ppsim: A software package for efficiently simulating and visualizing population protocols*

David Doty* and Eric Severson*

*University of California, Davis, CA 95616, USA.
{doty,eseverson}@ucdavis.edu
https://web.cs.ucdavis.edu/~doty/, https://eric-severson.netlify.app/

Abstract

We introduce ppsim [27], a software package for efficiently simulating population protocols, a widely-studied subclass of chemical reaction networks (CRNs) in which all reactions have two reactants and two products. Each step in the dynamics involves picking a uniform random pair from a population of n molecules to collide and have a (potentially null) reaction. In a recent breakthrough, Berenbrink, Hammer, Kaaser, Meyer, Penschuck, and Tran [6] discovered a population protocol simulation algorithm quadratically faster than the naive algorithm, simulating $\Theta(\sqrt{n})$ reactions in constant time (independently of n, though the time scales with the number of species), while preserving the exact stochastic dynamics.

ppsim implements this algorithm, with a tightly optimized Cython implementation that can exactly simulate hundreds of billions of reactions in seconds. It dynamically switches to the CRN Gillespie algorithm for efficiency gains when the number of applicable reactions in a configuration becomes small. As a Python library, ppsim also includes many useful tools for data visualization in Jupyter notebooks, allowing robust visualization of time dynamics such as histogram plots at time snapshots and averaging repeated trials.

Finally, we give a framework that takes any CRN with only bimolecular (2 reactant, 2 product) or unimolecular (1 reactant, 1 product) reactions, with arbitrary rate constants, and compiles it into a continuous-time population protocol. This lets ppsim exactly sample from the chemical master equation (unlike approximate heuristics such as τ-leaping or LNA), while achieving asymptotic gains in running time. In linked Jupyter notebooks, we demonstrate the efficacy of the tool on some protocols of interest in molecular programming, including the approximate majority CRN and CRN models of DNA strand displacement reactions.

1 Introduction

A foundational model of chemistry used in natural sciences is that of chemical reaction networks (CRNs) [21]: finite sets of reactions such as $A + B \rightarrow C + D$, representing that molecules A and B, upon colliding, can change into C and D. This gives a continuous time, discrete state, Markov process [21] modelling discrete counts\(^1\) of molecules.

\(^{*}\)Supported by NSF award 1900931 and CAREER award 1844976.

\(^{1}\)Another modelling choice are ODEs that describe real-valued concentrations, the “mean-field” approximation to the discrete behavior in the large scale limit [25].
Population protocols [3], a widely-studied model of distributed computing with very limited agents, are a restricted subset of CRNs (those with two reactants and two products in each reaction, and unit rate constants) that nevertheless capture many of the interesting features of CRNs. Different terminology is used: in reaction $A + B \rightarrow C + D$, two agents (molecules), whose states (species types) are A, B, have an interaction (reaction), changing their states respectively to C, D.

Gillespie kinetics for CRNs. The standard Gillespie algorithm [21] simulates the Markov process mentioned above. Given a fixed volume $v \in \mathbb{R}^+$, the propensity of a unimolecular reaction $r : X \xrightarrow{k} \ldots$ is $\rho(r) = k \cdot \#X$, where $\#X$ is the count of X. The propensity of a bimolecular reaction $r : X + Y \rightarrow \ldots$ is $\rho(r) = k \cdot \frac{\#X \cdot \#Y}{v}$ if $X \neq Y$ and $k \cdot \frac{\#X \cdot (\#X - 1)}{2v}$ otherwise. The Gillespie algorithm calculates the sum of the propensities of all reactions: $\rho = \sum_r \rho(r)$. The time until the next reaction is sampled as an exponential random variable T with rate ρ, and a reaction r_{next} is chosen with probability $\rho(r_{next})/\rho$ to be applied.

Population protocols. The population protocols model comes with simpler dynamics. At each step, a scheduler chooses a random pair of agents (molecules) to interact in a (potentially null) reaction. The discrete time model counts each interaction as $\frac{1}{n}$ units of time, where n is the population size. A continuous time variant [17] gives each agent a rate-1 Poisson clock, upon which it interacts with a randomly chosen other agent. The expected time until the next interaction is $\frac{1}{n}$, so up to a re-scaling of time, which by straightforward Chernoff bounds is negligible, these two models are equivalent. ppsim can use either time model.

There is an important efficiency difference between the algorithms: the Gillespie algorithm automatically skips null reactions. For example, a reaction such as $L + L \rightarrow L + F$, when $\#L = 2$ and $\#F = n - 2$, is much more efficient in the Gillespie algorithm, which simply increments the time until the $L + L \rightarrow L + F$ reaction by an exponential random variable in one step. A naïve population protocol simulation iterates through $\Theta(n)$ expected null interactions ($L + F \rightarrow L + F$ and $F + F \rightarrow F + F$) until the two L’s react. To better handle cases like this, ppsim dynamically switches to the Gillespie algorithm when the number of null interactions is sufficiently large; see documentation [27] for implementation details.

Other simulation algorithms. Variants of the Gillespie algorithm reduce the time to apply a single reaction from $O(|R|)$ to $O(\log |R|)$ [20] or $O(1)$ [30], where $|R|$ is the number of types of reactions. However, the time to apply n reactions still scales with n. A common speedup heuristic for simulating $\omega(1)$ reactions in $O(1)$ time is τ-leaping [10, 22, 23, 28, 31], which “leaps” ahead by time τ, by assuming reaction propensities will not change and updating counts in a single batch step by sampling according these propensities. Such methods necessarily approximate the kinetics inexactly, though it is possible in some cases to prove bounds on the approximation accuracy [31].

Linear noise approximation (LNA) [11] can be used to approximate the discrete kinetics, by adding stochastic noise to an ODE approximation. A speedup heuristic for population protocol simulation is to sample the number of each interaction that would result from a random matching of size m, and update species counts in a single step. This, too, is an inexact approximation: unlike the true process, it prevents any molecule from participating in more than one of the next m interactions.

The algorithm implemented by ppsim, due to Berenbrink, Hammer, Kaaser, Meyer, Peschuck, and Tran [6], builds on this last heuristic. Conditioned on the event that no molecule is picked twice during the next m interactions, these interacting pairs are a random disjoint matching of the molecules. Define the random variable C as the number of interactions until the same molecule is picked twice. Their basic algorithm samples this collision length C according to its
exact distribution, then updates counts in batch assuming all pairs of interacting molecules are disjoint until this collision, and finally simulates the interaction involving the collision. By the Birthday Paradox, $E[C] \approx \sqrt{n}$ in a population of n molecules, giving a quadratic factor speedup over the naïve algorithm. The time to update a batch scales quadratically with q, the total number of states. The “multibatch” variant, used by ppsim, samples multiple successive collisions to process an even larger batch, and uses $O\left(q\sqrt{\log \frac{n}{q}}\right)$ time per simulated interaction.

See [6] for details. An advantage of such a fast simulator, specifically for population protocols implementing algorithms, is that the very large population sizes it can handle (over 10^{12}) allow one to tell the difference (on a log-scale plot of convergence time) between a protocol converging in time $O(\log n)$ versus, say, $O(\log^2 n)$.

2 Usage of the ppsim tool

We direct the reader to [27] for detailed installation, usage instructions, and examples. Here we highlight basic usage examples for specifying protocols.

There are three ways one can specify a population protocol, each best suited for different contexts. The most direct specification of a protocol directly encodes the mapping of input state pairs to output state pairs using a Python dict (the following is the well-studied approximate majority protocol, which has been studied theoretically [4, 13] and implemented experimentally with DNA [12]):

```python
1 a, b, u = 'A', 'B', 'U'
2 approx_majority = {(a, b): (u, u), (a, u): (a, a), (b, u): (b, b)}
```

More complex protocols with many possible species are often specified in pseudocode instead of listing all possible reactions. ppsim supports this by allowing the transition function mapping input states to output states to be computed by a Python function. The following allows species to be integers and computes an integer average of the two reactants:

```python
1 def discrete_averaging(s: int, r: int):
2     return math.floor((s+r)/2), math.ceil((s+r)/2)
```

States and transition rules are converted to integer arrays for internal Cython methods, so there is no efficiency loss for the ease of representing protocol rules, since a Python function defining the transition function is not called during the simulation: producible states are enumerated before starting the simulation.

For complicated protocols, an advantage of ppsim over standard CRN simulators is the ability to represent species/states as Python objects with different fields (as they are often represented in pseudocode), and to plot counts of agents based on their field values. For instance, the CRN $A + B \overset{0.5}{\rightarrow} 4C, \quad C \overset{5}{\rightarrow} D$ is specified by the code:

```python
1 a, b, c, d = species('A B C D')
2 crn = [(a+b | 2*c).k(0.5).r(4), (c >> d).k(5)]
```

\(^{2}\)Download and run https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/majority.ipynb to visualize such large state protocols.
This will then get compiled into a continuous time population protocol that samples the same distribution as Gillespie. See Section A for details.

Any of the three specifications (dict, Python function, or list of CRN reactions) can be passed to the Simulation constructor. The Simulation can be run to generate a history of sampled configurations.

```python
text
1 init_config = {a: 51, b: 49}
2 sim = Simulation(init_config, approx_majority)
3 sim.run(16, 0.1) # 160 samples up to time 16
4 sim.history.plot() # Pandas dataframe with counts
```

This would produce the plot shown in Fig 1a. When the input is a CRN, ppsim defaults to continuous time and produces the exact same distributions as the Gillespie algorithm. Fig 1b shows a test against the package GillesPy2 [24] to confirm they sample the same distribution.

![Plot of sim.history.](image)

![Comparison with Gillespie algorithm.](image)

Figure 1: Time 5 (dotted line in Fig 1a) was sampled 10^6 times with ppsim and GillesPy2 to verify they both sample the same chemical master equation distribution (Fig 1b).

Speed comparison with other CRN simulators

We ran speed comparisons of ppsim against both GillesPy2 [24] and StochKit2 [29], the latter being the fastest option we found for Gillespie simulation. Fig 2 shows that ppsim is able to reach significantly larger population sizes. Other tests shown in an example notebook\(^3\) show how each package scales with the number of species and reactions.

\(^3\)https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/crn.ipynb shows further plots and explanations.
Figure 2: Comparing runtime with population size n shows $O(n)$ scaling for Gillespie (slope 1 on log-log plot) versus $O(\sqrt{n})$ scaling for ppsim (slope 1/2).

4 Issues with other speedup methods

It is reasonable to conjecture that exact stochastic simulation of large-count systems is unnecessary, since Gillespie is fast enough on small-count systems, and faster ODE approximation is “reasonably accurate” for large-count systems. However, there are example large count systems with stochastic effects not observed in ODE simulation, and where τ-leaping introduces systematic inaccuracies that disrupt the fundamental qualitative behavior of the system, demonstrating the need for exact stochastic simulation. A simple such example is the 3-state rock-paper-scissors oscillator:

1 \[
\text{rps} = \begin{cases}
2 & 2 \times b, \\
2 & 2 \times c, \\
2 & 2 \times a
\end{cases}
\]

Figure 3 compares exact simulation of this CRN to τ-leaping and ODEs.

The population protocol literature furnishes more examples, with problems such as leader election [2,5,7–9,14,16,18,19,33,34] and single-molecule detection [1,15], that crucially use small counts in a very large population, a regime not modelled correctly by ODEs. See also [26] for examples of CRNs with qualitative stochastic behavior not captured by ODEs, yet that behavior appears only in population sizes too large to simulate with Gillespie.

\[Download and run https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/rps_oscillator.ipynb to see visualizations of the generalized 7-state rps oscillator used for single-molecule detection in [15]. \]
(a) Short timescale oscillations.

(b) Over a long $\Theta(n)$ timescale, the varying amplitudes will cause two species to go extinct.

(c) Dynamics from Figs 3a, 3b in phase space. The ODE solution has a neutrally stable orbit.

(d) τ-leaping adds a consistent outward drift that will lead to extinction on a much shorter timescale.

Figure 3: The rock-paper-scissors oscillator has qualitative dynamics missed by both ODE simulation (never goes extinct) and τ-leaping (too quickly goes extinct).

5 Conclusion

Unfortunately, the algorithm of Berenbrink et al. [6] implemented by ppsim seems inherently suited to population protocols, not more general CRNs. For instance, reversible dimerization reactions $A + B \rightleftharpoons C$ (used, for example, in [32] to model toehold occlusion reactions in DNA systems) seem beyond the reach of the batching technique of [6]. Although such reactions can be
approximated by \(A + B \rightleftharpoons C + F \) for some anonymous “fuel” species \(F \), the count of \(F \) influences the rate of the reverse reaction \(F + C \rightarrow A + B \), with a different rate than \(C \rightarrow A + B \).

Another area for improvement is the handling of null reactions. There could be a way to more deeply intertwine the logic of the Gillespie and batching algorithms, to gain the simultaneous benefits of each, skipping the null reactions while simulating many non-null reactions in batch.

References

[1] Alistarh, D., Dudek, B., Kosowski, A., Soloveichik, D., Uznanski, P.: Robust detection in leak-prone population protocols. In: DNA 2017: International Conference on DNA Computing and Molecular Programming. pp. 155–171. Springer (2017)

[2] Alistarh, D., Gelashvili, R.: Polylogarithmic-time leader election in population protocols. In: ICALP 2015: 42nd International Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 9135, pp. 479–491. Springer, Berlin, Heidelberg (2015)

[3] Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (March 2006)

[4] Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distributed Computing 21(2), 87–102 (July 2008)

[5] Berenbrink, P., Giakkoupis, G., Kling, P.: Optimal time and space leader election in population protocols. In: STOC 2020: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing. p. 119–129. STOC 2020, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3357713.3384312, https://doi.org/10.1145/3357713.3384312

[6] Berenbrink, P., Hammer, D., Kaaser, D., Meyer, U., Penschuck, M., Tran, H.: Simulating population protocols in sub-constant time per interaction. In: ESA 2020: 28th Annual European Symposium on Algorithms. vol. 173, pp. 16:1–16:22 (2020), https://drops.dagstuhl.de/opus/volltexte/2020/12882

[7] Berenbrink, P., Kaaser, D., Kling, P., Otterbach, L.: Simple and Efficient Leader Election. In: 1st Symposium on Simplicity in Algorithms (SOSA 2018). vol. 61, pp. 9:1–9:11 (2018)

[8] Bilke, A., Cooper, C., Elsässer, R., Radzik, T.: Brief announcement: Population protocols for leader election and exact majority with \(O(\log^2 n) \) states and \(O(\log^2 n) \) convergence time. In: PODC 2017: Proceedings of the ACM Symposium on Principles of Distributed Computing. pp. 451–453. ACM (2017)

[9] Burman, J., Chen, H.L., Chen, H.P., Doty, D., Nowak, T., Severson, E., Xu, C.: Time-optimal self-stabilizing leader election in population protocols. In: PODC 2021: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (2021)

[10] Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. The Journal of chemical physics 124(4), 044109 (2006)
[11] Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. Biosystems 149, 26–33 (2016). https://doi.org/https://doi.org/10.1016/j.biosystems.2016.09.004, https://www.sciencedirect.com/science/article/pii/S0303264716302039, selected papers from the Computational Methods in Systems Biology 2015 conference

[12] Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nature Nanotechnology 8(10), 755–762 (2013)

[13] Condon, A., Hajiaghayi, M., Kirkpatrick, D., Maňuch, J.: Approximate majority analyses using tri-molecular chemical reaction networks. Natural Computing 19(1), 249–270 (2020)

[14] Doty, D., Soloveichik, D.: Stable leader election in population protocols requires linear time. Distributed Computing 31(4), 257–271 (2018), special issue of invited papers from DISC 2015.

[15] Dudek, B., Kosowski, A.: Universal protocols for information dissemination using emergent signals. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. pp. 87–99 (2018)

[16] Elsässer, R., Radzik, T.: Recent results in population protocols for exact majority and leader election. Bulletin of EATCS 3(126) (2018)

[17] Fanti, G., Holden, N., Peres, Y., Ranade, G.: Communication cost of consensus for nodes with limited memory. Proceedings of the National Academy of Sciences 117(11), 5624–5630 (2020)

[18] Gąsieniec, L., Stachowiak, G.: Fast space optimal leader election in population protocols. In: SODA 2018: ACM-SIAM Symposium on Discrete Algorithms. pp. 2653–2667. SIAM (2018)

[19] Gąsieniec, L., Stachowiak, G., Uznański, P.: Almost logarithmic-time space optimal leader election in population protocols. In: SPAA 2019: 31st ACM Symposium on Parallelism in Algorithms and Architectures. pp. 93–102 (2019)

[20] Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. The Journal of Physical Chemistry A 104(9), 1876–1889 (2000)

[21] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The journal of physical chemistry 81(25), 2340–2361 (1977)

[22] Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of Chemical Physics 115(4), 1716–1733 (2001)

[23] Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)

[24] GillesPy2, https://github.com/StochSS/GillesPy2

[25] Kurtz, T.G.: The relationship between stochastic and deterministic models for chemical reactions. The Journal of Chemical Physics 57(7), 2976–2978 (1972)
[26] Lathrop, J.I., Lutz, J.H., Lutz, R.R., Potter, H.D., Riley, M.R.: Population-induced phase transitions and the verification of chemical reaction networks. In: Geary, C., Patitz, M.J. (eds.) DNA 26: 26th International Conference on DNA Computing and Molecular Programming. Leibniz International Proceedings in Informatics (LIPIcs), vol. 174, pp. 5:1–5:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.DNA.2020.5, https://drops.dagstuhl.de/opus/volltexte/2020/12958

[27] ppsim Python package.
 source code: https://github.com/UC-Davis-molecular-computing/ppsim
 API documentation: https://ppsim.readthedocs.io/
 Python package for installation via pip: https://pypi.org/project/ppsim/ (2021)

[28] Rathinam, M., El Samad, H.: Reversible-equivalent-monomolecular tau: A leaping method for “small number and stiff” stochastic chemical systems. Journal of Computational Physics 224(2), 897–923 (2007)

[29] Sanft, K.R., Wu, S., Roh, M., Fu, J., Rone, K.L., Petzold, L.R.: Stochkit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27(17), 501–522 (2011), https://academic.oup.com/bioinformatics/article/27/17/2457/224105

[30] Slepoy, A., Thompson, A.P., Plimpton, S.J.: A constant-time kinetic monte carlo algorithm for simulation of large biochemical reaction networks. The journal of chemical physics 128(20), 05B618 (2008)

[31] Soloveichik, D.: Robust stochastic chemical reaction networks and bounded tau-leaping. Journal of Computational Biology 16(3), 501–522 (2009)

[32] Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic acid dynamical systems. Science 358(6369), eaal2052 (2017)

[33] Sudo, Y., Masuzawa, T.: Leader election requires logarithmic time in population protocols. Parallel Processing Letters 30(01), 2050005 (2020)

[34] Sudo, Y., Ooshita, F., Izumi, T., Kakugawa, H., Masuzawa, T.: Time-optimal leader election in population protocols. IEEE Transactions on Parallel and Distributed Systems 31(11), 2620–2632 (2020). https://doi.org/10.1109/TPDS.2020.2991771
A Full specification of compilation of CRN to population protocol

It is possible to specify 1-reactant/1-product reactions such as $A \rightarrow B$, which are compiled into 2-reactant/2-product reactions $A + C \rightarrow B + C$ for every species C, with reaction rates adjusted appropriately. The full transformation is described in the proof of Theorem 1. Here, we give an example of the transformation on the CRN

$$2A \overset{3}{\underset{2}{\rightarrow}} B + C$$
$$C \overset{1}{\rightarrow} D$$

First, each reversible reaction is turned into two irreversible reactions:

$$2A \overset{3}{\rightarrow} B + C$$
$$B + C \overset{2}{\rightarrow} 2A$$
$$C \overset{1}{\rightarrow} D$$

For each non-symmetric bimolecular reaction (with two unequal reactants), add its “swapped” reaction reversing the order of reactants and the order of products. From now on we write reactions using ordered pair notation (e.g., $(A, A) \rightarrow (B, C)$ instead of $2A \rightarrow B + C$).

$$(A, A) \overset{3}{\rightarrow} (B, C)$$
$$(B, C) \overset{2}{\rightarrow} (A, A)$$
$$(C, B) \overset{2}{\rightarrow} (A, A)$$
$$C \overset{1}{\rightarrow} D$$

Each (originally) bimolecular reaction (not the result of converting a unimolecular reaction below) has its rates multiplied by the corrective factor $(n - 1)/(2 \cdot v)$, where n is the population size and v is the volume. We choose $n = v = 10$ for this example, so $(n - 1)/(2 \cdot v) = 0.45$. (See proof of Theorem 1 for explanation of correction factor.)

$$(A, A) \overset{1.45}{\rightarrow} (B, C)$$
$$(B, C) \overset{0.9}{\rightarrow} (A, A)$$
$$(C, B) \overset{0.9}{\rightarrow} (A, A)$$
$$C \overset{1}{\rightarrow} D$$

Each unimolecular reaction is converted to several bimolecular reactions with all other species in the CRN.
Finally, for each ordered pair of input states \((x, y)\), sum the rates of all reactions that have ordered reactants \((x, y)\), and we let \(m\) be the maximum value of this sum over all ordered pairs of reactants. In this example, the pair \((C, B)\) has rates 0.9 and 1 for its two reactions, whose sum achieves the maximum \(m = 1.9\). Divide rates by \(m\) to convert them to probabilities.

This gives us the final randomized transitions of the population protocol. Below, whenever the probabilities for a given input state pair \((x, y)\) sum to a value \(p < 1\), implicitly the transition on input \((x, y)\) is null (i.e., outputs \((x, y)\)) with probability \(1 - p\).

\[
\begin{align*}
(A, A) \xrightarrow{1.35} (B, C) \\
(B, C) \xrightarrow{0.9} (A, A) \\
(C, B) \xrightarrow{0.9} (A, A) \\
(C, A) \xrightarrow{1} (D, A) \\
(C, B) \xrightarrow{1} (D, B) \\
(C, C) \xrightarrow{1} (D, C) \\
(C, D) \xrightarrow{1} (D, D)
\end{align*}
\]

Time is now scaled by \(m = 1.9\). Thus in one unit of time, there should be an expected \(1.9 \cdot n\) interactions. In order to simulate \(t\) units of time, we choose a Poisson random variable with mean \(1.9 \cdot n \cdot t\) to get the number of interactions to simulate.

The following theorem shows that the above transformation results in a population protocol whose continuous time dynamics exactly sample from the same distribution as the Gillespie stochastic model applied to the original CRN.

Theorem 1. Let \(C\) be a CRN consisting of only unimolecular reactions \(r_i : X_{i_1} \xrightarrow{k_i} X_{i_2}\) and bimolecular reactions \(r_j : X_{j_1} + X_{j_2} \xrightarrow{k_j} X_{j_3} + X_{j_4}\).

Then for any initial configuration \(I = \{a_1X_1, \ldots, a_sX_s\}\) and fixed volume \(v \in \mathbb{R}^+\), there exists an equivalent continuous time population protocol \(P\) with time scaling constant \(m\). For any time \(t \in \mathbb{R}^+\), the distribution over all possible configurations sampled by the Gillespie algorithm at time \(t\) is the same distribution as configurations of \(P\) at time \(m \cdot t\).

Proof. The continuous time population protocol \(P\) will use the same state set \(\{X_1, \ldots, X_s\}\) and initial configuration \(I\). In the population protocol dynamics, each agent has a rate 1 Poisson
process for the event where they interact with a randomly chosen agent. Thus for each ordered pair of agents, that pair meets in that order as a rate $\frac{1}{n-1}$ Poisson process.

After converting all reactions, we will be left with a set of ordered transitions with rates, of the form $(a, b) \xrightarrow{k} (c, d)$. An ordinary population protocol transition should correspond to rate $k = 1$, so for each ordered pair of agents (v_1, v_2) in states (a, b), this transition should happen as a Poisson process with rate $\frac{k}{n-1}$. We must handle the fact that these rates could exceed 1, and also there could be multiple ordered transitions starting from the same pair (a, b). Define m to be the maximum over all ordered pairs (a, b) of the sum of the rates of any ordered transitions with pair (a, b) on the left. The population protocol transition rule for a pair (a, b) is then a randomized rule, where each ordered reaction $(a, b) \xrightarrow{k} (c, d)$ happens with probability $\frac{k}{m}$ (and otherwise the transition is null). Because we are also scaling time by this factor m, it follows that the rate of this ordered transition between a single pair of agents (v_1, v_2) in states (a, b) will be $m \cdot \frac{k}{n-1} = \frac{k}{n-1}$, as desired.

Next we show how each unimolecular reaction $r_i : X_{i_1} \xrightarrow{k_i} X_{i_2}$ is converted to a set of ordered transitions with rates. For each $j = 1, \ldots, s$, we add the ordered transition $(X_{i_1}, X_j) \xrightarrow{k_i}(X_{i_2}, X_j)$. In other words, the first agent in the pair v_1, independent of the state of the other agent, will change state from X_{i_1} to X_{i_2}. This agent v_1 gets chosen as the first agent in the pair as a Poisson process with rate m, and this unimolecular transition will happen (independent of the state of the other agent) with probability $\frac{k_i}{m}$. Thus each agent in state X_{i_1} changes to state X_{i_2} as a rate k_i Poisson process, which is exactly the model simulated by the Gillespie algorithm.

Finally, we show how each bimolecular reaction $r_j : X_{j_1} + X_{j_2} \xrightarrow{k_j}(X_{j_3} + X_{j_4})$ is converted to a set of ordered transitions with rates. In the Gillespie model, for each unordered pair $\{v_1, v_2\}$ of agents in states X_{j_1} and X_{j_2}, the time until this reaction happens is an exponential random variable with rate $\frac{k_j}{v}$, where $v \in \mathbb{R}^+$ is the volume. In our protocol P, the time when this unordered pair of agents will interact is an exponential random variable with rate $\frac{2m}{n-1}$. Thus, we multiply each rate by the conversion factor $\frac{n-1}{2v}$ to get $k'_j = k_j \cdot \frac{n-1}{2v}$. Then we add the ordered transition $(X_{j_1}, X_{j_2}) \xrightarrow{k'_j}(X_{j_3}, X_{j_4})$, and if $X_{j_1} \neq X_{j_2}$, also the reverse ordered transition $(X_{j_2}, X_{j_1}) \xrightarrow{k'_j}(X_{j_4}, X_{j_3})$. As a result, each unordered pair $\{v_1, v_2\}$ will interact with rate $\frac{2m}{n-1}$, then do this transition with probability $\frac{k'_j}{2m}$. This gives the reaction a total rate of $k'_j \cdot \frac{2m}{n-1} = \frac{k_j}{v}$, as desired.

□