Natural transform of fractional order and some properties

Maryam Omran¹ and Adem Kiliçman²*

Abstract: In this work, a new fractional integral transform is proposed, and some of its properties are mentioned. Further, the relation between it and others fractional transforms is given and some of its applications are presented.

Subjects: Science; Mathematics & Statistics; Technology; Computer Science

Keywords: modified fractional Riemann–Liouville derivative; Mittag–Leffler function; Natural transform; Laplace and Sumudu transforms of order \(\alpha \)

1. Introduction

Natural transform is closely related to Laplace and Sumudu transforms. The Natural transform was first introduced in Khan and Khan (2008) which was called \(N \)-transform and its properties were investigated by Al-Omari (2013), Belgacem and Silambarasan (2012b). In Belgacem and Silambarasan (2011, 2012a) the Natural transform was applied to solve Maxwell's equations. More studies regarding the Natural transform can be found from Belgacem and Silambarasan (2011, 2012c).

The Natural transform usually deals with continuous and continuously differentiable functions, or if we assume that the function is fractional derivative and continuous. However, the function is not derivable; therefore, the Natural transform fails to apply similarly as Laplace and Sumudu transforms. Thus, analogously, we need to set a new definition that we name fractional Natural transform.

First of all in the following part, definition of fractional derivative and some basic notations are given.

ABOUT THE AUTHORS

Maryam Omran is a lecturer at Department of Mathematics, Faculty of Science, AL Zawia University, Libya. She received her BSc MSc degrees (2004; 2010) from the Department of Mathematics, AL Zawia University, Libya. Currently, she is studying toward her PhD at UPM, Malaysia. Her research areas include functional analysis and topology.

Adem Kilicman serves as a full professor at the Department of Mathematics, University Putra Malaysia, Malaysia. He received his BSc and MSc degrees from Hacettepe University, Turkey, and his PhD from the University of Leicester (UK). He has joined the University Putra Malaysia in 1997. He is also active in the Institute for Mathematical Research, University Putra Malaysia. Adem Kilicman is a member of editorial boards of several international journals and editor-in-chief for Discovering Mathematics (Menemui Matematik) and his publications exceed 250 research articles. His research areas include applied functional analysis and topology.

PUBLIC INTEREST STATEMENT

The integral transform is a very useful tool in mathematics and related sciences. Recently, many authors studied the properties of fractional integral transforms since they are appeared in several real-world problems. In this paper, we have proposed a new definition of a fractional order of Natural transform which is based on the modified Riemann-Liouville derivative that we name as the fractional Natural transform. The relationship among others transforms is also established. Further, we provided some illustrous examples as applications.
1.1. Fractional derivative

Definition 1.1 If \(g(t) \) is a continuous function and not necessarily differentiable function, then forward operator \(FW(h) \) is defined as follows

\[
FW(h)g(t) = g(t + h),
\]

where \(h > 0 \) denotes a constant discretization span.

Moreover, fractional difference of \(g(t) \) is known as

\[
\Delta^\alpha g(t) = (FW - h)^\alpha g(t) = \sum_{m=0}^{\infty} (-1)^m \binom{\alpha}{m} g[t + (\alpha - m)h] \quad \text{where} \quad 0 < \alpha < 1,
\]

and the \(\alpha \)-derivative of \(g(t) \) is known as

\[
g^{(\alpha)}(t) = \lim_{h \to 0} \frac{\Delta^\alpha g(t)}{h^\alpha}.
\]

For further details, we refer to Almeida, Malinowska, and Torres (2010), Jumarie (2006, 2009a, 2009b).

1.2. Modified fractional Riemann–Liouville derivative

Jumarie (2009b) proposed the alternative definition of the Riemann-Liouville fractional derivative.

Definition 1.2 If \(g(t) \) is a continuous function, but not necessarily differentiable, then

(i) Let us presume that \(g(t) = K \), where \(K \) is a constant; thus, \(\alpha \)-derivative of the function \(g(t) \) is

\[
D^\alpha t K = K t^{\alpha - 1}, \quad \alpha \leq 0,
\]

\[
= 0, \quad \text{otherwise}.
\]

On the other hand, when \(g(t) \neq K \), and hence

\[g(t) = g(0) + (g(t) - g(0)), \]

fractional derivative of the function \(g(t) \) will be known as

\[
g^{(\alpha)}(t) = D^\alpha_t g(0) + D^\alpha_t (g(t) - g(0));
\]

at any negative \(\alpha \), \(\alpha < 0 \) one has

\[
D^\alpha_t (g(t) - g(0)) = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t - \eta)^{-\alpha - 1} g(\eta) \, d\eta, \quad \alpha < 0,
\]

while for positive \(\alpha \), we will put

\[
D^\alpha_t (g(t) - g(0)) = D^\alpha_t g(t) = D_t (g^{(\alpha-1)}).
\]

When \(m < \alpha < m + 1 \), we place

\[
g^{(\alpha)}(t) = (g^{(\alpha-m)}(t))^{(m)}, \quad m \leq \alpha < m + 1, \quad m \geq 1.
\]

1.3. Integral with respect to \((dt)^\alpha\)

The fractional differential equation:

\[
dy = g(t) \, (dt)^\alpha, \quad y(0) = 0 \quad t \geq 0,
\]
has a solution which is given by the next Lemma.

Lemma 1.1 If \(g(t) \) is a continuous function, the solution of (Equation (1.1)) is known as the following

\[
y(t) = \int_0^t g(\eta)(d\eta)^\alpha, \quad y(0) = 0
\]

\[
y(t) = a \int_0^t (t - \eta)^{a-1} g(\eta) \, d\eta, \quad 0 < a \leq 1.
\]

For more results and various views on fractional calculus (see for example Hilfer, 2000; Kober, 1940; Miller & Ross, 1973; Oldham & Spanier, 1974; Osler, 1971; Podlubny, 1999; Ross, 1974; Samko, 1987; Shaher & Odibat, 2007).

2. Main results

The main results of this work are to define fractional Natural transform and some of its properties.

Definition 2.1 Let \(f(x) \) be a function defined for all \(x \geq 0 \); then, fractional Natural transform of order \(\alpha \) which is denoted by \(\mathcal{N}_\alpha^s \) can be defined as the next expression

\[
\mathcal{N}_\alpha^s (f(x)) := \mathcal{N}_\alpha^s (s, u) = \int_0^\infty E_\alpha(-s^\alpha x^\alpha) f(ux)^\alpha, \quad 0 < \alpha \leq 1
\]

where \(s, u \in \mathbb{C}, \) and \(E_\alpha(x) \) is the Mittag–Leffler function \(\sum_{n=0}^\infty \left(\frac{x^n}{\alpha^n} \right). \)

Corollary 2.1 From the above definition, we show that

(i) when \(u = 1 \), we have fractional Laplace transform which is proposed in Jumarie (2009a),

(ii) when \(s = 1 \), we get fractional Sumudu transform which is proposed in Gupta, Shrama, and Kılıçman (2010).

2.1. Some properties of fractional Natural transform

Theorem 2.2 Let \(a, b \) be any constants and \(f(x), g(x) \) are functions; then,

(1) Scaling property

\[
\mathcal{N}_\alpha^s (f(ax)) = R_s^a(s, au)
\]

(2) Linearity property

\[
\mathcal{N}_\alpha^s (af_1(x) + bf_2(x)) = a\mathcal{N}_\alpha^s (f_1(x)) + b\mathcal{N}_\alpha^s (f_2(x)),
\]

(3) Shifting property

\[
\mathcal{N}_\alpha^s (f(x - \alpha)) = E_\alpha(-\alpha^\alpha)\mathcal{N}_\alpha^s (f(x)),
\]

(4) \[
\mathcal{N}_\alpha^s (E_\alpha(-\alpha^\alpha) f(x)) = \frac{\alpha}{\alpha + s} R_s^{\alpha/\alpha}(s, au).
\]

Proof

(1) The result can be obtained directly using Definition 2.1 as

\[
\mathcal{N}_\alpha^s (f(ax)) = \int_0^\infty E_\alpha(-s^\alpha x^\alpha) f(aux)^\alpha = R_s^a(s, au).
\]
(2) By applying Definition 2.1, we can easily get the result
\[\mathcal{N}_a^\alpha [af_t(x) + bf_2(x)] = \int_0^\infty E_a(-s^\alpha)x^f(ux) + \mathcal{L}_a^\alpha [f_t(x)] + b\mathcal{N}_a^\alpha [f_2(x)]. \]

(3) By changing the variable \(v \to x - \alpha \) and taking into account the formula
\[E_a(\alpha(x + t)^\alpha) = E_a(\alpha x^\alpha)E_a(\alpha t^\alpha), \]
then we have
\[\mathcal{N}_a^\alpha [f(x - \alpha)] = \int_0^{M+x-a} (M - v - \alpha)^{x-a} E_a(-(\alpha + v)^s) f(u) \, dv \]
\[= E_a(-s^\alpha x^\alpha) \int_0^{M-x} E_v(-\alpha s^\alpha) f(ux) \, dv. \]

(4) By substituting \(x = \frac{x}{(s + au)^2} \), then
\[= \frac{as^\alpha}{(s + au)^2} \int_0^{M+au} \left(M + \frac{au}{s} - t \right)^{-a} E_a(-t^a x^a) \left(\frac{su}{s + au} t \right) \, dt, \]
\[= \frac{s^\alpha}{(s + au)^2} R(\frac{su}{s + au}), \]
\[= \frac{s^\alpha}{(s + au)^2} R_0^\alpha \left(\frac{su}{s + au} \right). \]

Remark 2.2 All the results above in Theorem 2.2 satisfy the properties of Natural transform when \(a = 1 \).

2.2. The fractional Natural transform coupled with fractional Laplace transform

First, we mention the next definition that is presented in Jumarie (2009a).

Definition 2.3 Suppose that \(f \) is a function which vanishes off the negative values of \(x \). Then, fractional Laplace transform of \(f(x) \) is known as follows
\[\mathcal{L}_a^\alpha [f(x)] := F_a(u) = \int_0^\infty E_a(-ux^\alpha) f(ux) \, dx, \]
\[:= \lim_{M \to \infty} \int_0^M E_a(-ux^\alpha) f(ux) \, dx, \]
as long as the integral exists.

Theorem 2.4 Assume that \(\mathcal{L}_a^\alpha [f(x)] \) and \(\mathcal{N}_a^\alpha [f(x)] \) denote fractional Laplace and fractional Natural transforms of function \(f(x) \), respectively, and let \(\mathcal{L}_a^\alpha [f(x)] = F_a(u), \mathcal{N}_a^\alpha [f(x)] = R_a(s, u) \); then,
\[\mathcal{N}_a^\alpha [f(x)] = \frac{1}{u} F_a \left(\frac{s}{u} \right). \]
Proof

\[N^\alpha_\mathbb{R}(f(x)) = \int_0^\infty E\alpha(−s^\alpha)x^\alpha f(ux)(dx)^\alpha \]

\[= \lim_{M \to \infty} \int_0^M E\alpha(−s^\alpha)x^\alpha f(ux)(dx)^\alpha \]

\[= \lim_{M \to \infty} \alpha \int_0^M (M - x)^{\alpha-1} E\alpha(−s^\alpha)x^\alpha f(ux) \, dx, \]

By making the change of the variable \(v \to ux \), it follows that

\[\frac{1}{s^\alpha} \lim_{v \to 0} \int_0^{s^\alpha v} (M - v)^{\alpha-1} E\alpha(−s^\alpha)v^\alpha f(v)(dv)^\alpha \]

Similarly, the same result is obtained (see Theorem 2.2 in Belgacem & Silambarasan, 2012b) when \(\alpha = 1 \) in the above theorem.

Remark 2.3 The same result is obtained (see Theorem 2.1 in Belgacem & Silambarasan, 2012b) when \(\alpha = 1 \) in the above theorem.

2.3. The fractional Natural transform coupled with fractional Sumudu transform

We recall the next definition from Gupta et al. (2010).

Definition 2.5 Suppose that \(f \) is a function defined on the positive values of \(x \). The Sumudu transform of fractional order can be defined as follows

\[S\alpha_\mathbb{S}(f(x)) := G\alpha(u) := \int_0^\infty E\alpha(−x^\alpha)f(ux)(dx)^\alpha, \]

\[:= \lim_{M \to \infty} \int_0^M E\alpha(−x^\alpha)f(ux)(dx)^\alpha, \quad u \in \mathbb{C}. \]

Theorem 2.6 If the fractional Sumudu transform of a function \(f(x) \) is \(S\alpha_\mathbb{S}(f(x)) = G\alpha(u) \), and the fractional Natural transform of the same function is \(N^\alpha_\mathbb{R}(f(x)) = R\alpha_\mathbb{R}(s, u) \), then

\[N^\alpha_\mathbb{R}(f(x)) = \frac{1}{s^\alpha} G\alpha\left(\frac{u}{s}\right). \]

Proof

\[N^\alpha_\mathbb{R}(f(x)) = \int_0^\infty E\alpha(−s^\alpha)x^\alpha f(ux)(dx)^\alpha \]

\[= \lim_{M \to \infty} \int_0^M E\alpha(−s^\alpha)x^\alpha f(ux)(dx)^\alpha \]

\[= \lim_{M \to \infty} \alpha \int_0^M (M - x)^{\alpha-1} E\alpha(−s^\alpha)x^\alpha f(ux) \, dx \]

Taking the change of the variable \(v \to sx \) into account, then we have

\[\frac{1}{s^\alpha} \lim_{v \to 0} \int_0^{s^\alpha v} (M - v)^{\alpha-1} E\alpha(−v^\alpha)x^\alpha f(v)(dv)^\alpha \]

Remark 2.4 The same result is obtained (see Theorem 2.2 in 2012b) when \(\alpha = 1 \) in the above theorem.
THEOREM 2.7 Let \(f(x) \) be a fractional differentiable function; then,

\[
N^\alpha_s (f^{(\alpha)}(x)) = \frac{s^{\alpha N^\alpha_s (f(x))} - \Gamma(1 + \alpha) f(0)}{\Gamma(\alpha)}, \quad 0 < \alpha \leq 1.
\]

Proof Using the Laplace–Natural duality formula and fractional integration by parts which is presented in Jumarie (2009a), then we get

\[
N^\alpha_s (f^{(\alpha)}(x)) = \frac{1}{u^\alpha} F_s \left(\frac{S}{u} \right) = \frac{1}{\Gamma(\alpha)} \int_0^\infty E_s \left(\frac{-s^\alpha x^\alpha}{u^\alpha} \right) f^{(\alpha)}(x) (dx)^\alpha
\]

\[
= \frac{1}{\Gamma(\alpha)} \int_0^\infty \frac{-a^\alpha f(0) + \left(\frac{s}{u} \right)^\alpha F_s \left(\frac{s}{u} \right)}{s^\alpha} (dx)^\alpha
\]

\[
= \frac{s^\alpha N^\alpha_s (f(x)) - \Gamma(1 + \alpha) f(0)}{\Gamma(\alpha)}.
\]

2.4. The convolution theorem of \(N^\alpha_s \)

THEOREM 2.8 The fractional convolution of order \(\alpha \) of the functions \(f(y), g(y) \) can be defined by the equality

\[
(f(y) * g(y))_s = \int_0^s f(y - u) g(u) (du)^\alpha;
\]

then, we have the expression

\[
N^\alpha_s \left((f(y) * g(y))_s \right) = u^\alpha F_s (s, u) G_s (s, u),
\]

where \(F_s (s, u) \) and \(G_s (s, u) \) are fractional Natural transforms of the functions \(f(y) \) and \(g(y) \), respectively.

Proof Using the fractional Laplace–Natural duality form in Theorem 2.4, we get

\[
N^\alpha_s \left((f(y) * g(y))_s \right) = \frac{1}{u^\alpha} \mathcal{L}_s \left((f(y) * g(y))_s \right)
\]

\[
= \frac{1}{u^\alpha} \mathcal{L}_s (f(y)) \mathcal{L}_s (g(y))
\]

\[
= u^\alpha F_s (s, u) G_s (s, u),
\]

where \(\mathcal{L}_s \left((f(y) * g(y))_s \right) = \mathcal{L}_s (f(y)) \mathcal{L}_s (g(y)) \).

Remark 2.9 The above result is appropriate with Theorem (4.6) in Belgacem and Silambarasan (2012b) when \(\alpha = 1 \).

Proposition 2.10 For convenience, we recall here the fractional Natural transform that is given in Definition 2.1 as

\[
N^\alpha_s (f(x)) := R^\alpha_s (s, u) = \int_0^s E_s (-s^\alpha x^\alpha) f(x) (dx)^\alpha.
\]

one has the inversion formula

\[
f(x) = \frac{1}{M_\alpha} \int_{-\infty}^\infty E_s \left(\frac{s^\alpha x^\alpha}{s^\alpha} \right) N^\alpha_s f(x) (ds)^\alpha,
\]

where \(M_\alpha \) is the period of the complex-valued Mittag–Leffler function defined by the equality \(E_s (i(M_\alpha)) = 1 \).

2.5. Some applications of Natural transform of order \(\alpha \)

In this part, we apply fractional Natural transform of order \(\alpha \) on different types of functions as the following examples
Example 2.5 Let \(f(x) = x^n, \ n \in \mathbb{N}; \) then,

\[
\mathbb{N}^+_u \{x^n\} = \int_0^\infty E_u(-s^x x^n (ux)^n (dx))^n = u^n \int_0^\infty E_u(-s^x x^n (dx))^n
\]

We put \(t = xs; \) thus, we obtain

\[
\begin{align*}
&= \frac{u^n}{s^{n+1}} \int_0^\infty E_s(-t^n t^n (dt)^n), \\
&= (a^n) u^{n+1} \Gamma_u(n + 1),
\end{align*}
\]

where \(\Gamma_u(n): = \frac{1}{a^n} \int_0^\infty E_u(-x^n x^n (dx))^n \) (see Jumarie, 2009b, 2010).

Example 2.6 Let \(f(x) = 1; \) then, \(\mathbb{N}^+_u \{1\} = \frac{1}{a^n}. \)

Example 2.7 Let \(f(x) = E_u(a^n x^n); \) then, \(\mathbb{N}^+_u \{E_u(a^n x^n)\} = \frac{1}{a^n (s - au)}. \)

Example 2.8 Let \(f(x) = \frac{x^{n-1}}{\Gamma_u(n)}; \ n > 0; \) then,

\[
\mathbb{N}^+_u \left\{ \frac{x^{n-1}}{\Gamma_u(n)} \right\} = \frac{a^n u^{n-1}}{s^{n-1}}.
\]

Example 2.9 Let \(f(x) = E_u(a^n x^n) \frac{x^{n-1}}{\Gamma_u(n)}; \ n > 0; \) then,

\[
\mathbb{N}^+_u \left\{ E_u(a^n x^n) \frac{x^{n-1}}{\Gamma_u(n)} \right\} = \frac{a^n u^{n-1}}{s^{n-1}}.
\]

In particular case when \((\alpha = 1, a = \frac{1}{2}, \alpha = \frac{1}{3}, a = \frac{1}{4}) \) see Table below:

\(a\)	\(\mathbb{N}^+_u \{1\}\)	\(\mathbb{N}^+_u \{E_u(a^n x^n)\}\)	\(\mathbb{N}^+_u \{\frac{x^{n-1}}{\Gamma_u(n)}\}\)	\(\mathbb{N}^+_u \left\{ E_u(a^n x^n) \frac{x^{n-1}}{\Gamma_u(n)} \right\}\)
\(\frac{1}{2}\)	\(\frac{1}{2}\)	\(\frac{1}{1 - au} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)
\(\frac{1}{3}\)	\(\frac{1}{3}\)	\(\frac{1}{1 - au} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)
\(\frac{1}{4}\)	\(\frac{1}{4}\)	\(\frac{1}{1 - au} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)
\(1\)	\(1\)	\(\frac{1}{1 - au} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)	\(\frac{1}{a^n (s - au)} \frac{1}{\Gamma_u}\)

Acknowledgements
The authors would like to thank the referees as well as the editor for useful suggestions which help to improve the current manuscript.

Funding
The authors received no direct funding for this research.

Author details
Maryam Omran\(^1\)
E-mail: maryamomran83@yahoo.com
Adem Kiliçman\(^2\)
E-mail: alili@upm.edu.my
\(^1\) Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
\(^2\) Department of Mathematics, Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

Citation information
Cite this article as: Natural transform of fractional order and some properties, Maryam Omran & Adem Kiliçman, Cogent Mathematics (2016), 3: 1251874.

References
Almeida, R., Malinowska, A. B., & Torres, D. F. M. (2010). A fractional calculus of variations for multiple integrals with application to vibrating string. Journal of Mathematical Physics, 51(3), 1–12, Article ID: 033503.
Al-Omari, S. K. Q. (2013). On the application of natural transforms. International Journal of Pure and Applied Mathematics, 84, 729–744.
Belgacem, F. B. M., & Silambarasan, R. (2012a). Advances in the theoretical investigations of the natural transform. Progress In Electromagnetics Research Symposium Proceedings (pp. 12–16). Suzhou.
Belgacem, F. B. M., & Silambarasan, R. (2012b). Theory of natural transform. Mathematics In Engineering Science and Aerospace, 3, 105–135.
Belgacem, F. B. M., & Silambarasan, R. (2012c). Maxwell’s equations solutions through the natural transform. Mathematics in Engineering, Science and Aerospace, 3, 313–323.
Gupta, V. G., Shrama, B., & Kiliçman, A. (2010). A note on fractional Sumudu transform. Journal of Applied Mathematics, 2010, Article ID: 154189.
Hilfer, R. (2000). Fractional time evolution. In R. Hilfer (Ed.), *Applications of fractional calculus in physics* (pp. 87–130). Singapore: World Scientific.

Jumarie, G. (2006). Modified Riemann–Liouville derivative and fractional Taylor series of non-differentiable functions further results. *Computers & Mathematics with Application*, 51, 1367–1376.

Jumarie, G. (2009a). Laplace’s transform of fractional order via the Mittag–Leffler function and modified Riemann–Liouville derivative. *Applied Mathematics Letters*, 22, 1659–1664.

Jumarie, G. (2009b). Table of some basic fractional calculus formulæ derived from a modified Riemann–Liouville derivative for non-differentiable functions. *Applied Mathematics Letters*, 22, 378–385.

Jumarie, G. (2010). Fractional Euler’s integral of first and second kinds. Application to fractional Hermite’s polynomials and to probability density of fractional orders. *Journal of Applied Mathematics and Informatics*, 28, 257–273.

Khan, Z. H., & Khan, W. A. (2008). N-transform-properties and applications. *NUST Journal of Engineering Sciences*, 1, 127–133.

Kober, H. (1940). On fractional integrals and derivatives. *Quarterly Journal of Mathematics*, 11, 193–215.

Miller, K. S., & Ross, B. (1973). An introduction to the fractional calculus and fractional differential equations. New York, NY: Wiley.

Oldham, K. B., & Spanier, J. (1974). The fractional calculus. Theory and application of differentiation and integration to arbitrary order. New York, NY: Academic Press.

Osler, T. J. (1971). Taylor’s series generalized for fractional derivatives and applications. *SIAM Journal on Mathematical Analysis*, 2, 37–47.

Podlubny, I. (1999). Fractional differential equations. San Diego, CA: Academic Press.

Ross, B. (1978). Fractional calculus and its applications. In *Lecture notes in mathematics* (Vol. 457). Berlin: Springer.

Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1987). *Fractional integrals and derivatives. Theory and applications*. London: Gordon and Breach Science Publishers.

Shaher, M., & Odibat, Z. M. (2007). Fractional Green function for linear time-fractional inhomogeneous partial differential equations fluid mechanics. *Journal of Applied Mathematics and Computing*, 24, 67–178.

Silambarasan, R., & Belgacem, F. B. M. (2011, September). Applications of the natural transform to Maxwell’s equations. In *Progress in Electromagnetics Research Symposium Proceedings* (pp. 12–16). Suzhou.