Sum-of-Squares Lower Bounds for Sparse Independent Set

Chris Jones (University of Chicago) ← on the postdoc market
Aaron Potechin (University of Chicago)
Goutham Rajendran (University of Chicago)
Madhur Tulsiani (Toyota Technological Institute at Chicago)
Jeff Xu (Carnegie Mellon University)
Outline

The Sum-of-Squares algorithm and Independent Set

Pseudocalibration doesn’t work

Matrix-valued Fourier analysis

Conclusion
The Sum-of-Squares algorithm and Independent Set
The Sum-of-Squares (SoS) Algorithm

SoS is a super strong semidefinite programming (SDP) algorithm
- SDP = linear program over the set of positive semidefinite (PSD) matrices

SoS can be used to optimize a polynomial subject to polynomial constraints

SoS consists of complete local reasoning (=Sherali-Adams) and PSD-ness

SoS captures our best algorithms for Max Cut [GW’95], Sparsest Cut [ARV’04], Unique Games [BBKSS’21], Tensor PCA [HSS’15], robust linear regression [BP’21], ...
- PSD-ness is critically important for all of these applications
- PSD-ness is also what makes proving lower bounds against SoS so hard

1. The Sum-of-Squares algorithm and independent set

[Goemans-Williamson ’95] [Arora-Rao-Vazirani ’04] [Bafna-Barak-Kothari-Schramm-Steurer ’21] [Hopkins-Shi-Steurer ’15] [Bakshi-Prasad ’21]
SoS\textsubscript{D} is actually a hierarchy of convex relaxations, one for each degree D. As D gets larger, the convex program gets larger and larger (slower runtime), but the value of SoS\textsubscript{D} approaches the true value.

\[\text{val(SoS}_2) \geq \text{val(SoS}_4) \geq \text{val(SoS}_6) \geq \ldots \geq \text{val(SoS}_{2n-2}) \geq \text{val(SoS}_{2n}) = \alpha(G) \]

Lemma. SoS\textsubscript{D} can be expressed as a semidefinite program of size \(n^{O(D)} \)

D = O(1) corresponds to polynomial time
D = 2n solves the problem exactly in exponential time (for n Boolean variables)

Main Question: how large must D be before \(\text{val(SoS}_D) \approx \alpha(G) \)?

1. The Sum-of-Squares algorithm and independent set
How to prove an SoS lower bound

Main Question: how large must D be before \(\text{val}(\text{SoS}_D) \approx \alpha(G) \)?

To prove a lower bound, prove that \(\text{val}(\text{SoS}_D) \gg \alpha(G) \) for \(D = \text{some } \omega(1) \)

- This is certified by a dual object, which is a degree-D pseudoexpectation operator \(\bar{\mathcal{E}} \)

Previous techniques for constructing and analyzing \(\bar{\mathcal{E}} \):
- Exact PSD factorization for 3XOR [Grigoriev’99, Schoenebeck’08]
- Symmetric problems [CSS’14, Potechin’18]
- Gram-Schmidt for random, “pairwise uniform” CSPs [KMOW’17]
- Approximate PSD factorization for random, dense inputs [BHKKMP’16, PR’20, GJJPR’20]
- Lift degree-2 to higher degree [MRX’19, Kunisky’20]

Our contribution: develop lower bound techniques for random, sparse inputs

1. The Sum-of-Squares algorithm and independent set

[Codenotti-Schoenebeck-Snook ’14] [Kothari-Mori-O’Donnell-Witmer ’17]
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin ’16] [Potechin-Rajendran ’20]
[Ghosh-Jeronimo-Jones-Potechin-Rajendran ’20]
[Mohanty-Raghavendra-Xu ’19]
Dense vs Sparse

Dense: uniform \([-1, +1]^n\) or \(G(n, \frac{1}{2})\) or a collection of Gaussians

- More generally, the input random variables are \(O(1)\)-subgaussian

Sparse: \(G(n, p)\) or random \(d\)-regular graph \((p = d/n, d = o(n))\)

- Moments/probability distributions of inputs depend on \(n\)
- Our techniques work best for \(d \in [\text{polylog}(n), o(n)]\)

1. The Sum-of-Squares algorithm and independent set
Given an n-vertex graph G, what is $\alpha(G)$ = largest independent set in G?

In a random graph $G \sim G(n, d/n)$ with $d = o(n)$, with high probability...

Theorem [Frieze’90]. $\alpha(G) = (2+o_d(1)) \frac{n \ln(d)}{d}$

Theorem [Coja-Oghlan’05]. $\vartheta(G) = \text{val}(\text{SoS}_2) = d^{1/2-o(1)} \alpha(G)$

Theorem [this talk]. Assuming $d \gg \log(n)$, for $D = n^{o(1)}$, $\text{val}(\text{SoS}_D) = d^{1/2-o(1)} \alpha(G)$.

That is, there is a degree-D \tilde{E} satisfying “G has an ind set of size $d^{1/2-o(1)} \alpha(G)$”
Pseudocalibration doesn’t work
Boolean Fourier analysis

Recall: Boolean function $f : \{-1,+1\}^n \to \mathbb{R}$ can be represented in the Fourier basis

- This is just its representation as a multilinear polynomial
- There is one monomial/Fourier character χ_S for each subset $S \subseteq [n]$
- Useful when f is a function of a *random* bitstring x, because the basis is orthonormal

In the Independent Set problem, the input is a graph $G \in \{-1,+1\}^{n\choose 2}$

- There is one monomial/Fourier character χ_H for each graph H on $[n]$

![Graph example](image)

Example:

$$\chi_H = G_{1,2} G_{2,3} G_{3,5} G_{4,5}$$

- $\{1,2,3\}$ are a triangle =

$$\frac{(1 - G_{1,2})(1-G_{1,3})(1-G_{2,3})}{8}$$

2. *Pseudocalibration doesn't work*
Pseudocalibration

We want to construct \tilde{E} that “thinks” there is a large independent set

\tilde{E} is a fake expectation over independent sets, specified by moments up to degree D

$\tilde{E}[X^V]$ for each $V \subseteq [n]$, $|V| \leq D$, $\tilde{E}[X_1] = 0.2$, $\tilde{E}[X_7X_{10}] = 0.75$

[BHKKMP'16] suggests pseudocalibrating \tilde{E} using a planted distribution D

Suppose $(G', S) \sim D$ is a distribution on graphs G' with large ind sets
When given the (non-planted) input graph $G \sim G(n,p)$, for $V \subseteq [n]$ define:

$$\tilde{E}[X^V] = \sum_{H: |V \cup V(H)| \leq \tau} \mathbb{E}_{(G', S) \sim D} [S^V \cdot \chi_H(G')] \cdot \chi_H(G)$$

2. Pseudocalibration doesn’t work [Barak-Hopkins-Kelner-Kothari-Moitra-Potechin '16]
Pseudocalibration

Natural planted distribution for an Independent Set of size k:

- Sample $G \sim G(n,p)$
- Plant an independent set of expected size k: pick each vertex independently with probability k/n and remove edges between picked vertices

Problem: this distribution is distinguishable from $G(n,p)$ with probability $\Omega(1)$

- Distinguisher: count the number of edges in G
- In all previous successful uses of pseudocalibration, the planted and random distributions are (conjecturally) hard to distinguish by all polynomial time algorithms

2. Pseudocalibration doesn't work
Connected Truncation

Solution: truncate away the global tests when defining \tilde{E}

$$\tilde{E}[X^V] = \sum_{H: \mid V \cup V(H)\mid \leq \tau, \quad H \text{ connected to } V} E \left[(G', S) \sim D \left[S^V \cdot \chi_H(G') \right] \cdot \chi_H(G) \right]$$

$V = \{1, 2\}$

All that remains is to prove that \tilde{E} is PSD

2. *Pseudocalibration doesn't work*
Matrix-valued Fourier analysis
Boolean Fourier analysis: matrix edition

We need to analyze matrix-valued functions of the graph G
- Each entry of the matrix is itself a function of G

Def: a **ribbon** is a particular Fourier character in a particular matrix entry. It is specified by a graph H on $[n]$ and two index sets $A, B \subseteq [n]$

3. Matrix-valued Fourier analysis
Boolean Fourier analysis: matrix edition

Def: graph matrix M_α sums together all ribbons with a particular shape α

Theorem. Where max is over vertex separators S of the left and right sides of α, whp:

$$\|M_\alpha\| \leq \max_S \tilde{O}(n^{\frac{|V(\alpha)|}{2} + Isolated(\alpha)/2} n^{-|V(S)|/2} p^{-|E(S)|/2})$$
Boolean Fourier analysis: matrix edition

The spectral norm of a graph matrix is determined by combinatorial properties of the shape!

Dense setting

Theorem [AMP’16].

$$||M_\alpha|| \leq \max_S \tilde{O}(n^{|V(\alpha)|/2 + \text{Isolated}(\alpha)/2} n^{-|V(S)|/2})$$

Sparse setting

Theorem [this talk].

$$||M_\alpha|| \leq \max_S \tilde{O}(n^{|V(\alpha)|/2 + \text{Isolated}(\alpha)/2} n^{-|V(S)|/2} p^{-|E(S)|/2})$$

We use an approximate PSD decomposition [BHKKMP’16].
Vertex factors can be handled in a similar way to [BHKKMP’16].
For edge factors, we give new charging arguments.
Further technical details

- Spectral norms are not concentrated enough due to rare events (presence of small dense subgraphs, e.g. K_8). **Condition** on no such subgraphs.
- Some spectral norms should be controlled using the Frobenius norm.
- Matrix for \tilde{E} has a **nullspace**. Factor it out with **missing edge indicators**.
- Use **quasi-missing edge indicators** and missing edge indicators to handle edges incident to $U_\alpha \cap V_\alpha$.
- Even with all this work, there is still one log factor in our bound. Removing it would allow us to prove bounds for the regime of constant d.

3. **Matrix-valued Fourier analysis**
Conclusion

We develop lower bound technology for SoS in the sparse setting

- Even though there isn't a planted distribution, we amend pseudocalibration by using a connected truncation
- Prove norm bounds for sparse graph matrices
- Combinatorial analysis using conditioning and apx PSD factorization

Open problems:

- Is there a planted distribution which is hard to distinguish from $G(n,p)$?
- Extend Independent Set lower bound to the regime of constant d
- SoS lower bounds for other sparse problems: MaxCut on a random degree-d graph, Densest-k-Subgraph

🥳 Thanks for watching! 😃