The properties of kashar cheese produced with added rennet casein

Abdullah Badem¹*, Gürkan Uçar¹

¹Selcuk University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Konya, Turkey

Received: 30.05.2018, Accepted: 03.09.2018
*abdullah_badem@yahoo.com

Eurasian J Vet Sci, 2018, 34, 4, 242-248
DOI: 10.15312/EurasianJVetSci.2018.206

Öz

Amaç: Değişik oranlarda rennet kazein eklenerek üretilen kaşar peynirlerinin olgunlaşma süresince kimyasal, mikrobiyolojik ve duysusal özelliklerinde meydana gelen değişim araştırılması amaçlanmıştır.

Gereç ve Yöntem: Sütün yağ %3,0’ya ayarlandı, 37˚C’ye ısıtılıp enzim eklendi. Pihtı işleme, baskılama ve fermantasyondan sonra parçalama işleminde eritme tuzları (%0,1), kaya tuzu (%1,5) ve rennet kazein (%0-kontrol, 0,5, 1,0, 1,5, 2,0) ekledi. Eritme işlemi (65˚C, 5 dak) yapılarak peynir üretildi, vakumla paketlendi, olgunlaştırıldı (8˚C, 90 gün). Örneklerde kuru madde gravimetreik yöntemle, yağ Gerber metoduyla, tuz Mohr yöntemiyle ve titrasyon asitliği % laktik asit olarak belirlendi. Örneklerin toplam mesofilik aerobik bakteri, laktik asit bakterisi, S.aureus, koliform bakteri, maya–küf içeriği incelendi. Duyusal değerlendirme 7 panelist tarafından yapıldı. Kimyasal ve mikrobiyolojik sonuçlar istatistiksel olarak one-way Anova testine, duyusal sonuçlar ise Kruskal-Wallis H testine tabi tutuldu.

Bulgular: Peynirler 8˚C’de 90 gün olgunlaştırıldı ve olgunlaştırmadan 1., 30., 60. ve 90. günlerinde kimyasal, mikrobiyolojik ve duysusal analizler yapıldı. Peynirlerin ortalama pH değerleri 5,62-5,76, asitlik %0,55-0,83 L.a., kurumadde %54,93-58,04, tuz %1,22-1,37, kurumadde tuz %2,21-2,45, yağ %23,67-25,33 ve kurumadde yağ %41,20-45,46, TAMB 5,17-5,75 logcfu/g, LAB 5,49-6,98 logcfu/g, maya-küf sayısı 3,66-4,88 logcfu/g olarak belirlendi, S.aureus ve koliform grubu bakteri-ye rastlanmadı. Peynirlerin titrasyon asitliğinde önemli farklılık bulundu (p<0,05), fakat diğer kriterlere fark tespit edildi (p>0,05). Duyusal analizlerde dış görünüş bakımından 3 nolu peynirde, iç görünüş bakımından 2 nolu peynirde istatistikli olarak önemli farklılık bulundu (p<0,05).

Öneri: Kaşar peyniri üretiminde rennet kazein eklenerek üretilmek ve olgunlaşması sağlanabileceği söylenebilir.

Anahtar kelimeler: Analog peynir; kaşar peyniri, rennet kazein, kalite özellikleri
Introduction

It is supposed that there are about 2000 kinds of cheese in the world (Tekinşen 2000). More than 130 varieties of cheese produced locally are being produced in Turkey (Kamber 2015). After white cheese, kashar is the most manufactured cheese in Turkey (Hayaloğlu 2009, Anonymous 2018). Cow, sheep, goat, buffalo milk or mixture of them is used to produce to kashar cheese. Milk is pasteurized with its technique and can be enriched by some additives. Kashar cheese has a typical taste, flavor, color and smell. Kashar cheese described as ripen kashar or fresh kashar can be consumed unripe (fresh) or ripen (old). According to its fat rate, there are three types of kashar cheese as low-fat cheese, fat cheese and whole-fat cheese. Similar to Kaskaval, Provolone, Caciocavallo, Regusono, and Mozzarella, Kashar cheese is classified as “pasta-filata cheese” (Anonymous 2006, Yalman et al 2017, Yuvaşen et al 2018). Kashar cheese is produced in two ways: (i) traditional method – scalding of the curd, (ii) modern method – processed cheese technology (Çetinkaya and Atasever 2015, Yalman et al 2017).

Two main types of casein have been produced and named according to coagulation agents to benefit from the functional properties of it in various fields of industry. Types of casein: (i) rennet casein, (ii) acid casein. Rennet casein is produced through the coagulation of rennet from skim milk at 30°C. As in the case of cheese production, the casein miscella is firstly made into gel, afterwards the whey is separated from the formed casein, washed with water and then dried and ground. Casein and caseinate are biopolymer powders produced from milk and they are used in food, paper, textile and leather industry and many other sectors. In the food industry, they are incorporated to some food composition as an additive. The use of casein in dairy production, texture, viscosity, water binding capacity, emulsifying, foaming characteristic of the products are regulated (Fox 2000, Stathopoulos 2008, Jacop et al 2010, Badem and Ucar 2017).

Cheese analogue, a cheese-like type of cheese, is manufactured using ingredients such as milk, milk fat, protein, vegetable-based substances, etc. in the presence of emulsifying salts (ES) with the influence of mechanic and thermal energy. ES are important ingredients in cheese-making because of heat treatment of “oiling off”. ES contains citrates and phosphates used for processed cheese (Badem and Ucar 2016, Jana et al 2017, Yalman et al 2017).

Microbiota of cheese has an important effect on characteristics of cheese variety as a crucial and critical in the ripening period. Non-starter lactic acid bacteria (NSLAB) surrounding the environment has a major effect for development of cheese ripening. NSLAB forms the majority of the cheese population during ripening if starter culture is not added to cheese (Beresford et al 2001). In the present study, it was aimed to determine the effect of rennet casein on chemical, microbiological and sensory quality in Kashar cheese.

Materials and Methods

Cheese production

Raw bovine milk (3.0% fat) was heated to 37°C and enzyme (chymosin) was added. After clotting, pressure and fermentation, the curd was separated into five equal pieces and then rennet casein was added in the rate of 0.5% (group 1), 1.0% (group 2), 1.5% (group 3) 2.0% (group 4) and 0% (group 5-control), respectively. For each g of casein 4 g water, 0.1% emulsifying salts (Kasomel™ - K1112, K2185, K3112, K3172; mixing rate: 1/1/1/1; including E331, E339, E452) and 1.5% salt was added by calculating the amount of clot. Curd was processed for 5 min, at 65°C in the melting tank and product was stored at 22°C, for 1 day. Then it was packaged by vacuuming and ripened at 8°C, for 90 days. The Kashar cheese production was performed without using starter culture. The study has been repeated three times.

Analysis of the cheese samples

In the five groups samples, contents of the cheeses were determined by Gravimetric method, Gerber method, Mohr method for dry matter, fat, salt, respectively. Titratable acidity was determined as lactic acide. pH was measured with a pH meter (Nell) (Anonymous 2000). PCA (Oxoid, UK), MRS (LabM, UK), BPA (bioMerieux, France), VRBA (LabM), DRBC (Merck, Germany) were used to analyze TAMB, LAB, Staphylococcus aureus, coliform bacteria group, yeast-mould counts, respectively. Coagulase test (staphylase test; bioMerieux, France) was performed to identify S. aureus. Coagulase-(+) samples were verified by VITEK II (bioMerieux) (Anonymous 2001). Sensory evaluation was performed by 7 trained panelist using the 5-point hedonic method (Anonymous 2006). One-way Anova test was used for chemical and microbiological results istatistical analysis, and Kruskal-Wallis H test was used to evaluate sensory analysis in SPSS 21.0 program.

Results

The chemical analysis data obtained in the study was given in Table 1. According to the results of chemical analysis, pH values of kashar cheese were determined between 5.56-5.77 and titratable acidity values between 0.53-0.83% L.A. Significant differences (p<0.05) were found in the 3rd and 5th cheese sample groups in terms of acidity during ripening period. Besides, there were differences between groups in cheese samples on the 60th day (p<0.05).

The microbiological analysis data obtained in the study was given in Table 2. According to the data obtained through microbiological count, TAMB counts were found between 4,67-6,25 log cfu/g. Any coliform bacteria or S.aureus was not detected. The sensory analysis data obtained in the study was given in Table 3. Total sensory evaluation scores given for each cheese sample were between 20,62-22,19. Cheese samples,
Discussions - which were considered to exterior-appearance and interior-appearance, just statistical differences (p<0.05) were determined for 3rd and 2nd cheese samples, respectively.

Cheese groups	Day	1	2	3	4	5	F
pH	1	5.77±0.13	5.71±0.12	5.70±0.12	5.68±0.15	5.66±0.12	0.11
	30	5.76±0.10	5.73±0.11	5.61±0.20	5.61±0.19	5.65±0.69	0.23
	60	5.59±0.11b	5.59±0.01b	5.57±0.03b	5.56±0.02b	5.76±0.04a	10.29*
	90	5.67±0.01	5.66±0.03	5.65±0.05	5.64±0.02	5.62±0.05	0.27
F	1	1	0.93	0.22	0.18	0.59	
	30	0.61±0.12	0.56±0.07	0.53±0.08Y	0.57±0.07	0.55±0.06Y	0.13
	60	0.72±0.03	0.71±0.05	0.71±0.02XY	0.73±0.05	0.72±0.03XY	0.08
	90	0.74±0.08	0.71±0.04	0.70±0.04XY	0.69±0.07	0.73±0.07XY	0.11
F	0.54	0.90	2.22*	1.30	2.57*		
Acidity (% L.A.)	1	58.1±1.65	57.15±0.96	57.69±0.84	58.43±1.47	58.04±1.15	0.15
	30	58.04±1.20	56.72±2.29	57.51±1.82	58.56±2.77	57.52±1.87	0.32
	60	56.09±0.57	55.83±1.15	56.01±1.23	56.22±1.11	54.93±1.10	0.24
	90	59.30±1.55	56.84±0.96	57.28±1.34	59.04±2.74	57.53±1.39	0.42
F	1.03	1.41	1.30	0.31	0.34	1.36	
	30	1.44±0.08	1.39±0.10	1.40±0.10	1.39±0.10	1.37±0.09	0.09
	60	1.66±0.01	1.37±0.10	1.38±0.11	1.48±0.01	1.22±0.09	0.42
	90	1.52±0.04	1.29±0.11	1.45±0.08	1.47±0.06	1.34±0.01	1.79
F	2.32	2.32	2.32	2.32	2.32	2.32	
Salt (%)	1	2.70±0.10	2.31±0.22	2.46±0.16	2.46±0.19	2.22±0.27	0.88
	30	2.48±0.08	2.46±0.13	2.43±0.14	2.37±0.13	2.45±0.11	0.11
	60	2.96±0.06	2.44±0.13	2.45±0.15	2.63±0.36	2.21±0.12	0.11
	90	2.56±0.01	2.27±0.19	2.52±0.15	2.50±0.16	2.32±0.07	0.94
F	8.61	8.61	8.61	3.42	0.69	0.50	
Salt in DM (%)	1	25.33±1.20	25.67±1.33	26.33±0.67	26.67±0.88	25.33±1.67	0.25
	30	25.50±1.26	25.00±1.00	25.67±1.20	25.33±1.33	25.33±0.88	0.05
	60	24.67±1.45	27.3±0.33	24.67±1.45	24.67±1.45	23.67±0.88	1.31
	90	23.67±0.88	23.67±0.88	24.67±1.45	24.67±1.45	23.67±0.88	0.23
F	0.47	0.47	0.47	0.47	0.47	0.47	
Fat (%)	1	43.73±2.96	44.89±2.01	45.65±0.98	45.64±1.09	43.10±3.13	0.27
	30	43.86±1.67	44.25±2.76	44.67±2.04	43.45±2.96	45.46±0.90	0.12
	60	43.95±2.28	49.02±1.62	43.97±1.68	43.81±1.83	43.06±0.78	1.99
	90	40.04±2.50	41.64±1.45	43.07±2.48	41.92±2.94	41.20±2.04	0.22
F	0.63	0.63	0.63	0.63	0.63	0.63	

*significant (p<0.05).

1:0.5% rennet casein, 2:1.0% rennet casein, 3:1.5% rennet casein, 4:2.0% rennet casein, 5:0% rennet casein.

a,b,c: values shown with different letters in the same line was different at the level of p<0.05.

X,Y,Z: values shown with different letters in the same column was different at the level of p<0.05.

which were considered to exterior-appearance and interior-appearance, just statistical differences (p<0.05) were determined for 3rd and 2nd cheese samples, respectively.

Discussions

Guinee and Fox (1993) stated that the fluctuation at pH values are the result of buffering of compounds formed by large molecule proteins’ degradation with acidity and proteolysis after microbial activity. They also stated that rennet casein caused buffering capacity increase and had an important effect on the titratable acidity. Yangilar (2017) has stated pH value between 5.05-5.31 and titratable acidity between 1.22-2.82% L.A. of control cheese samples produced without
demonstrated that there are significant interaction between 0.52% at Kashar, 5.80-6.03, 0.43-1.33% at processed, 6.37-6.59, 0.43-1.07% at cheese analogue, respectively. They stated that among the 24.00%, 0.89% at processed, 50.74%, 29.75%, 0.87% at cheese analogue, respectively. They have also found that pH, titratable acidity 5.07-5.63, 0.35-0.52% at Kashar, 5.80-6.03, 0.43-1.33% at processed, 6.37-7.39, 0.41-0.51% at cheese analogue, respectively. They have demonstrated that there is significant interaction between cheese type and storage time with regard to titratable acidity and pH. Kashar cheese’s pH values was significantly (p<0.05) lower than the others during the ripening period for 90 days.

TAMB count found between 4.67-6.25 log cfu/g and first day was less than the other studies (Nizamlioğlu et al 1996, Atasever et al 2003, Çetinkaya and Soyutemiz 2006, Sert et al 2007, Temiz 2010 and Tunçtürk et al 2010). TAMB counts were similar to on the other days. On the other hand Yangilar (2017) found TAMB count 7.04-8.28 log cfu/g and Çetinkaya and Atasever (2015) determined TAMB count 6.90-8.20 log cfu/g. The high pH values were related to the lack of starter cultures and the number of microorganisms in the raw milks which was used cheese production confirmed by Üçüncü (2005). According to the data obtained through microbiological count, LAB counts were between 5.39-7.25 log cfu/g. Lactobacilli activity is faster on account of nutrient abundance, low acid concentration and high water activity at the starting of the ripening period. Because of microbial activity, the water amount decreases in the environment of cheese, salt and acidity concentration increases, and LAB count decreases in the end the ripening period (Çetinkaya and Soyutemiz 2006, Tunçtürk et al 2010). NSLAB becomes dominant and the microorganism numbers can reach 10^7-10^8 cfu/g in the ripening period in cheese (Fox and Cogan 2004). NSLAB’s proteinases and peptidases are usually parallel to LAB and contribute to ripening as parallel buffering (Upadhyay et al 2004). LAB counts are similar to Çetinkaya and Atasever (2015) but Yangilar (2017) results are higher than this study (6.09-7.87 log cfu/g). The microflora, where domi-

Cheese groups	1	2	3	4	5	F
TAMB						
1	4.90±0.55	4.88±0.50	4.79±0.56	4.67±0.55	5.18±0.59	0.12
30	5.83±0.49	5.57±0.39	5.37±0.24	5.37±0.32	5.17±0.24	0.51
60	5.41±0.27	5.68±0.36	5.71±0.31	5.66±0.42	5.75±0.65	0.10
90	5.96±0.25	5.83±0.13	5.72±0.16	6.25±0.16	5.71±0.29	1.14
F	1.38	1.30	1.54	2.87	0.47	
1	5.39±0.35	5.79±0.34	4.99±0.47	5.52±0.42	5.49±0.48	0.48
30	6.41±0.58	6.04±0.98	5.79±1.10	5.73±1.21	5.95±1.15	0.07
60	6.87±0.33	7.03±0.25	7.15±0.22	7.25±0.30	6.98±0.31	0.27
90	5.49±0.30	5.39±0.35	5.76±0.27	6.28±0.54	5.64±0.16	1.00
F	3.13	1.54	2.08	1.17	1.23	
1	4.22±0.27	4.15±0.19	3.95±0.33	3.94±0.06	4.26±0.01	0.50
30	4.63±0.28	4.39±0.72	4.48±0.27	4.25±0.42	4.43±0.20	0.26
60	4.14±0.27	4.51±0.00	4.33±0.38	4.52±0.61	4.88±0.45	0.47
90	4.20±0.10	4.32±0.32	4.07±1.06	4.42±0.21	3.66±0.03	0.24
F	0.85	2.19	0.16	0.43	1.10	

Table 2. Microbiological analysis data determined from the Kashar cheese produced with different rates of rennet casein during the storage period (log cfu/g) (n=3)
nant microbial groups are lactobacilli and lactococci, were very important during kashar cheese ripening (Aydemir et al. 2015). Besides, lactobacilli, especially L. paracasei, dominates kashar cheese LAB microflora (Yuvaysen et al. 2018). According to the data obtained through microbiological count, yeast-mould counts were between $3.66-4.88 \text{ log} \text{ cfu}/g$. Also, yeast-mould counts were found less at the study of Çetinkaya and Atasever (2015) and Yangilar (2017), $1.56-4.06, 1.00-4.63 \text{ log} \text{ cfu}/g$, respectively. But, Sert et al. (2007) has announced $0-0.54 \text{ log} \text{ cfu}/g$. NSLAB is responsible for cheese ripening (Yuvaysen et al. 2018). The place where the cheese is made, and even the dairy plant, determines the cheese microflora. While the number of lactobacilli or yeast-mould reaches $4.35-7.84/1.09-3.81 \text{ log} \text{ cfu}/g$ in one dairy plant, this numbers are $2.36-3.43/1.30-5.06 \text{ log} \text{ cfu}/g$ in the other. Yeast-mould counts should be controlled for cheese quality (Jurado and Ruiz-Navarro 2018).

Valman et al. (2017) detected significant differences ($p<0.01$) among the cheeses with regard to flavor, no significant differences among the cheeses on account of texture and appearance ($p>0.05$). Sert et al. (2007) were observed no differences ($p>0.05$) in cheese flavor, significant differences ($p<0.01$) in point of appearance while Yaşar and Güzeler (2011) were observed significant ($p<0.01$) differences on account of flavor, texture and appearance ($p<0.05$). Besides, Tarakci and

Day	1	2	3	4	5	F
	4.48±0.18	4.33±0.23	4.38±0.16	4.52±0.11	4.48±0.18	0.944
30	4.29±0.16	4.33±0.13	3.95±0.18	4.38±0.13	4.24±0.18	0.423
60	4.33±0.17	4.33±0.17	4.24±0.21	4.38±0.15	4.43±0.13	0.995
90	4.19±0.16	4.10±0.27	4.6±0.13	4.33±0.17	4.29±0.23	0.401
F	0.502	0.817	0.027*	0.891	0.712	
1	4.38±0.19	4.52±0.19	4.5±0.13	4.48±0.18	4.52±0.16	0.918
30	4.33±0.16	3.86±0.20	4.29±0.14	4.33±0.13	4.10±0.14	0.245
60	4.14±0.22	4.33±0.13	4.10±0.18	4.24±0.19	4.33±0.16	0.900
90	4.14±0.17	4.05±0.16	4.38±0.16	4.29±0.14	4.24±0.19	0.564
F	0.655	0.027*	0.284	0.558	0.180	
1	4.29±0.20	4.33±0.17	4.24±0.17	4.29±0.16	4.24±0.21	0.985
30	4.24±0.12	4.14±0.10	4.24±0.17	4.33±0.16	4.14±0.17	0.775
60	4.10±0.18	4.14±0.16	4.19±0.21	4.29±0.14	4.33±0.13	0.876
90	4.33±0.17	4.05±0.18	4.43±0.13	4.24±0.14	4.29±0.16	0.557
F	0.629	0.564	0.868	0.947	0.887	
1	4.57±0.16	4.52±0.13	4.29±0.18	4.29±0.17	4.48±0.16	0.577
30	4.57±0.13	4.43±0.16	4.24±0.17	4.43±0.15	4.38±0.16	0.676
60	4.33±0.20	4.29±0.20	4.43±0.16	4.38±0.18	4.57±0.11	0.929
90	4.52±0.13	4.43±0.18	4.57±0.13	4.57±0.13	4.48±0.21	0.974
F	0.678	0.895	0.469	0.694	0.784	
1	4.29±0.18	4.19±0.16	4.24±0.18	4.19±0.15	4.48±0.15	0.638
30	4.43±0.15	4.33±0.16	3.95±0.18	4.19±0.19	4.29±0.18	0.361
60	4.29±0.16	3.95±0.22	4.19±0.18	4.14±0.16	4.52±0.13	0.286
90	4.24±0.14	4.00±0.24	4.48±0.15	4.43±0.13	4.29±0.21	0.552
F	0.774	0.672	0.166	0.597	0.849	
1	22.00±0.72	21.90±0.66	21.67±0.54	21.76±0.54	22.19±0.68	0.696
30	21.86±0.44	21.10±0.53	20.67±0.72	21.67±0.56	21.14±0.67	0.733
60	21.19±0.80	21.05±0.70	21.14±0.77	21.43±0.58	22.19±0.48	0.826
90	21.43±0.53	20.62±0.85	22.48±0.53	21.86±0.53	21.57±0.88	0.415
F	0.619	0.589	0.185	0.954	0.521	

Table 3. Sensory evaluation results determined from the kashar cheese produced with different rates of rennet casein during the storage period

*significant ($p<0.05$).

1:0.5% rennet casein, 2:1.0% rennet casein, 3:1.5% rennet casein, 4:2.0% rennet casein, 5:2.5% rennet casein.

a,b,c: values shown with different letters in the same line was different at the level of $p<0.05$.

XY: values shown with different letters in the same column was different at the level of $p<0.05$.
Kucukoner (2006) were experienced no differences (p>0.05) in the cheeses in terms of appearance, texture, flavor and acceptability. Temiz (2010) were observed no differences (p>0.05) in the cheeses in terms of appearance and flavor, too.

Conclusions

Due to the different rennet casein addition rates and the buffering capacity of the proteins, an important difference with regard to titration acidity and pH has been experienced (p<0.05) between cheese groups. Eventhough starter culture was not used in the manufacture of Kashar cheese and desired Kashar cheese was produced with 2.0% rennet casein. In the sensory evaluation, it was concluded that the panelists could not use negative evaluations on rennet casein and that rennet casein could be used in the production of Kashar cheese like cheese analogues production on account of its inclusion in the milk. New studies are needed to obtain better measure on the effect of very small quantities of rennet casein on the sensory quality of Kashar cheese.

Acknowledgements

This research was supported by Selcuk University Scientific Research Projects Coordination Unit (Project number: 10202028). This paper is summarized from the doctorate thesis titled “The Effects of Rennet Casein on Chemical, Microbiological and Sensory Properties of Kashar Cheese”. A part of this article is presented at “IHANAS-2016; International Human and Nature Sciences Problems and Solution Seeking Congress, October 7 – 9, 2016 Sarajevo”.

References

Anonymous 2000. Official methods of analysis of the association of official chemists, Acidity of milk AOAC official method 947.05, Chapter 33, 17th edition, USA.
Anonymous 2001. Food and drug administration, Bacteriological analytical manual.
Anonymous 2006. The turkish standards institute, TS-3272:2006, Kashar cheese standard.
Anonymous 2018. Turkish Statistical Institute. www.tuik.gov.tr, Access date; 15.01.2018.
Atasever M, Uçar G, Keleș A, Köse Z, 2003. The effects of natural smoked and liquid smoke applications on the quality factors of kashar cheese. Turk J Vet Anim Sci, 27, 781-787.
Aydemir O, Harth H, Weckx S, Dervişoğlu M, 2015. Microbial communities involved in kashar cheese ripening. Food Microbiol, 46, 587-595.
Badem A, Uçar G, 2016. Cheese analogues. Research & Reviews: Journal of Food and Dairy Technology, RRJFPDT, e-ISSN:2321-6204, 4(3), 44-48.
Badem A, Uçar G, 2017. Production of caseins and their uses. Int J of Food Sci and Nutr; ISSN: 2455-4898, 2(1), 4-9.
Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM, 2001. Recent advances in cheese microbiology. Int Dairy J, 11, 259-274.
Çetinkaya A, Atasever M, 2015. The effects of different salting and preservation techniques of kashar cheese on cheese quality. Turk J Vet Anim Sci, 39, 621-628.
Çetinkaya F, Soyutemiz GE, 2006. Microbiological and chemical changes throughout the manufacture and ripening of kashar: a traditional turkish cheese. Turk J Vet Anim Sci, 30, 397-404.
Fox PF, 2000. Milk: an overview, In: Milk proteins: from expression to food, Elsevier Ltd, London, England, p: 1-54.
Fox PF, Cogan TM, 2004. Factors that affect the quality of cheese, In: Cheese: chemistry, physics and microbiology, Elsevier Ltd, London, England, p: 583-608.
Guinee TP, Fox PF, 1993. Cheese: chemistry, physics and microbiology, general aspects, Chapman and Hall, London, England, p: 257-302.
Hayaloğlu AA, 2009. Volatile composition and proteolysis in traditionally produced mature kashar cheese. Int J Food Sci Technol, 44, 1388–1394.
Jacob M, Jaros D, Rohm H, 2010. Recent advances in milk clotting enzymes. Int J Dairy Technol, 63, 1-18.
Jana A, Padhiyar D, Chavan RS, 2017. Role of emulsifying salts in cheese products. In: Dairy engineering: advanced technologies and their applications. Apple Academic Press Inc, Waretown, USA, p: 54-73.
Jurado M, Ruiz-Navaarro P, 2018. Effects of fungal growth on the firmness of a cheese analogue formulated with different casein-to-fat ratios. LWT Food Sci Technol, 90, 145-151.
Kamber U, 2015. Traditional Turkey cheeses and their classification. Van Vet J, 26(3), 161-171.
Nizamkoğlu M, Gürbüz Ü, Doğruer Y, 1996. The effects of potassium sorbate on the chemical and microbiological quality in kashar cheese. J Vet Sci, 12, 23-29.
Sert D, Ayar A, Akin N, 2007. The effects of starter culture on chemical composition, microbiological and sensory characteristics of Turkish Kashar cheese during ripening. Int J Dairy Technol, 60, 245-252.
Stathopoulos CE, 2008. Dairy based ingredients, In: Gluten-free cereal products and beverages, Elsevier Ltd, London, England, p: 217-236.
Taraneci Z, Kucukoner E, 2006. Changes on physicochemical, lipolysis and proteolysis of vacuum-packed Turkish kashar cheese during ripening. Journal Central Europen Agriculture, 7(3), 459-464.
Tekinşen OC, 2000. Cheese technology, In: Dairy technology, Selcuk University Press, Konya, Turkey, p: 135, (in Turkish).
Temiz H, 2010. Effect of modified atmosphere packaging on characteristics of sliced kashar cheese. J Food Process Pres, 34, 926-943.
Tunçtürk Y, Ocak E, Zorba Ü, 2010. The effect of different homogenization pressures on chemical, biochemical, micro-
biological, and sensorial properties of kashar cheese. YYÜ J Agr Sci, 20, 88-99.
Upadhyay VK, McSweeney PLH, Magboul AAA, Fox PF, 2004. Proteolysis in cheese during ripening. In: Cheese: chemistry, physics and microbiology, general aspects, Elsevier Ltd, London, England, p; 391-433.
Üçüncü M, 2005. Milk and products technology. Ege University Faculty Of Engineering Department Of Food Engineering Pres, İzmir, Turkey, p; 185-358, (in Turkish).
Yalman M, Günsür O, Yüceer YK, 2017. Evaluation of some physical, chemical and sensory properties of kasar cheese and its processed and analogue types. Journal of Agricultural Sciences, 23, 63-75.
Yangilar F, 2017. Effects of natamycin edible films fortified with essential oils on the safety and quality parameters of kashar cheese. J Food Saf, 37, 1-11.
Yavaşen A, Macit E, Dertli E, 2018. Microbial species playing roles for the production of traditional kasar cheese during pre-maturation period. LWT Food Sci Technol, 91, 406–413.