Gravitational wave and collider probes of a triplet Higgs sector with a low cutoff

Mikael Chala1, Maria Ramos2,a, Michael Spannowsky1

1 Institute of Particle Physics Phenomenology, Physics Department, Durham University, Durham DH1 3LE, UK
2 Laboratório de Instrumentação e Física Experimental de Partículas, Departamento de Física da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Received: 13 December 2018 / Accepted: 4 February 2019
© The Author(s) 2019

Abstract We study the scalar triplet extension of the standard model with a low cutoff, preventing large corrections to the quadratic masses that would otherwise worsen the hierarchy problem. We explore the reach of LISA to test the parameter space region of the scalar potential (not yet excluded by Higgs to diphoton measurements) in which the electroweak phase transition is strongly first-order and produces sizeable gravitational waves. We also demonstrate that the collider phenomenology of the model is drastically different from its renormalizable counterpart. We study the reach of the LHC in ongoing searches and project bounds for the HL-LHC. Likewise, we develop a dedicated analysis to test the key but still unexplored signature of pair-production of charged scalars decaying to third-generation quarks: \(pp \rightarrow t\bar{t}(\bar{t}b), b\bar{b} \). These results apply straightforwardly to other extensions of the Higgs sector such as the 2HDM/MSSM.

1 Introduction

Hyperchargeless triplet scalars \(\Phi \) arise in a variety of models of new physics. They include

(i) theories of grand unification (GUT), where scalar multiplets, often transforming in the adjoint representation of the GUT group, break spontaneously the GUT symmetry. A simple example is the 24 in \(SU(5) \), which decomposes as \((1, 1)_0 + (1, 3)_0 + \cdots \) under the Standard Model (SM) gauge group \(SU(3)_c \times SU(2)_L \times U(1)_Y \), therefore delivering a scalar triplet. Likewise, the 45 representation of \(SO(10) \) contains the 24 of \(SU(5) \) and therefore a SM triplet as well.

(ii) Supersymmetric (SUSY) models. As a matter of fact, the triplet extension of the MSSM is one of the simplest options to alleviate the little hierarchy problem \cite{1,2}.

(iii) Composite Higgs models (CHM). The scalar sector of most CHMs is non minimal. It includes a hyperchargeless triplet in one of the two simplest cosets admitting an UV completion à la QCD in four dimensions, \(\text{viz.} \ SU(5)/SO(5) \) \cite{3,4}. Moreover, models based on \(SO(7)/G_2 \) \cite{5} provide exactly one triplet in addition to the Higgs boson.

Therefore, the phenomenology of such triplet is not dictated by the renormalizable Lagrangian. The latter has to be instead supplemented with effective operators encoding the effects of the heavier resonances (SUSY partners, composite states, etc.), which can modify drastically the dynamics of \(\Phi \). To demonstrate this, we will work under the assumption that the triplet does not get a (custodial symmetry breaking) vacuum expectation value (VEV). This limit can be naturally enforced assuming the triplet is a CP-odd scalar and CP is conserved in the Higgs sector. At the renormalizable level, the Lagrangian becomes accidentally \(Z_2 \) symmetric,
i.e. $\Phi \to -\Phi$, making the neutral component of the triplet a potential dark matter candidate. The charged components are in turn long-lived. The corresponding phenomenology has been studied in Refs. [6–8]. However, the effective operators make all components decay promptly even if the cutoff is $f \sim$ several TeV at which new resonances are out of the reach of current facilities. A much larger cutoff would introduce too large corrections also to the triplet mass, worsening the hierarchy problem.\(^1\) In this article, we study probes of current and future colliders to this more natural version of the inert triplet model (ITM).

The extended Higgs sector modifies also the electroweak (EW) phase transition (EWPT). Thus, we extend previous studies in this respect \([10,11]\) computing the reach of future facilities for probing the (EW) phase transition (EWPT). We will comment on departures from this assumption in the conclusions. The relevant parameter is therefore the ratio c/f. The product $\hat{H}\Phi$ ($\hat{H} \Phi$) stands for the doublet in the $SU(2)_L \times U(1)_Y$ decomposition $2_{-1/2} \times 3_0 = 2_{-1/2} + 4_{-1/2}$. Explicitly:

\[
\tilde{H}\Phi = \begin{pmatrix} \phi_0 h^0_h - \sqrt{2}\phi^+ h^- \\ \phi_0 h^- - \sqrt{2}\phi^- h^0_h \end{pmatrix}.
\]

1 (The fine-tuning scales roughly as $\Delta \sim m_\phi^2/f^2$, with m_ϕ the Higgs mass \([9]\). $f = 1 \text{ TeV}$ gives already $\Delta \sim 1\%$, and this falls below the permille level for $f > 4 \text{ TeV}$.)

\[
L \sim \frac{v^2}{\sqrt{2}} f \left\{ i y^i \phi_0 \gamma_5 \partial_t - i y^b \phi_0 \gamma_5 b \right\} \left\{ - \sqrt{2} \phi^- \theta (y^l P_R + y^b P_L) t + \text{h.c.} \right\},
\]

with $v \sim 246 \text{ GeV}$ and the sum extends to the first and second families of quarks, that we will denote collectively by q. Couplings to the leptons could be also present. We neglect them in this analysis.

$\phi^{0(\pm)}$ can decay into SM quarks. Likewise, for $m_t > m_\phi$, the top quark can decay into the triplet and a bottom quark. (m_t stands for the top quark mass, whereas m_ϕ is the physical mass of Φ; at tree level $m_\phi^2 = \mu_\phi^2 + \lambda_\Phi v^2/2$.) The following relations hold:

\[
\begin{align*}
\Gamma (\phi_0 \to q \bar{q}) &= \frac{3 y_q^2 v^2 c^2}{16 \pi f^2 m_\phi} \left[1 - \frac{4 m_q^2}{m_\phi^2} \right], \\
\Gamma (\phi^0 \to q \bar{q}) &= \frac{3 (y_q^2 + y_q^2) v^2 c^2}{16 \pi f^2 m_\phi} \left[1 - \frac{m_q^2}{m_\phi^2} \right]^2, \\
\Gamma (t \to \phi^+ b) &= \frac{3 y_q^2 v^2 c^2}{32 \pi f^2 m_t} \left[1 - \frac{m_\phi^2}{m_t^2} \right].
\end{align*}
\]

In the second equation we are assuming $m_q \gg m_\phi$, which is normally the case if the former is an up quark and the latter a down quark. Note that decays into the light quarks are dominant if channels involving the top quark are kinematically closed. Partial widths as a function of m_ϕ are depicted in Fig. 1.

Note also that, had we assumed a CP violating trilinear term in the potential, $\sim \kappa \Phi H^2$, this term would induce a VEV for the triplet, $v' \sim \kappa v^2/m_\phi^2$. The triplet could also

\[
\begin{align*}
\phi_0 \to t \bar{t}, \\
\phi^0 \to t \bar{t}, \\
\phi^0 \to t \bar{t}.
\end{align*}
\]
decay into the Higgs degrees of freedom, the corresponding width scaling as \(\Gamma \sim (v'/v) m_{\Phi}^2 \). Given that \(v' \) modifies the \(\rho \) parameter, it is bounded to be \(v' \lesssim 50 \) GeV [12]. Therefore, the corresponding decay would still be subdominant with respect to those suppressed by \(v/f \) even for \(f \sim 10 \) TeV.

This setup can be easily accommodated in a SUSY framework. The minimal model consists of the MSSM extended with a supermultiplet \(\Sigma \) with quantum numbers ((1, 3)_6); see Ref. [13]. The most general and renormalizable superpotential is the MSSM superpotential extended by

The new scalar potential modifies the EWPT, which in the SM is a cross over. In the region of the parameter space where it is first order and strong, gravitational waves can be produced via nucleation and eventual collision of bubbles of symmetry-breaking vacuum. In order to explore this phenomenology, we study the evolution of the one-loop effective potential at finite temperature:

\[
V = V_{\text{tree}} + \Delta V_{\text{CW}} + \Delta V_T + C. \tag{14}
\]

C is a constant fixed so that \(V \) vanishes at the origin of the field space. \(V_{\text{tree}} \) stands for the tree-level potential. \(V_{\text{CW}} \) is the one-loop correction at zero temperature in \(\overline{\text{MS}} \) and Landau gauge, namely

\[
\Delta V_{\text{CW}} = \frac{1}{64\pi^2} \sum_i (\pm)n_i m_i^4 \left[\log \frac{m_i^2}{v^2} - c_i \right]. \tag{15}
\]

where \(i \) runs over all bosons (+) and fermions (−). The factor \(n_i \) denotes de number of degrees of freedom of the field \(i \), while \(c_i \) is 5/6 for gauge bosons and 3/2 otherwise. The field-dependent masses squared of the spectator fields are

\[
m_W^2 = \frac{1}{4} s_{\theta}^2 (h^2 + 4 \Phi_0^2), \tag{16}
\]

\[
m_Z^2 = \frac{1}{4} (g^2 + g^2) h^2. \tag{17}
\]
is determined by the condition

\[\frac{dV}{dh} = 0, \quad \frac{d^2V}{dh^2} = m_h^2, \quad \frac{d^2V}{d\phi_0^2} = m_\phi^2. \]

At tree level, (v, 0) is guaranteed to be an extreme provided \(\lambda_\phi, \lambda_{H\Phi} > 0 \) and \(\mu_\phi^2 > -1/2v^2\lambda_{H\Phi} \). A comparison between tree and loop level values of \(\mu_H, \mu_\phi \) and \(\lambda_H \) in a set of benchmark inputs can be seen in Table 1.

At high temperatures, the EW symmetry is restored. For certain values of the model parameters, the transition between (h) = 0 → (h) = v_0 is not smooth as in the SM, but rather first order. One example is given in Fig. 3. In this case, the EWPT proceeds in two steps. An example of a first-order EWPT in one step is shown in Fig. 4. We will denote by \(T_n \) the nucleation temperature, namely the temperature at which the Higgs first order phase transition takes place. This is determined by the condition \(S_3/T_n \sim 100 \), where \(S_3 \) stands for the action of the thermal transition between vacua [16, 17].

In the region enclosed by the dashed green line in the plane (\(\lambda_{H\Phi}, m_\phi \)) of Fig. 5, \(v_n/T_n > 1 \); i.e., the phase transition is said to be strong. The nature of the strongest phase transition (one or two steps) is also labelled. The way we performed the scan is as follows: We varied \(m_\phi \) in the range [100, 500] GeV in steps of 20 GeV. We varied \(\lambda_{H\Phi} \) in the range [0.1, 10] in steps of 0.1. For each pair \((m_\phi, \lambda_{H\Phi}) \), we found the value of \(\lambda_\phi \) in [0.1, 0.3, . . . , 10] maximizing \(v_n/T_n \). The points with

Table 1 Comparison of tree-level obtained parameters (0) versus the ones computed at one loop for different values of the three inputs

\(m_\phi \)	\(\lambda_{H\Phi} \)	\(\lambda_\phi \)	\((\mu_H^2)^0 \)	\((\mu_\phi^2)^0 \)	\(\lambda_H^0 \)	\(\mu_H^2 \)	\(\mu_\phi^2 \)	\(\lambda_H \)
120	1.1	1.1	7812.5	-18883.8at	0.13	9050.9	-16600.6	0.127
200	2.0	1.0	7812.5	-20516.0	0.13	8284.1	-17069.8	0.125
320	3.5	1.5	7812.5	-3503.0	0.13	5443.6	129.3	0.086
400	4.3	0.1	7812.5	29890.6	0.13	3583.3	29765.1	0.032
460	4.9	0.1	7812.5	63335.8	0.13	2693.4	61181.1	-0.024

\[m_{G_{0,\pm}}^2 = -\frac{\mu_H^2}{2} + \lambda_H h^2 + \frac{1}{2} \lambda_{H\Phi} \phi_0^2, \]

\[m_{\phi^0}^2 = \mu_\phi^2 + \frac{1}{2} \lambda_{H\Phi} \phi_0^2, \]

\[m_\pi^2 = \frac{1}{2} y_\pi^2 h^2. \]

In addition, we have two more field dependent masses squared, \(m_t^2 \) and \(m_\phi^2 \), given by the eigenvalues of the mixing matrix

\[\mathcal{M}^2 = \begin{pmatrix} -\mu_H^2 + 3 \lambda_{H\Phi} h^2 + \frac{1}{2} \lambda_{H\Phi} \phi_0^2 & \frac{\lambda_{H\Phi} \phi h_0}{\lambda_{H\Phi} \phi_0} \\ \frac{\lambda_{H\Phi} \phi h_0}{\lambda_{H\Phi} \phi_0} & \mu_\phi^2 + 3 \lambda_{H\Phi} \phi_0^2 + \frac{1}{2} \lambda_{H\Phi} h^2 \end{pmatrix}. \]

Finally, the finite temperature corrections read

\[\Delta V_T = \frac{T^4}{2\pi^2} \sum_i (\pm) m_i \int_0^\infty y^2 \log \left[1 - e^{-\frac{m_i^2 + y^2}{T}} \right]. \]

As input parameters, we take \(m_\phi, \lambda_{H\Phi} \) and \(\lambda_\phi \). The remaining three parameters in the tree level potential are numerically obtained after requiring \(\delta V_{\text{tree}} + \Delta V_{\text{CW}} \) to have a extreme at \((h) = v, \langle \phi_0 \rangle = 0 \), at which the physical Higgs and \(\phi \) masses are \(m_h \sim 125 \) GeV and \(m_\phi \), respectively. In other words:

\[\frac{dV}{dh} = 0, \quad \frac{d^2V}{dh^2} = m_h^2, \quad \frac{d^2V}{d\phi_0^2} = m_\phi^2. \]
The smallest value of $\lambda_{H\Phi}$ are interpolated using straight lines. Likewise for those with largest value of this coupling. The resulting lines are further smoothed according to the bezier method using Gnuplot.

Note that at $T > 0$, the triplet squared term reads $\mu_2^2 + T^2$, which cannot be negative for any value of $\mu_2^2 > 0$. Therefore, the 2-step EWPT can only occur if the triplet minimum is present at $T = 0$. Moreover, for a fixed m_Φ, there is a minimum $\lambda_{H\Phi}$ below which μ_2^2 is not negative. Likewise, there is a maximum value of the coupling above which the potential at the triplet minimum, $V(0, \langle \phi_0 \rangle) \sim -|\mu_2|^4/\lambda_{H\Phi}$, is deeper than the Higgs one, the theory being therefore unstable. Altogether, they explain the bounded shape of the figure above.

It is also well known that strong first order phase transition, resulting from non-standard Higgs sectors, produce gravitational waves [18–47]. They are roughly characterized by the normalized latent heat of the phase transition

$$\alpha \sim \frac{\epsilon(T_n)}{\frac{3574}{\lambda_{H\Phi}}},$$

(with $\epsilon(T_n)$ the latent heat at T_n), and by the inverse duration time of the phase transition,

$$\frac{\beta}{H} \sim T_n \frac{d}{dT} \frac{S_3}{T} \sim T_n \frac{\Delta(S_3/T)}{\Delta T}.$$

We computed these quantities using CosmoTransitions [48]. $\Delta(S_3/T)$ is estimated finding the two values of T for which $S_3/T = 100, 200$ GeV, respectively. (Therefore, $\Delta(S_3/T) = 100$ GeV.) We warn that, due to the rapid growth of S_3/T with T, the linear estimation of the derivative can be sensibly overestimated. Given that small values of β/H give rise to stronger gravitational waves, our results are conservative. The region of the parameter space that we estimate it can be tested by the future gravitational wave observatory LISA lies above the dotted green line in Fig. 5. The points in this are lead to α, β within the region “C1” of Ref. [21] for $T_n = 100$ GeV. (The bubble velocity is close to unity in good approximation. Also, we have neglected the effect that sound waves might be not “long-lasting”, what could weaken the gravitational wave signal [49].)

Large values of $\lambda_{H\Phi}$ can be also probed in the $h \rightarrow \gamma \gamma$ channel. Indeed, the width of the later in this case reads

$$\Gamma(h \rightarrow \gamma \gamma) = \frac{\alpha^2 m_h^3}{1024 \pi^3} \left\{ \frac{2}{v} \left[A_1(\tau) + \frac{4}{3} A_{1/2}(\tau) \right] + \frac{\lambda_{H\Phi}}{m_\Phi^2} A_0(\tau) \right\}^2,$$

with α the electromagnetic constant and $\tau = 4m_h^2/m_\Phi^2$.

The last ATLAS+CMS combined measurement of the Higgs decay into photons was provided in Ref. [50], $\Gamma(h \rightarrow \gamma \gamma)/\Gamma(h \rightarrow \gamma \gamma)_{SM} = 1.14_{-0.18}^{+0.19}$. The region in the plane $(m_\Phi, \lambda_{H\Phi})$ that is consequently excluded at the 95 % CL is enclosed by the solid orange line in Fig. 5. The expectation at the HL-LHC is that ratios outside the range 1.0 ± 0.1 will be excluded [51]. The corresponding region is enclosed by the dashed orange line. It is clear that, if departures from the SM prediction on the Higgs to diphoton rate are not observed, only one-step EWPT (i.e. single peak signatures) could be detected by LISA.

Finally, let us very briefly comment on the possibility of EW baryogenesis [52–55]. In our scenario, CP is violated spontaneously during the second transition in the two-step case, when both h and ϕ_0 change VEV and therefore the top mass acquires a CP violating phase. In related models [56] (see also Refs. [32,57,58]), EW baryogenesis has been shown successful provided $c \Delta v/f \gtrsim 0.1$, with Δv the change in VEV during the EWPT. In our case, Δv can be easily $\gtrsim 100$ GeV (see Fig. 3) and therefore $c \Delta v/f \gtrsim 0.1$ for $c/f \sim 1$ TeV$^{-1}$.

A small explicit CP violating potential $\Delta V/T_n^4 \gg H/T_n \sim 10^{-16}$, with the Hubble scale H, is only needed to avoid domain wall problems [56]. In our setup, this can be triggered by a small CP-violating term in the potential, $\sim \kappa \Phi H^2$. At leading order in κ, it reflects in the (finite-temperature) potential as $V \sim \kappa T^3/(4\pi)^2$. Avoiding domain walls then implies $\kappa \gtrsim 10^{-12}$ GeV.

Let us show that this amount of CP violation evades easily neutron and electron dipole moment (EDM) constraints. Indeed, the neutron EDM arises mainly from the neutron EDM [59]

$$\frac{|d_n|}{e} \sim 20 \text{ MeV} \frac{g_3^3}{(4\pi)^2} \frac{\gamma^2 v^2}{m_n^2 m_\Phi^2} \frac{c_k}{f} m_h^2/m_n^2.$$

\bibitem{59}
with g_3 the QCD coupling at the scale ~ 1 GeV, and

$$h(z) = z^2 \int_0^1 dx \int_0^1 dy \frac{x^3 y^3 (1-x)}{[(xy(1-y))(1-x)(1-y)]^2}.$$ \hfill (28)

For the values of κ/f and κ stated previously we obtain $|d_\alpha| \sim 10^{-38}$ e cm, much smaller than the current 90% CL bound 2.9×10^{-26} e cm [60].

An electron EDM will be generated mainly via two-loop diagrams as that depicted in the left panel of Fig. 6. Using the expressions of Ref. [61], we find that the value of the electron EDM in our case reads

$$d_e \sim \frac{\alpha^2 c}{6\pi^3 m_t f} \frac{\kappa_{\phi}}{m_\phi^2} \left[f(m_t^2/m_H^2) + g(m_t^2/m_h^2) \right],$$ \hfill (29)

with

$$f(z) = \frac{1}{2} \int_0^1 \frac{1 - 2x(1-x)}{x(1-x) - z} \log \frac{x(1-x)}{z} dx,$$ \hfill (30)

$$g(z) = \frac{1}{2} \int_0^1 \frac{1}{x(1-x) - z} \log \frac{x(1-x)}{z} dx.$$ \hfill (31)

We obtain $|d_\alpha| \sim 10^{-42}$ e cm, much smaller than the latest measurement by ACME [62], $d < 1.1 \times 10^{-29}$ e cm.

Regarding κ/f, more stringent bounds could be set at colliders. We dedicate next section to this point.

4 Collider signatures

The scalar triplet can be produced at pp colliders in a variety of ways; see Fig. 7. The corresponding cross sections at $\sqrt{s} = 8, 13$ TeV are given in Fig. 8. For completeness, we also provide numbers for 27 and 100 TeV center-of-mass energy.

The triplet can be singly produced in $q\bar{q}$ initiated processes. The Yukawa suppression, together with the $1/f$ factor, makes the production cross section in this channel very small, though. Still, ϕ_0 can be singly produced in gluon fusion. In the regime $m_\phi < 2m_t$, the most constraining searches are those looking for single production of $b\bar{b}$ resonances. The most up-to-date such analysis was recently released by CMS; see Ref. [66]. It is based on 35.9 fb$^{-1}$ of integrated luminosity collected at $\sqrt{s} = 13$ TeV. The region of the plane $(m_\phi, c/f)$ that is excluded by this analysis is enclosed by the solid blue line in Fig. 9. It is expected that they become a factor of $\sqrt{3} m_t/35.9$ stronger at the HL-LHC. The projected bound on the plane is enclosed by the dashed blue line in the same figure. For $m_\phi > m_t$, most decay into $t\bar{t}$. There are however no resonant searches for invariant masses below 500 GeV, neither at $\sqrt{s} = 8$ TeV nor $\sqrt{s} = 13$ TeV.

Moreover, the scalar triplet can be produced in association with top and bottom quarks, namely $pp \rightarrow \phi^+ b\bar{b}$. For $m_\phi > m_t$, the most updated and constraining search is the ATLAS study of Ref. [67], which uses 36.1 fb$^{-1}$ of LHC data collected at 13 TeV. It combines both the semi- and di-leptonic channels. The limits on $\sigma(pp \rightarrow t_b \phi^+) \times B(\phi^+ \rightarrow tb)$ translate into the bounded region delimited by the green solid line in Fig. 9. A naive rescaling with the luminosity enhancement suggests that cross sections a factor of ~ 0.1 smaller can be tested at the HL-LHC. Translated to the plane $(m_\phi, c/f)$, the corresponding bound is given by the region enclosed by the dashed line of the same colour.

In addition, for $m_t > m_\phi$, the triplet can also be produced in the decay of the top quark. Current searches for $t\bar{t}$ production with $t \rightarrow \phi^+ b, \phi^+ \rightarrow jj$ have been carried out in CMS at $\sqrt{s} = 8$ TeV with an integrated luminosity of $L = 19.7$ fb$^{-1}$ [65]. This latter reference sets an upper bound on this rare top decay of $B(t \rightarrow \phi^+ b, \phi^+ \rightarrow jj) < 1\%$ for $m_\phi \sim 90–160$ GeV. Using Eq. 5, this constraint translates into the region enclosed by the solid red line in Fig. 9. The projected bound at the HL-LHC is depicted, too.

Finally, irrespectively of the value of c/f, the scalar triplets can be always pair-produced via EW charged currents (CC), $pp \rightarrow W^{\pm(*)} \rightarrow \phi^+ \phi_0$, as well as via neutral currents (NC), $pp \rightarrow Z/\gamma \rightarrow \phi^\pm \phi^-$. (Note that ϕ_0 does not interact with the Z boson and therefore it can not be pair-produced via NCs.) For $m_\phi < m_t$, the new charged and neutral scalars decay mainly into $q\bar{q}$ and $b\bar{b}$, respectively. Searches for pair-produced dijet resonances might therefore be sensitive to this regime. The most constraining such search is the CMS analysis presented in Ref. [68]. At this mass scale, each pair of quarks is very collimated and manifests as a single jet. The experimental analysis uses boosted techniques, including jet grooming to remove QCD radiation. The analysis considers $L = 35.9$ fb$^{-1}$ at 13 TeV of c.m.e. The current limits on the total cross section range from ~ 170 pb (100 GeV) to ~ 20 pb (170 GeV). Therefore, the parameter space of our model is not constrained. Furthermore, a naive rescaling with the larger luminosity shows that this analysis will not be even constraining at the HL-LHC.

For $m_t < m_\phi < 2m_t$, the NC process gives rise to the final state $t\bar{t}, t\bar{b}$. The latest analysis exploring this channel for masses below 500 GeV was performed by CMS at $\sqrt{s} = 8$
Fig. 7 Representative diagrams of the main Φ production mechanisms at pp colliders. Left) Pair production via EW currents. Middle-left) Single production via gluon fusion. Middle-right) Production in association with $t\bar{b}$ ($\bar{t}b$). Right) Production from the decay of a top quark

Fig. 8 Cross section of the different production modes for Φ at pp colliders of different c.m.e. The coupling c/f is set to 1 TeV$^{-1}$. The production cross section of ϕ_0 via gluon fusion was rescaled from Ref. [63], at $\sqrt{s} = 13$ TeV. To obtain the cross sections for other c.m.e., we have computed the corresponding ratio in MadGraph, by using the Higgs EFT of the ggHFullLoop model. This ratio turns out to be a good approximation of the ratio in the full theory; see Ref. [64].

TeV; see Ref. [69]. Unfortunately, the corresponding limits range from ~ 2.5 pb (250 GeV) to ~ 0.5 pb (500 GeV). No region in our parameter space can be even constrained at the HL-LHC. Likewise, the CC gives $t\bar{b}(\bar{t}b), b\bar{b}$. To the best of our knowledge, there is however no dedicated search for pair produced resonances decaying to these final states. Being this channel c/f independent, we perform a signal and background simulation of this process in Sect. 5.

For $m_\Phi > 2m_t$, the NCs still give resonant $t\bar{b}, \bar{t}b$. The CC channel instead results in $t\bar{t}, \bar{t}b(b\bar{t})$. Once more, no dedicated analysis exists for this final state. (The lack of analyses sensitivity to similar final states has been also recently pointed out in Ref. [70] in the context of composite dark sectors.) However, in comparison to this one, the $t\bar{b}(\bar{t}b), b\bar{b}$ analysis is much cleaner. Furthermore, it probes the mass range where the 2-step EWPT, and therefore EW baryogenesis, can occur.

5 LHC sensitivity

EW pair production of $t\bar{b}(\bar{t}b), b\bar{b}$ resonances occurs naturally in broadly-studied models, such as the 2HDM. Moreover, the
cross section is independent of scalar to fermion couplings, provided the former decay promptly. It is therefore surprising that no experimental search has explored this channel at the LHC yet.

A plausible explanation is that the majority of these analyses are based on the 2HDM of the MSSM. In that case, one Higgs doublet gives mass to the up fermions, while the second gives mass to the down fermions. The physical charged components then couple to the top and bottom quarks with effective $c/f \sim (y_t \cot \beta + y_b \tan \beta)/v$, with $\tan \beta$ the ratio of the two doublet VEVs. Therefore, $c/f \gtrsim 2 \sqrt{y_t y_b}/v \sim 1$ TeV$^{-1}$, the inequality being saturated at $\tan \beta = \sqrt{y_t/y_b} \sim 1.3$. As it can be seen in Fig. 9, this value is at the reach of $b\bar{b}$ resonant searches. Therefore, there is a priori no need for further analyses. The situation in our model and in other versions of the 2HDM is very different, though, because the coupling of the new scalars to the SM fermions can be (and typically is) very small. In the composite Higgs scenario, the effective scalar-fermion coupling can also be small, i.e. $c/f \lesssim 1$ TeV$^{-1}$, according to Eq. 13 for natural values of $0 \leq \gamma \leq 1$.

With the aim of filling this gap, we perform a dedicated analysis for the process $pp \rightarrow \phi \pm \phi_0 \rightarrow t\bar{b}(\bar{t}b), b\bar{b}$. We generate the hard processes for signal and background using MadGraph v5 [71] and shower them to a fully hadronised final state using Pythia v8 [72]. No parton-level cuts are applied. The main backgrounds are $t\bar{t} + \text{jets}, t\bar{t}b\bar{b}, t(\bar{t}) + 3b$ and $W + 4b$.

At the reconstruction level, a lepton is considered isolated if the hadronic energy deposit within a cone of size $R = 0.3$ is smaller than 10% of the lepton candidate’s p_T. Jets are defined by the anti-k_t algorithm with $R = 0.4$. The following cuts are imposed:

1. Exactly one isolated lepton with $|y| < 2.5$ and $p_T > 15$ GeV;
2. At least four jets, with $p_T > 30$ GeV.

The longitudinal component of the missing neutrino is reconstructed using the requirement $m_W^2 = (p_t + p_\nu)^2$, with m_W the mass of the W boson. The neutrino and lepton four-momenta, p_t and p_ν, are then added to the jet which gives a total invariant mass closest to the top quark mass. After this,

3. The invariant mass of this top is required to be within 50 GeV of the top mass;
4. Three b-tagged jets are to be found among the jets not coming from the leptonic top.
5. We require the reconstructed masses of ϕ_0 and ϕ^\pm to be similar, i.e. $|m_{\phi_0,\text{rec}} - m_{\phi^\pm,\text{rec}}| \leq 50$ GeV.
Table 2 Top) Effective cross section in fb for the signal (for $m_\Phi = 185$ GeV) and the backgrounds after each cut (1 – 5), as described in the text. Bottom) Effective cross section in fb after all cuts, including cut 6, for different signals and for the total background. The sensitivity at the HL-LHC is also shown.

Cuts	$m_\Phi = 185$	$t\bar{t}$+ jets	$t + 3b$	$t\bar{t}b\bar{b}$	$W + 4b$
iso. lepton	72.94	96693.1	0.65632	326.72	1.327
nr. jets	29.71	55288.5	0.6834	305.10	0.6147
lep. top	17.69	32626.6	0.393	198.10	0.3647
3 b-tags	2.3	267.4	0.07531	45.45	0.0835
similar mass	0.93	81.1	0.0235	12.35	0.0220
Final rec					
Signal	0.39				
Background					
$s/\sqrt{s} + b$					

Fig. 12 Current (solid) and fute (dashed) bounds on the plane (m_Φ, e) for $\lambda_{H\Phi} = 0.1c$ (left), $\lambda_{H\Phi} = c$ (center) and $\lambda_{H\Phi} = 10c$ (right) and $f = 1$ TeV.

To decide which b-tagged jet is assigned to ϕ^\pm and which two are assigned to ϕ_0, we compute all possible combinations and choose the one resulting in the minimum difference between $m_{\phi_0,\text{rec}}$ and $m_{\phi^\pm,\text{rec}}$. The normalized distribution of this former variable in the main background ($t\bar{t}$+jets) and in the signal for $m_\Phi = 185$ GeV and $m_\Phi = 310$ GeV is depicted in Fig. 10. In Fig. 11, we also show the normalized distribution of the p_T of the reconstructed ϕ^\pm. However, cutting on this variable is costly in cross section, but would allow to improve the ratio of signal over background further.

Finally,

6. We reconstruct the resonances ϕ_0 and ϕ^\pm in the mass window of ±30 and ±40 GeV, respectively. As shown in Fig. 10 the experimental width of the resonances depends on their masses, thus, the central value of the mass window in the $(m_{\phi_0,\text{rec}}, m_{\phi^\pm,\text{rec}})$ plane has to be optimised for each m_Φ separately.

The cut-flow for the signal and the relevant backgrounds is given in Table 2. The sensitivity estimates are conservative, as the reconstruction relies on fairly inclusive cuts using large mass windows. Further, it is likely that some of the background was counted twice, as b-quarks from the parton shower in $t\bar{t}$ and from the matrix element in $t\bar{t}b\bar{b}$ are both contributing to the total background. Thus, we expect that the sensitivity can be improved further using a combination of multi-variate techniques [73–75] and high-p_T final states [76].

We estimate the sensitivity at the HL-LHC as $S = s/\sqrt{s} + b$, with s and b the number of signal and background events after all cuts, respectively. It ranges from 2.7 to 7.3 for m_Φ between 185 and 340 GeV. Thus, at the LHC ($\sqrt{s} = 13$ TeV) we can probe the entire mass interval with 3000 fb$^{-1}$. The corresponding region in the plane $(m_\Phi, c/f)$ is therefore a vertical band, the one enclosed by the dashed orange line in Fig. 9.

6 Conclusions

Natural scalar extensions of the SM must have a low cutoff f preventing large corrections to the scalar masses. However, such models are usually studied neglecting $1/f$ terms. Basing on the real triplet extension of the SM, we have highlighted that, if these terms are taken into account, the phenomenology can be drastically different. In particular, the only renor-
malizable interaction allowing the new scalars to decay is so suppressed by the measurement of the ρ parameter, that decays mediated by effective operators dominate.

We have studied the reach of current LHC analyses. We have found that, despite being f independent, searches for EW pair-produced charged scalars decaying to third generation quarks are absent. This is particularly surprising given that such signals appear in a plethora of new physics models, including the 2HDM/MSSM. Therefore, we have developed a dedicated analysis to probe the cleanest of these channels: $pp \rightarrow \phi^\pm \phi^0 \rightarrow t\bar{t}b(\bar{t}b)$, $b\bar{b}$. We have shown that the whole range of masses ~ 185–340 GeV can be tested at the HL-LHC.

For this analysis, we have neglected new scalar couplings to the leptons. Under the sort of Minimal Flavour Violation [77] assumed after Eq. 1, explicitly reproduced in concrete models as shown in Eq. 13, the only relevant lepton would be the tau. Still, the decay of ϕ^0 into $\tau^+\tau^-$ would involve only a $\sim m_\tau^2/(m_\phi^2 N_{\ell}) \sim 5\%$ of its width; our results being effectively unaffected. If couplings to the leptons are accidentally larger, the scalar could be better seen elsewhere; see Ref. [78].

We also stress that, had we assume flavour-violating couplings $c_{ij}^{(d)}$, they would give rise to a plethora of signals in meson decays [79]. They could be also seen in top decays as in the singlet extension of the Higgs sector [80].

On another front, we have studied the reach of the future gravitational wave observatory LISA to the gravitational waves produced in the EWPT for certain region of the parameter space of the model. In particular, we have demonstrated that regions not yet excluded by Higgs to diphoton measurements will be testable. In this region, the EWPT proceeds mainly in one step, and therefore only one signal peak might be expected.

Finally, it is worth mentioning that in concrete models c and $\lambda_{H\Phi}$ related; normally $\lambda_{H\Phi} \propto c$. This is evident for example in CHMs, in which the former (latter) is induced by integrating out heavier resonances at tree level (one loop). To exhaust this point, we plot in Fig. 12 the current and future bounds on the plane (m_{Φ}, c) considering all collider searches and gravitational wave signatures for different simple assumptions on the relation $\lambda_{H\Phi} = \lambda_{H\Phi}(c)$.

Acknowledgements We would like to thank Nuno Castro, Marek Lewicki, Mariano Quirós and Carlos Tamariit for helpful discussions. MC is supported by the Royal Society under the Newton International Fellowship programme. MR is supported by Fundação para a Ciência e Tecnologia (FCT) under the Grant PD/BD/142773/2018 and also acknowledges funding from LIP (FCT, COMPETE2020-Portugal2020, FEDER, POCI-01-0145-FEDER-007334).

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper is based on research in theoretical physics. Hence, there are no associated data to be deposited.]

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

Appendix A: Loop functions

In our case, $2m_{\Phi} > m_h$, and therefore

$$A_0(x) = -x^2 \left[x^{-1} - f(x^{-1}) \right],$$

$$A_{1/2}(x) = 2x^2 \left[x^{-1} + (x^{-1} - 1) f(x^{-1}) \right],$$

$$A_1(x) = -x^2 \left[2x^{-2} + 3x^{-1} + 3(2x^{-1} - 1) f(x^{-1}) \right]$$

(A1)

with

$$f(x) = \arcsin^2 \sqrt{x}.$$

(A2)

References

1. J.R. Espinosa, M. Quiros, Higgs triplets in the supersymmetric standard model. Nucl. Phys. B 384, 113–146 (1992)
2. S. Di Chiara, K. Hsieh, Triplet extended supersymmetric standard model. Phys. Rev. D 78, 055016 (2008). arXiv:0805.2623
3. L. Vecchi, The Natural Composite Higgs. arXiv:1304.4579
4. G. Ferretti, Gauge theories of partial compositeness: scenarios for Run-II of the LHC. JHEP 06, 107 (2016). arXiv:1604.06467
5. M. Chala, $h \rightarrow \gamma\gamma$ excess and dark matter from composite Higgs models. JHEP 01, 122 (2013). arXiv:1210.6208
6. M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter. Nucl. Phys. B 753, 178–194 (2006). arXiv:hep-ph/0512090
7. P. Fileviez Perez, H.H. Patel, M. Ramsey-Musolf, K. Wang, Triplet scalars and dark matter at the LHC. Phys. Rev. D 79, 055024 (2009). arXiv:0811.3957
8. A. Carmona, M. Chala, Composite dark sectors. JHEP 06, 105 (2015). arXiv:1504.00332
9. G. Panico, A. Wulzer, The composite Nambu-goldstone Higgs. Lect. Notes Phys. 913, 1–316 (2016). arXiv:1506.01961
10. N. Blinov, J. Kozaczuk, D.E. Morrissey, C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking. Phys. Rev. D 92, 035012 (2015). arXiv:1504.05195
11. S. Inoue, G. Ovanesyan, M.J. Ramsey-Musolf, Two-step electroweak baryogenesis. Phys. Rev. D 93, 015013 (2016). arXiv:1508.05404
12. PARTICLE DATA GROUP collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98, 030001 (2018)
13. A. Delgado, G. Nardini, M. Quiros, A light supersymmetric Higgs sector hidden by a standard model-like Higgs. JHEP 07, 054 (2013). arXiv:1303.0800
14. G. Ballesteros, A. Carmona, M. Chala, Exceptional composite dark matter. Eur. Phys. J. C 77, 468 (2017). arXiv:1704.07388
15. D. Egana-Ugrinovic, M. Low, J.T. Ruderman, Charged Fermions below 100 GeV. JHEP 05, 012 (2018). arXiv:1801.05432

© Springer
31. K. Hashino, M. Kakizaki, S. Kanemura, P. Ko, T. Matsui, Gravitational waves from the first-order phase transition with a dimension-six operator. JCAP 1708, 004 (2017). arXiv:1707.03001

32. L. Bian, H.-K. Guo, J. Shu, Gravitational waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM. Chin. Phys. C 42, 093106 (2018). arXiv:1704.02488

33. A. Kobakhidze, C. Lagger, A. Manning, J. Yue, Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays. Eur. Phys. J. C 77, 570 (2017). arXiv:1703.06552

34. R.-G. Cai, M. Sasaki, S.-J. Wang, The gravitational waves from the first-order phase transition with a real scalar singlet and inflation. JCAP 1609, 042 (2016). arXiv:1606.02332

35. A. Mazumdar, G. White, Cosmic phase transitions: their applications and experimental signatures. arXiv:1811.01948

36. K. Hashino, R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi, M. Takimoto, Fingerprinting models of first-order phase transitions by the synergy between collider and gravitational-wave experiments. arXiv:1809.04994

37. A. Ahriche, K. Hashino, S. Kanemura, S. Nasri, Gravitational waves from phase transitions in models with charged singlets. arXiv:1809.09883

38. A. Beniwal, M. Lewicki, M. White, A. G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model. arXiv:1810.02380

39. F.P. Huang, J.-H. Yu, Probing inert dark matter blind spots with gravitational wave signatures. Phys. Rev. D 98, 095022 (2018). arXiv:1704.04201

40. M. Breitbach, J. Kopp, E. Madge, T. Opferkuch, P. Schwallar, Dark, cold, and noisy: constraining secluded hidden sectors with gravitational waves. arXiv:1811.11175

41. C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures and bubble profiles with multi-field models. Comput. Phys. Commun. 183, 2006–2013 (2012). arXiv:1109.4189

42. J. Ellis, M. Lewicki, J. M. No, On the maximal strength of a first-order electroweak phase transition and its gravitational wave signal. Submitted to: JCAP. (2018). arXiv:1809.08242

43. Cms collaboration, A. Sirunyan et al., Combined measurements of Higgs boson couplings in proton–proton collisions at $\sqrt{s} = 13$ TeV. Submitted to: Eur. Phys. J. (2018). arXiv:1809.10733

44. Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC. Tech. Rep. ATL-PHYS-PUB-2013-014, CERN, Geneva, Oct (2013)

45. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985)

46. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 43, 27–70 (1993). arXiv:hep-ph/9302210

47. A. Riotto, M. Trodden, Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 49, 35–75 (1999). arXiv:hep-ph/9901362

48. D.E. Morrissey, M.J. Ramsey-Musolf, Electroweak baryogenesis. New J. Phys. 14, 125003 (2012). arXiv:1206.2942

49. J.R. Espinosa, B. Gripaios, T. Konstandin, F. Riva, Electroweak baryogenesis in non-minimal composite Higgs models. JCAP 1201, 012 (2012). arXiv:1110.2876

50. F.P. Huang, Z. Qian, M. Zhang, Exploring dynamical CP violation induced baryogenesis by gravitational waves and colliders. Phys. Rev. D 98, 015014 (2018). arXiv:1804.06813
58. B. Grzadkowski, D. Huang, Spontaneous CP-violating electroweak baryogenesis and dark matter from a complex singlet scalar. JHEP 08, 135 (2018). arXiv:1807.06987
59. K. Choi, S.H. Im, H. Kim, D.Y. Mo, 750 GeV diphoton resonance and electric dipole moments. Phys. Lett. B 760, 666–673 (2016). arXiv:1605.00206
60. C.A. Baker, An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006). arXiv:hep-ex/0602020
61. V. Keus, N. Koivunen, K. Tuominen, Singlet scalar and 2HDM extensions of the standard model: CP-violation and constraints from ($g-2$)$_\mu$ and eEDM. JHEP 09, 059 (2018). arXiv:1712.09613
62. ACME collaboration, V. Andreev et al., Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018)
63. R. Primulando, P. Uttayarat, Probing lepton flavor violation at the 13 TeV LHC. JHEP 05, 055 (2017). arXiv:1612.01644
64. Q. Li, M. Spira, J. Gao, C.S. Li, Higgs boson production via gluon fusion in the standard model with four generations. Phys. Rev. D 83, 094018 (2011). arXiv:1011.4484
65. CMS collaboration, V. Khachatryan et al., Search for pair production of resonances decaying to a top quark plus a jet in final states with two leptons. CMS-PAS-B2G-12-008
66. G. D. Kribs, A. Martin, B. Ostdiek, T. Tong, Dark Mesons at the LHC. arXiv:1809.10184
67. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301
68. T. Sjstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Iten et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). arXiv:1410.3012
69. D.E. Soper, M. Spannowsky, Finding physics signals with shower deconstruction. Phys. Rev. D 84, 074002 (2011). arXiv:1102.3480
70. D.E. Soper, M. Spannowsky, Finding top quarks with shower deconstruction. Phys. Rev. D 87, 054012 (2013). arXiv:1211.3140
71. D.E. Soper, M. Spannowsky, Finding physics signals with event deconstruction. Phys. Rev. D 89, 094005 (2014). arXiv:1402.1189
72. A. Abdesselam, Boosted objects: a probe of beyond the standard model physics. Eur. Phys. J. C 71, 1661 (2011). arXiv:1012.5412
73. G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal flavor violation: an effective field theory approach. Nucl. Phys. B 645, 155–187 (2002). arXiv:hep-ph/0207036
74. A.G. Akeroyd, S. Moretti, M. Song, Light charged Higgs boson with dominant decay to quarks and its search at the LHC and future colliders. Phys. Rev. D 98, 115024 (2018). arXiv:1810.05403
75. R. Harnik, J. Kopp, J. Zupan, Flavor violating higgs decays. JHEP 03, 026 (2013). arXiv:1209.1397
76. S. Banerjee, M. Chala, M. Spannowsky, Top quark FCNCs in extended Higgs sectors. Eur. Phys. J. C 78, 683 (2018). arXiv:1806.02836