Preliminary findings from a clinical test of a therapeutic garment for hip dysplasia

Lisa Bedenbaugh
K9Align, Irvine, CA, USA

Correspondence: Lisa Bedenbaugh (linerman2@aol.com)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A1

Background: Hip dysplasia is a very common orthopedic disorder in dogs, and a costly one for owners. Currently, only a few treatment strategies are available for treatment of hip dysplasia: medications, rehabilitation therapy, surgery and rigid braces/orthotics. We have developed a therapeutic garment which works to reduce effects of hip dysplasia by stimulating the proprioceptive system in a strategic way to engage the gluteal, epaxial and abdominal muscles as the dog moves, with the goal of enhancing the dynamic stability of the hip joint, thereby reducing the pain and inflammation associated with hip dysplasia.

Materials and methods: We conducted a preliminary clinical test of the garment on 5 dogs with varying degrees of hip dysplasia and asked the owners to have their dogs wear the garment daily for a minimum of 1 h, for a 3-week period. Owners filled out a Canine Brief Pain Index (CBPI), a validated pain scale, prior to the garment being fitted and again at the end of each week. Certified rehabilitation therapists (veterinarians or physical therapists, CCRP/T) collected objective data (hip extension ROM, thigh circumference), filled out a functional score, and videoed the dogs walking with and without the garment on at the initiation and completion of the clinical trial.

Results: Results from this study were favorable. All dogs demonstrated gains in hip extension ROM, thigh girth gains in 3/5 dogs, decreased lameness score in 4/5 dogs, improvement in walking distance in 3/5 dogs, improvement in the lameness score in 4/5 dogs, improvement in walking distance in 3/5 dogs, decreased lameness score in 4/5 dogs, and no declines in functional ability were noted by the owners during use.

Conclusion: Based on this limited sample trial, it appears that this garment could provide a novel approach to the treatment for hip dysplasia. A longer-term study with a larger test population is needed.
with 5 essential categories in the neurologic patient’s evaluation: sensorial evaluation, PSR evaluation, muscle tone evaluation, movement evaluation, and proprioception and coordination evaluation, which allows the animal’s categorization into: bad prognosis (BP), moderate prognosis (MP) and good prognosis (GP). The dogs classified with GP were integrated into a 6th category to readjust the FNR program and decrease residual neurologic deficits (Table 1). Statistical analysis was made from Microsoft Office Excel 2016 and IBM SPSS Statistics 22.0, evaluating the BFNRS score at the entrance and exit of HVA/CRAA with several variables such as gender, age, body condition, etiology and duration of FNR program.

Results: In the study, there was a significant relation between the BFNRS scores and the animal’s functionality (P < 0.01), significant relation between BFNRS scores and the FNR period (P < 0.01), and a positive correlation between the entrance’s score and the exit’s score, in addition to other interesting results.

Conclusion: The BFNRS allowed the evaluation of all the animals in a brief period (40 to 60 min), for fast perception of individual’s sensory and motor deficits, and the rapid change of the FNR’s protocols, which makes the BFNRS a possible operational tool for all FNR centers, according to the restorative neurology’s guidelines.

References
1. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137:1394–409.
2. Dietz, V. Neuronal plasticity after a human spinal cord injury: positive and negative effects. Exp Neurol. 2012;235:110–5.
3. Edgerton VR, Roy RR. Activity-dependent plasticity of spinal locomotion: implications for sensory processing. Exerc Sport Sci Rev. 2009;37:171–8.
4. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12:1333–42.
5. Duysens J, Crammert HW. Neural control of locomotion; the central pattern generator from cats to humans. Gait Posture. 1998;7:131–41.
6. Gerasimenko Y, Gorodnichev R, Machueva E, Pivovarova E, Semyonov D, Savochin A, et al. Novel and direct access to the human locomotor spinal circuitry. J Neurosci. 2010;30:3370–8.
7. Gerasimenko Y, Gorodnichev R, Puhov A, Moshonkina T, Savochin A, Selionov V, et al. Initiation and modulation of locomotor circuitry output with multi-site transcutaneous electrical stimulation of the spinal cord in non-injured humans. J Neuropsych. 2014;113:834–42.
8. Grasso R, Ivanenko YR, Zago M, Molinari M, Scivoletto G, Castellano V, et al. Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain. 2004;127:1019–34.
9. Hubli M, Dietz V. The physiological basis of neurorehabilitation—locomotor training after spinal cord injury. J Neuroeng and Rehabil. 2013;10:1–8.
10. Krueger E, Magri LM, Botelho A, Bach F, Rebelatto CL, Fracaro L, et al. Low-intensity electrical stimulation and stem cells in a dog with acute spinal cord injury. In: Proceedings of the Thirteenth International Association of Science and Technology for Development (IASTED) International Conference on Biomedical Engineering 2017; Innsbruck.
11. Lavrov I, Musienko PE, Selionov VA, Zdunowski S, Roy RR, Edgerton VR, et al. Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Res. 2014;1600:84–92.
12. Lewis MJ, Howard JF, Olby NJ. The relationship between trans-lesional conduction, motor neuron pool excitability and motor function in dogs with incomplete recovery from severe spinal cord injury. J Neurotrauma. 2017;34:2994–3002.
13. Musienko P, Brand RV, Marzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, et al. Controlling specific locomotor behaviors through multi-dimensional monoaminergic modulation of spinal circuitries. J Neurosci. 2011;31:9264–78.
14. Olby NJ, Smith DT, Humphrey J, Spinapolice K, Parke N, Mehta PM, et al. Pharmacokinetics of 4-aminopyridine derivatives in dogs. J Vet Pharmacol Therap. 2009;32:485–91.

A3

Recovery of walking after an IVDD without DPP with adipose derived mesenchymal stem cells
Yolanda Elbertse, Peter Hundepool
Rehab and Pain Centre for Animals, Rotterdam, Netherlands
Correspondence: Yolanda Elbertse (sterkliniekg@live.nl)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A3

Background: A 2-year old female English Staffordshire Terrier had surgery for intervertebral disc disease (IVDD) at L1–L2, leaving her with no deep pain perception (DPP).

Materials and methods: The dog received 1 year of underwater treadmill (UTM) at a PT before being transferred to our center for
Table 1 UWTM—underwater treadmill; TM—treadmill; ROM—range of motion; PL—pelvic limbs; TL—thoracic limbs; time*—time relative to 30 steps

| Basic functional neurorehabilitation scale (BFNS) for dogs with thoracolumbar injury |
|---------------------------------|--|
| Nociception evaluation | Deep pain sensitivity absent in the digits, perineum and vulva 0 |
| | Deep pain sensitivity absent in the digits, and decreased in the perineum and vulva 1 |
| | Deep pain sensitivity absent/decreased in the digits, and present in the perineum and vulva. Superficial pain sensitivity decreased 2 |
| | Deep pain sensitivity absent/decreased in the digits, and present in the perineum and vulva. Superficial pain sensitivity present 3 |
| | Deep pain sensitivity present in the digits, perineum and vulva 4 |
| Spinal reflexes evaluation | Absence of spinal reflexes 0 |
| | Patellar reflex and cranial tibial reflex decreased, but withdrawal reflex absent 1 |
| | Patellar reflex, cranial tibial reflex and withdrawal reflex decreased 2 |
| | Patellar reflex and cranial tibial reflex normal/increased, but withdrawal reflex decreased and crossed extensor reflex present/absent 3 |
| | Normal spinal reflexes 4 |
| Muscle tone evaluation | Hypotonic extensors muscles and hypotonic flexors muscles without active assisted postural standing 0 |
| | Hypertonic extensors muscles and hypotonic flexors muscles, with active assisted postural standing but without active postural standing 1 |
| | Spasticity of the extensors muscles and hypotonic flexors muscles, with active postural standing but passive range of motion difficult or absent ROM 2 |
| | Hypertonic extensors muscles and hypotonic flexors muscles, with active postural standing but range of motion decreased in about 50% 3 |
| | Normal muscle tone or slightly hypotonic flexors muscles, with active postural standing 4 |
| Gait evaluation | Voluntary and involuntary movement absent of PL on the UWTM, TM and walking 0 |
| | Voluntary movement absent of PL on the UWTM, TM and walking, and involuntary movement present of PL on the UWTM, TM but absent during walking 1 |
| | Voluntary movement absent of PL on the TM and walking, but present on the UWTM, and involuntary movement present of PL on the UWTM, TM and walking, but without active postural standing and inability to stand up 2 |
| | Voluntary movement present of PL on the UWTM and TM, but absent during walking, and involuntary movement present of PL on the UWTM, TM and walking, with active postural standing but inability to stand up 3 |
| | Voluntary and involuntary movement present of PL on the UWTM, TM and walking, with active postural standing and ability to stand up 4 |
| Proprioception and locomotor coordination evaluation | Coordination between PL and TL < 10% of the time*; ± knuckling 0 |
| | Coordination between PL and TL between 10 and 25% of the time*; ± knuckling 1 |
| | Coordination between PL and TL between 25 and 50% of the time*; without knuckling 2 |
| | Coordination between PL and TL between 50 and 75% of the time*; without knuckling 3 |
| | Coordination between PL and TL > 75% of the time*; without knuckling 4 |
| Poor prognosis (0–9) | Fair prognosis (10–14) |

Subclass for patients with good prognosis

Gait defects evaluation	Wide base walking, crossing and dragging of the PL > 75% of the time* 0
	Wide base walking, crossing and dragging of the PL between 50 and 75% of the time* 1
	Wide base walking, crossing and dragging of the PL between 25 and 50% of the time* 2
	Wide base walking, crossing and dragging of the PL between 5 and 25% of the time* 3
	Wide base walking, crossing and dragging of the PL < 5% of the time* 4
more extensive rehab (Table 1). After improving her muscle stamina (Table 2) we started ground walking. Initially, the feet had to be placed forward by hand. She voluntarily protracted her foot 26 weeks later, with tactile hamstring cuing.

The rehab treatment improved her Olby score from 1 to a 3 [1]. The dog moved her hind legs during sleep and swimming. Table 2 shows her accomplishments. However, 6 additional months of extensive rehab did not improve her scoring beyond Olby 3. This was considered too poor of a performance outcome, thus adiopse derived stem cell treatment was suggested.

Under general anesthesia fat was harvested at the falciformic liga-
mament and the inguinal region. It was processed with the in-house-kit of Medivet. One ml was added to Nano whiskers and injected in the epidural space. The remainder (2 mL) was given intravenously.

Results: Three weeks post-injection, the dog showed neurological improvements (Table 3).

After one treatment the dog could walk for 45 min, though she con-
tinued to cross the hind legs or walk ‘ataxic-like’. During daily walks wheelchair usage was continued to prevent falls, though she walked on all four feet. At home she did not voluntarily utilize all four feet and continued dragging herself forward. After 10 months a second stem cell treatment was suggested. This time the stem cells were given intratheceally and through IV. Following this treatment, she began to walk around the house instead of dragging herself. Outdoors she made less gait deviations.

Conclusion: This study has a solid historical control. It is clear that the final results involving improved gait and hind limb muscle recruitment of the dog were achieved following the addition of stem cells treat-
ment to the rehabilitation intervention. Further research is needed to determine if an intrathecal stem cell injection yields varied results from an epidural injection and to determine the best interval between treatments.

Reference
1. Olby NJ, Lim JH, Babb K, Bach K, Domaracki C, Williams K, et al. Gait scor-
ing in dogs with thoracolumbar spinal cord injuries when walking on a treadmill. BMC Vet Res. 2014;10:58.

Table 1 Interventions used during extensive rehab

Modality	Details	Other
Laser	20 J/cm², location T11-L6	After 4 times the plac-
ing of the needles at the dorsal branches was stopped		
Acupuncture	Dorsal branches spinal cord	
	T11-L3	
	Sciatic nerve at greater	
	trochanter	
	Tibial and fibular nerve	
	above the achillies heel	
	Interdigital	
Weight shifting	Ground > balancing board > peanut or donut	Also done daily at home
Ground walking exercise	First with complete placing of the hind feet Later with just triggering the hamstrings	Taping helped decrease muscle spasms

Table 2 Results before and after extensive rehab

	After 1 year only UTM	After 1 year extensive rehab
Hind leg R	22.3 cm	24.5 cm
Hind leg L	24.0 cm	26 cm
Standing on 4 feet	<2 min	>15 min
Three-legged stance	Not possible	Few seconds
Protracting hind leg	Never	Only when triggered
Getting onto hind feet	Never	<20% when asked
Results	Olby score 1	Olby score 3

Background: Kinematic gait evaluation is increasingly used to assess the effects of exercises on joint motion and the efficacy of treatments for musculoskeletal conditions [1, 2]. Recently, several low-cost con-
sumer applications (apps) have become available. The apps measure motion in 2-D, but aim to improve decision making using an economi-
cal, available, and easy to use kinematic gait analysis tool. However, the accuracy of these apps has not been evaluated in dogs. The pur-
pose of this study was to compare a consumer movement analysis app to a 3-D kinematic gait analysis system (KGAS). We hypothesized that the two gait analysis systems not be significantly different in the sagit-
tal plane in trotting dogs.

Materials and methods: Reflective spheres were attached to anatomic landmarks on ten dogs. Dogs were trotted in a test area while four infrared cameras and an infrared digital camcorder captured kinematic data. Five trials of each side of the dogs were obtained. Images from the infrared cameras were recorded in a KGAS program (Peak Motus, Centennial, CO, USA). Images from the infrared digital camcorder were uploaded to the app (Simi Move, Germany). Max-
imum flexion, extension, and total range of motion (ROM) were cal-
culated for each trial of the shoulder, elbow, hip, and stifle using the KGAS and the app. Mean joint angles were calculated from the five trials. Total joint ROM was calculated for each trial by subtracting the flexion from the extension angle. Values obtained for the mobile app were compared to the KGAS by paired t test with P values < 0.05 considered significant.

Results: Mean joint angles obtained on the app were not sig-
ificantly different (P > 0.702) from those generated by the KGAS (Figs. 1, 2). 97.5% of the angles measured on the mobile app devi-
at <5% from KGAS values, with most of those deviating more than 5% measured during flexion. Although mean ROM calculated by the app exhibited greater deviation than expected, ROM values calculated on the app were not significantly different than actual values (P > 0.283).

Conclusion: The app performed well and may be an inexpensive method to obtain joint angles, with 97.5% of the measurements from the mobile app accurately identifying maximum joint angles within 5% of the KGAS values. Limitations of this study included arti-
fact from images on the infrared digital camcorder and skin marker movement artifacts during ambulation. Additional studies are re-
quired to determine the best protocols and use of this technology in clinical settings.

References
1. DeCamp CE. Kinetic and kinematic gait analysis and the assessment of lameness in the dog. Vet Clin North Am Small Anim Pract. 1997;27:825–40
2. Gilette R. Gait analysis. In: Millis DL, Levine D, Taylor RA, editors. Canine rehabilitation and physical therapy. St. Louis (MO): WB Saunders; 2004. p. 201–10.

Comparison of a commercially available consumer mobile movement analysis application with a 3-D kinematic gait analysis system

Jose L Guevara, Emily A Liles, Joseph P Weigel, Darryl L Mills
Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA

Correspondence: Darryl L Mills (boneplate@aol.com)
The dogs evaluated in this study weighed between 12.7 kg and 31.2 kg. ICC values for intra-session and inter-session comparisons of pressure distribution ranged from 0.959 to 0.992 and 0.917 to 0.978 respectively. ICC values for step length and cadence were also excellent (> 0.76 in all cases). Results for swing and stance phase lengths were more variable (0.663 to 0.942). Overall ratios of differences were lower for comparisons from the same day, but in all cases ratios of differences were below 5%.

Conclusion: The CanidGait® system demonstrates excellent intra- and inter-session reproducibility. A ratio of difference of 5% or less indicates the validity of this system for objective gait analysis in dogs, both as a means of assessing lameness but also as an objective method of documenting the effectiveness of new surgical techniques and post-operative rehabilitation protocols.

A6

Lower back pain: positing a novel cause and treatment for canine urethral sphincter mechanism incompetency

David Lane1, Sarah Hill2

1Points East West Veterinary Services, Garibaldi Highlands, BC, Canada; 2Department of Military Psychology & Leadership, Royal Military College of Canada, Kingston, ON, Canada

Correspondence: Sarah Hill (dlane@pointseastwest.com)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A6

Background: Canine urethral sphincter mechanism incompetency (USMI) is the most common cause of urinary incontinence in dogs [1, 2]. Sex, age when neutered, bladder position, tail docking, breed, body weight, obesity, and urethral length are all risk factors, and the only recognized non-surgical treatment is ongoing medication [1–3]. To the authors’ knowledge, this paper is the first to posit that palpable lower back pain (LBP) is a potential cause or risk factor for USMI. If LBP is a cause of USMI, it follows that resolution of LBP should result in a reduction or resolution of USMI symptoms. We hypothesize that some dogs presenting with a history of urinary incontinence and concurrent symptoms of LBP, and whom receive treatment for LBP, will demonstrate a corresponding reduction in USMI symptoms.

Table 3 Results after stem cell treatment

Time Point	Effect	Olby Score	Notes
1st ADMCS	2 weeks	Waning atopy	Olby score 3
3 weeks	Less force required to hold the dog up during assisted ground walking		
4 weeks	Wagged tail flexor reflex hind legs L and R	Olby score 5	
6 weeks	Panniculus reflex up to L4 Pain perception at L4 Lateral skin sensation at the hock joint Less hyper flexor reflex hind legs Spinal walking for a few steps without assistance	Adding LTM, laser upped to 40 J/cm² Olby score 7	
3 months	Walked up a step with hind legs	Olby score 12	
5 months	45 min walk without assistance	Olby score 13	
2nd ADMSC	2 weeks	Gets on feet in house independently Reduced crossing of hind legs	

A5

Kinetic and temporospatial gait parameters in dogs: reproducibility of an instrumented pressure-sensitive canine treadmill

Kirsten Haeusler1, Doro Braun1, Nah-Chieh Liu2, Matthew James Allen2

1Zentrum für Tierphysiotherapie, Stuttgart, Germany; 2Department of Veterinary Medicine, University of Cambridge, Cambridge, UK

Correspondence: Kirsten Haeusler (info@dr-haeusler.com)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A5

Background: Objective, reliable and validated gait analysis is rarely used routinely in clinical practice because it is time-consuming and rarely cost-effective. The purpose of this study was to assess the validity and reliability of a pressure sensor matrix equipped stationary treadmill (CanidGait®®, Zebris) for measuring gait characteristics in dogs of various sizes and weights. We hypothesized that the system would provide reliable measures of gait parameters in dogs.

Materials and methods: 12 client-owned dogs were measured while walking on the CanidGait® system at a constant velocity of 3 km/h. Body weight of the dogs (kg), temporospatial (stride length, cadence) and kinetic data (pressure distribution) were recorded for all four limbs. Short-term (intra-session) reproducibility of the measurements was determined by comparing two measurements collected in the span of 2 h on the same day. Long-term (inter-session) reproducibility was determined by comparing baseline measurements on 1 day with a second set of measurements collected not less than 4 days later. Reproducibility between either the two measurements on the same day, or the two measurements on different days, were assessed using intraclass correlation coefficient (ICC) and ratios of difference. Statistical significance was determined at P < 0.05.
Materials and methods: This retrospective study examined the outcomes of 19 dogs presenting with concurrent LBP and urinary incontinence that were treated for LBP exclusively (Group A). Further, as part of a larger research project, blinded outcomes were recorded on 5 dogs with a history of urinary incontinence and concurrent LBP, treated for LBP alone (Group B). Group A responses were divided into none, partial, or complete, based on the frequency or volume of urine leaked following treatment. The frequency and volume of incontinence episodes were compared pre and post treatment for Group B.

Results: Four Group A dogs (21.1%) showed no improvement in USMI symptoms. Seven (36.8%) showed partial improvement. Of the dogs demonstrating complete resolution, 0% relapsed within 6 months, 2 (10.5%) relapsed between 6 and 12 months, 2 (10.5%) relapsed after 12 months, and 2 (10.5%) permanently responded. Two dogs (10.5%) had mixed results, with one relapsing after 5 months then permanently resolving, and 1 relapsing within both the short and medium-term time frames (< 6 months, and 6–12 months). Eighty percent of Group B dogs showed a reduction in frequency of incontinence, and in voided urine volume.

Conclusion: Group A results indicate that treating LBP may reduce or eliminate the symptoms of USMI in 78.9% of dogs. Group B dogs also showed an average drop in both the frequency and volume of urine leaked in the short term following treatment. This suggests that LBP is a risk factor or potential cause of USMI. Further prospective, blinded, randomized, and controlled research is required to substantiate this observation.

This paper complies with the NIH guidelines for Human Care and Use of Animals.

References
1. Rechler I, Hubler M. Urinary incontinence in the bitch: an update. Reprod Domest Anim. 1987;49:75–80.
2. Chew DJ, DiBartola SP, Schenck PA. Disorders of micturition and urinary incontinence. In: Chew DJ, DiBartola SP, Schenck PA, editors. Canine and feline nephrology and urology. 2nd ed. Saint Louis (MO): W.B. Saunders; 2011. p. 499–33.
3. Power SC, Eggletton KE, Aaron AJ, Holt PE, Cripps PJ. Urethral sphincter mechanism incompetence in the male dog: importance of bladder neck position, proximal urethral length and castration. J Small Anim Pract. 1998;39:69–72.

A8 Evaluation of forces produced by therapeutic elastic resistance bands of various lengths and colors: a biomechanical study

Daniel McCarthy1, Ellis Wright2, Pierre-Yves Mulon3, Darryl Millis1
1CARES Center, The University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA; 2Biomedical and Diagnostic Sciences, The University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA; 3Large Animal Clinical Sciences, The University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA

Correspondence: Daniel McCarthy (dmccart68@utk.edu)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A8

Background: Elastic resistance bands (ERB) have been used in human and veterinary rehabilitation to increase muscle strength. ERB are used in human physical therapy to improve muscle strength and achieve earlier return to function after surgery [1, 2], in elderly adults [3], osteoarthritis [4], and stroke injury [5]. Limited data have been published using ERB for veterinary conditions, but they are commonly used for neurologic and orthopedic disease. Studies in veterinary rehabilitation regarding forces generated using different lengths of bands, different stiffnesses, and by stretching to different lengths are lacking. Previous studies have published data for both 100 and 200% elongation values; however, these values may not be applicable in dogs, especially considering the stride length of dogs [6]. The aims of this study were to determine the forces produced with different stiffnesses of colored ERB at 1.25, 1.5 and 1.75 times the original length, and to determine the effects of using two different lengths of ERB (10 cm and 40 cm). We hypothesized that the ERB would behave in linear fashion and that shorter ERB, stiffer ERB, and greater elongation values would generate higher forces.
Materials and methods: Five replicates of cut sections (10 cm and 40 cm) of different colored ERB (Theraband, Akron, OH) (tan, yellow, red, green, blue, and black, with colors arranged from least stiff to most stiff) were placed in an Instron Biomechanical 5969 testing device. Bands were distracted at 3 m/min for 30 cycles at 1.25, 1.5 and 1.75 times the original length and maximal forces per cycle were recorded. Data were analyzed using ANOVA, to evaluate different ERB. Mean forces were compared using Tukey’s test, and Pearson’s correlations were calculated in XLSTAT. Significance was set at P < 0.05.

Results: The mean forces produced at each elongation length are indicated in Table 1. There was a strong linear correlation of elongation length for each color of ERB (P < 0.05, Table 2). There were significantly lower values measured using the 40 cm versus the 10 cm band length for all colors (Table 3).

Conclusion: Stiffer bands (darker colors), and increased elongation values generated greater forces. Shorter length ERB produced greater forces compared to a longer length of similar color. Further studies and calculations are underway to further characterize ERB based on these preliminary data. In addition, formulas may be generated to provide practitioners with information relative to the forces being applied during therapeutic exercises using ERB.

References
1. Dttmyr MM, Topp R, Pifer M. Prehabilitation in preparation for orthopaedic surgery. Orthop Nurs. 2002;21:43–54.
2. Christiansen DH, Filla D, Frost P, Frich LH, Svendsen SW. Physiotherapy after subacromial decompression surgery: development of a standardised exercise intervention. Physiotherapy. 2015;101:327–39.
3. Chen KM, Li CH, Huang HT, Cheng YY. Feasible modalities and long-term effects of elastic band exercises in nursing home older adults in wheelchairs: a cluster randomized controlled trial. Int J Nurs Stud. 2016;55:4–14.
4. Swank AM, Kachelman JB, Bibeau W, Quesada PM, Nyland J, Malkani A, et al. Prehabilitation before total knee arthroplasty increases strength and function in older adults with severe osteoarthritis. J Strength Cond Res. 2011;25:318–25.
5. InT, Jin Y, Jung K, Cho HY. Treadmill training with Thera-Band improves motor function, gait and balance in stroke patients. NeuroRehabilitation. 2017;40:109–14.
6. Hottinger HA, DeCamp CE, Oliver NB, Hauptman JG, Soutas-Little RW. Noninvasive kinematic analysis of the walk in healthy large-breed dogs. Am J Vet Res. 1996;57:381–8.

Table 1 Mean forces (N ± standard deviation) produced using different ERB lengths, various elongation values, and different therapeutic ERB

ERB color	Resting length (cm)	Elongation value compared to resting band length (Force values are N ± SD)		
Tan	1.25	1.5	1.75	
	10	6.3 ± 0.3	10.3 ± 1.7	11.5 ± 0.2
	40	5.9 ± 0.1	8.9 ± 0.2	10.7 ± 0.2
Yellow	1.25	1.5	1.75	
	10	10.7 ± 0.2	14.3 ± 0.2	15.8 ± 0.2
	40	9.6 ± 0.1	12.9 ± 0.1	14.9 ± 0.2
Red	1.25	1.5	1.75	
	10	12.6 ± 0.3	16.6 ± 0.2	18.8 ± 0.3
	40	11.5 ± 0.2	15.6 ± 0.2	18.0 ± 0.3
Green	1.25	1.5	1.75	
	10	16.9 ± 0.3	22.7 ± 0.3	25.7 ± 0.4
	40	15.5 ± 0.2	21.1 ± 0.3	24.3 ± 0.3
Blue	1.25	1.5	1.75	
	10	19.3 ± 0.4	25.9 ± 0.4	29.1 ± 0.7
	40	17.7 ± 0.2	24.0 ± 0.3	27.6 ± 0.3
Black	1.25	1.5	1.75	
	10	24.7 ± 0.2	33.4 ± 0.7	38.1 ± 0.6
	40	24.5 ± 0.5	33.4 ± 0.4	38.7 ± 0.5
Reddy GK, Stehno-Bittel L, Enwemeka CS. Laser photostimulation accelerates wound healing in diabetic rats. Wound Repair Regen. 2001;9:248–55.

2. Stelian J, Gil I, Habot B, Rosenthal M, Abramovici I, Kutok N, et al. Improvement of pain and disability in elderly patients with degenerative osteoarthritis of the knee treated with narrow-band light therapy. J Am Geriatr Soc. 1992;40:23–6.

3. Djavid GE, Mortazavi SMJ, Basirnia A, Roodsari GS, Jamili P, Sheikhbahaee N, et al. Low level laser therapy in musculoskeletal pain syndromes: pain relief and disability reduction. Lasers Surg Med. 2003;35:122–43.

4. Chow RT, Heller GZ, Barnsley L. The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain. 2006;124:201–10.

Table 1 Mean laser penetration through different tissues

Site	Penetration (%)
Pinna	7.02 A
Inguinal region	6.56 A
Calcaneal Tendon	5.12 A, B
Triceps muscle	2.59 B, C
Distal Intervertebral space	2.56 B, C
Caudal vertebra	0.00 C
Proximal thigh	0.00 C

Penetration through various tissues is not significantly different (P > 0.05) in tissues with the same letter. The greatest penetration was present through the pinna, while the lowest was in the caudal vertebra and proximal thigh.

Table 2 Calculated linear equations of elongation and each ERB color and resulting Pearson’s correlation coefficient

ERB color	Linear equation	R² value
Tan	y = 10.0x + 3.9	0.95
Yellow	y = 10.7x + 7.8	0.96
Red	y = 12.7x + 9.1	0.97
Green	y = 17.5x + 12.3	0.97
Blue	y = 19.6x + 14.1	0.97
Black	y = 27.4x + 18.4	0.97

All colors resulted in strong correlation to a best fit line.

Table 3 Mean forces (N ± standard deviation) generated by various elastic bands at 10 and 40 cm lengths with 95% confidence intervals

ERB color	Resting length (cm)	Force (N)	95% CI	P value
Tan	10	9.37 ±0.04	[9.30–9.45]	< 0.0001
	40	8.49 ±0.04	[8.42–8.57]	
Yellow	10	13.62 ±0.01	[13.59–13.65]	< 0.0001
	40	12.43 ±0.01	[12.41–12.46]	
Red	10	16.01 ±0.01	[15.99–16.04]	< 0.0001
	40	15.02 ±0.01	[14.99–15.04]	
Green	10	21.75 ±0.01	[21.72–21.77]	< 0.0001
	40	20.32 ±0.01	[20.29–20.34]	
Blue	10	24.74 ±0.01	[24.71–24.77]	< 0.0001
	40	23.09 ±0.01	[23.07–23.13]	
Black	10	32.23 ±0.03	[32.18–32.28]	< 0.0001
	40	32.05 ±0.03	[31.99–32.10]	

All color bands resulted in significantly different forces between the 10 and 40 cm resting lengths.

Results:

No adverse effects were observed. Laser penetration decreased significantly with unclipped hair (94.6%) versus clipped hair (98.6%) and greater melanin index (each unit increased absorbance 0.033%, P < 0.0001) in all tissues. Erythema index did not influence laser penetration (P = 0.273). Tissue type also affected mean laser penetration (Table 1).

Conclusion:

Unclipped hair decreased laser penetration by approximately 4%. Tissue type and thickness also affected laser penetration, with no penetration through triceps muscle and caudal vertebra. Based on the findings reported here, patients should be clipped prior to therapeutic laser application to improve transmission to tissues, and differences in tissue structure should be taken into account prior to laser application. Future studies are necessary to measure photon penetration to target tissues and to determine the dose of laser for ideal photobiomodulation of cells in live dogs.

Background:

Therapeutic exercises are an essential part of the rehabilitation of musculoskeletal and neurologic conditions, as well as strengthening and conditioning of dogs. Elastic resistance bands (ERB) are used to provide resistance during therapeutic exercise, thereby increasing muscle strength [1]. In humans, muscle activity using surface electromyography (EMG) is used in healthy populations to determine the role and interactions of different muscles during specific tasks as well as in clinical studies to assess muscle dysfunction or maladaptations due to neurologic or musculoskeletal injury or pain. Several studies have evaluated canine muscle activity using needle EMG or surface EMG during walking and trotting on a treadmill at different angles of inclination or declination [2–4]. The objective of this study was to evaluate surface EMG muscle activity of the vastus lateralis (VL), biceps femoris (BF), and gluteus medius (GM) muscles during walking and trotting on a treadmill with progressively increasing elastic band resistance in clinically normal dogs. We hypothesized that surface EMG muscle activity would increase with increasing resistance.

Materials and methods:

Surface EMG (Noraxon, Scottsdale, AZ) was performed during treadmill walking and trotting with 4 different stiffnesses of ERB (Theraband, Akron, OH). Yellow, Red, Green, Blue) secured above the hock. Dogs were acclimated to the treadmill prior to the study. The treadmill velocity was set to a comfortable walk (1.4–2.0 MPH) and trot (3.0–4.1 MPH). The ERB were held progressively during 3 gait cycles were compared among the different ERB. Data were analyzed using a mixed model analysis. Significance was set at the P < 0.05 level.

A10

Surface electromyography of the vastus lateralis, biceps femoris, and gluteus medius muscles in normal dogs during treadmill exercise with elastic resistance bands

Hannah McLean1, Darryl Mills2, David Levine2

1Department of Small Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine Knoxville, TN, USA; 2Department of Physical Therapy, University of Tennessee at Chattanooga, Chattanooga, TN, USA

Correspondence: Hannah McLean (hthurma2@vols.utk.edu)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A10

Table 1 Mean laser penetration through different tissues

Site	Penetration (%)
Pinna	7.02 A
Inguinal region	6.56 A
Calcaneal Tendon	5.12 A, B
Triceps muscle	2.59 B, C
Distal Intervertebral space	2.56 B, C
Caudal vertebra	0.00 C
Proximal thigh	0.00 C

Penetration through various tissues is not significantly different (P > 0.05) in tissues with the same letter. The greatest penetration was present through the pinna, while the lowest was in the caudal vertebra and proximal thigh.
Results: At the walk and trot, the maximum amplitude of the GM was significantly lower than BF and VL for all ERB (P < 0.05). During the walk, the maximum amplitude increased with progressively increasing resistance of the different ERBs (P < 0.05). At the trot, the GM again had a significantly lower amplitude at all resistances, and the maximum amplitude of the VL and BF increased with increasing resistance of the different ERBs (P < 0.05).

Conclusion: Increased muscle activity in the BF and VL can be achieved by use of ERB and muscle activity progressively increases with increasing band resistance at the walk and trot. Specific knowledge of muscle activation patterns during therapeutic exercises should allow practitioners to target specific muscles for strengthening.

References
1. Taylor NF, Dodd KJ, Damiano DL. Progressive resistance exercise in physical therapy: a summary of systematic reviews. Phys Ther. 2005;85:1208–23.
2. Breitfuss, Franz M, Peham C, Bockstahler B. Surface electromyography of the vastus laterals, biceps femoris, and gluteus medius muscle in sound dogs during walking and specific physiotherapeutic exercises. Vet Surg. 2015;5:388–95.
3. Bockstahler BB, Gesky R, Mueller M, Thalhammer JG, Peham C, Podebregar I. Correlation of surface electromyography of the vastus laterals muscle in dogs at a walk with joint kinematics and ground reaction forces. Vet Surg. 2009;38:754–61.
4. Lauer SK, Hillman RB, Li L, Hosgood GL. Effects of treadmill inclination on electromyographic activity and hind limb kinematics in healthy hounds: at a walk. Am J Vet Res. 2009;70:658–64.
5. Uchida, MC, Nishida, MM, Sampaio, RAC, Moritani T, Arai, H. Thera-band® elastic band tension: reference values for physical activity. J Phys Ther Sci. 2016;28:1266–71.

A11 The use of radial pressure wave therapy to manage chronic musculoskeletal pain in dogs
Britt Mills
Mills Veterinary Services, Armstrong, BC, Canada
Correspondence: Britt Mills (millsdvm@gmail.com)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A11

Radial pressure wave therapy has been used in humans to treat chronic soft tissue injuries, especially tendinopathies. Postulated mechanisms of action include transmission of positive pressure energy through tissue, cavitation, alteration of ion channels, stimulation of nitric oxide pathways, stimulation of angiogenesis, reduction in inflammation, and tissue and nerve regeneration. It is useful in small animal veterinary medicine because it is very well tolerated in unseparated animals, and it provides a viable method to treat pain when non-steroidal anti-inflammatory agents cannot be used. The purpose of this study is to demonstrate the efficacy of radial pressure wave therapy in treating various chronic pain conditions in dogs. Over a period of 6 months, ten dogs were selected for case studies. They all had pain conditions that were obvious to the owner and had persisted for more than 1 month. The location of pain varied but included shoulder and stifle pain, generalized hindquarter pain, and spine and forelimb pain. All dogs received three treatments approximately 2 weeks apart and efforts were made to ensure there were no changes in medication or exercise during the treatments. The treatment intensity and duration was tailored to the size of the dog and the site treated. The treatments were evaluated by owner reports of changes in demonstrated pain and lameness, and also by veterinary evaluation. No dog required sedation and all dogs except two showed a clear improvement in pain.

Reference
1. Moya D, Ramon S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am. 2018;100:251–63.

A12 Effect of aquatic exercise on cardiovascular parameters of dogs
Darryl Mills, Rachel Dickson, Ellen Camp, Jose Guevara, Marti Drum
CARES Center, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
Correspondence: Darryl Mills (boneplate@aol.com)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A12

Background: A previous study found that heart rate (HR) and respiratory rate (RR) increased prior to fatigue with ground treadmill exercise [1]. Little information exists regarding aquatic exercise and the cardiovascular system in pet dogs compared to people [2, 3]. Because cardiovascular parameters in pet dogs may differ from those of elite athletes, we collected data from pet dogs. Our main objective was to measure cardiovascular, respiratory, and thermal parameters of dogs undergoing a graded fitness test in an underwater treadmill with three different water levels, and during swimming. We hypothesized that HR and RR would increase during exercise for each condition, and these parameters would peak prior to fatigue.

Methods and methods: Fifteen adult dogs, weighing 20–40 kg and of various fitness levels were evaluated. Dogs were acclimated to an underwater treadmill (UWTM) and a swimming pool (SP) prior to data collection. Resting HR, systolic (SBP), diastolic (DBP) and mean blood pressure (MBP); rectal temperature; and RR were obtained. Dogs underwent a graded exercise test in the UWTM at 3 water levels performed in random order, (1) carpus (C), (2) midantrabuchma (MA), (3) elbow (E), until mild fatigue. Dogs walked 2 km/h for 5 min, followed by a 1 min rest period to obtain data. Dogs were walked for additional 5 min intervals at increasing velocity (0.5 km/h for each period) until mild fatigue, with 1 min rest periods between sessions. Because velocity could not be controlled during swimming, data were collected every minute, with a 1 min rest period to collect data. Data were analyzed using ANOVA to evaluate changes over time and among groups.

Results: Dogs exercised for a mean of 56.3, 58.3, 53.3, and 6.2 min for C, MA, E, and SP, respectively. In general, SP HR was greatest, and C HR was lowest (Fig. 1). HR increased steadily throughout exercise with minimal indication of fatigue. Similarly, RR gradually increased throughout exercise in all groups, with the greatest RR within 15 min of fatigue in UWTM groups and within 3 min in the SP group (Fig. 2). There were no significant changes in SBP, DBP, MBP, or temperature to indicate fatigue (P > 0.05).

Conclusion: Mild increases in HR and moderate increases in RR may be useful to design conditioning protocols to induce mild training stress. Possible recommendations from this graduated exercise test suggest an increase in 10 heartbeats per min, or a RR of 100 may precede exercise fatigue.

References
1. Camp E, Dickson R, Guevara J, Drum M, Mills D. Cardiovascular parameters of exercising pet dogs. Acta Vet Scand. 2016;58:A44.
2. Whitley JD, Schoene LL. Comparison of heart rate responses: water walking versus treadmill walking. Phys Ther. 1987;67:1501–4.
3. Johnson BL, Stromme SB, Adamczyk JW, Tennoe KO. Comparison of oxygen uptake and heart rate during exercises on land and in water. Phys Ther. 1977;57:273–8.

A13 The effect of a dynamic warm-up protocol on performance in agility dogs
Romany Pinto, Emily Horan, Kira Penney, Sarah Parker, Cindy Shmon
Western College of Veterinary Medicine, Saskatchewan, Saskatchewan, Canada
Correspondence: Romany Pinto (romany.pinto@usask.ca)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A13

Background: Dynamic warm-up can improve performance and prevent injuries in human athletes [1]. To our knowledge, no studies have investigated the effects of warm-up in dogs, despite significant injury rates in sports such as agility [2, 3, 4, 5]. We wished to assess the effects of a dynamic warm-up on performance in agility dogs.
Materials and methods: We recruited 22 agility dogs of varying age and breed. Owners performed their dog’s normal pre-agility preparation prior to completing an agility course. Electronic timing equipment provided times to 0.01 s. All runs were videotaped. Owners were randomly divided into a control group (CG) and a warm-up group (WG). The WG received instruction on the dynamic warm-up. The protocol was based on those used in several human studies. It included cardiovascular activity, dynamic stretches, passive stretches, proprioceptive activities and agility activities. Four weeks later, the CG handlers did their normal pre-agility routine. The WG did the dynamic warm-up protocol. The dogs ran the same course as on Day 1. The blinded principal investigator analyzed each video and determined the number of times off task (TOT) for each dog. This included any time a dog paused, went off course, or restarted the weave poles. Day 1 times were subtracted from Day 2 times to give an outcome of change in time for each dog. Day 1 TOT was subtracted from Day 2 TOT to give an outcome of change in TOT for each dog. The differences between groups were compared using the Wilcoxon Rank sum test.

Results: Twenty-one dogs completed the study protocol. Dogs in the CG were a median of 2.48 s slower on Day 2, while WG dogs were a median of 3.18 s faster (Table 1, Fig. 1). The difference between groups was significant (P = 0.035). The CG dogs had a median of no difference in TOT between Day 2 and Day 1. The WG dogs had a median of 1 fewer TOT on Day 2 (Fig. 2). The difference between groups was nearing significance (P = 0.067). Seven of the 8 faster dogs (88%) in the WG had fewer TOT on Day 2.

Conclusion: The dynamic warm-up protocol significantly reduced agility run times. This may be due in part to improved focus and fewer TOT. Further research is needed to investigate the protocol’s effect on dogs’ running speed as well as any effects on injury rates.

Acknowledgements: The authors acknowledge Jason Good, Christina Tollett, Alexandra Wentzell, Christine Wilson and the Saskatchewan agility clubs for their assistance with this study.

References
1. Behm DG, Chaouachi A. A review of the acute effects of static and dynamic stretching on performance. Eur J Appl Physiol. 2011;111:2633–51.
2. Cullen KL, Dickey JP, Bent LR, Thomason JJ, Moëns NM. Survey-based analysis of risk factors for injury among dogs participating in agility training and competition events. J Am Vet Med Assoc. 2013;243:1019–24.
3. Cullen KL, Dickey JP, Bent LR, Thomason JJ, Moëns NM. Internet-based survey of the nature and perceived causes of injury to dogs participating in agility training and competition events. J Am Vet Med Assoc. 2013;243:1010–8.
4. Kerr ZY, Fields S, Comstock RD. Epidemiology of injury among handlers and dogs competing in the sport of agility. J Phys Act Health. 2014;11:1032–40.
5. Levy M, Hall C, Trentacosta N, Percival M. A preliminary retrospective survey of injuries occurring in dogs participating in canine agility. Vet Comp Orthop Traumatol. 2009;22:321–4.

A14
Euthanasia diversion by use of extracorporeal shockwave therapy to improve mobility and decrease pain in a Treeing Walker hunting dog
Tamara Sue Shearer
Western Carolina Animal Pain Clinic, Sylva, NC, USA
Correspondence: Tamara Sue Shearer (tshearer5@frontier.com)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A14

Background: Extracorporeal shockwave therapy should be considered as part of the multimodal therapy to support palliative and hospice care patients to help restore function and mitigate pain. Patients may present for euthanasia, hospice, or palliative care when symptoms of a chronic condition interfere with activities of daily living, a decision is made not to pursue curative treatment, or when a patient has progressive consequences of a trauma which is associated with health complications [1].

Materials and methods: A retired 9-year old, 32 kg, neutered male Treeing Walking Coonhound presented to the Western Carolina Animal Pain Clinic for euthanasia because of a bilateral forelimb lameness associated with osteoarthritis of the humeroradial and humeroulnar joint which had exacerbated 2 weeks prior to the visit. Prior to the visit, his therapy included carprofen, gabapentin, amantadine, injectable glycosaminoglycan, oral supplements, laser therapy, acupuncture, therapeutic exercise and joint mobilizations [2, 3, 4, 5]. New modifications of existing dosages had failed to mitigate the pain.

Results: Upon presentation, the dog had a lameness score of 3/5 and pain score of 8/10. Quality of life scale was 275/500 [6]. Under light sedation (0.3 mg dexmedetomidine, IM), the patient received 3 treatments of 750 shocks with an energy level of 0.25 mJ/mm² using the Storz Duolith® Vet divided between the medial and lateral areas of the elbows every 2 weeks for 3 treatments. At the end of the series of treatments the lameness score improved to 1/5, quality of life to 450/500 and the pain scale decreased to 2/10.

Conclusion: Based on this case study, extracorporeal shockwave therapy should be offered as another treatment option over euthanasia for clients that have a desire to palliate a painful lameness.

References
1. Shearer T. Pet hospice and palliative care protocols. Vet Clin North Amer Small Anim Pract. 2011;41:507–18.
2. Shearer T, August K. Physical medicine, rehabilitation, complementary and integrative medicine treatment modalities. In: Shanan A, Pierce J, Shearer T, editors. Hospice and palliative care for companion animals. Hoboken NJ: Wiley Blackwell, 2018; https://doi.org/10.1002/9781119036722.ch19
3. Millis D, Levine D. Exercises for proprioception and balance. In: Millis D, Levine D, editors. Canine rehabilitation and physical therapy. 2nd ed. Philadelphia: Elsevier; 2014. p. 484–94
4. Durant A, Millis D. Applications of extracorporeal shockwave in small animal rehabilitation. In: Millis D, Levine D, editors. Canine rehabilitation and physical therapy. 2nd ed. Philadelphia: Elsevier; 2014. p. 381–9.
5. Hanks J, Levine D, Bockstahler B. Physical agent modalities in physical therapy and rehabilitation of small animals. Vet Clin North Am Small Anim Pract. 2015;45:33–7.
6. Xie H. 3 steps of palliative care and end-of-life care. In: Traditional Chinese Veterinary Medicine (TCVM) Palliative Care and End-of-Life Care Lecture series 2018.
Heart rate testing in agility dogs

Gillian Tabor1, Hannah Carmicheal1, Nicky Grant2

1Animal Welfare Research and Knowledge Exchange Arena, University Centre Hartpury, Gloucester, UK; 2Win Clinic, Willowbrook Garden Centre, Wellington, UK

Correspondence: Gillian Tabor (Gillian.tabor@hartpury.ac.uk)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A15

Background: Heart rate (HR) has been used as a proxy measure for exercise intensity in human and horse training but its use is less reported in dog training. Agility dog trainers could use peak and mean heart rate of dogs undergoing agility trials to report episodes of physiological stress and fitness. Currently there are no studies published evaluating technique or outcome for HR testing of agility dogs over an agility run consisting of a timed course of obstacles. The aim of this study was to use a simple manual method of heart rate monitoring, pre- and post-agility trial, to test the hypothesis that heart rates would be higher after completion of the course.

Materials and methods: HR of 39 UK Kennel club rated grade 7 dogs (mean age 5.7 ± 1.7 years, 11 males, 18 females, variable breeds) were collected immediately preceding (PreHR) and after (PostHR) competing over an agility course. The course consisted of 168 m with 20 obstacles (13 jumps, 3 tunnels, set of 12 weaves, dogwalk, A-frame, see-saw) and was part of a 1-day camp for agility performance. Manual palpation was used to locate the femoral artery in the medial thigh region and dogs' pulses were counted for 30 s. The number of beats per minute (BPM) was derived by multiplying by this number by two, to obtain a HR.

Results: Data from 22 dogs were excluded due to unreliability of HR collection as a result of the behaviour of the dog. HR of 17 dogs were successful collected at the two measurement points (PreHR mean 95.5 ± 19.7 BPM; PostHR mean 97.6 ± 14.4 BPM). The was no significant differences between PreHR and PostHR (t16 = 0.388 P = 0.703).

Conclusion: The behavioural excitement and rapid movement of the dogs in the competition environment limited the ability to collect HR data in this group of dogs. Of those that were collected there was a large spread of HR BPM with no mean difference between PreHR and PostHR. Physiological arousal due to excitement in this scenario

Table 1 List of medical conditions treated with radial pressure wave therapy and outcomes after three treatments 2 weeks apart

Condition	Treatment	Comments
Partial ACL tear	2000 shocks 3.0 bar	Return to soundness
Generalized hindquarter pain	4000 shocks 4.5 bar	Improvement in difficulty rising and mobility
Medial shoulder instability	3000 shocks 3.0 bar	Resolution of lameness, return to competition
Back pain	4000 shocks at 4.5 bar	Improvement in mobility and pain
Partial ACL tear	2000 shocks at 3.0 bar	No change in lameness
Hip dysplasia	4000 shocks at 5.0 bar	Improvement in mobility and pain
Shoulder pain	2000 shocks at 3.0 bar	Improvement in lameness
Elbow dysplasia	2000 shocks at 3.0 bar	No change in lameness
Generalized hindquarter pain	4000 shocks at 4.0 bar	Improvement in difficulty rising and mobility
Back pain	4000 shocks at 4.5 bar	Improvement in mobility and pain

Fig. 1 Difference in time taken to complete an agility course on two separate days (Day 2–Day 1) for individual dogs in either the warm-up group or control group

Fig. 2 Difference in number of times off task on two separate days (Day 2–Day 1) for individual dogs in the control group and the warm-up group

A15 Heart rate testing in agility dogs

Gillian Tabor1, Hannah Carmicheal1, Nicky Grant2

1Animal Welfare Research and Knowledge Exchange Arena, University Centre Hartpury, Gloucester, UK; 2Win Clinic, Willowbrook Garden Centre,
appeared to be the limiting factor in the reliability of using the HR to measure exercise intensity. Therefore to record training load data an alternative method would need to be tested, such as continuous monitoring and data capture during the agility trial using technology to log HR.

Equine

A16

Effects of chiropractic on static and dynamic muscle parameters in 6 sport horses
Elizabeth Verity Acutt1, Sarah Sonia le Jeune2, Bruno Henri Pypendop2
1WR. Pritchard Veterinary Medical Teaching Hospital, Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA; 2Department of Surgical and Radiological Sciences, University of California, Davis, CA, USA

Background: Chiropractic has become widely used in equine practice, however little objective data exists supporting the efficacy of this modality in horses [1, 2]. Non-invasive methods of assessment of muscle function have been validated in horses [3, 4]. Bioimpedance analysis (BI) uses measurements of current through cell membranes and tissue interfaces to infer information regarding the degree of contraction and health of the selected muscle [3]. Acoustic myography (AMG) analyzes the low frequency sounds created during muscular activity and uses them to determine the way in which the central nervous system recruits and uses the active fibers in a muscle (efficiency, E), the number of active muscle fibers (spatial summation; S) and the frequency with which they contract (temporal summation, T) [5]. The objective of this study was to assess the effect of chiropractic treatment on static bioimpedance (BI) and dynamic acoustic myography (AMG) of paired muscle groups in healthy sport horses. We hypothesized that chiropractic would affect BI and AMG variables.

Materials and methods: Recordings were taken before and at 24, 48 and 72 h after chiropractic treatment of six healthy, client-owned horses by a veterinarian certified in veterinary chiropractic. BI of trapezius, latissimus dorsi, longissimus dorsi and gluteus medius muscles were recorded at rest; AMG data were collected from paired gluteus medius, longissimus dorsi and latissimus dorsi muscles at walk and trot in a straight line. Data were screened for significance (P ≤ 0.05) using RMANOVA and Dunnnett’s test. Gait abnormalities were assessed subjectively and objectively (Lameness Locator®) and sensitivity at superficial acupuncture points was recorded at all time points.

Results: All horses tolerated the procedures well. Sensitivity at acupuncture points was present initially in 5/6 horses and was abolished immediately after chiropractic in all five. Signs of mild lameness were detected objectively in all horses prior to chiropractic and throughout the course of the study. BI: Bioimpedance scores for the left trapezius muscle were significantly altered at 24 and 72 h. AMG: The balance score of the gluteus medius muscle at walk was significantly affected by time, as was its efficiency at the trot.

Conclusion: This small pilot study reveals that objective measurements of muscle function improve following chiropractic, lasting for at least 72 h post-treatment. This warrants further investigations in a larger number of subjects and in additional muscle groups.

Acknowledgements: Adrian Harrison D.Phil. for assisting in data collection and processing.

Study compliance: The study complied with the Animal Care and Use Committee of the University of California, Davis.

References
1. Haussler K. The role of manual therapies in equine pain management. Vet Clin North Am Equine Pract. 2010;26:579–601.
2. Haussler K. Joint mobilization and manipulation for the equine athlete. Vet Clin North Am Equine Pract. 2016;32:87–101.
3. Harrison A, Elbrond V, Riis-Olesen K, Bartels E. Multi-frequency bioimpedance in equine muscle assessment. Physiol Meas. 2015;36:453–64.
4. Riis K, Harrison A, Riis-Olesen K. Non-invasive assessment of equine muscular function: a case study. Open Vet J. 2013;3:380–4.
5. Harrison A, Dansneskold-Samsøe B, Bartels E. Portable acoustic myography—a realistic noninvasive method for assessment of muscle activity and coordination in human subjects in most home and sports settings. Physiol Rep. 2013;1:e0029.
Declaration: The experimental protocol was approved by the Ethics Committee of the São Paulo State University (n° 006548/17) and followed the standards care of Use of Animals.

Acknowledgements: São Paulo Research Foundation-FAPESP (Process nº 2017/10959-4).

References

1. Broom DM. Animal welfare: concepts and measurement. J Anim Sci. 1991;69:4167–75.
2. Descovich K, Wathan JW, Leach MC, Buchanan-Smith HM, Flecknell P, Farningham D, et al. Facial expression: an under-utilised tool for the assessment of welfare in mammals. ALTEX. 2017;34:409–29.
3. Grauw JC, Loon JP. Systematic pain assessment in horses. Veterinary J. 2016;209:14–22.
4. Gålerup KB, Forkman B, Lindegaard C, Andersen PH. An equine pain face. Vet Anaesth Analg. 2015;42:103–14.
5. Dalla Costa E, Minero M, Lebelt D, Stucke D, Canali E, Leach MC. Development of the Horse Grimace Scale (HGS) as a pain assessment tool in horses undergoing routine castration. PLoS one. 2014;9:e92281.
6. Touch Test™ Sensory Evaluators Operation Manual. Stoelting Co. https://www.stoeltingco.com/media/wysiwyg/58011_Touch_TestEvaluator.pdf.

A18

Effect of chiropractic manipulation on the active range of motion of the dorso-ventral flexion at the thoraco-lumbar back in the standing horse

Juan Carlos Garcia-de-Brigard1, Maria Fernanda Pardo-Valderrama1, Luis Carlos Mena-Aguilera2, Luna Gutierrez-Cepeda3

1Hippo-Training EU, Bogotá, Colombia; 2Escuela de Equitacion, Ejercito de Colombia, Bogotá, Colombia; 3Universidad Complutense de Madrid, Madrid, Spain

Correspondence: Juan Carlos Garcia-de-Brigard (garciadebrigard@gmail.com)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A18

Background: Chiropractic manipulation and other high velocity-low amplitude thrusts on the thoraco-lumbar spine have long had anecdotic clinical reports of increasing the Range of Motion of the horse. Passive intervertebral ROM is increased after manipulation [1]. The aim of this study was to assess if, performing a full chiropractic adjustment of the thoracic, lumbar and sacral sections of the spine would increase the active Range of Motion (ROMA) of the Dorso-Ventral Flexion (DVF) at the Thoraco-Lumbar Back (TLB) on standing horses.

Materials and methods: ROMA of the DVF at the TLB was evaluated in 21 clinically sound, actively ridden horses. For the purpose of this study, ROMA was defined as the change in height of the back at (T15, T18, L2), induced with sudden pressure stimulation over the semitendinous muscle, when compared to the resting height. Measures were recorded three times per horse with a background measuring wall and high speed video. After this assessment, a chiropractic adjustment was performed on every segment that required it, over the thoracic, lumbar and sacral sections of the spine on 14 horses selected at random (Treatment group). The remaining 7 horses acted as control. A second ROMA assessment was then performed on every horse, 20 min after the first one, recording the change in ROMA between assessments. The technicians who performed the assessments and the treatments were independent and blinded to each other’s procedures.

Results: The change from first to second ROMA assessments was significantly greater (P < 0.05) for the Treatment Group (9.21 ± 2.99 cm vs. 10.36 ± 2.02 cm) than for the Control Group (8.86 ± 2.47 cm vs. 8.86 ± 2.67 cm).

Conclusion: The chiropractic adjustment of the thoracic, lumbar, and sacral spinal sections helped increase the ROMA of the DVF at the TLB, which could show a beneficial effect of chiropractic care on ROMA of the back. Further studies are recommended to evaluate the effect of chiropractic manipulations on the ROMA of the TLB for Dorsoventral extension, axial rotation and lateral bend, on both the standing and moving horse.

Acknowledgements: The authors thank the Equitation School of the Colombian Army and its commander, LtCol. David Andrés Rodríguez Camacho for permitting the use of its facilities and providing the horses involved in this study.

Fig. 1 Still image from 30 s video clips of one horse 24 h after (procedure) implantation of a biopolymer in the subcutaneous space of the region of the neck board. The image show horse orienting their ears backward, inner brow raised, nostril dilated, tension of the muzzle and tone of the masticatories muscles

Fig. 2 Boxplot of the von Frey monofilaments for six horses assessed 1 h before, 24 and 48 h after (procedure) implantation of a biopolymer in the subcutaneous space of the region of the neck board. Sensibility threshold was established for the diameter of the filament (0.432 to 1.143 mm), and this value was converted to kg/force by a conversion scale available from the manufacturer.
Comparison of the effectiveness of Photobiomodulation (PBM) on Delayed Onset Muscle Soreness (DOMS) between Class IIIb and IV Laser and at high and low doses
Lauren Hunt, Robin L Gill
Writtle University College, Writtle, Chelmsford, UK
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A19

Background: PBM is an expanding field and recent human studies focus on its effects to reduce DOMS [1]. To the author’s knowledge, no such study has been carried out in animals, specifically the equine species. This investigation aimed to compare two doses from both a class IIIb and class IV laser to determine if PBM had any effect on equine DOMS.

Materials and methods: A randomised crossover Latin square design was used with five horses. Pressure algometry test nociception on trunk flexibility and stiffness in horses: a randomised clinical trial. Equine Vet J Suppl. 2010;38:695–702.

A19

A19

A19

A19

A19

Conclusion: Overall PBM has shown possible inhibition of equine DOMS in the gluteal region, with both class IV doses showing significance. There is speculation from this study that different doses and devices may be required in different muscle areas in order to provide optimum results. This follows patterns in human studies [1]. There were limitations to this study as horse activity varied, as did coat color (all, however, had dark skin) with some being clipped. With no previous research of the effects of PBM on equine DOMS, dosages were calculated and speculated from human research, possibly affecting their efficacy. PBM can be a promising treatment to inhibit equine DOMS, but more studies on its action and determining dosage parameters are required.

Acknowledgements: John Rushby at Celtic SMR Ltd & Omega Laser Systems.

Reference
1. Oliveira AR, Vanin AA, Tomasoni SS, Miranda EF, Albuquerque-Pontes GM, De Marchi T, et al. Pre-exercise infrared photobiomodulation therapy (810nm) in skeletal muscle performance and post exercise recovery in humans: what is the optimal power output?. Photomed Laser Surg. 2017;35:595–603.

A20

A20

A20

A20

A20

Background: There is significant scientific support for the importance of the rider’s interactions with the back musculature of the horse [1–4]. However, objective effects of the rider on the muscle tissue have not been reported to date. Acoustic myography (AMG) is a non-invasive measurement of the low frequency sounds created during muscular activity which has been validated in horses and can generate information regarding the way in which the central nervous system recruits and uses the active fibers in a muscle (efficiency, E), the number of active muscle fibers (spatial summation; S) and the frequency with which they contract (temporal summation; T) [5, 6]. These measurements can then be added to give a total ‘ESTi’ score for each muscle.

The objective of this prospective controlled experimental study was to assess the effects of the rider on the longissimus dorsi muscle fibers in the saddle support area in healthy sport horses at the walk. We hypothesized that the rider would increase acoustic myographic variables of the longissimus muscle under the saddle.

Materials and methods: Six healthy, client-owned sports horses were instrumented with a commercial acoustic myographic system (CURO™ MyoDynamik ApS, Denmark). Sensors were placed on the longissimus dorsi in the saddle support area at the level of the 15th thoracic vertebra. The horse’s own saddle and a standard saddle pad were routinely secured with a girth and AMG recordings were taken before and during ridden exercise at the walk in a straight line with an approximately 65 kg experienced rider. Data was screened for significance (P = 0.05) using a paired t-test.

Results: All horses tolerated the procedures well. The rider induced significant and immediate increases in E, T and ESTi scores of the longissimus muscle under the saddle bilaterally (Table 1).

Conclusion: This study reveals that the rider induces significant changes in objective measurements of muscle function of the longissimus muscle of the horse under the saddle. Particularly the muscle becomes more efficient, with a higher frequency of muscle fiber activation in response to the rider’s weight. This has significant implications on the training and rehabilitation of horses under saddle and warrants further investigations in a larger number of subjects and in additional muscle groups.

Acknowledgements: Adrian Harrison for assisting in data collection and processing.
Table 1 Run times, times off task and differences between days (Day 2–Day 1) for dogs in the control and dynamic warm-up groups

Dog #	Day 1 time (s) [TOT]	Day 2 time (s) [TOT]	Difference (Day 2-Day 1) time (s) [TOT]
Control group			
3	50.23 [2]	43.56 [1]	-6.67 [−1]
2	49.57 [2]	45.76 [1]	-3.81 [−1]
6	41.29 [0]	41.14 [0]	-0.15 [0]
9	60.06 [2]	60.03 [4]	-0.03 [2]
4	80.91 [1]	83.26 [0]	2.35 [−1]
1	53.79 [0]	56.39 [1]	2.6 [1]
5	44.87 [1]	47.54 [2]	2.67 [1]
10	65.27 [0]	68.03 [0]	2.76 [0]
7	91.28 [4]	95.43 [3]	4.15 [−1]
8	51.18 [0]	59.08 [3]	7.9 [0]
Median	52.49 [1]	57.74 [1]	2.48 [0]
Warm-up group			
16	105.63 [7]	81.58 [5]	-24.05 [−2]
19	69.60 [5]	46.67 [0]	-22.93 [−5]
15	89.59 [6]	81.30 [4]	-8.29 [−2]
11	47.94 [2]	41.18 [0]	-6.76 [−2]
17	71.20 [3]	65.97 [1]	-5.23 [−2]
20	47.64 [1]	44.46 [0]	-3.18 [−1]
14	40.85 [0]	39.12 [0]	-1.73 [0]
13	81.01 [5]	80.07 [4]	-0.94 [−1]
18	53.4 [1]	54.98[2]	1.58 [1]
21	64.33 [1]	66.00 [1]	1.67 [0]
12	63.84 [2]	76.74 [4]	12.9 [2]
Median	64.33 [2]	65.97 [1]	-3.18 [−1]

Trial registration: The study complied with the Animal Care and Use Committee of the University of California, Davis.

References

1. Greve L, Dyson S. The horse–saddle–rider interaction. Vet J. 2013;195:275–81.
2. Peham C, Licka T, Schobesberger H, Meschan E. Influence of the rider on the variability of the equine gait. Hum Mov Sci. 2004;23:663–71.
3. Greve L, Dyson S. Saddle fit and management: an investigation of the association with equine thoracolumbar asymmetries, horse and rider health. Equine Vet J. 2015;47:415–21.
4. Greve L, Murray R, Dyson S. Subjective analysis of exercise-induced changes in back dimensions of the horse: the influence of saddle-fit, rider skill and work quality. Vet J. 2015;206:39–46.
5. Riis KH, Harrison AP, Riis-Olesen K. Non-invasive assessment of equine muscular function: a case study. Open Vet J. 2013;3:80–4.
6. Harrison, AP, Dannesiold-Samsøe B, Bartels EM. Portable acoustic myography—a realistic noninvasive method for assessment of muscle activity and coordination in human subjects in most home and sports settings. Physiol Rep. 2013;1:e00029.

A21

Reestablishment of normal skin temperature in the cold limbs of a horse after craniosacral therapy

Solange Mikail1, Marina Villaça Issa de Araujo1, Celina Cutrale Tarantino2
1Espaço Equus, Cotia, SP, Brazil, 2Horse Therapeutic Solutions, Aspelare, Belgium

Correspondence: Solange Mikail (mikail@termovet.com.br)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A21

Background: Craniosacral therapy is a form of manual therapy using gentle palpation to release fascial restrictions between the cranium and the sacrum. It is described in the literature that craniosacral therapy may influence the autonomous nervous system, but the underlying mechanism is not known. Thermography is a non-invasive diagnostic technique based on the capture of the infrared radiation emitted from the body and transforming it in a map of superficial body temperature. The temperature of the skin has a direct relationship with its blood flow, which is under the influence of the autonomous nervous system. An increased sympathetic tone can lead to cold extremities due to peripheral vasoconstriction (Fig. 1). This case study assessed the effect of craniosacral therapy on the cold limbs of a horse by means of thermographic evaluation.

Materials and methods: A 9-year-old, Brasileiro de Hipismo mare with a decrease temperature in both front limbs was evaluated. Craniosacral therapy was performed for 60 min (Fig. 2). Thermographic evaluation using a Thermographic Camera FLIR T530, was performed before, every 10 mins during the treatment, and 30 min after the treatment, i.e., 90 min from the first evaluation.

Results: Before the craniosacral therapy session, the mare had a marked decrease in skin temperature in both front limbs (mean 71.78 °F or 22.16 °C). After the session started, the evaluations showed that the temperature of the limbs began to increase in a proximal to distal pattern, and continued to increase reaching a normal temperature (mean 87.26 °F or 30.71 °C) 30 min after the session the end of the session, i.e., 90 min from the first evaluation. There was an increase in temperature of an average of 15.48 °F or 8.6 °C between the first and the last evaluation.

Conclusion: Craniosacral therapy could be used to increase superficial skin temperature by improving peripheral circulation in the limbs.

Consent for publication: The authors confirm that they have written informed consent to publish from the person in Fig. 3.

References

1. Ernst E. Craniosacral therapy: a systematic review of the clinical evidence. Focus Altern Complement Ther. 2012;17:197–201.
2. Purohit RC, Pascoe D, De Franco B, Schumacher J. Thermographic evaluation of the neurovascular system in the equine. Thermol Int. 2004;1:489–92.

A22

Correction of angular limb deformities in foals using kinesiology taping

Solange Mikail1, Marina Villaça Issa de Araujo1, Maria Vitória Jatobá2, Maria Isabel Gonçalves e Silva2, Luciana Menezes de Carvalho3
1Espaço Equus, Cotia, SP, Brazil, 2Move Therapy Performance e Reabilitação Equina, Montes Claros, MG, Brazil, 3Clínica e Cirurgia de Grandes Animais, UPMT, Cuiabá, MT, Brazil

Correspondence: Solange Mikail (mikail@termovet.com.br)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A22

Background: Kinesiology Taping is a technique consisting of the use of elastic adhesive tape to promote stabilization of anatomical structures. Angular limb deformities are a common problem affecting foals and is often treated surgically. The objective is to evaluate the efficacy of kinesiology taping as a treatment for angular limb deformities in foals.

Materials and methods: Two cases of angular limb deformities were studied: Case 1: A 30-day-old, Mangalarga filly, with carpus valgus on the right front limb. Case 2: A 60-day-old, Quarter Horse foal,
with carpus valgus on the left front limb. In both cases, a 20 cm tape Vetkin Tape® was applied with 30% stretch over the medial aspect of the affected limb to support the carpal collateral medial ligament. A 10 cm tape for the two anchors was wrapped over the ends of the tape to avoid detachment. The tape was changed every 5 days and the foals were reevaluated at 15 days of the treatment. The angles were measured in the pictures by ImageJ software.

Results: The degree of angular limb deformity improved in both cases during the 15-day treatment period. The angle of the carpus gradually approached a normal value from day 1 to day 15. The angle change in Case 1 was from 153 to 180 (Fig. 1), and in Case 2 was from 162 to 177 degrees (Fig. 2).

Conclusion: Kinesiology taping could be a potential non-invasive and inexpensive treatment for angular limb deformities in foals. Further research is warranted.

References
1. Karabicak GO, Bek N, Tiftikci U. Short-term effects of kinesiotaping on pain and joint alignment in conservative treatment of hallux valgus. J Manipulative Physiol Ther. 2015;38:564–71.
2. Colles CM. How to aid the correction of angular limb deformities in foals using physeal stimulation. AAEP Proceedings. 2008;54:60–3.

Rehabilitation for equine Peroneus tertius rupture

Solange Mikail, Laura Yasmin Stancov, Ana Lopes, Marina Villaça Issa de Araujo
Espaço Equus, Cotia, SP, Brazil

Correspondence: Solange Mikail (mikail@termovet.com.br)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A23

Background: A 17-year old Lusitano horse was evaluated at Espaço Equus Rehabilitation Center after a nine-month history of rest due to a rupture of the Peroneus tertius in the left hindlimb. Ultrasound examination at arrival showed an enlargement of the Peroneus tertius near its origin, with hypoechoic areas and diffuse edges. The horse presented with decreased maximal flexion (140 degrees) of the left tarsus during movement, as measured by a smart phone app (Hudl Technique) developed for biomechanical evaluation and measurement of joint angles during exercise.

Materials and methods: To establish the ability to flex the left tarsus, two treatments were implemented: Therapeutic laser (Respond System Luminex®) 20 J/cm² to address the healing of the lesion and a program of exercises with progressive intensity to address the flexion of the tarsus and strengthen of the limb. The exercises consisted in stimulation of tarsal flexion, using different techniques over 1 month: gentle stimulation with a whip, hand walking, ridden exercises, tactile stimulator of the pastern, walking over poles, cavalettis and kinesiology tapping (VetkinTape®) during exercise.

Results: After 30 days, the ultrasound examination showed the Peroneus tertius with normal size and echogenicity and also well-defined edges. The biomechanical evaluation showed that the flexion of the tarsus improved substantially: the maximum flexion angle of the hock at walk went from 140° to 57°.

Conclusion: According to the literature the lesion of the Peroneus tertius takes several months to heal, and when near its origin, it carries a
poor prognosis [1, 2]. Despite of the poor prognosis for the lesion site, this case has an excellent outcome in a short time (1 month) considering the previous time without evolution (9 months). This study highlights the value of adding a program of therapeutic exercises during the healing of this type of injury.

References
1. Koenig J, Cruz A, Genovesi R, Fretz P, Trostle S. Rupture of the peroneus tertius tendon in 27 horses. Can Vet J. 2005;46:503–6.
2. Clayton HM, Kaiser LA, Stubbs NC. Hindlimb flexion responses to different types of tactile devices. Am J Vet Res. 2011;72:1489–95.

A24
Proprioceptive innervation: What about the cranial ligament of the equine medial menisci? Preliminary results
Elodie Nemery1, Annick Gabriel1, Joëlle Pinet1, Nadine Antoine2
1 Laboratory of Veterinary Anatomy, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, Belgium; 2 Laboratory of Animal Histology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart Tilman, Belgium
Correspondence: Elodie Nemery (Elodie.Nemery@uliege.be)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1):A24

Background: Meniscal tears are common as stifle soft tissue injuries in the equine species. Cranial horn of the medial meniscus and the cranial meniscotibial ligament are the most often injured [1]. These lesions can be frequently accompanied by articular degenerative changes [2], resulting in poor sportive prognosis in the equine athlete [3]. In humans, it has been postulated that knee osteoarthrosis following meniscal injury could be due to biomechanical alteration [4] or proprioceptive disabilities attributable to the loss of mechanoreceptors (MCR), the role of the meniscus in joint stabilisation being not only mechanical [5].

In horses, a proprioceptive innervation has already been highlighted in the cranial horn of the medial menisci [6] but to our knowledge, until now, none studies have been performed in its cranial ligament. Our objective was to highlight an eventual proprioceptive innervation in the equine cranial meniscotibial ligament of the medial menisci (Fig. 1).

Materials and methods: Menisci were harvested, maximum 48 h post mortem, from one mare of 6 years old in an autopsy room. Death was not related with any locomotor problems. Serial cryosections were processed for immunohistochemistry and incubated in a range of primary antibodies directed against high molecular weight neurofilaments (anti-NFH), and Schwann cells (anti-GFAP). These antibodies were revealed with a species-specific secondary antibody bearing a fluorescent label. Nuclei were stained with DAPI.

Common criteria found in the literature, in order to identify the different types of mechanoreceptors, were included in Table 1 [6–10].

Results: On all sections analysed (n = 44), 36 nervous profiles were found with only one Golgi-like corpuscle observed (Fig. 2). As agreed with criteria found in Table 1, this corpuscle was found isolated. It exhibits a fusiform shape, shows a dense axonal arborisation with which Schwann cells established numerous close contacts. Corpuscle was about 279 µm long and 88 µm wide, estimated with Image J software.

No Pacini, neither Ruffini were observed.

Conclusion: These preliminary results suggest that the cranial ligament of the equine medial menisci is innervated and possess a proprioceptive innervation. A young horse was chosen as it was postulated that number of MCR decrease with age [11]. Nevertheless in this horse, only one Golgi-like corpuscle was found; this MCR is active during extreme movement [12]. Increase of sample, followed...
by functional studies, would be interesting in order to assess the role of the proprioceptive innervation of this ligament in the equine stifle stability.

Trial registration: Not applicable. This is not a research study that “prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects on health outcomes.”

Acknowledgements: We would like to express our special thanks to the staff of the autopsy room at the Faculty of Veterinary Medicine in Liège for the samples, to the technical assistance of Lemaitre O. and Weyckmans B. and to Cambroisier F.

References

1. Cohen JM, Richardson DW, McKnight AL, Ross MW, Boston RC. Long-term outcome in 44 horses with stifle lameness after arthroscopic exploration and debridement. Vet Surg. 2009;38:543–51.
2. Busscher V, Verwilghen D, Bolen G, Serteyn D, Busoni V. Meniscal damage diagnosed by ultrasonography in horses: a retrospective study of 74 femorotibial joint ultrasonographic examinations (2000–2005). J Equine Vet Sci. 2006;26:453–61.
3. Walmsley JP. Diagnosis and treatment of ligamentous and meniscal injuries in the equine stifle. Vet Clin North Am Equine Pract. 2005;21:651–72, vii.
4. Heijink A, Gomoll AH, Madyr H, Drobnic M, Filardo G, Espregueira-Mendes J, et al. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20:423–35.
5. Karahan H, Kocaoglu B, Cabukoglu C, Akgun U, Nuran R. Effect of partial medial meniscectomy on the proprioceptive function of the knee. Arch Orthop Trauma Surg. 2010;130:427–31.
6. Nemery E, Gabriel A, Gruulke S, Piret J, Toppets V, Antoine N. Mechanoreceptors in the anterior Horn of the Equine Medial Meniscus: an immunohistochemical approach. Anat Histol Embryol. 2015;45:131–9.
7. Freeman MAR, Wyke B. The innervation of the knee joint: an anatomical and histological study in the cat. J Anat. 1967;101:505–32.
8. Halata Z. The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles). J Anat. 1977;124:717–29.
9. Halata Z, Rettig T, Schulze W. The ultrastructure of sensory nerve endings in the human knee joint capsule. Anat Embryol (Berl). 1985;172:265–75.
10. Halata Z, Haus J. The ultrastructure of sensory nerve endings in human anterior cruciate ligament. Anat Embryol (Berl). 1989;179:415–21.
11. Aydog ST, Korkusuz P, Doral MN, Tetik O, Demirel HA. Decrease in the numbers of mechanoreceptors in rabbit ACL: the effects of ageing. Knee Surg Sport Traumatol Arthrosc. 2006;14:325–9.
12. Cavalcante ML, Rodrigues CJ, Mattar Jr. R. Mechanoreceptors and nerve endings of the triangular fibrocartilage in the human wrist. J Hand Surg Am. 2004;29:432–8.

A25

Spinal posture in horses with and without back pain

Gillian Tabor, Natacha Mann, Jane Williams

Equine Performance Research and Knowledge Exchange Arena, University Centre Hartpury, Gloucester, UK

Correspondence: Gillian Tabor (gillian.tabor@hartpury.ac.uk)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A25

Background: Observation of posture by physiotherapists forms part of standard assessment procedure and includes visual analysis of spinal alignment, conformation and the relative position of thoracolumbar (TL) and lumbosacral (LS) spinal regions. A relationship between equine TL posture and back pathology has been reported following veterinary diagnostic imaging. However in clinical practice measurement using imaging e.g. radiographs is not practical. Objective measurement of posture using sagittal view photographs are considered reliable. This study aimed to determine if there were any differences in spinal posture between horses with and without back pain.

	E left	E right	T left	T right	ESTI left	ESTI right
No rider	2.8 ± 2.7	1.5 ± 1.0	3.6 ± 2.8	2.6 ± 0.8	4.9 ± 2.0	3.9 ± 0.8
Rider	7.3 ± 2.5	7.0 ± 2.1	7.4 ± 1.3	7.4 ± 1.4	7.0 ± 1.2	6.8 ± 1.3

Fig. 1 Anatomical location of the cranial ligament of the equine medial meniscus (black arrow). **MM, ML** medial, lateral meniscus

Fig. 2 Type 3 corpuscle or Golgi-like corpuscle
Table 1 Criteria to identify mechanoreceptors based on literature review [6–10]

	Type 1 corpuscle - Ruffini corpuscle	Type 2 corpuscle - Pacinian corpuscle	Type 3 corpuscle - Golgi tendon organ
Shape	Oval-shaped	Fusiform to Cylindrical	Fusiform
Isolated or linked in clusters	Isolated	In clusters of 2	Isolated
Numbers of the main afferent fibres	2-3	1	Very dense afferent network
Arrangement of Schwann cells	Around the nerve fibres	Around the nerve fibres, arranged in concentric lamellae	Around the nerve fibres

Materials and methods: Sagittal view digital photographs were taken of 71 horses (mean age 12.5 ± 6.2 years; mean height 155.2 ± 12.2 cm; 42 geldings and 29 mares), in a neutral square stance, with a smartphone camera (8 megapixels). TL and LS angles were measured from the photographs using ImageJ. TL angle was formed from the highest point of withers to the lowest dorsal aspect of the TL region to the tuber sacrale. A smaller TL angle related to relative extension compared to a larger TL angle. LS angle was formed from the lowest point of the dorsal aspect of the TL region to the tuber sacrale to the head of tail; a smaller LS angle related to relative flexion compared to a larger LS angle. Data were divided into back pain/no back pain groups based on assessment by a Chartered Physiotherapist and owner assessment, to determine if differences existed between horses with and without back pain (alpha: P < 0.05). Data were also explored for cluster analysis to examine for posture in sub groups.

Results: Horse with back pain had smaller TL angles (n = 38; mean 148.0 ± 3.20) than horses with no back pain (n = 33; mean 150.0 ± 3.80; t(70) = 2.41, P = 0.019). There was no difference in the LS angle between groups (t(70) = 1.33, P = 0.187). Cluster analysis identified four clusters and determined that horses with a larger TL and LS angle were less likely to have back pain.

Conclusion: Thoracolumbar extension is associated with over-riding dorsal spinous processes (ORDSP) and therefore it could be hypothesised that horses with a smaller TL angle are at increased risk of ORDSP or vice versa for larger TL angles. Diagnostic imaging would be required to confirm this. Assessment of posture should be included in equine physiotherapists’ assessment of horses with back pain. This simple method of objectively recording TL and LS angles could be used within routine assessment in clinical practice.

A26
The use of outcome measures in equine rehabilitation
Gillian Tabor, Jane Williams
Equine Performance Research and Knowledge Exchange Arena, University Centre Hartpury, Gloucester, UK
Correspondence: Gillian Tabor (Gillian.tabor@hartpury.ac.uk)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A26

Background: The ideal goal of equine rehabilitation following injury or surgery is to return the horse to a level of function that either meets or exceeds the previous performance level and monitoring progress is important within rehabilitation. Outcome measures (OM) are used extensively in human practice and research, especially patient reported outcomes (PRO) and objective tests of clinical signs. PROs generally consist of a series of questions and observation of functional tasks, use of which may be challenging in equine practice. The aim of this study was to evaluate the knowledge of, and use, of OM in equine musculoskeletal rehabilitation, to identify OM used and clinician opinion regarding OM use in practice.

Materials and methods: An online questionnaire was used to investigate how those involved with the treatment and training of horses measure progress and outcomes during a rehabilitation. The questionnaire collected demographic data including qualification and during of experience within equine rehabilitation. The respondent was asked to define an OM and indicate their use, method of selection and analyzing OM data. The final section requested opinions on the benefits and barriers to OM use in equine rehabilitation and further comments.

Results: 107 practitioners responded, comprising 51 Chartered Physiotherapists and 20 Physiotherapists without prior human training, with an average of 9.25 years in equine practice. 82.2% reported using OM. When asked to define an OM, 72.5% of Chartered Physiotherapists and 40% of Physiotherapists without prior human training, matched a pre-set definition correctly. The benefits of OM use were reported consistently as a method of objectively monitoring progress and used to adapt treatment plans. The barriers to OM use were lack of OM validation and reliability and time constraints. However the OMs reported to be used were mainly subjective such as visual assessment of lameness, palpation and observation of muscle symmetry.

Conclusion: Confusion exists regarding what an OM is and although OM use is reported it often refers to subjective assessment methods. Based on this information from a small group of professionals it would appear that there are limiting factors to the use of OMs in equine rehabilitation. More work is needed to develop practically applicable outcome measures for specific professionals who are involved in the rehabilitation of equines.

A27
Paralysis of a Shetland colt caused by drug intoxication resolved completely with Equiter® Method of Equine Physical Therapy and Rehabilitation
Eliana Speziale
Equiter® Center for Horse Rehabilitation, San Giovanni Terme, Tuscany, Italy
Correspondence: Eliana Speziale (elispez14@gmail.com)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A27

Background: Horses often suffer neurological damage due to poisonings caused by plants, feed additives, mycotoxins, herbal supplements, metal and minerals, or pesticides. In this case, a newborn colt was poisoned by a veterinary who administered an overdose (ten times the dose) of Depomycin im. (penicillin and streptomycin). The colt developed a fever, cough, and lost the ability to breathe just after birth. The colt was catatonic, could not stand in quadrupedal stance, had no suck reflex, and did not indicate a desire to live.

Materials and methods: The colt’s lung infection and drug-induced intoxication was treated for 15 days with:

- Cobactan 4.5% ev (fourth generation cephalosporin)
- Mellosyl ev (anti-inflammatory)
The colt was treated from a physical rehabilitation approach for progressive caudal-to-cranial rigidity due to progressive muscular atrophy generated by disuse and neurological damage. Atrophy caused by compression of the sciatic nerve caused medial dislocation of both patellae and hyperextension of the hind legs was also treated. The colt’s daily physical rehabilitation program followed Equiter® procedure which is a structured mix of: deep massage therapy, myofascial release, structural digitopressure, muscles release, active and passive joint and body mobilization, exercises with poles and cavaletti and free exercise.

Conclusion: Cooperation between the veterinary therapies and Equiter® Physical Therapy and Rehabilitation Program restored both proprioceptive and movement control in the 15 day old Shetland pony over approximately a two-month time frame.

Exotics

A28

Laser your dragon, stretch that gorilla, massage the tapir; applying rehabilitation techniques in a zoo setting
Harmony Frazier1, Kristin Kirkby Shaw2, Darin Collins1
1Animal Health Department, Woodland Park Zoo, Seattle, WA, USA; 2SOUND Veterinary Rehabilitation Center, Shoreline, WA, USA
Correspondence: Harmony Frazier (harmony.frazier@zoo.org)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A28

With physical rehabilitation becoming an accepted part of comprehensive care in equine and companion animals, the zoo medicine community has also recognized the potential opportunities for this set of treatment modalities, due in large part to the success of animal training to allow cooperation and interaction. Woodland Park Zoo (WPZ) began exploring the benefits of physical rehabilitation for occasional patients in the 1980s. In 2012, WPZ developed a formal physical rehabilitation pilot program with the goal of increasing offerings throughout the zoo for animals with injuries, arthritis and mobility concerns. In order to objectively identify gait disturbances and track response to treatment, as well as create a common language across zoo teams, the Mobility Assessment Scoring System (M.A.S.S) was developed and adopted by the zoo staff. Based on common canine gait analysis scores, our M.A.S.S. stresses the application potential generated by disuse and neurological damage. Atrophy caused progressive caudal-to-cranial rigidity due to progressive muscular atrophy and quality of life was threatened as he was unable to feed himself or play with conspecifics. The aim of the study was to test the use of analgesic pharmacology, physical rehabilitation methods, and acupuncture used in dogs, cats or horses on a non-human primate with physical limitations due to chronic bilateral elbow dysplasia.

Materials and methods: Long term pharmacological therapy was initiated in April 2011 followed by physical rehabilitation methods and acupuncture (Tables 1, 2, 3, 4). Daily, the animal keeper observed and recorded if the subject used his right and left arms to prehend food and, in conjunction with his prehensile tail, hang on trees and enrichment objects. If not observed, then the veterinary staff was notified. Charts for assessment of mobility, locomotion and adapted disability index were instituted (Tables 5 and 6).

Results: With maintenance therapy, the spider monkey utilized arm and hand movements daily for feeding and play. He was observed functioning happily as a member of his troop.

Conclusion: The above treatment plan allowed veterinary staff and animal keepers to create an observable improvement in the spider monkey’s chronic pain without compromising his quality of life, therefore indicating multimodal analgesics, physical rehabilitation techniques and acupuncture can be effective treatments for spider-monkeys with chronic elbow dysplasia.

References

1. KuKanich B. Outpatient oral analgesics in dogs and cats beyond non-steroidal antiinflammatory drugs: an evidence-based approach. Vet Clin North Am Small Anim Pract. 2013;43:1109–25.
2. Adkesson MJ. The role of gabapentin as an analgesic: potential applications in zoological medicine. In: Proceedings of the American Association of Zoo Veterinarians 2006; Tampa.
3. Wessellmann L, Cital SJ, Goldberg ME. Analgesia for zoo animal and wildlife practice. In: Goldberg ME Shaffran N, editors. Pain management for veterinary technicians and nurses. 1st ed. Ames, IA: John Wiley & Sons; 2015. p. 263–85.
4. Dadone L, Harrison T. Zoological applications of laser therapy. In: Riegel RJ and Godbold JC Jr., editors. Laser therapy in veterinary medicine: photobiomodulation. 1st ed. Ames, IA: John Wiley & Sons; 2017. p. 320–33.

Table 1 Pharmacologic therapy

Medication	Dosage	Administration	Frequency	Duration of therapy
Gabapentin supplied in 10/100/600 mg tablets	10–20 mg/kg	Orally mixed with food/treats	Twice daily	Until directed to stop
Glucosamine HCl 1500 mg+Chondroitin sulfate 350 mg capsule	1 capsule	Orally mixed with food/treats	Twice daily	Until directed to stop
Omega 3 fatty acids vitacaps™ capsule	0.1–0.2 mg/kg	Orally mixed with food/treats	Twice daily	Once daily
Meloxicam tablets	0.1 capsule	Orally mixed with food/treats	Once daily	1 month
Polysulfated Glycosaminoglycan (Adequan®)	4.4 mg/kg	Intramuscular injection	Twice weekly	For 4 weeks, then subcutaneously every month and adjust frequency according to patient needs
Table 2 Therapeutic laser therapy

Model	Dosage	Area covered	Frequency	Duration of therapy
Cutting edge therapeutic laser EVO™	4–8 J/cm²	Humeral condyles of both right and left limbs	Once daily for 7 days, decreased to every other day during week 2	Applied on an as-needed basis

Table 3 Physical rehabilitation therapy

Manual therapy	Massage techniques	Hand weights	Therapy/medicine balls
Passive range of motion under sedation	Effleurage and petrissage under sedation	1–2-pound weider, neoprene covered usage through mimicry	Small physioball and 2-pound medicine ball Playing catch and throwing back
Active range of motion through mimicry	1st and 2nd week only	3 times weekly for 4 weeks	3 times weekly for 4 weeks

Table 4 Acupuncture treatment for elbow pain through a certified veterinary TCVM acupuncture veterinarian

Location	Qi-blood stagnation	Kidney Yang deficiency	Kidney Yin and Qi (or Yang) deficiency	Local points elbow area
Acupuncture points	TH-10, SI-8, Zhou-shu, Yan-zhou, Cheng-deng, ST-3, LI-4, LI-1, TH-1, TH-3	Bai-hui, Jian-jiao, BL-23, BL-11, BL-40, BL-60, GB-34, GB-39	KID-3, KID-10, BL-23, BL-26, Shen-shu, Shen-peng, Shen-jiao, LI-3, SP-6, SP-9, ST-36, LI-10, and LI-11	LI-10, LI-11, LI-5, TH-10, SI-8, HT-3, Zhou-shu (elbow associate)
Bony Bi Syndrome	Combine with local points	Combine with local points	Combine with local points	

Bony Bi syndrome is a very chronic stage of Bi syndrome in which the bones, including the spine, are affected. Hip dysplasia, degenerative joint disease (DJD), spondylosis, and intervertebral disc diseases (IVDD) are part of this syndrome.

Table 5 Modified cincinnati orthopedic disability index for a non-human primate

How difficult are these activities for the nonhuman primate species in question?	(8) no problem	(7) a little	(6) quite a bit	(5) severe	(4) impossible
Walking					
Running					
Jumping					
Eating/Using Fingers					
Swinging from limb					
Groping					
Climbing					
Descending					
Posturing to urinate or defecate					

Total Score to be reported to veterinary staff:

This Scoring Sheet is to be taught to the Zoological Keepers so they may evaluate the nonhuman primates with Orthopedic Problems.

Table 6 Scoring system for assessing mobility and locomotion for non-human primate

Score	Description
1	Never displays impaired locomotion or impaired mobility
2	Infrequent slightly or mildly impaired locomotion
3	Frequent slightly or mildly impaired locomotion
4	Infrequent moderately impaired locomotion
5	Frequent moderately impaired locomotion
6	Infrequent severely impaired locomotion
7	Frequent severely impaired locomotion
8	Continuously impaired locomotion

5. Canapp S, Acciani D, Hulse D, Schulz K, Cannap D. Rehabilitation therapy for elbow disorders in dogs. Vet Surg. 2009;38:301–7.

6. Magden ER, Hailer RL, Thiele EJ, Buchl SJ, Lambeth SP, Schapiro SJ. Acupuncture as an adjunct therapy for osteoarthritis in chimpanzees (Pan troglodytes). J Am Assoc Lab Anim Sci. 2013;52:475–80.

7. Cheng K. Basic learning. In: How animals think and feel: an introduction to non-human psychology. 1st ed. Santa Barbara, CA: Greenwood Publications; 2016. p. 24–25.
and no narrowed disc spaces. The goals were to increase muscle mass, improve hind limb function, restore ambulation, and resolve the pododermatitis. Interventions included oral antibiotics (Baytril 100 mg/mL, 0.05 mL po every 24 h for 2 weeks) and anti-inflammatories (Metacam 0.5 mg/mL–0.3 mL po every 24 h) for inflammation and discomfort. PROM of both hind limbs, aquatic therapy, therapeutic laser to the sacral spine and hips (3.5 J/cm²), as well as bilateral tarsus in the area of pododermatitis (2.4 J/cm²), walking short distances, aquatic therapy (Fig. 1) and “dancing” (Fig. 2). Rehabilitation lasted 21 days for a total of 10 sessions.

Conclusion: By discharge, the subject regained full range of motion, had no discomfort in any limb (Table 1), and was able to ambulate independently. Per subjective evaluation, the subject gained muscle over his spine and hind limbs. The pododermatitis also resolved.

Trial registration: Not applicable.

References
1. U.S. Pet Ownership & Demographics Sourcebook (2012). American Veterinary Medical Association. https://www.avma.org/KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-ownership.aspx.
2. White SD, Guzman DSM, Paul-Murphy J, Hawkins MG. Skin diseases in companion guinea pigs (Cavia porcellus): a retrospective study of 293 cases seen at the Veterinary Medical Teaching Hospital, University of California at Davis (1990–2015). Vet Dermatol. 2016;27:395–e100.
3. Bumblefoot B. A comparison of clinical presentation and treatment of pododermatitis in rabbits, rodents, and birds. Vet Clin North Am Exot Anim Pract. 2013;16:715–35.

A31

Rehabilitation after strangulation injury to distal left forelimb in guinea pig
Michelle Meckelborg1, David Levine2
1Park Veterinary Centre, Sherwood Park, AB, Canada; 2Department of Physical Therapy, University of Tennessee Chattanooga, Chattanooga, TN, USA

Correspondance: Michelle Meckelborg (mam2010@shaw.ca)

Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A31

Background: There is a paucity of literature on rehabilitation in domestic guinea pigs (Cavia porcellus).

Case description: A 4 year-old neutered male guinea pig with no significant past medical history beyond being overweight (1.314 g). A blood sample was collected from the guinea pig’s left cephalic vein, and a bandage placed on the limb post-phlebotomy. The bandage was accidentally left in place for 5 days, causing a tourniquet effect to the distal limb with subsequent soft tissue necrosis (Fig. 1). The guinea pig was lame in this left forelimb (4/4), lacked sensation distal to L elbow joint, and was in 7/10 pain at initial evaluation. The objective was to prevent amputation of the guinea pig’s left forelimb.

Materials and methods: Interventions included removal of the dressing, oral antibiotics (Trimethoprim sulfa 30 mg/kg PO BID) and NSAIDs (Metacam 0.3 mg/kg PO SID), surgical debridement of necrotic tissue as needed (Figs. 2a and b, 3), daily wet-to-dry dressings until wound showed healthy granulation tissue, dry dressings with silver sulfadiazine cream every other day to promote epithelialization, laser (3 J/cm²), hydrotherapy modalities, and proprioception training. Rehabilitation spanned 12 visits.

Results: The guinea pig was able to avoid amputation and experienced a return of all sensation in the left forelimb. By the end of treatment, he exhibited 1/4 pain. Lameness also decreased to 1/4.

Conclusion: After 12 sessions of rehabilitation, amputation of the left forelimb was avoided. Lameness decreased from 4/4 to 1/4.

Trial registration: Not applicable.

References
1. Parirokh M, Dabiri S, Bahrampour A, Homayon Zadeh M, Eghbal MJ. Effect of low power laser on incisional wound healing. Iran Endod J. 2006;1:45–8.
2. Pepelow PV, Chung TY, Baxter GD. Laser photobiomodulation of wound healing: a review of experimental studies in mouse and rat animal models. Photomed Laser Surg. 2010;28:291–25.
3. Kontoes PP, Vrettou CP, Loupatatzi AN, Marayiannis KV, Foukas PG, Vlachos SP. Wound healing after laser skin resurfacing: the effect of a silver sulfadiazine-hyaluronic acid-containing cream under an occlusive dressing. J Cosmet Laser Ther. 2010;12:10–3.
A32
Functional and nonfunctional overreaching induced anxiety and adrenosomatic index alteration in Wistar rats
Henriette G. Moranza¹, Maria L. M. Almeida¹, Gabriel Conde¹, Júlia R. G. Carvalho¹, Maria I. Mataqueiro², Guilherme C. Ferraz¹
¹Department of Animal Morphology and Physiology, Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil; ²Taquaritinguense Education Institute (ITES), Taquaritinga, SP, Brazil
Correspondence: Júlia R. G. Carvalho (juliarc@hotmail.com)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A32

Background: Elite athletes are exposed to high training loads and increasingly demanding competition calendars. Increases in training intensities are performed to improve performance [1], often exceeding the physical and psychological limit. The incorrect load management is an important factor for the development of overtraining syndrome (OTS) [4], caused by an imbalance in the cycle training-recovery, resulting in performance reduction [3] in human and equines. Behavioral indicators have great sensitivity and can be an effective tool for diagnosis/prevention of nonfunctional overreaching (NFOR) and OTS. Studies with rats submitted to overtraining protocols (OP) and behavioral disorders were not found in literature. The objectives of the study were to investigate the effects of induction of functional overreaching (FOR) and NFOR on the behavior and adrenosomatic index of Wistar rats.

Materials and methods: Sixty-five rats composed four groups (SED: sedentary; SSED: semi sedentary; FOR and NFOR). Thirty-three animals underwent a 12-week OP, which was performed in a treadmill. In the first 8 weeks a daily training session was performed. In the last 4 weeks, there was an increase in training frequency (2, 3, 4 and 4 x/d) and reduction of recovery time between sessions (4, 3, 2 and 2 h). To evaluate performance, the rats were submitted to maximum performance tests (MPT). Elevated plus maze (EPM) and Open Field (OF) tests were performed at the end of the OP. Adrenosomatic index was measured. ANOVA (Repeated Measures and One-Way) and Pearson’s correlation were used for statistical analysis.

Results: FOR and NFOR started increasing performance in the MPT-2 (303.8 ± 13.8; 294.3 ± 18.9 kg.m, respectively) (Fig. 1). The NFOR group had reduced performance in MPT-7 (292.2 ± 36.4 kg.m). In OF, there was an increase in the frequency of rearing for the FOR and NFOR in relation to the SED group (F = 7.429; P = 0.006) and increase NFOR in relation to SSED (F = 7.429; P = 0.029) (Fig. 2). There was no difference in EPM. Adrenosomatic index increased for NFOR and FOR in MPT-7 in relation to the SED group (F = 7.205; P < 0.001) and a reduction of the NFOR index after MPT-9 was observed (P = 0.006), which correlated with performance in both moments (MPT-7: P = 0.03; R = -0.754; MPT-9: P = 0.004; R = 0.94) (Fig. 3). MPT-8 and 9 data were not shown.

Conclusion: FOR or NFOR conditions induced anxiety and an increase in the adrenosomatic index was observed in the NFOR group.

Trial registration: Not applicable.

Declaration: The experimental protocol was approved by the Ethics Committee of the São Paulo State University (nº 23593/15) and followed the standards care of Use of Animals.

Acknowledgements: The São Paulo Research Foundation–FAPESP (process nº 2015/26738-1) and National Council for Scientific and Technological Development–CNPq (process nº 141287/2017-9).
A33 Survival time of Staphylococcus aureus on therapeutic ultrasound heads and implications for rehabilitation

Kate L. Noonan1, Henry Spratt1, David Levine1
1Univesity of Tennessee at Chattanooga, Department of Biology, Geology, & Environmental Science, Chattanooga, TN, USA; 2University of Tennessee at Chattanooga, Department of Physical Therapy, Chattanooga, TN, USA

Correspondence: David Levine (David-Levine@utc.edu)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A33

Background: Therapeutic ultrasound (US) is commonly used for musculoskeletal injuries in companion animals [1, 2]. Both ultrasound heads and coupling gel containers are reused from patient to patient. These may serve as reservoirs for bacterial pathogens if the equipment is not disinfected between patients. It is also possible that bacteria may colonize the gel itself [3]. The purpose of this study was to determine the survivability of a potentially pathogenic bacterial species, Staphylococcus aureus on US heads. S. aureus is potentially pathogenic to animals undergoing US in a veterinary setting.

Materials and methods: Cultures of S. aureus were grown in tryptic soy broth (TSB) overnight. S. aureus was applied to sterile US heads either directly in 0.85% saline, or mixed into a matrix of organic matter (TSB: at 100%, 67%, and 33%). To test the survival of S. aureus in coupling gel, an aliquot of cells was applied directly to sterile Aquasonic gel added to US heads. After application to the heads, all mixtures were dried using filtered air. Samples from the US heads were obtained via sterile transport swabs, at 1 h, 24 h, and 72 h. These swabs were then immediately placed in a tube of sterile saline, followed by a serial dilution (Fig. 1) with plating to tryptic soy agar (TSA) plates for enumeration. These plates were incubated at 37 °C for 24 h and S. aureus colonies were counted. The method described was performed in triplicate.

Results: Suspended in 0.85% saline, S. aureus did not survive 1 h. However, when mixed into varying concentrations of TSB or into coupling gel, significant numbers of S. aureus survived at least 1 h, and when mixed with TSB, up to 72 h (Fig. 2). Significant growth in the gel was also seen at 1 h, but showed 0% growth at 24 and 72 h.

Conclusion: The findings of this study indicate that S. aureus has the potential to survive on aluminum US heads for up to 3 days when embedded in a matrix containing different concentrations of organic matter. Because US heads may come in contact with multiple animals in the course of a day, US heads must be disinfected thoroughly after use with each animal to reduce the potential of cross-contamination by bacteria such as S. aureus. The use of sterile gel may also help reduce cross contamination.

References
1. Levine D, Millis DL, Mynatt T. Effects of 3.3 MHz ultrasound on caudal thigh muscle temperature in dogs. Vet Surg. 2001;30:170–4.
2. Steiss JE, Adams CC. Effect of coat on rate of temperature increase in muscle during ultrasound treatment of dogs. Am J Vet Res. 1999;60:76–80.
3. Odner T, Itok Y, Itok K. Ultrasound instruments as possible vector of staphylococcal infection. J Hosp Infect. 1998;40:73–7.

A34 Immunoexpression analysis (IL-1β, IL-10 and Col II) of an experimental model of osteoarthritis in rats treated with photobiomodulation in association to chondroitin sulfate and glucosamine sulfate

Marcella Sanches1, Lívia Assis1,2, Cyntia Criniti1, Danilo Fernandes1, Carla Tim1,2, Ana Claudia Muniz Renno1
1Department of Biosciences, Federal University of São Paulo, R. Silva Jardim, 136, Vila Mathias, Santos, SP, Brazil; 2Department of Biomedical Engineering, Brazil University, São Paulo, Brazil

Correspondence: Marcella Sanches (marcellasanches@gmail.com)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A34

Fig. 2 Rearing frequency in the Open field test. Data presented as mean ± SE. *Indicates increase in the rearing frequency in relation to group Sedentary (P < 0.05). †Indicates increase in relation to the Semi-sedentary group. Sedentary (n = 8); Semi-sedentary (n = 8); FOR: functional overreaching (n = 11); NFOR: nonfunctional overreaching (n = 6).

Fig. 3 Adrenosomatic index. SED: sedentary group; SSED: semi-sedentary group; FOR: functional overreaching; NFOR: nonfunctional overreaching. In MPT-7: SED, n = 8; SSED = 8; FOR, n = 8; NFOR, n = 8. In MPT-9: SED, n = 8; SSED = 8; FOR, n = 11; NFOR, n = 6. *Indicates an increase in relation to group SED in MPT-7 by the Holm-Sidak test (P < 0.05). †Indicates a decrease of the NFOR group in MPT-9 relative to himself in MPT-7 by the t-test (P < 0.05). Data presented as mean ± SE.
Background: Osteoarthritis (OA) is a degenerative joint disease prevalent in the elderly animals and is very frequent in the knee joint. Currently, the therapeutic potential of photobiomodulation (FBM) and chondroprotectors, such as the glucosamine and chondroitin sulfates, is highlighted in the treatment of degenerative diseases affecting the joint cartilage [1, 2]. However, there is no evidence of concomitant use of these treatments and what the possible interaction between them. Thus, the hypothesis supported was that the association of glucosamine and chondroitin sulfates to FBM may constitute a more effective therapeutic intervention to reduce inflammation in the joint cartilage associated with OA. In this way, the aim of this study was to compare the effects of combined treatment with chondroitin sulfate and glucosamine sulfate (CS/Gl) and photobiomodulation (PBM) on the degenerative process related to osteoarthritis (OA) in the articular cartilage in rats.

Materials and methods: Forty male Wistar rats were randomly divided into four groups: OA control group (CG); OA animals submitted to PBM treatment (PBM); OA animals submitted to CS/Gl treatment (CS/Gl); OA submitted to CS/Gl associated with PBM treatments (CS/Gl + PBM). The CS/Gl started 48 h after the surgery, and they were performed for 29 consecutive days. Moreover, PBM was performed after the CS/Gl administration on the left joint. Immunoexpression of interleukin 10 (IL-10) and 1 beta (IL-1β) and collagen type II (Col II) of the articular cartilage were evaluated.

Results: The results showed that CS/Gl + PBM decreased IL-1β protein expression (P = 0.0359) (Fig. 1), increased IL-10 (P = 0.028) (Fig. 2) and Col II imunoexpression (P = 0.0204) (Fig. 3) compared to CG.

Conclusion: This study showed that CS/Gl associated with PBM was effective in modulating inflammatory process and preventing the articular tissue degradation in the knees OA rats.

References
1. Bublitz C, Medalha C, Oliveira P, Assis L, Milares LP, Fernandes KR, et al. Low-level laser therapy prevents degenerative morphological changes in an experimental model of anterior cruciate ligament transaction in rats. Lasers Med Sci. 2014;29:1669–78.
2. Henrotin Y, Lambert C. Chondroitin and glucosamine in the management of osteoarthritis: an update. Curr Rheumatol Rep. 2003;5:361.
Catheter placement can lead to regional pain and temporary changes in gait. Although no overt lameness was detected, the decrease in stride length could be the result of muscle soreness that could affect mobility, safety, and performance of working dogs.

Acknowledgements: Funded in part by the Department of Homeland Security (HSHQDC-17-P-00112) and the U.S. Army Medical Research Institute of Chemical Defense (CRADA).

A36

Pharmacokinetics, safety, and clinical efficacy of cannabidiol treatment in osteoarthritic dogs

Lauren Jo Gamble1, Jordyn Boesch1, Christopher Frye1, Wayne Schwark1, Sabine Mann1, Lisa Wolfe1, Holly Brown2, Erin Berthelsen1, Joseph Waksilag1

1Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA; 2Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY, USA; 3Department of Population Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY, USA; 4Proteomic and Metabolomic Facility, Colorado State University, Fort Collins, CO, 80521, USA; 5Metzger Animal Hospital, State College, PA, USA

Correspondence: Joseph Waksilag (jw37@cornell.edu)
Acta Veterinaria Scandinavica 2019, 61(Suppl 1):A36

Background: Evidence for efficacy of cannabidiol (CBD) in lower vertebrates suggests potential immunomodulatory[1], anti-hyperalgesic [2, 3], anti-inflammatory [6, 7], and anti-inflammatory [6, 7], actions, making it an attractive therapeutic option in dogs with osteoarthritis (OA), yet minimal scientific evidence regarding safe and effective oral dosing exists. The objectives of this study were to determine basic oral pharmacokinetics, and assess safety and analgesic efficacy of a CBD based oil in dogs with OA.

Materials and methods: Single-dose pharmacokinetics was performed using two different doses of CBD enriched (2 mg/kg and 8 mg/kg) oil. Thereafter, a randomized placebo-controlled, double-blinded, crossover study was conducted. Dogs received each of two treatments: CBD oil (2 mg/kg) or placebo oil every 12 h. Each treatment lasted for 4 weeks with a 2-week washout period. Baseline veterinary assessment and owner questionnaires were completed before initiating each treatment and at weeks 2 and 4. Hematology, serum chemistry and physical examinations were performed at each visit. A mixed model analysis of variance was utilized for all variables with a P value of <0.05 deemed significant.

Results: Pharmacokinetics revealed an elimination half-life of 4.2 h at both doses and no observable side effects. Clinically, Canine Brief Pain Inventory and Hudson activity scores showed a significant decrease in pain and increase in activity (P<0.001) with CBD oil. Veterinary assessment showed decreased pain during CBD treatment (P<0.02). No side effects were reported by owners, however serum chemistry showed an increase in alkaline phosphatase during CBD treatment (P=0.005).

Conclusion: This pharmacokinetic and clinical study suggests that CBD may help increase comfort and activity in dogs with OA. The efficacy of this particular CBD product may not translate to other available products due to differing cannabinoid concentrations in this largely unregulated market.

Acknowledgements: ElleVet Sciences supported this research with a grant to Cornell University.

References
1. Sacerdote P, Martucci C, Vaccani A, Bariselli F, Panerai AE, Colombo A, et al. The nonpsychoactive component of marijuana cannabidiol modulates chemotaxis and IL-10 and IL-12 production of murine macrophages both in vivo and in vitro. J Neuroimmunol. 2005;159:97–105.
2. Costa B, Giagnoni G, Franke C, Trovato AE, Colleoni M. Vanilloid TRPV1 receptor mediates the antihyperalgesic effect of the nonpsychoactive cannabinoid, cannabidiol, in a rat model of acute inflammation. Br J Pharmacol. 2004;143:247–50.
3. Comelli F, Giagnoni G, Bettoni I, Colleoni M, Costa B. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytother Res. 2008;22:1017–24.
4. Shiu SJ, Peng HY, Lin CR, Wang SW, Rau RH, Cheng JK. Continuous intrathecal infusion of cannabinoid receptor agonists attenuates nerve ligation–induced pain in rats. Reg Anesth Pain Med. 2017;42:499–506.
5. Cui JH, Kim WM, Lee HG, Kim YO, Kim CM, Yoon MH. Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212-2 in a rat bone tumor pain model. Neurosci Lett. 2011;493:67–71.
6. Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3:771–84.
7. Malfait AM, Galilily R, Sumanarwalla PF, Malik AS, Andreakos E, Mechoulam R, et al. The nonpsychoactive cannabis constituent cannabidiol is an oral...
A37
Comparison of post-exercise cooling methods for dogs
Michael Scott Davis1, Denis J. Marcellin-Little2, Elizabeth O’Connor1
1 Department of Physiological Sciences; 2 Center for Veterinary Health Sciences, Oklahoma State University-Stillwater, OK, USA
Correspondence: Michael Scott Davis (michael.davis@okstate.edu)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1):A37

Athletic dogs possess the capacity to produce large amounts of metabolic heat during exercise, but have a poor capacity for dissipation of that heat compared to other athletic mammals. As a result, overheating and heat related injury is a major cause of exercise-related morbidity in dogs. The objective of this study was to evaluate the relative efficacy of three post-exercise cooling methods in dogs with exercise-induced heat stress. Nine athletic-condtioned dogs were exercised at 10 km/h for 15 min on a treadmill in an environmental chamber at 30 °C three times on separate days. The dogs were cooled using one of three methods: Control cooling (consisting of resting in front of a fan), cooling on a 4 °C cooling mat, and partial immersion in a 30 °C water bath for 5 min. Ambient temperature during cooling was 30 °C, and dog temperature was recorded every 2 min using a radiotelemetry gastrointestinal capsule. Time-weighted heat stress (AUC of the temperature x time curve) was lower for immersion cooling compared to cooling mat and control. The mean duration required to lower gastrointestinal temperature to 39 °C was 16 min for immersion cooling, 36 min for cooling mat, and 48 min for control cooling. Immersion into a water bath decreases post-exercise time-weighted heat stress in dogs and provided the most rapid cooling of the three methods evaluated, even if the water temperature is relatively warm. The cooling mat was superior to cooling using only air movement, but not as effective as immersion.

A38
Tissue heating and cooling properties of a contrast therapy device applied to the equine distal limb
Kevin Haussler, Shana Wolfer, Wayne McLlvraith
Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
Correspondence: Kevin Haussler (Kevin.Haussler@ColoState.edu)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1):A38

Rehabilitation of tendon injuries often involves the application of cold therapy and heating is occasionally done to help increase collagen extensibility in fibrotic tissues. The application of alternating cold and hot (contrast therapy) is widely used in humans; however, its utility in equine rehabilitation is largely unknown. The objectives of this study were to evaluate the time–temperature profiles during 15 min heating/cooling cycles using an automated contrast therapy device, assess if the equipment could achieve therapeutic temperatures (<15 °C and >40 °C) surrounding the flexors tendons, and determine the effect of the sequence of therapy (i.e. hot–cold–hot versus cold–hot–cold). It was hypothesized that the superficial tissue structures would reach therapeutic temperatures during both heating and cooling cycles. Four adult horses with no diagnosed tendinopathies were used. Fine-wire temperature probes were placed on the skin and implanted in 3 locations within the metacarpus in both forelimbs: subcutaneously and deep to the superficial (SDFT) and deep digital flexor tendons (DDFT). Data was captured at 15 s intervals over 7 hot–cold cycles. Minimum and maximum temperatures, slopes and areas under the time–temperature curve were calculated. The applied contrast therapy was consistently able to apply therapeutic cold and heat to tissues superficial to the DDFT, as hypothesized. Temperatures deep to the DDFT were inconsistent, depending on the horse and the treatment cycle. These results help define the physiologic responses of combined tissue heating and cooling within the equine distal limb. Future studies are needed to define treatment protocols for optimal rehabilitation of distal limb injuries in horses.

Acknowledgements: Research funding was provided by the Equine Orthopaedic Research Fund. Student support was provided by the USDA Fellowship-USDA-NIFA Animal Health & Disease Research Program. Equipment was donated by Cascade Wellness.

References
1. Kaneps AJ. Tissue temperature response to hot and cold therapy in the metacarpal region of a horse. Proc Amer Assoc Equine Pract. 2000;46:208–213.
2. van Eps AW, Orsini JA. A comparison of seven methods for continuous therapeutic cooling of the equine digit. Equine Vet J. 2016;48:120–4.
3. van Eps AW, Pollitt CC, Underwood C, Medina-Torres CE, Goodwin WA, Bellnap JK. Continuous digital hyperthermia initiated after the onset of lameness prevents lamellar failure in the oligofructose laminitis model. Equine Vet J. 2014;46:625–30.
4. Bleakley CM, Costello JT. Do thermal agents affect range of movement and mechanical properties in soft tissues? A systematic review. Arch Phys Med Rehabil. 2012;94:149–63.
5. Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med. 2013;43:1101–30.
6. Menetrier A, Mourtot L, Degano B, Bouhaddi M, Walther G, Regnard J, et al. Effects of three postexercise recovery treatments on femoral artery blood flow kinetics. J Sports Med Phys Fitness. 2015;55:258–66.

A39
The use of venography with inclusion of the 60° dorsoproximal-palmarodistal oblique radiographic projection to evaluate perfusion in non-laminitic equine digit pathology
Kimberly Trolinger-Meadows1, Alison Morton2, Taralyn McCarrel1, Erin Gordon-Porter1, Vern Dryden3
1 Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA; 2 Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA; 3 Bur Oak Veterinary and Podiatry Services, Lexington, KY, USA
Correspondence: Kimberly Trolinger-Meadows (kmeadows@ufl.edu)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1):A39

Background: Radiography is routinely used to diagnose laminitic and non-laminitic conditions within the equine digit. To evaluate vascular disturbance, digital venography, including lateromedial and 0°-dorsopalmar projections, has been described for evaluation of horses with laminitis [1–8]. Digital venography has not been widely described in non-laminitic disease, nor has the use of additional projections for more complete evaluation of digital vasculature [7, 8]. The purposes of this study were to describe use of digital venography, including the lateromedial, 0°-dorsopalmar, and 60°-dorsoproximal-palmarodistal oblique projections, for evaluation of vascular disturbances in the digit of horses with non-laminitic disease of the digit; and to describe the use of the 60°-dorsoproximal-palmarodistal oblique projection with digital venography in normal equine digits.

Materials and methods: Medical records over a three-year period were reviewed to identify patients that had radiographic digital venography performed including lateromedial, 0°-dorsopalmar, and 60°-dorsoproximal-palmarodistal oblique projections for non-laminitic conditions of the digit. Radiographs were made prior to and following digital venography. Radiographic and venographic abnormalities were evaluated and compared to radiographic and venographic findings of five horses without disease of the digit. Normal venography was described on the 60°-dorsoproximal-palmarodistal oblique projections made from the control horses.

Results: Regions of altered perfusion were identified in five of eight horses with disease of the digit. The inclusion of the 60°-dorsoproximal-palmarodistal oblique projection allowed for more accurate localization of vascular disturbances of the digit.
Conclusion: Digital venography including the 60°-dorsoproximal-palmarodistal oblique projection should be considered for evaluation of vascular disturbance in horses with disease of the digit.

References
1. Lyle BE. Venography as a tool for guiding surgery to the foot. In: Floyd AD, Mansmann RA, editors. Equine podiatry. St Louis (MO): Saunders; 2007. p. 284–93.
2. Redding WR, O’Grady, SE. Nonseptic diseases associated with the hoof complex. Vet Clin North Am Equine Pract. 2012;28:407–21.
3. Rosenstein DS, Bowker RM, Bartlett PC. Digital angiography of the feet of horses. Am J Vet Res. 2000;61:255–9.
4. Redden R. A technique for performing digital venography in the standing horse. Equine Vet Educ. 2001;13:128–34.
5. Baldvin GI, Pollitt CC. Progression of venographic changes after experimentally induced laminitis. Vet Clin North Am Equine Pract. 2010;26:133–40.
6. D’Apre L, Bernardini D. Digital venography in horses and its clinical application in Europe. Vet Clin North Am Equine Pract. 2010;26:339–59.
7. Rucker A. Equine venography and its clinical application in North America. Vet Clin North Am Equine Pract. 2010;26:167–77.
8. Rucker A. Clinical applications of digital venography. J Equine Vet Sci. 2010;30:491–503.

A40
Clinical efficacy and mechanisms of action of a 2.5% polyacrylamide hydrogel in the treatment of osteoarthritis
Azz Tnibar1, Hans Schougaard2, Linus Camitz3, Jonas Rasmussen4, Marc Koene5, Werner Jahn6, Bo Markussen7, Ann B. Persson1, Henrik E. Jensen5
1Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 2Nør¬lund Hestehospital, Them, Denmark; 3Kasernens Hesteklinik, Næstved, Denmark; 4Heigärd Hestehospital, Morud, Denmark; 5Tierärztliche Klinik für Pferde, Lusche, Germany; 6Pferdeklinik Bartgeheide, Bartgeheide, Germany; 7Laboratory of Applied Statistics, Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark; 8Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Correspondence: Azz Tnibar (atztnibar@gmail.com)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1):A40

Background: Polyacrylamide hydrogel (PAAG) was recently used to successfully treat osteoarthritis (OA) in horses; however no long-term field study was performed. We hypothesized that lameness scores would improve significantly in OA joints after treatment with PAAG, and that PAAG has a lasting effect. Another objective was to describe the preliminary observations of the mechanisms of action of a PAAG in OA joints.

Materials and methods: Forty-three horses with OA in one joint were included in this study [1]. Horses were injected with 2 ml of PAAG into the affected joint and were followed up at 1, 3, 6, 12 and 24 months. Efficacy of PAAG was evaluated by blinded clinical assessment of lameness [1]. For the mechanisms of action of PAAG in OA joints, a randomized controlled study was conducted on an OA knee model in goats: treatment group (intraarticular PAAG), control group (intraarticular saline) [2, 3]. Evaluation of a polyacrylamide hydrogel in the treatment of induced osteoarthritis in a goat model: a randomized controlled pilot study. Osteoarth Cartil. 2014;22:477.

Results: At 1, 3, 6, 12 and 24 months follow-up, 59%, 69%, 79%, 81% and 82.5% of horses were non-lame respectively [1]. There was a significant decrease in lameness grade from baseline to 1, 3, 6, 12 and 24 months [1]. For the mechanisms of action, MRI showed reduction followed by stabilization of OA lesions after PAAG treatment [2, 3]. Histopathology showed that intraarticular PAAG injection added to the thickness of the synovial membrane; PAAG was integrated into the synovial membrane [2, 3]. Nerve endings were intact with normal morphology and numbers [2, 3]. Joint capsule elasticity investigation showed that treated knees had a higher elasticity when compared to control knees [2, 3].

Conclusion: PAAG significantly alleviated lameness in OA joints. No adverse effects were observed [1]. PAAG induced a significant decrease in joint effusion in OA joints. PAAG is a promising, lasting and safe new treatment for OA in horses.

Preliminary observations of the mechanisms of action of PAAG on OA joints were: 1. Pathology and joint capsule elasticity suggest that PAAG by acting on synovial membrane may reduce overall joint capsule stiffness, a major source of pain in OA. 2. MRI and pathology revealed stabilization of OA lesions in PAAG treated goats, possibly caused by the high viscosupplementation of PAAG.

Trial registration Danish Council for Animal Experimentation: 2010/561-1890 and 2011/561-2021.

References
1. Tnibar A, Schougaard H, Camitz L, Rasmussen J, Koene M, Jahn W, et al. An international multi-centre prospective study on the efficacy of an intraarticular polyacrylamide hydrogel in horses with osteoarthritis: a 24 months follow-up. Acta Vet Scand. 2015;57:20–7.
2. Tnibar A, Persson AB, Nielsen H, Svalastoga E, Westrup U, McEvoy F, et al. Evaluation of a polyacrylamide hydrogel in the treatment of induced osteoarthritis in a goat model: a randomized controlled pilot study. Osteoarth Cartil. 2014;22:477.
3. Tnibar A, Persson AB, Jensen HE. Mechanisms of action of an intraarticular 2.5% polyacrylamide hydrogel (Arthramid Vet) in a goat model of osteoarthritis: preliminary observations. SM J Biomed Eng. 2017; 3:1022

American Association of Rehabilitation Veterinarians (AARV)

A41
A survey of risk factors for digit injuries among dogs training and competing in agility events
Debra C. Sellon1, Katherine Martucci1, John R. Wenz1, Denis J. Marcellin-Little2, Michelle Powers4, Kimberley L. Cullen1
1Department of Veterinary Clinical Sciences College of Veterinary Medicine Washington State University, Pullman, WA, USA; 2Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA; 3Massachusetts Veterinary Referral Hospital, Woburn, MA, USA; 4Institute for Work and Health Toronto, ON, Canada
Correspondence: Michelle Powers (mpowers@ethosvet.com)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1):A41

Background: Agility dog competitions have consistently increased over the last 20 years; currently over a million dogs per year participate in agility events [1]. According to results of a prior international survey of 3801 dogs, handlers indicated that approximately one-third of agility dogs experienced at least 1 injury during their competitive career [2, 3, 4, 5]. The most commonly reported sites of injury in affected dogs are the shoulders, back, neck, and digits. Injuries to the digits or paws have been estimated to represent 13% to 24% of total injuries in agility dogs [2–4]. In training and competing for agility events, specific tasks such as going over an A-frame contact obstacle have been found to be significantly associated with digit injuries [4]. However, other risk factors for injury in this population of sporting dogs are currently unknown. Therefore, the objectives of the study were to investigate potential risk factors for agility-related digit injuries in agility dogs and to characterize these injuries when present.

Materials and methods: Two retrospective electronic surveys were used to identify potential risk factors for digit injuries in dogs participating in agility. Surveys were distributed through social media sites and email lists related to canine agility. Variables evaluated included demographic information for handlers and dogs, physical characteristics of dogs, and descriptions of the type and possible causes of injury. Data were analyzed for association of individual variables with digit trauma. Multivariable logistic regression was used to develop a model of relevant risk factors.
Results: Data were collected from 207 handlers of agility dogs with digit injuries and 874 handlers of agility dogs without digit injuries. Factors associated with increased odds of injury included Border Collie breed (OR, 2.3), medium to long nails (OR, 2.3), absence of front dewclaws (OR, 1.9), and greater weight to height ratio (OR, 3.9). Odds of injury decreased with increasing age of the dog (OR, 0.8).

Conclusion: Several factors were associated with increased risk of digit injury in agility dogs suggesting that agility dogs should not have healthy dewclaws removed, should maintain lean body mass, and should have nails trimmed short for training and competition. Future biomechanical research and prospective clinical studies are important to confirm training and environmental recommendations to decrease risks of injury.

References
1. Agility: Annual and mid-year statistics. End-of-year MACH totals for 2014–2015. American Kennel Club. http://www.akc.org/events/agility/statistics/.
2. Cullen KL, Dickey JP, Bent LR, Thomson JI, Moens NM. Internet-based survey of the nature and perceived causes of injury to dogs participating in agility training and competition events. J Am Vet Med Assoc. 2013;243:1010–8.
3. Kerr Zy, Fields S, Comstock RD. Epidemiology of injury among handlers and dogs competing in the sport of agility. J Phys Act Health. 2014;11:1032–40.
4. Levy M, Hall C, Trentacosta N, Percival M. A preliminary retrospective survey of injuries occurring in dogs participating in canine agility. Vet Comp Orthop Traumatol. 2009;22:321–4.
5. Fowler D. Distal limb and paw injuries. Vet Clin North Am Small Anim Pract. 2006;36:819–45.
6. Cullen KL, Dickey JP, Bent LR, Thomson JI, Moens NM. Survey-based analysis of risk factors for injury among dogs participating in agility training and competition events. J Am Vet Med Assoc. 2013;243:1019–24.

A42 How weight shifting affects load in canine rehabilitation exercises: a pilot study
Leslie Eide
Sound Veterinary Rehabilitation Center, Seattle, WA, USA
Correspondence: Leslie Eide (drlleslie@animalsurgical.com)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1): A42

Background: Therapeutic exercise plays an important role in injury and surgical recovery [1]. Weight-bearing activities and isometric strengthening are key principles in an exercise program. As the body adapts to this exercise, changes must be made to the exercise to increase the stress placed on the muscle for continued strengthening. Changes in variables are used to regress or progress exercise such as: the number of repetitions, resistance, load, and other possible variables. Load is defined as a weight or source of pressure borne by the body. In human exercise programs, weights and variables. Load is defined as a weight or source of pressure borne by the body. In human exercise programs, weights and variable...

Materials and methods: The purpose of this study is to determine the height of the carpus does not significantly change to the load to the pelvic limbs, while raising to the height of the elbow does significantly change the load to the pelvic limbs. Conclusion: Weight-shifting can be used to increase load on specific limbs. When increasing load to the pelvic limbs, thoracic limbs must be raised to the level of the elbows for a significant weight shift to occur.

References
1. Phelps HA, Ramos V, Shires PK, Were SR. The effect of measurement method on static weight distribution to all legs dogs using the quadruped biofeedback system. Vet Comp Ortho Traumatol. 2007;20:108–12.
2. Cole GI, Mills D. The effect of limb amputation on standing weight distribution in the remaining three limbs in dogs. Vet Comp Ortho Traumatol. 2017;30:59–61.
3. Delorme TL. Restoration of muscle power by heavy-resistance exercises. J Bone Joint Surg. 1945;27:645.

A43 Retrospective analysis of two different doses of photobiomodulation combined with rehabilitation therapy as a therapeutic protocol for canine degenerative myelopathy
Lisa A. Miller1, Debbee (Gross) Torraca2, Luis De Taboada 3 1,2Companion Animal Health, LiteCure LLC, Newark, DE, USA; 3Wizard of Paws Physical Rehabilitation for Animals, Colchester, CT, USA
Correspondence: Luis De Taboada (luisd@litecure.com)
Acta Veterinaria Scandinavica 2019, 61 (Suppl 1): A43

Background: Canine degenerative myelopathy (DM) is a progressive neurodegenerative disease for which there exists a dearth of effective treatments as well as published historical data sets on disease progression or survival from the time of symptom onset (Sym Onset). Clinicians usually pursue symptom palliation using novel therapies alone or in combination with physiotherapy. The objective of this study was to retrospectively examine the impact that adding photobiomodulation therapy (PBMt) to intensive rehabilitation therapy had on the progression of clinical signs of DM on patients treated at a single specialty rehabilitation facility.

Materials and methods: Clinical records of dogs referred to the facility with DM symptoms between 2003 and 2012 were screened for patients meeting prospectively identified inclusion and exclusion criteria. Patients meeting criteria (n = 20) were divided into two groups, based on the PBMt dose used: a low dose (LD) group (n = 6) and high dose (HD) group (n = 14). Items related to demographics, diagnostics, rehabilitation protocols, and time of progression of clinical signs from onset of symptoms (Sym Onset) to non-ambulatory paresis (NAP) or paralysis, and to euthanasia, were collected. Data was analyzed to determine differences in outcomes between the HD and LD groups, and historical expectations as given by previous published studies.

Results: The mean time between the Sym Onset and NAP was 8.79 ± 1.60 months (mean ± SD) in the LD group, and 31.76 ± 12.53 months in the HD group. The difference was significant (P < 0.05). The mean time between Sym Onset and time of euthanasia was 11.09 ± 2.68 months in the LD group, and 38.2 ± 14.67 months in the HD group. The difference was significant (P < 0.05). Kaplan–Meier survival analysis was used to compare time from Sym Onset to NAP for the LD and HD groups, and a singular historical published study with sufficient data, showed that the time from Sym Onset to NAP for the HD group was significantly longer than the LD group (P < 0.05) or the historical group (P < 0.05). The authors acknowledge the limitations of a retrospective review.

Conclusion: The data reviewed shows a significant difference in progression from Sym Onset to NAP and to time of euthanasia between these two PBMt dosage groups and is suggestive of a similar difference between the HD group and reviewed historical data. Further studies are warranted.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.