Birds are one of the best-known classes of living organisms, they are important bioindicators of an ecosystem. This study was undertaken to determine the diversity and abundance of birds in Reiek Biodiversity Spot, Mizoram, northeastern India. An intensive study was carried out by line transect method. A total of 117 species of birds belonging to 37 families and 10 orders were recorded and the Shannon-Wiener Diversity index was calculated (H' = 3.85). Family Muscicapidae dominated the area comprising of 16 species, followed by Timaliidae with 6 species. Among all the species recorded, *Alcippe nipalensis* has the highest relative abundance (13.35%), followed by *Staphida castaniceps* (Striated Yuhina) and *Zosterops palpebrosus* (Oriental White Eye) with 8.6007% and 6.03337% each. Family-wise relative abundance revealed that Pycnonotidae has the highest relative abundance (17.45%), followed by Sylviidae (15.91%) and Timaliidae (13.35%). The area supports a rich and diverse avian community, therefore, recommended better management of the entire landscape.

Keywords: Abundance, birds, diversity, forest, Reiek Biodiversity Spot.

Introduction

Birds are one of the best-known classes of living organisms and bird community is known to play crucial roles in the functioning of an ecosystem in which they are found. They are cosmopolitan and uneven in their distributions; their distribution, diversity and densities depend on various factors such as climate, altitude, vegetation, water availability and anthropogenic activities. India ranks among the top ten countries in the world in terms of the most number of bird species, and harbors about 1200 species of birds which makes up about 13% of the world’s bird species (9600). Lepage recorded 662 species of birds in Mizoram among which 31 falls under the category of globally threatened species. Despite birds being the best-known class of living organisms, there are still substantial gaps in our knowledge regarding their distributions, abundances and densities. Studies on bird diversity are important as it raises an awareness of the need for global conservation of the avian community and to understand the well-being of an ecosystem as a whole and help to delineate the importance of a regional or local landscape for avian conservation. Though Mizoram lies within the Indo-Myanmar biodiversity hotspot, studies on the avian community are scanty. Although there are a few existing studies that deal with pheasants and birds of a particular group and a specific area, more studies are needed to be done in order to show the picture of the Mizoram avian community.
Keeping in view of the above points, the present study was carried out to add baseline information on avian species diversity and abundance in Reiek Biodiversity Spot, Mizoram, northeastern India and to create awareness for their conservation and help in strategic conservation planning. Considering the scarcity of information on the avian diversity as discussed above, the present study is designed to assess the species composition and to investigate the diversity and relative abundance of birds in Reiek Biodiversity Spot, Mizoram, India.

Materials and Methods

Study site

Reiek is a village located at 23°41’17.36” N longitude and 92°36’07.79” E latitude, Mizoram, northeastern India and lies within the Indo-Myanmar Biodiversity hotspot (Figures 1 & 2). It rests at an elevation of 1,325 m above mean sea level. The village is located at a distance of 28 km from the state capital, Aizawl. The area is covered by semi-evergreen, bamboo forest, and grasses. The major
plant species of the area are Castanopsis tribuloides, Schima wallichii, Atalancia simplifolia and different species of bamboos and orchids.

Some portions of the community forest and its fauna are protected and conserved by the community, with the community heads and members of various non-government organizations within the village playing a vital role in this effort. Despite their efforts, tribal hunting practices using traps, snares, guns and slingshots are still prevalent among some groups of people within the community. Felling of trees and collection of firewood are also still widely prevalent in the village. Recently, the area was declared as a ‘Biodiversity Spot’ by the village in collaboration with Association for Environment Protection (ASEP), one of the leading NGOs in Mizoram for protecting and conserving the environment, in an effort to protect and preserve the pristine state of the protected area and its surrounding.

Sampling method

Line Transect method was employed for counting and evaluating the abundance and diversity of birds in the study. The study was conducted from January to March 2019. A total of three line transects were laid and followed for recording the presence of birds, viz. transect-1, transect-2 and transect-3 respectively. Transects were of different lengths and were laid on existing path. Transect-1 was laid as long as 2 km passing through the core of the protected area at a geological point of 23°41’23.32″ N and 92°36’19.22″ E, at an altitude of 1290 m. Transect-2 was laid as long as 3.5 km, at a geological point of 23°41’29.72″ N and 92°35’52.61″ E at an altitude of 1077 m above sea level. Transect-3 covered a distance of 2 km, located at 23°42’31.09″ N and 92°36’05.54″ E, at an altitude of 963 m above mean sea level. Transect-3 was laid in a relatively disturbed area where agricultural practices and firewood collection are carried out.

Transects were walked in the morning (0530–0830 hrs) and evening (1400–1700 hrs) at an interval of six days for a period of three months. For each transect, we recorded the bird species and numbers encountered in the area. For the survey, SLR camera (Nikon P900) was used for photography, binocular (Nikon Sporter EX) and the calls of birds were used for observations, recording and identification. For identification and field diagnosis of birds, Grimmet et al.17 and Grewal et al.18 were consulted. For diversity study, in addition to the line transect method, simple bird watching (opportunistic sampling) within the study was also adopted.

Data analysis

PAST (PAleontological STatistics) version 1.93 was used for estimating abundance and diversity indices. The relative abundance of a species was calculated by dividing the abundance of a species by the total abundance of all species combined.6

Bird diversity was calculated using both Shannon-Wiener and Simpson’s diversity indices. Shannon-Wiener diversity Index was calculated using the formula:

\[H = - \sum_{i=1}^{R} p_i \ln p_i \]

Where \(p_i \) = proportion of individual species and \(R \) = total number of species of the community (numbers seen and heard).

Simpson’s diversity index, \(D \) was calculated using the formula:

\[D = \frac{\sum n_i (n_i - 1)}{N(N - 1)} \]

Where \(n_i \) = the total no. of birds of each individual species and \(N \) = the total number of birds of all species

The value of \(D \) ranges between 0 and 1. With this index, 1 represents infinite diversity and 0, no diversity.

Result and Discussion

Species composition

A total of 117 bird species, belonging to 37 families and 10 orders were recorded from Reiek Biodiversity Spot (Table 1). Altogether, 110 species were recorded from the transects, while the remaining 7 species were recorded outside the transects through opportunistic sampling. This record is fairly high despite the fact that the study site is being dominated by tribal communities who are known to indulge in various hunting practices and secondly, the site not being under the categories of protected area notified by the government. The relatively high avian species composition could be attributed to the availability of heterogeneous habitat, i.e., primary and secondary forests, grasses, bamboo forest, jhum land and secondly to the conservation efforts of the community where the communal forest is protected and conserved providing home to large number of avifauna. The bird species composition in the present study is lesser than studies that have been carried out in various protected areas around the state such as- a study carried out by Sailo and Lalthanzara in Lengteng Wildlife Sanctuary recorded 126 species of birds belonging to 35 families,15 while the famous Murlen Wildlife Sanctuary is known to harbor more than 150 species of birds.16

Another study executed by Lalthanzara and Sailo17 in Lungleng-1, a non-protected area recorded 114 species of birds belonging to 40 families, though the number of species recorded is higher in the present study, the number of the family is higher in
Order	Family	Scientific Name	Common Name	Status
Accipitriformes	Accipitridae	Accipiter badius	Shikra	LC
		Accipiter virgatus	Besra	LC
		Pernis ptilorhyncus	Oriental Honey Buzzard	LC
		Spilornis cheela	Crested Serpent Eagle	LC
Falconiformes	Falconidae	Falco tinnunculus	Common Kestrel	LC
		Falco peregrines	Peregrine Falcon	LC
Galliformes	Phasianida	Arborophila rufogularis	Rufous-throated Hill Partridge	LC
		Bambusicola fytchii	Mountain Bamboo Partridge	LC
		Gallus galus	Red Jungle Fowl	LC
Columbiformes	Columbidae	Streptopelia chinensis	Spotted Dove	LC
		Ducula aenea	Green Imperial Pegion	LC
		Ducula badia	Mountain Imperial Pegion	LC
Strigiformes	Strigidae	Glaucidium cuculoides	Asian Barred Owlet	LC
		Strix leptogrammica	Brown Wood Owl	LC
Cuculiformes	Cuculidae	Phoenicopsruestris	Green-billed Malkoha	LC
		Hierococcyx varius	Common hawk-Cuckoo	LC
		Surniculus lugubris	Square-tailed drongo Cuckoo	LC
		Centropus sinensis	Greater Coucal	LC
Passeriformes	Pycnonotidae	Ixos mcclellandii	Mountain Bulbul	LC
		Pycononotus cafer	Red-Vented Bulbul	LC
		Pycononotus flavescens	Flavescent Bulbul	LC
		Allophoicus flavoeulus	White-Throated Bulbul	LC
		Hypopetes leucocophalus	Black Bulbul	LC
		Hemixos flavala	Ashy Bulbul	LC
		Pycononotus flaviventris	Black-crested Bulbul	LC
		Dicaeum ign.icapiceps	Fire-breasted Flowerpecker	LC
		Zosterops palpebrossus	Oriental White-eye	LC
		Copsychus malabaricus	White-rumped Shama	LC
		Ficedula albicilla	Taiga Flycatcher	LC
		Ficedula hodgsoni	Slaty-backed Flycatcher	LC
		Enicurus schistaceus	Slaty-backed Forktail	LC
		Anthipes monileger	White-gorgeted Flycatcher	LC
		Saxicola ferreus	Grey Bushchat	LC
		Phoenicurus frontalis	Blue-fronted Redstart	LC
		Enicurus leschenaultia	White-crowned Forktail	LC
		Cyornis unicolor	Pale-blue Flycatcher	LC
		Muscicapa daurica	Asian Brown Flycatcher	LC
		Niltava vivida	Vivet Niltava	LC
		Niltava grandis	Large Niltava	LC
		Niltava macgrgoriae	Small Niltava	LC
		Tarsiger ruftatus	Himalayan Blue Tail	LC
		Culicicapa ceylonensis	Grey-headed Canary Flycatcher	LC
		Niltava sundara	Rufous-bellied Niltava	LC
		Cospsychus malabaricus	White-rumped Shama	LC
		Ficedula albicilla	Taiga Flycatcher	LC
		Ficedula hodgsoni	Slaty-backed Flycatcher	LC
Order	Family	Species	Common Name	IUCN Status
--------------	-------------------------	--------------------------------	------------------------	-------------
Nectariniidae	Aethopyga gouldiae	Mrs. Gould's Sunbird	LC	
	Aethopyga siparaja	Crimson Sunbird	LC	
	Aethopyga saturate	Black-throated Sunbird	LC	
	Aethopyga ignicauda	Fire-tailed Sunbird	LC	
	Arachnothera magna	Streaked Spiderhunter	LC	
	Arachnothera longirostra	Little Spiderhunter	LC	
Carvidae	Cissa chinensis	Common Green Magpie	LC	
	Corvus macrorhynchos	Jungle Crow	LC	
	Dendrocitta formosae	Grey Treepie	LC	
	Dendrocitta vagabunda	Rufous Treepie	LC	
Turdidae	Zoothera divxi	Long-tailed Thrush	LC	
	Myophonus caeruleus	Blue-whistling Thrush	LC	
	Zoothera dauma	Scaly Thrush	LC	
	Turdus obsures	Eye-browed Thrush	LC	
Campephagida	Pericrocotus flammeus	Scarlet Minivet	LC	
	Coracina melanochistos	Black-winged Cuckooshrike	LC	
	Pericrocotus cinnamomeus	Small Minivet	LC	
	Tephrodornis virgatus	Large Woodshrike	LC	
	Tephrodornis paniculatus	Common Woodshrike	LC	
Chloropseida	Chloropsis hardwickii	Orange-bellied Leafbird	LC	
	Chloropsis cochinchinensis	Blue-winged Leafbird	LC	
	Chloropsis aurifrons	Gold-fronted Leafbird	LC	
Monarchidae	Hypothymis azurea	Black-naped Monarch	LC	
Oriolida	Oriolus chinensis	Black-naped Oriole	LC	
Emberizidae	Emberiza pusilla	Little Bunting	LC	
Cisticolida	Emberiza rutila	Chesnut Bunting	LC	
	Orthotomus sutorius	Common tailorbird	LC	
	Orthotomus cuculatus	Mountain tailorbird	LC	
	Prinia atrociliaris	Black-throated Prinia	LC	
	Prinia crinigera	Striated Prinia	LC	
	Prinia rufescens	Rufescent Prinia	LC	
Aegithinidae	Aegithina tibia	Common Iora	LC	
Sittidae	Sitta castanea	Chesnut-bellied Nuthatch	LC	
	Sitta frontalis	Velvet-fronted Nuthatch	LC	
	Sitta hmytaylaensis	White-tailed Nuthatch	LC	
Eurylaimidae	Psarismus dalhousiae	Long-tailed broadbill	LC	
Rhipiduridae	Rhipidura albicollis	White-throated Fantail	LC	
Vangidae	Hemipus picatus	Bar-winged flycatcher Shrike	LC	
Motacillidae	Anthus hodgsoni	Olive-backed Pipit	LC	
Sylviiida	Phylloscopus xanthochistos	Grey-hooded Warbler	LC	
	Alcippe nipalensis	Nepal Fulvetta	LC	
	Phylloscopus inornatus	Yellow Bowed Warbler	LC	
	Phylloscopus trochiloides	Greenish Warbler	LC	
	Phylloscopus whistleri	Whister's Warbler	LC	
	Seicercus poliogenys	Grey-cheeked Warbler	LC	
Laniidae	Lanius schach	Long-tailed Shrike	LC	
Passeridae	Passer montanus	Eurasian Tree Sparrow	LC	
Fringillidae	Carpodacus erythrinus	Common Rosefinch	LC	
Paridae	Melanochlora sultanea	Sultan Tit	LC	
Vireonidae	Erpornis zantholeuca	White bellied Erpornis	LC	
Piciformes	Capitonidae	Megalaima asiatica	LC	
	Megalaima virens	Great Barbet	LC	
	Megalaima haemacephala	Coppersmith Barbet	LC	
Picidae	Picus flavinucha	Greater Yellownaped Woodpecker	LC	
	Sasia ochracea	White-browed Piculet	LC	
	Picumnus innominatus	Speckled Piculet	LC	
	Dendrocopus nanus	Brown-capped Pygmy Woodpecker	LC	
	Blythipicus pyrrothi	Bay-Woodpecker	LC	
Apodiformes	Apodidae	Apus acuticauda	VU	
Coraciiformes	Upupidae	Upupa epops	LC	

www.sciencevision.org 113
Lungleng-1 community forest as compared to Reiek biodiversity Spot. A study executed by Syiem et al. at Nongkhyllem landscape in Meghalaya which includes Nongkhyllem Wildlife Sanctuary and its surrounding matrix recorded a total of 94 species which is lesser than species recorded from the present study site.

Family-wise species composition indicates that Muscicapidae has the largest family comprising of 16 species, followed by Timaliidae comprising of 10 species, and Pycnonotidae with 7 species, Nectariniidae with 6 species. 5 families, viz. Dicruridae, Camppephagidae, Cisticolidae, Sylviidae and Pididae were represented by 5 species. Accipitriformes, Cuclidae, Turdidae and Corvidae were represented by 4 species each. Chloropsidae, Sittidae, Capatonidae, were represented by 3 species each. Strigidae and Emberizidae consist of 2 species each. 17 families were represented by single species (Figure 3). The recorded highest species richness in Muscicapidae family is in accordance with records from various parts of Mizoram, as well as the entire Northeast region. This could be due to their ability to adapt to different habitats including human-modified habitats. Meanwhile, it has been reported that Timaliidae family has the greatest number of species in Lengteng Wildlife Sanctuary, Mizoram in a study executed by Sailo and Lalthanzara. Saikia and Saikia also reported that Sylvidae has the largest family in northeast India represented by 153 species and 44 genera.

As expected, Passeriformes being the most diverse group of birds, order-wise species composition revealed that Passeriformes has the highest species composition with 89 species recorded under this order, followed by Piciformes, comprising of 8 species, Accipitriformes and Cucliformes came third in the list with 4 species each (Figure 4).

The family Passeriformes was represented by 27 families, topping the list of orders having the highest number of families, followed by Piciformes represented by 2 families. The remaining 8 orders were represented by 1 family each (Figure 5).

A total of 8 raptor species were recorded while 3 ground bird species and a species belonging to the most aerial birds of all families, i.e. Dark-rumped Swift were recorded from the present study. Of all the birds recorded, only Dark-rumped Swift (Apus acuticauda) falls under the Vulnerable category of the IUCN Red List of Threatened Species (2018), while the remaining 116 species belong to the Least Concern category.

Most of the species recorded from Reiek Biodiversity Spot belong to the Least Concerned category of the IUCN Red List of Threatened Species could probably be due to the fact that the area is under constant interaction with human, and that species under Threatened, Near Threatened, Vulnerable and other special categories tend to avoid humans and are usually specialist species requiring certain conditions to thrive well in a place.

Species diversity

The Shannon-Wiener diversity for Reiek Biodiversity Spot was calculated to be $H^\prime = 3.858$. This record is fairly high and indicates that the area has great potential for avian conservation site, dominance $D = 0.04146$ and Simpson Diversity was calculated to be 0.9585. Reiek landscape, providing heterogeneous habitats could be the reason for the relatively high diversity index.

The result of the diversity index revealed that Transect-3 has the highest Shannon-Wiener diversity index, followed by Transect-1 and Transect-2 respectively (Table 2). Even though Transect-3 was laid in a fairly disturbed area where shifting cultivation site and secondary forest from shifting cultivation occurs, it recorded the highest Shannon-Wiener Diversity index as compared to the two transects. This could be attributed to the area is a mixture of secondary forest and agricultural land offering a more heterogeneous habitat than the other two transects, hence it allows various species of birds to co-exist and bird species are easier to

Family	Domicance	Shannon, H'	Simpson_1-D
Accipitriformes	0.3333	1.242	0.6667
Strigidae	0.5556	0.6365	0.4444
Phasianidae	0.4489	0.8823	0.5511
Columbidae	0.4286	0.9557	0.5714
Cuclidae	0.5	0.8676	0.5
Pycnonotidae	0.1948	1.774	0.8052
Dicruridae	0.2676	1.445	0.6779
Timaliidae	0.3221	1.475	0.6779
Muscicapidae	0.08587	2.598	0.9141
Nectariniidae	0.3979	1.203	0.6021
Corvidae	0.3086	1.273	0.6914
Turdidae	0.46	0.8979	0.54
Camppephagidae	0.6966	0.6751	0.3034
Chloropseidae	0.4063	0.9743	0.5938
Emberizidae	0.625	0.5623	0.375
Cisticolidae	0.24	1.505	0.76
Sittidae	0.375	1.04	0.625
Sylviidae	0.7106	0.6571	0.2694
Capatonidae	0.4897	0.8	0.5103
Picidae	0.2711	1.415	0.7289
Figure 3 | Family-wise species composition.

Figure 4 | Order-wise species composition.

Figure 5 | Number of families belonging to different orders.

Figure 6 | Family-wise relative abundance.
Sl No	Scientific Name	Common name	Relative abundance %
1	Accipiter badius	Shikra	0.39
2	Pernis ptilorhyncus	Oriental Honey Buzzard	0.13
3	Spilornis cheela	Crested Serpent Eagle	0.13
4	Accipiter virgatus	Besra	0.13
5	Falco peregrines	Peregrine Falcon	0.13
6	Arborophila rufagularis	Rufous-throated Hill Partridge	1.03
7	Bambusicola fytchii	Mountain Bamboo Partridge	0.77
8	Gallus gallus	Red-Jungle Fowl	0.13
9	Streptopelia chinensis	Spotted Dove	0.51
10	Ducula aenea	Green Imperial Pigion	0.13
11	Ducula badia	Mountain Imperial Pigion	0.26
12	Glauclidium cuculoides	Asian Barred Owlet	0.26
13	Strix leptogrammica	Brown Wood Owl	0.13
14	Phoenica phaeustris	Green-billed Malkoha	0.51
15	Hierococcyx varius	Common hawk-Cuckoo	0.13
16	Surniculus lugubris	Square-tailed Drongo Cuckoo	0.13
17	Ixas mceliandi	Mountain Bulbul	1.41
18	Pycnonotus cafer	Red-Vented Bulbul	5.13
19	Pycnonotus flavescens	Flavescent Bulbul	1.54
20	Alophoixus flaveolus	White-throated Bulbul	1.93
21	Hynopetes leucocephalus	Black Bulbul	2.95
22	Hemixos flavula	Ashy Bulbul	1.54
23	Pycnonotus flaviventris	Black-crested Bulbul	2.95
24	Dicaeum ignicapus	Fire-breasted Flowerpecker	1.41
25	Zosterops palpebrosus	Oriental White-eye	6.03
26	Dicrurus remifer	Lesser Racket-tailed Drongo	0.51
27	Dicrurus paradiseus	Greater Racket-tailed Drongo	0.77
28	Dicrurus macrocercus	Black Drongo	1.67
29	Dicrurus aeneus	Bronzed Drongo	0.90
30	Dicrurus leucophaeae	Ashy Drongo	0.26
31	Garrulax leucotophus	White-crested Laughingthrush	0.51
32	Stachyris nigriceps	Grey-throated Babbler	0.26
33	Garrulax pectoralis	Greater Necklaced-laughingthrush	1.67
34	Staphida castaneiceps	Striated Yuhina	8.60
35	Timia tiliata	Chestnut-capped Babbler	0.39
36	Yuhina cognata	Black-chinned Yuhina	0.51
37	Stachyris ruficeps	Rufous-capped Babbler	0.13
38	Pomatorhinus ferruginosus	Coral-billed scimitar Babbler	1.03
39	Pellorneum ruficeps	Puff-throated Babbler	0.13
40	Napothera brevicaudata	Streak wren Babbler	0.13
41	Enicurus stilicate	Slaty-backed Forktail	0.51
42	Anthipes manileger	White-gorgeted Flycatcher	0.13
43	Saxicola ferreus	Grey Bushchat	0.13
44	Phoenicurus frontalis	Blue-fronted Redstart	0.13
45	Cyornis unicolor	Pale-blue Flycatcher	0.13
46	Muscicapa dauurica	Asian Brown Flycatcher	0.26
47	Niltava vivida	VivetNiltava	0.26
48	Niltava grandis	Large Niltava	0.26
49	Niltava macgrigoraias	Small Niltava	0.51
50	Tarsiger rufilatus	Himalayan Blue Tailed	0.77
51	Culicicapa ceylonensis	Grey headedcanary Flycatcher	0.39
52	Niltava sundara	Rufous-bellied Niltava	0.13
53	Capsycus malabaricus	White-rumpedShama	0.26
54	Megalaima asiatica	Blue-throated Barbet	1.28
55	Megalaima vires	Great Barbet	2.05
56	Megalaima haemacephala	Coppersmith Barbet	0.13
57	Picus flavinucha	Greater Yellownaped	0.64
58	Sasia ochracea	White-browed Piculet	0.13
59	Picumnus innominatus	Speckled Piculet	0.64
detect for the observer owing to the less dense characteristics. But this cannot rule out the fact that an intact, undisturbed area usually host specialist, important and conservation-worthy species, as such Dark-rumped Swift and important ground birds such as Rufous-throated Hill Partridge, Mountain Bamboo Partridge and Red-jungle Fowl, in this case, were recorded from transect-1 and transect-2 within the protected site. This finding is parallel to the work of Syiem et al. in Ri Bhoi district of Meghalaya, India where non-protected areas have higher diversity than protected areas, however, the protected area supports more special, conservation-worthy species. Raman et al. in their study of avifauna in Dampa landscape, Mizoram also revealed that secondary forests clearly play the role of important habitat for birds.

Among the families of birds observed,
Muscicapidae has the highest Shannon-Wiener diversity index, $H' = 2.598$, followed by Pycnonotidae with an index of $H' = 1.774$ and Cisticolidae with an index of $H' = 1.505$ (Table 3).

Relative abundance

In terms of relative abundance, Nepal Fulvetta (*Alcippe nipalensis*) has the highest relative abundance (13.35%) among all the species observed, which is followed by Striated Yuhina (*Staphida castaniceps*) with relative abundance of 8.6007% and Oriental White-eye (*Zosterops palpebrosus*) with relative abundance of 6.0337% (Table 4). Nepal Fulvetta (*A. nipalensis*) being the highest in terms of relative abundance could be attributed to their feeding habit, preference of habitat and behavior and the same applies for birds that came second and third in the list, Striated Yuhina and Oriental White-eye. These birds are highly gregarious and forage in groups, and this gives them the advantages of foraging success, selection of mate, reduced predation and spotting of forage location. Their relatively gregarious behavior also probably gives the observer an increased chance of sighting and recording them.

Of all the families recorded, Pycnonotidae has the highest relative abundance (17.45%), followed by Sylviidae 15.91% and Timaliidae 13.35% (Figure 6). Pycnonotidae, topping the list in terms of relative abundance could be probably due to the generalist characteristic of this family enabling them to adapt to various types of habitat, feeding on a wide variety of fruits and arthropods. Some Bulbuls are known to have a high tolerance to disturbance and foraging success, selection of mate, reduced predation and spotting of forage location. These birds are highly gregarious and forage in groups, and this gives them the advantages of foraging success, selection of mate, reduced predation and spotting of forage location. Their relatively gregarious behavior also probably gives the observer an increased chance of sighting and recording them.

Of all the families recorded, Pycnonotidae has the highest relative abundance (17.45%), followed by Sylviidae 15.91% and Timaliidae 13.35% (Figure 6). Pycnonotidae, topping the list in terms of relative abundance could be probably due to the generalist characteristic of this family enabling them to adapt to various types of habitat, feeding on a wide variety of fruits and arthropods. Some Bulbuls are known to have a high tolerance to disturbance, and this gives them the advantages of foraging success, selection of mate, reduced predation and spotting of forage location. Their relatively gregarious behavior also probably gives the observer an increased chance of sighting and recording them.

Conclusion

117 species of birds belonging to 37 families and 10 orders were recorded from Reiek Biodiversity Spot, and the Shannon-Wiener Diversity index was calculated to be $H' = 3.85$. Family-wise species composition shows that Muscicapidae has the largest family comprising of 16 species, followed by Timaliidae with 6 species. Among all the species recorded, *Alcippe nipalensis* has the highest relative abundance (13.35%), followed by *Staphida castaniceps* (Striated Yuhina) and *Zosterops palpebrosus* (Oriental White Eye) with 8.6007% and 6.0337% each. Family-wise relative abundance revealed that Pycnonotidae has the highest relative abundance (17.45%), followed by Sylviidae (15.91%) and Timaliidae (13.35%). Among the species recorded *Apus acuticauda* (Dark-rumped Swift) belongs to the Vulnerable Category of the IUCN Red List Category for Threatened Species while the remaining 116 belong to Least Concern category.

This shows that the area supports a rich and diverse bird community in spite of it being an area which is not notified as a protected site by the State Government and has a good potential for avian conservation site and for bird watching tourism as well. This high diversity could be attributed to the heterogeneous habitat of the area and the conservation effort of the people. The present study also revealed that the secondary forest and cultivation site supports a good diversity of birds. The distribution of birds across the landscape and their association with their habitats were not studied due to time and financial constraint, hence, further studies on these regards are recommended.

Better management of the community protected site along with the adjacent secondary forest and cultivation site is recommended. Conservation awareness among the communities should be enhanced especially among the hunters of the community.

Acknowledgement

We are grateful to Mr. C. Lalthakima, Reiek, an avian expert and guide for his help during the field study, and Association for Environment Protection (ASEP) and Reiek Village Community for their cooperation and necessary permission.

Authors’ contributions

H. Lalthanzara and S.S. Sundaravel designed the study; Lalruatkimi and L. Sailo collected the data; Betsy Zodinpuii, L. Sailo and Lalruatkimi analysed the data; Lalruatkimi, S.S. Sundaravel and H. Lalthanzara prepared the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References

1. Ramachandra, A.M. (2013). Diversity and richness of bird species in newly formed habitats of Chandoli National Park in Western Ghats, Maharashtra State, India. *Biodiversity Journal*, 4(1), 235–242.

2. Girma, Z., Mengesha, G., Asfaw, T. (2017). Diversity, relative abundance and distribution of avian fauna in and around Wondo Genet Forest, South-Central Ethiopia. *Research Journal of Forestry*, 11(1), 1–12.

3. Rodriguez-Estrella, R. (2007). Land use changes affect distributional pattern of desert birds in Baja California Peninsula, Mexico. *Diversity and Distribution*, 13, 877–889.

4. Praveen, J., Jayapal, R., Pittie, A. (2016). A checklist
of the birds of India. *Indian Birds*, 11(5), 113.

5. Sethy, J., Samal, D., Sethi, S., Baral, B., Jena, S., Payra, S., Das, N.G., Boruah, B., Sahu, K.H. (2015). Species diversity and abundance of birds in and around North Orissa University, Takatpur, Baripade, Mayurbhanj, Odisha. *International Journal of Innovative Research in Science, Engineering and Technology*, 4(2), 301.

6. Ali, S., Ripley, S.D. (1987). *Handbook of the Birds of India and Pakistan*. New Delhi. Oxford Press.

7. Lepage, D. (2017). Avibase - Bird Checklist of the World, Mizoram. https://avibase.bsc-eoc.org/checklist.jsp?region=INnemz&list=clements (3 March 2019)

8. Bibby, C., Jones, M., Marsden, S. (2000). *Bird Surveys, Expedition Field Technique*. Cambridge. Birdlife International.

9. Sondhi, N.S. (2002). A comparison of birds community of two fragmented and two continuous South East Asia forest. *Biodiversity and Conservation*, 11, 1105–1119.

10. Voon, M.F.A., Nasradhi, N.K., Rahman, A.M., Azlan, M.J. (2014). Bird diversity, density and foraging activities in a university campus landscape in Sarawak. *Borneo Journal of Resource Science and Technology*, 20(9), 9–20.

11. Lalthanzara, H. (2010). Recent status of threatened birds of Mizoram. *Science Vision*, 10 (4), 168–169.

12. Lalthanzara, H., Vanramliana, Lalramliana. (2011). Pheasants of Mizoram (India): Present status of diversity and distribution. *Science Vision*, 11(4), 218–223.

13. Kasambe, R., Lalthanzara, H., Lalawmawia Sailo (2013). Bird survey in Lengteng Wildlife Sanctuary and Blue Mountain (Phawngpui) National Park, Mizoram. *BUCEROS*, 18(3), 6–13.

14. Lalthanzara, H., Sailo, L., Solanki, G.S., Ramanujam, S.N. (2014). Galliformes and their conservation issues in Mizoram, India. *Cibtech Journal of Zoology*, 3(1), 42.

15. Sailo, L., Lalthanzara, H. (2015). Bird diversity of Lengteng Wildlife Sanctuary, Mizoram. *Science Vision*, 15(2), 87–96.

16. Anonymous. (2015). Important Bird Area factsheet: Murlen National Park. http://www.birdlife.org, (13 March 2019)

17. Lalthanzara, H., Sailo L. (2017). Avian diversity in Lungleng-1, Mizoram. *International Journal of Recent Scientific Research*, 8(6), 18033–18038.

18. Grimmett, R., Inskipp, C., Inskipp, T. (2011). *Birds of the Indian Subcontinent*. London. Christopher Heler, an imprint of Bloomsbury Publishing.

19. Grewal, B. (2000). *Birds of the Indian Subcontinent*. Hongkong. Local Column Limited.

20. Syiem, L.N., Goswami, B., Vasudev, D. (2018). In a Tree by the Brook, there’s a song bird who sings: Woodlands in an agricultural matrix maintain functionality of a wintering bird community. *PLOS One*, 13(8), e0201657.

21. Vanlalsawmi, R., Solanki, G.S., Zakhuma (2011). Birds of Dampa Tiger Reserve in Mizoram, India. *Proceedings of Advances in Environmental Chemistry*, 242–244.

22. Narwade, S., Kalra, M., Jagdish, R., Xavier, D., Satpute, S., Khan, N., Talukdar, G., Mathur, B.V., Vasudevan, K., Pandur, S.D., Chavan, V., Sood, R. (2002). Literature based species occurrence data of birds of North East India. *Zookeys*, 150, 140–417.

23. Saikia, K.P., Saikia, K.M. (2000). Diversity of bird fauna in North East India. *Journal of the Assam Science Society*, 41(4), 379–396.

24. Raikow, J.R., Bledsoe, H.A. (1990). Phylogeny and evolution of the passerine birds. *BioScience*. 50(6), 487–499

25. IUCN (2018). IUCN Red List of Threatened Species. Version 2018.2. https://www.iucnredlist.org/ (16 March 2019)

26. Casas, G., Darsi, B., Ferreira, A.M.P., Kindel, A., Muller, C. (2016). Habitat structure influence the diversity, richness and composition of bird assemblages in successional Atlantic Rainforest. *Tropical Conservation Science*, 9(1), 503–524.

27. Darras, K., Rahman, D., Sugito, W., Prawiradila, D., Agus, R., Fitrifan, I., Tscharntke, T. Birds of primary and secondary forest and shrub habitats in the peat swamp of Berbak National Park, Sumatra. *F1000 Research*, 7, 229.

28. Raman, S.R.K., Rawat, S.G., Johnsingh, T.J.A. (1998). Recovery of tropical rainforest avifauna in relation to vegetation succession following shifting cultivation in Mizoram, North East, India. *Journal of Applied Ecology*, 35, 214–231

29. Kwok, K.H. (2017). Flocking behavior of forest birds in HongKong. *Journal of Forest Research*, 28(5), 1097–1101.

30. Shakya, B.S., Sheldon, H.F. (2017). The phylogeny of the world’s bulbuls (Pycnonotidae) inferred using a supermatrix approach. *Ibis* 157,498–509.

31. Corlett, R.T. (1998). Frugivory and seed dispersal by vertebrates in the Oriental (IndoMalayan) region. *Biological Reviews*. 73, 413–448. DOI: 10.1017/s0006323198005234