A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility

Sergio Frigeri1, Maurizio Grasselli2 and Elisabetta Rocca1,3

1 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin, Germany
2 Dipartimento di Matematica, Politecnico di Milano, Milano I-20133, Italy
3 Dipartimento di Matematica 'F. Enriques', Universita' degli Studi di Milano, Milano I-20133, Italy

E-mail: SergioPietro.Frigeri@wias-berlin.de, maurizio.grasselli@polimi.it and Elisabetta.Rocca@wias-berlin.de

Received 8 April 2014, revised 29 January 2015
Accepted for publication 9 March 2015
Published 17 April 2015

Recommended by J Lowengrub

Abstract

We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier–Stokes system coupled with a convective non-local Cahn–Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn–Hilliard equation with degenerate mobility and singular potential in dimension three.

Keywords: Navier–Stokes equations, non-local Cahn–Hilliard equations, degenerate mobility, incompressible binary fluids, weak solutions, global attractors
Mathematics Subject Classification: 35Q30, 37L30, 45K05, 76D03, 76T99

1. Introduction

Model H is a diffuse interface model for incompressible isothermal two-phase flows which consists of the Navier–Stokes equations for the (averaged) velocity u nonlinearly coupled with a convective Cahn–Hilliard equation for the (relative) concentration difference ϕ.
The resulting evolution system has been studied by several authors (cf. e.g., [1, 2, 13, 14, 24–26, 44, 52, 54, 55] and references therein, cf also [5, 12, 32, 38] for models with shear dependent viscosity). In the case of matched densities, setting the constant density equal to one, the system can be written as follows:

\[u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla \pi = \mu \nabla \varphi + h \quad \text{in } \Omega \times (0, T), \tag{1.1} \]
\[\text{div}(u) = 0 \quad \text{in } \Omega \times (0, T), \tag{1.2} \]
\[\varphi_t + u \cdot \nabla \varphi = \text{div}(\nu(\varphi) \nabla \mu) \quad \text{in } \Omega \times (0, T), \tag{1.3} \]
\[\mu = -\sigma \Delta \varphi + \frac{1}{\sigma} F'(\varphi) \quad \text{in } \Omega \times (0, T), \tag{1.4} \]

where \(\Omega \subset \mathbb{R}^d \), \(d = 2, 3 \), is a bounded domain. Here \(\nu > 0 \) is the viscosity (assumed to be constant for simplicity), \(\pi \) is the pressure, \(h \) is a given (non-gradient) external force, \(m \) is the so-called mobility and \(\sigma > 0 \) is related to the (diffuse) interface thickness.

A more realistic version of the Cahn–Hilliard equation is characterized by a (spatially) non-local free energy. The physical relevance of non-local interactions has already been pointed out in the pioneering paper [49] (see also [18, section 4.2] and references therein, cf also [5, 12, 32, 38] for references therein). The difference between local and non-local models consists in the choice of the interaction potential. The non-local contribution to the free energy typically has the form \(\int_\Omega J(x, y) |\varphi(x) - \varphi(y)|^2 \, dy \) with a given symmetric kernel \(J \) defined on \(\Omega \times \Omega \); its local Ginzburg–Landau counterpart has the form \((\sigma/2)|\nabla \varphi(x)|^2 \) with a positive parameter \(\sigma \). The latter can be obtained as a formal limit as \(\zeta \to \infty \) from the non-local one with the choice \(J(x, y) = \zeta^{d+2} J(|\zeta(x - y)|^2) \), where \(J \) is a non-negative function with support in \([0, 1]\). This follows from the formula formally deduced in [40]

\[
\int_\Omega \zeta^{d+2} J(|\zeta(x - y)|^2) |\varphi(x) - \varphi(y)|^2 \, dy = \int_{\Omega_\zeta(x)} J(|z|^2) \left| \frac{\varphi(x + z) - \varphi(x)}{\zeta} \right|^2 \, dz
\]

for a sufficiently regular \(\varphi \), where \(\sigma = 2/d \int_{\mathbb{R}^d} J(|z|^2)|z|^2 \, dz \) and \(\Omega_\zeta(x) = \zeta(\Omega - x) \). Here we have used the identity \(\int_{\mathbb{R}^d} J(|z|^2)(e \cdot z)^2 \, dz = 1/d \int_{\mathbb{R}^d} J(|z|^2)|z|^2 \, dz \) for every unit vector \(e \in \mathbb{R}^d \). As a consequence, the Cahn–Hilliard equation (1.3)–(1.4) can be viewed as an approximation of the non-local one.

Non-local interactions have been taken into account in a series of recent papers (see [15, 19–21, 23]) where a modification of the model \(H \) with matched densities has been considered and analysed. More precisely, a system of the following form has been considered (cf [15])

\[
\varphi_t + u \cdot \nabla \varphi = \text{div}(m(\varphi) \nabla \mu) \quad \text{in } \Omega \times (0, T), \tag{1.5} \]
\[
\mu = a \varphi - J * \varphi + F'(\varphi) \quad \text{in } \Omega \times (0, T), \tag{1.6} \]
\[
u u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla \pi = \mu \nabla \varphi + h \quad \text{in } \Omega \times (0, T), \tag{1.7} \]
\[
\text{div}(u) = 0 \quad \text{in } \Omega \times (0, T), \tag{1.8} \]
\[
\frac{\partial \mu}{\partial n} = 0, \quad u = 0 \quad \text{on } \partial \Omega \times (0, T), \tag{1.9} \]
\[
u u(0) = u_0, \quad \varphi(0) = \varphi_0 \quad \text{in } \Omega, \tag{1.10} \]

(cf. e.g., [8, 33–37, 42]).
where \(n \) stands for the outward normal to \(\partial\Omega \), while \(u_0 \) and \(\varphi_0 \) are given initial conditions. Here the interaction kernel \(J : \mathbb{R}^d \to \mathbb{R} \) is an even function and
\[
\alpha(x) = \int_{\Omega} J(x - y) dy.
\]

The non-local system (1.5)–(1.8) is more challenging with respect to (1.1)–(1.4), even in dimension two. One of the reasons for this is that \(\varphi \) has a poorer regularity and this influences the treatment of the Navier–Stokes system through the so-called Korteweg force \(\mu \nabla \varphi \). For instance, uniqueness in dimension two is an open issue under sufficiently general conditions which ensures the existence of a weak solution (see [15, remark 8], cf also [19]). Due to this difficulty, only the constant mobility case has been considered so far (although viscosity depending on \(\varphi \) has been dealt with). Let us briefly recall the main existing results for system (1.5)–(1.8) with \(m \) constant.

In [15] the authors proved the existence of global dissipative weak solutions in two and three dimensions, and studied some regularity properties, for the case of regular potentials of arbitrary polynomial growth. For such potentials the long term behaviour of weak solutions was analysed in [20]. More precisely, the existence of the global attractor in two dimensions and the trajectory attractor in three dimensions was established. In [21] the previous results of [15, 20] were extended to the case of singular potentials. The existence of (unique) strong solutions in two dimensions for regular potentials with arbitrary polynomial growth were obtained in [23]. There, in addition, the regularity of the global attractor and the convergence of weak solutions to single equilibria were shown.

The uniqueness of weak solutions in two dimensions has been demonstrated only recently for both regular and singular potentials (see [19]). In the same paper, further results are proven. For instance, the existence of strong solutions and weak–strong uniqueness for the case of non-constant (i.e., \(\varphi \)-dependent) viscosity and regular potentials, the existence of exponential attractors (regular potentials) and the connectedness of the global attractor in the case of constant viscosity.

On the other hand, despite the variety of results with \(m \) constant, in the rigorous derivation of the non-local Cahn–Hilliard equation performed in [29] the mobility depends on \(\varphi \) and degenerates at the pure phases, while the potential is of logarithmic type. This motivates the main goal of this contribution, namely the analysis of the so-called non-local Cahn–Hilliard–Navier–Stokes system in the case of degenerate mobility and singular potential.

The local Cahn–Hilliard equation with degenerate mobility (i.e., system (1.5)–(1.10) with \(u = 0 \)) was considered in the seminal paper [17], where the authors established the existence of a weak solution (cf also [43, 48] and references therein, for non-degenerate mobility see [10, 50]). This result was then extended to the standard (local) Cahn–Hilliard–Navier–Stokes system in [13]. The non-local Cahn–Hilliard equation with degenerate mobility and logarithmic potential was rigorously justified and analysed in [29] (see also [31] and references therein). In particular, in the case of periodic boundary conditions, an existence and uniqueness result was proven in [30]. Then a more general case was considered in [28]. The convergence to single equilibria was recently studied in [45,46] (see also [27] for further results).

Inspired by the strategy devised in [17], we first analyse the non-local system by taking a non-degenerate mobility \(m \) and a regular potential \(F \) with polynomial growth. We prove the existence of a global weak solution which satisfies an energy inequality (equality if \(d = 2 \)). This result extends [20] and allows us to construct a rigorous approximation of the case where \(m \) is degenerate and \(F \) is singular (e.g. logarithmic). Therefore we can pass to the limit and obtain a similar result for the latter case. In addition, since the energy identity holds in two dimensions, we can construct a generalized semiflow which possesses a global attractor by using Ball’s method (see [9]). In the above mentioned recent contribution [19], the uniqueness of weak solutions to system (1.5)–(1.8) with degenerate mobility and singular potential in two dimensions has also been proven (constant viscosity). Hence, we can say that our semiflow
is indeed a semigroup and the global attractor is connected. Regarding the three-dimensional (3D) case, the validity of a suitable energy inequality (cf (3.46)) allows us to generalize the results on the trajectory attractors (cf [20, 21]) to system (1.5)–(1.8) with degenerate mobility and singular potential. By means of Ball’s approach, we can also show that the convective non-local Cahn–Hilliard equation with degenerate mobility and singular potential possesses a (connected) global attractor. In this case uniqueness can be proven even in dimension three. Note that this result entails, in particular, that the non-local Cahn–Hilliard equation which has been obtained as hydrodynamic limit in [29] has indeed a global attractor.

We point out that the uniqueness of solutions is still an open issue for the local Cahn–Hilliard equation analysed in [17]. This is one of the main advantages of the non-local versus the local. We recall that the uniqueness of weak solutions and continuous dependence estimates is a fundamental starting point, for example, in view of the study of related optimal control problems (cf. [56]).

Let us note here that the main difficulty encountered while dealing with the degenerate mobility case is that the gradient of the chemical potential μ in (1.6) can no longer be controlled in any L^p space. Hence, in order to obtain an existence result a suitable notion of weak solution needs to be introduced (see [17] for the local Cahn–Hilliard equation). More precisely, in this new formulation the gradient of μ no longer appears (see definition 2 in section 4). It worth observing that, in the present case, our main theorem (2) does not require the (conserved) mean value of the order parameter φ to be strictly between -1 and 1, but $|\int_\Omega \varphi_0| \leq |\Omega|$ suffices. Thus the model allows pure phase solutions for all $t \geq 0$. This is not possible in the case of constant or strongly degenerate mobility (see remarks 7 and 8 for further comments on this topic).

We conclude by observing that it would be particularly interesting (albeit non-trivial) to extend the present and previous results on non-local Cahn–Hilliard–Navier–Stokes systems to a model with unmatched densities (for the local case see [3,4] and references therein) or to the compressible case (see [6] for the local Cahn–Hilliard equation).

In this regard, it is worth mentioning that a first result on the existence of weak solutions for the non-local version of the model with unmatched densities proposed in [7] has recently been obtained (see [22]). Only the non-degenerate mobility and singular potential have been considered. However, we think that the case of degenerate mobility can also be handled by combining the methods of [22] with those developed in the present contribution.

The structure of this paper is as follows. In section 2 we introduce the notation and the functional setting. Section 3 is devoted to proving the existence of a global weak solution satisfying a suitable energy inequality (equality in the two-dimensional (2D) case) when the mobility is non-degenerate and F is regular. In section 4, using a convenient approximation scheme, we extend the proven result to the case of degenerate mobility and a singular F (e.g. of logarithmic type). Some regularity issues for φ and μ are also discussed. Section 5 is devoted to the existence of a global attractor in the 2D case. Finally, in section 6, we consider the convective non-local Cahn–Hilliard equation with degenerate mobility. We deduce the existence of a global weak solution from the previous result for the coupled system. Then, even in dimension three, we establish the uniqueness of weak solutions as well as the existence of a (connected) global attractor under rather general assumptions on F, J and m.

2. Notation and functional setting

We set $H := L^2(\Omega)$ and $V := H^1(\Omega)$, where Ω is a bounded connected open subset of \mathbb{R}^d, $d = 1, 2$, with a sufficiently smooth boundary (say, of class $C^{1,1}$). If X is a (real) Banach
space, X' will denote its dual and (\cdot, \cdot) will stand for the duality pairing between X and X'.

For every $f \in V'$ we denote by \overline{f} the average of f over Ω, i.e., $\overline{f} := |\Omega|^{-1}(f, 1)$. Here $|\Omega|$ is the Lebesgue measure of Ω. Let us introduce also the spaces $V_0' := \{v \in V : \overline{v} = 0\}$, $V_0' := \{f \in V' : \overline{f} = 0\}$ and the operator $A : V \to V'$, $A \in \mathcal{L}(V, V')$ defined by

$$\langle Au, v \rangle := \int_{\Omega} \nabla u \cdot \nabla v \quad \forall u, v \in V.$$

We recall that A maps V onto V_0' and the restriction of A to V_0 maps V_0 onto V_0' isomorphically. Let us denote by $\mathcal{N} : V_0' \to V_0$ the inverse map defined by

$$ANf = f, \quad \forall f \in V_0' \quad \text{and} \quad \mathcal{N}Au = u, \quad \forall u \in V_0.$$

As is well known, for every $f \in V_0'$, Nf is the unique solution with zero mean value of the Neumann problem

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega, \\
\frac{\partial u}{\partial n} = 0, & \text{on } \partial \Omega.
\end{cases}$$

Furthermore, the following relations hold:

$$\langle Au, Nf \rangle = \langle f, u \rangle, \quad \forall u \in V, \quad \forall f \in V_0',$$

$$\langle f, Ng \rangle = \langle g, Nf \rangle = \int_{\Omega} \nabla(Nf) \cdot \nabla(Ng), \quad \forall f, g \in V_0'.$$

Recall that A can be also viewed as an unbounded operator $A : D(A) \subset H \to H$ from the domain $D(A) = \{\phi \in H^2(\Omega) : \phi/\delta n = 0 \text{ on } \partial \Omega\}$ onto H and that \mathcal{N} can also be viewed as a self-adjoint compact operator $\mathcal{N} = A^{-1} : H \to H$ in H. Hence, the fractional powers A^r and A^{s}, for $r, s \geq 0$, can be defined through classical spectral theory.

We shall repeatedly need the standard Hilbert spaces for the Navier–Stokes equations with a no-slip boundary condition (see, e.g., [53])

$$G_{\text{div}} := \{u \in C_0^\infty(O)^d : \text{div}(u) = 0\}, \quad V_{\text{div}} := \{u \in H_0^1(O)^d : \text{div}(u) = 0\}.$$

We denote by $\|\cdot\|$ and (\cdot, \cdot) the norm and the scalar product on both H and G_{div}, respectively. Instead, V_{div} is endowed with the scalar product

$$(u, v)_{V_{\text{div}}} = (\nabla u, \nabla v), \quad \forall u, v \in V_{\text{div}}.$$

In the proof of theorem 1 we shall introduce the family of the eigenfunctions of the Stokes operator S with a no-slip boundary condition. We recall that $S : D(S) \subset G_{\text{div}} \to G_{\text{div}}$ is defined as $S := -\mathcal{P}\Delta$ with domain $D(S) = H^2(\Omega)^d \cap V_{\text{div}}$, where $\mathcal{P} : L^2(\Omega)^d \to G_{\text{div}}$ is the Leray projector. Note that we have

$$(Su, v) = (u, v)_{V_{\text{div}}} = (\nabla u, \nabla v), \quad \forall u \in D(S), \quad \forall v \in V_{\text{div}},$$

and $S^{-1} : G_{\text{div}} \to G_{\text{div}}$ is a self-adjoint compact operator in G_{div}. Thus, in accordance with classical results, S possesses a sequence of eigenvalues $\{\lambda_j\}$ with $0 < \lambda_1 \leq \lambda_2 \leq \cdots$ and $\lambda_j \to \infty$, and a family $\{w_j\} \subset D(S)$ of eigenfunctions which is orthonormal in G_{div}. Let us also recall the Poincaré inequality

$$\lambda_1 \|u\|^2 \leq \|
abla u\|^2, \quad \forall u \in V_{\text{div}}.$$

The trilinear form b which appears in the weak formulation of the Navier–Stokes equations is defined as follows,

$$b(u, v, w) = \int_{\Omega} (u \cdot \nabla)v \cdot w, \quad \forall u, v, w \in V_{\text{div}}.$$
We recall that we have
\[b(u, w, v) = -b(u, v, w), \quad \forall u, v, w \in V_{dv}. \]
For the basic estimates satisfied by the trilinear form \(b \) the reader is referred to, e.g., [53].

Finally, if \(X \) is a (real) Banach space and \(\tau \in \mathbb{R} \), we shall denote by \(L_{\tau}^p(\tau, \infty; X) \), \(1 \leq p < \infty \), the space of functions \(f \in L_{\text{loc}}^p([\tau, \infty); X) \) that are translation bounded in \(L_{\text{loc}}^p([\tau, \infty); X) \), i.e. such that
\[\|f\|_{L_{\tau}^p(\tau, \infty; X)} := \sup_{\tau \geq t} \int_{\tau}^{t+1} \|f(s)\|_X^p \, ds < \infty. \]

(2.1)

3. Non-degenerate mobility

Let us first consider the case where the mobility \(m \) does not degenerate, i.e. \(m \) satisfies the following assumption

\[(H1) \quad m \in C_{\text{loc}}^{0,1}(\mathbb{R}) \text{ and there exist } m_1, m_2 > 0 \text{ such that } m_1 \leq m(s) \leq m_2, \quad \forall s \in \mathbb{R}. \]

The other assumptions we need are those on the kernel \(J \), on the potential \(F \) and the forcing term \(h \) which are the same as in [15].

\[(H2) \quad J \in W^{1,1}(\mathbb{R}^d) \text{ and satisfies } J(z) = J(-z), \quad a(x) := \int_{\Omega} J(x - y)dy \geq 0, \quad \text{a.e. } x \in \Omega, \]

\[a^* := \sup_{x \in \Omega} \int_{\Omega} J(x - y)dy < \infty, \quad b := \sup_{x \in \Omega} \int_{\Omega} |\nabla J(x - y)|dy < \infty. \]

\[(H3) \quad F \in C_{\text{loc}}^{2,1}(\mathbb{R}) \text{ and there exists } c_0 > 0 \text{ such that } F''(s) + a(x) \geq c_0, \quad \forall s \in \mathbb{R}, \quad \text{a.e. } x \in \Omega. \]

\[(H4) \quad \text{There exist } c_1 > (a^* - a_*)/2, \text{ where } a_* := \inf_{x \in \Omega} \int_{\Omega} J(x - y)dy, \]

and \(c_2 \in \mathbb{R} \) such that
\[F(s) \geq c_1 s^2 - c_2, \quad \forall s \in \mathbb{R}. \]

\[(H5) \quad \text{There exist } c_3 > 0, c_4 \geq 0 \text{ and } r \in (1,2] \text{ such that } |F'(s)|^r \leq c_3 |F(s)| + c_4, \quad \forall s \in \mathbb{R}. \]

\[(H6) \quad h \in L^2(0, T; V_{dv}) \quad \text{for all } T > 0. \]

Some further regularity properties of the weak solution can be established by using the following assumption:

\[(H7) \quad F \in C_{\text{loc}}^{2,1}(\mathbb{R}) \text{ and there exist } c_5 > 0, c_6 > 0 \text{ and } p > 2 \text{ such that } F''(s) + a(x) \geq c_5|x|^{p-2} - c_6, \quad \forall s \in \mathbb{R}, \quad \text{a.e. } x \in \Omega. \]

Remark 1. A well-known example of potential \(F \) and kernel \(J \) which satisfy the above conditions is given by \(F(s) = (s^2 - 1)^2 \) and \(J(x) = j_3|x|^{-\alpha} \), if \(d = 3 \), and \(J(x) = -j_2 \log |x| \), if \(d = 2 \), where \(j_2 \) and \(j_3 \) are positive constants. More generally, note that we can suppose \(J \in W^{1,1}(\Omega - \Omega) \), where \(\Omega - \Omega := \{z \in \mathbb{R}^d : z = x - y, \ x, y \in \Omega\}. \)
Then, a couple \([u, \varphi] \) is a weak solution to (1.5)–(1.10) on \([0, T]\) if
\[
\begin{align*}
(u, \varphi) & \in L^\infty(0, T; G_{\text{div}}) \cap L^2(0, T; V_{\text{div}}), \quad \varphi \in L^\infty(0, T; H) \cap L^2(0, T; V),
\end{align*}
\]
and the following variational formulation is satisfied for almost any \(t \in (0, T)\)
\[
\langle \varphi_t, \psi \rangle + (m(\varphi)\nabla \mu, \nabla \psi) = (u, \nabla \psi), \quad \forall \psi \in V,
\]
\[
\langle u_t, v \rangle + v(\nabla u, \nabla v) + b(u, u, v) = -\langle \varphi \nabla \mu, v \rangle + \langle h, v \rangle, \quad \forall v \in V_{\text{div}},
\]
together with the initial conditions (1.10).

Remark 2. It is easy to see that \(u \in C_w([0, T]; G_{\text{div}}) \) and \(\varphi \in C_w([0, T]; H)\). Hence, the initial conditions (1.10) make sense.

Theorem 1. Let \(u_0 \in G_{\text{div}}, \varphi_0 \in H\) such that \(F(\varphi_0) \in L^1(\Omega)\) and suppose that (H1)–(H6) are satisfied. Then, for every given \(T > 0\), there exists a weak solution \([u, \varphi] \) to (1.5)–(1.10) in the sense of definition 1 satisfying the energy inequality
\[
\mathcal{E}(u(t), \varphi(t)) + \int_0^t \left(\frac{1}{2} \| u_\tau \|^2 + \frac{1}{4} \int_{\Omega} J(x - y)(\varphi(x, \tau) - \varphi(y, \tau))^2 \, dx \, dy + \int_{\Omega} F(\varphi(\tau)) \right) \, d\tau \leq \mathcal{E}(u_0, \varphi_0) + \int_0^T \langle h(\tau), u_\tau \rangle \, d\tau,
\]
for every \(t > 0\), where we have set
\[
\mathcal{E}(u(t), \varphi(t)) = \frac{1}{2} \| u(t) \|^2 + \frac{1}{4} \int_{\Omega} J(x - y)(\varphi(x, \tau) - \varphi(y, \tau))^2 \, dx \, dy + \int_{\Omega} F(\varphi(\tau)).
\]
Furthermore, assume that assumption (H4) is replaced by (H7). Then, for every \(T > 0\) there exists a weak solution \([u, \varphi] \) to (1.5)–(1.10) on \([0, T]\) corresponding to \([u_0, \varphi_0] \) (in the sense of definition 1) satisfying (3.1), (3.2) and also
\[
\begin{align*}
\varphi & \in L^\infty(0, T; L^p(\Omega)),
\varphi_t & \in L^2(0, T; V'), \quad \text{if} \quad d = 2 \quad \text{or} \quad (d = 3 \text{ and } p \geq 3),
\end{align*}
\]
\[
\begin{align*}
u_t & \in L^2(0, T; V'_{\text{div}}), \quad \text{if} \quad d = 2.
\end{align*}
\]
Finally, assume that \(d = 2\) and (H4) is replaced by (H7). Then,
1. any weak solution satisfies the energy identity
\[
\frac{d}{dt} \mathcal{E}(u, \varphi) + \| \nabla u \|^2 + \sqrt{m(\varphi)\nabla \mu} \| = \langle h(t), u \rangle, \quad t > 0.
\]
 In particular we have \(u \in C([0, \infty); G_{\text{div}}, \varphi \in C([0, \infty); H)\) and \(\int_{\Omega} F(\varphi) \in C([0, \infty)).\)
2. If in addition \(h \in L^2_{\text{loc}}(0, \infty; V'_{\text{div}})\), then any weak solution also satisfies the dissipative estimate
\[
\mathcal{E}(u(t), \varphi(t)) \leq \mathcal{E}(u_0, \varphi_0)e^{-kt} + F(m_0)\Omega + K, \quad \forall t \geq 0,
\]
where \(m_0 = (\varphi_0, 1)\) and \(K\) are two positive constants which are independent of the initial data, with \(K\) depending on \(\Omega, v, J, F\) and \(\| h \|_{L^2_{\text{loc}}(0, \infty; V'_{\text{div}})}\).
Proof. The argument follows the lines of [15, proof of theorem 1] and is based on a Faedo–Galerkin approximation scheme. For the reader’s convenience, we provide a sketch of this scheme. Let us first assume that \(\psi_0 \in D(B) \), where the operator \(B = -\Delta + I \) with a homogeneous Neumann boundary condition. We introduce the family \(\{ w_j \}_{j \geq 1} \) of the eigenfunctions of the Stokes operator \(S \) as a Galerkin base in \(V \). We define the \(n \)-dimensional subspaces \(\mathcal{W}_n := \langle w_1, \ldots, w_n \rangle \) and \(\Psi_n := \langle \psi_1, \ldots, \psi_n \rangle \) and consider the orthogonal projectors on these subspaces in \(G_{0 \psi} \) and \(H \), respectively, i.e., \(\tilde{P}_n := P_{\Psi_n} \) and \(P_n := P_{\psi_n} \). We then look for three functions of the form

\[
u_n(t) = \sum_{k=1}^{n} a_k^{(n)}(t) w_k, \quad \psi_n(t) = \sum_{k=1}^{n} b_k^{(n)}(t) \psi_k, \quad \mu_n(t) = \sum_{k=1}^{n} c_k^{(n)}(t) \psi_k
\]

which solve the following approximating problem

\[egin{align*}
(\psi_n', \psi) + (m(\psi_n) \nabla \mu_n, \nabla \psi) &= (u_n \psi_n, \nabla \psi), \\
(u_n', v) + v(\nabla u_n, \nabla v) + b(u_n, u_n, v) &= -(\psi_n \nabla \mu_n, v) + (h_n, v), \\
\mu_n &= P_n(a \psi_n - J * \varphi_n + F'(\varphi_n)), \\
\varphi_n(0) &= \varphi_{0n}, \quad u_n(0) = u_{0n}.
\end{align*}
\]

(3.14)–(3.17) has a unique maximal solution \(a^{(n)} := \langle a_1^{(n)}, \ldots, a_n^{(n)} \rangle, b^{(n)} := \langle b_1^{(n)}, \ldots, b_n^{(n)} \rangle \) on \([0, T^*_n] \) with \(a^{(n)}, b^{(n)} \in C^1([0, T^*_n]; \mathbb{R}^n) \).

By taking \(\psi = \mu \) and \(v = u_n \) in (3.14) and (3.15), respectively, and adding the resulting identities together, we obtain

\[
d\tau \mathcal{E}(u_n, \varphi_n) + \nu \|\nabla u_n\|^2 + \|\sqrt{m(\varphi_n)} \nabla \mu_n\|^2 = (h_n, u_n),
\]

where \(\mathcal{E} \) is defined as in (3.8). Integrating this identity between 0 and \(t \)

\[
\mathcal{E}(u_n(t), \varphi_n(t)) + \int_0^t \left(v \|\nabla u_n\|^2 + \|\sqrt{m(\varphi_n)} \nabla \mu_n\|^2 \right) d\tau = \mathcal{E}(u_{0n}, \varphi_{0n}) + \int_0^t \langle h_n(\tau), u_n \rangle d\tau.
\]

(3.18)

Observe now that

\[
\int_0^t \langle h_n(\tau), u_n \rangle d\tau \leq \frac{\nu}{2} \int_0^t \|\nabla u_n\|^2 d\tau + \frac{1}{2\nu} \int_0^t \|h_n\|^2_{L^2} d\tau.
\]

On the other hand, taking (H2) and (H4) into account, we obtain

\[
\mathcal{E}(u_n, \varphi_n) = \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{2} \sqrt{\alpha} \varphi_n^2 - \frac{1}{2} (\varphi_n, I * \varphi_n) + \int_{\Omega} F(\varphi_n)
\geq \frac{1}{2} \|\nabla u_n\|^2 + \frac{1}{2} \int_{\Omega} a \varphi_n^2 - \frac{1}{2} \|\varphi_n\| J * \varphi_n + \int_{\Omega} (c_1 \varphi_n^2 - c_2)
\geq \frac{1}{2} \|\nabla u_n\|^2 + c_1' \|\nabla u_n\|^2 - c_2',
\]

(3.19)

where \(c_1' = (a_1 - a^*)/2 + c_1 > 0 \) and \(c_2' = c_2 |\Omega| \). Also using the convergence assumption for \(\{u_{0n}\}, \{h_n\} \), the fact that \(\varphi_{0n} \rightarrow \varphi_0 \) in \(H^2(\Omega) \) (since \(\varphi_0 \in D(B) \)) and the lower bound...
with \(C \) independent of \(n \). Here (3.22) follows from a comparison of the expression of \(\mathcal{E}(\mu_n, \varphi_n) \) (see (3.19)), on account of (3.20) and (3.21), with the fact that the sequence of \(\mathcal{E}(\mu_n, \varphi_n) \) is bounded in \(L^\infty(0, T) \) (thanks to (3.18) and (3.19)) and assumption (H4). The latter, in particular, yields that \(F \) is bounded from below.

Henceforth we shall denote by \(C \) a positive constant which is dependent at most on \(\| u_0 \|, \| \varphi_0 \|, \int_\Omega F(\varphi_0), \| h \|_{L^2(0, T; V'_0)} \) and on \(J, F, v, m_1 \) and \(\Omega \), but is independent of \(n \). Instead, \(c \) will stand for a generic positive constant dependent on the parameters of the problem only, i.e., on \(J, F, v, m_1 \) and \(\Omega \), but independent of \(n \). The values of both \(C \) and \(c \) may possibly vary even within the same line.

Let us now recall the estimate
\[
\| \nabla \mu_n \|^2 \geq \frac{c_0}{4} \| \varphi_n \|^2 - c \| \varphi_n \|^2,
\]
which can be deduced as in [15, proof of theorem 1] by multiplying \(\mu_n \) by \(-\Delta \varphi_n\) in \(L^2 \) and integrating by parts. By means of (3.24), from (3.21) and (3.23) we obtain
\[
\| \varphi_n \|_{L^2(0, T; V)} \leq C.
\]
Due to (H5), which in particular implies that \(|F(s)| \leq c |F(s)| + c \), we have
\[
|\mathcal{P}_n| = \left| \int_\Omega F(\varphi_n) \right| \leq c \| F(\varphi_n) \|_{L^1(\Omega)} + c \leq C,
\]
and therefore, using (3.22), (3.23) and the Poincaré–Wirtinger inequality, we deduce
\[
\| \mu_n \|_{L^2(0, T; V)} \leq C.
\]
In addition, (H5) and (3.22) yield the following control
\[
\| F(\varphi_n) \|_{L^\infty(0, T; L^1(\Omega))} \leq C.
\]
Let us now derive the estimates for the sequences of time derivatives \(\{u'_n\} \) and \(\{\varphi'_n\} \). By taking \(\psi_1 := P_n \psi \), for \(\psi \in V \) arbitrary, as a test function in (3.14) we obtain
\[
\langle \psi_1', \psi_1 \rangle = (\varphi'_n, \psi_1) = -(m(\varphi_n) \nabla \mu_n, \nabla \psi_1) + (u_n \varphi_n, \nabla \psi_1).
\]
Assume first \(d = 3 \). We have
\[
|\langle \psi'_1, \psi_1 \rangle| \leq m_2 \| \nabla \mu_n \| \| \nabla \psi_1 \| + \| u_n \|_{L^6(\Omega)} \| \varphi_n \|_{L^2(\Omega)} \| \nabla \psi_1 \|
\leq c \left(\| \nabla \mu_n \| + \| u_n \| \| \varphi_n \|^{1/2} \| \varphi_n \|^{1/2} \| \nabla \psi_1 \| \right)
\leq C \left(\| \nabla \mu_n \| + \| u_n \| \| \varphi_n \|^{1/2} \| \nabla \psi \| \right) \forall \psi \in V,
\]
where in the last estimate we have used (3.21). Then, by (3.20), (3.23) and (3.25) from (3.28) we obtain
\[
\| \varphi'_n \|_{L^2(0, T; V')} \leq C.
\]
For \(d = 2 \), by arguing as above it is not difficult to infer the following bound
\[
\| \varphi'_n \|_{L^2(0, T; V')} \leq C.
\]
As far as the sequence \([u'_n]\) is concerned, by arguing exactly as in [15, proof of theorem 1] we can deduce the bounds
\[
\|u'_n\|_{L^{2+\gamma}(0,T;W^{-1,p}_0)} \leq C, \quad \text{if } d = 3, \tag{3.31}
\]
\[
\|u'_n\|_{L^{2+\gamma}(0,T;V'_{0,\text{div}})} \leq C, \quad \text{if } d = 2. \tag{3.32}
\]
From (3.20)–(3.21), (3.25)–(3.27) and (3.29)–(3.32), using compactness results, we obtain for a not relabelled subsequence
\[
\begin{align*}
&u_n \rightharpoonup u \quad \text{weakly* in } L^\infty(0,T;G_{\text{div}}), \quad \text{weakly in } L^2(0,T;V_{0,\text{div}}), \tag{3.33} \\
&u'_n \rightharpoonup u_t \quad \text{weakly in } L^2(0,T;G_{\text{div}}), \quad \text{a.e. in } QT, \tag{3.34} \\
&u'_n \rightharpoonup u_t, \quad \text{weakly in } L^{2+d/3}(0,T;V_{0,\text{div}}), \quad d = 3, \tag{3.35} \\
&u'_n \rightharpoonup u_t, \quad \text{weakly in } L^{2+\gamma}(0,T;V'_{0,\text{div}}), \quad d = 2, \tag{3.36} \\
&\varphi_n \rightharpoonup \varphi \quad \text{weakly* in } L^\infty(0,T;H), \quad \text{weakly in } L^2(0,T;V), \tag{3.37} \\
&\varphi_n \rightharpoonup \varphi \quad \text{strongly in } L^2(0,T;H), \quad \text{a.e. in } QT, \tag{3.38} \\
&\varphi'_n \rightharpoonup \varphi_t \quad \text{weakly in } L^{2+\gamma}(0,T;V'), \tag{3.39} \\
&F''(\varphi_n) \rightharpoonup F^* \quad \text{weakly* in } L^\infty(0,T;L'(\Omega)), \tag{3.40} \\
&\mu_n \rightharpoonup \mu \quad \text{weakly in } L^2(0,T;V), \tag{3.41}
\end{align*}
\]
where \(QT := \Omega \times (0, T)\). The pointwise convergence (3.38), the weak* convergence (3.40) and the continuity of \(F'\) yield \(F^* = F'(\varphi)\). By means of (3.33)–(3.41) we can now pass to the limit in the approximate problem (3.14)–(3.17) as performed in [15, proof of theorem 1] and obtain the variational formulation of system (1.5)–(1.10) for functions \(u, \varphi, \) and \(\mu\). In particular, note that, fixing \(n\) arbitrarily, for every \(\chi \in C_0^\infty(0, T)\) and every \(\psi \in \Psi_n\) we have
\[
\int_0^T (m(\varphi_k)\nabla \mu_k, \nabla \psi) \chi \, d\tau \to \int_0^T (m(\varphi)\nabla \mu, \nabla \psi) \chi \, d\tau, \quad \text{as } k \to \infty,
\]
as a consequence of the weak convergence (3.41) and of the convergence
\[
m(\varphi_k) \to m(\varphi) \quad \text{strongly in } L'(QT), \quad \text{for all } r \in [1, \infty), \tag{3.42}
\]
ensured by (3.38) and by Lebesgue’s theorem.

As far as the energy inequality is concerned, let us observe that (3.41) and (3.42) imply that
\[
\sqrt{m(\varphi_n)}\nabla \mu_n \rightharpoonup \sqrt{m(\varphi)}\nabla \mu \quad \text{weakly in } L'(QT), \quad \text{for all } s \in [1, 2]. \tag{3.43}
\]
But (3.18) yields
\[
\|\sqrt{m(\varphi_n)}\nabla \mu_n\|_{L^s(Q_T)} \leq C,
\]
and hence (3.43) also holds for \(s = 2\). Therefore
\[
\int_0^t \|\sqrt{m(\varphi)}\nabla \mu\|^2 \, d\tau \leq \liminf_{n \to \infty} \int_0^t \|\sqrt{m(\varphi_n)}\nabla \mu_n\|^2 \, d\tau.
\]
This fact and the above convergences allow us to pass to the inferior limit in (3.18) and deduce (3.7).

Let us now suppose that assumption (H4) is replaced by (H7). Then, the energy of the approximate solution can be controlled from below by
\[
\mathcal{E}(u_n, \varphi_n) \geq c (\|u_n\|^2 + \|\varphi_n\|^2_{L^2(\Omega)}) - c.
\]
From (3.18) we can then improve (3.21), that is
\[
\|\varphi_n\|_{L^\infty(0,T;L^p(\Omega))} \leq C, \tag{3.44}
\]
which yields (3.9). The regularity properties (3.10) and (3.11) follow by a comparison argument exactly as in [15, proof of corollary 1] with reference to the weak formulation (3.5), (3.6) and taking the improved regularity for \(\psi \) and (H1) into account.

Furthermore, if \(d = 2 \) and (H4) is replaced by (H7), we can take \(\mu \) and \(u \) as test functions in the variational formulation (3.5), (3.6) and argue as in [15, proof of corollary 2] in order to deduce the energy identity (3.12). As far as the dissipative estimate (3.13) is concerned, this can be deduced without difficulty by adapting the argument of [15, proof of corollary 2] and taking (H1) into account.

Finally, if \(\psi_0 \in H \) with \(F(\psi_0) \in L^1(\Omega) \), we can approximate \(\psi_0 \) with \(\psi_{0m} \in D(B) \) given by \(\psi_{0m} := (I + B/m)^{-1}\psi_0 \). This sequence satisfies \(\psi_{0m} \to \psi \) in \(H \) and by exploiting assumption (H3) and the argument of [15, proof of theorem 1] we can easily recover the existence of a weak solution, the energy inequality (3.7) and, for \(d = 2 \), the energy identity (3.12) as well as the dissipative estimate (3.13).

It is interesting to observe that another energy identity for \(d = 2 \) (inequality for \(d = 3 \)) is satisfied by the weak solution of theorem 1. This energy identity will prove to be useful, especially in the degenerate case in order to establish the existence of the global attractor in two dimensions.

Corollary 1. Let the assumptions of theorem 1 be satisfied by (H4) replaced by (H7). Then, if \(d = 2 \) the weak solution \(z = [u, \psi] \) constructed in theorem 1 satisfies the following energy identity

\[
\frac{1}{2} \frac{d}{dt} (\|u\|^2 + \|\psi\|^2) + \int_\Omega m(\psi)F''(\psi)|\nabla\psi|^2 + \int_\Omega am(\psi)|\nabla\psi|^2 + \nu \|\nabla u\|^2 = \int_\Omega m(\psi) (\nabla J * \psi - \psi \nabla a) \cdot \nabla \psi + \int_\Omega (a \psi - J * \psi) u \cdot \nabla \psi + \int_\Omega (h, u),
\]

for almost any \(t > 0 \). Furthermore, if \(d = 3 \) and if (H7) is satisfied by \(p \geq 3 \), the weak solution \(z \) satisfies the following energy inequality

\[
\frac{1}{2} (\|u(t)\|^2 + \|\psi(t)\|^2) + \int_0^t \int_\Omega m(\psi)F''(\psi)|\nabla\psi|^2 + \int_0^t \int_\Omega am(\psi)|\nabla\psi|^2 + \nu \int_0^t \|\nabla u\|^2 \leq \frac{1}{2} (\|u_0\|^2 + \|\psi_0\|^2) + \int_0^t \int_\Omega m(\psi) (\nabla J * \psi - \psi \nabla a) \cdot \nabla \psi
\]

\[+ \int_0^t \int_\Omega (a \psi - J * \psi) u \cdot \nabla \psi + \int_0^t (h, u) \, dt, \quad \forall t > 0. \quad (3.46)\]

Proof. If \(d = 2 \), we can take \(\psi = \psi \) and \(v = u \) as test functions in the weak formulation (3.5) and (3.6), respectively. This is allowed due to the regularity properties (3.10) and (3.11). Then, we add the resulting identities and we observe that, by an Alikakos’ iteration method (see, for instance, [21, theorem 2.1]) it can be shown that \(\psi(t) \in L^\infty(\Omega) \). This method essentially consists in testing (1.5) by \(\psi(t)|p_k|^{-1}\psi(t) \), with \(p_k \) a suitable positive sequence diverging to \(\infty \). Then, by means of a suitable iteration technique, it is possible to obtain a bound for \(\psi(t) \) in \(L^p(\Omega) \), at every step \(k \), by a constant which does not depend on \(k \). By letting \(k \to \infty \), one deduces a bound for \(\psi(t) \) in \(L^\infty(\Omega) \). Note that, since here \(\psi_0 \in L^\infty(\Omega) \) is not required, then the bound for \(\psi(t) \) in \(L^\infty(\Omega) \) holds only for \(t > 0 \) (see [27, lemma 2.10]).

Since \(\psi(t) \in L^\infty(\Omega) \) and since \(F \in C^2(\mathbb{R}) \), we can write \(\nabla F'(\psi) = F''(\psi) \nabla \psi \). Then, on account of this identity and (3.4), the second term on the left-hand side of (3.5) can be rewritten and (3.45) immediately follows.
Let $d = 3$ and assume that (H7) holds with $p \geq 3$. Then, due to the second equation of (3.10) we can take $\psi = \varphi$ as a test function in (3.5) and obtain
\[
\frac{1}{2} \frac{d}{dt} \|\varphi\|^2 + (m(\varphi)\nabla \mu, \nabla \varphi) = 0.
\]
By integrating this identity between 0 and t and by rewriting the term $(m(\varphi)\nabla \mu, \nabla \varphi)$, as above in the case $d = 2$, we obtain
\[
\frac{1}{2} \|\varphi(t)\|^2 + \int_0^t \int_\Omega m(\varphi) F''(\varphi)|\nabla \varphi|^2 + \int_0^t \int_\Omega am(\varphi)|\nabla \varphi|^2
\]
\[
+ \int_0^t \int_\Omega m(\varphi)(\nabla \varphi - \nabla J * \varphi) \cdot \nabla \varphi = \frac{1}{2} \|\varphi_0\|^2.
\] (3.47)

On the other hand, we take $v = u_n$ in the second equation (3.15) of the Faedo–Galerkin approximating problem and integrate the resulting identity to obtain
\[
\frac{1}{2} \|u_n(t)\|^2 + v \int_0^t \|\nabla u_n\|^2 \, dt = \frac{1}{2} \|u_0n\|^2 - \int_0^t \left(\psi_n \nabla \mu_n, u_n \right) \, dt + \int_0^t \left(h, u_n \right) \, dt
\]
\[
= \frac{1}{2} \|u_0n\|^2 + \int_0^t \int_\Omega (a\varphi_n - J * \varphi_n) \nabla \varphi_n \cdot u_n + \int_0^t \left(h, u_n \right) \, dt.
\] (3.48)

We can now pass to the limit in (3.48) and use the second weak convergence (3.33) and (3.34). In particular, observe that
\[
\int_0^t \int_\Omega (a\varphi_n - J * \varphi_n) \nabla \varphi_n \cdot u_n = - \int_0^t \int_\Omega \left(\frac{1}{2} \varphi_n^2 \nabla a - \psi_n \nabla J * \varphi_n \right) \cdot u_n
\]
\[
\rightarrow - \int_0^t \int_\Omega \left(\frac{1}{2} \varphi^2 \nabla a - \psi (\nabla J * \varphi) \right) \cdot u = \int_0^t \int_\Omega (a\varphi - J * \varphi) \nabla \varphi \cdot u,
\]
where this last convergence is a consequence of the fact that, due to (3.33), (3.34), (3.37), (3.38) and interpolation, we have $\varphi_n \rightarrow \varphi$ strongly in $L^3(Q_t)$ and $u_n \rightarrow u$ strongly in $L^3(Q_t)$ (recall that $\nabla a \in L^\infty$). Hence we obtain
\[
\frac{1}{2} \|u(t)\|^2 + v \int_0^t \|\nabla u\|^2 \, dt \leq \frac{1}{2} \|u_0\|^2 + \int_0^t \int_\Omega (a\varphi - J * \varphi) u \cdot \nabla \varphi + \int_0^t \left(h, u \right) \, dt.
\] (3.49)

Summing (3.47) and (3.49) we deduce (3.46).

Remark 3. The theorems proved in this section still hold when the viscosity depends smoothly on φ (see [20]). Moreover, they allow us to generalize to the variable (non-degenerate) mobility the results obtained in [20] on the long-time behaviour. More precisely, the existence of the global attractor and the existence of a trajectory attractor in the cases $d = 2$ and $d = 3$, respectively.

4. Degenerate mobility

In this section we consider a mobility m which degenerates at ± 1 and we assume that the double-well potential F is singular (e.g. logarithmic like) and defined in $(-1, 1)$. More precisely, we assume that $m \in C^1([-1, 1])$, $m \geq 0$, that $m(s) = 0$ if and only if $s = -1$ or $s = 1$, and that there exists $\epsilon_0 > 0$ such that m is non-increasing in $[1 - \epsilon_0, 1]$ and non-decreasing in $[-1, -1 + \epsilon_0]$. Furthermore, we suppose that m and F fulfil the condition

(A1) $F \in C^2([-1, 1])$ and
\[
mF'' \in C([-1, 1]).
\]
We point out that (A1) is a typical condition which arises in the Cahn–Hilliard equation with degenerate mobility (see [17, 28–30]).

As far as F is concerned we assume that it can be written in the following form

$$F = F_1 + F_2,$$

where the singular component F_1 and the regular component $F_2 \in C^2([-1, 1])$ satisfy the following assumptions.

(A2) There exist $a_2 > 4(a^* - a_* - b_2)$, where $b_2 := \min_{[-1, 1]} F_2''$, and $\epsilon_0 > 0$ such that

$$F_1'(s) \geq a_2, \quad \forall s \in (-1, -1 + \epsilon_0) \cup [1 - \epsilon_0, 1).$$

(A3) There exists $\epsilon_0 > 0$ such that F_1' is non-decreasing in $[1 - \epsilon_0, 1)$ and non-increasing in $(-1, -1 + \epsilon_0]$.

(A4) There exists $c_0 > 0$ such that

$$F''(s) + a(x) \geq c_0, \quad \forall s \in (-1, 1), \quad \text{a.a. } x \in \Omega. \quad (4.1)$$

The constants a^* and a_* are given in (H2) and (H4), respectively, and the assumption on the external force h is still (H6). Moreover, we shall henceforth denote by ϵ_0 a positive constant the value of which may possibly vary from line to line.

Remark 4. It is easy to see that (A1)–(A4) are satisfied in the physically relevant case where the mobility and the double-well potential are given by

$$m(s) = k_1(1 - s^2), \quad F(s) = -\frac{\theta_1}{2}s^2 + \frac{\theta}{2}((1 + s) \log(1 + s) + (1 - s) \log(1 - s)), \quad (4.2)$$

where $0 < \theta < \theta_1$. Indeed, setting $F_1(s) := (\theta/2)((1 + s) \log(1 + s) + (1 - s) \log(1 - s))$ and $F_2(s) = -(\theta_1/2)s^2$, we have $mF''_1 = k_1 \theta > 0$ and so (A1) is fulfilled. Moreover F_1 also satisfies (A2) and (A3), while (A4) holds if and only if $\inf_{\Omega} a > \theta_1 - \theta$. Another example is given by taking

$$m(s) = k(s)(1 - s^2)^m, \quad F(s) = -k_2s^2 + F_1(s),$$

where $k \in C^1([-1, 1])$ such that $0 < k_3 \leq k(s) \leq k_4$ for all $s \in [-1, 1]$, and F_1 is a $C^2(-1, 1)$ convex function such that

$$F_1''(s) = l(s)(1 - s^2)^{-m}, \quad \forall s \in (-1, 1),$$

where $m \geq 1$ and $l \in C^1([-1, 1])$.

Remark 5. Note that (A4), which is equivalent to the condition $\inf_{\Omega} a > -\inf_{[-1, 1]} F''$, is more general than [21, (A6)]. For the reader’s convenience we recall that [21, (A6)] requires that there exist $\alpha, \beta \in \mathbb{R}$ with $\alpha + \beta > -\min_{[-1, 1]} F_2''$ such that

$$F_1'(s) \geq \alpha, \quad \forall s \in (-1, 1), \quad a(x) \geq \beta, \quad \text{a.e. } x \in \Omega.$$

More precisely, [21, (A6)] implies (A4), while (A4) implies [21, (A6)] provided we have $\inf_{[-1, 1]}(F_1'' + F_2'') = \inf_{[-1, 1]} F_1'' + \min_{[-1, 1]} F_2''$. For example, consider the following double-well potential

$$F(s) = -\frac{\theta_1}{2}s^2 + \frac{\theta_2}{12}s^4 + \frac{\theta}{2}((1 + s) \log(1 + s) + (1 - s) \log(1 - s)),$$

where $0 < \theta < \theta_1$ and $0 < \theta < \theta_2$. Then, it easy to see that [21, (A6)] is satisfied iff $\inf_{\Omega} a > \theta_1 + \theta_2 - \theta$, while (A4) requires the weaker condition $\inf_{\Omega} a > \theta_1 + \theta_2 - 2\sqrt{\theta_1 \theta_2}$.
If the mobility degenerates we are no longer able to control the gradient of the chemical potential μ in some L^p space. For this reason, and also in order to pass to the limit in the approximate problem considered in the proof of the existence result, we shall have to suitably reformulate the definition of the weak solution in such a way that μ no longer appears (cf [17]).

Definition 2. Let $u_0 \in G_{\text{div}}, \varphi_0 \in H$ with $F(\varphi_0) \in L^1(\Omega)$ and $0 < T < +\infty$ given. A couple $[u, \varphi]$ is a weak solution to (1.5)–(1.10) on $[0, T]$ corresponding to $[u_0, \varphi_0]$ if

- u, φ satisfy
 \begin{align*}
 u &\in L^\infty(0, T; G_{\text{div}}) \cap L^2(0, T; V_{\text{div}}), \\
 u_t &\in L^{4/3}(0, T; V_{\text{div}}'), \quad \text{if } d = 3, \\
 u_t &\in L^2(0, T; V_{\text{div}}'), \quad \text{if } d = 2, \\
 \varphi &\in L^\infty(0, T; H) \cap L^2(0, T; V), \\
 \varphi_t &\in L^2(0, T; V'),
 \end{align*}

and

$$\varphi \in L^\infty(Q_T), \quad |\varphi(x, t)| \leq 1 \quad \text{a.e. } (x, t) \in Q_T := \Omega \times (0, T);$$

- for every $\psi \in V$, every $v \in V_{\text{div}}$ and for almost any $t \in (0, T)$ we have
 \begin{align*}
 \langle \psi_t, \psi \rangle + \int_\Omega m(\varphi)v\psi(\varphi) - \|
 \n \psi\|_{\Omega} &= \int_\Omega m(\varphi)a\varphi\nabla\psi - b(u, \varphi, v) \quad \text{for all } t \in [0, T] \quad \text{and} \quad M(0) = M'(0) = 0.
 \end{align*}

Theorem 2. Assume that (A1)–(A4) and (H2), (H6) are satisfied. Let $u_0 \in G_{\text{div}}, \varphi_0 \in L^\infty(\Omega)$ such that $F(\varphi_0) \in L^1(\Omega)$ and $M(\varphi_0) \in L^1(\Omega)$. Then, for every $T > 0$ there exists a weak solution $\varphi \in L^\infty(0, T; L^p(\Omega)), \forall s \in [-1, 1]$ and $M(0) = M'(0) = 0$.

Remark 6. The potential F and the entropy M are not independent. Indeed, assumption (A1) implies that there exists a constant $\gamma_0 > 0$ such that $|m(s)F'(s)| \leq \gamma_0$, for all $s \in [-1, 1]$. Combining this estimate with the definition of M we obtain $|F''(s)| \leq \gamma_0 M'(s)$, for all $s \in (-1, 1)$. By integrating this last estimate between 0 and s (if $s \in [0, 1]$) and between s and 0 (if $s \in (-1, 0]$) and using the fundamental theorem of calculus and the condition $M(0) = M'(0) = 0$ we obtain

$$|F(s)| \leq |F(0)| + |F'(0)|s + \gamma_0 M(s), \quad \forall s \in (-1, 1).$$

Therefore, in the statement of theorem 2, condition $F(\varphi_0) \in L^1(\Omega)$ is actually a consequence of the entropy assumption $M(\varphi_0) \in L^1(\Omega)$.

1270
Proof. Let us consider the approximate problem P_ϵ: find a weak solution (in the sense of definition 1) $[u_\epsilon, \varphi_\epsilon]$ to
\[
\varphi_\epsilon' + u_\epsilon \cdot \nabla \varphi_\epsilon = \text{div}(m_\epsilon(\varphi_\epsilon) \nabla \mu_\epsilon), \tag{4.13}
\]
\[
u u_\epsilon = \mu_\epsilon \nabla \varphi_\epsilon + h, \tag{4.14}
\]
\[
\mu_\epsilon = a \varphi_\epsilon - J \ast \varphi_\epsilon + F_\epsilon'(\varphi_\epsilon), \tag{4.15}
\]
\[
\text{div}(u_\epsilon) = 0, \tag{4.16}
\]
\[
\frac{\partial \mu_\epsilon}{\partial n} = 0, \ u_\epsilon = 0, \ \text{on } \partial \Omega, \tag{4.17}
\]
\[
u u_\epsilon(0) = u_0, \ \varphi_\epsilon(0) = \varphi_0, \ \text{in } \Omega. \tag{4.18}
\]
Problem P_ϵ is obtained from (1.5)–(1.10) by replacing the singular potential F by a smooth potential F_ϵ and the degenerate mobility m by a non-degenerate one m_ϵ. In particular, F_ϵ is represented by
\[
F_\epsilon = F_{1\epsilon} + F_{2\epsilon},
\]
where $F_{1\epsilon}$ and $F_{2\epsilon}$ are defined by
\[
F_{1\epsilon}'(s) = \begin{cases}
F_1'(1 - \epsilon), & s \geq 1 - \epsilon \\
F_1'(s), & |s| \leq 1 - \epsilon \\
F_1'(1 + \epsilon), & s \leq -1 - \epsilon,
\end{cases} \tag{4.19}
\]
\[
F_{2\epsilon}'(s) = \begin{cases}
F_2'(1 - \epsilon), & s \geq 1 - \epsilon \\
F_2'(s), & |s| \leq 1 - \epsilon \\
F_2'(1 + \epsilon), & s \leq -1 - \epsilon,
\end{cases} \tag{4.20}
\]
with $F_{1\epsilon}(0) = F_1(0), F_{1\epsilon}'(0) = F_1'(0), F_{2\epsilon}(0) = F_2(0), F_{2\epsilon}'(0) = F_2'(0)$.

The approximate non-degenerate mobility is given by
\[
m_\epsilon(s) = \begin{cases}
m(1 - \epsilon), & s \geq 1 - \epsilon \\
m(s), & |s| \leq 1 - \epsilon \\
m(-1 + \epsilon), & s \leq -1 + \epsilon.
\end{cases} \tag{4.21}
\]
Assumption (A3) implies that
\[
F_{1\epsilon}(s) \leq F_1(s), \quad \forall s \in (-1, 1), \quad \forall \epsilon \in (0, \epsilon_0]. \tag{4.22}
\]
Indeed, for $1 - \epsilon \leq s < 1$, using Taylor’s formula and taking $\epsilon \in (0, \epsilon_0]$, where ϵ_0 is the same as in (A3), we have
\[
F_1(s) = F_1(1 - \epsilon) + F_1'(1 - \epsilon)(s - (1 - \epsilon)) + \frac{1}{2} F_1''(\eta)(s - (1 - \epsilon))^2
\]
\[
\geq F_1(1 - \epsilon) + F_1'(1 - \epsilon)(s - (1 - \epsilon)) + \frac{1}{2} F_1''(1 - \epsilon)(s - (1 - \epsilon))^2 = F_{1\epsilon}(s), \tag{4.23}
\]
where $\eta \in (1 - \epsilon, s)$. We have used the fact that, thanks to (A3), $F_1''(\eta) \geq F_1''(1 - \epsilon)$. In the same way we can argue for $-1 < s \leq -1 + \epsilon$. Moreover, we have $F_{1\epsilon}(s) = F_1(s)$ for $|s| \leq 1 - \epsilon$. Thus we obtain (4.22).

On the other hand, from the definition of $F_{2\epsilon}$ we have, for $s > 1 - \epsilon$ (note that $F_{2\epsilon}$ is a quadratic function on $[1 - \epsilon, \infty)$),
\[
F_{2\epsilon}(s) = F_2(1 - \epsilon) + F_2'(1 - \epsilon)(s - (1 - \epsilon)) + \frac{1}{2} F_2''(1 - \epsilon)(s - (1 - \epsilon))^2 \tag{4.24}
\]
(a similar expression holds for $s < -1 + \epsilon$ and $F_{2\epsilon}(s) = F_2(s)$ for $|s| \leq 1 - \epsilon$. Since $F_2 \in C^2([-1,1])$, we deduce that there exist two positive constants L_1, L_2, which are independent of ϵ, such that
\[
|F_{2\epsilon}(s)| \leq L_1 s^2 + L_2, \quad \forall s \in \mathbb{R}. \tag{4.25}
\]
Therefore, by using the assumption on the initial datum ϕ_0 and (4.22), (4.25) we have
\begin{equation}
\int_\Omega F_\epsilon(\phi_0) \leq \int_\Omega F_1(\phi_0) + L_1\|\phi_0\|^2 + L_2 < \infty, \quad \forall \epsilon \in (0, \epsilon_0].
\end{equation}

Observe that, since $F(\phi_0) \in L^1(\Omega)$ then we have $|\phi_0| \leq 1$ almost everywhere in Ω so that $F_2(\phi_0) \in L^1(\Omega)$ (since $F_2 \in C^2([-1, 1])$). Hence, condition $\int_\Omega F_1(\phi_0) < \infty$ immediately follows from $F(\phi_0) \in L^1(\Omega)$.

Furthermore, we can see that by assumption (A2) there is a $\delta_0 \in \mathbb{R}$ such that
\begin{equation}
F_\epsilon(s) \geq \delta s^2 - \delta_0, \quad \forall s \in \mathbb{R}, \quad \forall \epsilon \in (0, \epsilon_0],
\end{equation}
where $0 < \delta < a_2/8 + b_2/2$. Indeed, by integrating condition $F''_\epsilon(s) \geq a_2$ in (A2) between $1 - \epsilon_0$ and $s \in [1 - \epsilon_0, 1)$ (and also between $s \in (-1, -1 + \epsilon_0]$ and $-1 + \epsilon_0$) and using the fact that F_1 is C^2 on $[-1 + \epsilon_0, 1 - \epsilon_0]$ then we find $a_1', a_1'' \in \mathbb{R}$ such that $F''_\epsilon(s) \geq a_1''$ for all $s \in [1 - \epsilon_0, 1)$, $F''_\epsilon(s) \leq a_1'$ for all $s \in (-1, -1 + \epsilon_0]$, and $F_1(s) \geq a_0$ for all $s \in (-1, 1)$. Hence, by using definition (4.19), for $s \geq 1 - \epsilon$, we obtain
\begin{equation}
F_{1\epsilon}(s) = F_1(1 - \epsilon) + F_1'(1 - \epsilon)(s - (1 - \epsilon)) + \frac{1}{2} F_1''(1 - \epsilon)(s - (1 - \epsilon))^2
\geq a_0' + \frac{a_2}{4}(s - (1 - \epsilon))^2 \geq \frac{a_2}{8} s^2 + a_0' - \frac{a_2}{2},
\end{equation}
provided that $\epsilon \in (0, \epsilon_0]$. For $|s| \leq 1 - \epsilon$ we have $F_{1\epsilon}(s) = F_1(s) \geq a_0 \geq (a_2/8)s^2 - a_2/8 + a_0$. For $s \leq -1 + \epsilon$ we can argue as in (4.28). On the other hand, from (4.24) we have
\begin{equation}
F_{2\epsilon}(s) \geq (\delta - a_2/8)s^2 - \delta_1, \quad \forall s \in \mathbb{R}, \quad \forall \epsilon \in (0, 1),
\end{equation}
where δ is taken as above and δ_1 is a non-negative constant (depending on $b_0 := \min_{[-1, 1]} F_2$, $b_1 := \min_{[-1, 1]} F_2''$ and b_2). Combining (4.28) with (4.29) we deduce (4.27).

Moreover, (A4) immediately implies that, for $\epsilon \in (0, \epsilon_0]$, there holds
\begin{equation}
F''_\epsilon(s) + a_0(\epsilon) \geq c_0, \quad \forall s \in \mathbb{R}, \quad \text{a.e. } x \in \Omega.
\end{equation}

Indeed, recall that for $s \geq \pm 1 - \epsilon$ we have $F''_\epsilon(s) = F_1''(\pm 1 + \epsilon)$, $F''_\epsilon(s) = F_2''(\pm 1 + \epsilon)$, and for $|s| \leq 1 - \epsilon$ we have $F''_\epsilon(s) = F_1''(s)$, $F''_\epsilon(s) = F_2''(s)$.

We can now check that assumptions (H1)–(H6) of theorem 1 for problem P_ϵ (with a fixed $\epsilon \in (0, \epsilon_0]$) are satisfied. In particular, due to (A2), we can choose δ such that $(a_2' - a_2)/2 < \delta < a_2/8 + b_2/2$ and so (H4) is ensured by (4.27), while (H5) is satisfied by $r = 2$ (since F_2 has quadratic growth, for fixed $\epsilon > 0$).

Theorem 1 therefore entails that problem P_ϵ admits a weak solution $z_\epsilon = [u_\epsilon, \phi_\epsilon]$ satisfying (3.1)–(3.3) and the energy inequality
\begin{equation}
E_\epsilon(z_\epsilon(t)) + \int_0^t \left(\|\nabla u_\epsilon\|^2 + \|\nabla m_\epsilon(\phi_\epsilon)\nabla \mu_\epsilon\|^2 \right) d\tau \leq E_\epsilon(z_0) + \int_0^t \langle h(\tau), u_\epsilon(\tau) \rangle d\tau,
\end{equation}
for every $t > 0$, where
\begin{equation}
E_\epsilon(z_\epsilon) := \frac{1}{2}\|u_\epsilon\|^2 + \frac{1}{2}\|\sqrt{a}\phi_\epsilon\|^2 - \frac{1}{2}\langle \phi_\epsilon, J * \phi_\epsilon \rangle + \int_\Omega F_\epsilon(\phi_\epsilon).
\end{equation}
Now, using (4.26) and (4.27), from (4.31) we immediately obtain the following uniform (with respect to $\epsilon \in (0, \epsilon_0]$) estimates
\begin{align}
\|u_\epsilon\|_{L^\infty(0,T;G_\Omega)} &
\leq C, \\
\|\phi_\epsilon\|_{L^\infty(0,T;H)} &
\leq C, \\
\|\sqrt{a}\phi_\epsilon\|_{L^2(0,T;H)} &
\leq C.
\end{align}
where the positive constant C can possibly change from line to line but is always independent of ϵ. Now, test (4.13) by $\psi = M'(\phi_s)$, where M_t is a C^2 function such that $m_t(s)M'_t(s) = 1$ and $M_t(0) = M'_t(0) = 0$. We obtain

$$\frac{d}{dt} \int_\Omega M_t(\phi_s) + \int_\Omega m_t(\phi_s) \nabla \mu_e \cdot M'_t(\phi_s) \nabla \phi_s = \int_\Omega u_t \phi_s \cdot M'_t(\phi_s) \nabla \phi_s = 0,$$

where the last identity is due to (4.16). Therefore (4.35) yields

$$\frac{d}{dt} \int_\Omega M_t(\phi_s) + \int_\Omega \nabla \mu_e \cdot \nabla \phi_s = 0. $$

On account of (4.15), we obtain

$$\frac{d}{dt} \int_\Omega M_t(\phi_s) + \int_\Omega \left((a + F''(\phi_s)) |\nabla \phi_s|^2 + \phi_s \nabla a \cdot \nabla \phi_s - \nabla J * \phi_s \cdot \nabla \phi_s \right) = 0. $$

By using (4.30) and (4.33), from (4.36) we hence infer

$$\frac{d}{dt} \int_\Omega M_t(\phi_s) + \frac{c_J}{2} \|\nabla \phi_s\|^2 \leq c_J \|\phi_s\|^2 \leq C,$$

where c_J is a positive constant depending on J only. We now take into account the fact that for ϵ small enough we have

$$M_t(s) \leq M(s), \quad \forall s \in (-1, 1).$$

Indeed, the assumptions on m (see the beginning of section 4) imply that there exists $\epsilon_0 > 0$ such that $M'' = m^{-1}$ is non-decreasing in $[1 - \epsilon_0, 1]$ and non-increasing in $(-1, -1 + \epsilon_0]$. Therefore, we can argue exactly as in (4.23) to deduce (4.37). Hence, using (4.37) and recalling that $\int_{\Omega} M(\phi_0) < \infty$, we obtain the bounds (see also (4.33))

$$\|\phi_s\|_{L^{3}(0,T;V)} \leq C,$$

$$\|M_t(\phi_s)\|_{L^{3}(0,T;L^{6}(\Omega))} \leq C.$$

Let us now establish the estimates for ψ'_s and u'_s. Let us first consider the case $d = 3$ and start from ψ'_s. From the variational formulation of (4.13) we obtain

$$|\langle \psi'_s, \psi \rangle| \leq \|m_t(\phi_s) \nabla \mu_e \| \|\nabla \psi\| + \|u_t \|_{L^{6}(\Omega)} \|\phi_s\|_{L^{1}(\Omega)} \|\nabla \psi\|$$

$$\leq c \sqrt{m_t(\phi_s)} \|\nabla \mu_e\| \|\nabla \psi\| + c \|\nabla u_t\| \|\phi_s\|^{1/2} \|\phi_s\|_{L^{6}(\Omega)} \|\nabla \psi\|$$

$$\leq C \left(\sqrt{m_t(\phi_s)} \|\nabla \mu_e\| + \|\nabla u_t\| \|\phi_s\|^{1/2} \right) \|\nabla \psi\|, \quad \forall \psi \in V, \quad (4.40)$$

where we have used (4.33). Then, on account of (4.32), (4.34) and (4.38), from (4.40) we obtain

$$\|\psi'_s\|_{L^{3}(0,T;V)} \leq C.$$

In order to deduce a bound for u'_s, observe first that we have

$$\langle \mu_t \nabla \phi_s, v \rangle = \langle (a \phi_s - J * \phi_s) \nabla \phi_s, v \rangle, \quad \forall v \in V_{d}. $$

Thus, by (4.33), we have that

$$|\langle \mu_t \nabla \phi_s, v \rangle| \leq \|a \phi_s - J * \phi_s\|_{L^{6}(\Omega)} \|\nabla \phi_s\| \|v\|_{L^{6}(\Omega)}$$

$$\leq c_J \|\phi_s\|_{L^{6}(\Omega)} \|\nabla \phi_s\| \|v\|_{V_{d}}, \leq c_J \|\phi_s\|_{L^{6}(\Omega)}^{1/2} \|\phi_s\|_{L^{6}(\Omega)}^{1/2} \|\nabla \phi_s\| \|v\|_{V_{d}},$$

$$\leq C \|\phi_s\|_{V_{d}}^{1/2} \|v\|_{V_{d}}.$$

Hence, (4.38) entails the estimate for the Korteweg force in (4.14)

$$\|\mu_t \nabla \phi_s\|_{L^{6}(0,T;V_{d})} \leq C.$$
The estimates for the other terms in the variational formulation of (4.14) can be deduced by standard arguments for the 3D Navier–Stokes equation and finally we obtain

\[\|u_\epsilon\|_{L^{4/(3)}(0,T;V^*)} \leq C. \]

(4.43)

In the case \(d = 2 \), by arguing as in (4.40) and (4.42) and again using (4.32)–(4.34) and (4.38), it is not difficult to see that the following estimates hold

\[\|u_\epsilon\|_{L^{4/(d+3)}(0,T;V^*)} \leq C, \quad \|u_\epsilon\|_{L^{4/(\gamma d)}(0,T;V^*)} \leq C, \quad \forall \gamma, \delta \in (0,1). \]

(4.44)

From the estimates above and using standard compactness results we deduce that there exist \(u \in L^\infty(0,T;G_{div}) \cap L^2(0,T;V_{div}) \) and \(\psi \in L^\infty(0,T;H) \cap L^2(0,T;V) \) such that, up to a (not relabeled) subsequence we have

\[u_\epsilon \rightharpoonup u \text{ weakly in } L^\infty(0,T;G_{div}), \text{ weakly in } L^2(0,T;V_{div}), \]

(4.45)

\[u_\epsilon \rightarrow u \text{ strongly in } L^2(0,T;G_{div}), \text{ a.e. in } QT, \]

(4.46)

\[u_\epsilon \rightarrow u_t \text{ weakly in } L^{4/(3)}(0,T;V_{div}) \text{ if } d = 3, \]

(4.47)

\[u_\epsilon \rightarrow u_t \text{ weakly in } L^{2-\gamma}(0,T;V_{div}) \text{ if } d = 2, \]

(4.48)

\[\psi_\epsilon \rightharpoonup \psi \text{ weakly in } L^\infty(0,T;H), \text{ weakly in } L^2(0,T;V), \]

(4.49)

\[\psi_\epsilon \rightarrow \psi \text{ strongly in } L^2(0,T;H), \text{ a.e. in } QT, \]

(4.50)

\[\psi_\epsilon \rightarrow \psi_t \text{ weakly in } L^{4/(3)}(0,T;V'), \text{ if } d = 3, \]

(4.51)

\[\psi_\epsilon \rightarrow \psi_t \text{ weakly in } L^{2-\delta}(0,T;V'), \text{ if } d = 2. \]

(4.52)

Let us now show that \(|\psi| \leq 1\) almost everywhere in \(QT \). In order to achieve this we can argue as in [16, proof of theorem 1] (see also [12, proof of theorem 2.3]). More precisely, in [16, proof of theorem 1] the following estimates are established

\[M_\epsilon(s) \geq \frac{1}{2m(1 - \epsilon)}(s - 1)^2, \quad \forall s > 1, \]

\[M_\epsilon(s) \geq \frac{1}{2m(-1 + \epsilon)}(s + 1)^2, \quad \forall s < -1. \]

Therefore

\[\int_{\Omega} (|\psi_\epsilon| - 1)^2 \, d\Omega = \int_{|\psi_\epsilon| > 1} (\psi_\epsilon - 1)^2 + \int_{|\psi_\epsilon| < -1} (\psi_\epsilon + 1)^2 \leq 2m(1 - \epsilon) \int_{|\psi_\epsilon| > 1} M_\epsilon(\psi_\epsilon) + 2m(-1 + \epsilon) \int_{|\psi_\epsilon| < -1} M_\epsilon(\psi_\epsilon) \leq 2 \max\left(m(1 - \epsilon), m(-1 + \epsilon)\right) \int_{\Omega} M_\epsilon(\psi_\epsilon). \]

Now, by using (4.39), the fact that \(m(\pm 1 \mp \epsilon) \rightarrow 0 \) as \(\epsilon \rightarrow 0 \) and the generalized Lebesgue theorem, we obtain

\[\int_{\Omega} (|\psi| - 1)^2 = 0 \quad \text{for a.a. } t \in (0, T), \]

so that

\[|\psi(x, t)| \leq 1, \quad \text{a.e. in } \Omega, \quad \text{a.a. } t \in (0, T). \]

(4.53)

We now have to pass to the limit in the variational formulation of the approximate problem (4.13)–(4.18) in order to show that \([u, \psi]\) is a weak solution to (1.5)–(1.10) according to
It is easy to determine that the variational formulation of (4.13)–(4.18) gives

\[
\langle \varphi'_c, \psi \rangle + \int_{\Omega} m_c(\varphi_c) F''_c(\varphi_c) \nabla \varphi_c \cdot \nabla \psi + \int_{\Omega} m_c(\varphi_c) a \nabla \varphi_c \cdot \nabla \psi \\
+ \int_{\Omega} m_c(\varphi_c) (\varphi_c \Delta a - \nabla J \ast \varphi_c) \cdot \nabla \psi = (u_c \varphi_c, \nabla \psi),
\]

(4.54)

\[
\langle u'_c, \psi \rangle + v(\nabla u_c, \nabla \psi) + b(u_c, u_c, \psi) = \left((a \varphi_c - J \ast \varphi_c) \nabla \varphi_c, \psi \right) + \langle h, \psi \rangle,
\]

(4.55)

for every \(\psi \in V \), every \(v \in V_{div} \), and for almost any \(t \in (0, T) \).

On account of (A1) we have \(|m(s)F''(s)| \leq a \) for every \(s \in [-1, 1] \) and for some positive constant \(a \). This immediately implies that

\[
|m(s)F''(s)| \leq a, \quad \forall s \in \mathbb{R}, \quad \forall \epsilon \in (0, 1).
\]

(4.56)

Furthermore, by using the continuity of \(m F'' \) on \([-1, 1]\) (cf. (4.1)) and (4.50), it is not difficult to see that

\[
m_c(\varphi_c) F''_c(\varphi_c) \rightarrow m(\varphi) F''(\varphi), \quad \text{a.e. in } QT.
\]

Therefore, we obtain

\[
m_c(\varphi_c) F''_c(\varphi_c) \rightarrow m(\varphi) F''(\varphi), \quad \text{strongly in } L^r(Q_T), \quad \forall r \in [2, \infty).
\]

(4.57)

Note also that (4.49), the continuous embedding \(L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; L^6(\Omega)) \hookrightarrow L^{10/3}(QT) \) and (4.50) imply that, for \(d = 3 \), we have

\[
\varphi_c \rightarrow \varphi \quad \text{strongly in } L^4(Q_T), \quad \text{for all } 2 \leq s < 10/3.
\]

(4.58)

For \(d = 2 \), by the Gagliardo–Nirenberg inequality the continuous embedding \(L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; V) \hookrightarrow L^6(Q_T) \) holds, thus we obtain

\[
\varphi_c \rightarrow \varphi \quad \text{strongly in } L^3(Q_T), \quad \text{for all } 2 \leq s < 4.
\]

(4.59)

Furthermore, by Lebesgue’s theorem we also deduce

\[
m_c(\varphi_c) \rightarrow m(\varphi) \quad \text{strongly in } L^1(Q_T), \quad \text{for all } 2 \leq s < \infty.
\]

(4.60)

We can now multiply (4.54), (4.55) by \(\chi, \omega \in C_0^\infty(0, T) \), respectively, and integrate the resulting identities with respect to time from \(0 \) and \(T \). The convergences (4.45)–(4.52) and (4.57)–(4.60) are enough to pass to the limit and to deduce that \(u \) and \(\varphi \) satisfy the variational formulation (4.9) and (4.10). Observe that in passing to the limit we can initially take \(\varphi \) in \(C^1(\Omega) \) and then prove by density that (4.9) also holds for all \(\varphi \) in \(V \).

In order to prove that \(z := [u, \varphi] \) is a weak solution according to definition 2, it only remains to show that (4.5) and (4.7) hold. To this aim let us first see that \(\varphi \) satisfies (4.11). Indeed, this is a consequence of (4.53) and of the fact that, since \(\varphi \in L^2(0, T; V) \), \(\varphi \) is measurable with values in \(L^p(\Omega) \) when \(d = 3 \), and measurable with values in \(L^p(\Omega) \), for all \(p \in [2, \infty) \), when \(d = 2 \). Recalling the improved regularity (4.11), and also on account of (4.53), it is now immediate to obtain (4.5) and (4.7) by a comparison argument in the weak formulation (4.9), (4.10). In particular, note that the contribution from the convective term in (4.9) can now be estimated as follows

\[
|\langle u \varphi, \nabla \psi \rangle| \lesssim \|u\|_{L^p(\Omega)} \|\varphi\|_{L^r(\Omega)} \|\nabla \psi\| \lesssim C\|\nabla u\| \|\nabla \psi\|. \quad \forall \psi \in V.
\]

Finally, if \(d = 2 \), the energy identity (3.45) can be obtained by taking \(\psi = \varphi \) and \(v = u \) (see (4.7) and (4.5)) as test functions in the weak formulation (4.9) and (4.10), respectively, and adding the resulting identities. In the case \(d = 3 \), we choose first \(\psi = \varphi \) as a test function in (4.9) (cf. (4.7)) and integrate the resulting identity to obtain (3.47). Then we observe that, due to the last part of the proof of corollary 1, the approximate solution \(\varphi_c := [\varphi_c, \varphi_c] \) satisfies

\[
\frac{1}{2} \|u_c(t)\|^2 + v \int_0^t \|\nabla u_c\|^2 \leq \frac{1}{2} \|u_0\|^2 + \int_0^t \int_{\Omega} (a \varphi_c - J \ast \varphi_c) u_c \cdot \nabla \varphi_c + \int_0^t \langle h, u_c \rangle dt.
\]
Passing to the limit as \(\epsilon \to 0 \) in this last inequality and arguing as at the end of the proof of corollary 1, taking advantage of (4.45), (4.46), (4.49) and (4.50), we obtain (3.49). The energy inequality (3.46) is then obtained by adding together (3.47) and (3.49).

It is worth noting that if the mobility degenerates slightly stronger, then the weak solution of theorem 2 satisfies a physically more relevant energy inequality with respect to the energy identity (3.45). This is proven in the following.

Corollary 2. Let all assumptions of theorem 2 be satisfied and \(d = 2, 3 \). In addition, assume that \(m(\pm 1) = 0 \) with order \(\geq 2 \). Then the weak solution \(z = [u, \phi] \) given by theorem 2 also fulfills the following integral inequality

\[
\mathcal{E}(z(t)) + \int_0^t \left(v \| \nabla u \|^2 + \left\| \frac{\mathcal{J}}{\sqrt{m(\phi)}} \right\|^2 \right) \, d\tau \leq \mathcal{E}(z_0) + \int_0^t \langle h, u \rangle \, d\tau, \quad (4.61)
\]

for all \(t > 0 \), where the mass flux \(\mathcal{J} \) given by

\[
\mathcal{J} = -m(\phi) \nabla (a\phi - J*\phi) - m(\phi) F''(\phi) \nabla \phi
\]

is such that

\[
\mathcal{J} \in L^2(Q_T), \quad \frac{\mathcal{J}}{\sqrt{m(\phi)}} \in L^2(Q_T).
\]

Proof. Setting \(\hat{\mathcal{J}}_\epsilon := -\sqrt{m_\epsilon(\phi_\epsilon)} \nabla \mu_\epsilon \), from (4.34) we have \(\| \hat{\mathcal{J}}_\epsilon \|_{L^1(Q_T)} \leq C \) and therefore there exists \(\hat{\mathcal{J}} \in L^2(Q_T) \) such that

\[
\hat{\mathcal{J}}_\epsilon \rightharpoonup \hat{\mathcal{J}} \quad \text{weakly in} \quad L^2(Q_T). \quad (4.62)
\]

On the other hand, setting \(\mathcal{J}_\epsilon := -m_\epsilon(\phi_\epsilon) \nabla \mu_\epsilon = \sqrt{m_\epsilon(\phi_\epsilon)} \hat{\mathcal{J}}_\epsilon \), we have also \(\| \mathcal{J}_\epsilon \|_{L^2(Q_T)} \leq C \). Thus there exists \(\mathcal{J} \in L^2(Q_T) \) such that

\[
\mathcal{J}_\epsilon \rightharpoonup \mathcal{J} \quad \text{weakly in} \quad L^2(Q_T). \quad (4.63)
\]

Since \(m_\epsilon(\phi_\epsilon) \to m(\phi) \) strongly in \(L^r(Q_T) \) for every \(r \in [2, \infty) \), from (4.62) we have \(\sqrt{m_\epsilon(\phi_\epsilon)} \hat{\mathcal{J}}_\epsilon \rightharpoonup \sqrt{m(\phi)} \hat{\mathcal{J}} \) weakly in \(L^{2\gamma}(Q_T) \) for every \(\gamma \in (0, 1] \) and therefore by comparison with (4.63) we obtain

\[
\mathcal{J} := \sqrt{m(\phi)} \hat{\mathcal{J}}.
\]

Let us observe now that inequality (4.31) can be rewritten in the form

\[
\mathcal{E}_\epsilon(z_\epsilon(t)) + \int_0^t \left(v \| \nabla u_\epsilon \|^2 + \left\| \frac{\mathcal{J}}{\sqrt{m_\epsilon(\phi_\epsilon)}} \right\|^2 \right) \, d\tau \leq \mathcal{E}(z_0) + \int_0^t \langle h, u_\epsilon \rangle \, d\tau, \quad \forall t > 0, \quad (4.64)
\]

where \(\mathcal{J}_\epsilon \) is expressed in terms of \(\phi_\epsilon \), that is,

\[
\mathcal{J}_\epsilon = -m_\epsilon(\phi_\epsilon) \nabla \mu_\epsilon = -m_\epsilon(\phi_\epsilon) \nabla (a\phi_\epsilon - J*\phi_\epsilon) - m_\epsilon(\phi_\epsilon) F''(\phi_\epsilon) \nabla \phi_\epsilon.
\]

Using (4.49), (4.57) and (4.60) it is easy to see that

\[
\mathcal{J}_\epsilon \to -m(\phi) \nabla (a\phi - J*\phi) - m(\phi) F''(\phi) \nabla \phi \quad \text{weakly in} \quad L^{2-\eta}(Q_T), \quad \forall \eta \in (0, 1).
\]

On account of (4.63), we therefore see that \(\mathcal{J} \) is given by

\[
\mathcal{J} = -m(\phi) \nabla (a\phi - J*\phi) - m(\phi) F''(\phi) \nabla \phi, \quad (4.65)
\]

and that the last convergence is also weakly in \(L^2(Q_T) \). Hence, taking the inferior limit of the third term on the left-hand side of (4.64), we have

\[
\int_0^t \left\| \frac{\mathcal{J}}{\sqrt{m(\phi)}} \right\|^2 \, d\tau = \int_0^t \left\| \hat{\mathcal{J}}_\epsilon \right\|^2 \, d\tau \leq \liminf_{\epsilon \to 0} \int_0^t \left\| \hat{\mathcal{J}}_\epsilon \right\|^2 \, d\tau = \liminf_{\epsilon \to 0} \int_0^t \left\| \frac{\mathcal{J}_\epsilon}{\sqrt{m_\epsilon(\phi_\epsilon)}} \right\|^2 \, d\tau.
\]

(4.66)
On the other hand, the strong degeneracy condition \(m(\pm 1) = 0 \) with order \(\geq 2 \) implies (see remark 8 here below) that the set \(\{ x \in \Omega : \varphi(x, t) = 1 \} \) has zero measure for almost any \(t \in (0, T) \). Hence we have \(F(\varphi_t) \to F(\varphi) \) almost everywhere in \(Q_T \), and Fatou’s lemma yields
\[
\int_\Omega F(\varphi) \leq \liminf_{\epsilon \to 0} \int_\Omega F(\varphi_\epsilon).
\]
Finally, (4.61) follows immediately from (4.64) on account of (4.66), (4.67), (4.65) and the second weak convergence in (4.45).

Remark 7. In comparison with the analogous result for the case of constant mobility (see [21, theorem 1]), theorem 2 does not require the condition \(|\nabla \varphi| < 1 \) (the assumptions on \(\varphi_0 \) imply only that \(|\nabla \varphi| \leq 1 \)). This is essentially due to the fact that here we are dealing with a different weak formulation. Therefore, if \(F \) is bounded (e.g. \(F \) is given by (4.2)) and at \(t = 0 \) the fluid is in a pure phase, e.g., \(\varphi_0 = 1 \) almost everywhere in \(\Omega \), and furthermore \(u_0 = u(0) \) is given in \(G_{\text{div}} \), then we can immediately check that the couple \([u, \varphi]\) given by
\[
\begin{align*}
u &= u(, t), \quad \varphi = \varphi(, t) = 1, \quad \text{a.e. in } \Omega, \quad \text{a.e. } t \geq 0,
\end{align*}
\]
where \(u \) is the solution of the Navier–Stokes equations with a non-slip boundary condition, initial velocity field \(u_0 \) and external force \(h \), explicitly satisfies the weak formulation (4.9), (4.10). Hence, the non-local Cahn–Hilliard–Navier–Stokes model with degenerate mobility and bounded double-well potentials allows pure phases at any time \(t \geq 0 \). This possibility is excluded in the model with constant mobility since in such model the chemical potential \(\mu \) (and hence \(F(\varphi) \)) appears explicitly.

Remark 8. If \(m(\pm 1) = 0 \) with order strictly less than \(2 \), then, as a consequence of (A1) and of the definition of the function \(M \), both \(F \) and \(M \) are bounded in \([-1, 1] \). This can be seen, for instance, by writing \(M \) as follows
\[
M(s) = \int_0^s \frac{s - t}{m(t)} \, dt, \quad \forall s \in (-1, 1).
\]
In this case, the conditions \(F(\varphi_0) \in L^1(\Omega) \) and \(M(\varphi_0) \in L^1(\Omega) \) of theorem 2 are satisfied by every initial datum \(\varphi_0 \) such that \(|\varphi_0| \leq 1 \) in \(\Omega \). Therefore the existence of pure phases is allowed. A relevant example for this case is given by (4.2). On the other hand, if \(m(\pm 1) = 0 \) with order greater than or equal \(2 \) (in this case we say that \(m \) is strongly degenerate), then it can be proved (cf [17, corollary] and also [13, theorem 2.3]) that the conditions \(F(\varphi_0) \in L^1(\Omega) \) and \(M(\varphi_0) \in L^1(\Omega) \) imply that the sets \(\{ x \in \Omega : \varphi_0(x) = 1 \} \) and \(\{ x \in \Omega : \varphi_0(x) = -1 \} \) both have measure zero. Hence, in this case we have obviously \(|\nabla \varphi_0| < 1 \) and furthermore it can be seen that also the sets \(\{ x \in \Omega : \varphi(x, t) = 1 \} \) and \(\{ x \in \Omega : \varphi(x, t) = -1 \} \) both have measure zero for almost any \(t \geq 0 \). Therefore, in the case of strongly degenerating mobility the presence of pure phases is not allowed (even on subsets of \(\Omega \) of positive measure), and so, from this point of view the situation is more similar to the case of constant mobility. Summing up, as far as the possibility of existence of pure phases is concerned, the difference between the cases of constant and degenerate mobility is more relevant when the mobility is degenerate, but not strongly degenerate (on this issue see also [51]).

If, in addition to the assumptions of theorem 2, we suppose that the initial chemical potential \(\mu(0) =: \mu_0 \) belongs to \(H \), then we can improve the regularity of \(\mu \). In particular, we obtain \(\mu \in L^2(0, T; V) \). This is shown in the next theorem, which also requires some further reasonable conditions on the singular part \(F_1 \) of the potential \(F \) (the potential (4.2) is, however, included) and whose proof is based on a suitable choice of the test function (see [28]).
point out that, while in [28] the improved regularity for the chemical potential is justified only by formal computations, the argument in the proof of theorem 3 is rigorous.

Theorem 3. Let all assumptions of theorem 2 be satisfied. In addition, assume that \(F_1 \in C^3(-1, 1)\) and that there exist some constants \(\alpha_0, \beta_0 > 0\) and \(\rho \in [0, 1)\) such that the following conditions are fulfilled:

\[
\begin{align*}
\rho F_1'(s) + F_2'(s) + a(s) &\geq 0, \quad \forall s \in (-1, 1), \quad \text{a.e. in } \Omega, \\
m(s)F_1'(s) &\geq \alpha_0, \quad \forall s \in [-1, 1], \\
|m^2(s)F_1''(s)| &\leq \beta_0, \quad \forall s \in [-1, 1], \\
F_1'(s)F_1''(s) &\geq 0, \quad \forall s \in (-1, 1).
\end{align*}
\]

Let \(\phi_0\) be such that

\[F'(\phi_0) \in H.\]

Then, the weak solution \(z = [u, \varphi]\) given by theorem 2 fulfills

\[
\mu \in L^\infty(0, T; H), \quad \nabla \mu \in L^2(0, T; H).
\]

As a consequence, \(z = [u, \varphi]\) also satisfies the weak formulation (3.5) and (3.6), the energy inequality (3.7) and, for \(d = 2\), the energy identity (3.12).

Remark 9. Note that in theorem 3 assumptions (A2) and (A4) can be omitted. Indeed, (A2) follows from (4.69) and from the assumptions on \(m\), while (A4) follows from (4.68) and (4.69). Observe moreover that the standard potential \(F\) and the mobility \(m\) in (4.2) comply with the assumptions of theorem 3.

Remark 10. Assumption (4.69) together with (A1) imply that the two conditions \(F'(\phi_0) \in L^1(\Omega)\) and \(M(\phi_0) \in L^1(\Omega)\) are equivalent. Indeed, by combining (4.69) with the definition of function \(M\) we obtain \(\alpha_0 M(s) \leq F_1'(s), \forall s \in (-1, 1)\). Integrating this inequality we obtain

\[\alpha_0 M(s) \leq F_1(s) - F_1(0) - F_1'(s)s, \quad \forall s \in (-1, 1),\]

and, on account of (4.12), we obtain the above equivalence.

Proof. Let us write the weak formulation of (4.13) as

\[
\langle \phi_e', \psi \rangle + \left(m_e(\phi_e) \nabla \mu_e, \nabla \psi \right) + \left(m_e(\phi_e) \nabla (a\psi_e + F_2'(\phi_e)), \nabla \psi \right) = \left(u_e \varphi_e, \nabla \psi \right),
\]

for all \(\psi \in V\), where we have set

\[
\mu_e := w_e + F_{1e}'(\phi_e), \quad w_e := -J \ast \varphi_e,
\]

and where \(F_{1e}\) is defined as in (4.19). Take \(\psi = F_{1e}'(\varphi_e)F_{2e}'(\varphi_e)\) as test functions in (4.74) and note that \(\psi \in V\). Indeed, \(F_{1e}'(\varphi_e) \in V\) and, since by (4.19) \(F_{1e}'\) is globally Lipschitz on \(\mathbb{R}\), we have also \(F_{2e}'(\varphi_e) \in V\). On the other hand, by applying an Alikakos' iteration argument as in [10, theorem 2.1], we can prove that the family of approximate solutions \(\varphi_e\) is uniformly bounded in \(L^\infty(\Omega)\). To see this, let us take \(\psi = |\varphi_e|^{p-1}\varphi_e\) as a test function in (4.74), where \(p > 1\). Then we obtain the following differential identity

\[
\frac{1}{p+1} \frac{d}{dt} \|\varphi_e\|_{L^{p+1}(\Omega)}^{p+1} + p \int_{\Omega} m_e(\phi_e)F_{2e}'(\varphi_e)|\nabla \varphi_e|^2|\varphi_e|^{p-1} + p \int_{\Omega} m_e(\phi_e)\nabla w_e \cdot \nabla \varphi_e |\varphi_e|^{p-1}
\]

\[
+ p \int_{\Omega} m_e(\phi_e)\nabla (a\psi_e + F_2'(\phi_e)) \cdot \nabla \varphi_e |\varphi_e|^{p-1} = 0.
\]

1278
In fact, the above choice of test function would not be generally admissible. Nevertheless, the argument can be made rigorous by means of a truncation procedure on ϕ_ϵ and then by choosing a suitable the truncation parameter.

Let us briefly sketch the main steps of this argument (see also, e.g., [39]). We first introduce the truncation function Q^R defined, for every $R > 0$, by

$$Q^R(s) = \begin{cases}
 s, & |s| \leq R, \\
 R, & s \geq R, \\
 -R, & s \leq -R.
\end{cases}$$

Then we consider an auxiliary problem (which, for simplicity, we call P^R_ϵ) which consists of (4.74) coupled with (4.14)–(4.18), but in the expression of μ_ϵ the convolution term w_ϵ is replaced by

$$w^R_\epsilon := -J \ast Q^R(\phi_\epsilon).$$

A Faedo–Galerkin approximation scheme, such as the one used in the proof of theorem 1, allows us to prove that, for every $R > 0$, problem P^R_ϵ admits a weak solution having the regularity properties (3.1)–(3.4). Let us now choose $\psi = |Q^R(\phi_\epsilon)|^{-1}Q^R(\phi_\epsilon)$ in (4.74) (this choice of test function is admissible since now $\psi \in V$). After some easy computations we obtain the following truncated version of (4.75)

$$\begin{aligned}
\frac{d}{dt} &\int_{\Omega} G^p_{p,R}(\phi_\epsilon) + p \int_{\Omega} m_\epsilon(\phi_\epsilon) F''_1(\phi_\epsilon) |\nabla \phi_\epsilon|^2 |Q^R(\phi_\epsilon)|^{p-1} Q'_R(\phi_\epsilon) \\
&+ p \int_{\Omega} m_\epsilon(\phi_\epsilon) \nabla w^R_\epsilon \cdot \nabla \phi_\epsilon |Q^R(\phi_\epsilon)|^{p-1} Q'_R(\phi_\epsilon) \\
&+ p \int_{\Omega} m_\epsilon(\phi_\epsilon) \nabla (a\phi_\epsilon + F'_2(\phi_\epsilon)) \cdot \nabla \phi_\epsilon |Q^R(\phi_\epsilon)|^{p-1} Q'_R(\phi_\epsilon) = 0, \\
\end{aligned}$$

where

$$G^p_{p,R}(s) := \int_0^s |Q^R(r)|^{p-1} Q^R(r) dr \geq \frac{1}{p + 1} |Q^R(s)|^{p+1}, \quad \forall s \in \mathbb{R}. \quad (4.77)$$

This last estimate holds since we have, e.g. for $s \geq R$

$$G^p_{p,R}(s) = \int_0^R \cdots + \int_R^s \cdots = \frac{1}{p + 1} R^{p+1} + R^p (s - R)$$

$$= R^p s - \frac{p}{p + 1} R^{p+1} \geq \frac{1}{p + 1} R^{p+1} = \frac{1}{p + 1} Q^R(s)^{p+1},$$

and, for every $s \in [-R, R]$, (4.77) obviously holds with equality. Note that the first term on the left-hand side of (4.75) can be rigorously justified by applying [16, proposition 4.2] to the duality pairing $\langle \phi'_\epsilon, [Q^R(\phi_\epsilon)]^{p-1}Q'_R(\phi_\epsilon) \rangle$. Indeed, this duality pairing can be written as $\langle \phi'_\epsilon, G^p_{p,R}(\phi_\epsilon) \rangle$, the function $G^p_{p,R}$ is convex and we have $\phi'_\epsilon \in L^2(0, T; V')$ with $G^p_{p,R}(\phi_\epsilon) \in L^2(0, T; V)$.

By using (4.68) and (4.69) we obtain

$$p \int_{\Omega} m_\epsilon(\phi_\epsilon) F''_1(\phi_\epsilon) |\nabla \phi_\epsilon|^2 |Q^R(\phi_\epsilon)|^{p-1} Q'_R(\phi_\epsilon)$$

$$+ p \int_{\Omega} m_\epsilon(\phi_\epsilon) \nabla (a\phi_\epsilon + F'_2(\phi_\epsilon)) \cdot \nabla \phi_\epsilon |Q^R(\phi_\epsilon)|^{p-1} Q'_R(\phi_\epsilon)$$

$$= p \int_{\Omega} m_\epsilon(\phi_\epsilon) F''_1(\phi_\epsilon) |\nabla \phi_\epsilon|^2 |Q^R(\phi_\epsilon)|^{p-1} Q'_R(\phi_\epsilon)$$
+p \int_{\Omega} m_{\varepsilon}(\varphi_{\varepsilon})(a + F_{\varepsilon}''(\varphi_{\varepsilon})) |\nabla \varphi_{\varepsilon}|^2 |Q_{R}(\varphi_{\varepsilon})|^p - 1 Q_{R}'(\varphi_{\varepsilon}) \\
 +p \int_{\Omega} m_{\varepsilon}(\varphi_{\varepsilon}) \varphi_{\varepsilon} \nabla a \cdot \nabla \varphi_{\varepsilon} |Q_{R}(\varphi_{\varepsilon})|^p - 1 Q_{R}'(\varphi_{\varepsilon}) \\
 \geq (1 - \rho) p \int_{\Omega} m_{\varepsilon}(\varphi_{\varepsilon}) F_{\varepsilon}''(\varphi_{\varepsilon}) |\nabla \varphi_{\varepsilon}|^2 |Q_{R}(\varphi_{\varepsilon})|^p - 1 Q_{R}'(\varphi_{\varepsilon}) \\
 +p \int_{\Omega} m_{\varepsilon}(\varphi_{\varepsilon}) \varphi_{\varepsilon} \nabla a \cdot \nabla \varphi_{\varepsilon} |Q_{R}(\varphi_{\varepsilon})|^p - 1 Q_{R}'(\varphi_{\varepsilon}) \\
 \geq 4 \rho_{0} p(1 - \rho) \int_{\Omega} |\nabla |Q_{R}(\varphi_{\varepsilon})|^\frac{p}{2} |^2 \\
 +\int_{\Omega} m_{\varepsilon}(\varphi_{\varepsilon}) \varphi_{\varepsilon} \nabla a \cdot \nabla \varphi_{\varepsilon} |Q_{R}(\varphi_{\varepsilon})|^p - 1 Q_{R}'(\varphi_{\varepsilon}). \quad (4.78)

Therefore, by combining (4.76) with (4.78) we deduce

\frac{d}{dt} \int_{\Omega} G_{p,R}(\varphi_{\varepsilon}) + \frac{4 \rho_{0} p(1 - \rho)}{(p + 1)^{2}} \int_{\Omega} |\nabla |Q_{R}(\varphi_{\varepsilon})|^\frac{p}{2} |^2 \\
 +p \int_{\Omega} m_{\varepsilon}(\varphi_{\varepsilon}) \nabla w_{\varepsilon} \cdot \nabla \varphi_{\varepsilon} |Q_{R}(\varphi_{\varepsilon})|^p - 1 Q_{R}'(\varphi_{\varepsilon}) \\
 +p \int_{\Omega} m_{\varepsilon}(\varphi_{\varepsilon}) \varphi_{\varepsilon} \nabla a \cdot \nabla \varphi_{\varepsilon} |Q_{R}(\varphi_{\varepsilon})|^p - 1 Q_{R}'(\varphi_{\varepsilon}) \leq 0. \quad (4.79)

By estimating the last two terms on the left-hand side of (4.79) similarly as performed in [11, proof of theorem 2.1], integrating in time between 0 and t and using (4.77), we are led to an integral inequality of the following form:

\int_{\Omega} |Q_{R}(\varphi_{\varepsilon})|^{p+1} + \frac{2 \rho_{0} p(1 - \rho)}{(p + 1)^{2}} \int_{0}^{t} \int_{\Omega} |\nabla |Q_{R}(\varphi_{\varepsilon})|^\frac{p}{2} |^2 \\
 \leq C \cdot (p + 1)^{2} \int_{0}^{t} \int_{\Omega} |Q_{R}(\varphi_{\varepsilon})|^{p+1} + \|\varphi_{0}\|_{L^\infty} |Q_{R}(\varphi_{\varepsilon})| + \|\varphi_{0}\|_{L^\infty} |Q_{R}(\varphi_{\varepsilon})|, \quad (4.80)

where the constant C does not depend on R (C is also independent of p and of \varepsilon; it depends only on J, \varOmega, m_{2} := \|m\|_{L^\infty(-1,1)}, \rho, \rho_{0}). Starting from (4.80), by also relying on the Gagliardo–Nirenberg inequality to estimate the first term on the right-hand side and on the Gronwall lemma, we are ready to perform a Moser–Alikakos iteration argument as in [11, proof of theorem 2.1]. This procedure allows us, at every step, to obtain an estimate of the L^{p}(\varOmega)-norm of Q_{R}(\varphi_{\varepsilon}(t)) with a bound that does not depend on p. Letting p \rightarrow \infty, we deduce

\|Q_{R}(\varphi_{\varepsilon}(t))\|_{L^\infty(\varOmega)} \leq \bar{C}, \quad (4.81)

where the positive constant \bar{C} depends on \|\varphi_{0}\|_{L^\infty(\varOmega)}, \|u_{0}\|, \|h\|_{L^{2}(0,T,V_{\varOmega})}, and on F, J, \nu, \varOmega, but is independent of R and \varepsilon. Therefore, taking R > \bar{C}, (4.81) yields

\|\varphi_{\varepsilon}(t)\|_{L^\infty(\varOmega)} \leq \bar{C}. \quad (4.82)

Thanks to (4.82) we have Q_{R}(\varphi_{\varepsilon}) = \varphi_{\varepsilon} for R > \bar{C} and therefore the solution to problem P_{R} is also a solution to the original problem (4.74), (4.14)–(4.18) (i.e., we can remove the truncation in problem P_{R} and conclude that problem P_{R} has a bounded solution \varphi_{\varepsilon} uniformly with respect to \varepsilon). We shall henceforth refer to this solution as \varphi_{\varepsilon}.

Hence, knowing that \varphi_{\varepsilon}(t) \in L^{\infty}(\varOmega), we have that F_{\varepsilon}''(\varphi_{\varepsilon}(t)) and F_{\varepsilon}''(\varphi_{\varepsilon}(t)) belong to V \cap L^{\infty}(\varOmega). This yields \psi(t) = F_{\varepsilon}''(\varphi_{\varepsilon}(t))F_{\varepsilon}''(\varphi_{\varepsilon}(t)) \in V \cap L^{\infty}(\varOmega). Using this test function we first see that the contribution of the convective term vanishes. Indeed, by the incompressibility condition (1.8) we deduce

\int_{\varOmega} (u_{\varepsilon} \cdot \nabla \varphi_{\varepsilon}) F_{\varepsilon}''(\varphi_{\varepsilon}) F_{\varepsilon}''(\varphi_{\varepsilon}) = \int_{\varOmega} u_{\varepsilon} \cdot \nabla \left(\frac{F_{\varepsilon}''(\varphi_{\varepsilon})}{2} \right) = 0.
Furthermore, we can see that we have

\[
\langle \varphi', F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \rangle = \frac{1}{2} \frac{d}{dt} \int_{\Omega} |F'_{1\epsilon}(\varphi)|^2.
\] (4.83)

Indeed, setting \(G_\epsilon(s) := F''_{1\epsilon}(s)/2 \), we find \(G''_\epsilon = F''_{1\epsilon} F''_{1\epsilon} + F'_{1\epsilon} \geq 0 \) almost everywhere in \(\mathbb{R} \), due to (4.71), i.e., \(G_\epsilon \) is convex on \(\mathbb{R} \). Hence, (4.83) follows as an easy application of the chain rule result proved in [16, proposition 4.2].

We are therefore led to the following identity

\[
\frac{1}{2} \frac{d}{dt} \| F''_{1\epsilon}(\varphi) \|^2 + \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) \nabla \mu_\epsilon \cdot \nabla F'_{1\epsilon}(\varphi) + \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \cdot \nabla \varphi_\epsilon + \int_{\Omega} m_\epsilon(\varphi) \varphi_\epsilon \nabla a \cdot \nabla (F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi))
\]

\[
+ \int_{\Omega} m_\epsilon(\varphi) (a + F''_{2\epsilon}(\varphi)) \nabla \varphi_\epsilon \cdot \nabla (F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi)) = 0,
\] (4.84)

which can be rewritten as

\[
\frac{1}{2} \frac{d}{dt} \| \mu_\epsilon - u_\epsilon \|^2 + \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) \nabla (\mu_\epsilon - u_\epsilon) \cdot \nabla (\mu_\epsilon - u_\epsilon) + \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) \nabla u_\epsilon \cdot \nabla (\mu_\epsilon - u_\epsilon)
\]

\[
+ \int_{\Omega} m_\epsilon(\varphi) (\mu_\epsilon - u_\epsilon) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \cdot \nabla \varphi_\epsilon + \int_{\Omega} m_\epsilon(\varphi) \varphi_\epsilon F''_{1\epsilon}(\varphi) \nabla a \cdot \nabla F''_{1\epsilon}(\varphi)
\]

\[
+ \int_{\Omega} m_\epsilon(\varphi) \varphi_\epsilon F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla a \cdot \nabla \varphi_\epsilon + \int_{\Omega} m_\epsilon(\varphi) (a + F''_{2\epsilon}(\varphi)) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \|^2
\]

\[
+ \int_{\Omega} m_\epsilon(\varphi) (a + F''_{2\epsilon}(\varphi)) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \|^2 = 0.
\] (4.85)

Condition (4.68) implies that

\[
\rho F''_{2\epsilon}(s) + F''_{2\epsilon}(s) + a(x) \geq 0, \quad \forall s \in \mathbb{R}, \quad \forall a \in \Omega, \quad \forall \epsilon \in (0, 1).
\] (4.86)

Then we obtain

\[
\int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) \nabla (\mu_\epsilon - u_\epsilon) \|^2 + \int_{\Omega} m_\epsilon(\varphi) (a + F''_{2\epsilon}(\varphi)) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \|^2
\]

\[
\geq (1 - \rho) \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) \nabla (\mu_\epsilon - u_\epsilon) \|^2.
\] (4.87)

On the other hand, condition (4.71) implies that, for all \(\epsilon \in (0, 1) \), \(F''_{1\epsilon} \geq 0 \) on \(\mathbb{R} \). Thus using again (4.86), we have

\[
\int_{\Omega} m_\epsilon(\varphi) (\mu_\epsilon - u_\epsilon) F''_{1\epsilon}(\varphi) \nabla \mu_\epsilon \cdot \nabla \varphi_\epsilon + \int_{\Omega} m_\epsilon(\varphi) (a + F''_{2\epsilon}(\varphi)) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \|^2
\]

\[
\geq \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla \mu_\epsilon \cdot \nabla \varphi_\epsilon - \rho \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \|^2
\]

\[
= \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \|^2 + \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla u_\epsilon \cdot \nabla \varphi_\epsilon
\]

\[
- \rho \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla \varphi_\epsilon \|^2
\]

\[
= (1 - \rho) \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla (\mu_\epsilon - u_\epsilon) \cdot \nabla \varphi_\epsilon + \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla u_\epsilon \cdot \nabla \varphi_\epsilon
\]

\[
= (1 - \rho) \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla \mu_\epsilon \cdot \nabla \varphi_\epsilon + \rho \int_{\Omega} m_\epsilon(\varphi) F''_{1\epsilon}(\varphi) F''_{1\epsilon}(\varphi) \nabla u_\epsilon \cdot \nabla \varphi_\epsilon.
\] (4.88)
Furthermore, observe that
\[m_e(\varphi_0) F_{1e}^m(\varphi_0) \nabla \varphi_0 = \frac{m_e^2(\varphi_0) F_{1e}^m(\varphi_0)}{m_e(\varphi_0) F_{1e}^m(\varphi_0)} \nabla F'_{1e}(\varphi_0) = \gamma_e(\varphi_0) \nabla F'_{1e}(\varphi_0), \] (4.89)
where
\[\gamma_e(s) := \frac{m_e^2(s) F_{1e}^m(s)}{m_e(s) F_{1e}^m(s)}. \] Therefore the following identity holds:
\[\int_\Omega m_e(\varphi_0) F'_{1e}(\varphi_0) F_{1e}^m(\varphi_0) \nabla \varphi_0 = \int_\Omega \gamma_e(\varphi_0)(\mu_e - \varphi_0) \varphi_0 \nabla \varphi_0 = \int_\Omega \gamma_e(\varphi_0)(\mu_e - \varphi_0) \varphi_0 \nabla (\mu_e - \varphi_0). \] (4.90)
By plugging (4.87), (4.88) and (4.90) into (4.85) and using (4.89) once more, we obtain
\[\frac{1}{2} \frac{d}{dt} \| \mu_e - \varphi_0 \|^2 + (1 - \rho) \int_\Omega m_e(\varphi_0) F''_{1e}(\varphi_0) \nabla (\mu_e - \varphi_0) \|^2 \]
\[+ \int_\Omega m_e(\varphi_0) F''_{1e}(\varphi_0) \nabla w_e \cdot \nabla (\mu_e - \varphi_0) \] \[+ (1 - \rho) \int_\Omega \gamma_e(\varphi_0)(\mu_e - \varphi_0) \nabla (\mu_e - \varphi_0) \|^2 \]
\[+ \int_\Omega \gamma_e(\varphi_0)(\mu_e - \varphi_0) \nabla (\mu_e - \varphi_0) \cdot \nabla w_e + \int_\Omega m_e(\varphi_0) F''_{1e}(\varphi_0) \varphi_0 \nabla a \cdot \nabla (\mu_e - \varphi_0) \]
\[+ \int_\Omega \gamma_e(\varphi_0)(\mu_e - \varphi_0) \varphi_0 \nabla a \cdot \nabla (\mu_e - \varphi_0) \leq 0. \] (4.91)
Note that the fourth term on the left-hand side is non-negative since there holds
\[\gamma_e(\varphi_0)(\mu_e - \varphi_0) = \gamma_e(\varphi_0) F'_{1e}(\varphi_0) = \frac{m_e^2(\varphi_0) F''_{1e}(\varphi_0)}{m_e(\varphi_0) F_{1e}^m(\varphi_0)} F'_{1e}(\varphi_0) \geq 0. \]
On the other hand, condition (4.69) implies that
\[m_e(s) F''_{1e}(s) \geq \alpha_0, \quad \forall s \in \mathbb{R}, \quad \forall \epsilon \in (0, 1), \] (4.92)
and, using (H2), we have
\[\int_\Omega \gamma_e(\varphi_0)(\mu_e - \varphi_0) \nabla (\mu_e - \varphi_0) \cdot \nabla w_e \geq - (1 - \rho) \frac{\alpha_0}{8} \| \nabla (\mu_e - \varphi_0) \|^2 \]
\[- C_1 \int_\Omega \gamma_e^2(\varphi_0) | \nabla w_e |^2 | \mu_e - \varphi_0 |^2, \] (4.93)
\[\int_\Omega \gamma_e(\varphi_0)(\mu_e - \varphi_0) w_e \nabla a \cdot \nabla (\mu_e - \varphi_0) \geq - (1 - \rho) \frac{\alpha_0}{8} \| \nabla (\mu_e - \varphi_0) \|^2 \]
\[- C_1 \int_\Omega \gamma_e^2(\varphi_0) w_e^2 | \mu_e - \varphi_0 |^2, \] (4.94)
\[\int_\Omega m_e(\varphi_0) F''_{1e}(\varphi_0) \varphi_0 \nabla a \cdot \nabla (\mu_e - \varphi_0) \geq - (1 - \rho) \frac{\alpha_0}{8} \| \nabla (\mu_e - \varphi_0) \|^2 - C_2 \| \varphi_0 \|^2, \] (4.95)
\[\int_\Omega m_e(\varphi_0) F''_{1e}(\varphi_0) \nabla w_e \cdot \nabla (\mu_e - \varphi_0) \geq - (1 - \rho) \frac{\alpha_0}{8} \| \nabla (\mu_e - \varphi_0) \|^2 - C_3 \| \nabla w_e \|^2. \] (4.96)
In (4.95) and (4.96) we have used the fact that (4.56) holds as a consequence of the boundedness of \(m F'' \) on \([0, 1] \).
Recall that \(\gamma_e(s) = 0 \) for all \(|s| > 1 - \epsilon \), and \(\gamma_e(s) = m_e(s) F''_{1e}(s) / m(s) F''_{1e}(s) \) for \(|s| \leq 1 - \epsilon \). Hence, on account of (4.69) and (4.70), we have
\[| \gamma_e(s) | \leq \gamma_0, \quad \forall s \in \mathbb{R}, \quad \forall \epsilon \in (0, 1), \] (4.97)
with \(\gamma_0 \) := \(\beta_0/\alpha_0 \). Thus the second term on the right-hand side of (4.94) can be estimated as follows:
\[
\int_{|\psi| \leq 1-\epsilon} \gamma_0^2 |\psi|^2 |\nabla a|^2 |\mu_\epsilon - w_\epsilon|^2 \leq \gamma_0^2 \|\nabla a\|_{L^\infty(\Omega)}^2 \|\mu_\epsilon - w_\epsilon\|^2.
\]
(4.98)

By means of (4.82) and (4.92)–(4.98), we deduce from (4.91) the inequality
\[
\frac{d}{dt} \|\mu_\epsilon - w_\epsilon\|^2 + \alpha_0 (1 - \rho) \|\nabla (\mu_\epsilon - w_\epsilon)\|^2 \leq C_4 + C_5 \|\mu_\epsilon - w_\epsilon\|^2.
\]
(4.99)

with \(\epsilon_0 > 0 \) small enough. Therefore, condition (4.72) entails
\[
\|\mu_\epsilon(0) - w_\epsilon(0)\| = \|F'_{\mu}(\psi_0)\| \leq \|F'_{\psi}(\psi_0)\|.
\]
(4.100)

and by applying Gronwall’s lemma to (4.99) and using the fact that \(w_\epsilon \) is bounded independently of \(\epsilon \) in \(L^\infty(0, T; H) \) as well as its gradient (cf (H2) and (4.6)), we immediately obtain
\[
\mu_\epsilon \in L^\infty(0, T; H), \quad \nabla \mu_\epsilon \in L^2(0, T; H),
\]
(4.101)

where \(\mu_\epsilon := w + F'_{\mu}(\psi) \) and \(w := -J \ast \psi \). Furthermore, due to (4.20), we have (see also (4.25))
\[
|F''_{\mu}(s)| \leq L_3 |s| + L_4, \quad |F''_{\psi}(s)| \leq L_5, \quad \forall s \in \mathbb{R},
\]
(4.102)

for some non-negative constants \(L_3, L_4, L_5 \) which are independent of \(\epsilon \). By using these estimates, (4.33) and (4.38) we also obtain
\[
F'_{\psi}(\psi) \in L^\infty(0, T; H), \quad \nabla F'_{\psi}(\psi) \in L^2(0, T; H).
\]
(4.103)

From (4.101) and (4.102) we immediately obtain (4.73).

In order to see that (3.5) and (3.6) are satisfied, consider the weak formulation (4.54), (4.55) of the approximate problem \(P_\epsilon \), write \(F'_{\mu}(\psi_\epsilon) \nabla \psi_\epsilon = \nabla F'_{\psi}(\psi_\epsilon) \), rearrange the terms on the left-hand side of (4.54), take the definition of \(\mu_\epsilon \) into account and pass to the limit as \(\epsilon \to 0 \).

The energy inequality (3.7) can be deduced by passing to the limit in (4.31) and by observing that
\[
\int_{\Omega} F_{\epsilon}(\psi_\epsilon) \leq \int_{\Omega} F_{1}(\psi_\epsilon) + \int_{\Omega} F_{2}(\psi_\epsilon),
\]
and that \(\int_{\Omega} F_{2}(\psi_\epsilon) \to \int_{\Omega} F_{2}(\psi_0) \) by Lebesgue’s theorem (see (4.25)).

Finally, the energy identity (3.12) for \(d = 2 \) is obtained by choosing \(\psi = \mu \) as a test function in (3.5).

The argument of theorem 3 can be exploited to prove rigorously the existence of a weak solution satisfying (4.11) with \(6 < p < \infty \), for \(d = 3 \). We point out that the \(L^\infty(\Omega^p) \) regularity of \(\psi \) follows only formally from the condition \(|\psi| \leq 1 \) proved in theorem 2. Indeed, in the case \(d = 3 \) it is not known that the \(\phi \) component of the weak solution of theorem 2 is measurable with values in \(L^p \) if \(p > 6 \). Instead, a rigorous way to deduce such regularity is by means of an approximation argument which makes use of an approximating potential with polynomial growth of order \(p \).

Corollary 3. Let all the assumptions of theorem 2 and theorem 3 be satisfied and \(d = 3 \). In particular let \(\psi_0 \) be such that (4.72) holds. In addition, assume that there exists \(\epsilon_0 > 0 \) such that the following assumptions are satisfied:
\[
F'_{\mu}(s) \geq 1, \quad \forall s \in [1 - \epsilon_0, 1) \quad \text{and} \quad F'_{\mu}(s) \leq -1, \quad \forall s \in (-1, -1 + \epsilon_0],
\]
(4.104)

\[
F'_{\psi}(s) \geq 0, \quad \forall s \in [1 - \epsilon_0, 1) \quad \text{and} \quad F'_{\psi}(s) \leq 0, \quad \forall s \in (-1, -1 + \epsilon_0].
\]
(4.105)
Let $p \in (6, \infty)$ be fixed arbitrarily. Then, for every $T > 0$, there exists a weak solution $z = [u, \varphi]$ to (1.5)–(1.10) on $[0, T]$ in the sense of definition 2, satisfying the weak formulation (3.5), (3.6) and such that

$$\varphi \in L^\infty(0, T; L^p(\Omega)).$$ (4.105)

Proof. We argue as in the proofs of theorems 2 and 3, but we employ a different approximation of the singular part F_{ϵ} of the double-well potential. Namely, here we consider the approximate problem (4.13)–(4.18) with the following choice for F_{ϵ}:

$$F_{\epsilon}(s) = \begin{cases}
F_1(1 - \epsilon) + F_1'(1 - \epsilon)(s - (1 - \epsilon)) + \frac{1}{2} F_1''(1 - \epsilon)(s - (1 - \epsilon))^2 \\
+ \frac{1}{3} F_1''(s - (1 - \epsilon))^3, & s \geq 1 - \epsilon \\
F_1(-1 + \epsilon) + F_1'(-1 + \epsilon)(s - (-1 + \epsilon)) + \frac{1}{2} F_1''(-1 + \epsilon)(s - (-1 + \epsilon))^2 \\
+ \frac{1}{3} F_1''(s - (-1 + \epsilon))^3, & s \leq -1 + \epsilon.
\end{cases}$$

Let us argue as in theorem 2 to deduce the estimates for φ_{ϵ} and u_{ϵ} (and their time derivatives). The passage to the limit will be performed differently with respect to theorem 2.

We first check that (4.22) is still true for this new approximate potential. Indeed, for $1 - \epsilon \leq s < 1$, thanks to (4.103) we have, for some $\xi \in (1 - \epsilon, s)$

$$F_1(s) = F_1(1 - \epsilon) + F_1'(1 - \epsilon)(s - (1 - \epsilon)) + \frac{1}{2} F_1''(1 - \epsilon)(s - (1 - \epsilon))^2$$

$$+ \frac{1}{6} F_1'''(\xi)(s - (1 - \epsilon))^3$$

$$\geq F_1(1 - \epsilon) + F_1'(1 - \epsilon)(s - (1 - \epsilon)) + \frac{1}{2} F_1''(1 - \epsilon)(s - (1 - \epsilon))^2$$

$$+ \frac{1}{6} (s - (1 - \epsilon))^3 = F_{\epsilon}(s),$$

provided that $\epsilon \in (0, \epsilon_0]$, with ϵ_0 as in (4.103). For $-1 < s \leq -1 + \epsilon$ we argue similarly.

It is easy to see that the uniform (with respect to ϵ) coercivity condition (4.27) will now be replaced by (cf also (A2))

$$F_{\epsilon}(s) \geq \frac{1}{24} |s|^p - c_p, \quad \forall s \in \mathbb{R}, \quad \forall \epsilon \in (0, \epsilon_0],$$ (4.106)

where the constant c_p depends on p but is independent of ϵ. It is also immediate to check that (4.30) and (H7) hold for the new approximate potential. Therefore, since we have also $F_{\epsilon} \in C_{\text{loc}}^{2,1}(\mathbb{R})$, assumptions (H1)–(H6) of theorem 1, with (H4) replaced by (H7), are satisfied. Hence, for every fixed $\epsilon \in (0, \epsilon_0]$, problem P_{ϵ} admits a weak solution satisfying (3.1), the first of (3.2), (3.9), (3.10), and the energy inequality (4.31). By means of (4.26), (4.30) and (4.106), from the approximate energy inequality we can still recover estimates (4.32), (4.34), (4.38) and (4.39), while estimate (4.33) will now be substituted by the stronger

$$\|\psi_{\epsilon}\|_{L^\infty(0, T; L^p(\Omega))} \leq C.$$ (4.107)

The estimates for u'_{ϵ} and φ'_{ϵ} can be improved as well. Indeed, instead of (4.41) and (4.44) we now find

$$\|\varphi'_{\epsilon}\|_{L^2(0, T; V')} \leq C, \quad d = 3,$$ (4.108)

and

$$\|u'_{\epsilon}\|_{L^2(0, T; V')} \leq C, \quad \|\varphi'_{\epsilon}\|_{L^2(0, T; V')} \leq C, \quad d = 2.$$ (4.109)
respectively, while (4.43) still holds. From compactness results we can still deduce that there exists a couple \(z := [u, \varphi] \) and a subsequence such that (4.45)–(4.52) hold. Instead, in (4.48), (4.51) and (4.52) we shall have \(L^2 \) in place of \(L^{2-\gamma^*}, L^{4/3} \) and \(L^{2-\delta} \), respectively, and
\[
\varphi_\epsilon \rightharpoonup \varphi \text{ weakly* in } L^\infty(0, T; L^p(\Omega)), \text{ weakly in } L^2(0, T; V),
\]
in place of (4.49).

As far as the passage to the limit is concerned, the situation is now a bit different. Indeed, due to the polynomial growth of \(F_{1\epsilon} \), a strong convergence for the term \(m_\epsilon(\varphi_\epsilon) F''_{1\epsilon}(\varphi_\epsilon) \) in some \(L^s(\Omega) \) space with \(s \geq 2 \) is no longer available in order to deduce the weak formulation (4.9) for \(\varphi \).

Therefore, the idea is to use (4.72), argue as in theorem 3, obtain a control for \(\mu_\epsilon \) in \(L^2(0, T; V) \) and pass to the limit to deduce the weak formulation (3.5) for \(\varphi \). Of course, we have to check that the argument of theorem 3 still applies with this different choice of \(F_{1\epsilon} \).

Now, it is easy to verify that the test function \(\psi_\delta \) (4.72) – (4.75) also still hold. We can therefore conclude that the argument of theorem 3 applies.

Finally, let us consider the weak formulation (3.5) and (3.6) for the approximate problem (4.13)–(4.18). By passing to the limit as \(\epsilon \to 0 \) and by means of (4.112) and the convergences provided in the proof of theorem 2, it is not difficult to show that \(z = [u, \varphi] \), which in particular satisfies (4.105) due to the first equation of (4.110), satisfies the weak formulation (3.5) and (3.6).

□
5. The global attractor in two dimensions

In this section we consider system (1.5)–(1.10) for \(d = 2 \) and we suppose that the external force \(h \) is time-independent, namely,

\[
(A5) \quad h \in V'_{\text{div}}.
\]

Our goal is to study the asymptotic behaviour of the weak solutions to system (1.5)–(1.10) for \(d = 2 \) with the approach of the theory of generalized semiflows in the sense of Ball (see [9]). We shall first recall, for the reader’s convenience, the definition of generalized semiflow (see [9] for more details).

Let \(\mathcal{X} \) be a metric space (not necessarily complete) with metric \(d \). For any \(A, B \subset \mathcal{X} \) the Hausdorff semidistance between \(A \) and \(B \) is \(\text{dist}(A, B) := \sup_{a\in A} \inf_{b\in B} d(a, b) \).

Definition 3. A generalized semiflow \(\mathcal{G} \) on \(\mathcal{X} \) is a family of maps \(z : [0, \infty) \to \mathcal{X} \) satisfying the following hypothesis

- \((H1)\) (Existence.) For each \(z_0 \in \mathcal{X} \) there exists at least one \(z \in \mathcal{G} \) with \(z(0) = z_0 \).
- \((H2)\) (Translates of solutions are solutions.) If \(z \in \mathcal{G} \) and \(\tau \geq 0 \), then \(z(t + \tau) \in \mathcal{G} \), where \(z(t + \tau) := z(t + \tau) \), for every \(t \geq 0 \).
- \((H3)\) (Concatenation.) If \(z_1, z_2 \in \mathcal{G} \) and \(\tau \geq 0 \), with \(z_1(\tau) = z_2(0) \), setting
 \[
 z(t) := \begin{cases}
 z_1(t) & \text{if } 0 \leq t \leq \tau, \\
 z_2(t) & \text{if } t > \tau,
 \end{cases}
 \]

then \(z \in \mathcal{G} \).
- \((H4)\) (Upper semicontinuity with respect to initial data.) If \(z_j \in \mathcal{G} \) with \(z_j(0) \to z_0 \), then there exist a subsequence \(\{z_{j_k}\} \) of \(\{z_j\} \) and \(z \in \mathcal{G} \) with \(z(0) = z_0 \) such that \(z_{j_k}(t) \to z(t) \) for each \(t \geq 0 \).

Let us introduce the set \(\mathcal{G}_{m_0} \) of all weak solutions to (1.5)–(1.10) (in the sense of definition 2) corresponding to all initial data \(z_0 = [u_0, \phi_0] \in \mathcal{X}_{m_0} \), where the phase space \(\mathcal{X}_{m_0} \) is the metric space defined by

\[
\mathcal{X}_{m_0} := G_{\text{div}} \times \mathcal{Y}_{m_0},
\]

with \(\mathcal{Y}_{m_0} \) given by

\[
\mathcal{Y}_{m_0} := \{ \psi \in L^\infty(\Omega) : |\psi| \leq 1 \text{ a.e. in } \Omega, \quad F(\psi), M(\psi) \in L^1(\Omega), \quad |\bar{\psi}| \leq m_0 \},
\]

and \(m_0 \in [0, 1] \) is fixed. The metric on \(\mathcal{X}_{m_0} \) is

\[
d(z_2, z_1) := \|u_2 - u_1\| + \|\psi_2 - \psi_1\|,
\]

for every \(z_1 := [u_1, \phi_1] \) and \(z_2 := [u_2, \phi_2] \) in \(\mathcal{X}_{m_0} \).

In the following proposition we shall prove that the set of all weak solution is a generalized semiflow.

Proposition 1. Let \(d = 2 \) and suppose that the conditions of theorem 2 are satisfied. Assume also that (4.68), (4.69) and that (A5) hold. Then \(\mathcal{G}_{m_0} \) is a generalized semiflow on \(\mathcal{X}_{m_0} \).

Proof. It is immediate to check that hypotheses (H1), (H2) and (H3) of the definition of generalized semiflow [9, definition 2.1] are satisfied. It remains to prove the upper semicontinuity with respect to initial data, i.e., that \(\mathcal{G}_{m_0} \) satisfies (H4) of [9, definition 2.1]. Take then \(z_j = [u_j, \phi_j] \in \mathcal{G}_{m_0} \) such that \(z_j(0) \to z_0 \) in \(\mathcal{X}_{m_0} \). Our aim is to prove that there exist \(z \in \mathcal{G}_{m_0} \) with \(z(0) = z_0 \) and a subsequence \(\{z_{j_k}\} \) such that \(z_{j_k}(t) \to z(t) \) in \(\mathcal{X}_{m_0} \) for all \(t \geq 0 \). Now, each weak solution \(z_j = [u_j, \phi_j] \) satisfies the regularity properties (4.3)–(4.8),
(4.11) and the energy equation (3.45) which, on account of (4.68), (4.69) and the fact that $|\varphi_j| \leq 1$, implies
\[
\frac{d}{dt} \left(\|u_j\|^2 + \|\varphi_j\|^2 \right) + (1 - \rho)\alpha_0 \|
abla \varphi_j\|^2 + v \|
abla u_j\|^2 \leq c + c_1 \|u_j\|^2 + \frac{1}{2\nu} \|\dot{h}\|^2_{V_\text{div}},
\]
where the positive constant c depends on J and on m. By integrating this inequality between 0 and t, using the fact that $z_j(0) \to z_0$ in X_m, and Gronwall’s lemma, from the above differential inequality we obtain
\[
\|u_j\|_{L^\infty(0,T; G_m)} + \|\varphi_j\|_{L^\infty(0,T; V_\text{div})} \leq C,
\]
\[
\|\varphi_j\|_{L^\infty(0,T; H) \cap L^2(0,T; V)} \leq C.
\]
For comparison, in the variational formulation (4.9) and (4.10) written for each weak solution $z_j = [u_j, \varphi_j]$ we also obtain the estimates for the time derivatives u'_j and φ'_j
\[
\|u'_j\|_{L^2(0,T; V_\text{div})} \leq C, \quad \|\varphi'_j\|_{L^2(0,T; V)} \leq C.
\]
Therefore, by standard compactness results, we deduce that there exist two functions u and φ such that, for a not relabeled subsequence, we have
\[
u_j \to u \quad \text{weakly}^* \quad \text{in} \quad L^\infty(0,T; G_{\text{div}}), \quad \text{weakly} \quad \text{in} \quad L^2(0,T; V_{\text{div}}), \quad (5.2)
\]
\[

u_j \to u \quad \text{strongly} \quad \text{in} \quad L^2(0,T; G_{\text{div}}), \quad \text{a.e. in} \quad Q_T, \quad (5.3)
\]
\[

u'_j \to u_t \quad \text{weakly} \quad \text{in} \quad L^2(0,T; V'_{\text{div}}), \quad (5.4)
\]
\[

\varphi_j \to \varphi \quad \text{weakly}^* \quad \text{in} \quad L^\infty(0,T; H), \quad \text{weakly} \quad \text{in} \quad L^2(0,T; V), \quad (5.5)
\]
\[

\varphi_j \to \varphi \quad \text{strongly} \quad \text{in} \quad L^2(0,T; H), \quad \text{a.e. in} \quad Q_T, \quad (5.6)
\]
\[

\varphi'_j \to \varphi_t \quad \text{weakly} \quad \text{in} \quad L^2(0,T; V'). \quad (5.7)
\]
Passing to the limit in the variational formulation for $z_j = [u_j, \varphi_j]$ and using the weak/strong convergences (5.2)–(5.7) and the fact that $|\varphi_j| \leq 1$, we obtain that $z := [u, \varphi] \in G_m$ (the argument is similar to the passage to the limit in (4.54) and (4.55) in the proof of theorem 2). Furthermore we have $z(0) = z_0$, since, as a consequence of (5.2), (5.4), (5.5) and (5.7), we have, for all $t \geq 0$
\[
u_j(t) \to u(t) \quad \text{weakly}^* \quad \text{in} \quad G_{\text{div}}, \quad (5.8)
\]
\[
\varphi_j(t) \to \varphi(t) \quad \text{weakly} \quad \text{in} \quad H. \quad (5.9)
\]
Let us now see that $z_j(t) \to z(t)$ in X_m for all $t \geq 0$. First observe that the energy equation (3.45) can be written in the form
\[
\frac{d}{dt} \tilde{E}(z_j(t)) + \int_{\Omega} m(\varphi_j) F'(\varphi_j) \nabla \varphi_j \cdot \nabla \varphi_j + \int_{\Omega} a m(\varphi_j) (|\nabla J \ast \varphi_j| - \varphi_j \nabla a) \cdot \nabla \varphi_j \]
\[
- \int_{\Omega} (\alpha \varphi_j - J \ast \varphi_j) u \cdot \nabla \varphi_j - \int_{\Omega} (h, u_j) \, dt, \quad (5.10)
\]
where
\[
\tilde{E}(z_j(t)) := E(z_j(t)) - \int_0^t \int_{\Omega} m(\varphi_j) (|\nabla J \ast \varphi_j| - \varphi_j \nabla a) \cdot \nabla \varphi_j \]
\[
- \int_0^t \int_{\Omega} (\alpha \varphi_j - J \ast \varphi_j) u \cdot \nabla \varphi_j - \int_0^t (h, u_j) \, dt,
\]
and
\[
E(z_j(t)) := \frac{1}{2} \left(\|u_j(t)\|^2 + \|\varphi_j(t)\|^2 \right).
\]
On the other hand, from (5.3) and (5.6) we have, for almost any $t > 0,$
\[
u_j(t) \to u(t) \quad \text{strongly} \quad \text{in} \quad G_{\text{div}},
\]
\[
\varphi_j(t) \to \varphi(t) \quad \text{strongly} \quad \text{in} \quad H,
\]
Furthermore, since \(m(\varphi_j) \rightarrow m(\varphi) \) strongly in \(L^s(Q_T) \) for all \(s \in [2, \infty) \) and using the second weak convergence in (5.5), we have, for all \(t \geq 0 \),
\[
\int_0^t \int_\Omega m(\varphi_j)(\nabla J \ast \varphi_j - \nabla \varphi_j) \cdot \nabla \varphi_j \rightarrow \int_0^t \int_\Omega m(\varphi)(\nabla J \ast \varphi - \nabla \varphi) \cdot \nabla \varphi.
\]
Therefore, recalling that \(m(\varphi_j) \rightarrow m(\varphi) \) strongly in \(L^s(Q_T) \) for all \(s \in [2, \infty) \) and using the second weak convergence in (5.5), we have, for all \(t \geq 0 \),
\[
\int_0^t \int_\Omega m(\varphi_j)\left(\nabla J \ast \varphi_j - \nabla \varphi_j\right) \cdot \nabla \varphi_j \rightarrow \int_0^t \int_\Omega m(\varphi)\left(\nabla J \ast \varphi - \nabla \varphi\right) \cdot \nabla \varphi.
\]
Furthermore, since \(a\varphi_j - J \ast \varphi_j \rightarrow a\varphi - J \ast \varphi \) strongly in \(L^s(Q_T) \) for all \(s \in [2, \infty) \) and, by (5.2), \(u_j \rightarrow u \) strongly in \(L^s(Q_T) \) for all \(s \in [2, 4) \), then we also have, for all \(t \geq 0 \)
\[
\int_0^t \int_\Omega (a\varphi_j - J \ast \varphi_j) u_j \cdot \nabla \varphi_j \rightarrow \int_0^t \int_\Omega (a\varphi - J \ast \varphi) u \cdot \nabla \varphi.
\]
Therefore
\[
\tilde{E}(z_j(t)) \rightarrow \tilde{E}(z(t)), \quad \text{for a.a. } t > 0.
\]
Since, due to (5.10), \(\tilde{E}(z_j(t)) \) is non-increasing in \([0, \infty)\) for every \(j \) and \(\tilde{E}(z_j(t)), \tilde{E}(z(t)) \in C([0, \infty)) \), we infer
\[
\tilde{E}(z_j(t)) \rightarrow \tilde{E}(z(t)), \quad \forall \ t \geq 0,
\]
and hence also \(E(z_j(t)) \rightarrow E(z(t)) \) for all \(t \geq 0 \). This last convergence together with (5.8) and (5.9) yield \(u_j(t) \rightarrow u(t) \) strongly in \(G_{div} \) and \(\varphi_j(t) \rightarrow \varphi(t) \) strongly in \(H \), and hence \(z_j(t) \rightarrow z(t) \) in \(\mathcal{X}_{m_0} \), for all \(t \geq 0 \). \(\square \)

Proposition 2. Let \(d = 2 \) and suppose that the conditions of theorem 2 are satisfied. Assume also that (4.68), (4.69) and (A5) hold. Then \(\mathcal{G}_{m_0} \) is point that is dissipative and eventually bounded.

Proof. Let us estimate the second term on the right-hand side of (3.45) as follows:
\[
\left| \int_\Omega (a\varphi - J \ast \varphi) u \cdot \nabla \varphi \right| = \left| \int_\Omega \left(\frac{1}{2} \varphi^2 \nabla a - \varphi (\nabla J \ast \varphi) \right) \cdot u \right|
\leq \frac{3}{2} b |\Omega|^{1/2} \|u\| \leq \frac{\nu}{4} \|\nabla u\|^2 + C_0,
\]
where \(C_0 = \frac{9b^2 |\Omega|/4\nu}{2} \) with the constant \(b \) defined as in (H2). Moreover, the first term on the right-hand side of (3.45) can be controlled in the following way:
\[
\left| \int_\Omega m(\varphi)(\nabla J \ast \varphi - \varphi \nabla a) \cdot \nabla \varphi \right| \leq 2m_0 |\Omega|^{1/2} b \|\nabla \varphi\| \leq (1 - \rho) \frac{\alpha_0}{2} \|\nabla \varphi\|^2 + C_1,
\]
where \(C_1 = 2m_0^2 |\Omega| b^2 /\alpha_0 \), and \(m_* = \max_{\rho \in [-1,1]} m(s) \). Then, by taking (4.68) and (4.69) into account, we obtain the differential inequality
\[
\frac{d}{dt}(\|u\|^2 + \|\varphi\|^2) + (1 - \rho) \alpha_0 \|\nabla \varphi\|^2 + \nu \|\nabla u\|^2 \leq C_2 + \frac{1}{\nu} \|h\|^2_{\mathcal{V}_{div}}.
\]
where \(C_2 = 2(C_0 + C_1) \). By using the identity \(\|\varphi\|^2 = \|\varphi - \varphi_0\|^2 + \|\varphi_0\|^2 \), we obtain
\[
\frac{d}{dt}(\|u\|^2 + \|\varphi - \varphi_0\|^2) + (1 - \rho) \alpha_0 C_\varphi \|\varphi - \varphi_0\|^2 + \nu \|\nabla \varphi\|^2 \leq C_2 + \frac{1}{\nu} \|h\|^2_{\mathcal{V}_{div}}.
\]
where \(C_\varphi \) is the constant appearing in the Poincaré–Wirtinger inequality. Therefore we obtain
\[
\frac{d}{dt} E(\varphi(t)) + \eta E(\varphi(t)) \leq C_3,
\]
(5.11)
where \(\bar{z} = [u, \varphi - \bar{\varphi}_0] \) and the constants \(\eta \) and \(C_3 \) are given by \(\eta = \min((1 - \rho)\alpha_0 c_p, \nu \lambda_1)/2 \), and \(C_3 = C_2/2 + \| h \|_{V^{2n}}^2/2\nu \), respectively. By Gronwall’s lemma from (5.11) we have
\[
E(\bar{z}(t)) \leq E(\bar{z}(0))e^{-\eta t} + \frac{C_3}{\eta}, \quad \forall t \geq 0.
\]
This estimate easily yields
\[
d^2(\bar{z}(t), 0) \leq d^2(z_0, 0)e^{-\eta t} + \frac{2C_3}{\eta} + \| \bar{\varphi}_0 \|_{V^{2n}}^2, \quad \forall t \geq 0,
\]
which entails both the point dissipativity and the eventual boundedness of \(G_{m_0} \).

We can now state the result on the existence of the global attractor.

Proposition 3. Let the assumptions of proposition 2 hold. Then \(G_{m_0} \) possesses a global attractor.

Proof. Thanks to proposition 2 and by [9, proposition 3.2] and [9, theorem 3.3] we only need to show that \(G_{m_0} \) is compact. Let \(\{z_j\} \subset G \) be a sequence with \(z_j(0) \) bounded in \(X_{m_0} \). We claim that there exists a subsequence \(\{z_{j_k}\} \) such that \(z_{j_k}(t) \) converges in \(X_{m_0} \) for every \(t > 0 \).

Indeed, the energy equation (3.45) entails the existence of a subsequence (not relabeled) such that (cf the proof of proposition 1), for almost all \(t > 0 \),
\[
u_j(t) \rightarrow u(t) \quad \text{strongly in } G_{m_0}, \quad \varphi_j(t) \rightarrow \varphi(t) \quad \text{strongly in } H \text{ and a.e. in } \Omega,
\]
where \(z = [u, \varphi] \) is a weak solution. By arguing as in the proof of proposition 1 we infer that \(E(z_{j_k}(t)) \rightarrow E(z(t)) \) for all \(t \geq 0 \). Thus \(z_{j_k}(t) \rightarrow z(t) \) in \(X_{m_0} \) for \(t > 0 \), which yields the compactness of \(G_{m_0} \).

Remark 11. We point out that the existence of the global attractor has been established without the restriction \(|\eta| < 1 \) on the generalized semiflow (compare with remark 7). In particular, this result does not require the separation property. It is also worth observing that in dimension three the trajectory attractor approach used in [20, 21] might be extended to the present case.

Remark 12. As mentioned in the introduction, the uniqueness of weak solutions in two dimensions has been recently proved in [19]. As a consequence, the generalized semiflow becomes a semigroup and the global attractor is connected (see [18, section 5]).

6. The convective non-local Cahn–Hilliard equation with degenerate mobility

By relying on the results of the previous sections we can prove similar results for the convective non-local Cahn–Hilliard equation with degenerate mobility and with a given velocity field, for \(d = 2, 3 \). In particular, from theorem 2 it is straightforward to deduce the following.

Theorem 4. Assume that (A1)–(A4) and (H2) hold. Let \(u \in L^2_{loc}([0, \infty); V_{div} \cap L^\infty(\Omega)^d) \) be given and let \(\varphi_0 \in L^\infty(\Omega) \) be such that \(F(\varphi_0) \in L^1(\Omega) \) and \(M(\varphi_0) \in L^1(\Omega) \). Then, for every \(T > 0 \), there exists a weak solution \(\varphi \) to (1.5), (1.6), (1.9) on \([0, T] \) corresponding to \(\varphi_0 \) fulfilling (4.6)–(4.8), the weak formulation (4.9), and such that \(\varphi(t) = \varphi_0 \) for all \(t \in [0, T] \). Furthermore, \(\varphi \) satisfies
\[
\varphi \in L^\infty(0, T; L^p(\Omega)), \quad p = \min(6, \infty) \quad \text{for } d = 2, 3
\]
where \(p = \min(6, \infty) \). In addition, for almost any \(t > 0 \), the following energy identity holds:
\[
\frac{1}{2} \frac{d}{dt} \| \varphi \|_{V}^2 + \int_\Omega m(\varphi)F''(\varphi) |\nabla \varphi|^2 + \int_\Omega am(\varphi) |\nabla \varphi|^2 + \int_\Omega m(\varphi)(\varphi \nabla a - \nabla J * \varphi) \cdot \nabla \varphi = 0.
\]
Remark 13. The basic estimates in the proof of theorem 4 are now obtained from (6.2) (written for the approximate solution \(\varphi \), and integrated between 0 and \(t \), in place of (4.31). In particular, (6.2) still yields (4.33), (4.38) and (4.39), so that we can argue as in the proof of theorem 3.

For the convective non-local Cahn–Hilliard equation with degenerate mobility we can also prove a uniqueness result (see [30] for more restrictive assumptions). We recall that the uniqueness of solutions is an open issue for the local case (see [17]) as well as for the complete system (1.5)= (1.10) even in dimension two.

Proposition 4. Let all the assumptions of theorem 4 and (4.68), (4.69) be satisfied. Then, the weak solution to (1.5), (1.6), (1.9)\(_1\), (1.10)\(_2\) is unique.

Proof. Following [30], let us introduce
\[
\Lambda_1(s) := \int_0^s m(\sigma) F_1'(\sigma) d\sigma, \quad \Lambda_2(s) := \int_0^s m(\sigma) F_2'(\sigma) d\sigma, \quad \Gamma(s) := \int_0^s m(\sigma) d\sigma,
\]
for all \(s \in [-1, 1] \). Due to (A1) and (4.69) we have \(\Lambda_1 \in C^1([-1, 1]) \) and \(0 < a_0 \leq \Lambda_1'(s) \leq a \) for some positive constant \(a \). Then, it is easy to see that the weak formulation (4.9) can be rewritten as follows:
\[
\langle \varphi, \psi \rangle + \left(\nabla \Lambda(\cdot, \varphi), \nabla \psi \right) - \left((\Gamma(\varphi) \nabla a, \nabla \psi) + (m(\varphi)(\varphi \nabla a - \nabla J * \varphi), \nabla \psi) \right) = \langle u\varphi, \nabla \psi \rangle,
\]
for all \(\psi \in V \), where
\[
\Lambda(x, s) := \Lambda_1(s) + \Lambda_2(s) + a(x) \Gamma(s).
\]
Consider now (6.3) for two weak solutions \(\varphi_1 \) and \(\varphi_2 \) corresponding to the same initial datum.

Let us take the difference between the two identities, set \(\varphi := \varphi_1 - \varphi_2 \) and choose \(\psi = \nabla \varphi \) as a test function in the resulting identity (note that \(\varphi = 0 \)). This yields
\[
\frac{1}{2} \frac{d}{dt} \| \nabla^{1/2} \varphi \|^2 + \left(\Lambda(\varphi_2) - \Lambda(\varphi_1), \varphi \right) - \left((\Gamma(\varphi_2) - \Gamma(\varphi_1)) \nabla a, \nabla \nabla \varphi \right)
\]
\[
+ \left((m(\varphi_2) - m(\varphi_1)) \varphi_2 \nabla a - \nabla J * \varphi_2 + m(\varphi_1) \varphi \nabla a - \nabla J * \varphi_1, \nabla \nabla \varphi \right)
\]
\[
= \langle u\varphi, \nabla \varphi \rangle.
\]
On account of (4.68) and (4.69), we find
\[
\left(\Lambda(\cdot, \varphi_2) - \Lambda(\cdot, \varphi_1), \varphi \right) \geq (1 - \rho) \int_{\Omega} m(\theta \varphi_2 + (1 - \theta) \varphi_1) F_1'((\theta \varphi_2 + (1 - \theta) \varphi_1) \varphi_2
\]
\[
\geq (1 - \rho) a_0 \| \varphi \|^2.
\]

Furthermore, since \(|\varphi_1|, |\varphi_2| \leq 1 \), then we have
\[
\left| (\Gamma(\varphi_2) - \Gamma(\varphi_1)) \nabla a, \nabla \nabla \varphi \right| \leq m_* b \| \varphi \| \| \nabla \nabla \varphi \| \leq \frac{1}{8} (1 - \rho) a_0 \| \varphi \|^2 + C_4 \| \nabla \nabla \varphi \|^2,
\]
\[
\left| (m(\varphi_2) - m(\varphi_1)) \varphi_2 \nabla a - \nabla J * \varphi_2, \nabla \nabla \varphi \right| \leq 2m_* b \| \varphi \| \| \nabla \nabla \varphi \|
\]
\[
\leq \frac{1}{8} (1 - \rho) a_0 \| \varphi \|^2 + C_5 \| \nabla \nabla \varphi \|^2,
\]
\[
\left| (m(\varphi_1) \varphi \nabla a - \nabla J * \varphi_1, \nabla \nabla \varphi) \right| \leq 2m_* b \| \varphi \| \| \nabla \nabla \varphi \|
\]
\[
\leq \frac{1}{8} (1 - \rho) a_0 \| \varphi \|^2 + C_5 \| \nabla \nabla \varphi \|^2,
\]
\[
\left| (\varphi, \nabla \nabla \varphi) \right| \leq \| u \|_{L^\infty(\Omega')} \| \varphi \| \| \nabla^{1/2} \varphi \|
\]
\[
\leq \frac{1}{8} (1 - \rho) a_0 \| \varphi \|^2 + C_4 \| u \|_{L^\infty(\Omega')}^2 \| \nabla^{1/2} \varphi \|^2.
\]

(6.3)
where b is given as in (H2), m_* as in the proof of proposition 2, $m_{**} := \max_{s \in [-1, 1]} m'(s)$ and the positive constants $C_1, ..., C_4$ depend on $\alpha_0, \rho, m_*, m_{**}$. By plugging (6.5)–(6.9) into (6.4) we obtain
\[
\frac{d}{dt} \|N^{1/2}\varphi\|^2 + (1 - \rho)\alpha_0 \|\varphi\|^2 \leq C_5 (1 + \|u\|^2_{L^\infty(\Omega)}) \|N^{1/2}\varphi\|^2 \tag{6.10}
\]
and Gronwall’s lemma applies. □

As a consequence of theorem 4 and of proposition 4 we can define a semiflow $S(t)$ on \mathcal{Y}_{m_0} (cf (5.1)), $m_0 \in [0, 1]$, endowed with the metric induced by the L^2-norm. It is then immediate to check that the arguments used in the proofs of propositions 1, 2 and 5 can be adapted to the present situation. This gives the following.

Theorem 5. Let (A1)–(A4), (4.68) and (4.69) hold. Suppose that $u \in L^\infty(\Omega)^d \cap V_{\text{div}}$ is given and independent of time. Then the dynamical system $(\mathcal{Y}_{m_0}, S(t))$ possesses a connected global attractor.

Remark 14. The fact u must be divergence-free is not necessary (see also [20, 21]). In particular, the convective term can be of the form $\nabla \cdot (u\varphi)$.

Remark 15. In [27, section 4] the case $u = 0$ was considered. In particular, the existence of an exponential attractor was proven and, as a consequence, the existence of a global attractor of finite fractal dimension. However, contrary to the present case, in [27] pure phases were a priori excluded from the phase space (cf also remark 11).

Remark 16. Concerning the existence of strong solutions to the non-local Cahn–Hilliard–Navier–Stokes system in two dimensions, to the best of our knowledge the only existing contributions are contained in [19] and [23]. Both deal with the case of regular potential and constant mobility only. More precisely, the regularity result proven in [23] was extended in [19] to the non-constant viscosity case. We point out that global in time regularity results for the system are in two dimensions. Indeed, in three dimensions, only local in time regularity results for the incompressible Navier–Stokes equations are known. For the non-local Cahn–Hilliard equation (written in the special formulation given in [28] and without coupling with the Navier–Stokes equation) with singular potential F and degenerate mobility m such that mF'' is a positive constant, a regularity result was also proven in [46]. This result can be extended to the corresponding 2D non-local Cahn–Hilliard–Navier–Stokes system as well. Apart from the situations mentioned above, regularity results for the non-local Cahn–Hilliard–Navier–Stokes system with non-constant mobility and regular (or singular) potential are still open. The argument devised in [23] cannot, apparently, be adapted to this case.

Acknowledgments

The authors would like to thank Ciprian G Gal for a useful remark concerning the first part of the proof of theorem 3. The authors are also grateful to the reviewers for their excellent feedback. The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). SF and ER are supported by the FP7-IDEAS-ERC-StG Grant #256872 (EntroPhase). ER also acknowledges the support of IMATI-CNR, Pavia, Italy.
References

[1] Abels H 2009 On a diffusive interface model for two-phase flows of viscous, incompressible fluids with matched densities Arch. Ration. Mech. Anal. 194 463–506

[2] Abels H 2009 Longtime behavior of solutions of a Navier–Stokes/Cahn–Hilliard system Proc. Conf. on Nonlocal and Abstract Parabolic Equations and their Applications vol 86 (Bedlewo: Banach Center) pp 9–19

[3] Abels H, Depner D and Garcke H 2013 Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities J. Math. Fluid Mech. 15 453–80

[4] Abels H, Depner D and Garcke H 2013 On an incompressible Navier–Stokes/Cahn–Hilliard system with degenerate mobility Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 1175–90

[5] Abels H, Diening L and Terasawa Y 2014 Existence of weak solutions for a diffuse interface model of non-Newtonian two-phase flows Nonlinear Anal. Real World Appl. 15 149–57

[6] Abels H and Feireisl E 2008 On a diffuse interface model for a two-phase flow of compressible viscous fluids Indiana Univ. Math. J. 57 659–98

[7] Abels H, Garcke H and Grün G 2012 Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities Math. Models Methods Appl. Sci. 22 1150013

[8] Anderson D M, McFadden G B and Wheeler A A 1998 Diffuse-interface methods in fluid mechanics Annu. Rev. Fluid Mech. 30 139–65

[9] Ball J M 1997 Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equation J. Nonlinear Sci. 7 475–502

[10] Ball J M 1998 Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equation J. Nonlinear Sci. 8 233 (erratum)

[11] Barrett J W and Blowey J F 1999 Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility Math. Comput. 68 487–517

[12] Bates P W and Han J 2005 The Neumann boundary problem for a nonlocal Cahn–Hilliard equation J. Diff. Eqns 212 235–77

[13] Bosia S 2013 Analysis of a Cahn–Hilliard–Ladyzhenskaya system with singular potential J. Math. Anal. Appl. 397 307–21

[14] Boyer F 1999 Mathematical study of multi-phase flow under shear through order parameter formulation Asymptot. Anal. 20 175–212

[15] Boyer F 1999 Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equation J. Nonlinear Sci. 7 475–502

[16] Boyer F 1998 Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equation J. Nonlinear Sci. 8 233 (erratum)

[17] Cao C and Gal C G 2012 Global solutions for the 2D NS–CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility Nonlinearity 25 3211–34

[18] Colli P, Frigeri S and Grasselli M 2012 Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system J. Math. Anal. Appl. 386 428–44

[19] Colli P, Krejčí P, Rocca E and Sprekels J 2007 Nonlinear evolution inclusions arising from phase change models Czech. Math. J. 57 1067–98

[20] Elliott C M and Garcke H 1996 On the Cahn–Hilliard–Ladyzhenskaya system with singular potential J. Math. Anal. Appl. 197 307–21

[21] Emmerich H 2003 The Diffuse Interface Approach in Materials Science (Berlin: Springer)

[22] Frigeri S, Gal C G and Grasselli M 2014 On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions ISRN Preprint 1923 submitted

[23] Frigeri S and Grasselli M 2012 Global and trajectories attractors for a nonlocal Cahn–Hilliard–Navier–Stokes system J. Dyn. Diff. Eqns 24 827–56

[24] Frigeri S and Grasselli M 2012 Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials Dyn. Partial Diff. Eqns 9 273–304

[25] Frigeri S and Grasselli M Existence of weak solutions for a nonlocal Cahn–Hilliard–Navier–Stokes system with unmatched densities in preparation

[26] Frigeri S, Grasselli M and Krejčí P 2013 Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems J. Diff. Eqns 255 2587–614

[27] Gal C G and Grasselli M 2010 Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 401–36

[28] Gal C G and Grasselli M 2010 Trajectory attractors for binary fluid mixtures in 3D Chin. Ann. Math. B 31 655–78

[29] Gal C G and Grasselli M 2011 Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn–Hilliard–Navier–Stokes system Physica D 240 629–35

[30] Gal C G and Grasselli M 2014 Longtime behavior of nonlocal Cahn–Hilliard equations Discrete Contin. Dyn. Syst. A 34 145–79

[31] Gajewski H and Zacharias K 2003 On a nonlocal phase separation model J. Math. Anal. Appl. 286 11–31
[29] Giacomin G and Lebowitz J L 1997 Phase segregation dynamics in particle systems with long range interactions: I. Macroscopic limits J. Stat. Phys. 87 37–61
[30] Giacomin G and Lebowitz J L 1998 Phase segregation dynamics in particle systems with long range interactions: II. Phase motion SIAM J. Appl. Math. 58 1707–29
[31] Giacomin G, Lebowitz J L and Marra R 2000 Macroscopic evolution of particle systems with short- and long-range interactions Nonlinearity 13 2143–62
[32] Grasselli M and Prážák D 2011 On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework Z. Angew. Math. Phys. 63 145–69
[33] Hohenberg P C and Halperin B I 1977 Theory of dynamical critical phenomena Rev. Mod. Phys. 49 435–79
[34] Jasnow D and Viñals J 1996 Coarse-grained description of thermo-capillary flow Phys. Fluids 8 660–9
[35] Kim J S 2012 Phase-field models for multi-component fluid flows Commun. Comput. Phys. 12 613–61
[36] Kim N, Consiglieri L and Rodrigues J F 2006 On non-Newtonian incompressible fluids with phase transitions Math. Models Methods Appl. Sci. 16 613–61
[37] Krejčí P and Rocca E 2013 Well-posedness of an extended model for water–ice phase transitions Discrete Contin. Dyn. Syst. S 6 439–60
[38] Londen S-O and Petzeltová H 2011 Convergence of solutions of a non-local phase-field system Discrete Contin. Dyn. Syst. S 4 603–70
[39] Schimperna G 2007 Global attractors for Cahn–Hilliard equations with nonconstant mobility Nonlinearity 20 2365–87
[40] Schimperna G and Zelik S 2013 Existence of solutions and separation from singularities for a class of fourth order degenerate parabolic equations Trans. Am. Math. Soc. 365 3799–829
[41] Temam R 1984 Navier–Stokes Equations: Theory and Numerical Analysis 3rd edn (Oxford: North-Holland)
[42] Zhao L, Wu H and Huang H 2009 Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids Commun. Math. Sci. 7 939–62
[43] Zhou Y and Fan J 2013 The vanishing viscosity limit for a 2D Cahn–Hilliard–Navier–Stokes system with a slip boundary condition Nonlinear Anal. Real World Appl. 14 1130–4
[44] Frigeri S, Rocca E and Sprekels J 2014 Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in 2D (arXiv:1411.1627v1)