Linear level repulsions near exceptional points of non-Hermitian systems

C. Wang1,\textcopyright and X. R. Wang2,3,\textcopyright \\
1Center for Joint Quantum Studies and Department of Physics, 2Physics Department, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 3HKUST Shenzhen Research Institute, Shenzhen 518057, China \\
(Dated: August 3, 2022)

The nearest-neighbor level-spacing distributions are a fundamental quantity of disordered systems and are classified into different universality classes. They are the Wigner-Dyson and the Poisson functions for extended and localized states in Hermitian systems, respectively. The distributions follow the Ginibre functions for the non-Hermitian systems whose eigenvalues are complex and away from exceptional points (EPs). However, the level-spacing distributions of disordered non-Hermitian systems near EPs are still unknown, and a corresponding random matrix theory is absent. Here, we show a new class of universal level-spacing distributions in the vicinity of EPs of non-Hermitian Hamiltonians. Two distribution functions, $P_{\text{symm}}(s)$ for the symmetry-preserved phase and $P_{\text{symm}}(s)$ for the symmetry-broken phase, are needed to describe the nearest-neighbor level-spacing distributions near EPs. Surprisingly, both $P_{\text{symm}}(s)$ and $P_{\text{symm}}(s)$ are proportional to s for small s, or linear level repulsions, in contrast to cubic level repulsions of the Ginibre ensembles. For disordered non-Hermitian tight-binding Hamiltonians, $P_{\text{symm}}(s)$ and $P_{\text{symm}}(s)$ can be well described by a surmise $P_{\text{symm}}(s) = \tilde{c}_1 s \exp[-\tilde{c}_2 s^2]$ in the thermodynamic limit (infinite systems) with a constant \tilde{a} that depends on the localization nature of states at EPs rather than the dimensionality of non-Hermitian systems and the order of EPs.

Symmetries are powerful concepts for classifying disordered quantum systems described by random Hermitian matrices. The nearest-neighbor level-spacing distribution of a disordered metal follows one of three well-known Wigner-Dyson distributions, called symmetry classes, according to time-reversal and spin-rotational symmetries \cite{1,3}. Later, Altland and Zirnbauer proved that the Wigner-Dyson classes, which are invariant by adding a constant potential, do not exhaust all possibilities \cite{4}. The Wigner-Dyson classes can be further subdivided into seven new groups according to chiral and particle-hole symmetries: three chiral ensembles with chiral symmetry and four Bogoliubov-de Gennes ensembles with particle-hole symmetry. In total, there are ten symmetry classes for Hermitian random matrices.

Each symmetry class has its specific energy-spectral statistics and features, which are independent of the details of Hamiltonians \cite{5}. Energy-spectral statistics have been studied in many fields of physics, including nuclear physics \cite{6}, condensed-matter physics \cite{7}, information theory \cite{8}, and many fundamental phenomena in quantum physics \cite{9}. One example is the Anderson localization transitions. The distribution $P(s)$ of level spacing s of two nearest-neighbor extended states is well described by the Wigner-Dyson functions of different symmetry classes \cite{10}. In contrast, $P(s)$ for localized states follows the Poisson distribution. Another example is that energy-spectral statistics can distinguish integrable quantum systems from chaotic ones: the Poisson distribution for quantum integrable systems \cite{11} and the Wigner-Dyson distributions for quantum chaotic systems \cite{12}.

Non-Hermiticity has a unique position in physics, especially in disordered \cite{13-15} and topological systems \cite{16,18}. Level spacing s between two complex eigenenergies is defined as the Euclidean distance in the complex-energy plane such that $P(s)$ is properly defined. A pioneering work by Grobe, Haake, and Sommers shows that $P(s)$ is the Poisson distribution in the complex-energy plane for an integrable system and are the so-called Ginibre distributions of corresponding symmetry classes \cite{19} for a fully chaotic system \cite{20}. The three Gaussian Ginibre (orthogonal, unitary, and symplectic) ensembles display a universally cubic level repulsion \cite{21}, $\lim_{s \to 0} P(s) \sim s^3$, while non-Ginibre distributions also appear in some symmetry classes with transpose symmetry \cite{22,23}.

Within Ginibre’s framework \cite{19}, the eigenstates of Hamiltonians are non-orthogonal, and their eigenvalues are generally complex. Nevertheless, a large class of non-Hermitian Hamiltonians possesses exceptional points (EPs) and exceptional lines that separate domains of real eigenenergies from that of complex ones if either parity-time symmetry (PT-symmetry) \cite{24} or pseudo-Hermiticity \cite{25} is presented. $P(s)$ near EPs, where right eigenstates are mutually orthogonal and their duals are the corresponding left eigenstates, may lead to different energy-spectral statistics than those of Gaussian Ginibre ensembles. However, no careful study of level statistics near EPs is available, and a rigorous extension of random matrix theory (RMT) for EPs is needed.

Our goal is to investigate $P(s)$ near EPs of non-Hermitian systems. We find that the Ginibre distributions are no longer applicable there. The nearest-neighbor level-spacing distributions of small random matrices with EPs, denoted as $P_{\text{ep}}(s)$, are different in the symmetry-preserved and symmetry-broken phases where eigenvalues are real and complex, respectively. Secondly and importantly, level repulsions are linear near EPs, instead of cubic in the Ginibre distributions, irrespective of symmetries of non-Hermitian matrices. Thirdly, in the thermodynamic limit, $P_{\text{ep}}(s)$ in both the symmetry-preserved and symmetry-broken phases agree with a surmise of $P_{\text{ep}}(s) = \tilde{c}_1 s \exp[-\tilde{c}_2 s^2]$ with $\tilde{c}_{1,2}$ being normalized constants and $\tilde{a} = 2$ and 3 if the state at the EP is extended and localized, respectively. Our surmise $P_{\text{ep}}(s)$ is applicable to a large family of disordered non-Hermitian systems with different orders of
Symmetry classes with EPs.—We first need to find symmetry classes with EPs. There are eight classes of non-Hermitian Hamiltonians according to four possible symmetry operators O satisfying $[H,O]_{c=±1} = HO - cOH = 0$, where O are K, Q, P, or C symmetry transformations in the Bernard-LeClair classification. The four allowed transformations are beyond unitary and unitary operators required by Hermitian Hamiltonian [26]. Out of the eight non-Hermitian classes, only three of them support real spectra where O is antilinear, see an analysis in Supplementary Information [27].

The first two classes are non-Hermitian Hamiltonians with K symmetry, defined by $[H,Θ_k]_{c=1} = 0$, where $Θ_k = U_kK$ consists of complex-conjugate operation K and unitary operator U_k. Eigenvalues $ε$ of such a H are either real R or appear in pairs $(ε,ε')$, and the critical points separating real and complex eigenvalues are EPs. $Θ_k^2 = ±I$ distinguish two K-symmetric class with EPs. Here, I is the unit matrix. The eigenstates of a K-symmetric system with $Θ_k^2 = -I$ must be double degenerated, see a proof in Supplementary Information [27].

The third class is Q-symmetric (also known as pseudo-Hermitian) Hamiltonians satisfying $[H,Θ_q]_{c=1} = 0$, where $Θ_q = U_qη$ is the product of a unitary operator U_q and Hermitian-conjugate operator $η$. $σ^1/σ^2 = I$ and $η = η^\dagger$ [25]. One should not confuse the Hermitian-conjugate operator $η$ with the complex-conjugate operation K. There is only one Q-symmetric class since $Θ_q^2 = I$, and Hermitian Hamiltonians belong to the trivial Q-symmetric class for $U_q = I$. The remaining five classes featured by P and C symmetries do not imply real spectra and are not considered in this work.

Small random matrices.—Let us first follow Wigner’s wisdom to analytically derive $P_{EP}(s)$ for small random matrices [11]. We concentrate on Gaussian ensembles whose probability functions are $P(H)dH ∝ \exp[-Tr[HH^\dagger]/σ^2]dH$ with $σ$ being a real positive number. Consider non-Hermitian Hamiltonians with K symmetry of $Θ_k^2 = I$ and for a specific choice of $Θ_k = σ^1K$, a 2 × 2 random matrix with the designed symmetry can be constructed as

$$H_{maj}^{K+} = aI + bσ_1 + cσ_2 + idσ_3,$$ (1)

where $σ_{1,2,3}$ are Pauli matrices and a, b, c, d are independent real random numbers with Gaussian distributions of zero means and variance $σ^2$. Eigenvalues of H_{maj}^{K+} are $ε_{1,2} = a ± \sqrt{b^2 + c^2 - d^2}$, which are real if $b^2 + c^2 ≥ d^2$ and appear in pair, $(ε, ε')$, if $b^2 + c^2 < d^2$. The domain with real eigenvalues is termed as the symmetry-preserved phase, and the others known as the symmetry-broken phase [28]. The two phases are separated by an EP at $b^2 + c^2 - d^2 = 0$.

Clearly, $ε_{1,2}$ are closest at the EP whose level-spacing distributions are $P_{EP}(s)$. Since the term inside the square root of $ε_{1,2}$ changes signs at the EP, $P_{EP}(s)$ should be determined by separately integrating over a, b, c, d in the symmetry-preserved and symmetry-broken phases because of different constraints. Let us consider the symmetry-preserved phase first and redefine $b = t\sin[φ], c = t\cos[φ], t = [0, ∞), φ ∈ [0, 2π]$. In the symmetry-preserved phase, $ε_1^2 = a ± \sqrt{t^2 - d^2}$ and $s^2 > d^2$. Conservation of probability requires

$$P(a, b, c, d)da db dc dφ = P(ε_1^+, t, φ)f(ε_1^+, t, φ) df(ε_1^+, t, φ) df(ε_1^+, t, φ),$$ (2)

where $f = (ε_1^+ - ε_2^-)/2\sqrt{4t^2 - (ε_1^+ - ε_2^-)^2}$ is the Jacobian. Then, we have

$$P(ε_1^+, t) = \int_0^{2π}dφ \int_0^{t}dtP(ε_1^+, t, φ)J = \frac{1}{Z}(ε_1^+ - ε_2^-)e^{-[ε_1^++(ε_1^--ε_2^-)^2]/σ^2}$$ (3)

with Z being the normalized constant to be determined. Then, we set $u = ε_1^+ + ε_2^-$ and $s = ε_1^+ - ε_2^-$ and obtain $P_{ep}^{K+}(s)$ by integrating over u and applying the normalization conditions

$$\int_{-∞}^{∞} P_{EP}^{K+}(s)ds = 1.$$ (4)

Through the same approach, we find $P_{EP}(s)$ for the symmetry-broken phase is [27]

$$P_{SP}^{K-}(s) = c_1sErfc[\sqrt{2c_2}s]exp[c_2s^2]$$ (5)

with $Erfc[x] = (2/\sqrt{π})\int_x^{∞} e^{-t^2}dt$ being the complementary error function $lim_{x→0} Erfc[x] = 1$ and $c_1 ≃ 2.54, c_2 ≃ 0.526$.

Equations (4) and (5) accord perfectly with numerical results obtained by directly diagonalizing Eq. (1), see Figs. 1(a) and (d), as well as those for different choices of $Θ_k$, see evidence in Supplementary Information [27]. From Eqs. (4) and (5), we find $P_{EP}(s)$ of the two phases exhibit linear level repulsions: $lim_{s→0} P_{SP/SP}^{K+}(s) ∼ s$. To the best of our knowledge, linear level repulsions of non-Hermitian random matrices

\[\text{FIG. 1. The nearest-neighbor level-spacing distributions of small random matrices in the symmetry-preserved (labelled as } P_{ep}(s) \text{) and symmetry-broken (labelled as } P_{sp}(s) \text{) phases for the K-symmetric classes of } Θ_k^2 = I \text{ (a,d) and } Θ_k^2 = -I \text{ (b,e) and the Q-symmetric class (c,f). Empty and filled circles are numerical data obtained by diagonalizing Eqs. (1), (6), (8) for } σ = 1 \text{ and } 10^6 \text{ random ensembles, and solid lines are Eqs. (5), (7), (9). For comparisons, } P(s) \text{ of the Ginibre unitary distributions of } 2 \times 2 \text{ matrices are also plotted (blue lines) [20].} \]
have never been reported before, and the well-known Ginibre distributions predict a cubic level repulsions, \(\lim_{s \to 0} P(s) \sim s^3\) [19, 21].

Cubic level repulsions are universal in the Ginibre distributions [21]. Naturally, the universality of the linear level repulsions should be tested. Recall that there are two additional classes supporting EPs. The first ones are K-symmetric systems of \(\mathbf{Q}_k = -I\), where a two-fold degeneracy is required to obtain EPs [27]. Hence, the minimal model is a \(4 \times 4\) matrix that can be constructed as

\[
H_{\text{small}}^{K^-} = aI + ib\Gamma^1 + c\Gamma^2 + id\Gamma^3 + ie\Gamma^4 + if\Gamma^5,
\]

where \(a, b, c, d, e, f\) are independent real random numbers with the same Gaussian distributions. The five anticommuted Gamma matrices are \(\Gamma^1, \Gamma^2, \Gamma^3 = (I \otimes \tau_3, I \otimes \tau_1, \sigma_1 \otimes \tau_2, \sigma_2 \otimes \tau_2, \sigma_2 \otimes \tau_2)\) with \(\tau_{1,2,3}\) being Pauli matrices. One can see that \(H_{\text{small}}^{K^-}\) preserves K symmetry since \([H_{\text{small}}^{K^-}, \Theta_k] = 0\) with \(\Theta_k = (i\sigma_2 \otimes \tau_1)\mathcal{K}\) and \(\mathcal{K}^2 = -I\). Eigenvalues of \(H_{\text{small}}^{K^-}\) are doubly degenerated: \(\epsilon_k^\pm = a \pm \sqrt{c^2 - b^2 - d^2 - e^2 - f^2}\).

The two degenerated eigenvalues \(\epsilon_k^\pm\) coalesce at an EP where \(c^2 = b^2 + d^2 + e^2 + f^2\). Analytically, we find \(P_{\text{ep}}(s)\) in the symmetry-preserved and symmetry-broken phases are

\[
P_{\text{SP}}^{K^-}(s) = c_3 \left(\frac{3s^2 - c_4s^4}{c_4} + \sqrt{3} s \text{Erfc}[\sqrt{3}c_4s](1 - 4c_4^2s^2)e^{c_4s^2} \right) / (\sqrt{2\pi}c_4^3),
\]

\[
P_{\text{SB}}^{K^-}(s) = c_5 s(1 + 4c_6s^2)e^{-c_6s^2},
\]

with \(c_3 = 1.35, c_4 = 0.600, c_5 \approx 0.616, c_6 \approx 1.54\), as well as linear level repulsions \(\lim_{s \to 0} P_{\text{SP(SB)}}^{K^-}(s) \sim s\). As shown in Figs. 1(b) and (e) and Supplemental Information [27]. Eq. 7 above agrees perfectly with numerical results and is valid for a different \(\Theta_k\).

The third symmetry class with EPs is the Q-symmetric class where \([H, \Theta_q] = 0\). For simplicity, we choose a specific symmetry operator \(\Theta_q = \sigma_3\eta\) such that the corresponding random matrix reads

\[
H_{\text{small}}^{Q} = aI + ic\sigma_1 + id\sigma_2 + b\sigma_3,
\]

where \(a, b, c, d\) are the same as those in \(H_{\text{small}}^{K^-}\). The eigenvalues are \(\epsilon_k^\pm = a \pm \sqrt{b^2 - c^2 - d^2}\). \(H_{\text{small}}^{Q}\) undergoes a transition from the symmetry-protected phase to the symmetry-broken phase at an EP \(b^2 - c^2 - d^2 = 0\), where \(P_{\text{ep}}(s)\) in the two phases are derived analytically [27]

\[
P_{\text{SP}}^{Q}(s) = c_7 s \text{Erfc}[\sqrt{3}c_8s]e^{c_8s^2}/(\sqrt{2\pi}c_8^3),
\]

\[
P_{\text{SB}}^{Q}(s) = \left(\pi/2\right)se^{-2s^2/4},
\]

with \(c_7 \approx 2.42, c_8 \approx 0.271\). Again, we have a linear level repulsion, \(\lim_{s \to 0} P_{\text{SP(SB)}}^{Q}(s) \sim s\), and Eq. 9 describes numerical data excellently as shown in Figs. 1(c) and (f).

Results of small random matrices are simple and meaningful. Although \(P_{\text{ep}}(s)\) bifurcate into the symmetry-protected and symmetry-broken phases and are quantitatively different for different symmetry classes, the level repulsions are always linear. It is widely believed that RMT-statistics lead to cubic level repulsions in non-Hermitian systems, and one would expect that RMT gives cubic level repulsions for all non-Hermitian random Hamiltonians [20]. However, Eqs. 4, 5, 7, and 9 indicate that cubic level repulsions are not true at least near EPs.

Large random matrices. While Wigner-Dyson distributions for small matrices (known as Wigner surmise) are good approximations for random \(N \times N\) matrices with \(N \gg 1\) [29], Ginibre distributions show significant \(N\)- dependences [5]. Hence, it is important to investigate \(P_{\text{ep}}(s)\) and whether linear level repulsions holds for large matrices near EPs. To calculate \(P_{\text{ep}}(s)\), one needs to accurately know EPs. This is easy for small random matrices because analytical expression of eigenvalues are available, but is highly non-trivial for large random matrices in general [29]. Thus, we consider three special Hamiltonians with K symmetry and with known EPs.

The first one is a tight-binding model in two-dimensional (2D) square lattices of size \(L \times L\) whose Hamiltonian in the momentum space and in the absence of disorders is

\[
h_{2D}(k) = v_0 l + a \sin k_1\sigma_2 - a \sin k_2\sigma_1 + ik_3\]

with \(v_0, \alpha, \kappa\) being real positive numbers. The effective \(k \cdot p\) Hamiltonian of Eq. (10) near \(k = 0\) reads \(v_0 l + a(p \times \sigma) \cdot \hat{z} + ik_3\). The second term describes a Rashba-like spin-orbit coupling with strength \(\alpha\) [31], the third term is an imaginary Zeeman term \(ik_3\) distinguishing lifetimes of two orbitals [32]. Possible physical realizations of Eq. (10) include a large family of ferromagnetic semiconductors such as MnGaAs and other III-V host materials [33].

Equation (10) preserves K symmetry with \(\Theta_k = \sigma_1\mathcal{K}\). The disorders are introduced through an on-site random potential \(V_{2D} = \sum_{i} c_i^2 v_i \sigma_2 c_i\), where \(c_i\) (\(c_i^\dagger\)) is particle creation (annihilation) operator at site \(i\) and \(v_i\) is an uncorrelated Gaussian distribution of zero mean and variance \(\sigma^2\) [27]. \(P_{\text{ep}}(s)\) is obtained by numerically solving \(H_{2D} + V_{2D}\), where \(H_{2D}\) is Hamiltonian Eq. (10) in real space whose expression is given in Supplementary Information [27]. Disorders break lattice-translational symmetry but preserve K symmetry. For \(\alpha > \kappa/\sqrt{2}, N = 2L^2\) eigenvalues of \(H_{2D}\) distribute in a cross region in the complex-energy plane with the EP at \(\epsilon = v_0 + 0i\), see Fig. 2(a). \(P_{\text{ep}}(s)\) curves are obtained from two nearest-neighbor eigenvalues to the EP for the many random configurations, where the conventional unfolding procedures are used [34].

For states in the symmetry-protected phase far from the EP, say \(\epsilon \in (\epsilon_0 - \Delta \epsilon, \epsilon_0 + \Delta \epsilon)\) with \(\epsilon_0 = 3.5\) and \(\Delta \epsilon \sim 10^{-2}\), \(P(s)\) in Fig. 2(b) is well described by the Wigner surmise of Gaussian unitary ensemble [Here, \(\lim_{s \to 0} P(s) \sim s^3\)] [40]. This is because non-Hermitian systems in the symmetry-protected phase behave like a Hermitian system without the time-reversal symmetry due to \(V_{2D}\). Near the EP, say \(\epsilon_0 = 3.99\), \(P(s) \sim P_{\text{SP}}(s)\) that deviates from the Wigner-Dyson distribution and shows a linear level repulsion in the limit of \(s \to 0\).
see Fig. 2(b). This also happens for $P_{\text{SB}}(s)$ in the symmetry-broken phase. Interestingly, for a small system size $L = 20$, $P_{\text{SB}}(s)$ is different from $P_{\text{SB}}(s)$, but they merge for a large system size of $L = 200$, see Figs. 2(c) and (d), respectively.

Our surmise of the nearest-neighbor level-spacing distributions near the EPs is

$$\tilde{P}_{\text{ep}}(s) = \tilde{c}_{1,2} s \exp[-\tilde{c}_{2,3} s^2].$$

(11)

Here, $\tilde{a} > 0$, and $\tilde{c}_{1,2}$ are normalized constants. The surmise has the linear level repulsion for small s and an exponential decay $\propto \exp[-\tilde{c}_{2,3} s^2]$ for large s. For $L = 200$, $\tilde{P}_{\text{ep}}(s)$ fits well to the numerically-calculated $P_{\text{SP}}(s)$ and $P_{\text{SB}}(s)$ of Hamiltonian Eq. (10) with $\tilde{a} = 2.99 \pm 0.02$ and $\tilde{\alpha} = 3.02 \pm 0.03$, respectively, see black lines in Figs. 2(b) and (d).

$P_{\text{SP}}(s)$ and $P_{\text{SB}}(s)$ for various system sizes L are numerically obtained. The goodness-of-fit Q of our data to Eq. (11) is $Q > 10^{-3}$ for $L > 10$ such that Eq. (11) is a satisfactory description of $P_{\text{ep}}(s)$ for $L > 10$. Figure 3(a) depicts the exponent \tilde{a} as a function of L. Similar to small random matrices $[L = 1]$, $P_{\text{SP}}(s)$ and $P_{\text{SB}}(s)$ for relatively small sizes [say $10 < L < 40$] are different as \tilde{a} in the symmetry-preserved phase is not equal to that in the symmetry-broken phase. With the increase of L, $P_{\text{SP}}(s)$ and $P_{\text{SB}}(s)$ merge and approach $\tilde{P}_{\text{ep}}(s)$ with $\tilde{a} = 3$.

To test whether the exponent $\tilde{a}_{L,\infty}$ is universal, we consider a one-dimensional (1D) tight-binding model of length L with K symmetry whose Hamiltonian is

$$h_{1D}(k) = v_0 I + \alpha \sin k_1 \sigma_2 + i k \sigma_3.$$

(12)

Equation (12) satisfies $[h_{1D}, \Theta_k] = 0$ with $\Theta_k = \sigma_1 k^0$. The Hamiltonian in real-space is H_{1D} given in the Supplementary Information. Random on-site potentials $V_{1D} = \sum c_i^0 v_i \sigma_2 c_i$ with v_i following the Gaussian distribution of the zero mean and variance σ^2 are used for studying the level statistics, see

FIG. 2. (a) Eigenvalues of the real-space Hamiltonian H_{1D} of Eq. (10) with disorders in the complex-energy plane for $L = 20$. (b) $P(s)$ of H_{1D} of $L = 200$ in two energy windows $[\epsilon_0 - 3 \Delta \epsilon, \epsilon_0 + 3 \Delta \epsilon]$ with $\epsilon_0 = 3.5$ (triangles) and 3.99 (circles) and $\Delta \epsilon \sim 10^{-3}$. The red line in (b) is the Wigner surmise for Gaussian unitary ensemble. The black lines in (b) and (d) are $\tilde{P}_{\text{ep}}(s) = \tilde{c}_1 s \exp[-\tilde{c}_2 s^2]$ with $\tilde{a} = 3$. (c), (d) $P_{\text{SP}}(s)$ and $P_{\text{SB}}(s)$ of H_{1D} for (c) $L = 20$ and (d) $L = 200$. Other model parameters are $v_0 = 4, \alpha = 0.2, \kappa = 0.1, \sigma = 0.1$. Each point in (b)-(d) is averaged over more than 10^4 ensembles.

Supplemental Information [27]. The model has an EP at $\epsilon = v_0 + i \theta$. From fitting $P_{\text{ep}}(s)$ to Eq. (11), $\tilde{a} = 2$, instead of $\tilde{a}_{L,\infty} = 3$ in 2D, is obtained for the symmetry-preserved and symmetry-broken phases as shown in Fig. 3(b). Interestingly, $\tilde{a} = 2$ equals to the Brody distribution in 2D for independently uniformly distributed random energy levels in the complex-energy plane [36, 37].

The reason for two $\tilde{a}_{L,\infty}$ in Fig. 3 is as follows: For Hermitian systems, $P(s)$ at an Anderson transition point universally decays as a stretched-exponential, $\propto \exp[-\tilde{c}_2 s^\tilde{\alpha}]$, for large s, and becomes a Gaussian ($\tilde{a} = 2$) or a Poisson ($\tilde{a} = 1$) that is the Brody distribution in 1D for the extended and localized states, respectively [50]. Based on this fact, we conjecture $P_{\text{ep}}(s)$ for localized EPs follows the Brody distribution in 2D since levels of localized states are uncorrelated. However, $P_{\text{ep}}(s)$ for levels near the extended EPs, which are correlated, has a faster decay rate at the tail, i.e., a larger exponent $\tilde{a}_{L,\infty} = 3$. We have partially confirm this argument by proving the following issues in Supplementary Information [27]: (i) EPs of Eq. (10) undergo an Anderson localization transition at $\sigma_c = 0.63 \pm 0.05 > \sigma = 0.1$ used in Fig. 3(a). (ii) EPs of Eq. (12) are localized by infinitesimal disorders.

FIG. 3. (a) \tilde{a} as a function of L for H_{1D} in the symmetry-preserved (the blue circles) and symmetry-broken (the red squares) phases. (b) \tilde{a} as a function of $\ln L$ for H_{1D}. Here, $v_0 = 4, \alpha = 0.2, \kappa = 0.1, \sigma = 0.1$. The black dashed lines in (a) and (b) locate $\tilde{a} = 3$ and 2, respectively.

FIG. 4. (a) Eigenvalues of H_{1D} of Hamiltonian Eq. (13) with disorders in the complex-energy plane for $\alpha = 0.2, \kappa = 0.1, \sigma = 0.1, L = 8$. (b) $P_{\text{SP}}(s)$ (the orange circles) and $P_{\text{SB}}(s)$ (the purple squares) of levels near the EP in (a). The solid lines are fitted by Eq. (11) with $\tilde{a} = 2.96 \pm 0.08$ and 2.6 ± 0.2 for $P_{\text{SP}}(s)$ and $P_{\text{SB}}(s)$, respectively. Insert: Zoom-in of the peaks of $P_{\text{SP}}(s)$ and $P_{\text{SB}}(s)$. (c) Same as (b) but for $L = 12$. The black solid line is Eq. (11) of $\tilde{a} = 3$. (d) \tilde{a} as a function of L for the symmetry-preserved and symmetry-broken phases. The black dashed line is $\tilde{a} = 3$. Each data is average over more than 10^4 ensembles.
Higher-order EPs.—EPs in Eqs. (10) and (12) are second-order. It is important to check whether level-spacing distributions near a higher-order EP exhibit also the linear level repulsion. For this purpose, we consider the following three-dimensional (3D) model of size $L \times L \times L$ whose clean Hamiltonian in the momentum space is

$$h_{3D}(k) = v_0 I + \alpha \sum_{\mu=1,2,3} \sin k_\mu \Gamma^\mu + i \kappa \Gamma^3. \quad (13)$$

$h_{3D}(k)$ has K symmetry since $[h_{3D}(k), \Theta_k]_{\sigma=1} = 0$ with $\Theta_k = i \sigma_2 \otimes \tau_3 K$. For $\kappa = 0$, $h_{3D}(k)$ is Hermitian and display a quadruple degeneracy, whereby two doubly degenerate bands touch the other two at high-symmetry points in the first Brillouin zone. For finite κ, the degeneracy points split into forth-order EPs at $\sigma^2(\sin^2 k_1 + \sin^2 k_2 + \sin^2 k_3) = \kappa^2$, see Supplementary Information \[27\]. The forth-order EPs form a closed exceptional sphere of radius κ/α in the Brillouin zone.

We study the real-space Hamiltonian H_{3D} of Eq. (13) with an additional random on-site potential $V_{3D} = \sum_i c_i^\dagger V_i c_i^\dagger$ where V_i is the Gaussian distribution of zero mean \[27\]. The disordered potential does not break K symmetry, and the EP is at $\epsilon = v_0 + i \alpha$ in the complex-energy plane, see Fig. [3]a.

Akin to those of the second-order EPs, $P_{3D}(s)$ and $P_{3D}(s)$ of the forth-order EPs of $L = 8$ can be fitted by Eq. (11) with $\tilde{\alpha} = 2.96 \pm 0.08$ and 2.6 ± 0.2, respectively, see Fig. [4]b. It is about $\tilde{\alpha} = 3$ for a larger size $L = 12$ as shown in Fig. [4]c. Furthermore, as shown in Fig. [4]d, $\tilde{\alpha}$ of $P_{3D}(s)$ and $P_{3D}(s)$ merge and approach to 3 in the thermodynamic limit, similar to the cases of h_{3D} shown in Fig. [3]a.

Generally speaking, states in 3D models are much more extended than those in 2D models. We have proven that the EPs of H_{3D} of the same disorder strength $\sigma = 0.1$ are extended. It is reasonable to assert that the EPs of H_{3D} are extended as well. Hence, Fig. [3]a and Fig. [4]d strongly indicate that the order of EPs and the dimensionality of non-Hermitian systems do not change $P_{3D}(s)$ where $\lim_{s \to 0} P_{3D}(s) \sim s$ and $\tilde{\alpha} = 3$, as long as the EPs are extended.

Discussions.—With the rapid advance in Hamiltonian engineering in optical \[33\], mechanical \[39\], electric \[40\] systems, to name a few, where EPs are realized by suitably controlling gain and loss, the reported linear level repulsion can be tested experimentally. Here, we suggest cavity-magnon-polaritons as feasible platforms for observing linear level repulsions at EPs, whose effective Hamiltonians are non-Hermitian due to the inevitable loss. The PT-symmetric systems with EPs have already been realized experimentally \[41\]–[44], and quasi-particles due to strong couplings between magnons and cavity photons were detected. Our prediction should be easily detectable in this well-developed system, see Supplementary Information \[27\].

Conclusion.—In summary, the nearest-neighbor level-spacing distributions near EPs display linear level repulsions for small random matrices. We generalize this finding by investigating 1D, 2D, and 3D disordered tight-binding Hamiltonians with either the second-order or the forth-order EPs and find that the profile Eq. (11) of $P_{3D}(s)$ describes our numerical data for large enough sizes well. One interesting open question is whether there exist other classes of EPs with non-linear level repulsions. Non-Hermitian systems have, in total, thirty-eight symmetry classes if multiple symmetries are considered, in which twenty-eight classes support EPs \[26\]. We speculate that all of them exhibit linear level repulsions, but a comprehensive study of all symmetry classes is needed before making a definite statement about the question.

This work is supported by the National Key Research and Development Program of China 2020YFA0309600, the National Natural Science Foundation of China (Grants No. 11704061 and No. 11974296), and Hong Kong RGC (Grants Nos. 16301518 16301619, and 16302321). C. W. acknowledges the kindly help from Dr. Weichao Yu concerning the experimental proposal for observing the linear level repulsion.

\[\text{\[1\]} M. V. Berry and M. Tabor, Level clustering in the regular spectrum of complex potentials, Proc. Roy. Soc. A 368, 197 (1979).
\[\text{\[2\]} E. P. Wigner, Group theory and its application to the quantum mechanics of atomic spectra (Academic Press, New York, 1959).
\[\text{\[3\]} O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and the level fluctuation statistics, Phys. Rev. Lett. 52, 1 (1984).
\[\text{\[4\]} C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys. 69, 731 (1997).
\[\text{\[5\]} N. Hatano and D. R. Nelson, Localization Transitions in Disordered Quantum Mechanics, Phys. Rev. Lett. 77, 570 (1996).]
[15] X. Luo, T. Ohtsuki, and R. Shindou, Universality Classes of the Anderson Transitions Driven by Non-Hermitian Disorder, Phys. Rev. Lett. 126, 090402 (2021).

[16] T. E. Lee, Anomalous Edge State in a Non-Hermitian Lattice, Phys. Rev. Lett. 116, 133903 (2016).

[17] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz, Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems, Phys. Rev. Lett. 121, 026808 (2018).

[18] S. Yao and Z. Wang, Edge States and Topological Invariants of Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).

[19] J. Ginibre, Statistical Ensembles of Complex, Quaternion, and Real Matrices, J. Math. Phys. 6, 440 (1965).

[20] R. Grobe, F. Haake, and H.-J. Sommers, Quantum Distinction of Regular and Chaotic Dissipative Motion, Phys. Rev. Lett. 61, 1899 (1988).

[21] R. Grobe and F. Haake, Universality of cubic-level repulsion for dissipative quantum chaos, Phys. Rev. Lett. 62, 2893 (1989).

[22] A. Mostafazadeh, Pseudo-Hermiticity versus PT Symmetry: The Necessary Condition for the Reality of the Spectrum of a Non-Hermitian Hamiltonian, J. Math. Phys. (N.Y.) 43, 205 (2002). Pseudo-Hermiticity versus PT Symmetry II: A Complete Characterization of Non-Hermitian Hamiltonians with a Real Spectrum, J. Math. Phys. (N.Y.) 43, 2814 (2002). Pseudo-Hermiticity versus PT Symmetry III: Equivalence of Pseudo-Hermiticity and the Presence of Antilinear Symmetries, J. Math. Phys. (N.Y.) 43, 3944 (2002).

[23] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Systems, Phys. Rev. Lett. 97, 186401 (2001); Observation of PT-Symmetry Breaking in Complex Optical Potentials, Phys. Rev. Lett. 103, 093902 (2009).

[24] D. Bernard and A. LeClair, A Classification of Non-Hermitian Random Matrices, in Statistical Field Theories, arXiv:cond-mat/0110649.

[25] See Supplementary Information at http://link.aps.org/supplemental.

[26] H. Yang, C. Wang, T. Yu, Y. Cao, and P. Yan, Antiferromagnetism Emerging in a Ferromagnet with Gain, Phys. Rev. Lett. 121, 197201 (2018).

[27] A. A. Mailybaev, Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters, arXiv:math-ph/0502010.

[28] C. Wang and X. R. Wang, Anderson transition of two-dimensional spinful electrons in the Gaussian unitary ensemble, Phys. Rev. B 96, 104204 (2017).

[29] E. Rashba, Properties of semiconductors with an extremum loop.1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop, Sov. Phys. Solid State 2, 1109 (1960).

[30] V. Kozi and L. Fu, Non-Hermitian Topological Theory of Finite-Lifetime Quasiparticles: Prediction of Bulk Fermi Arc due to Exceptional Point, arXiv:1708.05841.

[31] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).

[32] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Random-Matrix Theories in Quantum Physics: Common Concepts, Phys. Rep. 299, 189 (1998).

[33] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Systems, Phys. Rev. Lett. 80, 5243 (1998).

[34] W. Yu, J. Wang, H. Y. Yuan, and J. Xiao, Prediction of Attractors of Regular and Chaotic Dissipative Motion, Phys. Rev. Lett. 116, 026808 (2016).

[35] T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller, Random-Matrix Theories in Quantum Physics: Common Concepts, Phys. Rep. 299, 189 (1998).

[36] L. Sa, P. Ribeiro, and T. Prosen, Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos, Phys. Rev. X 10, 021019 (2020).

[37] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-Symmetry Breaking in Complex Optical Potentials, Phys. Rev. Lett. 103, 093902 (2009).

[38] C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel, Observation of PT Phase Transition in a Simple Mechanical System, Am. J. Phys. 81, 173 (2013).

[39] S. Assawaworrarit, X. Yu, and S. Fan, Robust Wireless Power Transfer Using a Nonlinear Parity-Time Symmetric Circuit, Nature (London) 546, 387 (2017).

[40] D. Zhang, X.-Q. Luo, Y.-P. Wang, T.-F. Li, and J. You, Observation of the exceptional point in cavity magnon-polaritons, Nat. Commun. 8, 1368 (2017).

[41] M. Harder, Y. Yang, B. M. Yao, C. H. Yu, J. W. Rao, Y. S. Gui, R. L. Stamps, and C.-M. Hu, Level Attraction Due to Dissipative Magnon-Photon Coupling, Phys. Rev. Lett. 121, 137203 (2018).

[42] W. Yu, J. Wang, H. Y. Yuan, and J. Xiao, Prediction of Attractive Level Crossing via a Dissipative Mode, Phys. Rev. Lett. 123, 227201 (2019).

[43] J. Dubail, T. Botzung, J. Schachenmayer, G. Pupillo, and D. Hagenmüller, Large random arrowhead matrices: Multifractality, semilocalization, and protected transport in disordered quantum spins coupled to a cavity, Phys. Rev. A 105, 023714 (2022).