Uptaded checklist, historical overview and illustrated guide to the stygobiont Malacostraca (Arthropoda: Crustacea) species of Yucatan (Mexico)

Dorottya Angyal¹, Nuno Simões¹,²,³, Maite Mascaró¹,²

¹ Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto de abrigo S/N, C.P. 97356, Sisal, Yucatan, Mexico ² Laboratorio Nacional de Resiliencia Costera, Laboratorios Nacionales (LANRES), CONACYT, Puerto de abrigo S/N, C.P. 97356, Sisal, Yucatan, Mexico ³ International Chair for Ocean and Coastal Studies, Harte Research Institute, Texas A&M at Corpus Christi, Texas, USA

Corresponding author: Maite Mascaró (mmm@ciencias.unam.mx)

Abstract
This study provides an updated checklist and an illustrated guide to the 17 currently known stygobiont Malacostraca species of the state of Yucatan (Yucatan Peninsula, Mexico). The compilation is based on the individuals collected during our cave-diving expeditions (2016–2019), and, has the purpose of expanding previous knowledge on the taxonomy of these subterranean crustaceans. The identification guide contains drawings of the main diagnostic characters of the species as well as a brief introduction of the relevant malacostracan orders. The information is further complemented with a historic account and timeline of the stygobiont Malacostraca species of the Yucatan Peninsula. This is the first study that provides a unified tool for the morphological identification of these highly endemic species.

Keywords
amphipods, decapods, groundwater, isopods, mysids, sinkholes, stygiomysids, thermosbaenaceans, Yucatan Peninsula
Introduction

The Yucatan Peninsula (southeastern Mexico) groundwater ecosystems harbour a highly endemic, crustacean-dominated fauna that present a variety of morphological and physiological adaptations to life in subterranean water environments (eg. Álvarez et al. 2008). Currently, 33 stygobiont (subterranean water-restricted) malacostracan species are known from the groundwater ecosystems of the Mexican federal states of the peninsula (eg. Álvarez et al. 2015; Angyal et al. 2020), which belong to six different orders (Decapoda: 14 sp., Amphipoda: 8 sp., Isopoda: 7 sp., Stygiomysida: 2 sp., Mysida: 1 sp., Thermosbaenacea: 1 sp.). All but three of the 33 species are endemic to the Yucatan Peninsula and half of them have bibliographically confirmed distribution records from the state of Yucatan. A timeline and historical data about the description of the groundwater-restricted Malacostraca of the Mexican states of the peninsula can be found in Table 1. The appearance of the species follows a chronological order, starting with the earliest species described and ending with the most recently discovered one.

Discovery of the first stygobiont malacostracan crustaceans in subterranean habitats of the state of Yucatan is dated back to the beginning of the twentieth century, when the Division of Historical Research of Carnegie Institution of Washington invited E. P. Creaser, F. G. Hall and A. S. Pearse to investigate the biology of the aquifers and subterranean ecosystems of Yucatan. In 1932, several "cenotes" (water-filled sinkholes), "aguadas" (shallow water-holes) and "pozos" (karstic wells) were studied (Pearse 1936). Among other findings, this expedition resulted in the description of four subterranean malacostracan species new to science (Creaser, 1936). After a long hiatus, explorations were continued in the 1970’s, when J. R. Reddell and his colleagues (Texas Tech University) studied further cenotes and "grutas" (dry solution caves) of Quintana Roo, Campeche and Yucatan states (Reddell, 1977), resulting in the description of, among others, two stygobiont amphipod and decapod species (Hobbs and Hobbs 1976; Holsinger 1977). Cave diving expeditions in cenotes and the associated submerged cave passages of the peninsula began in the 1980’s. By the early 2000’s, more than ten subterranean malacostracan species had been described from the orders Thermosbaenacea, Stygiomysida, Isopoda and Amphipoda (eg. Bowman and Iliffe 1988; Holsinger 1990; Bowman and Iliffe 1999; Álvarez et al. 2005).

In 2016, the research group “Cenoteando” (www.cenoteando.com), of the Unidad Multidisciplinaria de Docencia e Investigación of the Facultad de Ciencias, Universidad Nacional Autónoma de México in Sisal (UNAM UMDI-Sisal), began their systematic studies of the biodiversity mapping, ecology and taxonomy of the cenote ecosystems in the state of Yucatan. Prior to Cenoteando’s work only less than five percent had been zoologically investigated out of the more than 3,000 officially registered cenotes in Yucatan (SDS Yucatan census). The project’s goal has been to provide data from cenotes that had never been studied, with exped-
tions leading to the discovery of stygobionts previously unknown in the region and to the description of species new to science (Angyal et al. 2018; Grego et al. 2019). Together with these records and the most recent description of Álvarez et al. (2019) of a new subterranean isopod, the number of stygobiont malacostracan species of the state of Yucatan has elevated to seventeen.

In the absence of a unified taxonomic guide, up to now, the identification of these species was possible only by a thorough knowledge of the original descriptions and other relevant literature on the species’ distribution and morphology. In order to facilitate further research of these rare, endemic species, the aim of this paper is to provide an updated checklist accompanied by an illustrated identification guide and a chronological historical account of the stygobiont malacostracan crustaceans of the state of Yucatan.

Materials and methods

Samples of malacostracan species were collected in 32 cenotes and submerged caves in the state of Yucatan between 2016 and 2019, during SCUBA cave-diving expeditions in the following municipalities: Abala, Cacalchen, Chochola, Chunche-mil, Dzilam de Bravo, Ekmul, Homun, Huhí, Kopoma, Sotuta, Tecoh, Tixkokal, Tixkokob and Uman. Detailed information about the localities and the collected material can be found in Angyal et al. 2020 (https://zookeys.pensoft.net/article/47694/). The collected material was deposited in the Yucatán Colección de Crustáceos of the UNAM UMDI-Sisal, the Colección Nacional de Crustáceos, Instituto de Biología of the UNAM, Mexico City, and in the Collection of Crustaceans of the Hungarian Natural History Museum (HNHM), Budapest. Individuals were examined with a Nikon SM Z800 stereomicroscope. Thermosbaenaceans, stygiomysids, mysids and amphipods were dissected on slides and were observed with compound light microscope. For this, specimens were cooked in 10% KOH solution, rinsed with HCl and washed in distilled water. Cleared exoskeletons were stained with chlorazol black in glycerol, and then dissected in glycerol gelatin using stereomicroscope (Fišer et al. 2009). Photographs of diagnostic characters were made using an OMAX 14 OMP digital USB microscope camera. Line drawings were made after the collected material, based on (i) slide preparations and intact individuals using drawing tubes mounted in a Leica DM 1000 compound microscope and in a Leica M125 stereomicroscope, respectively, (ii) and on photographs. In the case of three isopod species (*Haptolana bowmani*, *Cirolana yucatana* and *Curassanthura yucatanensis*) which we were not able to collect, we relied solely on the illustrations of the original species descriptions. The drawings were edited graphically via computer, to ensure homogeneity of lines and shades. Species identification and creation of the identification guide were performed with the aid of the literature listed in Table 2.
Table 1. Historical timeline and distribution data of the stygobiont Malacostraca species of the Yucatan Peninsula. Abbreviations: YUC = state of Yucatan; YP = Yucatan Peninsula; ROO = state of Quintana Roo; CAM = state of Campeche; COZ = Cozumel Island (in Quintana Roo); MNHB = Museum der Naturkunde für Humboldt Universität zu Berlin; UMLSA = University of Michigan Museum of Zoology, BMNH = British Museum (National History), London; USNM = National Museum of Natural History, Smithsonian Institution, Washington D.C.; CNCR UNAM = National Collection of Crustaceans, UNAM, Institute of Biology, Mexico City; ZMUA = Zoologisch Museum, University of Amsterdam. Distribution with an asterisk (for example COZ*) = the species is known only from its type locality.

Species	Order	Description	Type locality	Holotype	Endemic in the YP	Environment	YP states distribution
Barbouria cubensis (von Martens, 1872)	Decapoda	von Martens 1872	Provincia de La Habana, Cuba	MNHB	No saline water	YUC, ROO	
Creaseriella anops (Creaser, 1936)	Isopoda	Creaser 1936	Cenote Ambula (YUC)	UMLSA	Yes fresh and saline water	YUC, ROO, CAM	
Anonympus cenotensis Creaser, 1936	Mysida	Creaser 1936	Grutas de Balancan (YUC)	UMLSA	Yes fresh water	YUC, ROO	
Creaseria morleyi (Creaser, 1936)	Decapoda	Creaser 1936	Cueva de San Isidro (YUC)	UMLSA	Yes fresh water	YUC, ROO, CAM	
Typhlatya pearsei Creaser, 1936	Decapoda	Creaser 1936	Grutas de Balancan (YUC)	UMLSA	Yes fresh water	YUC, ROO, CAM	
Stygiomysis holthuisi (Gordon, 1958)	Stygiomysida	Gordon 1958	Devil’s Hole, St. Martin, Lesser Antilles (France)	BMNH	No fresh water	YUC, ROO	
Typhlatya miticilli H.H.III Hobbs & H.H.Jr. Hobbs, 1976	Decapoda	Hobbs and Hobbs 1976	Cenote Kabachén (YUC)	USNM	Yes fresh water	YUC, ROO	
Typhlatya campcheae H.H.III Hobbs & H.H.Jr. Hobbs, 1976	Decapoda	Hobbs and Hobbs 1976	Grutas de Xtabanchiunzai (CAM)	USNM	Yes fresh water	CAM	
Mayaweckelia yucatanensis Holsinger, 1977	Amphipoda	Holsinger 1977	Grutas de Xtabanchiunzai (YUC)	USNM	Yes fresh water	YUC, ROO, CAM	
Mayaweckelia cenotica Holsinger, 1977	Amphipoda	Holsinger 1977	Cenote Xtabanchiunzai (YUC)	USNM	Yes fresh water	CAM*	
Parhippolete sterneri (C.W.J. Hart & Manning, 1981)	Decapoda	Hart and Manning 1981	Tucker’s Town Cave, Tucker’s Town, Bermuda	USNM	No saline water	ROO, COZ	
Metacirrollana mayana (Bowman, 1987)	Isopoda	Bowman 1987	Cueva Quebrada (COZ)	USNM	Yes brackish and saline water	ROO, COZ	
Tulumella unitenu Bowman & Iliffe, 1988	Thermosbaenacea	Bowman and Iliffe 1988	Cenote Naharon (ROO)	USNM	Yes brackish and saline water	YUC, ROO	
Tagerncaris cozumel Kensley, 1988	Decapoda	Kensley 1988	Cenote Areolito (COZ)	USNM	Yes saline water	ROO, COZ	
Agnotocaris bozanic Kensley, 1988	Decapoda	Kensley 1988	Cenote Xcan-Ha (COZ)	USNM	Yes saline water	COZ*	
Tuboveckelia cernua Holsinger, 1990	Amphipoda	Holsinger 1990	Cenote Calavera (ROO)	USNM	Yes brackish and fresh water	YUC, ROO	
Babadzia bozanic Holsinger, 1992	Amphipoda	Holsinger 1992	Cueva Quebrada (COZ)	USNM	Yes saline water	ROO, COZ	
Babadzia setoactycly Holsinger, 1992	Amphipoda	Holsinger 1992	Cenote Xcan-Ha (COZ)	USNM	Yes saline water	COZ	
Stygiomysis cokel Kallmeyer & Carpenter, 1996	Stygiomysida	Kallmeyer and Carpenter 1996	Cenote Calavera (ROO)	USNM	Yes fresh and brackish water	YUC, ROO	
Calliasmata nobachi Escobar-Briones, Camacho & Alcocer, 1997	Decapoda	Escobar-Briones et al. 1997	Crack House Cave, (ROO)	CNCR UNAM	Yes saline water	ROO, COZ	
Hapalona bowmani Botosaneanu & Iliffe, 1997	Isopoda	Botosaneanu and Iliffe 1997	Grutas de Tzab Nah (YUC)	USNM	Yes fresh water	YUC	
Species	Order	Description	Type locality	Holotype	Endemic in the YP	Environment	YP states distribution
------------------------------	----------------	---------------------------------	------------------------	-----------	-------------------	-------------	------------------------
Yucatalana robustispina	Isopoda	Botosaneanu and Iliffe 1999	Cenote Papakal (YUC)	ZMUA	Yes	fresh water	YUC
Corinana yunca	Isopoda	Botosaneanu and Iliffe 2000	Cenote Sabak Ha (YUC)	ZMUA	Yes	fresh water	YUC
Corinana yucatana	Isopoda	Botosaneanu and Iliffe 2000	Cenote Dzonotilí (YUC)	ZMUA	Yes	fresh water	YUC*
Procoris mexicana	Decapoda	Sternberg and Schotte 2004	Cueva Quebrada (COZ)	USNM	Yes	saline water	COZ
Typhlatya deziamenensis	Decapoda	Álvarez et al. 2005	Cenote Buya Uno (YUC)	CNCR UNAM	Yes	saline water	YUC, ROO
Typhlatya mitchelli	Decapoda	Álvarez et al. 2012	Cenote Ask Kimin (ROO)	CNCR UNAM	Yes	saline water	ROO*
Hydella cenotesis	Amphipoda	Marrón-Beccera el al. 2014	Cenote Akun Ha (ROO)	CNCR UNAM	Yes	fresh water	ROO*
Gymnopus herrensis Ortez &	Amphipoda	Ortíz and Winfield 2015	Cenote Aerolito (COZ)	CNCR UNAM	Yes	brackish water	COZ*
Agoutocaris zabaletai	Decapoda	Mejía-Ortíz et al. 2017	Cenote Chempita (COZ)	CNCR UNAM	Yes	saline water	COZ
Yucatalana robustispina	Isopoda	Botosaneanu and Iliffe 2000	Cenote Dzonotilí (YUC)	ZMUA	Yes	fresh water	YUC
Cyanathura yucatanensis	Isopoda	Álvarez et al. 2019	Cenote Nohoch Nah Chich (ROO)	CNCR UNAM	Yes	fresh water	YUC, ROO

Table 2. List of references of the corresponding taxa used for the compilation of the illustrated identification guide.

Reference	Corresponding taxon	Reference	Corresponding taxon
Álvarez et al. 2005	Typhlatya deziamenesis	Hobbs and Hobbs 1976	Typhlatya mitchelli
Álvarez et al. 2019	Corinana yucatana	Hobbs et al. 1977	genus Typhlatya
Angyal et al. 2018	Mayaweckelia认清	Holsinger 1977	genus Typhlatya
Botosaneanu and Iliffe 1997	Haplotana boumani	Holsinger 1990	Mayaweckelia认清
Botosaneanu and Iliffe 1999	Yucatalana robustispina	Holthuis 1950	Tuluweckelia认清
Botosaneanu and Iliffe 2000	Corinana yunca, Corinana yucatana	Horwitz et al. 1995	family Palaemonidae
Botosaneanu and Iliffe 2002	family Cirolanidae	Kallmayer and Carpenter 1996	class Malacostraca
Bowman 1966	family Cirolanidae	Konslely 1981	Strygiomyis认清
Bowman 1977	genus Antromysis	Lowry and Myers 2013	genus Caranassituba
Bowman and Iliffe 1988	Talsmella unidentis	Meland et al. 2015	orders Myisida and Strygiomyida
Bowman et al. 1984	genus Strogiomyis	Melcis 2015	order Thermosbaenacea
Bruce 1986	family Cirolanidae	Pérez-Aranda 1983a	Typhlatya认清
Bruce 2008	family Cirolanidae	Pérez-Aranda 1983b	P.认清
Bruce and Humphreys 1993	family Cirolanidae	Pérez-Aranda 1984a	P.认清
Bruce et al. 2017	family Cirolanidae	Pérez-Aranda 1984b	P.认清
Brusca et al. 1995	family Cirolanidae	Poor 2001	P.认清
Caroli 1937	family Cirolanidae	Ríoja 1953	P.认清
Creaser 1956	Antromysis认清, Creaseria认清, Typhlatya认清	Tinnizi and Quddusi 1993	class Malacostraca
De la Fuente 1994	family Cirolanidae	Wagner 1994	order Thermosbaenacea
Gordon 1960	Strygiomyis认清	order Thermosbaenacea	
Results

Updated checklist of the stygobiont Malacostraca of the state of Yucatan

Table 3 contains an updated checklist of the seventeen stygobiont malacostracan crustacean species that have been described to date from the state of Yucatan (12 species), or else, have bibliographically confirmed distribution records from the state up to September 2020 and were described elsewhere (5 species).

Illustrated guide to the stygobiont Malacostraca species of Yucatan with the introduction of the orders

Order: THERMOSBAENACEA Monod, 1927

Figure 1

Antenna 1 biramous, antenna 2 uniramous. Mandibular palp present. Carapace short, forming dorsal brood pouch in females. Thoracic legs reduced, mostly two-branched. Gills lacking. Pleopods reduced or lacking.

Family: Tulumellidae Wagner, 1994

Tulumella unidens Bowman & Iliffe, 1988

Body length up to 3.5 mm of both gender. Antennula with scale (exopod) (Fig. 2A). Carapace covering pereonites 1–6, dorsally enlarged in ovigerous females (Fig. 2A). Pereopod I biramous, endopod five-segmented. Pereopods II-VII biramous, with two-segmented exopod and six-segmented endopod (Fig. 2B).

Order: STYGIOMYSIDA Caroli, 1937

Figure 3

Body elongated, vermiform. Second thoracopods are enlarged, dactylus and nail bend down to form a subchelate gnathopod. Both male and female pleopods are reduced to comprise a sympod/protopod, a one-segmented endopod and three-segmented exopod.

Family: Stygiomysidae Caroli, 1937

Stygiomysis holthuisi (Gordon, 1958)

Body length up to 9 mm of both gender. Body rather vermiform, carapace reduced. Pereopods 1–3 prehensile. Telson only slightly longer than wide at base; posterior margin with 15 spines in 5 groups, 1st, middle and 5th groups consist of strong, long spines
Table 3. Checklist of the stygobiont malacostracan species of the state of Yucatan, with data on their distribution. Abbreviations: YUC = state of Yucatan, YP = Yucatan Peninsula, ROO = state of Quintana Roo, CAM = state of Campeche. Species with an asterisk (*) = the species was discovered and described from cenotes of YUC.

Superorder	Order	Family	Genus	Species valid name	Original name	Published distribution		
Thermosbaenacea	Tulumellidae	Tulumella	Tulumella unidens	Bowman & Iliffe, 1988	Tulumella unidens	Less than 20 cenotes and caves in YUC and ROO.		
Stygiomysida	Stygiomysidae	Stygiomysis	Stygiomysis bolthisi	Gordon, 1958	Rhopalomurus bolthisi	Anguilla, Bahamas, Lesser Antilles (France), Puerto Rico. From the YP: less than 30 cenotes and caves in YUC and ROO.		
Mysida	Mysidae	Antromysis	Antromysis cenotensis	Creaser, 1936*	Antromysis cenotensis	Widely distributed in the central and northern parts of the YP, known from several wells, cenotes and caves in YUC and ROO.		
Leptanthuridae	Carasanthura	Carasanthura yucatanensis	Álvarez, Benítez, Iliffe & Villalobos, 2019	Carasanthura yucatanensis	Carasanthura yucatanensis	Cenote Nohoch Nah Chic (ROO), Cenote Chen Ha (YUC), Cenote Dzonotilá (YUC).		
Peracarida	Isopoda	Cirolanidae	Cirolana	Cirolana yunca	(Botosaneanu & Iliffe, 2000)*	Haptolana yunca	Cenotes Sabak Ha, Tres Oches, X'baba, Chihuo Hol (all in YUC)	
				Cirolana yucatana	Botosaneanu & Iliffe, 2000*	Cirolana (Anopsilana) yucatana	Cenote Dzonotilá (YUC)	
			Creaseriella	Creaseriella anops	(Creaser, 1936)*	Cirolana anops	Known from numerous caves and cenotes in YUC and ROO, and a well in CAM.	
				Haptolana	Haptolana bowmani	Botosaneanu & Iliffe, 1997*	Haptolana bowmani	Grutas de Trab-Nah, Cenotes Kambul, Mucuyché and Yuncu (all in YUC)
				Yucatalana	Yucatalana robustispina	Botosaneanu & Iliffe, 1999*	Yucatalana robustispina	Less than 20 cenotes and caves in YUC.
Amphipoda	Hadziidae	Mayaweckelia	Mayaweckelia cenoctica	Holsinger, 1977*	Mayaweckelia cenoctica	Less than 20 cenotes and caves in YUC, ROO and CAM.		
				Mayaweckelia troglomorpha	Angyal, 2018*	Mayaweckelia troglomorpha	Less than 20 cenotes and caves in YUC.	
				Tuluweckelia	Tuluweckelia cernua	Holsinger, 1990	Tuluweckelia cernua	Some cenotes and caves in Yucatan and Quintana Roo.
Eucarida	Decapoda	Atyidae	Typhlatya	Typhlatya pearsei	Creaser, 1936*	Typhlatya pearsei	Widely distributed in cenotes and caves in YUC, ROO and CAM.	
				Typhlatya mitchelli	H.H.III Hobbs & H.H.Jr. Hobbs, 1976*	Typhlatya mitchelli	Widely distributed in cenotes and caves in YUC and ROO.	
				Typhlatya dizilamensis	Álvarez, Iliffe & Villalobos, 2005*	Typhlatya dizilamensis	Less than 20 cenotes and caves in YUC and ROO.	
Palaemonidae	Creasteria	Creasteria morleyi	(Creaser, 1936)*	Palaemon morleyi		Widely distributed in cenotes and caves in YUC, ROO and CAM.		
Figure 1. Thermosbaenacea, schematic drawing.

Figure 2. A *Tulumella unidens* habitus simplified drawing B *T. unidens* pereopod VI.

(Fig. 4A). Uropod protopodal process with five long spines on apical margin and with several spines along the distal half of medial margin (Fig. 4B).

Stygiomysis cokei Kallmeyer & Carpenter, 1996

Body length up to 15 mm of males and 22 mm of females. Body rather vermiform, carapace housing mouthparts and anterior three pairs of pereopods (Fig. 5A). Telson 1.7–2.0× longer than wide at base; posterior margin with 15–16 spines in five groups (Fig. 5B). Uropod slightly shorter than telson; protopodal process with seven or eight spines along medial and apical margins (Fig. 5C).
Figure 3. Stygiomysida, schematic drawing.

Figure 4. A *Stygiomysis holthuisi* telson B *S. holthuisi* uropod protopodal process.

Order: MYSIDA Boas, 1883

The eight thoracic segments are covered by the carapace which is attached only to the first three. First two thoracic segments bear maxilliped, other six pairs of thoracic appendages are biramous pereopods. Ventral brood pouch enclosed by large, flexible oostegites present on females. Fourth pleopod longer than others in males and has a specialized reproductory function. Statocysts on uropods present.
Family: Mysidae Haworth, 1825
Antromysis cenotensis Creaser, 1936

Body length up to 4.5 mm of both gender. Antenna 2 scale is about 4–4.5 times as long as wide, two-segmented (Fig. 7A). Telson nearly as long as wide at base, gradually narrowing posteriorly, armed with robust spine at each corner and one or two short spine in center (Fig. 7B). Inner ramus of uropod with static organ on basal half (Fig. 7C).

Order: Isopoda Latreille, 1817

Figure 8

Body cylindrical or depressed dorsoventrally. Thorax of seven somites (peraeon), each somite bearing a pair of uniramous appendages, coxa bearing side-plates. First pair of thoracic appendages often subchelate, remaining thoracic appendages similar in structure. Abdomen of six somites (pleon), pleotelson present. Pleon bears five pairs of pleopods and one pair of uropod. Gills are on pleopods.
Family: Leptanthuridae Poore, 2001
Curassanthura yucatanensis Álvarez, Benítez, Iliffe & Villalobos, 2019

Body length up to 9 mm of females. Body slender, elongated (Fig. 9A). Head wider than long (Fig. 9A). Propodus palmar margins of pereopod I with 30 spines (Fig. 9B). Pereopods II-VI similar, much narrower than long (Fig. 9A). Pereopod VII lacking (Fig. 9A). Posterior margin of pleonite 6 rounded (Fig. 9C).

Family: Cirolanidae Dana, 1852
Cirolana yunca (Botosaneanu & Iliffe, 2000)

Body length up to 10 mm of females. Body margins only slightly convex. Cephalon more than twice longer than maximal length, posterior margin deeply depressed.
(Fig. 10A). Rostrum small and blunt ending in dorsal view (Fig. 10A). Additional nails present on propodi of pereopods: one long, slightly curved blunt ending, and one short, conical (Fig. 10B). Uropodal exopodite slightly shorter than endopodite (Fig. 10C). Pleotelson with length equaling its width at the base (Fig. 10C).

Cirolana yucatana (Botosaneanu & Iliffe, 2000)

Body length up to 6 mm of females. Body rather strongly widened in the middle. Cephalon large, strongly vaulted anteriorly, posterior margin slightly depressed (Fig. 11A). Rostrum small, triangular (Fig. 11A). Pereopods only with few spines (Fig. 11B). Uropods exopodite shorter and slender than endopodite, but rather thick-set (Fig. 11C). Pleotelson maximum width only slightly exceeding maximum length (Fig. 11C).

Creaseriella anops (Creaser, 1936)

Body length up to 23 mm of both gender. Able to roll into a ball (Fig. 12A). Cephalon oblong, twice as wide as long; posterior margin slightly concave (Fig. 12B). Pleotelson
wider than long, along the distal margin several very short setae (Fig. 12C). Uropodal exopodite slightly shorter than endopodite; endo- and exopodite with row of very short setae on external margin and apex (Fig. 12C).

Haptolana bowmani Botosaneanu & Iliffe, 1997

Body length up to 7.5 mm of males and 9.5 mm of females. Body slender, cephalon having the shape of a helmet, wider than long, rostrum narrowly triangular (Fig. 13A). All pereopods clearly prehensile, with robust propodus, pereopods II-VII very spinose (Fig. 13B). Pereopods VI and VII distinctly longer than I-V. Uropods exopodite distinctly shorter than endopodite (Fig. 13C). Pleotelson longer than wide (Fig. 13C).

Yucatalana robustispina Botosaneanu & Iliffe, 1999

Body length up to 4.5 mm of both gender. Cephalon with round lateral bulges and well developed triangular rostrum (Fig. 14A). Pereopod I with very long spines with particular structure on propod (2 spines), carpus (1 spine) and merus (1 spine) (Fig. 14B). Pleotelson subtrapezoidal (Fig. 14C). Uropodal exopodite with spines along external margin (Fig. 14C).
Order: AMPHIPODA Latreille, 1816
Figure 15

Body laterally compressed, slightly arched. Thorax of seven somites (peraeon), each segment bearing uniramous appendages, coxae bearing side-plates. Appendages of the first two thoracic somites modified as gnathopods. Abdomen six-segmented, abdominal somites 1–3 with large pleopods. Last three somites bear uropods, pleotelson absent. Gills at the inner base of pereopods.

Family: Hadziidae Karman, 1943
Mayaweckelia cenoticola Holsinger, 1977

Body length up to 4 mm of males and 5.5 mm of females. Antenna 1 as long as, or a little longer than body, primary flagellum with 37–41 segments. Propodus of gnathopod 1 narrow, palm without distally notched spine teeth (Fig. 16A). Carpus of gnathopod 1 slightly longer than propodus (Fig. 16A). Pereopod VI and VII 60% of body length. Epimeral plates ventro-posterior corner not acuminate (Fig. 16B).
Mayaweckelia troglomorpha Angyal, 2018

Body length up to 10 mm of both gender. Antenna 1 almost twice as long as body, primary flagellum with more than 60 articles. Propodus of gnathopod 1 less narrow, distally notched spine teeth present on palm (Fig. 17A). Carpus of gnathopod 1 1.5–1.7
times longer than propodus (Fig. 17B). Pereopod VI and VII 130% of body length. Epimeral plates ventro-posterior corner more distinct (Fig. 17C).

Tuluweckelia cernua Holsinger, 1990

Anterior body region bend markedly downward (Fig. 18A). Body length up to 7 mm of males and 10 mm of females. Antenna 1 reaches at least 75% of body length. Gnathopod 2 propod long and relatively narrow (Fig. 18B). Uropod III proportionally long to body size, rami narrow, outer ramus of outer margin with small spines but lacking setae (Fig. 18C).
Order: DECAPODA Latreille,1802

Figure 19

First 3 pairs of thoracopods transformed on maxillipeds. First pair of pereopods usually bears chelae. Gills are usually enclosed by carapace' folds. One pair of uropods is expanded and together with telson form caudal fin.

Family: Atydae De Haan, 1849
Typhlatya pearsei Creaser, 1936

Body length up to 19 mm of both gender. Rostrum extending anteriorly to at least midlength of second podomere of antennular peduncle (Fig. 20A). Exopod of pereopod V reduced, shorter than total length of basipodite (Fig. 20B).

Typhlatya mitchelli Hobbs & Hobbs, 1976

Body length up to 22 mm of both gender. Rostrum not extending anteriorly beyond eyes (Fig. 21A). Exoskeleton sometimes with pigmentation pattern (Fig. 21A). Ratio of carpus/propodus of pereopod II is more than 2.5 (Fig. 21B). Exopod of pereopod V reaching at least distal extremity of basis and often as far as proximal 5th of merus (Fig. 21C).

Typhlatya dzilamensis Álvarez, Iliffe & Villalobos, 2005

Body length up to 24 mm of both gender. Rostrum unarmed, anteriorly oriented, reaching distal margin of eyes, triangular in dorsal view (Fig. 22A). Ishium and merus

![Figure 19. Decapoda, schematic drawing.](image_url)
of pereopod III-V fused (Fig. 22B). Pleura of second abdominal somite with ventral margin not bilobed (Fig. 22C).

Family: Paleomonidae Rafinesque, 1815
Creaseria morleyi (Creaser, 1936)

Body length up to 42 mm of both gender. Rostrum with dorsal and ventral teeth (Fig. 23A). Telson with two-two short spines on distal half, apex with strong spines on both side and some long, fine setae in center (Fig. 23B).

Discussion

One third of the stygobiont Malacostraca fauna of the Yucatan Peninsula has been discovered in the last 20 years, showing an increasing interest of biodiversity surveys
in underwater ecosystems in this region. Half of the currently known species were described from the state of Quintana Roo, partly due to the intensive diving explorations of the Nohoch Nah Chich and Sac Actun submerged cave systems conducted since the late eighties (Álvarez et al. 2015). The diversity of the stygofauna of the anchialine caves of Cozumel Island (Quintana Roo) is remarkable: nine malacostracan species have been discovered in the island in the last three decades (e.g. Bowman 1987; Mejía-Ortíz et al. 2017; Ortiz and Winfield, 2015). Only twelve of the stygobiont malacostracan species of the peninsula have been described from the state of Yucatan, but five additional species have distribution data from this state (Angyal et al. 2020). New discoveries of recent years indicate the need of further subterranean biological explorations to gain deeper knowledge on the species richness and distribution of these cryptic habitats of Yucatan (e.g. Angyal et al. 2018; Álvarez et al. 2019).

The taxonomic status of five species of the presented checklist has been changed since the original descriptions. Creaseriella anops was originally described as Cirolana anops Creaser, 1936. In a thorough taxonomic revision of cirolanid isopods from Mexico, Rioja (1953) considered necessary to establish a new monotypic genus: Creaseriella Rioja, 1953, of which Creaseriella anops (Creaser, 1936) was the type species.

Fourteen years after the discovery of the new paleomonid shrimp Paleomon morleyi Creaser, 1936, a new genus, Creaseria Holthuis, 1950 was established, of which Creaseria morleyi (Creaser, 1936) is the type species by monotypy (Holthuis 1950).
Two years after its discovery, the stygiomysid *Rhopalonurus holthuisi* Gordon, 1958 had been reallocated to the genus *Stygiomysis* by Gordon (1960), as *Stygiomysis holthuisi* (Gordon, 1958).

The cirolanid isopod *Cirolana yunca* was originally described as *Haptolana yunca* Botosaneanu & Iliffe, 2000. More recently, however, the species has been reallocated to the widely distributed genus *Cirolana* by Bruce (2008).

Eight years after the discovery of the isopod *Cirolana (Anopsilana) yucatana* Botosaneanu & Iliffe, 2000, Boyko et al. (2008) considered the subgenus *Anopsilana* Paulin & Delamare Deboutteville, 1956 to be the junior synonym of the genus *Cirolana* Leach, 1818, therefore the current valid combination of the species is *Cirolana yucatana* (Botosaneanu & Iliffe, 2000).

There are four monotypic, highly endemic genera (*Tuluweckelia* Holsinger, 1990; *Creaseriella* Rioja, 1953; *Yucatalana* Botosaneanu & Iliffe, 1999; *Creaseria* Holthuis, 1950) known from subterranean waters of Yucatan. The other eight genera presented in the updated checklist have more than one species and have a wider distribution range, as follows.

Apart from *Tulumella unidens*, there are two other species of the genus *Tulumella* Bowman & Iliffe, 1988, described from anchialine caves of the Bahamas (Yager 1988).

Currently, the genus *Stygiomysis* Caroli, 1937 contains five species from the Dominican Republic, the Caicos Island, Cuba, Jamaica and Italy (Bowman et al. 1984). There are two described species of the genus within the Yucatan Peninsula.

Further species of the genus *Antromysis* Creaser, 1936 are known from Suriname, The Bahamas, Jamaica, Costa Rica and Cuba. The second species discovered of the genus *Antromysis* in Mexico was *Antromysis reddelli* Bowman 1977 from Cueva de las Maravillas in Oaxaca (Bowman 1977).

The genus *Curassanthura* Kensley, 1981 consists five species. The four previously known species are from Caribbean and North Atlantic islands. *C. yucatanensis* is the first *Curassanthura* species to be described from a continental environment (Poore 2009; Álvarez et al. 2019).

The isopod *Cirolana* Leach, 1818 is a widely distributed genus with more than 200 species worldwide.

Currently, there are five more valid species of the genus *Haptolana* Bowman, 1966, known from subterranean waters of Belize, Cuba, Somalia, and Western Australia. *H. bowmani* is the only species reported from Mexico.

The genus *Mayaweckelia* Holsinger, 1977 consists of three species. Validity of the third species, *M. yucatanensis* Holsinger, 1977, known from a single locality in Campeche is questionable, as the author points out that „the original description was based on what appear to be submature specimens, therefore raising the strong possibility that the differences noted between *M. yucatanensis* and *M. cenoticola* are due primarily to age” (Holsinger 1990).

The currently known seventeen valid species of the genus *Typhlatya* are characterized by a disjunct distribution around the Caribbean (Yucatan Peninsula, Cuba, Honduras, Bermuda, The Bahamas and the United States of America), in Europe
(France and Spain) and the Galapagos and Ascension Islands, which makes this genus an interesting group to test biogeographical hypotheses (Álvarez et al. 2005; Espinasa et al. 2019; Chávez-Solís et al. 2020). Currently, there are four described species of this genus within the Yucatan Peninsula.

Conclusions

Subterranean habitats of Yucatan are characterized by a remarkable diversity of highly adapted, narrowly distributed crustacean species. Seventeen out of the 33 groundwater-restricted malacostracan species of the peninsula are currently known from waterfilled sinkoles (cenotes) and the associated submerged cave passages of the state of Yucatan. The scope of this paper was to present an updated checklist and the first unified identification guide for the morphological determination of these stygobiont crustaceans. We hope this study will motivate future researches to focus on the taxonomy of the highly endemic stygofauna of the groundwater ecosystems of the Yucatan Peninsula.

Acknowledgements

We are grateful to our colleagues of Cenoteando: namely Efraín Chavez-Solís, Luis Liévano-Beltrán, Quetzalli Hernández and Ricardo Merlos-Riestra for the realization of the field trips and their invaluable contribution in collecting the studied material. Sophia Drs, Silvia Reyes, Benjamín Magaña, Erick Sosa-Rodríguez and Kay Vilchis are also acknowledged for their assistance during the cave dives. We are grateful to Eduardo Velázquez and Alberto Guerra for the computer graphical editing of the line drawings and assembling the plates. Luis Manuel Mejía-Ortíz is highly acknowledged for the up to date information and literature provided about the anchialine decapods of the peninsula. We are grateful to Ahmad-Reza Katouzian, Daniel Previatteli and an anonymous reviewer for their useful suggestions, which helped us to improve the manuscript. Richard Wilson is acknowledged for the linguistic revision of the manuscript. DA is grateful for the grant provided by the "DGAPA-UNAM Programa de Becas Posdoctorales en la UNAM, 2019" and "DGAPA-UNAM Programa de Becas Posdoctorales en la UNAM, 2020". Financial support was provided by project PAPIIT IN222716 “Biodiversidad y Ecología de la fauna de cenotes de Yucatán” and “Hacia un mapa de biodiversidad acuática de cenotes de la península de Yucatán”, DGAPA-PAPIIT 2019 – IN228319 to NS.

References

Álvarez F, Iliffe TM, Villalobos JL (2005) New species of the genus Typhlatya (Decapoda: Atyidae) from anchialine caves in Mexico, the Bahamas and Honduras. Journal of Crustacean Biology 25(1): 81–94. https://doi.org/10.1651/C-2516
Álvarez F, Iliffe TM (2008) Fauna anquihalina de Yucatan. In: Álvarez R, Almaraz R (Eds) Crustáceos de Mexico: Estado Actual de su Conocimiento. Universidad Autónoma de Nuevo León-PROMEP, 379–418.

Álvarez F, Iliffe TM, Gonzalez B, Villalobos JL (2012) *Triacanthoneus akumalensis*, a new species of alpheid shrimp (Crustacea: Caridea: Alpheidae) from an anchialine cave in Quintana Roo, Mexico. Zootaxa 3154: 61–68. https://doi.org/10.11646/zootaxa.3154.1.5

Álvarez F, Iliffe TM, Benítez S, Brankovits D, Villalobos JL (2015) New records of anchialine fauna from the Yucatan Peninsula, Mexico. Check List 11(1): 1505. https://doi.org/10.15560/11.1.1505

Álvarez F, Benítez S, Iliffe TM, Villalobos JL (2019) A new species of isopod of the genus *Curassanthura* (Cymothoida, Anthuroide, Leptanthuridae) from anchialine caves of the Yucatan Peninsula, Mexico. Crustaceana 92(5): 545–553. https://doi.org/10.1163/15685403-00003892

Angyal D, Chávez Solís EM, Magaña B, Balázs G, Simoes N (2018) *Mayaweckelia trogloporphra*, a new subterranean amphipod species from Yucatan State, Mexico (Amphipoda, Hadziidae). ZooKeys 735: 1–25. https://doi.org/10.3897/zookeys.735.21164

Angyal D, Chávez-Solís EM, Liévano-Beltrán LA, Magaña B, Simoes N, Mascaro M (2020) New distribution records of subterranean crustaceans from cenotes in Yucatan (Mexico). ZooKeys 911: 21–49. https://doi.org/10.3897/zookeys.911.47694

Botosaneanu L, Iliffe TM (1997) Four new stygobitic cirolanids (Crustacea: Isopoda) from the Caribbean – with remarks on intergenetic limits in some cirolanids. Bulletin de L’Institute Royal des Sciences Naturelles de Belgique, Biologie 67: 77–94.

Botosaneanu L, Iliffe TM (1999) On four new stygobitic cirolanids (Isopoda: Cirolanidae) and several already described species from Mexico and the Bahamas. Bulletin de L’Institut Royal des Sciences Naturelles de Belgique, Biologie 69: 93–123.

Botosaneanu L, Iliffe TM (2000) Two new stygobitic species of Cirolanidae (Isopoda) from deep cenotes in Yucatan. Bulletin de L’Institute Royal des Sciences Naturelles de Belgique, Biologie 70: 149–161. https://www.biotaxa.org/Zootaxa/article/view/zootaxa.1823.1.4

Botosaneanu L, Iliffe TM (2002) Stygobitic isopod crustaceans, already described or new, from Bermuda, the Bahamas, and Mexico. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie 72: 101–111. https://www.tamug.edu/cavebiology/reprints/Reprint-139.pdf

Botosaneanu L, Iliffe TM (2006) The remarkable diversity of subterranean Cirolanidae (Crustacea: Isopoda) in the peri-Caribbean and Mexican Realm. Bulletin de L’Institute Royal des Sciences Naturelles de Belgique, Biologie 76: 5–26. http://biblio.naturalsciences.be/rbins-publications/bulletin-of-the-royal-belgian-institute-of-natural-sciences-biologie/76-2006/biologie-2006-76_5-26.pdf

Bowman TE (1966) *Cirolana trichostoma*, a new genus and species of troglobitic cirolanid isopod from Cuba. International Journal of Speleology 2: 105–108. https://doi.org/10.5038/1827-806X.2.1.8

Bowman TE (1977) A review of the genus *Antromysis* (Crustacea: Mysidacea), including new species from Jamaica and Oaxaca, Mexico, and a redescription and new records for A.
Illustrated guide of the stygobiont Malacostraca of the state of Yucatan

105

cenotensis. In: Reddell J (Ed) Studies on the caves and cave fauna of the Yucatan Peninsula. Association for Mexican Cave Studies Bulletin 6: 27–38.

Bowman TE, Iliffe TM, Yager J (1984) New records of the troglobitic mysid genus Stygiomysis: S. clarkei, new species, from the Caicos Islands, and S. holthuisi (Gordon) from Grand Bahama Island (Crustacea: Mysidacea). Proceedings of the Biological Society of Washington 97: 637–644. https://biodiversitylibrary.org/page/34642466

Bowman T (1987) Bahalana mayana, a new troglobitic cirolanid isopod from Cozumel Island and the Yucatan Peninsula, Mexico. Proceedings of the Biological Society of Washington 100(3): 659–663.

Bowman TE, Iliffe TM (1988) Tulumella unidens, a new genus and species of thermostbaen- acean crustacean from the Yucatan Peninsula, Mexico. Proceedings of the Biological Society of Washington 101: 221–226. https://biodiversitylibrary.org/page/34645902

Boyko CB, Bruce NL, Hadfield KA, Merrin KL, Ota Y, Poore GCB, Taiti S, Schotte M, Wilson GDF [Eds] (2008 onwards). World Marine, Freshwater and Terrestrial Isopod Crustaceans database. Anopsilana Paulian & Delamare Deboutteville, 1956. World Register of Marine Species https://www.marinespecies.org/aphia.php?p=taxdetails&id=248428 [Accessed 2019-11-21]

Bruce NL (1986) Cirolanidae (Crustacea: Isopoda) of Australia. Records of the Australian Museum, Supplement 6, Sydney, 239 pp. https://doi.org/10.3853/j.0812-7387.6.1986.98

Bruce NL (2008) New species and a new genus of Cirolanidae (Isopoda: Cymothoida: Crus- tacea) from groundwater in calcretes in the Pilbarra, northern Western Australia. Zootaxa 1823: 51–64. https://doi.org/10.11646/zootaxa.1823.1.4

Bruce NL, Brix S, Balfour N, Kihara TC, Weigand AM, Mehterian S, Iliffe TM (2017) A new genus for Cirolana troglexuma Botosaneanu & Iliffe, 1997, an anchialine cave dwelling ci- rolanid isopod (Crustacea, Isopoda, Cirolanidae) from the Bahamas. Subterranean Biology 21: 57–92. https://doi.org/10.3897/subtbiol.21.11181

Bruce NL, Humphreys WF (1993) Haptolana pholeta, sp. nov., the first subterranean flabelliferan isopod crustacean (Cirolanidae) from Australia. Invertebrate Taxonomy 4: 875–884. https://doi.org/10.1071/IT9930875

Brusca RC, Wetzer R, France SE (1995) Cirolanidae (Crustacea: Isopoda: Flabellifera) of the tropical Eastern Pacific. Proceedings of the San Diego Society of Natural History 30: 1–96.

Caroli E (1937) Stygiomysis hydruntina n.g., n.sp., Misidaceo cavernico di Terra d’Otranto, rappresentante di una nuova famiglia. Bollettino di zoologia. 8(1): 219–227. https://doi. org/10.1080/11250003709434927

Cenoteando (2016) Cenoteando www.cenoteando.com

Chávez-Solís EM, Solis C, Simoes N, Mascará M (2020) Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya). Scientific Reports (2020)10: 12812. https://doi.org/10.1038/s41598-020-69562-2

Creaser EP (1936) Crustaceans from Yucatan, In Pearse AS, Creaser EP, Hall FG (Eds) The Cenotes of Yucatan. Carnegie Institute of Washington Publications, Washington: pp. 117–132.

De la Fuente JA (1994) Zoologia de Arthropodos. Interamericana-Mac Graw-Hill, Madrid, 805 pp.
Escobar-Briones E, Camacho ME, Alcocer J (1997) *Calliasmata nohochi*, new species (Decapoda: Caridea: Hippolytidae), from anchialine cave systems in continental Quintana Roo, Mexico. *Journal of Crustacean Biology* 17(4): 733744. https://doi.org/10.2307/1549376

Espinasa L, Chávez Solís EM, Mascaró M, Rosas C, Violette G (2019) A new locality and phylogeny of the stygobitic *Tiphlatya* shrimps for the Yucatan Peninsula. *Speleobiology Notes* 10: 19–27. https://doi.org/10.1038/s41598-020-69562-2

Fišer C, Trontelj P, Luštrik R, Sket B (2009) Towards a unified taxonomy of *Niphargus* (Crustacea: Amphipoda): a review of morphological variability. *Zootaxa* 2061: 1–22. https://doi.org/10.11646/zootaxa.2061.1.1

Gordon I (1958) A new subterranean crustacean from the West Indies. *Nature* 181: 1552–1553. https://doi.org/10.1038/1811552a0

Gordon I (1960) On a *Stygiomysis* from the West Indies, with a note on *Spelaeogriphus* (Crustacea, Peracarida). *Bulletin of the British Museum (Natural History). Zoology* 6(5): 283–324. https://doi.org/10.5962/bhl.part.26847

Grego J, Angyal D, Beltrán LAL (2019) First record of subterranean freshwater gastropods (Mollusca, Gastropoda, Cochliopidae) from the cenotes of Yucatán state. *Subterranean Biology* 29: 79–88. https://doi.org/10.3897/subthiol.29.32779

Hart CWJ, Manning RB (1981) The cavernicolous caridean shrimps of Bermuda (Alpheidae, Hippolytidae, and Atyidae). *Journal of Crustacean Biology* 1: 441–456. https://doi.org/10.2307/1547975

Hobbs HH III, Hobbs Jr HH (1976) On the troglobitic shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae). *Smithsonian Contributions to Zoology* 240: 1–23. https://doi.org/10.5479/si.00810282.240

Hobbs HH III, Hobbs Jr HH, Daniel MA (1977) A review of the troglobic decapod crustaceans of the Americas. *Smithsonian Contributions to Zoology Number 244*, Washington, 196 pp. https://doi.org/10.5479/si.00810282.244

Hobbs HH III (1979) Additional notes on cave shrimps (Crustacea: Atyidae and Palaemonidae) from the Yucatan Peninsula, Mexico. *Proc. Biol. Soc. Wash.* 92(3): 618–633.

Holsinger JR (1977) A new genus and two new species of subterranean amphipod crustaceans (Gammaridae s. lat.) from the Yucatan Peninsula in Mexico. *Association for Mexican Cave Studies, Bulletin* 6: 15–25.

Holsinger JR (1990) *Tuluweckelia cernua*, a new genus and species of stygobiont amphipod crustacean (Hadziidae) from anchialine caves on the Yucatan Peninsula in Mexico. *Beaufortia* 41: 97–107.

Holsinger JR (1992) Two new species of the subterranean amphipod genus *Bahadzia* (Hadziidae) from the Yucatan Peninsula region of southern Mexico, with an analysis of phylogeny and biogeography. *Stygologia* 7: 85–105.

Holthuis LB (1950) The Decapoda of the Siboga Expedition. Part X. The Palaemonidae collected by the Siboga and Snellius expeditions with remarks on other species. I. Subfamily Palaemoninae. *Siboga Expedtite*. 39(9): 1–268.

Horwitz P, Knott B, Williams WD (1995) A preliminary key to the malacostracan families (Crustacea) found in Australian inland waters. *Research Centre for Freshwater Ecology Identification Guide No. 4*, Albury, 38 pp.
Kallmeyer DE, Carpenter JH (1996) *Stygiomysis cokei*, new species, a troglobitic mysid from Quintana Roo, Mexico (Mysidacea: Stygiomysidae). Journal of Crustacean Biology 16: 418–427. https://doi.org/10.1163/193724096X00207

Kensley B (1981) Amsterdam Expeditions to the West Indian Islands, Report 10. *Curassanthura halma*, a new genus and species of interstitial isopod from Curacao, West Indies (Crustacea: Isopoda: Paranthuridae). Bijdragen tot de Dierkunde 51(1): 131–134. https://doi.org/10.1163/2660644-05101008

Kensley B (1988) New species and records of cave shrimps from the Yucatan Peninsula (Decapoda: Agostocarididae and Hippolytidae). Journal of Crustacean Biology 8(4): 688–699. https://doi.org/10.2307/1548704

Lowry JK, Myers AA (2013) A phylogeny and classification of the Senticaudata subord. nov. (Crustacea: Amphipoda). Zootaxa 3610(1): 1–80. https://doi.org/10.11646/zootaxa.3610.1.1

Marrón-Becerra A, Hermoso-Salazar M, Solis-Weiss V (2014) *Hyalella cenotensis*, a new species of Hyalellidae (Crustacea: Amphipoda) from the Yucatán Peninsula, Mexico. Zootaxa 3811(2): 262–270. https://doi.org/10.1163/10.11646/zootaxa.3811.2.7

Martens E (1872) Über Cubanische Crustaceen. Archiv für Naturgeschichte 38: 257–258.

Mejía-Ortiz L, Yañez G, López-Mejía M (2017) Anchialocarididae, a new family of anchialine decapods and a new species of the genus *Agostocaris* from Cozumel Island, Mexico. Crustaceana. 90(4): 381–398. https://doi.org/10.1163/15685403-00003657

Meland K, Mees J, Porter M, Wittmann KJ (2015) Taxonomic Review of the orders Mysida and Stygiomysida (Crustacea, Peracarida). PLoS ONE 10(4): e0124656. https://doi.org/10.1371/journal.pone.0124656

Melic A (2015) Orden Thermosbaenacea. Revista IDE@-SEA 87: 5 pp. http://www.sea-entomologia.org/IDE@/revista_87.pdf

Ortiz M, Winfield I (2015) A new amphipod species (Peracarida: Amphipoda: Amphithoidae) collected from Cenote Aerolito, Cozumel Island, Quintana Roo. Revista Mexicana de Biodiversidad. 86(2): 332–336. https://doi.org/10.1016/j.rmb.2015.04.008

Pearse AS (1936) Introduction. In Pearse AS, Creaser EP, Hall FG (Eds) The Cenotes of Yucatan. Carnegie Institute of Washington Publications, Washington: pp. 1–4.

Pérez-Aranda L (1983a) Atyidae: *Typhlatya pearsei*. Fauna de los cenotes de Yucatán 3. Universidad de Yucatan, Mérida. 11 pp.

Pérez-Aranda L (1983b) Palaemonidae: *Creaseria morleyi*. Fauna de los cenotes de Yucatan 1. Universidad de Yucatan, Mérida. 11 pp.

Pérez-Aranda L (1984a) Atyidae: *Typhlatya mitchelli*. Fauna de los cenotes de Yucatan 5. Universidad de Yucatan, Mérida. 14 pp.

Pérez-Aranda L (1984b) Cirolanidae: *Cirolana anops*. Fauna de los cenotes de Yucatan 7. Universidad de Yucatan, Mérida. 13 pp.

Poore GCB (2001) Families and genera of Isopoda Anthuridea. In Kensley B and Brusca RC (Eds) Isopod systematics and evolution. Balkema: Rotterdam. Crustacean Issues 13: 63–173.

Poore GCB (2009) *Curassanthura* Kensley, 1981. In Boyko CB, Bruce NL, Hadfield KA, Merrin KL, Ota Y, Poore GCB, Taiti S, Schotte M & Wilson GDF (eds.) (2008 onwards), World marine, freshwater and terrestrial isopod crustaceans database. http://www.marinespecies.org/aphia.php?p=taxdetails&id=118305 [Accessed on 2017-xi-09]
Reddell JR (1977) A preliminary survey of the caves of the Yucatan Peninsula. In Reddell JR (Ed.) Survey of the caves and cave fauna of the Yucatan Peninsula. Association for Mexican Cave Studies, Bulletin 6: pp. 215–296.

Rioja E (1953) Estudios carcinológicos. XXX. Observaciones sobre los cirolánidos cavernícolas de México (Crustáceos, Isópodos). Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 24: 147–170.

Sternberg R, Schotte M (2004) A new anchialine shrimp of the genus Procaris (Crustacea: Decapoda: Procarididae) from the Yucatan Peninsula. Proceedings of the Biological Society of Washington 117: 514–522.

Tinnizi NM, Quddusi BK (1993) An illustrated key to Malacostraca (Crustacea) of the Northern Arabian sea. Pakistan Journal of Marine Sciences 2(1): 49–66. https://aquaticcommons.org/16058/1/PJMS2.1_049.pdf

Wagner HP (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). A study on their morphology, taxonomy, phylogeny and biogeography. Zoologische Verhandelingen 291, 3, 338 pp. https://www.jstor.org/stable/20088754

Yager J (1988) Tulamella grandis and T. bahamensis, two new species of thermosbaenacean crustaceans (Monodellidae) from anchialine caves in the Bahamas. Stygologia. 3: 373–382.