Palliative radiotherapy indications during the COVID-19 pandemic and in future complex logistic settings: the NORMALITY model

Francesco Cellini1,2 · Rossella Di Franco3 · Stefania Manfrida1 · Valentina Borzillo3 · Ernesto Maranzano4,5 · Stefano Pergolizzi6 · Alessio Giuseppe Morganti7,8 · Vincenzo Fusco9 · Francesco Deodato2,10 · Mario Santarelli11 · Fabio Arcidiacono12 · Romina Rossi13 · Sara Reina1 · Anna Merlotti14 · Barbara Alicja Jereczek-Fossa15,16 · Angelo Tozzi17 · Giambattista Siepe7 · Alberto Cacciola6 · Elvio Russi14 · Maria Antonietta Gambacorta1,2 · Marta Scorsetti18,19 · Umberto Ricardi20 · Renzo Corvò21,22 · Vittorio Donato23 · Paolo Muto3 · Vincenzo Valentini1,2

Received: 17 May 2021 / Accepted: 30 August 2021 / Published online: 27 September 2021 © The Author(s) 2021

Abstract
Introduction The COVID-19 pandemic has challenged healthcare systems worldwide over the last few months, and it continues to do so. Although some restrictions are being removed, it is not certain when the pandemic is going to be definitively over. Pandemics can be seen as a highly complex logistic scenario. From this perspective, some of the indications provided for palliative radiotherapy (PRT) during the COVID-19 pandemic could be maintained in the future in settings that limit the possibility of patients achieving symptom relief by radiotherapy.

This paper has two aims: (1) to provide a summary of the indications for PRT during the COVID-19 pandemic; since some indications can differ slightly, and to avoid any possible contradictions, an expert panel composed of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) and the Palliative Care and Supportive Therapies Working Group (AIRO-palliative) voted by consensus on the summary; (2) to introduce a clinical care model for PRT [endorsed by AIRO and by a spontaneous Italian collaborative network for PRT named “La Rete del Sollievo” (“The Net of Relief”)]. The proposed model, denoted “No cOmpRoMise on quality of life by pALliative radiotherapy” (NORMALITY), is based on an AIRO-palliative consensus-based list of clinical indications for PRT and on practical suggestions regarding the management of patients potentially suitable for PRT but dealing with highly complex logistics scenarios (similar to the ongoing logistics limits due to COVID-19).

Material and Methods First, a summary of the available literature guidelines for PRT published during the COVID-19 pandemic was prepared. A systematic literature search based on the PRISMA approach was performed to retrieve the available literature reporting guideline indications fully or partially focused on PRT. Tables reporting each addressed clinical presentation and respective literature indications were prepared and distributed into two main groups: palliative emergencies and palliative non-emergencies. These summaries were voted in by consensus by selected members of the AIRO and AIRO-palliative panels. Second, based on the summary for palliative indications during the COVID-19 pandemic, a clinical care model to facilitate recruitment and delivery of PRT to patients in complex logistic scenarios was proposed. The summary tables were critically integrated and shuffled according to clinical presentations and then voted on in a second consensus round. Along with the adapted guideline indications, some methods of performing the first triage of patients and facilitating a teleconsultation preliminary to the first in-person visit were developed.

Results After the revision of 161 documents, 13 papers were selected for analysis. From the papers, 19 clinical presentation items were collected; in total, 61 question items were extracted and voted on (i.e., for each presentation, more than one indication was provided from the literature). Two tables summarizing the PRT indications during the COVID-19 pandemic available from the literature (PRT COVID-19 summary tables) were developed: palliative emergencies and palliative non-emergencies. The consensus of the vote by the AIRO panel for the PRT COVID-19 summary was reached. The PRT COVID-19 summary tables for palliative emergencies and palliative non-emergencies were adapted for clinical presentations possibly associated with patients in complex clinical scenarios other than the COVID-19 pandemic. The two new indication tables (i.e., “Normality model of PRT indications”) for both palliative emergencies and palliative non-emergencies were

Extended author information available on the last page of the article
ongoing [1, 2]. Although some restrictions have been removed depending on the country, it is not certain when the pandemic is going to be over for certain. Radiation oncologists (ROs) will be forced to face the pandemic for an unknown time interval. Two main approaches have been adopted to control COVID-19: suppression and mitigation, the latter being the most frequently adopted [3]. The mitigation approach imposes the need for indications for how and when to delay or omit radiotherapy (RT). Alternatively, hypofractionated RT schedules, which adequately manage different clinical settings, have been proposed to reduce the number of interactions and physical contact in hospitals (for both patients and patients) while delivering effective treatments [4–7].

National and international guidelines and expert opinions about RT indications and prescriptions have been provided for primary malignancies (e.g., head and neck [6] or gastrointestinal [7]). More often, palliative RT (PRT) indications during the COVID-19 pandemic scenario are dealt with using reports focused on primary malignancies. To the best of our knowledge, very few guidelines have been specifically dedicated to PRT, and in some cases, these are limited to particularly relevant palliative presentations (e.g., bone metastases [8]). Although the level of priority of PRT has frequently been the object of discussion [3, 9–11], it remains one of the primary aims of RT. Once the COVID-19 pandemic has concluded, many of the RT indications currently modified due to pandemic issues could not be further considered for most primary tumors. Conversely, in some situations (e.g., patients admitted in hospice; patients living at high distance from an RT department; less-resourced developing countries), the issue of patients suitable for PRT but dealing with complex logistic settings and thus subject to limitations in their possibility to achieve symptom relief by PRT will surely persist. Therefore, some of the indications provided for PRT during the COVID-19 pandemic could be safely and effectively maintained in these peculiar settings (since they are currently clinically accepted).

This paper has two aims: (1) to provide a summary of the indications for PRT during the COVID-19 period. Since some published guidelines are slightly different, in order to harmonize the suggestions, an expert panel composed of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) and the Palliative Care and Supportive Therapies Working Group (AIRO-palliative) voted by consensus on the summary. (2) To introduce a clinical care model for PRT [endorsed by AIRO and by a spontaneous Italian collaborative network for PRT named “La Rete del Sollievo” (“The Net of Relief”)]. The proposed model, denoted “No cOmpRoMise on quality of life by pALliative radIoTherapy” (NORMALITY), is based on an AIRO-palliative consensus-based list of clinical indications for PRT and on practical suggestions regarding the management of patients potentially suitable for PRT but dealing with highly complex logistics scenarios (similar to the ongoing logistics limits due to COVID-19).

Introduction

The COVID-19 pandemic has challenged healthcare systems worldwide over the last few months, and this is still ongoing [1, 2]. Although some restrictions have been removed depending on the country, it is not certain when the pandemic is going to be over for certain. Radiation oncologists (ROs) will be forced to face the pandemic for an unknown time interval. Two main approaches have been adopted to control COVID-19: suppression and mitigation, the latter being the most frequently adopted [3]. The mitigation approach imposes the need for indications for how and when to delay or omit radiotherapy (RT). Alternatively, hypofractionated RT schedules, which adequately manage different clinical settings, have been proposed to reduce the number of interactions and physical contact in hospitals (for both patients and patients) while delivering effective treatments [4–7].

National and international guidelines and expert opinions about RT indications and prescriptions have been provided for primary malignancies (e.g., head and neck [6] or gastrointestinal [7]). More often, palliative RT (PRT) indications during the COVID-19 pandemic scenario are dealt with using reports focused on primary malignancies. To the best of our knowledge, very few guidelines have been specifically dedicated to PRT, and in some cases, these are limited to particularly relevant palliative presentations (e.g., bone metastases [8]). Although the level of priority of PRT has frequently been the object of discussion [3, 9–11], it remains one of the primary aims of RT. Once the COVID-19 pandemic has concluded, many of the RT indications currently modified due to pandemic issues could not be further considered for most primary tumors. Conversely, in some situations (e.g., patients admitted in hospice; patients living at high distance from an RT department; less-resourced developing countries), the issue of patients suitable for PRT but dealing with complex logistic settings and thus subject to limitations in their possibility to achieve symptom relief by PRT will surely persist. Therefore, some of the indications provided for PRT during the COVID-19 pandemic could be safely and effectively maintained in these peculiar settings (since they are currently clinically accepted).

This paper has two aims: (1) to provide a summary of the indications for PRT during the COVID-19 period. Since some published guidelines are slightly different, in order to harmonize the suggestions, an expert panel composed of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) and the Palliative Care and Supportive Therapies Working Group (AIRO-palliative) voted by consensus on the summary. (2) To introduce a clinical care model for PRT [endorsed by AIRO and by a spontaneous Italian collaborative network for PRT named “La Rete del Sollievo” (“The Net of Relief”)]. The proposed model, denoted “No cOmpRoMise on quality of life by pALliative radIoTherapy” (NORMALITY), is based on an AIRO-palliative consensus-based list of clinical indications for PRT and on practical suggestions regarding the management of patients potentially suitable for PRT but dealing with highly complex logistics scenarios (similar to the ongoing logistics limits due to COVID-19).

Material and methods

The two aims of this project were handled separately and progressively. The first aim (1) was to summarize the PRT clinical indications during the COVID-19 pandemic from the available RT literature. In particular, we aimed to (1.1) provide a summary (PRT COVID-19 summary) of the indications and guidelines for PRT during the COVID-19 period and to (1.2) have the AIRO expert team group vote by consensus on the PRT COVID-19 summary.

Our second (2) aim was to create the NORMALITY clinical care model (“No cOmpRoMise on quality of life by pALliative radIoTherapy”). In particular, we aimed to (2.1) provide a set of PRT indications for patients dealing with complex logistic scenarios (strongly limiting their possibility of receiving PRT beyond its given clinical indication) in order to (2.2) provide practical advice and supportive materials to optimize the clinical management of these patients by RT departments.
Summarize the PRT clinical indications from the available COVID-19 RT literature

Create the PRT COVID-19 summary

A systematic literature search based on the PRISMA approach was performed by two radiation oncologists (ROs; RDF and VB). The search was performed using PubMed. We applied the following medical subject headings (MeSH) and keywords such as: “Radiotherapy,” “Radiation Therapy,” “Radiation Oncology,” “Palliative,” “Palliative Radiotherapy,” “COVID-19,” and “SARS-COV2.” The detailed Medline search strategy is reported in Appendix.

For the first literature search, other documents were added by a manual search performed by a third RO (SM). The review was strictly composed of full-text publications that were written in English and reported clinical indications for PRT to be applied during the period of the COVID-19 pandemic. The literature search was conducted on April 26, 2020. All types of publications were initially considered, including surveys, letters, and editorials, provided that the prescriptive indications for PRT were clearly reported. Papers reviewing literature or personal considerations and not directly addressing a prescriptive indication were excluded. Reports of congress abstracts and book chapters were excluded. Reports providing clinical PRT indications and those that did not undergo a peer-review process were also excluded. No specific time restrictions other than those implicitly related to the COVID-19 pandemic period were applied. An independent literature revision was made by a different RO who supervised the summary consolidation process (FC). Eligible citations were retrieved for full-text review. Figure 1 illustrates the PRISMA workflow.

To homogenize the summary output, the clinical presentations discussed in the documents were collected into two main groups: emergencies and palliative non-emergencies.
A retrospective collection of each clinical presentation was organized into these two groups within multiple clinical presentation subgroups (defined as “clinical presentation items,” CPI).

Three information categories were extracted from each selected document: (i) the main (preferable) PRT prescriptive indication; (ii) the alternative (secondary) PRT prescriptive indication; (iii) additional statements in the document per each subgroup clinical presentation not strictly indicating a PRT prescription but specifically aimed at the considered subgroup topic.

A document was excluded by a certain clinical presentation subgroup if none of the three categories were addressed, but possibly included for other subgroup topic indications.

A group of four separate ROs double-checked the different sections of the PRT COVID-19 summary to confirm the correspondence of the data extraction (FA, AT, GS, and AC).

AIRO expert team consensus vote on the PRT COVID-19 summary

An expert panel of 14 AIRO members, which was not involved in any of the previously described phases, was asked to vote on, in a single round, the consensus of each of the reported PRT indications. Consensus was addressed by four options: 1 = “strongly agree,” 2 = “agree,” 3 = “disagree,” and 4 = “strongly disagree”. Consensus was based on all of the indications from each paper (i.e., main + alternative PRT indication + additional statements), thus preventing experts from only agreeing or disagreeing with specific parts of the summarized papers.

For each paper reported in the summary, the results were analyzed by a single vote and coupled as either a “positive consensus vote” (i.e.: 1 + 2) or “negative consensus vote” (i.e.: 3 + 4).

As for other experiences [5], an agreement or disagreement threshold ≥ 66% was required for each item to reach a consensus and a threshold of ≥ 80% was required for a strong consensus.

NORMALITY (“No cOmpRoMise on quality of life by pALliative radIotHerapy”) clinical care model

The spontaneous network named “La Rete del Sollievo” (www.laretedesollievo.net) (i.e. Net of Relief, NOR), which is set up at the Department of Radiation Oncology of Fondazione Policlinico A. Gemelli IRCCS (Rome, Italy), promotes palliative radiation oncology clinical care models and shares research projects in collaboration with the AIRO-palliative panel. Under the endorsement of the AIRO, the NOS aimed to create a clinical care model for patients with an indication for PRT who are dealing with high complexity logistic scenarios that limit their possibility of receiving a regular PRT schedule.

Provide PRT indications (through consensus vote by the AIRO expert team)

From the evidence base of the PRT COVID-19 summary, a table of PRT indications for patients in complex logistic settings (potentially other than the COVID-19 pandemic) was set up for the NORMALITY clinical care model. The table “Normality model of PRT indications” followed the structure of the PRT COVID-19 summary. The AIRO expert panel voted in two rounds of consensus using the same previously described methodology. In this case, we also added the opportunity to provide comments and alternative indications for the first voting round only. After the revision of the first-round votes and comments, a final version of the table was voted on once more. Analysis of the consensus was performed as previously described. Only the results of the final consensus round were considered in the analysis.

Provide practical advice and supportive materials for the NORMALITY clinical care model

To establish the practicalities of the NORMALITY clinical care model, the definition of the workflow was addressed based on the available literature indications [9, 12], some currently ongoing practices among the Radiation Oncology departments of the AIRO experts involved in the project, and through discussion among the AIRO experts. The core concept was the advantage of a preliminary evaluation of the patient’s indications ahead of a live visit. During the live visit, the PRT prescription would be confirmed, potentially including (within the same day) the RT simulation and the first (or single) session administration. Moreover, two types of forms aiding practical patient management were prepared: one to perform the first general patient data collection and allow for triage in palliative settings, and the second to aid the offline evaluation of patients ahead of clinical visits.

Results

PRT COVID-19 summary + AIRO expert team consensus vote

From the search results of 161 documents, 13 papers were selected for data extraction [4–9, 13–19]. Globally, 19 clinical presentation items (CPIs) were identified. For “Emergencies,” the following CPIs were extracted from the literature and considered: metastatic epidural spinal cord compression (MESCC); hemostasis (including hemoptysis); and mediastinal syndrome.
For “Palliative Non-Emergencies,” the following CPIs were extracted from the literature and considered: painful bone metastasis; non-painful bone metastasis; bone oligometastases suitable for (stereotactic body radiation therapy) SBRT; retreatment of painful bone metastasis; adjuvant (post-surgery) bone metastasis radiotherapy; pain symptoms NOT associated with bone metastases; symptomatic hematological malignancies; other oligometastases suitable for SBRT (lung); other oligometastases suitable for SBRT (liver); other oligometastases suitable for SBRT (adrenal); other oligometastases suitable for SBRT (lymph-node asymptomatic); brain metastases (N° 1–4); brain metastases (N° 5–10); brain metastases (N° > 4), poor Karnofsky performance status (KPS), meningeal involvement; primary symptomatic brain tumor, poor KPS; and postoperative brain metastases.

In total, 61 question items to be voted on were extracted from the papers including the 19 CPIs. Table 1 presents the PRT COVID-19 summary for palliative emergencies. Table 2 presents the PRT COVID-19 summary for palliative non-emergencies, along with the consensus results. References cited by selected papers are also reported in the table, if specifically related to trials [5, 20–50]. The average agreement was over the agreement threshold, with only 10/61 question items from the different evidence having an agreement below 60% and five that were below 50%. The latter question items from the different evidence having an agreement was over the agreement threshold (i.e.: 80%), ranging from 82 to 100% agreement (“agree” + “strongly agree”) was over the strong agreement threshold (i.e.: 80%), ranging from 82 to 100% among the 30 topic items, of which the inner rate of agreement of the first vote ranged from 33 to 92%.

The latest versions of such materials can also be retrieved in the following section of the “La Rete del Sollivo” (NOS) website (http://www.gemelliart.it/laretedsollio/retedsollio-modelliassistenziali/). An interactive list of Italian RT departments providing different palliative services endorsed by the AIRO can also be downloaded from this website.

NORMALITY (“No cOmPRoMise on quality of life by pALLiative radIothErapy”) clinical care model

The NORMALITY clinical care model aims to make the stays in RT departments of patients dealing with complex logistic settings (e.g., in home care or hospice, living a long distance from the closest RT department) as short as possible. Ideally, patients should receive clinical visits, simulations, and single (or first) PRT delivery on the same day. Single-fraction PRT should be preferred whenever possible, unless the risk of unacceptable toxicity cannot be avoided. This was realized in some fast-track or rapid-response RT programs [12, 51–53]. The integration proposed to such acknowledged care models is to prepare ahead of patient arrival via least two levels of teleconsultation (triage and remote visits). The first level (triage) aims to enable the triage of patients possibly requiring PRT through a simplified information collection method that can be performed by a clinician or a qualified nurse. The triage can subsequently require a remote visit. This second-level contact with the patient (remote visit) involves a single or repeated remote visit, with potentially more in-depth information collected by the RO in order to administer the PRT prescription. If imaging evaluation is needed, the caregiver can be asked to acquire imaging, or alternatively (depending privacy rules), sharing through a computer network could be considered. Teleconsultation for triage and remote visits can be done by interactive and video calls, but also through phone calls that can effectively respond to such needs [12].

Discussion

Our paper aims to deal with three main issues regarding PRT: how to choose a PRT prescription during the COVID-19 pandemic; highlight the priority of administering PRT for patients both during the COVID-19 pandemic and in the future; and how to manage the risk of underuse of PRT in the future in patients dealing with complex logistic scenarios (particularly after the emergency pandemic experience, which suggests that different approaches to PRT are preferable if the RT department is inaccessible).
Table 1 PRT Covid-19 Summary: palliative emergencies

Emergencies	Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
E1 Metastatic Epidural Spinal Cord Compression (MESCC)	QE1a [9]	8 Gy/1fx8Gy [Maranzano [19]]	–	• Requires multidisciplinary discussion with neurosurgery, and evaluation of factors including degree of spinal cord compression and presence or absence of spinal instability	A = 100% [SA = 100%] D = 0% [SD = 0%]
	QE1b Curigliano [16]	–	–	• RT is urgent	A = 100% [SA = 80%] D = 0% [SD = 0%]
	QE1c Thureau [8]	8 Gy/1fx8Gy	–	• Surgical treatment should theoretically be preferred if possible and for all pt with a life expectancy of more than few months	A = 70% [SA = 30%] D = 30% [SD = 0%]
	QE1d Simcock [14]	6-10 Gy/1fx6-10 Gy [ICORG 05–03 [20], TROG 96.05 [21]]	–	• Prefer 3D	A = 80% [SA = 10%] D = 20% [SD = 0%]
E2 Hemostasis (including Hemoptysis)	QE2a Tchelebi [7]	• Esophageal cancer bleeding: 6–8 Gy/1fx 6-8 Gy	–	• Gastric cancer bleeding: RT should be strictly reserved for palliation of symptoms in pts with gastric cancer at the present time	A = 80% [SA = 20%] D = 20% [SD = 0%]

SD = Strong Disagreement (4)
Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
QE2b [9]	• Pelvic malignancies bleeding: 14.8 Gy/4fx3.7BID		Pelvic malignancies bleeding pt Covid +: Avoid BID	A = 80% [SA = 20%] D = 20% [SD = 0%]
	• Pelvic malignancies bleeding, pt Covid +: 20 Gy/5fx4Gy			
QE2c Wu [13]	**Hemoptysis:** 20 Gy/5fx4Gy		Palliative lung radiation should be deferred when possible, otherwise reserved for pt with life-threatening complications such as high-volume hemoptysis	A = 80% [SA = 30%] D = 20% [SD = 10%]
	• 17 Gy/2fx8.5 Gy§			
	• 10 Gy/1fx10Gy			
QE2d Hahn et al. [63]	**Pelvic bleeding:** 8 Gy/1fx8Gy			
QE2e Combs [15]	**Bleeding** 8 Gy /1fx8Gy (not further specified)			
QE2f Thomson [6]	**H&N bleeding:** o Scenario 1 - Early Pandemic—Risk mitigation			
	● 8 Gy/1fx8Gy			
	● 20 Gy/5fx4Gy			
	● 44.4 Gy/12fx3,7 Gy			
	o Scenario 2 - Late Pandemic—Severe shortage of RT capacity			
	● 8 Gy/1fx8Gy			
	● 20 Gy/5fx4Gy			
Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
-------------	--	--	---	------------------
QE2g Simcock [14]	**Esophageal bleeding**:			
 - 12 Gy/4fx.3 Gy BID [SHARON project [23]]
 - 18 Gy/3fx.6 Gy Day (Q) 0, 7, 21 (weekly) (Adapted from other sites) [25] | **Esophageal bleeding**:
 15 Gy/3fx.5 Gy [SHARON project]§
 Prefer 3D | Pelvic/GI bleeding:
 - 20-24 Gy/5-6fx4Gy
 - 18 Gy/4fx4.5 Gy BID [SHARON project [23]]
 - 14.8 Gy/4fx3.7 Gy BID (Repeat q2-4 wks to total 44.4 Gy in 3 courses) [QUAD SHOT- RTOG 8502 [26, 27]]
 - 18-24 Gy/3fx6-8 Gy Day 0, 7, 21 [25]
 - 18-24 Gy/3fx6-8 Gy Day 0, 7, 21 [25] | A = 80% [SA = 30%] D = 20% [SD = 0%] |
| QE3a Yerramilli [9] | **SVC syndrome Airway Obstruction**:
 - 17 Gy/2fx.8.5 Gy (each, weekly) [Sundstrom [31]]
 - 20 Gy/5fx4Gy |
 Multidisciplinary discussion may be recommended |
 Order reported for “NSCLC Early Phase” follows the highest consensus reported in the paper | A = 100% [SA = 70%] D = 0% [SD = 0%] |
| QE3b Guckenberger | **NSCLC-Early Phase** of the COVID-19 pandemic (risk mitigation):
 - 2. 8–10 Gy/1fx 8–10 Gy
 - 20 Gy/5fx 4 Gy
 - **NSCLC-Later phase** of the COVID-19 pandemic: (lack of RT resources and need for patient triage) 8-10 Gy/1fx 8-10 Gy | | | A = 80% [SA = 50%] D = 30% [SD = 0%] |
| Reference | Main Prescriptive Indication | Alternative | Additional Statement (if any) | % Consensus Vote* |
|-----------|-----------------------------|-------------|------------------------------|------------------|
| QE3c Wu [13] | Superior vena cava syndrome: | – | Palliative lung RT should be deferred when possible, otherwise reserved for patients with lifethreatening complications such as superior vena cava syndrome | A = 70% [SA = 40%] D = 30% [SD = 0%] |
| | • 17 Gy/2fx8.5 Gy§ | | | |
| | §(Authors do not specify in text/table but the reference report the schedule as “weekly”) [24] [Rodrigues] | | | |
| | • 10 Gy/1fx10Gy | | | |
| | SCV Syndrome/Lung | | | |
| QE3d Simcock [14] | Cancer: | – | Prefer 3D | A = 90% [SA = 30%] D = 10% [SD = 0%] |
| | • 8–10 Gy/1fx8-10 Gy | | | |
| | • 17 Gy/2fx8.5 Gy (weekly) [33] [MRC] | | | |

* Authors do not specify in text/table but the reference report the schedule as “weekly” [Rodrigues [24]]

§ Note: the schedule reported in the paper do not corresponds to Sharon Project schedule

* Consensus Vote: 1 = Strongly Agree; 2 = Agree; 3 = Disagree; 4 = Strongly Disagree

MESCC Metastatic Epidural Spinal Cord Compression; fx fraction; OS overall Survival; RT Radiotherapy; pt patient; BID bis in die; Q schedule repetition interval; QoL quality of life; SBRT stereotactic body RT mets: metastases; wks weeks; PEG percutaneous endoscopic gastrostomy; WBRT whole brain RT; TMZ Temozolamide; mth months; IMRT-SIB Intensity modulated RT—Simultaneous integrated boost
Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
QP1a	Thureau [8] 8 Gy/1fx8Gy	6-10 Gy/1 fx6-10 Gy	• Adapt the medical treatment as much as possible and avoid palliative RT in pt controlled by level 1 to 3 oral analgesics • Palliative RT remains an important option for patients experiencing significant pain, diminished QoL and reduced autonomy by bone metastases, especially if it enables a reduction in the need for daily nursing care • The simplest conformal RT techniques should be used • Other that 8 Gy should be avoided	A = 70% [SA = 40%] D = 30% [SD = 0%]
QP1b	Simcock [14] 8 Gy/1fx8Gy	–	• Evaluate Omission • If RT is for symptom relief then it is best to ensure that all other options have been fully explored e.g. maximizing analgesia or bisphosphonates in the case of bone pain	A = 40% [SA = 10%] D = 60% [SD = 20%]
QP1c	Combs [15] 8 Gy/1fx8Gy	–	–	A = 60% [SA = 30%] D = 40% [SD = 0%]
QP1d	Yerramilli [9] 8 Gy/1fx8Gy	–	• If pts have life expectancy of days to weeks: refer to Best supportive Care • If pts have life expectancy of longer than weeks, but not emergency: delay RT • pt with less urgent symptoms (able to wait planning) single-fraction SBRT may be considered	A = 50% [SA = 10%] D = 50% [SD = 20%]
QP1e	Curigliano [16] –	–	• Advanced breast cancer (ABC): RT is urgent if pts not responding to pharmaceutical interventions	A = 80% [SA = 20%] D = 20% [SD = 10%]
QP2a	Thureau [8] –	–	–	A = 90% [SA = 30%] D = 10% [SD = 0%]
QP2b	Simcock [14] –	–	–	A = 20% [SA = 0%] D = 80% [SD = 80%]
QP2c	Combs [15] SBRT 1–5 fx (not further specified) –	–	–	A = 80% [SA = 10%] D = 20% [SD = 10%]
QP3a	Thureau [8] –	Single fraction (16 to 24 Gy) SBRT for Retreatment of Symptomatic MESCC	• Evidence for using SBRT in oligometastatic is too low to be considered in the current situation • It is often possible to postpone this treatment for a few weeks, especially for hormone sensitive tumors	A = 90% [SA = 30%] D = 10% [SD = 0%]
QP3b	Simcock [14] –	–	–	A = 20% [SA = 0%] D = 80% [SD = 80%]
QP3c	Combs [15] –	–	–	A = 80% [SA = 10%] D = 20% [SD = 10%]
QP4a	Thureau [8] 8 Gy/1fx8Gy	–	• Waiting a minimum of 6 weeks after completion of the initial RT • The simplest conformal RT techniques should be used	A = 90% [SA = 50%] D = 10% [SD = 0%]
QP4b	Simcock [14] –	–	–	A = 40% [SA = 0%] D = 60% [SD = 20%]
Table 2 (continued)

Palliative (Non-Emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
P6 Pain NOT associated to Bone Metas *(e.g.: direct infiltration, primary pancreatic; H&N; Lymph-node infiltrating surrounding structures, etc.)*				
QP6a	H&N: If restricted RT department resources single fraction could be used: 8 Gy/1fx8Gy	H&N: If restricted RT department resources: 20 Gy/5fx4Gy	• Symptomatic benefit and chance of cure are two of the top three factors determining which patients should start RT within 1–3 wks	
• Do not postpone RT initiation of HNSCC radiotherapy by more than 4–6 wks				
• If Covid+ pt delay RT until clinical recover				
• Use a more hypofractionated schedule if restricted RT department resources	A = 70%			
[SA = 30%]				
D = 30%				
[SD = 0%]				
QP6b	H&N: 14 Gy/4fx 3.5 Gy BID (repeated Q 4 weeks interval x2 times) [QUAD SHOT: RTOG 8502 [26, 27]]	–	–	A = 60%
[SA = 20%]				
D = 40%				
[SD = 10%]				
QP6c	H&N + Gyn + Melanoma: 8 Gy/1fx8Gy			
18–24/5fx6–8 Gy Q 0–7–(2) if needed [25, 29, 36]	–	–	A = 80%	
[SA = 40%]				
D = 20%				
[SD = 0%]				
QP6d	Tchelehi [7]: 6–8/1fx6–8 Gy Pain by primary Esophageal + HCC: 6–8/1fx6–8 Gy Pain by primary Pancreas: 6–10/1fx6–10 Gy	–	–	A = 80%
[SA = 20%]				
D = 20%				
[SD = 0%]				
QP6e	Rathod [18]: SCLC/NCSLC: 8–10 Gy/1fx8–10 Gy [IAEA [37]]			
16 Gy/2fx 9 Gy (1 week apart) [IAEA [37]]	–	–	A = 90%	
[SA = 20%]				
D = 10%				
[SD = 0%]				
P7 Other than Pain symptoms NOT associated to Bone Metas *(e.g.: obstruction, etc.)*				
QP7a	Thomson [6]: H&N: If restricted RT department resources single fraction could be used: 8 Gy/1fx8Gy	H&N: If restricted RT department resources: 20 Gy/5fx4Gy	• Do not postpone RT initiation of HNSCC RT by more than 4–6 wks	
• If Covid+ pt delay RT until clinical recover
• Use a more hypofractionated schedule if restricted RT department resources | A = 60%
[SA = 30%]
D = 40%
[SD = 0%] |
Table 2 (continued)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
QP7b Combos [15]	H&N: 14 Gy/4fx 3.5 Gy BID (repeated Q4 weeks interval×2 times) [QUAD SHOT: RTOG 8502 [26, 27]]	–	–	A = 70% [SA = 20%] D = 30% [SD = 0%]
QP7c Simcock [14]	H&N: • 36 Gy/5fx6Gy (2 fx/week) • 30 Gy/6fx6Gy (2 fx/week) [HYPO trial [38]]	H&N: 18or24Gy/3fx6or8 (1 fx/week) Prefer 3D or IMRT	–	A = 70% [SA = 10%] D = 30% [SD = 0%]
QP7d Hahn et al. [63]	H&N+Gyn+Melanoma: • 8 Gy/8fx8Gy 18–24 Gy/6fx6–8 Gy Q 0–7–(2) if needed	–	–	A = 60% [SA = 40%] D = 40% [SD = 0%]
QP7e Simcock [14]	Esophageal dysphagia: • 12 Gy/4fx3GyBID [SHARON project [23]] • 18 Gy/3fx6 (1 fx/week)	Esophageal dysphagia: 15 Gy/3fx5Gy [SHARON project][§ Note: the schedule reported in the paper do not corresponds to Sharon Project schedule]	–	A = 60% [SA = 0%] D = 40% [SD = 0%]
QP7f Tchelebi [7]	Esophageal Dysphagia:20 Gy/2fx6Gy	–	• RT is preferred over either an esophageal stent or percutaneous endoscopic gastrostomy (PEG) tube placement in order to avoid consumption of limited operative supplies and aerosolization of the virus secondary to intubation	A = 90% [SA = 50%] D = 10% [SD = 0%]
QP7g Tchelebi [7]	Pancreas Symptomatic (non-pain): 8–10 Gy/1fx8-10 Gy	–	–	A = 70% [SA = 20%] D = 30% [SD = 0%]
QP7h Rathod [18]	SCLC/Nsclc: • 8-10 Gy/1fx 8–10 Gy • 16 Gy/2 fx 8 Gy (1 week apart) [IAEA [37]]	–	–	A = 70% [SA = 30%] D = 30% [SD = 0%]
Table 2 (continued)

Palliative (Non-Emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
				A= Agreement (1+2)
				D= Disagreement (3+4)
				SA = Strong Agreement (1)
				SD= Strong Disagreement (4)
QP7i	Guckemberger [5]	NSCLC Early Phase (Risk Mitigation):	• NSCLC Early Phase (Risk Mitigation): do not postpone RT of 4–6 weeks	A = 70%
		1.17 Gy/2 fx 8.5 Gy •	• Postpone or interrupt RT if pts is or became Covid+	[SA = 20%]
		2.8–10 Gy/1 fx 8–10 Gy	• Order for “NSCLC Early Phase” follows the highest consensus reported in the paper	
		3.20 Gy/5fx 4 Gy		D = 30% [SD = 0%]
		NSCLC Later Phase (Lack of RT Resources):	• 8–10 Gy/1 fx 8–10 Gy	
QP7j	Wu [13]	–	• Lung tumors: palliative lung radiation should be deferred	A = 20% [SA = 0%]
		–		D = 80% [SD = 20%]

QP8a Symptomatic Haematological Malignancies (non-emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
				A= Agreement (1+2)
				D= Disagreement (3+4)
				SA = Strong Agreement (1)
				SD= Strong Disagreement (4)
QP8a	Yahalom 4	• Symptomatic aggressive NHL (no chemo options) Life expectancy > 3 months: 25 Gy/5fx5Gy	• Consider omitting RT when the risk of severe outcomes from COVID-19 infection (aged ≥ 50 years and/or presence of serious underlying health conditions) outweigh the benefit of RT, where alternatives can be offered e.g. optimizing pain control	A = 100%
				[SA = 40%]
		• Symptomatic aggressive NHL (no chemo options) Life expectancy < 3 months: 8 Gy/1fx8Gy		D = 0% [SD = 0%]
		• Symptomatic multiple myeloma (No cord compression): 8 Gy/1fx8Gy		
		• Symptomatic multiple myeloma (Cord compression): 20 Gy/5fx4Gy		
		• Symptomatic indolent lymphoma (No cord compression): 4 Gy/1fx4Gy		
		• Symptomatic indolent lymphoma (Cord compression): 20 Gy/5fx4Gy		
Table 2 (continued)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
A = Agreement (1 + 2)				
D = Disagreement (3 + 4)				
SA = Strong Agreement (1)				
SD = Strong Disagreement (4)				

Palliative (Non-Emergencies)

- **Myeloid sarcoma/leukemia** - Cranial leptomeningeal disease: 8 Gy/2 fx 4Gy

- **Myeloid sarcoma/leukemia** - Focal leptomeningeal spine disease, and symptomatic chloroma outside the CNS: 12 Gy/3 fx 4Gy

QP8b Simcock [14] Palliative Lymphoma, low grade: 4 Gy/1 fx 4Gy

A = 90% [SA = 40%] D = 10% [SD = 0%]

P9 Other Oligometastases Suitable for SBRT (Lung)

QP9a Combs [15] – – SBRT 1–5 fx (not further specified)

A = 50% [SA = 20%] D = 50% [SD = 0%]

P10 Other Oligometastases Suitable for SBRT (Liver)

QP10a Combs [15] – – SBRT 1–5 fx (not further specified)

A = 50% [SA = 20%] D = 50% [SD = 0%]

QP10b Tchelebi [7] Colorectal Primary – –

A = 80% [SA = 30%] D = 40% [SD = 0%]

- For small, non-central lesions: 16–30 Gy in 1 fx

- For lesions near the biliary tree: 48–60 in 3–5 fx

P11 Other Oligometastases Suitable for SBRT (Adrenal)

QP11a Combs [15] – – SBRT 1–5 fx (not further specified)

A = 40% [SA = 30%] D = 60% [SD = 0%]

P12 Other Oligometastases Suitable for SBRT (Lymph-node asymptomatic)

QP12a Combs [15] – – SBRT 1–5 fx (not further specified)

A = 50% [SA = 30%] D = 50% [SD = 0%]

P13 Brain metastases (N° 1–4)

QP13a Yerramilli [9] SRS (not further specified)

- In pt with good performance SRS for all or dominant lesion cause of morbidity

- To delay or avoid whole brain

A = 80% [SA = 30%] D = 20% [SD = 0%]
Table 2 (continued)

Palliative (Non-Emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
				A = Agreement (1 + 2) D = Disagreement (3 + 4) SA = Strong Agreement (1) SD = Strong Disagreement (4)
QP13b Combs [15]	1–10 Brain Mets with good performance status: "single fraction" 18 Gy/1 fx 18 Gy 20 Gy/1 f × 20 Gy	A = 60% [SA = 10%] D = 40% [SD = 10%]		
QP13c Simcock [14]	1–3 Brain Mets, good KPS, no extracranial disease 15–20 Gy/1 fx 15–20 Gy	A = 100% [SA = 60%] D = 0% [SD = 0%]		
P14 Brain metastases (N° 5–10)				
QP14a Simcock [14]	Palliation WBRT: 20 Gy/5 fx 4 Gy [RTOG QUARTZ [43]]	A = 100% [SA = 30%] D = 0% [SD = 0%]		
QP14b Combs [15]	1–10 Brain Mets with good performance status: "single fraction" 18 Gy/1 fx 18 Gy 20 Gy/1 f × 20 Gy	A = 90% [SA = 20%] D = 50% [SD = 10%]		
P15 Brain metastases (N° > 4), poor KPS, meningeal involvement				
QP15a Yerramilli [9]	Multiple brain metastases or leptomeningeal disease WB: 20 Gy/5 fx 4 Gy 30 Gy/10 fx 3 Gy	A = 90% [SA = 40%] D = 10% [SD = 0%]		
QP15b Combs [15]	Life expectancy > 3 mth: WBRT 20 Gy/5 fx 4 Gy	A = 100% [SA = 50%] D = 0% [SD = 0%]		
QP15c Curigliano [16]	–	A = 80% [SA = 20%] D = 20% [SD = 10%]		
QP15d Simcock [14]	Brain metastasis Palliation, poor Prognosis: 12 Gy/2 fx 6 Gy	A = 70% [SA = 10%] D = 30% [SD = 0%]		

- For patients with urgent indications, progressive neurologic symptom
- For patients in whom longer term survival is expected, in order limit neurocognitive complications
- In patients with limited prognosis, the QUARTZ study demonstrated similar rates of overall survival and QoL with steroids and best supportive care alone.
- Poor performance status: Evaluate BSC with critical view of steroids [RTOG QUARTZ [43]]
- RT is urgent for the following situations: Treatment of brain and leptomeningeal metastases CNS mets from NSCLC needing WBRT:
- Best supportive care including steroids
- Omit RT [RTOG QUARTZ [43]]

Brain Mets Palliation, poor Prognosis:
- Prefer 3D
Table 2 (continued)

Palliative (Non-Emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
P16				
Primary symptomatic Brain tumor, poor KPS				
QP16a	Combs [15]	Glioblastoma KPS < 60: 25 Gy/5fx5Gy, (No TMZ) [Roa 2004 [44]]	–	• Glioblastoma KPS < 50; age > 70y TMZ mono (MGMT methylated) or BSC [Malmstrom [45]]
		GBM, poor KPS: Age ≥ 50, KPS 50–70, or Age ≥ 65 KPS 50–100: 25 Gy/5fx5Gy No TMZ	–	• GBM, poor KPS Age ≥ 50, KPS 50–70, or Age ≥ 65 KPS 50–100: Prefer 3D; CTV 2 cm margin as per EORTC
QP16b	Simcock [14]	–	• Glioblastoma Age > 60, methylated TMZ only Standard RT associated with poor outcomes	A = 90% [SA = 30%]
		GBM, very poor PS KPS < 50:	–	• GMB, very poor PS KPS < 50: Alternatively, consider: Best supportive care or TMZ with omission of RT
	Noticewala [19]	–	• Recurrent GBM: not generally recommend re-irradiation Systematic therapies if considered reasonable. Therapies may include, but are not limited to temozolomide, bevacizumab, lomustine, and others	A = 100% [SA = 10%]
P17				
Postoperative Brain Mets				
QP17a	Combs [15]	Postoperative SRS of resection cavity: 35 Gy/7fx5Gy or 20–24 Gy/1fx20–24 Gy* [Brown [47]] or 16 Gy/1fx16 Gy	–	• The dose depends on target diameter:
		14 Gy/1fx14 Gy	*The dose depends on target size (in cc):	
		12 Gy/1fx12 Gy [Mahajan [48]]	≤ 10 cc	<2.0 cm
		10.1–15 cc	≤ 2.9 cm #The dose depends on target size (in cc):	
		> 15 cc		

*Authors do not specify in text/table but the reference report the schedule as “weekly”) [MRC [32]]

*C Consensus Vote: 1 = Strongly Agree; 2 = Agree; 3 = Disagree; 4 = Strongly Disagree

MESC/Metastatic Epidural Spinal Cord Compression; fx fraction; OS: overall Survival; RT Radiotherapy; pt patient; BID bis in die; Q schedule repetition interval; QoL quality of life; SBRT stereotactic body RT; mets metastases; wks weeks; PEG percutaneous endoscopic gastrostomy; WBRT whole brain RT; TMZ Temozolamide; mth months; IMRT-SIB Intensity modulated RT—Simultaneous integrated boost
Triage Application Form for Palliative Radiation Therapy

Date (d/m/y) __/__/____ Application Type: □ Front office □ Telephone □ Mail

Patient Name: ______________ Surname: ______________ Gender: □ M □ F DOB (d/m/y): __/__/____

Telephone / Mail: ____________________________

Patient comes from: □ Ward ________; □ D.H. ________; □ Home □ Home-Care □ Hospice ________; □ Other ____________________________ Referring Physician (if any) ____________________________

Autonomous in Deambulation: □ Yes □ Wheelchair □ Bed ; Ambulance Arranged: □ Yes □ No

Radiation Therapy Medical Record already existent: NO □ YES □ N° ____________________________

Primary Cancer Site:
□ Breast □ Lung □ Prostate □ Upper/ Lower GI: _________ □ Kidney □ Gyn
□ Head&Neck □ Multiple Myeloma □ Other: ____________________________

Application’s Reason:
1. Spinal Compression: Neurological Symptoms? □ No □ Yes N° Days Duration of Symptoms _________
2. Mediastinal Syndrome: Symptoms? □ No □ Yes N° Days Duration of Symptoms _________
3. Bleeding: Hemoglobin______(Date __/__/____) Transfusion? □ No □ Yes; Date last transfusion __/__/____
4. Severe Bone Pain (NRS 8-10) not controlled by ongoing drug therapy
5. Mild to Moderate Bone Pain (NRS 1-7)
6. Other Non Bone Related Pain (NRS________); Detail __

Ongoing Pain Killers: __

PMI (Pain Management Index) Value: ________; Suspect of Breakthrough Pain □

□ Painless Bone Metastases □ Adrenal Metastases □ Lymph-Node Metastases
□ Liver Metastases □ Brain Metastases □ Lung Metastases □ Other___________

NOTES: __

Who Collected Info (Signature(ID): ____________________________ Date (d/m/y) and time: ____________________________
□ Physician □ Nurse

➔ Priority Assignment (MD): □ Very High □ High □ Ordinary
➔ Outpatient Department (MD): □ Emergency □ Ordinary □ Multidisciplinary Pain Management □ Remote Visit

➔ Physician ID/Signature: ______________ Date and Time Priorization: ______________ Date Visit d____/m___/y___

Fig. 2 Triage application form for Palliative Radiation Therapy (English Version)
Triage di Richiesta Valutazione per Radioterapia Palliativa

Data richiesta (g/m/a) ___/___/______
Modalità richiesta: ☐ sportello ☐ telefono ☐ email

Paziente Nome: ______________ Cognome: ______________ Sesso: ☐ M ☐ F Data di nascita (g/m/a): ___/___/______

Recupito Telefonico / Mail: __________________________

RICHIEDENTE: ☐ Reparto ___________; ☐ D.H. ___________; ☐ Domicilio (ASL) __________ ; ☐ A.D. (ASL) __________;
☐ Hospice ___________; ☐ Altro ___________ Medico richiedente: __________________________

Autonomia Deambulazione: ☐ si ☐ carrozzina ☐ letto Ambulanza: ☐ si ☐ no

Esiste Cartella di RADIOTERAPIA già aperta: NO ☐ SI ☐ N°________________

Tumore Primitivo:
☐ Mammella ☐ Polmone ☐ Prostata ☐ Upper/ Lower GI: ________ ☐ Rene ☐ Ginecologico
☐ Testa-collo ☐ Mieloma multiplo ☐ Altro: ________________________________

Motivo della richiesta:
1. Compressione Midollare: sintomi neurologici? ☐ no ☐ si Da quanti giorni presenta sintomi? ________
2. Sindrome Mediastinica: Sintomi? ☐ no ☐ si Da quanti giorni presenta sintomi? ________
3. Sanguinamento: Valori HB___ (data g/m/a___) Eseguita trasfusione? ☐ no ☐ si; data ultima trasfusione (g/m/a___)

4. Dolore Osseo Elevato (NRS 8-10) non controllato dalla terapia farmacologica in corso
5. Dolore Osseo Lieve-Medio (NRS 1-7)
6. Altro Dolore Non Osseo (NRS________); Dettaglio__

Terapia Antalgica in corso: ___

Valore PMI (Pain Management Index): _________ Sospetto Dolore Episodico Intenso (Breakthrough Pain) ☐
☐ Metastasi Ossee non dolenti ☐ Metastasi Surrenaliche ☐ Metastasi Linfonodali
☐ Metastasi Epatiche ☐ Metastasi Cerebrali ☐ Metastasi Polmonari ☐ altro____________________

NOTE: __

Chi ha rilevato Informazioni (Firma/ID): ____________________________ Data e ora: __________________
Operatore: ☐ Medico ☐ Infermiere

→ (Medico) Assegnazione Priorità: ☐ Altissima ☐ Alta ☐ Ordinaria
→ (Medico) Ambulatorio selezionato: ☐ Emergenze ☐ Ordinario ☐ Gestione Multidisciplinare del Dolore ☐ Televisita

→ Firma/ID Medico: ______________ Data e ora Assegnazione Priorità: ______________ Data Visita g/m/a___

Fig. 3 Triage application form for Palliative Radiation Therapy (Italian Version)
Table 3 PRT Normality Model Summary—Normality model PRT indications: palliative emergencies

Emergencies	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
Reference				
QE1e	AIRO Pall 8 Gy/1fx8Gy (Maranzano [19])	Preferable for alternative: 20 Gy/5fx4Gy	BID option can be considered balancing pt and department’s logistic, being suitable for hospitalized pt but not limited to those only	A = 100% [SA = 92%] D = 0% [SD = 0%]
		Secondary alternative option: 20 Gy/4fx5GyBID [SHARON project [22, 23]]		
		• 6 Gy/1fx6Gy		
E2 Hemostasis (including Hemoptysis)		QE2h AIRO Pall H&N cancer bleeding: 20 Gy/5fx4Gy	–	A = 100% [SA = 42%] D = 0% [SD = 0%]
		• 20 Gy/4fx5Gy BID [SHARON project [28]]		
		Secondary alternative option: 44.4 Gy/12fx3.7 Gy	• 6 Gy/1fx6Gy	A = 100% [SA = 42%] D = 0% [SD = 0%]
		• 8 Gy/1fx8Gy	• 20 Gy/5fx4Gy	
		QE2i AIRO Pall Esophageal cancer bleeding: 20 Gy/5fx4Gy	–	A = 100% [SA = 42%] D = 0% [SD = 0%]
		• 6 Gy/1fx6Gy	• 20 Gy/5fx4Gy	
		• 8 Gy/1fx8Gy	• 6 Gy/1fx6Gy	A = 84% [SA = 42%] D = 16% [SD = 0%]
		• 12 Gy/4fx3Gy BID [SHARON project [23]]	• 8 Gy/1fx8Gy (with anti-emetic)	
		QE2j AIRO Pall Gastric cancer bleeding: 20 Gy/5fx4Gy	–	A = 100% [SA = 50%] D = 0% [SD = 0%]
		• 6 Gy/1fx6Gy	• 24 Gy/3fx8Gy Day 0, 7, 21 [29]	
		• 8 Gy/1fx8Gy	• 18 Gy/4fx4.5 Gy BID [SHARON project [30]]	
		QE2l AIRO Pall Pelvic malignancies bleeding: 8 Gy/1fx8Gy	Preferable for alternative: BID option can be considered balancing pt and department’s logistic, being suitable for hospitalized pt but not limited to those only	A = 100% [SA = 50%] D = 0% [SD = 0%]
		• 24 Gy/3fx8Gy Day 0, 7, 21 [29]	• 18 Gy/3fx6Gy (Day 0, 7, 21)	
		• 18 Gy/4fx4.5 Gy BID [SHARON project [30]]	• 20 Gy/5fx4Gy	
		Secondary alternative option: 18 Gy/6fx4Gy	• 24 Gy/6fx4Gy	
Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
-----------	------------------------------	-------------	-------------------------------	------------------
QE2m AIRO Pall	Hemoptysis:	• 20 Gy/5fx4Gy	–	A = 92% [SA = 75%] D = 8% [SD = 0%]
	• 17 Gy/2fx8.5 Gy (weekly)			
E3 Mediastinal Syndrome	Superior vena cava syndrome:	• Preferable for alternative:		A = 100% [SA = 75%] D = 0% [SD = 0%]
QE3e AIRO Pall		• 8 Gy/1fx8Gy	BID option can be considered balancing pt and department’s logistic, being suitable for hospitalized pt but not limited to those only	
		• Secondary alternative option:		
		• 20 Gy/4fx5Gy BID [SHARON project [34]]		

*Consensus Vote: 1 = Strongly Agree; 2 = Agree; 3 = Disagree; 4 = Strongly Disagree

MESCC Metastatic Epidural Spinal Cord Compression; fx fraction; OS: overall Survival; RT Radiotherapy; pt patient; BID: bis in die; Q schedule repetition interval; QoL quality of life; SBRT stereotactic body RT; mets: metastases; wks: weeks; PEG: percutaneous endoscopic gastrostomy; WBRT whole brain RT; TMZ: Temozolamide; mth: months; IMRT-SIB Intensity modulated RT—Simultaneous integrated boost
Table 4 PRT Normality Model Summary—Normality model PRT indications: palliative non-emergencies

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*		
P1 Painful bone metastasis	Preferable for alternative:	SHARON project as useful option for painful complicated lesions (i.e.: extraosseous disease, impending fracture, pathological fracture); see also “Section E1”	A = 100%	D = 0%		
QP1f	AIRO Pall 8 Gy/1fx8Gy	• 20 Gy/4fx5GyBID [SHARON project [22]]	**Secondary alternative Option:**	**For extreme clinical settings of extensive bone involvement, or retreatment/ pain refractory to pain killers: caution consider “Half-body RT” (i.e.: lumbar + bony pelvis + femurs—15 Gy/4fx3.75 Gy BID [SHARON project [35]])	A = 100% [SA = 75%]	D = 0% [SD = 0%]
P2 Non-painful bone metastasis	Consider to delay RT or evaluate SBRT (depending if oligometastatic and on the basis of prognostic score and impending fracture risk)	**Consider RT if impending fracture: if “Yes”, see E1 + P1 + P3**	A = 100%	D = 0%		
QP2b	AIRO Pall –	–	**Apply validated prognostic score before clinical indication**	**Consider SBRT in case of future risk of MESCC or fracture**	A = 100% [SA = 75%]	D = 0% [SD = 0%]
P3 Bone Oligometastases Suitable for SBRT	Single fraction (16 to 24 Gy) SBRT for Retreatment of Symptomatic MESCC	• Apply validated prognostic score before clinical indication	A = 100%	D = 0%		
QP3d	AIRO Pall SBRT 1–5 fx (BED 50-60 Gy if not compromising spinal cord constraints)	**Consider SBRT in case of future risk of MESCC or fracture**	**Alternatively, consider delay or avoid SBRT, and/or non-SBRT RT indications**	A = 100% [SA = 58%]	D = 0% [SD = 0%]	
P4 Retreatment of painful bone metastasis	Waiting a minimum of 6 weeks after completion of the initial RT	**For highly selected clinical settings of extensive bone involvement, or retreatment/pain refractory to pain killers: cautiously consider “Half-body RT” (i.e.: lumbar + bony pelvis + femurs—15 Gy/4fx3.75 Gy BID [SHARON project [35]])**	A = 92%	D = 8%		
QP4b	AIRO Pall 8 Gy/1fx8Gy	SBRT Single fraction (16 to 24 Gy) SBRT for Retreatment of Symptomatic MESCC	**Apply a validated prognostic score for RT to evaluate if expected survival < 3/3-6/> 6 mth**	**RT may be postponed in case of asymptomatic pt**	A = 100% [SA = 75%]	D = 0% [SD = 0%]
P5 Adjuvant (post-surgery) bone metastasis radiotherapy	If Adjuvant RT have been indicated after surgery for MESCC: it should not be postponed over 3–4 weeks	**RT may be performed secondarily in case of progressive post-operative signs**	A = 100%	D = 0%		
QP5c	AIRO Pall 30 Gy/10 fx3Gy	• 20 Gy/4fx 5 Gy		A = 100% [SA = 75%]	D = 0% [SD = 0%]	
Table 4 (continued)

Palliative (Non-emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
				A = Agreement (1 + 2)
				D = Disagreement (3 + 4)
				SA = Strong Agreement (1)
				SD = Strong Disagreement (4)

P6 Pain NOT associated to Bone Mets (e.g.: direct infiltration, primary pancreatic; H&N; Lymph-node infiltrating surrounding structures, etc.)

QP6f	AIRO Pall	H&N:	H&N Preferable for alternative:	BID options (Sharon, QUAD Shot) can be considered balancing pt and department’s logistic, being suitable for hospitalized pt but not limited to those only
		• 20 Gy/5fx4Gy	• 20 Gy/4fx5GyBID [SHARON project [28]]	
		• 14 Gy/4fx 3.5 Gy BID (repeated Q4 weeks interval x 2 times) [QUAD SHOT - RTOG 8502 [26, 27]]		
		Secondary alternative option:	• 8 Gy/1fx8Gy	
		• 24/3fx8Gy Q 0–7-21 (weekly) [25, 29, 36]		
		• 18/3fx6Gy Q 0–7-21 (weekly)	• 14 Gy/4fx4.5GyBID [SHARON project [30]]	
		• 8 Gy/1fx8Gy	• 18 Gy/4fx5 Gy BID [SHARON project [30]]	
		• Gyn + Melanoma:	• SCLC/NSCLC [IAEA [37]]:	
		• 24/3fx8Gy Q 0–7-21	• 16 Gy/2fx 8 Gy (1 week apart)	
		• 18/3fx6Gy Q 0–7-21	• Pancreas	
		• Gyn	10 Gy/1fx10Gy	

| QP6g | AIRO Pall | Pain by primary Gyn + Melanoma + Esophageal + HCC + Pancreas + SCLC/NSCLC: | • 8 Gy/1fx8Gy | |

A = 100%
[SA = 83%]
[D = 0%]
[SD = 0%]

A = 92%
[SA = 33%]
[D = 8%]
[SD = 0%]
Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
P7	Other than Pain symptoms NOT associated to Bone Mets (e.g.: obstruction, etc.)			

QP7k	AIRO Pall	H&N:	H&N Preferable for alternative:
		• 20 Gy/5fx4Gy	• 20 Gy/4fx5Gy/BID [SHARON project [28]]
			• 14 Gy/4fx 3.5 Gy BID (repeated Q4 weeks interval x 2 times) [QUAD SHOT- RTOG 8502 [26] [27]]
			BID options (Sharon, QUAD Shot) can be considered balancing pt and department’s logistic, being suitable for hospitalized pt but not limited to those only
			A = 100%
			[SA = 67%]
			D = 0%
			[SD = 0%]

Secondary alternative option: |
| • 8Gy/1fx8Gy |
| • 24/5fx8Gy Q 0–7-21 (weekly) [25, 29, 36] |
| • 18/5fx6Gy Q 0–7-21 (weekly) |
| • 20 Gy/6fx6Gy (2 fx/week) [HYPO trial [38]] |

QP7l	AIRO Pall	Gyn + Melanoma:	Gyn + Melanoma:
		• 24 Gy/5fx8Gy Q 0–7-21	
		• 8 Gy/1fx8Gy	
		Gyn	
		18 Gy/4fx4.5Gy/BID [SHARON project [30]]	
		BID option can be considered balancing pt and department's logistic, being suitable for hospitalized pt but not limited to those only	
		A = 100%	
		[SA = 67%]	
		D = 0%	
		[SD = 0%]	

QP7m	AIRO Pall	Esophageal dysphagia:
• 20 Gy/5fx4Gy		
• 12 Gy/4fx3Gy/BID [SHARON project [23]]		
BID option can be considered balancing pt and department’s logistic, being suitable for hospitalized pt but not limited to those only		
A = 100%		
[SA = 67%]		
D = 0%		
[SD = 0%]		

QP7n	AIRO Pall	Pancreas Symptomatic (non-pain):
10 Gy/1fx10Gy		
8 Gy/1fx8Gy		
Consider either esophageal stent or percutaneous endoscopic gastrostomy (PEG) tube placement		
A = 83%		
[SA = 33%]		
D = 17%		
[SD = 0%]		
Table 4 (continued)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
A = Agreement (1 + 2)	D = Disagreement (3 + 4)	SA = Strong Agreement (1)	SD = Strong Disagreement (4)	

QP7o AIRO Pall

SCLC: 16 Gy/2 fx 8 Gy (1 week apart) [IAEA [37]]

SCLC Preferable for alternative:
- 8 Gy/1fx 8 Gy
- 20 Gy/4fx 5Gy BID [SHARON project [34]]

Secondary alternative option:
- 10 Gy/1fx 10 Gy [IAEA [37]]

A = 100% [SA = 58%] D = 0% [SD = 0%]

QP7p AIRO Pall

NSCLC:

1.17 Gy/2fx 8.5 Gy (1 week apart) [32, 33]

NSCLC Preferable for alternative:
- 20 Gy/4fx 4 Gy
- 20 Gy/4fx 5Gy BID [SHARON project [34]]

Secondary alternative option:
- 10 Gy/1fx 10 Gy [IAEA [37]]

Order reported for main indication (17 Gy) follows the highest consensus reported in ESTRO-ASTRO Consensus (Guckenberger et al. [5])

A = 100% [SA = 58%] D = 0% [SD = 0%]
Table 4 (continued)

Palliative (Non-emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
				A = Agreement (1 + 2)
				D = Disagreement (3 + 4)
				SA = Strong Agreement (1)
				SD = Strong Disagreement (4)

P8 Symptomatic Haematological Malignancies (non-emergencies)

- Symptomatic aggressive NHL (no chemo options) Life expectancy > 3 months: 25 Gy/5fx5Gy
- Symptomatic aggressive NHL (no chemo options) Life expectancy < 3 months: 8 Gy/1fx8Gy
- Symptomatic multiple myeloma (No cord compression): 8 Gy/1fx8Gy
- Symptomatic multiple myeloma (Cord compression): 20 Gy/5fx4Gy
- Symptomatic indolent lymphoma (No cord compression): 4 Gy/1fx4Gy
- Symptomatic indolent lymphoma (Cord compression): 20 Gy/5fx4Gy
- Myeloid sarcoma/leukemia -Cranial leptomeningeal disease: 8 Gy/2fx4Gy
- Myeloid sarcoma/leukemia —Focal leptomeningeal spine disease, and symptomatic chloroma outside the CNS: 12 Gy/3fx4Gy

According to Yahalom [4]:

- Symptomatic aggressive NHL (no chemo options) Life expectancy > 3 months: 25 Gy/5fx5Gy
- Symptomatic aggressive NHL (no chemo options) Life expectancy < 3 months: 8 Gy/1fx8Gy
- Symptomatic multiple myeloma (No cord compression): 8 Gy/1fx8Gy
- Symptomatic multiple myeloma (Cord compression): 20 Gy/5fx4Gy
- Symptomatic indolent lymphoma (No cord compression): 4 Gy/1fx4Gy
- Symptomatic indolent lymphoma (Cord compression): 20 Gy/5fx4Gy
- Myeloid sarcoma/leukemia -Cranial leptomeningeal disease: 8 Gy/2fx4Gy
- Myeloid sarcoma/leukemia —Focal leptomeningeal spine disease, and symptomatic chloroma outside the CNS: 12 Gy/3fx4Gy
Table 4 (continued)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
P9 Other Oligometastases Suitable for SBRT (Lung)				
QP9b AIRO Pall	**Oligometastases (1–3):**	–		
	• Lesion \leq 3 cm surrounded by lung parenchyma: 54 Gy/3fx18Gy			
	• Lesion near chest wall or size >3 cm: 55 Gy/5fx11Gy			
	• Lesion within 2 cm of mediastinum or brachial plexus: 60 Gy/8fx7.5 Gy [SabrComet3 [39]; SabrComet3 [40]]			
	For small, non-central lesions:	50 Gy/5fx10Gy	• Consider for pt at prognosis >6 mth (by validated prognostic score)	A = 100% [SA = 58%]
	• 54 Gy/3fx18Gy (every second day) [SabrComet3 [40]]	54 Gy/3fx18Gy	• Consider for pt with disease-free interval ≥ 6 mth	
	• For lesions near the biliary tree: 54 Gy/6fx9Gy		• Biologic effective dose >100 Gy (if not compromising OAR constraints—AAPM)	
P10 Other Oligometastases Suitable for SBRT (Liver)				
QP10c AIRO Pall	**BED ≥ 100 (if not compromising liver parenchyma and other constraints according to AAPM)**	50 Gy/5 fx10 Gy	• Consider for pt at prognosis >6 mth (by validated prognostic score)	A = 100% [SA = 75%]
	• 54 Gy/3fx18Gy (every second day) [SabrComet3 [40]]	54 Gy/3fx18Gy	• Consider for pt with disease-free interval ≥ 6 mth	
	• For lesions near the biliary tree: 54 Gy/6fx9Gy			
P11 Other Oligometastases Suitable for SBRT (Adrenal)				
QP11b AIRO Pall	• 40 Gy/5fx8Gy [SabrComet3 [40]]	36 Gy/3fx12Gy	• SBRT 1–5 fx	A = 100% [SA = 50%]
	• 35 Gy/5fx7Gy		• Consider for pt at prognosis >6 mth (by validated prognostic score)	
			• Consider for pt with disease-free interval ≥ 6 mth	
			• Evaluate constraints as per AAPM	
P12 Other Oligometastases Suitable for SBRT (Lymph-node asymptomatic)				
QP12b AIRO Pall	• 40 Gy/5fx8Gy [SabrComet3 [40]]	36 Gy/3fx12Gy	• SBRT 1–5 fx	A = 100% [SA = 50%]
	• 35 Gy/5fx7Gy		• Consider for pt at prognosis >6 mth (by validated prognostic score)	
			• Consider for pt with disease-free interval ≥ 6 mth	
			• Evaluate constraints as per AAPM [41]	
Table 4 (continued)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
				A = Agreement (1 + 2)
				D = Disagreement (3 + 4)
				SA = Strong Agreement (1)
				SD = Strong Disagreement (4)

P13 Brain metastases (N° 1–4)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)
QP13d	AIRO Pall	1–4 Brain Mets, good KPS, no extracranial disease	– ● SRS
		● 15 Gy/1fx 15 Gy lesion > 3 cm ≤ 4 cm [42]	
		● 18 Gy/1fx 18 Gy lesion > 2 cm ≤ 3 cm [42]	
		● 21 Gy/1fx 21 Gy lesion ≤ 2 cm	
		● 24 Gy/1fx 24 Gy lesion ≤ 2 cm [42] [RTOG 9908]	

P14 Brain metastases (N° 5–10)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)
QP14c	AIRO Pall	5–10 Brain Mets good KPS, no extracranial disease: Preferable for Alternative: Palliation WBRT IMRT-SIB (SIB40+30) Gy/10fx(SIB4+3) Gy Secondary Option: Palliation WBRT	– ● SRS (if single fraction adopted)
		● 18 Gy/1fx 18 Gy	
		● 15–20 Gy/1fx 15–20 Gy	

P15 Brain metastases (N° > 4), poor KPS, meningeal involvement

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)
QP15e	AIRO Pall	Brain metastasis Palliation, poor Prognosis leptomeningeal disease: 20 Gy/5fx4Gy	Life expectancy > 3 mth: 30 Gy/10fx3Gy

P16 Primary symptomatic Brain tumor, poor KPS

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)
QP16d	AIRO Pall	Glioblastoma	– ● SRS [Roa 2015 [46]]
		● 25 Gy/5fx 5 Gy [Malmstrom [45]]	

A = Agreement (1 + 2) D = Disagreement (3 + 4) SA = Strong Agreement (1) SD = Strong Disagreement (4)
Table 4 (continued)

Palliative (Non-emergencies)

Reference	Main Prescriptive Indication	Alternative	Additional Statement (if any)	% Consensus Vote*
P17 Postoperative Brain Mets	**QP17b AIRO Pall**	**Postoperative SRS of resection cavity:**		
		• 15-18 Gy/1fx15-18 Gy [Kepka [49]]	**The dose depends on target diameter (in cm):**	
		• 20-24 Gy/1fx20-24 Gy [Brown [47]]**		
		• 16 Gy/1fx16Gy	< 2.0 cm	
		• 14 Gy/1fx14Gy	≥ 2 ≤ 2.9 cm **The dose depends on target size (in cc):**	
		• 12 Gy/1fx12Gy [Mahajan [48]]##	≤ 10 cc	
		Postoperative fractionated SRT of resection cavity:		
		• 35-25 Gy/5fx7.5 Gy	> 15 cc	

*Consensus Vote: 1 = Strongly Agree; 2 = Agree; 3 = Disagree; 4 = Strongly Disagree

MESCC Metastatic Epidural Spinal Cord Compression; fx fraction; OS: overall Survival; RT Radiotherapy; pt patient; BID bis in die; Q schedule repetition interval; QoL quality of life; SBRT stereotactic body RT; mets metastases; wks weeks; PEG percutaneous endoscopic gastrostomy; WBRT whole brain RT; TMZ Temozolamide; mth months; IMRT-SIB Intensity modulated RT—Simultaneous integrated boost
to reduce the number of contacts while effectively treating patients [4–7]. A recent survey reported by Jereczek-Fossa et al. confirmed that in a highly impacted country like Italy, 73.6% of RT departments shifted to adapted hypofractionated RT schedules [55]. To the best of our knowledge, most guidelines have not focused on PRT, apart from one addressing bone metastases [8]; thus, an RO needing to prescribe PRT during the COVID-19 pandemic would find indications distributed across different papers. The proposed PRT COVID-19 summary (Tables 1 and 2) could aid ROs during this period. The limitation that there are papers missing in our literature search because they were published after our search was conducted exists; however, the average support the summary provides for readers is not compromised and the expert consensus vote poses additional utility, offering an overview perspective for interpreting other similar indications.

What is the priority of administering PRT for our patients, both during the COVID-19 pandemic and in the future? Prioritization of PRT has been an object of discussion during the COVID-19 pandemic period [3, 9]. Yerramilli et al. suggested prioritizing PRT only for emergencies, providing a triage model to check for the need for PRT [9], although some authors have raised concerns over this [10]. Conversely, Tagliaferri et al. suggested a more inclusive triage-based patient selection strategy, possibly providing PRT even to COVID-19 positive patients, despite the consideration of dealing with highly aggressive diseases such as melanoma [56]. Neither considered the different phases of infection spread within the RT department. Van de Haar et al. [3] suggested multiple phases detailing the steps of expectable crisis from the clinical perspective of RT, surgical, and medical oncology departments, but still did not indicate if or how passing through one of the mentioned level of crisis to another would change the priority list that puts PRT at level four of five in their paper. A few authors [5, 6] indicated that different RT and PRT schedules are deliverable in the early or later (more complex) phases (both are included in Tables 1 and 2).

We substantially agreed with the average concern of treating patients during the COVID-19 period. Moreover, most of the indications provided in the early pandemic were unaware of the possible consequent scenarios, thus preparing ahead for the worst possible scenario. A wide range of consequences have been described for RT departments, ranging from compromised [57] to more manageable [58]. In our opinion (when indicated), PRT should remain one of the highest priority treatments from the perspective of ROs. For the two major oncological aims (cure and palliation), the pursued outcomes, as measured by the most appropriate endpoint (i.e., overall survival (OS) for cure and quality of life (QoL) for palliation, respectively), are equivalent from the patient’s perspective. Until we are not forced to restrict the delivery of RT to our patients due to the risk of infective spread, palliative and curative settings should be equally prioritized [11]. To put this into context, consider an example on bone-related pain control: if RT is not administered when indicated, the possibly needed dose escalation of medical analgesic therapy can determine side effects affecting QoL, despite controlling pain levels (besides the cost-effective impact on health services by increased drug administration). Separate administration of either palliative RT or medical analgesic therapy should not be considered equivalent by ROs; the concomitant integration of both with modulation over time should be the gold standard.

How to manage the risk of underuse of PRT in the future in patients dealing with complex logistic scenarios? In the future, when the COVID-19 pandemic is over, the issue of patients suitable for PRT who are dealing with complex logistic settings and who are at risk of losing their chance of receiving relief by PRT will surely persist. Looking at the current experience of emergency departments, we are afraid that PRT could be replaced by medical or different alternatives if it is not easily and logistically manageable. Some of the indications provided for PRT during COVID-19 pandemic can be safely and effectively maintained in these peculiar settings. The NORMALITY clinical care model aims to enhance the chance that these patients receive acceptable compromises, aiming for an efficient PRT schedule. The combination of clinical visits, simulation, and RT delivery on the same day is a well-known practice that has diffused over several RT centers for at least 30 years. The Rapid Response Radiotherapy Program (RRRP) was proposed in the literature in the 1990s by the Canadian group Chow et al. [51–53]. Similarly, the Vancouver Rapid Access (VARA) for incurable lung cancer was presented by Lefresne et al. [59], as well as the rapid multidisciplinary management of bone metastases described by Donato et al. [60]. The positive impact of the described “advanced practice radiation therapists” on workflows was also explored, for instance, by Job et al. [61, 62]. Our model integrates such experiences while focusing on patients with complex logistics, proposing the set of normality model PRT indications for such peculiar settings, as summarized in Tables 3 and 4. If appropriately selected for patients, treatment alternatives such as single fraction treatments applied in emergencies as suggested by Maranzano et al. [20], the use of single repeated schedules as per the “0–7–21” PRT schedule proposed by Nguyen et al. [26], or the bis-in-die (BID) schedules advised by both the “Quad Shot RTOG 8502–QUAD SHOT” report created by Spanos et al. [27, 28] and the “Sharon project” for multiple palliative settings [31], can be highly useful. Moreover, our NORMALITY model suggests and offers forms to facilitate the enhancement of preliminary teleconsultations before the
Form for Remote-Visit Palliative Radiation Therapy

Remote-Visit Date (d/m/y): / /

Patient Name/Surname: ____________________________ Gender: M ☐ F ☐ DOB (d/m/y): / /

RT Chart ID (If available): _______________________

Radiation Oncologist in charge: ____________________________

Patient from: ☐ Ward: __________ □ D.H. ☐ Home □ HomeCare/Hospice □ Other ________

Referring Physician: Specialist ____________ GP ______________________

Autonomous Deambulation: ☐ Yes ☐ Wheelchair ☐ Bed Ambulance: ☐ Yes ☐ No

ECOG - KPS Score: _______ PPS Score (1): ___________%

Primary Cancer Site:

☐ Breast ☐ Lung ☐ Prostate ☐ Upper/Lower GI: ___________ ☐ Kidney ☐ Gyn

☐ Head&Neck ☐ Multiple Myeloma ☐ Other: __________________________

Last Imaging Available: ☐ MRI ☐ CT-Scan ☐ PET Scan ☐ Other Date: d /m /y

Systemic Therapy Ongoing: ☐ No ☐ Yes

(if “Y” ☐ Chemotherapy ☐ Hormone-therapy ☐ Immunotherapy; Last infusion Date: d /m /y_________

Reason for Radiation Therapy Evaluation:

Pain: NRS 0-10: ________; ☐ Mild (1-3) ☐ Moderate (4-7) ☐ Severe (8-10)

☐ Bone (☐ Spinal ☐ Not Spinal) SINS Score (2): ______________________

☐ Neuropathic PMI (Pain Management Index) Value: ________;

☐ Other ________________ Suspect Breakthrough Pain ☐

Fracture: ☐ Pathological ☐ Impeding

☐ Post Surgery Setting (if Y: Date: / /)

(if Y, please specify: ☐ Spinal ☐ Not Spinal ☐ Mini-invasive)

Ongoing Pain Therapy: __

__

Bleeding

☐ GI ☐ GU ☐ Hemoptysis ☐ Pelvic

Hb _______ (Date d /m /y _______)

Transfusion? ☐ No ☐ Yes; IF Y, Date: d /m /y _______

1: Anderson F et al.; J Palliat Care. 1995 Spring;12(1):5-11; PMID: 8857241
2: Shandy F. et al.; Global Spine J. 2017 Dec; 7(6): 744–748; doi: 10.1016/j.gss.2017.09.005
3: Timothy TR, Clin Orthop Relat Res. 2017 May; 475(5): 1499–1504; doi: 10.1007/s11999-016-4333-4
4: Indicate Selected Prognostic for the Center

Fig. 4 Form for remote-visit for Palliative Radiation Therapy (English Version)
CNS:
- □ Impending Cord Compression
- □ Cauda Equina Syndrome
- □ Symptomatic Cord compression: Since how long? ________ ASIA SCORE (3): __________
- □ Brain Metastases: n° ______ Symptoms: □ No □ Yes (Description: ____________________________)
 Anti-edema Therapy: □ No □ Yes (□ Steroid Therapy □ Mannitol)

Symptomatic Lymph-Nodes: □ No □ Yes

Thoracic:
- □ Pelvic nodes
- □ Mediastinal Syndrome
- □ Neck Nodes
- □ Dyspnea □ Dysphagia
- □ Other: ____________________________

Subcutaneous Nodes: Symptomatic: □ No □ Yes ; District: ____________________________

Prognostic Score (4) Value/Result: ____________________________

Radiation Therapy Details

Previous RT: □ No □ Yes District: ____________________________ If Y, is this retreatment? □ No □ Yes ;

Available Previous RT Details: □ No □ Yes ; Available Previous RT DICOM? □ No □ Yes □ To require

Accrued into Clinical Trial: □ No □ Yes (If Y, which one? ____________________________)

Case Disposition:

- □ Accepted □ Referred to Medical Oncologist □ Referred to Palliative Care □ Further investigation required
- □ Referred to Pharmacologic Pain Therapy
- □ Referred to Multidisciplinary Pain Management (Date (d/m/y): ___/___/____)
- □ Referred to Surgeon (Which specialty? ______________)
- □ Referred to Mini-invasive Therapy
- □ No action □ Inappropriate referral □ Patient Asymptomatic □ Patient declined treatment

- □ Palliative radiation site 1: __________
 Dose (total)/Fraction: __________ /

- □ Palliative radiation site 2: __________
 Dose (total)/Fraction: __________

- □ Palliative radiation site 3: __________
 Date (d/m/y): ___/___/____

Outpatient Visit Scheduled: Date (d/m/y) ___/___/____ ; Simulation associated □

1: Anderson F et al., J Palliat Care. 1996 Spring;12(1):5-11; PMID: 8857241
2: Shandy F et al; Global Spine J. 2017 Dec; 7(8): 744-748; doi: 10.1177/21925682177697691
3: Timothy TR, Clin Oncrol Relat Res. 2017 May; 47(5): 1499-1504; doi: 10.1007/s11999-016-5133-4
4: Indicate Selected Prognostic for the Center

Fig. 4 (continued)
Modulo Guida Tele-Visita Radioterapia Palliativa

Data Tele-Visita (g/m/a): ____/____/______
Nome e Cognome Paziente: ____________________
Numero cartella RT (Se esistente): __________
Radio-oncologo di riferimento: ________________
Paziente inviato da: □ Reparto: ______________; □ D.H. □ Domicilio □ A.D./Hospice □ Altro ______
Medico Richiedente: Specialista ______________
Mobilità: Deambulazione autonoma □ Carrozziina □ Letto □
ECOG - KPS Score: ______

Tumore Primitivo:

- □ Mammella □ Polmone □ Prostata □ Upper/ Lower GI: __________ □ Rene □ Ginecologico
- □ Testa-Collo □ Mieloma multiplo □ Altro: ______________________________________

Ultimo Imaging disponibile: □ MRI □ TC □ PET-TC □ Altro Data: g ___/m ___/a ______

Terapia sistemica in corso: □ No □ Si

(se “Si” □ Chemioterapia □ Ormonoterapia □ Immunoterapia; Data ultimo ciclo: g ___/m ___/a ______)

Richiesta Valutazione Radio-Oncologica:

Dolore: NRS 0-10: __________; □ Lieve (1-3) □ Moderato (4-7) □ Severo (8-10)

- □ Dolore Osseo (□ Spinale □ Non Spinale) SINS Score (2): __________________________
- □ Neuropatico Valore PMI (Pain Management Index): ________;
- □ Altro ____________________ Sospetto Dolore Episodico Intenso (Breakthrough Pain) □

Frattura: □ Patologica □ Rischio di frattura

□ Valutazione RT Post-chirurgia (se si: Data chirurgia: ____/____/____)

(Dettagli Chirurgia: □ Spinale □ Non Spinale □ Chirurgia mini-invasiva)

Terapia del dolore in corso: __

__

Sanguinamento

□ GI □ GU □ Emottisi □ Pelvicco

Valori Hb ______ (Data g _____/m _____/a _____)

Eseguita trasfusione? □ No □ Si; Data ultima trasfusione g _____/m _____/a _____

1: Anderson F et al.; J Palliat Care. 1996 Spring;12(1):5-11; PMID: 8857241
2: Shandy F. et al; Global Spine J. 2017 Dec; 7(8): 744–748; doi: 10.1177/20488710177697691
3: Timothy TR, Clin Orthop Relat Res. 2017 May; 475(5): 1499–1504; doi: 10.1007/s11999-016-5133-4
4: Indicare Score Prognostico selezionato per il proprio Centro

Fig. 5 Form for remote-visit for Palliative Radiation Therapy (Italian Version)
CNS:
- Rischio compressione
- Sindrome della Cauda Equina
- Compressione Midollare Sintomatica: Da quanti giorni? ______ ASIA SCORE (3): ______
- Metastasi cerebrali: n° _____ Sintomi: □ No □ Si (descrizione: ____________________________)
- Terapia antiedemigena: □ No □ Si (□ Terapia cortisonica □ Mannitolo)

Pacchetti Linfonodali Sintomatici □ No □ Si
- Linfonodi pelvici □ Sindrome Mediastinica
- Linfonodi collo □ Dispnea □ Disfagia
- Altro: ____________________________ □ Altro: ____________________________

Noduli Sottocutanei: Sintomatici: □ No □ Si ; Sede: _________________

Prognostic Score (4) Valore/Risultato: _______________________

Dettagli Radioterapia
Precedente RT: □ No □ Si Sede: _________________ Se “Si”, è un ritrattamento? □ No □ Si ;
Disponibilità Dettagli Precedente RT: □ No □ Si; Disponibilità DICOM Precedente RT? □ No □ Si □ Da Richiedere
Arruolato in Clinical Trial: □ No □ Si (Se “Si”, quale?: ____________________________)

Decisionale:
- Preso in cura □ Inviato a Oncologo Medico □ Avviato a Cure Palliative Mediche □ Necessarie ulteriori analisi
- Inviato a terapia del dolore farmacologica
- Inviato ad Ambulatorio Gestione Multidisciplinare Integrata terapia del dolore (Data Appuntamento: g___/m___/a___)
- Inviato a Chirurgo (Specialità: _________________)
- Inviato a Terapia Mini-invasiva
- Nessuna Azione: □ Richiesta inappropriata □ Paziente asintomatico □ Paziente rifiutato il trattamento

□ RT palliativa su sede 1: _______________ □ RT palliativa su sede 2: _______________
Dose Totale/Frazione: _____/_______
Data (g/m/a): ____/____/_______
□ RT palliativa su sede 3: ____________________________
Dose Totale/Frazione: _________________
Data (g/m/a): ____/____/_______

Scelta della data: Clinico □ Paziente
Programmazione Visita Frontale: Data g___/m___/a_______ Associa Simulazione □

Fig. 5 (continued)
first clinical visits of the patients (Figs. 2 and 4). This is in line with the literature acknowledging the efficacy of phone calls [12] and the renewed indication for teleconsultation during the COVID-19 period [9, 14]. Some issues remain unaddressed, including the management of patients strictly requiring hospital admittance and the role of technology in balancing urgent palliative patients’ needs. Clearly, improving such settings will require multidisciplinary collaboration among operators with different specializations and backgrounds dealing with palliation and oriented to facilitate each other’s respective roles and peculiarities.

Conclusion

We provide a comprehensive summary of the literature guideline indications for PRT during the COVID-19 pandemic along with the respective reference and consensus evaluation voted by the AIRO panel. We also propose a clinical care model (based on the clinical guideline indications provided during the COVID-19 pandemic) including clinical indications and written forms facilitating two levels of teleconsultation (triage and remote visits) in order to evaluate patients for indications for PRT ahead of planning live clinical visits. The normality model could facilitate the provision of PRT to patients dealing with future complex logistic scenarios.

Appendix

Medline search strategy

("radiotherapy"[Subheading] OR "radiotherapy"[All Fields] OR "radiotherapy"[MeSH Terms]) OR ("radiotherapy"[Subheading] OR "radiotherapy"[All Fields] OR "radiation"[All Fields] AND "therapy"[All Fields]) OR "radiation therapy"[All Fields] OR "radiotherapy"[MeSH Terms] OR ("radiation"[All Fields] AND "therapy"[All Fields]) OR "radiation therapy"[All Fields]) OR ("radiation oncology"[MeSH Terms] OR ("radiation"[All Fields] AND "oncology"[All Fields]) OR "radiation oncology"[All Fields]) OR Palliative[All Fields] OR (Palliative[All Fields] AND ("radiotherapy"[Subheading] OR "radiotherapy"[All Fields] OR "radiotherapy"[MeSH Terms]))) AND (("COVID-19"[All Fields] OR "COVID-2019"[All Fields] OR "severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR "severe acute respiratory syndrome coronavirus 2"[All Fields] OR "2019-nCoV"[All Fields] OR "SARS-CoV-2"[All Fields] OR "2019nCoV"[All Fields] OR ("Wuhan"[All Fields] AND ("coronavirus"[MeSH Terms] OR "coronavirus"[All Fields]) AND (2019/12[PDAT] OR 2020[PDAT]))) OR SARS-COV2[All Fields]).

Acknowledgements The Authors thank: The Scientific Committee and Board of the AIRO for the critical revision of the paper; the colleagues (and friends) of the AIRO that have strongly supported La Rete del Sollievo since its birth. One name for all: we want to renew the never-forgotten affection to the memory of Mauro Trovò; the friends of the Gigi Ghirotti Foundation (http://www.fondazione ghirotti.it) for their dedication to preventing patients from “feeling abandoned and lonely” in face of their illness; Professor Numa Celini, for tenaciously spreading the relevance of paying sincere attention to the person beyond the patient.

Funding Open access funding provided by Università Cattolica del Sacro Cuore within the CRUI-CARE Agreement. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Wu Z, McGoogan JM (2020) Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 Cases from the chinese center for disease control and prevention. JAMA. https://doi.org/10.1001/jama.2020.2648
2. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, Li C, Ai Q, Lu W, Liang H, Li S, He J (2020) Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 21(3):335–337. https://doi.org/10.1016/S1470-2045(20)30096-6
3. van de Haar J, Hoes LR, Coles CE, Seamon K, Fröhling S, Jäger D, Valenza F, de Braud F, De Petris L, Bergh J, Ernberg I, Besse B, Barlesi F, Garralda E, Piris-Giménez A, Baumann M, Apolone G, Soria JC, Tabernero J, Caldás C, Voest EE (2020) Caring for patients with cancer in the COVID-19 era. Nat Med 26(5):665–671. https://doi.org/10.1038/s41591-020-0874-8
4. Yahalom J, Dabaja BS, Ricardi U, Ng A, Mikhael NG, Vogelius IR, Illidge TM, Qi S, Wirth A, Specht L (2020) ILROG emergency guidelines for radiation therapy of hematological
malignancies during the COVID-19 pandemic. Blood. https://doi.org/10.1182/blood.2020006028

5. Guenkerber M, Belka C, Bezjak A, Bradley J, Daly ME, Deruysscher D, Dziazdziezko R, Faivre-Finn C, Flentje M, Gore E, Higgins KA, Iyengar P, Kavanagh BD, Kumar S, Le Pechoux C, Lievens Y, Lindberg K, McDonald F, Ramella S, Rengan R, Ricardi U, Rimmer A, Rodrigues GB, Schild SE, Senan S, Simone Li CB, Slotman BJ, Stuschke M, Videtic G, Widder J, Yom SS, Palma D (2020) Practice recommendations for lung cancer radiotherapy during the COVID-19 pandemic: an ESTRO-ASTRO consensus statement. Radiother Oncol. https://doi.org/10.1016/j.radonc.2020.04.001

6. Thomason DJ, Palma D, Guenkerber M, Balermpas P, Beijler JT, Blanchard P, Brizel D, Budach W, Caudell J, Corry J, Corvo R, Evans M, Garden AS, Giralt J, Greigore J, Harari PM, Harrington K, Hitchcock YJ, Johansen J, Kaanders J, Koyfman S, Langendijk JA, Le QT, Lee N, Margalit D, Mierzwa Z, Porceddu S, Soong YL, Sun Y, Thariat J, Waldron J, Yom SS (2020) Practice recommendations for risk-adapted head and neck cancer radiation therapy during the COVID-19 pandemic: an ASTRO-ESTRO consensus statement. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2020.04.016

7. Tchekeli LT, Hausermanns K, Scorsetti M, Hosni A, Huguet F, Hawkins MA, Dawson LA, Goodman KA (2020) Recommendations for the use of radiation therapy in managing patients with gastrointestinal malignancies in the era of COVID-19. Radiotherapy Oncol 148:194–200. https://doi.org/10.1016/j.radonc.2020.04.010

8. Thureau S, Faivre JC, Assaker R, Biver E, Confavreux CB, Debiais F, Dutereux-Coquillaud M, Giammarile F, Heymann D, Lecouvet FE, Morardet L, Paycha F, Body JJ, Vieillard MH (2020) Adapting palliative radiation therapy for bone metastases during the Covid-19 pandemic: GEMO position paper. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2020.04.001

9. Yerramilli D, Xu AJ, Gillespie EF, Shepherd AF, Beal K, Gomez D, Yamada J, Tsai CJ, Yang TJ (2020) Palliative radiotherapy for oncologic emergencies in the setting of COVID-19: approaches to balancing risks and benefits. Adv Radiat Oncol. https://doi.org/10.1016/j.radonc.2020.04.001

10. Kate J (2020) ‘Brutal’ Plan to Restrict Palliative Radiation During Pandemic. www.medscape.com. https://www.medscape.com/viewarticle/928185_print.

11. Cellini F, Manfrida S, Gambacorta MA, Vincenzo V (2020) Prioritization on palliative radiotherapy during COVID-19 (and beyond). Radiother Oncol 150:181–182. https://doi.org/10.1016/j.radonc.2020.06.033

12. Chow E, Hoskin P, Mittera G, Zeng L, Lutz S, Wooldridge D, Hahn C, van der Linden Y, Hartsell W, Kumar E, International Bone Metastases Consensus Working P (2012) Update of the international consensus on palliative radiotherapy endpoints for future clinical trials in bone metastases. Int J Radiat Oncol Biol Phys 82(5):1730–1737. https://doi.org/10.1016/j.ijrobp.2011.02.008

13. Wu AJ, Rimmer A, Shepherd AF, Gelblum DY, Shaverdian N, Yorke E, Simone CB 2nd, Gomez DR (2020) Thoracic radiation therapy during COVID-19: provisional guidelines from a comprehensive cancer center within a pandemic epicenter. Adv Radiat Oncol. https://doi.org/10.1016/j.radonc.2020.04.008

14. Simcock R, Thomas TV, Estes C, Filippi AR, Katz MA, Pereira JI, Saeed H (2020) COVID-19: global radiation oncology’s targeted response for pandemic preparedness. Clin Transl Radiat Oncol 22:55–68. https://doi.org/10.1016/j.ctro.2020.03.009

15. Combs SE, Belka C, Niyazi M, Corradini S, Pigorsch S, Wilkens J, Grosu AL, Guenkerber M, Ganswindt U, Bernhardt D (2020) First statement on preparation for the COVID-19 pandemic in large German speaking university-based radiation oncology departments. Radiat Oncol 15(1):74. https://doi.org/10.1186/s13014-020-01527-1

16. Curigliano G, Cardoso MJ, Poortmans P, Gentilini O, Pravettoni G, Mazzocco K, Houssami N, Pagani O, Senkus E, Cardoso F, editorial board of The B (2020) Recommendations for triage, prioritization and treatment of breast cancer patients during the COVID-19 pandemic. Breast 52:8–16. https://doi.org/10.1016/j.breast.2020.04.006

17. Hahn E, Liverjant G, Millar BA, Ringash J, Wong R, Dawson LA, Warde P, Cummings B, Barry A (2020) Comments on the publication by Yerramilli et al titled “palliative radiotherapy for oncologic emergencies in the setting of COVID-19: approaches to balancing risks and benefits.” Adv Radiat Oncol. https://doi.org/10.1016/j.radonc.2020.04.017

18. Rathod S, Dubeys A, Bashir B, Sivananthan G, Leylek A, Chowdhury A, Koul R (2020) Bracing for impact with new 4R’s in the COVID-19 pandemic- a provincial thoracic radiation oncology consensus. Radiother Oncol. https://doi.org/10.1016/j.radonc.2020.03.045

19. Noticewala Sonal SLEB, Bishop Andrew J, Chung C, Ghia Amol J, Grosshans D, McGovern S, de la Cruz AP, Wang C, Woodhouse Kristina D, Yeoab Debra N, Prabhu Sujit S, Weathers S-P, Das P, Koong Albert C, McAleer Mary F, Li J (2020) Radiation for Glioblastoma in the Era of COVID-19: Patient Selection and Hypofractionation to Maximize Benefit and Minimize Risk. Adv Radiat Oncol. https://doi.org/10.1016/j.radonc.2020.04.040

20. Maranzano E, Trippa F, Casale M, Costantini S, Lupattelli M, Bellavita R, Maraforti L, Perezolizzi S, Santacaterina A, Mignogna M, Silvano G, Fusco V (2009) 9 Gy single-dose radiotherapy is effective in metastatic spinal cord compression: results of a phase III randomized multicentre Italian trial. Radiother Oncol 93(2):174–179. https://doi.org/10.1016/j.radonc.2009.05.012

21. Lee KA, Dunne M, Small C, Kelly PJ, Mcardle O, O’Sullivan J, Hacking D, Pomeroy M, Armstrong J, Moriarity M, Clayton-Lea A, Parker I, Collins CD, Thurion P (2018) (ICORG 05-03): prospective randomized non-inferiority phase III trial comparing two radiation schedules in malignant spinal cord compression (not proceeding with surgical decompression); the quality of life analysis. Acta Oncol 57(7):965–972. https://doi.org/10.1080/0284186X.2018.1433320

22. Roos DE, Turner SL, O’Brien PC, Smith JG, Sny CA, Brookmeir BH, Hoskin PJ, Ball DL, Trans-Tasman Radiation Oncology Group T (2005) Randomized trial of 8 Gy in 1 versus 20 Gy in 5 fractions of radiotherapy for neuropathic pain due to bone metastases (Trans-Tasman Radiation Oncology Group, TROG 96.05). Radiother Oncol 75(1):54–63. https://doi.org/10.1016/j.radonc.2004.09.017

23. Capuccini J, Macchia G, Farina E, Buwenke M, Genovesi D, Caravatta L, Nguyen NP, Camsellis M, Cilla S, Wondernageghunu T, Uddin A, Aziz Sumon M, Cellini F, Valentini V, Deodato F, Moriganti AG (2018) Short-course regimen of palliative radiotherapy in complicated bone metastases: a phase i–ii study (SHARON Project). Clin Exp Metastasis 35(7):605–611. https://doi.org/10.1007/s10585-018-9931-9

24. Deressa BT, Tigeneh W, Bogale N, Buwenke M, Morganti AG, Farina E (2020) Short-course 2-dimensional radiation therapy in the palliative treatment of esophageal cancer in a developing country: a phase II study (Sharon Project). Int J Radiat Oncol Biol Phys 106(1):67–72. https://doi.org/10.1016/j.ijrobp.2019.10.004

25. Rodrigues G, Videtic GM, Sur R, Bezjak A, Bradley J, Hahn CA, Langer C, Miller KL, Moeller BJ, Rosenzweig K, Movsas B (2011) Palliative thoracic radiotherapy in lung cancer: an American Society for Radiation Oncology evidence-based clinical practice guideline. Pract Radiat Oncol 1(2):60–71. https://doi.org/10.1016/j.prro.2011.01.005

26. Nguyen NT, Doerwald-Munoz L, Zhang H, Kim DH, Sagar S, Wright JR, Hodson DI (2015) 0–72 hypofractionated palliative radiotherapy: an effective treatment for advanced head and neck cancer.
cancers. Br J Radiol 88(1049):20140646. https://doi.org/10.1259/ bjr.20140646

27. Spanos W Jr, Guse C, Perez C, Grigsby P, Doggett RL, Poulter C (1989) Phase II study of multiple daily fractionations in the palliation of advanced pelvic malignancies: preliminary report of RTOG 8502. Int J Radiat Oncol Biol Phys 17(3):659–661. https://doi.org/10.1016/0360-3016(89)90120-x

28. Spanos WJ Jr, Perez CA, Marcus S, Poulter CA, Doggett RL, Steinfeld AD, Grigsby PW (1993) Effect of rest interval on tumor and normal tissue response—a report of phase III study of accelerated split course palliative radiotherapy for advanced pelvic malignancies (RTOG-8502). Int J Radiat Oncol Biol Phys 25(3):399–403. https://doi.org/10.1016/0360-3016(93)90059-5

29. Farina E, Capucchin J, Macchia G, Caravatta L, Nguyen NP, Cammelli S, Farioli A, Zaninari Rambaldi G, Cilla S, Wondemagenhgu T, Uddin A, Sumon MA, Genovesi D, Buwenge M, Cellini F, Valenti V, Deodato F, Morganti AG (2018) Phase I-II study of short-course accelerated radiotherapy (SHARON) for palliation in head and neck cancer. Anticancer Res 38(4):2409–2414. https://doi.org/10.21873/anticancer.12491

30. Yan J, Milosevic M, Fyles A, Manchul L, Levin W (2011) Accelerated middle half body radiotherapy in bone metastases. Radiother Oncol 100(7):s10585-018-9942-6

31. Farina E, Macchia G, Siepe G, Zamagni A, Buwenge M, Sciocco E, Cellini F, Deressa BT, Tighenw U, Uddin K, Sumon MA, Caravatta L, Genovesi D, Mauro FA, Cammelli S, Cilla S, Morganti AG, Deodato F (2019) Palliative short-course radiotherapy in advanced pelvic cancer: a phase II study (SHARON Project). Anticancer Res 39(8):4237–4242. https://doi.org/10.21873/anticancer.13585

32. Sundstrom S, Bremnes R, Aasebo S, Aamdal S, Harrewijn P, Engineer G, Storck J, Djojodihardjo S, Gullino P, Parmar MK (2013) Short-course accelerated radiotherapy for patients with inoperable non-small cell lung cancer (NSCLC) and poor performance status. Medical Research Council Lung Cancer Working Party. Clin Oncol 5(3):167–175. https://doi.org/10.1016/j.clon.2013.02.001

33. Macbeth FR, Bolger JJ, Hopwood P, Bleehen NM, Cartmell J, Gilling DJ, Machin D, Stephens RJ, Bailey AJ (1996) Randomized trial of palliative two-fraction versus more intensive 13-fraction radiotherapy for patients with inoperable non-small cell lung cancer and good performance status. Medical Research Council Lung Cancer Working Party. Clin Oncol 8(3):167–175. https://doi.org/10.1016/0936-6556(96)80041-0

34. A Medical Research Council (MRC) randomised trial of palliative radiotherapy with two fractions or a single fraction in patients with inoperable non-small cell lung cancer (NSCLC) and poor performance status. Medical Research Council Lung Cancer Working Party (1992). Br J Cancer 65 (6):934–941. doi:https://doi.org/10.1038/bjc.1992.196

35. Farina E, Macchia G, Buwenge M, Siepe G, Zamagni A, Cammelli S, Cilla S, Wondemagenhgu T, Uddin A, Sumon MA, Genovesi D, Buwenge M, Cellini F, Valenti V, Deodato F, Morganti AG (2018) Palliative short-course accelerated radiotherapy (SHARON) for palliation in head and neck cancer. Anticancer Res 38(4):2409–2414. https://doi.org/10.21873/anticancer.12491

36. Jeremic B, Fidarova E, Sharma V, Faheem M, Ameira AA, Nasr Ben Ammar C, Frobe A, Lau F, Brincat S, Jones G (2015) The international atomic energy agency (IAEA) randomized trial of palliative treatment of incurable locally advanced non small cell lung cancer (NSCLC) using radiotherapy (RT) and chemotherapy (CHT) in limited resource setting. Radiother Oncol 116(1):21–26. https://doi.org/10.1016/j.radonc.2015.06.017

37. Porceddu SV, Rossler B, Burnmeister BH, Jones M, Hickey B, Baumann K, Gogna K, Pullar A, Poulsen M, Holt T (2007) Hypofractionated radiotherapy for the palliation of advanced head and neck cancer in patients unsuitable for curative treatment—“Hypo Trial”. Radiother Oncol 85(3):456–462. https://doi.org/10.1016/j.radonc.2007.10.020

38. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, Mulroy L, Lock M, Rodrigues GB, Yaremko BP, Schellenberg D, Ahmad B, Griffoen G, Senthi S, Swaminath A, Kopek N, Liu M, Moore K, Currie S, Bauman GS, Warner A, Senan S (2019) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET-3): a randomised, phase 2, open-label trial. Lancet 393(10185):2051–2058. https://doi.org/10.1016/s0140-6736(18)32487-5

39. Olson R, Mathews L, Liu M, Schellenberg D, Mou B, Berbrang T, Harrow S, Correa RJM, Bhat V, Pui H, Mohamed I, Miller S, Schneideris F, Laba J, Wilke D, Senthi S, Louie AV, Swaminath A, Chalmers A, Gaede S, Warner A, de Grujil TD, Allan A, Palma DA (2020) Stereotactic ablative radiotherapy for the comprehensive treatment of 1–3 Oligometastatic tumors (SABR-COMET-3): study protocol for a randomized phase III trial. BMC Cancer 20(1):380. https://doi.org/10.1186/s12885-020-06876-4

40. Benedict SH, Yenice KM, Followill D, Galvin J, Hinson W, Kavanagh B, Keall P, LoveLock M, Meeks S, Papiez L, Purdie T, Sadagopan R, Schell MC, Salter B, Schlesinger DJ, Shiu AS, Solberg T, Song DY, Stieber V, Timmerman R, Tome WA, Verellen D, Wang L, Yin FF (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101. https://doi.org/10.1118/1.3438081

41. Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, Werner-Wasik M, Demas W, Ruy J, Bahary JP, Souhami L, Rotman M, Mehta MP, Curran WJ Jr (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomized trial. Lancet 364(9422):1665–1672. https://doi.org/10.1016/S0140-6736(04)6250-8

42. Mulvenna P, Nankivell M, Barton R, Faivre-Finn C, Wilson P, McColl E, Moore B, Brisbane I, Ardron D, Holt T, Morgan S, Lee C, Waite K, Bayman N, Pugh C, Sydes B, Stephens R, Parmar MK, Langley RE (2016) Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. Lancet 388(10055):2004–2014. https://doi.org/10.1016/S0140-6736(16)30825-X

43. Roa W, Brasher PM, Bauman G, Anthes M, Bruera E, Chan A, Fisher B, Fulton D, Galavita S, Hao C, Husain S, Murtha A, Petruk K, Stewart D, Tai P, Ursans R, Cairncross JG, Forshyp P (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22(9):1583–1588. https://doi.org/10.1200/JCO.2004.06.082

44. Malmstrom A, Gronberg BH, Marosi C, Stupp R, Frappaz D, Schultz H, Abacioglu U, Tavelin B, Lhermitte B, Hegi ME, Rosell J, Henriksson R, Nordic Clinical Brain Tumour Study G (2012)
Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13(9):916–926. https://doi.org/10.1016/S1470-2045(12)70265-6

47. Roa W, Kepka L, Kumar N, Sinaika V, Maitello J, Lomizide D, Hentati D, Guedes de Castro D, Dyttus-Cebulok K, Droged S, Ghosh S, Jeremic B, Rosenblat E, Fidarova E (2015) International atomic energy agency randomized phase III study of radiation therapy in elderly and/or frail patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 33(35):4145–4150. https://doi.org/10.1200/JCO.2015.62.6606

48. Brown PD, Jaeckle K, Ballman KV, Farace E, Cerhan JH, Ander son SK, Carrero XW, Barker FG 2nd, Deming R, Burri SH, Menard C, Chang C, Steiber VW, Polloke BE, Galanis E, Buckner JC, Asher AL (2016) Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA 316(4):401–409. https://doi.org/10.1001/jama.2016.9839

49. Mahajan A, Ahmed S, McAleer MF, Weinberg JS, Li J, Brown P, Settle S, Prabhu SS, Lang FF, Levine N, McGovern S, Sulman E, McCutcheon JE, Azeem S, Cahlil D, Tatsui C, Heimberger AB, Ferguson S, Ghia A, Demonte F, Raza S, Guha-Thakurta N, Yang J, Sawaya R, Hess KR, Rao G (2017) Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol 18(8):1040–1048. https://doi.org/10.1016/S1470-2045(17)30414-X

50. Kepka L, Tye-Szczeniapiak D, Bujko K, Olszyna-Serementa M, Michalski W, Sprawka A, Trabska-Kluck B, Kosmosinska K, Wasilewska-Tesluk E, Czeremyszynska B (2016) Stereotactic radiotherapy of the tumor bed compared to whole brain radiotherapy after surgery of single brain metastasis: results from a randomized trial. Radiother Oncol 121(2):217–224. https://doi.org/10.1016/j.radonc.2016.10.005

51. Danjoux C, Chow E, Drossos A, Holden L, Hayter C, Tsao M, Barnes T, Sinclair S, Farhadian M (2006) An innovative rapid response radiotherapy program to reduce waiting time for palliative radiotherapy. Supportive Care in Cancer : Official J Multinational Ass 14(1):38–43. https://doi.org/10.1007/s00520-005-0822-7

52. McDonald R, Lechner B, Pulenzas N, Bedard G, Wong E, Holden L, Tsao M, Barnes E, Szumacher E, Fenton G, Chow E, Popovic M, Danjoux C (2015) Student accomplishments in the rapid response radiotherapy program: a 10-year review. J Cancer Educ. https://doi.org/10.1007/s13187-014-0748-1

53. Razvi Y, Chan S, Zhang L, Tsao M, Barnes E, Danjoux C, Sousa P, Zaki P, McKenzie E, DeAngelis C, Chow E (2019) A review of the Rapid Response Radiotherapy Program in patients with advanced cancer referred for palliative radiotherapy over two decades. Supportive care in cancer: Official J Multinational Ass Supportive Care in Cancer 27(6):2131–2134. https://doi.org/10.1007/s00520-018-4474-9

54. Mauri D, Kompasioras K, Tolia M, Alongi F, Tzachanis D, International Oncology P, European Cancer Patient Coalition c (2020) Summary of international recommendations in 23 languages for patients with cancer during the COVID-19 pandemic. Lancet Oncol. https://doi.org/10.1016/S1470-2045(20)30278-3

55. Jereczek-Fossa BA, Pap M, Marvoso G, Bruni A, di Monale EBMB, Catalano G, Filippi AR, Franco P, Gambacorta MA, Genovesi D, Iati G, Magli A, Marafioti L, Meattini I, Merlotti A, Mignogna M, Musio D, Pacelli R, Pergolizzi S, Tombolini V, Trovo M, Ricardi U, Magrini SM, Corvo R, Donato Airo V (2020) COVID-19 outbreak and cancer radiotherapy disruption in Italy: Survey endorsed by the italian association of radiotherapy and clinical oncology (AIRO). Radiother Oncol. https://doi.org/10.1016/j.radonc.2020.04.061

56. Tagliaferri L, Di Stefani A, Schinzari G, Fionda B, Rossi E, Del Regno L, Gentilescsi S, Federico F, Valentina V, Tortora G, Peris K, Gemelli Skin-Cancer Multidisciplianry Tumour B (2020) Skin cancer triage and management during COVID-19 pandemic. J Eur Acad Dermatol Venereol: JEDAV. https://doi.org/10.1111/jdv.16529

57. Gemici C, Yaprak G (2020) Covid-19 outbreak in a major radiotherapy department; which lessons should be taken? Radiother Oncol. https://doi.org/10.1016/j.radonc.2020.03.044

58. Srijwitjialai W, Wijanwitkit V (2020) COVID-19, radiotherapy and cancer. Radiother Oncol. https://doi.org/10.1016/j.radonc.2020.04.023

59. Lefresne S, Berthelet E, Cashman R, Levy K, Liu M, Carolan H, McKenzie M, Kostuk P, Olson R (2015) The Vancouver rapid access clinic for palliative lung radiation, providing more than just rapid access. Supportive care in cancer: Official J Multinational Ass Supportive Care in Cancer 23(1):125–132. https://doi.org/10.1007/s00520-014-2345-6

60. Donato V, Cianciulli M, Creszenzi M, Monaco A, Caruso C, Morrone A (2012) Rapid palliative radiotherapy unit: multidisciplinary management of bone metastases. Radiol Med 117(6):1071–1078. https://doi.org/10.1016/j.rmed.2012.04.007

61. Job M, Holt T, Bernard A (2017) Reducing radiotherapy waiting times for palliative patients: the role of the Advanced Practice Radiation Therapist. J Med Radiat Sci 64(4):274–280. https://doi.org/10.1002/jmrs.243

62. Job M, Holt T, Bernard A (2019) An evaluation of an advanced practice role in palliative radiation therapy. J Med Radiat Sci 66(2):96–102. https://doi.org/10.1002/jmrs.318

63. Hahn E, Livergant J, Millar B-A, Ringash J, Wong R, Dawson LA, Ward P, Cummings B, Barry A (2020) In Regard to Yerramilli et al’s “Palliative Radiotherapy for Oncologic Emergencies in the Setting of COVID-19: Approaches to Balancing Risks and Benefits”. Adv Radiat Oncol 5(4):595–596

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Francesco Cellini1,2 · Rossella Di Franco3 · Stefania Manfrida1 · Valentina Borzillo3 · Ernesto Maranzano4,5 · Stefano Pergolizzi6 · Alessio Giuseppe Morganti7,8 · Vincenzo Fusco9 · Francesco Deodato2,10 · Mario Santarelli11 · Fabio Arcidiacono12 · Romina Rossi13 · Sara Reina1 · Anna Merlotti14 · Barbara Alicia Jereczek-Fossa15,16 · Angelo Tozzi17 · Giambattista Siepe7 · Alberto Cacciola6 · Elvio Russi14 · Maria Antonietta Gambacorta1,2 · Marta Scorsetti18,19 · Umberto Ricardi20 · Renzo Corvo21,22 · Vittorio Donato23 · Paolo Muto2 · Vincenzo Valentini1,2
