High-pressure torsion of Zr-based bulk metallic glasses and amorphous melt-spun ribbons

D A Khasanova¹, D V Gunderov¹², V V Astanin¹, S D Gunderova¹, A A Churakova¹², A I Bazlov³, D V Louzguine-Luzgin⁴⁵

¹ Ufa State Aviation Technical University, K. Marx str. 12, Ufa, 450008, Russia
² Institute of Molecule and Crystal Physics, Ufa Federal Research Centre RAS, October Avenue 71, 450054, Ufa, Russia
³ National University of Science and Technology «MISiS», 4 Leninskiy pr., Moscow, 119049, Russia
⁴ WPI Advanced Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan
⁵ Mathematics for Advanced Materials-OIL, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 980-8577, Japan

E-mail: dimagun@mail.ru

Abstract. High-pressure torsion allows one to achieve high strains of bulk metal glasses without their destruction. The article presents the results of studies on the effect of high-pressure torsion on the amorphous alloys of the same composition but obtained in different ways: in a form of a bulk plate and a melt-spun ribbon. It is shown that the degree of nonequilibrium after high-pressure torsion, determined by the diffraction and calorimetry methods, increases for bulk metallic glass, approaching the values characteristic for melt-spun alloy.

1. Introduction

Amorphous metals and alloys are usually produced by melt spinning (MS) at high cooling rates (10^6 K/s) in the form of thin ribbons and at a cooling rate of about 10^2 K/s in the form of bulk metallic glasses (BMGs) [1,2]. As produced at different melt cooling rates, these materials differ in the level of nonequilibrium (excess energy) and properties [3].

The deformation of amorphous alloys at room temperature occurs through the formation of shear bands. A transformation of the amorphous structure takes place in shear bands and surrounding regions [4]. In many cases deformation leads to the formation of an excess volume in the amorphous phase (softening of materials) [5,6]. High-pressure torsion (HPT) processing enables achieving high strains in brittle amorphous alloys, and consolidating amorphous ribbons [7,8]. HPT processing of amorphous alloys produces a high density of shear bands [9] and changes their structure and properties [10]. Partial nanocrystallization may take place in some alloys during the HPT processing [11,12]. Structural transformations as a result of HPT depend on the initial internal energy of the amorphous alloy. As a consequence, of great interest are the studies of the effect of HPT on the amorphous alloy with the same composition, but produced at different melt cooling rates and with different degrees of disequilibrium.
2. Material and methods

In this study, plates of the Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ at. % BMG (BMG Zr62) with sizes 60×10×2 mm3 produced by casting at a cooling rate of 10^3 K/s and melt-spun Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ at. % (MS Zr62) ribbons with the thickness of 0.04 mm and a width of about 2 mm produced by melt-spinning at a cooling rate of 10^6 K/s were used.

The HPT was carried out on anvils with a diameter of 10 mm and groove depth of 0.3 mm under the pressure of 6 GPa at a rotation speed of 1 rpm at room temperature (RT). The structure was investigated by X-ray diffraction under Cu radiation on a Rigaku Ultima IV diffractometer. The parameters of broad diffraction peaks (amorphous halos) were evaluated by a PHILIPS ProFit software. The DSC tests were performed on a Netzsch DSC 204 F1 Phoenix calorimeter; the heating temperature was 520 °C (higher than the crystallization temperature in this BMG, MS) and the typical heating rate was 20 °C/min.

![Figure 1. X-ray diffraction patterns of a) BMG Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ in the initial state and after HPT n=10; b) MS Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ alloy in the initial state and after HPT n=10.](image-url)

3. Results and discussion

According to XRD results, initial BMG, MS, and the same materials after HPT processing are mostly amorphous (figure 1). The radius of the first coordination sphere, R_1, was determined based on the angular position of the amorphous halo maximum. R_1 of BMG increase as a result of HPT (table 1).

The relative change in free volume (ΔV) can be calculated based on the change of R_1 [13,14]. According to the calculations, HPT n=10 of BMG leads to a 2% increase in ΔV. HPT also leads to an increase in the values of full width at half maximum (FWHM) of BMG, that also attributed to an increase in the disequilibrium of the amorphous alloy [13].

| Table 1. XRD and DSC data for the BMG and MS Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ alloy in the initial state, and subjected to HPT n=10. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| State | R_1, nm | FWHM, deg | ΔV, % | ΔFWHM, % |
| BMG, initial | 2.996 | 5.34 | | - |
| BMG, HPT n=10 | 3.017 | 5.70 | 2.1 | 6.8 |
| MS alloy, initial | 3.022 | 5.64 | | - |
| MS alloy, HPT n=10 | 3.015 | 5.76 | -0.7 | 2.1 |

HPT n=10 also lead to increase in the values of FWHM of the MS alloy (table 1). However, the relative increment in the FWHM of the MS alloy resulting from HPT is noticeably smaller than increment in the FWHM for the BMG. The ΔV values of the MS alloy, calculated on the basis of the R_1 change, even slightly decrease as a result of the HPT. This may be due to a large error in the determining R_1 by XRD. On the whole, the FWHM parameters of the MS alloy and BMG become closer due to HPT processing.
Based on the DSC data, the H_{relax} of the initial MS Zr62 is higher than H_{relax} of the Zr62 BMG. This is attributed to the more disequilibrium of the MS alloy in comparison with the BMG. The HPT of the BMG leads to a notable increase in H_{relax} (from ≈ 9 to ≈ 18 J/g), which is the result of growth of the energy of amorphous alloy and ΔV [1].

The relative increase of H_{relax} in the MS resulting from the HPT, is not as large as that in the BMG resulting from the HPT. The gain is close to the measurement error of H_{relax} based on DSC. Thus, the following tendency can be observed: in the Zr62 BMG, as a result of HPT processing, the structure becomes more non-equilibrium, while in the MS Zr62 alloy, as a result of HPT processing, the state does not change that much, and on the whole, the characteristics ($H_{\text{relax}}, \text{FWHM}$) of the Zr62 BMG and MS Zr62 alloy become closer as a result of HPT processing. This is explained by the competition between the processes of deformation and relaxation during the HPT of amorphous alloys, and the intensification of relaxation with an increase in the disequilibrium of the amorphous alloy.

Figure 2. DSC of: a) BMG Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ in the initial state, subjected to HPT n=10, b) MS Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ alloy in the initial state and subjected to HPT n=1; c) relaxation of the BMG Zr62; d) relaxation of the MS Zr62.

4. Conclusions
As HPT of BMG Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ at. % results in a noticeable increase in the energy state, whereas in MS Zr$_{62}$Cu$_{22}$Al$_{10}$Fe$_5$Dy$_1$ at. % a change in the disequilibrium is not so manifested and, in the whole, the characteristics ($H_{\text{relax}}, \text{FWHM}$) of BMG and MS converge as a result of the HPT. This may be explained by the competition between the processes of deformation and relaxation during the HPT of amorphous alloys, and the intensification of relaxation with an increase in the disequilibrium of the amorphous alloy.
Acknowledgments
This work was supported by the Ministry of Education of the Russian Federation, project 0838-2020-0006, Russian Foundation for Basic Research under grant 20-08-00497 and by the Natural Science Foundation of China, grant No. 51520105001.

References
[1] Greer A L 1995 Science 267 1947–53
[2] Louzguine-Luzgin D V. and Inoue A 2013 Bulk Metallic Glasses Handbook of Magnetic Materials Handbook of Magnetic Materials vol 21, ed K H J Buschow (Sendai, Japan: Elsevier B.V.) pp 131–71
[3] Hu X, Ng S C, Feng Y P and Li Y 2001 Phys. Rev. B 64 172201
[4] Greer A L, Cheng Y Q and Ma E 2013 Mater. Sci. Eng. R 74 71–132
[5] Pan J, Chen Q, Liu L and Li Y 2011 Acta Mater. 59 5146–58
[6] Ketov S V V., Nguyen H K K, Trifonov A S S, Nakajima K and Louzguine-Luzgin D V V. 2016 J. Alloys Compd. 687 221–6
[7] Valiev R Z, Zhilyaev A P and Langdon T G 2013 Bulk Nanostructured Materials (Hoboken, NJ: John Wiley & Sons, Inc)
[8] Zhilyaev A and Langdon T 2008 Prog. Mater. Sci. 53 893–979
[9] Astanin V V, Gunderov D, Boltynjuk E, Ubyivovk E, Churakova A and Gunderova S 2019 IOP Conf. Ser. Mater. Sci. Eng. 672 012019
[10] Meng F, Tsuchiya K, Seiichiro and Yokoyama Y 2012 Appl. Phys. Lett. 101 121914
[11] Valiev R, Gunderov D, Zhilyaev A P, Popov A G and Pushin V 2004 J. Metastable Nanocr. Mater. 22 21–6
[12] Gunderov D V. and Stolyarov V V. 2010 J. Appl. Phys. 108 053901
[13] Cao Q P, Li J F, Zhou Y H, Horsewell A and Jiang J Z 2006 Acta Mater. 54 4373–83
[14] Yavari A R, Moulec A Le, Inoue A, Nishiyama N, Lupu N, Matsubara E, Botta W J, Vaughan G, Di Michiel M and Kvick A 2005 Acta Mater. 53 1611–9