Increased Expression of Toxoplasma Gondii GRA1 Suppresses Host Cell Apoptosis

Abstract

Suppression of host cell apoptosis enable Toxoplasma gondii to proliferate, but the mechanism is not well understood. We explored the relationship between the expression of T. gondii dense granule protein 1 (GRA1) and host HeLa cell apoptosis. We inserted the T. gondii gra1 coding gene into a pET32a vector and produced recombinant GRA1 (rGRA1) in E. coli Rosetta strain. We then immunized rabbits with rGRA1 to produce anti-GRA1 serum and infected HeLa cells with T. gondii tachyzoites. We determined the expression of T. gondii GRA1 by Western blotting with anti-GRA1 serum and determined apoptosis of HeLa cells via the Annexin V-FITC/PI method. All the experiments were repeated three times in the same condition. The expression of GRA1 decreased gradually after T. gondii infection. The rate of HeLa cell apoptosis increased more rapidly in the infected cells than in the uninfected cells. Our results suggest that the suppression of host cell apoptosis is related to the expression of T. gondii GRA1 expression.

Keywords: Toxoplasma gondii; GRA1; Apoptosis; ROPs; GRAs; STAT

Introduction

Toxoplasma gondii is an obligate intracellular protozoan parasite. In immunocompromised hosts, such as AIDS patients, it becomes an opportunistic pathogen causing severe toxoplasmosis [1]. Apoptosis is a common biological phenomenon that removes damaged or unwanted cells during development, ensuring tissue homeostasis in multi-cellular organisms [2]. Cell apoptosis also plays a major role in innate and adaptive immune defense by controlling and eradicating invasive pathogens [3]. T. gondii, however, can actively invade any nucleated host cell and, by down-regulating apoptosis in the cell, can evade elimination by the host’s defense system [4]. Although the mechanism of this down-regulation is not yet understood, it is known that T. gondii secreted proteins including rhoptries (ROPs) and dense granule proteins (GRAs) play an important role in this regulation [5]. Many studies have examined the function of ROPs, but few have studies the function of GRAs [6]. In this study, we investigate variation in the expression of GRA1 and in the rate of cell apoptosis during T. gondii invasion into HeLa cells.

Materials and Methods

Ethics Statement

All animal experiment in the manuscript were reviewed in advance by the Laboratory Animal Management Committee of Jiangsu University and also met the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Cell culture and T. gondii

The HeLa cell line was stored in liquid nitrogen in our laboratory and cultured in DMEM medium (HyClone, Argentina) and incubated with 10% fetal bovine serum at 37˚C and at 5% CO₂ (Tianhang Biological Technology Co., Ltd, China). The cells were stripped from the cell culture flask with a 0.25% trypsin (GBICO, USA) and 0.02% EDTA-Na2 solution. The passage operation was repeated every 2-3 days. T. gondii RH strain tachyzoites were maintained in HeLa cells. Before infection with T. gondii tachyzoites for 12 h, the HeLa cell medium was changed to a DMEM medium with 2% fetal bovine serum. The T. gondii RH strain tachyzoites were added into the culture medium and this was changed to new fresh DMEM medium (with 2% fetal bovine serum) 4 hours after infection. After HeLa cell lysis, the tachyzoites were collected by centrifugation and purified using a 3-μm filter membrane [7].

Cloning of the GRA1 gene and anti-GRA1 serum production

The purified tachyzoites were used for total RNA extraction performed using the RNAEXTM Total RNA Isolation Kit according to the manufacturer’s instructions (Generay Biotech Co., Ltd. China). The GRA1 gene used for His-GRA1 recombinant protein production was amplified from cDNA by PCR assay. The GRA1 primers 5’- CGGAATTCGCGGGTAGGCGGCTACCACTCACTTC-3’ (sense) and 5’- CGGAATTCGCGGGTAGGCGGCTACCACTCACTTC-3’ (antisense) yielded a 495-nucleotide product specific to the GRA1 coding gene (GenBank No. HM067753.1). The PCR product was digested with BamHI and EcoRI, ligated into a pET32a vector using T4 DNA ligase (TAKARA, Dalian, China), and transformed into an E. coli Rosetta strain. The right directional clone was confirmed by sequencing. The His-GRA1 recombinant protein was expressed in E. coli Rosetta strain that had been induced at 30°C for 10 h with 0.4mM isopropyl-β-D-thiogalactopyranoside (IPTG).
The bacterial pellets were re-suspended in lysis buffer (Tris-HCl 10mM [pH 8.0], NaH2PO4 100 mM, Urea 8 M). Cellular debris was removed by centrifugation at 16,000 g for 30 min. The cell-free extract was used for rHis-ACP purification by Ni-NTA Agarose (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. This His-ACP recombinant protein was identified by SDS-polyacrylamide gel electrophoresis staining with Coomassie blue.

The specific anti-serum of GRA1 was obtained from New Zealand rabbits (male, 3 kg, Laboratory Animal center of Jiangsu University) by three subcutaneous immunizations. The first injection comprised 1mg of recombinant GRA1 in Freund’s complete adjuvant, with two further injections also with Freund’s incomplete adjuvant administered at three week intervals. The rabbit was then bled and the specific anti-serum collected for the Western blotting assay.

Western blotting assay

Freshly released tachyzoites were boiled in SDS-PAGE sample buffer and separated on 12% polyacrylamide gels utilizing the Laemmli discontinuous buffer system [8]. Proteins were transferred to nitrocellulose membranes (BOSTER, China), and the nitrocellulose strips were saturated for 1h in 5% non-fat milk in 15mM Tris-HCl (pH 8.0), 150 mM NaCl, and 0.05% Tween 20 (TNT). They were then incubated with anti-GRA1 serum diluted 1: 2,000 in TNT for 1h. After washing, the strips were incubated with goat anti-rabbit IgG conjugated to HRP (BOSTER, China) and detected using the ECL (BOSTER, China) plus Western blotting system.

T. gondii GRA1 expression

The parasites (5×106/well) were added to confluent HeLa cell monolayers in a 6-well plate (ratio of cells to parasites equals one). After infection for 1 h, all the infected HeLa cells were completely washed with PBS to eliminate parasites that had not invaded cells. We used anti-GRA1 serum and anti-T. gondii actin mAb (in mouse ascitic fluids, obtained from Professor Dominique of the University of Geneva, Switzerland) to determine the expression of GRA1 during infection.

Analysis of apoptosis

The parasites (5×106 per well) were added to confluent HeLa cell monolayers in a 6-well plate (at a cell to parasite ratio equal to one). One hour after infection, all infected HeLa cells were completely washed with PBS to eliminate parasites that had not invaded cells. After cell detachment, HeLa cells were stained with Annexin V using the Annexin V-FITC/PI kit (Vazyme, Nanjing, China). Apoptosis cells were identified and quantified by flow cytometry (FACSCalibur, BD Company, USA). Briefly, HeLa cells (1×106 per well) were washed in PBS and incubated with 1× binding buffer, propidium iodide (PI) and Annexin V-FITC for 30min at room temperature. The apoptotic cells were analyzed on a fluorescence-activated cell sorter.

Statistical analyses

Statistical analyses were performed in SPSS. Student’s t tests were performed under the assumption of equal variance and using a two-tailed test, where P≤0.05 was considered significant.
Increased Expression of Toxoplasma Gondii GRA1 Suppresses Host Cell Apoptosis

GRA1 expression in *T. gondii* infection

The expression of GRA1 decreased gradually following the infection of HeLa cells by *T. gondii*. One hour post-infection the expression of GRA1 peaked and then decreased rapidly to its lowest level at 36 post-infection (Figure 4).

HeLa cell apoptosis

The rate of HeLa cell apoptosis increased with time for both infected and uninfected cells, but did so more rapidly in the uninfected group. At eight hours post-infection, there was no significant difference in apoptosis rates between infected and uninfected individuals. However, by 12 hours post-infection, the rate of apoptosis of uninfected cells had increased dramatically. At 36 hours post-infection, we observed the greatest difference in the rate of apoptosis in these two groups (Figure 5).

Discussion

The obligate intracellular protozoan *T. gondii* has evolved an intimate relationship with its host that extends to the cellular and molecular levels [9]. This pathogen requires an appropriate host cell environment for its replication and is able to modify its host cell functions [10]. Intuitively, the active modification of host cell growth must be a complex process, as host cells are not inherently programmed to provide an environment conducive to pathogens [11,12]. Host cells have evolved primary lines of defense as countermeasures to pathogen invasion, establishment, and replication [13,14]. Defenses to limit pathogen growth include apoptosis, reactive oxygen and nitrogen intermediates [15]. Previously, we reported that *T. gondii* infection suppressed apoptosis of HeLa cells for 36 hours post-infection in uninfected cells and in cells treated with actinomycin D [16]. *T. gondii* uses a mixture of specialized parasite secreted proteins, including ROPs, GRAs and MICs to invade cells [17,18]. Many of these parasite secreted proteins are anchored on the parasitophorous vacuole membrane (PVM) and can interact with the host cells directly. The kinase activity ROPs, such as ROP2 [19], ROP16 [20] and ROP18 [21], have been exhaustively studied and shown to down-regulate host cell apoptosis [22]. Moreover, kinase activity ROPs can affect the activation of signal transducer and activator of transcription (STAT) signaling pathways, leading to a downstream modulation of the secretion of IL-12 in host cells [23,24].

GRA1 belongs to a dense granule protein family consisting of 12 distinct polypeptides that are stored within dense granules of *T. gondii* [25]. During cell invasion, GRA1 was exocytosed into the parasitophorous vacuole (PV) and associated with PVM. Unlike *T. gondii* ROPs, the role of GRAs is not yet clearly understood. Indeed, GRA1 could activate TGF-β transcription through phosphorylation and activate apoptosis in monocytes [26]. The role of GRA1 in human cell apoptosis has rarely been studied. In this study, we showed that the expression of GRA1 decreased gradually 36 hours post-infection, while HeLa cell apoptosis increased more rapidly in infected cells compared to uninfected cells. These findings suggest that GRA1 suppresses HeLa cell apoptosis, in a manner similar to ROPs.

---

Citation: Wu L, Shen J, Tang C, Jiang X, Wang J et al. (2017) Increased Expression of *Toxoplasma Gondii* GRA1 Suppresses Host Cell Apoptosis. *J Bacteriol Mycol Open Access* 4(5): 00110. DOI: 10.15406/jbmoa.2017.04.00110
Conclusion

We suggest that GRA1 is anchored in the PVM and along with other secreted proteins, such as ROP2, could down-regulate human cell apoptosis. This would provide a longer growth period for T. gondii in host cells and also benefit the parasite by avoiding elimination of infected cells.

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (No. 81371853), the Laboratory of Parasite and Vector Biology of China, MOPH (No. WSBKTK201302), the China Postdoctoral Science Special Foundation (No. 2015T80518), the China Postdoctoral Science Foundation (No. 2014M561598), Jiangsu Postdoctoral Science Foundation (No. 1402171C), and the Senior Talent Studying Initial Funding of Jiangsu University (No. 13JDG023, 13JDG127).

References

1. Pereira-Chioccola VL, Vidal JE, Su C (2009) Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiol 4(1): 1363-1379.
2. Feustel SM, Meissner M, Liesenfeld O (2012) Toxoplasma gondii and the blood-brain barrier. Virulence 3(2): 182-192.
3. Van de Vuerdonk FL, Kulberg BJ, Netea MG (2010) Pathogenesis of invasive candidiasis. Curr Opin Crit Care 16(5): 453-459.
4. Luder CG, Campos-Salinas J, Gonzalez-Rey E, van Zandbergen G (2010) Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasit Vectors 3: 116.
5. Treeck M, Sanders JL, Elias JE, Boothroyd JC (2011) The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe 10(4): 410-419.
6. Bradley PJ, Sibley LD (2007) Rhoptor: an arsenal of secreted virulence factors. Curr Opin Microbiol 10(6): 582-587.
7. Wu L, Chen SX, Jiang XG, Fu XL, Shen YJ, et al. (2012) Separation and purification of Toxoplasma gondii tachyzoites from in vitro and in vivo culture systems. Exp Parasitol 130(1): 91-94.
8. Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem 252(3): 1102-1106.
9. Laliberte J, Carruthers VB (2008) Host cell manipulation by the human pathogen Toxoplasma gondii. Cell Mol Life Sci 65(12): 1900-1915.
10. Sinai AP, Rospe PD (2012) Autophagy in Apicomplexa: a life sustaining death mechanism? Trends Parasitol 28(9): 358-364.
11. Lin DC, Cooke BM, Doerig C, Saeij JP (2012) Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodelling. Int J Parasitol 42(1): 21-32.
12. Nelson MM, Jones AR, Carmen JC, Sinai AP, Burchmore R, et al. (2009) Modulation of the host cell proteome by the intracellular apicomplexan parasite Toxoplasma gondii. Infect Immun 76(2): 828-844.
13. Randow F, Munz C (2012) Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol 33(10): 475-487.
14. Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8): 525-537.
15. Hohlf TM, Feldmesser M (2007) Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot Cell 6(11): 1953-1963.
16. Shen J, Chen YT, Wu L, Wu LM, Wang X, et al. (2014) Effect of Toxoplasma gondii tachyzoite infection on HeLa cell apoptosis. J Jhang Univ 24(5): 399-402.
17. Paredes-Santos TC, de Souza W, Attias M (2012) Dynamics and 3D organization of secretory organelles of Toxoplasma gondii. J Struct Biol 177(2): 420-430.
18. Nadipuram SM, Kim EW, Vashishth AA, Lin AH, Bell HN, et al. (2016) In vivo biotinylation of the Toxoplasma parasitophorous vacuole reveals novel dense granule proteins important for parasite growth and pathogenesis. MBio 7(4): e00808-e00816.
19. Sinai AP, Joiner KA (2001) The Toxoplasma gondii protein ROP2 mediates host organelle association with the parasitophorous vacuole membrane. J Cell Biol 154(1): 95-108.
20. Jensen KD, Hu K, Whitmarsh RJ, Hassan MA, Julien L, et al. (2013) Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15. Infect Immun 81(6): 2156-2167.
21. Cheng L, Chen Y, Chen L, Shen Y, Shen J, et al. (2012) Interactions between the ROP18 kinase and host cell proteins that aid in the parasitism of Toxoplasma gondii. Acta Trop 122(3): 255-260.
22. Kemp LE, Yamamoto M, Soldati-Favre D (2013) Subversion of host cellular functions by the apicomplexan parasites. FEMS Microbiol Rev 37(4): 607-631.
23. Schneider AG, Abi Abdallah DS, Butcher BA, Denkers EY (2013) Toxoplasma gondii triggers phosphorylation and nuclear transcription of dendritic cell STAT1 while simultaneously blocking IFN-gamma-induced STAT1 transcriptional activity. PLoS One 8(3): e60215.
24. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, et al. (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415(6875): 977-983.
25. Nam HW (2009) GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Korean J Parasitol 47: S29-S37.
26. D'Angelillo A, De Luna E, Romano S, Bissogni R, Buffolano W, et al. (2011) Toxoplasma gondii Dense Granule Antigen 1 stimulates apoptosis of monocytes through autocrine TGF-beta signaling. Apoptosis 16(6): 551-562.