How representative are colorectal, lung, breast and prostate cancer patients responding to the National Cancer Patient Experience Survey (CPES) of the cancer registry population in England? A population-based case control study

Saleh A Alessy, Elizabeth A Davies, Janette Rawlinson, Matthew Baker, Margreet Lüchtenborg

ABSTRACT

Objective To assess the representativeness of National Cancer Patient Experience Survey (CPES) responders compared with the English cancer registry population in term of age, sex, socioeconomic deprivation, ethnicity, disease stage and median survival.

Setting England.

Population We identified 103186 colorectal, lung, breast and prostate cancer patients responding to at least one survey during 2010–2014 and randomly selected one non-responder from the cancer registry matched on cancer type and yearly quarter of diagnosis.

Main outcome measure We compared age, sex, socioeconomic deprivation, ethnicity and disease stage between the two groups using logistic regression. We also compared survival (in years) using the Mann-Whitney test.

Results Across all cancer types survey responders were younger, more likely to have a White ethnic background, to be resident in less deprived areas and diagnosed with earlier stage disease although they varied between cancers. Median survival for responders was also higher than for the cancer registry population (colorectal: 4.8 vs 3.2; lung: 2.0 vs 0.3; breast: 5.7 vs 5.4; and prostate: 5.7 vs 5.2 years; all p-values<0.001).

Conclusion CPES responders with the four most common cancers do not necessarily represent all patients with these cancers in terms of demographic characteristics and tumour stage at diagnosis. These limitations should be considered when interpreting findings. To capture the experiences of patients currently underrepresented in CPES, different approaches may need to be taken.

INTRODUCTION

Patient experience surveys now play a major role internationally in assessing patients’ care experiences, monitoring services and improving care quality and outcomes. In England, there has been an increasing emphasis on improving patients’ experiences of National Health Service (NHS) cancer care. The National Cancer Patient Experience Survey (CPES) has invited a large sample of patients who received cancer care for all cancer types annually since 2010 to report their experiences. These data are fed back to local NHS Cancer Services, reported nationally and used for policy development and research. Studies published from different years of CPES indicate that experiences have been improving across many domains but that systematic differences in cancer patient experience by patient sociodemographic factors remain.

Although population-based health experience surveys provide a valuable patient perspective on many aspects of health services, they are prone to selection biases that might result from missing the experiences of ethnic minorities, people living in the more deprived areas and the youngest and oldest age groups. In addition, there has been a concern that patients with the poorest prognosis are missed, because they are too ill or die before they can complete the survey.
Analysis of early cancer experience surveys in England in 2000 and 2004, for example, showed limited inclusion of lung cancer patients,\(^{10}\) and analysis of CPES data for 2010 raised a concern about the number of patients in the initial sampling frame for some cancer types who died before they could receive the survey.\(^{20,21}\)

The National Cancer Registration and Analysis Service (NCRAS) collects data on all cancers diagnosed in England.\(^{22}\) Focusing on the four most common cancers in England (colorectal, lung, breast and prostate), we aimed to compare the survey responders’ demographic and tumour stage at diagnosis and their median survival time to determine the extent to which they represent the cancer registry population and to inform future surveys.

METHODS

CPES data linkage

CPES is conducted by Quality Health on behalf of NHS England and contains around 70 questions covering many aspects of cancer care experience ranging from seeing the general practitioner, receiving in-patient care and treatment to outpatient follow-up. For the analysis presented here, we focused on the four most common cancers in England (colorectal, lung, breast and prostate), we aimed to compare the survey responders’ demographic and tumour stage at diagnosis and their median survival.

We first removed all CPES responders from the cancer registry population. In order to make a fair comparison in terms of the follow-up time, diagnosis date, and data completeness, which changed over time, we randomly selected one patient who was not a CPES responder for each CPES responder, matched on cancer type and time of diagnosis (same yearly quarter) (n=103,186) (Figure 2). To assess the robustness of our method, we repeated this method by taking another random sample from the cancer registry. We compared the two random samples and there were no differences with regard to sex, age, ethnicity, and socioeconomic deprivation, geographical area of residence, disease stage and survival.

For all patients, we included demographic data (sex, age, ethnicity, socioeconomic deprivation and geographical area of residence) and their survival and disease stage at diagnosis. Self-reported ethnicity data are obtained through linkage with the admitted patient care Hospital Episode Statistics (HES) data.\(^{24}\) We collapsed the 16-group classification into six categories: White, Asian, Black, Chinese, Mixed and Other. Patient’s socioeconomic deprivation is assigned based on their postcode of residence at diagnosis, and based on the quintile distribution of lower layer super output areas (LSOAs), which covers around 1500 persons, using the income domain of the index of multiple deprivation (IMD) (with 1 being the least deprived and 5 being the most deprived).\(^{25}\) Four versions of IMD were available (2004, 2007, 2010, 2015) and we applied the closest match of IMD to the year of diagnosis (IMD 2004 for diagnosis years 1999–2002; IMD 2007 for diagnosis years 2003–2006; IMD 2010 for diagnosis years 2007–2009; IMD 2015 for diagnosis years 2010–2013). Information on disease stage was extracted from the cancer registry system for all cancers, and for
Figure 2 Distribution of year of diagnosis of the cancer registry compared with National Cancer Patient Experience Survey (CPES) and the sample we took for colorectal, lung, breast and prostate cancers. This graph shows the year of diagnosis for the entire cancer registry population compared with the CPES responders, and the study sample we took from the entire cancer registry population based on random matching with CPES responders on cancer type and quarter year of diagnosis.

lungs cancer missing stage information was extracted from the National Lung Cancer Audit data set, which has a higher completeness of lung cancer stage data.26

Data analysis
A total number of 206,572 patients were included in the analysis. We first compared the distribution of the patient characteristics (age, sex, socioeconomic deprivation, ethnicity, geographical areas) and disease stage among CPES responders and the cancer registry population using univariable and multivariable logistic regression. χ² tests were performed to estimate the p-values for trend and heterogeneity excluding missing value categories, where p-values for trend were estimated by fitting the categorical variables linearly. We calculated survival time from the date of diagnosis until date of death. Patients who were still alive were censored on their last updated live status date in the cancer registration (between 5 and 10 January 2018). Where the date of death and date of diagnosis had the same date, we added 0.1 day to cancer registry population survival time (breast: (n=2108), prostate: (n=3140), lung: (n=5436) and colorectal: (n=2617)). Finally, we compared median patient survival (in years) between the two groups using the Mann-Whitney test. All analyses were performed using Stata Software V.15 (StataCorp).

RESULTS
Tables 1–4 show the odds of being in the CPES group based on patient and tumour stage at diagnosis. Males were more likely to have responded to CPES than females among colorectal cancer patients but not among lung cancer patients (colorectal: adjusted OR 1.06, 95% CI: 1.02 to 1.10; lung: adjusted OR 0.96, 95% CI: 0.91 to 1.01). CPES responders were significantly younger than their registry counterparts across all cancers (median age: colorectal 68 vs 74 years, p<0.001; lung 68 vs 73 years, p<0.001; breast 58 vs 64 years, p<0.001; prostate 67 vs 71 years, p<0.001). Patients with a non-White ethnic background were less likely to be in the CPES cohort across all cancers, although this was most statistically significant among people with an Asian background (colorectal: adjusted OR 0.67, 95% CI: 0.57 to 0.80; lung: adjusted OR 0.73, 95% CI: 0.57 to 0.94; breast: adjusted OR 0.67, 95% CI: 0.61 to 0.74; prostate: adjusted OR 0.79, 95% CI: 0.65 to 0.96). In addition, breast and prostate cancer patients from black ethnic background were less likely to be in the CPES cohort (breast: adjusted OR 0.81, 95% CI: 0.72 to 0.92; prostate: adjusted OR 0.82, 95% CI: 0.71 to 0.95), while patients from a Chinese ethnic background were less likely to be in the CPES cohort among breast cancer patients only (adjusted OR 0.67, 95% CI: 0.50 to 0.88).
Table 1
Odds of colorectal cancer patients diagnosed between 2007 and 2013 having responded to CPES according to case mix

Variable	CPES (n=25832)	Cancer registry (non-CPES) (n=25832)	Univariable	Mutually adjusted*				
	N	%	N	%	OR	95% CI	OR	95% CI
Sex								
Female	10636	41.2	11394	44.1	reference	reference		
Male	15196	58.8	14438	55.9	1.13	1.09 to 1.17	1.06	1.02 to 1.10
Heterogeneity test					$\chi^2 (1)=45.4; p<0.001$	$\chi^2 (1)=9.2; p=0.002$		
Age group								
<30	75	0.3	135	0.5	0.86	0.65 to 1.14	0.96	0.72 to 1.28
30–44	721	2.8	688	2.7	1.63	1.46 to 1.81	1.71	1.53 to 1.91
45–59	4431	17.2	3133	12.1	2.19	2.08 to 2.32	2.24	2.12 to 2.37
60–74	13370	51.8	9801	37.9	2.12	2.03 to 2.20	2.13	2.04 to 2.21
75–89	7013	27.1	10880	42.1	reference	reference		
90+	222	0.9	1195	4.6	0.29	0.25 to 0.33	0.31	0.27 to 0.36
Trend test					$\chi^2 (1)=1291.4; p<0.001$	$\chi^2 (1)=1281.3; p<0.001$		
Ethnicity								
White	22563	87.3	20836	80.7	reference	reference		
Mixed	43	0.2	46	0.2	0.86	0.57 to 1.31	0.87	0.56 to 1.33
Asian	260	1.0	330	1.3	0.73	0.62 to 0.86	0.67	0.57 to 0.80
Black	199	0.8	224	0.9	0.82	0.68 to 0.99	0.84	0.69 to 1.03
Chinese	35	0.1	30	0.1	1.08	0.66 to 1.76	0.98	0.60 to 1.62
Other	4	0.0	7	0.0	0.53	0.15 to 1.80	0.53	0.15 to 1.87
Unknown	2728	10.6	4359	17.0	0.58	0.55 to 0.61	0.65	0.61 to 0.69
Heterogeneity test					$\chi^2 (5)=20.0; p=0.001$	$\chi^2 (5)=22.8; p<0.001$		
Area of residence								
South East	4116	15.9	4367	16.9	reference	reference		
East Midlands	2573	10.0	2215	8.6	1.23	1.15 to 1.32	1.07	0.99 to 1.15
East of England	3075	11.9	3053	11.8	1.07	1.00 to 1.14	0.91	0.85 to 0.98
London	2373	9.2	2591	10.0	0.97	0.91 to 1.04	1.08	1.00 to 1.16
North East	1578	6.1	1457	5.6	1.15	1.06 to 1.25	1.14	1.04 to 1.24
North West	3222	12.5	3659	14.2	0.93	0.88 to 1.00	0.92	0.86 to 0.99
South West	3268	12.7	3117	12.1	1.11	1.04 to 1.19	1.02	0.95 to 1.09
West Midlands	3060	11.8	2823	10.9	1.15	1.08 to 1.23	1.04	0.96 to 1.11
Yorkshire and The Humber	2567	9.9	2550	9.9	1.07	1.00 to 1.14	0.99	0.92 to 1.07
Heterogeneity test					$\chi^2 (8)=89.5; p<0.001$	$\chi^2 (8)=46.3; p<0.001$		
Deprivation								
1-(most affluent)	5988	23.2	5404	20.9	reference	reference		
2	6370	24.7	5659	21.9	1.02	0.97 to 1.07	1.01	0.96 to 1.07
3	5500	21.3	5430	21.0	0.91	0.87 to 0.96	0.92	0.87 to 0.97
4	4551	17.6	4938	19.1	0.83	0.79 to 0.88	0.84	0.79 to 0.89
5-(most deprived)	3423	13.3	4401	17.0	0.7	0.66 to 0.74	0.69	0.65 to 0.73
Trend test					$\chi^2 (1)=184.1; p<0.001$	$\chi^2 (1)=164.8; p<0.001$		
Stage								
I	2155	8.3	2473	9.6	reference	reference		

Continued
In addition, living in more deprived areas was associated with the reduced odds of being in the CPES group across all cancers: colorectal (adjusted OR 0.69, 95% CI: 0.65 to 0.73 for most vs least deprived), lung (adjusted OR 0.65, 95% CI: 0.60 to 0.71 for most vs least deprived), breast (adjusted OR 0.84, 95% CI: 0.80 to 0.88 for most vs least deprived) and prostate (adjusted OR 0.83, 95% CI: 0.78 to 0.90 for most vs least deprived). Generally, CPES responders were more likely to be resident in areas other than the South East or North West. However, among prostate cancer patients, responders to the CPES were most likely to be resident in the North West (adjusted OR 2.04, 95% CI: 1.89 to 2.19 for North West vs South East).

In general, when comparing cancer stage at diagnosis between the two cohorts, CPES responders were more likely to be diagnosed with stage II and III disease and less likely to be diagnosed with stage IV disease. The proportions of missing stage information were lower among CPES responders across all cancers. CPES responders with colorectal and breast cancers were more likely to be diagnosed with stage II (colorectal: adjusted OR 1.48, 95% CI: 1.37 to 1.60; breast: adjusted OR 1.54, 95% CI: 1.49 to 1.60), and III (colorectal: adjusted OR 1.93, 95% CI: 1.80 to 2.08; breast: adjusted OR 1.90, 95% CI: 1.79 to 2.02) while CPES responders with lung cancer patients were more likely to be diagnosed with stage II (adjusted OR 1.40, 95% CI: 1.25 to 1.60). Survey responders had a significantly higher median survival compared with the cancer registry population across all cancers, with the largest difference in lung cancer and colorectal cancer (colorectal: 4.8 vs 3.2 years, p<0.001; breast: 5.7 vs 5.4 years, p<0.001; and prostate: 5.7 vs 5.2 years, p<0.001; lung: 2.0 vs 0.3 years, p<0.001).

DISCUSSION
Summary of main findings
This study examined how representative CPES responders for the four main cancers are compared with the cancer registry population with respect to individual characteristics and tumour stage at diagnosis. Overall, survey responders were younger, more likely to have a White ethnic background, to be living in less deprived areas and diagnosed at stages II and III across all cancer types. There was a small difference by sex among patients with colorectal cancer with males being more likely to be in the CPES responder group than females, but not for those with lung cancer. Median survival was generally higher in CPES responders, although the magnitude varied across different cancers and was most pronounced in lung and colorectal cancer patients.

Comparison with other findings
Our findings concerning the limited representativeness of the survey responders compared with the cancer registry population are consistent with two previous studies. Abel and colleagues examined those selected into the initial CPES sampling frame and found non-responders were more likely to be older, from more deprived areas, or diagnosed with poor prognosis cancers. These patients were more likely to have died in the 2–3 month period between the initial sampling and the mail out of the survey and so never received the survey. The variation in median survival between the survey responders and the cancer registry population in our study, especially for lung cancer, is very likely related to this issue but may also represent patients who received the survey but were too ill to complete and return it. Abel et al findings are important when comparing CPES responders versus non-responders. However, their study focused on internal representativeness only, whereas we sought to address the question of how representative the CPES responders are of all patients diagnosed with one of the four most common cancers, and not only those who have had an inpatient experience. Although our findings are similar and align with theirs, our study is important when comparing the responders to wider cancer population with these cancer types. This is particularly important when using CPES findings to inform cancer care policy for all English patients.

It is of interest that CPES responders were more likely to be diagnosed with stage II or III disease compared with stages I and IV disease in colorectal cancer. These differences are important when using CPES findings to inform cancer care policy for all English patients.

Variable	CPES (n=25832)	Cancer registry (non-CPES) (n=25832)	Univariable	Mutually adjusted*
	N %	N %	OR 95% CI	OR 95% CI
II	4404 17.0	3687 14.3	1.37 1.27 to 1.47	1.48 1.37 to 1.60
III	6381 24.7	3784 14.6	1.94 1.80 to 2.08	1.93 1.80 to 2.08
IV	3726 14.4	4845 18.8	0.88 0.82 to 0.95	0.91 0.84 to 0.98
Not known	9166 35.5	11043 42.7	0.95 0.89 to 1.02	1.08 1.01 to 1.15

*T Multivariable model including all factors; unknown stage and ethnicity categories were not included in tests for heterogeneity.

CPES, National Cancer Patient Experience Survey.
Table 2 Odds of lung cancer patients diagnosed between 2007 and 2013 having responded to CPES according to case mix

Variable	CPES (n=12942)	Cancer registry (non-CPES) (n=12942)	Univariable	Mutually adjusted*		
	N	%	N	%	OR 95% CI	OR 95% CI
Sex						
Female	5968	46.1	5793	44.8	reference	reference
Male	6974	53.9	7149	55.2	0.95 (0.90 to 0.99)	0.96 (0.91 to 1.01)
Heterogeneity test					$\chi^2 (1)=4.7; p=0.02$	$\chi^2 (1)=2.6; p=0.10$
Age group						
<30	13	0.1	16	0.1	0.58 (0.28 to 1.21)	0.73 (0.34 to 1.56)
30–44	148	1.1	119	0.9	0.89 (0.70 to 1.14)	1.05 (0.81 to 1.35)
45–59	2144	16.6	1406	10.9	1.09 (1.01 to 1.18)	1.19 (1.10 to 1.28)
60–74	7681	59.3	5513	42.6	reference	reference
75–89	2922	22.6	5397	41.7	0.39 (0.37 to 0.41)	0.38 (0.36 to 0.41)
90+	34	0.3	491	3.8	0.05 (0.04 to 0.07)	0.05 (0.04 to 0.07)
Trend test					$\chi^2 (1)=1165.7; p<0.001$	$\chi^2 (1)=1174.2; p<0.001$
Ethnicity						
White	11566	89.4	10287	79.5	reference	reference
Mixed	23	0.2	19	0.1	1.08 (0.59 to 1.98)	0.75 (0.40 to 1.39)
Asian	128	1.0	151	1.2	0.75 (0.59 to 0.96)	0.73 (0.57 to 0.94)
Black	80	0.6	82	0.6	0.87 (0.64 to 1.18)	0.82 (0.59 to 1.14)
Chinese	19	0.1	14	0.1	1.21 (0.60 to 2.41)	1.00 (0.48 to 2.09)
Other	4	0.1	5	0.1	0.71 (0.19 to 2.65)	0.57 (0.15 to 2.18)
Unknown	1122	8.7	2384	18.4	0.42 (0.39 to 0.45)	0.49 (0.45 to 0.54)
Heterogeneity test					$\chi^2 (5)=6.8; p=0.23$	$\chi^2 (5)=7.4; p=0.1$
Area of residence						
South East	1631	12.6	1903	14.7	reference	reference
East Midlands	1266	9.8	1070	8.3	1.26 (1.24 to 1.53)	1.35 (1.21 to 1.51)
East of England	1475	11.4	1368	10.6	1.26 (1.14 to 1.39)	1.17 (1.05 to 1.30)
London	1320	10.2	1359	10.5	1.26 (1.24 to 1.53)	1.35 (1.21 to 1.52)
North East	1034	8.0	944	7.3	1.28 (1.14 to 1.43)	1.27 (1.13 to 1.44)
North West	1808	14.0	2229	17.2	0.95 (0.86 to 1.04)	0.94 (0.85 to 1.04)
South West	1349	10.4	1229	9.5	1.28 (1.16 to 1.42)	1.21 (1.09 to 1.35)
West Midlands	1354	10.5	1302	10.1	1.21 (1.10 to 1.34)	1.18 (1.06 to 1.32)
Yorkshire and The Humber	1705	13.2	1538	11.9	1.29 (1.18 to 1.42)	1.25 (1.12 to 1.39)
Heterogeneity test					$\chi^2 (8)=104.9; p<0.001$	$\chi^2 (8)=86.7; p<0.001$
Deprivation						
1 (most affluent)	2047	15.8	1726	13.3	reference	reference
2	2603	20.1	2251	17.4	1.04 (0.96 to 1.13)	1.00 (0.91 to 1.09)
3	2662	20.6	2595	20.1	0.92 (0.84 to 1.00)	0.85 (0.78 to 0.93)
4	2733	21.1	2880	22.3	0.83 (0.77 to 0.90)	0.75 (0.68 to 0.82)

Continued
Table 2 Continued

Variable	CPES (n=12942)	Cancer registry (non-CPES) (n=12942)	Univariable	Mutually adjusted*
5 (most deprived)	2897 22.4	3490 27.0	0.77 0.71 to 0.84	0.65 0.60 to 0.71
Trend test	χ^2 (1)=73.4; p<0.001	χ^2 (1)=135.5; p<0.001		

Stage	N	%	N	%	OR 95% CI	OR 95% CI
I	2170	16.8	1422	11.0	reference	reference
II	1672	12.9	765	5.9	1.43 1.28 to 1.60	1.40 1.25 to 1.56
III	3759	29.0	2333	18.0	1.06 0.97 to 1.15	1.00 0.91 to 1.09
IV	4210	32.5	6170	47.7	0.45 0.41 to 0.48	0.42 0.38 to 0.45
Not known	1131	8.7	2252	17.4	0.33 0.30 to 0.36	0.36 0.33 to 0.40
Trend test	χ^2 (1)=696.9; p<0.001	χ^2 (1)=713.7; p<0.001				

*Multivariable model including all factors; unknown stage and ethnicity categories were not included in tests for heterogeneity and trend.

CPES, National Cancer Patient Experience Survey.

stage I. This may reflect a higher intensity of treatment through which they were more likely to be included in the sampling frame. Moreover, the low inclusion of patients with lung cancer patients as a proportion of the incidence is consistent with another study which found that the initial 2000 and 2004 patient experience surveys did not represent patients registered with lung cancer in South East England (the response rate for lung patients was between 6% and 28% in 2000 and 2004, respectively).10

Strengths and limitations of this study

To our knowledge, this study is the first to compare CPES responders directly to the cancer registry population using the CPES–NCRAS data linkage. One strength of our study is the large sample size, which allowed for detailed comparison of demographic and tumour stage at diagnosis between CPES responders and cancer registration patients for the four different cancer types. While most of CPES responders for every survey year were recently diagnosed patients admitted and discharged from cancer care, CPES has a backward tail of patients diagnosed in previous years, representing long-term survivors. The cancer registry population on the other hand is the annual cumulative incidence of all cancers diagnosed. Randomly selected one patient who was not a CPES responder for each CPES responder matched on cancer site and period of diagnosis (same yearly quarter) to eliminate survival time bias, and to get similar level of stage and ethnicity data completeness for both groups.

We recognise that this study has several limitations. Although data completeness for stage and ethnicity at NCRAS has vastly improved since 2012,22 a proportion of patients had missing information on disease stage and ethnicity. In addition, we extracted ethnicity information from the same data source to get a similar ethnicity completeness. Yet, ethnicity and stage completeness were slightly higher for the CPES group compared with the cancer registry population, which might be explained by CPES responders being more often admitted to hospital and therefore appearing more in the HES records.

Study implications

CPES aims to capture patients’ experiences across many aspects of their care pathway and has successfully guided cancer policy, the monitoring and improvement of experiences and the development of cancer services across England.11 The survey data set is now linked to the cancer registry data, enabling researchers to explore more complex questions such as possible associations between cancer patients’ experiences and their clinical outcomes. As we have shown, the representativeness of the data set to the population of cancer patients is limited in some areas and varies between the four cancer types. When using results generated from this data set, cancer policy makers, cancer care providers, patient advocates, charities and health researchers should therefore be aware of several limitations. First, our exploration of this data set found that most of the survey responders were diagnosed close to the survey sampling frame period. This is because the CPES sampling frame is based on a recent hospital treatment, so the patients recruited may not represent the care experience or perspective for all cancer patients. Second, patients responding to the survey were more likely to be diagnosed with earlier stage diseases, and to have a higher median survival. This leads to an under-representation of the experiences of patients with poor prognosis, which disproportionally affects certain cancer types. Patients excluded from the survey because of the sampling frame very likely have greater health needs including those for supportive and palliative care which the survey cannot capture.
Table 3 Odds of breast cancer patients diagnosed between 2001 and 2013 having responded to CPES according to case mix

Variable	CPES (n=43966)	Cancer registry (non-CPES) (n=43966)	Univariable	Mutually adjusted*				
	N	%	N	%	OR	95% CI	OR	95% CI
Age group								
<30	257	0.6	221	0.5	1.06	0.88 to 1.27	1.05	0.88 to 1.27
30–44	5907	13.4	3921	8.9	1.37	1.31 to 1.43	1.34	1.28 to 1.41
45–59	17517	39.8	12761	29.0	1.25	1.21 to 1.29	1.23	1.19 to 1.27
60–74	15991	36.4	14520	33.0	reference	reference		
75–89	4175	9.5	10825	24.6	0.35	0.34 to 0.37	0.34	0.33 to 0.35
90+	119	0.3	1718	3.9	0.06	0.05 to 0.08	0.06	0.05 to 0.08
Trend test								
	χ² (1)=3984.3; p<0.001	χ² (1)=3857.5; p<0.001						
Ethnicity								
White	36329	82.6	33022	75.1	reference	reference		
Mixed	146	0.3	138	0.3	0.96	0.76 to 1.21	0.74	0.58 to 0.94
Asian	912	2.1	964	2.2	0.86	0.78 to 0.94	0.67	0.61 to 0.74
Black	576	1.3	539	1.2	0.97	0.86 to 1.09	0.81	0.72 to 0.92
Chinese	100	0.2	104	0.2	0.87	0.66 to 1.15	0.67	0.50 to 0.88
Other	30	0.1	24	0.1	1.14	0.66 to 1.94	0.84	0.48 to 1.45
Unknown	5873	13.4	9175	20.9	0.58	0.56 to 0.60	0.63	0.60 to 0.65
Heterogeneity test	χ² (5)=11.7; p=0.03	χ² (5)=76.1; p<0.001						
Area of residence								
South East	7040	16.0	8010	18.2	reference	reference		
East Midlands	4264	9.7	3741	8.5	1.30	1.23 to 1.37	1.16	1.10 to 1.23
East of England	5135	11.7	5025	11.4	1.16	1.11 to 1.22	1.00	0.94 to 1.05
London	5069	11.5	5320	12.1	1.08	1.03 to 1.14	1.15	1.09 to 1.21
North East	2417	5.5	2118	4.8	1.30	1.21 to 1.39	1.14	1.07 to 1.23
North West	4787	10.9	6080	13.8	0.90	0.85 to 0.94	0.88	0.84 to 0.93
South West	5364	12.2	5016	11.4	1.22	1.16 to 1.28	1.11	1.05 to 1.17
West Midlands	5250	11.9	4509	10.3	1.32	1.26 to 1.39	1.20	1.14 to 1.27
Yorkshire and The Humber	4640	10.6	4147	9.4	1.27	1.21 to 1.34	1.11	1.05 to 1.18
Heterogeneity test	χ² (8)=372.0; p<0.001	χ² (8)=178.5; p<0.001						
Deprivation								
1 (most affluent)	10154	23.1	9883	22.5	reference	reference		
2	10510	23.9	9905	22.5	1.03	0.99 to 1.07	1.04	0.99 to 1.08
3	9452	21.5	9204	20.9	1	0.96 to 1.04	1.00	0.96 to 1.04
4	7835	17.8	8080	18.4	0.94	0.91 to 0.98	0.95	0.91 to 0.99
5 (most deprived)	6015	13.7	6894	15.7	0.85	0.81 to 0.89	0.84	0.80 to 0.88
Trend test	χ² (1)=60.4; p<0.001	χ² (1)=73.6; p<0.001						
Stage								
I	11956	27.2	12939	29.4	reference	reference		
II	14047	31.9	10685	24.3	1.42	1.37 to 1.47	1.54	1.49 to 1.60
III	3983	9.1	2377	5.4	1.81	1.71 to 1.92	1.90	1.79 to 2.02
IV	1385	3.2	2159	4.9	0.69	0.65 to 0.75	0.84	0.78 to 0.91
Not known	12595	28.6	15806	36.0	0.86	0.83 to 0.89	1.06	1.02 to 1.10
Trend test	χ² (1)=63.7; p<0.001	χ² (1)=157.3; p<0.001						

*Multivariable model including all factors; unknown stage and ethnicity categories were not included in tests for heterogeneity and trend. CPES, National Cancer Patient Experience Survey.
Table 4 Odds of prostate cancer patients diagnosed between 2001 and 2013 having responded to CPES according to case
mix

Variable	CPES (n=20446)	Cancer registry (non-CPES) (n=20446)	Univariable	Mutually adjusted*			
	N	%	N	%	OR (95% CI)	OR	95% CI
Age group							
<44	36	0.2	43	0.2	0.68 0.44 to 1.07	0.71	0.45 to 1.12
45−59	2999	14.7	2106	10.3	1.11 1.04 to 1.18	1.15	1.08 to 1.23
60−74	13499	66	10511	51.4	reference	reference	
75−89	3870	18.9	7241	35.4	0.42 0.40 to 0.44	0.41	0.39 to 0.43
90+	42	0.2	545	2.7	0.06 0.04 to 0.08	0.06	0.04 to 0.08
Trend test					$\chi^2 (1)=1501.4$; p<0.001	$\chi^2 (1)=1542.7$; p<0.001	
Ethnicity							
White	17205	84.1	15132	74.0	reference	reference	
Mixed	48	0.2	42	0.2	1.01 0.66 to 1.52	0.96	0.62 to 1.46
Asian	204	1.1	235	1.1	0.76 0.63 to 0.92	0.79	0.65 to 0.96
Black	396	1.9	449	2.2	0.78 0.68 to 0.89	0.82	0.71 to 0.95
Chinese	58	0.3	63	0.3	0.81 0.57 to 1.16	0.83	0.58 to 1.20
Other	24	0.1	8	0.1	2.64 1.19 to 5.87	2.29	1.02 to 5.16
Unknown	2511	12.3	4517	22.1	0.49 0.46 to 0.52	0.49	0.46 to 0.51
Heterogeneity test					$\chi^2 (5)=27.7$; p<0.001	$\chi^2 (5)=16.6$; p=0.005	
Area of residence							
South East	2802	13.7	3677	18.0	reference	reference	
East Midlands	2015	9.9	1712	8.4	1.54 1.42 to 1.67	1.47	1.35 to 1.60
East of England	2378	11.6	2613	12.8	1.19 1.11 to 1.29	1.14	1.05 to 1.24
London	1959	9.6	2316	11.3	1.11 1.03 to 1.20	1.21	1.11 to 1.31
North East	989	4.8	907	4.4	1.43 1.29 to 1.59	1.42	1.27 to 1.58
North West	3737	18.3	2508	12.3	1.96 1.82 to 2.10	2.04	1.89 to 2.19
South West	2721	13.3	2504	12.2	1.43 1.33 to 1.53	1.34	1.24 to 1.45
West Midlands	2215	10.8	2217	10.8	1.31 1.21 to 1.42	1.26	1.16 to 1.36
Yorkshire and The Humber	1630	8.0	1992	9.7	1.07 0.99 to 1.17	1.05	0.96 to 1.14
Heterogeneity test					$\chi^2 (8)=470.1$; p<0.001	$\chi^2 (8)=459.8$; p<0.001	
Deprivation							
1 (most affluent)	5198	25.4	5019	24.5	reference	Reference	
2	5228	25.6	4886	23.9	1.03 0.98 to 1.09	1.01	0.95 to 1.07
3	4159	20.3	4261	20.8	0.94 0.89 to 1.00	0.94	0.88 to 1.00
4	3278	16.0	3463	16.9	0.91 0.86 to 0.97	0.90	0.84 to 0.96
5 (most deprived)	2583	12.6	2817	13.8	0.89 0.83 to 0.95	0.83	0.78 to 0.90
Trend test					$\chi^2 (1)=24.3$; p<0.001	$\chi^2 (1)=40.5$; p<0.001	
Stage							

Continued
In addition, there are notable differences in responders by cancer type by comparison with the cancer incidence registered every year in England. For example, out of all lung cancer incident cases diagnosed between 2011 and 2013 (incidents n=107,431), only 9% were captured in CPES (n=9,381) compared with 22% (n=28,781) for breast cancer (incidents n=128,552).27 As a consequence, the number of responses for individual cancer types may be too low to be reported and considered at a local level or to show improvement. This is particularly problematic for lung cancer—the most common cancer in males and females combined and the biggest killer of all the cancers.26 Work is therefore needed to recruit more patients with poor prognosis cancers in particular, so that cancer services can be designed based on these patients’ experiences and comments rather than on data from a mix of patients with other cancers. This might involve additional surveys that seek to capture experiences in the early part of the referral, investigation and diagnosis pathway from a larger number of patients. An alternative is to expand the current sampling frame or move to continuous sampling throughout the year for patients with poor prognosis cancers. For example, the Consumer Assessment of Healthcare Providers and Systems has made efforts and initiatives to capture unrepresented patients’ voices.23 Another example of a study including unrepresented patients is one carried in Denmark which aimed to capture lung cancer patient-reported outcomes at a nationwide level.21 Future efforts should assess the feasibility of adopting similar methods for CPES as well as on the reasons behind the low response rates among patients with advanced stage disease, older patients and those from non-White ethnic backgrounds.

CONCLUSION

This study demonstrates that while CPES has been a valuable tool for the large-scale reporting of patient experience, it does not necessarily represent all cancer patients in terms of patient and tumour stage at diagnosis for the four main cancers. These limitations need to be acknowledged by cancer policy makers, charities, cancer services and patient representatives using the findings and by researchers interpreting results from the survey and the linked registry data set. Future research should examine the feasibility of applying either supplementary focused or more continuous surveys for the under-represented groups of patients to capture their missing care experiences.

Author affiliations
1 Cancer Epidemiology, Population and Global Health, Comprehensive Cancer Centre, Faculty of Life Sciences & Medicine, King’s College London, London, UK
2 College of Health Science, Public Health Section, Saudi Electronic University, Riyadh, Saudi Arabia
3 Consumer Forum, NCRi CSG (Lung) Subgroup, BTOG Steering Committee, NHSE CEG, National Cancer Research Institute, London, UK
4 Consumer Involvement Advisory Group, Consumer Forum, National Cancer Research Institute, London, UK
5 National Cancer Registration and Analysis Service, National Cancer Registration and Analysis Service, Public Health England, National Cancer Registration and Analysis Service. We also collected by the NHS. The data are collated, maintained and quality assured by Public Health England. Therefore, separate ethical approval was not required for this study.

Acknowledgements

Twitter Saleh A Alessy @SalehAleesy

Competing interests

None declared.

Ethics approval

The National Cancer Registration and Analysis Service received approval from the Confidentiality Advisory Group of the National Health Service (NHS) Health Research Authority to carry out surveillance using the data they collect on all cancer patients under section 251 of the NHS Act 2006. SAA (the lead author) is a PhD student at King’s College London and has been guaranteed a studentship agreement with the National Cancer Registration and Analysis Service at Public Health England. Therefore, separate ethical approval was not required for this study.

Provenance and peer review

Not commissioned; externally peer reviewed.
REFERENCES

1. Coulter A, Fitzpatrick R, Cornwell J. Measures of patients’ experience in hospital: purpose methods and uses 2009.
2. Browne K, Roseman D, Shaller D, et al. analysis & commentary Measuring Patient Experience As A Strategy For Improving Primary Care. Health Aff 2010;29:921–5.
3. Anhang Price R, Elliott MN, Zaslavsky AM, et al. Examining the role of patient experience surveys in measuring health care quality. Med Care Res Rev 2014;71:522–54.
4. Davies E, Shaller D, Edgman-Levitan S, et al. Evaluating the use of a modified CAHPS® survey to support improvements in patient-centred care: lessons from a quality improvement collaborative. Health Expect 2008;11:160–76.
5. The Health Quality Council of Alberta. Primary care patient experience survey, 2019. Available: https://hqca.ca/surveys/patient-experience-survey/ [Accessed 14 Jan 2019].
6. The CAHPS Program. CAHPS cancer care survey, 2019. Available: https://www.ahq.gov.ca/ahq/about-cahps/cahps-program/index.html [Accessed 14 Jan 2019].
7. Australian Institute of Health and Welfare. Patient experiences in Australia in 2016–17, 2019. Available: https://www.aihw.gov.au/reports/primary-health-care/patient-experiences-in-australia-in-2016-17/contents/summary [Accessed 14 Jan 2019].
8. Cleary PD. Evolving concepts of patient-centered care and the assessment of patient care experiences: optimism and opposition. J Health Polit Policy Law 2016;41:675–96.
9. ALESSY SA, Lüchtenborg M, Davies EA. How have patients’ experiences of cancer care been linked to survival? A systematic review. Patient Exp J 2019;6:63–80.
10. Madden PB, Davies EA. Reporting cancer patients’ experiences of care for quality improvement: analysis of 2000 and 2004 survey results for South East England. J Eval Clin Pract 2010;16:776–83.
11. The Independent Cancer Taskforce. Achieving World-Class cancer outcomes, 2015. Available: https://www.cancerresearchuk.org/sites/default/files/achieving_world-class_cancer_outcomes_-_a_strategy_for_ England_2015-2020.pdf
12. Department of Health. National cancer patient experience. survey programme. 2010 national survey report 2010:1–142.
13. El Turabi A, Abel GA, Roland M, et al. Variation in reported experience of involvement in cancer treatment decision making: evidence from the National cancer patient experience survey. Br J Cancer 2013;109:780–7.
14. Bone A, Mc Grath-Lone L, Day S, et al. Inequalities in the care experiences of patients with cancer: analysis of data from the National cancer patient experience survey 2011–2012. BMJ Open 2014;4:e004567.
15. Saunders CL, Abel GA, Lyratopoulos G. Inequalities in reported cancer patient experience by socio-demographic characteristic and cancer site: evidence from respondents to the English cancer patient experience survey. BMJ Open 2014;4:e004039.
16. Pinder RJ, Ferguson J, Moller H. Minority ethnicity patient satisfaction and experience: results of the National cancer patient experience survey in England. BMJ Open 2016;6:e011938.
17. Saunders CL, Abel GA, Lyratopoulos G. What explains worse patient experiences for patients from non-white ethnic groups? A secondary analysis of the cancer patient experience survey. BMJ Open 2014;4:e004039.
18. Z-H H, Connell JE, Yuan J-M, et al. Role of survivor bias in pancreatic cancer case-control studies. Ann Epidemiol 2016;26:50–6.
19. Ettner J-F, Perneger TV. Analysis of non-response bias in a mailed health survey. J Clin Epidemiol 1997;50:1123–8.
20. Abel GA, Saunders CL, Lyratopoulos G. Post-sampling mortality and non-response patterns in the English cancer patient experience survey: implications for epidemiological studies based on surveys of cancer patients. Cancer Epidemiol 2016;41:34–41.
21. Bronserud MM, lachina M, Green A, et al. Patient-Reported outcomes (pros) in lung cancer: experiences from a nationwide feasibility study. Lung Cancer 2019;128:67–73.
22. National Institute for Social Care and Health Research. Data resource profile: National cancer registration dataset in England. Int J Epidemiol 45.
23. Carneiro IG, Charnock J, Fry A, et al. Linking the English cancer patient experience survey to cancer registration: relating patient experience survey, Eur J Cancer Care 2015;24:85–98.
24. NHS Digital. Hospital episode statistics, 2018. Available: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics#summary [Accessed 7 Jul 2019].
25. National Statistics. English indices of deprivation 2015, 2015. Available: https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015 [Accessed 14 Nov 2018].
26. Health and Social Care Information Centre. National lung cancer audit report 2014, 2014. Available: https://www.hscic.gov.uk/wp-content/uploads/2018/02/4rar0rf.pdf [Accessed 12 Nov 2018].
27. Office for National Statistics. Cancer registration statistics, England statistical bulletins: 2017, 2019. Available: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancerregistrationstatisticsEngland/previousReleases [Accessed 24 Mar 2019].
28. Office for National Statistics. Cancer survival in England, 2019. Available: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/cancersurvival/England/nationalestimatesforpatientsfollowedupto2017 [Accessed 11 Mar 2019].
29. Anhang Price R, Elliott MN. Measuring Patient-Centeredness of care for seriously ill individuals: challenges and opportunities for accountability initiatives. J Palliat Med 2018;21:S-28–S-35.