How much H and He is “hidden” in SNe Ib/c?

S. Hachinger1,2, P. A. Mazzali1,2, S. Taubenberger1, W. Hillebrandt1, K. Nomoto3,4, D. N. Sauer5,6

1Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
2Istituto Nazionale di Astrofisica-OAPd, vicolo dell’Osservatorio 5, I-35122 Padova, Italy
3Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwanoha S-1-5, Kashiwa, Chiba 277-8583, Japan
4Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
5Department of Astronomy, Stockholm University, Alba Nova University Centre, SE-10691 Stockholm, Sweden
6Meteorologisches Institut, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 München, Germany

ABSTRACT

H and He features in photospheric spectra have seldom been used to infer quantitatively the properties of Type IIb, Ib and Ic supernovae (SNe IIb, Ib and Ic) and their progenitor stars. Most radiative transfer models ignored NLTE effects, which are extremely strong especially in the He-dominated zones. In this paper, a comprehensive set of model atmospheres for low-mass SNe IIb/Ib/Ic is presented. Long-standing questions such as how much He can be contained in SNe Ic, where He lines are not seen, can thus be addressed. The state of H and He is computed in full NLTE, including the effect of heating by fast electrons. The models are constructed to represent iso-energetic explosions of the same stellar core with differently massive H/He envelopes on top. The synthetic spectra suggest that 0.06 – 0.14 M\textsubscript{\odot} of He and even smaller amounts of H suffice for optical lines to be present, unless ejecta asymmetries play a major role. This strongly supports the conjecture that low-mass SNe Ic originate from binaries where progenitor mass loss can be extremely efficient.

Key words: supernovae: general – supernovae: individual (SN 2008ax, SN 1994I) – techniques: spectroscopic – radiative transfer

1 INTRODUCTION

Stripped core-collapse supernovae of types IIb, Ib and Ic (SNe IIb, Ib and Ic) are increasingly well observed, and long-standing issues about the explosion physics (Mezzacappa \textit{et al.} 2003; Janka \textit{et al.} 2007) and the progenitor stars (Georgy \textit{et al.} 2009; Smart \textit{et al.} 2009; Yoon \textit{et al.} 2010) are progressively being resolved. However, one possibility for analyses of such SNe has seldom been exploited: radiative transfer modelling of the H and He features in the spectra (Utrobin 1996; Maurer \textit{et al.} 2010). Thus, H and He abundances have rarely been quantified. The amount of H and He that can be “hidden” in Type Ib/c SNe, which do not show clear H or He lines, respectively, is not accurately known (e.g. Sauer \textit{et al.} 2006).

There is ample motivation for studying the H and He layers of stripped-envelope SNe. The analysis of abundances and densities will allow us to validate progenitor models for SNe Ib/Ic and address the question of envelope stripping. Information on the state of the outer ejecta is also essential to understand early-time light curves. At the same time, these layers may play an important role in the SN-gamma-ray-burst (SN-GRB) connection: thick He or even H shells are thought to quench jets (e.g. Mazzali \textit{et al.} 2008, from which long GRBs supposedly originate (Woosley 1993; MacFadyen \& Woosley 1999; Piran 2005).

Spectral modelling of the He-rich layers of SNe has an added complication: the calculation of the state of the He-rich plasma. The excitation/ionisation state of the He component must deviate significantly from a local thermodynamic equilibrium (LTE) configuration in order for He \textit{I} lines to be present in SNe Ib (Harkness \textit{et al.} 1987). Processes leading to large departures from LTE have to be explicitly included in the simulations. The relevant excitation mechanisms were discussed by Chugai (1987b) and Graham (1988). They recognized that He is strongly affected by collisions with fast electrons, which result from Compton processes with \gamma-rays from the decay of \textit{56}Ni and \textit{56}Co.

Lucy (1991) devised a treatment of excitation and ionisation by nonthermal electrons with typical energies >10 keV and synthesised pure He \textit{I} line spectra on a thermal continuum, under envelope conditions typical for core-collapse SNe. For modelling the non-LTE (NLTE) state of He, he devised a treatment of the excitation and ionisation by nonthermal electrons with typical energies >10 keV. Then, he simultaneously calculated the radiative transfer and solved the NLTE rate equations (equations of statistical equilibrium). Later, Utrobin (1996) and Mazzali \& Lucy (1998) treated
SNe with He with detailed radiative transfer codes, including NLTE calculations. Here, we adopt a similar treatment for He and H and present a state-of-the-art code module (subsequently called “NLTE solver” or “NLTE module”) that integrates with the radiative transfer/spectral synthesis code of Mazzali (2000) and Lucy (1999).

We compute and analyse spectral models for low- to moderate-mass SNe Ib/Ib/Ic in the photospheric phase, focussing on the question of how much H or He can be hidden in a SN without producing spectral lines. First, we use extensive observations of a SN Ib (SN 2008ax) and a SN Ic (SN 1994I) in order to construct envelope models, respectively, by fitting the observed spectra using our radiative transfer code with the NLTE module [abundance tomography – Stehle et al. (2005)]. In a second step, we use the inferred abundance and density stratification for the two SNe to set up a sequence of SN Ib/Ib/Ic transition models. The transition models are characterised by decreasing H/He envelope masses until only C and O remain. We can thus assess the H and He mass required to identify these elements unambiguously in the observations.

We first outline the spectral synthesis code, the NLTE module (with model atoms), and the integration of the two (Sec. 2). We then present the SN Ib and Ic models (Sec. 3) and the transition sequence, and give limits for the H and He masses (Sec. 3). We further discuss the results in Sec. 4. Finally, we summarise our findings and draw conclusions in the context of current progenitor models for stripped-envelope core-collapse SNe (Sec. 5).

2 SPECTRAL MODELS WITH H AND HE IN NLTE

We use a Monte-Carlo (MC) radiative transfer code to calculate model spectra of SNe for our study. Our code has been presented by Lucy (1999) and Mazzali (2000) [see also Abbott & Lucy (1985), Mazzali & Lucy (1993), and includes the possibility to specify a multi-zone chemical composition – Stehle et al. (2005)]. Apart from the abundances, the input parameters are a density distribution, and – for each epoch at which we calculate spectra – the emergent luminosity L_{bol} and the “photospheric velocity” v_{ph}.

2.1 Original code, integration of the NLTE module

2.1.1 MC transport and MC estimators

For a given epoch, the MC code computes the radiative transfer through the SN ejecta above a boundary (“photosphere”), below which the ejecta are considered to be optically thick. From the photosphere (at v_{ph}), thermal radiation $T^{+} = B_\nu(T_{ph})$ is assumed to be emitted into the atmosphere. The radiation is simulated in the form of energy packets, which undergo Thomson scattering as well as line excitation-deexcitation processes. Line transfer is treated in the Sobolev approximation. After an energy packet has excited an atom, it can be re-emitted as a whole in a different downwards transition (photon branching). The downwards transition is chosen randomly, ensuring correct sampling of the emission in the limit of many excitations. This “indivisible packet approach” enforces radiative equilibrium. The state of the atmosphere is assumed to be stationary, as photon transport through the simulated region is much faster than changes in the SN luminosity or in the ejecta radius.

In the course of a MC run, values describing the radiation field [MC estimators – Mazzali & Lucy (1993); Lucy (1999)] are recorded at the midpoints of the shells into which the envelope is discretised. For the present work, two estimators are particularly relevant. One is the angle-averaged intensity in the blue wing of each line, J_{ν}^lu [cf. Lucy (1999) – a hat (‘) here denotes an intensity in the co-moving frame, b is for “blue” and $l\,u$ indicates the transition between some lower level l and upper level u]. The second one is the frequency-dependent, angle-averaged intensity J_{ν}. The procedure to obtain J_{ν} has been newly implemented; some details on this are given in Appendix A. In order to reduce the noise on MC estimators, we simulate 500 000 radiation packets in each MC run for the present study.

2.1.2 Determination of the gas state; integration of the NLTE module

The MC estimators are used to obtain an improved guess on the state of the gas. In the codes of Mazzali & Lucy (1993) and Mazzali (2000), the excitation and ionisation state is calculated using a “modified nebular approximation”. A radiation temperature T_R for each shell is computed such that the mean frequency of a blackbody at T_R matches the value $\bar{\nu}$ estimated from the MC run, and the electron temperature T_e is approximated as

\[T_e \approx 0.9 \times T_R. \]

(1)

An equivalent dilution factor W is calculated from

\[W \times B(T_R) = \dot{J}. \]

(2)

In the nebular approximation, W, T_R and T_e completely determine the excitation and ionisation.

Numerically, the solution for the excitation and ionisation state is obtained by iteration (“plasma state loop”, Fig. 1). The calculation in the nebular approximation consists of the steps (I), (IIa) and (V) in Fig. 1. The cycles are started with two initial guesses n_e [initialisation, replacing step (I)], the excitation/ionisation state is calculated, respectively, and a density of electrons $n_{e,\text{free}}$ is obtained from that state. In general, for both n_e guesses, $n_{e,\text{free}}$ will differ from the guess. The “real” electron density of the plasma will always be in between an n_e guess and the respective $n_{e,\text{free}}$. In order to numerically determine the “real” n_e (for which $n_e = n_{e,\text{free}}$) and thus the plasma state, we run the loop (I)-(IIa)-(V), where (I) is a Newton-Raphson (NR) step to make the function $J_{\nu}(n_e) := n_e - n_{e,\text{free}}$ vanish (with a final accuracy of 0.005 × n_e). The NLTE module has been integrated into this plasma state loop to calculate the ionisation/excitation state of selected species in NLTE. Every time when it is called, the NLTE module obtains the necessary data from the MC code [Fig. 1 step (IIb)] and external files and calculates the required occupation numbers / ion fractions [steps (III) and (IV) – see Sec. 2.2].

2.1.3 Global temperature convergence and output spectrum

MC runs and updates of the plasma state for all cells are iterated in turn. This also involves updates of T_{ph} to enforce the given SN luminosity L_{bol} by compensating for the actual amount of backscattering (reabsorption at the photosphere). After convergence of the temperatures T_R and T_e has been achieved (i.e. the relative changes with each iteration are < 1% in every cell), the electron densities

\[n_e \approx n_{e,\text{free}}. \]

\[n_{e,\text{free}} \approx n_e. \]

1 In the context of homologous expansion, which applies at the epochs considered here, radius r and velocity v can be used interchangeably as coordinates ($r = v \cdot t$, where t is the time from the onset of the explosion).

2 This discretisation only applies to the variables describing the state of the gas; the positions of photon packets and lines are treated continuously.
and the occupation numbers do not change any more. The output spectrum is then obtained from a formal solution of the transfer equation \cite{Lucy1999}.

2.2 The NLTE module

We now describe the NLTE module. First we discuss the necessary external input data (model atoms, non-thermal excitation rates), and then we explain the actual solver \cite[Fig. 1, steps (III) and (IV)]{Lucy1999}. The implementation follows closely that of \cite{Lucy1999}, but uses updated atomic models and numerical techniques.

2.2.1 Model atoms for H and He

Atomic data for H are relatively easy or obtain. We constructed a simple model consisting of 13 energy levels. Each level corresponds to a principal quantun number; substates are not taken into account separately. For all calculations, the atoms are assumed to be effectively redistributed among the substates according to the respective g-factors by collisions. Rate coefficients for our 13-level atom are from \cite{Maurel2010}, except for collisional ionisation and excitation cross sections used to calculate non-thermal and thermal rates, which we took from \cite{Janey&Smith1993}.

Our He I model consists of 29 levels with principal quantum numbers \(n \leq 5 \), plus eight higher levels. For \(n \leq 5 \), substates differing only in the magnetic quantum number \(J \) are treated as one "effective" state (as described above). For each \(n \) with 6 \(\leq n \leq 8 \), we combine all singlet states into one effective state, and all triplet states into another one. We finally take into account a \(n = 9 \) triplet and singlet state, respectively, which we assume to be in LTE with He II. Energy levels for He I have been imported from the NIST Atomic Spectra Database (see acknowledgements).

We have compiled radiative excitation rates for He I from \cite{Drake&Morton2007}, \cite{Lach&Pachuck2001} and \cite{Cann&Thakkar2002}. Photodissociation cross sections have been taken from \cite{Hummer&Storey1998}, and in some cases from \cite{Fernley1987}. For collisional excitation cross sections we use \cite{Raichkenko2008} for all transitions between states with \(n \leq 4 \). When calculating non-thermal collision rates (cf. Sec. 2.2.2) to states with \(n > 4 \), we estimate cross sections with their recommended scaling formulae. Rate coefficients for thermal collisional excitation to or between levels with \(n > 4 \), however, have conveniently been taken from the rate compilations \cite{CHIANTI}. Collisional ionisation cross sections have been obtained from \cite{Raichkenko2008} \((n \leq 5) \); again with scaling formulae for \(n = 5 \); for thermally averaged rates from \(n > 5 \) we used the formulae of \cite{Mihalas&Stone1968}. All de-excitation and recombination coefficients are calculated from the respective upwards coefficients (e.g. \cite{Mihalas1978}).

He II is approximately treated as one state; He III is not considered in our calculations. This is sufficient for all but the outermost parts of our atmospheres; we demonstrated this explicitly in \cite{Hachinger2011}.

2.2.2 Deposition of the gamma-ray energy

Besides the usual radiative and (thermal) collisional bound-bound and bound-free processes, atoms in SNe undergo excitation and ionisation by fast Compton electrons. These are produced with energies well above 1 keV and up to a few MeV by gamma radiation. In order to take the effects into account, the kinetic energy gain of the local electron population per unit time and volume (gamma-ray deposition rate or Compton heating rate \(H_C \)) must be known. Therefore, we model the bolometric light curve simultaneously with the spectra. The light-curve code we use \cite{Cappellaro1997} simulates the creation and transport of the gamma rays and writes out the relevant data.

The kinetic energy of the fast electrons is assumed to be deposited locally, causing atomic excitation and ionisation processes.

3 The code version used here has had some updates, most importantly to the opacity description [similar to \cite{Mazzali2001}], with a moderate dependency on a temperature estimate, following the ideas of \cite{Khokhlov1993}.
In order to calculate the resulting upwards rates, we have to determine what fraction D_k^+ (deposition fraction) of the heating power H_C is deposited in each channel k, corresponding to an excitation/ionisation process or to Coulomb scattering with thermal electrons. This is achieved by simulating the downscattering of the fast electrons (see Appendix B) for different plasma compositions. The results have been tabulated and are read in by the NLTE module, which calculates the energy H_k (per unit time and volume) spent for process k to happen:

$$H_k = H_C \times D_k^+,$$

and uses this to compute the respective rates (see next Section).

2.2.3 Solution of the effective rate equations

In order to obtain the excitation/ionisation state of the elements treated in NLTE, we solve the rate equations in statistical equilibrium. We abbreviate them here as:

$$\mathbf{A} \mathbf{n} = \mathbf{y}$$

(3)

where \mathbf{A} is the rate matrix and the \mathbf{n} contains the number densities of atoms/ions state by state. The rate coefficients in \mathbf{A} have (thermal) collisional and radiative contributions. The vector \mathbf{y} contains the non-thermal collisional rates per unit time and volume. Only non-thermal rates from the ground state of an atom/ion are considered significant (cf. Appendix B). One (redundant) rate equation τ per chemical species “S” is replaced by an equation of species conservation, i.e. $A_{rf} = 1$ for all states j in “S”, and $y_r = n_S$ with the usual notation.

The coefficients of \mathbf{A} (except for those replaced by species conservation coefficients) are finally calculated as:

$$A_{ij} = R_{ij} + C_{ij} \quad \text{for} \quad j \neq i,$$

$$A_{ii} = - \sum_{j \neq i} (R_{ij} + C_{ij}),$$

(4)

where C_{ij} are thermal collisional rate coefficients (as usual), and R_{ij} are radiative rate coefficients (see below). The indices i and j denote atomic states (including ionised states).

Some details in which our rate coefficients differ from the usual form shall be briefly mentioned.

For radiative bound-bound processes we use [cf. e.g. Lucy (2002), equations (20-22)] the effective rate coefficients [s$^{-1}$, per atom]:

$$R_{ul,eff} = \left(A_{ul} - \frac{g_u}{g_l} B_{lu} \beta \right) \beta,$$

$$R_{lu,eff} = B_{lu} \beta,$$

(5)

In this notation, the upwards rate $R_{lu,eff} n_l$ only depends on the number density n_l (in the lower state l) and the downwards rate only on n_u, if the escape/penetration probability β (e.g. Lamers & Cassinelli [1999]) can be assumed constant (e.g. in the limit of very low line strength – otherwise β depends on occupation numbers).

Furthermore, we have implemented a special treatment of radiative recombination to the ground state, for which the continuum is often optically thick so that recombinations are followed by immediate re-ionisation. Lucy [1991] took this into account by setting the respective recombination rate to zero. We have attempted an approximate “next-order” treatment here, in which we multiply the recombination rate in each cell with an estimate of the probability for the respective photons to leave the cell or to be absorbed in lines (i.e. for no re-ionisation to occur). Our method is quite rough, but it is sufficient: it turns out that in the relevant cells the recombination rate to the ground state is normally negligible, as assumed by Lucy [1991].

The elements of \mathbf{y} (again except those used for species equations) represent non-thermal excitation processes. For excited states k, the entries y_k are calculated as:

$$y_k = H_k/W_k,$$

where W_k is the work for the excitation process. Each y_k is a rate from the respective ground state, which depends on the mix of atom/ion species and free electrons. The non-thermal rate from/to each ground state “1” of an atom/ion is determined by excitations and ionisations taking atoms/ions away, and by ionisations bringing less ionised atoms/ions to the ground state (except for the case of neutral atoms – here y_1 is always negative):

$$y_1 = \frac{\tilde{H}_{ionis}}{W_{ionis}} - \frac{H_{ionis}}{W_{ionis}} \sum_{k=2}^{n_{\text{max}}} \frac{H_k}{W_k}.$$

n_{max} is the number of states in the ion considered, and all variables refer to that ion – except for \tilde{H}_{ionis} and W_{ionis} which refer to the lower ion.

Charge exchange reactions (e.g. Swartz 1994) and continuum destruction processes for photons emitted by lines (e.g. Hummer & Rybicki 1983; Chugai 1987) are presently not considered in our calculations, and distinct line overlap phenomena are not treated as we use the common Sobolev approximation. We assume that the rates we consider are dominant and the processes neglected have only a small impact on the results. Wherever relevant, we assume thermal electrons to have $T_e = 0.9 T_R$ as in the MC code; tests have shown that our results are not very sensitive to this choice.

In Eq. (3) both \mathbf{y} and \mathbf{A} (via the escape probabilities) depend on the number densities \mathbf{n}. Therefore the rate equations are strongly nonlinear, and we solve them using a NR method [as Lucy (1991)]. First, we test thermal ionisation/excitation patterns at different temperatures, and take as an initial guess n_{max} the one for which $\|A \mathbf{n} - \mathbf{y}\|$ (euclidean norm) is minimum [Fig. 1 step (III)]. Then we solve the rate equations [step (IV)] using the NR solver package NLEQ2 [Nowak & Weimann 1991; Deufhard 2004]. This implementation includes sophisticated adaptive damping, and thus has an enlarged convergence radius; furthermore the solver is optimised to handle ill-conditioned Jacobians. When the accuracy estimator of NLEQ2 indicates convergence to 0.01%, we accept the solution.

3 MODELS FOR SNE 2008AX AND 1994I

We begin by presenting models for well-observed reference objects: the Type Ib SN 2008ax (e.g. Taubenberger et al. 2011) and the narrow-lined Type Ic SN 1994I (e.g. Filippenko et al. 1995).

4 To obtain this estimate, we calculate optical depth values in the continuum along rays, and finally average the probabilities $p = e^{-\tau}$ over different directions and emission frequencies. For each ray considered, the optical depth integration ends (i.e. the photons are considered to have “escaped”) either when the edge of the computational cell in the MC code is reached, or when a large line optical depth (~ 5) has been encountered, or when the photons have Doppler-redshifted out of the continuum in the co-moving frame – whichever happens first.
The observations we use have been carried out at epochs between 16.0 d and 40.6 d past explosion. Thus, they cover the epochs in which the H and He lines in SNe IIb/Ib are usually strongest and can be used best for abundance determination.

The initial ejecta models we assume for the two SNe have abundances and densities resulting from 1-D hydrodynamics/nucleosynthesis calculations. Specifically, for SN 2008ax we use the explosion model 4H47 [Shigeyama et al. 1994] constructed to explain a relatively similar SN Ib (SN 1993J). For SN 1994I, Kwamoto et al. (1994) have computed the explosion model CO21. These models may not be the most recent ones, but they have a structure consistent with the observations. 4H47 and CO21 actually use the same stellar core; only the mass and the composition of the envelope is different. The kinetic energy of the ejecta in the models considered here is always $\sim 10^{52}$ erg. The 4H47 model we use has been somewhat smoothed so as to avoid sharp line components due to overdense narrow shells in the 1-D model.

Starting from the initial values of the nucleosynthesis models, we fit the time series of spectra using the abundance tomography technique devised by Stehle et al. (2005). The method constrains the abundances in the outer layers of the SN starting from the earliest observations, and mapping the composition of deeper layers from spectra observed later (when more of the ejecta is optically thin).

In this work, we search for best-fit abundances under the constraint that the stratification typical of a core-collapse SN shall be preserved. This means that increasingly heavier elements dominate the ejecta from the outside to the inside, and that only species abundant in typical core-collapse ejecta (H, He, C, O, Si, Fe-group) are allowed to be dominant. A basic tomography is conducted with one abundance zone per observed spectrum. In the present models, we augmented the number of zones by adding two zones on the outside (i.e. the earliest spectrum was modelled with three abundance zones). This significantly improves some of the spectral fits (see below). We ran the light curve code of Cappellaro et al. (1997) on the current ejecta model from time to time as the spectral modelling process went on, in order to ensure compatibility with the observed light curve and to make sure the non-thermal excitation rates are consistent with the ejecta model.

The density profile of the respective explosion model was left unchanged in the modelling process. Probing the large parameter space opening up otherwise would have been computationally costly and is not in the focus of the current work.

Below, we show and discuss the models for the two SNe. The code input parameters of the models are shown in Appendix A and the density profiles are shown in Section 4.

3.1 SN 2008ax / SN IIb model

SN 2008ax has been extensively observed by several groups [Pastorello et al. 2008; Romine et al. 2008; Chornock et al. 2011; Taubenberger et al. 2011]. The observations used for our modelling are combined from all these sources [Hachinger 2011] to obtain a good wavelength coverage at four epochs [16.0 d, 22.1 d, 30.6 d and 40.6 d after the explosion, which we assume to have happened at JD 2454528.50 [Pastorello et al. 2008]]. In order to homogenize the data, we multiplied spectra which did not match contemporaneously with simple correction functions $f(\lambda)$ (with values close to unity). For all synthetic photometry, we used IRAF with SYNPHOT and TABLES (see acknowledgements).

We assume a total reddening of $E(B - V)_{\text{tot}} = 0.30$ mag (with a Galactic contribution of 0.02 mag) for the SN, and a distance modulus of $\mu = 29.92$ mag [all values from Pastorello et al. (2008)].

The spectral models for SN 2008ax are shown in Figure 2 with the observed spectra and line identifications. All data in the plot are de-reddened and de-redshifted.

3.1.1 $t = 16.0$ d spectrum

At this epoch, the dominant features are made by He and H, apart from some Ca, Mg, Si and Fe lines in the B and V bands. The H lines are relatively weak, as significant amounts of He are below the photosphere ($v_{\text{ph}} = 8400$ km s$^{-1}$). Also, the radiation temperature is generally very high, which leads to high ionisation rates from excited states of He I, decreasing the occupation numbers of these states. Yet, numerous He I lines can be identified (Fig. 2, red marks). The features at $\lambda 6678$ λ7065 and $\lambda 3962$ allow for an unambiguous detection of He, especially when observed together. Other features may be contaminated by lines of different elements more frequently (see Sec. 3.1.3).

We inserted two additional abundance zones above the photospheric one, with lower boundaries at 10800 and 13000 km s$^{-1}$, respectively. This allows for a better match to specific spectral features. In the zone between 10800 and 13000 km s$^{-1}$, the abundances of C, O, intermediate-mass elements (IME: Ne...Ca) and 56Ni decrease strongly; this is needed in order to avoid high-velocity IME lines (especially Ca) and excessive line blocking (as caused by 56Ni). In the outermost zone, these abundances are further reduced and replaced by H, which makes the high-velocity wings of the H lines a bit stronger.

The model matches the observations well in the optical and the IR, except for the fact that H lines are generally somewhat too strong and He lines a little too weak. We accept such small mismatches here, as they depend on details of the model (e.g. the gamma-ray flux due to 56Ni or the density distribution). Around 3500 Å the flux of the model is somewhat too low which indicates too much absorption by Fe-group elements. The abundances we assumed in the model were however necessary to fit the light curve reasonably well.

3.1.2 $t = 22.1$ d spectrum

At 22.1 d after explosion, the SN is 3 d past its B maximum. The spectrum is cooler than before and spectral features get deeper, as more material is uncovered ($v_{\text{ph}} = 7300$ km s$^{-1}$).

The high-velocity wing of the strong He I $\lambda 10830$ feature, which is too deep in the model, is produced in the outermost regions of the ejecta. In these regions, the density in the model is probably too high. With a lower density, the material in the outer layers would not only be more dilute, but also may become extremely ionised (up to He II, which we do not consider here) at the expense of He I. The early-time light-curve spike of SN 2008ax is much narrower than that of SN 1993J. This also indicates that SN 2008ax had an exceptionally low envelope mass (cf. Arcavi et al. 2011), i.e. lower densities than in the 4H47 model, which originally has been constructed to explain SN 1993J (Shigeyama et al. 1994).

3.1.3 $t = 30.6$ d spectrum

By day 30.6, the photosphere has receded to $v_{\text{ph}} = 6000$ km s$^{-1}$. In general the spectrum shows deeper lines than those at earlier
Figure 2. Spectral models for SN 2008ax (red lines) compared to the observations at four epochs (black lines). The insets show the infrared (IR). Line identifications are given for prominent lines at the first and third epoch – red: He I lines, blue: H lines. The Hα line first remains constant and finally gets a bit weaker with time, while most He lines gain additional strength.
epochs, and a multitude of strong He I features is visible. The redder colour and lower flux level of the spectrum lead to a lower ionisation. This makes the occupation numbers in the excited states of He I higher, with the effect of stronger lines. The clearest He features are at λλ 6678, 7065, 7281 and around 20000 Å. The λ10830 feature may possibly have a contribution from C I (Sauer et al. 2006); however in our simulation the lower levels of the respective lines (C I λλ 10691, 10730) are not sufficiently populated. The λ5876 feature is extremely prominent in the optical, but has some contribution of Na I D, which is common in core-collapse SNe (cf. Sauer et al. 2006).

3.1.4 t = 40.6 d spectrum

40.6 days past explosion, the development described above continues and the He lines reach their maximum strength (compare the He I λ6678 line with Hα in Fig. 2 lower panels). The photosphere (v\text{ph} = 3100 km s\text{–1}) has reached the bottom of the He-dominated zone in the hydrodynamics/nucleosynthesis models of Shigeyama et al. (1994). Despite the late epoch, the observed spectrum is quite well matched. The match to the IR spectrum is particularly good, although the models were crafted so as to primarily optimise the fit to the optical observations.

The IR spectrum now shows a lot of structure, not only with the marked He I feature at ∼ 20000 Å, but also with other features due to He, Co, Mg and more elements.

3.1.5 Light curve

Our model light curve is shown together with the bolometric LC of SN 2008ax in Fig. 3. The match is generally very good, taking into account that the opacity description used for the calculation is only approximate. The total 56Ni mass in our model is 0.09 M\odot.

The earliest points of the observed curve might be better reproduced if the model envelope was somewhat less massive (cf. Sec. 3.1.2), so that radiation could escape faster. In addition, these points may have a contribution from the envelope heated during the explosion (as in Type II-P/L SNe), which we neglect in the model.

3.1.6 Abundance stratification

The abundances in our ejecta model are plotted in Fig. 4. With a photospheric velocity of 3100 km s\text{–1} at +40.6 d, our tomography only samples the He-dominated part of the SN. The total mass of He in the model is ∼ 1.2 M\odot.

In the outer envelope (v \gtrsim 7500 km s\text{–1}), the H mass fraction is ∼ 10 − 40%. A larger mass fraction of H would lead to the formation of a deeper H\alpha line, which is already somewhat too strong in the models. The total H mass in our model is only 0.05 M\odot, which is less than in the original 4H47 ejecta model. However, this is in line with another analysis of SN 2008ax (Tsvetkov et al. 2009). The remaining mass fraction has been attributed to He, which at these velocities does not contribute to line formation (with the λ10830 high-velocity feature as an exception). The actual H/He envelope of SN 2008ax may indeed be somewhat less massive than in our model and have a larger H mass fraction instead.

The fraction of Fe-group elements in the outermost part of the ejecta is sub-solar (∼ 1/4 of the solar values). This reduces the flux blocking in the outer layers with respect to the solar-metallicity case. In a solar-metallicity model, line blocking would cause more backwarming (a more intense, “hot” radiation field within the atmosphere), which leads to a somewhat altered ionisation state and a worse spectral fit. Not only H and Fe-group elements have been reduced in the outer envelope: for Ca, a reduction to less than 10% of the solar values was required in order not to produce spurious high-velocity absorption. All this again indicates that the density (and mass) of the outermost layers in the 4H47 model is higher than in the observed object.

Most line strengths are determined by the abundances in the intermediate part of the ejecta (v \sim 4000 – 12000 km s\text{–1}). Many elements have an influence on the spectra in this velocity range, except for Si and Ne whose abundances are therefore estimates.

From the model, it is evident that the composition is relatively strongly mixed, with some percent of IME and Fe-group elements almost everywhere. Some outward-mixing of 56Ni has to occur for the light curve to rise fast enough; we have assumed this to be as strong as allowed by the spectra.

3.2 SN 1994I / SN Ic model

SN 1994I is a very well-observed low-mass Type Ic SN (Yokoo et al. 1994; Sasaki et al. 1994; Filippenko et al. 1995).
Figure 5. Spectral models for SN 1994I (red lines). Observations or spectra interpolated from observations at adjacent epochs (cf. text) are shown in black. In the insets, the IR is plotted (no observations available). Line identifications are given for prominent lines at the first and third epoch – red: He I λ10833 line.
Clocchiatti et al. 1996 [Richmond et al. 1996]. Thanks to the good time coverage and quality of the observations it has already been subject to several radiative transfer studies [Iwamoto et al. 1994; Sauer et al. 2006 and references therein]. We use the spectroscopic observations by Filippenko et al. 1995 and the photometric observations by Richmond et al. 1996. We calculate model spectra for SN 1994I at four epochs. In order to render the models in this paper well comparable to one another, the epochs were chosen to match exactly those of SN 2008ax (we assume that SN 1994I exploded on JD2449438.6 [Filippenko et al. 1995] have taken a spectrum at an epoch 16 d, which we fit with our first model spectrum. For the subsequent epochs, we compare our models to spectra interpolated [as described in Hachinger (2011)] from observations taken sooner and later. The first spectrum and the three interpolated spectra are again calibrated against contemporaneous photometry. IR spectra are not available for SN 1994I.

Following Sauer et al. 2006, we assume for SN 1994I a total reddening of $E(B-V)_{tot} = 0.30$ mag [the Galactic reddening is 0.035 mag, Schlegel et al. 1998], and a distance modulus of $\mu = 29.60$ mag. However, all models and observed spectra plotted below are rescaled to the distance of SN 2008ax ($\mu = 29.92$ mag) and printed on the same scale in order to facilitate visual comparison. Again, all spectra have been de-reddened and de-redshifted prior to plotting.

The spectral models for SN 1994I with line identifications are shown in Fig. 5.

3.2.1 $t = 16.0$ d spectrum

The SN spectrum at $t = 16.0$ d, which is already ~ 5 d past maximum for this SN and corresponds to a photospheric velocity of 8900 km s$^{-1}$, shows a mix of O, IMe and Fe-group lines. In the region around 4300 Å, the SN shows a deep trough (which is due to Mg II, Cr II and Ti II) similar to 91bg-like SNe Ia. Some hint of a C II line is visible at the red edge of the weak Si II $\lambda 6355$ line.

Model line velocities in general tend to be a bit too high, which reflects the fact that the decline of the density of model CO21 in the outer layers is extremely shallow. With respect to the Si II $\lambda 6355$ feature, where the mismatch is largest, Branch et al. 2006 have furthermore suggested a significant contribution of H mixed into the star’s core. We have assumed H not to be present in our models.

The model includes a tiny amount of He in the intermediate and outer layers (0.04M_\odot in total); this makes the He I $\lambda 10830$ line appear, but none of the weaker He I lines. The observed spectra at later phases indicate the possible presence of the $\lambda 10830$ line; unfortunately, the feature is never fully covered by the observations. Sauer et al. 2006 showed that the observations in this wavelength range may also be reproduced by C I lines instead of He I, if the excitation/ionisation state of C is appropriate.

Again, we have used two abundance shells above the $t = 16.0$ d photosphere (with lower boundaries at 15400 and 18500 km s$^{-1}$, respectively) to optimise the fit to the spectrum. In these zones we have assumed that the composition is dominated by C and contains some He, as was the case for the outer shells in the CO21 nucleosynthesis calculation of Iwamoto et al. 1994. The density of IMe and Fe-group elements is reduced as in the model for SN 2008ax. This has merely been done to maintain a consistent approach (e.g. the Fe-group elements are also reduced down to $\sim 1/8$ of the solar abundance); the exact amount of the reduction plays less of a role for the SN 1994I models. Only the Ca mass fraction has to be very much reduced in the outer layers (to $X(\text{Ca}) \sim 10^{-6}$) in order not to produce high-velocity features.

3.2.2 $t = 22.1$ d spectrum

The 22.1 d spectrum of SN 1994I is significantly cooler (redder), as the luminosity of the SN has declined rapidly. The photospheric velocity has decreased to the low value of $v_{\text{ph}} = 3100$ km s$^{-1}$, which is plausible considering the low ejecta mass of SN 1994I.

The IR spectrum begins to show a lot of structure owing to lines of Co II and Mg II.

3.2.3 $t = 30.6$ d and $t = 40.6$ d spectra

At 30.6 d, the photosphere has receded to 1400 km s$^{-1}$. The limit of applicability of our code is certainly reached here, as a major fraction of ^{56}Ni is now above the photosphere, but nonetheless we have been able to calculate a decent model spectrum. We continued the calculations to $t = 40.6$ d ($v_{\text{ph}} = 910$ km s$^{-1}$). Other models in the sequence from SN 2008ax to SN 1994I, which we construct below, do not have such a deep-lying photosphere at these epochs and therefore will be more reliable.

The composition near the photosphere at these epochs is completely dominated by ^{56}Ni, which is required to make the light curve sufficiently bright. The sensitivity of the optical spectrum on the composition in the photospheric layers is limited. Instead, practically all elements abundant in the intermediate and also in the outer region of the ejecta contribute to line formation.

The He in the outer layers of the model leaves a very broad $\lambda 10830$ line now, with a high-velocity component a bit too pronounced.

3.2.4 Light curve

The light curve calculated from our SN 1994I model (Fig. 6) provides a decent match to the observations in the early phase. Afterwards, at 30 d past maximum and later, there is a mismatch between model and observations. We could not increase the ^{56}Ni mass in the model (0.07M_\odot) to improve the match because the light curve peak is already a bit too high.

The mismatch between peak and tail indicates that the model...
is not opaque enough, although we have already concentrated the ^{56}Ni in the centre of the ejecta. The model does not delay the escape of photons to late enough epochs. However, in models with moderate differences to ours in the opacity description and/or the ejecta configuration (Iwamoto et al. 1994; Sauer et al. 2006), the light curve tail has been successfully matched. Thus, we can assume that the density and chemical composition of our model is all in all reasonable.

3.2.5 Abundance stratification

The abundances that we obtained from fitting SN 1994I (Fig. 7) can be regarded as typical for SNe Ic. Helium appears as a trace element in the outer layers (total He mass: $0.04 M_\odot$); these layers are dominated by C so that C II lines can form. A hint of the C II lines, which are rather weak intrinsically (i.e. in terms of oscillator strength), is visible redwards of Si II $\lambda6355$ in the spectra. Below, O is the dominant element; mass fractions of IME and Fe-group elements increase further inwards.

The light curve requires a strong concentration of ^{56}Ni and other Fe-group elements in the core. According to our calculations, this is compatible with the spectra, while Sauer et al. (2006) had to reduce the Fe and ^{56}Ni mass fractions in their late-time models. This reflects the fact that Sauer et al. (2006) used one-zone models (i.e. homogeneous abundances throughout the envelope), and that too high a mass of Fe-group elements in the ejecta is not allowed by the spectra – even if the material becomes more dilute at late epochs.

4 MODEL SEQUENCE – FROM SNE IIB TO SNE IC

We now present our model sequence representing SNe with different degrees of envelope stripping. First, we explain how we obtain density profiles and the code input parameters for the models. Then, we show the most interesting synthetic spectra from the sequence and estimate the observable consequences of the different He (and H) content. The sequence has SN 2008ax and SN 1994I as start and end points, respectively. It is helpful for the construction of the sequence that the explosion models 4H47 and CO21 used for these SNe are based on the same stellar core.

4.1 Set-up

The model sequence we set up is itself based on progenitor/explosion models which have the same stellar Fe/Si/O/C core and only differ in the envelope. We have decided to present iso-energetic models (i.e. the explosion energy is always 10^{51} erg), which matches our choice of reference objects (SNe 2008ax and 1994I). The density/abundance structure of models in the sequence is set up so as to make a smooth transition between the models for SNe 2008ax and 1994I.

4.1.1 Density profiles

In the context of models with constant kinetic energy, the step from a SN with a massive envelope to a more stripped SN is mostly reflected in the structure of the remaining H/He envelope and of the outer core. These will carry much more kinetic energy per unit mass in a more stripped SN. The innermost layers will show less of a difference [in their pre-explosion state as well as their kinematics, cf. Arnett (1974) and Matzner & McKee (1993)]. To construct our sequence, we all in all have to perform a simultaneous reduction of the envelope mass and an adequate redistribution of the remaining ejecta in velocity. The first aim is to gradually transform the
model equal to 10^{51} erg. For the construction of the outermost part (high-velocity ejecta, $v \geq 20000$ km s$^{-1}$) we use Equation (8) of Matzner & McKee (1999). This part is then connected to the rescaled core using a simple density function of the form $\rho(r) = \alpha \times \exp(-r/b) + c$, yielding a reasonably smooth transition. The original density profiles and an example model within each sequence are shown in Fig. 9. The displacement of different zones as velocity is rescaled is also indicated in the Figure. Each sequence model has been smoothed somewhat in order to avoid jags which result from small scale variations in the initial (4H47 / M4.0) density profiles and from the not entirely smooth $\eta(v)$ functions.

4.1.2 Preparation of the SNe 2008ax and 1994I models and final set-up of the sequence

In order to fully specify the model sequence, we now must define a sequence of abundance stratifications, and values for the photospheric velocity and luminosity at each epoch.

To do this, we first identify “corresponding shells” in our ejecta models for SNe 2008ax and 1994I. The ejecta of the two models have originally been divided into six shells with different abundances. By setting up both ejecta models to have eleven abundance zones, we have been able to establish a one-to-one correspondence, in the sense that the n-th shell of the SNe 2008ax model starts and ends at the same enclosed mass coordinate as the n-th shell of the SN 1994I model (for shells at $M \leq 0.9 M_\odot$). In Appendix C (Table C1), we give the parameters of the SN 2008ax and SN 1994I models zone by zone with some technical annotations.

The abundance zones of the models within the transition sequence are then constructed by moving the abundance zone boundaries with the mass elements and interpolating the abundances in each zone between the SN 2008ax and SN 1994I values (linearly, in 20 + 20 = 40 steps for the entire transition).

Finally, we have to define the luminosity and the photospheric velocity of the sequence models for each epoch. The luminosity is determined by linear interpolation, just as the abundances. The photospheric velocities are calculated, epoch by epoch, using the Stefan-Boltzmann law, inserting the new L value and a linearly-interpolated effective temperature T_{ph} (again in between the values for SN 2008ax and SN 1994I). This procedure has the advantage that photospheric black-body temperatures change in a well-defined manner. Our photospheres thus defined for the sequence models do not necessarily correspond to the abundance shells constructed before. Therefore, we just insert them as lower boundaries for the spectrum calculations, without any impact on the abundance structure.

4.2 The SN IIb \rightarrow SN Ib transition

Figure 10 shows a selection of models representing the sequence from the SN IIb model over two transitional models ("SN IIb/Ib" and "SN Ib/Ic") to the SN Ib model. The Hα line becomes progressively weaker and the Hβ line, which is visible at the earliest epoch, vanishes (see marks in the Figure).

Finally, the SN Ib model still has residual absorption in the Hα region. This is due to Si ii $\lambda 6355$ and a (weaker) “real” Hα.

6 These models have been identified by eye as those for which a clear H identification is still possible ("SN IIb/Ib", model no. 6 in the transition sequence 0 \rightarrow 20) or already difficult ("SN Ib/Ib", model no. 10).
Figure 10. SN IIb → SN Ib sequence of spectral models. The model designations refer to the SN type the respective model represents (two types in case of transitional models). Line identifications are given for a few He and H lines with which the SN class can be well determined. In the uppermost panel, an inset shows the Hβ region in more detail, and we have also marked the Si II λ6355 line which appears in the SN Ib model, while it vanishes in the high-velocity wing of Hα for more H-rich models.
Figure 11. SN Ib → SN Ic sequence of spectral models. The model designations again refer to the represented SN type (two types for transitional models). Line identifications are again given for the He features most useful for classification.
absorption, as some mixing of H into the He-rich zone has been assumed.

The H mass for which the Hα/Si feature becomes dominated by H and for which Hβ absorption appears is between

$$M(\text{H})_{\text{SN Ib/c}} = 0.025 M_\odot$$

and

$$M(\text{H})_{\text{SN Ib}} = 0.033 M_\odot$$
in our model sequence.

The values should be taken to refer to the outer envelope; a small mass fraction of H throughout the SN may not have any visible effect. Furthermore, charge exchange may decrease the H/H II fraction if other elements such as He are present, and differences in the ^{56}Ni distribution may change the H excitation and ionisation. The point here is, however, that a relatively H-rich envelope [$X(\text{H}) > 10\%$] with a very small H mass is sufficient to make the H lines show up. This is consistent at least with some progenitor models (e.g. Georgy et al. [2009]), and with observations; it has been suggested that a weak H line is actually present at least in some SNe classified as Type Ib (e.g. Hamuy et al. [2002]; Valenti et al. [2011]). Apart from the presence of Hα, there is not much difference between SN IIb and SN Ib spectra some weeks past explosion.

4.3 The SN Ib → SN Ic transition

As the He is removed from the models (Fig. 11), we see a very pronounced change in the spectra. C, O, intermediate-mass and Fe-group elements begin to exclusively shape the spectrum (cf. Sec. 5.2). Depending on the actual composition and the individual shape of the envelope, the sequence models develop more or less pronounced high-velocity components in the Ca II triplet and the H α λ10830 line. Although quite prominent, these are not really significant for our study. We focus on the visibility of clear He features. Again, we consider two transitional models ("SN Ib/Ic" and "SN Ic/Ib" models in Fig. 11—these are models no. 23 and 28 in the sequence 20 → 40, in which the He abundance declines rapidly at the beginning).

While many He I lines are possibly blended with lines from other species, we have marked three features in Fig. 11 ($\lambda\lambda$6678, λ7065 and $\lambda\lambda$20851, 21120, 21132) which are good indicators of He content, especially when taken together. The IR feature (λ20851 with minor contributions from $\lambda\lambda$21120, 21132) is particularly useful, as it is strong, but does not saturate too quickly. Before maximum light, and for some weeks after maximum, all He I lines tend to become more pronounced with time (cf. Taubenberger et al. [2011]).

The He mass for which we begin to see the three features as pointed out above is between

$$M(\text{He})_{\text{SN Ic}} = 0.06 M_\odot$$

and

$$M(\text{He})_{\text{SN Ib}} = 0.14 M_\odot.$$
the total downwards rate from all excited/ionised states to the He I ground state. The occupation ratio of the excited/ionised system to the He I ground state is determined by the equilibrium of the upwards rate (ii) with the downwards rate.

In the lower panel of Fig. 12 we show what happens if the original model (upper panel) is modified reducing the Compton heating rate H_C as discussed. The ratio of He I atoms to excited and ionised atoms changes. However, as long as He is mostly singly ionised, this only has a small influence on the number of He I atoms in excited states, which is in equilibrium with He I via radiative transitions. As long as He II is sufficiently dominant, the optical depths of the He lines in our spectra, which all originate from excited He I states, will be less dependent on the exact heating rate, but mostly on the number density of He and the radiation field.

The SN Ib/Ic model we used contains a moderate He mass fraction of 22% in most parts of the envelope. This corresponds to the assumption of relatively strong mixing, which is expected to make nonthermal excitation of He weaker as more energy of the fast electrons is deposited into other species. Our upper limits on the He mass are therefore relatively conservative.

5.2 3-D effects and our results

3-D effects in the ejecta configuration may play a significant role in core-collapse SN spectroscopy. Although extended H envelopes supposedly remain symmetric in the explosion (Leonard & Filippenko 2005; Leonard et al. 2006), the He layers in the ejecta can have a thickness varying more or less with viewing angle. The heating due to radioactivity may be viewing-angle dependent as well. A larger He mass may be hidden if marked asymmetries are present.

As we cannot precisely judge the possible asphericity from ab-initio explosion models yet, we just mention these facts as a caveat to our results. A quantitative assessment of viewing-angle dependencies based on a specific explosion model and 3-D radiative transfer treatment may be an interesting topic for a future study.

5.3 Compatibility of our results with progenitor models

Current stellar evolution models for core-collapse SN progenitors (Georgy et al. 2009; Yoon et al. 2010), at least those involving binarity, succeed in explaining envelope configurations similar to our SN Ib and SN Ib models.

Reconciling our limit on He masses in SNe Ic (~ 0.06 – $0.14 M_\odot$) with the progenitor models is, however, more difficult. The models presented by Georgy et al. (2009), which are single Wolf-Rayet stars, never have less than $0.3 M_\odot$ of He. In order to explain the total SN Ic rate with their progenitors, these authors need to allow for He masses of $0.6 M_\odot$ in SNe Ic. Also Yoon et al. (2010), who simulated binaries with one to three phases of “case A” or “case B” mass transfer, produce only a small amount of progenitors with $M(\text{He}) < 0.5 M_\odot$. The models of both groups are, however, also too massive to explain SNe Ic as we studied them here.

5.4 IR He I lines as diagnostics for the SN Ib \rightarrow SN Ic transition

For extended studies on the H/He content of stripped-envelope core-collapse SNe, it is important to know which lines or spectral regions allow for an accurate measurement of abundances. For H, the Hα line is the best choice especially when abundances are low, but for He the question is more difficult to answer.

There is a multitude of He I lines, but the most interesting feature for diagnosing the He content is certainly the IR 2μ one. The intrinsic absorption strength of the transitions, together with typical population of the lower levels, is obviously favourable. Therefore, small amounts of He (like those occurring in our SN Ib \rightarrow SN Ic sequence) suffice to make the feature show up, but also for larger He masses the lines do not saturate too quickly. Furthermore, the
absorption is exceptionally well isolated from other spectral features.

Spectroscopic observations in the near infrared (H/K band) would be a very valuable diagnostics. We hope that such observations, taken simultaneously with spectra in the optical, will become available for different SN Ib/Ic subtypes (e.g. Nomoto et al. 2006).

6 SUMMARY AND CONCLUSIONS

We used an NLTE spectral synthesis code to determine the effect of different H and He masses on the spectra of stripped core-collapse SNe with low/moderate explosion energies and ejecta masses (10^{51} erg, 1–3M⊙). To this end, we first created best-fit models for SNe 2008ax (Type Ib) and 1994I (Type Ic). These are in line with earlier models for the two SNe (Sauer et al. 2006; Tsvelkov et al. 2008; Maurer et al. 2010). We then calculated a sequence of transitional models for which the envelope configuration is intermediate between the two extreme cases. From the sequence models, we derived limits on the H and He content of low-mass-low energy Type Ib and Type Ic SNe, respectively.

A small H mass (0.025–0.033M⊙) is sufficient to make a strong Hα absorption show up. We speculate that at least some SNe Ib show an Hα absorption component, blended with Si II λ6355. This makes the spectral distinction between SNe Ib and SNe Ic somewhat fuzzy. Despite this, and the dependence of the H state on details in the models, we can however say that SNe Ib with an ejecta mass of 2–3M⊙ should have an envelope containing less than 0.1M⊙ of H.

The maximum He mass which can be hidden in SNe Ic according to our models is ~0.06–0.14M⊙. When H lines appear, He I 2μ absorption is an excellent diagnostic of He content. More SN Ib/Ic data in this spectral range are clearly needed.

An assessment of the optical He I lines at λλ6678, 7065 has however been sufficient to spot a difficulty with SN Ic progenitor models: Recent stellar evolution calculations (Georgy et al. 2009; Yoon et al. 2014) generally predict a quite large He mass in SN IIb/Ib/Ic progenitors (~0.3–0.6M⊙, with few exceptions). “Exotic” models may therefore be needed to explain SN 1994I-like, low-mass SNe Ic (Iwamoto et al. 1994) and Nomoto et al. 1994] proposed for this SN a binary scenario in which the companion is a neutron star in the last mass transfer phase. The rates of this progenitor channel may not be all too large; whether this is a problem or not depends on the exact rate of 1994I-like SNe.

It has to be verified whether more He can be hidden in the ejecta of more massive or strongly asymmetric SNe Ic. We therefore plan to carry out similar studies on spectra of core-collapse supernovae which are more massive and more energetic or markedly aspherical. These studies will allow us to further explore how much H or He can be hidden with different configurations of the envelope (mixing, density profile). Together with the present work, we will obtain a comprehensive picture of the outer layers of SNe IIb, Ib and Ic, and of possible progenitor systems.

ACKNOWLEDGEMENTS

SH thanks N. Przybilla for very helpful discussions about atomic models and for a sample He I model, and I. Maurer for several fruitful discussions and routines for treating H atomic data. We are indebted to P. Storey for providing us with photosionisation rates for He I. ST acknowledges support by the Transregional Collaborative Research Centre TRR33 “The Dark Universe” of the German Research Foundation (DFG). We have made use of the CHIANTI (v6.0.1), TMAD (as available in 2010) and NIST (v3.1.5) databases for atomic data. CHIANTI (http://www.chiantidatabase.org) is a collaborative project involving the NRL (USA), RAL (UK), MSSL (UK), the Universities of Florence (Italy) and Cambridge (UK), and George Mason University (USA). TMAD is available in the context of the German Astrophyysical Virtual Observatory (GAVO) at [http://astro.uni-tuebingen.de/~rauch/TMAD/TMAD.html]. The NIST atomic spectra database is provided by the National Institute of Science and Technology, Gaithersburg, MD, USA. It is accessible (together with individual references for the atomic data) at [http://www.nist.gov/pml/data/asd.cfm].

References

Abbott D. C., Lucy L. B., 1985, ApJ, 288, 679
Arcavi I., et al., 2011, ApJ, accepted, arXiv:1106.3551 [astro-ph.CO]
Arnett W. D., 1974, ApJ, 193, 169
Axelrod T. S., 1980, PhD thesis, University of California, Santa Cruz
Bashkin S., Stoner J. O., 1975. North-Holland Publ. Co., Amsterdam
Branch D., Jeffery D. J., Young T. R., Baron E., 2006, PASP, 118, 791
Cann N. M., Thakkar A. J., 2002, J. Phys. B, 35, 421
Cappellaro E., Mazzali P. A., Benetti S., Danziger I. J., Turatto M., della Valle M., Patat F., 1997, A&A, 328, 203
Chornock R., et al., 2010, ArXiv:1001.2775
Chugai N. N., 1987a, Astrofizika, 26, 89
Chugai N. N., 1987b, SvA, 13, L282
Clochtiatti A., Wheeler J. C., Brotherton M. S., Cochran A. L., Wills D., Barker E. S., 1996, ApJ, 462, 462.
Dere K. P., Landi E., Mason H. E., Monsignori Fossi B. C., Young P. R., 1997, A&AS, 125, 149
Dere K. P., Landi E., Young P. R., Del Zanna G., Landini M., Mason H. E., 2009, A&A, 498, 915
Deuflhard P., 2004, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer, Berlin
Drake G. W. F., Morton D. C., 2007, ApJS, 170, 251
Fernley J. A., Seaton M. J., Taylor K. T., 1987, J. Phys. B, 20, 6457
Filippenko A. V., et al., 1995, ApJ, 450, L11+
George C., Meynet G., Walder R., Folini D., Maeder A., 2009, A&A, 502, 611
Gould R. J., 1972, Physica, 60, 145
Graham J. R., 1988, ApJ, 335, L53
Habing H. J., Goldsmith D. W., 1971, ApJ, 166, 525
Hachinger S., 2011, PhD thesis, Technische Universität München, Munich, Germany
Hamuy M., et al., 2002, AJ, 124, 417
Harkness R. P., et al., 1987, ApJ, 317, 355
Hummer D. G., Rybicki G. B., 1985, ApJ, 293, 258
Hummer D. G., Storey P. J., 1998, MNRAS, 297, 1073
Iwamoto K., Nomoto K., Hofflich P., Yamaoka H., Kumagai S., Shigeyama T., 1994, ApJ, 437, L115
Janey R. K., Smith J. J., 1993. Atomic and plasma-material interaction data for fusion (Supplement to the journal Nucl. F.), Vol. 4. International atomic energy agency, Vienna
He in SNe Ic, and H in SNe Ib?

Janka H., Langanke K., Marek A., Martínez-Pinedo G., Müller B., 2007, Phys. Rept., 442, 38
Khokhlov A., Mueller E., Hoeflich P., 1993, A&A, 270, 223
Kozma C., Fransson C., 1992, ApJ, 390, 602
Lach G., Pachucki K., 2001, Phys. Rev. A, 64, 042510
Lamers H. J. G. L. M., Cassinelli J. P., 1999, Introduction to Stellar Winds. Cambridge University Press, Cambridge
Leonard D. C., et al., 2006, Nature, 440, 505
Leonard D. C., Filippenko A. V., 2005, in Turatto M., Benetti S., Zampieri L., Shea W., eds, AIP Conference Series Vol. 342, Spectropolarimetry of Core-Collapse SNe. AIP, Melville, p. 330
Lotz W., 1967, ApJS, 14, 207
Lucy L. B., 1991, ApJ, 383, 308
Lucy L. B., 1999, A&A, 345, 211
Lucy L. B., 2002, A&A, 384, 725
MacFadyen A. I., 2000, A&A, 363, 705
Matzner C. D., McKee C. F., 1999, ApJ, 510, 379
Maurer I., 2010, PhD thesis, Technische Universität München, Munich, Germany
Maurer I., Mazzali P. A., Taubenberger S., Hachinger S., 2010, MNRAS, 409, 1441
Mazzali P. A., 2000, A&A, 363, 705
Mazzali P. A., et al., 2008, Sci, 321, 1185
Mazzali P. A., Lucy L. B., 1993, A&A, 279, 447
Mazzali P. A., Lucy L. B., 1998, MNRAS, 295, 428
Mazzali P. A., Nomoto K., Cappellaro E., Nakamukou T., Umeda H., Iwamoto K., 2001, ApJ, 547, 988
Mezzacappa A., 2005, Annual Review of Nuclear and Particle Science, 55, 467
Mihalas D., 1978, Stellar atmospheres, 2nd edn. W. H. Freeman and Co., San Francisco
Mihalas D., Stone M. E., 1968, ApJ, 151, 293
Nomoto K., Yamaoka K., Pols O. R., van den Heuvel E. P. J., Nomoto K., Tominaga N., Tanaka M., Maeda K., Suzuki T., Deng J., 2009, Nat, 462, 1190
O., 2009, Peremennye Zvezdy, 29, 2
Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
Shigeyama T., Nomoto K., Tsujimoto T., Hashimoto M., 1990, ApJ, 361, L23
Shigeyama T., Suzuki T., Kumagai S., Nomoto K., Saio H., Yamakawa H., 1994, ApJ, 420, 341
Smarr S. J., 2009, ARA&A, 47, 63
Stehle M., Mazzali P. A., Benetti S., Hillebrandt W., 2005, MNRAS, 360, 1231
Swartz D. A., 1994, ApJ, 428, 267
Taubenberger S., et al., 2011, MNRAS, 413, 2140
Tsvetkov D. Y., Volkov I. M., Baklanov P., Blinnikov S., Tuchin O., 2009, Peremennye Zvezdy, 29, 2
Utrobin V. P., 1996, A&A, 306, 219
Valenti S., et al., 2011, MNRAS, p. 1220
Woosley S. E., 1993, ApJ, 405, 273
Xu Y., McCray R., 1991, ApJ, 375, 190
Yoko T., Arimoto J., Matsumoto K., Takahashi A., Sadakane K., 1994, PASJ, 46, L191
Yoon S., Woosley S. E., Langer N., 2010, ApJ, 725, 940

APPENDIX A: MC ESTIMATOR FOR THE FREQUENCY-DEPENDENT INTENSITY

Here, we briefly comment on the implementation of the MC radiation field estimator \(I_{\nu} \) mentioned in Sec. 2.1 In order to evaluate the estimator in our simulations, packets are registered at each cell midpoint. The packet flux is binned on a sufficiently fine frequency grid; the result is then converted to a co-moving frame intensity and finally smoothed somewhat. At \(\lambda < 1000 \, \text{Å} \), the recorded spectrum is relatively noisy. Therefore, we impose a continuous transition to a constant mean intensity of \(10^{-30} \text{erg Hz}^{-1} \text{s}^{-1} \text{sr}^{-1} \text{cm}^{-2} \) towards smaller wavelengths. For \(\lambda \gtrsim 300 \, \text{Å} \), this normally exceeds the black-body intensity at the local electron temperature \(T_e \), and we let the intensity decline following \(B_k(T_e) \). The exact values \([10^{-30} \text{erg Hz}^{-1} \text{s}^{-1} \text{sr}^{-1} \text{cm}^{-2} B_k(T_e)] \) turned out to be irrelevant for the present work, as in our simulations most ionisations of He occur by nonthermal collision processes, and H is mostly ionised by photons with \(\gtrsim 900 \, \text{Å} \) (also from excited states), so that the assumed intensity does not control the rate.

APPENDIX B: GAMMA-RAY DEPOSITION CALCULATIONS

In our NLTE calculations, we take into account that atoms can be excited and ionised by Compton electrons, which are present owing to the gamma radiation from \(^{56}\text{Ni}\) and \(^{56}\text{Co}\) decay. In this appendix, we show how we determine what fraction \(D_k \) of the local heating power \(H_C \) is deposited in different channels \(k \), corresponding to atomic processes or to Coulomb scattering with thermal electrons. Our implementation follows the principles devised by Lucy \[99\].

As a basic assumption, we consider the number of atoms in excited states to be small and insignificant, so that only excitations and ionisations from the ground state must be considered (cf. Lucy \[99\] and Hachinger [2011]). The deposition fraction \(D_k \) is a function of the initial energy of the fast electrons \(E \). Assuming that all electrons which contribute to \(H_C \) have the same initial energy \(E \), we can write the energy flow into channel \(k \) as:

\[
H_k = D_k(E) H_C.
\]

For \(E \) ranging from \(\sim 1 \, \text{keV} \) up to some MeV, \(D_k(E) \) becomes nearly constant \[Lucy\[99\], Axelrod\[80\]]. Thus, for typical Compton electrons in a SN, we can write

\[
H_k = D_k^+ H_C,
\]

with an energy-independent value \(D_k^+ \).

We now describe how we compute the values \(D_k(E) \) or \(D_k^+ \).

© 2012 The Authors. Journal compilation © 2012 RAS, MNRAS
The deposition process involves the creation of fast secondary electrons (mainly in ionisations). Therefore, a cascade of slower and slower electrons is produced. This is taken into account solving an integrated version of the Spencer-Fano equation (Xu & McCray 1991; Lucy 1991), which gives the deposition fraction $D_k(E)$ for a process k at a source energy E in terms of the deposition fraction $D_k(E')$ at all lower energies $E' < E$:

$$ED_k(E) = W_k p_k(E) + \sum_{\{j | E - W_j < E_k\text{, one e"-proc.}\}} p_j(E - W_j) \cdot D_h(E - W_j)$$

$$+ \sum_{\{i | E - W_i \geq E_k\text{, two e"-proc.}\}} p_i(E) \cdot \int_0^{(E - W_i)/2} dE_s \Pi_i(E_s) \left[E_s \cdot D_k(E_s) + (E - E_s - W_i) \cdot D_k(E - E_s - W_i) \right]$$

Here, i,j and k are indices of processes (channels), and $p_k(E)$ is the probability for process k to occur for the electron at energy E, which is proportional to the respective cross section. The energy loss (to atoms or thermal electrons) in process i,j is, for simplicity, treated as a discretised process in which a nonthermal electron loses 5% of its energy to the plasma. This is not critical if the electrons are coming from large enough energies (Habing & Goldsmith 1971). The different terms contributing to $ED_k(E)$ are as follows: The $W_k p_k(E)$ term accounts for the direct deposition into the Channel k. The other two terms account for contributions from electrons which first trigger a process j or i and then deposit energy into channel k. Because of such contributions, the deposition fraction at some energy E is related to that at smaller energies. The latter of these terms specifically takes into account ionisation processes which produce secondary electrons. $\Pi_i(E_s)$ is the probability distribution for the energy of the secondary electron E_s, and integrates up to one. Following Opal et al. (1972), we assume $\Pi_i(E_s) \propto 1/(E_s^2 + \mathcal{W}^2)$, where \mathcal{W} is 13.8 eV for He I and corresponds to the ionisation energy for other species.

Since only atomic processes from the ground state are taken into account, non-thermal electrons with an energy below some threshold can only scatter on thermal electrons. With initial values for D_k set up accordingly, we integrate the system (B1) up to an energy of 10 keV. The deposition fractions then obtained are adopted as D_k^0. We have tabulated these values for different H/He mixes, ionisation states, fractions $n_{\text{H+He}}/n_e$ (where all atoms are assumed to be in the ground state) and absolute values of n_e (although the dependence on the latter is very weak, cf. Kozma & Fransson 1992). The tables are read in by the NLTE module depending on the actual local composition. If elements other than H and He are present, we first approximate the rates assuming an $n_{\text{H+He}}$ as large as the total number density of atoms n_{tot}. Then, we scale down the value for every process by a factor:

$$\xi = \frac{\sum_{i=\text{HHe}} Z_i n_i}{\sum_{\text{all species} j} Z_j n_j},$$

where Z_i are atomic numbers and n_i are number densities. This choice of the scaling factor corresponds to the crude assumption that the energy deposition by fast electrons into a certain chemical species is proportional to the number density of that species and to the number of electrons in one atom. In section 5.1, we show that our results – at least for He – are surprisingly insensitive to the exact excitation rates, so that this approximation [for “exact” values, cf. e.g. Lotz (1967)] is sufficient for the present study.

APPENDIX C: INPUT PARAMETERS FOR THE SPECTRAL SYNTHESIS CODE

In Table C1 we give the code input parameters for our SN 2008ax and SN 1994I models. The table with its annotations illustrates the one-to-one shell correspondence we have established between the abundance shells in the two models for the SNe (cf. Sec. 4.1.2).

© 2012 The Authors. Journal compilation © 2012 RAS, MNRAS
Table C1. Abundance shells and code input parameters for the models for SN 2008ax and SN 1994I. The models are specified such that the abundance shells in SN 2008ax and SN 1994I correspond to one another (i.e. each column in the upper part of the table corresponds to the same column in the lower part). \(v_{\text{bord}} \) is the lower border for each shell. Shells with epochs "o" or "oo" are outer shells set up to match the \(t = 16.0 \) d spectrum. Shells with epoch "c" are inserted in order to enable a one-to-one mapping of SN 2008ax to SN 1994I (see also footnotes to the table). We emphasize that the abundance structure in each of the two models, as far as it contributes to the formation of the respective spectra, is effectively that of a six-zone model (i.e. some of the eleven zones in each model have equal abundances or are irrelevant for the spectra).

SN 2008ax	SN 1994I	
\(t [\text{d rel. to explosion}] \)	-	40.60
\(\lg (v_{\text{bord}} [\text{km s}^{-1}]) \)	390	910
\(X (\text{H}) \) [\%]	0.0000	0.0000
\(X (\text{He}) \) [\%]	0.0000	0.0000
\(X (\text{C}) \) [\%]	0.1500	0.1500
\(X (\text{O}) \) [\%]	47.1097	10.7915
\(X (\text{Ne}) \) [\%]	0.0000	0.0000
\(X (\text{Mg}) \) [\%]	1.5000	1.5000
\(X (\text{Si}) \) [\%]	8.0000	8.0000
\(X (\text{Ca}) \) [\%]	0.4200	0.4200
\(X (\text{Ti}) \) [\%]	0.0200	0.0200
\(X (\text{Cr}) \) [\%]	0.2000	0.2000
\(X (\text{Ni}) \) [\%]	2.5000	2.5000
\(X (\text{Ni})^{56} \) [\%]	37.5000	37.5000

\(a \) In our model SN 2008ax, we had to introduce zones below the \(t = 40.6 \) d photosphere. The abundances have generally been chosen as in the corresponding zones in SN 1994I. Some differences appear, as we had to adapt the Fe-group abundances because the light curve of SN 2008ax required a shallower \(^{56}\text{Ni} \) distribution than what we find in SN 1994I.

\(b \) In the SN 1994I model we formally added five shells at mass coordinates "outside" the density model (i.e. at \(M > 0.9 M_\odot \)). These shells do not have any impact on the SN 1994I calculations. They just correspond (in mass coordinates) to the outer shells in SN 2008ax and inherit the respective abundances with a few exceptions: the abundances of IME and Fe-group elements have been limited to those in the outermost shells of our original SN 1994I model (i.e. oo).

\(c \) The abundances of Fe, Co and Ni in our models are assumed to be the sum of \(^{56}\text{Ni} \) and the elements produced in the decay chain \(^{56}\text{Co} \) on the one hand, and directly synthesised / progenitor Fe on the other hand. Thus, they are conveniently given in terms of the \(^{56}\text{Ni} \) mass fraction at \(t = 0 \) (i.e. \(X(^{56}\text{Ni})_0 \)), the Fe abundance at \(t = 0 \) (i.e. \(X(Fe)_0 \)), and the time from explosion onset \(t \).