Development of the forest waste gasification system with electricity production

A Aiyzan¹, A Fedukhin¹, K Strogonov¹, O. Derevianko², S. Makoev², M. Egorov²

¹National Research University «Moscow Power Engineering Institute», 111250 Russia, Moscow, Krasnokazarmennaya 14.

²Peter the Great St. Petersburg Polytechnic University, 194021, Russia, St.Petersburg, Polytechnicheskaya 29

fedyukhina@yandex.ru

Abstract. The aim of this work is development of a technological scheme of gasification of biomass to generate electricity, as well as development of efficient circulating fluidized bed gasifier with heat exchanger. The paper deals with the existing technology of biomass gasification and the influence of thermal parameters on the composition of gasification products.

Introduction

The total wood stock in Russia is more than 80 billion m³, our country is the leader in the area of forest resources and its amount per an inhabitant. The potential of biomass usage in Russia is the following: gross (467 million TOE/year), technical (129 million TOE/year), economic (69 million TOE/year), including agricultural waste, which is up to 80 million TOE/year; forest waste is more than 30 million m³ [1–7].

The volume of wood waste generation in the timber industry is 32% of the raw material. The amount of waste, for example, in a furniture factory reaches about 62% of all used wood.

In Russia at the enterprises, plants and factories wood waste is burned out or thrown into dumps and landfills. At present, energy-saving programs are being introduced, as well as that for reduction of harmful emissions into the atmosphere and optimization of primary resources usage [8–21].

Developed technological scheme

The area of application of generator gas is very wide. From the generator gas, electricity can be obtained by burning in a steam boiler, in gas engines or in steam and gas installations. We have investigated the scheme of the steam-gas installation (Fig.1), because the efficiency of a steam-gas installation is greater than for other schemes [22–24].
Fig. 1. The scheme of the steam-gas installation based on biomass gasification

The feedstock after drying is fed to the gas generator, where steam and air are pumped under pressure of 20 atmospheres for thermal conversion process. As a result of heat treatment, a generator gas is formed, which is purified from dust and ash in the filter. The purified gas is sent to a gas turbine that produces electricity. The exhaust gases after the gas turbine are sent to the waste heat boiler. In the boiler, the heat exchanger produces overheated steam. Part of the steam goes to the gas generator, and another part of the steam goes to a steam turbine, which generates electricity.

Fig. 2. Developed technological scheme of biomass gasification from steam-gas installation: 1 – biomass; 2 – crusher; 3 – crushed biomass; 4 – circulating gas generator of boiled layer with heat exchanger; 5 – ash; 6 – ejector; 7 – gas of generator; 8 – cold air; 9 – compressed air; 10 – compressor; 11 – combustion chamber; 12 – gas turbine; 13 – wasted gases; 14 – utilizing boiler; 15 – feed water; 16 – output gases; 17 – overheated steam; 18 – steam turbine; 19 – generator.

In Fig. 2 the developed technological scheme of the steam-gas installation based on wooden wastes is presented. The principle is the same as in Fig. 1, but there are some distinctive features:

- Absence of drying installation for biomass;
- Usage of physical heat of the generator gas for heating the compressed air in the heat exchanger;
- No additional air compressor under the engine;
- Usage of an ejector to disperse compressed air using overheated steam.
In the paper we present a circulating gas generator of boiled layer with heat exchanger, which is shown in Fig. 3. The heat exchanger 8 can increase the temperature of the compressed air 9 and raise the efficiency of gasification.

The main feature of the developed gas generator is the supply to the gasification zone 3 of the steam-air mixture from the ejector 6, dust purification in the vertical cyclone dust collector 10 and heating of the compressed air 9 in the heat exchanger 8.

**The research of the dependency of the output parameters of the biomass gasification products**

An output of biomass gasification products depends on the initial input parameters to the generator (ratio of the flow rate of the oxidant and amount of superheated steam) and on given parameters (gas temperature, pressure in the reactor). Calculations of dependency of output parameters were carried out in MathCad15 [25]. The air flow rate and the pressure in the generator were accepted as 0.3 and 2.5 MPa respectively [26].

Fig. 3. The developed scheme of the circulating gas generator of boiling layer with heat exchanger.

1 – biomass; 2 – feeder; 3 — gasification zone; 4 — fuel layer; 5 – ash; 6 – ejector; 7 – overheated steam; 8 – heat exchanger; 9 – compressed air; 10 – cyclone dust collector; 11 – gas of generator

Fig. 4. Temperature change depending on the supply of superheated steam

Fig. 5. Relation between the output of gasification biomass products and the steam amount
With an increase of the amount of overheated steam supplied to the ms, the temperature of the generator gas linearly increases (Fig. 4).

In general, the amount of overheated steam in the gas generator mostly influences on the output of H2 and H2O (Fig. 5). The maximum value of H2 at the ms boundary varies from 0.2 to 0.8, but with increasing of ms the CO output decreases.

From Fig. 6 it can be seen that with the increase in the amount of overheated steam, the chemical heat of combustion of the generator gas decreases, but the physical heat increases. So, it is not effective to supply more steam to the gas generator, since an important role in thermal installations is played by the heat of combustion, and the use of physical heat can lead to pressure loss.

![Graph showing the change in heat of combustion and physical heat of the generator gas depending on the amount of steam](image)

Fig. 6. Change in the heat of combustion and the physical heat of the generator gas depending on the amount of steam

Based on the research of the dependence of the heat of the gas on the amount of steam, the amount of overheated steam can be taken \( ms = 0.2 \) kg/kg (biomass) to obtain a certain pressure in the gas generator.

![Graph showing the change of gas temperature in dependency on biomass humidity](image)

Fig. 7. Change of gas temperature in the dependency on biomass humidity.

Raw materials humidity \( W \) greatly affects the process of biomass gasification. So in fig. 7 it is displayed that the temperature of the gas of generator is reduced to 70 % with an increase in the humidity of the raw material, then increases sharply from 70 %. This is due to the fact that the heat is lost on the evaporation of moisture and the thermal conversion reaction of the evaporated moisture.
The humidity of wood waste usually reaches 15%. Based on the graph of the dependence of the amount of heat on humidity, it can be assumed that for biomass gasification it is enough to take raw materials with $W=10\%$, since the heat of combustion will be about 5 MJ/m³. The gas of generator with such chemical heat of combustion can be used in the steam-gas installation.

Conclusions
The new technological scheme of the steam-gas installation based on wood wastes was developed. It has a number of features in the comparison with a scheme in Fig. 1:

- Absence of drying installation for biomass;
- Usage of physical heat of the generator gas for heating the compressed air in the heat exchanger;
- No additional air compressor under the engine;
- Usage of an ejector to disperse compressed air using overheated steam.

Also we developed a new effective circulating gas generator of the boiling layer with heat exchanger, in which the efficiency of the biomass gasification increases due to heating of compressed air.

As the overheated steam and biomass humidity increase, the heat of combustion of the generator gas decreases. Based on this, it is enough to take the biomass moisture $W = 10\%$, and the amount of steam is 0.2 kg/kg (biomass) to disperse the compressed air to reach a certain pressure in the gas generator.

References
[1] Kirpichnikov I M and Fil’ N S 2012 wood waste as a renewable source for obtaining thermal and electrical energies Vestn. Yuzhno-Ural’skogo Gos. Univ. Seriya Energ. 16 18–21
[2] Saari J, Sermyagina E, Kaikko J, Vakkilainen E and Sergeev V 2016 Integration of hydrothermal carbonization and a CHP plant: Part 2 – operational and economic analysis Energy 113 574–85
[3] Zhao Y, Wang L, Huang L, Maximov M Y, Jin M, Zhang Y, Wang X and Zhou G 2017 Biomass-derived oxygen and nitrogen co-doped porous carbon with hierarchical architecture as sulfur hosts for high-performance lithium/sulfur batteries Nanomaterials 7
[4] Politaeva N, Smyatskaya Y, Slugin V, Toumi A and Bouabdelli M 2018 Effect of laser radiation on the cultivation rate of the microalga Chlorella sorokiniana as a source of biofuel IOP Conf. Ser. Earth Environ. Sci. 115
[5] Politaeva N, Kuznetsova T, Smyatskaya Y, Atamaniuk I and Trukhina E 2018 Chlorella Microalga Biomass Cultivation for Obtaining Energy in Climatic Conditions of St. Petersburg Adv. Intell. Syst. Comput. 692 555–62
[6] Fedyukhin A, Sultanguzin I, Gyul’Maliev A and Sergeev V 2017 Biomass pyrolysis and gasification comprehensive modeling for effective power generation at combined cycle power plant Eurasian Chem. J. 19 245–53

[7] Timerbaev N F, Tuntsev D V, Khairullina M R and Kitaev S V 2017 Technologies and equipment for the production of electricity from wood waste Proc. High. Educ. institutions. ENERGY Sect. Probl. 19 102–7

[8] Islamova S I and Vachagina E K 2015 No Title Proc. High. Educ. institutions. ENERGY Sect. Probl. 9–10 3–11

[9] K Lockheed Y S, Didenko N I, Makov K M, Zapivahin I O, Ostapenko M S and Volgina A D 2018 Employment and professional adaptation of specialists vol 2018–Janua (Institute of Electrical and Electronics Engineers Inc.) pp 162–4

[10] Gorshkov A, Murgul V and Oliynyk O 2016 Forecasted Payback Period in the Case of Energy-Efficient Activities vol 53, ed M V. (St. Petersburg State Polytechnical University, Polytechnicheskaya st. 29, St.-Petersburg, Russian Federation: EDP Sciences)

[11] Tanic M, Stankovic D, Nikolic V, Nikolic M, Kostic D, Milojkovic A, Spasic S and Vatin N 2015 Reducing energy consumption by optimizing thermal losses and measures of energy recovery in preschools Procedia Eng. 117 924–37

[12] Perlova E, Platonova M, Gorshkov A and Rakova X 2015 Concept project of zero energy building Procedia Eng. 100 1505–14

[13] Strelets K, Perlova E, Platonova M, Pankova A, Romero M and Al-Shabab M S 2016 Post Occupancy Evaluation (POE) and Energy Conservation Opportunities (ECOs) Study for Three Facilities in SPbPU in Saint Petersburg vol 165(Elsevier Ltd)pp 1568–78

[14] Polosin A N and Chistyakova T B 2018 Mathematical modeling for resource and energy saving control of extruders in multi-assortment productions of polymeric films vol 1015(Institute of Physics Publishing)

[15] Gorshkov A S, Vatin N I, Rymkevich P P and Kydevich O O 2018 Payback period of investments in energy saving Mag. Civ. Eng. 78 65–75

[16] Ilin I, Levina A and Iliashenko O 2018 Enterprise Architecture Analysis for Energy Efficiency of Saint-Petersburg Underground Adv. Intell. Syst. Comput. 692 1214–23

[17] Akhmetova I, Chichirova N and Derevianko O 2017 Revisiting heat losses calculation at district heating network Int. J. Civ. Eng. Technol. 8 694–702

[18] Brunman V E, Vataev A S, Volkov A N, Petkova A P and Plotnikov D G 2017 Optimizing pump-drive operation to improve the energy-efficiency of oil extraction Russ. Eng. Res. 37 479–84

[19] Brunman V E, Vataev A S, Volkov A N, Volkov E A, Petkova A P, Kochanzhi F I and Plotnikov D G 2017 Energy-efficient oil extraction by sucker rod borehole pumps in low-yield fields Russ. Eng. Res. 37 378–82

[20] Korotkov A and Frolov V 2015 Experimental studies of electrical load schedules of residential electricity consumers in urban distributive power grids Acta Tech. CSAV (Ceskoslovensk Akad. Ved) 60 337–46

[21] Politaeva N A, Kuznetsova T A, Smyatskaya Y A, Trukhina E V and Atamanyuk I 2018 Energy Production from Chlorella Algae Biomass Under St. Petersburg Climatic Conditions Chem. Pet. Eng. 1–5

[22] Fedyuhin A V 2014 Development of systems of combined generation of thermal and electrical power basing on investigation of biomass pyrolysis and gasification processes dis. … kand. tekhn. nauk (Ivanovo: IGEHU)

[23] Galaev S A, Ris V V, Smirnov E M and Babiev A N 2018 Experience Gained from Designing Exhaust Hoods of Large Steam Turbines Using Computational Fluid Dynamics Techniques Therm. Eng. 65 352–61

[24] Galaev S A, Ris V V, Simoyu L L and Smirnov E M 2017 Experience in numerical simulation of turbulent wet-steam flow in the last stage of a high-power condensing turbine under
conditions defined by full-scale experiments at a power plant 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, ETC 2017

[25] Popov S K and Ippolitov V A 2009 *Solving of problems of high-temperature heat technology using MathCad: textbook* (Moscow: MPEI Publishing House)

[26] Klimenko A V and Zorin V M 2007 *Heat-and-power engineering and Thermal engineering: reference books* ed A V Klimenko (Moscow: MPEI Publishing House)