-1}(Z_{i,k_i}) \phi(Z_{i,k_i}) - H_{n-1}(Z_{i,k_i-1}) \phi(Z_{i,k_i-1}) \right].
\]

For a discrete variable \(x_i\) and a continuous variable \(x_j\), calculate \(G^{(n)}(0)\) \((n = 1, 2, \ldots)\) by Eq.(32) and substitute them into Eq.(23), then, a polynomial of \(\rho_z\) can be obtained, which serves an approximation of \(G(\rho_z)\).
5. Determining the degree of polynomial

It should be noted that a closed form of \(G(\cdot) \) can be obtained for several cases, which are shown in Appendix (although the results of Case I, Case VIII and Case IX are already widely known). For other cases, let the function relationship between \(\rho_x \) and \(\rho_z \) be approximated by an \(n \)th-order polynomial:

\[
\rho_x = G(\rho_z) \simeq \sum_{k=0}^{n} b_k \rho_z^k, \quad (33)
\]

Because \(\rho_z \in [-1, 1] \), according to Weierstrass approximation theorem\[11\], \(G(\cdot) \) can be approximated as closely as desired by a polynomial function of \(\rho_z \). However, Runge’s theorem states that a polynomial of too high degree would cause oscillation at the edges of the interval, which means going to higher degrees does not always improve accuracy\[12\]. Therefore, an appropriate degree of the polynomial should be chosen, such that \(G(\cdot) \) can be well approximated. But this task may be difficult to perform in a theoretical way. Here, an empirical method is developed to determine the degree \(n \).

Start from \(j = 1 \), establish a 1th-order polynomial by the proposed method, then, increase the degree \(j \) in a step of \(\Delta n \), obtain a polynomial sequence:

\[
P_1(\rho_z) = \sum_{k=0}^{1} b_k \rho_z^k, \\
P_{1+\Delta n}(\rho_z) = \sum_{k=0}^{1+\Delta n} b_k \rho_z^k \\
\vdots \\
P_j(\rho_z) = \sum_{k=0}^{j} b_k \rho_z^k \\
P_{j+\Delta n}(\rho_z) = \sum_{k=0}^{j+\Delta n} b_k \rho_z^k \\
\vdots
\]

Choosing a set values of \(\rho_z,i \) on interval \([-1, 1]\) in steps of \(\Delta \rho_z \) (say, \(\Delta \rho_z = \)
0.01, then \(i = 1, 2, \ldots, 201 \), then evaluate the difference between two neighbouring polynomials, and select the maximum one:

\[
\Delta P_j = \max \{|P_{j}(\rho_{z,i}) - P_{j+\Delta n}(\rho_{z,i})|\}, \ i = 1, 2, \ldots, 201.
\]

(34)

\(\Delta P_j \) denotes the maximum difference between a \(j \)th-order polynomial and a \((j + \Delta n)\)th-order polynomial.

Set an small error bound \(\delta \) for \(\Delta P_j \) (say \(\delta = 10^{-4} \)), and a polynomial with a value of \(\Delta P_j < \delta \) can be expected to give a good approximation of \(G(\rho_z) \). Suppose the optimal degree of the polynomial is \(n \), the underlying assumption is that as the degree \(j \) \((j \leq n)\) increases, the sequence would converge to an optimum polynomial, whose difference to the neighbouring polynomial should not be significant. Here is an example to illustrate this method.

Suppose \(x_i \) and \(x_j \) follow Uniform distributions, then (see Table 5):

\[
\rho_x = G(\rho_z) = \frac{6}{\pi} \arcsin\left(\frac{\rho_z}{2}\right),
\]

(35)

Define:

\[
\Delta P^*_j = \max \left\{ \left| P_{j}(\rho_{z,i}) - \frac{6}{\pi} \arcsin\left(\frac{\rho_{z,i}}{2}\right) \right| \right\}, \ i = 1, 2, \ldots, 201.
\]

(36)

\(\Delta P^*_j \) denotes the difference between a \(j \)th-order polynomial and the theoretical formula.

Degree \(j \)	\(\Delta P_j \)	\(\Delta P^*_j \)
1	0.33	0.40
3	0.054	0.065
5	0.0091	0.011
7	\(1.6 \times 10^{-3} \)	\(2.0 \times 10^{-3} \)
9	\(3.1 \times 10^{-4} \)	\(3.9 \times 10^{-4} \)
11	\(6.2 \times 10^{-5} \)	\(7.9 \times 10^{-5} \)
13	\(1.3 \times 10^{-5} \)	\(1.6 \times 10^{-5} \)
15	\(2.7 \times 10^{-6} \)	\(3.5 \times 10^{-6} \)
17	\(6.0 \times 10^{-7} \)	\(7.7 \times 10^{-7} \)

Table 1: The values of \(\Delta P_j \) and \(\Delta P^*_j \) for \(U(0, 1) \sim U(0, 1) \)

Start from 1th-order polynomial, increase the degree of the polynomial in steps of \(\Delta n = 2 \), and establish polynomials as described in Section 2, then, calculate \(\Delta P_j \) and \(\Delta P^*_j \). Several values are chosen and presented in Table 1.
As can be seen, the variation of ΔP_j agrees with the variation of ΔP_j^*, and a 9th-order polynomial can give a good approximation of $G(\rho_z)$. Testing for other eight cases in Table 5, this method stands a decent chance of finding a well-performing polynomial.

6. Comparison with linear search method

Rewrite Eq. (3) in following form:

$$\rho_x = -\frac{\mu_i \mu_j}{\sigma_i \sigma_j} + \frac{1}{\sigma_i \sigma_j} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_i^{-1}[\Phi(z_i)] F_j^{-1}[\Phi(z_j)] \phi(z_i, z_j, \rho_z) dz_i dz_j, \quad (37)$$

because the function relationship between ρ_z and ρ_x is continuous and strictly increasing\[7, 10\], and ρ_z is located in $[-1, 1]$, for a given ρ_x, ρ_z can also be determined through a linear search method.

Suppose it requires to determine ρ_z for $\rho_x = \rho_x^*$, and a bisection method is employed to find the root of the integral equation in Eq. (37). If the error bound of the result is ε, it would need to evaluate the double integral T times at T different values of ρ_z ($T = [1 - \log_2 \varepsilon]$, if $\varepsilon = 10^{-3}$, $T = 11$).

6.1. Continuous case

If x_i and x_j are both continuous random variables, substitute $x_i = u_i$, $x_j = \rho_z u_i + \sqrt{1 - \rho_z^2} u_j$ into Eq. (37):

$$\rho_x = -\frac{\mu_i \mu_j}{\sigma_i \sigma_j} + \frac{1}{\sigma_i \sigma_j} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_i^{-1}[\Phi(u_i)] F_j^{-1}[\Phi(\rho_z u_i + \sqrt{1 - \rho_z^2} u_j)] \phi(u_i) \phi(u_j) du_i du_j. \quad (38)$$

Employ a two-fold Gauss-Hermite quadrature with m points to calculate the integral in Eq. (38), and use the bisection method to determine ρ_z, then, the calculation times of $F_i^{-1}[\Phi(\cdot)]$ is m, and the calculation times of $F_j^{-1}[\Phi(\cdot)]$ would be Tm^2, thus, the calculation times of $F_i^{-1}[\Phi(\cdot)]$ and $F_j^{-1}[\Phi(\cdot)]$ are $(Tm^2 + m)$.

The linear search method is developed under the assumption that the double integral can be accurately calculated by Gauss-Hermite quadrature, that’s to say, the functions $F_i^{-1}[\Phi(\cdot)]$ and $F_j^{-1}[\Phi(\cdot)]$ can be well approximated by Eq. (13) ($n = m$). Then, an mth-order polynomial in Eq. (15) can also be used to approximate the function relationship between ρ_x and ρ_z, and
(m + 1) values of \(a_{i,k_i} \) and (m + 1) values of \(a_{j,k_j} \) \((k_i, k_j = 0, \ldots, m)\) should be calculated by integrals in Eq.(10) with respect to \(F^{-1}_i[\Phi(\cdot)] \) and \(F^{-1}_j[\Phi(\cdot)] \) respectively.

For an \(m \)th-order Hermite polynomial, all the integrals in Eq.(10) can be accurately calculated by a Gauss-Hermite quadrature with \((m + 1)\) points, which has an algebraic accuracy with degree \((2m + 1)\). For the proposed method, the calculation times of \(F^{-1}_i[\Phi(\cdot)] \) and \(F^{-1}_j[\Phi(\cdot)] \) is \((m + 1)\) respectively, totaling \((2m + 2)\) times. Compared to the linear search method, \((Tm^2 - m - 2)\) calculation times are saved. For many distributions, the calculation of \(F^{-1}_i[\Phi(\cdot)] \) involves numerical approaches, and the proposed method would be more efficient than the linear search method.

6.2. Discrete case

If \(x_i \) and \(x_j \) are discrete variables, suppose the support of \(x_i \) is \(\{X_{i,k_i}\} \) \((k_i = 1, \ldots, N_i)\), the support of \(x_j \) is \(\{X_{j,k_j}\} \) \((k_j = 1, \ldots, N_j)\). By the marginal transformation in Eq.(17), \(\{Z_{i,k_i}\} \) \((k_i = 0, 1, \ldots, N_i)\) and \(\{Z_{j,k_j}\} \) \((k_j = 0, 1, \ldots, N_j)\) are obtained, whereby Eq.(37) is decomposed into a sum in Eq.(20). If \(\rho_z \) is determined by a bisection method, it needs to calculate \(\Phi(z_i, z_j, \rho_z) \) \(4TN_iN_j\) times.

For the proposed method, if an \(n \)th-order Taylor series in Eq.(23) is employed, it requires to evaluate the values of \(0 - (n - 1)\)th order Hermite polynomials and \(\phi(\cdot) \) at \((N_i + N_j + 2)\) points of \(\{Z_{i,k_i}\} \) and \(\{Z_{j,k_j}\} \) respectively (see Eq.(22) and Eq.(24)), and the calculation times of Hermite polynomials and \(\phi(\cdot) \) are \(2(n - 1)(N_i + N_j + 2)\) respectively (note that the 0th-order Hermite polynomials is 1).

Because the calculation of Hermite polynomials and \(\phi(\cdot) \) is more efficient than the calculation of \(\Phi(z_i, z_j, \rho_z) \), when \(N_i \) or \(N_j \) is large, a lot of computational time can be saved by the proposed method.

6.3. Mixed case

If a discrete variable and a continuous variable are involved, let \(x_i \) be the discrete one. Suppose the support of \(x_i \) is \(\{X_{i,k_i}\} \) \((k_i = 1, \ldots, N_i)\). According to Eq.(17) and Eq.(38), it has:

\[
\rho_x = -\frac{\mu_1\mu_2}{\sigma_1\sigma_2} + \frac{1}{\sigma_1\sigma_2} \sum_{k_i=1}^{N_i} X_{i,k_i} \int_{-\infty}^{+\infty} \left\{ \int_{Z_{i,k_i}}^{Z_{i,k_i+1}} F_j^{-1}[\Phi(\rho_x u_i + \sqrt{1 - \rho_x^2 u_j})] \phi(u_i) du_i \right\} \phi(u_j) du_j
\]
Suppose the outer integral is calculated by an m_1-point Gauss-Hermite quadrature, the inner integral is calculated by an m_2-point Gauss-Legendre quadrature, the calculation times of $F_j^{-1}[\Phi(\cdot)]$ would be $TN_im_1m_2$ for bisection method.

If an nth-order Taylor series in Eq.(23) is employed, it requires to calculate $F_j^{-1}[\Phi(\cdot)] (n + 1)$ times, $0 - n$th order Hermite polynomials $n(N_i + 1)$ times and $\phi(\cdot) n(N_i + 1)$ times (suppose the integral in Eq.(32) is calculated by Gauss-Hermite quadrature with $(n + 1)$ points).

7. Examples

Suppose x_i and x_j both follow Beta distribution $Beta(2, 3)$. Several values of ρ_x are selected, the corresponding values of ρ_z are determined by linear search method in[6] with error bound $\varepsilon = 10^{-3}$, interpolation method in[13] and proposed method respectively. The integral in Eq.(38) is calculated by a two-fold Gauss-Hermite quadrature with 11 points. The Monte Carlo(MC) method with 10^6 points in[13] is employed to provide benchmark. Along with computational time, the results are summarized in Table 2.

ρ_x	Benchmark	Linear search	Interpolation	Proposed method
-0.9	-0.914	-0.915	-0.914	-0.914
-0.6	-0.611	-0.611	-0.611	-0.611
-0.3	-0.306	-0.306	-0.306	-0.306
0.3	0.304	0.304	0.304	0.304
0.6	0.606	0.606	0.606	0.606
0.9	0.904	0.903	0.903	0.903

Time (s) — 12.2 (8795) 1.48 (1100) 0.015 (11)

The numerical experiment is performed in MATLAB on a 2.3 GHz Intel Core i3-2350M computer with 3 GB of RAM. As discussed in Section 6.1, the efficiency of these three methods links directly to the calculation times of the function $F_j^{-1}[\Phi(\cdot)]$, which are presented in the brackets in the last row of Table 2. All three methods yield results of the same level of accuracy, but the proposed method is more efficient than other two methods.
Here, two example associated with the discrete case is performed. Suppose \(x_i \) and \(x_j \) both follow Binomial distribution \(B(n, p) \). Two scenarios: \(n = 2, \ p = 0.2 \) and \(n = 20, \ p = 0.2 \) are considered. Using the method in Section 5 (\(\Delta n = 2, \ \delta = 10^{-4} \)), for the case of \(B(2, 0.2) \), it takes 0.014 seconds to determine that a 23rd-order Taylor series in Eq. (23) should be employed to approximated \(G(\cdot) \); for the case of \(B(20, 0.2) \), a 3rd-order Taylor series should be employed, and the computational time is 0.068 seconds. Choose several values of \(\rho_x, \rho_z \) are calculated by the proposed method and NI1 method in [7]. With benchmark from MC method (\(10^6 \) points), the results are presented in Table 3.

Table 3: The values of \(\rho_z \) for \(B(2, 0.2) \sim B(2, 0.2) \) and \(B(20, 0.2) \sim B(20, 0.2) \)

\(\rho_x \)	\(B(2, 0.2) \sim B(2, 0.2) \)	\(B(20, 0.2) \sim B(20, 0.2) \)					
Benchmark	\(n = 23 \)	NI1	Benchmark	\(n = 3 \)	NI1		
-0.5	-0.947	-0.946	-0.946	-0.9	-0.939	-0.938	-0.938
-0.3	-0.501	-0.501	-0.501	-0.6	-0.624	-0.624	-0.624
-0.2	-0.322	-0.322	-0.322	-0.3	-0.311	-0.311	-0.311
0.3	0.418	0.418	0.418	0.3	0.310	0.310	0.310
0.6	0.769	0.769	0.769	0.6	0.618	0.618	0.618
0.8	0.944	0.943	0.943	0.9	0.925	0.925	0.925

Time (s) | – | 0.014 | 0.21 | Time (s) | – | 0.068 | 10.5 |

For the case of \(B(2, 0.2) \), both methods are efficient, but as discussed in Section 6.2, the computational time of NI1 method increases sharply for the case of \(B(20, 0.2) \).

Finally, two examples for the mixed case are performed. Suppose \(x_i \) follows Binomial distribution \(B(2, 0.2) \) or \(B(20, 0.2) \), \(x_j \) follows Beta distribution \(Beta(2, 3) \). MC method with \(10^6 \) points are employed to provide benchmark. Except for the proposed method, a bisection search method based on Eq. (39) is also employed to determine \(\rho_z \), and the inner integral is calculated by an 11-point Gauss-Legendre quadrature, the outer integral is calculated by an 11-point Gauss-Hermite quadrature. The error bound is \(\varepsilon = 10^{-3} \). The results are presented in Table 4.

Compared to the former two examples, the linear search method takes a lot more time, because the calculation of \(F_j^{-1}[\Phi(\cdot)] \) has been performed 21 054 times for the case of \(B(2, 0.2) \sim Beta(2, 3) \) and 147 378 times for the case of \(B(20, 0.2) \sim Beta(2, 3) \).
Table 4: The values of ρ_z for $B(2, 0.2) \sim Beta(2, 3)$ and $B(20, 0.2) \sim Beta(2, 3)$

ρ_x	$B(2, 0.2) \sim Beta(2, 3)$	$B(20, 0.2) \sim Beta(2, 3)$
	Benchmark $n = 7$ Eq.(39)	Benchmark $n = 5$ Eq.(39)
-0.7	-0.890	-0.928
-0.5	-0.632	-0.618
-0.3	-0.377	-0.309
0.3	0.366	0.308
0.5	0.603	0.613
0.8	0.945	0.916

Time (s) — 0.023 32.9 Time (s) — 0.053 222.5

8. Conclusion

This paper attempts to determine the equivalent correlation coefficient ρ_z for Gaussian copula. For the continuous random variable, the marginal transformation is approximated by a weighted sum of Hermite polynomials; for the discrete random variable, the marginal transformation is decomposed into piecewise continuous ones. Using Mehler’s formula and Taylor series, a polynomial of ρ_z is developed to approximate the function relationship between ρ_z and ρ_x. The numerical examples show the efficiency and accuracy of the proposed method.

9. Appendix

Using Hermite polynomials and Mehler’s formula, the function relationship between ρ_x and ρ_z can be determined analytically for a few cases (see Table 5).

9.1. Hermite polynomials expansion of some functions

For Hermite polynomials, the following equations hold:

$$\int_{-\infty}^{+\infty} H_k(z)\Phi(z)\phi(z)dz = \begin{cases} \frac{1}{2} & k = 0 \\ 0 & k = 2n + 2 \\ \frac{(-1)^n(2n)!}{\sqrt{4\pi}4^n n!} & k = 2n + 1 \end{cases}$$

(40)
Using Eq. (40), an Hermite polynomial expansion of \(\Phi(z)\) can be obtained:

\[
\Phi(z) = \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} \frac{H_k(z)\Phi(z)\phi(z)dz}{k!} = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{(-1)^nH_{2n+1}(z)}{\sqrt{4\pi(2n+1)}4^n n!}.
\]

(43)

Using Eq. (42), the Hermite polynomial expansion of \(e^{az}\) is:

\[
e^{az} = \sum_{k=0}^{\infty} \int_{-\infty}^{+\infty} \frac{e^{az} H_k(z)\phi(z)dz}{k!} H_k(z) = e^{\frac{a^2}{2}} \sum_{k=0}^{\infty} \frac{a^k}{k!} H_k(z).
\]

(44)

9.1.1. Proof of Eq. (40)

Consider the Taylor series of \(\phi(z)\):

\[
\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} = \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{n! 2^n},
\]

(45)
then,

\[\Phi(z) = \int_{-\infty}^{z} \phi(t) dt = \int_{-\infty}^{0} \phi(t) dt + \int_{0}^{z} \phi(t) dt = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)2^n n!}. \]

(46)

The generating function of Hermite polynomials is:

\[e^{tz - \frac{t^2}{2}} = \sum_{k=0}^{\infty} H_k(z) \frac{t^k}{k!}. \]

(47)

Then:

\[\int_{-\infty}^{+\infty} e^{tz - \frac{t^2}{2}} \Phi(z) \phi(z) dz = \int_{-\infty}^{+\infty} \sum_{k=0}^{\infty} H_k(z) \frac{t^k}{k!} \Phi(z) \phi(z) dz = \sum_{k=0}^{\infty} \int_{-\infty}^{+\infty} H_k(z) \Phi(z) \phi(z) dz \cdot \frac{t^k}{k!}. \]

(48)

On the other hand:

\[\int_{-\infty}^{+\infty} e^{tz - \frac{t^2}{2}} \Phi(z) \phi(z) dz = \int_{-\infty}^{+\infty} \Phi(z) \phi(z - t) dz = \int_{-\infty}^{+\infty} \Phi(u + t) \phi(u) du = \Phi\left(\frac{t}{\sqrt{2}}\right). \]

(49)

The last step is due to the formula 10010.8 in [14]. Then, using Eq.(46), Eq.(49) can be expressed as:

\[\int_{-\infty}^{+\infty} e^{tz - \frac{t^2}{2}} \Phi(z) \phi(z) dz = \Phi\left(\frac{t}{\sqrt{2}}\right) = \frac{1}{2} + \frac{1}{\sqrt{4\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)4^n n!}. \]

(50)

According to Eq.(48) and Eq.(50), it has:

\[\sum_{k=0}^{\infty} \int_{-\infty}^{+\infty} H_k(z) \Phi(z) \phi(z) dz \cdot \frac{t^k}{k!} = \frac{1}{2} + \frac{1}{\sqrt{4\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)4^n n!}. \]

(51)

Match the coefficient of \(t^k \) (\(k = 0, 2n, 2n + 1 \)), Eq.(40) can be obtained.
9.1.2. Proof of Eq.(41)

The proof of Eq.(41) is similar:

\[\int_0^\infty e^{tz - \frac{t^2}{2}} \phi(z) dz = \int_0^\infty \sum_{k=0}^\infty H_k(z) \frac{t^k}{k!} \phi(z) dz = \sum_{k=0}^\infty \int_0^\infty H_k(z) \phi(z) dz \cdot \frac{t^k}{k!}. \quad (52) \]

The left hand side of Eq.(52) can be calculated as:

\[\int_0^\infty e^{tz - \frac{t^2}{2}} \phi(z) dz = \int_0^\infty \phi(z-t) dz = \int_{-t}^\infty \phi(u) du = 1 - \Phi(-t). \quad (53) \]

Substitute Eq.(46) and Eq(52) into Eq.(53):

\[\sum_{k=0}^\infty \int_0^\infty H_k(z) \phi(z) dz \cdot \frac{t^k}{k!} = \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \sum_{n=0}^\infty \frac{(-1)^n t^{2n+1}}{(2n+1)2^n n!}. \quad (54) \]

Match the coefficient of \(t^k\), Eq.(41) can be obtained.

9.1.3. Proof of Eq.(42)

Using the generating function in Eq.(47), Eq.(42) can also be proved.

\[\int_{-\infty}^{+\infty} e^{az} e^{tz - \frac{t^2}{2}} \phi(z) dz = \sum_{k=0}^\infty \int_{-\infty}^{+\infty} e^{az} H_k(z) \phi(z) dz \cdot \frac{t^k}{k!}, \quad (55) \]

and

\[\int_{-\infty}^{+\infty} e^{az} e^{tz - \frac{t^2}{2}} \phi(z) dz = \int_{-\infty}^{+\infty} e^{az} \phi(z-t) dz = e^{at} \int_{-\infty}^{+\infty} e^{au} \phi(u) du = e^{at} \cdot e^{\frac{a^2}{2}}. \quad (56) \]

The last step is due to the formula 1000n0 in [14]. Then:

\[\sum_{k=0}^\infty \int_{-\infty}^{+\infty} e^{az} H_k(z) \phi(z) dz \cdot \frac{t^k}{k!} = e^{at} \cdot e^{\frac{a^2}{2}} = e^{a^2} \sum_{k=0}^\infty \frac{a^k t^k}{k!}. \quad (57) \]

Match the coefficient of \(t^k\), Eq.(42) can be obtained.

Although it may be a little out the scope of this paper, following this idea, the Hermite polynomial expansions of several elementary functions are obtained (Table 6). A point worth noting is that all these functions are closely
Using these formulae, the Fourier series for \(\varphi \) and Hermite polynomial expansions are similar to their Taylor expansions.

\[
\begin{array}{c|c|c}
\text{Functions} & \text{Hermite polynomial expansions} & \text{Taylor expansions} \\
\hline
\Phi(ax) & \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} \left(\frac{a}{\sqrt{1+a^2}} \right)^{2n+1} e^{-ax^2} \cos(ax) & \frac{1}{2} + \frac{1}{\sqrt{2\pi}} \sum_{n=0}^{\infty} (-1)^n a^{2n+1} x^{2n+1} \\
\phi(ax) & \frac{1}{\sqrt{2\pi a}} \sum_{n=0}^{\infty} \left(\frac{a}{\sqrt{1+a^2}} \right)^{2n} \cdot (-1)^n \frac{H_{2n}(x)}{2^n n!} & \sum_{n=0}^{\infty} (-1)^n a^{2n} x^{2n} \\
e^{ax} & e^{ax} \sum_{n=0}^{\infty} \frac{a^n H_n(x)}{n!} & \sum_{n=0}^{\infty} a^n x^n \\
sinh(ax) & e^{\frac{a^2}{2} x^2} \sum_{n=0}^{\infty} \frac{a^{2n+1} H_{2n+1}(x)}{(2n+1)!} & \sum_{n=0}^{\infty} a^{2n+1} x^{2n+1} \\
cosh(ax) & e^{\frac{a^2}{2} x^2} \sum_{n=0}^{\infty} \frac{a^{2n} H_{2n}(x)}{(2n)!} & \sum_{n=0}^{\infty} a^{2n} x^{2n} \\
sin(ax) & e^{-\frac{a^2}{2} x^2} \sum_{n=0}^{\infty} \frac{(-1)^n a^{2n+1} H_{2n+1}(x)}{(2n+1)!} & \sum_{n=0}^{\infty} (-1)^n a^{2n} x^{2n+1} \\
cos(ax) & e^{-\frac{a^2}{2} x^2} \sum_{n=0}^{\infty} \frac{(-1)^n a^{2n} H_{2n}(x)}{(2n)!} & \sum_{n=0}^{\infty} (-1)^n a^{2n} x^{2n} \\
\end{array}
\]

related to the exponential function, and Hermite polynomial expansions of these functions are similar to their Taylor expansions.

With results in Table 6, some interesting formulae can be derived:

\[
\begin{align*}
\int_{-\infty}^{\infty} \cos(az) \phi(z) dz &= e^{-\frac{a^2}{2}} \\
\int_{-\infty}^{\infty} \sin(a_1 z_1) \sin(a_2 z_2) \phi(z_1, z_2, \rho_z) dz_1 dz_2 &= \sinh(a_1 a_2 \rho_z) \cdot e^{-\frac{a_1^2 + a_2^2}{2}} \\
\int_{-\infty}^{\infty} \cos(a_1 z_1) \cos(a_2 z_2) \phi(z_1, z_2, \rho_z) dz_1 dz_2 &= \cosh(a_1 a_2 \rho_z) \cdot e^{-\frac{a_1^2 + a_2^2}{2}} \\
\int_{-\infty}^{\infty} \cos(a_1 z_1 - a_2 z_2) \phi(z_1, z_2, \rho_z) dz_1 dz_2 &= e^{-\frac{a_1^2 - 2a_1 a_2 \rho_z + a_2^2}{2}} \\
\int_{-\infty}^{\infty} \cos(a_1 z_1 + a_2 z_2) \phi(z_1, z_2, \rho_z) dz_1 dz_2 &= e^{-\frac{a_1^2 + 2a_1 a_2 \rho_z + a_2^2}{2}}
\end{align*}
\]

(58)

Using these formulae, the Fourier series for \(\phi(z) \) on interval \([-T, T]\) can be obtained analytically. If \(T \) is sufficiently large, then:

\[
\int_{-T}^{T} \cos(az) \phi(z) dz \simeq \int_{-\infty}^{\infty} \cos(az) \phi(z) dz = e^{-\frac{a^2}{2}},
\]

(59)
and the error between these two integrals can be bounded:
\[e^{-\frac{a^2}{2}} - \int_{-T}^{T} \cos(az)\phi(z)dz = 2 \int_{T}^{\infty} \cos(az)\phi(z)dz < 2 \int_{T}^{\infty} \phi(z)dz = 2[1 - \Phi(T)]. \tag{60} \]

Following the routine of calculating coefficients of Fourier series, the Fourier series for \(\phi(z) \) on \([-T \leq z \leq T]\) is:
\[\phi(z) \simeq \frac{1}{2T} + \frac{1}{T} \sum_{k=1}^{n} e^{-\frac{k^2\pi^2}{4T^2} \cos \left(\frac{k \pi}{T} z \right)} \tag{61} \]

The extension to \(n \)-dimensional standard normal distribution is straightforward, the Fourier series for \(\phi(z_1, z_2, \rho_z) \) on \([-T \leq z_1, z_2 \leq T]\) is:
\[\phi(z_1, z_2, \rho_z) \simeq \frac{1}{4T^2} + \frac{1}{2T^2} \sum_{k_1=1}^{n} e^{-\frac{k_1^2\pi^2}{4T^2} \cos \left(\frac{k_1 \pi}{T} z_1 \right)} + \frac{1}{2T^2} \sum_{k_2=1}^{n} e^{-\frac{k_2^2\pi^2}{4T^2} \cos \left(\frac{k_2 \pi}{T} z_2 \right)} + \frac{1}{T^2} \sum_{k_1=1}^{n} \sum_{k_2=1}^{n} e^{-\frac{k_1^2+k_2^2}{2T^2} \pi^2} \left[\cosh \left(\frac{k_1 k_2}{T^2} \pi^2 \rho_z \right) \cos(k_1 z_1) \cos(k_2 z_2) + \sinh \left(\frac{k_1 k_2}{T^2} \pi^2 \rho_z \right) \sin(k_1 z_1) \sin(k_2 z_2) \right] \tag{62} \]

9.2. Proof of the formulae in Table 5

The mean and standard deviation of probability distributions in Table 5 are presented here (Table 7).

Table 7: The mean and standard deviation of listed distributions	Mean	Standard deviation
Uniform distribution \(U(0, 1) \)	\(\frac{1}{2} \)	\(\frac{1}{2\sqrt{3}} \)
Binomial distribution \(B(1, 0.5) \)	\(\frac{1}{2} \)	\(\frac{1}{2} \)
Normal distribution \(N(0, 1) \)	0	1
Lognormal distribution \(lnN(\mu, \sigma^2) \)	\(e^{\mu+\frac{\sigma^2}{2}} \)	\(\sqrt{e^{\sigma^2} - 1}e^{\mu+\frac{\sigma^2}{2}} \)
For Case I, Case II and Case V, the Taylor series of \(\arcsin(x) \) is essential:

\[
\arcsin(x) = \sum_{n=0}^{\infty} \frac{(2n)!x^{2n+1}}{4^n(n!)^2(2n + 1)}, \tag{63}
\]

9.2.1. Case I

For the case of \(U(0, 1) \) and \(U(0, 1) \), using Eq.(43), it has:

\[
\frac{1}{12}\rho_x + \frac{1}{4} = E[\Phi(z_1)\Phi(z_2)]
\]

\[
= E \left[\left(\frac{1}{2} + \sum_{n_i=0\atop n_j=0}^\infty \frac{(-1)^{n_i}H_{2n_i+1}(z_1)}{\sqrt{\pi}(2n_i + 1)4^n n_i!} \right) \left(\frac{1}{2} + \sum_{n_j=0}^\infty \frac{(-1)^{n_j}H_{2n_j+1}(z_2)}{\sqrt{\pi}(2n_j + 1)4^n n_j!} \right) \right]
\]

\[
= \frac{1}{4} + E \left[\left(\sum_{n_i=0}^\infty \frac{(-1)^{n_i}H_{2n_i+1}(z_1)}{\sqrt{\pi}(2n_i + 1)4^n n_i!} \right) \left(\sum_{n_j=0}^\infty \frac{(-1)^{n_j}H_{2n_j+1}(z_2)}{\sqrt{\pi}(2n_j + 1)4^n n_j!} \right) \right]
\]

\[
= \frac{1}{4} + \frac{1}{4\pi} \sum_{n_i=0}^\infty \sum_{n_j=0}^\infty E \left[\left(\frac{(-1)^{n_i}H_{2n_i+1}(z_1)}{(2n_i + 1)4^n n_i!} \right) \left(\frac{(-1)^{n_j}H_{2n_j+1}(z_2)}{(2n_j + 1)4^n n_j!} \right) \right] \tag{64}
\]

The third step is due to that, if \(z \) is a standard normal variable, \(E[H_{2n+1}(z)] = 0 \) (see Eq.(65)):

\[
H_k(z) = \begin{cases}
(2n)! \sum_{s=0}^{n} \frac{(-1)^{n-s}}{(n-s)2^{n-s}} \cdot \frac{z^{2s}}{(2s)!} & k = 2n \\
(2n + 1)! \sum_{s=0}^{n} \frac{(-1)^{n-s}}{(n-s)2^{n-s}} \cdot \frac{z^{2s+1}}{(2s+1)!} & k = 2n + 1.
\end{cases} \tag{65}
\]

With Mehler’s formula in Eq.(12), Eq.(64) becomes:

\[
\rho_x = \frac{3}{\pi} \sum\limits_{\substack{n_i=0\atop n_j=0}}^{\infty} \sum\limits_{k=0}^{\infty} E \left[\left(\frac{(-1)^{n_i}H_{2n_i+1}(z_1)}{(2n_i + 1)4^n n_i!} \right) \left(\frac{(-1)^{n_j}H_{2n_j+1}(z_2)}{(2n_j + 1)4^n n_j!} \right) \right]
\]

\[
= \frac{3}{\pi} \sum\limits_{\substack{n_i=0\atop n_j=0}}^{\infty} \sum\limits_{k=0}^{\infty} \rho_k^x \frac{k!}{k} \int_{-\infty}^{+\infty} \frac{(-1)^{n_i}H_{2n_i+1}(z_1)}{(2n_i + 1)4^n n_i!} \phi(z_1)H_k(z_1)dz_1 \\
\int_{-\infty}^{+\infty} \frac{(-1)^{n_j}H_{2n_j+1}(z_2)}{(2n_j + 1)4^n n_j!} \phi(z_2)H_k(z_2)dz_2 \tag{66}
\]

\]
According to Eq.(7), the integrals are not 0 if and only if \(2n_i+1 = k = 2n_j+1\). Denote \(k = 2n + 1\), then:

\[
\rho_x = \frac{3}{\pi} \sum_{n=0}^{\infty} \frac{\rho_z^{2n+1}}{(2n+1)!} \cdot \frac{(-1)^n(2n+1)!}{(2n+1)4^n n!} \cdot \frac{(-1)^n(2n+1)!}{(2n+1)4^n n!} = \frac{3}{\pi} \sum_{n=0}^{\infty} \frac{\rho_z^{2n+1}(2n)!}{2^n 4^n (n!)^2 (2n + 1)}
\]

\[
= \frac{6}{\pi} \sum_{n=0}^{\infty} \frac{(\frac{\rho_z}{2})^{2n+1}(2n)!}{4^n n! (2n + 1)} = \frac{6}{\pi} \arcsin \left(\frac{\rho_z}{2} \right),
\]

(67)

\[
\rho_z = 2 \sin \left(\frac{\pi}{6} \rho_x \right)
\]

(68)

Another two proofs of Eq.(68) can be found in [15, 16].

9.2.2. Case II

For the case of \(U(0, 1)\) and \(B(1, 0.5)\), using Mehler’s formula in Eq.(12), it has:

\[
\rho_x \frac{1}{4\sqrt{3}} + \frac{1}{4} = \int_{-\infty}^{\infty} \int_{0}^{\infty} \Phi(z_1) \phi(z_1, z_2, \rho_z) dz_2 dz_1
\]

\[
= \sum_{k=0}^{\infty} \frac{\rho_z^k}{k!} \int_{-\infty}^{\infty} \Phi(z_1) \phi(z_1) H_k(z_1) dz_1 \cdot \int_{0}^{\infty} \phi(z_2) H_k(z_2) dz_2.
\]

(69)

Using Eqs.(40)(41), it has:

\[
\rho_x \frac{1}{4\sqrt{3}} + \frac{1}{4} = \frac{1}{4} + \sum_{n=0}^{\infty} \frac{(2n)!\rho_z^{2n+1}}{2\sqrt{2} 2^n \pi 4^n n! (2n + 1)},
\]

(70)

and

\[
\rho_x = \frac{2\sqrt{3}}{\pi} \sum_{n=0}^{\infty} \frac{(2n)! (\frac{\rho_z}{\sqrt{2}})^{2n+1}}{4^n n! (2n+1)} = \frac{2\sqrt{3}}{\pi} \arcsin \left(\frac{\rho_z}{\sqrt{2}} \right),
\]

(71)

\[
\rho_z = \sqrt{2} \sin \left(\frac{\pi}{2\sqrt{3}} \rho_x \right).
\]

(72)
9.2.3. Case III

For the case of $U(0, 1)$ and $N(0, 1)$, using Eq.(7), Eq.(12) and Eq.(40), it has:

$$
\rho_x \frac{1}{2\sqrt{3}} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Phi(z_1) z_2 \phi(z_1, z_2, \rho_z) dz_2 dz_1 \\
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Phi(z_1) z_2 \phi(z_1) \phi(z_2) \sum_{k=0}^\infty \frac{\rho_z^k}{k!} H_k(z_1) H_k(z_2) dz_2 dz_1 \\
= \sum_{k=0}^\infty \frac{\rho_z^k}{k!} \int_{-\infty}^{+\infty} \Phi(z_1) H_k(z_1) \phi(z_1) dz_1 \int_{-\infty}^{+\infty} z_2 H_k(z_2) \phi(z_2) dz_2
$$

(73)

Then:

$$
\rho_x = \sqrt{\frac{3}{\pi}} \rho_z \leftrightarrow \rho_z = \sqrt{\frac{\pi}{3}} \rho_x.
$$

(74)

9.2.4. Case IV

For the case of $U(0, 1)$ and $lnN(\mu_2, \sigma_2^2)$, using Eq.(12), Eq.(40) and Eq.(44), it has:

$$
\rho_x \sqrt{e^{\sigma_2^2} - 1} e^{\mu_2 + \frac{\sigma_2^2}{2}} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \Phi(z_1) e^{\mu_2 + \sigma_2 z_2} \phi(z_1, z_2, \rho_z) dz_2 dz_1 \\
= e^{\mu_2 + \frac{\sigma_2^2}{2}} \sum_{k_2=0}^\infty \sum_{k=0}^\infty \frac{\rho_z^k}{k!} \int_{-\infty}^{+\infty} \Phi(z_1) H_k(z_1) \phi(z_1) dz_1 \cdot \int_{-\infty}^{+\infty} \frac{\sigma_2^k}{k!} H_k(z_2) H_k(z_2) \phi(z_2) dz_2 \\
= e^{\mu_2 + \frac{\sigma_2^2}{2}} \sum_{k_2=0}^\infty \sum_{k=0}^\infty \frac{\rho_z^k}{k!} \left(\sum_{n=0}^\infty \frac{(-1)^n (2n)!}{\sqrt{4\pi 4^n n!}} \right) \cdot \int_{-\infty}^{+\infty} \frac{\sigma_2^k}{k!} H_k(z_2) H_k(z_2) \phi(z_2) dz_2 \\
= e^{\mu_2 + \frac{\sigma_2^2}{2}} \left(\frac{1}{2} + \sum_{n=0}^\infty \frac{(-1)^n (2n)!}{\sqrt{4\pi 4^n n!}} \cdot \frac{\rho_z^{2n+1}}{(2n+1)!} \cdot \sigma_2^{2n+1} \right) \\
= e^{\mu_2 + \frac{\sigma_2^2}{2}} \Phi\left(\frac{\sigma_2 \rho_z}{\sqrt{2}} \right)
$$

(75)

The last step is due to Eq.(50). Then:

$$
\rho_x = \frac{2\sqrt{3} \Phi\left(\frac{\sigma_2 \rho_z}{\sqrt{2}} \right) - \sqrt{3}}{e^{\sigma_2^2} - 1}.
$$

(76)

22
9.2.5. Case V

For the case of $B(1, 0.5)$ and $B(1, 0.5)$, using Eq.(12) and Eq.(41), it has:

$$\rho_x \frac{1}{4} + \frac{1}{4} = \int_0^{+\infty} \int_0^{+\infty} \phi(z_1, z_2, \rho_z) dz_2 dz_1$$

$$= \sum_{k=0}^{\infty} \frac{\rho_z^k}{k!} \int_0^{+\infty} \phi(z_1) H_k(z_1) dz_1 \cdot \int_0^{+\infty} \phi(z_2) H_k(z_2) dz_2$$

$$= \frac{1}{4} + \sum_{n=0}^{\infty} \frac{\rho_z^{2n+1}}{(2n+1)!} \cdot \frac{(-1)^n(2n)!}{\sqrt{2\pi}2^n n!} \cdot \frac{(-1)^n(2n)!}{\sqrt{2\pi}2^n n!},$$

then:

$$\rho_x = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(2n)!\rho_z^{2n+1}}{4^n(n!)^2(2n+1)} = \frac{2}{\pi} \arcsin(\rho_z),$$

$$\rho_z = \sin \left(\frac{\pi}{2} \rho_x \right).$$

Eq.(79) can also be proved in another way. Consider the derivative of ρ_x with respect to ρ_z:

$$\frac{d\rho_x}{d\rho_z} = \frac{2}{\pi} \cdot \frac{1}{\sqrt{1 - \rho_z^2}} \rightarrow \frac{d\rho_x}{d\rho_z} = \frac{2}{\pi} \cdot \frac{d(\arcsin(\rho_z))}{d\rho_z}.$$

Then, $\rho_x = \frac{2}{\pi} \arcsin(\rho_z) + C$. Because $\rho_z = 0$ implies $\rho_x = 0$, thus, $C = 0$, and the function relationship between ρ_z and ρ_x is:

$$\rho_z = \sin \left(\frac{\pi}{2} \rho_x \right).$$
9.2.6. Case VI

For the case of $B(1, 0.5)$ and $N(0, 1)$, using Eq.(7), Eq.(12) and Eq.(41), it has:

\[\rho_x \frac{1}{2} = \int_0^{+\infty} \int_{-\infty}^{+\infty} z_2 \phi(z_1, z_2, \rho_z) dz_2 dz_1 \]
\[= \sum_{k=0}^{\infty} \frac{\rho_z^k}{k!} \int_0^{+\infty} H_k(z_1) dz_1 \cdot \int_{-\infty}^{+\infty} z_2 H_k(z_2) \phi(z_2) dz_2 \]
\[= \sum_{k=0}^{\infty} \frac{\rho_z^k}{k!} \left(\sum_{k=0}^{\infty} \frac{(-1)^n (2n)!}{\sqrt{2\pi 2^n n!}} \right) \cdot \int_{-\infty}^{+\infty} z_2 H_k(z_2) \phi(z_2) dz_2 \]
\[= \sqrt{\frac{2}{\pi}} \rho_z , \]

then:
\[\rho_x = \sqrt{\frac{2}{\pi}} \rho_z \Leftrightarrow \rho_z = \sqrt{\frac{\pi}{2}} \rho_x . \]

9.2.7. Case VII

For the case of $B(1, 0.5)$ and $lnN(\mu_2, \sigma_2^2)$, using Eq.(12), Eq.(41) and Eq.(44), it has:

\[\rho_x \sqrt{e^{\sigma_z^2} - 1} e^{\mu_2 + \frac{\sigma_2^2}{2}} + \frac{e^{\mu_2 + \frac{\sigma_2^2}{2}}}{2} = \int_{-\infty}^{+\infty} \int_{0}^{+\infty} e^{\mu_2 + \sigma_2 z_2 } \phi(z_1, z_2, \rho_z) dz_1 dz_2 \]
\[= e^{\mu_2 + \frac{\sigma_2^2}{2}} \sum_{k_2=0}^{\infty} \sum_{k=0}^{\infty} \frac{\rho_z^k}{k!} \left(\sum_{k=0}^{\infty} \frac{(-1)^n (2n)!}{\sqrt{2\pi 2^n n!}} \right) \cdot \int_{-\infty}^{+\infty} \frac{\sigma_2^k}{k_2!} H_k(z_2) H_k(z_2) \phi(z_2) dz_2 \]
\[= e^{\mu_2 + \frac{\sigma_2^2}{2}} \frac{1}{2} + \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{\sqrt{2\pi 2^n n!}} \cdot \frac{\rho_z^{2n+1}}{(2n+1)!} \cdot \sigma_2^{2n+1} \]
\[= e^{\mu_2 + \frac{\sigma_2^2}{2}} \Phi(\sigma_2 \rho_z) \]

(84)

The last step is due to Eq.(46). Then:

\[\rho_x = \frac{2 \Phi(\sigma_2 \rho_z) - 1}{\sqrt{e^{\sigma_z^2} - 1}} . \]
9.2.8. Case VIII

For the case of $N(0, 1)$ and $lnN(\mu_2, \sigma_2^2)$, using Eq. (12) and Eq. (44), it has:
\[
\rho_x \sqrt{e^{\sigma_2^2} - 1} e^{\mu_2 + \frac{\sigma_2^2}{2}} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} z_1 e^{\mu_2 + \sigma_2^2 z_2} \phi(z_1, z_2, \rho_z) dz_1 dz_2
\]
\[
= e^{\mu_2 + \frac{\sigma_2^2}{2}} \sum_{k_2=0}^{\infty} \frac{\rho_{z_2}^k}{k!} \int_{-\infty}^{+\infty} z_1 H_{k_2}(z_2) \phi(z_1) dz_1
\]
\[
= e^{\mu_2 + \frac{\sigma_2^2}{2}} \sigma_{2z},
\]
then:
\[
\rho_x = \frac{\sigma_{2z}}{\sqrt{e^{\sigma_2^2} - 1}}.
\]

9.2.9. Case IX

For the case of $lnN(\mu_1, \sigma_1^2)$ and $lnN(\mu_2, \sigma_2^2)$, using Eq. (12) and Eq. (44), it has:
\[
\rho_x \sqrt{(e^{\sigma_1^2} - 1)(e^{\sigma_2^2} - 1)} e^{\mu_1 + \mu_2 + \frac{\sigma_1^2}{2} + \frac{\sigma_2^2}{2}} = E[x_1 x_2]
\]
\[
= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{\mu_1 + \sigma_1 z_1} e^{\mu_2 + \sigma_2 z_2} \phi(z_1, z_2, \rho_z) dz_1 dz_2.
\]

Using Eq. (12) and Eq. (44), it has:
\[
E[x_1 x_2] = e^{\mu_1 + \mu_2 + \frac{\sigma_1^2}{2} + \frac{\sigma_2^2}{2}} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{\rho_{z_1}^k \rho_{z_2}^k}{k!} \int_{-\infty}^{+\infty} \frac{\sigma_{1z_1}^{k_1}}{k_1!} H_{k_1}(z_1) H_{k_2}(z_2) \phi(z_1) dz_1
\]
\[
= \sum_{k=0}^{\infty} \frac{\sigma_{1z_1}^{k_1} \sigma_{2z_2}^{k_2} \mu_{z_1}^k}{k!} \int_{-\infty}^{+\infty} \frac{\sigma_{2z_2}^{k_2}}{k_2!} H_{k_2}(z_2) \phi(z_2) dz_2
\]
\[
= e^{\mu_1 + \mu_2 + \frac{\sigma_1^2}{2} + \frac{\sigma_2^2}{2}} \cdot e^{\sigma_1 \sigma_2 \rho_z}.
\]
Then:

\[
\rho_x \sqrt{(e^{\sigma_1^2} - 1)(e^{\sigma_2^2} - 1)} + 1 = e^{\sigma_1 \sigma_2 \rho_x},
\]

\[
\rho_x = \frac{e^{\sigma_1 \sigma_2 \rho_x} - 1}{\sqrt{(e^{\sigma_1^2} - 1)(e^{\sigma_2^2} - 1)}}.
\]

(90)

References

[1] Lebrun R, Dutfoy A. An innovating analysis of the Nataf transformation from the copula viewpoint. Probabilistic Engineering Mechanics 2009;24(3):312–20.

[2] Lebrun R, Dutfoy A. A generalization of the nataf transformation to distributions with elliptical copula. Probabilistic Engineering Mechanics 2009;24(2):172–8.

[3] Der Kiureghian A, Liu PL. Structural reliability under incomplete probability information. Journal of Engineering Mechanics 1986;112(1):85–104.

[4] Zaman K, McDonald M, Mahadevan S. Inclusion of correlation effects in model prediction under data uncertainty. Probabilistic Engineering Mechanics 2013;34:58–66.

[5] Chen HF. Initialization for NORTA: Generation of random vectors with specified marginals and correlations. INFORMS Journal on Computing 2001;13(4):312–31.

[6] Li HS, Lü ZZ, Yuan XK. Nataf transformation based point estimate method. Chinese Science Bulletin 2008;53(17):2586–92.

[7] Avramidis AN, Channouf N, L’Ecuyer P. Efficient correlation matching for fitting discrete multivariate distributions with arbitrary marginals and normal-copula dependence. INFORMS Journal on Computing 2009;21(1):88–106.

[8] Puig B, Poirion F, Soize C. Non-gaussian simulation using hermite polynomial expansion: convergences and algorithms. Probabilistic Engineering Mechanics 2002;17(3):253–64.
[9] Viskov O. On the mehler formula for hermite polynomials. In: Doklady Mathematics; vol. 77. Springer; 2008, p. 1–4.

[10] Avramidis AN. Constructing discrete unbounded distributions with gaussian-copula dependence and given rank correlation. INFORMS Journal on Computing 2013;26(2):269–79.

[11] Saxe K. Beginning functional analysis. Springer-Verlag; 2002.

[12] Süli E, Mayers D. An Introduction to Numerical Analysis. Cambridge: Cambridge University Press; 2003.

[13] Xiao Q. Evaluating correlation coefficient for nataf transformation. Probabilistic Engineering Mechanics 2014;37:1–6.

[14] Owen DB. A table of normal integrals: A table. Communications in Statistics-Simulation and Computation 1980;9(4):389–419.

[15] Hotelling H, Pabst MR. Rank correlation and tests of significance involving no assumption of normality. The Annals of Mathematical Statistics 1936;7(1):29–43.

[16] Baum R. The correlation function of smoothly limited gaussian noise. IRE Transactions on Information Theory 1957;3(3):193–7.