Designing Templates for Eliciting Commonsense Knowledge From Pretrained Sequence-To-Sequence Models

Sheng-Chieh Lin*, Jheng-Hong Yang*, Rodrigo Nogueira, Ming-Feng Tsai, Chuan-Ju Wang and Jimmy Lin

* Contributed equally
Introduction

Text-To-Text Pretrained Transformer (T5)

- Formulate most NLP tasks in a “text-to-text” format
- From encoder-only to encoder-decoder pretraining

Figure 1: The text-to-text framework proposed by Raffel et al. [1].

Figure 2: An encoder-decoder model that performs masked language model training.

1. Figure is taken from p.3 in [1].
Consider the MNLI task

Task: MNLI	Input	Output
Original	(Hypothesis) The St. Louis Cardinals have always won. (Premise) yeah well losing is i mean i’m i’m originally from Saint Louis and Saint Louis Cardinals when they were there were uh a mostly a losing team but	2
T5	**mnli hypothesis:** The St. Louis Cardinals have always won. **premise:** yeah well losing is i mean i’m i’m originally from Saint Louis and Saint Louis Cardinals when they were there were uh a mostly a losing team but	**contradiction**

Table. 1 An example of T5’s text-to-text template for MNLI task; all inputs and outputs are texts for T5. The original inputs do not include the texts in the parentheses, but we put them explicitly in texts for T5.

* This example is taken from appendix D.3 in [1].
Introduction

Commonsense Reasoning as Multiple-Choice Question Answering

- WinoGrande [2] setting

Task: WinoGrande	Input	Output
Original	He never comes to my home, but I always go to his house because the _ is smaller.	(Option1) home (Option2) house

Table. 2 An example from WinoGrande commonsense reasoning dataset. Models are expected to fill in the right option texts in “_”; in this example, the correct answer is (Option1) home.
Introduction

Research Questions

- Is there commonsense embedded in the pretrained models?
- What are the “design factors” for text-to-text framework?
Table Of Contents

1. Introduction

2. Proposed Solution
 a. Text-to-text template
 b. Exploiting pretrained tokens

3. Evaluation

4. Conclusion
Proposed Solution

Text-To-Text Template (Without Context)

Task: WinoGrande

Input	Output	
He never comes to my home, but I always go to his house because the __ is smaller.	(Option1) home	(Option2) house

Option 1

- **hypothesis:** home is smaller.
- **premise:** He never comes to my home, but I always go to his house because the
- **entailment**

Option 2

- **hypothesis:** house is smaller.
- **premise:** He never comes to my home, but I always go to his house because the
- **contradiction**

Table 3: Given an example in WinoGrande, we decompose it as two instances.

- If the output pair is (entailment, contradiction) for (home, house), we know that “home” is the correct answer.

- But ...
Proposed Solution

Text-To-Text Template (Without Context)

Output combinations	Option 1	Option 2
Option 1	entailment/entailment	entailment/contradiction
Option 2	contradiction/entailment	contradiction/contradiction

Table 4: When using text pairs, we cannot decide which option is the correct answer on the diagonal cases.

- We need a solution to deal with the cases that we cannot assign correct answers purely by texts.

hypothesis: home is smaller. premise: He never comes to my home, but I always go to his house because the
Text-To-Text Template (With Context)

Task: ARC-Easy	Input	Context	Output
Original	A green plant absorbs light. A frog eats flies. These are examples of how organisms obtain energy by eating both plants and animals.	organism that obtains energy by eating both plants and animals.	(A) obtain energy (B) escape predators (C) produce offspring (D) excrete waste
(A) hypothesis: A green plant absorbs light. A frog eats flies. These are examples of how organisms obtain energy. premise: organism that obtains energy by eating both plants and animals.		true	
(B) hypothesis: A green plant absorbs light. A frog eats flies. These are examples of how organisms escape predators. premise: organism that obtains energy by eating both plants and animals.		false	
(C) hypothesis: A green plant absorbs light. A frog eats flies. These are examples of how organisms produce offspring. premise: organism that obtains energy by eating both plants and animals.		false	
(D) hypothesis: A green plant absorbs light. A frog eats flies. These are examples of how organisms excrete waste. premise: organism that obtains energy by eating both plants and animals.		false	

Table 5: For other commonsense reasoning tasks that provide context for reasoning or more than two options, we can easily extend our proposed template approach. Here we use an example in ARC-Easy [4] for demonstration.
Table Of Contents

1. Introduction
2. Proposed Solution
3. Evaluation
4. Conclusion
Evaluation

WinoGrande [2]

- **Metric:** accuracy

Condition	Target token	Logit	Zero-Shot	XS	S	M	L	XL
#1	entailment/contradiction		0.506	0.657	0.693	0.757	0.809	0.840
#2		✔	0.608	0.718	0.740	0.788	0.837	0.854
#3	true/false		0.477	0.676	0.697	0.760	0.823	0.852
#4		✔	0.566	0.723	0.752	0.800	0.843	0.865
Our leaderboard submission (test set)	-	0.683	0.705	0.776	0.824	0.846		

Table 6: Results on WinoGrande, measured by the accuracy of models trained on different dataset sizes. Condition #2 is our leaderboard submission.
Evaluation

OpenbookQA [5] and ARC-Easy [4]

- **Metric: accuracy**

Condition	Dataset	OpenbookQA	ARC-Easy
w/o contexts		0.768	0.808
w/ contexts		0.834	0.872
Our submission		0.832	0.891

Table 7: Results on OpenbookQA and ARC-Easy, measured by accuracy. We conduct the experiments with true/false target tokens and logit trick, corresponding to condition #4 in Table 6.
Table Of Contents

1. Introduction
2. Proposed Solution
3. Evaluation
4. Conclusion
Conclusion

Take Home

- Using the template we proposed with the logit trick, pretrained T5 performs better than random without fine-tuning.
 - Does it mean that T5 captures some commonsense during pretraining?
- We explored a direction for designing templates for the text-to-text framework.
 - Is there a general rule for the template design?
[1] Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." *Journal of Machine Learning Research* 21.140 (2020): 1-67.

[2] Sakaguchi, Keisuke, et al. "Winogrande: An adversarial winograd schema challenge at scale." *arXiv preprint arXiv:1907.10641* (2019).

[3] Nogueira, Rodrigo, Zhiying Jiang, and Jimmy Lin. "Document ranking with a pretrained sequence-to-sequence model." *arXiv preprint arXiv:2003.06713* (2020).

[4] Clark, Peter, et al. "Think you have solved question answering? try arc, the ai2 reasoning challenge." *arXiv preprint arXiv:1803.05457* (2018).

[5] Mihaylov, Todor, et al. "Can a suit of armor conduct electricity? a new dataset for open book question answering." *arXiv preprint arXiv:1809.02789* (2018).
Thank You!

Have questions?

E-mail:
Sheng-Chieh Lin / s269lin@uwaterloo.ca
Jheng-Hong Yang / j587yang@uwaterloo.ca