Effective-field-theory analysis of the three-dimensional random-field Ising model on isometric lattices

Ümit Akıncı, Yusuf Yüksel,* and Hamza Polat†

Department of Physics, Dokuz Eylül University, TR-35160 Izmir, Turkey

(Received 1 April 2011; published 3 June 2011)

An Ising model with quenched random magnetic fields is examined for single-Gaussian, bimodal, and double-Gaussian random-field distributions by introducing an effective-field approximation that takes into account the correlations between different spins that emerge when expanding the identities. Random-field distribution shape dependencies of the phase diagrams and magnetization curves are investigated for simple cubic, body-centered-cubic, and face-centered-cubic lattices. The conditions for the occurrence of reentrant behavior and tricritical points on the system are also discussed in detail.

DOI: 10.1103/PhysRevE.83.061103 PACS number(s): 75.10.Hk, 75.30.Kz, 75.50.Lk

I. INTRODUCTION

The Ising model [1,2], which was originally introduced as a model describing the phase-transition properties of ferromagnetic materials, has been widely examined in statistical mechanics and condensed matter physics. Over the course of time, basic conclusions of this simple model have been improved by introducing new concepts such as disorder effects on the critical behavior of the systems in question. The Ising model in a quenched random field (RFIM), which has been studied over three decades, is an example of this situation. The model which is actually based on the local fields acting on the lattice sites which are taken to be random according to a Gaussian random-field distribution exhibits order at zero probability distribution within the mean-field approximation that emerge when expanding the identities. Therefore, taking into account the correlations between different spins that differentiate the phase diagrams for infinite dimensional models. For example, using a Gaussian probability distribution, Schneider and Pytte [21] have shown that phase diagrams of the model exhibit only second-order phase-transition properties. Following the same methodology, Andelman [22] discussed the order of the low-temperature transition in terms of the maxima of the distribution function. The other hand, Aharony [23] and Matthis [24] have introduced bimodal and trimodal distributions, respectively, and they have reported the observation of tricritical behavior. In a recent series of papers, phase-transition properties of infinite dimensional RFIMs with symmetric double- [25] and triple- [26] Gaussian random fields have also been studied by means of a replica method and a rich variety of phase diagrams have been presented. The situation has also been handled on 3D lattices with nearest-neighbor interactions by a variety of theoretical works such as effective-field theory (EFT) [27–31], Monte Carlo (MC) simulations [32–35], pair approximation (PA) [36], and the series expansion (SE) method [37]. By using EFT, Borges and Silva [27] studied the system for square ($q = 4$) and simple cubic (sc) ($q = 6$) lattices, and they observed a tricritical point only for ($q \geq 6$). Similarly, Sarmento and Kaneyoshi [29] investigated the phase diagrams of RFIMs by means of EFT with correlations for a bimodal field distribution, and they concluded that reentrant behavior of second order is possible for a system with ($q \geq 6$). Recently, Fytas et al. [34] applied MC simulations on a sc lattice. They found that the transition remains continuous for a bimodal field distribution, while Hadjiagapiou [38] observed reentrant behavior and confirmed the existence of a tricritical point for an asymmetric bimodal probability distribution within the mean-field approximation based on a Landau expansion.

Conventional EFT approximations include spin-spin correlations resulting from the usage of the Van der Waerden identities, and provide results that are superior to those obtained within the traditional MFT. However, these conventional EFT approximations are not sufficient enough to improve the results, due to the usage of a decoupling approximation (DA) that neglects the correlations between different spins that emerge when expanding the identities. Therefore, taking these correlations into consideration will improve the results of conventional EFT approximations. In order to overcome this point, recently we proposed an approximation that takes into account the correlations between different spins that emerge when expanding the identities. Therefore, taking these correlations into consideration will improve the results of conventional EFT approximations. In order to overcome this point, recently we proposed an approximation that takes into...
account the correlations between different spins in the cluster of a considered lattice \cite{39,40,41,42,43}. Namely, an advantage of the approximation method proposed by these studies is that no decoupling procedure is used for the higher-order correlation functions. On the other hand, as far as we know, EFT studies in the literature dealing with RFIMs are based only on discrete probability distributions (bimodal or trimodal). Hence, in this paper we intend to study the phase diagrams of the RFIM with single-Gaussian, bimodal, and double-Gaussian random-field distributions on isometric lattices.

The organization of the paper is as follows: In Sec. II we briefly present the formulations. The results and discussions are presented in Sec. III, and finally Sec. IV contains our conclusions.

II. FORMULATION

In this section, we give the formulation of the present study for a sc lattice with \(q = 6 \). A detailed explanation of the method for bcc and fcc lattices can be found in the Appendix. As a sc lattice, we consider a 3D lattice which has \(N \) identical spins arranged. We define a cluster on the lattice which consists of a central spin labeled \(S_0 \) and \(q \) perimeter spins being the nearest neighbors of the central spin. The cluster consists of \((q + 1) \) spins being independent from the spin operator \(S_0 \). The nearest-neighbor spins are in an effective field produced by the outer spins, which can be determined by the condition that the thermal average of the central spin is equal to that of its nearest-neighbor spins. The Hamiltonian describing our model is

\[
H = -J \sum_{(i,j)} S_i^z S_j^z - \sum_{i} h_i S_i^z, \tag{1}
\]

where the first term is a summation over the nearest-neighbor spins with \(S_i^z = \pm 1 \) and the second term represents the Zeeman interactions on the lattice. Random magnetic fields are distributed according to a given probability distribution function. The present study deals with three kinds of field distribution, namely, a normal distribution which is defined as

\[
P(h_i) = \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \exp \left\{-\frac{h_i^2}{2\sigma^2}\right\}, \tag{2}
\]

with a width \(\sigma \) and zero mean, a bimodal discrete distribution

\[
P(h_i) = \frac{1}{2} [\delta(h_i - h_0) + \delta(h_i + h_0)], \tag{3}
\]

where half of the lattice sites are subject to a magnetic field \(h_0 \) and the remaining lattice sites have a field \(-h_0\), and a double-peaked Gaussian distribution

\[
P(h_i) = \frac{1}{2} \left(\frac{1}{2\pi\sigma^2}\right)^{1/2} \left\{ \exp \left[-\frac{(h_i - h_0)^2}{2\sigma^2}\right] \right. \\
\left. + \exp \left[-\frac{(h_i + h_0)^2}{2\sigma^2}\right] \right\}. \tag{4}
\]

In a double-peaked distribution defined in Eq. (4), random fields \(\pm h_0 \) are distributed with equal probability and the form of the distribution depends on the \(h_0 \) and \(\sigma \) parameters, where \(\sigma \) is the width of the distribution.

According to the Callen identity \cite{44} for the spin-1/2 Ising ferromagnetic system, the thermal average of the spin variables at the site \(i \) is given by

\[
\langle \langle f_i \rangle \rangle = \left(\langle f_i \rangle \tanh \left[\beta \left(J \sum_{j} S_j^z + h_i \right) \right] \right), \tag{5}
\]

where \(j \) expresses the nearest-neighbor sites of the central spin and \(\langle f_i \rangle \) can be any function of the Ising variables as long as it is not a function of the site. From Eq. (5) with \(f_i = 1 \), the thermal and random-configurational averages of a central spin can be represented on a sc lattice by introducing the differential operator technique \cite{45,46}

\[
m_0 = \left\langle \left\langle \langle S_0^z \rangle \right\rangle \right\rangle_r = \left\langle \left\langle \prod_{i=1}^{q} \left[\cosh(J\nabla) + S_i^z \sinh(J\nabla) \right] \right\rangle_r \right\rangle \times F(x) |_{x=0}, \tag{6}
\]

where \(\nabla \) is a differential operator, \(q \) is the coordination number of the lattice, and the inner \(\langle \langle \cdot \cdot \cdot \rangle \rangle \) and the outer \(\langle \langle \cdot \cdot \cdot \rangle \rangle \) brackets represent the thermal and configurational averages, respectively. The function \(F(x) \) in Eq. (6) is defined by

\[
F(x) = \int dh_i P(h_i) \tanh[\beta(x + h_i)], \tag{7}
\]

and it has been calculated by numerical integration and by using the distribution functions defined in Eqs. (2)–(4). By expanding the right-hand side of Eq. (6) we get the longitudinal spin correlation as

\[
\langle \langle S_0^z \rangle \rangle_r = k_0 + 6k_1 \langle \langle S_1^z \rangle \rangle_r + 15k_2 \langle \langle S_1^z S_2^z \rangle \rangle_r + 20k_3 \langle \langle S_1^z S_2^z S_3^z \rangle \rangle_r + 15k_4 \langle \langle S_1^z S_2^z S_3^z S_4^z \rangle \rangle_r + 6k_5 \langle \langle S_1^z S_2^z S_3^z S_4^z S_5^z \rangle \rangle_r. \tag{8}
\]

The coefficients in Eq. (8) are defined as follows:

\[
k_0 = \cosh^6(J\nabla) F(x) |_{x=0}, \\
k_1 = \cosh^5(J\nabla) \sinh(J\nabla) F(x) |_{x=0}, \\
k_2 = \cosh^4(J\nabla) \sinh^2(J\nabla) F(x) |_{x=0}, \\
k_3 = \cosh^3(J\nabla) \sinh^3(J\nabla) F(x) |_{x=0}, \\
k_4 = \cosh^2(J\nabla) \sinh^4(J\nabla) F(x) |_{x=0}, \\
k_5 = \cosh(J\nabla) \sinh^5(J\nabla) F(x) |_{x=0}. \tag{9}
\]

Next, the average value of the perimeter spin in the system can be written as follows, and it is found as

\[
m_1 = \langle \langle S_1^z \rangle \rangle_r = \langle \langle \cosh(J\nabla) + S_0 \sinh(J\nabla) \rangle \rangle_r F(x + \gamma), \tag{10}
\]

\[
= a_1 + a_2 \langle \langle S_0 \rangle \rangle_r. \]

For the sake of simplicity, the superscript \(z \) is omitted from the left- and right-hand sides of Eqs. (8) and (10). The coefficients in Eq. (10) are defined as

\[
a_1 = \cosh(J\nabla) F(x + \gamma) |_{x=0}, \\
a_2 = \sinh(J\nabla) F(x + \gamma) |_{x=0}. \tag{11}
\]

In Eq. (11), \(\gamma = (q - 1)A \) is the effective field produced by the \((q - 1) \) spins outside of the system and \(A \) is an unknown parameter to be determined self-consistently. Equations (8)
and (10) are the fundamental correlation functions of the system. When the right-hand side of Eq. (6) is expanded, the multispin correlation functions appear. The simplest approximation, and one of the most frequently adopted, is to decouple these correlations according to
\[\langle \langle S_i S_j \cdots S_l \rangle \rangle = \langle \langle S_1 \rangle \rangle \langle \langle S_2 \rangle \rangle \cdots \langle \langle S_l \rangle \rangle, \]
(12)
for \(i \neq j \neq \cdots \neq l \) [47]. The main difference in the method used in this study from the other approximations in the literature emerges in comparison with any DA when expanding the right-hand side of Eq. (6). In other words, one advantage of the approximation method used in this study is that such a kind of decoupling procedure is not used for the higher-order correlation functions. For a spin-1/2 Ising system in a random field, taking Eqs. (8) and (10) as a basis, we derive a set of linear equations of the spin correlation functions in the system. At this point, we assume that (i) the correlations depend only on the distance between the spins and (ii) the average values of a central spin and its nearest-neighbor spin (it is labeled as the perimeter spin) are equal to each other with the fact that, in the matrix representations of spin operator \(\hat{S} \), the spin-1/2 system has the property \((\hat{S})^2 = 1\). Thus, the number of linear equations obtained for a sc lattice \((q = 6)\) reduces to 12 and the complete set is as follows:

\[
\begin{align*}
\langle \langle S_1 \rangle \rangle &= a_1 + a_2 \langle \langle S_0 \rangle \rangle, \\
\langle \langle S_1 S_2 \rangle \rangle &= a_1 \langle \langle S_1 \rangle \rangle + a_2 \langle \langle S_0 S_1 \rangle \rangle, \\
\langle \langle S_1 S_2 S_3 \rangle \rangle &= a_1 \langle \langle S_1 S_2 \rangle \rangle + a_2 \langle \langle S_0 S_1 S_1 \rangle \rangle, \\
\langle \langle S_1 S_2 S_3 S_4 \rangle \rangle &= a_1 \langle \langle S_1 S_2 S_2 \rangle \rangle + a_2 \langle \langle S_0 S_1 S_1 S_1 \rangle \rangle, \\
\langle \langle S_0 \rangle \rangle &= k_0 + 6k_1 \langle \langle S_1 \rangle \rangle + 15k_2 \langle \langle S_1 S_1 \rangle \rangle + 20k_3 \langle \langle S_1 S_1 S_1 \rangle \rangle, \\
\langle \langle S_0 S_1 \rangle \rangle &= 6k_1 + (k_0 + 15k_2) \langle \langle S_1 \rangle \rangle + 20k_3 \langle \langle S_1 S_1 \rangle \rangle + 15k_4 \langle \langle S_1 S_1 S_1 \rangle \rangle, \\
\langle \langle S_0 S_1 S_2 \rangle \rangle &= (6k_1 + 20k_3) \langle \langle S_1 \rangle \rangle + (k_0 + 15k_2 + 15k_4) \langle \langle S_1 S_1 \rangle \rangle, \\
\langle \langle S_0 S_1 S_2 S_3 \rangle \rangle &= (6k_1 + 20k_3 + 6k_5) \langle \langle S_1 S_1 \rangle \rangle + (k_0 + 15k_2 + 15k_4 + k_6) \langle \langle S_1 S_1 S_1 \rangle \rangle, \\
\langle \langle S_0 S_1 S_2 S_3 S_4 \rangle \rangle &= (6k_1 + 20k_3 + 6k_5) \langle \langle S_1 S_1 S_1 \rangle \rangle + (k_0 + 15k_2 + 15k_4 + k_6) \langle \langle S_1 S_1 S_1 S_1 \rangle \rangle, \\
\langle \langle S_0 S_1 S_2 S_3 S_4 S_5 \rangle \rangle &= (6k_1 + 20k_3 + 6k_5) \langle \langle S_1 S_1 S_1 S_1 \rangle \rangle + (k_0 + 15k_2 + 15k_4 + k_6) \langle \langle S_1 S_1 S_1 S_1 S_1 \rangle \rangle.
\end{align*}
\]
(13)

If Eq. (13) is written in the form of a \(12 \times 12\) matrix and solved in terms of the variables \(x_i\) \(\{i = 1, 2, \ldots, 12\}\) (e.g., \(x_1 = \langle \langle S_1 \rangle \rangle, x_2 = \langle \langle S_1 S_2 \rangle \rangle, x_3 = \langle \langle S_1 S_1 S_1 \rangle \rangle, \ldots\)) of the linear equations, all of the spin correlation functions can be easily determined as functions of the temperature and Hamiltonian and random-field parameters. Since the thermal and configurational average of the central spin is equal to that of its nearest-neighbor spins within the present method, the unknown parameter \(A\) can be numerically determined by the relation
\[\langle \langle S_0 \rangle \rangle = \langle \langle S_1 \rangle \rangle \quad \text{or} \quad x_{17} = x_1. \]
(14)

By solving Eq. (14) numerically at a given fixed set of Hamiltonian and random-field parameters we obtain the parameter \(A\). Then we use the numerical values of \(A\) to obtain the spin correlation functions which can be found from Eq. (13). Note that \(A = 0\) is always the root of Eq. (14) corresponding to the disordered state of the system. The nonzero root of \(A\)

| Table I. Critical temperature \(k_B T_c/J\) at \(h_0/J = 0\) and \(\sigma = 0\) obtained by several methods and the present work for \(q = 6, 8, 12\). |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Lattice | EBPA [48] | CEFT [49] | PA [50] | EFT [51] | BA [52] | EFRG [53] | MFRG [54] | MC [55] | SE [56] |
| sc | 4.8108 | 4.9326 | 4.9328 | 5.0732 | 4.6097 | 4.85 | 4.93 | 4.51 | 4.5103 | 4.5274 |
| bcc | 6.9521 | 6.9521 | 6.95 | 6.36 | 6.3508 | 6.36 | 6.517 | 6.517 |
| fcc | 10.9696 | 9.7944 | 10.4986 | | | | | | |

061103-3
and random-field parameters, there may be two solutions [i.e., two critical temperature values satisfy Eq. (14)] corresponding to the first (or second) and second-order phase-transition points, respectively. We determine the type of the transition by looking at the temperature dependence of magnetization for selected values of system parameters.

III. RESULTS AND DISCUSSION

In this section, we discuss how the type of random-field distribution effects the phase diagrams of the system. Also, in order to clarify the type of transitions in the system, we give the temperature dependence of the order parameter.

A. Phase diagrams of single-Gaussian distribution

The form of single-Gaussian distribution which is defined in Eq. (2) is governed by only one parameter σ, which is the width of the distribution. In Fig. 1, we show the phase diagram of the system for sc, bcc, and fcc lattices in a $(k_B T_c/J - \sigma)$ plane. The numbers on each curve denote the coordination numbers.

In Eq. (14) corresponds to the long-range-ordered state of the system. Once the spin correlation functions have been evaluated then we can give the numerical results for the thermal and magnetic properties of the system. Since the effective field γ is very small in the vicinity of $k_B T_c/J$, we can obtain the critical temperature for the fixed set of Hamiltonian and random-field parameters by solving Eq. (14) in the limit of $\gamma \to 0$, and then we can construct the whole phase diagrams of the system. Depending on the Hamiltonian and random-field parameters, there may be two solutions [i.e., two critical temperature values satisfy Eq. (14)] corresponding to the first (or second) and second-order phase-transition points, respectively. We determine the type of the transition by looking at the temperature dependence of magnetization for selected values of system parameters.

In this section, we discuss how the type of random-field distribution effects the phase diagrams of the system. Also, in order to clarify the type of transitions in the system, we give the temperature dependence of the order parameter.

A. Phase diagrams of single-Gaussian distribution

The form of single-Gaussian distribution which is defined in Eq. (2) is governed by only one parameter σ, which is the width of the distribution. In Fig. 1, we show the phase diagram of the system for sc, bcc, and fcc lattices in a $(k_B T_c/J - \sigma)$ plane. We can clearly see that as σ increases, then the width of the distribution function gets wider and the randomness effect of the magnetic-field distribution on the system becomes significantly important. Therefore, increasing the σ value causes a decline in the critical temperature $k_B T_c/J$ of the system. We note that the critical temperature of the system reaches zero at $\sigma = 3.8501, 5.450$, and 8.601 for sc ($q = 6$), bcc ($q = 8$), and fcc ($q = 12$) lattices, respectively. Besides, we have not observed any reentrant or tricritical behavior for the single-Gaussian distribution, or, in other words, the system undergoes only a second-order phase transition. The $k_B T_c/J$ value in the absence of any randomness, i.e., when

$\sigma = 0$,
σ = 0, is obtained as \(k_B T_c/J = 4.5274, 6.5157, \) and 10.4986 for \(q = 6, 8, 12, \) respectively. These values can be compared with the other works in the literature. Although, to the best of our knowledge, an exact solution for the Ising model does not exist in 3D, it is well known that the SE method agrees well with highly accurate MC simulations, which gives the best approximate values to the known exact results. Therefore, we see in Table I that the present work improves the results of the other works based on EFT. The reason is due to the fact that, in contrast to the previously published works mentioned above, there is no uncontrolled decoupling procedure used for the higher-order correlation functions within the present approximation.

Magnetization surfaces and their projections on the \((k_B T_c/J - \sigma)\) plane corresponding to the phase diagrams shown in Fig. 1 are depicted in Fig. 2 with \(q = 6, 8, \) and 12. We see that as the temperature increases starting from zero, the magnetization of the system decreases continuously, and it falls rapidly to zero at the critical temperature for all \(\sigma \) values. Moreover, the critical temperature of the system decreases and the saturation value of magnetization curves remains constant for a while then reduces as \(\sigma \) value increases. This is a reasonable result since, if the \(\sigma \) value increases, then the randomness effects increasingly play an important role on the system, and random fields have a tendency to destruct the long-range ferromagnetic order on the system, and hence magnetization weakens. These observations are common properties of all three lattices.

B. Phase diagrams of bimodal distribution

Next, in order to investigate the effect of the bimodal random fields defined in Eq. (3) on the phase diagrams of the system, we show the phase diagrams in a \((k_B T_c/J - h_0/J)\) plane and its corresponding magnetization profiles with coordination numbers \(q = 6, 8, \) and 12 in Figs. 3 and 4. In these figures the solid and dashed lines correspond to second- and first-order phase-transition points, respectively, and the open circles in Fig. 3 denote tricritical points. As seen in Fig. 3, increasing values of \(h_0/J \) causes the critical temperature to decrease for a while, then the reentrant behavior of first order occurs at a specific range of \(h_0/J \). According to our calculations, the reentrant phenomena and the first-order phase transitions can be observed within the range of \(2.0 < h_0/J < 3.0 \) for \(q = 6, 3.565 < h_0/J < 3.95 \) for \(q = 8, \) and \(4.622 < h_0/J < 5.81 \) for \(q = 12. \) If the \(h_0/J \) value is greater than the upper limits of these field ranges, the system exhibits no phase transition. The tricritical temperatures \(k_B T_c/J, \) which are shown as open circles in Fig. 3, are found as \(k_B T_c/J = 1.5687, 2.4751, \) and 4.3769 for \(q = 6, 8, \) and 12, respectively.

In Fig. 4, we show two typical magnetization profiles of the system. Namely, the system always undergoes a second-order phase transition for \(h_0/J = 1.0. \) On the other hand, two successive phase transitions (i.e., a first-order transition is followed by a second-order phase transition) occur at the values of \(h_0/J = 2.5, 3.8, \) and 5.5 for \(q = 6, 8, \) and 12, respectively, which puts forward the existence of a first-order reentrant phenomena on the system. We observe that the increasing \(h_0/J \) values do not affect the saturation values of magnetization curves.
C. Phase diagrams of double-Gaussian distribution

To the best of our knowledge, double-Gaussian distribution in Eq. (4) with nearest-neighbor interactions have not yet been examined in the literature. Therefore, it would be interesting to investigate the phase diagrams of the system with random fields corresponding to Eq. (4). Now the shape of the random fields is governed by two parameters h_0/J and σ. As shown in the preceding results, increasing the σ value tends to reduce the saturation value of the order parameter and destructs the second-order phase transitions by decreasing the critical temperature of the system without exposing any reentrant phenomena for $h_0/J = 0$. Besides, as the h_0/J value increases, then the second-order phase-transition temperature decreases.
again and the system may exhibit a reentrant behavior for \(\sigma = 0 \), while the saturation value of the magnetization curves remains unchanged. Hence, the presence of both \(h_0/J \) and \(\sigma \) on the system should produce a competition effect on the phase diagrams of the system. Figure 5 shows the phase diagrams of the system in \((k_B T_c/J - h_0/J) \) and \((k_B T_c/J - \sigma) \) planes for \(q = 6, 8, \) and 12. As we can see in the left-hand panels in Fig. 5, the system exhibits tricritical points and reentrant phenomena for a narrow width of the random-field distribution, and as the width \(\sigma \) of the distribution gets wider, then the reentrant phenomena and tricritical behavior disappear. In other words, both the reentrant behavior and tricritical points disappear as the \(\sigma \) parameter becomes significantly dominant on the system. Our results predict that tricritical points depress to zero at \(\sigma = 1.421, 2.238, \) and 3.985 for \(q = 6, 8, \) and 12, respectively. For distribution widths greater than these values, all transitions are of second order, and as we further increase the \(\sigma \) value, then the ferromagnetic region gets narrower. Similarly, in the right-hand panels in Fig. 5, we investigate the phase diagrams of the system in a \((k_B T_c/J - \sigma) \) plane with selected values of \(h_0/J \). We note that for the values of \(h_0/J \leq 2.0 \) \((q = 6)\), \(h_0/J \leq 3.565 \) \((q = 8)\), and \(h_0/J \leq 4.622 \) \((q = 12)\), the system always undergoes a second-order phase transition between the paramagnetic and ferromagnetic phases at a critical temperature which decreases with increasing values of \(h_0/J \) as in Fig. 1, where \(h_0/J = 0 \). Moreover, for values of \(h_0/J \) greater than these threshold values, the system exhibits a reentrant behavior of first order and the transition lines exhibit a bulge which gets smaller with increasing values of \(h_0/J \), which again means that the ferromagnetic phase region gets narrower. Besides, for \(h_0/J > 2.9952 \) \((q = 6)\), \(h_0/J > 3.9441 \) \((q = 8)\), and \(h_0/J > 5.8085 \) \((q = 12)\), tricritical points appear on the system. In Fig. 6, we show magnetization curves corresponding to the phase diagrams shown in Fig. 5 for a sc lattice. Figure 6(a) shows the temperature dependence of magnetization curves for \(q = 6 \) with \(h_0/J = 0.5 \) (left-hand panel) and \(h_0/J = 2.5 \) (right-hand panel) with selected values of \(\sigma \). As we can see in Fig. 6(a), as \(\sigma \) increases, then the critical temperature of the system decreases and first-order phase transitions disappear [see the right-hand panel in Fig. 6(a)]. Moreover, the rate of decrease of the saturation value of the magnetization curves increases as \(h_0/J \) increases. On the other hand, in Fig. 6(b), the magnetization versus temperature curves have been plotted with \(\sigma = 0.5 \) (left-hand panel) and \(\sigma = 2.5 \) (right-hand panel) with some selected values of \(h_0/J \). In this figure, it is clear that saturation values of magnetization curves remain unchanged for \(\sigma = 0.5 \) and tend to decrease rapidly to zero with increasing values of \(h_0/J \) when \(\sigma = 2.5 \). In addition, as \(h_0/J \) increases when the value of \(\sigma \) is fixed, then the critical temperature of the system decreases and the ferromagnetic

FIG. 7. (Color online) Variations of tricritical temperature \(k_B T_t/J \) (i) and tricritical field \(h_t/J \) (ii) as function of distribution width \(\sigma \) for (a) sc, (b) bcc, and (c) fcc lattices.
phase region of the system gets narrower. These observations show that there is a competition effect originating from the
presence of both b_0/J and σ parameters on the phase diagrams and magnetization curves of the system.

Finally, Fig. 7 represents the variation of the tricritical point $(k_BT/J, h/J)$ with σ for $q = 6, 8,$ and 12. As seen from Fig. 7, the k_BT/J value decreases monotonically as σ increases and reaches zero at a critical value σ_t. According to our calculations, the critical distribution width σ_t value can be given as $\sigma_t = 1.421, 2.238,$ and 3.985 for $q = 6, 8,$ and 12, respectively. This implies that the σ_t value depends on the coordination number of the lattice. Besides, h/J curves exhibit a relatively small increment with an increasing σ value.

IV. CONCLUSIONS

In this work, we have studied the phase diagrams of a spin-
1/2 Ising model in a random magnetic field on sc, bcc, and fcc
lattices. We have introduced an effective-field approximation
that takes into account the correlations between different spins
in the cluster of a considered lattice and examined the phase
diagrams as well as magnetization curves of the system for
different types of random-field distributions, namely, single-
Gaussian, bimodal, and double-Gaussian distributions. For a
single-Gaussian distribution, we have found that the system
always undergoes a second-order phase transition between
the paramagnetic and ferromagnetic phases. For bimodal
and double-Gaussian distributions, we have given the proper
phase diagrams, especially the first-order transition lines
that include reentrant phase-transition regions. Our numerical
analysis clearly indicates that such field distributions lead to
a tricritical behavior. Moreover, we have discussed a competition
effect which arises from the presence of both b_0/J and σ
parameters, and we have observed that saturation values of the
magnetization curves are strongly related to these effects.

In addition, in the absence of any randomness (i.e., $b_0/J =
0, \sigma = 0$) our critical temperature values corresponding to
the coordination numbers $q = 6, 8,$ and 12 are the best
approximate values to the results of MC and SE methods,
among the other works given in Table I. As a result, we can
conclude that all of the points mentioned above show that
our method improves the conventional EFT methods based on
decoupling approximation. Therefore, we hope that the results
obtained in this work may be beneficial from both theoretical
and experimental points of view.

APPENDIX: COMPLETE SET OF CORRELATION FUNCTIONS FOR BCC AND FCC LATTICES

The number of distinct correlations for the spin-1/2 system
with q nearest neighbors is $2q - 1$. With the magnetization
of the central spin $\langle S_0 \rangle$, and its nearest-neighbor spin
$\langle S_1 \rangle$, there has to be $2q + 1$ unknowns which forms a
system of linear equations. The q’s of the correlations, which
include the central spin, are derived from the central spin
magnetization $\langle \langle S_0 \rangle \rangle$, and rest of the $q - 1$ correlations which
include only a perimeter spin are derived from the perimeter
spin magnetization expression $\langle \langle S_1 \rangle \rangle$. Let us label these
correlations with $x_i, i = 1, 2, \ldots, 2q + 1$, such that the first
q includes only perimeter spins and the last $q + 1$ includes
a central spin. We can represent all of the spin correlations
and central and perimeter spin magnetization with x_i as
$x_1 = \langle \langle S_1 \rangle \rangle, x_2 = \langle \langle S_1 S_2 \rangle \rangle, \ldots, x_{q+1} = \langle \langle S_1 S_2 \cdots S_q \rangle \rangle, x_{q+2} = \langle \langle S_0 S_1 \rangle \rangle, \ldots,$ and $x_{2q+1} = \langle \langle S_0 S_1 \cdots S_q \rangle \rangle$.

The complete set of correlation functions for $q = 8$ and
12 can be obtained as the same procedure given between
Eqs. (6)–(13) in Sec. II.

The first $q (q = 8$ and 12) correlation functions can be
written in a general form as

\begin{align*}
x_i &= a_1 + a_2 x_{i-1} + a_3 x_{i-2} + \ldots + a_{2q+1} x_{2q+1}, \\
& \text{(2)}
\end{align*}

where the coefficients are given by

\begin{align*}
a_1 &= \cosh(J\nabla)F(x + y), \\
a_2 &= \sinh(J\nabla)F(x + y),
\end{align*}

with $y = (q - 1)A$. Similarly, the last $q/2 + 1$ correlation
functions are

\begin{align*}
x_i &= f^{(1)}_q x_{i-2} + f^{(2)}_q x_{i-1}, \\
& i = 3q/2 + 1, \ldots, 2q + 1,
\end{align*}

where

\begin{align*}
f^{(1)}_q &= 56k_3 + 56k_5 + 8k_7 + 8k_9, \\
f^{(2)}_q &= 70k_4 + 56 + 28k_6 + 2k_0 + 28k_8, \\
f^{(12)}_q &= 12k_1 + 220k_3 + 220k_9 + 792k_5 + 12k_{11} + 792k_7, \\
f^{(12)}_q &= 12k_0 + 66k_2 + 66k_4 + 495k_8 + 66k_{10} + 924k_6.
\end{align*}

The remaining $q/2$ correlation functions for a bcc lattice ($q = 8$),

\begin{align*}
x_9 &= k_0 + 8k_1 x_1 + 28k_2 x_2 + 56k_3 x_3 + 70k_4 x_4 + 56k_5 x_5 + 28k_6 x_6 + 8k_7 x_7 + k_8 x_8, \\
x_{10} &= 8k_1 + (28k_2 + k_0) x_1 + 56k_3 x_3 + 70k_4 x_4 + 56k_5 x_5 + 28k_6 x_6 + 8k_7 x_7 + k_8 x_8, \\
x_{11} &= (56k_3 + 8k_1) x_1 + (70k_4 + 28k_2 + k_0) x_2 + 56k_5 x_5 + 28k_6 x_6 + 8k_7 x_7 + k_8 x_8, \\
x_{12} &= (56k_3 + 56k_5 + 8k_1) x_2 + (70k_4 + 28k_2 + k_0 + 28k_6) x_3 + 8k_7 x_7 + k_8 x_8,
\end{align*}

and $q/2$ correlation functions for a fcc lattice ($q = 12$) are
given as follows:

\begin{align*}
x_{13} &= k_0 + 12k_1 x_1 + 66k_2 x_2 + 220k_3 x_3 + 495k_4 x_4 + 792k_5 x_5 + 924k_6 x_6 + 792k_7 x_7 + 495k_8 x_8 + 220k_9 x_9 + 66k_{10} x_{10} + 12k_{11} x_{11} + k_{12} x_{12}, \\
x_{14} &= 12k_1 + (k_0 + 66k_2) x_1 + 220k_3 x_3 + 495k_4 x_4 + 792k_5 x_5 + 924k_6 x_6 + 792k_7 x_7 + 495k_8 x_8 + 220k_9 x_9 + 66k_{10} x_{10} + 12k_{11} x_{11} + k_{12} x_{12}, \\
x_{15} &= (12k_1 + 220k_3) x_1 + (k_0 + 66k_2 + 495k_4) x_2 + 792k_5 x_3 + 924k_6 x_4.
\end{align*}
$$+792k_7x_5 + 495k_8x_6 + 220k_9x_7 + 66k_{10}x_8 + 12k_{11}x_9 + k_{12}x_{10},$$

$$x_{16} = (12k_1 + 220k_3 + 792k_4)x_2 + (k_0 + 66k_2 + 495k_4 + 924k_6)x_3,$$

$$+792k_7x_5 + 495k_8x_6 + 220k_9x_7 + 66k_{10}x_8 + 12k_{11}x_9 + k_{12}x_{10},$$

$$x_{17} = (12k_1 + 220k_3 + 792k_4)x_2 + (k_0 + 66k_2 + 495k_4 + 924k_6)x_4,$$

$$+220k_9x_7 + 66k_{10}x_8 + 12k_{11}x_9 + k_{12}x_{10},$$

$$x_{18} = (12k_1 + 220k_3 + 792k_4)x_2 + (k_0 + 66k_2 + 495k_4 + 924k_6)x_5 + 12k_{11}x_6 + k_{12}x_7.$$
[52] R. Kikuchi, Phys. Rev. 81, 988 (1951).
[53] J. R. de Sousa and I. G. Araújo, J. Magn. Magn. Mater. 202, 231 (1999); M. A. Neto and J. R. de Sousa, Phys. Rev. B 70, 224436 (2004).

[54] E. E. Reinerhr and W. Figueiredo, Phys. Lett. A 244, 165 (1998).
[55] D. P. Landau, Phys. Rev. B 16, 4164 (1977); 14, 255 (1976); A. M. Ferrenberg and D. P. Landau, ibid. 44, 5081 (1991).
[56] M. E. Fisher, Rep. Prog. Phys. 30, 615 (1967).