Draft genome sequence of *Microbacterium oleivorans* strain Wellendorf implicates heterotrophic versatility and bioremediation potential

Anton P. Avramov a, M.B. Couger a, Emily L. Hartley a, Craig Land a, Rachel Wellendorf a, Radwa A. Hanafy a, Connie Budd a, Donald P. French b, Wouter D. Hoff a, Noha Youssef a,⁎

a Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
b Department of Integrative Biology, Oklahoma State University, Stillwater, OK, United States

Abstract

Microbacterium oleivorans is a predominant member of hydrocarbon-contaminated environments. We here report on the genomic analysis of *M. oleivorans* strain Wellendorf that was isolated from an indoor door handle. The partial genome of *M. oleivorans* strain Wellendorf consists of 2,916,870 bp of DNA with 2831 protein-coding genes and 49 RNA genes. The organism appears to be a versatile mesophilic heterotroph potentially capable of hydrolysis a suite of carbohydrates and amino acids. Genomic analysis revealed metabolic versatility with genes involved in the metabolism and transport of glucose, fructose, rhamnose, galactose, xylose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine. This is the first detailed analysis of a *Microbacterium oleivorans* genome.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: *Microbacterium oleivorans* Draft genome Detailed annotation Student Initiated Microbial Discovery (SIMD) project Bioremediation potential Metabolic versatility

1. Introduction

The strain Wellendorf was isolated from a door handle surface with frequent human use in Stillwater, OK as part of the Student Initiated Microbial Discovery (SIMD) project (introduced in [1]). The *Microbacterium* genus is a phylogenetically and physiologically diverse genus with members ubiquitously found in polycyclic aromatic hydrocarbon (PAH)-contaminated [2,3], as well as heavy metal-contaminated [4,5] soils. PAHs and heavy metals are persistent environmental contaminants with both environmental and human health concerns [6–8]. Genomic analysis of strains belonging to the genus Microbacterium can contribute to our understanding of the molecular mechanisms of PAHs degradation and heavy metal mobilization and could potentially contribute to natural-attenuation-based, and engineered bioremediation schemes in multiple environments [9,10]. Here we present the draft genomic sequence, and first detailed genomic annotation and analysis of a *Microbacterium oleivorans* strain.

2. Materials and methods

2.1. Genome project history

The draft assembly and annotation were completed in 2015–2016. Table 1 shows the genome project information.

2.2. Growth conditions and genomic DNA preparation

M. oleivorans strain Wellendorf was grown overnight at 30 °C on tryptic soy agar plates. Genomic DNA of high sequencing quality was isolated using the MPBio PowerSoil® DNA extraction kit according to manufacturer’s instructions. Negative stain TEM micrographs were obtained using the services of the Oklahoma State University Microscopy Lab. Briefly, the sample was placed on a carbon film TEM grid and allowed to incubate for 2 min, after which the excess liquid was wicked off. Phosphotungestic acid (PTA; 2% w/v) was then added to the grid followed by a 45-s incubation. Excess PTA was blotted off and the grid was allowed to dry before it was visualized using JOEL JEM-2100 transmission electron microscope.

2.3. Genome sequencing and assembly

The genome of *M. oleivorans* strain Wellendorf was sequenced using the Illumina MiSeq platform at the University of Georgia Genomics Facility using 2 × 300 paired end chemistry and an average library insert...
size of 700 bp. Quality filtered sequence data were assembled with the short read de Bruijn graph assembly program Velvet [11] using a kmer value of 101 bp and a minimum contig coverage value of 7 ×. The genome project is deposited in GOLD (Genomes On-Line Database) and this Whole Genome Shotgun (WGS) project has been deposited in GenBank under the accession MAYO00000000. The version described in this paper is version MAYO01000000.

2.4. Genome annotation

Gene models were created using the prokaryotic gene calling software package Prodigal [12]. A total of 2885 gene models were predicted. The average gene size was 961 bp. Translated protein sequences were functionally annotated using a combination of NCBI Blast C++ homology search and HMMER 3.0 [13] hmmscan against the PFAM 26.0 database [14]. Additional gene analysis and functional annotation were carried out through the Integrated Microbial Genomes Expert Review (IMG-ER) platform.

2.5. Phylogenetic analysis

A maximum likelihood phylogenetic tree was constructed using multiple sequence alignments of 16S rRNA gene sequences. Multiple sequence alignment was conducted in Mega, as were the selection of the best substitution model, and the maximum likelihood analysis [15]. The tree was obtained under “TN93 + G + Γ” model with a proportion of invariable sites of 0.25, and a variable site γ shape parameter of 0.51. Escherichia coli partial 16S rRNA gene isolate ECSD9 was used as the outgroup. Bootstrap values, in percent, were based on 200 replicates.

![Fig. 1. Negative stain TEM micrograph of Microbacterium oleivorans strain Wellendorf.](Image)
2.6. Comparative genomics

We sought to compare the genome of *Microbacterium oleivorans* strain Wellendorf to 17 closely related genomes (IMG genome IDs: 2576861779, 2519899511, 2639762631, 2627854169, 2619619265, 2609459760, 2576861795, 2639762630, 2636415545, 2645728100, 2540341240, 2643221903, 2627854213, 2541047020, 2608642165, 2522572100, and 2526164566) using the "Genome clustering" function on the IMG-ER analysis platform based on the COG profile. We also used principal component analysis to compare the genomes based on several genomic features including the genome size, the number of genes, the number of transporters identified, the GC content, the number of non-coding bases, the number of genes belonging to COG categories, as well as the number of genes belonging to each COG category [16,17]. The PCA analysis was conducted using the “princomp” function in the labdsv library of R [18]. The results were visualized using a biplot, where genomes were represented by stars and genomic features or COG categories used for comparison were represented by arrows, where the arrow directions follow the maximal abundance, and their lengths are proportional to the maximal rate of change between samples.

3. Results and discussion

3.1. Classification and features

Cells of *M. oleivorans* strain Wellendorf are Gram positive, non-motile, aerobic irregular rods that were arranged in pairs (Fig. 1). Colonies on TSA agar were orange-red.

Within the genus *Microbacterium*, 94 species are described with validly published names. Strain Wellendorf shares 93.23–100% 16S rRNA gene identity with other species in the *Microbacterium* genus (Table 2). Compared to other *Microbacterium oleivorans* strains with sequenced genomes, Strain Wellendorf shares 99% 16S rRNA gene similarity with *Microbacterium oleivorans* strains CD11_3 (GenBank accession number LSTV00000000) and NBRC 103075 (GenBank accession number BCRG01000000), and 100% similarity to strain RIT293 [19].

Table 2

Microbacterium species	Type strain	Wellendorf strain % similarity
M. pumilum	KV-488	97.74%
M. pygmaeum	KV-490	97.67%
M. radiodurans	GIMN 1.002	97.43%
M. rhizomatis	DCY100	95.17%
M. saccharophilum	K-1	98.04%
M. superdere	ATCC 19272	98.27%
M. schleiferi	ATCC 51473	98.42%
M. sediminicola	YM10-847	96.81%
M. sedinis	YLB-01	96.27%
M. shaaxiensis	CCNWS960	97.90%
M. soli	DCY 117	95.25%
M. suwonense	M1T889	96.27%
M. terrae	ATCC 51476	97.65%
M. terregens	ATCC 13345	97.74%
M. terricola	KV-448	97.74%
M. thalassium	CIP 105728	98.12%
M. trichotheccenolyticum	ATCC 51475	97.82%
M. ulmi	XIL02	96.66%
M. xy LANITYCUM	S3-E	97.05%
M. yannicii	G72	97.89%

Table 3

Classification and general features of *M. oleivorans* strain Wellendorf [30].

MIGS ID	Property	Term	Evidence code
MIGS-6	Habitat	Indoor environment, door handle	TAS [22]
MIGS-6.3	Salinity	2–4% NaCl (w/v)	TAS [22]
MIGS-22	Oxygen requirement	Obligate aerobe	TAS [22]
MIGS-15	Biotic relationship	free-living	IDA
MIGS-14	Pathogenicity	Unknown	IDA
MIGS-4	Geographic location	USA	IDA
MIGS-5	Sample collection	March 2016	IDA
MIGS-4.1	Latitude	36.1157	IDA
MIGS-4.2	Longitude	−97.0586	IDA
MIGS-4.4	Altitude	1 M	IDA

* Evidence codes - IDA: inferred from direct assay; TAS: traceable author statement (i.e., a direct report exists in the literature); NAS: non-traceable author statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [31].
Phylogenetic analysis based on the 16S rRNA gene placed strain *M. oleivorans* BAS69 as the closest taxonomic relative of *M. oleivorans* strain Wellendorf (Table 3 and Fig. 2).

3.2. Genome properties

The genome assembly produced a contig N50 of 2,860,671 bp with a total genome size of 2,916,870 bp. The GC content was 69.57%. Forty-nine RNA genes were identified in the genome including 4 ribosomal RNA and 45 tRNA genes. The ribosomal RNA operon showed an atypical organization. Of the 2885 detected, 2831 were protein-coding, of which 76.26% had a function prediction, 65.34% represented a COG functional category, and 4.99% were predicted to have a signal peptide. Psort [20] identified proteins as 49.45% cytoplasmic, 0.85% extracellular, and 31.54% associated with the membrane. Based on the presence of 139 single copy genes [21], the genome is predicted to be 77.69% complete. Genome statistics are shown in Table 4. The distribution of genes into COG functional categories is shown in Table 5. The genome also encodes a complete TCA cycle and electron transport chain with P/V-/type ATPase subunits confirming the aerobic nature of the microorganism. While lactate and acetate fermentation capabilities were also identified in the genome, the facultative nature of this organism was not confirmed in the lab. Genomic analysis suggested auxotrophy for arginine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine, and fatty acids as carbon and energy sources. The genome also encodes a complete ABC and secondary transporters that could potentially import these elements.

Further genomic analysis identified almost compete to complete catabolic KEGG pathways for each of the following carbon sources; glucose, fructose, rhamnose, galactose, xylose, arabinose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine and cysteine, and fatty acids as carbon and energy sources. The genome also encodes a complete TCA cycle and electron transport chain with P/V-/type ATPase subunits confirming the aerobic nature of the microorganism. While lactate and acetate fermentation capabilities were also identified in the genome, the facultative nature of this organism was not confirmed in the lab. Genomic analysis suggested auxotrophy for arginine, asparagine, thiamine, ubiquinone and biotin. In agreement with this observation, comparison of the protein-coding genes against the transporter database [23] identified several ABC and secondary transporters that could potentially import these elements.

Table 4

Attribute	Value	% of Total
Genome size (bp)	2,916,870	100%
DNA coding (bp)	2,726,938	93.49%
DNA G + C (bp)	2,029,207	69.57%
DNA scaffolds	2	100%
Total genes	2885	100%
Protein coding genes	2831	98.13%
RNA genes	54	1.87%
Pseudo genes	0	
Genes in internal clusters	527	18.27%
Genes with function prediction	2159	74.84%
Genes assigned to COGs	1889	65.48%
Genes with P Lam domains	2271	78.72%
Genes with signal peptides	144	4.93%
Genes with transmembrane helices	887	27.97%
CRISPR repeats	0	

Table 5

Code	Value	% of Total	Description
J	163	7.60%	Translation, ribosomal structure and biogenesis
A	1	0.05%	RNA processing and modification
K	191	8.98%	Transcription
L	96	4.51%	Replication, recombination and repair
B	0	0%	Coenzyme transport and metabolism
D	22	1.03%	Cell cycle control, cell division, chromosome partitioning
V	40	1.88%	Defense mechanisms
T	88	4.14%	Signal transduction mechanisms
M	98	4.61%	Cell wall/membrane biogenesis
N	16	0.75%	Cell mobility
U	29	1.36%	Intracellular trafficking and secretion
O	82	3.85%	Posttranslational modification, protein turnover, chaperones
C	106	4.98%	Energy production and conversion
G	230	10.81%	Carbohydrate transport and metabolism
E	217	10.2%	Amino acid transport and metabolism
F	76	3.75%	Nucleotide transport and metabolism
H	123	5.78%	Coenzyme transport and metabolism
I	93	4.37%	Lipid transport and metabolism
P	108	5.08%	Inorganic ion transport and metabolism
Q	38	1.79%	Secondary metabolites biosynthesis, transport and catabolism
R	203	9.54%	General function prediction only
S	95	4.46%	Function unknown
–	1000	34.66%	Not in COGs

The total is based on the total number of protein coding genes in the genome.
Fig. 3. (A) COG profile clustering of the genomes compared in this study. (B) Principal component analysis biplot based on the genomic features and COG category distribution in the genomes compared. Genomes are represented by stars (strain names are shown). Strain Wellendorf is shown in blue. Arrows represent genomic features or COG categories used for comparison. The arrow directions follow the maximal abundance, and their lengths are proportional to the maximal rate of change between genomes. The first two components explained 75% of variation.
When compared against the virulence factor database [24], the genome of M. oleivorans strain Wellendorf showed 668 virulence factor hits (19% of the protein-coding genes). These included secretion systems Type I and Type VII, among others. The Wellendorf genome also encoded several proteins with bioremediation potential. These include enzymes for 4-hydroxyphenylacetate degradation via the meta-cleavage pathway, as well as for detoxification of nitrate [25], a known plant-secreted toxin [26], and of nitroacetaate [27], a chelating agent used in industry and frequently encountered in soil [28]. The genome also encodes for enzymes that can salvage S from organo-S-compounds (e.g. alkanesulfonates) in cases of limiting inorganic S [29].

3.4. Insights from comparative genomics

When the genome of M. oleivorans strain Wellendorf was compared to 17 closely related genomes based on their COG profile, the genome clustered with Microbacterium oleivorans strain RIT293 (Fig. 3A). A closer look at the COG function profile of M. olevorans strain Wellendorf in comparison to only Microbacterium oleivorans strains is shown in Table S1. Similarity to M. olevorans strains at the functional level was in agreement with the phylogenetic position of the isolate as a member of the genus (Fig. 2). We used genomic features including the genome size, the number of genes, the number of transporters identified, the GC content, the number of non-coding bases, the number of genes belonging to COG categories, as well as the number of genes belonging to each COG category to cluster M. olevorans strain Wellendorf genome in comparison to the 17 other closely related genomes. Results are shown in Fig. 3B. The genome of M. oleivorans strain Wellendorf clustered with the other M. olevorans genome based on the enrichment in the number of transporters identified in the genomes.

4. Conclusions

This study presents the genome sequence and annotation of Microbacterium oleivorans strain Wellendorf. The genome revealed an extensive sugar and amino acid degradation machinery (for glucose, fructose, rhamnose, galactose, xylose, arabinose, alanine, aspartate, asparagine, glutamate, serine, glycine, threonine, and cysteine). Comparison to the virulence factor database identified 668 genes in the genome with potential virulence-associated function including type I and Type VII secretion systems. The genome also suggests the capability of degradation of fatty acid and the detoxification of environmental contaminants including phenylacetate, nitrate, and nitroacetaate. Comparative genomics using general genomic features as well as the COG function profile coincided with the phylogenetic position predicted based on the 16S rRNA gene sequence and clustered the strain Wellendorf with another representative of the M. olevorans species.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.phyto.2016.09.005.

Acknowledgements and funding

Microbacterium oleivorans strain Wellendorf was selected for sequencing as part of a project at Oklahoma State University funded by the Howard Hughes Medical Institute aimed at improving student persistence through authentic, undergraduate research. The strain was isolated by an undergraduate student (RW) in an introductory microbiology course, modified to be the initial course in our microbial-discovery and genome-analysis two-semester course sequence. The genome was analyzed by a team of undergraduate (ALH and CL) and graduate (APA) students as part of an upper division microbial genomics class. This is Draft Genome #4 in the SIMD project supported in part by a grant from the Howard Hughes Medical Institute (grant number 1554854) through the Science Education Program. WDH acknowledgments support by NSF grants MCB-1051590, MRI-1338097, and CHE-1412500.

References

[1] M.B. Couger, et al., Draft genome sequence of the environmental isolate Chrysobacterium sp. Hurlbut01, Genome Announc. 3 (5) (2015).
[2] P. Kaushik, et al., Arsenic hyper-tolerance in four Microbacterium species isolated from soil contaminated with textile effluent. Toxicol. Int. 19 (2) (2012) 188–194.
[3] D. Lal, et al., Microbacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int. J. Syst. Evol. Microbiol. 60 (Pt 11) (2010) 2634–2638.
[4] M.W. Henson, et al., Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chrome contaminated sediment. PeerJ. 3 (2015), e1395.
[5] E. Coeretter, et al., Draft genome sequences of 10 Microbacterium spp., with emphasis on heavy metal-contaminated environments. Genome Announc. 3 (3) (2015).
[6] T. Chertvertayachan, D. Shimazaki, K. Yamamoto, A comparison of temporal variation of particle-bound poly cyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments: Tokyo, Japan, and Bangkok, Thailand. Atmos. Environ. 36 (12) (2002) 2037–2037.
[7] P.B. Tchouwou, et al., Heavy metals toxicity and the environment. EXS 101 (2013) 133–164.
[8] A.M. Freijie, Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: review. J. Assoc. Arab Univ. Basic Appl. Sci. 17 (2015) 90–100.
[9] P.C. Abhilash, S. Sivasubhva, N. Singh, Comparative bioremediation potential of four rhizospheric microbial species against lindane. Chemosphere 82 (1) (2011) 56–63.
[10] P. Pattanapipitpaisal, N.L. Brown, L.E. Macaskie, Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol. Lett. 23 (1) (2001) 61–65.
[11] D.R. Zerbinio, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18 (5) (2008) 821–829.
[12] D. Hyatt, et al., Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11 (2010) 119.
[13] J. Mistry, et al., Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41 (12) (2013), e121.
[14] R. Finn, et al., The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44 (D1) (2016) D279–D285.
[15] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7) (2016) 1870–1874.
[16] S. Kumar, et al., Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diphtheriotes’. ISME J. 9 (2) (2015) 447–460.
[17] N.H. Youssef, K.N. Ashlock-Savage, M.S. Elshahed, Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacterales) in multiple saline sediment habitats. Appl. Environ. Microbiol. 70 (5) (2004) 1581–1589.
[18] S. Kumar, et al., Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diphtheriotes’. ISME J. 9 (2) (2015) 447–460.
[19] N.H. Youssef, K.N. Ashlock-Savage, M.S. Elshahed, Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacterales) in multiple saline sediment habitats. Appl. Environ. Microbiol. 70 (5) (2004) 1581–1589.
[20] S. Kumar, et al., Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diphtheriotes’. ISME J. 9 (2) (2015) 447–460.
[21] D.R. Zerbinio, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18 (5) (2008) 821–829.
[22] D. Hyatt, et al., Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11 (2010) 119.
[23] J. Mistry, et al., Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41 (12) (2013), e121.
[24] R. Finn, et al., The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44 (D1) (2016) D279–D285.
[25] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7) (2016) 1870–1874.
[26] S. Kumar, et al., Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diphtheriotes’. ISME J. 9 (2) (2015) 447–460.
[27] N.H. Youssef, K.N. Ashlock-Savage, M.S. Elshahed, Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacterales) in multiple saline sediment habitats. Appl. Environ. Microbiol. 70 (5) (2004) 1581–1589.
[28] S. Kumar, et al., Insights into the metabolism, lifestyle and putative evolutionary history of the novel archaeal phylum ‘Diphtheriotes’. ISME J. 9 (2) (2015) 447–460.
[29] D.R. Zerbinio, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18 (5) (2008) 821–829.
[28] Y. Xu, et al., Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH: flavin mononucleotide oxidoreductase. J. Bacteriol. 179 (4) (1997) 1112–1116.

[29] H.R. Ellis, Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg. Chem. 39 (5-6) (2011) 178–184.

[30] D. Field, et al., The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 26 (5) (2008) 541–547.

[31] M. Ashburner, et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25 (1) (2000) 25–29.