Widespread subsonic turbulence in Ophiuchus North 1
(Corrigendum)

Yan Gong\(^1\), Shu Liu\(^2\), Junzhi Wang\(^3,4\), Weishan Zhu\(^5\), Guang-Xing Li\(^6\), Wenjin Yang\(^1\), and Jixian Sun\(^7\)

\(^1\) Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
e-mail: ygong@mpifr-bonn.mpg.de
\(^2\) National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, PR China
e-mail: liushu@nao.cas.cn
\(^3\) Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 PR China
\(^4\) School of Physical Science and Technology, Guangxi University, Nanning 530004, PR China
\(^5\) School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai campus, No. 2, Daxue Road, Zhuhai, Guangdong 519082, PR China
\(^6\) South-Western Institute for Astronomy Research, Yunnan University, Kunming, Yunnan 650500, PR China
\(^7\) Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Nanjing 210034, PR China

A&A, 663, A82 (2022), https://doi.org/10.1051/0004-6361/202142713

Key words. ISM: clouds – radio lines: ISM – ISM: individual objects: OphN1 – ISM: kinematics and dynamics – ISM: molecules – errata, addenda

Due to an error in our codes, the magnetic field directions are incorrect in Figs. 9 and C.1 of the original paper. This error occurred due to the projection of the images in galactic coordinates into equatorial coordinates. Since the position angle measured in galactic coordinates is different from that measured in equatorial coordinates, the polarized angle needs to be transformed to equatorial coordinates (see Appendix in Ching et al. 2022). However, this correction was unfortunately not applied in the original paper. The corrected magnetic field morphologies of Oph N1 and Ophiuchus North are presented in Figs. 1 and 2 which are the revised versions of Figs. 9 and C.1 of the original paper. We find that the plane-of-the-sky magnetic field is no longer parallel to the long axis of Oph N1, but about 45° in the elongation direction of Oph N1. However, the statistics of the polarization angles only slightly changes from 3.0°±0.3° to 3.3°±0.3°. The corresponding magnetic field strengths stay nearly the same as the ones presented in the original paper. Hence, the error only affects the magnetic field directions in the original paper, and the other conclusions and calculations are still valid.

Acknowledgments. We thank Ningyu Tang for pointing out the error of the polarized angle.

References

Cabral, B., & Leedom, L. C. 1993, in Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '93 (New York, NY, USA: Association for Computing Machinery), 263
Ching, T.-C., Qiu, K., Li, D., et al. 2022, ApJ, 941, 122
Fig. 1. Magnetic field properties of Oph N1. (a) Planck Stokes I continuum emission at 353 GHz is overlaid with magnetic field orientations. (b) Histogram distribution of the position angles of magnetic fields fitted with a single Gaussian component.

Fig. 2. Plane-of-the-sky magnetic field and τ_{345} measured by Planck toward Ophiuchus North. The overlaid pattern, produced using the line integral convolution (LIC) method (Cabral & Leedom 1993), indicates the orientation of magnetic field lines. The marked regions are the same as in Fig. 1 of the original paper.