Biology and Life Table Studies on Healthy and Pasteuria penetrans Infected Meloidogyne incognita

S. Prabhu*, J. Sandeep Kumar2 and R. Poorniammal3

1Department of Plant Protection, Horticultural College and Research Institute, Periyakulam, India
2Department of Entomology, Agricultural College and Research Institute, Madurai, India
3Department of Natural Resource Management, Horticultural College and Research Institute, Periyakulam, India

*Corresponding author

Abstract

Pasteuria penetrans is an important parasite of Meloidogyne incognita. Lifecycle of this parasite is in close association with the nematode. Life table was constructed for healthy and P. penetrans infected population of M. incognita. Results revealed that the life cycle of P. penetrans infected M. incognita was extend by 3 days when compared to healthy population. Survival and life expectancy of the infected population was reduced by 2 days. Stable age distribution revealed that reduction in survival of infected population in all stages. Fecundity rate was reduced to four folds compared to healthy population. This subsequently reduced the population doubling time.

Keywords
Pasteuria penetrans, Meloidogyne incognita

Introduction

A global agricultural lose of $157 billion was annually incurred due to plant parasitic nematodes (Abad et al., 2008). Root knot nematode Meloidogyne incognita is an economically important parasite. Life table is a systematic study of survival and mortality of a population. It is used to determine whether a population is growing, declining or remaining stable. It is highly useful in studying factors responsible for change in population size (Atwal and Bains 1974).

It is used to determine whether a population is growing, declining or remaining stable. It gives a knowledge on rate of development of an organism, age specific fecundity. This stimulates the outcome of management decessions. Many authors had developed life
table studies for many nematodes *viz.* *M. arenaria* (Ferris and Hunt 1979) *Heterodeara cajani* (Singh and Sharma 1995). The present study attempted to compare the life table of healthy and *Pasteruia penetrans* infected *M. incognita* population on tomato.

Materials and Methods

Seeds of tomato cv.Co3 were sown in a seedling pan. After germination the seedlings of equal height were transplanted to 80 tumbler pots (40 for infected and 40 for healthy nematodes) of 7 cm diameter containing steam sterilized soil. The seedlings were allowed to establish for 10 days. *P. penetrans* encumbered J2 were prepared by adding fresh spores extracted from white females. Healthy J2 were centrifuged along with spores of *P. penetrans* in 1.5ml eppendorf tubes at 500rpm for 2 min. The nematodes were examined for 100 per cent encumbrance under steriozoom microscope. Freshly hatched healthy and *P. penetrans* infected juveniles at cohort were inoculated at the rate of 400 J2 per pot. Nematode development and age specific survival were studied by removing the seedlings at every 24 hours after inoculation. The roots were stained with acid fuchsin-lactophenol and destined in plain lactophenol. The roots were compressed between two glass plates (15x10 cm) and the number of juveniles in different stage was counted under a stereo zoom microscope. If the internal body content of the nematode is not intact, they were considered as dead nematodes. Peak occurrence of each life stage was used to calculate survival and development of different stages. The procedure was continued till adult females were developed. All data were corrected and adjusted in such a way that the life table commences with a cohort of 100 J2 as described by Singh and Sharma (1994). Life table was constructed as described by Deevey (1947). The fecundity and intrinsic rate of natural increase of population were calculated by using Birch (1948) formula as elaborated by Howe (1953). The following columns were used.

X	Pivotal age days
I_x	Age specific longevity
m_x	Age specific fecundity
Ro(l_m)	Net reproductive rate
rm = lnR_c/T_c	Innate capacity for increase of females per female per day
X (d_x)	Number of dying individual in cohort
1000q_x=d_x/I_x *100	Per cent apparent mortality
100dx/n	Per cent real mortality
Lx= l_x+(x+1)/2	Number alive between age x and x+1
XT=x	Number of individual life days beyond age
ex = T_x/l_x	Expectation of further life days
∑m_x	Gross Reproductive Rate (GRR)
R_c = ∑l_xm_x	Net Reproductive Rate (NRR)
T_c = (∑l_xm_x)/R_c	Mean Length of Generation (MLG)
Rc = (logR_c/T_c)	Innate capacity for increase in number
T = (lnR_c)rm	Corrected generation time in days
Rm =e^{rm}	Intrinsic rate of increase
T= (log_eR_x)/rm	Corrected generation time days
Λ = e^{rm}	Finite rate of increase
C = (e^{rmx})/∑e^{-rmx}	Stable age distribution
Results and Discussion

Biology of *M. incognita*

The biology of spore encumbered J2 was extended by 3 days compared to healthy J2. The results revealed that survival of J2 was increased by *P. penetrans* infection. The spore burden on the J2 make them difficult to penetrate the host and only J2 which have few spore reached the host. J2 with heavy spores attachment survived till the food reserves in them are depleted (Stirling, 1984).

Competition and other factors might weaken the J2 and predispose them to infection by microorganisms (Davies *et al.*, 1988; Davies, 2009). Infected J2 which successfully reached the host became J3. The duration of infected J3 was extended by one day compared to healthy J3. Subsequently this lead to increase in the duration of J4 by one day. Oviposition period was also increased by 2 days. Increase in the life cycle of *P. penetrans* infected *M. incognita* lead to increase in total life cycle by 3 days. Further the bacterium reduced the fecundity of *M. incognita* by 5 fold compared to healthy female populations. However, *P. penetrans* was not found to cause any morphological changes in the host. (Davies *et al.*, 2011) (Table 1).

Survival and life expectancy of *M. incognita* infected by *P. penetrans*

The study on life table provides a concise summary of certain vital population statistics (Birch, 1948). According to Southwood (1976) it is the most useful numerical aid in studying population biology enabling determination of age distribution and mortality in natural populations of any organisms. Life table gives a vivid picture on the fecundity and growth potential of any organism under prevailing environmental conditions.

Table 1 Biology of healthy and *P. penetrans* infected *M. incognita*

Parameters	Duration of stages in healthy nematodes	Duration of stages in infected nematodes		
	Range (Days)	X ±SE	Range (Days)	X ±SE
Incubation period	3-5	4.5±0.57	3-5	4.6±0.50
J2	4-5	4.7±0.1	8-10	9.2±0.20
J3	4-5	4.4±0.1	5-6	5.5±0.33
J4	3-4	3.7±0.1	4-5	4.3±0.21
Preovipositional period	1-3	2.4±0.57	1-3	2.7±0.60
Oviposition period	10-14	12.3±1.15	12-15	14.3±0.88
Total development period	25-36	30±1.40	34-44	39±1.34
(egg – adult)	270-300	286±8.81	78-83	80.3±3.26

Average temperature 28±5°C
Average RH 70±5 %
± represents SE of mean
Table 2: Survival and life expectancy of *M. incognita* infected with *P. penetrans*

Age in day (X)	Numbers surviving in X (l_x)	Numbers dying in X (d_x)	Per cent apparent mortality 100q_x=d_x/l_x*100	Per cent real mortality 100d_x/n	No. alive between age x and X+1 L_x=x+1(X +1)/2	No. of individual life days beyond age X (T_x)	Expectation of further life days e_x = T_x/L_x
0	100	0	0.00	0.00	99	2326	23.26
1	98	2	2.04	2.00	95.5	2227	22.72
2	93	5	5.38	5.00	93	2131.5	22.92
3	93	0	0.00	0.00	92.5	2038.5	21.92
Egg	93	7	7.62	7.00	-	-	-
4	92	1	1.09	1.00	90.5	1946	21.15
6	85	4	4.71	4.00	84	1768.5	20.81
8	78	5	6.41	5.00	78	1604	20.56
10	74	4	5.41	4.00	74	1450	19.59
J_1	74	19	23.40	19.00	-	-	-
12	72	2	2.78	2.00	70	1303	18.10
14	68	0	0.00	0.00	68	1165	17.13
16	68	0	0.00	0.00	68	1029	15.13
J_2	68	6	8.66	9.00	-	-	-
17	68	0	0.00	0.00	68	961	14.13
18	68	0	0.00	0.00	68	893	13.13
19	68	0	0.00	0.00	68	825	12.13
20	68	0	0.00	0.00	68	757	11.13
J_3	68	0	0.00	0.00	-	-	-
21	68	0	0.00	0.00	68	689	10.13
22	68	0	0.00	0.00	68	621	9.13
23	68	0	0.00	0.00	68	553	8.13
24	68	0	0.00	0.00	68	485	7.13
25	68	0	0.00	0.00	68	417	6.13
26	68	0	0.00	0.00	64	349	5.13
27	60	8	13.33	8.00	58	285	4.75
28	56	4	7.14	4.00	52.5	227	4.05
29	49	7	14.29	7.00	45.5	174.5	3.56
30	42	7	16.67	7.00	36	129	3.07
31	40	12	40.00	12.00	28.5	93	3.00
32	27	3	11.11	3.00	24	64.5	2.39
33	21	6	28.57	6.00	18	40.5	1.93
34	15	6	40.00	6.00	15	22.5	1.50
35	15	0	0.00	0.00	7.5	7.5	0.50
Adult	0	15	0.00	15.00	0	0	0.00

Notes:
- *L_x* = \(\frac{x+1(X+1)}{2} \)
- *e_x* = \(\frac{T_x}{L_x} \)
Table 3 Survival and life expectancy of healthy *M. incognita* on tomato

Age in day (X)	Number s surviving in X (Lx)	Number s dying in X (dx)	Per cent apparent mortality 100qx=dx/Lx *100	Per cent real mortality 100dxdn	No. alive between age x and X+1 Lx= Lx+(X+1)/2	No. of individual life days beyond age X Tx	Expectation of further life days eX = Tx/Lx
0	100	0	0.00	0.00	99.5	2516	25.16
1	99	1	1.01	1.00	95.5	2416.5	24.41
2	92	7	7.61	7.00	92	2321	24.23
3	92	0	0.00	0.00	92	2229	24.23
Egg	92	8	8.62	8.00	-	-	-
4	92	0	0.00	0.00	91	2137	23.23
5	90	2	2.22	2.00	89	2046	22.73
6	88	2	2.27	2.00	88	1957	22.24
7	88	0	0.00	0.00	86.5	1869	21.24
8	85	3	3.53	3.00	85	1782.5	20.97
9	85	0	0.00	0.00	85	1697.5	19.97
J1	85	7	8.02	7.00	-	-	-
10	85	0	0.00	0.00	84.5	1612.5	18.97
11	84	1	1.19	1.00	84	1528	18.19
12	84	0	0.00	0.00	84	1444	17.19
13	84	0	0.00	0.00	83	1360	16.19
J2	84	1	1.19	1.00	-	-	-
14	82	0	0.00	0.00	82	1277	15.57
15	82	0	0.00	0.00	82	1195	14.57
16	82	0	0.00	0.00	82	1113	13.57
17	82	0	0.00	0.00	82	1031	12.57
J3	82	0	0.00	0.00	-	-	-
18	82	0	0.00	0.00	82	949	11.57
19	82	0	0.00	0.00	82	867	10.57
20	82	0	0.00	0.00	81	785	9.57
21	80	2	2.50	2.00	80	704	8.80
22	80	0	0.00	0.00	80	624	7.80
23	80	0	0.00	0.00	80	544	6.80
24	80	0	0.00	0.00	80	464	5.80
25	80	0	0.00	0.00	80	384	4.80
26	80	0	0.00	0.00	75	304	3.80
27	70	10	14.29	10.00	65	229	3.27
28	60	10	16.67	10.00	57	164	2.73
29	54	6	11.11	6.00	48	107	1.98
30	42	12	28.57	12.00	40	59	1.40
31	38	4	10.53	4.00	19	19	0.50
Adult	0	38	0.00	38.00	0	0	0
Table 4: Stable age distribution of *Meloidogyne incognita* juveniles infected by *P. penetrans*

Age	l_x	m_x	$l_x.m_x$	$X.l_x.m_x$	$e^{r_{max}}.l_x$	Stable age distribution	Percentage distribution
1	1					0.8353	0.186281
2	0.98					0.6837	0.152484
3	0.93					0.5420	0.120867
4	0.93					0.4527	0.100957
5	0.92					0.3740	0.083419
6	0.89					0.3022	0.067406
7	0.85					0.2411	0.053771
8	0.83					0.1967	0.043857
9	0.78					0.1544	0.034426
10	0.78					0.1289	0.028755
11	0.74					0.1022	0.022786
12	0.74					0.0853	0.019033
13	0.72					0.0694	0.015468
14	0.68					0.0547	0.012202
15	0.68					0.0457	0.010192
16	0.68					0.0382	0.008513
17	0.68					0.0319	0.007111
18	0.68					0.0266	0.005939
19	0.68					0.0222	0.004961
20	0.68					0.0186	0.004144
21	0.68	5.2	3.54	74.26		0.0155	0.003461
22	0.68	6.6	4.49	98.74		0.0130	0.002891
23	0.68	6.8	4.62	106.35		0.0108	0.002415
24	0.68	7.2	4.90	117.50		0.0090	0.002017
25	0.68	10.1	6.87	171.70		0.0076	0.001685
26	0.68	10.2	6.94	180.34		0.0063	0.001407
27	0.6	6.3	3.78	102.06		0.0047	0.001037
28	0.56	5.8	3.25	90.94		0.0036	0.000809
29	0.49	5.5	2.70	78.16		0.0026	0.000591
30	0.42	4.5	1.89	56.70		0.0019	0.000423
31	0.3	3.7	1.11	34.41		0.0011	0.000252
32	0.27	3.2	0.86	27.65		0.0009	0.000190
33	0.21	2.6	0.55	18.02		0.0006	0.000123
34	0.15	1.4	0.21	7.14		0.0003	0.000074
35	0.15	1.2	0.18	6.30		0.0003	0.000061
36	0	0	0	0		0.0000	0.000000
Table.5 Stable age distribution of healthy *Meloidogyne incognita* juveniles

Age	l_x	m_x	l_xm_x	X.l_xm_x	$e^{-mx}.lx$	Stable age distribution	Percentage distribution
1	1				0.8353	0.1804491	45
2	0.99				0.6907	0.1384722	
3	0.92				0.5361	0.1074836	
4	0.92				0.4478	0.0897779	
5	0.92				0.3740	0.0749888	
6	0.9				0.3056	0.0612743	
7	0.88				0.2496	0.0500432	
8	0.88				0.2085	0.0417996	
9	0.85				0.1682	0.037327	45
10	0.85				0.1405	0.0281684	
11	0.85				0.1174	0.0235282	
12	0.84				0.0969	0.0194212	
13	0.84				0.0809	0.0162220	6
14	0.84				0.0676	0.0135497	
15	0.82				0.0551	0.0110482	
16	0.82				0.0460	0.0092282	
17	0.82				0.0384	0.0077081	4
18	0.82	22.3	18.286	329.148	0.0321	0.0064383	
19	0.82	23	18.860	358.340	0.0268	0.0053777	
20	0.82	26.5	21.730	434.600	0.0224	0.0044919	
21	0.8	29.3	23.440	492.240	0.0183	0.0036604	
22	0.8	31.3	25.040	550.880	0.0153	0.0030574	
23	0.8	25.4	20.320	467.360	0.0127	0.0025538	
24	0.8	25.4	20.320	487.680	0.0106	0.0021331	
25	0.8	24.3	19.440	486.000	0.0089	0.0017817	
26	0.8	21.4	17.120	445.120	0.0074	0.0014882	
27	0.7	15.2	10.640	287.280	0.0054	0.0010877	
28	0.6	14.3	8.580	240.240	0.0039	0.0007787	
29	0.54	14.3	7.722	223.938	0.0029	0.0005854	
30	0.42	10.2	4.284	128.520	0.0019	0.0003803	
31	0.38	9.2	3.496	108.376	0.0014	0.0002874	
32	0	0	0.000	0.000	0.0000	0.0000000	

In the present study percent mortality of egg stage ranged from 7 to 8. Even though the life expectancy of *M. incognita* infected with *P. penetrans* extended by 2 days, mortality rate of J2 was high (19 %) (Table 2) when compared to healthy J2 (7 %) (Table 3). These results were in accordance with Bansa – Singh and Dhawan (1994) who showed negative correlation between the number of spores per J2 and penetration of J2 into the roots. Encumbered spores reduced the mortality of J2 and maintained them in active state which provides them a greater chance in contacting the host (Davies *et al.*, 1991). The duration from J2 to J3 was increased by one day. Mortality rate of *P. penetrans* infected J3 was high (9 %) when compared to healthy population (1 %) (Table 2 & 3). The mortality
of healthy J2 was less after reaching the host. This could be due to stable environment compared to complex soil ecosystem where various factors affect the J2 (Singh and Sharma 1994). From J3 to J4 no mortality was recorded. The duration of *P. penetrans* infected and healthy adult stage remained the same. *P. penetrans* infection extends the life cycle of *M. incognita* by 3 days. Survival and life expectancy of *M. incognita* parasitized by *P. penetrans* was reduced by 2 days compared to healthy population.

Stable age distribution of healthy and *Pasteuria penetrans* infected *M. incognita*

The contribution made by different developmental stages was determined by analyzing the stable age distribution. The study on stable age distribution revealed that per cent distribution of various life stages was higher in healthy *M. incognita* and lowest in *M. incognita* parasitized by *P. penetrans*. The distribution of encumbered population of J2 was reduced to nearly 41 per cent (Table 4) of the healthy population (79 %) (Table 5). The distribution of J2 was much affected by *P. penetrans* when compared to other stages. Rangaswamy et al., (2001) reported that the development of J2 into adult was lower in *P. penetrans* infected nematodes. The per cent survival of infected female decreases with increase in time spent by the J2 in soil (Giannakou and Gowen, 2004).

Table.8 Population growth statistics of *M. incognita* infected with *P. penetrans*

Parameters	*M. incognita infected with *P. penetrans*
Gross reproductive rate ($\sum m_x$)	80.3
Net reproductive rate ($R_o = \sum l_x m_x$)	39.16
Mean length of generation (days) {$T_c = (\sum l_x m_x)/R_o$}	25.09
Innate capacity for increase (females/female/day)	0.14
Finite rate of increase in number (females / females / day) ($\Lambda = e^{rm}$)	1.15
Rate of weekly multiplication of population (e^{rm})7	2.74
Doubling time (Log$_2$/logλ)	4.80

Table.9 Population growth statistics of healthy *M. incognita*

Parameters	*M. incognita*
Gross reproductive rate ($\sum m_x$)	292.1
Net reproductive rate ($R_o = \sum l_x m_x$)	219.27
Mean length of generation (days) {$T_c = (\sum l_x m_x)/R_o$}	22.98
Innate capacity for increase (females/female/day)	0.23
Finite rate of increase in number (females / females / day) ($\Lambda = e^{rm}$)	1.26
Rate of weekly multiplication of population (e^{rm})7	5.16
Doubling time (Log$_2$/logλ)	2.95

3015
Population growth statistics of healthy and \textit{Pasteuria penetrans} infected \textit{M. incognita}

The study revealed that egg laying of healthy female starts from 18th day but in \textit{P. penetrans} infected \textit{M. incognita} egg laying starts from 21st day (Fig 1 and Fig 2). The fecundity of the \textit{P. penetrans} infected females was very low. Some spores of \textit{P. penetrans} attached to \textit{M. incognita} juveniles failed to germinate. These juveniles produced eggs. The egg laying capacity of these females were partially affected (Fig 1). This was in accordance with Pembroke \textit{et al.}, (2004) who reported that some encumbered J2 which does not show spore germination has laid few eggs.
Eggs per egg mass ranged from 90-148. Average eggs laid by the infected females were 80.3 eggs per female. The fecundity was reduced by 4 -5 times when compared to healthy M. incognita. This shows the parasite is highly efficient in arresting the fecundity of M. incognita significantly.

The decrease in innate capacity of P. penetrans infected root knot nematodes showed that the nematodes lost its ability for efficient multiplication compared to healthy nematodes. This leads to subsequent increase in doubling time of M. incognita infected by the P. penetrans. The rate of weekly multiplication of M. incognita population was lowered by 2.42 times (Table 8 and 9). The females developing inside the root was reduced significantly due to the spore burden on them (Davies et al., 1991).

References

Abad, P., Gouzy, J., Aury, JM., Castagnone-Sereno, P and Danchin EG. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26: 909–915.

Atwal, AS., and Bains SS. 1974. Life Table studies In Applied animal ecology. Kalyani Publishers, India. 11–35pp.

Bansa, S., and Dhawan SC. 1994. Effect of Pasteuria penetrans on the penetration and multiplication of Heterodera cajani in Vigna unguiculata roots. Nematologia Mediterranea 22: 159-161.

Birch, LC., 1948. The intrinsic rate of increase of an insect population. Journal of Animal Ecology 17: 15-26.

Davies, KG., 2009. Understanding the Interaction Between an Obligate Hyperparasitic Bacterium, Pasteuria penetrans and its Obligate Plant Parasitic Nematode Host, Meloidogyne spp. Advances in Parasitology 68: 211-245.

Davies, KG., Laird, V., and Kerry, BR. 1991. The motility development and infection of Meloidogyne incognita encumbered with spores of the obligate hyperparasite Pasteuria penetrans. Revue de Nematologie 14: 611-618.

Davies, KG., Rowe, J., Manzanilla Lopez, R., and Opperman, CH. 2011. Re-evaluation of the life-cycle of the nematode-parasitic bacterium Pasteuria penetrans in root-knot nematodes, Meloidogyne spp. Nematology 13: 825-835.

Davies, KG., Kerry, BR., and Flynn, CA. 1988. Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Annals of Applied Biology 112: 491-501.

Deevey, E., 1947. Life tables for natural populations of animals. Queensland Review of Biology 22: 283-314.

Ferrls, H., and Hunt, WA. 1979. Quantitative aspects of the development of Meloidogyne arenaria larvae in grapevine varieties and root stocks. Journal of Nematology 11: 168-174.

Giannakou, I., and Gowen, SR. 2004. Factors affecting biological control effectiveness of Pasteuria penetrans in Meloidogyne javanica and the bacterial development in the nematode body. Nematropica 34: 153-163.

Howe, RW., (1953). The rapid determination of intrinsic rate of increase of an insect population. Annals of Applied Biology 40: 134 – 155.

Pembroke, B., Darban, DA., and Gowen, S. 2004. Pasteuria penetrans: a tritrophic interaction. Bulletin-OILB/ROP 27: 229-234.

Rangaswamy, SD., Reddy, PP., Gowda, DN., and Nagesh, M. 2001. Influence of Pasteuria penetrans Sayre and Starr on the life cycle of Meloidogyne
incognita (Kofoid and White) Chitwood infecting tomato. Pest Management in Horticultural Ecosystems 7: 168-170.

Singh, M., and Sharma, SB. 1994. Temperature effects on development and reproduction of *Heterodera cajani* on pigeonpea. Journal of Nematology 26: 241-248.

Singh, M., and Sharma, SB. 1995. Life table for *Heterodera cajani* on pigeonpea *(Cajanus cajan)* Journal of Nematology 18: 309 -313.

Southwood, TRE., 1976. Ecological methods with particular reference to the study of insect populations. The English language book society and chapman and hall *Pasteuria penetrans*, 524pp.

Stirling, GR., 1984. Biological control of *M. Javanica* with *Pasteuria penetrans*. Phytopathology 74: 55 -60.

How to cite this article:

Prabhu. S, J. Sandeep Kumar and Poorniammal. R. 2020. Biology and Life Table Studies on Healthy and *Pasteuria penetrans* Infected *Meloidogyne incognita*. *Int.J.Curr.Microbiol.App.Sci.* 9(03): 3008-3018. doi: https://doi.org/10.20546/ijcmas.2020.903.345