An ADI Crank–Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation

Graeme Fairweather¹ · Xuehua Yang² · Da Xu³ · Haixiang Zhang²

Received: 24 June 2014 / Revised: 27 February 2015 / Accepted: 4 March 2015
Published online: 18 March 2015
© Springer Science+Business Media New York 2015

Abstract A new method is formulated and analyzed for the approximate solution of a two-dimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit method based on the Crank–Nicolson method combined with the L^1-approximation of the time Caputo derivative of order $\alpha \in (1, 2)$. It is proved that this scheme is stable, and of optimal accuracy in various norms. Numerical experiments demonstrate the predicted global convergence rates and also superconvergence.

Keywords Two-dimensional fractional diffusion-wave equation · Caputo derivative · Alternating direction implicit method · Orthogonal spline collocation method · Optimal global convergence estimates · Superconvergence

AMS Subject Classifications 65M70 · 65M12 · 65M15 · 35R11

✉ Graeme Fairweather
gxf@ams.org
Xuehua Yang
hunanshidayang@163.com
Da Xu
daxu@hunnu.edu.cn
Haixiang Zhang
hassenzhang@163.com

¹ Mathematical Reviews, American Mathematical Society, 416 Fourth Street, Ann Arbor, MI 48103, USA
² School of Science, Hunan University of Technology, Zhuzhou 412008, Hunan, People’s Republic of China
³ College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, Hunan, People’s Republic of China
1 Introduction

In this paper, we focus on the formulation and analysis of an alternating direction implicit (ADI) orthogonal spline collocation (OSC) method for the approximate solution of the two-dimensional time-fractional diffusion-wave problem

\[C_0^\alpha D_t^\alpha u(x, y, t) = \Delta u(x, y, t) + f(x, y, t), \quad (x, y, t) \in \Omega_T = \Omega \times (0, T], \quad (1.1) \]

with the initial conditions

\[u(x, y, 0) = \phi(x, y), \quad D_t u(x, y, 0) = \varphi(x, y), \quad (x, y) \in \Omega = \Omega \cup \partial \Omega, \quad (1.2) \]

and the boundary condition

\[u(x, y, t) = 0, \quad (x, y, t) \in \partial \Omega \times (0, T]. \quad (1.3) \]

Here, \(\Delta \) is the Laplace operator, \(\Omega = (0, 1) \times (0, 1) \) with boundary \(\partial \Omega \), \(\phi(x, y), \varphi(x, y) \) and \(f(x, y, t) \) are given sufficiently smooth functions in their respective domains. Also, \(C_0^\alpha D_t^\alpha u(x, y, t) \) is the Caputo fractional derivative of order \(\alpha \) (\(1 < \alpha < 2 \)) defined by

\[C_0^\alpha D_t^\alpha u(x, y, t) = \frac{1}{\Gamma(2-\alpha)} \int_0^t \frac{\partial^2 u(x, y, s)}{\partial s^2} ds \frac{ds}{(t-s)^{\alpha-1}}, \quad (1.4) \]

where \(\Gamma(\cdot) \) denotes the Gamma function, named after Caputo [5] who was one of the first to use this operator in applications and to investigate some of its properties. Equation (1.1) is called a time-fractional partial differential equation of order \(\alpha \) since it is intermediate between the diffusion equation (\(\alpha = 1 \)) and the wave equation (\(\alpha = 2 \)). In recent years, fractional partial differential equations have gained rapidly in popularity and importance as new modeling tools in a variety of fields, such as physics, biology, mechanical engineering, environmental science, signal processing, systems identification, electrical and control theory, finance, and hydrology; see, for example, [25, 26]. In particular, the fractional diffusion-wave Eq. (1.1) models wave propagation in viscoelastic materials.

Several approaches have been proposed for the solution of fractional partial differential equations in one and several space variables; see, for example, [1, 8, 16, 19, 23] and references in these papers. In particular, alternating direction implicit (ADI) methods have been employed recently for the solution of multidimensional problems. ADI methods were first introduced in the context of finite difference methods (FDMs) for parabolic and elliptic problems by Peaceman and Rachford [22] in the 1950s, and such methods in conjunction with various types of spatial discretizations continue to be studied extensively today, especially for the numerical solution of time-dependent problems; see [14] and references therein. The attraction of these techniques is that they replace the solution of multidimensional problems by sequences of one-dimensional problems, thus reducing the computational cost. For solving fractional problems in two space variables, ADI methods have been employed in numerous contexts. Meerschaert et al. [18] formulated an ADI FDM based on the backward Euler method to solve a class of space-fractional partial differential equations with variable coefficients, and, for the same problem, Tadjeran and Meerschaert [24] derived an ADI method based on the Crank–Nicolson finite difference method, and used Richardson
extrapolation to improve the spatial accuracy. For a space-fractional advection–dispersion equation, Chen and Liu [6] considered an ADI FDM backward Euler method and obtained second-order accuracy in both space and time on using Richardson extrapolation. Zhang and Sun [29] formulated and analyzed two ADI FDMs based on the L_1 approximation [20] and the backward Euler method for the time-fractional sub-diffusion equation comprising (1.1)–(1.3) with $0 < \alpha < 1$. These methods are proved to be second-order in space and of order $\min(2\alpha, 2 - \alpha)$ and $\min(1 + \alpha, 2 - \alpha)$, respectively, in time. Zhang et al. [30] formulated and analyzed a compact ADI FDM and a Crank–Nicolson ADI FDM for the time-fractional diffusion-wave equation and proved that the methods are fourth-order accurate in space and of order $3 - \alpha$ in time. For the same problem but with Neumann boundary conditions, Ren and Sun [23] formulated similar ADI methods of the same accuracy. Wang and Wang [27] formulated an ADI FDM for a class of space-fractional diffusion equations. They provided no analysis of the method but demonstrated its efficiency. Cui considered compact ADI FDMs for a time-fractional diffusion equation with the Riemann–Liouville fractional derivative in [7] and the Caputo derivative in [8]. ADI FDMs have also been used in the solution of three-dimensional fractional problems. In particular, Liu et al. [17] proposed such a scheme for the solution of a fractional equation governing seepage flow, and used Richardson extrapolation to improve the spatial accuracy. Also, Yu et al. [28] constructed an ADI FDM method for the fractional Bloch-Torrey equation to study anomalous diffusion in the human brain.

Orthogonal spline collocation has evolved as a valuable technique for the solution of several types of partial differential equations [3], especially in combination with ADI methods for multidimensional problems [12]. The popularity of OSC methods is due in part to their conceptual simplicity, wide applicability and ease of implementation. A well-known advantage of OSC methods over finite element Galerkin methods is that the calculation of the coefficients in the equations determining the approximate solution is very fast, since no integrals need to be evaluated or approximated. Another attractive feature of OSC methods is their superconvergence properties; see, for example, [21].

A brief outline of the remainder of this paper is as follows. In Sect. 2, standard notation and basic lemmas are presented. The ADI OSC Crank–Nicolson method for the solution of problem (1.1)–(1.3) is formulated in Sect. 3, followed by a stability analysis of the scheme in Sect. 4. In Sect. 5, we derive error estimates in the H^ℓ norm, $\ell = 0, 1, 2$, at each time step. In Sect. 6, we present the results of numerical experiments which support the analytical rates of convergence and exhibit superconvergence. Some concluding remarks are provided in Sect. 7.

2 Preliminaries

In this section, we introduce standard notation used in the formulation of OSC methods, and basic lemmas used in their analysis.

For positive integers r, N_x, N_y, let $\delta_x = \{x_i\}_{i=0}^{N_x}$ and $\delta_y = \{y_j\}_{j=0}^{N_y}$ be two partitions of $\bar{T} = [0, 1]$ such that

$$0 = x_0 < x_1 < \ldots < x_{N_x} = 1, \quad 0 = y_0 < y_1 < \ldots < y_{N_y} = 1.$$

Set

$$I^x_k = (x_{k-1}, x_k), \quad h^x_k = x_k - x_{k-1}, \quad 1 \leq k \leq N_x,$$

$$I^y_l = (y_{l-1}, y_l), \quad h^y_l = y_l - y_{l-1}, \quad 1 \leq l \leq N_y,$$
and \(h = \max \left(\max_{1 \leq k \leq N_x} h_k^x, \max_{1 \leq l \leq N_y} h_l^y \right) \). It is assumed that the collection of partitions \(\delta = \delta_x \times \delta_y \) of \(\Omega \) is quasi-uniform.

Let \(\mathcal{M}(r, \delta_x) \) and \(\mathcal{M}(r, \delta_y) \) be the spaces of piecewise polynomials of degree \(\leq r, r \geq 3 \), defined by

\[
\mathcal{M}(r, \delta_x) = \left\{ v|v \in C^1(I), v|I_k^x \in P_r, k = 1, 2, ..., N_x, v(0) = v(1) = 0 \right\},
\]

and

\[
\mathcal{M}(r, \delta_y) = \left\{ v|v \in C^1(I), v|I_l^y \in P_r, l = 1, 2, ..., N_y, v(0) = v(1) = 0 \right\},
\]

where \(P_r \) denotes the set of polynomials of degree at most \(r \). Then we set

\[
\mathcal{M}(\delta) = \mathcal{M}(r, \delta_x) \otimes \mathcal{M}(r, \delta_y),
\]

the set of all functions that are finite linear combinations of products \(v^x(x)v^y(y) \), where \(v^x \in \mathcal{M}(r, \delta_x) \) and \(v^y \in \mathcal{M}(r, \delta_y) \), and \(\dim \mathcal{M}(\delta) = (r - 1)^2 N_x N_y \).

Let \(\{ \lambda_k \}_{k=1}^{r-1} \), with 0 < \(\lambda_1 < \lambda_2 < \cdots < \lambda_{r-1} < 1 \), denote the nodes of the \((r-1)\)-point Gauss quadrature rule on the interval \(I \) with corresponding weights \(\{ \omega_k \}_{k=1}^{r-1} \), and let

\(\Lambda_x = \{ \xi_{i,k}^x \}_{i,k=1}^{N_x,r-1} \) and \(\Lambda_y = \{ \xi_{j,l}^y \}_{j,l=1}^{N_y,r-1} \) be the sets of Gauss points in the \(x \)- and \(y \)-directions, respectively, where

\[
\xi_{i,k}^x = x_{i-1} + \lambda_k h_i^x, \quad 1 \leq k \leq r - 1, \quad 1 \leq i \leq N_x,
\]

and

\[
\xi_{j,l}^y = y_{j-1} + \lambda_l h_j^y, \quad 1 \leq l \leq r - 1, \quad 1 \leq j \leq N_y.
\]

Then \(\Lambda = \{ \xi \xi = (\xi^x, \xi^y), \xi^x \in \Lambda_x, \xi^y \in \Lambda_y \} \) is the set of Gauss quadrature points in \(\Omega \), which are the collocation points.

For \(u \) and \(v \) defined on \(\Lambda \), we define the discrete inner product \(\langle \cdot, \cdot \rangle \) and norm \(\| \cdot \|_{D} \) by

\[
\langle u, v \rangle = \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} h_i^x h_j^y \sum_{k=1}^{r-1} \sum_{l=1}^{r-1} \omega_k \omega_l (uv)(\xi_{i,k}^x, \xi_{j,l}^y), \quad \| v \|_D^2 = \langle v, v \rangle.
\]

For \(\ell \) a nonnegative integer, we denote by

\[
\| f \|_{H^\ell} = \left(\sum_{0 \leq \alpha_1 + \alpha_2 \leq \ell} \left\| \frac{\partial^{\alpha_1+\alpha_2} f}{\partial x^{\alpha_1} \partial y^{\alpha_2}} \right\|^2 \right)^{\frac{1}{2}}
\]

the norm on the Sobolev space \(H^\ell(\Omega) \), where \(\| \cdot \| \) denotes the usual \(L^2 \) norm, sometimes written as \(\| \cdot \|_{H^0} \) for convenience.

If \(X \) is a normed space with norm \(\| \cdot \|_X \), then we denote by \(C([0, T], X) \) the set of functions \(f \in C(\overline{\Omega_T}) \equiv C^{0,0,0}(\overline{\Omega_T}) \) such that \(f(\cdot, t) \in X \) for \(t \in [0, T] \), and
\[\| f \|_{C([0,T],X)} = \max_{0 \leq t \leq T} \| f(\cdot,t) \|_X < \infty. \]

Let \(C^{p,q,s}(\Omega_T) \) denote the set of functions \(f \) such that \(\partial_{i+j+n} f/\partial x^i \partial y^j \partial t^n \) is continuous on \(\overline{\Omega_T} \) for \(0 \leq i \leq p, 0 \leq j \leq q, \) and \(0 \leq n \leq s \). If \(f \in C^{p,q,s}(\Omega_T) \), then \(\| f \|_{C^{p,q,s}} \) is defined by
\[\| f \|_{C^{p,q,s}} = \max_{0 \leq i \leq p, 0 \leq j \leq q, 0 \leq n \leq s} \max_{(x,y,t) \in \Omega_T} \left| \partial_{i+j+n} f/\partial x^i \partial y^j \partial t^n \right|. \]

Throughout the paper, we denote by \(C \) a generic positive constant that is independent of \(h \) and \(\Delta t \), unless otherwise noted and is not necessarily the same on each occurrence. Besides, we make repeated use of Young’s inequality
\[de \leq \varepsilon d^2 + \frac{1}{4\varepsilon} e^2, \quad d, e \in \mathbb{R}, \quad \varepsilon > 0, \quad (2.2) \]

Next we present several lemmas required in the stability and convergence analyses.

Lemma 2.1 If \(U, V \in \mathcal{M}(\delta) \), then the following hold:
\[\langle -\Delta U, V \rangle = \langle U, -\Delta V \rangle, \quad (2.3) \]
\[\langle -\Delta U, U \rangle \geq C \| \nabla U \|^2 \geq 0, \quad (2.4) \]
\[\langle \Delta U, V \rangle \leq C \| \nabla U \| \| \nabla V \|, \quad -\langle \Delta U, V \rangle \leq C \left[\| \nabla U \|^2 + \| \nabla V \|^2 \right]; \quad (2.5) \]
see the proof of Lemma 3.3 in [13].

Lemma 2.2 For \(V \in \mathcal{M}(\delta) \),
\[\left\langle \frac{\partial^4 V}{\partial x^2 \partial y^2}, V \right\rangle \geq \left\| \frac{\partial^2 V}{\partial x \partial y} \right\|^2, \quad (2.6) \]
\[\left\langle \frac{\partial^4 V}{\partial x^2 \partial y^2}, -\Delta V \right\rangle \geq \left\| \frac{\partial^3 V}{\partial x^2 \partial y} \right\|^2 + \left\| \frac{\partial^3 V}{\partial x \partial y^2} \right\|^2, \quad (2.7) \]
\[\left\| V \right\|_{H^2} \leq C \| \Delta V \|_D, \quad (2.8) \]
\[[2, \text{Eq. (3.20)}]. \]

3 The ADI Crank–Nicolson OSC Scheme

Let \(\{ t_n \}_{n=0}^M \) be a uniform partition of \([0, T]\) such that \(t_n = n\Delta t, \Delta t = T/M, \) where \(M \) is a positive integer and \(\Delta t \) is the time step size. We set \(t_{n-1/2} = (n-1/2) \Delta t, 1 \leq n \leq M. \) Next, we introduce the following notation:
where $V^n(\cdot, \cdot) = V(\cdot, \cdot, t_n)$, $0 \leq n \leq M$,

$$\delta_t V^n = \frac{V^n - V^{n-1}}{\Delta t}, \quad V^{n-\frac{1}{2}} = \frac{1}{2}(V^n + V^{n-1}), \quad 1 \leq n \leq M.$$

Then, the time fractional derivative $C_0^\alpha D_t^\alpha u(x, y, t)$ at $t_{n-\frac{1}{2}}$ can be written

$$C_0^\alpha D_t^\alpha u(x, y, t_{n-\frac{1}{2}}) = \frac{1}{\Gamma(2 - \alpha)} \int_{t_{n-1}}^{t_{n-\frac{1}{2}}} \frac{\partial^2 u(x, y, s)}{\partial s^2} \left(t_{n-\frac{1}{2}} - s \right)^{\alpha - 1} ds \leq J_{\alpha}^{n-\frac{1}{2}}(u) + R_{\alpha}^{n-\frac{1}{2}}, \quad 1 \leq n \leq M, \quad (3.1)$$

where

$$J_{\alpha}^{n-\frac{1}{2}}(u) = \frac{\Delta t^{1-\alpha}}{\Gamma(3 - \alpha)} \left[b_0 \delta_t u^n - \sum_{j=1}^{n-1} (b_{n-j-1} - b_n) \delta_t u^j - b_{n-1} \phi \right], \quad (3.2)$$

with $b_j = (j + 1)^{2-\alpha} - j^{2-\alpha}$, $j \geq 0$, $\phi(x, y) = D_t u(x, y, 0)$ from (1.2). The quantity $J_{\alpha}^{n-\frac{1}{2}}(u)$ is the L1-approximation of the Caputo derivative at $t_{n-\frac{1}{2}}$, with truncation error, $R_{\alpha}^{n-\frac{1}{2}}$, satisfying

$$\left| R_{\alpha}^{n-\frac{1}{2}} \right| \leq C \Delta t^{3-\alpha}, \quad 1 \leq n \leq M; \quad (3.3)$$

see [15,30]. The coefficients b_j possess the following properties which are required in subsequent analyses.

Lemma 3.1 [30] *The coefficients b_j, $j \geq 0$, satisfy:*

(i) $1 = b_0 > b_1 > \cdots > b_n > b_{n+1} > \cdots \rightarrow 0$;
(ii) $(2 - \alpha)(j + 1)^{1-\alpha} < b_j < (2 - \alpha)j^{1-\alpha}$, $j \geq 1$;
(iii) $\sum_{j=0}^{n} (b_j - b_{j+1}) + b_{n+1} = 1$;
(iv) $\sum_{j=1}^{n} b_{j-1} = n^{2-\alpha}$.

With the approximation of the Caputo derivative given by (3.2), the Crank–Nicolson OSC scheme for the approximation of (1.1) consists in find $U^n_h \in \mathcal{M}(\delta)$, $n = 1, 2, \cdots, M$, such that, for $1 \leq n \leq M$,

$$\frac{\Delta t^{1-\alpha}}{\Gamma(3 - \alpha)} \left[b_0 \delta_t U^n_h - \sum_{j=1}^{n-1} (b_{n-j-1} - b_n) \delta_t U^j_h - b_{n-1} \phi \right] = \Delta U_h^{n-\frac{1}{2}} + f^{n-\frac{1}{2}} \text{ on } \Lambda, \quad (3.4)$$

where $f^{n-\frac{1}{2}} = f(\cdot, \cdot, t_{n-\frac{1}{2}})$; U^0_h is prescribed later; cf. [30, (4.5)].

With $E^n_h = U^n_h - U^{n-\frac{1}{2}}_h$, we write (3.4) in the form

\[\text{Springer} \]
\[
\frac{\Delta t^{-\alpha}}{\Gamma(3 - \alpha)} \left[E_h^n - \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) E_h^j - \Delta t b_{n-1} \phi \right] \\
= \frac{1}{2} \Delta E_h^n + \Delta U_h^{n-1} + f^{n-\frac{1}{2}} \text{ on } \Lambda, \quad 1 \leq n \leq M, \quad (3.5)
\]
since \(b_0 = 1 \) from Lemma 3.1(i). Let
\[
\mu = \Gamma(3 - \alpha) \Delta t^\alpha. \quad (3.6)
\]
On multiplying (3.5) by \(\mu \) and rearranging terms, we obtain
\[
E_h^n - \frac{\mu}{2} \Delta E_h^n = \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) E_h^j + \Delta t b_{n-1} \phi + \mu \Delta U_h^{n-1} + \mu f^{n-\frac{1}{2}} \\
\text{on } \Lambda, \quad 1 \leq n \leq M. \quad (3.7)
\]
On adding the term
\[
\frac{\mu^2}{4} \frac{\partial^4 E_h^n}{\partial x^2 \partial y^2}
\]
to the left-hand side of (3.7), we obtain:
\[
\left[1 - \frac{\mu}{2} \Delta + \frac{\mu^2}{4} \frac{\partial^4}{\partial x^2 \partial y^2} \right] E_h^n = F^n \text{ on } \Lambda, \quad 1 \leq n \leq M, \quad (3.8)
\]
where
\[
F^n = \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) E_h^j + \Delta t b_{n-1} \phi + \mu \Delta U_h^{n-1} + \mu f^{n-\frac{1}{2}},
\]
the basis of the ADI OSC Crank–Nicolson method for approximating (1.1).

To write (3.8) as an ADI method in matrix-vector form, let \(\{\chi_i\}_{i=1}^{M_x} \) and \(\{\psi_j\}_{j=1}^{M_y} \) be bases for the subspaces \(\mathcal{M}(r, \delta_x) \) and \(\mathcal{M}(r, \delta_y) \), respectively, where \(M_x = (r - 1)N_x \) and \(M_y = (r - 1)N_y \), and set
\[
U_h^n(x, y) = \sum_{i=1}^{M_x} \sum_{j=1}^{M_y} Y_{i,j}^{(n)} \chi_i(x) \psi_j(y).
\]
We let
\[
Y^{(n)} = \begin{bmatrix} Y_{11}^{(n)}, & Y_{12}^{(n)}, & \cdots, & Y_{1M_y}^{(n)}, & Y_{21}^{(n)}, & Y_{22}^{(n)}, & \cdots, & Y_{2M_y}^{(n)}, & \cdots, & Y_{M_x1}^{(n)}, & \cdots, & Y_{M_xM_y}^{(n)} \end{bmatrix}^T,
\]
\[
F^{(n)} = \begin{bmatrix} F^n(\xi_1^x, \xi_1^y), & F^n(\xi_1^x, \xi_2^y), & \cdots, & F^n(\xi_1^x, \xi_{M_y}^y), & F^n(\xi_2^x, \xi_1^y), & \cdots, & F^n(\xi_{M_x}^x, \xi_{M_y}^y) \end{bmatrix}^T
\]
and define the matrices
\[
A_x = \begin{bmatrix} -\chi_j^{(n)}(\xi_i^x) \end{bmatrix}_{i,j=1}^{M_x}, \quad A_y = \begin{bmatrix} -\psi_j^{(n)}(\xi_i^y) \end{bmatrix}_{i,j=1}^{M_y},
\]
\[
B_x = \begin{bmatrix} \chi_j(\xi_i^x) \end{bmatrix}_{i,j=1}^{M_x}, \quad B_y = \begin{bmatrix} \psi_j(\xi_i^y) \end{bmatrix}_{i,j=1}^{M_y}.
\]
Then the algebraic problem comprises determining \(\nu^{(n)} = \Upsilon^{(n)} - \Upsilon^{(n-1)} \) from

\[
\left[\left(B_x + \frac{\mu}{2} A_x \right) \otimes I_{M_y} \right] \tilde{\nu}^{(n)} = F^{(n)}, \tag{3.9}
\]

and

\[
\left[I_{M_x} \otimes \left(B_y + \frac{\mu}{2} A_y \right) \right] \nu^{(n)} = \tilde{\nu}^{(n)}. \tag{3.10}
\]

where \(\otimes \) denotes the matrix tensor product, and \(\tilde{\nu}^{(n)} \) is an auxiliary vector, cf. [21]. Thus, it follows on using properties of \(\otimes \) that \(\nu^{(n)} \) is determined by solving the two sets of independent one-dimensional problems, (3.9) and (3.10). With standard choices of bases for the spaces \(M(r, \delta_x) \) and \(M(r, \delta_y) \), these linear systems have an almost block diagonal structure, and can be solved efficiently using algorithms described in [10], for example. Clearly, the computation of \(\nu^{(n)} \) is highly parallel.

4 Stability Analysis

In this section, we derive stability results in the \(H^1 \)-norm, \(l = 0, 1, 2 \).

4.1 The \(H^1 \) Stability Analysis

An \(H^1 \) stability result for (3.8) is proved in the following theorem.

Theorem 4.1 The ADI OSC Crank–Nicolson method (3.8) is stable with respect to the \(H^1 \) norm. Specifically, for \(U^n_h \in M(\delta), 1 \leq n \leq M \),

\[
\| \nabla U^n_h \|^2 \leq C \| \nabla U^0_h \|^2 + \frac{\Gamma_{2-\alpha}^2}{\Gamma(3-\alpha)} \| \phi \|^2_D + \Gamma(2-\alpha) t^\alpha n^{-1} \Delta t \sum_{j=1}^n \| f^{j-\frac{1}{2}} \|^2_D. \tag{4.1}
\]

Proof First note that (3.8) can be written as

\[
\delta_t U^n_h - \frac{\mu}{\Delta t} \Delta U^n_h^{-\frac{1}{2}} + \frac{\mu^2}{4} \frac{\partial^4 \delta_t U^n_h}{\partial x^2 \partial y^2} = \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \delta_t U^j_h + b_{n-1} \phi + \frac{\mu}{\Delta t} f^{n-\frac{1}{2}} \text{ on } \Lambda, \quad 1 \leq n \leq M, \tag{4.2}
\]

or, on substituting (3.6) into (4.2) and rearranging terms,

\[
\frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \delta_t U^n_h - \Delta U^n_h^{-\frac{1}{2}} + \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \frac{\partial^4 \delta_t U^n_h}{\partial x^2 \partial y^2} = \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \delta_t U^j_h + \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \phi + f^{n-\frac{1}{2}} \text{ on } \Lambda, \quad 1 \leq n \leq M. \tag{4.3}
\]
Taking the discrete inner product of (4.3) with δU^n_h yields
\[
\frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \langle \delta_t U^n_h, \delta_t U^n_h \rangle - \left\langle \Delta U^{n-\frac{1}{2}}_h, \delta_t U^n_h \right\rangle + \frac{(3-\alpha)\Delta t^{1+\alpha}}{4} \left\langle \frac{\partial^4 \delta_t U^n_h}{\partial x^2 \partial y^2}, \delta_t U^n_h \right\rangle
= \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\langle \delta_t U^j_h, \delta_t U^n_h \right\rangle
+ \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\langle \phi, \delta_t U^n_h \right\rangle + \left\langle f^{n-\frac{1}{2}}, \delta_t U^n_h \right\rangle, \quad 1 \leq n \leq M. \tag{4.4}
\]

The first term on the left-hand side of (4.4) can be written as
\[
\frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \langle \delta_t U^n_h, \delta_t U^n_h \rangle = \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \| \delta_t U^n_h \|_D^2. \tag{4.5}
\]

A straightforward calculation shows that the second term on the left-hand side of (4.4) gives
\[
- \left\langle \Delta U^{n-\frac{1}{2}}_h, \delta_t U^n_h \right\rangle = \frac{1}{2} \delta_t \left\langle -\Delta U^n_h, U^n_h \right\rangle. \tag{4.6}
\]

and, from Lemma 2.2, we have, for the third term,
\[
\left\langle \frac{\partial^4 \delta_t U^n_h}{\partial x^2 \partial y^2}, \delta_t U^n_h \right\rangle \geq \left\| \frac{\partial^2 \delta_t U^n_h}{\partial x \partial y} \right\|^2 \geq 0. \tag{4.7}
\]

On substituting (4.5) and (4.6) into (4.4) and dropping the non-negative term, \(\| \frac{\partial^2 \delta_t U^n_h}{\partial x \partial y} \|^2\), we obtain
\[
\frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \| \delta_t U^n_h \|_D^2 + \frac{1}{2} \delta_t \left\langle -\Delta U^n_h, U^n_h \right\rangle \leq \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\langle \delta_t U^j_h, \delta_t U^n_h \right\rangle
+ \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\langle \phi, \delta_t U^n_h \right\rangle + \left\langle f^{n-\frac{1}{2}}, \delta_t U^n_h \right\rangle, \quad 1 \leq n \leq M. \tag{4.8}
\]

Multiplying (4.8) by $2\Delta t$, and using the fact that, from Lemma 3.1(i), $b_{n-1} > 0$ and $b_{n-j-1} - b_{n-j} > 0$, we obtain, for $1 \leq n \leq M$,
\[
\frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \| \delta_t U^n_h \|_D^2 + \left\langle -\Delta U^n_h, U^n_h \right\rangle \leq \left\langle -\Delta U^{n-1}_h, U^{n-1}_h \right\rangle + \frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\langle \delta_t U^j_h, \delta_t U^n_h \right\rangle
+ \frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\langle \phi, \delta_t U^n_h \right\rangle + 2\Delta t \left\langle f^{n-\frac{1}{2}}, \delta_t U^n_h \right\rangle. \tag{4.9}
\]
On using the Cauchy-Schwarz inequality and the triangle inequality, (4.9) can be rewritten as

\[
\frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \left\| \delta_t U^n_h \right\|_D^2 + \left\langle -\Delta U^n_h, U^n_h \right\rangle \\
\leq \left\langle -\Delta U^{n-1}_h, U^{n-1}_h \right\rangle + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\| \delta_t U^j_h \right\|_D^2 \\
+ \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\| \phi \right\|_D^2 + 2\Delta t \left\langle f^{n-\frac{1}{2}}, \delta_t U^n_h \right\rangle \\
= \left\langle -\Delta U^{n-1}_h, U^{n-1}_h \right\rangle + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\| \delta_t U^j_h \right\|_D^2 \\
+ \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) + b_{n-1} \left\| \delta_t U^n_h \right\|_D^2 \\
+ \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\| \phi \right\|_D^2 + 2\Delta t \left\langle f^{n-\frac{1}{2}}, \delta_t U^n_h \right\rangle, \quad 1 \leq n \leq M. \tag{4.10}
\]

Note that, from Lemma 3.1(i) and (iii),

\[
\sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) + b_{n-1} = b_0 = 1,
\]

so that (4.10) becomes

\[
\frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \left\| \delta_t U^n_h \right\|_D^2 + \left\langle -\Delta U^n_h, U^n_h \right\rangle \\
\leq \left\langle -\Delta U^{n-1}_h, U^{n-1}_h \right\rangle + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\| \delta_t U^j_h \right\|_D^2 \\
+ \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \left\| \delta_t U^n_h \right\|_D^2 + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\| \phi \right\|_D^2 \\
+ 2\Delta t \left\langle f^{n-\frac{1}{2}}, \delta_t U^n_h \right\rangle, \quad 1 \leq n \leq M. \tag{4.11}
\]

On reformulating (4.11), we obtain

\[
\left\langle -\Delta U^n_h, U^n_h \right\rangle + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n} b_{n-j} \left\| \delta_t U^j_h \right\|_D^2 \\
\leq \left\langle -\Delta U^{n-1}_h, U^{n-1}_h \right\rangle + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} b_{n-j-1} \left\| \delta_t U^j_h \right\|_D^2 \\
+ \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\| \phi \right\|_D^2 + 2\Delta t \left\langle f^{n-\frac{1}{2}}, \delta_t U^n_h \right\rangle, \quad 1 \leq n \leq M. \tag{4.12}
\]
For convenience, we define G^n by:

$$
\begin{align*}
G^0 &= \langle -\Delta U^0_h, U^0_h \rangle, \\
G^n &= \langle -\Delta U^n_h, U^n_h \rangle + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n} b_{n-j} \|\delta_t U^j_h\|_D^2, \quad n \geq 1.
\end{align*}
$$

(4.13)

Then (4.12) is equivalent to

$$
G^n \leq G^{n-1} + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \|\phi\|_D^2 + 2\Delta t \left(f^{n-\frac{1}{2}}, \delta_t U^n_h \right)
$$

\begin{align*}
&\leq G^{n-2} + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-2} \|\phi\|_D^2 + 2\Delta t \left(f^{n-\frac{1}{2}}, \delta_t U^{n-1}_h \right) \\
&\quad + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \|\phi\|_D^2 + 2\Delta t \left(f^{n-\frac{1}{2}}, \delta_t U^n_h \right) \\
&\leq G^0 + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n} b_{n-j} \|\phi\|_D^2 + 2\Delta t \sum_{j=1}^{n} \left(f^{j-\frac{1}{2}}, \delta_t U^j_h \right),
\end{align*}

using Lemma 3.1(iv) in the last step. On using the Cauchy-Schwarz inequality and Young’s inequality (2.2), the last term on the right hand side of (4.14) may be bounded as

$$
2\Delta t \sum_{j=1}^{n} \left(f^{j-\frac{1}{2}}, \delta_t U^j_h \right) \leq \Delta t \sum_{j=1}^{n} \left[\frac{\Gamma(3-\alpha)}{\Delta t^{1-\alpha} b_{n-j}} \left\| f^{j-\frac{1}{2}} \right\|_D^2 + \frac{\Delta t^{1-\alpha} b_{n-j}}{\Gamma(3-\alpha)} \|\delta_t U^j_h\|_D^2 \right].
$$

(4.15)

On substituting (4.13) and (4.15) into (4.14) and simplifying the resulting expression, we obtain, for $1 \leq n \leq M$,

$$
\langle -\Delta U^n_h, U^n_h \rangle \leq \langle -\Delta U^0_h, U^0_h \rangle + \frac{t_n^{2-\alpha}}{\Gamma(3-\alpha)} \|\phi\|_D^2 + \Delta t \sum_{j=1}^{n} \left(f^{j-\frac{1}{2}} \right), \quad 1 \leq n \leq M.
$$

(4.16)

Also, since, from Lemma 3.1(ii),

$$
b_{n-j} \geq (2-\alpha)(n-j+1)^{1-\alpha} \geq (2-\alpha)n^{1-\alpha},
$$

the last term on the right hand side of (4.16) can be bounded as

$$
\Delta t \sum_{j=1}^{n} \frac{\Delta t^{1-\alpha} \Gamma(3-\alpha)}{b_{n-j}} \left\| f^{j-\frac{1}{2}} \right\|_D^2 \leq \frac{\Delta t^{1-\alpha} \Gamma(3-\alpha)}{(2-\alpha)n^{1-\alpha}} \Delta t \sum_{j=1}^{n} \left\| f^{j-\frac{1}{2}} \right\|_D^2 \\
\leq \Gamma(2-\alpha) t_n^{\alpha-1} \Delta t \sum_{j=1}^{n} \left\| f^{j-\frac{1}{2}} \right\|_D^2.
$$

(4.17)

From (2.4) and (2.5).
\[\langle -\Delta U_h^n, U_h^n \rangle \geq C \left\| \nabla U_h^n \right\|^2, \quad \langle -\Delta U_h^0, U_h^0 \rangle \leq C \left\| \nabla U_h^0 \right\|^2. \quad (4.18) \]

Substituting (4.17) and (4.18) into (4.16), and rearranging, we obtain
\[\left\| \nabla U_h^n \right\|^2 \leq C \left\| \nabla U_h^0 \right\|^2 + t_{n+1}^{2-\alpha} \left(\frac{t_n^{2-\alpha}}{\Gamma(3-\alpha)} \left\| \phi \right\|_D^2 + \Gamma(2-\alpha) t_n^{2-\alpha} \Delta t \sum_{j=1}^n \left\| f^{j-\frac{1}{2}} \right\|_D^2 \right), \quad (4.19) \]

which completes the proof. \[\square\]

4.2 The H^2 Stability Analysis

An H^2 stability estimate is derived in the following theorem.

Theorem 4.2 The ADI OSC Crank–Nicolson method (3.8) is stable with respect to the H^2 norm. More precisely, for $U_h^n \in M(\delta), 1 \leq n \leq M$, we have
\[\left\| U_h^n \right\|^2_{H^2} \leq C \left[\left\| \Delta U_h^n \right\|_D^2 + t_{n+1}^{2-2\alpha} \left\| \phi \right\|_D^2 + \max_{1 \leq j \leq n} \left\| f^{j-\frac{1}{2}} \right\|_D^2 + \Delta t \sum_{j=2}^n \left\| \delta_t f^{j-\frac{1}{2}} \right\|_D^2 \right], \]

where $1 \leq q \leq M$.

Proof Taking the inner product of (4.3) with $-\Delta \delta_t U_h^n$, we obtain
\[\langle \delta_t U_h^n, -\Delta \delta_t U_h^n \rangle - \left\langle \Delta U_h^{n-1}, -\Delta \delta_t U_h^n \right\rangle \]
\[+ \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \left\langle \frac{\partial^4 \delta_t U_h^n}{\partial x^2 \partial y^2}, -\Delta \delta_t U_h^n \right\rangle \]
\[= \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\langle \delta_t U_h^j, -\Delta \delta_t U_h^n \right\rangle \]
\[+ \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\langle \phi, -\Delta \delta_t U_h^n \right\rangle + \left\langle f^{n-\frac{1}{2}}, -\Delta \delta_t U_h^n \right\rangle, \quad 1 \leq n \leq M. \quad (4.20) \]

On using (2.4) with $U = \delta_t U_h^n$, we have, in the first term on the right hand side,
\[\langle \delta_t U_h^n, -\Delta \delta_t U_h^n \rangle \geq C \left\| \nabla \delta_t U_h^n \right\|^2. \quad (4.21) \]

The second term on the left-hand side of (4.20) can be written as
\[\left\langle \Delta U_h^{n-\frac{1}{2}}, \Delta \delta_t U_h^n \right\rangle = \frac{1}{2} \delta_t \left\langle \Delta U_h^n, \Delta U_h^n \right\rangle = \frac{1}{2} \delta_t \left\| \Delta U_h^n \right\|^2_D. \quad (4.22) \]

From (2.7) with $V = \delta_t U_h^n$,
\[\left\langle \frac{\partial^4 \delta_t U_h^n}{\partial x^2 \partial y^2}, -\Delta \delta_t U_h^n \right\rangle \geq \left\| \frac{\partial^3 \delta_t U_h^n}{\partial x^2 \partial y^2} \right\|^2 + \left\| \frac{\partial^3 \delta_t U_h^n}{\partial x \partial y^2} \right\|^2 \geq 0. \quad (4.23) \]
On substituting (4.21)–(4.23) into (4.20), dropping the non-negative terms $\left\| \frac{\partial^3 \delta_t U_h^n}{\partial x^2 \partial y} \right\|^2$ and

$$\left\| \frac{\partial^3 \delta_t U_h^n}{\partial x \partial y^2} \right\|^2,$$

we obtain

$$\frac{C_1 \Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \left\| \nabla \delta_t U_h^n \right\|^2 + \frac{1}{2} \delta_t \left\| \Delta U_h^n \right\|^2_D \leq \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left(\delta_t U_h^j, -\Delta \delta_t U_h^n \right)$$

$$+ \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\{ \phi, -\Delta \delta_t U_h^n \right\} + \left\{ f^{n-\frac{1}{2}}, -\Delta \delta_t U_h^n \right\}, \quad 1 \leq n \leq M. \quad (4.24)$$

Since $b_{n-j-1} - b_{n-j} > 0$ from Lemma 3.1(i),

$$\sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left(\delta_t U_h^j, -\Delta \delta_t U_h^n \right)$$

$$\leq \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\{ \delta_t U_h^j, -\Delta \delta_t U_h^n \right\}$$

$$\leq \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left[\frac{1}{\varepsilon} \left\| \nabla \delta_t U_h^j \right\|^2 + \varepsilon \left\| \nabla \delta_t U_h^n \right\|^2 \right]$$

$$\leq \frac{1}{\varepsilon} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \left\| \nabla \delta_t U_h^j \right\|^2 + \varepsilon \left\| \nabla \delta_t U_h^n \right\|^2, \quad (4.25)$$

on using (2.5), (2.2) and the fact that $\sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) = 1 - b_{n-1} < 1$ from Lemma 3.1(iii). We multiply (4.24) by $2\Delta t$, use (4.25) and rearrange terms to obtain

$$\left\| \Delta U_h^n \right\|^2_D + \frac{C_3 \Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n} b_{n-j} \left\| \nabla \delta_t U_h^j \right\|^2$$

$$\leq \left\| \Delta U_h^{n-1} \right\|^2_D + \frac{C_4 \Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} b_{n-j-1} \left\| \nabla \delta_t U_h^j \right\|^2$$

$$+ \frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \left\{ \phi, -\Delta \delta_t U_h^n \right\} + 2\Delta t \left\{ f^{n-\frac{1}{2}}, -\Delta \delta_t U_h^n \right\}, \quad 1 \leq n \leq M. \quad (4.26)$$

Therefore, using arguments similar to those in (4.14), we have, for $1 \leq n \leq M$,

$$\left\| \Delta U_h^n \right\|^2_D + \frac{C_3 \Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n} b_{n-j} \left\| \nabla \delta_t U_h^j \right\|^2$$

$$\leq \left\| \Delta U_h^0 \right\|^2_D + \frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n} b_{j-1} \left\{ \phi, -\Delta \delta_t U_h^j \right\} + 2\Delta t \sum_{j=1}^{n} \left\{ f^{j-\frac{1}{2}}, -\Delta \delta_t U_h^j \right\}. \quad (4.27)$$
In [11, Appendix A], it is shown that there exist integers \(m \) and \(q \), with \(1 \leq m \leq n \), \(0 \leq q \leq n - 1 \), such that

\[
\Delta t \sum_{j=1}^{n} b_{j-1} \left(\phi, -\Delta \delta U^{j}_{h} \right) = \sum_{j=1}^{n} b_{j-1} \left(\phi, \Delta U^{j}_{h} - \Delta U^{j-1}_{h} \right) \\
\leq b_{q} \left(\phi, \Delta U^{m}_{h} - \Delta U^{0}_{h} \right),
\]

(4.28)

since \(b_{0} = 1, b_{q} \leq (2 - \alpha)q^{-\alpha}, q > 0 \), and \(t_{1} = \Delta t \). Using (2.2) and (4.28), the Cauchy-Schwarz and triangle inequality, for \(1 \leq q \leq n - 1, 1 \leq m \leq n \), we then obtain

\[
\frac{2\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n} b_{j-1} \left(\phi, -\Delta \delta U^{j}_{h} \right) \leq \frac{2}{\Gamma(3-\alpha)} \left(t_{q}^{1-\alpha} \phi, \Delta U^{m}_{h} - \Delta U^{0}_{h} \right) \\
\leq \frac{1}{\Gamma(3-\alpha)} \left[\frac{t_{q}^{2-2\alpha}}{\varepsilon} \| \phi \|^{2}_{D} + \varepsilon \| \Delta U^{m}_{h} \|^{2}_{D} + \varepsilon \| \Delta U^{0}_{h} \|^{2}_{D} \right].
\]

(4.29)

The last term on the right-hand side of (4.27) is bounded as in [21, Eq. (2.35)] to obtain

\[
2\Delta t \left| \sum_{j=1}^{n} \left(f^{j-\frac{1}{2}}, -\Delta \delta U^{j}_{h} \right) \right| \leq \frac{1}{\varepsilon} \left\| f^{n-\frac{1}{2}} \right\|^{2}_{D} + \varepsilon \left\| \Delta U^{n}_{h} \right\|^{2}_{D} + \frac{1}{\varepsilon} \left\| f^{\frac{1}{2}} \right\|^{2}_{D} + \varepsilon \left\| \Delta U^{0}_{h} \right\|^{2}_{D} \\
+ \Delta t \sum_{j=2}^{n} \left\| \delta_t f^{j-\frac{1}{2}} \right\|^{2}_{D} + \Delta t \sum_{j=0}^{n-1} \left\| \Delta U^{j}_{h} \right\|^{2}_{D}.
\]

(4.30)

On substituting (4.29) and (4.30) into (4.27), dropping the non-negative second term on the left-hand side of (4.27), and simplifying the resulting expression, we obtain, for \(1 \leq m \leq n \), \(1 \leq q \leq n - 1 \), \(1 \leq m \leq n \), \(n \)

\[
\left\| \Delta U^{n}_{h} \right\|^{2}_{D} \leq C \left[\left\| \Delta U^{0}_{h} \right\|^{2}_{D} + t_{q}^{2-2\alpha} \left\| \phi \right\|^{2}_{D} + \left\| f^{\frac{1}{2}} \right\|^{2}_{D} + \left\| f^{n-\frac{1}{2}} \right\|^{2}_{D} \\
+ \Delta t \sum_{j=2}^{n} \left\| \delta_t f^{j-\frac{1}{2}} \right\|^{2}_{D} \right] + C \Delta t \sum_{j=1}^{n-1} \left\| \Delta U^{j}_{h} \right\|^{2}_{D} + C \varepsilon \left\| \Delta U^{m}_{h} \right\|^{2}_{D}.
\]

(4.31)

Suppose

\[
\max_{0 \leq \ell \leq n} \left\| \Delta U^{\ell}_{h} \right\|_{D} = \left\| \Delta U^{n}_{h} \right\|_{D}.
\]

Then

\[
\left\| \Delta U^{n}_{h} \right\|^{2}_{D} \leq C \left[\left\| \Delta U^{0}_{h} \right\|^{2}_{D} + t_{q}^{2-2\alpha} \left\| \phi \right\|^{2}_{D} + \left\| f^{\frac{1}{2}} \right\|^{2}_{D} + \left\| f^{n-\frac{1}{2}} \right\|^{2}_{D} \\
+ \Delta t \sum_{j=2}^{n} \left\| \delta_t f^{j-\frac{1}{2}} \right\|^{2}_{D} \right] + C \Delta t \sum_{j=1}^{n-1} \left\| \Delta U^{j}_{h} \right\|^{2}_{D} + C \varepsilon \left\| \Delta U^{m}_{h} \right\|^{2}_{D}.
\]
Thus, since $0 \leq J \leq n$,
\[
\|\Delta U_h^J\|^2_D \leq C \left[\|\Delta U_h^0\|^2_D + \|\tau_q^{2-2\alpha}\phi\|^2_D + \max_{1 \leq j \leq n} \|f^{j-\frac{1}{2}}\|^2_D \right] \\
+ \Delta t \sum_{j=2}^{n} \left| \delta_t f^{j-\frac{1}{2}} \right|_D^2 + C \Delta t \sum_{j=1}^{n-1} \|\Delta U_h^j\|^2_D + C \varepsilon \|\Delta U_h^J\|^2_D,
\]
from which it follows that, for ε sufficiently small,
\[
\|\Delta U_h^n\|^2_D \leq \|\Delta U_h^0\|^2_D + \|\tau_q^{2-2\alpha}\phi\|^2_D + \max_{1 \leq j \leq n} \|f^{j-\frac{1}{2}}\|^2_D \\
+ \Delta t \sum_{j=2}^{n} \left| \delta_t f^{j-\frac{1}{2}} \right|_D^2 + C \Delta t \sum_{j=1}^{n-1} \|\Delta U_h^j\|^2_D.
\]
(4.32)

Thus, on applying the discrete Gronwall lemma,
\[
\|\Delta U_h^n\|^2_D \leq C \left[\|\Delta U_h^0\|^2_D + \|\tau_q^{2-2\alpha}\phi\|^2_D + \max_{1 \leq j \leq n} \|f^{j-\frac{1}{2}}\|^2_D + \Delta t \sum_{j=2}^{n} \left| \delta_t f^{j-\frac{1}{2}} \right|_D^2 \right].
\]

\[\square\]

5 Convergence Analysis

In this section, we give an analysis of the convergence of the ADI OSC method. For this purpose, we introduce the elliptic projection $W : [0, T] \to \mathcal{M}(\delta)$ defined by
\[
\Delta (u - W) = 0 \quad \text{on} \quad \Lambda \times [0, T],
\]
where u is the solution of (1.1)–(1.3). The following two lemmas provide estimates for $u - W$ and its time derivatives; see [21, Eqs. (2.45), (2.46)].

Lemma 5.1 If $\partial^i u / \partial t^j \in H^{r+3-j}$, $i = 0, 1, 2$, $j = 0, 1, 2$, and W is defined by (5.1), then
\[
\left\| \partial^l (u - W) \right\|_{H^j} \leq C h^{r+1-l} \left\| \partial^l u \right\|_{H^{r+3-j}}, \quad j = 0, 1, 2, \quad l = 0, 1, 2.
\]
(5.2)

Lemma 5.2 If $\partial^i u / \partial t^j \in H^{r+3}$ for $t \in [0, T]$, $i = 0, 1, 2$, then
\[
\left\| \partial^l (u - W) \right\|_D \leq C h^{r+1-l} \left\| \partial^l u \right\|_{H^{r+3}}, \quad 0 \leq l = l_1 + l_2 \leq 4.
\]
(5.3)

Convergence results for the ADI OSC method are given in the following theorem.

Theorem 5.1 Suppose u is the solution of (1.1)–(1.3), and U^n_h, $n = 1, 2, \ldots, M$, satisfies (3.8) with $U^0_h = W^0$. If $u \in C^{2,0.3} \cap C^{0,2.3} \cap C^{2,3.1} \cap C^{3,2.1} \cap C^{0,0.4}$ and $\partial u / \partial t$, $\partial^2 u / \partial t^2$, $\partial^3 u / \partial t^3 \in C ([0, T], H^{r+3})$, then
\[
\left\| u(t_n) - U^n_h \right\|_{H^j} \leq C \left(h^{r+1-j} + \Delta t^{3-\alpha} \right), \quad j = 0, 1,
\]
and
\[\|u(t_n) - U^n_h\|_{H^2} \leq C \left(h^{r+1-j} + \Delta t^{3-\alpha} + \Delta t^{1-\alpha} h^{r+1} \right). \quad (5.5) \]

Proof With \(W \) defined in (5.1), we set

\[\eta^n = u^n - W^n, \quad \zeta^n = U^n_h - W^n, \quad 0 \leq n \leq M, \]

so that

\[u^n - U^n_h = \eta^n - \zeta^n. \quad (5.7) \]

Since estimates of \(\eta^n \) are known from Lemmas 5.1 and 5.2, it is sufficient to bound \(\zeta^n \), then use the triangle inequality to bound \(u^n - U^n_h \).

From (1.1) and (3.1), it follows that, for \(1 \leq n \leq M \),

\[
\frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \left[b_0 \delta_t u^n - \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \delta_t u^j - b_{n-1} \phi \right] \\
+ R^{n-\frac{1}{2}}_\alpha + \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \frac{\partial^4 \delta_t \zeta^n}{\partial x^2 \partial y^2} \\
= \Delta u^{n-\frac{1}{2}} + \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \frac{\partial^4 \delta_t u^n}{\partial x^2 \partial y^2} + f(t_{n-\frac{1}{2}}), \quad \text{on } \Delta. \quad (5.8)
\]

On subtracting (4.3) from (5.8) and using (5.1) and (5.6), we obtain, on rearranging terms,

\[
\frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \delta_t \zeta^n - \Delta \zeta^{n-\frac{1}{2}} + \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \frac{\partial^4 \delta_t \zeta^n}{\partial x^2 \partial y^2} \\
= \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} (b_{n-j-1} - b_{n-j}) \delta_t \zeta^j + \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} b_{n-1} \delta_t \eta^1 + \mathcal{F}^{n-\frac{1}{2}}_u, \quad (5.9)
\]

where

\[
\mathcal{F}^{n-\frac{1}{2}}_u = R^{n-\frac{1}{2}}_\alpha - \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \frac{\partial^4 \delta_t u^n}{\partial x^2 \partial y^2} + \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \frac{\partial^4 \delta_t \eta^n}{\partial x^2 \partial y^2} \\
+ \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} b_{n-j-1} \left(\delta_t \eta^{j+1} - \delta_t \eta^j \right). \quad (5.10)
\]

We first prove (5.4) for \(j = 0, 1 \). Applying the stability result (4.1) of Theorem 4.1 to (5.9), we obtain

\[
\|\nabla \zeta^n\|^2 \leq C \|\nabla \zeta^0\|^2 + \frac{t^{2-\alpha}}{\Gamma(3-\alpha)} \|\delta_t \eta^1\|_D^2 \\
+ \Gamma(2-\alpha) \Delta t^{\alpha-1} \Delta t \sum_{j=1}^{n} \|\mathcal{F}^{j-\frac{1}{2}}_u\|_D^2 \quad (5.11)
\]

From (5.10), we have

\[
\|\mathcal{F}^{n-\frac{1}{2}}_u\|_D \leq \|R^{n-\frac{1}{2}}_\alpha\|_D + \frac{\Gamma(3-\alpha) \Delta t^{1+\alpha}}{4} \|\partial^4 \delta_t \eta^n\|_D \\
+ \frac{\partial^4 \delta_t u^n}{\partial x^2 \partial y^2} \|\partial^4 \delta_t \eta^n\|_D \\
+ \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-1} b_{n-j-1} \left(\delta_t \eta^{j+1} - \delta_t \eta^j \right) \|\Delta t^{1-\alpha}\|_D. \quad (5.12)
\]

From (3.3),
For the second term on the right-hand side of (5.12), we obtain

\[\left\| \frac{\partial^4 \delta_t \eta^n}{\partial x^2 \partial y^2} - \frac{\partial^4 \delta_t u^a}{\partial x^2 \partial y^2} \right\|_D \leq C \Delta t^{3-\alpha}, \quad 1 \leq n \leq M. \]

(5.13)

The last term on the right-hand side in (5.12) is bounded in the following way. First,

\[\frac{\Delta t^{1-\alpha}}{\Gamma(3 - \alpha)} \left\| \sum_{j=1}^{n-1} b_{n-j-1} \left(\delta_t \eta^{j+1} - \delta_t \eta^j \right) \right\|_D \leq \frac{\Delta t^{2-\alpha}}{\Gamma(3 - \alpha)} \sum_{j=1}^{n-1} b_{n-j-1} \left\| \delta_t^2 \eta^{j+1} \right\|_D, \]

(5.15)

and

\[\left\| \delta_t^2 \eta^{j+1} \right\|_D = \frac{1}{\Delta t^2} \left\| \int_{t_{j-1}}^{t_j} (\tau - t_{j-1}) \frac{\partial^2 \eta}{\partial t^2}(\tau) d\tau - \int_{t_j}^{t_{j+1}} (\tau - t_{j+1}) \frac{\partial^2 \eta}{\partial t^2}(\tau) d\tau \right\|_D \leq \frac{1}{\Delta t} \left[\int_{t_{j-1}}^{t_j} \left\| \frac{\partial^2 \eta}{\partial t^2}(\tau) \right\|_D d\tau + \int_{t_j}^{t_{j+1}} \left\| \frac{\partial^2 \eta}{\partial t^2}(\tau) \right\|_D d\tau \right] \leq Ch^{r+1} \left\| \frac{\partial^2 u}{\partial t^2} \right\|_{C([0,T],H^{r+3})}, \quad j \geq 1, \]

(5.16)

using Lemma 5.2. Hence, on substituting (5.16) into (5.15), and using \(\sum_{j=1}^{n-1} b_{n-j-1} = (n - 1)^{2-\alpha} \) from Lemma 3.1(i v), we have

\[\frac{\Delta t^{1-\alpha}}{\Gamma(3 - \alpha)} \left\| \sum_{j=1}^{n-1} b_{n-j-1} \left(\delta_t \eta^{j+1} - \delta_t \eta^j \right) \right\|_D \leq C_1 h^{r+1} \left(\frac{t_{n-1}}{\Gamma(3 - \alpha)} \right) \left\| \frac{\partial^2 u}{\partial t^2} \right\|_{C([0,T],H^{r+3})} \leq C T^{2-\alpha} h^{r+1}. \]

(5.17)

Since \(1 < \alpha < 2 \), we have \(1 + \alpha > 3 - \alpha \). Therefore, with (5.13), (5.14) and (5.17) in (5.12), we obtain

\[\left\| F_{\alpha}^{n-1} \right\|_D \leq C \left(\Delta t^{3-\alpha} + h^{r+1} \right). \]

(5.18)

Also,

\[\left\| \delta_t \eta^1 \right\|_D = \frac{1}{\Delta t} \left\| \int_{t_0}^{t_1} \frac{\partial \eta}{\partial t}(\tau) d\tau \right\|_D \leq \frac{1}{\Delta t} \int_{t_0}^{t_1} \left\| \frac{\partial \eta}{\partial t}(\tau) \right\|_D d\tau \leq Ch^{r+1} \left\| \frac{\partial u}{\partial t} \right\|_{C([0,T],H^{r+3})}, \]

(5.19)

using (5.3). Then, substituting (5.18) and (5.19) into (5.11), and noting that \(\zeta^0 = 0 \), we have
\[\| \nabla \zeta^n \| \leq C (\Delta t^{3-\alpha} + h^{r+1}). \]
(5.20)

Using Poincaré’s inequality, it follows that

\[\| \zeta^n \| \leq C (\Delta t^{3-\alpha} + h^{r+1}). \]
(5.21)

Then using the triangle inequality, (5.20), (5.21) and Lemma 5.1, it follows that

\[\| u(t_n) - U^n_h \|_{H^j} \leq C (\Delta t^{3-\alpha} + h^{r+1}), \quad j = 0, 1, \]

as desired.

When \(j = 2 \), according to Theorem 4.2, we obtain

\[\| \zeta^n \|_{H^2} \leq C (\Delta t^{3-\alpha} + h^{r+1}), \quad 1 < \alpha < 2, \]

we have

\[t_q^{1-\alpha} \| \delta_t \eta^1 \|_D \leq C \Delta t^{1-\alpha} h^{r+1}, \]
(5.23)

on using (5.19). In order to complete the proof, we require an estimate of \(\| \delta_t F_u^{n-1/2} \|_D \). First observe that, from (5.10), for \(2 \leq n \leq M \),

\[\delta_t F_u^{n-1/2} = \delta_t R^n - \frac{\Gamma(3-\alpha)}{4} \frac{\partial^4 \delta_t^2 u^n}{\partial x^2 \partial y^2} + \frac{\Gamma(3-\alpha)}{4} \frac{\partial^4 \delta_t^2 \eta^n}{\partial x^2 \partial y^2} + \frac{\Delta t^{1-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-2} b_{j-1} \left(\delta_t^2 \eta^{n-j+1} - \delta_t^2 \eta^{n-j} \right) + b_{n-2} \delta_t^2 \eta^2, \]
(5.24)

from which it follows that

\[\| \delta_t F_u^{n-1/2} \|_D \leq \| \delta_t R^n - \frac{\Gamma(3-\alpha)}{4} \frac{\partial^4 \delta_t^2 u^n}{\partial x^2 \partial y^2} \|_D + \frac{\Delta t^{2-\alpha}}{\Gamma(3-\alpha)} \sum_{j=1}^{n-2} b_{j-1} \left(\delta_t^2 \eta^{n-j+1} - \delta_t^2 \eta^{n-j} \right) + b_{n-2} \delta_t^2 \eta^2. \]
(5.25)

In [11, Appendix B], it is proved that

\[\| \delta_t R^n - \frac{\Gamma(3-\alpha)}{4} \frac{\partial^4 \delta_t^2 u^n}{\partial x^2 \partial y^2} \|_D \leq C \Delta t^{3-\alpha}, \quad 1 \leq n \leq M. \]
(5.26)

Then
\[
\frac{\Gamma(3 - \alpha)\Delta t^{1+\alpha}}{4} \left\| \frac{\partial^4 \delta_t^2 \eta^n}{\partial x^2 \partial y^2} - \frac{\partial^4 \delta_t^2 u^n}{\partial x^2 \partial y^2} \right\|_D \\
\leq C \Delta t^{1+\alpha} \left\| \frac{\partial^2 u}{\partial t^2} \right\|_{C^{2,2,0}} + \left\| \frac{\partial^2 u}{\partial t^2} \right\|_{C([0,T], H^{r+3})};
\]

(5.27)

cf. (5.14). Also, for \(j \geq 3 \),
\[
\left\| \frac{\partial^3 \eta^j}{\partial t^3} \right\|_D = \frac{1}{\Delta t^3} \left\| \int_{t_{j-1}}^{t_j} \frac{1}{2} (s - t_j)^2 \frac{\partial^3 \eta}{\partial t^3}(\cdot, s) ds - \int_{t_{j-2}}^{t_{j-1}} \frac{1}{2} (s - t_{j-2})^2 \frac{\partial^3 \eta}{\partial t^3}(\cdot, s) ds \\
+ \int_{t_{j-3}}^{t_{j-2}} \frac{1}{2} (s - t_{j-3})^2 \frac{\partial^3 \eta}{\partial t^3}(\cdot, s) ds - \int_{t_{j-4}}^{t_{j-3}} \frac{1}{2} (s - t_{j-4})^2 \frac{\partial^3 \eta}{\partial t^3}(\cdot, s) ds \right\|_D \\
\leq \frac{1}{\Delta t} \left\{ \frac{1}{2} \int_{t_{j-1}}^{t_j} \left\| \frac{\partial^3 \eta}{\partial t^3} \right\|_D ds + \int_{t_{j-2}}^{t_{j-1}} \left\| \frac{\partial^3 \eta}{\partial t^3} \right\|_D ds + \frac{1}{2} \int_{t_{j-3}}^{t_{j-2}} \left\| \frac{\partial^3 \eta}{\partial t^3} \right\|_D ds \right\}
\leq C h^{r+1} \left\| \frac{\partial^3 u}{\partial t^3} \right\|_{C([0,T], H^{r+3})},
\]

(5.28)

using Lemma 5.2. Thus, since \(\sum_{j=1}^{n-2} b_{j-1} = (n - 2)^2 - \alpha \) from Lemma 3.1(iv), we obtain, on using (5.28),
\[
\frac{\Delta t^{2-\alpha}}{\Gamma(3 - \alpha)} \left\| \sum_{j=1}^{n-2} b_{j-1} \frac{\partial^3 \eta^{n-j+1}}{\partial t^3} \right\|_D \leq \frac{\Delta t^{2-\alpha}}{\Gamma(3 - \alpha)} \sum_{j=1}^{n-2} b_{j-1} \left\| \frac{\partial^3 \eta^{n-j+1}}{\partial t^3} \right\|_D \\
\leq \frac{C h^{r+1} t_{n-2} - \alpha}{\Gamma(3 - \alpha)} \left\| \frac{\partial^3 u}{\partial t^3} \right\|_{C([0,T], H^{r+3})},
\]

(5.29)

for \(n \geq 3 \), and, from (5.16),
\[
\frac{\Delta t^{1-\alpha}}{\Gamma(3 - \alpha)} b_{n-2} \left\| \frac{\partial^2 \eta^2}{\partial t^2} \right\|_D \leq \frac{C h^{r+1} t_{n-2} - \alpha}{\Gamma(2 - \alpha)} \left\| \frac{\partial^2 u}{\partial t^2} \right\|_{C([0,T], H^{r+3})},
\]

(5.30)

since \(b_j < (2 - \alpha) j^{1-\alpha} \) from Lemma 3.1(ii). The estimate (5.30) also holds for \(n = 2 \), since \(b_0 = 1, t_1 = \Delta t \).

Since \(1 < \alpha < 2 \), we have \(1 + \alpha > 3 - \alpha \). Therefore, substituting (5.26), (5.27), (5.29) and (5.30) in (5.25), we obtain
\[
\left\| \frac{\partial^2 \tilde{\xi}^{n-\beta}}{\partial t^{n-\beta}} \right\|_D \leq C (\Delta t^{3-\alpha} + h^{r+1}).
\]

(5.31)

On substituting (5.18), (5.23) and (5.31) in (5.22), it follows that
\[
\left\| \xi^n \right\|_{H^2} \leq C (\Delta t^{3-\alpha} + h^{r+1} + \Delta t^{1-\alpha} h^{r+1}),
\]

(5.32)

since \(\xi^0 = 0 \). Finally, applying the triangle inequality, (5.32) and Lemma 5.1 completes the proof. \(\square \)
Tables 4–6 present the observe superconvergence, the rate of convergence being approximately 4 when estimates, the error in the H convergence determined by equally spaced points in each sub-rectangle.

The initial conditions are approximated using the piecewise Hermite bicubic interpolant. We present numerical results which support the analyses of preceding sections. In our implementations, we used the space of piecewise Hermite bicubics with the standard basis functions. We consider the problem (1.1)–(1.3) with Example. For the results in Tables 1–3, we selected the time step because of the term /∂ \Delta 1 t when \r \geq 3, the H \ell convergence rates which are seen to be approximately 4 as expected. Table 2 demonstrates the optimal convergence rates in the /\r \ell \norm, \ell \in \{0, 1, 2\}, norms, consistent with the theory. In Table 3, we present the maximum error in the approximations (U_h^M) x, (U_h^M) y to u_x, u_y, respectively, at the partition nodes, together with the corresponding convergence rate. From this table, we observe superconvergence, the rate of convergence being approximately 4 when \r = 3. In Table 4–6, we present the L^2 and L^\infty errors and the temporal convergence rates, which is approximately \(3 - \alpha\) as expected.

Remarks.

1. When \r > 3, the H^2 error estimate may be suboptimal depending on the choice of \alpha, because of the term \Delta t^{1-\alpha} h^{r+1} in the estimate. For example, if \alpha \approx 2 then we must have \Delta t = O(h^2) resulting in an error of O(h^4).

2. The following results are obtained from those in [21, Remark 2.7] with the same assumptions.

(a) From Remark 2.7.1, we obtain the L^\infty error estimate
\[\| u(t_h) - U_h^\ell \|_{L^\infty} \leq C \left(h^{r+1} + \Delta t^{3-\alpha} + \Delta t^{1-\alpha} h^{r+1} \right), \]
when \(U_h^0 = W^0\).

(b) From Remark 2.7.2, we obtain the superconvergence of \(\partial U_h^\ell / \partial x\) and \(\partial U_h^\ell / \partial y\) at the nodes, when \r = 3 and \(U_h^0 = W^0\).

(c) From Remark 2.7.3, for \r \geq 3, an optimal order H^1 error estimate is obtained when \(U_h^0 = u_{\ell,t}^0\), the Hermite interpolant of \(u_0\) defined in [2].

(d) From Remark 2.7.4, the estimate (5.5) holds when \(U_h^0 = W^0\).

6 Numerical Experiments

We present numerical results which support the analyses of preceding sections. In our implementations, we used the space of piecewise Hermite bicubics with the standard basis functions [9] on identical uniform partitions of \(T\) in both the x and y directions with \(N_x = N_y = N\). The initial conditions are approximated using the piecewise Hermite bicubic interpolant. We present L^\infty, L^2, H^1 and H^2 norms of the errors at \(T = 1\) and the corresponding rates of convergence determined by
\[\text{Rate} \approx \frac{\log(e_m/e_{m+1})}{\log(h_m/h_{m+1})}. \] (6.1)
where \(h = 1/N_m\) is the step size with \(N = N_m\), and \(e_m\) is the norm of the corresponding error. The L^\infty norm of the error is estimated by calculating the maximum error at 100 \times 100 equally spaced points in each sub-rectangle \([x_{i-1}, x_i] \times [y_{j-1}, y_j]\), 1 \leq i, j \leq N. The H^\ell norm, \ell = 0, 1, 2, is computed using the ten-point composite Gauss quadrature rule so that the error due to quadrature does not affect the convergence rate.

Example. [30] We consider the problem (1.1)–(1.3) with \(T = 1\) and exact solution
\[u(x, y, t) = t^{2+\alpha} \sin(\pi x) \sin(\pi y), \quad (x, y) \in [0, 1] \times [0, 1], \quad t \in (0, T], \]
so that
\[\varphi(x, y) = 0, \quad \phi(x, y) = 0, \quad (x, y) \in [0, 1] \times [0, 1]. \]

For the results in Tables 1–3, we selected the time step \Delta t = h^3, since, from our theoretical estimates, the error in the H^\ell norm, \ell = 0, 1, 2, is expected to be \(O(\Delta t^{3-\alpha} + h^{4-\ell})\) when \r = 3. In Table 1, we present the L^2 and L^\infty errors with their corresponding convergence rates which are seen to be approximately 4 as expected. Table 2 demonstrates the optimal convergence rates in the H^1, \ell = 1, 2, norms, consistent with the theory. In Table 3, we present the maximum error in the approximations \((U_h^M) x, (U_h^M) y\) to \(u_x, u_y\), respectively, at the partition nodes, together with the corresponding convergence rate. From this table, we observe superconvergence, the rate of convergence being approximately 4 when \r = 3. In Tables 4–6, we present the L^2 and L^\infty errors and the temporal convergence rates, which is approximately \(3 - \alpha\) as expected.
Table 1 L^2 and L^∞ errors and convergence rates with $\Delta t = h^3$, $\alpha = 1.5$

N	L^2 error	Rate	L^∞ error	Rate
4	3.1505e−4		1.1250e−3	
6	5.3158−5	4.3887	2.0968e−4	4.1433
9	1.0142e−5	4.0856	4.2644e−5	3.9281
12	3.1984e−5	4.0115	1.3239e−5	4.0660

Table 2 H^1 and H^2 errors and convergence rates with $\Delta t = h^3$, $\alpha = 1.5$

N	H^1 error	Rate	H^2 error	Rate
4	6.2642e−3		1.6180e−1	
6	1.8393e−3	3.0224	7.1581e−2	2.0113
9	5.4400e−4	3.0044	3.1744e−2	2.0054
12	2.2938e−4	3.0018	1.7844e−2	2.0023

Table 3 Maximum nodal errors in $(U^M_h)_x$, $(U^M_h)_y$ and convergence rates with $\Delta t = h^3$, $\alpha = 1.5$

N	Maximum nodal error in $(U^M_h)_x$, $(U^M_h)_y$	Rate
4	1.1613e−3	
6	3.2174e−4	3.1656
9	6.6230e−5	3.8983
12	2.1151e−5	3.9677

Table 4 L^2 and L^∞ errors and convergence rates with $\Delta t = h$, $\alpha = 1.25$

N	L^2 error	Rate	L^∞ error	Rate
20	2.3618e−5		2.7124e−5	
40	7.2076e−6	1.7123	8.1590e−6	1.7331
80	2.1691e−6	1.7324	2.4514e−6	1.7348
160	6.4685e−7	1.7456	7.3255e−7	1.7426
320	1.9242e−7	1.7492	2.1776e−7	1.7502

Table 5 L^2 and L^∞ errors and convergence rates with $\Delta t = h$, $\alpha = 1.5$

N	L^2 error	Rate	L^∞ error	Rate
20	7.2849e−5		2.2612e−4	
40	2.6449e−5	1.4617	8.1444e−5	1.4732
80	9.4666e−6	1.4823	2.8927e−5	1.4934
160	3.3674e−6	1.4912	1.0262e−5	1.4951
320	1.1894e−6	1.5014	3.6029e−6	1.5101
Table 6 L^2 and L^∞ errors and convergence rates with $\Delta t = h$, $\alpha = 1.75$

N	L^2 error	Rate	L^∞ error	Rate
20	1.4162e−4		2.2849e−4	
40	6.4974e−5	1.1241	9.8537e−5	1.2134
80	2.8256e−5	1.2013	4.2209e−5	1.2231
160	1.2027e−5	1.2323	1.7800e−5	1.2457
320	5.0613e−6	1.2487	7.4850e−6	1.2498

7 Concluding Remarks

We have formulated and analyzed an ADI OSC Crank–Nicolson method for the two-dimensional fractional diffusion-wave equation. Under certain smoothness assumptions, we have proved that the method is of optimal global accuracy and exhibits superconvergence phenomena. The results of numerical experiments confirm the analysis.

The method can be extended to non-zero Dirichlet boundary conditions (BCs) and, in fact, to Robin’s BCs; see [4]. It should be noted that Neumann BCs can be easily handled in contrast to the finite difference approach of [30] which would require the derivation of high accuracy approximations to such BCs.

Acknowledgments The authors wish to thank the referees for their constructive criticisms and helpful suggestions. This project was funded in part by the National Nature Science Foundation of China (contract Grant 11271123) and the Research and Innovation Project for College Graduates of Hunan Province (contract Grant CX2012B196).

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Baleanum, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, 3. World Scientific, New Jersey (2012)
2. Bialecki, B.: Convergence analysis of the orthogonal spline collocation for elliptic boundary value problems. SIAM J. Numer. Anal. 35, 617–631 (1998)
3. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001)
4. Bialecki, B., Fernandes, R.I.: An alternating-direction implicit orthogonal spline collocation scheme for nonlinear parabolic problems on rectangular polygons. SIAM J. Sci. Comput. 58, 1054–1077 (2006)
5. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. II. Reprinted from Geophys. J. R. Astr. Soc. 13 (1967), pp. 529–539. Fract. Calc. Appl. Anal. 11, 4–14 (2008)
6. Chan, S., Liu, F.: ADI-Euler and extrapolation methods for the two-dimensional advection–dispersion equation. J. Appl. Math. Comput. 26, 295–311 (2008)
7. Cui, M.R.: Compact alternating direction implicit method for the two-dimensional time fractional diffusion equation. J. Comput. Phys. 231, 2621–2633 (2012)
8. Cui, M.R.: Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algor. 62, 383–409 (2013)
9. Fairweather, G.: Finite Element Galerkin Methods for Differential Equations, Lecture Notes in Pure and Applied Mathematics, vol. 34. Marcel Dekker, New York (1978)
10. Fairweather, G., Gladwell, I.: Algorithms for almost block diagonal linear systems. SIAM Rev. 46, 49–58 (2004)
11. Fairweather, G., Yang, X., Xu, D., Zhang, H.: An ADI Crank–Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. Available from: arXiv:1405.3264
12. Fernandes, R.I., Bialecki, B., Fairweather, G.: Alternating direction implicit orthogonal spline collocation methods for evolution equations. In: Jacob, M.J., Panda, S. (eds.) Mathematical Modelling and Applications to Industrial Problems (MMIP-2011), pp. 3–11. Macmillan Publishers India Limited, Chennai (2012)

13. Fernandes, R.I., Fairweather, G.: Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer. Methods Partial Differ. Equ. 9, 191–211 (1993)

14. Fernandes, R.I., Fairweather, G.: An ADI extrapolated Crank–Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems. J. Comput. Phys. 231, 6248–6267 (2012)

15. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

16. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51, 445–466 (2013)

17. Liu, Q., Liu, F., Turner, I., Anh, V.: Numerical simulation for the 3D seepage flow with fractional derivatives in porous media. IMA J. Appl. Math. 74, 201–229 (2009)

18. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

19. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

20. Oldham, K., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering, vol. 111. Academic Press, New York (1974)

21. Pani, A., Fairweather, G., Fernandes, R.I.: ADI orthogonal spline collocation methods for parabolic partial integro-differential equations. IMA J. Numer. Anal. 30, 248–276 (2010)

22. Peaceman, D.W., Rachford Jr, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)

23. Ren, J., Sun, Z.Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. (2013). doi: 10.1007/s10915-012-9681-9

24. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

25. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers Vol. I, Background and Theory. Higher Education Press, Springer, Beijing, Heidelberg (2013)

26. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers Vol. II, Applications. Higher Education Press, Springer, Beijing, Heidelberg (2013)

27. Wang, H., Wang, K.: An $O(N\log^2 N)$ alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011)

28. Yu, Q., Liu, F., Turner, I., Burrage, K.: A computationally effective alternating direction method for the space and time fractional Bloch–Torrey equation in 3-D. Appl. Math. Comput. 219, 4082–4095 (2012)

29. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

30. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)