Large two atom two photon vacuum Rabi oscillations in a high quality cavity

P. K. Pathak, and G. S. Agarwal

Physical Research Laboratory, Navrangpura, Ahmedabad 380 009

(Dated: October 25, 2018)

We predict large cooperative effect involving two atom two photon vacuum Rabi oscillations in a high quality cavity. The two photon emission occurs as a result of simultaneous de-excitation of both atoms with two photon resonance condition \(\omega_1 + \omega_2 \approx \omega_a + \omega_b\), where \(\omega_1, \omega_2\) are the atomic transition frequencies and \(\omega_a, \omega_b\) are the frequencies of the emitted photons. The actual resonance condition depends on the vacuum Rabi couplings. The effect can be realized either with identical atoms in a bimodal cavity or with nonidentical atoms in a single mode cavity.

PACS numbers: 42.50.-p, 42.50.Fx, 42.50.Hz, 42.50.Pq

I. INTRODUCTION

High quality cavities have led to the study of a new regime of radiation matter interaction viz the study of strongly interacting systems. Several new phenomena such as vacuum Rabi splittings \[1\,2\,3\,4\,5\], trapping states \[6\], and systems like micromasers \[7\,8\] have been studied. More recent applications on high quality cavities are in the context of quantum computation \[9\]. Most of these works concern the interaction of the individual atoms. Earlier cooperative effects like optical bistability involving a large number of atoms have been investigated \[10\]. A large part of these studies concerns the situations where the atomic transition frequency is almost equal to the cavity frequency. In this paper we report an unusual cooperative effect involving two atoms in a nonresonant cavity. This cooperative effect arises from the simultaneous de-excitation of two atoms such that the sum of the energies of emitted photons is equal to the sum of the excitation energies of the atoms. We demonstrate that in a high quality cavity the two atom two photon resonant effect could be large thus opening up the possibility of a variety of nonlinear \(\text{i.e.}\) multi-photon cooperative phenomena in nonresonant cavities. For this purpose the recent development on the trapping of atom inside the cavity \[11\] should be especially useful. We bring out the origin of such large two atom two photon Rabi oscillations.

We start by noting that in a two photon emission process the two photon resonance between the excited state \(|e\rangle\) and the ground state \(|g\rangle\) would occur at a frequency given by \(\omega_{eg} = 2\omega\), where \(\omega_{eg}\) is the atomic transition frequency and \(\omega\) is the frequency of the photons emitted. The process proceeds via intermediate states \(|i\rangle\), which are away from a single photon resonance. Now consider an inter-atomic process involving two atoms with distinct transition frequencies \(\omega_1\) and \(\omega_2\) such that \(\omega_1 - \omega\) and \(\omega_2 - \omega\) are large so that individual emissions are not important. However, as shown in Fig.1(a), one can consider a two photon emission process such that \(\omega_1 + \omega_2 = 2\omega\). Clearly this would be a cooperative process as it involves two atoms. Besides it should also be important as it is a resonant process. Let us then examine the transition probability for such a two photon emission. Let \(H_+\) be the interaction responsible for the emission of a photon defined by the interaction Hamiltonian which is written in the form

\[
H_I = H_+ e^{i\omega t} + H_- e^{-i\omega t}.
\]

Then the second order perturbation theory leads to the following expression for the rate of two photon emission

\[
R_e = \frac{2\pi}{\hbar^2} \left| \frac{\langle g_1, g_2 | H_+ | g_1, e_2 \rangle \langle g_1, e_2 | H_+ | e_1, e_2 \rangle}{\hbar(\omega_1 - \omega)} + \frac{\langle g_1, g_2 | H_+ | e_1, g_2 \rangle \langle e_1, g_2 | H_+ | e_1, e_2 \rangle}{\hbar(\omega_2 - \omega)} \right|^2 \delta(\omega_1 + \omega_2 - 2\omega).
\]

Note that surprisingly \(R_e = 0\), as the two photon matrix element vanishes when \(\omega_1 + \omega_2 = 2\omega\) as there are two paths for two photon emission which interfere destructively. It has been argued that a nonzero two photon emission can result if we include inter-atomic interactions \[12\,13\] which, however, are important only if the inter-atomic separation is less than a wavelength. A remarkable demonstration of such two photon cooperative effects is given in a recent work \[14\] using the methods of single molecule spectroscopy. Similar results apply to the case of two photon emission by identical atoms (Fig.1(b)) if the photons of frequencies \(\omega_a\) and \(\omega_b\) are emitted

\[
\omega_a + \omega_b = 2\omega_0.
\]

In this paper we examine such two photon emission processes in a cavity. It is advantageous to use a cavity for the study of such a fundamental process as one would not be constrained by the requirement of small inter-atomic
We consider two identical two level atoms, with transition frequency \(\omega_0 \), interacting with two modes of the vacuum having frequencies \(\omega_a \) and \(\omega_b \) in a cavity as shown in Fig.1(b). The Hamiltonian for the system is

\[
H = \hbar \omega_0 a^\dagger a + \hbar \omega_b b^\dagger b + \sum_{i=1,2} \hbar \left[\frac{\omega_i}{2} (|e_i\rangle\langle e_i| - |g_i\rangle\langle g_i|) + |e_i\rangle\langle g_i| (g_1a + g_2b) + |g_i\rangle\langle e_i| (g_1a^\dagger + g_2b^\dagger) \right],
\]

(4)

where \(a \) and \(a^\dagger \) (\(b \) and \(b^\dagger \)) are annihilation and creation operators for first(second) mode of the cavity, \(g_1 \) and \(g_2 \) are the coupling constants. In a frame rotating with frequency \(\omega_0 \), the Hamiltonian (4) becomes

\[
H = -\hbar \Delta a^\dagger a - \hbar \delta b^\dagger b + \sum_{i=1,2} \hbar \left[|e_i\rangle\langle g_i| (g_1a + g_2b) + |g_i\rangle\langle e_i| (g_1a^\dagger + g_2b^\dagger) \right],
\]

(5)

\[\Delta = \omega_0 - \omega_a, \quad \delta = \omega_0 - \omega_b. \]

We consider the special case of two photon emission \(i.e. \) the case when the initial state of the atom-cavity system is

\[
|\psi(0)\rangle = |e_1, e_2, 0, 0\rangle.
\]

(6)

Considering all possible states of the system in evolution, the state of the system at time \(t \) can be written as

\[
|\psi(t)\rangle = c_1(t)|e_1, e_2, 0, 0\rangle + \frac{1}{\sqrt{2}} (|e_1, g_2\rangle + |g_1, e_2\rangle) \{ c_2(t)|1, 0\rangle + c_3(t)|0, 1\rangle \\
+ |g_1, g_2\rangle \{ c_4(t)|1, 1\rangle + c_5(t)|2, 0\rangle + c_6(t)|0, 2\rangle \}.
\]

(7)

FIG. 1: Two ways for two atom two photon emission, (a) corresponding to two possible intermediate states \(|e_1, g_2\rangle \) and \(|g_1, e_2\rangle \) in the system of nonidentical atoms interacting with a single mode vacuum, (b) in the system of identical atoms interacting with two modes of the vacuum.

We consider two identical two level atoms, with transition frequency \(\omega_0 \), interacting with two modes of the vacuum having frequencies \(\omega_a \) and \(\omega_b \) in a cavity as shown in Fig.1(b). The Hamiltonian for the system is

\[
H = \hbar \omega_0 a^\dagger a + \hbar \omega_b b^\dagger b + \sum_{i=1,2} \hbar \left[\frac{\omega_i}{2} (|e_i\rangle\langle e_i| - |g_i\rangle\langle g_i|) + |e_i\rangle\langle g_i| (g_1a + g_2b) + |g_i\rangle\langle e_i| (g_1a^\dagger + g_2b^\dagger) \right],
\]

(4)

where \(a \) and \(a^\dagger \) (\(b \) and \(b^\dagger \)) are annihilation and creation operators for first(second) mode of the cavity, \(g_1 \) and \(g_2 \) are the coupling constants. In a frame rotating with frequency \(\omega_0 \), the Hamiltonian (4) becomes

\[
H = -\hbar \Delta a^\dagger a - \hbar \delta b^\dagger b + \sum_{i=1,2} \hbar \left[|e_i\rangle\langle g_i| (g_1a + g_2b) + |g_i\rangle\langle e_i| (g_1a^\dagger + g_2b^\dagger) \right],
\]

(5)

\[\Delta = \omega_0 - \omega_a, \quad \delta = \omega_0 - \omega_b. \]

We consider the special case of two photon emission \(i.e. \) the case when the initial state of the atom-cavity system is

\[
|\psi(0)\rangle = |e_1, e_2, 0, 0\rangle.
\]

(6)

Considering all possible states of the system in evolution, the state of the system at time \(t \) can be written as

\[
|\psi(t)\rangle = c_1(t)|e_1, e_2, 0, 0\rangle + \frac{1}{\sqrt{2}} (|e_1, g_2\rangle + |g_1, e_2\rangle) \{ c_2(t)|1, 0\rangle + c_3(t)|0, 1\rangle \\
+ |g_1, g_2\rangle \{ c_4(t)|1, 1\rangle + c_5(t)|2, 0\rangle + c_6(t)|0, 2\rangle \}.
\]

(7)
Different terms in the wave function (7) correspond to no photon emission, one photon emission and two photon emission. The photon emission can take place in either mode. A very interesting aspect of the state (7) is its entangled nature. This provides a method of producing entangled states, say, entanglement of two cavity modes [15].

The time dependent amplitudes $c_i(t)$ are determined by

$$
egin{align*}
\dot{c}_1 &= -ig_1 \sqrt{2} c_2 - ig_2 \sqrt{2} c_3 \\
\dot{c}_2 &= i \Delta c_2 - ig_1 \sqrt{2} c_1 - ig_2 \sqrt{2} c_4 - 2 i g_1 c_5 \\
\dot{c}_3 &= i \delta c_3 - ig_2 \sqrt{2} c_1 - ig_1 \sqrt{2} c_4 - 2 i g_2 c_6 \\
\dot{c}_4 &= i(\Delta + \delta) c_4 - ig_2 \sqrt{2} c_2 - ig_1 \sqrt{2} c_3 \\
\dot{c}_5 &= 2 i \Delta c_5 - 2 i g_1 c_2 \\
\dot{c}_6 &= 2 i \delta c_6 - 2 i g_2 c_3.
\end{align*}
$$

(8)

The complete solution of Eq.(8) has six eigenvalues corresponding to those there will be fifteen peak spectrum. In order to understand the nature of the two atom two photon resonance we present numerical as well as approximate analysis which can capture the physics of the cooperative process. We consider the case when detunings to the cavity field are much larger than the couplings i.e. $|\Delta|, |\delta| >> g_1, g_2$ but $|\Delta + \delta|$ is small, the condition for two photon resonance is $\Delta + \delta = 0$. In such a case cooperative two photon process should dominate and single photon processes would be insignificant. The results of numerical integration of Eq.(8) are plotted in Fig.2.

In the case when $g_1 \neq g_2$

![FIG. 2: (Color online) Two atom two photon emission probability, $|c_4(t)|^2$ in a system of identical atoms interacting with vacuum in a two mode cavity, for $g_2/g_1 = 1.5$ and $\Delta/g_1 = -5.0$.](image)

...
\[c_4 = 2i g_1 g_2 \left(\frac{\Delta}{\Delta^2 + 2g_1^2} + \frac{\delta}{\delta^2 + 2g_2^2} \right) c_1 + i \left(\Delta + \delta - \frac{2g_1^2 \delta}{\delta^2 - 2g_2^2} \right) c_4. \] (9)

The solution of Eq. (9) gives

\[|c_4(t)|^2 = \frac{4G^2}{4G^2 + \Omega^2} \sin^2 \frac{\sqrt{4G^2 + \Omega^2} t}{2}, \] (10)

with \(G = 2g_1 g_2 \left(\frac{\Delta}{\Delta^2 + 2g_1^2} + \frac{\delta}{\delta^2 + 2g_2^2} \right) \), \(\Omega = \Delta + \delta + 2(g_1^2 - g_2^2) \left(\frac{\Delta}{\Delta^2 - 2g_1^2} - \frac{\delta}{\delta^2 - 2g_2^2} \right) \) (11)

Note that in the limit \(g_1 = g_2 \) and \(\Delta + \delta = 0 \), the probability amplitude \(c_4 \) for two photon emission tends to zero, as both \(\Omega \) and the numerator in Eq. (10) become proportional to \((\Delta + \delta) \). Thus when couplings to the modes are same two photon emission probability has no resonance. In this case the transitions from \(|e_1, e_2, 0, 0\rangle \) to \(|g_1, g_2, 1, 1\rangle \) via states \(\frac{1}{\sqrt{2}}(|e_1, g_2\rangle + |g_1, e_2\rangle)|1, 0\rangle \) and \(\frac{1}{\sqrt{2}}(|g_1, e_2\rangle + |e_1, g_2\rangle)|0, 1\rangle \) interfere destructively. We further note that to order \(g_1^2 g_2^2 \) the two photon resonance does not occur

\[|c_4(t)|^2 = \frac{16g_1^2 g_2^2}{\delta^2 \Delta^2} \sin^2 \frac{\delta t}{2} \sin^2 \frac{\Delta t}{2}. \] (12)

The usual second order perturbation theory cannot lead to inter-atomic two photon resonance. One has to consider higher order terms in \(g_1 \) and \(g_2 \). However then the excitation itself would be negligible. Therefore one needs high quality cavities. The probability of cooperative emission of two photons in different modes is a periodic function of

![Figure 3](image-url)

FIG. 3: The maximum value of the two atom two photon emission probability, \(|c_4(t)|^2 \) in the system of two identical atoms interacting with vacuum in a two mode cavity, is plotted with respect to (a) detuning \(\delta \) and (b) time, for \(g_2/g_1 = 1.5 \) and \(\Delta = -10g_1 \). The solid line is corresponding to approximate result and the dotted line (...) corresponding to exact numerical result.
with the result (10). The above mentioned approximate results are valid for larger values of detunings but for larger values of detunings a large interaction time is required to reach the maximum of two atom two photon transition probability. This should be possible with the recently developed method of trapping atoms in a cavity (11). The other possibility is to work under the conditions of the Fig(2).

III. TWO PHOTON EMISSION BY TWO NONIDENTICAL ATOMS IN A SINGLE MODE CAVITY

In this section we analyze a system of two nonidentical atoms interacting with a single mode vacuum field in a cavity (Fig(1)(a)). Consider two nonidentical two level atoms having their excited states $|e_1\rangle$, $|e_2\rangle$ and their ground states $|g_1\rangle$, $|g_2\rangle$ interacting with a single mode cavity-field of frequency ω. The Hamiltonian of this system is

$$H = \hbar \left(\frac{\omega_1}{2} (|e_1\rangle\langle e_1| - |g_1\rangle\langle g_1|) + \frac{\omega_2}{2} (|e_2\rangle\langle e_2| - |g_2\rangle\langle g_2|) + \omega a^\dagger a \right)$$

$$+ \hbar g_1 (|e_1\rangle\langle g_1| + a^\dagger |g_1\rangle\langle e_1|) + \hbar g_2 (|e_2\rangle\langle g_2| + a^\dagger |g_2\rangle\langle e_2|),$$

where $\omega_1(\omega_2)$ is transition frequency for first (second) atom, a and a^\dagger are annihilation and creation operators for the field, and $g_1(g_2)$ is the coupling constant to the cavity mode with first(second) atom. In a rotating frame the Hamiltonian H can be written as

$$H = -\hbar \Delta |g_1\rangle\langle g_1| - \hbar \delta |g_2\rangle\langle g_2| + \hbar g_1 (|e_1\rangle\langle g_1| + a^\dagger |g_1\rangle\langle e_1|) + \hbar g_2 (|e_2\rangle\langle g_2| + a^\dagger |g_2\rangle\langle e_2|),$$

$$\Delta = \omega_1 - \omega, \delta = \omega_2 - \omega.$$ (14)

Let us consider an initial state $|\psi(0)\rangle = |e_1, e_2, 0\rangle$ with both atoms in the excited state and cavity in the vacuum state. The state of the system at time t can be written as

$$|\psi(t)\rangle = c_1(t)|e_1, e_2, 0\rangle + c_2(t)|e_1, g_2, 1\rangle + c_3(t)|g_1, e_2, 1\rangle + c_4(t)|g_1, g_2, 2\rangle,$$ (16)

where the expansion coefficients c_i’s satisfy

$$c_1 = -ig_2 e_2 - ig_1 c_3,$$

$$c_2 = i\delta c_2 - ig_1 \sqrt{2} c_4 - ig_2 c_1,$$

$$c_3 = i\Delta c_3 - ig_2 \sqrt{2} c_4 - ig_1 c_1,$$

$$c_4 = i (\Delta + \delta) c_4 - ig_1 \sqrt{2} c_2 - ig_2 \sqrt{2} c_3.$$ (17)

The two photon resonance condition for this system would be $\Delta + \delta = 0$. For couplings g_1, g_2, much smaller than $|\Delta|$, $|\delta|$, the solution of Eq.(17) gives

$$c_4(t) = -\frac{4g_1 g_2 \sqrt{2}}{\delta \Delta} \sin \frac{\delta t}{2} \sin \frac{\Delta t}{2} + \text{higher order terms.}$$ (18)

The first term in Eq.(18) represents independent emission by each atom. Clearly, to lowest order in $g_1 g_2$ no two photon resonance occurs. Such a resonance can come from the terms of the higher order. Assuming that $|\Delta|$ and $|\delta|$ are large but $|\Delta + \delta|$ is small, we eliminate fast oscillating variables c_2 and c_3 in a way similar to the previous case and the Eq.(17), in terms of slowly oscillating variables reduces, to

$$c_1 = -i \left(\frac{g_1^2}{\Delta} + \frac{g_2^2}{\delta} \right) c_1 + ig_1 g_2 \sqrt{2} \left(\frac{\Delta}{\Delta + 2g_1^2} + \frac{\delta}{\delta + 2g_2^2} \right) c_4,$$

$$c_4 = ig_1 g_2 \sqrt{2} \left(\frac{\Delta}{\Delta + 2g_1^2} + \frac{\delta}{\delta + 2g_2^2} \right) c_1 + i \left(\Delta + \delta + \frac{2g_1^2}{\Delta} + \frac{2g_2^2}{\delta} \right) c_4.$$ (19)

We find the approximate result for the two photon emission probability

$$|c_4(t)|^2 = \frac{4G^2}{4G^2 + G'^2} \sin^2 \frac{\sqrt{4G^2 + G'^2} t}{2},$$ (20)

with $G' = \sqrt{2} g_1 g_2 \left(\frac{\Delta}{\Delta^2 + 2g_1^2} + \frac{\delta}{\delta^2 + 2g_2^2} \right)$, $\Omega' = \Delta + \delta + 3 \left(\frac{g_1^2}{\Delta} + \frac{g_2^2}{\delta} \right).$ (21)
For large $|\Delta|$ and $|\delta|$ the Eq. (20) shows two photon resonance at $\Delta + \delta + 3(g_0^2/\Delta + g_0^2/\delta) \approx 0$. Further such two atom two photon resonance appears for $g_1 \neq g_2$, which disappears when $g_1 = g_2$. In the latter case the antisymmetric state $(|g_1, e_2, 1\rangle - |e_1, g_2, 1\rangle)/\sqrt{2}$ is decoupled from $|e_1, e_2, 0\rangle$ and $|g_1, g_2, 2\rangle$. We present numerical results in Fig. 4. The graph shows two photon resonance for $g_1 \neq g_2$. It is clear that the position of resonance is shifted from $\Delta + \delta = 0$. This shift in the position of resonance is due to larger values of g_1 and g_2, and depends on the ratio g_2/g_1. There is a large enhancement in the probability of two photon resonant emission in a high quality cavity. It is expected that such effects can be studied by placing the system used by Hettich et al. [14] in a cavity.

\[\rho = -\frac{i}{\hbar} [H, \rho] - \kappa_a (a^\dagger a \rho - 2a \rho a^\dagger + \rho a^\dagger a) - \kappa_b (b^\dagger b \rho - 2b \rho b^\dagger + \rho b^\dagger b). \]

The density matrix for this system can be expressed in terms of all the states which are generated by the combined effect of H and dissipation. For example for identical atoms interacting in a bimodal cavity, the relevant states are $|e_1, e_2, 0, 0\rangle$, $|g_1, e_2, 0, 0\rangle$, $|g_1, e_2, 1, 0\rangle$, $|e_1, g_2, 0, 0\rangle$, $|e_1, g_2, 1, 0\rangle$, $|g_1, g_2, 0, 1\rangle$, $|g_1, g_2, 1, 0\rangle$, $|g_1, g_2, 0, 2\rangle$, $|g_1, g_2, 1, 1\rangle$, and $|g_1, g_2, 2, 0\rangle$. For this system density matrix is expressed as

\[\rho = \sum_{i', j', i, j = 0}^{1} \sum_{k' = 0}^{k} \sum_{l' = 0}^{l} \sum_{i = 0}^{i'} \sum_{j = 0}^{j'} \rho(i', j', k', l', i, j, k, l) |i', j', k', l'\rangle \langle i, j, k, l|. \]

Here i, j' (j, j') represent states of the first (second) atom with the convention $|0\rangle$ corresponding to excited state and $|1\rangle$ corresponding to ground state, the indices k, k' (l, l') represent the number of photons in the first (second) mode.

IV. EFFECTS OF CA VITY DAMPING

Before concluding we examine the effect of cavity decay on two atom two photon vacuum Rabi oscillations. We do a calculation based on master equation. Let $2\kappa_a$ and $2\kappa_b$ be the rate of loss of photons from the first mode and the second mode respectively. The density matrix of the system of two atoms interacting with two mode field in the cavity will evolve according to the master equation.

\[\dot{\rho} = \frac{i}{\hbar} [H, \rho] - \kappa_a (a^\dagger a \rho - 2a \rho a^\dagger + \rho a^\dagger a) - \kappa_b (b^\dagger b \rho - 2b \rho b^\dagger + \rho b^\dagger b) . \]

\[\rho = \sum_{i', j', i, j = 0}^{1} \sum_{k' = 0}^{k} \sum_{l' = 0}^{l} \sum_{i = 0}^{i'} \sum_{j = 0}^{j'} \rho(i', j', k', l', i, j, k, l) |i', j', k', l'\rangle \langle i, j, k, l|. \]

Here i, j' (j, j') represent states of the first (second) atom with the convention $|0\rangle$ corresponding to excited state and $|1\rangle$ corresponding to ground state, the indices k, k' (l, l') represent the number of photons in the first (second) mode.

FIG. 4: (Color online) Two atom two photon emission probability, $|c_4(t)|^2$ in a system of nonidentical atoms interacting with vacuum in a single mode cavity, for $\Delta/g_1 = -5.0$ and $g_2/g_1 = 2.0$.

IV. EFFECTS OF CA VITY DAMPING

Before concluding we examine the effect of cavity decay on two atom two photon vacuum Rabi oscillations. We do a calculation based on master equation. Let $2\kappa_a$ and $2\kappa_b$ be the rate of loss of photons from the first mode and the second mode respectively. The density matrix of the system of two atoms interacting with two mode field in the cavity will evolve according to the master equation.

\[\dot{\rho} = \frac{i}{\hbar} [H, \rho] - \kappa_a (a^\dagger a \rho - 2a \rho a^\dagger + \rho a^\dagger a) - \kappa_b (b^\dagger b \rho - 2b \rho b^\dagger + \rho b^\dagger b) . \]

The density matrix for this system can be expressed in terms of all the states which are generated by the combined effect of H and dissipation. For example for identical atoms interacting in a bimodal cavity, the relevant states are $|e_1, e_2, 0, 0\rangle$, $|g_1, e_2, 0, 0\rangle$, $|g_1, e_2, 1, 0\rangle$, $|e_1, g_2, 0, 0\rangle$, $|e_1, g_2, 1, 0\rangle$, $|g_1, g_2, 0, 1\rangle$, $|g_1, g_2, 1, 0\rangle$, $|g_1, g_2, 0, 2\rangle$, $|g_1, g_2, 1, 1\rangle$, and $|g_1, g_2, 2, 0\rangle$. For this system density matrix is expressed as

\[\rho = \sum_{i', j', i, j = 0}^{1} \sum_{k' = 0}^{k} \sum_{l' = 0}^{l} \sum_{i = 0}^{i'} \sum_{j = 0}^{j'} \rho(i', j', k', l', i, j, k, l) |i', j', k', l'\rangle \langle i, j, k, l|. \]

Here i, j' (j, j') represent states of the first (second) atom with the convention $|0\rangle$ corresponding to excited state and $|1\rangle$ corresponding to ground state, the indices k, k' (l, l') represent the number of photons in the first (second) mode.
Thus the dissipation requires considerable numerical work. Results for two identical atoms in a bimodal cavity are shown in Fig. 5. We show results for optical cavities with $g/\kappa \approx 30$ in Fig. 5(b) and for currently realizable cavities ($g/\kappa = 10$) in Fig. 5(c). The two atom two photon vacuum Rabi oscillations survive in the limit of small damping $g/\kappa \approx 30$ but for larger damping ($g/\kappa = 10$) die fast. Similar results are found for two nonidentical atoms in a single mode cavity.

![Figure 5](image)

FIG. 5: Periodic behavior of two atom two photon emission probability $|c_4(t)|^2$, for identical atoms interacting with vacuum in a bimodal cavity, for $\delta = 3.5g_1$, $\Delta = -5g_1$, $g_2 = 1.5g_1$ and cavity damping constants (a) $\kappa_a = \kappa_b = 0.00$, (b) $\kappa_a = \kappa_b = 0.05g_1$, (c) $\kappa_a = \kappa_b = 0.1g_1$.

V. CONCLUSIONS

We have reported large two atom two photon vacuum Rabi oscillations in two systems, one having two identical atoms in a two-mode cavity and another having two nonidentical atoms in a single-mode cavity. We have shown that for asymmetric couplings ($g_1 \neq g_2$), the probability of two photon emission is quite large but for symmetric couplings ($g_1 = g_2$), the two photon emission probability is very small. Further, we have shown that the condition of two photon resonance in the case of strong atom-field interaction is modified from its free-space form ($\Delta + \delta = 0$). These two photon transitions involving two atoms can be used for generating and detecting different types of entanglement between two field modes and two atoms [16].

GSA thanks V. Sandoghdar and G. Rempe for discussions on the two atom two photon resonance.

[1] J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly, Phys. Rev. Lett. **51**, 550 (1983).
[2] G. S. Agarwal, J. Opt. Soc. Am. B **2**, 480 (1985); G. S. Agarwal, Phys. Rev. Lett. **53**, 1732 (1984).
[3] H. J. Kimble, in *Cavity Quantum Electrodynamics*, edited by P. Berman (Academic Press, London, 1994), p.203.
[4] T. W. Mossberg and M. Lewenstein, in *Cavity Quantum Electrodynamics*, edited by P. Berman (Academic Press, London, 1994), p.171.
[5] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. **44**, 1323 (1980).
[6] M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther, Phys. Rev. Lett. **82**, 3795 (1999); P. Meystre, G. Rempe, and H. Walther, Opt. Lett. **13**, 1078 (1988).
[7] G. Raithel, C. Wagner, H. Walther, L. M. Narducci, and M. O. Scully, in *Advances in Atomic, Molecular and optical Physics* (Supplement 2, 1994), p.57.
[8] L. Davidovich, J. M. Raimond, M. Brune, and S. Haroche, Phys. Rev. A **36**, 3771 (1987); M. Brune, J. M. Raimond, and S. Haroche, ibid **35**, 154 (1987); M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, Phys. Rev. Lett. **59**, 1899 (1987).
APPENDIX A

Our procedure for eliminating fast oscillating variables is extended form of the procedure discussed in Ref. [17]. The Hamiltonian \(H = H_0 + \epsilon V \),
where
\[H_0 = -\Delta a^\dagger a - \delta b^\dagger b, \]
\[\epsilon V = \sum_{i=1,2} \hbar [\langle e_i |(g_1 a + g_2 b) + |g_i \rangle \langle e_i |(g_1 a^\dagger + g_2 b^\dagger) \rangle. \] (A1)

The eigenstates and corresponding eigenvalues of \(H_0 \) are
\[
\begin{align*}
|1\rangle & \equiv |e_1, e_2, 0, 0\rangle & E_1 & = 0, \\
|2\rangle & \equiv 2^{-1/2}(|e_1, g_2) + |g_1, e_2\rangle|1, 0\rangle & E_2 & = -\Delta, \\
|3\rangle & \equiv 2^{-1/2}(|e_1, g_2) + |g_1, e_2\rangle|0, 1\rangle & E_3 & = -\delta, \\
|4\rangle & \equiv |g_1, g_2, 1, 1\rangle & E_4 & = -(\Delta + \delta), \\
|5\rangle & \equiv |g_1, g_2, 2, 0\rangle & E_5 & = -2\Delta, \\
|6\rangle & \equiv |g_1, g_2, 0, 2\rangle & E_6 & = -2\delta.
\end{align*}
\]

The resolvent for \(H_0 \) is the function
\[G_0(z) = \frac{1}{z - H_0}, \] (A2)
where \(z \) is complex. If \(P_i \) is projection operator for the eigenstates of \(H_0 \)
\[P_i = |i\rangle \langle i|; \quad i = 1, 2...6. \] (A3)

The resolvent \(G_0 \) can be expressed as
\[G_0(z) = \sum_i \frac{P_i}{z - E_i}. \] (A4)

The resolvent for the full Hamiltonian \(H \) is
\[G(z) = \frac{1}{z - H_0 - \epsilon V}, \]
\[= \frac{1}{z - H_0} \left(1 + \epsilon V \frac{1}{z - H_0} \right), \]
\[= G_0(1 + \epsilon VG). \] (A5)

From Eq. (A5), the resolvent for the full Hamiltonian \(H \) can be expressed in the power series of \(\epsilon \) as
\[G = \sum_n \epsilon^n G_0(VG_0)^n. \] (A6)

For small values of \(\epsilon \), \(G(z) \) has singularities in the complex \(z \)-plane in the neighborhood of poles of function \(G_0 \) i.e.
eigenvalues of H_0. Further eigenvalues E_1 and E_4 are very close to each other under the condition $\Delta + \delta \approx 0$ and other eigenvalues are largely separated. We consider a contour, Γ in the z-plane that encloses eigenvalues E_1 and E_4 only and leaves others outside as shown in the Fig. 6. We define a new projection operator P_Γ as

$$P_\Gamma = \check{P}_1 + \check{P}_4,$$

$$= \frac{1}{2i\pi} \oint_\Gamma G(z)dz. \quad (A7)$$

Here \check{P}_1 and \check{P}_4 are the projection operators for eigenstates of full Hamiltonian H corresponding to the eigenvalues inside the contour. The effective Hamiltonian will have the form

$$H_{\text{eff}} \equiv (P_1 + P_4)HP_\Gamma(P_1 + P_4). \quad (A8)$$

From the definition of the resolvent we have

$$(z - H)G \equiv G(z - H) \equiv 1.$$

$$HP_\Gamma = \frac{1}{2i\pi} \int_\Gamma zG(z)dz. \quad (A9)$$

Substituting value of $G(z)$ from Eq. (A6) in Eq. (A9) and interchanging summation to the integration we have

$$HP_\Gamma = \sum_n \frac{1}{2i\pi} \int_\Gamma zG_0(VG_0)^n dz. \quad (A10)$$

The effective Hamiltonian can be expressed as

$$H_{\text{eff}} = E_1P_1 + E_4P_4 + \sum_{n=1}^{\infty} \epsilon^n A^{(n)};$$

$$A^{(n)} = (P_1 + P_4) \sum_{n=1}^{\infty} \frac{1}{2i\pi} \int_\Gamma zG_0(VG_0)^n dz(P_1 + P_4). \quad (A11)$$

Inside the contour Γ, G_0 has singularities at E_1 and E_4 only so the integral in the Eq. (A11) is nothing but the sum of the residues at $z = E_1$ and $z = E_4$. Further as in our case ϵP_1VP_1, ϵP_4VP_4 and ϵP_1VP_4 equal to zero, there is no first order and third order terms. The second order term is

$$A^{(2)} = P_1VQ_1VP_1 + P_4VQ_4VP_4 + P_1VQ_4VP_4 + P_4VQ_4VP_1; \quad (A12)$$

$$Q_j = \sum_{i \neq 1,4} \frac{P_i}{E_j - E_i}. \quad (A12)$$

The forth order term is

$$A^{(4)} = \frac{1}{2i\pi} \int_\Gamma z \left(\frac{P_1}{z - E_1} + \frac{P_4}{z - E_4} \right) V \sum_{i \neq 1,4} \frac{P_i}{z - E_i} V \left(\frac{P_1}{z - E_1} + \frac{P_4}{z - E_4} + \sum_{j \neq 1,4} \frac{P_j}{z - E_j} \right) V \left(\sum_{k \neq 1,4} \frac{P_k}{z - E_k} \left(\frac{P_1}{z - E_1} + \frac{P_4}{z - E_4} \right) dz. \quad (A13)$$
For simplification we use the condition for resonance $\Delta + \delta = 0$, i.e. $E_1 = E_4$. Thus the forth order term is

$$A^{(4)} = \frac{1}{2i\pi} \int_{\Gamma} z \left(\frac{P_1}{z - E_1} + \frac{P_4}{z - E_4} \right) V \sum_{i \neq 1,4} \frac{P_i}{z - E_i} V \sum_{j \neq 1,4} \frac{P_j}{z - E_j} V \sum_{k \neq 1,4} \frac{P_k}{z - E_k} V \left(\frac{P_1}{z - E_1} + \frac{P_4}{z - E_4} \right) dz. \quad (A14)$$

Integrating Eq. $(A14)$ we have the forth order term

$$A^{(4)} = (P_1 + P_4) V Q_1 V Q_1 V (P_1 + P_4). \quad (A15)$$

Using the values of E_1, E_2, E_3, E_4, E_5, E_6 and V the effective Hamiltonian expressed in basis $|e_1,e_2,0,0\rangle$ and $|g_1,g_2,1,1\rangle$ is

$$H_{\text{eff}} = \begin{bmatrix}
-\frac{2g_1^2}{\Delta} & \frac{g_1^2}{\Delta} & \frac{4g_1^4}{\delta^2} & \frac{4g_1^2g_2}{\delta} \\
-\frac{2g_1g_2}{\Delta} & \frac{g_2^2}{\delta} & \frac{4g_1g_2}{\Delta} & \frac{4g_1^3g_2}{\delta} \\
\frac{4g_1^4}{\delta^2} & \frac{4g_1g_2}{\Delta} & -\frac{2g_1^2g_2}{\delta} & \frac{4g_1^3g_2}{\delta} \\
\frac{4g_1^3g_2}{\delta} & \frac{4g_1g_2}{\Delta} & \frac{4g_1^2g_2}{\delta} & \frac{4g_1^5g_2^3}{\delta^2}
\end{bmatrix}. \quad (A16)$$

With some algebraic manipulation and considering g_1 and g_2 up to forth order effectively the Hamiltonian H_{eff} reduces to

$$H_{\text{eff}} = \begin{bmatrix}
\frac{2g_1^2\Delta}{\Delta^2 + 2g_1^2} & \frac{2g_1^2\delta}{\Delta^2 + 2g_1^2} \\
\frac{2g_1g_2\Delta}{\Delta^2 + 2g_1^2} & \frac{2g_1g_2\delta}{\Delta^2 + 2g_1^2}
\end{bmatrix} - \frac{2g_1g_2}{\Delta + \delta} \begin{bmatrix}
\frac{\Delta}{\Delta^2 + 2g_1^2} & \frac{\delta}{\Delta^2 + 2g_1^2} \\
\frac{\delta}{\Delta^2 + 2g_1^2} & -\frac{\Delta}{\Delta^2 + 2g_1^2}
\end{bmatrix}. \quad (A17)$$

It should be noted here as two atom two photon resonance appears at large interaction time in dispersive limit, the terms in the effective Hamiltonian up to forth order are important to predict correct evolution. Using the effective Hamiltonian H_{eff} the Eq. (15) reduces to Eq. (16).