Molecular Gas in the Galactic Halo and Beyond

Philipp Richter

1 Department of Astronomy, University of Wisconsin/Madison, 475 N. Charter St., Madison, WI 53706, USA

Abstract. I review recent observations of molecular gas in the halo of the Milky Way and in the Magellanic Clouds. Far-ultraviolet absorption line studies of molecular hydrogen (H$_2$) with ORFEUS and FUSE have unveiled the presence of a diffuse molecular hydrogen component in intermediate- and high-velocity clouds in the Galactic halo. Although the number of measurements is still quite small, the data suggests that diffuse H$_2$ in the halo exists only in clouds that contain a sufficient amount of heavy elements and dust, on whose surface the H$_2$ formation proceeds most efficiently. The implications of these observations for our understanding of the Milky Way halo are discussed.

1 Introduction

Studies of interstellar molecules in the Milky Way and other galaxies are often limited to observations of carbon monoxide (CO) and more complex molecules, that are easily observable by radio emission lines. The most abundant molecule in the Universe, H$_2$, is difficult to measure directly because of its homeopolarity. Diffuse H$_2$ (log $N <$ 21) can be studied by FUV absorption spectroscopy of the H$_2$ electronic transitions in the Lyman- and Werner bands toward stars and extragalactic sources, but those measurements (at low redshifts) require satellites in space. The short-lived Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS; [2]) was the first instrument that allowed a search for H$_2$ absorption outside the disk of the Milky Way. Today, the more sensitive Far Ultraviolet Spectroscopic Explorer (FUSE; [14]) provides a large data base to study H$_2$ in environments that are different from that found in the local Galactic ISM.

2 H$_2$ Absorption in the Galactic Halo

2.1 ORFEUS and FUSE measurements

With ORFEUS and FUSE, molecular hydrogen has recently been found in intermediate- and high-velocity H$_1$ clouds (IVCs and HVCs, respectively; see B.P. Wakker, this conference) in the Galactic halo at z > 0.5 kpc, representing a diffuse molecular gas phase above the Galactic plane that was previously undetected in CO emission or absorption [20].
Table 1. Detections of H$_2$ absorption in IVCs and HVCs

Target	Cloud Name	v_{LSR} [km s$^{-1}$]	log N(H$_2$) [N in cm$^{-2}$]	log f^a	Instr.	+ Ref.
	Intermediate-Velocity Clouds					
HD 93521	IV Arch	−60	14.60 ± 0.35	−4.8	Ob,	
PG 1351+640	IV Arch (IV16)	−50	16.43 ± 0.31	−3.3c	Fb	
PG 1259+593	IV Arch	−55	14.10$^{+0.21}_{-0.44}$	−5.4c	F	
PG 0804+761	LLIV Arch	−55	14.71 ± 0.30	−4.5	Fb	
PG 0832+675	LLIV Arch	−50	16.10 ± 0.32	−3.6c	F	
Sk-68 82	IVC toward LMC	+60	15.65$^{+0.32}_{-0.19}$	−2.2	O	
Sk-60 80	IVC toward LMC	+60	presentd	...d	F	
HD 100340	IV Spur	−30	presentd	...d	F	
Mrk 509	Complex gp	+60	presentd	...d	F	
	High-Velocity Clouds					
Sk-68 82	HVC toward LMC	+130	15.56$^{+0.00}_{-0.06}$	−3.2	O(+F)b,	
NGC 3783	Mag. Stream (LA)	+240	16.80 ± 0.10	−2.9	Fb,	
Fairall 9	Mag. Stream	+190	16.40$^{+0.26}_{-0.53}$	−3.7c	F	

a $f = [2N(H_2)]/[N(Hi)+2N(H_2)]$

b O=ORFEUS; F=FUSE

c Preliminary results

d H$_2$ is detected, but no column density has been derived yet

The first detection was that of Richter et al. [10], who found H$_2$ in a HVC in front of the LMC with ORFEUS. Other detections of H$_2$ with ORFEUS and FUSE in various IVCs and HVCs have followed since then [7] [16] [11]. FUSE observations of extragalactic background sources, and stars in the Magellanic Clouds and in the Milky Way halo provide a large data base to explore the molecular content in IVCs and HVCs over the next years. So far, only a small portion of the data has been analyzed yet. Table 1 summarizes the recent H$_2$ detections with ORFEUS and FUSE in IVCs and HVCs. I have included new (preliminary) results from on-going investigations of atomic and molecular abundances in the Milky Way halo. As an example, FUSE absorption line data for Fairall 9, PG 1259+593 & PG 1351+640 are presented in Fig. 1. H$_2$ in the Galactic halo is clearly detected in the Intermediate Velocity Arch (IV Arch) towards PG 1351+640 & PG 1259+593 at approximately -50 km s$^{-1}$, and in the Magellanic Stream towards Fairall 9 at $+190$ km s$^{-1}$ (for preliminary column densities see Table 1). In contrast, no H$_2$ is found in the HVC Complex C toward PG 1259+593, although the H$_{i}$ column density in Complex C is relatively high in this direction (log N(H$_i$)=19.92).

2.2 Molecular Fractions and Metallicity

The presence of molecular material in Galactic halo clouds is somewhat surprising, given the expected highly diffuse and low-density nature of these clouds. H$_{i}$ column densities of these clouds are all below 10^{20} cm$^{-2}$, as derived by
Figure 1: FUSE data of Fairall 9, PG 1259+593 and PG 1351+640 is presented, unveiling the presence of H$_2$ absorption in intermediate- and high-velocity gas in the Milky Way halo. Velocity profiles of H I 21cm emission from Effelsberg and Parkes data are plotted together with Si II and H$_2$ absorption for each individual sight line. Toward Fairall 9, H$_2$ absorption at high velocities is present in the Magellanic Stream at +190 km s$^{-1}$ (left panel). In contrast, no H$_2$ absorption is seen in Complex C toward PG 1259+593 at −130 km s$^{-1}$ (middle panel). H$_2$ absorption at intermediate velocities is seen in the IV Arch toward PG 1259+593 at −55 km s$^{-1}$ (middle panel), and toward PG 1351+640 near −50 km s$^{-1}$ (right panel). Blending lines from other species are marked with ‘b’.
Hi 21cm data [2], giving no evidence for the existence of dense clumps along the sight-lines where H$_2$ is found, but beam-smearing effects must be considered carefully. H$_2$ column densities vary between $\sim 10^{17}$ and $\sim 10^{14}$ cm$^{-2}$, the latter roughly being the detection limit for H$_2$ absorption line studies with FUSE. Therefore, the fraction of hydrogen in molecular form $f = 2N(H_2)/[N(Hi)+2N(H_2)]$ is found to be generally low in IVCs and HVCs (see Table 1).

H$_2$ formation proceeds most efficient on the surface of dust grains, where the H$_2$ can release part of its binding energy of 4.5 eV. If dust is not available, H$_2$ can form in the gas phase, but this process is very slow [3]. The relation between dust abundance (as measured by the colour excess $E(B-V)$) and the H$_2$ column density is well established in the Milky Way [15]. In low-metallicity environments, such as the Magellanic Clouds, the fractional abundance of molecular hydrogen is lower due to the smaller dust-to-gas ratio in the Clouds [12] (see also section 3). Interestingly, the Galactic halo clouds follow a similar trend: H$_2$ in the Milky Way halo is found mainly in gas that has nearly solar abundances (i.e., IVCs; see Table 1 and Fig. 1), except for the Magellanic Stream, where H$_2$ is found in two of two observed sightlines at ~ 0.3 solar metallicity [16]. At the lower end of the metallicity scale in Galactic halo clouds, no molecular hydrogen is found in Complex C (e.g., toward PG1259+593; see Fig. 1) at ~ 0.1 solar metallicity along several sight lines, although the H$_1$ column densities are in most cases significantly higher than in IVCs, in which H$_2$ is detected. The non-detection of H$_2$ in Complex C therefore implies that this metal-poor HVC does not contain significant amounts of dust. This is in agreement with the lack of substantial depletion of Fe and Si in Complex C [12].

2.3 H$_2$ Formation and Dissociation in the Milky Way Halo

Sembach et al. [16] suggested that the molecular hydrogen found in the Magellanic Stream survived the tidal stripping from the Small Magellanic Cloud, and thus was brought into the Milky Way halo from outside. With respect to other halo clouds containing H$_2$, however, the formation of molecular gas within the halo appears to be as likely. If, for example, IVCs represent the cooled backflow of a Galactic fountain [17], the H$_2$ found in IVCs must have formed in situ.

In a steady state, the H$_2$ grain formation and photo-dissociation are equilibrated (see Spitzer [18], page 125). As preliminary calculations show, it is very difficult to describe the observations of H$_2$ in Galactic halo clouds in an H$_2$ formation-dissociation equilibrium model. On the one hand, the relatively low H$_1$ column densities found in the Galactic halo clouds (log $N < 20$) require that the H$_2$ resides in very small (< 0.1 pc) clumps that would have a relatively low sky-covering factor. On the other hand, H$_2$ in IVCs seems to be surprisingly widespread, requiring at large number of such clumps in the lower Galactic halo. Another possibility, however, is that the observed H$_2$ is not
in formation-dissociation equilibrium, but represents molecular gas that has formed in dense, compact clouds, but then was dispersed into larger volume, e.g., by diffusion. If so, the low-density H$_2$ gas is being photo-dissociated on a time scale of $t_{\text{diss}} = (\langle k \rangle \beta_{0,\text{halo}})^{-1} \approx 10^4$ years. This time-scale is remarkably short; possibly, Galactic halo clouds are constantly forming and dispersing diffuse molecular cloud cores, preventing the formation of CO bearing clouds and star formation. If some of those clumps can survive, however, they might form a population of young metal-rich halo stars. Interestingly, such stars are indeed observed.

3 H$_2$ in the Magellanic Clouds

With ORFEUS and FUSE, it is now possible to study molecular hydrogen also beyond the Milky Way and its halo, e.g. in the Magellanic Clouds. Richter concluded from ORFEUS data that the molecular hydrogen fraction in the Clouds is reduced compared to the Milky Way due to the lower dust content and the higher UV radiation field. This idea is supported by the more extensive and more accurate FUSE data. Upcoming FUSE observations of Magellanic Cloud stars that have high extinction will help to understand the transition from the diffuse into the dense molecular gas phase in low metallicity environments.

4 Molecular Clumps in the Halo as Dark Matter Candidates

It has been proposed that extremely dense molecular 'clumpuscules' in the outer Galaxy and/or in the Galactic halo might serve as reservoir of cold baryonic dark matter in spiral galaxies. From the presence of the diffuse extreme γ-ray (> 100 MeV) emission from the Milky Way halo (as measured by EGRET; see Kalberla et al.) have proposed that the observed γ-ray flux is caused by interaction between cosmic rays and dense molecular gas clumps by the π_0-decay. These clumps could also account for the extreme scattering events (ESE) that are found toward quasars. No direct observational evidence for such a extremely compact molecular gas phase in the halo has been found so far, but UV absorption line studies of extragalactic background sources with FUSE and other instruments will be used to search for evidence of such clumps, which would manifest themselves by partly or fully absorbing the UV continuum from an extragalactic source, if they coincidentally move into the line of sight.

$^{1}\langle k \rangle = 0.11$ denotes the possibility that an H$_2$ molecule is dissociated after photo-absorption; we assume that the photo-absorption rate in the halo is roughly 1 – 10 percent of that in the Milky Way disk, thus $\beta_{0,\text{halo}} \approx 0.5 - 5.0 \times 10^{-11}$ s$^{-1}$.

5 Concluding Remarks

FUV absorption spectroscopy with FUSE and ORFEUS has unveiled the presence of a diffuse molecular hydrogen component in the cores of Galactic halo clouds. Further absorption line studies are necessary to understand the nature of this gas. H$_2$ absorption spectroscopy of halo clouds might serve as a powerful diagnostic tool to study the physical conditions in the Milky Way halo and might help to obtain new insights on the formation and dissociation of H$_2$ under conditions that are different from those in the Galactic disk.

Acknowledgements. Part of this work is based on data obtained for the the Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support has been provided by NASA contract NAS5-32985. I thank B.D. Savage and B.P. Wakker for helpful comments.

References

[1] Akeson R.L., Blitz L., 1999, ApJ 523, 163
[2] Barnstedt J., et al., 1999, A&AS 134, 561
[3] Black J., 1977, ApJ 222, 125
[4] Bluhm H., de Boer K.S., Marggraf O., Richter P., 2001, A&A 367, 299
[5] Coulon E.S., Dufton P.L., Keenan F.P., McCuasland R.J.H., Holmgren D., 1994, ApJ 440, 273
[6] Fiedler R.L., Dennison B., Johnston K.J., Hewish A., 1987, Nature 326, 675
[7] Gringel W., Barnstedt J., de Boer K.S., Grewing M., Kappelmann N., Richter P., 2000, A&A 358, L38
[8] Kalberla P.M.W., Shehekinov Y.A., Dettmar R.-J., 1999, A&A 350, L9
[9] Pfenniger D., Combes F., & Martinet, 1994, A&A 285, 79
[10] Richter P., de Boer K.S., Widmann H., Kappelmann N., Gringel W., Grewing M., Barnstedt J., 1999, Nature 402, 386
[11] Richter P., Savage B.D., Wakker B.P., Sembach K.R., Kalberla P.M.W., 2001, ApJ 549, 281
[12] Richter P., Sembach K.R., Wakker B.P., Savage B.D., Tripp T.M., Murphy E.M., Kalberla P.M.W., Jenkins E.B., 2001b, ApJ in press
[13] Richter P., 2000, A&A 359, 1111
[14] Moos H.W., et al., 2000, ApJ 538, L1
[15] Savage B.D., Drake J.F., Budich W., Bohlin R.C., 1977, ApJ 216, 291
[16] Sembach K.R., Howk J.C., Savage B.D., Shull J.M., 2001, AJ 121, 992
[17] Shapiro P.R., Field G.B., 1976, ApJ 205, 762
[18] Spitzer L., ‘Physical Processes in the Interstellar Medium’, 1978, Wiley’s Classics Library, ISBN 0-471-02232-2
[19] Tumlinson J., et al., 2001, ApJ submitted
[20] Wakker B.P., Murphy E.M., van Worden H., Dame T., 1997, ApJ 488, 216
[21] Wakker B.P., et al., 2001, ApJS, in press, astro-ph 0102148