ORIGINAL RESEARCH

Ticagrelor Monotherapy or Dual Antiplatelet Therapy After Drug-Eluting Stent Implantation: Per-Protocol Analysis of the GLOBAL LEADERS Trial

Felice Gragnano MD, PhD; Marcel Zwahlen, PhD; Pascal Vranckx MD, PhD; Dik Heg, PhD; Kurt Schmidlin, DMD; Christian Hamm, MD;Philippe Gabriel Steg MD, PhD; Giuseppe Gargiulo MD, PhD; Eugene P. McFadden, MD; Yoshinobu Onuma MD, PhD; Ply Chichareon, MD; Edouard Benit MD, MD; Helge Möllmann, MD; Luc Janssens, MD; Sergio Leonardi, MD, MHS; Aleksander Zurakowski MD, MD; Alessio Arrivi MD; Robert Jan Van Geuns MD, MD; Kurt Huber MD, MD; Ton Slagboom, MD; Paolo Calabrò MD, PhD; Patrick W. Serruys MD, PhD; Peter Jüni MD, MD; Marco Valgimigli, MD, PhD; Stephan Windecker MD, MD; on behalf of the GLOBAL LEADERS Investigators*

BACKGROUND: In the GLOBAL LEADERS trial, ticagrelor monotherapy beyond 1 month compared with standard antiplatelet regimens after coronary stent implantation did not improve outcomes at intention-to-treat analysis. Considerable differences in treatment adherence between the experimental and control groups may have affected the intention-to-treat results. In this reanalysis of the GLOBAL LEADERS trial, we compared the experimental and control treatment strategies in a per-protocol analysis of patients who did not deviate from the study protocol.

METHODS AND RESULTS: Baseline and postrandomization information were used to classify whether and when patients were deviating from the study protocol. With logistic regressions, we derived time-varying inverse probabilities of nondeviation from protocol to reconstruct the trial population without protocol deviation. The primary end point was a composite of all-cause mortality or nonfatal Q-wave myocardial infarction at 2 years. At 2-year follow-up, 1103 (13.8%) of 7980 patients in the experimental group and 785 (9.8%) of 7988 patients in the control group qualified as protocol deviators. At per-protocol analysis, the rate ratio for the primary end point was 0.88 (95% CI, 0.75–1.03; P=0.10) on the basis of 274 versus 325 events in the experimental versus control group. The rate ratio for the key safety end point of major bleeding was 1.00 (95% CI, 0.79–1.26; P=0.99). The per-protocol and intention-to-treat effect estimates were overall consistent.

CONCLUSIONS: Among patients who complied with the study protocol in the GLOBAL LEADERS trial, ticagrelor plus aspirin for 1 month followed by ticagrelor monotherapy was not superior to 1-year standard dual antiplatelet therapy followed by aspirin alone at 2 years after coronary stenting.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01813435.

Key Words: DAPT • intention-to-treat • P2Y12 inhibitor monotherapy • per-protocol • ticagrelor

See Editorial by Santos-Gallego et al.
Among patients undergoing coronary stent implantation, dual antiplatelet therapy (DAPT) reduces the risk of ischemic events compared with aspirin alone. However, a sustained course of DAPT increases the risk of bleeding, which may offset the anticipated ischemic benefit. The use of an abbreviated DAPT (1–3 months) followed by P2Y12 inhibitor monotherapy after percutaneous coronary intervention (PCI) has been shown to mitigate bleeding risk without apparent loss of efficacy for ischemic prevention. Among available studies, GLOBAL LEADERS is the largest trial and the only one that prespecified the superiority of ticagrelor plus aspirin for 1 month followed by ticagrelor monotherapy for 23 months compared with 1-year DAPT followed by aspirin alone for all-cause mortality or nonfatal centrally adjudicated Q-wave myocardial infarction. At intention-to-treat analysis, the experimental strategy failed to show superiority for the primary end point at 2 years (rate ratio [RR], 0.87; 95% CI, 0.75–1.01; \(P = 0.073 \)). In view of the statistical trend toward the benefit associated with the experimental strategy and the high rates of nonadherence to the allocated regimens, particularly in the experimental arm, the intention-to-treat results may have underestimated the true effect of the study treatments.\(^{15-19,22}\) In this prespecified analysis of the GLOBAL LEADERS trial, we performed a per-protocol analysis to describe the effect of ticagrelor monotherapy beyond 1 month of DAPT compared with standard antiplatelet regimens among patients who complied with the study protocol through 2-year follow-up.

METHODS

Data Sharing Statement

The statistical analysis plan and study protocol are available from the corresponding author. The GLOBAL LEADERS trial is an investigator-initiated trial. Multiple substudies are predefined. Internal investigators who actively participated in the study and provide a valid study proposal will be granted priority access to the data for 60 months. After 60 months, this option might be extended to external investigators not affiliated with the trial, whose proposed use of the data has been approved by an independent review committee identified by the steering committee. Study proposals can be filed at global.leaders@cardialyis.nl.

Study Design

This is a prespecified per-protocol analysis of the multicenter, open-label, randomized GLOBAL LEADERS trial.\(^{14,15}\) The study compared 2 antiplatelet strategies in all-comer patients undergoing PCI with uniform use of biodegradable polymer-based biolimus A9-eluting stents and procedural bivalirudin-assisted anticoagulation.\(^{14,15}\) After diagnostic coronary angiography, but before PCI, patients were randomly assigned to receive the experimental strategy, consisting of 1 month of DAPT (75–100 mg of aspirin plus 90 mg of ticagrelor twice daily) followed by 23 months of ticagrelor monotherapy, or the control strategy, consisting of 12 months of DAPT (75–100 mg of aspirin plus 75 mg of clopidogrel for chronic coronary syndromes or 90 mg of ticagrelor twice daily for acute coronary syndromes) followed by 12 months of aspirin alone. The randomization sequence was concealed via a web-based system, stratified by center and clinical presentation (acute versus chronic coronary syndromes), and blocked using randomly varied block sizes. The study adhered to the principles of the Declaration of Helsinki and Good Clinical Practice. The institutional review board at each participating institution approved the trial, and all participants provided written informed consent.
Study Patients and Procedures
The methods and intention-to-treat results of the trial have been reported previously. This per-protocol analysis was designed to quantify the treatment effect of the randomly allocated antiplatelet strategies among patients who fulfilled all enrollment criteria and did not deviate from medication decisions as planned in the study protocol—the per-protocol treatment effect. To determine patients’ eligibility, study inclusion and exclusion criteria were assessed, and patients were excluded if any violation had occurred (Table S1). As we anticipated the potential of an unblinded study in terms of drug adherence, medications were dispensed at 3-month time intervals during direct patient contact, and adherence was assessed by direct pill counts and self-reporting at discharge; 30 days; and 3, 6, 12, 18, and 24 months. Adherence counseling by the study team was the default strategy to improve adherence. The investigators systematically collected reasons for nonadherence at 30 days and at months 12 and 24. Two trained clinicians blinded to assignment group and outcomes (F.G., G.G.) independently reviewed adherence data, classified reasons for nonadherence following a hierarchical approach, and categorized the time to protocol deviation on a monthly basis according to the clinical information available in the electronic case report forms. In the case of controversy, senior investigators (S.W., M.V.) were invited to arrive at a consensus. Certain changes of medications for medical reasons were anticipated in the study protocol and were not classified as protocol deviation (Table S2). Specifically, when clinically meaningful events required or indicated the interruption of the allocated treatment (ie, adverse effects, new medical conditions), patients were not classified as protocol deviators (ie, protocol allowed). Conversely, patients qualified as protocol deviators, after a given time point, if nonadherence to study treatment occurred under the following circumstances: (1) high perceived thrombotic risk; (2) high perceived bleeding risk; (3) medical decision without evident clinical reasons; (4) patients unwilling to take study medications; (5) prescription error; (6) logistical issues; or (7) unspecified reasons. This approach is consistent with the recommendations provided by the Non-Adherence Academic Research Consortium.

Study End Points
The primary end point was a composite of all-cause mortality or new Q-wave myocardial infarction at 2 years. Deaths from any cause were ascertained without adjudication. Q-wave myocardial infarction was defined according to the Minnesota classification (new major Q-QS-wave abnormalities) or by the appearance of a new left bundle-branch block in conjunction with abnormal biomarkers. The protocol required the collection of 12-lead ECGs at discharge, 3 months, and 2 years, and intercurrently in case of revascularization or ischemic events. ECG analysis was performed in a central core laboratory (Cardialysis BV, Rotterdam, the Netherlands) with staff unaware of group assignments. Apart from new Q-wave myocardial infarction, end point events were investigator-reported. The key safety end point was site-reported Bleeding Academic Research Consortium type 3 or 5 bleeding. Other secondary end points included all-cause mortality, myocardial infarction, stroke, target vessel revascularization, definite stent thrombosis, and net adverse clinical events (NACEs). NACE was defined post hoc as the composite of all-cause death, any myocardial infarction, stroke, any revascularization, and Bleeding Academic Research Consortium type 3 or 5 bleeding. The trial was monitored for event underreporting and event definition consistency. Up to 7 on-site monitoring visits were performed at individual sites, with 20% of reported events checked against source documents.

Statistical Analysis
We performed a per-protocol analysis that accounts for the deviation of trial participants from protocol-mandated medications. We estimated and compared the occurrence of the study outcomes in the 2 trial arms as if all patients had followed the trial protocol. Using the information on recorded adverse events and protocol-mandated medications assessed at different time points during the 2-year follow-up, we defined for each participant if and when for the first time (in months after randomization) he/she was nonadherent to the study protocol. At this time point, a nonadherent participant was artificially censored. This artificial censoring introduced selection bias. We accounted for this by using time-varying censoring weights. For the calculation of the censoring weights, we restructured the data set such that each subject provided monthly observation periods. At each monthly time period, time-varying month-specific information and baseline information from the trial start was included in the data set. If a patient was no longer protocol adherent at a given month, information of all later months was no longer used for the analysis, including whether he or she experienced an event of interest. We used logistic regression for the remaining uncensored patients (at the monthly period) to calculate the censoring weights. This regression included the following baseline information: age; sex; history of diabetes, hypercholesterolemia, hypertension, stroke, myocardial infarction, vascular disease, chronic obstructive pulmonary disease, and major bleeding; coronary revascularization; alcohol consumption; smoking status; and cardiac arrest at presentation. Additionally, the regression included time-updated information on any adverse event and the number of
recorded adverse events. The data set also included whether the event of interest occurred until the end of the monthly time period for the analysis of primary and secondary outcomes. For outcome analysis, we conducted—in the monthly structured data set—a weighted pooled logistic regression including a flexible spline for the change of the monthly discrete hazard (for the analyzed outcome) and randomization group. This pooled logistic regression represents a proportional hazards model with monthly discrete hazards and the baseline hazards explicitly modeled. The results of that model can be seen as providing a common RR over the whole 2-year follow-up.26 To account for the weighting used in the analysis, robust standard errors as implemented in STATA statistical software (version 16.1; StataCorp, College Station, TX) were used to derive 95% confidence intervals (CI) and P values. P values were not adjusted for analyzing multiple end points.

RESULTS

Study Population

In GLOBAL LEADERS, 15 991 patients were recruited and randomly allocated to treatment strategies, but 23 patients withdrew consent and were excluded from data analysis. Thus, 15 968 patients remained eligible for the intention-to-treat analysis. In the experimental group, comprising 7980 patients, 795 (10.0%) and 1103 (13.8%) were classified as protocol deviators at 1-year and 2-year follow-up, respectively. In the control group, consisting of 7988 patients, 523 (6.5%) and 785 (9.8%) patients deviated from the protocol at 1-year and 2-year follow-up, respectively (Figure 1 and Table S3). Reasons for changing study medications determining protocol deviation are detailed in Table S4. The proportion of patients deviating from the study protocol differed between groups and was greater in the experimental than the control group through the entire follow-up period. This difference emerged early and was maintained with slight variation over time, amounting to 4% on an absolute scale at 2-year follow-up.

Baseline Characteristics

Tables 1 and 2 summarize the baseline and procedural characteristics of the study population and protocol deviators at 1-year and 2-year follow-up. In the experimental group, compared with the overall randomized group, protocol deviators were ≈2 years older and

![Figure 1](https://example.com/figure1.png)

Figure 1. Distribution of protocol deviators and nondeviators in GLOBAL LEADERS at 2 years. **A.** Design of the GLOBAL LEADERS trial. **B.** Time trend of protocol deviators (bar graphs), nondeviators (lines), and deaths (bar graphs) at 2 years stratified by treatment strategy. ACS indicates acute coronary syndrome; CCS, chronic coronary syndrome; DAPT, dual antiplatelet therapy; and R, randomization.
Table 1. Baseline Characteristics of the Overall Study Population and Protocol Deviators

	Experimental treatment group	Control group						
	Overall randomized patients (n=7980)	Protocol deviators at month 12* (n=9795)	Protocol deviators at month 24* (n=1103)	P value				
	Protocol deviators at month 12* (n=9795)	Protocol deviators at month 24* (n=1103)	Protocol deviators at month 12* (n=523)	Protocol deviators at month 24* (n=785)	P value			
Age, y	64.5 (10.3)	66.2 (10.4)	66.2 (10.4)	<0.001	64.6 (10.3)	66.4 (10.6)	66.3 (10.5)	<0.001
Male sex	6115 (76.6)	574 (72.2)	823 (74.6)	0.004	6139 (76.9)	384 (73.4)	591 (75.3)	0.13
Female sex	1865 (23.4)	221 (27.8)	280 (25.4)	0.78	1849 (23.1)	139 (26.6)	194 (24.7)	
Body mass index, kg/m²	28.2 (4.6)	28.1 (4.7)	28.2 (4.6)	0.78	28.2 (4.6)	28.1 (4.8)	28.2 (4.7)	0.86
Medical history								
Diabetes	2049 (25.7)	226 (28.4)	295 (26.7)	0.13	1989 (24.9)	133 (25.4)	212 (27.0)	0.10
Insulin-dependent	606 (7.6)	75 (9.4)	95 (8.6)	0.11	617 (7.7)	29 (5.5)	64 (8.2)	<0.001
Hypertension	5882 (73.7)	585 (73.6)	813 (73.7)	0.91	5833 (73.0)	382 (73.0)	581 (74.0)	0.46
Hypercholesterolemia	5345 (67.0)	523 (65.8)	733 (66.5)	0.73	5423 (67.9)	335 (64.1)	538 (68.5)	0.003
Current smoker	2066 (25.9)	193 (24.3)	280 (25.4)	0.46	2103 (26.3)	117 (22.4)	173 (22.0)	0.021
Peripheral vascular disease	476 (6.0)	60 (7.5)	78 (7.1)	0.12	529 (6.6)	51 (9.8)	90 (11.5)	<0.001
COPD	404 (5.1)	57 (7.2)	74 (6.7)	0.012	417 (5.2)	37 (7.1)	54 (8.9)	0.076
Previous major bleeding	46 (0.6)	7 (0.9)	9 (0.8)	0.48	52 (0.7)	3 (0.6)	4 (0.5)	0.96
Impaired renal function†	1099 (13.8)	131 (16.5)	179 (16.2)	0.011	1072 (13.4)	89 (17.0)	126 (16.1)	0.035
Previous stroke	210 (2.6)	20 (2.5)	29 (2.6)	0.87	211 (2.6)	20 (3.6)	28 (3.6)	0.16
Previous myocardial infarction	1831 (22.9)	206 (25.9)	278 (25.2)	0.10	1879 (23.5)	127 (24.3)	206 (26.2)	0.034
Previous PCI	2609 (32.7)	284 (35.7)	385 (34.9)	0.15	2612 (32.7)	165 (31.5)	291 (37.1)	<0.001
Previous CABG	448 (5.6)	69 (8.7)	95 (8.6)	<0.001	496 (6.2)	44 (8.4)	78 (9.9)	<0.001
Clinical presentation								
Stable coronary artery disease	4230 (53.0)	451 (56.7)	611 (55.4)	0.085	4251 (53.2)	199 (38.0)	423 (53.9)	<0.001
Acute coronary syndrome	3'550 (47.0)	344 (43.3)	492 (44.6)	0.085	3'737 (46.8)	324 (62.0)	362 (46.1)	0.085
Unstable angina	1004 (12.6)	88 (11.1)	124 (11.2)	0.24	1018 (12.7)	101 (19.3)	114 (14.5)	<0.001
NSTEMI	1684 (21.1)	159 (20.0)	229 (20.8)	0.42	1689 (21.1)	153 (29.3)	174 (22.2)	<0.001
STEMI	1062 (13.3)	97 (12.2)	139 (12.6)	0.62	1030 (12.9)	70 (13.4)	74 (9.4)	<0.001

Data are n/N (%) or mean (SD) unless otherwise specified. P values are based on analyzing 3 mutually exclusive groups of never deviators, deviators during the first 12 months, and deviators during 13–24 months. CABG indicates coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; NSTEMI, non–ST-segment–elevation myocardial infarction; PCI, percutaneous coronary intervention; and STEMI, ST-segment–elevation myocardial infarction.

*Alive at given month.
†Defined as an estimated glomerular filtration rate of creatinine clearance of <60 mL/min per 1.73 m² based on the Modification of Diet in Renal Disease formula.
Table 2. Procedural Characteristics of the Overall Study Population and Protocol Deviators

	Experimental treatment group	Control group	P value	Experimental treatment group	Control group	P value		
	Overall randomized patients (n=7980)	Protocol deviators at month 12* (n=795)	Protocol deviators at month 24* (n=1163)	Overall randomized patients (n=7988)	Protocol deviators at month 12* (n=523)	Protocol deviators at month 24* (n=785)	P value	
PCI done	7943 (99.5)	769 (96.7)	1078 (97.7)	<0.001	7940 (99.4)	501 (95.8)	760 (96.8)	<0.001
Vascular access site	n=7943	n=769	n=1078		n=7940	n=501	n=760	
Radial	5872 (73.9)	503 (65.4)	715 (66.3)	<0.001	5889 (74.2)	363 (72.5)	543 (71.5)	0.042
Femoral	2090 (26.3)	265 (34.5)	365 (33.9)	<0.001	2072 (26.1)	143 (28.5)	222 (29.2)	0.034
Brachial	46 (0.6)	4 (0.5)	4 (0.4)	0.035	47 (0.6)	0 (0.0)	3 (0.4)	0.11
Lesions treated per patient	n=7907	n=752	n=1061		n=7911	n=494	n=752	
1 lesion	5895 (74.5)	558 (74.2)	783 (73.8)	0.51	5910 (74.7)	365 (73.9)	552 (73.4)	0.79
2 lesions	1618 (20.5)	164 (21.8)	231 (21.8)		1569 (19.8)	100 (20.2)	157 (20.9)	
≥3 lesions	394 (5.0)	30 (4.0)	47 (4.4)		432 (5.5)	29 (5.9)	43 (5.7)	
Treated lesions	n=10 403	n=981	n=1394		n=10 438	n=658	n=1004	
Left main coronary artery	197 (1.9)	18 (1.8)	28 (2.0)	0.74	190 (1.8)	9 (1.4)	23 (2.3)	<0.001
Left anterior descending artery	4283 (41.2)	397 (40.5)	563 (40.4)		4383 (42.0)	274 (41.6)	407 (40.5)	
Left circumflex artery	2524 (24.2)	244 (24.3)	342 (24.5)		2533 (24.5)	156 (23.7)	248 (24.7)	
Right coronary artery	3264 (31.6)	307 (31.3)	440 (31.6)		3206 (30.7)	204 (31.0)	302 (30.1)	
Bypass graft	115 (1.1)	15 (1.5)	21 (1.5)		106 (1.0)	15 (2.3)	24 (2.4)	
Stented lesions at index PCI	n=10 241	n=953	n=1362		n=10 283	n=642	n=982	
Mean stents per lesion	1.2 (0.5)	1.2 (0.5)	1.2 (0.5)	0.87	1.2 (0.5)	1.2 (0.5)	1.2 (0.5)	0.76
Biolimus A9-eluting stent	9708 (94.8)	911 (95.6)	1297 (95.2)	0.50	9707 (94.4)	610 (95.0)	923 (94.0)	0.082
Other stent	654 (6.4)	56 (5.9)	82 (6.0)	0.74	685 (6.7)	43 (6.7)	74 (7.5)	0.12
Mean total stent length per lesion	24.8 (13.9)	24.6 (13.9)	24.4 (13.9)	0.078	24.8 (14.0)	24.4 (13.6)	24.1 (13.3)	0.26
Mean stent diameter per lesion	3.0 (0.5)	3.0 (0.5)	3.0 (0.5)	0.28	3.0 (0.5)	3.0 (0.5)	3.0 (0.5)	0.17
Direct stenting per lesion	3334 (32.6)	303 (31.8)	426 (31.3)	0.39	3350 (32.6)	201 (31.3)	285 (31.0)	0.007
Bifurcation per lesion	1251/10 403 (12.0)	97/981 (9.9)	134/1394 (6.6)	0.021	1265/10 438 (12.1)	82/658 (12.5)	124/1004 (12.4)	0.92
Thrombus aspiration done per lesion	483/10 403 (4.6)	36/981 (3.7)	56/1394 (4.0)	0.30	551/10 438 (5.3)	38/658 (5.8)	41/1004 (4.1)	0.003

Data are n/N (%) or mean (SD) unless otherwise specified. P values are based on analyzing 3 mutually exclusive groups of never deviators, deviators during the first 12 months, and deviators during 13–24 months. PCI indicates percutaneous coronary intervention. *Alive at given month.
more frequently women; had more often a history of chronic obstructive pulmonary disease, chronic kidney disease, and coronary artery bypass grafting; and underwent more often elective rather than urgent/emergent coronary stenting. In the control group, compared with the overall randomized group, protocol deviators were also older but did not differ with respect to sex; showed more frequently a history of peripheral artery disease, chronic obstructive pulmonary disease, chronic kidney disease, and myocardial infarction; reported a higher prevalence of prior coronary revascularization; and underwent coronary stenting more often for acute than chronic coronary syndromes.

Clinical Outcomes

At 2-year follow-up, after censoring patients at the time they deviated from the study protocol, a primary end point event had occurred in 274 patients in the experimental group and 325 patients in the control group, resulting in a per-protocol RR of 0.88 (95% CI, 0.75–1.03; \(P = 0.10 \)) (Figure 2 and Table 3). Based on 202 and 239 deaths from any cause in the experimental and control groups, respectively, the per-protocol RR for mortality was 0.86 (95% CI, 0.72–1.04; \(P = 0.12 \)) (Figure 3). Based on 138 versus 142 Bleeding Academic Research Consortium type 3 or 5 bleeding events in the experimental versus control group, the per-protocol RR was 1.00 (95% CI, 0.79–1.26; \(P = 0.99 \)). A total of 1002 and 1148 NACEs occurred in the experimental and control groups, respectively, resulting in a per-protocol RR of 0.90 (95% CI, 0.83–0.97; \(P = 0.008 \)). The per-protocol RR of target vessel revascularization was in favor of the experimental strategy. In contrast, the RRs of myocardial infarction, stroke, and definite stent thrombosis did not differ significantly between study groups (Table 3).

The per-protocol and intention-to-treat treatment effect estimates for primary and secondary study end points were overall consistent (Table 3). Because of the artificial censoring of protocol deviators, the number of end point events counted in the per-protocol analysis was lower than the intention-to-treat analysis, resulting in a slightly wider 95% CI, yet similar point estimates for the treatment effects.

DISCUSSION

In this per-protocol analysis of the GLOBAL LEADERS, we assessed the per-protocol effect of ticagrelor combined with aspirin for 1 month followed by ticagrelor monotherapy compared with standard

Figure 2. Per-protocol and intention-to-treat effect of ticagrelor monotherapy from 1 month vs standard antiplatelet regimens after coronary stent implantation.

Among patients who complied with the study protocol in the GLOBAL LEADERS, ticagrelor plus aspirin for 1 month followed by ticagrelor monotherapy was not superior to 1-year standard DAPT followed by aspirin alone 2 years after coronary stenting. The per-protocol and intention-to-treat effect estimates were overall consistent. ACS indicates acute coronary syndrome; ASA, acetylsalicylic acid; bid, bis in die (twice daily); CCS, chronic coronary syndrome; and DAPT, dual antiplatelet therapy.
antiplatelet therapy after drug-eluting stent implanta-
tion in patients who complied with the study protocol
at the time of 2-year follow-up. The main findings are
the following:

1. The proportion of patients deviating from the study
protocol was greater in the experimental group
(13.8%) than in the control group (9.8%). This dif-
cference emerged early, was maintained over time,
and amounted to 4% at 2 years.

2. In general, protocol deviators were older; had more
often a history of cardiovascular, renal, and pulmo-
nary disease; and reported a higher prevalence of
prior coronary revascularization compared with the
overall randomized population.

3. After censoring data from protocol deviators, the fre-
cuency of the primary end point of all-cause mor-
tality or new Q-wave myocardial infarction did not
differ significantly between study groups; the same
effect was observed for the key safety end point of
investigator-reported major bleeding. Yet the ex-
perimental strategy significantly reduced the rate of
NACEs in the per-protocol analysis.

4. The per-protocol and intention-to-treat treatment ef-
cfect estimates for the primary and secondary end
points were consistent. Due to the lower number

Table 3. Clinical Outcomes in the Intention-to-Treat and Per-Protocol Analysis of the GLOBAL LEADERS Trial at 2 Years

	Intention-to-treat analysis (Lancet 2018)	Per-protocol analysis	
	No. of events experimental/control groups	Rate ratio (95% CI)	P value
Primary end point*	304/349	0.87 (0.75–1.01)	0.073
All-cause mortality	224/253	0.88 (0.74–1.06)	0.18
Myocardial infarction	248/250	1.00 (0.84–1.19)	0.98
Stroke	80/82	0.98 (0.72–1.33)	0.90
Target vessel revascularization	389/442	0.88 (0.77–1.01)	0.068
Definite stent thrombosis	64/64	1.00 (0.71–1.42)	0.98
BARC type 3 or 5 bleeding	163/169	0.97 (0.78–1.20)	0.77
NACE†	1145/1237	0.92 (0.85–1.00)	0.057

	No. of events experimental/control groups	Rate ratio (95% CI)	P value
Primary end point*	274/325	0.88 (0.75–1.03)	0.10
All-cause mortality	202/239	0.86 (0.72–1.04)	0.12
Myocardial infarction	207/225	0.94 (0.78–1.13)	0.49
Stroke	69/71	1.00 (0.72–1.40)	0.96
Target vessel revascularization	341/420	0.83 (0.72–0.96)	0.010
Definite stent thrombosis	53/59	0.90 (0.62–1.30)	0.57
BARC type 3 or 5 bleeding	138/142	1.00 (0.79–1.26)	0.99
NACE†	1002/1148	0.90 (0.83–0.97)	0.008

In 8 participants, vital status information was not available at 2 years, and they were censored at the last available month. BARC indicates Bleeding Academic Research Consortium; and NACE, net adverse clinical event.

*The primary end point was the composite of all-cause mortality and new Q-wave centrally adjudicated myocardial infarction.

†NACE end point included death, any myocardial infarction, stroke, or any revascularization.

Figure 3. Cumulative incidence of all-cause mortality at 2 years in the per-protocol population.

RR indicates rate ratio.
of events, CIs appeared slightly wider in the per-protocol analysis.

The intention-to-treat analysis of the GLOBAL LEADERS trial showed that the experimental treatment was not superior to the control treatment in the prevention of all-cause mortality or new Q-wave myocardial infarction 2 years after PCI. Yet, the RR estimate of the primary end point showed a nonsignificant trend toward the benefit with the experimental strategy, with the upper boundary of the 95% CI being close to the unit. The intention-to-treat principle represents the gold standard for randomized trial analysis to minimize the risk of bias, but it carries some drawbacks. First, this analytical approach offers an estimate of the effect of the treatment assignment—and not of the treatment itself. Second, this strategy is agnostic about postrandomization decisions. Third, it may be affected by incomplete adherence to treatment, particularly if differences across groups exist. Therefore, the uncritical reliance on the intention-to-treat results may be problematic and potentially misleading. In the GLOBAL LEADERS, a considerable proportion of participants did not adhere to the study treatment, particularly in the experimental arm. In this scenario, the intention-to-treat analysis might have underestimated the true treatment effect of the experimental strategy, potentially biasing trial results and interpretation.

We performed a per-protocol analysis of the trial to evaluate the effect of the treatment strategies in patients who had adhered to the protocol—the so-called per-protocol effect. As a consequence of the observational nature of any per-protocol analysis, the validity of the per-protocol effect estimates requires proper adjustment for confounding. For this reason, we refrained from conducting a naive per-protocol analysis (ie, with no adjustment), which has been previously reported for other clinical trials but relies on incorrect assumptions and leads to biased conclusions. We performed an adjusted per-protocol analysis using an inverse-probability weighting model to account for prognostic factors that predicted adherence and provide robust effect estimates. After censoring information from protocol deviators and implementing an extensive adjustment model for pre- and postrandomization confounding, the experimental strategy was not superior to the control strategy for the prevention of all-cause mortality or new Q-wave myocardial infarction at 2 years. These findings lend support to the validity of the initial trial results and interpretation. The per-protocol and intention-to-treat effect estimates for the primary and secondary end points were overall consistent and CIs largely overlapping. This is in line with other trials comparing P2Y12 inhibitor monotherapy and standard DAPT after PCI, in whom per-protocol analyses were confirmatory of the intention-to-treat findings.

At variance from the intention-to-treat estimates, the rate of NACEs was significantly lowered with the experimental strategy in the per-protocol population. In view of the neutral results for the primary end point, the post hoc definition of this end point, and the multiple comparisons for secondary end points, these findings should be interpreted cautiously. In general, these results appear supportive although nonconclusive for the use of ticagrelor monotherapy shortly after coronary stenting and consistent with those from other studies investigating P2Y12 inhibitor monotherapy on composite end points of ischemic and bleeding events.

This per-protocol analysis also addressed the criticism regarding a relatively high rate of nonadherence to the experimental strategy in the GLOBAL LEADERS trial. In a previous though incomplete adherence sub-analysis of the trial, comprising about half of the study population, nonadherence to treatment amounted to 22% in the experimental group and 7% in the control group throughout 2 years, which appeared high but comparable to previous trials investigating ticagrelor for coronary, cerebral, or peripheral artery disease. As the trial protocol allowed study drug interruption if clinically indicated, treatment discontinuation did not invariably qualify as a protocol deviation. Accordingly, to select the per-protocol population, we scrutinized adherence information in the overall study cohort and classified participants as protocol deviators if they prematurely interrupted treatment without apparent clinical reasons. We found that the proportion of protocol deviators in the experimental arm was 13.8% at 2 years, suggesting that a relevant proportion of patients in this group discontinued treatment for clinically meaningful reasons rather than for discretionary compliance to the protocol. At the same time point, the rate of protocol deviators in the control group was 9.8% and close to our previous estimates. These findings suggest that the proportion of patients deviating from the trial protocol in the 2 study groups was similar and rather modest. The observed difference in frequency of protocol deviators between the experimental and control groups was relatively low (about 4% through 2-year follow-up) and therefore had a negligible impact on trial results. The differences in adherence are possibly related to the fact that aspirin historically constitutes the default therapy for patients with coronary artery disease, while the experimental strategy has not been established yet. Protocol deviation in the experimental arm, but not in the control group, occurred more frequently among women, who may derive a greater benefit from P2Y12 inhibitor monotherapy compared with DAPT. In the context of an open-label trial, these findings may indicate a sex disparity in adhering to study protocols or managing experimental therapies, possibly attributable to the differential behaviors of study personnel, treating physicians, patients, or their relatives. These
data deserve attention and warrant further investigations to view the potential implications for clinical research and practice.

Limitations of the GLOBAL LEADERS trial also apply to this prespecified per-protocol analysis and have to be considered. This was an open-label trial, and thus patients and investigators were not masked to the treatment strategy. As potential issues in adherence related to the open label were anticipated, adherence was systematically assessed by direct pill counts and self-reporting, and the study team performed counseling to improve adherence. Deviation from the study protocol was categorized and analyzed on a monthly basis. The secondary end point events were investigator reported and not centrally adjudicated. However, the trial was monitored for event underreporting and basis. The secondary end point events were investigated and analyzed on a monthly protocol was categorized and analyzed on a monthly basis. The secondary end point events were not adjusted for multiplicity. Finally, per-protocol analysis of randomized trials are observational studies and can be challenged by confounding.

In conclusion, among patients who complied with the study protocol in the GLOBAL LEADERS trial, ticagrelor combined with aspirin for 1 month followed by ticagrelor monotherapy for 23 months was not superior to 1-year standard DAPT followed by aspirin alone in the prevention of all-cause mortality or new Q-wave myocardial infarction at 2 years after drug-eluting coronary stent implantation. The per-protocol and intention-to-treat treatment effect estimates provided consistent results for primary and secondary end points, though CIs were slightly wider in the per-protocol analysis because of the lower number of events.

APPENDIX

GLOBAL LEADERS Investigators

Mohamed Abdellaoui, David Adlam, Ibrahim Akin, Agustin Albarran Gonzalez-Trevilla, Manuel Almeida, Pedro Alves Lemos Neto, Adel Aminian, Richard Anderson, Rick Andreae, Michael Angioli, Taku Asano, Emanuele Barbato, Peter Barlis, Pascal Barraud, Edouard Benit, Olivier Bertrand, Farzin Beygui, Leonardo Bolognese, Roberto Botelho, Coby Bouwman, Marco Bressers, Philippe Brunel, Pawel Buszman, Ian Buysschaert, Pedro Canas da Silva, Didier Carrie, Angel Cequier, Phy Chichareon, Chun Chin Chang, Saqib Chowdhary, Carlos Collet, Antonio Colombo, James Cotton, Rui Cruz Ferreira, Salvatore Curello, Nick Curzen, Judith de Bot, Tone de Vreede, Georg Delle Karth, Lyn Dijskstra, Marcello Dominici, István Édes, Eric Eckhout, Ingo Eitel, József Faluközy, Farzin Fath-Ordoubadi, Maurizio Ferrario, Geza Fontos, Jose Francisco Diaz, Edgard Freitas Quintella, Bernhard Frey, Guy Friedrich, Gavin Galasko, Grzegorz Galusza, Vasco Gama Ribeiro, Scot Garg, Giuseppe Gargiulo, Tobias Geisler, Valeri Gelev, Art Ghandilyan, Javier Goicolea, Tommaso Gori, Felice Gragnano, Ana Guimarães, Christian Hamm, Michael Haude, Dik Heg, Pieter Heijke, Rosa Ana Hernández Antolin, David Hildick-Smith, Dorien Hillen, Ina Hoekman, Sjoerd Hofma, Lene Holmvang, Stephen Hoole, Iván Horváth, Kurt Huber, Annemarie Hugense, Karim Ibrahim, Andres Iñiguez, Karl Isaaz, Zoltán Jambrik, Luc Janssens, Pavel Jasonowicz, Judith Jonk, Werner Jung, Peter Jüni, Yuki Katagiri, Norihiro Kogame, Tian Hai Koh, René Koning, Mariana Konteva, Zsolt Köszegi, Florian Krackhardt, Yvonne Kreuger, Neville Kukreja, Boudijn Ladan, Pierre Lantelme, Sergio Leandro, Gregor Leibundgut, Christoph Liebetrau, Wietze Lindeboom, Carlos Macaya Miguel, François Mach, Michael Magro, Luc Maillard, Negar Manavifar, Laura Mauri, Eugene McFadden, Bela Merkely, Yusuke Miyazaki, Adam Mlodziankowski, Tiziano Moccetti, Rodrigo Modolo, Helge Möllman, Jean-François Morelle, Aris Moschovitis, Michael Munndt Ottesen, Martin Muurling, Christoph Kurt Naber, Franz-Josef Neumann, Keith Oldroyd, Paul Ong, Yoshinobu Onuma, Sanne Palsrok, Ivo Petrov, Sylvain Plante, Janusz Prokopczuk, Tessa Rademaker-Havinga, Christopher Raffel, Benno Rensing, Marco Rotti, Kees-Jan Royaards, Manel Sabate, Volker Schächinger, Tim Seidler, Antonio Serra Peñaranda, Patrick Serruys, Lali Sikarulidze, Ton Slagboom, Osamu I Soliman, Amanda Sousa, Ernest Splitzer, Rod Stables, Gabriel Steg, Clemens Steinwender, Eduardas Subkovas, Harry Suryaprana, Kuniaki Takahashi, Sunee Talwar, Emmanuel Teiger, Addy Ter Weele, Eva Teurlings, Attila Thury, Jan Tijskens, Gincho Tonev, Diana Trendafoiva-Lazarova, Carlo Turnscitz, Victor Umans, Imre Ungi, Veselin Valkov, Pim van der Harst, Robert Jan van Geuns, Cokky van Meijeren, Dobrin Vassilev, Vesel Velchev, Esther Velthuizen, Freek Verheugt, Natalia Vlcek, Jürgen Vom Dahl, Mathias Vrolix, Simon Walsh, Nikos Werner, Stephan Windecker, Maarten Wilsenborg, Azfar Zaman, Krzysztof Żmudka, Bernhard Zrenner, Aleksander Zurakowski, Robert Zweiker.

ARTICLE INFORMATION

Received October 10, 2021; accepted January 26, 2022.

Affiliations

Department of Cardiology, Inselspital, University of Bern, Switzerland (F.G., S.W.); Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy (F.G., P.C.); Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland (M.Z., K.S.); Department of Cardiology and Critical Care Medicine, Hartcentrum Hasselt, Jessa ziekenhuis, Hasselt, Belgium (P.V.); Faculty of Medicine and Life Sciences, University of Hasselt, Hasselt, Belgium (P.V.); Clinical Trials Unit, University of Bern, Bern, Switzerland (D.H.); Heart Center, Campus Kerckhoff of Justus-Liebig-University, Giessen, Germany (C.H.); German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Germany (C.H.); Université de Paris, French Alliance for Cardiovascular Trials AP-H, Hôpital Bichat, Institut National de la Santé et de la Recherche Médicale UMR1148, Paris, France (P.G.S.); Department of Advanced Biomedical Sciences, Federico II
University of Naples, Naples, Italy (G.G.); Cardiology Core Laboratories and Clinical Trial Management, Rotterdam, the Netherlands (E.P.M.); Department of Cardiology, Cork University Hospital, Cork, Ireland (E.P.M.); Department of Cardiology, National University of Ireland Galway, Galway, Ireland (Y.O.); Department of Internal Medicine, Faculty of Medicine, Cardiology Unit, Prince of Songkla University, Songkhla, Thailand (P.C.); Department of Cardiology, Jessa Hospital, Hasselt, Belgium (E.B.); Department of Cardiology, St. Johannes Hospital, Dortmund, Germany (H.M.); Heart Center, Imelda Ziekenhuis, Bonheiden, Belgium (L.J.); University of Pavia and Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (S.L.); Andrezj Frycz Modrzeniecki Krakow University, Krakow, Poland (A.Z.); American Heart of Poland, Chrzanow, Poland (A.Z.); Department of Cardiology, Azienda Ospedaliera S. Maria, Terni, Italy (A.A.); Department of Cardiology, Radboudumc, Nijmegen, the Netherlands (P.J.V.G.); Wilhelmshospital, III Department of Medicine, Cardiology and Intensive Care Medicine (K.H.) and Medical Faculty, Sigmund Freud University, (K.H.), Vienna, Austria; Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands (T.S.); National Heart and Lung Institute, Imperial College London, London, United Kingdom (P.W.S.); Department of Cardiology, National University of Ireland, Galway, Ireland (P.W.S.); Department of Medicine, Applied Health Research Centre, Li Ka Shing Knowledge Institute of St Michael’s Hospital, University of Toronto, Ontario, Canada (P.J.); and Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, Lugano, Switzerland (M.V.).

Acknowledgments
The corresponding author had full access to the data in the study and had final responsibility for the decision to submit for publication.

Sources of Funding
GLOBAL LEADERS is an investigator-initiated trial sponsored by the European Clinical Research Institute (www.ECR-trials.com), which received funding from 1 device (Biosensors International Ltd, Europe) and 2 drug manufacturers (Astra Zeneca, Cambridge, United Kingdom; The Medicines Company, Parsippany, NJ). The study funders had no role in trial design; data collection; analysis; interpretation of the data; or preparation, approval, or making the decision to submit the manuscript for publication. The authors received no funding for the present subanalysis of GLOBAL LEADERS.

Disclosures
Dr Windecker reports research and educational grants to the institution from Abbott, Amgen, Astra Zeneca, BMS, Bayer, Biotronik, Boston Scientific, Cardinal Health, CardioValve, CSL Behring, Daiichi Sankyo, Edwards Lifesciences, Guerbet, InfraRedx, Johnson & Johnson, Medicinec, Medtronic, Novartis, Polares, OrPha Suisse, Pfizer, Regeneron, Sanofi-Aventis, Sinomed, Terumo, and V-Wave. Stephan Windecker serves as an unpaid advisory board member or unpaid member of the steering/executive group of trials funded by Abbott, AboMed, Amgen, Astra Zeneca, Bayer, BMS, Boston Scientific, Biotronik, Cardiovalve, Edwards Lifesciences, Medtronic, Medtronic, Novartis, Polares, Sanofi, Zeltis, but has not received personal payments by pharmaceutical companies or device manufacturers. He is also member of the steering/executive committee group of several investigator-initiated trials that receive funding by industry without impact on his personal remuneration. Dr Vranckx reports personal fees from Daiichi Sankyo, Bayer AG, and CLS Behring outside the context of the published work. Dr Leonardi reports personal funding for advisory board participation from AstraZeneca, Chiesi, Bayer, BMS-Pfizer, Sanofi, and ICON. He also reports research funding from AstraZeneca. Dr Heg is affiliated with CTU Bern, University of Bern, which has a staff policy of not accepting honoraria or consultancy fees. However, CTU Bern is involved in design, conduct, or analysis of clinical studies funded by not-for-profit and for-profit organizations. In particular, pharmaceutical and medical device companies provide direct funding to some of these studies. For an up-to-date list of CTU Bern’s conflicts of interest see http://www.ctu.unibe.ch/research/declaration_of_interest/index_eng.html.

Dr Steg reports research grants from Amarin, Bayer, Sanofi, and Servier; served as a member of the steering/executive group of trials funded by Amarin, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Idorsia, Novartis, Pfizer, Sanofi, and Servier; and was a consultant/speaker for Amgen, BMS/Myxodard, Novo-Nordisk, and Regeneron. He is senior associate editor of Circulation. Dr Gargiulo reports consultant fees from Daiichi Sankyo. Dr Huber has received lecture and consultation fees from AstraZeneca. Dr McFadden received honorarium from Cardiagnosis for the ECG Core laboratory analysis. The remaining authors have no disclosures to report.

Supplemental Material

Tables S1–S4

REFERENCES
1. Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, Jüni P, Kasprati A, Koh P, Mauri L, et al. ESC Scientific Document Group; ESC Committee for Practice Guidelines (CPG); ESC National Cardiac Societies. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease in collaboration with EACTS. Eur J Cardiothorac Surg. 2018;53:334–78. doi: 10.1093/ejcts/ezx334
2. Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, Granger CB, Lange RA, Mack MJ, Mauri L, et al. 2016 ACC/AHA guidance line focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/ATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACC/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on periprocedural cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation. 2016;134:e123–e155. doi: 10.1161/CIR.0000000000000404
3. Gargiulo G, Esposito G, Avvedimento M, Nagler M, Minuz P, Campo G, Gragnano F, Manavifar N, Picollo R, Tebaldi M, et al. Cangrelor, tirolibian, and chewed or standard prasugrel regimens in patients with ST-segment-elevation myocardial infarction: preliminary results of the FABOLUS-FASTER trial. Circulation. 2020;142:441–454. doi: 10.1161/CIRCULATIONAHA.120.046926
4. Valgimigli M, Costa F, Lokhnygina Y, Clare RM, Wallentin L, Molteno DJ, Armstrong PW, White HD, Held C, Aylward PE, et al. Trade-off of myocardial infarction vs. bleeding types on mortality after acute coronary syndrome: lessons from the Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome (TRACER) randomized trial. Eur Heart J. 2017;38:804–810. doi: 10.1093/eurheartj/ehw525
5. Corpatxus N, Spirtio A, Gragnano F, Vaisnora L, Galea R, Svab S, Gargiulo G, Zanchin C, Sionts GCM, et al. Validation of high bleeding risk criteria and definition as proposed by the academic research consortium for high bleeding risk. Eur Heart J. 2020;41:3743–3749. doi: 10.1093/eurheartj/ehaa671
6. Ueki Y, Bär S, Losdat S, Otuka T, Zanchin C, Zanchin T, Gragnano F, Gargiulo G, Sionts GCM, Praz F, et al. Validation of the Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria in patients undergoing percutaneous coronary intervention and comparison with contemporary bleeding risk scores. EuroIntervention. 2020;16:371–379. doi: 10.4244/EIJ-d-20-00052
7. Gragnano F, Spirtio A, Corpatxus N, Vaisnora L, Galea R, Gargiulo G, Sionts GCM, Praa F, Lanz J, et al. Sex-based differences in clinical presentation on bleeding risk after percutaneous coronary intervention and implications for the ARC-HBR definition. EuroIntervention. 2021;17:e898–e909. doi: 10.2444/EIJ-D-21-00181
8. Spirtio A, Gragnano F, Corpatxus N, Vaisnora L, Galea R, Svab S, Gargiulo G, Sionts GCM, Praz F, Lanz J, et al. Sex-based differences in bleeding risk after percutaneous coronary intervention and implications for the Academic Research Consortium high bleeding risk criteria. J Am Heart Assoc. 2021;10:e021965. doi: 10.1161/JAHA.121.021965
9. Mehran R, Baber U, Sharma SK, Cohen DJ, Angiolillo DJ, Briguori C, Cha JY, Collier T, Dansa G, Dudek D, et al. Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med. 2019;381:2032–2042. doi: 10.1056/NEJMoa1808419
10. Windecker H, Domei T, Morimoto T, Natsuaki M, Shiomi H, Toyota T, Ohya M, Suwa S, Takagi K, Nanatsuto M, et al. Effect of 1-month antiplatelet therapy followed by clopidogrel versus 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI. JAMA. 2019;321:2414. doi: 10.1001/jama.2019.8145
11. Hahn J-Y, Song YB, Oh J-H, Chun JW, Park YH, Jang JW, Im E-S, Jeong J-O, Cho BR, Oh SK, et al. Effect of P2Y12 Inhibitor monotherapy
vs dual antiplatelet therapy on cardiovascular events in patients undergoing percutaneous coronary intervention. JAMA. 2019;321:2428. doi: 10.1001/jama.2019.8146

12. Kim B-K, Hong S-J, Cho Y-H, Yun KH, Kim YH, Suh Y, Cho JY, Her A-Y, Cho S, Jeon DW, et al. Effect of ticagrelor monotherapy vs ticagrelor with aspirin on major bleeding and cardiovascular events in patients with acute coronary syndrome. JAMA. 2020;323:2407. doi: 10.1001/jama.2020.7580

13. Valgimigli M, Gragnano F, Branca M, Franzone A, Barber U, Jang Y, Kimura T, Hahn J-Y, Zhao Q, Windecker S, et al. P2Y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularization: individual patient level meta-analysis of randomized controlled trials. BMJ. 2021;373:n1332. doi: 10.1136/bmj.n1332

14. Vranckx P, Valgimigli M, Windecker S, Steg P, Hamm C, Jüni P, Garcia-Garcia H, van Es G, Serruys P. Long-term ticagrelor monotherapy versus standard dual antiplatelet therapy followed by aspirin monotherapy in patients undergoing biolimus-eluting stent implantation: rationale and design of the GLOBAL LEADERS trial. EuroIntervention. 2016;12:1239–1245. doi: 10.4244/EIJY15M11_07

15. Vranckx P, Valgimigli M, Jüni P, Hamm C, Steg PG, Heg D, van Es GA, McFadden EP, Onuma Y, van Meijeren C, et al. GLOBAL LEADERS Investigators. Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomised superiority trial. Lancet. 2018;392:940–949. doi: 10.1016/S0140-6736(18)31658-0

16. Gragnano F, Heg D, Franzone A, McFadden EP, Leonardi S, Piccolo R, Vranckx P, Branca M, Serruys PW, Benet E, et al. PRECISE-DAPT score for bleeding risk prediction in patients on dual or single antiplatelet regimens: insights from the GLOBAL LEADERS and GLASSY. Eur Heart J Cardiovasc Pharmacother. 2022;8:28–38. doi: 10.1093/ehjcvp/pvaat106

17. Serruys PW, Takahashi K, Chichareon P, Kogame N, Torniani M, Modolo R, Chang CC, Komiyama H, Soliman O, Wykrzykowska JJ, et al. Impact of long-term ticagrelor monotherapy following 1-month dual antiplatelet therapy in patients who underwent complex percutaneous coronary intervention: insights from the Global Leaders trial. Eur Heart J. 2019;40:2595–2604. doi: 10.1093/eurheartj/ehz453

18. Takahashi K, Serruys PW, Chichareon P, Chang CC, Torniani M, Modolo R, Kogame N, Magro M, Chowdhary S, Ettel I, et al. Efficacy and safety of ticagrelor monotherapy in patients undergoing multivessel PCI. J Am Coll Cardiol. 2019;74:2015–2027. doi: 10.1016/j.jacc.2019.08.997

19. Hernán MA, Hernández-Díaz S. Beyond the intention-to-treat in comparative effectiveness research. Clin Trials J Soc Clin Trials. 2012;9:48–55. doi: 10.1177/1740774511420743

20. Hernán MA, Robins JM. Per-protocol analyses of pragmatic trials. N Engl J Med. 2017;377:1391–1398. doi: 10.1056/NEJMra1605385

21. Hernán MA. How to estimate the effect of treatment duration on survival outcomes using observational data. BMJ. 2018;360:k182. doi: 10.1136/bmj.k182

22. Marti D, Sammartin M. Dyspnoea in the GLOBAL LEADERS trial. Lancet. 2019;393:2393. doi: 10.1016/S0140-6736(19)30669-X

23. Valgimigli M, Garcia-Garcia HM, Vrijens B, Vranckx P, McFadden EP, Costa F, Pieper K, Vock DM, Zhang M, Van Es G-A, et al. Standardized classification and framework for reporting, interpreting, and analysing medication non-adherence in cardiovascular clinical trials: a consensus report from the Non-adherence Academic Research Consortium (NARC). Eur Heart J. 2019;40:2070–2085. doi: 10.1093/eurheartj/ehy377

24. Mehran R, Rao SV, Bhatt DL, Gibson CM, Caixeta A, Eikelboom J, Kaul S, Wiviott SD, Menon V, Nikolovy E, et al. Standardized bleeding definitions for cardiovascular clinical trials. Circulation. 2011;123:2736–2747. doi: 10.1161/CIRCULATIONAHA.110.099449

25. Murray EJ, Caniglia EC, Peitlo LC. Causal survival analysis: a guide to estimating intention-to-treat and per-protocol effects from randomized clinical trials with non-adherence. Res Methods Med Heal Sci. 2012;2:39–49. doi: 10.1177/2320432091043

26. D’Agostino RB, Lee ML, Belanger AJ, Cupples LA, Anderson K, Kannel WB. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Stat Med. 1990;9:1501–1515. doi: 10.1002/sim.4780091214

27. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelli S, Held C, Horrow J, Husted S, James S, Katus H, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2017;369:1045–1057. doi: 10.1056/NEJMoa0904327

28. Bonaca MP, Bhatt DL, Cohen M, Steg PG, Storey RF, Jensen EC, Magnani G, Bansilal S, Fish MP, Im K, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med. 2015;372:1791–1800. doi: 10.1056/NEJMoa1500857

29. Johnston SC, Amarenco P, Albers GW, Denison H, Easton JD, Evans SR, Held P, Jonasson J, Minematsu K, Molina CA, et al. Ticagrelor versus aspirin in acute stroke or transient ischemic attack. N Engl J Med. 2016;375:35–43. doi: 10.1056/NEJMoa1603060

30. Hiatt WR, Fowkes FGR, Heizger G, Berger JS, Baumgartner I, Held P, Katona BG, Mahaffey KW, Norgren L, Jones WS, et al. Ticagrelor versus clopidogrel in symptomatic peripheral artery disease. N Engl J Med. 2017;376:32–40. doi: 10.1056/NEJMoa1611688

31. Rothman KJ. Six persistent research misconceptions. J Gen Intern Med. 2014;29:1060–1064. doi: 10.1007/s11606-013-2755-z
SUPPLEMENTAL MATERIAL
INCLUSION CRITERIA
1. Age ≥18 years
2. Patients with any clinical indication for percutaneous coronary intervention
3. Presence of one or more coronary artery stenosis of 50% or more in a native coronary artery or in a saphenous venous or arterial bypass conduit suitable for coronary stent implantation in a vessel with a reference vessel diameter of at least 2.25 mm

EXCLUSION CRITERIA

| **Drug-related** | 1. Known intolerance to aspirin, P2Y12 receptor antagonists, bivalirudin, stainless steel or biolimus
2. Known intake of a strong cytochrome P3A4 inhibitor (i.e., ketoconazole, clarithromycin, nefazodone, ritonavir, and atazanavir), as co-administration may lead to a substantial increase in exposure to ticagrelor
3. Use of fibrinolytic therapy within 24 hours of percutaneous coronary intervention
4. Known severe hepatic impairment |
| **Treatment-related** | 5. Planned coronary artery bypass grafting as a staged procedure (hybrid) within 12 months of the index procedure
6. Planned surgery within 12 months of percutaneous coronary intervention unless dual antiplatelet therapy is maintained throughout the peri-surgical period
7. Need for oral anticoagulation therapy
8. PCI for a priori known stent thrombosis |
| **Medical** | 9. Known overt major bleeding
10. Known history of intracranial hemorrhage
11. Known stroke from ischemic or unknown cause within last 30 days |
| **General** | 12. Known pregnancy at the time of randomization
13. Inability to provide informed consent
14. Currently participating in another trial before reaching the primary endpoint |
Table S2. Reasons for changing medical therapy not determining protocol deviation during the study.

List of reasons
1. Allergic reaction
2. Anemia
3. Atrial fibrillation
4. Bleeding
5. Cerebrovascular accident
6. Chest pain
7. Decreased renal function
8. Diarrhea
9. Dizziness
10. Dyspnea
11. Gout
12. Interference with other drugs
13. Myocardial infarction
14. Neoplasm
15. New medical condition
16. Oral anticoagulation
17. Other signs (in the presence of evident medical reasons)
18. Other symptoms (in the presence of evident medical reasons)
19. Percutaneous coronary intervention
20. Skin reaction
21. Surgery
22. Thromboembolic event
23. Trauma
24. Upper gastrointestinal complaints
Table S3. Protocol deviators and non-deviators by month 24.

Months	Experimental group (n=7,980)	Control group (n=7,988)	\(\Delta\) deviators experimental vs. control				
	Non-deviators	Deviators	Deaths	Non-deviators	Deviators	Deaths	
1	7,943 (99.5%)	5 (0.1%)	32 (0.4%)	7,944 (99.5%)	10 (0.1%)	34 (0.4%)	0.0%
2	7,527 (94.3%)	409 (5.1%)	44 (0.6%)	7,720 (96.6%)	220 (2.8%)	48 (0.6%)	2.4%
3	7,448 (93.3%)	478 (6.0%)	54 (0.7%)	7,683 (96.2%)	248 (3.1%)	57 (0.7%)	2.9%
4	7,384 (92.5%)	536 (6.7%)	60 (0.8%)	7,646 (95.7%)	273 (3.4%)	69 (0.9%)	3.3%
5	7,337 (91.9%)	577 (7.2%)	66 (0.9%)	7,625 (95.5%)	290 (3.6%)	73 (0.9%)	3.6%
6	7,279 (91.2%)	623 (7.8%)	78 (1.0%)	7,598 (95.1%)	308 (3.9%)	82 (1.0%)	4.0%
7	7,203 (90.3%)	697 (8.7%)	80 (1.0%)	7,447 (93.2%)	452 (5.7%)	89 (1.1%)	3.1%
8	7,174 (89.9%)	718 (9.0%)	88 (1.1%)	7,415 (92.8%)	479 (6.0%)	94 (1.2%)	3.0%
9	7,153 (89.6%)	736 (9.3%)	91 (1.1%)	7,401 (92.7%)	485 (6.0%)	102 (1.3%)	3.2%
10	7,134 (89.4%)	749 (9.4%)	97 (1.2%)	7,379 (92.4%)	500 (6.3%)	109 (1.3%)	3.1%
11	7,100 (89.0%)	776 (9.7%)	104 (1.3%)	7,358 (92.1%)	509 (6.4%)	121 (1.5%)	3.4%
12	7,077 (88.7%)	795 (10.0%)	108 (1.3%)	7,335 (91.8%)	523 (6.6%)	130 (1.6%)	3.4%
13	7,059 (88.5%)	807 (10.1%)	114 (1.4%)	7,178 (89.9%)	669 (8.4%)	141 (1.7%)	1.7%
14	7,029 (88.1%)	826 (10.3%)	125 (1.6%)	7,158 (89.6%)	679 (8.5%)	151 (1.9%)	1.9%
15	6,999 (87.7%)	850 (10.7%)	131 (1.6%)	7,138 (89.4%)	686 (8.6%)	164 (2.0%)	2.1%
16	6,975 (87.4%)	859 (10.8%)	146 (1.8%)	7,122 (89.2%)	694 (8.7%)	172 (2.1%)	2.1%
17	6,946 (87.0%)	875 (11.0%)	159 (2.0%)	7,109 (89.0%)	700 (8.8%)	179 (2.2%)	2.2%
18	6,921 (86.7%)	894 (11.2%)	165 (2.1%)	7,085 (88.7%)	717 (9.0%)	186 (2.3%)	2.2%
19	6,745 (84.5%)	1,064 (13.4%)	171 (2.1%)	7,054 (88.3%)	738 (9.2%)	196 (2.5%)	4.1%
20	6,723 (84.3%)	1,072 (13.4%)	185 (2.3%)	7,035 (88.1%)	742 (9.3%)	211 (2.6%)	4.1%
21	6,702 (84.0%)	1,082 (13.5%)	196 (2.5%)	7,018 (87.9%)	750 (9.4%)	220 (2.7%)	4.2%
22	6,685 (83.8%)	1,093 (13.7%)	202 (2.5%)	7,000 (87.6%)	758 (9.5%)	230 (2.9%)	4.2%
23	6,676 (83.7%)	1,096 (13.7%)	208 (2.6%)	6,979 (87.4%)	767 (9.6%)	242 (3.0%)	4.1%
24	6,653 (83.4%)	1,103 (13.8%)	224 (2.8%)	6,950 (87.0%)	785 (9.8%)	253 (3.2%)	4.0%
Table S4. Reasons for patients to be classified as protocol deviators in the experimental and control groups by month 12 and 24.

List of reasons	Experimental group	Control group		
	By month 12	By month 24	By month 12	By month 24
Total	795	1,103	523	785
Perceived high bleeding risk	2	3	0	2
Perceived high thrombotic risk	1	1	0	0
Logistical issues	3	4	2	1
Medical decision without clinical reason	16	27	17	30
Patients unwilling to take study drugs	8	11	7	9
Prescription error	1	4	0	0
No specific information	643	886	402	574
Unclear	121	167	95	169