Group-Based Exercise in CKD Stage 3b to 4: A Randomized Clinical Trial

Jason Cobb, Emory University
Felipe Lobelo, Emory University
S Anand, Stanford University School of Medicine
SL Ziolkowski, Stanford University School of Medicine
A Bootwala, Rollins School of Public Health
J Li, Rollins School of Public Health
N Pham, Santa Clara Valley Medical Center

Journal Title: Kidney Medicine
Volume: Volume 3, Number 6
Publisher: (publisher) | 2021-11-01, Pages 951-961.e1
Type of Work: Article
Publisher DOI: 10.1016/j.xkme.2021.04.022
Permanent URL: https://pid.emory.edu/ark:/25593/vtwvn

Final published version: http://dx.doi.org/10.1016/j.xkme.2021.04.022
Accessed November 13, 2022 2:36 PM EST
Group-Based Exercise in CKD Stage 3b to 4: A Randomized Clinical Trial

Shuchi Anand,* Susan L. Ziolkowski,* Ahad Bootwala, Jianheng Li, Nhat Pham, Jason Cobb, and Felipe Lobelo

Rationale & Objective: We aimed to test interventions to improve physical activity in persons with advanced chronic kidney disease not yet receiving dialysis.

Study Design: Randomized controlled trial with parallel-group design.

Setting & Participants: We embedded a pragmatic referral to exercise programming in high-volume kidney clinics servicing diverse populations in San Jose, CA, and Atlanta, GA. We recruited 56 participants with estimated glomerular filtration rates < 45 mL/min/1.73 m².

Interventions: We randomly assigned participants to a mobile health (mHealth) group—wearable activity trackers and fitness professional counseling, or an Exercise is Medicine intervention framework (EIM) group—mHealth components plus twice-weekly small-group directed exercise sessions customized to persons with kidney disease. We performed assessments at baseline, 8 weeks at the end of active intervention, and 16 weeks after passive follow-up and used multilevel mixed models to assess between-group differences.

Outcomes: Activity tracker total daily step count.

Results: Of 56 participants, 86% belonged to a racial/ethnic minority group; randomly assigned groups were well balanced on baseline step count. In intention-to-treat analyses, the EIM and mHealth groups both experienced declines in daily step counts, but there was an attenuated reduction in light intensity physical activity (standard error 0.2 [5.8] vs −8.5 [5.4] min/d; P = 0.08) in the EIM compared with the mHealth group at 8 weeks. In as-treated analyses, total daily step count, distance covered, and light and moderate-vigorous activity minutes per day improved in the EIM group and declined in the mHealth group at 8 weeks (standard error +335 [506] vs −884 [340] steps per day; P = 0.05; P < 0.05 for secondary measures), but group differences faded at 16 weeks. There were no differences in quality-of-life and mental health measures during the study.

Limitations: Small sample size, limited duration of study, assessment of intermediate outcomes (steps per day).

Conclusions: A clinic-integrated referral to small-group exercise sessions is feasible, safe, and moderately effective in improving physical activity in an underserved population with high comorbid conditions.

Funding: Normon S Coplon Applied Pragmatic Clinical Research program.

Trial Registration: NCT03311763

Physical activity is associated with improved cardiovascular health, physical function, quality of life, transplant outcomes, and survival in persons with chronic kidney disease (CKD). However, at the time of dialysis initiation, 44% cannot walk 1 block and 56% cannot climb 12 stairs. Further, after starting dialysis, only 13% of elderly persons maintain functional status in the first year.

Exercise interventions in persons with CKD have been primarily limited to the subpopulation who are receiving dialysis. In a meta-analysis of 41 exercise intervention trials targeted to patients with kidney disease, 6 enrolled patients with CKD not yet receiving dialysis. An intervention at earlier stages of CKD could mitigate the near-doubling of risk for mortality seen in the first 120 days of initiation and engage patients before frequent medical interactions with centers and hospitals.

Given the dearth of studies in patients with advanced CKD, the type of programming most effective and acceptable to this population—and thus amenable to wider implementation at scale—is unclear. Group-based exercise training has a track record in multiple chronic conditions. In the most prominent and now widely scaled example, lifestyle coaching paired with exercise sessions in the Diabetes Prevention Program reduced diabetes incidence by 58% in high-risk persons. Wearable technology-enabled interventions are also gaining prominence; 1 systematic review of 28 studies noted a 24% increase in daily step count and 27% increase in moderate to vigorous physical activity with wearable activity tracker–related interventions. However, a study of persons with peripheral vascular disease investigating the effect of telephone coaching and wearable technology found no improvement over 9 months compared with usual care, suggesting the importance of additional on-site interventions.

We sought to test the feasibility, acceptability, and effectiveness of integrating, through clinical referral, a technology-enabled group-based exercise program in persons with advanced CKD not yet receiving dialysis. Working in 2 diverse clinical populations and using the American College of Sports Medicine Exercise Is Medicine (EIM) intervention framework, we randomly assigned...
After we obtained consent, we first completed baseline assessments and then disclosed the assigned treatment to the participant.

Intervention

At baseline, we provided all participants with the wearable Garmin VivoFit 3 activity tracker, a tutorial on device use, and a free custom smartphone application for data syncing (IOS or Android). The application, developed as part of the EIM framework, allows for participants to track their step count and enables the study staff to remotely monitor participants’ physical activity.

Trained fitness professionals counseled participants randomly assigned to the mHealth group in a 30-minute face-to-face session. The counseling session used brief-action planning, a self-management support technique grounded in motivational interviewing and behavior change strategies (goal setting, identify preferences and barriers, problem solving, stages of change, and self-monitoring). Fitness professionals encouraged integration of moderate physical activity throughout the week to achieve 100 to 150 minutes per week, primarily through walking for leisure and transportation or other preferred activities. The fitness professional performed weekly short (5-minute) interactions by telephone or text messaging to support, check on progress, and answer questions as needed for the 8-week intervention period.

Participants randomly assigned to the EIM group underwent the same counseling sessions and additionally were enrolled in an 8-week exercise program with twice-weekly 1-hour sessions led by the EIM fitness professionals and offered at community centers or facility grounds available near (<5 km) the nephrology clinic. Sessions were held for up to 8 participants and included a progressive training plan including aerobic conditioning, resistance, flexibility, stability, and balance training, slowly progressing toward 50 minutes of light to moderate physical activity per session. Blood pressure cuffs and glucometers were available for participants who experienced symptoms related to hypotension or hypoglycemia before, during, or after the class. After 8 weeks of intervention, the group-based exercise sessions were discontinued and participants were encouraged to accumulate moderate physical activity throughout the week on their own during the 8-week passive follow-up period.

Study Measures

We undertook study assessments at 3 time points: baseline, 8 weeks (at the end of exercise sessions for the EIM group), and 16 weeks. We obtained the following questionnaires at each study visit: Center for Epidemiological Studies-Depression questionnaire, 12-Item Short-Form Health Survey, Exercise Confidence Survey, Brief Resilience Scale, and International Physical Activity Questionnaire. We additionally obtained body composition and functional fitness at each study visit using a standardized protocol; height,
weight, Quêtelet (body mass) index, waist circumference, blood pressure at rest, 6-minute walk test, and grip strength with a digital dynamometer (Takei 5401; Takei Scientific Instruments, Inc).

We also obtained an exit survey, and for participants in the EIM group, we additionally documented hospitalizations and session-related adverse events. The wearable activity tracker captured daily step count (primary outcome), distance traveled, and minutes of light and moderate to vigorous physical activity per day. This device was highly ranked in terms of validity, behavior change features, and data integration feasibility in a recent review of consumer-oriented wearable activity measurement devices for use in health care settings. Furthermore, that this device has a 1-year battery life and is waterproof greatly enhances the likelihood of adequate wear time (see Item S1 for details on wearable activity tracker assessments).

Statistical Analysis

To compare the distribution of baseline characteristics after randomization to the mHealth and EIM groups, we used χ^2 test, Fisher exact test, 2-sample t test, and Wilcoxon rank sum test, as appropriate. We used multilevel mixed models with the restricted maximum likelihood approach to analyze the outcomes measured at 8 and 16 weeks and handle missing data. For each outcome measure, the model accounted for the intervention, time since intervention (baseline, 8 weeks, and 16 weeks), study site, and intervention-by-time interaction. The intervention-by-time interaction, which reflects the relative difference in change in the parameters over time, was the primary parameter for testing of difference between groups. We modeled dependent variables using fixed effects and incorporated individual level as the random effects to account for the correlation of outcomes measured over time. We report adjusted means and standard errors for each outcome. We conducted intention-to-treat and as-treated analyses, for which the "as-treated" EIM group was defined as participants attending at least 1 EIM session, and participants who did not attend any EIM sessions were assigned to the mHealth group.

Analyses were conducted using SAS, version 9.4 (SAS Institute). Results presented fulfill the Consolidated Standards of Reporting Trials (CONSORT) guidelines for randomized-controlled trials.

RESULTS

Participant Enrollment and Characteristics

Figure 1 outlines participant enrollment; 56 participants enrolled in the study (28 at Stanford and 28 at Emory).
Table 1 demonstrates participant characteristics by study group, which did not differ by age, sex, race, ethnicity, smoking status, comorbid conditions, cause of CKD, and baseline daily step total. Most participants (86%) belonged to a racial or ethnic minority group and 30% had diabetes as cause of CKD. Randomization was well balanced by characteristics listed in Table 1. The groups were well balanced at baseline by physical function measures of the 6-minute walk test and handgrip strength (Table S2).

Feasibility Assessment: Adherence and Safety
A larger number of participants in the EIM group (16 [57%]) compared with the mHealth group (7 [25%]) missed at least 1 study assessment session. Of the 16 EIM group participants missing a measurement, 11 (69%) also did not come to any exercise sessions. Adherence to wearable activity tracker use was similar in both groups: 3 participants (11%) in the EIM and 4 (14%) in the mHealth group did not log any wearable activity tracker data.

Table 2 compares participants who did and did not attend offered sessions. Participants who did not attend exercise sessions (N = 11 [39%]) were more likely to have been hospitalized during the study (46% vs 24% of participants, respectively). Among participants who attended at least 1 session, median for attendance was 10 (25th percentile, 7; 75th percentile, 12) sessions. During a single exercise session, 1 participant had elevated blood pressure at the time of arrival, which precluded their participation in that session. No other study-related adverse events were recorded.

Effectiveness Assessment: Physical Activity
In the intention-to-treat analyses, adjusted mean step counts and distance traveled decreased in both the EIM group and mHealth group at 8 and 16 weeks, without differences in mean change in step count in the groups over time (Standard Error [SE] −217.6 [610.4] vs −730.9 [568.1] steps per day; P = 0.25; and −1,217.1 [624.4] vs −946.1 [576.9] steps per day; P = 0.84) comparing 8 and 16 weeks with baseline in the EIM versus mHealth groups, respectively (Fig 2A and B). In as-treated analyses, the EIM group experienced an improvement at 8 weeks and had a smaller decrease at 16 weeks compared with the mHealth group, which continued to decline over time (SE +334.6 [506.0] vs −883.8 [339.6] steps per day; P = 0.05, and +381.8 [923.7] vs −1,362.9 [644.3] steps per day; P = 0.39, comparing 8 and 16 weeks with baseline in the EIM vs mHealth groups, respectively). A similar pattern emerged for distance traveled (Fig 2C and D).

For intensity of physical activity, in the intention-to-treat analyses, light physical activity levels declined over time in both groups, but to a lesser degree in the EIM group at 8 weeks (Fig 3; 0.2 [5.8] vs −8.5 [5.4]; P = 0.08, and ≤6.3 [6.0] vs ≤9.7 [5.5] minutes per day; P = 0.69 comparing 8 and 16 weeks with baseline in the EIM vs mHealth groups, respectively). In the as-treated analyses, mirroring the step count data, light physical activity levels improved at 8 weeks and had a smaller decrease at 16 weeks in the EIM compared with the mHealth group, which experienced a continuous decline (4.5 [7.0] vs ≤8.8 [4.7]; P = 0.02, and 1.6 [7.0] vs ≤13.0 [4.9] minutes per day; P = 0.20 comparing 8 and 16 weeks to baseline in the EIM vs mHealth groups, respectively). Moderate to vigorous physical activity levels improved slightly in the EIM group compared with the mHealth group at 8 and 16 weeks in the intention-to-treat and as-treated analyses.

Effectiveness Assessment: Self-reported Mental Health and Exercise Self-Efficacy
Table 3 delineates the results of mental health and exercise self-efficacy questionnaires of study participants in the 2 study groups. Similar to physical function measures, the measures did not differ by group at baseline or over the study period.

Intervention Feedback
A total of 26 participants returned exit surveys on the components of the program. All agreed that fitness professionals communicated simply and empathetically; 1 participant found the wearable activity tracker difficult to use and unhelpful. Most (92%) found the consent and recruitment to be well integrated within the clinical setting. Although 81% of participants wished for more engagement from their clinical team in exercise intervention, 42% reported that their clinical team commented on participation during visits. Dieticians were the most common recommendation to be added to the next iteration of the program. Participants who came to more than 1 class listed anticipated or experienced improvement in other areas on life, overall health and well-being, blood glucose control, and mental health as motivators for continued participation. Item S2 provides videos of patient testimonials from 2 EIM group participants.
DISCUSSION

We successfully integrated recruitment, physical activity assessment, and group-based exercise interventions into diverse clinical settings servicing largely patients of racial and ethnic minority descent with advanced CKD. At baseline, participants were generally inactive with poor aerobic capacity and strength. The intervention was safe, and retention in group programming was high among patients who came to at least 1 session. We observed modest improvements or an attenuated reduction in physical activity levels when fitness counseling and wearable device provision were coupled with CKD-customized small-group exercise sessions in persons who participated in at least 1 session, compared with participants receiving counseling and wearable activity trackers alone.

We delivered our intervention in high-volume clinical settings servicing minority patients. However, after screening 228 participants who all expressed initial interest in increasing physical activity levels, only a quarter reached the first study visit, indicating that a small select subset of this patient population is able to commit to participation in formal exercise programming. Among other CKD exercise intervention studies of equal duration and intensity, between 10% and 30% of patients who were screened proceeded to randomization.35-37 Our low-cost low-intensity recruitment may nonetheless provide benefits justifying its retention. Integrating physical activity screening—known as the "physical activity vital sign"—into clinical visits improves physical activity awareness and counseling in patients and providers respectively.38-40

However, our data demonstrating safety of the intervention and weak signal for any variation in formal physical function assessments over time can inform a further even more pragmatic iteration of our protocols. For example, modified verbal consent documented digitally—increasingly accepted in pragmatic clinical trials41,42—and mail delivery of the wearable activity tracker could decrease the burden of in-person study-related interactions and facilitate a focus on the exercise programming.

Unlike in other group-exercise programming studies, in which adherence typically decreases over time, we observed an "all-in" or "none" phenomenon.43,45 Participants randomly assigned to but not arriving at a...
single offered session had similar demographic and clinical characteristics and exercise self-efficacy scores, but higher rates of hospitalizations, compared with regular attendees. Numerous postdischarge exercise rehabilitation programs exist for patients with heart failure, acute myocardial infarction, and chronic obstructive pulmonary disease to serve as secondary prevention measures. No such tailored programs exist to support possible physical setbacks and re-focus on lifestyle interventions for persons with CKD but are justified in the context of nationwide data reporting high rates of hospitalizations. A third of our participants were hospitalized, further supporting the need for future programming to specifically accommodate postdischarge exercise rehabilitation.

In addition, we observed lower drop out in the mHealth group, implying that a lower intensity intervention may be more acceptable to patients receiving dialysis.

Despite the challenges in recruitment and attendance of the exercise sessions, small sample size, and highly comorbid patient population, we observed a modest effect of our intervention. In a similar intervention delivered to...
patients in earlier stages of CKD and with a larger sample size, Rossi et al demonstrated improvements in both self-reported physical activity levels and physical function measures such as 6-minute walk test at the end of twice-weekly exercise sessions delivered for 12 weeks. Other exercise intervention studies in persons with CKD have described improvements in self-reported physical activity levels but to our knowledge, none included objectively measured activity trackers.

In our study at baseline, participants performed poorly on assessments of physical function, walking an average of 406 (SD, 117) m on the 6-minute walk test compared with 571 (SD, 90) m observed in the general population.

Figure 3. Intensity of physical activity assessment over time in the intervention,* (A) Minutes of light physical activity (PA) per day over time in intention-to-treat analyses (N = 28 for Exercise Is Medicine [EIM] and N = 28 for mobile health [mHealth]). Differences in EIM versus mHealth as follows: −0.2 (standard errors [SE] 5.8) versus −8.5 (SE 5.4) minutes per day comparing 8 weeks with baseline, P = 0.08, and −6.3 (SE 6.0) versus −9.7 (SE 5.5) minutes per day, P = 0.69, comparing 16 weeks with baseline. (B) Minutes of moderate to vigorous PA (MVPA) per day over time in intention-to-treat analyses. Differences in EIM versus mHealth as follows: 1.1 (SE 1.6) versus −2.3 (SE 1.5) minutes per day comparing 8 weeks with baseline, P = 0.02, and 2.7 (SE 1.7) versus −2.2 (SE 1.6) minutes per day, P = 0.08 comparing 16 weeks with baseline. (C) Minutes of light PA per day over time in as-treated analyses (N = 16 for EIM and N = 30 for mHealth). Differences in EIM versus mHealth as follows: 4.5 (SE 7.0) versus −8.8 (SE 4.7) minutes per day, P = 0.02, comparing 8 weeks with baseline, and 1.6 (SE 7.0) versus −13.0 (SE 4.9) minutes per day, P = 0.20, comparing 16 weeks with baseline. (D) Minutes of MVPA per day over time in as-treated analyses. Differences in EIM versus mHealth: 1.7 (SE 2.0) versus −1.8 (SE 1.4) minutes per day comparing 8 weeks with baseline, P = 0.04, and 3.6 (SE 2.0) versus −1.8 (SE 1.4) minutes per day, P = 0.06, comparing 16 weeks with baseline. *In the intention-to-treat analysis, sample sizes were 20, 24, and 21 in the EIM group and 23, 24, and 23 in the mHealth group at the baseline, 8-week, and 16-week assessments, respectively. In the as-treated analysis, sample sizes were 13, 16, and 16 in the EIM group and 30, 32, and 28 in the mHealth group at the baseline, 8-week, and 16-week assessments, respectively.
Table 3. Mental Health Measures of Study Participants During the 16-Week Study Period

	Intention to Treat			**As-Treated**								
	EIM	**mHealth**	**Mean Diff**	**95% CI**	**EIM**	**mHealth**	**Mean Diff**	**95% CI**				
	Adjusted Mean (SEM)	**Adjusted Mean (SEM)**			**Adjusted Mean (SEM)**	**Adjusted Mean (SEM)**						
CES-D												
Baseline	28	14.1 (1.9)	28	11.8 (1.9)	2.3	-3.1 to 7.8	17	16.2 (2.4)	39	11.5 (1.6)	4.7	-1.1 to 10.4
8 wk	17	12.3 (2.2)	24	12.7 (2.0)	-0.4	-6.4 to 5.5	15	13.9 (2.6)	26	12.4 (1.7)	1.5	-4.7 to 7.7
16 wk	12	15.9 (2.8)	21	12.6 (2.1)	3.3	-3.6 to 10.3	10	16.8 (3.1)	23	12.6 (1.9)	4.2	-3.1 to 11.6
Brief Resilience Scale												
Baseline	28	3.7 (0.2)	28	3.6 (0.2)	0.1	-0.3 to 0.6	17	3.6 (0.2)	39	3.7 (0.1)	-0.1	-0.6 to 0.4
8 wk	17	3.7 (0.2)	24	3.5 (0.2)	0.2	-0.3 to 0.6	15	3.5 (0.2)	26	3.6 (0.1)	-0.1	-0.6 to 0.4
16 wk	12	3.9 (0.2)	21	3.5 (0.2)	0.4	-0.1 to 0.9	10	3.8 (0.2)	23	3.6 (0.2)	0.1	-0.5 to 0.7
Exercise Confidence Survey												
Sticking to it	28	4.2 (0.2)	28	4.1 (0.2)	0.1	-0.4 to 0.6	17	4.1 (0.2)	39	4.2 (0.2)	-0.1	-0.6 to 0.4
8 wk	17	3.9 (0.2)	24	3.7 (0.2)	0.2	-0.3 to 0.8	15	3.9 (0.2)	26	3.7 (0.2)	0.1	-0.4 to 0.7
16 wk	12	3.9 (0.3)	21	3.6 (0.2)	0.3	-0.4 to 0.9	10	4.1 (0.3)	23	3.6 (0.2)	0.5	-0.2 to 1.2
Making time for exercise												
Baseline	28	4.3 (0.2)	28	4.0 (0.2)	0.2	-0.3 to 0.8	17	4.3 (0.2)	39	4.1 (0.2)	0.2	-0.4 to 0.7
8 wk	17	3.9 (0.2)	24	3.9 (0.2)	0	-0.6 to 0.6	15	3.9 (0.2)	26	4.0 (0.2)	0	-0.6 to 0.6
16 wk	12	4.0 (0.3)	21	3.7 (0.2)	0.3	-0.4 to 0.9	10	4.3 (0.3)	23	3.7 (0.2)	0.6	-0.1 to 1.3
SF-12												
Physical Component Summary score												
Baseline	28	41.3 (1.1)	28	41.2 (1.2)	0.2	-3.1 to 3.4	17	41.3 (1.4)	39	41.2 (1.0)	0.1	-3.3 to 3.6
8 wk	17	42.5 (1.3)	24	39.3 (1.3)	3.2	-0.5 to 6.8	15	42.6 (1.5)	26	39.5 (1.2)	3.1	-0.7 to 6.9
16 wk	12	40.9 (1.5)	21	39.4 (1.3)	1.5	-2.5 to 5.6	10	40.8 (1.7)	23	39.6 (1.2)	1.2	-3.0 to 5.4
Mental Component Summary score												
Baseline	28	45.8 (1.6)	28	47.1 (1.7)	-1.2	-6.0 to 3.5	17	44.6 (2.0)	39	47.4 (1.4)	-2.8	-7.8 to 2.2
8 wk	17	46.1 (2.0)	24	45.8 (1.8)	0.3	-5.1 to 5.7	15	45.7 (2.1)	26	45.9 (1.7)	-0.2	-5.8 to 5.3
16 wk	12	42.2 (2.3)	21	45.6 (1.9)	-3.3	-9.4 to 2.7	10	43.2 (2.6)	23	44.6 (1.8)	-1.4	-7.7 to 4.8

Note: SF-12 mental health component scores were lower than the mean for individuals without serious mental or physical at baseline and throughout the course of the study conditions (Ware et al, mean ± SD Physical Component Summary scores: 47.42 ± 0.4; Mental Component scores: 53.82 ± 0.3). CES-D scores for both study groups were on average <15, suggesting subclinical or absence of depression. The overall mean Brief Resilience Scale score for study participants throughout the study is scored as “normal resilience” (3.00-4.30). The Exercise Confidence Survey is scored from 0 to 5, with higher scores indicating higher confidence.

Abbreviations: CES-D, Center for Epidemiological Studies-Depression; EIM, Exercise Is Medicine; mHealth, mobile health; SEM, standard error of mean; SF-12, 12-Item Short-Form Health Survey.
benefit as compared with the EIM group, the effect of no intervention at all was not studied; therefore, some potential benefit may have accrued in this group as well.55 However, we observed an additional benefit of the small-group sessions, with as-treated analyses demonstrating modest but consistent improvements in daily steps, distance traveled, and both light and vigorous physical activities at 8 weeks compared with the mHealth group. The “fading out” of the effect after the discontinuation of the intervention at 8 weeks is consistent with exercise intervention literature52,55,56 and highlights the critical need for a sustainable intervention of longer duration and of interventions integrating novel behavioral modification strategies, including modelling and incentivization.57

Although we did not expect major changes in anthropometrics, physical function, or mental assessments due to the small size and short duration of this study, the lack of variation in these objective measurements over time has been seen in many but not all35 other studies of both persons with CKD and end-stage kidney disease.9 Participants can experience disappointment and frustration with exercise programs when focused mainly on weight loss and functional measures due to embarrassment and other exercise-related physical and emotional barriers that can diminish the overall perceived benefit of exercise. The importance of improving fatigue and life participation, defined as the ability to participate in meaningful life activities such as work, school, and recreational activities, is emerging as a critically important outcome among persons receiving dialysis58-60 and kidney transplant recipients.61 Although improvements in patient-reported outcomes have been reported in other CKD exercise intervention studies,13,35 these have not been the primary outcome of interest. Physical function measures obtained throughout the course of this study did not reflect the modest changes in physical activity or the subjective patient-reported benefit provided to investigators in testimonials. Due to high participant and clinician interest, the exercise intervention was successfully converted to a CKD-tailored program available at one of the clinical sites (San Jose, CA), supported financially by the local chapter of the National Kidney Foundation. Thus, further research is needed to ensure that exercise programs are being designed with a focus on patient-centered outcomes, implementation, and scalability.

Limitations of our study include its small sample size, high rate of drop out, and unblinded design without a run-in period to obtain unbiased baseline measures of physical activity. Although we worked in diverse settings, due to resource-limitations, we restricted recruitment to persons with conversational English capabilities. We used wearable activity tracker data, rather than accelerometers, to measure daily physical activity, although similar device-based step count data have been correlated with outcomes in the National Health and Nutrition Examination Survey54 and are used in various clinical settings.33,62

To our knowledge, this is the first study to implement a technology-enabled group-based exercise intervention in persons with advanced CKD. During this first phase, in which we had a diverse sample and well-balanced randomization, we learned that a pragmatic approach with integration into the clinical setting is feasible and safe but that increased support around hospitalizations may be required to augment retention in group exercise sessions. We observed high patient acceptability and satisfaction and modest benefits in physical activity levels that faded over time, indicating crucial need for focus on patient-reported outcomes and sustainability of programming beyond 8 weeks. Our work will inform future larger scale implementation of CKD-tailored exercise programming in underserved populations using remote access and simplified accessibility.

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)
Item S1: Description of wearable activity tracker used in study
Item S2: Video testimonials from 2 EIM-CKD participants
Table S1: Exercise Is Medicine in CKD Study Inclusion and Exclusion Criteria
Table S2: Physical Function Measures of Study Participants During the 16-Week Study Period

ARTICLE INFORMATION

Authors’ Full Names and Academic Degrees: Shuchi Anand, MD, MS, Susan L. Ziołkowski, MD, MS, Ahad Bootwala, MPH, Jianheng Li, PhD, Nhat Pham, MD, Jason Cobb, MD, and Felipe Lobelo, MD, PhD.

Authors’ Affiliations: Division of Nephrology, Department of Medicine, Stanford University, Palo Alto, CA (SA, SLZ); Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA (AB, JL, FL); Division of Nephrology, Santa Clara Valley Medical Center, San Jose, CA (NP); and Renal Division, Emory University School of Medicine, Atlanta, GA (JC).

Address for Correspondence: Shuchi Anand, MD, MS, Division of Nephrology, Stanford University School of Medicine, 777 Welch Rd, Ste DE, Palo Alto, CA 94403. Email: sanan22@stanford.edu

Authors’ Contributions: Study design and secured funding: SA, FL; Participant recruitment, follow-up, and measurements: SA, SLZ, AB, NP, JC; fitness professional training: FL; data analysis: JL. SA and SLZ contributed equally to this work. Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriately investigated and resolved.

Support: This project was funded by the Satellite Healthcare’s Normon S Coplon Applied Pragmatic Research Award. Dr Anand was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) K23DK101826. Dr Ziołkowski was supported by NIDDK F32 and Division of Nephrology funds. The funders had no role in study design or data collection, analysis or interpretation.

Financial Disclosure: The authors declare that they have no relevant financial interests.

Acknowledgements: We are grateful to our research participants and their nephrologists, our friendly and warm research coordinator Ms Lani Demchak, and our dedicated fitness professionals CJ Jones, Robert Chapman, Garion Williams, and...
REFERENCES

1. Zelle DM, Corpeleijn E, Stolk RP, et al. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin J Am Soc Nephrol. 2011;6(4):898-905.

2. Greenwood SA, Castle E, Lindup H, et al. Mortality and morbidity following exercise-based renal rehabilitation in patients with chronic kidney disease: the effect of programme completion and change in exercise capacity. Nephrol Dial Transplant. 2019;34(4):618-625.

3. Cooke AB, Ta V, Iqbal S, et al. The impact of intradialytic pedaling exercise on arterial stiffness: a pilot randomized controlled trial in a hemodialysis population. Am J Hypertens. 2018;31(4):458-466.

4. Baggetta R, DiPietro J, Suh J, et al. Effects of a home-based, low intensity, physical exercise program in older adults dialysis patients: a secondary analysis of the EXCITE trial. BMC Geriatr. 2018;18(1):248.

5. Manfredini F, Mallamaci F, D’Arrigo G, et al. Exercise in patients on dialysis: a multicenter, randomized clinical trial. J Am Soc Nephrol. 2017;28(4):1259-1268.

6. Beddhu S, Baird BC, Zitterkoph J, Neilson J, Greene T. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol. 2009;4(12):1901-1906.

7. Johansen KL, Chertow GM, Ng AV, et al. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int. 2000;57(6):2564-2370.

8. Kurella Tamura M, Covinsky KE, Chertow GM, Yaffe K, Landefeld CS, McCulloch CE. Functional status of elderly adults before and after initiation of dialysis. N Engl J Med. 2009;361(16):1539-1547.

9. Heiwe S, Jacobson SH. Exercise training in adults with CKD: a systematic review and meta-analysis. Am J Kidney Dis. 2014;64(3):383-393.

10. Chan KE, Maddux FW, Toftoek-Rubin N, Karumanchi SA, Thadhani R, Hakim RM. Early outcomes among those initiating chronic dialysis in the United States. Clin J Am Soc Nephrol. 2011;6(11):2642-2649.

11. Robinson BM, Zhang J, Morgenstern H, et al. Worldwide, mortality risk is high soon after initiation of hemodialysis. Kidney Int. 2014;85(1):158-165.

12. Soucie JM, McClellan WM. Early death in dialysis patients: risk factors and impact on incidence and mortality rates. J Am Soc Nephrol. 1996;7(10):2169-2175.

13. Greenwood SA, Lindup H, Taylor K, et al. Evaluation of a pragmatic exercise rehabilitation programme in chronic kidney disease. Nephrol Dial Transplant. 2012;27(suppl 3):iii126-iii134.

14. Effing T, Zielhuis G, Kerstjens H, van der Valk P, van der Palen J. Community based physiotherapeutic exercise in COPD self-management: a randomised controlled trial. Respir Med. 2011;105(3):418-426.

15. Flynn KE, Pinna IL, Whellan DJ, et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1451-1459.

16. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393-403.

17. Brickwood KJ, Watson G, O’Brien J, Williams AD. Consumer-based wearable activity trackers increase physical activity participation: systematic review and meta-analysis. JMIR Mhealth Uhealth. 2019;7(4):e11819.

18. McDermott MM, Spring B, Berger JS, et al. Effect of a home-based exercise intervention of wearable technology and telephone coaching on walking performance in peripheral artery disease: the HONOR randomized clinical trial. JAMA. 2018;319(16):1665-1676.

19. American College of Sports Medicine. Health care providers making a difference in your health care setting. Accessed July 21, 2020. http://exerciseismedicine.org/

20. Lobelo F, Stoufferen B, Hultber A. The Exercise is Medicine Global Health Initiative: a 2014 update. Br J Sports Med. 2014;48(22):1627-1633.

21. Jagannathan R, Ziolkowski SL, Weber MB, et al. Physical activity promotion for patients transitioning to dialysis using the “Exercise is Medicine” framework: a multi-center randomized pragmatic trial (EIM-CKD trial) protocol. BMC Nephrol. 2018;19(1):230.

22. Franklin BA, Thompson PD, Al-Zaiti SS, et al. Exercise-related acute cardiovascular events and potential deleterious adaptations following long-term exercise training: placing the risks into perspective-an update: a scientific statement from the American Heart Association. Circulation. 2020;141(13):e705-e736.

23. Dixon D, Johnston M. Health Behaviours Change Competency Framework: Competencies to Deliver Interventions to Change Lifestyle Behaviours That Affect Health. The Scottish Government; 2010.

24. Radloff L. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1(3):385-401.

25. Ware J, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220-233.

26. Sallis JF, Grossman RM, Pinski RB, Patterson TL, Nader PR. The development of scales to measure social support for diet and exercise behaviors. Prev Med. 1997;16(6):825-836.

27. James FS. Self-efficacy for Exercise Behaviors: Survey and Scoring. Accessed July 21, 2020. https://drjimsallis.org/measure_selfefficacy.html

28. Smith BW, Dalen J, Wiggins K, Tooley E, Christopher P, Bernard J. The Brief Resilience Scale: assessing the ability to bounce back. Int J Behav Med. 2008;15(3):194-200.

29. Craig CL, Marshall AL, Sjostrom M, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1318-1356.

30. National Health and Nutrition Examination Survey (NHANES). Body Composition Procedures Manual. Date last accessed May 10, 2019. https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/Body_Composition_Procedures_Manual_2018.pdf

31. American Thoracic Society. Statement guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-117.

32. Murakami H, Kawakami R, Nakae S, et al. Accuracy of wearable devices for estimating total energy expenditure: comparison with metabolic chamber and doubly labeled water method. JAMA Intern Med. 2016;176(5):702-703.
33. Lobelo F, Rohm Young D, Sallis R, et al. Routine assessment and promotion of physical activity in healthcare settings: a scientific statement from the American Heart Association. *Circulation*. 2018;137(18):e495-e522.

34. Eldridge SM, Chan CL, Campbell MJ, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. *BMJ*. 2016;355:i5239.

35. Rossi AP, Burris DD, Lucas FL, Crocker GA, Wasserman JC. Effects of a renal rehabilitation exercise program in patients with CKD: a randomized, controlled trial. *Clin J Am Soc Nephrol*. 2014;9(12):2052-2058.

36. Barcellos FC, Del Vecchio FB, Reges A, et al. Exercise in patients with hypertension and chronic kidney disease: a randomized controlled trial. *J Hum Hypertens*. 2018;32(6):397-407.

37. Watson EL, Greening NJ, Viana JL, et al. Progressive resistance exercise training in CKD: a feasibility study. *Am J Kidney Dis*. 2015;66(2):249-257.

38. Sallis R. Developing healthcare systems to support exercise: exercise as the fifth vital sign. *Br J Sports Med*. 2011;45(6):473-474.

39. Golightly YM, Allen KD, Ambrose KR, et al. Physical activity as a vital sign: a systematic review. *Prev Chronic Dis*. 2017;14:E123.

40. Grant RW, Schmittdel JA, Neugebauer RS, Uratsu CS, Sternfeld B. Exercise as a vital sign: a quasi-experimental analysis of a health system intervention to collect patient-reported exercise levels. *J Gen Intern Med*. 2014;29(2):341-348.

41. Grady C. Informed consent. *N Engl J Med*. 2017;376(2):e43.

42. Kim SY, Miller FG. Informed consent for pragmatic trials—the integrated consent model. *N Engl J Med*. 2014;370(8):769-772.

43. Cox KL, Goremly TJ, Puddey IB, Burke V, Beilin LJ. Exercise behaviour change in 40 to 65-year-old women: the SWEAT Study (Sedentary Women Exercise Adherence Trial). *Br J Health Psychol*. 2003;8(pt 4):477-495.

44. Caserta MS, Gillett PA. Older women’s feelings about exercise and their adherence to an aerobic regimen over time. *Gerontologist*. 1998;38(5):602-609.

45. Arkawa AY, O’Dougherty M, Kaufman BC, Schmitz KH, Kurzer MS. Attrition and adherence of young women to aerobic exercise: lessons from the WISER study. *Contemp Clin Trials*. 2012;33(2):298-301.

46. Pina IL, Apstein CS, Balady GJ, et al. Exercise and heart failure: a statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. *Circulation*. 2003;107(8):1210-1225.

47. Taylor RS, Long L, Mordi IR, et al. Exercise-based rehabilitation for heart failure: Cochrane systematic review, meta-analysis, and trial sequential analysis. *JACC Heart Fail*. 2019;7(8):691-705.

48. Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. *Am Heart J*. 2011;162(4):571-584.e2.

49. Lindenuer PK, Stefan MS, Pekow PS, et al. Association between initiation of pulmonary rehabilitation after hospitalization for COPD and 1-year survival among Medicare beneficiaries. *JAMA*. 2020;323(18):1813-1823.

50. Mix TC, St Peter WL, Ebben J, et al. Hospitalization during advancing chronic kidney disease. *Am J Kidney Dis*. 2003;42(5):972-981.

51. Le Berre M, Maimon G, Sourial N, Guérion T, Vedel I. Impact of transitional care services for chronically ill older patients: a systematic evidence review. *J Am Geriatr Soc*. 2017;65(7):1597-1608.

52. Howden EJ, Leano R, Petchey W, Coombes JS, Isbel NM, Marwick TH. Effects of exercise and lifestyle intervention on cardiovascular function in CKD. *Clin J Am Soc Nephrol*. 2013;8(9):1494-1501.

53. Casanova C, Celi BR, Barria P, et al. The 6-min walk distance in healthy subjects: reference standards from seven countries. *Eur Respir J*. 2011;37(1):150-156.

54. Saint-Maurice PF, Troiano RP, Bassett DR, et al. Association of daily step count and step intensity with mortality among US adults. *JAMA*. 2020;323(12):1151-1160.

55. Hellberg M, Hoglund P, Svensson P, Clyne N. Randomized controlled trial of exercise in CKD-the RENEXC Study. *Kidney Int Rep*. 2019;4(7):963-976.

56. Knowler WC, Fowler SE, Hamman RF, et al. 10-Year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. *Lancet*. 2009;374(9702):1677-1686.

57. Evangelidis N, Craig J, Bauman A, Manera K, Saglimbene V, Tong A. Lifestyle behaviour change for preventing the progression of chronic kidney disease: a systematic review. *BMJ Open*. 2019;9(10):e031625.

58. Manera KE, Johnson DW, Craig JC, et al. Establishing a core outcome set for peritoneal dialysis: report of the SONG-PD (Standardized Outcomes in Nephrology-Peritoneal Dialysis) Consensus Workshop. *Am J Kidney Dis*. 2020;75(3):404-412.

59. Ju A, Unnuh M, Davison S, et al. Establishing a core outcome measure for fatigue in patients on hemodialysis: a Standardized Outcomes in Nephrology-Hemodialysis (SONG-HD) Consensus Workshop Report. *Am J Kidney Dis*. 2018;72(1):104-112.

60. Evangelidis N, Tong A, Manns B, et al. Developing a set of core outcomes for trials in hemodialysis: an international Delphi survey. *Am J Kidney Dis*. 2017;70(4):464-475.

61. Ju A, Josephson MA, Butt Z, et al. Establishing a core outcome measure for life participation: a Standardized Outcomes in Nephrology-kidney Transplantation Consensus Workshop Report. *Transplantation*. 2019;103(6):1199-1205.

62. Lobelo F, Kelli HM, Tejedor SC, et al. The Wild Wild West: a framework to integrate mHealth software applications and wearables to support physical activity assessment, counseling and interventions for cardiovascular disease risk reduction. *Prog Cardiovasc Dis*. 2016;58(6):584-594.
Conclusion: A clinic-integrated referral to small-group exercise sessions is feasible, safe, and moderately effective in improving physical activity in an underserved population with high comorbidities.

Methods and Cohort	Intervention	Findings		
Randomized controlled trial	Mobile health group (mHealth)	Baseline	8 weeks	16 weeks
56 participants	Wearable activity tracker + Fitness professional counseling	5943.5 steps/day	-730.9 steps/day	-946.1 steps/day
eGFR < 45 ml/min/1.73m²	Exercise is medicine (EIM) group			
16 weeks follow-up	mHealth + Twice weekly directed exercise session	5596.9 steps/day	-217.6 steps/day	-1217.1 steps/day

Findings for intervention and passive follow-up:
- Active intervention: P = 0.25, Passive follow-up: P = 0.84

Reference: Anand S, Ziolkowski SL, Bootwala A et al. Group-based exercise in CKD Stage 3b to 4: a randomized clinical trial. *Kidney Medicine*, 2021.

Visual Abstract by Denisse Arellano, MD @denisse_am