Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter

François Arleo

LAPTh Annecy & LLR Palaiseau

Rencontres QGP-France 2013

Étretat – September 2013
Motivations

- J/ψ suppression data in p A collisions
- New scaling properties from medium-induced coherent radiation

Phenomenology

- Model for J/ψ and Υ suppression in p A collisions
- Comparison with data and LHC predictions

References

- FA, S. Peigné, PRL 109 (2012) 122301 [1204.4609]
- FA, S. Peigné, JHEP 03 (2013) 122 [1212.0434]
- FA, R. Kolevatov, S. Peigné, M. Rustamova, JHEP 05 (2013) 155 [1304.0901]
Data on J/ψ suppression in p A collisions

E866 $\sqrt{s} = 38.7$ GeV

- Strong J/ψ suppression reported at large x_F and y
- Weaker suppression in the Drell-Yan process

PHENIX $\sqrt{s} = 200$ GeV
Interpretations

Many explanations suggested... yet none of them fully satisfactory

- Nuclear absorption
- nPDF effects and saturation
- Parton energy loss
 - requires $\Delta E \propto E$... supposedly ruled out
Revisiting energy loss scaling properties

Coherent radiation (interference) in the initial/final state

\[
\Delta E = \int d\omega \omega \left. \frac{dI}{d\omega} \right|_{\text{ind}} = N_c \alpha_s \frac{\sqrt{\Delta q_{\perp}^2}}{M_{\perp}} E
\]

- IS and FS radiation cancels out in the **induced** spectrum
- Interference terms do not cancel in the **induced** spectrum!
- Induced gluon spectrum dominated by **large formation times**
(intermediate) Summary

- **Incoherent energy loss** (small formation time $t_f \sim L$)
 \[\Delta E \propto \alpha_s \hat{q} L^2 \]
 - prompt photons, Drell-Yan, weak bosons
 - should be negligible at LHC
 - important in hot media

- **Coherent energy loss** (large formation time $t_f \gg L$)
 \[\Delta E \propto \alpha_s \frac{\sqrt{\hat{q} L}}{M_\perp} E \]
 - needs color in the initial & final state
 - important at all energies, especially at large rapidity
Incoherent energy loss (small formation time $t_f \sim L$)

\[\Delta E \propto \alpha_s \hat{q} L^2 \]

- prompt photons, Drell-Yan, weak bosons
- should be negligible at LHC
- important in hot media

Coherent energy loss (large formation time $t_f \gg L$)

\[\Delta E \propto \alpha_s \frac{\sqrt{\hat{q} L}}{M_\perp} E \]

- needs color in the initial & final state
- important at all energies, especially at large rapidity

Back to the Future: listen to Stéphane’s talk this morning (10am)
Phenomenology

Goal

- Explore phenomenological consequences of coherent energy loss
- Approach as simple as possible with the least number of assumptions
- Observable: J/ψ and Υ suppression in p A collisions
 - rapidity and transverse momentum dependence
 - compare to all available data
 - making predictions for p Pb collisions at the LHC
Model for heavy-quarkonium suppression

Physical picture and assumptions

- Color neutralization happens on long time scales: $t_{\text{octet}} \gg t_{\text{hard}}$
- Hadronization happens outside of the nucleus: $t_\psi \gtrsim L$
- $c\bar{c}$ pair produced by gluon fusion
- Medium rescattering do not resolve the octet $c\bar{c}$ pair
Model for heavy-quarkonium suppression

Energy shift

\[
\frac{1}{A} \frac{d\sigma_{\psi}^{pA}}{dE}(E, \sqrt{s}) = \int_0^{\varepsilon_{\text{max}}} d\varepsilon \, \mathcal{P}(\varepsilon, E) \frac{d\sigma_{\psi}^{pp}}{dE}(E + \varepsilon, \sqrt{s})
\]

Ingredients

- pp cross section fitted from experimental data
- Length \(L \) given by Glauber model
- \(\mathcal{P}(\varepsilon) \): probability distribution (quenching weight)
Quenching weight

- Usually one assumes independent emission \rightarrow Poisson approximation

$$
\mathcal{P}(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dl(\omega_i)}{d\omega} \right] \delta \left(\epsilon - \sum_{i=1}^{n} \omega_i \right)
$$

- However, radiating ω_i takes time $t_f(\omega_i) \sim \omega_i/\Delta q^2 \gg L$

 For $\omega_i \sim \omega_j \Rightarrow$ emissions i and j are not independent

- For self-consistency, constrain $\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n$

 $$
P(\epsilon) \simeq \frac{dl(\epsilon)}{d\omega} \exp \left\{ - \int_{\epsilon}^{\infty} d\omega \frac{dl}{d\omega} \right\}
$$

- $\mathcal{P}(\epsilon)$ scaling function of $\hat{\omega} = \sqrt{\hat{q}L/M} \times E$
Transport coefficient

\hat{q} related to gluon distribution in a proton

\[\hat{q}(x) = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho x G(x, \hat{q}L)\]

Typical value for x

- $t_{\text{hard}} \lesssim L$: $x = x_0 \approx (m_N L)^{-1} \rightarrow \hat{q}(x) = \text{constant}$
- $t_{\text{hard}} > L$: $x \approx x_2 \rightarrow \hat{q}(x) \propto x^{-0.3}$

For simplicity we assume

\[\hat{q}(x) = \hat{q}_0 \left(\frac{10^{-2}}{x}\right)^{0.3} \quad x = \min(x_0, x_2)\]

- $\hat{q}_0 \equiv \hat{q}(x = 10^{-2})$ only free parameter of the model
- $\hat{q}(x)$ related to the saturation scale: $Q_s^2(x, L) = \hat{q}(x)L$
Procedure

1. Fit \hat{q}_0 from J/ψ E866 data in p W collisions
2. Predict J/ψ and Υ suppression for all nuclei and c.m. energies

\[\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm} \]

- Corresponds to $Q_s^2(x = 10^{-2}) = 0.11 - 0.14 \text{ GeV}^2$ consistent with fits to DIS data

[Albacete et al AAMQS 2011]
Procedure

1. Fit \hat{q}_0 from J/ψ E866 data in p W collisions
2. Predict J/ψ and Υ suppression for all nuclei and c.m. energies

- Fe/Be ratio well described, supporting the L dependence of the model
1. Fit \hat{q}_0 from J/ψ E866 data in pW collisions
2. Predict J/ψ and Υ suppression for all nuclei and c.m. energies

Let’s investigate J/ψ suppression at other energies
Experimental J/ψ Hadronic Production from 150 to 280 GeV/c

NA3 Collaboration

J. Badier4, J. Boucrot5, J. Bourotte4, G. Burgun1, O. Callot5, Ph. Charpentier1, M. Crozon3, D. Decamp5, P. Delpierre3, B. Gandois1, R. Hagelberg2, M. Hansroul2, Y. Karyotakis4, W. Kienzle2, P. Le Dû1, J. Lefrançois5, Th. Leray3a, J. Maillard3, A. Michelini2, Ph. Miné4, G. Rahal1b, O. Runolfssson2, P. Siegrist1, A. Tilquin3, J. Timmermans2c, J. Valentin3, S. Weisz4

1 CEN-Saclay, F-91190 Gif-sur-Yvette, France
2 CERN, CH-1211 Geneva 23, Switzerland
3 College de France, F-75231 Paris, France
4 Ecole Polytechnique, F-91128 Palaiseau, France
5 Laboratoire de l'Accélérateur Linéaire, F-91405 Orsay, France

Received 4 July 1983

Table 2. Number of J/ψ events obtained in this experiment

Momentum (GeV/c)	Target	π^+	K^+	p	π^-	K^-	\bar{p}	
200	H_2	2,407	359	2,227	3,157			
200	Pt	104,866	14,690	80,786	131,062	1,963	657	
150	H_2	207				16,952	487	208
150	Pt	7,937	442	3,453	601,691	19,190	6,569	
280	H_2				23,350			
280	Pt				511,457			
Agreement when $x_F > x_F^{\text{hadro}}$ (and even below)

Natural explanation from the different suppression in p A vs π A

Little room for J/ψ absorption, weaker than previously thought
HERA-B predictions

Also good agreement in the nuclear fragmentation region ($x_F < 0$)

Enhancement predicted at very negative x_F
Good agreement at all rapidity

Saturation/shadowing effects could improve the agreement
p_\perp dependence

Most general case

$$\frac{1}{A} \frac{d\sigma_{p^A}}{dE \, d^2 \vec{p}_\perp} = \int_\varepsilon \int_\varphi \mathcal{P}(\varepsilon, E) \frac{d\sigma_{pp}}{dE \, d^2 \vec{p}_\perp} (E + \varepsilon, \vec{p}_\perp - \Delta \vec{p}_\perp)$$

- pp cross section fitted from experimental data
- Overall depletion due to parton energy loss
- Possible Cronin peak due to momentum broadening

$$R_{p^A}^\psi (y, p_\perp) \simeq R_{p^A}^{\text{loss}} (y, p_\perp) \cdot R_{p^A}^{\text{broad}} (p_\perp)$$
p_{\perp} dependence at E866

- Good description of E866 data (except at large p_{\perp} and large x_F)
- Broadening effects only not sufficient to reproduce the data
Good description of p_{\perp} and centrality dependence at $y = -1.7$.
\(p_\perp \) dependence at RHIC

\[y = [-0.35 ; 0.35] \]

- Good description of \(p_\perp \) and centrality dependence at \(y = 0 \)
p_{\perp} dependence at RHIC

$y = [1.2 ; 2.2]$

- Good description of p_{\perp} and centrality dependence at $y = 1.7$.

Francois Arleo (LAPTh & LLR)
LHC predictions

- Moderate effects ($\sim 20\%$) around mid-rapidity, smaller at $y < 0$
- Large effects above $y \gtrsim 2 - 3$
- Slightly smaller suppression expected in the Υ channel
Comparison with ALICE preliminary data

\[R_{pA}(y) \]: good agreement despite large uncertainty on normalization
Comparison with ALICE preliminary data

- No pp data at 5 TeV needed → smaller uncertainty
- Predictions with only nPDF underestimate the suppression
- Excellent agreement between data and “energy loss + EPS09”
Comparison with ALICE preliminary data

No pp data at 5 TeV needed → smaller uncertainty
Predictions with only nPDF underestimate the suppression
Excellent agreement between data and “energy loss + EPS09”
Comparison with ALICE preliminary data

- \(R_{FB}(p_{\perp}) \): good agreement, better agreement with energy loss supplemented by shadowing
Comparison with LHCb preliminary data

- Similar results by LHCb

[LHCb 1308.6729]
Summary

- Energy loss $\Delta E \propto E$ due to coherent radiation
 - Neither initial nor final state effect
 - Parametric dependence of $dl/d\omega$ and ΔE predicted

- Heavy-quarkonium suppression predicted from SPS to LHC
 - Good agreement with all existing data vs. y and p_\perp
 - Natural explanation for the large x_F J/ψ suppression
 - Supports the assumption of long-lived color octet $Q\bar{Q}$ pairs
 - Predictions in good agreement with LHC p Pb preliminary data