Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives

Weijie You¹,⁴, Wei Zheng²,³,⁴, Sandra Weiss¹, Katrin F. Chua²,³ & Clemens Steegborn¹*

Mammalian Sirtuin 6 (Sirt6) is an NAD⁺-dependent protein deacylase regulating metabolism and chromatin homeostasis. Sirt6 activation protects against metabolic and aging-related diseases, and Sirt6 inhibition is considered a cancer therapy. Available Sirt6 modulators show insufficient potency and specificity, and even partially contradictory Sirt6 effects were reported for the plant flavone quercetin. To understand Sirt6 modulation by quercetin-based compounds, we analysed their binding and activity effects on Sirt6 and other Sirtuin isoforms and solved crystal structures of compound complexes with Sirt6 and Sirt2. We find that quercetin activates Sirt6 via the isoform-specific binding site for pyrrolo[1,2-a]quinoxalines. Its inhibitory effect on other isoforms is based on an alternative binding site at the active site entrance. Based on these insights, we identified isoquercetin as a ligand that can discriminate both sites and thus activates Sirt6 with increased specificity. Furthermore, we find that quercetin derivatives that inhibit rather than activate Sirt6 exploit the same general Sirt6 binding site as the activators, identifying it as a versatile allosteric site for Sirt6 modulation. Our results thus provide a structural basis for Sirtuin effects of quercetin-related compounds and helpful insights for Sirt6-targeted drug development.

Sirtuins are NAD⁺-dependent protein lysine deacylases that sense the cellular nutrient status, regulate energy metabolism and stress responses, and have been implicated in aging processes and aging-related diseases. Of the seven mammalian Sirtuin isoforms, Sirt1–7, three are localized in the nucleus (Sirt1,6,7). Sirt1 is the most studied isoform, functions as deacetylase of histones and transcription factors, and is modulated by a variety of small molecule inhibitors and activators and used as a therapeutic target. Sirt6 associates with chromatin and modulates the functions of histones, transcription factors, and stress response proteins to regulate gene expression, telomere maintenance, and DNA repair. Sirt6 promotes longevity in male mice, and it suppresses aging phenotypes and induces apoptosis in cancer cells. Small molecule Sirt6 modulators are thus sought for functional studies and therapy of aging-related diseases, such as cancer and type 2 diabetes.

Sirtuins feature differing substrate acyl selectivities. In vitro, Sirt6 shows low deacetylase activity on peptides and free histones and more efficient turnover of long chain acylations, such as myristoylations. However, Sirt6 efficiently deacylates nucleosomal histones in vitro, and nucleosomes as well as proteins involved in glucose metabolism and DNA repair in cells. It features the conserved Sirtuin catalytic core of ~275 amino acids, with a Rossman-fold and a Zn²⁺-binding domain. Sirt6's particular small Zn²⁺-binding domain and cofactor-binding loop render its substrate acyl-binding channel rather large and hydrophobic, facilitating accommodation of long-chain acyls. The Sirtuin catalytic core is flanked by isoform-specific N- and C-terminal extensions, which in Sirt6 contribute to its chromatin association.

Only few Sirt6 modulators are available. Initially described Sirtuin-activating compounds (STACs) bind to a Sirt1-specific STAC binding domain (SBD), suggesting that activation might only be possible for Sirt1. However, free fatty acids and fatty acid ethanolamides at high micromolar concentrations were found to stimulate Sirt6 deacetylation activity. They inhibit Sirt6-dependent hydrolysis of long chain acylations, implicating the acyl binding channel in this effect. More recently, we identified synthetic pyrrolo[1,2-a]quinoxaline derivatives as more potent Sirt6 deacylase activators, albeit with limited efficacy and solubility. Crystal structures of Sirt6 complexes with these activators identified a Sirt6-specific modulator binding site in the acyl binding channel.

¹Department of Biochemistry, University of Bayreuth, 95445, Bayreuth, Germany. ²Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA. ³Geriatric Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA. ⁴These authors contributed equally: Weijie You and Wei Zheng. *email: Clemens.Steegborn@uni-bayreuth.de
The anti-inflammatory and anti-diabetic plant flavonoid quercetin (1; Fig. 1a) appears to be another Sirt6 activator. Quercetin was reported to activate Sirt1 and to inhibit Sirt6 in the “Fluor-de-Lys” (FdL) assay employing a fluorogenic substrate20,21. Quercetin has further been described as Sirt6 inhibitor at low concentrations15,22 and Sirt6 activator at high concentrations15 based on mass spectrometry (MS) assays, whereas a recent MS study yielded only activating effects for quercetin and a more potent derivative23. It further indicated the quercetin derivatives catechin gallate (2; Fig. 1a) and gallocatechin gallate (3) as potent small molecule Sirt6 inhibitors (IC50 2.5 and 5.4 µM, respectively), the first ones besides the non-specific trichostatin A 24,25. Quercetin and its derivatives affect several cellular targets19, but Sirtuin binding site and regulation mechanisms would nevertheless improve our understanding of Sirt6 modulation and be helpful for the development of potent and soluble Sirt6 modulators. So far, pharmacophore models22,26 and docking calculations 23 failed to rationalize the limited and partially contradictory experimental data on Sirt6 modulation.

Here, we analyse modulation of Sirt6 and other isoforms by quercetin and its derivatives in activity and binding assays and through crystal structure analyses of modulator complexes of Sirt6 and Sirt2. We find that quercetin-based compounds can activate Sirt6-dependent deacetylation through binding to the Sirt6-specific acyl binding channel. We further show that quercetin inhibits other Sirtuin isoforms through an alternative binding site at the active site entrance, and that isoquercetin (4; Fig. 1a) can distinguish these binding sites and thus activates Sirt6 selectively. Interestingly, we find that the inhibitory quercetin derivatives exploit the same Sirt6 binding site as the activators, but with a rotated chromen-4-one orientation within the acyl binding channel. Our results hence reveal sites and mechanisms for Sirtuin modulation by quercetin derivatives and provide helpful insights for Sirt6 modulator development.

Results

Quercetin and its derivative luteolin activate Sirt6-dependent deacetylation. To clarify the effects of quercetin and its derivatives on Sirt6 deacetylation activity, we tested them in several assays. In the FdL assay, quercetin appeared to inhibit Sirt6 but control reactions showed that it quenches FdL fluorescence, preventing reliable measurements (Supplementary Fig. 1a). In a coupled enzymatic assay with acetylated H3K9 peptide...
(H3K9ac), which represents a physiological Sirt6 deacetylation site, quercetin also appeared to inhibit Sirt6 but control reactions revealed suppressive quercetin effects on the downstream enzymes of the assay (Supplementary Fig. 1b). To overcome the artifacts in these widely used assays, we tested the compounds in a robust MS-based assay27 with the H3K9Ac substrate. Quercetin and luteolin (5; Fig. 1a) yielded a dose-dependent increase in Sirt6 activity, with a >2-fold maximum stimulation and EC50 values of ~1.2 mM (Fig. 1b). We did not observe any evidence for the reported Sirt6 inhibition by lower quercetin concentrations15,22 and conclude that quercetin and luteolin act as low potency activators of Sirt6 peptide deacetylation activity.

Acetyl-peptides are poor Sirt6 substrates and may not fully mimic physiological deacetylations in cells 12,28. We therefore examined quercetin effects on the deacetylation activity of Sirt6 on purified full-length histones and nucleosomes (Fig. 1c). Quercetin substantially activated Sirt6 in deacetylating nucleosomal H3K18ac (H3K9ac levels were below the detection limit). Moreover, quercetin also augmented the H3K18ac and H3K9ac deacetylase activities of Sirt6 on free full-length histones (Fig. 1c), which are otherwise poor substrates for Sirt6. Quercetin thus activates Sirt6-dependent deacetylation of its physiological histone substrates.

A Sirt6/quercetin crystal structure reveals binding site and interaction details. To identify Sirt6’s quercetin binding site and interaction details, we determined a crystal structure of a Sirt6/ADP-ribose/quercetin complex at 1.84 Å resolution (Table 1; Fig. 1d,e). Well-defined electron density for the quercetin ligand revealed the distal end of Sirt6’s extended acyl binding channel as binding site (Fig. 1d–f). The catechol moiety of quercetin (ring B) is buried in a protein pocket and its 4’-hydroxyl group forms a hydrogen bond to the Pro62 backbone oxygen, and the 4’- and 3’-hydroxyls form water-mediated interactions with the backbone of Ala53 and Ile61 and the side chain of Asp116 (Fig. 1e,f; Supplementary Fig. 1c). Asp116 normally forms a hydrogen bond to the NAM moiety of NAD+ bound in the so-called “C-site”, illustrating that catechol pocket and C-site partly overlap. The quercetin chromen-4-one system contributes to complex formation through hydrophobic contacts with funnel surface patches formed by Phe64/82/86 and Val70/115, and Met136/157 (Fig. 1e,f). Comparison of the Sirt6/quercetin complex with a Sirt6 complex with the pyrrolo[1,2-a]quinoline-based activator UBCS039 shows that they share most of their binding sites (Fig. 1f). The catechol group of quercetin overlays well with the UBCS039

Sirt6 and quercetin	Sirt6 and isoquercetin	Sirt6 and CG	Sirt6 and cyanidin	Sirt2 and quercetin	
Data collection					
Space group	P63	P63	P63	P63	P2,2,2,1
Cell dimensions					
a = b, c (Å)	91.4, 143.9	91.4, 144.2	91.8, 144.2	91.4, 143.8	78.2, 114.5
Resolution (Å)a	47.98–1.84 (1.95–1.84)	45.71–2.01 (2.01–2.01)	48.12–2.01 (2.14–2.01)	47.94–2.10 (2.22–2.10)	46.22–2.23 (2.37–2.23)
Rmerge *	0.12 (1.76)	0.10 (1.63)	0.16 (1.90)	0.16 (1.84)	0.28 (1.90)
CC1/2	0.999 (0.479)	0.999 (0.378)	0.996 (0.710)	0.998 (0.634)	0.976 (0.282)
Rejected *	n.a.				
Redundancy *	6.9 (6.6)	6.9 (6.6)	10.1 (8.5)	11.3 (11.3)	7.4 (11.3)
Refinement					
Resolution (Å) a	45.68–1.84 (1.89–1.84)	43.57–1.90 (1.95–1.90)	45.96–2.01 (2.07–2.01)	45.69–2.10 (2.15–2.10)	46.22–2.23 (2.29–2.23)
No. reflections	56832	51587	42989	37769	32823
Rwork / Rfree (%)	16.8/20.3	15.3/19.7	16.3/20.0	21.1/23.0	
Twin lawb	None	–k, –h, –l	–k, –h, –l	–k, –h, –l	–k, –h, –l
Twin fractionsa	0.72/0.28	0.56/0.44	0.74/0.26	0.78/0.22	
No. atoms					
Protein	4382	4381	4350	4341	4735
Compound	44	66	64	42	22
ADP ribose	72	72	72	72	
Water	346	224	166	117	28
B-factors					
Protein	38.9	46.7	41.9	54.0	53.9
Compound	59.3	77.9	51.2	80.1	67.3
ADP ribose	28.7	36.1	30.2	41.8	34.8
Water	43.9	46.2	38.0	48.5	46.4
R.m.s. deviations					
Bond lengths (Å)	0.013	0.014	0.015	0.012	0.014
Bond angles (°)	1.84	2.11	2.26	1.95	2.2

Table 1. Diffraction data and refinement statistics. *Highest-resolution shell is shown in parentheses. **Twinning was detected through L-tests with CCP4 POINTLESS and twin fractions were determined during amplitude-based twin refinement with Refmac.
The pyridine moiety and reproduces its key interaction to Pro62. The chromen-4-one substitutes for the hydrophobic pyrrolo[1,2-a]quinoxalines of UBCS039-related compounds, which can vary between UBCS039 derivatives due to the non-directed nature of its interactions and the wide and hydrophobic architecture of the Sirt6 funnel.

It thus appears that the buried catechol group of quercetin functions as an anchor in Sirt6 binding, while the chromen-4-one provides smaller and non-specific binding contributions and might be particularly amenable for modifications to increase compound affinity.

Since quercetin occupies the distal end of the extended Sirt6 acyl channel it is compatible with binding of acetylated substrates but would overlap with longer substrate acylations such as myristoylations (Supplementary Fig. 1d). Testing quercetin on Sirt6-dependent demyristoylation indeed revealed a concentration-dependent inhibition (Fig. 1g), consistent with results from continuous Sirt6 assays with a quencher-containing long chain acyl substrate. Thus, quercetin stimulates the deacetylation activity of Sirt6 and inhibits Sirt6-dependent demyristoylations, as observed for UBCS039 and consistent with their binding to the remote end of the Sirt6 acyl channel.

Sirt6 complex structures with activating and inhibitory quercetin derivatives reveal interaction differences and suggest modulation mechanisms. Cyanidin (6, Fig. 1a) is an quercetin derivative that was reported to activate Sirt6 with slightly increased potency and efficacy (EC₅₀ 460 ± 20 µM; 55-fold stimulation). In our activity assays, cyanidin caused precipitations at higher concentrations but would overlap with longer substrate acylations such as myristoylations (Supplementary Fig. 1d). Testing cyanidin on Sirt6-dependent demyristoylation indeed revealed a concentration-dependent inhibition (Fig. 1g), consistent with results from continuous Sirt6 assays with a quencher-containing long chain acyl substrate. Thus, cyanidin stimulates the deacetylation activity of Sirt6 and inhibits Sirt6-dependent demyristoylations, as observed for UBCS039 and consistent with their binding to the remote end of the Sirt6 acyl channel.
Catechin gallate (CG) is the most potent quercetin derivative reported to inhibit rather than activate SirT6-dependent deacetylation (IC_{50} 2.5 ± 0.1 μM). Testing CG in our MS assay confirmed the surprising inhibitory effect of this closely quercetin-related compound, albeit with slightly lower potency (IC_{50} 80 ± 15 μM; Fig. 2d). To rationalize the inhibitory effect, we determined a crystal structure of a SirT6/CG complex at 2.0 Å resolution (Table 1; Fig. 2e). The bound inhibitor CG is well-defined by electron density and occupies the same binding region as the activator quercetin, with identical positions for their catechol moieties but a rotated chromen-4-one in GC to accommodate its additional, bulky trihydroxy benzoyl group (Fig. 2e,f; Supplementary Fig. 2b). The chromen-4-one now interacts with Trp71 of the acyl channel exit, and the trihydroxy benzoyl group forms hydrophobic interactions with the other side of the exit funnel and a polar contact to the Gly155 backbone. The inhibitor does not overlap with the binding pocket for acetyl substrate but the catechol group assumes a position partly overlapping with the NAM moiety of the NAD^{+} cosubstrate (Supplementary Fig. 2c). Testing CG inhibition at different NAD^{+} concentrations did not result in significant changes of residual activity (Supplementary Fig. 2d), however, indicating that the inhibition is not based on NAD^{+} competition. The fact that closely related compounds with identical catechol binding mode act as activators indeed suggests that the modulatory binding occurs after the NAM release step of the catalytic cycle.

The keto group of quercetin at C-ring position 4 is missing in the more potent activator cyanidin and the potent inhibitor CG, which removes an unfavourable interaction - with Met157 in case of cyanidin - and might be a key for their increased potency. Comparing SirT6 complexes of activating and inhibiting compounds further suggests modulation mechanisms and differences relevant for their differing effects (Fig. 2g). The inhibitor CG differs from activators in a slight rotation of the catechol moiety; and more drastically in a tilted position of the chroman and the presence of its additional bulky substituent, orienting them toward N-terminus and Val154, respectively. The Val154/Gly155 peptide bond flips to provide space, but this and other differences in protein conformation are subtle. The bulky group pointing toward the N-terminus is CG's dihydroxymethane, and its strong tilt compared to quercetin/cyanidin is due to the saturated C-ring in CG. Interestingly, activating quercetin derivatives appear to feature an unsaturated, planar C-ring, while inhibiting family members tend to have saturated C-rings (our data and15) and thus likely bind in the tilted, CG-like orientation. The Sirt6-activating quercetin derivatives appear to feature an unsaturated, planar C-ring, while inhibiting family members tend to have saturated C-rings (our data and15) and thus likely bind in the tilted, CG-like orientation. The Sirt6-activating compound UBCS03917 orients its pyrrolo[1,2-a]quinoxaline similar to the chromene of the activating quercetin derivatives (and pyrrolo[1,2-a]quinoxalines) overlap with the C-site that accommodates the NAM moiety of the NAD^{+} cosubstrate (Supplementary Fig. 2c). Testing CG inhibition at different NAD^{+} concentrations did not result in significant changes of residual activity (Supplementary Fig. 2d), however, indicating that the inhibition is not based on NAD^{+} competition. The fact that closely related compounds with identical catechol binding mode act as activators indeed suggests that the modulatory binding occurs after the NAM release step of the catalytic cycle.

The keto group of quercetin at C-ring position 4 is missing in the more potent activator cyanidin and the potent inhibitor CG, which removes an unfavourable interaction - with Met157 in case of cyanidin - and might be a key for their increased potency. Comparing SirT6 complexes of activating and inhibiting compounds further suggests modulation mechanisms and differences relevant for their differing effects (Fig. 2g). The inhibitor CG differs from activators in a slight rotation of the catechol moiety; and more drastically in a tilted position of the chroman and the presence of its additional bulky substituent, orienting them toward N-terminus and Val154, respectively. The Val154/Gly155 peptide bond flips to provide space, but this and other differences in protein conformation are subtle. The bulky group pointing toward the N-terminus is CG's dihydroxymethane, and its strong tilt compared to quercetin/cyanidin is due to the saturated C-ring in CG. Interestingly, activating quercetin derivatives appear to feature an unsaturated, planar C-ring, while inhibiting family members tend to have saturated C-rings (our data and15) and thus likely bind in the tilted, CG-like orientation. The Sirt6-activating compound UBCS03917 orients its pyrrolo[1,2-a]quinoxaline similar to the chromene of the activating quercetin derivatives (and pyrrolo[1,2-a]quinoxalines) overlap with the C-site that accommodates the NAM moiety of the NAD^{+} cosubstrate (Supplementary Fig. 2c). Testing CG inhibition at different NAD^{+} concentrations did not result in significant changes of residual activity (Supplementary Fig. 2d), however, indicating that the inhibition is not based on NAD^{+} competition. The fact that closely related compounds with identical catechol binding mode act as activators indeed suggests that the modulatory binding occurs after the NAM release step of the catalytic cycle.

Quercetin inhibits other Sirtuin isoforms by exploiting an alternative binding site. Due to the isoform-specific features of the SirT6 acyl channel, in particular its wide and hydrophobic architecture36,37, its ligands should be SirT6 specific. An overlay of the SirT6/quercetin complex with SirT1,2,3, and 5 indeed shows that the binding site is blocked in these other isoforms by cofactor loop and a helix bundle (Supplementary Fig. 3a). However, effects of quercetin and related polyphenols were also reported for Sirt120. We thus tested the quercetin binding site of Sirt6 is blocked in these other isoforms, our structures define two mutually exclusive modulator binding sites for Sirt6 and for Sirt1,2,3,5, respectively. Since the quercetin binding site of Sirt6 is blocked in these other isoforms, our structures define two mutually exclusive modulator binding sites for Sirt6 and for Sirt1,2,3,5, respectively.

Isoquercetin is an activating ligand for the quercetin site with improved specificity. Since the quercetin sites of SirT6 and Sirt1,2,3,5 are mutually exclusive, suitable derivatives should allow to exploit specific features of either site and thus show improved selectivity. We thus tested the isoform selectivity of the quercetin derivative isoquercetin (Fig. 1a), which features a bulky sugar moiety that might be accommodated in the acyl channel of SirT6 but not in the alternative site. Isoquercetin indeed retained the SirT6 stimulating activity,
albeit with even lower potency, and it showed no significant effects on Sirt1–3-dependent deacetylation and Sirt5-dependent desuccinylation (Fig. 4a,b). To confirm the molecular basis of the improved Sirt6 selectivity of isoquercetin, we determined a crystal structure of a Sirt6/ADP-ribose/isoquercetin complex. Initial soaking experiments failed due to a PEG molecule bound to the acyl channel, but substituting PEG with ethylene glycol enabled us to solve the Sirt6/isoquercetin complex structure at 1.8 Å resolution (Table 1; Fig. 4c). The quercetin moiety of isoquercetin occupies the activator site identical to the parent compound (Fig. 4d; Supplementary Fig. 3e), and its additional sugar moiety is thereby placed in the acyl channel. The density for the isoquercetin sugar is weaker than for its quercetin moiety, likely due to flexibility, and it indeed forms no significant positive interactions (Fig. 4c; Supplementary Fig. 3e). Overlaying isoquercetin with the ligand of our Sirt2/quercetin structure illustrates that the sugar moiety would clash with Tyr-114, rationalizing the improved selectivity for Sirt6 (Fig. 4e). The sugar at this compound position thus acts as a negative selector, i.e. does not disturb Sirt6 binding significantly but hinders accommodation in the alternative binding site of the other isoforms, indicating that other moieties at this position should result in further improvements in selectivity and – with more appropriate moieties for beneficial interactions – in better potency.

Discussion

Sirt6 is considered as therapeutic target for aging-related diseases, but the few available Sirt6 modulators require improvements concerning potency, selectivity, and bioavailability. Partly contradictory effects on Sirt6 activity were previously reported for the plant flavone quercetin, and we find that the compound interferes with two popular Sirtuin activity assays, which is a common problem for optical assays. Our robust MS assay confirms quercetin as a low potency Sirt6 activator. Previously reported inhibitory effects at lower quercetin
concentrations could not be observed and likely are assay artifacts caused by the optical effects of the compound and/or the use of Sirt6 tagged with GST, which is known to bind quercetin tightly. We could confirm, however, that some quercetin derivatives act as Sirt6 inhibitors rather than activators, and the slight differences in potency might again be attributed to the previous use of a GST tag. The more potent quercetin-based Sirt6 modulators, together with our results, suggest that potency and specificity of this scaffold can be significantly increased and improved compounds might eventually even become suitable for pharmacological applications. They further indicate that Sirt6 modulation might contribute to physiological effects of such more potent compound family members. Indeed, treating U2OS cancer cells with the potent inhibitor CG led to significant histone H3 hyperacetylation, an established marker for Sirt6 inhibition, and this effect was abolished in SIRT6-deficient cells (Fig. 4f). The Sirt6 activating quercetin derivatives showed low potency, and quercetin itself affects more potently a variety of other cellular targets, such as kinases. Sirt6 might still contribute to the beneficial health effects of quercetin, but potentially indirectly, through its activation by increased NAD$^+$ levels from quercetin inhibition of CD38. Nonetheless, we found that treatment of U2OS cells with 25 to 100 μM quercetin induced a dose-dependent decrease of H3 acetylation that was not observed in SIRT6-deficient cells, demonstrating clear Sirt6-dependent cellular effects of higher quercetin concentrations (Supplementary Fig. 3f). Direct Sirt6 activation thus might contribute to physiological effects observed at higher quercetin concentrations. Importantly, the more potent quercetin derivatives, such as CG, indicate that Sirt6-activating and -inhibiting natural quercetin derivatives with even further increased potency might exist and that Sirt6 modulation might contribute to effects of compound family members and thus of flavone-containing foods or extracts. Due to the wide Sirt6 binding side and few specific interactions, even other natural compound families with a catechol group or a related moiety could exploit this binding mode. They might be the explanation why the deacetylase activity of Sirt6 is weak in vitro yet significant in vivo. Furthermore, quercetin inhibits other Sirtuin isoforms with low potency and more potent derivatives appear to exist also for these isoforms and might contribute to physiological effects of the compound family.
For exploiting insights from studying quercetin-based Sirtuin modulators for drug development, Sirtuin/compound interaction details are required. A pharmacophore model based on binding competition suggested four relevant hydrogen bonds. Docking models indicated binding in active site and acyl channel, with inhibitors disturbing substrate binding and a more external binding of activators. Both modelings were based on limited and partially incorrect data (see above). Our crystal structures in fact identify a deviating Sirt6 binding mode and provide interaction details and modulation mechanisms. Activators and inhibitors bind almost identical, with the catechol moiety acting as an anchor. It binds at the bottom of the Sirt6-specific acyl channel, similar to the pyridine moiety of activating pyrrolo[1,2-a]quinoxalines. The resulting overlap with the C-site indicates that the modulatory binding takes place only after NAM release. The chroman/chromene moieties contribute mostly non-directional hydrophobic contacts and thus can assume different orientations within the Sirt6 acyl funnel. They are structurally distinct from the corresponding pyrrolo[1,2-a]quinoxalines and more polar, revealing that these parts of the two compound families should be amenable to significant modifications that might improve affinity and/or solubility.

Within the quercetin family, variations would mainly be restricted by the observation that saturation state and substrates of the chroman/chromene decide its orientation and thereby seem to determine whether a ligand activates or inhibits. It will be interesting to see whether different structures, besides pyrrolo[1,2-a]quinoxalines, can imitate either binding mode and possibly facilitate the development of highly potent and soluble allosteric Sirt6 activators and inhibitors, respectively. Furthermore, C-ring modifications in quercetin derivatives, respective corresponding positions in pyrrolo[1,2-a]quinoxalines or potential other ligand classes, appear in particular suitable for increasing Sirt6 selectivity due to their incompatibility with the newly identified quercetin binding site in Sirt1,2,3,5.

Our structures reveal alternative binding sites in Sirt6 respective Sirt1,2,3,5, and thereby explain quercetin's Sirt6-specific activation effect and its weak inhibition of other isoforms. The comparison of quercetin in both sites reveals C-ring modifications, as a feature that can increase Sirt6 selectivity and possibly also affinity, and the Sirt6/CG complex reveals how quercetin derivatives can also exploit this site for potent Sirt6 selectivity due to their incompatibility with the newly identified quercetin binding site in Sirt1,2,3,5.

Materials and Methods

Chemicals. All chemicals were purchased from Sigma if not stated differently. All synthetic peptides were from GL Biochem (myristoyl-TNF: EALPK-(myristoyl-K)-TGG); acetyl-H3K9: MARTKQTA-(acetyl-K)-STGGKAPRQKL; acetyl-p53: RHK-(acetyl-K)-LMFK; acetyl-a-tubulin: MPSD-(acetyl-K)-TIG; acetyl-ACS2: TRSG-(acetyl-K)-VMR; succinyl-CP51: RGVL-(succinyl-K)-EYGV)

Protein production and purification. A comparison of the protein constructs we used is shown in Supplementary Fig. 4. The recombinant N-terminal his-tagged human Sirt6 proteins were produced as previously described. Briefly, Sirt6(1-355) in pQE80L.1 was fermented in E. coli M15[pREP4]; Sirt6(13-308) in pET151-D-TOPO was expressed in E. coli Rosetta2 (DE3) pLysS. Human Sirt2(35-356) was expressed from an pET-SUMO vector in E. coli BL21 (DE3) codon +. The proteins were purified by affinity chromatography with Talon resin (Clontech), followed by tag cleavage with Tobacco Etch Virus (TEV) protease. Tag and protease were removed through a second Talon affinity chromatography, and the proteins were further purified using cation exchange and gel filtration chromatography. Purified protein was concentrated to 10 mg/ml for Sirt6 and 36.5 mg/ml for Sirt2, flash frozen in liquid nitrogen, and stored at −80 °C. Full length human Sirt1, human Sirt3 residues 118–399, and human Sirt5 residues 34–302 were prepared as described before. For coupled enzymatic peptide deacylation assays, reactions were run in a total volume of 100 µl containing 50 mM Na-phosphate pH 7.50, 5% DMSO, 0.6 mM DTT, 0.1% (v/v) Tween 20, 200 µM acetylated histone H3K9 peptide, 500 µM NAD⁺ and 10 µM Sirt6. The reactions were monitored in an Epoch 2 plate reader (BioTek) at 340 nm wavelength. Control reactions to check for compound effects on downstream enzymes contained no Sirt6 and were spiked with 40 µM nicotinamidase. For FdL assays, reactions were run in a total volume of 50 µl containing 50 mM Tris-HCl pH 7.50, 100 mM NaCl, 5% DMSO, 100 µM acetylated FdL1-peptide, 500 µM NAD⁺ and 10 µM Sirt6. After incubation at 37 °C for 1 h, reactions were stopped by adding 2 mM NAM and 10 mg/ml trypsin, incubated 20 min, and measured in a FluoDia T70 (Photon Technology) at wavelength 460 nm. Control reactions for fluorescence quenching effects of the compounds were run by adding compound at different concentrations after the deacetylation and development steps.

For MS deacylation assays, reactions contained 50 mM Na-phosphate pH 7.5, 200 µM H3K9ac peptide, 2.5 mM NAD⁺, 5% DMSO, the indicated amount of compound and 20 µM Sirt6(1–355). Demyristoylation assays were done with 50 µM myristoyl-TNFα peptide. Reference reactions contained 5% DMSO and no compound, and control reactions were run without Sirt6. After incubation for 2 h at 37 °C, reactions were stopped by adding equal volumes of 0.5% (v/v) trifluoroacetic acid and diluted 10-fold with 0.1% formic acid. Samples were filtered in 10 kDa MWCO concentrators and analyzed on an LTQ-XL mass spectrometer (Thermo Scientific) coupled to an HPLC-system with a self-packed ReproSil-Pur C18-AQ column. Demyristoylation samples were analyzed on a TripleTOF 5600 + System (ABI Sciex) coupled to an HPLC-system with a Jupiter 5 µ C4 300 A column (Phenomenex) without prior filtration. Peptide quantification was done with Skyline. For the Sirt1, 2, 3, and 5 deacylation assays, the reaction mixtures contained 100 µM acetyl-p53 (Sirt1), 100 µM acetyl-α-tubulin (Sirt2), 100 µM acetyl-ACS2 (Sirt3), or 100 µM succinyl-CP51 (Sirt5), respectively. Sirt3 samples contained in addition 0.05 mg/ml nicotinamidase. All reactions further contained 500 µM NAD⁺ and indicated amounts of compounds in 50 mM Na-phosphate buffer with 5% DMSO and were incubated for 5 min at 37 °C. MS analyses of the peptides were done as described for Sirt6.
In vitro histone and nucleosome deacetylation assays. 2 μg GST or GST-Sirt6 protein was pre-incubated with 5 mM quercetin or DMSO vehicle at room temperature for 10 minutes. In vitro deacetylation reactions were then performed by adding 5 μg calf thymus histones or 2 μg HeLa mononucleosomes (Epicypher) in NAD⁺-deacetylase buffer (20 mM Tris pH 8, 150 mM NaCl, 1 mM NAD⁺, 1.5 mM DTT), incubated at 30 °C for 3 hours in a total volume of 20 μl. Histone deacetylation was assessed by western blot with H3K9ac (ab4441) or H3K18ac (ab1191) specific antibodies. Signals were quantified with Image Studio Lite software (LI-COR Biosciences), and relative acetylation determined by normalization to total H3 and control samples.

Cellular deacetylation assays. Human U2OS cells (ATCC) were cultured in EMEM with 10% FBS and Pen/Strep. SIRT6 KO U2OS cells were generated by CRISPR/Cas9 gRNA targeting SIRT6 as described previously39. Cells were treated with CG or quercetin at indicated doses for 48 hours, and whole-cell lysates were collected to determine histone acetylation levels in cells. Western blot analysis of histone acetylation levels was performed with anti-H3K56ac (Epitomics 2134–1) antibody.

Crystallization and Structure determination. Sirt6/ADP-ribose crystals were grown from 1.6 M (NH₄)₂SO₄, 10% PEG 400, and Bis-Tris buffer pH 5.7 with 10 mg/ml Sirt6(13–308) and 10 mM ADP-ribose by the hanging drop vapor diffusion method at 20 °C. The Sirt6/ADP-ribose and Sirt6/ADP-ribose/cyanidin complexes were obtained by soaking Sirt6/ADP-ribose crystals with 40 mM compound for one week, and the Sirt6/ADP-ribose/cG complex by soaking with 1 mM CG overnight. The structure in complex with isoquercetin was produced by transferring crystals in a new drop containing 1.6 M (NH₄)₂SO₄, 10% ethylene glycol, and Bis-Tris buffer pH 5.7 with 40 mM isoquercetin and incubation for one week. A solution of reservoir supplemented with 20% ethylene glycol, 10 mM compound and 2 mM ADP-ribose was used as cryoprotectant.

Sirt2/ADP-ribose crystals were grown in hanging drops at 20 °C with 14% PEG 10.000 and 0.1 M ammonium acetate pH 5.8 as reservoir solution. The protein solution contained 13 mg/ml Sirt2 (55–356) and 20 mM ADP-ribose. The Sirt2/ADP-ribose crystals were soaked with 40 mM quercetin for 3 days. Crystals were then transferred to a drop of reservoir supplemented with 20% glycol, 10 mM quercetin and 2 mM ADP-ribose before flash freezing in liquid nitrogen.

Diffraction data were collected at 100 K at BL14.1 operated by Helmholtz-Zentrum Berlin (HZB) at the BESSY II electron storage ring (Berlin-Adlershof, Germany)41. Diffraction data were processed with the X-ray Detector Software (XDS) using XDapp42,43. The Sirt6 crystals were detected to be twinned through L-tests in POINTLESS44. Structures were solved by molecular replacement replacement with Phaser45 from the CCP4 software suite, using the twinned data and a Sirt6/ADP-ribose structure (PDB code 3K35)46 as a search model for the Sirt6 complexes and Sirt2/1,2,4-Oxadiazole/ADP-ribose structure (PDB code 5MAR)47 for the Sirt2 complex. The structures were manually rebuilt in COOT48 and refined with Refmac49. The refinements were done with the amplitude-based twin refinement option and yielded twin fractions of 22–44% (Table 1). Structure figures were generated with PyMOL (Schrodinger, LLC; https://pymol.org/2/).

Data availability Co-ordinates. X-ray diffraction data and coordinates have been deposited with the PDB (www.wwpdb.org) under accession numbers 6QCD (Sirt6/quercetin), 6QCN (Sirt2/quercetin), 6QCJ (Sirt6/catechin gallate), 6QCH (Sirt6/cyanidin), 6QCE (Sirt6/isoquercetin).

Received: 15 October 2019; Accepted: 27 November 2019; Published online: 16 December 2019

References

1. Morris, B. J. Seven sirtuins for seven deadly diseases of aging. *Free Radic. Biol. Med.* **56**, 133–171 (2013).
2. Dai, H., Sinclair, D. A., Ellis, J. L. & Steegborn, C. Sirtuin activators and inhibitors: promises, achievements, and challenges. *Pharmacol. Ther.* **188**, 140–154 (2018).
3. Kugel, S. & Mostoslavsky, R. Chromatin and beyond: The multitasking roles for SIRT6. *Trends Biochem. Sci.* **39**, 72–81 (2014).
4. Kafri, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. *Nature* **483**, 218–221 (2012).
5. Kafri, S. et al. SIRT6 suppresses pancreatic cancer through control of Lin28b. *Cell* **165**, 1401–1415 (2016).
6. Mostoslavsky, R. et al. Genomic Instability and Aging-like Phenotype in the Absence of Mammalian SIRT6. *Cell* **124**, 315–329 (2006).
7. Tasselli, L., Zheng, W. & Chua, K. F. SIRT6: novel mechanisms and links to aging and disease. *Trends Endocrinol. Metab.* **28**, 168–185 (2017).
8. Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. *Nature* **496**, 110–113 (2013).
9. Rooijakkers, C. et al. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors. *Angew. Chemie - Int. Ed.* **53**, 10728–10732 (2014).
10. Gertz, M. & Steegborn, C. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. *Cell. Mol. Life Sci.* **73**, 2871–2896 (2016).
11. Pannek, M. et al. Crystal structures of the mitochondrial deacetylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. *Nat. Commun.* **8**, (2017).
12. Gil, R., Barth, S., Kafri, Y. & Cohen, H. Y. SIRT6 exhibits nucleosome-dependent deacetylase activity. *Nucleic Acids Res.* **41**, 8537–8545 (2013).
13. Tennen, R. I., Berber, E. & Chua, K. F. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization. *Mech. Ageing Dev.* **131**, 185–192 (2010).
14. Feldman, J. L., Baeza, J. & Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacetylation by mammalian sirtuins. *J. Biol. Chem.* **288**, 31350–31356 (2013).
15. Rahnowska-Rilla, M., Kokkola, T., Jarho, E., Lahtela-Kakkonen, M. & Moaddel, R. N-Acylethanolamines Bind to SIRT6. *ChemBioChem* **17**, 77–81 (2016).
16. Schlicker, C., Boanca, G., Lakshminarasimhan, M. & Steegborn, C. Structure-based development of novel sirtuin inhibitors. *Aging (Albany NY)* **3**, 852–872 (2011).
Author contributions
Conceptualization, methodology, peptide experiments and data analysis and visualization, Sirt6 structures, manuscript drafting, W.Y. and C.S.; Sirt2 structure, S.W., W.Y., C.S.; histone and nucleosome experiments, cellular studies, W.Z. and K.F.C.; supervision, funding Acquisition, C.S. and K.F.C.; all authors contributed to writing of the manuscript.

Competing interests
The authors declare no competing interests.

Acknowledgements
We thank Dr. Di Fonzo for help with mass spectrometry assays and the staff at BESSY (operated by Helmholtz-Zentrum Berlin) for excellent beamline support. We are grateful for financial support by Deutsche Forschungsgemeinschaft (grant STE1701/15 to C.S.) and through grants to K.F.C. from the NIH/NIA (R01AG050997) and the Department of Veterans Affairs (Merit Award). Publication of this work was funded by the German Research Foundation (DFG) and the University of Bayreuth through the funding program Open Access Publishing.

Author contributions
Conceptualization, methodology, peptide experiments and data analysis and visualization, Sirt6 structures, manuscript drafting, W.Y. and C.S.; Sirt2 structure, S.W., W.Y., C.S.; histone and nucleosome experiments, cellular studies, W.Z. and K.F.C.; supervision, funding Acquisition, C.S. and K.F.C.; all authors contributed to writing of the manuscript.

Competing interests
The authors declare no competing interests.
Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-55654-1.

Correspondence and requests for materials should be addressed to C.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019