Thermodynamic uncertainty relations

Jos Uffink and Janneke van Lith-van Dis

January 14, 2022

Abstract

Bohr and Heisenberg suggested that the thermodynamical quantities of temperature and energy are complementary in the same way as position and momentum in quantum mechanics. Roughly speaking, their idea was that a definite temperature can be attributed to a system only if it is submerged in a heat bath, in which case energy fluctuations are unavoidable. On the other hand, a definite energy can only be assigned to systems in thermal isolation, thus excluding the simultaneous determination of its temperature.

Rosenfeld extended this analogy with quantum mechanics and obtained a quantitative uncertainty relation in the form $\Delta U \Delta (1/T) \geq k$ where k is Boltzmann’s constant. The two ‘extreme’ cases of this relation would then characterize this complementarity between isolation (U definite) and contact with a heat bath (T definite). Other formulations of the thermodynamical uncertainty relations were proposed by Mandelbrot (1956, 1989), Lindhard (1986) and Lavenda (1987, 1991). This work, however, has not led to a consensus in the literature.

It is shown here that the uncertainty relation for temperature and energy in the version of Mandelbrot is indeed exactly analogous to modern formulations of the quantum mechanical uncertainty relations. However, his relation holds only for the canonical distribution, describing a system in contact with a heat bath. There is, therefore, no complementarity between this situation and a thermally isolated system.

1 Introduction

The uncertainty relations and the principle of complementarity are usually seen as hallmarks of quantum mechanics. However, in some writings of Bohr and Heisenberg one can find the idea that there also is a complementary relationship in classical physics, in particular between the concepts of energy and temperature. Roughly speaking, their argument is that the only way to attribute a definite temperature to a physical system is by bringing it into thermal contact and equilibrium with another very large system acting as a heat bath. In this case, however, the system will freely exchange energy with the heat bath, and one is cut off from the possibility of controlling its energy. On the other hand, in order to make sure a system has a definite energy, one should isolate it from its environment. But then there is no way to determine its temperature.

This idea is in remarkable analogy to Bohr’s famous analysis of complementarity in quantum mechanics, which is likewise based on a similar mutual exclusion of experimental arrangements serving to determine the position and momentum of a system. And just as this complementary relationship in quantum mechanics finds
its ‘symbolic expression’, as Bohr puts it, in the uncertainty relation $\Delta p \Delta q \gtrsim \hbar$, one might expect to obtain an analogous uncertainty relation for energy and temperature, or, perhaps, some functions of these quantities. Dimensional analysis already leads to the conjecture that this relation would take the form

$$\Delta U \Delta T^{-1} \gtrsim k$$

where k denotes the Boltzmann constant.

However, these ideas have not received much recognition in the literature. An obvious objection is that the mathematical structure of quantum theory is radically different from that of classical physical theories. There are no non-commuting observables in thermodynamics. Therefore, a derivation of the uncertainty relation (1) analogous to that of the usual Heisenberg relations is impossible. For example, the biography of Bohr by Pais dismisses his proposal of a complementary principle in thermodynamics on the grounds that there does not exist a general uncertainty relation like (1) to back it up.

Nevertheless, several authors have in fact produced derivations of a relation of this kind, and defended the idea that it reveals a complementarity between thermal isolation and embedding in a heat bath. An even more far-reaching claim is put forward by Rosenfeld, Mandelbrot and Lavenda. These authors argue that the uncertainty relation (1) actually blocks any reduction of thermodynamics to a microscopic theory picturing an underlying molecular reality, in the same way as Heisenberg’s relation would forbid a ‘hidden variables’ reconstruction of quantum mechanics.

However, these claims, and indeed the very validity of (1), have been disputed by other physicists. An example of this controversy is provided by the polemic exchange between Feshbach, Kittel and Mandelbrot in the years 1987-9 in Physics Today. One of the immediately arising questions is what the exact meaning of the Δ’s in (1) could be. A first thought may be that these uncertainties are to be understood as standard deviations of a random quantity, according to one of the probability distributions (or ensembles) of statistical mechanics. But in the commonly used ensembles to describe a system in contact with a heat bath, the canonical ones, temperature is just a fixed parameter and doesn’t fluctuate at all. On the other hand, in the microcanonical ensemble the energy is fixed! So this straightforward interpretation cannot be correct.

Indeed, all versions of uncertainty relation (1) which have been proposed in the literature employ different theoretical frameworks and give different interpretations of the uncertainty $\Delta \beta$, in most cases by using concepts from theories of statistical inference. Our purpose is to review and criticize the existing derivations and the associated claims (Sections 2 and 3). We shall argue that even though there exist valid versions of this relation, it does not express complementarity between energetic isolation and thermal contact.

We also propose (Section 4) an elaboration of the approach of Mandelbrot, which is based on the Cramér-Rao inequality from the theory of statistical estimation. We generalize this approach by means of the concept of distance between probability distributions. This statistical distance is a measure of distinguishability: the smaller the distance between two probability distributions, the worse they can be distinguished by any method of mathematical statistics. It will be shown that this statistical distance leads to an improvement of the Cramér-Rao inequality. The resulting uncertainty relation has the virtue of being completely analogous to a quantum mechanical formulation. In section 5 we will use this approach to investigate intermediate cases between the canonical and microcanonical ensemble.
2 The approach from fluctuation theory: Rosenfeld and Schlögl

The best-known proposal for a quantitative uncertainty relation between energy and temperature is that of Rosenfeld. He obtained the result

$$\Delta U \Delta T = kT_0^2$$

for the standard deviations (root mean square fluctuations) of energy and temperature of a small but macroscopic system in thermal contact with a heat bath kept at the fixed temperature T_0. In the case of small fluctuations, $\Delta T \ll T_0$, $\Delta \beta \approx \frac{\Delta T}{kT_0}$ and Rosenfeld’s result reduces to (1).

Rosenfeld’s interpretation of relation (2) fits seamlessly into the Copenhagen tradition. He argues that the meaning of physical quantities has to be obtained by operational definitions, i.e. by referring to our experimental abilities to control their values. Thus the meaningfulness of quantities depends on the experimental context, just like in quantum mechanics. Energetic isolation and thermal contact with a heat reservoir are contexts that exclude each other and therefore U and T are not simultaneously meaningful. The uncertainty relation (2) symbolizes this fact. More generally, Rosenfeld speaks of a complementarity between dynamical and thermodynamical modes of description.

This complementarity, according to Rosenfeld, is equally fundamental as Heisenberg’s uncertainty relation. He argues that reference to the underlying microscopic constitution of the system will not succeed in restoring a unified description, just because the dynamical and thermodynamical concepts are only meaningful in mutually exclusive experimental conditions.

For the actual derivation of (2) Rosenfeld refers to the textbook of Landau and Lifshitz. This book offers a treatment of thermal fluctuations for a small macroscopic system in an environment at fixed temperature T_0 and pressure p_0. It is based on Einstein’s postulate, which inverts and reinterprets Boltzmann’s famous formula $S = k \ln W$ into:

$$W(X) \propto e^{S_{\text{tot}}(X)/k}$$

in order to assign relative probabilities to thermodynamical states X in terms of their entropy S. Here, X denotes a state of the total system (small system and environment) and S_{tot} is the total entropy. An equivalent formulation is

$$W(X) = W(X_0)e^{(S_{\text{tot}}(X) - S_{\text{tot}}(X_0))/k}$$

where X_0 is the equilibrium state.

The probabilities $W(X)$ are interpreted as the relative frequencies with which the states X occur during a very long time interval, i.e. they describe fluctuations. An essential assumption is now that both the small system and the environment taken separately are always in thermodynamical equilibrium states. Thus, even though they need not be in thermal or mechanical equilibrium with each other, it is assumed that they can always be characterized by equilibrium states on which the ordinary thermodynamical formalism is applicable. The entropy fluctuation $S_{\text{tot}}(X) - S_{\text{tot}}(X_0)$ of the total system can then be calculated in terms of the minimal amount of work needed to restore the equilibrium state X_0. This can be expressed in the state variables of the small system and the fixed equilibrium values p_0 and T_0:

$$S_{\text{tot}}(X) - S_{\text{tot}}(X_0) = -\frac{U(x)}{T_0} + p_0 V + S(x)$$

where the variable x denotes the state of the small system. Thus, from (4) and (5) one can determine the fluctuation probabilities in terms of the state variables of
the small system. Choosing a complete set of independent state variables, say \(x = (V, T) \), and expanding (\(\mathbb{E} \)) up to second order around its maximum value, one can approximate this distribution by a Gaussian probability distribution over \(V \) and \(T \). Landau and Lifshitz determine the standard deviations of several thermodynamic quantities considered as functions of \(V \) and \(T \). In particular they obtain (pp. 352, 356)

\[
(\Delta T)^2 = \frac{kT_0^2}{C_V}
\]

and

\[
(\Delta U)^2 = - \left(T_0 \left(\frac{\partial P}{\partial T} \right)_V - p_0 \right)^2 kT_0 \left(\frac{\partial V}{\partial P} \right)_T + C_V kT_0^2.
\]

Here, \(C_V = \left(\frac{\partial U}{\partial T} \right)_V \) is the specific heat of the system and the quantities in the right-hand sides of (6,7) are all to be evaluated at the equilibrium values. Finally, in order to arrive at (6), Rosenfeld simply assumed that the volume of the system is constant (so that \(\frac{\partial V}{\partial P} = 0 \)).

Let us now see if this result bears out Rosenfeld’s interpretation. There are several objections. A first group of objections is directed in particular against his claim that the result would be ‘equally fundamental’ as the Heisenberg uncertainty relation. First, the relation (6) is obtained by ignoring the first term in the right-hand side of (7). This is obviously not a satisfactory general procedure, unless one can prove that the deleted term is always non-negative. For usual thermodynamical systems, one has indeed

\[
T_0 > 0, \quad \left(\frac{\partial V}{\partial P} \right)_T < 0
\]

so that a more general inequality \(\Delta U \Delta T \geq kT_0^2 \) results from (6) and (7). However, the inequalities (8) are in turn derived by an appeal to the stability of thermodynamical states. The assumption that all equilibrium states occurring in nature are stable is obviously not a fundamental law.

Secondly, the above derivation relies on a Gaussian approximation to (4). This, likewise, cannot claim fundamental validity. Moreover, the question how well the Gaussian distribution approximates the true distribution (\(\mathbb{E} \)) depends on the choice of the variables to parameterize the macroscopic states. (That is, whether one uses the pairs \((V, T), (P, V)\) etc., or prefers \(T \) above \(\beta \), or perhaps \((T - T_0)^2\) as a temperature scale.) The choice of state variables is usually regarded as a matter of convention, and one would not like a fundamental result to depend on this.

A third objection is that whatever limitations (4) poses on the simultaneous meaningfulness of the concepts of energy and temperature, a look at the right-hand side of this relation immediately suggests that these limitations will become negligible if we take the temperature of the heat bath sufficiently low. This again is in obvious contrast to Heisenberg’s uncertainty relation which provides an absolute lower bound for all quantum states.

Remarkably, it is possible to overcome all the above objections and obtain a more generally valid uncertainty relation for the situation considered here. To see this, let us choose \((U, V)\) as the set of independent state variables and write the probability distribution resulting from the Einstein postulate in the form

\[
p(U, V) = Ce^{-\beta(U+p_0V)+S(U,V)/k}
\]

and introduce the quantity

\[
\beta(U, V) := \frac{\partial \ln p(U, V)}{\partial U} + \beta_0
\]
It is easy to see that \(\beta(U,V) = \left(\frac{\partial S}{\partial U} \right)_V \), and is thus identical to the usual thermodynamical definition of the inverse temperature of the system. Using the general inequality
\[
\Delta A \Delta B \geq |\text{Cov}(A,B)| := \langle (A - \langle A \rangle)(B - \langle B \rangle) \rangle
\]
where \(\langle \cdot \rangle \) denotes the expectation value with respect to (9) and noting that \(\text{Cov}(U, \beta) = -1 \) (by partial integration and assuming that \(p(U,V) = 0 \) when \(U = 0 \)), one obtains
\[
\Delta U \Delta \beta \geq 1
\]
independent of stability arguments, Gaussian approximation or the value of \(T_0 \). This relation was first obtained by Schrödinger.\(^{12}\)

Let us make a few comments on this improved result. Note that there is no assumption of an underlying mechanical phase space of the system. Rather, one works directly with probability distributions over the macroscopically observable variables. Thus, the derivation is not a part of the Gibbsian theory of statistical mechanics. Rather, the above treatment, combining orthodox thermodynamics with a probability postulate is typical for statistical thermodynamics. In principle, it is an open question whether this version of statistical thermodynamics is consistent with the existence of an underlying microscopic phase space on which all thermodynamical quantities can be defined as functions.

Indeed a remarkable aspect of this version of statistical thermodynamics is that quantities like temperature and entropy depend on the probability distribution, via the Einstein postulate. This means one cannot vary the probability distribution and the temperature independently. Obviously, this aspect alone already provides an obstacle to a hidden-variables-style reconstruction.

The same aspect, however, makes the relation (12) rather different from quantum mechanical uncertainty relations. It states only that there are non-vanishing fluctuations in energy and inverse temperature for the distribution (9). For an arbitrary distribution, the quantity \(\beta \) defined by (10) does not coincide with the inverse temperature. This limited validity does not license a complementarity interpretation. For example, for the ideal gas one has \(\beta(U,V) = \frac{C_V}{kT} \), with \(C_V \) a constant, i.e. \(\beta \) is a bijective function of \(U \). Clearly, as Lindhard\(^{11}\) pointed out, any claim that ‘precise knowledge of \(U \) precludes precise knowledge of \(\beta \)’ would be quite untenable here. The positive lower bound for \(\Delta U \Delta \beta \) is due, in this case, to their correlation rather than their complementarity. One is not left, for a given system, with a choice of making \(\Delta U \) smaller at the expense of \(\Delta \beta \) or vice versa. Indeed, the relative values of the two uncertainties in (9) are decided by the size of the system (which determines the heat capacity \(C_V \)), not by context of observation.

Thus, important objections against Rosenfeld’s interpretation of the uncertainty relation (2) remain, even in the improved version (12). Note also that while Rosenfeld speaks of a complementarity between thermal contact and energetic isolation, the above treatment nowhere refers to isolated systems. The only experimental context considered in the derivation is that of thermal contact with a heat bath. Therefore, the basis for Rosenfeld’s assertions is very weak.

Perhaps Rosenfeld’s interpretation was inspired by a short remark at the end of Landau and Lifshitz’s discussion\(^4\), where they mention that temperature fluctuations can also be considered “from another point of view”, and briefly discuss the canonical and microcanonical ensembles. They state that one must assume temperature fluctuations exist also in an isolated system, so that the result (1) “represents the accuracy with which the temperature of an isolated body can be specified.” However, none of this follows from the treatment they actually present.

Now one could try to provide such an analysis of thermal fluctuations in an energetically isolated system along the lines of Landau and Lifshitz. However, this will obviously lead to \(\Delta U = 0 \), and in the example of the ideal gas, \(\Delta \beta = 0 \) as
well. The only way in which temperature fluctuations can be obtained is therefore either by specializing to systems where β is not a function of U alone (e.g. a photon gas where $\beta(U,V) \propto (V/U)^{1/4}$), or by generalizing the approach to allow for local fluctuations within different parts of the system. However, we shall not pursue this.

3 Statistical inference

The approaches to the derivation of thermodynamic uncertainty relations we discuss next are all related to the field of statistical inference. We therefore start this section with a short introduction to this subject. The theory of statistical inference has been developed in the twenties and thirties by mathematical statisticians, working largely outside the physics community. The physicists working in statistical physics have for a long time continued thinking about statistics using the concepts laid down in the older work of Maxwell, Boltzmann and Gibbs. Still, it has been recognized since the sixties that statistical physics can benefit from the ideas and concepts developed in mathematical statistics. For our purpose the most significant aspect is that more sophisticated concepts of uncertainty are available here than the standard deviation. However, the field of statistical inference is one in which several approaches exist and there is a longstanding debate about its foundations. If statistical physics can profit from the developments in statistical inference, it also cannot remain immune to this debate, as we shall see. We shall meet four approaches to statistical inference: estimation theory, Bayesianism, fiducial probability and likelihood inference. We shall see that the so-called Fisher information plays a prominent (but different) role in most of them.

3.1 Estimation theory

Generally speaking, statistical inference can be described as the problem of deciding how well a set of outcomes, obtained in independent measurements, fits to a proposed probability distribution. If the probability distribution is characterized by one or more parameters, this problem is equivalent to inferring the value of the parameter(s) from the observed measurement outcomes x. Perhaps the simplest, and most well-known approach to the problem is the theory of estimation, developed by R.A. Fisher.

In this approach it is assumed that one out of a family $\{p_\theta(x)\}$ of distribution functions is the ‘true’ one; the parameter θ being unknown. To make inferences about the parameter, one constructs estimators, i.e. functions $\hat{\theta}(x_1,\ldots,x_n)$ of the outcomes of n independent repeated measurements. The value of this function is intended to represent the best guess for θ. Several criteria are imposed on these estimators in order to ensure that their values do in fact constitute ‘good’ estimates of the parameter θ. Unbiasedness for instance, i.e.

$$\langle \hat{\theta}\rangle_\theta = \int \hat{\theta}(x_1,\ldots,x_n) \prod_{i=1}^n p_\theta(x_i) dx_i = \theta \quad \text{(for all } \theta) \quad (13)$$

demands that the expectation of $\hat{\theta}$, calculated using a given value of θ, reproduces that value. If also the standard deviation $\Delta_\theta \hat{\theta}$ of the estimator is as small as possible, the estimator is called efficient.

The so-called Cramér-Rao inequality puts a bound to the efficiency of an arbitrary estimator:

$$(\Delta_\theta \hat{\theta})^2 \geq \frac{\left(\frac{d^2 \ln p_\theta}{d\theta^2}\right)^2}{nI_F(\theta)} \quad (14)$$
where
\[
I_F(\theta) = \int \frac{1}{\bar{p}_\theta(x)} \left(\frac{dp_\theta(x)}{d\theta} \right)^2 dx
\] (15)
is a quantity depending only on the family \(\{p_\theta(x)\} \), known as the *Fisher information*.

The Cramér-Rao inequality (14) is valid for any estimator for a given family of probability distributions obeying certain regularity conditions. Specific choices of estimators are the maximum likelihood estimators. These are functions \(\hat{\theta}_{ML} \) which maximize the likelihood
\[
L_{(x_1,\ldots,x_n)}(\theta) = \prod_{i=1}^n p_\theta(x_i).
\]
They are asymptotically efficient, i.e. they approach the bound of the Cramér-Rao inequality in the limit \(n \to \infty \).

Another important criterion in estimation theory is that of *sufficiency*. Suppose that for a given estimator \(\hat{\theta}(x_1,\ldots,x_n) \) the probability distribution function can be written as
\[
p_\theta(x_1,\ldots,x_n) = \tilde{p}_\theta(\hat{\theta}) f(x_1,\ldots,x_n)
\] (16)
where \(\tilde{p}_\theta(\hat{\theta}) \) is the marginal distribution of \(\hat{\theta} \) and \(f \) is an arbitrary function which does not depend on \(\theta \). Thus, given the value of \(\hat{\theta}(x_1,\ldots,x_n) \), the values of the data \(x_1,\ldots,x_n \) are distributed independently of \(\theta \). In that case, \(\hat{\theta}(x_1,\ldots,x_n) \) is said to be a sufficient estimator, because it contains all the information about the parameter that can be obtained from the data.

Sufficiency is a natural and appealing demand for estimation problems. Unfortunately sufficient estimators do not always exist. A theorem by Pitman and Koopman states that sufficient estimators exist only for the so-called *exponential family*, i.e. distributions of the form
\[
p_\theta(x) = \exp \left(A(x) + B(x)C(\theta) + D(\theta) \right)
\] (17)
where \(A,\ldots,D \) are arbitrary functions (apart, of course, from the normalization constraint). Fortunately, most of the one-parameter distributions that we meet in statistical physics do belong to the exponential family.

Note that the Fisher information for \(\theta \) in \(n \) observations remains unaffected when we restrict the set of data to a sufficient estimator:
\[
I_F(\theta) = \int \frac{1}{\bar{p}_\theta(x_1,\ldots,x_n)} \left(\frac{dp_\theta(x_1,\ldots,x_n)}{d\theta} \right)^2 dx_1 \cdots dx_n = \int \frac{1}{\tilde{p}_\theta(\hat{\theta})} \left(\frac{d\tilde{p}_\theta(\hat{\theta})}{d\theta} \right)^2 d\hat{\theta}
\] (18)
where \(\tilde{p}_\theta(\hat{\theta}) \) is the marginal probability distribution of \(\hat{\theta} \). By contrast, \(I_F \) decreases when the data are restricted to a non-sufficient estimator. In this sense too, a sufficient estimator extracts the maximum amount of information about \(\theta \) from the data.

3.2 Uncertainty relations from estimation theory: Mandelbrot

Mandelbrot was probably the first to link statistical physics with the theory of statistical inference. He obtained a thermodynamic uncertainty relation using the methods of estimation theory.

Like Rosenfeld and Landau and Lifshitz, he adopts the point of view of statistical thermodynamics in which the concept of an underlying microscopic phase space is superfluous and one works directly with probability distributions over macroscopic variables of the system. In contrast to the previous discussion, where such a distribution is obtained from the Einstein postulate, one now starts by assuming the existence of a probability distribution \(p_\beta(U) \) to describe the energy fluctuations
of a system in contact with a heat bath at temperature β. The temperature of the system is thus represented by a parameter in its probabilistic description. By imposing a number of axioms Mandelbrot is able to determine the form of this probability distribution. The most important of these is the demand that sufficient estimators for β should be functions of the energy U alone. This enables him to invoke the Pitman-Koopman theorem (17) which eventually leads to the form:

$$p_\beta(U) = \frac{e^{-\beta U} \omega(U)}{Z(\beta)},$$ \hspace{1cm} (19)$$

with $Z(\beta)$ the partition function, i.e. the normalization constant and $\omega(U)$ the so-called structure function of the system.

Mandelbrot considered the question of estimating the unknown parameter β of this system by measurements of the energy. The Fisher information in this case equals

$$I_F(\beta) = (\Delta_\beta U)^2 = \langle U^2 \rangle_\beta - \langle U \rangle_\beta^2.$$ \hspace{1cm} (20)$$

Thus, if we apply the Cramér-Rao inequality for unbiased estimators $\hat{\beta}$, we immediately find the result:

$$\Delta_\beta U \Delta_\beta \hat{\beta} \geq 1.$$ \hspace{1cm} (21)$$

This is Mandelbrot’s uncertainty relation between energy and temperature. It expresses that the efficiency with which temperature can be estimated is bounded by the spread in energy. Note that this does not mean that the temperature fluctuates: it is assumed throughout that the system is adequately described by the canonical distribution function (19) with fixed β. Rather, the estimators fluctuate (i.e. they are random quantities). Their standard deviation is employed, as usual in estimation theory, as a criterion to indicate the quality (efficiency) with which β is estimated. Thus the two Δ’s in the relation (21) have different interpretations, in contrast to the result of Rosenfeld or Schlögl.

Let us make some remarks on this result. On first sight, the use of such different interpretations for the two uncertainties in relation (21) may seem to reveal a striking disanalogy with the quantum mechanical uncertainty relations. However, recent work on the quantum mechanical relations has shown that here too it is advantageous to employ concepts from the theory of statistical inference. Already several authors \(^{15-21}\) have advocated the Cramér-Rao inequality for a formulation of the quantum mechanical uncertainty relations which improves upon Heisenberg’s inequality. We shall discuss these developments in section 4. Let it suffice to remark here that the approach by Mandelbrot is actually in close analogy with these recent formulations in quantum mechanics.

Mandelbrot calls the spirit of his approach “extremely close to that of the conventional (Copenhagen) approach to quantum theory” and argues that the incompatibility of quantum theory and hidden variables is comparable to that of statistical thermodynamics and kinetic theory. In later works, however, he no longer claims that statistical thermodynamics is incompatible with, but only indifferent to, the use of kinetical or microscopic models. Thus he writes: “Our approach...realizes a dream of the 19th century ‘energeticists’: to describe matter-in-bulk without reference to atoms. It is a pity that all energeticists have passed away long ago.” \(^{22}\) Indeed, his aproach can be readily extended to statistical mechanics by assuming the existence of a mechanical phase space and interpreting the distribution (19) as a marginal of a canonical distribution over phase space:

$$p_\beta(U) = \frac{1}{Z(\beta)} \int_{H(\vec{p}_1,...,\vec{p}_N;\vec{q}_1,...,\vec{q}_N)=U} e^{-\beta H(\vec{p}_1,...,\vec{p}_N;\vec{q}_1,...,\vec{q}_N)} \, d\vec{p}_1 \cdot \cdot \cdot d\vec{p}_N \, d\vec{q}_1 \cdot \cdot \cdot d\vec{q}_N,$$ \hspace{1cm} (22)$$
where \((\vec{p}_1, \ldots, \vec{p}_N; \vec{q}_1, \ldots, \vec{q}_N) \in \mathbb{R}^{6N}\) is the microscopic state of the system and \(H\) denotes its Hamiltonian. The structure function is then identified with the area measure of the energy hyper-surface \(H(\vec{p}_1, \ldots, \vec{p}_N; \vec{q}_1, \ldots, \vec{q}_N) = U\). Of course, since the evolution of the microscopic state is now dictated by the mechanical equations of motion, the validity of the interpretation of the probabilities as time frequencies needs additional attention, e.g. by the assumption of an ergodic-like hypothesis.

Note, however, that such a detailed microscopic description does not help for the estimation of \(\beta\). The energy is still a sufficient estimator, and therefore contains all relevant information about the temperature. No further information is gained by specifying other phase functions as well, or indeed the exact microscopic state itself. Thus, we can restrict our attention to the distribution over the energy.

Further, we note that, since Mandelbrot relies on the Cramér-Rao inequality, his uncertainty relation is valid only when the canonical distributions are regular (cf. footnote 13). Thus, it may fail, for example, for systems capable of undergoing phase transitions.

Mandelbrot’s result (21) applies, like those discussed in section 2, only to systems imbedded in a heat bath. Let us now ask whether it can be extended to isolated systems in order to see whether there is some kind of complementarity between these two contexts. The distribution function is in this case microcanonical

\[
p_\epsilon(U) = \delta(U - \epsilon), \tag{23}
\]

where \(\epsilon\) is the fixed energy of the system.

The first problem one can then raise, in analogy with the previous case, is that of inferring the value of the energy parameter \(\epsilon\). It is immediately clear however that a single measurement of the energy \(U\) itself suffices to estimate \(\epsilon\) with utmost accuracy. The Fisher information is infinite, and no informative uncertainty relation arises in this case. That is, choosing \(\hat{\epsilon} = U\) as estimator for \(\epsilon\), we obtain:

\[
\Delta_\epsilon \hat{\epsilon} = 0. \tag{24}
\]

A next and more interesting problem is then what can be said about the temperature in the microcanonical distribution. This, of course, presupposes that one can give a definition of temperature of an isolated system. Mandelbrot proposes to address this problem by regarding the isolated system as if it had been prepared in contact with a heat bath, i.e. as if it were drawn from a canonical ensemble. In that case the discussion of our previous problem (i.e. of estimating the temperature of the heat bath) would have been applicable. His proposal is to treat the assignment of a temperature to the isolated system in the same way as the estimation of the unknown parameter \(\beta\) of this hypothetical canonical distribution. In other words, whatever function \(\hat{\beta}(U)\) is a ‘good’ estimator of \(\beta\) in the canonical case is also a good definition of temperature in the microcanonical case.

It is interesting, therefore, to consider some specific estimators for \(\beta\). Mandelbrot mentions three of them. The maximum likelihood estimator \(\hat{\beta}_1(U)\) is defined as the solution of the equation

\[
\left(\frac{dp_{\beta}(U)}{d\beta}\right)_{\beta=\hat{\beta}_1} = 0. \tag{25}
\]

Other choices are:

\[
\hat{\beta}_2(U) = \frac{d\ln \Omega(U)}{dU}, \tag{26}
\]

and

\[
\hat{\beta}_3(U) = \frac{d\ln \omega(U)}{dU} \tag{27}
\]

where

\[
\Omega(U) \equiv \int_0^U \omega(U')dU'. \tag{28}
\]
These functions are in fact often proposed as candidate definitions of the temperature of isolated systems. They generally yield different values for finite systems, but for typical systems in statistical mechanics (consisting of particles with finite range interactions), they converge for large numbers of particles. For the ideal gas, for example, one has $\hat{\beta}_1(U) = \hat{\beta}_2(U) = 3N/(2U)$ and $\hat{\beta}_3(U) = (3N-2)/(2U)$. However, in other cases, e.g. for a system consisting of magnetic moments, where $\omega(U)$ is decreasing in a part of its domain, $\hat{\beta}_2$ and $\hat{\beta}_3$ may take opposite signs, even in the thermodynamical limit. The problem of choosing a general ‘best’ temperature function still seems to be undecided.

Even so, following Mandelbrot’s proposal, one can associate a proper temperature to an isolated system. One might now expect, perhaps from the suggestions of Landau and Lifshitz, or from a supposed symmetry in a complementarity relationship, that there should be unavoidable fluctuations of such a temperature function in an isolated system. However, all the candidate functions $\hat{\beta}_i$ above are functions of U, and thus remain constant in the microcanonical ensemble. Hence one obtains $\langle \hat{\beta}_i \rangle = \hat{\beta}_i(\epsilon)$ and

$$\Delta \epsilon U = 0, \quad \Delta \epsilon \hat{\beta}_i = 0.$$

Thus, again, no uncertainty relation is obtained for the microcanonical ensemble. This result will clearly hold generally for all candidate temperature functions in Mandelbrot’s proposal, since the postulate that U should sufficient for β implies that ‘good’ (i.e. efficient) estimators depend on U alone.

This is not the conclusion Mandelbrot draws, however. He proposes to judge not only the temperature, but also the uncertainty in temperature from the point of view of the canonical ensemble from which the isolated system could have been a member. Also the uncertainty in energy is calculated from this counterfactual point of view. Thus we simply recover the canonical uncertainty relation which is now, counterfactually, said to apply also to the microcanonical case. But this does not seem to be a satisfactory procedure to generalize the validity of a relation.

We conclude that although Mandelbrot’s approach encompasses a discussion of both isolated systems as well as systems in a heat bath, the result is still that there is no complementarity between canonical and microcanonical ensembles (isolation and thermal contact with a heat bath).

3.3 The Bayesian approach: Lavenda

Another major school of thought in statistical inference is Bayesianism. According to Bayesian statistics, probabilities can be attributed to all kinds of statements, in particular also to other probability statements. Thus, one is allowed to assume that so-called prior probabilities $\rho(\beta)$ can be attributed to the parameter β in the canonical distribution. Furthermore, the canonical distribution is interpreted as a conditional probability $p_{\beta}(U) = p(U|\beta)$. One is then able, by means of Bayes’s theorem,

$$p(\beta|U) = \frac{p(U|\beta)\rho(\beta)}{Z(U)}$$

with

$$Z(U) = \int p(U|\beta)\rho(\beta)d\beta$$

to obtain a so-called posterior probability distribution over β conditioned on a given value of U. The tenet of the Bayesian approach is that all inferential judgements about β on the basis of an observed value of U are encapsulated in this posterior distribution. In particular, the uncertainty about its value can be quantified by the standard deviation of the posterior distribution.
The major problem in Bayesian statistics is the choice of the prior distribution ρ. Usually this choice is made with the help of an argument appealing to our prior ignorance of the value of β. Therefore, Bayesian statistics is often regarded as intimately connected to a ‘degrees of belief’ interpretation of probability, in contrast to the relative frequency interpretation adopted above. The simplest choice for a prior distribution representing ignorance would, of course, be a uniform distribution. However, Jeffreys has argued that in the case of a non-negative physical quantity β, appearing as a parameter in a probability distribution, the appropriate representation of ignorance is by putting

$$\rho(\beta) = \sqrt{I_F(\beta)}$$

(32)

where $I_F(\beta)$ is the Fisher information (15). The main motivation for this choice is that this makes the distribution invariant under bijective reparameterization, which is obviously desirable for a distribution intended to represent a state of ignorance. A drawback is that the prior distribution (32) is often not normalizable. However, the posterior distribution usually is.

Let us now consider the question whether a thermodynamic uncertainty relation can be obtained in this approach. That is, we ask whether there is a relation between the standard deviation ΔU of (30) and the standard deviation $\Delta \beta U$ of (19). Unfortunately, in general nothing definite about this question can be said. Indeed, it is obvious that both standard deviations contain a parameter, U (the observed value of the total energy) and β respectively, which are functionally independent. As we will see, however, it is possible to derive uncertainty relations for specific choices of these parameters.

Note that since this approach yields a probability distribution over β, its uncertainty can be quantified by means of a proper standard deviation of β. This is possible because the Bayesian approach obliterates, as a matter of principle, the distinction between parameters and random quantities. However, this does not mean that β fluctuates; rather, the posterior distribution from which $\Delta \beta$ is calculated has a meaning in terms of degrees of belief, so that $\Delta \beta$ represents a region of epistemic uncertainty.

Using this Bayesian approach, Lavenda claims to have arrived at an uncertainty relation:

$$\Delta U \Delta \beta \geq 1,$$

(33)

where the equality sign applies to equilibrium distributions, and a strict inequality holds for irreversible processes. He argues that this result “stands in defense of a purely statistical interpretation of thermodynamics,” just as the Heisenberg uncertainty principle protects quantum mechanics from a hidden variables interpretation. This suggests that the uncertainty relation would forbid a mechanical underpinning of statistical thermodynamics. However, he apparently does not wish to go so far, because he also writes that the statistical inference approach to thermodynamics is analogous to the orthodox approach to quantum theory in the sense that it “circumvents a more fundamental, molecular description.” This suggests that a molecular description is merely unnecessary, rather than impossible; a position which would come close to that of Mandelbrot in his later writings. However, Lavenda seems to have changed his views in the opposite direction, since later he does argue that the thermodynamic uncertainty relation excludes a mechanical underpinning: “The very fact that uncertainty relations exist in thermodynamics between … energy and inverse temperature, makes it all but impossible that a probabilistic interpretation of thermodynamics would ever be superseded by [a] deterministic one, rooted in the dynamics of large assemblies of molecules”.

We now turn to the derivation of (33). Lavenda provides several, but all based on different assumptions. We shall discuss two of his derivations of (33) with equality
sign, and one of the corresponding inequality. A major role throughout the approach is played by the identification of the value of a maximum likelihood estimator and the expected value of a parameter in the posterior probability distribution. He is able to trace the assumption back to Gauss’s attempts to justify the method of least squares, and therefore baptizes it “Gauss’ principle”. However, he does not give a convincing motivation for this assumption. Since in principle estimators and expected values are very different quantities, we reject this assumption, and have therefore tried to circumvent it as much as possible in our reconstruction of Lavenda’s work.

To obtain the uncertainty relation with equality sign, Lavenda starts from the assumption that the system consists of a large number n of non-interacting identical subsystems, so that its total energy can be written as $U_{\text{tot}} = \sum_{i=1}^{n} U_i$. Each subsystem has a canonical distribution. Thus,

$$ p(U_1, \ldots, U_n|\beta) \equiv \frac{\prod_{i=1}^{n} \omega(U_i)}{Z^{n}(\beta)} e^{-\beta U_{\text{tot}}} \tag{34} $$

and our goal is to consider the posterior distribution

$$ p(\beta|U_1, \ldots, U_n) = \frac{p(U_1, \ldots, U_n|\beta)\rho(\beta)}{Z(U)} \tag{35} $$

We have already noted that the total energy U_{tot} is a sufficient estimator for β in the canonical distribution. For the Bayesian approach the cash value of this is that the posterior depend on U_{tot} alone:

$$ p(\beta|U_1, \ldots, U_n) = p(\beta|U_{\text{tot}}). \tag{36} $$

In order to obtain the approximate shape of this distribution for large n, one can make a second-order Taylor expansion of $\log p(U_1, \ldots, U_n|\beta)$ as a function of β around its maximum value:

$$ p(U_1, \ldots, U_n|\beta) \simeq p(\hat{\beta}_1(U_{\text{tot}})) \exp\left(-\frac{1}{2}(\beta - \hat{\beta}_1(U_{\text{tot}}))^2 J(U_{\text{tot}}) \right) \tag{37} $$

where $\hat{\beta}_1(U_{\text{tot}})$ is the maximum likelihood estimate, and

$$ J(U_{\text{tot}}) = - \left(\frac{\partial^2 \log Z(\beta)}{(\partial \beta)^2} \right)_{\beta = \hat{\beta}_1(U_{\text{tot}})} . \tag{38} $$

It is easy to show that

$$ J(U_{\text{tot}}) = - \left(\frac{\partial^2 \log Z(\beta)}{(\partial \beta)^2} \right)_{\beta = n\hat{\beta}_1(U_{\text{tot}})} = I_F(\hat{\beta}_1(U_{\text{tot}})) . \tag{39} $$

Thus, this is just another version of the Fisher information.

For large n one expects that $J \propto n$, so that (37) is appreciably different from zero only in a small region around $\hat{\beta}_1(U_{\text{tot}})$. Inserting in (37), and assuming that $\rho(\beta)$ behaves reasonably smoothly and does not vanish in this region, one obtains

$$ p(\beta|U_{\text{tot}}) \simeq \sqrt{\frac{J(U_{\text{tot}})}{2\pi}} \exp\left(-\frac{1}{2}(\beta - \hat{\beta}_1)^2 J(U_{\text{tot}}) \right) \tag{40} $$

so that the prior drops out of the posterior.

The standard deviation of β in the Gaussian posterior distribution (40) is obviously

$$ \Delta U_\beta = \frac{1}{\sqrt{J(U)}} . \tag{41} $$
Also, it is clear from (38) that
\[
J(U_{\text{tot}}) = n \left(\Delta \beta_1(U_{\text{tot}}) U \right)^2 = (\Delta U_{\text{tot}})^2. \tag{42}
\]
Combination of these leads to the uncertainty relation (33) with equality sign, for the specific choice \(\beta = \hat{\beta}_1(U) \).

Lavenda also offers an argument to determine the form of the prior distribution from the asymptotic expression and the demand that the expectation value of \(\beta \) in the posterior distribution (30) should coincide with the maximum likelihood estimator for this parameter. Interestingly, this leads to the Jeffreys prior. His argument seems to be erroneous, but since the prior drops out anyway, this has no effect on the remainder of his analysis.

Lavenda also provides another derivation for the uncertainty relation with equality sign. Here, no assumption about the number of subsystems and no Gaussian approximation are needed. Instead, Gauss’ principle is invoked in order to equate the expectation value of \(\beta \) in the posterior distribution with the parameter in the canonical distribution. The entropy \(S(\langle U \rangle) \) is identified with \(-\ln Z(\langle U \rangle)\), the second derivative of which equals
\[
\frac{\partial^2 S}{\partial \langle U \rangle^2} = - (\Delta \langle U \beta \rangle)^2. \tag{43}
\]
Here \(\langle U \rangle \) denotes the expectation value of the energy in the canonical distribution. On the other hand, by equating \(\langle \beta \rangle \langle U \rangle \) with \(\beta \),
\[
\frac{\partial^2 S}{\partial \langle U \rangle^2} = \frac{\partial \langle \beta \rangle \langle U \rangle}{\partial \langle U \rangle} = \left(\frac{\partial \langle U \rangle}{\partial \beta} \right)^{-1} = - (\Delta \beta U)^{-2}, \tag{44}
\]
and the desired result follows. Again the uncertainty relation is derived for a specific value for one of the parameters only, but now for \(U = \langle U \rangle \) instead of \(\beta = \hat{\beta}_1 \).

Let us now consider relation (33) with inequality sign. Lavenda notes that such an inequality is connected with the Cramér-Rao inequality, but claims that its physical content lies in the existence of irreversible processes. His idea is to make use of the Second Law, \(\Delta S_1 + \Delta S_2 \geq 0 \), for the entropy increase during a process in an isolated compound system, and transform this inequality into the desired uncertainty relation (i.e. (33) with inequality sign) by making use of standard thermodynamic relations and certain identifications of thermodynamic quantities with statistical ones.

However, as we shall show, the derivations provided by Lavenda are in error: the validity of the uncertainty relation with equality sign is presupposed in the statement of the relation with inequality sign. Thus, his claim that the strict inequality is instantiated by irreversible processes is mistaken.

In his book, Lavenda considers two subsystems initially at temperatures \(T_1 \) and \(T_2 \) and assumes they are placed in thermal contact so that they are allowed to exchange energy in the form of heat, but not any work. Then, if an infinitesimal amount of energy \(\delta U \) is exchanged the total entropy will change by:
\[
\delta S_1 + \delta S_2 = \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \delta U \geq 0. \tag{45}
\]
Now suppose that both systems are ideal gases, and that as a result of the energy exchange, system 1 changes its temperature from \(T_1 \) to \(T_1 + \delta T \). Then its entropy change will be
\[
\delta S_1 = c_v \ln \frac{T_1 + \delta T}{T_1} \approx c_v \frac{\delta T}{T_1} = -c_v T_1 \delta \beta \tag{46}
\]
Hence
\[\delta S_1 + \delta S_2 = -c_V T_1 \delta \beta - \frac{\delta U}{T_2} = \left(-c_V T_1 T_2 \frac{\delta \beta}{\delta U} - 1 \right) \frac{\delta U}{T_2} \] (47)

Now, by some inscrutable reasoning, Lavenda argues for the validity of the following relations (at least valid up to second order)
\[I_F = \frac{\delta U}{\delta \beta} = \Delta U^2 = (\Delta \beta)^{-2} = c_V T_1 T_2 \] (48)

where \(I_F \) is the Fisher information. Using these equations one finds
\[\delta S_1 + \delta S_2 = \left(I_F \Delta \beta^2 - 1 \right) \frac{\delta U}{T_2} \geq 0 \] (49)

from which the desired inequality follows
\[\Delta U \Delta \beta \geq 1 \] (50)
since \(\delta U > 0 \). Thus, according to Lavenda, the uncertainty relation actually stems from the Second Law of thermodynamics.

This argument is obviously erroneous. A first objection is that the validity of the left-hand part (45) is already confined to the case of reversible processes only, so that the total entropy must remain constant. What is worse, however, is that the relations (48) already by themselves imply the stronger relation \(\Delta U \Delta \beta = 1 \), regardless of whether we consider a reversible or irreversible process.

In conclusion, there is no indication that an uncertainty relation with inequality sign can be derived in the Bayesian approach, let alone be explained in terms of irreversible processes. Further, we have seen that only one of the derivations Lavenda presents for the relation with equality sign, can stand the test of critical analysis. This leads to the result that for a system consisting of a large number of subsystems, and with a Gaussian approximation for the posterior distribution, the relation
\[\Delta \hat{\beta}_1(U) \Delta U \beta = 1 \] (51)
holds asymptotically.

One cannot help but note the close mathematical connection between this derivation and that of Mandelbrot, in spite of their widely different statistical philosophy. We have seen that in the large sample approximation, the Bayesian prior drops out of equation (40) and the posterior becomes simply proportional to the likelihood function \(L_U(\beta) = p_\beta(U) \). On account of the symmetry between \(\beta \) and \(\hat{\beta} \) in this Gaussian, it becomes formally immaterial whether we regard this expression as a distribution over \(\beta \) (as favoured by Lavenda) or over the estimator \(\hat{\beta}_1 \), as done by Mandelbrot. The standard deviations will in both cases be given by \(1/\sqrt{I_F} \). Thus, Lavenda’s result can be seen as a consequence of Mandelbrot’s inequality (and the fact that the Maximum Likelihood estimator asymptotically saturates the Cramér-Rao bound).

3.4 The approach by fiducial probability: Lindhard

A different approach to thermodynamical uncertainty relations was given by Lindhard. Like Rosenfeld, Lindhard restricts his discussion to a system with fixed volume in contact with a heat bath. Like Mandelbrot and Lavenda, he uses Gibbsian ensembles to determine the probability distributions, instead of the Einstein postulate. But unlike previous authors, Lindhard considers both the canonical and microcanonical ensembles as well as intermediate cases, describing a small system in thermal contact with a heat bath of varying size.
The relation he derives is
\[(\Delta U)^2 + C^2(\Delta T)^2 = kT^2C. \] (52)
Here, \(\Delta T \) and \(\Delta U \) are standard deviations of temperature and energy of the system, and \(C = \partial U/\partial T \) is its heat capacity. This relation has a somewhat different appearance from the uncertainty relations we have encountered so far, but it is still an uncertainty relation in the sense that it expresses that one standard deviation can only become small at the expense of the other’s increase.

The relation is intended to cover as extreme cases both the canonical ensemble, where, according to Lindhard, \(\Delta T = 0 \) and
\[(\Delta U)^2 = kT^2C, \] (53)
and the microcanonical ensemble, for which \(\Delta U = 0 \) and
\[(\Delta T)^2 = kT^2/C. \] (54)
Thus, we here have a candidate relation which holds for a class of ensembles, and can be seen as expressing a complementarity, not only between temperature and energy, but also between the canonical and microcanonical description, in the same way as the (improper) eigenstates of position and momentum appear as extreme cases in the quantum mechanical uncertainty relations.

To obtain his result Lindhard starts from the canonical distribution (19) describing a system in contact with an infinitely large heat bath at fixed temperature \(T \). The standard deviation of its energy can be expressed as
\[(\Delta U)^2 = kT^2\frac{\partial\langle U \rangle}{\partial T} = kT^2\langle C \rangle. \] (55)
This yields (53). Next, Lindhard “inverts” the canonical distribution, to obtain
\[p_U(\beta) = \frac{\partial}{\partial \beta} \int_0^U p_\beta(U')dU', \] (56)
and interprets this as the probability of the unknown temperature of the heat bath. He argues that, due to its infinite size, the heat bath can itself be regarded as an isolated system, and can thus be described by means of a microcanonical distribution. Hence the inverted distribution (56) can be interpreted as a microcanonical probability distribution for temperature. The standard deviation of this distribution should then yield (54). Lindhard does not prove this, but notes that it is approximately true when the heat bath is an ideal gas.

To get to intermediate distributions, Lindhard observes that, just like a canonically distributed system is in contact with a heat bath of infinite heat capacity, an isolated system can be construed as being in contact with a heat bath of zero heat capacity. Thus one obtains intermediate cases by considering a heat bath having a capacity \(\xi C \), with \(C \) the capacity of the system itself and \(0 < \xi < \infty \). Lindhard now assumes that the probability distribution for the energy of such a system takes the shape of a Gaussian distribution with width \((\Delta U)^2 = \sigma^2_U/(1 + \xi) \), where \(\sigma^2_U \) is the standard deviation in the energy for a canonical distribution (53). Combining this result with (54) which now reads
\[(\Delta T)^2 = \frac{kT^2}{(1 + \xi)C}, \] (57)
and eliminating \(\xi \) we finally obtain the result (52). Lindhard also claims, without proof, that for more general probability distributions this result holds too, with the equality replaced by a greater or equal sign.
There are, obviously, a number of objections to Lindhard’s approach. On first sight, his inversion procedure seems obscure. It is interesting to note, however, that the formula (56) for a probability distribution over an unknown parameter in the light of an observed value \(U \) is well-known in another approach to statistical inference proposed by Fisher and usually called fiducial probability. This approach provides a rival statistical procedure, alternative to both estimation theory and Bayesian statistics, and gives Lindhard’s inversion technique a theoretical back-

ground. Fisher restricted this fiducial argument to the cases where a sufficient estimator for the parameter exists and where its distribution is monotonous as a function of the parameter. This approach, however, is controversial and plagued by paradoxes. Mandelbrot captures general opinion in the remark that the fiducial argument is “often regarded as to be carefully avoided”.

Secondly, there are many gaps in Lindhard’s argument. It is not clear that the inverted distribution will indeed have the standard deviation (54) for systems other than an ideal gas. Also, his description of the intermediate cases by means of Gaussian approximations seems to be too simplified to be persuasive.

Remarkable is finally that Lindhard’s argument involves a shift in the system under consideration. The distribution (56) pertains, in first instance, to the heat bath. It is used, however, to describe the small system. In order to make this shift Lindhard simply assumes that the temperature fluctuations of the total system equal those of its subsystems. This is in marked contrast with all other authors on the subject. In fact, there are also experimental indications against the validity of this assumption.

4 Statistical distance

We now describe a fourth approach to statistical inference, which we favour. This is the likelihood approach, which was also developed by Fisher, and later advocated by Barnard, Hacking and Edwards. We shall show how this leads to a natural measure of inaccuracy in a parameter and use this for the formulation of uncertainty relations, both quantum mechanical and for temperature-energy in the canonical distribution.

The idea is here, first of all, that the likelihood function itself conveys all information provided by the data about the unknown parameter. In this respect the approach agrees with Bayesianism. But now the value of the logarithm of the likelihood function is interpreted as the relative support that the data bestow on parameter values. Thus, the parameter value for which the likelihood is maximal is regarded as the best supported one. This is in close agreement with the use of ML estimators in estimation theory. The basic difference with estimation theory is that the quality of the inference is judged not by the standard deviation of the estimator but by the form of the likelihood function.

Let us write

\[
S_x(\theta) := \ln p_\theta(x)
\]

for the support function and assume for the moment that this is a smooth function of \(\theta \). A natural way to quantifying its width is then by the curvature at its maximum. Hence,

\[
-\frac{d^2}{d\theta^2} \log p_\theta(x) \bigg|_{\theta=\theta_{\text{max}}}
\]

(59)

gives a measure of the uncertainty in the values of \(\theta \) on the basis of observed data \(x \).

Now take a slightly more abstract point of view and consider the inferences to be expected if the data \(x \) are drawn from a probability distribution \(p_{\theta_0} \). Then, the
expected support becomes

$$S_{θ₀}(θ) = - \int p_{θ₀}(x) \log p_θ(x) dx$$ \hspace{1cm} (60)$$

with a maximum at $θ = θ₀$. The expected width is then

$$- \int p_{θ₀}(x) \frac{d^2}{dθ^2} \log p_θ(x) \Big|_{θ = θ₀} dx$$ \hspace{1cm} (61)$$

which is just another form of the Fisher information (15). We thus see that in the likelihood approach this expression serves not merely as a theoretical bound for the efficiency of all estimators, but has itself a definite statistical interpretation. It represents the width of the expected support function, i.e. how easily $θ₀$ can be distinguished from slightly different parameter values. In this sense it is really a measure of how much information one may expect to obtain about the parameter from an observation.

It has been noted by many authors (Rao, Jeffreys) that the Fisher information actually defines a metric on the set of all parameter values $θ$. That is

$$\delta d = \frac{1}{2} \sqrt{I(θ)} \delta θ$$ \hspace{1cm} (62)$$

provides a distance element for the family $\{p_θ\}$ which is invariant under parameter transformations. In fact by allowing multidimensional, or even infinite-dimensional parameters, one can extend this metric over all probability distributions on a given outcome set. We refer to other works for details. The distance between probability distributions is given by

$$d(p_{θ₀}, p_{θ₁}) = \arccos \int \sqrt{p_{θ₀}(x)p_{θ₁}(x)} \, dx.$$ \hspace{1cm} (63)$$

(In the following, we shall write $d(θ₀, θ₁)$ for short.) This then provides a measure of distinguishability of two probability distributions. It is not only invariant under reparametrization, but even completely independent of the original family with which we started. Thus it remains useful also when this family is not smooth. This use of the Fisher information in the likelihood approach as a metric expressing the distinguishability of distributions should not be confused with Jeffreys’ proposal to use it as a prior probability distribution.

It is possible to give a lower bound for the right-hand side in terms of the endpoints $p_{θ₀}$ and $p_{θ₁}$ only (see the Appendix), to wit:

$$d(p_{θ₀}, p_{θ₁}) \geq \arccos \left[\left(1 + \frac{a^2}{(2\Delta \hat{θ})^2} \right)^{-1/2} \right],$$ \hspace{1cm} (64)$$

where $a = (1/2) \|\hat{θ}_{θ₀} - \hat{θ}_{θ₁}\|$, and $\Delta \hat{θ} = \max(\Delta_{θ₀}\hat{θ}, \Delta_{θ₁}\hat{θ})$. This relation illustrates the fact that when the distance between two probability distributions is small, the inefficiency of any estimator is necessarily large. We can put this in a more transparent form by defining an inaccuracy in $θ$, as the smallest parameter difference needed to produce a statistical distance greater than $α$, where $α$ is some convenient number between 0 and $π/2$. Thus, we define $δ_α θ$ as the smallest positive solution of

$$d(θ, θ + δ_α θ) = α.$$ \hspace{1cm} (65)$$

Then the inequality

$$δ_α θ^2 \leq (\cos^{-2} α - 1) \Delta \hat{θ}^2$$ \hspace{1cm} (66)$$
shows that \(\delta, \theta \) indeed provides a lower bound to estimation efficiency.

Of course, if the original family is regular (i.e. represented by a smooth curve), it is well approximated locally by a geodesic, and the improvement obtained over the Cramér-Rao inequality is spurious. By taking \(\delta \theta = \theta_1 - \theta_0 \) infinitesimal one easily shows from (62) that the inequality (63) reduces to the Cramér-Rao inequality. However, if the family is singular, the Cramér-Rao inequality does not apply, whereas the inequality (66) still yields a lower bound to the estimation efficiency.

An advantage of this approach is that exactly the same approach can and indeed already has been taken to the quantum mechanical uncertainty relations.\(^{34,35}\) Indeed, consider a set of quantum states \(|\psi_x\rangle = e^{-ixP} |\psi\rangle \) which are mutually shifted in space by a parameter \(x \), and suppose we want to make an inference about this parameter. If we perform a measurement of some observable \(A \) with eigenstates \(|a\rangle \), say, the problem becomes the comparison of probability distributions \(|\langle \psi_x | a \rangle|^2 \) for the unknown parameter \(x \). Just as in the classical case, we can define a statistical distance between two states:

\[
d_A(\psi_1, \psi_2) = \arccos \sum_a |\langle \psi_1 | a \rangle \langle a | \psi_2 \rangle| \tag{67}
\]

The only important distinction with the classical case is that in quantum theory this statistical distance depends on the choice of the observable \(A \). It is natural then to introduce the absolute statistical distance as the supremum over all observables:

\[
d_{\text{abs}}(\psi_1, \psi_2) = \sup_A d_A(\psi_1, \psi_2) = \arccos |\langle \psi_1 | \psi_2 \rangle|. \tag{68}
\]

If we define an inaccuracy \(\delta_x x \) in the location parameter \(x \) just as before, i.e. as the smallest value of \(\delta x \) that solves

\[
d_{\text{abs}}(\psi_x, \psi_{x+\delta x}) = \alpha \tag{69}
\]

one obtains the relations

\[
\delta_x x \Delta P \geq \hbar \alpha \tag{70}
\]

where \(\Delta P \) is the standard deviation in the momentum observable of the quantum system. Thus, the inaccuracy in the location of the state in space is related to the standard deviation in its momentum.

Similarly, suppose that one wants to estimate the age of a quantum system, i.e. to estimate the parameter \(t \) in its evolution \(|\psi_t\rangle = e^{itH/\hbar} |\psi\rangle \), where \(H \) denotes the Hamiltonian. Then one has

\[
\delta_t t \Delta H \geq \hbar \alpha. \tag{71}
\]

For an unstable system, such as a decaying atom, this gives the well-known relation between half-life and line width.

Taking \(\delta x \) (or \(\delta t \)) infinitesimal, these relations reduce to the Cramér-Rao version:

\[
\Delta_x \hat{Q} \Delta_x P \geq \frac{1}{2} \left| \frac{d\langle \hat{Q} \rangle}{dx} \right| \tag{72}
\]

\[
\Delta_t \hat{T} \Delta_t H \geq \frac{1}{2} \left| \frac{d\langle \hat{T} \rangle}{dt} \right| \tag{73}
\]

for any observable \(\hat{Q} \) (or \(\hat{T} \)) which would be useful for estimating the location (or age) of the system. Relation (72) was given by Lévy-Leblond\(^{16}\). When applied to an ‘unbiased’ observable, i.e. when

\[
\langle \hat{Q} \rangle = \langle \psi_x | \hat{Q} | \psi_x \rangle = x \tag{74}
\]
we obtain the standard Heisenberg form of the uncertainty relation, although for a more general class of operators than position Q alone. The last-mentioned version of the uncertainty relation $\frac{1}{2}Z(\frac{\beta_1 + \beta_2}{2}) \leq \sqrt{Z(\beta_1)Z(\beta_2)}$ for energy and time was already derived by Mandelstam and Tamm.

Let us now apply the concept of statistical distance and the resulting generalized uncertainty relations to statistical mechanics. The distance between two canonical distributions is

$$d(p_{\beta_1}, p_{\beta_2}) = \arccos \left[\frac{Z(\frac{\beta_1 + \beta_2}{2})}{\sqrt{Z(\beta_1)Z(\beta_2)}} \right].$$ \hspace{1cm} (75)

This relation is interesting in its own right. It is a well-known, and oft-repeated fact that the canonical partition function $Z(\beta)$ is log-convex. This is equivalent to the statement that the above factor between brackets is always less than or equal to one. The fact that its arccosine forms a distance function does not seem to be so well known. In this case we obtain

$$\delta \beta \Delta U \geq \alpha$$ \hspace{1cm} (76)

with

$$\Delta U = \frac{1}{\delta \beta} \int_{\beta}^{\beta + \delta \beta} \Delta U d\beta$$ \hspace{1cm} (77)

in analogy with (73) and (71). Thus the symmetry in these two types of uncertainty relations is recovered. The only difference with the quantum mechanical relations is that for the canonical family ΔU depends on β, whereas for a free quantum system ΔP and ΔH do not depend on x or t, which explains why an average as in (77) is unnecessary.

5 Interpolation between canonical and microcanonical ensembles; the case study by Prosper

Up till now we have met several unsuccessful arguments aiming to extend the uncertainty relation for energy and temperature from the canonical ensemble to the microcanonical ensemble. This raises the question whether there actually is a complementarity between these two ensembles, as envisaged by Bohr or Landau and Lifschitz. It is therefore of interest to analyze thermal fluctuations in intermediate situations.

A case study of such thermal fluctuations in a classical ideal gas was given by Prosper. Consider a system in d spatial dimensions, consisting of N particles in contact with another system of M particles acting as a finite size heat bath. It is assumed that both are ideal gases.

We assume that the total system, consisting of $N + M$ particles, is described by a microcanonical distribution with fixed energy ϵ. From this one can calculate the probability that the system has an energy U:

$$p_\epsilon(U) = \frac{1}{B(n,m)} \left(\frac{U}{\epsilon}\right)^{n-1} \left(1 - \frac{U}{\epsilon}\right)^{m-1} \frac{1}{\epsilon}, \hspace{1cm} 0 \leq U \leq \epsilon$$ \hspace{1cm} (78)

where $n = \frac{d}{2} N$; $m = \frac{d}{2} M$; $N, M \geq 1$ and

$$B(n,m) = \frac{\Gamma(n)\Gamma(m)}{\Gamma(n + m)}.$$ \hspace{1cm} (79)

In the limit $m \to \infty$, $\frac{m}{\epsilon} = \beta_\infty$ this distribution tends to the canonical one, with the temperature parameter β_∞. One the other hand, when the size of the heat bath is
negligible compared to the system, i.e. when \(m \) becomes very small compared to \(n \), the distribution becomes sharply peaked just below the value \(U = \epsilon \), resembling the microcanonical one. (Note, however, that the representation (78) ceases to be valid for \(m = 0 \).) Thus, for varying \(m \) we have a family of distributions that interpolate between the canonical and microcanonical ensembles.

The standard deviation of the energy is

\[
(\Delta U)^2 = \frac{nm\epsilon^2}{(n + m + 1)(n + m)^2},
\]

and the question is again what to say about the temperature of the system. Prosper uses a Bayesian approach to quantify its uncertainty. However, as we have seen in the work of Lavenda, this uncertainty in temperature will not lead to an uncertainty relation for a finite system. Instead, we shall try Mandelbrot’s approach and compare this to the statistical distance approach.

We first assign a temperature-like parameter to the system by reparameterizing \(\epsilon \). The choice of such a parameter is only straightforward in the limiting case \(m \to \infty \). But for finite \(m \) the choice is more or less arbitrary. Let us put \(\beta := \frac{\langle U \rangle}{n} = \frac{n + m\epsilon}{m}. \) Thus this parameter coincides with the canonical temperature \(\beta_\infty \) as \(m \to \infty \).

Suppose we wish to estimate \(\beta \) from a measurement of \(U \). The Fisher information in the parameter \(\beta \) is:

\[
I_F(\beta) = \begin{cases} \\
\frac{n^2}{\beta^2} & m = 1/2, 3/2, 2 \\
\frac{n}{n(m+n-1)} & m = 1 \\
\frac{m}{(m-2)\beta^2} & m > 2 \\
\end{cases}
\]

Using (80) we obtain the Cramér-Rao inequality for the parameter \(\beta \):

\[
(\Delta U)^2(\Delta \beta)^2 \geq \frac{m(m - 2)}{(n + m)^2 - 1} \quad (m > 2).
\]

showing the limited efficiency of all unbiased estimators for \(\beta \). This lower bound is independent of \(\beta \) and increasing in \(m \). For \(m \to \infty \), it reduces to the canonical value 1, already obtained in (21). Thus for the ideal gas we see indeed a gradual transition from the canonical case (relation (21)) for \(m \to \infty \) to the microcanonical case (relation (29)), where the uncertainty product vanishes. Somewhat disappointing is, however, that we cannot carry out a limit \(m \to 0 \). Already for \(m = 2 \), the Fisher information is infinite. This is, however, no indication that the parameter \(\beta \) becomes perfectly estimable for small \(m \). Rather, for \(m \leq 2 \) the distributions are singular and the Cramér-Rao inequality no longer holds. (Cf. footnote 17.)

Thus the inequality (82) expresses the gradual transition between canonical and microcanonical distribution, but not perfectly.

Here, the method of statistical distance offers a more detailed analysis of the situation. The statistical distance for some values of \(n \) and \(m \) are as follows:

\[
d(\beta_0, \beta_1) = \arccos I_{mn}(b) \quad \text{with} \quad b = \sqrt{\frac{\beta_0}{\beta_1}} \quad (\beta_0 \leq \beta_1)
\]

and

\[
I_{11}(b) = b, \\
I_{21}(b) = \frac{1 + b^2}{2b} + \frac{(b^2 - 1)^2}{4b^2} \log \frac{1 - b}{1 + b}, \\
I_{31}(b) = \frac{b}{2}(3 - b^2), \\
I_{41}(b) = \frac{1}{32b^4} \left(-6b + 22b^3 + 22b^5 - 6b^7 - 3(b^2 - 1)^4 \log \frac{1 - b}{1 + b} \right)
\]
$d(\beta_0, \beta_0 + \delta\beta)$

Figure 1: Statistical distance as a function of the relative temperature difference $(\delta\beta)/\beta_0$ for $n = 1$ and various values of m. For $m > 2$ this distance increases linearly for small values of $\delta\beta$; for $m \leq 2$ the distance element is singular and grows more rapidly.

$I_{51}(b) = \frac{b}{6}(10 - 5b^2 + b^4)$.
(88)

$I_{1n} = b^n$.
(89)

Figure 1 shows for the simplest case of $n = 1$ how these distances behave as a function of $\delta\beta = \beta_1 - \beta_0$. It is seen that for small $\delta\beta$ the statistical distance grows linearly with $\delta\beta$ when $m > 2$, but much faster when $m \leq 2$, due to the singularity of the associated distributions (78). Thus, with the same choice for the value of α, the inaccuracy $\delta_{\alpha\beta}$ is much smaller for $m \leq 2$ than for $m > 2$. However this does not mean that there is no lower bound. For example, for $n = m = 1$ one finds

$\delta_{\alpha\beta}\Delta_\beta U \geq \frac{(\cos^2 \alpha - 1)}{\sqrt{3}}$.
(90)

For larger systems ($n > 1$), the expression for the statistical distance becomes generally more complicated. However, the same trend is observed: if the heat bath is small ($m \leq 2$), the statistical distance $d(\beta, \beta + \delta\beta)$ increases more rapidly than $\delta\beta$ but it behaves regularly (i.e. $d(\beta, \beta + \delta\beta) \propto \delta\beta$) for $m > 2$. However there is a positive lower bound to the uncertainty product in all cases, viz.

$\delta_{\alpha\beta}\Delta_\beta U \geq \sqrt{\frac{nm}{n + m + 1}} \left(t_{mn}^{inv}(\cos \alpha)^{-2} - 1 \right)$.
(91)

If we choose $\alpha \ll 1$, the right-hand side is here of order α for $m > 2$ and α^2 for $m = 1$. We recover, therefore, the same conclusion as before: in a gradual transition from a canonical to a microcanonical distribution the uncertainty product is bounded by a constant gradually approaching zero. We thus see that the uncertainty relations
obtained in this approach remain valid also for singular families. However, the right-hand side is then much lower than in the regular case.

Of course these conclusions are obtained only for the case study of the ideal gas. Yet it remains remarkable that, in the approach using the statistical distance, one obtains non-trivial uncertainty relations for regular as well as singular families. A serious challenge would then be to apply this to systems capable of phase transitions. This, however, falls outside the scope of this paper.

6 Discussion

We have reviewed several approaches to the formulation of thermodynamic uncertainty relations in the existing literature. Only two have a reasonably general derivation, free from undesirable simplifying assumptions. The formulation of Schlögl pertains to a version of statistical thermodynamics founded on the Einstein postulate. The second formulation is by Mandelbrot. His result is valid for canonical ensembles both in his own axiomatic version of statistical thermodynamics as well as in statistical mechanics. In Schlögl’s treatment, the system has a randomly fluctuating temperature, in Mandelbrot’s case the temperature is identified with a parameter in its probability distribution. Its uncertainty is identified with estimation efficiency and his uncertainty relation is valid for regular families, i.e. barring phase transitions. We have also proposed an extension of Mandelbrot’s approach by means of the theory of likelihood inference. Here the uncertainty in the temperature parameter is quantified by means of statistical distance. The uncertainty relation obtained in this way is valid also for non-regular families.

Both Mandelbrot’s result and the generalization we proposed are in close analogy with formulations of uncertainty relations in quantum mechanics. This provides a good reason to take them just as serious as the quantum mechanical relations. Still, there are deep differences between statistical mechanics and quantum theory in particular in their interpretations of probability. When in quantum mechanics a system is described probabilistically, this is usually said to represent the state of the system completely; in contrast, the probability distributions in statistical mechanics are regarded as ‘only’ convenient tools. In this case the mechanical phase space provides the underlying variables which in quantum mechanics are regarded as hidden or even non-existent. The probabilistic description gives only a small part of the information concerning the system that could in principle be obtained. But — it also gives something more. As we have seen, complete knowledge of the microstate would not suffice to infer the temperature of the system. What we have added by giving a probabilistic description is the notion of the ensemble, of which the system of interest is only a member. That is, we have added something which goes beyond the particular system we are studying. This points to a common feature between the quantum case and the statistical mechanical case. Once we have accepted that our system is described by some probability distribution out of a certain parameterized class, the problem of statistical inference of the parameter occurs in exactly the same way, and the uncertainty in this parameter can be quantified with the same methods.

In all the approaches mentioned, there is no uncertainty relation for energy and temperature for an energetically isolated system. Therefore, the results do not justify a claim for complementarity between energetic isolation and thermal contact, as envisaged by Bohr and Heisenberg. Indeed, we conclude that no such complementarity exists. Mandelbrot’s attempt to give his relation a more general validity by regarding the isolated system, counterfactually, as a case which could have been described by a canonical ensemble is not convincing. We also come to the conclusion that there doesn’t exist a complementarity between the microcanonical and canon-
ical ensembles. In particular, it is not true (as Lindhard claims) that the extremes of any valid uncertainty relation are covered by these ensembles respectively. In fact, the study of intermediate cases reveals that the product of the uncertainties in energy and temperature gradually changes from zero (microcanonical case) to one (canonical case).

In this respect there are strong disanalogies between the thermodynamic and the quantum mechanical uncertainty relations. It is sometimes argued that the mathematical basis of the uncertainty relationship in quantum mechanics (the Fourier transform between position and momentum eigenstates) is so analogous to the Laplace transform relationship between the canonical and microcanonical ensembles, that an analogous relationship should be expected. However, this analogy is misleading. The canonical distribution is a convex mixture of microcanonical ones, but not vice versa. The grand-canonical distribution, where the number of particles is also variable, is in turn a mixture of canonical ones, etc. Thus, these ensembles of statistical mechanics are ordered in a hierarchical scale of increasing randomness. This is quite different from the symmetry in the Fourier relationship between the position and momentum eigenstates of quantum mechanics.

We finally return to what seems the philosophically most surprising aspect of our review. Do thermodynamical uncertainty relations entail an obstacle to a microscopic underpinning of thermodynamics, in the same way as their quantum mechanical counterparts forbid the existence of hidden variables? We have seen that all of the protagonists in our discussion (except Lindhard) claimed this to be true. If so, it would provide an example in classical physics of a situation which is usually seen as exclusive to the quantum world and undreamt of in classical physics.

The first point to make in this connection is that already in quantum mechanics the uncertainty relations (in the standard form) do not forbid hidden-variables reconstructions. A much more formidable obstacle is the theorem of Kochen and Specker. Hence, one cannot argue from a supposed analogy here, since the analogy fails already in quantum mechanics. The Copenhagen viewpoint that the uncertainty relations prevent a hidden variables reconstruction of quantum mechanics is due to the additional assumption that the physical description by quantum mechanics is already complete.

This is not to say however, that a mechanical underpinning or ‘reduction’ of thermodynamics to statistical mechanics is straightforward. Indeed, the uncertainty relations studied here may shed new light on the often heard statement that the relation between thermodynamics and statistical mechanics is the archetypal example of a successful theory reduction. Only some thermodynamic functions can be immediately identified as functions on phase space. It is only for these quantities that a complete description of the microstate of the system would be sufficient to determine them completely. But for quantities defined statistically, i.e. as parameters or functionals on a probability distribution, like temperature, entropy and chemical potential, the complete specification of the microstate will never suffice. That is what forms the basis for the uncertainty relations we have studied: no phase function can exactly mimick such parameters (for a range of their values). In this particular sense, these relations do express the impossibility of a ‘hidden-variables’ style extension of statistical thermodynamics. Observe that no non-commutativity is needed for this conclusion.

Of course this view depends on the definition of temperature (and chemical potential etc.) as a parameter in a probability distribution. Another option that we have encountered is to consider one of the estimator functions as a definition of temperature, rather than as a smart guess (and therefore of course drop the qualification ‘estimator’). Then temperature becomes a function on phase space, irrespective of which probability distribution we choose to describe our system. No uncertainty relation for such a temperature function has been established except for
the canonical ensembles. But in this case we are still left with the question which function to choose, because many can be defined which differ radically for finite systems. The reduction of thermodynamics to statistical mechanics therefore still seems to be an open problem.

7 Appendix

Here we prove the following inequality: for any one-parameter family of probability distributions p_θ and any unbiased estimator $\hat{\theta}$ for θ we have

$$\int \sqrt{p_{\theta_1}(x)p_{\theta_0}(x)} dx \leq \left(1 + \frac{(\theta_1 - \theta_0)^2}{2\Delta}\right)^{-1/2},$$

where $\Delta := \max(\Delta_{\theta_1}\hat{\theta}, \Delta_{\theta_2}\hat{\theta})$. For n repeated independent observations, this result obviously generalizes to

$$\left(\int \sqrt{p_{\theta_1}(x)p_{\theta_0}(x)} dx\right)^n \leq \left(1 + \frac{(\theta_1 - \theta_0)^2}{2\Delta_n}\right)^{-1/2},$$

with $\Delta_n := \max(\Delta_{\theta_1}\hat{\theta}_n, \Delta_{\theta_2}\hat{\theta}_n)$.

The idea behind the proof is to use the Cramér-Rao inequality, not for the curve formed by the family p_θ but for a geodesic between the points p_{θ_1} and p_{θ_2}. The geodesic between θ_1 and θ_0 is the family of distributions of the form

$$p_\alpha = \left(\alpha\sqrt{p_0} + \beta\sqrt{p_1}\right)^2$$

where α varies between 0 and 1, and β obeys

$$\alpha^2 + \beta^2 + 2\alpha\beta c = 1$$

$$c = \int \sqrt{p_0p_1} dx.$$

(94)

Although $\hat{\theta}$ need not be a good estimator for this geodesic family, the CR inequality is nevertheless still valid:

$$\sqrt{I_F(\alpha)} \geq \frac{|d(\hat{\theta})|}{\Delta_{\alpha}\hat{\theta}}$$

and we can integrate this along the geodesic. This yields

$$d(\theta_0, \theta_1) = \arccos \int \sqrt{p_{\theta_1}(x)p_{\theta_0}(x)} dx = \int \frac{1}{2} \sqrt{I_F(\alpha)} d\alpha \geq \int_0^1 \frac{|d(\hat{\theta})|}{2\Delta_{\alpha}\hat{\theta}} d\alpha.$$

(98)

Since our purpose is to find a lower bound for the right hand side, we may assume, without loss of generality, that $(\hat{\theta})_\alpha$ is monotinous in α. Then there exists an invertible function $y(\alpha) = (\hat{\theta})_\alpha$. Further, since the integrals are invariant under a linear transformation $\hat{\theta} \rightarrow c\hat{\theta} + d$ we can arrange that $(\hat{\theta})_0 = -a$, $(\hat{\theta})_1 = a$. Thus:

$$\int_0^1 \frac{|d(\hat{\theta})|}{2\Delta_{\alpha}\hat{\theta}} d\alpha \geq \int_0^1 \frac{d(\hat{\theta})}{2\Delta\hat{\theta}} = \int_{-a}^a \frac{dy}{2\sqrt{(\hat{\theta}^2)_\alpha(y) - y^2}}.$$

(99)

The strategy is now to find an upper bound for $(\hat{\theta}^2)_\alpha$ in terms of $(\hat{\theta}^2)_0$, $(\hat{\theta}^2)_1$ and a. Suppose for the moment that such an upper bound exists, so that, say,

$$\langle \hat{\theta}^2 \rangle_\alpha \leq A^2.$$

(100)
Then we easily obtain
\[
\int_{-a}^{a} \frac{dy}{2\sqrt{(\hat{\theta})_{\alpha}^2 - y^2}} \geq \int_{-a}^{a} \frac{dy}{2\sqrt{A^2 - y^2}} = \arcsin \frac{a}{A}.
\]
(101)

Combining this with (101) we find:
\[
d(p_{\theta_1}, p_{\theta_2}) \geq \arcsin \frac{a}{A}
\]
(102)
or
\[
\int \sqrt{p_{\theta_0}(x)p_{\theta_1}(x)} dx \leq \sqrt{1 - \left(\frac{a}{A}\right)^2}.
\]
(103)

It remains to show that an upper bound (101) indeed exists.

Now the expectation \(\langle \hat{\theta}^2 \rangle_{\alpha}\) along the geodesic can be written as a convex sum:
\[
\langle \hat{\theta}^2 \rangle_{\alpha} = \alpha^2 \langle \hat{\theta}^2 \rangle_0 + \beta^2 \langle \hat{\theta}^2 \rangle_1 + 2\alpha\beta c \langle \hat{\theta}^2 \rangle_2
\]
(104)
where \(\langle \cdot \rangle_2\) denotes averaging with respect to the auxiliary probability density
\[
p_2(x) = \frac{1}{c} \sqrt{p_0(x)p_1(x)}
\]
(105)

Its maximum value depends on which of the three expectations \(\langle \hat{\theta}^2 \rangle_i\) is the largest.
We distinguish two cases: (i) \(\langle \hat{\theta}^2 \rangle_0\) or \(\langle \hat{\theta}^2 \rangle_1\) is the largest; or (ii) \(\langle \hat{\theta}^2 \rangle_2\) is the largest of the three.

In case (i) the convex sum reaches its maximum when \(\alpha = 1\) or \(\alpha = 0\). Clearly the argument will be similar in both cases, so let us only consider \(\alpha = 1\). This gives:
\[
\langle \hat{\theta}^2 \rangle_{\alpha} \leq \langle \hat{\theta}^2 \rangle_1 = \Delta_2 + a^2
\]
(106)
This is the value of \(A^2\) in case (1). Inserting in (101) leads to the result of theorem.

In case (ii) the convex sum (104) is maximal when \(\alpha^2 = \beta^2 = \frac{1}{2(1 + c)}\). We thus find the upper bound
\[
\langle \hat{\theta}^2 \rangle_{\alpha} \leq \frac{\langle \hat{\theta}^2 \rangle_0 + \langle \hat{\theta}^2 \rangle_1}{1 + c} + \frac{c}{1 + c} \langle \hat{\theta}^2 \rangle_2
\]
(107)
and we have to find an upper bound for \(\langle \hat{\theta}^2 \rangle_2\). Using the Cauchy-Schwartz inequality and the general inequality \((A + x)(B + x) \leq ((A + B)/2 + x)^2\) in turn gives:
\[
\langle (\hat{\theta} - r)(\hat{\theta} + r) \rangle_2 \leq \frac{1}{c} \sqrt{\langle (\hat{\theta} + r)^2 \rangle_0 \langle (\hat{\theta} - r)^2 \rangle_1}
\]
\[
= \frac{1}{c} \sqrt{(\Delta_0^2 + (a - r)^2)(\Delta_1^2 + (a - r)^2)}
\]
\[
\leq \frac{1}{c} (D^2 + (a - r)^2)
\]
(108)
where \(\Delta_i := \Delta_i \hat{\theta}\), and
\[
D^2 := (\Delta_0^2 + \Delta_1^2)/2.
\]
(109)
This inequality (108) is valid for all \(r\); one may choose \(r\) so as to optimize the strength of the bound. This is the case when \(r = a/(1 + c)\) and we obtain:
\[
\langle \hat{\theta}^2 \rangle_2 \leq \frac{D^2}{c} + \frac{a^2}{1 + c}
\]
(110)
which is our upper bound for $\langle \hat{\theta}^2 \rangle_2$. Combining this with (107) gives the desired upper bound for case (ii):

$$
\langle \hat{\theta}^2 \rangle_\alpha \leq D^2 \frac{2}{1+c} + a^2 \frac{1+2c}{1+c}.
$$

(111)

Inserting this in (103) yields, after a bit of algebra,

$$
\int \sqrt{p_{\theta_0}(x)p_{\theta_1}(x)} \, dx \leq \left(1 + \frac{a^2}{D^2} \right)^{-1/2}
$$

(112)

which, in view of (109), is even slightly stronger than the announced theorem.
References

1. See: N. Bohr, *Collected Works*, edited by J. Kalckar (North-Holland, Amsterdam, 1985), Vol. 6, pp. 316–330, 376–377.

2. A. Pais, *Niels Bohr’s times, in physics, philosophy, and polity*, (Clarendon Press, Oxford, 1991).

3. B. Mandelbrot, “An outline of a purely phenomenological theory of statistical thermodynamics: 1. canonical ensembles,” IRE Trans. Information Theory **IT-2**, 190–203 (1956).

4. B. Mandelbrot, “The role of sufficiency and of estimation in thermodynamics,” Ann. Math. Stat. **33**, 1021–1038 (1962).

5. B. Mandelbrot, “On the derivation of statistical thermodynamics from purely phenomenological principles,” J. Math. Phys. **5**, 164–171 (1964).

6. L. Rosenfeld, “Questions of irreversibility and ergodicity,” in *Ergodic Theories*, Proceedings of the International School of Physics “Enrico Fermi,” Course XIV, Varenna 1960, edited by P. Caldirola (Academic Press, New York, 1961).

7. B. Lavenda, “Thermodynamic uncertainty relations and irreversibility,” Int. J. Theor. Phys. **26**, 1069–1084 (1987).

8. B. Lavenda, “The Bayesian approach to thermostatics,” Int. J. Theor. Phys. **4**, 451–472 (1988).

9. B. Lavenda, “On the phenomenological basis of statistical thermodynamics,” J. Phys. Chem. Solids **49**(6), 685–693 (1988).

10. B. Lavenda, *Statistical Physics: a Probabilistic Approach* (J. Wiley and Sons, New York, 1991).

11. J. Lindhard, “‘Complementarity’ between energy and temperature,” in *The Lesson of Quantum Theory*, edited by J. de Boer, E. Dal and O. Ulfbeck (North-Holland, Amsterdam, 1986).

12. F. Schlägl, “Thermodynamic uncertainty relation,” J. Phys. Chem. Solids **49**(6), 679–683 (1988).

13. H. Feshbach, “Small systems: when does thermodynamics apply?,” Physics Today **40**(11), 9–11 (1987).

Ch. Kittel, “Temperature fluctuation: an oxymoron,” Physics Today **41**(5), 93 (1988).

B. Mandelbrot, “Temperature fluctuation: a well-defined and unavoidable notion,” Physics Today **42**(1), 71–73 (1989).

14. L.D. Landau and E.M. Lifshitz, *Statistical Physics* (Pergamon Press, London, 1959).

15. Ref. [14], p. 62.

16. Ref. [14], p. 355.

17. To be precise, inequality (14) is valid when $\frac{d}{d\theta} \hat{\theta}(x)p_\theta(x)dx = \int \hat{\theta}(x) \frac{d}{d\theta} p_\theta(x)dx$, and $\int \frac{d}{d\theta} p_\theta(x)dx = 0$.

27
18. In statistical mechanics, this structure function would be interpreted as a measure of the number of microscopic states compatible with energy U. In Mandelbrot’s approach, where there is no assumption about microscopic states, the structure function is simply left uninterpreted.

19. A.S. Holevo, *Probabilistic and Statistical Aspects of Quantum Theory* (North-Holland, Amsterdam, 1982).

20. E.R. Caianiello, “Entropy, information and quantum geometry” in *Frontiers of Non-Equilibrium Statistical Physics*, edited by G.T. Moore and M.O. Scully (Plenum Press, New York 1986), p. 453-464.

21. S.L. Braunstein, “Fundamental limits to precision measurements” in *Symposium in the Foundations of Modern Physics 1993*, edited by P. Busch, P. Lahti and P. Mittelstaedt (World Scientific, Singapore, 1993).

22. Ref. 17, p. 1036.

23. The function $\hat{\beta}_1$ can already be found in writings of Boltzmann, and is also used by A.I. Khinchin, *Mathematical Foundations of Statistical Mechanics* (Dover, New York, 1949). The functions $\hat{\beta}_2$ and $\hat{\beta}_3$ were introduced by Gibbs.

24. A. Martin-Löf, *Statistical Mechanics and the Foundations of Thermodynamics* (Springer, Berlin, 1979).

25. H. Jeffreys, *Theory of Probability* (Clarendon Press, Oxford, 1966), 3rd ed.

26. Ref. 17, p. 686.

27. Ref. 19, p. 6.

28. Lavenda derives $\rho(\hat{\beta}_1) \propto \sqrt{I_F(\hat{\beta}_1)}$, and concludes from this that $\rho(\beta)$ and $\sqrt{I_F(\beta)}$ are proportional for all β. This overlooks that this ‘proportionality’ was obtained for one specific value $\beta = \hat{\beta}_1$ only.

29. Ref. 19, pp. 196–197.

30. See: I. Hacking, *Logic of Statistical Inference* (Cambridge University Press, 1965); T. Seidenfeld, *Philosophical Problems of Statistical Inference* (Reidel, Dordrecht, 1979) and A.W.F. Edwards, *Likelihood* (John Hopkins University Press, Baltimore, 1992).

31. Ref. 19, p. 193.

32. See T.C.P. Chui, D.R. Swanson, M.J. Adriaans, J.A. Nissen and J.A. Lipa, “Temperature fluctuations in the canonical ensemble,” *Phys. Rev. Lett.* 69(21), 3005–3008 (1992).

33. W.K. Wootters, “Statistical distance and Hilbert space,” *Phys. Rev. D* 23, 357–362 (1981).

34. J. Hilgevoord and J. Uffink, “Uncertainty in prediction and in inference,” *Found. Phys.* 21, 323–341 (1991).

35. J. Uffink, “The Rate of Evolution of a Quantum State,” *Am. J. Phys.* 61, 935 (1993).

36. J.-M. Lévy-Leblond, *Phys. Lett. A.* 111, 353-355 (1985).
37. L. Mandelstam and I. Tamm, “The uncertainty relation between energy and time in non-relativistic quantum mechanics,” J. Physics (USSR) 9, 249–254 (1945).

38. H.B. Prosper, “Temperature fluctuations in a heat bath,” Am. J. Phys. 61, 54–58 (1993).