Differential introgression suggests candidate beneficial and barrier loci between two parapatric subspecies of Pearson’s horseshoe bat *Rhinolophus pearsoni*

Xiuguang MAOa,b,*, Shuyi ZHANGa, and Stephen J. ROSSITERb

aInstitute of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China and bSchool of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK

*Address correspondence to Xiuguang Mao. E-mail: xgmao@sklec.ecnu.edu.cn

Received on 7 September 2015; accepted on 5 October 2015

Abstract

Observations that rates of introgression between taxa can vary across loci are increasingly common. Here, we test for differential locus-wise introgression in 2 parapatric subspecies of Pearson’s horseshoe bat (*Rhinolophus pearsoni chinensis* and *R. p. pearsoni*). To efficiently identify putative speciation genes and/or beneficial genes in our current system, we used a candidate gene approach by including loci from X chromosome that are suggested to be more likely involved in reproductive isolation in other organisms and loci underlying hearing that have been suggested to spread across the hybrid zone in another congeneric species. Phylogenetic and coalescent analyses were performed at 2 X-linked, 4 hearing genes, as well as 2 other autosomal loci individually. Likelihood ratio tests could not reject the model of zero gene flow at 2 X-linked and 2 autosomal genes. In contrast, gene flow was supported at 3 of 4 hearing genes. While this introgression could be adaptive, we cannot rule out stochastic processes. Our results highlight the utility of the candidate gene approach in searching for speciation genes and/or beneficial genes across the species boundary in natural populations.

Key words: gene flow, hybridization, hybrid zone, reproductive isolation.
genomes (Chd1 and Sws1) taken from our previous study (Mao et al. 2010), 2 X-linked genes and 4 hearing genes. Among these loci, Sws1 was suggested to be pseudogenized in Rhinolophus (Zhao et al. 2009), thus, it can be used as a neutral control in the comparison with other loci. We predicted that hearing genes might exhibit higher levels of introgression because of their benefits for animals in adapting to new environments, whereas introgression rates of X-linked genes would be reduced, compared to other autosomal genes.

Materials and Methods
Ethics statement and sampling
All tissues used in this study were sampled from bats for our former project (Mao et al. 2010) (see details in Figure 1 and Table 1). The non-lethal procedure of sampling consisted of taking wing membrane biopsies from bats, and was approved by the National Animal Research Authority, East China Normal University (approval ID 20080209). Bats were initially assigned to R. p. pearsoni or R. p. chinensis on the basis of taxonomy-specific and non-overlapping call frequencies (Zhang et al. 2009; Mao et al. 2010). One congeneric species R. affinis was included as an outgroup.

DNA sequencing
In this study, we amplified and sequenced introns from 2 X-chromosomal genes (Usp9x and Pola1) and 4 hearing genes (Prestin, Tmc1, FoxP2 and Kcnq4) in bats sampled for an earlier study (sample information and primer details are summarized in Table 2). Sequence data from 2 additional genes, Chd1 and Sws1, were taken from our previous study (Mao et al. 2010).

Polymerase chain reactions (PCR) were performed in 50 μl reaction mixtures containing 10–50 ng DNA, 0.25 mM of each primer, and 2.5 μl Premix Taq polymerase (TaKaRa). The thermal profiles for Usp9x, Pola1, FoxP2, Kcnq4, and Prestin have been described previously (Lim et al. 2008; Mao et al. 2014). For Tmc1, we used: 95 °C for 5 min; 34 cycles of 30 s at 94°C, 40 s at 61 °C, 90 s at 72 °C; 72 °C for 10 min. PCRs were carried out on a PTC-220 thermal cycler (Bio-Rad). DNA sequencing was undertaken with either the forward primer for Tmc1, Usp9x, Pola1, and Kcnq4 or both forward and reverse primers for FoxP2 and Prestin. PCR products were analyzed on an ABI PRISM 3700 automated sequencer (Applied Biosystems). When multiple heterozygous sites were present in the sequences, haplotypes were resolved probabilistically using PHASE 2.1 (Stephens et al. 2001) and traditional tree-based phylogenetic methods may be difficult to represent true genealogies (Posada and Crandall 2001). We, therefore, performed network-based phylogenetic reconstructions for each nuclear marker by constructing statistical parsimony networks in the package TCS version 1.21 (Clement et al. 2000).
Gene flow

Shared or closely related haplotypes between R. p. pearsoni (excluding Sichuan) and R. p. chinensis were observed at several nuclear genes (see section ‘Results’), which could have resulted from either introgression or incomplete lineage sorting. To distinguish these 2 processes we ran IM models in the program IMa2 (Hey and Nielsen 2007; Hey 2010). We repeated the IM analysis for each of the 8 loci (Chd1, Sus1, Usp9x, Pola1, Prestin, FoxP2, Kcnq4, and Tmc1) individually. Data for Chd1 and Sus1 were taken from our previous study (Mao et al. 2010). Before performing the IM analysis, for each locus we used DnaSP to test for recombination using the 4-gamete test (Hudson and Kaplan 1985). For loci showing recombination, only those segments without recombination were used in the IM analysis. It was worth pointing out that nonrecombined regions of each marker still showed informative variation between R. p. chinensis and R. p. pearsoni (data not shown). DnaSP was also used to assess neutrality based on the Hudson–Kreitman–Aguade test (HKA, Hudson et al. 1987) and Tajima’s D test (Tajima 1989) whose values were not significant (see Supplementary Table S1). For this reason, and because recent simulations (Strasburg and Rieseberg 2010) have highlighted the robustness of IM models to selection, all of the focal genes were used in the IM models (also see Bull et al. 2006; Pardo-Dieaz et al. 2012). Inheritance scalars were set at 0.75 for 2 X-linked markers (Usp9x and Pola1) and 1 for autosomal markers. For all loci, the Hasegawa-Kishino-Yano (HKY) model was applied. Several preliminary runs were performed to establish upper bounds on prior distributions. To check for the convergence of the Markov chain, the IM analysis was run at least twice using different random seeds. Each run included 200 000 genealogies at every 100 steps after a burn-in of 10⁶ steps including 20 Metropolis-coupled chains with a geometric heating scheme: -hfg -hn20 -ha0.96 -hb0.9. A total of 200 000 genealogies were used to perform likelihood ratio tests of the nested models for migration rates (Hey 2010).

Results

Haplotypes from the 2 X-linked genes (Usp9x and Pola1) were resolved into 3 subnetworks, corresponding to R. p. chinensis, R. p. pearsoni, and a divergent group of R. p. pearsoni from Sichuan (Figure 2A,B). However, 3 of the 4 hearing genes displayed contrasting results to this, with at least 1 haplotype of Prestin, FoxP2, and Tmc1 shared between R. p. pearsoni and R. p. chinensis (Figure 2C–E). It was notable that the shared FoxP2 haplotype between R. p. pearsoni and R. p. chinensis was from populations of their contact zone, Hunan and Fujian. For the fourth hearing gene, Kcnq4, we found a 63-bp deletion in R. p. chinensis compared to R. p. pearsoni (Figure 2F), indicating strong divergence between these 2 taxa at this locus. Like other nuclear genes, networks based on these 4 hearing genes showed that R. p. pearsoni haplotypes from Sichuan were strongly divergent from those from elsewhere. Consequently, individuals of R. p. pearsoni from Sichuan were excluded from estimates of migration rate in the IM analysis.

Two independent IM analysis gave similar posterior probability with the effective sample sizes of ≥ 200 for the migration rate parameter, indicating convergence on the true stationary distribution. To test whether introgression contributed to the observation of shared or closely related haplotypes between R. p. pearsoni excluding Sichuan and R. p. chinensis at several nuclear genes, we compared the fit of models with and without gene flow for all 8 loci individually. Based on likelihood ratio tests, the model with zero...
Table 1. GenBank accessions for all samples used in the molecular analysis. N means the location number as shown in Figure 1

N	Sample locations	Coordinates	Code	Prestin	Tmc1	FoxP2	Kcnq4	Usp9x	Pola1	
1	Qingyang	N30:20:511	E117:50:128	AH	JX02283	KCS74587, 93	JX02243	KCS74518, 20	JX02378-79	JX02319, 20,12,33
2	Jiaxing	N30:26:785	E118:24:783	AH	JX02282	KCS74589, 84,86	JX02244	KCS74512, 21	JX02374-75	JX02322, 28
3	Huanghaijiniao	N29:45:107	E118:23:171	AH	JX02284	KCS74603	JX02245	KCS74511	JX02392-93	JX02329-31
4	Huangshaixinning	N50:23:181	E118:14:116	AH	JX02285	KCS74585, 88	JX02246	KCS74514, 28	JX02397, 99	JX02334
5	Fuchanshanling	N29:22:112	E117:34:324	JX	–	KCS74589-90	JX02247	KCS74519	JX02427-28	JX02321, 36
6	Fuchanqingfeng	N29:22:262	E117:39:357	JX	–	KCS74598-600	JX02248	KCS74524, 29-30	JX02422-23	JX02325-26
7	Fuchanquinhui	N29:22:662	E117:32:335	JX	–	KCS74602	JX02249	KCS74523	JX02424, 26	JX02327
8	Guwang cave	N27:42:664	E117:41:531	JF	–	KCS74591-92	JX02251	KCS74513,22	JX02408, 12	JX02340-41
9	Yanzijiao	N27:48:511	E117:42:505	JX	–	KCS74594, 96	JX02253	KCS74515, 16,33	JX02405-07	JX02338
10	Taining	N26:42:236	E117:29:867	FJ	–	KCS74595	JX02252, 54	KCS74531-32	JX02403-04	JX02337
11	Liancheng	N25:12:404	E117:30:066	FJ	–	KCS74606	–	KCS74517	JX02402	JX02339

Table 2. Primers information for nuclear markers used in this study

Name of markers	ID	Length (bp)	Primers information	References
The nucleosome remodeling factor gene	Chd1	556	F: GATAARTCAGARACAGCCCTTAGA GC R: TTTCGCCCTCAGCTGACTCC	Lim et al. (2008)
The short-wavelength-sensitive opsin gene	Sux1	645	F: CACAGGCTATGTGGTCGACCTTC R: GCCCGTGGGATGGCTATTGA	Mao et al. (2014)
Prestin intron 4	Prestin	536	F: GAGGAGTAAATGCGACCAA R: ATCCCACTGTACCGCTTTG	Mao et al. (2014)
Transmembrane cochlear-expressed gene 1	Tmc1	515	F: AGACCAAATTTCACTCTATCACCA R: GTTACGAGGAAACCTCTGAATGG	This study
The voltage-gated potassium channel subfamily KQT member 4	Kcnq4	646	F: GCTTACCTCATAACCCCTATCA R: CCTGAGAATAGCAAACTCTGCG	Mao et al. (2014)
Ubiquitin specific protease 9 X	Usp9x	674	F: GCGGTGTCAGGTGGAGAA R: GCAGGGAGCGGTAATAGAA	Lim et al. (2008)
Polymerase (DNA directed) alpha 1	Pola1	549	F: GAAACTTGTAGAGCCCGGAAGA R: ACCTCCCTTCCTTTTGGAG	Mao et al. (2014)

Discussion

Patterns of differential introgression have been frequently used to search for putative speciation genes involved in reproductive isolation and/or beneficial genes which can spread across the species boundaries (see Payseur 2010). In this study, results from 2 X-linked markers (Pola1 and Usp9x) suggested no introgression between R. p. pearsoni and R. p. chinesis supporting previous findings from the other 2 nuclear genes Chd1 and Sux1 (Mao et al. 2010). Furthermore, IMa2 analysis based on likelihood ratio tests could not reject the model of zero gene flow at these 4 genes individually.
between these 2 subspecies, perhaps indicating these genes are involved in reproductive isolation either directly or via linkage to other genes.

In contrast to the above patterns, 3 of 4 hearing genes (Prestin, Tmc1, and FoxP2) exhibited shared and/or closely related haplotypes between R. p. pearsoni and R. p. chinensis. While this result could in theory be explained by either incomplete lineage sorting or introgression (Funk and Omland 2003; Ballard and Whitlock 2004), the results of the IMa2 analyses supported the latter scenario, with the rejection of the model of zero gene flow at these 3 hearing genes when analyzed individually based on likelihood ratio tests. This result was consistent with our previous finding that Prestin appeared to

Figure 2. Statistical parsimony networks for each nuclear marker used in this study. Haplotypes representing lineages of R. p. chinensis and R. p. pearsoni are shaded orange and blue, respectively. Each circle represents a single haplotype and the area of circle size is scaled by haplotype frequency. The filled black circles represent missing or unsampled haplotypes. Haplotypes were coded as population identities (AH, JX, FJ, SC, HN, GX, GZ, YN, VN) as shown in Figure 1. The arrow in Kcnq4 network denotes a 63-bp deletion (1 mutational step) between R. p. chinensis and R. p. pearsoni.
show gene flow across the hybrid zone between 2 subspecies of the congeneric species \(R. \ affinis \) (Mao et al. 2014). More horseshoe bat taxa need to be studied to test the generality of this pattern.

Several scenarios can be considered to explain the pattern of increased rates of introgression observed in 3 of 4 hearing genes examined. First, it is possible that these 3 hearing genes in fact provide an adaptive advantage in a heterospecific background (Arnold 2006; Pardo-Diez et al. 2012; Hedrick 2013). Indeed in mice (\(M us \)), genes that function in olfaction are shown to be subject to adaptive introgression across a hybrid zone (Teeter et al. 2008). Our neutrality tests failed to support evidence of selection acting on genes examined here; nonetheless, it is known that strong adaptation can occur in the absence of detectable signatures of selection (e.g., \(M c I r \) gene in mice, Domingues et al. 2012) and therefore we cannot rule this out completely. If introgression of these hearing genes was beneficial, these genes might not be involved in echolocation call frequency. Otherwise, hybrids would be particularly selected against due to quite different call frequency between their parental taxa (\(R. \ pearsoni \) and \(R. \ chinensis \), see Mao et al. 2010). Alternatively, these hearing genes examined may be linked to loci that can cross the species boundaries due to positive selection. Ultimately, functional analysis on additional candidate hearing coding gene sequences from individuals of the 2 focal taxa would be needed to test more thoroughly for adaptive introgression associated with what is likely to be a complex phenotypic trait.

Third, the observed transfer of alleles across taxon boundaries may have arisen via stochastic processes (i.e., genetic drift), and it is often difficult to distinguish the roles of these 2 processes in introgression events (but see Payseur et al. 2004; Teeter et al. 2008; Fitzpatrick et al. 2009). This is especially likely to be the case if these hearing genes under study do not directly impact on echolocation call frequency per se, but rather function in other aspects of this complex trait.

Although not a focus of our study, the observed strong levels of both mitochondrial and nuclear differentiation between \(R. \ pearsoni \) individuals from Sichuan versus those from adjacent populations strongly point to the presence of a cryptic taxon. In addition, published differences in diploid chromosome number and chromosomal rearrangements between \(R. \ pearsoni \) from Sichuan (2N = 46, Wu et al. 2009) and ones from other regions (e.g., 2N = 44 in Guizhou, Mao et al. 2007) also support either different taxa or distinct chromosomal races. Such chromosomal rearrangements are well known to reduce gene flow and thus increase genetic differentiation, for example, by suppressing recombination (Ortiz-Barrientos et al. 2002; Navarro and Barton 2003).

In conclusion, parapatric taxa that undergo genetic exchange offer good opportunities to identify candidate loci that cross taxonomic barriers versus those that resist gene flow and thus might be related to reproductive isolation. By examining patterns of differential introgression among candidate loci, we revealed evidence of increased introgression from \(R. \ chinensis \) to \(R. \ pearsoni \) at 3 of 4 hearing genes and reduced introgression at 2 X-linked and 2 autosomal loci. However, we were unable to explicitly relate gene flow across species barriers to phenotypic differences in the relevant individuals. Although this study is one of the first to test for introgression of sensory genes among different taxa, our statistical power to find effects was limited by our low coverage of the genome. To address this issue, as well as known heterogeneity in genomic divergence (reviewed in Nosil et al. 2009), high-throughput sequencing approaches (e.g., whole-genome resequencing) offer promise for more thoroughly assessing genetic differentiation and introgression in these and other taxa (Twyford and Ennos 2012; Martin et al. 2013).

Supplementary Material

Supplementary material can be found at http://www.cz.oxfordjournals.org/

Acknowledgments

We thank Zhang Junpeng, Zhu Guangjian, and Zhang Libiao for assistance with sample collection. This work was supported by a grant awarded to SZ under the Key Construction Program of the National “985” Project and “211” Project; a Marie Curie International Incoming Fellowship, and a grant of the Shanghai Pujiang Talent Program Foundation for XM; and a European Research Council Starting Grant for SJJ.

References

Anderson E, 1949. *Introgressive Hybridization*. London: Chapman & Hall.

Anderson E, Hubricht L, 1938. Hybridization in *Tradescantia*. III. The evidence for introgressive hybridization. *Am J Bot* 25:396–402.
Arnold ML. 2006. Evolution Through Genetic Exchange. Oxford: Oxford University Press.

Baldaasarre DT, White TA, Karuban J, Webster MS. 2014. Genomic and morphological analyses of a semipermeable avian hybrid zone suggests asymmetrical introgression of a sexual signal. Evolution 68:2644–2657.

Ballard JWO, Whitlock MC. 2004. The incomplete natural history of mitochon-dria. Mol Ecol 13:729–744.

Bull V, Beltrán M, Jiggins CD, McMillan WO, Berkshire E et al., 2006. Polyphly and gene flow between non-sibling Heliconius species. BMC Biol 4:11.

Choleva L, Musilova Z, Kohoutova-Sediva A, Paces J, Rab P et al., 2014. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Coelitus, Teleostei), despite clonal reproduction of hybrids. PLoS ONE 9:e80641.

Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to esti-mate genealogies. Mol Ecol 9:1657–1660.

Coyne JA, Orr HA, 2004. Speciation. Sunderland: Sinauer Associates.

Csooba G, Ujhelyi P, Thomas N. 2003. Horseeshoe Bats of the World (Chiroptera: Rhinolophidae). Shropshire: Alana Books.

Davies KTJ, Cotton JA, Kirwan JD, Teeling EC, Rossiter SJ. 2011. Parallel signa-tures of sequence evolution among hearing genes in echolocating mam-als: an emerging model of genetic convergence. Heredity 108:480–489.

Domingues VS, Poh YP, Peterson BK, Pennings PS, Jensen JD et al., 2012. Evidence of adaptation from ancestral variation in young populations of beach mice. Evolution 66:3209–3223.

Dopman EB, Pérez L, Bogdanowicz SM, Harrison RG. 2005. Consequences of reproductive barriers for genomic diversity in the European corn borer. Proc Natl Acad Sci USA 102:14706–14711.

Fitpatrick RM, Johnson JR, Kump DK, Shaffer HB, Smith JJ et al., 2009. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders. BMC Evol Biol 9:76.

Funk DJ, Omland KE. 2003. Species-level paraphyly and polyphly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Am Nat Rev Ecol Evol 5:397–423.

Geraeds A, Basset P, Gibson B, Smith KL, Harr B et al., 2008. Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol Ecol 17:5349–5363.

Hedrick PW. 2013. Adaptive introgression in animals: examples and compari-son to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618.

Hey J. 2010. The divergence of chimpanzee species and subspecies as revealed by population size estimation based on nucleotide data. Mol Biol Evol 27:921–933.

Hey J, Nielsen R. 2007. Integration within the Felsenstein equation for im-plementation of the pairwise-uncorrected genetic distance. Genome 39:155–160.

Hey J, Nielsen R. 2004. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760.

Hiré S, Sullivan J. 2009. Assessment of gene flow across a hybrid zone in red-tailed chipmunks Tamias ruficaudus. Mol Ecol 18:3097–3109.

Hudson RR, Kaplan N. 1985. Statistical properties of the number of recom-bination events in the history of a sample of DNA sequences. Genetics 111:147–164.

Hudson RR, Kreitman M, Aguade M. 1987. A test of neutral molecular evolu-tion theory by DNA polymorphism data. Bioinformatics 25:1451–1452.

Hum BL, Engstrom MD, Bickham JW, Patton JC. 2008. Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Digidurinae) based on loci from the four genetic transmission systems in mammals. Biol J Linn Soc 93:189–209.

Iri Y, Han NJ, Franchini LF, Xu H, Piscottano F et al., 2012. The voltage-gated potassium channel subfamily KQT member 4 (KCNIQ4) displays a parallel evolution in echolocating bats. Mol Biol Evol 29:1441–1450.

Macholán M, Muczinger P, Sugerková M, Dutková E, Zima J et al., 2007. Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution 61:746–771.

Mao XG, Nie WH, Wang JH, Su W, Ao L et al., 2007. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-bandning comparison. Chromosome Res 15:839–848.

Mao XG, Zhang JP, Zhang SY, Rossiter SJ. 2010. Historical male-mediated introgression in horseeshoe bats revealed by multi-locus DNA sequence data. Mol Ecol 19:1352–1366.

Mao XG, Zhu GJ, Zhang JP, Zhang SY, Rossiter SJ. 2014. Differential introgression among loci across a hybrid zone of the intermediate horseeshoe bat Rhinolophus affinis. BMC Evol Biol 14:154.

Maroja LS, Andres JA, Harrison RG. 2009. Genealogical discordance and pat-terns of introgression and selection across a cricket hybrid zone. Evolution 63:299–3015.

Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR et al., 2013. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res 23:1817–1824.

Morgan K, Linton Y, Somboon P, Saikia P, Dev V et al., 2010. Inter-specific gene flow dynamics during the Pleistocene-dated speciation of forest-dependerit mosquitoes in Southeast Asia. Mol Ecol 19:2269–2285.

Nachman MW, Payseur BA. 2012. Recombination rate variation and speci-aition: theoretical predictions and empirical results from rabbbits and mice. Proc Roy Soc Lond B 367:409–421.

Navarro A, Barton NH. 2003. Chromosomal speciation and molecular divergence: accelerated evolution in rearranged chromosomes. Science 300:321–324.

Noor M, Feder JL. 2006. Speciation genetics: evolving approaches. Nat Rev Genet 7:851–861.

Nosil P, Funk DJ, Ortiz-Barrientos D. 2009. Divergent selection and heteroge-neous genomic divergence. Mol Ecol 18:375–402.

Nosil P, Schieter D. 2011. The genes underlying the process of speciation. Trends Ecol Evol 26:160–167.

Ohshima I, Yoshizawa K. 2010. Differential introgression causes genealogical discordance in host races of Acrocerdus transvaalensis (Insecta: Lepidoptera). Mol Ecol 19:2106–2119.

Orr HA, 1997. Haldane’s rule. Ann Rev Ecol Syst 28:195–218.

Ortiz-Barrientos D, Reiland J, Hey J, Noor MAF, 2002. Recombination and the divergence of hybridizing species. Genetica 116:167–178.

Pardo-Diez C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W et al., 2012. Adaptive introgression across species boundaries in butterflies. Proc Natl Acad Sci USA 109:17453–17457.

Posada D, Crandall KA. 1998. ModelTest: testing the model of DNA substition. Bioinformatics 14:817–818.

Posada D, Crandall KA. 2001. Intrasp Portal gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45.

Pro-Phylo conservation of anticoagulant rodent poison resistance by hybridization-ization between old world mice. Curr Biol 21:1296–1301.

Li G, Wang JH, Rossiter SJ, Jones G, Cotton JA et al., 2008. The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci USA 105:13909–13964.

Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.

Mao XG, Nie WH, Wang JH, Su W, Ao L et al., 2007. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-bandning comparison. Chromosome Res 15:839–848.
Strasburg JL, Rieseberg LH, 2010. How robust are “Isolation with Migration” analyses to violations of the IM model? A simulation study. *Mol Biol Evol* 27:297–310.

Sullivan J, Demboski JR, Bell KC, Hird S, Sarver B et al., 2014. Divergence with gene flow within the recent chipmunk radiation (*Tamias*). *Heredity* 113:185–194.

Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 123:585–595.

Taylor SA, Curry RL, White TA, Ferretti V, Lovette I, 2014. Spatiotemporally consistent genomic signatures of reproductive isolation in a moving hybrid zone. *Evolution* 68:3066–3081.

Teeter KC, Payseur BA, Harris LW, Bakewell MA, Thibodeau LM et al., 2008. Genome-wide patterns of gene flow across a house mouse hybrid zone. *Genome Res* 18:67–76.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res* 25:4876–4882.

Twyford AD, Ennos RA, 2012. Next-generation hybridization and introgression. *Heredity* 108:179–189.

Wendel JE, Doyle JJ, 1998. Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis D, Soltis P, Doyle J, editors. *Molecular Systematics of Plants, II: DNA Sequencing*. Boston: Kluwer Academic Publishers. 265–296.

Wu C-l, 2001. The genic view of the process of speciation. *J Evol Biol* 14:851–865.

Wu Y, Harada M, Motokawa M, 2009. Taxonomy of *Rhinolophus yunnanensis* Dobson, 1872 (Chiroptera: Rhinolophidae) with a description of a new species from Thailand. *Acta Chiropterol* 11:237–246.

Zhao HB, Rossiter SJ, Teeling EC, Li CJ, Cotton JA et al., 2009. The evolution of color vision in nocturnal mammals. *Proc Natl Acad Sci USA* 106:8980–8985.

Zhang L, Jones G, Zhang J, Zhu G, Parsons S et al., 2009. Recent surveys of bats (Mammalia: Chiroptera) from China. I. *Rhinolophidae* and *Hipposideridae*. *Acta Chiropterol* 11:71–88.