USA300 and USA500 Clonal Lineages of Staphylococcus aureus Do Not Produce a Capsular Polysaccharide Due to Conserved Mutations in the cap5 Locus

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Boyle-Vavra, S., X. Li, M. T. Alam, T. D. Read, J. Sieth, C. Cywes-Bentley, G. Dobbins, et al. 2015. “USA300 and USA500 Clonal Lineages of Staphylococcus aureus Do Not Produce a Capsular Polysaccharide Due to Conserved Mutations in the cap5 Locus.” mBio 6 (2): e02585-14. doi:10.1128/mBio.02585-14. http://dx.doi.org/10.1128/mBio.02585-14.

Published Version
doi:10.1128/mBio.02585-14

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17295633

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
USA300 and USA500 Clonal Lineages of *Staphylococcus aureus* Do Not Produce a Capsular Polysaccharide Due to Conserved Mutations in the cap5 Locus

Susan Boyle-Vavra,a Xue Li,b,1 Md Tauqeer Alam,c Timothy D. Read,c,d Julia Sieth,a Colette Cywes-Bentley,p Ginette Dobbins,ag Michael Z. David,b Neha Kumar,b Samantha J. Eells,f Loren G. Miller,f David J. Boxrud,g Henry F. Chambers,g Ruth Lynfield,g Jean C. Lee,g Robert S. Dauma

Department of Pediatrics, Section of Infectious Diseases, The University of Chicago, Chicago, Illinois, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA; Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Medicine, Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, Harbor UCLA, Torrance, California, USA; Minnesota Department of Health, St. Paul, Minnesota, USA; Division of Infectious Diseases, San Francisco General Hospital, San Francisco, California, USA; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

ABSTRACT The surface capsular polysaccharide (CP) is a virulence factor that has been used as an antigen in several successful vaccines against bacterial pathogens. A vaccine has not yet been licensed against *Staphylococcus aureus*, although two multicomponent vaccines that contain CP antigens are in clinical trials. In this study, we evaluated CP production in USA300 methicillin-resistant *S. aureus* (MRSA) isolates that have become the predominant community-associated MRSA clones in the United States. We found that all 167 USA300 MRSA and 50 USA300 methicillin-susceptible *S. aureus* (MSSA) isolates were CP negative (CP−). Moreover, all 16 USA500 isolates, which have been postulated to be the progenitor lineage of USA300, were also CP−. Whole-genome sequence analysis of 146 CP− USA300 MRSA isolates revealed they all carry a cap5 locus with 4 conserved mutations compared with strain Newman. Genetic complementation experiments revealed that three of these mutations (in the cap5 promoter, cap5D nucleotide 994, and cap5E nucleotide 223) ablated CP production in USA300 and that Cap5E75 Asp, located in the coenzyme-binding domain, is essential for capsule production. All but three USA300 MSSA isolates had the same four cap5 mutations found in USA300 MRSA isolates. Most isolates with a USA500 pulsotype carried three of these four USA300-specific mutations, suggesting the fourth mutation occurred in the USA300 lineage. Phylogenetic analysis of the cap loci of our USA300 isolates as well as publicly available genomes from 41 other sequence types revealed that the USA300-specific cap5 mutations arose sequentially in *S. aureus* in a common ancestor of USA300 and USA500 isolates.

IMPORTANCE The USA300 MRSA clone emerged as a community-associated pathogen in the United States nearly 20 years ago. Since then, it has rapidly disseminated and now causes health care-associated infections. This study shows that the CP-negative (CP−) phenotype has persisted among USA300 isolates and is a universal and characteristic trait of this highly successful MRSA lineage. It is important to note that a vaccine consisting solely of CP antigens would not likely demonstrate high efficacy in the U.S. population, where about half of MRSA isolates comprise USA300. Moreover, conversion of a USA300 strain to a CP-positive (CP+) phenotype is unlikely in *in vivo* or *in vitro* since it would require the reversion of 3 mutations. We have also established that USA300 MSSA isolates and USA500 isolates are CP− and provide new insight into the evolution of the USA300 and USA500 lineages.

S. aureus is an important pathogen that causes a wide range of infections in health care and community settings. Methicillin-resistant *S. aureus* (MRSA) isolates in particular, which have become increasingly prevalent in the last decade, are resistant to nearly all β-lactams and are often multiply resistant to several classes of antibiotics. A vaccine that could protect against *S. aureus* infection would be important for public health, although development of an effective vaccine has remained elusive (1, 2).

Capsular polysaccharides (CPs) envelope the surface of many bacterial pathogens and have been the primary or sole protective antigen used in vaccines that are effective against certain serotypes of *Streptococcus pneumoniae*, *Haemophilus influenzae*, and *Neisseria meningitidis* (serotypes A, CW, and Y) (3). Among encapsu-
lated \textit{S. aureus} isolates, serotypes 5 and 8 prevail (4–9). Capsular polysaccharides 5 (CP5) and 8 (CP8) have similar trisaccharide repeating units but differ in the linkages between the sugars and the sites of O-acetylation of the monosaccharide residues (10). Previous reports have indicated that ~20% of \textit{S. aureus} isolates fail to produce CP5 or CP8 (4–9).

The \textit{S. aureus} CP protects the bacterium from host phagocytes (2); however, this protection can be overcome by CP-specific antibodies that enhance opsonophagocytic killing by human neutrophils (10, 11). Vaccines that contained CP5 and CP8 antigens conjugated to \textit{Pseudomonas aeruginosa} exotoxoid A were tested for efficacy in patients with end-stage renal disease. In phase III clinical trials, these CP-based vaccines failed to protect against \textit{S. aureus} bacteraemia (12–14).

In the United States, the community-associated (CA)-MRSA clonal type USA300 has been the most frequently isolated \textit{S. aureus} genotype from all body sites, including blood, surpassing the USA100 health care-associated MRSA strain type as a cause of nosocomial infection in some locales (15). USA300 MRSA strains are most often associated with CA skin and soft tissue infection (STSI) (16) and belong to multilocus sequence type 8 (ST8). USA300 MRSA isolates are the closest relative of USA300 among the members of the ST8 lineage and have been postulated to be the progenitor of USA300 (21).

We previously demonstrated that neither CP5 nor CP8 was produced by several USA300 MRSA clinical isolates obtained in 2004 and 2005 from our center in Chicago, IL (22). A subsequent study of isolates obtained during the same period (2004 to 2005) from Washington, DC, also reported CP-negative (CP0) USA300 isolates (23). These studies suggested that the failure to produce a CP was a common trait among USA300 MRSA isolates circulating in 2004 through 2005, but this was not investigated subsequently.

A decade has passed since the CP− USA300 MRSA isolates were described. Since then, USA300 MRSA strains have widely disseminated and increased in prevalence in the United States (15). It is not known if there are CP5-positive (CP5+) USA300 variants in circulation or if the CP− USA300 MRSA isolates identified in 2004 have become the sole or dominant USA300 clone.

Because CP5 and CP8 are components in two \textit{S. aureus} vaccines under development (1, 24, 25), the aim of this study was to determine if currently circulating USA300 MRSA isolates produce a CP. Further, we evaluated whether the CP− phenotype was shared by USA300 methicillin-susceptible \textit{S. aureus} (MSSA) isolates and the closely related USA500 lineage (21, 26). Since we found that all USA300 and USA500 isolates were uniformly CP−, we analyzed the evolutionary relationship between the cap5 mutations in USA300 and USA500 isolates.

This work was presented in part at the International Symposium on Staphylococci and Staphylococcal Infections, Chicago, IL, 2014.)

RESULTS

CP serotyping. We chose for CP serotyping 233 clinical \textit{S. aureus} isolates from our collection that were identified as either USA300 MRSA, USA300 MSSA, or USA500. Isolates were obtained from either colonized or infected body sites from subjects in Chicago, IL, Los Angeles, CA, San Francisco, CA, or Connecticut between 1995 and 2011, as described in Table 1. Clonal types consisted of (i) 167 USA300 MRSA isolates, (ii) 50 USA300 MSSA isolates, (iii) 14 USA500 MRSA isolates, and (iv) 2 USA500 MSSA isolates. The USA300 sample included 16 ACME \textit{arcA}-negative USA300 MRSA isolates and 38 ACME \textit{arcA}-negative USA500 MSSA isolates (as detailed in Table S1 in the supplemental material), since the absence of \textit{ACME arcA} is atypical compared with other USA300 strains, and these isolates might exhibit altered CP phenotypes. Table S1 provides the typing characteristics of USA300 MSSA isolates, USA500 isolates, and \textit{ACME arcA}-negative USA300 isolates.

USA300 MRSA and MSSA isolates. Capsule production was evaluated in 167 USA300 MRSA isolates. Although all USA300 MRSA strains tested carried a \textit{cap5} locus, all were nonreactive to CP5 polyclonal antiserum, whereas the CP5+ control strains Reynolds and Newman produced a signal (Fig. 1). Figure 1 also shows the nonreactivity to CP5 antiserum of the CP8+ strains, ST80 and MN8, as well as the CP− strains NCTC 8325-4 (27) and USA300 strain LAC. All 9 MRSA isolates that had a pulsotype consistent with USA300 but lacked ACME \textit{arcA} were also CP−. USA300 MRSA isolates were nonreactive with CP8 polyclonal antiserum, as expected, since they do not encode a \textit{cap8} locus (data not shown). All 50 USA300 MSSA isolates tested were CP−.

To address the possibility that USA300 strains might produce CP5 \textit{in vivo} but not \textit{in vitro}, we performed experiments similar to those described previously (28, 29). Both strain Newman and the USA300 MRSA strain CDC3 reacted with antibodies raised to

Parameter	No. of isolates					
	USA300	USA500				
Colonization vs infection						
Colonization	134	20	154	0	0	0
Infection	33	30	63	14	2	16
Total	167	50	217	14	2	16
Geographic source						
Chicago	83	45	128	12	0	12
Los Angeles	84	3	87	1	0	1
San Francisco	0	2	2	0	2	2
Connecticut	0	0	0	1	0	1
Total	167	50	217	14	2	16
killed acapsular *S. aureus* cells (see Fig. S1 in the supplemental material). The control CP5+/H11001 strain Newman produced CP5 as visualized by the blue-staining Alexa Fluor 660-tagged secondary antibodies reacting with CP5 antibodies. In contrast, neither the inoculum of USA300 MRSA strain CDC3 nor the CDC3 bacteria isolated from mouse blood 6 h after bacterial challenge showed detectable reactivity with the CP5 antibodies. Similar results were obtained with samples of blood from mice challenged with USA300 strain LAC. Thus, our results show no evidence that USA300 MRSA isolates produce CP5 in vivo.

USA500 isolates. Due to the close phylogenetic relationship between USA500 and USA300 isolates (21, 30), we hypothesized that USA500 isolates might also be CP5−. Figure 2 documents the pulsed-field gel electrophoresis (PFGE) patterns and relevant typing characteristics of the 16 USA500 isolates we tested for CP production. The USA500 isolates belonged to ST8, carried SCCmec type IV, and lacked ACME arcA (26, 30, 31) (see Table S1 in the supplemental material). However, most of these USA500 isolates carried pvl genes, which is atypical for USA500. The USA500 isolates belonged to three spa types: t064 (11 of 16 isolates), t008 (n = 3), or t211 (n = 2) (see Table S1). All 16 USA500 isolates were CP− as represented in a panel in Fig. 1.

DNA sequence analysis of cap loci of USA300 MRSA isolates. To evaluate the genetic basis for the CP5− phenotype, we evaluated the cap loci from assembled whole-genome shotgun data from 146 CP− USA300 MRSA isolates. Each strain carried an intact cap5 locus but had 4 identical point mutations relative to the CP5+ reference strain Newman (Fig. 3A).

The cap5 promoter had a T→C replacement 73 bp upstream (−73) from the ATG translation start codon of cap5A (Pcap5−73). This was located in the cap5 promoter in an inverted repeat known to be essential for transcription of capABCDEF (27, 32). We also identified a frameshift mutation within a polyadenine (AA) tract that begins at nucleotide (nt) 1006 of cap5D in strain Newman. This corresponds to nt 994 in cap5D of the USA300 reference strain because the annotations for the start codon of strain Newman and USA300 differ by four codons. There was also a G→T mutation at position 223 of cap5E (Pcap5−223), which converts Asp to Tyr in the encoded protein at codon 75 (Asp75Tyr) and a T→C mutation in cap5G−478, resulting in a Phe160Leu conversion in the encoded protein. Additional non-conserved mutations were found in various cap5 genes among USA300 isolates (data not shown) (33). The mutations in USA300 at cap5E−223 and cap5G−478 have not been previously recognized in USA300 isolates, whereas the mutations in Pcap5 and cap5D
were identified previously in three USA300 MRSA isolates from 2004 to 2005 (22).

cap5 loci in publicly available USA300 S. aureus genome sequences. To confirm that the USA300-specific mutations were not confined to the Chicago and Los Angeles locales, we also analyzed 319 previously published USA300 isolate sequences from San Diego, CA (n/H11005 35), and New York (n/H11005 277). (Annotations of the included isolates are outlined in Table S2 in the supplemental material.) All but one isolate had all 4 cap5 mutations identical to those in our USA300 collection.

cap5 mutations among USA300 arcA-negative MRSA and USA300 MSSA isolates. We performed Sanger sequencing of PCR products amplified from the cap5 locus to determine if the four cap5 mutations identified in USA300 MRSA isolates were also conserved among 9 atypical USA300 MRSA isolates that were ACME arcA negative and 19 USA300 MSSA isolates (Table 2). All 4 USA300-specific mutations were conserved among 8 of 9 (89%) ACME arcA-negative USA300 MRSA isolates tested (Table 2). One USA300 MRSA outlier (isolate 111395F) had only 2 of the 4 cap mutations (Pcap5/H11002 73 and cap5D-994). However, this isolate

![Image of USA300 cap5 locus showing universal mutations in USA300 relative to the cap5 reference strain Newman. Orange arrows depict open reading frames (ORFs). “Pcap5” refers to the cap5 promoter region. The inverted repeat sequence, as reported by Ouyang et al. (32), is shown as opposing arrows beneath Pcap5 indicating the T→C mutation in strain USA300 relative to strain Newman. The yellow line indicates a disruption of the cap5D ORF due to insertion of an A at nt 994 in USA300 (994AA). The cap5E G→T mutation at nt 223 (G223T) and the cap5G T→C mutation at nt 478 (T478C) are indicated beneath each ORF. (B) Lines beneath the map indicate the cap5 regions from strain Newman that are cloned in the complementation plasmids pKOR19 (cap5ABC plus truncated cap5D), pKOR18 (cap5ABCD plus a portion of cap5E), pCap16 (cap5ABCDE), and pCap17 (which contains cap5ABCDE). (C) CP5 serotyping results from USA300 MRSA strain 923 transformants harboring the cap5 complementation plasmids depicted in panel B.

Gene	nt position	Strain Newman	Strain USA300	Codon (aa) position	nt (no./total)
Pcap5d	−73r	T	C	NA	C (155/155)
cap5D	994r	A	AA	AAA (Lys) STOP	C (9/9)
cap5E	223	G	T	GAT (Asp) TAT (Tyr)	T (8/9)
cap5G	478	T	C	TTC (Phe) CTC (Leu)	C (155/155)

* USA300 ACME arcA MRSA isolates were characterized by PFGE or by molecular typing as described in Materials and Methods.
* Details of the molecular typing characteristics are provided in Table S1 in the supplemental material.
* Pcap5, promoter region of the cap5 operon.
* Seventy-three nucleotides upstream of the cap5A ATG translation initiation codon.
* NA, not applicable since the polymorphism is in an intergenic region.
* cap5D nt 994 in the USA300 reference strain corresponds to cap5D nt 1006 in strain Newman.
was obtained in 1995 and is not typical of recent USA300 MRSA isolates. Although isolate 111395F had a Smal digestion pattern similar to that of a USA300 isolate, it had features consistent with USA500 isolates, including spa type t064, ACME arca, and PVL. However, strain 111395F also had features atypical for USA500, including carriage of SCCmec II.

Among the USA300 MSSA isolates tested, 16 of 19 (84.2%) had all 4 USA300-specific mutations in \(P_{\text{cap5}} \), \(\text{cap5D-994} \), \(\text{cap5E-223} \), and \(\text{cap5G-478} \) (Table 2; see Table S1 in the supplemental material). Three outlier MSSA isolates had just three of the USA300-specific mutations (\(P_{\text{cap5}} \), \(\text{cap5D-994} \), and \(\text{cap5G-478} \)).

USA500 isolates. Among USA500 isolates, the four USA300\(\text{cap5} \) mutations described above were common but not universal. By Sanger sequencing, we found that 11 of the 14 (78%) USA500 MRSA isolates had 3 of the 4 USA300-specific mutations (\(P_{\text{cap5}} - 73 \), \(\text{cap5D-994} \), and \(\text{cap5G-478} \)), and none had the G-\(\text{cap5E-223} \). Three outlier USA500 MSSA isolates and both USA500 MSSA isolates had only 2 of the 4 mutations (\(P_{\text{cap5}} - 73 \) and \(\text{cap5D-993} \)) (Table 2), but these are each sufficient to yield a CP\(^{-} \) phenotype (27).

Analysis of USA300-specific \(\text{cap5} \) mutations in *S. aureus* phylogenies. To evaluate the appearance of the \(\text{cap5} \) mutations on the core phylogeny of *S. aureus*, we analyzed the USA300-specific \(\text{cap5} \) mutations in 319 publicly available USA300 *S. aureus* genome sequences, 146 USA300 MRSA genomes in this study, and 90 non-USA300 genomes from 41 STs (Fig. 4). This allowed us to propose that the USA300 \(\text{cap5} \) mutations evolved in a stepwise fashion. Moreover, these data suggest that USA300 and USA500 appear to have emerged from a common ancestor, and the \(P_{\text{cap5}} \) T-\(\text{cap5G-478} \) mutation likely occurred in the last common ancestor (LCA) of all USA300 and USA500 strains. The \(\text{cap5D-994} \) insertion may also have occurred in the LCA of both USA300 and USA500 but may have reverted back to wt in a recently emerged branch within USA500 (exemplified by strains GA231 and GA27). The \(\text{cap5G-478} \) mutation had its origins in an ancestor of all USA300 strains that was also a progenitor of a clade of strains falling between the classical USA300 and USA500 patterns.

Our analysis also suggests that the isolates with ST609 and ST623 are intermediate between USA300 and USA500 and might have a common ancestry. The conserved \(\text{cap5} \) mutations that we describe were not present in any of the other 20 clonal complexes and were not in all ST8 strains. Thus, these mutations are unique to USA300 and its close relatives USA500, ST609, and ST623.

Complementation studies to test the phenotypic effect of \(\text{cap5} \) gene mutations. To determine the phenotypic relevance of the \(\text{cap5} \) single nucleotide polymorphisms (SNPs) in strain USA300, we tested whether expression of wild-type \(\text{cap5} \) genes in *trans* on a complementation plasmid could restore CP production in all but 3 USA300 MRSA strain 923. The \(\text{cap5} \) genes included in each complementation plasmid are depicted in Fig. 3B. Transformation of USA300 strain 923 with \(\text{pKOR19} \) (expressing \(\text{wt\cap5ABC} \)) or \(\text{pKOR18} \) (expressing \(\text{wt\cap5ABCD} \)) was not sufficient to restore the CP\(^+ \) phenotype (Fig. 3C). This was not due to mutations in the cloned \(\text{cap5} \) promoter or \(\text{cap5D} \), as confirmed by DNA sequence analysis. In contrast, transformation of USA300 strain 923 with \(\text{pCap16} \) (expressing \(\text{wt\cap5ABCDDE} \) or \(\text{pCap17} \) (wt \(\text{cap5ABCDEF} \) genes) restored CP5 production (Fig. 3C). These data indicate that the mutations in \(\text{cap5D} \) and \(\text{pCap3} \) in USA300 and USA500 strains ablate CP production. These data also reveal a vital role for the Asp\(\rightarrow \)Tyr substitution at Cap5E-75 in ablating CP production. In contrast, Cap5G tolerates the Phe160Leu substitution in USA300 because complementation of CP5 production in a USA300 strain was achieved by a plasmid lacking \(\text{cap5G} \).

DISCUSSION

The fact that CP antigens have been used successfully in vaccines against several bacterial pathogens has encouraged a similar vaccine strategy for *S. aureus*. Several vaccines that have been designed for use against *S. aureus* have included CP5 and CP8 because they are the most common CP types produced by *S. aureus* clinical isolates. However, this study shows that USA300 MRSA isolates, as well as USA300 MSSA and closely related USA500 isolates, are universally CP\(^- \) negative. We also showed no evidence that USA300 isolates produce CP5 in *vivo* during infection in mice. In contrast, Timofeyeva et al. demonstrated that CP5 was detected in *vivo* on USA300 MRSA after a 6-h infection (28). We cannot explain the discrepancy between the two studies. However, it is unlikely that a strain could revert all 3 mutations that would be required for USA300 to revert to a CP\(^- \) phenotype.

USA300 isolates have increased in prevalence in the United States to become one of the most common *S. aureus* genotypes (15), especially among SSTIs, where they have accounted for 98% of MRSA isolates (16). Because USA300 isolates comprise a substantial portion of the *S. aureus* disease burden in the United States, a vaccine based solely on CP would likely demonstrate low efficacy in a U.S. population.

These results extend the observations reported a decade ago when USA300 MRSA isolates were first reported to be acapsular (22, 23). We now show that the CP\(^- \) phenotype has persisted among USA300 MRSA isolates and is a universal and characteristic trait of this highly successful MRSA lineage. Moreover, we have now established that USA300 MSSA isolates and USA500 isolates are also CP\(^- \).

Our prior understanding of the genetic basis of the CP\(^- \) phenotype among USA300 isolates was limited to our identification of two mutations in the \(\text{cap5} \) locus in three USA300 isolates (22) that had been shown previously to ablate CP production in other *S. aureus* strains (27, 32). The comprehensive genetic analyses of USA300 isolates in this study reveals that the 4 \(\text{cap5} \) mutations are present in all but 1 USA300 MRSA isolate and in all but 3 USA300 MSSA isolates. Importantly, 3 of those 4 mutations are alone sufficient to ablate CP production. It would therefore require reversion of all 3 mutations in USA300 MRSA to produce a strain that produces a CP. Also, 3 of the 4 same mutations are common in the USA500 lineage. It has been shown previously that the mutations in \(P_{\text{cap5}} - 73 \) and the frameshift mutation in \(\text{cap5D} \) ablate CP production in *S. aureus* (22, 27). Whereas the promoter mutation attenuates expression of \(\text{capABCDHF} \), the \(\text{cap5D} \) and \(\text{cap5E} \) mutations ablate production or activity of enzymes responsible for producing key soluble precursors UDP-d-FucNac and UDP-l-FucNac, respectively, that are needed for the biosynthesis of CP (2, 34). This is the first report to show that Asp75 is a critical residue in Cap5E, which is an essential enzyme for CP5 production (35). This enzyme converts the precursor (UDP-GlcNac) to a keto-intermediate that is further reduced (by Cap5F) and epimerized at C-2 (by Cap5G) to yield UDP-N-acetyl l-fucosamine (36). Thus, USA300 cannot be used to produce UDP-N-acetyl l-fucosamine, which is required for CP5 and CP8 production. When the Cap5E Asp75Tyr conversion is overlaid on the Cap5E three-dimensional crystal struc-
A maximum likelihood phylogeny based on whole-genome alignments of publicly available *S. aureus* genomes. (A) Phylogenetic analysis of 104 *S. aureus* strains from 41 STs showing the distribution of conserved mutations in *cap5* in USA300 (Table 2). There are 14 USA300 strains in the tree that are representative of 146 strains from our study and 319 publicly available USA300 genomes. The remaining 90 genomes are from non-USA300 isolates. Strain names are shown as either the common name or the accession number followed by the sequence type (ST) in parentheses. Strains with red and blue text, respectively, are previously confirmed USA300 and USA500 isolates. The clade in orange is clonal complex 8 (CC8). Other common CGs are also highlighted. For simplicity, only a representative strain from each ST with the same pattern of *cap5* mutations was included. Carriage of PVL and ACME is indicated with black and red diamonds, respectively, due to their association with the USA300 subclone. *cap5* mutations are shown as solid or open circles as indicated. (B) High-resolution phylogeny of CC8 strains (a subset from panel A). USA300 and USA500 strains are annotated as in panel A.
ture (37), it lies within the coenzyme-binding domain. This information could be useful in developing inhibitors of CP biosynthesis.

Our analysis of S. aureus whole-genome sequences (WGSs) in the public databases from 41 STs also provides insight into the evolution of the USA500 and USA300 S. aureus lineages not previously appreciated. All USA500 isolates that we evaluated had at least 2 of the 4 cap5 mutations found in USA300 MRSA (in P\(_{\text{cpa}}5\) and in cap5D—both essential for CP production [36]). Moreover, most USA500 MRSA isolates had the cap5G\(\rightarrow\)T mutation, this is a feature in the core genome that might be used to distinguish USA500 from USA300 isolates in future epidemiological studies. By overlaying the USA300 mutations on the phylogeny of S. aureus genomes (Fig. 4), it is apparent that the 4 USA300 cap5-specific mutations only exist in clonal cluster 8, and they arose sequentially, starting with P\(_{\text{cpa}}5\) in a common ancestor of USA300 and USA500 isolates. Importantly, this is the first study to reveal that USA300 and USA500 lineages inherited the cap5 mutations from a common ancestor rather than USA300 inheriting them from USA500, as suggested previously (21).

MRSA isolates arise by horizontal acquisition of a mobile genetic element called SCCmec that carries the methicillin resistance gene, mec (18). Interestingly, only a limited number of genetic backgrounds have become successful MRSA clones (18). Despite the close genetic similarity between the USA300 and USA500 lineages (21, 26, 30), USA300 has disseminated more widely in the United States. Comparisons of virulence factors produced by USA500 versus USA300 may provide insight into their relative successes. USA500 and USA300 MRSA isolates both exhibit high-level virulence in animal infection (22, 26, 30), and both express high levels of global regulators and exotoxins encoded in the core genome (22, 26). CP is another core virulence determinant that we have ruled out as a key player in the relative success of USA300 over USA500, because CP is not expressed in either subclone. The success of USA300 may lie in the fact that it carries ACME, which is thought to enhance transmissibility and competitiveness of USA300, although not its virulence (19, 20, 22).

Our findings shed light on the roles of CP5 and CP8 in staphylococcal virulence of USA300 and USA500 strains. CP5 has been shown to protect S. aureus from opsonophagocytic killing by human neutrophils (11, 29) and thus protects S. aureus from host immune killing. Moreover, the capsule has been shown to enhance virulence in animal models of bacteremia, subcutaneous and renal abscess formation, surgical wound infection, septic arthritis, and lethality (2). Yet its absence in USA300 and USA500 strains underscores the fact that a CP is not necessary for virulence of these strains. This is consistent with studies that have shown that CP production can attenuate staphylococcal virulence in situations in which bacterial adherence is critical, as in endocarditis and murine mastitis, because it masks the adhesins on the cell surface (2). USA300 is best known for causing SSTIs, so we can speculate that perhaps this niche favors a CP\(^{−}\) phenotype by exposing adhesins on the surface of the bacteria. Because the pathogenesis of staphylococcal infections is multifactorial, it is likely that other virulence factors produced by USA300 and USA500 compensate for lack of CP during infection. Overexpression of agr, ssa, \(\alpha\)-hemolysin, and a variety of leukocidins (22), may even have been selected for in the absence of a CP.

Our study has limitations. Our sample of isolates was obtained mainly from patients in Chicago and Los Angeles. This was offset by analyzing public genome sequences, which supported and extended the findings from our isolates.

We conclude that a vaccine designed for a U.S. population should not be solely based on CP antigens because USA300 and USA500 CP\(^{−}\) isolates cause a large proportion of S. aureus infections.

Materials and Methods

Determination of USA300 and USA500 genetic backgrounds. S. aureus isolates were confirmed with a catalase test and by agglutination using Staphaurex Plus (Remel) and underwent genotyping by multilocus sequence typing (MLST) (38), Ridom spa typing (39), SCCmec typing (40), and PCR detection of mecA, the ACME-borne arcA gene (ACME arcA) (19), and genes encoding PVL (41) as described previously (39). USA300 MRSA isolates were classified by Smal digestion patterns using pulsed-field gel electrophoresis (PFGE) as described previously (39). In the absence of PFGE data, the USA300 genotype was inferred in MRSA isolates that belonged to ST8 and carried SCCmec type IV and PVL genes (39). All USA500 isolates and USA300 MSSA isolates were identified solely by PFGE using Smal digestion patterns. PFGE patterns were assigned to a given clonal group by comparison to a reference strain using an 80% similarity cutoff using the Dice coefficient in BioNumerics software (Applied Maths, TX) (42). Isolates were obtained from consenting patients as approved by the Institutional Review Board of the participating institutions.

CP5 and CP8 serotyping. Capsule serotyping was performed by a colony immunoblot method with the use of CP5- and CP8-specific polyclonal antibodies as described (43). Briefly, tryptic soy agar plates were spot inoculated in a grid pattern with up to 60 S. aureus isolates and incubated overnight at 37°C. The colonies were blotted onto nitrocellulose filter membranes (diameter, 8.25 mm) for 5 min at ambient temperature. Adherent colonies were fixed to the membranes by being heated at 60°C for 15 min. After being washed twice in phosphate-buffered saline (PBS) to remove excess cells, the filters were immersed in a solution of trypsin (1 mg/ml) for 60 min at 37°C to remove protein A. After two washes in PBS, the filters were blocked with 0.05% skim milk for 1 h and washed in PBS containing 0.05% Tween 20 (PBST). Capsule type-specific polyclonal antiserum (diluted 1:1,000) was incubated with each filter at 37°C for 1 h. After being washed in PBST, horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin was incubated with each filter for 1 h at 37°C. After three washes in PBST and two washes in PBS, substrate (3 mg 4-chloro-1-naphthol per ml of methanol diluted 1:5 in PBS and containing 0.1% H\(_2\)O\(_2\)) was added to the filters. A purple color developed within 15 min and was scored visually from 0 to 4+. Positive reactions were scored as 2+ to 4+. The reactivity of the isolates was evaluated by comparison to those of control S. aureus strains (CP\(^{5}\), CP\(^{8}\), and CP\(^{−}\) isolates) included on each filter membrane. Isolates with no reaction to CP-specific antibodies were defined as CP\(^{−}\).

USA300 strains subjected to whole-genome sequencing. To determine the basis for the CP5\(^{−}\) phenotype, we analyzed the entire cap5 locus from the WG8 assemblies we produced (33) from 146 USA300 MRSA isolates that were included in the sample tested for CP production. These isolates were obtained between 2008 to 2010 from the University of Chicago Medical Center (n = 75) and Harbor-UCLA Medical Center in Los Angeles (n = 71) (44).

WG8 and SNP calling. Genomic DNA was sequenced on an Illumina HiSeq 2000 (Illumina Inc., San Diego, CA) at ~215× the median depth of coverage per strain as described in reference 33 and the supplemental material. Mutations in the cap5 locus were retrieved from the assemblies by comparison to the cap5 locus of the CP5\(^{−}\) reference strain Newman using Jalview (45). All nucleotide positions are reported relative to the USA300 reference strain TCH1516.

Confirmation of cap5 mutations. To evaluate whether the conserved mutations we identified in the WG8 analysis were present in S. aureus isolates of interest, the regions surrounding the mutations were PCR am-
TABLE 3 Sequences of the primers used for PCR amplification and sequencing of the cap5 gene fragments

Primer (expected size [bp])a	Sequence
cap5A promoter, P _{cap5} Forward	5' GAATCATTAGCTAAACGTGTCAC 3'
Reverse	5' GTCACTCTAGTGGTTGATCA 3'
cap5D (803) Forward	5' ATGAATTGCGATATCCAGAAGATC 3'
Reverse	5' ATGCGTACAGATCTTCTC 3'
cap5E (381) Forward	5' GCACGAGCTATCCGGTAAT 3'
Reverse	5' CTTTTGAAATACCCATAGCA 3'
cap5G (543) Forward	5' TGGAGCGGGTTATAGTGCT 3'
Reverse	5' GGAGACCAAGGAACTTCAAA 3'

a Forward primers have a sense orientation, and reverse primers have an antisense orientation.

TABLE 4 Plasmid constructs used in cap5 genetic complementation experiments

Plasmida	cap5 genes contained in plasmid Reference	
pKOR19	P _{cap5} + capABC	27
pKOR18	P _{cap5} + capABCD	27
pCap16	P _{cap5} + capABCDEF	35
pCap17	P _{cap5} + capABCDEF	35

a pCap16 and pCap17 were kindly provided by Timothy Foster.

SUPPLEMENTAL MATERIAL:

Supplemental material for this article may be found at http://mbio.asm.org lookup/suppl.DOI:10.1128/mBio.02585-14/..DCSupplemental.

Text S1, DOCX file, 0.1 MB.
Figure S1, TIF file, 0.5 MB.
Table S1, PDF file, 0.1 MB.
Table S2, PDF file, 0.1 MB.

ACKNOWLEDGMENTS

We acknowledge that pCap16 and pCap17 were the kind gift of Timothy Foster. The USA500 and USA300-0114 reference strains were obtained from the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) under a contract from the National Institute of Allergy and Infectious Diseases.

This study was funded by National Institutes of Health grants awarded to R.S.D. (grant no. R01AI103342), J.C.L. (grant no. R01 AI088754), and T.D.R. (grant no. AI091827).

REFERENCES

1. Daum RS, Spellberg B. 2012. Progress toward a Staphylococcus aureus vaccine. Clin Infect Dis 54:560–567. http://dx.doi.org/10.1093/cid/cir828
2. O’Riordan K, Lee JC. 2004. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17:218–234. http://dx.doi.org/10.1128/CMR.17.1.218-234.2004
3. Trotter CL, McVernon J, Ramsay ME, Whitney CG, Mulholland EK, Goldblatt D, Hombach J, Kieny M-P, SAGE Subgroup. 2008. Optimising the use of conjugate vaccines to prevent disease caused by Haemophilus influenzae type b, Neisseria meningitidis and Streptococcus pneumoniae. Vaccine 26:4434–4445. http://dx.doi.org/10.1016/j.vaccine.2008.05.073
4. Hochkeppel HK, Braun DG, Vischer W, Imm A, Sutter S, Staubli U, Guggenheim R, Kaplan EL, Boutonnier A, Fournier JM. 1987. Serotyping and electron microscopy studies of Staphylococcus aureus clinical isolates with monoclonal antibodies to capsular polysaccharide types 5 and 8. J Clin Microbiol 25:526–530.
5. Arbet RD, Karakawa WW, Vann WF, Robbins JB. 1984. Predominance of two newly described capsular polysaccharide types among clinical isolates of Staphylococcus aureus. Diag Microbiol Infect Dis 2:85–91. http://dx.doi.org/10.1016/0732-8893(84)90002-6
6. Karakawa WW, Vann WF. 1982. Capsular polysaccharides of Staphylococcus aureus. Semin Infect Dis 4:285–293.
7. Sompolinsky D, Sama S, Karakawa WW, Vann WF, Scheenwasser R, Malik Z. 1985. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J Clin Microbiol 22:828–834.
8. Lee JC, Liu MJ, Parsonnet J, Arbet RD. 1990. Expression of type-8 capsular polysaccharide and production of toxic shock syndrome toxin-1 are associated among vaginal isolates of Staphylococcus aureus. J Clin Microbiol 28:2612–2615.
9. Roghmann M, Taylor KL, Gupta A, Zhan M, Johnson JA, Cross A, Edelman R, Fattom AI. 2005. Epidemiology of capsular and surface polysaccharide in Staphylococcus aureus infections complicated by bacteremia. J Hosp Infect 59:27–32. http://dx.doi.org/10.1016/j.jhin.2004.07.014
10. Nanra JS, Buitrago SM, Crawford S, Ng J, Fink PS, Hawkins J, Scully IL, McNeill LC, Aste-Amézaga JM, Cooper D, Jansen KU, Anderson AS. 2013. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum Vaccin Immunotherapeut 9:480–487. http://dx.doi.org/10.4161/hvi.23223
11. Thakker M, Park JS, Carey V, Lee JC. 1999. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun 66:5183–5189.
12. Shinkfield H, Black S, Fattom A, Horwith G, Rason S, Ordonez J, Yeoh H, Law D, Robbins JB, Scheenwasser R, Muenz L, Fuller S, Johnson J, Fireman B, Albom H, Nason R. 2002. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N Engl J Med 346:491–496. http://dx.doi.org/10.1056/NEJMoa011297.
13. Fattom A, Matalon A, Buerkert J, Taylor K, Damaso S, Boutilier D. 2014. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugated
Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, Cooper D, Ma XX, Ito T, Tiensasitorn C, Jamklang M, Chongtrakool P, Boyle-Timofeyeva Y, Scully IL, Anderson AS, Cocchiaro JL, Gomez MI, Risley A, Solinga R, Sordelli DO, Lee JC.

Diekema DJ, Richter SS, Heilmann KP, Dohrn CL, Riahi F, Tendolkar S, McDanel JS, Doern GV. 2014. Continued emergence of USA300 methicillin-resistant Staphylococcus aureus in the United States: results from a nationwide surveillance study. Infect Control Hosp Epidemiol 35: 285–292. http://dx.doi.org/10.1086/675283.

Talan DA, Krishnadasan A, Gorwitz RJ, Fosheim GE, Limbago B, Albrecht V, Moran GJ. EMERGENCE ID Net Study Group. 2011. Comparison of Staphylococcus aureus from skin and soft-tissue infections in US emergency department patients, 2004 and 2008. Clin Infect Dis 53: 144–149. http://dx.doi.org/10.1093/cid/cir308.

Ma XX, Ito T, Tiensasitorn C, Jamklang M, Chongtrakool P, Boyle-Vavra S, Daum RS, Hiramatsu K. 2008. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 46: 1147–1152. http://dx.doi.org/10.1128/AAC.46.4.1147-1152.2002.

Boyle-Vavra S, Daum RS. 2007. Community-acquired methicillin-resistant Staphylococcus aureus: the role of Pantone-VAntin- leukocid. Lab Invest 87:3–9. http://dx.doi.org/10.1038/labinvest.3700501.

Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, des Etages SA, Bagnoli F, Bertholet S, Grandi G. 2014. Efficacy of a 2-dose regimen of a 4-component vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 10: 1151–1160. http://dx.doi.org/10.1080/15548608.2014.852896.

Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Janvier P, Delhommeau F, Keyser K, Martinet S, Lerner L, Rousset M, Dutour D, Lepers R, Chiapetti T, Brouard M, Labat M, Baudouin V, Billère-Labat M, Chevret S, Le Grand F, Bégué A, Guérin A, Lebrec M, Delclaux C, Lefrançois C, Piat P, Toulouca M, Cereijido M, Le Port F, de Toulgoët O, Bethoux F, Chastanet P, Cariou S, Kauffmann M, Tassan J, Goetschel S, Karrer Y, Sabatier E, van der Grift T, Housset S, Roudot-Thiery S. 2013. Statistical analysis of the one and two dose protection against invasive diseases, carriage and colonization in a national vaccine program in France: a randomized controlled trial. J Infect Dis 208:151–1516. http://dx.doi.org/10.1093/infdis/jit133.

Benson MA, Ohneke EA, Ryan C, Alonso F, III, Smith H, Narechania A, Kolokotronis SO, Satola SW, Uhlmann AC, Sebra R, Deikus G, Shopsin B, Planet PJ, Torres VJ. 2014. Evaluation of hypervirulence by a MRSA clone through acquisition of a transposon element. Mol Microbiol 93:664–681. http://dx.doi.org/10.1038/mmb.2014.130.

Wacker M, Wang L, Kowarik M, Dowd M, Lipowski G, Faridmoayer A, Shields K, Park S, Alaimo C, Kelley KA, Braun M, Quebatte J, Gambilla V, Carranza P, Steffen M, Lee JC. 2014. Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J Infect Dis 209:1551–1561. http://dx.doi.org/10.1093/infdis/jiu310.

Benson MA, Ohneke EA, Ryan C, Alonso F, III, Smith H, Narechania A, Kolokotronis SO, Satola SW, Uhlmann AC, Sebra R, Deikus G, Shopsin B, Planet PJ, Torres VJ. 2014. Evaluation of hypervirulence by a MRSA clone through acquisition of a transposon element. Mol Microbiol 93:664–681. http://dx.doi.org/10.1038/mmb.2014.130.

Benson MA, Ohneke EA, Ryan C, Alonso F, III, Smith H, Narechania A, Kolokotronis SO, Satola SW, Uhlmann AC, Sebra R, Deikus G, Shopsin B, Planet PJ, Torres VJ. 2014. Evaluation of hypervirulence by a MRSA clone through acquisition of a transposon element. Mol Microbiol 93:664–681. http://dx.doi.org/10.1038/mmb.2014.130.
colonization among household contacts of patients with skin infections: risk factors, strain discordance, and complex ecology. Clin Infect Dis 54: 1523–1535. http://dx.doi.org/10.1093/cid/cis213.

45. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. http://dx.doi.org/10.1093/bioinformatics/btp033.

46. Tewhey R, Cannavino CR, Leake JA, Bansal V, Topol EJ, Torkamani A, Bradley JS, Schork NJ. 2012. Genetic structure of community acquired meticillin-resistant Staphylococcus aureus USA300. BMC Genomics 13: 508. http://dx.doi.org/10.1186/1471-2164-13-508.

47. Uhlemann A-, Dordel J, Knox JR, Raven KE, Parkhill J, Holden MTG, Peacock SJ, Lowy FD. 2014. Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community. Proc Natl Acad Sci USA 111:6738–6743. http://dx.doi.org/10.1073/pnas.1401006111.

48. Highlander SK, Hultén KG, Qin X, Jiang H, Yerrapragada S, Mason EO, Jr, Shang Y, Williams TM, Fortunov RM, Liu Y, Igboeli O, Petrosino J, Tirumalai M, Uzman A, Fox GE, Cardenas AM, Muzny DM, Hempill L, Ding Y, Dugan S, Blyth PR, Buhay CJ, Dinh HH, Hawes AC, Holder M, Kover CJ, Lee SL, Liu W, Nazareth LV, Wang Q, Zhou J, Kaplan SL, Weinstock GM. 2007. Subtle genetic changes enhance virulence of meticillin resistant and sensitive Staphylococcus aureus. BMC Microbiol 7:99. http://dx.doi.org/10.1186/1471-2180-7-99.

49. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdue-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739. http://dx.doi.org/10.1016/S0140-6736(06)68231-7.

50. Sabirova JS, Xavier BB, Hernalsteens JP, De Greve H, Ieven M, Goossens H, Malhotra-Kumar S. 2014. Complete genome sequences of two prolific biofilm-forming Staphylococcus aureus isolates belonging to USA300 and EMRSA-15 clonal lineages. Genome Announc 2:e00610-14. http://dx.doi.org/10.1128/genomeA.00610-14.

51. Altman DR, Sebra R, Hand J, Attie O, Deikus G, Carpini KW, Patel G, Rana M, Arvelakis A, Grewal P, Dutta J, Rose H, Shopsin B, Daefler S, Schadt E, Kasarskis A, van Bakel H, Bashir A, Huprikar S. 2014. Transmission of meticillin-resistant Staphylococcus aureus via deceased donor liver transplantation confirmed by whole genome sequencing. Am J Transplant 14:2640–2644. http://dx.doi.org/10.1111/ajt.12897.

52. Alam MT, Petit RA, III, Crispell EK, Thornton TA, Conneely KN, Jiang Y, Satola SW, Read TD. 2014. Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biol Evol 6:1174–1185. http://dx.doi.org/10.1093/gbe/evu092.

53. Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E. 2014. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 31:1077–1088. http://dx.doi.org/10.1093/molbev/msu088.

54. Augustin J, Götz F. 1990. Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol Lett 54:203–207. http://dx.doi.org/10.1016/0378-1097(90)90283-V.