Solvent Effect in Glycyrrhizic Acid Spectra (Absorption and Fluorescence)

Zaid Abdul Khalik
Mustansiriyah University College of Science

Zeyad Saleh
Mustansiriyah University College of Science

Mazin Ali (✉️ mazin79phy@yahoo.com)
al-mustansiriyah university https://orcid.org/0000-0001-7176-0953

Research Article

Keywords: Glycyrrhizic, Fluorescence, solvent effect, absorption

Posted Date: January 12th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1056129/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

In this research paper, a method built on UV/VIS spectrofluorophotometer and spectrophotometer by finding the fluorescence of glycyrrhizic acid in licorice root. Glycyrrhizic acid is an imperative active component present in licorice (Glycyrrhiza uralensis Fisch). Solvent effect had been studied in different solvents like deionized water and methanol. The differences between them were explored by the glycyrrhizic acid absorption and emission spectra. Under work conditions, i.e. 100% methanol solvent, a liquid ratio concentration 10^{-2} to 10^{-5} g/mL and second solvent with same conditions 100% deionized water in the same concentrations, was done. The effect of the solvent was significant by change the value for λ_{max}. The result was validated for parameters confines for Ex (λ Excitation) in different solvents. The results of absorption spectra obey Beer-Lambert's law. Because of the same property of these solvents (protic), the absence of a significant difference in the absorption spectra are shown. From fluorescence spectra, the spectrum at concentration 10^{-4} is the best for both solvents.

1. Introduction

Licorice or the base of the glycyrrhiza plant had been utilized therapeutically for in excess of 4000 Years[1]. The benevolent glycyrrhiza comprises of roughly 30 species[2]. In which six species produce a sweet saponin glycyrrhizic (GA), it is broadly utilized in Asia countries[3]. These plants were utilized as flavorings, sugars and as medication herbal[4], furthermore, they were likewise utilized for refining wellbeing, detoxification and solutions for injury[5]. Molecular constructions of glycyrrhizic acid [6].

1.2 Polar protic solvents

Polar protic solvents will quite often have high dielectric constants and high dipole minutes. Moreover, since they have O-H or N-H bonds, they can take an interest in hydrogen connecting[7]. These solvents can comparably like in acids (wellsprings of protons) and weedy nucleophiles (bonds with solid electrophiles)[8]. The polar protic solvents like deionized water (H-OH), methanol (CH3-OH), and Non-polar solvents like hexane (CH3(CH2)4CH3)[9], Table1 show the properties of the deferent solvents[9, 10].

Table1 show the deferent solvents properties

Solvent	Structure	Common abbreviation	Boiling point, °C	Dielectric constant ε^*	Class		
					Polar	Protic	Donor
hexane	CH3(CH2)4CH3	—	68.7	1.9			
methanol	CH3OH	MeOH	64.7	33	x	x	x
water	H2O	—	100.0	78			

*Most values are at or near 25 °C
1Known carcinogen
2. Experimental

The different solvents used in this work for dissolving of glycyrrhizic acid from licorice were deionized water, methanol, the glycyrrhizic acid solution for $10^{-2} - 10^5$ M were prepared at room temperature according to the following equation.

$$C_1V_1 = C_2V_2$$

3. Result And Discussion

3.1. UV/VIS Spectrum analysis

SPECORD 40 UV/VIS spectrophotometer had been used to measure the glycyrrhizic acid absorption spectra in different concentration for two solvents (methanol and deionized water) [11], where the parameter of system in scan mode, range 190 nm to 800 nm, delta lambda 5, speed 50 nm/s integration time [s] 0.10. The spectra, which are show in Figure 2, are the glycyrrhizic acid spectra in methanol with concentrations $10^{-2} - 10^{-5}$, the λ_{max} found that λ_{exc} will be at 254 nm. Figure 3 shows the glycyrrhizic acid spectra in deionized water with concentrations $10^{-2} - 10^{-5}$, the λ_{max} found that λ_{exc} will be at 258 nm.

3.2. Fluorescence spectra

Spectrofluorophotometer Shimadzu RF-540 was used to measure the glycyrrhizic acid fluorescence spectra, Figure 4 show the glycyrrhizic acid fluorescence in methanol solvent and Figure 5 show the glycyrrhizic acid fluorescence in deionized water solvent, where the system specific parameter (Spectrum Type: EM, Scan Range: 280.0nm to 800.0nm, EX Wavelength: 254.0 nm, Sample Pitch: 1.0 nm, Slit Width: EX:5.0nm EM:5.0nm, Scan Speed: Super, Sensitivity: High, Response Time: Auto, Shutter: Manual, Open).

Table 2 shows the Data Peak pick of glycyrrhizic 10^{-4} in methanol solvent. Table 3 shows the Data Peak pick of glycyrrhizic 10^{-5} in methanol solvent, Table 4 show the Data Peak pick of glycyrrhizic 10^{-4} in deionized water solvent and Table 5 shows the Data Peak pick of glycyrrhizic 10^{-5} in deionized water solvent.

No.	Wavelength (nm)	Intensity
1	308.0	98.716
2	513.0	32.953
3	588.0	17.060
4	613.0	18.699

Table 3 Data of glycyrrhizic 10^{-4} in methanol solvent

Table 4 Data of glycyrrhizic 10^{-5} in methanol solvent
Table 5 Flu. Data of glycyrrhizic 10^{-4} in D.I water

No.	Wavelength (nm)	Intensity
1	307.0	207.888
2	461.0	61.511
3	546.0	144.391
4	608.0	38.907

Table 6 Flu. Data of glycyrrhizic 10^{-5} in D.I water

No.	Wavelength (nm)	Intensity
1	305.0	122.292
2	459.0	27.473
3	546.0	168.834
4	604.0	22.833

From figure 2 and 3 the graph in low concentration is appear the 254 nm, 258 nm for to deferent solvents, This results agree with Beer-Lambert's law, which explains the calculation of concentrations of substances for dilute solution, The absence of a significant difference in the absorption spectrum is attributed to the fact that deionized water and methanol are in the same group (protic solvent but in different range). From figure 4, it is noted that the concentration of 10^{-4} is the best, as the peaks appear to us with a higher number, when using methanol solvent as in Table 5. Also, when using deionized water solvent, the spectrum at concentration 10^{-4} is the best. So it could be seen the solvent effect in glycyrrhizic fluorescent form Table 3 and 5, was obvious.

Conclusions

The results of absorption spectra obey Beer-Lambert's law. Because of the same property of these solvents (protic), the absence of a significant difference in the absorption spectra are shown. From florescence spectra, the spectrum at concentration 10^{-4} is the best for both solvents.

References
1. Kazia, Y.F., et al., *Antibacterial effect of ethanol and aqueous root extracts from Glycyrrhiza glabra (Licorice) against Streptococcus pyogenes isolated from throat infection.* Journal of Ear, Nose and Throat, Photon, 2014. **105**: p. 140-147.

2. Maria Pia, G.D., et al., *Biological effects of licochalcones.* Mini reviews in medicinal chemistry, 2019. **19**(8): p. 647-656.

3. Tian, M., H. Yan, and K.H. Row, *Extraction of glycyrrhizic acid and glabridin from licorice.* International journal of molecular sciences, 2008. **9**(4): p. 571-577.

4. Goyal, S., Samsher, and R. Goyal, *Stevia (Stevia rebaudiana) a bio-sweetener: a review.* International journal of food sciences and nutrition, 2010. **61**(1): p. 1-10.

5. Hou, Y. and J.-G. Jiang, *Origin and concept of medicine food homology and its application in modern functional foods.* Food & function, 2013. **4**(12): p. 1727-1741.

6. Matsuoka, K., et al., *Aggregate formation of glycyrrhizic acid.* Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016. **500**: p. 112-117.

7. Cox, B.G., *Acids and bases: solvent effects on acid-base strength.* 2013: OUP Oxford.

8. Guillena, G., D.J. Ramón, and M. Yus, *Alcohols as Electrophiles in C-C Bond-Forming Reactions: The Hydrogen Autotransfer Process.* Angewandte Chemie International Edition, 2007. **46**(14): p. 2358-2364.

9. Aljamali, N.M., *Choosing a Solvent System In Tests of (TLC).* 2015.

10. Lipshutz, B.H., F. Gallou, and S. Handa, *Evolution of solvents in organic chemistry.* ACS Sustainable Chemistry & Engineering, 2016. **4**(11): p. 5838-5849.

11. Long, J., et al., *Preparation and characterization of a novel molecularly imprinted polymer for the separation of glycyrrhizic acid.* Journal of separation science, 2017. **40**(24): p. 4847-4856.

Tables

Table 2 is not available with this version

Figures
Figure 1

Molecular structures of glycyrrhizic acid
Figure 2

Absorption spectra of glycyrrhizic acid dissolved in methanol with different concentrations (a) 10^{-2}, (b) 10^{-3}, (c) 10^{-4} and (d) 10^{-5}
Figure 3

Absorption spectra of glycyrrhizic acid dissolved in water with different concentrations (a) 10^{-2}, (b) 10^{-3}, (c) 10^{-4} and (d) 10^{-5}.
Figure 4

Florescence spectra of glycyrrhizic acid dissolved in methanol with different concentrations (a) 10^{-2}, (b) 10^{-3}, (c) 10^{-4} and (d) 10^{-5}
Figure 5

Florescence spectra of glycyrrhizic acid dissolved in water with different concentrations (a) 10^{-2}, (b) 10^{-3}, (c) 10^{-4} and (d) 10^{-5}