Insights into the virologic and immunologic features of SARS-COV-2

Ceylan Polat, Koray Ergunay

ORCID number: Ceylan Polat 0000-0003-1511-4177; Koray Ergunay 0000-0001-5422-1982.

Author contributions: Polat C and Ergunay K equally contributed to collect data and to write the paper; both authors read and approved the final manuscript.

Conflict-of-interest statement: The authors declare that there is no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/License s/by-nc/4.0/

Manuscript source: Invited manuscript

Specialty type: Microbiology

Country/Territory of origin: Turkey

Peer-review report’s scientific quality classification
Grade A (Excellent): A

Abstract
The host immunity is crucial in determining the clinical course and prognosis of coronavirus disease 2019, where some systemic and severe manifestations are associated with excessive or suboptimal responses. Several antigenic epitopes in spike, nucleocapsid and membrane proteins of severe acute respiratory syndrome coronavirus 2 are targeted by the immune system, and a robust response with innate and adaptive components develops in infected individuals. High titer neutralizing antibodies and a balanced T cell response appears to constitute the optimal immune response to severe acute respiratory syndrome coronavirus 2, where innate and mucosal defenses also contribute significantly. Following exposure, immunological memory seems to develop and be maintained for substantial periods. Here, we provide an overview of the main aspects in antiviral immunity involving innate and adaptive responses with insights into virus structure, individual variations pertaining to disease severity as well as long-term protective immunity expected to be attained by vaccination.

Key Words: SARS-CoV-2; Immune response; Neutralizing antibodies; Spike protein

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Robust cellular and humoral responses are elicited in immunocompetent individuals with severe acute respiratory syndrome coronavirus 2 infection that remain detectable for several months following exposure. A balanced T cell response and neutralizing antibodies in circulation and mucosal surfaces are pivotal in controlling virus infection and for protection. Particular impairments in innate and adaptive immune responses are associated with pathogenesis and severe disease.

Citation: Polat C, Ergunay K. Insights into the virologic and immunologic features of SARS-COV-2. World J Clin Cases 2021; 9(19): 5007-5018
URL: https://www.wjgnet.com/2307-8960/full/v9/i19/5007.htm
INTRODUCTION

An outbreak of pneumonia was reported in Wuhan City, Hubei Province, China in December 2019. In a short time, the World Health Organization declared the epidemic as a public health emergency of international concern[1]. The agent was subsequently named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses, and the World Health Organization named the disease caused by SARS-CoV-2 as coronavirus disease-2019 (COVID-19)[2].

SARS-CoV-2 is the third zoonotic human coronavirus that emerged in this century following SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) [3]. Overall, SARS-CoV-2 is less pathogenic than SARS-CoV and MERS-CoV but more transmissible[4].

STRUCTURAL HALLMARKS OF SARS-CoV-2

SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA virus, classified in the Coronaviridae family, Betacoronavirus genus[5,6]. It is phylogenetically-related to SARS-CoV and bat SARS-like coronavirus strain BatCov RaTG13, with 79.6% and 96.2% identities, respectively[7]. However, the origin of SARS-CoV-2 is yet to be confirmed. Although betacoronaviruses from Malayan pangolins share sequence similarities in the receptor binding domain (RBD) of the spike (S) gene, they are more distantly-related[8,9]. Therefore, pangolins are suggested as the intermediate host for SARS-CoV-2[8].

The genome size of SARS-CoV-2 is approximately 29.9 kb with 14 open reading frames encoding 27 proteins[5,10]. These include four structural (nucleocapsid (N), envelope (E), membrane (M) and S), as well as 16 nonstructural (nsp1-16) and seven accessory (ORF3a-ORF8) proteins (Figure 1).

The proteins encoded by the SARS-CoV-2 genome have various functions in virus replication and packaging. The S protein interacts with the host cell receptors and is essential for virus entry into host cells[11]. It is also a major antigen targeted by the immune response. The subunit S1 involves the RBD and binds to the host cell, while S2 fuses the viral and cellular membranes for penetration[12,13]. The RBD of the S protein recognizes the cellular receptor, angiotensin-converting enzyme 2 on the host cell, and SARS-CoV-2 enters into the target cell. The E and M proteins, major components of the virus structure, participate in virion assembly and release[14]. M protein binds to the N and accessory proteins 3a and 7a for the budding of viral particles[15]. Virus capsid formed by the N protein encapsulates the viral genome and contributes to replication and the cell signal pathway[16]. Main features and known functions of the viral nonstructural proteins are provided in Table 1.

IMMUNE RESPONSE IN COVID-19

Similar to many other respiratory viruses, a robust immune response with innate and adaptive components develops in individuals infected with SARS-CoV-2[36]. Nearly a year following the declaration of the pandemic, it is now established that SARS-CoV-2 infections produce prolonged immunity with cellular and humoral responses, detectable for several months after exposure. However, the duration and patterns of this response in exposed and vaccinated persons need further elucidation as hallmarks for assessment of protective immunity in individuals and populations. Moreover, the association of variations in individual immune responses and their impact in pathogenesis also need in-depth investigation to fully understand and control severe manifestations of COVID-19[37].

In general, the initial response upon viral infection involves the components of the innate immunity such as induction of type I interferon, the inflammation process, complement, neutrophils and natural killer cells, which are subsequently taken over by adaptive responses involving T and B lymphocytes. Various viral proteins processed by the antigen-presenting cells such as dendritic cells are recognized by T and B cells in lymphoid tissues, resulting in activation of humoral and cellular
Table 1 Functions of the severe acute respiratory syndrome coronavirus 2 non-structural proteins

Protein
Nsp 1
Nsp 2
Nsp 3
Nsp 4
Nsp 5
Nsp 6
Nsp 7/8
Nsp 9
Nsp 10
Nsp 12
Nsp 13
Nsp 14
Nsp 15
Nsp 16

Figure 1 Organization of the severe acute respiratory syndrome coronavirus 2 genome\[11\]. Open reading frame (ORF)\(1a\) encodes nsp1-10 and ORF\(1b\) encodes nsp1-16. Structural proteins are encoded by spike (S), envelope (E), membrane (M) and nucleocapsid (N). A poly(A) tail is located at the 3’ untranslated region (UTR).

components of the adaptive response that produce highly-specific defense mechanisms to control ongoing or future infections\[36,38\]. Here, main findings in antiviral immunity involving particular components of the innate and adaptive immune response are revisited.

Hallmarks of innate immunity

As the first line of defense against virus infection, appropriately elicited innate immunity is crucial to control SARS-CoV-2 infections as well as for an optimal adaptive response. Reduced type I interferon responses due to various factors such as mutations in the genome or autoantibodies are associated with severe disease\[39-41\].
Interestingly, an excessive response has also been observed to exacerbate clinical symptoms, where an overproduction of proinflammatory cytokines, which may be coupled with impaired type I interferon response, is present. Here, the signature cytokines have been identified as interleukin-6 (IL-6), IL-10 and C-reactive protein[42, 43]. IL-6 has attracted particular interest due to its involvement as a potential contributing factor in SARS-CoV-2-associated acute respiratory distress syndrome[44]. It regulates dendritic cell differentiation, plasma cell maturation and is associated with ischemic injury. In SARS-CoV-2 infections, excessive macrophage activation and IL-6 production may result in the cytokine storm with subsequent endothelial cell damage, capillary leak and development of acute respiratory distress syndrome. Therefore, the inhibition of IL-6 or receptor binding has been investigated as potential therapeutic options to reduce morbidity and mortality with inconclusive findings so far[38,45-47].

In conjunction with IL-6 and other proinflammatory cytokines, the complement system also contributes to the pathogenesis in severe COVID-19 disease, including thrombotic events. Findings in infected individuals as well as acute lung injury models in mice indicate the involvement of the C5a-C5a receptor axis[48,49]. SARS-CoV-2 N protein is suggested to activate the mannose binding-lectin pathway, which in turn may be a triggering event in acute respiratory distress syndrome development[30]. Hence, complement inhibitors, especially those that can suppress coagulation pathway activation, such as C1 esterase inhibitor, are currently being investigated as novel approaches for treatment of SARS-CoV-2 pneumonia[38,51]. Complement system activation via alternate or classic pathways is also involved in COVID-19 disease, especially following antibody response and may be a key contributor in the immune complex-related injury[38,49].

In addition to the aforementioned contributors, changes in the expression of interferon receptor gene IFNAR2, tyrosine kinase 2, monocye/macrophage chemotactic receptor CCR2 and particular antiviral restriction enzyme activators (OAS1, OAS2, OAS3) were documented in infected individuals, some associated with disease severity[42,43,52].

Despite aimed to prevent Mycobacterium tuberculosis infections, the Bacillus Calmette-Guérin vaccine has been proposed to affect COVID-19 infections in regions where it has been used in population vaccination[53-54]. Although reduced disease severity and mortality were observed in some reports, a beneficial effect is not universally documented[55-59]. The proposed mechanism of action is the enhanced reactivity of monocytes/macrophages and natural killer cells by epigenetic reprogramming (also termed as “trained immunity”), in the presence of proinflammatory cytokines[60]. Currently, the impact of heterologous protection provided by the Bacillus Calmette-Guérin vaccine in COVID-19 lacks concrete evidence, which is likely to be provided by the ongoing clinical trial[59].

Halmarks of adaptive immunity

The humoral and cellular components of the adaptive immune response, mainly involving various T and B cell subsets, provides specific defenses for controlling ongoing virus infection as well as neutralizing immunity upon re-exposure. Therefore, information on the mechanisms and dynamics of the adaptive response in COVID-19 is crucial to understand pathogenesis and to develop successful preventive measures[36].

Cellular responses: A robust and enduring CD4+ and CD8+ T cell response is elicited in the majority of SARS-CoV-2-infected individuals, targeting multiple virus epitopes including S, N and M proteins[61,62]. It is detectable from the second week of symptom onset and at the convalescent stage[62,63]. Although the duration and degree of protection is not clear, virus-specific T cells remain detectable 6-8 mo following infection[64,65]. Variations in breadth and magnitude of the T cell response and associations with disease severity is reported in some cohorts[61,63,66,67]. In SARS-CoV-2 infections, virus-specific CD4+ T cells produce tumor necrosis factor, IL-2 and interferon, where CD4+ T cell response is correlated with anti-spike/anti-nucleocapsid IgG/IgA and neutralizing antibody titers[63,64,68-70]. Similarly, CD8+ T cells are commonly present in convalescent plasma of COVID-19 patients in which activated cytotoxic and polyfunctional/stem-like cells prevalent at acute and convalescent stages, respectively[62,63,66,69,71]. Single cell transcriptome investigations provided insights into T cell subsets in different groups of infected individuals, indicating that a coordinated and focused immune response is crucial for successful elimination of the virus[72]. It is also noteworthy that the virus-specific T cell repertoire is maintained following infection for extended periods despite declines in humoral immunity and can swiftly be activated upon recurrent exposure and antigen
A polyfunctional and persistent SARS-CoV-2 specific memory develops in recovered patients, which can contribute to a rapid anamnestic response upon re-exposure[74,75]. Interestingly, a prolonged viral RNA positivity in pharyngeal mucosa with reduced risk for transmission was associated with increased SARS-CoV-2-specific CD8+ T cells, suggesting that low-level viral persistence supports immune stimulation and maturation[76].

During acute SARS-CoV-2 infections in adults, a peripheral T cell depletion resulting in lymphopenia might occur[61]. A transient condition that coincides with clinical recovery, it is associated with extensive T cell activation, altered differentiation and diminished function possibly involving proinflammatory cytokines, which in turn may prolong viral clearance and increase morbidity[73,77].

An intriguing observation is the detection of pre-existing CD4+ and CD8+ T cells in persons with no documented virus exposure[73,78,79]. Involving several T-cell epitopes, it suggests that previous exposures to endemic coronaviruses causing seasonal upper respiratory tract infections induce some sort of cross-reactive immunity to SARS-CoV-2[79,80]. The extent and potential impact of the cross-protection is not currently well-defined, but it is probably among the contributing factors to the varying clinical presentations in COVID-19 disease[81].

Humoral responses: In SARS-CoV-2, a polyclonal humoral response with antibodies, mainly targeting virus S and N proteins is mounted[82,83]. Despite the presence of IgM, IgG and IgA antibodies in acute and convalescent COVID-19 patients, virus serology is not practical in diagnosis, as antibodies increase only slightly during early symptomatic disease and are detectable in a portion of the patients[68,82,84]. Subsequently, a gradual increase in virus-specific IgG and IgM levels are observed with IgA dynamics similar to IgM, having attained peak levels before IgG. Most of the patients will have detectable seroconversion within 20 d after the onset of symptoms with a median time of 12 d[82,85,86]. Then, IgM levels begin to decrease in approximately 3 wk after symptom onset, while IgG continues to elevate, peaking at 50-60 d post infection and may last up to 10 mo[87,88]. Despite decreasing antibody levels, memory B cells remain and activate to produce antibodies upon virus re-exposure[89]. In COVID-19 patients, antibody levels are negatively correlated with viral RNA, which indicates their importance in eliminating the viruses in circulation[82,90]. In the respiratory tract, mucosal immunity provided by IgA antibodies and local T cells can effectively abolish SARS-CoV-2 infection and prevent systemic dissemination and further transmission[37].

Neutralizing antibodies are capable of suppressing virus entry into host cells. Therefore, they are pivotal in protection from reinfections. They are produced in human infections as well as animal infection models and observed to persist for 6 mo following infection[87,89,91]. Among antibodies against the S protein, RBD as well as S1 and S2 domains are targeted by neutralizing antibodies[83,89,91,92]. Anti-RBD antibodies have been reported to persist longer, possibly related to the preferential detection of higher-affinity antibodies[91]. Furthermore, despite variations in antibody titers, the number of RBD-specific memory B cells is shown to remain stable over time, producing antibodies with increased potency and resistance to mutations in the virus genome, suggesting ongoing evolution of the humoral response. This is likely to be fueled by persistant B cell exposure to antigens trapped as immune complexes on follicular dendritic cells[88].

Similar to cellular immunity, some form of cross-reactivity between SARS-CoV-2 and other human coronaviruses seem to occur. This is particularly observed in N protein and S1-S2 subunits of the spike protein but not in the RBD region for SARS-CoV and follows genomic similarities in these regions[86,92-94]. The impact of cross-reactive antibodies, especially those induced by endemic respiratory coronaviruses in SARS-CoV-2 immune response remains to be elucidated.

The impact of the virus-specific humoral immune response has led to the practice of administration of convalescent plasma as a therapeutic option, especially in severe disease to benefit from immediate effects of preformed polyclonal antibodies[37,82]. Such therapies have previously been used in particular viral pathogens such as Ebola virus, SARS-CoV and MERS-CoV[82,95]. Currently, sufficient data is lacking to establish the effectiveness as well as indications/limitations of convalescent plasma therapy in COVID-19 disease[82]. Many factors including the timing of administration during clinical course, patient selection criteria and antibody titers in the donor plasma seem to influence the outcome. Due to limited availability of convalescent plasma from donors, monoclonal neutralizing antibodies, antibody cocktails and antibody designs to increase efficiency are currently in clinical trials[95-98].
CONCLUDING REMARKS AND INSIGHTS FOR VACCINATION

An optimal immune response to SARS-CoV-2 appears to include high-titer neutralizing antibodies and a balanced T cell response. Factors affecting innate and mucosal immunity also contribute substantially to infection control [37,38]. Currently used vaccines have been approved for population immunization with Emergency Use Authorization in several countries, based on the findings of the interim Phase III clinical trials. Current vaccine prototypes utilize various antigen delivery strategies based on DNA, mRNA or adenovirus-based platforms, recombinant viral subunits/protein and inactivated virus as well as other approaches. The reports on preclinical efficacy, phase I-III clinical trials and the immune responses induced by these vaccines have been extensively reviewed and can be found in detail elsewhere [37]. Protective immunity induced by different vaccine platforms may be based on different immune mechanisms and may require booster administrations to maintain long-term immunity. Therefore, a thorough understanding of immune responses induced by each platform and subsequent outcomes in preventing transmission and controlling infection must be monitored and optimal boosting strategies should be determined.

CONCLUSION

Robust cellular and humoral responses are elicited in immunocompetent individuals with SARS-CoV-2 infection that remain detectable for several months following exposure. Impaired type I interferon response, imbalances in complement components and production of excessive proinflammatory cytokines such as IL-6 are associated with pathogenesis and severe disease. Several antigenic epitopes in virus S, N and M proteins are recognized by the immune system. A balanced T cell response and neutralizing antibodies in circulation and mucosal surfaces are pivotal in controlling virus infection and for protection. Despite reductions in antibody levels in months following infection, the maintained memory cells can be activated to produce antibodies upon virus re-exposure. Cross-reactive immunity due to previous exposure to other coronaviruses is documented, with currently unknown implications for SARS-CoV-2 infections.

REFERENCES

1 World Health Organization. Statement on the Second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). 2020. Available from: https://www.scirp.org/reference/referencespapers.aspx?referenceid=2804611

2 World Health Organization. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. 2020. Available from: https://www.capitalethiopia.com/interview/who-director-generals-opening-remarks-at-the-media-briefing-on-covid-19/

3 Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses 2020; 12 [PMID: 31991541 DOI: 10.3390/v12020135]

4 Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JT, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med 2020; 382: 1199-1207 [PMID: 31995857 DOI: 10.1056/NEJMoa2001316]

5 Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395: 565-574 [PMID: 32007145 DOI: 10.1016/S0140-6736(20)30251-8]

6 Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9: 221-236 [PMID: 31987001 DOI: 10.1080/22221751.2020.1719902]

7 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270-273 [PMID: 32015507 DOI: 10.1038/s41586-020-2447-z]
Jang KJ, Peng Q, Peng R, Yuan B, Zhao J, Wang M, Wang X, Wang Q, Sun Y, Fan Z, Qi J, Gao GF, Shi Y. Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Rep 2020; 31: 107774 [DOI: 10.1016/j.celrep.2020.107774]

Jang KJ, Jeong S, Kang DY, Sp N, Yang YM, Kim DE. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsp13 in the unwinding of duplex RNA.
Polat C et al. Virology and immunology of SARS-COV-2

Sci Rep 2020; 10: 4481 [PMID: 32161317 DOI: 10.1038/s41598-020-61432-1]

30 Shu T, Huang M, Wu D, Ren Y, Zhang X, Han Y, Mu J, Wang R, Qiu Y, Zhang DY, Zhou X. SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts. Virol Sin 2020; 35: 321-329 [PMID: 32500504 DOI: 10.1007/s12250-020-00242-1]

31 Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H, Cai JP, Jin DY, To KK, Chan JF, Yuen KY, Kok KH. SARS-COV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect 2020; 9: 1418-1428 [PMID: 32529952 DOI: 10.1080/22221751.2020.1759953]

32 Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2. J Virol 2020; 94: DOI: 10.1128/JVI.01246-20

33 Kim Y, Jedrzejczak R, Maltese NI, Wilamowski M, Endres M, Godzik A, Michalska K, Joachimiak A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci 2020; 29: 1596-1605 [PMID: 32304108 DOI: 10.1002/pro.3873]

34 Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D. Coronavirus nsp10/nsp16 Methytransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis. J Virol 2015; 89: 8416-8427 [PMID: 26041249 DOI: 10.1128/JVI.00948-15]

35 von Grothuss M, Wyrwicz LS, Rychlewski L. mRNA cap-1 methyltransferase in the SARS genome. Cell 2003; 113: 701-702 [PMID: 12809601 DOI: 10.1016/S0092-8674(03)00424-0]

36 Hope JL, Bradley LM. Lessons in antiviral immunity. Science 2021; 371: 464-465 [PMID: 33510014 DOI: 10.1126/science.abf6446]

37 Sui Y, Bekele Y, Bezrofsky JA. Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization. Pathogens 2021; 10 [PMID: 33753221 DOI: 10.3390/pathogens10020135]

38 Jordan SC. Innate and adaptive immune responses to SARS-CoV-2 in humans: relevance to vaccination and vaccine responses. Clin Exp Immunol 2021; 204: 310-320 [PMID: 33534923 DOI: 10.1111/cei.13582]

39 Zhang Q, Bastard P, Liu Z, Le Pen J, Moncada-Velez M, Chen J, Ogishi M, Sabli IKD, Hodeih S, Korol C, Rosain J, Bilguvar K, Ye J, Bolze A, Bigio B, Yang R, Arias AA, Zhou Q, Zhang Y, Onodi F, Korniotis S, Karl F, Bekele Y, Berzofsky JA. Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization. Pathogens 2021; 10 [PMID: 33753221 DOI: 10.3390/pathogens10020135]

40 Bastard P, Rosen LB, Zhong Q, Michailidis E, Hoffmann HH, Zhang Y, Dorgham K, Bilguvar K, Rosain J, Béziat V, Berzofsky JA. Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization. Pathogens 2021; 10 [PMID: 33753221 DOI: 10.3390/pathogens10020135]

41 Wadman M. Flawed interferon response spurs severe illness. Science 2020; 369: 1550-1551 [PMID: 32973008 DOI: 10.1126/science.369.6511.1550]

42 Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francois-Quijorna I, Kamdar S, Joseph M, Davies D, Davis R, Jennings A, Zlatareva
I, VanVourourk P, Wu Y, Sofra V, Cano F, Greco M, Theodoridis E, Freedman JD, Gee S, Chan JNE, Ryan S, Bugalillo-Blanco E, Peterson P, Kisand K, Haljašmägi L, Chadi L, Meigoine P, Martínez L, Merrick B, Bisnauthsing K, Brooks K, Ibrahim MAA, Mason J, Lopez Gomez F, Babaloha K, Abdal-Jawah S, Cason J, Mant C, Seow J, Graham C, Doores KJ, Di Rosa F, Edgeworth J, Shankar-Hari M, Hayday AC. A dynamic COVID-19 immune signature includes associations with poor prognosis. *Nat Med* 2020; 26: 1623-1635 [PMID: 33207934 DOI: 10.1038/s41598-020-03065-y]

Laviliegger JD, Garnier M, Spieth A, Mario N, Hariri G, Pilon A, Berti E, Fieux F, Thietart S, Urbina T, Turpin M, Darriéville L, Fartoukh M, Verdonk F, Dumas G, Tedgui A, Guidet B, Maury E, Chauntry T, Voriott G, Ait-Outella H. Elevated plasma IL-6 and CRP levels are associated with adverse clinical outcomes and death in critically ill SARS-CoV-2 patients: inflammatory response of SARS-CoV-2 patients. *Ann Intensive Care* 2021; 11: 9 [PMID: 3349360 DOI: 10.1186/s13613-020-07978-x]

Jordan SC, Zakowski P, Tran HP, Smith EA, Gauthier C, Marks G, Zahnber N, Lowenstein H, Of J, Blue B, Le C, Shane R, Ammernann V, No A, Chen P, Kumar S, Toyoda M, Ge S, Huang E. Compassionate Use of Tocilizumab for Treatment of SARS-CoV-2 Pneumonia. *Clin Infect Dis* 2020; 71: 3168-3173 [PMID: 32575124 DOI: 10.1093/cid/ciaa812]

Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L, Zhou N, Petty LA, Baang JH, Dillman NO, Frame D, Gregg KS, Kaul DR, Nagel J, Patel TS, Zhou S, Laurant AS, Hanauer DA, Martin E, Sharma P, Fung CM, Pogue JM. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. *Clin Infect Dis* 2020 [PMID: 32651997 DOI: 10.1093/cid/ciaa954]

Roschewski M, Lionakis MS, Sharman JP, Rosewski J, Goy A, Monticelli MA, Roshon M, Wrzesinski SH, Desai JV, Zaraka MA, Collen J, Rose K, Hamdy A, Izumi R, Wright GW, Chung KK, Baselga J, Staudt LM, Wilson HI. Inhibition of Bruton’s tyrosine kinase in patients with severe COVID-19. *Sci Immunol* 2020; 5: 32503877 DOI: 10.1126/sciimmunol.abd0110

Guaraldi G, Meschiari M, Cozzi-Lepri A, Milie J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Corradi L, Fantini R, Castaniere I, Tabbi L, Girardis M, Tabbì L, Tedeschi S, Giannella M, Bartoletti M, Pascale R, Dolci G, Brugioni L, Pietrangeli A, Cossarizza A, Pea F, Cini E, Salvarani C, Massari M, Viale PL, Mussini C. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. *Lancet Rheumatol* 2020; 2: e474-e484 [PMID: 32835257 DOI: 10.1016/S2665-9913(20)30173-9]

Carvelli J, Demaria O, Vely F, Batista L, Chouaki Bennamnour N, Fares J, Carpentier S, Thibult ML, Morel A, Remark R, André P, Represa A, Piperegoulo C; Explore COVID-19 IPH group; Explore COVID-19 Marseille Immunopole group, Cordier PY, Le Dault E, Guervilly C, Simeone P, Gainnier Morel A, Remark R, André P, Represa A, Piperoglou C. Tocilizumab in patients with severe COVID-19. *Lancet* 2020; 395: 146-150 [PMID: 32726806 DOI: 10.1016/s41586-020-2600-6]

Cao X. COVID-19: immunopathology and its implications for therapy. *Nat Rev Immunol* 2020; 20: 269-270 [PMID: 32275594 DOI: 10.1038/s41577-020-0308-3]

Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, Dong Q, Zhang Z, Wang Z, Hu Y, Fu Y, Jin Y, Li K, Zhao S, Xiao Y, Luo S, Li L, Zhao L, Liu J, Zhao H, Liu Y, Yang W, Peng J, Chen X, Li P, Xie Y, Song J, Zhang L, Ma Q, Bian X, Chen W, Liu X, Mao Q, Cao C. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. *medRxiv* 2020 [DOI: 10.1101/2020.03.29.20041962]

Ursyler P, Moser S, Charitos P, Heijnen IJAFM, Rudin M, Sommer G, Giannetti BM, Bassetti S, Sendi P, Trendelenburg M, Osthoff M. Treatment of COVID-19 with Conestat Alfa, a Regulator of the Complement, Contact Activation and Kallikrein-Kinin System. *Front Immunol* 2020; 11: 2072 [PMID: 32922409 DOI: 10.3389/fimmu.2020.02072]

Paire-Castineira E, Clohisy S, Klaric L, Bretherick AD, Rawlik K, Pasko D, Walker S, Parkinson N, Fourman MH, Russell CD, Furniss J, Richardson A, Gountouna E, Wrobel N, Harrison D, Wang B, Wu Y, Meynert A, Griffiths F, Oosthuyzen W, Kousathanas A, Moutsianas L, Yang Z, Zhai R, Zheng C, Grimes G, Beale R, Millar J, Shih B, Keating S, Zechner M, Haley C, Porteous DJ, Hayward C, Yang J, Knight J, Summers C, Shankar-Hari M, Klenerman P, Turtle L, Ho A, Moore SC, Hinds C, Horby P, Nichol A, Maslove D, Ling L, McAuley D, Montgomery H, Walsh T, Pereira AC, Renieri A; GenOMICC Investigators; ISARIC4-C Investigators; COVID-19 Human Genetics Initiative; 23andMe Investigators; BRACOVID Investigators; Gen-COVID Investigators, Shen X, Ponting CP, Fawkes A, Tenesa A, Caulfield M, Scott R, Rowan K, Murphy L, Openshaw PJM, Semple MG, Law A, Vittart V, Wilson JB, Baille JK. Genetic mechanisms of critical illness in COVID-19. *Nature* 2021; 591: 92-98 [PMID: 33307546 DOI: 10.1038/s41586-020-03065-y]

O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19? *Nat Rev Immunol* 2020; 20: 335-337 [PMID: 33293823 DOI: 10.1038/s41577-020-0337-y]

Covían C, Retamal-Díaz A, Bueno SM, Kalergis AM. Could BCG Vaccination Induce Protective Trained Immunity for SARS-CoV-2? *Front Immunol* 2020; 11: 970 [PMID: 32574258 DOI: 10.3389/fimmu.2020.00970]

Lindestam Arlehamn CS, Sette A, Peters B. Lack of evidence for BCG vaccine protection from severe COVID-19. *Proc Natl Acad Sci USA* 2020; 117: 25203-25204 [PMID: 32994350 DOI: 10.1073/pnas.2016733117]

Hensel J, McAndrews KM, McGrail DJ, Dowlatshahi DP, LeBluL VS, Kalluri R. Protection against SARS-CoV-2 by BCG vaccination is not supported by epidemiological analyses. *Sci Rep* 2020; 10: 18377 [PMID: 33110184 DOI: 10.1038/s41598-020-75941-x]
Polat C et al. Virology and immunology of SARS-COV-2

Escolar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci USA 2020; 117: 17720-17726 [PMID: 32647056 DOI: 10.1073/pnas.2008410117]

Marin-Hernández D, Nixon DF, Hupert N. Anticipated reduction in COVID-19 mortality due to population-wide BCG vaccination: evidence from Germany. Hum Vaccin Immunother 2021; 1-3 [PMID: 33544024 DOI: 10.1080/21645515.2021.1872344]

Madsen AMR, Schaltz-Buchholzer F, Benfild T, Bjerggaard-Andersen M, Dalagaard LS, Dam C, Ditlve SB, Faizi G, Johansen IS, Kofod PE, Kristensen GS, Lokkegaard ECL, Mogensen CB, Mohamed L, Ostenfeld A, Oedegaard ES, Soerensen MK, Wejse C, Jensen AKG, Nielsen S, Krause TG, Netea MG, Aaby P, Benn CS. Using BCG vaccine to enhance non-specific protection of health care workers during the COVID-19 pandemic: A structured summary of a study protocol for a randomised controlled trial in Denmark. Trials 2020; 21: 799 [PMID: 32943115 DOI: 10.1186/s13063-020-04714-3]

Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O'Neall LA, Xavier RJ. Trained immunity: A program of innate immune memory in health and disease. Science 2016; 352: aaf1098 [PMID: 27102489 DOI: 10.1126/science.aaf1098]

Sbrotri M, van Schalkwyk MCI, Post N, Eddy D, Huntley C, Leeman D, Rigby S, Williams SV, Bermbingan WH, Kellam P, Maher J, Shields AM, Amirthalingam G, Peacock SJ, Ismael SA. T cell response to SARS-CoV-2 infection in humans: a systematic review. PLoS One 2016; 11: e0245532 [PMID: 34393185 DOI: 10.1371/journal.pone.0245532]

Griffoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Prentki K, Barennes H, Barrera D, de Silva AM, Frazier B, Krammer F, Smith DM, Crotty S, Sette A. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020; 181: 1489-1501. e15 [DOI: 10.1016/j.cell.2020.05.015]

Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D, Deijinratissiwa V, Rostron T, Supasa P, Liu C, López-Camacho C, Slon-Campos J, Zhao Y, Stuart DI, Paesen GC, Grimes JM, Antson AA, Bayfield OW, Hawkins DEPD, Ker DS, Wang B, Turtle L, Subramaniam K, Thomson P, Zhang P, Dold C, Crittall Simpmonds P, de Silva T, Sopp P, Wellington D, Rajapaksa U, Chen YL, Salio M, Napolitani G, Paes W, Borrow P, Kessler BM, Fry JW, Schwabe NF, Semple MG, Baillie JK, Moore SC, Openphasm OJP, Ansaari MA, Dunachie J, Barnes E, Frater J, Kerr G,oulder P, Lockett T, Levin R, Zhang Y, Jing R, Ho LP. Oxford Immunology Network Covid-19 Response T cell Consortium; ISICAR4C Investigators, Corral RJ, Conlon CP, Kålerman P, Sreenon JR, Kongsgaard Paaya J, McMicha A, Knight JC, Ogg G, Dong T. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol 2020; 21: 1336-1345 [PMID: 32887977 DOI: 10.1038/s41590-020-0782-6]

Zuo J, Dowell AC, Pearce H, Verma K, Long HM, Begum J, Aiano F, Amin-Chowdhury Z, Hallis B, Stapley L, Borrow R, Linley E, Ahmad S, Parker B, Horsley A, Amirthalingam G, Brown K, Ramsay ME, Ladhani S, Moss P. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 mo following primary infection. Nat Immunol 2021; 22: 620-626 [PMID: 33674800 DOI: 10.1038/s41590-20-0992-8]

Sherina N, Piralla A, Du L, Wan H, Kumagai-Braesch M, Andrell J, Braesch-Andersen S, Cassaniti I, Percivalle E, Sarasinif A, Bergami F, Di Martino R, Colaneri M, Vecchia M, Sambo M, Zipperof C, Bruno R, Sachs M, Oggiomoni T, Meloni F, Abolhassani H, Bertoglio F, Schubert M, Byrne-Steel M, Han J, Hutz M, Xue Y, Hammerström L, Baldani T, Maritato C, Marotte C, Ham-Hammerström P. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after infection. Med (N Y) 2021; 2: 281-295. e4 [PMID: 33589885 DOI: 10.1016/j.med.2021.02.001]

Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strälin K, Gorin JB, Olsson A, Llewellyn-Lacey S, Kamal H, Bogdanovic G, Muschiel S, Mullmann DJ, Kammann T, Emrâg J, Parrot T, Folkesson E; Karolinska COVID-19 Study Group, Rooyackers O, Eriksson LI, Henter JI, Sönnerborg A, Allander T, Albert J, Nielsen M, Klingström J, Gredmark-Russ S, Björkström NK, Sandberg JK, Price DA, Schumann AM, Ladhani S, Moss P. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 mo following primary infection. Med (N Y) 2021; 2: 281-295. e4 [PMID: 33589885 DOI: 10.1016/j.med.2021.02.001]

Schulien I, Kenning J, Oberhardt V, Wild K, Seidel LM, Killmer S, Sagar, Daul F, Salvat Lago M, Decker A, Luxenburger H, Binder B, Bettinger D, Sugokipinar O, Rieg S, Panning M, Huzly D, Schwenkme M, Koch G, Waller CF, Nieters A, Dueschmied D, Emmerich F, Mei HE, Schulz AR, Llewellyn-Lacey S, Price DA, Boettler T, Bengsch B, Thimme R, Hofmann M, Neumann-Haefelin C. Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nat Med 2021; 27: 78-85 [PMID: 33184509 DOI: 10.1038/s41591-020-01143-2]

Ni L, Ye F, Cheng ML, Feng Y, Deng YQ, Zhao H, Wei P, Ge J, Gou M, Li X, Sun L, Cao T, Wang P, Zhou C, Zhang R, Liang P, Guo H, Wang X, Qin CF, Chen F, Dong C. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020; 52: 971-977. e3 [PMID: 32413330 DOI: 10.1016/j.immuni.2020.04.023]

Neidleman J, Luo X, Frouard J, Xie G, Gill G, Stein ES, McGregor M, Ma T, George AF, Kosters A, Greene WC, Vasquez J, Ghosn E, Lee S, Roan NR. SARS-CoV-2-Specific T Cells Exhibit Phenotypic Features of Helper Function, Lack of Terminal Differentiation, and High Proliferation Potential. Cell Rep Med 2020; 1: 100081 [PMID: 32839765 DOI: 10.1016/j.xcrm.2020.100081]

Wang Y, Zhang L, Sang L, Ye F, Ruan S, Zhong B, Song T, Aishukairi AN, Chen R, Zhang Z, Gan...
Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M, Chia WN, Chen MI, Wang LF, Ooi EE, Kalimuddin S, Tambahy PA, Low JG, Tan YJ, Bertolletti A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. *Nature* 2020; 584: 457-462 [PMID: 32668444 DOI: 10.1038/s41586-020-2559-z]

Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW, Fan X, Xia P, Fu JL, Wang SY, Xu RN, Dai XP, Shi L, Huang L, Jiang TJ, Shi M, Zhang Y, Zumlau A, Maeurer M, Bai F, Wang FS. Single-cell landscape of immunological responses in patients with COVID-19. *Nat Immunol* 2020; 21: 1107-1118 [PMID: 32788748 DOI: 10.1038/s41590-020-0762-x]

Bonifacius A, Tischer-Zimmermann S, Dragon AC, Gassarow D, Vogel A, Krettek U, Gödecke N, Yilmaz M, Kraft ARM, Hoepner MM, Pink I, Schmidt JJ, Li Y, Welte T, Maecker-Kolhoff B, Martens J, Berger MM, Lobenwein C, Stankov MV, Cornberg M, David S, Behrens GMN, Witzke O, Blasczyk R, Eiz-Vesper B. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. *Immunity* 2021; 54: 340-354. e6 [PMID: 33567252 DOI: 10.1016/j.immuni.2021.01.006]

Breton G, Mendoza P, Häglöf T, Oliveira TY, Schaefer-Babajev D, Gaebler C, Turroja M, Hurley A, Caskey M, Nussenzweig MC. Persistent cellular immunity to SARS-CoV-2 infection. *J Exp Med* 2021; 218 [PMID: 33539315 DOI: 10.1084/jem.202021315]

Fosset I, Tarlinton D. B cell memory: understanding COVID-19. *Immunity* 2021; 54: 205-210 [PMID: 33533337 DOI: 10.1016/j.immuni.2021.01.014]

Vibhollom LK, Nielsen SSF, Palhus MH, Frattari GS, Olesen R, Andersen I, Monrad J, Andersen AHF, Thomsen MM, Konrad CV, Andersen SD, Hejen JF, Gunst JD, Østergaard L, Søgaard OS, Schleimann H, Tolstrup M. SARS-CoV-2 persistence is associated with antigen-specific CD8 T cell responses. *EbOeMedicine* 2021; 64: 103230 [PMID: 33530000 DOI: 10.1016/j.ebiom.2021.10.2320]

Chen Z, John Wherry E. T cell responses in patients with COVID-19. *Nat Rev Immunol* 2020; 20: 529-536 [PMID: 32722222 DOI: 10.1038/s41577-020-0402-6]

Braun J, Loyal L, Frenštch M, Wendisch D, Georg P, Kurth F, Hippenstiel S, Dingeldey M, Kruse B, Faechere F, Baysal E, Mangold M, Henze L, Lauster R, Mall MA, Beyer K, Röhmel J, Voigt S, Schmitz J, Milenyi S, Demuth I, Müller MA, Hocke A, Witznarth M, Suttrop N, Kern F, Reimer U, Wenschuh H, Drost C, Corman VM, Giesecke-Thiel C, Sander LE, Thiel A. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. *Nature* 2020; 587: 270-274 [PMID: 32726801 DOI: 10.1038/s41586-020-2596-9]

Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SL, Dan JM, Burger ZC, Rawlings SA, Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva Antunes R, Breton G, Chen MI, Wang LF, Ooi EE, Kalimuddin S, Tambyah PA, Low JG, Tan YJ, Linster M, Chia WN, Yuan Q, Wang H, Liu W, Liao X, Su Y, Wang X, Yuan J, Li T, Li J, Qian S, Hong C, Wang DQ, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, Liao P, Qiu JF, Lin Y, Cai XF, Wang DQ, Hu Y, Ren JH, Tang N, Xu YY, Yu LH, Mo Z, Gong F, Zhang XL, Tian WQ, Hu L, Zhang XX, Xiang JU, Du HX, Liu HW, Lang CH, Luo XH, Wu SB, Cui XP, Zhou Z, Zhu MM, Wang J, Xue CJ, et al. Virology and immunology of SARS-COV-2.
Polat C et al: Virology and immunology of SARS-COV-2

Li XF, Wang L, Li ZJ, Wang K, Niu CC, Yang QJ, Tang XJ, Zhang Y, Liu XM, Li JJ, Zhang DC, Zhang F, Liu P, Yuan J, Li Q, Hu JL, Chen J, Huang AL. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020; 26: 845-848 [PMID: 32350462 DOI: 10.1038/s41591-020-0997-1]

87 Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, Nakao C, Rayaprolu V, Rawlings SA, Peters B, Krammer F, Simon V, Saphire EO, Smith DM, Weiskopf D, Sette A, Crotty S. Immunological memory to SARS-CoV-2 assessed for up to 8 mo after infection. Science 2021; 371 [PMID: 33408181 DOI: 10.1126/science.abf9063]

88 Barnes CO, Jette CA, Abernathy ME, Dam KA, Eswine SR, Gristick HB, Malaty AG, Sharaf NG, Huey TB, McBan KE, Lee YE, Robbiani DF, Nussenzweig MC, West AP Jr, Bjorkman PJ. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020; 588: 682-687 [PMID: 33045718 DOI: 10.1038/s41586-020-2852-1]

89 Gaehler C, Wang Z, Lorenzi JC, Muecksf F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaeffer-Babajew D, Oliveira TY, Cipolla M, Viant C, Barnes CO, Bram Y, Breton G, Hågglof T, Mendoza P, Hurley A, Turroja M, Gordon K, Millard KG, Ramos V, Schmidt F, Weisblum Y, Jha D, Tankelevich M, Martinez-Delgado G, Yee J, Patel R, Dizon J, Unson-O'Brien C, Shimeliovich I, Robbiani DF, Zhao Z, Ganzuny A, Schwartz RE, Hatzizoeannou T, Bjorkman PJ, Mehendru S, Bieniasz PD, Caskey M, Nussenzweig MC. Evolution of antibody immunity to SARS-CoV-2. Nature 2021; 591: 639-644 [PMID: 33461210 DOI: 10.1038/s41586-021-03207-x]

90 Du Z, Zhu F, Guo F, Yang B, Wang T. Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J Med Virol 2020; 92: 1735-1738 [PMID: 32243608 DOI: 10.1002/jmv.25820]

91 L’Huillier AG, Meyer B, Andrey DO, Arm-Vernez I, Baggio S, Didierlaurent A, Eberhardt CS, Eckert I, Grassett-Salomon C, Huttner A, Posfay-Barbe KM, Royo IS, Prolang JA, Vuilleumier N, Yerly S, Siegrist CA, Kaiser L; Geneva Centre for Emerging Viral Diseases. Antibody persistence in COVID-19. Emerg Infect Dis 2021; 26: 1478-1488 [PMID: 33267220 DOI: 10.3201/eid2607.200841]

92 Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, Tang X, Lan J, Yuan J, Wang H, Zhao J, Zhang S, Wang Y, Shi X, Liu L, Wang X, Zhang Z, Zhang L. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021; 370: 1339-1343 [PMID: 33199009 DOI: 10.1126/science.abf1107]

93 Ng KW, Faulkner N, Cornish GH, Rosa A, Harvey R, Hussain S, Ulferts R, Earl C, Wrobel AG, Benton DJ, Roustan C, Bolland W, Thompson R, Agua-Doce A, Barnes CO, Bram Y, Breton G, Hågglof T, Mendoza P, Hurley A, Turroja M, Gordon K, Millard KG, Ramos V, Schmidt F, Weisblum Y, Jha D, Tankelevich M, Martinez-Delgado G, Yee J, Patel R, Dizon J, Unson-O’Brien C, Shimeliovich I, Robbiani DF, Zhao Z, Ganzuny A, Schwartz RE, Hatzizoeannou T, Bjorkman PJ, Mehendru S, Bieniasz PD, Caskey M, Nussenzweig MC. Evolution of antibody immunity to SARS-CoV-2. Nature 2020; 588: 111-119 [PMID: 32454513 DOI: 10.1038/s41586-020-2380-z]

94 Okha NMA, Müller MA, Li W, Wang C, GeartsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, Yazdanpanah Y, Le Hingrat Q, Descamps D, Houhou-Fidouh N, Okba NMA, Reusken CBEM, Bosch BJ, Drosten C, Chandler FD, Yazdanpanah Y, Le Hingrat Q, Descamps D, Houhou-Fidouh N, Reusken CBEM, Bosch BJ, Drosten C, Koopmans MGP, Haagmans BL. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg Infect Dis 2020; 26: 1478-1488 [PMID: 33267220 DOI: 10.3201/eid2607.200841]

95 Tiberghien P, de Lamballerie X, Morel P, Gallian P, Lacombe K, Yazdanpanah Y. Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how? Vox Sang 2020; 115: 488-494 [PMID: 32204545 DOI: 10.1111/vox.12926]

96 Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Mohammadi K, Musser B, Atwal GS, Oyejide A, Goez-Gazi Y, Dutton J, Clemmons E, Staples HM, Bartley C, Klaflke B, Alfson K, Gazi M, Gonzalez Q, Dick E Jr, Carrion R Jr, Pessaint L, Portu M, Cook A, Brown R, Ali V, Greenhouse J, Taylor T, Andersen H, Lewis MG, Stahl N, Murphy AJ, Yancopoulos GD, Ky rattosou CA. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 2020; 370: 1110-1115 [PMID: 33037066 DOI: 10.1126/science.abe2402]

97 Yang L, Liu W, Yu X, Wu M, Reichert JM, Ho M. COVID-19 antibody therapeutics tracker: a global online database of antibody therapeutics for the prevention and treatment of COVID-19. Antiv Ther 2020; 3: 205-212 [PMID: 32315063 DOI: 10.1093/abt/iba020]

98 Hussen J, Kandeel M, Hemida MG, Al-Mubarak AIA. Antibody-Based Immunotherapeutic Strategies for COVID-19. Pathogens 2020; 9 [PMID: 33167401 DOI: 10.3390/pathogens9110917]
