Bounded solutions for a class of Hamiltonian systems

Philip Korman* and Guanying Peng
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025

Abstract

We obtain bounded for all \(t \) solutions of ordinary differential equations as limits of the solutions of the corresponding Dirichlet problems on \((-L, L)\), with \(L \to \infty \). We derive a priori estimates for the Dirichlet problems, allowing passage to the limit, via a diagonal sequence. This approach carries over to the PDE case.

Key words: Bounded for all \(t \) solutions, a priori estimates.

AMS subject classification: 34B15, 35J47.

1 Introduction

For \(-\infty < t < \infty\), we consider the equation

\[
(1.1) \quad u'' - a(t)u^3 = f(t),
\]

with continuous functions \(a(t) > 0 \) and \(f(t) \). Clearly, “most” solutions of (1.1) blow up in finite time, for both increasing and decreasing \(t \). By using two-dimensional shooting, S.P. Hastings and J.B. McLeod [3] showed that the equation (1.1) has a uniformly bounded on \((-\infty, \infty)\) solution, in case of constant \(a(t) \) and uniformly bounded \(f(t) \). Their proof used some non-trivial topological property of a plane. We use a continuation method and passage to the limit as in P. Korman and A.C. Lazer [4] to obtain the existence of a uniformly bounded on \((-\infty, \infty)\) solution for (1.1), and for similar systems. We produce a bounded solution as a limit of the solutions of the corresponding Dirichlet problems

\[
(1.2) \quad u'' - a(t)u^3 = f(t) \quad \text{for } t \in (-L, L), \quad u(-L) = u(L) = 0,
\]

*Supported in part by the Taft faculty grant at the University of Cincinnati
as $L \to \infty$. If $f(t)$ is bounded, it follows by the maximum principle that the solution of (1.2) satisfies a uniform in L a priori estimate, which allows passage to the limit.

Then we use a variational approach motivated by P. Korman and A.C. Lazer [4] (see also P. Korman, A.C. Lazer and Y. Li [5]), to get a similar result for a class of Hamiltonian systems. Again, we consider the corresponding Dirichlet problem on $(-L, L)$, which we solve by the minimization of the corresponding functional, obtaining in the process a uniform in L a priori estimate, which allows passage to the limit as $L \to \infty$.

We used a similar approach to obtain uniformly bounded solutions for a class of PDE systems of Hamiltonian type. The challenge was to adapt the elliptic estimates in case only the L^∞ bound is known for the right hand side.

2 A model equation

Theorem 2.1. Consider the equation (for $u = u(t)$)

\[
(2.1) \quad u'' - a(t)u^3 = f(t),
\]

where the given functions $a(t) \in C(\mathbb{R})$ and $f(t) \in C(\mathbb{R})$ are assumed to satisfy

\[
|f(t)| \leq M, \quad \text{for all } t \in \mathbb{R}, \text{ and some constant } M > 0,
\]

and

\[
a_0 \leq a(t) \leq a_1, \quad \text{for all } t \in \mathbb{R}, \text{ and some constants } a_1 \geq a_0 > 0.
\]

Then the problem (2.1) has a classical solution uniformly bounded for all $t \in \mathbb{R}$, i.e., $|u(t)| \leq K$ for all $t \in \mathbb{R}$, and some $K > 0$. Such a solution is unique.

Proof. We shall obtain a bounded solution as a limit of solutions to the corresponding Dirichlet problems

\[
(2.2) \quad u'' - a(t)u^3 = f(t) \quad \text{for } t \in (-L, L), \quad u(-L) = u(L) = 0,
\]

as $L \to \infty$. To prove the existence of solutions, we embed (2.2) into a family of problems

\[
(2.3) \quad u'' - \lambda a(t)u^3 = f(t) \quad \text{for } t \in (-L, L), \quad u(-L) = u(L) = 0,
\]

with $0 \leq \lambda \leq 1$. The solution at $\lambda = 0$, and other λ, can be locally continued in λ by the implicit function theorem, since the corresponding linearized problem

\[
u''(t) - 3\lambda a(t)u^2(t)w(t) = 0 \quad \text{for } t \in (-L, L), \quad w(-L) = w(L) = 0
\]

has only the trivial solution $w(t) \equiv 0$, as follows by the maximum principle. Multiplying (2.3) by u and integrating, we get a uniform in λ bound on H^1 norm of the solution, which implies the bound in C^2 (using Sobolev’s embedding and
the equation (2.3); this bound depends on L. It follows that the continuation can be performed for all $0 \leq \lambda \leq 1$. At $\lambda = 1$, we get the desired solution of (2.2).

We claim that there is a uniform in L bound in $C^2[-L,L]$ for any solution of (2.2), i.e., there is a constant $K > 0$, so that for all $t \in [-L,L]$, and all $L > 0$,

$$|u(t)| \leq K, \quad |u'(t)| \leq K, \quad \text{and} \quad |u''(t)| \leq K.$$

Indeed, if t_0 is a point of positive maximum of $u(t)$, then from the equation (2.3) we get

$$-a_0u^3(t_0) \geq f(t_0) \geq -M,$$

which gives us an upper bound on $u(t_0)$. Arguing similarly at a point of negative minimum of $u(t)$, we get a lower bound on $u(t)$, and then conclude the first inequality in (2.4). From the equation (2.3) we get a uniform bound on $|u''(t)|$. Note that for all $t \in \mathbb{R}$, we can write

$$u(t + 1) = u(t) + u'(t) + \int_{t}^{t+1} (t + 1 - \xi)u''(\xi)\,d\xi,$$

from which we immediately deduce a uniform bound on $|u'(t)|$.

We now take a sequence $L_j \to \infty$, and denote by $u_j(t) \in H^1_0(-\infty,\infty)$ the bounded solution of the problem (2.2) on the interval $(-L_j,L_j)$, extended as zero to the outside of the interval $(-L_j,L_j)$. For all $t_1 < t_2$, writing

$$|u_j(t_2) - u_j(t_1)| = \left|\int_{t_1}^{t_2} u'_j \,dt\right| \leq \sqrt{t_2 - t_1} \left(\int_{t_1}^{t_2} (u'_j)^2 \,dt\right)^{1/2} \leq K(t_2 - t_1),$$

in view of (2.6), we conclude that the sequence $\{u_j(t)\}$ is equicontinuous and uniformly bounded on every interval $[-L_p,L_p]$. By the Arzela-Ascoli theorem, it has a uniformly convergent subsequence on every $[-L_p,L_p]$. So let $\{u_{j_k}(t)\}$ be a subsequence of $\{u_j(t)\}$ that converges uniformly on $[-L_1,L_1]$. Consider this subsequence on $[-L_2,L_2]$ and select a further subsequence $\{u_{j_k}^{(2)}\}$ of $\{u_{j_k}(t)\}$ that converges uniformly on $[-L_2,L_2]$. We repeat this procedure for all m, and then take the diagonal sequence $\{u_{j_k}^{(m)}\}$. It follows that it converges uniformly on any bounded interval to a function $u(t)$.

Expressing $(u_{j_k}^{(m)})''$ from the equation (2.2), we conclude that the sequence $\{(u_{j_k}^{(m)})''\}$, and then also $\{(u_{j_k}^{(m)})'\}$ (in view of (2.6)), converge uniformly on bounded intervals. Denote $v(t) := \lim_{k \to \infty} (u_{j_k}^{(m)})''(t)$. For t belonging to any bounded interval (a,b), similarly to (2.7), we write

$$u_{j_k}^{(m)}(t) = u_{j_k}^{(m)}(a) + (t - a) (u_{j_k}^{(m)})'(a) + \int_{a}^{t} (t - \xi) (u_{j_k}^{(m)})''(\xi)\,d\xi,$$

and conclude that $u(t) \in C^2(-\infty,\infty)$, and $u''(t) = v(t)$. Hence, we can pass to the limit in the equation (2.2), and conclude that $u(t)$ solves this equation on
We have $|u(t)| \leq K$ on $(-\infty, \infty)$, proving the existence of a uniformly bounded solution.

Turning to the uniqueness, the difference $w(t)$ of any two bounded solutions $u(t)$ and $\bar{u}(t)$ of (2.1) would be a bounded for all t solution of the linear equation

\begin{equation}
\tag{2.7}
w'' - b(t)w = 0,
\end{equation}

with $b(t) = a(t)(u^2 + u\bar{u} + \bar{u}^2) > 0$. It follows that $w(t)$ is convex when it is positive. If at some t_0, $w(t_0) > 0$ and $w'(t_0) > 0$ ($w'(t_0) < 0$), then $w(t)$ is unbounded as $t \to \infty$ ($t \to -\infty$), a contradiction. A similar contradiction occurs if $w(t_0) < 0$ for some t_0. Therefore, $w \equiv 0$.

Remark 1. To prove the existence of solutions of (2.2), we could alternatively consider the corresponding variational functional $J(u) : H^1_0(-L, L) \to \mathbb{R}$, defined by

\[
J(u) = \int_{-L}^{L} \left[\frac{(u')^2}{2} + a(t)\frac{u^4}{4} + f(t)u \right] dt.
\]

Since for any $\epsilon > 0$

\[
\left| \int_{-L}^{L} f(t)u dt \right| \leq \epsilon \int_{-L}^{L} u^2 dt + c(\epsilon) \int_{-L}^{L} f^2 dt
\]

\[
\leq \epsilon \int_{-L}^{L} u^2 dt + c_1, \text{ with } c_1 = c_1(L, \epsilon),
\]

and

\[
\int_{-L}^{L} u^2 dt \leq c_2(L) \int_{-L}^{L} (u')^2 dt,
\]

we see (noting $a(t)u^4 \geq 0$) that

\[
J(u) \geq c_3 \int_{-L}^{L} (u')^2 dt - c_4
\]

for some $c_3, c_4 > 0$, so that $J(u)$ is bounded from below, coercive and convex in u'. Hence $J(u)$ has a minimizer in $H^1_0(-L, L)$, which gives us a classical solution of (2.2), see e.g., L. Evans [1]. However, to get a uniform in L estimate of $\int_{-L}^{L} (u')^2 dt$ (needed to conclude the equicontinuity in (2.6)), one would have to assume that $\int_{-\infty}^{\infty} f^2(t) dt < \infty$, giving a weaker result than above.

We now discuss the dynamical significance of the bounded solution, established in Theorem 2.1, let us call it $u_0(t)$. The difference of any two solutions of (2.1) satisfies (2.7). We see from (2.7) that any two solutions of (2.1) intersect at most once. Also from (2.7), we can expect $u_0(t)$ to have one-dimensional stable manifold as $t \to \pm \infty$. It follows that $u_0(t)$ provides the only possible asymptotic form of the solutions that are bounded as $t \to \infty$ (or $t \to -\infty$), while all other solutions become unbounded.
Next we show that the conditions of this theorem cannot be completely removed. If \(a(t) \equiv 0 \), then for \(f(t) = 1 \), all solutions of (2.1) are unbounded as \(t \to \pm \infty \). The same situation may occur in case \(a(t) > 0 \), if \(f(t) \) is unbounded. Indeed, the equation

\[
(2.8) \quad u'' - u^3 = 2 \cos t - t \sin t - t^3 \sin^3 t
\]

has a solution \(u(t) = t \sin t \). Let \(\tilde{u}(t) \) be any other solution of (2.8). Then \(w(t) = u(t) - \tilde{u}(t) \) satisfies (2.7), with \(b(t) = u^2 + u \tilde{u} + \tilde{u}^2 > 0 \). Clearly, \(w(t) \) cannot have points of positive local maximum, or negative local minimum. But then \(\tilde{u}(t) \) cannot remain bounded as \(t \to \pm \infty \), since in such a case the function \(w(t) \) would be unbounded with points of positive local maximum and negative local minimum. It follows that all solutions of (2.8) are unbounded as \(t \to \pm \infty \).

The approach of Theorem 2.1 is applicable to more general equations and systems. For example, we have the following theorem.

Theorem 2.2. Consider the system (for \(u = u(t) \) and \(v = v(t) \))

\[
(2.9) \quad \begin{cases}
 u'' - a_1(t)f(u, v) = h_1(t), \\
 v'' - a_2(t)g(u, v) = h_2(t).
\end{cases}
\]

Assume that the functions \(a_i(t) \in C(\mathbb{R}) \) satisfy \(a_0 \leq a_i(t) \leq a_1 \) for all \(t \in \mathbb{R} \) and some constants \(0 < a_0 \leq a_1 \), while \(h_i(t) \in C(\mathbb{R}) \) are uniformly bounded, \(i = 1, 2 \). Assume that the functions \(f(x, y) \) and \(g(x, y) \) are continuous on \(\mathbb{R}^2 \), and

\[
(2.10) \quad f(x, y) \to \infty (-\infty) \text{ as } x \to \infty (-\infty), \text{ uniformly in } y,
\]

and

\[
(2.11) \quad g(x, y) \to \infty (-\infty) \text{ as } y \to \infty (-\infty), \text{ uniformly in } x.
\]

Assume that

\[
(2.12) \quad xf(x, y) \geq \alpha, \quad \text{and } yg(x, y) \geq \alpha,
\]

for some \(\alpha \in \mathbb{R} \), and all \((x, y) \in \mathbb{R}^2 \). Assume finally that the quadratic form in \((w, z)\)

\[
(2.13) \quad a_1(t)f_z(x, y)w^2 + (a_1(t)f_y(x, y) + a_2(t)g_z(x, y)) wz + a_2(t)g_y(x, y)z^2
\]

is positive semi-definite for all \(t, x \) and \(y \). Then the problem (2.9) has a classical solution uniformly bounded for all \(t \in (-\infty, \infty) \).

Proof. To prove the existence of solutions for the corresponding Dirichlet problem on \((-L, L)\),

\[
(2.14) \quad \begin{cases}
 u'' - a_1(t)f(u, v) = h_1(t) \quad \text{for } t \in (-L, L), \quad u(-L) = u(L) = 0, \\
 v'' - a_2(t)g(u, v) = h_2(t) \quad \text{for } t \in (-L, L), \quad v(-L) = v(L) = 0,
\end{cases}
\]
we embed it into a family of problems

\begin{align}
(2.15) \quad \begin{cases}
 u'' - \lambda a_1(t) f(u, v) = h_1(t) & \text{for } t \in (-L, L), \quad u(-L) = u(L) = 0, \\
 v'' - \lambda a_2(t) g(u, v) = h_2(t) & \text{for } t \in (-L, L), \quad v(-L) = v(L) = 0,
\end{cases}
\end{align}

with $0 \leq \lambda \leq 1$. The implicit function theorem applies, since the corresponding linearized problem

\begin{align}
\begin{cases}
 u'' - \lambda a_1(t) f(u, v) w + f_y(u, v) z = 0 & \text{for } t \in (-L, L), \\
 v'' - \lambda a_2(t) g(u, v) w + g_y(u, v) z = 0 & \text{for } t \in (-L, L), \\
 w(-L) = w(L) = z(-L) = z(L) = 0
\end{cases}
\end{align}

has only the trivial solution $w = z = 0$. This follows by multiplying the first equation by w, the second one by z, integrating, adding the results, and using the condition (2.13). Using (2.12), we obtain a uniform in λ bound on the H^1 norm of the solution of (2.15), so that the continuation can be performed for all $0 \leq \lambda \leq 1$. At $\lambda = 1$, we obtain a solution of (2.15).

From the first equation in (2.14) and the assumption (2.10) we conclude the bound (2.14) on $u(t)$, and a similar bound on $v(t)$ follows from the second equation in (2.14) and the assumption (2.11), the same way as we did for a single equation. Using the equations in (2.14), we obtain uniform bounds on u'' and v'', and the uniform bounds on u' and v' follow from (2.15). Hence, we have the estimates (2.14) for u and v. We then let $L \to \infty$, and pass to the limit along the diagonal sequence, as in the proof of Theorem 2.1, to conclude the proof of Theorem 2.2.

Example 1. Theorem 2.2 applies in case $f(x, y) = x + x^{2n+1} + r(y)$, $g(x, y) = y + y^{2m+1} + s(x)$, with positive integers n and m, assuming that the functions $r(y)$ and $s(x)$ are bounded and have small enough derivatives for all x and y, and the functions $a_i(t)$ and $b_i(t)$, $i = 1, 2$, satisfy the assumptions of the theorem.

3 Bounded solutions of Hamiltonian systems

We use variational approach to get a similar result for a class of Hamiltonian systems. We shall be looking for uniformly bounded solutions $u \in H^1(\mathbb{R}; \mathbb{R}^m)$ of the system

\begin{align}
(3.1) \quad u_{ii} - a(t) V_{zz_i}(u_1, u_2, \ldots, u_m) = f_i(t), \quad i = 1, \ldots, m.
\end{align}

Here $u_i(t)$ are the unknown functions, $a(t)$ and $f_i(t)$ are given functions on \mathbb{R}, $i = 1, \ldots, m$, and $V(z)$ is a given function on \mathbb{R}^m.

Theorem 3.1. Assume that $a(t) \in C(\mathbb{R})$ satisfies $a_0 \leq a(t) \leq a_1$ for all t, and some constants $0 < a_0, a_1$. Assume that $f_i(t) \in C(\mathbb{R})$, with $|f_i(t)| \leq M$ for some $M > 0$ and all i and $t \in \mathbb{R}$. Also assume that $V(z) \in C^1(\mathbb{R}^m)$ satisfies

\begin{align}
(3.2) \quad \lim_{z_i \to +\infty} V_{z_i} = +\infty, \quad \lim_{z_i \to -\infty} V_{z_i} = -\infty, \quad \text{uniformly in all } z_j \neq z_i,
\end{align}

6
and

\begin{equation}
(3.3) \quad a(t)V(z) + \sum_{i=1}^{m} z_i f_i(t) \geq -f_0(t), \text{ for all } t \in R, \text{ and } z_i \in R,
\end{equation}

with some \(f_0(t) > 0 \) satisfying \(\int_{-\infty}^{\infty} f_0(t) \, dt < \infty \). Then the system (3.1) has a uniformly bounded solution \(u_i(t) \in H^1(\mathbb{R}) \), \(i = 1, \ldots, m \) (i.e., for some constant \(K > 0 \), \(|u_i(t)| < K \) for all \(t \in \mathbb{R} \), and all \(i \)).

Proof. As in the previous section, we approximate solution of (3.1) by solutions of the corresponding Dirichlet problems \(i = 1, \ldots, m \)

\begin{equation}
(3.4) \quad u''_i - a(t)V_{z_i}(u) = f_i(t), \quad \text{for } t \in (\mathbb{R} \setminus \mathbb{R}) \text{, } \quad \text{as } L \to \infty.
\end{equation}

Solutions of (3.4) can be obtained as critical points of the corresponding variational functional \(J(u) : [H^1_0(\mathbb{R} \setminus \mathbb{R})]^m \to \mathbb{R} \) defined as

\[J(u) := \int_{-L}^{L} \left[\sum_{i=1}^{m} \left(\frac{1}{2} u''_i(t) + u_i(t)f_i(t) \right) + a(t)V(u(t)) \right] \, dt. \]

By (3.3), \(J(u) \geq c_1(L) \sum_{i=1}^{m} \|u_i\|_{H^1(\mathbb{R} \setminus \mathbb{R})} - c_2 \), for some positive constants \(c_1 \) and \(c_2 \), so that \(J(u) \) is bounded from below, coercive and convex in \(u' \). Hence, \(J(u) \) has a minimizer in \([H^1_0(\mathbb{R} \setminus \mathbb{R})]^m \), giving us a classical solution of (3.4), see e.g., L. Evans [1].

We now take a sequence \(L_j \to \infty \), and denote by \(u_j(t) \in H^1(\mathbb{R}; \mathbb{R}^m) \) a vector solution of the problem (3.4) on the interval \((-L_j, L_j) \), extended as zero vector to the outside of the interval \((-L_j, L_j) \). By our condition (3.2), we conclude a component-wise bound of \(|u_j(t)| \), uniformly in \(j \) and \(t \). The crucial observation (originated from [1]) is that the variational method provides a uniform in \(j \) bound on \(\|u'_j(t)\|_{L^2(\mathbb{R} \setminus \mathbb{R}, \mathbb{R}^m)} \). Indeed, we have \(H^1_0(\mathbb{R} \setminus \mathbb{R}) \subset H^1_0(\mathbb{R} \setminus \mathbb{R}) \) for \(L > L_j \). If we now denote by \(M_L \) the minimum value of \(J(u) \) on \(H^1_0(\mathbb{R} \setminus \mathbb{R}) \), then \(M_L \) is non-increasing in \(L \) (there are more competing functions for larger \(L \)) and in particular \(J(u_j) \leq M_L \) if \(L_j > 1 \). In view of the condition (3.2), this provides us with a uniform in \(j \) bound on \(\int_{-L_j}^{L_j} \sum_{i=1}^{m} (u'_{j,i}(t))^2 \, dt \), from which we conclude that the sequence \(\{u_j(t)\} \) is equicontinuous on every bounded interval (as in (2.10) above). With the sequence \(\{u_j(t)\} \) equicontinuous and uniformly bounded on every interval \([-L_p, L_p] \), it converges uniformly to some \(u \in C(\mathbb{R}; \mathbb{R}^m) \) on \([-L_p, L_p] \). From the equation (3.4), we have uniform convergence of \(\{u'_j\} \), and hence uniform convergence of \(\{u_j\} \) follows from (2.10). We complete the proof as in the proof of Theorem 2.1.

Example 2. Consider the case \(m = 2 \), \(V(z) = z_1^4 + z_2^2 + h(z_1, z_2) \), with \(h(z_1, z_2) > 0 \) and \(h(z_1, z_2) \) bounded on \(\mathbb{R}^2 \). We consider the system

\[
\begin{cases}
 u''_1 - a(t) (4u_1^3 + h(z_1, u)) = f_1(t), \\
 u''_2 - a(t) (2u_2 + h(z_2, u)) = f_2(t),
\end{cases}
\]
where the functions \(a(t), f_1(t), f_2(t)\) satisfy the assumptions of Theorem 3.1. Applying Young’s inequality, we obtain

\[
|u_1(t)f_1(t)| \leq c u_1^4(t) + c_1 f_1^{4/3}(t),
\]

and

\[
|u_2(t)f_2(t)| \leq c u_2^2(t) + c_2 f_2^{2}(t).
\]

Therefore, we get for some \(c_3 > 0\)

\[
a(t) (u_1^4 + u_2^2 + h(u_1, u_2)) + u_1(t)f_1(t) + u_2(t)f_2(t) \geq -c_3 \left(f_1^{4/3}(t) + f_2^{2}(t) \right).
\]

Hence, Theorem 3.1 applies provided that \(\int_{-\infty}^{\infty} \left(f_1^{4/3}(t) + f_2^{2}(t) \right) dt < \infty\).

4 Bounded solutions of Hamiltonian PDE systems

In this section, we use a combination of the variational approach and elliptic estimates to show that similar results can be obtained for Hamiltonian PDE systems. We shall be looking for uniformly bounded solutions \(u = (u_1, \ldots, u_m) \in H^1(\mathbb{R}^n; \mathbb{R}^m)\), for \(n > 1\), of the system

\[
\Delta u_i - a(x)V_{z_i}(u) = f_i(x), \quad i = 1, \ldots, m.
\]

Here \(u_i(x)\) are the unknown functions, \(a(x)\) and \(f_i(x)\) are given functions on \(\mathbb{R}^n\), \(i = 1, \ldots, m\), and \(V(z)\) is a given function on \(\mathbb{R}^m\). We shall denote the gradient of \(a(x)\) by \(Da(x)\).

Theorem 4.1. Assume that \(a(x), f_i(x) \in C^\infty(\mathbb{R}^n)\) and \(V(z) \in C^\infty(\mathbb{R}^m)\). In addition, assume that there exist constants \(0 < a_0 \leq a_1\) and \(M > 0\) such that \(a_0 \leq a(x) \leq a_1\) and \(|f_i(x)|, |Da(x)|, |Df_i(x)| \leq M\) for all \(x \in \mathbb{R}^n\) and \(i = 1, \ldots, m\). Assume also that

\[
\lim_{z_j \to \infty} V_{z_j} = \infty, \lim_{z_i \to -\infty} V_{z_i} = -\infty, \quad \text{uniformly in all } z_j \neq z_i,
\]

and

\[
a(x)V(z) + \sum_{i=1}^{m} z_i f_i(x) \geq -f_0(x),
\]

for all \(x \in \mathbb{R}^n\), \(z \in \mathbb{R}^m\) and some function \(f_0(x) > 0\) satisfying \(\int_{\mathbb{R}^n} f_0(x) dx < \infty\). Then the system (4.1) has a uniformly bounded classical solution \(u(x)\), with \(u_i(x) \in C^2(\mathbb{R}^n)\), \(i = 1, \ldots, m\).

As in the proof of Theorem 3.1, we approximate solutions of the system (4.1) by solutions of the following system

\[
\begin{align*}
\Delta u_i(x) - a(x)V_{z_i}(u(x)) = f_i(x) & \quad \text{for } x \in B_L(0), \\
u_i(x) = 0 & \quad \text{for } x \in \partial B_L(0),
\end{align*}
\]

where \(B_L(0) = \{x \in \mathbb{R}^n : |x| < L\}\).
Lemma 4.1. Assume that $a(x), f_i(x) \in C^\infty(\mathbb{R}^n)$ and $V(z) \in C^\infty(\mathbb{R}^m)$. In addition, assume that the condition (4.3) is satisfied. Then the system (4.4) has a classical solution $u_L = (u_{L,1}, \ldots, u_{L,m}) \in C^2(B_L(0); \mathbb{R}^m)$.

Proof. We consider the following variational approach: the functional

$$J(u) := \int_{B_L(0)} \left[\frac{1}{2} |\nabla u_i|^2 + u_i(x)f_i(x) \right] + a(x)V(u(x)) \right] \, dx$$

is minimized over $H_0^1(B_L(0); \mathbb{R}^m)$. From the condition (4.3), we have

$$J(u) \geq c_1(L)\|u\|^2_{H^1(B_L(0))} - c_2$$

for some positive constants c_1, c_2. Therefore, J is bounded below, coercive and convex in ∇u. Hence, it has a minimizer $u_L \in H_0^1(B_L(0); \mathbb{R}^m)$ that satisfies the system (4.4). (See Theorem 2 in Section 8.2.2 of [1].) Now u_L solves the following elliptic system

$$\begin{cases}
\Delta u_{L,i} = a(x)V_{z_i}(u_L) + f_i(x) \quad &\text{in } B_L(0), \\
u_{L,i} = 0 \quad &\text{on } \partial B_L(0).
\end{cases}$$

For any i, since a, f_i and V are all smooth and $u_L \in H_0^1$, it follows from standard elliptic estimates that $u_{L,i} \in H^3(B_L(0))$, and therefore $u_L \in H^3(B_L(0); \mathbb{R}^m)$. (See Theorem 8.13 in [2].) By a bootstrapping argument and the Sobolev embedding theorem, one has $u_{L,i} \in C^2(B_L(0))$ for all i and hence u_L is a classical solution to (4.4).

In the next lemma, we apply interior estimates for classical solutions of the Poisson equation to the function u_L found in Lemma 4.1. We introduce some notations from [2]. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and $u \in C^{2,\alpha}(\Omega)$ for some $0 < \alpha < 1$. We set

$$|D^k u|_{\alpha;\Omega} := \sup_{|\beta|=k} \sup_{\Omega} |D^\beta u|, \quad k = 0, 1, 2,$$

and

$$[D^k u]_{\alpha;\Omega} := \sup_{|\beta|=k} \sup_{x,y \in \Omega, x \neq y} \frac{|D^\beta u(x) - D^\beta u(y)|}{|x-y|^\alpha}.$$

Lemma 4.2. Given $L > 2$ and $0 < \alpha < 1$, under the assumptions of Theorem 4.1, there exists a constant K independent of L such that the function u_L found in Lemma 4.1 satisfies

$$\|u_L\|_{0,B_L(0)}, |D u_L|_{0,B_L(0)}, |D^2 u_L|_{0,B_L(0)}, |D^2 u_L|_{\alpha,B_L(0)}, |D^3 u_L|_{\alpha,B_L(0)} \leq K,$$

where $L' = L - 1$ and $L'' = L - 2$.

9
Proof. We fix an arbitrary index \(i \in \{1, ..., m \} \), and omit the subscript \(L \). Therefore, we denote \(u = u_L \) and \(u_i = u_{L,i} \). Suppose \(x_0 \in B_L(0) \) is such that \(u_i(x_0) \) is a positive maximum of \(u_i \). Then since \(\Delta u_i(x_0) \leq 0 \), it follows from (4.4) that

\[
a(x_0)V_{z_i}(u(x_0)) + f_i(x_0) \leq 0
\]

and hence

\[
V_{z_i}(u(x_0)) \leq \frac{M}{a_0}.
\]

The assumption (4.2) and (4.4) then guarantee that \(u_i(x_0) \) is bounded from above independent of \(L \). Similarly, we have the minimum of \(u_i \) is bounded from below independent of \(L \). Since this holds for all \(i \), we deduce

\[
|u|_{0,B_L(0)} \leq K_0
\]

for some \(K_0 \) independent of \(L \).

We denote \(F_i(u, x) := a(x)V_{z_i}(u) + f_i(x) \). It follows from Lemma 4.1 and (4.7) that \(F_i \in C^2(B_L(0)) \) and \(|F_i(u, x)|_{0,B_L(0)} \) is bounded independent of \(L \). Let \(\bar{x} \in B_L(0) \) and \(w \) be the Newtonian potential of \(F_i \) on \(B_1(\bar{x}) \), then it is clear that \(u_i = \omega + v \) for some harmonic function \(v \) on \(B_1(\bar{x}) \). For all \(x \in B_1(\bar{x}) \) we have

\[
w(x) = \int_{B_1(\bar{x})} \Gamma(x - y)F_i(u(y), y)dy
\]

and

\[
Dw(x) = \int_{B_1(\bar{x})} D\Gamma(x - y)F_i(u(y), y)dy,
\]

where \(\Gamma \) is the fundamental solution of the Laplacian in \(\mathbb{R}^n \) (see [2] Lemma 4.1). Using properties of \(\Gamma \) and uniform boundedness of \(F_i \), it is easy to check that

\[
|w|_{0,B_1(\bar{x})} \leq C|F_i|_{0,B_1(\bar{x})} \quad \text{and} \quad |Dw|_{0,B_1(\bar{x})} \leq C|F_i|_{0,B_1(\bar{x})}
\]

for some constant \(C \) depending only on \(n \). Therefore we have

\[
|v|_{0,B_1(\bar{x})} \leq |u_i|_{0,B_1(\bar{x})} + |w|_{0,B_1(\bar{x})} \leq C \left(|u_i|_{0,B_1(\bar{x})} + |F_i|_{0,B_1(\bar{x})} \right).
\]

Using interior estimates for harmonic functions (see [2] Theorem 2.10), we have

\[
|Dv|_{0,B_{\frac 12}(\bar{x})} \leq C|v|_{0,B_1(\bar{x})}
\]

for some constant \(C \) depending only on \(n \), since for any \(x \in B_{\frac 12}(\bar{x}) \), we have \(\text{dist}(x, \partial B_1(\bar{x})) \geq \frac 12 \). Now combining (4.9)-(4.10) we obtain

\[
|Dv|_{0,B_{\frac 12}(\bar{x})} \leq C \left(|u_i|_{0,B_1(\bar{x})} + |F_i|_{0,B_1(\bar{x})} \right)
\]

for some constant \(C \) depending only on \(n \). This along with (4.8) yields

\[
|Du_i|_{0,B_{\frac 12}(\bar{x})} \leq C \left(|u_i|_{0,B_1(\bar{x})} + |F_i|_{0,B_1(\bar{x})} \right) \leq C \left(|u_i|_{0,B_L(0)} + |F_i|_{0,B_L(0)} \right)
\]
for some constant C depending only on n. Now since \bar{x} is arbitrary in $B_L(0)$, it follows that

$$|Du|_{0;B_L(0)} \leq C \left(|u_1|_{0;B_L(0)} + |F_i|_{0;B_L(0)} \right).$$

In particular, since $|u_1|_{0;B_L(0)}$ and $|F_i|_{0;B_L(0)}$ are bounded independent of L, we obtain a uniform bound on $|Du|_{0;B_L(0)}$ independent of L. Hence we have

$$(4.11) \quad |Du|_{0;B_L(0)} \leq K_1$$

for some K_1 independent of L.

By assumption, both $|Da|_{a;\mathbb{R}^n}$ and $|Df_i|_{0;\mathbb{R}^n}$ are bounded. Since V is smooth, and both $|u_1|_{0;B_L(0)}$ and $|Du|_{0;B_L(0)}$ are bounded independent of L, it is clear that $|DF_i|_{0;B_L(0)}$ is bounded independent of L. It follows that $[F_i]_{a;B_L(0)}$ is bounded independent of L. For all $\bar{x} \in B_{L'}(0)$ we deduce from [2] Theorem 4.6 that

$$\left(\frac{1}{3} \right)^2 |D^2u|_{0;B\bar{x}(\bar{x})} + \left(\frac{1}{3} \right)^{2+\alpha} |D^2u|_{a;B\bar{x}(\bar{x})}$$

$$\leq C \left[|u_1|_{0;B\bar{x}(\bar{x})} + \left(\frac{1}{3} \right)^2 |F_i|_{0;B\bar{x}(\bar{x})} + \left(\frac{2}{3} \right)^\alpha |F_i|_{a;B\bar{x}(\bar{x})} \right]$$

$$\leq C \left(|u_1|_{0;B_L(0)} + |F_i|_{0;B_L(0)} + |F_i|_{a;B_L(0)} \right)$$

for some constant C depending only on n and α. Since $\bar{x} \in B_{L'}(0)$ is arbitrary and the above right hand side is bounded independent of L, we conclude that

$$(4.12) \quad |D^2u|_{0;B_{L'}(0)}, \quad |D^2u|_{a;B_{L'}(0)} \leq K_2$$

for some K_2 independent of L. Putting (4.7), (4.11), (4.12) together and setting $K := \max\{K_1, K_2, K_3\}$, we obtain (4.5). \hfill \square

Proof of Theorem 4.1 We take an increasing sequence $\{L_j\}$, with $L_1 > 2$ and $\lim_{j \to \infty} L_j = \infty$, and denote by $u_j = u_{L_j}$ the function found in Lemma 4.1. We extend u_j to be zero outside $B_{L_j}(0)$. Note that $u_j \in C^{2,\alpha}(B_{L_j}(0); \mathbb{R}^m)$ but does not need to be smooth on \mathbb{R}^n. On each $B_{L_j'}(0)$, it follows from Lemma 4.2 that the sequences $\{u_j\}_{j \geq p}$, $\{Du_j\}_{j \geq p}$ and $\{D^2u_j\}_{j \geq p}$ are all uniformly bounded and equicontinuous. Using the diagonal arguments as in the proof of Theorem 2.4 one can find a subsequence $\{u_{j_k}\}$ such that $\{u_{j_k}\}$, $\{Du_{j_k}\}$ and $\{D^2u_{j_k}\}$ are all uniformly convergent on all $B_{L_j'}(0)$. In particular, there exists $u \in C(\mathbb{R}^n; \mathbb{R}^m)$ such that

$$(4.13) \quad u_{j_k} \to u \quad \text{uniformly on all bounded domains in } \mathbb{R}^n.$$

It is clear from Lemma 4.2 that u is bounded on \mathbb{R}^n. It remains to show that the vector valued function u satisfies the system (4.1). Let $\Omega \subset \mathbb{R}^n$
be any bounded convex domain and \(i \in \{1, \ldots, m\} \) be any index. Note that \(u_{jk,i} \in C^2(\Omega) \) for all \(k \) sufficiently large, and there exist \(v \in C(\Omega; \mathbb{R}^n) \) and \(w \in C(\Omega; \mathbb{R}^{n \times n}) \) such that

\[
\nabla u_{jk,i} \to v \quad \text{and} \quad \nabla^2 u_{jk,i} \to w \quad \text{uniformly on} \ \overline{\Omega},
\]

where \(\nabla^2 u_{jk,i} \) is the Hessian matrix of \(u_{jk,i} \). Fix \(x_0 \in \Omega \). For any \(x \in \Omega \), we have

\[
u_{jk,i}(x) = u_{jk,i}(x_0) + \int_{l_{x_0}^x} \nabla u_{jk,i}(s) \cdot \tau ds,
\]

where \(l_{x_0}^x \) is the line segment joining \(x_0 \) and \(x \) and \(\tau \) is the unit tangent vector of \(l_{x_0}^x \). Using (4.13) and (4.14), we obtain

\[
u_i(x) = u_i(x_0) + \int_{l_{x_0}^x} v(s) \cdot \tau ds,
\]

and therefore \(u_i \in C^1(\Omega) \) and \(\nabla u_i = v \). Using similar arguments and (4.14), we obtain that \(v \in C^1(\Omega) \) and \(\nabla v = w \), and hence \(u_i \in C^2(\Omega) \) and \(\nabla^2 u_i = w \) in \(\Omega \). For \(k \) sufficiently large, we know \(u_{jk,i} \) solves

\[
\Delta u_{jk,i} - a(x)V_{z_i}(u_{jk}) = f_i(x), \quad \text{for} \ x \in \Omega.
\]

Passing to the limit as \(k \to \infty \), we have

\[
\Delta u_i - a(x)V_{z_i}(u) = f_i(x), \quad \text{for} \ x \in \Omega.
\]

Since this holds for all bounded convex domains \(\Omega \in \mathbb{R}^n \), we conclude that \(u \in C^2(\mathbb{R}^n; \mathbb{R}^m) \) is a bounded solution of the system (4.1).

Remark 2. We can apply Theorem 4.1 to the system given in Example 2, but with smooth \(h \) and the functions \(a(x), f_1(x), f_2(x) \) satisfying the additional assumptions in Theorem 4.1.

References

[1] L. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[2] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983.

[3] S.P. Hastings and J.B. McLeod, Classical Methods in Ordinary Differential Equations. With applications to boundary value problems. Graduate Studies in Mathematics, 129. American Mathematical Society, Providence, RI (2012).

[4] P. Korman and A.C. Lazer, Homoclinic orbits for a class of symmetric Hamiltonian systems, *Electron. J. Differential Equations* 1994, No. 01.
[5] P. Korman, A.C. Lazer and Y. Li, On homoclinic and heteroclinic orbits for Hamiltonian systems, *Differential Integral Equations* **10**, no. 2, 357-368 (1997).