Additions to Phaeosphaeriaceae (Pleosporales): Elongaticollum gen. nov., Ophiosphaerella taiwanensis sp. nov., Phaeosphaeriopsis beaucarneae sp. nov. and a new host record of Neosetophoma poaceicola from Musaceae

Danushka S. Tennakoon1,2,3, Kasun M. Thambugala4, Dhanushka N. Wanasinghe5, Eleni Gentekaki2,3, Itthayakorn Promputtha6,7, Chang-Hsin Kuo1, Kevin D. Hyde2,3,5,6,8

1 Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
2 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
4 Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
5 CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
6 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
7 Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
8 Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China

Corresponding author: Chang-Hsin Kuo (chkuo@mail.nchu.edu.tw)

Abstract

A novel ascomycetous genus, Elongaticollum, occurring on leaf litter of Hedychium coronarium (Zingiberaceae) in Taiwan, is described and illustrated. Elongaticollum is characterized by dark brown to black, superficial, obpyriform, pycnidial conidiomata with a distinct elongate neck, and oval to oblong, hyaline, asceptate conidia. Phylogenetic analyses (maximum likelihood, maximum parsimony and Bayesian) of combined ITS, LSU, SSU and tef1-α sequence data revealed Elongaticollum as a distinct genus within the family Phaeosphaeriaceae with high statistical support. In addition, Ophiosphaerella taiwanensis and Phaeosphaeriopsis beaucarneae are described as new species from dead leaves of Agave tequilana and Beaucarnea recurvata (Asparagaceae), respectively. Neosetophoma poaceicola is reported as a new host record from dead leaves of Musa acuminata (Musaceae). Newly described taxa are compared with other similar species and comprehensive descriptions and micrographs are provided.
Keywords
Asparagaceae, Dothideomycetes, leaf litter, new taxa, Zingiberaceae

Introduction

Plant litter is considered as one of the main contributors to net above-ground primary productivity of terrestrial ecosystems (Swift et al. 1979; Berg and McLaugherty 2008; Krishna and Mohan 2017). Since plant litter is returned back to the soil, it represents a major source of organic carbon in forest soils (Berg 2003). Plant litter can be defined as a collection of fallen leaves, twigs, seeds and other woody debris that accumulate on the ground as a natural part of the forest ecosystem (Johnson and Catley 2002; Berg and McLaugherty 2008). In particular, leaf litter is the main source of organic matter and nutrients of the soil, compared to other litter types (Robertson and Paul 1999; Berg and McLaugherty 2008; Krishna and Mohan 2017). Leaf litter decomposition is a key process contributing to biogeochemical cycles in any forest ecosystem. Microorganisms are the primary agents in this process (Purahong et al. 2016; Mlambo et al. 2019). Fungi are considered as the “key players” in leaf litter decomposition, because of their ability to produce a wide range of extracellular enzymes (Pointing et al. 2005; Berg and McLaugherty 2008; Bani et al. 2018). Many researchers have been carrying out studies of fungal species inhabiting leaf litter and have described numerous new species in Dothideomycetes (Hyde et al. 2019; Phookamsak et al. 2019; Tennakoon et al. 2019).

The family Phaeosphaeriaceae is considered to be one of the most species-rich families in Dothideomycetes and includes species that inhabit a wide range of ecosystems (i.e., marine, terrestrial, and mangroves) (Phookamsak et al. 2014, 2017; Bakhshi et al. 2019; Jones et al. 2019; Luo et al. 2019; Tennakoon et al. 2019). Phaeosphaeriaceae was established by Barr (1979), who designated Phaeosphaeria I. Miyake as the generic type of the family. Phaeosphaeriaceae species have immersed to superficial, globose to subglobose ascomata, short papilla, bitunicate asci and hyaline to pigmented, fusiform to ellipsoidal, filiform, or muriform ascospores (Bakhshi et al. 2019; Chaivan et al. 2019; Maharachchikumbura et al. 2019; Yang et al. 2019). Members of Phaeosphaeriaceae are cosmopolitan, since they exhibit diverse lifestyles as saprobes, endophytes and pathogens of economically important plants (Barr 1992; Phookamsak et al. 2014, 2017; Yang et al. 2016; Hyde et al. 2020; Mapook et al. 2020). Apart from being cosmopolitan in nature, it appears that this family is phylogenetically highly diverse. Thus, recent studies have revealed a large number of new genera in this family. For instance, in the space of two years, eleven genera have been introduced, viz. Bhagirathimyces S.M. Singh & S.K. Singh (Hyde et al. 2020), Hydemyces Maharachchikumbura et al. (Maharachchikumbura et al. 2019), Hydeopsis J.F. Zhang et al. (Zhang et al. 2019), Neostagonosporella C.L. Yang, et al. (Yang et al. 2019), Parastagonosporella M. Bakhshi, Arzanlou & Crous (Bakhshi et al. 2019), Pseudoophiosphaerella J.F. Zhang...
et al. (Zhang et al. 2019), *Murichromolaenicola* Mapook & K.D. Hyde (Mapook et al. 2020), *Neoophiobolus* Mapook & K.D. Hyde (Mapook et al. 2020), *Paraleptospora* Mapook & K.D. Hyde (Mapook et al. 2020), *Pseudostaurosphaeria* Mapook & K.D. Hyde (Mapook et al. 2020) and *Vittaliana* Devadatha et al. (Devadatha et al. 2019). Currently, more than 70 genera are accommodated in this family (Wanasinghe et al. 2018; Bakhshi et al. 2019; Maharachchikumbura et al. 2019; Phookamsak et al. 2019; Hongsanan et al. 2020; Hyde et al. 2020).

We are investigating the diversity of microfungi on leaf litter in the tropics with the aim of clarifying their taxonomy based on morphology coupled with multi-gene phylogeny. As a part of this study, we have collected and isolated four taxa from Taiwan, which belong to the family Phaeosphaeriaceae. We present herein comprehensive morphological descriptions and an in-depth phylogenetic investigation of the newly introduced species.

Materials and methods

Sample collection, morphological studies and isolation

Decaying leaf litter samples of *Agave tequilana* F.A.C. Weber (Asparagaceae), *Beaucarnea recurvata* Lem. (Asparagaceae), *Hedychium coronarium* J.Koenig (Zingiberaceae), and *Musa acuminata* Colla (Musaceae) were collected from Dahu Forest Area in Chiayi, Taiwan and taken to the laboratory in Zip lock plastic bags. Specimens were examined with a LEICA EZ4 stereomicroscope. Micro-morphological characters were determined using AXIOSKOP 2 PLUS compound microscope and images were captured with a Zeiss AXIOCAM 506 COLOR digital camera. Observations and photomicrographs were made from materials mounted in water. Permanent slides were preserved in lactoglycerol, sealed by applying nail-polish around the margins of cover slip. All measurements were made with ZEN2 (blue edition) and images used for figures were processed with Adobe Photoshop CS3 Extended version 10.0 software (Adobe Systems, USA).

Single ascospore and conidial isolation was carried out following the method described in Phookamsak et al. (2014). The single germinated spore was picked up and transferred to potato dextrose agar (PDA) and incubated at 25 °C in natural light. Subsequent sub-culturing was done carefully to obtain pure culture and ensure absence of contaminants. Culture characteristics were observed after three weeks. Colonies were photographed and colonial characters were noted and described. Type specimens of new taxa were deposited at the herbarium of Mae Fah Luang University (MFLU) and National Chiayi University Herbarium (NCYU). Living cultures were deposited in Mae Fah Luang University Culture Collection (MFLUCC) and National Chiayi University Culture Collection (NCYUCC). Faces of Fungi and Index Fungorum numbers were provided as in Jayasiri et al. (2015) and Index Fungorum (2020).
DNA extraction and PCR amplification

Total genomic DNA was extracted from scraped fresh fungal mycelium using the DNA extraction kit E.Z.N.A Fungal DNA Mini Kit (D3390-02, Omega Bio-Tek) following the manufacturer’s protocol. The DNA product was kept at 4 °C for DNA amplification and maintained at -20 °C for long term storage. DNA was amplified by polymerase chain reaction (PCR) for four genes, the large subunit (28S, LSU), small subunit (18S, SSU), internal transcribed spacers including the 5.8s rDNA (ITS1-5.8S-ITS2) and translation elongation factor 1 alpha (tef1-α). The partial LSU gene was amplified by using the primer combination LR0R and LR5 (Vilgalys and Hester 1990; Rehner and Samuels 1994); partial SSU was amplified with NS1 and NS4 (White et al. 1990), nuclear ITS was amplified with primers ITS5 and ITS4 (White et al. 1990), and tef1-α gene was amplified using the primers EF1-983F and EF1-2218R (Rehner et al. 2001). Amplification reactions were performed in 25 µl of total reaction that contained 9.5 µl of sterilized water, 12.5 µl of 2×Power Taq PCR MasterMix (Tri-I Biotech, Taipei, Taiwan), 1 µl of each forward and reverse primers and 1 µl of DNA template. The PCR thermal cycle program of ITS, LSU, SSU and tef1-α gene was processed initially at 94 °C for 3 minutes, followed by 35 cycles of denaturation at 94 °C for 30 seconds, annealing at 55 °C for 50 seconds, elongation at 72 °C for 1 minute and a final extension at 72 °C for 10 minutes and a holding temperature of 4 °C. The PCR products were analyzed by 1.5% agarose gels containing the Safeview DNA stain (GeneMark, Taipei, Taiwan) to confirm their expected molecular weight. PCR products were purified and sequenced with primers mentioned above by Tri-I Biotech, Taipei, Taiwan. Nucleotide sequences were deposited in GenBank (Table 1).

Phylogenetic analysis

Phylogenetic analyses were performed using a combined LSU, SSU, ITS and tef1-α sequence dataset. Newly generated sequence data were initially subjected to blast search in NCBI to obtain the closest matches in GenBank. Sequences generated from this study were analyzed with related taxa in the family Phaeosphaeriaceae, which were obtained from GenBank and from recently published data (Bakhshi et al. 2019; Hyde et al. 2017; Maharachchikumbura et al. 2019; Yang et al. 2019; Mapook et al. 2020) (Table 1). The combined dataset consisted of 168 sequences including our newly generated sequences. Multiple alignments were automatically made with MAFFT v. 7 at the web server (http://mafft.cbrc.jp/alignment/server), using default settings (Katoh and Standley 2013). The alignment was refined manually with BioEdit v. 7.0.5.2 (Hall 1999), where necessary.

Evolutionary models for phylogenetic analyses were selected independently for each locus using MrModeltest v. 3.7 (Posada and Crandall 1998) under the Akaike Information Criterion (AIC). Phylogenetic trees were obtained from Randomized Accelerated Maximum Likelihood (RAxML), maximum parsimony analysis (MP) and
Species	Strain/Voucher no.	GenBank accession no.	ref/t–			
Acericola italica	MFLUCC 13-0609	MF167429 MF167430 MF167428	–			
Allophaeosphaeria muriformia	MFLUCC 13-0277	KX910089 KX950400 KX926415	–			
Alloennoticia thailandica	MFLUCC 15-0576	– – – –	–			
Amarengraphium ammophilicola	MFLU 17-2571	MN017847 MN017913 MN047087 MN077065	–			
Amarenyomyces daecylidis	KUMCC 18-0154	MK356345 MK356539 MK356371	–			
Arezzomyces cytisi	MFLUCC 15-0649	KT306950 KT306954 KT306947	–			
Banksiophoma australiensis	CBS 142163	KY979794 – KY979739 KY979889	–			
Bhagirathimyc es himalayensis	AMH 10127	MK386020 MN121697 MK386021	–			
Bhatiellae rosae	MFLUCC 17-0664	MG829898 MG829101 MG829887	–			
Brunneomurispora lonicerae	KUMCC 18-0157	MK386346 MK386360 MK386373 MK386965	–			
Camarosporioides phragmitis	MFLUCC 13-0365	KX572345 KX572350 KX572340 KX572354	–			
Chaetosphaeronema achilleae	MFLUCC 16-0476	KX765266 – KX765265	–			
C. hispidulum	CBS 216.75	KF251652 EU754045 KF251148 KF253108	–			
Dematiopleospora cirsii	MFLUCC 13-0615	KX274250 – KX274243 KX284708	–			
D. mariae	MFLUCC 13-0612	KJ749653 KJ749652 KJ742423 KX284708	–			
Didymocyrtis xanthomendozae	CBS 129666	– – KIP10651 KIP10677	–			
Diederichomyces ficuzzae	CBS 128019	JQ238616 – KIP10674 KIP10673	–			
Dhawkworthia scutaticola	MFLUCC 17-0693	MG829038 MG829144 MG828929	–			
D. lonicerae	MFLUCC 14-0955	MG829012 MG829121 MG828902 MG829203	–			
Edenia gomezpompae	JLCC 34533	– – KC193601	–			
Embarria clematidis	CBS 128019	JQ238616 – KIP10674 KIP10673	–			
Equiseticola fusispora	MFLUCC 14-0522	KU987669 KU987670 KU987668 MG528095	–			
Gallicola baobabianensis	HKAS 102234	MK356348 MK356362 MK356374 MK359906	–			
G. pseudophaeosphaeria	MFLUCC 17-0693	MG829038 MG829144 MG828929	–			
Hydeomyces desertipleosporoides	SQUCC 15259	MK290839 MK290843 MK290841 MK290848	–			
Hydeopsis verrucipora	SD 2016-5	MK522498 MK522504 MK522508 MK523388	–			
Italica acchilae	MFLUCC 14-0955	MG829012 MG829121 MG828902 MG829203	–			
I. luzulae	MFLUCC 14-0932	KT306951 – – –	–			
Jeromyomyces labinae	CBS 144617	MK442529 – MK442589 MK442695	–			
Junaceicola italica	MFLUCC 13-0750	– – KX500110 MG528097	–			
J. luzulae	MFLUCC 13-0780	KX449530 KX449531 KX449529	–			
Kwanghwaensis miscanthi	MFLUCC 14-0522	KU987669 KU987670 KU987668 MG528095	–			
Leptosphaeria doliolum	CBS 505.75	GU301827 GU296159 JF740205 GU349069	–			
Leptospora rubella	CPC 11006	DQ195792 DQ195803 DK195780	–			
L. thailandica	MFLUCC 16-0385	KX655549 KX655554 KX655559 KX655564	–			
Longispora clematidis	MFLUCC 13-0750	– – KX500110 MG528097	–			
Loratospora aestuarii	CBS 117592	– – MH863024	–			
Magninella scutetae	CBS 239.58	MH863023 – MH857770	–			
Melinicta anthoxanthi	MFLUCC 14-1011	KU848204 KU848205 – –	–			
Murichromaena chiangraiensis	MFLUCC 17-1488	MN994559 MN994606 MN994582 MN998163	–			
M. chromolaenae	MFLUCC 17-1489	MN994560 MN994606 MN994583 MN998164	–			
Muriophaeosphaeria galatellae	MFLUCC 14-0614	KT438329 KT438331 KT438333 MG520900	–			
Muriophaeosphaeria galatellae	MFLUCC 14-0614	KT438329 KT438331 KT438333 MG520900	–			
Neoophiobolus chromolaenae	MFLUCC 17-1467	MN994562 MN994606 MN994583 MN998164	–			
Species	Strain/Voucher no.	GenBank accession no.	LSU	SSU	ITS	tef-2
-------------------------------	-------------------	-----------------------	-----	-----	-----	-------
N. chromolaenae	MFLUCC 17-1449	MN994561 MN994607 MN994584 MN998165				
Neosetophoma sp.	MFLUCC 17-0844	MG829035 MG829141 MG828926 MG829219				
N. aepatica	CBS 145363	MK540024 – MK539953 –				
N. camprodii	MFLUCC 15-0682	KU302778 – KU302779 –				
N. clematidis	MFLUCC 13-0734	KP684153 KP684154 KP744450 –				
N. gareyi	MFLUCC 14-0528	– KY501126 – KY514402 –				
N. geyangensis	GZ13	MH018132 MH018136 MH018134 MH051889				
N. italica	MFLU 14-0809	KP711361 KP711366 KP711356 –				
N. lonicerae	KUMCC 18-0155	MK356349 MK356363 MK356375 MK359067				
N. lunariae	CPC 26671	KX306789 – KX306763 –				
N. micanihi	MFLU 18-2675	MK503826 MK503832 MK503820 –				
N. phragmitis	CBS 145364	MK540025 – MK539954 MK540148				
N. poaceicola	MFLUCC 16-0886	KY50382 KY50383 KY568986 –				
N. rosea	MFLUCC 18-1632 MT321809 MT321802 MT321795 –					
N. rosea	MFLUCC 17-0844	MG829035 MG829141 MG828926 MG829219				
N. rosana	MFLUCC 17-0768	MG829037 MG829143 MG828928 –				
N. rosarium	MFLUCC 17-0308	MG829036 MG829142 MG828927 –				
N. salis	MFLU 17-0118	MK608026 – MK608025 –				
N. samarororum	CBS 138.96	KF251666 GQ387517 MH862569 KF253119				
N. sambuci	CBS 145365	MK540026 – MK539955 MK540149				
N. shoemakeri	MFLU 16-1606	MG602199 MG602201 MG602203 MG844352				
N. tienshanensis	MFLUCC 17-0844 MT321809 MT321802 MT321795 –					
N. xingreens	GZAAAS18 0100	MH018133 – MH018135 –				
Neosphaerellopsis thailandica	CPC 21659	KP170721 – KP170652 KP170678				
Neostagonospora caricis	CBS 135992	KF251667 – KF251163 –				
N. phragmitis	MFLUCC 16-0493	KX910090 KX950401 KX926416 MG520902				
Neostagonospora sichuanensis	MFLUCC 18-1228	– – – – – –				
N. aquatica	MFLUCC 18-1231	– – – – – –				
N. korrae	ATCC 56289	– – KC848509 KC848515				
N. narmari	ATCC 64688	– – KC848510 KC848516				
O. taiwanica	NTUCC 14-0033	KX767089 KX767090 KX767088 MG520911				
O. herpotricha	k28	– – KP690992 KP691016				
O. korrae	ATCC 56289	– – KC848509 KC848515				
O. narmari	ATCC 64688	– – KC848510 KC848516				
O. taiwanensis	MFLU 18-2534 MT321815 MT321808 MT321801 MT328758					
O. taiwanica	NTUCC 17-024	MN082419 – MN082417 –				
Paraleptosphaeria dryadis	CBS 643.86	GU301828 KC584632 JF740213 GU349009				
Paraleptospora chromolaenae	MFLUCC 17-1481	MN994563 MN994609 MN994587 MN998167				
Species	Strain/Voucher no.	GenBank accession no.				
-------------------------------	--------------------	-----------------------				
		LSU	SSU	ITS	rtf^{–2}	
Phaeosphaeriaceae						
P. chromolaenica	MFLUCC 17-1450	MN994564	MN994961	MN994588	MN998168	
Paraphiobolus arundinis	MFLUCC 17-1789	MG520965	MG520984	MG520945	MG520912	
P. plantaginis	MFLUCC 17-0245	KY815010	KY815012	KY977641	MG520913	
Paraloratospora camporesii	MFLU 18-0915	MN756637	MN756635	MN756639	–	
Paraphoma chrysanthemiocola	CBS 522.66	KF251670	GQ387521	KF251166	KF253124	
P. radicina	CBS 111.79	KF251676	EU754092	KF251172	KF253130	
Parastagonospora dactylidis	MFLUCC 13-0375	KY824767	KY824769	KY824766	–	
Parastagonospora falliparia	CBS 135981	MH460545	–	MH460543	MH460549	
P. falliparia	CCTU 1151-1	MH460546	–	MH460544	MH460550	
Pheoascopia muriformis	MFLUCC 17-0372	MF611638	MF611639	MF611637	–	
P. festucae	MFLUCC 17-0056	KY442547	–	KY442611	KY442702	
Pheaeoseptoria zeae	CBS 144614	KM434277	KM434287	KM434267	KM434296	
Pheaeosphaeria musae	MFLUCC 11-0133	–	–	–	–	
P. oryzae	CBS 110110	KF251689	GQ387530	KF251186	–	
P. papayae	CBS 135416	KF251676	EU754092	KF251172	KF253130	
Pheaeosphaeriopsis agapanthi	CPC 26303	KX228311	–	KX228260	–	
P. agarensis	CPC 29122	KY173520	–	KY173430	–	
P. aloes	CBS 145367	MK540030	–	MK539959	MK540153	
P. aloicola	CBS 145368	MK540031	–	MK539960	MK540154	
P. amblyospora	CBS 110131	–	–	MH862851	–	
Phaeosphaeriopsis	MFLU 18-2586	MT321813	MT321806	MT321799	MT328756	
Phaeosphaeriopsis	MFLU 18-2587	MT321814	MT321807	MT321800	MT328757	
P. dracaenica	MFLUCC 11-0157	KM434283	KM434292	KM434273	KM434301	
P. glaucopunctata	MFLUCC 13-0265	KJ522477	KJ522481	KJ522473	MG520918	
P. gregilae	CBS 145369	MK540032	–	MK539961	MK540155	
P. nolinae	CBS 102205	KY090667	KY090693	KY090635	–	
P. obtusispora	CBS 246.64	JX681119	–	KY090644	–	
P. omaniana	SQUCC:14333	MT075849	–	MT075840	–	
P. phacidiomorpha	CBS 198.35	AF275496	AF275515	FJ462742	–	
P. pseudoagavacearum	CBS 145370	MK540033	–	MK539962	–	
P. trisepata	MFLU 17-1800A	MN750592	MN750607	MN750613	MN756837	
P. yuccae	MFLUCC 16-0558	KJ522479	KJ522484	KJ522475	MG520919	
Pseudophaeosphaeria huishuiensis	HS13	MK522499	MK522505	MK522509	MK523389	
Pseudophiobolus rubi	MFLUCC 17-1490	MN994570	MN994616	MN994593	MN998175	
Pseudostauroporpha chromolaena	MFLUCC 17-1491	MN994571	MN994617	MN994594	MN998175	
P. chromolaenica	MFLUCC 17-0128	MG829060	MG829165	–	MG829232	
P. rosacea	MFLUCC 17-0125	MG520966	–	MG520946	–	
Pseudophiobolus achilleae	MFLUCC 17-2257	MG520967	MG520989	MG520947	MG520926	
P. galii	MFLUCC 17-0925	MG520966	–	MG520946	–	
Pseudophiobolus buishuiensis	HS13	MK522499	MK522505	MK522509	MK523389	
Pseudophiobolus rubi	MFLUCC 14-0259	KX765299	KX765300	KX765298	MG520934	
Pseudostauroporpha chromolaena	MFLUCC 17-1490	MN994570	MN994616	MN994593	MN998175	
P. amblyospora	MFLUCC 17-0128	MG829060	MG829165	–	MG829232	
P. trisepata	MFLUCC 17-0125	MG520966	–	MG520946	–	
Sclerostagonospora rosicola	MFLUCC 15-0129	MG829068	MG829172	MG828957	MG829229	
Scoleciopsis minutiscissiulus	MFLUCC 12-0089	KF366382	KF366383	–	–	
Septoria phragmitis	CPC 24118	KR873279	–	KR873251	–	
S. pseudophragmitis	CBS 145417	–	–	MK601616	MK559452	
Setomelanomma bolmii	CBS 110217	GU301871	GU296196	KT389542	GU349028	
Setophoma antiqua	CBS 145369	MK11947	–	MK11909	MK250709	
S. chromolaenae	CBS 135105	KF251747	–	KF251244	KF253195	
S. endophytica	LC3163	MK511956	–	MK511931	MK525092	
Species	Strain/Voucher no.	GenBank accession no.				
-------------------------	-------------------	-----------------------				
		LSU	SSU	ITS	tef1–α	
S. longinqua	LC6593	MK511946 – MK511908	MK525069			
S. pseudosacchari	CBS 145373	MK540039 – MK539969				
S. sacchari	MFLUCC 11-0154	KJ476146 – KJ476144	KJ461319			
	MFLUCC 12-0241	KJ476147 – KJ476149	KJ461318			
S. terrestris	CBS 335.29	KF251749 – GQ87526	KF251246 – KF253196			
S. vernoniae	CBS 137988	KJ869198 – KJ869141	MK540162			
S. yingyishenii	LC12696	MK511950 – MK511914	MK525075			
S. yunnanensis	LC6532	MK511945 – MK511907	MK525068			
Stagonospora folicola	CBS 110111	KF251759 – EU754118	KF251256 – KF253206			
Sulcispora sp.	MFLUCC 14-0995	KP271444 – KP271445	KP271444 – MH665366			
Sulcispora pleurospora	CBS 460.84	– – – – – –				
Tinteltobia destructans	CBS 127737	KY090664 – KY090698	KY090652 –			
T. apantiae	CBS 376.91	GU238123 – GU238226	KY090651 –			
Vagicolia vagans	CBS 604.86	KU058727 – KF251193	KF253149			
Vitalliana mangrovei	NFCCI 4251	MG767312 – MG767313	MG767311 – MG767314			
Vrystatia aloeicola	CBS 135107	KF251781 – KF251278 –				
Wingfeldomyces cyperi	CBS 141450	KX228337 – KX228286	MK540163			
Wojnowiciella eucalypti	CPC 25024	KR477674 – KR477674	LT990617			
W. kunmingensis	KUMCC 18-0159	MK356354 – MK356368	MK356380 – MK359071			
Xenophoma punctelliae	CBS 128022	JQ238619 – – – – –	KP170686			
Xeneopteria neoaccardi	CBS 120.43	KF251783 – KF251280	KF253227			
CBS 128665	KF251784 – KF251281	KF253228				
Yunnanensis chromolaenae	MFLUCC 17-1486	MN994573 – MN994596	MN998177			
	MFLUCC 17-1487	MN994574 – MN994597	MN998178			
Yunnanensis phagnitis	MFLUCC 17-0315	MF684863 – MF684876	MF684862 – MF683624			
	MFLUCC 17-1361	MF684865 – MF684871	MF684869 –			

Bayesian inference analyses (BI). ML trees were generated using the RAxML-HPC2 on XSEDE (8.2.8) (Stamatakis et al. 2008; Stamatakis 2014) in the CIPRES Science Gateway platform (Miller et al. 2010) using GTR+I+G model of evolution. The MP analysis was performed using PAUP (Phylogenetic Analysis Using Parsimony) version 4.0b10 (Swofford 2002), with parameters as described in Tennakoon et al. (2019). Descriptive tree statistics for parsimony, such as Tree Length (TL), Consistency Index (CI), Retention Index (RI), Relative Consistency Index (RC) and Homoplasy Index (HI) were calculated.

The BI analysis was conducted with MrBayes v. 3.1.2 (Huelsenbeck and Ronquist 2001) to evaluate posterior probabilities (PP) (Rannala and Yang 1996; Zhaxybayeva and Gogarten 2002) by Markov Chain Monte Carlo sampling (MCMC). Six MCMC chains were run simultaneously, starting from random trees for 3,000,000 generations. Trees were sampled every 100th generation for a total of 30,000 trees. The first 6,000 trees were discarded as the burn-in phase of each analysis. Posterior probabilities (Rannala and Yang 1996) were determined from a majority-rule consensus tree generated with the remaining 24,000 trees. Phylograms were visualized with FigTree v1.4.0 (Rambaut 2012) and annotated in Microsoft Power Point (2010). Sequences of the new strains generated in this study are deposited in GenBank. The final alignment and trees were deposited in TreeBASE, submission ID: 26088.
Results

Phylogenetic analysis

The combined dataset of ITS, LSU, SSU and tef1-α sequences comprised 3423 characters, of which 2418 characters are constant, 697 characters are parsimony-in-
formative, while 308 variable characters are parsimony-uninformative in the maximum parsimony (MP) analysis (TL = 6364, CI = 0.250, RI = 0.657, RC = 0.164, HI = 0.750). The RAxML analysis of the combined dataset yielded a best scoring tree (Figure 1) with a final ML optimization likelihood value of \(-34492.801018\). The matrix had 1331 distinct alignment patterns, with 37.25% of undetermined characters or gaps. Estimated base frequencies are; A = 0.247120, C = 0.228182, G = 0.268238, T = 0.256459; substitution rates AC = 1.250439, AG = 3.526348, AT = 2.517351, CG = 0.798250, CT = 6.907432, GT = 1.000; proportion of in-
variable sites $I = 0.596400$; gamma distribution shape parameter $\alpha = 0.492378$. All analyses (ML, MP and BI) gave similar results and are in agreement with previous studies based on multi-gene analyses (Hyde et al. 2019, 2020; Phookamsak et al. 2019). Phylogenetic analyses of the combined data matrix resulted in well-resolved clades, many of which had considerably high statistical support (Figure 1). Bootstrap support values for maximum likelihood, maximum parsimony $\geq 70\%$, and Bayesian posterior probabilities (BYPP) ≥ 0.95 are given above each branch in that order (Figure 1). Phylogenetic position and statistical support are noted in the taxonomy section.

Figure 1. Continued.
Taxonomy

Elongaticollum Tennakoon, C.H. Kuo & K.D. Hyde, gen. nov.

Index Fungorum number: IF 557486
Facesoffungi number: FoF07849

Etymology. Refers to the fact that the pycnidia have elongated necks.

Diagnosis. Saprobic on dead leaves of *Hedychium coronarium* J. Koenig. **Sexual morph:** Undetermined. **Asexual morph:** Coelomycetous. *Conidiomata* pycnidial, solitary, superficial, dark brown to black, obpyriform, papillate. **Neck** elongate, dark brown, usually straight, but sometimes slightly curved. *Conidiomatal wall* composed of 4–5 layers of light brown cells, arranged in **textura angularis. Conidiophores** reduced to **conidiogenous cells**. **Conidiogenous cells** hyaline, aseptate, smooth, ampulliform, arising from the inner cell wall of the apex. **Conidia** oval to oblong, smooth and thin-walled, hyaline, aseptate, with 1–2-minute guttules.

Type species. *Elongaticollum hedychii* Tennakoon, C.H. Kuo & K.D. Hyde.

Elongaticollum hedychii Tennakoon, C.H. Kuo & K.D. Hyde, sp. nov.

Index Fungorum number: IF 557487
Facesoffungi number: FoF07850

Figure 2

Etymology. Name reflects the host *Hedychium coronarium* J. Koenig, from which the holotype was collected.
Holotype. MFLU 18-2542.

Diagnosis. Saprobic on dead leaves of *Hedychium coronarium* J. Koenig. Sexual morph: Undetermined. Asexual morph: Coelomycetous. **Conidiomata** 120–140 µm high, 60–70 µm diam., pycnidial, solitary, scattered, superficial, visible as small black spots on host surface, dark brown to black, obpyriform, papillate. **Neck** up to 80–100 µm long, 20–30 µm diam., elongated, dark brown, usually straight, but sometimes slightly curved. **Conidiomatal wall** up to 80–100 µm wide, composed of 4–5 layers of light brown, thick-walled cells, arranged in texture angularis. **Conidiophores** reduced to **conidiogenous cells**. **Conidiogenous cells** 3–4 × 3–3.5 µm (\(\bar{x} = 3.6 \times 3.2 \) µm, \(n = 10 \)), arising from the inner cell wall of the apex, hyaline, aseptate, smooth, ampulliform. **Conidia** 4–5 × 1.8–2.2 µm (\(\bar{x} = 4.6 \times 2.1 \) µm, \(n = 30 \)), oval to oblong, smooth, thin-walled, hyaline, aseptate, with 1–2-minute guttules.

Culture characteristics. Colonies on PDA reaching 30 mm diameter after 3 weeks at 20–25 °C, colonies medium sparse, circular, raised, surface slightly rough with entire edge, margin entire, colony from above: light brown to grey at the margin, dark brown at middle, dark brown to black at the center; reverse, light brown to yellowish at the margin, brown at middle, dark brown to black at the center; mycelium light brown to grey with tufts; not producing pigments in PDA.

Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaves of *Hedychium coronarium* J. Koenig (Zingiberaceae), 15 August 2018 (23°27.514’N, 120°36.302’E), D.S. Tennakoon, TLF031-A (MFLU 18-2542, holotype), ex-type living culture (MFLUCC 18-1638 = NCYUCC 19-0163); ibid. 20 August 2018 (23°27.530’N, 120°36.314’E), TLF031-B (NCYU19-0139, paratype), living culture (NCYUCC19-0286); ibid. 25 August 2018 (23°27.512’N, 120°36.301’E), TLF031-C (NCYU19-0140, paratype), living culture (NCYUCC 19-0287).

Notes. The genus *Elongaticollum* differs from other asexual morphs in Phaeosphaeriaceae in dark brown to black, superficial, obpyriform, pycnidial conidiomata with distinct elongate necks (80–100 µm) and a globose base and oval to oblong, hyaline, aseptate conidia (Figure 2). Multi-gene phylogenetic analyses (LSU, SSU, ITS, tef1-α), show *Elongaticollum* strains constitute a highly supported independent lineage nested between *Setophoma sensu lato* and *Neostagonosporella* (97% ML, 80% MP , 1.00 BYPP, Figure 1). However, the asexual morph of *Setophoma* can be distinguished from *Elongaticollum* in having setose conidiomata without elongate necks and oblong to ellipsoidal conidia, whereas, *Elongaticollum* have conidiomata with distinct elongate necks and lacking setae and oval to oblong conidia (De Gruyter et al. 2010; Phookamsak et al. 2014). Despite some *Setophoma* species not having setae (i.e. *S. antiqua*, *S. endophytica*, and *S. yunnanensis*) (Liu et al. 2019), *Elongaticollum* species can be distinguished by its superficial conidiomata with elongate necks.

The asexual morph of *Neostagonosporella* differs from *Elongaticollum* in having multiloculate conidiomata without distinct elongate necks and two types of conidia (macroconidia: subcylindrical to cylindrical, transversely multi-septate, hyaline and microconidia oval, ellipsoidal or long ellipsoidal, aseptate, hyaline), whereas *Elongaticollum* has uni-loculate conidiomata with distinct elongate necks and oval to oblong conidia (Figure 2, Yang et al. 2019).
Phylogenetic investigations herein provide insights into the taxonomy of *Setophoma* as well (Figure 1). Two major clades of *Setophoma* are recovered (*Setophoma sensu stricto* and *Setophoma sensu lato*). The *Setophoma sensu stricto* clade includes *S. brachypodii*, *S. poaceicola* and *S. terrestris* (type species). *Setophoma sensu lato* comprises *S. antiqua*, *S. chromolaenae*, *S. endophytica*, *S. pseudosacchari*, *S. sacchari*, *S. vernoniae*, *S. yingyisheniae* and *S. yunnanensis* (Figure 1). *Elongaticollum*, differs from *Setophoma sensu lato* in having distinct superficial, obpyriform, pycnidial conidiomata with a globose base and distinct elongated necks (Figure 2, Liu et al. 2019). Further work is needed to resolve relationships between *Setophoma sensu stricto* and *Setophoma sensu lato*.

Ophiosphaerella Speg., Anal. Mus. nac. B. Aires, Ser. 3 12: 401 (1909)

Notes. *Ophiosphaerella* was introduced by Spegazzini (1909) to accommodate *O. graminicola* Speg. as the type species. The species of this genus are characterized by papillate ascomata bearing fissitunicate, cylindrical asci frequently narrower near the
base, with a short furcate pedicel and filamentous, pale brown, multi-septate ascospores without swollen cells or separating into part spores. Barr (1987) placed *Ophiophysaerella* in Phaeosphaeriaceae and this was confirmed by Zhang et al. (2009, 2012) and Hyde et al. (2013) based on molecular phylogeny. Most *Ophiophysaerella* species are often found as pathogens or saprobes worldwide on Poaceae and Cyperaceae (Câmara et al. 2000). Currently, twelve *Ophiophysaerella* species are listed in Index Fungorum (2020). In this study, we introduce *Ophiophysaerella taiwanensis* from *Agave tequilana* F.A.C. Weber (Asparagaceae) as a new species.

Ophiophysaerella taiwanensis Tennakoon, C.H. Kuo & K.D. Hyde, sp. nov.
Index Fungorum number: IF 557488
Facesoffungi number: FoF07851
Figure 3

Etymology. Named after Taiwan, where this fungus was collected.

Holotype. MFLU 18-2534.

Diagnosis. Saprobic on dead leaf of *Agave tequilana* F.A.C. Weber (Asparagaceae).

Sexual morph: *Ascomata* 270–310 µm high, 220–260 µm diam., solitary, scattered, immersed to slightly erumpent through host tissue with papilla, visible as raised, small black dots in host surface, globose to subglobose, uniloculate, glabrous, dark brown to black, ostiole central, periphysate. *Peridium* 20–25 µm wide, thick-walled, of equal thickness, composed of 6–7 layers of small, flattened, brown to dark brown pseudo-parenchymatous cells, hyaline towards the inside, arranged in a textura angularis, fusing and indistinguishable from the host tissues. *HAMATHECIUM* of 1.5–2.5 µm wide, cellular, septate, rarely branching, pseudoparaphyses, anastomosing mostly above the asci and embedded in a mucilaginous matrix. *Asci* 115–140 × 8.5–10 µm (x̄ = 121.6 × 9.2 µm, n = 20), 8-spored, bitunicate, fissitunicate, cylindrical to cylindric-clavate, short pedicellate, apically rounded, with a well-developed ocular chamber. *Ascospores* 110–132 × 2.2–2.7 µm (x̄ = 117.2 × 2.4 µm, n = 20), fasciculate, parallel, scolecosporous, filiform, 12–13-septate, narrowing towards ends, pale brown to brown, smooth-walled.

Asexual morph: Undetermined.

Culture characteristics. Colonies on PDA reaching 25 mm diameter after 3 weeks at 20–25 °C, colonies medium sparse, circular, raised, surface slightly rough with entire edge, margin well-defined, colony from above: gray to light brown at the margin, gray to cream at the center; reverse, gray to light brown at the margin, dark brown to black at the center; mycelium whitish gray with tufting; not producing pigments in PDA.

Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaf of *Agave tequilana* F.A.C. Weber (Asparagaceae), 15 August 2018 (23°27.520′N, 120°36.310′E), D.S. Tennakoon, TLF016 (MFLU 18-2534, holotype; *ibid.* (NCYU19-0131, isotype), ex-type living culture, NCYUCC 19-0152.

Notes. The scolecosporous specimen was collected from dead leaves of *Agave tequilana* (Asparagaceae) in Taiwan. The multi-gene phylogenetic analysis (Figure 1)
Figure 3. Ophiosphaerella taiwanensis (MFLU 18-2534, holotype) a, b appearance of ascomata on host c close-up of ascomata d vertical section through ascoma e apex of ascoma f peridium g pseudoparaphyses h–j asci k, l ascospores m germinated ascospore in PDA n colony from above o colony from below. Scale bars: 100 µm (d, e), 15 µm (f), 50 µm (g–m).

shows our strain (Ophiosphaerella taiwanensis, NCYUCC 19-0152), cluster with other Ophiosphaerella species, in particular with close affinity to Ophiosphaerella agrostidis with high bootstrap support (88% ML, 70% MP, 0.99 BYPP, Figure 1). Morphological characters of our collection (NCYUCC 19-0152) differ from Ophiosphaerella agrostidis in having periphyses in the ostiole, 12–13 septate ascospores and host occurrence (Asparagaceae). Ophiosphaerella agrostidis was introduced by Câmara et al. (2000) on Agrostis palustris (Poaceae), and is lacking periphyses, comprises 15-septate ascospores (Phookamsak et al. 2014). A comparison of the 619 nucleotides across the tef1-α gene region of Ophiosphaerella taiwanensis and O. agrostidis (MFLUCC 11-0152) reveals 17 base pair differences (2.74%).

Phaeosphaeriopsis M.P.S. Câmara, M.E. Palm & A.W. Ramaley, Mycol. Res. 107(5): 519 (2003)

Notes. The genus Phaeosphaeriopsis was introduced by Câmara et al. (2003) to accommodate Paraphaeosphaeria-like taxa, viz. P. agavensis A.W. Ramaley, M.E. Palm &
Additions to Phaeosphaeriaceae (Pleosporales)

M.E. Barr, *P. glaucopunctata* (Grev.) Shoemaker & C.E. Babc., *P. nolinae* A.W. Ramaley, *P. obtusispora* (Speg.) O.E. Erikss, *Phaeosphaeriopsis amblyspora* A. W. Ramaley and *Phaeosphaeriopsis amblyspora* A. W. Ramaley. The genus is typified by *P. glaucopunctata* and characterized by having immersed, sub-epidermal, globose to subglobose to pyriform ascomata, cylindric asci and septate, punctate or verrucose ascospores (Câmara et al. 2003; Phookamsak et al. 2014; Thambugala et al. 2014; Tibpromma et al. 2017). Currently, 17 *Phaeosphaeriopsis* species are accepted in Index Fungorum (2020). In this paper, *Phaeosphaeriopsis beaucarneae* is introduced from *Beaucarnea recurvata* (Asparagaceae) as a new species and the sexual/asexual morph connection between strains isolated from the natural habitat was established based on molecular sequence data.

Phaeosphaeriopsis beaucarneae Tennakoon, C.H. Kuo & K.D. Hyde, sp. nov.

Index Fungorum number: IF 557489
Facesoffungi number: FoF07852
Figures 4, 5

Etymology. Name reflects the host *Beaucarnea recurvata* Lem., from which the holotype was collected.

Holotype. MFLU 18-2586.

Diagnosis. Saprobic on dead leaf of *Beaucarnea recurvata* Lem. (Asparagaceae).

Sexual morph: *Ascomata* 160–200 µm high, 220–250 µm diam., scattered, solitary, gregarious, coriaceous, immersed to semi-immersed, slightly raised, erumpent, visible as black spots on host surface, uniloculate, dark brown to black, globose to subglobose, ostiolate. *Ostiole* central, papillate. *Peridium* 20–30 µm wide, thick-walled, of equal thickness, composed of 4–5 layers of dark brown to brown, thick-walled, pseudoparenchymatous cells of textura angularis. *Hamathecium* of 1.5–2.5 µm wide, cellular, septate, rarely branching, pseudoparaphyses, anastomosing mostly above the asci and embedded in a mucilaginous matrix. *Asci* 80–90 × 9–10 µm (\(\bar{x} = 86.5 \times 9.6 \) µm, \(n = 25\)), 8-spored, bitunicate, fissitunicate, cylindrical to cylindric-clavate, short pedicellate, apically rounded, with a well-developed ocular chamber. *Ascospores* 20–25 × 5.5–7 µm (\(\bar{x} = 22.6 \times 6.2 \) µm, \(n = 20\)), overlapping 1–2-seriate, oblong to cylindrical, yellowish to light brown, slightly narrowing towards the end cells, mostly 5-septate, constricted at the septa, enlarged at the 4th cell from above, verruculose, straight to curved, lacking a mucilaginous sheath. **Asexual morph:** *Conidiomata* 180–200 µm high, 140–160 µm diam., pycnidial, solitary, immersed to erumpent, small black spots on host surface, globose to subglobose with centrally placed ostiole. *Conidiomatal wall* 28–34 µm wide, composed of 6–7 layers of dark brown cells, arranged in textura angularis. *Conidiophores* reduced to conidiogenous cells. *Conidiogenous cells* 3–4 × 2.6–3.1 µm, holoblastic, phialidic, single, discrete, sometimes integrated, ampulliform or cylindric-clavate, hyaline, arising from basal stratum. *Conidia* 6.8–7.4 × 3–4 µm (\(\bar{x} = 7.1 \times 3.4 \) µm, \(n = 30\)), 1-celled, globose to subglobose, initially hyaline, becoming brown to dark brown, aseptate, rough-walled.
Figure 4. Phaeosphaeriopsis beaucarneae (MFLU 18-2586, holotype) **a** appearance of ascomata on host **b** close up of ascoma **c** vertical section through ascoma **d** peridium **e** pseudoparaphyses **f-i** asci **j-n** ascospores **o** germinated ascospore in PDA **p** colony from above **q** colony from below. Scale bars: 100 µm (**c**), 15 µm (**d**), 50 µm (**e–i**), 10 µm (**j–o**).

Culture characteristics. Colonies on PDA reaching 27 mm diameter after 3 weeks at 20–25 °C, colonies medium sparse, circular, raised, surface slightly rough with entire edge, margin irregular, colony from above: light brown at the margin, white to cream at the center; reverse, yellow to light brown at the margin, light brown to brown at the center; mycelium white to cream with tufting; not producing pigments in PDA.

Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaf of Beaucarnea recurvata Lem. (Asparagaceae), 21 July 2018 (23°27.514’N, 120°36.302’E), D.S. Tennakoon, SV027 (MFLU 18-2586, holotype); *ibid.* (NCYU19-0184, isotype), ex-type living culture, NCYUCC 19-0106; *ibid.*, Dahu forest, dead leaf of Beaucarnea recurvata Lem. (Asparagaceae), 25 July 2018 (23°26.534’N, 120°36.220’E), D.S. Tennakoon, SV028 (MFLU 18-2587, paratype); living culture, NCYUCC 19-0107.

Notes. Phaeosphaeriopsis beaucarneae is similar to other Phaeosphaeriopsis species in having scattered, semi-immersed to erumpent, globose to subglobose, ostiolate ascomata and cylindrical to clavate asci and light brown, verrucose ascospores (Phookamsak et al. 2014; Thambugala et al. 2014; Hyde et al. 2020). According to
Figure 5. *Phaeosphaeriopsis beaucarneae* (MFLU 18-2586, paratype) **a** appearance of conidiomata on host **b** close up of conidiomata **c** vertical section through conidioma **d** conidiomatal wall **e, f** conidiogenous cells and developing conidia **g–i** conidia **j** germinated conidium in PDA **k** colony from above **l** colony from below. Scale bars: 100 µm (**c**), 20 µm (**d**), 3 µm (**e, f**), 5 µm (**g–j**).

the present multi-gene phylogenetic analyses (Figure 1), *Phaeosphaeriopsis beaucarneae* is grouped with other *Phaeosphaeriopsis* species, in particularly closely to *P. grevilleae* (CBS 145369) with high statistical support (70% ML, 75% MP, 0.99 BYPP, Figure 1). The asexual morph of *P. grevilleae* was isolated from leaves of *Grevillea* sp. (Proteaceae) and introduced by Marin-Felix et al. (2019). *Phaeosphaeriopsis beaucarneae* differs from *P. grevilleae* in having larger conidia (6.8–7.4 × 3–4 µm), whereas *P. grevilleae* has comparatively smaller conidia (5 × 3.5 µm). A comparison of the 516 nucleotides across the ITS (+5.8S rDNA) gene region of *Phaeosphaeriopsis beaucarneae* and *P. grevilleae* (CBS 145369) revealed 16 base pair differences (3.10%). In addition, we compared our new taxon with *P. grevilleae* based on base pair differences in the tefl-α gene region. We found a total of 19 base pair differences (3.06%) across 619 nucleotides.

Recent studies have revealed that *Phaeosphaeriopsis* is a species rich genus and numerous *Phaeosphaeriopsis* species have been described during the last few years (Thambugala et al. 2014; Tibpromma et al. 2017; Marin-Felix et al. 2019; Al-Jaradi et al. 2020; Hyde et al. 2020). With this study, the number of *Phaeosphaeriopsis* species increases to 18.
Neosetophoma Gruyter, Aveskamp & Verkley, *Mycologia* 102(5): 1075 (2010)

Notes. *Neosetophoma* was introduced by de Gruyter et al. (2010), typified by *N. samararum* (Desm.) Gruyter, Aveskamp. & Verkley. Species of *Neosetophoma* are characterized by globose to irregular conidiomata, with papillate ostioles, and yellowish conidia that are attenuate at one end (De Gruyter et al. 2010; Liu et al. 2015). Tibpromma et al. (2017) introduced *Neosetophoma garethjonesii* Tibpromma, E.B.G. Jones & K.D. Hyde as the first report of the sexual morph of *Neosetophoma*. *Neosetophoma* species have a diverse distribution as saprobes, endophytes, plant pathogens and soil fungi (Phookamsak et al. 2014; Hernandez-Restrepo et al. 2016; Karunarathna et al. 2017; Tibpromma et al. 2017; Wanasinghe et al. 2018). Currently, 19 *Neosetophoma* species are accepted in Index Fungorum (2020). In this study, we found *Neosetophoma poaceicola* Goonas., Thambug. & K.D. Hyde from dead leaves of *Musa acuminata* Colla in Taiwan. This is the first *Neosetophoma* species recorded from the plant family Musaceae.

Neosetophoma poaceicola Goonas., Thambug. & K.D. Hyde. *Mycosphere* 8: 742 (2017)
Index Fungorum number: IF552974
Facesoffungi number: FoF00262
Figure 6

Diagnosis. Saprobic on dead leaf petioles of *Musa acuminata* Colla (Musaceae). **Sexual morph:** Ascomata 70–100 µm high, 90–130 µm diam., solitary, gregarious, coriaceous, immersed to semi-immersed, slightly raised, visible as black spots on host surface, uni-loculate, dark brown to black, globose to ovoid. Peridium 15–20 µm wide, thick-walled, of equal thickness, composed of several layers of dark brown to brown, pseudoparenchymatous cells of textura angularis. Hamathecium of 1–2 µm wide, cellular, rarely branching, pseudoparaphyses, anastomosing mostly above the asci and embedded in a mucilaginous matrix. Asci 60–80 × 7–8 µm (x = 70.6 × 7.6 µm, n = 30), 8-spored, bitunicate, fissitunicate, cylindric-clavate with a short, rounded pedicel, apically rounded. Ascospores 20–30 × 3–4 µm (x = 25.5 × 3.7 µm, n = 40), overlapping 1–2-seriate, hyaline, fusiform, with acute ends, 1-septate, 3–4 eu-septate, cell near the septum slightly larger, slightly constricted at the septum, straight to curved, smooth-walled, guttulate. **Asexual morph:** Undetermined.

Culture characteristics. Colonies on PDA reaching 30 mm diameter after 3 weeks at 20–25 °C, colonies medium sparse, circular, flat, surface slightly rough with entire edge, margin well-defined, colony from above: yellow to light brown at the margin, brown at the center; reverse: yellow to light brown at the margin, dark brown at the center; mycelium light brown to whitish grey with tufting; not producing pigments in PDA.

Material examined. Taiwan, Chiayi, Fanlu Township area, Dahu Forest, dead leaf petiole of *Musa acuminata* Colla (Musaceae), 21 July 2018 (23°27.530’N, 120°36.340’E), D.S. Tennakoon, SV049 (MFLU 18-2597, new host record), living culture, MFLUCC 18-1632,NCYUCC 19-0119.
Additions to Phaeosphaeriaceae (Pleosporales)

Notes. As morphological characters (immersed to semi-immersed ascomata, cylindrical-clavate, apically rounded asci with short rounded pedicel and hyaline, fusiform, 1-septate ascospores) largely overlap with those of *Neosetophoma poaceicola* (MFLUCC 16–0886), we report our collection (MFLUCC 18-1632) as a new host record of *N. poaceicola* from dead leaves of *Musa acuminata* (Musaceae) in Taiwan. Combined multi-gene (LSU, SSU, ITS and *tefl-α*) based phylogenies also showed that our collection clustered with *Neosetophoma poaceicola* (MFLUCC 16-0886), with high bootstrap support (100% ML, 100% MP, 1.00 BYPP, Figure 1). *Neosetophoma poaceicola* was introduced by Thambugala et al. (2017) from dead leaves of grass species in Thailand. However, our collection slightly differs from *Neosetophoma poaceicola* (MFLUCC 16-0886) in having comparatively slightly larger ascospores (20–30 × 3–4 µm, versus 18.5–22.5 × 3.5–5 µm).

Neosetophoma species have been recorded from various host families, viz. Brassicaceae, Caprifoliaceae, Iridaceae, Malvaceae, Ranunculaceae, Salicaceae, but most are reported from Poaceae (Phookamsak et al. 2014; Karunarathna et al. 2017; Tiptromma et al. 2017, Wanasinghe et al. 2018; Marin-Felix et al. 2019). Interestingly, this is the first *Neosetophoma* species record (MFLU 18-2597) from the plant family Musaceae.

Figure 6. *Neosetophoma poaceicola* (MFLU 18–2597, new host record) a appearance of ascomata on host b close up of ascomata c vertical section through ascoma d peridium e pseudoparaphyses f–h asci i–k ascospores l germinated ascospore in PDA m colony from above n colony from below. Scale bars: 50 µm (c), 20 µm (d), 30 µm (e–h), 15 µm (i–l).
Discussion

The taxonomy of Phaeosphaeriaceae has been subjected to several changes in recent years. Traditionally, morphology-based identification was the main means for identifying Phaeosphaeriaceae species (Barr 1979, 1992; Tomilin 1993). However, species identification has been revolutionized by the application of molecular based approaches incorporating DNA sequence data in Phaeosphaeriaceae (Phookamsak et al. 2014, 2017; Tennakoon et al. 2016; Wanasinghe et al. 2018; Bakhshi et al. 2019; Chethana et al. 2020; Hyde et al. 2020). Phaeosphaeriaceae species are adapted to a wide range of ecological environments and are present in soils, fresh and marine habitats and cause infections in humans (Yuan 1994; Phookamsak et al. 2014, 2017; Ahmed et al. 2017; Maharachchikumbura et al. 2019; Valenzuela-Lopez et al. 2019). Members of the Phaeosphaeriaceae have also been recorded from both temperate and tropical countries (i.e. Austria, Belgium, Bulgaria, Canada, China, Germany, Italy, Japan, Norway, Poland, Thailand, Sweden, Switzerland) and from different host families (i.e. Acoraceae, Arecales, Cyperaceae, Asparagaceae, Brassicaceae, Fabaceae, Poaceae, Marantaceae) (Shoemaker and Babcock 1989; Phookamsak et al. 2014, 2019; Wanasinghe et al. 2018; Maharachchikumbura et al. 2019; Farr and Rossman 2020). Due to their cosmopolitan distribution, in the last few years, many researchers have paid significant attention to the Phaeosphaeriaceae (Phookamsak et al. 2014, 2019; Tennakoon et al. 2016; Wanasinghe et al. 2018; Bakhshi et al. 2019; Hyde et al. 2020).

The fungi that decay leaf litter are highly diverse and may be host-specific (Parungao et al. 2002). Several studies have examined the succession of leaf degrading communities and found unique sets of species on different types of litter (Promputtha et al. 2002, 2017; Duong et al. 2008). Additional ecological studies are therefore needed to establish whether these fungi are generalists or specialists. This study provides evidence to indicate the fungal diversity in leaf litter, even within a single family, Phaeosphaeriaceae. Additional work is necessary to identify if the newly described species are host specific.

Acknowledgments

The authors would like to thank T.K. Goh for his valuable suggestions and help. Shaun Pennycook is thanked for checking species names. This research work was partially supported by Chiang Mai University and K.D. Hyde thanks Chiang Mai University for the award of Visiting Professorship. He also thanks the Thailand Research Fund for the Grant No. RDG613001, entitled “Impact of Climate Change on Fungal Diversity and Biogeography in the Greater Mekong Subregion”. D.N. Wanasinghe would like to thank the CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (number 2019PC0008), the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants: 41761144055, 41771063 and Y4ZK111B01. Wanasinghe also thanks the 64th batch of China Postdoctoral Science Foundation (grant no: Y913083271).
References

Al-Jaradi AJ, Maharachchikumbura SS, Al-Sadi AM (2020) *Phaeosphaeriopsis omaniana* (Phaeosphaeriaceae, Pleosporales), a novel fungus from Oman. Phytotaxa 436: 187–192. https://doi.org/10.11646/phytotaxa.436.2.8

Ahmed SA, Hofmueller W, Seibold M, de Hoog GS, Harak H, Tammer I, Van Diepeningen AD, Behrens-Baumann W (2017) *Tintelnotia*, a new genus in Phaeosphaeriaceae harbouring agents of cornea and nail infections in humans. Mycoses 60: 244–253. https://doi.org/10.1111/myc.12588

Bakhshi M, Arzanlou M, Groenewald JZ, Quaedvlieg W, Crous PW (2019) *Parastagonosporella fallopiae* gen. et sp. nov. (Phaeosphaeriaceae) on *Fallopia convolvulus* from Iran. Mycological Progress 18: 203–214. https://doi.org/10.1007/s11557-018-1428-z

Bani A, Pioli S, Ventura M, Panzacchi P, Borruso L, Tognetti R, Tonon G, Brusetti L (2018) The role of microbial community in the decomposition of leaf litter and deadwood. Applied soil ecology 126: 75–84. https://doi.org/10.1016/j.apsoil.2018.02.017

Barr ME (1979) A classification of Loculoascomycetes. Mycologia 71: 935–957. https://doi.org/10.1080/00275514.1979.12021099

Barr ME (1987) New taxa and combinations in the Loculoascomycetes. Mycotaxon 29: 501–505.

Barr ME (1992) Additions to and notes on the Phaeosphaeriaceae (Pleosporales, Loculoascomycetes). Mycotaxon 43: 371–400.

Berg B, McLaugherty C (2003) Plant Litter. Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag, Berlin Heidelberg, New York.

Berg B, McLaugherty C (2008) Plant Litter. Decomposition, Humus Formation, Carbon Sequestration (2nd ed.). Springer. https://doi.org/10.1007/978-3-540-74923-3

Câmara MPS, Ramaley AW, Castlebury LA, Palm ME (2003) *Neophaeosphaeria* and *Phaeosphaeriopsis*, segregates of *Paraphaeosphaeria*. Mycological Research 107: 516–522. https://doi.org/10.1017/S0953756203007731

Chaiwan N, Wanasinghe DN, Camporesi E, Tibpromma S, Boonmee S, Lumyong S, Hyde KD (2019) Molecular taxonomy reveals the sexual morph of *Nodulosphaeria digitalis* in Phaeosphaeriaceae from *Campanula trachelium* in Italy. Phytotaxa 400: 1–13. https://doi.org/10.11646/phytotaxa.400.1.1

Chethana KWT, Jayawardena RS, Hyde KD (2020) Hurdles in fungal taxonomy: Effectiveness of recent methods in discriminating taxa. Megataxa 1: 114–122. https://doi.org/10.11646/megataxa.1.2.2

De Gruyter J, Woudenberg JH, Aveskamp MM, Verkley GJ, Groenewald JZ, Crous PW (2010) Systematic reappraisal of species in *Phoma* section *Paraphoma*, *Pyrenochaeta* and *Pleurophoma*. Mycologia 102: 1066–1081. https://doi.org/10.3852/09-240

Devadatha B, Mehta N, Wanasinghe DN, Baghela A, Sarma VV (2019) *Vittaliana mangrovei* gen. nov, sp. nov. (Phaeosphaeriaceae), from mangroves near Pondicherry (India), based on morphology and multigene phylogeny. Cryptogamie Mycologie 40: 117–132. https://doi.org/10.5252/cryptogamiemycologie2019v40a7
Duong LM, McKenzie EHC, Lumyong S, Hyde KD (2008) Fungal succession on senescent leaves of *Castanopsis diversifolia* in Doi Suthep-Pui National Park, Thailand. Fungal Diversity 30: 23–36. http://cmuir.cmu.ac.th/jspui/handle/6653943832/60073

Farr DF, Rossman AY (2020) Fungal databases, Systematic mycology and microbiology laboratory, ARS, USDA. [Retrieved April 10, 2020] http://nt.ars-grin.gov/fungaldatabases

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hernandez-Restrepo M, Schumacher RK, Wingfield MJ, Ishtiaq A, Cai L, Duong TA, Edwards J, Gene J, Groenewald JZ, Sana J, Khalid AN (2016) Fungal systematics and evolution: FUSE 2. Sydowia 68: 193–230. https://doi.org/10.12905/0380.sydowia68-2016-0193

Hongsanan S, Hyde KD, Phookamsak R, Wanasasinghe DN, McKenzie HCE, Sarma VV, Boonmee S, Lücking R, Pam D, Bhat JD, Liu N, Tennakoon DS, Karunarathna A, Jiang SH, Jones EBG, Phillips AJL, Manawasinghe I, Tibpromma S, Jayasiri SC, Sandamali D, Jayawardena RS, Wijayawardene NN, Ekanayaka AH, Jeewon R, Lu YZ, Dissanayake AJ, Zeng XY, Luo Z, Tian Q, Phukhamsakda C, Thambugala KM, Dai D, Chethana TKW, Ertz D, Doilom M, Liu JK, Pérez-Ortega S, Sujia A, Senwanna C, Wijesinghe SN, Konta S, Niranjan M, Zhang SN, Ariyawansa HA, Jiang HB, Zhang JF, de Silva NL, Thiagaraja V, Zhang H, Bezerra JDP, Miranda-Gonzáles R, Aptroot A, Kashiwadani H, Harishchandra D, Aluthmuhandiram JVS, Abeywickrama PD, Bao DF, Devadatha B, Wu HX, Moon KH, Gueidan C, Schummm F, Bundhun D, Mapook A, Monkai J, Chomnunti P, Samarakoon MC, Suetrong S, Chaiwan N, Dayarathe MC, Jing Y, Rathnayaka AR, Bhunjun CS, Xu J, Zheng J, Liu G, Feng Y, Xie N (2020) Refined families of Dothideomycetes. Fungal diversity. [In press]

Huelsenbeck JP, Ronqvist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Hyde KD, Jones EBG, Liu JK, Ariyawansa H, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai DQ, Diederich P, Dissanayake A, Doilom M, Dovery F, Hongsanan S, Jayawardena R, Lawrey JD, Li YM, Liu YX, Lücking R, Monka J, Muggia L, Nelsen MP, Pang KL, Phookamsak R, Senanayake IC, Shearer CA, Suetrong S, Tanaka K, Thambugala KM, Wijayawardene NN, Wikee S, Wu HX, Zhang Y, Begoña AH, Alias SA, Aptroot A, Bahkali AH, Bezerra JL, Bhat DJ, Camporesi E, Chukea E, Gueidan C, Hawksworth DL, Hirayama K, Hoog SD, Kang JK, Knudsen K, Li WJ, Li XH, Liu ZY, Mapook A, McKenzie EHC, Miller AN, Mortimer PE, Phillips AJL, Raja HA, Scheuer C, Schummm F, Taylor JE, Tian Q, Tibpromma S, Wanasasinghe DN, Wang Y, Xu JC, Yacharoen S, Yan JY, Zang M (2013) Families of Dothideomycetes. Fungal Diversity 63: 1–313. https://doi.org/10.1007/s13225-013-0263-4

Hyde KD, Tennakoon DS, Jeewon R, Bhat DJ, Maharachchikumbura SSN, Rossi W, Leonard M, Lee HB, Mun HY, Houben R, Nguyen TTT, Jeon SJ, Frisvad JC, Dhanushka N, Wanasisinghe DN, Luücking R, Aptroot A, Cáceres MES, Karunarathna SC, Hongsanan S, Phookamsak R, de Silva NI, Thambugala KM, Jayawardena RS, Senanayake IC, Boonmee S, Chen J, Luo ZL, Phukhamsakda C, Pereira OL, Abreu VP, Rosado AW, Bart B, Randrianjohany E, Hofstetter V, Gibertoni TB, da Silva Soares AM, Plautz Jr HL, Sotão JMP, Xavier WKS, Bezerra JDP, de Oliveira TGL, de Souza-Motta CM, Magalhães OMC, Bundhun D, Harishchandra D, Manawasinghe IS, Dong W, Zhang SN, Bao DF, Samarakoon...
Additions to Phaeosphaeriaceae (Pleosporales)

MC, Pem D, Karunarathna A, Lin CG, Yang J, Perera RH, Kumar V, Huang SK, Dayaratne MC, Ekanayaka AH, Jayasiri SC, Xiao YP, Konta S, Niskanen T, Liimatainen K, Dai YC, Ji XH, Tian XM, Mešić A, Singh SK, Phutthacharoen K, Cai L, Sorvongxay T, Thiyagaraja V, Norpanphoun C, Chaiwan N, Lu YZ, Jiang HB, Zhang JF, Abeywickrama PD, Aluthmuhandiram JVS, Brahmanage RS, Zeng M, Chethana T, Wei DP, Rébllová M, Fournier J, Nekvindová J, do Nascimento Barbosa R, dos Santos JEF, de Oliveira NT, Li GJ, Ertz D, Shang QJ, Phillips AJL, Kuo CH, Camporesi E, Bulgakov TS, Lumyong S, Jones EBG, Chomnunti P, Gentekaki E, Bungartz F, Zeng XY, Fryar S, Tkáčec Z, Liang J, Li GS, Wen TC, Singh PN, Gafforov Y, Promputtha I, Yasanthika E, Goonasekara ID, Zhao RL, Zhao Q, Kirk PM, Liu JK, Yan JY, Mortimer PE, Xu JC (2019) Fungal diversity notes 1036–1150: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 96: 1–242. https://doi.org/10.1007/s13225-019-00429-2

Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EBG, Liu NG, Abeywickrama PD, Mapook A, Wei DP, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao DF, Li JF, Samarakoon MC, Chaiwan N, Lin CG, Phutthacharoen K, Zhang SN, Senanayake IC, Goonasekara ID, Thambugala KM, Phukhamsakda C, Tennakoon DS, Jiang HB, Yang J, Zeng M, Huanraluek N, Liu JK, Wijesinghe SN, Tian Q, Tíbromsma S, Brahmanage RS, Boonmee S, Huang SK, Thiagaraja V, Lu YZ, Jayawardena LS, Dong W, Yang EF, Singh SK, Singh SM, Rana S, Lad SS, Anand G, Devadatha B, Niranjan M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga RLM, Gibertoni TB, Pliegler WP, Horváth E, Imre A, Alves AL, Santos ACDS, Tiago RV, Bulgakov TS, Wanasinghe DN, Bahkali AH, Doilom M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu JC, Sheng J (2020) Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100: 1–273. https://doi.org/10.1007/s13225-020-00439-5

Index Fungorum (2020) Index Fungorum. http://www.indexfungorum.org/names/Names.asp [accessed 6 April 2020]

Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Ghobad-Nejhad M, Nilsson H, Pang KA, Pereira OL, Phillips AJL, Raspé O, Rollins AW, Romero AI, Etayo J, Selçuk F, Stephenson SL, Suetsong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanyake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, de Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promputtha I (2015) The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8

Johnson EA, Catley KM (2002) Life in the Leaf Litter. American Museum of Natural History, New York.

Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B, Hyde KD, Boekhout T, Ebel R, Rateb ME, Henderson L, Sakayaroj J, Suetsong S, Dayaratne MC, Kumar V, Raghukumar S, Sridhar KR, Bahkali AH, Gleason FH, Norpanphoun C (2019) An online resource for marine fungi. Fungal Diversity 96: 347–433. https://doi.org/10.1007/s13225-019-00426-5
Karunarathna A, Papizadeh, M, Senanayake IC, Jeewon R, Phookamsak R, Goonasekara ID, Wanasinghe DN, Wijayawardene NN, Amoozegar MA, Shahzadeh Fazeli SA, Camporesi E (2017) Novel fungal species of Phaeosphaeriaceae with an asexual/sexual morph connection. Mycosphere 8: 1818–1834. https://doi.org/10.5943/mycosphere8/10/8

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy Ecology and Environment 2: 236–249. https://doi.org/10.1007/s40974-017-0064-9

Liu F, Wang J, Li H, Wang W, Cai L (2019) Setophoma spp. on Camellia sinensis. Fungal Systematics and Evolution 4: 43–57. https://doi.org/10.3114/fuse.2019.04.05

Liu JK, Hyde KD, Jones EBG, Ariyawansa HA, Bhat DJ, Boonmee S, Maharachchikumbura SSN, McKenzie EHC, Phookamsak R, Phukhamsakda C, Shenoy BD, Abdel-Wahab MA, Buyck B, Chen J, Chethana KWT, Singtripop C, Dai DQ, Dai YC, Daranagama DA, Dissanayake AJ, Doilom M, D’Souza MJ, Fan XL, Goonasekara ID, Hitayama K, Hongsan S, Jayasiri SC, Jayawardena RS, Karunarathna SC, Li WJ, Mapook A, Norphanphoun C, Pang KL, Perera RH, Perşoh D, Pinruan U, Senanayake IC, Somrithipol S, Suetrong S, Tanaka K, Thambugala KM, Tian Q, Tibpromma S, Udayanga D, Wijayawardene NN, Wanasinghe DN, Wisitrassameewong K, Zeng XY, Abdel-Aziz FA, Adamčík S, Bahkali AH, Boonyuen T, Bulgakov T, Callac P, Chomnunti P, Greiner K, Hashimoto A, Hofstetter V, Kang JC, Lewis D, Li KH, Liu XZ, Liu ZY, Matsumura M, Mortimer PE, Rambold G, Randrianjohany E, Sato G, Sri-Indrasutdhi V, Tian CM, Verbeken A, von Brackel W, Wang Y, Wen TC, Xu JC, Yan JY, Zhao RL, Camporesi E (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Diversity 72: 1–197. https://doi.org/10.1007/s13225-015-0324-y

Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JF, Su HY (2019) Freshwater Sordariomycetes. Fungal Diversity 99: 451–660. https://doi.org/10.1007/s13225-019-00438-1

Maharachchikumbura SSN, Ariyawansa HA, Wanasinghe DN, Dayarathe MC, Al-Sady NA, Al-Sadi AM (2019) Phylogenetic classification and generic delineation of Hydeomyces desertipleosporoides gen. et sp. nov., (Phaeosphaeriaceae) from Jebel Akhdar Mountain in Oman. Phytotaxa 391: 28–38. https://doi.org/10.11646/phytotaxa.391.1.2

Mapook A, Hyde KD, McKenzie EHC, Jones EBG, Bhat DJ, Jeewon R, Stadler M, Samarakoon MC, Malaitthong M, Tanunchai B (2020) Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity. [In press] https://doi.org/10.1007/s13225-020-00444-8

Marin-Felix Y, Hernández-Restrepo M, Iturrieta-González I, García D, Carnegie AJ, Cheewangkoon R, Gramaje D, Groenewald JZ, Guarinaccia V, Halleen F, Lombard L (2019) Genera of phytopathogenic fungi: GOPHY 3. Studies in Mycology 94: 1–124. https://doi.org/10.1016/j.simyco.2018.04.002

Miller MA, Pfieffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. SC10 Workshop on Gateway Computing Environments (GCE10). https://doi.org/10.1109/GCE.2010.5676129
Mlambo MC, Paavola R, Fritze H, Louhi P, Muotka T (2019) Leaf litter decomposition and decomposer communities in streams affected by intensive forest biomass removal. Ecological indicators 101: 364–372. https://doi.org/10.1016/j.ecolind.2019.01.035

Parungao MM, Fryar SC, Hyde KD (2002) Diversity of fungi on rainforest litter in North Queensland, Australia. Biodiversity & Conservation 11: 1185–1194. https://doi.org/10.1023/A:1016089220042

Phookamsak R, Liu JK, McKenzie EHC, Manammoga DS, Ariyawansa HA, Thambugala KM, Dai DQ, Camporesi E, Chukeatirote E, Wijayawardene NN, Bhakali AH, Mortimer PE, Xu JC, Hyde KD (2014) Revision of Phaeosphaeriaceae. Fungal Diversity 68: 159–238. https://doi.org/10.1007/s13225-014-0308-3

Phookamsak R, Wanasinghe DN, Hongsanan S, Phukhamsakda C, Huang SK, Tennakoon DS, Norphanphoun C, Camporesi E, Bulgakov TS, Promputtha I, Mortimer PE (2017) Towards a natural classification of ophiobolus and ophiobolus-like taxa; introducing three novel genera Ophiobolopsis, Paraophiobolus and Pseudoophiobolus in Phaeosphaeriaceae (Pleosporales). Fungal Diversity 87: 299–339. https://doi.org/10.1007/s13225-017-0393-1

Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBJ, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei D, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan Cano J, Gené J, Li J, Das K, Acharya K, Raj KNA, Lattha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakocon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Mataćec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambagula KM, Tibpromma S, Camporesi E, Bulgakov T, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu J (2019) Fungal diversity notes 929–1036: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 95: 1–273. https://doi.org/10.1007/s13225-019-00421-w

Pointing SB, Pelling AL, Smith GJD, Hyde KD (2005) Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene-specific sequences. Mycological Research 109: 115–124. https://doi.org/10.1017/S0953756204001376

Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818. https://doi.org/10.1093/bioinformatics/14.9.817

Promputtha I, Lumyong S, Lumyong P, McKenzie EC, Hyde KD (2002) Fungal succession on senescent leaves of Manglietia garrettii in Doi Suthep-Pui National Park, northern Thailand. Fungal Diversity 10: 89–100.

Promputtha I, McKenzie EH, Tennakoon DS, Lumyong S, Hyde KD (2017) Succession and natural occurrence of saprobic fungi on leaves of Magnolia lilifera in a tropical forest. Cryptogamie Mycologie 38: 213–225. https://doi.org/10.7872/crym.v38.iss2.2017.213
Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, Hofrichter M, Krüger D, Buscot F (2016) Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology 25: 4059–4074. https://doi.org/10.1111/mec.13739

Rambaut A (2012) FigTree version 1.4.0. http://tree.bio.ed.ac.uk/software/figtree/ [accessed 10 March 2020]

Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. https://doi.org/10.1007/BF02338839

Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634. https://doi.org/10.1016/S0953-7562(09)80409-7

Rehner S (2001) Primers for Elongation Factor 1-α (EF1-α). http://ocid.NACSE.ORG/research/deephyphae/EF1primer.pdf

Robertson GP, Paul EA (1999) Decomposition and soil organic matter dynamics. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (Eds) Methods of Ecosystem Science. Springer, New York, 104–116. https://doi.org/10.1007/978-1-4612-1224-9_8

Shoemaker RA, Babcock CE (1989) Phaeosphaeria. Canadian Journal of Botany 67: 1500–1599. https://doi.org/10.1139/b89-199

Spegazzini C (1909) Mycetes Argentinenses. Series IV. Anales del Museo Nacional de Historia Natural Buenos Aires. Ser. 3, 12: 257–458.

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Systematic biology 57: 758–771. https://doi.org/10.1080/10635150802429642

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Swift MJ, Heal OW, Anderson MM (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford.

Swofford DL (2002) PAUP: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland.

Tennakoon DS, Hyde KD, Phookamsak R, Wanasinghe DN, Camporesi E, Promputtha I (2016) Taxonomy and phylogeny of Juncaceicola gen. nov.(Phaeosphaeriaceae, Pleosporinae, Pleosporales). Cryptogamie Mycologie 37: 135–156. https://doi.org/10.7872/crym.v37.iss2.2016.135

Tennakoon DS, Jeewon R, Gentekaki E, Kuo CH. Hyde KD (2019) Multi-gene phylogeny and morphotaxonomy of Phaeosphaeria ampeli sp. nov. from Ficus ampelas and a new record of P. musae from Roystonea regia. Phytotaxa 406: 111–128. https://doi.org/10.11646/phytotaxa.406.2.3

Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ, Jones EBG, McKenzie E, Camporesi E, Bulgakov TS, Doilom M, Santiago AM, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang J, Kirk PM, Sysouphanthong P, Singh SK, Boonmee S, Dong W, Raj KN, Latha KP, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon D, Li J, Da-
Additions to Phaeosphaeriaceae (Pleosporales)
yarathne MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Chethana KW, Luo Z, Hapuarachchi KK, Baghela A, Soares AM, Vizzini A, Meiras-Ortoni A, Mešić A, Dutta AK, Souza CA, Richter C, Lin C, Chakrabarty D, Daranagama DA, Lima DX, Chakraborty D, Ercole E, Wu F, Simonini G, Vasquez G, Silva GA, Plautz HL, Ariyawansa HA, Lee HS, Kušan I, Song J, Sun J, Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar KC, Ryvarden L, Jadan M, Hosen MI, Mikšik M, Samarakooy MA, Wijayarawedene NN, Kim NK, Matočec N, Singh PN, Tian Q, Bhatt RP, Oliveira RJ, Tulloss RE, Aamir S, Kaewchhai S, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T, Bandypadhyay TK, Svetasheva TY, Nguyen TT, Antonin V, Li W, Wang Y, Indoliya Y, Tkalčec Z, Elgornan AH, Bakhali AH, Tang A, Su H, Zhang H, Promputtha I, Luangsa-Ard J, Xu J, Yan J, Kang JC, Stadler M, Mortimer PE, Chomnunti P, Zhao Q, Phillips AJ, Nontachaiyapoom S, Wen T, Karunarathna SC (2017) Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83: 1–261. https://doi.org/10.1007/s13225-017-0378-0
Thambugala KM, Camporesi E, Ariyawansa HA, Phookamsak R, Liu ZY, Hyde KD (2014) Phytology and morphology of Phaeosphaeriopsis triseptata sp. nov., and Phaeosphaeriopsis glaucopunctata. Phytotaxa 176: 238–250. https://doi.org/10.11646/phytotaxa.176.1.23
Thambugala KM, Wanasinghe DN, Phillips AJL, Camporesi E, Bulgakov TS, Phukhamsakda C, Ariyawansa HA, Goonasekara ID, Phookamsak R, Dissanayake A, Tennakoon DS, Tibromma S, Chen YY, Liu ZY, Hyde KD (2017) Mycosphere notes 1–50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 8: 697–796. https://doi.org/10.5943/mycosphere/8/4/13
Tomlin BA (1993) New species of Loculoascomycetes (fam. Phaeosphaeriaceae Barr.). Novosti Sistematiiki Nizhshikh Raseniit 29: 69–73.
Valenzuela-Lopez N, Sutton DA, Cano-Lira JF, Paredes K, Wiederhold N, Guarro J, Stchigel AM (2017) Coelomycetous fungi in the clinical setting: morphological convergence and cryptic diversity. Journal of clinical microbiology 55: 552–567. https://doi.org/10.1128/JCM.02221-16
Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990
Wanasinghe DN, Phukhamsakda C, Hyde KD, Jeewon R, Lee HB, Jones EBG, Tibromma S, Tennakoon DS, Dissanayake AJ, Jayasiri SC, Gaffarov Y, Camporesi E, Bulgakov TS, Ekanyake AH, Perera RH, Samarakooy MC, Goonasekara ID, Mapook A, Li WJ, Senanayeke IC, Li JF, Norphanphoun C, Doilom M, Bakhali AH, Xu JC, Mortimer PE, Tibell L, Tibell S, Karunarathna SC (2018) Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89: 1–236. https://doi.org/10.1007/s13225-018-0395-7
White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Yang CL, Xu XL, Wanasinghe DN, Jeewon R, Phookamsak R, Ying-Gao L, Li-Juan L, Hyde KD (2019) Neostagonospora sichuanensis gen. et sp. nov. (Phaeosphaeriaceae, Pleospor-
rales) on *Phyllostachys heteroclada* (Poaceae) from Sichuan Province, China. MycoKeys 46: 119–150. https://doi.org/10.3897/mycokeys.46.32458

Yang JW, Yeh YH, Kirschner R (2016) A new endophytic species of *Neostagonospora* (Pleosporales) from the coastal grass *Spinifex littoreus* in Taiwan. Botany 94: 593–598. https://doi.org/10.1139/cjb-2015-0246

Yuan ZQ (1994) *Barria*, a new ascomycetous genus in the Phaeosphaeriaceae. Mycotaxon 51: 313–316.

Zhang Y, Schoch CL, Fournier J, Crous PW, De Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in Mycology 64: 85–102. https://doi.org/10.3114/sim.2009.64.04

Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Diversity 52: 1–225. https://doi.org/10.1007/s13225-011-0117-x

Zhang JF, Liu JK, Jeewon R, Wanasinghe DN, Liu ZY (2019) Fungi from Asian Karst formations III. Molecular and morphological characterization reveal new taxa in Phaeosphaeriaceae. Mycosphere 10: 202–220. https://doi.org/10.5943/mycosphere/10/1/3

Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. MBC genomics 3: 1–4. https://doi.org/10.1186/1471-2164-3-4