On the Microcanonical Entropy of a Black Hole

Rajat K. Bhaduri and Muoi N. Tran

Department of Physics and Astronomy,
McMaster University, Hamilton, Ontario, Canada L8S 4M1

Saurya Das

Department of Physics, University of Lethbridge,
Lethbridge, Alberta, Canada T1K 3M4

(Dated: February 11, 2022)

Abstract

It has been suggested recently that the microcanonical entropy of a system may be accurately reproduced by including a logarithmic correction to the canonical entropy. In this paper we test this claim both analytically and numerically by considering three simple thermodynamic models whose energy spectrum may be defined in terms of one quantum number only, as in a non-rotating black hole. The first two pertain to collections of noninteracting bosons, with logarithmic and power-law spectra. The last is an area ensemble for a black hole with equi-spaced area spectrum. In this case, the many-body degeneracy factor can be obtained analytically in a closed form. We also show that in this model, the leading term in the entropy is proportional to the horizon area A, and the next term is $\ln A$ with a negative coefficient.

PACS numbers: 05.30.-d, 03.65.Sq, 04.70.Dy, 04.60.-m, 02.70.Hm
INTRODUCTION

The entropy of a macroscopic black hole is known to be proportional to the area of its horizon [1], in units of the Planck length squared. It has also been shown by several authors using a variety of approaches that the leading order correction to this is proportional to the logarithm of the area [2] (also see refs. in [3]). Recently, a universal form for the (negative) coefficient of this logarithmic term has been obtained in ref. [4] by assuming a power-law dependence of the area on the mass of the (non-rotating) black hole. For an isolated black hole, it is of course appropriate to consider the microcanonical entropy. For a quantum system, the microcanonical entropy may be defined uniquely in terms of the degeneracy of the state at a given energy, and it has no fluctuation in energy. The many-body degeneracy factor, for any nontrivial system, however, is exceedingly difficult to calculate. For this reason, it is desirable to approximate the microcanonical entropy by the canonical entropy (the leading term), minus a logarithmic term due to fluctuations in the canonical ensemble-averaged energy from the equilibrium value. The main objective of this paper is to test this formula quantitatively in three solvable models, where the microcanonical entropy can also be calculated exactly. The first two of these are systems of noninteracting bosons, and not related to black holes. These many-body systems, however, have eigenenergies that depend on a single quantum number, similar to a non-rotating quantum black hole. The microcanonical entropy of such systems is calculated exactly, and then compared with the approximate (canonical) formula. When the logarithmic correction to the canonical entropy are included in the canonical expression, its agreement with the microcanonical entropy improves markedly. Next, we consider a canonical area ensemble with equi-spaced spectrum and distinguishable area components as model for a non-rotating black hole. The area of the surface of the event horizon plays a role analogous to the energy [5]. This equi-spaced spectrum was first proposed in the early seventies (see ref. [6]) and later confirmed by several authors using different techniques [7]. The model has been studied earlier by Alekseev et al. [8] using the grand canonical ensemble. In this paper, we are able to calculate the exact microcanonical entropy for this spectrum in a closed form, and obtain the area-law for the entropy. We also show that the next term in the entropy is proportional to $\ln A$ with a negative coefficient. This is also verified using the canonical ensemble when the area fluctuation is subtracted out.
The origin of the black hole entropy, in theories of quantum gravity, is believed to arise from the microstates that are generated by a quantum mechanical operator such as area. In standard statistical mechanics, when many particles in the mean-field model are trapped in a potential well, the microcanonical entropy of the many-body system at a (quantised) energy E_n is obtained by taking the logarithm of the number of distinct microstates that all give the same energy E_n. To be more explicit, $E_n = \sum (N_i) N_i\epsilon_i$, where N_i is the number of particles with single-particle energy ϵ_i. The set $\{N_i\}$ denotes a given occupancy configuration of single-particle levels that make up a microstate with total energy E_n. There may be $\Omega(E_n)$ such distinct microstates for an energy E_n, each denoted by a set $\{N_i\}$, and the microcanonical entropy is then uniquely defined as

$$S(E_n) = k_B \ln(\Omega(E_n)) ,$$

where the Boltzmann constant k_B will henceforth be put to unity. Similarly, in models of quantum gravity, the (macroscopic) area eigenvalue A_n is taken to be coming from the elementary components a_i, such that $A_n = \sum (N_i) a_i$, where N_i is the number of elementary components with area a_i. Each microstate is specified by a distinct set $\{N_i\}$, and there may be $\Omega(A)$ such microstates for a given area A. The microcanonical entropy is then

$$S(A_n) = \ln(\Omega(A_n)) .$$

ENERGY SPECTRUM DEPENDING ON ONE QUANTUM NUMBER

Consider a many-body quantum system with eigenenergies E_n that are completely specified by a single quantum number n,

$$E_n = f(n), \quad n = 0, 1, 2, 3, \ldots$$

where we assume $f(n)$ to be an arbitrary monotonous function with a differentiable inverse, $f^{-1}(x) = F(x)$, such that $n = F(E_n)$. The degeneracy of the states at energy E_n is given by $\Omega(E_n)$, a function characterising the quantum spectrum. At this point, we need not assume that this many-body system is described in the mean-field picture. The quantum density of the system is defined as

$$\rho(E) = \sum_n \Omega(E_n)\delta(E - E_n) .$$
Using general properties of the delta function, we write

$$\delta(E - E_n) = \delta(E - f(n)) = \delta(n - F(E))|F'(E)|,$$

where the prime denotes differentiation with respect to the continuous variable E. The quantum density of states of the system is then given by

$$\rho(E) = \Omega(E)|F'(E)| \sum_{n=0}^{n=\infty} \delta(n - F(E)).$$

We know from the Poisson summation formula

$$\sum_{n=-\infty}^{\infty} \delta(E - n) = \sum_{k=-\infty}^{\infty} \exp(2i\pi k).$$

So, if $E \geq 0$, we get

$$\sum_{n=0}^{\infty} \delta(E - n) = 1 + 2 \sum_{k=1}^{\infty} \cos(2\pi k E).$$

We thus obtain, from Eq. (5),

$$\rho(E) = \Omega(E)|F'(E)|[1 + 2 \sum_{k=1}^{\infty} \cos(2\pi k F(E))].$$

We assume the function $\Omega(E)$ of the continuous variable E to be smooth. The first term on the RHS of the above relation is then the smoothly varying part of the density of states, while the second part consists of the oscillating components coming from the discreteness of the energy levels. For a macroscopic system with large E, the oscillating part may be neglected. We then obtain the important relation

$$\tilde{\rho}(E) = \Omega(E)|F'(E)|,$$

where $\tilde{\rho}(E)$ denotes the averaged smooth density of states. Now we specialize to a system of N noninteracting particles (or in a mean field) constituting the many-body system. Then the degeneracy $\Omega(E_n)$ is just the number of distinct microstates that all have the same energy E_n, as described in the introduction. The microcanonical entropy is given by Eq. (1), which, using Eq. (9), may now be expressed as

$$S \simeq \ln[\tilde{\rho}(E)|F'(E)|^{-1}],$$

where the oscillating part has been dropped.
Our next task is to calculate $\tilde{\rho}(E)$ for a many-body system. This may be obtained by considering the canonical partition function of the N-particle system, and taking its inverse Laplace transform using the saddle-point method \cite{3}. The canonical N–particle partition function is given by

$$Z(\beta) = \sum_n \Omega(E_n) \exp(-\beta E_n) = \int_0^\infty \rho(E) \exp(-\beta E) dE ,$$

(11)

where $\rho(E)$ is defined by Eq. (3). Note that we are using the canonical ensemble only as a tool to obtain $\tilde{\rho}(E)$ by Laplace inversion with respect to β, which is just a variable of integration along the imaginary axis. The saddle-point approximation simply gives the smooth part $\tilde{\rho}(E)$. The well-known result \cite{10} is

$$\tilde{\rho}(E) = \frac{\exp[S_C(\beta_0)]}{\sqrt{2\pi S''_C(\beta_0)}} ,$$

(12)

where

$$S_C(\beta_0) = \beta_0 E + \log Z(\beta_0)$$

(13)

is the canonical entropy evaluated at the stationary point β_0, the prime denotes differentiation with respect to β. The energy E is related to the saddle point β_0 via

$$E = -\left(\frac{\partial \ln Z}{\partial \beta} \right)_{\beta_0} .$$

(14)

Using Eqs. (10) and (12), we then obtain

$$S(E) \simeq S_C(\beta_0) - \frac{1}{2} \ln(2\pi S''_C(\beta_0)) - \ln(|F'(E)|) .$$

(15)

This formula that was originally suggested in \cite{3} had missed the last term on the RHS. This has also been pointed out earlier in ref. \cite{4}. It turns out that for two of the models that we consider in this paper, $F'(E) = 1$, and the last term in Eq. (15) does not contribute. On the other hand, in the model with a logarithmic energy spectrum, this term plays a crucial role. Note that within the canonical formalism, $S''_C(\beta_0) = (\langle E^2 \rangle - \langle E \rangle^2)$ is the fluctuation squared of the energy \cite{10}. When this energy fluctuation is subtracted out from the canonical entropy, as in Eq. (15), we obtain an estimate for the microcanonical entropy (for quantum gravitational fluctuations, see e.g. \cite{11}).

The approximation (15) for the microcanonical entropy $S(E)$ is very useful, since it is prohibitively difficult to calculate it directly from Eq. (1). Generally, in a mean-field model,
one is given the single-particle quantum spectrum. The direct computation of the many-body
degeneracy factor \(\Omega(E) \) from this starting point is very time consuming. Instead, it is much
simpler to obtain the canonical \(N \)-body partition function by well-known recursion relations
(depending on the quantum statistics) \[12\], and then compute the canonical entropy \(S_c(\beta) \).

Going one step further, one may calculate the canonical energy fluctuation, and use Eq. (15)
to obtain \(S \). By following this canonical route, no computation of \(\Omega(E) \) is necessary. The
approximate formula (15), relevant to black hole physics, has not been yet explicitly tested.
The main objective of this paper is to test this formula quantitatively in some model systems
where the microcanonical entropy \(S \) can be calculated exactly.

The logarithmic energy spectrum

In the first idealized example, we consider \(N \) noninteracting bosons \((N \to \infty)\) occupying
a set of single-particle energy levels (and also the ground state, which is at zero energy) :

\[
\epsilon_p = \ln p , \tag{16}
\]

where \(p \) runs over all the prime numbers 2, 3, 5, As recently pointed out in ref. \[13\],
the many-body microcanonical entropy \(S \) of this system is *exactly* zero. This is because of
the fundamental theorem of arithmetic, which states that every positive integer \(n \) can be
expressed only in one way as a product of the prime number powers \[14\]

\[
n = p_1^{n_1} p_2^{n_2} ... p_r^{n_r} ... , \tag{17}
\]

where the \(p_r \)'s are distinct primes, and \(n_r \)'s are positive integers, including zero, and need not
be distinct. It immediately follows from Eq. (17) that the eigenenergies of the many-body
system are given by

\[
E_n = \ln n = \sum_r n_r \ln p_r , \tag{18}
\]

and that each eigenstate is *non-degenerate*. This means that for every macro-state of the
many-body system, there is exactly one microstate, and \(\Omega(E_n) = 1 \). This implies, by Eq. (11),
that the microcanonical entropy \(S(E_n) = 0 \). We would now like to check if this is verified
from Eq. (15). For the many-body spectrum given by Eq. (18), noting that the inverse
function \(F(E) = \exp(E) \), we immediately obtain the density of states

\[
\rho(E) = e^E [1 + 2 \sum_{k=1}^{\infty} \cos(2\pi k e^E)] . \tag{19}
\]
The second term on the RHS is the intrinsic quantum fluctuation, due to E_n's taking only discrete values. The smooth part of the density of states is $\tilde{\rho}(E) = e^E$. To obtain the canonical entropy from Eq. (13), we need to calculate the canonical partition function $Z(\beta)$. The exact $Z(\beta)$ for $N \to \infty$ in this case is the Riemann zeta function $\zeta(\beta) = \sum_{n=1}^{\infty} n^{-\beta}$, which includes the quantum fluctuations. We pick up the smooth part of $Z(\beta)$ by evaluating it using Eq. (11) with $\tilde{\rho}(E) = e^E$, obtaining

$$Z(\beta) = (\beta - 1)^{-1}, \quad \beta \geq 1.$$ (20)

From this, we get $S_c(\beta) = -\ln(\beta - 1) + \beta E$, so the saddle-point is given by $\beta_0 = (1/E + 1)$. Thus the equilibrium canonical entropy is

$$S_c(\beta_0) = E + \ln E + 1,$$ (21)

that contains both a linear and a logarithmic term. Evaluation of the fluctuation term is elementary, and the microcanonical entropy using Eq. (15) is

$$S(E) = E + \ln E + 1 - \frac{1}{2} \ln(2\pi E^2) - E = 1 - \frac{1}{2} \ln(2\pi).$$ (22)

We see that the E dependent terms in the canonical entropy are entirely canceled by the fluctuation term, the small residual constant is due to the use of the saddle-point method. This example is atypical, because the canonical term contains both the linear and the logarithmic terms, and still Eq. (15) yields (almost) the correct microcanonical estimate.

The power-law single-particle spectrum

For our second example, we consider N noninteracting bosons confined in a mean field with a single particle spectrum given by $\epsilon_m = m^s$, where the integer $m \geq 0$, and $s > 0$. The energy is measured in dimensionless units. This model is considered here because the canonical partition function (for $N \to \infty$) is exactly known [15]:

$$Z(\beta) = \prod_{m=1}^{\infty} \frac{1}{1 - \exp(-\beta m^s)}.$$ (23)

We can therefore calculate the exact microcanonical partition function $\Omega(E)$ by expanding this $Z(\beta)$ as in (11). This is illustrated in the Appendix by taking a quadratic single-particle spectrum ($s = 2$), and showing that the exact combinatorial result for $\Omega(E)$ of
the many-body system can be reproduced by expanding the canonical partition function above. It also illustrates the important point that even though the single-particle energies are not equi-spaced, the many-body system has equi-spaced eigenenergies E_n’s. This has the consequence that $F'(E) = 1$, and $\Omega(E) = \tilde{\rho}(E)$ when the quantum oscillations are dropped.

The numerical calculations for a large number of particles, using different power-law single-particle spectra, were done in a different context in Ref. [16], where the details may be found. We test the accuracy of Eq. (15) by comparing it with the exact $S(E)$ from Eq. (1) for $s = 1, 2$. The quantum oscillations have been included in the exact microcanonical calculations, but are difficult to see in this scale. In Figs. 1(a) and (b), the dashed curve denotes the canonical entropy $S_C(E)$ as given by Eq. (13), and the continuous curve the exact microcanonical entropy $S(E)$ for the two power laws. We see from these curves that the two differ substantially as a function of the excitation energy E, specially for $s = 2$. Inclusion of the logarithmic correction to the canonical entropy using Eq. (15) results, however, in almost perfect agreement, as shown by the dot-dashed curves in these figures.

A MODEL FOR AN AREA ENSEMBLE OF A BLACK HOLE

The above bosonic model with the power law spectrum $\epsilon_n = n^s$ is not directly applicable to the black hole problem since

$$\tilde{\rho}(E) \propto E^{-\frac{4s+1}{2(s+1)}} \exp \left[\kappa (s+1) E^\frac{1}{1+s} \right],$$

where κ is independent of E [15, 16], and the leading term of $\ln \tilde{\rho}(E)$ does not go linearly with E (or A, when taken over to the area ensemble). Following [8], we consider instead distinguishable elementary components, and consider the situation where the elementary area components are equi-spaced, $a_j = j$ with j taking values $0, 1, 2, \ldots$ etc. For a macroscopic black hole with a horizon area A, we assume that the number of independent components is

$$N = \eta \frac{A}{l_p^2},$$

where η is a positive constant, and l_p the Planck length, which is set to unity. Both N and A are fixed quantities in the microcanonical picture. As shall be shown shortly, the advantage of this model is that the expression for the multiplicity $\Omega(A, N)$ may be explicitly found, and therefore the exact microcanonical entropy may be calculated directly. By expanding the
microcanonical entropy for large A, we find that the leading term is proportional to the area A of the horizon, and the next term goes like $\ln A$. This expression is exactly reproduced in the canonical ensemble calculation, when the ensemble averaged $\langle A \rangle$ is identified with A, and the fluctuation in $\langle A \rangle$ is subtracted out. For simplicity, we take the a_j-spectrum to be nondegenerate. This is identically the one-dimensional harmonic oscillator spectrum in statistical mechanics. The degeneracy $g(j) = (j + 1)$, considered in [8], is equivalent to a two-dimensional harmonic spectrum and is also examined. For the first case, the one-body partition function is

$$Z_1 = \sum_j g(j) \exp(-\alpha a_j) = \sum_j \exp(-\alpha j) = \frac{1}{1 - e^{-\alpha}} = \frac{1}{1 - x},$$

where α is a variable canonical to the area, and $x = e^{\alpha}$. The canonical N-particle partition function for distinguishable elementary components is

$$Z_N = (Z_1)^N = (1 - x)^{-N},$$

$$= 1 + N x + \frac{N(N+1)}{2} x^2 + \frac{N(N+1)(N+2)}{3!} x^3 + \ldots,$$

$$= \sum_{A=1}^{\infty} \frac{\prod_{i=0}^{A-1} (N + i)}{A!} x^A,$$

$$= \sum_A \Omega^{(1)}(A, N) e^{-\alpha A}, \quad (25)$$

which is analogous to Eq. (11). The multiplicity of states of area is therefore

$$\Omega^{(1)}(A, N) = \prod_{i=0}^{A-1} \frac{(N + i)}{A!}. \quad (26)$$

This is the microcanonical partition function. The superscript (1) is to distinguish from the degenerate case, to be discussed later. It is not difficult to check by combinatorics that $\Omega^{(1)}(A, N)$ for a given A and N is indeed given by Eq. (26). Note that unlike the case of bose statistics where the multiplicity $\Omega(E)$ was found only by expanding the partition function (Eq. (11)) or by exact counting, here due to the distinguishability property of the system it is given by an explicit formula. Thus an analytical expression for the microcanonical $S(E)$ may be found directly from Eq. (26):

$$S(E) = \ln \Omega^{(1)}(A, N),$$

$$= \sum_{i=0}^{A-1} \ln(N + i) - \ln A!,$$

$$\simeq A \ln(1 + \frac{N}{A}) + N \ln(1 + \frac{A}{N}) - 1/2 \ln(A + A^2/N) - 1/2 \ln(2\pi), \quad (27)$$
where we have used the Stirling’s series and the Euler-Maclaurin summation formula to approximate the sum in step 2 above.

We now calculate the canonical entropy and show that inclusion of the logarithmic correction term (Eq. (15)) gives a formula that agrees with Eq. (27) for the microcanonical entropy. The canonical calculations are performed for a fixed N, and the ensemble averaged area is given by

$$\langle A \rangle = -\frac{\partial \ln Z_N}{\partial \alpha}$$

(28)
at the equilibrium α_0. For large A, we identify $\langle A \rangle = A$, and later correct for the fluctuation. The canonical entropy is

$$S_C(\alpha) = \alpha A + \ln Z_N = \alpha A - N \ln(1 - e^{-\alpha}).$$

The saddle-point is obtained from the condition that $S_C'(\alpha_0) = 0$, and gives

$$\alpha_0 = \ln\left(\frac{N}{A} + 1\right).$$

(29)

Therefore,

$$S_C''(\alpha_0) = \frac{N}{(e^\alpha - 1)^2} e^\alpha = A(1 + A/N),$$

(30)

$$S_C(\alpha_0) = A \ln(1 + \frac{N}{A}) + N \ln(1 + \frac{A}{N}).$$

(31)

We may now estimate the microcanonical entropy S from Eq. (15), where the area fluctuations have been subtracted from the canonical S_c. In the latter case, we get

$$S(A, N) \simeq S_C(\alpha_0) - 1/2 \ln S_C''(\alpha_0) - 1/2 \ln(2\pi),$$

$$\simeq A \ln(1 + \frac{N}{A}) + N \ln(1 + \frac{A}{N}) - 1/2 \ln(A + A^2/N) - 1/2 \ln(2\pi).$$

(32)

This is identical to what we obtained in Eq. (27) from the asymptotic expansion of the microcanonical entropy. Finally, we use the relation (24) to eliminate N from the above equation. We immediately obtain

$$S(A) \simeq \xi A - 1/2 \ln A - 1/2 \ln[2\pi(1 + 1/\eta)],$$

(33)

where $\xi = \ln[(1 + \eta)(1 + 1/\eta)^\eta]$. Note that the leading term, proportional to A, comes from the canonical entropy S_c, and the correction $\ln A$ arises from the fluctuation in $\langle A \rangle$. We next consider the second case, where the area spectrum is degenerate. The degeneracy is
given by \(g(j) = j + 1 \). The same case has been dealt with by the authors in Ref. [8], but
the results were derived in the grand-canonical ensemble. The one-body partition function
in this case is simply
\[
Z_1 = \frac{1}{(1 - x)^2}.
\]

All the calculations including the expression (33) follow as in the nondegenerate case, with
\(N \) replaced by \(2N \).

We have shown that for a class of statistical mechanical systems with power-law single-
particle spectrum, the log-corrected entropy formula (15) accurately reproduces the micro-
canonical entropy of these systems. Our results are applicable to a large class of black holes,
with uniformly spaced area spectrum. These include the ones considered in refs. [6, 7].
Although in the context of loop quantum gravity, the spectrum found in [18] is not strictly
uniform, it is effectively equi-spaced for large areas. Moreover, as shown in [8] and [19], exact
equi-spaced spectrum may emerge in loop gravity as well. It would be interesting to extend
our analysis to include charged and rotating black holes, which are described by more than
one quantum number.

ACKNOWLEDGMENTS

We are grateful to M.V.N. Murthy for some of the results reported in this paper. We
would also like to thank P. Majumdar for his comments and criticism of this manuscript.
This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada.
APPENDIX

We give an example of the calculation of the exact entropy for a system of N non-interacting bosons with a single-particle spectrum given by $\epsilon_m = m^2$, $m = 0, 1, 2, \ldots$. Initially, at $T = 0$ (or $E = 0$), the particles all reside in the ground state, where $m = 0$. Denote by N_{ex} the number of particles in the excited states. An excitation energy E may be shared by N_{ex} out of N particles such that $E = \sum_i N_i \epsilon_i$, $N_{ex} = \sum_i N_i$. The multiplicity $\Omega(E, N)$ is the number of ways of doing this. For example, take $E = 8$ and $N = 8$, then there are three distinct configurations. First, $N_{ex} = 2$ particles can be excited in which case each takes $2^2 = 4$ quanta and goes to the second level above the ground state. In this case, $N_2 = 2$ and $N_i = 0, i \neq 2$. Second, $N_{ex} = 5$ particles can be excited, four of which each takes one quantum to the first level ($N_1 = 4$) above the ground state and the other takes $2^2 = 4$ quanta to the second level ($N_2 = 1$). Finally, all 8 particles can be excited, each takes one excitation quantum to the first level ($N_1 = 8$, and $N_i = 0, i \neq 1$). The energy in all three cases are the same:

$$E = 8 = N_1 \epsilon_1 + N_2 \epsilon_2 + \ldots = 0 + 2 \times 2^2 + \ldots + 0, \text{ or}$$

$$= 4 \times 1^2 + 1 \times 2^2 + \ldots + 0, \text{ or}$$

$$= 8 \times 1^2 + \ldots + 0.$$

Hence, $\Omega(8, 8) = 3$. We see that this problem is identical to counting the number of ways that an integer E can be partitioned into sum of squares. Note that had we taken $5 \leq N < 8$ in this example, then there would only be 2 configurations instead of 3, since the last case in which each particle takes one quantum is eliminated. In number theory this is known as restricted partitioning as opposed to the unrestricted case considered above. Clearly, as long as $N \geq E$, the number of accessible microstates may be enumerated as if $N = \infty$. In Table I below we enumerate the multiplicity for several values E, assuming unrestricted partitioning.

Few remarks are in order. First, as mentioned before, as long as $E \leq N$, the enumeration of the multiplicity is N-independent. Second, as illustrated above, E is given by a set of consecutive integers, $E_n = n$, even though the single-particle energy spectrum is not equi-spaced. Each many-body energy level E_n has a degeneracy $\Omega(E_n, N)$. This is in fact general for any power-law single-particle spectrum and non-interacting particles. Note that the
$\Omega(E, N) = \sum_{N_{\text{ex}}=1}^{N} \omega(E, N_{\text{ex}}, N)$. It is to be noted that for a large excitation energy E (not considered in the table), $\omega(E, N_{\text{ex}}, N)$ may take on values larger than unity.

The multiplicity $\Omega(E, N)$ enumerated in the Table is the same as the expansion coefficient of the partition function, i.e.

$$Z(x) = \prod_{m=1}^{\infty} \frac{1}{1 - x^{m^2}},$$

$$= 1 + x + x^2 + x^3 + 2x^4 + 2x^5 + 2x^6 + 2x^7 + 3x^8 + 4x^9 + \ldots,$$

where $x = e^{-\beta}$, and the power of x corresponds to the many-body energy E_n.

E	N_{ex}	$\omega^{(1)}(E, N_{\text{ex}}, N)$	$\Omega(E, N)$
$1 = 1^2$	1	1	1
$2 = 1^2 + 1^2$	2	1	1
$3 = 1^2 + 1^2 + 1^2$	3	1	1
$4 = 2^2$	1	1	2
$= 1^2 + 1^2 + 1^2 + 1^2$	4	1	2
$5 = 1^2 + 2^2$	2	1	2
$= 1^2 + 1^2 + 1^2 + 1^2 + 1^2$	5	1	2
$6 = 1^2 + 1^2 + 2^2$	3	1	
$= 1^2 + \ldots + 1^2$	6	1	
$7 = 1^2 + 1^2 + 2^2$	3	1	
$= 1^2 + \ldots + 1^2$	7	1	
$8 = 2^2 + 2^2$	2	1	
$= 1^2 + 1^2 + 1^2 + 1^2 + 2^2$	5	1	
$= 1^2 + \ldots + 1^2$	8	1	3
[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); S. W. Hawking, Phys. Rev. D 13, 191 (1976).

[2] R. Kaul and P. Majumdar, Phys. Rev. Lett. 84, 5255 (2000) [hep-th/0111001] and references therein.

[3] S. Das, P. Majumdar, and R. K. Bhaduri, Class. Quantum Grav. 19 2355 (2002).

[4] A. Chatterjee and P. Majumdar, gr-qc/0309026 v1.

[5] K. V. Krasnov, Class. Quant. Grav. 16 (1999) 563 [gr-qc/9710006 v2).

[6] J. D. Bekenstein, Lett. Nuovo Cimento, 11 (1974) 467; V. Mukhanov, JETP Letters, 44 (1986) 63; J. D. Bekenstein, V. F. Mukhanov, Phys. Lett. B 360 (1995) 7 [gr-qc/9505012].

[7] Ya. I. Kogan, JETP Lett. 44 (1986) 267; J. Louko, J, Makela, Phys. Rev. D 54 (1996) 4982 [gr-qc/9605058]; V. A. Berezin, A. M. Boyarsky, A. Yu. Neronov, Phys. Lett. B 455 (1999) 109 [gr-qc/9808027]; M. Bojowald, H. A. Kastrup, F. Schramm, T. Strobl, Phys. Rev. D 62 (2000) 044026 [gr-qc/9906105]; C. Vaz, L. Witten, Phys. Rev. D 63 (2001) 024008 [gr-qc/0006039]; R. Garattini, Int. J. Mod. Phys. A 17 (2002) 1965 [gr-qc/0111068]; S. Das, P. Ramadevi, U. A. Yajnik, A. Sule, Phys. Lett. B 565 (2003) 201 [hep-th/0207169]; A. Barvinsky, S. Das, G. Kunstatter, Found. Phys. 32 (2002) 1851 [hep-th/0209039].

[8] A. Alekseev, A. P, Polychronakos, and M. Smedb"{a}ck, Physics Lett. B 574, 296 (2003) [hep-th/0004036].

[9] M. Brack and R. K. Bhaduri, Semiclassical Physics (Westview Press, Boulder, 2003) pp 119-120; B. K. Jennings, Ph.D. Thesis, McMaster University (1976), unpublished.

[10] R. Kubo, Statistical Mechanics (North Holland, Amsterdam, 1965) pp 104.

[11] A. Chatterjee and P. Majumdar, gr-qc/0303030

[12] P. Borrmann and G. Franke, J. Chem. Phys. 98, 2484 (1993); M. N. Tran, M. V. N. Murthy, and R. K. Bhaduri, Phys. Rev. E 63, 031105 (2001).

[13] M. N. Tran and R. K. Bhaduri, Phys. Rev. E 68, 026105 (2003).

[14] Proven by Euclid, 300 BC. See e.g. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Oxford University Press, Oxford, 1945, 2nd Edition) pp 3, 21.

[15] G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. 2 XVII (1918) pp 75-115.

[16] M. N. Tran, M. V. N. Murthy, and R. K. Bhaduri, math-ph/030920 (To appear in Ann. Phys. (N.Y.)).
[17] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions* (Dover publications, INC., New York) pp 16, 257.

[18] C. Rovelli, L. Smolin, Nucl. Phys. B 442 (1995) 593 (gr-qc/9411005); A. Ashtekar, J. Lewandowski, Class. Quant. Grav. 14 (1997) A55 (gr-qc/9602046).

[19] A. Dasgupta, hep-th/0310069

FIG. 1: 1a) Comparison of the exact microcanonical entropy $S(E)$ (solid line) and the canonical entropy $S_C(E)$ (dashed line) for $\epsilon = m_s$ spectrum, where $s = 1$. The particles are taken to be N non-interacting bosons, where $N \to \infty$. The dot-dashed curve, given by Eq. (15), overlaps with the exact solid curve. 1b) Same as 1a), except $s = 2$.
