40-year trends in an index of survival for all cancers combined and survival adjusted for age and sex for each cancer in England and Wales, 1971–2011: a population-based study

Manuela Quaresma, Michel P Coleman, Bernard Rachet

Summary

Background Assessment of progress in cancer control at the population level is increasingly important. Population-based survival trends provide a key insight into the overall effectiveness of the health system, alongside trends in incidence and mortality. For this purpose, we aimed to provide a unique measure of cancer survival.

Methods In this observational study, we analysed trends in survival with population-based data for 7.2 million adults diagnosed with a first, primary, invasive malignancy in England and Wales during 1971–2011 and followed up to the end of 2012. We constructed a survival index for all cancers combined using data from the National Cancer Registry and the Welsh Cancer Intelligence and Surveillance Unit. The index is designed to be independent of changes in the age distribution of patients with cancer and of changes in the proportion of lethal cancers in each sex. We analysed trends in the cancer survival index at 1, 5, and 10 years after diagnosis for the selected periods 1971–72, 1980–81, 1990–91, 2000–01, 2005–06, and 2010–11. We also estimated trends in age-sex-adjusted survival for each cancer. We define the difference in net survival between the oldest (75–99 years) and youngest (15–44 years) patients as the age gap in survival. We evaluated the absolute change (%) in the age gap since 1971.

Findings The overall index of net survival increased substantially during the 40-year period 1971–2011, both in England and in Wales. For patients diagnosed in 1971–72, the index of net survival was 50% at 1 year after diagnosis. 40 years later, the same value of 50% was predicted at 10 years after diagnosis. The average 10% survival advantage for women persisted throughout this period. Predicted 10-year net survival adjusted for age and sex for patients diagnosed between 2010 and 2011 ranged from 1.1% for pancreatic cancer to 98.2% for testicular cancer. Net survival for the oldest patients (75–99 years) was persistently lower than for the youngest (15–44 years), even after adjustment for the much higher mortality from causes other than cancer in elderly people.

Interpretation These findings support substantial increases in both short-term and long-term net survival from all cancers combined in both England and Wales. The net survival index provides a convenient, single number that summarises the overall patterns of cancer survival in any one population, in each calendar period, for young and old men and women and for a wide range of cancers with very disparate survival. The persistent sex difference is partly due to a more favourable cancer distribution in women than men. The very wide differences in survival for different cancers, and the persistent age gap in survival, suggest the need for renewed efforts to improve cancer outcomes. Future monitoring of the cancer survival index will not be possible unless the current crisis of public concern about sharing of individual data for public health research can be resolved.

Funding Cancer Research UK.

Copyright © Quaresma et al. Open Access article distributed under the terms of CC BY.

Introduction

Cancer is an increasing public health concern, shown by substantial investments in human and financial resources for cancer management since the late 1990s. Health policy measures have focused on improvement of the organisation and delivery of services for prevention, diagnosis, and treatment. Research has provided the evidence base for these policies and is increasingly used to assess their effect.1–3 The assessment of progress in cancer control has become crucial. Population-based cancer survival trends provide a key insight into the overall effectiveness of the health system, alongside incidence and mortality.4

In this population-based survival study, we analysed cancer survival trends during the past four decades in England and Wales using two metrics: an index of survival for all cancers combined, and survival for each cancer, adjusted for age and sex. The all-cancers survival index was designed to provide one summary measure of cancer survival that can be monitored over time to show the overall progress in the effectiveness of the health-care system. It was also designed to support assessment of the effect of earlier diagnosis, which is a key component of the National Awareness and Early Diagnosis Initiative.5–7 Trends in survival for individual cancers will underline those cancer types for which
there has been progress and those for which prognosis has remained poor.

Methods

Study design

Survival varies very widely with the age and sex of a patient with cancer and with the type of cancer. The frequency of different cancers is also changing over time: some cancers with poor prognosis, such as stomach and lung cancer, have become less common, whereas breast cancer in women, for which survival has been improving, has become more common. These trends can differ between the sexes: lung cancer has become much less common in men, but more common in women. The age profile of patients with cancer also changes over time, and these trends can differ between cancers. To enable valid assessment of survival trends for all cancers combined, the survival index must therefore take account of changes over time in the distribution of age, sex, and cancer type in all patients with cancer, especially over periods as long as 40 years. Similarly, trends in survival for each cancer must be adjusted for changes over time in the age (and sex) profile of patients with cancer.

Data sources

We examined survival trends in 7176795 adults (aged 15–99 years) diagnosed with a first, primary, invasive malignancy in England and Wales during 1971–2011, and followed up to Dec 31, 2012 (table 1). Data for England were obtained from the National Cancer Registry at the Office for National Statistics and for Wales from the Welsh Cancer Intelligence and Surveillance Unit. Patients diagnosed with a malignancy of the skin other than melanoma were excluded. Since 1971, the National Health Service Central Register has routinely updated these individual cancer records with information about each patient's vital status (alive, emigrated, dead, or not traced). The vital status at Dec 31, 2012, was known for 98.4% of these patients. During the 41-year period, 4.3% of all cancer registrations were for the patient’s second-order or higher-order tumour: in the analyses for all cancers combined, the higher-order cancers were not included.

Statistical analysis

The all-cancers survival index was constructed as a weighted average of the survival estimates for every combination of age group at diagnosis (15–44, 45–54, 55–64, 65–74, 75–84, 85–94, 95+), by sex and type of cancer. Each year the survival index is calculated for every combination of age group at diagnosis and by sex. The survival index combines age distribution data for all ages from the mid-1970s to 2010 with survival data from 1971 to 2011, to represent survival over a 40-year period.

ICD-10 code*	England		Wales						
	Women	Men	Women	Men					
	Number	%	Number	%	Number	%	Number	%	
Oesophagus	C15	674	2.0%	10679	3.1%	4953	2.3%	6857	3.1%
Stomach	C16	152	3.4%	19433	5.7%	8627	4.0%	14299	6.5%
Colon	C18	293	8.7%	271220	8.0%	17711	8.3%	17736	8.1%
Rectum	C19–C21	143	4.3%	204363	6.0%	9731	4.5%	14358	6.6%
Pancreas	C25	92	2.8%	93450	2.7%	5868	2.7%	6014	2.7%
Larynx (men)	C32			52618	1.5%			3529	1.6%
Lung	C33, C34	349	10.5%	751958	22.1%	21027	9.8%	45601	20.8%
Melanoma	C43	97	2.9%	72743	2.1%	5429	2.5%	4372	2.0%
Breast (women)	C50	103	31.1%	65370	30.6%				
Cervix	C53	117	3.5%	8272	3.9%				
Uterus	C54, C55	160	4.8%	10836	5.1%				
Ovary	C56, C57, C70–7	172	5.2%	11051	5.2%				
Prostate	C61			63811	18.8%			41559	19.0%
Testis	C62			48031	1.4%			2743	1.3%
Kidney	C64–C66, C68	53197	1.6%	89986	2.6%	3431	1.6%	5804	2.6%
Bladder	C67	902	2.7%	239621	7.0%	5897	2.8%	15962	7.3%
Brain	C71	4195	1.3%	59192	1.7%	2822	1.3%	3786	1.7%
Hodgkin’s disease	C81	1911	0.6%	26714	0.8%	1145	0.5%	1675	0.8%
Non-Hodgkin lymphoma	C82–C85	99752	3.0%	114259	3.4%	5630	2.6%	6320	2.9%
Myeloma	C90	48446	1.3%	48126	1.4%	2805	1.3%	3041	1.4%
Leukaemia	C91–C95	70760	2.1%	92917	2.7%	4688	2.2%	6112	2.8%
Other cancers‡		275	8.2%	296794	8.7%	18624	8.7%	19369	8.8%
Total	3342484	100.0%	3401494	100.0%	213925	100.0%	219137	100.0%	

* Tenth revision of the International Classification of Diseases (ICD): malignancies were initially coded according to the ICD revision in use during the year of diagnosis—ie, ICD 8 (1971–78), 9 (1979–95), or 10 (1996–). ‡Other cancers: all other malignant tumours are combined; they also include laryngeal cancer in women and breast cancer in men.

Table 1: Number of patients (aged 15–99 years) included in analyses in England and Wales diagnosed from 1971 to 2011 and followed up to 2012, by sex and type of malignancy
55–64, 65–74, and 75–99 years), sex (male and female), and type of cancer (the 21 most common malignancies are shown in table 1 and all other malignant tumours are combined). The weights used were the proportion of patients with cancer diagnosed in England and Wales during 1996–99 in each of the 185 combinations of age group, sex, and type of cancer. We also constructed the all-cancers survival index separately for males and females and estimated survival adjusted for age and sex by cancer.

Net survival was used as the cancer survival measure for each component of the indexes. Net survival quantifies the survival after taking account of death from other causes (background mortality). All patients were allocated a deprivation category defined according to their Lower Super Output Area (mean population about 1500) of residence at the time of cancer diagnosis. Life-tables were used to take account of the wide variation in background mortality by age, sex, deprivation, region, and over time. For this study, separate life-tables were created for England and Wales by single year of age, sex, deprivation category, and (in England) region of residence, for every calendar year between 1971 and 2012. National or regional life-tables were used for the 2.8% of patients diagnosed in England (2.6% in Wales) who could not be assigned to a specific deprivation category or (in England) region; almost all of these patients were diagnosed in the 1970s (85% in England, 55% in Wales) or 1980s (14% England, 44% Wales).

We used flexible multivariable parametric excess hazard models to estimate net survival up to 10 years after diagnosis for each nation, and for each stratum defined by cancer, sex, age group, and calendar period. The models included age and year of diagnosis as main effects, modelled on a continuous scale with restricted cubic splines, to account for potential non-linear excess (cancer-related) hazards. Interactions between age and year of diagnosis, year of diagnosis and follow-up time, and age and follow-up time were assessed to deal with potential variation of the excess hazard with time since diagnosis. The best-fitting models were chosen as those with the smallest Akaike Information Criterion. Net survival curves were estimated for each individual from these models according to their age and year of diagnosis. We obtained net survival estimates for each cancer and sex by averaging of individual net survival curves, over all ages and years of diagnosis within each age group and calendar period. In view of the fact that the models included the year of diagnosis as a continuous variable, we were able to predict survival up to 10 years after diagnosis, even for the patients diagnosed most recently (ie, 2010–11). All models were fitted with the STATA command stpm2 using STATA 13.1.

We included all patients diagnosed during the 40 years from 1971 to 2011 in the models to estimate survival trends, but we report estimates for each cancer survival index at 1, 5, and 10 years after diagnosis only for six selected periods of diagnosis: 1971–72, 1980–81, 1990–91, 2000–01, 2005–06, and 2010–11. We define the difference in net survival between the oldest (75–99 years) and youngest (15–44 years) groups as the age gap in survival. We provide a simple summary of changes in survival by age as the absolute change (%) in the age gap since 1971. A negative value for this change means that the age gap has become wider. For Wales, reliable estimates of net survival could not be obtained for 11.5% of the age-sex-cancer combinations because

Figure 1: Trends in the index of net survival for all cancers combined, for England and for Wales: all adults (15–99 years), men, and women, selected periods during 1971–2011.
	1971-72	1980-81	1990-91	2000-01	2005-06	2010-11 (prediction)
	1 year	5 years	10 years	1 year	5 years	10 years
All cancers combined						
All patients	50.1%	29.8%	24.0%	55.8%	35.3%	28.8%
Men	44.7%	25.2%	19.9%	50.6%	29.6%	23.3%
Women	55.5%	34.3%	27.9%	61.0%	40.9%	34.1%
Oesophagus						
All patients	15.0%	4.3%	3.5%	19.1%	5.3%	4.3%
Men	14.7%	4.0%	3.3%	18.5%	4.8%	3.8%
Women	15.6%	4.8%	3.9%	20.0%	6.2%	5.0%
Stomach						
All patients	15.4%	5.2%	4.0%	20.6%	8.2%	6.7%
Men	15.3%	5.2%	4.0%	20.7%	8.1%	6.7%
Women	15.5%	5.3%	4.0%	20.5%	8.4%	6.8%
Colon						
All patients	41.5%	24.6%	22.8%	54.0%	34.2%	31.8%
Men	42.6%	25.3%	23.0%	55.2%	34.6%	31.5%
Women	40.4%	23.8%	22.6%	52.7%	33.8%	32.1%
Rectum						
All patients	53.3%	24.2%	20.1%	60.6%	32.5%	28.2%
Men	54.1%	23.6%	19.1%	61.4%	32.0%	27.1%
Women	52.2%	25.0%	21.6%	59.5%	33.2%	29.6%
Pancreas						
All patients	10.6%	2.3%	1.2%	12.1%	2.8%	1.5%
Men	10.2%	2.4%	1.3%	12.4%	3.1%	1.7%
Women	11.0%	2.2%	1.1%	11.9%	2.4%	1.2%
Larynx						
Men	80.7%	60.2%	50.4%	81.7%	62.2%	52.6%
Lung						
All patients	16.0%	4.6%	3.1%	18.3%	5.5%	3.7%
Men	16.3%	4.8%	3.2%	18.6%	5.8%	3.9%
Women	15.4%	4.3%	2.9%	17.8%	5.0%	3.2%
Melanoma of skin						
All patients	81.6%	52.3%	46.4%	88.7%	66.4%	60.4%
Men	74.5%	40.5%	34.9%	84.5%	56.4%	49.8%
Women	86.7%	61.1%	54.9%	91.8%	73.3%	68.3%
Breast						
Women	81.9%	52.7%	40.1%	85.9%	61.2%	48.4%
Cervix						
Women	74.0%	51.3%	46.0%	78.6%	58.3%	52.4%
Uterus						
Women	75.6%	59.0%	55.5%	79.5%	65.1%	61.5%
Ovary						
Women	43.7%	20.5%	17.9%	50.2%	24.9%	21.5%
Prostate						
Men	66.1%	36.9%	25.1%	71.5%	38.2%	24.4%
Testis						
Men	83.3%	70.5%	69.2%	91.2%	84.0%	83.3%
Kidney						
All patients	44.9%	28.5%	23.0%	51.2%	34.1%	27.6%
Men	45.4%	28.9%	23.0%	52.6%	35.3%	28.5%
Women	43.9%	28.0%	23.1%	49.1%	32.2%	26.1%

(Table 2 continues on next page)
of the small number of patients, and broader age groups were constructed to re-estimate survival for those combinations.

Role of the funding source
The funder had no role in study design, quality control, analysis, interpretation of the results, drafting, or the decision to submit for publication. The corresponding author had full access to all data and was responsible for the decision to publish.

Results
The index of net survival for all cancers combined at 1, 5, and 10 years after diagnosis in adults (15–99 years) in England from 1971 to 2011 and trends in the age-adjusted net survival for 21 selected cancers in England from 1971 to 2011 by sex

Year	1971-72	1980-81	1990-91	2000-01	2005-06	2010-11 (prediction)
	1 year	5 years	10 years	1 year	5 years	10 years
All patients	60.2%	39.3%	32.4%	73.4%	56.0%	48.0%
Men	62.8%	40.9%	33.7%	76.0%	57.9%	49.3%
Women	53.4%	35.2%	29.0%	66.6%	50.8%	44.7%
Brain						
All patients	17.7%	7.2%	5.4%	23.3%	9.8%	7.2%
Men	17.6%	6.6%	5.0%	23.3%	9.2%	6.7%
Women	17.9%	7.9%	6.0%	23.3%	10.6%	8.6%
Hodgkin's disease						
All patients	75.6%	56.5%	47.7%	82.7%	66.8%	58.8%
Men	73.9%	54.2%	45.2%	82.2%	65.1%	55.5%
Women	77.8%	59.4%	52.0%	83.3%	60.2%	56.8%
Non-Hodgkin lymphoma						
All patients	49.5%	29.9%	22.0%	58.8%	37.5%	28.1%
Men	49.4%	29.3%	21.7%	58.6%	36.8%	27.6%
Women	49.6%	30.6%	23.2%	59.0%	39.4%	28.8%
Multiple myeloma						
All patients	37.4%	11.8%	6.2%	48.4%	17.2%	8.6%
Men	36.8%	12.1%	6.8%	47.8%	17.2%	9.0%
Women	38.0%	11.4%	5.5%	49.0%	17.1%	8.1%
Leukaemia						
All patients	34.2%	13.1%	6.9%	47.3%	23.6%	14.9%
Men	35.4%	13.1%	6.6%	48.6%	23.7%	14.4%
Women	32.5%	13.0%	7.2%	45.6%	23.5%	15.6%
Other cancers*						
All patients	55.3%	38.4%	34.8%	54.7%	36.5%	32.0%
Men	57.3%	40.4%	35.9%	54.3%	35.2%	30.7%
Women	53.0%	36.2%	32.5%	55.2%	37.9%	33.4%

*Other cancers: all other malignant tumours are combined; they also include laryngeal cancer in women and breast cancer in men.

Table 2: 40-year trends in the index of net survival for all cancers combined at 1, 5, and 10 years after diagnosis in adults (15–99 years) in England from 1971 to 2011 and trends in the age-adjusted net survival for 21 selected cancers in England from 1971 to 2011 by sex
Cancer Type	1971-72	1980-81	1990-91	2000-01	2005-06	2010-11 (prediction)
	1 year	5 years	10 years	1 year	5 years	10 years
All cancers combined						
All patients						
Men	48.1%	28.9%	23.4%	53.6%	34.7%	28.9%
Women	51.9%	48.1%	48.6%	72.4%	75.3%	61.1%
Oesophagus						
All patients						
Men	16.9%	5.2%	4.1%	18.7%	6.0%	5.2%
Women	17.4%	5.1%	3.8%	19.1%	5.8%	4.9%
Stomach						
All patients						
Men	15.2%	5.7%	4.6%	21.3%	10.1%	8.9%
Women	15.3%	5.6%	4.5%	21.0%	9.7%	8.6%
Colon						
All patients						
Men	42.7%	25.0%	22.8%	51.8%	33.3%	30.9%
Women	43.1%	26.5%	24.5%	51.9%	33.3%	30.9%
Rectum						
All patients						
Men	50.8%	22.9%	19.7%	58.5%	31.2%	27.7%
Women	50.6%	21.4%	17.9%	58.7%	29.9%	26.1%
Pancreas						
All patients						
Men	12.2%	3.8%	2.4%	12.8%	4.6%	3.4%
Women	11.5%	4.0%	2.7%	13.0%	5.6%	4.6%
Larynx						
All patients						
Men	77.7%	56.3%	43.9%	82.5%	64.8%	55.6%
Lung						
All patients						
Men	15.6%	5.1%	3.6%	18.7%	7.2%	5.5%
Women	14.6%	4.2%	2.8%	18.6%	7.2%	5.6%
Melanoma of skin						
All patients						
Men	79.9%	51.4%	44.0%	82.3%	63.1%	57.2%
Women	73.8%	38.9%	33.3%	76.1%	54.4%	46.6%
Breast						
All patients						
Men	74.9%	47.9%	34.8%	81.8%	60.3%	48.5%
Women	73.9%	52.8%	47.4%	80.0%	63.2%	57.8%
Uterus						
All patients						
Men	72.7%	55.9%	53.4%	76.2%	61.7%	56.8%
Women	48.2%	22.2%	18.0%	52.0%	26.2%	21.8%
Ovary						
All patients						
Men	42.7%	25.6%	18.0%	56.9%	31.4%	26.6%
Women	41.9%	26.4%	22.9%	44.2%	29.5%	24.4%

(Table 3 continues on next page)
46% at 10 years. Both the levels and the trends in the all-cancers survival index were similar in England and Wales. The average absolute difference between the two countries was less than 1% (figure 1, tables 2 and 3).

Survival for both sexes combined varied widely for different cancers, with the most recent predicted 10-year net survival adjusted for age and sex ranging from only 1·1% for pancreatic cancer to 98·2% for testicular cancer.

A scatter-plot of the 1-year, 5-year, and 10-year survival estimates for adults diagnosed in 2010–11 against the absolute change since 1971–72 enables three broad clusters of cancers to be identified (figure 2). The first cluster consists of cancers with high survival in 2010–11 for which the absolute increase in survival since 1971–72 is progressively larger for survival at 1, 5, and 10 years. It includes cancers of the breast, prostate, testis, and uterus, and melanoma and Hodgkin’s disease.

The second cluster is of cancers with a moderate level of survival (64–84%) in 2010–11 and, generally, smaller increases since 1971–72. This cluster consists of cancers of the larynx, cervix, rectum, colon, bladder, ovary, and kidney, with non-Hodgkin lymphoma, multiple myeloma, and leukaemia. For multiple myeloma and leukaemia, age-adjusted 10-year survival rose by more than 22% between the periods 1990–91 and 2010–11, from around 10·8% to a predicted 32·6% for multiple myeloma and from 24·0% to 46·1% for leukaemia (table 2).

The third cluster is of cancers for which survival for patients diagnosed during 2010–11 is still low, and for which little or no improvement has occurred in the past 40 years: this group consists of malignancies of the brain, stomach, lung, oesophagus, and pancreas.

This clustering can be seen as early as 1 year after diagnosis, and each cancer is in the same cluster, irrespective of the time since diagnosis (and the nation). We observed the largest absolute change in the age-adjusted survival for multiple myeloma, leukaemia, and prostate cancer.

Cancer Type	1971–72	1980–81	1990–91	2000–01	2005–06	2010–11 (prediction)
Bladder						
All patients	53·8%	37·4%	33·9%	66·3%	49·1%	42·5%
Men	56·1%	38·0%	34·1%	69·5%	51·5%	44·6%
Women	49·7%	35·8%	33·4%	58·0%	43·1%	37·3%
Brain						
All patients	24·4%	10·7%	7·9%	26·7%	11·8%	8·9%
Men	24·5%	10·3%	7·7%	26·6%	11·5%	8·7%
Women	24·4%	11·1%	8·2%	26·7%	12·3%	9·1%
Hodgkin’s disease						
All patients	72·1%	52·1%	43·1%	78·2%	62·0%	54·0%
Men	74·5%	54·8%	44·5%	79·1%	62·9%	53·7%
Women	68·9%	48·6%	41·2%	77·0%	60·9%	54·4%
Non-Hodgkin lymphoma						
All patients	52·0%	31·1%	23·8%	54·2%	33·4%	24·2%
Men	51·8%	30·8%	22·1%	54·2%	33·4%	24·2%
Women	48·3%	31·5%	25·9%	55·3%	34·2%	26·7%
Multiple myeloma						
All patients	34·1%	12·6%	8·0%	43·5%	19·9%	11·9%
Men	32·2%	14·0%	10·7%	48·6%	20·0%	12·7%
Women	35·2%	11·1%	5·1%	49·7%	19·8%	11·0%
Leukaemia						
All patients	30·2%	11·0%	6·1%	43·5%	21·2%	14·1%
Men	27·7%	8·7%	3·9%	43·5%	20·2%	12·8%
Women	33·4%	14·0%	8·9%	43·5%	22·4%	15·6%
Other cancers						
All patients	53·9%	37·6%	33·7%	55·7%	39·3%	34·9%
Men	56·4%	40·2%	36·3%	56·4%	39·8%	35·1%
Women	51·1%	34·7%	30·7%	54·8%	38·7%	34·6%

*Other cancers: all other malignant tumours are combined; they also include laryngeal cancer in women and breast cancer in men

Table 3: 40-year trends in the index of net survival for all cancers combined at 1, 5, and 10 years after diagnosis in adults (15–99 years) in Wales from 1971 to 2011 and trends in the age-adjusted net survival for 21 selected cancers in Wales from 1971 to 2011 by sex
During 2010–11, differences between 5-year and 10-year value of 87% in 2010–11. After 10 years, survival rose from survival increased from 53% in 1971–72 to a predicted substantial improvement during the past 40 years. 5-year England and Wales.

Pancreas, and brain), for men and women and for both cluster of poor-prognosis cancers (oesophagus, stomach, pancreas, and brain), for men and women. This overall pattern of no improvement in long-term survival is common in the improvement in long-term survival is common in the long-term survival has been increasing since 1971–72, whereas acceleration in 5-year survival started for men diagnosed in the 1980s; 10-year survival only began increasing for men diagnosed in the 1990s.

For men diagnosed with prostate cancer during 2010–11, the predicted values for 5-year and 10-year survival for these two cancers have followed an almost identical pattern to that of breast cancer during the past 40 years.

For women diagnosed with prostate cancer during 2010–11, the age-adjusted survival was predicted as 46% at 5 years and 35% at 10 years compared with 20% and 18%, respectively, for women diagnosed during 1971–72. These results suggest that the underlying increase in survival in 5-year survival started for men diagnosed in the 1980s; 10-year survival only began increasing for men diagnosed in the 1990s.

For women diagnosed with cancer of the ovary during 2010–11, the age-adjusted survival was predicted as 46% at 5 years and 35% at 10 years compared with 20% and 18%, respectively, for women diagnosed during 1971–72. These results suggest that the underlying increase in survival of up to 5 years is likely to continue.

Net survival is generally lower for the oldest patients (75–99 years) than the youngest (15–44 years), even though net survival accounts for a higher mortality from causes other than cancer in elderly patients. This finding is shown by a scatter-plot of the age gap in net survival at 1, 5, and 10 years after diagnosis for adults diagnosed in

Figure 2: Net survival adjusted for age and sex for each cancer in 2010–11, and absolute change* since 1971, all adults (15–99 years), England and Wales: 1, 5, and 10 years after diagnosis

*The absolute change is the simple arithmetic difference between net survival in 2010–11 and the survival in 1971–72. NHL=non-Hodgkin lymphoma.
2010–11 against the absolute change since 1971–72: it shows a negative gap in survival for most cancers (y-axis of figures 3 and 4).

The largest age gaps in survival in men were observed for cancers for which high-dose chemotherapy is the key treatment (lymphoma, multiple myeloma, and leukaemia), but we could not identify any overall temporal patterns. For women, the largest age gaps were noted for brain tumours, and cancers of the ovary and cervix, and multiple myeloma, but the clustering was less obvious than in men. The age gap tended to narrow for melanoma and cancer of the uterus in women but widened for long-term survival of ovarian cancer.

Discussion

The index of net survival for all cancers combined has increased substantially: for patients diagnosed in 1971–72, the index was 50% at 1 year after diagnosis. Our prediction is that, for patients diagnosed during 2010–11, the all-cancers survival index will reach 50% at 10 years after diagnosis. Very similar patterns of change and levels of survival were noted in both England and Wales.

Survival has increased steadily during the 40 years since 1971, with a slight acceleration in the past 10–15 years, particularly for 5-year and 10-year survival, in both England and Wales. After implementation of the NHS cancer plan for England, we reported a slight acceleration in the 1-year cancer survival trends during 2004–06, by contrast with Wales, where a national cancer plan was only introduced in 2006. The pattern was not so clear for survival at 3 years after diagnosis. The findings reported here suggest a continuing acceleration of these trends for longer-term survival between 2005–06 and 2010–11 in England, but also in Wales (panel).

The completeness and quality of cancer registration and follow-up data in both England and Wales have been systematically assessed and are thought to be very high throughout the period 1971–2011, despite undeniable improvement during the 1970s–80s. This improvement cannot explain long-term trends in cancer survival. Furthermore, with the exception of bladder cancer, overall changes in disease definitions are limited, even for haemopoietic malignancies. To affect the survival index, such a change in disease definition would need to affect a substantial proportion of all cancers, for which prognosis would also need to be very different from that for other cancers. These conditions are not met.

In some strata defined by age, sex, cancer, and calendar period of diagnosis, especially in Wales, few deaths
occurred. To obtain more stable net survival estimates, we therefore estimated net survival using a modelling approach rather than the non-parametric Pohar-Perme approach.

The index of net survival for all cancers combined provides one convenient number that summarises the overall patterns of cancer survival in any one population or country, in each calendar period for young and old men and women and for a wide range of cancers with very disparate survival. The index is unaffected by changes in the proportion of cancers of different lethality in either sex, such as the reduction of lung cancer or the increase in prostate cancer in men. Similarly, the index is unaffected by ageing of the population of patients with cancer or shifts in the proportion of any cancer between men and women. The value of the index changes only when survival for one or more cancers changes, for one or more age groups. The index therefore shows overall progress in cancer management, whether from earlier diagnosis, or earlier stage of disease, or improved treatment and care.

However, the all-cancers survival index needs careful interpretation: for example, the predicted value of 50% for the 10-year all-cancers survival index for 2010–11 does not mean that half of all patients will be cured or “beat cancer”, as has been portrayed in the media. The index is designed as a public health measure that summarises cancer survival trends in an entire population, to help to assess progress in the overall effectiveness of the health system in diagnosis and management of patients with cancer. The index does not reflect the prospects of survival for any individual patients with cancer. The index is based on net survival, which is an unbiased measure of population-based survival from cancer after adjustment for other causes of death. Net survival is the most valid available metric for comparison of survival between populations and for assessment of progress in cancer survival over time. The all-cancers net survival index should nevertheless be interpreted in conjunction with other information available in the population or country for which the index has been prepared. It should be seen as a guide to raise questions about the potential for improvement.

The average 10% difference in the survival index between men and women has been a consistent feature for 40 years. It arises because, for several individual cancers, survival is slightly higher for women, but mostly because the cancers that are most common in women, such as breast cancer (weight of 0·31 in the survival index for 40 years). It arises because, for several individual cancers, survival is slightly higher for women, but mostly because the cancers that are most common in women, such as breast cancer (weight of 0·31 in the survival index for 40 years).

The absolute change is the simple arithmetic difference between the age gap in 2010–11 and the age gap in 1971–72. NHL=non-Hodgkin lymphoma.

Figure 4: Age gap* in net survival by cancer, women (15–99 years) diagnosed during 2010–11 versus absolute change † (%) in the age gap since 1971, England and Wales: 1, 5, and 10 years after diagnosis

cancer	England	Wales
breast	Melanoma	Breast
uterus	Ovary	Hodgkin's
lung	Kidney	Other cancers
melanoma	Oesophagus	Bladder
colon	Pancreas	NHL
leukaemia	Myeloma	NHL
myeloma	Leukaemia	NHL
kidney	Ovarian	NHL
stomach	Brain	Hodgkin's
oesophagus	Uterus	Hodgkin's

*The age gap represents the absolute difference (%) between net survival in the oldest (75–99 years) and youngest (15–45 years) groups of patients; a negative value means that survival is lower in the oldest group than the youngest group. †The absolute change is the simple arithmetic difference between the age gap in 2010–11 and the age gap in 1971–72. NHL=non-Hodgkin lymphoma.
The clusters are identifiable as early as 1 year after diagnosis, and they are consistent at 5 and 10 years after diagnosis, both in England and Wales.

Cluster 1 includes cancers with a good prognosis: survival is now very high, after a large increase since 1971, particularly at 5 and 10 years after diagnosis. 1-year survival seems to have reached a ceiling for most of these cancers, but survival at 5 and 10 years is still much lower than at 1 year for breast cancer and Hodgkin’s disease. The absence of any plateau in survival, even 10 years after diagnosis, shows that cure at the population level has still not been reached for these cancers, leaving room for substantial further improvement in long-term survival.

For most cancers in the other two clusters, survival at 5 and 10 years after diagnosis is still much lower than 1-year survival. The second cluster consists of a further mix of cancers for which either survival has remained moderate since the early 1970s, or moderate levels of survival in 2011 are the result of large improvements during the past 40 years. The second situation is well illustrated by the steep increase in survival from multiple myeloma since 2000–01, probably explained by the introduction of higher-dose treatment regimens around 2000. For the cancers in this cluster that have shown no evidence of improvement, efforts should be made to achieve earlier diagnosis, and to focus on stricter guidelines for improved treatment, such as increased use of surgery, radiotherapy with curative intent, neoadjuvant therapies, or a combination of the three.

The effect of mass-screening on survival varies with the cancer. For cervical cancer, an efficient screening programme does not necessarily lead to an improvement in survival because screening prevents the occurrence of invasive tumours, thereby reducing incidence, and the remaining patients are, on average, diagnosed with more advanced disease. A quasi-plateau in 1-year survival has been observed since 2000–01 (appendix 1 and 2).

By contrast, breast cancer screening aims to diagnose the disease at an early stage, rather than to prevent it. Its real effect on survival has been questioned mainly because of possible overdiagnosis and lead time. However, overdiagnosis does not exceed a few percent, and the advantage in survival remains important for screen-detected breast cancer after accounting for lead time. Improvement in breast cancer survival has been large because of both early diagnosis and improved treatment, although net survival continues to decrease even 10 years after diagnosis, showing late recurrences. The age gap in survival has also decreased, supporting more rapid improvement in survival for older women (and for the screened age group) than in younger women. Screening for colorectal cancer, which started in 2006, aims to prevent invasive malignant tumours (by removing polyps with adenomatous change) and to diagnose cancer at an early stage. Therefore, although it is too recent to have any effect on these results, lessons from both cervical and breast cancer screening
programmes will also help us to monitor the effect of screening on the prognosis of colorectal cancer.

A wide age gap in survival was still present for most cancers in 2010–11. Some of these differences are related to screening or early diagnostic practices (breast, cervix, prostate). Also, the disease, and its prognosis, might radically differ by age, such as leukaemia: the treatment of acute disease in young patients improved substantially, by contrast with chronic leukaemia in elderly patients, but separation of both diseases is not possible over the entire period 1971–2011. However, in other countries, the age gap in cancer survival is much narrower than in England and Wales.18,21 The wide age-related inequalities in cancer survival in England and Wales are thus likely to be avoidable. They could be substantially reduced.

1-year survival has improved substantially for cancers with a particularly poor prognosis (cluster 3), but longer-term survival (5 and 10 years after diagnosis) has hardly changed during the past four decades. Among these cancers, substantial improvements should be achievable for lung cancer: in 2011, National Institute for Health and Care Excellence (NICE) guidelines22 underlined the need for improved staging and increased widespread access to surgery and radiotherapy with curative intent for non-small-cell lung cancer. Adherence to these guidelines and their effect on cancer outcomes has not yet been exhaustively assessed.23

In summary, despite impressive overall improvements in cancer survival during the past 40 years in both England and Wales, the wide and persistent differences in survival between cancers, together with the wide and persistent age gap in survival for most cancers, suggest the need for renewed efforts to achieve improved outcomes, particularly in elderly patients. The findings reported here offer clues for focused research to dissect the underlying causes of these differences in cancer survival. The results should prompt action to improve public health in both England and Wales. This research will need systematic linkage of clinical audit streams and other detailed data streams to population-based cancer registry data, but the recent crisis of public concern about the sharing of individual health data for confidential public health research will need to be resolved first.24

Contributors
MQ did the analysis. MQ and BR designed the analytic strategies and constructed the indexes. MQ, MPC, and BR wrote the Article and interpreted the findings.

Declaration of interests
We declare no competing interests.

Acknowledgments
We thank regional cancer registries in England and Wales for their continuing efforts in collecting data for all cancer patients to the highest standards of quality and completeness and the reviewers for their constructive comments. MQ, MPC, and BR report grants from Cancer Research UK during this study. Grant numbers CL336/ALL700 and C7923/A18348.

References
1 Coleman MP. Cancer survival: global surveillance will stimulate health policy and improve quality. Lancet 2014; 383: 564–73.
2 Cancer Services Co-ordinating Group. Designed to tackle cancer in Wales: a Welsh assembly government policy statement: Welsh assembly government, 2006. https://www.wales.nhs.uk/documents/Designed-to-tackle-Cancer.pdf (accessed Nov 20, 2014).
3 Expert Advisory Group on Cancer. A policy framework for commissioning cancer services (Calman-Hine report). London: Department of Health, 1995.
4 Department of Health. Challenging cancer. London: Department of Health, 1999.
5 Department of Health. Cancer Reform Strategy. London: Department of Health, 2007.
6 Rachet B, Maringe C, Nur U, et al. Population-based cancer survival trends in England and Wales up to 2007: an assessment of the NHS cancer plan for England. Lancet Oncol 2009; 10: 351–69.
7 Rachet B, Ellis I, Maringe C, et al. Socioeconomic inequalities in cancer survival in England after the NHS cancer plan. Br J Cancer 2010; 103: 446–53.
8 Department of Health. Improving outcomes: a strategy for cancer—second annual report 2012. London: Department of Health, 2012.
9 Richards MA. The size of the prize for earlier diagnosis of cancer in England. Br J Cancer 2009; 101(supp 5): S125–29.
10 Richards MA. The National Awareness and Early Diagnosis Initiative in England: assembling the evidence. Br J Cancer 2009; 101(supp 5): S1–4.
11 The National Awareness and Early Diagnosis Initiative (NAEDI). NAEDI Newsletter 2009, http://www.cancerresearchuk.org/produ_consump/groups/cc_common/@nre/@hea/documents/generalcontent/015776 (accessed Nov 20, 2014).
12 Solomon T, Rachet B, Whitehead S, Coleman MP. Cancer survival in England: patients diagnosed 2007–2011 and followed up to 2012. 2013. http://www.ons.gov.uk/ons/rel/cancer-unit/cancer-survival/cancer-survival-in-england--patients-diagnosed-2007-2011-and-followed-up-to-2012/ (accessed Nov 20, 2014).
13 Cancer Research UK Cancer Survival Group. Life tables for England and Wales by sex, calendar period, region and deprivation. 2009. http://www.lshtm.ac.uk/epht/ncc/reports/cancersurvival/tools/index.html (accessed Nov 20, 2014).
14 Royston P, Parmar MK. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med 2002; 21: 2175–97.
15 Nelson CP, Lambert PC, Squire IB, Jones DR. Flexible parametric models for relative survival, with application in coronary heart disease. Stat Med 2007; 26: 5486–98.
16 Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974; 19: 716–23.
17 Lambert PC, Royston P. Further development of flexible parametric models for survival analysis. Stat J 2009; 9: 265–90.
18 StaCorp. STATA statistical software. Texas: StaCorp, 2013.
19 Department of Health. The NHS Cancer Plan: a plan for investment, a plan for reform. London: Department of Health, 2000.
20 Perme MP, Stare J, Estève J. On estimation in relative survival. Biometrics 2012; 68: 113–20.
21 Office for National Statistics. Cancer statistics: registrations of cancer diagnosed in 2011, England. Series MB1 no. 42. Newport: Office for National Statistics, 2013.
22 Moller H, Richards S, Hancheit N, et al. Completeness of case ascertainment and survival time error in English cancer registries: impact on 1-year survival estimates. Br J Cancer 2011; 105: 170–76.
23 Swerdlow AJ, Douglas AJ, Vaughan Hudson G, Vaughan Hudson B. Completeness of cancer registration in England and Wales: an assessment based on 2,145 patients with Hodgkin’s disease independently registered by the British National Lymphoma Investigation. Br J Cancer 1993; 67: 326–29.
24 Coleman MP, Babb P, Damiecki P, et al. Cancer survival trends in England and Wales 1971–1995: deprivation and NHS region. (studies on medical and population subjects no. 61). London: The Stationery Office, 1999.

25 Coleman MP, Rachet B, Woods LM, et al. Trends and socioeconomic inequalities in cancer survival in England and Wales up to 2001. Br J Cancer 2004; 90: 1367–73.

26 Borrland S. Half of cancer patients are living for ten years or more: Number classed as having beaten the disease doubles since the 1970s. 2014. http://www.dailymail.co.uk/health/article-2615416/Half-cancer-patients-living-ten-years-Number-classed-having-beaten-disease-doubles-1970s.html#ixzz37YTaDOIN (accessed April 28, 2014).

27 Rowan S, Rachet B, Alexe DM, Cooper N, Coleman MP. Survival from prostate cancer in England and Wales up to 2001. Br J Cancer 2008; 99 (suppl 1): S76–77.

28 Klint A, Tryggvadóttir L, Bray F, et al. Trends in the survival of patients diagnosed with cancer in female genital organs in the Nordic countries 1964–2003 followed up to the end of 2006. Acta Oncol 2010; 49: 632–43.

29 Puliti D, Duff SW, Miccinesi G, et al, and the EUROSCREEN Working Group. Overdiagnosis in mammographic screening for breast cancer in Europe: a literature review. J Med Screen 2012; 19 (suppl 1): 42–56.

30 Lawrence G, Wallis M, Allgood P, et al. Population estimates of survival in women with screen-detected and symptomatic breast cancer taking account of lead time and length bias. Breast Cancer Res Treat 2009; 116: 179–85.

31 Woods LM, Rachet B, Cooper N. Coleman MP. Predicted trends in long-term breast cancer survival in England and Wales. Br J Cancer 2007; 96: 1135–38.

32 Woods LM, Rachet B, O’Connell DL, et al. Differences in breast cancer incidence in Australia and England by age, extent of disease and deprivation status: women diagnosed 1980-2002. Aust N Z J Public Health 2010; 34: 206–13.

33 Coleman MP, Forman D, Bryant H, et al, and the ICBP Module 1 Working Group. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 2011; 377: 127–38.

34 National Institute for Health and Care Excellence. Lung cancer—the diagnosis and treatment of lung cancer. 2011. https://www.nice.org.uk/guidance/sg121 (accessed Nov 20, 2014).

35 Sheldon TA, Cullum N, Dawson D, et al. What’s the evidence that NICE guidance has been implemented? Results from a national evaluation using time series analysis, audit of patients’ notes, and interviews. BMJ 2004; 329: 999–1003.

36 Pollock A, Macfarlane A. Opting out of care data is not the answer. 2014. http://www.opendemocracy.net/ournhs/allyson-pollock-alison-macfarlane/opting-out-of-care.data-is-not-answer (accessed April 16, 2014).