An Exact Algorithm for the Linear Tape Scheduling Problem

Valentin Honoré, Bertrand Simon, Frédéric Suter

IN2P3 Computing Center – CNRS, Villeurbanne – Lyon, France

JCAD – October 2022
Tape usage today

≈ 20TB on 1000s × 1km read at 10m/s – 100s MB/s
(or 11 football fields)

Primordial for HTC (High Throughput Computing)

e.g., CERN, CCIN2P3, ECMWF (100s PB)
also: media companies, cloud archive...

Impressive technology improvements
density: + 30% / year (vs HDD: + 8%)

High latency (mount, load, position → few mn)
Adapted for Write Once Read Many
Overview of a tape

≈ 1km
≈ 0.5 inch or 1.3cm

> 200 wraps (linear serpentine)

wrap = dozens of tracks read / written simultaneously by parallel heads
Overview of our tape model

≈ 0.5 inch or 1.3 cm

≈ 1km
Linear Tape Scheduling Problem

Assumptions:

- Files are read left-to-right
- Start on the right
- Constant speed

Input:

- Tape of \(n_f \) consecutive files
- \(n \) file requests (44 here)
- \(n_{req} \) distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files
Assumptions:

- files are read left-to-right
- start on the right
- constant speed
- [new] U-turn penalty U

Input:

- tape of n_f consecutive files
- n file requests (44 here)
- n_{req} distinct files requested (6)

Objective: average service time

Motivation: lack of fundamental theoretical results, models local files
Related to the Linear Tape Scheduling Problem

Travelling Salesperson Problem (TSP)
- super-famous NP-hard problem
- recent \((1.5 - 10^{-36})\) - approximation \([\text{KarlinKleinGaran'21}]\)
- 😞 minimizes makespan, trivial on the real line

Minimum Latency Problem / TRP (Repair) - variant
- 😊 minimize average service time \(\in \mathbb{P}\) on the real line
- delays to repair a node: complexity open

Dial-a-ride variant on the real line
- \(\approx\) LTSP but with overlapping files in both directions
 \(\rightarrow\) NP-hard

Tapes except LTSP: 2 specific experimental papers in the 90’s
Structural results

Any optimal solution

▶ after reaching $\ell(f_1)$, go straight to the rightmost unread request
▶ can be described by a set of **detours** done before

Definition (Detours)

A solution includes the **detour** (a,b) with $a \leq b$ if:

▶ the 1st time the head reaches $\ell(a)$, go straight to $r(b)$, back to $\ell(a)$

Requested files

f_1	f_2	f_3	f_4	f_5	f_6

detours: $[(f_6, f_6), (f_4, f_4), (f_3, f_5)]$
Any optimal solution

- after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

Definition (Detours)

A solution includes the detour (a,b) with $a \leq b$ if:

- the 1st time the head reaches $\ell(a)$, go straight to $r(b)$, back to $\ell(a)$

Lemma: detours never partially overlap (strictly laminar)
Any optimal solution

- after reaching $\ell(f_1)$, go straight to the rightmost unread request
- can be described by a set of detours done before

Definition (Detours)

A solution includes the detour (a,b) with $a \leq b$ if:

- the 1st time the head reaches $\ell(a)$, go straight to $r(b)$, back to $\ell(a)$

Lemma: detours never partially overlap (*strictly laminar*)
Naive algorithms

NoDetour: go to the leftmost request, then to the rightmost

can be arbitrarily bad (place urgent requests on the right)

![Diagram of NoDetour algorithm]

GS (Greedy Schedule): do all atomic detours, i.e., \(\{(f_i, f_i)\}_{\forall i} \)

Lemma [CardonhaReal’16]: **GS** is a 3-approximation if \(U = 0 \)

Proof: does \(\leq 3 \) times the optimal distance before reading each request

![Diagram of Greedy Schedule algorithm]
Heuristic improvements

FGS (Filtered): remove detrimental atomic detours in $O(n_{req}^2)$

NFGS (Non-atomic): greedily add long detours if currently beneficial. Make one pass from left to right. Complexity in $O(n_{req}^3)$.

FGS (Filtered): remove detrimental atomic detours in $O(n_{req}^2)$

NFGS (Non-atomic): greedily add long detours if currently beneficial. Make one pass from left to right. Complexity in $O(n_{req}^3)$
Dynamic Program DP: overview

Each cell: three parameters $T[a, b, n_{\text{skip}}]$

- compute the best strategy from $r(b)$ to $\ell(a)$ assuming:
 1. there is a detour (a, f) for some $f \geq b$,
 2. there is no detour (f_1, f_2) such that $a < f_1 < b < f_2$,
 3. when reaching $r(b)$, exactly n_{skip} requests have been skipped.

\Rightarrow value \approx cost contribution from ‘first $r(b)$’ to ‘$r(b)$ after reading a’

Subtleties: \forall request on f, do not count the cost $m \rightarrow \ell(f) \rightarrow r(f)$ if f is read after b, remove one U (counted before)
Dynamic Program DP: overview

Each cell: three parameters $T[a, b, n]$.

\Rightarrow value \approx cost contribution from 'first $r(b)$' to 'after reading a'.

Subtleties: \forall request on f, do not count the cost $m \rightarrow \ell(f) \rightarrow r(f)$ if f is read after b, remove one U (counted before).
More dynamic programs

Theorem

DP solves **LTSP** exactly in time $O(n \cdot n_{req}^3)$.

LogDP(λ): **DP** restricted to detours spanning $\lambda \log n_{req}$ requested files

Reduced complexity in $O(\lambda^2 \cdot n_{req} \cdot n \cdot \log^2(n_{req}))$, tested with $\lambda \in \{1, 5\}$

SimpleDP: **DP** forbidding intertwined (i.e., overlapping) detours

Reduced complexity in $O(n \cdot n_{req}^2)$, better theoretical guarantees
Simulations: overview

Dataset: 2 weeks at CC-IN2P3

- 169 tapes, > 3M files
- focus on reading operations
- filtering steps, data processing (e.g., merge reads on aggregates)
- median data: 150 files requested, 3k requests, 50% file size variation

Code + dataset (with statistical descriptions) available online

Experimental methodology

- vary U
- median timings (seconds, on a compiled Python program):

	FGS	NFGS	LogDP(1)	SimpleDP	LogDP(5)	DP
Median	< 0.1	1	2	3	7	30
Simulation results, $U = 0$

Performance profile: best is top-left (most instances with low overhead vs OPT)
Simulation results, $U = \text{file}$

Performance profile: best is top-left (most instances with low overhead vs OPT)
Conclusion

General: tapes are past & future

▶ tapes stay primordial in some fields but neglected by CS research
▶ fundamental problems are still open

On LTSP

▶ high-multiplicity variant remains open
▶ huge gap between theoretically studied models and practical heuristics

Perspectives on other tape-related topics

▶ multi-tape requests: optimize waiting queues
▶ optimize tape / disk storage ratio