Acute kidney injury and hepatorenal syndrome in cirrhosis

Kapil Gupta, Abhishek Bhurwal, Cindy Law, Scott Ventre, Carlos D Minacapelli, Savan Kabaria, You Li, Christopher Tait, Carolyn Catalano, Vinod K Rustgi

ORCID number: Kapil Gupta 0000-0002-0872-7867; Abhishek Bhurwal 0000-0002-3886-7537; Cindy Law 0000-0002-2188-1340; Scott Ventre 0000-0002-9476-1788; Carlos D Minacapelli 0000-0001-7295-0249; Savan Kabaria 0000-0002-6347-6335; You Li 0000-0001-8758-0770; Christopher Tait 0000-0002-2663-2191; Carolyn Catalano 0000-0002-7793-0332; Vinod K Rustgi 0000-0002-4105-5783.

Author contributions: All authors contributed to the research, writing, and editing of the submitted document.

Conflict-of-interest statement: There are no relevant financial disclosures or conflicts of interest for all authors.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License s/by-nc/4.0/

Abstract

Acute kidney injury (AKI) in cirrhosis, including hepatorenal syndrome (HRS), is a common and serious complication in cirrhotic patients, leading to significant morbidity and mortality. AKI is separated into two categories, non-HRS AKI and HRS-AKI. The most recent definition and diagnostic criteria of AKI in cirrhosis and HRS have helped diagnose and prognosticate the disease. The pathophysiology behind non-HRS-AKI and HRS is more complicated than once theorized and involves more processes than just splanchnic vasodilation. The common biomarkers clinicians use to assess kidney injury have significant limitations in cirrhosis patients; novel biomarkers being studied have shown promise but require further studies in clinical settings and animal models. The overall management of non-HRS AKI and HRS-AKI requires a systematic approach. Although pharmacological treatments have shown mortality benefit, the ideal HRS treatment option is liver transplantation with or without simultaneous kidney transplantation. Further research is required to optimize pharmacologic and nonpharmacologic approaches to treatment. This article reviews the current guidelines and recommendations of AKI in cirrhosis.

Key Words: Acute kidney injury; Hepatorenal syndrome; Liver cirrhosis; Treatment; Biomarkers; Prognosis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This review paper is a comprehensive review of acute kidney injury in
Acute kidney injury (AKI) is a relative decrease in a kidney’s glomerular kidney function (GFR) and frequently occurs in patients. The incidence of AKI ranges from 20%-50% in cirrhotic patients when hospitalized for acute decompensation[1-6]. AKI imparts significant morbidity and mortality in patients with liver cirrhosis. Hospitalized cirrhotic patients have a high mortality rate, both inpatient and post-discharge [7]. Cirrhosis itself is a complex disease process that causes significant morbidity due to substantial volume shifts and increased vasodilation. Renal dysfunction, therefore, imparts another layer of complexity to those with cirrhosis and must be considered when a patient is being evaluated for liver transplantation (LT)[8].

Renal function is a weighted parameter in the Model for End-Stage Liver disease (MELD) score[9,10]. By accounting for creatinine, the MELD score allows patients with renal failure (acute or chronic) to receive liver transplants promptly[9,10]. Renal disease is an increasing health care burden in the United States as there has been a rise in the prevalence and incidence of type II DM and obesity along with chronic liver disease. Rustgi et al[11] calculated the additional cost of chronic kidney disease (CKD) in chronic liver disease patients by stage[11].

In the 1960s, Hecker and Sherlock described the process of renal dysfunction with the presence of ascites in advanced cirrhosis and defined it as hepatorenal syndrome (HRS)[12,13]. HRS is renal dysfunction resulting from systemic hemodynamic effects of portal hypertension secondary to liver cirrhosis[12], AKI in liver cirrhosis has been separated into non-HRS-AKI and HRS. The latter has been subdivided into type 1 HRS, known more recently as HRS-AKI, or type 2 HRS, known as HRS-CKD. The current recommendations and literature involving AKI and HRS in patients with liver cirrhosis are reviewed here.

INTRODUCTION

The definition of HRS relies first and foremost on the definition of AKI. The definition of AKI has evolved. The first challenge has been determining the most accurate and available renal function measurement, which is the calculation of GFR. There is, however, no consensus on the most accurate method to measure GFR. Traditionally, the definition of AKI has been based on urine output and serum creatinine (sCr). The diagnosis of AKI is dependent on the patient’s baseline sCr. The International Club of Ascites (ICA) defines a baseline sCr as the last sCr within three months of current sCr[14].

The definition of AKI historically has gone through many updates as enumerated in Table 1[14-17]:

| Citation | Gupta K, Bhrwal A, Law C, Ventre S, Minacapelli CD, Kahabia S, Li Y, Tait C, Catalano C, Rustgi VK. Acute kidney injury and hepatorenal syndrome in cirrhosis. World J Gastroenterol 2021; 27(26): 3984-4003 | URL: https://www.wjgnet.com/1007-9327/full/v27/i26/3984.htm | DOI: https://dx.doi.org/10.3748/wjg.v27.i26.3984 |

Manuscript source:	Unsolicited manuscript	Specialty type:	Gastroenterology and hepatology
Country/Territory of origin:	United States	Peer-review report’s scientific quality classification:	
Grade A (Excellent):	0	Grade B (Very good):	B
Grade C (Good):	C, C	Grade D (Fair):	0
Grade E (Poor):	0		
Received:	January 27, 2021	Peer-review started:	March 7, 2021
First decision:	March 7, 2021	Revised:	June 22, 2021
Accepted:	June 22, 2021	Article in press:	June 22, 2021
Published online:	July 14, 2021		
P-Reviewer:	Bramhall SR, Wu ZQ	S-Editor:	Fan JR
L-Editor:	A	P-Editor:	Liu JH

The definition of AKI historically has gone through many updates as enumerated in Table 1[14-17]: Given the complexity of cirrhosis, AKI in cirrhosis needed its definition with specific criteria. In 2004, AKI was defined by the Acute Dialysis Quality Initiative (ADQI) group using the RIFLE criteria and divided into the three stages (stage 1 or R, stage 2 or I, or stage 3 or F)[15]. Further updates by the AKI Network (AKIN) and Kidney Disease Improving Global Outcomes (KDIGO), which labeled the stages 1-3[14-17]. Numerous consensus definitions have defined AKI. KDIGO is the most recent consensus definition for AKI that was updated in 2012[17]. In 2010, the ADQI with the ICA defined criteria for AKI in liver cirrhosis as shown in Table 2[18-20].

The guidelines were again updated in 2015 by the ICA to adopt the 2012 KDIGO definition of AKI. The benefit of the KDIGO criteria over the AKIN criteria for AKI is removing the absolute creatinine value of at least 1.5 mg/dL as a requirement, sCr in
Table 1: A brief overview of the consensus definitions of acute kidney injury

Criteria	Stage	Definition
RIFLE criteria/ADQI in 2004[15]	Stage 1 (R)	At least 1.5 × baseline serum creatinine within 7 d, decrease in urine output of 0.5 mL/kg/h for 6 h, decrease in GFR of at least 25%
	Stage 2 (I)	2 × baseline serum creatinine, decrease of GFR < 50%, UOP < 0.5 mL/kg/h for 12 h
	Stage 3 (F)	3 × baseline serum creatinine, decrease of GFR > 75%, UOP < 0.3 mL/kg/h for 24 h, anuria for 12 h, or on RRT acutely
Acute Kidney Injury Network (AKIN) in 2007 [16]	Stage 1	Increase of 0.3 mg/dL within 2 d, 1.5-2 × baseline serum creatinine
	Stage 2	Increase of 2-3 × baseline serum Cr
	Stage 3	Increase of at least 0.3 mg/dL in last 48 h, 1.5 × baseline creatinine in last 48 h, or UOP < 0.5 mL/kg/h for at least 6 h
Kidney Disease Improving Global Outcomes (KDIGO) in 2012[17]	Stage 1	Increase in sCr of at least 0.3 mg/dL within 48 h, increase of at least 1.5 × baseline in the last 7 d, or urine output < 0.5 mL/kg/h for at least 6 h
	Stage 2	Increase of 0.3 mg/dL, 1.5-2 × baseline Cr, UOP < 0.5 mL/kg/h for at least 12 h
	Stage 3	Increase of 3 × baseline serum Cr, UOP < 0.3 mL/kg/h for 24 h, anuria for 12 h, on RRT

GFR: Glomerular kidney function; UOP: Urine output; RRT: Renal replacement therapy; ADQI: Acute Dialysis Quality Initiative; Cr: Creatinine.

Table 2: The current and past consensus definitions of acute kidney injury in cirrhosis

Criteria	Stage	Definition
ADQI/ICA in 2010[19]	Stage 1	The absolute increase in serum Cr of at least 0.3 mg/dL or 1.5 × baseline serum creatinine
	Stage 2	Increase of 0.3 mg/dL within 48 h or 1.5-2 × baseline serum creatinine
	Stage 3	Increase of 2-3 × baseline serum Cr
ICA-AKI in 2015[14]	Stage 1A	At least 3 × baseline serum Cr with an increase of 0.5 mg/dL or currently on RRT
	Stage 1B	Increase of 0.3 mg/dL from baseline in 48 h, 1.5-2 × baseline serum creatine. Absolute value of serum Cr < 1.5 mg/dL
	Stage 2	Increase of 0.3 mg/dL from baseline in 48 h, 1.5-2 × baseline serum creatine. Absolute value of serum Cr > 1.5 mg/dL
	Stage 3	Greater than 3 × baseline Cr, Cr > 4 mg/dL with rise of > 0.5, or on RRT

RRT: Renal replacement therapy; ADQI: Acute Dialysis Quality Initiative; ICA: International Club of Ascites; AKI: Acute kidney injury; Cr: Creatinine.

patients with cirrhosis may underestimate renal dysfunction due to low baseline muscle mass[14]. However, in staging AKI, as stressed by Angeli et al[14], the absolute level of 1.5 mg/dL was used to differentiate between stage 1-A and stage 1-B[14], as shown in Table 2. The new ICA criteria emphasize the importance of having a baseline sCr for making the diagnosis and allow for a prior sCr within three months to be considered a baseline[14].

DIAGNOSIS (HRS)

HRS is defined as renal dysfunction in chronic liver disease (usually severe or advanced cirrhosis) or acute liver failure[1,8,14]. HRS has primarily considered a
diagnosis of exclusion with specific criteria explained in Table 3, and its two types are generally differentiated by disease course. However, it may be challenging to differentiate from acute tubular necrosis (ATN). Table 3 lists the definitions of HRS types 1 and 2[21]. Type 1 and 2 HRS were renamed HRS-AKI and HRS-CKD in 2015. The most significant difference between the prior diagnosis of HRS type 1 and HRS-AKI has been eliminating an absolute sCr level of 2.5 mg/dL[21-23].

PATHOPHYSIOLOGY OF HRS

HRS has been theorized to be caused by various mechanisms. The most well-understood hypothesis evokes splanchnic vasodilation changes, leading to increased peripheral vasoconstriction[24,25]. Additionally, there is evidence for other processes. Hepatocytes and stellate cells are known to produce vasodilatory mediators, including nitric oxide, prostacyclin, carbon monoxide, endogenous cannabinoids, adrenomedullin[1,8,26-28]. The destruction of hepatocytes leads to an increased release of these products into the splanchnic circulation, resulting in significant arterial vasodilation. This, in turn, decreases the systemic mean arterial pressure, causing compensatory activation of the sympathetic nervous system resulting in the consistent release of norepinephrine, angiotensin II and antidiuretic hormone[8,26-31]. These processes trigger unopposed vasoconstriction in the renal arteries via multiple physiologic mechanisms to counteract the splanchnic vasodilation and preserve renal function. As cirrhosis progresses, the systemic vascular resistance is decreased to the point that an increase in cardiac output cannot compensate adequately to maintain adequate organ perfusion[8,25] (Figure 1). This phenomenon is described as cirrhotic cardiomyopathy, directly related to sustained portal hypertension[1,32,33]. The possibility of spontaneous bacterial peritonitis (SBP) must be accounted for every time a patient is treated for AKI[2,34,35].

PATHOPHYSIOLOGY OF NON-HRS AKI

The typical forms of non-HRS-AKI include prerenal azotemia (PRA), parenchymal renal disease, and drug-induced kidney injury. Prerenal AKI accounts for up to 60% of all AKI cases in patients with cirrhosis[2,34]. The most common causes of AKI in cirrhosis are hypovolemia, SBP, bacterial infections (other than SBP), sepsis, upper gastrointestinal bleeding, and shock. Infections and sepsis (urinary tract infections, pneumonia, skin infections, or SBP) cause decreased blood flow to the renal vasculature and cause kidney injury for cirrhosis patients who are already susceptible to volume shifts[3-5,36,37]. Frequent large-volume paracentesis can cause hypovolemia, exacerbated by increased third spacing and hemodynamic instability[7]. Gastrointestinal bleeding also causes hypovolemia and is commonly implicated in renal dysfunction[3-5,36,37]. Common drugs which can contribute to AKI in cirrhosis are diuretics and laxatives, particularly lactulose. Intrinsic renal dysfunction is present in around 30% of AKI cases in cirrhosis[34,35]. Intrinsic renal disease plays a role in AKI as well. Many of the insults that affect liver function and are common etiologies in cirrhosis can lead to acute and chronic kidney disease. These can include autoimmune disease, medications, hepatitis B infection, and hepatitis C infection[7].

There are cirrhosis-specific mechanisms that also contribute to non-HRS AKI. Hepatic inflammation has been well-described in the literature for contributing to non-HRS AKI[12,36]. In the setting of cirrhosis or chronic liver disease, inflammation may be the result of damage-associated molecular patterns (DAMPs) in hepatocytes and gut immunity weakening from pathogen-associated molecular patterns (PAMPs)[12,39]. DAMP's specific to the liver include interleukin (IL)-1, IL-33, and bile acids recognized by the Kupfer cells' toll-like receptors[12,40]. Gut bacterial translocation has been associated with the release of PAMPs (e.g., lipopolysaccharide), or DAMPs (e.g., heat shock proteins), from a cirrhotic liver leading to a systemic inflammatory response which can lead to the development of non-HRS AKI[12,41-45] (Figure 1).

Adrenal insufficiency is also frequently present in patients with cirrhosis. A retrospective study by Moini et al[46] evaluated 105 cirrhotic patients and reported that 15% of cirrhotic patients had some degree of adrenal insufficiency and identified hyponatremia and elevated international normalized ratio as risk factors for its development[46,47]. These processes can decrease glucocorticoids' synthesis and result in adrenal insufficiency[48]. Inadequate adrenal response subsequently alters cardiovascular hemodynamics through vascular tone changes and cardiac output
Table 3 The previous and current definition and nomenclature of hepatorenal syndrome[14,19,21-23]

Criteria to confirm of HRS vs other etiology of renal dysfunction	To diagnose HRS, patients must have: (1) The presence of ascites; (2) No improvement of creatinine after holding diuretics; (3) No improvement after 48 h of albumin supplementation (1 g/kg/d); (4) No signs of shock; (5) No recent nephrotoxic medications (antibiotics, contrast, NSAIDs); and (6) No signs of kidney disease (proteinuria, microhematuria, no findings on renal ultrasound)
HRS type 1 (most recent definition in 2007)	Rapid renal injury (within two weeks) defined by 2 × baseline serum creatinine to a value > 2.5 mg/dL or 50% reduction in creatinine clearance
HRS type 2	Moderate renal failure with creatinine ranging from 1.5 to 2.5 mg/dL that occurs progressively
Definition of HRS-AKI	Patients with the criteria above and ICA-AKI 2015 definition for AKI
Definition of HRS-CKD	Patients who meet the criteria in row 1 and the rise of serum creatinine and changes in urine output are all progressive (> 1 wk)
	Patients with HRS-CKD are known to have decreased urine output over weeks to months

ICA: International Club of Ascites; AKI: Acute kidney injury; HRS: Hepatorenal syndrome; CKD: Chronic kidney disease; NSAID: Non-steroidal anti-inflammatory drug.

Figure 1 Pathogenesis of hepatorenal syndrome and acute kidney injury in cirrhosis. (1) Patients with cirrhosis present with a marked splanchnic arterial vasodilation due to portal hypertension; (2) Splanchnic vasodilation causes a decrease in systemic vascular resistance leading to effective arterial hypovolemia; (3) There is activation of endogenous vasoconstrictors such as the renin-angiotensin-aldosterone system, sympathetic nervous system and arginine vasopressin; and (4) The activation of these systems leads to renal vasoconstriction inducing a decrease in glomerular filtration rate and development of hepatorenal syndrome. A decrease in cardiac output may contribute to a decrease in effective arterial blood volume. Pathogen-associated molecular patterns and damage-associated molecular patterns, derived from bacterial translocation and from injured liver, may activate circulating innate immune cells, leading to an inflammatory response. The inflammatory mediators may lead to impairment of circulatory dysfunction and consequently, kidney tissue damage. Library of Science & Medical Illustrations were utilized in part to create this figure (https://creativecommons.org/Licenses/by-nc-sa/4.0/). DAMPs: Damage-associated molecular patterns; PAMPs: Pathogen-associated molecular patterns.

In patients with nonalcoholic steatohepatitis (NASH), studies have shown that around 28% have worsened renal function[46,49]. Patients with NASH/nonalcoholic fatty liver disease (NAFLD) and CKD have been shown to alter the renin-angiotensin system[46,50]. In patients with metabolic syndrome and NAFLD, alterations in the renin-angiotensin system with increased renin/angiotensin II receptor activation (from increased activation of angiotensin-converting enzyme-2) have been linked to hepatic steatosis, fibrosis and leading to NASH cirrhosis. This same process is well established to cause physiologic changes in the kidney, such as efferent artery vasoconstriction, which initially causes glomerular hyperfiltration and leads to hypertrophy with eventual scarring[46,50]. Other mechanisms in patients with NASH cirrhosis include 5’AMP-activated protein kinase activation, lipoprotein dysmetabolism, and oxidative damage through downregulation of sirtuin-2[46,51,52]. Patients with NAFLD/NASH will have comorbidities such as hypertension and diabetes mellitus and are highly leading to decreased renal perfusion[46].
susceptible to AKI[34,35].

In viral hepatitis, the most common kidney injury mechanism involves creating immune complexes with the virus, antibodies against infected hepatocytes, or direct cytopathic impact[46,53]. Hepatitis B infection is associated with polyarteritis nodosa (PAN), membranous nephropathy, and membranoproliferative glomerulonephritis[54,55]. Pathologically, renal biopsies generally reveal immune complex deposition, particularly hepatitis B envelope antigen in membranous nephropathy[55]. Chronic hepatitis C infections are also often linked with glomerular disease. The most common renal dysfunction causes include mixed cryoglobulinemia, PAN, and membranous nephropathy[36].

Biomarkers

Early recognition of AKI and accurate measurement of renal function in cirrhosis is crucial when treating patients. Still, AKI can often be missed due to the baseline abnormalities present in patients with cirrhosis. Urine output is not an accurate measurement of a patient’s renal function or GFR in cirrhosis. Third-spacing causes urine output to drop, which underestimates renal function. At the same time, diuretic use may lead to an overestimation of renal function.

The most frequently used laboratory value to measure GFR is sCr because it is readily available, inexpensive, and accurate[57-60]. However, sCr has many factors that influence its value, such as race, age, gender, and muscle mass[18,60]. In cirrhosis, patients are malnourished, cachectic, and sarcopenic, leading to a deficiency in protein intake and is associated with muscle wasting[61]. These patient-specific factors are why creatinine may be lower in cirrhotic patients leading to an overestimation of GFR and renal function. Another factor leading to inaccuracy in creatinine correlating with GFR is that hyperbilirubinemia affects Jaffe’s kinetic assay that measures sCr and leads to an inaccurately low measurement[18,59].

sCr remains the primary measurement of renal function in cirrhosis because the use of novel biomarkers remains experimental[59]. Urinary sodium and the fractional excretion of sodium (FeNa) have only been used as an adjunct to sCr to help diagnose HRS and PRA[23].

Novel Biomarkers

Given that sCr may not evaluate the degree or the timing of AKI promptly, novel biomarkers with promise are being evaluated[59,62]. Cystatin C is a low-molecular-weight protein that is produced by all nucleated cells. It is filtered by the glomerulus and mainly reabsorbed by the proximal tubule[63]. Cystatin C testing is less readily available and is more expensive. Despite the limitations, cystatin C is not affected by age, muscle mass, malignancy, or inflammation[64,65]. The assay, unlike sCr, is not affected by high levels of serum bilirubin[66]. Prior studies have not had sufficient evidence of superiority for cystatin C in comparison to Cr. However, combination equations of Cr and cystatin C are superior to sCr[64,65]. Cystatin C is an independent predictor of AKI and outcomes, including mortality[67,68]. Other biomarkers of interest include neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), IL-18, and liver-type fatty acid-binding protein (L-FABP)[18,59,69]. The biomarkers’ clinical benefits and limitations are described in Table 4.

NGAL is a small protein made by the kidney, lung, stomach, and colon[70,71]. Using mouse and rat models, Mishra et al[70] in 2003 demonstrated that NGAL was upregulated in prerenal AKI and ATN setting and that increased urinary NGAL could be detected within 2 h of initial renal injury[70]. Multiple studies have evaluated the efficacy and utility of urinary NGAL in cirrhotic patients with AKI. When urinary NGAL was used to define and predict morbidity in AKI, the authors concluded that urinary NGAL levels were elevated in ATN compared to PRA or HRS-AKI. However, the most significant confounder in its utility is the overlap between ATN’s lower values and HRS’s upper values or PRA[18,72-75]. Two studies had found that urinary NGAL was superior to cystatin C in utility for diagnosis of AKI or ATN[75,76]. In contrast, Barreto et al[74] studied 132 cirrhotic patients hospitalized with infections. The authors found that among patients with persistent AKI, HRS-AKI could be accurately predicted with urinary NGAL values lower than 86 μg/g creatinine in 88% of patients[74]. In a study with 55 patients, Lee et al[77] found that urinary NGAL levels were significantly higher in ATN than HRS and PRA. Also, median urinary
NGAL levels in HRS were markedly different from PRA levels, and the authors found that NGAL was an independent risk factor for mortality with AKI. Jaques et al. studied multiple biomarkers in AKI in 55 decompensated cirrhosis patients. Compared to the non-AKI patients, they found that urinary NGAL levels are higher in ATN than PRA and HRS. However, HRS urinary NGAL levels had an intermediate pattern. Urinary NGAL predicted poor outcomes in patients as well. Kim et al. studied urinary NGAL and cystatin C in 328 decompensated cirrhosis patients (41 patients with AKI). The authors found that urinary NGAL is a predictor of AKI and outcomes (including mortality). Recently, Huelin et al. studied urinary NGAL and IL-18 on 320 cirrhosis patients with AKI. Urinary NGAL was elevated in AKI progression during hospitalization and was predictive of AKI progression in conjunction with MELD score. Urinary NGAL was significantly elevated in ATN when compared to hypovolemia-induced AKI and HRS-AKI. Currently, there are no definitive diagnostic thresholds for differentiation between these types of AKI. Urinary NGAL does not have an established role in the diagnosis, prediction, or prognosis of AKI in cirrhosis, but more promising results in extensive studies may change that. Another significant limitation is the expense of the test.

IL-18 is a proinflammatory cytokine expressed in the proximal tubule. It is released in urine when the cells are damaged in AKI. Urinary IL-18 is elevated in patients with AKI, especially from ischemic injury, but urinary IL-18 is not elevated in conditions such as urinary tract infections, nephrotoxic injury, and CKD. Tsai et al. in 2013 evaluated the clinical outcomes of 168 cirrhotic patients with AKI and severe sepsis. They found that urinary IL-18 was significantly higher in patients with ATN than patients with functional AKI, proposing a cutoff of 708.5 pg/mg creatinine to differentiate between the two groups. Urinary IL-18 was found to be a stronger predictor of ATN than serum IL-18. However, the authors were unable to conclude if urinary IL-18 could distinguish ATN from HRS-AKI. Clinically, they found that elevated urinary IL-18 was associated with higher hospital mortality. A study previously mentioned, studied IL-18 compared to urinary NGAL and found that it had a lower accuracy to predict ATN vs other forms of AKI.

KIM-1 is elevated in AKI from ischemic injury to the proximal tubule. Belcher et al. evaluated KIM-1 in patients with AKI with other etiologies (PRA, ATN, and HRS) and found that ATN was the most elevated with overlap with HRS. Other studies found that in patients with cirrhosis, elevations in urinary KIM-1 levels were increased mainly in ATN compared to other AKI presentations and could serve as a prognostic indicator.

Table 4: The most well-known novel biomarkers being studied for acute kidney injury in cirrhosis

Novet biomarker	Source	Benefits/Clinical uses	Limitations
Cystatin C	Plasma, urine	Early biomarker of AKI, potential benefit with severity of disease. Unaffected with age, sarcopenia, gender, or sepsis. Unaffected by malignancy and serum bilirubin level. Multiple studies found it to be an independent risk factor of AKI and mortality	Increased levels in CKD. Influenced by low levels of albumin. Potentially influenced by elevated WBC and CRP. Takes longer time to result when compared to sCr
NGAL[18,67-70]	Urine	Found in kidney tubular cell that is released during damage or injury. Elevated in AKI in cirrhosis and potential predictor of mortality. Markedly elevated in ATN, mildly elevated in prerenal azotemia/CKD/HRS-AKI	Increased levels in CKD. Increased levels in infections, particularly urinary tract infections. Overlap with values in PRA, HRS, and other AKI types of AKI. Small quantities are made in the liver
IL-18[75,78,82-84]	Urine	Very similar to urinary NGAL. Markedly elevated in cirrhotic patients with ATN, in comparison to other AKI types. Found in monocytes and macrophages. A notable proinflammatory marker. Not confounded by CKD, sepsis or UTI	There are increased levels in PRA and HRS but significant overlap in values with limited clinical utility. Levels are increased in levels of inflammation in the kidney other than AKI
Kidney Injury Molecule-1[18,73,84-86]	Urine	Originally found in kidney tubular transmembrane protein. Not expressed in normal kidney tissue. Noted with increased levels in ATN in cirrhosis when compared to the other types of AKI in cirrhosis. High specificity for ischemic or nephrotoxic kidney injury	Elevated from inflammatory conditions. Found to have overlap between different forms of AKI. Confounded by presence of infection
L-FABP[87-93]	Urine	Found in kidney proximal tubule. Levels may be increased in AKI or AKI 2/2 sepsis. Potential utility in predictor in adverse outcomes including AKI in patients with chronic liver disease and other liver disease	Limited studies in cirrhosis. Found to be increased in CKD. Increased in acute liver injury and liver failure as well

AKI: Acute kidney injury; HRS: Hepatorenal syndrome; CKD: Chronic kidney disease; ATN: Acute tubular necrosis; UTI: Urinary tract infection; NGAL: Neutrophil gelatinase-associated lipocalin; PRA: Prerenal azotemia; CRP: C-reactive protein; WBC: White blood cell; sCr: Serum creatinine; IL: Interleukin.
L-FABP is a small protein found in the proximal tubular epithelium and binds to free fatty acids when reabsorbed in the proximal tubule[87]. L-FABP may be elevated in sepsis and specific etiologies of CKD (diabetic nephropathy or glomerulonephritis) [88]. Yamamoto et al[89] studied L-FABP in animal and human models (12 kidney transplant patients) in response to AKI[89]. The authors reported an increase in levels of L-FABP in mice models with prolonged exposure to ischemia to the kidneys, particularly during ischemic reperfusion injury. Doi et al[90] evaluated urinary L-FABP in 145 mice and 145 septic shock patients with AKI. L-FABP was high in septic shock patients with AKI and higher in the patients who did not survive[90]. L-FABP has been studied in acute liver failure and chronic liver disease and not just HRS and AKI in cirrhosis[91]. In patients with acetaminophen included acute liver failure, serum L-FABP levels were lower in survivors when compared to patients who passed away [92]. Eguchi et al[93] studied L-FABP in 242 chronic liver disease patients (chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma). The authors found that serum L-FABP increased in liver cirrhosis compared to chronic hepatitis and is higher in the presence of hepatocellular carcinoma. L-FABP correlates with kidney function markers, especially BUN, creatinine, and GFR[93]. This study does show the potential for L-FABP in chronic liver disease and other complications, including AKI. Serum L-FABP may have many clinical utilities in acute and chronic liver disease, including AKI; however, more large-scale studies should be performed to ascertain exact clinical utility.

Two new biomarkers being studied for potential benefits are insulin-like growth factor binding protein-7 and tissue matrix metalloproteinase inhibitor-2. However, there is not enough evidence to note potential utility. They are only approved for evaluating AKI in patients with intensive care unit (ICU) and need further evaluation [94]. Novel biomarkers can differentiate both the degree of renal dysfunction and possible etiology, but the data are not substantial enough to currently recommend utility. Additionally, these tests are not readily available and are expensive methods to evaluate renal function.

TREATMENT (INITIAL TREATMENT OF AKI IN CIRRHOSIS)

In AKI injury, clinicians must recognize and intervene as soon as possible. In patients with cirrhosis, all factors possibly contributing to AKI must be recognized promptly [14,20,37,95]. All unnecessary nephrotoxic medications such as Non-steroidal anti-inflammatory drugs should be discontinued and avoided altogether. Beta-blockers for variceal prophylaxis or other comorbidities should be evaluated for risk vs benefits[96, 97]. In patients with PRA or dehydration, diuretics should first be discontinued as excessive diuresis is a common cause of kidney dysfunction in cirrhosis patients[20]. Excessive diarrhea from high doses of lactulose is another potential cause[20]. Patients with gastrointestinal bleeding should be transfused if indicated. Patients should have screening for infectious etiology, and patients should be placed on antibiotics immediately along with appropriate volume supplementation if an infection is diagnosed[98-100].

Clinicians should attempt a trial of volume expansion for the patients, but crystalloid, colloid, or blood products are dependent on etiology and clinical judgment. If a patient requires large-volume paracentesis, 6-8 g of albumin per liter of fluid removed after 5 L should be administered.

Therapeutic response is defined as improving serum creatine to at least 0.3 mg/dL near the baseline. However, even with adequate improvement, patients should be screened frequently to prevent a recurrence. Recommendations currently include an initial screen 2 to 4 d after discharge with a 2-4 wk follow-up for the first six months after discharge[14, 26]. Patients with stage 2 or 3 AKI should be suspected of HRS-AKI, and HRS-AKI management should be initiated. Figure 2 provides a brief algorithm that can be used when first approaching AKI in a cirrhotic patient.

TREATMENT (HRS-PHARMACOTHERAPY)

The patient meets the HRS criteria if there is no creatinine improvement after the withdrawal of all nephrotoxic agents and volume expansion with 1 g/kg/24 h for 48 h [14]. The patient should receive prompt pharmacologic therapy, which entails starting vasoconstrictor therapy with albumin supplementation to avoid cardiac output loss or loss of effective circulating volume[1,101]. The vasoconstrictors utilized for treatment
Figure 2 Algorithm of the diagnosis and treatment of hepatorenal syndrome. The algorithm indicates differential diagnosis, diagnosis of hepatorenal syndrome (HRS) and HRS treatment. Library of Science & Medical Illustrations were utilized in part to create this figure (https://creativecommons.org/Licenses/by-nc-sa/4.0/). Cr: Creatinine; ICA: International club ascites; AKI: Acute kidney injury; HRS: Hepatorenal syndrome; ICU: Intensive care unit; NE: Norepinephrine.

are terlipressin, noradrenaline, octreotide, and midodrine[102-106]. The treatment goal is cited to be a goal sCr of 1.5 mg/dL or less with a reduction of at least 50%.

Terlipressin has been the most extensively studied and has the most robust evidence of efficacy in treating HRS-AKI of the three vasoconstrictor therapies with known superiority to octreotide and midodrine[101-108]. Terlipressin is more effective with fewer adverse effects when given in continuous infusions than bolus administration[99-108]. Over the years, multiple trials proved the efficacy of terlipressin with albumin as an effective treatment of HRS type 1[101,103-105,108-113]. A recent phase 3 trial by Wong et al[114] studied 300 patients using terlipressin and albumin compared to the placebo group. They found a significant improvement of HRS renal and renal function but was significantly associated with adverse events, including respiratory failure[114]. Serious adverse effects include angina, dysrhythmia, hypertension, and peripheral ischemia (intestines, fingers, scrotum). Patients with ischemic cardiomyopathy or peripheral vascular disease should not be treated with terlipressin[110]. Currently, it is not available in the United States.

Noradrenaline has alpha-adrenergic properties that promote vasoconstriction with fewer effects on contractility[111,115]. Patients treated with noradrenaline require central venous access and require close, frequent monitoring in the ICU[116]. In their prospective study, Gupta et al[117] found norepinephrine to be an effective treatment for HRS reversal in 30 patients[117]. Multiple randomized controlled trials (RCTs) have compared noradrenaline to terlipressin[102,111,118-121]. Alessandria et al[118], in their pilot unblinded RCT, evaluated 22 patients comparing terlipressin and albumin. The difference in HRS reversal was 83% and 70%, respectively, but there was no mortality difference[118]. Singh et al[119], Sharma et al[102], and Goyal et al[121] evaluated noradrenaline vs terlipressin and found them to have comparable efficacy and safety to improve HRS renal function[102,119,121]. Liu et al[122], in a randomized, double-blinded trial with 617 patients with septic shock found no significant difference in 28-d mortality between terlipressin compared to noradrenaline[122]. These studies have bolstered the use of noradrenaline, which is less expensive and more readily available in most countries. Consequently, Arora et al[123] in an open-label RCT, found that terlipressin, when compared to noradrenaline,
showed significant improvement in the reversal of HRS (40% vs 16.7%), day 4 response (26.1% vs 11.7%), day 7 response (41.7% vs 20%) and in 28-d survival (48.3% vs 20%) [123].

The third vasoconstrictor therapy that is commonly used is midodrine in conjunction with albumin and octreotide. Midodrine is an alpha-adrenergic agonist that is frequently used in patients with orthostatic hypotension, and octreotide is a somatostatin analog that physiologically is meant to antagonize the primary pathophysiology of HRS[124,125]. In a pilot study, Angeli et al[124] evaluated the efficacy of octreotide, and midodrine found it to reverse HRS in around 40% of the patients with type 1 HRS[124]. It is recommended to utilize the regimen if terlipressin and noradrenaline are contraindicated or unavailable[116]. In 2009, Skagen et al[126], in a retrospective study, evaluated the use of octreotide, midodrine, and albumin in 75 patients and found that it improved short-term renal function and survival compared to the group who did not receive them[126].

Many patients, unfortunately, do not respond appropriately to pharmacologic therapy. After 14 d, all medications should be discontinued, and further nonpharmacologic treatment options must be considered.

TREATMENT (HRS-TRANSJUGULAR INTRAHEPATIC PORTOSYSTEMIC SHUNT)

Transjugular intrahepatic portosystemic shunt (TIPS) has been considered for the treatment of HRS, particularly HRS-AKI. Physiologically, treating portal hypertension should improve renal function in HRS; however, in practice, TIPS can cause transient ischemia to the liver, which can lead to acute on chronic liver failure. This may precipitate and worsen renal function in HRS, leading to increased mortality[1]. While several prospective studies have shown a significant benefit in renal function and mortality, they are limited by small size, lack of control groups, selection bias, and strict inclusion/exclusion criteria. The most extensive prospective study compared 31 transplant-ineligible patients with HRS (14 with HRS-AKI and 17 with HRS-NAKI) who underwent TIPS to 10 transplant-ineligible patients who did not undergo TIPS. The 3-mo survival rates were 81% for the group undergoing TIPS and 10% for the TIPS-ineligible group[127]. A 2018 meta-analysis of studies including 128 patients with HRS who underwent TIPS showed pooled 1-year survival rates of 47% in HRS-AKI patients and 64% in HRS-NAKI and renal improvement in 83% of patients[128]. While these results are certainly encouraging, randomized trials with adequate control groups are still lacking. Therefore, TIPS may be appropriate in specific clinical contexts but, at this time, is not routinely recommended in the treatment of HRS.

TREATMENT (HRS-RENAL REPLACEMENT THERAPY)

Renal replacement therapy (RRT) (hemodialysis) is not a treatment for HRS-AKI and is only meant to be a bridge for recovery of liver function or LT. RRT recommendations for cirrhosis patients are the same as for the general population (refractory volume overload, refractory electrolyte imbalance, refractory acidosis, uremia, or intoxication) [116]. Zhang et al[129], in a retrospective study, evaluated RRT in patients with HRS type 1 who did not respond to pharmacologic therapy. The study concluded that it did not improve mortality (30-d or 180-d survival)[129]. Patients who are not deemed transplant candidates are not considered candidates for RRT[130].

TREATMENT [HRS-LIVER REPLACEMENT THERAPY (ALBUMIN DIALYSIS)-MOLECULAR ADSORBENT RECYCLING SYSTEM]

A molecular adsorbent recirculating system (MARS) is a form of albumin dialysis which circulates albumin to remove cytokines and bacterial products to combat vasodilation[12]. A 2010 RCT with 189 patients with acute-on-chronic liver failure (50% had HRS AKI) revealed a statistically significant reduction in sCr compared to medical management. However, overall mortality in 28 d was not significantly different in patients with HRS AKI[131]. In 2013, a trial by Lavayssiére et al[132] studied MARS and found that compared to a control, MARS was able to lower
bile and sCr compared to the control group[132]. However, many studies did not show any significant improvement in creatinine or GFR after MARS. The RELIEF trial failed to show a statistically significant improvement in mortality compared to medical therapy[131]. Due to the equivocal results of all the trials evaluating MARS, the European Association for the Study of the Liver (EASL) does not recommend MARS for HRS treatment but suggested a further investigation into its potential benefits.

TREATMENT [HRS-LIVER REPLACEMENT THERAPY (ALBUMIN DIALYSIS)-BIOARTIFICIAL LIVER SUPPORT SYSTEMS]

Another approach studied to bridge patients with cirrhosis to transplant or recovery includes bioartificial liver support systems. Several types exist, but all generally involve integrating animal or human hepatocytes into a bioreactor to filter toxins. These technologies continue to be studied in both clinical and preclinical trials, showing some promise in acute liver failure[133]. However, large-controlled trials are needed to understand better their role in the treatment of AKI in patients with acute on chronic liver failure.

TREATMENT (HRS-PREVENTION)

Multiple studies have evaluated possible mechanisms to prevent HRS in patients from common causes. When treating infections in cirrhotic patients, there is evidence that albumin administration may have a protective role against HRS. The current recommendation to prevent HRS in SBP is albumin administration at a dosage of 1.5 g per kg on day 1 and 1 g per kg on day 3[134,135]. This albumin administration regimen has been found to reduce the incidence of HRS and overall mortality in SBP[134,136]. However, these results have not been replicated in other infections[136-138]. An RCT by Guevara et al[137] reported that renal function and circulatory function were significantly improved in the treatment group compared to the control with fewer cases of HRS type 1[137]. Another RCT by Thévenot et al[138] reported that albumin therapy delayed renal failure, but the 3-mo renal failure rate was not significantly improved. The authors cautioned using large amounts of albumin in critically ill cirrhotic patients[138]. SBP prophylaxis with norfloxacin has been studied and found to lower HRS incidence and improve survival[136,139].

TREATMENT (HRS-TRANSPLANTATION)

The only definitive treatment of HRS refractory to pharmacologic therapy is LT. The use of creatinine in the MELD score has demonstrated the increased importance for patients with renal dysfunction (HRS-AKI or HRS-CKD) to undergo LT. In the setting of HRS, Boyer et al[140] reported a survival advantage of 100% vs 34% in patients with HRS treated with terlipressin and LT compared to patients treated with terlipressin alone[140]. Although LT remains the only definitive treatment of HRS-AKI, the role of the liver and even simultaneous liver-kidney transplant (SLK) remains unclear in the setting of non-HRS-AKI. In a large retrospective study comparing survival in HRS-AKI patients after undergoing SLK vs cirrhotic patients with non-HRS-AKI undergoing the same, HRS-AKI patients’ survival post-transplant was significantly superior to those in the non-HRS-AKI group[141].

The percentage of liver transplant recipients undergoing SLKs has substantially increased over the last 18 years. The increase in SLK is likely partly due to the adoption of the MELD score by the Unified Network for Organ Sharing in 2002. The MELD score places significant weight on sCr and imparts a high and increasingly higher transplant priority to progressive renal dysfunction patients. Guidelines for SLK, developed in 2012, were modified in 2017. For patients with cirrhosis and CKD, SLK was recommended for patients with epidermal GFR (eGFR) less than 60 mL/min for at least 90 d before listing or eGFR less than 35 mL/min during the time of listing or inherited metabolic disease[142]. In patients with cirrhosis and AKI, there must be a combination of dialysis and eGFR < 25 mL/min for six weeks[143].
PROGNOSIS

AKI in cirrhosis has a high mortality rate, with 26% of patients dying before discharge [7]. Multiple studies show that the disease course and prognosis of AKI in cirrhosis depend on numerous factors-etiologic of kidney injury, multiorgan dysfunction, stage of AKI upon diagnosis and progression of AKI, and lack of response to treatment [7]. Jenq et al [144], using the RIFLE criteria, found mortality of 134 cirrhotic patients admitted to the ICU to be 32.1% without AKI, 68.8% with RIFLE-R, 71.4% with RIFLE-I, and 94.8% with RIFLE-F [144]. However, the results were not reliable as patients admitted to the ICU usually have multiorgan dysfunction. The AKI stage directly correlates with in-hospital mortality and post-transplant mortality. Wong et al [145] found that the 30-d mortality of patients who do not recover from AKI was 80% vs 15% for those who recover [145]. Huelin et al [146] in a cohort of 547 patients, found a 90-d transplant-free survival to be 84% with stage 1A AKI, 58% with stage 1B AKI, 48% with stage 2 AKI, and 43% with stage 3 AKI compared to 89% with patients without AKI [1,146]. Bucsics et al [147], in a 239-patient retrospective study in 2015, also found that the 30-d mortality increased with increased stage of AKI on diagnosis or progression [147]. Mortality with AKI is markedly increased with complications of cirrhosis, including hepatic encephalopathy and ascites. In a retrospective study, Mindikoglu et al [148] reviewed 6917 cirrhotic patients between 2004 to 2014 who developed AKI during hospitalization and were subsequently discharged, and the authors calculated a 32% 90-d mortality and 48% 1-year mortality with higher rates in patients with pre-existing renal disease [148]. Although their study population was primarily male, this was one of the very few studies that studied post-discharge outcomes for patients, as most studies involved inpatient mortality only. Makar et al [149] studied the National Inpatient Sample data of 2016 and concluded that of the 6733 hospitalized cirrhosis patients who had AKI that patients with AKI had increased risk of mortality (OR: 8.09; 95%CI: 6.68-9.79; P < 0.0001) and prolonged hospital stay by 3.68 d (95%CI: 3.42-3.93; P < 0.0001)[149]. Another study found that community-acquired AKI had increased morbidity (progression to CKD) and mortality rates compared to hospital-acquired AKI [150]. In 2020, Tariq et al [151], in a meta-analysis of 18747 patients with cirrhosisis (from 30 selected studies), found an in-hospital mortality up to 6-fold higher in patients with AKI. Important risk factors were noted to be MELD score, Child-Pugh Turcotte stage C, presence of ascites, and sepsis (with or without shock) [151].

Once HRS of either type is diagnosed, it imparts a grave prognosis with median survival for HRS-AKI and HRS-NAKI determined to be about 1 and 6.7 mo, respectively [152]. Importantly, in all the studies evaluating AKI mortality in cirrhosis, the two types of AKI with the highest mortality were AKI-HRS and ATN [4,6,146,153]. Piano et al [6] also studied hospitalized patients with cirrhosis and ascites and AKI using the AKIN stage and found that patients who met the ICA criteria for HRS-AKI had the highest mortality [6]. Fagundes et al [1] found that patients with HRS or infection-related AKI had the highest mortality [4].

CONCLUSION

Regardless of type, AKI remains a severe complication to cirrhosis patients and a significant challenge for physicians tasked with treating it. Its incidence has increased as definitions shift to recognize and account for the unique clinical and laboratory abnormalities present in cirrhosis. Differentiating HRS-AKI from non-HRS-AKI is essential as the treatments vary, and early interventions may improve outcomes. Transplantation continues to be the only definitive therapy for HRS-AKI as more data are needed to support the use of less invasive strategies such as TIPS and liver replacement therapy. As our understanding of these diseases’ pathophysiology and progression evolve, novel biomarkers and directed therapies will hopefully evolve as well.

REFERENCES

1. Ginès P, Solà E, Angeli P, Wong F, Nadim MK, Kamath PS. Hepatorenal syndrome. Nat Rev Dis Primers 2018; 4: 23 [PMID: 30213943 DOI: 10.1038/s41572-018-0022-7]
2. Garcia-Tsao G, Parikh CR, Viola A. Acute kidney injury in cirrhosis. Hepatology 2008; 48: 2064-2077 [PMID: 19003850 DOI: 10.1002/hep.22665]
3 de Carvalho JR, Villela-Nogueira CA, Luiz RR, Guzzo PL, da Silva Rosa JM, Rocha E, Moraes Coelho HS, de Mello Perez R. Acute kidney injury network criteria as a predictor of hospital mortality in cirrhotic patients with ascites. *J Clin Gastroenterol* 2012; 46: e21-e26 [PMID: 21934526 DOI: 10.1097/MCG.0b013e3182ee152]

4 Fagundes C, Barreto R, Guevara M, Garcia E, Solé A, Rodríguez E, Graupera I, Ariza X, Pereira G, Alfaro J, Cárdenas A, Fernández J, Poch E, Ginés P. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. *J Hepatol* 2013; 59: 474-481 [PMID: 23669284 DOI: 10.1016/j.jhep.2013.04.036]

5 Warner NS, Cuthbert JA, Bhole R, Rockey DC. Acute kidney injury and chronic kidney disease in hospitalized patients with cirrhosis. *J Investig Med* 2011; 59: 1244-1251 [PMID: 21941210 DOI: 10.2130/jim.0b013e3182321471]

6 Piano S, Rossi S, Maresio G, Fasolato S, Cavallini M, Romano A, Morando F, Gola E, Frigo AC, Gatta A, Angeli P. Evaluation of the Acute Kidney Injury Network criteria in hospitalized patients with cirrhosis and ascites. *J Hepatol* 2013; 59: 482-489 [PMID: 23665185 DOI: 10.1016/j.jhep.2013.03.039]

7 DellaVolpe J, Al-Khafaji A. Acute Kidney Injury Before and After Liver Transplant. *J Intensive Care Med* 2019; 34: 687-695 [PMID: 30606883 DOI: 10.1177/0885066618790553]

8 Ginès P, Schrier RW. Renal failure in cirrhosis. *N Engl J Med* 2009, 361: 1279-1290 [PMID: 19776409 DOI: 10.1056/NEJMra0809139]

9 Wiesner R, Edwards F, Freeman R, Harper A, Kim R, Kamath P, Kremers W, Lake J, Howard T, Merion RM, Wolfe RA, Krom R; United Network for Organ Sharing. Liver Disease Severity Score (MELD) lead us? *Am J Transplant* 2019; 34: 59-68 [PMID: 30060683 DOI: 10.1111/ajt.14706]

10 Gotway MB, Anderson K, Mai ML, Wadei H, Ahsan N. Continued influence of preoperative renal function on outcome of orthotopic liver transplant (OLTX) in the US: where will MELD lead us? *Am J Transplant* 2006; 6: 2651-2659 [PMID: 16939515 DOI: 10.1111.j.1600-6143.2006.01526.x]

11 Rustgi VK, Li Y, John T, Catalano C, Elsaid MI. Health Care Resource Use and Cost Burden of Chronic Kidney Disease in Patients With Chronic Liver Disease: A Real-World Claims Analysis. *Hepatol Commun* 2020; 4: 1404-1418 [PMID: 33029412 DOI: 10.1002/hep4.1573]

12 Chanchareonthana W, Leelabhavanichkul A. Acute kidney injury spectrum in patients with chronic liver disease: Where do we stand? *World J Gastroenterol* 2019; 25: 3684-3703 [PMID: 31391766 DOI: 10.3748/wjg.v25.i28.3684]

13 Jalan R, Williams R. Acute-on-chronic liver failure: pathophysiologic basis of therapeutic options. *Blood Purif* 2002; 20: 252-261 [PMID: 11867872 DOI: 10.1159/000047017]

14 Angeli P, Ginès P, Wong F, Bernardi M, Boyer TD, Gerbes A, Moreau R, Jalan R, Sarin SK, Piano S, Moore K, Lee SS, Durand F, Salerno F, Caraceni P, Kim WR, Arroyo V, Garcia-Tsao G. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. *J Hepatol* 2015; 62: 968-974 [PMID: 25638527 DOI: 10.1016/j.jhep.2014.12.029]

15 Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative (ADQI) Group. Acute renal failure - definition, outcome measures, animal models, fluid therapy and recommendations of the International Club of Ascites. *J Hepatol* 2015; 62: 968-974 [PMID: 25638527 DOI: 10.1016/j.jhep.2014.12.029]

16 Mehta RL, Kellum JA, Shah SV, Moritzus BA, Ronco C, Warmack DG, Levin A; Acute Kidney Injury Network. Acute Kidney Injury Network report: an initiative to improve outcomes in acute kidney injury. *Crit Care* 2007; 11: R31 [PMID: 17331245 DOI: 10.1186/cc5713]

17 Kellum JA, Lameire N; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). *Crit Care* 2013; 17: 204 [PMID: 23394211 DOI: 10.1186/cc11454]

18 MacDonald AJ, Nadim MK, Durand F, Karvellas CJ. Acute kidney injury in cirrhosis: implications for liver transplantation. *Curr Opin Crit Care* 2019; 25: 171-178 [PMID: 30676329 DOI: 10.1097/MCC.0000000000000590]

19 Nadim MK, Kellum JA, Davenport A, Wong F, Davis C, Panu N, Tolwani A, Bellomo R, Geryk YS; ADQI Workgroup. Hepatorenal syndrome: the 8th International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. *Crit Care* 2012; 16: R23 [PMID: 22322077 DOI: 10.1186/cc11188]

20 Wong F. Acute kidney injury in liver cirrhosis: new definition and application. *Clin Mol Hepatol* 2016; 22: 415-422 [PMID: 27987536 DOI: 10.3350/cmh.2016.0056]

21 Salerno F, Gerbes A, Ginès P, Wong F, Arroyo V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. *Postgrad Med J* 2008; 84: 662-670 [PMID: 19201943 DOI: 10.1136/gut.2006.107789]

22 Wong F. The evolving concept of acute kidney injury in patients with cirrhosis. *Nat Rev Gastroenterol Hepatol* 2015; 12: 711-719 [PMID: 26484442 DOI: 10.1038/nrgastro.2015.174]

23 Arroyo V, Ginès P, Gerbes AL, Dudley FJ, Gentilini P, Laffi G, Reynolds TB, Ring-Larsen H, Schölmerich J. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. *International Ascites Club. Hepatology* 1996; 23: 164-176 [PMID: 8550636 DOI: 10.1002/hep.510230122]
24 Martin-Llahi M, Guevara M, Torre A, Fagundes C, Restueccia T, Gilabert R, Solà E, Pereira G, Marinelli M, Pavesi M, Fernández J, Rodés J, Arroyo V, Ginès P. Prognostic importance of the cause of renal failure in patients with cirrhosis. *Gastroenterology* 2011; 140: 488-496. [e4] [PMID: 20668234] [DOI: 10.1053/j.gastro.2010.07.043]

25 Fagundes C, Ginès P. Hepatorenal syndrome: a severe, but treatable, cause of kidney failure in cirrhosis. *Am J Kidney Dis* 2012; 59: 874-885. [PMID: 22480795] [DOI: 10.1053/j.ajkd.2011.12.032]

26 Martin PY, Ginès P, Schrier RW. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. *N Engl J Med* 1998; 339: 533-541. [PMID: 9709047] [DOI: 10.1056/NEJM199805203390807]

Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. *Hepatology* 2006; 43: S121-S131. [PMID: 16447289] [DOI: 10.1002/hep.20993]

28 Ros J, Clària J, To-Figueras J, Planagumà A, Cejudo-Martín P, Fernández-Varo G, Martín-Ruiz R, Arroyo V, Rivera F, Rodés J, Jiménez W. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. *Gastroenterology* 2002; 122: 85-93. [PMID: 11781260] [DOI: 10.1016/S0016-5085(02)00305-X]

29 Acevedo JG, Cramp ME. Hepatorenal syndrome: Update on diagnosis and therapy. *World J Hepatol* 2017; 9: 293-299. [PMID: 28293378] [DOI: 10.4254/wjh.v9.i6.293]

30 Henriksen JH, Møller S, Ring-Larsen H, Christensen NJ. The sympathetic nervous system in liver disease. *J Hepatol* 1998; 29: 328-341. [PMID: 9722118] [DOI: 10.1016/S0168-8278(98)80222-6]

31 Bernardi M, Trevisani F, Gasbarrini A, Gasbarrini G. Hepatorenal disorders: role of the renin-angiotensin-aldosterone system. *Semin Liver Dis* 1994; 14: 23-34. [PMID: 8016659] [DOI: 10.1055/s-0027-107295]

32 Wong F. Cirrhosis cardiomyopathy. *Hepatol Int* 2009; 3: 294-304. [PMID: 19669380] [DOI: 10.1007/s12072-008-9109-7]

33 Ruiz-del-Arbol L, Monescollo A, Arocena C, Valer P, Ginès P, Moreira V, Milicua JM, Jiménez W, Arroyo V. Circulatory function and hepatorenal syndrome in cirrhosis. *Hepatology* 2005; 42: 439-447. [PMID: 15977202] [DOI: 10.1002/hep.20766]

34 Choi YJ, Kim JH, Koo JK, Lee CI, Lee JY, Yang JH, Ko SY, Choe WH, Kwon SY, Lee CH. Prevalence of renal dysfunction in patients with cirrhosis according to ADQI-IAC working party proposal. *Clin Mol Hepatol* 2014; 20: 185-191. [PMID: 25032185] [DOI: 10.3350/cmh.2014.20.2.185]

35 Fang JT, Tsai MH, Tian YC, Jenq CC, Lin CY, Chen YC, Lien JM, Chen PC, Yang CW. Outcome predictors and new score of critically ill cirrhotic patients with acute renal failure. *Nephrol Dial Transplant* 2008; 23: 1961-1969. [PMID: 18187499] [DOI: 10.1093/ndt/gfn914]

36 Tsien CD, Rabie R, Wong F. Acute kidney injury in decompensated cirrhosis. *Gut* 2013; 62: 131-137. [PMID: 22637695] [DOI: 10.1136/gutjnl-2011-301255]

37 Bucsics T, Krones E. Renal dysfunction in cirrhosis: acute kidney injury and the hepatorenal syndrome. *Gastroenterol Rep (Oxf)* 2017; 5: 127-137. [PMID: 28533910] [DOI: 10.1093/gastro/goo009]

38 Rolando N, Wade J, Davalos M, Wendon J, Philpott-Howard J, Williams R. The systemic inflammatory response syndrome in acute liver failure. *Hepatology* 2000; 32: 734-739. [PMID: 11003617] [DOI: 10.1053/hep.2000.17657]

39 Straub P, Tacke F, Koch A, Tnoutwein C. Liver - guardian, modifier and target of sepsis. *Nat Rev Gastroenterol Hepatol* 2017; 14: 55-66. [PMID: 27924081] [DOI: 10.1038/nrgastro.2016.168]

40 Woolbright BL, Jaeschke H. The impact of sterile inflammation in acute liver injury. *J Clin Transl Res* 2017; 3: 170-188. [PMID: 28670626] [DOI: 10.18053/jctres.03.201751.003]

41 Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. *J Hepatol* 2014; 61: 1385-1396. [PMID: 25135860] [DOI: 10.1016/j.jhep.2014.08.010]

42 Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V. Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial vasodilatation to systemic inflammation hypothesis. *J Hepatol* 2015; 63: 1272-1284. [PMID: 26192220] [DOI: 10.1016/j.jhep.2015.07.004]

43 Cazzaniga M, Dionigi E, Gobbo G, Fioretta A, Monti V, Salerno F. The systemic inflammatory response syndrome in cirrhotic patients: relationship with their in-hospital outcome. *J Hepatol* 2009; 51: 475-482. [PMID: 19560225] [DOI: 10.1016/j.jhep.2009.04.017]

44 Cervoni JP, Thévenot T, Weil D, Muel E, Barbot O, Sheppard F, Monnet E, Di Martino V. C-reactive protein predicts short-term mortality in patients with cirrhosis. *J Hepatol* 2012; 56: 1299-1304. [PMID: 22314431] [DOI: 10.1016/j.jhep.2011.12.030]

45 Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. *J Hepatol* 2014; 60: 197-209. [PMID: 23939313] [DOI: 10.1016/j.jhep.2013.07.044]

46 Moini M, Yazdani Sarvestani M, Shams M, Nomovi M. Evaluation of Adrenal Function in Nonhospitalized Patients with Cirrhosis. *Can J Gastroenterol Hepatol* 2017; 2017: 2354253. [PMID: 28812008] [DOI: 10.1155/2017/2354253]

47 Mucño-Bermejo MJ. Mechanisms of kidney dysfunction in the cirrhotic patient: Non-hepatorenal acute-on-chronic kidney damage considerations. *Ann Hepatol* 2020; 19: 145-152. [PMID: 31594758] [DOI: 10.1016/j.ahep.2019.06.022]

48 Acevedo J, Fernández J, Prado V, Silva A, Castro M, Pavesi M, Roca D, Jiménez W, Ginès P, Arroyo V. Relative adrenal insufficiency in decompensated cirrhosis: Relationship to short-term risk of severe sepsis, hepatorenal syndrome, and death. *Hepatology* 2013; 58: 1757-1765. [PMID: 23728792] [DOI: 10.1002/hep.26535]
Nampoothiri RV, Duseja A, Rathi M, Agrawal S, Sachdeva N, Mehta M, Dhaliwal HS, Dhiman RK, Chawla Y. Renal Dysfunction in Patients With Nonalcoholic Fatty Liver Disease is Related to the Presence of Diabetes Mellitus and Severity of Liver Disease. *J Clin Exp Hepatol* 2019; 9: 22-28 [PMID: 30765935 DOI: 10.1016/j.jch.2017.12.005]

Mizui S, Ohtsuki Y. ACE and ACE2 in kidney disease. *World J Nephrol* 2015; 4: 74-82 [PMID: 25646248 DOI: 10.5527/wjn.v4.i4.74]

Musso G, Gambino R, Cassader M. Emerging molecular targets for the treatment of nonalcoholic fatty liver disease. *Ann Rev Med* 2010; 61: 375-392 [PMID: 20095344 DOI: 10.1146/annurev.med.60.101007.134820]

Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. *Mech Ageing Dev* 2015; 146-148: 28-41 [PMID: 25824699 DOI: 10.1016/j.mad.2015.03.008]

Lhotta K. Beyond hepatorenal syndrome: glomerulonephritis in patients with liver disease. *Semin Nephrol* 2002; 22: 302-308 [PMID: 12118395]

Johnson RJ, Couser WG. Hepatitis B infection and renal disease: clinical, immunopathogenetic and therapeutic considerations. *Kidney Int* 1990; 37: 663-676 [PMID: 1968522 DOI: 10.1038/ki.1990.32]

Lai KN, Ho RT, Tam JS, Lai FM. Detection of hepatitis B virus DNA and RNA in kidneys of HBV related glomerulonephritis. *Kidney Int* 1996; 50: 1965-1977 [PMID: 8943480 DOI: 10.1038/ki.1996.519]

Lai TS, Lee MH, Yang HI, You SL, Lu SN, Wang LY, Yuan Y, L’Italien G, Chien KL, Chen CJ; REVEAL-HCV Study Group. Hepatitis C viral load, genotype, and increased risk of developing end-stage renal disease: REVEAL-HCV study. *Hepatology* 2017; 66: 784-793 [PMID: 28370058 DOI: 10.1002/hep.29192]

Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. *Nephron* 1976; 16: 31-41 [PMID: 1244564 DOI: 10.1159/0000180580]

Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. *Ann Intern Med* 1999; 130: 461-470 [PMID: 10075613 DOI: 10.7326/0003-4819-130-6-199903160-00002]

Francoz C, Nadim MK, Durand F. Kidney biomarkers in cirrhosis. *J Hepatol* 2016; 65: 809-824 [PMID: 27238754 DOI: 10.1016/j.jhep.2016.05.025]

Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. *Ann Intern Med* 2009; 150: 604-612 [PMID: 19414839 DOI: 10.7326/0003-4819-150-9-200905050-00006]

Sherman DS, Fish DN, Teitelbaum I. Assessing renal function in cirrhotic patients: problems and pitfalls. *Am J Kidney Dis* 2003; 41: 269-278 [PMID: 12532408 DOI: 10.1339/ajkd.2003.50035]

Herget-Rosenthal S, Trabold S, Pietrack F, Holtmann M, Philipp T, Kribben A, Cystatin C. Efficacy as screening test for reduced glomerular filtration rate. *Am J Nephrol* 2006; 20: 97-102 [PMID: 17775608 DOI: 10.1159/000013564]

Tenstad O, Roald AB, Grubb A, Aukland K. Renal handling of radiolabelled human cystatin C in the rat. *Scand J Clin Lab Invest* 1996; 56: 409-414 [PMID: 8869663 DOI: 10.3109/0365519690088797]

Shlipak MG, Coresh J, Gansevoort RT. Cystatin C versus creatinine for kidney function-based risk. *N Engl J Med* 2013; 369: 2459 [PMID: 24350959 DOI: 10.1056/NEJMj1112801]

Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. *N Engl J Med* 2012; 367: 20-29 [PMID: 22762315 DOI: 10.1056/NEJMoa1114248]

Gerbes AL, Gülberg V, Bilzer M, Vogeser M. Evaluation of serum cystatin C concentration as a marker of renal function in patients with cirrhosis of the liver. *Gut* 2002; 50: 106-110 [PMID: 11772976 DOI: 10.1136/gut.50.1.106]

Jaques DA, Spahr L, Berra G, Poffet V, Lescuyer P, Gerstel E, Garin N, Martin PY, Ponte B. Biomarkers for acute kidney injury in decompensated cirrhosis: A prospective study. *Nephrol Dial Transplant* 2019; 24: 170-180 [PMID: 29369440 DOI: 10.1093/ndt/gfx232]

Kim TH, Seo YS, Kang SH, Kim MY, Kim SG, Lee HY, Lee JH, Lee YS, Kim JH, Jeong SW, Jang JY, Suk KT, Jung YK, An H, Yim HJ, Kim YS, Um SH; Korean Study Group of Portal Hypertension. Prognosis predictability of serum and urine renal markers in patients with decompensated cirrhosis: A multicentre prospective study. *Liver Int* 2020; 40: 3083-3092 [PMID: 32750739 DOI: 10.1111/liv.14631]

Pathumana J, Ariza X, Belcher JM, Graupera I, Ginés P, Parikh CR. Urine Interleukin 18 and Lipocalin 2 Are Biomarkers of Acute Tubular Necrosis in Patients With Cirrhosis: A Systematic Review and Meta-analysis. *Clin Gastroenterol Hepatol* 2017; 15: 1003-1013 [e3] [PMID: 28013112 DOI: 10.1016/j.cgh.2016.11.035]

Mishra J, Ma Q, Prada A, Mitsnifees M, Zahedi K, Yang J, Barasch J, Devarajan P. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. *J Am Soc Nephrol* 2003; 14: 2534-2543 [PMID: 14514731 DOI: 10.1097/01.asn.0000088027.54600.co]
Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsunefes M, Barasch J, Devanjan P. Amelioration of ischemic acute renal failure by neutrophil gelatinase-associated lipocalin. *J Am Soc Nephrol* 2004; 15: 3073-3082 [PMID: 15759510 DOI: 10.1097/01ASN.000014501344578.45]

Fagundes C, Pepin MN, Guevara M, Barreto R, Casals G, Solá E, Pereira G, Rodrigues E, Garcia E, Prado V, Poch E, Jiménez W, Fernández J, Arroyo V, Ginís P. Urinary neutrophil gelatinase-associated lipocalin as biomarker in the differential diagnosis of impairment of kidney function in cirrhosis. *J Hepatol* 2012; 57: 267-273 [PMID: 22321351 DOI: 10.1016/j.jhep.2012.03.015]

Belcher JM, Sanyal AJ, Peixoto AJ, Perazella MA, Lim J, Thiesen-Philbrook H, Ansari N, Coca SG, Garcia-Tsao G, Parikh CR; TRIBE-AKI Consortium. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. *Hepatology* 2014; 60: 622-632 [PMID: 24375576 DOI: 10.1002/hep.26980]

Barreto R, Elia C, Solá E, Moreira R, Ariza X, Rodríguez E, Graupera M, Alfarro I, Morales-Ruiz M, Poch E, Guevara M, Fernández J, Jiménez W, Arroyo V, Ginís P. Urinary neutrophil gelatinase-associated lipocalin predicts kidney outcome and death in patients with cirrhosis and bacterial infections. *J Hepatol* 2014; 61: 35-42 [PMID: 24613364 DOI: 10.1016/j.jhep.2014.02.023]

Ariza X, Solá E, Elia C, Barreto R, Moreira R, Morales-Ruiz M, Graupera I, Rodríguez E, Huelin P, Solé C, Fernández J, Jiménez W, Arroyo V, Ginís P. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. *PLoS One* 2015; 10: e0128145 [PMID: 26042740 DOI: 10.1371/journal.pone.0128145]

Jo SK, Yang J, Hwang SM, Lee MS, Park SH. Role of biomarkers as predictors of acute kidney injury and mortality in decompensated cirrhosis. *Sci Rep* 2019; 9: 14508 [PMID: 31601879 DOI: 10.1038/s41598-019-51053-9]

Lee JH, Yoon EL, Park SE, Park JY, Choi JM, Jeon TJ, Shin WC, Choi WC. Clinical Significance of Urinary Neutrophil Gelatinase-associated Lipocalin Levels in Defining the Various Etiologies of Acute Kidney Injury in Liver Cirrhosis Patients. *Korean J Gastroenterol* 2019; 74: 212-218 [PMID: 31650797 DOI: 10.4166.kjg.2019.74.4.212]

Huelin P, Solé E, Elia C, Solé C, Risso A, Moreira R, Carol M, Fabrellas N, Bassegoda O, Juanola A, de Prada G, Albertos S, Piano S, Graupera M, Ariza X, Napoleone L, Pose E, Filella X, Morales-Ruiz M, Rios J, Fernández J, Jiménez W, Poch E, Torres F, Ginís P. Neutrophil Gelatinase-Associated Lipocalin for Assessment of Acute Kidney Injury in Cirrhosis: A Prospective Study. *Hepatology* 2019; 70: 319-333 [PMID: 30810244 DOI: 10.1002/hep.30592]

Davenport A, Sheikh MF, Lamb E, Agarwal B, Jalan R. Acute kidney injury in acute-on-chronic liver failure: where does hepatorenal syndrome fit? *Kidney Int* 2017; 92: 1058-1070 [PMID: 28844314 DOI: 10.1016/j.kint.2017.04.048]

Ostermann M, Joannidis M. Biomarkers for AKI improve clinical practice: no. *Intensive Care Med* 2015; 41: 618-622 [PMID: 25387818 DOI: 10.1007/s00134-014-3540-0]

Glaseford NJ, Schneider AG, Xu S, Eastwood GM, Young H, Peck L, Venge P, Bellomo R. The nature and discriminatory value of urinary neutrophil gelatinase-associated lipocalin in critically ill patients at risk of acute kidney injury. *Intensive Care Med* 2013; 39: 1714-1724 [PMID: 23917325 DOI: 10.1007/s00134-013-3040-7]

Liu Y, Guo W, Zhang J, Xu C, Yu S, Mao Z, Wu J, Ye C, Mei C, Dai B. Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. *Am J Kidney Dis* 2013; 62: 1058-1067 [PMID: 23830182 DOI: 10.1053/j.ajkd.2013.05.014]

Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ. IL-18 contributes to renal damage after ischemia-reperfusion. *J Am Soc Nephrol* 2008; 19: 2331-2341 [PMID: 18815244 DOI: 10.1681/ASN.2008020170]

Tsai MH, Chen YC, Yang CW, Jenq CC, Fang JT, Lien JM, Hung CC, Weng HH, Wu CS, Peng YS, Shen CH, Tung SY, Tian YC. Acute renal failure in cirrhotic patients with severe sepsis: value of urinary interleukin-18. *J Gastroenterol Hepatol* 2013; 28: 135-141 [PMID: 23034155 DOI: 10.1111/j.1440-1746.2012.07288.x]

Qasem AA, Farag SE, Hamed E, Emara M, Bihery A, Pasha H. Urinary biomarkers of acute kidney injury in patients with liver cirrhosis. *ISRN Nephrol* 2014; 2014: 702119 [PMID: 24967242 DOI: 10.1155/2014/702119]

Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. *J Biol Chem* 1998; 273: 4135-4142 [PMID: 9461608 DOI: 10.1074/jbc.273.7.4135]

Furuhashi M, Hotamisligil GS. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. *Nat Rev Drug Discov* 2008; 7: 489-503 [PMID: 18511927 DOI: 10.1038/nrd2589]

Xu Y, Xie Y, Shao X, Ni Z, Mou S. L-FABP: A novel biomarker of kidney disease. *Clin Chim Acta* 2015; 445: 85-90 [PMID: 25797895 DOI: 10.1016/j.cca.2015.03.017]

Yamamoto T, Noiri E, Ono Y, Doki K, Negishi K, Kamijo A, Kimura K, Fujita T, Kinukawa T, Taniguchi H, Nakamura K, Goto M, Shinozaki N, Ohshima S, Sugaya T. Renal L-type fatty acid--binding protein in acute ischemic injury. *J Am Soc Nephrol* 2007; 18: 2894-2902 [PMID: 17942962 DOI: 10.1681/ASN.2007010097]

Doi K, Noiri E, Maeda-Mamiya R, Ishii T, Negishi K, Hamasaki Y, Fujita T, Yahagi N, Koide H, Sugaya T, Nakamura T. Urinary L-type fatty acid-binding protein as a new biomarker of sepsis complicated with acute kidney injury. *Crit Care Med* 2010; 38: 2037-2042 [PMID: 20657273 DOI: 10.1097/CCM.0b013e3181edec60]
Gupta K et al. AKI and HRS

91 Eguchi A, Iwasa M. The Role of Elevated Liver-Type Fatty Acid-Binding Proteins in Liver Diseases. *Pharm Res* 2021; 38: 89-95 [PMID: 33534129 DOI: 10.1007/s11095-021-02989-x]

92 Karvellas CJ, Speiser JL, Tremblay M, Lee WM, Rose CF. US Acute Liver Failure Study Group. Elevated FABP1 serum levels are associated with poorer survival in acetonaminophen-induced acute liver failure. *Hepatology* 2017; 65: 938-949 [PMID: 27859489 DOI: 10.1002/hep.28945]

93 Eguchi A, Hasegawa H, Iwasa M, Tamai Y, Ohata K, Oikawa T, Sugaya T, Takei Y. Serum Liver-Type Fatty Acid-Binding Protein Is A Possible Prognostic Factor in Human Chronic Liver Diseases From Chronic Hepatitis to Liver Cirrhosis and Hepatocellular Carcinoma. *Hepatol Commun* 2019; 3: 825-837 [PMID: 31168516 DOI: 10.1002/hep4.1350]

94 Allegretti AS, Solé E, Ginès P. Clinical Application of Kidney Biomarkers in Cirrhosis. *Am J Kidney Dis* 2020; 76: 710-719 [PMID: 32622560 DOI: 10.1053/j.ajkd.2020.03.016]

95 Wong F. Diagnosing and treating renal disease in cirrhotic patients. *Minerva Gastroenterol Dietol* 2016; 62: 253-266 [PMID: 27096702]

96 Mandorf M, Reiberger T. Beta blockers and cirrhosis, 2016. *Dig Liver Dis* 2017; 49: 3-10 [PMID: 27717792 DOI: 10.1016/j.dld.2016.09.013]

97 Mandorf M, Bota S, Schwabl P, Bucsicis T, Pfisterer N, Kruzik M, Hagemann M, Blaky A, Ferlitsch A, Sieghart W, Trauner M, Peck-Radosavljevic M, Reiberger T. Nonselective β blockers increase risk for hepato renal syndrome and death in patients with cirrhosis and spontaneous bacterial peritonitis. *Gastroenterology* 2014; 146: 1680-90. e1 [PMID: 24631577 DOI: 10.1053/j.gastro.2014.03.005]

98 Schwabl P, Bucsicis T, Soucek K, Mandorf M, Bota S, Blacky A, Hirschl AM, Ferlitsch A, Trauner M, Peck-Radosavljevic M, Reiberger T. Risk factors for development of spontaneous bacterial peritonitis and subsequent mortality in cirrhotic patients with ascites. *Liver Int* 2015; 35: 2121-2128 [PMID: 25644942 DOI: 10.1111/liv.12795]

99 Jalal R, Fernandez J, Wiest R, Schwabl B, Moreau R, Angeli P, Stadlbauer V, Gustot T, Bernardi M, Canton R, Albillos A, Landmert F, Wilmert A, Moskeitte R, Vila J, Garcia-Martinez R, Wendon J, Such J, Cordoba J, Sanyal A, Garcia-Tsao G, Arroyo V, Burroughs A, Ginès P. Bacterial infections in cirrhosis: a position statement based on the EASL Special Conference 2013. *J Hepatol* 2014; 60: 1310-1324 [PMID: 24530646 DOI: 10.1016/j.jhep.2014.01.024]

100 Arabi YM, Dara SI, Memish Z, Al Abdul kareem A, Tamim HM, Al-Shirawi N, Parrillo JE, Dodek P, Lapinsky S, Feinstein D, Wood G, Dial S, Zanto S, Kumar A; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Antimicrobial therapeutic determinants of outcomes from septic shock among patients with cirrhosis. *Hepatology* 2012; 56: 2305-2315 [PMID: 22751344 DOI: 10.1002/hep.25931]

101 Sanyal AJ, Beyer T, Garcia-Tsao G, Regenstein F, Rossaro L, Appenrodt B, Blei A, Guberg V, Sigal S, Teuber P; Terlipressin Study Group. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type I hepatorenal syndrome. *Gastroenterology* 2008; 134: 1360-1368 [PMID: 18471513 DOI: 10.1053/j.gastro.2008.02.014]

102 Sharma P, Kumar A, Shrama BC, Sarin SK. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type I hepatorenal syndrome and predictors of response. *Am J Gastroenterol* 2008; 103: 1689-1697 [PMID: 18557715 DOI: 10.1111/j.1572-0241.2008.01828.x]

103 Martin-Llaihi M, Pépin MN, Guevara M, Díaz F, Trotte A, Monesício A, Soriano G, Terrá C, Fábrega E, Arroyo V, Rodés J, Ginès P; TAHRS Investigators. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. *Gastroenterology* 2008; 134: 1352-1359 [PMID: 18471512 DOI: 10.1053/j.gastro.2008.02.024]

104 Cavallini M, Kamath PS, Merli M, Fasolato S, Tonini P, Salerno F, Bernardi M, Romanelli RG, Colletta C, Salinas F, Di Giacomo A, Ridola L, Fornasier E, Caraceni P, Morando F, Piano S, Gatta A, Angeli P; Italian Association for the Study of the Liver Study Group on Hepatorenal Syndrome. Terlipressin plus albumin versus midodrine and octreotide plus albumin in the treatment of hepatorenal syndrome: A randomized trial. *Hepatology* 2015; 62: 567-574 [PMID: 25644760 DOI: 10.1002/hep.27709]

105 Boyer TD, Sanyal AJ, Wong F, Frederick RT, Lake JR, O'Leary JG, Ganger D, Janil M, Pappas SC; REVERSE Study Investigators. Terlipressin Plus Albumin Is More Effective Than Albumin Alone in Improving Renal Function in Patients With Cirrhosis and Hepatorenal Syndrome Type 1. *Gastroenterology* 2016; 150: 1579-1589. e2 [PMID: 26896734 DOI: 10.1053/j.gastro.2016.02.026]

106 Cavallini M, Piano S, Romano A, Fasolato S, Frigo AC, Benetti G, Gola E, Morando F, Stancio M, Rossi S, Stica A, Cillo U, Angeli P. Terlipressin given by continuous intravenous infusion versus intravenous boluses in the treatment of hepatorenal syndrome: A randomized controlled study. *Hepatology* 2016; 63: 983-992 [PMID: 26659927 DOI: 10.1002/hep.28396]

107 Gifford FJ, Morling JR, Fallowfield JA. Systematic review with meta-analysis: vasoactive drugs for the treatment of hepatorenal syndrome type 1. *Aliment Pharmacol Ther* 2017; 45: 593-603 [PMID: 28052382 DOI: 10.1111/apt.13912]

108 Solanki P, Chawla A, Garg R, Gupta R, Jain M, Sarin SK. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trial. *J Gastroenterol Hepatol* 2003; 18: 152-156 [PMID: 12542598 DOI: 10.1046/j.1440-1746.2003.02934.x]

109 Neri S, Pulvirenti D, Malaguarnera M, Cosimo BM, Bertino G, Iagnacclo L, Siringo S, Castellino P. Terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. *Dig Dis Sci* 2008; 53: 830-835 [PMID: 17939047 DOI: 10.1007/s10620-007-9919-9]
Europe Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J Hepatol 2010; 53: 397-417 [PMID: 20633946 DOI: 10.1016/j.jhep.2010.05.004]

Mattos ÁZ, Schacher FC, Mattos AA. Vasoconstrictors in hepatorenal syndrome - A critical review. Ann Hepatol 2019; 18: 287-290 [PMID: 31023616 DOI: 10.1016/j.ahep.2018.12.002]

Krishna R, Raj J, Dev D, Prasad SC, Reghu R, V SO. A study on clinical outcomes of combination of terlipressin and albumin in Hepatorenal Syndrome. Scand J Gastroenterol 2020; 55: 860-864 [PMID: 32634332 DOI: 10.1080/00335525.2020.1786851]

Kalambokis GN, Christaki M, Tsaiakas I, Despotis G, Milionis HH. Efficacy of treatment with terlipressin plus albumin in hepatorenal syndrome diagnosed with the new acute kidney injury versus the conventional criteria. Eur J Gastroenterol Hepatol 2019; 31: 1292-1294 [PMID: 31498285 DOI: 10.1097/EJM.0000000000001460]

Wong F, Pappas SC, Curry MP, Reddy KR, Rubin RA, Porayko MK, Gonzalez SA, Muntau K, Lim N, Simonetto DA, Sharma P, Sanyal AJ, Mayo MJ, Frederick RT, Escalante S, Jamil K; CONFIRM Study Investigators. Terlipressin plus Albumin for the Treatment of Type I Hepatorenal Syndrome. N Engl J Med 2021; 384: 818-828 [PMID: 33657294 DOI: 10.1056/NEJMoa2008290]

Duvoux C, Zandienas D, Hézode C, Chauvat A, Monin JL, Rouduit-Thoraval F, Mallat A, Dhumeaux D. Effects of noradrenaline and albumin in patients with type I hepatorenal syndrome: a pilot study. Hepatology 2002; 36: 374-380 [PMID: 12143045 DOI: 10.1053/jhep.2002.34343]

European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol 2018; 69: 406-460 [PMID: 29653741 DOI: 10.1016/j.jhep.2018.03.024]

Gupta K, Rani P, Rohatgi A, Verma M, HANDAL K, Jain A. Noradrenaline for reverting hepatorenal syndrome: a prospective, observational, single-center study. Clin Exp Gastroenterol 2018; 11: 317-324 [PMID: 30271187 DOI: 10.2147/CEG.S153858]

Alessandria C, Ottobrelli A, Debernardi-Venon W, Todros L, Cerenzia MT, Martini S, Balzola F, Morgando A, Rizzato M, Marzano A. Noradrenalin vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J Hepatol 2007; 47: 499-505 [PMID: 17560680 DOI: 10.1016/j.jhep.2007.04.010]

Singh V, Ghosh S, Singh B, Kumar P, Sharma N, Bhatta A, Sharma AK, Choudhary NS, Chawla Y, Nain CK. Noradrenaline vs. terlipressin in the treatment of hepatorenal syndrome: a randomized study. J Hepatol 2012; 56: 1293-1298 [PMID: 22322237 DOI: 10.1016/j.jhep.2012.01.012]

Ghosh S, Choudhary NS, Sharma AK, Singh B, Kumar P, Agarwal R, Sharma N, Bhatta A, Chawla YK, Singh V. Noradrenaline vs terlipressin in the treatment of type 2 hepatorenal syndrome: a randomized pilot study. Liver Int 2013; 33: 1187-1193 [PMID: 23601499 DOI: 10.1111/liv.12179]

Goyal O, Sidhu SS, Sehgal N, Puri S. Noradrenaline is as Effective as Terlipressin in Hepatorenal Syndrome Type 1: A Prospective, Randomized Trial. J Assoc Physicians India 2016; 64: 30-35 [PMID: 27762512]

Liu ZM, Chen J, Kou Q, Lin Q, Huang X, Tang Z, Kang Y, Li K, Zhou L, Song Q, Sun T, Zhao L, Wang X, He X, Wang C, Wu B, Lin J, Yuan S, Gu Q, Qian K, Shi X, Feng Y, Lin A. Study Group of investigators, Guan XD. Terlipressin versus norprenephrine as infusion in patients with septic shock: a multicentre, randomised, double-blind trial. Intensive Care Med 2018; 44: 1816-1825 [PMID: 29971593 DOI: 10.1007/s00134-018-5267-9]

Acero V, Maivall R, Rajan V, Jindal A, Muralikrishna Shasthry S, Kumar G, Jain P, Sarin SK. Terlipressin Is Superior to Noradrenaline in the Management of Acute Kidney Injury in Acute on Chronic Liver Failure. Hepatolology 2020; 71: 600-610 [PMID: 30076614 DOI: 10.1002/hep.31028]

Angeli P, Volpin R, Gerunda G, Craighero R, Roner P, Merenda R, Amodio P, Sticca A, Caregaro L, Maffei-Faccioli A, Gatta A. Reversal of type 1 hepatorenal syndrome with the administration of midodrine and octreotide. HepatoLOGY 1999; 29: 1690-1697 [PMID: 10437109 DOI: 10.1002/hep.510290629]

Wong F, Pantea L, Sneiderman K. Midodrine, octreotide, albumin, and TIPS in selected patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 2004; 40: 55-64 [PMID: 15239086 DOI: 10.1002/hep.20262]

Skagen C, Einstein M, Lucey MR, Said A. Combination treatment with octreotide, midodrine, and albumin improves survival in patients with type 1 and type 2 hepatorenal syndrome. J Clin Gastroenterol 2009; 43: 680-685 [PMID: 19238094 DOI: 10.1097/MJC.0b013e318188947c]

Brensing KA, Textor J, Perz J, Schiedermaier P, Raab P, Strunk H, Klehr HU, Kramer HJ, Spengler U, Schild H, Sauerbruch T. Long term outcome after transjugular intrahepatic portosystemic shunt in non-transplant cirrhosis with hepatorenal syndrome: a phase II study. Gut 2000; 47: 288-295 [PMID: 10890923 DOI: 10.1136/gut.47.2.288]

Song T, Rösle M, He F, Liu F, Guo X, Qi X. Transs jugular intrahepatic portosystemic shunt for hepatorenal syndrome: A systematic review and meta-analysis. Dig Liver Dis 2018; 50: 323-330 [PMID: 29422242 DOI: 10.1016/j.dld.2018.01.123]

Zhang Z, Maddukuri G, Jiaipaul N, Cai CX. Role of renal replacement therapy in patients with type 1 hepatorenal syndrome receiving combination treatment of vasoconstrictor plus albumin. J Crit Care 2015; 30: 969-974 [PMID: 26051980 DOI: 10.1016/j.jcrc.2015.05.006]

Keller F, Heinez H, Jochimsen F, Passfall J, Schuppan D, Böttner P. Risk factors and outcome of 107 patients with decompensated liver disease and acute renal failure (including 26 patients with hepatorenal syndrome): the role of hemodialysis. Ren Fail 1995; 17: 135-146 [PMID: 7644764 DOI: 10.3109/08860229509028239]
Patterns Are Associated With Postdischarge Mortality in Patients With Cirrhosis and Acute Kidney Injury and Hepatorenal Syndrome: A Multicenter, Prospective, Observational Study. Gupta K, et al. Hepatology 2013; 57: 1153-1162 [PMID: 23213075 DOI: 10.1002/hep.26185]

Lavassyère L, Kalilah S, Cardeau-Desanges I, Negrier MB, Cointault O, Barange K, Muscari F, Rostaing L, Kamar N. Impact of molecular adsorbent recirculating system on renal recovery in type-1 hepatorenal syndrome patients with chronic liver failure. J Gastroenterol Hepatol 2013; 28: 1019-1024 [PMID: 23425070 DOI: 10.1111/j.1440-1746.2013.07112.x]

He YT, Qi YN, Zhang BQ, Li JB, Bao J. Bioartificial liver support systems for acute liver failure: A systematic review and meta-analysis of the clinical and preclinical literature. World J Gastroenterol 2019; 25: 3634-3648 [PMID: 31367162 DOI: 10.3748/wjg.v25.i27.3634]

Sort P, Navasa M, Arroyo V, Aldegue X, Planas R, Ruiz-del-Arbol L, Castells L, Vargas V, Soriaga G, Guevara M, Ginès P, Rodés J. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 1999; 341: 403-409 [PMID: 10432325 DOI: 10.1056/NEJM199908053410403]

Terg R, Gadano A, Cartier M, Caciapico P, Lucero R, Muñoz A, Romero G, Levi D, Terg G, Miguez C, Abceasis R. Serum creatinine and bilirubin improve renal failure and mortality in patients with spontaneous bacterial peritonitis: a retrospective study. Liver Int 2009; 29: 415-419 [PMID: 18803587 DOI: 10.1111/j.1478-3231.2008.01877.x]

de Mattos AZ, de Mattos AA, Méndez-Sánchez N. Hepatorenal syndrome: Current concepts related to diagnosis and management. Ann Hepatol 2016; 15: 474-481 [PMID: 27226146]

Guevara M, Terra C, Nazar A, Sola E, Solà E, Arroyo V, Ginès P. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study. J Hepatol 2012; 57: 759-765 [PMID: 22732511 DOI: 10.1016/j.jhep.2012.06.013]

Thévenot T, Bureau C, Oberli F, Anty R, Levetou A, Plessier A, Rudler M, Heurgué-Berlot A, Rosa IM, Talbodec N, Dao T, Ozenne V, Carbonell N, Causse X, Goria O, Minello A, De Ledinghen V, Amyathie R, Barnaud H, Nguyen-Khac E, Becker C, Paupard T, Botta-Fridlung D, Abdelli N, Barraud H, Nguyen-Khac E, Becker C, Amathieu R, Barraud H, Nguyen-Khac E, Becker C, Monnet E, Di Martino V. Effect of albumin in cirrhotic patients with infection other than spontaneous bacterial peritonitis. A randomized trial. J Hepatol 2015; 62: 822-830 [PMID: 25463545 DOI: 10.1016/j.jhep.2014.11.017]

Fernández J, Navasa M, Planas R, Montoliu S, Monfort D, Soriaga G, Vila C, Pardo A, Quintero E, Vargas V, Such J, Ginès P, Arroyo V. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 2007; 133: 818-824 [PMID: 17854593 DOI: 10.1053/j.gastro.2007.06.065]

Boyer TD, Sanjay AJ, Garcia-Tsao G, Rengesten F, Rossaro L, Appenrodt B, Gullberg V, Sigal S, Bexon AS, Teuber P, Terlispens Study Group. Impact of liver transplantation on the survival of patients treated for hepatorenal syndrome type 1. Liver Transplant 2011; 17: 1328-1332 [PMID: 21837734 DOI: 10.1002/lt.22395]

Cannon RM, Jones CM, Davis EG, Eckhoff DE. Effect of Renal Diagnosis on Survival in Simultaneous Liver-Kidney Transplantation. J Am Coll Surg 2019; 228: 536-544. e3 [PMID: 30586642 DOI: 10.1016/j.jacisurg.2018.12.003]

Nadim MK, Sung RS, Davis CL, Andrenni KA, Briggs SW, Danovitch GM, Feng S, Friedewald JJ, Hong JC, Kellum JA, Kim WR, Lake JR, Melton LB, Pompfret EA, Saab S, Genyk YS. Simultaneous liver-kidney transplantation summit: current state and future directions. Am J Transplant 2012; 12: 2901-2908 [PMID: 22822723 DOI: 10.1111/j.1600-6143.2012.04190.x]

Hussain SM, Sureshkumar KK. Refining the Role of Simultaneous Liver Kidney Transplantation. J Clin Transl Hepatol 2018; 6: 289-295 [PMID: 30271741 DOI: 10.1428/JCTH.2017.00065]

Jeng CC, Tsai MH, Tian YC, Lin CY, Yang C, Liu NJ, Lien JM, Chen YC, Fang JT, Chen PC, Yang CW. RIFLE classification can predict short-term prognosis in critically ill cirrhotic patients. Intensive Care Med 2007; 33: 1921-1930 [PMID: 17605129 DOI: 10.1007/s00134-007-0760-6]

Wong F, O’Leary JG, Reddy KR, Patton H, Kamath PS, Fallon MB, Garcia-Tsao G, Subramanian RM, Malik R, Maliaikkal B, Thacker LR, Bajaj JS, North American Consortium for Study of End-Stage Liver Disease. New consensus definition of acute kidney injury accurately predicts 30-day mortality in patients with cirrhosis and infection. Gastroenterology 2013; 145: 1280-8. e1 [PMID: 23991172 DOI: 10.1053/j.gastro.2013.08.051]

Huelin P, Piano S, Sola E, Stancio M, Solé C, Moreira R, Pose E, Fasoliato S, Fabrellas N, de Prada HH, Mitzner S, Williams R, Arroyo V. RELIEF study group. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology 2013; 57: DOI: 10.1002/hep.26185

Bucsis T, Mandlera F, Schwabl P, Bota S, Sieghart W, Ferlitsch A, Trauner M, Peek-Radosavljevic M, Reiberger T. Impact of acute kidney injury on prognosis of patients with liver cirrhosis and ascites: A retrospective cohort study. J Gastroenterol Hepatol 2015; 30: 1657-1665 [PMID: 25967931 DOI: 10.1111/jgh.13002]
Injury. Clin Gastroenterol Hepatol 2020; 18: 1858-1866. e6 [PMID: 31778807 DOI: 10.1016/j.cgh.2019.11.035]

149 Makar M, Reja D, Chouthai A, Kabaria S, Patel AV. The impact of acute kidney injury on mortality and clinical outcomes in patients with alcoholic cirrhosis in the USA. Eur J Gastroenterol Hepatol 2021; 33: 905-910 [PMID: 32976187 DOI: 10.1097/MEG.00000000000021947]

150 Patidar KR, Shamsedddeen H, Xu C, Ghabril MS, Nephew LD, Desai AP, Anderson M, El-Achkar TM, Ginès P, Chalasani NP, Orman ES. Hospital-Acquired Versus Community-Acquired Acute Kidney Injury in Patients With Cirrhosis: A Prospective Study. Am J Gastroenterol 2020; 115: 1505-1512 [PMID: 32371628 DOI: 10.14309/ajg.0000000000001947]

151 Tariq R, Hadi Y, Chahal K, Reddy S, Salameh H, Singal AK. Incidence, Mortality and Predictors of Acute Kidney Injury in Patients with Cirrhosis: A Systematic Review and Meta-analysis. J Clin Transl Hepatol 2020; 8: 135-142 [PMID: 32832393 DOI: 10.14218/JCTH.2019.00060]

152 Alessandria C, Ozdogan O, Guevara M, Restuccia T, Jiménez W, Arroyo V, Rodés J, Ginès P. MELD score and clinical type predict prognosis in hepatorenal syndrome: relevance to liver transplantation. Hepatology 2005; 41: 1282-1289 [PMID: 15834937 DOI: 10.1002/hep.20687]

153 Belcher JM, Garcia-Tsao G, Sanyal AJ, Bhogal H, Lim JK, Ansari N, Coca SG, Parikh CR; TRIBE-AKI Consortium. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology 2013; 57: 753-762 [PMID: 22454364 DOI: 10.1002/hep.25735]
