Natural and Anthropogenic Sources of Potentially Toxic Elements to Aquatic Environment: A Systematic Literature Review

Mayara de Almeida Ribeiro Carvalho
Federal University of Sao Carlos: Universidade Federal de Sao Carlos

Wander Gustavo Botero
Federal University of Alagoas: Universidade Federal de Alagoas

Luciana Camargo de Oliveira (lcamargo@ufscar.br)
Federal University of Sao Carlos: Universidade Federal de Sao Carlos https://orcid.org/0000-0001-6125-2154

Research Article

Keywords: mining, agriculture, industries, domestic effluents, weathering of rocks, geogenic origin.

Posted Date: March 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1389124/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Potentially toxic elements (PTEs) constitute a class of metals, semimetals, and non-metals that may or may not be essential to living organisms and are of concern due to their persistence, toxicity, bioaccumulation, and biomagnification in high concentrations. PTEs can be introduced into the aquatic environment from various sources, anthropogenic or natural, occurring in waters, sediments, and organisms, posing risks to the ecosystem and to human health. A systematic literature review (SLR) was used in this study to identify natural and anthropogenic sources of PTEs for the aquatic environment. The databases consulted were ScienceDirect, Scopus, and Web of Science, in the period 2000–2020, using specific terms and filters. After analyzing the titles, abstracts, and full texts, 79 articles were selected for the SLR, in which 21 sources and 16 EPTs were identified. The main anthropogenic source identified was mining and the main natural source identified was the weathering of rocks. Is worth noting that the identification of polluting sources is essential for the environmental monitoring of PTEs, as these elements cycle in the environment, not being chemically or biologically degraded, and can cause serious problems for various living organisms including human health.

Introduction

Among the various aquatic contaminants, potentially toxic elements (PTE) (Fig. 1) constitute a class of metals, semimetals, and non-metals that may or may not be essential to living organisms and are of particular concern due to their persistence, toxicity, and potential for bioaccumulation and biomagnification at high concentrations (Mountoris; Voutsas; Tassios, 2002; Jacundino et al., 2015; Spiegel, 2002; Kara et al., 2017). The term “heavy metal” has been commonly used for decades in the natural sciences to address geochemistry and environmental pollution by these elements. However, the term is controversial in the literature since there is no standardized definition, and the use of the term “potentially toxic elements” is recommended (Pourret; Hursthouse, 2019; Pourret; Bollinger; Hullebusch, 2019).

PTE can be introduced into the aquatic environment from various sources and can be detected in waters, sediments, and organisms, exhibiting different geochemical behavior and biological toxic effects (Zeng; Dong; Chen, 2013). The accumulation of these elements and their enrichment in food chains can present risks to aquatic ecosystems, such as loss of biodiversity and degradation of environmental quality, as well as risks to human health (Green and Planchart, 2018; Gall et al., 2015; Hou et al., 2019). Generally, health risk arises primarily from chronic exposure to PTE through ingestion of water, soil, and food (Chen et al., 2018).

Some elements such as copper, iron, manganese, nickel, and zinc have important biological functions in the maintenance of cell structure, regulation of gene expression, neurotransmission, and antioxidant response (Chen; Miah; Aschner, 2016). However, chronic exposure interferes with the functioning of cellular components, can induce oxidative stress, interrupting mitochondrial function, and impairing
enzyme activity, with the potential to cause severe neurological disorders (Chen; Miah; Aschner, 2016; Nachman et al., 2018).

Other elements, such as arsenic, cadmium, lead, and mercury, have no known biological functions and can present high toxicity to animals, including humans, even at low levels (Chen; Miah; Aschner, 2016; Singh and Kumar, 2017; Harguinteguy et al., 2016). These four elements are present in the World Health Organization's list of the top ten chemicals of major public health concern (World Health Organization, 2010). Exposure to As can increase the risk of skin, bladder, and lung cancer and can also cause dermal and peripheral damage, neuropathy, and cardiovascular disease. Cd can cause bone fractures, prostatic proliferative lesions, kidney dysfunction, and hypertension (Zukowska and Biziuk, 2008). Excessive intake of Pb can cause anemia, gastrointestinal problems, colic and systemic symptoms in the central nervous system, damage the skeleton and the immune, endocrine, and enzyme systems (Nieboer et al., 2013). Hg can cause different toxic effects on the nervous, digestive and immune systems (World Health Organization, 1976).

The variability in the concentration of PTE may depend on seasonality, which modifies the flow of watercourses and consequently the fluvial morpho dynamics, also interfering with soil erosion due to the intensity of rainfall (Saran et al., 2018). Depending on hydrodynamics and environmental conditions, such as the degradation of organic matter in summer and autumn, there may be the accumulation of PTE in the sediments and, depending on the concentration, it may affect benthic organisms and consequently the food chain (Ustaoğlu and Islam, 2020; Louriño-Cabana et al., 2011). Changes in physicochemical conditions and disturbance of contaminated sediment can release PTE from the sediment into the water column, prolonging the residence time of the contamination (de Miguel et al., 2005; da Silva Júnior et al., 2020; Hassan et al., 2015).

Sediment is an ecologically important component of the aquatic ecosystem and plays an essential role in maintaining the trophic state of the water body, being the basis of the food web (Zhang et al., 2017b; Burton et al., 2001). Due to their low solubility, persistence, and accumulation potential, PTE and their complexes easily precipitate in sediments, which act as sinks for these elements (Mirza et al., 2019). Therefore, sediment is a very useful tool in monitoring these elements, acting as one of the main indicators of the environmental health of the aquatic ecosystem, since this natural reservoir has a high capacity for retaining PTE (Soares et al., 1999; Ustaoğlu and Islam, 2020; Zahra et al., 2014). Therefore, the sediment can provide information about the potential threat to the biota and about long-term pollution, making it possible to identify anthropogenic and natural species (Aguiar et al., 2020; Möller and Einax, 2013).

Biological components and the chemical and physical characteristics of sediments, such as organic and inorganic content, pH, distribution, and grain size, can affect the bioavailability, mobility, and toxicity of PTE through absorption and adsorption processes (Zhang et al., 2017a; Zhu and Schwartz, 2011; Zhao et al., 2010; Murakami et al., 2008; Rashed et al., 2019).
Interactions of potentially toxic elements with sediment occur in different ways, such as precipitation, ion exchange, adsorption, and complexation. These processes are strongly correlated with organic matter (OM) content and with the presence of clay minerals and hydrated Fe and Mn oxides. OM can retain PTE because it exhibits a negative surface charge, high surface area, and high cation exchange capacity (CEC); clays and hydrated Fe and Mn oxides concentrate PTE due to their large negative surface charge and high CEC (Tack, 2010; Sierra et al., 2010; Violante, 2013). Thus, these elements can be linked to the sediment in different chemical forms: soluble (linked to carbonates), exchangeable, linked to organic matter, and oxidizable (linked to Fe and Mn oxides), which may or may not contribute to the bioavailability of the metal in the aquatic environment (Ye et al., 2015; Mirza et al., 2019).

The concentrations of potentially toxic elements in acid-soluble, reducible and oxidizable fractions are related to the bioavailability and mobility of the element, whereas the residual fraction can remain stable in sediments for a long period (Allen et al., 1993; Gao and Chen, 2012).

PTE levels and sources need to be routinely and accurately monitored for adequate and sustainable water quality management (Custodio et al., 2020). In this sense, multivariate statistical analyzes such as Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Pearson Correlation Coefficient (PCC) have been used to find relationships between elements and determine their sources (Ustaoğlu and Islam, 2020; Zhang et al., 2016). Elements with strong relationships may have common origins and similar transport behaviors (Kükrer et al., 2019; Lu et al., 2016). The quality indices are used to assess the risks that PTE can present to the aquatic environment, such as the Contamination Factor (CF), Enrichment Factor (EF), Pollution Load Index (PLI), Geoaccumulation Index (Igeo), Potential Ecological Risk Index (PERI) and Sediment Quality Guidelines (SQG) (Tepe and Aydin, 2017; Li et al., 2015; Palma; Ledo; Alvarenga, 2015).

Contamination of water resources by potentially toxic elements has been reported in several publications over the last 20 years. Therefore, this study aimed to investigate the natural and anthropogenic sources of potentially toxic elements for the aquatic environment, based on a systematic literature review.

Methods

Systematic Literature Review (SLR)

The research methodology used in this study was the Systematic Literature Review (SLR) (Fig. S1). To carry out the study, the research question was: “What are the natural and anthropogenic sources of potentially toxic elements for the aquatic environment?”. The SLR included articles published in the period 2000–2020 in the Science Direct, Scopus, and Web of Science databases. The search terms used for the search in the three databases were *potentially toxic metal in surface water, potentially toxic metal in sediment, and source of potentially toxic metal in aquatic systems*. These terms have been combined to cover more research as most articles address the subject with the term *heavy metal* and *potentially toxic elements*.
In the ScienceDirect database, the search was carried out to find articles with these terms with the filters in a year of publication, covering the period 2000–2020; in article type, in which only research articles were selected and in thematic area, in which the area of environmental sciences was selected. In the Scopus database, the search was carried out in search within, including the term in the title, abstract, and keywords. The filters used were: year of publication, in the period 200–2020; thematic area of environmental sciences, and; type of document, in which an article was selected. In the Web of Science database, the search was performed on the topic, which includes the term in the title, abstract, study, and author keywords. The filters used were: year of publication, in the period 2000–2020; type of document, in which article was defined and; in categories of the Web of Science, in which two categories were selected: environmental sciences and water resources.

The criteria for inclusion of articles were: 1. Articles that address some element potentially in surface water; 2. Articles that address some potentially toxic element in the sediment and; 3. Articles that identify the sources of contamination, natural or anthropogenic, of PTE to the aquatic environment. Exclusion criteria were: 1. Articles outside the scope of the investigation; 2. Articles that do not address the sources of contamination; 3. Articles dealing with other environmental matrices.

Bibliographic map using VOSviewer software

To investigate keywords involving potentially toxic elements over 20 years, the VOSviewer software (van Eck and Waltman, 2020) was used to create a map based on bibliographic data from the Scopus database. The term potentially toxic metal in water was used for research in the Scopus database, in the period 2000–2020, with a filter in the study area, in which the area of environmental sciences was defined, returning 982 articles. Journals were exported in CSV format (comma-separated values) and entered VOSviewer, where co-occurrence was used as the type of analysis and the author's keywords as the unit of analysis. To create the map, keywords with a minimum of five occurrences were selected.

Results And Discussion

Results in databases

The evolution of the number of publications using different search terms in the databases indicates a significant increase in publications in ScienceDirect, mainly from the term potentially toxic metal in surface water and, to a lesser extent, by two other terms (Fig. S2). In Scopus and Web of Science (Fig. S3 and Fig. S4), there was also an increase in the number of publications concerning the terms potentially toxic metal in surface water and potentially toxic metal in sediment; however these two databases had a much lower number of publications to ScienceDirect. The ScienceDirect database contains a higher number of indexed journal titles to Scopus and Web of Science and, for this reason, it presents a greater number of publications about these databases.

The number of publications returned using the terms potentially toxic metal in surface water, potentially toxic metal in sediment, and sources of potentially toxic metal in the aquatic system were 50,422, 18,688,
and 14,852, respectively, in the ScienceDirect database; 235, 344, and 13, respectively, in the Scopus database and; 247, 565 and 10, respectively, in the Web of Science database (Table 1). The number of articles selected for review based on the inclusion criteria of articles, which were described in the topic “Research methods”, with the terms potentially toxic metal in surface water, potentially toxic metal in sediment, and sources of potentially toxic metal in the aquatic system was 21, 28, and 10, respectively, in the ScienceDirect database (Table 1). It is noteworthy that, in the ScienceDirect database, titles and abstracts were read-only for the first 500 articles, since the number of publications returned was very large, making it impossible to analyze all of them. The number of articles selected for the review based on the terms potentially toxic metal in surface water, potentially toxic metal in sediment, and sources of potentially toxic metal in the aquatic system was 17, 13, and 3, respectively, in the Scopus database; and 9, 16 and 1, respectively, in the Web of Science database (Table 1).

Many articles already extracted from the ScienceDirect database also occurred in the Scopus and Web of Science databases, and for this reason, many articles from these two databases were not selected. In total, 118 articles were selected for review based on the reading of titles and abstracts. However, after analyzing the full texts, some articles did not meet the established criteria and were discarded. Thus, 79 articles passed this second analysis and were synthesized to be included in the review (Table 1).

Table 1
List of articles analyzed and selected for the review

Search terms	Database	Returned articles	Selected articles
potentially toxic metal in surface water	ScienceDirect	50.422	21
	Scopus	235	17
	Web of Science	247	9
potentially toxic metal in sediment	ScienceDirect	18.688	28
	Scopus	344	13
	Web of Science	565	16
sources of potentially toxic metal in aquatic system	ScienceDirect	14.852	10
	Scopus	13	3
	Web of Science	10	1
Total of articles selected from titles and abstracts			118
Total of articles selected after analysis of the full texts			79
Bibliographic map using VOSviewer software

The bibliographic map (Fig. 2) created in the VOSviewer software returned 100 keywords that occurred at least five times in all analyzed journals. Links between terms indicate a connection or relationship between them and have a strength represented by a numerical value that, the higher, the stronger the relationship. In this case, the strength of the link indicates the number of publications where two terms occur together. Terms can be grouped into clusters, represented by different colors, indicating terms with strong association (van Eck and Waltman, 2020).

Sources of potentially toxics elements to the aquatic environment

From the SLR, 15 sources of elements potentially toxic to the aquatic environment, natural and anthropogenic, were identified. Mining, agriculture, and industries were the 3 most recurrent sources in the articles analyzed (Fig. 3). Other highly relevant sources were domestic effluents, weathering of rocks, traffic, and industrial effluents.

The SLR results also allowed us to associate potentially toxic elements to their respective sources, with Zn, Pb, Cd, and Cu being the most recurrent PTE in publications, with different sources (Fig. 4). The elements that were also reported in a significant number of articles were Cr, Ni, and As. The PTE that appeared in a smaller number of publications were Ba, Mo, Sb, and V. The elements Ba (barium) and Sb (antimony) were those with a smaller number of sources (Fig. 4).

Natural sources of potentially toxic elements to the aquatic environment

Among the six natural sources identified in the SLR, weathering of rocks was the most recurrent, appearing in 14 of a total of 79 publications, followed by geogenic origin (7 publications), lithogenic origin (6 publications), and soil composition (4 publications). The geothermal area sources and unexplored mineral deposits occurred in only one publication (Fig. 5).

The PTE associated with the most recurrent natural sources in SLR publications are Ni, Cr, As and Zn. PTE As and Zn were the elements identified in all natural sources of LSR. The elements Al, Ba, Fe, Hg, Mo and V were reported in few publications and Ba and V had only one source (Fig. 6, Table S1).

Weathering of rocks

The source of weathering of rocks was the main natural source reported in the SLR, occurring in 14 publications (Fig. 5), with the most recurrent PTE being Ni, Cr, Zn and Pb (Fig. S5). Al, V and Mo were the PTE associated with weathering of rocks that occurred in only one publication.
Potentially toxic elements can occur naturally in sediments at various concentrations due to weathering and rock erosion (Lenart-Borón and Borón, 2014; Ahmad et al., 2020), which may be responsible for enriching the concentrations of these elements in the aquatic environment (Hu et al., 2020; Yuan et al., 2019; Huang et al., 2020b; Rupakheti et al., 2017; Munk and Faure, 2004; Xiao et al., 2019; Zhang et al., 2018; Huang et al., 2020a; Wang et al., 2020b).

Ahmad et al. (2020), through the Pearson Correlation, identified that the main source that increases the concentrations (mg kg\(^{-1}\)) of Cu (36.4), Fe (39000), Zn (54.3), Ni (52, 6), Pb (14.9), Cd (1.11) and Co (11.7) in the sediment of the Hunza River and its tributaries, located in Gilgit-Baltistan, Pakistan, is the weathering of igneous and ultramafic rocks. The Contamination Factor and Pollution Load Index demonstrated that contamination by PTE was classified as a moderate risk level for the aquatic ecosystem.

Geogenic origin

The source geogenic origin occurred in 7 SLR publications (Fig. 5). PTE Cr, As, Ni, and Co are the main contaminants of geogenic origin identified in the review, followed by Cd, Al, Fe, Mn, Mo, Pb, Ba, and Zn, which were reported in only one publication (Fig. S6) (Ustaoğlu and Islam, 2020; Milacic et al., 2019; Ji et al., 2019; Santana et al., 2020; Vystavna et al., 2012).

The sediments of the Evrotas River, in Greece, presented high concentrations of Cr (maximum of 300 mg kg\(^{-1}\)) and Ni (maximum of 150 mg kg\(^{-1}\)) of geogenic origin, since the mobilized fractions of the sediments were extremely low. The calculation of the probable effect concentration coefficient (PEC-Q) showed an ecological risk above the critical value, mainly due to the simultaneous presence of Cr and Ni (Milacic et al., 2019).

Lithogenic origin

The lithogenic origin occurred in 6 publications (Fig. 5), being a source mainly of Cr, Ni, As and Zn and also of Cu, Hg, Mn and Pb for the aquatic environment (Fig. S7) (Bouzekri et al., 2020; Qiao et al., 2020; Shakeri et al., 2020; Amini and Qishlaqi, 2020; Santos et al., 2020).

Santos et al. (2020) analyzed the sediments of the Itapicuru-Mirim river, located in the municipality of Jacobina, Bahia, Brazil, in order to verify the distribution of potentially toxic elements and the quality of the sediment through a geochemical evaluation using the enrichment factor (EF), geoaccumulation index (Igeo) and pollution load index (PLI). The Igeo results indicated that As, Cr, Mn, Pb and Zn had low concentrations and the EF indicated lithogenic sources of these PTE.

Soil composition

The soil composition source occurred in 4 SLR publications (Fig. 5), cited as the main source of As for the aquatic environment, in addition to Cd, Co, Cu, Mn, Ni, Pb, and Zn (Fig. S8) (Sheykhi et al., 2017, Li; Chen; Teng, 2020, Huang et al., 2020a, Wang et al., 2020b).
Huang et al. (2020a) surveyed the Huixan wetland, the largest karst wetland in southern China, to identify the source, concentration, and ecological risk assessment of potentially toxic elements. The results of the principal component analysis (PCA) were performed, indicating as a second component the strong association of the elements Cu and Zn, at concentrations of 37.12 and 125.43 mg kg\(^{-1}\), respectively, from natural soils in the region.

Geothermal area

The *geothermal area* source occurred in only one publication among all SLR publications (Fig. 5), associated with the elements As, Cr, Cu, Ni, and Zn. Geothermal areas close to volcanoes can be sources of PTE for the aquatic environment (Shakeri et al., 2015). The Khiav River in Iran is the main river in the geothermal area of Sabalan, and its water is used for human consumption and agriculture. The river presents high concentrations, in mg kg\(^{-1}\), of As (75), Cu (80), Ni (38), and Zn (122) by geothermal sources (Shakeri et al., 2020).

Unexplored mineral deposits

The *unexplored mineral deposits* source occurred in only one publication among all SLR publications (Fig. 5), associated with the elements As, Cd, Cu, Pb, and Zn. Unexplored mineral deposits can pose pollution risks to the aquatic environment (Wang et al., 2006). Using geo-accumulation index (Igeo), potential ecological risk index (Eri), and risk assessment code (RAC), Qiao et al. (2020) indicated concentrations (mg kg\(^{-1}\)) exceeding their standard limits of As (61.78), Cd (0.41), Cu (1763.10), Pb (66.58) and Zn (543.06) in sediments may derive mainly from the unexplored Rona deposit in Tibet, China.

Anthropogenic sources of potentially toxic elements to the aquatic environment

Among the nine anthropogenic sources identified in the SLR, *mining* stood out, occurring in 29 publications, followed by *agriculture* (26 publications), *industries* (22), and *domestic effluents* (19 publications). The *traffic* source occurred in 13 publications, *industrial effluents* in 10, *atmospheric deposition from polluted areas* in 4, *hospital effluents* in 2 publications, and the *waterway transport* source occurred in only one publication (Fig. 7).

From the SLR results, it was possible to verify that the most recurrent PTE of anthropic origin in the publications were Zn, Pb, Cd, and Cu. The elements Cd and Cu were verified in all anthropogenic sources of SLR. As, Cr and Ni also occurred in a significant amount of publications. The elements Ba, Mo, Sb, and V were reported in few publications and the element Ba presented only two sources (Fig. 8, Table S2).

Mining

The *mining* source was the main source of SLR, occurring in 29 publications (Fig. 7), mainly associated with the elements As, Pb, Zn, and Cu (Fig. S9). Mining is responsible for releasing significant amounts of
toxic substances into the environment, even if the mining activity has been decommissioned. Decommissioned areas are generally left with large amounts of tailings in piles and ponds, which can be a source of long-term PTE for the surrounding area (Sun; Hu; Cheng, 2020; Sun; Hu; Cheng, 2018; Wang et al., 2019).

Potentially toxic elements from mining can reach water bodies from acid mine drainage (AMD), from the rupture of tailings and wastewater dams, or through the dissemination of soil, mineral, and dust particles through surface runoff, erosion, and leaching (Mostert et al., 2010; Sarmiento et al., 2011; Hatje et al., 2017; Ngole-Jeme and Fantke, 2017; Rodríguez et al., 2009). Among mining residues, tailings are considered the greatest threat to the aquatic system due to their high content of PTE that can accumulate in excessive amounts in sediments (Prusty et al., 1994).

Acid mine drainage (AMD) is generated by the oxidation of sulfide minerals and has the potential to leach out the elements present in the ore and rocks surrounding the mining area. The main source of acidity is the oxidation of pyrite (FeS$_2$) in fragmented rocks that are exposed by mining (Rose and Cravotta, 1998). It has several effects on the water body, such as changes in physicochemical conditions, acidity, turbidity, sediment composition, and ionic content (Blasco et al., 1999).

AMD is a serious problem in the southwest of the Iberian Peninsula, where the Iberian Pyrite Belt is located, as it contains original sulfide reserves of around 1700 Mt distributed among more than 50 massive sulfide deposits. The weathering of these minerals in an abandoned mine releases high concentrations of PTE, such as Al (80 mg L$^{-1}$), As (3764 µg g$^{-1}$), Cd (116 µg g$^{-1}$), Cr (14 µg g$^{-1}$), Cu (20 mg L$^{-1}$), Fe (645 mg L$^{-1}$) and Zn (72 mg L$^{-1}$). Pollution is mainly transferred to sediments, increasing their toxicity potential (Sarmiento et al., 2011). AMD is also responsible for contamination by Cd (2 mg kg$^{-1}$), Cr (70.6 mg kg$^{-1}$), Cu (1099.3 mg kg$^{-1}$), Pb (30.6 mg kg$^{-1}$), and Zn (311.1 mg kg$^{-1}$) in water body sediments around the site of an abandoned copper mine in Cyprus (Hadjipanagiotou et al., 2020) and by Cd (1.46 µg L$^{-1}$), Fe (10175 µg L$^{-1}$), Mn (13412 µg L$^{-1}$) and Zn (2612 µg L$^{-1}$) in streams downstream of abandoned Pb-Zn mining sites in Hungary (Kovács et al., 2012).

The Zeïda mining center, located in northeastern Morocco, is considered the largest lead deposit in Morocco and was operated between 1972 and 1985. The quarry lakes were abandoned without restoration and are filled with millions of cubic meters of groundwater or by the overflow of the Moulouya River (El Hachimi et al., 2007; Iavazzo et al., 2012). The contact of water with mining tailings resulted in pollution by As (206 µg L$^{-1}$), Cd (55 µg L$^{-1}$), and Pb (209 µg L$^{-1}$) from the waters of the lakes and the Moulouya river, which are destined for domestic consumption, irrigation and livestock supply in the region, in addition, to use for consumption without prior treatment in a village of 5000 inhabitants (Bouzekri et al., 2020). In this same area, El Azhari et al. (2017) identified high concentrations of Pb (317 mg kg$^{-1}$) and Zn (117.7 mg kg$^{-1}$) in the sediments of the Moulouya River due to mining tailings, and Iavazzo et al. (2012) reported the contamination of the Moulouya River and its tributary Mibladen by Al (11300 µg L$^{-1}$), As (96 µg L$^{-1}$) and Pb (78 µg L$^{-1}$).
Sun; Hu; Cheng (2020) studied PTE pollution in an area surrounding an abandoned polymetallic mine in southern China. The area in question is ideal for demonstrating the impact of mining as there are no other potential sources of contamination nearby. Intensive Pb and Zn mining occurred at several locations in the mine from 2012 to 2014. The results suggest contamination by As (1.18 µg L⁻¹), Cd (15.9 µg L⁻¹), Cr (29.8 µg L⁻¹), Cu (0.023 µg L⁻¹), Ni (0.0817 µg L⁻¹), Pb (0.0317 µg L⁻¹) and Zn (14 µg L⁻¹) in the waters of villages around the mining district. This contamination is of particular concern as local people use contaminated soil and water to produce rice and vegetables.

The input of Hg was verified in the San Tirso river valley, located in the Asturias region, northern Spain, which is surrounded by mining companies and industries associated with Hg ores since Roman times (González-Fernández et al., 2018). In the studied area, there was a significant accumulation of As and Hg in the sediment of rivers, at concentrations of 392,238 and 4498 mg kg⁻¹, respectively, due to the combined effect of 40-year abandonment of mining and industrial facilities. Also in Asturias, Loredo; Ordonez; Álvarez (2006) also identified sediment contamination by As (28060 mg kg⁻¹) and Hg (4371 mg kg⁻¹) from the abandoned Hg mine La Soterraña.

Artisanal gold mining can be a source of several PTE for the aquatic environment, including As, Cd, Cr, Cu, Ni, and Pb. In addition, it alters the hydrodynamic characteristics of rivers, promotes deforestation, sedimentation and decreases the fish population, among other environmental impacts (Palacios-Torres; de la Rosa; Olivero-Verbel, 2020). Appleton et al. (2000) highlighted the impact of artisanal gold mining in mining districts in Ecuador, Ponce Enríquez and Portovelo-Zaruma, identifying that most of the contaminant load in the aquatic environment was transported in association with the suspended particulate matter (SPM) of rivers. The main contaminants of surface water were As (360 µg L⁻¹), Cd (3.7 µg L⁻¹), Cu (17 µg L⁻¹), Hg (2.1 µg L⁻¹) and Zn (110 µg L⁻¹), showing concern about the potential effect of contamination on commercial banana plantations and shrimp ponds in the Ponce Enríquez area. Mercury in water and sediment indicates a likely danger to biota because of methylation and other processes.

The Itapapicuru-Mirim River, located in the state of Bahia, Brazil, has a gold mining complex, which is responsible for moderately to severely contaminating its waters with Hg (0.44 ppm), which is worrying as it is 60 km away downstream, this same river is used for public supply (Santos et al., 2020). Munk & Faure (2004), in a study, carried out in the Dillon Reservoir, in Colorado, identified the sediment contamination by Cd (13 ppm), Cu (195 ppm), Mo (83 ppm), Pb (299 ppm), and Zn (3217 ppm), which are mainly adsorbed to Fe and Al hydroxides present in the sediment - from the waste of abandoned mines of Zn, Pb, Ag, and Au in the surrounding drainage basins. Acidification experiments were carried out to quantify the fraction of metals released from the sediment as a function of pH changes. As a result, they found that the highest percentages of elements are released from the sediment at low pH, except for Mo (Molybdenum), which has the highest percentage released at almost neutral pH.

An abandoned chromite-asbestos mine is an important source of Cr (1148 mg kg⁻¹) and Ni (1120 mg kg⁻¹) for water from rivers, sediments, and agricultural soils in the Chaibasa district of Jharkhand, India.
About 0.7 million tons of toxic asbestos waste mixed with chromite have been disposed of since 1983 (Kumar and Maiti, 2015).

Yi et al. (2020) evaluated the distribution of PTE in the water and sediments of a river belonging to the Lake Poyang Basin, in which a uranium mine that has operated for nearly 60 years is located. Using cluster analysis (CA) and principal component analysis (PCA), the concentrations of Cr (0.95 µg L\(^{-1}\)) and Pb (2.27 µg L\(^{-1}\)) were highly correlated and originated from anthropogenic sources, especially emissions from uranium mining.

Agriculture

The agriculture source was the second most recurrent anthropic source in the SLR, appearing in 26 publications (Fig. 7). The main PTE of agricultural origin identified in the SLR were Cd, Zn, Pb, and Cu (Fig. S10). Agricultural development can intensify runoff and increase erosion, presenting a risk of contamination of downstream areas and surface waters by potentially toxic elements that are natural in the soil or increased by the use of fertilizers and pesticides (Pacheco et al., 2014; Alloway, 2010; Bur et al., 2009). It is important to know the concentration of PTE in soils and waters impacted by agricultural management, to develop remediation strategies and prevent other areas from being contaminated (Saran et al., 2018).

The Chongming Islands, Shanghai, China, has more than 120 years of agricultural activities and is a relatively isolated area of intensive industries, with river sediments in this region being mainly contaminated by As, Cd, Cu, and Zn, in concentrations of 28, 16, 0.77, 145.6, 535.1 mg kg\(^{-1}\) respectively (Mao et al., 2020).

Saran et al. (2018) carried out a study in the city of Jabiocabal, state of São Paulo, Brazil, to understand the concentrations of PTE in soil and water in agricultural areas. The results indicated contamination by Cd (6 µg dm\(^{-3}\)), Cr (70.5 µg dm\(^{-3}\)), Cu (655.5 µg dm\(^{-3}\)), Ni (70.1 µg dm\(^{-3}\)), Pb (27.66 µg dm\(^{-3}\)) and Zn (156.6 µg dm\(^{-3}\)) in the 8 sampling sites, exceeding the standard limits recommended by local legislation (National Environmental Council – CONAMA – Resolution n. 357 of 2005).

The quality of sediments from the Huixian wetland, in the city of Guilin, China, was assessed by Xiao et al. (2019). Among the principal component analysis results, agricultural activities, including fertilizers and agrochemicals, were indicated as a source of pollution by As (54.253 mg kg\(^{-1}\)), Cr (285.750 mg kg\(^{-1}\)), Hg (1.808 mg kg\(^{-1}\)) Mn (1438 mg kg\(^{-1}\)) and Ni (85.875 mg kg\(^{-1}\)) for the sediments.

Fertilizers and agrochemicals are also a source of As (15.83 mg kg\(^{-1}\)), Cd (1.31 mg kg\(^{-1}\)), Cu (128 mg kg\(^{-1}\)), and Zn (138 mg kg\(^{-1}\)), in the city from Giresun, northeastern Turkey, in an area predominantly composed of agricultural landscapes, with emphasis on hazelnut cultivation (Ustaoğlu and Islam, 2020). Amini and Qishlaqi (2020) evaluated the sediments of Lake Zarivar, the second largest water lake sweet from Iran, where there is anthropogenic influence by urban and rural settlements, agricultural flow from
adjacent elds, and intense tourist activity. They used fractionation analysis to discriminate anthropogenic and natural sources of PTE, with the assumptions that elements from natural sources are preferentially retained in the residual fraction and that metals of anthropic origin tend to be associated with the labile fraction (Soliman et al., 2019). Estimates showed that the surrounding anthropogenic sources contributed to the concentrations of Cu (185.6 mg kg\(^{-1}\)), Pb (197.52 mg kg\(^{-1}\)), and Zn (198.72 mg kg\(^{-1}\)) for the lake.

Industries

The industries source occurred in 22 SLR publications (Fig. 7), mainly associated with the elements Zn, Pb, Cd, Cu, Ni, and Cr (Fig. S11). As well as contamination caused by mining and agricultural activities, contamination by PTE from industries has also increased significantly with the rapid development of recent decades (Sericano; Wade; Jackson, 1995).

The Deûle River is a source of drinking water for people living in the Nord-Pas de Calais region in northern France. However, pollution of Cd (7 µg L\(^{-1}\)), Pb (115.6 µg L\(^{-1}\)), and Zn (112.1 µg L\(^{-1}\)) occurs in a 3 km zone in the vicinity of two smelters (Louriño- Cabana et al., 2011).

Smelting slag discarded in inappropriate places also contaminated sediment from a Zn smelter region in China's Guizhou province. Extremely high concentrations of Cd (97 mg kg\(^{-1}\)), Pb (21.85 mg kg\(^{-1}\)), and Zn (30.425 mg kg\(^{-1}\)) were found and sequential extraction revealed that these elements were adsorbed on the surface by oxides and hydroxides of Fe and Mn, involved in Al silicates or formed as carbonate minerals. The combination of Pb and S isotopes proved that Zn smelting was responsible for the enrichment of metals in adjacent sediments (Yang et al., 2010).

The petrochemical industry is also a source of pollution by PTE, which accumulate in the sediment via atmospheric deposition, precipitation, and wastewater discharge (Bai et al., 2012). The sediments of the Songhua River, in the city of Jilin, were analyzed by Sun et al. (2019), who identified contamination of Cr, Cu, Ni, and Zn by petrochemical industries, at concentrations of 55, 90, 31, and 160 mg kg\(^{-1}\), respectively.

Roig et al. (2011) evaluated labile metal concentrations from thin-film diffusion by concentration gradient (DGT) to obtain the concentration of bioavailable metal from surface water compartments in Catalonia, Spain, in rivers subject to anthropogenic influence. The highest concentrations of PTE were found in the waters of the metropolitan area of Barcelona. As and Hg were not adsorbed by DGT devices. Among the cations, Pb is the most adsorbable and better correlates with the values of filterable water, along with Ni, Mn, Pb, and Zn. Cd was detected in all samples showing high adsorption by DGT. Metal adsorption in DGT devices was compared with metal content in filtered water and showed similar results for Mn, Ni, and Zn. As, Mn and Zn values were close to the USEPA (2005) threshold values for freshwater. Pb was the only element that exceeded the limit in most cases. The concentrations, in mg kg\(^{-1}\), of As (13.7), Cr (76.76), Hg (0.45), Mn (516), Ni (45.63), Pb (61.98), and Zn (556,29) in some river sediments were far above the USEPA (2006) freshwater sediment assessment standards, particularly in industrialized areas. Lake Tai is the third-largest freshwater lake in China, serving some 40 million people and playing an
important role in agriculture, aquaculture, tourism, recreation, and transportation (Chen et al., 2019). Li, Chen, and Teng (2020) evaluated the sources of PTE pollution in the sediments of Lago e Tai and the Nanxi River, its tributary, using Positive Matrix Factorization (PMF). The results indicated pollution by Cd (7.23 mg kg$^{-1}$) from industrial processes, mainly electroplating, paper mills, and nickel-cadmium battery factories; pollution by As (37.86 mg kg$^{-1}$) from chemicals and dyeing and; pollution by Cr (210 mg kg$^{-1}$), Cu (150 mg kg$^{-1}$), Ni (123 mg kg$^{-1}$) and Zn (418 mg kg$^{-1}$) attributed to electroplating, which is one of the most important industries in the area (Li; Chen; Teng; Niu et al., 2020).

Domestic, industrial and hospital effluents

Still, as an effect of the rapid development of recent decades and consequently, of increasing urbanization, many cities lack basic services and adequate infrastructure, which can lead to surface water pollution by untreated domestic, industrial, and hospital effluents (dos Santos et al., 2020; Lafitte et al., 2020). These effluents, when not previously treated, can represent an important source of toxic elements in the aquatic environment (Mudebi et al., 2013). In this sense, the *domestic effluent* source was one of the most important sources in the SLR, occurring in 19 publications (Fig. 7), being mainly associated with Cu, Zn, Pb, and Cd (Fig. S12). The source of *industrial effluents* occurred in 10 publications (Fig. 7), mainly associated with the elements Cd, Cr, Zn, and Pb (Fig. S13). Also concerning effluents from urban areas, the source of *hospital effluents* occurred in 2 publications (Fig. 7), mainly associated with the elements Cu, Hg, and Zn (Fig. S14).

In Laucala Bay, Fiji, wastewater is dumped from the Kinoya Water Treatment Plant (KWTP), a plant serving a population of 155,000 people. The analysis of sediments collected at 20 sampling points in the Bay indicated that the residual discharges are point sources of contamination by Cd (6 mg kg$^{-1}$), Cr (49.1 mg kg$^{-1}$), Cu (170 mg kg$^{-1}$), Fe (68.492 mg kg-1), Pb (80 mg kg$^{-1}$) and Zn (157 mg kg$^{-1}$) (Pratap; Mani; Prasad, 2020).

Lake Baiyangdian is the largest freshwater wetland in the northern Chinese plain and is contaminated by Cd, Pb, and Zn from industrial sources (Ji et al., 2019, Zhang et al., 2018). In another study carried out in the same lake, Wang et al. (2020c) identified Cd as a priority pollutant coming from domestic effluents, being abundant in the residual fraction and also in the non-residual fraction, having the potential to diffuse from the sediment to the adjacent water. Furthermore, the maximum concentrations of As, Cr, Cu, Ni, Pb, and Zn were 14.10, 79.2, 42.46, 44, 28.56, 118.95 mg kg$^{-1}$, respectively.

The Lopan and Udy river basins in the city of Kharkiv, Ukraine, have rural land use in the upper part and urban agglomeration in the middle and lower parts. These rivers are used for water supply and wastewater discharge from two treatment plants that treat industrial and domestic effluents. Wastewater discharge is responsible for the accumulation of EPTs in the sediments of the Udy River. Concentrations of Cd (6.45 mg kg$^{-1}$), Cr (219 mg kg$^{-1}$), Cu (97.9 mg kg$^{-1}$), Ni (53 mg kg$^{-1}$), Pb (54.4 mg kg$^{-1}$), and Zn (91.7 mg kg$^{-1}$) in the water were higher in the urban area than in the rural area, with peaks at the points located downstream of the residual discharges (Vystavna et al., 2012). The Subaé River, located in the
state of Bahia, Brazil, is located in a basin with a diversity of highly important habitats, such as swamps and mangroves, which become vulnerable due to industrial and domestic effluent discharges. Sediments showed higher concentrations of Pb and Zn in the upper river, near an old lead processing plant. Principal component analysis showed that samples tend to group according to the bond between an element and a sulfide, an element and the silt-clay fraction, and even between elements. PCA explained 88.3% of the data variance, showing that the content of most elements is controlled by oxides, hydroxides, and particle size. The high concentrations of Pb (31.34 mg kg\(^{-1}\)) and Zn (54.24 mg kg\(^{-1}\)) come from leaching processes in the area of the former lead processing plant; and the elements mentioned are also from industrial and domestic effluents along the course of the river (da Silva Júnior et al., 2020), industrial effluent discharge from a Zn-Pb smelter (Liu et al., 2016), severely increasing the concentrations of Cd in the sediments (107–441 mg kg\(^{-1}\)) and about 50 to 75% of the Cd was retained at fraction soluble in weak acid (Wang et al., 2020a). In China, intense industrialization leads to pollution of water bodies by PTE, mainly due to effluent discharges from the metal and electronics industries. In this context, the Dongbao River is considered one of the most polluted rivers in China, mainly by Cr, Cu, and Ni, in respective concentrations of 1086, 2937, and 412 mg kg\(^{-1}\), as it is located in an area that covers more than 7000 factories which, for the most part, dispose of effluents without any treatment (Wu et al., 2016).

The Houjing River, located in Kaohsiung City in southern Taiwan, receives treated sewage from various industries, including metal industries, from various industrial zones in the city. Water and sediment samples were collected at 5 sampling points during the 2015–2019 period: point L1 is an area close to the discharge point of the petrochemical and electroplating industries; point L2 has petrochemical and metallurgical industries; points L3 and L4 were close to discharge points from metal surface processing and semiconductor packaging industries; and the last point, L5, was located downstream of the three industrial parks (Hoang et al., 2020). The PTE are Cr (0.0278 mg L\(^{-1}\)), Cu (0.2487 mg L\(^{-1}\)), Ni (0.0518 mg L\(^{-1}\)), Pb (0.1585 mg L\(^{-1}\)), and Zn (0.0512 mg L\(^{-1}\)) were the dominant elements in the water and sediment samples of the river and most of them presented higher concentrations at points L3 and L4. Analyzes showed that the natural attenuation process was not adequate to remediate the sediments, making evident the need to develop strategies and technologies for the treatment of the river. The Matanza-Riachuelo river, Argentina, is one of the most polluted rivers in Latin America, to the flow of urban and agricultural areas, discharge of domestic and industrial effluents (Rendina, 2015). According to Igeo, the river’s sediment is heavily contaminated at points located in urban and industrial areas. In addition, the strong contamination by Cr (54.9 mg kg\(^{-1}\) dry weight), Cu (32.9 mg kg\(^{-1}\) dw), Ni (26.1 mg kg\(^{-1}\) dw), Pb (24.9 mg kg\(^{-1}\) dw) and Zn (72 mg kg\(^{-1}\) dw) is associated with industrial waste, mainly due to the metallurgical and tanning industries (Castro; Rendina; Orgeira, 2018).

In Kinshasa, the capital and largest city in the Democratic Republic of Congo, there is no sewage treatment plant, so urban and hospital sewage effluents are discharged into the drainage network without prior treatment. In this sense, Lafitte et al. (2020) selected two urban rivers that receive hospital effluents and are affected by different point sources of household waste for analysis of PTE in sediment samples. The Enrichment Factor (EF) was used to distinguish between natural and anthropogenic sources of
pollution, showing that there was a severe to extremely severe enrichment of Cd, Cu, Hg, Pb and Zn due to anthropogenic activities and Cr, Co and Ni enriched moderate to severe due to human activities. The study highlights the high level of pollution due to Pb (324.24 mg kg\(^{-1}\)) and Zn (1055.92 mg kg\(^{-1}\)) and in lower concentration Cd (3.56 mg kg\(^{-1}\)), Cu (203.46 mg kg\(^{-1}\)) and Hg (2.96 mg kg\(^{-1}\)), also considering that the rain event has a great effect on the distribution of PTE in rivers, from the mobilization of particles containing the element.

Mubedi et al. (2013) evaluated the quality of sediments from drainage systems that receive untreated effluents from five hospitals in India and one hospital in the Democratic Republic of Congo, identifying high concentrations of As, Cr, Cu, Hg and Zn in the sediments, at the concentrations respective values of 1.81, 148.82, 71.57, 14.81 and 1652.22 mg kg\(^{-1}\).

Traffic and atmospheric deposition of polluted areas

The traffic source occurred in 13 SLR publications (Fig. 7), mainly associated with Pb, Zn, Cu, and Ni (Fig. S15). The source of atmospheric deposition from polluted areas was reported in 4 SLR publications (Fig. 7), mostly related to the elements Pb, Cd, Cu, Zn (Fig. S16).

Traffic-derived PTE can come from physical components of automobiles, oils and lubricants, atmospheric deposition, and urban infrastructure and can be transported during hydrological events to adjacent river systems (Davis et al., 2001; Jonsson et al., 2002; Niu et al., 2020; Sebastiao; Wagner; Goldsmith, 2017; Munksgaard and Lottermoser, 2010; Hou et al., 2009; Xia et al., 2020).

The meta-analysis of studies carried out in the period 2000–2018 by Niu et al. (2020) showed that the concentrations of Ni (79.5 mg kg\(^{-1}\)) and Zn (223.1 mg kg\(^{-1}\)) in the sediments of Lake Taihu, China, were sourced from automotive lubricants and the decomposition of metallic components and the concentrations of Cd (1.97 mg kg\(^{-1}\)) and Cu (97.5 mg kg\(^{-1}\)) were caused by tire wear.

Jiaozhou Bay, China, is used for the cultivation of shellfish and there is the accumulation of Pb (0.13 mg kg\(^{-1}\)) due to pollution from the surrounding traffic and Hg (27.68 mg kg\(^{-1}\)) due to atmospheric deposition coal combustion (Liu; Zhang; Zhang, 2017). High concentrations of Cd (0.59 µg g\(^{-1}\)), Cu (43.63 µg g\(^{-1}\)), and Pb (36.17 µg g\(^{-1}\)) in the Koshi River, located in the Himalayan mountains, contributed to the deposition of atmospheric pollution from polluted areas (Li et al., 2020). Atmospheric deposition from polluted areas also contributes to high concentrations of Cd (0.73 mg kg\(^{-1}\)), Hg (0.150 mg kg\(^{-1}\)), Pb (44.04 mg kg\(^{-1}\)), and Zn (129.97 mg kg\(^{-1}\)) in the Jinsha River, which flows through Qinghai, Sichuan and Yunnan provinces in China (Yuan et al., 2019).

The PTE from the sediments of Lake Wanshan, China, were analyzed by Positive Matrix Factorization (PMF), among other analyzes such as Inverse Distance Weighting (IDW), Self-Organizing Map (SOM). The results revealed that Cu, Cr, Ni, and Zn concentrations were associated with car brake erosion, runoff from paved surfaces, vehicle wear, and other activities associated with traffic (Wang et al., 2020b).
The Dilúvio stream, which flows from a densely populated area of the Porto Alegre metropolis, southern Brazil, receives considerable volumes of untreated sewage daily (Basso; Moreira; Pizzato, 2011). Dos Santos et al. (2020) evaluated the PTE of the feelings of the Deluge stream, identifying the accumulation of elements from the source to the mouth. The flow studied flows in areas with potential sources, such as businesses, industries, hospitals, traffic areas, and garbage disposal in some points. As a result of the accumulation of urban pollution, the mouth of the Diluvio is the most contaminated part of the stream. Zinc was the element that showed the greatest increase in concentration along the stream, being also one of the main pollutants in Lake Guaíba, near the mouth of the stream. High concentrations of Cu (22.8 µg g⁻¹), Pb (11.3 µg g⁻¹), and Zn (58.8 µg g⁻¹) were associated with emissions and vehicle wear from atmospheric deposition, in addition, contributions from the effluent discharge.

In the Somesu Mic River, northwestern Romania, anthropogenic contamination has occurred in recent years, mainly due to the increasing urbanization and industrialization of the basin. The elements Cd, Cr, Cu, Ni, Pb, and Zn, at concentrations of 0.4, 43.15, 65.6, 47.7, 131.4, 236.8 mg kg⁻¹ dry weight, respectively, were associated with the heavy traffic in the basin, in addition to the contributions from effluents discharged into the river (Barhoumi et al., 2019).

Waterway transport

The waterway transport source occurred in only one SLR publication (Fig. 7), being the source of Cd, Cr, Cu, Ni, and Zn for the water bodies. Zhuang et al. (2019) evaluated the impact of a water transfer project in China by analyzing the sediment of a reservoir using Positive Matrix Factorization (PMF). PMF analysis revealed that waterway transport was the main source of Cd, Cr, Cu, Ni, and Zn for the reservoir.

Conclusions

The Systematic Literature Review (SLR) was used in this study to investigate the natural and anthropogenic sources of potentially toxic elements (PTE) for the aquatic environment. The results of articles published from 2000 to 2020 in the ScienceDirect, Scopus, and Web of Science databases, using specific terms and criteria, indicated that mining is the main anthropogenic activity that provides PTE for the aquatic environment, reported in 29 publications, mainly associated with the elements As, Pb, Zn, and Cu. Agriculture was the second most recurrent anthropic activity, reported in 26 publications, mainly associated with the elements Cd, Zn, Pb, and Cu. The industries were identified in 22 publications and the domestic effluents in 19, being mostly related to the elements Zn, Pb, Cd, and Cu. Weathering of rocks was the most important natural source identified in the SLR, reported in 14 publications, providing mainly Ni, Cr, Zn, and Pb for the aquatic environment. Traffic was also a very important source in SLR, reported in 13 publications, being characterized as a source of Pb, Zn, Cu, and Ni, mainly. Other sources reported were industrial effluents (10 publications), geogenic origin (7 publications), lithogenic origin (6 publications), soil composition (4 publications), and atmospheric deposition from polluted areas (4 publications). The hospital effluent source occurred in 2 publications, mainly associated with Cd, Hg, and Zn; and geothermal area sources, unexplored mineral deposits, and waterway transport occurred in only
one publication of the systematic literature review. In total, 15 sources of PTE for the aquatic environment were identified, being 9 anthropogenic sources and 6 natural sources. The main PTE of anthropic origin were Zn, Pb, Cu, and Cd and the main ones of natural origin were Ni, Cr, As, and Zn.

Declarations

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Mayara de Almeida Ribeiro Carvalho. The first draft of the manuscript was written by Mayara de Almeida Carvalho, Wander Gustavo Botero e Luciana Camargo de Oliveira and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Data availability Data will be made available on request.

Funding This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent to publish Not applicable.

Competing interests The authors have no relevant financial or non-financial interests to disclose.

References

1. Aguiar VMC, Baptista Neto JA, Quaresma VS, Bastos AC, Athayde JPM (2020) Bioavailability and ecological risks of trace metals in bottom sediments from Doce river continental shelf before and after the biggest environmental disaster in Brazil: The collapse of the Fundao dam. J. Environ. Manage. 272, 111086. https://doi.org/10.1016/j.jenvman.2020.111086

2. Ahmad K, Muhammad S, Ali W, Jadoon IAK, Rasool A (2020) Occurrence, source identification and potential risk evaluation of heavy metals in sediments of the Hunza River and its tributaries, Gilgit-Baltistan. Environ. Technol. Innov. 18, 100700. https://doi.org/10.1016/j.eti.2020.100700

3. Allen HE, Fu G, Deng B (1993) Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for estimation of potential toxicity in aquatic sediments. Environ. Toxicol. Chem. 12, 1441–1453. https://doi.org/10.1002/etc.5620120812

4. Alloway BJ (2010) Heavy Metals in Soils. Blackie Academic & Professional, Chapman and Hall, London, 386p. https://doi.org/10.1007/978-94-011-1344-1

5. Amini A, Qishlaqi A (2020) Spatial distribution, fractionation and ecological risk assessment of potentially toxic metals in bottom sediments of the Zarivar freshwater Lake (Northwestern Iran). Limnologica 84, 125814. https://doi.org/10.1016/j.limno.2020.125814
6. Appleton JD, Williams TM, Orbea H, Carrasco M (2000) Fluvial contamination associated with artisanal gold Mining in the ponce enríquez, portovelo-zaruma and Nambija areas, Ecuador. Water Air Soil Pollut. 131, 19-39. https://doi.org/10.1023/A:1011965430757

7. Bai JH, Xiao R, Zhang KJ, Gao HF (2012) Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flowsediment regulation regime in the Yellow River Delta, China. Hydrol. 11, 244-253. https://doi.org/10.1016/j.jhydrol.2012.05.006

8. Barhoumi B, Beldean-Galea MS, Al-Rawabdeh MS, Roba C, Martonos IM, Balc R, Kahlaoui M, Touil S, Tedetti M, Driss MR, Baciuc C (2019) Occurrence, distribution and ecological risk of trace metals and organic pollutants in surface sediments from a Southeastern European river (Someșu Mic River, Romania). Sci. Total Environ. 660, 660-676. https://doi.org/10.1016/j.scitotenv.2018.12.428

9. Basso L, Moreira L, Pizzato F (2011) A influência da precipitação na concentração e carga de sólidos em cursos d’água urbanos: o caso do arroio Dilúvio, Porto Alegre-RS. Geosul 26(52), 145–163. https://doi.org/10.5007/2177-5230.2011v26n52p145

10. Blasco J, Arias AM, Sáenz V (1999) Heavy metals in organisms of the river Guadalquivir estuary: possible incidence of the Aznalcóllar disaster. Sci. Total Environ. 242, 49–59. https://doi.org/10.1016/S0048-9697(99)00394-0

11. Bouzekri S, El Fadili H, El Hachimi ML, El Mahi M, Lofti EM (2020) Assessment of trace metals contamination in sediment and surface water of quarry lakes from the abandoned Pb mine Zaida, High Moulouya-Morocco. Environ. Dev. Sustain. 22, 7013-7031. https://doi.org/10.1007/s10668-019-00525-y

12. Bur T, Probst JL, N’guessan, M, Probst A (2009) Distribution and origin of lead in stream sediments from small agricultural catchments draining Miocene molassic deposits (SW France). Appl. Geochem. 24 (7), 1324-1338. https://doi.org/10.1016/j.apgeochem.2009.04.004

13. Burton Jr AG, Baudo R, Beltrami M, Rowland C (2001) Assessing sediment contamination using six toxicity assays. J. Limnol. 60, 263-267. https://doi.org/10.4081/jlimnol.2001.1.263

14. Castro LN, Rendina AE, Orgeira MJ (2018) Assessment of toxic metal contamination using a regional lithogenic geochemical background, Pampean area river basin, Argentina. Sci. Total Environ. 627, 125-133. https://doi.org/10.1016/j.scitotenv.2018.01.219

15. Chen H, Tang Z, Wang P, Zhao FJ (2018) Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice. Environ. Pollut. 238, 482–490. https://doi.org/10.1016/j.envpol.2018.03.048

16. Chen HY, Jing LJ, Yao ZP, Meng FS, Teng YG (2019) Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake tai (China) deciphered by metagenomic assembly: a comparison with other global lakes. Environ. Int. 127, 267-275. https://doi.org/10.1016/j.envint.2019.03.048

17. Chen P, Miah MR, Aschner M (2016) Metals and neurodegeneration. In: F1000Research 5. pp. 366. https://doi.org/10.12688/f1000research.7431.1
18. Custodio M, Alvarez D, Cuadrado W, Montalvo R, Ochoa S (2020) Potentially toxic metals and metalloids in surface water intended for human consumption and other uses in the Mantaro River watershed, Peru. Soil Water Res. 15, 237–245.

19. da Silva Júnior JB, Abreu IM, Oliveira DAF, Hadlich GM, Barbosa ACRA (2020) Combining geochemical and chemometric tools to assess the environmental impact of potentially toxic elements in surface sediment samples from an urban river. Mar. Pollut. Bull. 155, 111146. https://doi.org/10.1016/j.marpolbul.2020.111146

20. Davis AP, Shokoughian M, Ni S (2001) Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 4, 997-1009. https://doi.org/10.1016/S0045-6535(00)00561-0

21. de Miguel E, Charlesworth S, Ordóñez A, Seijas E (2005) Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). Sci. Total Environ. 340, 137–148. https://doi.org/10.1016/j.scitotenv.2004.07.031

22. dos Santos VM, de Andrade LC, Tiecher T, Camargo FAO (2020) The Urban Pressure Over the Sediment Contamination in a Southern BrazilMetropolis: the Case of Diluvio Stream. Water Air Soil Pollut. 231: 156. https://doi.org/10.1007/s11270-020-04504-2

23. El Azhari A, Rhoujjati A, El Hachimi ML, Ambrosi JP (2017) Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco. Ecotoxicol. Environ. Safety 144, 464-474. https://doi.org/10.1016/j.ecoenv.2017.06.051

24. El Hachimi M, El Founti L, Bouabdli A, Saidi N, Fekhoui M, Tassé, N (2007) Pb et As dans des eaux alcalines minières: contamination, comportement et risques (mine abandonnée de Zeïda, Maroc). Rev. Des Sci. De L'Eau 20, 1–13. https://doi.org/10.7202/014903ar

25. Gall JE, Boyd RS, Rajakaruna N (2015) Transfer of heavy metals through terrestrial food webs: a review. Environ. Monit. Assess. 18, 201. https://doi.org/10.1007/s10661-015-4436-3

26. Galvão MCB, Ricarte ILM (2019) Revisão Sistemática da Literatura: Conceituação, produção e publicação. Logeion: Filosofia da Informação 6, p. 57-73. https://doi.org/10.21728/logeion.2019v6n1.p57-73

27. Gao XL, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res. 46, 1901-1911. https://doi.org/10.1016/j.watres.2012.01.007

28. González-Fernández B, Rodríguez-Valdés E, Boente C, Menéndez-Cesares E, Fernández-Braña A, Gallego JR (2018) Long-term ongoing impact of arsenic contamination on the environmental compartments of a former mining-metallurgy area. Sci. Total Environ. 610-611, 820-830. https://doi.org/10.1016/j.scitotenv.2017.08.135

29. Green AJ, Planchart A (2018) The neurological toxicity of heavy metals: a fish perspective. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 208, 12–19. https://doi.org/10.1016/j.cbpc.2017.11.008

30. Hadjipanagiotou C, Christou A, Zissimos AM, Chatzitheodoridis E, Varnavas SP (2020) Contamination of stream waters, sediments, and agricultural soil in the surroundings of an
abandoned copper mine by potentially toxic elements and associated environmental and potential human health–derived risks: a case study from Agrokipia, Cyprus. Environ. Sci. Pollut. Res. 27, 41279-41298. https://doi.org/10.1007/s11356-020-10098-3

31. Harguinteguy CA, Cofré MN, Fernández-Cirelli A, Pignata LM (2016) The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals. Microchem. J. 124, 228-234. https://doi.org/10.1016/j.microc.2015.08.014

32. Hassan M, Tanvir Rahman MA, Saha B, Kamal AKI (2015) Status of heavy metals in water and sediment of the Meghna River, Bangladesh. Am. J. Environ. Sci. 11, 427–439. https://doi.org/10.3844/ajessp.2015.427.439

33. Hatje V, Pedreira RM, de Rezende CE, Schettini CAF, de Souza GC, Marin DC, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci. Rep. 7, 10706. https://doi.org/10.1038/s41598-017-11143-x

34. Hoang HG, Lin C, Tran HT, Chiang CF, Bui XT, Cheruiyot NK, Shern CC, Lee CW (2020) Heavy metal contamination trends in surface water and sediments of a river in a highly-industrialized region. Environ. Technol. Innov. 20, 101043. https://doi.org/10.1016/j.eti.2020.101043

35. Hou A, DeLaune RD, Tan M, Reams M, Laws E (2009) Toxic Elements in Aquatic Sediments: Distinguishing Natural Variability from Anthropogenic Effects. Water Air Soil Pollut. 203, 179-191. https://doi.org/10.1007/s11270-009-0002-3

36. Hou S, Zheng N, Tang L, Ji X, Li Y, Hua X (2019) Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 128, 430-437. https://doi.org/10.1016/j.envint.2019.04.046

37. Hu J, Long Y, Zhou W, Zhu C, Yang Q, Zhou S, Wu P (2020) Influence of different land use types on hydrochemistry and heavy metals in surface water in the lakeshore zone of the Caohai wetland, China. Environ. Pollut. 267, 115454. https://doi.org/10.1016/j.envpol.2020.115454

38. Huang K, Ma L, Abuduwaili J, Liu W, Issanova G, Saparov G, Lin L (2020b) Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia. Sustainability 12, 4717. https://doi.org/10.3390/su12114717

39. Huang L, Rad S, Xu L, Gui L, Song X, Li Y, Wu Z, Chen Z (2020a) Heavy Metals Distribution, Sources, and Ecological Risk Assessment in Huixian Wetland, South China. Water 12, 431. https://doi.org/10.3390/w12020431

40. Iavazzo P, Ducci D, Adamo P, Trifuoggi M, Migliozzi A, Boni M (2012) Impact of Past Mining Activity on the Quality of Water and Soil in the High Moulouya Valley (Morocco). Water Air Soil Pollut. 223, 573–589. https://doi.org/10.1007/s11270-011-0883-9

41. Jacundino JS, Santos OS, Caldas JC, Botero WG, Gouveia D, Carmo JB, Oliveira LC (2015) Interactions Between humin and potentially toxic metals: Prospect for its utilization as an environmental repair agent. J. Environ. Chem. Eng. 3, 708-715. https://doi.org/10.1016/j.jece.2015.03.032
42. Ji Z, Zhang H, Zhang Y, Chen T, Long Z, Li M, Pei Y (2019) Distribution, ecological risk and source identification of heavy metals in sediments from the Baiyangdian Lake, Northern China. Chemosphere 237, 124425. https://doi.org/10.1016/j.chemosphere.2019.124425

43. Jonsson A, Lindstrom M, Bergback B (2002) Phasing out cadmium and lead emissions and sediment loads in an urban area. Sci. Total Environ. 292, 91-100. https://doi.org/10.1016/s0048-9697(02)00029-3

44. Kara GT, Kara M, Bayram A, Gunduz O (2017) Assessment of seasonal and spatial variations of physicochemical parameters and trace elements along a heavily polluted effluent-dominated stream. Environ. Monit. Assess, 189. 1-16. https://doi.org/10.1007/s10661-017-6309-4

45. Kovács E, Tamás J, Frančišković-Bilinski S, Omanović D, Bilinski H, Pižeta I (2012) Geochemical study of surface water and sediment at the abandoned Pb-Zn mining site at Gyongyosoroszi, Hungary. Fresenius Environ. Bull. 21, 1212-1218.

46. Kükrer S (2018) Vertical and horizontal distribution, source identification, ecological and toxic risk assessment of heavy metals in sediments of Lake Aygır, Kars, Turkey. Environ. Forensics 19, 122–133. https://doi.org/10.1080/15275922.2018.1448905

47. Kumar A, Maiti SK (2015) Assessment of potentially toxic heavy metal contamination in agricultural fields, sediment, and water from an abandoned chromite-asbestos mine waste of Roro hill, Chaibasa, India. Environ. Earth Sci. 74, 2617-2633. https://doi.org/10.1007/s12665-015-4282-1

48. Lafitte A, Al Salah DMM, Slaveykova VI, Otamonga JP, Poté J (2020) Impact of anthropogenic activities on the occurrence and distribution of toxic metals, extending-spectra β-lactamases and carbapenem resistance in sub-Saharan African urban rivers. Sci. Total Environ. 727, 138129. https://doi.org/10.1016/j.scitotenv.2020.138129

49. Lenart-Boroń A, Boroń P (2014) The effect of industrial heavy metal pollution on microbial abundance and diversity in soils - A review. In: Environmental Risk Assessment of Soil Contamination. https://doi.org/10.5772/57406

50. Li M, Zhang Q, Sun X, Karki K, Zeng C, Pandey A, Rawat B, Zhang F (2020) Heavy metals in surface sediments in the trans-Himalayan Koshi River catchment: Distribution, source identification and pollution assessment. Chemosphere 244, 125410. https://doi.org/10.1016/j.chemosphere.2019.125410

51. Li P, Qian H, Howard KWF, Wu J (2015) Heavy metal contamination of Yellow River alluvial sediments, northwest China. Environ. Earth Sci. 73, 3403–3415. https://doi.org/10.1007/s12665-014-3628-4

52. Li Y, Chen H, Teng Y (2020) Source apportionment and source-oriented risk assessment of heavy metals in the sediments of an urban river-lake system. Sci. Total. Env. 737, 140310. https://doi.org/10.1016/j.scitotenv.2020.140310

53. Liu J, Wang J, Chen Y, Shen CC, Jiang X, Xie X, Chen D, Lippold H, Wang C (2016) Thallium dispersal and contamination in surface sediments from South China and its source identification. Environ. Pollut. 213, 878–887. https://doi.org/10.1016/j.envpol.2016.03.023
54. Liu X, Zhang L, Zhang L (2017) Concentration, risk assessment, and source identification of heavy metals in surface sediments in Yinghai: A shellfish cultivation zone in Jiaozhou Bay, China. Mar. Pollut. Bull. 121, 216-221. https://doi.org/10.1016/j.marpolbul.2017.05.063

55. Loredo J, Ordóñez A, Álvarez R (2006) Environmental impact of toxic metals and metalloids from the Muñón Cimero mercury mining area (Asturias, Spain). J. Hazard. Mater. 136, 455-467. https://doi.org/10.1016/j.jhazmat.2006.01.048

56. Louríño-Cabana B, Lesven L, Charriau A, Billon G, Ouddane B, Boughriet A (2011) Potential risks of metal toxicity in contaminated sediments of Deûle river in Northern France. J. Hazard. Mater. 186, 2129-2137. https://doi.org/10.1016/j.jhazmat.2010.12.124

57. Lu Q, Bai J, Gao Z, Zhao Q, Wang J (2016) Spatial and seasonal distribution and risk assessments for metals in a tamarix Chinensis wetland, China. Wetlands 36, 125–136. https://doi.org/10.1007/s13157-014-0598-y

58. Mao L, Liu L, Yan N, Li F, Tao H, Ye H, Wen H (2020) Factors controlling the accumulation and ecological risk of trace metal(loid)s in river sediments in agricultural field. Chemosphere 243, 125359. https://doi.org/10.1016/j.chemosphere.2019.125359

59. Milačić R, Zuliani T, Vidmar J, Bergant M, Kalogianni E, Smeti E, Ščančar J (2019) Potentially toxic elements in water, sediments and fish of the Evrotas River under variable water discharges. Sci. Total. Env. 648, 1087-1096. https://doi.org/10.1016/j.scitotenv.2018.08.123

60. Mirza R, Moeinaddini M, Pourbrahim S, Ali Zahed M (2019) Contamination, ecological risk and source identification of metals by multivariate analysis in surface sediments of the khouran Straits, the Persian Gulf. Mar. Pollut. Bull. 145, 526–535. https://doi.org/10.1016/j.marpolbul.2019.06.028

61. Möller S, Einax JW (2013) Metals in sediments - spatial investigation of Saale River applying chemometric tools. Microchem. J. 110, 233-238. https://doi.org/10.1016/j.microc.2013.03.017

62. Montouris A, Voutsas E, Tassios D (2002) Bioconcentration of heavy metals in aquatic environments: the importance of bioavailability. Mar. Pollut. Bull. 44, 1136–1141. https://doi.org/10.1016/S0025-326X(02)00168-6

63. Mostert MMR, Ayoko GA, Kokot S (2010) Application of chemometrics to analysis of soil pollutants. Trends Anal. Chem. 29, 430-445. https://doi.org/10.1016/j.trac.2010.02.009

64. Mubedi JI, Devarajan N, Le Faucheur S, Mputu JK, Atibu EK, Svalingam P, Prabakar K, Mpiana PT, Wildi W, Poté J (2013) Effects of untreated hospital effluents on the accumulation of toxic metals in sediments of receiving system under tropical conditions: Case of South India and Democratic Republic of Congo. Chemosphere 93, 1070-1076. https://doi.org/10.1016/j.chemosphere.2013.05.080

65. Munk LA, Faure G (2004) Effects of pH fluctuations on potentially toxic metals in the water and sediment of the Dillon Reservoir, Summit County, Colorado. Appl. Geochemistry 19, 1065-1074. https://doi.org/10.1016/j.apgeochem.2004.01.006

66. Munksgaard NC, Lottermoser BG (2010) Mobility and potential bioavailability of traffic-derived trace metals in a ‘wet–dry’ tropical region, Northern Australia. Environ. Earth Sci. 60, 1447-1458.
67. Murakami M, Nakajima F, Furumai H (2008) The sorption of heavy metal species by sediments in soakaways receiving urban road runoff. Chemosphere 70, 2099-2109. https://doi.org/10.1016/j.chemosphere.2007.08.073

68. Nachman KE, Punshon T, Rardin L, Signes-Pastor AJ, Murray CJ, Jackson BP, Guerinot ML, Burke TA, Chen CY, Ahsan H, Argos M, Cottingham KL, Cubadda F, Ginsberg GL, Goodale BC, Kurzius-Spencer M, Meharg AA, Miller MD, Nigra AE, Pendergrast CB, Raab A, Reimer K, Scheckel KG, Schwerdtle T, Taylor VF, Tokar EJ, Warczak TM, Karagas MR (2018) Opportunities and challenges for dietary arsenic intervention. Environ. Health Persp. 126, 084503. https://doi.org/10.1289/EHP3997

69. Niu Y, Jiang X, Wang K, Xia J, Jiao W, Niu Y, Yu H (2020) Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China. Sci. Total Environ. 700, 134509. https://doi.org/10.1016/j.scitotenv.2019.134509

70. Nde SC, Mathutu M (2018) Assessment of Potentially Toxic Elements as Non-Point Sources of Contamination in the Upper Crocodile Catchment Area, North-West Province, South Africa. Int. J. Environ. Res. Public Health 15, 576. https://doi.org/10.3390/ijerph15040576

71. Ngole-Jeme VM, Fantke P (2017) Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS One 12, 0172517. https://doi.org/10.1371/journal.pone.0172517

72. Nieboer E, Tsuji LJS, Martin ID, Liberda EN (2013) Human biomonitoring issues related to lead exposure. Environ. Sci.: Processes Impacts 15, 1824–1829. https://doi.org/10.1039/C3EM00270E

73. Pacheco FAL, Varandas SGP, Sanches Fernandes LF, Valle Junior RV (2014) Soil losses in rural watersheds with environmental land use conflicts. Sci. Total Environ. 485, 110–120. https://doi.org/10.1016/j.scitotenv.2014.03.069

74. Palacios-Torres Y, de la Rosa JD, Olivero-Verbel J (2020) Trace elements in sediments and fish from Atrato River: an ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environ. Pollut. 256, 113290. https://doi.org/10.1016/j.envpol.2019.113290

75. Palma P, Ledo L, Alvarenga P (2015) Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin). Catena 128, 174-184. https://doi.org/10.1016/j.catena.2015.02.002

76. Pourret O, Hursthouse A (2019) It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 16, 4446. https://doi.org/10.3390/ijerph16224446

77. Pourret O, Bollinger JC, van Hullebusch ED (2019) On the difficulties of being rigorous in environmental geochemistry studies: Some recommendations for designing an impactful paper. Environ. Sci. Pollut. Res. 1–9. https://doi.org/10.1007/s11356-019-06835-y

78. Pratap A, Mani FS, Prasad S (2020) Heavy metals contamination and risk assessment in sediments of Laucala Bay, Suva, Fiji. Mar. Pollut. Bull. 156, 111238. https://doi.org/10.1016/j.marpolbul.2020.111238
79. Prusty BG, Sahu KC, Godgul G (1994) Metal contamination due to mining and milling activities at the Zawar zinc mine, Rajasthan, India. 1. Contamination of stream sediments. Chem. Geology 112, 275–291. https://doi.org/10.1016/0009-2541(94)90029-9

80. Qiao D, Wang G, Li X, Wang S, Zhao Y (2020) Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere 248, 125988. https://doi.org/10.1016/j.chemosphere.2020.125988

81. Rashed MN, Toufeek MEF, Eltaher MAE, Elbadry AO (2019) Adsorption and leaching behavior of copper, zinc and lead ions by three different River Nile sediments at Aswan, Egypt. Pollution 5, 99–114. https://doi.org/10.22059/POLL.2018.259199.450

82. Rendina AE (2015) Formas geoquímicas, biodisponibilidad potencial y enriquecimiento de metales pesados en sedimentos del Río Matanza-Riachuelo en ambientes agropecuarios, urbanos e industriales de la cuenca.

83. Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J. Environ. Manag. 90, 1106-1116. https://doi.org/10.1016/j.jenvman.2008.04.007

84. Roig N, Nadal M, Sierra J, Ginebreda A, Schuhmacher M, Domingo JL (2011) Novel approach for assessing heavy metal pollution and ecotoxicological status of rivers by means of passive sampling methods. Environ. Int. 37, 671-677. https://doi.org/10.1016/j.envint.2011.01.007

85. Rose AW, Cravotta CA (1998) Geochemistry of coal mine drainage. In Coal mine drainage prediction and pollution prevention in Pennsylvania (K.B.C. Brady, M.W. Smith and J.H. Schueck Eds.), Harrisburg: Pennsylvania Department of Environmental Protection.

86. Rupakheti D, Tripathee L, Kang S, Sharma CM, Paudyal R, Sillanpää M (2017) Assessment of water quality and health risks for toxic trace elements in urban Phewa and remote Gosainkunda lakes, Nepal. Hum. Ecol. Risk Assess. 23, 959-973. https://doi.org/10.1080/10807039.2017.1292117

87. Santana CS, Olivares DMM, Silva VHC, Luzardo FHM, Velasco FG, Jesus RM (2020) Assessment of water resources pollution associated with mining activity in a semi-arid region. J. Environ. Manage. 273, 111148. https://doi.org/10.1016/j.jenvman.2020.111148

88. Santos MVS, Silva Júnior JB, Carvalho CEV, Vergílio CS, Hadlich GM, Santana CO, Jesus BM (2020) Geochemical evaluation of potentially toxic elements determined in surface sediment collected in an area under the influence of gold mining. Mar. Pollut. Bull. 158, 111384. https://doi.org/10.1016/j.marpolbul.2020.111384

89. Saran LM, Pissarra TCT, Silveira GA, Constancio MTL, Melo WJ, Alves LMC (2018) Land use impact on potentially toxic metals concentration on surface water and resistant microorganisms in watersheds. Ecotoxicol. Environ. Safety 166, 366-374. https://doi.org/10.1016/j.ecoenv.2018.09.093

90. Sarmiento AM, DelValls A, Nieto JM, Salamanca MJ, Caraballo MA (2011) Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Sci. Total. Env. 409, 4763-4771. https://doi.org/10.1016/j.scitotenv.2011.07.043
91. Sebastiao AG, Wagner EJ, Goldsmith ST (2017) Trace metal sediment loading in the Mill Creek: A spatial and temporal analysis of vehicular pollutants in suburban waterways. Appl. Geochemistry 83, 50-61. https://doi.org/10.1016/j.apgeochem.2017.04.001

92. Sericano JL, Wade TL, Jackson TJ (1995) Trace organic contamination in the Americas: an overview of the US National Status, Trends and the International Mussel Watch Programmes. Mar Pollut Bull 31:214. https://doi.org/10.1016/0025-326X(95)00197-U

93. Shakeri A, Fard MS, Mehrabi B, Mehr MR (2020) Occurrence, origin and health risk of arsenic and potentially toxic elements (PTEs) in sediments and fish tissues from the geothermal area of the Khiav River, Ardebil Province (NW Iran). J. Geochem. Explor. 208, 106347. https://doi.org/10.1016/j.gexplo.2019.106347

94. Sheykhi V, Moore F, Kavousi-Fard A, Keshavarzi B, Bikineh E (2017) Integrating modelling with environmental parameters for aquatic system assessment: a case study on the Ghare-Bagh drainage, Iran. Int. J. River Basin Manag. 15:3. 335-346. https://doi.org/10.1080/15715124.2017.1300158

95. Sierra C, Gallego JR, Afif E, Menéndez-Aguado JM, González-Coto F (2010) Analysis of soil washing effectiveness to remediate a brownfield polluted with pyrite ashes. J. Hazard. Mater. 180, 602–608. https://doi.org/10.1016/j.jhazmat.2010.04.075

96. Singh UK, Kumar B (2017) Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere 174, 183–199. https://doi.org/10.1016/j.chemosphere.2017.01.103

97. Soares HMVM, Boaventura RAR, Machado AASC, da Esteves Silva JGG (1999) Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): multivariate analysis of data. Environ. Pollut. 105, 311–323. https://doi.org/10.1016/S0269-7491(99)00048-2

98. Soliman NF, Younis AM, Elkady EM (2019) An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah Lake, Suez Canal. Chemosphere 222, 165–174. https://doi.org/10.1016/j.chemosphere.2019.01.009

99. Spiegel H (2002) Trace element accumulation in selected bioindicators exposed to emissions along the industrial facilities of Danube Lowland. Turk J. Chem. 26, 815–823.

100. Sun C, Zhang Z, Cao H, Xu M, Xu L (2019) Concentrations, speciation, and ecological risk of heavy metals in sediment of the Songhua River in an urban area with petrochemical industries. https://doi.org/10.1016/j.chemosphere.2018.12.040

101. Sun Z, Xie X, Wang P, Hu Y, Chengs H (2018) Heavy metal pollution caused by small-scale metal ore mining activities: a case study from a polymetallic mine in South China. Sci. Total Environ. 639, 217–227. https://doi.org/10.1016/j.scitotenv.2018.05.176

102. Sun Z, Hu Y, Cheng H (2020) Public health risk of toxic metalloid pollution to the population living near an abandoned small-scale polymetallic mine. Sci. Total Environ. 718, 137434. https://doi.org/10.1016/j.scitotenv.2020.137434
103. Tack FMG (2010) Trace Elements: General Soil Chemistry, Principles and Processes. In: Hooda, P.S. (Ed.), Trace Elements in Soils. John Wiley & Sons Ltd, Chichester, UK. https://doi.org/10.1002/9781444319477

104. Tepe Y, Aydin H (2017) Water Quality assessment of an urban water, Batlama Creek (Giresun), Turkey by applying multivariate statistical techniques. Fresenius Environ. Bull. 26, 6413–6420.

105. USEPA (2005) Freshwater Screening Benchmarks. US Environmental Protection Agency. Available at: https://www.epa.gov/risk/freshwater-screening-benchmarks. Accessed May 2021.

106. USEPA (2006) Freshwater Screening Benchmarks. US Environmental Protection Agency. Available at: https://www.epa.gov/risk/freshwater-screening-benchmarks. Accessed May 2021.

107. Ustaoğlu F, Islam MS (2020) Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecol. Indic. 113, 106237. https://doi.org/10.1016/j.ecolind.2020.106237

108. van Ech NJ, Waltman L (2020) VOSviewer Manual. Universiteit Leiden, The Centre for Science and Technology Studies, Meaningful metrics. Available at: https://www.vosviewer.com/. Accessed May 2021.

109. Violante A (2013) Chapter three - elucidating mechanisms of competitive sorption at the mineral/water interface. In: Sparks, Donald L. (Ed.), Advances in Agronomy. Academic Press, pp. 111–176. https://doi.org/10.1016/B978-0-12-405942-9.00003-7

110. Vystavna Y, Huneau F, Schäfer J, Motelica-Heino M, Blanc G, Larrose A, Vergeles Y, Diadin D, Le Coustumer P (2012) Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Appl. Geochemistry 27, 2077-2087. https://doi.org/10.1016/j.apgeochem.2012.05.006

111. Ji Z, Zhang H, Zhang Y, Chen T, Long Z, Li M, Pei Y (2019) Distribution, ecological risk and source identification of heavy metals in sediments from the Baiyangdian Lake, Northern China. Chemosphere 237, 124425. https://doi.org/10.1016/j.chemosphere.2019.124425

112. Wang J, Jiang Y, Sun J, She J, Yin M, Fang F, Xiao T, Song G, Liu J (2020b) Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicol. Environ, Saf. 196, 110529. https://doi.org/10.1016/j.ecoenv.2020.110529

113. Wang J, Xiaolan Z, Xu D, Gao L, Li Y, Gao B (2020a) Chemical fractions, diffusion flux and risk assessment of potentially toxic elements in sediments of Baiyangdian Lake, China. Sci. Total Environ. 724, 138046. https://doi.org/10.1016/j.scitotenv.2020.138046

114. Wang P, Sun Z, Hu Y, Cheng H (2019) Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact. Sci. Total Environ. 695, 133893. https://doi.org/10.1016/j.scitotenv.2019.133893

115. World Health Organization (1976) International programme on chemical safety. Environmental health criteria 1. Mercury. World Health Organization, Geneva.

116. World Health Organization (2010) Actions is needed on chemicals of major public health concern. Preventing Disease Through Healthy Environments. World Health Organization, Geneva.
117. Xia F, Zhang C, Qu L, Song Q, Ji X, Mei K, Dahlgren RA, Zhang M (2020) A comprehensive analysis and source apportionment of metals in riverine sediments of a rural-urban watershed. J. Hazard Mater. 381, 121230. https://doi.org/10.1016/j.jhazmat.2019.121230

118. Xiao H, Shahab A, Li J, Xi B, Sun X, He H, Yu G (2019) Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotoxicol. Environ. Safety 185, 109700. https://doi.org/10.1016/j.ecoenv.2019.109700

119. Yang Y, Li S, Bi X, Wu P, Liu T, Li F, Liu C (2010) Lead, Zn, and Cd in slags, stream sediments, and soils in an abandoned Zn smelting region, southwest of China, and Pb and S isotopes as source tracers. J. Soils Sediments 10, 1527–1539. https://doi.org/10.1007/s11368-010-0253-z

120. Ye H, Zang S, Xiao H, Zhang L (2015) Speciation and ecological risk of heavy metals and metalloid in the sediments of Zhalong Wetland in China. Int. J. Environ. Sci. Technol. 12, 115-124. https://doi.org/10.1007/s13762-013-0399-5

121. Yi L, Gao B, Liu H, Zhang Y, Du C, Li Y (2020) Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area. Int. J. Environ. Res. Public Health 17, 548. https://doi.org/10.3390/ijerph17020548

122. Yuan Q, Wang P, Wang C, Chen J, Wang X, Liu S, Feng T (2019) Metals and metalloids distribution, source identification, and ecological risks in riverbed sediments of the Jinsha River, China. J. Geochem. Explor. 205, 106334. https://doi.org/10.1016/j.gexplo.2019.106334

123. Zahra A, Hashmi MZ, Malik RN, Ahmed Z (2014) Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah - feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci. Total. Env. 470, 925-933. https://doi.org/10.1016/j.scitotenv.2013.10.017

124. Zeng SY, Dong X, Chen JN (2013) Toxicity assessment of metals in sediment from the lower reaches of the Haihe River Basin in China. Int. J. Sediment Res. 28, 172-181. https://doi.org/10.1016/S1001-6279(13)60029-3

125. Zhang C, Shan B, Tang W, Dong L, Zhang W, Pei Y (2017a) Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin. Ecotoxicol. Environ. Saf. 139, 263-271. https://doi.org/10.1016/j.ecoenv.2017.01.047

126. Zhang G, Bai J, Xiao R, Zhao Q, Jia J, Cui B, Liu X (2017b) Heavy metal fractions and ecological risk assessment in sediments of urban, rural and reclamation affected rivers of the Pearl River Estuary, China. Chemosphere 184, 278-288. https://doi.org/10.1016/j.chemosphere.2017.05.155

127. Zhang G, Bai J, Zhao Q, Lu Q, Jia J, Wen X (2016) Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: levels, sources and toxic risks. Ecol. Indicat. 69, 331–339. https://doi.org/10.1016/j.ecolind.2016.04.042

128. Zhang Z, Lu Y, Li H, Tu Y, Liu B, Yang Z (2018) Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci. Total Environ. 645, 235-243. https://doi.org/10.1016/j.scitotenv.2018.07.026

129. Zhao H, Li Z, Wang X, Tian D (2010) Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing. China. J. Hazard. Mater. 183, 203-
Figures

Figure 1

Periodic table of chemical elements, highlighting the “potentially toxic elements”

Figure 2
Bibliographic map related to the term “potentially toxic metal in water” for the period 2000-2020

Figure 3

List of PTE sources and number of publications in the period 2000-2020
Figure 4

Relationship of PTE with natural and anthropogenic sources and the number of publications
Figure 5

Relationship of natural sources of PTE with the number of publications in the period 2000-2020
Figure 6

Relationship of PTE with natural sources and number of publications
Figure 7

Relation of anthropic sources with the number of publications in the period 2000-2020
Figure 8

Relationship of PTE with anthropogenic sources and the number of publications

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx