On the Concept Of Retrotransposons: Controlling Genome and Making Stress Memories

Dimitrios Noutsopoulos

Retrotransposons constitute discrete genetic entities that have attained a large fraction of mammalian genomes during evolution. Their inhabitance as well as their functional impact on host genome has definitively revised the initial viewpoint of "junk DNA". Nowadays, it is widely accepted that retrotransposons may control genome through a variety of mechanisms, affecting different cellular processes. Here, I survey their impact on genome architecture and function with an emphasis on their interwoven relationship with stress.

Key words: Retrotransposon; Retrotransposition; Stress; Adaptation; Cellular memory

© 2016 The Author(s). Published by ACT Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

List of abbreviations

TE, transposable element; LTR, long terminal repeat; LINE, long interspersed nuclear element; SINE, short interspersed nuclear element; ERV, endogenous retrovirus; SVA, SINE-R_VNTR_Alu; VNTR, variable number tandem repeat; siRNA, small interfering RNA; miRNA, microRNA; piRNA, Piwi-interacting RNA; rasiRNA, repeat-associated small interfering RNA; endo-siRNA, endogenous small interfering RNA; S/MAR, scaffold/matrix attachment region; SNV, single nucleotide variation; CNV, copy number variation; lncRNA, long noncoding RNA; UTR, untranslated region.

INTRODUCTION

Mammalian genome fluidity is the consequence of "molecular struggles" taking place in the course of evolution. Abiotic and biotic environmental challenges constituted the driving force of such struggles, with repetitive DNA representing their living traces within genome. Transposable elements (TEs) - a universal genomic feature of all organisms - are mobile repetitive genetic elements that are evolutionary fixed into host genomes. On the basis of the mechanism, by which they move throughout genome, they are classified into two major classes: class I or retrotransposons and class II or DNA transposons (Figure 1A). The mobilization of DNA transposons occurs through a conservative two-step mechanism, so-called "cut and paste", comprising the excision of the element from one genomic site and its subsequent integration into a new one. DNA transposons, in lack of evidence for present-day transpositional activity, are considered genetic relics within modern mammalian genomes. On the other hand, retrotransposons move via a replicative "copy and paste" mechanism, which requires: (a) the production of a retrotransposon RNA-intermediate molecule, (b) its reverse transcription into cDNA and finally (c) integration into the genome. Retrotransposons are subdivided in two broad groups, long terminal repeat (LTR) and non-LTR retrotransposons, both retrotranspositionally active in mammals (Figure 1B). Mammalian retrotransposons have distinct evolutionary origins. LTR retrotransposons have originated from serial germline retroviral infections during evolution, and thereafter inherited in a Mendelian fashion. On the other hand, for non-LTR retrotransposons is proposed to derive from group II introns, cellular RNAs and...
other distinct retrotransposons\cite{13}. Even if the strategies recruited to occupy host genome remain an open question, retrotransposons have been co-evolved with the mammalian genome. Nevertheless, the colonization of mammalian genomes by retrotransposons represents a state of stress. Here, it is briefly highlighted the vast repertoire of retrotransposon modes of action and their impact on genome architecture and function. Moreover, considering that their activity can be induced by different factors and particularly stress\cite{12}, I discuss the aspects of retrotransposon-activated responses in terms of adaptability and propose their role in stress-induced cellular memories.

A CHALLENGING TIMELINE: FROM PARASITES TO CONTROLLING ELEMENTS VIA EXAPTATION

In the mid-nineteen forties the groundbreaking work of Barbara McClintock challenged the dogma that eukaryotic genomes are stationary entities by introducing the notion of dynamic genome. The discovery of mobile genetic elements and her foreknowledge to call them "controlling elements"\cite{13} have introduced a concept far outside of the scientific mainstream. Two decades later, in support of McClintock’s view, Britten and Davidson proposed that TEs act as regulators of host genome functions\cite{14,15}. However, controlling elements’ concept has been greeted with skepticism as well as disregard\cite{16}, and as a consequence, terms such as molecular parasites, "selfish DNA" or "junk". Brosius and Gould were the pioneers, introducing the previously postulated term "exaptation"\cite{20} in the biology of TEs. They proposed that a number of TEs have been exapted, i.e. acquired a new function necessary for the host genome\cite{20,21}. The Human Genome Project confirmed the "exaptation hypothesis", as it provided evidence that TEs can contribute regulatory elements as well as create new genes in the human genome\cite{23}. Moreover, the availability of the first human genome DNA sequence draft revealed that about half of the human genome derives from TEs\cite{23}, probably an underestimate but definitively a surprising finding. Indeed, a few years later it was estimated that approximately two-third of the human genome is TE-derived\cite{24}. Thus, it is undoubtedly too widespread to be the genomic junkyard. The "metamorphosis" of TEs from parasites to controlling elements has primarily supported by the lengthy record of exapted TEs\cite{25-28}, and also from the astonishing genomic load in TEs sequences\cite{23,24}. The post-genomic era gave rise to large-scale genomic projects. These allowed to gain insight into the functional contribution of TEs to host genome, unraveling their functional impact on host genome\cite{29-33} (Figure 2). Our knowledge concerning the "dark side" of the genome is still lagging. Despite this, we now know that retrotransposons are active in the modern mammalian genomes, acting in a binary fashion either as structural determining components or functional controlling entities.

RETROTRANSPOSONS: A WEB OF SOPHISTICATED GENOMIC SCULPTORS AND REGULATORS

If, as many believe, the life is originated from an "RNA world" with the genetic material converted subsequently into DNA,
Retrotransposons may have acted as very early participants in genome formation(20). Overcoming the selective pressure exerted during the distant evolutionary past, they are fixed and co-evolved in the ever-changing mammalian genomes. Hence, host genome has taken advantage of retrotransposons to shape its landscape as well as improve its homeostatic and regulatory mechanisms.

Retrotransposons occupy the most part of mammalian genome[25,24,35-37]. Taking into account the estimation that TEs load may exceed two-thirds of the human genome(24) as well as their capacity to mobilize leading to genome restructuring, then one can easily deduce that they constitute prevailing regulators of nuclear ecology. To ensure as much as possible the integrity and fidelity of genetic information flow, the cell has evolved several control mechanisms to regulate retrotransposon activity[37-40]. The epigenetic control of genome, a process likely originated in response to TEs activity, through several mechanisms such as cellular environment, DNA methylation, histone methylation and RNA interference pathways (siRNA, miRNA, piRNA, rasiRNA, endo-siRNA) previously reviewed[38,41-46], is responsible for retrotransposon repression. Nevertheless, nowadays retrotransposons are active playing major roles in the plasticity and regulation of the host genome.

From a structural point of view, first, retrotransposons represent principal structural genomic components constituting the bulk of chromosome domains such as centromeres, pericentromeres, telomeres and microsatellites[37,47,48]. Their presence in centromeric and pericentromeric regions denotes their possible contribution on chromosome replication and distribution. Moreover, their preferential insertion in telomeric regions may be involved in telomere integrity[49], even if such a prevention mechanism of chromosome shortening remains to be elucidated in mammals. Second, their presence in centromeric sequences or participating in regulatory gene networks, thus having an important role in chromatin organization(52). S/MARs appear to be affected by retrotransposons given that almost half length (~55%) of human S/MARs is enriched in retrotransposon-derived sequences(53), while ~14% of the mouse counter part represents target sites for integration of mouse endogenous retroviruses(54,55). Third, they can sculpt genome structure having a profound impact on genome variation via rearrangements, such as single nucleotide variations (SNVs), copy number variations (CNVs) (indels) or larger structural variations. Such retrotransposon-induced rearrangements can be passive, due to their repetitive nature as well as their high sequence homology, or active as a direct result of retrotransposition events[56-67]. Intriguingly, retrotransposition constitutes an important agent for generation of genetic variation[56,57] being responsible for 20% of the genome structural variation in humans(51). Overall, retrotransposon-induced recombination seems to have a fundamental role in creation of genomic stability, diversity and plasticity. This is further supported by the existence of a high number of Holliday junctions, key intermediate structures in all recombination types (homologous recombination, non-homologous recombination and replicative recombination), inside the sequences of all human retrotransposon families(52).

As regards retrotransposons’ functional contribution, they are evolutionarily inhabited the host genome by providing regulatory sequences or participating in regulatory gene networks, thus having a great impact on several cellular processes. Their main effect on host genome originates from the regulatory role that they exert in gene expression. The possession of cis-regulatory elements rendered them the largest genomic pool of active and latent gene regulatory sequences. Moreover, their ability in replicative transposition throughout the genome can result in a genome-wide dispersion of such regulatory elements(53). Numerous cases of significant changes in gene expression, mediated by either retrotransposon-associated local chromatin signatures or retrotransposon insertions, have been documented in the literature. Retrotransposons can influence host genes by providing promoters/enhancers, transcription factor-binding sites, splice sites and termination sites[1,42,30,35-45]. Bioinformatics studies revealed that many gene promoters or alternative promoters are derived from retrotransposons[29,49]. Faulkner and colleagues showed that retrotransposons constitute an integral part of the

Figure 2 Timeline of milestone discoveries or events on the research field of transposable elements.
cellular transcriptome and influence the transcription of nearby genes. Noteworthy, they documented that 18% and 31% of total transcription start sites in mouse and human, respectively, are located within retrotransposon sequences\cite{genotype}. Beyond protein-coding genes, retrotransposons provide promoters and enhancers for long noncoding RNAs (IncRNAs)\cite{84,87-89}. In addition, a large number of gene enhancers are "donated" by retrotransposons, providing the ability of tissue- and species-specific gene expression\cite{84,89,91}. Of interest, a recent bioinformatics survey of del Rosario and colleagues identified 14,546 TE-derived regions as possible candidate anthropoid lineage-specific enhancers\cite{92}. As yet, we still know little about the host factors, which are important for retrotransposon transcription. In silico analysis approaches have recorded a vast number of putative transcription factor-binding sites mapped on retrotransposons\cite{93,94}. Nevertheless, experimental data demonstrating the direct regulation of retrotransposon expression pointed out only eleven transcription factors (namely p53, Oct4, Sox2, Nanog, RUNX3, MeCP2, SRY, Sp1, YY1 and KLF4) binding on their promoters\cite{95}.

Retrotransposons are also determinants of host gene expression at the post-transcriptional level. First, RNA editing and splicing, processes that may be coordinated in mammals\cite{96}, can be affected by retrotransposons. More than 90% of A-to-I RNA editing sites in humans are found within Alu elements\cite{97,98}. Considering that approximately 75% of all known human genes bear Alu sequences within their introns and/or untranslated regions (UTRs)\cite{99}, edited intronic Alu elements may have an impact on the transcript metabolism\cite{100}. Moreover, retrotransposons can influence splicing through exon skipping\cite{101,102}, alternative donor or acceptor splice sites\cite{103}, shift of splicing patterns from constitutive to alternative\cite{104}, induction of intron retention and exonization\cite{105,106}. Furthermore, an outstanding feature of retrotransposons is translational control. SINE retrotransposons can either enhance or repress mRNA translation\cite{107}. Notably, SINE and LTR retrotransposons are able to inhibit protein synthesis under stress conditions. It was documented that human Alu retrotransposon RNA acts as a trans-acting transcriptional repressor during the cellular heat shock response by binding RNA polymerase II and entering these complexes at promoters in vitro and in human cells\cite{108}. Likewise, mouse VL30 retrotransposon transcripts bound to polyribosomes lead to inhibition of translation and cell death following induced cerebral ischemia\cite{109}. Third, retrotransposons are capable of altering epigenetically host gene expression\cite{110,111}. Their regulation, through different epigenetic systems\cite{112,113}, has established a close relationship between the expression of a given retrotransposon and the respective of an adjacent gene. Interestingly, host mechanisms are often involved in altered gene expression, as the formation of heterochromatin by retrotransposons-targeting repressors can subsequently spread to adjacent genes\cite{114,115,116}. The phenomenon of heterochromatin spreading, called "position effect variegation", was initially described in Drosophila melanogaster\cite{117}. Position effect variegation associated with retrotransposons is a potential consequence of their presence, notwithstanding there are few documented examples of heterochromatin spreading into adjacent genes from retrotransposons\cite{118-120}. Recently, studies have shed light on unforeseen insights into gene expression regulation, documenting RNA-associated mechanisms of retrotransposon-mediated epigenetic regulation of gene expression. A significant number of retrotransposons produce small RNAs, such as siRNAs, miRNAs or piRNAs, which can alter in trans gene expression\cite{121,122}. Furthermore, retrotransposon transcripts act themselves as IncRNAs, affecting gene expression as exemplified for human ERVH and mouse VL30 retrotransposons\cite{123,124,125}. The corollary of retrotransposons` regulatory effects resides in their contribution to genome evolution, modulating several cellular processes mainly through the increase of genome plasticity, creation of pseudogenes as well as creation and remodeling of gene regulatory networks\cite{126,127}. A flourish of works has documented the involvement of retrotransposons in embryogenesis, cell differentiation, pluripotency, cell cycle, DNA repair, aging, genomic imprinting, X-chromosome inactivation, behavior, metabolism and immune responses\cite{128,129,130}. However, besides their beneficial impact on host cell, the perturbation and/or loss of cellular control mechanisms may lead to the onset of genetic or multifactorial diseases\cite{131,132,133}. So far, it is known that retrotransposon activity, concerning their transcription and retrotransposition, is induced during cellular processes among them cell proliferation and differentiation, as well as by numerous stress factors such as heavy metals, oxidative stress, UV irradiation, viral infection, and drugs\cite{134,135,136,137-139}. Nevertheless, our knowledge concerning the biology of TEs is still rudimentary. Despite a significant research progress made, the determination of a common denominator between heterogeneous stimuli, capable of activating a portion greater than half of our genome, remains an open question. McClintock envisaged that TEs elicit a highly programmed response intended to minimize the impact of stress\cite{140}. But, when we refer to stress what we mean. Stress is defined as a state in which homeostasis is actually threatened or perceived to be so\cite{141}. Considering the cell as a microenvironment, both the aforementioned retrotransposon-activating conditions tend to alter the homeostatic balance and, consequently, could be perceived as stress. Stress-mediated retrotransposon activation may result in their induced mobilization or alteration of host gene expression. Depending on the strength of the stress stimulus, such activation may confer adaptation, if the cell profits the recovery of the homeostatic balance\cite{142}, or lead to a vulnerability of the genome\cite{143,144}. Hence, retrotransposons act as genetic pieces prone to bridge the gap between stress and cellular response. The idiosyncrasy of retrotransposons enables them to provide and disperse cis-regulatory elements, which respond genetically and/or epigenetically in a facsimile manner to a given stress stimulus\cite{145}. Taking into account that these mobile stress-response mediators constitute the most part of mammalian genome, a single stimulus may drive a protracted response in terms of a large genomic extent. In Systems Biology, the induction of a protracted response to a brief stimulus is defined "cellular memory”\cite{146}. Nowadays, it is widely accepted that: (a) retrotransposons co-evolved with mammalian genomes by providing regulatory DNA sequences or participating in regulatory gene networks\cite{126} and (b) stress-related epigenetic plasticity might play a role in programming the genome in adaptive responses to environmental stimuli throughout life, via changes in networks of genes\cite{149}. By extrapolating the aforementioned notion, it is tempting to propose that retrotransposons constitute the principal genomic determinants of stress-induced cellular memories, conferring individual diversity and adaptability in response to stress (Figure 3).

CONCLUSIONS

For a long period of time, retrotransposons were the genomic "black box". Post-genomic era research progress shed light on some
aspects of their functional impact on host genome. In her Nobel Prize acceptance lecture, Barbara McClintock stated: "We know nothing, however, about how the cell senses danger and instigates responses to it that often are truly remarkable". We now know that retrotransposons control dynamically mammalian genomes by conferring adaptability in response to homeostasis imbalance or environmental challenges, most likely by making stress-induced cellular memories. Future studies will allow us to unravel mechanistic insights and gain more knowledge on this amazing world that inhabits all of us.

ACKNOWLEDGMENTS

I would like to thank Dr. Theodore Tzavaras for in-depth discussions, comments and suggestions as well as critical reading of the manuscript. I would also like to thank Dr. Maria Syrrou for helpful comments and suggestions as critical reading of the manuscript. I would also like to thank Dr. Maria Syrrou for helpful discussions and ideas. I apologize to authors whose work has not been discussed.

REFERENCES

1 Goodier JL, Kazazian HH Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 2008; 135: 23-35. [PMID: 18854152]; [DOI: 10.1016/j.cell.2008.09.022]

2 Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNA intermediate. Cell 1985; 40: 491-500. [PMID: 2982495]; [DOI: http://dx.doi.org/10.1016/0092-8674(85)90197-7]

3 Jern P, Coffin JM. Effects of retroviruses on host genome function. Annu Rev Genet 2008; 42:709-732. [PMID: 18694346]; [DOI: 10.1146/annurev.genet.42.110807.091501]

4 Zimmern S, Semper C. Evolution of group II introns. Mob DNA 2015; 6:7. [PMID: 25960782]; [DOI: 10.1186/s13100-015-0037-5]

5 Ullu E, Tschudi C. Alu sequences are processed 7SL RNA sequences. Nature 1984; 312:171-172. [PMID: 6209580]; [DOI: 10.1038/312171a0]

6 Daniels GR, Deininger PL. Repeat sequence families derived from mammalian tRNA genes. Nature 1985; 317:819-822. [PMID: 3851163]; [DOI: 10.1038/317819a0]

7 Lawrence CB, McDonnell DP, Ramsey WJ. Analysis of repetitive sequence elements containing tRNA-like sequences. Nucleic Acids Res 1985; 13:4239-4252. [PMID: 3839306]; [DOI: 10.1093/nar/13.12.4239]

8 Sakamoto K, Okada N. Rodent type 2 Alu family, rat identifier sequence, rabbit C family, and bovine or goat 73-bp repeat may have evolved from tRNA genes. J Mol Evol 1985; 22:134-140. [PMID: 3934392]; [DOI: 10.1007/BF02101691]

9 Weiner AM, Deininger PL, Efstratiadis A. Nonviral retrotransposons: Genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 1986; 55:631-661. [PMID: 2427017]; [DOI: 10.1146/annurev.bi.55.070186.003215]

10 Kramerov DA, Vassetzky NS. Short retrotransposons in eukaryotic genomes. Int Rev Cytol 2005; 247:165-221. [PMID: 16344113]; [DOI: 10.1016/S0074-7696(05)47004-7]

11 Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 2003; 73:1444-1451. [PMID: 14628287]; [DOI: 10.1086/380207]

12 Capy P, Gasperi G, Biémont C, Bazin C. Stress and transposable elements: co-evolution or useful parasites? Heredity (Edinb) 2000; 85:101-106. [PMID: 11012710]; [DOI: 10.1046/j.1365-2540.2000.00751.x]

13 McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 1950; 36:344-355. [PMID: 15430309]; [DOI: 10.1073/pnas.36.6.344]

14 Britten RJ, Davidson EDH. Gene regulation for higher cells: a theory. Science 1969; 165:349-357. [PMID: 5789433]; [DOI: 10.1126/science.165.3891.349]

15 Britten RJ, Davidson EDH. Repetitive and nonreplicative DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol 1971; 46:111-138. [PMID: 5160887]; [DOI: 10.1086/406380]

16 Fedoroff NV. Barbara McClintock (June 16, 1902-September 2, 1992). Genetics 1994; 136:1-10. [PMID: 8138147]

17 Orgel LE, Crick FH. Selfish DNA: the ultimate parasite. Nature 1980; 284:604-607. [PMID: 7366731]; [DOI: 10.1038/284604a0]

18 Doolittle WF, Sapienza C. Selfish genes, the phenotype paradigm and genome evolution. Nature 1980; 284:601-603. [PMID: 6245369]; [DOI: 10.1038/284601a0]

19 Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988; 332:164-166. [PMID: 2833458]; [DOI: 10.1038/3323164a0]

20 Gould SJ, Vrba E. Exaptation, a missing term in the science of form. Paleobiology 1982; 8:4-15. [DOI: https://doi.org/10.1017/S0094837300004310]

21 Brosius J. Retroposons--seeds of evolution. Science 1991; 251:753. [PMID: 1990437]; [DOI: 10.1126/science.1990437]

22 Brosius J, Gould SJ. On "genomenclature": a comprehensive (and respectful) taxonomy for pseudogenes and other "junk DNA". Proc Natl Acad Sci U S A 1992; 89:10706-10710. [PMID: 1279691]

23 Lander ES, Linton LM, Birren B, Nussbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921. [PMID: 11237011]; [DOI: 10.1038/35057062]

24 de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 2011; 7:e1002384. [PMID: 22144007]; [DOI: 10.1371/journal.pgen.1002384]

25 Brosius J. The contribution of RNAs and retroposition to evolutionary novelties. Genetica 2003; 118:99-116. [PMID: 12868601]; [DOI: 10.1023/A:1024141306359]

26 Bejerano G, Lowe CB, Abitbul N, King B, Siepel A, Salama SR, Rubin EM, Kent WJ, Haussler D. Annu Rev Genet 2008; 42:251-251. [PMID: 18412044]; [DOI: 10.1146/annurev.genet.42.110807.091501]

27 Brosius J. The origin and behavior of mutable loci in maize. Science 1969; 165:349-357. [PMID: 5789433]; [DOI: 10.1126/science.165.3891.349]

28 Huda A, Maríño-Ramírez L, Jordan IK. Epigenetic histone modifications of human transposable elements: genome defense versus
exaptation. Mob DNA 2010; 1:2. [PMID: 20226072]; [DOI: 10.1186/1759-8753-1-2]

29 Faulkner GJ, Kimmun Y, Dauh CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steppe AL, Lassmann T, et al. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 2009; 41:563-571. [PMID: 19377475]; [DOI: 10.1038/ng.368]

30 ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012; 489: 57-74. [PMID: 22955616]; [DOI: 10.1038/nature11247]

31 Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stargachis AB, Wang H, Vernet B, et al. The accessible chromatin landscape of the human genome. Nature 2012; 489:75-82. [PMID: 22955617]; [DOI: 10.1038/nature11232]

32 Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagerde J, Lin W, Schlesinger F, et al. Landscape of transcription in human cells. Nature 2012; 489:101-108. [PMID: 22955620]; [DOI: 10.1038/nature11233]

33 Fort A, Hashimoto K, Yamada D, Salimullah M, Keya CA, Saxena A, Bonetti A, Voineaga I, Bertin N, Kratz A, et al. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 2014; 46:558-566. [PMID: 24777452]; [DOI: 10.1038/ng.2965]

34 Brosius J, Tiedge H. Reverse transcriptase: mediator of genomic plasticity. Virus Genes 1995; 11:163-179. [PMID: 8828143]; [DOI: 10.1007/BF01728656]

35 Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420:520-562. [PMID: 12466850]; [DOI: 10.1038/nature01262]

36 Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005; 437:69-87. [PMID: 16136131]; [DOI: 10.1038/nature04072]

37 Smit AF. Interspersed repeats and other remnants of transposable elements in mammalian genomes. Curr Opin Genet Dev 1999; 9:657-663. [PMID: 10607616]; [DOI: http://dx.doi.org/10.1016/S0959-437X(99)00031-3]

38 Slotkin RK, Martienssen R. Transposable elements and the genetic regulation of the genome. Nat Rev Genet 2007; 8:272-285. [PMID: 17363976]; [DOI: 10.1038/nrg2072]

39 Chiu YL, Greene WC. The APOBEC3 cytidine deaminases: retroviral restriction and potential functional significance of human-chimpanzee divergence. Virus Genes 2015; 43:2188-2198. [PMID: 25613453]; [DOI: 10.1007/s00018-013-1468-0]

40 Goodier JL. Restricting retrotransposons: a review. Mob DNA 2016; 7:16. [PMID: 27525044]; [DOI: 10.1186/s13100-016-0070-x]

41 Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA. Alu repeats: a source for the genesis of primate microsatellites. Genomics 1995; 29:136-144. [PMID: 8530063]; [DOI: 10.1006/geno.1995.1224]

42 Kelkar YD, Tyckova S, Chiaronfote M, Makova KD. The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 2008; 18:30-38. [PMID: 18032720]; [DOI: 10.1101/gr.7113408]

43 Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. Nature 2007; 446: 208-212. [PMID: 17344853]; [DOI: 10.1038/nature05560]

44 Shapiro JA. Genome system architecture and natural genetic engineering in evolution. Ann NY Acad Sci 1999; 870:23-35. [PMID: 10415470]; [DOI: 10.1111/j.1749-6632.1999.tb08686.x]

45 Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 2013; 20:290-299. [PMID: 23463314]; [DOI: 10.1038/nsmb.2474]

46 Bode J, Stengert-Iber M, Kay V, Schlake T, Dietz-Pfeilstetter A. Scaffold/matrix-attached regions: topological switches with multiple regulatory functions. Crit Rev Eukaryot Gene Expr 1996; 6:115-138. [PMID: 8855385]; [DOI: 10.1615/CritEukarGeneExpr.v6.i2.3-20]

47 Jordan IK, Rogozin IB, Glazko GV, Koonin EV. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 2003; 19:66-72. [PMID: 12547512]; [DOI: http://dx.doi.org/10.1016/S0168-9525(02)00006-9]

48 Goetze S, Huesemann Y, Buer A, Bode J. Functional characterization of transgene integration patterns by halo fluorescence in situ hybridization: electroretroversion versus retroviral infection. Biochemistry 2003; 42:7035-7043. [PMID: 12795598]; [DOI: 10.1021/bi0340907]

49 Johnson CN, Levy LS. Matrix attachment regions as targets for retroviral integration. Virol J 2005; 2:68. [PMID: 16111492]; [DOI: 10.1186/1743-422X-2-68]

50 Mei L, Ding X, Tsang SY, Pun FW, Ng SK, Yang J, Zhao C, Li D, Wan W, Yu CH, et al. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome. BMC Genomics 2011; 12:564. [PMID: 22087792]; [DOI: 10.1186/1471-2164-12-564]

51 Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol Spectr 2015; 3:MDNA3-0061-2014. [PMID: 26104698]; [DOI: 10.1128/microbiolspec.MDNA3-0061-2014]

52 Polavarapu N, Arora G, Mittal VK, McDonald JF. Characterization and potential functional significance of human-chimpanzee large INDEL variation. Mob DNA 2011; 2:13. [PMID: 22024410]; [DOI: 10.1186/1759-8753-2-13]

53 de Smith AJ, Walters RG, Cline JF, Steinfeld I, Yakhini Z, Sladek R, Fieguel P, Blakemore AI. Small deletion variants have stable breakpoints commonly associated with alu elements. PLoS One 2008; 3:e3104. [PMID: 18769679]; [DOI: 10.1371/journal.pone.0003104]

54 Klaoskopman WP, Francioli LC, Hormozdari F, Marschall T, Hohr-Kwa JY, Abdelloua A, Lamejier EW, Moed MH, Koval V, Renkens I, et al. Characteristics of de novo structural changes in the human genome. Genome Res 2015; 25:792-801. [PMID: 25883321]; [DOI: 10.1101/gr.185041.114]

55 Startek M, Szafirski P, Gambin T, Campbell IM, Hixson P, Shaw CA, Stankiewicz P, Gmbin A. Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Res 2015; 43:2188-2198. [PMID: 25613453]; [DOI: 10.1093/nar/gku1394]
Noutsopoulos D. Retrotransposons and Stress

Gu S, Yuan B, Campbell JM, Beck CR, Carvalho CM, Nagamani SC, Erez A, Patel A, Bacino CA, Shaw CA, et al. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet 2015; 24:4061-4077. [PMID: 25908615]; [DOI: 10.1093/hmg/ddv146]

Campbell JM, Gambin T, Dittwald P, Beck CR, Shuvakov A, Hixson P, Patel A, Gambin A, Shaw CA, Rosenfeld JA, et al. Human endogenous retroviral elements promote genome instability via non-allelic homologous recombination. BMC Biol 2014; 12:74. [PMID: 25246103]; [DOI: 10.1186/s12919-014-0074-4]

Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA. The muscular dystrophy with myositis (mmn) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 2002; 79:146-149. [PMID: 11829483]; [DOI: 10.1006/geno.2002.6685]

Gilbert N, Lutz-Priggir S, Moran JV. Genomic deletions created upon LINE-1 retrotransposition. Cell 2002; 110:315-325. [PMID: 12176139]; [DOI: http://dx.doi.org/10.1016/S0092-8674(02)00082-0]

Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmitigiani G, Boeke JD. Human I1 retrotransposition is associated with genetic instability in vivo. Cell 2002; 110: 327-338. [PMID: 12176320]; [DOI: http://dx.doi.org/10.1016/S0092-8674(02)00839-5]

Hedges DJ, Deininger PL. Inviting instability: transposable elements as a significant source of regulatory sequences in the human genome. J Mol Biol 2016; 428:658-667. [PMID: 26780549]; [DOI: 10.1016/j.jmb.2016.01.010]

Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 2012; 46:21-42. [PMID: 22905872] [DOI: 10.1146/annurev-genet-110711-155621]

Thompson PJ, Macfarlan TS, Lorincz MC. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol Cell 2016; 62:766-776. [PMID: 27529207]; [DOI: 10.1016/j.molcel.2016.03.029]

Lynch VJ. GENETICS. A copy-and-paste gene regulatory network. Science 2016; 351:1029-1030. [PMID: 26941305]; [DOI: 10.1126/science.aaf2977]

Conley AB, Piriyapongsa J, Jordan IK. Retroviral promoters in the human genome. Bioinformatics 2008; 24:1563-1567. [PMID: 18535086]; [DOI: 10.1093/bioinformatics/btn243]

Glinsky GV. Transposable elements and DNA methylation create in embryonic stem cells human-specific regulatory sequences associated with distal enhancers and noncoding RNAs. Genome Biol Evol 2015; 7:1432-1454. [PMID: 25956794]; [DOI: 10.1093/gbe/evv081]

Wang J, Xie G, Singh M, Ghanbarian AT, Rasko T, Svetnik A, Cai H, Besser D, Prigione A, Fuchs NV, et al. Primate-specific endogenous retrovirus-driven transcription defines naïve-like stem cells. Nature 2014; 516:405-409. [PMID: 25317556]; [DOI: 10.1038/nature13804]

Kelley D, Rinn J. Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 2012; 13:R107. [PMID: 23181609]; [DOI: 10.1186/gb-2012-13-11-r107]

Emera D, Wagner GP. Transposable element recruitment in the mammalian placenta: impacts and mechanisms. Brief Funct Genomics 2012; 11:267-276. [PMID: 22753775]; [DOI: 10.1093/bfgp/elq013]

Friedli M, Trono D. The developmental control of transposable elements and the evolution of higher species. Annu Rev Dev Biol 2015; 31:429-451. [PMID: 26393776]; [DOI: 10.1146/annurev-cellbio-100814-125514]

del Rosario RCH, Rayan NA, Prabhakar S. Noncoding origins of anthropoid traits and a new null model of transposon functionalization. Genome Res 2014; 24:1469-1484. [PMID: 25043600]; [DOI: 10.1101/gr.169633.113]

Thorburn BG, Gotea V, Makalowski W. Transposable elements as a significant source of transcriptional regulation signals. Gene 2006; 365:104-110. [PMID: 16376497]; [DOI: j.gene.2005.09.036]

Markopoulos G, Noutsopoulos D, Mantzios S, Georgiannis D, Thrasyvoulou S, Vrachetakis G, Kolettas E, Tzavaras T. Genetic analysis of mouse VL30 retrotransposons. Mob DNA 2016; 7:10. [PMID: 27158269]; [DOI: 10.1186/s13100-016-0066-8]

Brett E, Olman M. Coordination of editing and splicing of glu-
tamate receptor pre-mRNA. RNA 2003; 9: 309-318. [PMID: 12592005]; [DOI: 10.1261/ma.2750803]

96 Carmi S, Boruvkova I, Levanon EY. Identification of widespread ultra-edited human RNAs. PLoS Genet 2011; 7:e1002317. [PMID: 22028664]; [DOI: 10.1371/journal.pgen.1002317]

97 Daniel C, Silberberg G, Boehm M, Ohman M. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 2014; 15: R28. [PMID: 24485196]; [DOI: 10.1186/gb-2014-15-2-28]

98 Elbarbary RA, Lucas BA, Maquat LE. Retrotransposons as regulators of gene expression. Science 2016; 351:aaq7247. [PMID: 26912865]; [DOI: 10.1126/science.aac7247]

99 Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res 2004; 14:1719-1725. [PMID: 15342557]; [DOI: 10.1101/gr.255504]

100 Narita N, Nishio H, Kito Y, Ishikawa Y, Ishikawa Y, Minami R, Nakamura H, Matsuo M. Insertion of a 5' truncated L1 element into the 3' end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 1993; 91:1862-1867. [PMID: 8387534]; [DOI: 10.1172/JCI116402]

101 Takahara T, Ohsumi T, Kuroimitsu J, Shibata K, Sasaki N, Okazaki Y, Shibata H, Sato S, Yoshihiki A, Kusakabe M, et al. Dysfunction of the Orlesse reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum Mol Genet 1996; 5:989-993. [PMID: 8817336]; [DOI: 10.1093/hmg/5.7.989]

102 Royaix I, Bernier B, Montgomery JC, Flaherty L, Goffinet AM. ?Aln-51(Alb)-2?, an allele of reeler isolated from a chlorobumcu brain screen, is due to an IAP insertion with exon skipping. Genomics 1995; 19:479-482. [PMID: 9205121]; [DOI: 10.1006/geno.1997.4772]

103 Claverie-Martín F, Flores C, Antón-Gamero M, González-Acosta H, García-Nieto V. The Alu insertion in the CLCN5 gene of a patient with Dent's disease leads to exon 11 skipping. J Hum Genet 2005; 50:370-374. [PMID: 16041495]; [DOI: 10.1007/s10038-005-0265-5]

104 Gu Y, Kodama H, Watanabe S, Kikuchi N, Ishitsuka I, Ozawa H, Fujisawa C, Shiga K. The first reported case of Menkes disease caused by an Alu insertion mutation. Brain Dev 2007; 29:105-108. [PMID: 17178205]; [DOI: 10.1016/j.braindev.2006.05.012]

105 Muotri AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage FH. Mobile DNA elements in mouse embryos and sperm affect the germline. Curr Biol 2008; 18:2202-2207. [PMID: 18348251]; [DOI: 10.1016/j.cub.2008.02.044]

106 Erwin JA, Marchetto MC, Gage FH. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 2014; 15:497-506. [PMID: 25005482]; [DOI: 10.1038/nn.3730]

107 Muoti AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage
Noutsopoulos D. Retrotransposons and Stress

FH. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 2003; 435:903-910. [PMID: 15959507]; [DOI: 10.1038/nature03663]

128 Macia A, Blanco-Jimenez E, Garcia-Perez JL. Retrotransposons in pluripotent cells: Impact and new roles in cellular plasticity. Biochim Biophys Acta 2015; 1849:417-426. [PMID: 25042909]; [DOI: 10.1016/j.bbapap.2014.07.007]

129 Belan E. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant. Biol Direct 2013; 8:22. [PMID: 24034780]; [DOI: 10.1186/1745-6150-8-22]

130 Noutsopoulos D, Markopoulos G, Vartholomatos G, Kolettas E, Kolaitis N, Tzavaras T. VL30 retrotransposition signals activation of a caspase-independent and p53-dependent death pathway associated with mitochondrial and lysosomal damage. Cell Res 2010; 20:553-562. [PMID: 20386572]; [DOI: 10.1038/cr.2010.48]

131 Webb CJ, Wu Y, Zakian VA. DNA repair at telomeres: keeping the ends intact. Cold Spring Harb Perspect Biol 2013; 5:a012666. [PMID: 23732473]; [DOI: 10.1101/cshperspect.a012666]

132 Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 2002; 31:159-165. [PMID: 12006980]; [DOI: 10.1038/ng898]

133 Dimitriadou E, Noutsopoulos D, Markopoulos G, Vlaikou AM, Mantziou S, Traeger-Synodinos J, Kanavakis E, Chrousos GP, Tzavaras T, Syrrou M. Abnormal DLK1/MEG3 imprinting correlates with decreased HERV-K methylation after assisted reproduction and preimplantation genetic diagnosis. Stress 2013; 16:689-697. [PMID: 23786541]; [DOI: 10.3109/10253890.2013.817554]

134 Burris HH, Braun JM, Byun HM, Tarantini L, Mercado A, Wright RJ, Schnaas L, Baccarelli AA, Wright RO, Tellez-Rojo MM. Association between birth weight and DNA methylation of IGF2, glucocorticoid receptor and repetitive elements LINE-1 and Alu. Epigenomics 2013; 5:271-281. [PMID: 23750643]; [DOI: 10.2217/epi.13.24]

135 Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120151. [PMID: 23166401]; [DOI: 10.1098/rstb.2012.0151]

136 Michaud EJ, van Vugt MJ, Bultman SJ, Sweet HO, Davisson MT, Woychik RP. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev 1994; 8:1463-1472. [PMID: 7926745]; [DOI: 10.1101/gad.8.12.1463]

137 Kassiotis G, Stoye JP. Immune responses to endogenous retroelement vectors: taking the bad with the good. Nat Rev Immunol 2016; 16:207-219. [PMID: 27026073]; [DOI: 10.1038/nri.2016.27]

138 Suntsova M, GaraZha A, Ivanova A, Kaminsky D, Zhavoronkov A, Buzdin A. Molecular functions of human endogenous retroviruses in health and disease. Cell Mol Life Sci 2015; 72:3653-3675. [PMID: 26092818]; [DOI: 10.1007/s00018-015-1947-6]

139 Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 2014; 15:415-422. [PMID: 24747712]; [DOI: 10.1038/ni.2872]

140 Huang CR, Burns KH, Bocke JD. Active transposition in genomes. Annu Rev Genet 2012; 46:651-675. [PMID: 23145912]; [DOI: 10.1146/annurev-genet-110711-155616]

141 Konisti S, Mantziou S, Markopoulos G, Thrasyvoulou S, Vartholomatos G, Sains I, Kolettas E, Noutsopoulos D, Tzavaras T. H2O2 signals via iron induction of VL30 retrotransposition correlated with cytotoxicity. Free Radic Biol Med 2012; 52:2072-2081. [PMID: 22542446]; [DOI: 10.1016/j.freeradbiomed.2012.03.021]

142 Markopoulos G, Noutsopoulos D, Mantziou S, Vartholomatos G, Monokrousos N, Angelidis C, Tzavaras T. Arsenic induces VL30 retrotransposition: the involvement of oxidative stress and heat-shock protein 70. Toxicol Sci 2013; 134:312-322. [PMID: 23708403]; [DOI: 10.1093/toxsci/kft118]

143 Morales ME, Servant G, Ade C, Roy-Engel AM. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage. Biol Trace Elem Res 2015; 166:24-33. [PMID: 25774044]; [DOI: 10.1007/s12011-015-0298-3]

144 Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 2015; 162:961-973. [PMID: 26317465]; [DOI: 10.1016/j.cell.2015.07.056]

145 McClintock B. The significance of responses of the genome to challenge. Science 1984; 226:792-801. [PMID: 15739260]; [DOI: 10.1126/science.15739260]

146 Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009; 5:374-381. [PMID: 19488073]; [DOI: 10.1038/nrendo.2009.106]

147 Burrell DR, Silver PA. Making cellular memories. Cell 2010; 140:13-18. [PMID: 20085698]; [DOI: 10.1016/j.cell.2009.12.034]

148 Szyf M. Early life, the epigenome and human health. Acta Paediatr 2009; 98:1082-1084. [PMID: 19638011]; [DOI: 10.1111/j.1651-2227.2009.01382.x]

Peer reviewers: Joanna Gdula-Argasinska