Antigen epitope of Helicobacter pylori vacuolating cytotoxin A

Xiu-Li Liu, Shu-Qin Li, Chun-Jie Liu, Hao-Xia Tao, Zhao-Shan Zhang

INTRODUCTION
Pathogenic strains of Helicobacter pylori (H pylori) release a M, 95 000 protein toxin in the growth medium. Growing evidence indicates that VacA is a major virulence factor in H pylori long-term infection leading to gastroduodenal ulcers[1-5]. This toxin induces formation of vacuoles in the cytosol of cells, therefore it has been named vacuolating toxin[6-11]. VacA is thus considered as a therapeutic vaccine for individuals infected with H pylori. The VacA gene encodes a protoxin approximately M, 140 000, which belongs to the family of secreted proteins. During the N process of VacA secretion, a M, 95 000 mature toxin is exported.

RESULTS
Vacuole formation was observed in HeLa cells treated with VacA. Serum IgG against the candidate was induced. In vitro, the three antisera against the candidate efficiently counteracted the vacuolation of VacA, and decreased the number of cell vacuoles by 14.17%, 20.20% and 30.41% respectively.

CONCLUSION: Two of the three candidates, LZ-VacA1and LZ-VacA2, can be used to further study the mechanism of VacA. A large oligomeric complex appear as ‘flower’ with M, 900 000 which is composed of 6-7 VacA monomers[12-15]. When exposed to the acidic situation, the oligomeric complexes were assembled into monomers and the toxicity of VacA was enhanced[16-18]. After VacA exerted its effect on the cells for 90 min, vacuoles were formed[19]. The vacuoles induced by VacA were acidic. Intracellular vacuolation is believed to induce cell damage and eventually apoptosis, which might lead to release of necrotic factors in vivo and therefore contribute to the establishment of a chronic inflammatory response. Because vacuolating cytotoxin A is difficult to express, purify and construct the combined vaccine, we studied the antigen epitopes to reduce the toxin.

MATERIALS AND METHODS
E. coli IM109, pFS2.2 and Hela cell were preserved in our laboratory; pQE-60 was a gift of professor Hou-Chu Zhu, Beijing Institute of Biotechnology, Beijing, China; H pylori Sydney strain (HP SS1), was a gift of professor Min-Hu Chen, Sun Yat-sen University, Guangzhou, China.

Bioinformatic analysis and design for candidates of VacA antigen epitope
According to the protein characteristics of hydrophilicity, hydrophobicity, secondary structure, accessibility, flexibility and antigenicity, 9 VacA antigen epitopes in the amino acid site of 34-810 were predicted by the antigen-analyzing software GOLDKEY (Table 1).

Table 1 Site and amino acid sequences of predicted VacA epitopes

Site of amino acid	Amino acid sequences of predicted epitopes
35-46	AEEANKTPDKPD
61-66	PHKEYD
146-154	KDSADRTTR
297-317	GYKDKPKDKPSNTTQNNANNN
335-338	NSAQ
446-450	TDTKN
566-568	SGE
734-737	NNNR
746-748	TDD
766-768	DNY
799-806	TPTENGGN

Three candidates of VacA antigen epitope were designed by combining part of 9 predicted epitopes. The candidate LZ-VacA1 was composed of amino acids 35-36 and 146-154, LZ-VacA2 included amino acids 297-317, and LZ-VacA3 contained...
The sequence of LZ-VacA1 was:

TAC 5'---AGG GAT CCC TCT TCC gct tat aag gat Y P Q D P S S G Y K D
aaa cct aag gat aaa cct agt aac aac acg caa aat aat K P K D K P S N T T Q N N
gct aat aat aac GAT---3'
R T T R D

The sequence of LZ-VacA2 was

TAC 5'---AGG GAT CCC TCT TCC gtt tat aag gat Y P Q D P S S G Y K D
aaa cct aag gat aaa cct agt aac aac acg caa aat aat K P K D K P S N T T Q N N
gct aat aat aac GAT---3'
R T T R D

The sequence of LZ-VacA3 was

TAC 5'---AGG GAT CCC TCT TCC ccc gaa gaa gcc aat aac cca gat aaaa ccg gat aag---3', P2: 5'---

The primers were

P1 5'---cag cag cag ctc tcc gcc gaa gaa gcc aat aac cca gat aaaa ccg gat aag---3'
P2 5'---gga aac ggt gcc gat aag gat aat aat

The DNA sequences of the candidate epitope and plasmid pFS2.2 containing LTB, were digested with restriction endonuclease Hind III; Lane 1: pLZ-QV1, pLZ-QV2 and pLZ-QV3 respectively.

The strain with recombinant plasmid was cultured in the Luria-Bertani broth for 3 h, induced by IPTG for 4 h, and then harvested. The targeted protein of LBV-VacA was an inclusion body by SDS-PAGE test. The inclusion body was denatured with 6 mol/L guanidine hydrochloride, and natured with dialysis. LBV-VacA infected protein was purified through the anti-LTB antibody affinity chromatography.

Immunization

Twenty-four female BALB/c mice were randomly and averagely divided into control (LTB), LBV-VacA1, LBV-VacA2 and LBV-VacA3 groups. The mice of each group were immunized through intraperitoneal injection of 200 µL (100 µg protein) LTB, LBV-VacA1, LBV-VacA2 or LBV-VacA3 on days 0, 14, 28. On days 7, 21 and 35, blood of each mouse was collected and antibody titer was determined.

Cell Vacuolization test

VacA was purified from H pylori strain SS1 culture supernatant with ammonia sulfate precipitation. The preliminary experiment was performed to show the amount of H pylori strain SS1 culture supernatant was added when cell vacuoles were formed. HeLa cells were cultured as monolayers in flasks in RPMI 1640 containing NCS under 50 mL/L CO2 at 37 °C. Twenty-four hours before experiment, the cells were released with trypsin/EDTA and seeded in 96-well plates in 103/well. After the VacA protein was incubated with antibody to LBV-VacA1, 2, 3 and LTB for 4 h at 37 °C, we added the mixture and VacA protein onto the cell surface for 6 h. Then we calculated the total cell number and cell number of vacuolization.

Statistical analysis

Data are presented as mean±SD. Analysis of variance with a two-tailed students t-test was used to identify significant differences. P<0.05 was considered statistically significant.

RESULTS

Construction of recombinant plasmid

Recombinant plasmids pLZ-VacA1, 2, 3 encoded the infused gene of LTB and VacA1, 2, 3. It was shown from the digestion map of restriction endonucleases Nco I and Hind III, the infused gene was successfully cloned to PQE-60 (Figure 1). LBV-VacA1 had the nucleotide acid number of 465 bp (LTB387+LZ-VacA1 78). LBV-VacA2 had the nucleotide acid number of 465 bp (LTB387+LZ-VacA2 78). LBV-VacA3 had the nucleotide acid number of 489 bp (LTB387+LZ-VacA3 102). The amino acids of three LBV-VacA were deduced from the nucleotide acid sequences. LBV-VacA1 and LBV-VacA2 had 155 amino acids, and the M, was about 17 000. LBV-VacA3 had 163 amino acids, and the molecular weight was about 17 900. The sequences of the three genes were correct by sequencing analyses.
Expression and purification of infused protein

The LTB-VacA1, 2, 3 proteins were expressed in the JM109 strain. In the SDS-PAGE, the three proteins were 14.13%, 15.51% and 14.79% of the total protein respectively. After purification with anti-LTB antibody affinity chromatography, the percentage of three proteins in the total proteins was improved to 69.26%, 70.18% and 75.35% respectively (Figure 2).

Figure 2 SDS-PAGE of LTB-VacA protein. M: Marker; Lane 1: LTB-VacA3; Lane 2: LTB-VacA2; Lane 3: LTB-VacA1; Lane 4: LTB. A: LTB-VacA proteins were expressed in the JM109; B: Purification with anti-LTB antibody affinity chromatography.

Serum antibody levels in infused protein

Intraperitoneal immunization with the infused protein and Freund’s adjuvant resulted in a marked elevation of serum IgG antibody in all the 6 mice after three immunizations (Figure 3).

Figure 3 IgG against VacA induced by different LTB-VacA.

Serum antibody levels in infused protein

Seven days after the first immunization, the Level of antibody was lower. The titer of the antibody was about 1:100. Seven days after the second immunization, the titer of the antibody had no remarkable changes. But 14 d after the third immunization, the titer of the anti-LTB-VacA1 antibody, the titer of the anti-LTB-VacA2 antibody and the titer of the anti-LTB-VacA1 antibody was increased to 1:800, 1:1000 and 1:600 respectively. The biggest value of positive and negative in the three antibodies was 3.8, 4.2 and 3.2.

HeLa cell vacuolization

The preliminary experimental results showed when we added 10, 30, 40, 80 and 100 μL culture supernatant, the cell vacuolization was produced. Because the space of wells in flasks well was limited, 100 μL VacA protein was added into the culture medium. The ratio of cell vacuolization after we added 100 μL protein was 49.52% (Figure 4).

The control serum, anti-VacA1 serum, anti-VacA2 serum and anti-VacA3 serum were incubated with 100 μL VacA antigen for 4 h. Then we added the fixture and VacA protein in the flasks wells for 6 h. The result showed the control serum and 100 μL VacA antigen could not reduce the ratio of cell vacuolization, but anti-VacA1 serum, anti-VacA2 serum, anti-VacA3 serum could decrease the ratio of cell vacuolization. The change rate of cell vacuolization is 30.41%, 20.20% and 14.17% respectively (Table 2).

Table 2 Inhibition of anti-LTB-VacA antibody on VacA toxin

Group	HeLa cells with vacuoles in total cells (%)	Change rate (%)
VacA toxin	49.32±2.77	0
Anti-LTB antibody (Control)	47.51±1.31	-4.05±1.61
Anti-LTB-VacA1 antibody	34.47±1.97	-30.41±2.41 b
Anti-LTB-VacA2 antibody	39.52±1.69	-20.20±2.07 b
Anti-LTB-VacA3 antibody	42.51±1.84	-14.17±2.27 a

aP<0.05, bP<0.01 vs control.

DISCUSSION

Many methods could predict the epitopes of protein known as the primary structure, for example hydrophilicity scheme[20], accessibility scheme[21], antigenicity scheme[22], flexibility scheme[23,24] and secondary structure scheme[17]. The antigenic epitopes are correlated with the characteristics, number, sequence of amino acid and protein conformation. Because the different prediction methods emphasize different biological information of antigens, several methods are considered in practice. In this study we chose the GOLDFKEY software developed by the Experimental Group led by professor Jia-Jin Wu to analyse the characteristics of VacA protein including hydrophilicity, hydrophobicity, secondary structure, accessibility, flexibility and antigenicity. This software could predict the liner B epitope. At last we got 11 VacA candidate epitopes.

Due to the small molecular weight and the weakness of antigenicity of the antigen epitopes, the carrier or adjuvant must be linked to the epitopes[25,26]. Several epitopes were joined in series and at last got 3 VacA candidate epitopes. LTB is an excellent protein adjuvant to facilitate the organism to produce the antibody epitopes, so we chose LTB to link the 3 epitopes.

Figure 4 Microscopy of large vacuoles induced by VacA in HeLa cells. A: Normal HeLa cells; B: Vacuolated HeLa cells (Original magnification: ×400).
The experiment of Schodel enucleate that plasmid pFS2.2 was a carrier in which LTB gene could express soluble LTB and carry outer polypeptides. The experiment of Zhang showed that 21-bp nucleotide acids between LTB and the epitopes could enhance the antigenicity of the epitopes. In our study, 7 peptides were used as a linker to join LTB with the epitopes.

At the beginning, LTB-VacA was cloned into plasmid pFS2.2, but the gene could not express these proteins, and then the genes were cloned into plasmid pET22b (+) again. There was a signal peptide in plasmid pET22b (+) in which the gene could express the soluble protein and secrete the protein into periplasm. The soluble proteins would be purified through the anti-LTB antibody affinity chromatography. Contrary to our wishes, the proteins in pFS2.2 were not expressed as expected. Finally, infused proteins were cloned into plasmid pQE-60 and expressed in JM109, but the expressed proteins were inclusion bodies. The inclusion bodies were denatured with guanidine hydrochloride and natured with dialysis, and LTB-VacA was purified through the anti-LTB antibody affinity chromatography.

Protein vacuolating toxin A is the only known virulence factor of H pylori. Ninety minutes after VacA activation, the acidic vacuoles were induced in cells. Scientific researches showed that VacA was integrated with receptors in membranes to form an anionic channel. This channel could change the permeation characteristics of the membranes, so that the cells were damaged would undergo apoptosis. In this study, all the 3 antigen epitopes of VacA could induce antibody in mice. Although the antibody could inhibit the vacuolation of Hela cells at a certain extent, they did not inhibit the vacuoles entirely. There are two reasons for this result. First, these epitopes were a part of the neutralized epitopes of VacA, antibody to these epitopes combined with VacA did not destroy the toxicity of VacA, only suppressed the toxin partly. Second, the titer of the antibody was not enough to neutralize the toxin of VacA. Next we are going to settle the problem. First, these epitopes will be joined in series for several copies so that the titer of the antibody will be improved to inhibit the toxin of VacA. Second, we will construct deficient mutations to farther verify the neutralized epitopes of VacA.

REFERENCES

1 Telford JL, Ghiai P, Dell’Orco M, Comanducci M, Burrone D, Bugnoli M, Tecce MF, Censini S, Covacci A, Xiang Z. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med 1994; 179: 1653-1658

2 van Amsterdam K, van Vliet AH, Kusters JG, Feller M, Dankert J, van der Ende A. Induced Helicobacter pylori vacuolating cytotoxin VacA expression after initial colonisation of human gastric epithelial cells. FEMS Immunol Med Microbiol 2003; 39: 251-256

3 Inui T, Mizuno S, Takai K, Nakagawa M, Uchida M, Fujiyama M, Asakawa A, Inui A. Helicobacter pylori cytotoxin: a novel ligand for receptor-like protein tyrosine phosphatase beta. Int J Mol Med 2003; 12: 917-921

4 Cho SJ, Kang NS, Park SY, Kim BO, Rhee DK, Pyo S. Induction of apoptosis and expression of apoptosis related genes in human epithelial carcinoma cells by Helicobacter pylori VacA toxin. Toxicon 2003; 42: 601-611

5 Toro Rueda C, Garcia-Samaniego J, Casado Farinas I, Rubio Alonso M, Baquero Mochales M. Clinical importance of the CagA and VacA proteins and of the host factors in the development of peptic ulcer in patients infected by Helicobacter pylori. Rev Clin Esp 2003; 203: 430-433

6 Parsonnet J, Hanssen S, Rodriguez L, Gelb AB, Warnke RA, Jellum E, Orentreich N, Vogelman JH, Friedman GD. Helicobacter pylori infection and gastric lymphoma. N Engl J Med 1994; 330: 1267-1271

7 Yuan JP, Li T, Shi XD, Hu BY, Yang GZ, Tong SQ, Guo XK. Deletion of Helicobacter pylori vacuolating cytotoxin gene by introduction of direct mutagenesis. World J Gastroenterol 2003; 9: 2251-2257

8 Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 2003; 301: 1099-1102

9 Qiao W, Hu JL, Xiao B, Wu KC, Peng DR, Altherton JC, Xue H. CagA and vacA genotype of Helicobacter pylori associated with gastric diseases in Xi’an area. World J Gastroenterol 2003; 9: 1762-1766

10 Caputo R, Tuccillo C, Manzo BA, Zarrilli R, Tortora G, Blanco Cdl V, Ricci V, Ciardiello F, Romano M. Helicobacter pylori VacA toxin up-regulates vascular endothelial growth factor expression in MKN 26 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism. Clin Cancer Res 2003; 9: 2015-2021

11 Wang J, van Doorn LJ, Robinson PA, Ji X, Wang D, Wang Y, Ge L, Telford JL, Crabtree JE. Regional variation among vacA alleles of Helicobacter pylori in China. J Clin Microbiol 2003; 41: 1942-1945

12 Cover TL, Blaser MJ. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem 1992; 267: 10570-10575

13 Lupetti P, Heuser JE, Manetti R, Massari P, Lanzavecchia S, Bellon PL, Dallai R, Rappuoli R, Telford JL. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J Cell Biol 1996; 133: 801-807

14 Nguyen VQ, Caprioli RM, Cover TL. Carboxy-terminal prolyl-treatment of Helicobacter pylori vacuolating toxin. Infect Immun 2001; 69: 543-546

15 Lanzavecchia S, Bellon PL, Lupetti P, Dallai R, Rappuoli R, Telford JL. Three-dimensional reconstruction of metal replicas of the Helicobacter pylori vacuolating cytotoxin. Struct Biol 1998; 121: 9-18

16 Cover TL, Hanson PJ, Heuser JE. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J Cell Biol 1997; 138: 759-769

17 Yahiro K, Niidome T, Kimura M, Hatakeyama T, Aoyagi H, Kurazono H, Imagawa K, Wada A, Moss J, Hirayama T. Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase beta. J Biol Chem 1999; 274: 36693-36699

18 McClain MS, Cao P, Cover TL. Amino-terminal hydrophobic region of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein dimerization. Infect Immun 2001; 69: 1181-1184

19 Cover TL, Halter SA, Blaser MJ. Characterization of Hela cell vacuoles induced by Helicobacter pylori broth culture supernatant. Hum Pathol 1992; 23: 1004-1010

20 Hopp TP, Woods KR. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A 1981; 78: 3824-3828

21 Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science 1990; 249: 386-390

22 Welling GW, Weijer WJ, van der Zee R, Welling-Wester S. Prediction of sequential antigenic regions in proteins. FEBS Lett 1985; 188: 215-218

23 Zhao S,Goodsell DS, Olson AJ. Analysis of a data set of paired uncomplexed protein structures: new metrics for sidechain flexibility and model evaluation. Proteins 2001; 43: 271-279

24 Kolibal SS, Brady C, Cohen SA. Definition of epitopes for monoclonal antibodies developed against purified sodium channel protein: implications for channel structure. J Membr Biol 1998; 165: 91-99

25 Thomson SA, Sherritt MA, Medveczky J, Elliott SL, Moss DJ, Fernando GJ, Brown LE, Subhier B. Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 1998; 160: 1717-1723

26 Mateo L, Gardner J, Chen Q, Schmidt C, Down M, Elliott SL, Pye SJ, Firth H, Lemmonier F, Cebon J, Subhier B, An HLA-A2 polypeptide vaccine for melanoma immunotherapy. J Immunol 1999; 163: 4058-4063

Edited by Wang XL and Chen WW Proofread by Xu FM