REASONED OPINION

APPROVED: 17 August 2020
doi: 10.2903/j.efs2.2020.6235

Review of the existing maximum residue levels for chlorantraniliprole according to Article 12 of Regulation (EC) No 396/2005

European Food Safety Authority (EFSA), Maria Anastasiadou, Giovanni Bernasconi, Alba Brancato, Luis Carrasco Cabrera, Lucien Ferreira, Luna Greco, Samira Jarrah, Aija Kazocina, Renata Leuschner, Jose Oriol Magrans, Ileana Miron, Stefanie Nave, Ragnor Pedersen, Hermine Reich, Alejandro Rojas, Angela Sacchi, Miguel Santos, Anne Theobald, Benedicte Vagenende and Alessia Verani

Abstract

According to Article 12 of Regulation (EC) No 396/2005, EFSA has reviewed the maximum residue levels (MRLs) currently established at European level for the pesticide active substance chlorantraniliprole. To assess the occurrence of chlorantraniliprole residues in plants, processed commodities, rotational crops and livestock, EFSA considered the conclusions derived in the framework of Commission Regulation (EU) No 188/2011, the MRLs established by the Codex Alimentarius Commission as well as the import tolerances and European authorisations reported by Member States (including the supporting residues data). Based on the assessment of the available data, MRL proposals were derived and a consumer risk assessment was carried out. Although no apparent risk to consumers was identified, some information required by the regulatory framework was missing. Hence, the consumer risk assessment is considered indicative only and some MRL proposals derived by EFSA still require further consideration by risk managers.

© 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: chlorantraniliprole, MRL review, Regulation (EC) No 396/2005, consumer risk assessment, insecticide.

Requestor: European Commission
Question number: EFSA-Q-2013-00965
Correspondence: pesticides.mrl@efs.europa.eu
Acknowledgement: EFSA wishes to thank the rapporteur Member State, Ireland, for the preparatory work and Chris Anagnostopoulos, Laszlo Bura, Georgios Chatzisotiriou, Viktoria Krivova, Silvia Ruocco and Viktor Toth for the support provided to this scientific output.

Suggested citation: EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Theobald A, Vagenende B and Verani A, 2020. Reasoned opinion on the review of the existing maximum residue levels for chlorantraniliprole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2020;18(9):6235, 143 pp. https://doi.org/10.2903/j.efsa.2020.6235

ISSN: 1831-4732

© 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Summary

Chlorantraniliprole was approved on 1 May 2014 by means of Commission Implementing Regulation (EU) No 1199/2013 in the framework of Regulation (EC) No 1107/2009 as amended by Commission Implementing Regulations (EU) No 540/2011 and 541/2011.

As the active substance was approved after the entry into force of Regulation (EC) No 396/2005 on 2 September 2008, the European Food Safety Authority (EFSA) is required to provide a reasoned opinion on the review of the existing maximum residue levels (MRLs) for that active substance in compliance with Article 12(1) of the aforementioned regulation.

As the basis for the MRL review, on 15 December 2017, EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit by 15 January 2018 their national Good Agricultural Practices (GAPs) in a standardised way, in the format of specific GAP forms, allowing the designated rapporteur Member State IE to identify the critical GAPs in the format of a specific GAP overview file. Subsequently, Member States were requested to provide residue data supporting the critical GAPs, within a period of 1 month, by 1 June 2018. On the basis of all the data submitted by Member States and by the EU Reference Laboratories for Pesticides Residues (EURL), EFSA asked the RMS to complete the Pesticide Residues Overview File (PROFile) and to prepare a supporting evaluation report. The PROFile and evaluation report together with Pesticide Residues Intake Model (PRIMO) calculations were provided by the RMS to EFSA on 18 December 2018. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report.

Based on the information provided by the RMS, Member States and the EURL, and taking into account the conclusions derived by EFSA in the framework of Commission Regulation (EU) No 188/2011 and the MRLs established by the Codex Alimentarius Commission, EFSA prepared in May 2020 a draft reasoned opinion, which was circulated to Member States for consultation via a written procedure. Comments received by 22 June 2020 were considered during the finalisation of this reasoned opinion. The following conclusions are derived.

The metabolism of chlorantraniliprole in plant was investigated in primary and rotational crops. According to the results of the metabolism studies, the residue definition for enforcement and risk assessment can be proposed as chlorantraniliprole. This residue definition is also applicable to processed commodities. Fully validated analytical methods are available for the enforcement of the proposed residue definition in the four main matrix groups, as well as in hops and coffee beans (validation details still desirable for coffee beans) at the limit of quantification (LOQ) of 0.01 mg/kg. According to the EURLs, the LOQ of 0.01 mg/kg is achievable in high water, high acid and high oil content commodities, and 0.005 mg/kg in dry commodities, by using multiresidue methods in routine analyses.

Available residue trials data were considered sufficient to derive (tentative) MRL proposals as well as risk assessment values for all commodities under evaluation, except for sweet potatoes, Brussels sprouts, Chinese cabbages/pe-tsai, kales, kohlrabies, witloofs/Belgian endives, beans and peas (without pods), lentils (fresh), soyabees and chicory roots, for which no data are available to derive MRL and risk assessment values.

Chlorantraniliprole is authorised for use on crops that might be fed to livestock. Livestock dietary burden calculations were therefore performed for different groups of livestock according to OECD guidance. The dietary burdens calculated for all groups of livestock were found to exceed the trigger value of 0.1 mg/kg DM. Behaviour of residues was therefore assessed in all commodities of animal origin.

The metabolism of chlorantraniliprole residues in livestock was investigated in lactating goats and laying hens at dose rate covering the maximum dietary burdens calculated in this review. Different metabolic patterns were observed for ruminants and poultry, with parent chlorantraniliprole identified as a good marker. The residue definition for enforcement in all livestock commodities was therefore proposed as chlorantraniliprole. For risk assessment, attending to the different metabolic patterns observed in ruminants and poultry and the results of the feeding studies, different residue definitions were proposed, namely, sum of chlorantraniliprole, IN-HXH44 and IN-K9T00, expressed as chlorantraniliprole, for ruminants and swine products; and parent chlorantraniliprole only, for poultry tissues and eggs. An analytical method for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in all matrices is available. According to the EURLs, a screening detection limit (SDL) of 0.0025 mg/kg is achievable in meat and milk, and of 0.005 mg/kg in egg, by using multiresidue methods in routine analyses.
A livestock feeding study with lactating cows was used to derive MRL and risk assessment values in milk and tissues of ruminants. Since extrapolation from ruminants to pigs is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the MRL and risk assessment values in swine products. For poultry, the metabolism study was sufficient to conclude that, at the calculated dietary burden, residue levels would remain below the enforcement LOQ of 0.01 mg/kg in tissues; however, the occurrence of residues in eggs could not be excluded from the metabolism study. A feeding study conducted with laying hens was used to derive MRL and risk assessment values in eggs.

Chronic consumer exposure resulting from the authorised uses reported in the framework of this review was calculated using revision 3.1 of the EFSA PRIMo. For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation. The highest chronic exposure was calculated for Dutch toddler, representing 1% of the acceptable daily intake (ADI). Acute exposure calculations were not carried out because an acute reference dose (ARfD) was not deemed necessary for this active substance.

Apart from the MRLs evaluated in the framework of this review, internationally recommended CXLs have also been established for chlorantraniliprole. Additional calculations of the consumer exposure, considering these CXLs, were therefore carried out. The highest chronic exposure was calculated for Dutch toddler, representing 0.8% of the ADI.
Table of contents

Abstract ... 1
Summary ... 3
Background ... 6
Terms of reference ... 7
The active substance and its use pattern ... 7
Assessment .. 8
 1. Residues in plants .. 8
 1.1. Nature of residues and methods of analysis in plants ... 8
 1.1.1. Nature of residues in primary crops ... 8
 1.1.2. Nature of residues in rotational crops ... 9
 1.1.3. Nature of residues in processed commodities ... 9
 1.1.4. Methods of analysis in plants .. 10
 1.1.5. Stability of residues in plants .. 10
 1.1.6. Proposed residue definitions ... 11
 1.2. Magnitude of residues in plants .. 11
 1.2.1. Magnitude of residues in primary crops .. 11
 1.2.2. Magnitude of residues in rotational crops ... 14
 1.2.3. Magnitude of residues in processed commodities ... 14
 1.2.4. Proposed MRLs ... 15
 2. Residues in livestock ... 15
 2.1. Nature of residues and methods of analysis in livestock .. 15
 2.2. Magnitude of residues in livestock ... 16
 3. Consumer risk assessment .. 17
 3.1. Consumer risk assessment without consideration of the existing CXLs 17
 3.2. Consumer risk assessment with consideration of the existing CXLs 17
 Conclusions ... 18
Recommendations .. 19
References ... 24
Abbreviations ... 26
Appendix A – Summary of authorised uses considered for the review of MRLs 29
Appendix B – List of end points ... 98
Appendix C – Pesticide Residue Intake Model (PRIMo) .. 128
Appendix D – Input values for the exposure calculations ... 132
Appendix E – Decision tree for deriving MRL recommendations .. 140
Appendix F – Used compound codes ... 142
Background

Regulation (EC) No 396/20051 (hereinafter referred to as 'the Regulation') establishes the rules governing the setting and the review of pesticide maximum residue levels (MRLs) at European level. Article 12(1) of that Regulation stipulates that the European Food Safety Authority (EFSA) shall provide, within 12 months from the date of the inclusion or non-Inclusion of an active substance in Annex I to Directive 91/414/EEC2 a reasoned opinion on the review of the existing MRLs for that active substance.

As chlorantraniliprole was approved on 1 May 2014 by means of Commission Implementing Regulation (EU) No 188/20117 Chlorantraniliprole was evaluated by Ireland, designated as rapporteur Member State (RMS). Subsequently, a peer review on the initial evaluation of the RMS was conducted by EFSA, leading to the conclusions as set out in the EFSA scientific output (EFSA, 2013a).

According to the legal provisions, EFSA shall base its reasoned opinion in particular on the relevant assessment report prepared under Directive 91/414/EEC repealed by Regulation (EC) No 1107/2009. It shall be noted, however, that, in the framework of Regulation (EC) No 1107/2009, only a few representative uses are evaluated, whereas MRLs set out in Regulation (EC) No 396/2005 should accommodate all uses authorised within the European Union (EU), and uses authorised in third countries that have a significant impact on international trade. The information included in the assessment report prepared under Regulation (EC) No 1107/2009 is therefore insufficient for the assessment of all existing MRLs for a given active substance.

To gain an overview of the pesticide residues data that have been considered for the setting of the existing MRLs, EFSA developed the Pesticide Residues Overview File (PROFile). The PROFile is an inventory of all pesticide residues data relevant to the risk assessment and MRL setting for a given active substance. This includes data on:

- the nature and magnitude of residues in primary crops;
- the nature and magnitude of residues in processed commodities;
- the nature and magnitude of residues in rotational crops;
- the nature and magnitude of residues in livestock commodities;
- the analytical methods for enforcement of the proposed MRLs.

As the basis for the MRL review, on 15 December 2017, EFSA initiated the collection of data for this active substance. In a first step, Member States were invited to submit by 15 January 2018 their Good Agricultural Practices (GAPs) that are authorised nationally, in a standardised way, in the format of specific GAP forms. In the framework of this consultation, 16 Member States provided feedback on their national authorisations of chlorantraniliprole. Based on the GAP data submitted, the designated RMS Ireland was asked to identify the critical GAPs to be further considered in the assessment, in the format of a specific GAP overview file. Subsequently, in a second step, Member States were requested to provide residue data supporting the critical GAPs by 28 May 2018.

1 Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1–16.
2 Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.8.1991, p. 1–32. Repealed by Regulation (EC) No 1107/2009.
3 Commission Implementing Regulation (EU) No 1199/2013 of 25 November 2013 approving the active substance chlorantraniliprole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 315, 26.11.2013, p. 69–73.
4 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1–50.
5 Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 1–186.
6 Commission Implementing Regulation (EU) No 541/2011 of 1 June 2011 amending Implementing Regulation (EU) No 540/2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 187–188.
7 Commission Regulation (EU) No 188/2011 of 25 February 2011 laying down detailed rules for the implementation of Council Directive 91/414/EEC as regards the procedure for the assessment of active substances which were not on the market 2 years after the date of notification of that Directive. OJ No L 53, 26.2.2011, p. 51–55.

www.efsa.europa.eu/efsajournal 6 EFSA Journal 2020;18(9):6235
On the basis of all the data submitted by Member States and the EU Reference Laboratories for Pesticides Residues (EURL), EFSA asked Ireland to complete the PROFile and to prepare a supporting evaluation report. The PROFile and the supporting evaluation report, together with the Pesticide Residues Intake Model (PRIMo) calculations, were submitted to EFSA on 18 December 2018. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report.

Considering all the available information, and taking into account the MRLs established by the Codex Alimentarius Commission (CAC) (i.e. codex maximum residue limit; CXLs), EFSA prepared in May 2020 a draft reasoned opinion, which was circulated to Member States for commenting via a written procedure. All comments received by 22 June 2020 were evaluated by EFSA during the finalisation of the reasoned opinion.

The evaluation report submitted by the RMS (Ireland, 2018), the evaluation reports provided by Member States during the collection of data (France, 2018; Greece, 2018; Italy, 2018; Netherlands, 2018; Portugal, 2018; United Kingdom, 2018) and the EURL report on analytical methods (EURL, 2018) are considered as main supporting documents to this reasoned opinion and, thus, made publicly available.

In addition, further supporting documents to this reasoned opinion are the completeness check report (EFSA, 2020a) and the Member States consultation report (EFSA, 2020b). These reports are developed to address all issues raised in the course of the review, from the initial completeness check to the reasoned opinion. Furthermore, the exposure calculations for all crops reported in the framework of this review performed using the EFSA Pesticide Residues Intake Model (PRIMo) and the PROFile as well as the GAP overview file listing all authorised uses and import tolerances are key supporting documents and made publicly available as background documents to this reasoned opinion. A screenshot of the report sheet of the PRIMo is presented in Appendix C.

Terms of reference

According to Article 12 of Regulation (EC) No 396/2005, EFSA shall provide a reasoned opinion on:

- the inclusion of the active substance in Annex IV to the Regulation, when appropriate;
- the necessity of setting new MRLs for the active substance or deleting/modifying existing MRLs set out in Annex II or III of the Regulation;
- the inclusion of the recommended MRLs in Annex II or III to the Regulation;
- the setting of specific processing factors as referred to in Article 20(2) of the Regulation.

The active substance and its use pattern

Chlorantraniliprole is the ISO common name for 3-bromo-4'-chloro-1-(3-chloro-2-pyridyl)-2'-methyl-6'-[methylcarbamoyl]pyrazole-5-carboxanilide (IUPAC).

The chemical structure of the active substance and its main metabolite is reported in Appendix F.

The EU MRLs for chlorantraniliprole are established in Annexes IIIA of Regulation (EC) No 396/2005. Codex maximum residue limits (CXLs) for chlorantraniliprole were also established by the Codex Alimentarius Commission (CAC). An overview of the MRL changes that occurred since the entry into force of the Regulation mentioned above is provided below (Table 1).

Table 1: Overview of the MRL changes since the entry into force of Regulation (EC) No 396/2005

Procedure	Legal implementation	Remarks
MRL application	Not yet implemented	Setting of import tolerances for chlorantraniliprole in oil palms fruits and oil palms kernels (EFSA, 2019a)
Commission Regulation (EU) 2019/50	In hops (EFSA, 2018a)	
Commission Regulation (EU) 2016/567	Modify and setting import tolerances in various crops (EFSA, 2015a)	
Commission Regulation (EU) 36/2014	Several roots, oilseeds and tuber (EFSA, 2013b)	
Commission Regulation (EU) 241/2013	Carrots, parsnips, parsley root and celeriac (EFSA, 2012a)	
For the purpose of this MRL review, all the uses of chlorantraniliprole currently authorised within the EU and in third countries as submitted by the Member States during the GAP collection, have been reported by the RMS in the GAP overview files. The critical GAPs identified in the GAP overview files were then summarised in the PROFile and considered in the assessment. The details of the authorised critical GAPs for chlorantraniliprole are given in Appendix A.

Assessment

EFSA has based its assessment on the following documents:

- the PROFile submitted by the RMS;
- the evaluation report accompanying the PROFile (Ireland, 2018);
- the draft assessment report (DAR) and its addenda prepared under Council Directive 91/414/EEC (Ireland, 2010, 2013);
- the conclusion on the peer review of the pesticide risk assessment of the active substance chlorantraniliprole (EFSA, 2013a);
- the review report on chlorantraniliprole (European Commission, 2018);
- the Joint Meeting on Pesticide residues (JMPR) Evaluation report (FAO, 2008, 2010, 2013, 2014, 2016);
- the previous reasoned opinions on chlorantraniliprole (EFSA, 2010, 2011a, 2012a,b, 2013b, 2015a, 2016, 2018a, 2019a).

The assessment is performed in accordance with the legal provisions of the uniform principles for evaluation and authorisation of plant protection products as set out in Commission Regulation (EU) No 546/2011 and the currently applicable guidance documents relevant for the consumer risk assessment of pesticide residues (European Commission, 1997a-g, 2000, 2010a,b, 2017; OECD, 2011, 2013).

More detailed information on the available data and on the conclusions derived by EFSA can be retrieved from the list of end points reported in Appendix B.

1. Residues in plants

1.1. Nature of residues and methods of analysis in plants

1.1.1. Nature of residues in primary crops

The metabolism of chlorantraniliprole was investigated after foliar treatment in fruits (apples and tomatoes), leafy vegetables (lettuces) and pulses and oilseeds (cotton), and after soil drench in cereals (rice) (Ireland, 2010). The studies were conducted with 14C-chlorantraniliprole, either radiolabelled in the benzamide carbonyl or pyrazole carbonyl moiety (apple and cotton) or with a mixture containing

The table below shows the legal implementation and remarks for the application of chlorantraniliprole in different crops:

Procedure	Legal implementation	Remarks
Commission Regulation (EU) 441/2012	Citrus fruits, strawberries, cranberries, currants, gooseberries, rose hips, mulberries and elderberries, globe artichokes, rice, sugar cane, swine, ruminants and equine tissues, milks and eggs (2012b)	
Commission Regulation (EU) 978/2011	Various crops (EFSA, 2011a)	
Commission Regulation (EU) 460/2011	Carrots (EFSA, 2010)	
Specific request	Commission Regulation (EU) 2017/1016	Emergency use in hops (EFSA, 2016)
Implementation of CAC		
Commission Regulation (EU) 2018/687	CCPR 49th (EFSA, 2017)	
Commission Regulation (EU) 2016/567	CCPR 47th (EFSA, 2015b)	
Commission Regulation (EU) 2015/845	CCPR 46th (EFSA, 2014)	
Commission Regulation (EU) 2012/441	CCPR 43th (EFSA, 2011b)	
Commission Regulation (EU) 2010/459	CCPR 41st	

8 Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.06.2011, p. 127–175.
both radiolabelled forms in a ratio (1:1) (tomatoes, lettuces and rice). All studies were assessed in the framework of the peer review (EFSA, 2013a).

Following three foliar applications in apples, tomatoes and lettuces, one foliar application or incubation in a medicated solution in cotton, chlorantraniliprole was metabolised to a very limited extent, representing more than 80% of the total radioactive residues (TRR) in all plant samples collected up to 30 days after the last application (DALA) and 57% TRR in the mature cotton seeds harvested 126 DALA. No significant metabolites (≥ 0.01 mg eq/kg) were detected. No differences in the results that can be ascribed to the two labels were observed. It is noted that the metabolism study on fruits and oilseeds was underdosed, 0.5 N and 0.7 N, respectively, when compared to the most critical GAPs under assessment for citrus fruits (import tolerance) and oil seeds (import tolerance). However, this is not expected to have a significant impact since chlorantraniliprole was not metabolised to a great extent after foliar treatment.

After one soil application in rice, the metabolism was more extensive, with a total of 14 minor metabolites identified in addition to the parent in the different crop parts and in the soil/sediment matrices. At harvest, parent chlorantraniliprole was still the major component, representing more than 50% TRR in rice grain (0.08 mg eq/kg), straw and leaves. None of the metabolites accounted for more than 6% TRR.

The metabolism of chlorantraniliprole was sufficiently addressed in the four crop categories. Even if a specific study investigating metabolism in rice following seed treatment is not available, the results from the metabolism study after soil drench were considered as representative for the authorised use on rice in the frame of a previous MRL application (EFSA, 2011a).

1.1.2. Nature of residues in rotational crops

Chlorantraniliprole is authorised on crops that may be grown in rotation. The field DT$_{90}$ reported in the soil degradation studies evaluated in the framework of the peer review was 5,628 days for parent compound, while for metabolites IN-EQW78, IN-ECD73 and IN-GAZ70, the laboratory DT$_{90}$ was reported to be higher than 2,000 days. Moreover, laboratory DT$_{90}$ for metabolite IN-F6L99 was 259 days (EFSA, 2013a). Therefore, an investigation of residues in rotational crops following single and multiannual application is required.

One confined rotational crop study was available for this review (Ireland, 2010; EFSA, 2013a). Seeds of spring wheat (cereals), lettuce (leafy crops) and red beet (root and tuber vegetables) were sown into bare soil at nominal plant back intervals (PBI) of 0, 30, 120 and 365 days after treatment (DAT) with 300 g a.s/ha (2.4 N compared to the most critical European GAP under assessment for crops that can be rotated) of [pyrazole carbonyl-$_{14}$C]-chlorantraniliprole and at 30 days after treatment with 300 g a.s/ha of [benzamide carbonyl-$_{14}$C]-chlorantraniliprole. Spring wheat was also sown at 0 and 365 DAT after treatment with [pyrazole carbonyl-$_{14}$C]-chlorantraniliprole at 900 g a.s/ha (7 N).

Residues in lettuce increased over time, while residues in spring wheat increased until 120 DAT and decreased afterwards. Residues in red beet did not show a consistent pattern over time. The TRR in food commodities (wheat grain, lettuce, red beet roots) ranged from < 0.01 to 0.046 mg eq/kg, while in animal feed items (wheat forage, hay and straw, red beet forage), TRR was higher, ranging from 0.045 to 2.085 mg eq/kg.

In lettuce and spring wheat, chlorantraniliprole was the major residue in food items, in lettuce from 0 to 365 DAT, it ranged from 85 to 64% TRR; in wheat grain chlorantraniliprole represented 48% TRR at 120 DAT. Minor components were present at a maximum of 5% TRR, individually. Chlorantraniliprole was the main component in animal feed items as well (up to 84% TRR). In red beet, the metabolism was quite extensive. In tops no more than 4.8% (or 0.005 mg eq/kg) of TRR was detected as parent compound together with several metabolites, individually accounting for less than 10% TRR, with the exception of metabolite IN-F6L99 (11% TRR, 0.01 mg eq/kg). No characterisation was accomplished in roots as TRR was below 0.01 mg eq/kg. Following the application of either labelled compound or the exaggerated dose, no relevant differences in the metabolic profile were observed.

The metabolism and distribution of chlorantraniliprole in rotational crops are similar to the metabolic pathway observed in primary crops.

1.1.3. Nature of residues in processed commodities

A study investigating the nature of residues in processed commodities was assessed in the framework of the peer review (Ireland, 2010; EFSA, 2013a). The study was conducted with chlorantraniliprole radiolabelled in either the benzamide or pyrazole carbonyl positions simulating
representative hydrolytic conditions for pasteurisation (20 min at 90°C, pH 4), boiling/brewing/baking (60 min at 100°C, pH 5) and sterilisation (20 min at 120°C, pH 6).

The study demonstrated that chlorantraniliprole is hydrolytically stable under the conditions representative of pasteurisation and sterilisation. Nonetheless, under boiling conditions, it degraded slightly, forming the degradates IN-F6L99 (14% of total applied radioactivity – TAR), IN-EQW78 (4% TAR) and IN-ECD73 (11% TAR). Data from processing studies on apple, grape, tomato, plum and cotton showed that these metabolites were only detected at low levels (0.007–0.016 mg/kg) in processed tomato fractions (sterilised tomato paste and tomato ketchup, see Section 1.2.3) and the magnitude of parent compound was always significantly higher (86–87% TRR). Moreover, in the peer review report, it is stated that the three metabolites are considered of low toxicological relevance (EFSA, 2013c). Overall, EFSA considers the nature of residues in processed commodities was sufficiently elucidated.

1.1.4. Methods of analysis in plants

The multiresidue analytical method DFG S19 based on HPLC coupled to MS/MS detection was validated for the determination of chlorantraniliprole in high water (tomato), high acid (orange), high oil content (almond) and dry commodities (wheat grain) with an LOQ of 0.01 mg/kg. An independent laboratory validation (ILV) was also available. The studies were assessed in the framework of the peer review (Ireland, 2010; EFSA, 2013a).

In the frame of an MRL application (EFSA, 2018a), the DFG S19 multiresidue method was specifically validated for hops, with an LOQ of 0.01 mg/kg. An ILV conducted specifically for hops was also provided. Coffee beans are considered as matrix difficult to analyse and thus specific validation data should be provided for this matrix. However, since the DFG S19 multiresidue method was validated for the four main matrices and for hops, with the same LOQ (0.01 mg/kg), EFSA considers this method to be also applicable for coffee beans; nonetheless, the validation details for coffee beans are still desirable.

A single residue method (LC-MS/MS) provided in the DAR (Ireland, 2010) can be used for the enforcement of chlorantraniliprole in maize/corn stover, sorghum stover, rice and common millet straw, with LOQ 0.01 mg/kg, in view of the future need to set MRLs in feed items. An ILV on these matrices difficult to analyse was not conducted, and it is considered desirable.

During the completeness check, the EURLs provided validation results on QuEChERS multi-residue method using LC-MS/MS with an LOQ of 0.01 mg/kg in high water content, high acid content, high oil content and dry commodities for the enforcement of chlorantraniliprole in routine analysis (EURL, 2018). During the Member States consultation, EURLs provided additional information on the enforcement LOQ achieved in routine analysis for dry matrices. The new reported value is 0.005 mg/kg (EFSA, 2020b).

1.1.5. Stability of residues in plants

The storage stability of parent chlorantraniliprole was investigated in the framework of the peer review (EFSA, 2013a) in high water content (apple, tomato, lettuce, cauliflower), high acid content (grape), high oil content (cotton seed), high protein (wheat grain) and high starch contain (potato) commodities. Storage stability was also investigated in wheat straw and alfalfa hay (no group). These studies demonstrated storage stability of parent compound for a period of 24 months when stored at −20°C in all investigated matrices (Ireland, 2010; EFSA, 2013a).

Moreover, the storage stability of metabolites IN-EQW78, IN-ECD73 and IN-F6L99 was investigated in processed commodities (apple juice, tomato ketchup, cottonseed oil, cotton seed meal, raisins; see Section 1.1.2), and found to be stable for at least 12 months when stored at −20°C (Ireland, 2010; EFSA, 2013a).

It is noted that no specific study is available for the storage stability in coffee beans, hops and cereals’ stover. However, since storage stability was investigated and demonstrated in wheat straw and alfalfa hay, and it was found to be the same as for the four main plant matrices, the storage stability conditions demonstrated for cereals’ straw and oilseeds’ hay are assumed to be applicable to coffee beans, hops and cereals’ stover.
1.1.6. Proposed residue definitions

The metabolism of chlorantraniliprole was similar in all crops assessed. The metabolism in rotational crops is similar to the metabolism observed in primary crops.

Following foliar and soil drench treatments, parent chlorantraniliprole was by far the largest component of the radioactive residues in fruits, leafy vegetables, pulses and oilseeds and cereals. Although a specific metabolism study with cereals following seed treatment is not currently available, the metabolic profile in cereals after soil drench is deemed as representative to cover the authorised use on rice following seed treatment. Under processing, it was observed that baking, brewing and boiling degraded chlorantraniliprole up to 14%, whereas it was found to be stable under pasteurisation and sterilisation. Overall, parent chlorantraniliprole was still a sufficient marker for processed commodities. For risk assessment, besides parent, the inclusion of metabolites IN-F6L99, IN-EQW78 and IN-ECD73 (all formed under hydrolysis) was discussed during the peer review, and it was disregarded as they were considered as being of low toxicological relevance, they were only detected at low levels in some processed tomato fractions (tomato sauce, paste and ketchup) and their contributions to the overall consumer intake is negligible. Based on the above, the plant residue definition for monitoring and risk assessment set as chlorantraniliprole during the peer review, is still considered valid in this MRL review. This residue definition is applicable to raw and processed commodities.

A multiresidue analytical method for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in all matrices is available (Ireland, 2010; EFSA, 2013a). According to the EURLs, the LOQ of 0.01 mg/kg is achievable in high water, high acid and high oil content matrices by using multiresidue QuEChERS in routine analyses (EURL, 2018). For dry commodities, the LOQ in routine analysis was reported to be 0.005 mg/kg (EFSA, 2020b).

In addition, EFSA emphasises that the above studies do not investigate the possible impact of plant metabolism on the isomer ratio of chlorantraniliprole and further investigation on this matter would in principle be required. Since guidance on the consideration of isomer ratios in the consumer risk assessment is not yet available, EFSA recommends that this issue is reconsidered when such guidance is available.

1.2. Magnitude of residues in plants

1.2.1. Magnitude of residues in primary crops

To assess the magnitude of chlorantraniliprole residues resulting from the reported GAPs, EFSA considered all residue trials reported by the RMS in its evaluation report (Ireland, 2018) as well as the residue trials evaluated in the framework of the peer review (Ireland, 2010; EFSA, 2013a), the supporting trials submitted by Member States (France, 2018; Greece, 2018; Italy, 2018; Netherlands, 2018; Portugal, 2018; United Kingdom 2018) and in the framework of a previous MRL applications (EFSA, 2011a, 2012a,b, 2013b, 2015a, 2018a). All residue trial samples considered in this framework were stored in compliance with the conditions for which storage stability of residues was demonstrated, except for two northern and four southern trials performed on apples, four (whole data set) southern trials on apricots, four (whole data set) northern trials on peaches, eight (whole data set) indoor trials on strawberries, four indoor trials on normal size tomatoes, five (whole data set) southern trials on head cabbage, two northern and two southern trials on lettuce (closed leaf varieties), four (whole data set) southern trials on grape leaves, for which additional information is required (see details below). In all other samples decline of residues during storage of the trial samples is therefore not expected.

The number of residue trials and extrapolations were evaluated in accordance with the European guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs (European Commission, 2017).

Residue trials are not available to support the authorisations on sweet potatoes, Brussels sprouts, Chinese cabbages/pe-tsai, kales, kohlrabies, witloofs/Belgian endives, beans and peas (without pods), lentils (fresh), soyabeans and chicory roots. Therefore, MRL and risk assessment values could not be derived for these crops and the following data gaps were identified:

- Sweet potatoes: four trials on sweet potatoes compliant with the northern outdoor GAP are required.
Brussels sprouts: four trials on Brussels sprouts compliant with the northern outdoor GAP, four trials compliant with the southern outdoor GAP and four trials compliant with the import tolerance GAP are required.

Chinese cabbage/pe-tsai: four trials on Chinese cabbage compliant with the northern outdoor GAP, four trials compliant with the southern outdoor GAP, four trials compliant with the indoor GAP and four trials compliant with the import tolerance in place (US) are required.

Kales: four trials on kales compliant with the northern outdoor GAP, four trials compliant with the southern outdoor GAP and four trials compliant with the import tolerance in place (US) are required.

Kohlrabies: four trials on Kohlrabies compliant with the southern outdoor GAP are required.

Witloofs/Belgian endives: four trials on witloofs compliant with the northern outdoor GAP, four trials compliant with the southern outdoor GAP and four trials compliant with the indoor GAP are required.

Beans (without pods): four trials on beans (without pods) compliant with the import tolerance in place (US) are required.

Peas (without pods): eight trials on peas (without pods) compliant with the import tolerance in place (US) are required.

Lentils (fresh): four trials on lentils compliant with the import tolerance in place (US) are required.

Soyabeans: eight trials on soyabeans compliant with the import tolerance in place (Australia and Japan) are required.

Chicory roots: four trials on chicory roots compliant with the northern outdoor GAP are required.

Moreover, no residue trials are available to support the authorisations on the following feed items: common millet, maize/corn and sorghum forage, sorghum and maize/corn stover, common millet straw and turnip tops. Therefore, eight trials compliant with the northern and/or southern GAPs of these feed items are required, noting that the number of trials is indicative considering that MRLs and data requirements are not currently set for feed items.

For all other crops, available residue trials are sufficient to derive (tentative) MRL and risk assessment values, taking note of the following considerations:

- Citrus fruits: no residue trials are available to support the southern outdoor GAP. Nevertheless, considering that the application is done early in the season (before the edible part is formed), significant residues are not expected in citrus fruits according to this use. Therefore, no additional trials are required to support the southern outdoor GAP.
- Almonds, chestnuts, hazelnuts/cobnuts and pistachios: Although MRL and risk assessment values for these crops can be derived from the data supporting the import tolerance GAP, four trials compliant with the southern outdoor GAP for these crops are still required.
- Pome fruits: trials supporting the southern outdoor GAP for quinces, medlars and loquats were performed according to a more critical GAP. Nevertheless, considering that the import tolerance GAP is clearly more critical, no additional trials supporting the southern outdoor GAP for these crops are required. It is also noted that information on the storage stability of samples from two out of the 12 northern trials and for four out of the 14 southern trials, is not available. Nevertheless, considering that results from these trials are in the same range compared to the others, additional information on the storage conditions are only desirable.
- Apricots: although a tentative MRL can be derived based on a reduced data set supporting the southern outdoor GAP, four additional trials compliant with the southern outdoor GAP and eight residue trials compliant with the import tolerance GAP, are still required. Moreover, additional information on the storage conditions of the samples from all southern outdoor trials is still required.
- Peaches: although MRL and risk assessment values for this crop can be derived from the data supporting the import tolerance GAP, information of the storage conditions of the samples from all northern outdoor trials is still required.
- Strawberries: although a tentative MRL can be derived based on the data set supporting the indoor GAP, information of the storage conditions of these samples and eight trials compliant with the import tolerance GAP, are still required.
• Blueberries: although MRL and risk assessment values for this crop can be derived from the data supporting the import tolerance GAP, four trials compliant with the northern outdoor GAP are still required.
• Parsley roots/Hamburg roots parsley: although MRL and risk assessment values for this crop can be derived from the data supporting the southern outdoor GAP, four residue trials compliant with the indoor GAP are still required.
• Tomatoes: although MRL and risk assessment values for this crop can be derived from the data supporting the import tolerance GAP, eight residue trials compliant with the northern outdoor GAP are still required. It is noted that information on the storage stability of the samples from four out of the 25 indoor trials available is missing. Nevertheless, considering that results from these trials are in the same range compared to the others, additional information on the storage conditions are only desirable.
• Sweet peppers: the number of residue trials supporting the southern outdoor and the indoor GAPs is not compliant with the data requirement for this crop. Therefore, three additional trials compliant with the southern outdoor GAP and one additional trial compliant with the indoor GAP are still required. It is noted that during the peer review, residue levels in bell peppers were found to be significantly lower than in hot peppers, and thus, the additional trials should be performed on hot peppers.
• Cucumbers and gherkins: although MRL and risk assessment values for these crops can be derived from the data supporting the indoor GAP, eight residue trials on cucumbers and four residue trials on gherkins are still required to support the northern outdoor GAP of these crops.
• Melons and watermelons: although a tentative MRL can be derived based on a reduced data set supporting the import tolerance GAP, one additional trial compliant with the import tolerance GAP is still required.
• Cauliﬂowers and broccoli: although MRL and risk assessment values can be derived from the data supporting the import tolerance GAP (broccoli) and the southern outdoor GAP (cauliﬂowers), four residue trials on broccoli and four residue trials on cauliflowers are still required to support the indoor GAP for these crops.
• Head cabbages: although MRL and risk assessment values can be derived from the data supporting the import tolerance GAP, additional information on the storage conditions of the samples from all southern outdoor trials are still required.
• Lettuces and salad plants, spinaches and similar leaves, herbs and edible ﬂowers: the number of residue trials supporting the northern outdoor (lamb’s lettuce/corn salads, lettuces, roman rocket/rucoila, red mustards, escaroles/broad-leaved endives, whole subgroups of spinaches and similar leaves and herbs and edible ﬂowers (except laurel/bay leaf)), southern outdoor (lamb’s lettuce/corn salad, roman rocket/rucoila, red mustards and baby leaf crops (including brassica species), escaroles/broad-leaved endives, cresses and land cresses, whole subgroups of spinaches and similar leaves and herbs and edible ﬂowers) and indoor GAPs (escaroles/broad-leaved endives, cresses and land cresses, whole subgroups of spinaches and similar leaves, and herbs and edible ﬂowers) was not compliant with the data requirements for these crops. Moreover, the three residue trials available on open leaf lettuce varieties and one on closed leaf lettuce varieties were found to be overdosed when compared to the outdoor northern GAP. Nevertheless, considering that the import tolerance GAP is clearly more critical, no additional trials are required for these crops. It is noted that, as proposed by the RMS (Ireland, 2018), a combined data set on open leaf lettuce varieties and spinaches was used to support the import tolerance GAP on lettuces and salad plants, spinaches and similar leaves, herbs and edible ﬂowers. This is not fully in line with the extrapolation guidelines; however, based on the overall data available, the extrapolation is considered acceptable in this case. Furthermore, information on the storage stability of the samples from two out of the six northern trials and from two out of the 11 southern trials available on lettuces is missing. Nevertheless, considering that results from these trials are in the same range compared to the others, additional information on the storage conditions are only desirable.
• Grape leaves: although a tentative MRL can be derived based on the data set supporting the southern outdoor GAP, information of the storage conditions of these samples are still required.
• Beans (with pods): the number of residue trials supporting the northern outdoor GAP is not compliant with the data requirement for this crop. Moreover, all the northern trials were overdosed. Nevertheless, considering that the indoor GAP is clearly more critical, no additional trials compliant with the northern outdoor GAP are required.
Review of the existing MRLs for chlorantraniliprole

- Peas (with pods): although MRL and risk assessment values can be derived from the data supporting the import tolerance GAP, four trials compliant with the northern outdoor GAP are still required.
- Globe artichokes: although MRL and risk assessment values can be derived from the data supporting the import tolerance GAP, four trials compliant with the northern outdoor GAP are still required.
- Peanuts: although a tentative MRL can be derived based on a reduced data set supporting the import tolerance GAP, two additional trials compliant with this GAP are still required.
- Sunflower seeds: although a tentative MRL can be derived based on a reduced data set supporting the import tolerance GAP, two additional trials compliant with this GAP are still required.
- Rapeseeds: although a tentative MRL can be derived based on a reduced data set supporting the import tolerance GAP, two additional trials compliant with this GAP are still required.
- Cotton seed: although MRL and risk assessment values for this crop can be derived from the data supporting the import tolerance GAP, eight residue trials compliant with the southern outdoor GAP are still required.
- Maize, sweet corn, common millet and sorghum: the number of residue trials supporting the northern and the southern outdoor GAPs is not compliant with the data requirement for these crops. Moreover, all northern trials on maize grains were overdosed. However, the northern overdosed trials and the reduced number of southern and northern residue trials are considered acceptable in this case as all results were below the LOQ and a no residue situation is expected. Further residue trials are therefore not required.
- Rice grain: the number of residue trials supporting the southern outdoor GAP is not compliant with the data requirement for this crop. Nevertheless, considering that the import tolerance GAP is clearly more critical, no additional trials are required to support the southern outdoor GAP.

1.2.2. Magnitude of residues in rotational crops

Field rotational crop studies carried out in the EU and in the US were available for this review (Ireland, 2010, 2013; EFSA, 2013a). The EU studies were conducted at an application rate of 80 g a.s/ha (0.6 N of the maximum seasonal application rate currently authorised on crops that can be rotated), while the US studies were performed at application rates of 200–225 or 600 g a.s/ha (1.8 N and 4.8 N). The US studies are thus considered more appropriate to investigate the magnitude of residues in rotational crops. Representatives of root crops, leafy vegetables, cereal crops, as well as soybeans were sown/planted at the plant back intervals (PBI) of 13–61 days, 122–151 and 238–279 days. Residues of chlorantraniliprole were below the LOQ of 0.01 mg/kg in the edible parts of the plants, and mostly below 0.05 mg/kg in feed items (tops of root vegetables, cereal forage, hay and straw). The residues of soil metabolites were not searched for as they were below the relevant trigger values in the confined rotational crop study.

Given the high persistence of chlorantraniliprole in soil (see Section 1.1.2), the potential occurrence of residues following multiannual applications should also be investigated. According to the soil accumulation studies assessed in the peer review, the predicted environmental concentration of chlorantraniliprole in soil (the so-called plateau level) was estimated to be 0.11 mg/kg (20 cm soil) following applications of chlorantraniliprole on lettuce at an annual rate of 80 g a.s/ha over 20 consecutive years (EFSA, 2013a). The peer review stated that the US field trials conducted at ca. 0.8–1.7 N plateau level were sufficient to conclude that no chlorantraniliprole residues are expected to occur in rotational crops when the active substance was used according to the EU GAPs. Since the most critical EU GAP for crops that can be rotated was evaluated under the peer review is the same as the one under this assessment, this conclusion is also applicable to this MRL review, and therefore, significant residue levels of chlorantraniliprole are not expected in succeeding crops, provided that the active substance is applied in compliance with the European GAPs reported in Appendix A.

1.2.3. Magnitude of residues in processed commodities

The effect of industrial processing and/or household preparation was assessed on studies conducted on apples, plums, table and wine grapes, tomatoes, cotton seeds and oil palm fruits. Moreover, peeling factors were also derived for melons (Ireland, 2010; EFSA, 2013a). An overview of all available processing studies is available in Appendix B.1.2.3. Robust processing factors (fully supported by data) could be derived for apple juice, sauce, dry and wet pomace; peeled and canned tomato, and tomato sauce, paste, ketchup and juice; crude palm oil and mesocarp cake. Sufficient
data were also available to derive robust peeling factors for melons. Tentative processing factors (not fully supported by data) were derived for dried plums (prunes); dried table grapes (raisins); wine grapes juice, dry and wet pomace, must, red and white wine. Tentative processing factors were also derived for cotton seeds refined oil and meal/press cake.

Residues of metabolites IN-F6L99, IN-EQW78 and IN-ECD73 were detected at low levels (0.007–0.016 mg/kg) in tomato sauce, paste, ketchup, crushed and reduced tomato (Ireland, 2010), while they were not reported in the processing studies conducted with oil palm fruits. These metabolites were not included in the residue definition for risk assessment for processed commodities (see Sections 1.1.3 and 1.1.6). Nonetheless, it should be stressed that if new uses are authorised in the future, the levels of these metabolites (IN-F6L99, IN-EQW78 and IN-ECD73) should be analysed in processed commodities and, if significant levels are found, their inclusion in the risk assessment residue definition should be reconsidered.

Further processing studies are not required as they are not expected to affect the outcome of the risk assessment. However, if more robust processing factors were to be required by risk managers, in particular for enforcement purposes, additional processing studies would be needed.

1.2.4. Proposed MRLs

The available data are considered sufficient to derive (tentative) MRL proposals as well as risk assessment values for all commodities under evaluation, except for sweet potatoes, Brussels sprouts, Chinese cabbages/pe-tsai, kales, kohlrabies, witloofs/Belgian endives, beans and peas (without pods), lentils (fresh), soybeans and chicory roots, for which no data are available to derive MRL and risk assessment values.

Tentative MRLs were also derived for feed crops (rice straw) in view of the future need to set MRLs in feed items; nonetheless, no residue trials were available to derive tentative MRLs on common millet, maize/corn and sorghum forage, sorghum and maize/corn stover, common millet straw and turnip tops.

2. Residues in livestock

Chlorantraniliprole is authorised for use on crops that might be fed to livestock. Livestock dietary burden calculations were therefore performed for different groups of livestock according to OECD guidance (OECD, 2013), which has now also been agreed upon at European level. The input values for all relevant commodities are summarised in Appendix D. The dietary burdens calculated for all groups of livestock were found to exceed the trigger value of 0.1 mg/kg DM. Behaviour of residues was therefore assessed in all commodities of animal origin.

It is highlighted that for several feed items (common millet, maize/corn and sorghum forage, sorghum and maize/corn stover, common millet straw and turnip tops), no residue data were available. The animal intake of chlorantraniliprole residues via these commodities has therefore not been assessed and may have been underestimated. However, this is not expected to have a major impact on the outcome of the dietary burden considering the high/overwhelming contribution of head cabbage.

2.1. Nature of residues and methods of analysis in livestock

The metabolism of chlorantraniliprole residues in livestock was investigated in lactating goats and laying hens at dose rate covering the maximum dietary burdens calculated in this review (Ireland, 2010). These studies were assessed in the framework of the peer review (EFSA, 2013a). Animals were dosed with a mixture (1:1) of 14C-pyralzol-carbonyl and 14C-benzamide-carbonyl-chlorantraniliprole over 7 (goat) and 14 (poultry) consecutive days.

The studies performed with lactating goats and laying hens indicate that chlorantraniliprole was extensively eliminated and less than 4% (poultry) and 1% (goat) of the administered radioactivity was recovered in eggs, milk and animal tissues. The study performed on laying hens shows that the metabolism is quite extensive, with several metabolites identified. In liver and muscle, none of the metabolites represented more than 10% TRR.

In fat, chlorantraniliprole was the major component of the extracted radioactivity, accounting for 18% TRR (0.01 mg eq/kg). The major components of the radioactivity observed in eggs at plateau were parent chlorantraniliprole (32% TRR, 0.256 mg eq/kg) and IN-GAZ70 (40% TRR, 0.377 mg eq/kg). Metabolites IN-H2H20 and IN-K7H29 were also identified in significant proportions in egg yolk (11–24% TRR, 0.05–0.08 mg eq/kg).
In lactating goats, the highest TRR were found in liver and kidney (0.09–2.6 mg eq/kg). Lower levels were found in muscle (0.015 mg eq/kg). The main compound identified in kidney, muscle and fat was parent chlorantraniliprole (19–75% TRR, 0.017–0.051 mg eq/kg). In liver, chlorantraniliprole was also identified together with several metabolites, all present at low levels (< 10% TRR). In milk, in addition to parent chlorantraniliprole, which accounted for 24% TRR (0.016 mg eq/kg), two metabolites were also identified at similar proportions as the parent: IN-K9T00 and IN-HXH44, both at 26% TRR, 0.02 mg eq/kg.

EFSA concludes that the metabolism of chlorantraniliprole in livestock is adequately elucidated. The metabolism exhibited a different pattern in ruminants and poultry, with parent and metabolites IN-GAZ70, IN-H2H20 as the most relevant components of the residue in hen, while parent and metabolites IN-HXH44 and IN-K9T00 were the most relevant components in goat.

The storage stability of parent chlorantraniliprole and metabolites IN-K9T00, IN-HXH44, IN-GAZ70 and IN-EQW78 was demonstrated for a period of 12 months at –20°C in muscle, fat, liver, kidney and milk (Ireland, 2010; EFSA, 2013a). No studies are available for eggs, but they are not deemed necessary at the time of this MRL review (see Section 2.2).

As the parent compound was found to be a sufficient marker in all livestock commodities, the residue definition for enforcement is proposed as chlorantraniliprole, and considered to be fat soluble.

An analytical method and its ILV for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in all matrices is available (Ireland, 2010; EFSA, 2013a). Screening data generated by EURLs for commodities of animal origin showed that chlorantraniliprole can be screened in meat and milk with a screening detection limit (SDL) of 0.0025 mg/kg and in egg with an SDL of 0.005 mg/kg, in routine analysis (EURL, 2018).

For risk assessment in ruminants, metabolites IN-HXH44 and IN-K9T00 represent a significant part of the residue in milk, they were found in the rat metabolism and considered to be covered by the toxicological profile of the parent (EFSA, 2013a). Hence, the peer review defined the residue for risk assessment as the sum of chlorantraniliprole, IN-HXH44 and IN-K9T00, expressed as chlorantraniliprole. EFSA considers this residue definition as still valid for ruminants and swine. For poultry, however, the dietary burden was not triggered at the time of the peer review, but it is triggered in this assessment. As indicated above, the metabolic pattern in ruminants and poultry was found to be different. In poultry tissues, no metabolites were found at significant levels of the applied radioactivity, and therefore, the risk assessment residue definition for poultry tissues is expressed as chlorantraniliprole. In eggs, metabolite IN-GAZ70 was encountered in the white at significant level, even when scaled down to the calculated dietary burden. Metabolite IN-H2H20 was also found at significant level in egg yolk in the overdosed metabolism study. Both metabolites were found in the rat metabolism and their toxicity can be considered as covered by that of the parent (EFSA, 2013c). In view of the results of the feeding studies conducted with poultry (see Section 2.2), where at the closest feeding level, residues of metabolites IN-GAZ70 and IN-H2H20 remained at or below the LOQ and were twice lower than those of chlorantraniliprole, and the large margin of safety in the exposure calculations (see Section 3), the residue definition for risk assessment for eggs is proposed as chlorantraniliprole only. EFSA emphasises that if new authorisations on crops significantly contributing to the poultry diets are granted in the future, the inclusion of these metabolites should be reconsidered.

2.2. Magnitude of residues in livestock

In the framework of the peer review, a feeding study was performed with dairy cows (Ireland, 2010). In the study, chlorantraniliprole was administered to four groups of lactating cows at dosing levels of 0.029 mg/kg, 0.083 mg/kg, 0.287 mg/kg and 1.354 mg/kg body weight (bw) per day. In addition to this, a feeding study with laying hens was made available by the RMS for this review (Ireland, 2018). Chlorantraniliprole was administrated to laying hens at three different dosing levels, namely 0.230 mg/kg, 0.746 mg/kg and 2.419 mg/kg bw per day.

The study conducted with dairy cows was used to derive MRL and risk assessment values in milk and tissues of ruminants. Since extrapolation from ruminants to pigs is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the MRL and risk assessment values in pigs. In the study, samples of tissues and milk were analysed for the risk assessment residue definition set for ruminants and swine. The storage period of the samples was covered by the conditions for which storage stability was demonstrated, thus decline of residues during storage of the trial samples is not expected.
Based on these studies, MRL and risk assessment values were derived for all commodities of dairy ruminants, meat ruminants and pigs, in compliance with the latest recommendations on this matter (FAO, 2009). It is noted that significant levels of chlorantraniliprole are only expected in cattle fat and liver, while for other tissues and milk, MRLs are proposed at the LOQ. Based on the available feeding study, EFSA also derived conversion factors (CF) of 1.8 and 1.9 for risk assessment in ruminants’ liver and kidney, respectively. For swine tissues and ruminants’ milk, muscle and fat, a conversion factor of 1 could be proposed as parent and metabolites included in the risk assessment residue definition were all below the LOQ of 0.01 mg/kg, at the calculated dietary burden.

For poultry, the metabolism study, performed at 23 N rate compared to the maximum dietary burden, is sufficient to conclude that residue levels would remain below the enforcement LOQ of 0.01 mg/kg in muscle, fat and liver tissues. The results of the available feeding studies performed with laying hens at 6.6, 21.3 and 69.1 N rate compared to the maximum dietary burden confirmed this conclusion. However, the occurrence of residues in eggs cannot be excluded from the metabolism study, and thus, the feeding study with laying hens was used to derive MRL and risk assessment values in eggs. In this study, egg and tissue samples were analysed for parent chlorantraniliprole and metabolites IN-GAZ70, IN-H2H20, IN-F9N04, IN-K7H29 and IN-EQW78. Samples were stored for less than one month at –80°C before the analysis. Hence, storage stability studies with eggs are not required and decline of residues during storage of the trial samples is not expected. Based on the studies, MRL and risk assessment values were derived for eggs, in compliance with the latest recommendations on this matter (FAO, 2009). Only residue levels of parent chlorantraniliprole are expected to be higher than the LOQ at the calculated dietary burden.

3. Consumer risk assessment

In the framework of this review, only the uses of chlorantraniliprole reported by the RMS in Appendix A were considered; however, the use of chlorantraniliprole was previously also assessed by the JMPR (FAO, 2008, 2010, 2013, 2014, 2016). The CXLs, resulting from these assessments by JMPR and adopted by the CAC, are now international recommendations that need to be considered by European risk managers when establishing MRLs. To facilitate consideration of these CXLs by risk managers, the consumer exposure was calculated both with and without consideration of the existing CXLs.

3.1. Consumer risk assessment without consideration of the existing CXLs

Chronic exposure calculations for all crops reported in the framework of this review were performed using revision 3.1 of the EFSA PRIMo (EFSA, 2018b, 2019b). Input values for the exposure calculations were derived in compliance with the decision tree reported in Appendix E. Hence, for those commodities where a (tentative) MRL could be derived by EFSA in the framework of this review, input values were derived according to the internationally agreed methodologies (FAO, 2009). For those commodities where data were insufficient to derive an MRL in Section 1, EFSA considered the existing EU MRL for an indicative calculation. All input values included in the exposure calculations are summarised in Appendix D. Acute exposure calculations were not carried out because an acute reference dose (ARfD) was not deemed necessary for this active substance.

The exposure values calculated were compared with the toxicological reference value for chlorantraniliprole, derived by EFSA (2013a). The highest chronic exposure was calculated for Dutch toddler, representing 1% of the acceptable daily intake (ADI). These calculations indicate that the uses assessed under this review result in a consumer exposure lower than the toxicological reference values. Therefore, these uses are unlikely to pose a risk to consumer’s health.

3.2. Consumer risk assessment with consideration of the existing CXLs

To include the CXLs in the calculations of the consumer exposure, CXLs were compared with the EU MRL proposals in compliance with Appendix E and all data relevant to the consumer exposure assessment have been collected from JMPR evaluations. An overview of the input values used for this exposure calculation is also provided in Appendix D. For those commodities having a CXL higher than the EU MRL proposal, risk assessment values used in the EU scenario were replaced by the risk assessment values derived by JMPR, bearing in mind the following considerations:
CXLs for broccoli, cauliflower, brussels sprouts, head cabbage, kohlrabi, peas with and without pods, coffee beans and hops were not legally implemented in the EU Regulation due to reservations related to different polices of extrapolation, raised by the EU delegation. The CXLs for these commodities were not considered further in the consumer risk assessment.

For poultry tissues and eggs, the EU and JMPR residue definitions for risk assessment are comparable. However, the EU residue definition for risk assessment of ruminants and swine comprises two additional metabolites, i.e. HXH44 and IN-K9T00, not considered by JMPR. Since the CXLs for livestock are higher compared to the MRLs derived considering the EU uses (below the LOQ for most of the commodities) and the levels of the metabolites HXH44 and IN-K9T00 coming from JMPR were not specified, to take into account the contribution of these metabolites, the more conservative conversion factors (mainly for milk) from enforcement to risk assessment as derived by the peer review (EFSA, 2013a) for liver, kidney and muscle (CF of 1.5), fat (CF of 1) and milk (CF of 3) were applied to the risk assessment values derived by JMPR, and the input values calculated accordingly (see Appendix D.2).

Chronic exposure calculations were also performed using revision 3.1 of the EFSA PRIMo and the exposure values calculated were compared with the toxicological reference value derived for chlorantraniliprole. Acute exposure calculations were not carried out because an acute reference dose (ARfD) was not deemed necessary for this active substance. The highest chronic exposure was calculated for Dutch toddler, representing 0.8% of the ADI. Based on these calculations, EFSA concludes that the CXLs are not expected to be of concern for European consumers.

EFSA emphasises that the above assessment does not consider the possible impact of plant and livestock metabolism on the isomer ratio of chlorantraniliprole, and further investigation on this matter would in principle be required. Nonetheless, EFSA notes that in view of the large margin of safety in the exposure calculations, the potential change of isomer ratios in the final residue will not be of concern for the authorised uses reported in the framework of this review. In case future uses of chlorantraniliprole would lead to a higher consumer exposure, further information regarding the impact of plant and livestock metabolism on the isomer ratio might be required.

Conclusions

The metabolism of chlorantraniliprole in plant was investigated in primary and rotational crops. According to the results of the metabolism studies, the residue definition for enforcement and risk assessment can be proposed as chlorantraniliprole. This residue definition is also applicable to processed commodities. Fully validated analytical methods are available for the enforcement of the proposed residue definition in the four main matrix groups, as well as in hops and coffee beans (validation details still desirable for coffee beans) at the LOQ of 0.01 mg/kg. According to the EURLs, the LOQ of 0.01 mg/kg is achievable in high water, high acid and high oil content commodities, and 0.005 mg/kg in dry commodities, by using multiresidue methods in routine analyses.

Available residue trials data were considered sufficient to derive (tentative) MRL proposals as well as risk assessment values for all commodities under evaluation, except for sweet potatoes, Brussels sprouts, Chinese cabbages/pe-tsai, kales, kohlrabies, witloofs/Belgian endives, beans and peas (without pods), lentils (fresh), soyabeans and chicory roots, for which no data are available to derive MRL and risk assessment values.

Chlorantraniliprole is authorised for use on crops that might be fed to livestock. Livestock dietary burden calculations were therefore performed for different groups of livestock according to OECD guidance. The dietary burdens calculated for all groups of livestock were found to exceed the trigger value of 0.1 mg/kg DM. Behaviour of residues was therefore assessed in all commodities of animal origin.

The metabolism of chlorantraniliprole residues in livestock was investigated in lactating goats and laying hens at dose rate covering the maximum dietary burdens calculated in this review. Different metabolic patterns were observed for ruminants and poultry, with parent chlorantraniliprole identified as a good marker. The residue definition for enforcement in all livestock commodities was therefore proposed as chlorantraniliprole. For risk assessment, attending to the different metabolic patterns observed in ruminants and poultry and the results of the feeding studies, different residue definitions were proposed, namely, sum of chlorantraniliprole, IN-HXH44 and IN-K9T00, expressed as chlorantraniliprole, for ruminants and swine; and parent chlorantraniliprole only, for poultry tissues and eggs. An analytical method for the enforcement of the proposed residue definition at the LOQ of 0.01 mg/kg in all matrices is available. According to the EURLs, a screening detection limit (SDL) of 0.0025 mg/kg is achievable in meat and milk, and of 0.005 mg/kg in egg, by using multiresidue methods in routine analyses.
A livestock feeding study with lactating cows was used to derive MRL and risk assessment values in milk and tissues of ruminants. Since extrapolation from ruminants to pigs is acceptable, results of the livestock feeding study on ruminants were relied upon to derive the MRL and risk assessment values in pigs. For poultry, the metabolism study was sufficient to conclude that, at the calculated dietary burden, residue levels would remain below the enforcement LOQ of 0.01 mg/kg in tissues; however, the occurrence of residues in eggs could not be excluded from the metabolism study. A feeding study conducted with laying hens was used to derive MRL and risk assessment values in eggs.

Chronic consumer exposure resulting from the authorised uses reported in the framework of this review was calculated using revision 3.1 of the EFSA PRIMo. For those commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation. The highest chronic exposure was calculated for Dutch toddler, representing 1% of the acceptable daily intake (ADI). Acute exposure calculations were not carried out because an ARfD was not deemed necessary for this active substance.

Apart from the MRLs evaluated in the framework of this review, internationally recommended CXLs have also been established for chlorantraniliprole. Additional calculations of the consumer exposure, considering these CXLs, were therefore carried out. The highest chronic exposure was calculated for Dutch toddler, representing 0.8% of the ADI.

Recommendations

MRL recommendations were derived in compliance with the decision tree reported in Appendix E of the reasoned opinion (see Table 2). All MRL values listed as ‘Recommended’ in the table are sufficiently supported by data and are therefore proposed for inclusion in Annex II to the Regulation. The remaining MRL values listed in the table are not recommended for inclusion in Annex II because they require further consideration by risk managers (see Table 2 footnotes for details). In particular, some tentative MRL(s) and existing EU MRL(s) need to be confirmed by the following data:

- GAP compliant residue trials to support the authorised uses on Brussels sprouts, kohlrabies, beans and peas (without pods), lentils (fresh) and chicory roots;
- one additional trial on hot pepper supporting the authorised indoor use on peppers;
- one additional trial on melon supporting the authorised import tolerance in place for melons and watermelons;
- information on storage conditions of the whole data set of samples supporting the authorised southern use on grape leaves, to confirm the results of the available trials;
- two additional residue trials supporting the authorised import tolerance in place for peanuts;
- two additional residue trials supporting the authorised import tolerance in place for sunflower seeds;
- two additional residue trials supporting the authorised import tolerance in place for rapeseeds;

It is highlighted, however, that some of the MRLs derived result from a CXL or from a GAP in one climatic zone only, whereas other GAPs reported by the RMS were not fully supported by data. EFSA therefore identified the following data gaps which are not expected to impact on the validity of the MRLs derived but which might have an impact on national authorisations:

- additional residue trials supporting the authorised GAPs on almonds (SEU), chestnuts (SEU), hazelnuts/cobnuts (SEU), pistachios (SEU), apricots (SEU and IT), strawberries (IT), blueberries (NEU), parsley/Hamburg roots (indoor), tomatoes (NEU), hot peppers (SEU), cucumbers (NEU), gherkins (NEU), broccoli (indoor), cauliflower (indoor), peas with pods (NEU), globe artichokes (NEU), cotton seeds (SEU), sweet potatoes (NEU), witloofs/Belgian endives (NEU, SEU and indoor), soyabean (IT), Chinese cabbages/pe-tsai (NEU, SEU, indoor and IT) and kales (NEU, SEU and IT);
- information on storage conditions of the whole data set of samples of apricots (SEU), peaches (NEU), strawberries (indoor) and head cabbage (SEU), to confirm the results of the available trials.

If the above reported data gaps are not addressed in the future, Member States are recommended to withdraw or modify the relevant authorisations at national level.

Minor deficiencies were also identified in the assessment, but these deficiencies are not expected to impact either on the validity of the MRLs derived or on the national authorisations. The following data are therefore considered desirable but not essential:
• validation details of an analytical method for enforcement of residues in coffee beans;
• storage conditions of some trials’ samples (see Table B.1.2.1. for details) of apples and pears (NEU and SEU), tomatoes (indoor) and lettuces (NEU and SEU), to confirm the results of the available trials;
• eight trials compliant with the northern and/or southern GAPs of the following feed items: common millet, maize/corn and sorghum forage, sorghum and maize/corn stover, common millet straw and turnip tops. The number of trials is indicative considering that MRLs and data requirements are not currently set for feed items.

During the finalisation of the reasoned opinion, an import tolerance application to set MRLs in oil palm fruits and kernel was published by EFSA (EFSA, 2019a). Although not yet implemented, the MRLs recommended by EFSA in the said application have been included in the recommendations of this MRL review for consideration by risk managers when establishing the MRL for these commodities.

Table 2: Summary table

Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review MRL (mg/kg)	Comment
110010	Grapefruit	0.7	0.7	0.7	Recommended (a)
110020	Oranges	0.7	0.7	0.7	Recommended (a)
110030	Lemons	0.7	0.7	0.7	Recommended (a)
110040	Limes	0.7	0.7	0.7	Recommended (a)
110050	Mandarins	0.7	0.7	0.7	Recommended (a)
120010	Almonds	0.05	0.02	0.03	Recommended (a)
120020	Brazil nuts	0.05	0.02	0.03	Recommended (a)
120030	Cashew nuts	0.05	0.02	0.03	Recommended (a)
120040	Chestnuts	0.05	0.02	0.03	Recommended (a)
120050	Coconuts	0.05	0.02	0.03	Recommended (a)
120060	Hazelnuts	0.05	0.02	0.03	Recommended (a)
120070	Macadamia	0.05	0.02	0.03	Recommended (a)
120080	Pecans	0.05	0.02	0.03	Recommended (a)
120090	Pine nuts	0.05	0.02	0.03	Recommended (a)
120100	Pistachios	0.05	0.02	0.03	Recommended (a)
120110	Walnuts	0.05	0.02	0.03	Recommended (a)
130010	Apples	0.5	0.4	0.4	Recommended (a)
130020	Pears	0.5	0.4	0.4	Recommended (a)
130030	Quinces	0.5	0.4	0.4	Recommended (a)
130040	Medlar	0.5	0.4	0.4	Recommended (a)
130050	Loquat	0.5	0.4	0.4	Recommended (a)
140010	Apricots	1	1	1	Recommended (a)
140020	Cherries	1	1	1	Recommended (a)
140030	Peaches	1	1	1	Recommended (a)
140040	Plums	1	1	1	Recommended (a)
151010	Table grapes	1	1	1	Recommended (a)
151020	Wine grapes	1	1	1	Recommended (a)
152000	Strawberries	1	1	1	Recommended (a)
153010	Blackberries	1	1	1.5	Recommended (a)
153020	Dewberries	1	1	1.5	Recommended (a)
153030	Raspberries	1	1	1.5	Recommended (a)
154010	Blueberries	1.5	1	1.5	Recommended (a)
154020	Cranberries	1	1	1	Recommended (a)

Enforcement residue definition: chlorantraniliprole (F)
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review MRL (mg/kg)	Comment
154030	Currants (red, black and white)	1	1	1	Recommended
154040	Gooseberries	1	1	1	Recommended
154050	Rose hips	1	1	1	Recommended
154060	Mulberries	1	1	1	Recommended
154070	Azarole (mediterranean medlar)	0.01*	1	1	Recommended
154080	Elderberries	1	1	1	Recommended
161040	Kumquats	0.01*	0.7	0.7	Recommended
163050	Pomegranate	0.4	0.4	0.4	Recommended
211000	Potatoes	0.02	0.02	0.03	Recommended
212010	Cassava	0.02	0.02	0.02	Recommended
212020	Sweet potatoes	0.02	0.02	0.02	Recommended
212030	Yams	0.02	0.02	0.02	Recommended
212040	Arrowroot	0.02	0.02	0.02	Recommended
213010	Beetroot	0.06	0.02	0.06	Recommended
213020	Carrots	0.08	0.08	0.08	Recommended
213030	Celeriac	0.06	0.02	0.06	Recommended
213040	Horseradish	0.06	0.02	0.06	Recommended
213050	Jerusalem artichokes	0.06	0.02	0.06	Recommended
213060	Parsnips	0.06	0.02	0.06	Recommended
213070	Parsley root	0.06	0.02	0.06	Recommended
213080	Radishes	0.5	0.5	0.5	Recommended
213090	Salsify	0.06	0.02	0.06	Recommended
213100	Swedes	0.06	0.02	0.06	Recommended
213110	Turnips	0.06	0.02	0.06	Recommended
231010	Tomatoes	0.6	0.6	0.6	Recommended
231020	Peppers	1	0.6	1	Further consideration needed
231030	Aubergines (egg plants)	0.6	0.6	0.6	Recommended
231040	Okra, lady's fingers	0.6	0.6	0.6	Recommended
232010	Cucumbers	0.3	0.3	0.3	Recommended
232020	Gherkins	0.3	0.3	0.3	Recommended
232030	Courgettes	0.3	0.3	0.3	Recommended
233010	Melons	0.3	0.3	0.3	Further consideration needed
233020	Pumpkins	0.3	0.3	0.3	Recommended
233030	Watermelons	0.3	0.3	0.3	Further consideration needed
234000	Sweet corn	0.2	0.01*	0.01*	Recommended
241010	Broccoli	1	2	1.5	Recommended
241020	Cauliflower	0.6	2	0.5	Recommended
242010	Brussels sprouts	0.01*	2	0.01*	Further consideration needed
242020	Head cabbage	2	2	2	Recommended
243010	Chinese cabbage	20	20	20	Recommended
243020	Kale	20	20	20	Recommended
244000	Kohlrabi	0.01*	2	0.01*	Further consideration needed
251010	Lamb's lettuce	20	20	20	Recommended
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review MRL (mg/kg)	Comment
-------------	---	-------------------------	----------------------	-----------------------------------	--
251020	Lettuce	20	20	20	Recommended (a)
251030	Scarole (broad-leaf endive)	20	20	20	Recommended (a)
251040	Cress	20	20	20	Recommended (a)
251050	Land cress	20	20	20	Recommended (a)
251060	Rocket, Rucola	20	20	20	Recommended (a)
251070	Red mustard	20	20	20	Recommended (a)
251080	Leaves and sprouts of Brassica spp	20	40	40	Recommended (c)
252010	Spinach	20	20	20	Recommended (a)
252020	Purslane	20	20	20	Recommended (a)
252030	Beet leaves (chard)	20	20	20	Recommended (a)
253000	Vine leaves (grape leaves)	20	20	20	Further consideration needed (f)
254000	Water cress	20	20	20	Recommended (a)
255000	Witloof	20	20	20	Recommended (a)
256010	Chervil	20	20	20	Recommended (a)
256020	Chives	20	20	20	Recommended (a)
256030	Celery leaves	20	20	20	Recommended (a)
256040	Parsley	20	20	20	Recommended (a)
256050	Sage	20	20	20	Recommended (a)
256060	Rosemary	20	20	20	Recommended (a)
256070	Thyme	20	20	20	Recommended (a)
256080	Basil	20	15	20	Recommended (a)
256090	Bay leaves (laurel)	20	20	20	Recommended (a)
256100	Tarragon	20	20	20	Recommended (a)
260010	Beans (fresh, with pods)	0.8	0.8	0.8	Recommended (a)
260020	Beans (fresh, without pods)	0.01*	–	0.01*	Further consideration needed (i)
260030	Peas (fresh, with pods)	2	2	2	Recommended (a)
260040	Peas (fresh, without pods)	0.01*	0.05	0.01*	Further consideration needed (h)
260050	Lentils (fresh)	0.01*	–	0.01*	Further consideration needed (h)
270020	Cardoons	0.01*	–	8	Recommended (i)
270030	Celery	10	7	8	Recommended (i)
270040	Fennel	0.01*	–	8	Recommended (i)
270050	Globe artichokes	2	2	2	Recommended (i)
270070	Rhubarb	0.01*	–	8	Recommended (i)
401010	Linseed	0.01*	–	2	Recommended (i)
401020	Peanuts	0.06	0.06	0.06	Further consideration needed (f)
401030	Poppy seed	0.01*	–	2	Recommended (i)
401040	Sesame seed	0.01*	–	2	Recommended (i)
401050	Sunflower seed	2	2	2	Further consideration needed (f)
401060	Rape seed	2	2	2	Further consideration needed (f)
401070	Soyabean	0.05	0.05	0.05	Recommended (e)
401080	Mustard seed	0.01*	–	2	Recommended (i)
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review	Comment
-------------	-------------------------------------	-------------------------	---------------------	-----------------------	---------
401090	Cotton seed	0.3	0.3	0.3	Recommended
401100	Pumpkin seeds	0.01*	–	2	Recommended
401110	Safflower	0.01*	–	2	Recommended
401120	Borage	0.01*	–	2	Recommended
401130	Gold of pleasure	0.01*	–	2	Recommended
401140	Hempseed	0.01*	–	2	Recommended
401150	Castor bean	0.01*	–	2	Recommended
402020	Oil palm nuts (palm oil kernels)	0.01*	–	0.01*	Recommended
402030	Oil palm fruit	0.01*	–	0.8	Recommended
500010	Barley grain	0.02	0.02	0.02	Recommended
500020	Buckwheat grain	0.02	0.02	0.02	Recommended
500030	Maize grain	0.02	0.02	0.02	Recommended
500040	Millet grain	0.02	0.02	0.02	Recommended
500050	Oats grain	0.02	0.02	0.02	Recommended
500060	Rice grain	0.4	0.4	0.4	Recommended
500070	Rye grain	0.02	0.02	0.02	Recommended
500080	Sorghum grain	0.02	0.02	0.02	Recommended
500090	Wheat grain	0.02	0.02	0.02	Recommended
620000	Coffee beans	0.02*	0.05	0.01*	Recommended
700000	‘Hops (dried), including hop pellets and unconcentrated powder’	40	40	40	Recommended
900020	Sugar cane	0.5	0.5	0.5	Recommended
900030	Chicory roots	0.02	–	0.02	Further consideration needed
1011010	Swine meat	0.2	0.03	0.03	Recommended
1011020	Swine fat (free of lean meat)	0.2	0.2	0.2	Recommended
1011030	Swine liver	0.2	0.2	0.2	Recommended
1011040	Swine kidney	0.2	0.2	0.2	Recommended
1012010	Bovine meat	0.2	0.03	0.03	Recommended
1012020	Bovine fat	0.2	0.2	0.2	Recommended
1012030	Bovine liver	0.2	0.2	0.2	Recommended
1012040	Bovine kidney	0.2	0.2	0.2	Recommended
1013010	Sheep meat	0.2	0.03	0.03	Recommended
1013020	Sheep fat	0.2	0.2	0.2	Recommended
1013030	Sheep liver	0.2	0.2	0.2	Recommended
1013040	Sheep kidney	0.2	0.2	0.2	Recommended
1014010	Goat meat	0.2	0.03	0.03	Recommended
1014020	Goat fat	0.2	0.2	0.2	Recommended
1014030	Goat liver	0.2	0.2	0.2	Recommended
1014040	Goat kidney	0.2	0.2	0.2	Recommended
1015010	Horse meat	0.2	0.03	0.03	Recommended
1015020	Horse fat	0.2	0.2	0.2	Recommended
1015030	Horse liver	0.2	0.2	0.2	Recommended
1015040	Horse kidney	0.2	0.2	0.2	Recommended
1016010	Poultry meat	0.01*	0.02	0.02	Recommended
1016020	Poultry fat	0.08	0.08	0.08	Recommended
1016030	Poultry liver	0.07	0.07	0.07	Recommended
Review of the existing MRLs for chlorantraniliprole

Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review
1020010	Cattle milk	0.05	0.05	Recommended *(c)*
1020020	Sheep milk	0.05	0.05	Recommended *(c)*
1020030	Goat milk	0.05	0.05	Recommended *(c)*
1020040	Horse milk	0.05	0.05	Recommended *(c)*
1030000	Birds’ eggs	0.2	0.2	Recommended *(c)*
–	Other commodities of plant and/or animal origin	See Reg. (EU) 2019/50	–	Further consideration needed *(k)*

MRL: maximum residue level; CXL: codex maximum residue limit.
(c): Indicates that the MRL is set at the limit of quantification.

(F): The residue definition is fat soluble.

(a): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; existing CXL is covered by the recommended MRL (combination H-III in Appendix E).
(b): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level, which is not fully supported by data, leads to a lower tentative MRL (combination F-VII in Appendix E).
(c): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level, which is also fully supported by data, leads to a lower MRL (combination H-VII in Appendix E).
(d): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; there are no relevant authorisations or import tolerances reported at EU level (combination A-VII in Appendix E).
(e): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level is not supported by data; existing EU MRL is covered by the existing CXL (combination D-VII in Appendix E).
(f): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); existing CXL is covered by the tentative MRL (combination F-III in Appendix E).
(g): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; CXL is not compatible with EU residue definitions (combination H-II in Appendix E).
(h): GAP evaluated at EU level is not supported by data, but no risk to consumers was identified for the existing EU MRL (also assuming the existing residue definition); CXL is not compatible with EU residue definitions (combination D-II in Appendix E).
(i): GAP evaluated at EU level is not supported by data, but no risk to consumers was identified for the existing EU MRL (also assuming the existing residue definition); no CXL is available (combination D-I in Appendix E).
(j): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; no CXL is available (combination H-I in Appendix E).
(k): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of 0.01 mg/kg may be considered (combination A-I in Appendix E).

References

EFSA (European Food Safety Authority), 2010. Modification of the existing MRL for chlorantraniliprole in carrots. EFSA Journal 2010;8(10):1859, 27 pp. https://doi.org/10.2903/j.efsa.2010.1859

EFSA (European Food Safety Authority), 2011a. Reasoned opinion on the modification of the existing MRLs for chlorantraniliprole in various crops and in products of animal origin. EFSA Journal 2011;9(3):2099, 45 pp. https://doi.org/10.2903/j.efsa.2011.2099

EFSA (European Food Safety Authority), 2011b. Scientific support for preparing an EU position in the 43rd Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2011;9(9):2360, 123 pp. https://doi.org/10.2903/j.efsa.2011.2360. Available online: www.efsa.europa.eu/efsajournal

EFSA (European Food Safety Authority), 2012a. Reasoned opinion on the modification of the existing MRLs for chlorantraniliprole in carrots, parsnips, parsley root and celeriac. EFSA Journal 2012;10(11):2988, 24 pp. https://doi.org/10.2903/j.efsa.2012.2988

EFSA (European Food Safety Authority), 2012b. Reasoned opinion on the modification of the existing MRLs for chlorantraniliprole in various crops. EFSA Journal 2012;10(1):2548, 38 pp. https://doi.org/10.2903/j.efsa.2012.2548

EFSA (European Food Safety Authority), 2013a. Conclusion on the peer review of the pesticide risk assessment of the active substance chlorantraniliprole. EFSA Journal 2013;11(6):3143, 107 pp. https://doi.org/10.2903/j.efsa.2013.3143

EFSA (European Food Safety Authority), 2013b. Reasoned opinion on the modification of the existing MRLs for chlorantraniliprole in several root and tuber vegetables and oilseeds. EFSA Journal 2013;11(7):3296, 25 pp. https://doi.org/10.2903/j.efsa.2013.3296
EFSA (European Food Safety Authority), 2013c. Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance chlorantraniliprole. Available online: www.efsa.europa.eu

EFSA (European Food Safety Authority), 2014. Scientific support for preparing an EU position in the 46th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2014;12(7):3737, 182 pp. https://doi.org/10.2903/j.efsa.2014.3737

EFSA (European Food Safety Authority), 2015a. Reasoned opinion on the modification of MRLs and the setting of import tolerances for chlorantraniliprole in various crops. EFSA Journal 2015;13(9):4216, 20 pp. https://doi.org/10.2903/j.efsa.2015.4216

EFSA (European Food Safety Authority), 2015b. Scientific support for preparing an EU position in the 46th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2015;13(7):4208, 178 pp. https://doi.org/10.2903/j.efsa.2015.4208

EFSA (European Food Safety Authority), 2016. Reasoned opinion on the setting of a temporary maximum residue level for chlorantraniliprole in hops. EFSA Journal 2016;14(11):4638, 16 pp. https://doi.org/10.2903/j.efsa.2016.4638

EFSA (European Food Safety Authority), 2017. Scientific Report of EFSA on scientific support for preparing an EU position in the 49th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2017;15(7):4929, 162 pp. https://doi.org/10.2903/j.efsa.2017.4929

EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Storma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018a. Reasoned Opinion on the setting of an import tolerance for chlorantraniliprole in hops. EFSA Journal 2018;16(6):5312, 21 pp. https://doi.org/10.2903/j.efsa.2018.5312

EFSA (European Food Safety Authority), Brancato A, Brocca D, Ferreira L, Greco L, Jarrah S, Leuschner R, Medina P, Miron I, Nougadere A, Pedersen R, Reich H, Santos M, Stanek A, Tarazona J, Theobald A and Villamar-Bouza L, 2018b. Guidance on use of EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal 2018;16(1):5147, 43 pp. https://doi.org/10.2903/j.efsa.2018.5147

EFSA (European Food Safety Authority), Anastasiadou M, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019a. Reassembled Opinion on the setting of import tolerances for chlorantraniliprole in oil palms and oilpalms kernels. EFSA Journal 2019;17(11):5877, 23 pp. https://doi.org/10.2903/j.efsa.2019.5877

EFSA (European Food Safety Authority), 2019b. Pesticide Residue Intake Model - EFSA PRIMo revision 3.1. EFSA supporting publication 2019;16(3):EN-1605, 15 pp. https://doi.org/10.2903/sp.efsa.2019.en-1605

EFSA (European Food Safety Authority), 2020a. Completeness check report on the review of the existing MRLs of chlorantraniliprole prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 24 March 2020. Available online: www.efsa.europa.eu

EFSA (European Food Safety Authority), 2020b. Member States consultation report on the review of the existing MRLs of chlorantraniliprole prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 30 July 2020. Available online: www.efsa.europa.eu

EURL (European Union Reference Laboratories for Pesticide Residues), 2018. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Analytical methods validated by the EURLs and overall capability of official laboratories to be considered for the review of the existing MRLs for chlorantraniliprole. 16 May 2018. Available online: www.efsa.europa.eu

European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev., 22 July 1996.

European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/EEC. 7029/VI/95-rev. 6, 22 July 1997.

European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev. 2, 22 July 1997.

European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.

European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.

European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.

European Commission, 1997g. Appendix I. Calculation of maximum residue level and safety intervals.7039/VI/95 22 July 1997. As amended by the document: classes to be used for the setting of EU pesticide maximum residue levels (MRLs). SANCO 10634/2010, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414. SANCO/3029/99-rev. 4.

European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.
European Commission, 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev. 8.1, 16 November 2010.
European Commission, 2017. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev.10.3, June 2017.
European Commission, 2018. Review report for the active substance chlorantraniliprole. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 3 October 2013 in view of the inclusion of chlorantraniliprole in Annex I of Council Directive 91/414/EEC. SANCO/12081/2013 rev 2, 3 October 2013.
FAO (Food and Agriculture Organization of the United Nations), 2008. chlorantraniliprole. In: Pesticide residues in food – 2008. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 193.
FAO (Food and Agriculture Organization of the United Nations), 2009. Submission and evaluation of pesticide residues data for the estimation of Maximum Residue Levels in food and feed. Pesticide Residues. 2nd Ed. FAO Plant Production and Protection Paper 197, 264 pp.
FAO (Food and Agriculture Organization of the United Nations), 2010. chlorantraniliprole. In: Pesticide residues in food – 2010. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 200.
FAO (Food and Agriculture Organization of the United Nations), 2013. Chlorantraniliprole. In: Pesticide residues in food – 2013. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 219.
FAO (Food and Agriculture Organization of the United Nations), 2014. Chlorantraniliprole. In: Pesticide residues in food – 2014. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 221.
FAO (Food and Agriculture Organization of the United Nations), 2016. Chlorantraniliprole. In: Pesticide residues in food – 2016. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues. FAO Plant Production and Protection Paper 229.
France, 2018. Evaluation Report Prepared under Article 12 of Regulation (EC) No 396/2005. Additional data to be considered for the review of the existing MRLs for chlorantraniliprole, May 2018. Available online: www.efsa.europa.eu
Greece, 2018. Evaluation Report Prepared under Article 12 of Regulation (EC) No 396/2005. Additional data to be considered for the review of the existing MRLs for chlorantraniliprole, May 2018. Available online: www.efsa.europa.eu
Ireland, 2010. Draft Assessment Report (DAR) on the active substance chlorantraniliprole. prepared by the rapporteur Member State Ireland in the framework of Directive 91/414/EEC, December 2008.
Ireland, 2013. Final Addendum to Draft Assessment Report on chlorantraniliprole., compiled by EFSA, February 2013.
Ireland, 2018. Evaluation report prepared under Article 12.1 of Regulation (EC) No 396/2005. Review of the existing MRLs for chlorantraniliprole, May 2018 revised in 2020. Available online: www.efsa.europa.eu
Italy, 2018. Evaluation Report Prepared under Article 12 of Regulation (EC) No 396/2005. Additional data to be considered for the review of the existing MRLs for chlorantraniliprole, May 2018. Available online: www.efsa.europa.eu
Netherlands, 2018. Evaluation Report Prepared under Article 12 of Regulation (EC) No 396/2005. Additional data to be considered for the review of the existing MRLs for chlorantraniliprole, May 2018. Available online: www.efsa.europa.eu
OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org
OECD (Organisation for Economic Co-operation and Development), 2013. Guidance document on residues in livestock. In: Series on Pesticides No 73. ENV/JM/MONO(2013)8, 04 September 2013.
Portugal, 2018. Evaluation Report Prepared under Article 12 of Regulation (EC) No 396/2005. Additional data to be considered for the review of the existing MRLs for chlorantraniliprole, May 2018. Available online: www.efsa.europa.eu
United Kingdom, 2018. Evaluation Report Prepared under Article 12 of Regulation (EC) No 396/2005. Additional data to be considered for the review of the existing MRLs for chlorantraniliprole, May 2018 updated June 2018. Available online: www.efsa.europa.eu

Abbreviations

a.i. active ingredient
a.s. active substance
ADI acceptable daily intake
ARfD acute reference dose
Acronym	Description
BBCH	growth stages of mono- and dicotyledonous plants
bw	body weight
CAC	Codex Alimentarius Commission
CAS	Chemical Abstract Service
CCPR	Codex Committee on Pesticide Residues
CF	conversion factor for enforcement residue definition to risk assessment residue definition
cGAP	critical GAP
CIRCA	(EU) Communication & Information Resource Centre Administrator
CS	capsule suspension
CV	coefficient of variation (relative standard deviation)
CXL	codex maximum residue limit
DALA	days after last application
DAR	draft assessment report
DAT	days after treatment
DB	dietary burden
DM	dry matter
DP	dustable powder
DS	powder for dry seed treatment
DT₉₀	period required for 90% dissipation (define method of estimation)
EC	emulsi_fible concentrate
EDI	estimated daily intake
EMS	evaluating Member State
eq	residue expressed as a.s. equivalent
EUURLs	European Union Reference Laboratories for Pesticide Residues (former CRLs)
FAO	Food and Agriculture Organization of the United Nations
FID	flame ionisation detector
GAP	Good Agricultural Practice
GC	gas chromatography
GC-FID	gas chromatography with flame ionisation detector
GC-MS	gas chromatography with mass spectrometry
GC-MS/MS	gas chromatography with tandem mass spectrometry
GS	growth stage
HPLC	high-performance liquid chromatography
HPLC-MS	high-performance liquid chromatography with mass spectrometry
HPLC-MS/MS	high-performance liquid chromatography with tandem mass spectrometry
HR	highest residue
IEDI	international estimated daily intake
ILV	independent laboratory validation
ISO	International Organisation for Standardization
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on Pesticide Residues)
LC	liquid chromatography
LC-MS/MS	liquid chromatography with tandem mass spectrometry
LOQ	limit of quantification
Mo	monitoring
MRL	maximum residue level
MS	Member States
MS	mass spectrometry detector
MS/MS	tandem mass spectrometry detector
MW	molecular weight
NEU	northern European Union
OECD	Organisation for Economic Co-operation and Development
PBI	plant back interval
PF	processing factor
Review of the existing MRLs for chlorantraniliprole

Abbreviation	Definition
PHI	pre-harvest interval
PRIMo	(EFSA) Pesticide Residues Intake Model
PROFile	(EFSA) Pesticide Residues Overview File
QuEChERS	Quick, Easy, Cheap, Effective, Rugged, and Safe (analytical method)
RA	risk assessment
RD	residue definition
RAC	raw agricultural commodity
RD	residue definition
RMS	rapporteur Member State
SANCO	Directorate-General for Health and Consumers
SC	suspension concentrate
SEU	southern European Union
SMILES	simplified molecular-input line-entry system
SL	soluble concentrate
SP	water soluble powder
STMR	supervised trials median residue
TAR	total applied radioactivity
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
UV	ultraviolet (detector)
WHO	World Health Organization
WP	wettable powder
Appendix A – Summary of authorised uses considered for the review of MRLs

A.1. Authorised outdoor uses in northern EU

Crop and/or situation	MS or country	FG or T(3)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks					
				Type(b) Conc. a.s.	Method kind	Range of growth stages & season(3)	Number min–max	Interval between application (min)	Rate and unit				
Apples	SI	F	Cydia pomonella, Adoxophyes orana, Pendemis heparana, Cydia molesta, Phyllonorchter blancardella, Phyllonorchter corylifoliella, Leucoptera scitella	SC 200 g/L	Foliar treatment – general (see also comment field)	70–87	1–2	12	–	–	54 g a.i./ha	14	18 ml product/ hl, 500 L water/ ha/1 m height
Pears	SI	F	Cydia pomonella, Adoxophyes orana, Pendemis heparana, Cydia molesta, Phyllonorchter blancardella, Phyllonorchter corylifoliella, Leucoptera scitella	SC 200 g/L	Foliar treatment – general (see also comment field)	70–87	1–2	12	–	–	54 g a.i./ha	14	18 ml product/ hl, 500 L water/ ha/1 m height
Crop and/or situation	MS or country	F or G or T(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks					
-----------------------	---------------	----------------	---------------------------------	-------------	----------------	-----------------------------	---------------	---------					
Quinces	AT, DE	F	Cydia pomonella	SC	200 g/L	Foliar treatment – general (see also comment field)	71–87 2	– – 52.5 g a.i./ha 14 –					
Medlars	AT, DE	F	Cydia pomonella	SC	200 g/L	Foliar treatment – general (see also comment field)	71–87 2	– – 52.5 g a.i./ha 14 –					
Loquats	AT, DE	F	Cydia pomonella	SC	200 g/L	Foliar treatment – general (see also comment field)	71–87 2	– – 52.5 g a.i./ha 14 –					
Peaches	SI	F	Cydia molestella	SC	200 g/L	Foliar treatment – general (see also comment field)	70–85 1–2 12	– – 60 g a.i./ha 14 18–20 ml product/hL, 500 L water/ha/1 m height					
Plums	SI	F	Cydia fumnebrana, Operophtera brumata	SC	200 g/L	Foliar treatment – general (see also comment field)	70–85 1–2 12	– – 60 g a.i./ha 14 18–20 ml product/hL, 500 L water/ha/1 m height					
Table grapes	HU	F	American grapevine leafhopper (Scaphoideus titanus), citrus flatid planthopper	WG	200 g/kg	Foliar treatment – broadcast spraying	70–85 1	– – 50 g a.i./ha 30 –					
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
----------------------	--------------	----------------------------------	-------------	-------------	--------------------------------	------------	---------						
		Metcalfa pruinosa, European grapevine moth (Lobesia botrana), vine moth (Eupoecilia ambiguella), Sparganothis pilleriana	(Metcalfa pruinosa), European grapevine moth (Lobesia botrana), vine moth (Eupoecilia ambiguella), Sparganothis pilleriana	Foliar treatment – broadcast spraying	200 g/kg	30	–						
Wine grapes	HU	American grapevine leafhopper (Scaphoideus titanus), citrus flatid planthopper (Metcalfa pruinosa), European grapevine moth (Lobesia botrana), vine moth (Eupoecilia ambiguella), Sparganothis pilleriana	WG	70-85	1	50 a.i./ha	–						
	F					30							
Crop and/or situation	MS or country	F G or T	Pests or Group of pests controlled	Preparation	Method kind	Type(b)	Conc. a.s.	Application	a.s./hL	Water L/ha	Rate and unit	PHI (days)(d)	Remarks
-----------------------	--------------	---------	----------------------------------	-------------	------------	---------	-----------	-------------	--------	----------	---------------	-------------	---------
Blueberries	DE	F	Codling moth eggs and larvae	SC	Foliar – ultra low volume spraying	200 g/L	200 g/L	71 2 14	–	–	52.5 g a.i./ha	14	Application for Aronia berries; At the beginning of oviposition; 87.5 mL product/ha and per m crown height = 262.5 mL product/ha; standard crown height in Germany: 3 m
Potatoes	AT, NL, FR, DE, SI	F	L. decemlineata	SC	Foliar – general (see also comment field)	200 g/L	200 g/L	31 69	–	–	12 g a.i./ha	14	–
Sweet potatoes	DE	F	Carrot fly, noctuid moths	SC	Foliar – broadcast spraying	200 g/L	200 g/L	15 49	–	–	35 g a.i./ha	21	At beginning of infestation and/or when first symptoms become visible
Beetroots	UK	F		WG	Foliar – general (see also comment field)			2 10	–	–	42 g a.i./ha	21	–
Carrots	UK	F		WG	Foliar – general (see also comment field)			2 10	–	–	42 g a.i./ha	21	–
Crop and/or situation	MS or country	F or G or I(\(^{(a)}\))	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(\(^{(d)}\))	Remarks					
-----------------------	---------------	-------------------	-----------------------------------	------------	------------	-------------------------------	----------------	---------					
Celeriacs	UK	F	Foliar treatment – general (see also comment field)	2	10	–	42 g a.i./ha	21					
Horseradishes	UK	F	Foliar treatment – general (see also comment field)	2	10	–	42 g a.i./ha	21					
Jerusalem artichokes	UK	F	Foliar treatment – general (see also comment field)	2	10	–	42 g a.i./ha	21					
Parsnips	UK	F	Foliar treatment – general (see also comment field)	2	10	–	42 g a.i./ha	21					
Parsley roots	UK	F	Foliar treatment – general (see also comment field)	2	10	–	42 g a.i./ha	21					
Radishes	UK	F	Foliar treatment – general (see also comment field)	2	10	–	42 g a.i./ha	21					
Crop and/or situation	MS or country	F or T^(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)^(d)	Remarks					
-----------------------	--------------	----------------------	------------------------------------	-------------	----------------	-------------------------------	----------------	---------					
Salsifies	UK	F	Foliar treatment – general (see also comment field)	2–10	42 g a.i./ha	21							
Swedes	UK	F	Foliar treatment – general (see also comment field)	2–10	42 g a.i./ha	21							
Turnips	UK	F	Foliar treatment – general (see also comment field)	2–10	42 g a.i./ha	21							
Tomatoes	SI	F	Tuta absoluta, Helicoverpa armigera, Spodoptera exigua, Spodoptera littoralis, Autographa gamma	15–89	1–2	35 g a.i./ha	3						
Cucumbers	FR	F	Helicoverpa armigera, Spodoptera exigua, Spodoptera littoralis, Autographa gamma	51–89	1–2	29.75 g a.i./ha	1	Application: broadcast mist blower, hydraulic ground directed boom					
Crop and/or situation	MS or country	FG or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks					
-----------------------	---------------	---------	-----------------------------------	-------------	-------------	--------------------------------	-----------	---------					
Gherkins	FR	F	‘Helicoverpa armigera’ Spodoptera	WG	Foliar treatment – broadcast spraying	51-89	1-2	7	–	–	29.75 g a.i./ha	1	Application: broadcast mist blower, hydraulic ground directed boom
Sweet corn	HU	F	‘European corn borer (Ostrinia nubilalis), cotton bollworm (Helicoverpa armigera)’	SC	Foliar treatment – broadcast spraying	71	2	14	–	–	30 g a.i./ha	10	–
Broccoli	UK	F		WG	Foliar treatment – general (see also comment field)	2	–	–	35 g a.i./ha	1	–		
Cauliflowers	UK	F		WG	Foliar treatment – general (see also comment field)	2	–	–	35 g a.i./ha	1	–		
Brussels sprouts	PL	F		SC	Foliar treatment – general (see also comment field)	12-89	1-2	–	–	25 g a.i./ha	14	–	
Crop and/or situation

Crop and/or situation	MS or country	FG or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks
Head cabbages	NL, SI, IE, FR	F	‘Plutella xylostella, Pieris spp., Clepsis spectrana, Mamestra brassicae, Evergestis forficalis’	SC 200 g/L	Foliar treatment – broadcast spraying	a.s./hl min–max	25 g a.i./ha	1 –
Chinese cabbages	FR	F	‘Helicoverpa armigera Autographa gamma’	WG 350 g/kg	Foliar treatment – broadcast spraying	12–49 1–2 7	29.75 g a.i./ha	1 –
Kales	DE	F	carrot fly, noctuid moths	SC 200 g/L	Foliar treatment – broadcast spraying	15–49 2	35 g a.i./ha	21 –
Lamb’s lettuces	FR	F	‘Helicoverpa armigera Autographa gamma’	WG 350 g/kg	Foliar treatment – broadcast spraying	12–49 1–2 7	29.75 g a.i./ha	1 –
Lettuces	FR	F	‘Helicoverpa armigera Autographa gamma’	WG 350 g/kg	Foliar treatment – broadcast spraying	12–49 1–2 7	29.75 g a.i./ha	1 –

Notes:
- **Type:** SC – suspension concentrate, WG – water dispersible granule, HC – high concentrate.
- **Conc. a.s.:** concentrate of active substance.
- **Method kind:** Foliar treatment – broadcast spraying.
- **Range of growth stages & season:**
 - 21 Application: broadcast mist blower, hydraulic ground directed boom.
 - 29 Application: broadcast mist blower, hydraulic ground directed boom.
| Crop and/or situation | MS or country | FGR or T(3) | Pests or Group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days)(d) | Remarks | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Escaroles | FR | F | ’Helicoverpa armigera Autographa gamma’ | WG | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | – | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Roman rocket | FR | F | ’Helicoverpa armigera Autographa gamma’ | WG | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | – | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Red mustards | FR | F | ’Helicoverpa armigera Autographa gamma’ | WG | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | – | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Spinaches | FR | F | ’Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | – | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Purslanes | FR | F | ’Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | – | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Crop and/or situation | MS or country | FG or T | Pests or Group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days) | Remarks |
|-----------------------|---------------|---------|----------------------------------|-------------|-------------|-------------------------------|------------|---------|
| Chards FR | F | ‘Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG | 350 g/kg | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Witloofs NL | F | Pieris spp., Autographa gamma, Plusia spp. | SC | 200 g/L | Foliar treatment – broadcast spraying | 2-4 | 14 | – | – | 25 g a.i./ha | 21 | Only for authorisation in witloof chicory (root cultivation) |
| Chervil FR | F | ‘Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG | 350 g/kg | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Chives FR | F | ‘Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG | 350 g/kg | Foliar treatment – broadcast spraying | 12-49 | 1-2 | 7 | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Crop and/or situation | MS or country | F G or T(3) | Pests or Group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days)(d) | Remarks |
|-----------------------|--------------|------------|-----------------------------------|-------------|------------|-----------------------------|--------------|---------|
| Celery leaves | FR F | | Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG 350 g/kg | Foliar treatment – broadcast spraying | 12-49 1-2 7 | 29.75 g a.i./ha | 1 Application: broadcast mist blower, hydraulic ground directed boom |
| Parsley | FR F | | Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG 350 g/kg | Foliar treatment – broadcast spraying | 12-49 1-2 7 | 29.75 g a.i./ha | 1 Application: broadcast mist blower, hydraulic ground directed boom |
| Sage | FR F | | Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma’ | WG 350 g/kg | Foliar treatment – broadcast spraying | 12-49 1-2 7 | 29.75 g a.i./ha | 1 Application: broadcast mist blower, hydraulic ground directed boom |
| Rosemary | HU F | | Noctuid moth | ZC 100 g/L | Foliar treatment – broadcast spraying | 2 7 | 30 g a.i./ha | 14 |
| Crop and/or situation | MS or country | F or G or T | Pests or Group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days) | Remarks |
|-----------------------|---------------|-------------|-----------------------------------|-------------|-------------|-------------------------------|-----------|---------|
| Thyme | FR | F | 'Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma' | WG | Foliar treatment – broadcast spraying | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Basil | FR | F | 'Helicoverpa armigera Spodoptera exigua Spodoptera littoralis Autographa gamma' | WG | Foliar treatment – broadcast spraying | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Tarragon | HU | F | Noctuid moth | ZC | 100 g/L | Foliar treatment – broadcast spraying | 30 g a.i./ha | 14 | |
| Beans (with pods) | FR | F | 'Ostrinia nubilalis Helicoverpa armigera Autographa gamma' | WG | Foliar treatment – broadcast spraying | 29.75 g a.i./ha | 1 | Application: broadcast mist blower, hydraulic ground directed boom |
| Peas (with pods) | UK | F | SC | Foliar treatment – general (see also comment field) | 36 g a.i./ha | 3 | |
| Crop and/or situation | MS or country | F or G or T(1) | Pests or Group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days)(d) | Remarks |
|-----------------------|---------------|---------------|-----------------------------------|-------------|------------|-----------------------------|-------------|---------|
| Globe artichokes | UK | F | ZC | Foliar | 12-49 | 30 g a.i./ha | 3 | |
| | | | treatment – general (see also comment field) | treatment | 2 | | | |
| Maize | HU | F | European corn borer (Ostrinia nubilalis), noctuid moth | Foliar | 87 | 30 g a.i./ha | 7 | |
| | | | treatment – broadcast spraying | treatment | 1 | | | |
| Common millet | FR | F | ’Ostrinia nubilalis Sesamia sp. Helicoverpa armigera Spodoptera exigua Spodoptera littoralis’ | Foliar | 34-77 | 25 g a.i./ha | n.a. | This equates to a PHI of approximately 40 days. Application: tractor mounted hydraulic sprayer |
| | | | treatment – broadcast spraying | treatment | 2 | | | |
| Chicory roots | NL | F | Pieris spp., Autographa gamma, Plusia spp. | Foliar | 2 | 25 g a.i./ha | 21 | Only for authorisation in witloof chicory (root cultivation) |
| | | | treatment – broadcast spraying | treatment | 14 | | | |
| Common millet (for forage) | FR | F | ’Ostrinia nubilalis Sesamia sp. Helicoverpa armigera Spodoptera exigua Spodoptera littoralis’ | Foliar | 34-77 | 25 g a.i./ha | n.a. | This equates to a PHI of approximately 40 days. Application: tractor mounted hydraulic sprayer |
| Crop and/or situation | MS or country | F G or T | Pests or Group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days) | Remarks |
|-----------------------|--------------|----------|-----------------------------------|-------------|------------|-------------------------------|----------|---------|
| Maize (for forage) | FR | F | ‘Ostrinia nubilalis, Sesamia sp. Helicoverpa armigera Spodoptera exigua Spodoptera littoralis’ | SC | 200 g/L | Foliar treatment – broadcast spraying | 34–77 | 2–10 | 25 g a.i./ha, n.a. This equates to a PHI of approximately 40 days. Application: tractor mounted hydraulic sprayer |
A.2. Authorised outdoor uses in southern EU

Crop and/or situation	MS or country	F G or Y(1)	Pests or Group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min–max	Interval between application (min)	PHI(d)	Remarks
Grapefruits	IT, HR	F	Ph. Citrella	SC	200 g/L	Foliar treatment – general (see also comment field)	31-50	1–2	10	15 g a.i./ha	"Non-bearing crop. Water volume: 100-500 l/ha. Minimum recommended application rate is 10 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 15 g a.i./ha per application."
Oranges	IT, HR	F	Ph. Citrella	SC	200 g/L	Foliar treatment – general (see also comment field)	31-50	1–2	10	15 g a.i./ha	"Non-bearing crop. Water volume: 100-500 l/ha. Minimum recommended application rate is 10 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 15 g a.i./ha per application."
Crop and/or situation	MS or country	F G or T(s)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks			
---	---	---	---	---	---	---	---	---	---	---	---
						a.s./hL min-max	Water L/ha min-max	Rate and unit			
Lemons	IT, HR	F	Ph. Citrella	SC	Foliar	31-50	1-2	10	15 g a.i./ha	n.a.	'Non-bearing crop. Water volume: 100–500 l/ha. Minimum recommended application rate is 10 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 15 g a.i./ha per application.'
Limes	IT, HR	F	Ph. Citrella	SC	Foliar	31-50	1-2	10	15 g a.i./ha	n.a.	'Non-bearing crop. Water volume: 100–500 l/ha. Minimum recommended application rate is 10 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 15 g a.i./ha per application.'
Crop and/or situation	MS or country	F/G or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks			
-----------------------	--------------	----------	-----------------------------------	-------------	-------------	--------------------------------	------------	---------			
Mandarins	IT, HR	F	Ph. Citrella	SC	203 g/L	Foliar treatment – general (see also comment field)	31-50	1-2	10	15 g a.i./ha	n.a.
Almonds	ES	F	Coleoptera, caterpillars	SC	200 g/L	Foliar treatment – general (see also comment field)	1-2	10	–	60 g a.i./ha	14
Chestnuts	ES	F	Coleoptera, caterpillars	SC	200 g/L	Foliar treatment – general (see also comment field)	1-2	10	–	60 g a.i./ha	14
Hazelnuts	ES	F	Coleoptera, caterpillars	SC	200 g/L	Foliar treatment – general (see also comment field)	1	–	–	60 g a.i./ha	14
Crop and/or situation	MS or country F G or T(3)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(4)	Remarks				
-----------------------	-----------------------------	-----------------------------------	-------------	------------	-------------------------------	--------------	---------				
Pistachios ES F	Coleoptera, caterpillars	SC 200 g/L	Foliar treatment – general (see also comment field)	73–87 1–2 10	– – 60 g a.i./ha	14	Foliar spraying. Volume: 1000–1500 l/ha. Manual application or application with tractor				
Walnuts IT F	Cydia pomonella	SC 200 g/L	Foliar treatment – general (see also comment field)	73–87 1–2 10	– – 60 g a.i./ha	21	Water volume: 1000–1500 l/ha. Minimum recommended application rate is 36 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 60 g a.i./ha per application. Fall-back GAP.				
Apples ES, IT, PT F	Adoxophyes orana, Cydia pomonella, leafminers	SC 200 g/L	Foliar treatment – general (see also comment field)	73–87 1–2 10	– – 60 g a.i./ha	14	Foliar spraying. Manual application or application with tractor. Maximum rate: 0,3 l fp/ha				
Pears ES, IT, PT F	Adoxophyes orana, Cydia pomonella, leafminers	SC 200 g/L	Foliar treatment – general (see also comment field)	73–87 1–2 10	– – 60 g a.i./ha	14	Foliar spraying. Manual application or application with tractor. Maximum rate: 0,3 l fp/ha				
Crop and/or situation	MS or country	F or G or T(1)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks			
-----------------------	--------------	----------------	-----------------------------------	-------------	-------------	-------------------------------	---------------	---------			
				Type(b)	Conc. a.s.(a)	Method kind	Range of growth stages & season(c)	Number min–max	Interval between application (min)	Rate a.s./Lmin–max	Water L/ha min–max
Quinces	EL	F	Cydia pomonella Leafminers Leafrollers Ostrinia nubilalis Cydia molesta	SC	200 gr/L	Foliar treatment – broadcast spraying	71–87	1–2	12	–	–
Medlars	FR	F	Argyrotaenia ljungiana Leafrollers (Pandemis heparana, Capua reticulana, Archips sp)	SC	200 g/L	Foliar treatment – broadcast spraying	69–87	1	–	–	36 g a.i./ha
Loquats	FR	F	Cydia pomonella Cydia molesta Leafminers Argyrotaenia ljungiana Leafrollers (Pandemis heparana, Capua reticulana, Archips sp)	SC	200 g/L	Foliar treatment – broadcast spraying	69–87	1	–	–	36 g a.i./ha
Crop and/or situation	MS or country	F G T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks			
-----------------------	---------------	------	------------------------------------	-------------	------------	---------------------------------	------------	--------			
				Type(b) Conc. a.s. Method kind Range of growth stages & season(c) Number min–max Interval between application (min) a.s./hl min–max Water L/ha min–max Rate and unit							
Apricots	PT, IT	F	Insects	SC	200 g/L	Foliar treatment – general (see also comment field) 11-89 2 10 – –	60 g a.i./ha	14			
						Water volume: 1000-1500 l/ha. Crop includes Nectarines. Minimum recommended application rate is 32 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 60 g a.i./ha per application.’					
Peaches	PT, IT	F	Insects	SC	200 g/L	Foliar treatment – general (see also comment field) 11-89 2 10 – –	60 g a.i./ha	14			
						Water volume: 1000-1500 l/ha. Crop includes Nectarines. Minimum recommended application rate is 32 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 60 g a.i./ha per application.’					
Crop and/or situation	MS or country	F or G	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks			
-----------------------	---------------	--------	----------------------------------	-------------	------------	-------------------------------	-----------	---------			
				Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	Rate and unit	
Plums	PT, IT, ES	F	Insects	SC	200 g/L	Foliar treatment – general (see also comment field)	11-89	2	10	–	–
Table grapes	IT, ES, PT	F	‘L. botrana E. ambiguella, A. pulchellana P. vitegenella’	SC	200 g/L	Foliar treatment – general (see also comment field)	57-85	1-2	10	–	–

Water volume: 1000–1500 L/ha. Minimum recommended application rate is 32 g a.i./ha irrespective of the water volume adopted (adjust concentration). Maximum application rate is 60 g a.i./ha per application.

Water volume: 800–1200 L/ha. Minimum recommended application rate at full foliage is 30 g a.i./ha, irrespective of the water volume adopted (adjust concentration). Maximum application rate is 43.2 g a.i./ha per application.
Crop and/or situation	MS or country	FG or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
Wine grapes	IT	F	'L. botrana, E. ambiguella, A. pulchellana, P. viticella'	SC	Foliar treatment – general (see also comment field)	200 g/L	57-83	1-1	–	54 g a.i./ha	30	'Water volume: 800–1500 l/ha. Minimum recommended application rate at full foliage is 30 g a.i./ha, irrespective of the water volume adopted (adjust concentration). Maximum application rate is 54 g a.i./ha per application.'		
Potatoes	PT, FR, IT, EL	F	insects	SC	Foliar treatment – general (see also comment field)	200 g/L	11-89	2	14	–	12 g a.i./ha	14	Fall-back GAP	
Beetroots	EL	F	'Autographa gamma H. armiger Spodoptera spp. Psila rosae'	WG	Foliar treatment – broadcast spraying	350 gr/kg	15-89	1-2	7	–	42 g a.i./ha	21	'Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)'	
Carrots	IT, EL	F	H. armiger Spodoptera spp Psila rosae	WG	Foliar treatment – broadcast spraying	35 % (w/w)	15-89	1-2	10	–	42 g a.i./ha	21	'Water volume: 300–800 l/ha. Carrots for food production max BBCH 49 Carrots for seed production max BBCH 89'	
Crop and/or situation	MS or country	F G or T(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	--------------	-------------	-----------------------------------	-------------	------------	-----------------------------	--------------	---------						
				Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	a.s./hL min-max	Water L/ha min-max	Rate and unit		
Celeriacs	EL F		'Autographa gamma H. armigera Spodoptera spp. Psila rosae’	WG 350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	'Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)'	
Horseradishes	EL F		'Autographa gamma H. armigera Spodoptera spp. Psila rosae’	WG 350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	'Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)'	
Jerusalem artichokes	EL F		'Autographa gamma H. armigera Spodoptera spp. Psila rosae’	WG 350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	'Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)'	
Parsnips	EL F		Autographa gamma H. armigera Spodoptera spp. Psila rosae	WG 350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	'Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)'	
Crop and/or situation	MS or country	F G or T (a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	--------------	-------------	-----------------------------------	-------------	------------	--------------------------------	------------	------------------						
				Type (b)	Conc. a.s.	Method kind	Range of growth stages & season (c)	Number min-max	Interval between application (min)	a.s./hL min-max	Water L/ha min-max	Rate and unit		
Parsley roots	EL	F	Autographa gamma H. armigera Spodoptera spp. Psila rosae	WG	350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)
Radishes	EL	F	' Autographa gamma H. armigera Spodoptera spp. Psila rosae’	WG	350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)’
Salsifies	EL	F	Autographa gamma H. armigera Spodoptera spp. Psila rosae	WG	350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)’
Swedes	EL	F	Autographa gamma H. armigera Spodoptera spp. Psila rosae	WG	350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7	–	–	42 g a.i./ha	21	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)’
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation	Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min–max	Interval between application (min)	Application rate per treatment	PHI (days)(d)	Remarks		
-----------------------	--------------	-----------------------------------	-------------	---------	------------	-------------	-----------------------------	-----------------	-----------------------------	-------------------------------	-----------	---------		
Turnips	EL	Autographa gamma H. armigera Spodoptera spp. Psila rosae	WG	350 g/kg	Foliar treatment – broadcast spraying	15–89	1–2	7	–	–	42 g a.i./ha	21	‘Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)’	
Tomatoes	ES	Caterpillars	WG	350 g/kg	Foliar treatment – general (see also comment field)	71–89	1–2	7	–	–	42 g a.i./ha	1	Outdoor: Manual application (knapsack and backpack) or application with tractor. Volume: 500–1500 l/ha	
Sweet peppers	ES, EL	Caterpillars	WG	350 g/kg	Foliar treatment – general (see also comment field)	71–89	1–2	7	–	–	42 g a.i./ha	1	Outdoor: Manual application (knapsack and backpack). Volume: 300–1250 l/ha	
Aubergines	ES, EL	Caterpillars	WG	350 g/kg	Foliar treatment – general (see also comment field)	71–89	1–2	7	–	–	42 g a.i./ha	1	Outdoor: Manual application (knapsack and backpack) or application with tractor. Volume: 250–1500 l/ha. Maximum rate (tall-short crops): 120–100 g fp/ha (outdoor)	
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation Type	Conc. a.s.	Application Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	Application rate per treatment a.s./L ha min-max	PHI (days)(d)	Rate and unit	Remarks		
-----------------------	---------------	-----------------------------------	------------------	-----------	-------------------------	----------------------------------	---------------	----------------------------------	---	------------	-------------	---------		
Cucumbers EL F	'H. armigera S. exigua A. gamma S. littoralis Trichoplusia spp. Ostrinia nubilalis'	WG 350 gr/kg	Foliar treatment – broadcast spraying	71-89	1-2	7	–	–	42 g a.i./ha	1	–			
Gherkins EL F	'H. armigera S. exigua A. gamma S. littoralis Trichoplusia spp. Ostrinia nubilalis'	WG 350 gr/kg	Foliar treatment – broadcast spraying	71-89	1-2	7	–	–	42 g a.i./ha	1	–			
Courgettes EL F	'H. armigera S. exigua A. gamma S. littoralis Trichoplusia spp. Ostrinia nubilalis'	WG 350 gr/kg	Foliar treatment – broadcast spraying	71-89	1-2	7	–	–	42 g a.i./ha	1	–			
Melons EL F	H. armigera S. exigua A. gamma S. littoralis Trichoplusia spp. Ostrinia nubilalis	WG 350 gr/kg	Foliar treatment – broadcast spraying	71-89	1-2	7	–	–	42 g a.i./ha	1	–			
Crop and/or situation	MS or country	FG or T(1)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	Remarks							
-----------------------	--------------	------------	-----------------------------------	-------------	------------	-----------------------------	---------							
				Type(2)	Conc. a.s.	Method kind	PHI (days)(4)							
				Range of growth stages & season(3)	Number min–max	Interval between application (min)	Rate and unit							
				Water L/ha	min–max	Water L/ha	min–max							
				a.s./hL	min–max	a.s./hL	min–max							
Pumpkins	EL	F	H. armigera S. exigua A. gamma S. littoralis Trichoplusia spp. Ostrinia nubilalis	WG	350 gr/kg	Foliar treatment – broadcast spraying	71–89	1–2	7	–	–	42 g a.i./ha	1	–
Watermelons	EL	F	H. armigera S. exigua A. gamma S. littoralis Trichoplusia spp. Ostrinia nubilalis	WG	350 gr/kg	Foliar treatment – broadcast spraying	71–89	1–2	7	–	–	42 g a.i./ha	1	–
Sweet corn	ES, IT, EL, PT	F	Caterpillars	SC	200 g/L	Foliar treatment – general (see also comment field)	71–89	1–2	10	–	–	30 g a.i./ha	7	Foliar spraying. Volume: 200–1000 l/ha. Manual application or application with tractor
Broccoli	EL	F	P. brassicae S. littoralis S. exigua	WG	350 gr/kg	Foliar treatment – broadcast spraying	12–89	1–2	7	–	–	35 g a.i./ha	1	Fall-back GAP
Cauliflowers	EL	F	‘P. xylostella M. brassicae P. rapae P. brassicae S. littoralis S. exigua’	WG	350 gr/kg	Foliar treatment – broadcast spraying	12–89	1–2	7	–	–	35 g a.i./ha	1	Fall-back GAP
Crop and/or situation	MS or country	F G or T(1)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	---------------	-------------	-----------------------------------	-------------	------------	-------------------------------	---------------	---------						
				Type(b) Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	a.s./hL	Water L/ha	Rate and unit			
Brussels sprouts	ES F	Caterpillars	ZC	100 g/L	Foliar treatment – general (see also comment field)	1-2 7	–	–	40 g a.i./ha	7	Foliar spraying. Volume: 200–1000 l/ha. Manual application (backpack) or application with tractor			
Head cabbages	EL F	‘P. xylostella M. brassicae P. rapae P. brassicae S. littoralis S. exigua’	WG	350 gr/kg	Foliar treatment – broadcast spraying	12-89 1-2 7	–	–	35 g a.i./ha	1	–			
Chinese cabbages	FR F	‘Helicoverpa armigera Autographa gamma’	WG	350 g/kg	Foliar treatment – broadcast spraying	12-49 1-2 7	–	–	29.75 g a.i./ha	1	–			
Kales	PT F	insects	WG	35 % (w/w)	Foliar treatment – general (see also comment field)	12-49 2 7	–	–	35 g a.i./ha	3	–			
Kohlrabies	ES F	Caterpillars	ZC	100 g/L	Foliar treatment – general (see also comment field)	1-2 7	–	–	40 g a.i./ha	7	Foliar spraying. Volume: 200–1000 l/ha. Manual application (backpack) or application with tractor			
Crop and/or situation	MS or country	F or G	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	--------------	--------	-----------------------------------	-------------	-------------	-----------------------------	------------	---------						
				Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	a.s./hL min-max	Water L/ha min-max	Rate and unit		
Lamb's lettuces	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	350 gr/kg	Foliar treatment - broadcast spraying	12-89	1-2	7	–	–	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'
Lettuces	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	350 gr/kg	Foliar treatment - broadcast spraying	12-89	1-2	7	–	–	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. Lettuce for food production max BBCH 49. Lettuce for seed production max BBCH 89'
Escaroles	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	350 gr/kg	Foliar treatment - broadcast spraying	12-89	1-2	7	–	–	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'
Cresses	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	350 gr/kg	Foliar treatment - broadcast spraying	12-89	1-2	7	–	–	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'
Crop and/or situation	MS or country	F G or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	---------------	----------	-----------------------------------	-------------	------------	-----------------------------	-----------	---------						
Land cresses	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	Foliar treatment – broadcast spraying	12-89 1-2 7	– –	42 g a.i./ha 1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'					
Roman rocket	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	Foliar treatment – broadcast spraying	12-89 1-2 7	– –	42 g a.i./ha 1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'					
Red mustards	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	Foliar treatment – broadcast spraying	12-89 1-2 7	– –	42 g a.i./ha 1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'					
Baby leaf crops	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG	Foliar treatment – broadcast spraying	12-89 1-2 7	– –	42 g a.i./ha 1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'					
Crop and/or situation	MS or country	F or T	MS or country	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks					
-----------------------	--------------	-------	--------------	-----------------------------------	-------------	------------	--------------------------------	------------	---------					
Spinaches	EL F			‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg	Foliar treatment – broadcast spraying	12-89 1-2 7	– – 42 g a.i./ha	1 ‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’					
Purslanes	EL F			‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg	Foliar treatment – broadcast spraying	12-89 1-2 7	– – 42 g a.i./ha	1 ‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’					
Chards	EL F			‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg	Foliar treatment – broadcast spraying	12-89 1-2 7	– – 42 g a.i./ha	1 ‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’					
Grape leaves	IT, EL F			SC 200 g/kg	Foliar treatment – spraying	2	– – 42 g a.i./ha	1	–					
Crop and/or situation	MS or country	FG or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	---------------	---------	-----------------------------------	-------------	------------	-------------------------------	-----------	---------						
Witloofs	ES	F	Caterpillars	WG		Foliar treatment – general (see also comment field)	3	Foliar spraying. Outdoor: Manual application (knapsack and backpack) or application with tractor. Indoor: Manual application (knapsack/handheld). Volume: 300–1000 l/ha						
Chervil	EL	F	'S. exigua S. littoralis H. armigera Autographa gamma'	WG		Foliar treatment – broadcast spraying	1	'Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)'						
Chives	EL	F	S. exigua S. littoralis H. armigera Autographa gamma	WG		Foliar treatment – broadcast spraying	1	'Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)'						
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks							
-----------------------	---------------	-----------------------------------	-------------	-------------	------------------------------	------------	---------							
			Type(b) Conc. a.s. Method kind Range of growth stages & season(c) Number min–max Interval between application (min) a.s./L min–max Water L/ha min–max Rate and unit											
Celery leaves	EL	F S. exigua S. littoralis H. armigera Autographa gamma	WG 350 gr/kg Foliar treatment – broadcast spraying 12-89 1-2 7 – – 42 g a.i./ha 1	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)										
Parsley	EL	F S. exigua S. littoralis H. armigera Autographa gamma	WG 350 gr/kg Foliar treatment – broadcast spraying 12-89 1-2 7 – – 42 g a.i./ha 1	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)										
Sage	EL	F S. exigua S. littoralis H. armigera Autographa gamma	WG 350 gr/kg Foliar treatment – broadcast spraying 12-89 1-2 7 – – 42 g a.i./ha 1	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)										
Rosemary	EL	F S. exigua S. littoralis H. armigera Autographa gamma	WG 350 gr/kg Foliar treatment – broadcast spraying 12-89 1-2 7 – – 42 g a.i./ha 1	Minimum recommended application rate is 100 g fp/ha irrespective of the water volume adopted (adjust concentration)										
### Crop and/or situation	MS or country	FG or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks
Thyme	EL	F	S. exigua S. littoralis H. armigera Autographa gamma	WG 350 gr/kg	Foliar treatment – broadcast spraying	12-89	1-2	7
Basil	EL	F	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg	Foliar treatment – broadcast spraying	12-89	1-2	7
Laurel	EL	F	S. exigua S. littoralis H. armigera Autographa gamma	WG 350 gr/kg	Foliar treatment – broadcast spraying	12-89	1-2	7
Tarragon	EL	F	S. exigua S. littoralis H. armigera Autographa gamma	WG 350 gr/kg	Foliar treatment – broadcast spraying	12-89	1-2	7
Crop and/or situation	MS or country	F G or T(a)	Pests or Group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max
---	---	---	---	---	---	---	---	---
Beans (with pods)	EL	F	‘S. exigua S. littoralis A. gamma H. armigera O. nubilalis’	WG 350 gr/kg	Foliar treatment – broadcast spraying	15-89	1-2	7
Globe artichokes	IT, EL, PT	F	‘Spodoptera exigua, Spodoptera littoralis, Chrysodeixis chalcites, Brachycaudus cardui, Brachycaudus persicae, Macrosiphum sp.’	ZC 100 g/L	Foliar treatment – general (see also comment field)	12-49	2	7
Cotton seeds	ES	F	Helicoverpa armigera	SC 200 g/L	Foliar treatment – general (see also comment field)	34-77	1-2	7
Crop and/or situation	MS or country	F G or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks
-----------------------	----------------	---------	-----------------------------------	-------------	-------------	--------------------------------	------------	---------
Maize EL, IT, ES F	O. nubilalis Sesamia spp H armigera S. exigua	SC	200 g/L	Foliar treatment – broadcast spraying	14–73	1–2	10	30 g a.i./ha
Rice IT, ES F	Lissorhoptrus oryzophilus Chironomidae (e.g. Chironomus cavazzai Orthocladius spp. Cricotopus spp.)	FS	625 g/L	Seed treatment – general (see also comment field)	0–0	1–1	–	–
Sorghum FR F	‘Ostrinia nubilalis Sesamia sp Helicoverta armigera Spodoptera exigua Spodoptera littoralis’	SC	200 g/L	Foliar treatment – broadcast spraying	34–77	2	10	25 g a.i./ha

Minimum recommended application rate is 100 mL fp/ha irrespective of the water volume adopted. Including sweet corn.

PHI = BBCH14-BBCH55 T2 = BBCH73-BBCH87 Minimum recommended application rate is 100 mL fp/ha irrespective of the water volume adopted. Including sweet corn.

This equates to a PHI of approximately 40 days. Application: tractor mounted hydraulic sprayer.
Crop and/or situation	MS or country	F G or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks
				Type(b) Conc. a.s. Method kind Range of growth stages & season(c) Number min-max Interval between application (min)	a.s./hL min-max Water L/ha min-max Rate and unit			
Maize (for forage)	FR	F	‘Ostrinia nubilalis Sesamia sp Helicoverpa armigera. Spodoptera exigua Spodoptera littoralis’	SC 200 g/L Foliar treatment – broadcast spraying 34 to 77 2 10	– –	25 g a.i./ha	n.a.	This equates to a PHI of approximately 40 days. Application: tractor mounted hydraulic sprayer
Sorghum (for forage)	FR	F	‘Ostrinia nubilalis Sesamia sp Helicoverpa armigera. Spodoptera exigua Spodoptera littoralis’	SC 200 g/L Foliar treatment – broadcast spraying 34-77 2 10	– –	25 g a.i./ha	n.a.	This equates to a PHI of approximately 40 days. Application: tractor mounted hydraulic sprayer
A.3. Authorised indoor uses in EU

Crop and/or situation	MS or country	F or G or T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
Strawberries	EL, CZ, IT, PT	I	SC	4.50%	Foliar	0.04 kg ai/Ha	3	–						
			Treatment – general (see also comment field)		treatment – general (see also comment field)									
Parsley roots	NL	I	Caterpillars	WG	350 g/kg	35 g a.i./ha	1	Also for authorisation in lovage root, angelica and burnet saxifrage root						
Radishes	NL	I	Delia radicum	WG	350 g/kg	35 g a.i./ha	7							
Tomatoes	ES	I	Caterpillars	WG	350 g/kg	63 g a.i./ha	1	Indoor: Manual application (knapsack/handheld). Volume: 500–1500 l/ha						
Sweet peppers	ES	I	Caterpillars	WG	350 g/kg	44 g a.i./ha	1	Indoor: Manual application (knapsack/handheld). Volume: 300–1250 l/ha						
Crop and/or situation	MS or country	F G T	Pests or Group of pests controlled	Preparation	Conc. a.s.	Method kind	Application	Application rate per treatment	Remarks					
-----------------------	---------------	-------	-----------------------------------	-------------	-----------	------------	-------------	-------------------------------	---------					
							Range of growth stages & season	a.s./hl min-max	PHI (days)					
							Number min-max	Water L/ha min-max	Rate and unit					
							Interval between application (min)							
Aubergines	ES	I	Caterpillars	WG	350 g/kg	Foliar treatment – general (see also comment field)	71–89	1–2	7	–	–	63 g a.i./ha	1	Indoor: Manual application (knapsack/handheld). Volume: 250–1500 l/ha. Maximum rate (tall-short crops) 180–100 g fp/ha
Cucumbers	NL	I	Caterpillars	WG	350 g/kg	Foliar treatment – broadcast spraying	2	7	–	–	52.5 g a.i./ha	1	'Soilbound cultivation Fall-back GAP'	
Gherkins	NL	I	Caterpillars	WG	350 g/kg	Foliar treatment – broadcast spraying	2	7	–	–	52.5 g a.i./ha	1	'Soilbound cultivation. Fall-back GAP'	
Courgettes	NL	I	Caterpillars	WG	350 g/kg	Foliar treatment – broadcast spraying	2	7	–	–	52.5 g a.i./ha	1	Soilbound cultivation	
Melons	NL	I	Caterpillars	WG	350 g/kg	Foliar treatment – broadcast spraying	2	7	–	–	52.5 g a.i./ha	1	'Soilbound cultivation. Fall-back GAP'	
Pumpkins	NL	I	Caterpillars	WG	350 g/kg	Foliar treatment – broadcast spraying	2	7	–	–	52.5 g a.i./ha	1	'Soilbound cultivation. Fall-back GAP'	
Watermelons	NL	I	Caterpillars	WG	350 g/kg	Foliar treatment – broadcast spraying	2	7	–	–	52.5 g a.i./ha	1	'Soilbound cultivation. Fall-back GAP'	

www.efsa.europa.eu/efsajournal 67 EFSA Journal 2020;18(9):6235
Crop and/or situation	MS or country	FG or IP(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks	
Broccoli	EL I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg Foliar treatment – broadcast spraying	12–89 1–2 7	– –	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'	
Cauliflowers	EL I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg Foliar treatment – broadcast spraying	12–89 1–2 7	– –	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'	
Chinese cabbages	FR I	‘Helicoverpa armigera Autographa gamma’	WG 350 g/kg Foliar treatment – broadcast spraying	12–49 1–2 7	– –	29.75 g a.i./ha	1	–	
Lamb’s lettuces	EL I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg Foliar treatment – broadcast spraying	12–89 1–2 7	– –	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'	
Crop and/or situation	MS or country	Pest Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks		
-----------------------	---------------	-------------------------------	-------------	-------------	-------------------------------	------------	---------		
Lettuces EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment – broadcast spraying	12–89 1–2	7	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'	
Escaroles EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment – broadcast spraying	12–89 1–2	7	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'	
Cresses EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment – broadcast spraying	12–89 1–2	7	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'	
Land cresses EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment – broadcast spraying	12–89 1–2	7	42 g a.i./ha	1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'	
Crop and/or situation	MS or country	F G or I	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks	
----------------------------	---------------	----------	---	-------------	-------------	-------------------------------	-------------	--	
Roman rocket	EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment - broadcast spraying	12-89 1-2 7	–	–	42 g a.i./ha 1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'
Red mustards	EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment - broadcast spraying	12-89 1-2 7	–	–	42 g a.i./ha 1	–
Baby leaf crops	EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment - broadcast spraying	12-89 1-2 7	–	–	42 g a.i./ha 1	–
Spinaches	EL I	'S. exigua S. littoralis H. armigera Autographa gamma'	WG 350 gr/kg	Foliar treatment - broadcast spraying	12-89 1-2 7	–	–	42 g a.i./ha 1	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89'
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks		
----------------------	--------------	-----------------------------------	-------------	-------------	-------------------------------	------------	---------		
Purslanes EL I	"S. exigua								
S. littoralis									
H. armigera									
Autographa gamma’	"WG 350 gr/kg								
Foliar treatment – broadcast spraying"	12–89	1–2	7	42 g a.i./ha	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’				
Chards EL I	"S. exigua								
S. littoralis									
H. armigera									
Autographa gamma’	"WG 350 gr/kg								
Foliar treatment – broadcast spraying"	12–89	1–2	7	42 g a.i./ha	'Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’				
Witloofs ES I	Caterpillars								
WG 350 g/kg									
Foliar treatment – general (see also comment field)	12–89	1–2	7	40.25 g a.i./ha	Foliar spraying. Outdoor: Manual application (knapsack and backpack) or application with tractor. Indoor: Manual application (knapsack/handheld). Volume: 300–1000 l/ha				
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks		
---	---	---	---	---	---	---	---	---	---
			Type(b) Conc. a.s. Method kind Range of growth stages & season(c) Number min-max Interval between application (min) a.s./hl min-max Water L/ha min-max Rate and unit						
Chervil EL I		‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg Foliar treatment – broadcast spraying 12–89 1–2 7 – –	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’			
Chives EL I		‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg Foliar treatment – broadcast spraying 12–89 1–2 7 – –	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’			
Celery leaves EL I		‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg Foliar treatment – broadcast spraying 12–89 1–2 7 – –	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’			
Parsley EL I		‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg Foliar treatment – broadcast spraying 12–89 1–2 7 – –	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’			
Crop and/or situation	MS or country	F G T	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks	
-----------------------	---------------	------	------------------------------------	-------------	------------	--------------------------------	------------	---------	
Sage	EL	I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg, Foliar treatment – broadcast spraying	12–89 1–2 7	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’	
Rosemary	EL	I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg, Foliar treatment – broadcast spraying	12–89 1–2 7	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’	
Thyme	EL	I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg, Foliar treatment – broadcast spraying	12–89 1–2 7	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’	
Basil	EL	I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG 350 gr/kg, Foliar treatment – broadcast spraying	12–89 1–2 7	42 g a.i./ha	1	‘Use top end rate for control of H. armigera and S. littoralis. For food production max BBCH 49. For seed production max BBCH 89’	
Crop and/or situation	MS or country	FG or T	Pests or Group of pests controlled	Preparation	Conc. a.s.	Method kind	Range of growth stages & season	Number min-max	Interval between application (min)
-----------------------	---------------	---------	----------------------------------	-------------	-----------	------------	-------------------------------	----------------	-------------------------------
Laurel	EL	I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG	350 gr/kg	Foliar treatment – broadcast spraying	12-89	1-2	7
Tarragon	EL	I	‘S. exigua S. littoralis H. armigera Autographa gamma’	WG	350 gr/kg	Foliar treatment – broadcast spraying	12-89	1-2	7
Beans (with pods)	NL	I	Caterpillars	WG	350 g/kg	Foliar treatment – broadcast spraying	2	7	–
A.4. Import tolerance

Crop and/or situation	MS or country	F or I(a)	Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
				Type(b)	Conc. a.s.	Method kind								
				Range of growth stages & season(c)	Number min-max	Interval between application (min)	Water L/ha min-max	Rate and unit						
Grapefruits	ZA	F	SC	Foliar treatment – broadcast spraying	2	–	–	297.5 g a.i./ha	7					
Oranges	ZA	F	SC	Foliar treatment – broadcast spraying	2	–	–	297.5 g a.i./ha	7					
Lemons	ZA	F	SC	Foliar treatment – broadcast spraying	2	–	–	297.5 g a.i./ha	7					
Limes	ZA	F	SC	Foliar treatment – broadcast spraying	2	–	–	297.5 g a.i./ha	7					
Mandarins	ZA	F	SC	Foliar treatment – broadcast spraying	2	–	–	297.5 g a.i./ha	7					
Almonds	US	F	WG	Foliar treatment – broadcast spraying	4	–	–	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial				
Brazil nuts	US	F	WG	Foliar treatment – broadcast spraying	4	–	–	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial				
Crop and/or situation	MS or country	FG or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	---------------	------------	-----------------------------------	-------------	------------	--------------------------------	---------------	---------						
Cashew nuts	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Chestnuts	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Coconuts	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Hazelnuts	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Macadamias	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Pecans	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Pine nut kernels	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Pistachios	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial					
Crop and/or situation	MS or country	Type(b)	Conc. a.s.	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	--------------	---------	------------	-------------	-------------	-------------------------------	---------------	---------						
Walnuts	US	F	WG	Foliar treatment – broadcast spraying	4	110.5 g a.i./ha	10	High volume broadcast spraying, low vol aerial						
Apples	AUS	F	SC	Foliar treatment – broadcast spraying	3	78 g a.i./ha	14	‘& non-ionic surfactant Maximum seasonal application rate = 236 g ai/ha’						
Pears	AUS	F	SC	Foliar treatment – broadcast spraying	3	78 g a.i./ha	14	High volume broadcast spraying, low vol aerial						
Quinces	AUS	F	SC	Foliar treatment – broadcast spraying	3	78 g a.i./ha	14	High volume broadcast spraying, low vol aerial						
Medlars	AUS	F	SC	Foliar treatment – broadcast spraying	3	78 g a.i./ha	14	High volume broadcast spraying, low vol aerial						
Loquats	AUS	F	SC	Foliar treatment – broadcast spraying	3	78 g a.i./ha	14	High volume broadcast spraying, low vol aerial						
Apricots	US	F	WG	Foliar treatment – general (see also comment field)	2	110 g a.i./ha	10	–						
Crop and/or situation	MS or country	F, G or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	--------------	-------------	-----------------------------------	-------------	-------------	-------------------------------	-------------	---------						
				Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	a.s./hl min-max	Water L/ha min-max	Rate and unit		
Cherries	US	F	WG	Foliar treatment – general (see also comment field)	2	– –	110 g a.i./ha	10 –	–					
Peaches	US	F	WG	Foliar treatment – general (see also comment field)	2	– –	110 g a.i./ha	10 –	–					
Plums	US	F	WG	Foliar treatment – general (see also comment field)	2	– –	110 g a.i./ha	10 –	–					
Table grapes	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	14	High volume broadcast spraying, low vol aerial. The US label allows maximum 110.5 g a.i/ha per application and maximum 224 g a.i/ha per year					
Wine grapes	US	F	WG	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	14	High volume broadcast spraying, low vol aerial. The US label allows maximum 110.5 g a.i/ha per application and maximum 224 g a.i/ha per year					
Crop and/or situation	MS or country	F or G or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	---------------	----------------	----------------------------------	-------------	----------------	-------------------------------	---------------	---------						
				Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	Water L/ha min-max	Rate and unit			
Strawberries	US F			WG		Foliar treatment – general (see also comment field)	3	–	–	110.5 g a.i./ha	3	Ground sprayer		
Blackberries	US F			WG		Foliar treatment – general (see also comment field)	3	–	–	110.5 g a.i./ha	3	Ground sprayer. The US label allows maximum 110.5 g ai/ha per application and maximum 224 g ai/ha per year		
Dewberries	US F			WG		Foliar treatment – general (see also comment field)	3	–	–	110.5 g a.i./ha	3	Ground sprayer. The US label allows maximum 110.5 g ai/ha per application and maximum 224 g ai/ha per year		
Raspberries	US F			WG		Foliar treatment – general (see also comment field)	3	–	–	110.5 g a.i./ha	3	Ground sprayer. The US label allows maximum 110.5 g ai/ha per application and maximum 224 g ai/ha per year		
Blueberries	US F			WG		Foliar treatment – general (see also comment field)	3	–	–	110.5 g a.i./ha	3	Ground sprayer. The US label allows maximum 110.5 g ai/ha per application and maximum 224 g ai/ha per year		
Crop and/or situation	MS or country	F G or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	---------------	-------------	-----------------------------------	-------------	------------	-------------------------------	---------------	---------						
Cranberries	US	F	WG	Foliar treatment – general (see also comment field)	3	–, –	110.5 g a.i./ha	3	Ground sprayer. The US label allows maximum 110.5 g ai/ha per application and maximum 224 g ai/ha per year					
Granate apples	US	F	WG	Foliar treatment – general (see also comment field)	3	–, –	110.5 g a.i./ha	1	The US label allows maximum 110.5 g ai/ha per application and maximum 224 g ai/ha per year					
Potatoes	CA	F	WG	Foliar treatment – broadcast spraying	4	–, –	75 g a.i./ha	14	High and low volume broadcast spraying, aerial low volume spraying. The EU MRL was set based on US residue data. The maximum seasonal rate allowed by the US label is 224 g ai/ha					
Radishes	US	F	SC	Foliar treatment – general (see also comment field)	4	–, –	109.5 g a.i./ha	1	Low volume ground sprayer, aerial and high volume drip chemigation					
Crop and/or situation
- **Tomatoes**
- **Sweet peppers**
- **Aubergines**

Crop and/or situation	MS or country	FG or Gal (a)	Pests or Group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Application Range of growth stages & season(c)	Number min-max	Interval between application (min)	Application rate per treatment a.s./hL min-max	Water L/ha min-max	
Tomatoes	US	F	SC	Foliar treatment – broadcast spraying	4	–	–	–	109.5 g a.i./ha	1 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The US label allows maximum 110.5 g a.i./ha per application and maximum 224 g a.i./ha per year		
Sweet peppers	US	F	SC	Foliar treatment – broadcast spraying	4	–	–	–	109.5 g a.i./ha	1 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g a.i./ha		
Aubergines	US	F	SC	Foliar treatment – general (see also comment field)	4	–	–	–	109.5 g a.i./ha	1 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial Extrapolation from tomato		
Crop and/or situation	MS or country	F G or I\(^{(a)}\)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)\(^{(d)}\)	Remarks				
-----------------------	--------------	-------------------	-----------------------------------	-------------	------------	-------------------------------	-----------------	---------				
					Method kind	Range of growth stages & season\(^{(c)}\)	Number min-max	Interval between application (min)	a.s./hl min-max	Water L/ha min-max	Rate and unit	
Cucumbers	US	F	SC	Foliar treatment – broadcast spraying	4	– –	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial			
Gherkins	US	F	SC	Foliar treatment – broadcast spraying	4	– –	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial			
Courgettes	US	F	SC	Foliar treatment – broadcast spraying	4	– –	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial			
Melons	US	F	SC	Foliar treatment – broadcast spraying	4	– –	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial			
Pumpkins	US	F	SC	Foliar treatment – broadcast spraying	4	– –	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial			
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks					
-----------------------	--------------	-----------------------------------	-------------	-------------	-----------------------------	-----------	---------					
Watermelons US	F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial				
Broccoli US	F	SC	Foliar treatment – general (see also comment field)	4	–	–	109.5 g a.i./ha	3 The maximum seasonal rate allowed by the US label is 224 g ai/ha				
Brussels sprouts AU	F	SC	Foliar treatment – general (see also comment field)	3	–	–	20 g a.i./ha	7 High and low volume broadcast spraying				
Head cabbages US	F	SC	Foliar treatment – general (see also comment field)	4	–	–	109.5 g a.i./ha	3 –				
Chinese cabbages US	F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	3 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial				
Kales US	F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	3 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial				
Crop and/or situation	MS or country	F Group or I	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks				
-----------------------	---------------	--------------	-----------------------------------	-------------	------------	-------------------------------	------------	---------				
Lamb's lettuces	US	F	SC	Foliar treatment – broadcast spraying	4	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g ai/ha			
Lettuces	US	F	SC	Foliar treatment – broadcast spraying	4	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g ai/ha			
Escaroles	US	F	SC	Foliar treatment – broadcast spraying	4	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g ai/ha			
Crop and/or situation	MS or country	F G or I	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks				
-----------------------	---------------	----------	----------------------------------	-------------	-------------	--------------------------------	-------------	---------				
					Method kind	Range of growth stages & season	Number min–max	Interval between application (min)	a.s./hl min–max	Water L/ha min–max	Rate and unit	
Cresses	US F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g a.i./ha			
Land cresses	US F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g a.i./ha			
Roman rocket	US F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g a.i./ha			
Review of the existing MRLs for chlorantraniliprole

Crop and/or situation	MS or country	Preparation	Application	Application rate per treatment	PHI (days)	Remarks								
Red mustards	US	F	SC	Foliar treatment – broadcast spraying	4	– – 109.5 g a.i./ha	1 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g a.i/ha							
Baby leaf crops	US	F	SC	Foliar treatment – broadcast spraying	4	– – 109.5 g a.i./ha	1 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g a.i/ha							
Spinaches	US	F	SC	Foliar treatment – broadcast spraying	4	– – 109.5 g a.i./ha	1 High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. The maximum seasonal rate allowed by the US label is 224 g a.i/ha							
Crop and/or situation	MS or country	F or G or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	--------------	----------------	-----------------------------------	-------------	------------	-------------------------------	--------------	---------						
				Type(b)	Conc. a.s.	Method kind	Number min-max	Water L/ha min-max	Rate and unit					
Purslanes	CA	F	SC	Foliar treatment – broadcast spraying	4	–	–	50 g a.i./ha	1	Low volume broadcast spraying. The maximum seasonal rate allowed by the US label is 224 g a.i./ha				
Chards	CA	F	SC	Foliar treatment – broadcast spraying	4	–	–	50 g a.i./ha	1	Low volume broadcast spraying. The maximum seasonal rate allowed by the US label is 224 g a.i./ha				
Chervil	US	F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The maximum seasonal rate allowed by the US label is 224 g a.i./ha				
Crop and/or situation	MS or country	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks							
-----------------------	---------------	-----------------------------------	-------------	-------------	-------------------------------	------------	---------							
			Type(b) Conc. a.s. Method kind	Range of growth stages & season(c)	Number min–max	Interval between application (min)	a.s./hl min–max	Water L/ha min–max	Rate and unit					
Chives	US	F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The maximum seasonal rate allowed by the US label is 224 g ai/ha				
Celery leaves	US	F	SC	Foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The maximum seasonal rate allowed by the US label is 224 g ai/ha				
Crop and/or situation	MS or country	F G or I	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)	Remarks						
-----------------------	---------------	----------	-----------------------------------	-------------	-------------	--------------------------------	------------	---------						
Parsley	US	F	SC	Foliar treatment – broadcast spraying	4	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The maximum seasonal rate allowed by the US label is 224 g ai/ha					
Sage	US	F	SC	Foliar treatment – broadcast spraying	4	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The US cGAP is 3 applications at 75 g ai/ha with 1-day PHI					
Crop and/or situation	MS or country	F G or I(a)	Pests or Group of pests controlled	Preparation Type(b)	Conc. a.s.	Method kind	Application Range of growth stages & season(c)	Number min-max	Interval between application (min)	Application rate per treatment a.s./hl min-max	Water L/ha min-max	Rate and unit a.i./ha	PHI (days)(d)	Remarks
-----------------------	--------------	------------	-----------------------------------	---------------------	-----------	------------	-----------------------------	--------------	-----------------------------	------------------	----------------	----------------	-----------	---------
Rosemary	US	F	SC foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The US cGAP is 3 applications at 75 g ai/ha with 1-day PHI					
Thyme	US	F	SC foliar treatment – broadcast spraying	4	–	–	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The US cGAP is 3 applications at 75 g ai/ha with 1-day PHI					
Crop and/or situation	MS or country	F, G or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	---------------	--------------	------------------------------------	-------------	-------------	-------------------------------	--------------	---------						
				Type(b)	Conc. a.s.	Range of growth stages & season(c)	Number min-max	Interval between application (min)	a.s./hl min-max	Water L/ha min-max	Rate and unit			
Basil	US	F	SC	Foliar treatment – broadcast spraying	4	–	–	–	109.5 g a.i./ha	–	–	1		
								–				High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The US cGAP is three applications at 75 g ai/ha with 1-day PHI		
Laurel	US	F	SC	Foliar treatment – broadcast spraying	4	–	–	–	109.5 g a.i./ha	–	–	1		
								–				High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The maximum seasonal rate allowed by the US label is 224 g ai/ha		
Crop and/or situation	MS or country	Type(b)	Conc. a.s.	Method kind	Range of growth stages & season(c)	Number min-max	Interval between application (min)	Application rate per treatment a.s./hL min-max	Water L/ha min-max	PHI (days)(d)	Remarks			
----------------------	---------------	---------	------------	-------------	----------------------------------	----------------	----------------------------------	---	-------------------	------------	---------			
Tarragon	US F	SC	Foliar treatment – broadcast spraying	4	– –	109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial. Extrapolation from spinach. The US cGAP is 3 applications at 75 g ai/ha with 1-day PHI						
Beans (with pods)	US F	SC	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	1	Maximum seasonal application rate: 219 g/ha (2 applications at the maximum rate)						
Beans (without pods)	US F	SC	Foliar treatment – broadcast spraying	4	– –	75 g a.i./ha	1	–						
Peas (with pods)	US F	SC	Foliar treatment – broadcast spraying	4	– –	110.5 g a.i./ha	1	Maximum seasonal application rate: 219 g/ha (2 applications at the maximum rate)						
Peas (without pods)	US F	SC	Foliar treatment – broadcast spraying	4	– –	75 g a.i./ha	1	–						
Crop and/or situation	MS or country	F or G or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
-----------------------	---------------	----------------	-----------------------------------	-------------	----------------	-------------------------------	--------------	---------						
Lentils (fresh)	US	F	SC	Foliar treatment – broadcast spraying	4	– – 75 g a.i./ha	1	–						
Cardoons	US	F	SC	Foliar treatment – broadcast spraying	4	– – 109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial						
Celeries	US	F	SC	Foliar treatment – broadcast spraying	4	– – 109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial						
Florence fennels	US	F	SC	Foliar treatment – broadcast spraying	4	– – 109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial						
Globe artichokes	US	F	WG	Foliar treatment – broadcast spraying	11-89	4 – – 109.5 g a.i./ha	3	Maximum seasonal application rate: 219 g/ha (2 applications at the maximum rate)						
Rhubarbs	US	F	SC	Foliar treatment – broadcast spraying	4	– – 109.5 g a.i./ha	1	High and low volume broadcast spraying, high volume drip chemigation, low vol aerial						

(a) Crop or plant to which the MRLs are applicable.

(b) Type: a.s. = Active substance; hL = High L Every unit (g/L); lL = Low L Every unit (g/L).

(c) Range of growth stages & season: 4-5 = Short time window for application.

(d) PHI (Precautionary Harvest Interval) is the interval between the last application and harvest of the crop or fruit (in days).
Crop and/or situation	MS or country	F Group or Tier (a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
Linseeds	US	F	SC	Foliar treatment – general (see also comment field)	31–89	4	–	–	109.5 g a.i./ha	1	Except peanuts, soyabean and cotton seed. US import tolerance			
Peanuts	US	F	SC	Foliar treatment – spraying	89	2	–	–	110 g a.i./ha	1	–			
Poppy seeds	US	F	SC	Foliar treatment – general (see also comment field)	31–89	4	–	–	109.5 g a.i./ha	1	Except peanuts, soyabean and cotton seed. US import tolerance			
Sesame seeds	US	F	SC	Foliar treatment – general (see also comment field)	31–89	4	–	–	109.5 g a.i./ha	1	Except peanuts, soyabean and cotton seed. US import tolerance			
Sunflower seeds	US	F	SC	Foliar treatment – general (see also comment field)	31–89	4	–	–	109.5 g a.i./ha	1	The cGAP in US is 2 applications at 110.5 g ai/ha with 1-day PHI. The maximum seasonal rate is 224 g ai/ha			
Rapeseeds	US	F	SC	Foliar treatment – general (see also comment field)	31–89	4	–	–	109.5 g a.i./ha	1	The cGAP in US is 2 applications at 110.5 g ai/ha with 1-day PHI. The maximum seasonal rate is 224 g ai/ha			
Crop and/or situation	MS or country	F GT	Pests or Group of pests controlled	Preparation Type	Conc. a.s.	Method kind	Range of growth stages & season	Number min-max	Interval between application (min)	a.s./hl min-max	Water L/ha min-max	Rate and unit	PHI (days)	Remarks
-----------------------	---------------	------	-----------------------------------	------------------	-----------	-------------	-----------------------------	----------------	----------------------------------	----------------	------------------	-------------	----------	---------
Soyabean	AUS, JPN	F	General	Foliar treatment		General	4							
Mustard seeds	US	F	General	Foliar treatment		General	31-89	4						
Cotton seeds	US	F	General	Foliar treatment		Broadcast	4							
Pumpkin seeds	US	F	General	Foliar treatment		General	31-89	4						
Safflower seeds	US	F	General	Foliar treatment		General	31-89	4						
Crop and/or situation	MS or country	FG or I(a) Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks							
-----------------------	--------------	--	-------------	-------------	-------------------------------	----------------	---------							
Borage seeds	US F	SC	Foliar treatment – general (see also comment field)	31–89 4	– – 109.5 g a.i./ha	1	Except peanuts, soyabean and cotton seed. US import tolerance							
Gold of pleasure seeds	US F	SC	Foliar treatment – general (see also comment field)	31–89 4	– – 109.5 g a.i./ha	1	Except peanuts, soyabean and cotton seed. US import tolerance							
Hemp seeds	US F	SC	Foliar treatment – general (see also comment field)	31–89 4	– – 109.5 g a.i./ha	1	Except peanuts, soyabean and cotton seed. US import tolerance							
Castor beans	US F	SC	Foliar treatment – general (see also comment field)	31–89 4	– – 109.5 g a.i./ha	1	Except peanuts, soyabean and cotton seed. US import tolerance							
Oil palms kernels	MY F	WG 350 g/kg Foliar treatment – spraying	11–89 1–2 14	– – 30 g a.i./ha	1	There are two harvests per year in oil palm plantations such that two applications are made to each crop cycle with a maximum of 4 applications per year								
Crop and/or situation	MS or country	F G or I(a)	Pests or Group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks						
------------------------	--------------	-------------	-----------------------------------	-------------	------------	--------------------------------	---------------	---------						
Oil palms fruits	MY	F	WG	350 g/kg	Foliar treatment – spraying	FGWG 350 g/kg	30 g a.i./ha	1	There are two harvests per year in oil palm plantations such that two applications are made to each crop cycle with a maximum of 4 applications per year.					
Rice	BR	F	WG	1	Foliar treatment – general (see also comment field)	FGWG Foliar treatment – general	30 g a.i./ha	15	Import tolerance from Brazil, ground and aerial foliar application.					
Coffee beans	BR	F	WG	60-89	Foliar treatment – general (see also comment field)	FGWG Foliar treatment – general	31.5 g a.i./ha	21	Ground foliar.					
Hops	US	F	SC	11-89	Foliar treatment – spraying	FGWG Foliar treatment – spraying	110 g a.i./ha	0	Maximum seasonal application rate: 219 g a.s./ha					
Sugar canes	BR	F	WG	2	Foliar treatment – spraying	FGWG Foliar treatment – spraying	158 g a.i./ha	56	1 soil and 1 foliar treatment.					

MS: Member State.
(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 7th Edition. Revised March 2017. Catalogue of pesticide formulation types and international coding system.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI – minimum pre-harvest interval.
Appendix B – List of end points

B.1. Residues in plants

B.1.1. Nature of residues and methods of analysis in plants

B.1.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops (available studies)	Crop groups	Crop(s)	Application(s)	Sampling (DAT)	Comment/Source
Fruit crops					
		Apples	Foliar: 3 × 100 g a.s./ha; BBCH 71, 75, 77	0 DAT_{1,2,3} (immature leaves and fruits); 15 and 30 DALA (maturity)	Radiolabelled active substance: [benzamide carbonyl-^{14}C] chlorantraniliprole and [pyrazole carbonyl-^{14}C]-chlorantraniliprole (EFSA, 2011a, 2013a)
		Tomatoes	Foliar: 3 × 100 g a.s./ha; BBCH 61, 73; 81	0 DAT_{1,2,3} (immature leaves and fruits); 7 and 15 DALA (maturity)	Radiolabelled active substance: mixture (1:1) [benzamide carbonyl-^{14}C] chlorantraniliprole and [pyrazole carbonyl-^{14}C]-chlorantraniliprole (EFSA, 2011a, 2013a)
Leafy crops		Lettuces	Foliar: 3 × 100 g a.s./ha; BBCH 13, 19	0 DAT_{1,2,3}; 7 and 15 DALA (maturity)	Radiolabelled active substance: mixture (1:1) [benzamide carbonyl-^{14}C] chlorantraniliprole and [pyrazole carbonyl-^{14}C]-chlorantraniliprole (EFSA, 2011a, 2013a)
Cereals/grass		Rice	Soil drench: 1 × 300 g a.s./ha; BBCH 11-12	14, 28, 56 DAT (immature), 132 DAT (maturity)	Radiolabelled active substance: mixture (1:1) [benzamide carbonyl-^{14}C] chlorantraniliprole and [pyrazole carbonyl-^{14}C]-chlorantraniliprole (EFSA, 2011a, 2013a)
Pulses/oilseeds		Cotton	Foliar, 1 × 150 g a.s./ha; 41 day seedling	8, 15, 22, 86 DAT (immature), 126 DAT (maturity)	Radiolabelled active substance: [benzamide carbonyl-^{14}C] chlorantraniliprole and [pyrazole carbonyl-^{14}C]-chlorantraniliprole (EFSA, 2011a, 2013a)
			Foliar, 1 × 150 g a.s./ha; 57-day seedling	8, 21, 48 DAT (foliage)	
			Excised plant: 18 day seedling	4 days incubated in solution containing 50 mg as/kg	
Rotational crops (available studies)	Crop groups	Crop(s)	Application(s)	PBI (DAT)	Comment/Source
-------------------------------------	-------------------	--------------	-------------------------------------	--------------	--
	Root/tuber crops	Red beet	Bare soil: 1 × 300 g a.s/ha	0, 30, 120, 365	Radiolabelled active substance: [pyrazole carbonyl-14C]-chlorantraniliprole (EFSA, 2013a)
		Bare soil: 1 × 300 g a.s/ha	30	[benzamide carbonyl-14C] chlorantraniliprole (EFSA, 2013a)	
	Leafy crops	Lettuce	Bare soil: 1 × 300 g a.s/ha	30	Radiolabelled active substance: [pyrazole carbonyl-14C]-chlorantraniliprole (EFSA, 2013a)
		Bare soil: 1 × 300 g a.s/ha	0, 30, 120, 365	[benzamide carbonyl-14C] chlorantraniliprole (EFSA, 2013a)	
	Cereal (small grain)	Wheat	Bare soil: 1 × 300 g a.s/ha	0, 30, 120, 365	Radiolabelled active substance: [pyrazole carbonyl-14C]-chlorantraniliprole (EFSA, 2013a)
		Bare soil: 1 × 300 g a.s/ha	900	[benzamide carbonyl-14C] chlorantraniliprole (EFSA, 2013a)	
		Bare soil: 1 × 900 g a.s/ha	30	[benzamide carbonyl-14C] chlorantraniliprole (EFSA, 2013a)	
Processed commodities (hydrolysis study)	Conditions	Stable?			Comment/Source
	Pasteurisation (20 min, 90°C, pH 4)	Yes			(EFSA, 2013a)
	Baking, brewing and boiling (60 min, 100°C, pH 5)	Yes/partially			Parent (86-87% TAR) slightly degraded to IN-F6L99, IN-ECD73 and IN-EQW78 (4-14% TAR). (EFSA, 2013a)
	Sterilisation (20 min, 120°C, pH 6)	Yes			(EFSA, 2013a)
Can a general residue definition be proposed for primary crops? | Yes
---|---
Rotational crop and primary crop metabolism similar? | Yes
Residue pattern in processed commodities similar to residue pattern in raw commodities? | Yes

Chlorantraniliprole is stable under pasteurisation and sterilisation conditions, but it is slightly degraded to IN-F6L99, IN-ECD73 and IN-EQW78 under baking/brewing/boiling conditions (11–14% TRR). Processing studies indicate the presence of low residues of these metabolites in only few processed commodities, being the magnitude of parent chlorantraniliprole always significantly higher than the magnitude of degradates.

Plant residue definition for monitoring (RD-Mo)	Chlorantraniliprole
Plant residue definition for risk assessment (RD-RA)	Chlorantraniliprole
Methods of analysis for monitoring of residues (analytical technique, matrix groups, LOQs)	High water, high acid, high oil content commodities, dry commodities, hops and coffee beans (EFSA, 2013a; EFSA, 2018a):
 - Multiresidue Method DFG S19 (LC–MS/MS)
 - LOQ 0.01 mg/kg
 - Confirmation by monitoring 1 additional MRM transition
 - ILV (LC–MS/MS) available
 - No specific validation details for coffee beans (desirable)
 - QuEChERS (LC–MS/MS) for enforcement in routine analysis, LOQ 0.01 mg/kg for high water, high acid, and high oil content commodities; LOQ 0.005 mg/kg for dry commodities (EURL, 2018; EFSA, 2020b).
| Maize/corn stover, sorghum stover, rice and common millet straw (Ireland, 2010):
 - Single residue Method (LC–MS/MS)
 - LOQ 0.01 mg/kg
 - Confirmation by monitoring 1 additional MRM transition
 - ILV not available (desirable)

a.s.: active substance; DAT: days after treatment; DALA: days after last application; BBCH: growth stages of mono- and dicotyledonous plants; PBI: plant-back interval; LC–MS/MS: liquid chromatography with tandem mass spectrometry; LOQ: limit of quantification; ILV: independent laboratory validation; QuEChERS: Quick, Easy, Cheap, Effective, Rugged, and Safe.
B.1.1.2. Stability of residues in plants

Plant products (available studies)	Category	Commodity	T (°C)	Stability period Value	Stability period Unit	Compounds covered	Comment/Source
	High water content	Apple, tomato, lettuce, cauliflower	–20	24	Months	Chlorantraniliprole	(EFSA, 2013a)
	High oil content	Cotton seed	–20	24	Months	Chlorantraniliprole	(EFSA, 2013a)
	High protein content	Wheat grain	–20	24	Months	Chlorantraniliprole	(EFSA, 2013a)
	High starch content	Potato	–20	24	Months	Chlorantraniliprole	(EFSA, 2013a)
	High acid content	Grape	–20	24	Months	Chlorantraniliprole	(EFSA, 2013a)
	Processed products	Apple juice, tomato ketchup, cottonseed oil, cotton seed meal, raisins	–20	12	Months	Chlorantraniliprole, IN-EQW78, IN-ECD73, IN-F6L99	(EFSA, 2013a)
	Others	Wheat straw	–20	24	Months	Chlorantraniliprole	(EFSA, 2013a)
		Alfalfa hay	–20	24	Months	Chlorantraniliprole	(EFSA, 2013a)

B.1.2. Magnitude of residues in plants

B.1.2.1. Summary of residues data from the supervised residue trials – Primary crops

Commodity	Region/Indoor(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)
Citrus fruits	SEU	–	Absence of residue trials accepted as application is done early in the season (BBCH 50), before the edible part is formed. No residues are expected	0.01*	0.01*	0.01*
Import (ZA)	0.11; 2 \times 0.14; 3 \times 0.15; 0.18; 0.20; 3 \times 0.22; 0.24; 0.25; 0.27; 0.30; 0.35	Combined data set of trials on oranges (8), tangelo (1), mandarins (4) and clementines (3) compliant with GAP (EFSA, 2012b). Extrapolation to the whole group of citrus fruits is applicable. MRL_{OECD} = 0.62	0.7	0.35	0.21	

(a) SEU = Southern Europe
Commodity	Region/Indoor$^{(a)}$	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR$^{(b)}$ (mg/kg)	STMR$^{(c)}$ (mg/kg)
Tree nuts	SEU	4 × < 0.01	Trials on walnuts compliant with GAP (Italy, 2018). **No GAP compliant trials to support the SEU use on almonds, chestnuts, hazelnuts/cobnuts and pistachios. No authorised SEU uses on brazil nuts, cashew nuts, coconuts, macadamias, pecans and pine nut kernels.** MRL$^{OECED} = 0.01$	0.01* (applicable to walnuts only)	< 0.01	< 0.01
Import (US)	9 × < 0.01; 0.011; 2 × 0.016	Combined data set of trials on almonds (6) and pecans (6) compliant with GAP (United Kingdom, 2018; Ireland, 2018). Extrapolation to the whole group of tree nuts is applicable. MRL$^{OECED} = 0.02$	0.03	0.02	0.01	
Pome fruits	NEU	< 0.01; 0.01; 0.046; 0.054; 0.068; 0.069; 0.07$^{(d)}$; 0.082; 0.09; 0.11$^{(d)}$; 0.11; 0.13	Combined data set of trials on apples (8) and pears (4) compliant with GAP (EFSA, 2013a; Ireland, 2010; Greece, 2018). Extrapolation to the whole group of pome fruits is applicable. MRL$^{OECED} = 0.22$	0.3	0.13	0.07
SEU	0.022; 2 × 0.024; 0.034; 0.039; 0.048; 0.053; 0.06$^{(d)}$; 0.066; 0.07$^{(d)}$; 0.077; 0.096; 2 × 0.1$^{(d)}$	Combined data set of trials on apples (10) and pears (4) compliant with GAP (EFSA, 2013a; Ireland, 2010; Greece, 2018). Tentative extrapolation to quinces, medlars and loquats (less cGAP) is proposed; however, no additional trials are required since the import tolerance GAP is clearly more critical. MRL$^{OECED} = 0.17$	0.2	0.10	0.06	
Import (US)	0.01; 0.013; 0.022; 0.027; 0.031; 0.034; 0.038; 0.041; 0.045; < 0.06; 2 × 0.061; 0.065; 0.066; 0.07; 0.075; 0.076; 0.078; 2 × 0.081; 2 × 0.091; 0.098; 0.1; 2 × 0.11; 4 × 0.12; 0.14; 0.18; 0.19; 0.193; 0.25; 0.3; 0.32	Combined data set of trials on apples (23) and pears (14), compliant with GAP (Ireland, 2010, 2018). Extrapolation to the whole group of pome fruits is applicable. MRL$^{OECED} = 0.39$	0.4	0.32	0.08	
Commodity	Region/Indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)
---------------	-----------------------------	---	---	------------------------	--------------------------	--------------------------
Apricots	SEU	0.04^(d); 0.05^(d); 0.08^(d); 0.09^(d)	Reduced data set of trials on apricots performed with application rates within 25% deviation (Greece, 2018). MRL_{OECD} = 0.2	0.2^{(e), (f)} (tentative)	0.09	0.07
	Import (US)	–	No GAP compliant trials available.			
Cherries (sweet)	Import (US)	0.072; 0.12; 0.13; 0.19; 0.23; 0.27; 0.37; 0.48	Trials on cherries compliant with GAP (United Kingdom, 2018; Ireland, 2018). MRL_{OECD} = 0.78	0.8	0.48	0.21
Peaches	NEU	0.03^(d); 0.06^(d); 0.07^(d); 0.13^(d)	Trials on peaches performed with application rates within the 25% deviation (Greece, 2018). MRL_{OECD} = 0.24	0.3^(f) (tentative)	0.13	0.07
	SEU	0.019; 0.022; 0.027; 0.028; 0.030; 0.033; 0.040; 0.043	Trials on peaches compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). MRL_{OECD} = 0.09	0.09	0.04	0.03
	Import (US)	0.078; 0.099; 0.107; 0.13; 0.14; 0.151; 0.155; 0.171; 0.204; 0.268; 0.311; 0.352	Trials on peaches compliant with GAP (United Kingdom, 2018; Ireland, 2018). MRL_{OECD} = 0.54	0.6	0.35	0.15
Plums	NEU	2 × < 0.01; 0.01; 0.026; 0.034; 0.038; 0.066; 0.081	Trials on plums performed with application rates within the 25% deviation (Netherlands, 2018). MRL_{OECD} = 0.14	0.15	0.08	0.03
	SEU	2 × 0.014; 0.02; 0.021; 0.024; 0.030; 0.032; 0.056	Trials on plums compliant with GAP (France, 2018; Portugal, 2018). MRL_{OECD} = 0.08	0.08	0.06	0.02
	Import (US)	5 × < 0.01; 0.01; 0.016; 0.076	Trials on plums compliant with GAP (United Kingdom, 2018; Ireland, 2018). MRL_{OECD} = 0.11	0.15	0.08	0.01
Table grapes	SEU	0.02; 0.035; 2 × 0.069; 0.087^(g); 0.1; 0.12^(g); 0.12 0.13^(g); 0.23	Trials on table grapes compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). MRL_{OECD} = 0.33	0.4	0.23	0.09
Wine grapes	SEU	< 0.01; 0.031; 0.033; 0.036; 0.039; 0.061; 0.08; 0.13; 0.15	Trials on wine grapes compliant with GAP, evaluated in the peer review (EFSA 2013a; Ireland, 2010). MRL_{OECD} = 0.26	0.3	0.15	0.04
Wine and Table grapes	NEU	0.014; 0.021; 0.022; 0.03; 0.036; 0.044; 0.068; 0.074; 0.12	Trials on wine grapes compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). Extrapolation to table grapes is applicable. MRL_{OECD} = 0.18	0.2	0.12	0.04
Commodity	Region/Indoor (a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)
-------------------------------	---------------------	---	---	------------------------	--------------	---------------
Import (US)		0.0182(g); 0.058; 0.086; 0.1; 0.113; 0.132; 0.197; 0.217; 0.226; 0.31; 0.365; 0.385; 0.528; 0.589; 0.591	Combined data set of trials on table grapes and wine grapes compliant with GAP evaluated by EFSA (2011a). MRL_{OECD} = 1.03	1	0.59	0.22
Strawberries	EU	4 × 0.03(d); 0.04(d); 2 × 0.05(d); 0.24(d)	Trials on strawberries compliant with GAP (Greece, 2018). MRL_{OECD} = 0.35	0.4^(f) (tentative)	0.24	0.04
Import (US)	–	No GAP compliant trials available.				
Cane fruits	Import (US)	0.088; 0.092; 0.108; 0.246; 0.445; 0.521; 0.536; 0.543	Combined data set of trials on raspberries (6) and blackberries (2) compliant with GAP (EFSA, 2011a). Extrapolation to the whole group of cane fruits is applicable. MRL_{OECD} = 1.16	1.5	0.54	0.35
Blueberries	NEU	–	No GAP compliant trials available.			
Import (US)		0.14; 0.143; 0.15; 0.167; 0.206; 0.21; 0.223; 0.247; 0.426; 0.826; 0.908	Trials on blueberries compliant with GAP (EFSA, 2011a). MRL_{OECD} = 1.44	1.5	0.91	0.21
Cranberries	Import (US)	0.131; 0.145; 0.154; 0.279; 0.331; 0.351	Trials on cranberries compliant with GAP (EFSA, 2011a). MRL_{OECD} = 0.7	0.7	0.35	0.22
Granate apples/pomegranates	Import (US)	0.09; 0.097; 0.101; 0.125	Trials on granate apples compliant with GAP (EFSA, 2015a). MRL_{OECD} = 0.31	0.3	0.13	0.10
Potatoes	NEU	6 × < 0.01	Reduced data set of trials on potatoes compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010), deemed acceptable as all residues were below LOQ. MRL_{OECD} = 0.01	0.01*	< 0.01	< 0.01
SEU	4 × < 0.01	Reduced data set of trials on potatoes compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010), deemed acceptable as all residues were below LOQ. MRL_{OECD} = 0.01	0.01*	< 0.01	< 0.01	
Import (CA)	27 × 0.01	Trials on potatoes compliant with GAP (United Kingdom, 2018; Ireland, 2018). MRL_{OECD} = 0.03	0.03	0.01*	0.01*	
Commodity	Region/Indoor^a	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR^b (mg/kg)	STMR^c (mg/kg)
---------------------------	---------------------------	--	---	------------------------	------------------------	------------------------
Sweet potatoes	NEU	–	No GAP compliant trials available	–	–	–
Carrots	NEU	$5 \times < 0.01; 0.01; 0.014; 0.021; 0.027$	Trials on carrots compliant with GAP (EFSA, 2013b). Extrapolation to the whole subgroup of ‘other root and tuber vegetables, except sugar beets’ is applicable. MRL_{OECD} = 0.04	0.04	0.03	0.01
Beetroots	SEU	$6 \times < 0.01; 0.025; 0.030; 0.036$	Trials on carrots compliant with GAP (EFSA, 2013b). Extrapolation to the whole subgroup of ‘other root and tuber vegetables, except sugar beets’ is applicable. MRL_{OECD} = 0.06	0.06	0.04	0.01
Celeriacs/turnip-rooted celeries	SEU	$4 \times < 0.01$	Trials on radishes compliant with GAP (Netherlands, 2018). **No GAP compliant trials to support the EU use on parsley roots/Hamburg roots parsley. No EU uses authorised on the other root and tuber vegetables.** MRL_{OECD} = 0.01	0.01*	< 0.01	< 0.01
Jerusalem artichokes	EU	Import (US)	Trials on radishes compliant with GAP (EFSA, 2011a). **Import tolerance in place for radishes only.** MRL_{OECD} = 0.43	0.5	0.26	0.05
Parsnips	NEU	–	No GAP compliant trials available	–	–	–
Parsley roots/Hamburg roots parsley	SEU	–	No GAP compliant trials available	–	–	–
Radishes	EU	–	No GAP compliant trials available	–	–	–
Salsifises	SEU	–	No GAP compliant trials available	–	–	–
Swedes/rutabagas	SEU	–	No GAP compliant trials available	–	–	–
Turnips	NEU	–	No GAP compliant trials available	–	–	–
Turnip tops	SEU	–	No GAP compliant trials available	–	–	–
Tomatoes	NEU	–	No GAP compliant trials available	–	–	–
TOMATOES	SEU	$0.013; 0.018; 0.023; 0.025; 0.029; 0.030; 0.033; 0.036; 0.041; 0.055; 0.062$	Trials on normal sized tomato compliant with the GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). Extrapolation to aubergines is applicable. MRL_{OECD} = 0.1	0.1	0.06	0.03
EU	$2 \times < 0.01; 0.012; 2 \times 0.015; 0.018; 0.028; 0.034; 0.037; 0.04^{(a)}; 0.06^{(a)}; 0.061; 0.07^{(a)}; 2 \times 0.079; 0.082; 0.090; 0.091; 0.095; 0.099; 0.10; 0.11^{(a)}; 0.11; 0.15; 0.19$	Combined data set on normal sized tomato (17) and cherry tomato (8) performed with application rates within the 25% deviation (EFSA, 2013a; Ireland, 2010; Netherlands, 2018; Greece, 2018). MRL_{OECD} = 0.25	0.3	0.19	0.07	

*OECD = Organisation for Economic Co-operation and Development.

^a NEU = North-Eastern Union (EMEA); SEU = Southern European Union (EMEA); EU = Europe (EMEA).

^b HR = Harmonised Reference Value.

^c STMR = Scientifically derived Threshold for Major Residues.
Commodity	Region/Indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)	
Import (US)	0.018; 2 × 0.034; 0.045; 0.049; 0.05; 0.052; 0.065; 0.071; 0.074; 0.076; 0.088; 0.099; 2 × 0.12; 0.13; 0.14; 0.15; 0.18; 0.19	Trials on normal size tomato compliant with GAP (United Kingdom, 2018; Ireland, 2018). Extrapolation to aubergines is applicable. MRL_{OECD} = 0.29		0.3	0.19	0.08	
Sweet peppers/bell peppers	SEU	0.089; 0.11; 0.13; 0.18; 0.20	Reduced data set on hot peppers compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). MRL_{OECD} = 0.43	0.5^(e) (tentative)	0.20	0.13	
EU	0.064; 0.071; 0.11; 0.16; 0.17; 0.39; 0.57	Reduced data set on hot peppers compliant with GAP (EFSA, 2013a; Ireland, 2010; Italy, 2018). MRL_{OECD} = 0.98	1^(e) (tentative)	0.57	0.16		
Import (US)	0.021; 0.037; 2 × 0.07; 0.071; 0.083; 0.14; 0.22; 0.43	Trials on hot peppers compliant with GAP (United Kingdom, 2018; Ireland, 2018). MRL_{OECD} = 0.64		0.7	0.43	0.07	
Aubergines/eggplants	SEU	0.013; 0.018; 0.023; 0.025; 0.029; 0.030; 0.033; 0.036; 0.041; 0.055; 0.062	Trials on normal sized tomato compliant with the GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). Extrapolation to aubergines is applicable. MRL_{OECD} = 0.1		0.1	0.06	0.03
EU	< 0.01; 0.012; 2 × 0.015; 0.018; 0.034; 0.037; 0.04^(d); 0.06^(d); 0.061; 0.07^(d); 0.079; 0.082; 0.09; 0.095; 0.1; 0.11^(d)	Trials on normal sized tomato performed with application rates within the 25% deviation (EFSA, 2013a; Ireland, 2010; Netherlands, 2018; Greece, 2018). Extrapolation to aubergines is applicable. MRL_{OECD} = 0.19		0.2	0.11	0.06	
Import (US)	0.018; 2 × 0.034; 0.045; 0.049; 0.05; 0.052; 0.065; 0.071; 0.074; 0.076; 0.088; 0.099; 2 × 0.12; 0.13; 0.14; 0.15; 0.18; 0.19	Trials on normal size tomato compliant with GAP (United Kingdom, 2018; Ireland, 2018). Extrapolation to aubergines is applicable. MRL_{OECD} = 0.29		0.3	0.19	0.08	
Cucumbers Gherkins Courgettes	NEU	–	No GAP compliant trials available. **Use authorised on cucumber and gherkins only**	–	–	–	
SEU	< 0.01; 0.011; 0.013; 0.016; 0.023; 0.037; 0.049; 0.056; 0.082	Combined data set on cucumbers (4) and courgettes (5) performed with the application rates within the 25% deviation (France, 2018). Extrapolation to gherkins is applicable. MRL_{OECD} = 0.13		0.15	0.08	0.02	
Commodity	Region/Indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)	
---------------------------	-----------------------------	---	---	------------------------	--------------------------	--------------------------	
EU		< 0.01; 0.016; 0.021; 0.039; 0.058; 0.064; 0.083; 0.10; 0.130	Combined data set on cucumbers (5) and courgettes (4) compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). Extrapolation to gherkins is applicable. MRL_{OECD} = 0.22	0.3	0.13	0.06	
Import (US)		0.01; 0.013; 0.014; 0.017; 2 × 0.022; 0.037; 0.044; 0.058; 0.078; 0.081; 0.083; 0.093	Combined dataset on cucumbers (7) and courgettes (6) compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). Extrapolation to gherkins is applicable. MRL_{OECD} = 0.17	0.2	0.09	0.04	
MelonsPumpkins	SEU	2 × < 0.01; 0.013; 0.014; 0.015; 0.024; 0.025; 0.027; 0.075	Trials on melons performed with application rates within the 25% deviation (France, 2018). Extrapolation to pumpkins and watermelons is applicable. MRL_{OECD} = 0.1	0.1	0.08	0.02	
Watermelons	EU	0.010; 2 × 0.019; 0.023; 0.030; 2 × 0.032; 0.038; 0.068	Trials on melons compliant with GAP, evaluated in the peer review (EFSA, 2013a; Ireland, 2010). Extrapolation to pumpkins and watermelons is applicable. MRL_{OECD} = 0.1	0.1	0.07	0.03	
	Import (US)	0.011; 0.028; 0.082; 0.084; 0.087; 0.1; 0.12	Reduced data set on melons compliant with the GAP (United Kingdom, 2018; Ireland, 2018). Extrapolation to pumpkins and watermelons is applicable. MRL_{OECD} = 0.23	0.12	0.08		
Cauliflowers	NEU	4 × < 0.01; 0.019; 0.027; 0.047; 0.064; 0.082; 0.10; 2 × 0.12; 0.14	Combined data set on cauliflowers (9) and broccoli (4) compliant with GAP (EFSA, 2011a; Italy, 2018). MRL_{OECD} = 0.25	0.3	0.14	0.06	
Broccoli	SEU	3 × < 0.01; 2 × 0.010; 0.016; 0.025; 0.036; 0.043; 0.082; 0.10; 0.19; 0.37	Combined data set on cauliflowers (9) and broccoli (4) compliant with GAP (EFSA, 2015a; Italy, 2018). MRL_{OECD} = 0.49	0.5	0.37	0.03	
	EU	–	No GAP compliant trials available	–	–	–	
Import (US)		0.13; 0.34; 2 × 0.36; 0.38; 0.4; 0.41; 0.44; 0.71	Trials on broccoli compliant with GAP (United Kingdom, 2018). **Import Tolerance in place for broccoli only.** MRL_{OECD} = 1.18	1.5	0.71	0.38	

^(a) Region/Indoor: EU = Europe, Import (US) = Import from the United States, NEU = North East United States, SEU = South East United States.

^(b) HR: Harmful Risk

^(c) STMR: Short Term Maximum Residue.
Commodity	Region/Indoor^(a)	Residue levels observed in the supervised residue trials^(mg/kg)	Comments/Source	Calculated MRL^(mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)
Brussels sprouts	NEU	No GAP compliant trials available				
	SEU	No GAP compliant trials available				
	Import (AU)	No GAP compliant trials available				
Head cabbages	NEU	$5 \times < 0.01$	Reduced data set on head cabbages compliant with GAP (France, 2018), deemed acceptable as all residues were below LOQ.	0.01*	< 0.01	< 0.01
	SEU	$< 0.01^{(d)}$; $2 \times 0.012^{(d)}$; $0.015^{(d)}$; $0.1^{(d)}$	Trials on head cabbages compliant with GAP (Portugal, 2018). MRL_{OECD} = 0.01	$0.2^{(f)}$ (tentative)	0.10	0.01
	Import (US)	0.043; 0.082; 0.31; 0.32; 0.52; 0.64; 0.72; 0.78; 1.2	Trial on head cabbages compliant with GAP (United Kingdom, 2018). MRL_{OECD} = 1.99	2	1.20	0.52
Chinese cabbages/pe-tsai	NEU	No GAP compliant trials available				
	SEU	No GAP compliant trials available				
	EU	No GAP compliant trials available				
	Import (US)	No GAP compliant trials available				
Kales	NEU	No GAP compliant trials available				
	SEU	No GAP compliant trials available				
	Import (US)	No GAP compliant trials available				
Kohlrabies	SEU	No GAP compliant trials available				
Lettuces	NEU	Open leaf varieties: $0.36^{(b)}$; $0.83^{(b)}$; $1.0^{(b)}$; Closed leaf varieties: $0.16^{(d)}$; $0.28^{(d)}$; $0.42^{(d)}$	4 overdosed trials (1.3N) and 2 GAP compliant trials on lettuces (open and closed leaf varieties) (Ireland, 2010; France, 2018; Greece, 2018). No additional trials are required since the IT GAP is clearly more critical. MRL_{OECD} = 1.83	2	1.00	0.39
	SEU	Open leaf varieties: < 0.01; 0.31; 0.45; 0.86; 1.7; Closed varieties: < 0.01; 0.37; 0.46; 0.88; $1.18^{(d)}$; $1.89^{(d)}$	Trials on open (5) and close (6) leaf lettuce varieties compliant with the GAP (EFSA, 2013a; Ireland, 2010; Greece, 2018). MRL_{OECD} = 3.27	4	1.89	0.46
Commodity	Region/Indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)
---------------------------	-----------------------------	---	---	------------------------	--------------------------	---------------------------
EU	Open leaf varieties: 1.3; 1.8; 2.3					
Closed leaf varieties: 0.09; 0.15; 0.38; 1.4; 1.6; 2.0	Trials on open (3) and closed (6) leaf lettuce varieties compliant with the GAP (EFSA, 2013a; Ireland, 2010). MRL_{OECD} = 4.52		5	2.30	1.40	
Import (US)	Lettuces open leaf varieties: 3.2; 2 × 3.9; 4.0; 4.5; 5.3; 6.2					
Spinaches: 3.5; 5.8; 2 × 7.3; 7.9; 8.7; 9.7	Combined data on lettuces (7) (open leaf varieties) and spinaches (7) compliant with GAP (Ireland, 2018). Extrapolation to the whole group of lettuces and salad plants, spinaches and similar leaves and, herbs and edible flowers is acceptable. MRL_{OECD} = 17.4		20	9.70	5.55	
Lamb’s lettuce/corn salads	NEU	0.36^(h); 0.83^(h); 1.0^(h)	Reduced data set of overdosed trials on lettuce (open leaf varieties) (Ireland, 2010; France, 2018). Tentative extrapolation to lamb’s lettuce is proposed (not enough number of GAP compliant trials); however, no additional trials are required since the indoor and IT GAPs are clearly more critical. MRL_{OECD} = 2.19	4	1.00	0.83
SEU	< 0.01; 0.31; 0.45; 0.86; 1.7	Reduced data set on open leaf lettuce varieties compliant with GAP (EFSA, 2013a; Ireland, 2010). Tentative extrapolation to lamb’s lettuce is proposed (not enough number of GAP compliant trials); however, no additional trials are required since the indoor and IT GAPs are clearly more critical. MRL_{OECD} = 3.28		4	1.70	0.45
EU	3.2; 2 × 4.1; 7.8; 8.0	Trials on Lamb’s lettuces compliant with the GAP evaluated in the peer review (EFSA, 2013a; Ireland, 2010). MRL_{OECD} = 16.32		20	8.00	4.10
Import (US)	Lettuces open leaf varieties: 3.2; 2 × 3.9; 4.0; 4.5; 5.3; 6.2					
Spinaches: 3.5; 5.8; 2 × 7.3; 7.9; 8.7; 9.7	Combined data set on lettuces (7) and spinaches (7) compliant with GAP (Ireland, 2018). Extrapolation to lamb’s lettuce is acceptable. MRL_{OECD} = 17.4		20	9.70	5.55	
Roman rocket/rucola	NEU	0.36^(h); 0.83^(h); 1.0^(h)	Reduced data set of overdosed trials on lettuce (open leaf varieties) (Ireland, 2010; France, 2018). Tentative extrapolation to roman rocket/rucola and red mustards is applicable to roman rocket/	4	1.00	0.83

^(a) Commodity Region/Indoor: EU (European Union), Import (US) (United States), SEU (South Eastern Union), NEU (North Eastern Union).

^(b) HR: Highest Residue.

^(c) STMR: Short Term Maximum Residue.
Commodity Region/Indoor\(^{(a)}\) Residue levels observed in the supervised residue trials (mg/kg) Comments/Source Calculated MRL (mg/kg) HR\(^{(b)}\) (mg/kg) STMR\(^{(c)}\) (mg/kg)

Commodity	Region/Indoor\(^{(a)}\)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR\(^{(b)}\) (mg/kg)	STMR\(^{(c)}\) (mg/kg)	
Baby leaf crops (including brassica species)			proposed (not enough number of GAP compliant trials); however, no additional trials are required since the IT GAP is clearly more critical. **No NEU uses are authorised for baby leaf crops (including brassica species).** MRL\(_{OECD} = 2.19\)				
SEU		\(< 0.01; 0.31; 0.45; 0.86; 1.7 \times 4.1; 7.8; 8.0\)	Reduced data set on lettuce (open leaf varieties) compliant with GAP (EFSA, 2013a; Ireland, 2010). Tentative extrapolation to roman rocket/rucola, red mustards and baby leaf crops is proposed (not enough number of GAP compliant trials); however, no additional trials are required since the IT GAP is clearly more critical. MRL\(_{OECD} = 3.28\)	4	1.70	0.45	
EU	Lettuces open leaf varieties: 3.2; 2 × 3.9; 4.0; 4.5; 5.3; 6.2 Spinaches: 3.5; 5.8; 2 × 7.3; 7.9; 8.7; 9.7	Combined data set on open leaf lettuce (3) and lamb's lettuce (5) compliant with GAP (EFSA, 2013a; Ireland, 2010). Extrapolation to roman rocket/rucola, red mustards and baby leaf crops is applicable. MRL\(_{OECD} = 14.34\)		15	8.00	3.65	
Import (US)	Lettuces open leaf varieties: 3.2; 2 × 3.9; 4.0; 4.5; 5.3; 6.2 Spinaches: 3.5; 5.8; 2 × 7.3; 7.9; 8.7; 9.7	Combined data set on lettuces (7) and spinaches (7) compliant with GAP (Ireland, 2018). Extrapolation roman rocket/rucola, red mustards and baby leaf crops is acceptable. MRL\(_{OECD} = 17.4\)		20	9.70	5.55	
Escaroles/broad-leaved endives Cresses and other sprouts and shoots Land cresses Spinaches and similar leaves Herbs and edible flowers			Reduced data set of overdosed trials on lettuce (open leaf varieties) (Ireland, 2010; France, 2018). Tentative extrapolation to escaroles, cresses and land cresses, and the whole subgroups of spinaches and similar leaves, and herbs and edible flowers is proposed (not enough number of GAP compliant trials), also noting that a less cGAP is authorised for rosemary and tarragon, and no NEU uses are authorised for cresses and other sprouts and shoots, land cresses and laurel/bay leave. No additional trials are required since the IT GAP is clearly more critical. MRL\(_{OECD} = 2.19\)		4	1.00	0.83
Commodity Region/Indoor (a) Residue levels observed in the supervised residue trials (mg/kg) Comments/Source Calculated MRL (mg/kg) HR(b) (mg/kg) STMR(c) (mg/kg)

Commodity	Region/Indoor	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)
SEU	< 0.01; 0.31; 0.45; 0.86; 1.7	Reduced data set on lettuce (open leaf varieties) compliant with GAP (EFSA, 2013a; Ireland, 2010). Tentative extrapolation to escaroles, cresses and land cresses, and the whole subgroups of spinaches and similar leaves, and herbs and edible flowers is proposed (not enough number of GAP compliant trials); however, no additional trials are required since the IT GAP is clearly more critical. MRL_{OECD} = 3.28	4	1.70	0.45	
EU	1.3; 1.8; 2.3	Reduced data set on lettuce (open leaf varieties) compliant with GAP (EFSA, 2013a; Ireland, 2010). Tentative extrapolation to escaroles, cresses and land cresses, and the whole subgroups of spinaches and similar leaves, and herbs and edible flowers is proposed (not enough number of GAP compliant trials); however, no additional trials are required since the IT GAP is clearly more critical. MRL_{OECD} = 5.4	6	2.30	1.80	
Import (US)	Lettuces open leaf varieties: 3.2; 2 × 3.9; 4.0; 4.5; 5.3; 6.2 Spinaches: 3.5; 5.8; 2 × 7.3; 7.5; 8.7; 9.7	Combined data set on lettuces (7) (open leaf varieties) and spinaches (7) compliant with GAP (Ireland, 2018). Extrapolation to escaroles, cresses and land cresses, and the whole subgroups of spinaches and similar leaves, and herbs and edible flowers is acceptable. MRL_{OECD} = 17.4	20	9.70	5.55	
Grape leaves and similar species	SEU	3.1(d); 4.6(d); 7.0(d); 8.7(d)	Trials on grape leaves compliant with GAP (Ireland, 2018). MRL_{OECD} = 17.55	20(f) (tentative)	8.70	5.80
Witloofs/Belgian endives	NEU	–	No GAP compliant trials available	–	–	–
	SEU	–	No GAP compliant trials available	–	–	–
	EU	–	No GAP compliant trials available	–	–	–
Beans (with pods)	NEU	0.024(h); 0.031(h); 0.055(h); 0.093(h); 0.19(h)	Reduced data set of overdosed trials (1.4N) on beans with pods, used on a tentative basis (EFSA, 2011a); however, no additional trials are required since the indoor GAP is clearly more critical. MRL_{OECD} = 0.35	0.4	0.19	0.06
Commodity	Region/Indoor(a)	Residue levels observed in the supervised residue trials(mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR(b) (mg/kg)	STMR(c) (mg/kg)
-----------	-----------------	---	----------------	---------------------------	----------------	----------------
SEU	0.066; 0.083; 0.088; 0.12; 0.16; 0.21; 0.25; 0.26	Trials on beans with pods compliant with GAP (EFSA, 2011a; France, 2018). MRL_{OECD} = 0.46	0.5	0.26	0.14	
EU	0.081; 3 × 0.11; 2 × 0.13; 0.14; 0.15; 0.29; 0.3; 2 × 0.4; 0.47	Trials on beans with pods performed with application rates within the 25% deviation (EFSA, 2011a, 2012b). MRL_{OECD} = 0.76	0.8	0.47	0.14	
Import (US)	< 0.01; 0.097; 0.118; 0.123; 0.136; 0.145; 0.161; 0.407	Trials on beans with pods compliant with GAP (EFSA, 2015a). MRL_{OECD} = 0.6	0.6	0.41	0.13	
Peas (with pods)	NEU	–	No GAP compliant trials available	–	–	–
Import (US)	0.449; 0.476; 0.611; 0.64	Trials on peas with pods compliant with GAP (EFSA 2015a). MRL_{OECD} = 1.63	2	0.64	0.54	
Beans and Peas (without pods)	Import (US)	–	No GAP compliant trials available	–	–	–
Lentils (fresh)	Import (US)	–	No GAP compliant trials available	–	–	–
Celeries Cardoons Florence fennels Rhubarbs	Import (US)	1.1; 1.4; 2.1; 2.6; 2.8; 3.7; 3.8	Trials on celeries compliant with GAP (United Kingdom, 2018). Extrapolation to cardoons, Florence fennels and rhubarbs is applicable. MRL_{OECD} = 7.5	8	3.80	2.60
Globe artichokes	NEU	–	No GAP compliant trials available	–	–	–
SEU	0.06; 0.07; 0.08; 0.16	Trials on globe artichokes compliant with GAP (EFSA, 2012b). MRL_{OECD} = 0.28	0.4	0.16	0.08	
Import (US)	0.470; 0.535; 0.594; 0.690	Trials on globe artichokes compliant with GAP (EFSA, 2015a). MRL_{OECD} = 1.72	2	0.69	0.56	
Peanuts/groundnuts	Import (US)	2 × < 0.01; 2 × 0.01; 0.012; 0.034	Reduced data set on peanuts compliant with GAP (EFSA, 2015a). MRL_{OECD} = 0.05	0.06(e) (tentative)	0.03	0.01
Sunflower seeds	Import (US)	0.03; 0.12; 0.16; 0.21; 0.79; 0.82	Reduced data set on sunflower seeds compliant with GAP (EFSA 2013b). MRL_{OECD} = 1.77	2(e) (tentative)	0.82	0.19
Commodity	Region/Indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)
---------------------------	-----------------------------	---	---	-----------------------	-------------------------	--------------------------
Rapeseeds/canola seeds	Import (US)	0.14; 0.23; 0.26; 0.34; 0.84; 1.02	Reduced data set on rapeseeds compliant with GAP (EFSA, 2013b). MRL_{OECD} = 1.93	2^(e)	1.02	0.30
Soyabeanrs	Import (AUS, JPN)	–	No GAP compliant trials available	–	–	–
Mustard seeds	Import (US)	0.03; 0.12; 0.14; 0.21; 0.23; 0.26; 0.34; 0.79; 0.82; 0.84; 1.02	Combined data set on sunflower seeds (6) and rapeseeds (6) compliant with GAP (EFSA 2013b). Extrapolation to other minor oilseeds is applicable. MRL_{OECD} = 1.68	2	1.02	0.25
Linseeds						
Poppy seeds						
Sesame seeds						
Pumpkin seeds						
Safflower seeds						
Borage seeds						
Gold of pleasure seeds						
Hemp seeds						
Castor beans						
Cotton seeds	SEU	–	No GAP compliant trials available	–	–	–
Import (US)		0.01; 2 × 0.019; 0.022; 0.029; 0.032; 0.051; 0.054; 0.063; 0.084; 2 × 0.085; 0.15; 0.23	Trials on cotton seeds compliant with GAP (Ireland, 2018). MRL_{OECD} = 0.31	0.3	0.23	0.05
Oil palms kernels	Import (MY)	4 × < 0.01	Trials on oil palms compliant with GAP, evaluated in the framework of an MRL application (EFSA, 2019a)	0.01*	< 0.01	< 0.01
Oil palms fruits	Import (MY)	0.19; 0.21; 0.25; 0.38	Trials on oil palms compliant with GAP, evaluated in the framework of an MRL application (EFSA, 2019a)	0.8	0.38	0.23
Maize/corn grains	NEU	5 × < 0.01	Reduced data set of 5 overdosed trials on maize grains, performed with 2 instead of 1 application (Ireland, 2018), deemed acceptable as all residues were below LOQ. Extrapolation to sweet corn and common millet is proposed since trials on maize grain were overdosed and no residues were observed. **No NEU uses are authorised for sorghum grains.** MRL_{OECD} = 0.01	0.01*	< 0.01	< 0.01
Commodity	Region/Indoor (a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR (b) (mg/kg)	STMR (c) (mg/kg)
-----------	------------------	---	----------------	------------------------	---------------	----------------
Maize/corn forage	SEU	5 × < 0.01	Reduced data set on maize grains compliant with GAP (Ireland, 2018), deemed acceptable as all residues were below LOQ. Extrapolation to sweet corn is applicable. Extrapolation to sorghum is proposed (less cGAP). **No SEU uses authorised for common millet grains.** MRL_{OECD} = 0.01	0.01*	< 0.01	< 0.01
Maize/corn stover	NEU	–	No GAP compliant trials available	–	–	–
Maize/corn stover	SEU	–	No GAP compliant trials available	–	–	–
Common millet forage	NEU	–	No GAP compliant trials available	–	–	–
Common millet straw	NEU	–	No GAP compliant trials available	–	–	–
Sorghum forage	SEU	–	No GAP compliant trials available	–	–	–
Sorghum stover	SEU	–	No GAP compliant trials available	–	–	–
Rice grains	SEU	4 × < 0.01; 0.022; 0.028	Reduced data set on rice grains performed with application rates within the 25% deviation (Italy, 2018); however, no additional trials are required since the import tolerance is clearly more critical. MRL_{OECD} = 0.05	0.05	0.03	0.01
Import (BR)	< 0.01; 0.02; 0.03; 0.1; 2 × 0.13; 2 × 0.16	Trials on rice grains compliant with GAP (EFSA, 2012b). MRL_{OECD} = 0.35	0.4	0.16	0.12	
Rice straw	SEU	2 × < 0.01; 0.012; 0.056; 0.21	Trials on rice straw performed with application rates within the 25% deviation (Italy, 2018). MRL_{OECD} = 0.4	0.5⁽ⁱ⁾ (tentative)	0.21	0.01
Import (BR)	–	Not relevant for import tolerance	–	–	–	
Coffee beans	Import (BR)	4 × < 0.01	Reduced data set on coffee beans compliant with GAP, deemed acceptable as all residues were below LOQ (EFSA, 2012b). MRL_{OECD} = 0.01	0.01*	< 0.01	< 0.01

^(a) Commodity Region/Indoor: SEU = Southern Europe, NEU = Northern Europe, BR = Brazil.

^(b) HR: Hazard Ratio.

^(c) STMR: Short-Term Maximum Residue Level.
Commodity	Region/Indoor^(a)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR^(b) (mg/kg)	STMR^(c) (mg/kg)
Hops	Import (US)	7.5; 8.4; 12.5; 17.5	Trials on hops compliant with GAP (EFSA, 2018a). MRL_{OECD} = 34.42	40	17.50	10.45
Sugar canes	Import (BR)	0.09; 0.13; 2 × 0.16	Trials on sugar canes compliant with GAP (Ireland, 2018). MRL_{OECD} = 0.4	0.4	0.16	0.15
Chicory roots	NEU	–	No GAP compliant trials available	–	–	–

GAP: Good Agricultural Practice; OECD: Organisation for Economic Co-operation and Development; MRL: maximum residue level.

^a: Indicates that the MRL is proposed at the limit of quantification.

Mo: residue levels expressed according to the monitoring residue definition; RA: residue levels expressed according to risk assessment residue definition.

^(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, Indoor: indoor EU trials or Country code: if non-EU trials.

^(b): Highest residue. The highest residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

^(c): Supervised trials median residue. The median residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.

^(d): No information on storage conditions of these samples is available.

^(e): Tentative MRL in the absence of sufficient number of GAP-compliant trials.

^(f): Tentative MRL in the absence of information on storage conditions of all samples.

^(g): Selected value corresponds to higher residue levels observed at a longer PHI.

^(h): Residue values coming from overdosed trials.

⁽ⁱ⁾: A tentative MRL is derived in view of the future need to set MRLs in livestock feed items.
B.1.2.2. Residues in rotational crops

Overall summary

Residues in rotational and succeeding crops expected based on confined rotational crop study?

Yes

In the available confined rotational crop study performed following bare soil application at 2.4N, the maximum seasonal application rate assessed in this review, chlorantraniliprole was the predominant component of the TRR (48–85% TRR, > 0.01 mg/kg). Since chlorantraniliprole is very persistent in soil, a potential uptake from soil might occur.

Residues in rotational and succeeding crops expected based on field rotational crop study?

No

In the US rotational field studies conducted at a dose rate of 200–225 or 600 g a.s./ha (ca. 0.8–1.7N plateau level in soil), residues of chlorantraniliprole in succeeding crops were < 0.01 mg/kg in leafy vegetables, roots of root vegetables, cereal grains and soyabean seeds, and mostly ≤ 0.05 mg/kg in tops of root vegetables, cereal forage, hay and straw for rotational crops grown under realistic field conditions. Significant residue levels of chlorantraniliprole are not expected in succeeding crops, provided that chlorantraniliprole is applied in compliance with the EU GAPs reported in Appendix A.

TRR: total radioactive residue; GAP: Good Agricultural Practice; a.s.: active substance.

B.1.2.3. Processing factors

Processed commodity	Number of valid studies(a)	Processing Factor (PF)	Comment/ Source	
		Individual values	Median PF	
Apples, juice	4	< 0.062; < 0.091; 2 × < 0.19	< 0.14	(Ireland, 2010)
Apples, dry pomace	4	9.3; 10.9; 12.3; 13.0	11.6	(Ireland, 2010; EFSA 2013a)
Apples, wet pomace	4	1.8; 2 × 2.2; 4.2	2.2	(Ireland, 2010; EFSA 2013a)
Apples, sauce	4	< 0.091; 2 × < 0.19; 0.27	< 0.19	(Ireland, 2010)
Plums, dried (prunes)	1	1.92	1.92	Tentative(b) (Ireland, 2010)
Table grapes, dried (raisins)	2	2.92; 7.14	5.03	Tentative(b) (Ireland, 2010)
Wine grapes, juice	2	0.43; 0.97	0.7	Tentative(b) (Ireland, 2010)
Wine grapes, dry pomace	2	6.06; 12.0	9.03	Tentative(b) (Ireland, 2010)
Wine grapes, wet pomace	2	1.79; 3.56	2.67	Tentative(b) (Ireland, 2010)
Wine grapes, must	2	0.42; 1.52	0.97	Tentative(b) (Ireland, 2010)
Processed commodity

Processed commodity	Number of valid studies\(^a\)	Processing Factor (PF)	Comment/ Source	
		Individual values	Median PF	
W. grapes, red wine (unheated)	2	0.76; 1.64	1.2	Tentative\(^b\) (Ireland, 2010; EFSA 2013a)
Wine grapes, white wine	2	< 0.15; < 0.29	< 0.22	Tentative\(^b\) (Ireland, 2010)
Tomatoes, peeled and canned	4	0.23; 0.33; 0.56; 0.65	0.45	(Ireland, 2010; EFSA 2013a)
Tomatoes, sauce	4	1.22; 1.43; 1.49; 1.67	1.46	(Ireland, 2010; EFSA 2013a)
Tomatoes, paste	4	0.61; 1.06; 2.03; 2.39	1.54	(Ireland, 2010; EFSA 2013a)
Tomatoes, ketchup	4	0.72; 0.74; 1.16; 1.56	0.95	(Ireland, 2010; EFSA 2013a)
Tomatoes, juice	4	0.57; 0.78; 0.89; 1.14	0.83	(Ireland, 2010; EFSA 2013a)
Melons, peeled	9	< 0.15; < 0.26; 2 × < 0.31; < 0.33; < 0.43; 2 × < 0.53; < 1.0	< 0.33	(Ireland, 2010)
Cotton seeds, refined oil	1	0.25	0.25	Tentative\(^b\) (Ireland, 2010)
Cotton seeds, meal/press cake	1	0.75	0.75	Tentative\(^b\) (Ireland, 2010)
Oil palm kernels, palm kernel oil (crude oil)	–	–	–	One study indicated processing of palm kernel to palm kernel oil may result in a concentration of residues. No PF derived since residues in palm kernel were below the LOQ (EFSA, 2019a)
Oil palms fruits, mesocarp oil (crudepalm oil)	6	1.6; 1.9; 1.9; 3.3; 3.4; 3.9	2.6	(EFSA, 2019a)
Oil palms fruits, cake (mesocarp cake)	6	0.38; 0.9; 1.1; 1.2; 1.4; 1.9	1.2	(EFSA, 2019a)

\(^a\): Studies with residues in the RAC at or close to the LOQ were disregarded (unless concentration may occur).

\(^b\): A tentative PF is derived based on a limited data set.

B.2. Residues in livestock

Relevant groups (subgroups)	Dietary burden expressed in mg/kg bw per day	Dietary burden expressed in mg/kg DM DM	Most critical subgroup\(^a\)	Most critical commodity\(^b\)	Trigger exceeded (Y/N)	Comments		
	Median	Maximum	Median	Maximum				
Cattle (all diets)	0.051	0.088	1.40	2.41	Dairy cattle	Cabbage, heads leaves	Yes	–
Cattle (dairy only)	0.051	0.088	1.34	2.30	Dairy cattle	Cabbage, heads leaves	Yes	–

PF: Processing factor (=Residue level in processed commodity expressed according to RD-Mo/Residue level in raw commodity expressed according to RD-Mo).

\(a\): Studies with residues in the RAC at or close to the LOQ were disregarded (unless concentration may occur).

\(b\): A tentative PF is derived based on a limited data set.
Relevant groups (subgroups)

Relevant groups (subgroups)	Dietary burden expressed in	Most critical subgroup^a	Most critical commodity^b	Trigger exceeded (Y/N)	Comments			
	mg/kg bw per day	mg/kg DM						
	Median	Maximum	Median	Maximum				
Sheep (all diets)	0.035	0.055	1.05	1.58	Lamb	Cabbage, heads leaves	Yes	–
Sheep (ewe only)	0.035	0.053	1.05	1.58	Ram/Ewe	Cabbage, heads leaves	Yes	–
Swine (all diets)	0.017	0.030	0.74	1.29	Swine (breeding)	Cabbage, heads leaves	Yes	–
Poultry (all diets)	0.018	0.035	0.26	0.51	Poultry layer	Cabbage, heads leaves	Yes	–
Poultry (layer only)	0.018	0.035	0.26	0.51	Poultry layer	Cabbage, heads leaves	Yes	–
Fish	–	–	–	–	–	–	–	–

^a: When one group of livestock includes several subgroups (e.g. poultry 'all' including broiler, layer and turkey), the result of the most critical subgroup is identified from the maximum dietary burdens expressed as 'mg/kg bw per day'.

^b: The most critical commodity is the major contributor identified from the maximum dietary burden expressed as 'mg/kg bw per day'.

B.2.1. Nature of residues and methods of analysis in livestock

B.2.1.1. Metabolism studies, methods of analysis and residue definitions in livestock

Livestock (available studies)	Animal	Dose (mg/kg bw per d)	Duration (days)	Comment/Source
Laying hen	0.81	14	23N compared to the maximum dietary burden calculated for layer poultry. Radiolabelled active substance: mixture (1:1) [benzamide carbonyl-14C] chlorantraniliprole and [pyrazole carbonyl-14C]-chlorantraniliprole (EFSA, 2013a)	
Lactating goat	0.36	7	4N compared to the maximum dietary burden calculated for dairy cattle. Radiolabelled active substance: mixture (1:1) [benzamide carbonyl-14C] chlorantraniliprole and [pyrazole carbonyl-14C]-chlorantraniliprole (EFSA, 2013a)	
Pig	–	–	Not available and not required (extrapolated from ruminants)	
Time needed to reach a plateau concentration in milk and eggs (days)

- Milk: 2–3
- Eggs: 10–14

Metabolism in rat and ruminant similar

Can a general residue definition be proposed for animals?

- Yes
- No

Animal residue definition for monitoring (RD-Mo)

- All livestock commodities: chlorantraniliprole

Animal residue definition for risk assessment (RD-RA)

- Ruminants and swine: sum of chlorantraniliprole, IN-HXH44 and IN-K9T00, expressed as chlorantraniliprole
- Poultry tissues and eggs: chlorantraniliprole

Fat soluble residues

- Yes

Methods of analysis for monitoring of residues (analytical technique, matrix groups, LOQs)

- Multiresidue Method DFG S19 (LC–MS/MS)
- LOQ 0.01 mg/kg for parent, metabolites IN-K9T00, IN-HXH44, IN-GAZ70 and IN-EQW78, individually
- Confirmation by monitoring 1 additional MRM transition.
- ILV (LC–MS/MS) available for milk, eggs, meat and liver. ILV failed for IN-K9T00 in muscle and IN-EQW78 in milk.
- QuEChERS-citrate (LC–MS-qToF) for screening of parent in routine analysis with screening detection limit (SDL) = 0.0025 mg/kg in meat and milk; SDL = 0.005 mg/kg in eggs (EURL, 2018).

LC–MS/MS: liquid chromatography with tandem mass spectrometry; LOQ: limit of quantification; ILV: independent laboratory validation; qToF: quadrupole time-of-flight.
B.2.1.2. Stability of residues in livestock

Animal products (available studies)	Animal	Commodity	T (°C)	Stability period	Compounds covered	Comment/Source
	Bovine	Muscle	–20	12 months	Chlorantraniliprole, IN-K9T00, IN-HXH44, IN-GAZ70 and IN-EQW78	(Ireland, 2010; EFSA, 2013a)
	Bovine	Fat	–20	12 months	Chlorantraniliprole, IN-K9T00, IN-HXH44, IN-GAZ70 and IN-EQW78	(Ireland, 2010; EFSA, 2013a)
	Bovine	Liver	–20	12 months	Chlorantraniliprole, IN-K9T00, IN-HXH44, IN-GAZ70 and IN-EQW78	(Ireland, 2010; EFSA, 2013a)
	Bovine	Kidney	–20	12 months	Chlorantraniliprole, IN-K9T00, IN-HXH44, IN-GAZ70 and IN-EQW78	(Ireland, 2010; EFSA, 2013a)
	Bovine	Milk	–20	12 months	Chlorantraniliprole, IN-K9T00, IN-HXH44, IN-GAZ70 and IN-EQW78	(Ireland, 2010; EFSA, 2013a)
	Poultry	Eggs	–	–	–	Not available and not required (samples analysed with 1 month after collection)

Not available and not required (samples analysed with 1 month after collection)
B.2.2. Magnitude of residues in livestock

B.2.2.1. Summary of the residue data from livestock feeding studies

Animal commodity	Residues at the closest feeding level (mg/kg)	Estimated value at 1N	MRL proposal (mg/kg)	CF^(c)	
	Mean	Highest	STMR_{Mo}^(a) (mg/kg)	HR_{Mo}^(b) (mg/kg)	
Cattle (all)					
Muscle	0.003	0.004	< 0.01	< 0.01	0.01* 1.0
Fat	0.008	0.015	< 0.01	0.016	0.02 1.0
Liver	0.009	0.014	< 0.01	0.015	0.015 1.8
Kidney	0.006	0.009	< 0.01	0.01	0.01* 1.9
Cattle (dairy only)					
Milk^(e)	0.003	n.a.	< 0.01	< 0.01	0.01* 1.0
Sheep (all)					
Muscle	0.003	0.003	< 0.01	< 0.01	0.01* 1.0
Fat	0.003	0.004	< 0.01	0.01	0.01* 1.9
Liver	0.004	0.005	< 0.01	0.01	0.01* 1.8
Kidney	0.003	0.003	< 0.01	0.01	0.01* 1.9
Sheep (ewe only)					
Milk^(e)	0.003	n.a.	< 0.01	< 0.01	0.01* 1.0
Swine (all)					
Muscle	0.003	0.003	< 0.01	< 0.01	0.01* 1.0
Fat	0.003	0.004	< 0.01	< 0.01	0.01* 1.0
Liver	0.004	0.005	< 0.01	< 0.01	0.01* 1.0
Kidney	0.003	0.003	< 0.01	< 0.01	0.01* 1.0
Poultry (all)					
Muscle	0.011	0.016	< 0.01	< 0.01	0.01* 1.0
Fat	0.043	0.066	< 0.01	0.01	0.01* 1.0
Liver	0.038	0.054	< 0.01	0.01	0.01* 1.0
Poultry (layer only)					
Eggs^(g)	0.146	0.162	0.011	0.025	0.03 1.0

*: Indicates that the MRL is proposed at the limit of quantification.

n.a.: not applicable.
n.r.: not reported.

(a): Median residues expressed according to the residue definition for monitoring, recalculated at the 1N rate for the median dietary burden.
(b): Highest residues expressed according to the residue definition for monitoring, recalculated at the 1N rate for the maximum dietary burden.
(c): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment.
(d): Closest feeding level and N dose rate related to the maximum dietary burden.
(e): For milk, mean was derived from samplings performed from day 7 to day 10 (daily mean of 3 cows).
(f): For sheep, mean and highest residue levels were derived from samplings performed from day 10 to day 14 (daily mean or daily highest of 3 laying hens).
B.3. Consumer risk assessment

B.3.1. Consumer risk assessment without consideration of the existing CXLs

Not relevant since no acute reference dose (ARfD) has been considered necessary.

Calculation	Description
ADI	1.56 mg/kg bw per day (EFSA, 2013a)
TMDI according to EFSA PRIMo	Not assessed in this review
NTMDI, according to (to be specified)	Not assessed in this review
Highest IEDI, according to EFSA PRIMo (rev.3.1)	1% ADI (NL toddler)
NEDI (% ADI)	Not assessed in this review
Assumptions made for the calculations	The calculation is based on the median residue levels derived for raw agricultural commodities, except for melons where the peeling factor was also applied. For animal commodities, the median residue levels were multiplied by the conversion factor for risk assessment. For those plant commodities where data were insufficient to derive an MRL, EFSA considered the existing EU MRL for an indicative calculation. The contributions of commodities where no GAP was reported in the framework of the MRL review were not included in the calculation.

Consumer exposure assessment through drinking water resulting from groundwater metabolite(s) according to SANCO/221/2000 rev.10 Final (25/02/2003)

Metabolite(s)	Description
	Not assessed in this review
ADI (mg/kg bw per day)	Not assessed in this review
Intake of groundwater metabolites (% ADI)	Not assessed in this review
B.3.2. Consumer risk assessment with consideration of the existing CXLs

Not relevant since no ARfD has been considered necessary.

ADI	1.56 mg/kg bw per day (EFSA, 2013a)
TMDI according to EFSA PRIMo	Not assessed in this review
NTMDI, according to (to be specified)	Not assessed in this review
Highest IEDI, according to EFSA PRIMo (rev.3.1)	0.8% ADI (NL toddler)
NEDI (% ADI)	Not assessed in this review

Assumptions made for the calculations:

For those commodities having a CXL higher than the EU MRL proposal, median residue levels applied in the EU scenario were replaced by the median residue levels derived by JMPR. As the EU residue definition for risk assessment of ruminants and swine comprises two additional metabolites not considered by JMPR, the median residue levels derived by JMPR for these commodities were multiplied by the conversion factors for risk assessment of 1.5 for liver, kidney and muscle, 1 for fat and 3 for milk, as derived by the peer review.

CXLs for broccoli, cauliflower, brussels sprouts, head cabbage, kohlrabi, peas with and without pods, coffee beans and hops were not legally implemented in the EU Regulation due to reservations related to different policies of extrapolation, raised by the EU delegation. The CXLs for these commodities were not considered in the calculations.

AD: acceptable daily intake; bw: body weight; NEDI: national estimated daily intake; PRIMo: (EFSA) Pesticide Residues Intake Model; WHO: World Health Organization; TMDI: theoretical maximum daily intake; NTMDI: national theoretical maximum daily intake; CXL: codex maximum residue limit.

B.4. Proposed MRLs

Table B.1: Summary table

Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review		
110010	Grapefruit	0.7	0.7	Recommended (a)		
110020	Oranges	0.7	0.7	Recommended (a)		
110030	Lemons	0.7	0.7	Recommended (a)		
110040	Limes	0.7	0.7	Recommended (a)		
110050	Mandarins	0.7	0.7	Recommended (a)		
120010	Almonds	0.05	0.02	Recommended (a)		
120020	Brazil nuts	0.05	0.02	Recommended (a)		
120030	Cashew nuts	0.05	0.02	Recommended (a)		
120040	Chestnuts	0.05	0.02	Recommended (a)		
120050	Coconuts	0.05	0.02	Recommended (a)		
120060	Hazelnuts	0.05	0.02	Recommended (a)		
120070	Macadamia	0.05	0.02	Recommended (a)		
120080	Pecans	0.05	0.02	Recommended (a)		
120090	Pine nuts	0.05	0.02	Recommended (a)		
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review		
-------------	----------------------------------	-------------------------	----------------------	-----------------------		
120100	Pistachios	0.05	0.02	0.03	Recommended (a)	
120110	Walnuts	0.05	0.02	0.03	Recommended (a)	
130010	Apples	0.5	0.4	0.4	Recommended (a)	
130020	Pears	0.5	0.4	0.4	Recommended (a)	
130030	Quinces	0.5	0.4	0.4	Recommended (a)	
130040	Medlar	0.5	0.4	0.4	Recommended (a)	
130050	Loquat	0.5	0.4	0.4	Recommended (a)	
140010	Apricots	1	1	1	Recommended (b)	
140020	Cherries	1	1	1	Recommended (c)	
140030	Peaches	1	1	1	Recommended (c)	
140040	Plums	1	1	1	Recommended (c)	
151010	Table grapes	1	1	1	Recommended (a)	
151020	Wine grapes	1	1	1	Recommended (a)	
152000	Strawberries	1	1	1	Recommended (b)	
153010	Blackberries	1	1	1.5	Recommended (a)	
153020	Dewberries	1	1	1.5	Recommended (a)	
153030	Raspberries	1	1	1.5	Recommended (a)	
154010	Blueberries	1.5	1	1.5	Recommended (a)	
154020	Cranberries	1	1	1	Recommended (c)	
154030	Currants (red, black and white)	1	1	1	Recommended (d)	
154040	Gooseberries	1	1	1	Recommended (d)	
154050	Rose hips	1	1	1	Recommended (d)	
154060	Mulberries	1	1	1	Recommended (d)	
154070	Azarole (mediterranean medlar)	0.01*	1	1	Recommended (c)	
154080	Elderberries	1	1	1	Recommended (d)	
161040	Kumquats	0.01*	0.7	0.7	Recommended (d)	
163050	Pomegranate	0.4	0.4	0.4	Recommended (c)	
211000	Potatoes	0.02	0.02	0.03	Recommended (a)	
212010	Cassava	0.02	0.02	0.02	Recommended (d)	
212020	Sweet potatoes	0.02	0.02	0.02	Recommended (a)	
212030	Yams	0.02	0.02	0.02	Recommended (d)	
212040	Arrowroot	0.02	0.02	0.02	Recommended (d)	
213010	Beetroot	0.06	0.02	0.06	Recommended (a)	
213020	Carrots	0.08	0.08	0.08	Recommended (c)	
213030	Celeriac	0.06	0.02	0.06	Recommended (a)	
213040	Horseradish	0.06	0.02	0.06	Recommended (a)	
213050	Jerusalem artichokes	0.06	0.02	0.06	Recommended (a)	
213060	Parsnips	0.06	0.02	0.06	Recommended (a)	
213070	Parsley root	0.06	0.02	0.06	Recommended (a)	
213080	Radishes	0.5	0.5	0.5	Recommended (a)	
213090	Salsify	0.06	0.02	0.06	Recommended (a)	
213100	Swedes	0.06	0.02	0.06	Recommended (a)	
213110	Turnips	0.06	0.02	0.06	Recommended (a)	
231010	Tomatoes	0.6	0.6	0.6	Recommended (c)	
231020	Peppers	1	0.6	1	Further consideration needed (f)	
231030	Aubergines (egg plants)	0.6	0.6	0.6	Recommended (c)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review MRL (mg/kg)	Comment	
-------------	---------------------------	-------------------------	---------------------	---------------------------------	---------	
231040	Okra, lady's fingers	0.6	0.6	0.6	Recommended^(d)	
232010	Cucumbers	0.3	0.3	0.3	Recommended^(a)	
232020	Gherkins	0.3	0.3	0.3	Recommended^(a)	
232030	Courgettes	0.3	0.3	0.3	Recommended^(a)	
233010	Melons	0.3	0.3	0.3	Further consideration needed^(f)	
233020	Pumpkins	0.3	0.3	0.3	Recommended^(a)	
233030	Watermelons	0.3	0.3	0.3	Further consideration needed^(f)	
234000	Sweet corn	0.2	0.01*	0.01*	Recommended^(a)	
241010	Broccoli	1	2	1.5	Recommended^(g)	
241020	Cauliflower	0.6	2	0.5	Recommended^(g)	
242010	Brussels sprouts	0.01*	2	0.01*	Further consideration needed^(h)	
242020	Head cabbage	2	2	2	Recommended^(g)	
243010	Chinese cabbage	20	20	20	Recommended^(e)	
243020	Kale	20	20	20	Recommended^(e)	
244000	Kohlrabi	0.01*	2	0.01*	Further consideration needed^(h)	
251010	Lamb's lettuce	20	20	20	Recommended^(a)	
251020	Lettuce	20	20	20	Recommended^(a)	
251030	Scarole (broad-leaf endive)	20	20	20	Recommended^(a)	
251040	Cress	20	20	20	Recommended^(a)	
251050	Land cress	20	20	20	Recommended^(a)	
251060	Rocket, Rucola	20	20	20	Recommended^(a)	
251070	Red mustard	20	20	20	Recommended^(a)	
251080	Leaves and sprouts of Brassica spp	20	40	40	Recommended^(c)	
252010	Spinach	20	20	20	Recommended^(a)	
252020	Purslane	20	20	20	Recommended^(a)	
252030	Beet leaves (chard)	20	20	20	Recommended^(a)	
253000	Vine leaves (grape leaves)	20	20	20	Further consideration needed^(f)	
254000	Water cress	20	20	20	Recommended^(d)	
255000	Witloof	20	20	20	Recommended^(e)	
256010	Chervil	20	20	20	Recommended^(a)	
256020	Chives	20	20	20	Recommended^(a)	
256030	Celery leaves	20	20	20	Recommended^(a)	
256040	Parsley	20	20	20	Recommended^(a)	
256050	Sage	20	20	20	Recommended^(a)	
256060	Rosemary	20	20	20	Recommended^(a)	
256070	Thyme	20	20	20	Recommended^(a)	
256080	Basil	20	15	20	Recommended^(a)	
256090	Bay leaves (laurel)	20	20	20	Recommended^(a)	
256100	Tarragon	20	20	20	Recommended^(a)	
260010	Beans (fresh, with pods)	0.8	0.8	0.8	Recommended^(a)	
260020	Beans (fresh, without pods)	0.01*	–	0.01*	Further consideration needed^(l)	
260030	Peas (fresh, with pods)	2	2	2	Recommended^(g)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	MRL (mg/kg)	Comment	
-------------	---	-------------------------	----------------------	-------------	----------------------------------	
260040	Peas (fresh, without pods)	0.01*	0.05	0.01*	Further consideration needed(h)	
260050	Lentils (fresh)	0.01*	–	0.01*	Further consideration needed(i)	
270020	Cardoons	0.01*	–	8	Recommended(j)	
270030	Celery	10	7	8	Recommended(a)	
270040	Fennel	0.01*	–	8	Recommended(i)	
270050	Globe artichokes	2	2	2	Recommended(a)	
270070	Rhubarb	0.01*	–	8	Recommended(i)	
401010	Linseed	0.01*	–	2	Recommended(j)	
401020	Peanuts	0.06	0.06	0.06	Further consideration needed(f)	
401030	Poppy seed	0.01*	–	2	Recommended(i)	
401040	Sesame seed	0.01*	–	2	Recommended(i)	
401050	Sunflower seed	2	2	2	Further consideration needed(f)	
401060	Rape seed	2	2	2	Further consideration needed(f)	
401070	Soyabean	0.05	0.05	0.05	Recommended(e)	
401080	Mustard seed	0.01*	–	2	Recommended(i)	
401090	Cotton seed	0.3	0.3	0.3	Recommended(a)	
401100	Pumpkin seeds	0.01*	–	2	Recommended(i)	
401110	Safflower	0.01*	–	2	Recommended(i)	
401120	Borage	0.01*	–	2	Recommended(i)	
401130	Gold of pleasure	0.01*	–	2	Recommended(i)	
401140	Hempseed	0.01*	–	2	Recommended(i)	
401150	Castor bean	0.01*	–	2	Recommended(i)	
402020	Oil palm nuts (palm oil kernels)	0.01*	–	0.01*	Recommended(i)	
402030	Oil palm fruit	0.01*	–	0.8	Recommended(i)	
500010	Barley grain	0.02	0.02	0.02	Recommended(d)	
500020	Buckwheat grain	0.02	0.02	0.02	Recommended(d)	
500030	Maize grain	0.02	0.02	0.02	Recommended(c)	
500040	Millet grain	0.02	0.02	0.02	Recommended(c)	
500050	Oats grain	0.02	0.02	0.02	Recommended(d)	
500060	Rice grain	0.4	0.4	0.4	Recommended(a)	
500070	Rye grain	0.02	0.02	0.02	Recommended(d)	
500080	Sorghum grain	0.02	0.02	0.02	Recommended(c)	
500090	Wheat grain	0.02	0.02	0.02	Recommended(d)	
620000	Coffee beans	0.02*	0.05	0.01*	Recommended(g)	
700000	‘Hops (dried), including hop pellets and unconcentrated powder’	40	40	40	Recommended(g)	
900020	Sugar cane	0.5	0.5	0.5	Recommended(c)	
900030	Chicory roots	0.02	–	0.02	Further consideration needed(i)	
1011010	Swine meat	0.2	0.03	0.03	Recommended(e)	
1011020	Swine fat (free of lean meat)	0.2	0.2	0.2	Recommended(c)	
1011030	Swine liver	0.2	0.2	0.2	Recommended(c)	
1011040	Swine kidney	0.2	0.2	0.2	Recommended(c)	
1012010	Bovine meat	0.2	0.03	0.03	Recommended(c)	
Code number	Commodity	Existing EU MRL (mg/kg)	Existing CXL (mg/kg)	Outcome of the review	MRL (mg/kg)	Comment
-------------	-----------------	-------------------------	----------------------	-----------------------	-------------	---------------
1012020	Bovine fat	0.2	0.2	Recommended (c)	0.2	
1012030	Bovine liver	0.2	0.2	Recommended (c)	0.2	
1012040	Bovine kidney	0.2	0.2	Recommended (c)	0.2	
1013010	Sheep meat	0.2	0.03	Recommended (c)	0.03	
1013020	Sheep fat	0.2	0.2	Recommended (c)	0.2	
1013030	Sheep liver	0.2	0.2	Recommended (c)	0.2	
1013040	Sheep kidney	0.2	0.2	Recommended (c)	0.2	
1014010	Goat meat	0.2	0.03	Recommended (c)	0.03	
1014020	Goat fat	0.2	0.2	Recommended (c)	0.2	
1014030	Goat liver	0.2	0.2	Recommended (c)	0.2	
1014040	Goat kidney	0.2	0.2	Recommended (c)	0.2	
1015010	Horse meat	0.2	0.03	Recommended (c)	0.03	
1015020	Horse fat	0.2	0.2	Recommended (c)	0.2	
1015030	Horse liver	0.2	0.2	Recommended (c)	0.2	
1015040	Horse kidney	0.2	0.2	Recommended (c)	0.2	
1016010	Poultry meat	0.01*	0.02	Recommended (c)	0.02	
1016020	Poultry fat	0.08	0.08	Recommended (c)	0.08	
1016030	Poultry liver	0.07	0.07	Recommended (c)	0.07	
1020010	Cattle milk	0.05	0.05	Recommended (c)	0.05	
1020020	Sheep milk	0.05	0.05	Recommended (c)	0.05	
1020030	Goat milk	0.05	0.05	Recommended (c)	0.05	
1020040	Horse milk	0.05	0.05	Recommended (c)	0.05	
1030000	Birds’ eggs	0.2	0.2	Recommended (c)	0.2	
	Other commodities of plant and/or animal origin	See Reg. (EU) 2019/50	–	–	Further consideration needed (k)	

MRL: maximum residue level; CXL: codex maximum residue limit.

*: Indicates that the MRL is set at the limit of quantification.

(F): The residue definition is fat soluble.

(a): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; existing CXL is covered by the recommended MRL (combination H-III in Appendix E).

(b): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level, which is not fully supported by data, leads to a lower tentative MRL (combination F-VII in Appendix E).

(c): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level, which is also fully supported by data, leads to a lower MRL (combination H-VII in Appendix E).

(d): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; there are no relevant authorisations or import tolerances reported at EU level (combination A-VII in Appendix E).

(e): MRL is derived from the existing CXL, which is supported by data and for which no risk to consumers is identified; GAP evaluated at EU level is not supported by data; existing EU MRL is covered by the existing CXL (combination D-VII in Appendix E).

(f): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); existing CXL is covered by the tentative MRL (combination F-III in Appendix E).

(g): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; CXL is not compatible with EU residue definitions (combination H-II in Appendix E).

(h): GAP evaluated at EU level is not supported by data, but no risk to consumers was identified for the existing EU MRL (also assuming the existing residue definition); CXL is not compatible with EU residue definitions (combination D-II in Appendix E).

(i): GAP evaluated at EU level is not supported by data but no risk to consumers was identified for the existing EU MRL (also assuming the existing residue definition); no CXL is available (combination D-I in Appendix E).

(j): MRL is derived from a GAP evaluated at EU level, which is fully supported by data and for which no risk to consumers is identified; no CXL is available (combination H-I in Appendix E).

(k): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of 0.01 mg/kg may be considered (combination A-I in Appendix E).
Appendix C – Pesticide Residue Intake Model (PRIMo)

PRIMo(EU)

Chlorantraniliprole (F)

CoE guidelines/maximum levels

ARfD (mg/kg bw): 0.01

Textological reference values

- **Dietary exposure (mg/kg bw per day):** 1.36
- **Dietary intake (mg/kg bw):** Not necessary

Source of ARfD:

- **Milk:** Cattle (LOQs (mg/kg) range from: 0.01 to: 0.4)

Pesticide Residue Intake Model (PRIMo)

PRIMo(EU)

Input values

Chlorantraniliprole (F): 0.01

LOQs (mg/kg) range from: 0.01 to: 0.4

Details – chronic risk

- **ADI (mg/kg bw per day):**
- **ARfD (mg/kg bw):**

Details – acute risk

Chronic risk assessment: JMPR methodology (IEDI/TMDI)

No of diets exceeding the ADI: ---

Exposure resulting from:

- **Commodity:**
- **group of commodities:**

Highest contributor to:

- **(in % of ADI)**

2nd contributor to:

- **(in % of ADI)**

3rd contributor to:

- **(in % of ADI)**

Comments:

- **Normal mode**
- **Conclusion:** The long-term intake of residues of Chlorantraniliprole (F) is unlikely to present a public health concern.

www.efsa.europa.eu/efsajournal 128 EFSA Journal 2020;18(9):6235
As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

Table: Acute Risk Assessment

Commodity Type	ARfD/ADI Exceeded (IESTI)	MRL/Input for RA (mg/kg)	Exposure (µg/kg bw)	ARfD/ADI Exceeded (IESTI)	MRL/Input for RA (mg/kg)	Exposure (µg/kg bw)
Processed Commodities						
Results for children				Results for adults		
No. of commodities for which ARfD/ADI is exceeded (IESTI):				No. of commodities for which ARfD/ADI is exceeded (IESTI):		

Conclusion:

Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)
Chlorantraniliprole (F)

Normal mode

Chronic risk assessment: JMPR methodology (IEDI/TMDI)

Commodity/group of commodities	% of ADI	Commodity/Group of commodities	% of ADI	Commodity/Group of commodities	% of ADI
Escaroles/broad-leaved endives	0.1%	Lettuces	0.1%	Fruits	0.1%
NL toddler	0.3%	Chinese cabbages/pe-tsai	0.3%	Spices	0.1%
Se general	0.2%	Oranges	0.3%	Spinaches	0.1%
DE child	0.2%	Kales	0.3%	Spinaches	0.1%
FI toddler 2-3 yr	0.3%	Spinaches	0.1%	Spices	0.1%
ES cold	0.4%	Spices	0.1%	Spices	0.1%
NL child	0.3%	Spices	0.1%	Spices	0.1%
GEMS/Food G08	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US child	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US general	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US toddler	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
DE child	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
FI toddler 2-3 yr	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
ES child	0.4%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
NL child	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
GEMS/Food G08	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US child	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US general	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US toddler	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
DE child	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
FI toddler 2-3 yr	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
ES child	0.4%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
NL child	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
GEMS/Food G08	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US child	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US general	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US toddler	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
DE child	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
FI toddler 2-3 yr	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
ES child	0.4%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
NL child	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
GEMS/Food G08	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US child	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US general	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US toddler	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
DE child	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
FI toddler 2-3 yr	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
ES child	0.4%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
NL child	0.3%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
GEMS/Food G08	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US child	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US general	0.1%	Milk: Cattle	0.3%	Milk: Cattle	0.3%
US toddler	0.2%	Milk: Cattle	0.3%	Milk: Cattle	0.3%

Conclusion:

The estimated long-term dietary intake (TMDI/IEDI/NEDI) was below the ADI. The long-term intake of residues of Chlorantraniliprole (F) is unlikely to present a public health concern.

Notes:
- **LOQs:** (mg/kg) range from:
 - 0.01
 - 0.03
 - 0.1
 - 0.2
 - 0.5
 - 1
 - 2
 - 5
 - 10
 - 20
 - 50
 - 100

Details – acute risk assessment:
- Source of ADI:
 - Toxicological reference values
- ADI (mg/kg bw per day): not necessary
- ARfD (mg/kg bw): details

Details – chronic risk assessment:
- Source of ADI:
 - Year of evaluation: EFSA PRIMo revision 3.1; 2019/03/19
As an ARfD is not necessary/not applicable, no acute risk assessment is performed.

Acute risk assessment/children

Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
IESTI			

Acute risk assessment/adults/general population

Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
IESTI			

Show results for all crops

Unprocessed commodities	Results for children	No. of commodities for which ARfD/ADI is exceeded (IESTI):	Results for adults	No of commodities for which ARfD/ADI is exceeded (IESTI):
IESTI				

Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)

Processed commodities	Results for children	No of processed commodities for which ARfD/ADI is exceeded (IESTI):	Results for adults	No. of commodities for which ARfD/ADI is exceeded (IESTI):
IESTI				

Conclusion:

Review of the existing MRLs for chlorantraniliprole

www.efsa.europa.eu/efsajournal 131 EFSA Journal 2020;18(9):6235
Appendix D – Input values for the exposure calculations

D.1. Livestock dietary burden calculations

Feed commodity	Median dietary burden	Maximum dietary burden		
	Input value (mg/kg)	Comment		
		Input value (mg/kg)	Comment	
Cabbage, heads leaves	0.52	STMR	1.2	HR
Rice straw	0.01	STMR	0.21	HR
Carrot culls	0.01	STMR	0.04	HR
Potato culls	0.01*	STMR	0.01*	HR
Swede roots	0.01	STMR	0.04	HR
Turnip roots	0.01	STMR	0.04	HR
Corn, field (Maize) grain	0.01*	STMR	0.01*	STMR
Corn, pop grain	0.01*	STMR	0.01*	STMR
Cotton undelinted seed	0.05	STMR	0.05	STMR
Millet grain	0.01*	STMR	0.01*	STMR
Sorghum grain	0.01*	STMR	0.01*	STMR
Apple pomace, wet	0.18	STMR × PF (2.2)	0.18	STMR × PF (2.2)
Canola (Rape seed) meal	0.6	STMR × default PF (2)\(a)\	0.6	STMR × default PF (2)\(a)\
Citrus dried pulp	2.1	STMR × default PF (10)\(a)\	2.1	STMR × default PF (10)\(a)\
Coconut meal	0.02	STMR × default PF (1.5)\(a)\	0.02	STMR × default PF (1.5)\(a)\
Corn, field milled by-products	0.01*	STMR\(b)	0.01*	STMR\(b)
Corn, field hominy meal	0.01*	STMR\(b)	0.01*	STMR\(b)
Corn, field gluten feed	0.01*	STMR\(b)	0.01*	STMR\(b)
Corn, field gluten meal	0.01*	STMR\(b)	0.01*	STMR\(b)
Cotton meal	0.04	STMR × PF (0.8)\(c)\	0.04	STMR × PF (0.8)\(c)\
Distiller’s grain dried	0.03	STMR × default PF (3.3)\(a)\	0.03	STMR × default PF (3.3)\(a)\
Flaxseed/Linseed meal	0.49	STMR × default PF (2)\(a)\	0.49	STMR × default PF (2)\(a)\
Palm (hearts) kernel meal	0.01*	STMR	0.01*	STMR
Peanut meal	0.02	STMR × default PF (2)\(a)\	0.02	STMR × default PF (2)\(a)\
Potato process waste	0.2	STMR × default PF (20)\(a)\	0.2	STMR × default PF (20)\(a)\
Potato dried pulp	0.38	STMR × default PF (38)\(a)\	0.38	STMR × default PF (38)\(a)\
Rape meal	0.6	STMR × default PF (2)\(a)\	0.6	STMR × default PF (2)\(a)\
Rice bran/pollard	1.15	STMR × default PF (10)\(a)\	1.15	STMR × default PF (10)\(a)\
Safflower meal	0.49	STMR × default PF (2)\(a)\	0.49	STMR × default PF (2)\(a)\
Sugarcane molasses	4.64	STMR × default PF (32)\(a)\	4.64	STMR × default PF (32)\(a)\
Sunflower meal	0.37	STMR × default PF (2)\(a)\	0.37	STMR × default PF (2)\(a)\

STMR: supervised trials median residue; **HR:** highest residue; **PF:** processing factor.
*: Indicates that the input value is proposed at the limit of quantification.
(a): In the absence of processing factors supported by data, default the processing factor of was included in the calculation to consider the potential concentration of residues in these commodities.
(b): For corn milled by-products, hominy meal, gluten feed and gluten meal, and palm kernel meal no default processing factor was applied because residues are expected to be below the LOQ. Concentration of residues in these commodities is therefore not expected.

(c): The tentative derived processing factors were included in the calculation to consider the potential concentration of residues in these commodities.

D.2. Consumer risk assessment without consideration of the existing CXLs

Commodity	Chronic risk assessment residue definition 1: chlorantraniliprole	
Commodity	Input value (mg/kg) Comment	
----------------------------------	---	
Grapefruits	0.21 STMR	
Oranges	0.21 STMR	
Lemons	0.21 STMR	
Limes	0.21 STMR	
Mandarins	0.21 STMR	
Almonds	0.01 STMR	
Brazil nuts	0.01 STMR	
Cashew nuts	0.01 STMR	
Chestnuts	0.01 STMR	
Coconuts	0.01 STMR	
Hazelnuts/cobnuts	0.01 STMR	
Macadamias	0.01 STMR	
Pecans	0.01 STMR	
Pine nut kernels	0.01 STMR	
Pistachios	0.01 STMR	
Walnuts	0.01 STMR	
Apples	0.08 STMR	
Pears	0.08 STMR	
Quinces	0.08 STMR	
Medlars	0.08 STMR	
Loquats/Japanese medlars	0.08 STMR	
Apricots	0.07 STMR (tentative)	
Cherries (sweet)	0.21 STMR	
Peaches	0.15 STMR	
Plums	0.03 STMR	
Table grapes	0.22 STMR	
Wine grapes	0.22 STMR	
Strawberries	0.04 STMR (tentative)	
Blackberries	0.35 STMR	
Dewberries	0.35 STMR	
Raspberries (red and yellow)	0.35 STMR	
Blueberries	0.21 STMR	
Cranberries	0.22 STMR	
Granate apples/pomegranates	0.10 STMR	
Potatoes	0.01 STMR	
Sweet potatoes	0.02 EU MRL	
Beetroots	0.01 STMR	
Carrots	0.01 STMR	
Celeriacs/turnip-rooted celeries	0.01 STMR	
Horseradishes	0.01 STMR	
Commodity	Input value (mg/kg)	Comment
---------------------------------------	---------------------	--------------------------
Jerusalem artichokes	0.01	STMR
Parsnips	0.01	STMR
Parsley roots/Hamburg roots parsley	0.01	STMR
Radishes	0.05	STMR
Salsiflies	0.01	STMR
Swedes/rutabagas	0.01	STMR
Turnips	0.01	STMR
Tomatoes	0.08	STMR
Sweet peppers/bell peppers	0.16	STMR (tentative)
Aubergines/eggplants	0.08	STMR
Courgettes	0.06	STMR
Melons	0.03	STMR × PF (0.33) (tentative)
Pumpkins	0.08	STMR
Watermelons	0.08	STMR (tentative)
Sweet corn	0.01*	STMR
Cauliflowers	0.38	STMR
Brussels sprouts	0.01*	EU MRL
Head cabbages	0.52	STMR
Chinese cabbages/pe-tsai	20	EU MRL
Kales	20	EU MRL
Kohlrabies	0.01*	EU MRL
Lamb's lettuces/corn salads	5.55	STMR
Lettuces	5.55	STMR
Escaroles/broad-leaved endives	5.55	STMR
Cresses and other sprouts and shoots	5.55	STMR
Land cresses	5.55	STMR
Roman rocket/rucoola	5.55	STMR
Red mustards	5.55	STMR
Baby leaf crops (including brassica species)	5.55	STMR
Spinaches	5.55	STMR
Purslanes	5.55	STMR
Chards/beet leaves	5.55	STMR
Grape leaves and similar species	5.80	STMR (tentative)
Witloofs/Belgian endives	20	EU MRL
Chervil	5.55	STMR
Chives	5.55	STMR
Celery leaves	5.55	STMR
Parsley	5.55	STMR
Sage	5.55	STMR
Rosemary	5.55	STMR
Thyme	5.55	STMR
Basil and edible flowers	5.55	STMR
Laurel/bay leaf	5.55	STMR
Tarragon	5.55	STMR
Beans (with pods)	0.14	STMR
Commodity	Input value (mg/kg)	Comment
---------------------------------	---------------------	---------------
Beans (without pods)	0.01*	EU MRL
Peas (with pods)	0.54	STMR
Peas (without pods)	0.01*	EU MRL
Lentils (fresh)	0.01*	EU MRL
Cardoons	2.60	STMR
Celeries	2.60	STMR
Florence fennels	2.60	STMR
Globe artichokes	0.56	STMR
Rhubarbs	2.60	STMR
Linseeds	0.25	STMR
Peanuts/groundnuts	0.01	STMR (tentative)
Poppy seeds	0.25	STMR
Sesame seeds	0.25	STMR
Sunflower seeds	0.19	STMR (tentative)
Rapeseeds/canola seeds	0.30	STMR (tentative)
Soyabeans	0.05	EU MRL
Mustard seeds	0.25	STMR
Cotton seeds	0.05	STMR
Pumpkin seeds	0.25	STMR
Safflower seeds	0.25	STMR
Borage seeds	0.25	STMR
Gold of pleasure seeds	0.25	STMR
Hemp seeds	0.25	STMR
Castor beans	0.25	STMR
Oil palm kernels	0.01*	STMR
Oil palm fruits	0.23	STMR
Maize/corn grains	0.01*	STMR
Common millet/proso millet grains	0.01*	STMR
Rice grains	0.12	STMR
Sorghum grains	0.01*	STMR
Coffee beans	0.01*	STMR
Hops	10.45	STMR
Sugar canes	0.15	STMR
Chicory roots	0.02	EU MRL
Poultry meat	0.01*	0.9 × STMR × CF (1.0) muscle+ 0.1 × STMR fat
Poultry fat tissue	0.01*	STMR
Poultry liver	0.01*	STMR
Birds’ eggs	0.01	STMR

Risk assessment residue definition 2: sum of chlorantraniliprole, HXH44, IN-K9T00, expressed as chlorantraniliprole

Swine meat	0.01*	0.8 × STMR × CF (1.0) muscle+ 0.2 × STMR × CF (1.0) fat
Swine fat	0.01*	STMR × CF (1.0)
Swine liver	0.01*	STMR × CF (1.0)
Swine kidney	0.01*	STMR × CF (1.0)
Bovine and equine meat	0.01*	0.8 × STMR × CF (1.0) muscle+ 0.2 × STMR × CF (1.0) fat
Bovine and equine fat	0.01*	STMR × CF (1.0)
Bovine and equine liver	0.02	STMR × CF (1.0)
Commodity

Commodity	Input value (mg/kg)	Comment
Bovine and equine kidney	0.02	STMR × CF (1.9)
Sheep and goat meat	0.01*	0.8 × STMR × CF (1.0) muscle + 0.2 × STMR × CF (1.0) fat
Sheep and goat fat	0.01*	STMR × CF (1.0)
Sheep and goat liver	0.02	STMR × CF (1.8)
Sheep and goat kidney	0.02	STMR × CF (1.9)
Cattle and horse milk	0.01*	STMR × CF (1.0)
Sheep and goat milk	0.01*	STMR × CF (1.0)
Sheep and goat milk	0.01*	STMR × CF (1.0)

*: Indicates that the input value is proposed at the limit of quantification.

D.3. Consumer risk assessment with consideration of the existing CXLs

Commodity	Input value (mg/kg)	Comment	Risk assessment residue definition 1: chlorantraniliprole
Grapefruits	0.21	STMR	chlorantraniliprole
Oranges	0.21	STMR	
Lemons	0.21	STMR	
Limes	0.21	STMR	
Mandarins	0.21	STMR	
Almonds	0.01	STMR	
Brazil nuts	0.01	STMR	
Cashew nuts	0.01	STMR	
Chestnuts	0.01	STMR	
Coconuts	0.01	STMR	
Hazelnuts/cobnuts	0.01	STMR	
Macadamias	0.01	STMR	
Pecans	0.01	STMR	
Pine nut kernels	0.01	STMR	
Pistachios	0.01	STMR	
Walnuts	0.01	STMR	
Apples	0.08	STMR	
Pears	0.08	STMR	
Quinces	0.08	STMR	
Medlars	0.08	STMR	
Loquats/Japanese medlars	0.08	STMR	
Apricots	0.20	STMR (CXL)	
Cherries (sweet)	0.20	STMR (CXL)	
Peaches	0.20	STMR (CXL)	
Plums	0.20	STMR (CXL)	
Table grapes	0.22	STMR	
Wine grapes	0.22	STMR	
Strawberries	0.34	STMR (CXL)	
Blackberries	0.35	STMR	
Dewberries	0.35	STMR	
Commodity	Input value (mg/kg)	Chronic risk assessment	
---	---------------------	-------------------------	
Raspberries (red and yellow)	0.35	STMR	
Blueberries	0.21	STMR	
Cranberries	0.34	STMR (CXL)	
Currants (red, black and white)	0.34	STMR (CXL)	
Gooseberries	0.34	STMR (CXL)	
Rose hips	0.34	STMR (CXL)	
Mulberries	0.34	STMR (CXL)	
Azarole (mediterranean medlar)	0.34	STMR (CXL)	
Elderberries	0.34	STMR (CXL)	
Kumquats	0.22	STMR (CXL)	
Granate apples/pomegranates	0.10	STMR (CXL)	
Potatoes	0.01	STMR	
Cassava	0.01	STMR (CXL)	
Sweet potatoes	0.01	STMR (CXL)	
Yams	0.01	STMR (CXL)	
Arrowroot	0.01	STMR (CXL)	
Beetroots	0.01	STMR	
Carrots	0.02	STMR (CXL)	
Celeriacs/turnip rooted celeries	0.01	STMR	
Horseradishes	0.01	STMR	
Jerusalem artichokes	0.01	STMR	
Parsnips	0.01	STMR	
Parsley roots/Hamburg roots parsley	0.01	STMR	
Radishes	0.05	STMR	
Salsifies	0.01	STMR	
Swedes/rutabagas	0.01	STMR	
Turnips	0.01	STMR	
Tomatoes	0.07	STMR (CXL)	
Sweet peppers/bell peppers	0.16	STMR (tentative)	
Aubergines/eggplants	0.07	STMR (CXL)	
Okra, lady's fingers	0.07	STMR (CXL)	
Cucumbers	0.06	STMR	
Gherkins	0.06	STMR	
Courgettes	0.06	STMR	
Melons	0.03	STMR × PF (0.33) (tentative)	
Pumpkins	0.08	STMR	
Watermelons	0.08	STMR (tentative)	
Sweet corn	0.01*	STMR	
Broccoli	0.38	STMR	
Cauliflowers	0.06	STMR	
Brussels sprouts	0.01*	STMR	
Head cabbages	0.52	STMR	
Chinese cabbages/pe-tsai	7.30	STMR (CXL)	
Kales	7.30	STMR (CXL)	
Kohlrabies	0.01*	EU MRL	
Lamb's lettuces/corn salads	5.55	STMR	
Lettuces	5.55	STMR	
Commodity	Input value (mg/kg)	Comment	
---	--------------------	------------------	
Escaroles/broad-leaved endives	5.55	STMR	
Cresses and other sprouts and shoots	5.55	STMR	
Land cresses	5.55	STMR	
Roman rocket/rucola	5.55	STMR	
Red mustards	5.55	STMR	
Baby leaf crops (including brassica species)	10.50	STMR (CXL)	
Spinaches	5.55	STMR	
Purslanes	5.55	STMR	
Chards/beet leaves	5.55	STMR	
Grape leaves and similar species	5.80	STMR (tentative)	
Water cress	7.30	STMR (CXL)	
Witloofs/Belgian endives	7.30	STMR (CXL)	
Chervil	5.55	STMR	
Chives	5.55	STMR	
Celery leaves	5.55	STMR	
Parsley	5.55	STMR	
Sage	5.55	STMR	
Rosemary	5.55	STMR	
Thyme	5.55	STMR	
Basil and edible flowers	5.55	STMR	
Laurel/bay leave	5.55	STMR	
Tarragon	5.55	STMR	
Beans (with pods)	0.14	STMR	
Beans (without pods)	0.01*	EU MRL	
Peas (with pods)	0.54	STMR	
Peas (without pods)	0.01*	EU MRL	
Lentils (fresh)	0.01*	EU MRL	
Cardoons	2.60	STMR	
Celeries	2.60	STMR	
Florence fennels	2.60	STMR	
Globe artichokes	0.56	STMR	
Rhubarbs	2.60	STMR	
Linseeds	0.25	STMR	
Peanuts/groundnuts	0.01	STMR (tentative)	
Poppy seeds	0.25	STMR	
Sesame seeds	0.25	STMR	
Sunflower seeds	0.19	STMR (tentative)	
Rapeseeds/canola seeds	0.30	STMR (tentative)	
Soya beans	0.01	STMR (CXL)	
Mustard seeds	0.25	STMR	
Cotton seeds	0.05	STMR	
Pumpkin seeds	0.25	STMR	
Safflower seeds	0.25	STMR	
Borage seeds	0.25	STMR	
Gold of pleasure seeds	0.25	STMR	
Hemp seeds	0.25	STMR	
Castor beans	0.25	STMR	
Commodity Chronic risk assessment

Commodity	Input value (mg/kg)	Comment
Oil palm kernels	0.01*	STMR
Oil palm fruits	0.23	STMR
Barley grain	0.01	STMR (CXL)
Buckwheat grain	0.01	STMR (CXL)
Maize/corn grains	0.01	STMR (CXL)
Common millet/proso millet grains	0.01	STMR (CXL)
Oats grain	0.01	STMR (CXL)
Rice grains	0.12	STMR
Rye grain	0.01	STMR (CXL)
Sorghum grains	0.01	STMR (CXL)
Wheat grain	0.01	STMR (CXL)
Coffee beans	0.01*	STMR
Hops	10.45	STMR
Sugar canes	0.15	STMR (CXL)
Chicory roots	0.02	EU MRL
Poultry meat	0.01	0.9 × STMR muscle (CXL) + 0.1 × STMR fat (CXL)
Poultry fat tissue	0.03	STMR (CXL)
Poultry liver	0.03	STMR (CXL)
Birds’ eggs	0.1	STMR (CXL)

Risk assessment residue definition 2: sum of chlorantraniliprole, HXH44, IN-K9T00, expressed as chlorantraniliprole

Commodity	Input value (mg/kg)	Comment
Swine meat	0.03	0.8 × STMR × CF (1.5) muscle (CXL) + 0.2 × STMR × CF (1.0) fat (CXL)
Swine fat	0.05	STMR × CF (1.0) (CXL)
Swine liver	0.07	STMR × CF (1.5) (CXL)
Swine kidney	0.05	STMR × CF (1.5) (CXL)
Bovine and equine meat	0.03	0.8 × STMR × CF (1.5) muscle (CXL) + 0.2 × STMR × CF (1.0) fat (CXL)
Bovine and equine fat	0.05	STMR × CF (1.0) (CXL)
Bovine and equine liver	0.07	STMR × CF (1.5) (CXL)
Bovine and equine kidney	0.05	STMR × CF (1.5) (CXL)
Sheep and goat meat	0.03	0.8 × STMR × CF (1.5) muscle (CXL) + 0.2 × STMR × CF (1.0) fat (CXL)
Sheep and goat fat	0.05	STMR × CF (1.0) (CXL)
Sheep and goat liver	0.07	STMR × CF (1.5) (CXL)
Sheep and goat kidney	0.05	STMR × CF (1.5) (CXL)
Cattle and horse milk	0.02	STMR × CF (3.0) (CXL)
Sheep and goat milk	0.02	STMR × CF (3.0) (CXL)
Sheep and goat milk	0.02	STMR × CF (3.0) (CXL)

*: Indicates that the input value is proposed at the limit of quantification.
Appendix E – Decision tree for deriving MRL recommendations
Review of the existing MRLs for chlorantraniliprole

Comparison of the EU recommendation with the existing CXL

- CXL available? (Yes/No)
- RD comparable? (Yes/No)
- CXL higher? (Yes/No)

Consumer risk assessment with consideration of the existing CXL

- Input values for the RA remain unchanged.
- CXL is included in the RA.
- Codex median/ highest residues are included in the RA.
- Risk identified? (Yes/No)

Recommendations with consideration of the existing CXL

- Maintain EU recommendation indicating that no CXL is available.
- Maintain EU recommendation indicating CXL is not compatible.
- Maintain EU recommendation indicating that CXL is covered.
- Maintain EU recommendation; higher CXL is not safe for consumer.
- Maintain current CXL or EU recommendation?
- Maintain EU recommendation; higher CXL is not safe for consumer.
- CXL is recommended; EU recommendation is covered as well.
Appendix F – Used compound codes

Code/trivial name(a)	IUPAC name/SMILES notation/InChiKey(b)	Structural formula(c)
Chlorantraniliprole (DPX E-2Y45)	3-bromo-4'-chloro-1-(3-chloro-2-pyridyl)-2'-methyl-6'-(methylcarbamoyl)-1H-pyrazole-5-carboxanilide CNC(\(-O\))c3cc(Cl)cc(C)c3NC(\(-O\))c2cc(Br) nn2c1ncccc1Cl PSOVNZZNOMJUBI-UHFFFAOYSA-N	![Structural formula](image1.png)
IN-F6L99	3-bromo-N-methyl-1H-pyrazole-5-carboxamide Brcc(ccn1)C(\(-O\))NC LOYJZLKXTLAMJX-UHFFFAOYAC	![Structural formula](image2.png)
IN-F9N04	3-bromo-N-(2-carbamoyl-4-chloro-6-methylphenyl)-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide NC(\(-O\))c1cc(Cl)cc(C)c1NC(\(-O\))c1cc(Br) nn1c1ncccc1Cl YUXYKQSPWFRRSY-UHFFFAOYSA-N	![Structural formula](image3.png)
IN-EQW78	2-[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-6-chloro-3,8-dimethylquinazolin-4(3H)-one Cc4cc(Cl)cc3c4N=C(c2cc(Br)nn2c1ncccc1Cl) N(C)C3=OQTUSYEIQINABS-UHFFFAOYAD	![Structural formula](image4.png)
IN-GAZ70	2-[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-6-chloro-8-methylquinazolin-4(3H)-one Cc1cc(Cl)cc2c1N=C(NC2=O)c1cc(Br)nn1c1ncccc1Cl SKGIOUHBCFJRT-UHFFFAOYSA-N	![Structural formula](image5.png)
Code/trivial name⁽ᵃ⁾	IUPAC name/SMILES notation/InChiKey⁽ᵇ⁾	Structural formula⁽ᶜ⁾
----------------------	--	-----------------------
IN-H2H20	3-bromo-N-\{4-chloro-2-\[(hydroxymethyl) carbamoyl\]-6-methyl[phenyl]-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide	![Structural formula](image)
	OCN(-O)c1cc(C)c1NC(-O)c1cc(Br) nn1incccc1Cl	YUXYKQSPWRRSY-UHFFFAOYSA-N
	DNHBCUJYBOXXH-UHFFFAOYSA-N	
IN-K7H29	2-[3-bromo-1\{3-chloropyridin-2-yl\}-1H-pyrazol-5-yl]-6-chloro-8-(hydroxymethyl)quinazolin-4(3H)-one	![Structural formula](image)
	OCc1cc(C)c1cc1N\{-C(NC2=O)c1cc(Br) nn1incccc1Cl	QDOVDMHUGOVNBU-UHFFFAOYSA-N
IN-HXH44	3-bromo-N\{-4-chloro-2-(hydroxymethyl)-6-(methylcarbamoyl)phenyl\}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide	![Structural formula](image)
	CNC(-O)c1cc(C)c1cc(C)cc1NC(-O)c1cc(Br) nn1incccc1Cl	TUGOTPWXTGSGDB-UHFFFAOYSA-N
IN-K9T00	3-bromo-N\{-4-chloro-2-(hydroxymethyl)-6-\[(hydroxymethyl)carbamoyl\]phenyl\}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide	![Structural formula](image)
	OCN(-O)c1cc(C)c1cc(C)cc1NC(-O)c1cc(Br) nn1incccc1Cl	PVGVXPUGCQISDM-UHFFFAOYSA-N
IN-ECD73	2,6-dichloro-4-methyl-11H-pyrido[2,1-b]quinazolin-11-one	![Structural formula](image)
	Cc3cc(C)c1cc2c3N\{-C1C(C)\}=CC\{-CN1C2-\=O	HWZYDXZSGZCN-EA-UHFFFAOYAQ

⁽ᵃ⁾: The metabolite name in bold is the name used in the conclusion.

⁽ᵇ⁾: ACD/Name 2019.1.1 ACD/Labs 2019 Release (File version N05E41, Build 110555, 18 Jul 2019).

⁽ᶜ⁾: ACD/ChemSketch 2019.1.1 ACD/Labs 2019 Release (File version C05H41, Build 110712, 24 Jul 2019).