Research Article
Cross-Sectional Serological Survey of Human Fascioliasis in Haiti

P. Agnamey,1 E. Fortes-Lopes,1 C. P Raccurt,2 J. Boncy,2 and A. T otet1

1 CHU Amiens, Hôpital Sud, Service de Parasitologie et Mycologie Médicales, Avenue René Laënnec, Salouël, 80054 Amiens, France
2 Laboratoire National de Santé Publique, Delmas 33, Port-au-Prince, Haiti

Correspondence should be addressed to P. Agnamey, agnamey.patrice@chu-amiens.fr

Received 11 May 2011; Accepted 4 July 2011

1. Introduction

Fascioliasis, a snail-borne parasitic zoonosis, has been recognised for a long time because of its major veterinary impact. It is caused by two trematode species of the Fasciola genus: F. hepatica, present in Europe, Africa, Asia, the Americas, and Oceania and F. gigantica, mainly distributed in Africa and Asia. Fascioliasis is currently the vector-borne disease with the widest known latitudinal, longitudinal, and altitudinal distribution [1]. It has been generally acknowledged that F. hepatica was introduced into the Caribbean region in general and Cuba in particular by the infected livestock of Spanish conquistadors between 1500 and 1865 [2–4]. However, the first autochthonous cases of human fascioliasis were not reported in Cuba until 1931 [5]. Fascioliasis was therefore considered to be a public health problem relatively early in the history of Cuba [6]. Although data on human fascioliasis remained rare in the very similar neighbouring island, Hispaniola (Haiti, Dominican Republic) or even nonexistent as in Haiti, animal fascioliasis was well documented in this country [7, 8]. A relatively recent case of fascioliasis was reported in a 26-year-old woman native of Dominican Republic, and living in USA [9], demonstrating the existence of human fascioliasis in Hispaniola. However, to the best of our knowledge, no cases of human fascioliasis have been reported in Haiti, although zoonotic infection of man is known to occur in Cuba, the Dominican Republic and Puerto Rico. Moreover, in Haiti, F. hepatica is present in animals and watercress (Nasturtium officinale), commonly consumed by the human population. The present study was therefore designed to screen for possible cases of asymptomatic F. hepatica-infected humans in Haiti.

2. Material and Methods

Two hundred and sixteen serum samples, provided by workers (18–35 years old) seen in the context of periodic occupational medicine visits, were retrospectively tested (after storage by freezing at −20°C) using a Western blotting test (LDBIO Diagnostics, Lyon, France). The enzyme-linked immunoelectrotransfer blot (EITB) techniques with Fasciola hepatica excretory-secretory antigens have been
Fascioliasis, a disease caused by the liver fluke *Fasciola hepatica*, is a neglected parasitic trematode often neglected because of its low economic impact. However, recent observations indicate that fascioliasis is gradually expanding and constitutes a serious threat to human and animal health. This disease has a great potential for expansion due to the considerable colonisation capacities of its causal agents and vector species. For example, fascioliasis has been detected at very high altitudes (3500–4200 meters) in various Andean regions. The highest prevalence and egg outputs in humans have been observed in these very high altitude zones of Bolivia and Peru. This means that not only snails and parasites are able to successfully colonise the extreme conditions of very high altitude, but also that they have been able to develop various strategies resulting in higher parasite transmission rates. However, the extent of this public health threat is not well known due to poor reporting of cases of fascioliasis worldwide. According to a study conducted by the Pan American Health Organization, fascioliasis is known to cause major losses to the meat industries in Cuba, the Dominican Republic, Haiti, and Jamaica. The extent of losses can be partially quantified by examining the prevalence of bovine liver condemnation, an indicator of morbidity produced by liver-fluke infestation. In the 1960s, liver condemnation rates ranged from 11 to 33% in Cuba, 10 to 23% in Saint Lucia, 0 to 3% in Puerto Rico, and 60% of all livers were condemned in one Haitian slaughterhouse. In addition to its veterinary and economic impact, potential transmission of *F. hepatica* to humans must not be neglected. Surprisingly, zoonotic infection of man appears to be truly absent from Haiti, as, to our knowledge, there have been no reported cases of human fascioliasis, despite the fact that environmental conditions and eating habits are in favour of human infection. As in other Caribbean countries, animal fascioliasis has been well documented in Haiti. Watercress, which is known to be a potential source of human *F. hepatica* infection, is grown extensively and eaten with nearly every meal in Haiti. It is called “poor man’s lettuce” because it is affordable for the majority of the population. Furthermore, sewage systems are rare, and outdoor defecation is common, facilitating human participation in transmission via egg shedding. Animals also usually roam freely. A large distribution of *Lymnaea cubensis* has been reported throughout the country. The absence of case reports of human fascioliasis therefore cannot indicate the absence of this disease in Haiti. Based on variables such as poverty and physician/patient ratio, human fascioliasis should logically be prevalent in Haiti, as supported by the available data, with up to 23% of cattle infected in Haiti. As enzyme-linked immunoelectro-transfer blot is recognised to be a highly sensitive and specific method for the immunodiagnosis of parasite infections, this test was used in the present serological survey. Tests were performed by the same experienced staff to reduce the risk of handling and reading errors. The frequency of antibodies in serum samples of the study population was 6.5% (14/216). However, due to the study design, this result may not indicate the true endemic level of human fascioliasis in Haiti, as fascioliasis is a water-linked disease characterized by a patchy geographical distribution. Haiti, although a relatively small country, has a very heterogeneous geography, ranging from lowlands to highlands, plains to mountains and valleys, and urban and periurban areas to rural areas. This heterogeneous geography would therefore account for the heterogeneous distribution of fascioliasis in Haiti. On the

Sample number	Recognising the following specific bands (kDa)			
	P8-9	P27-28	P42	P60
(1)			+	
(2)				+
(3)		+		
(4)	+			
(5)				+
(6)		+		
(7)			+	
(8)		+		
(9)	+			
(10)			+	
(11)			+	
(12)				+
(13)				+
(14)		+		+

+, Presence of the band.
basis of these results, Haiti could be wrongly considered to be a mesoendemic country on the list established by WHO and other agencies. In other words, the positive serology rate of 6.5% should not be applied to the entire country but may correspond to hyperendemic foci diluted in the total of 216 samples. All infected subjects of this study population may be derived from only one or two villages, as geographical data were not available. However, further studies including human stool examination surveys are needed to provide public health authorities with data on the incidence and epidemiology of human fascioliasis in this country. Recent malacological investigations are also needed to identify other potential vectors among snails present in Haiti and to initiate control measures.

This survey does not claim to provide reliable epidemiological data. However, for the first time, this study provides data on human fascioliasis in Haiti. It is a preliminary report that opens the way for further studies designed to obtain reliable epidemiological data on human fascioliasis in Haiti. Correlation of antibody levels with other features of the disease, such as ova counts in stools, may help to clarify whether asymptomatic infection is due to mild primary infection or to other immune-related factors. In Haiti, these results reinforce the urgent need for control and prevention measures by local public health services. Updated information on diagnosis and management of fascioliasis is required, especially for clinicians who are unfamiliar with the multiple clinical presentations of this disease.

Conflict of Interests

The authors declare that there is no conflict of interests in relation to this work.

References

[1] S. Mas-Coma, M. D. Bargues, M. A. Valero, and M. V. Fuentes, "Adaptation capacities of Fasciola hepatica and their relationships with human fascioliasis: from below sea level up to the very high altitude," in Taxonomy, Ecology and Evolution of Metazoan Parasites, C. Combes and J. Jourdane, Eds., vol. 2, pp. 81–123, University Press, Perpignan, France, 2003.

[2] P. Kouri, "Diagnóstico, epidemiología y profilaxis de la fascioliasis hepática humana en Cuba," Revista Cubana de Medicina Tropical y Parásitología, vol. 4, pp. 77–79, 1940.

[3] N. Cabrera and N. Cantelar, "Pedro Kouri y la Fasciola hepatica en Cuba," Journal of Medical Applied Malacology, vol. 11, pp. 29–34, 2002.

[4] S. Mas-Coma, M. A. Valero, and M. D. Bargues, "Chapter 2 Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control," in Advances in Parasitology, vol. 69, pp. 41–146, Academic Press, New York, NY, USA, 2009.

[5] P. Kouri and R. Arenas, "Dos casos autóctonos de Distomatosis hepática humana producida por la Fasciola hepatica," Vida Nueva, vol. 28, pp. 389–451, 1931.

[6] L. Rojas, A. Vazquez, I. Domenech, and L. J. Robertson, "Fascioliasis: can Cuba conquer this emerging parasitosis?" Trends in Parasitology, vol. 26, no. 1, pp. 26–34, 2010.

[7] J. Blaise, "Prevalence and frequency of the parasitic lesions of ruminants liver and lung in Haiti," Revue de Medecine Vétérinaire, vol. 152, no. 3, pp. 269–274, 2001.

[8] J. Blaise and C. P. Raccurt, "Distomatose hapatobiliaire et échinococcose-hydatidose des animaux domestiques en Haiti," Revue Scientifique et Technique, vol. 26, no. 3, pp. 741–746, 2007.

[9] C. M. Noyer, C. M. Coyle, C. Werner, J. Dupouy-Camet, H. B. T annotzit, and M. Wittner, "Hypereosinophilia and liver mass in an immigrant," American Journal of Tropical Medicine and Hygiene, vol. 66, no. 6, pp. 774–776, 2002.

[10] G. V. Hillyer and M. S. de Galanes, "Identification of a 17-kilodalton Fasciola hepatica immunodiagnostic antigen by the enzyme-linked immunoelectrotransfer blot technique," Journal of Clinical Microbiology, vol. 26, no. 10, pp. 2048–2053, 1988.

[11] H. Hammami, A. Ayadi, D. Camus, and E. Dutoit, "Intérêt diagnostique de la mise en évidence d’antigènes spécifiques de Fasciola hepatica par la technique du western blot," Parasite, vol. 4, no. 3, pp. 291–295, 1997.

[12] World Health Organization, "The “neglected” neglected worms," Action Against Worms, vol. 10, pp. 1–8, 2007.

[13] International Atomic Energy Agency, "Controlling fascioliasis in Latin America," Technical Cooperation Publication, 2008.

[14] S. Mas-Coma, M. D. Bargues, and M. A. Valero, "Fascioliasis and other plant-borne trematode zoonoses," International Journal for Parasitology, vol. 35, no. 11-12, pp. 1255–1278, 2005.

[15] S. Mas-Coma, R. Angles, W. Strauss, J. G. Esteban, J. A. Oriyed, and P. Buchon, "Human fascioliasis in Bolivia: a general analysis and a critical review of existing data," Research and Reviews in Parasitology, vol. 55, pp. 73–93, 1995.

[16] J. Bjorland, R. T. Bryan, W. Strauss, G. V. Hillyer, and J. B. McAuley, "An outbreak of acute fascioliasis among Aymara Indians in the Bolivian Altiplano," Clinical Infectious Diseases, vol. 21, no. 5, pp. 1228–1233, 1995.

[17] O. Dobsinsky, "Helminthoses of cattle under tropical breeding conditions," Helminthologia, vol. 2, pp. 167–174, 1969.

[18] A. D. Frame, P. Bendezú, H. Mercado, H. Oztinio, S. J. Frame, and W. Flores, "Increase of bovine fascioliasis in Puerto Rico as determined by slaughterhouse surveys," Journal of Agriculture of the University of Puerto Rico, vol. 63, pp. 27–30, 1979.

[19] M. Gentilini, V. Laroche, and A. Degremont, "Aspects de la pathologie tropicale, parasitaire et infectieuse en république d’Haïti," Bulletin de la Société de Pathologie Exotique, vol. 57, pp. 299–306, 1964.

[20] G. Robart, G. Mandalh-Barth, and C. Ripert, "Inventaire, répartition géographique et écologique des mollusques dulça- quicoles d’Haïti (Caraïbes)," Haliotis, vol. 8, pp. 159–171, 1977.