Dexia Li, Enxia Wang, Xia Gao, Ping Li*

The correlation between methylenetetrahydrofolate reductase gene 677C > T polymorphism and fetal congenital defects: A meta-analysis

Abstract: Objective To investigate the correlation between the methylenetetrahydrofolate reductase (MTHFR) gene 677C>T polymorphism and fetal congenital defects.

Method Original studies relevant to the MTHFR gene 677C>T single nucleotide polymorphism and fetal congenital defects were systematically searched in the electronic databases of Medline, EMBSE and China National Knowledge Infrastructure (CNKI). All relevant publications were screened for inclusion in the present work. The correlation between the MTHFR gene 677C > T single nucleotide polymorphism and the occurrence of fetal congenital defects was expressed as an odds ratio (OR) and its 95% confidence interval (95% CI). Publication bias was assessed by Begg’s funnel plot and Egger’s line regression test.

Results Nineteen case-control studies were ultimately included in the present meta-analysis. The pooled results indicated that the general risk of fetal congenital defects was significantly elevated in subjects with the 677T allele of the MTHFR gene in dominant (OR=1.07, 95%CI:1.03-1.12, P<0.05), homozygous (OR=1.17, 95%CI:1.06-1.30, P<0.05) and recessive genetic models (OR=1.16, 95%CI:1.03-1.31, P<0.05) through the random effect method. However, significant publication bias was identified upon pooling the individual data and evaluating the correlation.

Conclusion According to the present evidence, the MTHFR gene 677C>T single nucleotide polymorphism is correlated with poor pregnancy outcomes, and subjects with the T allele have an increased risk of developing general fetal congenital defects.

Keywords: methylenetetrahydrofolate reductase; pregnancy outcomes; polymorphism; meta-analysis.

Introduction

The incidence of birth defects in China is about 5.6%, making them the main cause of perinatal and infant deaths [1]. More and more studies have shown that genetic and environmental factors are involved in the occurrence of birth defects [2]. Maternal genetic susceptibility also increases the incidence of both spontaneous abortion and birth defects [3, 4]. In recent years, attention has been paid to polymorphisms in genes closely related to folic acid metabolism, such as MTHFR and MTRR, and their relationship with fetal congenital malformations, spontaneous abortion and congenital cardiovascular diseases. This field has become a research hotspot in recent years.

The MTHFR 677C>T single nucleotide polymorphism is a common polymorphism. The 667 cytosine of MTHFR is replaced by thymine, which transforms the highly conserved alanine (Ala) into valine (Val). This change can affect the protein’s activity, resulting in abnormal methylation metabolism of Hcy, hyperhomocysteinemia and other diseases. Previous studies on the MTHFR 677C>T single nucleotide polymorphism and birth defects have been reported [5], but due to the small sample size and low statistical efficiency of each report, there are some contradictions in the results. Therefore, in this study, we used the meta-analysis method to analyze...
the aforementioned studies and further clarify the correlation between the \textit{MTHFR} 677C > T single nucleotide polymorphism and birth defects.

\textbf{Material and Methods}

\textbf{Study identification in the databases}

Original studies relevant to the \textit{MTHFR} gene 677C>T single nucleotide polymorphism and fetal congenital defects were systematically searched in the electronic databases of Medline, EMBSE and China National Knowledge Infrastructure (CNKI). Case-control or cohort studies relevant to the above topic and published in English or Chinese were systematically searched using the keywords “methylenetetrahydrofolate reductase,” “\textit{MTHFR},” “pregnancy,” “fetal congenital defects” and “polymorphism.” The references of the relevant publications were also reviewed in order to find additional potential studies related to this topic.

\textbf{Study inclusion and quality assessment}

Included studies should meet the following criteria: (1) The publication type is case-control or cohort study; (2) The study was published in Chinese or English; (3) The single nucleotide C and T distributions can be extracted from the original study; (4) Correct single nucleotide polymorphism detection methods were used. Study exclusion criteria were: (1) Other study design besides case-control or cohort; (2) Duplicated publication or data; (3) Single nucleotide C and T distributions were not provided or can't be calculated from the original studies.

The general methodological quality of the included studies was assessed using the Newcastle-Ottawa scale [6], which was used for quality assessment of observation studies by two reviewers (DX Li and EX Wang) independently.

\textbf{Statistical analysis}

Stata/SE 11.0 statistical software was applied for analysis of the data. The correlation between the \textit{MTHFR} gene 677C>T polymorphism and fetal congenital defects was expressed as an odds ratio (OR) and its 95% confidence interval (95%CI). Statistical heterogeneity across the included nineteen publications was evaluated by the I² test. Publication bias was assessed through Begg’s funnel plot and Egger’s line regression test.

\textbf{Results}

\textbf{General characteristics of the 19 publications}

After systematically searching the relevant databases, 19 publications [7-25] related to the correlation between the \textit{MTHFR} 677C>T gene polymorphism and fetal congenital defects were included in the present work, Figure 1. Of the included studies, ten publications studied Caucasian subjects, seven studied East Asian subjects and two studied mixed populations. The data was published over a time range of 13 years (from 2004 to 2016). The primary fetal congenital defects studied were neural tube deformity, Down’s syndrome, unexplained recurrent spontaneous abortion and congenital heart disease. The methodological quality scores and general characteristics of these 19 publications are shown in Table 1.

\textbf{Dominant genetic model (TT+CT vs CC)}

Significant statistical heterogeneity was found to exist across the 19 publications for the dominant genetic model (I²=60.5%, P<0.05). The individual correlations between the \textit{MTHFR} 677C>T gene polymorphism and general fetal congenital defects were pooled through the random effect model. The pooled results indicated that subjects with a TT or CT genotype had an increased risk of developing fetal congenital defects (OR=1.07, 95%CI:1.03-1.12, P<0.05), Figure 2.

\textbf{Homozygous genetic model (TT vs CC)}

In the homozygous genetic model, the data was pooled by the random effect model for statistical heterogeneity (I²=40.3%, P<0.05). The pooled data indicated that the general risk of fetal congenital defects was significantly elevated in subjects with a TT genotype in a homozygous genetic model (OR=1.17, 95%CI:1.06-1.30, P<0.05), Figure 3.

\textbf{Recessive genetic model (TT vs CT+CC)}

For a recessive genetic model (TT vs CT+CC), the pooled results also showed subjects with the TT genotype had
The correlation between methylenetetrahydrofolate reductase gene 677C > T polymorphism ... 11

Figure 1: Flow chart of the studies screening in the databases.

Study ID	RR (95% CI)	% Weight
Neural tube deformity	1.02 (0.83, 1.26)	3.83
Erdogan (2010)	1.29 (0.97, 1.72)	1.20
Harisha (2010)	1.81 (0.92, 3.56)	0.52
Pei (2011)	1.18 (0.66, 2.11)	0.86
Deb (2011)	0.85 (0.60, 1.21)	2.77
Godbole (2011)	0.92 (0.72, 1.18)	5.72
Liu (2014)	1.06 (1.00, 1.12)	25.75
Aydin (2015)	0.88 (0.60, 1.31)	1.29
Subtotal (I-squared = 16.1%, p = 0.030)	1.03 (0.97, 1.10)	41.95
Down's syndrome		
Wang (2012)	1.35 (1.04, 1.75)	2.53
Boas (2015)	1.78 (1.30, 2.43)	2.30
Subtotal (I-squared = 45.4%, p = 0.176)	1.55 (1.27, 1.91)	4.83
Anencephalus		
Lacasana (2012)	1.14 (1.00, 1.30)	4.19
Subtotal (I-squared = .%, p = .)	1.14 (1.00, 1.30)	4.19
URSA		
Cao (2014)	0.95 (0.78, 1.15)	4.25
Boas (2014)	0.95 (0.66, 1.37)	2.25
Yousefian (2014)	1.16 (0.91, 1.47)	3.85
Hubacek (2014)	0.97 (0.89, 1.06)	25.39
Boas (2015)	1.22 (1.01, 1.48)	4.10
Subtotal (I-squared = 38.6%, p = 0.164)	1.01 (0.84, 1.06)	39.84
premature delivery		
Tiwari (2014)	2.36 (1.53, 3.63)	1.42
Subtotal (I-squared = .%, p = .)	2.36 (1.53, 3.63)	1.42
Congenital heart disease		
Jiang (2015)	1.05 (0.84, 1.31)	3.36
Subtotal (I-squared = .%, p = .)	1.05 (0.84, 1.31)	3.36
Congenital defect		
Boas (2016)	0.96 (0.77, 1.19)	4.42
Subtotal (I-squared = .%, p = .)	0.96 (0.77, 1.19)	4.42
Overall (I-squared = 60.5%, p = 0.000)	1.07 (1.03, 1.12)	100.00

Figure 2: Forest plot of the methylenetetrahydrofolate reductase gene 677C > T polymorphism and fetal congenital defects in a dominant gene model.
Table 1: General information on the included studies for evaluating the correlation between the methylenetetrahydrofolate reductase 677C>T gene polymorphism and fetal congenital defects.

Trials	Year	Country	Ethnicity	Control	Case	Methods	HWE	pregnancy outcomes	NOS score	
Relton	2004	UK	Caucasian	66	88	15 31 36 15	RFLP	Yes	Neural tube deformity	6
Harisha	2010	India	Caucasian	87	14	1 33 10 2	RFLP	NA	Neural tube deformity	5
Erdogan	2010	Turkey	Caucasian	18	21	9 5 14 7	HRM	NA	Neural tube deformity	6
Deb	2011	India	Caucasian	149	64	9 80 25 6	RFLP	Yes	Neural tube deformity	4
Godbole	2011	India	Caucasian	521	158	5 238 62 5	mass spectrographic analysis	Yes	Neural tube deformity	5
Pei	2011	China	East Asia	42	11	4 40 3 15	RFLP	NA	Neural tube deformity	3
Lacasana	2012	Mexico	Mixed	20	49	22 11 45 42	RFLP	Yes	Anencephaly	6
Wang	2012	China	East Asia	66	44	10 33 43 8	Sequencing	Yes	Down’s syndrome	4
Tiwari	2014	India	Caucasian	170	20	4 148 49 12	RFLP	Yes	Premature delivery	4
Cao	2014	China	East Asia	53	83	30 29 43 10	mass spectrographic analysis	Yes	URSA	5
Boas	2014	Brazil	Mixed	97	47	6 59 26 4	RFLP	Yes	URSA	5
Liu	2014	China	East Asia	120	281	171 95 290 188	mass spectrographic analysis	Yes	Neural tube deformity	4
Yousefian	2014	Iran	Caucasian	63	43	10 96 90 18	Taqman	NA	URSA	6
Hubacek	2014	Czech Republic	Caucasian	1068	1116	302 208 214 42	Real-time PCR	Yes	URSA	6
Jiang	2015	China	East Asian	41	48	11 38 46 16	RFLP	Yes	Congenital heart disease	5
Luo	2015	China	East Asia	60	65	10 40 70 15	RFLP	Yes	URSA	5
Aydin	2015	Turkey	Caucasian	15	21	3 16 16 3	Real-time PCR	Yes	Neural tube deformity	4
Sukla	2015	India	Caucasian	141	42	3 86 59 6	RFLP	Yes	Down’s syndrome	6
Xiao	2016	China	East Asia	67	66	17 62 50 20	Real-time PCR	Yes	Congenital defect	5

RFLP: Restriction Fragment Length Polymorphism
HRM: High-Resolution Melting
URSA: Unexplained Recurrent Spontaneous Abortion
The correlation between methylenetetrahydrofolate reductase gene 677C > T polymorphism and fetal congenital defects was investigated. An increased risk of developing general fetal congenital defects (OR=1.16, 95%CI:1.03-1.31, P<0.05) in a random effect model (I²=39.9%), Figure 3. Subgroup analysis was performed to explore different fetal congenital defects and subject ethnicities. The correlations between the methylenetetrahydrofolate reductase 677C>T gene polymorphism and different fetal congenital defects or different ethnicities are shown in Table 2. In different genetic models, the correlations between the methylenetetrahydrofolate reductase 677C>T gene polymorphism and fetal congenital defects were quite different. However, the MTHFR 677C>T gene polymorphism was significantly correlated with anencephaly in various genetic models.

Publication bias evaluation was evaluated by Begg’s funnel plot and Egger’s line regression test. The funnel plot was asymmetric at its bottom, indicating potential publication bias in all genetic models (Figure 5). The Egger’s line regression test indicated significant publication bias in the homologous and recessive genetic models, but not in the dominant genetic model, Table 3.
Discussion

The methylenetetrahydrofolate reductase protein primarily reduces 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate in the folic acid metabolic pathway, thus participating in purine synthesis, pyrimidine synthesis and DNA synthesis in vivo as an indirect donor of methyl groups [26]. The normal function of the MTHFR protein is to maintain the efficacy of the folate methionine cycle and ensure the normal progress of DNA synthesis and methylation. If the MTHFR gene is mutated, this can lead to the disruption of many basic biochemical processes in the body, as well as hyperhomocysteinemia [27, 28]. The 677C > T polymorphism in the MTHFR gene causes alanine to be replaced by valine, leading to a decrease in the heat resistance and activity of the enzyme.

It has been reported that MTHFR gene mutations can induce elevated blood Hcy levels, leading to many adverse pregnancy outcomes, such as neural tube defects, congenital heart disease, premature delivery, pregnancy complications, recurrent abortion and Parkinson’s disease [29]. To this end, some studies have shown that the MTHFR single nucleotide polymorphism can affect serum Hcy levels and is associated with adverse pregnancy outcomes [30]. However, other studies have shown that subjects with the T genotype have an increased risk of developing fetal congenital defects, such as neural tube deformity and congenital heart disease.
In our present meta-analysis, we included 19 case-control studies and pooled the results for dominant, recessive and homozygous genetic models. The pooled data indicated a significant correlation between the MTHFR 677C > T gene polymorphism and fetal congenital defects. Subjects with the T genotype in dominant (OR=1.07, 95%CI:1.03-1.10, P<0.05), homozygous (OR=1.25, 95%CI:1.10-1.42, P<0.05) and recessive genetic models (OR=1.40, 95%CI:1.07-1.73, P<0.05) had significantly increased risks of developing fetal congenital defects or experiencing poor pregnancy outcomes. For further investigation, we performed subgroup analysis according to the fetal congenital defects. For different genetic models, the correlation between the methylenetetrahydrofolate reductase 677C>T gene polymorphism and fetal congenital defects was quite different. In a recessive genetic model, the MTHFR 677C>T gene polymorphism was correlated with neural tube deformity and anencephaly. In a dominant genetic model, the MTHFR 677C>T gene
polymorphism was correlated with Down’s syndrome and anencephaly. Finally, for the homozygous genetic model, the MTHFR 677C>T gene polymorphism was correlated with neural tube defects, anencephaly and premature birth. Therefore, under different genetic models, the MTHFR 677C>T polymorphism may affect different fetal congenital defects, which had not been evaluated in previous publications. However, the MTHFR 677C>T gene polymorphism was significantly correlated with anencephaly in all genetic models. This indicates that the MTHFR 677C>T gene polymorphism may be an important factor in the development of anencephaly.

Fetal congenital defects or poor pregnancy outcomes represent a group of complex diseases, which are affected by multiple susceptibility genes and many environmental factors. Because of this, only assessing the effect of one single nucleotide polymorphism in one gene may be not enough to completely explain the disease etiology. Therefore, high-throughput analysis of folate acid metabolism-related genes and their correlations with fetal congenital defects or poor pregnancy outcomes is necessary.

The present work also had limitations: (1) Heterogeneity across the included studies was significant, which may decrease statistical power; (2) Only open studies published in English or Chinese were included in the work. Therefore, other suitable studies may have been omitted; (3) The general methodological quality of the included studies was moderate. Therefore, more high-quality relevant studies will be needed to further validate our findings.

Conflict of interest: Authors states no conflict of interest

References

1. Yi L, Liu Z, Deng C, Li X, Wang K, Deng K, Mu Y, Zhu J, Li Q, Wang Y, Dai L. Epidemiological characteristics of holoprosencephaly in China, 2007-2014: A retrospective study based on the national birth defects surveillance system. PLoS One 2019;14:e0217835.

2. Qu P, Li S, Liu D, Lei F, Zeng L, Wang D, Yan H, Shi W, Shi J, Dang S. A propensity-matched study of the association between optimal folate acid supplementation and birth defects in Shaanxi province, Northwestern China. Sci Rep 2019;9:5271.

3. Wang L, Xiang X, Mi B, Song H, Dong M, Zhang S, Bi Y, Zhao Y, Li Q, Zhang Q, Zhang L, Yan H, Wang D, Dang S. Association between early prenatal exposure to ambient air pollution and birth defects: evidence from newborns in Xi'an, China. J Public Health (Oxf) 2018.

4. Naim A, Al DH, El BM, Salem E, Al MK, Al SR, Minutolo R, Manduca P. Birth defects in Gaza: prevalence, types, familiarity and correlation with environmental factors. Int J Environ Res Public Health 2012;9:1732-47.

5. Brouns R, Ursem N, Lindemans J, Hop W, Pluijm S, Steegers E, Steegers-Theunissen R. Polymorphisms in genes related to folate and cobalamin metabolism and the associations with complex birth defects. Prenat Diagn 2008;28:485-93.

6. Cook DA, Reed DA. Appraising the quality of medical education research methods: the Medical Education Research Study Quality Instrument and the Newcastle-Ottawa Scale-Education. Acad Med 2015;90:1067-76.

7. Mengge Xiao XM, Lingling Hu HD, Yanling Zhao HW. Correlation analysis about folate metabolism-related genes of pregnant women with fetal congenital defects. Journal of Chinese Physician 2016:1021-1024.

8. Aydin H, Arisoy R, Karaman A, Erdoğdu E, Çetinkaya A, B GB, Şimşek H, Demirci O. Evaluation of maternal serum folate, vitamin B12, and homocysteine levels and factor V Leiden, factor II g.20210G>A, and MTHFR variations in prenatally diagnosed neural tube defects. Turk J Med Sci 2016;46:489-94.

9. Youfang Jiang JM, Wen Zhang XQ, Chunling Liu HY. Correlation between offspring congenital heart disease and MTHFR 677C/T polymorphism and general status of pregnant women. Chinese Journal of Epidemiology 2015:1072-1076.

10. Sukla KK, Jaiswal SK, Rai AK, Mishra OP, Gupta V, Kumar A, Raman R. Role of folate-homocysteine pathway gene polymorphisms and nutritional cofactors in Down syndrome: A triad study. Hum Reprod 2015;30:1982-93.

11. Luo L, Chen Y, Wang L, Zhuo G, Qiu C, Tu Q, Mei J, Zhang W, Qian X, Wang X. Polymorphisms of Genes Involved in the Folate Metabolic Pathway Impact the Occurrence of Unexplained Recurrent Pregnancy Loss. Reprod Sci 2015;22:845-51.

12. Boas WV, Goncalves RO, Costa OL, Goncalves MS. Metabolism and gene polymorphisms of the folate pathway in Brazilian women with history of recurrent abortion. Rev Bras Ginecol Obstet 2015;37:71-6.

13. Tiwari D, Bose PD, Das S, Das CR, Datta R, Bose S. MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study. Meta Gene 2015;3:31-42.

14. Hubacek JA, Rynecko J, Kasparova D, Adamkova V, Holmes MV, Fait T. Association of MTHFR genetic variants C677T and A1298C on predisposition to spontaneous abortion in Slavonic population. Clin Chim Acta 2015;440:104-7.

15. Cao Y, Zhang Z, Zheng Y, Yuan W, Wang J, Liang H, Chen J, Du J, Shen Y. The association of idiopathic recurrent early pregnancy loss with polymorphisms in folic acid metabolism-related genes. Genes Nutr 2014;9:402.

16. Yousefian E, Kardi MT, Allahveisi A. Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphism in Iranian Women With Idiopathic Recurrent Pregnancy Losses. Iran Red Crescent Med J 2014;16:e16763.

17. Liu J, Qi J, Yu X, Zhu J, Zhang L, Ning Q, Luo X. Investigations of single nucleotide polymorphisms in folate pathway genes in Chinese families with neural tube defects. J Neurol Sci 2014;337:61-6.
18. Wang XD, Gong J, Wu Y, Cao SY, Yang SY, Li MR, Cai XH. Genetic polymorphisms involved in folate metabolism as maternal risk factors for Down syndrome. Chinese Journal of Birth Health & Heredity 2012:35-37.

19. Lacasaña M, Blanco-Muñoz J, Borja-Aburto VH, Aguilar-Garduño C, Rodríguez-Barranco M, Sierra-Ramírez JA, Galaviz-Hernandez C, Gonzalez-Alzaga B, García-Cavazos R. Effect on risk of anencephaly of gene-nutrient interactions between methylenetetrahydrofolate reductase C677T polymorphism and maternal folate, vitamin B12 and homocysteine profile. Public Health Nutr 2012;15:1419-28.

20. Pei LH. The relationship between polymorphism of homocysteine and its metabolic enzymes gene and the occurrence of neural tube malformation. The relationship between polymorphism of homocysteine and its metabolic enzymes gene and the occurrence of neural tube malformation. Central South University, 2011:9-39.

21. Godbole K, Gayathri P, Ghule S, Sasirekha BV, Kanitkar-Damle A, Memane N, Suress S, Sheth J, Chandak GR, Yajnik CS. Maternal one-carbon metabolism, MTHFR and TCN2 genotypes and neural tube defects in India. Birth Defects Res A Clin Mol Teratol 2011;91:848-56.

22. Deb R, Arora J, Meitei SY, Gupta S, Verma V, Saraswathy KN, Saran S, Kalla AK. Folate supplementation, MTHFR gene polymorphism and neural tube defects: a community based case control study in North India. Metab Brain Dis 2011;26:241-6.

23. Harisha PN, Devi BI, Christopher R, Kruthika-Vinod TP. Impact of 5,10-methylenetetrahydrofolate reductase gene polymorphism on neural tube defects. J Neurosurg Pediatr 2010;6:364-7.

24. Erdogan MO, Yildiz SH, Solak M, Eser O, Cosar E, Eser B, Koken R, Buyukbas S. C677T polymorphism of the methylenetetrahydrofolate reductase gene does not affect folic acid, vitamin B12, and homocysteine serum levels in Turkish children with neural tube defects. Genet Mol Res 2010;9:1197-203.

25. Relton CL, Wilding CS, Laffling AJ, Jonas PA, Burgess T, Binks K, Tawn EJ, Burn J. Low erythrocyte folate status and polymorphic variation in folate-related genes are associated with risk of neural tube defect pregnancy. Mol Genet Metab 2004;81:273-81.

26. Murto T, Kallak TK, Hoas A, Altmäe S, Salumets A, Nilsson TK, Skoog SA, Wänggren K, Yngve A, Stavreus-Evers A. Folic acid supplementation and methylenetetrahydrofolate reductase (MTHFR) gene variations in relation to in vitro fertilization pregnancy outcome. Acta Obstet Gynecol Scand 2015;94:65-71.

27. Ghaznavi H, Soheili Z, Samiei S, Soltanpour MS. Association of Methylenetetrahydrofolate Reductase C677T Polymorphism with Hyperhomocysteinemia and Deep Vein Thrombosis in the Iranian Population. Vasc Specialist Int 2015;31:109-14.

28. Luo H, Liu B, Hu J, Wang X, Zhan S, Kong W. Hyperhomocysteinemia and methylenetetrahydrofolate reductase polymorphism in cervical artery dissection: a meta-analysis. Cerebrovasc Dis 2014;37:313-22.

29. Frederiksen J, Juul K, Grande P, Jensen GB, Schroeder TV, Tybjaerg-Hansen A, Nordestgaard BG. Methyleneetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood 2004;104:3046-51.

30. Nurk E, Tell GS, Refsum H, Ueland PM, Vollset SE. Associations between maternal methylenetetrahydrofolate reductase polymorphisms and adverse outcomes of pregnancy: the Hordaland Homocysteine Study. Am J Med 2004;117:26-31.