Role of Nrf2 in chronic liver disease

Wei Tang, Yong-Fang Jiang, Murugavel Ponnusamy, Mamadou Diallo

Abstract

Nuclear erythroid 2-related factor 2 (Nrf2) is a central regulator of antioxidative response elements-mediated gene expression. It has a significant role in adaptive responses to oxidative stress by interacting with the antioxidant response element, which induces the expression of a variety of downstream targets aimed at cytoprotection. Previous studies suggested oxidative stress and associated damage could represent a common link between different forms of diseases. Oxidative stress has been implicated in various liver diseases, including viral hepatitis, nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease and drug-induced liver injury. Nrf2 activation is initiated by oxidative or electrophilic stress, and aids in the detoxification and elimination of potentially harmful exogenous chemicals and their metabolites. The expression of Nrf2 has been observed throughout human tissue, with high expression in detoxification organs, especially the liver. Thus, Nrf2 may serve as a major regulator of several cellular defense associated pathways by which hepatic cells combat oxidative stress. We review the relevant literature concerning the crucial role of Nrf2 and its signaling pathways against oxidative stress to protect hepatic cell from oxidative damage during development of common chronic liver diseases. We also review the use of Nrf2 as a therapeutic target to prevent and treat liver diseases.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Nuclear erythroid 2-related factor 2; Chronic liver disease; Oxidative stress; Reactive oxygen species; Hepatic injury; Hepatic protection

Core tip: Chronic liver disease is associated with an imbalance, comprising increased reactive oxygen species and decreased net antioxidant activity. Oxidative stress plays an important role in the pathophysiological changes of liver diseases. Nuclear erythroid 2-related factor 2 (Nrf2) can activate cytoprotective genes and has a crucial role against oxidative stress to protect hepatic cells from oxidative damage. This article focuses on the activation the Nrf2-mediated antioxidant response, which prevents the progression of chronic liver disease and presents new treatment opportunities. Accordingly, integrative therapeutic strategies including Nrf2 activators have great potential as therapeutic agents against oxidative stress during chronic liver injuries.

INTRODUCTION

Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor, first identified in 1994, that belongs to the Cap-n-collar basic leucine zipper family[10]. It has a sig-
significant role in adaptive responses to oxidative stress by interacting with antioxidant response element (ARE) sequences of antioxidant and cytoprotective genes. Nrf2 is considered the main mediator of cellular adaptation to redox stress. In its inactive state, Nrf2 is located in the cytoplasm where it interacts with the actin binding protein, Kelch-like ECH associating protein 1, and is rapidly degraded by the ubiquitin-proteasome pathway. However, upon exposure to oxidative or electrophilic stress, phosphorylation of Nrf2 leads to their dissociation and subsequent translocation of Nrf2 to the nucleus. In the nucleus, Nrf2 binds to ARE sequences and functions in partnership with other nuclear proteins as a strong transcriptional activator of ARE-responsive genes. ARE-mediated antioxidant proteins and enzymes, such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione-3-transferases (GST), group C streptococcus (GCS) are involved in the detoxification of increased electrophiles and radicals. Therefore, the roles of the Nrf2/ARE pathway in liver diseases have been extensively investigated.

REACTIVE OXYGEN SPECIES AND THE ROLE OF Nrf2 IN CHRONIC LIVER DISEASES

Previous studies suggested that oxidative stress and associated damage could represent a common link between different forms of chronic liver injury. The contribution of oxidative stress to lipid peroxidation is one of the critical factors involved in the genesis and the progression of nonalcoholic steatohepatitis (NASH). Viral infection or alcohol abuse greatly increases the highly variable miscoding etheno-modified DNA like epsilon A levels by triggering lipid peroxidation. Oxidative stress plays an important role in the pathophysiological changes that progress to liver cirrhosis and finally to hepatocellular carcinoma. As a site of first-pass metabolism, the liver is highly susceptible to oxidative damage by reactive intermediates when it is exposed to high concentrations of xenobiotics and other chemicals. Therefore, there are several defense mechanisms to protect the liver against harmful chemicals and their potentially damaging metabolites. One of the most important protective mechanisms is the Nrf2/ARE pathway, which regulate phase II detoxifying enzyme genes and antioxidant-responsive genes, including HO-1, NQO1, GST, and GCS (Figure 1). The expression of phase II detoxifying enzyme genes in the wild-type and heterozygous Nrf2-knockout mice is clearly induced as compared to homozygous Nrf2-knockout mice in which the inducible expression of these genes is dramatically reduced. NQO1 is cytoprotective against oxidative stress by scavenging superoxides, preserving various endogenous antioxidants, and catalyzing reductive metabolism of chemicals. NQO1 plays an essential role in protecting the cell against reactive oxygen species (ROS) and electrophiles. The role of Nrf2 in transcriptional activation of NQO1 was further confirmed by results from studies on Nrf2-knockout mice. Mice lacking the Nrf2 gene exhibited a marked decrease in the expression and induction of NQO1. In addition, the Nrf2/ARE pathway induces the expression of antioxidant and cytoprotective genes, including antioxidant proteins and enzymes. The antioxidant proteins provide the necessary protection against oxidative and electrophilic stress. Several studies have shown that Nrf2 is also a prevailing factor in the regulation of ARE-mediated activation of other defensive genes, including GST, GCS, and HO-1. Therefore, activation of Nrf2 by glycyrrhetinic acid, sulforaphane, or caffeine can induce the antioxidant enzymes system, protect the liver from oxidative stress, prevent inflammation and fibrosis, and attenuate liver injury. This indicates that Nrf2 has a crucial role against oxidative stress to protect hepatic cells from oxidative damage.

Nrf2 IN VIRAL HEPATITIS

Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are major risk factors in the pathogenesis of chronic liver diseases. Permanent overproduction of viral proteins can result in increased level of radicals and other ROS. Firstly, oxidative stress is common among HBV infected patients with chronic liver disease, and several studies have used HBV transgenic mice or HBV DNA transfection of cells in vitro to show that HBV can induce oxidative stress. A series of studies demonstrated that HBV, via its association with mitochondria, induces oxidative stress, which in turn leads to activation of a series of transcription factors, including nuclear factor-kappaB (NF-κB), signal transducer and activator of transcription-3, and rapidly accelerated fibrosarcoma-1 (Raf-1). Recent research reported the capacity of HBV to stimulate the expression of a variety of cytoprotective genes that are regulated by Nrf2/ARE. The HBV-dependent induction of these genes is primarily initiated by HBV regulatory proteins, and is mediated by methyl ethyl ketone (MEK) and e-Raf. It was also demonstrated that increased augmentation of liver regeneration is regulated by Nrf2 during HBV infection, which acts as a liver regeneration and antioxidative protein and, therefore, links oxidative stress to hepatic regeneration to ensure survival of damaged cells. Secondly, oxidative stress has been recognized as a fundamental factor in the pathological changes observed during HCV infection. Oxidative injury occurs as a direct result of HCV core protein expression both in vitro and in vivo. One study demonstrated that HCV-mediated phosphorylation/activation of Nrf2 is mediated by the mitogen-activated protein (MAP) kinases (p38 MAPK) and Janus kinase, and both ROS and Ca²⁺ signaling are necessary in the Nrf2-activation process. Another study investigated the molecular mechanisms underlying oxidative stress and stress response induced by the individual HCV proteins and indicated that all five proteins can.
structural protein 4B (NS4B), and nonstructural protein 5A (NS5A) of HCV stimulated generation of ROS and Nrf2 activation by protein kinase C in response to ROS. Especially in the early stage of expression, HCV proteins induced a strong upregulation of the antioxidant defense system via Nrf2 to protect HCV infected hepatic cells from oxidative damage. In addition, expression of core, E1, E2, NS4B, and NS5A proteins resulted in the activation of Nrf2 in a ROS-independent manner. The effect of core and NS5A was mediated through casein kinase 2 (CK2) and phosphoinositide-3 kinase (PI3K), whereas those of NS4B, E1, and E2, were not mediated by either protein kinase C, CK2, PI3K, p38 MAPK, or extracellular signal-regulated kinase. Increasing levels of HO-1, a key cytoprotective gene, help to protect liver cells from the damaging effects of the HCV. A mechanism for this action was to increase expression of the positive transcription factor Nrf2 and activation with 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CD-DO-Im) has been shown to effectively prevent hepatic lipid accumulation in wild-type mice, but not in Nrf2-disrupted mice. When feeding the high-fat diet to the wild-type and the Nrf2-null mice, the wild-type mice increased hepatic fat deposition without inflammation or fibrosis (i.e., simple steatosis), while the Nrf2-null mice had significantly more hepatic steatosis and substantial inflammation. Nrf2 expression and activation is reduced in the liver, with histological criteria of NASH. Another way in which Nrf2 activation might be protective against NAFLD and NASH is through several preventive effects on inflammation. Several chemotherapeutic agents have been shown in a variety of cell culture and rodent systems to induce Nrf2 and cause simultaneous repression of NF-κB. Evidence shows that Punicalagin may be a useful nutrient for the treatment of NAFLD by activating Nrf2, resulting in improved mitochondrial function, elimination of oxidative stress and inflammation. Probiotics also showed remarkable induction of Nrf2.

Nrf2 IN NAFLD/NASH

Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease worldwide, especially in developed countries. The progression of NAFLD depends on multiple mechanisms operating simultaneously to produce cell injury, apoptosis, inflammation, fibrosis, and, ultimately, NASH. Following the accumulation of triglycerides in the liver, impairment of mitochondrial respiratory chain activity results in the overproduction of ROS and the depletion of mitochondrial glutathione. Other characteristics of NASH include reduced superoxide dismutase, catalase activity and upregulated cytochrome P450 2A5 (CYP2A5), which is modulated through Nrf2 and increased lipid peroxidation within hepatocytes. Nrf2 also modulates genes involved in metabolic regulation, which play an important role in nutrient homeostasis. Nrf2 activation with 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole (CD-DO-Im) has been shown to effectively prevent hepatic lipid accumulation in wild-type mice, but not in Nrf2-disrupted mice. When feeding the high-fat diet to the wild-type and the Nrf2-null mice, the wild-type mice increased hepatic fat deposition without inflammation or fibrosis (i.e., simple steatosis), while the Nrf2-null mice had significantly more hepatic steatosis and substantial inflammation. Nrf2 expression and activation is reduced in the liver, with histological criteria of NASH. Another way in which Nrf2 activation might be protective against NAFLD and NASH is through several preventive effects on inflammation. Several chemotherapeutic agents have been shown in a variety of cell culture and rodent systems to induce Nrf2 and cause simultaneous repression of NF-κB. Evidence shows that Punicalagin may be a useful nutrient for the treatment of NAFLD by activating Nrf2, resulting in improved mitochondrial function, elimination of oxidative stress and inflammation. Probiotics also showed remarkable induction of Nrf2.

Figure 1 Nrf2 in chronic liver diseases. NRF2: Nuclear erythroid 2-related factor 2; ARE: Antioxidant response element; GST: Glutathione-S-transferases; NQO1: NAD(P)H: quinone oxidoreductase 1; HO1: Heme oxygenase-1; GCS: Group C streptococcus.
and its targeted antioxidative enzymes; they enhanced Nrf2 expression by precluding ubiquitination, which suppressed hepatic oxidative stress and prevented the progression of NAFLD. Another mechanism for potential treatment of NAFLD and NASH is through activation of superoxide dismutase and catalase, which are antioxidative enzymes with decreased activity in this disease state. Finally, it is possible that activation of Nrf2 could play a role in regulating transforming growth factor-β (TGF-β).

A recent study demonstrated that sulforaphane attenuates hepatic fibrosis through Nrf2-mediated inhibition of TGF-β signaling in a human hepatic stellate cell line. In addition, activators of Nrf2 could abolish fibrosis in a rat model of NASH. Altogether, activation of the Nrf2-mediated antioxidant response, which protects hepatic cells from oxidative damage, prevents the progression of NAFLD and presents new opportunities for treatment of NASH patients.

Nrf2 IN ALCOHOLIC LIVER DISEASE

Chronic alcohol consumption has long been associated with progressive liver disease. The liver is the major site of ethanol metabolism and thus sustains the most injury from chronic alcohol consumption. The metabolism of alcohol takes place via three main enzymatic pathways: oxidation of ethanol by alcohol dehydrogenase in hepatocytes, microsomal oxidation catalyzed by cytochrome P450 2E1 (CYP2E1), and nonoxidative metabolism catalyzed by fatty acid ethylester synthase. First, ethanol metabolism by alcohol dehydrogenase results in acetaldehyde, which is a weak profibrogenic factor. Some important downstream effects of increased acetaldehyde production include GSH depletion, lipid peroxidation, and the generation of ROS and acetaldehyde adducts. There is increasing evidence that homocysteine activates the Nrf2-mediated antioxidant response, which protects cells from oxidative damage, whereas Nrf2 dysregulation of GSH synthesis contributes to the pathogenesis of alcoholic liver disease (ALD)’s pathological conditions. In alcohol-related liver disease, free radicals play a part in the pathogenesis of liver damage. Chronic ethanol treatment increases the production of ROS, lowers cellular antioxidant levels, and enhances oxidative stress in many tissues, especially the liver. Second, ethanol metabolism by CYP2E1 occurs during chronic alcohol consumption, when alcohol dehydrogenase reaches saturation, and results in the generation of additional acetaldehydes, ROS, and free radicals. Activation of Nrf2 is critical in combating the oxidative stress caused by ROS generated during the normal catalytic cycle of CYP2E1. This is supported by preclinical studies showing that ethanol-induced CYP2E1 expression also results in upregulation of Nrf2 and its targets, namely HO-1. It has been reported that Nrf2-null mice have increased liver-associated mortality when fed high doses of ethanol compared with wild-type mice. This detrimental effect of alcohol on Nrf2-null mice was shown to be the result of increased lipogenesis, depletion of total and mitochondrial glutathione, and a Kupffer cell-mediated aggravation of the inflammatory response. This suggested that Nrf2 plays a role in protecting against ethanol-induced damage. Ethanol induced oxidative stress via induction of CYP2E1 upregulates Nrf2 activity, which in turn regu-

Figure 2 Nrf2 in chronic hepatitis C virus infection. HCV: Hepatitis C virus; NS4B: Nonstructural protein 4B; NS5A: Nonstructural protein 5A; ROS: Reactive oxygen species; PKC: Protein kinase C; MAPK: Mitogen activated protein kinase; PI3K: Phosphoinositide 3-kinase; CK2: Casein kinase 2; Nrf2: Nuclear erythroid 2-related factor 2.
lates ethanol induction of CYP2A5 and protects against ethanol-induced steatosis\cite{98}. The prominent microvesicular steatosis and mild necrosis in hepatic histopathology were notably attenuated in accordance with the modulation of Nrf2 in clinical administration of artemesia capillaris for alcoholic-associated liver injury\cite{96}. It remains unclear whether Nrf2 plays a major role in the pathogenesis of this disease state. Bardag-Gorce et al\cite{98} found that the Nrf2 level was significantly decreased in the liver of a rat model of alcoholic liver disease. However, Wang et al\cite{96} came to the opposite conclusion, that hepatic very low-density lipoprotein receptor (VLDLR) overexpression plays an important role in the pathogenesis of ALD. Oxidative stress-induced Nrf2 activation plays a critical role in alcohol-induced VLDLR upregulation in hepatocytes, and enhances VLDLR expression in primary hepatocytes\cite{95,96}. Hence, further research is required to determine the role that Nrf2 activation might play in alleviating alcoholic liver disease.

Nrf2 IN DRUG-INDUCED LIVER INJURY (DILI)

Xenobiotic agents can initiate liver injury through reactive-intermediate formation, protein adduct accumulation, and alterations in drug-metabolizing enzymes. Acute hepatic failure secondary to acetaminophen (APAP) poisoning is associated with high mortality\cite{97}. APAP overdose is the most frequent cause of drug-induced liver failure in the United States and most of Europe\cite{94,95}. Therefore, APAP-induced toxicity has become an essential model for studying drug-induced liver disease\cite{94,95}. Electrophiles, radicals, and ROS are often generated as intermediates or by-products of APAP metabolism. These reactive intermediate toxicities provoke covalent bonding with biomolecules and leads to lipid peroxidation, and ultimately oxidative stress\cite{96-98}. Recently, studies showed that nimesulide-induced electrophile stress activates Nrf2 in human hepatocytes and mice\cite{97}. The oxidative stress that occurs with APAP toxicity suggests a role for Nrf2 in the toxicological events of APAP. This view is supported by several studies showing that Nrf2 plays a critical role in protecting the liver against DILI. Nrf2-deficient mice are highly susceptible to APAP-induced liver injury\cite{96}. In Nrf2-null mice, APAP exposure enhanced liver injury and mortality compared with wild-type mice\cite{97}. In addition, the Nrf2 activator CDDO-Im is protective against APAP hepatotoxicity by inducing HO-1, NQO1, and glutamate-cysteine ligase catalytic subunit in the wild-type, but not the Nrf2-null mice\cite{97}. However, some evidence indicates that autophagy participates against APAP could contribute to this development of resistance to hepatotoxicity, and Nrf2 activation is expected to play a role in the protective adaptation. APAP treated hepatocytes showed enhanced antioxidant defense via delaying tyrosine phosphorylation of Nrf2 and its nuclear exclusion, ubiquitination and degradation\cite{97}. Pretreatment of mice with a low hepatotoxic dose of APAP resulted in resistance to the toxicity of a subsequent higher dose of APAP. Upregulation of Lglα3, one of the genes supporting the Nrf2 hypothesis led to suppression of apoptosis and reduced mitochondrial dysfunction\cite{99}. The mechanisms underlying the protective effects of Chinese traditional medicines against N-nitrosodimethylamine, or CCL4, or APAP-induced liver injury have been investigated. Treatment with rutin\cite{100}, safflower\cite{101}, betalin\cite{102}, or Piper puberulum\cite{103} significantly increased Nrf2 and HO-1 expression in injured livers. These results indicated that the hepatoprotective effect of Nrf2 against DILI functions via the activation of Nrf2 and subsequent induction of the expression of genes controlled by Nrf2. Furthermore, oleic acid is a trierpenoid with many beneficial effects and has been demonstrated to protect against varieties of hepatotoxictants via activation of Nrf2\cite{100}. However recently, high-doses and long-term use was reported to produce hepatotoxicity\cite{100}. Apart from DILI, endotoxemia correlates with the degree of liver failure and may contribute to worsening of liver diseases. In most cases, lipopolysaccharide (synonymous with endotoxin) is a liver failure causing endotoxin, which lowers the hepatic GSH levels by inhibiting sumoylation of Nrf2\cite{100}. Thus, Nrf2 may serve as a major regulator of several cellular defense associated pathways by which hepatic cells combat oxidative stress by xenobiotics.

CONCLUSION

Oxidative stress is implicated in the pathogenesis of liver disease. During oxidative stress, Nrf2 is activated to protect the liver via target gene expression. Therefore, Nrf2 activators have great potential as therapeutic agents against oxidative stress during chronic liver injury.

REFERENCES

1. Moi P, Chan K, Asunis I, Cao A, Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/ AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci USA 1994; 91: 9926-9930 [PMID: 7957919].
2. Kaspar JW, Niture SK, Jaiswal AK. Nrf2: Keap1 signaling in oxidative stress. Free Radic Biol Med 2009; 47: 1304-1309 [PMID: 19666107 DOI: 10.1016/j.freeradbiomed.2009.07.035].
3. Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 2004; 10: 549-557 [PMID: 15519281 DOI: 10.1016/j.molmed.2004.09.003].
4. Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 2009; 48: 91-104 [PMID: 18615990 DOI: 10.1002/mc.20465].
5. Xu W, Hellerbrand C, Kohler UB, Bugnon P, Kan YW, Werner S, Beyer TA. The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis. Lab Invest 2008; 88: 1088-1079 [PMID: 18679736 DOI: 10.1038/lab.2008.75].
6. Wasserman WW, Fahl WE. Functional antioxidant responsive elements. Proc Natl Acad Sci USA 1997; 94: 5361-5366 [PMID: 9144242].
7. Ross D. Quinone reductases multitasking in the metabolic world. Drug Metab Rev 2004; 36: 639-654 [PMID: 15554240 DOI: 10.1081/DMR-200035365].
Shin SM, Yang JH, Ki SH. Role of the Nrf2-ARE pathway in liver diseases. Oxid Med Cell Longev 2013; 2013: 763257 [PMID: 23766680 DOI: 10.1155/2013/763257]

Schwabe RF, Brenner DA. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 2006; 290: G583-G589 [PMID: 16537970 DOI: 10.1152/ajpgi.00422.2005]

Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta 2013; 1833: 3460-3470 [PMID: 23850759 DOI: 10.1016/j.bbcan.2013.06.028]

Weltman MD, Farrell GC, Hall P, Ingelman-Sundberg M, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5: 215-229 [PMID: 15739952 DOI: 10.1038/nri1575]

Severi T, Ying C, Vermeesch JR, Cassimann D, Cnops L, Verslype C, Favery J, Arckens L, Neys J, van Pelt JF. Hepatitis B virus replication causes oxidative stress in HepAD38 liver cells. Mol Cell Biochem 2006; 290: 79-85 [PMID: 16690659 DOI: 10.1016/s1010-0616-x]

Rehermann B, Nascimbeni M. Immunology of hepatitis B virus infection. Nat Rev Immunol 2005; 5: 215-229 [PMID: 15739952 DOI: 10.1038/nri1575]

Tang W et al. Role of Nrf2 in liver disease
Asaoka Y, Yoshizawa Y, Aoki T, Noda H, Yamada M, Kaino M, Mochizuki H. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol 2013; 84: 62-70 [PMID: 23992516 DOI: 10.1124/mol.112.804269]

Pereira AF, Sá LL, Reis FH, Cardoso FC, Alberici RM, Prado IM, Eberlin MN, Ueyumsa S, Curti C, Alberici LC. Administration of a murine diet supplemented with conjugated linoleic acid increases the expression and activity of hepatic uncoupling proteins. J Biomed Biotechnol 2012; 4: 587-596 [PMID: 22984359 DOI: 10.1186/1423-7227-2012-38]

Shepard BD, Tuma DJ, Tuma PL. Chronic ethanol consumption induces global hepatic protein hyperacetylation. Alcohol Clin Exp Res 2010; 34: 280-291 [PMID: 19951295 DOI: 10.1111/j.1530-0270.2009.01091.x]

Ronis MJ, Korourian S, Blackburn ML, Badeaux J, Badger TM. The role of ethanol metabolism in development of alcoholic steatohepatitis in the rat. Alcohol 2010; 44: 157-169 [PMID: 21061935 DOI: 10.1097/01.aca.0000380138.10370.4c]

Kang L, Chen X, Sebastian BM, Pratt BT, Bederman IR. Nrf2 activators attenuate the progression of nonalcoholic steatohepatitis-related fibrosis in a dietary rat model. Mol Pharmacol 2013; 84: 62-70 [PMID: 23992516 DOI: 10.1124/mol.112.804269]

Lámle J, Marhenke S, Borlak J, van Wasielewski R, Eriksson CJ, Geffers R, Manns MP, Yamamoto M, Vogel A. Nuclear factor-erythroid 2-related factor 2 prevents alcohol-induced fulminating liver injury. Gastroenterology 2008; 134: 1159-1168 [PMID: 18395904 DOI: 10.1053/j.gastro.2008.01.011]

Lu Y, Zhang XH, Cederbaum AI. Ethanol induction of CYPA5: role of CYPA21-Ros-Nrf2 pathway. Toxicol Sci 2012; 128: 427-438 [PMID: 22552773 DOI: 10.1093/toxsci/kfs164]

Choi MK, Han JM, Kim HG, Lee JS, Lee JS, Wang JH, Son SW, Park HJ, Son CG. Aqueous extract of Artemisia capitata exerts hepatoprotective action in alcohol-pyrazole-fed rat model. J Ethnopharmacol 2013; 147: 662-670 [PMID: 23548594 DOI: 10.1016/j.jep.2013.06.053]

Bardag-Gorce F, Olliva J, Lin A, Li J, French BA, French SW. Proteasome inhibitor up regulates liver antioxidative enzymes in rat model of alcoholic liver disease. Exp Mol Pathol 2011; 90: 123-130 [PMID: 21036165 DOI: 10.1016/j.yexmp.2010.10.013]

Wang Z, Dou X, Li S, Zhang X, Sun X, Zhou Z, Song Z. Nuclear factor (erythroid-derived)-2-like 2 activation-induced hepatic very-low-density lipoprotein receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice. Hepatology 2014; 59: 1381-1392 [PMID: 24170705 DOI: 10.1002/hep.26912]

Shen GM, Zhao YZ, Chen MT, Zhang FL, Liu XL, Wang Y, Liu CZ, Yu J, Zhang JW. Hyposia-inducible factor-1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem J 2012; 441: 675-683 [PMID: 21970634 DOI: 10.1042/Bjael11377]

Ho J, Choe SS, Shin KC, Jang H, Lee HJ, Seong JK, Back SH, Kim JB. Endoplasmic reticulum stress induces hepatic steatosis via increased expression of the very-low-density lipoprotein receptor. Hepatology 2013; 57: 1366-1377 [PMID: 23151228 DOI: 10.1002/hep.26126]

Ramachandran R, Sakar S. Histological patterns in drug-induced liver disease. J Clin Pathol 2009; 62: 481-492 [PMID: 19474352 DOI: 10.1136/jcp.2008.058248]

Lee WM. Acetaminophen and the U.S. Acute Liver Failure Study Group: lowering the risks of hepatic failure. Hepatology 2004; 40: 6-9 [PMID: 15239078 DOI: 10.1002/hep.20293]

Lee WM. Acetaminophen toxicity: changing perceptions on a social/medical issue. Hepatology 2007; 46: 966-970 [PMID: 17894320 DOI: 10.1002/hep.21926]

Jaeschke H, Bajt ML. Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 2006; 89: 31-41 [PMID: 16177235 DOI: 10.1093/toxsci/kfi336]

Han D, Shinohara M, Ybanez MD, Saberi B, Kaplowitz N. Signal transduction pathways involved in drug-induced liver injury. Handb Exp Pharmacol 2010; (196): 267-310 [PMID: 10078-364-06660-3-10]

Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther 2005; 312: 509-516 [PMID: 15466245 DOI: 10.1124/jpet.104.075945]

Ghosh A, Sil PC. Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-kappaB pathway: role of a novel plant extract. Chem Biol Interact 2009; 177: 96-106 [PMID: 18855260 DOI: 10.1016/j.cbi.2008.09.006]

Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44: 88-110 [PMID: 22229890 DOI: 10.3109/03602532.2011.602688]

Kale VM, Hisao C, Boesler UA. Nimesulide-induced electrolyse stress activates Nrf2 in human hepatocytes and mice but is not sufficient to induce hepatotoxicity in Nrf2-deficient mice. Chem Res Toxicol 2010; 23: 967-976 [PMID: 20195129 DOI: 10.1021/tx1001186]
Tang W et al. Role of Nrf2 in liver disease

20405857 DOI: 10.1021/tx100063z

100 Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T, O'Connor T, Harada T, Yamamoto M. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 2001; 59: 169-177 [PMID: 11134556]

101 Chan K, Han XD, Kan YW. An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 2001; 98: 4611-4616 [PMID: 11287661 DOI: 10.1073/pnas.081082098]

102 Reisman SA, Buckley DB, Tanaka Y, Klaassen CD. CDDO-Im protects from acetaminophen hepatotoxicity through induction of Nrf2-dependent genes. Toxicol Appl Pharmacol 2009; 236: 109-114 [PMID: 19371629 DOI: 10.1016/j.taap.2008.12.024]

103 Mobasher MA, Gonzalez-Rodriguez A, Santamaria B, Ramos S, Martin MA, Goya L, Rada P, Letzig L, James LP, Cuadrado A, Martin-Perez J, Simpson KJ, Muntané J, Valverde AM. Protein tyrosine phosphatase 1B modulates GSK3β/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis 2013; 4: e626 [PMID: 23661004 DOI: 10.1038/cddis.2013.150]

104 O’Connor MA, Koza-Taylor P, Campion SN, Aleksunes LM, Gu X, Enayetallah AE, Lawton MP, Manautou JE. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection). Toxicol Appl Pharmacol 2014; 274: 156-167 [PMID: 24126418 DOI: 10.1016/j.taap.2013.09.025]

105 Domitrović R, Jakovac H, Vasiljev Marchesi V, Vladimir-Knežević S, Cvijanović O, Tadić Z, Romić Z, Rahelić D. Differential hepatoprotective mechanisms of rutin and quercetin in CCl4-intoxicated BALB/c mice. Acta Pharmacol Sin 2012; 33: 1260-1270 [PMID: 22902988 DOI: 10.1038/aps.2012.62]

106 Wu S, Yue Y, Tian H, Li Z, Li X, He W, Ding H. Carthamus red from Carthamus tinctorius L. exerts antioxidant and hepatoprotective effect against CCl4-induced liver damage in rats via the Nrf2 pathway. J Ethnopharmacol 2013; 148: 570-578 [PMID: 23684718 DOI: 10.1016/j.jep.2013.04.054]

107 Krajka-Kuźniak V, Paluszczak J, Szafer H, Baer-Dubowska W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br J Nutr 2013; 110: 2138-2149 [PMID: 23769299 DOI: 10.1017/S0007114513001645]

108 Chen P, Zeng H, Wang Y, Fan X, Xu C, Deng R, Zhou X, Bi H, Huang M. Low dose of oleanolic acid protects against lithocholic acid-induced cholestasis in mice: potential involvement of nuclear factor-E2-related factor 2-mediated upregulation of multidrug resistance-associated proteins. Drug Metab Dispos 2014; 42: 844-852 [PMID: 24510383 DOI: 10.1124/dmd.113.056549]

109 Lu YF, Wan XL, Xu Y, Liu J. Repeated oral administration of oleanolic acid produces cholestatic liver injury in mice. Molecules 2013; 18: 3060-3071 [PMID: 23470335 DOI: 10.3390/molecules18033060]

110 Tomasi ML, Ryoo M, Yang H, Iglesias Ara A, Ko KS, Lu SC. Molecular mechanisms of lipopolysaccharide-mediated inhibition of glutathione synthesis in mice. Free Radic Biol Med 2014; 68: 148-158 [PMID: 24296246 DOI: 10.1016/j.freeradbiomedi.2013.11.018]

P- Reviewer: Jie H, Pal A, Penkova-Radicheva M, Wateshi K
S- Editor: Nan J L- Editor: Stewart G E- Editor: Zhang DN
