TLR4 Asp299Gly (rs4986790) polymorphism and coronary artery disease: A meta-analysis

Rui Chen, Ning Gu, Ying Gao, Wei Cen

Background. Previous studies have shown conflicting results on the association between toll-like receptor 4 (TLR4) Asp299Gly (rs4986790) polymorphism and coronary artery disease (CAD). The aim of this study was to evaluate the influence of TLR4 Asp299Gly polymorphism on CAD risk, CRP level and the number of stenotic coronary arteries, as well as to investigate whether G allele carriers would benefit more from statin treatment.

Methods. PubMed, EMBASE, and CNKI databases were searched until May 2015. All the statistical tests were performed using R version 3.1.2. Odds ratio (OR) and 95% confidence interval (CI) were used to assess the association between TLR4 Asp299Gly polymorphism and CAD risk, the number of stenotic vessels, and the incidence of cardiovascular events according to statin-treated patients. Weighted mean difference (WMD) was calculated for the association between Asp299Gly and CRP level.

Results. Overall, 12 case-control studies with 10,258 cases and 5891 controls were included, and no association of TLR4 Asp299Gly polymorphism with CAD was found (G allele vs. A allele: OR=0.97, 95% CI=[0.81,1.17], p=0.75; AA vs. GG + AG: OR=0.97, 95% CI=[0.80,1.18], p=0.76; GG vs. AG + AA: OR =1.08, 95% CI=[0.57,2.02], p=0.82; AG vs. AA+GG: OR=1.03, 95% CI=[0.85,1.25], p=0.74). Also, no association was noted between Asp299Gly and CRP level (WMD=-0.10, 95%CI= [-0.62, 0.41], P=0.69). Furthermore, no synergistic effect of statin and 299Gly was reported (Statin_AA v.s Statin_AG/GG: OR=1.12, 95% CI= [0.41, 3.09], p=0.82).

Discussion. This meta-analysis suggests no association of TLR4 Asp299Gly polymorphism with CAD and CRP level. It is further indicated that the G allele carriers may not benefit more from statin treatment. Further studies should include large sample size and high-quality literature to understand this issue in depth.
TLR4 Asp299Gly (rs4986790) Polymorphism and Coronary Artery Disease: A Meta-analysis

Rui Chen¹, Ning Gu², Ying Gao¹, Wei Cen¹

¹The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
²Department of Cardiology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China

Corresponding Author:
Ning Gu²
No 1. Jinling Road, Nanjing, Jiangsu, 210001, China
Email address: Ning Gu, guning_2@163.com
ABSTRACT

Background. Previous studies have shown conflicting results on the association between toll-like receptor 4 (TLR4) Asp299Gly (rs4986790) polymorphism and coronary artery disease (CAD). The aim of this study was to evaluate the influence of TLR4 Asp299Gly polymorphism on CAD risk, CRP level and the number of stenotic coronary arteries, as well as to investigate whether G allele carriers would benefit more from statin treatment.

Methods. PubMed, EMBASE, and CNKI databases were searched until May 2015. All the statistical tests were performed using R version 3.1.2. Odds ratio (OR) and 95% confidence interval (CI) were used to assess the association between TLR4 Asp299Gly polymorphism and CAD risk, the number of stenotic vessels, and the incidence of cardiovascular events according to statin-treated patients. Weighted mean difference (WMD) was calculated for the association between Asp299Gly and CRP level.

Results. Overall, 12 case-control studies with 10,258 cases and 5891 controls were included, and no association of TLR4 Asp299Gly polymorphism with CAD was found (G allele vs. A allele: OR=0.97, 95% CI=[0.81,1.17], p=0.75; AA vs. GG + AG: OR=0.97, 95% CI=[0.80,1.18], p=0.76; GG vs. AG + AA: OR=1.08, 95% CI=[0.57,2.02], p=0.82; AG vs. AA+GG: OR=1.03, 95% CI=[0.85,1.25], p=0.74). Also, no association was noted between Asp299Gly and CRP level (WMD=-0.10, 95%CI= [-0.62, 0.41], P=0.69). Furthermore, no synergistic effect of statin and 299Gly was reported (Statin_AA v.s Statin_AG/GG: OR=1.12, 95% CI= [0.41, 3.09], p=0.82).

Discussion. This meta-analysis suggests no association of TLR4 Asp299Gly polymorphism with CAD and CRP level. It is further indicated that the G allele carriers may not benefit more from statin treatment. Further studies should include large sample size and high-quality literature to understand this issue in depth.

INTRODUCTION

Coronary artery disease (CAD), resulting from atherosclerosis (AS), has become the leading cause of disability and death globally (Murray et al., 2012). Evidence suggests that inflammation and immunity play a key role in the pathogenesis of AS and CAD (Ross, 1999; Libby, Lichtman & Hansson, 2013). Moreover, as a pattern recognition receptor of the innate immune system, toll-like receptor 4 (TLR4) expression is increased in human atherosclerotic lesions (Edfeldt et al., 2002). Various ligands (e.g., lipopolysaccharide (LPS), heat shock protein (HSP), minimally oxidized low-density lipoprotein (mmLDL), fibrinogen) can bind to TLR4, and then myeloid differentiation factor 88 (MyD88)-dependent or MyD88-independent signal pathway is activated, resulting in inappropriate immune activation, which consequently contributes to the onset and rupture of AS plaques (Dekker et al., 2010; Miller et al., 2012).
Human TLR4 is located in 9q32-q33 region, and contains three exons. TLR4 activity and function seem to be modulated by genetic variations, especially single nucleotide polymorphisms (SNPs) (Balistreri et al., 2009). Asp299Gly (+896A/G, rs4986790) is one of the only two SNPs in TLR4 that have a frequency greater than 5% in humans (Balistreri et al., 2009); the other is Thr399Ile (+1196C/T, rs4986791) and a high degree of linkage disequilibrium (LD) exists between them. As most of the variations, Asp299Gly is in the leucine-rich repeat (LRR) domain of Exon 3 which is associated with the recognition of pathogen-associated molecular patterns (PAMPs) (e.g., mmLDL) (Smirnova et al., 2000). Because of a glycine residue substituting for aspartic acid at amino acid position 299 (nucleotide substitution 896A>G), the extracellular domain of TLR4 is changed, leading to an attenuate signal pathway, blunted response to inhaled LPS, decreased production of inflammatory cytokines (Arbour et al., 2000), and reduced risk of the progression of atherosclerosis (Kiechl et al., 2002). Numerous studies have focused on the association between the Asp299Gly TLR4 polymorphism and CAD. Some reports suggested a protective effect of TLR4 Asp299Gly on CAD (Boekholdt et al., 2003; Ameziane et al., 2003; Kolek et al., 2004; Balistreri et al., 2004; Berg et al., 2009). In contrast, one study found that men with the 299Gly TLR4 genotype had an increased risk of myocardial infarction (MI) (Edfeldt et al., 2004), while other reports showed no obvious association between 299Gly and CAD (Morange et al., 2004; Zee et al., 2005; Koch et al., 2006; O’Halloran et al., 2006; Nebel et al., 2007; Beijk et al., 2010; Džumhur et al., 2012; Martínez-Ríos et al., 2013; Golovkin et al., 2014; Guven et al., 2015). Based on these, many studies have investigated the relationship between the severity of coronary artery stenosis and Asp299Gly, and obtained inconsistent results (Boekholdt et al., 2003; Yang, Holloway & Ye, 2003; Hernesniemia et al., 2006; Džumhur et al., 2012; Guven et al., 2015). Furthermore, based on the direct anti-inflammatory effect of statin (Crisby et al., 2001; Ridker et al., 2009), Boekholdt et al. (Boekholdt et al., 2003) stated that 299Gly can affect the efficacy of statin in preventing cardiovascular events, and thus the carriers of the variant allele benefit significantly from statin treatment; however, the same phenomenon was not found in other reports (Kolek et al., 2004; Beijk et al., 2010). The issue whether a synergistic effect of statin and 299Gly exists is still controversial. In addition, C-reactive protein (CRP) serves as a useful biomarker of inflammatory diseases, and is also considered as an independent risk factor to predict first and recurrent cardiovascular events; its level with TLR4 Asp299Gly has gained enormous attention (Kiechl et al., 2002; Edfeldt et al., 2004; Kolek et al., 2004; Netea et al., 2004; Hernesniemia et al., 2006; Beijk et al., 2010). In other words, a number of studies have been carried out on Asp299Gly and CAD, and the results are quite inconsistent. Thus, a meta-analysis is needed for further insights into the association between TLR4 Asp299Gly and the CAD risk, the CRP level and the number of stenotic coronary arteries; and to investigate whether a synergistic effect between statin and 299Gly exists.

MATERIALS AND METHODS

Literature research. This meta-analysis followed the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) statement (Moher et al., 2010). PubMed, EMBASE, and CNKI databases were used to search relevant articles within a range of published years from January 1, 2000 to May 30, 2015. The full search strategy (for PubMed) about the association between TLR4 Asp299Gly polymorphism and CAD was as follows: “Toll-like receptor-4 or TLR4” AND “coronary heart disease or CHD or coronary artery disease or CAD or cardiovascular disease or CVD or myocardial infarction or MI” AND “polymorphism or variant”. The full search strategy about the association of Asp299Gly polymorphism with CRP level was as follows: “Toll-like receptor-4 or TLR4” AND “coronary heart disease or CHD or coronary artery disease or CAD or cardiovascular disease or CVD or myocardial infarction or MI” AND “polymorphism or variant” AND “CRP or C-reactive protein”. For the study of the synergistic effect between statin and 299Gly, the following search strategy was used: “Toll-like receptor-4 or TLR4” AND “coronary heart disease or CHD or coronary artery disease or CAD or cardiovascular disease or CVD or myocardial infarction or MI” AND “polymorphism or variant” AND “statin”. To avoid missing articles, the references cited in the research papers and review articles were examined as well.

Inclusion and exclusion criteria. The inclusion criteria for the studies about the association between TLR4 Asp299Gly polymorphism and CAD were as follows: (a) published case–control studies, and the control group should be the population without CAD; (b) clear diagnosis criteria of CAD; (c) studies supplied the number of individual genotypes in CAD cases and controls; (d) sufficient data for estimating an odds ratio (OR) or weighted mean difference (WMD) with 95% confidence interval (CI); (e) written in English or Chinese. The inclusion criteria for the studies about the association of TLR4 Asp299Gly polymorphism with CRP level, the number of stenosis coronary arteries, and the incidence of cardiovascular events with statin treatment were as follows: (a) integrated data; (b) sufficient data for estimating an odds ratio (OR) or weighted mean difference (WMD) with 95% confidence interval (CI); (c) measurement data had definite unit; (d) written in English or Chinese.

All reviews, case reports, animal studies and reports with incomplete data were excluded.

Data extraction and quality assessment. Data from the eligible studies were extracted by two authors based on the aforementioned criteria; if these two authors could not reach a consensus, the result was reviewed by a third author. Finally, the following information was recorded for each study: first author, year of publication, ethnicity, region, disease category, sample size, sex ratio, the number of allele and genotype counts of cases and controls, the frequencies of AA and AG/GG genotypes in patients with one, two, or three coronary arteries with >50% stenosis, the frequencies of AA and AG/GG genotypes in the patients with or without the incidence of cardiovascular events according to statin treatment, and the CRP level in AA and AG/GG groups. Whether these studies were in Hardy–Weinberg equilibrium (HWE) was also recorded $P < 0.05$ was considered as a significant deviation from HWE). Quality assessment of studies included in the meta-analysis was conducted by two authors using the Newcastle-Ottawa Scale (NOS) (Wells et al., 2011). Scores were given for subject selection (i.e., adequateness of the case definition,
representativeness of the cases, selection of controls, and definition of controls) and the comparability of the groups (i.e., comparability of cases and controls on the basis of the design or analysis) as well as measurement of exposure (i.e., ascertainment of exposure, same method of ascertainment for cases and controls, and non-response rate). NOS scores ranged from 0 to 9. Studies with a NOS score \(\geq 6 \) were considered to be of high quality.

Statistical analysis. This meta-analysis used four gene models: allelic model (G allele vs. A allele), dominant model (AA vs. GG + AG), recessive model (GG vs. AG + AA) and super-dominant model (AG vs. AA+GG), to explore the association between the CAD risk and TLR4 Asp299Gly polymorphism. In addition, OR and 95% CI were calculated to assess the association between Asp299Gly and CAD risk, the number of stenotic vessels, and the incidence of cardiovascular events according to statin treatment; WMD was calculated for the association between Asp299Gly and CRP level.

Heterogeneity among studies was evaluated using the Cochran’s Q statistic and the \(I^2 \) statistic (\(P < 0.10 \) and \(I^2 > 50\% \) indicated evidence of heterogeneity) (Higgins & Thompson, 2002). If no heterogeneity in the data existed, the fixed-effects model was used; otherwise the random-effects model was used (Mantel & Haenszel, 1959; DerSimonian & Laird, 1986). Subgroup analysis (based on the type of CAD) and meta-regression were performed to explore the source of heterogeneity. In order to evaluate the stability of the results, sensitivity analysis was used, which meant omitting one study at a time, and then compared to show whether a significant difference existed between the former and the latter results. Furthermore, Begg’s funnel plot and Egger’s regression test were used to test publication bias (\(P < 0.05 \) was considered the representative of statistically significant publication bias) (Begg & Mazumdar, 1994; Egger et al., 1997). At last, cumulative meta-analysis was applied to reflect dynamic changes in the results according to different publication years. The statistical analyses were performed using metafor 1.9-5 (R 3.1.2).

RESULTS

Association between Asp299Gly and CAD

Study characteristics. According to the PRISMA-statement flow diagram (Fig. 1), 17 full-text articles were assessed for eligibility, five (Boekholdt et al., 2003; Kolek et al., 2004; Holloway, Yang & Ye, 2005; Hernesniemia et al., 2006; Beijk et al., 2010) of which were excluded, because they were not proper case-control studies, despite being of high quality. Finally, 12 articles (NOS score > 6) (Ameziane et al., 2003; Balistreri et al., 2004; Edfeldt et al., 2004; Morange et al., 2004; Zee et al., 2005; Koch et al., 2006; O'Halloran et al., 2006; Nebel et al., 2007; Džumhur et al., 2012; Martínez-Ríos et al., 2013; Golovkin et al., 2014; Guven et al., 2015) were included with 10,258 cases and 5891 controls. Most of the studies were conducted on Caucasian populations. The main characteristics of the studies are listed in Table 1.

Meta-analysis results of overall study. The heterogeneity of each gene model was as follows: allelic model (G allele vs. A allele): \(P_Q = 0.0019, I^2 = 61.34\% \); dominant model (AA vs. GG +
AG): $P_Q = 0.0021$, $I^2 = 61.13\%$; recessive model (GG vs. AG + AA): $P_Q = 0.97$, $I^2 = 0.00\%$; super-dominant model (AG vs. AA+GG): $P_Q = 0.0039$, $I^2 = 58.70\%$. Fixed-effects model was used for recessive model, and random-effects model was used for the other three models. G allele vs. A allele: OR = 0.97, 95% CI = (0.81, 1.17), $P = 0.75$; AA vs. GG + AG: OR = 0.97, 95% CI = (0.80, 1.18), $P = 0.76$; GG vs. AG + AA: OR = 1.08, 95% CI = (0.57, 2.02), $P = 0.82$; AG vs. AA+GG: OR = 1.03, 95% CI = (0.85, 1.25), $P = 0.74$. Overall, no association of TLR4 Asp299Gly polymorphism with CAD was observed. The results are shown in Fig. 2.

Heterogeneity analysis. The heterogeneity could not be effectively removed after subgroups were divided based on the different types of CAD. No association of Asp299Gly with CAD type was noted. To explore the source of heterogeneity further, meta-regression was used. It was found that ethnicity, region, disease category, sex ratio (male/female), and sample size ratio (cases/controls) were not the source of heterogeneity in all the models. In the allelic model, the frequency of A/G allele in the control group could explain 56.35% of I^2, which meant part of the source of heterogeneity was explored. However, in the dominant model and the super-dominant model, the frequency of genotypes in the case group could explain 56.86% and 63.65% of I^2 respectively.

Sensitivity analysis. One study was omitted at a time, and each of them made no obvious difference in the overall meta-analysis estimation, indicating that the results had a favorable stability.

Publication bias. Funnel plots (Fig. 3) intuitively reflected the publication bias. The results of Egger’s regression test were as follows: $P = 0.25$ for G allele vs. A allele, $P = 0.25$ for AA vs. GG + AG, $P = 0.37$ for GG vs. AG + AA, $P = 0.16$ for AG vs. AA+GG. Funnel plots with good symmetry and P value > 0.05 indicated no publication bias in the study.

Cumulative meta-analysis. According to the order of published years, cumulative meta-analysis was performed, and it was found that OR value and 95% CI tended to be stable, and 95% CI gradually narrowed, as shown in Fig. 4.

Association between Asp299Gly and the number of stenotic coronary arteries
No association was found between the genotype frequency and the number of coronary arteries with > 50% stenosis. Details are shown in Supplemental Article S1.

Association between Asp299Gly and CRP level
Study characteristics. Six reports (Kiechl et al., 2002; Edfeldt et al., 2004; Kolek et al., 2004; Netea et al., 2004; Hernesniemia et al., 2006; Beijk et al., 2010) were included, in which the CRP levels of different genotypes (AA, AG/GG) were recorded using median and interquartile ranges or $\bar{x} \pm s$. According to the method provided by an article (Hozo, Djulbegovic & Hozo, 2005), median and interquartile ranges were converted into $\bar{x} \pm s$ for the convenience of statistics. Details are shown in Table 2.

Meta-analysis results. Test for heterogeneity: $P_Q < 0.0001$, $I^2 = 96.20\%$, random-effects model
was used. WMD = -0.10, 95% CI= (-0.62, 0.41). P = 0.69. Egger test: P = 0.77.

Also, no significant difference was found between Asp299Gly and CRP level. Forest plot and funnel plot are shown in Fig. 5. Larger heterogeneity might be caused by different measurement methods for CRP. Due to the lack of raw data, we couldn’t know all measurement methods of CRP, namely, we couldn’t remove the heterogeneity, so the persuasion of this result was limited.

Synergistic effect of statin and Asp299Gly
No synergistic effect of statin and 299Gly was found. Details are shown in Supplemental Article S2.

DISCUSSION

The worldwide distribution of G allele is closely related to the ethnic groups, which might be the result of differences in environmental pressure during human migration (Ferwerda et al., 2007; Ferwerda et al., 2008). TLR4 Asp299Gly polymorphism is rather rare in Asian populations (Lin et al., 2005; Nakada et al., 2005; Kim et al., 2008; Yuan et al., 2010), while 6% -14% of the Caucasian population is positive for Asp299Gly (Balistreri et al., 2009). For this reason, previous studies were mainly carried out in Europe. To clarify the relationship between CAD and Asp299Gly more effectively, it is worth mentioning that in the present meta-analysis, reports about Asp299Gly from Mexican and Turkish populations were included for more reliable studies. This meta-analysis showed no association between Asp299Gly and CAD. Subsequent subgroup analysis and sensitivity analysis, as well as the study on the association between Asp299Gly and the number of stenotic coronary arteries all confirmed this conclusion. This result was also consistent with the conclusions of the other two previous meta-analyses (Zhang et al., 2012; Yin et al., 2014).

In addition, CRP, a nonspecific acute phase protein, is a useful biomarker of inflammation. It is also considered as an independent risk factor to predict first and recurrent cardiovascular events such as MI or stroke (Kaptoge et al., 2012; Wennberg et al., 2012). Furthermore, in a randomized trial, statin therapy significantly reduced the incidence of major cardiovascular events among people without hyperlipidemia but with elevated CRP level (Ridker et al., 2008), which further supported the anti-inflammatory effect of statin. Thus, the present meta-analysis analyzed the association of Asp299Gly with CRP level, and explored whether G allele carriers could benefit more from statin treatment. It showed no obvious association between Asp299Gly and CRP level, and G allele carriers could not benefit more from statin treatment. However, the conclusion was underpowered due to the insufficient number of articles included and large heterogeneity of this meta-analysis. Hence, future studies should include large sample size and high quality literature to understand this issue in depth.

This meta-analysis has certain limitations as follows: First, CAD is influenced by multiple genetic mutations (Enquobahrie et al., 2008), so some interaction among genetic variations might exist widely. For example, some articles (Morange et al., 2004; Vainas et al., 2006) considered the synergistic effect of TLR4/Asp299Gly and CD14/C-260T, and one of them
(Vainas et al., 2006) found that the carriers with TLR4 G allele/CD14 TT genotype, rather than each SNP individually, were associated with the atherosclerotic disease. Also, some reports (Boekholdt et al., 2003; Edfeldt et al., 2004; Koch et al., 2006; Guven et al., 2015) were available about the combination effect of TLR4/Asp299Gly and TLR4/Thr399Ile. So, it can be speculated that the interaction among SNPs in TLR4 and TLRs and other signal molecules may exist. Some literature suggests that the analysis of a number of polymorphic genetic markers is more informative than the analysis of a single polymorphism (Olivieri et al., 2006); however, this meta-analysis did not involve the interaction among SNPs. Second, CAD is a multifactorial disease, and its incidence and development are closely related to environmental and life-style factors. Hence, a small contribution of a SNP to CAD might be obscured by the presence of various dominant risk factors (Incalcaterra et al., 2013). Patients with CAD with different gender, age, and life-style have different pathophysiological characteristics (Edfeldt et al., 2004; Olivieri et al., 2006; Incalcaterra et al., 2010). Some articles have considered the influence of these factors, while others have not. Due to the lack of original data, the influence of life-style (e.g., smoking) on the results of the meta-analysis was not investigated. Third, although the meta-analysis was based on detailed inclusion and exclusion criteria, some important uncontrollable factors still existed, such as different study design, different source of controls, and different environment. This might be the reason why the heterogeneity could not be removed effectively after subgroups were divided based on different types of CAD.

In conclusion, this meta-analysis suggested no association of TLR4 Asp299Gly polymorphism with CAD and CRP level. Moreover, the findings indicated that the G allele carriers might not benefit more from statin treatment. However, these results should be confirmed by conducting more high-quality studies in future.

Acknowledgements

We thank Zhibin Quan (School of Computer Science and Engineering, Southeast University) for technical discussion.

References

Ameziane N, Beillat T, Verpillat P, Chollet-Martin S, Aumont MC, Seknadji P, Lamotte M, Lebret D, Ollivier V, Prost D. 2003. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arteriosclerosis, Thrombosis, and Vascular Biology 23:61-64. DOI: 10.1161/01.ATV.0000101191.92392.1D

Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature Genetics 25:187-191. DOI: 10.1038/76048

Balistreri CR, Candore G, Colonna-Romano G, Lio D, Caruso M, Hoffmann E, Franceschi C, Caruso C. 2004. Role of Toll-like receptor 4 in acute myocardial infarction and longevity. The
Balistreri CR, Colonna-Romano G, Lio D, Candore G, Caruso C. 2009. TLR4 Polymorphism and Aging: Implications for the Pathophysiology of Age-Related Disease. *Journal of clinical immunology* 29:406-415. DOI: 10.1007/s10875-009-9297-5.

Begg CB, Mazumdar M. 1994. Operating characteristics of a rank correlation test for publication bias. *Biometrics* 50:1088-1101. DOI: 10.2307/2533446

Beijk MAM, Boekholdt SM, Rittersma SZH, Pons D, Zwinderman AH, Doevendans PAF, Tio RA, Tijssen JGP, Jukema JW, de Winter RJ. 2010. Toll-like receptor 4 gene polymorphisms show no association with the risk of clinical or angiographic restenosis after percutaneous coronary intervention. *Pharmacogenet Genomics* 20:544-552. DOI: 10.1097/FPC.0b013e32833d7b29

Berg KK, Madsen HO, Garred P, Wiseth R, Gunnes S, Videm V. 2009. The additive contribution from inflammatory genetic markers on the severity of cardiovascular disease. *Scandinavian Journal of Immunology* 691:36-42. DOI: 10.1111/j.1365-3083.2008.02187.x

Boekholdt SM, Agema WRP, Peters RJG, Zwinderman AH, Wall EE, Reitsma PH, Kastelein JJP, Jukema JW, on behalf of the REgression GRowth Evaluation Statin Study (REGRESS) Study Group. 2003. Variants of toll-like receptor 4 modify the efficacy of statin therapy and the risk of cardiovascular events. *Circulation* 107:2416-2421. DOI: 10.1161/01.CIR.0000068311.40161.28

Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. 2001. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. *Circulation* 103:926-933. DOI: 10.1161/01.CIR.103.7.926

Dekker WK, Cheng C, Pasterkamp G, Duckers H. 2010. Toll like receptor 4 in atherosclerosis and plaque destabilization. *Atherosclerosis* 209:314-320. DOI: 10.1016/j.atherosclerosis.2009.09.075

DerSimonian R, Laird N. 1986. Meta-analysis in clinical trials. *Controlled Clinical Trials* 7:177-188. DOI: 10.1016/0197-2456(86)90046-2

Džumhur A, Zibar L, Wagner J, Šimundić T, Dembić Z, Barbić J. 2012. Association Studies of Gene Polymorphisms in Toll-Like Receptors 2 and 4 in Croatian Patients with Acute Myocardial Infarction. *Scandinavian Journal of Immunology* 75, 517–523. DOI: 10.1111/j.1365-3083.2012.02681.x
Edfeldt K, Bennet AM, Eriksson P, Frostegård J, Wiman B, Hamsten A, Hansson GK, Faire U, Yan ZQ. 2004. Association of hypo-responsive toll-like receptor 4 variants with risk of myocardial infarction. European Heart Journal 25:1447-1453. DOI:10.1016/j.ehj.2004.05.004

Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ. 2002. Expression of toll-like receptors in human atherosclerotic lesion: a possible pathway for plaque activation. Circulation 105:1158-1161. DOI: 10.1161/01.CIR.0000012489.17433.31

Egger M, Davey Smith G, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315:629-34. DOI: 10.1136/bmj.315.7109.629

Enquobahrie DA, Smith NL, Bis JC, Carty CL, Rice KM, Lumley T, Hindorff LA, Lemaître RN, Williams MA, Siscovick DS, Heckbert SR, Psaty BM. 2008. Cholesterol Ester Transfer Protein, Interleukin-8, Peroxisome Proliferator Activator Receptor Alpha, and Toll-Like Receptor 4 Genetic Variations and Risk of Incident Nonfatal Myocardial Infarction and Ischemic Stroke. The American Journal of Cardiology 101:1683–1688. DOI: 10.1016/j.amjcard.2008.02.052

Ferwerda B, McCall MB, Alonso S, Giamarellos-Bourboulis EJ, Moutkaroudi M, Izagirre N, Syafruddin D, Kibiki G, Cristea T, Hijmans A, Hamann L, Israel S, ElGhazali G, Troye-Blomberg M, Kumpf O, Maiga B, Dolo A, Doumbo O, Hermsen CC, Stalenhoef AFH, van Crevel R, Brunner HG, Oh DY, Schumann RR, de la Rúa C, Sauerwein R, Kullberg BJ, Ven AJAM van der, Meer JWM van der, Netea MG. 2007.TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proceeding of the National Academy of Science of the United States of America 104:16645-16650. DOI: 10.1073/pnas.0704828104

Ferwerda B, McCall MB, Verheijen K, Kullberg BJ, Ven AJAM van der, Meer JWM van der, Netea MG. 2008. Functional consequences of toll like receptor 4 polymorphisms. Molecular Medicine 14:346-352. DOI: 10.2119/2007-00135.Ferwerda

Golovkin AS, Ponasenko AV, Khutornaya MV, Kutikhin AG, Salakhov RR, Yuzhalin AE, Zhidkova II, Barbarash OL, Barbarash LS. 2014. Association of TLR and TREM-1 gene polymorphism with risk of coronary artery disease in a Russian population. Gene 550:101-109. DOI: 10.1016/j.gene.2014.08.022

Guven M, Ismailoglu Z, Batar B, Unal S, Onaran I, Karadag B, Ongen Z. 2015. The effect of genetic polymorphisms of TLR2 and TLR4 in Turkish patients with coronary artery disease. Gene 568:99-102. DOI: 10.1016/j.gene.2015.05.032

Hernesniemia J, Lehtimäki T, Rontu R, Islam MS, Eklund C, Mikkelsson J, Ilveskoski E,
Kajander O, Goebeler S, Viiri LE, Hurme M, Karhunen PJ. 2006. Toll-like receptor 4 polymorphism is associated with coronary stenosis but not with the occurrence of acute or old myocardial infarctions. *Scandinavian Journal of Clinical and Laboratory Investigation* 66:667-675. DOI: 10.1080/00365510600933011

Higgins JP, Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine* 21:1539-1558. DOI: 10.1002/sim.1186

Holloway JW, Yang IA, Ye S. 2005. Variation in the toll-like receptor 4 gene and susceptibility to myocardial infarction. *Pharmacogenet Genomics* 15:15-21. DOI: 10.1097/01213011-200501000-00003

Hozo SP, Djulbegovic B, Hozo I. 2005. Estimating the mean and variance from the median, range, and the size of a sample. *BMC Medical Research Methodology* 5:13. DOI: 10.1186/1471-2288-5-13

Incalcaterra E, Accardi G, Balistreri CR, Caimi G, Candore G, Caruso M, Caruso C. 2013. Pro-Inflammatory Genetic Markers of Atherosclerosis. *Current Atherosclerosis Reports* 15:329. DOI: 10.1007/s11883-013-0329-5

Incalcaterra E, Caruso M, Balistreri CR, Candore G, Lo Presti R, Hoffmann E, Caimi G. 2010. Role of genetic polymorphisms in myocardial infarction at young age. *Clinical Hemorheology and Microcirculation* 46:291-298. DOI: 10.3233/CH-2010-1353

Kaptoge S, Di AE, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson Ar, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJL, Barr ELM, Barrett-Connor E, Benjamin EJ, Björkeldund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushman M, Dagenais GR, D'Agostino RB, Dankner R, Davey-Smith G, Deeg D, Dekker JM, Engström G, Folsom AR, Fowkes FGR, Gallacher J, Gaziano JM, Giampaoli S, Gillum RF, Hofman A, Howard BV, Ingelsson E, Iso H, Jørgensen T, Kiechl S, Kitamura A, Kiyohara Y, Koenig W, Kromhout D, Kuller LH, Lawlor DA, Meade TW, Nissinen A, Nordestgaard BG, Onat A, Panagiotakos DB, Psaty BM, Rodriguez B, Rosengren A, Salomaa V, Kauhanen J, Salonen JT, Shaffer JA, Shea S, Ford I, Stehouwer CDA, Strandberg TE, Tipping RW, Tosetto A, Wassenheim-Smoller S, Wennberg P, Westendorp RG, Whincup PH, Wilhelmsen L, Woodward M, Lowe GDO, Wareham NJ, Khaw KT, Sattar N, Packard CJ, Gudnason V, Ridker PM, Pepys MB, Thompson SG, Danesh J. 2012. C-reactive protein, fibrinogen, and cardiovascular disease prediction. *The New England Journal of Medicine* 367: 1310–1320. DOI: 10.1056/NEJMoa1107477

Kiechl S, Lorenz E, Reindl M, Wiedermann CJ, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA. 2002. Toll-like receptor 4 polymorphisms and atherogenesis. *The New England Journal of Medicine* 347: 1052–1057. DOI: 10.1056/NEJMoa0201275

Kaplan EL, Glaser NL, Ullman J. 1985. Estimating the variance of a median and other quantiles. *Biometrics* 41:1267–1275. DOI: 10.2307/2531598
Kim YS, Hwang YJ, Kim SY, Yang SM, Lee KY, Park IB. 2008. Rarity of TLR4 Asp299Gly and Thr399Ile Polymorphisms in the Korean Population. *Yonsei Medical Journal* 49(1):58-62. DOI: 10.3349/ymj.2008.49.1.58

Koch W, Hoppmann P, Pfeufer A, Schomig A, Kastrati A. 2006. Toll-like receptor 4 gene polymorphisms and myocardial infarction: no association in a Caucasian population. *European Heart Journal* 27:2524-2529. DOI: 10.1093/eurheartj/ehl231

Kolek MJ, Carlquist JF, Muhlestein JB, Whiting BM, Horne BD, Bair TL, Anderson JL. 2004. Toll-like receptor 4 gene Asp299Gly polymorphism is associated with reductions in vascular inflammation, angiographic coronary artery disease, and clinical diabetes. *American Heart Journal* 148:1034–1040. DOI: 10.1016/j.ahj.2004.05.049

Libby P, Lichtman AH, Hansson GK. 2013. Immune Effector Mechanisms Implicated in Atherosclerosis: From Mice to Humans. *Immunity* 38:1092-1104. DOI:10.1016/j.immuni.2013.06.009

Lin YC, Chang YM, Yu JM, Yen JH, Chang JG, Hu CJ. 2005. Toll-like receptor 4 gene C119A but not Asp299Gly polymorphism is associated with ischemic stroke among ethnic Chinese in Taiwan. *Atherosclerosis* 180: 305–309. DOI:10.1016/j.atherosclerosis.2004.12.022

Mantel N, Haenszel W. 1959. Statistical aspects of the analysis of data from retrospective studies of disease. *Journal of the National Cancer Institute* 22:719-748.

Martínez-Ríos MA, Vargas-Alarcón G, Vallejo M, Cruz-Martínez E, Pérez-Méndez O, Medina-Andrade Á, Torre-García MD, Peña-Duque MA, Fragoso JM. 2013. Toll-like receptor 4 gene polymorphisms and acute coronary syndrome: No association in a Mexican population. *Archivos de Cardiología de México* 83(4):257-262. DOI: 10.1016/j.acmx.2013.09.001

Miller YI, Choi SH, Wiesner P, Bae YS. 2012. The SYK side of TLR4: Signaling mechanisms in response to LPS and minimally oxidized LDL. *British Journal of Pharmacology* 167(5): 990-999. DOI: 10.1111/j.1476-5381.2012.02097.x

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. 2010. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Annals of Internal Medicine* 151(4):264-269. DOI: 10.7326/0003-4819-151-4-200908180-00135

Morange PE, Tiret L, Saut N, Luc G, Arveiller D, Ferrieres J, Amouyel P, Evans A, Ducimetiere P, Cambien F, Juhan-Vague I, on behalf of the PRIME Study group. 2004. TLR4/Asp299Gly, CD14/C-260T, plasma levels of the soluble receptor CD14 and the risk of coronary heart disease:
Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, AlMazroa MA, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Basaâñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Abdulhak AB, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Peter Burney, Roy Burstein, Bianca Calabria, Benjamin Campbell, Charles E Canter, Carabin H, Carapetis J, Carmona L, Cell C, Che P, Charlson F, Chen HL, Cheng ATA, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, Leo DD, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Jarlais DCD, Dharmaratne SD, Dherani M, Diaz-Torre C, Doll H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FGR, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Gamal A, Grainger R, Grant B, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kasaeian A, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Laden F, Laloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Levinson D, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Mabwijejo J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Memish ZA, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mock C, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Morana A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KMV, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O'Donnell M, O'hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, León FRD, Ronfani L, Room R,
Rosenfeld LC, Rushton L, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Silberberg D, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJC, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, Werf MJ, Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiebe N, Wiersma ST, Wilkinson JD, Williams HC, Williams SRM, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AKM, Zheng ZJ, Zonies D, Lopez AD. 2012. Disability adjusted life years DALYs for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study. *Lancet* 380:2197–2223. DOI: 10.1016/S0140-6736(12)61689-4

Nakada TA, Hirasawa H, Oda S, Shiga H, Matsuda KI, Nakamura M, Watanabe E, Abe R, Hatano M, Tokuhisa T. 2005. Influence of toll-like receptor 4, CD14, tumor necrosis factor, and interleukine-10 gene polymorphisms on clinical outcome in Japanese critically ill patients. *Journal of Surgical Research* 129:322-328. DOI: 10.1016/j.jss.2005.05.020

Nebel A, Flachsbart F, Schäfer A, Nothnagel M, Nikolaus S, Mokhtari NEE, Schreiber S. 2007. Role of the toll-like receptor 4 polymorphism Asp299Gly in longevity and myocardial infarction in German men. *Mechanisms of Ageing and Development* 128:409-11. DOI: 10.1016/j.mad.2007.04.001

Netea MG, Hijmans A, Wissen S, Smilde TJ, Trip MD, Kullberg BJ, De Boo T, Van der Meer JWM, Kastelein JJP, Stalenhof AFH. 2004. Toll-like receptor-4 Asp299Gly polymorphism does not influence progression of atherosclerosis in patients with familial hypercholesterolaemia. *European Journal of Clinical Investigation* 34:94-99. DOI: 10.1111/j.1365-2362.2004.01303.x

O'Halloran AM, Stanton A, O'Brien E, Shields DC. 2006. The impact on coronary artery disease of common polymorphisms known to modulate responses to pathogens. *Annals of Human Genetics* 70:934-945. DOI: 10.1111/j.1469-1809.2006.00281.x

Olivieri F, Antonicelli R, Cardelli M, Marchegiani F, Cavallone L, Mocchegiani E, Franceschi C. 2006. Genetic polymorphisms of inflammatory cytokines and myocardial infarction in the elderly. *Mechanisms of Ageing and Development* 127:552–559. DOI: 10.1016/j.mad.2006.01.013

Ridker PM, Danielson E, Fonseca FAH, Genest J, Gotto AM, Kastelein JJP, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, for the JUPITER Study Group. 2008. Rosuvastatin to prevent vascular events in men and women with
elevated C-reactive protein. The New England Journal of Medicine 359:2195–2207. DOI: 10.1056/NEJMo0807646

Ridker PM, Danielson E, Fonseca FAH, Genest J, Jr AMG, Kastelein JJP, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ, on behalf of the JUPITER Trial Study Group. 2009. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet 373:1175–1182. DOI: 10.1016/S0140-6736(09)60447-5

Ross R. 1999. Atherosclerosis-an inflammatory disease. The New England Journal of Medicine 340:115-126. DOI: 10.1056/NEJM199901143400207

Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B. 2000. Phylogenetic variation and polymorphism at the toll-like receptor 4 locus TLR4. Genome Biology 1(1): research002-research002.10. DOI: 10.1186/gb-2000-1-1-research002

Vainas T, Stassen FRM, Bruggeman CA, Welten RJTJ, van den Akker LHJM, Kitslaar PJEHM, Peña AS, Morré SA. 2006. Synergistic effect of Toll-like receptor 4 and CD14 polymorphisms on the total atherosclerosis burden in patients with peripheral arterial disease. Journal of Vascular Surgery 44:326-332. DOI: 10.1016/j.jvs.2006.04.035

Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. 2011. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Health Research Institute. Available at http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp/ (accessed 20 Oct. 2011).

Wennberg P, Wensley F, Di Angelantonio E, Johansson L, Boman K, Rumley A, Lowe G, Hallmans G, Danesh J, Jansson JH. 2012. Haemostatic and inflammatory markers are independently associated with myocardial infarction in men and women. Thrombosis Research 129: 68–73. DOI: 10.1016/j.thromres.2011.05.015

Yang IA, Holloway JW, Ye S. 2003. TLR4 Asp299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis 170:187-190. DOI: 10.1016/S0021-9150(03)00286-7

Yin YW, Sun QQ, Hua AM, Liu HL, Wang Q, Zhang BB. 2014. Toll-like receptor 4 gene Asp299Gly polymorphism in myocardial infarction: A meta-analysis of 15,148 subjects. Human Immunology 75:163-169. DOI: 10.1016/j.humimm.2013.11.005

Yuan M, Xia J, Ma L, Xiao B, Yang QD. 2010. Lack of the Toll-Like Receptor 4 Gene Polymorphisms Asp299Gly and Thr399Ile in a Chinese Population. International Journal of Neuroscience 120:415-420. DOI: 10.3109/00207451003778736
Zee RYL, Hegener HH, Gould J, Ridker PM. 2005. Toll-like receptor 4 Asp299Gly gene polymorphism and risk of atherothrombosis. *Stroke* 36:154-157. DOI: 10.1161/01.STR.0000149948.31879.f0

Zhang K, Zhang LS, Zhou B, Wang YY, Song YP, Rao L, Zhang L. 2012. Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis: evidence from meta-analysis. *Thrombosis Research* 130:203-208. DOI: 10.1016/j.thromres.2012.07.008
Identification
Records identified through database searching (n = 719)
Additional records identified through other sources (n = 1)

Screening
Records after duplicates removed (n = 288)

Eligibility
Records screened (n = 288)
Full-text articles assessed for eligibility (n = 17)

Included
Studies included in qualitative synthesis (n = 12)
Studies included in quantitative synthesis (meta-analysis) (n = 12)

271 Records excluded
1) Not about Asp299Gly and CAD (n = 243)
2) Meta-analysis and review (n = 28)

5 Full-text articles excluded, with the reason that they were not proper case-control studies.

Figure 1: Flow diagram of the study selection process.
Figure 2: Forest plots of the association between TLR4 gene Asp299Gly polymorphism and CAD in different genetic models. A (allelic model: G allele vs. A allele); B (dominant model: AA vs. GG+AG); C (recessive model: GG vs. AG + AA); D (supер-dominant model: AG vs. AA+GG).
Figure 3: Funnel plots of the association between TLR4 gene Asp299Gly polymorphism and CAD in different genetic models. A (allelic model: G allele vs. A allele); B (dominant model: AA vs. GG+AG); C (recessive model: GG vs. AG + AA); D (super-dominant model: AG vs. AA+GG).
Figure 4: Cumulative meta-analysis of the association between TLR4 gene Asp299Gly polymorphism and CAD in different genetic models. A (allelic model: G allele vs. A allele); B (dominant model: AA vs. GG+AG); C (recessive model: GG vs. AG + AA); D (super-dominant model: AG vs. AA+GG).
Figure 5: Forest and Funnel plots of the association between TLR4 gene Asp299Gly polymorphism and CRP level. A (Forest plot); B (Funnel plot).
Table 1: Characteristics of studies about the association between Asp299Gly and CAD.

Study	Year	Ethnicity	Region	Disease Category	Sample Size(ca/co)	AA	AG	GG	Sex Ratio(m/f)	Cases	Controls	HWE
Martinez-Rios	2013	Mexican	Mexico	ACS	457/283	425	32	0	368/89	267	16/0	Y
Ameziane	2003	Caucasian	France	ACS	183/216	169	14	0	160/23	187	28/1	Y
O'Halloran	2006	Caucasian	Ireland	ACS	1598/386	1048	182	7	1232/366	343	42/1	Y
Edfeldt	2004	Caucasian	Sweden	MI	1164/1508	1038	126	0	821/343	1374	133/1	Y
Zee	2005	Caucasian	US	MI	370/695	323	46	1	370/0	605	87/3	Y
Koch	2006	Caucasian	Germany	MI	3657/1211	3283	360	14	2772/885	1069	138/4	Y
Dzumhur	2012	Caucasian	Croatia	MI	119/120	104	15	0	81/38	98	22/0	Y
Nebel	2007	Caucasian	Germany	MI	606/323	521	82	3	606/0	293	30/0	Y
Balistreri	2004	Caucasian	Italy	MI	105/182	100	5	0	105/0	155	23/4	Y
Morange	2004	Caucasian	France	CAD	247/490	211	35	1	247/0	439	50/1	Y
Golovkin	2014	Caucasian	Russia	CAD	702/300	599	98	4	558/144	253	46/1	Y
Goven	2015	Turks	Turkey	CAD	150/150	140	7	3	76/74	134	14/2	Y

ACS, acute coronary syndrome; MI, myocardial infarction; CAD, coronary artery disease; HWE, Hardy – Weinberg equilibrium; Y, yes; N, no; Sample Size(ca/co), Sample Size(cases/controls); Sex Ratio(m/f), Sex Ratio(male/female).
Table 2: Characteristics of studies about the association between Asp299Gly and CRP level.

Study	AA (mg/l)			GG/GA (mg/l)		
	Mean	SD	N	Mean	SD	N
Kolek, 2004 (mg/dl)	1.23	0.913	1725	1.11	0.873	169
Edfeldt, 2004	1.5	1.67	1791	1.6	2	186
Beijk, 2010 (GENDER)	5.8	0.34	2344	6.6	0.81	338
Beijk, 2010 (GEISHA)	5	0.5	202	5.5	1.4	22
Hermesniemi, 2008	1.92	4	1812	1.6952	2.7685	389
Netea, 2004	3.8	5.6	261	6.5	10.6	32
Kiechl, 2002	3.72	7.8	755	2.4455	3.7465	55
Figure 1: Flow diagram of the study selection process.
Records identified through database searching (n = 719)

Additional records identified through other sources (n = 1)

Records after duplicates removed (n = 288)

Records screened (n = 288)

Full-text articles assessed for eligibility (n = 17)

Studies included in qualitative synthesis (n = 12)

Studies included in quantitative synthesis (meta-analysis) (n = 12)

271 Records excluded
1) Not about Asp299Gly and CAD (n = 243)
2) Meta-analysis and review (n = 28)

5 Full-text articles excluded, with the reason that they were not proper case-control studies.
Figure 2: Forest plots of the association between TLR4 gene Asp299Gly polymorphism and CAD in different genetic models.

A (allelic model: G allele vs. A allele); B (dominant model: AA vs. GG+AG); C (recessive model: GG vs. AG + AA); D (super-dominant model: AG vs. AA+GG).
Figure 3: Funnel plots of the association between TLR4 gene Asp299Gly polymorphism and CAD in different genetic models.

A (allelic model: G allele vs. A allele); B (dominant model: AA vs. GG+AG); C (recessive model: GG vs. AG + AA); D (super-dominant model: AG vs. AA+GG).
Figure 4 (on next page)

Figure 4: Cumulative meta-analysis of the association between TLR4 gene Asp299Gly polymorphism and CAD in different genetic models.

A (allelic model: G allele vs. A allele); B (dominant model: AA vs. GG+AG); C (recessive model: GG vs. AG + AA); D (super-dominant model: AG vs. AA+GG).
Figure 5 (on next page)

Figure 5: Forest and Funnel plots of the association between TLR4 gene Asp299Gly polymorphism and CRP level.

A (Forest plot); B (Funnel plot).
Table 1 (on next page)

Table 1: Characteristics of studies about the association between Asp299Gly and CAD.
Study	Year	Ethnicity	Region	Disease Category	Sample Size(ca/co)	Sex Ratio(m/f)	Cases	Sex Ratio(m/f)	Controls	Sex Ratio(m/f)	HWE
Martinez-Rios	2013	Mexican	Mexico	ACS	457/283	425 32 0	368/89	267 16 0	202/81	Y	
Ameziane	2003	Caucasian	France	ACS	183/216	169 14 0	160/23	187 28 1	193/23	Y	
O'Halloran	2006	Caucasian	Ireland	ACS	1598/386	1048 182 7	1232/366	343 42 1	225/161	Y	
Edfeldt	2004	Caucasian	Sweden	MI	1164/1508	1038 126 0	821/343	1374 133 1	1017/491	Y	
Zee	2005	Caucasian	US	MI	370/695	323 46 1	370/0	605 87 3	695/0	Y	
Koch	2006	Caucasian	Germany	MI	3657/1211	3283 360 14	2772/885	1069 138 4	613/598	Y	
Dzumhur	2012	Caucasian	Croatia	MI	119/120	104 15 0	81/38	98 22 0	90/30	Y	
Nebel	2007	Caucasian	Germany	MI	606/323	521 82 3	606/0	293 30 0	323/0	Y	
Balistreri	2004	Caucasian	Italy	MI	105/182	100 5 0	105/0	155 23 4	182/0	Y	
Morange	2004	Caucasian	France	CAD	247/490	211 35 1	247/0	439 50 1	490/0	Y	
Golovkin	2014	Caucasian	Russia	CAD	702/300	599 98 4	558/144	253 46 1	239/61	Y	
Guven	2015	Turks	Turkey	CAD	150/150	140 7 3	76/74	134 14 2	73/77	Y	

ACS, acute coronary syndrome; MI, myocardial infarction; CAD, coronary artery disease; HWE, Hardy–Weinberg equilibrium; Y, yes; N, no; Sample Size(ca/co), Sample Size(cases/controls); Sex Ratio(m/f): Sex Ratio(male/female).
Table 2: Characteristics of studies about the association between Asp299Gly and CRP level.
Study	AA (mg/l)	GG/GA (mg/l)				
	Mean	SD	N	Mean	SD	N
Kolek, 2004 (mg/dl)	1.23	0.913	1725	1.11	0.873	169
Edfeldt, 2004	1.5	1.67	1791	1.6	2	186
Beijk, 2010 (GENDER)	5.8	0.34	2344	6.6	0.81	338
Beijk, 2010 (GEISHA)	5	0.5	202	5.5	1.4	22
Hernesniemi, 2008	1.92	4	1812	1.6952	2.7685	389
Netea, 2004	3.8	5.6	261	6.5	10.6	32
Kiechl, 2002	3.72	7.8	755	2.4455	3.7465	55