ABSTRACT

Objective: The aim of this study is to investigate the variations, if any, in urinary bacterial pathogens in HIV-positive and HIV-negative individuals.

Methods: Urine sample, macroscopic and microscopic examination for identification of bacteria use by method of Standard loop method, using identification methods, Grams-staining, Biochemical tests.

Results: Out of 75 HIV-positive males, 52 males were married, 23 males were unmarried; risk factors are sexually 28, occupationally majority were labor, 31, age group more in 19-25 age, only 9 HIV-positive patients presented with symptoms of urinary tract infection, Escherichia coli was the most frequently occurring bacterial isolate from positive urine culture followed by Klebsiella spp.

Conclusion: The study period of 1 year and 8 months revealed that it is difficult to locate/identify an HIV-positive person in a place like Kadapa on account of confidentiality/lack of awareness among the population. Having identified the HIV-positive cases, collection of urine samples from the patients also needed counseling and intervention by the respective clinicians, especially when patients were not having any symptoms. Out of 50 HIV-negative individuals, only 1 (2%) urine sample is showing significant bacteriuria.

Keywords: Urinary tract infection, HIV, AIDS, Bacteria, Antiretroviral therapy.
Microscopic examination of urine
A wet film was prepared with a drop of urine and examined under the microscope for pus cells, RBC, organisms, etc.

Culture
Semi-quantitative culture method - semi-quantitative technique of inoculation in suitable culture media - by standard loop method was done to determine significant bacteriuria.

Culture media used
MacConkey agar, Blood agar, Lactose sugars bile salt, neutralized all related biochemical reactions used.

Standard loop method
An inoculating loop of standard dimension was used to take up fixed and known volume of uncentrifuged urine and spread it over a plate of culture medium. A nichrome wire of 28 SWG was used to make a circular loop of 1 mm of internal diameter. It can hold 0.002 ml urine.

Total viable bacterial count/ml of sample = No of colonies × 500

Culture medium plate was touched with the loop containing urine from where inoculum was spread in a straight line across the diameter of plate. Without flaming, loop was drawn across entire plate, crossing the first inoculum streak numerous times to produce isolated colonies.

Inoculated plates were incubated overnight at 37°C in an incubator and colony count was noted.

Kass concept
In the presence of active UTI, the urine will contain 10^5 bacteria or more per milliliter. This level is therefore considered to represent significant bacteriuria.

Identification of the organism
A single well-isolated colony was picked up with a sterile wire to prepare a pure subculture and the identification of the organism was done on the basis of:

- Gram staining
- Motility test by hanging drop
- Biochemical tests (catalase, oxidase, IMViC, urease and sugar fermentation tests, etc.) following the procedures mentioned in [4].

RESULTS
Out of 75 HIV-positive patients, 12 patients showed significant bacteriuria and was diagnosed to have UTI. The remaining cultures were sterile. No lesser counts were noted. Only one case of UTI was found in the group of HIV-negative individuals. Chi-square test revealed a statistically significant relationship between HIV status and UTI (χ²=6.310, df=1, 0.01<p<0.02) (Tables 1-3).

Symptoms of UTI present in HIV-infected patients are shown in Table 4. Only 9 HIV-positive patients presented with symptoms of UTI.

Escherichia coli was the most frequently occurring bacterial isolate from positive urine culture followed by Klebsiella spp. (Table 5).

DISCUSSION
It shows the presence of risk factors, marital status, and occupation of 75 HIV-positive patients. In our study group, maximum patients were laborer (41%). Promiscuity appeared to be the highest risk factor among the study group. Among the 55 male patients, only 6 patients had circumcision, whereas 49 patients were uncircumcised. As the socioeconomic status of our study group was very poor, so we were unable to get information on the CD4+ count of the patients. For four patients, the CD4+ T-lymphocyte count done elsewhere were recorded and all of them were above 200/µl. Hence, the relation between CD4+ count and presence of intestinal parasites could not be established. The earlier study showed that intestinal opportunistic protozoal infection and diarrhea are more common in patients with low CD4+ count [5-7].

Variable	n (%)
Marital status	
Married	52
Unmarried	23
Risk factors	
Promiscuity	21
Blood transfusion	08
Intravenous drug users	01
Others (previous operation, spouse of HIV-positive person)	28
Occupation	
Driver	06
Laborer	31
Vendor	15
Student	04
Others	19
Circumcision in male	
Circumcised	06
Uncircumcised	49

Age (years)	Total number of patients	Parasites detected		
	Male	Female	Male	Female
15-25	19	04	02	01
26-35	16	03	02	03
36-45	11	08	02	02
46-55	08	05	01	00
>55	01	00	00	00
Total	55	20	07	06

HIV status	HIV-positive	HIV-negative
Symptoms of UTI present	09	00
No symptoms of UTI	66	50
Culture positive=10^5 colony/ml of urine	12	01

Urinary symptoms	Male	Female
Fever	02	01
Dysuria	03	01
Frequency	02	02
Suprapubic pain	00	01
No symptoms of UTI	50	16

Bacterial isolates	HIV-positive patients with UTI	Total (12)			
	Male	Female	Male	Female	
Escherichia coli	04	04	08	08	(66.7)
Klebsiella	02	00	02	02	(16.7)
Pseudomonas aeruginosa	01	00	01	01	(08.3)
Staphylococcus aureus	00	01	01	01	(08.3)
In our study of urine sample from 75 HIV-positive patients, 12 samples showed significant bacteriuria and diagnosed to have UTI. Among the 75 patients, 9 patients had symptoms of UTI which is given in Table 4. Fever, frequency, and dysuria were the most common symptoms in our study. Among the 66 asymptomatic patients, 3 were diagnosed to have UTI. Hence, asymptomatic bacteriuria is present in patients with HIV infection (3/75; 4%) than control group (1/50; 2%) [8]. Gugino et al. also documented the presence of asymptomatic bacteriuria in HIV-infected patients. In our study, the total number of UTI diagnosed in HIV-positive patients was 12 (16%). Chi-square test reveals a statistically significant relationship between HIV status and UTI (χ²=6.310, df=1, 0.01<p<0.02). A similar study was conducted by Schonwald et al. [9] where the frequency of UTI in HIV-positive individuals was 16%. In the study of De Pinho et al., UTI in AIDS patients versus asymptomatic HIV-positive individuals was 13.3% versus 3.2% [10]. According to Santos et al., bacteriuria was significantly more frequent among AIDS patients (7.6%) than control group of HIV-negative individuals (0.91%) [11]. The study by Marques et al. showed that UTI was more common in HIV-positive patients (6.3%) [12]. A similar study by Evans et al. also showed the higher incidence of UTI (5.7%) [13] among HIV-positive patients than control group.

In our study, prevalence of UTI in HIV-positive patients was more in female (5/20; 25%) than male (7/55, 12.7%). In the study by Marques et al., UTI in female and male HIV-positive patients was 8.7% and 6.3%, respectively. In our study, prevalence of UTI in HIV-positive patients is high (16%), but it is within the range as described by Heyns and Fisher (7-50%) [2]. It may be due to the fact that the rate of use of prophylactic antimicrobials for opportunistic infections is very low in this study group because of poor socioeconomic status [14,15].

Among the 12 culture-positive UTI cases, 8 (66.7%) were E. coli, followed by Klebsiella 2 (16.7%) and Pseudomonas/S. aureus 1 (8.3%) each (Table 5). In both symptomatic and asymptomatic groups, E. coli was the most predominant organism. The single isolate from HIV-negative group was also E. coli. In a similar study by De Pinho et al., E. coli was the predominant pathogen (47.6%) among HIV-positive patients [11]. Marques et al. reported 63.1% of isolates to be E. coli and 5.3% Acinetobacter in their study but found in their study that Enterococci were the most frequent isolates in patients with HIV whereas E. coli was most frequently isolated in controls [9]. The inference drawn in the present study is limited to a small number of patients. These findings may be useful for further exploration in a larger number of samples.

SUMMARY AND CONCLUSION

1. The study period of 1 year and 8 months revealed that it is difficult to locate/identify an HIV-positive person in a place like Kadapa on account of confidentiality/lack of awareness among the population.
2. Having identified the HIV-positive cases, collection of urine samples from the patients also needed counseling and intervention by the respective clinicians, especially when patients were not having any symptoms.
3. Follow-up of the HIV-positive cases is difficult as they lose contact with the clinicians and not traceable after being discharged from the hospital.
4. As there was difficulty in identifying the HIV-positive cases, having located a case we collected urine samples from the patients.
5. Out of 75 HIV-positive cases, 12 (16%) are showing significant bacteriuria (>10⁵ organisms/ml of urine). Among them, 9 patients have the symptoms of UTI.
6. E. coli (67%), Klebsiella (17%), Pseudomonas aeruginosa (8%), and S. aureus (8%) are the isolates from significant bacteriuria cases.
7. Out of 50 HIV-negative individuals, only 1 (2%) urine sample is showing significant bacteriuria.

REFERENCES

1. Staiman VR. Urologic problems in patients with acquired immunodeficiency syndrome. Sci World J 2005;1:427-37.
2. Heyns CF, Fisher M. The urological management of the patient with acquired immunodeficiency syndrome. BJU Int 2005;95(5):709-16.
3. Kumar SS, Lakshmi P, Ananthan S. Intestinal parasitic infection in HIV infected patients in Chennai. Indian J Med Microbiol 2002;20(2):88-91.
4. Collee JG. Mackie and McCartney Practical Medical Microbiology. 14th ed. Philadelphia, PA: Churchill Livingstone; 1996.
5. Hyun G, Lower FC. AIDS and the urologist. Urol Clin North Am 2003;30:101-9.
6. Muthusamy D, Rao SS, Ramani S, Monica B, Banerjee I, Abraham OC, et al. Multilocus genotyping of Cryptosporidium Sp. Isolates from human immunodeficiency virus-infected individuals in South India. J Clin Microbiol 2006;44(2):632-4.
7. Attili SV, Gulati AK, Singh VP, Varma DY, Rai M, Sundar S. Diarrhea, CD4 counts and enteric infections in a hospital - Based cohort of HIV-infected patients around Varanasi, India. BMC Infect Dis 2006;6:39.
8. Gugino L, Russo T, Wactawski-Wende J, Goodnough SL, Tristram DA, Mylotte J. Asymptomatic bacteriuria in human immunodeficiency (HIV)-infected women. Prim Care Update Ob Gyns 1998;5(4):146.
9. Schonwald S, Begovac J, Sker K. V. Urinary tract infection in HIV disease. Int J Antimicrob Agents 1999;11(3-4):309-11.
10. De Pinho AM, Lopes GS, Santos Oda R, Halpern M et al. Urinary tract infection in men with AIDS. Genitourin Med 1994;70(1):30-4.
11. Santos O da R, Bonecker C, Leite FC, Pereira AR et al. Bacteriuria in males with AIDS. Int Conf AIDS 1992;8:132.
12. Marques LP, Santos OR, Lopes GS, Rachid de Lacerda MC et al. AIDS-associated urinary tract infection. Int Conf AIDS 1989;5:234.
13. Evans JK, McOwan A, Hillman RJ, Forster GE. Incidence of asymptomatic UTI in HIV seropositive patients. Sex. Transm. Inf 1995;71:120-122.
14. Amutha B. Incidence of staphylococci in surgerysite infection. Int J Pharmaceut Sci Res 2015;6(7).
15. Tamizhazhagan V. Studies of bacterial population in ICU, Int J Pharm Pharmaceut Sci 2014;6(64).