NON DENTABLE SETS IN BANACH SPACES WITH SEPARABLE DUAL

SPIROS A. ARGYROS AND IRENE DELIYANNI
(Herakleion Crete)

ABSTRACT. A non RNP Banach space E is constructed such that E^* is separable and RNP is equivalent to PCP on the subsets of E.

The problem of the equivalence of the Radon-Nikodym Property (RNP) and the Krein Milman Property (KMP) remains open for Banach spaces as well as for closed convex sets. A step forward has been made by Schachermayer's Theorem [S]. That result states that the two properties are equivalent on strongly regular sets. Rosenthal, [R], has shown that every non-RNP strongly regular closed convex set contains a non-dentable subset on which the norm and weak topologies coincide. In a previous paper ([A-D]) we proved that every non RNP closed convex contains a subset with a martigale coordination. Furthermore we established the $P\alpha\ell$-representation for several cases. The remaining open case in the equivalence of RNP and KMP is that of B-spaces or closed convex sets where RNP is equivalent to PCP in their subsets. Typical example for a such structure are the subsets of $L^1(0,1)$. H. Rosenthal raised the question if this could occur when the dual of the space is separable. W. James ([J2]) also posed a similar problem. The aim of the present paper is to give an example of a Banach space E with separable dual failing RNP, and RNP is equivalent to PCP on its subsets. As consequence we get that E does not contain $c_0(\mathbb{N})$ isomorphically and hence it does not embed into a Banach space with an unconditional skipped F.D.D. On the other hand E semiembeds into a Banach space with an unconditional basis. The last property allows us to conclude that every closed convex non-RNP subset of E contains a closed non-dentable set with a $P\alpha\ell$-representation. We recall that a closed set K has a $P\alpha\ell$-representation if there is an affine, onto, one to one continuous map from the atomless probability measures on $[0,1]$ to the set K. In particular RNP is equivalent to KMP on the subsets of E. The space E is realized by applying the Davis-Figiel-Johnson- Pelczynski factorization method to a convex symmetric set W of a Banach space E_{in} constructed in this paper. Finally as a consequence of the methods used in the proofs of the example we obtain that every separable B-space X such that X^{**}/X is isomorphic to $\ell^1(\Gamma)$ has RNP.

We thank H. Rosenthal and T. Odell for some useful discussions related to the problem studied in the present paper. We also thank the Department of Mathematics of Oklahoma State University for its technical support.
We start with some definitions, notations and results necessary for our constructions.

A closed convex bounded set K is said to be δ-non dentable, $\delta > 0$, if every slice of K has diameter greater than δ. A closed convex set has RNP if it contains no δ-non dentable set. A closed K subset of a B-space has the P.C.P. if for every subset L of K and for all $\varepsilon > 0$ there exists a relatively weakly open neibhd of L with diameter less than ε. It is well known that RNP implies P.C.P, but the converse fails [B-R].

In the sequel D denotes the dyadic tree namely the set of all finite sequences of the for $a = \{0, \varepsilon_1, ..., \varepsilon_n\}$ with $\varepsilon_i = 0$ or 1. For a in D the length of a is denoted by $|a|$. A natural order is induced on D, that is $a \prec \beta$ if the sequence a is an initial segment of the sequence β. Two elements a, β of D are called incomparable if they are incomparable in the above defined order. We notice, for later use, that each a in D determines a unique basic clopen subset V_a in Cantor’s group $\{0, 1\}^\mathbb{N}$ and a, β are incomparable if $V_a \cap V_\beta = \emptyset$.

A basic ingredient in the definition of the space E is Tsirelson’s norm as it is defined in [F-J]. We recall that the norm of this space satisfies the following implicit fixed point property.

For $x = \sum_{\kappa=1}^{m} \lambda_\kappa t_\kappa$

$$|| \sum_{K=1}^{m} \lambda_\kappa t_\kappa ||_T = \max\{ \max_\kappa |\lambda_\kappa|, \frac{1}{2} \sup_{j=1}^{n} \sum_{j=1}^{n} ||E_j x||_T \}$$

where the “sup” is taken over all choices

$$m < E_1 < E_2 < ... < E_n$$

$E_1, ..., E_n$ is an increasing sequence of intervals in the set of natural numbers and $E_j x$ is the natural projection of x in the space generated by vectors of the basis $\{t_k : k \in E_j\}$ Tsirelson’s space is a reflexive Banach space with an unconditional basis not containing any ℓ^p for $1 < p < \infty$.

1.a The space E_u

The space E_u will be defined to have an unconditional basis indexed by the dyadic tree D and denoted by $(e_a)_{a \in D}$. For a sequence of reals $(\lambda_\alpha)_{\alpha \in D}$ which is eventually zero we define

$$|| \sum_{a \in D} \lambda_a e_a || = \sup\{ || \sum_{i=1}^{\ell} \lambda_{a_i} t_{k_i} ||_T : \{a_i\}_{i=1}^{\ell} \text{ are incomparable,}$$

$$|a_i| = \kappa_i, \kappa_1 < \kappa_2 < ... < \kappa_\ell \}.$$
1.1 Proposition. The dual of the space E_u is separable.

Proof. The spare E_u has an unconditional basis hence it is enough to show that ℓ^1 does not embed into E_u $[J_1]$.

Suppose, on the contrary, that ℓ^1 embeds into E_u. Then, by standard arguments, we can find $\ell_1 < \ell_2 < ... < \ell_k < ...$ an increasing sequence of natural numbers and \{x_k\}_{k=1}^{\infty} a normalized sequence in E_u equivalent to the usual basis of ℓ^1, and

$$x_k = \sum_{\ell_k < |\alpha| < \ell_{k+1}} \lambda_\alpha e_\alpha$$

The definition of the norm of E_u and elementary properties of Tsirelson’s norm show that

$$||\sum_{k=1}^{m} \mu_k x_k|| \leq ||\sum_{k=1}^{m} \mu_k t_{\ell_{k+1}}||_T$$

so \{t_{\ell_k}\}_{k=2}^{\infty} is equivalent to the basis ℓ^1. This contradicts to the reflexivity of T. □

A consequence of the above Proposition is that the basis $(e_\alpha)_{\alpha \in D}$ is shrinking. Therefore every x^{**} in E_u^{**} has a unique representation as

$$x^{**} = w^* \lim_{n \to \infty} \sum_{|\alpha| \leq n} \lambda_\alpha e_\alpha := w^* - \sum_{\alpha \in D} \lambda_\alpha e_\alpha$$

and $\lambda_\alpha = < x^{**}, e_\alpha^* >$.

We define the support of x^{**}, denoted by $\text{supp } x^{**}$, to be the set

$$\{\alpha \in D : < x^{**}, e_\alpha^* > \neq 0\}.$$
and

\[\| P_{[n, \infty)} (x^{**}) \| = \lim_{m \to \infty} \| P_{[n,m]} (x^{**}) \| \]

To establish the result it is enough to show that for \(\varepsilon > 0 \) there exists \(n(\varepsilon) \) such that for all \(m > n(\varepsilon) \)

\[\| P_{[m, \infty)} (\sum_{i=1}^{k} x_i^{**}) \| \geq \frac{1}{2} \sum_{i=1}^{k} d(x_i^{**}, E_u) - \varepsilon. \]

Actually \(n(\varepsilon) = \max\{ \kappa, |a_1|, \ldots |a_k| \} \).

Choose any \(m > n(\varepsilon) \). Inductively we define \(\{ q_i, \ell_i \}_{i=1}^{\kappa} \) such that

\[m < q_1 < \ell_1 < \ldots < q_k < \ell_k \]

and \(\| P_{[q_i, \ell_i]} (x_i^{**}) \| > d(x_i^{**}, E_u) - \frac{\varepsilon}{2^k} \).

For each \(1 \leq i \leq k \) there is a set \(\{ \beta_j^i : 1 \leq j \leq s(i) \} \) of incomparable elements of \(D \) such that \(q_i \leq |\beta_j^i| \leq \ell_i \) and

\[\| P_{[q_i, \ell_i]} (x_i^{**}) \| = \| \sum_{j=1}^{s(i)} \lambda^i_{\beta_j^i} t_{|\beta_j^i|} \|_T. \]

Notice that \(a_i < \beta_j^i \) for all \(j = 1 \ldots s(i) \).

Observe that \(\bigcup_{1 \leq i \leq k} \{ \beta_j^i : 1 \leq j \leq s(i) \} \) consists of pairwise incomparable elements. So

\[\| P_{[m, \infty)} (\sum_{i=1}^{\kappa} x_i^{**}) \| \geq \| P_{[m, \ell_k]} (\sum_{i=1}^{\kappa} x_i^{**}) \| \geq \]

\[\| \sum_{i=1}^{\kappa} \sum_{j=1}^{s(i)} \lambda^i_{\beta_j^i} t_{|\beta_j^i|} \|_T \geq \frac{1}{2} \sum_{i=1}^{\kappa} \| \sum_{j=1}^{s(i)} \lambda^i_{\beta_j^i} t_{|\beta_j^i|} \|_T \]

\[= \frac{1}{2} \sum_{i=1}^{\kappa} \| P_{[q_i, \ell_i]} (x_i^{**}) \| \geq \frac{1}{2} \sum_{i=1}^{\kappa} d(x_i^{**}, E_u) - \varepsilon \quad \Box \]

Consider the following closed convex subset of the unit ball of \(E_u \)

\[K = \{ x \in E_u : x = \sum_{n=0}^{\infty} \sum_{|a|=n} \lambda_a e_a, \lambda_0 = 1, \lambda_a \geq 0, \lambda_a = \lambda_{(a,0)} + \lambda_{(a,1)} \}. \]

It is easily verified that \(K \) is the closed convex hull of a \(\frac{1}{2} \)-tree \((d_\alpha)_{\alpha \in D} \) where for every \(a \) in \(D \) \(d_\alpha \) is defined by the conditions \(e_{(\alpha)}^* (d_\alpha) = 1, e_{(\alpha,0)}^* (d_\alpha) = e_{(\alpha,1)}^* (d_\alpha) = \frac{1}{2} e_{(\alpha)}^* (d_\alpha) \) and \(d_\alpha \in K \).

We set \(W = co(K \cup -K) \) and we denote by \(\tilde{W} \) its \(w^* \) closure in \(E_u^{**} \). Notice that \(x^{**} \in \tilde{W} \) if \(|e_{(\alpha)}^* (x^{**})| \leq 1, e_{(\alpha,0)}^* (x^{**}) + e_{(\alpha,1)}^* (x^{**}) = e_{(\alpha)}^* (x^{**}) \) for all \(a \) in \(D \). Hence we could define a map

\[T : M ((0, 1)^{\mathbb{N}}) \to \tilde{W} \]
with the rule
\[T(\mu) = w^* - \sum_{\alpha \in D} \mu(V_\alpha)e_\alpha \]
where \(V_\alpha = \{ \gamma \in \{0, 1\}^\mathbb{N} : \gamma \uparrow |\alpha| = a \} \)
Clearly \(T \) is one to one and onto. Furthermore
\[||T(\mu)|| \leq \sup \{ \sum_{i=1}^k |\mu(V_{\alpha_i})| : \{\alpha_i\}_{i=1}^k \text{ incomparable} \} = ||\mu||. \]
Hence \(T \) is extended to a bounded linear operator from \(M(\{0, 1\}^\mathbb{N}) \) onto the linear span of \(\hat{W} \) denoted by \(<\hat{W}> \).

1.b The Space \(E \)

The space \(E \) is the result of the application of Davis-Figiel-Johnson-Pelczynski [D] factorization method to the set \(W \) defined above.

We give the precise definition and certain properties of the space \(E \).

\[E = \{ y \in E_u : |||y||| = (\sum_{n=1}^{\infty} ||y||_n^2)^{\frac{1}{2}} < \infty \} \]
Here \(|||\cdot|||_n \) denotes the Minkowski’s gauge of the set \(2^nW + \frac{1}{2^n}B_{E_u} \).

Let \(J : E \to E_u \) be the natural injection. We notice that \(J[B_E] \) contains the set \(W; \) hence \(E \) fails RNP.

The operator \(J \) satisfies the following properties.

P.1.: \(J^{**} : E^{**} \to E_u^{**} \) is one to one and \(J^{**}[E^{**}] \cap E_u = J[E] \).

As consequence of this property \(E^* \) is separable.

P.2.: \(J \) is a weak to weak homeomorphism on the bounded subsets of \(E \). This is a consequence of P.1 and it implies that \(J[L] \) is closed for all \(L \), closed convex bounded subsets of \(E \). In particular \(J \) is a semiembedding.

P.3.: Let \(L \) be a closed convex bounded subset of \(E \) failing RNP. Then \(J[L] \) is non RNP. If not, \(J[L] \) is an RNP set, hence for any \(L \)-valued operator \(S : L^1 \to E \) the operator \(JoS \) is representable by a function \(\varphi \) in \(L_{j[L]}^\infty \). Then the function \(\Psi = J^{-1}\varphi \) represents the operator \(S \) and \(K \) is RNP. ([B - R])

P.4.: If \(L \) is bounded subset of \(E \) and \(J[L] \) fails P.C.P. then \(L \) fails P.C.P.

Indeed, for \(\{y_n\}_{n=1}^{\infty} \) in \(L \) such that \(J(y_n) \to J(y) \) and \(||J(y_n) - J(y)|| > \delta > 0 \) P.2. ensures that \(y_n \to y \) and also \(||y_n - y|| > \frac{\delta}{||J||} \). Hence \(y \) is not a point of continuity.

P.5.: \(J^{**}[E^{**}] \subseteq <\hat{W}> \)

For this, notice that \(B_{E^{**}} \subseteq 2^n\hat{W} + \frac{1}{2^n}B_{E_u^{**}} \) hence
\[J^{**}[B_{E^{**}}] \subseteq \cap_n(2^n\hat{W} + \frac{1}{2^n}B_{E_u^{**}}) \subseteq <\hat{W}>. \]

We proceed to the proof of the main property of the space \(E \).
1.3 Proposition. Let \(K \) be a closed, convex, bounded, non RNP subset of \(E \). Then \(K \) fails P.C.P.

Proof. Property 3, mentioned before, ensures that \(J[K] \) is non RNP closed subset of \(E \). Hence for some \(\delta > 0 \) there exists a convex closed \(L \) subset of \(J[K] \) which is \(\delta \)-nondentable. Our goal is to show that every weak neighd in \(L \) has diameter greater than \(\frac{\delta}{256} \). By a result due to Bourgain \([B]\) it is enough to show that for every \(S_1, S_2, \ldots, S_n \) slices of \(\tilde{L} \) there exists \(x^{**}_i \) in \(S_i \) \(i = 1, 2, \ldots, n \) such that for all \((\lambda_i)_{i=1}^n \in \mathbb{R}_+^n \)

\[
d(\sum_{i=1}^n \lambda_i x^{**}_i, E_u) > \frac{\delta}{256}
\]

Given \(S_1, S_2, \ldots, S_n \) slices of \(\tilde{L} \). Using Lemma 2.7 from [R] we choose \((x^{**}_{\xi,i})_{\xi \omega_1} \) an uncountable subset of \(S_i \) such that

\[
d(x^{**}_{\xi,i} - x^{**}_{\zeta,i}, E_u) > \frac{3\delta}{8} \text{ for } \xi \neq \zeta.
\]

Recall that \(\tilde{L} \) is a subset of \(J^{**}[E^{**}] \subset \overline{<W>} \) and that \(T[M\{0,1\}^N] \) is norm dense into \(\overline{<W>} \). Hence there are \((\mu_{\xi,i})_{\xi \omega_1, i \leq n} \) such that

\[
||T\mu_{\xi,i} - x^{**}_{\xi,i}|| < \frac{\delta}{256}
\]

Also, it is known that \(M(\{0,1\}^N) = (\sum_{\gamma < 2^\omega} \oplus L^1(\lambda_\gamma))_1 \)

where \(\{\lambda_\gamma\}_{\gamma < 2^\omega} \) are pairwise singular probability measures on \(\{0,1\}^N \) and \(L^1(\lambda_\gamma) = L^1[0,1] \) or \(L^1(\lambda_\gamma) = \mathbb{R} \).

Therefore

\[
\mu_{\xi,i} = \sum_{\gamma < 2^\omega} \frac{d\mu_{\xi,i}}{d\lambda_\gamma}
\]

where the sum is taken in \(\ell_1 \)-norm.

Choose \(F_{\xi,i} \) finite subset of \(2^\omega \) so that the measure \(\mu'_{\xi,i} = \sum_{\gamma \in F_{\xi,i}} \frac{d\mu_{\xi,i}}{d\lambda_\gamma} \) satisfies

\[
||T\mu'_{\xi,i} - x^{**}_{\xi,i}|| < \frac{\delta}{256}
\] \hspace{1cm} (1)

In particular for \(\xi \neq \zeta \) we get

\[
d(T\mu'_{\xi,i} - T\mu'_{\zeta,i}, E_u) > \frac{\delta}{256}
\] \hspace{1cm} (2)
Apply Erdős-Rado’s Lemma [C-N] to the family \(\{ F_\xi = \bigcup_{i=1}^{n} \xi_i, \xi < \omega_1 \} \) and find \(A \) uncountable, \(F \) finite such that for \(\xi \neq \zeta \in A \)

\[
F_\xi \cap F_\zeta = F.
\]

We set \(\lambda_F = \sum_{\gamma \in F} \lambda_\gamma \) and for \(\xi \in A \)

\[
\nu_{\xi} = \mu_{\xi} - \frac{d\mu_{\xi,i}}{d\lambda_F}
\]

Claim: For all \(i = 1, \ldots, n \) the set \(B_i = \{ \xi \in A : d(T\nu_{\xi,i}, E_u) \leq \frac{\delta}{16} \} \) is at most countable.

Proof of the Claim. Suppose that for some \(i \) the set \(B_i \) is uncountable. Then, since \(L^1(\lambda_F) \) is separable, there are \(\xi \neq \zeta \) in \(B_i \) such that

\[
|| \frac{d\mu_{\xi,i}}{d\lambda_F} - \frac{d\mu_{\zeta,i}}{d\lambda_F} || < \frac{\delta}{16}
\]

But then

\[
d(T\mu'_{\xi,i} - T\mu'_{\zeta,i}, E_u) < \frac{\delta}{4}
\]

which contradicts inequality (2) and this completes the proof of the claim.

Choose \(\xi_1 < \xi_2 < \ldots < \xi_n \) in \(A \) such that

\[
d(T\nu_{\xi,i}, E_u) > \frac{\delta}{16} \tag{3}
\]

In the rest of the proof we will denote \((\xi_i, i) \) by \(\xi_i \).

Notice that the measures \(\nu_{\xi_1}, \ldots, \nu_{\xi_n}, \lambda_F \) are pairwise singular. Choose \(W_1, \ldots, W_n \) pairwise disjoint clopen subsets of \(\{0, 1\}^\mathbb{N} \) pairwise disjoint such that for \(i = 1, \ldots, m \)

\[
|| \nu_{\xi_i} |W_i^c| || < \frac{\delta}{128} \text{ and } || \frac{d\mu_{\xi_i}}{d\lambda_F} | \bigcup_{j=1}^{n} W_j || < \frac{\delta}{128} \tag{4}
\]

We are ready to prove the desired property. Indeed, for \(\lambda_i \geq 0, \sum_{i=1}^{n} \lambda_i = 1 \) we have

\[
d(\sum_{i=1}^{n} \lambda_i T\mu_{\xi}, E_u) \geq d(\sum_{i=1}^{n} \lambda_i T\mu_{\xi,i} \upharpoonright \bigcup_{j=1}^{n} W_j, E_u) \geq
\]

\[
d(\sum_{i=1}^{n} \lambda_i (T\nu_{\xi_i} \upharpoonright W_i), E_u) - \sum_{i=1}^{n} \lambda_i || T\nu_{\xi_i} \upharpoonright \bigcup_{j \neq i} W_j || -
\]

\[
\sum_{i=1}^{n} \lambda_i || \frac{d\mu_{\xi_i}}{d\lambda_i} \bigcup_{j=1}^{n} W_j ||
\]

\[
\sum_{i=1}^{n} \lambda_i || \frac{d\mu_{\xi_i}}{d\lambda_i} \bigcup_{j=1}^{n} W_j ||
\]

\[
\sum_{i=1}^{n} \lambda_i || \frac{d\mu_{\xi_i}}{d\lambda_i} \bigcup_{j=1}^{n} W_j ||
\]

\[
\sum_{i=1}^{n} \lambda_i || \frac{d\mu_{\xi_i}}{d\lambda_i} \bigcup_{j=1}^{n} W_j ||
\]
From Lemma 1.2 we get
\[d(\sum_{i=1}^{n} \lambda_i (T \nu_{\xi_i} \upharpoonright W_i), E_u) \geq \frac{1}{2} \sum_{i=1}^{n} \lambda_i d(T \nu_{\xi_i} \upharpoonright W_i, E_u) \]
and from (3) and (4) we get
\[d(\sum_{i=1}^{n} \lambda_i T \mu'_{\xi_i}, E_u) > \frac{3\delta}{4} - \delta \frac{64}{128} = \frac{\delta}{128} \]
Finally from (1) we have
\[d(\sum_{i=1}^{n} \lambda_i x_{\xi_i}^*, E_u) > \frac{\delta}{256} \]
So L fails P.C.P., and P.4 ensures that \(J^{-1}(L) \) also fails this property. □

1.4 Remark The space E does not contain a subspace isomorphic to \(c_0(\mathbb{N}) \). This is because \(c_0(\mathbb{N}) \) contains a non RNP closed convex subset on which norm and weak topologies coincide. Therefore E does not embed into a space with an unconditional skipped block finite dimensional decomposition. The last follows from the fact that E fails P.C.P. and it does not contain \(c_0(\mathbb{N}) \). Finally E semiembeds into \(E_u \) a space with an unconditional basis.

1.5 Proposition. The properties RNP and KMP are equivalent on the subsets of E. Furthermore if K is closed convex non RNP subset of E then it contains a subset L with a Po\ell-representation.

Proof. As we mentioned before if K is closed convex bounded non RNP then \(J[K] \) carries the same properties and it is contained into \(E_u \) which has an unconditional basis. Therefore, there exists an L closed convex subset of \(J[K] \) with a Po\ell-representation [A-D]. Then \(J^{-1}[L] \) has the same property. □

We conclude with the following result.

1.6 Theorem. Suppose that X is a separable Banach space such that \(X^{**}/X \) is isomorphic to \(\ell^1(\Gamma) \). Then X has RNP.

Proof. Assume that X contains a \(\delta \)-non dentable subset K. Then the techniques developed in the proof of Proposition 1.3 shows that K is non strongly regular.

Actually every \(\sum_{i=1}^{u} \lambda_i S_i \) convex combination of slices will have diameter greater than \(\frac{\delta}{256} \). Hence by a result due to Bourgain [B], \(\ell^1 \) embeds into \(X^* \), and by Pelczynski’s Theorem [P] \(M[0,1] \) embeds into \(X^{**} \). But then there exists a sequence \((x_n^{**})_{n \in \mathbb{N}} \) weakly convergent to zero and \(d(x_n^{**}, X) > \delta \). This contradicts the Schur property of \(\ell^1(\Gamma) \). □

1.7 Remark Odell in [O] has constructed a separable B-space X with \(X^{**}/X \cong \ell^1(2^\omega) \). From a theorem by Lindenstrauss [L] follows that every separable B space X and its dual \(X^* \) are of the form \(Z^{**}/Z \) for some separable Banach space \(Z \).
NON DENTABLE SETS IN BANACH SPACES WITH SEPARABLE DUAL

References

[[A-D]] S. Argyros and I. Deliyammi, *Representations of Convex Non Dentable Sets*, preprint.

[[B]] J. Bourgain, *La Propriété de Radom-Nikodym*, Math Univ. Pierre et Marie Curie 36 (1979).

[[B-R]] J. Bourgain and H. Rosenthal, *Applications of the Theory of Semi-embeddings to Banach Spaces Theory*, J. Func. Anal. 52 (1983), 149–188.

[[D]] W. Davis, T. Figiel, W. Johnson and A. Pelczynski, *Factoring Weakly Compact Operators*, J. Funct. Anal. 17 (1974), 311–327.

[[F-J]] T. Figiel and W. Johnson, *A Uniformly Convex Banach Space Which Contains No ℓ_p*, Compositio Math 29 (1974), 179–190.

[[J1]] R. James, *Bases and Reflexivity of Banach Spaces*, Ann. of Math 52 (1950), 518–527.

[[J2]] R. James, *Some Interesting Banach Spaces*, preprint.

[[L]] J. Lindenstrauss, *On James’ paper Separable Conjugate Spaces*, Israel J. Math 9 (1971), 279–284.

[[P]] A. Pelczynski, *On Banach Spaces Containing L^1(µ)*, Stud. Math 30 (1968), 231–246.

[[O]] W. Odell, *A Non Separable Banach Space Not Containing a Subsymmetric Basic Sequence*, Israel J. Math 52 (1985), 97–109.

[[R]] H. Rosenthal, *On the Structure of Non Dentable Closed Bounded Convex Sets*, Adv. in Math 70 (1988), 1–58.

[[S]] W. Schachermayer, *R.N.P. and K.M.P. are Equivalent for Strongly Regular Sets*, Trans. A.M.S. 303 (1987), 673–687.

Department of Mathematics
University of Crete
Herakleion Crete