Quantum private queries

Vittorio Giovannetti1, Seth Lloyd2, and Lorenzo Maccone3

1NEST-CNR-INT & Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy.
2MIT, RLE and Dept. of Mech. Engin. MIT 3-160, 77 Mass. Av., Cambridge, MA 02139, USA.
3QUIT, Dip. Fisica "A. Volta", Univ. Pavia, via Bassi 6, I-27100 Pavia, Italy.

We propose a cheat sensitive quantum protocol to perform a private search on a classical database which is efficient in terms of communication complexity. It allows a user to retrieve an item from the server in possession of the database without revealing which item she retrieved: if the server tries to obtain information on the query, the person querying the database can find it out. Furthermore, our protocol ensures perfect data privacy of the database, i.e. the information that the user can retrieve in a single query is bounded and does not depend on the size of the database. With respect to the known (quantum and classical) strategies for private information retrieval, our protocol displays an exponential reduction both in communication complexity and in running-time computational complexity.

Privacy is a major concern in many information transactions. A familiar example is provided by the transactions between web search engines and their users. On one hand, the user (say Alice) would typically prefer not to reveal to the server the item she is interested in (user privacy). On the other hand, the server (say Bob) would like not to disclose more information than that Alice has asked for (data privacy). User and data privacy are apparently in conflict: the most straightforward way to obtain user privacy is for Alice to have Bob send her the entire database, leading to no data privacy whatsoever. Conversely, techniques for guaranteeing the server’s data privacy typically leave the user vulnerable[1]. At the information theoretical level, this problem has been formalized by Gertner et al. as the Symmetrically-Private Information Retrieval (SPIR)[2]. This is a generalization of the Private Information Retrieval (PIR) problem[3] which deals with user privacy alone. SPIR is closely related to oblivious transfer[4], in which Bob sends to Alice \(N\) bits, out of which Alice can access exactly one—which one, Bob doesn’t know.) No efficient solutions in terms of communication complexity[1] are known for SPIR. Indeed, even rephrasing them at a quantum level[5, 6], the best known solution for the SPIR problem (with a single database server) employs \(O(N)\) qubits to be exchanged between the server and the user[7] and ensures data privacy only in the case of honest users (here \(N\) is the number of items contained in the database, while an honest user is defined as one who does not want to compromise her chances of getting the information about the selected item in order to get more). SPIR admits protocols that are more efficient in terms of communication complexity[5, 6]. As will be seen below, however, both PIR and SPIR necessarily require \(O(N)\) computational complexity on the part of the database.

In this paper we present a new quantum cryptographic primitive[5, 6], the quantum private query (QPQ), which allows an exponential reduction in the communication and computational complexity with respect to the best (quantum or classical) SPIR protocol proposed so far. QPQ ensures perfect data privacy and it exploits a cheat sensitive strategy[7] that allows Alice to determine whether Bob has been trying to cheat to obtain information about her query. In other words, Alice can ask Bob’s database a question and obtain the answer, together with a quantum certificate that Bob retains no record of what question she asked. With respect to (classical or quantum) SPIR and oblivious transfer protocols, QPQ presents an exponential reduction in communication complexity. This comes from the fact that information-theoretic SPIR protocols require the exchange of the whole database[2], \(O(N)\) qubits, while QPQ requires the exchange of only two database elements, identified by \(O(\log N)\) qubits. Quantum Private Queries also provides an exponential reduction in computational complexity over all classical PIR schemes, whether symmetric or not. In both cryptographic and information-theoretic PIR protocols, the owner(s) of the database(s) must perform \(O(N)\) ‘internal’ database calls in response to Alice’s query. That is, as part of the protocol, Bob must perform operations that access every entry in his database, using some cryptographic primitive such as a public key supplied by Alice. If the PIR protocol requires Bob to perform fewer than \(N\) internal database calls, then he obtains information about Alice’s query simply by monitoring which database entries were and were not called in the course of executing the protocol. That is, a classical PIR protocol necessarily has database computational complexity \(O(N)\) per query. In contrast, Quantum Private Queries require only two internal database calls per use, each using only \(O(\log N)\) time steps[8].

Quantum private queries achieve two competing goals: Bob can provide the service of private searching without having to give up his database, and Alice can test his honesty without having to trust him. The basic idea underlying the protocol is simple: Bob, as a sign of his discretion, returns not only the answer to Alice’s query, but the original query itself, retaining no copy. Alice, in addition to performing normal queries, can perform also quantum superpositions of different queries. This
means that in addition to being able to request the \(j\)th or the \(k\)th records in the database, she can also request both records in a quantum superposition. To find out whether Bob is trying to discover her queries, she just has to send proper superpositions of queries and check Bob’s answer to see whether the superposition has been preserved. In this case, she can be confident that Bob has retained no information about her query: any capture of information by Bob would have induced a disturbance. The user security rests on Bob’s impossibility of discovering the generic quantum state of Alice’s query. Two basic elements of quantum theory enforce this: the no-cloning theorem \([1]\) which forbids the discovery of the state starting from a single copy of it \([2]\), and the inability fully to characterize a composite system using only local operations. The database security of QPQ is ensured by the finite number of signals Bob is sending back to Alice. As we will see these can be as low as two. This automatically implies that in the QPQ a dishonest Alice will be able to recover at most two items from the database to be compared with the \(O(\log N)\) bits of information a dishonest user will be able to acquire in the quantum SPIR protocols \([8]\).

The rest of this paper is devoted to making the previous ideas rigorous and to providing the details of the protocols. We start by describing the quantum communication protocol that Alice and Bob must follow, and give a security analysis. We then conclude with a discussion on how Bob can interrogate his database preserving Alice’s superposed queries.

To submit her query on the \(j\)th record of Bob’s database, Alice uses an \(n\) qubit memory register \(Q\). It allows her to interrogate a database of up to \(N = 2^n\) elements. To test whether Bob is cheating and is trying to find out what her query is, she needs to submit a superposition of queries. So she prepares two copies of the register \(Q\), one is initialized as \(|j\rangle_Q\), the other as \((|j\rangle_Q + |0\rangle_Q)/\sqrt{2}\) (we suppose that the 0th record in Bob’s database contains a fixed reference value known to her). She then randomly chooses one of these two registers and sends it to Bob. He interrogates his database using it as an index register employing the qRAM algorithm described below [see Eq. (4)]. It returns a second register \(R\) which contains the answer to the query, and which may be entangled with the register \(Q\) if the latter was in the superposition state (without loss of generality we can assume \(R\) to be a single qubit). Bob sends back the \(Q\) and \(R\) registers to Alice. She then sends him her second \(Q\) register, which, again, is employed by Bob to interrogate his database and sent back to Alice together with a new \(R\) register containing the answer to her second query. It is important to stress that Bob never knows if the register he receives from Alice is the one containing the quantum superposition or the other one: this means he does not know which measurement could extract information on \(j\) without disturbing the register. The number of exchanged qubits is \(2(n+1) = 2(\log N + 1)\) (of these only 2 contain information on the database). We see that, in attempting to obtain information about Alice’s state, Bob must try to distinguish between two possible states that have overlap \(1/\sqrt{2}\). That is, Bob’s position is isomorphic to that of Eve in conventional quantum cryptography, and any attempt on his part to gain information must necessarily be detected by Alice: the tradeoff between the information that Bob can obtain and his probability of being detected by Alice are essentially the same as in quantum cryptography (see, e.g. \([13]\) as we now demonstrate.

After this double exchange with Bob, Alice is in possession of the two states \(|\psi_1\rangle = |j\rangle_Q |A_j\rangle_R\) and

\[
|\psi_2\rangle = \frac{1}{\sqrt{2}} (|j\rangle_Q |A_j\rangle_R + |0\rangle_Q |A_0\rangle_R) ,
\]

where \(A_m\) is the content of the \(m\)th record in the database (without loss of generality we can suppose that \(A_0 = 0\)). She can recover the value of \(A_j\) by measuring \(|\psi_1\rangle\). This value answers her query, and can be used to construct a measurement to test whether the second state is really of the form \(|\psi_2\rangle\) given in Eq. (1). We will show that if Bob is acquiring information on \(j\), he will be perturbing the superposition state \(|\psi_2\rangle\) and Alice has a nonzero probability of finding it out. The only assumption necessary (which may be dropped by complicating the protocol slightly) is that the value \(A_j\) is uniquely determined by \(j\), i.e. that there cannot be two different answers to one query.\[\]
The simple protocol described here can be easily modified to increase its performance. First of all, in place of the fixed superposition \((|j\rangle_Q + |0\rangle_Q)/\sqrt{2}\), we can allow Alice to employ any arbitrary superposition \(\alpha|j\rangle + \beta|0\rangle\) with complex amplitudes \(\alpha\) and \(\beta\) unknown to Bob. In this way Bob’s ability of masking his actions is greatly reduced. More generally, instead of creating a superposition with the reference query \(|0\rangle_Q\), she could superimpose two (or more) different queries. In this case, in addition to the query \(j\) which she is interested in, she randomly chooses another query (say the \(k\)-th). Now she prepares three \(n\)-qubits registers in the state \(|j\rangle, |k\rangle\), and \((|j\rangle + |k\rangle)/\sqrt{2}\). As in the case discussed previously, she sends the registers to Bob in random order and one-by-one (i.e. she waits for Bob’s reply before submitting the next). At the end of their exchange, if Bob has not cheated, Alice is in possession of three states: i.e. \(|j\rangle|A_j\rangle\), \(|k\rangle|A_k\rangle\), and \((|j\rangle|A_j\rangle + |k\rangle|A_k\rangle)/\sqrt{2}\). She starts by measuring the first two, in order to find out the values of \(A_j\) and \(A_k\): the former is the answer she was looking for, the latter will be used to prepare a measurement to test the third state to see whether the superposition has been retained. In this case she can conclude that Bob has not cheated. Notice that, in contrast to the classical strategies where she hides her query among randomly chosen ones, the security of the QPQ does not rest on the classical randomness of the queries. This is evident from the simplest version of the protocol, where the single query \(j\) is answered. However, this classical randomness is a useful resource also for QPQ, since Alice can increase the probability of catching a cheating Bob by choosing a high number of random queries in her superposition.

The user security of the protocol rests on two key features, namely, the fact that Alice is sending her queries in random order, and the fact that she is sending them one by one. The first feature prevents Bob from knowing which kind of query he is receiving at each time: if he knew when the superposed queries are arriving, he would just let them through without measuring them and measure the other queries, finding out \(j\) and evading detection. The second feature prevents Bob from employing joint measurements on the queries. In fact, if he was allowed joint measurements, he would find out the value of \(j\) since the subspaces spanned by the joint states of Alice’s queries are orthogonal for different choices of \(j\).

To discuss the user security of the protocol it is worth starting from a simple cheating strategy. Suppose for instance that Bob performs projective measurements on both of Alice’s queries. By doing so he will always recover the value of \(j\). Moreover with probability 1/2, one of his two measurement results will return 0 in correspondence to Alice’s superposed query. In this case, Bob’s attempt at cheating is successful, as he can correctly re-prepare both of Alice’s queries. However, with probability 1/2, Bob gets \(j\) from both measurements, and it will impossible for him to determine which was the order of Alice’s queries. In this case, no strategy of his has more than 1/2 probability of passing Alice’s test. In fact, this is the probability that a state of the form \((|j\rangle_Q|A_j\rangle_R + |0\rangle_Q|0\rangle_R)/\sqrt{2}\) passes the test of being of the form \((|0\rangle_Q|A_j\rangle_R + |j\rangle_Q|0\rangle_R)/\sqrt{2}\).

If Bob uses this cheating strategy, Alice can find it out with probability 1/4 (this number can be easily increased using the modified QPQ protocols discussed above).

What if Bob employs a more sophisticated cheating strategy? Bob is presented randomly with one among two possible scenarios (\(A\) or \(B\)) depending on which state Alice sends first. These scenarios refer to the following joint states of her query \(|S_A\rangle = (|j\rangle_Q|j\rangle_Q + |r\rangle_Q)/\sqrt{2}\) and \(|S_B\rangle = (|j\rangle_Q + |r\rangle_Q)|j\rangle_Q)/\sqrt{2}\), where \(Q_1\) and \(Q_2\) are her first and second query. The failure of the above cheating strategy stems from Bob’s impossibility to determine which scenario Alice is using. This is a common problem to all cheating strategies: it is related to the non-orthogonality of the states \(|S_A\rangle\) and \(|S_B\rangle\), and to the limit posed by the timing of the protocol (to gain access to \(Q_2\), Bob must first respond to \(Q_1\)). Working along these lines, one can show that Alice has a nonzero probability of discovering that Bob is cheating, whatever sophisticated methods he employs. More precisely, following a derivation which is similar to that performed in Ref. [4], it can be shown that his impossibility of performing joint measurements on \(Q_1\) and \(Q_2\) places a bound on the information Bob obtains on \(j\): Alice can enforce the privacy of her queries by requiring that Bob is never caught cheating. Here we just sketch the main idea of the security proof, providing the details elsewhere.

Any action by Bob in response to Alice’s two queries can be described in terms of two unitary transformations \(U_1\) and \(U_2\). The transformation \(U_1\) acts on the registers \(Q_1, R_1\) and on an ancillary system \(B\) which is under Bob’s control (it also includes his database). The transformation \(U_2\) acts on \(Q_2, R_2\) and \(B\). If Bob is not cheating, \(U_1\) and \(U_2\) are instances of the qRAM algorithm of Eq. (1) below: they coherently copy the information from the database to the \(R\) registers leaving the ancilla \(B\) in its initial state. If instead Bob is cheating, at the end of the communication the system \(B\) will be correlated with the rest. In this case Alice’s final state is the mixture

\[
\rho_T(j) \equiv \text{Tr}_B[U_2U_1|\Psi_T(j)\rangle\langle\Psi_T(j)|U_1^\dagger U_2^\dagger],
\]

where the label \(\ell = A, B\) refers to the scenario used by Alice to submit her query \(j\), and where \(|\Psi_T(j)\rangle \equiv |S_\ell\rangle_{Q_1, Q_2}|0\rangle_R\) is the corresponding input state \(|0\rangle_R\) being the initial state of the registers \(R_1, R_2\) and of the ancilla \(B\). The probability \(1 - P_T(j)\) that the state \(\rho_T(j)\) supplied by Bob will pass Alice’s test can be easily computed by considering its overlap with the states corresponding to the answer that a non-cheating Bob would provide. On Bob’s side, the information \(I_B\) that he retains on the query is stored in the final state of the ancilla \(B\), i.e.

\[
\sigma_T(j) \equiv \text{Tr}_{Q_1 Q_2 R_1 R_2}[U_2 U_1|\Psi_T(j)\rangle\langle\Psi_T(j)|U_1^\dagger U_2^\dagger].
\]
An information-disturbance trade-off [14] can be obtained by noticing that if \(1 - P_j(j) \simeq 1\), then \(\sigma_j(j)\) must be independent from \(j\). Specifically, requiring \(P_j(j) \leq \epsilon\) for all \(\ell\) and \(j\), one can show that \(1 - F(\sigma_j(j), \sigma_m(j)) \leq O(\epsilon^{1/4})\), where \(\sigma_m\) is a fixed state and \(F\) the fidelity [15]. Therefore, in the limit of \(P_j(j) \to 0\) (i.e. Bob passes the test with high probability), we see that the states he retains are independent from the label \(j\). This can also be transformed into an upper bound on the mutual information \(I_B\) evaluating the Holevo information [16] associated to the ensemble \(\{p_j, \sigma(j)\}\) where \(p_j = 1/N\) is the probability that Alice will send the \(j\)-th query, and where \(\sigma(j) = [\sigma_A(j) + \sigma_B(j)]/2\) is the final state of \(B\) (from his point of view), since Alice randomly chooses among the scenarios \(A\) and \(B\) with probability 1/2. By doing so it can be shown [7] that \(I_B \leq O(\epsilon^{1/4} \log_2 N)\).

In closing, we comment on the quantum random access memory (qRAM) algorithm [14] that Bob uses to interrogate his database while preserving coherence, as required by the QPQ protocol. The aim of the qRAM protocol is to read, in a memory array, a location specified by an index register \(Q\), and return the contents in a second register \(R\). The register \(Q\) may contain a quantum superposition of location addresses. The content of the \(n\)-qubit address-register \(Q\) is correlated by a unitary transformation \(U\) to the spatial position of a single qubit, which acts as a data bus. This means that the binary encoding in the quantum register is translated into a unary encoding on the location of the bus qubit, which is thus into one of \(2^n\) possible locations (or in more than one location in quantum superposition). Now the qubit locally interacts with the memory cell array, and the addressing procedure is reversed by running the binary-to-unary encoding \(U\) protocol backwards (an “uncomputation” performed by the unitary \(U^\dagger\)). This decorrelates the position of the bus qubit from the \(Q\) register (otherwise quantum coherence would be destroyed). Its internal state contains the value of the memory cell (cells) that was to be read. Essentially, the qRAM algorithm implements the transformation

\[
\sum_j \alpha_j |j\rangle_Q \rightarrow \sum_j \alpha_j |j\rangle_Q |A_j\rangle_R,
\]

where \(A_j\) is the content of the \(j\)th memory location, and \(\alpha_j\) are arbitrary amplitudes.

Conventional designs for quantum random access memory based on classical architectures [14] require \(O(2^n)\) quantum logic operations to perform a qRAM call. However, we have recently exhibited qRAM designs in which the number of quantum logic operations to perform a call can be reduced to \(O(n)\) [17]. Hence, constructing a qRAM for quantum private queries should be significantly easier than constructing a large-scale quantum computer.

V. G. acknowledges the support of Quantum Information Research program of the Centro di Ricerca Ennio De Giorgi of Scuola Normale Superiore. L. M. acknowledges support from MIUR through PRIN 2005 and from EU through the project SECOQC (IST-2003-506813).

[1] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, Journal of Computer Systems Sciences, 60 592 (2000).
[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, Journal of the ACM, 45, 965 (1998); E. Kushilevitz and R. Ostrovsky, in Proc. 38th IEEE Symposium on the Foundations of Computer Science (FOCS), 364 (1997); C. Cachin, S. Micali, and M. Stadler, in Advances in Cryptology - EUROCRYPT ’99 (1999); C. Gentry and Z. Ramzan, in Proc. 32nd ICALP, 803-815, (2005); S. Yekhanin, Technical Report ECCC TR06-127 (2006).
[3] S. Wiesner, ACM SIGACT News, 15(1), 78-88, Winter-Spring (1983); M.O. Rabin, ‘How To Exchange Secrets with Oblivious Transfer,’ Technical Report TR-81, Harvard Aiken Computational Laboratory (1981); A. Jakoby, M. Liskiewicz, A. Madry, arXiv: quant-ph/0605150v1.
[4] A. Ambainis, in Proceedings of the 24th ICALP, Lecture Notes in Computer Science, 1256 401 (1997).
[5] I. Kerenidis and R. de Wolf, arXiv: quant-ph/0208062.
[6] I. Kerenidis and R. de Wolf, arXiv: quant-ph/0307076.
[7] Slightly better performances can be obtained by assuming the existence of multiple non-mutually communicating replicas of the servers, see Refs. [3]. Moreover sub-linear communication complexity can be achieved under the some computational complexity assumption — see for instance E. Kushilevitz, R. Ostrovsky in Proceedings of Thirty-eighth Annual IEEE Symposium on the Foundations of Computer Science (FOCS-97).
[8] C. H. Bennett and G. Brassard, Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175-179.
[9] L. Hardy, A. Kent, Phys. Rev. Lett. 92, 157901 (2004).
[10] V. Giovannetti, S. Lloyd, and L. Maccone, arXiv:0708.1879 [quant-ph] (2007).
[11] W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).
[12] G. M. D’Ariano and H. P. Yuen, Phys. Rev. Lett. 76, 2832 (1996).
[13] M. Christandl and A. Winter, IEEE Trans. Info. Th. 51, 3159 (2005).
[14] M. A. Nielsen and I. L. Chuang Quantum Computation and Quantum Information (Cambridge Univ. Pr., Cambridge, 2000), pg. 586.
[15] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
[16] A. S. Holevo Probabilistic and statistical aspects of quantum theory (North Holland, Amsterdam, 1982).
[17] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Private Queries: security analysis, unpublished (2007).