Study of Biofilm Formation and Antibiotic Resistant Profile in Multidrug Resistant and Extensive Drug Resistance Pseudomonas Aeruginosa Isolated from Burn Wound Infections in Southwest Iran

Aram asareh zadegan dezfull
Ahvaz Jundishapur University of Medical Sciences: Ahvaz Jondishapour University of Medical Sciences

Arshid Yousefi Avarvand (Arshid.yousefi5@gmail.com)
Ahvaz Jundishapur University of Medical Sciences: Ahvaz Jondishapour University of Medical Sciences https://orcid.org/0000-0002-3987-9820

Research Article

Keywords: Antibiotics, Antibiotic resistance, Burn wound, P. aeruginosa

DOI: https://doi.org/10.21203/rs.3.rs-795546/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: *Pseudomonas aeruginosa* is an opportunistic pathogen that has remained on the 'top 10' common hospital 'superbugs' worldwide for more than a decade. Study of biofilm formation and antibiotic resistant profile in multidrug resistant and extensive drug resistance *P. aeruginosa* isolated from burn wound infections in southwest Iran

Methods and Results: This study, which was performed in 110 *P. aeruginosa* isolates culture-positive reports. Assessment of biofilm formation via microtitre plate and Congo red agar. Overall, 110 clinical *P. aeruginosa* isolates were confirmed from wound burn infections. The maximum resistance rate among *P. aeruginosa* isolates to antibiotics tested was as follow Piperacillin, ceftazidime, and minimum resistance rate among *P. aeruginosa* isolates to antibiotics tested such as ticarcillin-clavulanic acid. The isolates were then evaluating the MICs by using the E-test. only 7 isolates were confirmed as colistin-resistant. Colistin reference MICs for the The prevalence of MDR *P. aeruginosa* was 38% and XDR- *P. aeruginosa* was 22% respectively. One of *P. aeruginosa* isolates were PDR. In microtitre plate assay,76% of the isolates have ability for biofilm, formation, 40% were categorized as strong biofilm-formers; 32% were moderate; 21% were weak biofilm formers and 43% could not form any detectable biofilm.

Conclusion: in our study development of resistance by *P. aeruginosa* to many antimicrobial agents is a great challenge in controlling its infections. Therefore, the transmission of these isolates to patients leads to higher resistance. Therefore, the necessary hygiene measurements should be taken for the prevention of transferring the *P. aeruginosa* isolates to hospitalized patients.

Introduction

Burn patients are one of the most serious patients that doctors can see in their careers. These patients are in a dangerous period of various organ damage, in the acute phase; infection is the main cause of death. More than 75% of burn deaths in patients with severe burns are related to sepsis, infectious complications, and respiratory trauma. (1) Around 180,000 deaths occur annually due to burns, and the majority of these deaths occur in low- or middle-income developing countries. (2) The mortality rate reported by different studies in Iran varies from 1.4/100,000 to 9.7/100,000 and regardless of study population types, case-fatalities have been variably reported in a range of 2–98%. (3)

Damage to the skin barrier, larger burns, immunosuppression caused by burns, and prolonged hospital stay are important risk factors for infection. The type and size of the wound and the type and number of microorganisms. (4) *Pseudomonas aeruginosa* as one of the main causes of burn infections is responsible for an extensive range of serious infections (5). *P. aeruginosa* is a conditional pathogenic microorganism and has been among the top ten most common hospital "super bacteria" in the world for more than a decade. Therapeutic alternatives are nonetheless seriously constrained because of unfold of antimicrobial resistant lines; thus, *P. aeruginosa* contamination stays a life-threatening complication (6). The up-law of innate resistance mechanisms along with overexpression of efflux pumps and the purchase of overseas genetic determinants along with plasmids are crucial traits for the survival of *P. aeruginosa* at some stage in environmental pressures along with clinic environments. (7) The developing worldwide emergence of *P. aeruginosa* lines immune to all β-lactam sellers highlights the cap potential of this microorganism to evolve hastily to selective environmental stresses. (8) Multi-drug resistance of *P. aeruginosa* is diagnosed to be the various maximum hard antibiotic-resistant gram-poor bacilli to manipulate and treat. (9) Serious *P. aeruginosa* infections, each acute and chronic, are regularly nosocomial and related to compromised host defenses; Once an opportunistic pathogen like *P. aeruginosa* enters the host, its capacity to motive contamination has additionally been correlated with its tendency to shape biofilms. (10) Biofilm formation is a procedure wherein microorganisms irreversibly connect to and develop on a floor and bring extracellular polymers that facilitate attachment and matrix formation, ensuing in an alteration with inside the phenotype of the organisms for increase price and gene transcription (11). The aim of this study is Study of biofilm formation and antibiotic resistant profile in multidrug resistant and extensive drug resistance *P. aeruginosa* isolated from burn wound infections in southwest Iran.

Materials And Methods

Ethics declaration

The study was approved by the Research Ethics Committee (REC) of the Ahvaz Jundishapur University of Medical Sciences (No: IR. AJUMS.RE.1399.669) Iran. As the study was an observational one and did not involve any new intervention, it was conducted by the Declaration of Helsinki of 1975.

Specimens collection and Microbiological procedures

This study, which was performed in Taleghani Burn Center University Hospital, which is the major burn center in Ahvaz, Iran, from May 2019 to November 2020. One hundred and ten *P. aeruginosa* strains (replica isolates aren't included) culture-advantageous reviews consisting of wound 345 sufferers have been included. Patients who had an extended or admitted medical institution live because of burning infections with a hospitalization length of equal, extra than forty-eight hours have been studied. Patients have been excluded with any records of cancer, way of life-negative, immunocompromised diseases, and the usage of antibiotic tablets on the time of admission. Before present process wound excisions, the injuries of hospitalized sufferers have been controlled with topical 1% (Silver sulfadiazine) SSD cream with cumbersome dressings and modified each 24 hours. Samples have been accumulated from burn wounds via way of means of way of life swabs below aseptic techniques. According to the American Burn Association, wound colonization is described because the presence of a low awareness of microorganism at the floor without invasion or systemic manifestations. When there are greater than 10 five bacterial isolates of tissue way of life with inside the wound, we name it a wound infection. When greater than 10 five bacterial isolates of tissue way of life with inside the burn wound reasons the formation of pus and separation of the eschar, lack of graft with the involvement of tissue, or the presence of systemic sepsis, then it's far referred to as invasive infection (12). The samples were transferred to the laboratory immediately to the Department of Microbiology of Ahvaz Jundishapur
University of Medical Sciences. \textit{P. aeruginosa} isolates were confirmed by conventional and biochemical tests such as: gram stain, triple sugar iron (TSI), MRVP, oxidation fermentation (OF) test, citrate test, and pigment production in Mueller Hinton Agar (Biolife, Italia) and growth at 42°C. (13) The gram negative rod shape, MRVP negative, oxidative positive, citrate positive, triple sugar iron (TSI) agar reaction of alkaline over no change, growth at 42°C and production of bright-blue to blue green diffusible pigment on Mueller-Hinton agar.

Confirmation of \textit{P. aeruginosa} -specific PCR assay

The boiling technique turned into used to extract genomic DNA from \textit{Paeruginosa} isolates. A few bacterial colonies of \textit{Paeruginosa} lines grown in a single day on nutrient agar (Merck, Germany) have been suspended in micro tubes containing 500 µl of Tris-EDTA buffer, then the micro tubes have been located in Incubock micro tube incubators (Denville Scientific, USA) for five min at 95°C, after which centrifuged at 14,000 rpm for 10 min at 4°C. The supernatant turned into used because the DNA template with inside the PCR assays. The DNA amount and fine have been assessed the usage of Nano Drop Spectrophotometer

Data analysis

C for 24 h aerobically. (18) red dye was prepared separately and added into the autoclaved BHI medium. The plates were incubated at 37°C.

Overall, 110 clinical \textit{P. aeruginosa} isolates were confirmed from wound burn infections. All \textit{P. aeruginosa} isolates detected in biochemical tests were also confirmed by the molecular method. The mean age of the patients in the study was 35.32 years and (SD) was 11.74 years. (Table 1).
Antibiotic resistance in *P. aeruginosa* isolates

The maximum resistance rate among *P. aeruginosa* isolates to antibiotics tested was as follow: piperacillin 68\% (n = 75), ceftazidime 59\% (n = 65), meropenem 56\% (n = 63), gentamycin 56\% (n = 63), gatifloxacin 56\% (n = 63) and minimum resistance rate among *P. aeruginosa* isolates to antibiotics tested such as ticarcillin-clavulanic acid 22\% (n = 25), and ceftolozane-tazobactam 16\% (n = 6) (Table 2). These isolates were then evaluated by using the E-test. only 7 isolates were confirmed as colistin-resistant. Colistin reference MICs for the 110 *P. aeruginosa* bacteria were from 6 to 128 mg/L.

The incidence of MDR and XDR in *P. aeruginosa* isolates

The incidence of MDR *P. aeruginosa* was 38\% (n = 42), and XDR- *P. aeruginosa* was 22\% (n = 25) respectively. One of *P. aeruginosa* isolates were PDR. The phenotypic antibiotic resistance pattern, prevalence, and diversity of the 110 *P. aeruginosa* isolates from the wound are shown in Table 1. The table reveals, that 74 different combination patterns were ranging from thirteen antibiotics in each combination. (Table 3) Out of the 110 *P. aeruginosa* isolates, one isolate was resistant to the 7 antibiotics representing thirteen classes.

The evolution of biofilm production in *P. aeruginosa* isolates

The biofilm manufacturing evaluation through MTP and Congo pink agar methods. In the CRA method, 66(67\%) isolates have been taken into consideration as generating biofilm and produced black colonies while 44 (50\%) isolates produced pink colonies. In MTP differentiated isolates into sturdy, mild, susceptible, and no biofilm-forming in step with the OD values at 570 nm for (as effective control) and TSB (as poor control) have been 0.525 ± 0.062 and 0.055 ± 0.009, respectively. The OD570 values for the medical lines ranged from 0.125 ± 0.056 to 1.745 ± 0.054.Again, 76\% (n = 84) of the isolates have capacity for biofilm, formation, 40\% (n = 45) have been classified as sturdy biofilm-formers; 32\% (n = 19) have been mild; 21\% (n = 20) have been susceptible biofilm formers and 43\% (n = 26) couldn't shape any detectable biofilm. In the forty-five sturdy biofilm-manufacturer, 76\% (n = 9) isolates have been XDR and 76\% (n = 18) isolates have been MDR and one remoted turned into PDR. Among the 76\% (n = 19) mild biofilm formers, 76\% (n = 9) isolates have been XDR and 76\% (n = 6) isolates have been MDR. Also, of the 20 susceptible biofilm-formers, 76\% (n = 3) isolates have been XDR and 76\% (n = 8) isolates have been MDR (Table 2). According to results, antibiotic resistance in *P. aeruginosa* non-biofilm manufacturer is better than *P. aeruginosa* isolates biofilm manufacturer (Fig. 1 and table4). The statistical evaluation of the no counting among biofilm-forming capacity and antibiotic resistance (P = 0.781). However, the statistical evaluation of the connection among biofilm-manufacturer capacity and XDR (P = 0.042).

Discussion

P. aeruginosa is one of the main etiological agents of wound infections. In our study, the prevalence of *P. aeruginosa* in burn wound was 31\%. In previous studies, in our region *P. aeruginosa* in burn wound were found to be 44\% to 69.9\%. (19,20) The rate of *P. aeruginosa* vary between different in our region, which may be due to the performance of various infection control procedures. today, drug resistance is a massive developing trouble in treating infectious illnesses. The effects of us examine confirmed that 38\% of *P. aeruginosa* isolates had been MDR. The excessive incidence of MDR *P. aeruginosa* isolates turned into additionally suggested from a few research in Iran and different countries. (21,22) The multidrug antibiotic resistance can lower the efficacy of the not unusual place antibiotics used with inside the scientific putting specially with inside the infections. During the current decades, the carbapenems have encouraged because the first-line antibiotics for the remedy of *P. aeruginosa* infections. However, unfortunately, growing resistance to carbapenems has been suggested global amongst *P. aeruginosa* isolates. (23) In us examine, the antibiotic susceptibility takes a look at effects confirmed that almost all of those isolates had been proof against meropenem (57\%), imipenem (47\%) and doripenem (67\%). In settlement with ours, the excessive quotes of carbapenem-resistant and doripenem *P. aeruginosa* isolates had been suggested from different research. (24–26) Also, our effects confirmed that the antibiotic resistance quotes to gentamycin, amikacin, tobramycin, piperacillin, aztreonam, imipenem, meropenem, ceftazidime, gatifloxacin, and norfloxacin amongst MDR *P. aeruginosa* isolates had been extra than 50\%. In much like our work, Perez et al, Del Barrio et al additionally, suggested the excessive incidence of the resistance to those antibiotic dealers amongst *P. aeruginosa* isolates. (27,28) Colistin are the most effective remedy alternatives for infections as a result of appreciably drug resistant (XDR) or MDR A. *P. aeruginosa* However, this antibiotic has a few unwanted facet effects, along with nephrotoxicity and neurotoxicity. (29) The antibiotic susceptibility takes a look at effects confirmed that almost all of *P. aeruginosa* isolates had been liable to colistin which can be in settlement with different reviews acquired from preceding research in Iran and different countries. (30–32) Hence, those effects endorse that colistin remains the only antibiotic dealers in opposition to MDR *P. aeruginosa* isolates. The biofilm matrix can extensively defend microorganism from each the immune device cells and antibiotic dealers. Biofilm formation of *P. aeruginosa* ends in lack of antibacterial susceptibility and the usage of extra concentrations of antibiotics with inside the remedy of infections as a result of such isolates. In us examine, maximum *P. aeruginosa* isolates had the cappotential of biofilm manufacturing however with unique capacities. As stated above, we located a big inverse dating among the capability of biofilm formation and resistance to all antibiotic dealers (p = 0.781), i.e. the biofilm density in touchy traces turned into extra than biofilm density in resistant traces. In constant with us examine, a few researchers additionally proven that the touchy traces tended to supply more potent biofilms than the resistant traces while a few others confirmed that MDR traces had extra functionality for the biofilm manufacturing than touchy traces. (33,34) Biofilm-forming microorganism are embedded in a matrix and gather houses that render them fairly tolerant to antibiotics, UV light, chemical biocides, host immune response, and different outside stresses. Biofilm can defend microorganisms from harsh environmental situations along with hot temperature and pH, excessive salinity and pressure, negative nutrients, antibiotics, etc., with the aid of using appearing as a barrier. Structural barriers, at the side of chronic cells inside biofilm, play a decisive position in antibiotic resistance. As reviews indicate, biofilm-associated infections are tough for remedy and could now no longer be cured easily. Consequently, the prescription of antibiotics will now no longer remedy or take away biofilm-associated contamination because of their antibiotic tolerance and genetic mutation. Biofilm is now taken into consideration to be a number one reason of continual contamination, and antibiotic-resistant microorganism are popular in biofilm form. Currently, it's miles believed that over 80\% of continual infectious illnesses are as a result of biofilm, and it’s miles recognized that
traditional antibiotic medicinal drugs are insufficient at removing those biofilm-mediated infections. (35) In end in our examine improvement of resistance with the aid of using *P. aeruginosa* to many antimicrobial dealers is a first rate undertaking in controlling its infections. Therefore, the transmission of those isolates to sufferers ends in better resistance. In total, >50% of *P. aeruginosa* scientific isolates had been manufacturers of sturdy biofilm. Therefore, the vital hygiene measurements ought to be taken for the prevention of moving the *P. aeruginosa* isolates to hospitalized sufferers.

Declarations

Funding

Not applicable

Consent for publication

Not applicable

Competing interests

The authors report no conflicts of interest in this work.

Availability of data and materials

Any additional information can be obtained from the corresponding author on request.

Code availability

Not applicable

Authors’ contributions

The concept and the design of the study were developed by Aram asareh zadegan dezfuli. The methodology was designed by Arshid Yousef-Avarvand. Data collection and the experimental works were carried out by Aram asareh zadegan dezfuli. The formal analyses and interpretation of data were carried out by Arshid Yousef-Avarvand. The original draft was prepared by Arshid Yousef-Avarvand. All the authors have read and approved the final manuscript for submission. The Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, financially support this project.

Ethics approval

The study was approved by the Research Ethics Committee (REC) of the Ahvaz Jundishapur University of Medical Sciences (No: IR. AJUMS.RE .1399.669) Ahvaz, Iran.

Acknowledgments

We are grateful to Infectious and Tropical Diseases Research Center, and was financially supported by a grant (No: IR. AJUMS.RE .1399.669) from Research Affairs, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

References

1. Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2009) Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol 105:731–738. https://doi.org/10.1007/s00421-008-0955-8
2. Stokes MA, Johnson WD (2017) Burns in the third world: an unmet need. Ann Burns Fire Disasters. 243–246
3. Khan FA, Butt AU, Asif M, Ahmad W, Nawaz M, Jamjoom M et al (2020) Computer-aided diagnosis for burnt skin images using deep convolutional neural network. Multimed Tools Appl 16:1–24. doi.org/10.1007/s11042-020-08768-y
4. Sadeghi-Bazargani H, Mohammadi R (2012) Epidemiology of burns in Iran during the last decade (2000–2010): review of literature and methodological considerations. Burns 38:319–329. 10.1016/j.burns.2011.09.025
5. Al-Aali KY (2016) Microbial profile of burn wound infections in burn patients, Taif, Saudi Arabia. Arch Clin Microbiol 7:1–9
6. Mendelson M, Matsoso MP (2015) The World Health Organization global action plan for antimicrobial resistance. SAMJ: South African Medical Journal 105:325. 10.7196/samj.9644
7. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: Alarm Bells are Ringing. Cureus 9:e1403. doi:10.7759/cureus.1403
8. Moradali MF, Ghods S, Rehn BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39. https://doi.org/10.3389/fcimb.2017.00039
9. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22:582–610. doi:10.1128/CMR.00040-09

10. Sadikot RT, Blackwell TS, Christman JW, Prince AS (2005) Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 172:9–12. doi:10.1164/ajcc.200408–10440S

11. Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392. doi:10.1086/322972

12. Church D, Elsayed S, Clin Microbiol Rev microbiology reviews 19:403 – 34. 10.1128/CMR.19.2.403-434.2006

13. Mahon CR, Lehman DC, Manuselis JG (2014) Textbook of Diagnostic Microbiology. Amsterdam

14. Wargo MJ, Hogan DA (2007) Examination of Pseudomonas aeruginosa lasl regulation and 3-oxo-C12-homoserine lactone production using a heterologous Escherichia coli system. FEMS Microbiol Lett 273:38–44. 10.1111/j.1574-6968.2007.00773.x

15. Performance standards for (2020) antimicrobial susceptibility testing: sixteenth informational supplement. Clinical and Laboratory Standards Institute

16. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. 10.1111/j.1469-0691.2011.03570.x

17. Zhang D, Xia J, Xu Y et al (2016) Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia. Clin Exp Med 16:73–80. 10.1007/s10288-014-0333-2

18. Freeman DJ, Falkiner FR, Keane CT (1989) New method for detecting slime production by coagulase negative staphylococci. J clin patho 42:872–874. doi:10.1136/jcp.42.8.872

19. Khosravi AD, Tae S, Dezfull AA, Meghdadi H, Shafie F (2019) Investigation of the prevalence of genes conferring resistance to carbapenems in Pseudomonas aeruginosa isolates from burn patients. Infec drug resist 12:1153. doi:10.2147/IDR.S197752

20. Khosravi AD, Motahar M, Abbasi Montazeri E (2017) The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PloS one 12:e0183061. 10.1371/journal.pone.0183061

21. Brown PD, Izundu A (2004) Antibiotic resistance in clinical isolates of Pseudomonas aeruginosa in Jamaica. Rev Panam Salud Publica 16:125–130. doi:10.1590/s020-49892004000800008

22. Schaumburg F, Bletz S, Mellmann A, Becker K, Idelevich EA (2019) Comparison of methods to assess susceptibility of German MDR/XDR Pseudomonas aeruginosa to ceftazidime/avibactam. Int J Antimicrob Agents 54:255–260. doi:10.1016/j.ijantimicag.2019.05.001

23. del Barrio-Toño E, Zamorano L, Cortes-Lara S, López-Causapé C, Sánchez-Diener I, Cabot G, Bou G, Martinez-Martinez L, Oliver A (2019) Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J Antimicrob Chemother 74:1825–1835. doi:10.1093/jac/dkz147

24. Voor AF, Severin JA, Lesaffre EM, Vos MC (2014) A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:2626–2637. doi:10.1128/AAC.01758-13

25. Lin KY, Lauderdale TL, Wang JT, Chang SC (2016) Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: Prevalence, risk factors, and impact on outcome of infections. J Microbiol Immunol Infect 49:52–59. doi:10.1016/j.jmii.2014.01.005

26. Plüss-Suard C, Pannatier A, Kronenberg A, Mühlemann K, Zanetti G (2013) Impact of antibiotic use on carbapenem resistance in Pseudomonas aeruginosa: is there a role for antibiotic diversity? Antimicrob Agents Chemother 57:1709-13. doi:10.1128/AAC.01348-12

27. Lodise TP, Miller C, Patel N, Graves J, McNutt LA (2007) Identification of patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk of infection with carbapenem-resistant isolates. Infect Control Hosp Epidemiol 28:995–965. doi:10.1086/518972

28. Pérez A, Gato E, Pérez-Llarena F, Gude MJ, Díaz-Madina M, Pachón ME, Garnacho J, González-V, Pascual Á, Cisneros JM (2019) High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother 74:1244–1252. https://doi.org/10.1093/jac/dkz030

29. Schauburg F, Bletz S, Mellmann A, Becker K, Idelevich EA (2019) Comparison of methods to assess susceptibility of German MDR/XDR Pseudomonas aeruginosa to ceftazidime/avibactam. Int J Antimicrob Agents 54:255–265. doi:10.1016/j.ijantimicag.2019.05.001

30. Abd El-Baky RM, Masoud SM, Mohamed DS, Waly NG, Shaﬁk EA, Mohareb DA, Elkady A, Elbadr MM, Hetta HF (2020) Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Infect drug resist 13:323. https://doi.org/10.2147/IDR.S238811

31. Mirzaei B, Bazgir ZN, Goli HR, Irandoust M, Mohammadi F, Babaie R (2020) Prevalence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res Notes 13:1–6. doi:10.1186/s13104-020-05224-w

32. Singh NP, Rani M, Gupta K, Sagar T, Kaur IR (2017) Changing trends in antimicrobial susceptibility pattern of bacterial isolates in a burn unit. Burns 43:1083–1087. doi:10.1016/j.burns.2017.01.016

33. Karlowsky JA, Draghi DC, Jones ME, Thornsberry C, Friedland IR, Sahm DF (2003) Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob Agents Chemother 47:1681–1688. doi:10.1128/AAC.47.5.1681-1688.2003

34. Sheikh AF, Dezfulli AA, Navidifar T, Fard SS, Dehdashtian M (2019) Association between biofilm formation, structure and antibiotic resistance in Staphylococcus epidermidis isolated from neonatal septicemia in southwest Iran. Infec drug resist 12:1771. 10.2147/IDR.S204432

35. Abebe GM (2020) The role of bacterial biofilm in antibiotic resistance and food contamination. Int J Microbial. 2020:1–10. https://doi.org/10.1155/2020/1705814
Tables

Table 1- Patients and results of biofilm formation, antibiotic resistance and *P. aeruginosa* isolates
ID	G	Duration of hospitalization	MTP	Congo red	ARPs	Co Mi
1	-29	First 48 hrs	Moderate	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP G, AMK, LVX, NOR, OFX, GAT	3
2	-33	Third week	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP G, AMK, LVX, NOR, OFX, GAT	2.5
3	-39	Last of first week	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP E, GN, T, AMK, LVX, NOR, OFX, GAT	(R)
4	-27	Fourth week	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP CIP, G, AMK, LVX, NOR, OFX, GAT	1
5	-27	First 48 hrs	Moderate	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP CIP, G, AMK, LVX, NOR, OFX, GAT	1
6	-28	Fourth week	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP G, AMK, LVX, NOR, OFX, GAT	3
7	-45	Second week	Moderate	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP CIP, E, C/T, T, GN, AMK, LVX, NOR, OFX, GAT	2.5
8	-35	First 48 hrs	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP CZA, C/T, G, AMK, LVX, NOR, OFX, GAT	2.5
9	-33	Fourth week	Weak	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP G, AMK, LVX, NOR, OFX, GAT	1
10	-42	Second week	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP CIP, C/T, GN, AMK, LVX, NOR, OFX, GAT	0.7
11	-47	Last of first week	Moderate	-	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, C/T, TZPPIP T, C/T, GN, AMK, LVX, NOR, OFX, GAT	1
12	-43	Fourth week	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, PIPTZPCIP CZA, C/T, AMK, LVX, NOR, OFX, GAT	2.5
13	-22	First 48 hrs	Strong	+	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, PIPTZPCIP CZA, C/T, AMK, CIPLVX, NOR, OFX, GAT	0.7
14	-28	Third week	Moderate	-	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, T, TZPPIP CIP, C/T, GN, AMK, LVX, NOR, OFX, GAT	3
15	-32	Last of first week	-	-	NET, TOB, MEM, DOR, ATM, CAZ, FEPTIM, TZPPIP CZA, GN, AMK, CIPLVX, NOR, OFX, GAT	0.7
16	-36	Third week	Strong	+	NET, TOB, MEM, IPM, O, DOR, ATM, CAZ, FEPTIM, T, TZPPIP CIP CZA, GN, AMK, CIPLVX, NOR, OFX, GAT	0.7
17	-21	Fourth week	-	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP C, GN, AMK, CIPLVX, NOR, OFX, GAT	0.7
18	-51	First 48 hrs	Moderate	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP CIP C, GN, FOX, AMK, LVX, NOR, OFX, GAT	3
19	-53	Fourth week	Strong	+	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, PIPTZPCIT CZA, C/T, GN, AMK, CIPLVX, NOR, OFX, GAT	2.5
20	-36	Last of first week	Weak	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP CIP, GN, AMK, LVX, NOR, OFX, GAT	0.7
21	-37	Third week	Weak	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP C, RGGN, AMK, CIPLVX, NOR, OFX, GAT	0.7
22	-40	Second week	Moderate	+	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP E, GN, AMK, CIPLVX, NOR, OFX, GAT	0.7
23	-34	Fourth week	-	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP E, GN, AMK, CIPLVX, NOR, OFX, GAT	3
24	-22	First 48 hrs	Moderate	+	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP C, CD, GN, AMK, CIPLVX, NOR, OFX, GAT	0.7
25	-26	Third week	Moderate	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, CZA, TZPPIP E, GN, AMK, CIPLVX, NOR, OFX, GAT	0.7
26	-39	Second week	Strong	+	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP CIP, GN, AMK, LVX, NOR, OFX, GAT	0.7
27	-43	First 48 hrs	Strong	+	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP CIP, AMK, LVX, NOR, OFX, GAT	3
28	-27	Fourth week	Strong	+	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPTIM, CZA, TZPPIP G, FOX, AMK, CIPLVX, NOR, OFX, GAT	0.7
Week	Action	Duration	Effect	Medications		
--------------	--------------	----------	--------	--		
Third week	Weak	29-41 M	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	Moderate	30-25 F	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Second week	Strong	31-36 M	-	NET, TOB, MEM, IPM, DOR, ATM, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Fourth week	Strong	32-33 M	-	NET, TOB, MEM, IPM, ATM, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	Moderate	33-30 M	-	TOB, MEM, ATM, CAZ, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Fourth week	Weak	34-30 M	-	TOB, MEM, IPM, AT, CAZ, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Second week	Weak	35-28 F	-	TOB, MEM, IPM, AT, CAZ, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	Weak	36-39 F	-	TOB, MEM, IPM, AT, CAZ, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	Strong	37-47 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Fourth week	-	38-46 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	-	39-45 F	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	Strong	40-35 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Fourth week	-	41-42 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	Strong	42-39 F	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Fourth week	-	43-37 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	Strong	44-16 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	Moderate	45-23 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	Moderate	46-26 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Second week	-	47-45 F	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	Moderate	48-67 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Third week	Strong	49-54 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	Strong	50-33 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Third week	-	51-65 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	Strong	52-43 M	-	TOB, MEM, IPM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
First 48 hrs	Strong	53-55 F	-	MEM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Fourth week	Strong	54-76 F	-	MEM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Third week	Weak	55-43 F	-	MEM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Second week	Strong	56-12 M	-	MEM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	Weak	57-34 M	-	MEM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
Last of first week	-	58-35 M	-	MEM, AT, CAZ, FEPT, TZP, PIP, GN, AMK, LVX, NOR, OFX, GAT		
M	Week	Reaction	Associated Molecules			
-------	--------------------	----------	---------------------------------------			
59	Fourth week	-	MEM, ATM, CAZ, PIP, GN, GAT			
60	Second week	Moderate	MEM, ATM, CAZ, PIP, GN, GAT			
61	Last of first week	-	ATM, CAZ, PIP, GN, GAT			
62	First 48 hrs	Strong	ATM, CAZ, PIP, GN, GAT			
63	Fourth week	Weak	IPM, ATM, PIP, GN, GAT			
64	Last of first week	Strong	IPM, ATM, PIP, GN, GAT			
65	Last of first week	-	IPM, ATM, PIRGAT			
66	Fourth week	Strong	IPM, ATM, PIRGAT			
67	First 48 hrs	Weak	IPM, ATM, PIP			
68	Fourth week	Weak	IPM, ATM, PIP			
69	Last of first week	-	IPM, ATM, PIP			
70	First 48 hrs	-	IPM, ATM, PIP			
71	Last of first week	Strong	PIP			
72	Fourth week	-	PIP			
73	First 48 hrs	Strong	-			
74	Fourth week	Weak	-			
75	Last of first week	-	-			
76	Fourth week	Strong	-			
77	Last of first week	Weak	-			
78	Last of first week	-	-			
79	Fourth week	Strong	-			
80	First 48 hrs	Moderate	-			
81	Last of first week	-	-			
82	Fourth week	Strong	-			
83	First 48 hrs	Moderate	-			
84	First 48 hrs	Strong	-			
85	First 48 hrs	-	-			
86	Last of first week	Weak	-			
87	First 48 hrs	Moderate	-			
----	---	--	--------	----	---	--------
88	17	Fourth week	-	-	-	-
89	65	First 48 hrs			+	-
90	43	Fourth week	Strong	+	-	-
91	22	Fourth week	Strong	+	-	-
92	23	Last of first week	Moderate +	-	-	-
93	43	Last of first week	Strong	+	-	-
94	34	First 48 hrs	Strong	+	-	-
95	43	Fourth week	-	-	-	-
96	22	Fourth week	-	-	-	-
97	33	Fourth week	-	-	-	-
98	43	First 48 hrs	Strong	+	-	-
99	43	Last of first week	-	-	-	-
100	22	Fourth week	Weak	+	-	-
101	13	First 48 hrs	Weak	+	-	-
102	23	Fourth week	Strong	+	-	-
103	34	Last of first week	Weak	+	-	-
104	22	Fourth week	Strong	+	-	-
105	44	First 48 hrs	Strong	+	-	-
106	33	Fourth week	Weak	+	-	-
107	33	First 48 hrs	Strong	+	-	-
108	34	Fourth week	Weak	+	-	-
109	23	Fourth week	Weak	+	-	-
110	43	First 48 hrs	Strong	+	-	-

Table 2 - Results of antimicrobial resistance tests by disk diffusion method
Antimicrobial category	Antimicrobial agent	resistant	susceptible
PENICILLINS	Piperacillin	(68%)75	(31%)35
B-LACTAM COMBINATION AGENTS	Piperacillin-tazobactam	(44%)49	(55%)61
	Ceftazidime-avibactam	(26%)29	(73%)81
	Ceftolozane-tazobactam	(14%)16	(85%)94
	Ticarcillin-clavulanate	(22%)25	(77%)85
CEPHEMS	Cefepime	(29%)32	(70%)78
	Ceftazidime	(59%)65	(40%)45
MONOBACTAMS	Aztreonam	(66%)73	(36%)37
CARBAPENEMS	Doripenem	(65%)33	(65%)77
	Imipenem	(47%)52	(52%)58
	Meropenem	(57%)63	(47%)52
AMINOGLYCOSIDES	Gentamycin	(60%)67	(39%)43
	Tobramycin	(62%)55	(62%)55
	Amikacin	(49%)54	(62%)56
	Netilmicin	(35%)39	(64%)71
FLUOROQUINOLONES	Ciprofloxacin	(53%)59	(46%)51
	Levofoxacin	(55%)61	(44%)49
	Norfloxacin	(53%)59	(46%)51
	Ofloxacin	(39%)44	(58%)66
	Gatifloxacin	(62%)69	(37%)41

piperacillin (PIP), piperacillin-Tazobactam (TZP), ceftazidime-Avibactam (CZA), ceftolozane-tazobactam (C/T), ticarcillin-clavulanic acid (TIM), cefepime (FEP), ceftazidime (CAZ), aztreonam (ATM), doripenem (DOR), imipenem (IPM), meropenem (MEM), tobramycin (TOB), gentamicin (GN), amikacin (AMK), netilmicin (NET), ciprofloxacin (CIP), levofloxacin (LVX), norfloxacin (NOR), ofloxacin (OFX), gatifloxacin (GAT)

Table 3. Antibiotic resistance patterns among *P. aeruginosa* isolates
Table 4: The relation between biofilm formation and the antibiotic susceptibility patterns

Rate of biofilm	n	susceptible	MDR	XDR
Strong	-	1	18	10
Moderate	-	1	5	9
Weak	-	3	8	3
Nonbiofilm	26	12	11	3
Total	26	17	42	25

Figures
Figure 1

The frequency of antibiotic resistance in biofilm producer and non-biofilm producer P. aeruginosa.