Indole-Acetic Acid Oxidase Enzyme Activity in Three Wheat Cultivars under Salt Stress Conditions at the Early Seedling Stage

Abstract

Indole-acetic acid enzyme activity in three wheat cultivars differing in their salt response was studied at the early seedling stage. It was found that the IAA oxidase enzyme activity gradually decreased with increasing EC levels in both the salt-sensitive cultivar IWP-72 and moderately salt-tolerant cultivar Sharbati sonora while in the tolerant cultivar HD-2160 the enzyme activity increased till 96 hours up to 12 EC while at 120 hours at all EC levels the activity decreased. The magnitude was, however, higher in the salt-sensitive cultivar. The IAA oxidase activity increased with advancement in seedling age but the degree of increase varied with the cultivars. Whereas in the tolerant and moderately tolerant cultivars a sharp increase was observed at 72 and 96 hours which later declined at 120 hours, on the other hand, in the sensitive cultivar it increased from 24 hours reaching a peak level at 120 hours. Also from the observations it is noticed that IAA oxidase enzyme activity was affected more in the salt-sensitive cultivar (IWP-72) as compared with the moderately salt-tolerant (Sharbati sonora) and the salt-tolerant cultivar (HD-2160).

Keywords: Wheat (Triticum aestivum L); NaCl salt stress; Salt-tolerant cultivar (HD-2160); Moderately salt-tolerant cultivar (Sharbati sonora); Salt-sensitive cultivar (IWP-72); IAA oxidase enzyme activity

Introduction

Plant germination and growth is regulated by the balance of plant hormones such as IAA, GA, CK etc., [1-5] and any disturbance in the balance of plant hormones retard the plant growth in which IAA plays a predominant role whose level, of course, is maintained endogenously by the enzyme activity of IAA oxidase [4-6]. Several workers [7-22] have shown genotypic variation among the same species of crop plants in relation to salt stress. In the present work an attempt has been made to find out a relationship existing between salt tolerance and sensitivity with IAA oxidase enzyme activity, if any, in three cultivars of wheat, salt-tolerant (HD-2160), moderately salt-tolerant (Sharbati sonora) and salt-sensitive (IWP-72). Thus, the objective of the study is to correlate the relationship between salt tolerance and IAA oxidase enzyme activity.

Materials and Methods

Forty two wheat cultivars (Triticum aestivum L) procured from Wheat Directorate, Cummings Laboratory, Division of Genetics and Plant Breeding, Indian Agricultural Research Institute, New Delhi and Chandra Sekhar Azad University of Agriculture and Technology, Kanpur (UP), India [22] were subjected to screening for salt resistance by Garrad’s Technique [23] modified by Sarin & Rao [24] and Sharma [8,22] and as per method of Sheoran and Garg [25]. The shoot and root lengths of seedlings were recorded at definite interval of 24 hours using test tubes of uniform size (30 ml capacity) fitted with rolls of filter paper folded at the top into a cone to support the seeds. The tubes were filled to one-third part with the test solutions so that the solution might not come in direct contact with the growing roots and to ensure that the salt solution being supplied to the roots through capillary action of the filter paper. Distilled water (represented the mean loss of water from the blanks) was added to each test tube after every 24 hours of interval in order to maintain salt concentration near the target levels throughout the germination period. The seeds were initially sterilized with 0.1 percent mercuric chloride (HgCl2) solution and later washed thoroughly with distilled water. Three seeds per tube were then transferred to the edge of the filter paper cone and were allowed to grow between the filter paper roll and the wall of the test tube in dark growth chamber at 25±20C. Fifteen replicates (five tubes each having three seeds) were maintained for each treatment including the controls (half-strength Hoagland solution grown). Observations on the influence of salinity levels at 4, 8, 12 and 16 EC dsm-1 of salt solution and the controls on the total length of shoot and root at early seedling stage were recorded at 24 hour intervals from 48 hours after sowing up to the end of 120 hours under green safe light. The relative tolerance of different cultivars was evaluated on the basis of the percentage reduction in shoot growth at 12 EC [22].

Three selected cultivars viz., salt-tolerant (HD-2160), moderately salt-tolerant (Sharbati Sonora) and salt-sensitive (IWP-72) from the entire screening were studied for IAA oxidase enzyme activity under salt-stressed conditions. The seeds were germinated and seedlings grown in sterilized petridishes on the salt solution grown. Observations on the influence of salinity levels at 4, 8, 12 and 16 EC dsm-1 of salt solution and the controls on the total length of shoot and root at early seedling stage were recorded at 24 hour intervals from 48 hours after sowing up to the end of 120 hours under green safe light. The relative tolerance of different cultivars was evaluated on the basis of the percentage reduction in shoot growth at 12 EC [22].
hours after sowing up to the end of 120 hours. The seedlings were raised according to the method described previously [4,26] and IAA oxidase enzyme activity was determined according to Rabin & Klein [27] technique as described by Witham et al., [28] and Sharma et al., [4]. The enzyme assay was conducted in cold room. One g of the seedlings was homogenized with 10 ml of cold distilled water in a chilled mortar. The slurry was passed through a layer of cheese cloth. The filtrate thus obtained was centrifuged at 10,000 rpm for 15 minutes. To the supernatant excess of acetone was added so that the final acetone concentration was brought to 40 percent by volume. It was centrifuged at 1,000 rpm for 15 minutes.

After discarding the supernatant the pellet of precipitate was re-suspended in 4 ml of 0.2 M phosphate citrate buffer (pH 5.6)* containing 0.5 ml10-4M MnCl, and 0.5 ml 10-3 M 2,4 dichlorophenol. The precipitate was shaken vigorously to dissolve it and the resulting solution was used as enzyme preparation. The reaction mixture containing 2 ml of the enzyme preparation, 7 ml of 0.2 M phosphate citrate buffer (pH 5.6) and 1 ml of indole-acetic acid (200 µg/ml) was incubated for one hour at 30°C. After incubation residual IAA was estimated by taking 1 ml of the reaction mixture and adding 4 ml Salkowski reagent and was left to stand for 30 minutes at room temperature. Pink colour of IAA was read at 540 nm against a reagent blank. The results are expressed as µg IAA destroyed per g fresh wt per hr.

- Phosphate citrate buffer (0.2 M pH 5.6): was prepared from A. 19.21 g citric acid dissolved in 1000 ml of distilled water; B. 53.65 g sodium hydrogen phosphate (NaHPO/2H2O) dissolved in 1000 ml of distilled water. Working Solution was prepared by mixing 21.0 ml of solution A with 29.0 ml of B diluted to a total of 100 ml and adjusted pH to 5.6. All parameters were analyzed by ‘Analysis of Variance’ (ANOVA) method as given by Panse & Sukhatme [29].

Results

Wheat seedling growth

In the screening of the forty two wheat cultivars for salinity tolerance at the early seedling stage shoot and root lengths under varying salinity levels (0, 4, 8, 12 and 16 dsm-1) induced by NaCl were observed. In the ANOVA analysis all the main effects viz., variety (V), treatment (T) and seedling age (D) and their interactions (V x D; V x T; D x T and V x D x T) were found to be highly significant at 0.01 probability with significant differences noticed in the shoot and root growths of all the cultivars studied [22]. With this, relative shoot and root growths of the cultivars showed that shoot growth was affected more as compared with root growth under salt stress. On the other hand, all the cultivars showed an increase in shoot and root growths with seedling age. It was evident that the different cultivars exhibited marked differences in their early seedling growth with increasing age of the seedling and that with advancement of seedling age the effect of salt declined and that, in general, tolerance to salinity increased (Figure 1). As indicated earlier [22] only 11 cultivars showed less than 60 percent reduction in shoot growth while majority of the 31 cultivars had more than 60 percent reduction at 16 EC. This is in contrast with root growth where almost a reverse trend was noticed, i.e., out of the 42 cultivars only 15 showed more than 60 percent reduction at 16 EC whereas 27 had less than 60 percent reduction (Table 1). The observations recorded clearly indicated that the shoot is more sensitive to salt stress than the root and that shoot growth is a better index of relative salt tolerance of different cultivars of the same species at early seedling stage with this also 12 EC salinity level was found to be a critical level for majority of the cultivars. Thus, on the basis of the percent reduction in shoot growth at 12 EC level over respective control all the cultivars were categorized into three groups, viz., salt-tolerant, moderately salt-tolerant and salt-sensitive, showing less than 40%, 40-60% and more than 60% reduction respectively (Table 2).

Further, the different rates of shoot growth of the three groups as affected by in ceasing level of salinity showed a gradual decline in both the salt tolerant and moderately salt-tolerant cultivars. On the other hand, the salt-sensitive cultivars had a sharp decline in growth with increasing salt concentrations. With this the relative comparison of seedling growth between three wheat cultivars studied indicated better performance of HD–2160 (salt-tolerant) at almost all levels of salinity when compared with controls. It showed highest tolerance to salinity (i.e., 85.219 percent), IWP-72 (salt-sensitive) showing highest inhibition (i.e., only 7.818 percent) and Sharbati sonora (moderately salt-tolerant) showing (48.574) percent shoot growth at 12 EC over control (Figure 2).

Figure 1: Relative Shoot and Root Growths of Certain Wheat (Triticum aestivum L.) Cultivars Under Salt Stress at the Early Seedling Stage [22].

Figure 2: Relative Salt Tolerance of Three Groups (salt-tolerant, moderately salt-tolerant and salt-sensitive) Wheat (Triticum aestivum L.) Cultivars Under Salt Stress at the Early Seedling Stage (Data Expressed as Percent Over Control).
Table 1: Shoot and Root Growth of Forty two Wheat Cultivars at Different Salinity Levels

S.No	Cultivar	Shoot Growth	Root Growth
		4EC 8EC 12EC 16EC	4EC 8EC 12EC 16EC
1	HD-2236	113.561** 56.847 11.491 5.599	111.150** 84.029 22.589 12.905
2	WL-410	113.259** 74.804 43.746 18.731	114.330** 92.463 75.146 47.188
3	*Sharbati sonora	90.591 80.876 48.574 4.03	98.463 95.181 80.079 59.192
4	Moti	95.025 66.374 11.423 9.995	87.94 70.758 37.162 29.576
5	Sonalika	86.523 70.728 48.179 43.217	95.222 89.47 80.958 66.942
6	*HD-2160	95.135 91.113 85.219 82.6	94.623 83.76 77.584 71.188
7	HD-2135	73.548 52.043 35.555 9.892	81.956 65.602 43.14 28.569
8	IWP-503	80.606 59.617 29.346 13.939	93.087 80.71 60.972 31.834
9	HS-43	92.583 64.833 43.948 29.261	92.614 75.133 59.131 40.818
10	UP-262	78.452 59.844 28.956 8.15	85.716 66.802 44.781 26.168
11	HD-2177	79.002 58.31 28.527 6.716	109.224** 89.42 55.588 36.919
12	WG-1559	83.288 25.802 20.454 9.358	83.98 20.319 15.742 6.588
13	HD-2267	89.577 49.142 11.873 8.245	79.032 28.403 16.921 2.87
14	*IWP-72	82.921 39.094 7.818 5.144	84.874 48.701 14.736 5.826
15	HD-2282	95.6 89.584 57.47 35.213	95.272 93.368 65.889 56.434
16	WL-711	92.973 89.329 71.437 46.128	97.498 88.607 74.932 54.35
17	Raj-1482	96.668 71.829 38.573 32.378	96.239 78.587 48.426 44.231
18	HD-2260	77.059 72.661 70.284 22.894	92.593 89.221 77.579 40.201
19	WH-246	92.266 59.304 43.644 33.929	114.221** 77.774 56.468 49.96
20	WL-2200	62.53 112.53 46.654 35.279	84.951 105.439** 71.072 60.244
21	K-7634	96.841 92.545 80.353 52.179	85.271 90.808 80.487 59.321
22	Raj-1556	81.372 66.86 52.875 44.063	81.503 74.521 59.752 55.695
23	UP-154	90.714 75.952 60.714 49.523	91.303 86.454 75.083 68.645
24	HD-1977	83.333 54.973 43.01 40.456	88.177 54.75 48.064 41.449
25	WG-1558	94.865 71.393 43.276 35.207	130.566** 120.546** 65.282 43.319
It is evident from the Tables 3 and 4 that the IAA oxidase enzyme activity gradually decreased with increasing salt stress created by NaCl in both the salt-sensitive cultivar IWP-72 and moderately salt-tolerant cultivar Sharbati sonora while in the tolerant cultivar (HD-2160) the enzyme activity increased till 96 hours up to 12 (dsm-1) EC salinity level, but at 120 hours at all EC levels the activity decreased, although, the magnitude of the enzyme activity was higher in the sensitive cultivar IWP-72. The IAA oxidase activity increased with advancement in seedling age with varying degree in the three cultivars. Whereas in the tolerant and moderately tolerant cultivars a sharp increase was observed at 72 and 96 hours declining later at 120 hours, on the other hand, in the sensitive cultivar enzyme activity increased from the very beginning at 48 hours reaching peak level at 120 hours. Also from the observations it is noticed that IAA oxidase enzyme activity was affected more in the salt-sensitive cultivar (IWP-72) as compared with the moderately salt-tolerant (Sharbati sonora) and the salt-tolerant cultivar (HD-2160). As shown in the Table 5 in the three cultivars there is direct correlation found in the shoot growth, root growth and IAA oxidase enzyme activity as with increasing salt concentration there is decrease in root and shoot growth and also the enzyme activity. On the other hand, with seedling age as the root and shoot growth increased the IAA oxidase activity also increased but till 96 hours and at 120 hours it slightly declined (Table 6).

(Data expressed as percent over control) (Cultivars with asterisk* used in the present study)

(Cultivars with ** showed stimulation observed in growth at moderate levels of salinity)
Table 2: Relative Tolerance of Certain Cultivars of Wheat Based on the Percent Reduction in Shoot Growth at 12 EC (dsm$^{-1}$) Salinity Level.

Wheat Cultivars	Group I Salt-Tolerant (Less than 40% Reduction)	Group II Moderately Salt-Tolerant (40 - 60% Reduction)	Group III Salt-Sensitive (More than 60% Reduction)
	1. HD-2160* 85.219	1. WL-903 59.726	1. Raj-1409 38.98
	2. K-7634 80.353	2. HD-2282 57.47	2. Raj-1482 38.573
	3. WL-711 71.437	3. HD-2009 53.321	3. HD-2135 35.555
	4. WL-1531 71.02	4. K-7631 56.25	4. IWP-503 29.346
	5. HD-2260 70.284	5. HD-1980 54.406	5. UP-262 28.956
	6. UP-115 66.535	6. HP-1303 54.166	6. HD-2177 28.527
	7. HD-2252 65.759	7. Raj-1556 52.875	7. Raj-1494 28.353
	8. UP-154 60.714	8. Raj-1493 50.815	8. HD-1593 27.746
		9. Sharbati Sonora* 48.574	9. HD-2275 25.738
		10. Sonalika 48.179	10. WG-1559 20.454
		11. CC-46 46.866	11. UP-171 17.195
		12. WL-2200 46.654	12. HD-2267 11.873
		13. HS-43 43.948	13. HD-2236 11.491
		14. WL-410 43.746	14. Moti 11.423
		15. WH-246 43.644	15. IWP-72* 7.818
		16. WG-1558 43.276	
		17. Kharchia 43.035	
		18. HD-1977 43.01	
		19. HD-2204 42.878	

Table 3: Effect of Different Levels of Salt Stress (NaCl) Exposure on Shoot Length, Root Length and IAA Oxidase Enzyme Activity in three Wheat Cultivars.

Variety	Treatment NaCl Conc. (EC dsm$^{-1}$)	Shoot Length (cm)	Root Length (cm)	IAA oxidase activity (µg IAA destroyed/g fresh wt/hr)	
		48hrs 72hrs 96hrs 120hrs	48hrs 72hrs 96hrs 120hrs	48hrs 72hrs 96hrs 120hrs	Duration (hours)
C1 HD-2160 (Salt-tolerant)	Control	0.27 0.49 0.95 2.56	1.14 2.3 3.7 7.36	224 262 262 248	
	4 EC	0.27 0.41 0.85 2.53	0.96 2.18 3.68 6.9	240 248 312 220	
	8 EC	0.25 0.41 0.84 2.39	0.78 2.05 3.57 5.75	281 292 292 232	
	12 EC	0.23 0.39 0.83 2.19	0.68 1.89 3.19 5.49	262 278 286 224	
	16 EC	0.23 0.37 0.78 2.15	0.62 1.5 2.9 5.3	232 250 256 198	
C2 SHARBATI SONORA (Mod Salt-tolerant)	Control	0.95 1.45 3.96 6.67	1.75 4.33 6.87 8.73	282 296 320 232	
	4 EC	0.76 1.36 3.26 6.43	1.45 4.31 6.3 8.66	262 276 282 198	
	8 EC	0.51 1.02 2.9 6.12	1.43 4.26 6.4 8.32	242 242 256 195	
	12 EC	0.08 0.61 1.98 3.68	0.69 3.11 5.75 7.28	198 213 232 122	
	16 EC	0.06 0.61 1.74 2.85	0.55 2.88 3.41 5.79	120 140 146 127	

Citation: Sharma R (2016) Indole-Acetic Acid Oxidase Enzyme Activity in Three Wheat Cultivars under Salt Stress Conditions at the Early Seedling Stage. Adv Plants Agric Res 4(1): 00123. DOI: 10.15406/apar.2016.04.00123
Table 4: Effect of Different Levels of Salt Stress (NaCl) Exposure on Shoot Length, Root Length and IAA Oxidase Enzyme Activity in Three Wheat Cultivars (Data Expressed asPercent Over Control).

Variety	Treatment NaCl Conc. (EC dsm-1)	Shoot Length (cm)	Root Length (cm)	IAA oxidase activity (µg IAA destroyed/g fresh wt/hr)										
		48hrs	72hrs	96hrs	120hrs	48hrs	72hrs	96hrs	120hrs	48hrs	72hrs	96hrs	120hrs	
C1	Control	0.27	0.49	0.95	2.56	1.14	2.3	3.7	7.36	224	262	262	248	
	4 EC	0.27	0.41	0.85	2.53	0.96	2.18	3.68	6.9	240	248	312	220	
	(Salt-tolerant)	8 EC	0.25	0.41	0.84	2.39	0.78	2.05	3.57	5.75	281	292	292	232
		12 EC	0.23	0.39	0.83	2.19	0.68	1.89	3.19	5.49	262	278	286	224
		16 EC	0.23	0.37	0.78	2.15	0.62	1.5	2.9	5.3	232	250	256	198
C2	SHARBATI SONORA	Control	0.95	1.45	3.96	6.67	1.75	4.33	6.87	8.73	282	296	320	232
	(Mod. Salt-tolerant)	4 EC	0.76	1.36	3.26	6.43	1.45	4.31	6.3	8.66	262	276	282	198
		8 EC	0.51	1.02	2.9	6.12	1.43	4.26	6.04	8.32	242	242	256	195
		12 EC	0.08	0.61	1.98	3.68	0.69	3.11	5.75	7.28	198	213	232	122
		16 EC	0.06	0.61	1.74	2.85	0.55	2.88	3.41	5.79	120	140	146	127
C3	Control	0.38	1.05	2.86	5.42	1.05	2.65	4.66	8.14	240	290	320	356	
IWP-72	(Salt-sensitive)	4 EC	0.3	0.94	2.2	4.62	0.71	2.5	4.45	6.3	202	218	230	290
		8 EC	0.2	0.36	1.22	2.12	0.41	1.65	2.54	3.4	188	226	240	272
		12 EC	0.1	0.16	0.2	0.28	0.1	0.25	0.65	1.42	122	134	218	218
		16 EC	0.1	0.12	0.12	0.16	0.04	0.12	0.22	0.58	90	120	204	218
SEm		± 0.053	± 0.065	± 9.332										

Table 5: Effect of Different Levels of Salt Stress (NaCl) Exposure on Shoot Length, Root Length and IAA Oxidase Enzyme Activity in Three Wheat Cultivars (TREATMENT).

Treatment NaCl (EC dsm-1)	Shoot Length (cm)	Root Length (cm)	IAA oxidase activity (µg IAA destroyed/g fresh wt/hr)
Control	2.251	4.386	277.667
4 EC	1.994	4.033	248.167
8 EC	1.52	3.35	246.528
12 EC	0.896	2.542	208.917
16 EC	0.774	1.992	175.111
SEm	± 0.015	± 0.019	± 2.694
Citation: Sharma R (2016) Indole-Acetic Acid Oxidase Enzyme Activity in Three Wheat Cultivars under Salt Stress Conditions at the Early Seedling Stage. Adv Plants Agric Res 4(1): 00123. DOI: 10.15406/apar.2016.04.00123

Table 6: Effect of Different Levels of Salt Stress (NaCl) Exposure on Shoot Length, Root Length and IAA Oxidase Enzyme Activity in Three Wheat Cultivars (DURATION).

Duration (hours)	Shoot Length (cm)	Root Length (cm)	IAA oxidase activity (µg IAA destroyed/g fresh wt/hr)
48 hrs	0.314	0.821	212.333
72 hrs	0.65	2.399	232.333
96 hrs	1.639	3.862	257.067
120 hrs	3.345	5.961	223.378
SEM	± 0.014	± 0.017	± 2.409

Discussion

One of the most common effects of salinity is stunting of growth often without any other sign of damage. This and other modifications of growth habit have suggested that growth hormones may be involved in the responses of plants to salinity [30]. Germinating seeds have been found to be rich sources of hormones such as IAA, GA, Kinins and some inhibitors also [31-37]. Chen [3] suggested that these endogenous levels of plant hormones play a predominant role in growth regulation which depends upon the balance between the growth promoters [e.g., GA, Kinins etc.] and the inhibitors [e.g., ABA or in some instances IAA]. It had been observed that with increasing salinity IAA oxidase activity increased in the tolerant cultivar, while it decreased in the sensitive cultivar. Also IAA oxidase activity increased with seedling age and reached a peak at 96 hours and later it declined, in the three cultivars. Verga & Balint [36] have also reported similar behavior of IAA oxidase activity during early seedling growth. Pilet & Gastner [38] have observed that one of the mechanisms controlling growth via endogenous auxins is through enzymatic oxidations. IAA oxidase is regarded to oxidize the IAA, thereby controlling the endogenous level in the seedlings. Interestingly, it was observed in the tolerant cultivar while the auxin-like promoters were highest at 24 hours the IAA oxidase activity was lowest (Table 6). On the other hand, the sensitive cultivar showed peak auxin levels at 48 hours it also exhibited a higher level of IAA oxidase. Therefore, it is likely that the reduction in auxin-like promoters observed in the present investigation as a result of salt stress is mediated through the enzyme IAA oxidase. Goyal & Baijal [26] reported that IAA oxidase enzyme activity of the different cultivars of the same species is regulated by the specific gene in each cultivar, therefore, a genetic diversity was found in the growth behavior of the three cultivars differing in salt tolerance as well as in IAA oxidase enzyme activity. From our laboratory workers [7-22] have shown genotypic variation among the same species of crop plants in relation to salt stress as shown in the present work.

Conclusion

From the results presented, it appears that the growth under salt stress condition is mediated by endogenous IAA level at different state regulated by IAA oxidase enzyme system indirectly affecting metabolism. Thus, resulting in differential growth response of the three wheat cultivars viz., salt-tolerant (HD-2160), moderately salt-tolerant (Sharbati sonora) and salt-sensitive (IWP-72) in relation to salt stress and that the tolerance of a cultivar depends mainly on the endogenous IAA at the effective level.

Acknowledgements

Author is indebted to Dr. BD Baijal (Retired Professor Plant Physiology Department of Botany Agra College, Agra) for expert comments and to the Principal KR College, Mathura, India for providing necessary facilities.

References

1. Mayer, Poljakoff-Mayber (1963) The germination of seeds. International Series of Monographs on Pure and Applied Biology, Oxford, Pergamon Press, London.
2. Wareing PF, Saunders PF (1971) Hormones and dormancy. Ann rev Plant Physiol 22: 268-288.
3. Chen SSC (1975) Role of gibberellins in dormancy and seed germination. In: Gibberellins and Plant Growth (Krishnamoorty KN, Ed.), Wiley Eastern Ltd, New Delhi, India, p. 91-99.
4. Sharma Ravi, Nidhi Parashar, Singh DK (2008) Biochemical changes due to salt stress: I- Effect of NaCl on Indole-acetic acid oxidase enzyme activity in certain wheat cultivars at the early seedling stage. Plant Archives 8(2): 597-600.
5. Sharma Ravi, Nidhi Parashar (2009) Biochemical changes due to salt stress: II- Effect of NaCl on endogenous levels of gibberellins and IAA-like substances in salt-tolerant and salt-sensitive wheat cultivars at the early seedling stage, Plant Archives 9(1): 341-349.
6. Sarin MN (1961) Physiological studies on salt tolerance in crop plants. XIII – Influence of IAA on the deleterious effect of sodium sulphate on root growth in wheat. Proc Nat Acad Sci India 31B: 287-295.
7. Ogra RK (1981) Physiological studies on salt tolerance in Sorghum. Ph D Thesis, Agra University, Agra, UP India.
8. Sharma Ravi (1982) Physiology of plant tolerance to salinity at early seedling stage. PhD Thesis, Agra Univ, Agra, UP, India.
9. Sharma Ravi (1987) Towards an understanding of the physiology of salt tolerance in wheat (Triticum aestivum L.) at early seedling stage. XIV International Botanical Congress, Berlin (W), Proc Sym, Germany, 22a-8: 32.
10. Sharma Ravi, Baijal BD (1984a) Ion uptake and ATPase activity in certain wheat cultivars under salt stress conditions. VIII All India Bot Conference, Rajasthan University, J Ind Bot Soc Abst 63: 97.
11. Sharma Ravi, Baijal BD (1984b) Carbohydrate metabolism in salt tolerant and salt sensitive wheat cultivars under salt stress conditions. VII All India Botanical Conference, Rajasthan Univ J Ind Bot Soc 63: 93.
12. Sharma Ravi, Baijal BD (1985a) Genotypic response to salt stress I: Screening for salt-resistance – selection of salt-tolerant and salt-
Indole-Acetic Acid Oxidase Enzyme Activity in Three Wheat Cultivars under Salt Stress Conditions at the Early Seedling Stage

Citation: Sharma R (2016) Indole-Acetic Acid Oxidase Enzyme Activity in Three Wheat Cultivars under Salt Stress Conditions at the Early Seedling Stage. Adv Plants Agric Res 4(1): 00123. DOI: 10.15406/apar.2016.04.00123

13. Sharma Ravi, Baijal BD (1985b) Genotypic response to salt stress II: Differential physiological and biochemical response of salt-tolerant and salt-sensitive wheat cultivars. National Seminar on Plant Physiology, Institute of Agricultural Sciences, BHU, Varanasi, India, 128: 75-76.

14. Nauhbar, Suman (2005) Relative Tolerance of Crop Plants to Salt Stress at the Early Seedling Stage. PhD Thesis, Dr BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

15. Yadav, Neetu (2006) Physiology of salt tolerance for effective biological control of salinity. PhD Thesis, Dr BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

16. Rani, Saroj (2007) Investigation on salt tolerance parameters specially growth and biochemical traits for selection of salt tolerant lines in legumes at the early seedling stage. PhD Thesis, Dr BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

17. Rani, Saroj, Sharma SK, Ravi Sharma (2007) Effect of salinity on germination and early seedling growth in six leguminous pulse crops. XXX Annual Conference Indian Botanical Society, Jiwaji University, Gwalior (MP) India, p. 28-30.

18. Rani, Saroj, Sharma SK, Ravi Sharma (2009) Germination and early seedling growth in six leguminous crops under salt stress. Plant Archives 9(1): 145-151.

19. Gautam, Aruna (2009) The Problem of saline Wastelands and their Management - A Biological Approach with Special Reference to Mathura. PhD Thesis, Dr. B R Ambedkar Univ; formerly Agra University, Agra, UP, India.

20. Parashar, Nidhi (2011) Planning and Investigation for City and Industrial Effluent Utilization in Abating Pollution of River Yamuna and Improving Agricultural Production. PhD Thesis, Dr. BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

21. Sharma Ravi (2013) Screening for salt tolerance-Selection of salt tolerant and salt sensitive wheat cultivars; Third National Conference on Innovations in Indian Science, Engineering and Technology (Bilingual Hindi & English) Organized by Swadeshi Science Movement of India, Delhi at CSIR National Physical Laboratory and IARI, New Delhi., Souvenir: 270: 25-27.

22. Sharma, Ravi (2015) Genotypic response to salt stress: I – Relative tolerance of certain wheat cultivars to salinity. Adv Crop Sci Tech 3(4): 1000192.

23. Garrard A (1945) The effect of b-indolyl acetic acid on the germination and root growth of certain members of cruciferae. New Phytol 53(2): 165-176.

24. Sarin MN, Rao IM (1956) Effect of sodium sulphate on early seedling growth of gram and wheat. Agra Univ J Res Sci 5(1): 143-154.

25. Sheoran IS, Garg OP (1978) Effect of salinity on the activities of RNase, DNase and protease during germination and early seedling growth of mung bean. Physiol Plant 44(3): 171-174.

26. Goyal AK, Baijal BD (1980) Effect of gibberellic acid on RNase activity and RNA contents at early seedling stage in certain rice (Oryza sativa L) genotypes. Indian J Agric Res 14(2): 111-114.

27. Rabin RS, Klein RM (1957) Chlorelgenic acid as a competitive inhibitor of indole acetic acid oxidase. Arch Biochem & Biophys 70: 11-15.

28. Witham FH, David BF, Devlin RM (1971) Experiments in Plant Physiology. Van Nostrand Reinhold Co. New York, USA, 179-182.

29. Panse VG, Sukhatme PV (1957) Statistical Methods for Agricultural Workers. ICAR (IARI), New Delhi, India.

30. Gale J, Poljakoff-Mayber A (1970) Interrelations between growth and photosynthesis of salt bush (Atriplex halimus L) grown in saline media. Aust J Biol Sci 23: 937-945.

31. Crane JC (1964) Growth substances in fruit setting and development. Ann Rev Plant Physiol 15: 303-326.

32. Crane JC (1969) The role of hormones in fruit set and development. Hort Sci 4(2): 108-111.

33. Leopold AC (1964) Plant Growth and Development. McGraw-Hill, New York, USA, pp. 466.

34. Letham DS (1967) Chemistry and physiology of kinetin-like compounds. Ann Rev Plant Physiol 18: 349-364.

35. Lang A (1970) Gibberellins: structure and metabolism. Ann Rev Plant Physiol 21: 537-570.

36. Verga M, Balint I (1966) The effect of gibberellins on the growth, indole acetic acid content and on the activity of indole acetic acid oxidase in rice seedlings. Acta BioHung 16: 243-253.

37. Sharma Ravi, Baijal BD, Goyal AK (1981) Comparison of the IAA oxidase activity in four wheat (Triticum aestivum L) cultivars under varying EC levels at the early seedling stage. IV All India Botanical Conference, Calicut, India. J Indian bot Soc [Supplement], 60 X – 88: 125.

38. Pilet PE, Gastner T (1968) Le catabolism auxinique; Monographia de physiologie vegetale, No. 1, Masson, Paris, London.

Sensitive wheat varieties. National Seminar on Plant Physiology, Institute of Agricultural Sciences, BHU, Varanasi, India, 127: 74-75.

13. Sharma Ravi, Baijal BD (1985b) Genotypic response to salt stress II: Differential physiological and biochemical response of salt-tolerant and salt-sensitive wheat cultivars. National Seminar on Plant Physiology, Institute of Agricultural Sciences, BHU, Varanasi, India, 128: 75-76.

14. Nauhbar, Suman (2005) Relative Tolerance of Crop Plants to Salt Stress at the Early Seedling Stage. PhD Thesis, Dr BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

15. Yadav, Neetu (2006) Physiology of salt tolerance for effective biological control of salinity. PhD Thesis, Dr BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

16. Rani, Saroj (2007) Investigation on salt tolerance parameters specially growth and biochemical traits for selection of salt tolerant lines in legumes at the early seedling stage. PhD Thesis, Dr BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

17. Rani, Saroj, Sharma SK, Ravi Sharma (2007) Effect of salinity on germination and early seedling growth in six leguminous pulse crops. XXX Annual Conference Indian Botanical Society, Jiwaji University, Gwalior (MP) India, p. 28-30.

18. Rani, Saroj, Sharma SK, Ravi Sharma (2009) Germination and early seedling growth in six leguminous crops under salt stress. Plant Archives 9(1): 145-151.

19. Gautam, Aruna (2009) The Problem of Saline Wastelands and their Management - A Biological Approach with Special Reference to Mathura. PhD Thesis, Dr. B R Ambedkar Univ; formerly Agra University, Agra, UP, India.

20. Parashar, Nidhi (2011) Planning and Investigation for City and Industrial Effluent Utilization in Abating Pollution of River Yamuna and Improving Agricultural Production. PhD Thesis, Dr. BR Ambedkar Univ; formerly Agra University, Agra, UP, India.

21. Sharma Ravi (2013) Screening for salt tolerance-Selection of salt tolerant and salt sensitive wheat cultivars; Third National Conference on Innovations in Indian Science, Engineering and Technology (Bilingual Hindi & English) Organized by Swadeshi Science Movement of India, Delhi at CSIR National Physical Laboratory and IARI, New Delhi., Souvenir: 270: 25-27.

22. Sharma, Ravi (2015) Genotypic response to salt stress: I – Relative tolerance of certain wheat cultivars to salinity. Adv Crop Sci Tech 3(4): 1000192.

23. Garrard A (1945) The effect of b-indolyl acetic acid on the germination and root growth of certain members of cruciferae. New Phytol 53(2): 165-176.

24. Sarin MN, Rao IM (1956) Effect of sodium sulphate on early seedling growth of gram and wheat. Agra Univ J Res Sci 5(1): 143-154.

25. Sheoran IS, Garg OP (1978) Effect of salinity on the activities of RNase, DNase and protease during germination and early seedling growth of mung bean. Physiol Plant 44(3): 171-174.