Mice lacking PLAP-1/aspersin counteracts high fat diet-induced metabolic disorder and alveolar bone loss by controlling adipose tissue expansion

Hiromi Sakashita¹, Satoru Yamada¹,²*, Masaki Kinoshita¹, Tetsuhiro Kajikawa¹,⁸, Tomoaki Iwayama¹, and Shinya Murakami¹*

¹ Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
² Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
⁸ Current Address: Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

* Corresponding author

E-mail: satoruy@tohoku.ac.jp (SY) and ipshinya@dent.osaka-u.ac.jp (SM)
Fig S1
Fig S1. HFD-induced obesity and metabolic abnormalities.

(A) 5-week-old male C57BL/6J mice were fed with high fat diet (HFD) or normal chow diet (NC) and weighted weekly (n = 7 in each group). (B) Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed in mice after NC or HFD feeding (n = 4 in each group). (C) Serum levels of total cholesterol (T-CHO), triglyceride (TG), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), non-esterified fatty acid (NEFA), glucose (GLU) were measured during NC or HFD feeding (n = 3 in each group). *: $p < 0.05$, **: $p < 0.01$, ****: $p < 0.0001$.
Fig S2

A

B

Weeks after feeding

NC

HFD

a

b

c

a+b+c (μm)

0 4 8 16

NC

HFD

Fig S2. HFD-induced alveolar bone resorption.

(A) Alveolar bone resorption in mice fed with NC or HFD was evaluated by μCT. (B) Distance between alveolar bone crest and cement-enamel junction was measured at distal root of first molar (a), mesial (b) and distal (c) root of second molar (n = 14 in each group). Results show the mean ± SD. *: p < 0.05
Fig S3

A

B

GTT

Blood glucose (mg/dL)

Time (min)

WT

Plap-1 KO

AUCGTT

WT

Plap-1 KO

C

ITT

Blood glucose (mg/dL)

Time (min)

WT

Plap-1 KO

AUCITT

WT

Plap-1 KO
Fig S3. Body weight change and glucose homeostasis in Plap-1 KO mice with NC feeding.

(A) Body weight changes in WT and Plap-1 KO mice during NC feeding. 5-week-old male WT and Plap-1 KO mice were fed with NC and weighted weekly. WT (n = 11), Plap-1 KO (n = 8). Results show the mean ± SD. (B) GTT and ITT were performed in 5-week-old male WT and Plap-1 KO mice (n = 9 in each group). (C) GTT and ITT were performed in WT and Plap-1 KO mice after 16 weeks NC feeding. For GTT, WT (n = 8), Plap-1 KO (n = 7) and for ITT, WT (n = 8), Plap-1 KO (n = 8). Results show the mean ± SD. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
Fig S3. Immunoblots performed in this study

(A) anti-FLAG blot (left) and Ponceau S staining (right).
Gene of interest	Forward primers sequences	Reverse primers sequences
Aspn	atgtagcagataacgtagctgcaga	ttggttgggaacccgatgtcaga
Adipoq	ttctgtctgtcattgtagctgagga	gcgcgactgggactgggattta
Lep	gaacgcgtctctgcatgcacgca	ctggctctgtagcctgttgg
Adgre1	gcgtggggctccagctgctgtgtg	gaaggtcagcaacctcgtgtctgcc
Tnf	aagccttgagccccacgtcagta	gcgcacactgtggtggtgcttttg
Il6	ccactcacaagctggagcattta	gcacgtgcatcagctgctctctaca
Ccl3	catgacactctgcaacacagtttc	gcagcaagcctgtgggtttgcttc
Arg1	agctctgggaatctgcatgg	atgtacacgatgtctttggcagata
Chil3	atgggcctcacaactggactg	agtcaatggctctgtcccttg
Clec7a	ggtaacctgactcaaatcctcacaac	caccagatgatagtggctgttc
Fabp4	cgggaaccttggaagctggcttc	gaattccacgccccacttgga
Pparg	ggagcctagttgtgtgtgctttg	tgcagcagttgctctggctg
Cebpa	cggagccagctggcagctggcagc	gcacactgcatctggaactaag
Col1a	cagggtattgtcggagcaactgg	gcacctgttggcagacgtca
Col3a1	caggccaggtggcagctgtaaga	cccttgccttgctgttggata-
Col6a1	gagcttcctgagcagccccctc	gagctggctcagggagcttgag
Dcn	ctgggctggcagcataagta	cggacaggggtggccgtaaag
Bgn	cggagctgagatggacctgta	tccgaagccccataaggacagaag
Hprt	tggcggaagctggctagcagact	aggccgagctggccagagcagaag