THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels

Stephen PH Alexander1, Alistair Mathie2, John A Peters3, Emma L Veale2, Jörg Striessnig4, Eamonn Kelly5, Jane F Armstrong6, Elena Faccenda6, Simon D Harding6, Adam J Pawson6, Joanna L Sharman6, Christopher Southan6, Jamie A Davies4 and CGTP Collaborators

1 School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
2 Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
3 Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
4 Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
5 School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
6 Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK

Abstract

The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.14749. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2019, and supersedes data presented in the 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

© 2019 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Overview: Ion channels are pore-forming proteins that allow the flow of ions across membranes, either plasma membranes, or the membranes of intracellular organelles [379]. Many ion channels (such as most Na, K, Ca and some Cl channels) are gated by voltage but others (such as certain K and Cl channels, TRP channels, ryanodine receptors and IP3 receptors) are relatively voltage-insensitive and are gated by second messengers and other intracellular and/or extracellular mediators. As such, there is some blurring of the boundaries between ‘ion channels’ and ‘ligand-gated channels’ which are compiled separately in the Guide. Resolution of ion channel structures, beginning with K channels [239] then Cl channels [255] and most recently Na channels [767] has greatly improved understanding of the structural basis behind ion channel function. Many ion channels (e.g., K, Na, Ca, HCN and TRP channels) share several structural similarities. These channels are thought to have evolved from a common ancestor and have been classified together as the “voltage-gated-like (VGL) ion channel chanome” (see [1122]). Other ion channels, however, such as Cl channels, aquaporins and connexins, have completely different structural properties to the VGL channels, having evolved quite separately.

Currently, ion channels (including ligand-gated ion channels) represent the second largest target for existing drugs after G protein-coupled receptors [747]. However, the advent of novel, faster screening techniques for compounds acting on ion channels [247] suggests that these proteins represent promising targets for the development of additional, novel therapeutic agents for the near future.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Family structure

S143	Ligand-gated ion channels
S144	5-HT₃ receptors
S146	Acid-sensing (proton-gated) ion channels (ASICs)
S148	Epithelial sodium channel (ENaC)
S149	GABA_A receptors
S155	Glycine receptors
S158	Ionotropic glutamate receptors
S164	IP₃ receptor
S165	Nicotinic acetylcholine receptors
S168	P2X receptors
S170	ZAC
S171	Voltage-gated ion channels
S171	CatSper and Two-Pore channels
S173	Cyclic nucleotide-regulated channels
S175	Potassium channels
S175	Calcium- and sodium-activated potassium channels
S178	Inwardly rectifying potassium channels
S182	Two P domain potassium channels
S185	Voltage-gated potassium channels
S189	Ryanodine receptors
S190	Transient Receptor Potential channels
S204	Voltage-gated calcium channels
S207	Voltage-gated proton channel
S208	Voltage-gated sodium channels
S210	Other ion channels
S210	Aquaporins
S212	Chloride channels
S213	CIC family
S215	CFTR
S216	Calcium activated chloride channel
S217	Maxi chloride channel
S218	Volume regulated chloride channels
S219	Connexins and Pannexins
S221	Piezo channels
S222	Sodium leak channel, non-selective
-	Store-operated ion channels
-	Oral channels

Ligand-gated ion channels

Ion channels → Ligand-gated ion channels

Overview: Ligand-gated ion channels (LGICs) are integral membrane proteins that contain a pore which allows the regulated flow of selected ions across the plasma membrane. Ion flux is passive and driven by the electrochemical gradient for the permeant ions. These channels are open, or gated, by the binding of a neurotransmitter to an orthosteric site(s) that triggers a conformational change that results in the conducting state. Modulation of gating can occur by the binding of endogenous, or exogenous, modulators to allosteric sites. LGICs mediate a rapid, phasic, electrical signal (the excitatory, or inhibitory, post-synaptic potential). However, in addition to their traditional role in phasic neurotransmission, it is now established that some LGICs mediate a tonic form of neuronal regulation that results from the activation of extra-synaptic receptors by ambient levels of neurotransmitter. The expression of some LGICs by non-excitable cells is suggestive of additional functions. By convention, the LGICs comprise the excitatory, cation-selective, nicotinic acetylcholine [144, 659], 5-HT₃ [56, 1042], ionotropic glutamate [588, 997] and P2X receptors [436, 946] and the inhibitory, anion-selective, GABA_A [76, 738] and glycine receptors [603, 1116]. The nicotinic acetylcholine, 5-HT₃, GABA_A and glycine receptors (and an additional zinc-activated channel) are pentameric structures and are frequently referred to as the Cys-loop receptors due to the presence of a defining loop of residues formed by a disulphide bond in the extracellular domain of their constituent subunits [662, 975]. However, the prokaryotic ancestors of these receptors contain no such loop and the term pentameric ligand-gated ion channel (pLGIC) is gaining acceptance in the literature [375]. The ionotropic glutamate and P2X receptors are tetrameric and trimeric structures, respectively. Multiple genes encode the subunits of LGICs and the majority of these receptors are heteromultimers. Such combinational diversity results, within each class of LGIC, in a wide range of receptors with differing pharmacological and biophysical properties and varying patterns of expression within the nervous system and other tissues. The LGICs thus present attractive targets for new therapeutic agents with improved discrimination between receptor isoforms and a reduced propensity for off-target effects. The development of novel, faster screening techniques for compounds acting on LGICs [247] will greatly aid in the development of such agents.
Overview: The 5-HT₃ receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on 5-Hydroxytryptamine (serotonin) receptors [402]) is a ligand-gated ion channel of the Cys-loop family that includes the zinc-activated channels, nicotinic acetylcholine, GABA_A and strychnine-sensitive glycine receptors. The receptor exists as a pentamer of 4TM subunits that form an intrinsic cation selective channel [56]. The human 5-HT₃ receptor subunits have been cloned and homo-oligomeric assemblies of 5-HT₃A and hetero-oligomeric assemblies of 5-HT₃A and 5-HT₃B subunits have been characterised in detail. The 5-HT₃C (HTR3C, Q8WXA8), 5-HT₃D (HTR3D, Q70244) and 5-HT₃E (HTR3E, ASX590) subunits [470, 705], like the 5-HT₃B subunit, do not form functional homomers, but are reported to assemble with the 5-HT₃A subunit to influence its functional expression rather than pharmacological profile [391, 707, 1041]. 5-HT₃A, -C, -D, and -E subunits also interact with the chaperone RIC-3 which predominantly enhances the surface expression of homomeric 5-HT₃A receptor [1041]. The co-expression of 5-HT₃A and 5-HT₃C-E subunits has been demonstrated in human colon [465]. A recombinant hetero-oligomeric 5-HT₃AB receptor has been reported to contain two copies of the 5-HT₃A subunit and three copies of the 5-HT₃B subunit in the order B-B-A-B-A [61], but this is inconsistent with recent reports which show at least one A-A interface [587, 979]. The 5-HT₃B subunit imparts distinctive biophysical properties upon hetero-oligomeric 5-HT₃AB versus homo-oligomeric 5-HT₃A recombinant receptors [199, 244, 352, 438, 476, 786, 926], influences the potency of channel blockers, but generally has only a modest effect upon the apparent affinity of agonists, or the affinity of antagonists ([106], but see [197, 210, 244]) which may be explained by the orthosteric binding site residing at an interface formed between 5-HT₃A subunits [587, 979]. However, 5-HT₃A and 5-HT₃AB receptors differ in their allosteric regulation by some general anaesthetic agents, small alcohols and indoles [405, 853, 920]. The potential diversity of 5-HT₃ receptors is increased by alternative splicing of the genes HTR3A and E [116, 396, 704, 706, 707]. In addition, the use of tissue-specific promoters driving expression from different transcriptional start sites has been reported for the HTR3A, HTR3B, HTR3D and HTR3E genes, which could result in 5-HT₃ subunits harbouring different N-termini [438, 704, 1001]. To date, inclusion of the 5-HT₃A subunit appears imperative for 5-HT₃ receptor function.

Nomenclature

Subunits	5-HT₃AB	5-HT₃A
Selective agonists	5-HT₃A, 5-HT₃B	meta-chlorphenylbiguanide [75, 199, 536, 668, 669], 2-methyl-5-HT [75, 199, 536, 668], SR57227A [258] – Rat, 1-phenylbiguanide [75]
Antagonists	–	vortioxetine (pKᵢ 8.4) [51], metoclopramide (pKᵢ 6-6.4) [106, 397]
Selective antagonists	–	palonosetron (pKᵢ 10.5) [677], alosetron (pKᵢ 9.5) [382], (3)-zacopride (pKᵢ 9) [106], granisetron (pKᵢ 8.6–8.8) [397, 668], tropisetron (pKᵢ 8.5–8.8) [536, 668], ondansetron (pKᵢ 7.8–8.3) [106, 397, 668]
Channel blockers	picrotoxinin (pIC₅₀ 4.2) [974], bilobalide (pIC₅₀ 2.5) [974], ginkgolide B (pIC₅₀ 2.4) [974]	picrotoxinin (pIC₅₀ 5) [973], TM8-8 (pIC₅₀ 4.9) [944], diltiazem (pIC₅₀ 4.7) [973], bilobalide (pIC₅₀ 3.3) [973], ginkgolide B (pIC₅₀ 3.1) [973]
Labelled ligands	–	[¹H]ramosetron (Antagonist) (pKᵢ 9.8) [668], [¹H]GR65630 (Antagonist) (pKᵢ 8.6–9.3) [382, 536], [¹H]granisetron (Antagonist) (pKᵢ 8.9) [106, 397], [¹H](3)-zacopride (Antagonist) (pKᵢ 8.7) [737], [¹H]LY278584 (Antagonist) (pKᵢ 8.5) [3]

Functional Characteristics

- γ = 0.4–0.8 pS [+ 5-HT₃B, γ = 16 pS]; inwardly rectifying current [+ 5-HT₃B, rectification reduced]; nᵢₙ 2-3 [+ 5-HT₃B 1-2]; relative permeability to divalent cations reduced by co-expression of the 5-HT₃B subunit
- γ = 0.4–0.8 pS [+ 5-HT₃B, γ = 16 pS]; inwardly rectifying current [+ 5-HT₃B, rectification reduced]; nᵢₙ 2-3 [+ 5-HT₃B 1-2]; relative permeability to divalent cations reduced by co-expression of the 5-HT₃B subunit
Subunits

Nomenclature	5-HT3A	5-HT3B	5-HT3C	5-HT3D	5-HT3E
HGNC, UniProt	*HTR3A*, P46098	*HTR3B*, Q95264	*HTR3C*, Q8WXA8	*HTR3D*, Q70Z44	*HTR3E*, A5X5Y0

Functional Characteristics

- $\gamma = 0.4$-0.8 pS [+ 5-HT3B, $\gamma = 16$ pS]; inwardly rectifying current [+ 5-HT3B, rectification reduced]; $n_{H}2-3$ [+ 5-HT3B 1-2]; relative permeability to divalent cations reduced by co-expression of the 5-HT3B subunit

Comments: Quantitative data in the table refer to homooligomeric assemblies of the human 5-HT3A subunit, or the receptor native to human tissues. Significant changes introduced by co-expression of the 5-HT3B subunit are indicated in parenthesis. Although not a selective antagonist, methadone displays multimodal and subunit-dependent antagonism of 5-HT$_3$ receptors [210]. Similarly, TMB-8, diltiazem, picrotoxin, bilobalide and ginkgolide B are not selective for 5-HT$_3$ receptors (e.g. [974]). The anti-malarial drugs melfoquine and quinine exert a modestly more potent block of 5-HT$_3$A versus 5-HT$_3$AB receptor-mediated responses [976]. Known better as a partial agonist of nicotinic acetylcholine $\alpha_4$$\beta_2$ receptors, varenicline is also an agonist of the 5-HT$_3$A receptor [601]. Human [75, 668], rat [419], mouse [628], guinea-pig [536] ferret [670] and canine [441] orthologues of the 5-HT$_3$A receptor subunit have been cloned that exhibit intraspecies variations in receptor pharmacology. Notably, most ligands display significantly reduced affinities at the guinea-pig 5-HT$_3$ receptor in comparison with other species. In addition to the agents listed in the table, native and recombinant 5-HT$_3$ receptors are subject to allosteric modulation by extracellular divalent cations, alcohols, several general anaesthetics and 5-hydroxy- and halide-substituted indoles (see reviews [758, 977, 978, 1042]).

Further reading on 5-HT$_3$ receptors

Andrews PL et al. (2014) Nausea and the quest for the perfect anti-emetic. *Eur. J. Pharmacol.* **722**: 108-21 [PMID:24157981]

Fakhfouri G et al. (2015) From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists. *Mol. Neurobiol.* **52**: 1670-1679 [PMID:25377794]

Gupta D et al. (2016) 5HT3 receptors: Target for new antidepressant drugs. *Neurosci Biobehav Rev* **64**: 311-25 [PMID:26976355]

Hoyer D et al. (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). *Pharmacol. Rev.* **46**: 157-203 [PMID:7938165]

Lochner M et al. (2015) A review of fluorescent ligands for studying 5-HT3 receptors. *Neuropharmacology* **98**: 31-40 [PMID:25892507]

Rojas C et al. (2014) Molecular mechanisms of 5-HT(3) and NK(1) receptor antagonists in prevention of emesis. *Eur. J. Pharmacol.* **722**: 26-37 [PMID:24184669]

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Acid-sensing (proton-gated) ion channels (ASICs)

Ion channels → Ligand-gated ion channels → Acid-sensing (proton-gated) ion channels (ASICs)

Overview: Acid-sensing ion channels (ASICs, nomenclature as agreed by NC-IUPHAR [475]) are members of a Na⁺ channel superfamily that includes the epithelial Na⁺ channel (ENaC), the FMRF-amide activated channel (FaNaC) of invertebrates, the degenerins (DEG) of Caenorhabditis elegans, channels in Drosophila melanogaster and ‘orphan’ channels that include BLINaC [575] and ASIC subunits contain two TM domains and assemble as homo- or hetero-trimers [44, 321, 437] to form proton-gated, voltage-insensitive, Na⁺ permeable, channels (reviewed in [339, 1067]). Splice variants of ASIC1 [termed ASIC1a (ASIC, ASIC1a, NaN2a) [1036], ASIC1b (ASIC1b, NaC2b) [153] and ASIC1b2 (ASIC32) [1004]: note that ASIC1a is also permeable to Ca²⁺) and ASIC2 [termed ASIC2a (MEG1, NaN2a, BNC1a) [306, 808, 1037] and ASIC2b (MEG2, NaN2b) [575] have been cloned. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H⁺-gated currents. A third member, ASIC3 (DRASIC, TNaC1a) [1035], has also been identified. A fourth mammalian member of the family (ASIC4/SPASIC) does not support a proton-gated channel in heterologous expression systems and is reported to downregulate the expression of ASIC1a and ASIC3 [14, 235, 338, 572]. ASIC channels are primarily expressed in central and peripheral neurons including nociceptors where they participate in neuronal sensitivity to acidosis. They have also been detected in taste receptor cells (ASIC1-3), photoreceptors and retinal cells (ASIC1-3), cochlear hair cells (ASIC1b), testis (hASIC3), pituitary gland (ASIC4), lung epithelial cells (ASIC1a and -3), urothelial cells, adipose cells (ASIC3), vascular smooth muscle cells (ASIC1-3), immune cells (ASIC1,-3 and -4) and bone (ASIC1-3). A neurotransmitter-like function of protons has been suggested, involving postsynaptically located ASICs of the CNS in functions such as learning and fear perception [242, 516, 1150], responses to focal ischemia [1090] and to axonal degeneration in autoimmune inflammation in a mouse model of multiple sclerosis [298], as well as seizures [1151] and pain [98, 219, 220, 229]. Heterologously expressed heteromultimers form ion channels with differences in kinetics, ion selectivity, pH-sensitivity and sensitivity to blockers that resemble some of the native proton activated currents recorded from neurones [42, 60, 269, 575].

Nomenclature

| ASIC1 | ASIC1, P78348 |
| ASIC2 | ASIC2, Q16515 |

Endogenous activators

| Extracellular H⁺ (ASIC1a) (pEC50 ~6.2–6.8), Extracellular H⁺ (ASIC1b) (pEC50 ~5.1–6.2) |
| diminazene (pEC50 ~6.1) [544], amiloride (pEC50 4.6), A-317567 (pEC50 ~4.5), nafamostat (pEC50 ~4.2), Cd²⁺ (pEC50 ~3) |

Channel blockers

| Pi-hexatoxin-Hi1a (ASIC1a) (pIC50 ~9.3) [112], psalmotoxin 1 (ASIC1a) (pIC50 9), Pi-theraphotoxin-Hm3a (ASIC1a) (pIC50 ~8.5) [264], Zn²⁺ (ASIC1a) (pIC50 ~8.2), mambalgin-1 (ASIC1a) (pIC50 ~7.3) [229], mambalgin-1 (ASIC1b) (pIC50 ~7) [57], diminazene (ASIC1a & ASIC1b) (pIC50 ~6.5) [544]. Pb²⁺ (ASIC1b) (pIC50 ~5.8), A-317567 (ASIC1a) (pIC50 ~5.7) [245] – Rat, Pb²⁺ (ASIC1a) (pIC50 ~5.4), amiloride (ASIC1a) (pIC50 5), benzamid (ASIC1a) (pIC50 5), ethylisopropylamiloride (ASIC1a) (pIC50 5), nafamostat (ASIC1a) (pIC50 ~4.9), amiloride (ASIC1b) (pIC50 4.6–4.7), flurbiprofen (ASIC1a) (pIC50 3.5) [1025] – Rat, ibuprofen (ASIC1a) (pIC50 ~3.5), Ni²⁺ (ASIC1a) (pIC50 ~3.2) |

Labelled ligands

| psalmotoxin 1 (ASIC1a) (pKd 9.7) |

Functional Characteristics

| ASIC1a: γ = 14pS, PNa/PK = 5.13, PNa/PcA = 2.5, rapid activation rate (5.8-13.7 ms), rapid inactivation rate (1.2–4 s) @ pH 6.0, slow recovery (5.3-13s) @ pH 7.4 |
| ASIC1b: γ = 19 pS, PNa/PrK = 14.0, PNa > PCa, rapid activation rate (9.9 ms), rapid inactivation rate (0.9-1.7 s) @ pH 6.0, slow recovery (4.4–7.7 s) @ pH 7.4 |

Comments

| ASIC1a and ASIC1b are activated by the heteromeric Texas coral snake toxin MitTx, with pEC50 values of 8 and 7.6 respectively [98]. ASIC2 is also blocked by diarylaminides |
Comments: Psalmotoxin 1 (PcTx1) inhibits ASIC1a by increasing the affinity to H+ and promoting channel desensitization [160, 269]. PcTx1 has little effect on ASIC2a, ASIC3 or ASIC1a expressed as a heteromultimer with either ASIC2a, or ASIC3 but does inhibit ASIC1a expressed as a heteromultimer with ASIC2b [897]. PcTx1 and α-Hm3a potentiate ASIC1b currents [159, 264]. ASIC1-containing homo- and heteromers are inhibited by Mambalgin, toxins contained in the black mamba venom, which induce in ASIC1a an acidic shift of the pH dependence of activation [229]. α-Hm1a is highly selective for ASIC1a with very little activity at ASIC1b. It inhibits channel activation and is very slowly reversible [146]. APETx2 most potently blocks homomeric ASIC3 channels, but also ASIC2b+ASIC3, ASIC1b+ASIC3, and ASIC1a+ASIC3 heteromeric channels with pEC50 values of 117 nM, 900 nM and 2 μM, respectively. APETx2 has no effect on ASIC1a or ASIC2a+ASIC3. However, it does potentiate ASIC1b and ASIC2a homomers in the low micromolar range (1-10 μM) [228, 230, 544]. APETx2 however also inhibits voltage-gated Na+ channels [92, 776]. IC50 value for A-317567 was determined using high throughput electrophysiology on human ASIC3 expressed in HEK293 cells [521]. The pEC50 values for proton activation of ASIC channels are influenced by numerous factors including extracellular di- and poly-valent ions, Zn2+, protein kinase C and serine proteases (reviewed in [475, 1067]). Rapid acidification is required for activation of ASIC1 and ASIC3 due to fast inactivation/desensitization. pEC50 values for H+ activation of either transient, or sustained, currents mediated by ASIC3 vary in the literature and may reflect species and/or methodological differences [43, 204, 1035]. The transient ASIC current component is Na+-selective (PNa/PK of about 10) [1035, 1109] whereas the sustained current component that is observed with ASIC3 and some ASIC heteromers is non-selective between Na+ and K+ [204]. The reducing agents dithiothreitol (DTT) and glutathione (GSH) increase ASIC1a currents expressed in CHO cells and ASIC-like currents in sensory ganglia and central neurons [29, 169] whereas oxidation, through the formation of intersubunit disulphide bonds, reduces currents mediated by ASIC1a [1134]. ASIC1a is also irreversibly modulated by extracellular serine proteases, such as trypsin, through proteolytic cleavage [1030]. Non-steroidal anti-inflammation drugs (NSAIDs) are direct inhibitors of ASIC currents (reviewed in [58]). Extracellular Zn2+ potentiates proton activation of homomeric and heteromeric channels incorporating ASIC2a, but not homomeric ASIC1a or ASIC3 channels [59]. However, removal of contaminating Zn2+ by chelation reveals a high affinity block of homomorphic ASIC1a and heteromorphic ASIC1a+ASIC2 channels by Zn2+ indicating complex biphasic actions of the divalent [170]. Nitric oxide potentiates submaximal currents activated by H+ mediated by ASIC1a, ASIC1b, ASIC2a and ASIC3 [121]. Ammonium ions activate ASIC channels (most likely ASIC1a) in midbrain dopaminergic neurones: that may be relevant to neuronal disorders associated with hyperammonemia [791]. The positive modulation of homomorphic, heteromeric and native ASIC channels by the peptide FMRFamide and related substances, such as neuropeptides FF and SF, is reviewed in detail in [1015]. Inflammatory conditions and particular pro-inflammatory mediators such as arachidonic acid induce overexpression of ASIC-encoding genes and enhance ASIC currents [220, 624, 912]. The sustained current component mediated by ASIC3 is potentiated by hypertonic solutions in a manner that is synergistic with the effect of arachidonic acid [220]. ASIC3 is partially activated by the lipids lysosphatidylcholine (LPC) and arachidonic acid [629]. Mit-Toxin, which is contained in the venom of the Texas coral snake, activates several ASIC subtypes [98]. Selective activation of ASIC3 by GMQ at a site separate from the proton binding site is potentiated by milli acids and reduced extracellular Ca2+ [1124].
Further reading on Acid-sensing (proton-gated) ion channels (ASICs)

Baron A et al. (2015) Pharmacology of acid-sensing ion channels - Physiological and therapeutic perspectives. *Neuropharmacology* 94: 19-35 [PMID:25613302]

Boscardin E et al. (2016) The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. *Br. J. Pharmacol.* 173: 2671-701 [PMID:27278329]

Cristofori-Armstrong B et al. (2017) Acid-sensing ion channel (ASIC) structure and function: Insights from spider, snake and sea anemone venoms. *Neuropharmacology* 127: 173-184 [PMID:28457973]

Gründer S et al. (2015) Biophysical properties of acid-sensing ion channels (ASICs). *Neuropharmacology* 94: 9-18 [PMID:25585135]

Hanukoglu I. (2017) ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters. *FEBS J.* 284: 525-545 [PMID:27580245]

Kellenberger S et al. (2015) International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. *Pharmacol. Rev.* 67: 1-35 [PMID:25287517]

Rash LD. (2017) Acid-Sensing Ion Channel Pharmacology, Past, Present, and Future …. *Adv. Pharmacol.* 79: 35-66 [PMID:28528673]

Epithelial sodium channel (ENaC)

Ion channels → Ligand-gated ion channels → Epithelial sodium channel (ENaC)

Overview: The epithelial sodium channels (ENaC) are located on the apical membrane of epithelial cells in the distal kidney tubules, lung, respiratory tract, male and female reproductive tracts, sweat and salivary glands, placenta, colon and some other organs [123, 246, 354]. In these epithelia, ENaC allows flow of Na⁺ ions from the extracellular fluid in the lumen into the epithelial cell. Na⁺ ions are then pumped out of the cytoplasm into the interstitial fluid by the Na⁺/K⁺ ATPase located on the basolateral membrane [1017]. As Na⁺ is one of the major electrolytes in the extracellular fluid (ECF), osmolarity change initiated by the Na⁺ flow is accompanied by a flow of water accompanying Na⁺ ions [104]. Thus, ENaC has a central role in the regulation of ECF volume and blood pressure, especially via its function in the kidney [475, 845]. The expression of ENaC subunits, hence its activity, is regulated by the renin-angiotensin-aldosterone system, and other factors that are involved in electrolyte homeostasis [35, 749, 845]. In the respiratory tract and female reproductive tract large segments of the tracts are covered by multi-ciliated cells. In these cells ENaC has been shown to be located along the entire length of the cilia [263]. Cilial location greatly increases ENaC density per cell surface and allows ENaC to serve as a sensitive regulator of osmolarity of the periciliary fluid throughout the whole depth of the fluid bathing the cilia [263]. In contrast to ENaC, CFTR that is defective in cystic fibrosis is not located on non-cilial cell-surface [263]. Thus, ENaC function is also essential for the clearance of respiratory airways, transport of germ cells, fertilization, implantation and cell migration [263, 846]. ENaC has been recently localized in the germinal epithelium of the testis, Sertoli cells, spermatozoa, along the epididymis ducts, and smooth muscle cells [890, 891]. Evidence has been provided that rare mutations in ENaC are associated with female infertility [97].

Nomenclature	ENaCαβγ
Subunits	ENaC β, ENaC α, ENaC γ
Activators	S3969 (pEC50 5.9) [598]
Channel blockers	PSS2-02 (pIC50 8.1), benzamil (pIC50 ~8), amiloride (pIC50 6.7–7), triamterene (pIC50 ~5.3) [124, 474]

Epithelial sodium channel (ENaC) S148

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Subunits

Nomenclature	ENaC α	ENaC β	ENaC γ	ENaC δ
HGNC, UniProt	SCN1A, P37088	SCN1B, P51168	SCN1G, P51170	SCN1D, P51172

Further reading on Epithelial sodium channel (ENaC)

Berman JM et al. (2015) A long isoform of the epithelial sodium channel alpha subunit forms a highly active channel. Channels (Austin) 9: 30-43 [PMID:25517724]

Boscardin E et al. (2016) The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC); IUPHAR Review 19. Br. J. Pharmacol. 173: 2671-701 [PMID:27728329]

Bourque CW. (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9: 519-31 [PMID:18509340]

Eaton DC et al. (2009) The contribution of epithelial sodium channels to alveolar function in health and disease. Annu. Rev. Physiol. 71: 403-23 [PMID:18831683]

Enuka Y et al. (2012) Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem. Cell Biol. 137: 339-53 [PMID:22027424]

Hanukoglu I. (2017) ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters. FEBS J. 284: 525-545 [PMID:27580245]

Hanukoglu I et al. (2016) Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 579: 95-132 [PMID:26772908]

Kashlan OB et al. (2012) Epithelial Na(+) channel regulation by cytoplasmic and extracellular factors. Exp. Cell Res. 318: 1011-9 [PMID:22405998]

Kellenberger S et al. (2015) International Union of Basic and Clinical Pharmacology. XCI. structures, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol. Rev. 67: 1-35 [PMID:25287517]

Kleyman TR et al. (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J. Biol. Chem. 284: 20447-51 [PMID:19401469]

Palmer LG et al. (2012) Regulation and dysregulation of epithelial Na+ channels. Clin. Exp. Nephrol. 16: 35-43 [PMID:22038262]

Reddy MM et al. (2013) Status of fluid and electrolyte absorption in cystic fibrosis. Cold Spring Harb Perspect Med 3: a009555 [PMID:23284077]

Rossier BC et al. (2015) Epithelial sodium transport and its control by aldosterone: the story of our internal environment revisited. Physiol. Rev. 95: 297-340 [PMID:25540145]

Soundararajan R et al. (2010) Role of epithelial sodium channels and their regulators in hypertension. J. Biol. Chem. 285: 30363-9 [PMID:20624922]

GABA_A receptors

Ion channels → Ligand-gated ion channels → GABA_A receptors

Overview: The GABA_A receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT₃ and strychnine-sensitive glycine receptors. GABA_A receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed ‘GABA_A-slow’ [132]. GABA_A receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABA_A receptor subunits have been reported in mammals [737, 738, 900, 902]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [196]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [152, 1135]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABA_C receptors [1135], but they are classified as GABA_A receptors by NC-IUPHAR on the basis of structural and functional criteria [55, 737, 738].

Many GABA_A receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α2βγ1y [507, 738]. It is thought that the majority of GABA_A receptors harbour a single type of α- and β-subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABA_A receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- or α6- or αδ-subunit, or the β1-, γ1-, γ3-, δ-, ε- and ρ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [76, 279, 671, 886, 917]. GABA binding occurs at the β5/α5-subunit interface and the homologous γ2/α5-subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α5/β2 interface ([824]; reviewed by [901]). The particular α- and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by ‘classical’ benzodiazepines, such as flunitrazepam (but see [1118]). The trafficking, cell surface expression, internalisation and function of GABA_A receptors and their subunits are discussed in detail in several recent reviews [164, 427, 602, 1019].

GABA_A receptors
but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic.

NC-IUPHAR [55, 378] class the GABA₃ receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABA₃ receptors are classed as conclusively identified (i.e., α1β2γ2, α1β3γ2, α1β2δ, α1γ2β2, α1γ2δ, α1δβ2, α6β2δ, α6β3δ and ρ) with further receptor isomers occurring with high probability, or only tentatively [737, 738]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABA₃ receptor isomers in detail; such information can be gleaned in the reviews [55, 300, 448, 507, 518, 686, 737, 738, 900] and [37, 38]. Agents that discriminate between α-subunit isomers are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [152, 449, 702, 1135].

Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABA₃ receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [634].

Nomenclature	GABA₃ receptor α1 subunit	GABA₃ receptor α2 subunit
HGNC, UniProt	GABRA1, P14867	GABRA2, P47869
Agonists	gaboxadol [GABA site], isoguvacine [GABA site], isonipeptic acid [GABA site], muscimol [GABA site], piperidine-4-sulphonic acid [GABA site]	gaboxadol [GABA site], isoguvacine [GABA site], isonipeptic acid [GABA site], muscimol [GABA site], piperidine-4-sulphonic acid [GABA site]
Selective antagonists	bicuculline [GABA site], gabazine [GABA site]	bicuculline [GABA site], gabazine [GABA site]
Channel blockers	TBPS, picrotoxin	TBPS, picrotoxin
Endogenous allosteric modulators	5α-pregn-3α-ol-20-one (Potentiation), Zn²⁺ (Inhibition), tetrahydrodeoxy corticosterone (Potentiation)	5α-pregn-3α-ol-20-one (Potentiation), Zn²⁺ (Inhibition), tetrahydrodeoxy corticosterone (Potentiation)
Allosteric modulators	flumazenil [benzodiazepine site] (Antagonist) (pKᵢ 9.1) [407], clonazepam (Positive) (pKᵢ 8.9) [809], flunitrazepam [benzodiazepine site] (Positive) (pKᵢ 8.3) [347], diazepam [benzodiazepine site] (Positive) (pKᵢ 7.8) [809], alprazolam [benzodiazepine site] (Positive) (pEC₅₀ 7.4) [17], α3IA [benzodiazepine site] (Inverse agonist), α5IA [benzodiazepine site] (Inverse agonist), DMCM [benzodiazepine site] (Inverse agonist)	flumazenil [benzodiazepine site] (Antagonist) (pKᵢ 9.1) [407], clonazepam (Positive) (pKᵢ 8.8) [809], flunitrazepam [benzodiazepine site] (Positive) (pKᵢ 8.3) [347], alprazolam [benzodiazepine site] (Positive) (pEC₅₀ 7.9) [17], diazepam [benzodiazepine site] (Positive) (pKᵢ 7.8) [809], α3IA [benzodiazepine site] (Inverse agonist), α5IA [benzodiazepine site] (Inverse agonist), DMCM [benzodiazepine site] (Inverse agonist)
Selective allosteric modulators	zolpidem (Positive) (pKᵢ 7.4–7.7) [348, 878], L838417 [benzodiazepine site] (Antagonist), ZK93426 [benzodiazepine site] (Antagonist), indiplon [benzodiazepine site] (Full agonist), ocinaplon [benzodiazepine site] (Full agonist)	L838417 [benzodiazepine site] (Partial agonist), TPA023 [benzodiazepine site] (Partial agonist)
Labelled ligands	[¹¹C]Flumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), [¹⁸F]Fluoroethylflumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), [³⁵S]TBPS [anion channel] (Channel blocker), [¹¹H]CGS8216 [benzodiazepine site] (Allosteric modulator, Mixed), [¹¹H]Flunitrazepam [benzodiazepine site] (Allosteric modulator, Positive), [¹¹H]GABA [GABA site] (Antagonist), [¹¹H]Muscimol [GABA site] (Agonist), [¹¹H]Zolpidem [benzodiazepine site] (Allosteric modulator, Positive)	[¹¹C]Flumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), [¹⁸F]Fluoroethylflumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), [³⁵S]TBPS [anion channel] (Channel blocker), [¹¹H]CGS8216 [benzodiazepine site] (Allosteric modulator, Mixed), [¹¹H]Flunitrazepam [benzodiazepine site] (Allosteric modulator, Full agonist), [¹¹H]GABA [GABA site] (Antagonist), [¹¹H]Muscimol [GABA site] (Agonist)
Comments	Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of α δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]	Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of α δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]
Nomenclature	GABA₄ receptor α3 subunit	GABA₄ receptor α4 subunit
--------------	-------------------------------------	-------------------------------------
HGNC, UniProt	GABRA3, P34903	GABRA4, P48169
Agonists	gaboxadol [GABA site], isoguvacine [GABA site], isonipecotic acid [GABA site], muscimol [GABA site], piperidine-4-sulphonic acid [GABA site]	gaboxadol [GABA site], isoguvacine [GABA site], muscimol [GABA site], piperidine-4-sulphonic acid [GABA site] (low efficacy)
Selective agonists	–	isonipecotic acid [GABA site] (relatively high efficacy)
Selective antagonists	bicuculline [GABA site], gabazine [GABA site]	bicuculline [GABA site], gabazine [GABA site]
Channel blockers	TBPS, picrotoxin	TBPS, picrotoxin
Endogenous allosteric modulators	5α-pregn-3α-ol-20-one (Potentiation), Zn²⁺ (Inhibition), tetrahydrodeoxy corticosterone (Potentiation)	5α-pregn-3α-ol-20-one (Potentiation), Zn²⁺ (Inhibition), tetrahydrodeoxy corticosterone (Potentiation)
Allosteric modulators	flumazenil [benzodiazepine site] (Antagonist) (p<sub>K_i 9) [407], clonazepam (Positive) (p<sub>K_i 8.7) [809], flunitrazepam [benzodiazepine site] (Positive) (p<sub>K_i 7.8) [347], diazepam [benzodiazepine site] (Positive) (pEC₅₀ 7.2) [17], α₃IA [benzodiazepine site] (Inverse agonist), DMCM [benzodiazepine site] (Inverse agonist)	flumazenil [benzodiazepine site] (Full agonist), bretazenil [benzodiazepine site] (Full agonist)
Selective allosteric modulators	α₃IA [benzodiazepine site] (higher affinity), L838417 [benzodiazepine site] (Partial agonist), Ro19-4603 [benzodiazepine site] (Inverse agonist), TP003 [benzodiazepine site] (Partial agonist), TPA023 [benzodiazepine site] (Partial agonist)	Ro15-4513 [benzodiazepine site] (Full agonist), bretazenil [benzodiazepine site] (Full agonist)
Labelled ligands	^{[11]C}flumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), ^{[18]F}jfluoroethylflumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), ^[35]SJTbps (anion channel) (Channel blocker), ^[3H]CGS8216 [benzodiazepine site] (Allosteric modulator, Mixed), ^[3H]flunitrazepam [benzodiazepine site] (Allosteric modulator, Full agonist), ^[3H]gabazine [GABA site] (Antagonist), ^[3H]muscimol [GABA site] (Agonist)	^{[11]C}flumazenil [benzodiazepine site] (Allosteric modulator, Partial agonist), ^{[18]F}jfluoroethylflumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), ^[35]SJTbps (anion channel) (Channel blocker), ^[3H]CGS8216 [benzodiazepine site] (Allosteric modulator, Mixed), ^[3H]Ro154513 [benzodiazepine site] (Allosteric modulator, Full agonist), ^[3H]gabazine [GABA site] (Antagonist), ^[3H]muscimol [GABA site] (Agonist)
Comments	Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of a δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]	Diazepam and flunitrazepam are not active at this subunit. Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of a δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]. ^[3H]Ro154513 selectively labels α4-subunit-containing receptors in the presence of a saturating concentration of a ‘classical’ benzodiazepine (e.g. diazepam)
Nomenclature	GABA_α receptor α5 subunit	GABA_α receptor α6 subunit
--------------------------------------	--	--
HGNC, UniProt	GABRAS, P31644	GABRA6, Q16445
Agonists	gaboxadol [GABA site], isoguvacine [GABA site], isonipecotic acid [GABA site], muscimol [GABA site], piperidine-4-sulphonic acid [GABA site]	gaboxadol [GABA site], isoguvacine [GABA site], muscimol [GABA site], piperidine-4-sulphonic acid [GABA site] (low efficacy)
Selective agonists	–	isonipecotic acid [GABA site] (relatively high efficacy)
Selective antagonists	bicuculline [GABA site], gabazine [GABA site]	bicuculline [GABA site], gabazine [GABA site]
Channel blockers	TBPS, picrotoxin	TBPS, picrotoxin
Endogenous allosteric modulators	3α-pregn-3α-ol-20-one (Potentiation), Zn²⁺ (Inhibition), tetrahydrodeoxy corticosterone (Potentiation)	3α-pregn-3α-ol-20-one (Potentiation), Zn²⁺ (Inhibition), tetrahydrodeoxy corticosterone (Potentiation)
Allosteric modulators	flumazenil [benzodiazepine site] (Antagonist) (pK_I 9.2) [407], flunitrazepam [benzodiazepine site] (Positive) (pK_I 8.3) [347], alprazolam [benzodiazepine site] (Positive) (pEC₅₀ 8) [17], α31A [benzodiazepine site] (Inverse agonist), DMCN [benzodiazepine site] (Inverse agonist)	flumazenil [benzodiazepine site] (Partial agonist) (pK_I 6.8) [407], bretazenil [benzodiazepine site] (Full agonist)
Selective allosteric modulators	α5IA [benzodiazepine site] (Inverse agonist), L655708 [benzodiazepine site] (Inverse agonist), L838417 [benzodiazepine site] (Partial agonist), MRK016 [benzodiazepine site] (Inverse agonist), RO4938851 [benzodiazepine site] (Inverse agonist), ROY024 [benzodiazepine site] (Inverse agonist)	Ro15-4513 [benzodiazepine site] (Full agonist)
Labelled ligands	[3H]JRY80 [benzodiazepine site] (Selective Binding) (pK_d 9.2) [907] – Rat, [11C]flumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), [18F]fluoroethylflumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), [35S]flumazenil [anion channel] (Channel blocker), [3H]CGS8216 [benzodiazepine site] (Allosteric modulator, Mixed), [3H]L655708 [benzodiazepine site] (Allosteric modulator, Inverse agonist), [3H]flunitrazepam [benzodiazepine site] (Allosteric modulator, Full agonist), [3H]gabazine [GABA site] (Antagonist), [3H]muscimol [GABA site] (Agonist)	[11C]flumazenil [benzodiazepine site] (Allosteric modulator, Partial agonist), [18F]fluoroethylflumazenil [benzodiazepine site] (Allosteric modulator, Antagonist), [35S]flumazenil [anion channel] (Channel blocker), [3H]CGS8216 [benzodiazepine site] (Allosteric modulator, Mixed), [3H]Ro154513 [benzodiazepine site] (Allosteric modulator, Full agonist), [3H]gabazine [GABA site] (Antagonist), [3H]muscimol [GABA site] (Agonist)
Comments	Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of a δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]	Diazepam and flunitrazepam are not active at this subunit. Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of a δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]. [3H]Ro154513 selectively labels α6-subunit-containing receptors in the presence of a saturating concentration of a ‘classical’ benzodiazepine (e.g. diazepam)

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature	GABA_A receptor β1 subunit	GABA_A receptor β2 subunit	GABA_A receptor β3 subunit
HGNC, UniProt	GABRB1, P18505	GABRB2, P47870	GABRB3, P28472
Channel blockers	TBPS, picrotoxin	TBPS, picrotoxin	TBPS, picrotoxin
Allosteric modulators	–	–	etazolate (Binding) (pIC₅₀ 5.5) [1133]
Comments	Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of a δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]		

Nomenclature	GABA_A receptor γ1 subunit	GABA_A receptor γ2 subunit	GABA_A receptor γ3 subunit
HGNC, UniProt	GABRG1, Q8N1C3	GABRG2, P18507	GABRG3, Q99928
Channel blockers	TBPS, picrotoxin	TBPS, picrotoxin	TBPS, picrotoxin
Comments	Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of a δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively [517]		

Nomenclature	GABA_A receptor δ subunit	GABA_A receptor ε subunit	GABA_A receptor δ subunit	GABA_A receptor π subunit
HGNC, UniProt	GABRD, O14764	GABRE, P78334	GABRQ, Q9UN88	GABRP, O00591
Selective agonists	gaboxadol [GABA site]	–	–	–
Channel blockers	TBPS, picrotoxin	TBPS, picrotoxin	TBPS, picrotoxin	TBPS, picrotoxin
Comments	Zn²⁺ is an endogenous allosteric regulator and causes potent inhibition of receptors formed from binary combinations of α and β subunits, incorporation of a δ or γ subunit causes a modest, or pronounced, reduction in inhibitory potency, respectively			
Nomenclature

Agonists	GABA_A receptor α₁ subunit	GABA_A receptor α₂ subunit	GABA_A receptor α₃ subunit
muscimol [GABA site]	(Partial agonist), muscimol [GABA site] (Partial agonist)	(Partial agonist)	(Partial agonist)
isoguvacine [GABA site]	(Partial agonist)	(Partial agonist)	(Partial agonist)
selective blockade of receptors containing α₁-3-ACPBPA [GABA site]	selective blockade of receptors containing α₁-3-ACPBPA [GABA site]	selective blockade of receptors containing α₁-3-ACPBPA [GABA site]	selective blockade of receptors containing α₁-3-ACPBPA [GABA site]

Antagonists

- **gaboxadol [GABA site]**
- **piperidine-4-sulphonic acid [GABA site]**
- **trans-3-ACPBPA [GABA site]**
- **TPM-P [GABA site]**
- **aza-THIP [GABA site]**
- **cis-3-ACPBPA [GABA site]**
- **5-Me-IAA [GABA site]**
- **β-3-ACPBPA [GABA site]**
- **tricazolate [GABA site]**
- **stiripentol, valerene acid amide [GABA site]**
- **propofol, mefenamic acid, etifoxine, Bicuculline not active at this subunit**
- **furosemide, isoflurane [GABA site]**
- **muscimol [GABA site]**
- **tricazolate [GABA site]**
- **α1-3-ACPBPA [GABA site]**
- **β3-3-ACPBPA [GABA site]**
- **β2-3-ACPBPA [GABA site]**
- **β3-3-ACPBPA [GABA site]**

Selective antagonists

- **cis-3-ACPBPA [GABA site]**
- **trans-3-ACPBPA [GABA site]**
- **TPM-P [GABA site]**
- **aza-THIP [GABA site]**
- **cis-3-ACPBPA [GABA site]**
- **TPM-P [GABA site]**
- **aza-THIP [GABA site]**
- **cis-3-ACPBPA [GABA site]**
- **TPM-P [GABA site]**
- **aza-THIP [GABA site]**

Channel blockers

- **TBPS, picrotoxin**

Comments

- The potency and efficacy of many GABA agonists vary between GABA_A receptor isoforms [300, 469, 518]. For example, gaboxadol is a partial agonist at receptors with the subunit composition α₄β3δ, but exerts currents in excess of those evoked by GABA at the α₄β3δ receptor where GABA itself is a low efficacy agonist [86, 111]. The antagonists bicuculline and gabazine differ in their ability to suppress spontaneous openings of the GABA_A receptor, the former being more effective [982]. The presence of the γ subunit within the heterotrimERIC complex reduces the potency and efficacy of agonists [941]. The GABA_A receptor contains distinct allosteric sites that bind barbiturates and endogenous (e.g., 5α-pregnan-3α-ol-20-one) and synthetic (e.g., alpaxalane) neuroactive steroids in a diastereo- or enantiomer-selective manner [77, 370, 399, 469]. Picrotoxinin and TBPS act at an allosteric site within the chloride channel pore to negatively regulate channel activity; negative allosteric regulation by γ-hydroxylactone derivatives also involves the picrotoxinin site, whereas positive allosteric regulation by such compounds is proposed to occur at a distinct locus. Many intravenous (e.g., etomidate, propofol) and inhalational (e.g., halothane, isoflurane) anaesthetics and alcohols also exert a regulatory influence upon GABA_A receptor activity [101, 736]. Specific amino acid residues within GABA_A receptor α- and β-subunits that influence allosteric regulation by anesthetic and non-anesthetic compounds have been identified [368, 399]. Phero-toxillin labelling of distinct amino acid residues within purified GABA_A receptors by the etomidate derivative, [3H]azetomidate, has also been demonstrated [561] and this binding subject to post-allosteric regulation by anesthetic steroids [560]. An array of natural products including flavonoid and terpenoid compounds exert varied actions at GABA_A receptors (reviewed in detail in [448]).

- In addition to the agents listed in the table, modulators of GABA_A receptor activity that exhibit subunit dependent activity include: salicylidene salicylhydrazide [negative allosteric modulator selective for β1- versus β2-, or β3-subunit-containing receptors [983]]; fragment dioxane derivatives [positive allosteric modulators selective for β1- versus β2-, or β3-subunit-containing receptors [888]]; loreculezole, etomidate, tracazolate, mfenamic acid, etifoxine, stiripentol, valerene acid amide [positive allosteric modulators with selectivity for β2/β3- over β1-subunit-containing receptors [291, 483, 507]]; tracazolate [intrinsic efficacy, i.e., potentiation, or inhibition, is dependent upon the identity of the γ1-3-, δ-, or ε-subunit co-assembled with α1- and β1-subunits [981]; amiloride [selective blockade of receptors containing an α6-subunit [290]]; furosemide [selective blockade of receptors containing an α6-subunit co-assembled with β2/β3, but not β1-subunit [507]]; La³⁺ [potentiates responses mediated by α1β3δL receptors, weakly inhibits α6β3δL receptors, and strongly blocks α6β3δ and α4β3δ receptors [111, 871]]; ethanol [selectively potentiates responses mediated by α4β3δ and α6β3δ receptors versus receptors in which β2 replaces β3, or γ replaces δ [1040], but see also [506]]; DS1 and DS2 [selectively potentiates responses mediated by δ-subunit-containing receptors [1032]]. It should be noted that the apparent selectivity of some positive allosteric modulators (e.g., neurosteroids such as 5α-pregn-3α-ol-20-one for δ-subunit-containing receptors (e.g., α1β3δ) may be a consequence of the unusually low efficacy of GABA at this receptor isoform [76, 86].
Further reading on GABA_\(A\) receptors

Atack JR. (2008) GABA(A) receptor subtype-selective efficacy: TPA023, an alpha2/alpha3 selective non-sedating anxiolytic and alpha5IA, an alpha5 selective cognition enhancer. CNS Neurosci Ther 14: 25-35 [PMID:18482097]

Braat S et al. (2015) The GABA_A Receptor as a Therapeutic Target for Neurodevelopmental Disorders. Neuron 86: 1119-30 [PMID:26050032]

Calvo DJ et al. (2016) Dynamic Regulation of the GABA Receptor Function by Redox Mechanisms. Mol. Pharmacol. 90: 326-33 [PMID:27439531]

Masiulis S et al. (2019) GABA_\(A\) receptor signalling mechanisms revealed by structural pharmacology. Nature 565: 454-459 [PMID:30602790]

Mele M et al. (2016) Role of GABA_\(A\)R trafficking in the plasticity of inhibitory synapses. J. Neurochem. 139: 997-1018 [PMID:27424566]

Glycine receptors

Overview: The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABA_\(A\), nicotinic acetylcholine and 5-HT_3 receptors [603]. The receptor is expressed either as a homo-pentamer of \(\alpha\) subunits, or a complex now thought to harbour 2\(\alpha\) and 3\(\beta\) subunits [82, 336], that contain an intrinsic anion channel. Four differentially expressed isoforms of the \(\alpha\)-subunit (\(\alpha_1-\alpha_4\)) and one variant of the \(\beta\)-subunit (\(\beta_1\), GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for \(\alpha_1\) (\(\alpha_{1NS}\) and \(\alpha_{1del}\)), \(\alpha_2\) (\(\alpha_2A\) and \(\alpha_2B\)), \(\alpha_3\) (\(\alpha_{3S}\) and \(\alpha_{3L}\)) and \(\beta\) (\(\beta_\lambda7\)) subunits and by mRNA editing of the \(\alpha_2\) and \(\alpha_3\) subunits [260, 647, 731]. Both \(\alpha_2\) splicing and \(\alpha_3\) mRNA editing can produce subunits (i.e., \(\alpha_2\)B and \(\alpha_3\)P185L) with enhanced agonist sensitivity. Predominantly, the mature form of the receptor contains \(\alpha_1\) (or \(\alpha_3\)) and \(\beta\) subunits while the immature form is mostly composed of only \(\alpha_2\) subunits. RNA transcripts encoding the \(\alpha_4\)-subunit have not been detected in adult humans. The N-terminal domain of the \(\alpha\)-subunit contains both the agonist and strychnine binding sites that consist of several discontinuous regions of amino acids. Inclusion of the \(\beta\)-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The \(\beta\)-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. The latter is a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [489, 497, 676]. G-protein \(\beta\gamma\) subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [1114, 1115]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors by association with domains within the large intracellular loop [1114, 1115]. Intracellular Ca\(^{2+}\) appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [301].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature

Glycine receptors α1 subunit	Glycine receptors α2 subunit	Glycine receptors α3 subunit	Glycine receptors α4 subunit (pseudogene in humans)	
HGNC, UniProt	GLRA1, P23415	GLRA2, P23416	GLRA3, O75311	
Selective agonists (potency order)	glycine > β-alanine > taurine	glycine > β-alanine > taurine	glycine > β-alanine > taurine	–
Selective antagonists	ginkgolide X (pIC₅₀ 6.1), pregnenolone sulphate (pK_i 5.7), nifedipine (pIC₅₀ 5.3), bilobalide (pIC₅₀ 4.7), tropisetron (pK_i 4.1), colchicine (pIC₅₀ 3.5), HU-308 (weak inhibition), PMBA, strychnine	HU-210 (pIC₅₀ 7), WIN55212-2 (pIC₅₀ 6.7), HU-308 (pIC₅₀ 6), ginkgolide X (pIC₅₀ 5.6), pregnenolone sulphate (pK_i 5.3), bilobalide (pIC₅₀ 5.1), tropisetron (pK_i 4.9), colchicine (pIC₅₀ 4.2), 5,7-dichlorokynurenic acid (pIC₅₀ 3.7), PMBA, strychnine	HU-210 (pIC₅₀ 7.3), HU-308 (pIC₅₀ 7), WIN55212-2 (pIC₅₀ 7), (1E,20Z,18S)-8-hydroxyvasostrin (pIC₅₀ 5.2), nifedipine (pIC₅₀ 4.5), strychnine	
Channel blockers	ginkgolide B (pIC₅₀ 5.1–6.2), cyanotriphenylborate (pIC₅₀ 5.9) [851], picrotoxin (pIC₅₀ 5.3), picrotoxinin (pIC₅₀ 5.3), picrotoxin (pIC₅₀ 5.2)	picrotoxin (pIC₅₀ 6.4), picrotoxin (pIC₅₀ 5.6), ginkgolide B (pIC₅₀ 4.9–5.4), picrotin (pIC₅₀ 4.9), cyanotriphenylborate (pIC₅₀ > 4.7) [851]	picrotoxin (pIC₅₀ 6.4), ginkgolide B (pIC₅₀ 5.7), picrotin (pIC₅₀ 5.2), picrotoxin (block is weaker when β subunit is co-expressed)	
Endogenous allosteric modulators	Zn²⁺ (Potentiation) (pEC₅₀ 7.4), Cu²⁺ (Inhibition) (pEC₅₀ 4.8–5.4), Zn²⁺ (Inhibition) (pIC₅₀ 4.8), Exracellular H⁺ (Inhibition)	Zn²⁺ (Potentiation) (pEC₅₀ 6.3), Cu²⁺ (Inhibition) (pIC₅₀ 4.8), Zn²⁺ (Inhibition) (pIC₅₀ 3.4)	Cu²⁺ (Inhibition) (pIC₅₀ 5), Zn²⁺ (Inhibition) (pIC₅₀ 3.8)	
Selective allosteric modulators	anandamide (Potentiation) (pEC₅₀ 7.4), HU-210 (Potentiation) (pEC₅₀ 6.6), Δ³-tetrahydrocannabinol (Potentiation) (pEC₅₀ ~6)	Δ³-tetrahydrocannabinol (Potentiation) (pEC₅₀ ~3.5)	Δ³-tetrahydrocannabinol (Potentiation) (pEC₅₀ ~5.5)	
Labeled ligands	[³H]strychnine (Antagonist)	[³H]strychnine (Antagonist)	[³H]strychnine (Antagonist)	
Functional Characteristics	γ = 86 pS (main state); (∆β = 44 pS)	γ = 111 pS (main state); (∆β = 54 pS)	γ = 105 pS (main state); (∆β = 48)	

Comments

Ligand interaction data for hetero-oligomer receptors containing the β subunit are also listed under the α subunit.
Glycine receptors α\(_1\), α\(_2\), α\(_3\), α\(_4\), β. Pregnenolone sulphate, tropisetron and colchicine, for example, although not selective antagonists of glycine receptors, are included for this purpose. Strychnine is a potent and selective competitive glycine receptor antagonist with affinities in the range 5–15 nM. RUS135 demonstrates comparable potency, but additionally blocks GABA\(_A\) receptors. There are conflicting reports concerning the ability of cannabinoids to inhibit [594], or potentiate and at high concentrations activate [12, 217, 366, 1089, 1111] glycine receptors. Nonetheless, cannabinoid analogues may hold promise in distinguishing between glycine receptor subtypes [1111]. In addition, potentiation of glycine receptor activity by cannabinoids has been claimed to contribute to cannabis-induced analgesia relying on Ser296/307 ([PMID:23038260]).

Doidge E (2000) Understanding the mechanism of tonic inhibition by cannabinoids. Eur. J. Pharmacol. 392: 129-142. [PMID:10763798] [PMID:1516192]

Further reading on Glycine receptors

Burgos CF et al. (2016) Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol. Pharmacol. 90: 318-25 [PMID:27401877]

Dutertre S et al. (2012) Inhibitory glycine receptors: an update. J. Biol. Chem. 287: 40216-23 [PMID:23038260]

Lynch JW. (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84: 1051-95 [PMID:15383648]

Perkins DI et al. (2010) Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol. Ther. 127: S3-S5 [PMID:20399807]

Yevenes GE et al. (2011) Allosteric modulation of glycine receptors. Br. J. Pharmacol. 164: 224-36 [PMID:21557733]

Comments: Data in the table refer to homo-oligomeric assemblies of the α-subunit, significant changes introduced by co-expression of the β1 subunit are indicated in parenthesis. Not all glycine receptor ligands are listed within the table, but some that may be useful in distinguishing between glycine receptor isoforms are indicated (see detailed view pages for each subunit: α\(_1\), α\(_2\), α\(_3\), α\(_4\), β). Pregnenolone sulphate, tropisetron and colchicine, for example, although not selective antagonists of glycine receptors, are included for this purpose. Strychnine is a potent and selective competitive glycine receptor antagonist with affinities in the range 5–15 nM. RUS135 demonstrates comparable potency, but additionally blocks GABA\(_A\) receptors. There are conflicting reports concerning the ability of cannabinoids to inhibit [594], or potentiate and at high concentrations activate [12, 217, 366, 1089, 1111] glycine receptors. Nonetheless, cannabinoid analogues may hold promise in distinguishing between glycine receptor subtypes [1111]. In addition, potentiation of glycine receptor activity by cannabinoids has been claimed to contribute to cannabis-induced analgesia relying on Ser296/307 ([PMID:23038260]).

Doidge E (2000) Understanding the mechanism of tonic inhibition by cannabinoids. Eur. J. Pharmacol. 392: 129-142. [PMID:10763798] [PMID:1516192]

Further reading on Glycine receptors

Burgos CF et al. (2016) Structure and Pharmacologic Modulation of Inhibitory Glycine Receptors. Mol. Pharmacol. 90: 318-25 [PMID:27401877]

Dutertre S et al. (2012) Inhibitory glycine receptors: an update. J. Biol. Chem. 287: 40216-23 [PMID:23038260]

Lynch JW. (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 84: 1051-95 [PMID:15383648]

Perkins DI et al. (2010) Molecular targets and mechanisms for ethanol action in glycine receptors. Pharmacol. Ther. 127: S3-S5 [PMID:20399807]

Yevenes GE et al. (2011) Allosteric modulation of glycine receptors. Br. J. Pharmacol. 164: 224-36 [PMID:21557733]
Ionotropic glutamate receptors

Overview: The ionotropic glutamate receptors comprise members of the NMDA (N-methyl-D-aspartate), AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and kainate receptor classes, named originally according to their preferred, synthetic agonist [226, 588, 997]. Receptor heterogeneity within each class arises from the homo-oligomeric, or hetero-oligomeric, assembly of distinct subunits into cation-selective tetramers. Each subunit of the tetrameric complex comprises an extracellular amino terminal domain (ATD), an extracellular ligand binding domain (LBD), three transmembrane domains composed of three membrane spans (M1, M3 and M4), a channel lining re-entrant ‘p-loop’ (M2) located between M1 and M3 and an intracellular carboxy-terminal domain (CTD) [458, 523, 639, 691, 997]. The X-ray structure of a homomeric ionotropic glutamate receptor (GluA2 – see below) has recently been solved at 3.6Å resolution [919] and although providing the most complete structural information current available may not representative of the subunit arrangement of, for example, the heteromeric NMDA receptor isoforms [466]. It is beyond the scope of this supplement to discuss the pharmacology of individual ionotropic glutamate receptor isoforms in detail; such information can be gleaned from [155, 190, 226, 266, 433, 434, 479, 750, 751, 752, 997, 1086]. Agents that discriminate between subunit isoforms are, where appropriate, noted in the tables and additional compounds that distinguish between receptor isoforms are indicated in the text below.

The classification of glutamate receptor subunits has been re-addressed by NC-IUPHAR [183]. The scheme developed recommends a nomenclature for ionotropic glutamate receptor subunits that is adopted here.

AMPA and Kainate receptors

AMPA receptors assemble as homomers, or heteromers, that may be drawn from GluA1, GluA2, GluA3 and GluA4 subunits. Transmembrane AMPA receptor regulatory proteins (TARPs) of class I (i.e. γ2, γ3, γ4 and γ8) act, with variable stoichiometry, as auxiliary subunits to AMPA receptors and influence their trafficking, single channel conductance gating and pharmacology (reviewed in [270, 426, 663, 991]). Functional kainate receptors can be expressed as homomers of GluK1, GluK2 or GluK3 subunits. GluK1-3 subunits are also capable of assembling into heterotetramers (e.g. GluK1/K2; [553, 783, 795]). Two additional kainate receptor subunits, GluK4 and GluK5, when expressed individually, form high affinity binding sites for kainate, but lack function, but can form heteromers when expressed with GluK1-3 subunits (e.g. GluK2/K5; reviewed in [433, 783, 795]). Kainate receptors may also exhibit ‘metabotropic’ functions [553, 841]. As found for AMPA receptors, kainate receptors are modulated by auxiliary subunits (Neto proteins, [554, 783]). An important function difference between AMPA and kainate receptors is that the latter require extracellular Na+ and Cl− for their activation [105, 803]. RNA encoding the GluA2 subunit undergoes extensive RNA editing in which the codon encoding a p-loop glutamine residue (Q) is converted to one encoding arginine (R). This Q/R site strongly influences the biophysical properties of the receptor. Recombinant AMPA receptors lacking RNA edited GluA2 subunits are: (1) permeable to Ca2+; (2) blocked by intracellular polyamines at depolarized potentials causing inward rectification (the latter being reduced by TARPs); (3) blocked by extracellular argiotoxin and Joro spider toxins and (4) demonstrate higher channel conductances than receptors containing the edited form of GluA2 [417, 885]. GluK1 and GluK2, but not other kainate receptor subunits, are similarly edited and broadly similar functional characteristics apply to kainate receptors lacking either an RNA edited GluK1, or GluK2, subunit [553, 783]. Native AMPA and kainate receptors displaying differential channel conductances, Ca2+ permeabilities and sensitivity to block by intracellular polyamines have been identified [189, 417, 583]. GluA1-4 can exist as two variants generated by alternative splicing (termed ‘flip’ and ‘flop’) that differ in their desensitization kinetics and their desensitization in the presence of cyclothiazide which stabilises the non-desensitized state. TARPs also stabilise the non-desensitized conformation of AMPA receptors and facilitate the action of cyclothiazide [663]. Splice variants of GluK1-3 also exist which affects their trafficking [553, 783].
Nomenclature

GluA1	GluA2	GluA3	GluA4
HGNC, UniProt	HGNC, UniProt	HGNC, UniProt	HGNC, UniProt
GRIA1, P42261	GRIA2, P42262	GRIA3, P42263	GRIA4, P48058

Agonists
- (S)-5-fluorowillardine, AMPA
- (S)-5-fluorowillardine, AMPA
- (S)-5-fluorowillardine, AMPA
- (S)-5-fluorowillardine, AMPA
- AMPA
- AMPA
- AMPA
- AMPA

Selective antagonists
- ATPO, GYKI53655, GYKI53784 (active isomer, non-competitive), NBQX, tezampanel
- ATPO, GYKI53655, GYKI53784 (active isomer, non-competitive), NBQX, tezampanel
- ATPO, GYKI53655, GYKI53784 (active isomer, non-competitive), NBQX, tezampanel
- ATPO, GYKI53655, GYKI53784 (active isomer, non-competitive), NBQX, tezampanel

Channel blockers
- Extracellular argiotoxin, extracellular joro toxin (selective for channels lacking GluA2)
- Extracellular argiotoxin, extracellular joro toxin (selective for channels lacking GluA2)
- Extracellular argiotoxin, extracellular joro toxin (selective for channels lacking GluA2)
- Extracellular argiotoxin, extracellular joro toxin (selective for channels lacking GluA2)

Allosteric modulators
- LY392098 (Positive) (pEC50 5.8) [667], LY404187 (Positive) (pEC50 5.2) [667], cyclothiazide (Positive) (pEC50 4.7) [667], CX516 (Positive), CX546 (Positive), IDRA-21 (Positive), LY503430 (Positive), S18986 (Positive), aniracetam (Positive), piracetam (Positive)
- LY404187 (Positive) (pEC50 6.8) [667], LY392098 (Positive) (pEC50 5.7) [667], cyclothiazide (Positive) (pEC50 4.9) [667], CX516 (Positive), CX546 (Positive), IDRA-21 (Positive), LY503430 (Positive), S18986 (Positive), aniracetam (Positive), piracetam (Positive)
- LY392098 (Positive) (pEC50 6.7) [667], LY404187 (Positive) (pEC50 6.7) [667], cyclothiazide (Positive) (pEC50 5.4) [667], CX516 (Positive), CX546 (Positive), IDRA-21 (Positive), LY503430 (Positive), S18986 (Positive), aniracetam (Positive), piracetam (Positive)

Labelled ligands
- [3H]AMPA (Agonist), [3H]CNQX (Antagonist)
- [3H]AMPA (Agonist), [3H]CNQX (Antagonist)
- [3H]AMPA, [3H]CNQX

Comments
- Piracetam and aniracetam are examples of pyrrolidinones. Cyclothiazide, S18986, and IDRA-21 are examples of benzothiadiazides. CX516 and CX546 are examples of benzylpiperidines.
- LY392098, LY404187 and LY503430 are examples of biarylpropylsulfonamides. Also blocked by intracellular polyamines.
- GluA1 and GluA2 comprise, on the basis of sequence homology, an ‘orphan’ class of ionotropic glutamate receptor subunits. They do not form a functional receptor when expressed solely, or in combination with other ionotropic glutamate receptor subunits, in transfected cells [1126]. However, GluD2 subunits bind D-serine and glycine and GluD2 subunits carrying the mutation A654T form a spontaneously open channel that is closed by D-serine [694].

Nomenclature

GluD1	GluD2
HGNC, UniProt	HGNC, UniProt
GRID1, Q9ULK0	GRID2, O43424

Comments: GluA1 and GluA2 comprise, on the basis of sequence homology, an ‘orphan’ class of ionotropic glutamate receptor subunits. They do not form a functional receptor when expressed solely, or in combination with other ionotropic glutamate receptor subunits, in transfected cells [1126]. However, GluD2 subunits bind D-serine and glycine and GluD2 subunits carrying the mutation A654T form a spontaneously open channel that is closed by D-serine [694].
Nomenclature	GluK1	GluK2	GluK3	GluK4	GluK5
HGNC, UniProt	GRIK1, P39086	GRIK2, Q13002	GRIK3, Q13003	GRIK4, Q16099	GRIK5, Q16478
Agonists	dyserberaine [859] – Rat, SYM2081 [774], kainate [909], (S)-4-AHCP, (S)-5-iodowillardiine, 8-deoxy-dyserberaine, ATPA, domoic acid	dyserberaine [859] – Rat, kainate, domoic acid [128], SYM2081 [1144] – Rat, kainate [128, 909]	SYM2081 [857] – Rat, kainate (low potency) [857] – Rat, dyserberaine	SYM2081, domoic acid, dyserberaine, kainate	SYM2081, domoic acid, dyserberaine, kainate
Selective agonists	LY339434	–	–	–	–
Selective antagonists	2,4-epi-neodysiberaine, ACET, LY382884, LY466195, MSVII-19, NS3763 (non-competitive), UBP302, UBP310	2,4-epi-neodysiberaine	–	–	–
Allosteric modulators	concanavalin A (Positive)	concanavalin A (Positive)	–	–	–
Labelled ligands	$^{[3]}$HJUFP130 (Antagonist) (pK$_d$ 7.7) [39], $^{[3]}$HSYM2081 (Agonist)	$^{[3]}$HJkainate (Agonist) [1144] – Rat, $^{[3]}$HSYM2081 (Agonist)	$^{[3]}$HJkainate (Agonist) [6.3] [39], $^{[3]}$HSYM2081 (Agonist)	$^{[3]}$HSYM2081 (Agonist), $^{[3]}$HJkainate (Agonist)	$^{[3]}$HSYM2081 (Agonist), $^{[3]}$HJkainate (Agonist)
Comments	Intracellular polyamines are subtype selective channel blockers (GluK3 ≫ GluK2)	Domoic acid and concanavalin A are inactive at the GluK3 subunit. Intracellular polyamines are subtype selective channel blockers (GluK3 ≫ GluK2)	–	–	–

Comments: All AMPA receptors are additionally activated by kainate (and domoic acid) with relatively low potency, (EC$_{50}$ 100 μM). Inclusion of TARPs within the receptor complex increases the potency and maximal effect of kainate [426, 663]. AMPA is a weak partial agonist at GluK1 and at heteromeric assemblies of GluK1/GluK2, GluK1/GluK5 and GluK2/GluK5 [433]. Quinoxalinediones such as CNQX and NBQX show limited selectivity between AMPA and kainate receptors. Tezampanel also has kainate (GluK1) receptor activity as has GYK153655 (GluK3 and GluK2/GluK3) [433]. ATPO is a potent competitive antagonist of AMPA receptors, has a weaker antagonist action at kainate receptors comprising GluK1 subunits, but is devoid of activity at kainate receptors formed from GluK2 or GluK2/GluK5 subunits. The pharmacological activity of ATPO resides with the (S)-enantiomer. ACET and UBP310 may block GluK3, in addition to GluK1 [39, 782]. (2S,4R)-4-methylglutamate (SYM2081) is equipotent in activating (and desensitising) GluK1 and GluK2 receptor isoforms and, via the induction of desensitisation at low concentrations, has been used as a functional antagonist of kainate receptors. Both (2S,4R)-4-methylglutamate and LY339434 have agonist activity at NMDA receptors. (2S,4R)-4-methylglutamate is also an inhibitor of the glutamate transporters EAAT1 and EAAT2.
NMDA receptors

NMDA receptors assemble as obligate heteromers that may be drawn from GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B subunits. Alternative splicing can generate eight isoforms of GluN1 with differing pharmacological properties. Various splice variants of GluN2B, 2C, 2D and GluN3A have also been reported. Activation of NMDA receptors containing GluN1 and GluN2 subunits requires the binding of two agonists, glutamate to the S1 and S2 regions of the GluN2 subunit and glycine to S1 and S2 regions of the GluN1 subunit [156, 265]. The minimal requirement for efficient functional expression of NMDA receptors in vitro is a di-heteromeric assembly of GluN1 and at least one GluN2 subunit variant, as a dimer of heterodimers arrangement in the extracellular domain [303, 466, 639]. However, more complex tri-heteromeric assemblies, incorporating multiple subtypes of GluN2 subunit, or GluN3 subunits, can be generated *in vitro* and occur *in vivo*. The NMDA receptor channel commonly has a high relative permeability to Ca$^{2+}$ and is blocked, in a voltage-dependent manner, by Mg$^{2+}$ such that at resting potentials the response is substantially inhibited.

Nomenclature	GluN1	GluN2A	GluN2B
HGNC, UniProt	GRIN1, Q05586	GRIN2A, Q12879	GRIN2B, Q13224
Endogenous agonists	D-aspartic acid [glutamate site], D-serine [glycine site], L-aspartic acid [glutamate site]	D-aspartic acid [glutamate site] (GluN2D > GluN2C = GluN2B > GluN2A), D-serine [glycine site] (GluN2D > GluN2C > GluN2B > GluN2A), L-aspartic acid [glutamate site] (GluN2D = GluN2B > GluN2C = GluN2A), glycine [glycine site] (GluN2D > GluN2C > GluN2B > GluN2A)	
Agonists	(+)-HA966 [glycine site] (Partial agonist), (R5)-(tetrazol-5-yl)glycine [glutamate site], NMADA [glutamate site], homoquinolinic acid [glycine site] (Partial agonist)	(+)-HA966 [glycine site] (Partial agonist), (R5)-(tetrazol-5-yl)glycine [glutamate site] (GluN2D > GluN2C = GluN2B > GluN2A), NMADA [glutamate site] (GluN2D > GluN2C > GluN2B > GluN2A), homoquinolinic acid [glutamate site] (GluN2B ≥ GluN2A ≥ GluN2D > GluN2C; partial agonist at GluN2A and GluN2C)	
Selective antagonists	L701324 [glycine site] (pIC$_{50}$ 8.7) [522] – Rat, GV196771A [glycine site] (pK$_{i}$ 8.1–8.4) [168] – Rat, L689560 [glycine site] (pIC$_{50}$ 8.1) [548] – Rat, 5,7-dichlorokynurenic acid [glycine site]	5,7-dichlorokynurenic acid [glycine site], CQP37849 [glutamate site], GV196771A [glycine site], L689560 [glycine site], L701324 [glycine site], LY233053 [glutamate site], NVP-AAM077 [glutamate site] (GluN2A > GluN2B (human), but weakly selective for rat GluN2A versus GluN2B) [40, 283, 299, 701], UBP141 [glutamate site] (GluN2D ≥ GluN2C > GluN2B > GluN2A) [675], conantokin-G [glutamate site] (GluN2B > GluN2D = GluN2C = GluN2A), d-AP5 [glutamate site], d-CCPene [glutamate site] (GluN2A = GluN2B > GluN2C = GluN2D), selfotel [glutamate site]	
Channel blockers	L-aspartic acid (Antagonist), D-aspartic acid (Antagonist), L-aspartic acid (Antagonist), 5,7-dichlorokynurenic acid (Antagonist), CQP37849 (Antagonist), GV196771A (Antagonist), L689560 (Antagonist), L701324 (Antagonist), LY233053 (Antagonist), NVP-AAM077 (Antagonist)	Mg$^{2+}$ (GluN2A = GluN2B > GluN2C > GluN2D), N$_{1}$-dansyl-spermine (GluN2A = GluN2B > GluN2C = GluN2D), amantadine (GluN2C = GluN2D ≥ GluN2B ≥ GluN2A), dizocilpine, ketamine, phenycyclidine	
Labelled ligands	[3H]MDL105519 [glycine site] (Antagonist) (pK$_{i}$ 8.5) [151] – Rat, [3H]CPP39653 (glutamate site) (Selective Antagonist), [3H]CGP61594 [glycine site] (Antagonist), [3H]GS19755 [glutamate site] (Agonist), [3H]CPP (glutamate site) (Selective Antagonist), [3H]L689560 [glycine site] (Antagonist), [3H]dizocilpine [cation channel] (Antagonist), [3H]glycine [glycine site] (Agonist)	[3H]CQP37849 [glutamate site] (Agonist), [3H]CPP (glutamate site) (Agonist), [3H]GS19755 [glutamate site] (Agonist), [3H]CPP (glutamate site) (Agonist), [3H]L689560 [glycine site] (Agonist), [3H]MDL105519 [glycine site] (Agonist), [3H]dizocilpine [cation channel] (Channel blocker), [3H]glycine [glycine site] (Agonist)	
 Ionotropic glutamate receptors

Nomenclature	GluN2C	GluN2D
HGNC, UniProt	GRIN2C, Q14957	GRIN2D, O15399

Endogenous agonists
- D-aspartic acid [glutamate site] (GluN2D > GluN2C > GluN2B > GluN2A), D-serine [glycine site] (GluN2D > GluN2C > GluN2B > GluN2A), L-aspartic acid [glutamate site] (GluN2D = GluN2C = GluN2B = GluN2A), glycine [glycine site] (GluN2D > GluN2C > GluN2B > GluN2A)

Agonists
- (RS)-(tetrazol-5-yl)glycine [glutamate site] (GluN2D > GluN2C > GluN2B > GluN2A), NMDA [glutamate site] (GluN2D > GluN2C > GluN2B > GluN2A), homoquinolinic acid [glutamate site] (GluN2B > GluN2C > GluN2D > GluN2A, partial agonist at GluN2A and GluN2B), traxoprodil [glycine site] (GluN2A), Ro 8-4304 [glycine site] (GluN2A), L689560 [glycine site] (GluN2A) (pIC50 binding sites documented in the table, physiologically permissive and negative directions, by en)

Selective antagonists
- 5,7-dichlorokynurenic acid [glycine site] (GluN2B > GluN2C > GluN2A), conantokin-G [glutamate site] (GluN2B > GluN2D = GluN2C = GluN2A), d-APS [glutamate site], d-CCPene [glutamate site] (GluN2A = GluN2B > GluN2C > GluN2D), selfotel [glycine site] (GluN2A), MR-3100 [glycine site] (GluN2A), L701324 [glycine site], LY233536 [glycine site], GV196771A [glycine site] (GluN2A), CGP61594 [glycine site] (GluN2C), H]CPP [glycine site] (GluN2D), H]MDL105519 [glycine site] (GluN2B), H]dizocilpine [glycine site] (GluN2A), H]glycine [glycine site] (GluN2B), 3-n,N-dansyl-spermine [glutamate site] (GluN2C = GluN2D), Mg2+ (GluN2A = GluN2B > GluN2C = GluN2D), N1-dansyl-spermine (GluN2A = GluN2B > GluN2C = GluN2D), dizocilpine, ketamine, phencyclidine

Channel blockers
- phencyclidine (pIC50 7.1) [240], ketamine (pIC50 6.2) [240], amantadine (GluN2C = GluN2D > GluN2B = GluN2A), Mg2+ (GluN2A = GluN2B = GluN2C = GluN2D), N1-dansyl-spermine (GluN2A = GluN2B = GluN2C = GluN2D), dizocilpine

Labelled ligands
- [3H]CGP39653 [glutamate site] (Antagonist), [3H]CPP [glycine site] (Antagonist), [3H]CGS19755 [glutamate site] (Antagonist), [3H]L689560 [glycine site] (Antagonist), [3H]MDL105519 [glycine site] (Antagonist), [3H]dizocilpine [cation channel] (Channel blocker), [3H]glycine [glycine site] (Agonist), [3H]CGP61594 [glycine site] (Agonist), [3H]CGS19755 [glutamate site] (Antagonist), [3H]CPP [glutamate site] (Antagonist), [3H]MDL105519 [glycine site] (Antagonist), [3H]L689560 [glycine site] (Selective Antagonist), [3H]CPP [glycine site] (Antagonist), [3H]dizocilpine [cation channel] (Channel blocker), [3H]glycine [glycine site] (Agonist)

Comments: Potency orders unreferenced in the table are from [155, 240, 266, 524, 752, 997]. In addition to the glutamate and glycine binding sites documented in the table, physiologically important inhibitory modulatory sites exist for Mg2+, Zn2+, prostaglandins, and polyamines and inhibition by Zn2+ that occurs through binding at the ATP [997]. Tonic proton blockade of NMDA receptor function is alleviated by polyamines and the inclusion of exon 5 within GluN1 subunit splice variants, whereas the non-competitive antagonists ifenprodil and traxoprodil increase the fraction of receptors blocked by protons at ambient concentration. Inclusion of exon 5 also abolishes potentiation by polyamines and inhibition by Zn2+ that occurs through binding in the ATD [996]. I fenprodil, traxoprodil, haloperidol, felbamate and Ro 8-4304 discriminate between recombinant NMDA receptors assembled from GluN1 and either GluN2A, or GluN2B, subunits by acting as selective, non-competitive, antagonists of heterooligomers incorporating GluN2B through a binding site at the ATD GluN1/GluN2B subunit interface [466]. LY233536 is a competitive antagonist that also displays selectivity for GluN2B over GluN2A subunit-containing receptors. Similarly, CGP61594 is a photoaffinity label that interacts selectively with receptors incorporating GluN2B versus GluN2A, GluN2D and, to a lesser extent, GluN2C subunits. TCN 201 and TCN 213 have recently been shown to block GluN2A NMDA receptors selectively by a mechanism that involves allosteric inhibition of glycine binding to the GluN1 site [81, 257, 353, 643]. In addition to influencing the pharmacological profile of the NMDA receptor, the identity of the GluN2 subunit co-assembled with GluN1 is an important determinant of biophysical properties that include sensitivity to block by Mg2+, single-channel conductance and maximal open probability and channel deactivation time [190, 265, 317]. Incorporation of the GluN3A subunit into tri-heteromers containing GluN1 and GluN2 subunits is associated with decreased single-channel conductance, reduced permeability to Ca2+ and decreased susceptibility to block by Mg2+ [140, 369]. Reduced permeability to Ca2+ has also been observed following the inclusion of GluN3B in tri-heteromers. The expression of GluN3A, or GluN3B, with GluN1 alone forms, in Xenopus laevis oocytes, a cation channel with unique properties that include activation by glycine (but not NMDA), lack of permeation by Ca2+ and resistance to blockade by Mg2+ and NMDA receptor antagonists [147]. The function of heteromers composed of GluN1 and GluN3A is enhanced by Zn2+, or glycine site antagonists, binding to the GluN1 subunit [611]. Zn2+ also directly activates such complexes. The co-expression of GluN1, GluN3A and GluN3B appears to be required to form glycine-activated receptors in mammalian cell hosts [918].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full

Ionotropic glutamate receptors S162

[155, 240, 266, 524, 752, 997]
Further reading on Ionotropic glutamate receptors

Filippini A et al. (2017) The Good and the Bad of Glutamate Receptor RNA Editing. Mol. Neurobiol. 54: 6795-6805 [PMID:27766534]

Greger IH et al. (2017) Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 94: 713-730 [PMID:28521126]

Hackos DH et al. (2017) Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology 112: 34-45 [PMID:27484578]

Huettner JE. (2015) Glutamate receptor pores. J. Physiol. (Lond.) 593: 49-59 [PMID:25556787]

Iacobucci GJ et al. (2017) NMDA receptors: linking physiological output to biophysical operation. Nat. Rev. Neurosci. 18: 236-249 [PMID:28303017]

Krieger J et al. (2015) Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Biophys. J. 109: 1156-48 [PMID:26255587]

Lussier MP et al. (2015) Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications. J. Biol. Chem. 290: 28596-603 [PMID:26453298]

Müllerud S et al. (2017) Lessons from crystal structures of kainate receptors. Neuropharmacology 112: 16-28 [PMID:27236079]

Yuzaki M et al. (2017) A GluD Coming-Of-Age Story. Trends Neurosci. 40: 138-150 [PMID:28110935]

Zhou HX et al. (2017) Advancing NMDA Receptor Physiology by Integrating Multiple Approaches. Trends Neurosci. 40: 129-137 [PMID:28187950]

Zhuo M. (2017) Ionotropic glutamate receptors contribute to pain transmission and chronic pain. Neuropharmacology 112: 228-234 [PMID:27543416]
Overview: The inositol 1,4,5-trisphosphate receptors (IP$_3$R) are ligand-gated Ca$^{2+}$-release channels on intracellular Ca$^{2+}$ stores (such as the endoplasmic reticulum). They are responsible for the mobilization of intracellular Ca$^{2+}$ stores and play an important role in intracellular Ca$^{2+}$ signalling in a wide variety of cell types. Three different gene products (types I-III) have been isolated, which assemble as large tetrameric structures. IP$_3$Rs are closely associated with certain proteins: calmodulin (CALM1 CALM2 CALM3, P62158) and FKBP (and calcineurin via FKBP). They are phosphorylated by PKA, PKC, PKG and CaMKII.

Nomenclature	IP$_3$R1	IP$_3$R2	IP$_3$R3
HGNC, UniProt	ITPR1, Q14643	ITPR2, Q14571	ITPR3, Q14573
Endogenous activators	cytosolic ATP (< mM range), cytosolic Ca$^{2+}$ (Concentration range: <7.5x10$^{-4}$M), IP$_3$ (endogenous; nM - μM range)	cytosolic Ca$^{2+}$ (nM range), IP$_3$ (endogenous; nM - μM range)	cytosolic Ca$^{2+}$ (nM range), IP$_3$ (endogenous; nM - μM range)
Activators	adenophostin A (pharmacological; nM range), inositol 2,4,5-trisphosphate (pharmacological; also activated by other InsP$_3$ analogues)	adenophostin A (pharmacological; nM range), inositol 2,4,5-trisphosphate (pharmacological; also activated by other InsP$_3$ analogues)	–
Antagonists	PIP$_2$ (μM range), caffeine (mM range), decavanadate (μM range), xestospongin C (μM range)	decavanadate (μM range)	decavanadate (μM range)
Functional Characteristics	Ca$^{2+}$: (P$_{Ba}$/P$_{K}$ 6) single-channel conductance 70 pS (50 mM Ca$^{2+}$)	Ca$^{2+}$: single-channel conductance 70 pS (50 mM Ca$^{2+}$) 390 pS (220 mM Cs$^+$)	Ca$^{2+}$: single-channel conductance 88 pS (55 mM Ba$^{2+}$)
Comments	IP$_3$R1 is also antagonised by calmodulin at high cytosolic Ca$^{2+}$ concentrations	–	–

Comments: The absence of a modulator of a particular isof orm of receptor indicates that the action of that modulator has not been determined, not that it is without effect.

Further reading on IP$_3$ receptors
Berridge MJ. (2016) The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol. Rev. 96: 1261-96 [PMID:27512009]
Garcia MI et al. (2017) Cardiac inositol 1,4,5-trisphosphate receptors. Biochim. Biophys. Acta 1864: 907-914 [PMID:27884701]
Mak DO et al. (2015) Inositol 1,4,5-trisphosphate receptors in the endoplasmic reticulum: A single-channel point of view. Cell Calcium 58: 67-78 [PMID:25555684]
Rossi AM et al. (2018) IP$_3$ receptors - lessons from analyses ex cellula. J. Cell. Sci. 132: [PMID:30552138]
Seo MD et al. (2015) Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim. Biophys. Acta 1853: 1980-91 [PMID:25461839]
Thillaiappan NB et al. (2019) IP$_3$ receptors and Ca$^{2+}$ entry. Biochim Biophys Acta Mol Cell Res 1866: 1092-1100 [PMID:30448464]
Nicotinic acetylcholine receptors

Ion channels → Ligand-gated ion channels → Nicotinic acetylcholine receptors

Overview: Nicotinic acetylcholine receptors are members of the Cys-loop family of transmitter-gated ion channels that includes the GABA\(_A\), strychnine-sensitive glycine and 5-HT\(_3\) receptors [18, 659, 903, 963, 1083]. All nicotinic receptors are pentamers in which each of the five subunits contains four \(\alpha\)-helical transmembrane domains. Genes encoding a total of 17 subunits (\(\alpha\)-10, \(\beta\)-1-4, \(\gamma\), \(\delta\) and \(\epsilon\)) have been identified [459]. All subunits with the exception of \(\alpha\)-8 (present in avian species) have been identified in mammals. All \(\alpha\) subunits possess two tandem cysteine residues near to the site involved in acetylcholine binding, and subunits not named \(\alpha\) lack these residues [659]. The orthosteric ligand binding site is formed by residues within at least three peptide domains on the \(\alpha\) subunit (principal component), and three on the adjacent subunit (complementary component). nAChRs contain several allosteric modulatory sites. One such site, for positive allosteric modulators (PAMs) and allosteric agonists, has been proposed to reside within an intrasubunit cavity between the four transmembrane domains [318, 1119]; see also [373]). The high resolution crystal structure of the mollusc acetylcholine binding protein, a structural homologue of the extracellular binding domain of a nicotinic receptor pentamer, in complex with several nicotinic receptor ligands (e.g. [142]) and the crystal structure of the extracellular domain of the \(\alpha\)-1 subunit bound to \(\alpha\)-bungarotoxin at 1.94 Å resolution [212], has revealed the orthosteric binding site in detail (reviewed in [145, 459, 850, 903]). Nicotinic receptors at the somatic neuromuscular junction of adult animals have the stoichiometry (\(\alpha\)1\(\gamma\)2\(\delta\)6\(\epsilon\)), whereas an extrajunctional (\(\alpha\)1\(\beta\)1\(\gamma\)\(\delta\)\(\epsilon\)) receptor predominates in embryonic and denervated skeletal muscle and other pathological states. Other nicotinic receptors are assembled as combinations of \(\alpha\)(2-6) and \(\beta\)(2-4) subunits. For \(\alpha\)2, \(\alpha\)3, \(\alpha\)4 and \(\beta\)2 and \(\beta\)4 subunits, pairwise combinations of \(\alpha\) and \(\beta\) (e.g. \(\alpha\)3\(\beta\)4 and \(\alpha\)4\(\beta\)2) are sufficient to form a functional receptor in vitro, but far more complex isoforms may exist in vivo (reviewed in [324, 325, 659]). There is strong evidence that the pairwise assembly of some \(\alpha\) and \(\beta\) subunits can occur with variable stoichiometry (e.g. \((\alpha\)4\(\beta\)2\(\beta\)5 or \((\alpha\)4\(\beta\)1\(\beta\)2\(\beta\)2) which influences the biophysical and pharmacological properties of the receptor [659], \(\alpha\)5 and \(\beta\)3 subunits lack function when expressed alone, or pairwise, but participate in the formation of functional hetero-oligomeric receptors when expressed as a third subunit with another \(\alpha\) and \(\beta\) pair (e.g. \(\alpha\)4\(\alpha\)5\(\beta\)2, \(\alpha\)4\(\alpha\)6\(\beta\)3, \(\alpha\)5\(\alpha\)6\(\beta\)2, see [659] for further examples). The \(\alpha\)6 subunit can form a functional receptor when co-expressed with \(\beta\)4 in vitro, but more efficient expression ensues from incorporation of a third partner, such as \(\beta\)3 [1108]. The \(\alpha\)7, \(\alpha\)8, and \(\alpha\)9 subunits form functional homo-oligomers, but can also combine with a second subunit to constitute a hetero-oligomeric assembly (e.g. \(\alpha\)7\(\beta\)2 and \(\alpha\)9\(\alpha\)10). For functional expression of the \(\alpha\)10 subunit, co-assembly with \(\alpha\)9 is necessary. The latter, along with the \(\alpha\)10 subunit, appears to be largely confined to cochlear and vestibular hair cells. Comprehensive listings of nicotinic receptor subunit combinations identified from recombinant expression systems, or in vivo, are given in [659]. In addition, numerous proteins interact with nicotinic ACh receptors modifying their assembly, trafficking to and from the cell surface, and activation by ACh (reviewed by [32, 451, 658]).

The nicotinic receptor Subcommittee of **NC-IUPHAR** has recommended a nomenclature and classification scheme for nicotinic acetylcholine (nACh) receptors based on the subunit composition of known, naturally- and/or heterologously-expressed nACh receptor subtypes [600]. Headings for this table reflect abbreviations designating nACh receptor subtypes based on the predominant \(\alpha\) subunit contained in that receptor subtype. An asterisk following the indicated \(\alpha\) subunit denotes that other subunits are known to, or may, assemble with the indicated \(\alpha\) subunit to form the designated nACh receptor subtype(s). Where subunit stoichiometries within a specific nACh receptor subtype are known, numbers of a particular subunit larger than 1 are indicated by a subscript following the subunit (enclosed in parentheses – see also [183]).
Nomenclature	Nicotinic acetylcholine receptor α1 subunit	Nicotinic acetylcholine receptor α2 subunit	Nicotinic acetylcholine receptor α3 subunit	Nicotinic acetylcholine receptor α4 subunit
HGNC, UniProt	CHRNA1, P02708	CHRNA2, Q15822	CHRNA3, P32297	CHRNA4, P43681
Commonly used antagonists	(α1)β2β3γδ and (α1)β2β1δε: α-bungarotoxin > pancuronium > vecuronium > tubocurarine (IC50 = 43 - 82 nM)	αβ2: DHJIE (Kb = 0.9 μM), tubocurarine (Kb = 1.4 μM); α2β4: DHJIE (Kb = 3.6 μM), tubocurarine (Kb = 4.2 μM)	α3β2: DHJIE (Kb = 1.6 μM, IC50 = 2.0 μM), tubocurarine (Kb = 2.4 μM); α3β4: DHJIE (Kb = 19 μM, IC50 = 26 μM), tubocurarine (Kb = 2.2 μM)	α4β2: DHJIE (Kb = 0.1 μM; IC50 = 0.08 - 0.9 μM), tubocurarine (Kb = 3.2 μM, IC50 = 34 μM); α4β4: DHJIE (Kb = 0.01 μM, IC50 = 0.19 – 1.2 μM, tubocurarine (Kb = 0.2 μM, IC50 = 50 μM)
Selective agonists	succinylcholine (selective for (α1)β2β3γδ)	–	α-bungarotoxin, α-conotoxin Gi, α-conotoxin MI, pancuronium, waglerin-1 (selective for (α1)2β2δε)	varenicline [179], rivacainine [232], TC-2559 (α4β2) [162]
Selective antagonists	–	–	α-conotoxin AuIB (α3β4), α-conotoxin MII (α3β2), α-conotoxin PnIA (α3β2), α-conotoxin TxA1 (α3β2), α-conotoxin-GIC (α3β2)	–
Channel blockers	gallamine ((α1)2β2β3γδ) and (α1)2β2β1δε) (pIC50 ~-6), mecamylamine ((α1)2β2δε) (pIC50 ~-5.8)	hexamethonium, mecamylamine	mecamylamine (α3β4) (pIC50 6.4), mecamylamine (α3β2) (pIC50 5.1), A-867744 (α3β4) [623], NS1738 (α3β4) [985], hexamethonium (α3β2), hexamethonium (α3β4)	mecamylamine (α4β4) (pIC50 5.3–6.5), mecamylamine (α4β2) (pIC50 5.4–5.4), hexamethonium (α4β2) (pIC50 4.5–5.2), hexamethonium (α4β4) (pIC50 4), A-867744 (α4β2) [623], NS1738 (α4β2) [985]
Allosteric modulators	–	–	–	–
Selective allosteric modulators	–	–	–	LY2087101 (Positive) [109]
Labelled ligands	[^125]Iα-bungarotoxin (Selective Antagonist),[^3]Hα-bungarotoxin (Selective Antagonist)	[^125]Iepibatidine (Agonist),[^3]Hepibatidin (Agonist)	[^125]Iepibatidine (Agonist),[^3]Hepibatidin (Agonist),[^3]Hcytisine (Agonist)	[^125]Iepibatidine (Agonist),[^3]Hepibatidin (Agonist),[^3]Hepibatidin (Agonist),[^3]Hcytisine (Agonist),[^3]Hepibatidin (Agonist) – Rat,[^3]Hcytisine (Agonist)
Functional Characteristics	(α1)2β2β3γδ: Pca/PNa = 0.16 - 0.2, Pβ = 2.1 - 2.9%; (α1)2β2β1δε: Pca/PNa = 0.65 - 1.38, Pr = 4.1 – 7.2%	α2β2: Pca/PNa 1.5	α3β2: Pca/PNa 1.5; α3β4: Pca/PNa = 0.78 – 1.1, Pr = 2.7 – 4.6%	α4β2: Pca/PNa = 1.65, Pr = 2.6 – 2.9%; α4β4: Pr = 1.5 – 3.0%

Nicotinic acetylcholine receptors S166

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nicotinic acetylcholine receptors

Nomenclature	nicotinic acetylcholine receptor α5 subunit	nicotinic acetylcholine receptor α6 subunit	nicotinic acetylcholine receptor α7 subunit
HGNC, UniProt	CHRNA5, P30532	CHRNA6, Q15825	CHRNA7, P36544
Commonly used antagonists	– α6/α3[β1β3] chimera: DHJ [IC₅₀ = 1.1 μM]	α6/α3[β2β3] chimera: encenicline [IC₅₀ = 8 - 20 μM]; α7: tubocurarine [IC₅₀ = 3.1 μM]	
Selective agonists	– α6/α3[β2β3] chimera:	– α6/α3[β2β3] chimera:	
Selective antagonists	α-conotoxin MII, α-conotoxin PnIA, α-conotoxin TxIA, α-conotoxin-GiC	α-conotoxin MII [α6β2α*], α-conotoxin MII [α6β2α*], α-conotoxin PIA [α6/α3[β2β3] chimera]	α-bungarotoxin ((α7)S), α-conotoxin ArIB ((α7)S), α-conotoxin lml ((α7)S), methyllycaconitine ((α7)S)
Channel blockers	– mecamylamine (α6/α3[β1β3] chimera) (pIC₅₀ 5), hexamethonium (α6/α3[β2β3] chimera) (pIC₅₀ 4.8)	–	
Allosteric modulators	– A-867744 (Positive) [623], LY2087101 (Positive) [109], NS1738 (Positive) [985]	–	
Selective allosteric modulators	–		
Labelled ligands	– [³H]epibatidine (Agonist) – Chicken, [¹²⁵]I-α-conotoxin MII (Antagonist)	[³H]epibatidine (Agonist), [³H]A-585539 (Agonist) [24], [³H]AZ11637326 (Agonist) [323], [¹²⁵]I-α-bungarotoxin (Selective Antagonist) (pKᵢ 8.3–9.1), [³H]α-bungarotoxin (Selective Antagonist) (pKᵢ 8.3–9.1), [³H]methyllycaconitine (Antagonist) (pKᵢ 8.7) – Rat	
Functional Characteristics	–	–	Pᵢₐ/Pₐₙ = 6.6-20, Pᵢ = 8.8 - 11.4%

Selective Agonists

- **α5 subunit**: Atropine, tubocurarine, strychnine
- **α6 subunit**: Tropisetron, tubocurarine, α9: α-bungarotoxin > tropisetron > strychnine
- **α7 subunit**: α9: α-bungarotoxin > tropisetron > strychnine

Selective Antagonists

- **α5 subunit**: Mecamylamine, Hexamethonium
- **α6 subunit**: Encenicline, Tubocurarine
- **α7 subunit**: Bungarotoxin, Conotoxin ArIB, Conotoxin lml, Methyllycaconitine

Labelled Ligands

- **α8 subunit**: [³H]Epibatidine (pKᵢ 9.7), [¹²⁵]I-α-bungarotoxin (pKᵢ 8.3), [³H]Methyllycaconitine (pKᵢ 8.1)
- **α9 subunit**: [³H]Epibatidine (pKᵢ 9.7), [³H]Methyllycaconitine (pKᵢ 8.1)
- **α10 subunit**: [³H]Epibatidine (pKᵢ 9.7)

Functional Characteristics

- **α5 subunit**: Pᵢₐ/Pₐₙ = 9; α9: α₁₀: Pᵢₐ/Pₐₙ = 9, Pᵢ = 22%
- **α6 subunit**: Pᵢₐ/Pₐₙ = 9
- **α7 subunit**: Pᵢₐ/Pₐₙ = 9, Pᵢ = 22%
Comments: Commonly used agonists of nACh receptors that display limited discrimination in functional assays between receptor subtypes include A-85380, cytisine, DMPP, epibatidine, nicotine and the natural transmitter, acetylcholine (ACh). A summary of their profile across differing receptors is provided in [325] and quantitative data across numerous assay systems are summarized in [439]. Quantitative data presented in the table for commonly used antagonists and channel blockers for human receptors studied under voltage-clamp are from [119, 150, 754, 755, 765, 1028]. Type I PAMs increase peak agonist-evoked responses but have little, or no, effect on the rate of desensitization of α7 nicotinic ACh receptors whereas type II PAMs also cause a large reduction in desensitization (reviewed in [1071]).

Further reading on Nicotinic acetylcholine receptors

Auerbach A. (2015) Agonist activation of a nicotinic acetylcholine receptor. Neuropharmacology 96: 150-6 [PMID:25446670]
Bertrand D et al. (2015) Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol. Rev. 67: 1025-73 [PMID:26419447]
Bouzat C et al. (2018) Nicotinic acetylcholine receptors at the single-channel level. Br. J. Pharmacol. 175: 1789-1804 [PMID:28261794]
Chatzidaki A et al. (2015) AllostERIC modulation of nicotinic acetylcholine receptors. Biochem. Pharmacol. 97: 408-417 [PMID:26231943]
Corradi J et al. (2016) Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery. Mol. Pharmacol. 90: 288-99 [PMID:27190210]
Crespi A et al. (2018) Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update. Br. J. Pharmacol. 175: 1869-1879 [PMID:28294298]

P2X receptors

Overview: P2X receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2X Receptors [183, 481]) have a trimeric topology [443, 473, 703] with two putative TM domains, gating primarily Na+, K+ and Ca2+, exceptionally Cl-. The Nomenclature Subcommittee has recommended that for P2X receptors, structural criteria should be the initial criteria for nomenclature where possible. X-ray crystallography indicates that functional P2X receptors are trimeric and three agonist molecules are required to bind to a single receptor in order to activate it [321, 361, 473, 626]. Native receptors may occur as either homotrimers (e.g. P2X1 in smooth muscle) or heterotrimers (e.g. P2X2/P2X3 in the nodose ganglion [1031], P2X1/P2X5 in mouse cortical astrocytes [529], and P2X2/P2X5 in mouse dorsal root ganglion, spinal cord and mid pons [184, 869]. P2X2, P2X4 and P2X7 receptors have been shown to form functional homopolymers which, in turn, activate pores permeable to low molecular weight solutes [946]. The hemi-channel pannexin-1 has been implicated in the pore formation induced by P2X7 [777], but not P2X2 [149], receptor activation.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature	P2X1	P2X2	P2X3	P2X4	P2X5	P2X6	P2X7
HGNC, UniProt	P2RX1, P51575	P2RX2, Q9UBL9	P2RX3, P56373	P2RX4, Q99571	P2RX5, Q93086	P2RX6, Q15547	P2RX7, Q99572
Endogenous agonists	–	ATP [429] – Rat	ATP [430]	ATP [430] – Rat	ATP [430] – Rat	ATP [430]	
Agonists	αβ-meATP, BzATP, L-βγ-meATP	–	αβ-meATP, BzATP	–	–	–	
Antagonists	TNP-ATP (pIC₅₀ = 7.8–8.9) [1018], I<p>3</p> [1018] (pIC₅₀ = 8.5), NF023 (pIC₅₀ ∼6.7), NF449 (pIC₅₀ ∼6.3) [471]	NF770 (pIC₅₀ = 7–8) [722], NF778 (pIC₅₀ = 8.9) [722], PSB-10211 (pIC₅₀ ∼7) [722]	TNP-ATP (pIC₅₀ = 8–9) [1018], AF-906 (pIC₅₀ = 8.9) [432], AF-219 (pIC₅₀ = 8.5) [432], A17491 (pIC₅₀ ∼7.5) [435]	S-BDBD (pIC₅₀ = 5–6) [432, 722], BX-430 (pIC₅₀ = 5–6) [432, 722], PSB-12062 (pIC₅₀ = 5–6) [432, 722], paroxetine (pIC₅₀ = 5–6) [432, 722]	–	–	AZ10606120 (pK_A 8.9) [650], A804598 (pIC₅₀ ∼8), brilliant blue G (pIC₅₀ ∼7.7) [236, 238, 394], A740003 (pIC₅₀ ∼7.4) [395], decavanadate (pA₂ = 7.4) [655], A317491 (pIC₅₀ ∼6.9) [236], AZ11657312 (salt free) (pA₂ 6.1) [36]
Selective antagonists	–	–	–	–	–	–	–
Allosteric modulators	–	–	–	–	–	–	–
Selective allosteric modulators	MRS 2219 (Positive) [431]	–	–	ivermectin (Positive) (pIC₅₀ ∼6.6) [482] – Rat	–	–	–
Comments	–	–	–	–	–	–	–

Comments: A317491 and RO3 also block the P2X2/P2X3 heteromultimer [295, 435], NF449, A317491 and RO3 are more than 10-fold selective for P2X1 and P2X3 receptors, respectively. Agonists listed show selectivity within recombinant P2X receptors of *ca.* one order of magnitude. A804598, A839977, A740003 and A438079 are at least 10-fold selective for P2X7 receptors and show similar affinity across human and rodent receptors [236, 238, 394]. Several P2X receptors (particularly P2X1 and P2X3) may be inhibited by desensitisation using stable agonists (e.g. αβ-meATP); suramin and PPADS are non-selective antagonists at rat and human P2X1-3,5 and hP2X4, but not rP2X4,6,7 [118], and can also inhibit ATPase activity [186]. I<p>3</p> is inactive at rP2X2, an antagonist at rP2X3 (pIC₅₀ 5.6) and enhances agonist responses at rP2X4 [486]. Antagonist potency of NF023 at recombinant P2X2, P2X3 and P2X5 is two orders of magnitude lower than that at P2X1 receptors [922]. The P2X7 receptor may be inhibited in a non-competitive manner by the protein kinase inhibitors KN62 and chelerythrine [893], while the p38 MAP kinase inhibitor GTP·S and the cyclic imide AZ11645373 show a species-dependent non-competitive action [237, 653, 654, 932]. The pH-sensitive dye used in culture media, phenol red, is also reported to inhibit P2X1 and P2X3 containing channels [487]. Some recombinant P2X receptors expressed to high density bind [35]³SATP·S and [3]³H[αβ-meATP], although the latter can also bind to 5'-nucleotidase [651]. [3]³H[A317491 and [3]³H]A804598 have been used as high affinity antagonist radioligands for P2X3 (and P2X2/3) and P2X7 receptors, respectively [238]. Several high affinity radioligands for the P2X7 receptor have been recently synthesized [278, 592, 969]. AF-219 has shown clinical efficacy in reducing refractory chronic cough [2].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Further reading on P2X receptors

Di Virgilio F et al. (2017) The P2X7 Receptor in Infection and Inflammation. *Immunity* 47: 15-31 [PMID:28723547]

Di Virgilio F et al. (2018) The Elusive P2X7 Macropore. *Trends Cell Biol.* 28: 392-404 [PMID:29439897]

Habermacher C et al. (2016) Molecular structure and function of P2X receptors. *Neuropharmacology* 104: 18-30 [PMID:26231831]

Jacobson KA et al. (2016) Medicinal chemistry of adenosine, P2Y and P2X receptors. *Neuropharmacology* 104: 31-49 [PMID:26686393]

Khakh BS et al. (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. *Pharmacol. Rev.* 53: 107-18 [PMID:11171941]

North RA. (2016) P2X receptors. *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* 371: [PMID:27377721]

Stokes L et al. (2017) P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology. *Front Pharmacol* 8: 291 [PMID:28588493]

ZAC

Ion channels → Ligand-gated ion channels → ZAC

Overview: The zinc-activated channel (ZAC, nomenclature as agreed by the NC-IUPHAR Subcommittee for the Zinc Activated Channel) is a member of the Cys-loop family that includes the nicotinic ACh, 5-HT3, GABA_A and strychnine-sensitive glycine receptors [200, 400, 995]. The channel is likely to exist as a homopentamer of 4TM subunits that form an intrinsic cation selective channel equipermeable to Na^+, K^+ and Cs^+, but impermeable to Ca^{2+} and Mg^{2+} [995]. ZAC displays constitutive activity that can be blocked by tubocurarine and high concentrations of Ca^{2+} [995]. Although denoted ZAC, the channel is more potently activated by protons and copper, with greater and lesser efficacy than zinc, respectively [995]. ZAC is present in the human, chimpanzee, dog, cow and opossum genomes, but is functionally absent from mouse, or rat, genomes [200, 400].

Nomenclature

HGNC, UniProt: ZAC N, Q401N2

Endogenous agonists

H^+ [995], Cu^{2+} [995], Zn^{2+} [200, 995]

Antagonists

tubocurarine (pIC_{50} 5.2) [200], Ca^{2+} (pIC_{50} 2) [995]

Functional Characteristics

Outwardly rectifying current (both constitutive and evoked by Zn^{2+})

Comments: The ZAC subunit does not appear to exist in the mouse or rat genomes [200]. Although tabulated as an antagonist, it is possible that tubocurarine acts as a channel blocker. Antagonism by Ca^{2+} is voltage-independent. ZAC is not activated (at 1 mM) by transition metals including Fe^{2+}, Co^{2+}, Ni^{2+}, Cd^{2+}, or Al^{3+} [995]. The concentration response relationship to Cu^{2+} is biphasic, with concentrations exceeding 30 μM being associated with reduced activation [995].

Further reading on ZAC

Collingridge GL et al. (2009) A nomenclature for ligand-gated ion channels. *Neuropharmacology* 56: 2-5 [PMID:18655795]

Peralta FA et al. (2016) Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins. *Int J Mol Sci* 17: [PMID:27384555]

Trattnig SM et al. (2016) Copper and protons directly activate the zinc-activated channel. *Biochem. Pharmacol.* 103: 109-17 [PMID:26872532]

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Voltage-gated ion channels

Overview: The voltage-gated ion channels and their structural relatives comprise a superfamily encoded by at least 143 genes in the human genome and are therefore one of the largest superfamilies of signal transduction proteins, following the G protein-coupled receptors and the protein kinases in number [137]. In addition to their prominence in signal transduction, these ion channels are also among the most common drug targets. As for other large protein superfamilies, understanding the molecular relationships among family members, developing a unified, rational nomenclature for the ion channel families and subfamilies, and assigning physiological functions and pharmacological significance to each family member has been an important challenge.

Further reading on Voltage-gated ion channels

Catterall WA et al. (2005) Introduction to the IUPHAR Compendium of Voltage-Gated Ion Channels 2005 Pharmacological Reviews 57: 385

CatSper and Two-Pore channels

Overview: CatSper channels (CatSper1–4, nomenclature as agreed by NC-IUPHAR [177]) are putative 6TM, voltage-gated, alkalization-activated calcium permeant channels that are presumed to assemble as a tetramer of α-like subunits and mediate the current ICatSper [488]. In mammals, CatSper subunits are structurally most closely related to individual domains of voltage-activated calcium channels (CaV) [830]. CatSper1 [830], CatSper2 [820] and CatSpers 3 and 4 [445, 586, 815], in common with a putative 2TM auxiliary CatSperβ protein [581] and two putative 1TM associated CatSperγ and CatSperδ proteins [172, 1044], are restricted to the testis and localised to the principle piece of sperm tail. The novel cross-species CatSper channel inhibitor, RU1968, has been proposed as a useful tool to aid characterisation of native CatSper channels [831].

Two-pore channels (TPCs) are structurally related to CatSpers, CaVs and NaVs. TPCs have a 2x6TM structure with twice the number of TMs of CatSpers and half that of CaVs. There are three animal TPCs (TPC1–TPC3). Humans have TPC1 and TPC2, but not TPC3. TPC1 and TPC2 are localized in endosomes and lysosomes [122]. TPC3 is also found on the plasma membrane and forms a voltage-activated, non-inactivating Na+ channel [125]. All the three TPCs are Na+-selective under whole-cell or whole-organelle patch clamp recording [126, 127, 1087]. The channels may also conduct Ca2+ [674].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature

CatSper1	CatSper2	CatSper3	CatSper4
CATSPER1, Q8NEC5	CATSPER2, Q96PS6	CATSPER3, Q86XQ3	CATSPER4, Q7RTX7

Activators

CatSper1 is constitutively active, weakly facilitated by membrane depolarisation, strongly augmented by intracellular alkalinisation. In human, but not mouse, progesterone (EC$_{50}$ 8 nM) also potentiates the CatSper current (I$_{CatSper}$). [577, 940]

Channel blockers

- **Ruthenium red** (Inhibition) (pIC$_{50}$ 5) [488] – Mouse, HC-056456 (pIC$_{50}$ 4.7) [134], Cd$^{2+}$ (Inhibition) (pIC$_{50}$ 3.7) [488] – Mouse, Ni$^{2+}$ (Inhibition) (pIC$_{50}$ 3.5) [488] – Mouse

Selective channel blockers

- **NNC55-0396** (Inhibition) (pIC$_{50}$ 5.7) [-80mV – 80mV] [577, 940], mibebradil (Inhibition) (pIC$_{50}$ 4.4–4.5) [940]

Functional Characteristics

Calcium selective ion channel (Ba$^{2+}$ >> Ca$^{2+}$ >> Mg$^{2+}$ >> Na$^{+}$); quasilinear monovalent cation current in the absence of extracellular divalent cations; alkalinization shifts the voltage-dependence of activation towards negative potentials; $V_{1/2}$ @ pH 6.0 = +87 mV (mouse); $V_{1/2}$ @ pH 7.5 = +11mV (mouse) or pH 7.4 = +85 mV (human); required for I$_{CatSper}$ and male fertility (mouse and human)

Required for I$_{CatSper}$ and male fertility (mouse)

Required for I$_{CatSper}$ and male fertility (mouse)

Required for I$_{CatSper}$ and male fertility (mouse)

Nomenclature

TPC1	TPC2
TPC1, Q9ULQ1	TPC2, Q8NHX9

Activators

Phosphatidyl (3,5) inositol bisphosphate (pEC$_{50}$ 6.5) [126]

Phosphatidyl (3,5) inositol bisphosphate (pEC$_{50}$ 6.4) [1051]

Channel blockers

Verapamil (Inhibition) (pIC$_{50}$ 4.6) [126], Cd$^{2+}$ (Inhibition) (pIC$_{50}$ 3.7) [126]

Verapamil (Inhibition) (pIC$_{50}$ 5) [1051]

Functional Characteristics

Organelle voltage-gated Na$^{+}$-selective channel (Na$^{+}$ >> K$^{+}$ >> Ca$^{2+}$); Required for the generation of action potential-like depolarization in lysosomes. Voltage-dependence of activation is sensitive to luminal pH (determined from lysosomal recordings). $V_{1/2}$ @ pH 4.6 = +91 mV; $V_{1/2}$ @ pH 6.5 = +2.6 mV. Maximum activity requires PI(3,5)P2 and reduced [ATP], or depletion of extracellular amino acids.

Organelle voltage-independent Na$^{+}$-selective channel (Na$^{+}$ >> K$^{+}$ >> Ca$^{2+}$). Sensitive to the levels of PI(3,5)P2. Activated by decreases in [ATP] or depletion of extracellular amino acids.
Cyclic nucleotide-regulated channels

Overview: Cyclic nucleotide-gated (CNG) channels are responsible for signal transduction in the primary sensory cells of the vertebrate visual and olfactory systems. CNG channels are voltage-independent cation channels formed as tetramers. Each subunit has 6TM, with the pore-forming domain between TM5 and TM6. CNG channels were first found in rod photoreceptors [287, 472], where light signals through rhodopsin and transducin to stimulate phosphodiesterase and reduce intracellular cyclic GMP level. This results in a closure of CNG channels and a reduced ‘dark current’. Similar channels were found in the cilia of olfactory neurons [692] and the pineal gland [241]. The cyclic nucleotides bind to a domain in the C terminus of the subunit protein: other channels directly binding cyclic nucleotides include HCN, eag and certain plant potassium channels.

A standard nomenclature for CNG and HCN channels has been proposed by the NC-IUPHAR subcommittee on voltage-gated ion channels [388].
Cyclic nucleotide-regulated channels

Nomenclature

HGN C, UniProt	CNGA1, P29973	CNGA2, Q16280	CNGA3, Q16281	CNGB3, Q9NQW8
Activators	cyclic GMP (EC_{50} 30 µM) > cyclic AMP	cyclic GMP > cyclic AMP (EC_{50} 1 µM)	cyclic GMP (EC_{50} 30 µM) > cyclic AMP	–
Inhibitors	–	–	L-(cis)-diltiazem (high affinity binding requires presence of CNGB subunits)	–
Channel blockers	dequalinium (Antagonist) (pIC_{50} 6.7) [0mV] [844], L-(cis)-diltiazem (Antagonist) (pIC_{50} 4.6) [-80mV – 80mV] [158]	dequalinium (Antagonist) (pIC_{50} 5.6) [0mV] [843]	–	L-(cis)-diltiazem (Antagonist) (pIC_{50} 5.5) [0mV] [313] – Mouse

Functional Characteristics

CNGA1	CNGA2	CNGA3	CNGB3
γ = 25-30 pS, P_{Ca}/P_{Na} = 3.1	γ = 35 pS, P_{Ca}/P_{Na} = 6.8	γ = 40 pS, P_{Ca}/P_{Na} = 10.9	–

Comments: CNGA1, CNGA2 and CNGA3 express functional channels as homomers. Three additional subunits CNGA4 (Q8IV77), CNGB1 (Q14028) and CNGB3 (Q9NQW8) do not, and are referred to as auxiliary subunits. The subunit composition of the native channels is believed to be as follows: Rod: CNGA1-CNGB1; Cone: CNGA3-CNGB32; Olfactory neurons: CNGA2-CNGB4-CNGB1b [779, 1066, 1139, 1140, 1142].

Hyperpolarisation-activated, cyclic nucleotide-gated (HCN)

The hyperpolarisation-activated, cyclic nucleotide-gated (HCN) channels are cation channels that are activated by hyperpolarisation at voltages negative to ~50 mV. The cyclic nucleotides cyclic AMP and cyclic GMP directly activate the channels and shift the activation curves of HCN channels to more positive voltages, thereby enhancing channel activity. HCN channels underlie pacemaker currents found in many excitable cells including cardiac cells and neurons [225, 753]. In native cells, these currents have a variety of names, such as i_{f}, i_{q} and i_{f}. The four known HCN channels have six transmembrane domains and form tetramers.

It is believed that the channels can form heteromers with each other, as has been shown for HCN1 and HCN4 [22]. High resolution structural studies of CNG and HCN channels has provided insight into the the gating processes of these channels [540, 563].

Comments: HCN channels are permeable to both Na^+ and K^+ ions, with a Na^+/K^+ permeability ratio of about 0.2. Functionally, they differ from each other in terms of time constant of activation with HCN1 the fastest, HCN4 the slowest and HCN2 and HCN3 intermediate. The compounds ZD7288 [102] and ivabradine [117] have proven useful in identifying and studying functional HCN channels in native cells. Zatebradine and cilobradine are also useful blocking agents.
Further reading on Cyclic nucleotide-regulated channels

James ZM et al. (2018) Structural insights into the mechanisms of CNBD channel function. *J. Gen. Physiol.* **150**: 225-244 [PMID:29233886]

Michalakis S et al. (2018) Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy. *Int J Mol Sci* **19**: [PMID:29518895]

Podda MV et al. (2014) New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. *Pflugers Arch.* **466**: 1241-57 [PMID:24142069]

Sartiani L et al. (2017) The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. *Pharmacol. Rev.* **69**: 354-395

Wahl-Schott C et al. (2014) HCN channels: new roles in sinoatrial node function. *Curr Opin Pharmacol.* **15**: 83-90 [PMID:24441197]

Potassium channels

Overview: Activation of potassium channels regulates excitability and can control the shape of the action potential waveform. They are present in all cells within the body and can influence processes as diverse as cognition, muscle contraction and hormone secretion. Potassium channels are subdivided into families, based on their structural and functional properties. The largest family consists of potassium channels that activated by membrane depolarization, with other families consisting of channels that are either activated by a rise of intracellular calcium ions or are constitutively active. A standardised nomenclature for potassium channels has been proposed by the NC-IUPHAR subcommittees on potassium channels [320, 346, 520, 1064], which has placed cloned channels into groups based on gene family and structure of channels that exhibit 6, 4 or 2 transmembrane domains (TM).

Calcium- and sodium-activated potassium channels

Overview: Calcium- and sodium-activated potassium channels are members of the 6TM family of K channels which comprises the voltage-gated Kv subfamilies, including the KCNQ subfamily, the EAG subfamily (which includes herg channels), the Ca$^{2+}$-activated Slo subfamily (actually with 6 or 7TM) and the Ca$^{2+}$- and Na$^{+}$-activated SK subfamily (nomenclature as agreed by the NC-IUPHAR Subcommittee on Calcium- and sodium-activated potassium channels [457]). As for the 2TM family, the pore-forming a subunits form tetramers and heteromeric channels may be formed within subfamilies (e.g. Kv1.1 with Kv1.2; KCNQ2 with KCNQ3).
Nomenclature

Subtype	HGNC, UniProt	Activators	Inhibitors	Channel blockers	Functional Characteristics
KCa1.1	KCNMA1, Q12791	NS004, NS1619	paxilline (pKᵢ 8.7) [865] – Mouse	charybdotoxin, iberiotoxin, tetraethylammonium	Maxi KCa

Nomenclature

Subtype	HGNC, UniProt	Activators	Inhibitors	Channel blockers	Functional Characteristics
KCa2.1	KCNN1, Q92952	EBIO (Agonist) Concentration range: 2×10⁻³M [-80mV] [771, 1061], NS309 (Agonist) Concentration range: 3×10⁻⁸M-1×10⁻⁷M [-90mV] [937, 1061]	UCL1684 (pIC₅₀ 9.1) [936, 1061], apamin (pIC₅₀ 7.9–8.5) [889, 931, 936]	tetraethylammonium (pIC₅₀ 2.7) [1061]	SKCa
KCa2.2	KCNN2, Q9H251	NS309 (Agonist) (pEC₅₀ 6.2) Concentration range: 3×10⁻⁸M-1×10⁻⁷M [770, 937, 1061], EBIO (Agonist) (pEC₅₀ 3.3) [770, 1061], EBIO (Agonist) (pEC₅₀ 3) Concentration range: 2×10⁻³M [130, 771] – Rat	UCL1684 (pIC₅₀ 9.6) [277, 1061], apamin (pKᵢ 9.4) [456]	tetraethylammonium (pIC₅₀ 2.7) [1061]	SKCa
KCa2.3	KCNN3, Q9UC6	EBIO (Agonist) (pEC₅₀ 3.8) [1061, 1076], NS309 (Agonist) Concentration range: 3×10⁻⁸M [937, 1061]	apamin (pIC₅₀ 7.9–9.1) [970, 1076], UCL1684 (pIC₅₀ 8–9) [277, 1061]	tetraethylammonium (pIC₅₀ 2.7) [1061]	SKCa

Comments

The rat isoform does not form functional channels when expressed alone in cell lines. N- or C-terminal chimeric constructs permit functional channels that are insensitive to apamin [1061]. Heteromeric channels are formed between KCa2.1 and 2.2 subunits that show intermediate sensitivity to apamin [176].
Nomenclature	$\text{K}_{\text{Ca}}^{3.1}$	$\text{K}_{\text{Na}}^{1.1}$	$\text{K}_{\text{Na}}^{1.2}$	$\text{K}_{\text{Ca}}^{5.1}$
HGNC, UniProt	KCNN4, O15554	KCNT1, Q5UK3	KCNT2, Q6UVM3	KCNU1, A8MYU2
Activators	NS309 (Agonist) (pEC$_{50}$ 8) [-90mV] [937, 1061], SKA-121 (Agonist) (pEC$_{50}$ 7) [181], EBIO (Agonist) (pEC$_{50}$ 4.1–4.5) [-100mV – -50mV] [771, 953, 1061]	bithionol (Agonist) (pEC$_{50}$ 5–6) [1105] – Rat, $\text{nico}l$ osamide (Agonist) (pEC$_{50}$ 5.5) [91], lloxapine (Agonist) (pEC$_{50}$ 5.4) [91]	niflumic acid (Agonist) (pEC$_{50}$ 8.7) [194, 308]	–
Inhibitors	–	–	–	–
Gating inhibitors	–	bepridil (pEC$_{50}$ 5–6) [1105] – Rat	–	–
Channel blockers	charybdotoxin (pIC$_{50}$ 7.6–8.7) [440, 450]	quinidine (pIC$_{50}$ 4) [83, 1105] – Rat	Ba$^{2+}$ (Inhibition) (pIC$_{50}$ 3) [83], quinidine (Inhibition) Concentration range: 1x10$^{-3}$M [83] – Rat	quinidine Concentration range: 2x10$^{-5}$M [966, 1080] – Mouse
Selective channel blockers	TRAM-34 (Inhibition) (pK$_{d}$ 7.6–8) [527, 1085], senicapoc (Inhibition) (pIC$_{50}$ 8) [930]	–	–	–
Functional Characteristics	IK_{Ca}	K_{Na}	K_{Na}	Sperm pH-regulated K$^+$ current, KSPER

Further reading on Calcium- and sodium-activated potassium channels

Dopico AM et al. (2018) Calcium- and voltage-gated BK channels in vascular smooth muscle. *Pflugers Arch.* **470**: 1271-1289 [PMID:29748711]

Kaczmarek LK et al. (2017) International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. *Pharmacol. Rev.* **69**: 1-11 [PMID:28267675]

Kshatri AS et al. (2018) Physiological Roles and Therapeutic Potential of Ca$^{2+}$ Activated Potassium Channels in the Nervous System. *Front Mol Neurosci* **11**: 258 [PMID:30104956]
Inwardly rectifying potassium channels

Ion channels → Voltage-gated ion channels → Potassium channels → Inwardly rectifying potassium channels

Overview: The 2TM domain family of K channels are also known as the inward-rectifier K channel family. This family includes the strong inward-rectifier K channels (K\text{ir}2.x) that are constitutively active, the G-protein-activated inward-rectifier K channels (K\text{ir}3.x) and the ATP-sensitive K channels (K\text{ir}6.x, which combine with sulphonylurea receptors (SUR1-3)). The pore-forming α subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. K\text{ir}3.2 with K\text{ir}3.3).

Nomenclature	K\text{ir}1.1			
HGNC, UniProt	KCNJ1, P48048			
Ion Selectivity and Conductance	NH\text{4}⁺ [62pS] > K⁺ [38. pS] > Tl⁺ [21pS] > Rb⁺ [15pS] (Rat) [167, 384]			
Channel blockers	tertiapin-Q (Inhibition) (pIC₅₀ 8.9) [447], Ba\text{²⁺} (Antagonist) (pIC₅₀ 2.3–4.2) Concentration range: 1×10⁻⁴M [voltage dependent 0mV – -100mV] [384, 1143] – Rat, Cs\text{⁺} (Antagonist) (pIC₅₀ 2.9) [voltage dependent -120mV] [1143] – Rat			
Functional Characteristics	K\text{ir}1.1 is weakly inwardly rectifying, as compared to classical (strong) inward rectifiers.			
Comments	–			
Nomenclature	K_{ir}2.1	K_{ir}2.2	K_{ir}2.3	K_{ir}2.4
--------------	-------------	-------------	-------------	-------------
HGNC, UniProt	KCNJ2, P63252	KCNJ12, Q14500	KCNJ4, P48050	KCNJ14, Q9UNX9
Endogenous activators	PIP2 (Agonist) Concentration range: 1×10^{-5}M-5x10^{-6}M [-30mV] [406, 829, 921] – Mouse	–	–	Intracellular Mg$^{2+}$
Endogenous inhibitors	–	Intracellular Mg$^{2+}$ (pIC$_{50}$ 5) [40mV] [1103]	–	–
Gating inhibitors	–	Ba$^{2+}$ (Antagonist) Concentration range: 5x10^{-6}M-5x10^{-5}M [-150mV – -50mV] [957] – Mouse, Cs$^{+}$ (Antagonist) Concentration range: 5x10^{-6}M-1x10^{-5}M [-80mV – 80mV] [590], spermine (Antagonist) (pK$_{d}$ 4.8) [voltage dependent 40mV] [1107] – Mouse	–	–
Endogenous channel blockers	spermine (Antagonist) (pK$_{d}$ 9.1) [voltage dependent 40mV] [423, 1107] – Mouse, spermidine (Antagonist) (pK$_{d}$ 8.1) [voltage dependent 40mV] [1107] – Mouse, putrescine (Antagonist) (pK$_{d}$ 5.1) [voltage dependent 40mV] [423, 1107] – Mouse, Intracellular Mg$^{2+}$ (Antagonist) (pK$_{d}$ 4.8) [voltage dependent 40mV] [1107] – Mouse	–	Intracellular Mg$^{2+}$ (Antagonist) (pK$_{d}$ 5) [voltage dependent 50mV] [590], putrescine (Antagonist) Concentration range: 5x10^{-6}M-1x10^{-5}M [-80mV – 80mV] [590], spermine (Antagonist) Concentration range: 2.5x10^{-5}M-1x10^{-4}M [-80mV – 80mV] [590]	–
Channel blockers	Ba$^{2+}$ (Antagonist) (pK$_{d}$ 3.9–5.6) Concentration range: 1x10^{-6}M-1x10^{-4}M [voltage dependent 0mV – -80mV] [16] – Mouse, Cs$^{+}$ (Antagonist) (pK$_{d}$ 1.3–4.5) Concentration range: 3x10^{-8}M-3x10^{-4}M [voltage dependent 0mV – -102mV] [6] – Mouse	–	Ba$^{2+}$ (Antagonist) (pC$_{50}$ 5) Concentration range: 3x10^{-8}M-3x10^{-4}M [-60mV] [620, 806, 967], Cs$^{+}$ (Antagonist) (pK$_{i}$ 1.3–4.5) Concentration range: 3x10^{-8}M-3x10^{-4}M [0mV – -130mV] [620]	Cs$^{+}$ (Antagonist) (pK$_{d}$ 3–4.1) [voltage dependent -60mV – -100mV] [408], Ba$^{2+}$ (Antagonist) (pK$_{d}$ 3.3) [voltage dependent 0mV] [408]
Functional Characteristics	IK$_{1}$ in heart, ‘strong’ inward-rectifier current			
Comments	K_{ir}2.1 is also inhibited by intracellular polyamines	K_{ir}2.2 is also inhibited by intracellular polyamines	K_{ir}2.3 is also inhibited by intracellular polyamines	K_{ir}2.4 is also inhibited by intracellular polyamines

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full

Inwardly rectifying potassium channels S179
Nomenclature

Channel	HGNC, UniProt	Nomenclature	Concentration Range
K_\text{ir}3.1	KCNJ3, P48549	PIP_2 (Agonist) (pK_d 6.3) Concentration range: 5x10^{-5}M [physiological voltage]	
K_\text{ir}3.2	KCNJ6, P48051	PIP_2 (Agonist) (pK_d 6.3) Concentration range: 5x10^{-5}M [physiological voltage]	
K_\text{ir}3.3	KCNJ9, Q92806	PIP_2 [376]	
K_\text{ir}3.4	KCNJ5, P48544	PIP_2 [63, 376]	

Endogenous activators

Endogenous activators	Concentration range
PIP_2 (Agonist) (pK_d 6.3)	5x10^{-5}M [physiological voltage]

Gating inhibitors

Gating inhibitors	Concentration range
pimozide (Antagonist) (pEC_{50} 5.5)	-70mV

Endogenous channel blockers

Endogenous channel blockers	Concentration range
tertapin-Q (Antagonist)	7.9
Ba^{2+} (Antagonist)	4.7

Functional Characteristics

Functional Characteristics	Comments
G protein-activated inward-rectifier current	K_\text{ir}3.1 is also activated by G_{\beta\gamma}. K_\text{ir}3.1 is not functional alone. The functional expression of K_\text{ir}3.1 in Xenopus oocytes requires coassembly with the endogenous Xenopus K_\text{ir}3.5 subunit. The major functional assembly in the heart is the K_\text{ir}3.1/3.4 heteromultimer, while in the brain it is K_\text{ir}3.1/3.2, K_\text{ir}3.1/3.3 and K_\text{ir}3.2/3.3.
G protein-activated inward-rectifier current	K_\text{ir}3.2 is also activated by G_{\beta\gamma}. K_\text{ir}3.2 forms functional heteromers with K_\text{ir}3.1/3.3.
G protein-activated inward-rectifier current	K_\text{ir}3.3 is also activated by G_{\beta\gamma}
G protein-activated inward-rectifier current	K_\text{ir}3.4 is also activated by G_{\beta\gamma}

Nomenclature

Channel	HGNC, UniProt	Nomenclature	Concentration Range
K_\text{ir}4.1	KCNJ10, P78508	Ba^{2+} (Antagonist) Concentration range: 3x10^{-3}M-1x10^{-4}M [-160mV – 60mV]	
K_\text{ir}4.2	KCNJ15, Q99712	Ba^{2+} (Antagonist) Concentration range: 1x10^{-3}M-1x10^{-4}M [-120mV – 100mV]	
K_\text{ir}5.1	KCNJ16, Q9NP19	Ba^{2+} (Antagonist) Concentration range: 3x10^{-3}M [-120mV – 20mV]	

Channel blockers

Channel blockers	Concentration range
Ba^{2+} (Antagonist)	3x10^{-3}M-1x10^{-4}M [-160mV – 60mV]
Ca^{2+} (Antagonist)	3x10^{-3}M-5x10^{-4}M [-160mV – 30mV]

Functional Characteristics

Functional Characteristics	Comments
Inward-rectifier current	K_\text{ir}3.4 is also activated by G_{\beta\gamma}
Weakly inwardly rectifying	K_\text{ir}3.3 is also activated by G_{\beta\gamma}

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full

Inwardly rectifying potassium channels S180
Nomenclature	$K_r\,6.1$	$K_r\,6.2$	$K_r\,7.1$
HGNC, UniProt	$KCNJ8$, Q15842	$KCNJ11$, Q14654	$KCNJ13$, Q60928
Associated subunits	SUR1, SUR2A, SUR2B	SUR1, SUR2A, SUR2B	–
Activators	cromakalim, diazoxide (Agonist) Concentration range: $2 \times 10^{-4} M$ [-60mV] [1100] – Mouse, minoxidil, nicorandil (Agonist) Concentration range: $3 \times 10^{-4} M$ [-60mV – 60mV] [1100] – Mouse	diazoxide (Agonist) (pEC$_{50}$ 4.2) [physiological voltage] [413] – Mouse, cromakalim (Agonist) Concentration range: $3 \times 10^{-5} M$ [-60mV] [414] – Mouse, minoxidil, nicorandil	–
Inhibitors	glibenclamide, tolbutamide	glibenclamide, tolbutamide	–
Channel blockers	–	–	Ba^{2+} (Antagonist) (pK$_i$ 3.2) [voltage dependent -100mV] [256, 513, 526, 760], Cs$^+$ (Antagonist) (pK$_i$ 1.6) [voltage dependent -100mV] [256, 513, 760]
Functional Characteristics	ATP-sensitive, inward-rectifier current	ATP-sensitive, inward-rectifier current	Inward-rectifier current

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Two P domain potassium channels

Overview: The 4TM family of K channels mediate many of the background potassium currents observed in native cells. They are open across the physiological voltage-range and are regulated by a wide array of neurotransmitters and biochemical mediators. The pore-forming α-subunit contains two pore loop (P) domains and two subunits assemble to form one ion conduction pathway lined by four P domains. It is important to note that single channels do not have two pores but that each subunit has two P domains in its primary sequence; hence the name two P domain, or K2P channels (and not two-pore channels). Some of the K2P subunits can form heterodimers across subfamilies (e.g., K2P3.1 with K2P9.1). The nomenclature of 4TM K channels in the literature is still a mixture of IUPHAR and common names. The suggested division into subfamilies, described in the More detailed introduction, is based on similarities in both structural and functional properties within subfamilies and this explains the “common abbreviation” nomenclature in the tables below.

Nomenclature	K2P1.1	K2P2.1	K2P3.1	K2P4.1
Common abbreviation	TWIK1	TREK1	TASK1	TRAAK
HGNC, UniProt	KCNK1, O00180	KCNK2, O95069	KCNK3, O14649	KCNK4, Q9NYG8
Endogenous activators	–	arachidonic acid (studied at 1-10 μM) (pEC50 5) [764]	–	arachidonic acid (studied at 1-10 μM) [288]
Activators	–	GI-530159 (pEC50 6.1) [593], BL-1249 (pEC50 5.3) [804], chloroform (studied at 1-5 mM) Concentration range: 8×10⁻³ M [763], halothane (studied at 1-5 mM) [763], isoflurane (studied at 1-5 mM) [763]	halothane (studied at 1-10 mM) [538]	riluzole (studied at 1-100 μM) [248]
Inhibitors	–	norfluoxetine (pIC50 5.1) [477]	–	–
Channel blockers	–	–	–	–
Functional Characteristics	Background current	Background current	Background current	Background current
Comments	K2P1.1 is inhibited by acid pHo external acidification with a pKa 6.7 [799]. K2P2 forms heterodimers with K2P3 and K2P9 [800].	K2P2.1 is also activated by membrane stretch, heat and acid pH1 [615, 617]. K2P2 can heterodimerize with K2P4 [93] and K2P10 [558].	K2P3.1 is inhibited by acid pHo with a pKa of 6.3 [591]. K2P3 forms heterodimers with K2P1 [800] and K2P9 [193].	K2P4.1 is activated by membrane stretch [614], and increased temperature (12 to 20-fold between 17 and 40°C [462]) and can heterodimerize with K2P2 [93].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature	$K_{2P} 5.1$	$K_{2P} 6.1$	$K_{2P} 7.1$	$K_{2P} 9.1$	$K_{2P} 10.1$
Common abbreviation	TASK2	TWIK2	–	TASK3	TREK2
HGNC, UniProt	$KCNK5$, O95279	$KCNK6$, Q9Y257	$KCNK7$, Q9Y2U2	$KCNK9$, Q9NPC2	$KCNK10$, P57789
Endogenous activators	–	–	–	–	arachidonic acid (studied at 1-10 μM) [555]
Activators	–	–	–	halothane (studied at 1-5 mM) [962]	GI-530159 [593], halothane (studied at 1-5 mM) [555]
Inhibitors	–	–	–	\mathcal{R}-(+)-methanandamide (studied at 1-10 μM) [822], anandamide (studied at 1-10 μM) [822]	–
Functional Characteristics	Background current	Unknown	Unknown	Background current	Background current
Comments	$K_{2P} 5.1$ is activated by alkaline pHo [833]. Knockout of the kcnk5 gene in mice is associated with metabolic acidosis, hyponatremia and hypotension due to impaired bicarbonate handling in the kidney [1057], as well as deafness [141]. The T108P mutation is associated with Balkan Endemic Nephropathy in humans [992].	–	–	$K_{2P} 9.1$ is also inhibited by acid pHo with a pKa of 6 [822]. Imprinting of the $KCNK9$ gene is associated with Birk Barel syndrome [54]. $K_{2P} 9$ can form heterodimers with $K_{2P} 1$ [800] or $K_{2P} 3$ [193].	$K_{2P} 10.1$ is also activated by membrane stretch [555] and can heterodimerize with $K_{2P} 2$ [558].
Nomenclature

Common abbreviation	HGNC, UniProt
K2P12.1	KCNK12, Q9HB15
K2P13.1	KCNK13, Q9HB14
K2P15.1	KCNK15, Q9H427
K2P16.1	KCNK16, Q96T55
K2P17.1	KCNK17, Q96T54
K2P18.1	KCNK18, Q7Z418

Endogenous inhibitors

- arachidonic acid (studied at 10-50 μM) \[866\]
- halothane (studied at 5 mM) \[94\]

Inhibitors

- halothane (studied at 5 mM) \[94\]

Functional Characteristics

- Does not function as a homodimer \[821\] but can form a functional heterodimer with K2P13 \[94\].
- Background current
- Unknown
- Background current
- Background current
- Background current

Comments

- Forms a heterodimer with K2P12 \[94\].
- K2P16.1 current is increased by alkaline pHo with a pK_a of 7.8 \[463\].
- K2P17.1 current is increased by alkaline pHo with a pK_a of 8.8 \[463\].
- A frame-shift mutation (F139WfsX24) in the KCNK18 gene, is associated with migraine with aura in humans \[528\].

Comments: The K2P6, K2P7.1, K2P15.1 and K2P12.1 subtypes, when expressed in isolation, are nonfunctional. All 4TM channels are insensitive to the classical potassium channel blockers tetraethylammonium and fampridine, but are blocked to varying degrees by Ba^{2+} ions.
Voltage-gated potassium channels

Overview: The 6TM family of K channels comprises the voltage-gated Kv subfamilies, the EAG subfamily (which includes hERG channels), the Ca\(^{2+}\)-activated Slo subfamily (actually with 7TM, termed BK) and the Ca\(^{2+}\)-activated SK subfamily. These channels possess a pore-forming α subunit that comprise tetramers of identical subunits (homomeric) or of different subunits (heteromeric). Heteromeric channels can only be formed within subfamilies (e.g. Kv1.1 with Kv1.2; Kv7.2 with Kv7.3). The pharmacology largely reflects the subunit composition of the functional channel.

Nomenclature	HGNC, UniProt	Associated subunits	Channel blockers	Selective channel blockers	Functional Characteristics	Comments	
Kv1.1	KCNA1, Q09470	K\(_\alpha\),1.2, K\(_\alpha\),1.4, K\(_\beta\)1 and K\(_\beta\)2 [182]	α-dendrotoxin (pEC\(_{50}\) 7.7–9) [335, 409] – Rat, margatoxin (Inhibition) (pIC\(_{50}\) 8.4) [62], tetraethylammonium (Inhibition) (pK\(_d\) 8.7) [335] – Mouse	–	–	–	
Kv1.2	KCNA2, P16389	K\(_\alpha\),1.1, K\(_\alpha\),1.4, K\(_\alpha\), β1 and K\(_\alpha\), β2 [182]	margatoxin (pIC\(_{50}\) 10–10.3) [305, 315], noxiustoxin (pK\(_d\) 9) [335] – Mouse, maurotoxin (pIC\(_{50}\) 6.8) [838], tetraethylammonium (pK\(_d\) 2) [335] – Mouse	–	–	–	
Kv1.3	KCNA3, P22001	K\(_\alpha\),1.1, K\(_\alpha\),1.2, K\(_\alpha\),1.4, K\(_\alpha\),1.6, K\(_\beta\)1 and K\(_\beta\)2 [182]	–	–	–	–	
Kv1.4	KCNA4, P22459	K\(_\alpha\),1.1, K\(_\alpha\),1.2, K\(_\alpha\),β1 and K\(_\alpha\), β2 [182]	–	margatoxin (pIC\(_{50}\) 11.2) [62], α-dendrotoxin (pIC\(_{50}\) 7.8–9.4) [335, 409] – Rat, noxiustoxin (pK\(_d\) 8.7) [335] – Rat	–	–	–
Kv1.5	KCNA5, P22460	K\(_\alpha\), β1 and K\(_\alpha\), β2	–	–	–	–	
Kv1.6	KCNA6, P17658	K\(_\alpha\), β1 and K\(_\alpha\), β2	–	–	–	–	
Kv1.7	KCNA7, Q96RP8	K\(_\alpha\), β1 and K\(_\alpha\), β2	–	–	–	–	

Selective channel blockers –

Functional Characteristics

K\(_\alpha\)

Comments

Resistant to dendrotoxins

Resistant to dendrotoxins

Resistant to external TEA

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature	\(K_v1.8 \)	\(K_v2.1 \)	\(K_v2.2 \)	\(K_v3.1 \)	\(K_v3.2 \)	\(K_v3.3 \)	\(K_v3.4 \)
HGNC, UniProt	KCNA10, Q16322	KCNB1, Q14721	KCNB2, Q92953	KCNC1, P48547	KCNC2, Q96PR1	KCNC3, Q14003	KCNC4, Q03721
Associated subunits	\(K_v \) \(\beta \) \text{1a} and \(K_v \) \(\beta \) \text{2} \(K_v \) \(5.1, K_v \) \(6.1-6.4, K_v \) \(8.1-8.2 \) and \(K_v \) \(9.1-9.3 \)	\(K_v \) \(5.1, K_v \) \(6.1-6.4, K_v \) \(8.1-8.2 \) and \(K_v \) \(9.1-9.3 \)	–	–	–	–	
Channel blockers	fampridine (pIC\(_{50} \) 2.8) [534]	tetraethylammonium (Pore blocker) (pIC\(_{50} \) 2) [364] – Rat	fampridine (pIC\(_{50} \) 2.8) [876], tetraethylammonium (pIC\(_{50} \) 2.6) [876]	fampridine (pIC\(_{50} \) 4.5) [335] – Mouse, tetraethylammonium (pIC\(_{50} \) 3.7) [335] – Mouse	fampridine (pIC\(_{50} \) 4.6) [568] – Rat, tetraethylammonium (pIC\(_{50} \) 4.2) [568] – Rat	tetraethylammonium (pIC\(_{50} \) 3.9) [1008] – Rat	tetraethylammonium (pIC\(_{50} \) 3.5) [832, 881] – Rat
Selective channel blockers	–	–	–	–	–	–	sea anemone toxin BDS-I (pIC\(_{50} \) 7.3) [231] – Rat
Functional Characteristics	\(K_v \)						

Nomenclature	\(K_v4.1 \)	\(K_v4.2 \)	\(K_v4.3 \)
HGNC, UniProt	KCND1, Q9NSA2	KCND2, Q9NZV8	KCND3, Q9UK17
Associated subunits	KChIP 1-4, DP66, DPP10	KChIP 1-4, DP66, DPP10, \(K_v \) \(\beta \) 1, NCS-1, Na\(v \) \(\beta \) 1	KChIP 1-4, DP66 and DPP10, MinK, MiRPs
Channel blockers	fampridine (pIC\(_{50} \) 2) [418]	–	–
Functional Characteristics	\(K_v \)	\(K_v \)	\(K_v \)

Nomenclature	\(K_v5.1 \)	\(K_v6.1 \)	\(K_v6.2 \)	\(K_v6.3 \)	\(K_v6.4 \)
HGNC, UniProt	KCNFI, Q9H3M0	KCNG1, Q9UIX4	KCNG2, Q9UJ96	KCNG3, Q8TAE7	KCNG4, Q8TDN1

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature	Kv7.1	Kv7.2	Kv7.3	Kv7.4	Kv7.5
HGNC, UniProt	KCNQ1, P51787	KCNQ2, O43526	KCNQ3, O43525	KCNQ4, P56696	KCNQ5, Q9NR82
Activators	–	retigabine (pEC_{50} 5.6) [968]	gabapentin (pEC_{50} 8.3) [627], retigabine (pEC_{50} 6.2) [968]	retigabine (pEC_{50} 5.2) [968]	retigabine (pEC_{50} 5) [249]
Selective activators	–	–	–	–	gabapentin (pEC_{50} 8.7) [627]
Inhibitors	XE991 (pK_d 6.1) [1047], linopirdine (pIC_{50} 4.4) [732] – Mouse	XE991 (pIC_{50} 6.2) [1048], linopirdine (pIC_{50} 5.3) [1048] – Rat	linopirdine (pIC_{50} 5.4) [1048] – Mouse	XE991 (pIC_{50} 5.3) [956], linopirdine (pIC_{50} 4.9) [956] – Mouse	–
Sub/family-selective inhibitors	–	–	–	–	XE991 (pIC_{50} 4.2) [880]
Channel blockers	–	tetraethylammonium (pIC_{50} 3.5–3.9) [349, 1069]	–	tetraethylammonium (pIC_{50} 1.3)	–
Functional Characteristics	cardiac IK_S	M current as a heteromer between Kv7.2 and Kv7.3	M current as heteromeric Kv7.2/Kv7.3 or Kv7.3/Kv7.5	–	M current as heteromeric Kv7.3/Kv7.5

Nomenclature	Kv8.1	Kv8.2	Kv9.1	Kv9.2	K_v9.3	K_v10.1	K_v10.2
HGNC, UniProt	KCNV1, Q6PIU1	KCNV2, Q8TDN2	KCNS1, Q96KK3	KCNS2, Q9ULS6	KCNS3, Q9BQ31	KCNH1, Q95259	KCNH5, Q8NCM2

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full

Voltage-gated potassium channels S187
Voltage-gated potassium channels

Further reading on Potassium channels

Aguilar-Bryan L et al. (1998) Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78: 227-45 [PMID:9457174]

Borsotto M et al. (2015) Targeting two-pore domain K(+) channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept. Br. J. Pharmacol. 172: 771-84 [PMID:25263033]

Chang PC et al. (2015) SK channels and ventricular arrhythmias in heart failure. Trends Cardiovasc. Med. 25: 508-14 [PMID:25743622]

Decher N et al. (2017) Stretch-activated potassium currents in the heart: Focus on TREK-1 and arrhythmias. Prog. Biophys. Mol. Biol. 130: 223-232 [PMID:28526352]

Felicicagli G et al. (2015) The family of K2p channels: salient structural and functional properties. J. Physiol. (Lond.) 593: 2587-603 [PMID:25530075]

Foster MN et al. (2016) KATP Channels in the Cardiovascular System. Physiol. Rev. 96: 177-252 [PMID:26660852]

Gada K et al. (2019) Two-pore domain potassium channels: emerging targets for novel analgesic drugs. IUPHAR Review 26. Br J Pharmacol 176: 256-266 [PMID:30325008]

Goldstein SA et al. (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol. Rev. 57: 709-26 [PMID:16382105]

Latorre R et al. (2017) Molecular Determinants of BK Channel Functional Diversity and Functioning. Physiol. Rev. 97: 39-87 [PMID:27807200]

Niemeijer M et al. (2016) Gating, Regulation, and Structure in K2p K+ Channels: In Varietate Concordia? Mol. Pharmacol. 90: 309-17 [PMID:27268784]

Poveda JA et al. (2017) Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms. Biochim. Biophys. Acta 1859: 1507-1516 [PMID:28408206]

Rifkin RA et al. (2017) G Protein-Gated Potassium Channels: A Link to Drug Addiction. Trends Pharmacol. Sci. 38: 378-392 [PMID:28188005]

Taylor KC et al. (2017) Regulation of KCNQ/Kv7 family voltage-gated K+ channels by lipids. Biochim. Biophys. Acta 1859: 586-597 [PMID:27818172]

Vivier D et al. (2016) Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+)) Channel 1). A Novel Therapeutic Target? J. Med. Chem. 59: 5149-57 [PMID:26588045]

Wei AD et al. (2005) International Union of Pharmacology. LLI. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol. Rev. 57: 463-72 [PMID:16382103]

Yang KC et al. (2016) Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling. Trends Cardiovasc. Med. 26: 209-18 [PMID:26391345]
Ryanodine receptors

Ion channels → Voltage-gated ion channels → Ryanodine receptors

Overview: The ryanodine receptors (RyRs) are found on intracellular Ca\(^{2+}\) storage/release organelles. The family of RyR genes encodes three highly related Ca\(^{2+}\) release channels: RyR1, RyR2 and RyR3, which assemble as large tetrameric structures. These RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca\(^{2+}\) signaling phenomena (neurotransmission, secretion, etc.). In addition to the three mammalian isoforms described below, various non-mammalian isoforms of the ryanodine receptor have been identified [947]. The function of the ryanodine receptor channels may also be influenced by closely associated proteins such as the tacrolimus (FK506)-binding protein, calmodulin [1101], triadin, calsequestrin, junctin and sorcin, and by protein kinases and phosphatases. Recent studies solving the structure of the ryanodine receptor have shed light on the structural basis of ryanodine receptor function [see, for example, Samso (2017) [864] and Meissner (2017) [648]].

Nomenclature	RyR1	RyR2	RyR3
HGNC, UniProt	RYR1, P21817	RYR2, Q92736	RYR3, Q15413
Endogenous activators	cytosolic ATP (endogenous; mM range), cytosolic Ca\(^{2+}\) (endogenous); luminal Ca\(^{2+}\) (endogenous)	cytosolic ATP (endogenous; mM range), cytosolic Ca\(^{2+}\) (endogenous); luminal Ca\(^{2+}\) (endogenous)	cytosolic ATP (endogenous; mM range), cytosolic Ca\(^{2+}\) (endogenous); luminal Ca\(^{2+}\) (endogenous)
Activators	caffeine (pharmacological; mM range), ryanodine (pharmacological; mM - μM range), suramin (pharmacological; μM range)	caffeine (pharmacological; mM range), ryanodine (pharmacological; mM - μM range), suramin (pharmacological; μM range)	caffeine (pharmacological; mM range), ryanodine (pharmacological; mM - μM range)
Endogenous antagonists	cytosolic Ca\(^{2+}\) Concentration range: >1×10\(^{-4}\)M, cytosolic Mg\(^{2+}\) (mM range)	cytosolic Ca\(^{2+}\) Concentration range: >1×10\(^{-3}\)M, cytosolic Mg\(^{2+}\) (mM range)	cytosolic Ca\(^{2+}\) Concentration range: >1×10\(^{-3}\)M, cytosolic Mg\(^{2+}\) (mM range)
Antagonists	dantrolene	–	dantrolene
Channel blockers	procaine, ruthenium red, ryanodine Concentration range: >1×10\(^{-4}\)M	procaine, ruthenium red, ryanodine Concentration range: >1×10\(^{-4}\)M	–
Functional Characteristics	Ca\(^{2+}\): (P\(_{Ca}/P_6\)) single-channel conductance: 90 pS (50mM Ca\(^{2+}\)), 720 pS (200 mM K\(^{+}\))	Ca\(^{2+}\): (P\(_{Ca}/P_6\)) single-channel conductance: 90 pS (50mM Ca\(^{2+}\)), 720 pS (210 mM K\(^{+}\))	Ca\(^{2+}\): (P\(_{Ca}/P_6\)) single-channel conductance: 140 pS (50mM Ca\(^{2+}\)), 777 pS (250 mM K\(^{+}\))
Comments	RyR1 is also activated by depolarisation via DHP receptor, calmodulin at low cytosolic Ca\(^{2+}\) concentrations, CaM kinase and PKA; antagonised by calmodulin at high cytosolic Ca\(^{2+}\) concentrations	RyR2 is also activated by CaM kinase and PKA; antagonised by calmodulin at high cytosolic Ca\(^{2+}\) concentrations	RyR3 is also activated by calmodulin at low cytosolic Ca\(^{2+}\) concentrations; antagonised by calmodulin at high cytosolic Ca\(^{2+}\) concentrations

Comments: The modulators of channel function included in this table are those most commonly used to identify ryanodine-sensitive Ca\(^{2+}\) release pathways. Numerous other modulators of ryanodine receptor/channel function can be found in the reviews listed below. The absence of a modulator of a particular isoform of receptor indicates that the action of that modulator has not been determined, not that it is without effect. The potential role of cyclic ADP ribose as an endogenous regulator of ryanodine receptor channels is controversial. A region of RyR likely to be involved in ion translocation and selection has been identified [304, 1138].
Further reading on Ryanodine receptors

Dulhunty AF et al. (2017) Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. *Adv. Pharmacol.* 79: 287-324 [PMID:28528672]

Meissner G. (2017) The structural basis of ryanodine receptor ion channel function. *J. Gen. Physiol.* 149: 1065-1089 [PMID:29122978]

O’Brien F et al. (2015) The ryndine receptor provides high throughput Ca2+-release but is precisely regulated by networks of associated proteins: a focus on proteins relevant to phosphorylation. *Biochem. Soc. Trans.* 43: 426-33 [PMID:26009186]

Samsó M. (2017) A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. *Protein Sci.* 26: 52-68 [PMID:27671094]

Van Petegem F. (2015) Ryanodine receptors: allosteric ion channel giants. *J. Mol. Biol.* 427: 31-53 [PMID:25134758]

Zalk R et al. (2017) Ca2+ Release Channels Join the ‘Resolution Revolution’. *Trends Biochem. Sci.* 42: 543-555 [PMID:28499500]

Transient Receptor Potential channels

Ion channels → Voltage-gated ion channels → Transient Receptor Potential channels

Overview: The TRP superfamily of channels (*nomenclature as agreed by NC-IUPHAR [178, 1084]*) (of which founder member is the *Drosophila* Trp channel, exists in mammals as six families; TRPC, TRPM, TRPV, TRPA, TRPP and TRPRP) are based on amino acid homologies. TRP subunits contain six putative transmembrane domains and assemble as homo- or hetero-tetramers to form cation selective channels with diverse modes of activation and varied permeation properties (reviewed by [748]). Established, or potential, physiological functions of the individual members of the TRP families are discussed in detail in the recommended reviews and in a number of books [262, 424, 711, 1148]. The established, or potential, involvement of TRP channels in disease is reviewed in [492, 709] and [713], together with a special edition of *Biochemical et Biophysica Acta* on the subject [709]. Additional disease related reviews, for pain [673], stroke [1136], sensation and inflammation [1099], itch [136], and airway disease [326, 1068], are available. The pharmacology of most TRP channels has been advanced in recent years. Broad spectrum agents are listed in the tables along with more selective, or recently recognised, ligands that are flagged by the inclusion of a primary reference. See Rubaiy (2019) for a review of pharmacological tools for TRP channels [847]. Most TRP channels are regulated by phosphoinositides such as PtdIns(4,5)P2 although the effects reported are often complex, occasionally contradictory, and likely to be dependent upon experimental conditions, such as intracellular ATP levels (reviewed by [714, 842, 1021]). Such regulation is generally not included in the tables. When thermosensitivity is mentioned, it refers specifically to a high Q10 of gating, often in the range of 10-30, but does not necessarily imply that the channel’s function is to act as a ‘hot’ or ‘cold’ sensor. In general, the search for TRP activators has led to many claims for temperature sensing, mechanosensation, and lipid sensing. All proteins are of course sensitive to energies of binding, mechanical force, and temperature, but the issue is whether the proposed input is within a physiologically relevant range resulting in a response.

TRPA (ankyrin) family

TRPA1 is the sole mammalian member of this group (reviewed by [307]). TRPA1 activation of sensory neurons contribute to nociception [452, 644, 933]. Pungent chemicals such as mustard oil (AJTC), allicin, and cinnamaldehyde activate TRPA1 by modification of free thiol groups of cysteine side chains, especially those located in its amino terminus [65, 381, 608, 610]. Alkenals with α, β-unsaturated bonds, such as propenal (acrolein), butenal (crotylaldehyde), and 2-pentenal can react with free thiols via Michael addition and can activate TRPA1. However, potency appears to weaken as carbon chain length increases [30, 65]. Covalent modification leads to sustained activation of TRPA1. Chemicals including carvacrol, menthol, and local anesthetics reversibly activate TRPA1 by non-covalent binding [467, 549, 1092, 1093]. TRPA1 is not mechanosensitive under physiological conditions, but can be activated by cold temperatures [211, 468]. The electron cryo-EM structure of TRPA1 [766] indicates that it is a 6-TM homotetramer. Each subunit of the channel contains two short ‘pore helices’ pointing into the ion selectivity filter, which is big enough to allow permeation of partially hydrated Ca2+ ions.
Nomenclature	TRPA1
HGNC, UniProt	TRPA1, O75762
Chemical activators	Isothiocyanates (covalent) and 1,4-dihydropyridines (non-covalent)
Oxidative stress compounds	4-oxo-nonenal: pEC$_{50}$ 5.7, H$_2$O$_2$: pEC$_{50}$ 3.6 (Mouse) [27, 870]
Physical activators	Cooling (<17$^\circ$C) (disputed) [452, 689, 1007]

Activators
- polygodial (pEC$_{50}$ 6.4) [268], acrolein (Agonist) (pEC$_{50}$ 5.3) [physiological voltage] [65], allicin (Agonist) (pEC$_{50}$ 5.1) [physiological voltage] [66], Δ^2-tetrahydrocannabinol (Agonist) (pEC$_{50}$ 4.9) [-60mV] [452], nicotine (non-covalent) (pEC$_{50}$ 4.8) [-75mV] [961], thymol (non-covalent) (pEC$_{50}$ 4.7)
- Concentration range: 6.2x10$^{-6}$M-2.5x10$^{-5}$M [546], URB597 (Agonist) (pEC$_{50}$ 4.6) [708], (-)-menthol (Partial agonist) (pEC$_{50}$ 4–4.5) [467, 1088], cinnamaldehyde (Agonist) (pEC$_{50}$ 4.2) [physiological voltage] [49] – Mouse, icilin (Agonist) Concentration range: 1x10$^{-4}$M [physiological voltage] [933] – Mouse

Selective activators
- JT010 (pEC$_{50}$ 9.2) [958], chlorobenzylidene malononitrile (covalent) (pEC$_{50}$ 6.7) [115], ASP7663 (pEC$_{50}$ 6.3) [503], formalin (covalent. This level of activity is also observed for rat TRPA1) (pEC$_{50}$ 3.4) [610, 644] – Mouse

Channel blockers
- AP18 (Inhibition) (pIC$_{50}$ 5.5) [788], ruthenium red (Inhibition) (pIC$_{50}$ 5.5) [-80mV] [689] – Mouse, HC030031 (Inhibition) (pIC$_{50}$ 5.2) [644]

Selective channel blockers
- AM-0902 (Antagonist) (pIC$_{50}$ 7.7) [874]

Functional Characteristics
- γ = 87–100 pS; conducts mono- and di-valent cations non-selectively (P$_{Ca}$/P$_{Na}$ = 0.84); outward rectification; activated by elevated intracellular Ca$^{2+}$

Comments
- miRNA-711 is a selective activator of TRPA1 (pEC$_{50}$ 5.0) [351].

Comments: Agents activating TRPA1 in a covalent manner are thiol reactive electrophiles that bind to cysteine and lysine residues within the cytoplasmic domain of the channel [381, 607]. TRPA1 is activated by a wide range of endogenous and exogenous compounds and only a few representative examples are mentioned in the table: an exhaustive listing can be found in [52]. In addition, TRPA1 is potently activated by intracellular zinc (EC$_{50}$ = 8 nM) [26, 403]. A gain-of-function mutation in TRPA1 was found to cause familial episodic pain syndrome [515].
TRPC (canonical) family

Members of the TRPC subfamily (reviewed by [5, 23, 72, 89, 297, 490, 761, 813]) fall into the subgroups outlined below. TRPC2 is a pseudogene in humans. It is generally accepted that all TRPC channels are activated downstream of Gα11-coupled receptors, or receptor tyrosine kinases (reviewed by [801, 998, 1084]). A comprehensive listing of G-protein coupled receptors that activate TRPC channels is given in [5]. Hetero-oligomeric complexes of TRPC channels and their association with proteins to form signaling complexes are detailed in [23] and [491]. TRPC channels have frequently been proposed to act as store-operated channels (SOCs) (or components of multimeric complexes that form SOCs), activated by depletion of intracellular calcium stores (reviewed by [23, 68, 165, 166, 741, 773, 805, 862, 1125]). However, the weight of the evidence is that they are not directly gated by conventional store-operated mechanisms, as established for Stim-gated Orai channels. TRPC channels are not mechanically gated in physiologically relevant ranges of force. All members of the TRPC family are blocked by 2-APB and SKF96365 [357, 358]. Activation of TRPC channels by lipids is discussed by [72]. Important progress has been recently made in TRPC pharmacology [100, 480, 664, 847]. TRPC channels regulate a variety of physiological functions and are implicated in many human diseases [73, 311, 927, 1053].

TRPC1/C4/C5 subgroup

TRPC1 alone may not form a functional ion channel [223]. TRPC4/C5 may be distinguished from other TRPC channels by their potentiation by micromolar concentrations of La3+. TRPC2 is a pseudogene in humans, but in other mammals appears to be an ion channel localized to microvilli of the vomeronasal organ. It is required for normal sexual behavior in response to pheromones in mice. It may also function in the main olfactory epithelia in mice [571, 739, 740, 1117, 1120, 1123, 1155].

Nomenclature	TRPC1	TRPC2	TRPC3	TRPC4
HGNC, UniProt	TRPC1, P48995	TRPC2, –	TRPC3, Q13507	TRPC4, Q9UBN4
Physical activators	NO-mediated cysteine S-nitrosylation	Diacylglycerol (SAG, OAG, DOG): strongly inhibited by Ca2+/CaM once activated by DAG [923]	DAG kinase; regulates DAG concentration in vomeronasal sensory neurons	–
Endogenous activators	membrane stretch (likely direct)	Intracellular Ca2+	pyrazolo(pyrimidin-4-yl) (pEC50 7.7) [818], GSK1702934A (Agonist) (pEC50 7.1) [1099]	–
Channel blockers	2-APB (Antagonist) [-70mV] [939], Gd3+ (Antagonist) Concentration range: 2×10−4M [-70mV] [1154], La3+ (Antagonist) Concentration range: 1×10−5M [-70mV] [939]	2-APB (Antagonist) Concentration range: 5×10−5M [-70M–80mV] [599] – Mouse, U73122 (Antagonist) Concentration range: 1×10−5M – Mouse	GSK2833503A (pEC50 7.7) [809], GSK417651A (Antagonist) (pEC50 7.1) [1058], Gd3+ (Antagonist) (pEC50 7) [1154], La3+ (Antagonist) (pEC50 6.5) [-60mV] [350], SAR7334 (pEC50 6.6) [613], BTP2 (Antagonist) (pIC50 6.5) [-80mV] [363], Pyr3 (pIC50 6.2) [494], Pyr10 (Antagonist) (pIC50 6.1) [875], norgestomet (pK2 5.5) [856], La3+ (Antagonist) (pEC50 5.4) [-60mV] [350], clemizole (pIC50 5) [834], 2-APB (Antagonist) (pIC50 5) [physiological voltage] [569], Ni2+, SKF96365	HC-070 (Antagonist) (pEC50 7.3) [458], ML024 (pIC50 5.5) [660], M084 (Inhibition) (pIC50 5.3) [1149], clemizole (pIC50 5) [834], La3+ (mM range), SKF96365, niflumic acid (Antagonist) Concentration range: 3×10−5M [-60mV] [1039] – Mouse
Functional Characteristics	It is not yet clear that TRPC1 forms a homomer. It does form heteromers with TRPC4 and TRPC5	γ = 42 pS linear single channel conductance in 150 mM symmetrical Na+ in vomeronasal sensory neurons. PNa/PNa = 2.7; permeant to Na+, Cs+, Ca2+, but not NMDG [739, 1120]	γ = 66 pS; conducts mono and di-valent cations non-selectively (PNa/PNa = 1.6); monovalent cation current suppressed by extracellular Ca2+; dual (inward and outward) rectification	γ = 30 – 41 pS, conducts mono and di-valent cations non-selectively (PNa/PNa = 1.1 – 7.7); dual (inward and outward) rectification
Nomenclature	TRPC5	TRPC6	TRPC7	
--------------	-------	-------	-------	
HGNC, UniProt	TRPC5, Q9UL62	TRPC6, Q9Y210	TRPC7, Q9HCX4	
Chemical activators	NO-mediated cysteine S-nitrosylation (disputed), potentiation by extracellular protons	Diacylglycerols	diacylglycerols	
Physical activators	Membrane stretch	Membrane stretch	–	
Endogenous activators	intracellular Ca\(^{2+}\) (at negative potentials) (pEC\(_{50}\) 6.2), lysophosphatidylcholine	20-HETE, arachidonic acid, lysophosphatidylcholine	–	
Activators	(-)-englerin A (Agonist) (pEC\(_{50}\) 8.1) [13], tonantzitloline (pEC\(_{50}\) 7.1) [849], BTD (pEC\(_{50}\) 5.8) [71], niluzole (pEC\(_{50}\) 5) [835], methylprednisolone (pEC\(_{50}\) 4.9) [71], rosiglitazone (pEC\(_{50}\) 4.5) [619], Gd\(^{3+}\) Concentration range: 1x10\(^{-4}\)M, La\(^{3+}\) (µM range), Pb\(^{2+}\) Concentration range: 5x10\(^{-6}\)M, genistein (independent of tyrosine kinase inhibition) [1078]	GSK1702934A (Agonist) (pIC\(_{50}\) 6.4) [1099], pyrazolopyrimidine 4n (pIC\(_{50}\) 6.1) [818]	pyrazolopyrimidine 4n (pIC\(_{50}\) 6.1) [818]	
Channel blockers	Pico145 (Inhibition) (pIC\(_{50}\) 8.9) [848], HC-070 (Agonist) (pIC\(_{50}\) 8) [454], AM12 (Inhibition) (pIC\(_{50}\) 6.6) [696], galangin (pK\(_{i}\) 6.3) [696], clemizole (pIC\(_{50}\) 6) [834], KB-R7943 (Inhibition) (pIC\(_{50}\) 5.9) [509], M084 (Inhibition) (pIC\(_{50}\) 5.1) [1149], ML204 (pIC\(_{50}\) ~5) [660], 2-APB (Antagonist) (pIC\(_{50}\) 4.7) [-80mV] [1097], La\(^{3+}\) (Antagonist) Concentration range: 5x10\(^{-3}\)M [-60mV] [453] – Mouse	GSK2B383503A (pIC\(_{50}\) 8.5) [80mV] [887], SAR7334 (pIC\(_{50}\) 8) [613], lariy acetate (Inhibition) (pIC\(_{50}\) 7) [1006], GSK417651A (Agonist) (pIC\(_{50}\) 6.4) [1058], clemizole (pIC\(_{50}\) 5.9) [834], Gd\(^{3+}\) (Antagonist) (pIC\(_{50}\) 5.7) [-60mV] [415] – Mouse, SKF96365 (Antagonist) (pIC\(_{50}\) 5.4) [-60mV] [415] – Mouse, norgestimate (pIC\(_{50}\) 5.3) [656], La\(^{3+}\) (pIC\(_{50}\) ~5.2), amiloride (Antagonist) (pIC\(_{50}\) 3.9) [-60mV] [415] – Mouse, Cd\(^{2+}\) (Antagonist) (pIC\(_{50}\) 3.6) [-60mV] [415] – Mouse, 2-APB, ACA, GsMTx-4, Extracellular H\(^{+}\), KB-R7943, ML9	SAR7334 (pIC\(_{50}\) 6.7) [613], 2-APB, La\(^{3+}\) (Antagonist) Concentration range: 1x10\(^{-4}\)M [-60mV] [734] – Mouse, SKF96365 (Antagonist) Concentration range: 2.5x10\(^{-3}\)M [-60mV] [734] – Mouse, amiloride	
Selective channel blockers	AC1903 (Inhibition) (pIC\(_{50}\) 4.8) [1145]	–	–	
Functional Characteristics	γ = 41-63 pS; conducts mono-and di-valent cations non-selectively (P\(_{Ca}\)/P\(_{Na}\) = 1.8 – 9.5); dual rectification (inward and outward) as a homomer, outwardly rectifying when expressed with TRPC1 or TRPC4	γ = 28-37 pS; conducts mono and divalent cations with a preference for divalents (P\(_{Ca}\)/P\(_{Na}\) = 4.5–5.0); monovalent cation current suppressed by extracellular Ca\(^{2+}\) and Mg\(^{2+}\), dual rectification (inward and outward), or inward rectification	γ = 25–75 pS; conducts mono and divalent cations with a preference for divalents (P\(_{Ca}\)/P\(_{Na}\) = 5.9); modest outward rectification (monovalent cation current recorded in the absence of extracellular divalents); monovalent cation current suppressed by extracellular Ca\(^{2+}\) and Mg\(^{2+}\)	
TRP (melastatin) family

Members of the TRP subfamily (reviewed by [292, 357, 773, 1141]) fall into the five subgroups outlined below.

TRPM1/M3 subgroup

In darkness, glutamate released by the photoreceptors and ON-bipolar cells binds to the metabotropic glutamate receptor 6, leading to activation of Go. This results in the closure of TRPM1. When the photoreceptors are stimulated by light, glutamate release is reduced, and TRPM1 channels are more active, resulting in cell membrane depolarization. Human TRPM1 mutations are associated with congenital stationary night blindness (CSNB), whose patients lack rod function. TRPM1 is also found in melanocytes. Isoforms of TRPM1 may present in melanocytes, melanoma, brain, and retina. In melanoma cells, TRPM1 is prevalent in highly dynamic intracellular vesicular structures [416, 727]. TRPM3 (reviewed by [730]) exists as multiple splice variants which differ significantly in their biophysical properties. TRPM3 is expressed in somatosensory neurons and may be important in development of heat hyperalgesia during inflammation (see review [972]). TRPM3 is frequently coexpressed with TRPA1 and TRPV1 in these neurons. TRPM3 is expressed in pancreatic beta cells as well as brain, pituitary gland, eye, kidney, and adipose tissue [729, 971]. TRPM3 may contribute to the detection of noxious heat [1028].

TRPM2

TRPM2 is activated under conditions of oxidative stress (respiratory burst of phagocytic cells) and ischemic conditions. However, the direct activators are ADPR(P) and calcium. As for many ion channels, PIP2 must also be present (reviewed by [1102]). Numerous splice variants of TRPM2 exist which differ in their activation mechanisms [243]. The C-terminal domain contains a TRP motif, a coiled-coil region, and an enzymatic NUDT9 homologous domain. TRPM2 appears not to be activated by NAD, NAAD, or NAADP, but is directly activated by ADPRP (adenosine-5’-O-disphosphoribose phosphate) [1003]. TRPM2 is involved in warmth sensation [884], and contributes to neurological diseases [29]. Recent study shows that 2’-deoxy-ADPR is an endogenous TRPM2 superagonist [293].

TRPM4/5 subgroup

TRPM4 and TRPM5 have the distinction within all TRP channels of being impermeable to Ca2+ [1084]. A splice variant of TRPM4 (i.e. TRPM4b) and TRPM5 are molecular candidates for endogenous calcium-activated cation (CAN) channels [341]. TRPM4 is active in the late phase of repolarization of the cardiac ventricular action potential. TRPM4 deletion or knockout enhances beta adrenergic-mediated inotropy [637]. Mutations are associated with conduction defects [428, 637, 924]. TRPM4 has been shown to be an important regulator of Ca2+ entry in to mast cells [1011] and dendritic cell migration [53]. TRPM5 in taste receptor cells of the tongue appears essential for the transduction of sweet, amino acid and bitter stimuli [570] TRPM5 contributes to the slow afterdepolarization of layer 5 neurons in mouse prefrontal cortex [550]. Both TRPM4 and TRPM5 are required transduction of taste stimuli [253].

TRPM6/7 subgroup

TRPM6 and 7 combine channel and enzymatic activities (‘chanzymes’). These channels have the unusual property of permeation by divalent (Ca2+, Mg2+, Zn2+) and monovalent cations, high single channel conductances, but overall extremely small inward conductance when expressed to the plasma membrane. They are inhibited by internal Mg2+ at 0.6 mM, around the free level of Mg2+ in cells. Whether they contribute to Mg2+ homeostasis is a contentious issue. When either gene is deleted in mice, the result is embryonic lethality. The C-terminal kinase region is cleaved under unknown stimuli, and the kinase phosphorylates nuclear histones. TRPM7 is responsible for oxidant-induced Zn2+ release from intracellular vesicles [4] and contributes to intestinal mineral absorption essential for postnatal survival [666].

TRPM8

Is a channel activated by cooling and pharmacological agents evoking a ‘cool’ sensation and participates in the thermosensation of cold temperatures [67, 180, 221] reviewed by [498, 585, 685, 1022].
Nomenclature	TRPM1	TRPM2
HGNC, UniProt	TRPM1, Q7Z4N2	TRPM2, O94759
Chemical activators	–	Agents producing reactive oxygen (e.g. H$_2$O$_2$) and nitrogen (e.g. GEA 3162) species
Physical activators	–	Heat 35°C
Endogenous activators	pregnenolone sulphate [531]	intracellular cADPR (Agonist) (pEC50 3.9–4.4) [-80mV – -80mV] [784], intracellular ADP ribose (Agonist) (pEC50 3.9–4.4) [-80mV] [784], intracellular Ca$^{2+}$ (perhaps via calmodulin), H$_2$O$_2$ (Agonist) Concentration range: 5×10$^{-7}$M-5×10$^{-5}$M [physiological voltage] [294, 355, 511, 914, 1063], membrane PIP$_2$ [1002], arachidonic acid (Potentiation) Concentration range: 1×10$^{-8}$M-3×10$^{-8}$M [physiological voltage] [355]
Activators	–	GEA 3162
Endogenous channel blockers	Zn$^{2+}$ (pIC50 6)	Zn$^{2+}$ (pIC50 6), extracellular H$^+$
Channel blockers	–	2-APB (Antagonist) (pIC50 6.1) [-60mV] [987], ACAA (Antagonist) (pIC50 5.8) [physiological voltage] [510], clotrimazole (Antagonist) Concentration range: 3×10$^{-8}$M-3×10$^{-5}$M [-60mV – -15mV] [378], econazole (Antagonist) Concentration range: 3×10$^{-8}$M-3×10$^{-5}$M [-60mV – -15mV] [378], flufenamic acid (Antagonist) Concentration range: 5×10$^{-5}$M-1×10$^{-5}$M [-60mV – -50mV] [377, 987], miconazole (Antagonist) Concentration range: 1×10$^{-5}$M [-60mV] [987]
Functional Characteristics	Conducts mono- and di-valent cations non-selectively, dual rectification (inward and outward)	$\gamma = 52-60$ pS at negative potentials, 76 pS at positive potentials; conducts mono- and di-valent cations non-selectively ($P_{\text{Ca}}/P_{\text{Na}} = 0.6-0.7$); non-rectifying; inactivation at negative potentials; activated by oxidative stress probably via PARP-1, PARP inhibitors reduce activation by oxidative stress, activation inhibited by suppression of ADPR formation by glycohydrolase inhibitors.
Comments	–	Additional endogenous activators include 2'-deoxy-ADPR, 3'-deoxy-ADPR, 2'-phospho-ADPR, 2-F-ADPR and ADP-ribose-2'-phosphate (ADPRP) [293, 1003]. 8-Br-cADPR acts as a gating inhibitor [504].
Nomenclature	TRPM3	TRPM4
--------------------	------------------------	------------------------
HGNC, UniProt	TRPM3, Q9HCF6	TRPM4, Q8TD43
Other channel blockers	–	–
Physical activators	heat (Q10 = 7.2 between 15 - 25°C), hypotonic cell swelling [333, 1028, 1029]	Membrane depolarization (Vg = -20 mV to + 60 mV dependent upon conditions) in the presence of elevated [Ca²⁺], heat (Q10 = 8.5 @ +25 mV between 15 and 25°C)
Endogenous activators	pregnenolone sulphate (pEC₅₀ 4.9) [1033], sphingosine (Agonist) (pEC₅₀ 4.9) [physiological voltage] [334], sphinganine (Agonist) (pEC₅₀ 4.7) [334], epipregnanolone sulphate [618]	intracellular Ca²⁺ (Agonist) (pEC₅₀ 3.9–6.3) [-100mV – 100mV] [712, 716, 717, 959]
Activators	CIM2016 (pEC₅₀ 6.1) [367, 972], nifedipine	BTP2 (Agonist) (pEC₅₀ 8.1) [-80mV] [959], decavanadate (Agonist) (pEC₅₀ 5.7) [-100mV] [716]
Gating inhibitors	2-APB (Antagonist) (pIC₅₀ 4) [1097]	flufenamic acid (Antagonist) (pIC₅₀ 5.6) [1005] – Mouse, clotrimazole (Antagonist) Concentration range: 1×10⁻⁶M-1×10⁻⁹M [100mV] [720]
Endogenous channel blockers	Mg²⁺ (Antagonist) (pIC₅₀ 2) [728] – Mouse, extracellular Na⁺ (TRPM3α2 only)	–
Channel blockers	isosakuranetin (pIC₅₀ 6.3) [934], primodone (pIC₅₀ 6.2) [519], maprotiline (pIC₅₀ 5.8) [519], diclofenac (pIC₅₀ 5.2) [948], liquirigenin (pIC₅₀ 5.2) [934], naringenin (pIC₅₀ 5.2) [934, 935], Gd³⁺ (Antagonist) (pIC₅₀ 4) [333, 545], La³⁺ (Antagonist) (pIC₅₀ 4) [333, 545]	9-phenanthrol (pIC₅₀ 4.6–4.8) [327], spermine (Antagonist) (pIC₅₀ 4.2) [100mV] [718], adenosine (pIC₅₀ 3.2)
Functional Characteristics	TRPM3α2S: γ = 83 pS (Na⁺ current), 65 pS (Ca²⁺ current); conducts mono and di-valent cations non-selectively (P_Ca/P_Na = 1.6) TRPM3α1: selective for monovalent cations (P_Ca/P_Cs=0.1); TRPM3α2: conducts mono- and di-valent cations non-selectively (P_Ca/P_Cs = 1-10); In- and outwardly rectifying currents by co-application of pregnenolone sulphate and clotrimazole or single application of CIM0216 [367, 1027].	γ = 23 pS (within the range 60 to +60 mV); permeable to monovalent cations; impermeable to Ca²⁺; strong outward rectification; slow activation at positive potentials, rapid deactivation at negative potentials, deactivation blocked by decavanadate
Comments	G protein βγ subunits can act as endogenous inhibitors of TRPM3 channel activity [45, 216, 819].	–
Nomenclature	TRPM5	TRPM6
--------------	-------	-------
HGNC, UniProt	TRPM5, Q9NZQ8	TRPM6, Q9BX84
EC number	–	2.7.11.1
Other chemical activators	–	constitutively active, activated by reduction of intracellular Mg$^{2+}$
Physical activators	membrane depolarization (V_{f} = 0 to + 120 mV dependent upon conditions), heat (Q_{10} = 10.3 @ -75 mV between 15 and 25°C)	–
Endogenous activators	intracellular Ca$^{2+}$ (Agonist) (pEC$_{50}$ 4.5–6.2) [-80mV – 80mV] [389, 580, 1005] – Mouse extracellular H$^{+}$ (Potentiation), intracellular Mg$^{2+}$	2-APB (Agonist) (pEC$_{50}$ 3.4–3.7) [-120mV – 100mV] [562] Mg$^{2+}$ (inward current mediated by monovalent cations is blocked) (pIC$_{50}$ 5.5–6), Ca$^{2+}$ (inward current mediated by monovalent cations is blocked) (pIC$_{50}$ 5.3–5.3)
Activators	–	ruthenium red (pIC$_{50}$ 7) [voltage dependent -120mV]
Endogenous channel blockers	–	Flufenamic acid (pIC$_{50}$ 4.6), intracellular spermine (pIC$_{50}$ 4.4), Extracellular H$^{+}$ (pIC$_{50}$ 3.2)
Channel blockers	–	Mg$^{2+}$ (inward current mediated by monovalent cations is blocked) (pIC$_{50}$ 5.5–6), Ca$^{2+}$ (inward current mediated by monovalent cations is blocked) (pIC$_{50}$ 5.3–5.3)
Functional Characteristics	γ = 15-25 pS; conducts monovalent cations selectively ($P_{Ca}/P_{Na} = 0.05$); strong outward rectification; slow activation at positive potentials, rapid inactivation at negative potentials; activated and subsequently desensitized by [Ca$^{2+}$]	γ= 40–87 pS, permeable to mono- and di-valent cations with a preference for divalents (Mg$^{2+}$ > Ca$^{2+}$; $P_{Ca}/P_{Na} = 6.9$), conductance sequence Zn$^{2+}$ > Ba$^{2+}$ > Mg$^{2+}$ > Ca$^{2+}$ = Mn$^{2+}$ > Sr$^{2+}$ > Cd$^{2+}$ > Ni$^{2+}$; strong outward rectification abolished by removal of extracellular divalents, inhibited by intracellular Mg$^{2+}$ (IC$_{50}$ = 0.5 mM) and ATP
Comments	TRPM5 is not blocked by ATP	–
Nomenclature
- TRPM7
- TRPM8

HGNC, UniProt
- TRPM7, Q96 QT4
- TRPM8, Q72 W7

EC number
- 2.7.11.1

Chemical activators
-

Physical activators
-

Endogenous activators
- Extracellular H+ (Potentiation)

Activators
- **2-APB**
 - Concentration range: >1x10^{-3}M [688] – Mouse, naltriben [390]

Selective activators
-

Channel blockers
- spermine (Inhibition) (pK, 5.6) [-110mV – 80mV] [508] – Rat, 2-APB (Inhibition) (pIC50 3.8) [-100mV – 100mV] [562] – Mouse, carvacrol (Inhibition) (pIC50 3.5) [-100mV – 100mV] [759] – Mouse, Mg^2+ (Antagonist) (pIC50 2.5) [80mV] [688] – Mouse, La^3+ (Antagonist) Concentration range: 2x10^{-3}M [-100mV – 100mV] [852] – Mouse

Selective channel blockers
-

Functional Characteristics
- \(\gamma = 40-105 \) pS at negative and positive potentials respectively; conducts mono- and di-valent cations with a preference for monovalents (P_{Ca}/P_{Na} = 0.34); conductance sequence Ni^{2+} > Zn^{2+} > Ba^{2+} = Mg^{2+} > Ca^{2+} = Mn^{2+} > Sr^{2+} > Cd^{2+}; outward rectification, decreased by removal of extracellular divalent cations; inhibited by intracellular Mg^{2+}, Ba^{2+}, Sr^{2+}, Zn^{2+}, Mn^{2+} and Mg,ATP (disputed); activated by and intracellular alkalization; sensitive to osmotic gradients

Comments
- Cannabidiol and Δ9-tetrahydrocannabinol are examples of cannabinoid activators. TRPM8 is insensitive to ruthenium red. Icilin requires intracellular Ca^{2+} for full agonist activity.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
TRPML (mucolipin) family

The TRPML family [188, 810, 816, 1096, 1129] consists of three mammalian members (TRPML1-3). TRPML channels are probably restricted to intracellular vesicles and mutations in the gene (MCOLN1) encoding TRPML1 (mucolipin-1) cause the neurodegenerative disorder mucolipidosis type IV (MLIV) in man. TRPML1 is a cation selective ion channel that is important for sorting/transport of endosomes in the late endocytic pathway and specifically, fission from late endosome-lysosome hybrid vesicles and lysosomal exocytosis [863]. TRPML2 and TRPML3 show increased channel activity in low extracellular sodium and are activated by similar small molecules [332]. A naturally occurring gain of function mutation in TRPML3 (i.e., A419P) results in the varitint waddler (Vα) mouse phenotype (reviewed by [715, 816]).

Nomenclature	TRPML1	TRPML2	TRPML3
HGN, UniProt	MCOLN1, Q9GZU1	MCOLN2, Q8IZK6	MCOLN3, Q8TDD5
Endogenous activators	phosphatidyl (3,5) inositol bisphosphate (Also activates other TRPMLs) (pEC50 7.3) [234]	–	–
Activators	ML SA1 (pEC50 7.3) [-140mV] [894], MK6-83 (pEC50 7) [-200mV] [154], SF-22 (pEC50 6.3) [-200mV] [154], SF-51 (pEC50 4.3) [894]	ML SA1 Concentration range: 1×10^{-5}M [-140mV] [894], phosphatidyl (3,5) inositol bisphosphate Concentration range: 1×10^{-6}M [-140mV] [234]	ML SA1 Concentration range: 1×10^{-5}M [-140mV] [894], phosphatidyl (3,5) inositol bisphosphate Concentration range: 1×10^{-6}M [-140mV] [234]
TRPML1Va, Constitutively active, current potentiated by extracellular acidification (equivalent to intralysosomal acidification)	TRPML2Va, Constitutively active, current potentiated by extracellular acidification (equivalent to intralysosomal acidification)	TRPML3Va, Constitutively active, current potentiated by extracellular acidification (equivalent to intralysosomal acidification)	
Selective activators	–	Gd³⁺ (Antagonist) (pIC50 4.7) [-80mV] [690] – Mouse	–
Channel blockers	–	ML2-SA1 (Agonist) (pEC50 5.9) [-100mV] [802]	–
Functional Characteristics	TRPML1Va; γ = 40 pS and 76-86 pS at very negative holding potentials with Fe²⁺ and monovalent cations as charge carriers, respectively; conducts Na⁺ ≳ K⁺ > Cs⁺, and divalent cations (Ba²⁺ > Mn²⁺ > Fe²⁺ > Ca²⁺ > Mg²⁺ > Ni²⁺ > Co²⁺ > Cd²⁺ > Zn²⁺ > Cu²⁺); monovalent cation flux suppressed by divalent cations (e.g. Ca²⁺, Fe²⁺); inwardly rectifying	Conducts Na⁺; monovalent cation flux suppressed by divalent cations; inwardly rectifying	TRPML3Va; γ = 49 pS at very negative holding potentials with monovalent cations as charge carrier; conducts Na⁺ > K⁺ > Cs⁺ with maintained current in the presence of Na⁺, conducts Ca²⁺ and Mg²⁺, but not Fe²⁺, impermeable to protons; inwardly rectifying Wild type TRPML3; γ = 59 pS at negative holding potentials with monovalent cations as charge carrier; conducts Na⁺ > K⁺ > Cs⁺ and Ca²⁺ (PNa/PK ≈ 350), slowly inactivates in the continued presence of Na⁺ within the extracellular (extracytosolic) solution; outwardly rectifying
Comments	TRPML1 current is potentiated by acidic pH and sphingosine [894].	–	–

Comments: Data in the table are for TRPML proteins mutated (i.e.,TRPML1Va, TRPML2Va and TRPML3Va) at loci equivalent to TRPML3 A419P to allow plasma membrane expression when expressed in HEK-293 cells and subsequent characterisation by patch-clamp recording [233, 330, 484, 690, 1094]. Data for wild type TRPML3 are also tabulated [484, 485, 690, 1094]. It should be noted that alternative methodologies, particularly in the case of TRPML1, have resulted in channels with differing biophysical characteristics (reviewed by [810]). Initial functional characteristics of TRPML channels are performed on their Va mutations of TRPMLs at loci equivalent to TRPML3 A419P. Current pharmacological characterization of channel activators and blockers are conducted on wild-type channel proteins using endolysosomal patch-clamp [154, 234, 802, 894].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
TRPP (polycystin) family
The TRPP family (reviewed by [213, 215, 316, 387, 1077]) or PKD2 family is comprised of PKD2 (PC2), PKD2L1 (PC2L1), PKD2L2 (PC2L2), which have been renamed TRPP1, TRPP2 and TRPP3, respectively [1084]. It should also be noted that the nomenclature of PC2 was TRPP2 in old literature. However, PC2 has been unified to be called TRPP2 [356]. PKD2 family channels are clearly distinct from the PKD1 family, whose function is unknown. PKD1 and PKD2 form a hetero-oligomeric complex with a 1:3 ratio [943]. Although still being sorted out, TRPP family members appear to be 6TM spanning nonselective cation channels.

Nomenclature	TRPP1	TRPP2	TRPP3
HGNC, UniProt	PKD2, Q13563	PKD2L1, Q9POL9	PKD2L2, Q9NZM6
Activators	–	phenamil (pIC$ ext{50}$ 6.9), benzamil (pIC$ ext{50}$ 6), ethylisopropylamiloride (pIC$ ext{50}$ 5), amiloride (pIC$ ext{50}$ 3.8), Gd$^{3+}$ Concentration range: 1×10^{-4}M [-50mV] [161], La$^{3+}$ Concentration range: 1×10^{-4}M [-50mV] [161], flufenamate	–
Channel blockers	–	–	–

Functional Characteristics

TRPP1 (PKD2) is a cation channel found in primary cilia of inner medullary collecting duct (IMCD) cells, but not at the plasma membrane; conducts $K^+>Na^+>Ca^{2+}$ (1:0.4:0.025). PKD2 shows a large outward conductance (90-117 pS) [584, 781]. Activators or channel blockers remain to be investigated.

Currents have been measured directly from primary cilia and also when expressed on plasma membranes. Primary cilia appear to contain heteromeric TRPP2 + PKD1-L1, underlying a gently outwardly rectifying nonselective conductance (P_{Ca}/P_{Na} 6: PKD1-L1 is a 12 TM protein of unknown topology). Primary cilia heteromeric channels have an inward single channel conductance of 80 pS and an outward single channel conductance of 95 pS. Presumed homomeric TRPP2 channels are gently outwardly rectifying. Single channel conductance is 120 pS inward, 200 pS outward [205]. TRPP2 (PKD2L1) displays calcium dependent activation. Calcium accumulation due to prolonged channel activity may lead to outward-moving Ca$^{2+}$ ions to close the channel [206].

The functional characteristics of PKD2L2/PC2L2 has not been established yet.

Comments: Data in the table are extracted from [195, 215] and [898]. Broadly similar single channel conductance, mono- and di-valent cation selectivity and sensitivity to blockers are observed for TRPP2 co-expressed with TRPP1 [214]. Ca$^{2+}$, Ba$^{2+}$ and Sr$^{2+}$ permeate TRPP3, but reduce inward currents carried by Na$^+$. Mg$^{2+}$ is largely impermeant and exerts a voltage dependent inhibition that increases with hyperpolarization.
TRPV (vanilloid) family

Members of the TRPV family (reviewed by [1012]) can broadly be divided into the non-selective cation channels, TRPV1-4 and the more calcium selective channels TRPV5 and TRPV6.

TRPV1-V4 subfamily

TRPV1 is involved in the development of thermal hyperalgesia following inflammation and may contribute to the detection of noxius heat (reviewed by [794, 925, 954]). Numerous splice variants of TRPV1 have been described, some of which modulate the activity of TRPV1, or act in a dominant negative manner when co-expressed with TRPV1 [883]. The pharmacology of TRPV1 channels is discussed in detail in [343] and [1026]. TRPV1 is probably not a thermosensor in man [756], but has recently been implicated in innate immunity [576]. TRPV3 and TRPV4 are both thermosensitive. There are claims that TRPV4 is also mechanosensitive, but this has not been established to be within a physiological range in a native environment [129, 567].

TRPV5/V6 subfamily

TRPV5 and TRPV6 are highly expressed in placenta, bone, and kidney. Under physiological conditions, TRPV5 and TRPV6 are calcium selective channels involved in the absorption and reabsorption of calcium across intestinal and kidney tubule epithelia (reviewed by [202, 280, 687, 1075]).

Nomenclature	TRPV1	TRPV2
HGNC, UniProt	TRPV1, Q8NER1	TRPV2, Q9Y5S1
Other chemical activators	NO-mediated cysteine S-nitrosylation	–
Physical activators	depolarization (V_θ 0 mV at 35°C), noxious heat (> 43°C at pH 7.4)	–
Endogenous activators	extracellular H⁺ (at 37°C) (pEC₅₀ 5.4), 12S-HPETE (Agonist) (pEC₅₀ 5.1) [-60mV] [412]	–
Activators	resiniferatoxin (Agonist) (pEC₅₀ 8.4) [physiological voltage] [910], capsaicin (Agonist) (pEC₅₀ 7.5) [-100mV – 160mV] [1020], pipermethine (Agonist) (pEC₅₀ 4.4–5) [-70mV] [645], camphor, dihydrogen succinic anhydride, phenylacetylrivansil [31]	2-APB (pEC₅₀ 5) [699, 817] – Rat, Δ⁹-tetrahydrocannabinol (pEC₅₀ 4.8) [817] – Rat, cannabidiol (pEC₅₀ 4.5) [817], probenecid (pEC₅₀ 4.5) [50] – Rat, 2-APB (Agonist) (pEC₅₀ 3.8–3.9) [physiological voltage] [404, 455] – Mouse, diphenylboronic anhydride (Agonist) Concentration range: 1x10⁻¹⁰M [-80mV] [174, 455] – Mouse
Selective activators	olvanil (Agonist) (pEC₅₀ 7.7) [physiological voltage] [910], DkTx (pEC₅₀ 6.6) [physiological voltage] [99] – Rat	–
Channel blockers	S¹-iodoresiniferatoxin (pIC₅₀ 8.4), 6-iodo-nordihydrocapsaicin (pIC₅₀ 8), AMG 9810 (Inhibitory) (pIC₅₀ 7.8) [physiological voltage] [312], BCTC (Antagonist) (pIC₅₀ 7.5) [148], capsazepine (Antagonist) (pIC₅₀ 7.4) [-60mV] [642], ruthenium red (pIC₅₀ 6.7–7)	ruthenium red (pIC₅₀ 6.2), TRIM (Inhibition) Concentration range: 5x10⁻⁸M [455] – Mouse
Selective channel blockers	AMGSA (pIC₅₀ 9) [95], AMG628 (pIC₅₀ 8.4) [1046] – Rat, A245619 (pIC₅₀ 8.3) [261], A778317 (pIC₅₀ 8.3) [85], SB367911 (pIC₅₀ 8.2) [345], X1421 (Antagonist) (pIC₅₀ 8) [1055] – Rat, JNJ17203212 (Antagonist) (pIC₅₀ 7.8) [physiological voltage] [950], SB452333 (Antagonist) (pK_B 7.7), SB705498 (Antagonist) (pIC₅₀ 7.1) [344]	–
Labelled ligands	[3H]A778317 (Channel blocker) (pK_B 8.5) [85], [1²⁵]³Hresiniferatoxin (Channel blocker, Antagonist) (pIC₅₀ 8.4) [-50mV] [1034] – Rat, [3³H]resiniferatoxin (Activator)	Conducts mono- and di-valent cations (P_{Ca}/P_{Na} = 9.6); voltage- and time- dependent outward rectification; potentiated by ethanol; activated/potentiated/upregulated by PKC stimulation; extracellular acidification facilitates activation by PKC; desensitisation inhibited by PKA; inhibited by Ca²⁺/calmodulin; cooling reduces vanilloid-evoked currents; may be tonically active at body temperature
Functional Characteristics	γ = 35 pS at – 60 mV, 77 pS at + 60 mV, conducts mono- and di-valent cations with a selectivity for divalents (P_{Ca}/P_{Na} = 9.6); voltage- and time- dependent outward rectification; potentiated by ethanol; activated/potentiated/upregulated by PKC stimulation; extracellular acidification facilitates activation by PKC; desensitisation inhibited by PKA; inhibited by Ca²⁺/calmodulin; cooling reduces vanilloid-evoked currents; may be tonically active at body temperature	Conducts mono- and di-valent cations (P_{Ca}/P_{Na} = 0.9–2.9); dual (inward and outward) rectification; current increases upon repetitive activation by heat; translocates to cell surface in response to IGF-1 to induce a constitutively active conductance, translocates to the cell surface in response to membrane stretch
Nomenclature

TRPV3
TRPV4

HGNC, UniProt
TRPV3, TRPV4, Q8NET8, Q9HBA0

Other chemical activators
NO-mediated cysteine S-nitrosylation

Epoxeyeicosatrieonic acids and NO-mediated cysteine S-nitrosylation

Physical activators
depolarization (V
₀ +80 mV, reduced to more negative values following heat stimuli), heat (23°C - 39°C, temperature threshold reduces with repeated heat challenge)

Constitutively active, heat (> 24°C - 32°C), mechanical stimuli

Activators

Activator	pEC₅₀	Species
incensole acetate	4.8	Mouse
2-APB	4.6	Mouse
diphenylboronic anhydride	4.1 - 4.2	Mouse
thymol	3.3	Mouse
eugenol	2.5	Mouse
camphor	1.7	Mouse
carvacrol	1.7	Mouse
phorbol 12-myristate 13-acetate	7.9	[1091]
arachidonic acid	5	[1059]
6-tert-butyl-m-cresol	3.4	[1024]
GSK1016790A	8.7	[984]
4α-PDH	7.1	[1091]
RN1747	6.1	[1016]
bisandrographilide	6	[915]
ruthenium red	6.7	[342]
RN-9893	6.2	[1065]
RN1734	5.6	[1016]

Selective activators

Activator	pEC₅₀	Species
ruthenium red	6.7	[342]
GSK1016790A	8.7	[984]
4α-PDH	7.1	[1091]
RN1747	6.1	[1016]
bisandrographilide	6	[915]
HC067047	7.3	[275]
RN-9893	6.2	[1065]
RN1734	5.6	[1016]

Channel blockers

Blocker	pIC₅₀	Species
ruthenium red	6.7	[342]
GSK1016790A	8.7	[984]
4α-PDH	7.1	[1091]
RN1747	6.1	[1016]
bisandrographilide	6	[915]
HC067047	7.3	[275]
RN-9893	6.2	[1065]
RN1734	5.6	[1016]
ruthenium red	6.7	[342]
GSK1016790A	8.7	[984]
4α-PDH	7.1	[1091]
RN1747	6.1	[1016]
bisandrographilide	6	[915]
HC067047	7.3	[275]
RN-9893	6.2	[1065]
RN1734	5.6	[1016]

Selective channel blockers

Blocker	pIC₅₀	Species
ruthenium red	6.7	[342]
GSK1016790A	8.7	[984]
4α-PDH	7.1	[1091]
RN1747	6.1	[1016]
bisandrographilide	6	[915]
HC067047	7.3	[275]
RN-9893	6.2	[1065]
RN1734	5.6	[1016]

Functional Characteristics

Characteristic	Value
γ = 197 pS at +40 to +80 mV, 48 pS at negative potentials; conducts mono- and di-valent cations; outward rectification; potentiated by arachidonic acid	
γ = 60 pS at −60 mV, 90-100 pS at +60 mV; conducts mono- and di-valent cations with a preference for divalents (P_Ca/P_Na =6–10); dual (inward and outward) rectification; potentiated by intracellular Ca²⁺ via Ca²⁺/calmodulin; inhibited by elevated intracellular Ca²⁺ via an unknown mechanism (IC₅₀ = 0.4 μM)	
Nomenclature
TRPV3

HGNC, UniProt
TRPV3, Q9NQAS

Other channel blockers
Pb2+ > Ca2+ > Cd2+ > Zn2+ > La3+ > Co2+ > Fe2+

Activators
constitutively active (with strong buffering of intracellular Ca2+)

Channel blockers
ruthenium red (pIC50 6.9), Mg2+

Functional Characteristics
\(\gamma = 59-78 \) pS for monovalent ions at negative potentials, conducts mono- and di-valents with high selectivity for divalents (P/Ca/PNa > 107); voltage- and time-dependent inward rectification; inhibited by intracellular Ca2+ promoting fast inactivation and slow downregulation; feedback inhibition by Ca2+ reduced by calcium binding protein 80-K-H; inhibited by extracellular and intracellular acidosis; upregulated by 1,25-dihydrovitamin D3

Dependent metabolism to 5,6-epoxyeicosatrienoic acid (reviewed by [719]). Activation of TRPV4 by cell swelling, but not heat, or phorbol esters, is mediated via the formation of epoxyeicosatrienoic acids. Phorbol esters bind directly to TRPV4. Different TRPV4 mutations lead to a broad spectrum of dominant skeletal dysplasias [512, 840] and spinal muscular atrophies and hereditary motor and sensory neuropathies [41, 218]. Similar mutations were also found in patients with Charcot-Marie-Tooth disease type 2C [533]. TRPV4 preferentially conducts Ca2+ under physiological conditions, but in the absence of extracellular Ca2+, conduct monovalent cations. Single channel conductances listed for TRPV3 and TRPV6 were determined in divalent cation-free extracellular solution. Ca2+-induced inactivation occurs at hyperpolarized potentials when Ca2+ is present extracellularly. Single channel events cannot be resolved (probably due to greatly reduced conductance) in the presence of extracellular divalent cations. Measurements of P/Ca/PNa for TRPV5 and TRPV6 are dependent upon ionic conditions due to anomalous mole fraction behaviour. Blockade of TRPV3 and TRPV6 by extracellular Mg2+ is voltage-dependent. Intracellular Mg2+ also exerts a voltage-dependent blockade that is alleviated by hyperpolarization and contributes to the time-dependent activation and deactivation of TRPV6-mediated monovalent cation currents. TRPV3 and TRPV6 differ in their kinetics of Ca2+-dependent inactivation and recovery from inactivation. TRPV5 and TRPV6 function as homo- and heterotetramers.

Comments: Activation of TRPV1 by depolarisation is strongly temperature-dependent via a channel opening rate that increases with increasing temperature. The V3 is shifted in the hyperpolarizing direction both by increasing temperature and by exogenous agonists [1020]. TRPV3 channel dysfunction caused by genetic gain-of-function mutations is implicated in the pathogenesis of skin inflammation, dermatitis, and chronic itch. In rodents, a spontaneous gain-of-function mutation of the TRPV3 gene causes the development of skin lesions with pruritus and dermatitis [34, 573]. In contrast to other thermoTRP channels, TRPV3 sensitizes rather than desensitizes, upon repeated stimulation with either heat or agonists [175, 579, 1095]. The sensitivity of TRPV4 to heat, but not 4e-PDD is lost upon patch excision. TRPV4 is activated by anandamide and arachidonic acid following P450 epoxyenase-dependent metabolism to 5,6-epoxyeicosatrienoic acid (reviewed by [719]). Activation of TRPV4 by cell swelling, but not heat, or phorbol esters, is mediated via the formation of epoxyeicosatrienoic acids. Phorbol esters bind directly to TRPV4. Different TRPV4 mutations lead to a broad spectrum of dominant skeletal dysplasias [512, 840] and spinal muscular atrophies and hereditary motor and sensory neuropathies [41, 218]. Similar mutations were also found in patients with Charcot-Marie-Tooth disease type 2C [533]. TRPV4 preferentially conducts Ca2+ under physiological conditions, but in the absence of extracellular Ca2+, conducts monovalent cations. Single channel conductances listed for TRPV3 and TRPV6 were determined in divalent cation-free extracellular solution. Ca2+-induced inactivation occurs at hyperpolarized potentials when Ca2+ is present extracellularly. Single channel events cannot be resolved (probably due to greatly reduced conductance) in the presence of extracellular divalent cations. Measurements of P/Ca/PNa for TRPV5 and TRPV6 are dependent upon ionic conditions due to anomalous mole fraction behaviour. Blockade of TRPV3 and TRPV6 by extracellular Mg2+ is voltage-dependent. Intracellular Mg2+ also exerts a voltage-dependent blockade that is alleviated by hyperpolarization and contributes to the time-dependent activation and deactivation of TRPV6-mediated monovalent cation currents. TRPV3 and TRPV6 differ in their kinetics of Ca2+-dependent inactivation and recovery from inactivation. TRPV5 and TRPV6 function as homo- and heterotetramers.

Further reading on Transient Receptor Potential channels

Aghazadeh Tabrizi M et al. (2017) Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 37: 936-983 [PMID:27976413]
Basso L et al. (2017) Transient Receptor Potential Channels in neuropathic pain. Curr Opin Pharmacol 32: 9-15 [PMID:27835802]
Ciardo MG et al. (2017) Lipids as central modulators of sensory TRP channels. Biochim. Biophys. Acta 1859: 1615-1628 [PMID:28432033]
Clapham DE et al. (2003) International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol. Rev. 55: 591-6 [PMID:14657417]
Díaz-Framulic I et al. (2016) Allostereism and Structure in Thermally Activated Transient Receptor Potential Channels. Annu Rev Biophys 45: 371-98 [PMID:27297398]
Emir TLB. (2017) Neurobiology of TRP Channels Neurobiology of TRP Channels [PMID:29356487]
Grayson TH et al. (2017) Transient receptor potential canonical type 3 channels: Interactions, role and relevance - A vascular focus. Pharmacol. Ther. 174: 79-96 [PMID:28223224]
Nilius B et al. (2014) Mammalian transient receptor potential (TRP) cation channels. Preface. Handb Exp Pharmacol 223: v - vi [PMID:25296415]
Rubaty HN. (2019) Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br. J. Pharmacol. 176: 832-846 [PMID:30656647]
Wu LJ et al. (2010) International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev. 62: 381-404 [PMID:20716668]
Zhu MX. (2011) Various TRP Channels (CRC Press/Taylor & Francis) [PMID:22593967]
Zietler S et al. (2017) TRPM channels as potential therapeutic targets against pro-inflammatory diseases. Cell Calcium 67: 105-115 [PMID:28549569]
Voltage-gated calcium channels

Overview: Calcium (Ca$^{2+}$) channels are voltage-gated ion channels present in the membrane of most excitable cells. The nomenclature for Ca$^{2+}$ channels was proposed by [267] and approved by the NC-IUPHAR Subcommittee on Ca$^{2+}$ channels [139]. Ca$^{2+}$ channels form hetero-oligomeric complexes. The α1 subunit is pore-forming and provides the binding site(s) for practically all agonists and antagonists. The 10 cloned α1-subunits can be grouped into three families: (1) the high-voltage activated dihydropyridine-sensitive (L-type, Cav.1.x) channels; (2) the high-voltage activated dihydropyridine-insensitive (Cav.2.x) channels and (3) the low-voltage-activated (T-type, Cav.3.x) channels. Each α1 subunit has four homologous repeats (I-IV), each repeat having six transmembrane domains and a pore-forming region between transmembrane domains S5 and S6. Gating is thought to be associated with the membrane-spanning S4 segment, which contains highly conserved positive charges. Many of the α1-subunit genes give rise to alternatively spliced products. At least for high-voltage activated channels, it is likely that native channels comprise co-assemblies of α1, β and α2-δ subunits. The γ subunits have not been proven to associate with channels other than the α1s skeletal muscle Cav1.1 channel. The α2-δ1 and α2-δ2 subunits bind gabapentin and pregabalin.

Nomenclature	Cα1,1	Cα1,2	Cα1,3	Cα1,4
HGNC, UniProt	CACNA1S, Q13698	CACNA1C, Q13936	CACNA1D, Q01668	CACNA1F, O60840
Activators	FPL64176 (pEC50 ~7.8), (-)-(S)-BayK8644 (pEC50 ~7.8)	(-)-(S)-BayK8644 (pEC50 ~7.8), FPL64176 Concentration range: 1x10^{-6}M-5x10^{-4}M [582] – Rat	FPL64176 (pEC50 ~7.8), (-)-(S)-BayK8644 (pEC50 ~7.8)	(-)-(S)-BayK8644 (pEC50 ~7.8)
Gating inhibitors	nifedipine (Antagonist) (pIC50 6.3) Concentration range: 1x10^{-7}M-1x10^{-5}M [530] – Rat, nimodipine (Antagonist) (pIC50 6) [-80mV] – Rat	isradipine (arterial smooth muscle-like activity) (pIC50 8.8) [743], isradipine (dopamine neuron neuron-like activity) (pIC50 8.5) [743], nifedipine (Antagonist) (pIC50 7.7) [-80mV] [793, 814] – Rat, nimodipine (Antagonist) (pIC50 6.8) [-80mV] [1098] – Rat	nitrendipine (Inhibition) (pIC50 8.4) [906], isradipine (dopamine neuron-like activity; splice variant-dependent) (pIC50 7.8-8.2) [743], nifedipine (Antagonist) (pIC50 7.7) [906], nimodipine (Antagonist) (pIC50 5.7-6.6) [-80M-40mV] [856, 1098] – Rat	nifedipine (Antagonist) (pIC50 6) [-100mV] [646], nimodipine (Antagonist) (pIC50 6) [-70mV], nitrendipine (Antagonist) (pIC50 6) [-70mV]
Channel blockers	diltiazem (Antagonist), verapamil (Antagonist)	diltiazem (Antagonist), verapamil (Antagonist)	verapamil (Antagonist)	diltiazem (pIC50 4) [-80mV] [64] – Mouse, verapamil Concentration range: 1x10^{-4}M [-80mV] [64] – Mouse
Sub/family-selective channel blockers	calcisepine (Antagonist)	calcisepine (Antagonist)	–	–
Functional Characteristics	L-type calcium current: High voltage-activated, slow voltage dependent inactivation	L-type calcium current: High voltage-activated, slow voltage-dependent inactivation, rapid calcium-dependent inactivation	–	L-type calcium current: Moderate voltage-activated, slow voltage-dependent inactivation
Comments	–	–	Caα1,3 activates more negative potentials than Caα1,2 and is about 5-10 fold less sensitive to dihydropyridine antagonists.	Caα1,4 is less sensitive to dihydropyridine antagonists than other Cav1 channels

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full

Voltage-gated calcium channels S204
Nomenclature

Subtype	HGNC, UniProt	Functional Characteristics
Cav2.1	CACNA1A, 000555	P/Q-type calcium current: Moderate voltage-activated, moderate voltage-dependent inactivation
Cav2.2	CACNA1B, Q00975	N-type calcium current: High voltage-activated, moderate voltage-dependent inactivation
Cav2.3	CACNA1E, Q15878	R-type calcium current: Moderate voltage-activated, fast voltage-dependent inactivation

Gating Inhibitors

Name	IC50	Voltage (mV)
NP118809	7	[-80mV]
SNX482	7.5–8	[physiological voltage]
kurtoxin (Antagonist)	7.3–7.8	[-90mV]
kurtoxin (Antagonist)	7.3–7.6	[-90mV]
kurtoxin (Antagonist)	6.1–8.5	[-80mV]

Channel Blockers

Name	IC50	Voltage (mV)
Ni2+ (Antagonist)	3.6–3.8	[-90mV]
Z944 (Pore blocker)	7.3	[-80mV]
TTA-A2 (Pore blocker)	7.5	[-80mV]
mibefradil (Antagonist)	5.9–7.2	[-110mV]
mibefradil (Antagonist)	4.9–5.2	[-80mV]

Functional Characteristics

- **P/Q-type calcium current**: Moderate voltage-activated, moderate voltage-dependent inactivation
- **N-type calcium current**: High voltage-activated, moderate voltage-dependent inactivation
- **R-type calcium current**: Moderate voltage-activated, fast voltage-dependent inactivation

Comments

In many cell types, P and Q current components cannot be adequately separated and many researchers in the field have adopted the terminology 'P/Q-type' current when referring to either component. Both of these physiologically defined current types are conducted by alternative forms of Cav2.1. Zi-conotide (a synthetic peptide equivalent to ω-conotoxin MVIIA) has been approved for the treatment of chronic pain [1072].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Further reading on Voltage-gated calcium channels

Catterall WA et al. (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57: 411-25 [PMID:16382099]

Catterall WA et al. (2015) Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol. Pharmacol. 88: 141-50 [PMID:25848093]

Catterall WA et al. (2015) Deciphering voltage-gated Na(+) and Ca(2+) channels by studying prokaryotic ancestors. Trends Biochem. Sci. 40: 526-34 [PMID:26254514]

Dolphin AC. (2018) Voltage-gated calcium channels: their discovery, function and importance as drug targets. Brain Neurosci Adv 2: [PMID:30320224]

Flucher BE et al. (2017) How and why are calcium currents curtailed in the skeletal muscle voltage-gated calcium channels? J. Physiol. (Lond.) 595: 1451-1463 [PMID:27896815]

Huang J et al. (2017) Regulation of voltage gated calcium channels by GPCRs and post-translational modification. Curr Opin Pharmacol 32: 1-8 [PMID:27768908]

Nanou E et al. (2018) Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 98: 466-481 [PMID:29723500]

Ortner NJ et al. (2016) L-type calcium channels as drug targets in CNS disorders. Channels (Austin) 10: 7-13 [PMID:26039257]

Rougier JS et al. (2016) Cardiac voltage-gated calcium channel macromolecular complexes. Biochim. Biophys. Acta 1863: 1806-12 [PMID:26707467]

Zamponi GW. (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat Rev Drug Discov 15: 19-34 [PMID:26542451]

Zamponi GW et al. (2015) The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol. Rev. 67: 821-70 [PMID:26362469]
Voltage-gated proton channel

Overview: The voltage-gated proton channel (provisionally denoted Hv1) is a putative 4TM proton-selective channel gated by membrane depolarization and which is sensitive to the transmembrane pH gradient [131, 208, 209, 827, 868]. The structure of Hv1 is homologous to the voltage sensing domain (VSD) of the superfamily of voltage-gated ion channels (i.e. segments S1 to S4) and contains no discernable pore region [827, 868]. Proton flux through Hv1 is instead most likely mediated by a water wire completed in a crevice of the protein when the voltage-sensing S4 helix moves in response to a change in transmembrane potential [826, 1079]. Hv1 expresses largely as a dimer mediated by intracellular C-terminal coiled-coil interactions [564] but individual promoters nonetheless support gated H⁺ flux via separate conduction pathways [502, 547, 787, 989]. Within dimeric structures, the two protomers do not function independently, but display co-operative interactions during gating resulting in increased voltage sensitivity, but slower activation, of the dimeric, versus monomeric, complexes [322, 990].

Nomenclature

Nomenclature	Hv1
HGNC, UniProt	HVCN1, Q96D96

Channel blockers

| Channel blockers | Zn²⁺ (pIC₅₀ ∼5.7–6.3), Cd²⁺ (pIC₅₀ ∼5) |

Functional Characteristics

Activated by membrane depolarization mediating macroscopic currents with time-, voltage- and pH-dependence; outwardly rectifying; voltage dependent kinetics with relatively slow current activation sensitive to extracellular pH and temperature, relatively fast deactivation; voltage threshold for current activation determined by pH gradient (ΔpH = pHₒ - pHᵢ) across the membrane

Comments: The voltage threshold (Vthr) for activation of Hv1 is not fixed but is set by the pH gradient across the membrane such that Vₚₘᵢₜ is positive to the Nernst potential for H⁺, which ensures that only outwardly directed flux of H⁺ occurs under physiological conditions [131, 208, 209]. Phosphorylation of Hv1 within the N-terminal domain by PKC enhances the gating of the channel [682]. Tabulated IC₅₀ values for Zn²⁺ and Cd²⁺ are for heterologously expressed human and mouse Hv1 [827, 868]. Zn²⁺ is not a conventional pore blocker, but is coordinated by two, or more, external protonation sites involving histamine residues [827]. Zn²⁺ binding may occur at the dimer interface between pairs of histamine residues from both monomers where it may interfere with channel opening [683]. Mouse knockout studies demonstrate that Hv1 participates in charge compensation in granulocytes during the respiratory burst of NADPH oxidase-dependent reactive oxygen species production that assists in the clearance of bacterial pathogens [828]. Additional physiological functions of Hv1 are reviewed by [131].

Further reading on Voltage-gated proton channel

Castillo K et al. (2015) Voltage-gated proton (Hv1) channels, a singular voltage sensing domain. FEBS Lett. 589: 3471-8 [PMID:26296320]

DeCoursey TE. (2018) Gating currents indicate complex gating of voltage-gated proton channels. Proc. Natl. Acad. Sci. U.S.A. 115: 9057-9059 [PMID:30135099]

DeCoursey TE. (2018) Voltage and pH sensing by the voltage-gated proton channel, HV1. J R Soc Interface 15: [PMID:29643227]

Fernández A et al. (2016) Pharmacological Modulation of Proton Channel Hv1 in Cancer Therapy: Future Perspectives. Mol. Pharmacol. 90: 385-402 [PMID:27260771]

Okamura Y et al. (2015) Gating mechanisms of voltage-gated proton channels. Annu. Rev. Biochem. 84: 685-709 [PMID:26034892]

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Voltage-gated sodium channels

Ion channels → Voltage-gated ion channels → Voltage-gated sodium channels

Overview: Sodium channels are voltage-gated sodium-selective ion channels present in the membrane of most excitable cells. Sodium channels comprise of one pore-forming α subunit, which may be associated with either one or two β subunits [425]. α-Subunits consist of four homologous domains (I-IV), each containing six transmembrane segments (S1-S6) and a pore-forming loop. The positively charged fourth transmembrane segment (S4) acts as a voltage sensor and is involved in channel gating. The crystal structure of the bacterial NavAb channel has revealed a number of novel structural features compared to earlier potassium channel structures including a short selectivity filter with ion selectivity determined by interactions with glutamate side chains [767]. Interestingly, the pore region is penetrated by fatty acyl chains that extend into the central cavity which may allow the entry of small, hydrophobic pore-blocking drugs [767]. Auxiliary β1, β2, β3 and β4 subunits consist of a large extracellular N-terminal domain, a single transmembrane segment and a shorter cytoplasmic domain.

The nomenclature for sodium channels was proposed by Goldin et al., (2000) [319] and approved by the NC-IUPHAR Subcommittee on sodium channels (Catterall et al., 2005, [137]).

Nomenclature	Na\textsubscript{v}1.1	Na\textsubscript{v}1.2	Na\textsubscript{v}1.3	Na\textsubscript{v}1.4
HGNC, UniProt	SCN1A, P35498	SCN2A, Q99250	SCN3A, Q9NY46	SCN4A, P35499
Sub/family-selective activators	batrachotoxin, veratridine	batrachotoxin (Agonist) (pK\textsubscript{d} 9.1) [physiological voltage] [574] – Rat, veratridine (Partial agonist) (pK\textsubscript{d} 5.2) [physiological voltage] [138] – Rat	batrachotoxin, veratridine	batrachotoxin (Full agonist) Concentration range: 5x10-6M [-100mV] [1050] – Rat, veratridine (Partial agonist) Concentration range: 2x10-4M [-100mV] [1050] – Rat
Channel blockers	tetrodotoxin (Pore blocker) (pK\textsubscript{d} 8) [-100mV] [916] – Rat	–	–	–
Sub/family-selective channel blockers	Hm1a [744] – Rat, saxitoxin (Pore blocker)	saxitoxin (Pore blocker) (pIC\textsubscript{50} 8.8) [-120mV] [108] – Rat, tetrodotoxin (Pore blocker) (pIC\textsubscript{50} 8) [-120mV] [108] – Rat, lacosamide (Antagonist) (pIC\textsubscript{50} 4.5) [-80mV] [1] – Rat	tetrodotoxin (Pore blocker) (pIC\textsubscript{50} 8.4) [163], saxitoxin (Pore blocker)	saxitoxin (Pore blocker) (pIC\textsubscript{50} 8.4) [-100mV] [780] – Rat, tetrodotoxin (Pore blocker) (pIC\textsubscript{50} 7.6) [-120mV] [143], µ-conotoxin GIIIA (Pore blocker) (pIC\textsubscript{50} 5.9) [-100mV] [143]
Functional Characteristics	Activation \(V_{0.5} = -20\) mV. Fast inactivation (\(\tau = 0.7\) ms for peak sodium current).	Activation \(V_{0.5} = -24\) mV. Fast inactivation (\(\tau = 0.8\) ms for peak sodium current).	Activation \(V_{0.5} = -24\) mV. Fast inactivation (0.8 ms)	Activation \(V_{0.5} = -30\) mV. Fast inactivation (0.6 ms)

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Nomenclature

Sub/family-selective activators	Na\(_v\)1.5	Na\(_v\)1.6	Na\(_v\)1.7	Na\(_v\)1.8	Na\(_v\)1.9
HGNC, UniProt	SCN5A, Q14524	SCN8A, Q9UQD0	SCN9A, Q15858	SCN10A, Q9YSY9	SCN11A, Q9UI33
batrachotoxin (Full agonist) (pK\(_d\) 7.6) [physiological voltage] [892] – Rat, veratridine (Partial agonist) (pEC\(_{50}\) 6.3) [-30mV] [1043] – Rat	batrachotoxin, veratridine	tetrodotoxin (Pore blocker) (pIC\(_{50}\) 5.8) [-80mV] [187, 1130] – Rat	tetrodotoxin (Pore blocker) (pIC\(_{50}\) 4.2) [-120mV] [191] – Rat	tetrodotoxin (Pore blocker) (pIC\(_{50}\) 4.4) [-120mV] [191] – Rat	

Sub/family-selective channel blockers

Selective channel blockers	Activation \(V_{0.5}\) = -26 mV. Fast inactivation (\(\tau\) = 1 ms for peak sodium current).	Activation \(V_{0.5}\) = -29 mV. Fast inactivation (1 ms)	Activation \(V_{0.5}\) = -27 mV. Fast inactivation (0.5 ms)	Activation \(V_{0.5}\) = -16 mV. Inactivation (6 ms)	Activation \(V_{0.5}\) = -32 mV. Slow inactivation (16 ms)
tetrodotoxin (Pore blocker) (pIC\(_{50}\) 9) [-130mV] [224] – Rat, saxitoxin (Pore blocker)	tetrodotoxin (Pore blocker) (pIC\(_{50}\) 7.6) [-100mV] [496], saxitoxin (Pore blocker) (pIC\(_{50}\) 6.2) [1038]	tetrodotoxin (Pore blocker) (pIC\(_{50}\) 4.2) [-60mV] [15] – Rat	PF-01247324 (Pore blocker) (pIC\(_{50}\) 6.7) [voltage dependent] [768]	–	

Functional Characteristics

- Activation \(V_{0.5}\) = -26 mV. Fast inactivation (\(\tau\) = 1 ms for peak sodium current).
- Activation \(V_{0.5}\) = -29 mV. Fast inactivation (1 ms).
- Activation \(V_{0.5}\) = -27 mV. Fast inactivation (0.5 ms).
- Activation \(V_{0.5}\) = -16 mV. Inactivation (6 ms).
- Activation \(V_{0.5}\) = -32 mV. Slow inactivation (16 ms).

Comments: Sodium channels are also blocked by local anaesthetic agents, antiarrhythmic drugs and antiepileptic drugs. In general, these drugs are not highly selective among channel subtypes. There are two clear functional fingerprints for distinguishing different subtypes. These are sensitivity to tetrodotoxin (Na\(_v\)1.5, Na\(_v\)1.8 and Na\(_v\)1.9 are much less sensitive to block) and rate of fast inactivation (Na\(_v\)1.8 and particularly Na\(_v\)1.9 inactivate more slowly). All sodium channels also have a slow inactivation process that is engaged during long depolarizations (>100 msec) or repetitive trains of stimuli. All sodium channel subtypes are blocked by intracellular QX-314.

Further reading on Voltage-gated sodium channels

Catterall WA et al. (2005) International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57: 397-409 [PMID:16382098]

Catterall WA et al. (2017) The chemical basis for electrical signaling. Nat. Chem. Biol. 13: 455-463 [PMID:28406893]

Deuis JR et al. (2017) The pharmacology of voltage-gated sodium channel activators. Neuropsychopharmacology 127: 87-108 [PMID:28416444]

Jiang D et al. (2018) Structural basis for gating pore current in periodic paralysis. Nature 557: 590-594 [PMID:29769724]

Kanellopoulos AH et al. (2016) Voltage-gated sodium channels and pain-related disorders. Clin. Sci. 130: 2257-2265 [PMID:27815510]

Shen H et al. (2018) Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362: [PMID:30049784]

Terragni B et al. (2018) Post-translational dysfunctions in channelopathies of the nervous system. Neuropsychopharmacology 132: 31-42 [PMID:28571716]
Other ion channels

A number of ion channels in the human genome do not fit readily into the classification of either ligand-gated or voltage-gated ion channels. These are identified below.

Aquaporins

Overview: Aquaporins and aquaglyceroporins are membrane channels that allow the permeation of water and certain other small solutes across the cell membrane, or in the case of AQP6, AQP11 and AQP12A, intracellular membranes, such as vesicles and the endoplasmic reticulum membrane [514]. Since the isolation and cloning of the first aquaporin (AQP1) [807], 12 additional mammalian members of the family have been identified, although little is known about the functional properties of one of these (AQP12A; Q8IXF9) and it is thus not tabulated. The other 12 aquaporins can be broadly divided into three families: orthodox aquaporins (AQP0, -1, -2, -4, -5, -6 and -8) permeable mainly to water, but for some additional solutes [201]; aquaglyceroporins (AQP3, -7, -9 and -10), additionally permeable to glycerol and for some isoforms urea [493], and superaquaporins (AQP11 and 12) located within cells [422]. Some aquaporins also conduct ammonia and/or H$_2$O$_2$ giving rise to the terms ‘ammoniaporins’ (‘aquaammoniaporins’) and ‘peroxiaporins’, respectively. Aquaporins are impermeable to protons and other inorganic and organic cations, with the possible exception of AQP1 [493]. One or more members of this family of proteins have been found to be expressed in almost all tissues of the body [reviewed in Yang (2017) [1104]]. AQP1s are involved in numerous processes that include systemic water homeostasis, adipocyte metabolism, brain oedema, cell migration and fluid secretion by epithelia and for some isoforms urea [493]. Functional AQP1s exist as homotetramers that are the water conducting units wherein individual AQP subunits (each a protomer) have six transmembrane helices and two half helices that constitute a seventh ‘pseudotransmembrane domain’ that surrounds a narrow water conducting channel [514]. In addition to the four pores contributed by the protomers, an additional hydrophobic pore exists within the center of the complex [514] that may mediate the transport of gases (e.g. O$_2$, CO$_2$, NO) and cations (the central pore is the proposed transport pathway for cations through AQP1) by some AQP1s [314, 460]. Although numerous small molecule inhibitors of aquaporins, particularly AQP1, have been reported primarily from *Xenopus* oocyte swelling assays, the activity of most has subsequently been disputed upon retesting using assays of water transport that are less prone to various artifacts [271] and they are therefore excluded from the tables [see Tradtrantip et al. (2017) [993] for a review].
Nomenclature	AQP0	AQP1	AQP2
HGNC, UniProt	MIP, P30301	AQP1, P29972	AQP2, P41181

Endogenous activator
- AQP0 is gated by calmodulin [493]

Permeability
- Water (rat single channel permeability $0.25 \times 10^{-14} \text{cm}^3 \text{s}^{-1}$) [1106]
- cGMP (see comment)

Inhibitors
- Hg$^{2+}$

Comments
- Human, but not mouse, AQP1 appears permeable to CO$_2$.
- Permeability to H$_2$O$_2$ has been demonstrated for rat, but not human, AQP1 [87]. Numerous small molecule inhibitors of AQP1 have been proposed, but re-evaluation indicates that they have no significant effect upon water permeability at concentrations in excess of their originally reported IC$_{50}$ values [310].
- A fifth pore located at the central axis of the tetrameric complex has, controversially, been described as a cation conductance activated by cGMP and phosphorylation by protein kinases A and C. Evidence in support and against this proposal is discussed in detail by Kitchen et al. (2015) [493].

Nomenclature	AQP3	AQP4	AQP5	AQP6
HGNC, UniProt	AQP3, Q92482	AQP4, P55087	AQP5, P55064	AQP6, Q13520

Permeability
- Water (rat single channel permeability $2.1 \times 10^{-14} \text{cm}^3 \text{s}^{-1}$), glycerol, ammonia, H$_2O_2$ [87, 314, 1106]
- Water (rat single channel permeability $24 \times 10^{-14} \text{cm}^3 \text{s}^{-1}$) [1106]
- Water (rat single channel permeability $5.0 \times 10^{-14} \text{cm}^3 \text{s}^{-1}$), H$_2O_2$ [460]
- Water (zero, or very low basal, permeability is enhanced by low pH and in mouse and rat by Hg$^{2+}$), glycerol, ammonia, urea, anions [314, 393, 493, 823]

Activators
- –

Inhibitors
- Auphen (pIC$_{50}$ 6.1) [631], Audien (pIC$_{50}$ 4.8) [631], Hg$^{2+}$

Comments
- AQP3 is also inhibited by acid pH: permeability to urea is controversial [493].
- AQP4 is inhibited by PKC activation (although this is probably due to phosphorylation-dependent protein localisation rather than inhibition of the channel per se), but not by HgCl$_2$. An isofrom of AQP4 (AQP4M23 vs. AQP4M1) may conduct CO$_2$ [314]. AQP4 is predicted to be permeable to NO [1056].
- AQP5 may conduct CO$_2$ [314].
- AQP6 is an intracellular channel that localises to acid secreting intercalated cells of the renal collecting ducts. Notably, AQP6 is activated by Hg$^{2+}$ and by low pH and is unusually permeable to anions (with the permeability sequence NO$_3^->Br^->Cl^->F^-$) as well as water, both through the monomeric pore [493, 823]. AQP6 may also conduct CO$_2$ [314].
The page contains a table with the following content:

Nomenclature	AQP7	AQP8	AQP9	AQP10
HGNC, UniProt	AQP7, D14520	AQP8, O94778	AQP9, O43315	AQP10, Q96PS8
Permeability	water (high), glycerol, ammonia, urea [314, 420]	water (mouse single channel permeability 8.2 x 10^{-14} cm^3 s^{-1}, ammonia, H_2O_2 [87, 314, 493, 606]	water (low), glycerol, ammonia, urea, H_2O_2, monocarboxylates [314, 392, 823, 1060]	water (low), glycerol, urea [421]
Inhibitors	Auphen (Effective at 15 μM), Hg^{2+}	Hg^{2+}, phloretin	Hg^{2+}, phloretin	Hg^{2+}
Comments	AQP7 also transports silicon [310].	Permeability to urea is controversial, but might be explained by differences between mouse and human caused by a pore-lining amino acid residue that differs between species [493].	AQP9 may conduct CO_2 [314] and also transport silicon [310].	It is not known if AQP10 is permeable to ammonia. Permeability to silicon has been described [310].

Further reading on Aquaporins

Agre P. (2006) The aquaporin water channels. Proc Am Thorac Soc 3: 5-13 [PMID:16493146]
Agre P et al. (2002) Aquaporin water channels–from atomic structure to clinical medicine. J. Physiol. (Lond.) 542: 3-16 [PMID:12096044]
Beitz E et al. (2015) Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol. Ther. 155: 22-35 [PMID:26277280]
Carbrey JM et al. (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 3-28 [PMID:19096770]
Geng X et al. (2017) Transport Characteristics of Aquaporins. Adv. Exp. Med. Biol. 969: S1-62 [PMID:28258563]

S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full

Chloride channels

Ion channels → Other ion channels → Chloride channels

Overview: Chloride channels are a functionally and structurally diverse group of anion selective channels involved in processes including the regulation of the excitability of neurones, skeletal, cardiac and smooth muscle, cell volume regulation, transepithelial salt transport, the acidification of internal and extracellular compartments, the cell cycle and apoptosis (reviewed in [251]). Excluding the transmittergated GABA_A and glycine receptors (see separate tables), well characterised chloride channels can be classified as certain members of the voltage-sensitive CIC subfamily, calcium-activated channels, high (maxi) conductance channels, the cystic fibrosis transmembrane conductance regulator (CFTR) and volume regulated channels [1014]. No official recommendation exists regarding the classification of chloride channels. Functional chloride channels that have been cloned from, or characterised within, mammalian tissues are listed with the exception of several classes of intracellular channels (e.g. CLIC) that are reviewed by in [259].

Chloride channels S212
CIC family

Ion channels → Other ion channels → Chloride channels → CIC family

Overview: The mammalian CIC family (reviewed in [8, 157, 251, 254, 442]) contains 9 members that fall, on the basis of sequence homology, into three groups: CIC-1, CIC-2, hCIC-Ka (rCIC-K1) and hCIC-Kb (rCIC-K2); CIC-3 to CIC-5, and CIC-6 and -7. CIC-1 and CIC-2 are plasma membrane chloride channels. CIC-Ka and CIC-Kb are also plasma membrane channels (largely expressed in the kidney and inner ear) when associated with barttin (BSND, Q8WZ55), a 320 amino acid 2TM protein [272]. The localisation of the remaining members of the CIC family is likely to be predominantly intracellular in vivo, although they may traffic to the plasma membrane in overexpression systems. Numerous recent reports indicate that CIC-4, CIC-5, CIC-6 and CIC-7 (and by inference CIC-3) function as Cl⁻/H⁺ antiporters (secondary active transport), rather than classical Cl⁻ channels [328, 551, 698, 790, 873]; reviewed in [8, 812]). It has recently been reported that the activity of CIC-5 as a Cl⁻/H⁺ exchanger is important for renal endocytosis [723]. Alternative splicing increases the structural diversity within the CIC family. The crystal structure of two bacterial CIC proteins has been described [255] and a eukaryotic CIC transporter (CmCLC) has recently been described at 3.5 Å resolution [284]. Each CIC subunit, with a complex topology of 18 intramembrane segments, contributes a single pore to a dimeric ‘double-barrelled’ CIC channel that contains two independently gated pores, confirming the predictions of previous functional and structural investigations (reviewed in [157, 254, 442, 812]). As found for CIC-4, CIC-5, CIC-6 and CIC-7, the prokaryotic CIC homologue (CIC-ec1) and CmCLC function as H⁺/Cl antiporters, rather than as ion channels [7, 284]. The generation of monomers from dimeric CIC-ec1 has firmly established that each CIC subunit is a functional unit for transport and that cross-subunit interaction is not required for Cl⁻/H⁺ exchange in CIC transporters [837].

Nomenclature	CIC-1	CIC-2
HGNC, UniProt	CLCN1, P35523	CLCN2, PS1788
Endogenous activators	–	arachidonic acid
Activators	–	lubiprostone, omeprazole
Channel blockers	9-anthroic acid, S-(-)CPB, S-(-)CPP, Cd²⁺, Zn²⁺, fenofibric acid, niflumic acid	GaTx2 (pKd 10.8) [voltage dependent -100mV], Cd²⁺, NPPB, Zn²⁺, diphenylamine-2-carboxylic acid
Functional Characteristics	γ = 1–1.5 pS; voltage-activated (depolarization) (by fast gating of single protopores and a slower common gate allowing both pores to open simultaneously); inwardly rectifying; incomplete deactivation upon repolarization; ATP binding to cytoplasmic cystathionine β-synthetase related (CBS) domains inhibits CIC-1 (by closure of the common gate), depending on its redox status	γ = 2–3 pS; voltage-activated by membrane hyperpolarization by fast protopore and slow cooperative gating; channels only open negative to E_cl resulting in steady-state inward rectification; voltage dependence modulated by permeant anions; activated by cell swelling, PKA, and weak extracellular acidosis; potentiated by SGK1; inhibited by phosphorylation by p34(cdc2)/cyclin B; cell surface expression and activity increased by association with Hsp90
Comments	CIC-1 is constitutively active	CIC-2 is also activated by amidation

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
ClC family S214

ClC-Ka ClC-Kb ClC-3 ClC-4

(pIC50 1153)

Zn2+ (pIC50 4.3) [745], Cd2+ (pIC50 4.2) [745]

1911

(0.5 mM) and = 7.1); potentiated by

10I

3-phenyl-CPP

3-phenyl-CPP, DIDS

3-phenyl-CPP, DIDS

DIDS

DIDS

DIDS

NPPB

3-phenyl-CPP

DIDS

DIDS

DIDS

NPPB

NPPB

tamoxifen (10 μM)

–

Comments: ClC channels display the permeability sequence Cl− > Br− > I− (at physiological pH). ClC-1 has significant opening probability at resting membrane potential, accounting for 75% of the membrane conductance at rest in skeletal muscle, and is important for stabilization of the membrane potential. S(-)-CPP, 9-anthoic acid and niflumic acid act intracellularly and exhibit a strongly voltage-dependent block with strong inhibition at negative voltages and relief of block at depolarized potentials ([565] and reviewed in [811]). Inhibition of ClC-2 by the peptide GaTx2, from Leiurus quinquestriatus herbaleus venom, is likely to occur through inhibition of channel gating, rather than direct open channel blockade [980]. Although ClC-2 can be activated by cell swelling, it does not correspond to the VRAC channel (see below). Alternative potential physiological functions for ClC-2 are reviewed in [798]. Functional expression of human ClC-Ka and ClC-Kb requires the presence of barttin [272, 877] reviewed in [276]. The properties of ClC-Ka/barttin and ClC-Kb/barttin tabulated are those observed in mammalian expression systems: in
CFTR

Ion channels → Other ion channels → Chloride channels → CFTR

Overview: CFTR, a 12TM, ABC transporter-type protein, is a cAMP-regulated epithelial cell membrane Cl− channel involved in normal fluid transport across various epithelia. Of the 1700 mutations identified in CFTR, the most common is the deletion mutant ΔF508 (a class 2 mutation) which results in impaired trafficking of CFTR and reduces its incorporation into the plasma membrane causing cystic fibrosis (reviewed in [192]). Channels carrying the ΔF508 mutation that do traffic to the plasma membrane demonstrate gating defects. Thus, pharmacological restoration of the function of the ΔF508 mutant would require a compound that embodies ‘corrector’ (i.e. facilitates folding and trafficking to the cell surface) and ‘potentiator’ (i.e. promotes opening of channels at the cell surface) activities [192]. In addition to acting as an anion channel per se, CFTR may act as a regulator of several other conductances including inhibition of the epithelial Na channel (ENaC), calcium activated chloride channels (CaCC) and volume regulated anion channel (VRAC), activation of the outwardly rectifying chloride channel (ORCC), and enhancement of the sulphate sensitivity of the renal outer medullary potassium channel (ROMK2), (reviewed in [710]). CFTR also regulates TRPV4, which provides the Ca2+ signal for regulatory volume decrease in airway epithelia [33]. The activities of CFTR and the chloride-bicarbonate exchangers SLC26A3 (DRA) and SLC26A6 (PAT1) are mutually enhanced by a physical association between the regulatory (R) domain of CFTR and the STAS domain of the SCL26 transporters, an effect facilitated by PKA-mediated phosphorylation of the R domain of CFTR [499].

Nomenclature	CFTR
HGNC, UniProt	CFTR, P13569
Activators	felodipine (Potentiation) (pKᵢ 8.4) [772], CBIQ (Potentiation), NS004 (Potentiation), UCCF-029 (Potentiation), UCCF-339 (Potentiation), UCCF-853 (Potentiation), apigenin (Potentiation), capsaicin (Potentiation), genistein (Potentiation), ivacaftor (Potentiation), nimodipine (Potentiation), phenylglycine-01 (Potentiation), sulfonamide-01 (Potentiation)
Selective inhibitors	crofelemer (pCᵢₒ 5.2) [994]
Channel blockers	glibenclamide (pKᵢ 4.7) [895], intracellular CFTRᵇ₂h-172 (intracellular application prolongs mean closed time), GaTx1, extracellular GlyH-101
Functional Characteristics	γ = 6-10 pS; permeability sequence = Br > Cl− > H+ > F−; (P/Pᵢ)Cl = 0.1–0.85; slight outward rectification; phosphorylation necessary for activation by ATP binding at binding nucleotide binding domains (NBD)1 and 2; positively regulated by PKC and PKGII (tissue specific); regulated by several interacting proteins including syntaxin 1A, Munc18 and PDZ domain proteins such as NHERF (EBP50) and CAP70
Comments	UCCF-339, UCCF-029, apigenin and genistein are examples of flavones. UCCF-853 and NS004 are examples of benzimidazolones. CBIQ is an example of a benzoquinoline. Felodipine and nimodipine are examples of 1,4-dihydropyridines. Phenylglycine-01 is an example of a phenylglycine. Sulfonamide-01 is an example of a sulfonamide. Malonic acid hydrazide conjugates are also CFTR channel blockers (see Verkman and Galietta, 2009 [1014])
Calcium activated chloride channel

Overview: Chloride channels activated by intracellular calcium (CaCC) are widely expressed in excitable and non-excitable cells where they perform diverse functions [359]. The molecular nature of CaCC has been uncertain with both CLCA, TWEETY and BEST genes having been considered as likely candidates [251, 360, 589]. It is now accepted that CLCA expression products are unlikely to form channels per se and probably function as cell adhesion proteins, or are secreted [762]. Similarly, TWEETY gene products do not recapitulate the properties of endogenous CaCC. The bestrophins encoded by genes BEST1-4 have a topology more consistent with ion channels [360] and form chloride channels that are activated by physiological concentrations of Ca$^{2+}$, but whether such activation is direct is not known [360]. However, currents generated by bestrophin over-expression do not resemble native CaCC currents. The evidence for and against bestrophin proteins forming CaCC is critically reviewed by Duran et al. [251]. Recently, a new gene family, TMEM16 (anoctamin) consisting of 10 members (TMEM16A-K; anoctamin 1-10) has been identified and there is firm evidence that some of these members form chloride channels [250, 252]. TMEM16A (anoctamin 1; Ano 1) produces Ca$^{2+}$-activated Cl$^{-}$ currents with kinetics similar to native CaCC currents recorded from different cell types [133, 839, 879, 1110]. Knockdown of TMEM16A greatly reduces currents mediated by calcium-activated chloride channels in submandibular gland cells [1110] and smooth muscle cells from pulmonary artery [625]. In TMEM16A(-/-) mice secretion of Ca$^{2+}$-dependent Cl$^{-}$ secretion by several epithelia is reduced [746, 839]. Alternative splicing regulates the voltage- and Ca$^{2+}$-dependence of TMEM16A and such processing may be tissue-specific manner and thus contribute to functional diversity [286]. There are also reports that TMEM16B (anoctamin 2; Ano 2) supports CaCC activity (e.g.,[792]) and in TMEM16B(-/-) mice Ca-activated Cl$^{-}$ currents in the main olfactory epithelium (MOE) and in the vomeronasal organ are virtually absent [88].

Nomenclature	CaCC
HGNC, UniProt	ANO1, Q5XXA6
Endogenous activators	intracellular Ca$^{2+}$
Selective inhibitors	crofelemer (pIC$_{50}$ 5.2) [994]
Endogenous channel blockers	INX(3,4,5,6)P$_4$
Channel blockers	9-anthraic acid, DCDPC, DIDS, NPPB, SITS, flufenamic acid, fluoxetine, mibeferadil, nilfumic acid, tannic acid
Functional Characteristics	$\gamma = 0.5-5$ pS; permeability sequence, SCN$^{-}$ > NO$_{3}^{-}$ > I$^{-}$ > Br$^{-}$ > Cl$^{-}$ > F$^{-}$; relative permeability of SCN$^{-}$:Cl$^{-}$ 8:1; I$^{-}$:Cl$^{-}$ 3, aspartate:Cl$^{-}$ 0.15, outward rectification (decreased by increasing [Ca$^{2+}$]); sensitivity to activation by [Ca$^{2+}$]; decreased at hyperpolarized potentials; slow activation at positive potentials (accelerated by increasing [Ca$^{2+}$]); rapid deactivation at negative potentials, deactivation kinetics modulated by anions binding to an external site; modulated by redox status

Comments: In addition to the agents listed in the table, the novel small molecule, ataluren, induces translational read through of nonsense mutations in CFTR (reviewed in [908]). Corrector compounds that aid the folding of DFS08CFTR to increase the amount of protein expressed and potentially delivered to the cell surface include VX-532 (which is also a potentiator), VRT-325, KM11060, Corr-3a and Corr-4a see [1014] for details and structures of Corr-3a and Corr-4a. Inhibition of CFTR by intracellular application of the peptide GaTx1, from Leiurus quinquestriatus herbareae venom, occurs preferentially for the closed state of the channel [302]. CFTR contains two cytoplasmic nucleotide binding domains (NBDs) that bind ATP. A single open-closing cycle is hypothesised to involve, in sequence: binding of ATP at the N-terminal NBD1, ATP binding to the C-terminal NBD2 leading to the formation of an intramolecular NBD1-NBD2 dimer associated with the open state, and subsequent ATP hydrolysis at NBD2 facilitating dissociation of the dimer and channel closing, and the initiation of a new gating cycle [21, 679]. Phosphorylation by PKA at sites within a cytoplasmic regulatory (R) domain facilitates the interaction of the two NBD domains. PKC (and PKGII within intestinal epithelial cells via guanylinstimulated cyclic GMP formation) positively regulate CFTR activity.
Maxi chloride channel

Overview: Maxi Cl$^-$ channels are high conductance, anion selective, channels initially characterised in skeletal muscle and subsequently found in many cell types including neurones, glia, cardiac muscle, lymphocytes, secreting and absorbing epithelia, macula densa cells of the kidney and human placenta syncytiotrophoblasts [855]. The physiological significance of the maxi Cl$^-$ channel is uncertain, but roles in cell volume regulation and apoptosis have been claimed. Evidence suggests a role for maxi Cl$^-$ channels as a conductive pathway in the swelling-induced release of ATP from mouse mammary C127i cells that may be important for autocrine and paracrine signalling by purines [252, 854]. A similar channel mediates ATP release from macula densa cells within the thick ascending of the loop of Henle in response to changes in luminal NaCl concentration [78]. A family of human high conductance Cl$^-$ channels (TTYH1-3) that resemble Maxi Cl$^-$ channels has been cloned [949], but alternatively, Maxi Cl$^-$ channels have also been suggested to correspond to the voltage-dependent anion channel, VDAC, expressed at the plasma membrane [46, 733].

Nomenclature	Maxi Cl$^-$
Activators	cytosolic GTP$_\gamma$S, extracellular chlorpromazine, extracellular tamoxifen, extracellular toremifene, extracellular triflupromazine
Endogenous channel blockers	intracellular arachidonic acid
Channel blockers	DIDS (pIC$_50$ 4.4) [882], extracellular Zn$^{2+}$ (pIC$_50$ 4.3) [745], NPPB (pIC$_50$ 3.8) [882], extracellular Gd$^{3+}$, SITS, diphenylamine-2-carboxylic acid
Functional Characteristics	$\gamma = 280-430 \text{ pS (main state); permeability sequence, } I > Br > Cl > F > $gluconate (P$_{Cl}$/P$_{Cl} = 1.5$); ATP is a voltage dependent permeant blocker of single channel activity (P$_{ATP}$/P$_{Cl} = 0.08-0.1$); channel activity increased by patch-excision; channel opening probability (at steady-state) maximal within approximately $\pm 20 \text{ mV} \text{ of } 0 \text{ mV}$, opening probability decreased at more negative and (commonly) positive potentials yielding a bell-shaped curve; channel conductance and opening probability regulated by annexin 6
Comments	Maxi Cl$^-$ is also activated by G protein-coupled receptors and cell swelling. Tamoxifen and toremifene are examples of triphenylethylene anti-oestrogens

Comments: Blockade of I$_{\text{Cl(Ca)}}$ by nilfumic acid, DIDS and 9-anthroic acid is voltage-dependent whereas block by NPPB is voltage-independent [359]. Extracellular nilfumic acid; DCDPC and 9-anthroic acid (but not DIDS) exert a complex effect upon I$_{\text{Cl(Ca)}}$ in vascular smooth muscle, enhancing and inhibiting inwardly and outwardly directed currents in a manner dependent upon [Ca$^{2+}$] (see [359] for summary). Considerable crossover in pharmacology with large conductance Ca$^{2+}$-activated K$^+$ channels also exists (see [329] for overview). Two novel compounds, CaCC$_{inh}$-A01 and CaCC$_{inh}$-B01 have recently been identified as blockers of calcium-activated chloride channels in T84 human intestinal epithelial cells [203] for structures). Significantly, other novel compounds totally block currents mediated by TMEM116A, but have only a modest effect upon total current mediated by CaCC native to T84 cells or human bronchial epithelial cells, suggesting that TMEM16A is not the predominant CaCC in such cells [693]. CaMKII modulates CaCC in a tissue dependent manner (reviewed by [359, 539]). CaMKII inhibitors block activation of I$_{\text{Cl(Ca)}}$ in T84 cells but have no effect in parotid acinar cells. In tracheal and arterial smooth muscle cells, but not portal vein myocytes, inhibition of CaMKII reduces inactivation of I$_{\text{Cl(Ca)}}$. Intracellular Ins(3,4,5,6)P$_4$ may act as an endogenous negative regulator of CaCC channels activated by Ca$^{2+}$, or CaMKII. Smooth muscle CaCC are also regulated positively by Ca$^{2+}$-dependent phosphatase, calcineurin (see [539] for summary).
Volume regulated chloride channels

Overview: Volume activated chloride channels (also termed VSOAC, volume-sensitive organic osmolyte/anion channel; VRC, volume regulated channel and VSOR, volume expansion-sensing outwardly rectifying anion channel) participate in regulatory volume decrease (RVD) in response to cell swelling. VRAC may also be important for several other processes including the regulation of membrane excitability, transcellular Cl⁻ transport, angiogenesis, cell proliferation, necrosis, apoptosis, glutamate release from astrocytes, insulin (INS, P01308) release from pancreatic β cells and resistance to the anti-cancer drug, cisplatin (reviewed by [80, 680, 710, 735]). VRAC may not be a single entity, but may instead represent a number of different channels that are expressed to a variable extent in different tissues and are differentially activated by cell swelling. In addition to CIC-3 expression products (see above) several former VRAC candidates including MDR1 (ABCB1 P-glycoprotein), ICLn, Band 3 anion exchanger and phospholipidman are also no longer considered likely to fulfil this function (see reviews [710, 867]).

Nomenclature	VRAC
Activators	GTP/γS
Endogenous channel blockers	intracellular Mg²⁺, arachidonic acid
Channel blockers	1,9-dideoxyforskolin, 9-anthoic acid, DCP1B, DIDS, IAA-94, NPPB, NS3728, carbonoxolone, clomiphene, diBA-(S)-C4, gossypol, melfloquine, mibefradil, nafoxidine, nordihydroguaretic acid, quinidine, quinine, tamoxifen
Functional Characteristics	γ = 10-20 pS (negative potentials), 50-90 pS (positive potentials); permeability sequence SCN⁻ > I⁻ > NO₃⁻ > Br⁻ > Cl⁻ > F⁻ > gluconate; outward rectification due to voltage dependence of γ, inactivates at positive potentials in many, but not all, cell types; time dependent inactivation at positive potentials; intracellularionic strength modulates sensitivity to cell swelling and rate of channel activation; rate of swelling-induced activation is modulated by intracellular ATP concentration; ATP dependence is independent of hydrolysis and modulated by rate of cell swelling; inhibited by increased intracellular free Mg²⁺ concentration; swelling induced activation of several intracellular signalling cascades may be permissive of, but not essential to, the activation of VRAC including: the Rho-Rho kinase-MLC2, Ras-Raf-MEK-ERK, PI3K-NOX-H₂O₂ and Src-PLCγ-Ca²⁺ pathways; regulation by PKCa required for optimal activity; cholesterol depletion enhances activity; activated by direct stretch of β1-integrin
Comments	VRAC is also activated by cell swelling and low intracellular ionic strength. VRAC is also blocked by chromones, extracellular nucleotides and nucleoside analogues

Comments: Differing ionic conditions may contribute to variable estimates of γ reported in the literature. Inhibition by arachidonic acid (and cis-unsaturated fatty acids) is voltage-independent, occurs at an intracellular site, and involves both channel shut down (Kd = 4-5 μM) and a reduction of γ (Kd = 13-14 μM). Blockade of channel activity by SITS, DIDS, Gd³⁺ and

arachidonic acid is paralleled by decreased swelling-induced release of ATP [232, 854]. Channel activation by anti-oestrogens in whole cell recordings requires the presence of intracellular nucleotides and is prevented by pre-treatment with 17β-estradiol, bucaldesine, or intracellular dialysis with GDPβS [222]. Activation by tamoxifen is suppressed by low concentrations of okadaic acid, suggesting that a dephosphorylation event by protein phosphatase PP2A occurs in the activation pathway [222]. In contrast, 17β-estradiol and tamoxifen appear to directly inhibit the maxi Cl⁻ channel of human placenta reconstituted into giant liposomes and recorded in excised patches [836].
Comments on Chloride channels: Other chloride channels

In addition to some intracellular chloride channels that are not considered here, plasma membrane channels other than those listed have been functionally described. Many cells and tissues contain outwardly rectifying chloride channels (ORCC) that may correspond to VRAC active under isotonic conditions. A cyclic AMP-activated Cl– channel that does not correspond to CFTR has been described in intestinal Paneth cells [1000]. A Cl– channel activated by cyclic GMP with a dependence on raised intracellular Ca2+ has been recorded in various vascular smooth muscle cells types, which has a pharmacology and biophysical characteristics very different from the ‘conventional’ CaCC [635, 796]. It has been proposed that bestrophin-3 (BEST3, Q8N1M1) is an essential component of the cyclic GMP-activated channel [636]. A proton-activated, outwardly rectifying anion channel has also been described [532].

Further reading on Chloride channels

Adkins GB et al. (2015) Potential role of cardiac chloride channels and transporters as novel therapeutic targets. Pharmacol. Ther. 145: 67-75 [PMID:25160469]

Huang F et al. (2012) International Union of Basic and Clinical Pharmacology. LXXXV: calcium-activated chloride channels. Pharmacol. Rev. 64: 1-15 [PMID:22090471]

Kamaleddin MA. (2018) Molecular, biophysical, and pharmacological properties of calcium-activated chloride channels. J. Cell. Physiol. 233: 787-798 [PMID:28121009]

Kunzelmann K. (2015) TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume. Trends Biochem. Sci. 40: 535-43 [PMID:26254230]

Pedersen SF et al. (2016) Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch. 468: 371-83 [PMID:26739710]

Peretti M et al. (2015) Chloride channels in cancer: Focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim. Biophys. Acta 1848: 2523-31 [PMID:25546839]

Sabirov RZ et al. (2016) The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Arch. 468: 405-20 [PMID:26733413]

Zegarra-Moran O et al. (2017) CFTR pharmacology. Cell. Mol. Life Sci. 74: 117-128 [PMID:27704174]

Connexins and Pannexins

Overview: Gap junctions are essential for many physiological processes including cardiac and smooth muscle contraction, regulation of neuronal excitability and epithelial electrolyte transport [114, 185, 274]. Gap junction channels allow the passive diffusion of molecules of up to 1,000 Daltons which can include nutrients, metabolites and second messengers (such as IP3) as well as cations and anions. 21 connexin genes and 3 pannexin genes which are structurally related to the invertebrate innexin genes code for gap junction proteins in humans. Each connxin gap junction comprises 2 hemichannels or ‘connexons’ which are themselves formed from 6 connexin molecules. The various connexins have been observed to combine into both homomeric and heteromeric combinations, each of which may exhibit different functional properties. It is also suggested that individual hemichannels formed by a number of different connexins might be functional in at least some cells [372]. Connexins have a common topology, with four α-helical transmembrane domains, two extracellular loops, a cytoplasmic loop, and N- and C-termini located on the cytoplasmic membrane face. In mice, the most abundant connexins in electrical synapses in the brain seem to be Cx36, Cx45 and Cx57 [955]. Mutations in connexin genes are associated with the occurrence of a number of pathologies, such as peripheral neuropathies, cardiovascular diseases and hereditary deafness. The pannexin genes Pxn1 and Pxn2 are widely expressed in the mammalian brain [1023]. Like the connexins, at least some of the pannexins can form hemichannels [114, 778].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full

Connexins and Pannexins S219
Nomenclature

Cx23	Cx25	Cx26	Cx30	Cx30.2	Cx30.3	Cx31
GJ61	A6NN92	GJ87	GJ82	P29033	GJ86	Q95452
HGNC, UniProt	GJB7, Q6PEY0	GJB2, P8034	GJC3, Q8NFK1	GJB4, Q9NTQ9	GJB3, O75712	

Inhibitors: carbenoxolone, flufenamic acid, octanol

Comments: Extracellular Ca²⁺ (blocked by raising external Ca²⁺)

Nomenclature

Cx31.1	Cx31.9	Cx32	Cx36	Cx37	Cx40	Cx40.1
GJ85	Q95377	GJ3	Q8N144	GJ81	P08034	GJ2
HGNC, UniProt	Q9UKL4	GJ4, P35212	GJ5, P36382	GJ4, Q96KN9		

Inhibitors: carbenoxolone, flufenamic acid, octanol

Nomenclature

Cx43	Cx45	Cx46	Cx47	Cx50	Cx59	Cx62
GJ1	P17302	GJ1	P36383	GJ2	Q5T442	GJ9
HGNC, UniProt	GJ3, Q9Y6H8	GJ4, Q8N144	GJ5, P36382	GJ10, Q969M2		

Inhibitors: carbenoxolone, flufenamic acid, octanol

Nomenclature

Px1	Px2	Px3	
PANX1	PANX2	PANX3	
HGNC, UniProt	Q96RD7	Q96RD6	Q96QZ0

Inhibitors: carbenoxolone, flufenamic acid, octanol

Comments: Extracellular Ca²⁺ (blocked by raising external Ca²⁺)

Comments: Connexins are most commonly named according to their molecular weights, so, for example, Cx23 is the connexin protein of 23 kDa. This can cause confusion when comparing between species – for example, the mouse connexin Cx57 is orthologous to the human connexin Cx62. No natural toxin or specific inhibitor of junctional channels has been identified yet however two compounds often used experimentally to block connexins are carbenoxolone and flufenamic acid [861]. At least some pannexin hemichannels are more sensitive to carbenoxolone than connexins but much less sensitive to flufenamic acid [113]. It has been suggested that 2-aminoethoxydiphenyl borate (2-APB) may be a more effective blocker of some connexin channel subtypes (Cx26, Cx30, Cx36, Cx40, Cx45, Cx50) compared to others (Cx32, Cx43, Cx46, [47]).
Further reading on Connexins and Pannexins

Decrock E et al. (2015) Connexin and pannexin signaling pathways, an architectural blueprint for CNS physiology and pathology? Cell. Mol. Life Sci. 72: 2823-51 [PMID:26118660]
Esseltine JL et al. (2016) Next-Generation Connexin and Pannexin Cell Biology. Trends Cell Biol. 26: 944-955 [PMID:27339936]
Freund-Michel V et al. (2016) Expression and role of connexin-based gap junctions in pulmonary inflammatory diseases. Pharmacol. Ther. 164: 105-19 [PMID:27126473]
Harris AL. (2018) Electrical coupling and its channels. J. Gen. Physiol. 150: 1606-1639 [PMID:30389716]
Sáez JC et al. (2015) Regulation of pannexin and connexin channels and their functional role in skeletal muscles. Cell. Mol. Life Sci. 72: 2929-35 [PMID:26084874]
Willebrords J et al. (2017) Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol. Ther. 180: 144-160 [PMID:28720428]

Piezo channels

Overview: Piezo proteins are the pore-forming subunits of trimeric mechanosensitive ion channels that open in response to mechanical stimuli such as shear stress and membrane stretch, allowing positively charged ions, including calcium, to flow into the cell. Piezo orthologs have thus far been identified in numerous eukaryotes. Most vertebrates have two channel isoforms, Piezo1 and Piezo2. Across species, Piesos are very large proteins (2521 and 2752 amino acids for human Piezo1 and human Piezo2, respectively) with numerous (>14) predicted transmembrane (TM) domains per subunit and, strikingly, no homology to other known proteins [1081]. Piezo channels play a critical role in sensory neuron transduction [681, 1131]

Nomenclature	Piezo1	Piezo2
HGNC, UniProt	PIEZO1, Q92508	PIEZO2, Q9H515
Selective activators	Yoda1 (pEC50 4.6) [952], Jedi2 (pEC50 3.8) [1054] – Mouse, Jedi1 [1054] – Mouse	–
Inhibitors	Dooku1 (pIC50 5.8) [273]	–
Functional Characteristics	Mechano-activated	Mechano-activated

Comments: Yoda1 is a Piezo1 channel activator [273, 1049].

Further reading on Piezo channels

Chesler AT et al. (2018) Portraits of a pressure sensor. Elife 7: [PMID:29376828]
Ehmke H. (2018) The mechanotransduction of blood pressure. Science 362: 398-399 [PMID:30361358]
Gottlieb PA et al. (2012) Piezo1: properties of a cation selective mechanical channel. Channels (Austin) 6: 214-9 [PMID:22790400]
Parpaite T et al. (2017) Piezo channels. Curr. Biol. 27: R250-R252 [PMID:28376327]
Vollers L et al. (2015) Piezo channels: from structure to function. Pflugers Arch. 467: 95-9 [PMID:25037583]
Wu J et al. (2017) Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels. Trends Biochem. Sci. 42: 57-71 [PMID:27743844]
Zeng WZ et al. (2018) PIEZO1 and PIEZO2 mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362: 464-467 [PMID:30361375]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of ConciseGuide: http://onlinelibrary.wiley.com/doi/10.1111/bph.14749/full
Sodium leak channel, non-selective

Ion channels → Other ion channels → Sodium leak channel, non-selective

Overview: The sodium leak channel, non-selective (NC-IUPHAR tentatively recommends the nomenclature Na\textsubscript{vi}2.1, W.A. Catterall, personal communication) is structurally a member of the family of voltage-gated sodium channel family (Na\textsubscript{v}1.1-Na\textsubscript{v}1.9) [542, 1121]. In contrast to the latter, Na\textsubscript{vi}2.1, is voltage-insensitive (denoted in the subscript ‘\textit{vi}’ in the tentative nomenclature) and possesses distinctive ion selectivity and pharmacological properties. Na\textsubscript{vi}2.1, which is insensitive to tetrodotoxin (10 \textmu M), has been proposed to mediate the tetrodotoxin-resistant and voltage-insensitive Na+ leak current (\textit{i}_{\text{L}}-\text{Na}) observed in many types of neurone [595]. However, whether Na\textsubscript{vi}2.1 is constitutively active has been challenged [591]. Na\textsubscript{vi}2.1 is widely distributed within the central nervous system and is also expressed in the heart and pancreas specifically, in rodents, within the islets of Langerhans [542, 595]. Recently, Na\textsubscript{vi}2.1 has been proposed to be a core effector for the action of inhibitory G proteins [789].

Nomenclature Na\textsubscript{vi}2.1
HGNC, UniProt NALCN, Q8IZF0
Activators Constitutively active (Lu et al., 2007), or activated downstream of Src family tyrosine kinases (SFKs) (Lu et al., 2009; Swayne et al., 2009); positively modulated by decreased extracellular Ca2+ concentration (Lu et al., 2010) [595, 596, 597, 951]
Channel blockers Gd3+ (pIC\textsubscript{50} 5.6), Cd2+ (pIC\textsubscript{50} 3.8), Co2+ (pIC\textsubscript{50} 3.6), verapamil (pIC\textsubscript{50} 3.4)
Functional Characteristics \gamma = 27 pS (by fluctuation analysis), \textit{P}_{\text{Na}}/\text{P}_{\text{Cs}} = 1.3, \textit{P}_{\text{K}}/\text{P}_{\text{Cs}} = 1.2, \textit{P}_{\text{Ca}}/\text{P}_{\text{Cs}} = 0.5, linear current voltage-relationship, voltage-independent and non-inactivating

Comments: In native and recombinant expression systems Na\textsubscript{vi}2.1 can be activated by stimulation of NK\textsubscript{1} (in hippocampal neurones), neurotensin (in ventral tegmental area neurones) and M3 muscarinic acetylcholine receptors (in MIN6 pancreatic \beta cells) and in a manner that is independent of signalling through G proteins [596, 951]. Pharmacological and molecular biological evidence indicates such modulation to occur though a pathway that involves the activation of Src family tyrosine kinases. It is suggested that Na\textsubscript{vi}2.1 exists as a macromolecular complex with M3 receptors [951] and peptide receptors [596], in the latter instance in association with the protein UNC-80, which recruits Src to the channel complex [596, 1045]. By contrast, stimulation of Na\textsubscript{vi}2.1 by decreased extracellular Ca2+ concentration is G protein dependent and involves a Ca2+-sensing G protein-coupled receptor and UNC80 which links Na\textsubscript{vi}2.1 to the protein UNC79 in the same complex [597]. Na\textsubscript{vi}2.1 null mutant mice have severe disturbances in respiratory rhythm and die within 24 hours of birth [595]. Na\textsubscript{vi}2.1 heterozygous knockout mice display increased serum sodium concentrations in comparison to wildtype littersmates and a role for the channel in osmoregulation has been postulated [905].

Further reading on Sodium leak channel, non-selective

Cochet-Bissuel M et al. (2014) The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 8: 132 [PMID:24904279]
Lu TZ et al. (2012) NALCN: a regulator of pacemaker activity. Mol. Neurobiol. 45: 415-23 [PMID:22476981]
Philippart F et al. (2018) G\textsubscript{i/o} protein-coupled receptors in dopamine neurons inhibit the sodium leak channel NALCN. Elife. 7: [PMID:30556810]
Waxman SG et al. (2014) Regulating excitability of peripheral afferents: emerging ion channel targets. Nat. Neurosci. 17: 153-63 [PMID:24473263]
236. Donnelly-Roberts DL et al. (2004) [14634045]
237. Donnelly-Roberts DL et al. (2009) [19558545]
238. Doyle DA et al. (1998) [9525859]
239. Dravid SM et al. (2007) [17030642]
240. Dryer SE et al. (1991) [1719422]
241. Du J et al. (2014) [24889629]
242. Du J et al. (2009) [19372375]
243. Dubin AE et al. (1999) [18521471]
244. Dubé GR et al. (2005) [16061325]
245. Duc C et al. (2004) [7806699]
246. Dunlop J et al. (2008) [18356919]
247. Duprat F et al. (2009) [10779373]
248. Dupuis DS et al. (2002) [11809900]
249. Duran C et al. (2010) [19827947]
250. Durán C et al. (2008) [11251480]
251. Dutta KN et al. (2018) [29311301]
252. Dutler R et al. (2007) [17452037]
253. Dutler R et al. (2002) [11796999]
254. Döring F et al. (1998) [7968970]
255. Edman S et al. (2012) [22579927]
256. Edwards JC et al. (2013) [17643119]
257. Edwards JC et al. (2005) [15889307]
258. El Kouhen R et al. (2017) [12013375]
259. Enuka Y et al. (2010) [19909284]
260. Ertel EA et al. (2011) [20802798]
261. Evans WH et al. (2011) [17113616]
262. Estévez R et al. (2012) [14698195]
263. Fantoni ER et al. (2017) [28374288]
264. Fedida D et al. (1993) [8508531]
265. Ferrari D et al. (2004) [15383600]
266. Ferrera I et al. (2009) [19819874]
267. Fesenko EE et al. (1985) [2578616]
268. Fink M et al. (1998) [9628687]
269. Fischer M et al. (2010) [20538786]
270. Fisher JL (2009) [18585399]
271. Fleig A et al. (2004) [15530641]
272. Fliegel R et al. (2017) [28617679]
273. Fonfria E et al. (2004) [15302683]
274. Ford AP et al. (2006) [16461577]
275. Francois A et al. (2001) [23257057]
276. Freichel M et al. (2003) [13975974]
277. Friese MA et al. (2007) [17994101]
278. Frizelle PA et al. (2006) [16778008]
279. Fruhld B et al. (2004) [11101885]
280. Fulcile S et al. (2006) [11144365]
281. Fuller MD et al. (2007) [17951250]
282. Furukawa H et al. (2005) [16281028]
283. Gao L et al. (2010) [10920015]
284. Garcia-Calvo M et al. (2011) [18463791]
285. Garcia-Añoveros J et al. (2008) [11144347]
286. Garcia-Añoveros J et al. (2009) [11890900]
287. Garcia-Añoveros J et al. (2011) [20802798]
288. Garcia-Añoveros J et al. (2012) [9525859]
289. Garette CE et al. (1997) [9113369]
290. Garneau AP et al. (2015) [26313002]
291. Gaunt HJ et al. (2016) [27289383]
292. Gatch C et al. (2009) [15889307]
293. Gerstner A et al. (2018) [20932261]
294. Gerstner A et al. (2009) [15843919]
295. Gether KE et al. (2007) [21720706]
296. Garg P et al. (2012) [22851714]
297. Gether KE et al. (2009) [9113369]
298. Gether KE et al. (2013) [23485707]
299. Ghanshani S et al. (2000) [10961988]
300. Giamarchi A et al. (2005) [16880842]
301. Giebel J et al. (2012) [19404260]
302. Gill JR et al. (2011) [21436053]
303. Gillin AL et al. (2000) [11144347]
304. Gillin AL et al. (2006) [16382106]
305. Ginzberg EA et al. (2009) [19641589]
306. Gonzalez C et al. (2010) [20023639]
307. Gordon JC et al. (2010) [20674564]
308. Gotti C et al. (2009) [19481063]
309. Gotti C et al. (2006) [16876888]
310. Grace RD et al. (2012) [12429377]
311. Grand T et al. (2008) [18297105]
312. Graves AR et al. (2008) [18449189]
313. Greenwood IA et al. (2007) [17150263]
314. Grimm C et al. (2007) [18048323]
315. Grimm C et al. (2014) [25144390]
