Abstract. Sick sinus syndrome (SSS) encompasses a group of disorders whereby the heart is unable to perform its pacemaker function, due to genetic and acquired causes. Tachycardia-bradycardia syndrome (TBS) is a complication of SSS characterized by alternating tachycardia and brady-
cardia. Techniques such as genetic screening and molecular diagnostics together with the use of pre-clinical models have elucidated the electrophysiological mechanisms of this condition. Dysfunction of ion channels responsible for initiation or conduction of cardiac action potentials may underlie both bradycardia and tachycardia; bradycardia can also increase the risk of tachycardia, and vice versa. The mainstay treatment option for SSS is pacemaker implantation, an effective approach, but has disadvantages such as infection, limited battery life, dislodgement of leads and catheters to be permanently implanted in situ. Alternatives to electronic pacemakers are gene-based bio-artificial sinoatrial node and cell-based bio-artificial pacemakers, which are promising techniques whose long-term safety and efficacy need to be established. The aim of this article is to review the different ion channels involved in TBS, examine the three-way relationship between ion channel dysfunction, tachycardia and bradycardia in TBS and to consider its current and future therapies.

Contents

1. Introduction
2. Ion channels underlying SAN function
3. Tachycardia-bradycardia syndrome results from structural and electrophysiological remodeling
4. Altered ionic currents
5. Abnormal calcium handling
6. Altered intercellular coupling
7. Tissue level mechanisms through remodeling
8. Bradycardia and tachycardia in TBS: Which is the cause?
9. Current and future therapeutic options for TBS
10. Conclusion

1. Introduction

The association between sick sinus syndrome (SSS) and atrial fibrillation (AF) has been recognized for more than 5 decades since 1968 (1) with the first description of tachycardia-bradycardia syndrome (TBS) reported 5 years later (2). Tachycardia complicates approximately 50% of SSS cases (2-4). A related condition, Bayes syndrome, involves inter-atrial block associated with AF (5-15). Our understanding of cardiac electrophysiology has significantly advanced with the use of pre-clinical animal models, which are amenable to
pharmacological, physical or genetic manipulation for studying the consequences of ion channel abnormalities (16-19), and have provided insight for translational application (14,20-25). These studies have identified the roles of different ion channels, such as hyperpolarization-activated, cyclic nucleotide-gated (HCN), Na+ and transient receptor potential (TRP) channels, ryanodine receptors (RyR) and gap junctions (26-28), as well as tissue-level mechanisms, in the pathogenesis of TBS. To understand the molecular basis of how ion channel dysfunction leads to bradycardia or tachycardia, and the causal relationship between bradycardia and tachycardia, the mechanisms responsible for automaticity in the sinoatrial node (SAN) and mediating action potential conduction need to be considered.

2. Ion channels underlying SAN function

Automaticity of SAN is dependent on two closely coupled clocks, voltage- and calcium-dependent mechanisms (Fig. 1) (29). The voltage-dependent mechanism involves the funny current (I$_f$) mediated by HCN channels located at the plasma membrane (30). I$_f$ has several unusual properties for a transmembrane current, including activation by a hyperpolarized voltage, permeability to both Na$^+$ and K$^+$ ions, regulation by intracellular cAMP, and small single channel conductance (31). There are four recognized HCN channel isoforms (1 to 4) (32). HCN4 is the predominant subtype found in the SAN (33,34). By contrast, the Ca$^{2+}$-mediated mechanism involves rhythmic release of Ca$^{2+}$ from the sarcoplasmic reticulum (SR), subsequent reuptake by the SR Ca$^{2+}$-ATPase and extrusion via the Na$^+$-Ca$^{2+}$ exchanger (35). Together, the complex interplay of ion channels and pumps gives rise to the pacemaker action potential (AP), which is uniquely characterized by spontaneous depolarization during phase 4 (Fig. 2).

Na$^+$ channels are found in high numbers in the periphery of the SAN, where they are thought to play a role in exit conduction of APs to the atrium (36,37). Each Na$^+$ channel is formed by a pore-forming α-subunit, a modulatory β-subunit and additional regulatory proteins. The NaV1.5 α-subunit, encoded by SCN5A (38), has four domains (I to IV), each of which contain six transmembrane segments (S1 to S6). The positive-charged S4 segments undergo outward movement upon membrane depolarization, opening the central pore to allow Na$^+$ entry (39,40). The resulting I$_{Na}$ therefore partly determines myocardial excitability and conduction velocity of the APs. Late I$_{Na}$ results in membrane depolarization in the atrial myocardium, which produces fast inactivation, by moving the linker region between domains III and IV to occlude the central pore (41-47). This is followed by slow inactivation, where the P-segment linker sequence between S5 and S6 bends back into the plasma membrane lining the outer region of the pore (48,49). The precision of sodium channel function is vital for the maintenance of transmembrane electrochemical gradient and therefore cardiac function.

Other ion channels are also involved in SAN function, such as HCN channels, predominantly HCN4, carry the I$_f$ current which is a combination of both sodium and potassium currents. Alterations in the highly regulated activation and inactivation of the highly regulated cycle of ion channels, such as an increase in late I$_{Na}$, can lead to arrhythmias (47). A genetic mutation in any part of this complex pathway results in SAN dysfunction leading to arrhythmias (50).

Conduction of APs from one myocyte to the next occurs via gap junctions, each of which consists of two hexamers of connexin (Cx) subunits (51-53). Cx 30.2, 40, 43 and 45 are found in cardiac tissues (54). Cx40 is expressed only in the atria and His-Purkinje system (55,56). Cx43 is expressed throughout the atria and ventricles (57). Cx45 is the predominant isoform found in the core of SAN (58), whereas Cx43, Cx40 and Cx45 are expressed in the periphery (50). However, few gap junctions are found in the SAN core, suggesting that intercellular coupling is not required for synchronization of electrical activity within the node (59,60). The conventional membrane voltage-dependent gating, transjunctional voltage-dependent gating (61), phosphorylation (62-64), intracellular Ca$^{2+}$ (65-68) and pH (69,70) as well as the surrounding lipid environment (71-74) all regulate gap junctional conductance.
3. Tachycardia-bradycardia syndrome results from structural and electrophysiological remodeling

SSS can affect newborns and younger individuals, as well as elderly individuals over 65 years of age (36,75). TBS can be caused by genetic mutations, inflammation, ischaemia or drugs, involving both structural and electrophysiological remodeling (Fig. 3). Broadly, TBS can involve abnormal ion channel function, altered intercellular coupling or tissue level mechanisms.

4. Altered ionic currents

HCN4 is involved in mammalian cardiac pacemaking and is predominantly expressed in the SAN (28). Loss-of-function HCN4 mutations are known to cause atrioventricular (AV) block, long QT syndrome (LQTS), AF, familial TBS and non-compaction cardiomyopathy in addition to sinus bradycardia (76-80). The G1097W HCN4 mutation, which is a loss-of-function mutation resulting in a hyperpolarizing shift of the activation curve and reduced expression levels, demonstrates 4:1 AV block and reflex sinus tachycardia (81). A missense HCN4 mutation was found to lead to impaired trafficking of the channel to the surface membrane, resulting in SSS, long QT and torsade de pointes (82). Some of these phenotypes have been recapitulated in genetically modified mice, making them particularly useful for modeling TBS. For example, HCN4-knockout mice show severe sinus bradycardia complicated by AV block and reflex sinus tachycardia (83). A mutation in ankyrin-B have been generated. Cardiomyocytes isolated from these mice showed altered Ca\(^{2+}\) handling and extrasystoles that presumably arise from delayed afterdepolarizations (98,99). Ankyrin-B normally forms a complex with Na\(^{+}\)-K\(^{+}\) ATPase, the Na\(^{+}\)-Ca\(^{2+}\) exchanger and the IP\(_3\) receptor. Loss of ankyrin-B therefore leads to impaired Ca\(^{2+}\) transport across the SR and plasma membranes.

Finally, a loss-of-function mutation in the Ca\(^{2+}\) channel gene has also been shown to cause TBS (100). Normally, Ca\(^{2+}\) entry through L-type Ca\(^{2+}\) channels plays a role in pacemaker activity by contributing to diastolic depolarization. Reduction in this current can reduce the degree of spontaneous depolarization, slow pacemaker activity and increase the likelihood of spontaneous arrhythmias in SAN cells.

5. Abnormal calcium handling

Ca\(^{2+}\) in myocardial cells originates from two sources: the extracellular space and intracellular store, the SR. Increased Ca\(^{2+}\) levels can arise from a number of mechanisms, such as entry via voltage-gated ion channels, receptor-operated Ca\(^{2+}\) entry (ROCE), store-operated Ca\(^{2+}\) entry (SOCE) and SR release (101,102). Alterations in any of these processes can promote the development of TBS. Ca\(^{2+}\) overload can promote apoptosis of SAN cells and stimulate fibrosis and reduce conduction velocity of APs by a calmodulin kinase II-dependent pathway (103). It is also a feature in heart failure, in which persistent activation of angiotensin II and calmodulin kinase II, higher incidence of tachyarrhythmias are also observed (103,104). Sinus node dysfunction (SND) is frequently found in heart failure patients, and it is estimated that bradycardic complications account for approximately half of the cases of sudden death (105,106).

Increased SR Ca\(^{2+}\) release, observed in catecholaminergic polymorphic ventricular tachycardia (CPVT), can arise from defective SR Ca\(^{2+}\) sensing, increased sensitivity to cytoplasmic Ca\(^{2+}\) or abnormal activation by calmodulin (107). Patients with CPVT demonstrate SND, inducible atrial arrhythmias as well as the bidirectional ventricular tachycardia traditionally observed in this condition (107,108). Experiments in mouse models indicate that SND and atrial arrhythmias are both due to abnormal Ca\(^{2+}\) handling in CPVT (109,110). In calsequestrin 2-null mice, spontaneous Ca\(^{2+}\) release led to delayed afterdepolarizations and atrial-triggered activity (109). Loss of calsequestrin 2 also produced selective interstitial fibrosis.
in the atrial pacemaker complex, which disrupted SAN pacemaker activity and created conduction abnormalities that increased the tendency of atrial arrhythmias, likely by a reentrant mechanism (110).

6. Altered intercellular coupling

In the SAN, gap junctions contribute to automaticity and exit conduction of APs to the myocardium surrounding nodal tissue (111). Cx43 haploinsufficiency resulted in reduced CV in the ventrices, with tachyarrhythmias preceding bradyarrhythmias, but little effect on SAN function (112). Cx40+/- mice showed intra-atrial block, ectopic rhythms and abnormal conduction in the right atrium (113), inducible atrial tachycardia (114), AVN and infra-Hisian conduction delays (115).

7. Tissue level mechanisms through remodeling

If arrhythmia persists untreated, the structure of the SAN can be modified and this remodeling can lead to fibrosis and disturbance of the electrophysiology and even apoptosis of cardiac cells. This in turn increases the risk of AF and paroxysmal AF developing into permanent AF (28). The electrophysiological and structure remodeling of the SAN not only lead to arrhythmias, as discussed, but also are responsible for arrhythmias refractory to medication and recurrence following cardioversion (28).

8. Bradycardia and tachycardia in TBS: Which is the cause?

The causal relationship between bradycardia and tachycardia is bidirectional. It is unclear which precipitates which (28). Tachyarrhythmias can promote SND, resulting in sinus bradycardia (1,2). Patients with AF demonstrate structural abnormalities in the form of fibrosis in their SAN (116). Atrial tachycardia in dogs was found to lead to downregulation of HCN2, HCN4 and KCNE1 (which modulates the ɑ-subunit of the K+ channel), which underlies the SND observed (27). In an atrial tachycardia pacing model of TBS in rabbits, SND was associated with reduced HCN4 expression, both of which were reversible upon cessation of tachycardia pacing (26). In humans, HCN4 has been identified as a gene candidate associated with AF from a meta-analysis of genome-wide association studies (117). Adenosine is elevated in the plasma of patients, and the consequent activation of adenosine A1 receptors in the SAN is likely responsible for heart rate reduction (118). In a canine tachycardia-pacing model, A1 receptors were upregulated, which was associated with prolonged SAN conduction time, conduction block within the SAN, post-pacing pauses, shortening of atrial repolarization durations leading to a higher propensity to AF (119).

Conversely, SND can lead to the development of tachycardia (120). Genetically modified mice with an inducible deletion of cells specifically in the cardiac pacemaking and conduction system presented with degenerative fibrosis of nodal tissue, progressive bradycardia, sinus pauses, supraventricular and ventricular tachycardia and chronotropic incompetence (121). Fibrosis of the atrium was found to lead to conduction abnormalities, increased dispersion of refractoriness, thereby predisposing to the development of circus-type or spiral-wave reentry (122). Fibrosis in the setting of reduced repolarization reserve can promote early afterdepolarizations and in turn atrial and ventricular tachycardia (123,124).

9. Current and future therapeutic options for TBS

The current treatment options for TBS involve removal or correction of extrinsic causes. In acute situations where heart block is observed, the parasympathomimetic agent atropine or beta agonist isoproterenol, or temporary pacing can be used to overcome the conduction abnormalities. Tachyarrhythmias can be managed by digoxin, quinidine or propranolol. Permanent pacing using an electronic pacemaker is, at present, the only curative option however battery life and electromagnetic interference are often problematic.

Animal models have been extensively used for exploring the electrophysiological basis of complex rhythm disorders in an attempt to develop a biological pacemaker which would be free of complications such as limited battery life (125-129). These systems provide a platform for elucidating the mechanisms of arrhythmogenesis in different medical conditions (17,130-133), determining the efficacy of novel therapeutic approaches and providing insights for translational application (134-136). Generally, there are two engineering biological alternatives to electronic pacemakers. The first is a gene-based bio-artificial SAN. Ventricular cardiomyocytes normally do not possess pacemaker activity, but they can be induced to exhibit pacemaker activity by genetic suppression of the inward-rectifier K+ channels (137) or expression of HCN channels by adenoviral transfer (135-145). A second approach is cell-based bio-artificial pacemakers. This involves differentiation of human embryonic stem cells or induced pluripotent stem cells into cardiomyocytes (146,147). For example, human mesenchymal stem cells pre-transfected with HCN2 channels can be used to introduce Ii-1 into surrounding cardiomyocytes that subsequently possess pacemaker activity (148,149). Cardiomyocytes can be converted into pacemaker cells by a cell fusion technique, where fibroblasts engineered to express HCN1 are chemically fused to the cardiomyocytes using chemicals such as polyethylene-glycol 1500 (150). Human embryonic stem cells have also been differentiated into cardiomyocytes that demonstrated intrinsic pacemaker activity, capable of pacing the ventricular myocardium in vivo (135,151). Experimental data do not always produce the same results when applied to animal models (152) and it would therefore be sensible not to assume that animal models will produce the same results in a human heart. Future research is needed to establish the safety of these bio-artificial pacemakers, and little is known regarding their long-term efficacy. They may provide better treatment options for debilitating complex arrhythmias such as TBS.

10. Conclusion

In this review we summarized current literature to understand the molecular and electrophysiological mechanisms and discussed the current treatment and the exciting future possibility of superior biological pacemakers which are hopefully not a too distant possibility.
Acknowledgements

Professor Gary Tse was supported by the BBSRC and Dr Yin Wah Fiona Chan was supported by the ESRC for their PhD studies. Professor Gary Tse is grateful to the Croucher Foundation of Hong Kong for supporting his clinical assistant professorship.

References

1. Ferenc MI: The sick sinus syndrome in atrial disease. JAMA 206: 645-646, 1968.
2. Kaplan BM, Langendorf R, Lev M and Pick A: Tachycardia-bradycardia syndrome (so-called ‘sick sinus syndrome’). Pathology, mechanisms and treatment. Am J Cardiol 31: 497-508, 1973.
3. Rubenstein JJ, Schulman CL, Yurchak PM and De Sanctis RW: Clinical spectrum of the sick sinus syndrome. Circulation 46: 5-13, 1972.
4. Gomes JA, Kang PS, Matheson M, Gough WB Jr and El-Shereif N: Coexistence of sick sinus rhythm and atrial flutter-fibrillation. Circulation 63: 80-86, 1981.
5. Bayés de Luna AJ: Bloqueo a nivel auricular. Rev Esp Cardiol 32: 5-10, 1979.
6. Bayes de Luna A, Fort de Ribot R, Trilla E, Julia J, Garcia J, Sadurní J, Ribó J and Sagües F: Electrophysiographic and vectorcardiographic study of interatrial conduction disturbances with left atrial retrograde activation. J Electrocardiol 18: 1-13, 1985.
7. Bayes de Luna A, Cladellas M, Oter R, Torner P, Guindo J, Martí V, Riverà I and Iturralde P: Interatrial conduction block and retrograde activation of the left atrium and paroxysmal supraventricular tachyarrhythmias. Eur Heart J 9: 1112-1118, 1988.
8. Bayés de Luna A, Oter MC and Guindo J: Interatrial conduction block with retrograde activation of the left atrium and paroxysmal supraventricular tachyarrhythmias: Influence of preventive antiarrhythmic treatment. Int J Cardiol 22: 147-150, 1989.
9. Bayés de Luna A, Guindo J, Viñolas X, Martinez-Rubio A, Oter R and Bayés-Genís A: Third-degree inter-atrial block and supraventricular tachyarrhythmias. Europace 1: 43-46, 1999.
10. Bayés de Luna A, Platonov P, Cosio FG, Cygankiewicz I, Pastore C, Baranowski R, Bayés-Genís A, Guindo J, Viñolas X, Garcia-Niebla J, et al: Interatrial blocks. A separate entity from left atrial enlargement: A consensus report. J Electrocardiol 45: 445-451, 2012.
11. Conde D, Seoane L, Gysel M, Mitrone S, Bayés de Luna A and Baranchuk A: Bayés’ syndrome: The association between interatrial block and supraventricular arrhythmias. Expert Rev Cardiovasc Ther 13: 541-550, 2015.
12. Baranchuk A and Bayés de Luna A: The P-wave morphology: What does it tell us? Herzschrittmachertherapie Elektrophysiol 26: 192-199, 2015.
13. Baranchuk A, de Luna AB and Breithardt G: To the Editor - The role of advanced interatrial block pattern as a predictor of atrial fibrillation. Heart Rhythm 13: e87, 2016.
14. Tse G: Both transmural dispersion of repolarization and transmural dispersion of refractoriness are poor predictors of arrhythmogenicity: A role for the index of Cardiac Electrophysiological Balance (QT/QR/S)?? J Geriatr Cardiol 10: 1-12, 2013.
15. Zhao J, Liu T and Li G: Relationship between two arrhythmias: Sinus node dysfunction and atrial fibrillation. Arch Med Res 45: 351-355, 2014.
16. Choy L, Yeo JM, Tse V, Chan SP and Tse G: Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. Int J Cardiol Heart Vasc 12: 1-10, 2016.
17. Tse G and Yan BP: Electrophysiological mechanisms of long and short QT syndromes: Insights from mouse models. IJC Heart & Vasculature (In press).
18. Tse G, Law ET, Lee AP, Yan BP and Wong SH: Electrophysiological mechanisms of gastrointestinal arrhythmogenesis: Lessons from the heart. Front Physiol 7: 230, 2016.
19. Tse G, Wong ST, Tse V, Lee YT, Lin HY and Yeo JM: Cardiac dynamos: alternans and arrhythmogenesis. J Arrhythm (In press).
20. Tse G: Novel conduction-repolarization indices for the stratification of arrhythmic risk. J Geriatr Cardiol 13: 811-812, 2016.
43. Kellenberger S, Scheuer T and Catterall WA: Movement of the Na+ channel inactivation gate during inactivation. J Biol Chem 271: 30971-30979, 1996.

44. Kellenberger S, Weis NW, Catterall WA and Scheuer T: Molecular analysis of carboxyl-terminal residues in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol 109: 607-617, 1997.

45. Kellenberger S, West JW, Scheuer T and Catterall WA: Molecular analysis of the putative inactivation particle in the inactivation gate of brain type IIA Na+ channels. J Gen Physiol 109: 589-605, 1997.

46. Smith MR and Goldin AL: Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J 73: 1883-1895, 1997.

47. Shryock JC, Song Y, Rajamani S, Antzelevitch C and Belardinelli L: The pharmacologic consequences of increasing late lNa in the cardiomyocyte. Cardiovasc Res 99: 600-611, 2013.

48. Balser JR, Nuss HB, Chiamvimonvat N, Pérez-García MT, Marban E and Tomasselli GF: Exopore: a novel apoptotic pore mediates slow inactivation in murine skeletal muscle sodium channels. J Physiol 494: 431-442, 1996.

49. Vilin YY, Makita N, George AL Jr and Ruben PC: Structural determinants of slow inactivation in human cardiac and skeletal muscle sodium channels. Biophys J 77: 1384-1393, 1999.

50. John RM and Kumar S: Sinus Node and Atrial Arrhythmias. Circulation 133: 1892-1900, 2016.

51. Kovai M, Ikeda BE and Gourdie RG: Connexins, pannexins and innexins: Protein cousins with overlapping functions. FEBS Lett 588: 1185, 2014.

52. Veeraraghavan R, Gourdie RG and Poelzing S: Mechanisms of cardiac conduction: A history of revisions. Am J Physiol Heart Circ Physiol 299: H962-1004, 2010.

53. Veeraraghavan R, Poelzing S and Gourdie RG: Intercellular electrical communication in the heart: A new, active role for the intercalated disk. Cell Commun Adhes 21: 161-167, 2014.

54. Davis LM, Kanter HL, Beyer EC and Saffitz JE: Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol 24: 1124-1132, 1994.

55. Gourdie RG, Green CR, Severs NJ, Anderson RH and Thompson RP: Evidence for a distinct gap-junctional phenotype in ventricular conduction tissues of the developing and mature chick heart. Circ Res 72: 278-289, 1993.

56. Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P and Thompson RP: The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of components of the cardiac atrioventricular conduction system. J Cell Sci 105: 985-991, 1993.

57. Beyer EC, Paul DL and Goodenough DA: Connexin43: A protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105: 2621-2629, 1987.

58. Davis LM, Rodefeld ME, Green K, Beyer EC and Saffitz JE: Gap junction protein phenotypes of the human heart and conduction system. Circulation 96: 813-822, 1995.

59. Saffitz JE, Green KG and Schuessler RB: Structural determinants of slow inactivation in the cardiac sinus node. J Cardiovasc Electrophysiol 8: 738-744, 1997.

60. Wilders R, Verheijck GE, Kumar R, Gooloo SW, van Ginneken AC, Joyner RW and Jongsma HJ: Model clamp and its application to synchronization of rabbit sinoatrial node cells. Am J Physiol 8: 738-744, 1997.

61. Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y, Ohno S, Nishio Y, Tsuji K, Itoh H, et al: A novel SCN5A gain-of-function mutation M1875T associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. Eur Heart J 34: 2768-2775, 2013.

62. DiFrancesco D: SCN4A, Sinus Bradycardia and Atrial Fibrillation. Arhythm Electrophysiol Rev 4: 9-13, 2015.

63. Ueda K, Nakamura K, Hayashi T, Inagaki N, Takahashi M, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasumizu M, et al: Functional characterization of a trafficking-defective SCN4A mutation, D553N, associated with cardiac arrhythmia. J Biol Chem 279: 27194-27198, 2004.

64. Barbuti A, Arimura T, Morita H, Higashiuesato Y, Hirano Y, Yasumizu M, et al: Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene HCN4. Proc Natl Acad Sci USA 108: 1705-1710, 2011.

65. Mesirca P, Alfaj J, Torrenga AG, Müller JC, Marger L, Rollin A, Marquilly C, Vincent A, Dubel S, Bidaud I, et al: Cardiac arrhythmia induced by genetic silencing of 'funny' (f) channels is rescued by GIRK4 inactivation. Nat Commun 5: 4664-4664, 2014.

66. Makiyama T, Akao M, Shizuta S, Doi T, Nishiyama K, Oka Y, Ohno S, Nishio Y, Tsuji K, Itoh H, et al: A novel SCN5A gain-of-function mutation M1875T associated with familial tachycardia-bradycardia syndrome and atrial fibrillation. J Am Coll Cardiol 64: 745-756, 2014.

67. Schreiber PA, Schröter J, Greiner S, Haas J, Yampolsky P, Mereles D, Buss SJ, Seyler C, Bruehl C, Draghun A, et al: The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J Am Coll Cardiol 64: 757-767, 2014.

68. Meurin P and Weingart R: Cell pairs isolated from adult guinea pig and rat hearts: Effects of [Ca2+]i on neuronal membrane resistance. Pflugers Arch 409: 394-402, 1987.

69. Hermsen MM, Kortekaas P, Jongsmaj HJ and Rook MB: pH sensitivity of the cardiac gap junction protein, connexin 45 and 43. Pflugers Arch 431: 138-140, 1995.

70. Morley GE. Taffet SM and Delmar M: Intramolecular interactions mediate pH regulation of connexin43 channels. Biophys J 70: 301-302, 1996.

71. Meyer R, Malewicz B, Baumann WJ and Johnson RG: Increased gap junction assembly between cultured cells upon cholesterol supplementation. J Cell Sci 96: 231-238, 1990.

72. Meyer RA, Lampe PD, Malewicz B, Baumann WJ and Johnson RG: Enhanced gap junction formation with LDL and ionotropic protein B. J Biol Chem 271: 56-61, 1996.

73. Massey KD, Minnich BN and Burt JM: Arachidonic acid and lipoxigenase metabolites uncouple neonatal rat cardiac myocyte pairs. Am J Physiol 263: C949-C951, 1992.

74. Schubert AL, Schubert W, Spray DC and Lissanti MP: Connexin family members target to lipid rafts domains and interact with caveolin-1. Biochim Biophys Acta 1754: 5754-5764, 2002.

75. Yabek SM and Jarmakani JM: Sinus node dysfunction in children, adolescents, and young adults. Pediatrics 61: 593-598, 1978.

76. Schulte-Bahr E, Neu A, Friederich P, Kaupp UB, Breithart G, Yong O and Isbrandt D: Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 111: 1537-1545, 2003.

77. Duhme N, Schweizer PA, Thomas D, Becker R, Schröter J, Barends TR, Schluchting I, Draghun A, Bruehl C, Katus HA, et al: Altered HCN4 channel function is associated with familial atroventricular conduction system dysfunction. J Am Coll Cardiol 56: 231-236, 2010.

78. Davis LM, Rodefeld ME, Green K, Beyer EC and Saffitz JE: Gap junction channel inactivation linker and domain III S4-S5. Biophys J 77: 1385-1395, 1999.

79. John RM and Kumar S: Sinus Node and Atrial Arrhythmias. Circulation 133: 1892-1900, 2016.
with catecholaminergic polymorphic ventricular tachycardia. Risk factor and potential therapeutic target? Trends Cardiovasc Med 18: 78-87, 2008.

Tse G, Wong ST, Tse V and Yeo JM: Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. Int J Cardiol Heart Vasc 9: 75-82, 2015.

Pezouhaz A, Cao H, Lee HH, Belardinelli L, Weiss JN and Karegianou US: Abstract 16247: Oxidative Stress Initiates Atrial Fibrillation in Fibrotic Hearts by Early Afterdepolarization-Mediated Triggered Activity. The Key Role of Late IaNa. Circulation 130: A1247, 2014.

Morita N, Mandel WJ, Kobayashi V and Karegianou US: Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J Arrhythm 30: 389-394, 2014.

Tse G, Tse V and Yeo JM: Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Res Rep 4: 313-324, 2011.

Tse G, Tse V, Yeo JM and Sun B: Atrial anti-arrhythmic effects of heptanol in Langendorff-perfused mouse hearts. PLoS One 11: e0148858, 2016.

Tse G, Wong ST, Tse V and Yeo JM: Restitution analysis of alternans using optical mapping and its comparison with S12S restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts. Biomed Rep 4: 673-680, 2016.

Tse G, Sun B, Wong ST, Tse V and Yeo JM: Ventricular anti-arrhythmic effects of hypercalcaemia treatment in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Rep 5: 301-310, 2016.
129. Tse G, Yeo JM, Tse V, Kwan J and Sun B: Gap junction inhibition by heptanol increases ventricular arrhythmogenicity by reducing conduction velocity without affecting repolarization properties or myocardial refractoriness in Langendorff-perfused mouse hearts. Mol Med Rep 14: 4069-4074, 2016.

130. Tse G, Lai ET, Tse V and Yeo JM: Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J Diabetes Res 2016: 2848759, 2016.

131. Tse G, Yeo JM, Chan YW, Lai ET and Yan BP: What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front Physiol 7: 308, 2016.

132. Tse G, Yan BP, Chan YW, Tian XY and Huang Y: Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: The link with cardiac arrhythmogenesis. Front Physiol 7: 313, 2016.

133. Tse G, Lai ET, Yeo JM and Yan BP: Electrophysiological mechanisms of Bayés syndrome: Insights from clinical and mouse studies. Front Physiol 7: 188, 2016.

134. Li RA: Gene- and cell-based bio-artificial pacemaker: What basic and translational lessons have we learned? Gene Ther 19: 588-595, 2012.

135. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marbán E, Tomaselli GF and Li RA: Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: Insights into the development of cell-based pacemakers. Circulation 111: 11-20, 2005.

136. Nattel S: Inward rectifier-funny current balance and spontaneous automaticity: Cautionary notes for biologic pacemaker development. Heart Rhythm 5: 1318-1319, 2008.

137. Miao J, Marbán E and Nuss HB: Biological pacemaker created by gene transfer. Nature 419: 132-133, 2002.

138. Azene EM, Xue T, Marbán E, Tomaselli GF and Li RA: Non-equilibrium behavior of HCN channels: Insights into the role of HCN channels in native and engineered pacemakers. Cardiovasc Res 67: 263-273, 2005.

139. Qu J, Barbuti A, Protas L, Santoro B, Cohen IS and Robinson RB: HCN2 overexpression in newborn and adult ventricular myocytes: Distinct effects on gating and excitability. Circ Res 89: E8-E14, 2001.

140. Xue T, Siiu CW, Lue DK, Lau CP, Tse HF and Li RA: Mechanistic role of If(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels. Circulation 115: 1839-1850, 2007.

141. Kass-Eisler A, Falck-Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA, Cipriani L and Leinwand LA: Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci USA 90: 11498-11502, 1993.

142. Mühlausser J, Jones M, Yamada I, Cirielli C, Lernachand P, Gloe TR, Bewig B, Signoret S, Crystal RG and Capogrossi MC: Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther 3: 145-153, 1996.

143. Chan YC, Siiu CW, Lau YM, Lau CP, Li RA and Tse HF: Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity. J Cardiovasc Electrophysiol 20: 1048-1054, 2009.

144. Lieu DK, Chan YC, Lau CP, Tse HF, Siiu CW and Li RA: Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers. Heart Rhythm 5: 1310-1317, 2008.

145. Saito Y, Nakamura K, Yoshida M, Sugiyama H, Ohe T, Kurokawa J, Furukawa T, Takano M, Nagase S, Morita H, et al: Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker. PLoS One 10: e0138193, 2015.

146. Kong CW, Akar FG and Li RA: Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: Insights from experimental models. Thromb Haemost 104: 30-38, 2010.

147. Weng Z, Kong CW, Ren L, Karakikes I, Geng L, He J, Chow MZ, Mok CF, Keung W, Chow H, et al: A simple, cost-effective but highly efficient system for deriving ventricular cardiomyocytes from human pluripotent stem cells. Stem Cells Dev 23: 1704-1716, 2014.

148. Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo P Jr, Lorell BH, Potapova IA, Lu Z, Rosen AB, Mathias RT, Brink PR, et al: Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 116: 706-713, 2007.

149. Plotnikov AN, Susonov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L, Janse MJ, Brink PR, Cohen IS, Robinson RB, et al: Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 109: 506-512, 2004.

150. Cho HC, Kashiwakura Y and Marbán E: Creation of a biological pacemaker by cell fusion. Circ Res 100: 1112-1115, 2007.

151. Kebar J, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J and Gepstein L: Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22: 1282-1289, 2004.

152. Verkerk AO and Wilders R: Hyperpolarization-activated current, If, in mathematical models of rabbit sinoatrial node pacemaker cells. BioMed Res Int 2013: 872454, 2013.

153. Tse G: Mechanisms of cardiac arrhythmias. J Arrhythm 32: 75-81, 2016.