Thirty-Year Anniversary of κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$: Reconciling the Spin Gap in a Spin-Liquid Candidate

Andrej Pustogow

Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria, e-mail: pustogow@ifp.tuwien.ac.at

In 1991, the Argonne group led by Jack Williams [1] reported the first synthesis of κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$. Although, originally, the focus was on the superconducting properties under pressure, this frustrated Mott insulator with a triangular lattice (Fig. 1c) has been the most promising quantum-spin-liquid candidate for almost two decades [2], widely believed to host gapless spin excitations down to $T = 0$ [3]. The recent observation of a spin gap by the Stuttgart group [4] rules out a gapless spin liquid with itinerant spinons and puts severe constraints on the magnetic ground state. Here I evaluate magnetic, thermal transport, and structural anomalies around $T^* = 6$ K [5]. The opening of a spin gap yields a rapid drop of spin susceptibility [4], NMR Knight shift [6] (Fig. 1b), spin-lattice relaxation rate, and μ-SR spin fluctuation rate, but is often concealed by impurity spins [5]. The concomitant structural transition at T^* manifests in thermal expansion (Fig. 1a,d) [7], THz phonons and 63Cu NQR relaxation. Based on the field dependence of T^*, a critical field of order 60 T (Fig. 1e) is estimated for the underlying spin-singlet state [5]. Overall, the physical properties are remarkably similar to those of spin-Peierls and valence-bond-solid phases. Thus, a strong case is made that the ‘6K anomaly’ in κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ is the transition to a valence-bond-solid state and it is suggested that such a scenario is rather the rule than the exception in materials with strong magnetic frustration [5].

References
[1] U. Geiser et al., Inorg. Chem. 30, 2586–2588 (1991).
[2] Y. Shimizu et al., Phys. Rev. Lett. 91, 107001 (2003).
[3] S. Yamashita et al., Nat. Phys. 4, 459–462 (2008).
[4] B. Miksch et al., Science 372, 276–279 (2021).
[5] A. Pustogow, Solids 3, 93–110 (2022).
[6] Y. Saito et al., Phys. Rev. B 98, 205141 (2018).
[7] R. S. Manna et al., Phys. Rev. Lett. 104, 016403 (2010).