On the nonsymmetric approximation of continuous functions in the integral metric

В статті розглядаються функціональні простори $C[a;b]$ - простір неперервних на відрізку $[a;b]$ функцій $f(x)$, $L_p[a;b]$ (1 ≤ p ≤ ∞) - простір сумових в p-й степені на відрізку $[a;b]$ функцій $f(x)$ з відповідними нормами $\|f\|_C$ і $\|f\|_p$, та добре відомі в теорії апроксимації функціональні класи $H^\omega[a,b]$ - класи неперервних функцій f таких, що $\omega(f,t) \leq \omega(t)$, $t \geq 0$, де $\omega(f,t)$ - модуль неперервності функції f, $\omega(t)$ - заданий модуль неперервності.

В роботі доведена точна оцінка найкращого несиметричного наближення в інтегральній метриці константами неперервних функцій, які належать функціональним класам $H^\omega[a,b]$. А саме, доведена наступна теорема.

Для всіх $\alpha,\beta > 0$ і кожної $f \in H^\omega[a;b]$ має місце наступна нерівність:

$$\inf_{\eta \in \mathbb{R}} \|f - \eta\|^p_{\alpha,\beta} \leq \left(\frac{\alpha\beta}{\alpha + \beta}\right)^p \int_0^{b-a} \omega^p(t)dt$$

Якщо $\omega(t)$ - опуклий вгору модуль неперервності і $p = 1$, або $\omega(t) = t$ і $p > 1$, тоді отримана нерівність перетворюється у рівність.

Враховуючи відому теорему В.Ф.Бабенко про зв'язок несиметричних наближень з звичайними найкращими наближеннями в інтегральній метриці та односторонніми неперервними наближеннями, з доведеного результата ми отримаємо точну оцінку для звичайного найкращого наближення, отриману Н.П.Корнеїчуком, та точну оцінку для найкращого одностороннього наближення, отриману В.Г.Дороніним та О.А.Лігуном.

Отриману нерівність можна застосовувати в різноманітних задачах теорії апроксимації, а саме, в питаннях наближення функцій класу $H^\omega[a,b]$ сплайнами нульового порядку, наближення функцій класу $H^\omega[a,b]$ поліномами за системою Хаара, оцінки інтегральних норм функцій з нульовим середнім значенням на відрізку $[a;b]$, тощо.

Ключові слова: модуль неперервності, несиметричні наближення.

In the paper, an exact estimate of the best nonsymmetric approximation in the integral metric by the constants of continuous functions that belong to the classes $H^\omega[a,b]$ is proved.

Taking into account Babenko's theorem on the connection of nonsymmetric approximation with the usual best approximation in the integral metric and the best one-sided approximations, from the proved result we obtain the exact estimate for the usual best approximation obtained by N.P.Korneichuk, find the exact estimate for the best one-sided approximation obtained by V.G.Djurjnin and A.A.Ligun.

Key words: modulus of continuity, nonsymmetric approximations.

© V.F.BABENKO, O.V.POLYAKOV, 2019 7
Let $H_\omega[a,b]$ be the class of functions $f \in C[a;b]$ such that $\omega(f,t) \leq \omega(t), \ t \geq 0$. Here $\omega(f,t)$ is the modulus of continuity of a function f and $\omega(t)$ is given modulus of continuity. For $f \in L_p = L_p[a;b] \ (1 \leq p \leq \infty)$ and numbers $\alpha > 0, \beta > 0$ we set $f_\pm(x) = \max\{\pm f(x), 0\}$ and

$$\|f\|_{p;\alpha,\beta} := \|\alpha f_+ + \beta f_-\|_p.$$

If $f \in L_p$ and $H \subset L_p$, then the quantity $E(f; H)_{p;\alpha,\beta} = \inf\{\|f - u\|_{p;\alpha,\beta} : u \in H\}$ is called (see [1]) the best (α,β)-approximation of a function f by a set H in the space L_p. For $\alpha = \beta = 1$ we obtain the usual best L_p-approximation of a function f by a set H, which we denote by $E(f, H)_p$.

For $f \in L_p$ we set

$$H^\pm(f) = \{u \in H : \pm u(x) \leq \pm f(x), \text{for almost all } x \in [a,b]\}.$$

The value $E^\pm(f; H)_p = \inf\{\|f - u\|_p : u \in H^\pm(f)\}$ is called the best L_p-approximation from below (+) and above (-) of a function f by the set H.

It is proved in [1] that if H is a finite-dimensional subspace of the space L_p, $1 \leq p < \infty$, then

$$\lim_{\beta \to \infty} E(f, H)_{p;1,\beta} = E^+(f, H)_p \text{ and } \lim_{\alpha \to \infty} E(f, H)_{p;\alpha,1} = E^-(f, H)_p.$$

Our goal is to find for concave $\omega(t)$ the value

$$\sup_{f \in H_\omega[a,b]} \inf_{\eta \in \mathbb{R}} \|f - \eta\|_{p;\alpha,\beta}. \quad (1)$$

For $\alpha = \beta = 1$ this problem was solved by N.P.Korneychuk in [2]. For application of his result see [2], [3], [4]. For the case $\max\{\alpha,\beta\} = \infty$ the problem (1) was solved in [5].

Theorem 1. For any $\alpha, \beta > 0$ and any $f \in H_\omega[a;b]$ the following estimate is valid:

$$\inf_{\eta \in \mathbb{R}} \|f - \eta\|_{p;\alpha,\beta}^p \leq \left(\frac{\alpha \beta}{\alpha + \beta}\right)^p \int_a^b \omega^p(t) dt \quad (2)$$

If $\omega(t)$ is concave modulus of continuity and $p = 1$, or $\omega(t) = t$ and $p > 1$, then inequality (2) is the best possible.
We define on strictly decreasing function theorem it is sufficiently to prove the inequality criterion of the element of the best case \(\min \). Differentiating the equalities (4) and (5) we obtain that almost everywhere \(\rho \).

Lemma 1. Let \(f \in H^w[a; b] \), \(1 \leq p < \infty \) and for \(a \leq t \leq b \)

\[
F(t) = \int_a^t |f(u)|^{p-1}(\alpha^p sgn f_+(u) - \beta^p sgn f_-(u))du + C,
\]

where \(C \) is an arbitrary constant. Let \(f(t) > 0(\leq 0) \) almost everywhere on \((a; \gamma) \), and \(f(t) < 0(\geq 0) \) almost everywhere on \((\delta; b) \). Let also \(F(a) = F(b), F(\gamma) = F(\delta), \) and \(e = (a; \gamma) \cup (\delta; b) \). Then

\[
\int_e (\alpha f_+(t) + \beta f_-(t))^{p} dt \leq \left(\frac{\alpha \beta}{\alpha + \beta} \right)^p \int_{a}^{b-a} \omega^p(f; t)dt.
\]

Proof of Lemma 1. Let, for definiteness, \(f(t) > 0, t \in (a; \gamma) \), \(f(t) < 0, t \in (\delta; b) \). We define on strictly decreasing function \(\rho(t) \) by the equality

\[
F(t) = F(\rho(t)), \quad a \leq t \leq \gamma, \quad \delta \leq \rho(t) \leq b.
\]

We will have also

\[
F(\rho^{-1}(t)) = F(t), \quad a \leq \rho^{-1}(t) \leq \gamma, \quad \delta \leq t \leq b.
\]

The function \(\rho(t) \) and its inverse function \(\rho^{-1}(t) \) are absolutely continuous. Differentiating the equalities (4) and (5) we obtain that almost everywhere

\[
\alpha^p f_+(t)^{p-1} = -\beta^p f_-(\rho(t))^{p-1} \cdot \rho'(t);
\]

\[
\beta^p f_-(t)^{p-1} = -\alpha^p f_+(\rho^{-1}(t))^{p-1} \cdot (\rho^{-1}(t))'.
\]

Consider

\[
\int_e (\alpha f_+(t) + \beta f_-(t))^{p} dt = \alpha^p \int_a^\gamma f_+(t)^{p-1} f_+(t)dt + \beta^p \int_\delta^b f_-(t)^{p-1} f_-(t)dt.
\]
Using (7) and substituting $\rho^{-1}(u) = t$ we will have
\[
\int_e^\gamma (\alpha f_+(t) + \beta f_-(t))^p dt = \alpha^p \left(\int_a^\gamma f_+(t)^{p-1} f_+(t) dt - \int_a^b f_+(\rho^{-1}(u))^{p-1}(\rho^{-1}(u))' f_-(u) dt \right)
\]
\[
= \alpha^p \int_a^\gamma f_+(t)^{p-1} f_+(t) dt + f_-(\rho(t)) dt,
\]
and therefore
\[
\frac{1}{\alpha} \int_e^\gamma (\alpha f_+(t) + \beta f_-(t))^p dt = \alpha^{p-1} \int_a^\gamma f_+(t)^{p-1} f_+(t) dt.
\]
Analogously using (6) we obtain
\[
\frac{1}{\beta} \int_e^\gamma (\alpha f_+(t) + \beta f_-(t))^p dt = \beta^{p-1} \int_a^b f_-(\rho^{-1}(t)) + f_-(t) dt.
\]
From the last two equalities, we derive
\[
\left(\frac{1}{\beta} + \frac{1}{\alpha} \right) \int_e^\gamma (\alpha f_+(t) + \beta f_-(t))^p dt = \int_e^\gamma (\alpha^{p-1} f_+(t)^{p-1} + \beta^{p-1} f_-(t)^{p-1}) \psi(t) dt,
\]
where
\[
\psi(t) = \begin{cases}
 f_+(t) + f_- (\rho(t)), & 0 \leq t \leq \gamma; \\
 f_+(\rho^{-1}(t)) + f_-(t), & 0 \leq t \leq \beta.
\end{cases}
\]
Applying Hölder inequality, we get
\[
\frac{\alpha + \beta}{\alpha \beta} \int_e^\gamma (\alpha f_+(t) + \beta f_-(t))^p dt \leq
\]
\[
\leq \left\{ \int_e^\gamma (\alpha^{p-1} f_+(t)^{p-1} + \beta^{p-1} f_-(t)^{p-1})^{p/(p-1)} dt \right\}^{(p-1)/p} \cdot \left\{ \int_e^\gamma \psi(t)^p dt \right\}^{1/p} =
\]
\[
= \left\{ \int_e^\gamma (\alpha f_+(t) + \beta f_-(t))^p dt \right\}^{(p-1)/p} \cdot \left\{ \int_e^\gamma \psi(t)^p dt \right\}^{1/p}.
\]
Therefore
\[
\left(\frac{\alpha + \beta}{\alpha \beta} \right)^p \int_e^\gamma (\alpha f_+(t) + \beta f_-(t))^p dt \leq \int_e^\gamma \psi(t)^p dt.
\]
Taking into account the sign of the function $f(t)$ on the intervals $(a; \gamma)$ and $(\delta; b)$, we get
\[
\int_e^\gamma \psi(t)^p dt =
\]
\[
= \int_a^\gamma (f_+(t) + f_-(\rho(t))^p(1 - \rho'(t)) dt = \int_a^\gamma (f(t) - f(\rho(t))^p(1 - \rho'(t)) dt \leq
\]
ON THE NONSYMMETRIC APPROXIMATION OF CONTINUOUS FUNCTIONS IN THE INTEGRAL METRIC

\[\leq \int_{a}^{\gamma} \omega^{p}(f; \rho(t) - t)(1 - \rho'(t))dt = \int_{\delta - \gamma}^{b - a} \omega^{p}(f; \rho(t))dt. \]

Consequently,

\[\int_{c}^{e}(\alpha f_{+}(t) + \beta f_{-}(t))^{p}dt \leq \left(\frac{\alpha \beta}{\alpha + \beta} \right)^{p} \int_{\delta - \gamma}^{b - a} \omega^{p}(f; \rho(t))dt. \]

Lemma 1 is proved.

Let us finish the proof of Theorem 1. Choose \(C \) in definition of the function \(F(t) \) such that \(F(a) = F(b) = 0 \). Write a representation of \(F(t) \) as sum of simple function (see [6, §6.3]):

\[F(t) = \sum_{k} F_{k}(t). \]

Let \((a_{k}, b_{k}) \) be intervals such that \(|F_{k}(t)| > 0 \) on \((a_{k}, b_{k}) \), and let \([\gamma_{k}, \delta_{k}] \) be intervals such that \(|F_{k}(t)| = \max_{a} |F_{k}(a)| \) on \([\gamma_{k}, \delta_{k}] \). Suppose that functions \(F_{k} \) are ordered in such a way that lengths \(|b_{k} - a_{k}| \) decrease. Applying Lemma 1 to \(F = F_{k} \) we will have that for any \(k \)

\[\int_{e_{k}}^{e_{k}}(\alpha f_{+}(t) + \beta f_{-}(t))^{p}dt \leq \left(\frac{\alpha \beta}{\alpha + \beta} \right)^{p} \int_{\delta_{k} - \gamma_{k}}^{b_{k} - a_{k}} \omega^{p}(t)dt, \]

where \(e_{k} = [a_{k}, \gamma_{k}] \cup [\delta_{k}, b_{k}] \) and \(|e_{k}| = \text{meas } e_{k} \).

We have

\[b_{1} - a_{1} \leq b - a, \]
\[b_{2} - a_{2} \leq b_{1} - a_{1} - |e_{1}| \leq b - a - |e_{1}|, \]
\[................. \]
\[b_{k} - a_{k} \leq b - a - \sum_{j=1}^{k-1} |e_{j}|, \]
\[................. \]

Therefore

\[\int_{a}^{b}(\alpha f_{+}(t) + \beta f_{-}(t))^{p}dt \leq \sum_{k} \int_{e_{k}}^{e_{k}}(\alpha f_{+}(t) + \beta f_{-}(t))^{p}dt \leq \]

\[\leq \left(\frac{\alpha \beta}{\alpha + \beta} \right)^{p} \sum_{k} \int_{b_{k} - a_{k} - |e_{k}|}^{b_{k} - a_{k}} \omega^{p}(t)dt \leq \left(\frac{\alpha \beta}{\alpha + \beta} \right)^{p} \sum_{k} \int_{b_{k} - a_{k} - \sum_{j=1}^{k-1} |e_{j}|}^{b_{k} - a_{k}} \omega^{p}(t)dt \]

\[\leq \left(\frac{\alpha \beta}{\alpha + \beta} \right)^{p} \int_{0}^{b - a} \omega^{p}(t)dt. \]

Inequality (2) is proved.
Let \(a = 0, b = 1, p > 1 \) and \(\gamma = \frac{\alpha}{\alpha + \beta} \). Consider the function
\[
f_0(x) = x - \gamma.
\]
Using the criterion of the element of the best \((\alpha, \beta)\)-approximation [1], it is easy verify that the constant of the best \((\alpha, \beta)\)-approximation of the function \(f_0(x)\) is identically zero. Then
\[
\|f_0\|_{1; \alpha, \beta}^p = \int_0^\gamma \beta^p (\gamma - x)^p dx + \int_\gamma^1 \alpha^p (x - \gamma)^p dx = \\
= \frac{\alpha^{p+1} \beta^p}{(p+1)(\alpha + \beta)^p} + \frac{\alpha^p \beta^{p+1}}{(p+1)(\alpha + \beta)^p} = \frac{1}{p+1} \left(\frac{\alpha \beta}{\alpha + \beta} \right)^p = \left(\frac{\alpha \beta}{\alpha + \beta} \right)^p \int_0^1 \omega^p(f; t) dt.
\]
Now let \(p = 1 \) and \(\omega(t) \) be a concave modulus of continuity. We put \(\rho(t) = 1 - \frac{\beta}{\alpha} t, \quad t \in [0; \gamma] \) and consider the function
\[
f_0(x) = \begin{cases}
- \int_x^\gamma \omega'(\rho(t) - t) dt, & 0 \leq x \leq \gamma; \\
\int_x^\gamma \omega'(t - \rho^{-1}(t)) dt, & \gamma \leq x \leq 1.
\end{cases}
\]
As in the previous case, using the criterion of the element of the best \((\alpha, \beta)\)-approximation [1], it is easy to verify that the constant of the best \((\alpha, \beta)\)-approximation of the function \(f_0(x)\) is identically zero. By direct integration, we see that
\[
\|f_0\|_{1; \alpha, \beta} = \frac{\alpha \beta}{\alpha + \beta} \int_0^1 \omega(t) dt.
\]
Theorem is proved.

References
1. Babenko V.F. Несимметричные приближения в пространствах суммируемых функций // Украинский математический журнал - 1982.- 34. N4. - С. 409-416.
2. Korneichuk N.P. О попереchnиках классов непрерывных функций в пространстве \(L_p\) //Мат. заметки. - 1971. - 10, N5. - С.493 - 500.
3. Korneichuk N.P. Сплайны в теории приближения. - М.: Наука, 1984. - 452 с.
4. Horoshko N.P. О наилучшем приближении функций класса \(H_\omega [0; 1]\) полиномами по системе Хаара в метрике \(L_p\) //Исследования по современным проблемам суммирования и приближения функций и их приложениям. - Днепро-Петровск: ДГУ, 1972. - C.74-76.
5. Doronin V.G., Ligun A.A. К вопросу о наилучшем приближении некоторых классов непрерывных функций //Исследования по современным проблемам суммирования и приближения функций и их приложениям. - Днепро-Петровск: ДГУ, 1974. - C.42-49.
6. Korneichuk N.P. Экстремальные задачи теории приближения. - М.: Наука, 1976. - 320 с.

Received: 2.11.2019. Accepted: 20.12.2019