Integer-valued fixed point index for compositions of acyclic maps

E. G. Sklyarenko, G. S. Skordev

Dedicated to the memory of Jean Leray

Abstract

An integer-valued fixed point index for compositions of acyclic multivalued maps is constructed. This integer-valued fixed point index has the properties: additivity, homotopy invariance, normalization, commutativity, multiplicativity. The acyclicity is with respect to the Čech cohomology with integer coefficients. The technique of chain approximation is used.

Keywords: Fixed point index, multivalued maps, acyclic maps

The fixed point index (f. p. i.) for compositions of \mathbb{F}-acyclic multivalued maps of locally compact ANR spaces was constructed in [18, 22, 23, 24, 6, 12]. This f. p. i. has values in the field \mathbb{F} and has the properties: additivity, homotopy invariance, normalization, commutativity, multiplicativity and mod p. The \mathbb{F}-acyclicity of the multivalued maps is with respect to the Čech homology, i.e., the reduced Čech homology with coefficients in \mathbb{F} of the images of all points is equal to zero. The construction used the chain approximation technique.

An integer-valued f. p. i. for \mathbb{Z}-acyclic multivalued maps of ENR spaces, i.e., finite dimensional ANR spaces, with all properties mentioned above, was constructed in [5], see also [13], p. 547-550. The \mathbb{Z}-acyclicity is with respect to the Čech cohomology. The construction of this integer-valued f. p. i. is based on some homotopic considerations. Both constructions are presented in [12], p. 163-173 and p. 251-276, where all necessary definitions and results used in this note are given, see also [13].

The question was raised about the existence of integer valued f. p. i. with all properties for \mathbb{Z}-acyclic maps, with respect to Čech (co)homology, of compact ANR spaces, see [5], [12], ch. IV, Section 34, p. 173. The difficulty is that the chain approximation technique, developed in [18, 22, 23, 24] and based on [11, 26], does not work in the case of \mathbb{Z}-acyclic maps with respect to the Čech homology, see the example in [5]. Moreover, the technique of [5] is based on some results and arguments from geometric topology for which finite dimensionality of the spaces is essential. A particular solution, based on the homotopy method, was proposed in [15].

In this note we shall give a construction of integer-valued f. p. i. with all properties for compositions of \mathbb{Z}-acyclic maps of compact ANR spaces. The acyclicity is with respect to the Čech cohomology with integer coefficients. The chain approximation technique is applied. For this a relation between Čech cohomology theory with integer coefficients and the Steenrod-Sitnikov homology with integer coefficients and some results about the last homologies are used.

1 Preliminaries

Here we shall define some notions and fix some notations. As usual, we denote by \mathbb{N} the natural numbers and by \mathbb{Z} the integers.

All topological spaces are assumed to be compact metric spaces.
For a given space X we denote by $\text{Cov}(X)$ the set of all its finite open coverings. For $\alpha, \beta \in \text{Cov}(X)$ we say that β is a refinement of α, denoted as $\beta \triangleright \alpha$, if for every element $U \in \beta$ there is an element $V \in \alpha$ such that $U \subset V$.

Let $\alpha = \{U_0,\ldots,U_n\} \in \text{Cov}(X)$ and let A be a closed subset of X. By $\alpha | A$ we denote the open covering of the set A whose elements are all nonempty sets $U_0 \cap A, \ldots, U_n \cap A$.

If A is a subset of X and $\alpha \in \text{Cov}(X)$, we denote by $\text{St}(A, \alpha)$ the union of all elements of the covering α which meet A.

We shall use the standard definitions for chain complexes, chain maps, chain homotopies, cohomologies, see e.g. [3, 25]. For compact metric spaces we use Čech cohomology and Čech homology with coefficients in given Abelian groups, [3, 25, 20]. We use also the Steenrod-Sitnikov homology theory with integer coefficients for compact metric spaces, [19, 20].

For a given space X and $\alpha \in \text{Cov}(X)$ we denote by $N(\alpha)$ the nerve of the covering α. The vertices of this (abstract) simplicial complex are the elements of the covering α. Furthermore, the $k+1$ vertices U_0,\ldots,U_k are vertices of a k-simplex $\sigma^k = [U_0,\ldots,U_k]$ in $N(\alpha)$ if and only if

$U_0 \cap \ldots \cap U_k$ is not empty. The support $\text{supp}(\sigma^k)$ of the simplex σ^k is the set $U_0 \cup \ldots \cup U_k$. Let $c = \sum_{i=1}^n g_i \sigma^{k_i} \in C_k(N(\alpha); G)$, $g_i \neq 0$, be a chain of the simplicial complex $N(\alpha)$ with coefficients in an Abelian group G. Then the support $\text{supp}(c)$ of c is the set $\text{supp}(\sigma^{k_1}) \cup \ldots \cup \text{supp}(\sigma^{k_n})$.

By $N(\alpha)^{(n)}$ we denote the n-th skeleton of the simplicial complex $N(\alpha)$.

Denote by $\pi(\beta, \alpha) : N(\beta) \rightarrow N(\alpha)$ an induced simplicial map for given coverings $\alpha, \beta \in \text{Cov}(X)$ with $\beta \triangleright \alpha$. For a given closed subset A in X we denote also by $\pi(\beta, \alpha) : N(\beta | A) \rightarrow N(\alpha | A)$ the restriction of the map $\pi(\beta, \alpha)$ on the simplicial complex $N(\beta | A)$.

A multivalued map $F : X \rightarrow Y$ is a map which assigns to every point $x \in X$ a nonempty compact set $F(x)$ in Y. The graph $\Gamma(F)$ of the map F is the set $\Gamma = \{(x,y) \in X \times Y : y \in F(x)\}$. The map F is called upper semi-continuous (u.s.c.) if the graph $\Gamma(F)$ is a closed subset in the space $X \times Y$. We have two projections $p : \Gamma(F) \rightarrow X$, defined by $p(x,y) = x$ and $q : \Gamma(F) \rightarrow Y$, defined by $q(x,y) = y$ for $(x,y) \in \Gamma(F)$. Then $F(x) = q(p^{-1}(x))$ for $x \in X$. For u.s.c. maps and their general properties see [11, 12].

Let \tilde{H} be a reduced homology or cohomology theory with coefficients in an Abelian group G. A compact space Z is called G-acyclic with respect to (w.r.t.) \tilde{H} if $\tilde{H}(Z; G) = 0$. An u.s.c. map $F : X \rightarrow Y$ is called G-acyclic w.r.t. to \tilde{H} if the spaces $F(x)$ are G-acyclic w.r.t. \tilde{H} for all $x \in X$.

A single-valued continuous map $f : X \rightarrow Y$ is called G-acyclic w.r.t. \tilde{H} if the inverse map $f^{-1} : Y \rightarrow X$ of f is u.s.c. multivalued G-acyclic w.r.t. \tilde{H}.

Let $\Gamma(F)$ be the graph of the G-acyclic w.r.t. \tilde{H} multivalued map F and $p : \Gamma(F) \rightarrow X$, $q : \Gamma \rightarrow Y$ the projections defined above. Then the single-valued map $p : \Gamma(F) \rightarrow X$ is G-acyclic w.r.t. \tilde{H}. The map $p : \Gamma(F) \rightarrow X$ induces a homomorphism in the (co)homologies \tilde{H}. This homomorphism is an isomorphism in the cases:

(a) \tilde{H}^* are the reduced Čech cohomologies with coefficients in an arbitrary Abelian group G, [25], Theorem 15, p. 344.

(b) \tilde{H}_* are the reduced Čech homologies with coefficients in an arbitrary field G, [1], Theorem 2, p. 538.

(c) \tilde{H}_* are the reduced Steenrod-Sitnikov homology with integer coefficients [14], Theorem 3.2, p. 57.

In the cases (b) and (c) we did not state the most general results, for them see [20], Ch. 8, 6.2.

In the case (a) we define the homomorphism $F^* : H^*(Y; G) \rightarrow H^*(X; G)$ by $F^* = (p^*)^{-1}q^*$, where $p^* : H^*(X; G) \rightarrow H^*(\Gamma(F); G)$ and $q^* : H^*(Y; G) \rightarrow H^*(\Gamma(F); G)$ are the homomorphisms induced by the projections p and q, respectively.

Similarly, in the cases (b) and (c) we define $F_* : \tilde{H}_*(Y; G) \rightarrow \tilde{H}_*(X; G)$ by $F_* = q_*(p_*)^{-1}$,
where \(p_* : \tilde{H}_*(\Gamma(F); G) \to \tilde{H}_*(X; G) \) and \(q_* : \tilde{H}^*(\Gamma(F); G) \to \tilde{H}^*(Y; G) \) are the homomorphisms induced by the maps \(p \) and \(q \), respectively.

2 Maps of order \(n \) with respect to \(G \)

Here we shall give, in an appropriate form, some definitions and results of E. Begle, \cite{1}.

Definition 1 Let \(X \) be a compact metric space and let \(G \) be an Abelian group. Let \(n \) be a natural number. The compact \(X \) is called \((n, G)\)-compact if for every covering \(\alpha \in \text{Cov}(X) \) there is a covering \(\mu \in \text{Cov}(X) \) such that \(\mu > \alpha \) and the homomorphism

\[
\pi(\mu, \alpha)_k : \tilde{H}_k(N(\mu); G) \to \tilde{H}_k(N(\alpha); G)
\]

is the zero homomorphism for \(0 \leq k \leq n \).

Remark 1 Every \((n, G)\)-compact space is \((n, G)\)-acyclic with respect to the Čech homology, i.e., the reduced homology \(\tilde{H}_k(X; G) = 0 \) for \(k = 0, \ldots, n \).

The converse is not true, e.g., the \(2 \)-adic solenoid is \((1, \mathbb{Z})\)-acyclic with respect to the Čech homology with integer coefficients, but is not \((1, \mathbb{Z})\)-compact space, see \cite{8}, Ch. X, Exercise F. Both properties are equivalent when \(G \) is a field.

Definition 2 (cf. \cite{1}, Section 3) Let \(F : X \to Y \) be an u.s.c. multivalued map of the compact metric space \(X \) in the compact metric space \(Y \). Let \(G \) be an Abelian group. The map \(F \) is called map of order \(n \) w.r.t. the group \(G \), written \((n, G)\)-map, if \(F(x) \) is \((n, G)\)-compact for each point \(x \in X \).

In \cite{1} this definition is given for maps \(F = f^{-1} \), where \(f : Y \to X \) is a single-valued continuous onto map. E. Begle called \(f \) Vietoris map of order \(n \). We say that \(f \) is a single-valued \((n, G)\)-map.

Recall that E. Begle proved the Vietoris theorem for single-valued onto \((n, G)\)-maps \(f : Y \to X \). For such maps the induced homomorphism \(f_k : \tilde{H}_k(Y; G) \to \tilde{H}_k(X; G) \) of the reduced Čech homologies is an isomorphism for \(0 \leq k \leq n \), \cite{1}, Section 3, Theorem 1. This theorem is not true in the case when the map \(f \) is \((n, \mathbb{Z})\)-acyclic with respect to the Čech homology, \cite{3}.

E. Begle derived the Vietoris theorem from the two lemmas below, in the case of the map \(F = f^{-1} \).

Lemma 1 (cf. \cite{1}, Section 4, Lemma 2) If \(F : X \to Y \) is an u.s.c. multivalued \((n, G)\)-map, then for each covering \(\alpha \in \text{Cov}(X) \) and each covering \(\beta \in \text{Cov}(Y) \) there is a covering \(\nu = \nu(\alpha, \beta) \in \text{Cov}(X) \), with \(\nu > \alpha \), and a chain map \(T(\nu, \alpha) = \{ T(\nu, \beta)_k \}, k = 0, \ldots, n + 1 \)

\[
T(\nu, \alpha)_k : C_k(N(\nu)^{(n+1)}; G) \to C_k(N(\beta)^{(n+1)}; G)
\]

such that

1. for any \(k \)-simplex \(\sigma \in N(\nu) \) there is a point \(x(\sigma) \in X \) with
 (a) \(\text{supp}(\sigma) \subset \text{St}(x(\sigma), \alpha) \),
 (b) \(\text{supp}(T(\nu, \beta)_k(\sigma)) \subset \text{St}(F(x(\sigma)), \beta) \),
2. \(fT(\nu, \alpha)_k(\sigma) \) is chain homotopic to \(\sigma \) on \(N(\alpha) \).

3
For the next Lemma we use the notations of Lemma 1.

Lemma 2 (cf. [1], Section 4, Lemma 3) Let \(F : X \rightarrow Y \) be an u.s.c. multivalued \((n,G)\)-map. Let \(\alpha \) and \(\alpha_1 \) be coverings of \(X \) with \(\alpha_1 > \alpha \). Let \(\beta \) and \(\beta_1 \) be coverings of \(Y \) with \(\beta_1 > \beta \). Let \(\nu = \nu(\alpha,\beta) \) and \(\nu_1 = \nu(\alpha_1,\beta_1) \). Let \(T(\nu,\beta) \) and \(T_1(\nu_1,\beta_1) \) be the chain maps from Lemma 1. Then there is a common refinement \(\gamma \) of the coverings \(\nu \) and \(\nu_1 \) such that the chain map \(T(\nu,\beta)\pi(\gamma,\nu) \) is chain homotopic with \(\pi(\beta_1,\beta)T_1(\nu_1,\beta_1)\pi(\gamma,\nu_1) \) to a chain homotopy \(D \) with the property: for every simplex \(\sigma \in N(\gamma) \) there is a point \(c(\sigma) \in X \) with:

1. \(\text{supp}(\sigma) \subset \text{St}(c(\sigma),\alpha) \),

2. \(\text{supp}(D(\sigma)) \subset \text{St}(F(c(\sigma)),\beta) \).

We say that the homotopy \(D \) is \((F,\alpha,\beta)\)-small.

Remark 2 1. Lemma 2 and Lemma 3 in [1] are stated for the multivalued map \(F = f^{-1} \), i.e., for the inverse of the single-valued map \(f : Y \rightarrow X \) in an equivalent form for Vietoris chains. The more general form given above follows easily from Lemma 2 and Lemma 3 in [1].

2. The chain maps \(\{T(\nu,\beta),\alpha \in \text{Cov}(X),\beta \in \text{Cov}(Y),\nu = \nu(\alpha,\beta) \in \text{Cov}(X)\} \) induce the homomorphisms \(F_k : \tilde{H}_k(X;G) \rightarrow \tilde{H}_k(Y;G) \) for \(0 \leq k \leq n \).

3. The properties 1a),b) of Lemma 1 and 1, 2 of Lemma 2 are not stated in Lemma 2, Lemma 3 in [1], in the case \(F = f^{-1} \), but are explicit in the proofs of these lemmas given there.

3 Chain approximations and approximation systems for u.s.c. maps

Chain approximations for u.s.c. multivalued maps were used by L. Vietoris (see [20]), S. Eilenberg and D. Montgomery ([2]), E. Begle ([1, 2]) and B. O’Neil ([16]). The explicit definition is given in [18]. They are developed further in [2, 23, 24, 6, 12], Ch. 4, p. 251-276. In all these papers the authors, except E. Begle in [1], work with \(G \)-acyclic maps w.r.t. the Čech homology with coefficients in a field \(G \). The most general case is considered by E. Begle in [1] for Čech homology with coefficients in an Abelian group \(G \) for single-valued \((n,G)\)-maps. As mentioned before every \((n,G)\)-map is \((n,G)\)-acyclic but not vice versa.

Here we shall give the definitions of chain approximations and approximation systems for \((n,G)\)-maps. They are the same as the definitions given in [6, 12], Ch. 4, p. 251-276, in the case where \(G \) is a field.

The chain approximations and the approximation systems for \((n,Z)\)-maps are defined in the same way and have the same properties as the chain approximations and the approximation systems for \(F \)-acyclic maps for \(F \) a field. Moreover, the proofs of the corresponding properties for \((n,G)\)-maps are the same as for \(F \)-acyclic maps. For this reason we skip these proofs, but give exact references for the corresponding proofs in [12].

Definition 3 (cf. [12], Definition 50.29, p. 255) Let \(F : X \rightarrow Y \) be an u.s.c. multivalued map and let \(G \) be an Abelian group. Let \(\alpha, \overline{\alpha} \in \text{Cov}(X), \overline{\alpha} > \alpha \), and let \(\beta \in \text{Cov}(Y) \). An augmentation preserving chain map \(\varphi : C_\ast(N(\overline{\alpha})^{(n+1)};G) \rightarrow C_\ast(N(\beta)^{(n+1)};G) \) is called \((n,\alpha,\beta)\)-approximation of the map \(F \) provided for each simplex \(\sigma \in N(\overline{\alpha})^{(n+1)} \) there is a point \(x(\sigma) \in X \) such that

1. \(\text{supp}(\sigma) \subset \text{St}(x(\sigma),\alpha) \),
Remark 3 Let $F : X \rightarrow Y$ be an u.s.c. multivalued (n,G)-map. The chain map $T(\nu, \beta)$ from Lemma 1 is an (n, α, β)-approximation of the map F.

Definition 4 Let $F : X \rightarrow Y$ be an u.s.c. multivalued map. An (n,G)-approximation system, written (n,G,A)-system, of the map F is a collection of chain maps $\{\varphi(\nu, \beta) : \alpha, \nu = \nu(\alpha, \beta) \in Cov(X), \beta \in Cov(Y)\}$, where

- the chain map $\varphi(\nu, \beta) : C_*(N(\nu)^{(n+1)}; G) \rightarrow C_*(N(\beta)^{(n+1)}; G)$ is an (n, α, β)-approximation of F.

- Let $\nu = \nu(\alpha, \beta) \in Cov(X)$ correspond to a given $\alpha \in Cov(X)$ and $\beta \in Cov(Y)$. Let $\nu_1 = \nu(\alpha_1, \beta_1) \in Cov(X)$ correspond to a given $\alpha_1 > \alpha$ and $\beta_1 > \beta$. Then it follows: there exists $\gamma \in Cov(X)$ wit $\gamma > \nu$ and $\gamma > \nu_1$ such that the chain maps $\varphi(\nu, \beta)\pi(\gamma, \nu)$ and $\pi(\beta_1, \beta)\varphi(\nu_1, \beta_1)\pi(\gamma, \beta_1)$ are homotopic with a chain homotopy which is (F, α, β)-small.

Remark 4 1. Let $F : X \rightarrow Y$ be an u.s.c. multivalued (n,G)-map. Lemma 1 and Lemma 2 imply that the collection of chain maps $A(F) = \{T(\nu, \beta) : \alpha \in Cov(X), \nu = \nu(\alpha, \beta) \in Cov(X), \beta \in Cov(Y)\}$ is an (n,G,A)-system for the map F. We call $A(F)$ the induced (n,G,A)-system of the map F.

2. For the definition of an (n,G,A)-system it is not necessary to consider all coverings of the spaces X and Y. It is enough to consider only a fundamental sequence of coverings $\{\alpha_k\} \in Cov(X)$ and $\{\beta_k\} \in Cov(Y)$. Then an (n,G,A)-system is a collection of augmentation preserving chain maps $\{\varphi(l,k) = \varphi(\nu_l, \beta_k) : k,l \in \mathbb{N}\}$, which satisfy the conditions of the previous definition with $\nu_l = \nu(\alpha_k, \beta_k)$. In the case where X and Y are finite polyhedra with given triangulations τ, μ, respectively, we take the covering α_k to consist of all open stars of the vertices of the k-th barycentric subdivision τ^k of the triangulation τ w.r.t. τ^k. Similarly for β_k. Compare with [12], Definitions 50.17, 50.18, p. 152.

Now we shall consider a composition of u.s.c. multivalued maps and shall define a composition of (n,G,A)-systems. From [12], p. 259-262 follows:

Lemma 3 (cf. [12], Proposition (50.37), p. 260) Let $F_i : X_i \rightarrow X_{i+1}, i = 1,2$, be u.s.c. multivalued maps. Let $\alpha \in Cov(X_1), \gamma \in Cov(X_2)$. There exists $\beta \in Cov(X_2)$ such that if $\varphi(\nu_2, \gamma) : C_*(N(\nu_2)^{(n+1)}; G) \rightarrow C_*(N(\gamma)^{(n+1)}; G)$ is an (n, β, γ)-approximation of F_2 for $\nu_2 = \nu(\beta, \gamma) > \beta$, and $\varphi(\nu_1, \nu_2) : C_*(N(\nu_1)^{(n+1)}; G) \rightarrow C_*(N(\nu_2)^{(n+1)}; G)$ is an (n, α, ν_2)-approximation of F_2 for $\nu_1 = \nu(\alpha, \nu_2) > \alpha$, then $\varphi(\nu_2, \gamma)\varphi(\nu_1, \nu_2) : C_*(N(\nu_1)^{(n+1)}; G) \rightarrow C_*(N(\gamma)^{(n+1)}; G)$ is an (n, α, γ)-approximation of the map F_2F_1.

Lemma 4 (cf. [12], Proposition (50.39), p. 261) Let $F_i : X_i \rightarrow X_{i+1}, i = 1,2$, be u.s.c. multivalved maps. Assume that $A_1 = \{\varphi(\nu_1, \beta) : \alpha \in Cov(X_1), \nu_1 = \nu(\alpha, \beta) \in Cov(X_1), \beta \in Cov(X_2)\}$ is an (n,G,A)-system of the map F_1 and $A_2 = \{\varphi(\nu_2, \gamma) : \beta \in Cov(X_2), \nu_2 = \nu(\beta, \gamma) \in Cov(X_2), \gamma \in Cov(X_3)\}$ is an (n,G,A)-system of the map F_2. Then $\{\varphi(\nu_2, \gamma)\varphi(\nu_1, \nu_2) : \alpha \in Cov(X_1), \gamma \in Cov(X_3)\}$ is an (n,G,A)-system of the map F_2F_1.

We call this (n,G,A)-system for the map F_2F_1 the composition of the A-systems A_1 and A_2 and denote it by $A_2 \circ A_1$.

From this lemmas and Remark 3, 4 follows
Corollary 1 Let \(F_i : X_i \to X_{i+1} \), \(i = 1, \ldots, k - 1 \) be \((n,G,A)\)-maps. Let \(\mathcal{A}(F_i) \) be the induced \((n,G,A)\)-system of the maps \(F_i \), defined in Remark 4.1. Then the composition \(\mathcal{A}(F_{k-1}) \circ \cdots \circ \mathcal{A}(F_1) \) is an \((n,G,A)\)-system of the map \(F = F_{k-1} \cdots F_1 : X_1 \to X_k \).

We denote this \((n,G,A)\)-system of \(F = F_{k-1} \cdots F_1 \) by \(\mathcal{A}(F) \).

Definition 5 (cf. [12], Definition 50.19, p. 252) Let \(F_1, F_2 : X \to Y \) be u.s.c. multivalued maps. Let \(H : X \times I \to Y \) be an u.s.c. multivalued homotopy joining \(F_1 \) and \(F_2 \). Let \(\mathcal{A}(F_i) \) be an \((n,G,A)\)-system of \(F_i, i = 1, 2 \). The approximation systems \(\mathcal{A}(F_1) \) and \(\mathcal{A}(F_2) \) are called \(H \)-homotopic if for all sufficiently fine coverings \(\alpha \in \text{Cov}(X) \), \(\beta \in \text{Cov}(Y) \) and \(\varphi_1(\nu_1, \beta) \in \mathcal{A}(F_1), \varphi_2(\nu_2, \beta) \in \mathcal{A}(F_2) \) the chain maps \(\varphi_1(\nu_1, \beta)_* \pi(\gamma, \nu_1) \) and \(\varphi_2(\nu_2, \beta)_* \pi(\gamma, \nu_2) \) are chain homotopic with a chain homotopy \(D \) for all \(\gamma > \nu_1, \nu_2 \). Moreover, we assume that the chain homotopy \(D \) satisfies the following condition: for every simplex \(\sigma \in N(\gamma) \) there is a point \(d(\sigma) \in X \) such that

- \(\text{supp}(\sigma) \subset \text{St}(d(\sigma), \alpha) \),
- \(\text{supp}(D\sigma) \subset \text{St}(H(d(\sigma) \times I), \beta) \).

Lemma 5 (cf. [12], Lemma 51.8, p. 265) Let \(F_1, F_2 : X \to Y \) be \((n,G)\)-maps. Let \(H : X \times I \to Y \) be an \((n,G)\)-map, which is a homotopy joining \(F_1 \) and \(F_2 \). Let \(\mathcal{A}(F_i) \) be the induced \((n,G,A)\)-system of \(F_i, i = 1, 2 \). Then the approximation systems \(\mathcal{A}(F_1) \) and \(\mathcal{A}(F_2) \) are \(H \)-homotopic.

Definition 6 Assume that \(F = F_{k-1} \cdots F_1 \) and \(\Phi = \Phi_{k-1} \cdots \Phi_1 : X_1 \to X_k \) are compositions of the maps \(F_i, \Phi_i : X_i \to X_{i+1}, i = 1, \ldots, k - 1 \). Assume that \(F_i \) and \(\Phi_i \) are homotopic with a homotopy \(H_i : X_i \times I \to X_{i+1}, i = 1, \ldots, k - 1 \). Then we say that the maps \(F \) and \(\Phi \) are composition-homotopic with a homotopy \(H = H_{k-1}(H_{k-2} \circ \text{id}) \cdots (H_1 \circ \text{id}) \), where \(\text{id} : I \to I \) is the identity.

Corollary 2 (cf. [12], Proposition 51.9, p. 265) Assume that \(F = F_{k-1} \cdots F_1, \Phi = \Phi_{k-1} \cdots \Phi_1 : X_1 \to X_k \) are compositions of the \((n,G)\)-maps \(F_i, \Phi_i : X_i \to X_{i+1}, i = 1, \ldots, k - 1 \). Assume that \(F \) and \(\Phi \) are composition-homotopic with a homotopy \(H \) Then the induced \((n,G,A)\)-systems \(\mathcal{A}(F) = \mathcal{A}(F_{k-1}) \circ \cdots \circ \mathcal{A}(F_1) \) and \(\mathcal{A}(\Phi) = \mathcal{A}(\Phi_{k-1}) \circ \cdots \circ \mathcal{A}(\Phi_1) \) are \(H \)-homotopic.

4 Fixed point index of an approximation system

Let \((K, \tau)\) be a finite simplicial complex with triangulation \(\tau \). By \(\tau^k \) we denote the \(k \)-th barycentric subdivision of the triangulation \(\tau \). Let \(C_*(\tau^k) = C_*(K, \tau^k; \mathbb{Z}) \) be the chain complex with integer coefficients of the triangulation \(\tau^k \). By \(b(k, l) : C_*(\tau^k) \to C_*(\tau^l) \) we denote the barycentric subdivision operation, \(l > k \). We consider the fundamental sequence of open coverings \(\{\alpha_k\} \) of the space \(K \), where \(\alpha_k \) is the covering of \(K \) by the open stars of the vertices of \(\tau^k \), w.r.t. the triangulation \(\tau^k \).

Let \(U \) be an open set in \(K \) such that its closure \(\overline{U} \) is a subcomplex in \((K, \tau)\). By \(p(U, k) = \{p(U, k)_i\} : C_*(\tau^k) \to C_*(\tau^k | \overline{U}) \) we denote the projection homomorphism. Here \(\tau^k | \overline{U} \) is the restriction of the triangulation \(\tau^k \) on \(\overline{U} \).

Let \(F : U \to K \) be an u.s.c. multivalued map without fixed points on the boundary \(\partial U \) of the set \(U \), i.e., \(x \notin F(x) \) for \(x \in \partial U \), or the same, \(\text{Fix}(F) = \{x : x \in F(x)\} \subset U \). In this case we call the triple \((K, F, U)\) admissible.
Definition 7 We call a quadruple \((K, F, U; A)\) admissible if \((K, F, U)\) is an admissible triple and \(A\) is an \((n, \mathbb{Z}, A)\)-system of the map \(F\), with \(n = \dim K\). Denote by \(K_A\) the set of all admissible quadruples.

Definition 8 (Fixed point index on \(K_A\), cf. [12], Ch. 4, Definition 50.21) The fixed point index \(I_A: K_A \to \mathbb{Z}\) is defined as follows. Let \((K, F, U; A) \in K_A\) and let \(A = \{\varphi(l, k), \nu_l = \nu(\alpha_k, \alpha_l)\}\) be an \((n, \mathbb{Z}, A)\)-system of the map \(F: \overline{U} \to K\), see Remark 4.2. Let \(\psi\) be the graded homomorphism \(\psi = \{\psi_i\} = \{p(U, k)\varphi(l, k)b(k, l) : C_*(\tau^k | \overline{U}) \to C_*(\tau^k | \overline{U})\}\) and let \(k\) be a sufficiently large natural number. Then \(I_A(K, F, U)\) is defined by the Lefschetz number of the graded homomorphism \(\psi\), i.e., \(I_A(K, F, U) = \lambda(\psi) = \sum (-1)^i \text{tr}(\psi_i)\), where \(\text{tr}(\psi_i)\) is the trace of the homomorphism \(\psi_i\).

Remark 5 The definition of the fixed point index \(I_A(K, F, U)\) is correct, i.e., it does not depend on the number \(k\). This follows as in Lemma and Definition 1.2, [13].

Lemma 6 The fixed point index \(I_A(K, F, U)\) has the following properties:

1. **Additivity**

 Let \(U_1, U_2\) be open, disjoint and polyhedral subsets of \(U\) and \(\text{Fix}(F) = \{x : x \in F(x)\} \subseteq U_1 \cup U_2\). Then \(I_A(K, F, U) = I_A(K, F, U_1) + I_A(K, F, U_2)\).

2. **Homotopy invariance**

 Let \(H = H_t : \overline{U} \times I \to K\) be an u.s.c homotopy such that \((K, H_t, U)\) is an admissible triple for all \(t \in I\). Let \(A_0, A_1\) be \(H\)-homotopic \((n, \mathbb{Z}, A)\)-systems for the maps \(H_0, H_1\), respectively. Then \(I_{A_0}(K, F, U) = I_{A_1}(K, F, U)\).

3. **Commutativity**

 Let \(K, L\) be finite simplicial complexes. Let \(W \subset K\) be an open subset and let \(F_1 : K \to L\), \(F_2 : L \to K\) be u.s.c. multivalued maps. Assume that \(x \notin F_2F_1(x)\) for \(x \in \partial W\) and \(y \notin F_1F_2(y)\) for \(y \in \partial F_2^{-1}(W)\). Assume further that

 \[y \in \text{Fix}(F_1F_2) \setminus F_2^{-1}(W) \implies F_2(y) \cap \text{Fix}(F_2F_1 | \overline{W}) = \emptyset.\]

 Then for all \((n, \mathbb{Z}, A)\)-systems \(A_1, A_2\) of \(F_1, F_2\), respectively, follows

 \[I_{A_1 \circ A_2}(L, F_1F_2, F_2^{-1}(W)) = I_{A_2 \circ A_1}(K, F_2F_1, W).\]

 Here \(n \geq \max\{\dim K, \dim L\}\).

4. **Normalization**

 \[I_A(K, F, K) = \lambda(\psi_*),\]

 where \(\psi_* : H_*(K; \mathbb{Z}) \to H_*(K; \mathbb{Z})\) is the homomorphism induced by the chain map \(\varphi(l, k)b(k, l)\), where \(\varphi(k, l) \in A\) and \(k\) is sufficiently large.

7
Now we define the fixed point index $I_A(K,F,V)$ for all open sets V and maps $F : \overline{V} \to K$ such that $Fix(F) \subset V$. We call such a triple admissible.

Take an open polyhedral set U, such that $\overline{U} \subset V$ and $Fix(F) \cap (V \setminus U) = \emptyset$. Then define $I_A(K,F,V) = I_A(K,F,U)$.

The proofs of Propositions 1.5, 1.6, [18] imply the Homotopy invariance and the Commutativity property.

The Normalization follows from [11].

Definition 9 Let $\mathcal{K}(n) = \{(K,F,U)\}$ where

- K is a finite simplicial complex, and the triple (K,F,U) is admissible;
- the map $F = F_{k-1} \ldots F_1$ with $F_i : X_i \to X_{i+1}$, $X_1 = U$, $X_k = K$;
- the maps F_i are (n,\mathbb{Z})-maps, $n = \dim K$, see Definition 2.

Definition 10 Let $(K,F,U) \in \mathcal{K}(n)$. Let $A(F) = A(F_{k-1}) \circ \ldots \circ A(F_1)$ be the induced (n,G,A)-system of the map F. Then $(K,F,U;A(F)) \in \mathcal{K}_A$, see Definition 7. The fixed point index $I : \mathcal{K}(n) \to \mathbb{Z}$ is defined as $I(K,F,U) = I_{A(F)}(K,F,U)$.

From Lemma 6 follows

Corollary 3 The fixed point index $I : \mathcal{K}(n) \to \mathbb{Z}$ has the properties Additivity, Homotopy invariance, Commutativity and Normalization.

Remark 6 For the definition of the fixed point index $I : \mathcal{K}(n) \to \mathbb{Z}$ a block structure of the simplicial complex could be used. Then one obtains also the Multiplicativity of $I(K,F,U)$, as in [24].

5 \(\mathbb{Z}\)-acyclic and \((n,G)\)-maps

Here we shall describe relations between the \mathbb{Z}-acyclicity w.r.t. the Čech cohomology, w.r.t. the Steenrod-Sitnikov homology of compact metric spaces and (n,\mathbb{Z})-compact spaces, see Definition 1.

Lemma 7 A compact metric space is \mathbb{Z}-acyclic w.r.t. the Čech cohomology if and only if it is \mathbb{Z}-acyclic w.r.t. the Steenrod-Sitnikov homology.

Proof. Assume that the compact metric space is \mathbb{Z}-acyclic w.r.t. the Čech cohomology. Then the exact sequence

$$0 \to Ext(H^{n+1}(X;\mathbb{Z});\mathbb{Z}) \to H_n(X;\mathbb{Z}) \to Hom(H^n(X;\mathbb{Z}),\mathbb{Z}) \to 0,$$

see [20], (14), p. 221, implies that X is \mathbb{Z}-acyclic w.r.t. the Steenrod-Sitnikov homology.

For the inverse assertion assume that the compact space is \mathbb{Z}-acyclic w.r.t. the Steenrod-Sitnikov homology. The above exact sequence gives that $Ext(H^{n+1}(X;\mathbb{Z});\mathbb{Z}) = 0$ and $Hom(H^n(X;\mathbb{Z}),\mathbb{Z}) = 0$. Since X is a compact metric space the groups $H^n(X;\mathbb{Z})$ are countable. Then the theorem of Stein-Serre implies that the groups $H^n(X;\mathbb{Z})$ are free, see [21], Proposition 1.2, Proposition 1.3 and Remark on p. 374. Then $Hom(H^n(X;\mathbb{Z}),\mathbb{Z}) = 0$ gives that the space X is \mathbb{Z}-acyclic w.r.t. the Čech cohomology.
Lemma 8 Let $F : X \rightarrow Y$ be an u.s.c. multivalued map. Assume that F is G-acyclic w.r.t. the Steenrod-Sitnikov homology with coefficients in a countable Abelian group G. Then F is an (n,G)-map for every natural number n.

Proof. Consider the representation $F = qp^{-1}$ with the projections $p : \Gamma(F) \rightarrow X$ and $q : \Gamma(F) \rightarrow Y$. The Proposition 1.5. from [14] gives that $p^{-1}(x)$ are (n,G)-compact spaces for $x \in X$ and every n. Then by Definition 2 the map F is an (n,G)-map for every n.

Remark 7 In the proof of Proposition 1.5. from [14] is used that the Mittag-Leffler property of projective systems $\{A_i\}$ of Abelian groups is equivalent to the vanishing of the first derived functor $\lim^1 \{A_i\}$ of the projective system $\{A_i\}$. This is true for countable projective systems of countable Abelian groups, see [21], Proposition 1.2, p. 371. For this reason we assume that the spaces are compact and metric.

6 Main Theorem

Definition 11 Let X be a compact ANR and let U be an open set in X. The triple (X,F,U) is called acyclic admissible if

- $F : \overline{U} \rightarrow X$ has no fixed points on the boundary ∂U of the set U, i.e., $\text{Fix}(F) \subset U$;
- There is a natural number k such that $F = F_{k-1} \ldots F_1 : \overline{U} \rightarrow X$ and $F_i : X_i \rightarrow X_{i+1}$, $i = 1, \ldots, k-1$, $X_1 = \overline{U}, X_k = X$;
- the maps F_i, $i = 1, \ldots, k-1$ are \mathbb{Z}-acyclic w.r.t. Čech cohomology with integer coefficients.

Denote by \mathcal{K} the set of all acyclic admissible triples.

For $(X,F,U) \in \mathcal{K}$ we have a homomorphism $F^* = F_1^* \ldots F_{k-1}^* : H^*(X;\mathbb{Z}) \rightarrow H^*(\overline{U};\mathbb{Z})$, where $F_i^* : H^*(X_{i+1};\mathbb{Z}) \rightarrow H^*(X_i;\mathbb{Z})$ is defined as follows. Consider the representation $F_i = q_i(p_i)^{-1}$ of the map with the projections $p_i : \Gamma(F_i) \rightarrow X_i$ and $q_i : \Gamma(F_i) \rightarrow X_{i+1}$. The Vietoris theorem implies that the homomorphism $p_i^* : H^*(X_i;\mathbb{Z}) \rightarrow H^*(\Gamma(F_i);\mathbb{Z})$ is an isomorphism, see [25], Theorem 15, p. 344. Then $F_i^* = (p_i^*)^{-1}q_i^* : H^*(X_{i+1}) \rightarrow H^*(X_i)$, and $F^* = F_1^* \ldots F_{k-1}^* : H^*(X;\mathbb{Z}) \rightarrow H^*(\overline{U};\mathbb{Z})$.

Consider the case $X = U$. Since X is compact ANR then $H^*(X;\mathbb{Z})$ is a finetely generated Abelian group. Then the Lefschetz number $\lambda(F^*) = \sum_k (-1)^k tr(F^k)$ is defined. Here $F^* = \{F^k\}$ and $F^k : H^k(X;\mathbb{Z}) \rightarrow H^k(X;\mathbb{Z})$ is the homomorphism induced by the map F.

Let $(X,F,U),(X,G,U) \in \mathcal{K}$. We call the triples (X,F,U) and (X,G,U) admissible homotopic if the maps F and G are composition-homotopic with a homotopy H such that $x \not\in H(x,t)$ for all $x \in \partial U$ and $t \in I = [0,1]$, see Definition 6.

Theorem 1 (integer fixed point index on K) There is a function $i : \mathcal{K} \rightarrow \mathbb{Z}$ defined on the set of all acyclic admissible triples \mathcal{K} with integer values with the following properties:

1. Additivity

Let $(X,F,U) \in \mathcal{K}$ and let U_1, U_2 be open subsets of U with $\text{Fix}(F) \subset U_1 \cup U_2$, then

$$i(X,F,U) = i(X,F,U_1) + i(X,F,U_2);$$
2. Homotopy invariance

Let \((X,F,U),(X,G,U) \in \mathcal{K}\) be admissible homotopic triples, then

\[i(X,F,U) = i(X,G,U); \]

3. Commutativity

Let \(F : X \to Y, G : Y \to X\) be compositions of acyclic maps. Let \(U\) be an open set in \(X\). Assume that \((X,GF,U), (Y,FG,G^{-1}(U)) \in \mathcal{K}\) and \(G(Fix(FG) \setminus G^{-1}(U)) \cap Fix(GF \mid U) = \emptyset\), then

\[i(X,GF,U) = i(Y,FG,G^{-1}(U)); \]

4. Normalization

\[i(X,F,X) = \lambda(F^*). \]

Proof.

Let \(\mathcal{K}'\) be the subset of \(\mathcal{K}\) consisting of all acyclic admissible triples \((K,F,U) \in \mathcal{K}\) with \(K\) a finite simplicial complex.

Lemma 8 implies that if \((K,F,U) \in \mathcal{K}'\) then \((K,F,U) \in \mathcal{K}(n)\) with \(n = \text{dim} K\), see Definition 9.

Consider \(I : \mathcal{K}(n) \to \mathbb{Z}\), see Definition 10. Define \(i(K,F,U) = I(K,F,U)\). Lemma 6 implies that the fixed point index \(i : \mathcal{K}' \to \mathbb{Z}\) has Additivity, Homotopy invariance and Commutativity properties.

The Normalization property in Lemma 6 is stated as follows: \(i(K,F,K) = \lambda(F_k)\), where \(F_k = (F_{k-1})_* \ldots (F_1)_*\) is a homomorphism in the Čech homology with integer coefficients. It follows that \(\lambda(F_k) = \lambda(F^*)\), i.e., the Normalization property from Theorem 1 also follows for the index \(i : \mathcal{K}' \to \mathbb{Z}\).

Since the fixed point index \(i : \mathcal{K}' \to \mathbb{Z}\) has the Commutativity property we can apply the extension procedure from [12], Ch. 4, Section 53. As a result we obtain a fixed point index \(i : \mathcal{K} \to \mathbb{Z}\) with Additivity, Homotopy invariance, Commutativity and Normalization properties.

Remark 8 1. The fixed point index \(i(X,F,U)\) coincides with the fixed point index defined in [3] for \(\text{dim} X < \infty\) and \(F\) a \(\mathbb{Z}\)-acyclic map.

2. Using the technique from [23] one can prove that the fixed point index \(i : \mathcal{K} \to \mathbb{Z}\) has also the Multiplicativity property, i.e., for \((X_1,F_1,U_1),(X_2,F_2,U_2) \in \mathcal{K}\) follows \((X_1 \times X_2,F_1 \times F_2,U_1 \times U_2) \in \mathcal{K}\) and

\[i(X_1 \times X_2,F_1 \times F_2,U_1 \times U_2) = i(X_1,F_1,U_1)i(X_2,F_2,U_2) \]

3. With an adaptation of the technique of [9,10] one can obtain an integer fixed point index for compositions of multivalued, \(\mathbb{Z}\)-acyclic, weighted maps with an integer multiplicity function. For these maps see [17].

Acknowledgments: The paper was written during the visit of the first author in Bremen. The authors thank Heinz-Otto Peitgen for his support and Jean-Paul Allouche for many valuable remarks. Many thanks also to Lech Gorniewicz, Wojciech Kryszewski, Jacobo Pejsachowicz and Robert Skiba for the generous support with information.
References

[1] E. G. Begle, The Vietoris mapping theorem for bicompact spaces, Ann. Math., 51 1950, 534-543.

[2] E. Begle, A fixed point theorem, Ann. Math., 51 1950, 544-550.

[3] E. G. Begle, The Vietoris mapping theorem for bicompact spaces II, Mich. Math. J., 3 1955-1956, 179-180.

[4] C. Berge, Espaces Topologiques. Fonction Multivoques, Dunod, Paris, 1959.

[5] R. Bielawski, The fixed point index for acyclic maps of ENR's, Bull. Polish Acad. Sci., Math., 35 1987, 487-499.

[6] Z. Dzedzej, Fixed Point Index Theory for a Class of Nonacyclic Multivalued Maps, Dissert. Math., 253, PWN, Warszawa, 1985.

[7] S. Eilenberg, D. Montgomery, Fixed points for multivalued transformations, Amer. J. Math., 69 1946, 214-222.

[8] S. Eilenberg, N. Steenrod, Foundation of Algebraic Topology, Princeton University Press, Princeton, 1952.

[9] F. v. Haeseler, G. Skordev, Borsuk-Ulam theorem, fixed point index and chain approximations for maps with multiplicity, Pacif. J. Math., 153 1992, 369-396.

[10] F. v. Haeseler, H.-O. Peitgen, G. Skordev, Lefschetz fixed point theorem for acyclic maps with multiplicity, Topol. Meth. in Nonlin. Analysis, 19 2002, 339-374.

[11] H. Hopf, Eine Verallgemeinerung der Euler-Poincaréschen Formel, Nachr. Ges. Wiss. Göttingen, 1928, 127-136, see also H. Hopf, Collected Papers, Springer, 2001, Berlin, 183-192.

[12] L. Górniiewicz, Topological Fixed Point Theory of Multivalued Mappings, Kluwer Acad. Publ., Dordrecht, 1999.

[13] A. Granas, J. Dugundji, Fixed Point Theory, Springer, Berlin, 2003.

[14] Ya. Khintishev, Vietoris type theorem for exact homology, Annuaire Univ. Sofia Fac. Math. Méc., 71 1976/77, 55-82 (in Russian).

[15] W. Kryszewski, The fixed point index for the class of compositions of acyclic set-maps on ANR’s, Bull. Sci. Math., 120 1996, 129-151.

[16] B. O’Neil, Induced homology homomorphism for set valued maps, Pacif. J. Math., 7 1957, 1179-1184.

[17] J. Pejsachowicz, R. Skiba, Fixed Point Theory of Multivalued Weighted Maps, in Handbook of Topological Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2004.

[18] H. W. Siegberg, G. Skordev, Fixed point index and chain approximations, Pacif. J. Math., 102 1982, 455-486.

[19] E. G. Sklyarenko, Homology theory and the exactness axiom, Usp. Mat. Nauk, 24 1969, 87-140.
[20] E. G. Sklyarenko, Homology and Cohomology Theories of General Spaces, in Encyclopedia of Mathematical Science (Ed. A. V. Arhangel’skii), 50, Springer, Berlin, 1996, pp. 119-256.

[21] E. G. Sklyarenko, Some applications of the lim^1-functor, Mat. Sb., 123 1984, 369-390.

[22] G. Skordev, Fixed point index for open sets in Euclidean spaces, Fund. Math., 121 1984, 41-58.

[23] G. Skordev, Homological Properties and Fixed Point Index of Continuous Maps, Diss. Univ. Sofia, Bulgaria, 1982 (in Bulgarian).

[24] G. Skordev, The multiplicity property of the fixed point index for multivalued maps, Serdica Bulgaricae Math. Publ., 15 1989, No 2, 160-170.

[25] E. H. Spanier, Algebraic Topology, Springer, New York, 1966.

[26] L. Vietoris, Über den höheren Zusammenhang kompakter Räume, Math. Ann., 97 1927, 454-472.

Department of Mechanics and Mathematics
Moscow State University
Leninskie Gory
119992 Moscow
Russia
egskl@higeom.math.msu.su

Department of Mathematics and Informatics
University of Bremen
Universitaetsallee 29
28359 Bremen
Germany
skordev@cevis.uni – bremen.de