RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

Highlights

- The fusion protein EFF-1 is targeted to early endosomes
- Dynamin and RAB-5 downregulate EFF-1 in *C. elegans* embryos
- Transient and dynamic localization of EFF-1 to apical cell membranes mediates fusion
- Prevention of EFF-1 endocytosis induces excessive cell fusion

In Brief

Smurova and Podbilewicz find that RAB-5 and dynamin-mediated endocytosis removes the fusogen EFF-1 from the plasma membrane and serves as a negative regulator of cell-cell fusion in *C. elegans* embryos. Thus, dynamic and transient localization of EFF-1 on the apical plasma membranes is sufficient to merge neighboring cells.
RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

Ksenia Smurova1 and Benjamin Podbilewicz1, *
1Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
*Correspondence: podbilew@technion.ac.il
http://dx.doi.org/10.1016/j.celrep.2016.01.027
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY

Cell-cell fusion plays essential roles during fertilization and organogenesis. Previous studies in C. elegans led to the identification of the eukaryotic fusion protein (EFF-1 fusogen), which has structural homology to class II viral fusogens. Transcriptional repression of EFF-1 ensures correct fusion fates, and overexpression of EFF-1 results in embryonic lethality. EFF-1 must be expressed on the surface of both fusing cells; however, little is known regarding how cells regulate EFF-1 surface exposure. Here, we report that EFF-1 is actively removed from the plasma membrane of epidermal cells by dynamin- and RAB-5-dependent endocytosis and accumulates in early endosomes. EFF-1 was transiently localized to apical domains of fusion-competent cells. Effective cell-cell fusion occurred only between pairs of cell membranes in which EFF-1 localized. Downregulation of dynamin or RAB-5 caused EFF-1 mislocalization to all apical membrane domains and excessive fusion. Thus, internalization of EFF-1 is a safety mechanism preventing excessive cell fusion.

INTRODUCTION

Cell-to-cell fusion initiates the process of sexual reproduction and, following fertilization, sculpts organs such as muscle, bone, eye lens, and placenta in the developing organism (Aguilar et al., 2013). Cell fusion is also involved in inflammation, regeneration, wound healing, and cancer (Losick et al., 2006; Fares and Greenwald, 2001; Grant and Hirsh, 1999; Leikina et al., 2013; Luga et al., 2012). Nevertheless, little is known about mechanisms that regulate cell fusion (Chen et al., 2006; Fares and Greenwald, 2001; Grant and Donaldson, 2009; Mellman, 1999; Leikina et al., 2013; Luga et al., 2012). Researchers have uncovered the role of actin, lipids, membrane curvature-modulating proteins, and dynamin in clathrin-dependent and -independent pathways of endocytosis (Kozlov et al., 2014; McMahon and Boucrot, 2011; Messa et al., 2014; Schmid et al., 2014). Rac proteins, small GTP-binding proteins of the Ras superfamily, control trafficking between organelles, including the ER, Golgi, plasma membrane, endosomes, and lysosomes (Grant and Donaldson, 2009; Mellman, 1996; Mizuno-Yamasaki et al., 2012). The Rab5 GTPase was shown to be a central regulator of the endolysosomal system as loss of Rab5 function caused a reduction in the number of endosomes and lysosomes and associated block of endocytosis (Zeigerer et al., 2012). However, little is known about membrane trafficking during developmental cell fusion.

Here, we show that endocytosis regulates homotypic EFF-1-mediated cell-cell fusion in C. elegans embryos. EFF-1 colocalizes with RAB-5 in early endosomes before and during fusion, whereas RAB-5 depletion results in EFF-1 mislocalization to the apical plasma membrane and induces ectopic fusion. EFF-1 localization at the apical plasma membrane is dynamic and transient due to its downregulation by dynamin- and RAB-5-dependent endocytosis. Membrane merger is initiated only
RESULTS

EFF-1 Localizes to Intracellular Puncta

To uncover the expression pattern of the EFF-1 protein during development, its endogenous localization was followed by immunostaining with anti-EFF-1 monoclonal antibody (green) and anti-DLG-1 antibody (apical junctions, magenta). EFF-1 vesicular localization (arrows) at developmental stages prior to (A and B) and after epithelial cell fusion (C) in wild-type C. elegans embryos is shown. Colocalization of EFF-1 with apical junction is shown (arrowhead; B). Fused hyp6 and hyp7 syncytia are outlined with a white dashed line in (C). Orientation of embryos in all figures is anterior, left and dorsal, top. See also Figure S1.

EFF-1 was first detected at the bean stage within individual puncta in the dorsal and ventral hypodermal cells before fusion (n = 14; Figure 1A, arrows). Subsequently, EFF-1 appeared as punctate staining in the cytoplasm of hyp6 and hyp7 precursor cells at the comma stage (n = 18; Figure 1B, arrows). Following embryonic fusions, EFF-1 remained vesicular, and the number of EFF-1 puncta increased when cell fusion was nearly completed (n = 20; Figure 1C). EFF-1 puncta showed minor colocalization with apical cell junctions detected by anti-DLG-1 antibody (Figure 1B, arrowhead). We found that EFF-1 puncta were aligned along longitudinal lines lying parallel to the seam cells (Figure 1C). This arrangement might be dictated by the organization of the cytoskeleton in the syncytial hypodermal cells, where actin, intermediate filaments, and microtubules form bundles that run parallel to the seam cells (Figure S1). eff-1(ok1021)-null embryos at any stages did not show immunoreactivity, revealing the specificity of the monoclonal antibodies (Figure 1D). Thus, EFF-1 is expressed in puncta at the onset, during, and after hypodermal cell fusion in developing embryos (Figure 1E).
modest colocalization between EFF-1::GFP and DLG-1::RFP (Figures 2A and 2C). In contrast, in rab-5 RNAi, the intensity profile of EFF-1::GFP along a random line within the cell shows peaks overlapping with DLG-1::RFP peaks (Figure 2D), confirming the visual observation of enrichment of EFF-1 on apical junctions. Thus, EFF-1 is not present in apical cell membranes in the steady state. The overall level of EFF-1 was not changed; the average EFF-1::GFP intensity in control RNAi (70 ± 23 gray values/pixel; 17 cells from ten embryos) was similar to EFF-1::GFP intensity after rab-5 RNAi (69 ± 10 gray values/pixel; 23 cells from eight embryos). Our data suggest that, when rab-5 activity is reduced, EFF-1::GFP redistributes from intracellular vesicles to the plasma membranes.

To determine the effect of rab-5 knockdown on the dynamics of EFF-1 at the plasma membrane during fusion, we followed EFF-1::GFP colocalization with the apical plasma
membrane using the DLG-1::RFP reporter protein. We found that, when the apical junctions begin to disassemble in rab-5 RNAi embryos, EFF-1 is still weakly detected on cell membranes (Figure 2E, arrowhead, time 0'; Movie S3), but after 10 min of apical junction disassembly, EFF-1::GFP cannot be detected where the plasma membrane used to be (Figure 2E, arrowhead). Taken together, our results show that reduction in RAB-5 activity stabilizes EFF-1 localization at the apical plasma membrane of fusing cells, suggesting that RAB-5 is involved in the uptake of EFF-1 from the apical plasma membrane to endosomes.

To independently determine whether EFF-1 is indeed removed from the plasma membrane by endocytosis, we depleted a central endocytosis regulator, dynamin. DYN-1 is the only dynamin in C. elegans and is essential for embryogenesis (Clark et al., 1997). Significantly, in all surviving embryos that develop to the morphogenesis stages when fusion occurs (Figure 1), dyn-1 RNAi induced EFF-1::GFP mislocalization to the apical membrane of hypodermal cells (Figures 2F, 2G, and S2; Movie S5). These results support the hypothesis that EFF-1 localizes to endosomal organelles in the steady state. However, during embryonic morphogenesis, EFF-1 is continuously recycling between the apical plasma membrane and the endolysosomal system via receptor-mediated endocytosis. When internalization is blocked, EFF-1 mislocalizes to the apical plasma membrane.

RAB-5 and DYN-1 Control Cell Fusion
dyn-1 and rab-5 knockdown results in early embryonic arrest. Because most embryos arrest before EFF-1 expression and morphogenesis, we analyzed embryos that escape early arrest. dyn-1 RNAi treatments showed defects associated with ectopic fusion in 10%–20% of all the embryos (Figure 2G). The dyn-1 RNAi-induced hyperfusion phenotype was not observed in eff-1(owy21) embryos that lost the extrachromosomal EFF-1::GFP (n ~ 100), demonstrating that ectopic fusion observed following dynamin downregulation is mediated by EFF-1, indicating that eff-1 is epistatic to dyn-1.

Like with dyn-1(RNAi), in rab-5(ok2605)-null mutant, endogenous EFF-1 was mislocalized to apical junctions (Figure 3A), consistent with the rab-5 RNAi effect on EFF-1::GFP localization (Figures 2D and 2E). Moreover, we found that 20% of the rab-5(ok2605) embryos that escape early lethality showed ectopic fusion phenotype (n = 35; Figure 3A, asterisk).

To find out whether the hyperfusion phenotype induced by rab-5 knockdown depends on eff-1 activity, we followed the fusion phenotype of double eff-1(rab-5) mutants. rab-5 heterozygous embryos showed normal fusion pattern (Figure 3B). In contrast, we observed excessive fusion in rab-5 homozygous embryos (Figure 3C, asterisk). We found that eff-1(hy21) mutants displayed suppressed cell fusion in both rab-5 hetero- and homozygous embryos (Figures 3D and 3E). Thus, eff-1 is epistatic to rab-5, suggesting that the hyperfusion induced by the deletion of rab-5 is eff-1 dependent. In other words, rab-5 inhibits the fusion-inducing activity of eff-1 (Figure 3F). We conclude that downregulation of dynamin or RAB-5 results in an increase in EFF-1 localization to the apical plasma membrane and hyperfusion in embryos that did not arrest early in embryogenesis (Figures 2 and S2).

To identify additional genes responsible for intracellular EFF-1 trafficking, localization, and function, we screened candidate genes for defects in cell fusion and EFF-1 localization using immunofluorescence and live imaging. Most trafficking mutants tested did not show differences compared with wild-type animals (Tables S2 and S3). As previously shown by Kontani et al. (2005), mutations in the vacuolar ATPase complex proteins caused hyperfusion in late stages of embryonic morphogenesis (Figure S3). Because mutations in the V-ATPase complex affect multiple endocytic trafficking pathways (Nishi and Forgac, 2002) and exocytosis of multivesicular bodies (Liègeois et al., 2006), it is difficult to distinguish which trafficking stages were involved in EFF-1-retarded hyperfusion.
EFF-1 Localizes to Early Endosomes

To identify the puncta where EFF-1 localizes, we performed colocalization studies using structured illumination microscopy (SIM). C. elegans embryos that express GFP-tagged cellular markers were immunostained with anti-GFP antibody to detect intracellular membrane compartments and with anti-EFF-1 antibody to localize endogenous EFF-1. Colocalization was quantified as percentage of endogenous EFF-1 puncta that overlapped with each of the anti-GFP antibodies on superresolution 3D images (see Experimental Procedures). Only 6% of EFF-1 puncta were localized to the region of apical junctions, whereas 13% were associated with apical junctions within 200 nm distance (Figure 4A). EFF-1 was enriched in structures that were positive for the early endosome marker RAB-5::GFP (58% of colocalization; n = 21 embryos; Figures 4C and 4E; Table S1). Thirty percent of EFF-1 puncta colocalized with the general endosomal marker RME-8 (early, late endosome, and multivesicular body; Figures 4E, S4E, and S4F; Table S1), supporting EFF-1 presence in RAB-5-positive early endosomes. EFF-1 also showed significant colocalization with the Golgi marker MANS::GFP (19%), possibly due to secretory sorting and recycling between endosomes and the Golgi (Figures 4B and 4E). Nine percent of EFF-1 puncta colocalized with the lysosomal marker LMP-1::GFP (Figures 4D and 4E), suggesting that EFF-1 is also transported to lysosomes where it is probably degraded. EFF-1 puncta colocalized less than 5% with most other markers examined (RAB-10::GFP, RME-1::GFP, RAB-11::GFP, RAB-7::GFP, ALX-1::GFP, LGG-1::GFP, and VHA-5::GFP; Table S1). Data sets for these markers were not statistically different from each other and probably represent the background of the measurements. Thus, wild-type endogenous EFF-1 is detected mainly in RAB-5 early endosomes and is only transiently associated with the apical domains of the plasma membrane where it acts to fuse cells.

We found that, in a mixed population of embryos expressing EFF-1, 58% of the puncta colocalized with RAB-5 (Figure 4E). To determine whether EFF-1/RAB-5 colocalization changes over time of fusion, we measured their colocalization during...
distinct stages in embryonic morphogenesis. When hypodermal cell fusions are in progress (1.5-fold stage of elongation), we found that 45% of EFF-1 puncta colocalize with RAB-5 (n = 12; Figure S4A). Colocalization increased and reached a maximum when most dorsal cell fusions have been completed (69%; 1.8-fold stage; n = 18; Figure S4B). At later stages, we found a gradual reduction in EFF-1 colocalization with RAB-5 (Figures S4C and S4D). In contrast, colocalization of EFF-1 with lysosomal LMP-1 increased from 8% at the 1.5-fold stage to 26% at the 2-fold stage when most epidermal fusions have been completed. To summarize, we observe only minor localization of EFF-1 at the apical and basolateral membranes; rather, most EFF-1 localizes to early endosomes, the endocytic pathway, and to the Golgi apparatus. After cells fuse, most of EFF-1 is localized to RAB-5-positive early endosomes and partially in lysosomes where EFF-1 may undergo degradation.

EFF-1 Shuttles to the Fusion Sites and Back to the Cell Interior within Vesicles

To determine whether wild-type EFF-1::GFP transiently shuttles to the plasma membrane and back to the intracellular early endosomes, we analyzed time-lapse movies. Followed by live imaging, EFF-1::GFP appeared dispersed in the cytoplasm within puncta in hypodermal cells ready to fuse (Figure 5B). Faint EFF-1::GFP puncta approached the cell junction from both fusing cells (C, arrowheads) and move along the junction (D and E, arrowheads). Arrows mark the edge of the cell junction undergoing disassembly.

(F) EFF-1 puncta coming from opposite cells join together on the cell junction (arrowhead).

(G and H) At the end of the first dorsal cell fusion, EFF-1::GFP puncta are distributed in the cytoplasm of the syncytium.

(I) Second junction discontinuity revealing the second cell fusion (arrow).

(J) EFF-1::GFP vesicles become larger, brighter, and aligned in an anterior-posterior line (arrowheads) within the intermediate syncytium. The scale bar represents 10 μm. See Movies S1 and S2.

Figure 5. The Dynamics of EFF-1::GFP during Cell Fusion

Live imaging of EFF-1::GFP (green) and apical junction marker DLG-1::RFP (magenta) in the process of dorsal fusions. Fusing cells are highlighted in (A), and higher magnification inset is shown below in separate channels: DLG-1::RFP (left); EFF-1::GFP (middle); and merged image (right panel). (B–E) Early stages of apical junction disassembly (arrows). Dynamic colocalization of EFF-1 and DLG-1 on plasma membranes (arrowheads). Time points (in minutes and seconds) of image acquisition are presented in the upper right corners. Time 0’ indicates the beginning of Movie S1.

(A) EFF-1::GFP fluorescence is barely detectable in cells that are going to fuse.

(B) EFF-1::GFP appears in the cell cytoplasm within a pair of bright vesicles (arrowheads) and diffuse where the cell junction disassembles (arrow).

(C–E) EFF-1::GFP arrives at the cell junction from both fusing cells (C, arrowheads) and move along the junction (D and E, arrowheads). Arrows mark the edge of the cell junction undergoing disassembly.

(F) EFF-1 puncta coming from opposite cells join together on the cell junction (arrowhead).

(G and H) At the end of the first dorsal cell fusion, EFF-1::GFP puncta are distributed in the cytoplasm of the syncytium.

(I) Second junction discontinuity revealing the second cell fusion (arrow).

(J) EFF-1::GFP vesicles become larger, brighter, and aligned in an anterior-posterior line (arrowheads) within the intermediate syncytium. The scale bar represents 10 μm. See Movies S1 and S2.
of the apical junctions, small EFF-1::GFP puncta merged into larger and brighter puncta (Figure 5J, arrowheads). Based on these findings, we hypothesize that EFF-1 is stored within early endosomes and is transiently transported to the cell surface when cells are ready to fuse.

EFF-1 Is Dynamically Delivered to All Apical Domains, Including Ones that Do Not Fuse

It has previously been reported that EFF-1*::GFP (*, mutant protein; del Campo et al., 2005) accumulates only at the membranes between cells that are destined to fuse. However, the dynamic subcellular localization of EFF-1*::GFP does not match our observations made by immunofluorescence staining using anti-EFF-1 monoclonal antibodies (Figures 1 and S5) and our EFF-1::GFP dynamic behavior (Figure S; Movies S1 and S2).

Furthermore, the EFF-1*::GFP construct harbors two point mutations at highly conserved sites, T176A and N529D, and does not rescue eff-1(hy21) animals (Avinoam and Podbilewicz, 2011).

To test whether EFF-1 transport is specifically targeted to the plasma membrane domains where fusion occurs, we analyzed the directionality of EFF-1::GFP delivery to the apical junctions between the cells, which lie posterior to the deirid (d) (Figure 6A).

In these examples, a dorsal hypodermal cell that is not expressing EFF-1::GFP at a given time point is marked by minus; the adjacent dorsal and posterior cells express EFF-1::GFP and are marked with plus; seam cells are marked with the letter “s.” We found that EFF-1::GFP is transiently localized to all apical plasma membrane domains in “+” cells (Figure 6A; Movie S5). There is no statistical difference between the number of EFF-1::GFP puncta transiently localized between EFF-1(+), EFF-1(−), between two EFF-1s(+/+), and the junction between EFF-1/seam cells (+/+; Figure 6C). Thus, in contrast to the previous paradigm (del Campo et al., 2005), we found that EFF-1 is continuously and dynamically localizing to all apical plasma membrane domains and not only to those destined to fuse.

If EFF-1 is constitutively and nonspecifically internalized via receptor-mediated endocytosis from all plasma membrane domains, then following RAB-5(RNAi), EFF-1::GFP may be mis-localized to all apical domains and not only to the junctions destined to fuse. We found that EFF-1 transport to the plasma membrane was not affected whereas EFF-1 endocytosis was blocked by RAB-5(RNAi). As a result, EFF-1 was localized at all the apical plasma membrane domains of the + cells (Figure 6B; Movie S6). We then measured the intensities of EFF-1::GFP at the junctions between −/+ and +/s junctions. We found that the relative EFF-1::GFP intensities on the −/+ and +/s junctions are not statistically different (Figure 6D). For the membranes between two EFF-1-expressing cells (+/+), the intensity of EFF-1::GFP was higher, but this is to be expected as both cells contribute EFF-1 to this junction (Figure 6D). Thus, we show that EFF-1 transport to and from the plasma membrane has no specificity according to the junction type and the place of fusion. Based on our results, we propose that vesicles containing EFF-1::GFP cargo have the same probability of fusing with all apical plasma membranes.

In summary, EFF-1 localization in *C. elegans* embryonic epidermal cells is tightly maintained in early endosomes by the RAB-5- and DYN-1-dependent endocytic machinery. The EFF-1 protein is dynamically delivered to all apical plasma membranes transiently and without specificity to the place of fusion.

DISCUSSION

Based on our results, we propose a model for the regulation of EFF-1 localization and fusion activity by endocytosis.
expressed from two cells (Podbilewicz et al., 2006). After consti-
tated by homotypic interactions between EFF-1 proteins
opposing membranes exceed a certain threshold and is medi-
fusion is activated when the concentration of EFF-1 on two
plasma membranes of EFF-1-expressing cells. Membrane
Synthesized EFF-1 transiently localizes to the surrounding apical
press EFF-1 (without relation to the future fusion-fated membranes. Cell that does not ex-
EFF-1 (green) is expressed in all surrounding plasma membranes (blue line)
Figure 7. Model of Cell Fusion in C. elegans Embryonic Hypodermis
Neighboring cells with EFF-1*::GFP expression (pink) align with each other via EFF-1 (yellow line) that
Figure 7. Model of Cell Fusion in C. elegans Embryonic Hypodermis
Neighboring cells with EFF-1*::GFP expression (pink) align with each other via EFF-1 (yellow line) that
EFF-1*::GFP abnormal accumulation in some apical junctions. Additionally, EFF-1 ectopically expressed under a
traffic is regulated by RAB-5
Endocytosis plays an essential role in intercellular signaling, uptake of nutrients, and membrane recycling (Grant and Donald-
our monoclonal antibodies equally recognize both monomers and trimeric EFF-1 (data not shown). EFF-1::GFP vesicles became visible only at the onset of membrane fusion (within minutes before junction disas-
E. coli, 2004; del Campo et al., 2005; Neumann et al., 2015; Podbilewicz et al., 2006; Zeev-
expression). Indeed, an EFF-1*::GFP was
concentration of EFF-1 monomers that is sufficient to initiate membrane fusion is low and
Synthesized EFF-1 transiently localizes to the surrounding apical plasma membranes of EFF-1-expressing cells. Membrane
accumulates in the cytoplasm within early endosomes (circles outlined with the red dashed line). Only when EFF-1 is simultaneously present in both neighboring membranes, cell fusion is activated.
EFF-1 accumulation Prior to Fusion
Our results demonstrate that cell-cell fusion in C. elegans embryos requires transient and low level of EFF-1 localization to the
traffic is regulated by RAB-5
Endocytosis plays an essential role in intercellular signaling, uptake of nutrients, and membrane recycling (Grant and Donald-
nalizing). We suggest that the concentration of EFF-1 monomers that is sufficient to initiate membrane fusion in vivo is low and
Early endocytosis signal (Traub, 2009). Trans-oligomerization of EFF-1 from opposing plasma membranes and the following conformational changes of trimers are proposed to dock the membranes and to initiate membrane fusion
EFF-1 Fuses Cells Locally
According to the homotypic fusion model supported by recent biochemical and structural evidence, membrane fusion is medi-
Eff-1 knockdown or by DYN-1 downregulation, EFF-1 accumulates
Endocytosis plays an essential role in intercellular signaling, uptake of nutrients, and membrane recycling (Grant and Donald-
accumulates in the cytoplasm within early endosomes (circles outlined with the red dashed line). Only when EFF-1 is simultaneously present in both neighboring membranes, cell fusion is activated.
EFF-1 Trafficking Is Regulated by RAB-5
Endocytosis plays an essential role in intercellular signaling, uptake of nutrients, and membrane recycling (Grant and Donald-
nerization). We suggest that the concentration of EFF-1 monomers that is sufficient to initiate membrane fusion in vivo is low and
our monoclonal antibodies equally recognize both monomers and trimeric EFF-1 (data not shown). EFF-1::GFP vesicles became visible only at the onset of membrane fusion (within minutes before junction disas-
E. coli, 2004; del Campo et al., 2005; Neumann et al., 2015; Podbilewicz et al., 2006; Zeev-
expression). Indeed, an EFF-1*::GFP was
concentration of EFF-1 monomers that is sufficient to initiate membrane fusion is low and
Synthesized EFF-1 transiently localizes to the surrounding apical plasma membranes of EFF-1-expressing cells. Membrane
accumulates in the cytoplasm within early endosomes (circles outlined with the red dashed line). Only when EFF-1 is simultaneously present in both neighboring membranes, cell fusion is activated.
EFF-1 Trafficking Is Regulated by RAB-5
Endocytosis plays an essential role in intercellular signaling, uptake of nutrients, and membrane recycling (Grant and Donald-
nalizing). We suggest that the concentration of EFF-1 monomers that is sufficient to initiate membrane fusion in vivo is low and
Our results demonstrate that cell-cell fusion in C. elegans embryos requires transient and low level of EFF-1 localization to the
traffic is regulated by RAB-5
Endocytosis plays an essential role in intercellular signaling, uptake of nutrients, and membrane recycling (Grant and Donald-
accumulates in the cytoplasm within early endosomes (circles outlined with the red dashed line). Only when EFF-1 is simultaneously present in both neighboring membranes, cell fusion is activated.
EFF-1 Trafficking Is Regulated by RAB-5
Endocytosis plays an essential role in intercellular signaling, uptake of nutrients, and membrane recycling (Grant and Donald-
Soluble DIII was shown to block EFF-1-mediated cell fusion in transfected mammalian cells, supporting the model based on class II viral fusion proteins in which DIII translocation from a linear pre-fusion conformation to a parallel postfusion hairpin conformation is required for membrane fusion (Pérez-Vargas et al., 2014). The localization of EFF-1::GFP in rab-5(RNAi) embryos shows mislocalization to all the apical plasma membranes including the domains that do not normally fuse (Figures 2B and 6B). Thus, EFF-1 is transported to all apical plasma membranes domains and not only to fusion-fated domains of the apical plasma membrane.

Is Endocytosis a Universal Regulator of Cell Fusion?
Because EFF-1 is a powerful fusogen, specialized safety mechanisms are required to prevent ectopic cell fusion. First, EFF-1 expression is regulated transcriptionally (Alper and Kenyon, 2002; Brabin et al., 2011; Cassata et al., 2005; Fernandes and Sternberg, 2007; Margalit et al., 2007; Mason et al., 2008; Pellegrino et al., 2011; Rasmussen et al., 2008; Shemer and Podbilewicz, 2002; Walser et al., 2006; Weinstein and Mendoza, 2013; Yi and Sommer, 2007). Gene-expression-based regulation may be the primary mechanism of specificity in EFF-1-mediated fusion. Second, EFF-1 expressed in one cell needs a partner from a neighboring cell in order to mediate fusion (Podbilewicz et al., 2006). Third, local concentration of EFF-1 on the plasma membrane is downregulated by dynamin/RAB-5-mediated endocytosis. Trafficking of EFF-1 may provide a fine-tuning to its fusion activity. During mammalian myoblast and osteoclast fusion, the opposite control mechanism was found to occur: cells required endocytosis and dynamin activity in order to fuse (Leikina et al., 2013; Shin et al., 2014; Verma et al., 2014). It is conceivable that endocytosis and recycling act during diverse cell-cell fusion events. Recently, the engulfment pathway was shown to act upstream of EFF-1 activity during regenerative axonal fusion in C. elegans (Neumann et al., 2015). In addition, gamete fusion in the mouse was linked to endocytosis and exocytosis (Satoh et al., 2012; Wassarman and Litscher, 2008). In Drosophila myoblast fusion, the adhesion molecule SNS, which is essential for fusion, was shown to colocalize with Rab-5 (Haralalka et al., 2014). Here, we found a clear case in which endocytosis negatively regulates EFF-1-mediated cell-cell fusion to prevent excessive syncytia formation, which can result in abnormalities and contributes to late embryonic lethality.

In conclusion, we found that the GTPases RAB-5 and dynamin control EFF-1 transient localization on the surface of cells destined to fuse and prevent excess fusion by dynamically and constitutively internalizing this fusion protein from all the apical domains of the plasma membrane.

EXPERIMENTAL PROCEDURES

Strains and Transgenic Animals
All nematode strains were maintained according to standard protocols (Brenner, 1974). The list of C. elegans strains used in this study is in Tables S1 and S2 and Supplemental Experimental Procedures. For the construction of eff-1::gfp rescue strain, germline transformation was performed using standard protocols (Melio and Fire, 1995). eff-1::gfp fosmid was ordered from Transgenome (Sarov et al., 2012) and was injected into BP953 (eff-1[h21]):: mcs146 [dg-1::RFP]; Diogon et al., 2007) at 50 ng/µl concentration. Transgenic lines were kept as extrachromosomal arrays and maintained by following the rescue phenotype of eff-1(hy21ts) at 25°C.

Immunofluorescence
Embroys were prepared for immunostaining as described in Supplemental Experimental Procedures. The following primary antibodies were used at the dilutions indicated: α-EFF-1 (mouse ascites 20.10 and 10.5; 1:1,000); MH27 (α-AJM-1; mouse; 1:1,500); α-GFP (rabbit; 1:500; MBL); and α-tubulin (mouse; Sigma; 1:500). α-DLG-1 antibody (rabbit; 1:400) was a kind gift from Prof. Dr. Olaf Bossinger (RWTH-Aachen University). MH46 (α-myotactin; mouse; 1:400; Hresko et al., 1994) was a kind gift from Dr. Limor Brodai (Tel Aviv University); mouse monoclonal antibodies against C. elegans proteins DHY-1, CYP33E1, PAS-7, and HSP60 were obtained from Developmental Studies Hybridoma Bank and used at 1:10 dilution. Texas Red-X phalloidin (Molecular Probes) at a final concentration of 0.2 µM was added with the secondary antibody.

Anti-EFF-1 Antibody Production
Anti-EFF-1 antibodies were prepared against purified EFF-1EC obtained as described (Perez-Vargas et al., 2014), and the hybridomas were prepared and screened by ELISA in the lab of Africa Gonzalez (Vigo University). 20.10 and 10.5 ascites were used for immunostaining of C. elegans embryos and larvae (Fridman, 2012).

Microscopy and Live Imaging
Images of fixed samples were taken on Zeiss LSM 700 confocal microscope with X63/1.4 PlanApO objective. Superresolution images were obtained using Elvira 5.1 structured illumination system (SIM) with X63/1.4 PlanApO objective and EMCCD (Xon camera (Andor). Confocal or SIM z stacks were analyzed and processed by Zen software (Zeiss).

For the imaging of live embryos, gravid adult hermaphrodites were dissected in 50 µl of 0.7x egg salts and embryos were moved to 2% agar pad with a mouth pipette. The specimen was covered with a coverslip (1.5H) and sealed with scotch tape to prevent drying. Images were acquired using spinning disc Revolution XD confocal system (Andor) based on Nikon Eclipse Ti microscope equipped with 100x/1.4 PlanFluor objective, perfect focus system; CSU-X1 spinning disc (Yokogawa) and iXon3 EMCCD camera (Andor) operated by iQ2 software (Andor). Image sequences were further processed and analyzed with ImageJ (NIH). Figures were prepared using Adobe Photoshop CS5 and Adobe Illustrator CS11.

Quantitation of Colocalization and Statistics
Colocalization was quantified manually on individual z slices (~100 per embryo), analyzing red and green channels separately on superresolution SIM images using Zen software (Zeiss). Colocalization analysis of EFF-1 puncta was performed on embryos carrying the GFP-tagged protein of interest labeled with antibodies against GFP (Alexa 488; green channel) and with monoclonal antibodies against EFF-1 (Alexa Fluor 568; red channel). EFF-1 puncta were considered colocalized with puncta containing GFP marker if the areas of those puncta showed more than 50% overlap. The percentage of colocalization is expressed as the ratio of puncta positive for EFF-1 and GFP out of the total number of EFF-1 puncta in the embryonic hypodermis. For each marker, at least five embryos were quantified; data are shown as mean ± SEM (see Table S1). Significant differences between two groups of measurements were determined by the two-tailed unpaired t test using Excel. For statistical comparison of multiple groups, we used ANOVA test in Excel.

RNAi
RNAi by feeding was performed with an ORF-RNAi library (Rual et al., 2004). RNAi feeding protocol was used (Befuss and Gumienny, 2012). We used dyn-1, rbf-5, nxb-5, and rme-6 RNAi, bli-4 was used as a positive control and C06C3.5 as a negative control. For each clone, 5 ml LB media containing 50 µg/ml carbenicillin (Sigma) was inoculated with a single colony and incubated overnight at 37°C at 220 rpm. dsRNA production was induced by adding 1 mM IPTG (Sigma) to the cultures and additional incubation for 4 hr. Each bacterial culture (50 µl) was inoculated into NGM RNAi plate containing 50 µg/ml carbenicillin and 1 mM IPTG and dried. C. elegans L4 stage was isolated to
NGM plates for 1 hr to get rid of OP50 bacteria in the intestine. Embryos were examined on the next day after larvae were transferred to plates with bacteria producing the specific dsRNAs.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, five figures, three tables, and six movies and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.01.027.

AUTHOR CONTRIBUTIONS

K.S. performed the experiments. B.P. did initial SIM experiments. K.S. and B.P. conceived the project, analyzed the data, and wrote the manuscript.

ACKNOWLEDGMENTS

We thank B. Grant, O. Bossinger, M. Labouesse, B. Mohler, Z. Hong, A. Chisholm, and L. Broday for C. elegans strains. We acknowledge CCG (NIH Office of Research Infrastructure Programs P40 OD010440) and C. elegans knockout consortium for strains. We thank TransgenOme for eff-1p::eff-1::gfp fosmid; A. Gonzalez, O. Bossinger, L. Broday, and Developmental Studies Hybridoma Bank (U. of Iowa) for antibodies; C. Valansi for initial characterization of antibodies against EFF-1; O. Avinoam, D. Cassel, M. Hilliard, M. Oren-Suissa, and E. Schechter for critically reading the manuscript; and T. Rapoport and members of his lab for discussions. B.P. was a Grass fellow at Radcliffe Institute for Advanced Study at Harvard. K.S. was supported by the Ministry of Absorption, Israel (N061486). The work was funded by European Research Council (ERC) advanced grant 268843, GfF German-Israeli Foundation for Scientific Research and Development (grant 937/2006), US-Israel BinaLion Science Foundation (grant 2013151), and the Israel Science Foundation grant 443/12.

Received: March 16, 2015
Revised: November 30, 2015
Accepted: January 4, 2016
Published: February 4, 2016

REFERENCES

Aguilar, P.S., Baylies, M.K., Fleissner, A., Helming, L., Inoue, N., Podbilewicz, B., Wang, H., and Wong, M. (2013). Genetic basis of cell-cell fusion mechanisms. Trends Genet. 29, 427–437.

Alper, S., and Kenyon, C. (2002). The zinc finger protein REF-2 functions with the Hox genes to inhibit cell fusion in the ventral epidermis of C. elegans. Development 129, 3335–3348.

Avinoam, O., and Podbilewicz, B. (2011). Eukaryotic cell-cell fusion families. Curr. Top. Membr. 68, 209–234.

Avinoam, O., Fridman, K., Valansi, C., Abutbul, I., Zeev-Ben-Mordehai, T., Maurer, U.E., Sapir, A., Danino, D., Grunewald, K., White, J.M., and Podbilewicz, B. (2011). Conserved eukaryotic fusogens can fuse viral envelopes to C. elegans. PLoS Genet. 7, e1002200.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

Cassata, G., Shemer, G., Morandi, P., Donhauser, R., Podbilewicz, B., and Baumeister, R. (2005). cel-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 132, 739–749.
mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542–1556.
Margalit, A., Neufeld, E., Feinstein, N., Wilson, K.L., Podbilewicz, B., and Gruenbaum, Y. (2007). Barrier to autointegration blocks premature cell fusion and maintains adult muscle integrity in C. elegans. J. Cell Biol. 178, 661–673.
Mason, D.A., Rabinowitz, J.S., and Portman, D.S. (2008). dmd-3, a doublesex-related gene regulated by tra-1, governs sex-specific morphogenesis in C. elegans. Development 135, 2373–2382.
McMahon, H.T., and Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533.
Medvedsky, A., and Smith, A. (2003). Stem cells: Fusion brings down barriers. Nature 422, 823–825.
Mellman, I. (1996). Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12, 575–625.
Mellman, I., and Yarden, Y. (2013). Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5, a016949.
Mello, C., and Fire, A. (1995). DNA transformation. In Methods in Cell Biology Caenorhabditis elegans: Model Biological Analysis of an Organism, H.F. Epstein and D.C. Shakes, eds. (San Diego: Academic Press), pp. 451–482.
Messé, M., Fernández-Busnadiego, R., Sun, E.W., Chen, H., Czapla, H., Wrasman, K., Wu, Y., Ko, G., Ross, T., Wendland, B., and De Camilli, P. (2014). Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 3, e03311.
Mizuno-Yamasaki, E., Rivera-Molina, F., and Novick, P. (2012). GTPase network in membrane traffic. Annu. Rev. Biochem. 81, 637–659.
Mohler, W.A., Shemer, G., del Campo, J.J., Valansi, C., Opoku-Serebuoh, E., Scranton, V., Assaf, N., White, J.G., and Podbilewicz, B. (2002). The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev. Cell 2, 355–362.
Neumann, B., Coakley, S., Giordano-Santini, R., Linton, C., Lee, E.S., Nakagawa, A., Xue, D., and Hilliard, M.A. (2015). EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. Nature 517, 219–222.
Nishi, T., and Forgac, M. (2002). The vacuolar (H+)-ATPases–nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94–103.
Oren-Suissa, M., and Podbilewicz, B. (2010). Evolution of programmed cell death: common mechanisms and distinct functions. Dev. Dyn. 239, 1515–1528.
Pellegrino, M.W., Farooqui, S., Fröhli, E., Rehrauer, H., Kaeser-Pebbernard, S., Müller, F., Gasser, R.B., and Hajnal, A. (2011). LIN-39 and the EGF/RAS/ MAPK pathway regulate C. elegans vulval morphogenesis via the VAB-23 zinc finger protein. Development 138, 4649–4660.
Pérez-Vargas, J., Krey, T., Valansi, C., Avinoam, O., Haouz, A., Jamin, M., Raveh-Barak, H., Podbilewicz, B., and Rey, F.A. (2014). Structural basis of eukaryotic cell-cell fusion. Cell 157, 407–419.
Podbilewicz, B. (2014). Virus and cell fusion mechanisms. Annu. Rev. Cell Dev. Biol. 30, 111–139.
Podbilewicz, B., and White, J.G. (1994). Cell fusions in the developing epithelial of C. elegans. Dev. Biol. 167, 408–424.
Podbilewicz, B., Leikina, E., Sapi, A., Valansi, C., Suissa, M., Shemer, G., and Chernomordik, L.V. (2006). The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev. Cell 11, 471–481.
Rasmussen, J.P., Zeigerer, A., Gilleron, J., Bogorad, R.E., Marsico, G., Nonaka, H., Seiffert, S., Epstein-Barash, H., Kuchimanchi, S., Peng, C.G., et al. (2012). Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485, 465–470.
Zeigerer, A., Gillieron, J., Bogorad, R.L., Marsico, G., Nonaka, H., Seiffert, S., Epstein-Barash, H., Kuchimanchi, S., Peng, C.G., Ruda, V.M., et al. (2012). Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature 485, 465–470.
Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117.
Supplemental Information

RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

Ksenia Smurova and Benjamin Podbilewicz
Supplemental information for

RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

Ksenia Smurova1 and Benjamin Podbilewicz1*

1Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
*Author for correspondence (podbilew@technion.ac.il)

This file includes:
Supplemental Figures S1-S5
Supplemental Figure legends S1-S5
Supplemental Tables S1-S3
Movie legends S1-S6
Supplemental experimental procedures
Supplemental references
Supplemental Figures

Figure S1. EFF-1 puncta arrangement along microtubule bundles, related to Figure 1
Organization of EFF-1 and cell junctions with respect to the cytoskeleton was analyzed by immunofluorescence. Scale bar, 10 µm.

(A) EFF-1 puncta along microtubule longitudinal bundles. Anti-EFF-1 antibody, green; anti-tubulin antibody, magenta.

(B) Bundles of microtubules localize parallel to the row of seam cells. Anti-tubulin antibody, magenta; anti-DLG-1 antibody, cyan.

(C) EFF-1 does not colocalize with fibrous organelles (hemidesmosome-like structures). Anti-EFF-1 antibody, green; anti-myotactin antibody, magenta.

(D) Fibrous organelles are aligned parallel to the row of seam cells. Anti-myotactin antibody, magenta; anti-DLG-1 antibody, cyan.

(E) EFF-1 does not colocalize with actin. Anti-EFF-1 antibody, green; Texas Red-phalloidin, magenta.

(F) Intermediate filaments do not show colocalization with EFF-1 puncta in embryos expressing IFB-1::GFP. Anti-EFF-1 antibody, green; anti-GFP antibody, magenta.
Figure S2. DYN-1 and RAB-5 knockdown induces EFF-1::GFP plasma membrane accumulation, related to Figure 2

(A-F) Ventral views of live embryos before the first fusion event under control RNAi and dyn-1 RNAi treatment. Insets represent the areas of cell junctions between the cells in the process of fusion. EFF-1::GFP localize to cytoplasmic vesicles in control RNAi embryos (C, E, arrows). EFF-1::GFP shows plasma membrane mislocalization in dyn-1 RNAi embryos (D, F arrowheads).

(G, H) EFF-1::GFP (green) and DLG-1::RFP (magenta) expression in rab-5 RNAi treated embryos. Surface focus shows hyperfusion of hypodermal cells (G), center focus represents EFF-1 apical membrane localization (H, arrows; See also Movie S5). Scale bars, 10 µm.
Figure S3. V-ATPase regulates cell fusion, related to Figure 3
Effect of mutations in two subunits of the vacuolar ATPase, VHA-17, and VHA-5, affect EFF-1 localization and fusion. Embryos were incubated at room temperature for 5-20 h and immunostained with anti-EFF-1 (green) and anti-DLG-1 antibody (magenta) followed SIM.
(A) Hyperfusion phenotype caused by vha-17 mutation associates with smaller but denser EFF-1 puncta which did not colocalize with cell junctions.
(B) vha-5 mutation induces hyperfusion but does not change EFF-1 localization.
Scale bar, 10 µm.
Figure S4. EFF-1/RAB-5 and EFF-1/RME-8 colocalization, related to Figure 4.
(A-C) EFF-1/RAB-5 colocalization changes in embryonic development. EFF-1 (green) and RAB-5 (magenta) colocalization at different stages of embryonic fusion was visualized by immunofluorescence with specific antibodies.
(A) 1.5 fold embryo
(B) 1.8 fold embryo
(C) 3 fold embryo
(A’-C’) Enlargements of inset regions from (A-C) showing EFF-1, RAB-5 immunofluorescence, and merged images.
(D) Percentage of EFF-1 colocalization with RAB-5 during embryonic development (mean ± SEM). Number of puncta analyzed for each stage of morphogenesis was n>200.
(E) Colocalization of EFF-1 (green) with RME-8 (magenta, marker that is present in early, recycling, and late endosomes). EFF-1 and RME-8 patterns are visualized using immunofluorescence.
(F) Boxed region from (E) is enlarged and shown in separate channels: EFF-1, left; RME-8, middle; and merged, right.
Scale bars, 10 µm.
Figu
re S5. EFF-1 colocalization with membranes and apical junctions, related to Figure 6
(A) EFF-1 colocalization with basolateral membrane before fusion in LET-413::CFP expressing embryo is revealed by immunofluorescence with anti-EFF-1 (green) and anti-GFP antibody (LET-413, magenta).
(B-D) Individual confocal z-slices of cell junctions were taken from the dorsal side of embryos in the process of fusion. Enlarged areas of diverse junctions show partial EFF-1 colocalization with cell junctions (arrowheads).
(B) EFF-1 (green) and basolateral membrane marker LET-413::CFP (magenta) are visualized by immunofluorescence with anti-EFF-1 and anti-CFP antibody.
(C) Endogenous EFF-1 was immunolabeled with anti-EFF-1 antibody, green; apical junctions were detected with anti-DLG-1 antibody, magenta.
(D) Live images of apical junctions (DLG-1::RFP, magenta) showing transient colocalization with EFF-1::GFP (green) prior to cell fusion.
(E) Nonfusogenic EFF-1::GFP* accumulation at the plasma membrane (arrow) in C. elegans embryo (*Del Campo et al., 2005). Immunofluorescence with anti-GFP antibody (green) and anti-DLG-1 (apical junction, magenta).
(F) Ectopic EFF-1 localization to the plasma membrane of intestinal cells (arrows) following heat shock in an embryo expressing hsp::eff-1 transgene. (del Campo et al., 2005; Shemer et al., 2004). The projection of the z-slices of intestine is shown. Some intestinal cells have fused. Immunofluorescence with anti-EFF-1 antibody (green) and anti-DLG-1 (apical junction, magenta).
(G) Ectopic EFF-1 is detected in the plasma membrane of mammalian BHK cells transfected with eff-1::V5 construct (arrows). Immunofluorescence with anti-V5 antibody (green) and DAPI (nuclei, blue).
Scale bar represents 5 µm in (A-D) and 10 µm in (D-F).
Table S1

EFF-1 colocalization with cellular markers, related to Figure 4

Organelle (Ordered from highest to lowest)	Strain	Protein	Mean (%) colocalization ±SEM	number of puncta	number of embryos
Early endosome (EE)	RT122	RAB-5::GFP	58.2 ± 5.7	1766	21
Early endosome to MVB	DH1336	RME-8::GFP	30.3 ± 7.3	436	6
Golgi	RT1315	MANS::GFP	19.2 ± 4.4	278	6
Lysosome	RT258	LMP-1::GFP	8.5 ± 3.3	272	6
Basolateral membrane	BP712	LET-413::CFP	8.3 ± 2.1	460	8
Apical junction	SU93	AJM-1::GFP	6.5 ± 2.3	803	11
Apical junction	N2	DLG-1 (Ab)	6.2 ± 1.7	534	9
Apical endosome	RT311	RAB-11::GFP	3.6 ± 1.5	273	5
EE from Golgi to PM	RT525	RAB-10::GFP	3 ± 0.9	408	5
Recycling endosome	RT348	RME-1::GFP	1.8 ± 0.04	378	5
Late endosome	RT476	RAB-7::GFP	1.9 ± 0.7	198	5
Autophagosome	BU071	LGG-1::GFP	1.7 ± 0.7	224	5
MVB	RT1356	ALX-1::GFP	1 ± 0.6	208	5
Vacuolar ATPase	ML846	VHA-5::GFP	0.9 ± 0.3	321	5
MVB	RT1341	HGRS-1::GFP	0 ± 0.04	98	5
Mitochondria	N2	HSP60-s (Ab)	No (visual observation)	-	12
Proteasome	N2	PAS-7 (Ab)	No (by visual observation)	-	15
ER	N2	CYP33E1-s (Ab)	No (by visual observation)	-	14
Endocytic invagination	N2	DYN-1 (Ab)	No (by visual observation)	-	10
Affected pathway	Strain	Protein mutated (allele)	Hyperfusion	EFF-1 mislocalization to apical junctions	
--	--------	--------------------------	-------------	--	
Retrograde Golgi to ER	RB1535	ARF1.1(ok1840)	No	No	
Early endocytosis	CX51	DYN-1(ky51)	Yes	Yes	
Basolateral recycling	RT2	RAB-10(q373)	No	No	
Basolateral recycling	VC1026	RAB-10(ok1494)	No	No	
Recycling	DH1201	RME-1(b1045)	No	No	
Early, recycling, late endocytosis	DH1206	RME-8(b1023)	No	No	
Early endocytosis	VC2199	RAB-5(ok2605)	Yes	Yes	
RAB-5 regulation	VC1282	RABX-5(ok1763)	No	No	
Endocytic recycling	RT206	RAB-35(b1013)	No	No	
Endocytic recycling	VC900	ALX-1(gk412)	No	No	
To lysosome	GS2643	CUP-5(ar465)	No	No	
Endosomal acidification, trafficking, apical secretion (V0-ATPase, subunit H)	JR2750	VHA-17/FUS-1(w13)	Yes	No	
Endosomal acidification, trafficking, apical secretion (V0-ATPase, subunit A)	ML851	VHA-5(mc38)	Yes	No	
Table S3
Fusion abnormalities and ectopic EFF-1 expression in embryos treated with RNAi, related to Figure 2

RNAi	Phenotype	Fusion defects in embryos (n)	Fusion defects in larvae (n)	EFF-1 mislocalization
rab-5	emb. lethal	yes (103)	-	yes
dyn-1	emb. lethal	yes (55)	-	yes
aps-1	no	no (45)	no (15)	no
syn-4	no	no (37)	no (10)	no
rab-6.1	no	no (35)	no (22)	no
rab-6.2	no	no (40)	no (15)	no
rme-6	no	no (48)	no (18)	no
rabx-5	no	no (42)	no (20)	no
bli-4	emb. lethal	no (20)	-	no
C06C3.5	no	no (20)	no (20)	no

Supplemental movie legends

Movie S1. EFF-1 dynamics during cell fusion, related to Figures 2 and 5
Time lapse recording of an eff-1(hy21)II; mcIs46[dlg-1::RFP]; hyEx160[peff-1::eff-1::GFP] transgenic embryo. EFF-1::GFP is shown in green, DLG-1::RFP is displayed in magenta. The z-series were recorded every 15 sec using spinning disk confocal microscopy, multiple intensity projection of a z-stack is shown at each time point. Lower panel represents enlarged area of the embryo (same embryo as in Figure 5). Arrows mark the start of apical junction disassembly. Time in minutes:seconds is shown at the top right corner.

Movie S2. EFF-1::GFP dynamics during late stages in syncytia formation in the dorsal hypodermis, related to Figure 2
Another embryo of an eff-1(hy21)II; mcIs46[dlg-1::RFP]; hyEx160[peff-1::eff-1::GFP] strain showing later stages of hypodermis fusion. Arrows indicate the beginning of apical junction disassembly. Microscopy and time interval as in Movie S1.

Movie S3. EFF-1 dynamics after RAB-5 depletion by RNAi, related to Figure 2E
Time lapse recording of an eff-1(hy21)II; mcIs46[dlg-1::RFP]; hyEx160[peff-1::eff-1::GFP] embryo after rab-5(RNAi) treatment. Green represents EFF-1::GFP, magenta shows DLG-1::RFP. The z-series were recorded every 30 seconds, lower panel represents enlarged area of the fusion (Figure 2E). Arrow marks the beginning of apical junction disassembly. Note the disappearance of the bright EFF-1::GFP puncta, the localization of EFF-1::GFP on the junctions and the increase of numerous small and less bright EFF-1::GFP vesicular staining.

Movie S4. rab-5 depletion induces EFF-1 mislocalization to the apical plasma membrane and hyperfusion, related to Figures 2 and S2
Animated z-stack of an eff-1(hy21)II; mcIs46[dlg-1::RFP]; hyEx160[peff-1::eff-1::GFP] embryo treated with rab-5 RNAi. All cells in the dorsal hypodermis are fused to each other (hyperfusion) in contrast to three unfused syncytia (hyp5, 6, and 7) in the wt embryos (Figure 1A). EFF-1 is expressed on plasma membrane of hypodermis syncytia. Maximum intensity projection of the dorsal side of this embryo is shown in Supplemental Figure S2G, S2H.
Movie S5. Apical membrane EFF-1 expression and hyperfusion induced by dyn-1 RNAi, related to Figure 2F
Animated z-stack of live embryo expressing EFF-1::GFP and DLG-1::RFP after dyn-1 RNAi treatment. This embryo shows EFF-1::GFP expression on the apical membrane, defects in embryogenesis, and hyperfusion.

Movie S6. rab-5 RNAi depletion induce EFF-1::GFP accumulation to all surrounding apical membranes, related to Figure 6
Time lapse recording of an eff-1(hy21)II; mcIs46[dlg-1::RFP]; hyEx160[peff-1::eff-1::GFP] embryo after rab-5(RNAi) treatment. Green represents EFF-1::GFP, magenta shows DLG-1::RFP. The z-series were recorded every 30 seconds.

Supplemental experimental procedures

All nematode strains were maintained according to standard protocols (Brenner, 1974; Sulston and Hodgkin, 1988). In addition to the wild-type strain N2, the following mutations, transgenes and strains were used:

Markers of cell junctions and cytoskeleton

Strain	Description	Reference
SU93	jcls1[ajm-1::gfp; unc-29(+); rol-6(su1006)]	CGC; (Mohler et al., 1998)
ML1651	mcls46 [dlg-1::rfp; unc-119(+)]	Michel Labouesse; (Diogon et al., 2007)
CZ3464	ifb-1::gfp	Olaf Bossinger; (Pilipiuk et al., 2009)

Markers of intracellular organelles

Strain	Description	Reference
BP75	eff-1(hy21)II	BP; (Mohler et al., 2002)
BP347	eff-1(ok1021)II	BP; (Podbilewicz et al., 2006)
DH1336	bhs34[rme-8::GFP + rol-6(su1006)]	CGC; (Zhang et al., 2001)
RT122	pwls20[GFP::rab-5 + unc-119(+)]	CGC; (Sato et al., 2005)
RT311	pwls69[vha6p::GFP::rab-11 + unc-119(+)]	CGC; (Chen et al., 2006)
RT476	pwls170[vha6p::GFP::rab-7 + Cb unc-119(+)]	CGC; (Chen et al., 2006)
RT525	pwls206[vha6p::GFP::rab-10 + Cb unc-119(+)]	CGC; (Chen et al., 2006)
RT1043	pwls403[Ppie-1::mCherry::rab-5 + unc-119(+)]	CGC; (Sato et al., 2008)
RT1315	pwls481[Pvha-6::mans::GFP]	CGC; (Chen et al., 2006)
RT258	pwls50[Imp-1::GFP + Cb-unc-119(+)]	CGC; (Treusch et al., 2004)
DA2123	Plgg-1::GFP::LGG-1::rol-6	Hong Zhang; (Melendez et al., 2003)
RT1356	pwls524(pvha-6::GFP::ALX-1)	Barth Grant; (Shi et al., 2007)
RT4	pwls1(palx-1::GFP::ALX-1)	Barth Grant; (Shi et al., 2007)
RT1341	pwls518(pvha-6::GFP::HGRS-1)	Barth Grant; (Shi et al., 2007)
RT348	pwls87(pvha-6::GFP::RME-1)	Barth Grant; (Shi et al., 2007)
ML846	vha-8(mc38)IV; mcEx337[vha-5(+)::GFP; rol-6(su1006)]	CGC; (Lieggeois et al., 2006)
Traffic mutants

Strain	Mutant	Reference
CX51	dyn-1(ky51) X	CGC; (Clark et al., 1997)
VC900	alx-1(gk412) III	CGC; (Shi et al., 2007)
RT2	rab-10(q373) I	CGC; (Chen et al., 2006)
DH1201	rme-1(b1045) V	CGC; (Shi et al., 2007)
VC1026	rab-10(ol1494) I	CGC; (Shi et al., 2012)
RB1535	arf-1.1&F45E4.7(OK1840) IV	CGC; (Sato et al., 2014)
ML732	vha-5(mc38)/unc-24(e138) dpy-20(e1282) IV	CGC; (Liegeois et al., 2006)
JR2750	vha-17/ fus-1(w13)	Joel Rothman; (Kontani et al., 2005)
VC2199	rab-5(OK2605) I/hT2[bli-4(e937) let-2(q782) qls48(I;III)]	CGC; (Sato et al., 2014)
DH1206	rme-8(b1023) I	CGC; (Zhang et al., 2001)
VC1282	rabx-5(ok1763) III	CGC; (Sato et al., 2005)
RT206	rab-35(b1013) III	Barth Grant; unpublished

Strains constructed in this study:

Strain	Mutant	Reference
BP953	eff-1(ry21) II; mcls46 [dlg-1::rfp; unc-119(+)]	BP; this study
BP954	eff-1(ry21) II; mcls46; hyEx160[peff-1::eff-1::GFP]	BP; this study
BP955	rab-5(OK2605) I/hT2[bli-4(e937) let-2(q782) qls48(I;III)]; mcls46	BP; this study
BP956	rab-5(OK2605) I/hT2[bli-4(e937) let-2(q782) qls48(I;III); eff-1(ry21) II; mcls46[dlg-1::rfp; unc-119(+)]	BP; this study

Immunofluorescence of C. elegans embryos

Eggs were collected by hypochlorite treatment of gravid adult worms and transferred to poly-lysine coated slides. Embryos were permeabilized by the freeze-crack method (Strome and Wood, 1983) and fixed in 100% methanol (5 min), 100% acetone (5 min) at -20°C. Slides were washed for 10 min with PBS, and blocked with blocking solution of 0.2% Ez-Block (Biological Industries, Israel) in PBST (PBS with 0.01% Tween). Slides were incubated for 1 h at room temperature with primary antibodies, washed three times for 10 min each with PBS at room temperature, and incubated at room temperature for 1 h with Alexa488, Alexa568, or Alexa647 conjugated α-mouse or α-rabbit secondary antibodies (Molecular Probes) in PBST. Slides were washed three times for 10 min each in PBST and mounted in Fluoromount-G (Southern Biotech). The following primary antibodies were used at the dilutions indicated: α-EFF-1 (ascites 20.10 from mouse; at 1:1000; Fridman et al., Submitted); MH27 (α-AJM-1, mouse, at 1: 500), α-GFP (rabbit; 1:500; MBL), α-tubulin (mouse, Sigma, 1:500). α-DLG-1 antibody (rabbit, at 1:400) is a kind gift from Olaf Bossinger. MH46 (α-myotatin, mouse, at 1: 400) is a kind gift from Limor Broday, Antibodies against C. elegans proteins CYP33E1-s, PAS-7, HSP60-s were obtained from Developmental Studies Hybridoma Bank (Hadwiger et al., 2010) and used in 1:10 dilution. Texas-red X phalloidin (Molecular probes) in final concentration of 0.2 µM was added with secondary antibody.

Cell culture, live imaging and immunofluorescence of BHK cells

Baby Hamster Kidney (BHK) cells and their growth conditions were according to standard protocols (Stoker and Macpherson, 1964). Cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) supplemented with 10% Fetal Bovine Serum, 2 mM L-Glutamine, 100 µg/ml Penicillin and 100 µg/ml streptomycin (Biological Industries, Kibbutz Beit Haemek, Israel) and sodium pyruvate (Gibco) in a humid atmosphere of 5% CO2 up to a maximal density of 10^6/ml. Cells were transfected with 2 µg/ml of eff-1 pCAGGS DNA vector using Fugene 6 (Roche) at 1:4 ratio. After 24 hours of transfection the cells were fixed with 4% paraformaldehyde in PBS and
processed for immunofluorescence. Cells were incubated in 40 mM NH4Cl, washed in PBS, permeabilized in 0.1% tritonX-100 in PBS and blocked in 1% FBS in PBS. The coverslips were incubated 1 hour with anti-V5 1:500 (Invitrogen) mouse monoclonal antibodies at RT. The secondary antibodies were goat anti-mouse coupled to Alexa488 (Molecular Probes/Invitrogen), nuclei were visualized with DAPI (1 µg/ml) (Avinoam et al., 2011; Perez-Vargas et al., 2014).

Supplemental references

Avinoam, O., Fridman, K., Valansi, C., Abutbul, I., Zeev-Ben-Mordehai, T., Maurer, U.E., Sapir, A., Danino, D., Grunewald, K., White, J.M., et al. (2011). Conserved eukaryotic fusogens can fuse viral envelopes to cells. Science 332, 589-592.

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.

Chen, C.C., Schweinsberg, P.J., Vashist, S., Mareiniss, D.P., Lambie, E.J., and Grant, B.D. (2006). RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17, 1286-1297.

Clark, S.G., Shurland, D.L., Meyerowitz, E.M., Bargmann, C.I., and van der Bliek, A.M. (1997). A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proc Natl Acad Sci U S A 94, 10438-10443.

del Campo, J.J., Opoku-Serebruoh, E., Issaacscon, A.B., Scranton, V.L., Tucker, M., Han, M., and Mohler, W.A. (2005). Fusogenic activity of EFF-1 is regulated via dynamic localization in fusing somatic cells of C. elegans. Curr Biol 15, 413-423.

Diogon, M., Wissler, F., Quintin, S., Nagamatsu, Y., Sookhareea, S., Landmann, F., Hutter, H., Vitale, N., and Labouesse, M. (2007). The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis. Development 134, 2469-2479.

Gattegno, T. (2003). Isolation and characterization of cell-fusion mutants in C. elegans. In Biology (Technion).

Hadwiger, G., Dour, S., Arur, S., Fox, P., and Nonet, M.L. (2010). A monoclonal antibody toolkit for C. elegans. PLoS One 5, e10161.

Kontani, K., Moskowitz, I.P., and Rothman, J.H. (2005). Repression of cell-cell fusion by components of the C. elegans vacuolar ATPase complex. Dev Cell 8, 787-794.

Liegois, S., Benedetto, A., Garnier, J.M., Schwab, Y., and Labouesse, M. (2006). The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173, 949-961.

Melendez, A., Tallozcy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387-1391.

Mohler, W.A., Shemer, G., del Campo, J.J., Valansi, C., Opoku-Serebruoh, E., Scranton, V., Assaf, N., White, J.G., and Podbilewicz, B. (2002). The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev Cell 2, 355-362.

Mohler, W.A., Simske, J.S., Williams-Masson, E.M., Hardin, J.D., and White, J.G. (1998). Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr Biol 8, 1087-1090.

Perez-Vargas, J., Krey, T., Valansi, C., Avinoam, O., Haouz, A., Jamin, M., Raveh-Barak, H., Podbilewicz, B., and Rey, F.A. (2014). Structural basis of eukaryotic cell-cell fusion. Cell 157, 407-419.

Pilipiuk, J., Lefebvre, C., Wiesenfahrt, T., Legouis, R., and Bossinger, O. (2009). Increased IP3/Ca2+ signaling compensates depletion of LET-413/DLG-1 in C. elegans epithelial junction assembly. Dev Biol 327, 34-47.
Podbilewicz, B., Leikina, E., Sapir, A., Valansi, C., Suissa, M., Shemer, G., and Chernomordik, L.V. (2006). The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 11, 471-481.

Sato, K., Norris, A., Sato, M., and Grant, B.D. (2014). C. elegans as a model for membrane traffic. WormBook, 1-47.

Sato, M., Sato, K., Fonarev, P., Huang, C.J., Liou, W., and Grant, B.D. (2005). Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7, 559-569.

Sato, M., Sato, K., Liou, W., Pant, S., Harada, A., and Grant, B.D. (2008). Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. Embo j 27, 1183-1196.

Shemer, G., Suissa, M., Kolotuev, I., Nguyen, K.C., Hall, D.H., and Podbilewicz, B. (2004). EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr Biol 14, 1587-1591.

Shi, A., Liu, O., Koenig, S., Banerjee, R., Chen, C.C., Eimer, S., and Grant, B.D. (2012). RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A 109, E2306-2315.

Shi, A., Pant, S., Balklava, Z., Chen, C.C., Figueroa, V., and Grant, B.D. (2007). A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport. Curr Biol 17, 1913-1924.

Stoker, M., and Macpherson, I. (1964). SYRIAN HAMSTER FIBROBLAST CELL LINE BHK21 AND ITS DERIVATIVES. Nature 203, 1355-1357.

Strome, S., and Wood, W.B. (1983). Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35, 15-25.

Sulston, J., and Hodgkin, J. (1988). Methods. In The Nematode Caenorhabditis elegans, W.B. Wood, ed. (Cold Spring Harbor: Cold Spring Harbor Laboratory), pp. 587-606.

Treusch, S., Knuth, S., Slaugenhaupt, S.A., Goldin, E., Grant, B.D., and Fares, H. (2004). Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc Natl Acad Sci U S A 101, 4483-4488.

Woo, W.M., Goncharov, A., Jin, Y., and Chisholm, A.D. (2004). Intermediate filaments are required for C. elegans epidermal elongation. Dev Biol 267, 216-229.

Zhang, Y., Grant, B., and Hirsh, D. (2001). RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol Biol Cell 12, 2011-2021.