Physical Exposure during Patient Transfer and Risk of Back Injury & Low-back Pain: Prospective Cohort Study

CURRENT STATUS: UNDER REVIEW

BMC Musculoskeletal Disorders BMC Series

Jonas Vinstrup
National Research Center for the Working Environment

jov@nfa.dk Corresponding Author
ORCiD: 0000-0001-8430-0139

Markus D Jakobsen
National Research Centre for the Working Environment

Pascal Madeleine
Aalborg Universitet

Lars L Andersen
National Research Centre for the Working Environment

DOI: 10.21203/rs.3.rs-16870/v1

SUBJECT AREAS
Orthopedics

KEYWORDS
Patient transfer, biomechanical exposure, low-back pain, back injury, healthcare
Abstract

Background

Work-related musculoskeletal disorders (MSDs) are more common among healthcare workers compared with most other professions. Because frequent patient transfer has been associated with increased risk of MSDs, we aim to quantify the physical load associated with commonly used assistive devices and to investigate associations between accumulated physical exposure during patient transfer and risk of MSDs.

Methods

By applying an exposure matrix based on measurements of electromyography and trunk flexion on a large (n=1285) prospective cohort, intensity of low-back pain (LBP) and risk of back injury at 1-year follow-up were modelled using a linear model and logistic regressions, respectively. The cohort was divided into groups based on physical exposure; i.e. low (1st quartile), moderate (2nd and 3rd quartiles) and high (4th quartile) exposure.

Results

Exposure profiles are provided for 9 groups of assistive devices, with ceiling lifts and intelligent beds eliciting the lowest physical exposure. In the fully-adjusted model, we report differences in LBP intensity at follow-up between the low and moderate exposure groups (p=0.0085). No difference was found between the moderate and high exposure groups (p=0.2967). Likewise, we find no associations between physical exposure and risk of back injury at 1-year follow-up, with a prevalence of 11%, 13% and 11% for the three groups, respectively.

Conclusions

Low physical exposure during patient transfer was prospectively associated with lower intensity of LBP. Consistent use of assistive devices associated with low physical exposure, namely ceiling-lifts and intelligent beds, may play a role in reducing the
prevalence of MSDs among healthcare workers.

Background

Work-related musculoskeletal disorders (MSDs) are more frequently reported among healthcare workers compared with other professions [1–4], and 37% of Danish healthcare workers report being hindered in their profession due to pain [5]. Low-back pain (LBP) is the most commonly-cited musculoskeletal complaint among this subgroup of the working population, with a 1-year prevalence ranging between 28% – 96% [1, 6, 7]. In addition to the individual burden of LBP [8], the socioeconomic costs – e.g. sickness absence and loss of productivity – are likewise alarmingly high [9–11], making the current situation in the healthcare industry a societal issue with far-reaching implications. The severity of the situation is furthermore highlighted by the current global shortage of nurses; estimated to increase by 2030 [12–15]. Thus, identifying risk factors with the goal of improving the local working environment is vital for the profession.

The need for identification of potential risk factors and preventative interventions is furthermore reflected in the fact that the afore-mentioned high prevalence of work-related MSDs among healthcare personnel goes back several decades [16–18]. Likewise, the notion that a high frequency of manual patient transfers is associated with increased risk of low back injury cannot be considered a new finding [19, 20].

Because individualized and/or multimodal approaches are inherently difficult to apply to large populations of the workforce, most interventions to date have focused on identifying possible risk factors that apply to the healthcare profession as a whole [21]. Several of these interventions have focused on the negative consequences of high physical loads throughout the workday [22–24]. For example, a recent prospective cohort study reported that an accumulated high number of physical workloads was associated with an increased risk of overall poor health [22]. Following this, some of the most promising interventions
aiming to reduce the physical load among healthcare workers seem to be the ones focusing on decreasing the frequency and/or intensity of manual lifting [25–29]. This is often and most successfully done by increasing the use of assistive devices during patient transfers, as previous studies have reported associations between frequent use and lower risk of back injury and MSDs [30–32]. However, it is currently unknown whether this effect is mainly due to single/specific assistive devices or if it is related to the consistent use of a combination of assistive devices. Following this, in-depth information based on detailed biomechanical measurements regarding the specific risk factors associated with patient transfer and the accompanying benefits of utilizing specific assistive devices when appropriate, is lacking. Thus, quantifying the biomechanical exposure associated with the use of different assistive devices would be highly relevant when investigating the risk of back injury and LBP in this population.

Therefore, by combining technical measurements of muscle activity and trunk inclination during patient transfers with a prospective questionnaire design, we sought to create an exposure-matrix to identify associations between biomechanical load during patient transfer and the risk of back injury and LBP among healthcare workers.

Methods

In relation to this project we have previously published a protocol describing the technical measurements in detail (Vinstrup et al., 2017). Therefore, the present article refers to this publication and primarily directs its focus on the methods related to the development of exposure profiles.

Study design and participants

This study utilizes the combination of technical measurements and a prospective questionnaire design. Measurements of bilateral erector spinae electromyographic activity
(EMG) and trunk forward- & lateral flexion (actigraphy) during patient transfers throughout an entire work day were acquired from 52 female healthcare workers, using wireless equipment (TeleMyo DTS Telemetry, Noraxon, AZ, USA). EMG values consisted of normalized (% of max), 95th percentile ranks from the merged value of the erector spinae muscles.

The results from the technical measurements were used to create an exposure profile for each individual assistive device, comprised of averages from EMG- and accelerometer data.

“No assistive device” was used as reference and given the value “1”. All other assistive devices were assigned exposure profiles relative to this value, based on their combined values from EMG- and accelerometer data in the following manner: The normalized values were divided by the reference to achieve a fraction (e.g. nRMS ceiling-lift/”no assistive device”; 24.0/27.9 = 0.86), and the average of the EMG- and accelerometer values was calculated. In order to weigh the contribution from EMG and kinematics more equally and hereby emphasize the former [34], the average of the two kinetic values was used to calculate the exposure profile; i.e. the average of forward- and lateral flexion represented one flexion value which was then used to calculate the average of the combined EMG and flexion values. The normalized EMG- and accelerometer values utilized in creating the exposure matrix are found in the descriptive article related to this project, in which descriptions of the included assistive devices as well as demographics of the participants who partook in the field measurements, also are found (Vinstrup 2020, in review). Table 2 shows the exposure profiles of each assistive device based on these measurements.

The survey used in the present study was partially based on the 2018 round of the Danish Work Environment Cohort Study (DWECS) - from which we have previously reported associations between pain, stress and sleep [35, 36] - and included questions concerning
lifestyle- and work environment factors among the working population. The baseline questionnaire was sent out to 3329 healthcare workers during the summer of 2017 with a 1-year follow-up. For the purpose of this analysis, a total of 1285 was included as they fulfilled the criteria corresponding to the population from which the technical measurements were collected: Females working as nurses, nurses’ aides and assistants, physio- or occupational therapists, radiographer or porter, engaging in daily patient transfers including patients who were not completely self-reliant and having experienced no back injury within the previous year and with LBP intensity < 6 (0-10). From this cohort, 710 (55%) responded to the follow-up questionnaire and were included in the analysis. Because the presence and intensity of LBP are strong predictors of future LBP [37], we included only healthcare workers with low pain levels and who were injury-free in order to determine if low biomechanical load would elicit a preventative effect against LBP.

By using the exposure profile of each assistive device (technical measurements) and the quantification of frequency of use (survey information), each participant was assigned individual exposure values. Therefore, the individual exposure values were created by initially identifying the relative EMG, forward- and lateral flexion values (i.e. exposure value) inherent to each assistive device, multiplied with the frequency of use for each participant. That is, the more frequent the participant used an assistive device with a certain profile, the closer the participant’s exposure value would be to that of the specific assistive device. The participants were then grouped into quartiles based on their exposure value, and the two middle quartiles (25–75%) were grouped to represent the norm. Following this, we tested associations between low exposure (1st quartile; n = 175), moderate (2nd and 3rd quartiles, n = 349) and high (4th quartile, n = 186) and the following outcomes:
Outcome variables

Low-back injury and LBP at follow-up were assessed by the following survey questions:

1) Rate your average pain for the low back within the previous 4 weeks (0–10).
2) Have you injured your back during patient transfer within the previous 12 months? (yes/no) (Recall if the accident happened suddenly and unexpected)

Control variables

We include 9 groupings of assistive devices (Table 2), all of which was found in the questionnaire: The quantitative use of each individual assistive device was assessed with the following question, with five possible response options ranging from 0/4 (almost never) to 4/4 (every time):

How often do you use this assistive device during patient transfer?

Frequency of patient transfers was evaluated with the question: “How many patients do you transfer per day?” with possible responses ranging from 1) none, 2) less than one per day (e.g. 2–3 per week), 3) 1–2 per day, 4) 3–4 per day, 5) 5–6 per day, 6) 7–8 per day, 7) 9–10 per day to 8) more than 10 per day.

Frequency of patient transfers performed together with one or more colleagues was evaluated with the question “How often are you more than one care worker to do the transfer?” with five possible response options ranging from 0/4 (almost never) to 4/4 (every time).

Finally, self-reliance of the patients was evaluated by asking “How many of your patients are so self-reliant that it is not necessary to use assistive devices during transfers?”; again with five response options again ranging from 0/4 (virtually none) to 4/4 (all patients).

Covariates

In the results section we report fully-adjusted associations between individual exposure
values and the outcomes of back injury and low-back pain (table 3 and 4, respectively). The analyses control for the following possible confounders relating to the individual, psychosocial- and working environment as well as the patient transfer scenario itself: Age, sex, body mass index, smoking, education, physical activity during leisure time, pain intensity < 6 and no back injury within the previous 12 months at baseline, seniority, working hours, overall mental health as well as work-related attitudes towards justice, teamwork, influence, emotional demands, clarity of tasks as well as management recognition and support. Furthermore, we also adjusted for frequency and number of personnel participating in the patient transfer as well as patient self-reliance.

Statistics
All associations were modelled using the General Linear Mixed Model of SAS version 9.4, which can be used for both logistic regression and linear models. Back injury was modelled as a binary outcome (yes/no) during 1-year follow-up, i.e. logistic regression. Back pain intensity was modelled as a continuous outcome at 1-year follow-up, i.e. a linear model. Both analyses were controlled for the covariates mentioned previously, and results are reported as odds ratio (OR) and least square mean differences, respectively, for the lower and upper quartiles in relation to the two middle quartiles (reference). All estimates are provided with 95% confidence intervals and corresponding P-values, with the significance level set to P < 0.05.
Table 1

- Demographics, work-, health- and lifestyle variables

	Mean	SD	%
N	710		
Gender			
Female	100		
Age (y)	46.8	11.3	
BMI	24.9	4.6	
Smokers (yes)	9		
Years in profession	17.8	11.9	
Working hours/week	34.7	3.4	
Back pain within the previous 4 weeks (0-10)	1.5	1.6	
Back injuries within the previous 12 months	0		
Frequency of patient transfers with more than 1 healthcare worker, ranging from “never” to “always”:			
0/4		3.5	
1/4		19.4	
2/4		30.8	
3/4		26.4	
4/4		19.9	
Frequency of patient transfers with patients being so self-reliant that no assistive device is necessary:			
0/4		17.5	
1/4		31.3	
2/4		30.9	
3/4		20.3	
4/4		0.0	
Level of leisure-time physical activity within the previous 12 months:			
Sedentary	5.1		
Light exercise > 3/week	63.4		
Moderate exercise > 3/week	28.3		
Vigorous exercise several times per week		3.2	

Results

We report exposure profiles for 9 groups of assistive devices, and show that ceiling lifts, intelligent beds, standing aids, masterturners and hospital beds - in ascending order - all elicit low exposure values relative to “no assistive device”. Contrastingly, assistive devices characterized by a more manual approach (e.g. bed sheet, sliding sheet and sliding board) are associated with higher physical exposure (Table 2). Additionally, the incidence of back injuries at follow-up were similar between groups; i.e. 11%, 13% and 11%, for the low, moderate and high exposure groups, respectively. The risk of back injury at follow-up between groups is shown in table 3, presented as odds ratios (OR) and based on the fully-adjusted model. With the moderate exposure group as
reference, we find no significant differences in OR when comparing to low- and high exposure groups ($p > 0.05$). In contrast, when adjusting for the covariates described in the fully-adjusted model, we report a significant difference in low-back pain at follow-up between the low and moderate exposure groups (-0.50, $p = 0.0085$). No difference was found between the moderate and high exposure groups (-0.19, $p = 0.2967$) (table 3).

Table 2
- Exposure profiles for assistive devices

Assistive device	Index	EMG	Forward flexion	Lateral flexion
No assistive device	1	1	1	1
Hospital bed	0.8600	0.9211	0.5492	1.0486
Intelligent bed	0.8246	0.8566	0.6792	0.9060
Bed sheet	1.0289	1.0968	1.0065	0.9155
Walking aids	1.0200	0.9892	1.0440	1.0573
Masterturner	0.8582	0.9606	0.7903	0.7215
Sliding sheet	1.0109	1.0860	1.0455	0.8259
Ceiling-lift	0.7762	0.8602	0.6123	0.7721
Sliding board	1.0264	1.2007	1.0788	0.6253
Standing aids	0.8517	0.9283	0.8372	0.7130

Exposure profiles based on the weighted contribution of EMG, forward- and lateral flexion values obtained during full-day field measurements of patient transfers performed in hospitals.

Table 3 – Physical exposure and risk of back injury & intensity of LBP at follow-up.

Values are based on the fully-adjusted model and presented as odds ratios (OR) and differences between least square means (LSM), respectively. CI; confidence intervals.

Exposure	Back Injury	LBP
	OR (95% CI)	p-value
	LSM (95% CI)	p-value
2nd & 3rd quartiles	1	
(comparator)	1.81	
1st quartile	1.14 (0.52–2.51)	0.7367
	-0.50 (-0.89–(-0.13))	0.0085
4rd quartile	1.36 (0.63–2.92)	0.4309
	-0.19 (-0.57–0.18)	0.2967

Adjusted for age, sex, body mass index, smoking, education, physical activity, LBP, back injury, frequency of patient transfer and number of participating personnel, patient self-reliance, seniority, working hours, overall mental health and work-related attitudes towards justice, teamwork, influence, emotional demands, clarity of tasks as well as
management recognition and support.

Discussion

The main finding of this study is that low levels of physical exposure during patient transfers are associated with decreased LBP intensity at 1-year follow-up, whereas no associations were found between exposure and the outcome of low back injury. Additionally, we provide exposure profiles for the most commonly utilized assistive devices and show that use of the more comprehensive systems, e.g. ceiling-lifts and intelligent beds, generally result in low biomechanical load during patient transfers.

Risk of back injury and LBP

In relation to the risk of back injury, our results are in contrast to a number of studies showing decreased injury rates with the implementation of various lifting policies designed to limit manual handling [25, 27, 28, 38-41]. Several of these studies investigate and credit the ceiling-lift [25, 27, 42-44], which we presently show to elicit the lowest biomechanical load among the included assistive devices. However, these results somewhat contrast the findings of systematic reviews, showing that manual handling training by itself does not lower the risk of musculoskeletal injuries [21, 45]. Therefore, assuming that (increased) use of appropriate assistive devices constitutes the main implementation of manual handling training, it is unlikely that any effect of increasing the use of assistive devices is due solely to a decrease in physical workload. This notion is further supported by the finding that the high exposure group did not experience increased risk of adverse outcomes at follow-up. Although somewhat counter-intuitive when viewed through a biomechanical lens, this finding gives thought to the hypothesis that individuals with a relatively high physical capacity - through experience - share a less catastrophizing view on manual lifting and may indeed benefit from a progressively
increasing workload [46, 47].

In the case of LBP, our finding that low biomechanical exposure during patient transfers is associated with a decrease in pain intensity, is adding to an already confused body of research: As is the case with the outcome of back injury, there is presently no convincing evidence of efficacy for any single intervention preventing LBP in workers [21, 48, 49]. Despite this conundrum, appropriate use of assistive devices during patient transfers has been associated with decreased risk of MSDs [26, 31]. However, several distinct work-related factors, including but not limited to work pace, night shifts, standing work, sitting work, static postures, emotional demands, social relations at work, frequent low mood, job strain- and dissatisfaction etc., have also been shown to influence the risk of MSDs [11, 31, 50-53]. In fact, nurses themselves attribute more than 50% of their work-related injuries to inadequate instruction and staffing [54], which serves to illustrate the prevailing attitudes and beliefs among healthcare workers.

Based on the apparent controversy which likely partially originates from low-quality studies aiming to identify one intervention to rule them all, it has become evident that multiple factors contribute to the high prevalence of MSDs in this population [31, 50, 51, 55]. With the present analyses we add to the literature by showing that - even when accounting for several known confounders - consistent and appropriate use of technologically-advanced assistive devices may contribute to a protective effect against LBP in healthcare workers. Within the complex model of the biopsychosocial approach to health and its growing role within healthcare [56, 57], it is therefore not unlikely that the “bio”-aspect can be improved upon by diminishing the accumulative physical load throughout a day, month and career [22-24].

Perspectives

We have previously reported that healthcare workers in Danish hospitals utilize assistive
devices during less than half of patient transfers (Vinstrup 2020, in review). It may seem counter-intuitive of a working population, characterized by experiencing a high prevalence of MSDs and end-of-day fatigue, to perform the majority of patient transfers without the use of assistive devices. However, because the most commonly-reported barriers for appropriate use of assistive devices include time-restraints and equipment availability [58–60][58, 59][58, 59][58, 59], it is likely that these factors modulate and indeed questions which assistive device, if any, is actually appropriate in the multi-faceted situation that constitutes the patient transfer scenario. Following this, a recent prospective study by Kucera and colleagues investigated multiple factors associated with appropriate use of assistive devices, and found that - in addition to the frequently reported importance and lack of staff- and equipment availability [61] - patient characteristics such as medical condition, mobility level and the presence of physical or mental impairments were associated with the use of assistive devices [59]. Likewise, a 2019- Cochrane Review indicates that patients influence the healthcare personnel’s practice and performance in numerous ways [62], and several studies illustrate how a myriad of work-related factors (e.g. self-efficacy, organizational safety climate, adequate guidance, job strain - and dissatisfaction, time-restraints, easiness of use, equipment location and compatibility, patient preference etc.) influence whether or not healthcare workers engage in the use of appropriate assistive devices [51, 54, 59, 60, 63]. Collectively, the overall message is therefore that a broad array of situational-specific factors contributes to the decisions taken by healthcare workers during patient transfer scenarios. As indicated by the ever-increasing number of largely ineffective single-mode interventions, it seems evident that the multi-factorial issue at hand is hardly solved by one type of intervention alone [48, 63–66].

Strengths and limitations
Limitations of this study include the inherent recall-bias that accompanies prospective questionnaire designs, as well as the uncertainty attached to correctly reporting subjective outcomes such as injury and pain intensity. The potential issue regarding generalizing physical exposure associated with specific assistive devices based on technical measurements on 52 healthcare workers as well as the inherent limitations of using EMG- and kinematic measurements as indicators of biomechanical exposure have been discussed previously (Vinstrup 2020, in review).

Strengths of this study include the combination of technical measurements with a prospective design, which allows for applying objectively measured indicators of biomechanical load to a large cohort of healthcare workers. Furthermore, the exposure matrix presented for commonly-used assistive devices is believed to prove highly useful in everyday practical settings, as it provides a level of detail that is novel to the field.

Conclusion

Low physical exposure during patient transfer was prospectively associated with lower intensity of LBP at 1-year follow-up. Consistent use of assistive devices associated with lower exposure, e.g. ceiling-lifts and intelligent beds, is important for reducing the high prevalence of MSDs among healthcare workers. Hospitals aiming to improve the working environment could therefore benefit from implementing these assistive devices.

Declarations

Ethical approval and consent to participate

In line with the Helsinki Declaration, all participants were informed about the content of the study protocol before providing written informed consent. For the technical measurements, the information was given both written and verbally before commencement of data collection.
The study was approved by the Danish National Committee on Biomedical Research Ethics (The local ethical committee of Frederiksberg and Copenhagen; H-3-2010-062) and the Danish Data Protection Agency (j.nr. 2015-41-4232). All data was de-identified and analyzed anonymously.

Consent for publication

(N/A)

Availability of data and materials

Researchers interested in the data should contact the project leader Lars L. Andersen.

Competing interests

There are no conflicts of interest.

Funding

Author LLA obtained a grant from the Danish Working Environment Research Fund for this study (grant number AMFF 26-2015-09).

Authors’ contributions

Conceptualization: LLA. Data collection: JV. Data analysis: JV, MDJ, LLA, PM. Draft: JV.

Review and editing: MDJ, LLA, PM.

Acknowledgements

The authors earnestly thank the healthcare workers for participating in the study.

References

1. Anderson SP, Oakman J. Allied Health Professionals and Work-Related Musculoskeletal Disorders: A Systematic Review. Saf Health Work. 2016;7:259-67.

2. Cohen-Mansfield J, Culpepper WJ, Carter P. Nursing Staff Back Injuries: Prevalence and Costs in Long Term Care Facilities. AAOHN Journal. 1996;44:9-17.

3. Guo HR, Tanaka S, Cameron LL, Seligman PJ, Behrens VJ, Ger J, et al. Back pain among workers in the United States: national estimates and workers at high risk. Am
4. Oranye NO, Bennett J. Prevalence of work-related musculoskeletal and non-musculoskeletal injuries in health care workers: the implications for work disability management. Ergonomics. 2018;61:355–66.

5. National Research Centre for the Working Environment. Arbejdsmiljø og Helbred i Danmark 2018. 2018. http://nfa.dk/-/media/NFA/Arbejdsmiljodata/Notat-om-OBmaal-AH2018.ashx?la=da.

6. Bos E, Krol B, van der Star L, Groothoff J. Risk factors and musculoskeletal complaints in non-specialized nurses, IC nurses, operation room nurses, and X-ray technologists. Int Arch Occup Environ Health. 2007;80:198–206.

7. Davis KG, Kotowski SE. Prevalence of Musculoskeletal Disorders for Nurses in Hospitals, Long-Term Care Facilities, and Home Health Care: A Comprehensive Review. Hum Factors. 2015;57:754–92.

8. Seidler AL, Rethberg C, Schmitt J, Nienhaus A, Seidler A. Health utilities for chronic low back pain. J Occup Med Toxicol. 2017;12:28.

9. Andersen LL, Clausen T, Persson R, Holtermann A. Dose-response relation between perceived physical exertion during healthcare work and risk of long-term sickness absence. Scand J Work Environ Health. 2012;38:582–9.

10. Hansson EK, Hansson TH. The costs for persons sick-listed more than one month because of low back or neck problems. A two-year prospective study of Swedish patients. Eur Spine J. 2005;14:337–45.

11. Ribeiro T, Serranheira F, Loureiro H. Work related musculoskeletal disorders in primary health care nurses. Appl Nurs Res. 2017;33:72–7.

12. Auerbach DI, Buerhaus PI, Staiger DO. How fast will the registered nurse workforce grow through 2030? Projections in nine regions of the country. Nurs Outlook.
13. Buchan J, Aiken L. Solving nursing shortages: a common priority. Journal of Clinical Nursing. 2008;17:3262-8.

14. Juraschek SP, Zhang X, Ranganathan V, Lin VW. United States Registered Nurse Workforce Report Card and Shortage Forecast. American Journal of Medical Quality. 2012;27:241-9.

15. Zhang X, Tai D, Pforsich H, Lin VW. United States Registered Nurse Workforce Report Card and Shortage Forecast: A Revisit. Am J Med Qual. 2018;33:229-36.

16. Jensen RC. Disabling back injuries among nursing personnel: Research needs justification. Research in Nursing & Health. 1987;10:29-38.

17. Magora A. Investigation of the relation between low back pain and occupation. IMS Ind Med Surg. 1970;39:465-71.

18. Stubbs DA, Buckle PW, Hudson MP, Rivers PM, Worringham CJ. Back pain in the nursing profession. I. Epidemiology and pilot methodology. Ergonomics. 1983;26:755-65.

19. Owen BD. The magnitude of low-back problem in nursing. West J Nurs Res. 1989;11:234-42.

20. Stobbe TJ, Plummer RW, Jensen RC, Attfield MD. Incidence of low back injuries among nursing personnel as a function of patient lifting frequency. Journal of Safety Research. 1988;19:21-8.

21. Richardson A, McNoe B, Derrett S, Harcombe H. Interventions to prevent and reduce the impact of musculoskeletal injuries among nurses: A systematic review. Int J Nurs Stud. 2018;82:58-67.

22. Andersen LL, Fallentin N, Thorsen SV, Holtermann A. Physical workload and risk of long-term sickness absence in the general working population and among blue-collar
23. Møller A, Mänty M, Andersen LL, Siersma V, Lund R, Mortensen OS. Cumulative physical workload and mobility limitations in middle-aged men and women: a population-based study with retrospective assessment of workload. Int Arch Occup Environ Health. 2019;92:651–60.

24. Oakman J, de Wind A, van den Heuvel SG, van der Beek AJ. Work characteristics predict the development of multi-site musculoskeletal pain. Int Arch Occup Environ Health. 2017.

25. Alamgir H, Yu S, Fast C, Hennessy S, Kidd C, Yassi A. Efficiency of overhead ceiling lifts in reducing musculoskeletal injury among carers working in long-term care institutions. Injury. 2008;39:570–7.

26. Andersen LL, Burdorf A, Fallentin N, Persson R, Jakobsen MD, Mortensen OS, et al. Patient transfers and assistive devices: prospective cohort study on the risk for occupational back injury among healthcare workers. Scand J Work Environ Health. 2014;40:74–81.

27. Chhokar R, Engst C, Miller A, Robinson D, Tate RB, Yassi A. The three-year economic benefits of a ceiling lift intervention aimed to reduce healthcare worker injuries. Applied Ergonomics. 2005;36:223–9.

28. Collins JW, Wolf L, Bell J, Evanoff B. An evaluation of a “best practices” musculoskeletal injury prevention program in nursing homes. Injury Prevention. 2004;10:206–11.

29. Koppelaar E, Knibbe HJJ, Miedema HS, Burdorf A. The influence of ergonomic devices on mechanical load during patient handling activities in nursing homes. Ann Occup Hyg. 2012;56:708–18.
30. Andersen LL, Vinstrup J, Villadsen E, Jay K, Jakobsen MD. Physical and Psychosocial Work Environmental Risk Factors for Back Injury among Healthcare Workers: Prospective Cohort Study. Int J Environ Res Public Health. 2019;16.

31. Boocock MG, Trevelyan F, Ashby L, Ang A, Diep N, Teo S, et al. The Influence of Psychosocial and Patient Handling Factors on the Musculoskeletal Health of Nurses. In: Bagnara S, Tartaglia R, Albolino S, Alexander T, Fujita Y, editors. Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). Cham: Springer International Publishing; 2019. p. 596-603. doi:10.1007/978-3-319-96083-8_78.

32. Holtermann A, Clausen T, Jørgensen MB, Aust B, Mortensen OS, Burdorf A, et al. Does rare use of assistive devices during patient handling increase the risk of low back pain? A prospective cohort study among female healthcare workers. Int Arch Occup Environ Health. 2015;88:335-42.

33. Vinstrup J, Madeleine P, Jakobsen MD, Jay K, Andersen LL. Patient Transfers and Risk of Back Injury: Protocol for a Prospective Cohort Study With Technical Measurements of Exposure. JMIR Res Protoc. 2017;6:e212.

34. Wells R, Van Eerd D, Hägg G. Mechanical exposure concepts using force as the agent. Scandinavian Journal of Work, Environment & Health. 2004;30:179–90.

35. Vinstrup J, Jakobsen MD, Andersen LL. Poor Sleep Is a Risk Factor for Low-Back Pain among Healthcare Workers: Prospective Cohort Study. International Journal of Environmental Research and Public Health. 2020;17:996.

36. Vinstrup J, Jakobsen MD, Calatayud J, Jay K, Andersen LL. Association of Stress and Musculoskeletal Pain With Poor Sleep: Cross-Sectional Study Among 3,600 Hospital Workers. Frontiers in Neurology. 2018;9. doi:10.3389/fneur.2018.00968.

37. Eriksen W. Work factors as predictors of intense or disabling low back pain; a
prospective study of nurses’ aides. Occupational and Environmental Medicine. 2004;61:398–404.

38. Engst C, Chhokar R, Miller A, Tate RB, Yassi A. Effectiveness of overhead lifting devices in reducing the risk of injury to care staff in extended care facilities. Ergonomics. 2005;48:187–99.

39. Evanoff B, Wolf L, Aton E, Canos J, Collins J. Reduction in injury rates in nursing personnel through introduction of mechanical lifts in the workplace. American Journal of Industrial Medicine. 2003;44:451–7.

40. Hunter B, Branson M, Davenport D. Saving costs, saving health care providers’ backs, and creating a safe patient environment. Nurs Econ. 2010;28:130–4.

41. Schoenfisch AL, Lipscomb HJ, Pompeii LA, Myers DJ, Dement JM. Musculoskeletal injuries among hospital patient care staff before and after implementation of patient lift and transfer equipment. Scand J Work Environ Health. 2013;39:27–36.

42. Keir PJ, MacDonell CW. Muscle activity during patient transfers: a preliminary study on the influence of lift assists and experience. Ergonomics. 2004;47:296–306.

43. Marras WS, Knapik GG, Ferguson S. Lumbar spine forces during manoeuvring of ceiling-based and floor-based patient transfer devices. Ergonomics. 2009;52:384–97.

44. Silverwood S, Haddock M. Reduction of musculoskeletal injuries in intensive care nurses using ceiling-mounted patient lifts. Dynamics. 2006;17:19–21.

45. Freiberg A, Euler U, Girbig M, Nienhaus A, Freitag S, Seidler A. Does the use of small aids during patient handling activities lead to a decreased occurrence of musculoskeletal complaints and diseases? A systematic review. Int Arch Occup Environ Health. 2016;89:547–59.

46. Bigos SJ, Holland J, Holland C, Webster JS, Battie M, Malmgren JA. High-quality controlled trials on preventing episodes of back problems: systematic literature
review in working-age adults. The Spine Journal. 2009;9:147-68.

47. Setchell J, Costa N, Ferreira M, Makovey J, Nielsen M, Hodges PW. Individuals’ explanations for their persistent or recurrent low back pain: a cross-sectional survey. BMC Musculoskelet Disord. 2017;18:466.

48. Van Hoof W, O’Sullivan K, O’Keeffe M, Verschueren S, O’Sullivan P, Dankaerts W. The efficacy of interventions for low back pain in nurses: A systematic review. International Journal of Nursing Studies. 2018;77:222–31.

49. Verbeek JH, Martimo K-P, Karppinen J, Kuijer PPF, Viikari-Juntura E, Takala E-P. Manual material handling advice and assistive devices for preventing and treating back pain in workers. Cochrane Database of Systematic Reviews. 2011. doi:10.1002/14651858.CD005958.pub3.

50. Carneiro P, Braga AC, Barroso M. Work-related musculoskeletal disorders in home care nurses: Study of the main risk factors. International Journal of Industrial Ergonomics. 2017;61:22–8.

51. Lee S-J, Lee JH. Safe patient handling behaviors and lift use among hospital nurses: A cross-sectional study. International Journal of Nursing Studies. 2017;74:53–60.

52. Sherehiy B, Karwowski W, Marek T. Relationship between risk factors and musculoskeletal disorders in the nursing profession: A systematic review. Occupational Ergonomics. 2004;4:241–79.

53. Vedaa Ø, Harris A, Erevik EK, Waage S, Bjorvatn B, Sivertsen B, et al. Short rest between shifts (quick returns) and night work is associated with work-related accidents. Int Arch Occup Environ Health. 2019;92:829–35.

54. Retsas A, Pinikahana J. Manual handling activities and injuries among nurses: an Australian hospital study. Journal of Advanced Nursing. 2000;31:875–83.

55. Stimpfel AW, Brewer CS, Kovner CT. Scheduling and shift work characteristics
associated with risk for occupational injury in newly licensed registered nurses: An observational study. International Journal of Nursing Studies. 2015;52:1686–93.

56. Brodal P. A neurobiologist’s attempt to understand persistent pain. Scand J Pain. 2017;15:140–7.

57. Kusnanto H, Agustian D, Hilmanto D. Biopsychosocial model of illnesses in primary care: A hermeneutic literature review. J Family Med Prim Care. 2018;7:497–500.

58. D’Arcy LP, Sasai Y, Stearns SC. Do assistive devices, training, and workload affect injury incidence? Prevention efforts by nursing homes and back injuries among nursing assistants: Prevention efforts by nursing homes and back injuries among nursing assistants. Journal of Advanced Nursing. 2012;68:836–45.

59. Kucera KL, Schoenfisch AL, McIlvaine J, Becherer L, James T, Yeung Y-L, et al. Factors associated with lift equipment use during patient lifts and transfers by hospital nurses and nursing care assistants: A prospective observational cohort study. International Journal of Nursing Studies. 2019;91:35–46.

60. Lee S-J, Faucett J, Gillen M, Krause N. Musculoskeletal pain among critical-care nurses by availability and use of patient lifting equipment: An analysis of cross-sectional survey data. International Journal of Nursing Studies. 2013;50:1648–57.

61. Vendittelli D, Penprase B, Pittiglio L. Musculoskeletal Injury Prevention for New Nurses. Workplace Health Saf. 2016;64:573–85.

62. Gyi AA. Patient-mediated interventions to improve professional practice: A Cochrane review summary. International Journal of Nursing Studies. 2019. doi:10.1016/j.ijnurstu.2019.03.010.

63. Jakobsen MD, Aust B, Kines P, Madeleine P, Andersen LL. Participatory organizational intervention for improved use of assistive devices in patient transfer: a single-blinded cluster randomized controlled trial. Scand J Work Environ Health.
2019;45:146–57.

64. Dawson AP, McLennan SN, Schiller SD, Jull GA, Hodges PW, Stewart S. Interventions to prevent back pain and back injury in nurses: a systematic review. Occup Environ Med. 2007;64:642–50.

65. Goldgruber J, Ahrens D. Effectiveness of workplace health promotion and primary prevention interventions: a review. J Public Health. 2010;18:75–88.

66. Thomas DR, Thomas YLN. Interventions to reduce injuries when transferring patients: A critical appraisal of reviews and a realist synthesis. International Journal of Nursing Studies. 2014;51:1381-94.