Seeds of resilience: the contribution of commons-based plant breeding and seed production to the social-ecological resilience of the agricultural sector

Lea Kliem a,b and Stefanie Sievers-Glotzbach a

aDepartment of Business Administration, Economics and Law, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; bInstitute for Ecological Economy Research, Berlin, Germany

ABSTRACT

Building resilience in food systems is a priority to meet societal challenges such as climate change and biodiversity loss. However, there has been little systematic research on the role of seed production in fostering agroecological resilience. The increasing commercialization and privatization in the conventional seed industry result in the development and use of only a small number of high-yielding varieties. To counter this trend, new organizational approaches and governance structures in plant breeding and seed production build upon common ownership and collective management. In this study, we analyse how commons-oriented seed production promotes agroecological resilience in comparison to conventional private-property-based seed production. We apply an indicator-based framework to analyse publications from breeding and seed-producing organizations in the German-speaking vegetable seed sector. We find that in comparison to conventional seed production, commons structures promote agroecological resilience in several respects. They foster diversity at the genetic, crop species, and landscape level, create redundancy in seed supply channels, and increase autonomy from external resource inputs and international markets. The governance structures of commons-based seed production contribute to agroecological resilience through a high degree of self-organization of farmers and breeders along the value chain, participatory breeding approaches, and greater access rights to seeds.

KEYWORDS

Agroecosystems; commons; resilience; seeds; governance

1. Introduction

Global agricultural production is currently facing new and accelerating challenges. Climate change combined with chronic stresses on agroecosystems, caused by the massive degradation of soils, water reservoirs, plant genetic resources and regulating ecosystem services, poses serious threats to food security from local to global level (Sinclair et al., 2014; Tendall et al., 2015; Urruty et al., 2016). Specifically, the loss of agrobiodiversity has been identified as a major threat to future agricultural production (Kahane et al., 2013; Lin, 2011; Mace et al., 2014; Mijatović et al., 2013; Petersen & Weigel, 2015). Systemic uncertainties, due to the increasing complexity and connectivity of global food supply chains, constitute additional threats (Tendall et al., 2015). The predominant strategy to deal with these sometimes unpredictable external shocks and slow system changes has been to control environmental conditions in farming systems (Napel et al., 2006; Urruty et al., 2016). Control measures include the application of pesticides and mineral fertilizers, the use of irrigation, monoculture production systems, the breeding and use of genetically uniform high-yielding crop varieties, and smart and precision farming technologies (Loos et al., 2014; Pretty, 2008). However, this strategy of striving for optimal, controlled conditions makes agricultural systems more vulnerable to biotic stresses,
such as pressure from herbicide-resistant weeds, pests, and pathogens (Altieri & Nicholls, 2004; Heinemann et al., 2014), and less adaptable to climate change (Altieri et al., 2015; Rotz & Fraser, 2015).

To address these challenges, building resilience has been proposed in both science and international policy as a future priority for the governance of food and agricultural systems (FAO, 2018; Foresight, 2011; Ingram et al., 2019; Schipanski et al., 2016; Seekell et al., 2017). Food system studies taking a resilience perspective have primarily focused on crop cultivation and the production stage of the agricultural value chain (Hodbod & Eakin, 2015; Sinclair et al., 2014; Smith et al., 2016; Tendall et al., 2015; Urruty et al., 2016). Breeding is usually not considered, and there is little systematic research on the role of seed production for building agroecological resilience (Helicke, 2015; Lammerts van Bueren et al., 2018; McGuire & Sperling, 2013; Pautasso et al., 2013). However, plant breeding and seed production play a central role in fostering resilience capacities (Lammerts van Bueren et al., 2018). Seeds are the starting point of all agricultural activity, with any disturbance potentially affecting the entire agricultural value chain. Moreover, breeding shapes the agroeconomic characteristics of plant varieties, determining their suitability for specific climatic and biophysical conditions, while the genetic diversity within and between varieties and species links to the stability of food systems (Jackson et al., 2007; Lammerts van Bueren et al., 2018; Thrupp, 2000). Furthermore, breeding and seed production are closely tied to questions about ownership of and access to plant genetic resources, affecting farmers’ ability to build up capacities to respond to disturbances. The governance of genetic resources, including intellectual property rights, global treaties, and national regulations on variety registration and testing, affects seed availability and farmers’ access to seeds, in some cases curtailling their ability to save up seeds or access breeding material (Aguilar, 2001; Bonny, 2017; Clancy & Moschini, 2017).

Seed production in the Global North has experienced a high degree of commercialization and privatization in the last few decades, and is now a lucrative economic activity based on intellectual property rights on plant varieties (Clancy & Moschini, 2017). Market concentration in the global formal seed market is continuously increasing, with currently only three companies – Bayer including Monsanto, ChemChina including Syngenta, and DuPont including Dow – sharing over 60% of the global seed market (Bonny, 2017; Howard, 2015, 2016; Moldenhauer & Hirtz, 2017). (New) organizational approaches in seed production, specifically in the context of organic vegetable breeding in Europe and in traditional agricultural systems in the Global South, present an alternative to the dominant approach of large-scale agribusiness (Baumann et al., 2020; Ceccarelli, 2006; Fenzi & Couix, 2021; Girard & Frison, 2018; Gmeiner et al., 2018; Kotschi, 2016; Sievers-Glotzbach et al., 2020; Vernooij et al., 2015; Wirz et al., 2017; Wolter & Sievers-Glotzbach, 2019). They build upon common ownership and forms of collective management in plant breeding and seed production, including smallholder participation in variety development and management. Such a commons orientation in seed production appears to be a promising approach to improve agroecological resilience.

The aim of this paper is thus to analyse, conceptually and empirically, how a commons orientation in seed production promotes or impedes the resilience of agricultural production systems in comparison to conventional private-property-based seed production. We thereby address two knowledge gaps, leading to a better understanding of (i) the relationship between seed production, including breeding, and agroecological resilience in general, and (ii) the specific effects of a commons orientation in breeding and seed production on agroecological resilience.

First, we review literature on social-ecological resilience as a system property of agricultural systems and approaches to its measurement. Based on this review and work by Cabell and Oelofse (2012) and other resilience scholars, we develop an indicator-based assessment framework to delineate potential influences of seed production on core attributes of agroecological resilience. We then describe the methods of our document analysis of the German-speaking vegetable seed market. The results section comparatively assesses the impact of the two types of organizational structures (conventional vs. commons-based) on agroecological resilience. Finally, we discuss the findings in the context of larger scientific debates on food security and draw conclusions.
2. Conceptual framework: Integrating seed production into agroecological resilience assessment

2.1. Agroecological resilience

We conceptualize resilience as emergent properties that contribute to the stability and adaptability of social-ecological systems in case of perturbations. These properties include (i) the amount of disturbance a system can absorb while remaining within a domain of attraction, (ii) the capacity for learning and adaptation, and (iii) the degree to which the system is capable of self-organizing (Carpenter et al., 2001). Resilient systems are thus characterized by the capacity to withstand or reorganize following disturbance (Walker et al., 2004). Resilience approaches address the complexity and unpredictability of the future. Acknowledging that the trajectories of social-ecological systems cannot be fully predicted or controlled leads to a shift in focus from finding short-term optimal solutions to adopting long-term perspectives on the constant transformation of social-ecological systems (Darnhofer, 2014; Hodbod & Eakin, 2015). Hence, resilience approaches take into consideration not only the reactive capacity, i.e. the capacity to adjust to adverse conditions, but also the proactive capacity, i.e. the capacity to search for and create future options (Obrist et al., 2010). It thus builds upon narratives of uncertainty and vulnerability, to highlight the potential for adaptation and transformation in constantly changing social-ecological systems (Shaw & Maythorne, 2013).

Agroecosystems are ‘ecosystem[s] managed with the intention of producing, distributing, and consuming food, fuel, and fibre. [Their] boundaries encompass the physical space dedicated to production, as well as the resources, infrastructure, markets, institutions and people’ involved in these activities (Cabell & Oelofse, 2012, p. 2). Agroecological resilience is thus the ability of agricultural systems to withstand disturbance and ensure long-term food security for all (Hodbod & Eakin, 2015; McGuire & Sperling, 2013; Tendall et al., 2015). Agroecological resilience spreads across multiple scales and subsystems (Tendall et al., 2015). Here we focus on the subsystem of seed production and breeding, incorporating not only seeds as physical objects but also the institutions, relationships and knowledge that enable their production and use.

Resilience always relates to disturbances of the system in question. Here this pertains to any disturbances that could diminish the ecological and/or social function of breeding and seed production, such as the impacts of climate change, globally declining genetic diversity, the development of pest and pathogen resistances, highly concentrated market structures, changing consumption patterns, or political instability. The normative dimension of resilience, which favours certain system states and outcomes over others, has gained increasing attention in recent years (Brown, 2014; Johnson et al., 2018). Besides addressing the question of ‘resilience of what to what?’ (Carpenter et al., 2001), it is thus crucial to ask, ‘resilience for whom and with what purpose?’ (Quinlan et al., 2016). This question needs to be addressed from an ethical perspective, pointing to the relevance of food security for the long-term survival of humanity and the internationally recognized human right to food (De Schutter, 2014).

2.2. Developing an indicator-based assessment framework

The dynamics of complex adaptive systems and the abstract, multidimensional nature of resilience make it difficult to operationalize social-ecological resilience (Darnhofer, 2014; Quinlan et al., 2016). Crossing catastrophic thresholds may not be obvious (e.g. the full extent of climate change impacts may only become fully visible decades later), and resilience performance may not be directly observable and must therefore be inferred indirectly (Carpenter et al., 2001; Cumming et al., 2005; Fletcher et al., 2006). In recent years, several indicator-based frameworks have been developed to attempt this difficult feat (e.g. Carpenter et al., 2012; Grace & Pope, 2015; Hughes & Bushell, 2013; IUCN, 2014; Nemec et al., 2014; O’Connell et al., 2015; Speranza et al., 2014; UNU-IAS et al., 2014). Some of these have specifically focused on agroecosystems (e.g. Altieri et al., 2015; Cabell & Oelofse, 2012; Green et al., 2017; Porcuna-Ferrer et al., 2020; Worstell & Green, 2017).

Here, we take Cabell and Oelofse’s (2012) framework as a starting point. We have chosen this framework since it is the most frequently cited, comprehensive framework known to us that focuses on agroecosystems and incorporates both social and ecological dimensions of resilience. Cabell and Oelofse identify 13 indicators of resilience, based on an extensive literature review. They do not explicitly consider plant breeding and seed production, but set the system boundary starting with the ‘physical...
space dedicated to production.’ We consequently adapt their framework to seed production and breeding. We do not aim to measure or quantify agroecological resilience at a specific location, but take a conceptual approach to deepen the understanding of system dynamics.

We assume that the role of seed production for agroecological resilience is twofold. First, the structures and characteristics of plant breeding and seed production influence the extent of agroecological resilience in plant cultivation. For instance, seed companies set breeding goals and specify breeding methods that determine the characteristics of available varieties, including factors such as genetic diversity, robustness, and natural reproducibility. Second, the governance structures of seed production can themselves be assessed in terms of their contribution to agroecological resilience. In our assessment framework (see Table 1), we thus include both indicators referring to the system to be governed (i.e., the properties and processes of the breeding and seed system that enhance agroecological resilience) and indicators referring to the governance system of breeding and seed production (i.e., the social system which is ‘made up of institutions and steering mechanisms such as organizations, legal rules and economic incentives’) (Jentoft et al., 2007, p. 612).

Further, we compare the indicators identified by Cabell and Oelofse (2012) with the seven principles for building resilience as described by Biggs et al. (2012, 2015), as well as with the eight qualities of resilient food systems as compiled by Worstell and Green (2017). Both frameworks serve as reference points to evaluate the comprehensiveness of Cabell and Oelofse’s framework. The seven resilience principles of Biggs et al. are the result of a meta-study across different types of social-ecological systems and extensive discussions among resilience scholars. We find that Cabell and Oelofse’s indicators do not explicitly address three of these resilience principles. These are: (1) foster complex adaptive systems thinking, (2) broaden participation, and (3) promote polycentric governance systems. Since we assume that these attributes capture core differences in the governance structures under investigation – that is, between conventional and commons-based seed production – we extend the indicator set accordingly. The eight qualities of resilient locally organized food systems from Worstell and Green (2017) are based on nine case studies and six prominent resilience frameworks, including that of Cabell and Oelofse. We find that the qualities accumulating reserves and physical infrastructure and conservative innovation are not adequately captured in Cabell and Oelofse’s framework and hence add these indicators. Indicators from the Cabell and Oelofse framework that have limited relevance in the context of seed production, such as spatial and temporal heterogeneity, are deliberately excluded. Further, we merge and slightly modify some of the indicators to incorporate insights from recent social-ecological resilience research, specifically from Carpenter et al. (2012), Frankenberger et al. (2013), the Rockefeller Foundation (2014), and Walker and Salt (2006, 2012).

Building on analyses of the role of seeds and plant breeding in agricultural production systems (Christinck et al., 2017; Ficiciyan et al., 2018; Lammerts van Bueren et al., 2018; McGuire & Sperling, 2013, 2016; Pautasso et al., 2013; Petersen & Weigel, 2015; Sperling, 2008; Tester & Langridge, 2010), we specify the relevance of each indicator in the context of breeding and seed production as displayed in Table 1.

2.3. Conventional and commons-based seed production

To distinguish between conventional and commons-based seed production, we outline the main characteristics of private-property-based and commons-based seed organizations. Seed organizations of both types carry out plant breeding, seed multiplication and/or marketing. Conventional private-property-based seed companies are often large-scale agrochemical businesses. They build their business model on intellectual property rights (patents, legal plant variety protection), allowing them to control the use of newly developed plant varieties, single traits, or applied technologies. Their focus lies on high-yielding varieties for industrial farming and global seed markets. In contrast, commons-based seed companies and initiatives are guided by the principle that varieties are cultural heritage and common goods, which should not be privatized but governed collectively (Kliem & Tschersich, 2017; Sievers-Glotzbach et al., 2020). Consequently, they reject private property rights, such as patents and legal variety protection, to seeds and varieties. Their focus lies on diverse and regionally adapted varieties for local, often organic markets.
Table 1. Agroecological resilience assessment framework for breeding and seed production.

Indicator for agroecological resilience (partially adapted from Cabell & Oelofse, 2012, p. 4)	Definition for agroecosystems as social-ecological systems in general (partially adapted from Cabell & Oelofse, 2012, p. 4)	Specification for breeding and seed production systems*
Socially self-organized (Atwell et al., 2010; Frankenberger et al., 2013; Holling, 2001; Levin, 1999; McKey et al., 2010; Milestad & Darnhofer, 2003; Speranza et al., 2014; Walker & Salt, 2006, 2012; Worstell & Green, 2017)	The social components of the agroecosystem can form their own configuration based on their needs and desires.	The social components of the agroecosystem can form their own breeding and seed production structures that fit specific needs (e.g. of organic or small-scale agriculture).
Ecologically self-regulated (Ewell, 1999; Glover et al., 2010; Jackson & Toensmeier, 2005; Jackson, 2002; McKey et al., 2010; Rockefeller Foundation, 2014; Sundkvist et al., 2005; Swift et al., 2004; Walker & Salt, 2006, 2012; Worstell & Green, 2017)	Ecological components self-regulate via stabilizing feedback mechanisms that send information back to the controlling elements.	Availability of varieties that are naturally reproducible and can adapt to changing local conditions, including ecological pest management.
Functional and response diversity (Altieri, 1999; Berkes et al., 2003; Biggs et al., 2012, 2015; Carpenter et al., 2012; Chapin et al., 2009; Darnhofer et al., 2010b; Di Falco & Chavas, 2008; Ewell, 1999; Frankenberger et al., 2013; Folke, 2006; Folke et al., 2010; Jackson et al., 2007; Luck et al., 2003; McIntyre et al., 2009; Moonen & Barberi, 2008; Speranza et al., 2014; Swift et al., 2004; Walker & Salt, 2006, 2012; Worstell & Green, 2017)	Functional diversity is the variety of ecosystem services that components provide to the system. Response diversity is the range of responses of these components to environmental change.	Breeding and seed multiplication approaches that foster agrobiodiversity at the level of genetic diversity, crop species, and landscapes to increase functional and response diversity in plant cultivation.
Optimally redundant (Biggs et al., 2012, 2015; Carpenter et al., 2012; Darnhofer et al., 2010b; Low et al., 2002; Rockefeller Foundation, 2014; Sundkvist et al., 2005; Walker et al., 2010; Worstell & Green, 2017)	Critical components and relationships within the system are duplicated in case of failure.	Redundancy of different supply channels for seeds and diversity of breeding organizations and structures.
Exposed to disturbance (Berkes et al., 2003; Folke, 2006; Frankenberger et al., 2013; Gunderson & Holling, 2002; Rockefeller Foundation, 2014; Worstell & Green, 2017)	The system is exposed to discrete, low-level events that cause disruptions without pushing the system beyond a critical threshold.	Variety development takes place under careful exposure to disturbance through in situ breeding processes.
Coupled with local natural capital (Darnhofer et al., 2010a, 2010b; Ewell, 1999; Milestad & Darnhofer, 2003; Naylor, 2009; Robertson & Swinton, 2005; van Apeldoorn et al., 2011)	The system functions as much as possible within the means of the bioregionally available natural resource base and ecosystem services.	Availability of varieties that are adapted to regional environmental conditions and resources. Focus on varieties that are based on the bioregionally available natural resources.
Accumulation of reserves and physical infrastructure (Frankenberger et al., 2013; Rockefeller Foundation, 2014; Walker & Salt, 2012; Worstell & Green, 2017)	The buildup of reserves and physical infrastructure i.e. through delayed consumption and profit-taking.	Physical facilities for breeding, seed processing and storage are build up and maintained on-farm. Seed banks preserve genetic resources in the long term.
** Appropriately connected: globally autonomous and locally interdependent in modular subsystems** (Axelrod & Cohen, 1999; Biggs et al., 2012, 2015; Carpenter et al., 2012; Frankenberger et al., 2013; Gunderson & Holling, 2002; Holling, 2001; Milestad & Darnhofer, 2003; Picasso et al., 2011; Rockefeller Foundation, 2014; van Apeldoorn et al., 2011; Walker & Salt, 2006, 2012; Walker et al., 2010; Worstell & Green, 2017)	Connectedness describes the quantity and quality of relationships between system elements. A system is globally autonomous if it has relative autonomy from exogenous (global) control, influences, and inputs. It is locally interdependent in modular subsystems if it exhibits a high level of cooperation between individuals and institutions in a network at the more local level with only weak connections to other networks.	Reduced reliance of (new) varieties on external inputs such as pesticides, fertilizers, international patents etc. A high degree of modular connectedness at the local level of breeders, farmers, gardeners, and other actors along the value chain.
Builds human capital and encourages reflective and shared learning (Berkes et al., 2003; Biggs et al., 2012, 2015; Buchmann, 2009; Darnhofer et al., 2010b; Frankenberger et al., 2013; McManus	The system takes advantage of and builds resources that can be mobilized through social relationships and membership in social networks. Individuals and institutions learn from past	Skills, knowledge and expertise on breeding and seed production are build up and social networks are formed. Knowledge and skills on breeding and seed multiplication as well as on variety traits and cultivation are

(Continued)
Table 1. Continued.

| Indicator for agroecological resilience (partially adapted from Cabell & Oelofse, 2012, p. 4) |
|---|---|
| **Conservative innovation that honours legacy** (Biggs et al., 2012a, 2012b; Carpenter et al., 2012; Cumming et al., 2005; Gunderson & Holling, 2002; Frankenberger et al., 2013; Rockefeller Foundation, 2014; Shava et al., 2010; van Apeldoorn et al., 2011; Walker & Salt, 2006a, 2012; Worstell & Green, 2017a) |
| The segments of society involved in agriculture can make a livelihood from the work they do without relying too heavily on subsidies or secondary employment. |
| Long-term financial viability of breeding and seed multiplication is ensured. |
| **Bases on polycentric, decentralized governance structures** (partially adapted from Biggs et al., 2012a, 2015; Carpenter et al., 2012; Ostrom, 2005; Walker & Salt, 2006a; Walsh-Dilley et al., 2016) |
| The governance structures of the agroecosystem are characterized by multiple, nested governing bodies at different scales, with autonomy to make and enforce rules within an agricultural system. |
| Breeding and seed production is organized through decentralized governance structures at various levels. |
| **Ensures resource access and broadens participation** (Biggs et al., 2012a, 2015a; Frankenberger et al., 2013; McGuire & Sperling, 2016; Rockefeller Foundation, 2014; Tendall et al., 2015; Walsh-Dilley et al., 2016) |
| An appropriate institutional framework of the agroecosystem with equitable (access) rights, entitlements and decision-making processes is established. |
| Access to seeds and genetic material, including for small-scale farmers, gardeners, and breeders, is ensured. Broad participation in breeding and conservation efforts is given. Decision-making processes within organizations are inclusive. Holistic approaches to breeding and seed production that acknowledge the interdependencies of social and ecological factors and their partial unpredictability. |
| **Encourages complex adaptive systems thinking** (Biggs et al., 2012a, 2015a) |
| Core actors acknowledge that the agroecosystem is based on a complex and unpredictable web of connections and interdependencies and adapt their practices accordingly. |

3Indicates references, indicators and descriptions that have been added to the original framework as developed by Cabell and Oelofse (2012).

3. Research approach

This paper is based on a document analysis that includes publications from conventional and commons-based (vegetable) seed companies. Document analyses as a qualitative research method enable us to develop an understanding of actors’ rationales and uncover meaning. As such, the analysis allows us to capture the practices of the different seed companies and their officially stated views and values. This poses an advantage over interviews and other qualitative methods that can only capture individual opinions. It does not, however, allow us to gain insight into the day-to-day operations of the organizations or to treat these records as firm evidence of empirical realities (Bowen, 2009).

In a first step, we identified companies and initiatives of both types, which coincided completely with the classification outlined in section 2.3. The selection of organizations is geographically limited to Germany, Austria, and Switzerland, but many of the conventional companies are international firms that operate globally. The empirical focus on German-speaking countries was chosen since there are several organizations here that have integrated commons principles into their work and are well established in their respective local markets. Since these organizations predominately focus on vegetable seeds, the analysis was limited to seed companies with a vegetable seed assortment.

Based on their market share of the European vegetable seed market (cf. Mammana, 2014), we selected the following conventional companies: (1) Bayer AG (including Monsanto Agrar Deutschland GmbH), (2) Syngenta Seeds GmbH, (3) Limagrain GmbH, and (4) KWS Saat SE, all operating in Germany. The commons-based companies and initiatives included in the analysis are: (1) Bingenheimer Saatgut AG, (2)
Kultursaat e.V., (3) Dreschpflegel GbR, and (4) Saatgut e.V. in Germany, as well as (5) ReinSaat KG in Austria and (6) Sativa Rheinau AG in Switzerland. A larger number of commons-based than conventional companies was included, to be able to capture the diversity of commons-based organizational structures and practices. In the geographical area of study, commons structures have so far only emerged in the organic seed sector.

The initial identification of relevant publications from these companies and initiatives occurred through a two-step search. First, we systematically searched the web pages of the companies for publications. In a second step, we carried out a Google-based web search with the name of the respective company and one of the following terms: ‘sustainability’ / ‘Nachhaltigkeit,’ ‘resilience’ / ‘Resilienz,’ and ‘breeding’ / ‘Züchtung.’ The search was carried out in German and English. In total, we identified 87 publications for conventional private-property-based companies and 68 for commons-based companies and initiatives. The great majority of publications (134 out of 155 publications) were self-portrayals such as sustainability reports or annual reports, or advertising brochures and magazines. If several similar publications were available, such as sustainability reports from various years, we chose the most recent publication. We did not consider publications from before 2015.

We subsequently scanned all documents to select those that provided the most comprehensive information on aspects relating to agroecological resilience. Publications such as seed catalogues, which provide limited information beyond the current seed assortment of the company, were disregarded. 46 publications from private-property-based and 49 publications from commons-based companies and initiatives were included in the analysis. The documents from the conventional companies are on average much longer than those from commons-based organizations (conventional: mean = 106 pages; median = 96.5 pages; commons-based: mean = 44 pages; median = 23 pages). This is not surprising since the average company size, turnover, and range of activities of conventional companies is much larger.

For the analysis, we first manually scanned publications for relevant passages. Text passages were considered relevant if they directly or indirectly provided information on the organization’s practices, views or values related to any of the indicators. If available, passages referring to the organization’s understanding of agroecological resilience were also identified. We subsequently assigned each passage to one or in some instances several indicators. This procedure resulted in two matrices – one for conventional and one for commons-based organizations – with text passages of varying lengths. 446 text passages were included in the analysis, with 216 passages from publications by conventional companies and 230 passages from publications by commons-based organizations. The assignment of text passages to indicators was cross-checked by the second author. We subsequently synthesized the data for each indicator individually, by identifying reoccurring aspects. We did not consider practices and views that were specific to a particular organization. The focus of the analysis was on aspects differing between the two forms of organization.

4. Findings
In commons-based seed companies and initiatives, farmers and growers form their own structures for breeding, seed multiplication, and marketing, based on a high degree of coordination and cooperation along the value chain (socially self-organized). For example, the breeding organizations Kultursaat e.V. and Saatgut e.V., together with the seed vendor Bingenheimer Saatgut AG, have formed a platform to coordinate their breeding and seed production efforts. They collectively decide upon future breeding projects and programmes to ensure coordination along the value chain. Personal relations and close collaboration are integral to their organizational structure:

The exchange within the network is the breeding ground for the success of our work. As economic partners, we take time for each other to make joint progress in organic seed production. The intensive cooperation comes alive at biannual meetings, where we continue to educate ourselves together, offer a platform for exchange […] and take time for personal discussions – this gives us a stable basis for a cooperation based on mutual trust. This form of cooperation is rare in the seed industry, where customers usually dictate the terms and conditions. (Bingenheimer Saatgut AG 2017, p. 120)

In conventional seed production, such a high degree of social self-organization cannot be observed. Increasing market concentration in the sector through company mergers has increased not only horizontal but also vertical integration, and breeding,
seed multiplication and the production of agrochemicals are now different corporate divisions of the same company. The needs of other actors along the agricultural value chain are integrated primarily through supplier and stakeholder management practices such as community advisory panels or stakeholder events and surveys. The focus is on creating efficient organizational structures to maximize productivity, increase shareholder value and minimize disturbances that could negatively impact these. Stakeholder integration is part of risk monitoring and is seen as an opportunity to gain a better understanding of the market, rather than as a foundation for equitable economic relations.

A further difference lies in the breeding goals and methods applied. Breeding programmes in commons-based organizations aim at open-pollinated varieties, plant robustness without chemical inputs (ecologically self-regulated), and varieties that are adapted to specific regions and agroecological conditions (coupled with local natural capital). A key concern of all commons-based organizations included in the analysis is a focus on breeding methods resulting in naturally reproducible varieties that can be maintained on-farm, i.e. breeding through crossing and selection. Hybrid breeding, marker-assisted selection, genetic engineering and other forms of molecular breeding are rejected:

[We] exclusively develop open-pollinated varieties without genetic engineering or hybrid breeding. During breeding and propagation, the vitality and resistance of the plants are at the center of our work. […] Careful breeding, selection and continuous reproduction provide robust seeds that, unlike hybrid seeds, can adapt to heterogeneous environmental and site-specific conditions and thus offer long-term yield security. (ReinSaat 2018)

Furthermore, the commons-based organizations focus on in-situ breeding under exposure to site-specific disturbances (exposed to disturbance). On-farm breeding is considered crucial to ensure plants’ interaction with local ecosystems and allow for the continuous adaptation of varieties to regional environmental conditions: ‘Our breeding and propagation predominantly take place on the field. […] Variety selection and development take place decentrally in various places, to allow for regional adaptation’ (Dreschfleger Website 2018). The commons-based initiatives thus take an approach to breeding that focuses on natural evolution and adaptation, and highlights the capacity of plants to develop robustness through exposure. Such low-technology seed production methods encourage the buildup of on-farm infrastructure, including (mechanical) seed cleaning and processing technology, as well as appropriate storage facilities (accumulation of physical infrastructure).

In contrast, conventional seed companies concentrate on the breeding of hybrid varieties and employ integrated solutions encompassing seeds and complementary pesticides for effective chemical pest management. Adaptation to regional conditions and to changing climatic conditions is achieved through biotechnological enhancements based on genetic modification and genomics, where legally allowed. Breeding processes mostly take place under controlled environmental conditions in the lab and through field experiments:

We use advanced breeding technologies to produce hybrids and varieties with superior performance in farmers’ fields, and we use biotechnology to introduce traits that enhance specific characteristics of our crops. […] Our current research and development strategy and commercial priorities are focused on bringing our farmer customers integrated yield solutions through our innovative platforms in plant breeding, biotechnology, chemistry, biologicals and data science. (Monsanto 2017, p. 10)

Conventional seed companies seek to increase yields while reducing the use of resources (e.g. land, fertilizers or pesticides), using technical solutions that aim to optimize genetic composition and homogeneity and create controlled cultivation conditions:

We rely on modern breeding methods to attain [our] objectives sooner and more precisely and offer increasingly productive varieties. […] We aim to deliver annual yield progress of one to two percent. The development of sugar beet is a good example […] Figures over the past years show that yield has not only risen per hectare but this has been accompanied by a reduction in the use of fertilizer and pesticides. This is a very practical demonstration of how sustainable agriculture can work’. (KWS Saat 2017, p. 6)

This conventional approach to seed production leads to a buildup of high-technology breeding and seed processing infrastructure, including centralized seed storage facilities.

A further difference between conventional and commons-based seed production lies in the organizations’ approaches to diversification. Commons-based initiatives aim to foster agrobiodiversity through the creation and maintenance of high
levels of genetic and crop species diversity – i.e. through population breeding and the inclusion of landraces and traditional crop species (functional and response diversity). Conserving and/or creating a diversified gene pool lies at the heart of the work of many of the organizations included in the analysis. Furthermore, commons-based seed organizations deliberately create redundancy in seed supply channels, e.g. by encouraging gardeners to multiply their own seeds, promoting seed exchanges, and fostering the establishment of an independent organic seed sector (optimally redundant). They encourage farmers to build up reserves through seed saving practices and establish small-scale community seed banks to ensure the long-term availability of genetic resources (accumulation of reserves).

In contrast, conventional seed organizations primarily focus on enhancing biodiversity in farm environments, e.g. by implementing measures to protect wildlife and pollinators threatened by large-scale industrial agriculture practices: ‘We advocate and pioneer the protection and promotion of biodiversity, primarily through the creation of rich, cohesive wildlife habitats on less productive plots of land and water’ (Syngenta 2017, p. 16). Conventional seed production follows a path of increasing reliance on a small number of highly profitable crop species and generalist varieties that are suited for larger regions, to maximize profit margins. Genetic resources are primarily regarded as company assets, which are to be managed, developed, and stored in central seed banks to secure future competitiveness. A diversification of seed supply channels is not prioritized.

In addition, the two types of seed systems differ in the connectedness of their system elements. Commons-based seed production is characterized by its independence from external resource inputs and thus shows only very few links to global markets, but strong local connections between breeding initiatives, farmers and growers. This implies a modular architecture of connectivity, with several compartmentalized communities catering to local and regional seed markets (appropriately connected: globally autonomous and locally interdependent in modular subsystems). The reliance of commons-based initiatives on local resources arises from an understanding that agriculture must be able to produce its own inputs. In contrast, conventional seed production is highly dependent on external inputs from international markets, such as technological equipment, complementary pesticides, and genetic material. Their seed retail relies on complex international supply chains and international intellectual property rights, creating system-relevant dependencies on external inputs.

The governance structures of conventional and commons-based seed production differ considerably. The organizational structure of commons-based breeding organizations can be characterized as polycentric, whereas the increasing market concentration in the conventional seed industry opposes polycentric structures. In commons-based seed production, decentralized networks of breeders and seed producers with their own decision-making competencies allow diverse breeding projects and can flexibly respond to environmental changes and social requirements (polycentric, decentralized governance structures). In contrast, conventional seed production in the countries of investigation is dominated by multinational seed companies with centralized facilities and research centres, usually governed in a hierarchical structure by a single governance body.

The two types of seed production also vary greatly in their approach to resource access. Commons-based seed production contributes to ensuring access to seeds by farmers and breeders by waiving private property rights for varieties, employing participatory breeding approaches, and encouraging seed saving for future cultivation and breeding. Since commons-based breeding organizations understand varieties as common property, they register their varieties to nonprofit organizations and/or declare them to be free for use and further development:

We see varieties as common property that should not be privatized. Therefore, we explicitly renounce intellectual property rights of any kind (plant variety protection and patents) […] [We] register the varieties (e.g., through the German Federal Office of Plant Varieties), so that they can be marketed [but] new varieties are not considered property of the association (legal person) or the breeder (natural person). Access to [our] varieties is therefore free and not subject to any regulation; any interested party may reproduce the varieties or distribute the seed. (Kultursaat e.V. 2017, p. 11)

Some initiatives have also explored the use of open-source pledges and licenses. Furthermore, they publicly share information on the breeding history and parental lines of newly developed varieties. These variety genealogies allow other breeders to trace their breeding background and develop them further. Some of the commons-based organizations
also aim to broaden access and participation by offering practical training on breeding and seed multiplication for commercial and hobby gardeners (builds human capital and encourages reflective and shared learning). The focus is on encouraging farmers and gardeners to actively engage in breeding and seed saving practices and raise public awareness of the importance of agrobiodiversity. In contrast, conventional seed companies have built their business model around intellectual property rights and reject practices of seed saving by farmers and gardeners. The breeding history and breeding methods of new varieties are usually not disclosed. Their understanding of genetic resources as private property that ought to be protected for commercial reasons leads them to strictly inhibit any use of their varieties or genetic material by others:

We hold a broad business portfolio of patents, trademarks and licenses that provide intellectual property protection for our seeds and genomics-related products and processes […]. [They] are crucial to our business […]. We endeavor to obtain and protect our intellectual property rights. […] Competitors, farmers, or others in the chain of commerce may raise legal challenges to our rights or illegally infringe on our rights […]. For example, the practice by some farmers of saving seeds from non-hybrid crops containing our biotechnology traits has prevented and may continue to prevent us from realizing the full value of our intellectual property. (Monsanto 2017, p. 9)

Commons-based and conventional approaches to seed production also take different views of traditional knowledge. Commons-based seed organizations use both traditional breeding techniques and traditional crop species and varieties in breeding (conservative innovation that honours legacy). They consider varieties as cultural assets that link the work of farmers over generations and ought to be preserved and further developed:

Seeds are far more than just a means of production. They are the starting point for food production and carry the flow of crop development from the past into the future. Our goal is to preserve this cultural asset for future generations. (Bingenheimer Saatgut AG 2017, p. 8)

In contrast, conventional seed companies spread a narrative of technological progress, which they argue is necessary to feed an increasing world population. Biotechnological advancements designed to control natural processes and improve genetic ‘purity’ (including – in some companies – transgenesis) are favoured over traditional breeding methods that lead to the development of natural plant disease and pest resistances. This focus on biotechnological solutions reflects a worldview of domination of nature, whereas commons-based seed organizations practice breeding on-farm in natural environments based on a worldview of working with nature (complex adaptive systems thinking).

When it comes to the long-term financial viability of the breeding sector, the conventional seed companies are highly profitable, reporting growth rates and profit margins that widely exceed those of commons-based seed companies (reasonably profitable). At the same time, conventional companies must make substantial (re-)investments in biotechnological advancements to remain competitive, and are highly dependent on their shareholders. In contrast, many of the commons-based seed organizations face insecurity regarding the long-term financing of their breeding activities. Income sources such as licenses and replication fees do not apply and are not compatible with commons principles. In addition, the polycentric structure of breeding and seed production and the development of varieties that are adapted to specific regions mean small sales markets for newly developed varieties. The seeds are primarily purchased in small quantities by hobby gardeners and small-scale farmers, with low profit margins making it more difficult to finance breeding activities. To ensure the continuous development of varieties, some seed companies have developed models of voluntary breeding contributions that are negotiated between breeders and multipliers:

Above all, it must be ensured that the multiplication of the seed is economically viable for the producing farms in the long term. At the same time, we want to offer seed at attractive prices. For this reason, the [breeders and multipliers] are discussing pricing and payment modalities in a continuous dialogue based on partnership and are developing them further together […]. We pay a variety development contribution for varieties registered in [our] name. [This] contributes to maintenance breeding and the development of new varieties. (Bingenheimer Saatgut AG 2017, pp. 8)

Nevertheless, many commons-based initiatives have yet to develop profitable financing models enabling them to gain financial sustainability and independence from sponsors. Table 2 summarizes the results of the agroecological resilience indicators.
Table 2. Assessing the impact of conventional and commons-based seed production on agroecological resilience.

Indicator for agroecological resilience	Conventional seed production	Commons-based seed production
Socially self-organized	• Social self-organization of farmers and breeders is not given	• Farmers and breeders form their own structures for breeding, seed multiplication and marketing
	• The needs of farmers and other actors along the agricultural value chain are integrated through stakeholder and sustainability management	• A high degree of coordination and cooperation along the agricultural value chain
Ecologically self-regulated	• Focus on achieving adaptability to changing environmental conditions through biotechnological enhancements based on genetic modification and genomics: breeding of primarily hybrid and genetically modified varieties	• Focus on achieving adaptability to changing environmental conditions through natural enhancements of varieties: breeding of open-pollinated, naturally reproducible varieties via crossing and selection methods
	• A core breeding goal is increased resource efficiency in terms of pesticide, nitrogen, water, energy, and land use	• A core breeding goal is plant robustness without chemical inputs. Varieties are specifically adapted for organic cultivation conditions
	• Chemical pest management through ‘integrated solutions’ of (genetically modified) seeds and complementary pesticides	• Ecological pest management through breeding and seed multiplication under organic conditions
Functional and response diversity	• Breeding predominately for monogenetic resistances and genetic uniformity	• Breeding of open-pollinated varieties favours higher genetic diversity in varieties
	• Concentration on few crop species and crowding out of regionally adapted varieties through a focus on generalist high-yielding varieties	• Preserving and enhancing agrobiodiversity at crop species level using traditional crop species and varieties in breeding and in-situ maintenance of conservation varieties
	• Agrobiodiversity at the landscape level is reduced through the impacts of pesticides and synthetic chemical fertilizers used in seed multiplication	• Fostering of functional diversity of cultural landscapes in seed multiplication
Optimally redundant	• Reduced redundancy of supply channels for seeds through an increasing market concentration due to company mergers and acquisition	• Increased redundancy of different seed supply channels through encouraging commercial and hobby gardeners to carry out their own seed-multiplication and promoting seed exchanges
	• Breeding takes mostly place under controlled environmental conditions, in the lab and in field experiments	• Contributing to an independent organic seed sector, thereby creating redundancy of breeding structures
Exposed to disturbance	• Breeding takes place on-farm – in situ breeding allows for exposure to site-specific disturbances and changing environmental conditions	• Breeding of varieties that are adapted to specific regions and agroecological conditions
Coupled with local natural capital	• Breeding of varieties that are adapted to specific climates and (large) regions	• Agricultural inputs are limited to available local natural resources
	• Agricultural inputs rely on complex global value chains	

(Continued)
Table 2. Continued.

Indicator for agroecological resilience	Conventional seed production	Commons-based seed production
Accumulation of reserves and physical infrastructure	• Focus on increasing centralized high-technology breeding, seed processing and storage facilities	
• buildup of centralized seed banks	• Focus on increasing on-farm infrastructure through low-technology breeding, seed cleaning, and processing as well as appropriate storage facilities	
• Encouraging farmers to build up reserves through seed saving practices and establishing small-scale community seed banks		
Appropriately connected: globally autonomous and locally interdependent in modular subsystems	• (New) varieties are highly dependent on external inputs e.g. on complementary pesticides or technological equipment	
• Focus on international markets for seed (and pesticide) retail, relying on highly complex international supply chains		
• Trend of increasing global market concentration and merger with pesticide producers	• (New) varieties are largely independent of external inputs	
• Focus on regional and informal markets for seed retail		
• A high degree of modular connectivity at the local level of breeders and farmers e.g. through networks and participatory breeding approaches		
Builds human capital and encourages reflective and shared learning	• Practical training of farmers on cultivation techniques, secure application of agrochemical products and access to markets and credits	
• No training/ information of farmers on breeding and seed production		
• Breeding history and -methods of new varieties are usually not disclosed	• Practical training on breeding for commercial and hobby gardeners	
• The breeding history and -methods of new varieties are shared publicly		
Conservative innovation that honours legacy	• Future and part of current practice is seen in biotechnical breeding methods, specifically gene editing rather than traditional breeding techniques	
• Use of modern rather than landraces and traditional varieties		
• Variety development is mainly based on scientific breeding knowledge, traditional practical knowledge of farmers is not appreciated	• Application and further development of traditional breeding techniques	
• Use of landraces and traditional crop species and varieties in breeding		
• Traditional practical knowledge of farmers is appreciated and integrated alongside scientific breeding knowledge		
Reasonably profitable	• Highly profitable, which is necessary to continuously re-invest in biotechnological advancements	
• High dependency on shareholders and investors (as external factors)	• Insecurity regarding the long-term financing of breeding activities due to a lack of profitable financing models	
• Diverse sources of financing, mostly on voluntary or charitable grounds (e.g. through foundations and donations), partly external to the SES		
Polycentric, decentralized governance structures	• Organization of multinational seed companies into centralized facilities and research centres worldwide which are governed by a single governance body	
• Increasing market concentration opposes polycentric structures
• Hierarchical but partially democratic governance structures within seed organizations | • Polycentric organization structure of breeding organizations, seed producers and – preservers including decentralized breeding projects with own decision-making competences
• Non-hierarchical and democratic decision making structures within seed organizations |
5. Discussion

The extended indicator framework enabled us to characterize core differences between commons-based and private-property-based seed production systems, and their effects on agroecological resilience. The findings show that commons-based approaches to seed production, in comparison to conventional seed production, tend to foster agroecological resilience. Building commons structures can therefore be a highly relevant strategy in agricultural systems, particularly if the control of environmental conditions in the face of disturbances is not possible (e.g. on marginal agricultural land), not cost-efficient (e.g. in the case of peasant agriculture in the Global South), or where common ‘control technologies’, such as pesticide application or genetic engineering, are incompatible with ethical principles (mainly in organic agriculture).

In the region under study, commons approaches have so far only been implemented in the context of organic breeding and organic seed production. Thus, positive agroecological resilience effects linked to commons characteristics need to be disentangled from effects stemming from the practices of organic agriculture. Whereas commons approaches place a stronger emphasis on the organization of resource governance and the corresponding social processes, which can foster agroecological resilience, the principles of organic agriculture place ecological aspects in the foreground. The two approaches can thus be seen as complementary and mutually reinforcing when it comes to fostering agroecological resilience.

However, commons-based seed systems also have some drawbacks that diminish their contribution to agroecological resilience. Most prominently, a lack of sufficient profit to maintain and grow enterprises without government support may significantly reduce the overall impact of commons-based organizations. Reasonable profitability is a precondition for the long-term survival of these organizations, as well as for their ability to invest in physical, human and social capital. A lack of funding may thus offset advantages on other indicators. This also raises the question of whether there is a need to weigh individual indicators to determine overall resilience capabilities. This goes beyond the scope of this paper but requires further investigation.

Furthermore, due to higher financial investments and the use of technologies that allow the development of new varieties faster than natural selection...
does, conventional seed production has a higher innovation speed and output than commons-based seed production. Conventional seed production also shows advantages in terms of production efficiency under optimal cultivation conditions. Such a trade-off between efficiency and social-ecological resilience (specifically, diversity, redundancy, and reserves) has been observed across different social-ecological systems: resilient systems are often not as productive as other systems (Anderies et al., 2004). Since food security as an internationally recognized goal cannot be compromised on moral grounds (c.f. United Nations, 1948, 2015), the question of the contribution of agricultural productivity and agricultural resilience to local and global food security is crucial.

Competing narratives and problem framings around the governance of food security conceptualize the role of production efficiency and resilience and their interactions differently (Jiren et al., 2020; Loos et al., 2014; McMichael & Schneider, 2011). They share the perspective that food security is a complex, multidimensional concept, and that both production efficiency (often discussed as approaches to agricultural intensification) and resilience attributes influence the state of food security. They differ, however, in whether resilience attributes are understood as an additive or as an essential precondition for increasing food security (Loos et al., 2014). The impact of the recent COVID-19 pandemic on food security provides empirical evidence for the latter perspective: it has demonstrated how the efficiency of a non-redundant system and therefore food security can decrease dramatically, and how community-based systems with shorter, more direct supply chains can be much more reliable (Duguma et al., 2021; Worstell, 2020). Further, as represented by the indicator ensuring resource access and broadening participation, the concept of agroecological resilience also links to aspects of food and seed sovereignty (Kloppenburg, 2014), which are considered to be highly relevant for realizing food security (De Schutter, 2012; IPBES Food 2020). Commons-based seed production is especially strong in this regard.

Lammerts van Bueren et al. (2018) propose a framework of systems-based breeding that is directed towards achieving the international sustainability targets of food security, food sovereignty, social justice, agrobiodiversity, ecosystem services, and climate robustness. One core element of such a systems-based breeding orientation is free access to genetic resources, to allow all actors in the seed sector to access a broad genetic base of seed material (Lammerts van Bueren et al., 2018). This would challenge a key component of the conventional breeding model, but may be a starting point in building more resilient seed and agricultural systems.

6. Conclusion

In this paper, we have developed a conceptual framework to systematically examine the contribution of seed production, including breeding, to agroecological resilience. Specifically, we extended the indicator framework compiled by Cabell and Oelofse (2012) and broadened its scope by focusing on seed production – thereby developing an indicator framework that allows us to assess how different organizational approaches to seed production contribute to agroecological resilience. We showed that plant breeding and seed production affect agroecological resilience in multiple dimensions, including the characteristics of available varieties (such as genetic diversity, adaptation to specific needs and biophysical conditions) and access rights to seeds for farmers, gardeners, and breeders.

Our empirical assessment, based on a document analysis of publications from breeding and seed-producing organizations in the German-speaking vegetable seed sector, revealed the positive effects of commons structures in seed production on agroecological resilience. These include a high degree of self-organization of farmers, gardeners and breeders along the value chain of plant cultivation; the development of open-pollinated, naturally reproducible varieties; redundancy of different seed supply channels, achieved by encouraging hobby and commercial gardeners to carry out their own seed multiplication, and by establishing seed exchanges and an independent organic seed sector; and autonomy from external resource inputs such as pesticides, synthetic chemical fertilizers, and genetic sequences and technologies protected by intellectual property rights. Further, commons approaches as organizing principles improve the resilience of the governance structures of seed production by facilitating knowledge exchange and social learning, a polycentric organization of breeding, non-hierarchical decision-making structures und participatory breeding approaches. However, commons-based seed production is often threatened by insecurities regarding the long-term
financing of its breeding activities, and may under optimal conditions be less productive and innovative than conventional seed production.

Positive effects of commons approaches in the seed sector on the resilience of the global agricultural and food system can be assumed, especially if an out-scaling (geographical diffusion within the niche) and up-scaling (widening of the scale of operation; Douthwaite et al., 2003) of commons-based seed and breeding initiatives is politically supported. Potential positive effects include an increase in available agrobiodiversity, the buildup of networks and close social ties among actors along agricultural value chains, knowledge diffusion and a focus on sustainable resource management. Further research could apply the framework developed in this paper to analyse seed production practices in the Global South, or to identify suitable entry points for integrating commons principles in conventional seed production.

Notes

1. We do not include the indicator spatial and temporal heterogeneity, defined as ‘patchiness across the landscape and changes through time (e.g., patchiness on the farm and across the landscape, mosaic pattern of managed and unmanaged land, diverse cultivation practices, crop rotations)’ (Cabell & Oelofse, 2012, p. 4), into our assessment, since there is no direct causal link between the configuration of seed production and heterogeneity in cultivation systems. Further, we combine the indicators appropriately connected (‘the quantity and quality of relationships between system elements,’ Cabell & Oelofse, 2012, p. 4) and globally autonomous and locally interdependent (the ‘relative autonomy from exogenous (global) control and influences [and a] high level of cooperation between individuals and institutions at the more local level,’ Cabell & Oelofse, 2012, p. 5), since the second indicator characterizes a specific type of connectedness. To address the need for modularity, to contain disturbances by compartmentalizing social-ecological systems (Carpenter et al., 2012; Worstell & Green, 2017), we construct the indicator appropriately connected: globally autonomous and locally interdependent in modular subsystems. In addition, we merge the indicators builds human capital and reflective and shared learning (see Table 1 for their definitions), since they describe related resource and process dimensions of the same characteristic of the governance system. Finally, we rename the indicator honours legacy as conservative innovation that honours legacy, following Worstell and Green (2017, p. 33), to stress the role of innovation for social-ecological resilience in its combination with honouring ideas from the past that work.

Acknowledgements

We would like to thank our colleagues Jesko Hirschfeld, Florian Kern, Jacqueline Loos, Teja Tscharntke and Hendrik Wolter for their detailed and helpful feedback.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Funding for the research was provided by the German Federal Ministry of Education and Research (BMBF), as part of the programme on ‘Research for sustainable development’ (FONA) under Grant 01UU1602A/C.

Notes on contributors

Lea Kliem is a researcher at the Institute for Ecological Economy Research (IÖW) in Berlin and a PhD candidate at the Carl von Ossietzky University Oldenburg. She holds an MSc in Nature, Society and Environmental Policy from the University of Oxford. Her research interests include seed commons, agricultural-, consumer- and food policy, and agroecological resilience. She is a member of the Berlin Food Policy Council since 2016.

Stefanie Sievers-Glotzbach is Junior Professor for “Economics of the Commons” at Oldenburg University. She holds a Ph.D. in Sustainability Sciences and a Diploma degree in Environmental Sciences, both from Leuphana Universität Lüneburg. Her research interests include ecological, institutional and sustainability economics, sustainable development, environmental justice, political ecology and socio-ecological systems research. Her present research focusses on commons as a governance model and its potential for sociocultural transformation.

ORCID

Lea Kliem http://orcid.org/0000-0001-8413-7773

References

Aguilar, G. (2001). Access to genetic resources and protection of traditional knowledge in the territories of indigenous peoples. Environmental Science & Policy, 4(4-5), 241–256. https://doi.org/10.1016/S1462-9011(01)00028-4

Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1-3), 19–31. https://doi.org/10.1016/S0167-8809(99)00028-6

Altieri, M. A., & Nicholls, C. I. (2004). Biodiversity and pest management in agroecosystems. CRC Press. https://doi.org/10.1201/9781482277937

Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2
Anderies, J. M., Janssen, M. A., & Ostrom, E. (2004). A framework to analyze the robustness of social-ecological systems from an institutional perspective. *Ecology and Society, 9*(1), 18. https://doi.org/10.5751/ES-00610-090118

Atwell, R. C., Schulte, L. A., & Westphal, L. M. (2010). How to build multifunctional agricultural landscapes in the U.S. Corn belt: Add perennials and partnerships. *Land Use Policy, 27*(4), 1082–1090. https://doi.org/10.1016/j.landusepol.2010.02.004

Axelrod, R., & Cohen, M. D. (1999). *Harnessing complexity: Organizational implications of a scientific frontier.* The Free Press.

Baumann, M. D., Zimmerer, K. S., & van Etten, J. (2020). Add perennials and partnerships. *Agricultural Sustainability, 1082*, 1–16. https://doi.org/10.1017/9781316014240

Buchmann, C. (2009). Cuban home gardens and their role in social-ecological systems. *International Journal of Agricultural Sustainability, 18*(4), 300–318. https://doi.org/10.1080/14735903.2020.1775930

Berkes, F., Colding, J., & Folke, C. (Eds.). (2003). *Navigating social-ecological change.* Cambridge University Press. https://doi.org/10.1017/CBO9780511541957

Biggs, R., Schlüter, M., Biggs, D., Bohensky, E., L., BurnSilver, S., Cundill, G., Dakos, V., Daw, T. M., Evans, L. S., Kotschy, K., Leitch, A. M., Meek, C., Quinlan, A., Raudsepp-Hearne, C., Robards, M. D., Schoon, M. L., Schultz, L., & West, P. C. (2012). Toward principles for enhancing the resilience of ecosystem services. *Annual Review of Environment and Resources, 37*(1), 421–448. https://doi.org/10.1146/annurev-envir-051211-123836

Biggs, R., Schluter, M., & Schoon, M. L. (Eds.). (2015). *Principles for building resilience: Sustaining ecosystem services in social-ecological systems.* Cambridge University Press. https://doi.org/10.1017/CBO9781316014240

Bonny, S. (2017). Corporate concentration and technological change in the global seed industry. *Sustainability, 9*(9), 1632. https://doi.org/10.3390/su9091632

Bowen, G. A. (2009). Document analysis as a qualitative research method. *Qualitative Research Journal, 9*(2), 27–40. https://doi.org/10.3316/QJR0902027

Brown, K. (2014). Global environmental change I: A social turn for resilience? *Progress in Human Geography, 38*(1), 107–117. https://doi.org/10.1177/030913251349833

Buchmann, C. (2009). Cuban home gardens and their role in social-ecological systems. *Human Ecology, 37*(6), 705–721. https://doi.org/10.1007/s10745-009-9283-9

Cabell, J. F., & Oelofse, M. (2012). An indicator framework for assessing agroecosystem resilience. *Ecology and Society, 17*(1), 18. https://doi.org/10.5751/ES-04666-170118

Carpenter, S. R., Arrow, K. J., Barrett, S., Biggs, R., Brock, W. A., Crépin, A.-S., Engström, G., Folke, C., Hughes, T., Kautsky, N., Li, C.-Z., McCarney, G., Meng, K., Müller, K.-G., Polasky, S., Scheffer, M., Shogren, J., Sterner, T., Vincent, J., … Zeeuw, A. (2012). General resilience to cope with extreme events. *Sustainability, 4*(12), 3248–3259. https://doi.org/10.3390/su4123248

Carpenter, S. R., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? *Ecosystems, 4*(8), 765–781. https://doi.org/10.1007/s10021-001-0045-9

Carpenter, S. R., Westley, F., & Turner, M. G. (2005). Surrogates for resilience of social-ecological systems. *Ecosystems, 8*(8), 941–944. https://doi.org/10.1007/s10021-005-0170-y

Ceccarelli, S. (2006). Decentralized – participatory plant breeding: Lessons from the south – perspectives in the north. In D. Desclaux, & M. Hédont (Eds.), *Proceedings of the ECO-PB Workshop: "Participatory Plant Breeding: Relevance for Organic Agriculture".* ITAB.

Chapin, F. S., III, Kofinas, G. P., & Folke, C. (Eds.). (2009). *Principles of ecosystem stewardship: Resilience-based natural resource management in a changing world.* Springer New York.

Christinck, A., Rattunde, F., Kergna, A., Mulinge, W., & Weltzien, E. (2017). “You can’t grow alone”— Prioritized sustainable seed development options for staple food crops in Sub-Saharan Africa: Cases of Kenya and Mali. Final project report. Program of Accompanying Research for Agricultural Innovation (PARI).

Clancy, M. S., & Moschini, G. (2017). Intellectual property rights and the ascent of proprietary innovation in agriculture. *Annual Review of Resource Economics, 9*(1), 53–74. https://doi.org/10.1146/annurev-resource-100516-053524

Cumming, G. S., Barnes, G., Perz, S., Schnink, M., Sieving, K. E., Southworth, J., Binford, M., Holt, R. D., Stickler, C., & Van Holt, T. (2005). An exploratory framework for the empirical measurement of resilience. *Ecosystems, 8*(8), 975–987. https://doi.org/10.1007/s10021-005-0129-z

Darnhofer, I. (2014). Resilience and why it matters for farm management. *European Review of Agricultural Economics, 41*(3), 461–484. https://doi.org/10.1093/erae/jbu012

Darnhofer, I., Bellon, S., Dedieu, B., & Milestad, R. (2010a). Adaptiveness to enhance the sustainability of farming systems. A review. *Agronomy for Sustainable Development, 30*(3), 545–555. https://doi.org/10.1051/agro/2009053

Darnhofer, I., Fairweather, J., & Moller, H. (2010b). Assessing a farm’s sustainability: Insights from resilience thinking. *International Journal of Agricultural Sustainability, 8*(3), 186–198. https://doi.org/10.3763/ijas.2010.0480

De Schutter, O. (2012). Agroecology, a tool for the realization of the right to food. In E. Lichthouse (Ed.), *Agroecology and strategies for climate change* (pp. 1–16). Springer. https://doi.org/10.1007/978-94-007-1905-7

De Schutter, O. (2014). The transformative potential of the right to food: Report of the special rapporteur on the right to food. United Nations Human Rights Council.

Di Falco, S., & Chavas, J.-P. (2008). Rainfall shocks, resilience, and the effects of crop biodiversity on agroecosystem productivity. *Land Economics, 84*(1), 83–96. https://doi.org/10.3368/le.84.1.83

Douthwaite, B., Kuby, T., van de Filert, E., & Schulz, S. (2003). Impact pathway evaluation: An approach for achieving and attributing impact in complex systems. *Agricultural Systems, 78*(2), 243–265. https://doi.org/10.1016/S0308-521X(03)00128-8

Dreschflegel, (2018). *Sortenentwicklung. Retrieved July 5, 2019, from https://www.reinsaat.at/index.php?id=108*

Duguma, L. A., van Noordwijk, M., Minang, P. A., & Muthee, K. (2021). COVID-19 pandemic and agroecosystem resilience: Early insights for building better futures. *Sustainability, 13*(3), 1278. https://doi.org/10.3390/su13031278

Ewell, J. J. (1999). Natural systems as models for the design of sustainable systems of land use. *Agroforestry Systems, 45*(1/3), 1–21. https://doi.org/10.1023/A:1006219721151

FAO. (Ed.). (2018). *Building climate resilience for food security and nutrition.* The State of Food Security and Nutrition in the World 2018. FAO.
Fenzi, M., & Couix, N. (2021). Growing maize landraces in industrialized countries: From the search for seeds to the emergence of new practices and values. International Journal of Agricultural Sustainability, https://doi.org/10.1080/14735903.2021.1933360

Ficiciyan, A., Loos, J., Sievers-Glotzbach, S., & Tschamtkte, T. (2018). More than yield: Ecosystem services of traditional versus modern crop varieties revisited. Sustainability, 10(8), 2834. https://doi.org/10.3390/su10082834

Fletcher, C. S., Miller, C., & Hilbert, D. W. (2006). Operationalizing Foresight. (2011).

Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Holling, C., Berntsson, L., Li, J., Elmqvist, T., Grande, C., Helbling, J., Olson, L., Nygren, K., Paul, M., Persson, L., Sörlin, S., Steffen, W., Strokosch, K., & Wäster, G. (2004). Understanding resilience. Ecological Applications, 14(2), 659–683. https://doi.org/10.1890/0012-9658(2004)014[0659:uare]2.0.co;2

Folke, C. (2006). Resilience: The emergence of a perspective for social-ecological systems analyses. Global Environmental Change, 16(3), 253–267. https://doi.org/10.1016/j.gloenvcha.2006.04.002

Folke, C., Carpenter, S. R., Walker, B., Scheffer, M., Chapin, T., & Rockström, J. (2010). Resilience thinking: Integrating resilience, adaptability and transformability. Ecology and Society, 15(4), 20. https://doi.org/10.5751/ES-03610-150420

Foresight. (2011). The future of food and farming: Challenges and choices for global sustainability – final project report. Government Office for Science.

Frankenberger, T., Mueller, M., Spangler, T., & Alexander, S. (2013). Community resilience: Conceptual framework and measurement feed the future learning agenda. U.S. Agency for International Development. Westat. https://agrilinks.org/sites/default/files/resources/FTF%20Learning_Agenda_Community_Resilience_Oct%202013.pdf

Girard, F., & Frison, C. (Eds.). (2018). The commons, plant breeding and agricultural research: Challenges for food security and agrobiodiversity (1st ed.). Routledge. https://doi.org/10.4324/9781315110387

Glover, J. D., Reganold, J. P., Bell, L. W., Borevitz, J., Brummer, E. C., Buckler, E. S., Cox, C. M., Cox, T. S., Crews, T. E., Culman, S. W., DeHaan, L. R., Eriksson, D., Gill, B. S., Holland, J., Hu, F., Hulke, B. S., Ibrahim, A. M. H., Jackson, W., Jones, S. S., … Xu, Y. (2010). Increased food and ecosystem security via perennial grains. Science, 328(5986), 1638–1639. https://doi.org/10.1126/science.1188761

Gmeiner, N., Kliem, L., Ficiciyan, A., Sievers-Glotzbach, S., & Tschersich, J. (2018). Gemeingüterbasierte Rechte an Saatgut und Sorten als Treiber für eine sozial-ökologische Transformation des Pflanzenbaus. In H. Korn, H. Dünnfelder, & R. Schliep (Eds.), Treffpunkt Biologische Vielfalt XVI - Interdisziplinärer Forschungsaustausch im Rahmen des Übereinkommens über die biologische Vielfalt. BfN-Skripten 487. Bundesamt für Naturschutz.

Grace, W., & Pope, J. (2015). A systems approach to sustainability assessment. In A. Morrison-Saunders, J. Pope, & A. Bond (Eds.), Handbook of Sustainability assessment (pp. 285–320). Edward Elgar Publishing. https://doi.org/10.4337/9781783471379.00021

Green, J. J., Worstall, J., & Canarios, C. (2017). The local agrifood system sustainability/Resilience Index (SRI): constructing a data tool applied to counties in the southern United States. Community Development, 48(5), 697–710. https://doi.org/10.1080/15575330.2017.1370001

Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems. Island Press.

Heinemann, J. A., Massaro, M., Coray, D. S., Agapito-Tenfen, S. Z., & Wen, J. D. (2014). Sustainability and innovation in staple crop production in the US midwest. International Journal of Agricultural Sustainability, 12(1), 71–88. https://doi.org/10.1080/14735903.2013.806408

Helicke, N. A. (2015). Seed exchange networks and food system resilience in the United States. Journal of Environmental Studies and Sciences, 5(4), 636–649. https://doi.org/10.1007/s13412-015-0346-5

Hodsbod, J., & Eakin, H. (2015). Adapting a social-ecological resilience framework for food systems. Journal of Environmental Studies and Sciences, 5(3), 474–484. https://doi.org/10.1007/s13412-015-0280-6

Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4(5), 390–405. https://doi.org/10.1007/s10021-001-0101-5

Howard, P. H. (2015). Intellectual property and consolidation in the seed industry. Crop Science, 55(6), 2489–2495. https://doi.org/10.2135/cropsci2014.09.0669

Howard, P. H. (2016). Concentration and power in the food system – who controls what we eat? Bloomsbury Academic.

Hughes, K., & Bushell, H. (2013). A multidimensional approach for measuring resilience. Oxfam GB. https://oxfamlibrary.openreposity.com/bitstream/handle/10546/302641/dp-measuring-resilience-010813-en.pdf?sequence=4

Ingram, J., Zurek, M., Sykes, R., & O’Kane, E. (2019). Exploring the resilience of the UK food system in a global context. Retrieved July 5, 2019, from https://www.foodsecurity.ac.uk/publications/exploring-the-resilience-of-the-uk-food-system-in-a-global-context.pdf

International Panel of Experts on Sustainable Food Systems [IPBES Food]. (2020). COVID-19 and the crisis in food systems: Symptoms, causes, and potential solutions. Communicune. http://www.ipbes-food.org/_img/upload/files/COVID-19_CommuniqueEN%282%29.pdf

International Union for Conservation of Nature [IUCN]. (2014). A guiding toolkit for increasing climate change resilience. Retrieved July 5, 2019, from https://cmsdata.iucn.org/downloads/iucn_report__3_.pdf

Jacek, D., & Toensmeier, E. (2005). Edible forest gardens, volume II: Ecological design and practice for temperate-climate permaculture. Chelsea Green Publishing.

Jackson, L. E., Pascual, U., & Hodgkin, T. (2007). Utilizing and conserving agrobiodiversity in agricultural landscapes. Agriculture, Ecosystems & Environment, 121(3), 196–210. https://doi.org/10.1016/j.agee.2006.12.017

Jackson, W. (2002). Natural systems agriculture: A truly radical alternative. Agriculture, Ecosystems & Environment, 88(2), 111–117. https://doi.org/10.1016/S0167-8809(01)00247-X

Jentoft, S., van Son, T. C., & Bjerkán, M. (2007). Marine protected areas: A governance system analysis. Human Ecology, 35(5), 611–622. https://doi.org/10.1007/s10745-007-9125-6

Jiren, T. S., Dorrestein, I., Hanspach, J., Schultz, J., Bergsten, A., Manlosa, A., Jager, N., Senbeta, F., & Fischer, J. (2020). Alternative discourses around the governance of food security: A case study from Ethiopia. Global Food Security, 24, 100338. https://doi.org/10.1016/j.gfs.2019.100338
Johnson, J. L., Zanotti, L., Ma, Z., Yu, D. J., Johnson, D. R., Kirkham, A., & Carothers, C. (2018). Interplays of sustainability, resilience, adaptation and transformation. In W. L. Filho, R. W. Marans, & J. Callewaert (Eds.), *Handbook of Sustainability and social science research* (pp. 3–25). Springer. https://doi.org/10.1007/978-3-319-61722-2_1

Kahane, R., Hodgkin, T., Jaenicke, H., Hoogendoorn, C., Hermann, M., Keatinge, J. D. H., Hughes, J. d., Padulosi, S., & Looney, N. (2013). Agrobiodiversity for food security, health and income. *Agronomy for Sustainable Development*, 33(4), 671–693. https://doi.org/10.1007/s13593-013-0147-8

Kliem, L., & Tschersich, J. (2017). From agrobiodiversity to socioeconomic transformation: Defining central concepts for the RightSeeds project. Working Paper Series on Environment and Sustainability Issues COAST – Zentrum Für Umwelt Und Nachhaltigkeitsforschung.

Kloppenburg, J. (2014). Re-purposing the master’s tools: The open source seed initiative and the struggle for seed sovereignty. *The Journal of Peasant Studies*, 41(6), 1225–1246. https://doi.org/10.1080/03066150.2013.875897

Kotschi, J. (2016). Die Open-Source-Lizenz - Ein Beitrag zur Bildung von Saatgut-Commons. *Ländlicher Raum - Agrarsoziale Gesellschaft e.V.*, 4, 30–33.

Lammerts van Bueren, E. T., Struik, P. C., van Eekeren, N., & Nijiten, E. (2018). Towards resilience through systems-based plant breeding. A review. *Agronomy for Sustainable Development*, 38(5), 42. https://doi.org/10.1007/s13593-018-0522-6

Levin, S. A. (1999). Fragile dominion: Complexity and the commons. Helix Books. Perseus Publishing.

Lin, B. B. (2011). Resilience in agriculture through crop diversification: Adaptive management for environmental change. *BioScience*, 61(3), 183–193. https://doi.org/10.1525/bio.2011.61.3.4

Loos, J., Abson, D. J., ChapPELL, M. J., Hanspach, J., Mikulcak, F., Tichit, M., & Fischer, J. (2014). Putting meaning back into “sustainable intensification”. *Frontiers in Ecology and the Environment*, 12(6), 356–361. https://doi.org/10.1890/130157

Low, B., Ostrom, E., Simon, C., & Wilson, J. (2002). Redundancy and diversity: Do they influence optimal management? In F. Berkes, J. Colding, & C. Folke (Eds.), *Navigating social-ecological systems: Building resilience for complexity and change* (pp. 83–114). Cambridge University Press. https://doi.org/10.1017/CBO9780511541957.007

Luck, G. W., Daily, G. C., & Ehrlich, P. R. (2003). Population diversity and ecosystem services. *Trends in Ecology & Evolution*, 18(7), 331–336. https://doi.org/10.1016/S0169-5347(03)00100-9

Mace, G. M., Reyers, B., Alkemade, R., Biggs, R., Chapin, F. S., Cornell, S. E., Díaz, S., Jennings, S., Leadley, P., Mummy, P. J., Purvis, A., Scholes, R. J., Seddon, A. W. R., Solan, M., Steffen, W., & Woodward, G. (2014). Approaches to defining a planetary boundary for biodiversity. *Global Environmental Change*, 28, 289–297. https://doi.org/10.1016/j.gloenvcha.2014.07.009

Mamman, I. (2014). Concentration of market power in the EU seed market. Retrieved July 5, 2019, from https://www.greens-eefa.eu/files/docs/056cb230eebaf0357706c3996a7c68d1d.pdf

McGuire, S., & Sperling, L. (2013). Making seed systems more resilient to stress. *Global Environmental Change*, 23(3), 644–653. https://doi.org/10.1016/j.gloenvcha.2013.02.001

McGuire, S., & Sperling, L. (2016). Seed systems smallholder farmers use. *Food Security*, 8(1), 179–195. https://doi.org/10.1007/s12571-015-0528-8

McIntyre, B. D., Herren, H. R., Wakhungu, J., & Watson, R. T. (Eds.). (2009). *International assessment of agricultural knowledge, Science and technology for development (IAASTD): global report*. Island Press.

McKey, D., Rostain, S., Iriarte, J., Glaser, B., Birk, J. J., Holst, I., & Renard, D. (2010). Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in amazonia. *Proceedings of the National Academy of Sciences*, 107(17), 7823–7828. https://doi.org/10.1073/pnas.0908925107

McManus, P., Walmsley, J., Argent, N., Baum, S., Bourke, L., Martin, J., Pritchard, B., & Sorensen, T. (2012). Rural community and rural resilience: What is important to farmers in keeping their country towns alive? *Journal of Rural Studies*, 28(1), 20–29. https://doi.org/10.1016/j.jrurstud.2011.09.003

McMichael, P., & Schneider, M. (2011). Food security politics and the millennium development goals. *Third World Quarterly*, 32(1), 119–139. https://doi.org/10.1080/01436597.2011.543818

Mijatović, D., Van Oudenhoven, F., Eyzaguirre, P., & Hodgkin, T. (2013). The role of agricultural biodiversity in strengthening resilience to climate change: Towards an analytical framework. *International Journal of Agricultural Sustainability*, 11(2), 95–107. https://doi.org/10.1080/14735903.2012.691221

Milestad, R., & Darnhofer, I. (2003). Building farm resilience: The prospects and challenges of organic farming. *Journal of Sustainable Agriculture*, 22(3), 81–97. https://doi.org/10.1300/J044v22n03_09

Milestad, R., Westberg, L., Geber, U., & Björklund, J. (2010). Enhancing adaptive capacity in food systems: Learning at farmers’ markets in Sweden. *Ecology and Society*, 15(3), 29. https://doi.org/10.5751/ES-03543-150329

Moldenhauer, H., & Hirtz, S. (2017). Saatgut und Pestizide: Aus Sieben werden Vier – eine Branche schrumpft sich groß. In *Konzernteller - Daten und Fakten über die Agrar und Lebensmittelindustrie 2017*.

Monsanto. (2017). Sharing Value. Sustaining Innovation. 2017 Annual Report. Retrieved July 5, 2019, from https://rs3.documentcloud.org/documents/4763610/2017-Monsanto-Annual-Report.pdf

Moonen, A.-C., & Bàrberi, P. (2008). Functional biodiversity: An agroecosystem approach. *Agriculture, Ecosystems & Environment*, 127(1-2), 7–21. https://doi.org/10.1016/j.agee.2008.02.013

Nahapiet, J., & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage. *The Academy of Management Review*, 23(2), 242–266. https://doi.org/10.2307/259373

Napel, J. T., Bianchi, F., & Bestman, M. (2006). Utilising intrinsic robustness in agricultural production systems: Inventions for a sustainable development of agriculture. *TransForum Working Papers* (pp. 32–53).

Naylor, R. L. (2009). Managing food production systems for resilience. In C. Folke, G. P. Kofinas, & F. S. Chapin, III (Eds.), *Principles of ecosystem stewardship* (pp. 259–280). Springer New York. https://doi.org/10.1007/978-0-387-73033-2_12

Nemec, K. T., Chan, J., Hoffman, C., Spanbauer, T. L., Hamm, J. A., Allen, C. R., Heffley, T., Pan, D., & Shrestha, P. (2014). Assessing resilience in stressed watersheds. *Ecology and Society*, 19(1), 34. https://doi.org/10.5751/ES-06156-190134
agriculture. *International Affairs*, 76(2), 265–281. https://doi.org/10.1111/1468-2346.00133

United Nations. (1948). *Universal declaration of human rights.* UN General Assembly.

United Nations. (2015). *Transforming our world: The 2030 Agenda for sustainable development.* UN General Assembly.

UNU-IAS, Bioversity International, IGES and UNDP. (2014). Toolkit for the indicators of resilience in socio-ecological production landscapes and seascapes (SEPLS).

Urruty, N., Tailliez-Lefebvre, D., & Huyghe, C. (2016). Stability, robustness, vulnerability and resilience of agricultural systems. A review. *Agronomy for Sustainable Development*, 36(1), 15. https://doi.org/10.1007/s13593-015-0347-5

van Apeldoorn, D. F., Kok, K., Sonneveld, M. P. W., & Veldkamp, T. (A.). (2011). Panarchy rules: Rethinking resilience of agro-ecosystems, evidence from Dutch dairy-farming. *Ecology and Society*, 16(1), 39. https://doi.org/10.5751/ES-03949-160139

Vernooy, R., Shrestha, P., & Sthapit, B. (Eds.). (2015). *Community seed banks: Origins, evolution and prospects.* Issues in Agricultural Biodiversity. Earthscan for Routledge.

Walker, B., & Salt, D. (2012). *Resilience practice: Building capacity to absorb disturbance and maintain function.* Island Press.

Walker, B., Sayer, J., Andrew, N. L., & Campbell, B. (2010). Should enhanced resilience be an objective of natural resource management research for developing countries? *Crop Science*, 50, S-10–S-19. https://doi.org/10.2135/cropsci2009.10.0565

Walsh-Dilley, M., Wolford, W., & McCarthy, J. (2016). Rights for resilience: Food sovereignty, power, and resilience in development practice. *Ecology and Society*, 21(1), 11. https://doi.org/10.5751/ES-07981-210111

Wirz, J., Kunz, P., & Hurter, U. (2017). *Saatgut — Gemeingut, Züchtung als Quelle von Realwirtschaft, Recht und Kultur.* Dornach, Feldbach, Schweiz: Goetheanum und Fonds für Kulturpflanzenentwicklung.

Wolter, H., & Sievers-Glotzbach, S. (2019). Bridging traditional and new commons: The case of fruit breeding. *International Journal of the Commons*, 13(1), 303–328. https://doi.org/10.18352/ijc.869

Worstell, J. (2020). Ecological resilience of food systems in response to the COVID-19 crisis. *Journal of Agriculture, Food Systems, and Community Development*, 9(3), 1–8. https://doi.org/10.5304/jafscd.2020.093.015

Worstell, J., & Green, J. (2017). Eight qualities of resilient food systems: Toward a sustainability/resilience index. *Journal of Agriculture, Food Systems, and Community Development*, 7(3), 23–41. https://doi.org/10.5304/jafscd.2017.073.001