Near-Optimal Finite-Length Scaling for Polar Codes over Large Alphabets

Henry D. Pfister and Rüdiger Urbanke

Abstract—For any prime power q, Mori and Tanaka introduced a family of q-ary polar codes based on q by q Reed-Solomon polarization kernels. For transmission over a q-ary erasure channel, they also derived a closed-form recursion for the erasure probability of each effective channel. In this paper, we use that expression to analyze the finite-length scaling of these codes on q-ary erasure channel with erasure probability $\epsilon \in (0, 1)$. Our primary result is that, for any rate R, the blocklength must tend to infinity. A more refined question is, “How fast can the gap to capacity decrease as a function of the blocklength?” A key result is that, for any rate-R code achieving a block error rate of $\eta < 1$ on a non-trivial discrete memoryless channel with capacity C, the blocklength N must satisfy $C - R \geq A / \sqrt{N}$ for some $A > 0$ that depends only on δ and the channel [11]. Thus, the gap to capacity cannot vanish faster than $O(N^{-1/2})$. Random codes are known to achieve this scaling.

Polar codes are the first codes, with low-complexity encoding and decoding algorithms, that were proven to achieve capacity on binary-input memoryless channels [5], [6]. Since then, the rate of polarization and the relationship between the blocklength and the error rate has received significant attention [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. This relationship is typically studied in two distinct regimes by asking two different questions. First, for a fixed rate $R < C$, how fast does the error rate decay with the blocklength? Second, for a fixed probability of decoding failure $\eta \in (0, 1)$, how fast can the rate approach the capacity?

The majority of prior work in this area focuses on binary polar codes with 2×2 kernels and, for these codes, the gap to capacity cannot decrease faster than $O(N^{-0.276})$ [10], [16]. For 2×2 kernels with larger alphabets, the analysis is much more difficult and the provable scaling rates are even smaller [12], [15]. Recently, 8×8 and 16×16 binary kernels have been constructed that achieve scaling rates of $O(N^{-0.279})$ and $O(N^{-0.298})$ [11]. Until now, no reported results provably established scaling rates faster than $O(N^{-0.30})$.

In this work, we consider the q-ary polar codes introduced by Mori and Tanaka based on $q \times q$ Reed-Solomon (RS) polarization kernels with elements from the Galois field \mathbb{F}_q [17], [18]. Thus, in all statements, q is implicitly assumed to be a prime power. These codes have length $N = q^n$, where n is the number of steps in the polarization process. We consider transmission over the q-ary erasure channel (QEC) with erasure probability ϵ. Mori and Tanaka have also shown that these polar codes achieve capacity on symmetric q-ary channels [18].

By analyzing the polarization process for the QEC, we show that, for any $\gamma > 0$ and $\delta > 0$, there is a q_0 such that, for all $q \geq q_0$, the fraction of effective channels with erasure rate at most $N^{-\gamma}$ is at least $1 \geq 1 - \epsilon \geq O(N^{-1/2+\delta})$. Thus, the gap to capacity scales at a nearly-optimal rate. While our proof relies on large alphabet QECs with large polarization kernels, we believe a similar result may also hold for small alphabets (e.g., binary) with large polarization kernels.

Like binary polar codes, the performance of q-ary polar codes can be analyzed by tracking the evolution of the effective channels through the polarization process [6]. At each step, a single effective channel with erasure rate α splits into q new channels. For their codes, Mori and Tanaka showed that the i-th new
effective channel, for \(i \in \mathbb{Q} \triangleq \{0, 1, \ldots, q - 1\} \), is a \(q \)-ary erasure channel with erasure probability

\[
\psi_i(x) = \sum_{j=1}^{q} \binom{q}{j} x^j (1 - x)^{q-j},
\]

(1)

Applying this formula recursively, one can compute the erasure rates of the \(N = q^n \) effective channels after \(n \) steps. For a polar code with \(k \) information symbols, the next step in the design process consists of choosing the \(k \) effective channels with the smallest erasure rates. For \(q = 2 \), these steps are identical to the original polar code construction in [6] and the resulting codes are closely related to binary Reed-Muller codes. For larger \(q \), the resulting codes are closely related to \(q \)-ary Reed-Muller codes [19].

II. THE POLARIZATION PROCESS

Let the random variable \(X_n \) denote the channel erasure probability for a randomly chosen effective channel after \(n \) levels of polarization. The sequence \(X_n \), for \(n = 0, 1, \ldots \), is a homogeneous Markov chain on the compact state space \(\mathcal{X} = [0, 1] \) with transition probability

\[
P\left(X_n = x_n \mid X_0, \ldots, X_{n-1} = (x_0, \ldots, x_{n-1}) \right)
= P(X_n = x_n \mid X_{n-1} = x_{n-1}),
= \begin{cases} \frac{1}{q} & \text{if } \exists i \in \mathbb{Q}, \ x_{n-1} = \psi_i(x) \\ 0 & \text{otherwise.} \end{cases}
\]

We note that 0 and 1 are both absorbing states of this Markov chain and we are interested in the convergence rate to these states [6].

Let \(C(\mathcal{X}) \) denote the set of bounded continuous functions mapping \(\mathcal{X} \) to \(\mathbb{R} \). One can analyze this Markov chain by focusing on the sequence of functions, \(g_n(x) \triangleq \mathbb{E}[g_0(X_n) \mid X_0 = x] \), generated by \(g_0 \in C(\mathcal{X}) \) [10], [16]. Since the Markov chain is homogeneous, this sequence satisfies the recursion

\[
g_n(x) \triangleq \mathbb{E}[g_0(X_n) \mid X_0 = x]
= \sum_{i=0}^{q-1} \mathbb{E}[g(X_n) \mid X_1 = \psi_i(x)] P(X_1 = \psi_i(x) \mid X_0 = x)
= \sum_{i=0}^{q-1} g_{n-1}(\psi_i(x)) \frac{1}{q}.
\]

The one-step update is given by the linear operator \(T_q : C(\mathcal{X}) \rightarrow C(\mathcal{X}) \), which is defined by

\[
(T_q g_{n-1})(x) \triangleq \frac{1}{q} \sum_{i=0}^{q-1} g_{n-1}(\psi_i(x)).
\]

Since the polarization process preserves the average mutual information, it also preserves average erasure rate. This implies that the function \(g_0(x) = x \) should be an eigenfunction of \(T_q \) (with eigenvalue 1) and, using (2), one can verify that it is. We note that this is a straightforward generalization of the approach used for binary polar codes [10], [16].

The rate of polarization is determined by the fraction of channels whose erasure rates are not extremal. The following lemma connects the fraction of non-extremal channels (as a function of \(n \)) with an easily computable constant associated with \(T_q \). This can be seen as a standard convergence analysis based on Lyapunov functions and it was first applied to polar codes in [10].

Lemma 1. Suppose there exists a non-negative continuous function \(V : \mathcal{X} \rightarrow [0, \infty) \) and a constant \(\lambda \in (0, 1) \) such that

\[
(T_q V)(x) \leq \lambda V(x)
\]

(3)

for all \(x \in \mathcal{X} \). Then, for \(S(\alpha) \triangleq \{ x \in \mathcal{X} \mid V(x) \geq \alpha \} \), it follows that

\[
P(X_n \in S(\alpha) \mid X_0 = x) \leq \frac{\lambda^n V(x)}{\alpha}.
\]

Further, if \(S(\alpha) \) is a closed interval, then

\[
P(X_n \geq \min S(\alpha) \mid X_0 = x) \leq \frac{\lambda^n V(x)}{\alpha} + \frac{x}{\max S(\alpha)}.
\]

Proof: To see this, we choose \(g_0(x) = V(x) \) and observe that (3) implies \(\mathbb{E}[V(X_n) \mid X_0 = x] = g_n(x) \leq \lambda^n V(x) \) for all \(x \in \mathcal{X} \). From this, we get

\[
P(X_n \in S(\alpha) \mid X_0 = x) = P(V(X_n) \geq \alpha \mid X_0 = x)
\leq \frac{\mathbb{E}[V(X_n) \mid X_0 = x]}{\alpha}
\leq \frac{\lambda^n V(x)}{\alpha}.
\]

Since the polarization process preserves the average mutual information, we have \(\mathbb{E}[X_n \mid X_0 = x] = x \). For the second part, we combine this with the Markov inequality to see that

\[
P(X_n > \max S(\alpha) \mid X_0 = x) \leq \frac{\mathbb{E}[X_n \mid X_0 = x]}{\max S(\alpha)} = \frac{x}{\max S(\alpha)}.
\]

Since \(S(\alpha) \) is a closed interval, it follows that

\[
P(X_n \geq \min S(\alpha) \mid X_0 = x) = P(X_n \in S(\alpha) \mid X_0 = x)
+ P(X_n > \max S(\alpha) \mid X_0 = x)
\leq \frac{\lambda^n V(x)}{\alpha} + \frac{x}{\max S(\alpha)}.
\]

This completes the proof.
Remark 2. For the considered problem, this lemma is a slight variation of what is used in [8], [16]. We use this form to show the close connection to Lyapunov functions. From that perspective, the function \(V(x) \) can be seen as a Lyapunov function showing convergence to stationary distributions supported on the set \(\{ x \in X \mid V(x) = 0 \} \).

Definition 3. Let \(V(x) = (x(1-x))^\beta \) for \(\beta > 0 \) and define
\[
\lambda_{q,\beta} \triangleq \sup_{x \in (0,1)} \frac{(T_q V)(x)}{V(x)}.
\]

Then, \(\lambda_{q,\beta} \) is the largest \(\lambda \in \mathbb{R} \) such that \((T_q V)(x) \leq \lambda V(x) \) for all \(x \in (0,1) \). We also note that \(V(x) \leq V \left(\frac{1}{2} \right) = (\frac{1}{4})^\beta \) for \(x \in [0,1] \).

Lemma 4. The quantity \(\lambda_{q,\beta} \) for \(\beta \in (0,\frac{1}{2}] \) satisfies
\[
\lambda_{q,\beta} \leq \frac{6}{\sqrt{q^\beta}} \left(\frac{1}{4} \right)^{\frac{1}{2} - \beta}.
\]

Proof: See Section III-C.

Corollary 5. If the conditions of Lemma 2 hold for \(V(x) = (x(1-x))^\beta \) with \(\beta > 0 \), then
\[
P(X_n \in [\eta,1-\eta]|X_0 = x) \leq \frac{\lambda^n V(x)}{V(\eta)}
\]
for \(\eta \in (0,\frac{1}{2}] \). This also implies
\[
P(X_n \geq \eta|X_0 = x) \leq \frac{\lambda^n V(x)}{V(\eta)} + \frac{x}{1-\eta}.
\]

Proof: The first statement follows from applying Lemma 2 with \(\alpha = V(\eta) \). For the second statement, we observe that \(S(\alpha) \) is a closed interval because \(V(x) \) is a concave function. Also, \(\max S(\alpha) = 1-\eta \) because \(V(\eta) = V(1-\eta) \) implies that \(1-\eta \in S(\alpha) \) and \(V(x) < V(\eta) \) for \(x > 1-\eta \). This completes the proof.

The primary purpose of this paper is the statement and proof of the following theorem.

Theorem 6. For the q-ary polar codes defined in [17], [18], let \(X_N \) be the erasure rate of a randomly chosen effective channel after \(n \) steps of polarization. For any \(\gamma > 0 \), \(\beta \in (0,\frac{1}{2}] \), and \(N^{-\gamma} \leq \frac{3}{4} \), one finds that
\[
P(X_n \in [N^{-\gamma},1-N^{-\gamma})|X_0 = x) \leq N^{\gamma \beta \frac{1}{2} \ln \frac{6}{q^\beta} (1 - \frac{4}{1 + \beta})} \ln 4
\]

and
\[
P(X_n \geq N^{-\gamma} | X_0 = x) \leq N^{\gamma \beta \ln q^\beta (1 - \frac{4}{1 + \beta}) \ln 4} + \frac{x}{1-N^{-\gamma}}.
\]

Proof: Combining Lemma 4 and Corollary 5 with \(\eta = N^{-\gamma} \), one gets the prediction
\[
P(X_n \in [N^{-\gamma},1-N^{-\gamma})|X_0 = x) \leq \frac{(x(1-x))^\beta}{(N^{-\gamma}(1-N^{-\gamma}))^\beta} \left(6 \sqrt{q^\beta} \left(\frac{1}{4} \right)^{\frac{1}{2} - \beta} \right)^n
\]
\[
\leq \left(\frac{1}{1-N^{-\gamma}} \right) \gamma^\beta q^\beta \ln \left(\frac{6}{q^\beta (1 - \frac{4}{1 + \beta})} \ln 4 \right)
\]
\[
\leq N^{\gamma \beta \frac{1}{2} \ln \frac{6}{q^\beta} (1 - \frac{4}{1 + \beta}) \ln 4},
\]

for \(N^{-\gamma} \leq \frac{3}{4} \). The second statement follows directly from the second part of Corollary 5.

Corollary 7. Consider the q-ary polar codes defined in [17], [18] on a QEC with erasure probability \(\gamma \). For any \(\gamma > 0 \) and \(\delta > 0 \), there is a \(\beta \in (0,\frac{1}{2}] \) and a \(q_0 \) such that, for all \(q \geq q_0 \), the fraction of effective channels with erasure rate at most \(N^{-\gamma} \) is at least \(1 - \delta - O(N^{-1/2+\epsilon}) \).

Proof: Since the stated condition becomes weaker as \(\gamma \) decreases and \(\delta \) increases, we assume without loss of generality that \(\gamma \leq \frac{1}{2} \) and \(\delta \leq \frac{1}{4} \). Using this, we choose \(\beta = \frac{\delta}{2\gamma} \) and observe that \(\beta \in (0,\frac{1}{2}] \). At errror rate \(N^{-\gamma} \), the gap to capacity is given by
\[
(1 - \delta) - \frac{N^{\frac{1}{2} - \beta \ln q^\beta (1 - \frac{4}{1 + \beta}) \ln 4 + \epsilon N^{-\gamma}}}{1-N^{-\gamma}}
\]
\[
\leq N^{\frac{1}{2} - \beta \ln q^\beta (1 - \frac{4}{1 + \beta}) \ln 4 + 4\epsilon N^{-\gamma}}
\]
\[
\leq 5N^{-\frac{1}{2} + \delta},
\]
where (a) follows from \(1 - \frac{\epsilon N^{-\gamma}}{1-N^{-\gamma}} = \frac{\epsilon N^{-\gamma}}{1-N^{-\gamma}} \) and (b) follows from \(N^{-\gamma} \leq 2^{-1/2} \leq \frac{1}{2} \) and choosing \(q \geq q_0 \) with \(\ln q_0 = \frac{1}{q}(2\beta \ln 4 - \ln \beta + 2 \ln 6 - \ln 4) \). This completes the proof.

A. Numerical Examples

In this section, we present some applications of Corollary 5 based on numerical computation of \(\lambda \).

Example 8. Consider the case of \(q = 2 \) where \(T_q \) is defined by
\[
(T_2 g)(x) = \frac{g(x^2) + g(2x-x^2)}{2}.
\]
Using $V(x) = (x(1-x))^{0.66}$, one can verify numerically that $(T_2V)(x) \leq 0.832V(x)$ for $x \in [0,1]$. For example, see Figure 1. Therefore,

$$P\left(X_n \in [0.01, 0.99] \bigg| X_0 = x \right) \leq \left(\frac{1/4}{0.0099}\right)^{0.66} 0.832^n \leq 9 \cdot 2^{n \ln \frac{0.832}{\ln 2}} \leq 9N^{-0.265}.$$

Let $V_3(x)$ be the result of applying T_2 five times to the function $(x(1-x))^{0.66}$ (i.e., $V_3(x) = \left(T_2^5 (x(1-x))^{0.66}\right)(x)$). Then, one can verify numerically that $(T_2V_3)(x) \leq 0.8271V_5(x)$ and this gives a decay rate of $O(N^{-0.273})$.

Example 9. Consider the case of $q = 4$ where T_q is defined by

$$(T_qg)(x) = \frac{1}{4} \left(g(x^4) + g(4x^3(1-x) + x^4) + g(1-4x(1-x)^3 - (1-x)^4) + g(1-(1-x)^4) \right).$$

Using $V(x) = (x(1-x))^{0.64}$, one can verify numerically that $(T_qV)(x) \leq 0.657V(x)$ for $x \in [0,1]$. Therefore,

$$P\left(X_n \in [0.01, 0.99] \bigg| X_0 = x \right) \leq \left(\frac{1/4}{0.0099}\right)^{0.64} 0.657^n \leq 8N^{-0.303}.$$

Example 10. Consider the case of $q = 16$ where T_q is defined by (8). Using $V(x) = (x(1-x))^{0.58}$, one can verify numerically that $(T_qV)(x) \leq 0.375V(x)$ for $x \in [0,1]$. For example, see Figure 2. Therefore,

$$P\left(X_n \in [0.01, 0.99] \bigg| X_0 = x \right) \leq \left(\frac{1/4}{0.0099}\right)^{0.58} 0.375^n \leq 7 \cdot 16^{n \ln \frac{0.375}{\ln 2}} \leq 7N^{-0.353}.$$

Example 11. Consider the case where T_q is defined by (2) for $q = 2, 3, \ldots, 1024$. Using $V(x) = \sqrt{x(1-x)}$, one can compute numerically the smallest λ_q such that $(T_qV)(x) \leq \lambda_qV(x)$ for $x \in [0,1]$. This computation results in $\lambda_q = (T_qV)(\frac{1}{2})/V(\frac{1}{2})$ and one observes that $\sqrt{q}\lambda_q$ is increasing in q and upper bounded by 1.6142. Assuming this is true, we observe that

$$P\left(X_n \in [\eta, 1-\eta] \bigg| X_0 = x \right) \leq \frac{\sqrt{1/4}}{\sqrt{\eta(1-\eta)}} \left(\frac{1.6142}{\sqrt{q}}\right)^n \leq \frac{1}{\sqrt{4\eta(1-\eta)}} N^{-\frac{1}{2}(1 - \frac{1}{4\eta})}.$$

Example 12. Let $V(x) = (x(1-x))^{1/12}$ and consider the case where T_q is defined by (3) for $q = 2, 3, \ldots, 1024$. Again, one can compute numerically the smallest $\lambda_q = \lambda_{q,1/12}$ such that $(T_qV)(x) \leq \lambda_qV(x)$ for $x \in [0,1]$. This computation results in $\lambda_q = (T_qV)(\frac{1}{2})/V(\frac{1}{2})$ and one observes that $\sqrt{q}\lambda_q$ is increasing in q and upper bounded by 4.1218. Assuming this is true, we observe that, for $N \geq 2$, we have

$$P\left(X_n \in [N^{-2}, 1-N^{-2}] \bigg| X_0 = x \right) \leq \frac{(1/4)^{1/12}}{(N^{-2}(1-N^{-2}))^{1/12}} \left(\frac{4.1218}{\sqrt{q}}\right)^n \leq \left(\frac{1/4}{1-N^{-2}}\right)^{1/12} N^{\frac{1}{2}} 6^{n \ln \frac{4.1218}{\ln q}} \leq \frac{1}{3} N^{-\frac{1}{2}(1 - \frac{1}{4\eta})}.$$

III. LARGE ALPHABET ERASURE CHANNELS

A. Intuitive Approach

Before delving into the proof of Theorem 6, we present an intuitive (but non-rigorous) argument that leads us in the right direction. Consider q random trials with success probability x and let the random variable
Bin(q, x) denote number of successes. Then, one finds that
\[
\mathbb{P}(\text{Bin}(q, x) = i) = \binom{q}{i} x^i(1 - x)^{q-i}.
\]

The key is to replace the binomial random variable, Bin(q, x), by a Gaussian random variable with the same mean and variance. While this step is motivated by the central limit theorem, it is not rigorous (even as $q \to \infty$) because the approximation does not hold uniformly for all $x \in [0, 1]$. Based on this assumption, we approximate $\mathbb{P}(\text{Bin}(q, x) \geq i + 1)$ by
\[
\psi_i(x) \approx Q\left(\frac{i + 1 - qx}{\sqrt{qx(1-x)}}\right),
\]
where $Q(x) \triangleq (2\pi)^{-1/2} \int_{-}\infty^{\infty} e^{-t^2/2} dt$. Let $V(x) = (x(1-x))^\beta$ for $\beta \in (0, 2)$. Using a sequence of approximations, one finds that
\[
(T_q V)(x) = \frac{1}{q} \sum_{i=0}^{q-1} V(\psi_i(x))
\approx \frac{1}{q} \sum_{i=0}^{q-1} V\left(Q\left(\frac{i + 1 - qx}{\sqrt{qx(1-x)}}\right)\right)
\approx \int_0^1 V\left(Q\left(\frac{q(y-x)}{\sqrt{qx(1-x)}}\right)\right) dy
= \sqrt{\frac{q}{x(1-x)}} \int_{-}\infty^{\infty} V(Q(z)) dz
\approx \sqrt{\frac{q}{x(1-x)}} \int_{-}\infty^{\infty} V(Q(z)) dz
= \sqrt{\frac{q}{x(1-x)}} m(\beta),
\]
where $m(\beta) \triangleq \int_{-}\infty^{\infty} (Q(z)Q(-z))^{\beta} dz$.

For $\beta = \frac{1}{2}$, this implies that $V(x) = \sqrt{x(1-x)}$ is an approximate eigenfunction of T_q associated with eigenvalue
\[
\hat{\lambda}_q = \frac{m(\frac{1}{2})}{\sqrt{q}},
\]
where $m(\frac{1}{2}) \approx 1.6147 < e^{1/2}$. Based on this estimate, one could estimate that rate of polarization scales like
\[
\hat{\lambda}_q^n \approx \left(\frac{m(\frac{1}{2})}{\sqrt{q}}\right)^n \leq \left(\frac{e}{q}\right)^{n/2}
= q^{(n/2)(1-\ln q)/\ln q} = N^{-\frac{1}{2}(1-\frac{1}{\ln q})}.
\]

In fact, the numerical results in Example [1] support this conclusion and suggest that the true $\lambda_{q,1/2} \leq m(\frac{1}{2})$. Thus, we believe that this non-rigorous analysis produces an exact and tight characterization as $q \to \infty$.

For $\beta \in (0, \frac{1}{2})$, $V(x)$ is not an approximate eigenfunction but one can still estimate the decay rate
\[
\hat{\lambda}_{q,\beta} = \max_{x \in [0,1]} (x(1-x))^{\frac{1}{2} - \beta} \frac{m(\beta)}{\sqrt{q}}
\leq \frac{m(\beta)}{\sqrt{q}} \left(\frac{1}{4}\right)^{\frac{1}{2} - \beta}.
\]

Combining this estimate with Corollary [5] gives the non-rigorous prediction
\[
\mathbb{P}(X_n \in [N^{-\gamma}, 1 - N^{-\gamma}]) | X_0 = x)
\leq \frac{(x(1-x))^{\beta}}{(1 - N^{-\gamma})^{\beta}} \frac{m(\beta)}{\sqrt{q}} \left(\frac{1}{4}\right)^{\frac{1}{2} - \beta}.
\]

This implies the following lemma.

Lemma 13. If $g(x) = g(1-x)$, then $(T_qg)(x) = (T_qg)(1-x)$.

Proof: Working directly, one finds that
\[
(T_qg)(x) = \frac{1}{q} \sum_{i=0}^{q-1} g(\psi_i(x))
= \frac{1}{q} \sum_{i=0}^{q-1} g(1 - \psi_i(x))
= \frac{1}{q} \sum_{i=0}^{q-1} g(\psi_{q-i-1}(1-x)).
\]
\[
\psi_i(x) = \begin{cases}
\sum_{i=0}^{q-1} g(\psi_i(1-x)) \\
(T_q g)(1-x).
\end{cases}
\]

The well-known Chernoff bound for the binomial tail probability implies that, for \(i + 1 \geq qx\), one has
\[
\psi_i(x) = P(Bin(q, x) \geq i + 1) \leq e^{-qD(\frac{1}{q}||x)}, \tag{4}
\]
where \(D(y||x) \triangleq y \ln \frac{y}{x} + (1-y) \ln \frac{1-y}{1-x}\) is the Kullback-Leibler divergence between two Bernoulli distributions. Similarly, for \(i \leq qx\), one has
\[
1 - \psi_i(x) = P(Bin(q, x) \leq i) \leq e^{-qD(\frac{1}{q}||x)}. \tag{5}
\]

Lemma 14. For \(x \leq y\), we have
\[
P(Bin(q, x) \geq qy) \leq e^{-qD(y,x)},
\]
where \(D(y,x) \triangleq \frac{1}{2}(y-x)^2/(x(1-x) + (1-2x)(y-x)/3)\). Similarly, for \(x \geq y\), we have \(P(Bin(q, x) \leq qy) \leq e^{-qD(y,x)}\).

Proof: It is well known from the Chernoff bound that \(P(Bin(q, x) \geq qy) \leq e^{-qD(y,x)}\) for \(x \leq y\), where \(D(y||x) \triangleq y \ln \frac{y}{x} + (1-y) \ln \frac{1-y}{1-x}\) is the Kullback-Leibler divergence. Thus, the first result holds if \(d(y,x) \leq D(y||x)\) for \(x \leq y\). Since \(D(y||1-x) = D(y||x)\) and \(d(1-y,1-x) = d(y,x)\), the second result follows from the first by symmetry. Thus, it suffices to prove that \(d(y,x) \leq D(y||x)\) for \(x \leq y\). To do this, we first observe that
\[
\frac{d}{dx} (d(y,x) - D(y||x)) = \frac{(1-x)(1-x)/2}{x(1-x)(y-x(x+2y-2))} \geq 0
\]
for \(x \leq y\). Next, we observe that
\[
\int_x^y \left(\frac{d}{dx} (d(y,x') - D(y||x')) \right) dx = (d(y,x) - D(y||y)) - (d(y,x) - D(y||x)) \geq 0
\]
because \(x \leq y\) throughout the range of integration. Since \(d(y,y) = D(y||y) = 0\), this implies \(d(y,x) \leq D(y||x)\) for \(x \leq y\).

Lemma 15. For \(x, y \in [0, 1]\), we have
\[
D(y||x) \geq (y-x) + (1-y) \ln \frac{1-y}{1-x}
\]
and, for \(z \in [0, 1]\), we have
\[
1 - z + z \ln z \geq \frac{1}{2}(1-z)^2.
\]

Proof: The first bound follows from lower bounding the \(y \ln \frac{y}{x}\) term in \(D(y||x)\) by
\[
y \ln \frac{y}{x} = -y \ln \frac{y-x}{y} \geq -y \left(\frac{y-x}{y} \right) = -x.
\]

Let \(f(z) = z + (1-z) \ln (1-z)\) and observe that
\[
f(1-z) = 1 - z + z \ln z.
\]
Since \(f'(0) = f(0) = 0\) and \(f''(z) = \frac{1}{1-z} \geq 1\) for \(z \in [0, 1]\), it follows that
\[
f(z) = \int_0^z \int_0^y f''(x) dx \ dy \geq \frac{1}{2}z^2.
\]
Thus, \(f(1-z) = 1 - z + z \ln z \geq \frac{1}{2}(1-z)^2\).

Lemma 16. For \(\beta \in (0, \frac{1}{2}]\), \(V(x) = (x(1-x))^\beta\), and \(x \in [\frac{1}{2}, 1]\), we have
\[
\frac{1}{q} V(\psi_{[qx]} - 1(x)) \leq \frac{2(x(1-x))^\beta}{\sqrt{2q}}.
\]

Proof: If \(x \in [\frac{1}{2}, 1 - \frac{1}{q}]\), then we have
\[
\frac{1}{q} V(\psi_{[qx]} - 1(x)) \leq \frac{2(x(1-x))^\beta}{\sqrt{2q}} \leq \frac{2(x(1-x))^\beta}{\sqrt{2q}} \frac{1}{q} \left(\frac{1}{4} \right)^\beta
\]
\[
\leq \frac{2(x(1-x))^\beta}{\sqrt{2q}} \frac{1}{q} \left(\frac{1}{4} \right)^\beta
\]
\[
\leq \frac{2(x(1-x))^\beta}{\sqrt{2q}} \sup_{q \geq 2} q^{1/2} 4^\beta
\]
\[
= \frac{(x(1-x))^\beta}{\sqrt{2q}}.
\]
where \((a)\) holds because \(V(z) \leq \left(\frac{1}{4} \right)^\beta\), \((b)\) follows from \(2x \geq 1\) and \(q(1-x) \geq 1\), and \((c)\) holds because the argument of the supremum is decreasing in \(q\). If \(x \in (1 - \frac{1}{2}, 1]\), then assume \(x = 1 - \frac{\alpha}{q}\) for \(\alpha \in [0, 1]\) and observe that
\[
\frac{1}{q} V(\psi_{[qx]} - 1(x)) = \frac{1}{q} V(\psi_{[q-1]}(x)) = \frac{1}{q} V(x(1-x)^\beta)
\]
\[
= \frac{1}{q} \left(\frac{1}{q} (1-x)^\beta \right)^\beta
\]
\[
= \frac{1}{q} \left(\frac{1}{q} \left(\frac{1}{q} \right)^q \left(1 - \left(\frac{1}{q} \right)^q \right) \right)^\beta
\]
\[
= \frac{1}{q} e^{-q \alpha} \alpha
\]
\[
= \frac{\left(\frac{1}{q} \left(1 - \alpha \right) \right)^\beta}{\sqrt{q}} \frac{1}{q} e^{-q \alpha} \alpha
\]
\[
= \frac{\left(\frac{1}{q} \left(1 - \alpha \right) \right)^\beta}{\sqrt{q}} \frac{q^{1/2}}{\left(\frac{1}{q} \right)^\beta} e^{-q \alpha}
\]
\[
\leq \frac{(x(1-x))^\beta}{\sqrt{2q}} \sup_{q \geq 2} q^{1/2} 4^\beta e^{-q \alpha}
\]
\[
= \frac{(x(1-x))^\beta}{\sqrt{2q}}.
\]
\(\frac{(x(1-x))^\beta}{\sqrt{q}} \sup_{\alpha \in [0,1]} \left((1 - \frac{q}{2}) \right)^\beta e^{-\alpha \beta} \leq \frac{(x(1-x))^\beta}{\sqrt{q}} 2^{\beta - 1/2}, \)

where (a) follows from \(1 - \alpha \leq \left(1 - \frac{q}{2} \right)^q \leq e^{-\alpha} \), (b) holds because the argument of the supremum is decreasing in \(q \), and (c) holds because the argument of the supremum is decreasing in \(\alpha \).

C. Proof of Lemma 5

Let \(V(x) = (x(1-x))^\beta \) with \(\beta \in (0, \frac{1}{2}] \). Based on Lemma 13, it is sufficient to analyze \((T_q V)(x) \) for \(x \geq 1/2 \). To do this, we will use the decomposition

\[
\frac{1}{q} \sum_{i=0}^{[qx]-2} V(q(i+1)x) = \frac{1}{q} \left(\sum_{i=0}^{[qx]-2} V(q(i)x) \right) + V(q([qx]-1)x) + \sum_{i=1}^{[q]-1} V(q(i)x). \tag{6}
\]

First, we consider the upper sum in (6). Applying (4) to \(\psi_i(x) \) shows that

\[
\psi_i(x) = \mathbb{P}(\text{Bin}(q, x) \geq i + 1) \leq e^{-qD(\frac{i+1}{q} || x)}
\]

for \(i + 1 \geq qx \). Thus, for \(i \in \{[qx], \ldots, [q]-1\} \), we have \(V(\psi_i(x)) \leq (\psi_i(x))^{\beta} \leq e^{-qD(\frac{i+1}{q} || x}) \) and

\[
\frac{1}{q} \sum_{i=0}^{[q]-2} V(q(i)x) \leq \frac{1}{q} \sum_{i=0}^{q-1} e^{-qD(\frac{i+1}{q} || x}) \leq \frac{1}{q} \sum_{i=0}^{q-1} e^{-qD(\frac{i+1}{q} \frac{q}{q} || x}) d\gamma \]

\[
\leq \frac{1}{q} \int_{[q]-1/q}^{1} e^{-qD(\frac{i+1}{q} || x}) d\gamma \]

where \(e^{-qD(\frac{i+1}{q} || x}) \leq \int_0^1 e^{-qD(\frac{i+1}{q} || x}) d\gamma \) holds in (a) because \(e^{-qD(\frac{i+1}{q} || x}) \) is decreasing in \(z \) for \(i \geq qx \). Also, (b) follows from grouping terms into one integral and changing the variable of integration. Although this bound holds for all \(x \in [0,1] \), the sum is empty for \(x \in (1 - \frac{1}{q}, 1] \) and trivially equal to zero.

For \(x \geq \frac{1}{2} \), an upper bound on the integral is given by

\[
\int_{[q]-1/q}^{1} e^{-qD(\frac{i+1}{q} || x}) d\gamma \leq \int_{x}^{x} e^{-qD(\frac{i+1}{q} || x}) d\gamma \leq \int_{x}^{x} \exp \left(\frac{-q\beta(y-x^2)}{2(x(1-x) + (2x-1)(x-y)/3) \beta} \right) dy \leq \int_{2x-1}^{x} \exp \left(\frac{-q\beta(y-x^2)}{2((1-x) + (1-x)/3) \beta} \right) dy
\]

where (a) follows from Lemma 14 and (b) holds because \((1 - 2x)(y - x) \leq 0 \) for \(y \geq x \).

Now, we consider the lower sum in (6). Similarly, for \(i \in \{0, \ldots, [qx] - 2\} \), (5) shows that

\[
\psi_i(x) = 1 - \mathbb{P}(\text{Bin}(q, x) \leq i) \geq 1 - e^{-qD(\frac{i}{q} || x}).
\]

For \(i \in \{0, \ldots, [qx] - 2\} \), we have \(V(1 - \psi_i(x)) \leq (1 - \psi_i(x))^{\beta} \leq e^{-qD(\frac{i}{q} || x}) \) and thus

\[
\frac{1}{q} \sum_{i=0}^{[q]-2} V(q(i)x) = \frac{1}{q} \sum_{i=0}^{[q]-2} V(1 - \psi_i(x)) \leq \frac{1}{q} \sum_{i=0}^{[q]-2} e^{-qD(\frac{i}{q} || x}) \leq \frac{1}{q} \sum_{i=0}^{[q]-2} \int_0^1 e^{-qD(\frac{i}{q} || x}) dx \]

where \(e^{-qD(\frac{i}{q} || x}) \leq \int_0^1 e^{-qD(\frac{i+1}{q} || x}) d\gamma \) holds in (a) because \(e^{-qD(\frac{i+1}{q} || x}) \) is increasing in \(z \) for \(z \in [0,1] \) and \(i + 1 \leq qx \). Also, (b) follows from grouping terms into one integral and changing the variable of integration.

The expression in (9) can be upper bounded using the decomposition

\[
\int_0^{([q]-1)/q} e^{-qD(y || x}) dy \leq \int_{2x-1}^{x} e^{-qD(y || x}) dy + \int_{2x-1}^{x} e^{-qD(y || x}) dy
\]

where \(e^{-qD(\frac{i+1}{q} || x}) \leq \int_0^1 e^{-qD(\frac{i+1}{q} || x}) d\gamma \) holds in (a) because \(e^{-qD(\frac{i+1}{q} || x}) \) is decreasing in \(z \) for \(i \geq qx \). Also, (b) follows from grouping terms into one integral and changing the variable of integration.

The first term in (10) can be upper bounded with

\[
\int_{2x-1}^{x} e^{-qD(y || x}) dy \leq \int_{2x-1}^{x} \exp \left(\frac{-q\beta(y-x^2)}{2(x(1-x) + (2x-1)(x-y)/3) \beta} \right) dy \leq \int_{2x-1}^{x} \exp \left(\frac{-q\beta(y-x^2)}{2((1-x) + (1-x)/3) \beta} \right) dy
\]
\[\sqrt{\frac{2\pi(1-x)}{3q\beta}} \text{erf} \left(\sqrt{\frac{3\beta q(1-x)}{8}} \right) \]
\[\leq \sqrt{\frac{4\pi x(1-x)}{3q\beta}}. \quad (11) \]

where (a) follows from Lemma 14, (b) holds because \(x(1-x) \leq 1-x \) and \((2x-1)(x-y) \leq 1-x \) for \(y \geq 2x-1 \) and \(x \geq \frac{1}{2} \), and (c) follows from \(2x \geq 1 \) for \(x \geq \frac{1}{2} \). The second term in (10) can be upper bounded with

\[\int_0^{2x-1} e^{-\beta D(y|x)} dy \]
\[\leq \int_0^{2x-1} \exp \left(-\beta \left((y-x) + (1-y) \ln \frac{1-y}{1-x} \right) \right) dy \]
\[= (1-x) \int_2^{1-x} \exp \left(\frac{1}{2} \beta (x-1) (z-1)^2 \right) dz \]
\[\leq \pi \sqrt{\frac{2q\beta(1-x)}{2}} \text{erf} \left(\frac{q\beta(1-x)(z-1)^2}{2} \right) \mid_{z=2}^{1-x} \]
\[\leq \sqrt{\frac{\pi x(1-x)}{q\beta}}, \quad (12) \]

where (a) follows from Lemma 15, (b) is given by the change of variables \(y \mapsto 1-z(1-x) \), (c) holds because \(1-z + z \ln z \geq \frac{3}{2}(z-1)^2 \) for \(z \in [0, 1] \), (d) follows from \(\text{erf}(b) - \text{erf}(a) \leq 1 \) for \(b \geq a \geq 0 \), and (e) holds because \(2x \geq 1 \) for \(x \geq \frac{1}{2} \).

Now, we combine Lemma 16 with (8), (11), and (12) to see that

\[(T_q V)(x) = \frac{1}{q} \left[\sum_{i=0}^{[q\beta]-2} V(\psi_i(x)) + \sum_{i=[q\beta]}^{q-1} V(\psi_i(x)) \right] \]
\[\leq \int_0^{([q\beta]-1)/q} e^{-\beta D(y|x)} dy + \frac{1}{q} V(\psi_{[q\beta]-1}(x)) \]
\[+ \int_{[q\beta]/q}^{1} e^{-\beta D(y|x)} dy \]
\[\leq \sqrt{\frac{\pi x(1-x)}{q\beta}} + \sqrt{\frac{4\pi x(1-x)}{3q\beta}} + \frac{(2x(1-x))^\beta}{\sqrt{2q}} + \sqrt{\frac{\pi x(1-x)}{2q\beta}} \]
\[\leq (2x(1-x))^\beta + A \sqrt{x(1-x)} \]

where \(A = \sqrt{\pi+\sqrt{\frac{4\pi}{3}}} + \sqrt{\frac{\pi}{2}} \). Combining Definition 3 with (13), we see that

\[\lambda_{q,\beta} \eqdef \sup_{x \in (0,1)} \frac{(T_q V)(x)}{V(x)} \]
\[\leq \sup_{x \in (0,1)} \left(\frac{2^\beta}{\sqrt{2q}} + \frac{A}{\sqrt{q\beta}} (x(1-x))^{1/2-\beta} \right) \]
\[\leq \frac{2^\beta}{\sqrt{2q}} + A \left(1 + \frac{2^\beta \sqrt{3}}{\sqrt{2} (\frac{1}{4})^{1/4}} \right) \]
\[\leq \frac{6}{\sqrt{q\beta}} \left(\frac{1}{4} \right)^{3/4} \leq 6 \]

where (a) holds because the supremum is achieved at \(x = \frac{1}{2} \) and (b) holds because

\[A + \frac{2^\beta \sqrt{3}}{\sqrt{2} (\frac{1}{4})^{3/4}} \leq 6 \]

for \(\beta \in (0, \frac{1}{2}) \).

IV. Conclusion

In this paper, we investigate the relationship between the blocklength and the gap to capacity for the \(q \)-ary Reed-Solomon polar codes introduced by Mori and Tanaka. These codes have length \(N = q^n \), where \(n \) is the number of steps in the polarization process. When one of these codes is transmitted over a \(q \)-ary erasure channel with erasure probability \(\epsilon \), its effective channels are \(q \)-ary erasure channels and their erasure rate satisfy a closed-form recursion. By analyzing this recursion, we show that, for any \(\gamma > 0 \) and \(\delta > 0 \), there is a \(q_0 \) such that, for all \(q \geq q_0 \), the fraction of effective channels with erasure rate at most \(O(N^{-\gamma}) \) is at least \(1 - \epsilon - O(N^{-1/2+\delta}) \). Thus, the gap to capacity scales at a rate very close to the optimal rate of \(O(N^{-1/2}) \).

This naturally suggests two interesting open questions. First, can this result be extended to noisy \(q \)-ary channels? Second, can one prove that binary polar codes with \(\ell \times \ell \) polarization kernels also achieve near-optimal scaling on the BEC as \(\ell \to \infty \)? This question is discussed in some detail in [21].
REFERENCES

[1] V. Strassen, “Meßfehler und information,” Zeitschrift für Wahrscheinlichkeitstheorie, vol. 2, no. 4, pp. 273–305, 1964.
[2] J. N. Laneman, “On the distribution of mutual information,” in Proc. 1st Annual Workshop on Inform. Theory and its Appl., (San Diego, CA, USA), Feb. 2006.
[3] M. Hayashi, “Information spectrum approach to second-order coding rate in channel coding,” IEEE Trans. Inform. Theory, vol. 55, no. 11, pp. 4947–4966, 2009.
[4] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inform. Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
[5] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes,” in Proc. IEEE Int. Symp. Inform. Theory, (Toronto, Canada), pp. 1173–1177, July 2008.
[6] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inform. Theory, vol. 55, pp. 3051–3073, July 2009.
[7] E. Arikan and E. Telatar, “On the rate of channel polarization,” in Proc. IEEE Int. Symp. Inform. Theory, pp. 1493–1495, 2009.
[8] S. H. Hassani, R. Mori, T. Tanaka, and R. L. Urbanke, “Rate-dependent analysis of the asymptotic behavior of channel polarization,” IEEE Trans. Inform. Theory, vol. 59, no. 4, pp. 2267–2276, 2013.
[9] D. Goldin and D. Burshtein, “Improved bounds on the finite length scaling of polar codes,” IEEE Trans. Inform. Theory, vol. 60, no. 11, pp. 6966–6978, 2014.
[10] S. H. Hassani, K. Alishahi, and R. Urbanke, “Finite-length scaling for polar codes,” IEEE Trans. Inform. Theory, vol. 60, no. 10, pp. 5875–5898, 2014.
[11] A. Fazeli and A. Vardy, “On the scaling exponent of binary polarization kernels,” in Proc. Annual Allerton Conf. on Commun., Control, and Comp., pp. 797–804, 2014.
[12] V. Guruswami and A. Velingker, “An entropy subset inequality and polynomially fast convergence to Shannon capacity over all alphabets,” arXiv preprint arXiv:1411.6993 2014.
[13] N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, “Binary polarization kernels from code decompositions,” IEEE Trans. Inform. Theory, vol. 61, no. 5, pp. 2227–2239, 2015.
[14] V. Guruswami and P. Xia, “Polar codes: Speed of polarization and polynomial gap to capacity,” IEEE Trans. Inform. Theory, vol. 61, no. 1, pp. 3–16, 2015.
[15] D. Goldin and D. Burshtein, “On the finite length scaling of ternary polar codes.” arXiv preprint arXiv:1502.02925 2015.
[16] M. Mondelli, S. H. Hassani, and R. Urbanke, “Unified scaling of polar codes: Error exponent, scaling exponent, moderate deviations, and error floors.” [Online]. Available: http://arxiv.org/abs/1501.0244 2015.
[17] R. Mori and T. Tanaka, “Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes,” in Proc. IEEE Inform. Theory Workshop, pp. 1–5, Aug. 2010.
[18] R. Mori and T. Tanaka, “Source and channel polarization over finite fields and Reed-Solomon matrices,” IEEE Trans. Inform. Theory, vol. 60, no. 5, pp. 2720–2736, 2014.
[19] F. R. Kschischang, “Constructing Reed-Muller codes from Reed-Solomon codes over GF(q),” in Proc. IEEE Int. Symp. Inform. Theory, pp. 195–195, 1993.
[20] M. Hairer and J. C. Mattingly, “Yet another look at Harris’ ergodic theorem for Markov chains,” in Seminar on Stochastic Analysis, Random Fields and Applications VI, pp. 109–117, Springer, 2011.
[21] S. H. Hassani, Polarization and spatial coupling: Two techniques to boost performance. PhD thesis, École Polytechnique Fédérale de Lausanne, 2013.