WO\textsubscript{3}-Based Materials as Electrocatalysts for Hydrogen Evolution Reaction

Yixuan Li1*, Xiaoliang Zhai1*, Yong Liu1,2*, Huijie Wei1, Junqing Ma1, Min Chen3, Xianming Liu4, Wanhong Zhang1*, Guangxin Wang1, Fengzhang Ren1 and Shizhong Wei1,2*

Environmental pollution and energy shortage make the development of clean energy more and more urgent. As a kind of clean renewable energy, hydrogen has attracted more attention recently. WO\textsubscript{3}-based materials have emerged as one of the most promising candidates for electrocatalytic hydrogen evolution reaction (HER) due to their attractive electrocatalytic activity, low cost, as well as electrochemical durability. In this minireview, we systematically provide an overview of WO\textsubscript{3}-based materials applied for HER, including pure WO\textsubscript{3}, doped WO\textsubscript{3}, and WO\textsubscript{3}-based composite materials. Furthermore, the strategies to enhance their electrocatalytic performance are summarized and discussed, such as morphological engineering, doping, as well as compositing with other materials. Finally, the limitation and challenges of WO\textsubscript{3}-based materials for HER and their prospects for future research are proposed. We believe that this minireview will be favorable for scientists to seek more promising HER electrocatalysts.

Keywords: tungsten oxide, doping, composites, electrocatalyst, hydrogen evolution reaction

INTRODUCTION

Nowadays, the discovery and use of fossil fuels (such as coal and petroleum) have made great contributions to the development of human society (Wang Y. et al., 2018; Hao et al., 2019; Liu G. L. et al., 2020; Yu et al., 2020). However, the fast development of human society brought excessive emission of carbon dioxide and overuse of non-renewable resources, resulting in many serious problems, such as global warming, climate change, sharp decline in energy reserves, and so on (Liu G. et al., 2019; Zhao et al., 2019; Wang W. et al., 2020; Zou et al., 2020).
Recently, a series of renewable energy resources such as wind energy, solar energy, tidal energy, and hydropower have been intensively studied and emerged as alternatives for fossil fuels (Peng et al., 2017, Liu G. et al., 2018). Meanwhile, electrochemical energy store (Guo et al., 2019, Wang F. et al., 2018, Wang et al., 2019e; Wang R. et al., 2020; Liu Y. et al., 2019; Yuan et al., 2019; Li M. et al., 2020; Song et al., 2020; Sui et al., 2020), electrocatalysis (Chen et al., 2019a; Li Y. et al., 2019, Wang et al., 2019c, Wang et al., 2019d; Xiao et al., 2019), and other new energy technologies have also developed rapidly in recent years (Ma et al., 2013, 2017; Zhang et al., 2014, 2018; Cheng et al., 2019; Li Y. et al., 2019; Zheng et al., 2020). It is worth noting that hydrogen fuel is of great concern because of its high energy density and abundant natural resources. Moreover, the product of hydrogen combustion is water, which is pollution-free and can effectively reduce the emission of greenhouse gases and toxic gases (Yu et al., 2019).

At present, the production of hydrogen by electrochemical water splitting has caught extensive attention because of its simple and flexible operation (Zou and Zhang, 2015). However, hydrogen production is hindered by the high overpotential of the hydrogen evolution reaction (HER) and the low hydrogen production rate (Lei et al., 2020). Therefore, in order to overcome these defects and promote the production of H₂, it is urgent to introduce efficient electrocatalysts. Platinum is acknowledgedly regarded as one of the best electrocatalysts for HER (Ma et al., 2019); nevertheless, further application is limited by its high price. Therefore, it is necessary to explore proper non-noble metals for electrocatalytic hydrogen evolution.

As a transition metal oxide, tungsten oxide (WO₃) is expected to be a hopeful candidate to substitute Pt as an electrocatalyst for efficient HER due to its outstanding redox capability, low cost, and high stability (Chandrasekaran et al., 2019; Wang et al., 2019b). Hence, more and more attention has been paid to investigating WO₃-based materials for electrocatalytic HER. For example, Chen Y. et al. (2018) reported an article about crumpled graphene/tungsten disulfide/tungsten trioxide with high electrocatalytic HER performance. And recently, Tian et al. (2019) reported unique highly dispersed Pt atom clusters on WO₃@CFC (carbon fiber cloth) as superior electrocatalysts for HER. Furthermore, Huang et al. (2019) gave a comprehensive review on recent progress in WO₃-based materials as photoanodes for water oxidation. However, to the best of our knowledge, a critical review that exclusively puts a spotlight on WO₃-based materials for electrocatalytic HER has not been reported.

In this minireview, we will give a comprehensive description of WO₃-based materials, mainly including stoichiometric WO₃, non-stoichiometric WO₃, doped WO₃, and WO₃-based composite materials with their application in the field of electrocatalytic HER in recent years. Their micro/nanostructures and electrocatalytic performances for HER are systematically summarized, as shown in Supplementary Table S1. Furthermore, we also present some rational proposals to facilitate breakthroughs in the future. We hope that this minireview could draw more attention to WO₃-based electrocatalysts and boost their practical applications.

NANOSTRUCTURED TUNGSTEN OXIDE

Stoichiometric WO₃

In recent years, the electrocatalytic performances of WO₃ have been greatly enhanced by utilizing nano/micrometer-sized WO₃, mainly due to their high surface area to volume ratio. The nanostructured stoichiometric WO₃ with different morphologies as electrocatalysts for HER includes nanorods (Ham et al., 2010), nanowires (NWs) (Phuruangrat et al., 2010), nanoparticles (Ganesan and Gedanken, 2008), and so on.

For example, Ham et al. (2010) developed a facile hydrothermal method to prepare monoclinic WO₃ (m-WO₃) nanoflakes and nanorods (Supplementary Figures S1A,B). The cyclic voltammetry results show the decent stability of m-WO₃ nanoflakes and nanorods for HER (Supplementary Figures S1C,D). When they are tested at −0.2 V in 1 M H₂SO₄, m-WO₃ nanoflakes and nanorods shows cathodic current densities at 17.58 and 23.86 mA cm⁻², respectively (Supplementary Figure S1E), and the Tafel slopes of m-WO₃ nanoflakes (122 mV dec⁻¹) or nanorods (113 mV dec⁻¹) are lower than those of commercial bulk m-WO₃ (135 mV dec⁻¹), indicating superior performances for HER (Supplementary Figure S1F). Phuruangrat et al. (2010) employed a novel microwave-assisted hydrothermal (MH) method to fabricate 1D hexagonal WO₃ NWs (hex-WO₃). The as-synthesized hex-WO₃ nanoparticles display different morphology and sizes when the MH time was adjusted from 3 to 12 h (Supplementary Figures S2A–D). The cyclic voltammetry results show the decent stability of hex-WO₃ for HER of hex-WO₃ NWs fabricated by MH at −0.1 V is far higher than that of hex-WO₃ NWs also synthesized by conventional hydrothermal method (CH) and commercial WO₃ (Supplementary Figure S2E). Furthermore, the cyclic voltammetry results show the exchange current density of hex-WO₃ NWs by MH are 116 mV dec⁻¹ and 6.61 mA cm⁻², respectively, elucidating better electrocatalytic kinetics of hex-WO₃ than those of commercial WO₃ (157 mV dec⁻¹ and 0.27 mA cm⁻²) (Supplementary Figure S2F). The performance enhancement of hex-WO₃ NW samples can be attributed to their high aspect ratio and crystallinity.

Non-stoichiometric WOₓ<3

The performances of tungsten oxide can also be adjusted and controlled by defects in its architecture (Royer et al., 2014; Zheng et al., 2017). Several oxygen-deficient WOₓ<3 nanomaterials have been reported to promote the electrocatalytic HER efficiencies, such as mesoporous WO₂.₄₅ (Cheng et al., 2018), WO₃−ₓ/Ni foam (NF) (Yi et al., 2018), and monoclinic WO₃−ₓ (Sharma et al., 2019). For instance, Zheng et al. (2017) synthesized two-dimensional WO₃ nanosheets with rich O vacancies via a liquid exfoliation method. The structure of the O vacancies model was built based on WO₃ (010) (√2 × √2) R45° slab with the surface of all terminal oxygen atoms as well as one bridging oxygen atom removed (Figure 1A). At 10 mA cm⁻², the overpotential of as-synthesized sample is 38 mV and the Tafel slope is also 38 mV dec⁻¹, which is close to the optimal performances of benchmarking electrocatalyst Pt/C (Figure 1B). Unique
O vacancies were verified by density-functional-theory (DFT) calculation on WO₃ to bring in gap states around the Fermi level, which obviously increased hydrogen absorption and reduced H₂ adsorption free energy (ΔGₚₓₜ) (Figure 1C).

Hetero-atom Doped WO₃

Besides the method of introducing O vacancies in WO₃, hetero-atom doping with a metallic element is also an efficient way to promote electron transfer and shorten proton diffusion paths. In 2014, Xie et al. (2014) reported nanostructured Ta-doped WO₃ as an efficient electrocatalyst for HER. The as-prepared Ta-doped WO₃ NWs show excellent performance. Later, metallic element doping in WO₃ for electrocatalytic HER was further developed, and the mechanism was demonstrated by Chandrasekaran et al. (2019). They prepared Mn-doped WO₃ and V-doped WO₃ via the hydrothermal route, and the particle sizes are 50–70 and 20–30 nm, respectively (Figure 1D). The electrochemical results indicate that the V-doped WO₃ (3 wt.% denoted as VW-S2) exhibits the optimal performance for HER. The overpotential of VW-S2 at 10 mA cm⁻² is 38 mV versus the reversible hydrogen electrode (RHE) (Figure 1E). Moreover, the Tafel slope is 41 mV per decade, which is lower than that of Mn-doped WO₃ (MW-S2) (68 mV dec⁻¹) and undoped WO₃ (121 mV dec⁻¹), close to the benchmarking Pt/C (32 mV dec⁻¹) (Figure 1G). Additionally, the value of free energy ΔGₚₓₜ under the circumstances shown in Figure 1F is ideal (0.08 eV at Oₐ sites), which gains significant reduction (Figure 1H). DFT calculation indicates that band gap reduction in WO₃ is on account of V doping, resulting in great conductivity, and the high HER activity could be ascribed to the V element bonding with terminal oxygen in the lattice of WO₃.

WO₃-BASED BINARY COMPOSITES

To further enhance electrocatalytic properties for HER, WO₃ has been composited with other materials, such as carbon (Wondimu et al., 2018a,b), metals (Li W. et al., 2019; Tian et al., 2019), and metal-based compounds (Yang et al., 2016; Shang et al., 2017).

WO₃/Carbon Composites

Carbon materials are often utilized as conductive materials due to their superior electronic conductivity and outstanding chemical durability (Wu et al., 2019). Hence, compositing WO₃ with carbon materials is an efficient way to improve the HER performances (Wondimu et al., 2018a,b; Hu et al., 2019). For example, Wondimu et al. (2018a) developed novel electrocatalyst tungsten oxide NWs with rich O vacancies supported by nitrogen doped-reduced graphene oxide (N-rGO) (denoted as WOₓNWs/N-rGO), which exhibits better HER performance than Fe-WOₓP/rGO approaching to Pt/C. The overpotential as well as the Tafel slope are only 40 mV at 10 mA cm⁻² and 38.2 mV dec⁻¹, respectively, which are close to the state-of-the-art Pt/C. The superior performance could be mainly put down to O vacancies and the network between the WOₓNWs and N-rGO.

Not only could the rGO assist the WO₃-based materials to be more excellent and efficient, but also other carbon materials could increase the conductivity and further enhance the electrocatalytic properties for HER, such as WO₃/C (Zheng and Mathe, 2011), WO₃/Carbon nanotube (CNT) (Chekin et al., 2013), and WO₃₋ₓ/nitrogen-doped carbon (NC) (Chen J. et al., 2018). More details on the electrocatalytic performances could be found in Supplementary Table S1.

WO₃/Metal-Based Material Composites

Besides carbon materials, construction of WO₃ with metal and metal-based materials is regarded as another effective way to enhance the charge transfer and promote the synergistic effect between them (Wang et al., 2019a,b). Up to now, many metal-based materials have been composited with WO₃, such as Pt (Li W. et al., 2019; Tian et al., 2019), Ag (Ma et al., 2019), WX₂ (X = S) (Yang et al., 2016; Shang et al., 2017), Se (Fominski et al., 2016), and Al₂O₃ (Zou et al., 2019). For instance, Yang et al. (2016) *in situ* synthesized WO₃-2H₂O/WX₂ hybrid electrocatalyst for HER with superior electrocatalytic properties through a facile anodizing treatment. Furthermore, to minimize the use of precious metals, Tian et al. (2019) fabricated an effective low-Pt electrocatalyst with high oxygen vacancies in WO₃@CFC (carbon fiber cloth) denoted as Pt/def-WO₃@CFC. Firstly, the WO₃ nanoplates were grown on carbon fiber cloth through a hydrothermal method, followed by heat treatment under the atmosphere of 5 vol.% H₂ and 95 vol.% Ar to produce O vacancies on WO₃. And the Pt/def-WO₃@CFC was obtained after Pt nanoclusters dispersed on the defect of WO₃ via thermal reduction (Figure 2A). The lattice fringe spacing are 0.374 and 0.365 nm, corresponding to the (002) and (020) planes of WO₃, respectively (Figure 2B). And the spherical aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image shows that the number of O vacancies is relatively low (Figure 2C). But after the loading of Pt, an obvious decrease in intensity is seen with a reduction in the electron spin resonance (ESR) peak, indicating the substitution of O vacancies by Pt clusters. The HER performance shows a Tafel slope of 61 mV dec⁻¹ and an overpotential of 42 mV at 10 mA cm⁻² in 0.5 M H₂SO₄ (Figure 2D), which are comparable to those of the state-of-the-art commercial Pt/C catalyst (110 = 34 mV, Tafel slope = 46 mV dec⁻¹). And it is worthy to mention that the activity of low-Pt catalyst Pt/def-WO₃@CFC is 3.3 times that of commercial Pt/C, which could be attributed to the synergistic effect between the Pt and defective WO₃ (Figure 2D). Pt atoms are tightly tied in the position of O vacancies, hindering their aggregation or growing during the period of hydrogen evolution, which definitely reveals the significant functions of defect-rich nanostructures (Chen et al., 2019b; Zhu et al., 2019).

Others

Besides the above mentioned, there are still some WO₃-based composite electrocatalysts with enhanced HER performance. The electrocatalyst SiO₂/WO₃₋ₓ nanofacets calcined *in situ* at 500°C for 5 h (denote as 500-5) by K etpang et al. (2013) exhibits an overpotential of 170 mV owing to the interaction between them. And nano-zeolite with 3 wt.% WO₃ prepared via the work of Anis and Hashaikeh (2018) is also a promising candidate for HER with a lower Tafel slope of 31.9 mV dec⁻¹ due to the high
surface areas and decent durability brought by zeolites. However, their specific mechanisms need deep insight on the assistance of DFT calculation.

WO\textsubscript{3}-BASED TERNARY COMPOSITES

Recently, WO\textsubscript{3}-based ternary composite electrocatalysts for HER receive more and more attention due to the great synergy effect between the components (Choudhary et al., 2017; Chen Y. et al., 2018). For instance, Lv et al. (2018a) synthesized WO\textsubscript{3}/C@CoO on NF observed as octopus tentacles via facile hydrothermal treatment as well as following thermal treatment. As shown in Figure 2E, a CoO NWs precursor grows on NF after hydrothermal treatment. The SEM and TEM images (Figures 2F–H) showed the morphology of the WO\textsubscript{3}/C@CoO nanostructure. When it is measured as an electrocatalyst for HER, the overpotential at 10 mA cm-2 is tested as 55 mV (Figure 2I). The Tafel slope is 115 mV dec-1 (Figure 2J), which is smaller than that of argon-treated WO\textsubscript{3}/C@CoO/NF (122 mV dec-1) and CoO NWs (132 mV dec-1). And the outstanding HER stability is still maintained after 2,000 cycles (Figure 2K). The excellent electrocatalytic performance is mainly due to the distinctive structure and robust synergistic effect among WO\textsubscript{3}, CoO, and NF. Another ternary CoSe\textsubscript{2}/WSe\textsubscript{2}/WO\textsubscript{3} hybrid NWs on carbon cloth (CC) were synthesized by Lv et al. (2018b). The high performance indicates the significant functions of unique nanostructure and strong synergistic effects, which prompts Ar/H\textsubscript{2}-treated WO\textsubscript{3}/C@CoO and CoSe\textsubscript{2}/WSe\textsubscript{2}/WO\textsubscript{3} NWs/CC to become remarkable electrocatalysts for HER (Du et al., 2018).
CONCLUSION AND OUTLOOKS

In summary, we briefly review the recent developments of WO$_3$-based materials for electrocatalytic HER. The essential synthetic methods and processes, various nanostructures, and robust performances are generally discussed. From these studies, it is clear that the strategies mentioned above are useful and meaningful for optimizing the electrocatalytic performance of WO$_3$. However, we should recognize that the practical application of WO$_3$-based electrocatalysts for HER is still in early stage and is facing many challenges. First, the majority of works are focusing on the nanostructure morphology and electrocatalytic performances, but the understanding of mechanism is not seriously taken. Second, the latest modern characterization techniques, such as in situ X-ray technique, in situ electron microscopy, and in situ scanning probe technology, should be well used to explore the working mechanisms. Third,
DFT calculation is also an efficient way for us to gain insight into the nanostructure–composition–performance relationships, which may be important in the development of catalysts in the future. In addition, among these recent advances, the electrocatalysts introduced O vacancies that almost exhibit outstanding performances close to those of the benchmarking Pt/C. Decent electrical conductivity, appropriate Gibbs free energy $\Delta G_{\text{H}_2\text{O}}$, and large active surface areas will possibly render the introduction of O vacancies as a promising strategy and the orientation for better HER process. Last, the electrocatalytic stability should also be seriously considered. We hope this minireview will be helpful and will inspire more innovative ideas for WO$_3$-based or even transition metal oxide materials as electrocatalysts for HER.

AUTHOR CONTRIBUTIONS

YL, WZ, and SW conceived the idea. YXL and XZ wrote the draft. All authors contributed to the writing, discussion, and revision of the final version of the manuscript.

REFERENCES

Anis, S. F., and Hashaikhe, R. (2018). Electrochemical water splitting using nano-zeolite Y supported tungsten oxide electrocatalysts. J. Nanopart. Res. 20:47. doi: 10.1007/s11051-018-4153-2

Chandrasekaran, S., Zhang, P., Peng, F., Bowen, C., Huo, J., and Deng, L. (2019). Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J. Mater. Chem. A 7, 6161–6172. doi: 10.1039/c8ta12238e

Chekin, F., Bagheri, S., and Abd Hamid, S. B. (2013). Synthesis of tungsten oxide nanorods by the controlling precipitation reaction: application for hydrogen evolution reaction on a w3 nanorods/carbon nanotubes composite film modified electrode. J. Chin. Chem. Soc. 60, 447–451. doi: 10.1002/jccs.201200298

Chen, H., Liu, J., Liu, P., Wang, Y., Xiao, H., Yang, Q., et al. (2019a). Carbon-confined magnesium hydride nano-lamellae for catalytic hydrogenation of carbon dioxide to lower olefins. J. Catal. 379, 121–128. doi: 10.1016/j.jcat.2019.09.022

Chen, H., Liu, P., Li, J., Wang, Y., She, C., Liu, J., et al. (2019b). MgH2/CuxO Hydrogen Storage Composite with Defect-Rich Surfaces for Carbon Dioxide Hydrogenation. ACS Appl. Mater. Interf. 11, 31009–31017. doi: 10.1021/acsami.9b11285

Chen, J., Yang, H., Sang, X., Su, Z., Li, D., and Wang, Q. (2018). Oxygen vacancy rich tungsten oxide with nitrogen doped mesoporous carbon as matrix for overall water splitting and 4-nitrophenol reductive removal. Solid State Sci. 83, 23–30. doi: 10.1016/j.solidstatesciences.2018.06.010

Chen, Y., Ren, R., Wen, Z., Ci, S., Chang, J., Mao, S., et al. (2018). Superior electrocatalysis for hydrogen evolution reaction with crumpled graphene/tungsten sulfide/tungsten trioxide ternary nanohybrids. Nano Energy 47, 66–73. doi: 10.1016/j.nanoen.2018.02.023

Cheng, H., Klapproth, M., Sagaltchik, A., Li, S., and Thomas, A. (2018). Ordered mesoporous WO2.83: selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. J. Mater. Chem. A 6, 2249–2256. doi: 10.1039/c7ta09579a

Cheng, N., Zhao, J., Fan, L., Liu, Z., Chen, S., Ding, H., et al. (2019). Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 55, 12511–12514. doi: 10.1039/c9cc06561j

Choudhary, R., Patra, S., Madhuri, R., and Sharma, P. K. (2017). Cow Dung Derived PdNPs@WO3 Porous Carbon Nanodiscs as Trifunctional Catalysts for Design of Zinc-Air batteries and overall water splitting. ACS Sustain. Chem. Eng. 5, 9735–9748. doi: 10.1021/acssuschemeng.7b01541

Du, H., Kong, R.-M., Guo, X., Qu, F., and Li, J. (2018). Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution reaction. Nanoscale 10, 21617–21624. doi: 10.1039/c8nr07891b

Fominski, V. Y., Grigoriev, S. N., Romanov, R. I., Volosova, M. A., Grunin, A. I., and Teterina, G. D. (2016). The formation of a hybrid structure from tungsten selenide and oxide plates for a hydrogen-evolution electrocatalyst. Techn. Phys. Lett. 42, 555–558. doi: 10.1134/s1063785016060055

Ganesan, R., and Gedanken, A. (2008). Synthesis of WO(3) nanoparticles using a biopolymer as a template for electrocatalytic hydrogen evolution. Nanotechnology 19, 025702–025702. doi: 10.1088/0957-4484/19/02/025702

Guo, X., Zhang, Y.-Z., Zhang, F., Li, Q., Anjum, D. H., Liang, H., et al. (2019). A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem. A 7, 15969–15974. doi: 10.1039/c9ta04062e

Ham, D. J., Phuuruangrat, A., Thongtem, S., and Lee, J. S. (2010). Hydrothermally synthesis of monoclinic WO3 nanoparticles and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. Chem. Eng. J. 165, 363–369. doi: 10.1016/j.cej.2010.09.090

Hao, X., Zhao, Q., Su, S., Zhang, S., Ma, J., Shen, L., et al. (2019). Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li Metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv. Energy Mater. 9:1901604. doi: 10.1002/aenm.201901604

Hu, G., Li, J., Liu, P., Zha, X., Li, X., Ali, R. N., et al. (2019). Enhanced electrocatalytic activity of WO3@NPRGO composite in a hydrogen evolution reaction. Appl. Surf. Sci. 463, 275–282. doi: 10.1016/j.apsusc.2018.02.227

Hu, W.-H., Han, G.-Q., Dong, B., and Liu, C.-G. (2015). Facile Synthesis of Highly Dispersed WO3 center dot H2O and WO3 nanobelts for electrocatalytic hydrogen evolution. J. Nanomater. 2015:436086. doi: 10.1155/2015/436086

Huang, J., Yue, P., Wang, L., She, H., and Wang, Q. (2019). A review on tungsten-tin oxide-based photoanodes for water oxidation. Chin. J. Catalysis 40, 1408–1420. doi: 10.1016/S1872-2067(19)33999-1

Ketpang, K., Kim, M., Kim, S., and Shannumugam, S. (2013). High performance catalyst for electrochemical hydrogen evolution reaction based on SiO2/WO3-x nanofacets. Int. J. Hydrogen Energy 38, 9732–9740. doi: 10.1016/j.ijhydene.2013.05.112
Oxygen vacancy improves the hydrogen evolution reaction property of WO3-x nanosheets. *Nano Struct. Nano Obj.* 15, 114–118. doi: 10.1016/j.nanoso.2017.08.017

Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber. *J. Power Sources* 449:227514. doi: 10.1016/j.jpowsour.2019.227514

Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. *Nano Energy* 58, 244–276. doi: 10.1016/j.nanoen.2019.01.017

Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. *J. Mater. Chem. A* 7, 22123–22147. doi: 10.1039/c9ta06934h

NiCo2O4 nanostructure materials: morphology control and electrochemical energy storage. *Dalton Trans.* 43, 15887–15897. doi: 10.1039/c4dt02276a

High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. *Nano Res.* 11, 1651–1663. doi: 10.1007/s12274-017-1780-3

Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. *J. Mater. Chem. A* 7, 15871–15879. doi: 10.1039/c9ta04240g

Hydrogen evolution reaction on single crystal WO(3)/C nanoparticles supported on carbon in acid and alkaline solution. *Int. J. Hydrogen Energy* 36, 1960–1964. doi: 10.1016/j.ijhydene.2010.11.052

Conductive Tungsten oxide nanosheets for highly efficient hydrogen evolution. *Nano Lett.* 17, 7968–7973. doi: 10.1021/acs.nanolett.7b04430

High performance columnar-like Fe2O3/carbon composite anode via yolk@shell structural design. *J. Energy Chem.* 41, 126–134. doi: 10.1016/j.jechem.2019.05.009

Highly exposed active sites of defect-Enriched Derived MOFs for Enhanced Oxygen reduction reaction. *ACS Sustain. Chem. Eng.* 7, 17855–17862. doi: 10.1021/acssuschemeng.9b04380

Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. *Appl. Surf. Sci.* 504:144506. doi: 10.1016/j.apsusc.2019.144506

Noble metal-free hydrogen evolution catalysts for water splitting. *Chem. Soc. Rev.* 44, 5148–5180. doi: 10.1039/c4cs00448e

Mesoporous amorphous Al2O3/crystalline WO3 heterophase hybrids for electrocatalysis and gas sensing applications. *J. Mater. Chem. A* 7, 21874–21883. doi: 10.1039/c9ta08633a

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Li, Zhi, Liu, Wei, Ma, Chen, Liu, Zhang, Wang, Ren and Wei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.