CASE REPORT

125 Diagnosis of intraductal papillary mucinous neoplasm using endoscopic ultrasound guided microbiopsies: A case report

Rift CV, Kovacevic B, Karstensen JG, Plougmann J, Klausen P, Toxværd A, Kalaitzakis E, Hansen CP, Hasselby JP, Vilmann P
ABOUT COVER

Editorial Board Member of World Journal of Gastrointestinal Endoscopy, Mahesh Kumar Goenka, FACG, FASGE, MD, Adjunct Professor, Professor, Institute of Gastrosciences, Apollo Gleneagles Hospital, Kolkata 700054, India

AIM AND SCOPE

World Journal of Gastrointestinal Endoscopy (World J Gastroint Endosc, WJGE, online ISSN 1948-5190, DOI: 10.4253) is a peer-reviewed open access (OA) academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJGE covers topics concerning gastroscopy, intestinal endoscopy, colonoscopy, capsule endoscopy, laparoscopy, interventional diagnosis and therapy, as well as advances in technology. Emphasis is placed on the clinical practice of treating gastrointestinal diseases with or under endoscopy.

We encourage authors to submit their manuscripts to WJGE. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great clinical significance.

INDEXING/ABSTRACTING

World Journal of Gastrointestinal Endoscopy is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, and PubMed Central.
Diagnosis of intraductal papillary mucinous neoplasm using endoscopic ultrasound guided microbiopsies: A case report

Charlotte Vestrup Rift, Bojan Kovacevic, John Gásdal Karstensen, Julie Plougmann, Pia Klausen, Anders Toxværd, Evangelos Kalaitzakis, Carsten Palnæs Hansen, Jane Preuss Hasselby, Peter Vilmann

Abstract

Pancreatic cysts are increasingly diagnosed due to expanding use of cross-sectional imaging, but current diagnostic modalities have limited diagnostic accuracy. Recently, a novel through-the-needle microbiopsy forceps has become available, offering the possibility of obtaining cyst-wall biopsies. We present a case of 41-year-old male with chronic pancreatitis and a 2-cm pancreatic cyst, initially considered a pseudocyst. Subsequently, endoscopic ultrasono-
nd guided microbiopsies were successfully obtained, which surprisingly revealed an intraductal papillary mucinous neoplasm of mixed subtype with low grade dysplasia. In conclusion, obtaining biopsies from the wall of the pancreatic cystic lesions with this novel instrument is feasible and, as demonstrated in this case, can possibly alter the clinical outcome. Microbiopsies offered enough cellular material, allowing supplemental gene mutation analysis, which combined with other modalities could lead to a more individual approach when treating pancreatic cysts. However, prospective studies are warranted before routine clinical implementation.

Key words: Microbiopsy; Pancreatic cyst; Endoscopic ultrasound-fine needle aspiration; Intraductal papillary mucinous neoplasm; Chronic pancreatitis

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We present a case of a pancreatic cyst with an initial diagnosis of a pseudocyst altered to an intraductal papillary mucinous neoplasm of mixed type with low grade dysplasia through the use of endoscopic ultrasound guided microbiopsies obtained with a novel through-the-needle microbiopsy forceps, rendering the possibility of microscopic evaluation and genetic analysis of the cyst.

Rift CV, Kovacevic B, Karstensen JG, Plougmann J, Klausen P, Toxværd A, Kalaitzikis E, Hansen CP, Hasselby JP, Vilmann P. Diagnosis of intraductal papillary mucinous neoplasm using endoscopic ultrasound guided microbiopsies: A case report. World J Gastrointest Endosc 2018; 10(7): 125-129. Available from: URL: http://www.wjgnet.com/1948-5190/full/v10/i7/125.htm DOI: http://dx.doi.org/10.4253/wjge.v10.i7.125

INTRODUCTION

Pancreatic cysts are increasingly diagnosed due to expanding use of cross-sectional imaging[1]. Whereas some of the cysts are completely benign, others are considered malignant or pre-malignant [intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN)]. Endoscopic ultrasound (EUS) represents a cornerstone in preoperative diagnosis of these cysts, but cannot be used as a stand-alone modality[2]. EUS-guided fine needle aspiration (EUS-FNA) cytology has a relatively high specificity of 90.6%, but low sensitivity (64.8%), which is mainly due to absence of sufficient cellular material in the cyst fluid for a definite diagnosis[3,4]. A novel through-the-needle microbiopsy forceps (Moray™, US Endoscopy, Mentor, United States) has recently become available, offering a possibility of obtaining cyst-wall biopsies[5].

DISCUSSION

Obtaining biopsies from the wall of the pancreatic cystic lesions with the use of a through-the-needle microbiopsy forceps seems feasible. The jaws of the forceps with an opening width of 4.3 mm are easily identified on EUS and can be guided to obtain biopsies from different areas of interest (Figure 1). Needle-based confocal laser endomicroscopy (nCLE) is a comparative technique, also used in conjunction with a 19G needle. Several studies have shown that the procedure has a high specificity (close to 100%), but the rather low sensitivity of approximately 60% for predefined epithelial structures[6,7]. There are currently no data on the efficacy of nCLE to predict dysplasia. On the other hand, acquisition of tissue samples with the use of the microbiopsy forceps enables further diagnostic possibilities (e.g., immunohistochemistry, next-generation sequencing). Conventional EUS-FNA...
is considered safe with a low associated risk of hemorrhage (0.69%)[8]. Furthermore, most cases of intracystic hemorrhage resolve spontaneously and do not require further management. Microbiopsy forceps procedure appears safe with no adverse events reported, although the use has been limited[9,10]. This novel instrument requires the use of a larger 19G needle, which possibly is associated with a higher risk of adverse events[8]. This should be however seen in the light of an increased diagnostic yield. Obtaining samples from lesions in the head of the pancreas or the uncinate process can be technically challenging with a 19G needle, especially when the forceps is introduced. However, the procedure seems to be associated with rather high technical success rates[9,10].

In this case, the biopsies offered adequate tissue for histology and IHC staining and secured a diagnosis of IPMN with low grade dysplasia. The lesion was presumably of a mixed type: Pancreatobiliary subtype due to positivity in MUC1 and MUC5AC stains and the intestinal subtype due to positivity in CDX2 and MUC2 stains with the presence of goblet cells (Figure 2). When compared to gastric and oncocytic subtypes, pancreatobiliary and intestinal subtypes are associated with progression to high grade dysplasia and invasive carcinoma[11]. Previously, surgical series have shown that the clinical behavior of an invasive carcinoma derived from the pancreatobiliary type IPMN has a significantly poorer prognosis than those associated with the intestinal subtype[12,13]. On the other hand no mutations in genes controlling cell cycle and arrest (KRAS, CDKN2A, SMAD4, PIK3CA) or DNA repair (TP53) were found, the presence of which would also have rendered a poorer prognosis[14]. Even though GNAS and concomitant KRAS mutations is considered specific of IPMN, the sensitivity is low[15], as to why a negative result of the NGS analysis does not rule out underlying pathology as seen in this case.

As a new diagnostic tool, the Moray™ microbiopsy forceps offers new diagnostic challenges for both endoscopists and pathologists, one of these being the issue of contamination of the tissue obtained by the microbiopsy forceps during the procedure. As EUS-guided FNA-needle either passes through the duodenum or the stomach, contamination with gastric or duodenal epithelium is possible and commonly seen in cytology specimens. In this case the cyst was punctured through the stomach wall, indicating the presence of goblet cells in the microbiopsy is not due to contamination from the duodenum. The endoscopist should therefore always note the location of the echo-endoscope when puncturing the lesion. Nuclear atypia such as high nuclear to cytoplasmic ratio, irregular nuclear membranes, and prominent nucleoli are also helpful characteristics for the pathologist to distinguish contamination from neoplasia in cytology specimens[16] and is by our experience applicable in the interpretation of microbiopsies.

Although calcification of the pancreas is usually considered to be one of the signs of chronic pancreatitis, it can also be associated with IPMN[17,18]. The exact pathogenic mechanism is unknown, but it is believed that extensive mucus production causes obstructing pancreatitis and formation of calcifications, the presence of which might lead to diagnostic confusion[19]. In the case mentioned above, the microbiopsy forceps has not only contributed to additional diagnostic information, but has also altered the initial diagnosis from a benign pseudocyst to a side branch IPMN with low grade dysplasia, causing a significant change in the treatment. Taken the patient’s history, EUS characteristics with no dilated pancreatic duct, and low CEA-concentration in the cyst fluid into account, without the microbiopsy, no further follow-up would be instigated. After a multidisciplinary conference, the patient was instead referred for a surveillance program. Even though the use of the microbiopsy forceps seems feasible, at present there is only limited clinical experience with this instrument and further studies are warranted in order to determine its diagnostic value in pancreatic cysts.
CASE HIGHLIGHTS

Case characteristics
A 41-year-old male with chronic pancreatitis and abdominal pain.

Clinical diagnosis
A 2 cm cyst located in the body of the pancreas.

Differential diagnosis
Mucinous cyst.

Laboratory diagnosis
A low level of cyst fluid carcinoembryonic antigen.

Imaging diagnosis
Endoscopic ultrasound suggested a pseudocyst.

Pathological diagnosis
Microbiopsies yielded the diagnosis of an intraductal papillary mucinous neoplasm of mixed type with low grade dysplasia.

Treatment
Clinical follow-up.

Related reports
Pancreatic cysts are increasingly diagnosed due to expanding use of cross-sectional imaging. Endoscopic ultrasound cannot be used as a stand-alone modality.

Term explanation
The wall of a pseudocyst has no epithelial lining, as to why presence of epithelial cells excludes the diagnosis of a pseudocyst.

Experiences and lessons
Obtaining microbiopsies from the wall of a pancreatic cyst and subsequently performing microscopic evaluation as well as NGS-analysis has to our best knowledge not previously been reported. The technique seems feasible and, as demonstrated in this case, can possibly alter the clinical outcome.

REFERENCES

1 Lee KS, Sekhar A, Rofsky NM, Pedrosa I. Prevalence of incident-al pancreatic cysts in the adult population on MR imaging. Am J Gastroenterol 2010; 105: 2079-2084 [PMID: 20354507 DOI: 10.1038/ajg.2010.122]

2 Suzuki R, Thosani N, Amnangi S, Guha S, Bhutani MS. Diagnostic yield of EUS-FNA-based cytology distinguishing malignant and benign IPMNs: a systematic review and meta-analysis. Pancreatology 2014; 14: 380-384 [PMID: 25278308 DOI: 10.1016/j.pan.2014.07.006]

3 Woolf KM, Liang H, Sletten JZ, Russell DK, Bonfiglio TA, Zhou Z. False-negative rate of endoscopic ultrasound-guided fine-needle aspiration for pancreatic solid and cystic lesions with matched surgical resections as the gold standard: one institution’s experience. Cancer Cytopathol 2013; 121: 449-458 [PMID: 23677908 DOI: 10.1002/cncy.21299]

4 Oppong KW, Dawwas MF, Charnley RM, Wadehra V, Elamin K, White S, Nayar M. EUS and EUS-FNA diagnosis of suspected pancreatic cystic neoplasms: Is the sum of the parts greater than the CEA? Pancreatology 2015; 15: 531-537 [PMID: 26375415 DOI: 10.1016/j.pan.2015.08.001]

5 Shakhatreh MH, Naini SR, Brijbassie AA, Grider DJ, Shen P, Yeaton P. Use of a novel through-the-needle biopsy forceps in endoscopic ultrasound. Endosc Int Open 2016; 4: E439-E442 [PMID: 27092324 DOI: 10.1055/s-0042-101941]

6 Konda VJ, Meining A, Jamil LH, Giovannini M, Hwang JH, Wallace MB, Chang KJ, Siddiqui UD, Hart J, Lo SK, Saunders MD, Aslanian HR, Wroblewski K, Waxman I. A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance. Endoscopy 2013; 45: 1006-1013 [PMID: 24163192 DOI: 10.1055/s-0033-1344714]

7 Kadylíček A, Atar M, Basar O, Forcione DG, Brugge WR. Needle-Based Confocal Laser Endomicroscopy for Evaluation of Cystic Neoplasms of the Pancreas. Dig Dis Sci 2017; 62: 1346-1353 [PMID: 28281172 DOI: 10.1007/s10620-017-4521-2]

8 Zhu H, Jiang F, Zhu J, Du Y, Jin Z, Li Z. Assessment of morbidity and mortality associated with endoscopic ultrasound-guided fine-needle aspiration for pancreatic cystic lesions: A systematic review and meta-analysis. Dig Endosc 2017; 29: 667-675 [PMID: 28218990 DOI: 10.1111/den.12851]

9 Mittal C, Obuch JC, Hammad H, Edmundowicz SA, Wani S, Shah RJ, Brauer BC, Attwell AR, Kaplan JB, Wagsh MS. Technical feasibility, diagnostic yield, and safety of microforceps biopsies during EUS evaluation of pancreatic cystic lesions (with video). Gastrointest Endosc 2018; 87: 1263-1269 [PMID: 29309781 DOI: 10.1016/j.gie.2017.12.025]

10 Zhang ML, Arpin RN, Brugge WR, Forcione DG, Basar O, Pitman MB. Moray micro forceps biopsy improves the diagnosis of specific pancreatic cysts. Cancer Cytopathol 2018; Epub ahead
11 Adsay NV, Merati K, Basturk O, Iacobuzio-Donahue C, Levi E, Cheng JD, Sarkar FH, Hruban RH, Klimstra DS. Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. *Am J Surg Pathol* 2004; 28: 839-848 [PMID: 15223952 DOI: 10.1097/00000478-200407000-00001]

12 Kim J, Jang KT, Mo Park S, Lim SW, Kim JH, Lee KH, Lee JK, Heo JS, Choi SH, Choi DW, Rhee JC, Lee KT. Prognostic relevance of pathologic subtypes and minimal invasion in intraductal papillary mucinous neoplasms of the pancreas. *Tumour Biol* 2011; 32: 535-542 [PMID: 21190101 DOI: 10.1007/s13277-010-0148-z]

13 Sadakari Y, Ohuchida K, Nakata K, Ohotsuka T, Aishima S, Takahata S, Nakamura M, Mizumoto K, Tanaka M. Invasive carcinoma derived from the nonintestinal type intraductal papillary mucinous neoplasm of the pancreas has a poorer prognosis than that derived from the intestinal type. *Surgery* 2010; 147: 812-817 [PMID: 20060146 DOI: 10.1016/j.surg.2009.11.011]

14 Kuboki Y, Shimizu K, Hatori T, Yamamoto M, Shibata N, Shiratori K, Furukawa T. Molecular biomarkers for progression of intraductal papillary mucinous neoplasm of the pancreas. *Pancreas* 2015; 44: 227-235 [PMID: 25423558 DOI: 10.1097/MPA.0000000000000253]

15 Amato E, Molin MD, Mafficini A, Yu J, Malleo G, Rusev B, Fassan M, Antonello D, Sadakari Y, Castelli P, Zamboni G, Maitra A, Salvia R, Hruban RH, Bassi C, Capelli P, Lawlor KT, Goggins M, Scarpa A. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. *J Pathol* 2014; 233: 217-227 [PMID: 24604757 DOI: 10.1002/path.4344]

16 Layfield LJ, Jarboe EA. Cytopathology of the pancreas: neoplastic and nonneoplastic entities. *Ann Diagn Pathol* 2010; 14: 140-151 [PMID: 20227021 DOI: 10.1016/j.anndiagpath.2009.12.007]

17 Origuchi N, Kimura W, Muto T, Esaki Y. Pancreatic mucin-producing adenocarcinoma associated with a pancreatic stone: report of a case. *Surg Today* 1998; 28: 1261-1265 [PMID: 9872545 DOI: 10.1007/BF02482811]

18 Zapiach M, Yadav D, Smyrk TC, Fletcher JG, Pearson RK, Clain JE, Farnell MB, Chari ST. Calcifying obstructive pancreatitis: a study of intraductal papillary mucinous neoplasm associated with pancreatic calcification. *Clin Gastroenterol Hepatol* 2004; 2: 57-63 [PMID: 15017633 DOI: 10.1016/S1542-3565(03)00292-1]

19 Kalaitzakis E, Braden B, Trivedi P, Sharifi Y, Chapman R. Intraductal papillary mucinous neoplasm in chronic calcifying pancreatitis: egg or hen? *World J Gastroenterol* 2009; 15: 1273-1275 [PMID: 19291831 DOI: 10.3748/wjg.15.1273]

P- Reviewer: Hoff DAL, Krishna SG S- Editor: Ji FF L- Editor: A E- Editor: Tan WW
