ON THE S-MATRIX CONJECTURE

ROMAN DRNOVŠEK

Abstract. Motivated with a problem in spectroscopy, Sloane and Harwit conjectured in 1976 what is the minimal Frobenius norm of the inverse of a matrix having all entries from the interval \([0, 1]\). In 1987, Cheng proved their conjecture in the case of odd dimensions, while for even dimensions he obtained a slightly weaker lower bound for the norm. His proof is based on the Kiefer-Wolfowitz equivalence theorem from the approximate theory of optimal design. In this note we give a short and simple proof of his result.

Key words: matrices, Frobenius norm, inequalities

Math. Subj. Classification (2010): 15A45, 15A60

A Hadamard matrix is a square matrix with entries in \([-1, 1]\) whose rows and hence columns are mutually orthogonal. In other words, a Hadamard matrix of order \(n\) is a \([-1, 1]\)-matrix \(A\) satisfying \(AA^T = nI\), i.e., \(\frac{1}{\sqrt{n}}A\) is a unitary matrix.

An S-matrix of order \(n\) is a \([0, 1]\)-matrix formed by taking a Hadamard matrix of order \(n + 1\) in which the entries in the first row and column are 1, changing 1’s to 0’s and \(-1\)’s to 1’s, and deleting the first row and column.

The Frobenius norm of a real matrix \(A = [a_{i,j}]_{i,j=1}^n\) is defined as

\[
\|A\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2\right)^{1/2}.
\]

It is associated to the inner product defined by

\[
\langle A, B \rangle = \text{tr}(AB^T) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j}b_{i,j}.
\]

Let \(D_n\) denote the set of all matrices \(A = [a_{i,j}]_{i,j=1}^n\) whose entries are in the interval \([0, 1]\).

In 1976, Sloane and Harwit [6] posed the following conjecture. See also [2, p.59] or [7, Conjecture 11].

Date: May 7, 2014.

The paper will appear in Linear Algebra and Its Applications.
Conjecture. If $A \in D_n$ is a nonsingular matrix, then
\[\|A^{-1}\|_F \geq \frac{2n}{n + 1}, \]
where the equality holds if and only if A is an S-matrix.

This conjecture arose from a problem in spectroscopy. A detailed discussion of its applications in spectroscopy can be found in [2]. The conjecture has been proved in recent papers [9], [8] and [3] for some special matrices. Apparently, the authors of these papers were not aware of the fact that for odd dimensions the conjecture has already been proved in [1], while for even dimensions a slightly weaker lower bound for the norm has been derived; see [1, Corollary 3.4]. The proof is based on the celebrated equivalence theorem due to Kiefer and Wolfowitz [5] that connects the problem with the approximate theory of optimal design. For an extensive treatment of this theory we refer to [4].

In this note we give a short and transparent proof of the conjecture when n is odd, while for even n our method gives the same (weaker) lower bound as in [1, Corollary 3.4].

Theorem. Let $A \in D_n$ be a nonsingular matrix.

If $n \geq 3$ is an odd integer, then
\[(1) \quad \|A^{-1}\|_F \geq \frac{2n}{n + 1}, \]
where the equality holds if and only if A is an S-matrix.

If $n \geq 4$ is an even integer, then
\[(2) \quad \|A^{-1}\|_F > \frac{2\sqrt{n^2 - 2n + 2}}{n}, \]
If $n = 2$ then
\[(3) \quad \|A^{-1}\|_F \geq \sqrt{2}, \]
where the equality holds if and only if A is either the identity matrix or \[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \].

Proof. Let $e = (1, 1, 1, \ldots, 1)^T \in \mathbb{R}^n$ and $J = ee^T$. We divide the proof into three cases.

CASE 1: $n \geq 3$ is an odd integer, so that $n = 2k - 1$ for some $k \in \mathbb{N}$.

Define the matrices M and N of order $n + 1$ by
\[M = \begin{bmatrix} 1 \\ e \\ -kA^{-1} \end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix} 1 \\ e \\ -(2I - \frac{1}{k}J)A^T \end{bmatrix}. \]

Since
\[MN^T = \begin{bmatrix} n + 1 & * \\ * & (n + 1)I \end{bmatrix}, \]
we have
\[\langle M, N \rangle = \text{tr}(MN^T) = (n + 1)^2. \]
By the Cauchy-Schwarz inequality, we then obtain
\[(n + 1)^4 = (\langle M, N \rangle)^2 \leq \|M\|_F^2 \cdot \|N\|_F^2 = (1 + 2n + k^2\|A^{-1}\|_F^2)(1 + 2n + \|(2I - \frac{1}{k}J)A^T\|_F^2).\]

If we show that
\[\|(2I - \frac{1}{k}J)A^T\|_F \leq n,\]
then (4) gives the inequality
\[(n + 1)^2 \leq 1 + 2n + k^2\|A^{-1}\|_F^2,\]
and so
\[\|A^{-1}\|_F^2 \geq \frac{n^2}{k^2} = \left(\frac{2n}{n + 1}\right)^2\]
completing the proof of (1).

To show (5), we determine the maximum of the function \(f\) defined on \(D_n\) by
\[f(A) = \|(2I - \frac{1}{k}J)A^T\|_F^2 = \text{tr}(A(2I - \frac{1}{k}J)^2A^T) = \text{tr} \left(4AA^T - \frac{2k + 1}{k^2}(Ac)(Ac)^T \right) = 4 \text{tr}(AA^T) - \frac{2k + 1}{k^2}(Ac)(Ac)^T.\]

where \(A = [a_{i,j}]_{i,j=1}^n \in D_n\). Since \(f\) is a continuous function on a compact set, it attains its maximum at some matrix \(B = [b_{i,j}]_{i,j=1}^n \in D_n\). Assume that 0 < \(b_{i,j} < 1\) for some \(i, j \in \{1, 2, \ldots, n\}\). Then we have
\[\frac{\partial f}{\partial a_{i,j}}(B) = 0\quad \text{and}\quad \frac{\partial^2 f}{\partial a_{i,j}^2}(B) \leq 0.\]

However,
\[\frac{\partial f}{\partial a_{i,j}}(A) = 8a_{i,j} - \frac{2k + 1}{k^2} 2 \left(\sum_{i=1}^{n} a_{i,l}\right),\]
and so
\[\frac{\partial^2 f}{\partial a_{i,j}^2}(A) = 8 - \frac{2(2k + 1)}{k^2} = \frac{2(4k^2 - 2k - 1)}{k^2} > 0\]
for all \(A = [a_{i,j}]_{i,j=1}^n \in D_n\). Therefore, we conclude that \(B\) is necessarily a \(\{0, 1\}\)-matrix.

Let \(p_i\) be the number of ones in the \(i\)-th row of \(B\). Then
\[f(B) = 4 \sum_{i=1}^{n} p_i - \frac{2k + 1}{k^2} \sum_{i=1}^{n} p_i^2 = -\frac{2k + 1}{k^2} \sum_{i=1}^{n} \left(p_i - \frac{2k^2}{2k + 1}\right)^2 + \frac{4k^2}{2k + 1}(2k - 1).\]

Since \(k = \frac{2k^2}{2k + 1} \in (0, \frac{1}{2})\), we have \(|m - \frac{2k^2}{2k + 1}| > |k - \frac{2k^2}{2k + 1}|\) for all \(m \in \{1, 2, \ldots, n\} \setminus \{k\}\), implying that \(p_i = k\) for all \(i\). It follows that
\[f(B) = 4nk - \frac{2k + 1}{k^2} nk^2 = n(4k - 2k - 1) = n^2.\]
This completes the proof of the inequality (5).

Assume that the equality holds in (1). Then there are equalities in (4) and (5), that is, \(M = N \) and \(A \) is an invertible \(\{0,1\} \)-matrix with \(Ae = ke \). It follows that \(kA^{-1} = (2I - \frac{1}{k}J)A^T = 2A^T - J \), and so \(e = kA^{-1}e = 2A^Te - (2k - 1)e \) implying that \(A^Te = ke \). Therefore, we have

\[
NN^T = MN^T = \begin{bmatrix} 1 & e^T \\ e & -kA^{-1} \end{bmatrix} \begin{bmatrix} 1 & e^T \\ e & J - 2A \end{bmatrix} = \begin{bmatrix} n + 1 & 0 \\ 0 & (n+1)I \end{bmatrix}.
\]

This means that

\[
N^T = \begin{bmatrix} 1 & e^T \\ e & J - 2A \end{bmatrix}
\]
is a Hadamard matrix, and so \(A \) is an \(S \)-matrix. As the equality holds in (1) when \(A \) is an \(S \)-matrix, the proof is complete for odd dimensions.

CASE 2: \(n \geq 4 \) is an even integer, so that \(n = 2k \) for some integer \(k \geq 2 \).

Define the matrices \(M \) and \(N \) of order \(n + 1 \) by

\[
M = \begin{bmatrix} 0 & e^T \\ e & k\sqrt{k}k^{-1}A^{-1} \end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix} 0 & e^T \\ e & \sqrt{k-1} (k^{-1}I - J)A^T \end{bmatrix}.
\]

Then

\[
MN^T = \begin{bmatrix} 2k & * \\ * & \frac{k(2k-1)}{k-1}I \end{bmatrix},
\]

and so

\[
\langle M, N \rangle = \text{tr} (MN^T) = 2k + \frac{2k^2(2k-1)}{k-1} = 2k(2k^2 - 1).
\]

By the Cauchy-Schwarz inequality, we then obtain

\[
\left(\frac{2k(2k^2 - 1)}{k-1} \right)^2 = \langle \langle M, N \rangle \rangle^2 \leq \| M \|^2_F \cdot \| N \|^2_F = (4k + \frac{k^3}{k-1}\| A^{-1} \|^2_F)(4k + g(A)),
\]

where \(g(A) \) is defined by

\[
g(A) = \left\| \sqrt{k-1} \left(\frac{k(2k-1)}{k-1}I - J \right)A^T \right\|_F^2.
\]

If \(A = [a_{i,j}]_{i,j=1}^n \in D_n \) then

\[
g(A) = \text{tr} \left(A \left(\frac{(2k-1)^2}{k(k-1)}I - \frac{2}{k}J \right)A^T \right) = \frac{(2k-1)^2}{k(k-1)} \text{tr} (AA^T) - \frac{2}{k}(Ae)^T(Ae) = \frac{(2k-1)^2}{k(k-1)} \sum_{i=1}^{2k} \sum_{j=1}^{2k} a_{i,j}^2 - \frac{2}{k} \sum_{i=1}^{2k} \left(\sum_{j=1}^{2k} a_{i,j} \right)^2.
\]

Since

\[
\frac{\partial^2 g}{\partial a_{i,j}^2}(A) = \frac{2(2k-1)^2}{k(k-1)} - \frac{4}{k} = \frac{2(4k^2 - 6k + 3)}{k(k-1)} > 0,
\]

...
we conclude (similarly as in Case 1) that the maximum of the function \(g \) on \(D_n \) is attained at some matrix \(B = [b_{i,j}]_{i,j=1}^n \in D_n \) with \(b_{i,j} \in \{0, 1\} \) for all \(i \) and \(j \). Let \(p_i \) be the number of ones in the \(i \)-th row of \(B \). Then

\[
g(B) = \left(\frac{(2k - 1)^2}{k(2k - 1)} \right)^2 \sum_{i=1}^{2k} p_i - \frac{2k}{k} \sum_{i=1}^{2k} p_i^2 = -\frac{2k}{k} \sum_{i=1}^{2k} \left(p_i - \frac{(2k - 1)^2}{k(2k - 1)} \right)^2 + \frac{(2k - 1)^4}{4(k - 1)^2}.
\]

Since \(k - \frac{(2k - 1)^2}{4(k - 1)} = -\frac{k}{2} \in (-\frac{1}{2}, 0) \), we obtain that \(p_i = k \) for all \(i \). It follows that

\[
g(B) = \frac{(2k - 1)^2}{k - 1} - 2k - 4k^2 = \frac{2(k^2 - 2k + 1)}{k - 1}.
\]

Now, since \(4k + g(B) = \frac{2k(2k - 1)}{k - 1} \), the inequality (6) gives

\[
4k + \frac{k^3}{k - 1} \| A^{-1} \|_F^2 \geq \frac{2k(2k^2 - 1)}{k - 1},
\]

and so

\[
\| A^{-1} \|_F^2 \geq \frac{2(2k^2 - 2k + 1)}{k} = \frac{4(n^2 - 2n + 2)}{n^2}.
\]

To complete the proof of the inequality (2), we must exclude the possibility of the equality in (7). So, assume that for some matrix \(A \in D_n \) the equality holds in (7). Then \(A \) is a \(\{0, 1\} \)-matrix and \(M = N \). Therefore, we have

\[
\frac{k^3}{k - 1} A^{-1} = \left(\frac{k(2k - 1)}{k - 1} I - J \right) A^T
\]

or

\[
\frac{k^2}{2k - 1} I = \left(I - \frac{k - 1}{k(2k - 1)} J \right) A^T A,
\]

implying that

\[
A^T A = \frac{k^2}{2k - 1} \left(I - \frac{k - 1}{k(2k - 1)} J \right)^{-1} = \frac{k^2}{2k - 1} \left(I + \frac{k - 1}{k} J \right).
\]

It follows that the off-diagonal entries of the matrix \(A^T A \) are equal to the number \(\frac{k(k - 1)}{2k - 1} \) that is not an integer. This is a contradiction with the fact that \(A \) is a \(\{0, 1\} \)-matrix.

CASE 3: \(n = 2 \). If

\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]

is an invertible matrix in \(D_2 \), then

\[
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix},
\]

and so

\[
\| A^{-1} \|_F^2 = \frac{a^2 + b^2 + c^2 + d^2}{(ad - bc)^2}.
\]

Now, we have

\[
(ad - bc)^2 \left(\| A^{-1} \|_F^2 - 2 \right) = (a - d)^2 + (b - c)^2 + 2ad(1 - ad) + 2bc(1 - bc) + 4abcd \geq 0.
\]
We conclude that
\[\| A^{-1} \|^2_F \geq 2 \]
and the equality holds if and only if \(a = d, b = c, ad \in \{0, 1\}, bc \in \{0, 1\} \) and \(abcd = 0 \). This implies the desired conclusions. \qed

Acknowledgment.

The author was supported in part by the Slovenian Research Agency.

References

[1] C.-S. Cheng, An application of the Kiefer-Wolfowitz equivalence theorem to a problem in Hadamard transform optics, Ann. Statist. 15 (1987), no. 4, 1593–1603.
[2] M. Harwit and N.J.A. Sloane, Hadamard Transform Optics, Academic, New York, 1979.
[3] X. Hu, Some inequalities for unitarily invariant norms, J. Math. Inequal. 6 (2012), no. 4, 615–623.
[4] J. Kiefer, General equivalence theory for optimum designs (approximate theory), Ann. Statist. 2 (1974), 849–879.
[5] J. Kiefer, J. Wolfowitz, The equivalence of two extremum problems, Canad. J. Math. 12 (1960), 363–366.
[6] N.J.A. Sloane and M. Harwit, Masks for Hadamard transform optics, and weighing designs, Appl. Optics, 15 (1976), 107–114.
[7] X. Zhan, Open problems in matrix theory, in Proceedings of the 4th International Congress of Chinese Mathematicians, Vol. I, edited by L. Ji, K. Liu, L. Yang and S.-T. Yau, Higher Education Press, Beijing, 2008, 367–382.
[8] L. Zou, On a conjecture concerning the Frobenius norm of matrices, Linear Multilinear Algebra 60 (2012), no. 1, 27–31.
[9] L. Zou, Y. Jiang, and X. Hu, A note on a conjecture on the Frobenius norm of matrices, J. Shandong Univ. (Nat. Sci.). 45 (2010), 48–50.

Roman Drnovšek
Department of Mathematics
Faculty of Mathematics and Physics
University of Ljubljana
Jadranska 19
SI-1000 Ljubljana
Slovenia
e-mail: roman.drnovsek@fmf.uni-lj.si