A Machine Learning Management Model for QoE Enhancement in Next Generation Wireless Ecosystems

E. Ibarrola¹, M. Davis², C. Voisin³, C. Close³, L. Cristobo¹
¹University of the Basque Country (UPV/EHU), Spain
²Dublin Institute of Technology (DIT), Ireland
³OptiWi-fi, Ireland
eva.ibarrola@ehu.eus

26-28 November
Santa Fe, Argentina
Outline

• Introduction
• Background
• Proposal
 – QoXphere Management Model
 – Machine Learning Methodology
• Case study
• Conclusions
Introduction

- Evolution of Internet users' behavior
- Increasing variety of free applications and services
- Internet access something indispensable
- Next-generation wireless era
 - Multiple technologies, network slicing, NFV, SDN…
 - Alternative business and QoS models

Challenges

New QoS methodologies needed for 5G!
Background

- Evolution of QoS concept: from NP to QoE
- New QoS models embracing all QoS dimensions
- Difficult task when dealing with NG Wireless Ecosystems
 - Different networks sharing spectrum
 - Many user’s QoE influence factors
- To face this challenge:
QoE, ML & Standards

Focus Group on Machine Learning for Future Networks including 5G

FG-MLSG

The ITU-T Focus Group on Machine Learning for Future Networks including 5G was established by ITU-T Study Group 13 at its meeting in Geneva, 6-17 November 2017. The Focus Group will draft technical reports and specifications for machine learning (ML) for future networks, including interfaces, network architectures, protocols, algorithms and data formats.

Terms of Reference:

- Overall ToR of FG-MLSG
- WGI “Use cases, services and requirements”
- WG2 “Data formats & ML technologies”
- WG3 “ML-aware network architecture”

Participation in FG-MLSG is free of charge and open to all. To receive updates and announcements related to this group, please subscribe to the FG-MLSG mailing list (see the "FG-MLSG mailing list" tab on the right of this page).

Parent group: ITU-T Study Group 13

SG12-C191

STUDY GROUP 12

Original: English

Question(s): 1512

CONTRIBUTION

Source: InfoVista

Title: Proposed test for P VSMQTF “Voice service quality monitoring and troubleshooting framework for intrusive parametric voice Woe prediction”

Purpose: Proposal

Contact:
- **Dr. Irina Cotani**
 - InfoVista
 - USA
 - Tel: +1-703-956-5374
 - Fax: +1-703-956-3649
 - E-mail: irina.cotani@infovista.com

- **Per Johansson**
 - InfoVista
 - Sweden
 - Tel: +46-910480831
 - Fax: +46-910480832
 - E-mail: per.johansson@infovista.com

Keywords: Intrusive parametric models for voice Woe prediction, framework, machine learning, learning and evaluation database generator, machine learning features, statistical evaluation module.
Methodologies needed to be deployed in 5G!

Y.IMT2020-qos-fa
"QoS functional architecture for IMT-2020 networks"

Rec. Y.3170
"Requirements of machine learning based Quality of Service assurance for IMT-2020 network"
QoXphere

Management Plane

User Plane

Control Plane

Fulfilling Y.IMT2020-qos-fa

QoS BUSINESS

ASSESSED QoS

PERCEIVED QoS

INTRINSEC QoS

M.3050, E.419

G.1011

G.1000

G.1010, Y.1540, Y.1541, Y.3101

QoBiz

Op-Eff

ARPU

CHURN

SLA

SAT

EXP

QoE

QoSR

QoSD

QoSO

NP

CoS

KPP

Fulfilling Y.IMT2020-qos-fa
QoXphere Management Model

Working for a long time to find a methodology to automate the interrelations and intra-relations between different layers!
Case Study: IEEE 802.11

- **Unsupervised Learning** to identify scenarios/profiles
 - K-means
 - DBSCAN

Probes captured data

SCENARIO	Feb. 2018	May. 2018	June 2018
Commercial	28/1	4/2	11/2	18/2
	25/2	29/4	4/5
	6/5	13/5	20/5	27/5
	3/6	10/6	17/6	24/6
Campus				
Class & Lab				
Library				
Residential				

Objective Measurements
Subjective Measurements
Case Study: Objective Measurements

- **OptiWi-fi probes** (2 probes/scenario)
 - NP data
 - Numbers of APs
 - Numbers of clients…
Case Study: Subjective measurements

- **Surveys**
 - Plain Language Statement
 - Consent Form
 - Questionnaire
 - Personal information
 - Internet habits
 - QoS requirements/expectation
 - QoE assessment information
Case Study: Results on QoS criteria & KQIs

- **Influence factors**
 - Important differences between user’s Influence Factors
 - Building training set
 - Find the rules on their affection on QoS criteria & KQIs identification

Human IF	Commercial	Campus	Residential
Gender	Age	Gender	Age
Male	Female	Male	Female

System IF	Users:	Users:	Users:
APs			

Context IF	How often do you use this Wi-Fi?	How often do you use this Wi-Fi?	How often do you use this Wi-Fi?
	25% 17% 34% 15% 9%	5% 3% 5% 5% 2%	16.67% 66% 83.33% 15%
Case Study: QoS criteria & KQIs

- **KQIs Identification**
 - Relevant QoS criteria and KQIs **very different**
 - Supervised machine learning proposed to **automatically update the KQIs**
 - It is essential given the **number and changing nature of the influence factors**
Case Study: Control and User Plane

- **Control Plane:** Data collected from the probes
 - To learn about use’s behavior (mobility patterns, connection time…)
 - Extract context information (number of users, number of APs…)
 - To detect anomalies and enhance the channel selection process through unsupervised learning

- **User Plane:** Data collected from surveys and the probes
 - Inductive supervised learning is proposed for the NP-QoE correlation model
 - Results of the surveys about user’s QoE and satisfaction are proposed to feed the model and infer the rules to automatically predict the QoE (based on NP and the influence factors).
 - ML techniques may also be implemented to enhance the satisfaction model (CSAT)
Case Study: Results

- The validation of the methodology is still at a premature stage
 - The case study has revealed that the proposed methodology can be very useful to deploy the QoS management model and enhance the user’s QoE
 - Results have indicated several corrective actions that could be implemented through ML in the scenarios under study
 - Commercial scenario: Analysis in NP data of AP capacity and use of ML to enhance the channel selection mechanism
 - Campus scenario: Customize AP performance through ML techniques and revise login procedures according to the learned rules
 - Residential scenario: Customize residential Wi-Fi APs for optimal throughput through ML and enhance the business model using supervised ML through the survey's observation set
Conclusions

• A methodology to implement a global QoS management model for the next generation wireless ecosystem has been presented.
• The proposed methodology is based on ITU standards and takes advantage of big data and ML techniques and may help to enhance the new ITU related standards.
• Even though the definition of the methodology and the validation of the approach is still at an early stage, the results of the case study reveal that the proposed methodology may aid to enhance QoE in next generation wireless environments.
Eva Ibarrola¹, Mark Davis², Camille Voisin³, Ciara Close³, Leire Cristobo¹

¹University of the Basque Country (UPV/EHU), Spain
²Dublin Institute of Technology (DIT), Ireland
³OptiWi-fi, Ireland

eva.ibarrola@ehu.eus
Thank you