Added Value of Intraoperative Data for Predicting Postoperative Complications: Development and Validation of a MySurgeryRisk Extension

Shounak Datta, PhDa, g*
Tyler J. Loftus, MDb, g*
Matthew M. Ruppert, BSa, g
Chris Giordano, MDc
Lasith Adhikari, PhDa, g
Ying-Chih Peng, BSd, g
Yuanfang Ren, PhDa, g
Benjamin Shickel, MSe, g
Zheng Feng, MSf, g
Gloria Lipori, MBAh
Gilbert R. Upchurch Jr., MDb
Xiaolin Li, PhDf, g
Parisa Rashidi, PhDe, g
Tezcan Ozrazgat-Baslanti, PhDa, g*
Azra Bihorac, MD, MSa, g*

* These authors have contributed equally

a Department of Medicine, University of Florida, Gainesville, FL USA
b Department of Surgery, University of Florida, Gainesville, FL USA
c Department of Anesthesiology, University of Florida, Gainesville, FL USA
d Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL USA
e Department of Biomedical Engineering, University of Florida, Gainesville, FL USA
f Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL USA
g Precision and Intelligent Systems in Medicine (PrismaP), University of Florida, Gainesville, FL USA
h University of Florida Health, Gainesville, FL USA

Corresponding author: Azra Bihorac MD MS, Department of Medicine, Precision and Intelligent Systems in Medicine (PrismaP), Division of Nephrology, Hypertension, and Renal Transplantation, PO Box 100224, Gainesville, FL 32610-0224. Telephone: (352) 294-8580; Fax: (352) 392-5465; Email: abihorac@ufl.edu

Conflicts of Interest Disclosures and Source of Funding: A.B., T.O.B., and M.R. were supported by R01 GM110240 from the National Institute of General Medical Sciences. A.B. and T.O.B. were supported by Sepsis and Critical Illness Research Center Award P50 GM-111152 from the National Institute of General Medical Sciences. T.O.B. received a grant that was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR001427 and received grant support from Gatorade Trust (127900), University of Florida. T.J.L. was supported by a post-graduate training grant (T32 GM-008721) in burns, trauma, and perioperative injury from the National Institute of General Medical Sciences. M.R. received support from the University of Florida Davis Foundation. This work was supported in part by the NIH/NCATS Clinical and Translational Sciences Award to the University of Florida UL1 TR000064.
ABSTRACT

Objective: To test the hypothesis that accuracy, discrimination, and precision in predicting postoperative complications improve when using both preoperative and intraoperative data input features versus preoperative data alone.

Background: Models that predict postoperative complications often ignore important intraoperative events and physiological changes. Incorporation of intraoperative physiological data may improve model performance.

Methods: This retrospective cohort analysis included 43,943 adults undergoing 52,529 inpatient surgeries at a single institution during a five-year period. Random forest machine learning models in the validated MySurgeryRisk platform made patient-level predictions for three postoperative complications and mortality during hospital admission using electronic health record data and patient neighborhood characteristics. For each outcome, one model trained with preoperative data alone and one model trained with both preoperative and intraoperative data. Models were compared by accuracy, discrimination (expressed as AUROC: area under the receiver operating characteristic curve), precision (expressed as AUPRC: area under the precision-recall curve), and reclassification indices (NRI).

Results: Machine learning models incorporating both preoperative and intraoperative data had greater accuracy, discrimination, and precision than models using preoperative data alone for predicting all three postoperative complications (intensive care unit length of stay >48 hours, mechanical ventilation >48 hours, and neurological complications including delirium) and in-hospital mortality (accuracy: 88% vs. 77%, AUROC: 0.93 vs. 0.87, AUPRC: 0.21 vs. 0.15). Overall reclassification improvement was 2.9-10.0% for complications and 11.2% for in-hospital mortality.

Conclusions: Incorporating both preoperative and intraoperative data significantly increased accuracy, discrimination, and precision for machine learning models predicting postoperative complications.
Introduction

Predicting postoperative complications in the preoperative setting informs the surgeon’s decision to offer an operation and the patient’s decision to undergo surgery. It also guides prehabilitation and other risk-reduction strategies, plans for postoperative resource use, and expectations for short- and long-term prognosis. Online risk calculators, mobile device applications, and automated predictive analytic platforms accomplish these goals\(^1\)-\(^4\). However, these models often ignore intraoperative data, thus missing potentially important opportunities to generate updated predictions that inform decisions regarding postoperative triage, surveillance for complications, and targeted preventative measures.

Although it seems advantageous to use intraoperative data in predicting postoperative complications, this advantage remains theoretical until establishing that predictive accuracy, discrimination, and precision improve by incorporating intraoperative data, and that better predictions translate to better decisions and outcomes. This study addresses the former objective. Added value of intraoperative data has been demonstrated for predicting postoperative AKI\(^5\). This study assessed added value of intraoperative data for predicting three postoperative complications and mortality by developing and validating a *MySurgeryRisk* extension that incorporates vital signs and mechanical ventilator data collected during surgery. The original *MySurgeryRisk* platform uses electronic health record (EHR) data and patient neighborhood characteristics to predict postoperative complications and mortality, but ignores intraoperative data\(^4\). We hypothesized that accuracy, discrimination, and precision in predicting postoperative complications and mortality would improve when using both preoperative and intraoperative physiological time-series input data versus preoperative data alone.
Materials and Methods

We created a single-center longitudinal cohort of surgical patients with data from preoperative, intraoperative, and postoperative phases of care. We used random forest machine learning models to predict three major postoperative complications and death during admission, comparing models using preoperative data (i.e. EHR and patient neighborhood characteristics) alone versus models using the same preoperative data plus intraoperative physiological time-series data. The University of Florida Institutional Review Board and Privacy Office approved this study with waiver of informed consent (IRB #201600223).

Data Source

The University of Florida Integrated Data Repository was used as an honest broker to assemble a single center longitudinal perioperative cohort for all patients admitted to the University of Florida Health for longer than 24 hours following any type of operative procedure between June 1st, 2014 through March 1st, 2019 by integrating electronic health records with other clinical, administrative, and public databases as previously described. The resulting dataset included detailed information on patient demographics, diagnoses, procedures, outcomes, comprehensive hospital charges, hospital characteristics, insurance status, laboratory, pharmacy, and blood bank data as well as detailed intraoperative physiologic and monitoring data for the cohort.

Participants

We identified all patients with age 18 years or greater and excluded patients who died during surgery and had incomplete records. If patients underwent multiple surgeries during one admission, only the first surgery was used in our analysis. The final cohort consisted of 43,943 patients undergoing 52,529 surgeries. Supplemental Digital Content 1 illustrates derivation of the study population. Supplemental Digital Content 2 illustrates cohort use and purpose.
Outcomes

We modeled risk for developing three major postoperative complications and mortality occurring after the index surgery and before hospital discharge. Complications included intensive care unit (ICU) admission and mechanical ventilation (MV) for greater than 48 hours, and neurological complications including delirium.

Predictor Features

The risk assessment used 367 demographic, socioeconomic, comorbidity, medication, laboratory value, operative, and physiological variables from preoperative and intraoperative phases of care. Of these 367 variables, 134 were used for preoperative only model and 233 intraoperative features were incorporated for developing postoperative models. We derived preoperative comorbidities from International Classification of Diseases (ICD) codes to calculate Charlson comorbidity indices. We modeled primary procedure type on ICD-9-CM codes with a forest structure in which nodes represented groups of procedures, roots presented the most general groups of procedures, and leaf nodes represented specific procedures. Medications were derived from RxNorm codes grouped into drug classes as previously described. We converted intraoperative time series data into statistical features such as minimum, maximum, mean, and short- and long-term variability. Intraoperative data input features included heart rate, systolic blood pressure, diastolic blood pressure, body temperature, respiratory rate, minimum alveolar concentration (MAC), positive end-expiratory pressure (PEEP), peak inspiratory pressure (PIP), fraction of inspired oxygen (FiO2), blood oxygen saturation (SpO2), and end-tidal carbon dioxide (EtCO2). We also included surgical variables (e.g., nighttime surgery, surgery duration, operative blood loss, and urine output) during surgery. Supplemental Digital Content 3 lists all input features and their statistical characteristics.

Sample Size

Models were trained on a development cohort of 40,560 surgeries. All results were reported from a validation cohort of 11,969 surgeries. We performed five-fold
cross-validation using random partitions to generate five disjoint folds, allocating one fold for validation and the other four for training. Using a validation cohort of 11,969 surgeries, the overall sample size allows for a maximum width of the 95% confidence interval for area under the receiver operating characteristic curve (AUROC) to be between 0.02 to 0.04 for postoperative complications with prevalence ranging between 5% and 30% for AUROC of 0.80 or higher. The sample size allows for a maximum width of 0.07 for hospital mortality given a 2% prevalence.

Predictive Analytic Workflow

The proposed *MySurgeryRisk* Postop algorithm is conceptualized as a dynamic model that readjusts the preoperative risks using physiological time series and other data collected during surgery. The resulting adjusted postoperative risk is assessed immediately at the end of surgery. This flow simulates the clinical task faced by physicians involved in perioperative care where patients’ preoperative information is subsequently enriched by the influx of new data from the operating room. The final output produces *MySurgeryRisk* Postop, a personalized risk panel for AKI after surgery with both preoperative and immediate postoperative risk assessments. The algorithm consists of two main layers, preoperative and intraoperative, each containing two cores, data transformer and data analytics. Briefly, the *MySurgeryRisk* platform uses a *Data Transformer* to integrate data from multiple sources, including the EHR with zip code links to US Census data for patient neighborhood characteristics and distance from the hospital, and optimizes the data for analysis through preprocessing, feature transformation, and feature selection techniques. In the preprocessing step, we replaced missing nominal variables with a distinct “missing” category and replaced missing continuous variables with the median value for that variable. *Supplemental Digital Content 5* lists allowable ranges for continuous variables, determined by clinical expertise. In the feature transformation step, we reduced data dimensionality and overfitting by transforming categorical variables with more than two levels (e.g., zip code, surgeon) to numeric values by calculating the conditional predicted probability that a certain categorical variable would be associated with a certain complication. This was represented by the log of the ratio of prevalence of that variable among surgeries.
with a complication to prevalence of that variable among surgeries without a complication (i.e., surgeon x operated on 6% of all cases with wound complications and 8% of all cases without wound complications = log (0.06/0.08)). We used a forest of trees method with supervised feature selection to group similar surgeries by ICD procedure codes with anatomic prefixes.

In the data analytics core, the MySurgeryRisk Postop algorithm was trained to calculate patient-level immediate postoperative risk probabilities for selected complications using all available preoperative and intraoperative data with random forest classifiers. In the first stage, the algorithm was trained to calculate preoperative risk probabilities using preoperative data only. Feature selection and other hyperparameters in the scikit-learn random forest classifier (i.e., number of trees, maximum features for the best split, minimum number of samples required per leaf node) were tuned simultaneously using a grid search technique with 5-fold cross validation. To help the classifier address the unbalanced class distribution in our cohorts, the 'balanced' option was selected for 'class weight' parameter. We designed the classifiers to pursue the highest AUROC possible. We used the models to produce risk scores for aforementioned complications, combined them with prediction results of postoperative Acute Kidney Injury model and Sepsis model, and used these probabilities as predictive features for predicting in-hospital mortality using the same random forest approach. Figure 1 illustrates our method for building the random forest machine learning models and model analytic flow.

Model Validation

Results are reported from application of the trained model on the test cohort, with 10,637 unique patients undergoing 11,969 surgeries from March 1st, 2018 through March 1st, 2019 time period. Using the prediction results obtained from the 1000 bootstrap cohorts, nonparametric confidence intervals for each of the performance metrics were calculated.

Model Performance
We assessed each model’s discrimination using AUROC. For each complication, we calculated Youden’s index threshold to identify the point on the receiver operating characteristic curve with the highest combination of sensitivity and specificity, using this point as the cut-off value for low versus high risk. We used these cut-off values to determine the fraction of correct classifications as well as sensitivity, specificity, positive predictive value, and negative predictive value for each model. When rare events are being predicted, a model can have high accuracy by favoring negative predictions in a predominantly negative dataset. False negative predictions of complications are particularly harmful because patients and their caregivers may consent to an operation under the pretense of an overly optimistic postoperative prognosis, and providers may miss opportunities for preoperative mitigation of risk factors through prehabilitation and other optimization strategies. Therefore, model performance was also evaluated by calculating area under the precision-recall curve (AUPRC), which is well-suited for evaluating rare event predictive performance. To assess the statistical significance of AUROC, AUPRC, and accuracy differences between models, we performed Wilcoxon’s Sign-Ranked test. We used bootstrap sampling and non-parametric methods to obtain 95% confidence intervals for all performance metrics. The Net Reclassification Improvement (NRI) index was used to quantify how well the postoperative model reclassifies patients compared to the preoperative model.

Results

Participant Baseline Characteristics and Outcomes

Table 1 lists subject characteristics of primary interest. Supplemental Digital Content 4 lists all additional subject characteristics used to build the models. Approximately 49% of the population was female. Average age was 57 years. The incidence of complications was as follows: 26% for prolonged ICU stay, 6% for mechanical ventilation for >48 hours, 16% for neurological complications, and 2% for in-hospital mortality. The distribution of outcomes did not significantly differ between training and testing cohorts, as listed in Table 1.

Model Performance
Compared with the model using preoperative data alone, the extended model using both preoperative and intraoperative data had higher accuracy, AUROC, and AUPRC for all complications and mortality predictions, as described below and in Table 2. Furthermore, model performance comparisons for AUROC and AUPRC are provided visually in Figure 2. The net reclassification index along with event, non-event, and overall classification improvement for each outcome are listed in Table 3.

Prolonged ICU Stay

The extended model achieved greater accuracy (0.83 vs. 0.77, p<0.001), discrimination (AUROC 0.88 vs. 0.87, p<0.001), and precision (AUPRC 0.80 vs. 0.72, p<0.001) in predicting ICU stay > 48 hours with greater specificity and positive predictive value at the cost of lower sensitivity (75% vs. 82%, p<0.001) than the model using preoperative data alone (Table 2). The extended model misclassified 7.9% of all cases that featured prolonged ICU stays, and correctly reclassified 12.6% of all cases that did not (Figure 3). Overall, there was a 6.8% reclassification improvement by the extended model.

Prolonged Mechanical Ventilation

The extended model achieved greater accuracy (0.92 vs. 0.82, p<0.001), discrimination (AUROC 0.96 vs. 0.89, p<0.001), and precision (AUPRC 0.71 vs. 0.45, p<0.001) in predicting mechanical ventilation > 48 hours with greater sensitivity, specificity, and positive predictive value, and similar negative predictive value compared with the model using preoperative data alone (Table 2). The extended model correctly reclassified 11.0% of all cases that featured prolonged mechanical ventilation and 9.9% of all cases that did not (Figure 4). Overall reclassification improvement was 10.0%.

Neurological Complications and Delirium

The extended model achieved greater accuracy (0.81 vs. 0.78, p<0.001), discrimination (AUROC 0.89 vs. 0.86, p<0.001), and precision (AUPRC 0.69 vs. 0.64, p<0.001) in predicting postoperative neurological complications and delirium with greater specificity, positive predictive value, and negative predictive value than the
model limited to preoperative data alone (Table 2). The extended model correctly reclassified 2.1% of all cases that featured postoperative neurological complications and delirium and 3.1% of all cases that did not (Figure 5). Overall reclassification improvement was 2.9%.

In-hospital Mortality

The extended model achieved greater accuracy (0.88 vs. 0.77, p<0.001), discrimination (AUROC 0.93 vs. 0.87, p<0.001), and precision (AUPRC 0.21 vs. 0.15, p<0.001) in predicting postoperative in-hospital mortality with greater specificity and positive predictive value, and similar sensitivity and negative predictive value compared with preoperative data alone (Table 3). The extended model correctly reclassified 2.2% of all cases of postoperative in-hospital mortality and 11.5% of all cases in which the patient survived to hospital discharge (Figure 6). Overall reclassification improvement was 11.2%.

Time-consumption in Model Training

For one point of grid search (e.g., one value of estimator number, minimum sample leaf number, best k value, and maximum allowable feature number) with 5-fold cross validation, the typical time for model training with both preoperative and intraoperative data was 550 - 690 seconds. Using preoperative data alone, training time was 395-460 seconds.

Discussion

We found that incorporating intraoperative physiological data added value to a machine learning model predicting postoperative complications by improving accuracy, discrimination, and precision relative to a model using preoperative data alone. This was true for all three postoperative complications tested as well as in-hospital mortality. There were no cases in which accuracy, discrimination, and precision did not improve by incorporating intraoperative data. The only negative consequences occurred when predicting prolonged ICU stay; the extended models had lower sensitivity than the model using preoperative data alone. In this case, it appears that the model using
preoperative data alone had unusually low thresholds for classifying patients as high risk. The extended models raised this threshold, correctly classifying a greater proportion of patients and achieving greater accuracy, discrimination, and precision, at the cost of lower sensitivity.

Online risk calculators like the National Surgical Quality Improvement Program (NSQIP) Surgical Risk Calculator can reduce variability and increase the likelihood that patients will engage in prehabilitation, but they have time-consuming manual data acquisition and entry requirements, which hinders their clinical adoption17-22. Emerging technologies can circumvent this problem. The MySurgeryRisk platform autonomously draws data from multiple input sources and uses machine learning techniques to predict postoperative complications and mortality. However, easily and readily available predictions are only useful if they are accurate and precise enough to augment clinical decision-making. In a prospective study of the original MySurgeryRisk platform, the algorithm predicted postoperative complications with greater accuracy than physicians, but left room for improvement23. The present study demonstrates that incorporation of intraoperative physiological time-series data improves predictive accuracy, discrimination, and precision, presumably by representing important intraoperative events and physiological changes that influence postoperative clinical trajectories and complications. Recently, Dziadzko et al.24 used a random forest model to predict death or mechanical ventilation for greater than 48 hours using EHR data from patients admitted to academic hospitals, achieving excellent discrimination (AUROC 0.90), similar to MySurgeryRisk discrimination for mechanical ventilation for greater than 48 hours (AUROC 0.96) using both preoperative and intraoperative data. Therefore, this extension of the MySurgeryRisk platform takes another step toward clinical utility, maintaining autonomous function while improving accuracy, discrimination, and precision.

Despite advances in ease of use and performance, predictive analytic platforms face another barrier to clinical adoption; predictions are not decisions. When predicted risk for postoperative AKI is very low or very high, it is relatively clear whether the patient would benefit from renal-protection bundles. Similarly, when predicted risk for
cardiovascular complications is very low or very high, it is relatively clear whether the patient would benefit from continuous cardiac monitoring. However, a substantial number of patients are at intermediate risk for these complications. In the present study, we dichotomized outcome predictions into low- and high-risk categories to facilitate analysis of model performance, but risk for complications exists on a continuum. The MySurgeryRisk platform makes predictions along a continuum (i.e., range from 0%-100% chance of a complication), but this method also fails to augment clinical decisions for intermediate-risk scenarios. Average risk across a population usually defines intermediate risk. Therefore, this challenge affects most patients.

Advances in machine learning technologies may rise to meet this challenge. Predictive analytics indirectly inform discrete choices facing clinicians; reinforcement learning models can provide instructive feedback, identifying specific actions yielding the highest probability of achieving a defined goal. For example, a reinforcement learning model could be trained to achieve hospital discharge with baseline renal and cardiovascular function, without major adverse kidney or cardiac events, making recommendations for or against renal protection bundles and continuous cardiac monitoring according to these goals. Similar models have been used to recommend vasopressor doses and intravenous fluid resuscitation volumes for septic patients, demonstrating efficacy relative to clinician decision-making in large retrospective datasets. However, to our knowledge, these models have not been tested clinically or applied to surgical decision-making scenarios. Therefore, the potential benefits of reinforcement learning to augment surgical decision-making remain theoretical.

This study used data from a single institution, limiting the generalizability of these findings. As previously discussed, true risk for complications is not dichotomous, but we dichotomized risk in this study to facilitate model performance evaluation and comparison. We used administrative codes to identify complications, so coding errors could have influenced results. The MySurgeryRisk algorithm learned predictive features from raw data, and so it may have used features that are not classic risk factors. This approach has the potential advantage of discovering and incorporating unknown or
underused risk factors, and the disadvantage that the existence and identity of these risk factors remain unknown.

Conclusions

Incorporation of both preoperative and intraoperative data significantly increased the accuracy, discrimination, and precision of machine learning models predicting three postoperative complications and in-hospital mortality. The added value of intraoperative data was universal with the exception of a 7% decrease in sensitivity for predicting prolonged ICU stay. These predictions have the theoretical benefit of supporting decisions regarding postoperative triage, surveillance for complications, and targeted preventative measures. Future research should seek to augment decision-making for intermediate-risk patients, who represent most postoperative patients and pose the greatest decision-making challenges.
Figure legends

Figure 1: Conceptual diagram of the Postoperative *MySurgeryRisk* Complication prediction model. This diagram shows the aggregation of the data transformer, data engineering, and data analytics modules in the preoperative and intraoperative layers. The two layers are integrated by obtaining the full perioperative dataset by merging all the clean features from both layers (orange arrow)
Figure 2: Models using both preoperative and intraoperative data had greater discrimination and precision than models using preoperative data alone in predicting three postoperative complications and mortality. Comparison of (A) AUROC and (B) AUPRC for all predicted outcomes. AUROC: area under the receiver operating characteristic curve, AUPRC: area under the precision-recall curve, ICU: intensive care unit, MV: mechanical ventilation.

(A)
Figure 3: A model using both preoperative and intraoperative data outperformed a model using preoperative data alone in predicting postoperative ICU stay >48 hours. A: The postoperative model had greater area under the receiver operating characteristic curve (0.88 vs. 0.87). B: The postoperative model had greater area under the precision-recall curve (0.80 vs. 0.72). The postoperative model reclassified positive cases of prolonged ICU stays (C) and negative cases (D). The red dots are patients at high-risk for prolonged ICU stay according to the postoperative model, whereas the green dots are patients at low-risk. (C & D) The proposed postoperative model effectively reclassified 6.8% of all cases.
Figure 4: A model using both preoperative and intraoperative data outperformed a model using preoperative data alone in predicting postoperative mechanical ventilation >48 hours. A: The postoperative model had greater area under the receiver operating characteristic curve (0.96 vs. 0.89). B: The postoperative model had greater area under the precision-recall curve (0.71 vs. 0.45). The postoperative model reclassified positive cases of prolonged mechanical ventilation duration (C) and negative cases (D). The red dots are patients at high-risk for prolonged mechanical ventilation duration according to the postoperative model, whereas the green dots are patients at low-risk. (C & D) The proposed postoperative model effectively reclassified 10.0% of all cases.
Figure 5: A model using both preoperative and intraoperative data outperformed a model using preoperative data alone in predicting postoperative neurological complications and delirium. A: The postoperative model had greater area under the receiver operating characteristic curve (0.89 vs. 0.86). B: The postoperative model had greater area under the precision-recall curve (0.69 vs. 0.64). The postoperative model reclassified positive cases of neurological complication (C) and negative cases (D). The red dots are patients at high-risk for complications according to the postoperative model, whereas the green dots are patients at low-risk. (C & D) The proposed postoperative model effectively reclassified 2.9% of all cases.
Figure 6: A model using both preoperative and intraoperative data outperformed a model using preoperative data alone in predicting postoperative hospital mortality. A: The postoperative model had greater area under the receiver operating characteristic curve (0.93 vs. 0.87). B: The postoperative model had greater area under the precision-recall curve (0.21 vs. 0.15). The postoperative model reclassified positive cases of hospital mortality (C) and negative cases (D). The red dots are patients at high-risk for mortality according to the postoperative model, whereas the green dots are patients at low-risk. (C & D) The proposed postoperative model effectively reclassified 11.2% of all cases.
Table 1: Characteristics of Training and Testing Cohorts.

	Training	Testing
Date ranges	June 2014-Feb 2018	March 2018-Feb 2019
(n=40560)	(n=11969)	
Average age (years)	56.5	57.5
Ethnicity, n (%)		
Not Hispanic	38116 (93.9)	11210 (93.6)
Hispanic	1772 (4.4)	599 (5)
Missing	717 (1.8)	171 (1.4)
Race, n (%)		
White	31399 (77.3)	9376 (78.3)
African American	6136 (15.1)	1739 (14.5)
Other	2483 (6.1)	702 (5.9)
Missing	587 (1.5)	163 (1.4)
Gender, n (%)		
Male	20614 (50.8)	6072 (50.7)
Female	19991 (49.2)	5908 (49.3)
Primary Insurance, n (%)		
Medicare	18581 (45.8)	5774 (48.2)
Private	12463 (30.7)	3308 (27.6)
Medicaid	6577 (16.2)	1928 (16.1)
Uninsured	2984 (7.4)	970 (8.1)
Outcomes, n (%)		
ICU Stay > 48 hours	10213 (25.2)	3382 (28.3)
MV Duration > 48 hours	2372 (5.9)	767 (6.4)
Neurological Complications and Delirium	5860 (14.5)	2364 (19.8)
Hospital Mortality\(^a\)	192 (2.3)	93 (2.6)

\(^a\) Models for hospital mortality were developed using 8,378 surgeries and validated using 35,911 surgeries among 11,969 surgeries in the test cohort.
Table 2: Performance metrics for models predicting postoperative complications and mortality using only preoperative data (preoperative model) and preoperative and intraoperative data (postoperative model).

Complication	Model	Sensitivity	Specificity	NPV	PPV	Accuracy	AUROC	AUPRC
ICU Stay > 48 hours	Preoperative	0.82 (0.81-0.83)	0.74 (0.74-0.75)	0.91 (0.91-0.92)	0.56 (0.55-0.57)	0.77 (0.76-0.77)	0.87 (0.86-0.87)	0.72 (0.71-0.74)
	Postoperative	0.75 (0.73-0.76)	0.87 (0.86-0.87)	0.90 (0.89-0.90)	0.69 (0.68-0.70)	0.83 (0.83-0.84)	0.88 (0.88-0.89)	0.80 (0.78-0.81)
MV Duration > 48 hours	Preoperative	0.80 (0.78-0.82)	0.82 (0.82-0.83)	0.98 (0.98-0.99)	0.24 (0.22-0.25)	0.82 (0.81-0.83)	0.89 (0.87-0.89)	0.45 (0.42-0.48)
	Postoperative	0.91 (0.89-0.93)	0.92 (0.92-0.92)	0.99 (0.99-1.00)	0.45 (0.41-0.45)	0.92 (0.91-0.92)	0.96 (0.95-0.97)	0.71 (0.68-0.74)
Neurological Complications and Delirium	Preoperative	0.79 (0.77-0.80)	0.78 (0.77-0.78)	0.94 (0.93-0.94)	0.47 (0.45-0.48)	0.78 (0.77-0.79)	0.86 (0.85-0.87)	0.64 (0.63-0.66)
	Postoperative	0.81 (0.80-0.82)	0.81 (0.80-0.82)	0.95 (0.94-0.95)	0.51 (0.49-0.53)	0.81 (0.79-0.82)	0.89 (0.88-0.89)	0.69 (0.67-0.71)
Hospital Mortality	Preoperative	0.83 (0.73-0.87)	0.76 (0.78-0.80)	0.99 (0.99-1.00)	0.09 (0.08-0.11)	0.77 (0.77-0.80)	0.87 (0.84-0.90)	0.15 (0.12-0.20)
	Postoperative	0.85 (0.80-0.91)	0.88 (0.86-0.88)	1.00 (0.99-1.00)	0.16 (0.13-0.18)	0.88 (0.86-0.88)	0.93 (0.91-0.95)	0.21 (0.17-0.27)

ICU: intensive care unit, MV: mechanical ventilation, NPV: negative predictive value, PPV: positive predictive value, AUROC: area under the receiver operating characteristic curve, AUPRC: area under the precision-recall curve.
Complication	NRI (95% CI)	P-value	Event	Non-Event	Overall
ICU stay > 48 hours	0.05 (0.03-0.06)	<0.001	-7.9	12.6	6.8
MV duration > 48 hours	0.21 (0.16-0.22)	<0.001	10.9	9.9	10.0
Neurological Complications and Delirium	0.05 (0.03-0.07)	<0.001	2.1	3.1	2.9
Hospital Mortality	0.14 (0.06-0.21)	0.024	2.2	11.5	11.2

ICU: intensive care unit, MV: mechanical ventilation.
References

1. Raymond BL, Wanderer JP, Hawkins AT, et al. Use of the American College of Surgeons National Surgical Quality Improvement Program Surgical Risk Calculator During Preoperative Risk Discussion: The Patient Perspective. *Anesth Analg.* 2019;128(4):643-650.

2. Bilimoria KY, Liu Y, Paruch JL, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. *J Am Coll Surg.* 2013;217(5):833-842.e831-833.

3. Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical Risk Is Not Linear: Derivation and Validation of a Novel, User-friendly, and Machine-learning-based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) Calculator. *Ann Surg.* 2018;268(4):574-583.

4. Bihorac A, Ozrazgat-Baslanti T, Ebadi A, et al. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. *Ann Surg.* 2018;269(4):652-662.

5. Adhikari L, Ozrazgat-Baslanti T, Ruppert M, et al. Improved predictive models for acute kidney injury with IDEA: Intraoperative Data Embedded Analytics. *PLoS One.* 2019;14(4):e0214904.

6. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis.* 1987;40(5):373-383.

7. Saria S, Rajani AK, Gould J, Koller D, Penn AA. Integration of early physiological responses predicts later illness severity in preterm infants. *Science translational medicine.* 2010;2(48):48ra65.

8. Korenkevych D, Ozrazgat-Baslanti T, Thottakkara P, et al. The Pattern of Longitudinal Change in Serum Creatinine and 90-Day Mortality After Major Surgery. *Ann Surg.* 2016;263(6):1219-1227.

9. Breiman L. Random Forests. *Machine Learning.* 2001;45(1):5-32.

10. Pedregosa F VG, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research.* 2011;12: 2825-2830.

11. Datta S, Loftus TJ, Ruppert MM, et al. Development and Validation of a Dynamic Model for Prediction of Postoperative Sepsis. *arxiv preprint (to be released).* 2019.

12. Youden WJ. Index for rating diagnostic tests. *Cancer.* 1950;3(1):32-35.

13. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. *PLoS One.* 2015;10(3):e0118432.

14. Chiew CJ, Liu N, Wong TH, Sim YE, Abdullah HR. Utilizing Machine Learning Methods for Preoperative Prediction of Post surgical Mortality and Intensive Care Unit Admission. *Ann Surg.* 2019.

15. Wilcoxon F. Individual Comparisons by Ranking Methods. *Biometrics Bull.* 1945;1(6):80-83.

16. Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. *Stat Med.* 2011;30(1):11-21.

17. Chiu AS, Jean RA, Resio B, Pei KY. Early postoperative death in extreme-risk patients: A perspective on surgical futility. *Surgery.* 2019.

18. Clark DE, Fitzgerald TL, Dibbins AW. Procedure-based postoperative risk prediction using NSQIP data. *J Surg Res.* 2018;221:322-327.

19. Lubitz AL, Chan E, Zarif D, et al. American College of Surgeons NSQIP Risk Calculator Accuracy for Emergent and Elective Colorectal Operations. *J Am Coll Surg.* 2017;225(5):601-611.

20. Cohen ME, Liu Y, Ko CY, Hall BL. An Examination of American College of Surgeons NSQIP Surgical Risk Calculator Accuracy. *J Am Coll Surg.* 2017;224(5):787-795 e781.
21. Hyde LZ, Valizadeh N, Al-Mazrou AM, Kiran RP. ACS-NSQIP risk calculator predicts cohort but not individual risk of complication following colorectal resection. *Am J Surg.* 2019;218(1):131-135.

22. Leeds IL, Rosenblum AJ, Wise PE, et al. Eye of the beholder: Risk calculators and barriers to adoption in surgical trainees. *Surgery.* 2018;164(5):1117-1123.

23. Brennan M, Puri S, Ozrazgat-Baslanti T, et al. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study. *Surgery.* 2019;165(5):1035-1045.

24. Dziadzko MA, Novotny PJ, Sloan J, et al. Multicenter derivation and validation of an early warning score for acute respiratory failure or death in the hospital. *Crit Care.* 2018;22(1):286.

25. Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. *Nat Med.* 2018;24(11):1716-1720.

26. Branch-Elliman W, Strymish J, Kudesia V, Rosen AK, Gupta K. Natural Language Processing for Real-Time Catheter-Associated Urinary Tract Infection Surveillance: Results of a Pilot Implementation Trial. *Infect Control Hosp Epidemiol.* 2015;36(9):1004-1010.
Supplemental Digital Contents:

Supplemental Digital Content 1: Figure illustrating derivation of the study population.
Supplemental Digital Content 2: Figure illustrating purpose of data cohorts.

Step 1
Selection of training cohort
Purpose: To generate numerical and categorical lookup tables, model development

IDEALIST Training cohort
06/01/2014 - 02/28/2018
N = 40,560

Step 2
Reproducibility: Testing data
Purpose: To predict selected outcomes, model performance analysis, risk stratification

IDEALIST Test cohort
03/01/2018 - 03/01/2019
N = 11,969

Legend
- Cohort study
- EHR data
- Outcome Prediction from Models
- Postoperative Complications
- Hospital Mortality

Step 3
Training for hospital mortality
Purpose: For model development to predict in-hospital mortality using outcome prediction scores

Mortality Training cohort
70% of IDEALIST Test Cohort
N = 8,378

Step 4
Reproducibility: Testing data
Purpose: To predict in-hospital mortality, model performance analysis, risk stratification

Mortality Test cohort
30% of IDEALIST Test Cohort
N = 3,591
Supplemental Digital Content 3: Table listing characteristics of input variables.

Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
Demographic Variables				
Age (years)	Continuous	Derived		Imputation of outliers\(^a\)
Gender	Binary	Raw	2	
Race	Nominal	Raw	5	Optimization of categorical features\(^b\)
Body Mass Index	Continuous	Raw		Imputation of outliers\(^a\)
Marital Status	Nominal	Raw	3	Optimization of categorical features\(^b\)
Ethnicity	Binary	Raw	2	
Socioeconomic Variables				
Primary Insurance	Nominal	Raw	4	Optimization of categorical features\(^b\)
Residency area characteristics				
Zip code	Nominal	Raw	1,908	Transformation through link to Census data\(^c\)
Rural area	Binary	Derived	2	
Total Population	Continuous	Derived		
Median Income	Continuous	Derived		
Total Proportion of African-	Continuous	Derived		
Americans				
Total Proportion of Hispanic	Continuous	Derived		
Population Proportion Below	Continuous	Derived		
Poverty				
Distance from Residency to	Continuous	Derived		
Hospital (km)				
Operative Characteristics				
Day of admission	Nominal	Derived	7	Optimization of categorical features\(^b\)
Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
--	------------------	-------------	----------------------	---
Month of admission	Nominal	Derived	12	Optimization of categorical features^b
Attending Surgeon	Nominal	Raw	311	Optimization of categorical features^b
Admission Source	Binary	Raw	2	
Admission Type (Emergent/Elective)	Binary	Derived	2	
Admitting Type (Medicine/Surgery)	Binary	Derived	2	
Admitting Service	Nominal	Derived	46	Optimization of categorical features^b
Night Admission	Binary	Derived	2	
Scheduled Surgery Type	Nominal	Derived	15	Optimization of categorical features^b
Scheduled Surgery Room	Nominal	Raw	41	Optimization of categorical features^b
Scheduled post operation location	Binary	Derived	2	
Scheduled room is trauma room	Binary	Derived	2	
Time of surgery from admission (days)	Continuous	Derived	2	Imputation of outliers^a
Scheduled primary surgical procedure	Nominal	Derived	1555	Forest tree analysis of ICD9 codes^d
Comorbidities				
Charlson's Comorbidity Index	Nominal	Derived	18	Optimization of categorical features^b
Myocardial Infarction	Binary	Derived	2	
Congestive Heart Failure	Binary	Derived	2	
Peripheral Vascular Disease	Binary	Derived	2	
Cerebrovascular Disease	Binary	Derived	2	
Chronic Pulmonary Disease	Binary	Derived	2	
Diabetes	Binary	Derived	2	
Cancer	Binary	Derived	2	
Liver Disease	Binary	Derived	2	
Valvular disease	Binary	Derived	2	
Coagulopathy	Binary	Derived	2	
Weight loss	Binary	Derived	2	
Alcohol or Drug Abuse	Binary	Derived	2	
Smoking Status	Nominal	Raw	4	Optimization of categorical features^s
Medications History^s				
Betablockers	Binary	Derived	2	
Diuretics	Binary	Derived	2	
Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
---	------------------	--------------	----------------------	-----------------------
Statin	Binary	Derived	2	
Aspirin	Binary	Derived	2	
Angiotensin-CONverting-Enzyme Inhibitors	Binary	Derived	2	
Pressors or Inotropes	Binary	Derived	2	
Bicarbonate	Binary	Derived	2	
Antiemetic	Binary	Derived	2	
Aminoglycosides	Binary	Derived	2	
Vancomycin	Binary	Derived	2	
Nonsteroidal Anti-inflammatory Drug	Binary	Derived	2	
Preoperative Laboratory Results				
Urine Protein, mg/dL	Nominal	Derived	5	Optimization of categorical features b
Urine Hemoglobin, mg/dL	Nominal	Derived	5	Optimization of categorical features b
Urine Glucose, mg/dL	Nominal	Derived	5	Optimization of categorical features b
Urine Erythrocytes, mg/dL	Nominal	Derived	5	Optimization of categorical features b
Serum Glucose, mg/dL	Continuous	Raw		Imputation of outliers a
Blood Urea Nitrogen test, mg/dL	Continuous	Raw		Imputation of outliers a
Serum Creatinine, mg/dL	Continuous	Raw		Imputation of outliers a
Serum Calcium, mmol/L	Continuous	Raw		Imputation of outliers a
Serum Sodium, mmol/L	Continuous	Raw		Imputation of outliers a
Serum Potassium, mmol/L	Continuous	Raw		Imputation of outliers a
Serum Chloride, mmol/L	Continuous	Raw		Imputation of outliers a
Serum CO2, mmol/L	Continuous	Raw		Imputation of outliers a
Serum White Blood Cell, thou/uL	Continuous	Raw		Imputation of outliers a
Mean Corpuscular Hemoglobin in Blood, g/dL	Continuous	Raw		Imputation of outliers a
Mean Corpuscular Hemoglobin Concentration in Blood, pg	Continuous	Raw		Imputation of outliers a
Erythrocyte Distribution Width Count, %	Continuous	Raw		Imputation of outliers a
Serum creatinine, mg/dL	Continuous	Raw		Imputation of outliers a
Serum Platelet, thou/uL	Continuous	Raw		Imputation of outliers a
Serum Hemoglobin, g/dL	Continuous	Raw		Imputation of outliers a
Reference Estimated Glomerular Filtration Rate, mL/min/1.73 m²	Continuous	Derived		Imputation of outliers a
Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
----------	------------------	-------------	----------------------	-----------------------
Urea nitrogen-Creatinine ratio in Serum	Continuous	Derived		Imputation of outliers \(^a\)

Physiologic Intraoperative Time Series

Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
Systolic blood pressure, mmHg	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Diastolic blood pressure, mmHg	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Minimum alveolar concentration	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Heart rate, bpm	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Temperature (°C)	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Peripheral capillary oxygen saturation (SPO2)	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
End-tidal CO2 (ETCO2)	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Peak Inspiratory Pressure (PIP)	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Positive End-expiratory Pressure (PEEP)	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Respiratory O2	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)
Respiratory Rate	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)

Laboratory Results from Surgery

Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
Fraction of inspired oxygen (FIO2)	Continuous	Raw		Data cleaning \(^f\); Imputation of outliers \(^g\); Statistical features extraction \(^h\)

Other Characteristics

Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
Duration of surgery, min	Continuous	Derived		
Estimated blood loss, mL	Continuous	Raw		Missing value imputed by 0
Variable	Type of Variable	Data Source	Number of Categories	Type of Preprocessing
--------------------------------	------------------	-------------	----------------------	-----------------------
Urine output, mL	Continuous	Raw		Missing value imputed by 0

A different set of variables was kept in final models (preoperative or intraoperative) from the input set provided in the table.

a For continuous variables, observations that fell in the top and bottom 1% of the distribution were considered as outliers and imputed by neighborhood values (i.e., above 99%) are imputed randomly from a uniform distribution defined over [95%, 99.5%] percentiles and below 1% are imputed randomly from another uniform distribution defined over [0.5%, 5%] percentiles.

b For categorical variables with more than two levels, levels were transformed to a numeric value as detailed in Methods section.

c Using residency zip code, we linked to US Census data to calculate residing neighborhood characteristics and distance from hospital.

d Surgical procedure codes were optimized using forest tree analysis of ICD-9-CM codes as detailed in Methods section.

e Medications were taken within one year timeframe prior to surgery using RxNorms data grouped into drug classes according to the US, Department of Veterans Affairs National Drug File-Reference Terminology 26.

f We used observations for the first surgery, in case multiple surgeries exist. We averaged values if multiple observations exist at a time point.

g Values out of the predefined ranges were removed. Additionally, any sudden peak in the time series were converted to median for each encounter.

h We extracted several descriptive statistical measures, i.e., mean and standard deviation of time series, minimum and maximum values observed, time/percentage of time a patient spent in a specific range of values for each of the time series.
Supplemental Digital Content 4: Table listing additional study population characteristics that are not listed in Table 1.

	Training Cohort	Test Cohort
Surgeries	40,560	11,969
Male, n (%)	20614 (50.8%)	6072 (50.7%)
Age, mean (SD)	56.5 (17.0)	57.5 (17.3)
Race, n (%)		
White	31399 (77.3%)	9376 (78.3%)
African-American	6136 (15.1%)	1739 (14.5%)
Hispanic	2483 (6.1%)	702 (5.9%)
Other	587 (1.5%)	163 (1.4%)
Primary insurance group, n (%)		
Medicare	18581 (45.8%)	5774 (48.2%)
Private	12463 (30.7%)	3308 (27.6%)
Medicaid	6577 (16.2%)	1928 (16.1%)
Uninsured	2984 (7.4%)	970 (8.1%)
Socio-economic features		
Neighborhood characteristics		
Rural area, n (%)	13986 (34.4%)	4111 (34.3%)
Total population, median (25th,75th)	17599 (10884, 27063)	17599 (10923, 27063)
Median income, median (25th,75th)	40528 (35194, 48430)	40320 (35244, 48245)
Total proportion of African-Americans (%)	0.16 (0.15)	0.16 (0.15)
Total proportion of Hispanic (%)	0.08 (0.08)	0.08 (0.08)
Population proportion below poverty (%)	20 (9.5)	20(2.5)
Distance from residency to hospital (km), median	43.2 (22.1, 81.1)	43.6 (22.3, 80.7)
Comorbidity features		
Cancer, n (%)	11381 (28%)	3136 (26.2%)
Peripheral vascular disease, n (%)	9207 (22.7%)	3022 (25.2%)
Cerebrovascular disease, n (%)	7048 (17.4%)	2221 (18.5%)
Myocardial infarction, n (%)	3187 (7.9%)	1107 (9.2%)
Liver disease, n (%)	5979 (14.7%)	1955 (16.3%)
Weight Loss, n (%)	5754 (14.2%)	2200 (18.4%)
Diabetes, n (%)	10079 (24.8%)	2917 (24.4%)
Alcohol/ Drug abuse, n (%)	6338 (15.6%)	1783 (14.9%)
Congestive heart failure, n (%)	7020 (17.3%)	2343 (19.6%)
Valvular Disease, n (%)	5814 (14.3%)	2117 (17.7%)
Coagulapty, n (%)	5940 (14.6%)	1776 (14.8%)
Smoking, n (%)		
	Training Cohort	Test Cohort
--------------------------------------	--------------------------	------------------------
Never	17325 (42.7%)	5218 (43.6%)
Former	13827 (34.1%)	4168 (34.8%)
Current	7385 (18.2%)	2001 (16.7%)
Missing	2068 (5.1%)	593 (5%)
Number of diagnoses, median (25th-75th)	41 (20, 91)	48 (25, 110)
Operative features		
Night admission, n (%)	18968 (46.7%)	5718 (47.7%)
Admission day (top 3 categories), n (%)		
Monday	7944 (19.6%)	2406 (20.1%)
Tuesday	7665 (18.9%)	2177 (18.2%)
Wednesday	6896 (17%)	2081 (17.4%)
Admission month (top 3 categories), n (%)		
October	3799 (9.4%)	1083 (9%)
January	3720 (9.2%)	1059 (8.8%)
August	3704 (9.1%)	1049 (8.8%)
Number of operating surgeons, n	283	195
Number of procedures per operating surgeon, n (%)		
First rank	1319 (3.3%)	316 (2.6%)
Second rank	1129 (2.8%)	302 (2.5%)
Third rank	1044 (2.6%)	300 (2.5%)
Admission source, n (%)		
Transfer	6668 (16.4%)	2046 (17.1%)
Emergent at Admission status, n (%)	15348 (37.8%)	4855 (40.5%)
Admission to surgical service, n (%)	19264 (47.4%)	5851 (48.8%)
Time of surgery from admission (days), median (25th,75th)	3 (2, 25)	3 (2, 30)
Type of Surgery, n (%)		
Orthopedic surgery	9983 (24.6%)	2895 (24.1%)
Neurosurgery	5625 (13.8%)	1906 (15.9%)
Vascular Surgery	4043 (10%)	1190 (9.9%)
Thoracic/Cardiovascular surgery	3214 (7.9%)	1241 (10.4%)
Urologic surgery	3131 (7.7%)	704 (5.9%)
Trauma- Acute Care surgery	2953 (7.3%)	1056 (8.8%)
Gastrointestinal surgery	2521 (6.2%)	784 (6.5%)
Ear, nose, throat surgery	2446 (6%)	592 (4.9%)
Gynecology obstetrics surgery	1672 (4.1%)	320 (2.7%)
Pancreas & Biliary, BMSE surgery	1451 (3.6%)	337 (2.8%)
Transplant surgery	961 (2.4%)	227 (1.9%)
Plastic surgery	946 (2.3%)	216 (1.8%)
Burn Surgery	837 (2.1%)	185 (1.5%)
Training Cohort

Specialty	Count	Percentage
Pediatric surgery	447	1.1%
Other specialty surgeries	299	0.7%
Ophthalmology surgery	80	0.2%
Medicine Gastroenterology	27	0.1%

Test Cohort

Specialty	Count	Percentage
	123	1%
Other specialty surgeries	164	1.4%
Ophthalmology surgery	51	0.4%
Medicine Gastroenterology	4	0%

Preoperative and admission day laboratory results

median (25th,75th)

Hemoglobin within 7 days prior to surgery, g/dl

	Training Cohort	Test Cohort
Minimum	12.3 (11.4, 13.3)	12.3 (11.4, 13.3)
Maximum	13 (12.2, 13.9)	13 (12.3, 14)
Average	12.7 (11.8, 13.5)	12.7 (11.9, 13.6)
Variance	0.4 (0.4, 0.4)	0.4 (0.4, 0.4)

Hemoglobin within 8-365 days prior to surgery, g/dl

	Training Cohort	Test Cohort
Minimum	11.8 (11.3, 12.2)	11.8 (11.3, 12.5)
Maximum	13.6 (13.3, 13.8)	13.6 (13.3, 14)
Average	12.5 (12.2, 12.8)	12.5 (12.2, 13)
Variance	0.9 (0.9, 0.9)	0.9 (0.9, 0.9)

Glucose in blood within 7 days prior to surgery, mg/dL

	Training Cohort	Test Cohort
Minimum	99 (91, 110)	99 (93, 112)
Maximum	121 (105, 141)	121 (107, 145)
Average	111 (100, 125)	111 (102, 126.5)
Variance	269.8 (269.8, 269.8)	269.8 (269.8, 269.8)
Count	1 (1, 3)	1 (1, 3)

Urea nitrogen in blood within 7 days prior to surgery, mg/dL

	Training Cohort	Test Cohort
Minimum	14 (12, 17)	14 (12, 17)
Maximum	16 (14, 19)	16 (14, 20)
Average	15 (13, 18)	15 (13, 18.5)
Variance	4.5 (4.5, 4.5)	4.5 (4.5, 4.5)
Count	1 (0, 2)	1 (0, 2)

Serum creatinine within 7 days prior to surgery, mg/dL

	Training Cohort	Test Cohort
Minimum	0.9 (0.8, 1)	0.9 (0.7, 0.9)
Maximum	0.9 (0.8, 1.1)	0.9 (0.8, 1)
Average	0.9 (0.8, 1)	0.9 (0.8, 1)
Variance	0 (0, 0)	0 (0, 0)
Count	1 (0, 2)	1 (0, 3)

Serum Calcium within 7 days prior to surgery, mmol/L

	Training Cohort	Test Cohort	
Minimum	9.1 (8.8, 9.3)	9.1 (8.8, 9.4)	
Maximum	9.3 (9.2, 9.5)	9.3 (9.2, 9.6)	
Average	9.2 (9, 9.4)	9.2 (9, 9.4)	
	Training Cohort	Test Cohort	
--------------------------------	------------------------	-------------------	
Variance	0.1 (0.1, 0.1)	0.1 (0.1, 0.1)	
Count	1 (0, 2)	1 (0, 2)	
Serum Sodium ion within 7 days prior to surgery, mmol/L			
Minimum	138 (137, 139)	138 (136, 139)	
Maximum	140 (139, 141)	140 (138, 140)	
Average	139 (138, 140)	139 (137, 139)	
Variance	2.6 (2.6, 2.6)	2.6 (2.6, 2.6)	
Count	1 (0, 2)	1 (0, 2)	
Urea nitrogen-Creatinine ratio within 7 days prior to surgery			
Minimum	15 (12.9, 17.4)	15 (13.7, 18.4)	
Maximum	17.3 (15, 20)	17.3 (16, 21.3)	
Average	16.2 (14, 18.6)	16.2 (15, 19.8)	
Variance	1.6 (1.6, 1.6)	1.6 (0, 1.6)	
Count	1 (0, 4)	2 (0, 6)	
Potassium in serum within 7 days prior to surgery, mmol/L			
Minimum	3.9 (3.7, 4.1)	3.9 (3.7, 4)	
Maximum	4.2 (4, 4.4)	4.2 (4, 4.3)	
Average	4.1 (3.9, 4.2)	4.1 (3.9, 4.1)	
Variance	0.1 (0.1, 0.1)	0.1 (0.1, 0.1)	
Count	1 (0, 2)	1 (0, 3)	
Chloride in Serum within 7 days prior to surgery, mmol/L			
Minimum	100 (99, 102)	100 (100, 104)	
Maximum	102 (101, 104)	102 (102, 106)	
Average	101 (100, 102.8)	101 (101, 104.7)	
Variance	4 (4, 4)	4 (4, 4)	
Count	1 (0, 2)	1 (0, 2)	
Serum CO2 within 7 days prior to surgery, mmol/L			
Minimum	24 (23, 25)	24 (23, 26)	
Maximum	26 (25, 27)	26 (25, 27)	
Average	25 (24, 26)	25 (24, 26)	
Variance	2.6 (2.6, 2.6)	2.6 (2.6, 2.6)	
Count	1 (0, 2)	1 (0, 3)	
White Blood Cell in blood within 7 days prior to surgery, thou/uL			
Minimum	7.6 (6.6, 8.6)	7.6 (6.6, 8.5)	
Maximum	8.8 (7.5, 10.3)	8.8 (7.7, 10.2)	
Average	8.3 (7.1, 9.4)	8.3 (7.2, 9.3)	
Variance	1.7 (1.7, 1.7)	1.7 (1.7, 1.7)	
Count	1 (0, 2)	1 (0, 2)	
	Training Cohort	Test Cohort	
-------------------------------	-----------------------	---------------------	
Mean Corpuscular Volume in blood within 7 days prior to surgery, fL			
Minimum	90.6 (90.6, 90.6)	90.6 (90.6, 90.6)	
Maximum	91.5 (91.5, 91.5)	91.5 (91.5, 91.5)	
Average	91 (91, 91)	91 (91, 91)	
Variance	0.8 (0.8, 0.8)	0.8 (0.8, 0.8)	
Count	0 (0, 1)	0 (0, 0)	
Mean Corpuscular Hemoglobin in blood within 7 days prior to surgery, g/dL			
Minimum	29.8 (29, 30.6)	29.8 (29.2, 30.8)	
Maximum	30.2 (29.4, 31)	30.2 (29.6, 31.2)	
Average	30 (29.2, 30.8)	30 (29.4, 31)	
Variance	0.1 (0.1, 0.1)	0.1 (0.1, 0.1)	
Count	1 (0, 2)	1 (0, 2)	
Amount of hemoglobin relative to the size of the cell in blood, g/dL			
Minimum	32.7 (32.1, 33.2)	32.9 (32.7, 33.8)	
Maximum	33.5 (33, 33.9)	33.5 (33.5, 34.2)	
Average	33.1 (32.6, 33.5)	33.2 (33.1, 34)	
Variance	0.2 (0.2, 0.3)	0.2 (0.2, 0.2)	
Count	2 (0, 4)	1 (0, 2)	
Red cell distribution width in Blood within 7 days prior to surgery, %			
Minimum	14.2 (13.7, 14.7)	14.2 (13.7, 14.8)	
Maximum	14.5 (14, 15.1)	14.5 (13.9, 15)	
Average	14.3 (13.8, 14.9)	14.3 (13.8, 14.9)	
Variance	0.1 (0.1, 0.1)	0.1 (0.1, 0.1)	
Count	1 (0, 2)	1 (0, 2)	
Platelet in blood, within 7 days prior to surgery thou/uL			
Minimum	219 (192, 248)	219 (194, 250)	
Maximum	239 (211, 269)	239 (215, 273)	
Average	228 (202, 258)	228 (205, 259.5)	
Variance	406.9 (406.9, 406.9)	406.9 (406.9, 406.9)	
Count	1 (0, 2)	1 (0, 2)	
Mean platelet volume in blood within 7 days prior to surgery, fL			
Minimum	7.8 (7.8, 7.8)	7.8 (7.8, 7.8)	
Maximum	8.3 (8.3, 8.3)	8.3 (8.3, 8.3)	
Average	8 (8, 8)	8 (8, 8)	
Variance	0.2 (0.2, 0.2)	0.2 (0.2, 0.2)	
Count	0 (0, 1)	0 (0, 0)	
Reference estimated glomerular filtration rate	92.9 (83, 102.7)	92.9 (82.5, 103.3)	
Test Cohort	Training Cohort	Training Cohort	Test Cohort
---------------------	-----------------	-----------------	------------
Automated urinalysis, urine protein within 365 days prior to surgery (mg/dL), n (%)			
Missing	21410 (52.7%)	6631 (55.3%)	
Negative	12424 (30.6%)	3503 (29.2%)	
Small (<30)	1189 (2.9%)	120 (1%)	
Moderate (300)	4423 (10.9%)	1352 (11.3%)	
Large (>=300)	1194 (2.9%)	389 (3.2%)	
Automated urinalysis, urine glucose within 7 days prior to surgery (mg/dL), n (%)	30673 (75.5%)	9299 (77.2%)	
Negative	8740 (21.5%)	2347 (19.6%)	
Small (<499)	661 (1.6%)	200 (1.7%)	
Moderate (1000)	317 (0.8%)	138 (1.2%)	
Large (>1000)	249 (0.6%)	11 (0.1%)	
Automated urinalysis, urine glucose within 8 to 365 days prior to surgery (mg/dL), n (%)	28151 (69.3%)	8492 (70.8%)	
Negative	11446 (28.2%)	3195 (26.6%)	
Small (<500)	440 (1.1%)	137 (1.1%)	
Moderate (<1000)	269 (0.7%)	140 (1.2%)	
Large (>1000)	334 (0.8%)	31 (0.3%)	
Automated urinalysis, urine hemoglobin within 7 days prior to surgery (mg/dL), n (%)	34190 (84.2%)	11970 (99.9%)	
Negative	4030 (9.9%)	7 (0.1%)	
Small	1266 (3.1%)	0 (0%)	
Moderate	620 (1.5%)	1 (0%)	
Large	499 (1.2%)	2 (0%)	
Automated urinalysis, urine hemoglobin within 8 to 365 days prior to surgery (mg/dL), n (%)	32585 (80.3%)	11812 (98.6%)	
Negative	5860 (14.4%)	134 (1.1%)	
Small	956 (2.4%)	17 (0.1%)	
Moderate	548 (1.4%)	7 (0.1%)	
Large	656 (1.6%)	10 (0.1%)	
Automated urinalysis, urine erythrocytes within 365 days prior to surgery (mg/dL), n (%)	24724 (60.8%)	7163 (59.7%)	
Negative (<=4)	12657 (31.1%)	4099 (34.2%)	
Small (>4)	1423 (3.5%)	175 (1.5%)	
Moderate (>30)	411 (1%)	192 (1.6%)	
	Training Cohort	Test Cohort	
--------------------------	-----------------	-------------	
Number of complete blood count tests, n (%)	29021 (71.5%)	8436 (70.4%)	
Medication history (1 year prior to Surgery)			
Medication groups, n (%)			
Beta blockers	6994 (17.2%)	2153 (18%)	
Diuretics	4602 (11.3%)	1323 (11%)	
Statins	3676 (9.1%)	1259 (10.5%)	
Aspirin	5708 (14.1%)	1807 (15.1%)	
Angiotensin-converting-enzyme inhibitors	4139 (10.2%)	1204 (10.1%)	
Vasopressors and inotropes	8427 (20.8%)	2799 (23.4%)	
Bicarbonate	4582 (11.3%)	1420 (11.9%)	
Anti-emetics	11788 (29%)	3694 (30.8%)	
Aminoglycosides	1371 (3.4%)	463 (3.9%)	
Intraoperative Variables			
Diastolic Blood Pressure, mm Hg			
Minimum, mean (SD)	40.54 (12.99)	41.44 (14.25)	
Maximum, mean (SD)	98.91 (25.69)	101.43 (26.18)	
Average, mean(SD)	63.57 (9.69)	65 (10.15)	
Long Term Variability, mean (SD)	119.45 (119.92)	120.78 (105.91)	
Short Term Variability, mean (SD)	34.85 (53.71)	33.58 (54.05)	
Systolic Blood Pressure, mm Hg			
Minimum, mean (SD)	76.43 (20.97)	76.52 (22.41)	
Maximum, mean (SD)	165.05 (32.27)	167.86 (33.11)	
Average, mean(SD)	115.09 (14.66)	116.36 (14.83)	
Long Term Variability, mean (SD)	315.68 (248.99)	324.53 (247.35)	
Short Term Variability, mean (SD)	45.97 (67.87)	45.63 (65.34)	
Heart Rate, bpm			
Minimum, mean (SD)	60 (13.41)	59.99 (13.87)	
Maximum, mean (SD)	109.32 (29.49)	107.99 (27.88)	
Average, mean(SD)	77.73 (13.35)	77.87 (13.5)	
Long Term Variability, mean (SD)	108.93 (243.74)	96.84 (160.45)	
Short Term Variability, mean (SD)	8.46 (16.55)	8.09 (15)	
Respiratory Rate			
Minimum, mean (SD)	2.6 (2.34)	3.11 (3.77)	
Maximum, mean (SD)	26.03 (8.59)	25.91 (8.72)	
Average, mean(SD)	11.49 (2.86)	12.1 (3.09)	
Long Term Variability, mean (SD)	13.32 (14.56)	13.68 (16.34)	
Short Term Variability, mean (SD)	1.37 (3.6)	1.43 (3.67)	
Peripheral capillary oxygen saturation (SpO2)			
Minimum, mean (SD)	88.18 (9.37)	87.78 (9.88)	
Parameter	Training Cohort	Test Cohort	
---	-----------------	---------------	
Maximum, mean (SD)	99.88 (0.65)	99.87 (0.7)	
Average, mean (SD)	98.12 (1.81)	98.05 (1.86)	
Long Term Variability, mean (SD)	4.84 (13.78)	5.46 (24.26)	
Short Term Variability, mean (SD)	0.15 (1.1)	0.16 (1.42)	
End-tidal CO2 (ETCO2)			
Minimum, mean (SD)	15.71 (5.85)	17.52 (7.62)	
Maximum, mean (SD)	46.72 (8.25)	45.28 (8.93)	
Average, mean (SD)	34.15 (4.67)	34.12 (5.24)	
Long Term Variability, mean (SD)	26.06 (25.99)	26 (25.84)	
Short Term Variability, mean (SD)	1.26 (7.64)	1.18 (2.54)	
Respiratory O2			
Minimum, mean (SD)	2.74 (1.79)	2.83 (1.67)	
Maximum, mean (SD)	2.79 (1.84)	2.89 (1.77)	
Average, mean (SD)	2.76 (1.8)	2.86 (1.7)	
Long Term Variability, mean (SD)	0.72 (4.91)	0.75 (5.74)	
Short Term Variability, mean (SD)	0 (0)	0 (0)	
Fraction of inspired oxygen (FiO2)			
Minimum, mean (SD)	30.33 (9.09)	25.23 (7.58)	
Maximum, mean (SD)	39.8 (10.16)	35.83 (13.09)	
Average, mean (SD)	37.76 (5.77)	31.82 (9.13)	
Long Term Variability, mean (SD)	5.85 (17.2)	8.06 (33.41)	
Short Term Variability, mean (SD)	0.45 (9.12)	0.4 (4.64)	
Positive end-expiratory pressure (PEEP)			
Minimum, mean (SD)	6.14 (2.22)	6.2 (2.07)	
Maximum, mean (SD)	6.19 (2.24)	6.24 (2.1)	
Average, mean (SD)	6.16 (2.21)	6.22 (2.07)	
Long Term Variability, mean (SD)	2.2 (4.11)	2.86 (5.69)	
Short Term Variability, mean (SD)	0 (0)	0 (0)	
Peak Inspiratory Pressure (PIP)			
Minimum, mean (SD)	0.08 (0.89)	0.07 (0.83)	
Maximum, mean (SD)	25.42 (10.04)	24.93 (10.08)	
Average, mean (SD)	15.42 (7.08)	14.73 (6.84)	
Long Term Variability, mean (SD)	47.01 (36.57)	45.8 (36.73)	
Short Term Variability, mean (SD)	2.89 (4.24)	2.68 (4.16)	
Minimum alveolar concentration (MAC)			
Minimum, mean (SD)	0.07 (0.07)	0.04 (0.07)	
Maximum, mean (SD)	1.06 (0.38)	1.02 (0.43)	
Average, mean (SD)	0.61 (0.22)	0.55 (0.26)	
Long Term Variability, mean (SD)	0.05 (0.04)	0.06 (0.06)	
Short Term Variability, mean (SD)	0 (0.01)	0 (0.01)	
Temperature, °C			
Minimum, mean (SD)	35.49 (2.62)	35.62 (2.78)	
	Training Cohort	Test Cohort	
--------------------------	----------------	-------------	
Maximum, mean (SD)	37.59 (0.69)	37.57 (0.7)	
Average, mean(SD)	36.96 (0.82)	36.98 (0.86)	
Variance, mean (SD)	0.47 (2.08)	0.68 (2.52)	

a Result of both numeric data and text extraction
b Result of text extraction; no numerical extraction was performed
c Missing values were imputed with median values
Supplemental Digital Content 5: Table listing allowed laboratory and time-series variable ranges.

Laboratory Test Variables	Ranges
Blood sugar test (Glucose), mg/dL	25-1400
Blood urea nitrogen test, mg/dL	1-200
Serum Creatinine, mg/dL	0.1-20
Serum Calcium, mmol/L	1.0-30
Serum Sodium, mmol/L	80-190
Serum Potassium, mmol/L	0-30
Serum Chlorine, mmol/L	36-150
Serum O2 Saturation, %	0-100
Serum CO2, mmol/L	1.0-50
Serum white blood cell, thou/uL	0.1-240
Erythrocyte Mean Corpuscular Hemoglobin in Blood, pg	10.0-50
Erythrocyte distribution width count, %	2.0-40
Serum Platelet, thou/uL	2.0-1900
Serum Hemoglobin, g/dL	3.0-23.0
Reference estimated glomerular filtration rate, mL/min/1.73 m²	0-200
Urea nitrogen-Creatinine ratio in Serum	0.2-100
Blood bicarbonate, mmol/dL	3-62
Anion Gap in Serum, mmol/L	1 to 40
Mean Platelet Valome, fl	1 to 30
Erythrocyte mean corpuscular volume, fl	20-150
Erythrocyte mean corpuscular hemoglobin concentration, g/dL	1-200
Erythrocyte sedimentation rate, mm/h	1-140

IntraOperative Time-Series variables	
End-tidal CO2 (ETCO2)	10-200
Fraction of inspired oxygen (FiO2)	21-200
Respiratory O2	0-20
Positive end-expiratory pressure (PEEP)	0-30
Peak Inspiratory Pressure (PIP)	0-40
Respiratory Rate	0-60
Peripheral capillary oxygen saturation (SpO2)	0-100
Temperature, °C	24-45
Heart Rate, bpm	0-300
Systolic Blood Pressure, mm Hg	20-300
Diastolic Blood Pressure, mm Hg	5-225
Minimum alveolar concentration (MAC)	0-2
Supplemental Digital Content 6: Table listing ICD codes used to identify neurological complications and delirium.

ICD9 codes	ICD10 codes by Conversion	ICD10 codes by clinician	
331.3, 331.4	G91.0 Communicating hydrocephalus	G81.0 Flaccid hemiplegia	
Hydrocephalus	G91.1 Obstructive hydrocephalus		
342.0 - 342.9	G81.00 Flaccid hemiplegia affecting unspecified side	G81.9 Hemiplegia, unspecified	
Hemiplegia or	G81.01 Flaccid hemiplegia affecting right dominant side		
Hemiparesis	G81.02 Flaccid hemiplegia affecting left dominant side		
	G81.03 Flaccid hemiplegia affecting right nondominant side		
	G81.04 Flaccid hemiplegia affecting left nondominant side		
342.0 Flaccid	G81.10 Spastic hemiplegia affecting unspecified side	G82.2 Paraplegia	
hemiplegia	G81.11 Spastic hemiplegia affecting right dominant side		
	G81.12 Spastic hemiplegia affecting left dominant side		
	G81.13 Spastic hemiplegia affecting right nondominant side		
	G81.14 Spastic hemiplegia affecting left nondominant side		
342.1 Spastic	G81.90 Hemiplegia, unspecified affecting unspecified side	G82.5 Quadriplegia	
hemiplegia	G81.91 Hemiplegia, unspecified affecting right dominant side		
	G81.92 Hemiplegia, unspecified affecting left dominant side		
	G81.93 Hemiplegia, unspecified affecting right nondominant side		
342.8 Other specified	G81.90 Hemiplegia, unspecified affecting unspecified side		
hemiplegia	G81.91 Hemiplegia, unspecified affecting right dominant side		
	G81.92 Hemiplegia, unspecified affecting left dominant side		
	G81.93 Hemiplegia, unspecified affecting right nondominant side		
ICD9 codes	ICD10 codes by Conversion	ICD10 codes by clinician	
------------	--------------------------	-------------------------	
G81.94	Hemiplegia, unspecified affecting left nondominant side		
342.9	Hemiplegia, unspecified	G81.90 Hemiplegia, unspecified affecting unspecified side G81.91 Hemiplegia, unspecified affecting right dominant side G81.92 Hemiplegia, unspecified affecting left dominant side G81.93 Hemiplegia, unspecified affecting right nondominant side G81.94 Hemiplegia, unspecified affecting left nondominant side	G83 Other paralytic syndromes
348.1	Anoxic brain damage:	G93.1 Anoxic brain damage, not elsewhere classified	G91 Hydrocephalus
434.0 - 434.9 (434.0, 434.1, 434.9)	Occlusion of a cerebral artery, with or without infarction	I63.40 Cerebral infarction due to embolism of unspecified cerebral I63.30 Cerebral infarction due to thrombosis of unspecified cerebra I63.50 Cerebral infarction due to unspecified occlusion or stenosis I66.19 Occlusion and stenosis of unspecified anterior cerebral arte I66.9 Occlusion and stenosis of unspecified cerebral artery I66.09 Occlusion and stenosis of unspecified middle cerebral artery I66.29 Occlusion and stenosis of unspecified posterior cerebral art	G93.1 Anoxic brain damage, not elsewhere classified
784.3	Aphasia	R47.01 Aphasia	G94 Other disorders of brain in diseases classified elsewhere
997.00 - 997.09	Postoperative neurological complications, including infarction or hemorrhage		G95 Other and unspecified diseases of spinal cord
ICD9 codes	ICD10 codes by Conversion	ICD10 codes by clinician	
--	--	--	
997.0 Nervous system complications		G97.0 Cerebrospinal fluid leak from spinal puncture	
997.00 Nervous system complication, unspecified	G97.81 Other intraoperative complications of nervous system	G97.1 Other reaction to spinal and lumbar puncture	
997.01 Central nervous system complication:	G97.81 Other intraoperative complications of nervous system	G97.2 Intracranial hypotension following ventricular shunting	
997.02 Iatrogenic cerebrovascular infarction or hemorrhage Postoperative stroke	I97.811 Intraoperative cerebrovascular infarction during other surge	G97.8 Other intraoperative and postprocedural complications and disorders of nervous system	
997.09 Other nervous system complications	G03.8 Meningitis due to other specified causes G97.0 Cerebrospinal fluid leak from spinal puncture G97.81 Other intraoperative complications of nervous system G97.82 Other postprocedural complications and disorders of nervous	R47.0 Dysphasia and aphasia	
		I60 Nontraumatic subarachnoid hemorrhage	
		I61 Nontraumatic intracerebral hemorrhage	
		I62 Other and unspecified nontraumatic intracranial hemorrhage	
		I63 Cerebral infarction	
		I97.81 Intraoperative cerebrovascular infarction	
ICD9 codes	ICD10 codes by Conversion	ICD10 codes by clinician	
------------	--------------------------	-------------------------	
		I97.82 Postprocedural cerebrovascular infarction	

Delirium was coded by CAM scores.