The aim of the research was to study the effect of sow and boar age on average weight of newly born piglets, considering the season of the year and the age of the animals. The studies were conducted in the research farm of SE “Gontarivka”, Volchansky district, Kharkiv region. Natural breeding of sows is used for reproduction on the farm. The insemination of sows was carried out according to the scheme of studies. 35 head of sows and 4 boars of different ages and live weights were selected. Four groups of sows were formed. In order to study the impact of the season of the year on sow productivity, the first series of studies were conducted in the autumn, the second series - in the spring according to the same scheme.

In different groups of animals, average weight of newly born piglets ranged from 1.10 to 1.21 kg. The average value of this indicator for all sows for both studied seasons was 1.16 kg. The magnitude (for all sows of the period) in winter farrowing was 1.74 % higher than the summer farrowing (for all sows of the period), although the difference between these groups was not probable. Between the sows of different ages, inseminated by boars of different ages, in winter, the higher values were given to young sows that were inseminated by young boars (p<0.01 compared to young sows that were inseminated by full-grown boars). Among the sows of different ages, inseminated by boars of different ages, in the summer, the highest values were middle-aged, which were inseminated by middle-aged boars (p<0.01 compared to young sows in winter, inseminated by full boars and p<0.05 compared to young sows in summer, which were inseminated by adult boars). During the summer period the middle-aged sows, which were inseminated by middle-aged boars, received maximum values of average weight of newly born piglets, which were higher than sows of other groups by 10.00-0.83 %.

The most consolidated high-birth-weight rates were obtained in winter for young sows that were inseminated by adult boars. In the summer, the most consolidated were young sows inseminated by young boars.

Keywords: pig breeding, sows, reproductive capacity, average weight of newly born piglets, birth-weight indicator, coefficients of phenotype consolidation, seasons, age of animals.

Domestic pig breeding is one of the leading branches of animal husbandry on which the decision of providing the population with a high-value protein product of animal origin largely depends [1-2]. The increase of production is based on the fact that in recent decades in domestic livestock, and especially in pig breeding, significant progress has been made [3-4]. Improving the efficiency of pork production is due to improvements in individual components. Such an important element as the reproductive capacity of sows is no exception [5-10].

The efforts of scientists and producers are aimed at increasing the number of
piglets obtained from one sow during the year. In the development of modern breeding programs, significant attention is focused primarily on improving the reproductive characteristics of sows [11-12].

Current trends in climate change require more attention to the study of sow productivity under the influence of certain paratypic factors. Although there is an opinion about the absence of such influence [13]. At the same time, the reproductive capacity of sows is one of the traits with a low level of inheritance, the influence of which on paratypic factors is significant [14-16].

In recent years, there has been a significant improvement in domestic farms in terms of the main indicator that characterizes the reproductive quality of sows – fertility. Accordingly, there is a need to assess and control no less important indicator – number of high-birth-weight in pigs. There is a high and medium level of correlations between the main indicators of reproductive capacity, which increases the importance of studying the level of basic indicators, among which high-birth-weight is one of the leading [17-20].

Thus, given the relevance of this research area, the aim of this work was to study the effect sows' and boars’ age on their offsprings’ high-birth-weight, considering the season of the year and the age of the animals.

**Materials and methods of research.** The research was conducted in the experimental farm of SE “Gontarivka” of Vovchansky district of Kharkiv region, on the basis of a breeding farm for keeping Welsh pigs during 2016-2017. Natural mating of sows is used on the farm to reproduce the livestock. The research was a continuation of the work [21] started at this stage, with the study of a wider range of age combinations of boars and sows and the influence of the season of the year on the indicator of fertility and its phenotypic consolidation. The research was conducted based on traditional approaches [22].

Insemination of sows was performed according to the study scheme (Table 1).

| Scheme of study | The first series (winter farrowing) | The second series (summer farrowing) | Age of animals, months |
|----------------|-----------------------------------|-------------------------------------|------------------------|
| Group of animals | number of sows in the group, heads | group of animals | number of sows in the group, heads | sows | boars |
| I               | 9                                | V                                   | 7                      | 48    | 48    |
| II              | 9                                | VI                                  | 10                     | 18    | 48    |
| III             | 8                                | VII                                 | 9                      | 24    | 24    |
| IV              | 9                                | VIII                                | 9                      | 18    | 18    |

35 experimental sows and 4 Welsh boars of different ages and live weight were selected for experimental work on the breeding farm. Four groups of sows were formed. In order to study the impact of the season on the productivity of sows, the first series of studies was conducted in the fall, the second series - in the spring according to the same scheme. Used in both series of studies of the same animals (both paternal and maternal component).

: the first time in 18-20 hours after the establishment of the sexual arousal, again - in 12-18 hours. In the first period of gestation sows were kept in groups of 7-10 heads. One and a half months before farrowing sows were placed 4-5 heads in the stall, and a week before farrowing were transferred to individual stalls. During gestation the sows of the experimental groups were placed in identical conditions of feeding and keeping.
Evaluation of the degree of phenotypic consolidation of the main features of pig productivity was performed by Yu. P. Polupan [23], to the entire estimated group of animals (for both seasons at different live weights) by the formulas (1–2):

\[ K_1 = 1 - \frac{\sigma_r}{\sigma_3} \]  
\[ K_2 = 1 - \frac{Cv_r}{Cv_3} \]

where: \( K_1, K_2 \) - the degree of phenotypic consolidation of the evaluated group; 
\( \sigma_r, \sigma_3 \) and \( Cv_r, Cv_3 \) – standard deviation and coefficient of variability of the evaluated group of animals on a specific feature; 
\( \sigma_z, \sigma_3 \) and \( Cv_z, Cv_3 \) – the same indicators of the general population.

Indicators obtained experimentally were processed by the method of variation statistics [24-25], using MS Excel software.

**Research results and discussion.** In different groups of animals, high-birth-weight ranged from 1.1 to 1.21 kg (Fig.). The average value of this indicator for all sows for both studied seasons of the year was 1.16 kg. High-birth-weight indicator in all sows of the period in winter farrowing was 1.74% higher compared to summer farrowing in all sows of the period, although the difference between these groups was unlikely. Among sows of different ages, which were inseminated with boars of different ages, in the winter the higher values were young sows at the age of 18 months, which were inseminated with young boars of the same age (p<0.01 compared with young sows that were inseminated with adult boars - II group). Between sows of different ages, which were inseminated with boars of different ages, in the summer period the higher values were middle-aged (24 months), which were inseminated with middle-aged boars (24 months) (p<0.01 compared to young sows in winter period, which were inseminated with adult boars - group II and p<0.05 compared to young sows in the summer period, which were inseminated with adult boars - group VI). That in the summer period for the middle-aged sows (24 months), which were inseminated with boars of the same age (group VII), were obtained maximum values of high-birth-weight, which were higher than the sows of other groups by 10.00-0.83%.

**Fig. 1. Indicators of high-birth-weight of sows**
After assessing the rate of high-birth-weight, the coefficients of phenotypic consolidation were calculated (Table 2).

Table 2

| Groups  | n, heads | High-birth-weight index, kg |
|---------|----------|----------------------------|
|         |          | K1                         | K2        |
| Winter farrowing |          |                            |           |
| I       | 9        | -0,147                     | -0,162    |
| II      | 9        | +0,350                     | +0,314    |
| III     | 8        | +0,080                     | +0,092    |
| IV      | 9        | +0,080                     | +0,111    |
| Summer farrowing |          |                            |           |
| V       | 7        | -0,170                     | -0,145    |
| VI      | 10       | +0,178                     | +0,148    |
| VII     | 9        | -0,017                     | +0,026    |
| VIII    | 9        | +0,315                     | +0,312    |

Of all the assessed groups of sows for both periods, the lowest values of consolidation on the basis of high-birth-weight were obtained for adult sows (48 months), which were inseminated with adult boars (48 months) in winter and summer, as well as for a group of middle-aged sows (24 months), which were inseminated by middle-aged boars (24 months) in the summer. Unlike sows of these three groups, the most consolidated indicators of high-birth-weight were obtained in the winter for young sows (18 months), which were inseminated with adult boars (48 months). In summer, the most consolidated were young sows (18 months), which were inseminated with young boars (18 months).

Conclusions. Probable differences in the rate of high-birth-weight between the sows of different groups at different times of the year were established. For middle-aged sows (24 months), which were inseminated with middle-aged boars (24 months), the maximum values of high-birth-weight were obtained, which were higher than the sows of other groups by 10.00-0.83 % (p<0.01 in compared to young sows in the winter, which were inseminated with adult boars and p<0.05 compared to young sows in the summer, which were inseminated with adult boars).

Differences in the level of consolidation of the high-birth-weight rate at different age combinations of sows and boars were revealed. The most consolidated indicators of high-birth-weight were obtained in the winter for young sows (18 months), which were inseminated with adult boars (48 months). In summer, the most consolidated were young sows (18 months), which were inseminated with young boars (18 months). No significant differences in the consolidation of the studied feature in different periods were found.

Бібліографічний список

1. Жукорський О. М., Никифорук О. В. Галузь свинарства – реальна та прогнозована загроза для довкілля. Агроекологічний журнал. 2013. №. 3. С. 102–107.
2. Schneider Uwe A., Pushpam K. Greenhouse gas emission mitigation through agriculture. Choices. 2008. V. 23. Is. 1. Retrieved from : http://purl.umn.edu/94500
3. Hladiy M. V., Polupan Y. P., Kovtun S. I., Kuzebnij S. V., Vyshnevskiy L. V., Kopylov K. V., Shcherbak O. V. Scientific and organizational aspects of generation, genetics, reproduction biotechnology and protection of the genofonds in livestock breeding. *Animal Breeding and Genetics*. 2018. № 56. P. 5–14. DOI: 10.31073/abg.56.01.

4. Ващенко О. В. Комбінаційна здатність спеціалізованих порід і типів свиней в промисловому схрещуванні. *Розведення і генетика тварин*: міжвідом. темат. наук. зб. / Інститут розведення і генетики тварин ім. М.В. Зубця. Київ, 2017. № 53. P. 84–90. DOI: 10.31073/abg.53.11.

5. Храмкова О. М. Відтворювальні якості свиноматок за різних поєднань порід і типів. *Theoretical and Applied Veterinary Medicine*. 2019. №7(2). С. 115–119. DOI 10.32819/2019.71021.

6. Церенюк О. М., Акімов О. В., Шкавро Н. В., Черегула Ю. В. Індекси будови тіла двопородних ремонтних свинок та свиноматок. *Науково-технічний бюлетень Інституту тваринництва НААН*. Харків, 2019. № 122. С. 248–257. DOI 10.32900/2312-8402-2019-122-248-257.

7. Мартинюк І. М., Церенюк О. М., Акімов О. В. Залежність та багатоплідність свиноматок залежно від кратності осімення у різні пори року. *Науково-технічний бюлетень Інституту тваринництва НААН*. Харків, 2019. № 121. С. 156–162. DOI 10.32900/2312-8402-2019-121-156-162.

8. Tsereniuk O., Susol R., Bordun O., Paliy A., Shkromada O., Akimov O., Tsereniuk M., Dependence of sows’ phenotypic consolidation of productivity on the reason of their culling due in index selection. *Porc Res*. 2019. № 9(1). P. 15–20.

9. Tsereniuk O., Tsereniuk M., Akimov O., Paliy A., Nanka O., Shkromada O., Pomitun I., Dependence of sows’ productivity on the reason of their culling, in index selection. *Porc Res*. 2018. № 8(1). P. 17–23.

10. Галак В. І., Гутий Б. В., Стадницька О. І. Відгодівельні та м’ясні якості молодняку свиней різного походження та інтенсивності фо-мування у ранньому онтогенезі. *Науковий вісник Львівського національного університету ветеринарної медицини та біотехнологій ім. С. З. Гжицького*. Серія: Сільськогосподарські науки. Львів, 2019. Т. 21. № 91. С. 10–15. https://doi.org/10.32718/nvlvet-a9102

11. Hanenberg E. H. A. T., Knol E. F., Merks J. W. M. Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. *Livestock Production Science*. 2001. № 69(2). P. 179–186. DOI 10.1016/S0301-6226(00)00258-X.

12. Крамаренко С. С., Крамаренко О. С., Луговий С. І., Лихач А. В., Лихач В. Я. Аналіз головних компонент (РСА) ознак відтворення свиноматок великої білої породи. *Вісник аграрної науки Прикарпатського ун-ту*. Ужгород, 2019. № 53. С. 257–263. DOI 10.31073/abg.53.11.

13. Копитець Н. Г. Сучасний стан та тенденції розвитку ринку свинини в Україні. *Економіка АПК*. 2018. № 11. С. 44–54. DOI https://doi.org/10.32317/2221-1055.201811044

14. Рукавиця А. А. Аналіз впливу використання селекційних (оціночних) індексів у якості критеріїв відбору на відтворювальні якості свиноматок української м’ясої породи. *Науково-технічний бюлетень Інституту тваринництва НААН*. Харків, 2016. № 115. С. 195–202.

15. Церенюк О. М., Хватов А. І., Стрижак Т. А., Коваленко В. П. Об’єктивна оцінка материнської продуктивності свиней. *Таврійський науковий вісник*. Херсон: Херсон. держ. аграр. ун-т, 2010. Вип. 69. С. 112–126.
16. Коваленко Т. С., Сурженко М. В. Вивчення типів успадкування полігених ознак продуктивності свиней. Вісник Сумського національного аграрного університету. Серія: Тваринництво. Суми, 2013. №. 1. С. 76–78.
17. Young L. D., Pumfrey R. A., Cunningham P. J., Zimmerman D. R. Heritabilities and genetic and phenotypic correlations for prebreeding traits, reproductive traits and principal components. Journal of Animal Science. 1978. № 46(4). Р. 937–949. DOI 10.2527/jas1978.464937x
18. Fahmy M. H., Bernard C. S. Interrelations between some reproductive traits in swine. Canadian Journal of Animal Science. 1972. № 52(1). Р. 39–45. DOI 10.4141/cjas72-004
19. Biensen N. J., Haussmann M. F., Lay D. C., Christian L. L., Ford S. P. The relationship between placental and piglet birth weights and growth traits. Animal Scienc. 1999. № 68(4). Р. 709–715. DOI 10.1017/S1357729800050736
20. Крамаренко С. С., Луговий С. І., Лихач А. В., Крамаренко О. С., Лихач В. Я., Крамаренко С. С., Крамаренко А. С. Порівняльний аналіз відтворювальних ознак та кластерний аналіз свиней різних порід. Науковий вісник Львівського національного університету ветеринарної медицини та біотехнологій ім. С. З. Глицицького. Серія : Сільськогосподарські науки. Львів, 2018. Т. 20. № 84. С. 21–26. DOI 10.15421/nvlvet8404
21. Мартинюк І. М., Бугров О. Д. Вплив віку свиноматок і кнурів породи уельс і укринська м’ясна на вихід поросят в гнізді. Свинництво : міжвідом. тем. наук зб. Інституту свинництва і АПВ НААН. Полтава, 2015. Вип. 67. С. 103–106.
22. Методологія та організація наукових досліджень у тваринництві : підручник / за ред. І. Ібатулліна, О. М., Крамаренко А. С. Київ : Харвест, 2014. 53, 84. DOI 10.4141/cjas72-004
23. Полупан Ю. П. Оценка степени фенотипической консолидации генеалогических групп животных. Zootechnія. 1996. № 10. С. 13–15.
24. Плохинський Н. А. Руководство по биометрии для зоотехников. Москва : Колос, 1969. 352 с.
25. Барановський Д. И., Хохлов А. М., Гетманец О. М. Биометрия в MS Excel : учеб. пособ. Харків : ФЛП Бровин А. В., 2017. 228 с.

References
1. Zhukorskyi, O. M., & Nykyforuk, O. V. (2013). Haluz svynarstva – realna ta prohnozovana zahrada dla dovklilla [The pig breeding industry - a real and predicted threat to the environment]. Ahroekolohichnyy zhurnal. 3, 102–107 [in Ukrainian].
2. Schneider, Uwe A., & Pushpam, K. (2008). Greenhouse gas emission mitigation through agriculture [online] Choices. 23 (1). Retrieved from : http://purl.unm.edu/94500 [Accessed 01 December 2019]
3. Hladiy, M. V., Polupan, Y. P., Kovylo, S. L., Kuzebnij, S. V., Vyshnevskiy, L. V., Kopylov, K. V., Scherbak O. V. (2018). Scientific and organizational aspects of generation, genetics, reproduction biotechnology and protection of the genofonds in livestock breeding. Animal Breeding and Genetics, 56, 5–14. DOI: 10.31073/abg.56.01.
4. Vashchenko, O. (2017). Kombinatsiina zdatnist spetsializovanykh porid i typiv svynei v promyslovomu skhreshchuvanni. Rozvedennia i henetyka tvaryn Kombinatsiyna zdatnist’ spetsializovanych porid i typiv svynei v promyslovomu skhreshchuvanni. Rozvedennia i henetyka tvaryn – Animal Breeding and Genetics. Kyiv, 53, 84–90. DOI: 10.31073/abg.53.11 [in Ukrainian].
5. Khramkova, O. M. (2019). Vidtorivualni yakosti svynomatok za riznykh poiednan porid i typiv [Reproductive qualities of sows in different combinations of
Indexy budovy tila dvoporodnykh remontnykh svynok ta svynomatok [Analysis of the influence of the use of breeding and multiplicity of sows depending on the frequency of insemination at different times of the year]. Naukovo-tekhnichniyi biuleten Instytutu tvarynyvystva NAAN – The Scientific and Technical Bulletin of the Institute of Animal Science NAAS of Ukraine. Kharkiv, 122, 248–257. DOI 10.32900/2312-8402-2019-122-248-257 [in Ukrainian].

7. Martynyuk, I. M., Tsereniuk, O. M., & Akimov, O. V. (2019). Indexy budovy tila dvoporodnykh remontnykh svynok ta svynomatok [Fertilization and multiplicity of sows depending on the frequency of insemination at different times of the year]. Naukovo-tekhnichniyi biuleten Instytutu tvarynyvystva NAAN – The Scientific and Technical Bulletin of the Institute of Animal Science NAAS of Ukraine. Kharkiv, 121, 156–162. DOI 10.32900/2312-8402-2019-121-156-162 [in Ukrainian].

8. Tsereniuk, O., Susol, R., Bordun, O., Palii, A., Shkromada, O., Akimov, O., & Tsereniuk, M. (2019). Dependence of sows’ phenotypic consolidation of productivity on the reason of their culling due in index selection. Porc Res. 9(1), 15–20.

9. Tsereniuk, O., Tsereniuk, M., Akimov, O., Palii, A., Nanka, O., Shkromada, O., & Pomitun, I. (2018). Dependence of sows’ productivity on the reason of their culling, in index selection. Porc Res. 8(1), 17–23.

10. Khalak, V., Gutyj, B., & Stadnits’ka, O. (2019). Vidhodivneli ta m’iasni yakosti molodniaku svynei riznoho pokhodzhennia ta intensyvnosti formuvannia u rannomu ontohenezi [Fattening and meat qualities of young pigs of different origin and intensity of formation in early ontogenesis]. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. S. Z. Gzhytskoho. Seriia: Silskohospodarski nauky – Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology. S. Z. Gzhytsky. Series: Agricultural Sciences, 21(91), 10–15. DOI 10.32718/nvlvet-a9102 [in Ukrainian].

11. Hanenberg, E. H. A. T., Knol, E. F. & Merks, J. W. M. (2001). Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. Livestock Production Science, 69(2), 179–186. DOI 10.1016/S0301-6226(00)00258-X.

12. Kramarenko, S. S., Kramarenko, O. S., Luhovyy, S. I., Lykhach, A. V. & Lykhach, V. YA. (2019). Analiz holovnykh komponent (PCA) oznak vidtvorennia svynomatok velykoi biloi porody [Principal Component Analysis (PCA) of sows reproduction of Large White breed]. Bulletin of Agrarian Science of the Black Sea Coast – Ukrainian Black Sea region agrarian science. Mykolaiv, 2, 75–81. DOI 10.31521/2313-092X/2019-2(102) [in Ukrainian].

13. Kopytets, N. H.(2018). Suchasniy stan ta tendentsii rozvytku rynku svynyny v Ukraini [The current state and tendencies of pork market development in Ukraine]. Ekonomika APK – Economics of agro-industrial complex, 11, 44–54. DOI https://doi.org/10.32317/2221-1055.201811044 [in Ukrainian].

14. Rukavytsya, A. A. (2016). Analiz vplyvu vykorystannia selektsiinyykh (otsinochnykh) indeksiv u yakosti kryteriv vidboru na vidtvoriuvalni yakosti svynomatok ukraïnskoi m’iasnoi porody [Analysis of the influence of the use of breeding (evaluation) indices as selection criteria on reproductive qualities of sows of Ukrainian Meat breed]. Naukovo-tekhnichniy biuleten’ IAS NAAS – The Scientific and Technical Bulletin of the Institute of Animal Science NAAS of Ukraine, 115, 195–202, [in Ukrainian].

15. Tsereniuk, O. M., Khvatov, A. I., Stryzhak, T. A. & Kovalenko, V. P. (2010). Obiektivna otsinka materynskoi produktyvnosti svynei [Objective evaluation of
материнської продуктивності]. Tavriys’kyi naukovyy visnyk – Taurian Scientific Bulletin, 69, 112–126 [in Ukrainian].

16. Kovalenko, T. S., & Surzhenko, M. V. (2013). Vyvchennia typiv uspadkuvannia polihennykh oznak produktyvnosti syvnei [Study of types of inheritance of polygenic features of pig productivity]. Bulletin of Sumy National Agrarian University. Series: Livestock – Bulletin of Sumy National Agrarian University. Series: Livestock. Sumy, 1, 76–78 [in Ukrainian].

17. Young, L. D., Pumfrey, R. A., Cunningham, P. J., & Zimmerman, D. R. (1978). Heritabilities and genetic and phenotypic correlations for prebreeding traits, reproductive traits and principal components. Journal of Animal Science, 46(4). pp. 937–949. DOI 10.2527/jas1978.464937x

18. Fahmy, M. H., & Bernard, C. S. (1972). Interrelations between some reproductive traits in swine. Canadian Journal of Animal Science, 52(1), 39–45. DOI 10.4141/cjas72-004.

19. Biensen, N. J., Haussmann, M. F., Lay, D. C., Christian, L. L., & Ford, S. P. (1999). The relationship between placental and piglet birth weights and growth traits. Animal Scienc., 68(4), 709–715. DOI 10.1017/S1357729800050736

20. Kramarenko, S. S., Luhovyi, S. I., Lykhach A. V., Kramarenko O. S., Lykhach V. Ya., Kramarenko S. S., & Kramarenko A. S. (2018). Porivnialniy analiz vidtvoriuvannia oznak ta klasternyi analiz syvnei riznykh porid [Comparative analysis of reproductive traits and cluster analysis of pigs of different breeds]. Nauchovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny i biotekhnolohii. S. Z. Hzytskoho – Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology. S. Z. Gchytsky. Series: Agricultural Sciences. Lviv, 20 (84), 21–26. DOI 10.15421/nvlvet8404, [in Ukrainian].

21. Martyniuk, I. M., & Buhrov, O. D. (20-15). Vplyv viku svynomatok i knuriv porody uels i ukrainska m’iasna na vykhid porosiat v hnidzi [Influence of the age of sows and boars of the breed of Welsh and Ukrainian Meet on the output of piglets in the litter]. Svynarstvo – Pig breeding. Poltava : Institute of Pig Breeding and APV NAAS, 67, 103–106 [in Ukrainian].

22. Ibatullin I. I., & Zhukorskyi, O. M. (Eds.) (2017). Metodolohiya ta orhanizatsiya naukovykh doslidzhen’ u tvarynnystvi: posib [Methodology and organization of scientific research in animal husbandry: a tool]. Kyiv : Ahrarna nauka [in Ukrainian].

23. Polupan, Yu. P. (1996). Otsenka stepeni fenotipicheskoy konsolidatsii genealogicheskikh grupp zhivotnykh [Assessment of the degree of phenotypic consolidation of genealogical groups of animals]. Zootekhnia – Zootechnics, 10, 13–15 [in Russian].

24. Plokhinskiy, N. A. (1969). Rukovodstvo po biometrii dlya zootekhnikov – Biometrics Guide for Livestock Specialists. Moscow : Kolos [in Russian].

25. Baranovskyi, D. I., Khokhlov, A. M., & Getmanets, O. M. (2017). Biometriya v MS Excel [Biometry in MS Excel]. Kharkiv : FLP Brovin A. V. [in Russian].

КОЭФФИЦИЕНТЫ ФЕНОТИПОВОЙ КОНСОЛИДАЦИИ ПОКАЗАТЕЛЯ КРУПНОПЛОДНОСТИ СВИНОМАТОК УЭЛЬСЬКОЙ ПОРОДЫ

Церенюк А. Н., Мартынюк И. Н., Акимов А. В., Шкафро Н. Н., Институт животноводства НААН

Бабич М., Люблинський Природоведческий университет, Польща

Целью исследований, результаты которых изложены в статье было изучение влияния возраста свиноматок и хряков на крупноплодие с учетом сезона
Великоплідність свиноматок уельської породи
Церенюк О. М., Мартинюк І. М., Акімов О. В., Шкавро Н. М., Інститут тваринництва НААН

Бабіч М., Люблінський Природничий університет, Польща

Метою досліджень, результати якої викладені у статті, було вивчення впливу віку свиноматок і кнурів на їх великоплідність із урахуванням сезону року та віку тварин. Дослідження проводилися в досліджуваному господарстві ДП ДГ „Гонтарівка” Вовчанського району Харківської області. Для відтворення по- голів'я у господарстві використовували природне парування свиноматок. Осім- ніня свиноматок було проведено згідно зі схемою досліджень. Для проведення експериментальної роботи на свинофермі племзаводу було відібрано 35 голів основних свиноматок та 4 кнур породи уельського віку та різної живої маси. Було сформовано чотири групи маток. З метою вивчення впливу сезону року на про-
дуктивність свиноматок, першу серію досліджень провели восени, другій серію – навесні за тією ж схемою.

По різних групах тварин великоплідність коливалась в межах від 1,1 до 1,21 кг. Середне значення цього показника по всіх матках за обох вивчених сезонів року становило 1,16 кг. Великоплідність (по усім маткам періоду) у зимові опороси була на 1,74 % вищою у порівнянні з літніми опоросами (по усім маткам періоду), хоча й різниця між цими групами була не вірогідною. Між матками різного віку, що були осімінені кнурами різного віку, в зимовий період вище значення мали молоді матки, що були осімінені молодими кнурами (р<0,01 у порівнянні до молодих маток, що були осімінені повновіковими кнурами). Між матками різного віку, що були осімінені кнурами різного віку, в літній період вище значення мали середнього віку, що були осімінені кнурами середнього віку (р<0,05 у порівнянні до молодих маток у літній період, що були осімінені повновіковими кнурами). Саме в літній період по матках середнього віку, що були осімінені кнурами середнього віку були отримані максимальні значення великоплідності, що були вищими за показники маток інших груп на 10,00-0,83 %.

Найбільш консолідовані показники великоплідності були отримані в зимовий період по молодих матках, що були осімінені повновіковими кнурами. В літній період найбільш консолідованими були молоді матки, що були осімінені молодими кнурами.

Ключові слова: свинарство, свиноматки, відтворна здатність, великоплідність, коефіцієнти фенотипової консолідації, сезони року, вік тварин.

DOI 10.32900/2312-8402-2020-123-58-67
УДК 636.1.082.26:575

АСОЦІАЦІЯТИВНІ ЗВ'ЯЗКИ ГЕНОТИПІВ КАППА-КАЗЕІНУ, БЕТА-ЛАКТОГЛОБУЛІНУ, ЛЕПТИНУ ТА СОМАТОТРОПІНУ З МОЛОЧНОЮ ПРОДУКТИВНІСТЮ ХУДОБИ В ПОПУЛЯЦІЇ СИМЕНТАЛЬСЬКОЇ ПОРОДИ

Бойко О. А., к. с.-г. н., с. н. с.,
Россоха В. І., к. с.-г. н., с. н. с.,
Дробязко О. В., н. с.
Олійниченко Є. К., к. с.-г. н.
Задерихіна О. А., с. н. с.
Інститут тваринництва НААН

З метою визначення прояви продуктивності популяції симентальської худоби проведено генотипування племінних тварин за генами, що асоційовані з господарсько корисними ознаками та запропоновано застосування результатів при плануванні перспективних планів селекційно – племінної роботи з урахуванням генотипів бугаїв-плідників.

Проведено аналіз поліморфізму генів каппа-казеїну (κ-Cn), бета-лакто глобуліну (βLG), лептіну (LEP) та гену соматотропіну (GH) в популяції великої рогатої худоби симентальської породи (ПрАТ «Племінний завод «Червоної Велетень» Харківської області) за використання метода ПЛР-ПДРФ. Встановлено рівень продуктивності за надоєм, вмістом жиру та білку в молоці. Визначе-