One-dimensional kinetic description of nonlinear traveling-pulse (soliton) and traveling-wave disturbances in long coasting charged particle beams

Ronald C. Davidson and Hong Qin

July 2015
Princeton Plasma Physics Laboratory
Report Disclaimers

Full Legal Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Trademark Disclaimer

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

PPPL Report Availability

Princeton Plasma Physics Laboratory:

http://www.pppl.gov/techreports.cfm

Office of Scientific and Technical Information (OSTI):

http://www.osti.gov/scitech/

Related Links:

U.S. Department of Energy

U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Fusion Energy Sciences
One-dimensional kinetic description of nonlinear traveling-pulse (soliton) and traveling-wave disturbances in long coasting charged particle beams

Ronald C. Davidson1 and Hong Qin1,2

1Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA

2School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of a long coasting beam propagating through a perfectly conducting circular pipe with radius r_w. The average axial electric field is expressed as $\langle E_z \rangle = -\frac{\partial}{\partial z} \langle \phi \rangle = -e_b g_0 \frac{\partial \lambda_b}{\partial z} - e_b g_2 r_w^2 \frac{\partial^3 \lambda_b}{\partial z^3}$, where g_0 and g_2 are constant geometric factors, $\lambda_b(z,t) = \int dp_z F_b(z,p_z,t)$ is the line density of beam particles, and $F_b(z,p_z,t)$ satisfies the 1D Vlasov equation. Detailed nonlinear properties of traveling-wave and traveling-pulse (solitons) solutions with time-stationary waveform are examined for a wide range of system parameters extending from moderate-amplitudes to large-amplitude modulations of the beam charge density. Two classes of solutions for the beam distribution function are considered, corresponding to: (a) the nonlinear waterbag distribution, where $F_b = \text{const.}$ in a bounded region of p_z-space; and (b) nonlinear Bernstein-Green-Kruskal (BGK)-like solutions, allowing for both trapped and untrapped particle distributions to interact with the self-generated electric field $\langle E_z \rangle$.

PACS numbers: 29.27.Bd, 52.25.Dg
I. INTRODUCTION

High-energy accelerators and transport systems [1–6] have a wide variety of applications ranging from basic research in high energy and nuclear physics, to applications such as spallation neutron sources, medical physics, and heavy ion fusion. As a consequence, it is increasingly important to develop an improved understanding of collective processes and the nonlinear dynamics of intense charged particle beam systems. While there has been considerable progress in three-dimensional numerical and analytical investigations of the nonlinear Vlasov-Maxwell equations describing intense beam propagation, there is also considerable interest in the development and application of simplified one-dimensional kinetic models to describe the longitudinal nonlinear dynamics of long coasting beams [7–15] in linear (linac) or large-major-radius ring geometries. The present paper employs the one-dimensional kinetic formalism recently developed by Davidson and Startsev [14] for a long coasting beam propagating through a perfecting conducting circular pipe with radius r_w. In Ref. [14] the average longitudinal electric field is expressed as $\langle E_z \rangle (z,t) = -\left(\partial / \partial z \right) \langle \phi \rangle (z,t) = -e_b g_0 \partial \lambda_b / \partial z - e_b g_0 r_w^2 \partial^3 / \partial z^3$, where e_b is the particle charge, g_0 and g_z are constant geometric factors that depend on the location of the conducting wall and the shape of the transverse density profile, and $\lambda_b (z,t) = \int dp_z F_b (z,p_z,t)$ is the line density. In a previous application of the 1D kinetic formalism developed in Ref. [14], the analyses in Ref. [15] assumed that the longitudinal distribution $F_b (z,p_z,t)$ corresponded to a so-called waterbag distribution [16–19], where $F_b = \text{const.}$ within moving boundaries in the phase space (z,p_z). The weakly nonlinear analysis in Ref. [15] showed that disturbances moving near the sound speed evolve according to the Korteweg-deVries (KdV) equation [20–24]. The classical KdV equation, which arises in several areas of nonlinear physics in which there are cubic dispersive corrections to sound-wave-like signal propagation, also has the appealing feature that it’s exactly solvable using inverse scattering techniques.

While the analysis in Ref. [15] reveals many interesting properties of the nonlinear evolution of longitudinal disturbances in intense charged particle beams, it is restricted to the weakly nonlinear regime. In the present analysis, we remove the restriction to the weakly nonlinear regime, and make use of the 1D kinetic model developed in Ref. [14], allowing for moderate to large-amplitude modulation in the charge density of the beam particles. The organization of this paper is the following. In Sec. II, the 1D kinetic model [14] is briefly
reviewed (Sec. II A), and exact (local and nonlocal) nonlinear conservation constraints are derived (Sec. II B) for the conservation of particle number, momentum, and energy per unit length of the beam, making use of the nonlinear Vlasov equation for $F_b(z, p_z, t)$ in Eq. (1), and the expression for $\langle E \rangle (z, t)$ in Eq. (2). Removing the assumption of weak nonlinearity made in Ref. [15], Sec. III focuses on use of the fully nonlinear kinetic waterbag model (Sec. III A) to investigate detailed properties of nonlinear pulse-like (soliton) or periodic traveling-wave disturbance propagating with constant normalized velocity $M = const.$ relative to the beam frame (Sec. III B). In normalized variables, $Z' = Z - MT$ and $T' = T$, the waveform of the disturbance is assumed to be time-stationary $(\partial/\partial T' = 0)$ in the frame moving with velocity $M = const.$ relative to the beam frame. Nonlinear solutions are examined over a wide range of system parameters, including regimes where the modulation in beam line density λ_b exceeds 50%, corresponding to a strongly bunched beam. Finally, in Sec. IV we examine the kinetic model based on Eqs. (9) and (10) [equivalent to Eqs. (1) and (2)] for an even broader class of distribution functions $F_b(z, p_z, t)$, recognizing that Eqs. (9) and (10) are Galilean invariant. [Keep in mind that the variables (z, p_z, t) are in the beam frame, where the particle motion is assumed to be nonrelativistic.] Introducing the appropriately scaled variables (see Sec. IV) $Z' = Z - MT$, $V_z' = V_z - M$, $T' = T$, where $M = const.$, we transform Eqs. (9) and (10) to primed variables, and look for solutions that are time stationary $(\partial/\partial T' = 0)$ in the frame moving with velocity $M = const.$ relative to the beam frame. The analysis in Sec. IV parallels the original Bernstein-Greene-Kruskal (BGK) formulation of BGK solutions to the 1D Vlasov-Poisson equations [25, 26], except for the fact that Eq. (10), which connects the effective potential $\langle \phi \rangle (z, t)$ to the line density $\lambda_b (z, t)$, has a very different structure than the 1D Poisson’s equation used in the original BGK analysis. Depending on the choices of trapped-particle and untrapped-particle distribution functions, the kinetic model described in Sec. IV supports a broad range of nonlinear pulse-like (soliton) solutions and periodic traveling-wave solution that have stationary waveform in the frame moving with velocity $M = const.$ relative to the beam frame. Similar to Sec. III B, the modulation on beam line density can have large amplitude, corresponding to a strong bunching of the beam particles. Specific examples are presented in Sec. IV corresponding to nonlinear periodic traveling wave solutions.
II. THEORETICAL MODEL AND ASSUMPTIONS

This section provides a brief summary of the one-dimensional kinetic g-factor model (Sec. II A) developed by Davidson and Startsev [14] to describe the nonlinear longitudinal dynamics of a long coasting beam propagating in the z-direction through a circular, perfectly conducting pipe with radius \(r_w \). The 1D kinetic Vlasov equation for the distribution function \(F_b(z, p_z, t) \) is used (Sec. II B) to derive several important conservation laws (both local and global) corresponding to conservation of particle number, momentum, and energy per unit length of the charge bunch. The results in Secs. II A and II B form the basis for the nonlinear traveling-wave and traveling-pulse solutions studied in Secs. III and IV.

A. Theoretical Model and Assumptions

This paper makes use of a one-dimensional kinetic model [14] that describes the nonlinear dynamics of the longitudinal distribution function \(F_b(z, p_z, t) \), the average self-generated axial electric field \(\langle E_z \rangle (z, t) \), and the line density \(\lambda_b(z, t) = \int dp_z F_b(z, p_z, t) \), for an intense charged particle beam propagating in the z-direction through a circular, perfectly conducting pipe with radius \(r_w \). For simplicity, the analysis is carried out in the beam frame, where the longitudinal particle motion in \((z, p_z)\) phase space is assumed to be nonrelativistic, and the beam intensity is assumed to be sufficiently low that the beam edge radius \(r_b \) and rms radius \(R_b = \langle r^2 \rangle^{1/2} = \langle x^2 + y^2 \rangle^{1/2} \) have a negligibly small dependence on line density \(\lambda_b \). Furthermore, properties such as the number density \(n_b(r, z, t) \) of beam particles are assumed to be azimuthally symmetric about the beam axis \((\partial/\partial \theta = 0) \), where \(x = r \cos \theta \) and \(y = r \sin \theta \) are cylindrical polar coordinates. Finally, the axial spatial variation in the line density \(\lambda_b(z, t) = 2\pi \int_0^{r_w} dr \, n_b(r, z, t) \) is assumed to be sufficiently slow that \(k_z^2 r_w^2 \ll 1 \), where \(\partial/\partial z \sim k_z \sim L_z^{-1} \) is the inverse length scale of the z-variation.

Making use of these assumptions, it can be shown that the one-dimensional kinetic equation describing the nonlinear evolution of the longitudinal distribution function \(F_b(z, p_z, t) \) and average longitudinal electric field \(\langle E_z \rangle (z, t) \) can be expressed in the beam frame correct to order \(k_z^2 r_w^2 \) as [14]

\[
\frac{\partial}{\partial t} F_b + v_z \frac{\partial}{\partial z} F_b + e_b \langle E_z \rangle \frac{\partial}{\partial p_z} F_b = 0 ,
\]

\((1) \)
and

\[
\frac{e_b}{m_b} \langle E_z \rangle = - \frac{U_{b0}^2}{\lambda_{b0}} \frac{\partial}{\partial z} \lambda_b - \frac{r_w^2 U_{b2}^2}{\lambda_{b0}} \frac{\partial^3 \lambda_b}{\partial z^3},
\]

(2)

Here, \(e_b\) and \(m_b\) are the charge and rest mass of a beam particle, and \(\lambda_{b0} = \text{const.}\) is a measure of the characteristic line density of beam particles, e.g., its average value. Moreover, the constants \(U_{b0}^2\) and \(U_{b2}^2\) have dimensions of speed-square, and are defined by

\[
U_{b0}^2 = \frac{\lambda_{b0} g_0 e_b^2}{m_b}, \quad U_{b2}^2 = \frac{\lambda_{b0} g_2 e_b^2}{m_b},
\]

(3)

where \(g_0\) and \(g_2\) are the geometric factors defined by [14]

\[
g_0 = 2 \int_0^{r_w} \frac{dr}{r} \left(2\pi \int_0^r dr \frac{r n_b}{\lambda_b} \right)^2,
\]

(4)

\[
g_2 = \frac{2}{r_w^2} \int_0^{r_w} \frac{dr}{r} 2\pi \left(\int_0^r dr \frac{r n_b}{\lambda_b} \right) \int_0^r dr \int_0^{r_w} \frac{dr}{r} \left(2\pi \int_0^r dr \frac{r n_b}{\lambda_b} \right).
\]

(5)

In obtaining Eqs. (1)-(5), a perfectly conducting cylindrical wall with \(E_z (r = r_w, z, t) = 0\) has been assumed.

For purposes of illustration, we consider the class of axisymmetric density profiles \(n_b (r, z, t)\) of the form

\[
n_b = \begin{cases} \frac{\lambda_b}{\pi r_b^2} f \left(\frac{r}{r_b} \right), & 0 \leq r < r_b, \\ 0, & r_b < r \leq r_w. \end{cases}
\]

(6)

Here, \(\lambda_b = \int dp_z F_b (z, p, z, t) = 2\pi \int_0^{r_w} dr r n_b (r, z, t)\) is the line density, \(r_b\) is the beam edge radius, assumed independent of \(\lambda_b\), and \(f (r/r_b)\) is the profile shape function with normalization \(\int_0^1 dx x f (x) = 1/2\). As an example, for \(f (r/r_b) = (n + 1) \left(1 - r^2/r_b^2\right)^n\), \(n = 0, 1, 2, \ldots\), over the interval \(0 \leq r < r_b\), it can be shown that [14]

\[
g_0 = \ln \left(\frac{r_w^2}{r_b^2} \right) + \sum_{m=1}^{n+1} \frac{n+1}{m (m+n+1)},
\]

(7)

\[
g_2 = \frac{1}{2} \left[1 - \frac{1}{(n+2) r_w^2} \left(1 + \ln \frac{r_w^2}{r_b^2} \right) - \sum_{m=1}^{n+1} \frac{1}{m (m+n+2) r_w^2} \right].
\]

(8)

From Eqs. (6)-(8), we note that \(n = 0\) corresponds to a step-function density profile; \(n = 1\) corresponds to a parabolic density profile; \(n \geq 2\) corresponds to an even more
sharply peaked density profile; and that the precise values of \(g_0 \) and \(g_2 \) exhibit a sensitive dependence on profile shape [14]. Finally, for the choice of shape function \(f \left(\frac{r}{r_b} \right) = (n + 1) \left(1 - \frac{r^2}{r_b^2} \right)^n \), \(n = 0, 1, 2, \ldots \), it is readily shown that the mean-square beam radius is \(R_b^2 = \lambda_b^{-1} 2\pi \int_0^{r_w} dr r^2 n_b = (n + 2)^{-1} r_b^2 \).

B. Conservation Relations

Equations (1) and (2) possess several important conservation laws, both local and global, corresponding to conservation of particle number, momentum, and energy per unit length. For present purposes we express \(\langle E_z \rangle (z,t) = - (\partial / \partial z) \langle \phi \rangle (z,t) \). Equations (1) and (2) then describe the evolution of \(F_b(z,p_z,t) \) and \(\langle \phi \rangle (z,t) \) according to

\[
\frac{\partial}{\partial t} F_b + v_z \frac{\partial}{\partial z} F_b - e_b \frac{\partial}{\partial z} \frac{\partial \langle \phi \rangle}{\partial p_z} F_b = 0, \tag{9}
\]

where \(v_z = p_z / m_b \) and

\[
e_b \frac{\partial}{\partial z} \langle \phi \rangle = m_b U_{b0}^2 \frac{\partial}{\partial z} N_b + m_b U_{b2}^2 v_w^2 \frac{\partial^3}{\partial z^3} N_b. \tag{10}
\]

Here,

\[
N_b (z,t) = \frac{\lambda_b (z,t)}{\lambda_{b0}} = \lambda_{b0}^{-1} \int dp_z F_b (z,p_z,t) \tag{11}
\]

is a dimensionless measure of the line density \(\lambda_b (z,t) \), and \(\lambda_{b0} = \text{const.} \) is the characteristic (e.g. average) value of line density.

It is convenient to introduce the macroscopic moments

\[
N_b V_b = N_b \langle v_z \rangle = \lambda_{b0}^{-1} \int dp_z v_z F_b, \tag{12}
\]

\[
N_b \langle v_z^2 \rangle = \lambda_{b0}^{-1} \int dp_z v_z^2 F_b, \tag{13}
\]

where \(N_b = \lambda_b / \lambda_{b0} \) is defined in Eq. (11), and \(V_b (z,t) = (\int dp_z v_z F_b) / (\int dp_z F_b) \) is the average axial flow velocity in the beam frame. Note that the effective 'pressure' \(P_b(z,t) \) and 'heat flow' \(Q_b(z,t) \) are defined (relative to the average flow velocity \(V_b \)) by

\[
P_b (z,t) = \lambda_{b0} N_b m_b \langle (v_z - V_b)^2 \rangle = m_b \int dp_z (v_z - V_b)^2 F_b, \tag{14}
\]
and

\[Q_b(z,t) = \lambda_{b0} N_b m_b \langle (v_z - V_b)^3 \rangle = m_b \int dp_z (v_z - V_b)^3 F_b, \]

(15)

where \(V_b(z,t) \) is the average flow velocity defined in Eq. (12).

We now make use of Eqs. (9) and (10) to derive the local and global conservation laws corresponding to the conservation of particle number, momentum, and energy per unit length of the beam. The subsequent analysis applies to the two classes of beam systems: (a) a very long, finite-length charge bunch \((L_b \gg r_w)\) with \(N_b(z \to \pm \infty, t) = 0\); and (b) a circulating beam in a large-aspect-ratio \((R_0 \gg r_w)\) ring with periodic boundary condition \(N_b(z + 2\pi R_0, t) = N_b(z, t)\) as the beam circulates around the ring with major radius \(R_0\). (Here, \(z\) can be viewed as the arc length around the perimeter of the ring with large radius \(R_0\).)

Number Conservation: From Eqs. (9), (11) and (12), operating on Eq. (9) with \(\lambda^{-1}_b \int dp_z \cdot \cdot \cdot\), and integrating by parts with respect to \(p_z\), we obtain

\[\frac{\partial}{\partial t} N_b + \frac{\partial}{\partial z} (N_b V_b) = 0, \tag{16} \]

where \(N_b(z,t) = \lambda_b(z,t)/\lambda_{b0}\) is the normalized line density, and \(V_b(z,t)\) is the axial flow velocity [Eqs. (11) and (12)]. Equation (16) is a statement of local number conservation, i.e., the time rate of change of the local density, \(\partial N_b/\partial t\), is equal to minus the derivative of the local flux of particles, \(- (\partial/\partial z) (N_b V_b)\). If we integrate Eq. (16) over \(z\), applying the boundary conditions described earlier in this section, we obtain

\[\frac{\partial}{\partial t} \int dz N_b = 0, \tag{17} \]

which corresponds to the global conservation of the number of beam particles.

Momentum Conservation: We now operate on Eq. (9) with \(\lambda_{b0}^{-1} \int dp_z p_z \cdot \cdot \cdot\), where \(p_z = m_b v_z\), and make use of Eqs. (12) and (13). This gives

\[\frac{\partial}{\partial t} N_b m_b V_b + \frac{\partial}{\partial z} N_b m_b \langle v_z v_z \rangle + e_b N_b \frac{\partial}{\partial z} \langle \phi \rangle = 0, \tag{18} \]

where \(- (\partial/\partial z) \langle \langle \phi \rangle \rangle\) is defined in Eq. (10), and we have integrated by parts with respect to \(p_z\) to obtain Eq. (18) from Eq. (9). Equation (18) can be expressed in an alternate form by making use of Eq. (10) to eliminate \(e_b (\partial/\partial z) \langle \phi \rangle\) and combine Eqs. (12)-(14) to express
\[N_b m_b \langle v_z v_z \rangle = N_b m_b V_b V_b + \lambda_{b0}^{-1} P_b, \] (19)

where \(V_b(z,t) \) is the average flow velocity, and \(P_b(z,t) \) is the effective pressure of the beam particles. Substituting Eqs. (10) and (19) into Eq. (18), we obtain

\[
\frac{\partial}{\partial t} N_b m_b V_b + \frac{\partial}{\partial z} \left\{ N_b m_b V_b V_b + \lambda_{b0}^{-1} P_b \right\} + N_b m_b \left\{ U_{b0}^2 \frac{\partial N_b}{\partial z} + U_{b2}^2 r_w^2 \frac{\partial^2 N_b}{\partial z^2} \right\} = \frac{\partial}{\partial t} N_b m_b V_b + \frac{\partial}{\partial z} \left\{ N_b m_b V_b V_b + \lambda_{b0}^{-1} P_b + \frac{1}{2} m_b U_{b0}^2 N_b^2 \right\} + \frac{\partial}{\partial z} m_b U_{b2}^2 r_w^2 \left[N_b \left(\frac{\partial^2 N_b}{\partial z^2} - \frac{1}{2} \left(\frac{\partial N_b}{\partial z} \right)^2 \right) \right] = 0. \] (20)

Note that Eq. (20) expresses the local force balance equation in the form of a local conservation relation for the momentum density of a beam fluid element. Moreover, integrating Eq. (20) over \(z \) and applying the boundary conditions described earlier in Sec. II gives

\[
\frac{\partial}{\partial t} \int dz N_b m_b V_b = 0, \] (21)

which corresponds to global momentum conservation.

Energy Conservation: We now operate on Eq. (9) with \(\lambda_{b0}^{-1} \int dp_z \frac{1}{2} m_b v_z^2 \cdots \) and make use of Eqs. (11)-(13) and \(p_z = m_b v_z \). Integrating by parts with respect to \(p_z \), we readily obtain

\[
\frac{\partial}{\partial z} \frac{1}{2} N_b m_b \langle v_z^2 \rangle + \frac{\partial}{\partial z} \frac{1}{2} N_b m_b \langle v_z^3 \rangle + e_b \frac{\partial \langle \phi \rangle}{\partial z} N_b V_b = 0. \] (22)

From Eqs. (10) and (16), some straightforward algebraic manipulation gives

\[
e_b \frac{\partial \langle \phi \rangle}{\partial z} N_b V_b = \frac{\partial}{\partial z} \left[\frac{1}{2} m_b U_{b0}^2 N_b^2 - \frac{1}{2} m_b U_{b2}^2 r_w^2 \left(\frac{\partial N_b}{\partial z} \right)^2 \right] + \frac{\partial}{\partial z} \left\{ m_b U_{b0}^2 (N_b N_b V_b) + m_b U_{b2}^2 r_w^2 \left[N_b V_b \frac{\partial^2 N_b}{\partial z^2} + \frac{\partial N_b}{\partial z} \frac{\partial N_b}{\partial t} \right] \right\}. \] (23)

Substituting Eq. (23) into Eq. (22) and rearranging terms, we obtain
\[
\frac{\partial}{\partial t} \left\{ \frac{1}{2} N_b m_b \langle v_z^2 \rangle + \frac{1}{2} m_b U_{b0}^2 N_b^2 - \frac{1}{2} m_b U_{b2}^2 r_w^2 \left(\frac{\partial N_b}{\partial z} \right)^2 \right\} + \frac{\partial}{\partial z} \left\{ \frac{1}{2} N_b m_b \langle v_z^3 \rangle + m_b U_{b0}^2 N_b^2 v_b + m_b U_{b2}^2 r_w^2 \left[N_b V_b \frac{\partial^2 N_b}{\partial z^2} + \frac{\partial N_b}{\partial z} \frac{\partial N_b}{\partial t} \right] \right\} = 0, \tag{24}
\]

which corresponds to local conservation of energy. Global energy conservation follows upon integrating Eq. (24) over \(z\), which gives

\[
\frac{\partial}{\partial t} \int dz \left\{ \frac{1}{2} N_b m_b \langle v_z^2 \rangle + \frac{1}{2} m_b U_{b0}^2 N_b^2 - \frac{1}{2} m_b U_{b2}^2 r_w^2 \left(\frac{\partial N_b}{\partial z} \right)^2 \right\} = 0. \tag{25}
\]

Note that Eq. (25) describes the balance in energy exchange between particle kinetic energy and electrostatic field energy. Moreover, the final two terms in Eq. (25) correspond to electrostatic field energy, and the term proportional to \(U_{b0}^2\) is positive, whereas the term proportional to \(U_{b2}^2\) is manifestly negative. Because of the negative sign of the third term in Eq. (25), note that any increase in \((\partial N_b/\partial z)^2\) averaged over \(z\) must compensated by a corresponding increase in the first two terms in Eq. (25).

To summarize, the local conservation laws in Eqs. (16), (18) and (24), and the global conservation laws in Eqs. (17), (21) and (25), provide powerful nonlinear constrains on the evolution of the normalized line density \(N_b\), momentum density \(N_b m_b V_b\), and kinetic energy density \(N_b m_b \langle v_z^2 \rangle / 2 = N_b m_b V_b^2 / 2 + \lambda_{b0}^{-1} P_b / 2\). Furthermore, these conservation constraints are exact consequences of the 1D nonlinear Vlasov equation (9) for \(F_b (z, p_z, t)\), where \(e_b (\partial / \partial z) \langle \phi \rangle (z, t)\) is defined in Eq. (10), and \(U_{b0}^2\) and \(U_{b2}^2\) are expressed in terms of the geometric factors \(g_0\) and \(g_2\) in Eq. (3).

Finally, the energy balance equation (22), the momentum balance equation (18), and the continuity equation (16) can be combined to give a dynamical equation for the evolution of the effective pressure \(P_b (z, t)\) of the beam particles. We make use of \(N_b m_b \langle v_z^2 \rangle = N_b m_b V_b^2 + \lambda_{b0}^{-1} P_b\), and express

\[
N_b m_b \langle v_z^3 \rangle = N_b m_b \langle (v_z - V_b + V_b)^3 \rangle \\
= N_b m_b V_b^3 + 3 N_b m_b V_b \langle (v_z - V_b)^2 \rangle + N_b m_b \langle (v_z - V_b)^3 \rangle \\
= N_b m_b V_b^3 + 3 N_b V_b \lambda_{b0}^{-1} P_b + \lambda_{b0}^{-1} Q_b, \tag{26}
\]
where Q_b is the effective heat flow defined in Eq. (15). Without presenting algebraic details, some straightforward manipulation of Eq. (22) that make use of Eqs. (16) and (18) then gives

$$
\left(\frac{\partial}{\partial t} + V_b \frac{\partial}{\partial z} \right) P_b + 3P_b \frac{\partial V_b}{\partial z} + \frac{\partial}{\partial z} Q_b = 0 .
$$

(27)

To summarize, Eqs. (16), (20) and (27) describe the self-consistent nonlinear of $N_b(z,t)$, $V_b(z,t)$ and $P_b(z,t)$. In the special case where the heat flow contribution $(\partial/\partial z)Q_b$ is negligibly small in Eq. (27), the pressure $P_b(z,t)$ evolves approximately according to

$$
\left(\frac{\partial}{\partial t} + V_b \frac{\partial}{\partial z} \right) P_b + 3P_b \frac{\partial V_b}{\partial z} = 0 .
$$

(28)

The continuity equation (16) can be expressed as

$$
\left(\frac{\partial}{\partial t} + V_b \frac{\partial}{\partial z} \right) N_b + N_b \frac{\partial V_b}{\partial z} = 0 .
$$

(29)

Combining Eqs. (27) and (28), we obtain

$$
\left(\frac{\partial}{\partial t} + V_b \frac{\partial}{\partial z} \right) \left(\frac{P_b}{N_b^3} \right) = 0 ,
$$

(30)

which can be integrated to give the triple-adiabatic pressure relation $(P_b/N_b^3) = \text{const.}$ Therefore, for negligibly small heat flow in Eq. (27), the macroscopic fluid model obtained by taking moments of the 1D Vlasov equation (9) closes, and the nonlinear evolution of N_b, V_b and P_b is described by Eqs. (16), (20) and (30).

In Sec. III, we discuss a particular choice of distribution function $F_b(z,p_z,t)$, corresponding to the so-called waterbag distribution, for which the heat flow $Q_b(z,t)$ is exactly zero during the nonlinear evolution of the system. In this case, the closure is exact, and the nonlinear evolution of the system is fully described by Eqs. (16), (20) and (30).

III. COHERENT SONLINEAR STRUCTURES OBTAINED FROM KINETIC WATERBAG MODEL

The 1D kinetic g-factor model based on Eqs. (1) and (2) can be used to determine the nonlinear evolution of the beam distribution function $F_b(z,p_z,t)$ for a broad range of system parameters and initial distribution functions. In this section, we examine Eqs. (1) and (2) for the class of exact solutions for $F_b(z,p_z,t)$ corresponding to the so-called waterbag
distribution in which \(F_b(z,p_z,t) \) has uniform density in phase space (Sec. III A). The subclass of coherent nonlinear traveling-wave and traveling-pulse solutions with undistorted waveform are then examined (Sec. III B) for disturbances traveling in the longitudinal direction with constant normalized velocity \(M = \text{const.} \).

A. Kinetic Waterbag Model

Equations (1) and (2), or equivalently, Eqs. (9) and (10) constitute the starting point in the present 1D kinetic description of the longitudinal nonlinear dynamics of a long coasting beam. The detailed wave excitations associated with Eqs. (9) and (10) of course depend on the form of the distribution function \(F_b(z,p_z,t) \). For small-amplitude perturbations, Eqs. (1) and (2) support solutions corresponding to sound-wave-like disturbances with signal speed depending on \(U_{b_0} \) and the momentum spread of \(F_b \), and cubic dispersive modifications depending on \(U_{b_2} \) [14].

In this section, we specialize to the class of exact nonlinear solutions for \(F_b(z,p_z,t) \) to Eq. (1) corresponding to the waterbag distribution [15–19]

\[
F_b(z,p_z,t) = \begin{cases}
A = \text{const.} & -m_b V_b^- (z,t) < p_z < m_b V_b^+ (z,t), \\
0, & \text{otherwise},
\end{cases}
\]

for \(-\infty < z < \infty\) (long coasting beam in linear geometry) or \(0 < z < 2\pi R_0\) (large-aspect-ratio ring with major radius \(R_0 \)). In Eq. (31), the distribution function \(F_b = A \) remains constant within the boundary curves \(-m_b V_b^-\) and \(+m_b V_b^+\), and zero outside. The boundary curves \(-m_b V_b^- (z,t)\) and \(+m_b V_b^+ (z,t)\), assumed single-valued, of course distort nonlinearly as the system evolves according to Eqs. (1) and (2) [or equivalently, Eqs. (9) and (10)]. We integrate across the two boundary curves in Eq. (31) by operating on Eq. (1) with

\[
\lim_{\epsilon \to 0^+} \int_{m_b V_b^- (1-\epsilon)}^{m_b V_b^- (1+\epsilon)} \text{d}p_z p_z \cdots, \quad \text{and} \quad \lim_{\epsilon \to 0^+} \int_{m_b V_b^+ (1-\epsilon)}^{m_b V_b^+ (1+\epsilon)} \text{d}p_z p_z \cdots,
\]

where \(p_z = m_b v_z \). Integrating by parts with respect to \(p_z \), and taking the limit \(\epsilon \to 0^+ \), we obtain for the nonlinear evolution of the boundary curves \(V_b^- (z,t) \) and \(V_b^+ (z,t) \)

\[
\frac{\partial}{\partial t} V_b^- + V_b^- \frac{\partial}{\partial z} V_b^- = \frac{e_b}{m_b} \langle E_z \rangle,
\]

11
\[
\frac{\partial}{\partial t} V_{b}^{+} + V_{b}^{+} \frac{\partial}{\partial z} V_{b}^{+} = \frac{e_{b}}{m_{b}} \langle E_{z} \rangle ,
\]
(34)
where \(\langle E_{z} \rangle \) is defined in Eq. (2).

For the choice of waterbag distribution in Eq. (31), we calculate several macroscopic fluid quantities [see also Eqs. (11)-(15)] corresponding to line density

\[
\lambda_{b} = \int dp_{z} F_{b} = A m_{b} \left(V_{b}^{+} - V_{b}^{-} \right) ,
\]
(35)
axial flow velocity

\[
V_{b} = \lambda_{b}^{-1} \int dp_{z} v_{z} F_{b} = \frac{1}{2} \left(V_{b}^{+} + V_{b}^{-} \right) ,
\]
(36)
beam particle pressure

\[
P_{b} = m_{b} \int dp_{z} (v_{z} - V_{b})^{2} F_{b} = \frac{1}{12} m_{b} A \left(V_{b}^{+} - V_{b}^{-} \right)^{3} = \frac{1}{12 \left(m_{b} A \right)^{2}} \lambda_{b}^{3} ,
\]
(37)
and beam particle heat flow

\[
Q_{b} = m_{b} \int dp_{z} (v_{z} - V_{b})^{3} F_{b} = 0 .
\]
(38)
Note that the heat flow is exactly \(Q_{b} = 0 \) for the choice of waterbag distribution in Eq. (31).

Making use of the dynamical equations for \(V_{b}^{-} (z,t) \) and \(V_{b}^{+} (z,t) \) in Eqs. (33) and (34), where \(\langle E_{z} \rangle \) is defined in Eq. (2), some straightforward algebra shows that \(\lambda_{b} (z,t) \), \(V_{b} (z,t) \) and \(P_{b} (z,t) \) evolve according to

\[
\frac{\partial}{\partial t} \lambda_{b} + \frac{\partial}{\partial z} \left(\lambda_{b} V_{b} \right) = 0 ,
\]
(39)

\[
\lambda_{b} \left(\frac{\partial}{\partial t} V_{b} + V_{b} \frac{\partial}{\partial z} V_{b} \right) + \frac{1}{m} \frac{\partial P_{b}}{\partial z} = -\lambda_{b} \left(\frac{U_{b0}^{2}}{\lambda_{b0}} \frac{\partial}{\partial z} \lambda_{b} + \frac{U_{b0}^{2}}{\lambda_{b0}} \frac{\partial^{3} \lambda_{b}}{\partial z^{3}} \right) ,
\]
(40)

\[
\left(\frac{\partial}{\partial t} + V_{b} \frac{\partial}{\partial z} \right) \left(\frac{P_{b}}{\lambda_{b}^{3}} \right) = 0 .
\]
(41)
Note from Eqs. (37) and (41) that \(P_{b} (z,t) \) can be expressed as

\[
P_{b} (z,t) = \frac{P_{b0}}{\lambda_{b0}^{3}} \lambda_{b}^{3} (z,t) ,
\]
(42)
where $P_{b0} = \text{const.}$ and $\lambda_{b0} = \text{const.}$ represent the characteristic (e.g., average) value of the pressure and line density of the beam particles respectively, and $P_{b0}/\lambda_{b0}^3 = 1/12 (m_b A)^2 = \text{const.}$, where A is the constant phase-space density in Eq. (31). By virtue of the fact that the heat flow $Q_b (z, t) = 0$ exactly for the choice of distribution function $F_b (z, p_z, t)$ in Eq. (31), it is not surprising that Eqs. (39)-(42) are identical to the macroscopic fluid equations (16), (20) and (30), obtained in Sec. II B, where Eq. (30) has made the assumption of negligible heat flow in Eq. (27). Note here that $N_b (z, t)$ and $\lambda_b (z, t)$ are related by $N_b (z, t) = \lambda_b (z, t) / \lambda_{b0}$.

For present purposes, we introduce the effective thermal speed U_{bT} associated with the waterbag distribution in Eq. (31) defined by

$$U_{bT}^2 = \frac{3 P_{b0}}{\lambda_{b0} m_b} ,$$

and the normalized (dimensionless) fluid quantities $\eta (z, t)$ and $U (z, t)$ defined by

$$\eta = N_b - 1 = \frac{\lambda_b - \lambda_{b0}}{\lambda_{b0}}, \quad U = \frac{V_b}{(U_{b0}^2 + U_{bT}^2)^{1/2}} .$$

In Eq. (44), $(U_{b0}^2 + U_{bT}^2)^{1/2}$ is the effective sound speed associated with the geometric factor g_0 and the thermal speed U_{bT}. Furthermore, we introduce the scaled (dimensionless) time variable T and spatial variable Z defined by

$$T = \left(\frac{U_{b0}^2}{U_{bT}^2} \right) \frac{U_{b2} t}{r_w}, \quad Z = \left(\frac{U_{b0}^2}{U_{bT}^2} \right) \frac{z}{r_w} .$$

Making use of the macroscopic equations (39), (40) and (42), and the definitions in Eqs. (43)-(45), it is straightforward to show that the continuity equation (39) and force balance equation (40) reduce in dimensionless variables exactly to

$$\frac{\partial}{\partial T} \eta + \frac{\partial}{\partial Z} (U + \eta U) = 0 , \quad (46)$$

$$\frac{\partial}{\partial T} U + \frac{\partial}{\partial Z} \left(\frac{1}{2} U^2 + \eta + \frac{1}{2} \frac{U_{bT}^2}{U_{b0}^2 + U_{bT}^2} \eta^2 + \frac{\partial^2}{\partial Z^2} \eta \right) = 0 . \quad (47)$$

The fluid description in scaled variables provided by Eqs. (46) and (47) is exactly equivalent to the kinetic description provided by Eqs. (1) and (2) for the choice of waterbag distribution in Eq. (31).
B. Coherent Nonlinear Traveling Wave and Pulse Solutions

Within the context of the present 1D model, Eqs. (46) and (47) can be used to investigate detailed properties of collective excitations over a wide range of system parameters. For example, in the weakly nonlinear regime, for small-amplitude disturbances moving near the sound speed \((U_{0}^{2} + U_{bT}^{2})^{1/2} \), Eqs. (46) and (47) can be shown to reduce to the Korteweg-deVries equation [15], which exhibits the generation and interaction of coherent structures (solitons) for a wide range of initial density perturbations \(\eta (Z, T = 0) \neq 0 \) [22]. While the analysis in Ref [15] has several interesting features, the results are limited to the weakly nonlinear regime where \(|\eta| \ll 1 \) and \(|U| \ll 1 \).

In this paper, we examine Eqs. (46) and (47) in circumstances where there are not a priori restrictions to small amplitude, i.e., \(\eta = (\lambda_b - \lambda_{b0})/\lambda_{b0} \) is allowed to be of order unity, as long as \(\lambda_b/\lambda_{b0} > 0 \), which corresponds to \(\eta > -1 \). Furthermore, we look for solutions to Eqs. (46) and (47) that depend on \(Z \) and \(T \) exclusively through the variables \(Z' = Z - MT \) and \(T' = T \), where \(M = \text{const.} \) is the normalized pulse speed measured in units of the sound speed \((U_{0}^{2} + U_{bT}^{2})^{1/2} \). Making use of \(\partial/\partial Z = \partial/\partial Z' \) and \(\partial/\partial T = \partial/\partial T' - M \partial/\partial Z' \) and looking for time-stationary solutions \((\partial/\partial T' = 0) \) in the frame of reference moving with normalized velocity \(M = \text{const.} \), Eqs. (46) and (47) for \(\eta (Z') \) and \(U (Z') \) become

\[
\frac{\partial}{\partial Z'} [(M - U) \eta + U] = 0,
\]

\[
\frac{\partial}{\partial Z'} \left[\frac{1}{2} U^2 - MU + \eta + \frac{1}{2} \frac{U_{bT}^2}{U_{0}^2 + U_{bT}^2} \eta^2 + \frac{\partial^2 \eta}{\partial Z'^2} \right] = 0.
\] (49)

Integrating with respect to \(Z' \), Eqs. (48) and (49) give

\[-M \eta + (1 + \eta) U = \text{const.},\]

\[
\frac{1}{2} U^2 - MU + \eta + \frac{1}{2} \frac{U_{bT}^2}{U_{0}^2 + U_{bT}^2} \eta^2 + \frac{\partial^2 \eta}{\partial Z'^2} = \text{const.},
\] (51)

which relate \(\eta (Z') \) and \(U (Z') \), where \(Z' = Z - MT \).

The solutions for \(\eta (Z') \) and \(U (Z') \) to Eqs. (50) and (51) depend on the values of the constants in Eqs. (50) and (51). For present purposes we consider boundary conditions such
that $U = 0$ when $\eta = 0$, and $\eta'' = 0$ when $U = 0$ and $\eta = 0$. In this case the values of the constants in Eqs. (50) and (51) are zero, which gives

$$U = M \frac{\eta}{1 + \eta}. \quad (52)$$

$$\frac{\partial^2 \eta}{\partial Z'^2} + \left\{ \frac{1}{2} (U - M)^2 - \frac{1}{2} M^2 + \eta + \frac{1}{2} \frac{U^2_{bT}}{U^2_{b0} + U^2_{bT}} \eta^2 \right\} = 0. \quad (53)$$

Substituting Eq. (52) into Eq. (53), we obtain

$$\frac{\partial^2 \eta}{\partial Z'^2} + \left\{ \frac{1}{2} M^2 \left(\frac{1}{(1 + \eta)^2} - 1 \right) + \eta + \frac{1}{2} \frac{U^2_{bT}}{U^2_{b0} + U^2_{bT}} \eta^2 \right\} = 0, \quad (54)$$

which is a second-order nonlinear differential equation for the perturbation in line density $\eta (Z') = [\lambda_b (Z') - \lambda_{b0}] / \lambda_{b0}$, where $Z' = Z - MT$. Some straightforward algebraic manipulation shows that Eq. (54) can be expressed in the equivalent form

$$\frac{\partial^2 \eta}{\partial Z'^2} = -\frac{\partial}{\partial \eta} V (\eta), \quad (55)$$

where $V (\eta)$ is the effective potential defined by

$$V (\eta) = \frac{1}{2} \frac{\eta^2}{1 + \eta} \left\{ \epsilon_T \eta^2 + (1 + \epsilon_T) \eta + \left(1 - M^2 \right) \right\}, \quad (56)$$

and the dimensionless parameter ϵ_T, defined by

$$\epsilon_T = \frac{1}{3} \left(\frac{U^2_{bT}}{U^2_{b0} + U^2_{bT}} \right), \quad (57)$$

is a measure of the longitudinal thermal speed of the beam particle.

Equations (55) and (56) can be used to determine the solutions for $\eta (Z')$ for a broad range of dimensionless parameters ϵ_T and M. Furthermore, Eqs. (55) and (56) have been obtained from Eqs. (50) and (51) for the special class of boundary conditions where $U = 0$ and $\eta'' = 0$ when $\eta = 0$ [see discussion prior to Eqs. (52) and (53)]. Indeed, we will show below that Eqs. (55) and (56) support two classes of solutions consistent with these boundary conditions. These correspond to: (a) localized (pulse-like) soliton solutions when $M^2 > 1$, satisfying $\eta (Z' = \pm \infty) = 0$, $U (Z' = \pm \infty) = 0$, and $[\partial^2 \eta / \partial Z'^2]_{Z' = \pm \infty} = 0$; and (b) nonlinear periodic traveling-wave solutions when $M^2 < 1$, with $\eta (Z') = \eta (Z' + L)$, and $\eta (Z' = 0) = 0$, $U (Z' = 0) = 0$, and $[\partial^2 \eta / \partial Z'^2]_{Z' = 0} = 0$.

15
In general, the effective potential $V(\eta)$ in Eq. (57) can be expressed as

\[V(\eta) = \frac{1}{2} \frac{\eta^2}{1 + \eta} \left[(\eta - \eta^+) (\eta - \eta^-) \right], \quad (58) \]

where

\[\eta^\pm = \frac{1}{2} \left\{ - \left(1 + \frac{1}{\epsilon_T}\right) \pm \left[\left(1 + \frac{1}{\epsilon_T}\right)^2 + \frac{4}{\epsilon_T} \left(M^2 - 1\right)^{1/2} \right]\right\}. \quad (59) \]

In Eqs. (58) and (59), ϵ_T is restricted to the range $0 < \epsilon_T < 1/3$, and M^2 can satisfy $M^2 > 1$ or $M^2 < 1$. Examination of Eq. (59) shows that

\[\eta^- < -1, \quad \eta^+ > -1, \quad (60) \]

for all allowed values of ϵ_T and M^2. Furthermore, it’s also clear from Eq. (59) that

\[\begin{cases}
\eta^+ > 0, & \text{for } M^2 > 1, \\
\eta^+ < 0, & \text{for } M^2 < 1.
\end{cases} \quad (61) \]

Recall that $\eta = (\lambda_b - \lambda_{b0}) / \lambda_{b0}$. Then $\lambda_b / \lambda_{b0} \geq 0$ implies that $\eta \geq -1$ is the region of interest physically for solutions to Eq. (1). Note that Eq. (55) has the form of a dynamical equation of motion, with η playing the role of displacement, Z' playing the role of time, and $V(\eta)$ playing the role of effective potential. Multiplying Eq. (55) by $\partial \eta / \partial Z'$ and integrating, we obtain

\[\frac{1}{2} \left(\frac{\partial \eta}{\partial Z'} \right)^2 + V(\eta) = E = \text{const.} \quad (62) \]

Equation (62) plays the role of an energy conservation constraint, and can be integrated to determine $\eta(Z')$ for the effective potential $V(\eta)$ defined in Eq. (58). We now examine solutions to Eq. (62) for the two cases indentified earlier: $M^2 < 1$ and $-1 < \eta^+ < 0$; and $M^2 > 1$ and $\eta^+ > 0$.

Nonlinear Traveling-wave Solutions ($M^2 < 1$ and $-1 < \eta^+ < 0$): Figure 1 shows a schematic plot of $V(\eta)$ versus η for the case where $M^2 < 1$ and $-1 < \eta^+ < 0$. For purpose of illustration, the values of the specific parameters in Fig. 1 have been chosen to be $M^2 = 0.09$ and $\epsilon_T = 4/15$ in plotting $V(\eta)$ versus η. The corresponding values of η^+, η_m and $V(\eta_m)$ are $\eta^+ = -0.882$, $\eta_m = -0.715$, and $V(\eta_m) = 0.126$. For different choices
of values for ϵ_T and $M^2 < 1$, the shape of the $V(\eta)$ versus η curve is qualitatively similar to that shown in Fig. 1. Referring to Fig. 1, when the effective energy E (the red horizontal line in Fig. 1 lies in the interval $0 < E < V(\eta_m)$, Eq. (66) supports nonlinear periodic solutions for $\eta(Z')$ that oscillate as a function of Z'. Here $V(\eta_m)$ is the local maximum of $V(\eta)$, which occurs at $\eta = \eta_m$ in Fig. 1. Depending on system parameters, these nonlinear traveling-wave solutions can have large amplitude, representing a significant modulation in beam line density.

Referring to the discussion preceding Eq. (58), the boundary conditions used to derive Eqs. (55) and (56) from Eqs. (50) and (51) correspond to

$$\eta(0) = 0 = \eta''(0)$$

(63)

for the class of nonlinear periodic wave solutions obtained from Eq. (62) when $M^2 < 1$ and $-1 < \eta^+ < 0$. Furthermore, from Fig. 1 and Eq. (62), we note that $V(\eta = 0) = 0$ and the effective energy E can be expressed as

$$E = \frac{1}{2} \left[\eta'(0) \right]^2.$$

(64)

Typical numerical solutions for $\eta(Z')$, obtained by integrating Eq. (62) with $V(\eta)$ specified by Eq. (58), are illustrated in Figs. 2-5 for several values of $M^2 < 1$ and ϵ_T, and different values of effective energy level E. These correspond to: $M^2 = 0.36$, $\epsilon_T = 0$, $E = 0.005$ and $E = 0.0110707$ (Fig. 2); $M^2 = 0.36$, $\epsilon_T = 4/15$, $E = 0.005$ and $E = 0.020$ (Fig. 3); $M^2 = 0.09$, $\epsilon_T = 0$, $E = 0.005$ and $E = 0.054483$ (Fig. 4); $M^2 = 0.09$, $\epsilon_T = 4/15$, $E = 0.005$ and $E = 0.125$ (Fig. 5). Close examination of Figs. 2-5 shows several interesting trends. First, for smaller values of M^2, the potential wells are deeper and broader (compare Figs. 2a and 4a, and Figs. 3a and 5a); and for smaller values of ϵ_T, the potential wells are deeper (compare Figs. 2a and 3a, and Figs. 4a and 5a). Furthermore, the nonlinear wave amplitude tends to be larger for smaller values of M^2 (compare Figs. 2a and 3a, and Figs. 4a and 5a), whereas the wavelength dependence on M^2 and ϵ_T tends to be relatively weak (compare Figs. 2, 3, 4, 5). In any case, for $M^2 < 1$, it is clear from Figs. 1-5 that Eqs. (62) and (58) support a broad class of nonlinear traveling-wave solutions for the theoretical model developed here, based on the 1D kinetic waterbag model for intense beam propagation. Indeed, the modulation of the beam line density is about $\pm 50\%$ for the system parameter.
in Figs. 4c and 5c.

Nonlinear Traveling-pulse (Soliton) Solutions ($M^2 > 1$ and $\eta^+ > 0$): We now consider Eqs. (62) and Eq. (58) [or equivalently, Eq. (56)] in circumstances where $M^2 > 1$ and $\eta^+ > 0$. In this case, the effective potential has the qualitative shape illustrated in Fig. 6, which has been plotted for the choice of parameters $M^2 = 9$ and $\epsilon_T = 1/30$. The physically allowed, localized pulse solutions (soliton solutions) corresponds to the energy level

$$E = 0,$$

(65)

which is the red horizontal line in Fig. 6, and boundary conditions

$$\eta (Z' = \pm \infty) = 0 = \eta'' (Z' = \pm \infty)$$

(66)

discussed prior to Eq. (58). Referring to Fig. 6, when Eq. (62) is integrated forward from $Z' = -\infty$ where $\eta = 0$, the perturbed line density, η increases monotonically through positive values to a maximum amplitude η^+ (the soliton amplitude) and then decreases monotonically to $\eta = 0$ when $Z' = +\infty$. The regime where $M^2 > 1$ by a sufficiently large amount corresponds to a strongly nonlinear regime where the density compression is large with $\eta^+ > 1$. On the other hand, when $M^2 - 1 = \epsilon$ is small with $0 < \epsilon \ll 1$, the soliton amplitude is correspondingly small. This will become apparent from the numerical solutions to Eqs. (62) and (58) consistent with Eqs. (65) and (66) presented later in this section in Figs. 7-10.

Typical numerical solutions to Eqs. (62) and (58), subject to Eqs. (65) and (66), are illustrated in Figs. 7-10 for several values of $M^2 > 1$ and ϵ_T. These correspond to: $M^2 = 4$ and $\epsilon_T = 0$ (Fig. 7); $M^2 = 4$ and $\epsilon_T = 4/15$ (Fig. 8); $M^2 = 1.2$ and $\epsilon_T = 0$ (Fig. 9); and $M^2 = 1.2$ and $\epsilon_T = 4/15$ (Fig. 10). Close examination of Figs. 7-10 shows that the soliton amplitude increases with increasing M^2 (compare Figs. 7 and 8 with Figs. 9 and 10), reaching a highly nonlinear regime with $\eta^+ = 3.0$ in Fig. 7 and $\eta^+ = 1.735$ in Fig. 8, where $M^2 = 4$. In contrast, the soliton width tends show a relatively weak dependence on longitudinal velocity spread, as measured by ϵ_T (compare Fig. 8 with Fig. 7, and Fig. 10 with Fig. 9). It’s clear from Figs. 7-10 that the soliton solutions to Eqs. (62) and (58) exhibit a strong nonlinear dependence on M^2, and can correspond to highly compressed line density for sufficiently large M^2.
In the special circumstances where M^2 exceeds 1 by a small amount, i.e., $M^2 = 1 + \Delta$ where $0 < \Delta \ll 1$, it is readily shown that Eq. (54) can be approximated for small η by

$$\frac{\partial^2 \eta}{\partial Z^2} + \left\{ \frac{3}{2} M^2 + \frac{3}{2} \epsilon T \right\} \eta - (M^2 - 1) \eta = 0$$

Equation (67) can be solved exactly for $\eta(Z') = \lambda_b(Z')/\lambda_{b0} - 1$ to give

$$\eta(Z') = \left(\frac{M^2 - 1}{M^2 + \epsilon T} \right) \text{sech}^2 \left[\frac{1}{2} (M^2 - 1)^{1/2} (Z - MT) \right].$$

Note that the soliton amplitude in Eq. (68) is small for $M^2 = 1 + \Delta$ with $\Delta \ll 1$. Also, the sech${}^2\{\cdots\}$ pulse shape in Eq. (68) is similar to the soliton pulse shape obtained from the Korleweq-deVries equation in the weakly nonlinear regime [15].

Finally, it should be noted that the oscillatory solutions obtained from Eqs. (58) and (62) when $M^2 > 1$ and the energy level E in Fig. 6 is negative with $V_{min} < E < 0$ are not considered here. These solutions are unphysical because they oscillate about a positive non-zero average value of $\bar{\eta} = \lambda_b/\lambda_{b0} - 1 > 0$, rather than oscillate about $\bar{\eta} = \bar{\lambda}_b/\lambda_{b0} - 1 \approx 0$, as occurs in Figs. 2-5 when $M^2 < 1$.

IV. COHERENT NONLINEAR STRUCTURES OBTAINED FROM FULLY KINETIC G-FACTOR MODEL

The kinetic waterbag model developed in Sec. III of this paper has clearly demonstrated the rich variety of coherent nonlinear structures supported by the 1D kinetic model based on Eqs. (9) and (10) [or equivalently, Eqs. (1) and (2)] for the specific choice of waterbag distribution $F_b(z, p_z, t)$ in Eq. (31). In this Section, we examine solutions to Eqs. (9) and (10) for an even broader class of distribution functions $F_b(z, p_z, t)$, recognizing that Eqs. (9) and (10) are Galilean invariant. That is, if we transform variables to a frames of reference moving with constant longitudinal velocity $V_0 = \text{const.}$ according to $z' = z - V_0 t$, $p'_z = p_z - m_b V_0$, $t' = t$, then in the new dynamical variables (z', p'_z, t'), the equations for $F_b(z', p'_z, t')$ and $\langle \phi \rangle (z', t')$ are identical in form to Eqs. (9) and (10). Time-stationary solutions $(\partial / \partial t' = 0)$ in the new variables (z', p'_z, t') then correspond to undistorted traveling-wave or traveling-pulse solutions moving with constant velocity $V_0 = \text{const.}$ in the original variables (z, p_z, t). The present analysis of Eqs. (9) and (10) parallels the original Bernstein-Greene-Kruskal
(BGK) formulation of BGK solutions to the 1D Vlasov-Poisson equations [25, 26], except for the fact that Eq. (10), which connects $\langle \phi \rangle (z, t)$ to the line density $\lambda_b (z, t)$, has a very different structure than the 1D Poisson equation.

Referring to Eqs. (9) and (10), we introduce the scaled dimensionless variables (Z, P_z, T) defined by

$$Z = \left(\frac{U_{b0}^2 + U_{bT}^2}{U_{b2}^2} \right)^{\frac{1}{2}} \frac{z}{r_w}, \quad T = \left(\frac{U_{b0}^2 + U_{bT}^2}{U_{b2}^2} \right) \frac{U_{b2} t}{r_w},$$

$$P_z = \frac{P_z}{m_b (U_{b0}^2 + U_{bT}^2)^{1/2}} = \frac{v_z}{(U_{b0}^2 + U_{bT}^2)^{1/2}} \equiv V_z,$$

where U_{b0}^2 and U_{b2}^2 are defined in Eq. (3), and $U_{bT}^2 = const.$ is the longitudinal velocity spread characteristic of the distribution function F_b. We further introduce the dimensionless distribution function $\hat{F}_b (Z, P_z, T)$ defined by

$$\hat{F}_b = \lambda_{b0}^{-1} \frac{F_b}{m_b (U_{b0}^2 + U_{bT}^2)^{1/2}},$$

where $\lambda_{b0} = const.$ is the characteristic line density of the beam particles, e.g., the average value. From Eqs. (69), (70) and the definition of line density $\lambda_b = \int dp_z F_b$, it follows that the perturbation in line density $\eta = \lambda_b / \lambda_{b0} - 1$ can be expressed as

$$\eta (Z, T) = \int dP_z \hat{F}_b (Z, P_z, T) - 1,$$

where the P_z integration covers the range $-\infty < P_z < \infty$ in Eq. (71). Transforming variables according to Eqs. (69) and (70), and making use of Eq. (71), it is readily shown that Eqs. (9) and (10) can be expressed in the new variables as

$$\frac{\partial \hat{F}_b}{\partial T} + V_z \frac{\partial \hat{F}_b}{\partial Z} - \frac{\partial \psi}{\partial Z} \frac{\partial \hat{F}_b}{\partial P_z} = 0,$$

and

$$\psi = \eta + \frac{\partial^2 \eta}{\partial Z^2},$$

where $\psi (Z, T)$ is the normalized (dimensionless) potential defined by

$$\psi = \frac{e \langle \phi \rangle}{m_b (U_{b0}^2 + U_{bT}^2)^{1/2}}.$$
Equations (72) and (73), where η and $\int dP_z \hat{F}_b$ are related by Eq. (71), constitute coupled nonlinear equations describing the self-consistent evolution of the distribution function $\hat{F}_b (Z, P_z, T)$, normalized potential $\psi (Z, T)$, and normalized perturbed line density $\eta (Z, T)$. Equations (71)-(73) are fully equivalent to the original dynamical equations (9)-(11), and can be used to investigate 1D kinetic properties of the nonlinear beam dynamics over a wide range of system parameters.

Keeping in mind that Eqs. (72) and (73) are Galilean invariant, if we transform Eqs. (72) and (73) from the variables (Z, P_z, T) to a frame moving with normalized velocity $M = \text{const.}$ according to $Z' = Z - MT, V'_z = V_z - M, T' = T$, then Eqs. (72) and (73) have exactly the same form in the new variables, with (Z, P_z, T) replaced by (Z', P'_z, T'), i.e.,

$$\frac{\partial \hat{F}_b}{\partial T'} + V'_z \frac{\partial \hat{F}_b}{\partial Z'} - \frac{\partial \psi}{\partial Z'} \frac{\partial \hat{F}_b}{\partial P'_z} = 0,$$

and

$$\psi = \eta + \frac{\partial^2 \eta}{\partial Z'^2}.$$

Here, $P'_z = V'_z$, and $\hat{F}_b (Z', P'_z, T')$ and $\eta (Z', P'_z, T')$ are related by

$$\eta (Z', T') = \int dP_z F_b (Z', P'_z, T') - 1.$$

Therefore, the traveling-pulse or traveling-wave solutions that have stationary profile shape in the primed variables (Z', P'_z, T') are determined by setting $\partial / \partial T' = 0$ in Eqs. (75)-(77).

Setting $\partial \hat{F}_b / \partial T' = 0$ in Eq. (75) gives for $\hat{F}_b (Z', P'_z)$

$$V'_z \frac{\partial \hat{F}_b}{\partial Z'} - \frac{\partial \psi}{\partial Z'} \frac{\partial \hat{F}_b}{\partial P'_z} = 0,$$

where $\psi (Z')$ and $\eta (Z')$ solve Eq. (76), and $\eta (Z')$ is related to $\hat{F}_b (Z', P'_z)$ by Eq. (77). We introduce the energy variable W' defined by

$$W' = \frac{1}{2} V'_z^2 + \psi (Z').$$

Then the solution to Eq. (78) for $\hat{F}_b (Z', P'_z)$ can be expressed as

$$\hat{F}_b (Z', V'_z) = \hat{F}_b^> (W') \Theta (V'_z) + \hat{F}_b^< (W') \Theta (-V'_z),$$
where

$$\Theta (V'_z) = \begin{cases} 1, & \text{for } V'_z > 0, \\ 0, & \text{for } V'_z < 0. \end{cases} \quad (81)$$

Note from Eq. (79) that

$$dV'_z = \pm dW'/[2 (W' - \psi)]^{1/2}, \quad (82)$$

where + corresponds to $V'_z > 0$, and − corresponds to $V'_z < 0$. Substituting Eqs. (80) and (81) into Eq. (77) gives

$$\eta = \int_{\psi}^{\infty} dW' \frac{[\hat{F}^{>}_b (W') + \hat{F}^<_b (W')]}{[2 (W' - \psi)]^{1/2}} - 1, \quad (83)$$

which relate the perturbation in beam line density $\eta (Z')$ to the potential $\psi (Z')$ and the distribution functions $\hat{F}^{>}_b (W')$ and $\hat{F}^<_b (W')$.

Figure 11 shows an illustrative plot of the potential $\psi (Z')$ as a function of Z'. Depending on the values of the energy W' and range of Z', there are three classes of particle orbits: (a) particles that are reflected from the potential; (b) particles that are trapped and undergo periodic motion; and (c) passing (untrapped) particles that don’t change direction, but pass over the potential maximum, first slowing down and then speeding up during the motion. For the trapped particles and the reflected particles, it follows that $\hat{F}^{>}_b (W') = \hat{F}^<_b (W')$ so that

$$\hat{F}_{Tr} (W') = \hat{F}^<_b (W') + \hat{F}^{>}_b (W') = 2 \hat{F}^<_b (W') = 2 \hat{F}^{>}_b (W') \quad (84)$$

and

$$\hat{F}_{Ref} (W') = \hat{F}^<_b (W') + \hat{F}^{>}_b (W') = 2 \hat{F}^<_b (W') = 2 \hat{F}^{>}_b (W'). \quad (85)$$

On the other hand, for the passing (untrapped) particles, $\hat{F}^<_u (W')$ and $\hat{F}^{>}_u (W')$ can be specified independently, depending on whether the particles have $V'_z > 0$ or $V'_z < 0$, respectively.

The form of $\psi (Z')$ shown in Fig. 11 corresponds to a stationary isolated pulse in primed variables, with $\psi (Z' = \pm \infty) = 0$. By contrast, Fig. 12 shows a plot of $\psi (Z')$ versus Z' for the case where $\psi (Z')$ has a periodic nonlinear wave structure with
\[\psi (Z' + L) = \psi (Z') . \]

(86)

From Fig. 12, trapped particles with energy \(W' \) in the range

\[\psi_{\text{min}} < W' < \psi_{\text{max}} \]

(87)

exhibit periodic motion. On the other hand, passing particles with energy \(W' \) in the range (see Fig. 12)

\[W' > \psi_{\text{max}} \]

(88)

correspond to untrapped particles that pass over the potential \(\psi (Z') \), periodically speeding up and slowing down, but not changing their direction of motion. Furthermore, for the nonlinear periodic waveform for the potential \(\psi (Z' + L) = \psi (Z') \) shown in Fig. 12, it follows from Eqs. (76) and (83) that the waveform for the perturbation in line charge also satisfies \(\eta (Z' + L) = \eta (Z') \). Here, \(\eta (Z') \) is related to \(\psi (Z') \) and the trapped-particle and untrapped-particle distribution functions by Eq. (83), which gives

\[1 + \eta = \int_{\psi_{\text{min}}}^{\psi_{\text{max}}} dW' \frac{\hat{F}_{\text{Tr}} (W')}{[2 (W' - \psi)]^{1/2}} + \int_{\psi}^{\infty} dW' \frac{\hat{F}_{\text{Un}} (W')}{[2 (W' - \psi)]^{1/2}} . \]

(89)

In Eq. (89), the integration over the trapped-particle distribution \(\hat{F}_{\text{Tr}} (W') \) is over the interval of \(W' \) corresponding to \(\psi_{\text{min}} < \psi < W' < \psi_{\text{max}} \), and the integration over the untrapped particle distribution \(\hat{F}_{\text{Un}} (W') \) is over the interval of \(W' \) corresponding to \(\psi_{\text{max}} < \psi < W' < \infty \).

Equations (76) and (89) can be used to determine detailed properties of self-consistent nonlinear periodic solutions for \(\eta (Z') \) and \(\psi (Z') \) for a broad range of choices of \(\hat{F}_{\text{Tr}} (W') \) and \(\hat{F}_{\text{Un}} (W') \). Furthermore, depending on system parameters, the amplitudes of the wave perturbations can range from small to moderately large amplitude. For purposes of illustration the procedure for solving Eqs. (76) and (89) for the case of nonlinear periodic solutions for \(\eta (Z') \) and \(\psi (Z') \), we consider the special case where \(\hat{F}_{\text{Tr}} (W') = 0 \), and the untrapped distribution function has the monoenergetic form

\[\hat{F}_{\text{Un}} (W') = A \sqrt{2 W_U} \delta (W' - W_U) , \]

(90)
where $W_U' = \text{const.}, A = \text{const.},$ and $W_U' > \psi_{\text{max}}$ (see Fig. 12). Substituting $\hat{F}_{Tr}(W') = 0$ and Eq. (90) into Eq. (89) readily gives

$$1 + \eta(Z') = \frac{A}{[1 - \psi(Z')/W_U']^{1/2}}. \quad (91)$$

For present purpose, we choose the normalization constant A in Eq. (91) such that the line density perturbation $\eta(Z') = \lambda_b(Z')/\lambda_{b0} - 1$ and potential perturbation $\psi(Z')$ are simultaneously zero for all Z', i.e., $\eta(Z') = 0$ for all Z' when $\psi(Z') = 0$. From Eq. (91), this readily gives $A = 1$ for the value of the constant A. Squaring Eq. (91) and solving for $\psi(Z')$ when $A = 1$ readily gives

$$\psi = W_U' \left[1 - \frac{1}{(1 + \eta)^2} \right]. \quad (92)$$

Note that Eq. (92) determines $\psi(Z')$ as a function of $\eta(Z')$, which can be substituted into Eq. (76) to solve for $\eta(Z')$.

Similar to the analysis in Sec. III B for the class of nonlinear periodic traveling-wave solutions with $\eta(Z' + L) = \eta(Z')$ and $\psi(Z' + L) = \psi(Z')$, we examine Eqs. (76) and (92) for the case where the boundary conditions correspond to $\eta(Z' = 0) = 0$ and $[\partial^2 \eta/\partial Z'^2]_{Z' = 0} = 0$. Substituting Eq. (92) into Eq. (76) we readily obtain

$$\frac{\partial^2 \eta}{\partial Z'^2} + \eta = W_U' \left[1 - \frac{1}{(1 + \eta)^2} \right], \quad (93)$$

which can also be expressed as

$$\frac{\partial^2 \eta}{\partial Z'^2} + \frac{\partial V}{\partial \eta} = 0, \quad (94)$$

where

$$\frac{\partial V}{\partial \eta} = \eta - W_U' \left[1 - \frac{1}{(1 + \eta)^2} \right] = \frac{\eta}{(1 + \eta)^2} \left[\eta^2 + (2 - W_U') \eta + (1 - 2W_U') \right]. \quad (95)$$

Note that Eq. (94) has the form of a dynamical equation of motion, with η playing the role of displacement, Z' playing the role of time, and $V(\eta)$ playing the role of an effective potential. Making use of Eq. (95), it is readily shown that
\[
\frac{\partial^2 V}{\partial \eta^2} = 1 - \frac{2W_U'}{(1 + \eta)^2},
\]
and

\[
V(\eta) = \frac{1}{2} \eta^2 - W_U' \left[\eta + \frac{1}{1 + \eta} - 1 \right]
= \frac{1}{2} \frac{\eta^2}{(1 + \eta)^2} \{ \eta + [1 - 2W_U'] \},
\]
where the constant of integration in Eq. (97) has been chosen so that \(V(\eta = 0) = 0\).

Close examination of Eqs. (93)-(96) shows that Eq. (94) supports oscillatory solutions for \(\eta(Z')\) about \(\eta = 0\) provided \([\partial^2 V/\partial \eta^2]_{\eta=0} > 0\), or equivalently,

\[
2W_U' < 1.
\]

When the inequality in Eq. (98) is satisfied, the plot of \(V(\eta)\) versus \(\eta\) has the characteristic shape illustrated in Fig. 13 for the choice of parameter \(2W_U' < 1\). Here, \(V(\eta)\) has a minimum at \(\eta = 0\), and passed through zero at

\[
\eta = \eta^+ = -[1 - 2W_U'],
\]
where \(V(\eta = \eta^+) = 0\) [see Eqs. (97) and (99)]. Similar to the analysis in Sec. III B, Eq. (94) can be integrated to give the energy conservation relation (1/2) [\(\partial \eta/\partial Z'\)]^2 + \(V(\eta) = E = \text{const.}\) [see also Eq. (62)], where \(E = (1/2) [\eta'(0)]^2\) is the effective energy level. Referring to Fig. 13, Eqs. (94) and (97) support nonlinear periodic oscillatory solutions for \(\eta(Z')\) for \(E\) in the range \(0 < E < V_m\), where \(V_m \equiv V(\eta = \eta_m)\) is the local maximum of \(V(\eta)\) at \(\eta = \eta_m\). For the choice of dimensionless parameter \(2W_U' = 1/2\) in Fig. 13, it is readily shown that \(\eta_m = -0.360\) and \(V_m = V(\eta = \eta_m) = 0.014\).

Recall that the primed variables \((Z', V_z', T')\) are related to \((Z, V_z, T)\) by \(Z' = Z - MT\), \(V_z' = V_z - M\) and \(T' = T\), where \(M = \text{const.}\) is the dimensionless velocity of the traveling wave relative to the unprimed frame. Therefore, for a nonlinear wave that is time stationary \((\partial/\partial T' = 0)\) in the primed variables, it is reasonable to identify \(W_U'\) with \(W_U' = (1/2) M^2\) for a monoenergetic beam. In this case, we make the identification \(2W_U' < 1\), so the condition for Eqs. (94) and (95) to have nonlinear periodic solutions for \(\eta(Z')\) [see Eq. (98)] can be expressed as
Typical numerical solutions for $\eta(Z')$, obtained by integrating Eq. (94) with $V(\eta)$ specified in Eq. (97), are illustrated in Figs. 14-17 for several choices of $M^2 < 1$ and different values of effective energy level E. These correspond to: $M^2 = 0.5, E = 0.005, \eta_m = -0.360$, and $V(\eta_m) = 0.014$ (Fig. 14); $M^2 = 0.5, E = 0.054883, \eta_m = -0.360$, and $V(\eta_m) = 0.014$ (Fig. 15); $M^2 = 0.09, E = 0.05, \eta_m = -0.764$, and $V(\eta_m) = 0.181$ (Fig. 16); and $M^2 = 0.09, E = 0.18, \eta_m = -0.764$, and $V(\eta_m) = 0.181$ (Fig. 17). Figures 14-17 illustrate several interesting trends in the nonlinear periodic wave solutions for $\eta(Z')$. [These should be compared with the nonlinear periodic wave solutions in Figs. 2-5 obtained in Sec. III for the kinetic waterbag model.] First, for smaller values of M^2, the potential wells are deeper and broader (compare Figs. 14a and 15a with Figs. 16a and 17a). Furthermore, the nonlinear wave amplitudes tend to be large for sufficiently large values of energy level E in the potential well (compare Figs. 15 and 17 with Figs. 14 and 16).

V. CONCLUSIONS

In this paper, the 1D kinetic model developed in Ref. [14] was used to describe the nonlinear longitudinal dynamics of intense beam propagation, allowing for moderate-to-large-amplitude modulation in the charge density of the beam particles. Particular emphasis has been placed on investigating detailed properties of nonlinear pulse-like (soliton) and periodic traveling-wave disturbances propagating with constant normalized velocity $M = \text{const.}$ relative to the beam frame. The 1D kinetic formalism [14] was briefly summarized in Sec. II A, and exact (local and nonlocal) nonlinear conservation constraints were derived in Sec. II B for the conserved particle number, momentum, and energy per unit length of the beam, making use of the nonlinear Vlasov equation for $F_b(z, p_z, t)$ in Eq. (1) and the expression for $\langle E_z \rangle(z, t)$ in Eq. (2). Removing the assumption of weak nonlinearity made in Ref. [15], Sec. III made use of the fully nonlinear kinetic waterbag model to investigate detailed properties of traveling nonlinear disturbances propagation with velocity $M = \text{const.}$ relative to the beam frame. In normalized variables, $Z' = Z - MT$ and $T' = T$, the waveform of the disturbance was assumed to be time-stationary ($\partial / \partial T' = 0$) in the frame moving with velocity $M = \text{const.}$ Nonlinear solutions were examined over a wide range of system parameters.
for both traveling-pulse (soliton) and nonlinear traveling wave solutions in which the modulation in beam density was large-amplitude, corresponding to a strongly bunched beam. Finally, in Sec. IV we examined the kinetic model based on Eqs. (9) and (10) [equivalent to Eqs. (1) and (2)] for an even broader class of distribution functions $F_b(z, p_z, t)$. The analysis in Sec. IV parallels the original Bernstein-Greene-Kruskal (BGK) formulation of BGK solutions to the 1D Vlasov-Poisson equations [25, 26], except for the fact that Eq. (10), which connects the effective potential $\langle \phi \rangle (z, t)$ to the line density $\lambda_b(z, t)$, has a very different structure than the 1D Poisson's equation used in the original BGK analysis. Depending on the choices of trapped-particle and untrapped-particle distribution functions, the kinetic model described in Sec. IV supports a broad range of nonlinear pulse-like (soliton) solutions and periodic traveling-wave solutions that have stationary waveform in a frame of reference moving with velocity $M = \text{const.}$ relative to the beam frame. Similar to Sec. III, the modulation in beam line density can have large amplitude, corresponding to a strong bunching of the beam particles. Specific examples were considered in Sec. IV corresponding to nonlinear periodic traveling wave solutions of Eqs. (9) and (10).

ACKNOWLEDGMENTS

This research was supported under the auspices of U.S. Department of Energy Contract No. DE-AC02-09CH11466 with the Princeton Plasma Physics Laboratory.

[1] R. C. Davidson and H. Qin, *Physics of intense charged particle beams in high energy accelerators* (World Scientific, 2001).

[2] M. Reiser, *Theory and design of charged particle beams* (Wiley, New York, 1994).

[3] A. W. Chao, *Physics of collective beam instabilities in high energy accelerators* (Wiley, New York, 1993).

[4] D. A. Edwards and M. J. Syphers, *An Introduction to the physics of high energy accelerators, 1993* (Wiley, New York, 1993).

[5] J. D. Lawson, *The physics of charged-particle beams* (Oxford University Press, Oxford, 1988).

[6] T. P. Wangler, *Principle of RF linear accelerators* (John Wiley & Sons, New York, 1998).
[7] I. Hofmann, Z. Naturforsch A 37, 939 (1982).
[8] I. Hofmann, Laser Part. Beams 3, 1 (1985).
[9] R. Fedele, G. Miele, L. Palumbo, and V. Vaccaro, Phys. Lett. A 179, 407 (1993).
[10] L. K. Spentzouris, J. F. Ostiguy, and P. L. Colestock, Phys. Rev. Lett. 76, 620 (1996).
[11] O. Boine-Frankenheim, I. Hofmann, and G. Rumolo, Phys. Rev. Lett. 82, 3256 (1999).
[12] H. Schamel, Phys. Rev. Lett. 79, 2811 (1997).
[13] H. Schamel and R. Fedele, Phys. Plasmas 7, 3421 (2000).
[14] R. C. Davidson and E. A. Startsev, Phys. Rev. ST Accel. Beams 7, 024401 (2004).
[15] R. C. Davidson, Phys. Rev. ST Accel. Beams 7, 054402 (2004).
[16] R. C. Davidson, H. Qin, S. I. Tzenov, and E. A. Startsev, Phys. Rev. ST Accel. Beams 5, 084402 (2002).
[17] R. Davidson, Methods in nonlinear plasma theory (Academic Press, New York, 1972).
[18] K. V. Roberts and H. L. Berk, Phys. Rev. Lett. 19, 297 (1967).
[19] F. Hohl and M. R. Feix, Astrophys. J. 147, 1164 (1967).
[20] D. Kordeweg and G. de Vries, Philos. Mag. 39, 422 (1895).
[21] H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
[22] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).
[23] E. Ott and R. Sudan, Phys. Fluids 12, 2388 (1969).
[24] R. Davidson, Methods in nonlinear plasma theory (Academic Press, New York, 2004), pp. 19–31.
[25] I. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).
[26] R. Davidson, Methods in nonlinear plasma theory (Academic Press, New York, 2004), pp. 72–80.
FIG. 1. Illustrative plot of $V(\eta)$ versus η obtained from Eq. (56) for $M^2 = 0.09$ and $\epsilon_T = 4/15$. Here, $\eta^+ = -0.882$, $\eta_m = -0.715$ and $V(\eta_m) = 0.126$.
FIG. 2. For $M^2 = 0.36$, $\epsilon_T = 0$, $\eta^+ = -0.64$, $\eta_m = -0.476$ and $V(\eta_m) = 0.0355$, plots are shown for (a) $V(\eta)$ versus η; (b) $\eta(Z')$ versus Z' for $\eta'(0) = 0.1$ and $E = (1/2)[\eta'(0)]^2 = 0.005$; and (c) $\eta(Z')$ versus Z' for $\eta'(0) = 0.2$ and $E = (1/2)[\eta'(0)]^2 = 0.02$.
FIG. 3. For $M^2 = 0.36$, $\epsilon_T = 0.8$, $\eta^+ = -0.442$, $\eta_m = -0.306$ and $V(\eta_m) = 0.0111$, plots are shown for (a) $V(\eta)$ verses η; (b) $\eta(Z')$ verses Z' for $\eta'(0) = 0.1$ and $E = (1/2)|\eta'(0)|^2 = 0.005$; and (c) $\eta(Z')$ verses Z' for $\eta'(0) = 0.1488$ and $E = (1/2)|\eta'(0)|^2 = 0.0110707$.\[31]
FIG. 4. For $M^2 = 0.09$, $\epsilon_T = 0$, $\eta^+ = -0.91$, $\eta_m = -0.764$ and $V(\eta_m) = 0.181$, plots are shown for
(a) $V(\eta)$ verses η; (b) $\eta(Z')$ verses Z' for $\eta'(0) = 0.1$ and $E = (1/2)[\eta'(0)]^2 = 0.005$; and (c) $\eta(Z')$ verses Z' for $\eta'(0) = 0.5$ and $E = (1/2)[\eta'(0)]^2 = 0.125$.
FIG. 5. For $M^2 = 0.09$, $\epsilon_T = 0.8$, $\eta^+ = -0.767$, $\eta_m = -0.557$ and $V(\eta_m) = 0.0545$, plots are shown for (a) $V(\eta)$ verses η; (b) $\eta(Z')$ verses Z' for $\eta'(0) = 0.1$ and $E = (1/2)\left|\eta'(0)\right|^2 = 0.005$; and (c) $\eta(Z')$ verses Z' for $\eta'(0) = 0.3301$ and $E = (1/2)\left|\eta'(0)\right|^2 = 0.054483$.
FIG. 6. Illustrative plot of $V(\eta)$ verses η obtained from Eq. (56) for $M^2 = 9$ and $\epsilon_T = 1/50$. Here, $\eta^+ = 6.908$, and the energy level $E = 0$ corresponds to soliton solutions with maximum amplitude $\eta^+ = 6.908$.

FIG. 7. Plots of (a) $V(\eta)$ verses η; and (b) $\eta(Z')$ verses Z', obtained from Eqs. (56) and (62) for $M^2 = 4$, $\epsilon_T = 0$ and $E = 0$, corresponding to soliton amplitudes $\eta^+ = 3.0$.
FIG. 8. Plots of (a) $V(\eta)$ verses η; and (b) $\eta(Z')$ verses Z', obtained from Eqs. (56) and (62) for $M^2 = 4$, $\epsilon_T = 4/15$ and $E = 0$, corresponding to soliton amplitudes $\eta^+ = 1.735$.
FIG. 9. Plots of (a) $V(\eta)$ versus η; and (b) $\eta(Z')$ versus Z', obtained from Eqs. (56) and (62) for $M^2 = 1.2$, $\epsilon_T = 0$ and $E = 0$, corresponding to soliton amplitudes $\eta^+ = 0.4$.

36
FIG. 10. Plots of (a) $V(\eta)$ verses η; and (b) $\eta(Z')$ verses Z', obtained from Eqs. (56) and (62) for $M^2 = 1.2$, $\epsilon_T = 4/15$ and $E = 0$, corresponding to soliton amplitudes $\eta^+ = 0.297$.
FIG. 11. Illustrative plot of the effective potential $\psi(Z')$ verses Z' occurring in Eq. (33) showing the three classes of particle orbits corresponding to (a) passing (untrapped) particles with energy W'_3, (b) reflected particles with energy W'_2, and (c) reflected or trapped particles (depending on the range of Z') with energy W'_1. The form of $\psi(Z')$ in Fig. 11 corresponds to an isolated pulse with $\psi(Z' \to \pm \infty) = 0$.

FIG. 12. Illustrative plot of the effective potential $\psi(Z')$ verses Z' for the case where $\psi(Z')$ has a nonlinear periodic waveform with $\psi(Z' + L) = \psi(Z')$, where L is the periodicity length. In the figure, passing particles with energy $W' > \psi_{\text{max}}$ are untrapped, whereas particles with energy $\psi_{\text{min}} < W' < \psi_{\text{max}}$ are trapped and exhibit periodic motion in the potential $\psi(Z')$.

38
FIG. 13. Plot of $V(\eta)$ verses η obtained from Eq. (97) for $2W'_u = 0.5$ and $\eta^+ = -0.5$. Here, $\eta_m = -0.36$, and $V(\eta_m) = 0.014$. Nonlinear periodic solutions for $\eta(Z')$ exist for energy level E in the range $0 < E < V(\eta_m)$.

FIG. 14. Plots are shown for (a) $V(\eta)$ verses η, and (b) $\eta(Z')$ verses Z', obtained from Eq. (94) for $M^2 = 0.5$, $\eta'(0) = 0.1$, $E = 1/2[\eta'(0)]^2 = 0.005$, $\eta^+ = -0.5$, $\eta_m = -0.36$ and $V(\eta_m) = 0.014$.
FIG. 15. Plots are shown for (a) $V(\eta)$ verses η, and (b) $\eta(Z')$ verses Z', obtained from Eq. (94) for $M^2 = 0.5$, $\eta'(0) = 0.1863$, $E = 1/2[\eta'(0)]^2 = 0.054883$, $\eta^+ = -0.5$, $\eta_m = -0.36$ and $V(\eta_m) = 0.014$.
FIG. 16. Plots are shown for (a) $V(\eta)$ verses η, and (b) $\eta(Z')$ verses Z', obtained from Eq. (94) for $M^2 = 0.09$, $\eta'(0) = 0.1$, $E = 1/2[\eta'(0)]^2 = 0.05$, $\eta^+ = -0.91$, $\eta_m = -0.764$ and $V(\eta_m) = 0.181$.
FIG. 17. Plots are shown for (a) $V(\eta)$ verses η, and (b) $\eta(Z')$ verses Z', obtained from Eq. (94) for $M^2 = 0.09, \eta'(0) = 0.6, E = 1/[\eta'(0)]^2 = 0.18, \eta^+ = -0.91, \eta_m = -0.764$ and $V(\eta_m) = 0.181$.
