CASE REPORT

Mediastinal synovial sarcoma: A case report and literature review

Linda SL Cheng MBChB\(^1\), Gary MK Tse MBBS FRCPC\(^2\), Wilson WL Li\(^1\), TW Lee FRCS\(^1\), Anthony PC Yim DM FRCS\(^1\)

CASE PRESENTATION

A 60-year-old woman was referred with an incidentally discovered abnormal shadow in the right mediastinum on routine chest radiography (Figure 1). The patient was a nonsmoker with a past medical history of pulmonary tuberculosis. She had an occasional cough without sputum production, but no other respiratory symptoms. Physical examination was unremarkable. Results of routine laboratory studies were normal. Contrast-enhanced computed tomography (CT) of the thorax showed a large paraspinal mass measuring 6.8 cm × 5.9 cm × 5 cm in size (Figure 2). The mass was located in the right middle mediastinum, next to the apical segment of the right lower lobe. The lesion had a lobular margin with some calcified foci in the peripheral area. No significant mediastinal lymphadenopathy was detected. No abnormalities were seen in the left side. Positron emission

Un synovialome médiaistinal : Rapport de cas et analyse bibliographique

Les synovialomes sont des tumeurs peu courantes des tissus mous. L’immunohistochimie et les techniques cytogénétiques sont essentielles pour poser un diagnostic convenable et obtenir une différenciation des autres néoplasmes à cellules fusiformes. Un cas de synovialome médiaistinal est décrit, dont l’emplacement inhabituel, le diagnostic et le traitement forment le fondement du présent rapport.

LSL Cheng, GMK Tse, WWL Li, TW Lee, APC Yim. Mediastinal synovial sarcoma: A case report and literature review. Can Respir J 2003;10(7):393-395.
tomography (PET) scan showed activity of the lesion without signs of distant metastasis. Magnetic resonance imaging (MRI) of the thorax excluded invasion of the lesion into the spinal canal. CT-guided biopsy showed a spindle cell tumour, with the differential diagnosis of schwannoma or solitary fibrous tumour. The patient was then scheduled for video-assisted thoracic surgery (VATS) for resection of this lesion.

Intraoperatively, through a right thoracotomy at the fifth intercostal space, a large paraspinal mass was found, with the right lung draped over the tumour. The tumour was resected without difficulty. The specimen consisted of multiple friable pieces of soft tan/white tissue measuring in aggregate 7 cm × 7 cm × 4 cm. Pathological examination of the resected specimen showed a cellular spindle cell neoplasm with prominent palisading pattern (Figure 3) and clear resection margins. The spindle cells showed a mild degree of nuclear pleomorphism and hyperchromasia (Figure 4). Mitotic activity was low, with a mitotic count of three to four per 10 high power fields. Within the tumour, occasional myxoid stromal areas, calcification and necrosis were seen. No definite epithelial component was identified. Immunohistochemical examination showed strong staining with vimentin (Dako, dilution 1:100), and weak and focal staining with cytokeratin (Cytokeratins-AE1/AE3, Dako, USA [dilution 1:300]; epithelial membrane antigen, Dako, USA [dilution 1:50]). Staining with S100 (Dako, USA [dilution 1:150]), desmin (Dako, USA [dilution 1:150]), CD34 (Novacastra, United Kingdom [dilution 1:30]) and actin (Dako, USA [dilution 1:1]) were negative. A diagnosis of a monophasic fibrous synovial sarcoma was made.

The postoperative course was uneventful, and the patient was discharged on postoperative day 3. She was offered adjuvant radiation therapy based on the size of the tumour. However, this was declined by the patient. She continues to do well without evidence of recurrence after a follow-up period of three months.

DISCUSSION

Synovial sarcoma derives its name from its histomorphological resemblance to synovium. However, this is a misnomer, because more recent evidence suggests that the tumour is derived from primitive pluripotential mesenchyme, which is capable of synovial differentiation. This could explain its occurrence in unusual sites such as the lung (2), mediastinum (3,4) and pleural cavity (5-7). Histologically, synovial sarcomas are composed of a spindle cell and an epithelial cell element. The classic histological pattern is that of a biphasic tumour, composed of varying proportions of both elements. If the epithelial element is lacking, the tumour is referred to as a monophasic fibrous synovial sarcoma. Other subtypes are very uncommon, including the monophasic epithelial synovial sarcoma and the undifferentiated type.

Intrathoracic synovial sarcomas are clinically often a diagnostic challenge due to their nonspecific presentation (2-7). Common symptoms include chest pain, shortness of breath, hemoptysis and cough. However, most patients present with a slow growing, painless mass. Radiographic examination should include chest radiography, CT and MRI of the tumour. Furthermore, as intrathoracic involvement by synovial sarcomas is more commonly due to metastasis, PET scans can be of

Figure 2 Computed tomography of the chest showing a large right paraspinal mass, next to the apical segment of the right lower lobe

Figure 3 Photomicrograph showing prominent palisading pattern on the tumour, with cell nuclei arranged in parallel bands. (Hematoxylin and eosin stain, original magnification ×200)

Figure 4 Photomicrograph showing some nuclear pleomorphism; a mitotic figure is seen in the centre. (Hematoxylin and eosin stain, original magnification ×400)
value to detect concomitant lesions in other sites and assess the primary nature of the tumour. In addition, PET scans can be helpful in estimating tumour grade (8,9) and evaluating response to neoadjuvant chemotherapy (9).

Differential diagnosis for synovial sarcomas should include other spindle cell tumours such as malignant peripheral nerve sheath tumours, soft tissue c, spindle cell carcinomas, spindle cell thymomas, mesotheliomas and solitary fibrous tumours of the pleura. In this case, the high cellularity of the lesion excluded a solitary fibrous tumour. For differentiation from the other lesions, detection of antigenic profiles by immunohistochemistry can be essential. Expression of CD34 is expected for a solitary fibrous tumour but not for a synovial sarcoma, and expression of S100 protein indicates a peripheral nerve sheath tumour in this setting. For tumours with smooth muscle differentiation, like leiomyosarcomas and leiomyomas, immunostains are reactive toward the intermediate filaments like desmin or actin. Furthermore, strong coexpression of the intermediate filament vimentin indicates mesenchymal differentiation, while weak coexpression of cytokeratin suggests epithelial differentiation. This is characteristic for a group of uncommon sarcomas including notably synovial sarcomas, epithelioid sarcomas and rhabdoid tumours. In this case, the absence of the epithelial component supported a diagnosis of a monophasic synovial sarcoma.

In addition to immunohistochemical studies, cytogenetic techniques are helpful in confirming the diagnosis. Synovial sarcomas are known to have a characteristic chromosomal translocation between chromosomes X and 18 (7,10). This specific diagnostic tool can sometimes be necessary to establish the diagnosis between chromosomes X and 18 (7,10). This specific diagnostic tool can sometimes be necessary to establish the diagnosis between chromosomes X and 18 (7,10). This specific diagnostic tool can sometimes be necessary to establish the diagnosis between chromosomes X and 18 (7,10).

REFERENCES

1. Weiss SW, Goldblum JR. Synovial sarcoma. In: Weiss SW, Goldblum JR, eds. Soft Tissue Tumors. St. Louis: Mosby-Year Book, 2001:1483-309.
2. Zeren H, Moran CA, Suster S, Fishback NF, Koss MN. Primary pulmonary sarcomas with features of monophasic synovial sarcoma: A clinicopathological, immunohistochemical, and ultrastructural study of 25 cases. Hum Pathol 1995;26:474-80.
3. Winkin GB, Miettinen M, Rosai J. A biphasic tumor of the mediastinum with features of synovial sarcoma. A report of four cases. Am J Surg Pathol 1989;13:490-9.
4. Le Marchadour F, Pasquier B, Leroux D, Jacrot M. Mediastinal synovial sarcoma with t(X:18). Cancer Genet Cytogenet 1991;55:165-7.
5. Cappello F, Barnes L. Synovial sarcoma and malignant mesothelioma of the pleura: Review, differential diagnosis and possible role of apoptosis. Pathology 2001;33:142-8.
6. Aubry MC, Bridge JA, Wickert R, Tzaelur HD. Primary monophasic synovial sarcoma of the pleura: Five cases confirmed by the presence of SYT-SSX fusion transcript. Am J Surg Pathol 2001;25:776-81.
7. Essary LR, Vargas SO, Fletcher CD. Primary pleuropulmonary synovial sarcoma: Reappraisal of a recently described anatomic subset. Cancer 2002;94:459-69.
8. Schwarzbach MH, Dimitrakopoulou-Strauss A, Willeke F, et al. Clinical value of [18-F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas. Ann Surg 2000;231:380-6.
9. Folpe AL, Lyles RH, Sprouse JT, Conrad ME, Early JE (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 2000;6:1279-87.
10. Kawai A, Woodruff J, Healey JH, Brennan MF, Antonescu CR, Ladanyi M. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med 1998;338:153-60.
11. Bergh P, Meis-Kindblom JM, Gherlinzoni F, et al. Synovial sarcoma: Identification of low and high risk groups. Cancer 1999;85:2596-607.
12. Toissard M, Le Dousral V, Hacene K, et al. Prognostic factors in localized primary synovial sarcoma: A multicenter study of 128 adult patients. J Clin Oncol 2001;19:525-34.
13. Kim AP. VATS major pulmonary resection revisited-controversies, techniques, and results. Ann Thorac Surg 2002;74:615-23.
