[1,4]Ditellurino[2,3-b:5,6-b′]dipyrazine

Donna Franklin,a Aundrea Lee,a Frank R. Fronczekb and Thomas Junka*

aDepartment of Chemistry, Lafayette, LA 70403, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA. *Correspondence e-mail: thomas.junk@louisiana.edu

[1,4]Ditellurino[2,3-b:5,6-b′]dipyrazine represents the first reported [1,4]chalcogena[2,3-b:5,6-b′]dipyrazine containing a heavy chalcogens. The asymmetric unit consists of three molecules. In contrast to its sulfur analog, which is planar [Lynch et al. (1994) Cryst. Struct. Commun. 50,1470–1472], C₈H₄N₄Te₂ is folded along the Te···Te axis to accommodate the larger chalcogenide atoms. The dihedral angle between the two TeC₂ rings of the central ring is 57.9° (mean of three). C–Te bond lengths range from 2.1105 (16) Å to 2.1381 (17) Å, in good agreement with those predicted by their covalent radii. All Te atoms are involved in intermolecular Te···N contacts, with distances in the range 2.894 (2) to 2.963 (2) Å. These result in a spiral supramolecular assembly, forming helical columns.

Structure description

Heterocyclic tellurium compounds have found considerable attention due to their tendency to form supramolecular assemblies including molecular wires (Kremer et al., 2016), ribbons (Cozzolino et al., 2010) and rings (Ho et al., 2016, 2017). Such assemblies can give rise to materials with non-linear optical properties (Cozzolino et al., 2010), as well as novel phosphorescent organic emitters (Kremer et al., 2015). A ribbon motif resulting from secondary intermolecular N···Te bonding interactions of 2.767 (6) and 2.659 (6) Å was reported for 3,4-dicyano-1,2,5-telluradiazole (Cozzolino et al., 2010). Similarly, molecular wire motifs resulting from secondary intermolecular N···Te bonding were observed for 2-substituted benzo-1,3-tellurazoles, but with significantly longer N···Te distances. This is exemplified by 2-(2-furanyl) benzo-1,3-tellurazole, 3.17 Å (Kremer et al., 2016) and 1,3-benzotellurazol-2-ylacetonitrile, 3.16 Å (Sanford et al., 2017). Not all Te, N-containing heterocycles form supramolecular wires or ribbons. Thus, 10H-pyrazino[2,3-b][1,4]benzotellurazine (Smith et al., 2020), 2H-1,4-benzo-tellurazin-3(4H)-one and 2,3-dihydro-1,5-benzotellurazepin-4(5H)-one (Myers et al., 2016) lack this
The [1,4]dichalcogena[2,3-b:5,6-b']dipyrazines remain poorly explored and no examples containing heavy chalcogens were reported prior to this study.

The three molecules of the asymmetric unit are shown in Fig. 1, which illustrates their folded V shapes. The degree of folding along the Te···Te line can be described by \(\varphi \), the dihedral angle between the two C2Te2 moieties of the central ring. This dihedral angle has a value of 60.08 (5)° for the molecule containing Te1 and Te2, 57.16 (5)° for the Te3/Te4 molecule, and 56.54 (5)° for the Te5/Te6 molecule, with a mean value of 57.9°. A sulfur analog of the title compound has been structurally characterized (Lynch et al., 1994), but is planar rather than folded along the chalcogen–chalcogen axis. The corresponding selenium congener remains unreported. The shape of the title compound shows structural similarity to those of 9,10-dichalcogenanthracenes containing tellurium and one other chalcogen atom in the central ring (Dereu et al., 1981; Meyers et al., 1988), as well as to the recently characterized 10\(H \)-pyrazino[2,3-b][1,4]benzotellurazine (Smith et al., 2020).

The C—Te—C angles for the three independent molecules of the title compound range from 91.48 (6) to 93.80 (6)°, similar to those of 95.3 and 95.9°, respectively, previously reported for telluranthrene (Dereu et al., 1981). C—Te bond lengths range from 2.1105 (16) Å to 2.1381 (17) Å, in good agreement with those predicted by their covalent radii.

Intermolecular features are dominated by Te···N interactions involving all Te atoms, as shown in Fig. 2. The range of distances for these contacts is 2.894 (2) to 2.963 (2) Å. These fall between those of 2.767 (6) and 2.659 (6) Å reported for 3,4-dicyano-1,2,5-telluradiazole (Cozzolino et al., 2010), and those for benzo-1,3-tellurazoles, ranging from 2.985 Å for 2-(methylsulfanyl)-1,3-benzotellurazole (Ali et al., 2016) to 3.169 Å for 2-(2-furyl)-1,3-benzotellurazole (Kremer et al., 2016). In contrast, despite its structural similarity, 10\(H \)-pyrazino[2,3-b][1,4]benzotellurazine does not exhibit any supramolecular Te···N bonding but forms hydrogen-bonded dimers instead (Smith et al., 2020).

Each molecule of the title compound is involved in four Te···N contacts, forming helical chains, as shown in Figs. 3 and 4. The helices have approximate threefold helical symmetry.

Figure 1
The asymmetric unit of [1,4]ditellurino[2,3-b:5,6-b']dipyrazine with 50% ellipsoids.

Figure 2
The unit cell, showing intermolecular Te···N contacts.

Figure 3
A portion of the helical chain, side view.

Figure 4
View of chain along the helix axis.
with a three-molecule repeat period. The helical chains are in the [1T1] direction and have a repeat distance of 20.244 (2) Å.

The Hirshfeld surface enclosing the Te3/Te4 molecule was calculated with respect to d_{e}, d_{i} and d_{norm} using Crystal Explorer (Spackman et al., 2021), where d_{e} and d_{i} represent the nearest distance of external or internal nucleus from a point of interest on the iso-surface. The dominant N···Te interactions with the adjacent Te1/Te2 molecule can be seen as the bright red areas on the Hirshfeld surface. The two-dimensional fingerprint plot and a two-dimensional fingerprint highlighting close reciprocal N···Te contacts are shown in Fig. 5. These contacts include 14.6% of the surface area.

A search of the Cambridge Structural Database (May 2021 update; Groom et al., 2016) for similar organotellurocen heterocycles yielded 9,10-dichalcogenaanthracenes, C$_7$H$_6$(X,Y) = (O, Te), (S, Te), (Se, Te) and (Te, Te): PXTELL (Smith et al., 1973), VEHVUZ (Meyers et al., 1988), VEHWEK (Meyers et al., 1988), and BAVJIR (Dereu et al., 1981), respectively. A further comparison was carried out with the sulfur analog of the title compound, WIBWEJ (Lynch et al., 1994), as well as with benzo[1,4]tellurazoles OLUQIX (Junk et al., 1993), UGIHIEL (Smith et al., 2020) and BUTNOV (Myers et al., 2016). A comparison with other Te, N-containing heterocycles known to undergo supramolecular interactions with the adjacent Te1/Te2 molecule can be seen as the bright red areas on the Hirshfeld surface. The two-dimensional fingerprint plot and a two-dimensional fingerprint plot highlighting close reciprocal N···Te contacts are shown in Fig. 5.

Table 1

Table 1	Experimental details.
Crystal data	C$_{8}$H$_{4}$N$_{4}$Te$_{2}$
Chemical formula	411.35
Temperature (K)	90
a, b, c (Å)	7.6531 (8), 11.7862 (12), 16.8371 (18)
V (Å3)	158610, 158610, 145750
Z	6
Radiation type	Mo Kα
μ (mm$^{-1}$)	5.88
Crystal size (mm3)	0.19 × 0.17 × 0.16
Data collection	Bruker Kappa APEXII DUO CCD
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)
T$_{min}$, T$_{max}$	0.362, 0.453
No. of measured, independent and observed [I > 2σ(I)] reflections	158610
R$_{int}$	0.025
R$_{cryst}$	0.950
Refinement	
R$_{cryst}$	0.024, 0.058, 1.10
No. of reflections	381
No. of parameters	158610
H-atom treatment	H-atom parameters constrained
Δρ$_{max}$, Δρ$_{min}$ (e Å$^{-3}$)	2.18, −0.97

Synthesis and crystallization

Preparation of [1,4]ditellurino[2,3-b:5,6-b']dipyrazine: a 100 ml round-bottom flask equipped with mechanical stirring and inert gas inlet was charged with tellurium powder (200 mesh, 1.28 g, 10 mmol), sodium hydride (0.6 g of 60% emulsion in mineral oil, 15 mmol) and dry N-methyl-2-pyrrolidone (12 ml). The mixture was purged with nitrogen, placed in a Wood’s metal bath and heated to 453 K with mechanical stirring for two hours. 2,3-Dichloropyrazine (1.49 g, 10 mmol) was then added, followed by continued stirring at 453 K. The mixture was allowed to cool and diluted with water (100 ml). Solids were collected by filtration and dried. They were subsequently extracted with 2 × 10 ml of chloroform. The combined extracts were chromatographed on a 1.5 × 10 cm column (silica gel, neutral, 200 mesh) using chloroform as mobile phase, followed by chloroform: acetonitrile (10:1 v/v). A yellow band eluted first and was identified as bis[pyrazin-2-yl]tellurium by mass spectrometry. This was followed by a blue band, identified as bis(3-chloropyrazin-2-yl)ditellurium. The following yellow band contained the title compound. Crystallization from chloroform solution furnished yellow crystals, m.p. 413–415 K, yield 46 mg (2.2%).

Properties: 1H NMR (CDCl$_3$, p.p.m.): 8.31 (s, 4H). 13C NMR (CDCl$_3$, p.p.m.): 1443.46, 154.32. The compound slowly oxidizes when exposed to air in solution. A sample suitable for X-ray crystallography was obtained by evaporation of a solution in chloroform.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. In the later stages of refinement, a small amount of twinning was detected, by 180° rotation about the reciprocal 110 direction. Final refinement was as a twin-component twin using an HKL5 file prepared by ROTAX (Parsons et al., 2003). The BASF parameter is 0.0250 (4).

Acknowledgements

We are grateful to the Department of Chemistry, University of Louisiana at Lafayette for material support of this work.

Figure 5

(a) Hirshfeld surface mapped over d_{norm}, (b) two-dimensional fingerprint plot, (c) two-dimensional fingerprint plot with reciprocal N···Te contacts highlighted.
data reports

Funding information

Funding for this research was provided by: Louisiana Board of Regents (grant No. LEQSF(2011-12)-ENH-TR-01).

References

Ali, A. M. M., Ramazanova, P. A., Abakarov, G. M., Tarakanova, A. V. & Anisimov, A. V. (2016). CSD Communication (CCDC 1506868). CCDC, Cambridge, England.

Bruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.

Cozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Cryst. Growth Des. 10, 959–4964.

Dereu, N. L. M., Zingaro, R. A. & Meyers, E. A. (1981). Cryst. Struct. Commun. 10, 1359–1364.

Groom, C. R., Bruno, I. J., Lightfoot, M. P & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

Ho, P. C., Rafique, J., Lee, J., Lee, L. M., Jenkins, H. A., Britten, J. F., Braga, A. L. & Vargas-Baca, I. (2017). Dalton Trans. 46, 6570–6579.

Ho, P. C., Szydlowski, P., Sinclair, J., Elder, P. J. W., Kübel, J., Gendy, C., Lee, L. M., Jenkins, H., Britten, J. F., Morim, D. R. & Vargas-Baca, I. (2016). Nat. Commun. 7, 11299.

Junk, T., Irgolic, K. J., Reibenspies, J. H. & Meyers, E. A. (1993). Acta Cryst. C49, 938–940.

Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armarlo, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387.

Kremer, A., Fermi, A., Biot, N., Wouters, J. & Bonifazi, D. (2016). Chem. Eur. J. 22, 5665–5675.

Lynch, V. M., Simonsen, S. H., Davis, B. E., Martin, G. E., Musmar, M. J., Lam, W. & Smith, K. (1994). Acta Cryst. C50, 1470–1472.

Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platins, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.

Meyers, E. A., Irgolic, K. J., Zingaro, R. A., Junk, T., Chakravorty, R., Dereu, N. L. M., French, K. & Pappalardo, G. C. (1988). Phosphorus Sulfur Relat. Elem. 38, 257–269.

Myers, J. P., Fronczek, F. R. & Junk, T. (2016). Acta Cryst. C72, 1–5.

Parsons, S., Gould, B., Cooper, R. & Farrugia, L. (2003). ROTAX. University of Edinburgh, Scotland.

Sanford, G., Walker, K. E., Fronczek, F. R. & Junk, T. (2017). J. Heterocycl. Chem. 54, 575–579.

Semenov, N. A., Pushkarevsky, N. A., Beckmann, J., Finke, P., Lork, E., Mews, R., Bagryanskaya, I. Y., Gatilov, Y. V., Konchenko, S. N., Vasiliev, V. G. & Zibarev, A. V. (2012). Eur. J. Inorg. Chem. pp. 3693–3703.

Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.

Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Smith, M. R., Mangion, M. M., Zingaro, R. A. & Meyers, E. A. (1973). Heteroatom Chem., 10, 527–531.

Smith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950.

Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
full crystallographic data

IUCrData (2022). 7, x220622 [https://doi.org/10.1107/S2414314622006228]

[1,4]Ditellurino[2,3-b:5,6-b′]dipyazine

Donna Franklin, Aundrea Lee, Frank R. Fronczek and Thomas Junk

[1,4]Ditellurino[2,3-b:5,6-b′]dipyazine

Crystal data

C₈H₄N₄Te₂

\[Z = 6 \]

\[F(000) = 1104 \]

\[D_x = 2.771 \text{ Mg m}^{-3} \]

Mo Kα radiation, λ = 0.71073 Å

Cell parameters from 9342 reflections

\[\theta = 2.8–42.1° \]

\[\mu = 5.88 \text{ mm}^{-1} \]

\[T = 90 \text{ K} \]

Fragment, yellow

\[0.19 \times 0.17 \times 0.16 \text{ mm} \]

Data collection

Bruker Kappa APEXII DUO CCD diffractometer

158610 measured reflections

158610 independent reflections

145750 reflections with \(I > 2\sigma(I) \)

\[R_{\text{int}} = 0.025 \]

\[\theta_{\text{max}} = 42.5°, \theta_{\text{min}} = 1.2° \]

\[h = -14 \rightarrow 14 \]

\[k = -22 \rightarrow 22 \]

\[l = -31 \rightarrow 31 \]

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\[R[F^2 > 2\sigma(F^2)] = 0.024 \]

\[wR(F^2) = 0.058 \]

\[S = 1.10 \]

158610 reflections

381 parameters

0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

\[w = 1/[\sigma^2(F_c^2) + (0.0009P)^2 + 1.6438P] \]

where \(P = (F_c^2 + 2F_s^2)/3 \)

\((\Delta\sigma)_{\text{max}} = 0.002 \)

\(\Delta\rho_{\text{max}} = 2.18 \text{ e Å}^{-3} \)

\(\Delta\rho_{\text{min}} = -0.97 \text{ e Å}^{-3} \)

Extinction correction: SHELXL-2018/1 (Sheldrick 2015b),

\[F_c^\alpha = kF_c[1+0.001xFe^\alpha\lambda^3/\sin(2θ)]^{-1/4} \]

Extinction coefficient: 0.00036 (7)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin using an HKL5 file prepared by ROTAX (Parsons et al., 2003). The BASF parameter is 0.0250 (4). All H atoms were located in difference maps and then treated as riding in geometrically idealized positions with C—H distances 0.95 Å and with $U_{iso}(H) = 1.2U_{eq}$ for the attached C atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	y	z	$U_{iso}*/U_{eq}$
Te1	0.49841 (2)	0.50998 (2)	0.85722 (2)	0.01013 (2)
Te2	0.50106 (2)	0.49957 (2)	0.63430 (2)	0.00816 (2)
N1	0.4741 (2)	0.75856 (14)	0.79682 (9)	0.0131 (3)
N2	0.4700 (2)	0.75553 (14)	0.63202 (9)	0.0113 (2)
N3	0.8440 (2)	0.35839 (14)	0.83665 (9)	0.0103 (2)
N4	0.8595 (2)	0.37038 (14)	0.66970 (9)	0.0104 (2)
C1	0.4830 (2)	0.65832 (15)	0.76698 (10)	0.0098 (3)
C2	0.4806 (2)	0.65701 (15)	0.68373 (10)	0.0090 (2)
C3	0.4596 (3)	0.85524 (16)	0.66225 (11)	0.0131 (3)
H3	0.450785	0.926470	0.626760	0.016*
C4	0.4615 (3)	0.85661 (17)	0.74470 (11)	0.0139 (3)
H4	0.453565	0.928841	0.764348	0.017*
C5	0.7087 (2)	0.41601 (15)	0.79341 (10)	0.0086 (2)
C6	0.7142 (2)	0.41927 (15)	0.70924 (10)	0.0084 (2)
C7	0.9955 (2)	0.31457 (16)	0.71338 (11)	0.0118 (3)
H7	1.100495	0.280085	0.687036	0.014*
C8	0.9850 (2)	0.30641 (17)	0.79687 (11)	0.0118 (3)
H8	1.080803	0.262596	0.826477	0.014*
Te3	0.02141 (2)	0.96211 (2)	0.37609 (2)	0.00927 (2)
Te4	0.45479 (2)	0.80313 (2)	0.45840 (2)	0.00845 (2)
N5	−0.1035 (2)	0.76067 (14)	0.47346 (9)	0.0109 (2)
N6	0.2130 (2)	0.64559 (13)	0.53966 (9)	0.0094 (2)
N7	0.2250 (2)	0.92573 (13)	0.22221 (8)	0.0094 (2)
N8	0.5463 (2)	0.81350 (15)	0.28562 (9)	0.0116 (2)
C9	0.0482 (2)	0.80356 (15)	0.45639 (10)	0.0087 (2)
C10	0.2078 (2)	0.74554 (15)	0.48943 (9)	0.0084 (2)
C11	0.0613 (2)	0.60249 (16)	0.55555 (10)	0.0111 (3)
H11	0.061189	0.531090	0.590301	0.013*
C12	−0.0961 (2)	0.65951 (17)	0.52251 (11)	0.0120 (3)
H12	−0.201159	0.625984	0.534990	0.014*
C13	0.2442 (2)	0.90429 (15)	0.30184 (10)	0.0085 (2)
C14	0.4045 (2)	0.84565 (15)	0.33377 (10)	0.0088 (2)
C15	0.5256 (2)	0.83823 (18)	0.20617 (11)	0.0134 (3)
H15	0.623674	0.818218	0.170301	0.016*
C16	0.3656 (2)	0.89205 (16)	0.17491 (10)	0.0111 (3)
H16	0.355508	0.905375	0.118238	0.013*
Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te1	0.01103 (4)	0.00946 (4)	0.00761 (4)	0.00239 (3)	0.00198 (3)	0.00057 (3)
Te2	0.00895 (4)	0.00699 (4)	0.00847 (4)	-0.00041 (3)	-0.00201 (3)	-0.00098 (3)
N1	0.0182 (7)	0.0093 (6)	0.0112 (6)	-0.0003 (5)	0.0013 (5)	-0.0026 (5)
N2	0.0145 (6)	0.0085 (6)	0.0105 (5)	-0.0016 (5)	-0.0021 (5)	0.0004 (4)
N3	0.0089 (5)	0.0111 (6)	0.0099 (5)	0.0000 (5)	-0.0007 (4)	-0.0002 (5)
N4	0.0096 (6)	0.0105 (6)	0.0112 (5)	-0.0001 (5)	-0.0001 (4)	-0.0036 (5)
C1	0.0107 (6)	0.0087 (6)	0.0089 (6)	0.0004 (5)	0.0004 (5)	-0.0005 (5)
C2	0.0096 (6)	0.0075 (6)	0.0094 (6)	-0.0007 (5)	-0.0006 (5)	0.0000 (5)
C3	0.0173 (8)	0.0082 (7)	0.0133 (7)	-0.0022 (6)	-0.0014 (6)	0.0003 (5)
C4	0.0188 (8)	0.0092 (7)	0.0136 (7)	-0.0013 (6)	0.0008 (6)	-0.0026 (5)
C5	0.0081 (6)	0.0078 (6)	0.0093 (6)	-0.0006 (5)	0.0001 (5)	-0.0002 (5)
C6	0.0086 (6)	0.0071 (6)	0.0094 (6)	-0.0008 (5)	-0.0010 (5)	-0.0014 (5)
C7	0.0100 (6)	0.0122 (7)	0.0130 (6)	0.0000 (5)	-0.0003 (5)	-0.0034 (5)
C8	0.0090 (6)	0.0128 (7)	0.0126 (6)	0.0013 (5)	-0.0012 (5)	-0.0009 (5)
Te3	0.00845 (4)	0.00910 (4)	0.00846 (4)	0.00204 (3)	0.00024 (3)	0.00044 (3)
Te4	0.00689 (4)	0.00985 (4)	0.00835 (4)	-0.0025 (3)	-0.00212 (3)	0.00166 (3)
N5	0.0080 (5)	0.0141 (6)	0.0107 (5)	-0.0020 (5)	0.0006 (4)	-0.0018 (5)
N6	0.0103 (6)	0.0087 (6)	0.0089 (5)	-0.0019 (5)	-0.0009 (4)	0.0003 (4)
N7	0.0099 (6)	0.0096 (6)	0.0083 (5)	-0.0003 (5)	-0.0007 (4)	-0.0009 (4)
N8	0.0082 (6)	0.0145 (7)	0.0113 (6)	-0.0006 (5)	0.0000 (4)	-0.0011 (5)
C9	0.0078 (6)	0.0099 (6)	0.0080 (5)	-0.0007 (5)	-0.0003 (4)	-0.0008 (5)
C10	0.0081 (6)	0.0089 (6)	0.0081 (5)	-0.0019 (5)	-0.0005 (5)	-0.0004 (5)
C11	0.0126 (7)	0.0110 (7)	0.0099 (6)	-0.0042 (6)	0.0010 (5)	0.0001 (5)
C12	0.0099 (6)	0.0139 (7)	0.0127 (6)	-0.0042 (6)	0.0006 (5)	-0.0015 (6)
C13	0.0088 (6)	0.0082 (6)	0.0082 (5)	-0.0008 (5)	-0.0001 (5)	-0.0006 (5)
C14	0.0077 (6)	0.0089 (6)	0.0094 (6)	-0.0018 (5)	-0.0007 (5)	0.0001 (5)
---	---	---	---	---	---	
C15	0.0097 (7)	0.0182 (8)	0.0112 (6)	0.0002 (6)	0.0017 (5)	−0.0019 (6)
C16	0.0109 (7)	0.0130 (7)	0.0090 (6)	−0.0010 (5)	−0.0001 (5)	−0.0011 (5)
Te5	0.00776 (4)	0.01048 (5)	0.00853 (4)	−0.00312 (3)	−0.00108 (3)	0.00122 (3)
Te6	0.00945 (4)	0.00712 (4)	0.00926 (4)	−0.00022 (3)	−0.00264 (3)	−0.00145 (3)
N9	0.0172 (7)	0.0121 (7)	0.0120 (6)	−0.0066 (5)	−0.0009 (5)	−0.0015 (5)
N10	0.0157 (7)	0.0108 (6)	0.0091 (5)	−0.0012 (5)	−0.0026 (5)	−0.0022 (5)
N11	0.0072 (5)	0.0115 (6)	0.0106 (5)	0.0000 (5)	−0.0007 (4)	−0.0004 (5)
N12	0.0103 (6)	0.0116 (6)	0.0103 (5)	−0.0034 (5)	−0.0002 (4)	−0.0023 (5)
C17	0.0091 (6)	0.0108 (7)	0.0086 (6)	−0.0028 (5)	−0.0009 (5)	−0.0008 (5)
C18	0.0097 (6)	0.0090 (6)	0.0091 (6)	−0.0013 (5)	−0.0011 (5)	−0.0019 (5)
C19	0.0207 (8)	0.0139 (8)	0.0096 (6)	−0.0043 (6)	−0.0030 (6)	−0.0028 (6)
C20	0.0216 (9)	0.0142 (8)	0.0133 (7)	−0.0083 (7)	−0.0019 (6)	−0.0040 (6)
C21	0.0067 (6)	0.0098 (6)	0.0086 (6)	−0.0010 (5)	−0.0006 (4)	−0.0010 (5)
C22	0.0086 (6)	0.0087 (6)	0.0082 (6)	−0.0009 (5)	−0.0011 (5)	−0.0020 (5)
C23	0.0090 (6)	0.0140 (7)	0.0130 (6)	−0.0036 (5)	−0.0003 (5)	−0.0029 (6)
C24	0.0072 (6)	0.0144 (7)	0.0124 (6)	−0.0005 (5)	−0.0011 (5)	−0.0016 (5)

Geometric parameters (Å, °)

Te1—C5	2.1185 (17)	N8—C15	1.341 (2)		
Te1—C1	2.1301 (17)	N8—C14	1.345 (2)		
Te2—C2	2.1237 (17)	C9—C10	1.405 (2)		
Te2—C6	2.1381 (17)	C11—C12	1.388 (3)		
N1—C4	1.336 (3)	C11—H11	0.9500		
N1—C1	1.342 (2)	C12—H12	0.9500		
N2—C2	1.337 (2)	C13—C14	1.405 (2)		
N2—C3	1.338 (2)	C15—C16	1.383 (3)		
N3—C8	1.337 (2)	C15—H15	0.9500		
N3—C5	1.338 (2)	C16—H16	0.9500		
N4—C7	1.339 (2)	Te5—C21	2.1105 (16)		
N4—C6	1.345 (2)	Te5—C17	2.1332 (16)		
C1—C2	1.406 (2)	Te6—C18	2.1209 (17)		
C3—C4	1.392 (3)	Te6—C22	2.1281 (17)		
C3—H3	0.9500	N9—C17	1.337 (2)		
C4—H4	0.9500	N9—C20	1.337 (3)		
C5—C6	1.410 (2)	N10—C19	1.336 (2)		
C7—C8	1.392 (3)	N10—C18	1.338 (2)		
C7—H7	0.9500	N11—C21	1.334 (2)		
C8—H8	0.9500	N11—C24	1.335 (2)		
Te3—C13	2.1211 (17)	N12—C23	1.338 (2)		
Te3—C9	2.1248 (17)	N12—C22	1.339 (2)		
Te4—C10	2.1180 (16)	C17—C18	1.409 (2)		
Te4—C14	2.1302 (16)	C19—C20	1.386 (3)		
N5—C9	1.338 (2)	C19—H19	0.9500		
N5—C12	1.340 (2)	C20—H20	0.9500		
N6—C11	1.337 (2)	C21—C22	1.408 (2)		
N6—C10	1.339 (2)	C23—C24	1.386 (3)		
N7—C16	1.334 (2)	C23—H23	0.9500		
Bond	Length [Å]	Bond	Length [Å]	Bond	Length [Å]
----------------------	------------	----------------------	------------	----------------------	------------
N7—C13	1.340 (2)	C24—H24	0.9500		
C5—Te1—C1	92.54 (6)	N5—C12—C11	121.60 (16)		
C2—Te2—C6	91.48 (6)	N5—C12—H12	119.2		
C4—N1—C1	117.64 (16)	C11—C12—H12	119.2		
C2—N2—C3	117.78 (15)	N7—C13—C14	121.05 (15)		
C8—N3—C5	117.52 (15)	N7—C13—Te3	116.77 (12)		
C7—N4—C6	117.69 (15)	C14—C13—Te3	122.17 (12)		
N1—C1—C2	120.90 (16)	N8—C14—C13	121.25 (15)		
N1—C1—Te1	113.35 (12)	N8—C14—Te4	113.13 (12)		
C2—C1—Te1	125.74 (13)	C13—C14—Te4	125.59 (12)		
N2—C2—C1	120.98 (16)	N8—C15—C16	121.90 (16)		
N2—C2—Te2	117.13 (12)	N8—C15—H15	119.0		
C1—C2—Te2	121.87 (12)	C16—C15—H15	119.0		
N2—C3—C4	121.26 (17)	N7—C16—C15	121.76 (16)		
N2—C3—H3	119.4	N7—C16—H16	119.1		
C4—C3—H3	119.4	C15—C16—H16	119.1		
N1—C4—C3	121.43 (17)	C21—Te5—C17	93.44 (6)		
N1—C4—H4	119.3	C18—Te6—C22	93.72 (6)		
C3—C4—H4	119.3	C17—N9—C20	117.07 (16)		
N3—C5—C6	120.83 (15)	C19—N10—C18	117.32 (16)		
N3—C5—Te1	116.33 (12)	C21—N11—C24	117.52 (16)		
C6—C5—Te1	122.70 (12)	C23—N12—C22	117.19 (16)		
N4—C6—C5	120.95 (15)	N9—C17—C18	121.22 (15)		
N4—C6—Te2	114.60 (12)	N9—C17—Te5	113.16 (12)		
C5—C6—Te2	124.45 (12)	C18—C17—Te5	125.57 (12)		
N4—C7—C8	120.88 (16)	N10—C18—C17	120.98 (15)		
N4—C7—H7	119.6	N10—C18—Te6	116.55 (12)		
C8—C7—H7	119.6	C17—C18—Te6	122.48 (12)		
N3—C8—C7	121.98 (17)	N10—C19—C20	121.55 (17)		
N3—C8—H8	119.0	N10—C19—H19	119.2		
C7—C8—H8	119.0	C20—C19—H19	119.2		
C13—Te3—C9	93.30 (6)	N9—C20—C19	121.84 (17)		
C10—Te4—C14	93.80 (6)	N9—C20—H20	119.1		
C9—N5—C12	117.13 (16)	C19—C20—H20	119.1		
C11—N6—C10	117.26 (15)	N11—C21—C22	121.09 (15)		
C16—N7—C13	117.26 (15)	N11—C21—Te5	115.58 (12)		
C15—N8—C14	116.70 (16)	C22—C21—Te5	123.27 (12)		
N5—C9—C10	121.28 (16)	N12—C22—C21	120.99 (15)		
N5—C9—Te3	113.77 (12)	N12—C22—Te6	113.90 (12)		
C10—C9—Te3	124.94 (12)	C21—C22—Te6	125.11 (12)		
N6—C10—C9	121.09 (15)	N12—C23—C24	121.65 (16)		
N6—C10—Te4	115.90 (12)	N12—C23—H23	119.2		
C9—C10—Te4	122.91 (12)	C24—C23—H23	119.2		
N6—C11—C12	121.62 (16)	N11—C24—C23	121.50 (16)		
N6—C11—H11	119.2	N11—C24—H24	119.3		
C12—C11—H11	119.2	C23—C24—H24	119.3		
C4—N1—C1—C2 0.5 (3)
C4—N1—C1—Te1 −179.04 (14)
C3—N2—C2—C1 −0.8 (3)
C3—N2—C2—Te2 −179.06 (13)
N1—C1—C2—N2 0.2 (3)
Te1—C1—C2—N2 179.73 (13)
N1—C1—C2—Te2 178.42 (13)
Te1—C1—C2—Te2 −2.1 (2)
C2—N2—C3—C4 0.6 (3)
C1—N1—C4—C3 −0.7 (3)
N2—C3—C4—N1 0.2 (3)
C8—N3—C5—C6 1.3 (2)
C8—N3—C5—Te1 −174.55 (13)
C7—N4—C6—C5 2.7 (2)
C7—N4—C6—Te2 −177.44 (13)
N3—C5—C6—N4 −3.9 (3)
Te1—C5—C6—N4 171.65 (12)
N3—C5—C6—Te2 176.25 (12)
Te1—C5—C6—Te2 −8.2 (2)
C6—N4—C7—C8 0.8 (3)
C5—N3—C8—C7 2.3 (3)
N4—C7—C8—N3 −3.5 (3)
C12—N5—C9—C10 −0.8 (2)
C12—N5—C9—Te3 178.70 (13)
C11—N6—C10—C9 1.4 (2)
C11—N6—C10—Te4 −175.06 (12)
N5—C9—C10—N6 −0.5 (3)
Te3—C9—C10—N6 −179.93 (12)
N5—C9—C10—Te4 175.68 (12)
Te3—C9—C10—Te4 −3.8 (2)
C10—N6—C11—C12 −1.0 (3)
C9—N5—C12—C11 1.2 (3)
N6—C11—C12—N5 −0.3 (3)
C16—N7—C13—C14 −1.8 (2)
C16—N7—C13—Te3 178.54 (13)
C15—N8—C14—C13 −1.2 (3)
C15—N8—C14—Te4 −179.44 (14)
N7—C13—C14—N8 2.9 (3)
Te3—C13—C14—N8 −177.51 (13)
N7—C13—C14—Te4 −179.14 (12)
Te3—C13—C14—Te4 0.5 (2)
C14—N8—C15—C16 −1.3 (3)
C13—N7—C16—C15 −0.7 (3)
N8—C15—C16—N7 2.3 (3)
C20—N9—C17—C18 1.5 (3)
C20—N9—C17—Te5 −176.06 (14)
C19—N10—C18—C17 −0.2 (3)
C19—N10—C18—Te6 179.91 (14)
N9—C17—C18—N10 −1.2 (3)
Te5—C17—C18—N10 176.06 (13)
N9—C17—C18—Te6 178.68 (13)
Te5—C17—C18—Te6 −4.1 (2)
C18—N10—C21—C22 2.7 (2)
C18—N10—C21—Te5 −174.54 (13)
C23—N12—C22—C21 −1.2 (2)
C23—N12—C22—Te6 178.49 (12)
N11—C21—C22—N12 −1.3 (2)
Te5—C21—C22—N12 175.69 (12)
C11—N12—C23—C24 2.2 (3)
C11—N12—C23—Te6 −3.9 (2)
C21—N11—C24—C23 −1.7 (3)
N12—C23—C24—N11 −0.8 (3)