Timing of chemotherapy and survival in patients with resectable gastric adenocarcinoma

Amanda K Arrington, Rebecca Nelson, Supriya S Patel, Carrie Luu, Michelle Ko, Julio Garcia-Aguilar, Joseph Kim

Amanda K Arrington, Michelle Ko, Joseph Kim, Division of Surgical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, United States
Rebecca Nelson, Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, United States
Supriya S Patel, Department of Surgery, University of Southern California, Los Angeles, CA 90033, United States
Carrie Luu, Department of Surgery, Harbor-UCLA Medical Center, Los Angeles, CA 90509, United States
Julio Garcia-Aguilar, Division of Colorectal Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, United States

Author contributions: Arrington AK, Nelson R and Kim J designed the research; Arrington AK, Nelson R and Kim J performed the research; Nelson R contributed new analytic tools; Arrington AK, Nelson R, Kim J analyzed data; Arrington AK, Nelson R, Patel SS, Luu C, Ko M, Garcia-Aguilar J and Kim J wrote the paper.

Correspondence to: Joseph Kim, MD, Associate Professor of Surgery, Division of Surgical Oncology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, United States. jokim@coh.org
TelephoneNumber: +1-626-471-7100 Fax: +1-626-3018865
Received: July 22, 2013 Revised: November 19, 2013 Accepted: December 12, 2013
Published online: December 27, 2013

Abstract

AIM: To evaluate the timing of chemotherapy in gastric cancer by comparing survival outcomes in treatment groups.

METHODS: Patients with surgically resected gastric adenocarcinoma from 1988 to 2006 were identified from the Los Angeles County Cancer Surveillance Program. To evaluate the population most likely to receive and/or benefit from adjunct chemotherapy, inclusion criteria consisted of Stage II or III gastric cancer patients > 18 years of age who underwent curative-intent surgical resection. Patients were categorized into three groups according to the receipt of chemotherapy: (1) no chemotherapy; (2) preoperative chemotherapy; or (3) postoperative chemotherapy. Clinical and pathologic characteristics were compared across the different treatment arms.

RESULTS: Of 1518 patients with surgically resected gastric cancer, 327 (21.5%) received perioperative chemotherapy. The majority of these 327 patients were male (68%) with a mean age of 61.5 years; and they were significantly younger than non-chemotherapy patients (mean age, 70.7; P < 0.001). Most patients had tumors frequently located in the distal stomach (34.5%). Preoperative chemotherapy was administered to 11.3% of patients (n = 37) and postoperative therapy to 88.7% of patients (n = 290). An overall survival benefit according to timing of chemotherapy was not observed on univariate or multivariate analysis. Similar results were observed with stage-specific survival analyses (5-year overall survival: Stage II, 25% vs 30%, respectively; Stage III, 14% vs 11%, respectively). Therefore, our results do not identify a survival advantage for specific timing of chemotherapy in locally advanced gastric cancer.

CONCLUSION: This study supports the implementation of a randomized trial comparing the timing of perioperative therapy in patients with locally advanced gastric cancer.

© 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

Key words: Chemotherapy; Gastric cancer; Adjunct therapy; Postoperative therapy; Preoperative therapy; Timing

Core tip: Curative intent surgical resection offers the...
best survival potential in conjunction with chemotherapy for patients with gastric cancer. Few studies have evaluated the optimal timing of chemotherapy. This study shows that in the setting of resectable gastric cancer, there is no survival advantage based on the timing of chemotherapy.

Arrington AK, Nelson R, Patel SS, Luu C, Ko M, Garcia-Aguilar J, Kim J. Timing of chemotherapy and survival in patients with resectable gastric adenocarcinoma. World J Gastrointest Surg 2013; 5(12): 321-328 Available from: URL: http://www.wjgnet.com/1948-9366/full/v5/i12/321.htm DOI: http://dx.doi.org/10.4240/wjgs.v5.i12.321

INTRODUCTION

Despite an overall decrease in the incidence and mortality in gastric cancer patients in the United States, nearly 22000 patients will be diagnosed with gastric cancer in the United States each year[1]. More alarmingly, gastric cancer remains the 2nd leading cause of cancer-related deaths worldwide accounting for an estimated 436930 deaths in 2013[2,3]. In Western societies, where screening is not routine (compared to Asian countries[4,5]), the majority of patients present with regional or distant disease[6,7], and the 5-year overall survival is 30%-40%[8-10]. In these cases, the only hope for long term survival remains surgical resection with curative intent[11]. Despite aggressive surgical measures, rates of disease recurrence remain high following surgery[12,13]. In fact, approximately 50% to 90% of patients die as a result of disease relapse[14]. As a result, much attention has been placed on the identification of optimal adjunct therapies for gastric cancer.

Adjunct therapies for gastric cancer may be administered in the pre-operative (i.e., neoadjuvant) or post-operative (i.e., adjuvant) settings. Multiple trials have assessed these treatment strategies; and potential benefits have been drawn from both options[14-19]. In a landmark study, the investigators of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) trial reported an overall survival benefit with a regimen that incorporated neoadjuvant and adjuvant (i.e., perioperative) timing of chemotherapy consisting of epirubicin, cisplatin, and fluorouracil (ECF) when compared to surgery alone[16]. From the Intergroup 0116 trial, investigators reported a 9 mo improvement in survival (27 mo vs 36 mo) when adjuvant chemoradiation was administered compared to surgery alone[17]. More recently, the CLASSIC trial investigators reported an overall survival benefit from adjuvant chemotherapy (capecitabine and oxaliplatin) compared to surgery alone[18]. However, there has been no trial that has directly compared neoadjuvant versus adjuvant chemotherapy administration. Using a large, population-based cohort, the objective of this study was to assess whether the timing of chemotherapy affects the survival of patients following surgical resection for gastric cancer.

MATERIALS AND METHODS

Los Angeles County Cancer Surveillance Program

The Los Angeles County (LAC) Cancer Surveillance Program (CSP) is the cancer registry that collects information for all cancer diagnoses in LAC since 1972. As part of the National Cancer Institute’s Surveillance, Epidemiology, and End Results program, CSP routinely collects data on patient demographics, primary tumor site, tumor morphology, disease stage at diagnosis, treatment received, and follow-up. CSP monitors the quality of data by performing annual reviews and training of staff. Approval to conduct this study was obtained from the Institutional Review Boards of the City of Hope and the State of California.

CSP tumor coding and study criteria

Using the CSP registry, we identified patients diagnosed with gastric adenocarcinoma from 1988 to 2006. Inclusion criteria consisted of Stage II or III gastric cancer patients above 18 years of age who underwent curative-intent surgical resection. As Stage I disease is more likely to be treated by surgery alone and patients with Stage IV disease are more likely not to undergo surgery given metastatic/unresectable disease, these patients were excluded from the current study. Therefore, this study was designed to evaluate the population most likely to receive and/or benefit from adjunct chemotherapy (Stage II or III).

Specifically, we included only gastric cancer patients with International Classification of Diseases for Oncology histology codes for adenocarcinoma: 8140-8145, 8210-8211, 8480-8481, and 8490. In CSP, the location of tumor was categorized as proximal, distal, middle, or whole stomach. For each patient, stage was categorized according to the American Joint Commission on Cancer (AJCC) 7th Edition classification system. Furthermore, size and depth of tumor invasion were categorized by AJCC T-stage as: T1A, T1B, T2, T3, or T4. The presence or absence of nodal involvement was designated by AJCC N-stage as: N0, N1, N2, or N3. Our survival analysis included only patients with AJCC Stage II and III gastric cancer. Finally, we obtained data regarding the timing of chemotherapy administration (none, preoperative, or postoperative). As the CSP database only codes the date of the first chemotherapy treatment, patients who did receive preoperative (neoadjuvant) chemotherapy may or may not have received subsequent postoperative chemotherapy. Therefore, we could not distinguish between neoadjuvant and perioperative chemotherapy in this database. Thus, this study compares neoadjuvant chemotherapy, adjuvant chemotherapy, and no chemotherapy.

Statistical analysis

Patients were categorized into three groups according to the receipt of chemotherapy: (1) no chemotherapy; (2) neoadjuvant chemotherapy (± postoperative chemother-
Table 1 Comparison of the characteristics of the surgical groups n (%)

Characteristic	No chemo n = 1191	Received chemotherapy n = 327	P value
Age, yr Mean ± SD	71 ± 12	61 ± 14	< 0.0001
Sex			
Men	741 (62)	221 (68)	0.0745
Women	450 (38)	106 (32)	
Race/ethnicity			
Non-hispanic white	438 (37)	118 (36)	0.9833
Black	112 (9)	33 (10)	
Hispanic white	322 (27)	88 (27)	
Asian/pacific islanders	319 (27)	88 (27)	
Tumor location			
Proximal	296 (25)	98 (30)	0.0290
Distal	422 (36)	100 (31)	
Whole	167 (14)	59 (18)	
Grade			
Well differentiated	26 (2)	1 (0)	0.0178
Moderately	312 (26)	70 (21)	
Poorly differentiated	792 (66)	234 (72)	
Undifferentiated	40 (3)	18 (6)	
Tumor size			
≤5 cm	462 (39)	117 (36)	0.6048
>5 cm	507 (43)	145 (44)	
Unknown	222 (19)	65 (20)	
T stage			
T2	108 (9)	24 (7)	0.1556
T3	620 (52)	163 (50)	
T4a	319 (27)	96 (29)	
T4b	144 (12)	44 (13)	
N stage			
N0	334 (28)	38 (12)	< 0.0001
N1	786 (66)	261 (80)	
N2	31 (3)	15 (5)	
N3	40 (3)	13 (4)	
Node status			
N-	334 (28)	38 (12)	< 0.0001
N+	857 (72)	289 (88)	
AJCC stage			
II	767 (64)	187 (57)	0.0168
III group	424 (36)	140 (43)	

P values shown are based on the Jonckheere-Terpstra test for ordinal data. AJCC: American joint commission on cancer.

1RESULTS

Patient and tumor demographics

Of 1518 patients with AJCC Stage II or III surgically resected gastric cancer between 1988 and 2006, 22% of patients (n = 327) received chemotherapy as part of their cancer treatment. The demographics of the study cohort are presented in Table 1. Most tumors were observed in the proximal (26%) or distal stomach (35%) and were poorly differentiated (68%) by histology. The majority (76%) of the study cohort had lymph node positive disease; and most patients had Stage II disease (63%) rather than Stage III disease (37%). Patients who did not receive chemotherapy were more likely to have lymph node negative disease than those who did receive chemotherapy (28% vs 12%, P < 0.001).

Comparison of patients by treatment group

As shown in Table 1, patients who did not receive chemotherapy were older than those who did (71 vs 61, respectively, P < 0.001). Within the chemotherapy groups (Table 2), more patients received adjuvant chemotherapy (n = 290, 89%) than neoadjuvant chemotherapy (n = 37, 11%, P < 0.001). The mean ages of patients receiving chemotherapy were similar (65 and 61 years, neoadjuvant and adjuvant, respectively). The majority of patients were male in both chemotherapy groups. There was no difference in race/ethnicity, tumor location, tumor grade, T stage, N stage, node status or AJCC stage group.

Survival by treatment group and univariate and multivariate analysis

Patients who received chemotherapy were compared according to the timing of administration of chemotherapy (neoadjuvant vs adjuvant). By Kaplan-Meier method, a difference in overall survival was not observed between the neoadjuvant vs adjuvant chemotherapy groups (Figure 1A). This was consistent when the groups were evaluated by stage of disease as well (Figure 1B and C). Next, univariate and multivariate analyses were performed to identify factors associated with improved survival (Table 3). In univariate analysis, younger age, lower T stage, node negative status and Stage II disease were associated with improved survival. On multivariate analysis, older age and Stage III disease were independently associated with shorter survival. All other factors fell out of multivariate analysis and were not significant. When grouped by stage, age continued to be an independent predictor of survival in both the Stage II and III gastric cancer patients (data...
Despite advances in medical and surgical therapies, the prognosis of advanced gastric cancers remains poor, with a dismal 5-year relative survival rate of 28% [1]. With locoregional and distant recurrence rates approaching >70%, an emphasis has been placed on identifying effective adjunct therapeutic regimens [18,17,20,23]. Systemic chemotherapy has been a logical choice, but the optimal timing of its administration remains unclear. In this study we compared the outcomes of Stage II-III surgically resected gastric cancer patients who achieved neoadjuvant (± postoperative chemotherapy) versus adjuvant chemotherapy and observed no difference in overall survival between the two treatment groups.

Several trials have examined the use of chemotherapy in the management of gastric cancer. One landmark study, the MAGIC trial by Cunningham et al [18], showed that perioperative chemotherapy with ECF decreased tumor size and stage while improving both progression-free and overall survival when compared to surgery alone. In this randomized controlled prospective study, 503 patients were randomly assigned to either perioperative ECF chemotherapy (three cycles preoperative and three cycles postoperative) or surgery alone. Of the perioperative group, only 41.6% completed all six cycles of chemotherapy due to disease progression, toxic effects, or complications [18]. The use of neoadjuvant chemotherapy decreased tumor size (3 cm vs 5 cm, P < 0.001) and stage of the pathologic surgical specimens. Therefore, by administering chemotherapy neoadjuvantly, the chance of curative resection by downstaging the tumor is increased. Other benefits of neoadjuvant chemotherapy include the elimination of micrometastasis, the improvement of tumor-related symptoms, and the determination of whether the tumor is chemotherapy-sensitive [18]. The MAGIC trial concluded that perioperative chemotherapy should be considered in patients with resectable gastric cancers. Although we observed no difference between neoadjuvant and adjuvant timing of chemotherapy, nevertheless our findings suggest that patients with Stage II or Stage III gastric cancer indeed benefit from chemotherapy in conjunction with surgery. The 3-year OS was 16.6% in the MAGIC trial compared to 35% and 37% in the neoadjuvant and adjuvant arms, respectively, in our study. Given the inherent limitations of our database, we could not assess the effect of neoadjuvant chemotherapy on downstaging the gastric cancer, an outcome also not reported in the MAGIC trial.

The use of adjuvant chemotherapy has also been a treatment choice in the setting of chemotherapy. Adjuvant chemotherapy provides the benefit of removing disease burden upfront with a surgical resection, followed by chemotherapy. The potential downfall of adjuvant chemotherapy is the delay in beginning systemic treatment in the postoperative period for recovery from surgery. Further, downstaging tumor is not possible with adjuvant chemotherapy. Bang et al [20,24] evaluated the use of adjuvant chemotherapy after gastrectomy with D2 lymph node dissection in patients with Stage II-III gastric cancer in the recent CLASSIC (Capeceitbine and Oxaliplatin Adjuvant Study in Stomach Cancer) trial. In this phase III randomized controlled, multi-institutional study, 1035 patients were randomized to surgery alone or surgery followed by chemotherapy (capeceitbine plus oxaliplatin). The CLASSIC trial found a 34% reduction in the risk of death in the chemotherapy arm (HR = 0.66, 95%CI: 0.51-0.85; P = 0.0015) and a 5-year overall survival that was significantly increased in the chemotherapy arm (78% chemotherapy arm vs 69% surgery alone arm, P < 0.0029) [20,24]. However, the CLASSIC trial was reported in an eastern hemisphere patient population and has not been readily accepted in the United States [20,24]. Further, the CLASSIC trial had a 56% rate of grade 3 or 4 adverse effects (neutropenia, nausea, and vomiting) requiring dose modifications in a significant portion of patients, thereby limiting completion of adjuvant therapy [20,24].

The MAGIC and CLASSIC trials, however, did not...
Arrington AK et al. Timing chemotherapy in resectable gastric cancer

examine the role and timing of radiation for gastric cancer. Adjuvant chemoradiation has been shown to improve overall survival in patients with locally advanced gastric cancer. Macdonald et al.\(^{16,17,25-27}\) reported in the INT0116 Phase III randomized multi-institutional trial of adjuvant chemoradiation compared to surgery alone that adjuvant chemoradiation improved overall survival and disease-free survival. Though Macdonald et al.\(^{16,17,25-27}\) evaluated adjuvant chemoradiation to surgery alone, there are no phase III trials that directly compare neoadjuvant with adjuvant chemoradiation. With the database used for this study, only receipt of radiation could be determined. Therefore, we could not assess the timing of radiation in relation to surgery and to exclude bias of radiation in our analysis, patients who received radiation were excluded from this current study.

Our study is not without its limitations. Due to the retrospective nature of this study, there may be patient
selection bias. Surgical techniques and chemotherapy options have drastically changed over time. Therefore, resectability criteria have changed in that time period as well. Given the 18-year time period in our study, selection bias could play a role in neoadjuvant chemotherapy determination, surgical resectability criteria used, and adjuvant chemotherapy recommendations. However, we cannot determine in this retrospective study whether these biases would skew the results in any direction. To account for this, we limited our study to patients with Stage I and Stage III disease given that, in general, they are likely to have resectable disease. Stage I disease was omitted as Stage I patients routinely did not receive chemotherapy. The staging information in the CSP database is based on pathologic staging at the time of surgery. Therefore, we acknowledge that downstaging and decreased tumor burden could have occurred in the neoadjuvant chemotherapy group. However, to limit the potential bias of downstaging disease stage in the cohort that received neoadjuvant chemotherapy, Stage I and IV disease was omitted from our analysis. In particular, Stage I disease should be treated with surgery first, potentially followed with adjuvant chemotherapy. As such, patients who were documented to have Stage I disease and received neoadjuvant chemotherapy were more likely to have had downstaging of disease.

Another limitation is that although the CSP database provides coding for the receipt of chemotherapy and the first date of chemotherapy, we do not have data on the exact chemotherapy regimen (the type of chemotherapy, number of cycles, dose reductions, etc.) or on the successful completion of chemotherapy. Therefore, patients who did have preoperative chemotherapy determined by the first date of surgery could have also received postoperative chemotherapy.

Although the neoadjuvant cohort is smaller than the adjuvant group, our data does not appear underpowered. Prior to the study, a power calculation was performed. Assuming 80% power with a 2-sided log-rank alpha of 0.05 and based on the parameter estimates for neoadjuvant chemotherapy and adjuvant chemotherapy were more likely to have had downstaging of disease.
vival, a larger sample size would not change our overall conclusion.

As the management of gastric cancer continues to evolve, many questions remain unanswered. The extent of surgical resection, choice of adjunct therapy, and timing of therapy remain under debate. In this study, we compared survival following postoperative and preoperative chemotherapy, with similar outcomes observed between the preoperative and postoperative chemotherapy regimens. On the basis of these observations, we propose that a randomized, controlled trial be conducted to define the optimal timing of chemotherapy administration in the management of surgically resectable gastric cancer.

ACKNOWLEDGMENTS

This study was presented at the 7th Annual Academic Surgical Congress held February 14-16, 2012.

COMMENTS

Background

Gastric adenocarcinoma is cancer of the stomach. The outcome of patients diagnosed with gastric cancer is determined by stage of disease. Though surgery remains the best curative-intent treatment, recurrence rates are unfortunately high. Multiple studies have evaluated the benefit of surgery alone or combined with chemotherapy, but there are few studies evaluating the timing of chemotherapy around surgery.

Research frontiers

Multimodality therapies are now being investigated for the treatment of gastric cancer, such as chemoradiation and intraperitoneal chemotherapy; yet these therapies are not standard of care. Innovations and breakthroughs

The mainstay of treatment is surgical resection either with perioperative chemotherapy or postoperative chemotherapy. Most chemotherapy regimens are either 5-fluorouracil (5-FU) based or cisplatin/oxaliplatin based. Asian studies have also shown benefit with adjuvant S-1, an oral dihydropyrimidine dehydrogenase inhibitory fluoropyrimidine based on a biochemical modulation of 5-FU.

Applications

This study indicates that chemotherapy and surgery provides the best survival benefits for patients with gastric cancer. There was no difference in survival when comparing neoadjuvant chemotherapy to adjuvant chemotherapy alone.

Terminology

Gastric adenocarcinoma: a cancer of the stomach; Neoadjuvant chemotherapy: chemotherapy given prior to surgical resection; Adjuvant chemotherapy: chemotherapy given after surgical resection.

Peer review

The authors investigated outcomes for patients with gastric cancer treated with surgery and chemotherapy using a population-based cancer registry (n = 327). They demonstrated that both chemotherapy and surgical resection are critically important treatment modalities, while reporting no difference in overall survival between patients given neoadjuvant chemotherapy or adjuvant chemotherapy.

REFERENCES

1 National Cancer Institute. SEER Stat Fact Sheets: Stomach Cancer 2013. Available from: URL: http://seer.cancer.gov/statfacts/html/stomach.html
2 Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10, in Cancer IARo (ed). Lyon, France: IARC, 2013
3 Alberts SR, Cervantes A, van de Velde CJ. Gastric cancer: epidemiology, pathology and treatment. Ann Oncol 2003; 14 Suppl 2: i31-i36 [PMID: 12810455]
4 Choi KS, Jun JK, Lee HY, Park S, Jung KW, Han MA, Choi IJ, Park EC. Performance of gastric cancer screening by endoscopy testing through the National Cancer Screening Program of Korea. Cancer Sci 2011; 102: 1589-1594 [PMID: 21564421 DOI: 10.1111/j.1349-7006.2011.01982.x]
5 Hamashima C, Shibuya D, Yamazaki H, Inoue K, Fukao A, Saito H, Sobue T. The Japanese guidelines for gastric cancer screening. Jpn J Clin Oncol 2008; 38: 259-267 [PMID: 18344316 DOI: 10.1093/jjco/hyn017]
6 Hundahl SA, Phillips JL, Menck HR. The National Cancer Data Base Report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: Fifth Edition American Joint Committee on Cancer staging, proximal disease, and the "different disease" hypothesis. Cancer 2000; 88: 921-932 [PMID: 10679663]
7 Wanebo HJ, Kennedy BJ, Chmiel J, Steele G, Winchester D, Osteen R. Cancer of the stomach. A patient care study by the American College of Surgeons. Ann Surg 1993; 218: 583-592 [PMID: 8239772 DOI: 10.1097/00000658-199308000-00002]
8 Zhang H, Liu C, Wu D, Meng Y, Song R, Lu P, Wang S. Does D3 surgery offer a better survival outcome compared to D1 surgery for gastric cancer? A result based on a hospital population of two decades as taking D2 surgery for reference. BMC Cancer 2010; 10: 308 [PMID: 20565910 DOI: 10.1186/1471-2407-10-308]
9 Zhang Y, Tian S. Does D2 plus Para-Aortic Nodal Dissection surgery offer a better survival outcome compared to D2 surgery only for gastric cancer consistently? A definite result based on a hospital population of nearly two decades. Scand J Surg 2013; 102: 251-257 [PMID: 24056132 DOI: 10.1177/1476496913491343]
10 Thompson AM, Rapson T, Gilbert FJ, Park KG. Hospital volume does not influence long-term survival of patients undergoing surgery for oesophageal or gastric cancer. Br J Surg 2007; 94: 578-584 [PMID: 17410636 DOI: 10.1002/bjs.5729]
11 Shridhar R, Almihanna K, Hoffe SE, Fulp W, Weber J, Chuong MD, Meredith KL. Increased survival associated with surgery and radiation therapy in metastatic gastric cancer: a Surveillance, Epidemiology, and End Results database analysis. Cancer 2013; 119: 1636-1642 [PMID: 23361968 DOI: 10.1002/cncr.27927]
12 Choi JY, Ha TK, Kwon SJ. Clinicopathologic Characteristics of Gastric Cancer Patients according to the Timing of the Recurrence after Curative Surgery. J Gastric Cancer 2011; 11: 46-54 [PMID: 22076201 DOI: 10.5230/jgc.2011.1.46]
13 Dikken JL, Jansen EP, Cats A, Bakker B, Hartgrink HH, Kranenbarg EM, Boot H, Putter H, Peeters KC, van de Velde CJ, Verheij ME. Impact of the extent of surgery and postoperative chemotherapy on recurrence patterns in gastric cancer. J Clin Oncol 2010; 28: 2430-2436 [PMID: 20568551 DOI: 10.1200/JCO.2009.26.9654]
14 Paoletti X, Oba K, Burzynskowy T, Michiels S, Ohashi Y, Pignon JP, Rougier P, Sakamoto J, Sargent D, Sasako M, Van Cutsem E, Buyse M. Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA 2010; 303: 1729-1737 [PMID: 20442389 DOI: 10.1001/jama.2010.534]
15 Yoshikawa T, Tanabe K, Nishikawa K, Ito Y, Matsui T, Kimura Y, Hiranayashi N, Mikata S, Iwashashi M, Fukushima R, Takiguchi N, Miyashiro I, Morita S, Miyashita Y, Tsuburaya A, Sakamoto J. Induction of a Pathological Complete Response by Four Courses of Neoadjuvant Chemotherapy for Gastric Cancer: Early Results of the Randomized Phase II COMPASS Trial. Ann Surg Oncol 2013; Epub ahead of print [PMID: 23883904]
16 Macdonald JS, Benedetti J, Smalley S, Haller D, Hundahl S, Jessup J, Ajani J, Gunderson L, Goldman B, Martenson J. Chemoradiation of resected gastric cancer: A 10-year follow-up of the phase III trial INT0116 (SWOG 9008), ASCO Annual Meeting, 2009, pp 4515. Available from: URL: http://meeting.ascopubs.org/cgi/content/abstract/27/155/4515
17 Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, Haller DG, Ajani JA, Gunderson LL, Jessup JM, Martenson JA. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. *N Engl J Med* 2001; 345: 725-730 [PMID: 11547741 DOI: 10.1056/NEJMoa010187

18 Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, Smith DB, Langley RE, Verma M, Weeden S, Chua YJ. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. *N Engl J Med* 2006; 355: 11-20 [PMID: 16822992 DOI: 10.1056/NEJMoa055531

19 Yang L, Song Y, Zhou AP, Qin Q, Chi Y, Huang J, Wang JW. A phase II trial of oxaliplatin plus S-1 as a first-line chemotherapy for patients with advanced gastric cancer. *Chin Med J* (Engl) 2013; 126: 3470-3474 [PMID: 24034092

20 Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, Lee KW, Kim YH, Noh SJ, Cho JY, Mok YJ, Kim YH, Ji J, Yeh TS, Button P, Sirzén F, Noh SH. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. *Lancet* 2012; 379: 315-321 [PMID: 22226517 DOI: 10.1016/S0140-6736(11)61873-4

21 Gunderson LL. Gastric cancer--patterns of relapse after surgical resection. *Semin Radiat Oncol* 2002; 12: 150-161 [PMID: 11979416 DOI: 10.1053/srao.2002.30817

22 Takashima A, Boku N, Kato K, Nakamura K, Mizusawa J, Fukuda H, Shirao K, Shimada Y, Ohtsu A. Survival prolongation after treatment failure of first-line chemotherapy in patients with advanced gastric cancer: combined analysis of the Japan Clinical Oncology Group Trials JCOG9205 and JCOG9912. *Gastric Cancer* 2013; Epub ahead of print [PMID: 23719867 DOI: 10.1007/s10120-013-0264-8

23 Takahari D, Hamaguchi T, Yoshimura K, Katai H, Ito S, Fuse N, Konishi M, Yasui H, Terashima M, Goto M, Tanigawa N, Shirao K, Sano T, Sasako M. Survival analysis of adjuvant chemotherapy with S-1 plus cisplatin for stage III gastric cancer. *Gastric Cancer* 2013; Epub ahead of print [PMID: 22151428

24 Noh SH, Park SR, Yang HK, Chung HC, Chung JJ, Lee KH, Kim HH, Ji J, Chen JS, Lim Y, Ha S, Bang YJ. Adjuvant Capecitabine and Oxaliplatin (Xelox) for Gastric Cancer After D2 Gastrectomy: Final Results from the CLASSIC Trial. *Ann Oncol* 2013; 24 (suppl 4): iv14 [DOI: 10.1093/annonc/mdt201.7

25 Macdonald JS. Adopting postoperative chemoradiotherapy in resected gastric cancer. *Gastrointest Cancer Res* 2009; 3: 245-246 [PMID: 21151428

26 Macdonald JS. Gastric cancer—new therapeutic options. *N Engl J Med* 2006; 355: 76-77 [PMID: 16822999 DOI: 10.1056/NEJMe068121

27 Macdonald JS. Role of post-operative chemoradiation in resected gastric cancer. *J Surg Oncol* 2005; 90: 166-170 [PMID: 15895449 DOI: 10.1002/jso.20223

P- Reviewers: Hajifathalian K, He ST, Lesquereux LM
S- Editor: Wen LL L- Editor: A E- Editor: Wang CH

Arrington AK et al. Timing chemotherapy in resectable gastric cancer

P- Reviewers: Hajifathalian K, He ST, Lesquereux LM
S- Editor: Wen LL L- Editor: A E- Editor: Wang CH