Carbon nanofillers used in epoxy polymeric composites: a brief review

A Blokhin, A Sukhorukov, R Stolyarov, I Zaytsev, N Yashchishin and V Yagubov

Laboratory of Materials Science, Tambov State Technical University, 106 Sovetskaya Street, Tambov 392000, Russian Federation

E-mail: dr.reningan@yandex.ru

Abstract. The paper discusses scientific publications regarding polymer composites based on epoxy resins, which are the main competitor of many traditional structural materials. The review on carbon nanofillers for composite materials, such as graphene, graphene oxide, carbon nanotubes, etc., is given. Methods for introducing these nanomaterials into different binders are considered, and comparative results of improving the strength characteristics of nanocomposites are presented.

1. Introduction

Polymer composite materials such as fiberglass, carbon fiber, organoplastics, powder-filled polymers, textolites possessing unique characteristics [1,2] are the main component in manufacturing products used for solving diverse problems, ranging from the production of sports equipment and jewelry up to their use in the aviation aerospace industries [3-5].

Due to the widespread use of polymers, the requirements for their strength characteristics (tensile strength, Young's modulus, crack resistance, resistance to impact loads) [6] are becoming increasingly high. Carbon nanomaterials (CNMs) used as a modifier of polymer matrices can help in meeting the increased requirements for the strength characteristics.

Most often, when developing polymer composite materials (PCMs), an epoxy resin is used; it is one of the most common binders in the industry due to the variety of available grades [7] and curing agents [8], thereby making it possible to obtain materials with different property combinations [9]. With the advent of the CNM industrial production [10], there is a tendency for employing them as a PCM nanofillers which can increase tensile strength from +2.5 up to +47% [11,12].

Carbon fillers are of great interest in scientific publications. According to the database of peer-reviewed scientific literature, there are more than 10,000 papers, of which more than 1,000 publications are devoted to carbon nanofillers which possess high strength, an ordered structure, and unique geometry. Therefore, over the years, a large number of experiments and studies have accumulated in the scientific and technical literature that describe the modification of epoxy matrices with various nanomaterials. This makes it possible to identify an important trend, namely, that in recent years a large number of publications have been devoted to solving specific technological problems, and due attention has not been paid to the review work, which would enable the comparison of all the process parameters and properties of the nanocomposites obtained.

Using carbon nanofillers, different in structure, properties, percent of their application and methods of their introduction, allows obtaining materials with the desired combination of properties. In scientific
research, much attention is paid to carbon nanotubes (CNTs), both single- [13-16] and multi-walled [16-20], which can be used as a filler to improve the strength and conductive properties. The papers [21-25] discuss the introduction of graphene into the polymer matrix, whereas articles [26-28] deal with nanoparticles such as graphene oxide and reduced graphene.

Considering the aforementioned, the aim of the work was to study the current state of the issue of choosing CNMs and methods for their introduction to develop a nanocomposite with improved strength properties compared to the analogs.

2. Methods for introducing nanofillers into the epoxy matrix

Since carbon nanomaterials are subject to agglomeration, dispersion and uniform distribution of nanofillers in polymer binders appear to be one of the main problems that many researchers are facing. This is reflected in many scientific papers [18-20,27-44].

Based on the simplicity of the hardware design, introducing CNMs into the epoxy binder using mechanical action (dispersants, mixers) is the most common technique [12,19,25-31]. However, it is not always possible to destroy small agglomerates and distribute the CNMs using only the mechanical method. In the papers [11,20,22,29,32-34], the distribution of the nanofiller in the epoxy binder was carried out using an ultrasonic device, but without preliminary mechanical treatment, complete deagglomeration of the nanomaterial occurs over a long period of time. In the studies [22,35-40], a combination of several methods is described. At the first stage, the CNM is introduced into the binder using a mixing device, and then, the material is dispersed in an ultrasonic unit. In the works [20,27,28,41,42], CNMs were dispersed in solvents using ultrasound. After that, the resulting mixture was added to the epoxy binder, and the solvent was removed. However, the use of the solvent in this method adversely affects the strength properties of the final product. In [43,44], preliminary grinding of the CNMs in a ball mill and an ultrasonic device was used, then, the CNMs were introduced into the epoxy binder. The disadvantage of this method is grinding itself, meaning the ingress of grinding material particles.

The choice of the technique for introducing the nanofillers depends on the quality and structure of the nanomaterial or the viscosity of the polymer matrix. For instance, in [45-49], the CNMs are introduced gradually, using a three-roll mill, which functions on the principle of applying a high shear force to the material between two rolls rotating in opposite directions and at different speeds. Further, the material is dispersed in an ultrasonic setup.

As a whole, the CNM effect on the PCM depends on the uniform distribution of the nanofiller in the binder; therefore, the technique for introducing the CNMs into the polymer material through preliminary mechanical action with subsequent or simultaneous ultrasonic treatment is recommended.

3. Studying the carbon nanomaterial effect on the physical-mechanical properties of the PCMs

The results of using various nanofillers to increase the strength characteristics of epoxy matrices are shown in Table 1. From the data presented, it can be concluded that the use of the carbon nanofillers may significantly improve the strength characteristics of the composite material. Among the whole variety of nanoadditives, CNTs are considered as fillers with great potential for increasing the physical-mechanical properties. Moreover, they showed a better effect on the strength than the other fillers presented in the review. Besides, a great potential of modification and functionalization of the carbon nanofillers [50-52] was revealed after reviewing the scientific literature on their full potential as composite fillers.
Table 1. The effect of the carbon nanofillers on the physical-mechanical properties of the PCMs.

Nanomaterial	Tensile strength increase/decrease, +/-%	Ref.
CNTs (1.5%)	+7	[45]
CNTs (0.3%)	+5	[46]
CNTs (0.3%)	+37	[47]
Multi-walled CNTs (0.51%)	+9	[11]
Multi-walled CNTs (0.3%)	+35	[16]
Multi-walled CNTs (0.17%)	+47	[11]
Single-walled CNTs (0.3%)	+44	[16]
Double-walled CNTs (0.3%)	+37	[16]
ABS/CNTs (6%)	+12	[17]
Graphene nanoplatelets (0.25%)	+20	[22]
Graphene nanoplatelets (6%)	+1	[17]
Graphene oxide (1%)	-18	[12]
Graphene oxide (0.75%)	-9	[12]
Graphene oxide (0.5%)	+71	[48]
Graphene oxide (0.5%)	+2.9	[12]
Graphene oxide (0.25%)	+2.5	[12]
Graphene oxide (0.1%)	+38	[48]
Carbon nanofiber (1.5%)	+11	[49]
Carbon nanofiber (0.5%)	+18	[50]
Carbon fiber+CNTs	+19	[51]
Glass fiber+carbon nanofiber	+26	[52]

4. Conclusion
Through the use of nanofillers, the PCMs can compete in the physical and mechanical properties with the other materials such as ceramics, glass, or even metal. It is worth noting that the conducted literature review on scientific publications does not cover the whole variety of nanoparticles used as PCM fillers. This is due to a large number of nanomaterials and ongoing studies to improve the physical-mechanical properties of different polymer matrices for various purposes. The recommended technique herein represents a complex that includes the combination of several the methods considered with the aim of maximizing the uniformity of localization of the nanofiller in the binder, and this, in turn, has a positive effect on the nanoPCM operational characteristics such as elastic modulus and tensile strength. This method is easily scalable for the commercial production of nanocomposites.

5. Acknowledgment
The present research was funded by RFBR (Russian Foundation for Basic Research) in the framework of Project No.18-29-19121\18.

References
[1] Kolosova A S, Sokol'skaya M K, Vitkalova I A, Torlova A S and Pikalov E S 2018 Modern polymeric composite materials and their application. Int. J. of Applied and Basic Res. 5 245 [in Russian]
[2] Bondaletova L I, Bondaletov V G 2013 Polymer Composite Materials (Tomsk: TPU) p 118
[3] Ravishankar B, Nayak S K and Kader M A 2019 Hybrid composites for automotive applications – A review. Journal of Reinforced Plastics and Compos. 38 835 https://doi.org/10.1177/0731684419849708
[4] Barile C, Casavola C and De Cillis F 2019 Mechanical comparison of new composite materials for aerospace applications. Compos. part B: Eng. 162 122 https://doi.org/10.1016/j.compositesb.2018.10.101

[5] Matei A, Tucureanu V, Tîncu B C, Marculescu C V, Burinaru T A and Avram M 2019 Polymer nanocomposites materials for aerospace applications. AIP Conf. Proc. 2071 1 https://doi.org/10.1063/1.5090064

[6] Polilov A N 2016 Experimental Mechanics of Composites (Moscow: MGTU) p 375

[7] Epoxy resins. Active diluents, Chimex LTD, available at: http://www.chimexltd.com/catalog/category/814

[8] Hardeners. Curing accelerators, Chimex LTD, available at: http://www.chimexltd.com/catalog/category/806

[9] Ovchinnikov I I, Ovchinnikov I G, Mandrik-Kotov B B and Mihaldykin E S 2016 Application problems polymer composite materials in transport construction. Science 8 2223 [in Russian]

[10] Production, LLC "NanoTechCenter", available at: http://www.nanotec.ru/content-category1

[11] Mehdi R and Saeed F 2018 Mechanical and low-velocity impact properties of epoxy-composite beams reinforced by mwcnts. Journal of Compos. Mater. 1 https://DOI: 10.1177/0021998318790049 journals.sagepub.com/home/jcm

[12] Huskic M, Bolka S, Vesel A, Mozetic M, Anzlovic A, Vizintine A and Zagor E 2018 One-step surface modification of graphene oxide and influence of its particle size on the properties of graphene oxide / epoxy resin nanocomposites. Europ. Polym. Journal. 101 211 https://doi.org/10.1016/j.eurpolymj.2018.02.036

[13] Zabihi O, Ahmadi M, Nikafshar S, Chandrakumar P K and Naebe M 2018 A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Compos. B 135 1 https://doi:10.1016/j.compositesb.2017.09.066

[14] Sook Y M and Woo S K 2018 High mechanical properties of super aligned carbon nanocomposite by polyurethane based crosslinking molecules. Compos. Sci. Technol. 161 100 https://doi.org/10.1016/j.compsctech.2018.04.011

[15] Hsieh T H, Huang Y S and Shen M Y 2018 Carbon nanotube size effect on the mechanical properties and toughness of nanocomposites. Polym. Compos. 39 1072 https://doi.org/10.1002/pc.24505

[16] Aldousari S M, Hedia H S, Al Thobiani and Fouda N 2018 Influence of different nanomaterials on the mechanical properties of epoxy matrix composites. Mater. Tesning. 60 639 https://doi.org/10.3139/120.111199

[17] Dul S, Pegoretti A and Fambri L 2018 Effects of the nanofillers on physical properties of acrylonitrile-butadiene-styrene nanocomposites: comparison of graphene nanoplatelets and multiwall carbon nanotubes. Nanomater. 8 674 https://doi:10.3390/nano8090674

[18] Faridirad F, Barmar M and Ahmadi S 2018 The effect of MWCNT on dynamic mechanical properties and crystallinity of in situ polymerized polyamide 12 nanocomposite. Polym. for Advan. Technol. 29 2134 https://doi.org/10.1002/pat.4322

[19] Noor N A, Razak J A, Ismail S, Mohamad N, Yaakob M Y and Theng T H 2017 Influence of mwcnts addition on mechanical and thermal behaviour of epoxy/kenaf multi-scale nanocomposite. Mater. Sci. Eng. 210 126 https://DOI: 10.1088/1757-899X/210/1/012058

[20] Minoo N, Jing W, Abbas A, Hamid K, Nishar H, Lu H L, Ying C and Bronwyn F 2014 Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Front. Mater. 4 1 https://DOI: 10.1038/srep04375

[21] Hadden C M, Klimek-McDonald D R, Pineda E J, King J A, Reichanader A M, Miskioglu I, Gowtham S and Odegard G M 2015 Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Journal of Carbon. 95 100 https://doi.org/10.1016/j.carbon.2015.08.026

[22] Shen M Y, Chang T Y, Hsieh T H, Li Y L, Chiang C L, Hsiharmg Y and Yip M C 2013 Mechanical properties and tensile fatigue of graphene nanoplate reinforced polymer nanocomposites.
[23] Mostapha T, Khalid L, Imane B, Debora D and Ali M 2018 Effect of graphene nano-additives on the local mechanical behavior of derived polymer nanocomposites. *Journal of Polym.* 10 667 https://DOI: 10.3390/polym10060667

[24] Zabihi O, Ahmadi M, Nikakash M, Chandrakumar P K and Naeebe M 2018 A technical review on epoxy-clay nanocomposites: structure, properties, and their applications in fiber reinforced composites. *Compos. part B: Eng.*, 135 1 https://DOI:10.1016/j.compositesb.2017.09.066

[25] Lai W, Xueling C, Kailiang H, Zhijuan Y, Lun W, Hongqing W, Zhen Q, Xue W, Zewen L and Zhe W 2018 Enhancement in mechanical properties of epoxy nanocomposites by styrene-ethylene-butadiene-styrene grafted graphene oxide. *Compos. Interfaces.* 26 141 https://DOI:10.1080/09276440.2018.1481303

[26] Aradhana R, Mohanty S and Sanjay K N 2018 Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. *Journal of Polym.* 141 109 https://DOI:10.1016/j.polymer.2018.03.005

[27] Dimitrios G P, Kinloch I A and Young R J 2017 Mechanical properties of graphene and graphene-based nanocomposites. *Mater. Sci.* 90 75 https://DOI:10.1016/j.pmatsci.2017.07.004

[28] Shekar K C, Prasad B A and Prasad N E 2014 Effect of amino multi walled carbon nanotubes reinforcement on the flexural properties of neat epoxy. *Appl. Mech. Mater.* 592 912 https://DOI:10.4028/www.scientific.net/AMM.592-594.912

[29] Rostamiyan Y, Fereidoon A and Mashhadzadeh A H 2015 Experimental study on the mechanical properties of an epoxy-based nanocomposite using polymeric alloying and different nanoreinforcements: nanofiber, nanolayered and nanoparticulate materials. *Sci. Eng. Compos. Mater.* 22 591 https://DOI:10.1515/secm-2013-0305

[30] Afrouzian A, Movahhedi A H and Liaghat G H 2017 Effect of nano-particles on the tensile, flexural and perforation properties of the glass/epoxy composites. *Journal of reinforced Plast. and Compos.* 36 900 https://DOI:10.1177/0731684417694753

[31] Sung H S 2018 The effect of clay/multiwall carbon nanotube hybrid fillers on the properties of elastomer nanocomposites int. *J. of Polym. Sci.* 2018 8 https://DOI:10.1155/2018/5295973

[32] Rana S et al 2012 Effect of carbon nanofiber functionalization on the inplane mechanical properties of carbon/epoxy multiscale composites. *Journal of Appl. Pol. Sci.* 125 1951 https://DOI:10.1002/app.36302

[33] Rana S, Alagirusamy R and Joshi M 2011 Effect of carbon nanofiber dispersion on the tensile properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposites in graphene oxide and reduced graphene oxide filled epoxy nanocomposites.
properties of epoxy nanocomposites. *Journal of Compos. Mater.* **45** 2247
https://doi.org/10.1177/0021998311401076

[40] Zhou Y et al 2008 Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers. *Journal Mater. Process. Technol.* **198** 445
https://doi.org/10.1016/j.jmatprotec.2007.07.028

[41] Rana S, Alagirusamy R and Joshi M 2010 Mechanical behavior of carbon nanofibre reinforced epoxy composites. *Journal Appl. Polym. Sci.* **118** 2276 https://doi.org/10.1002/app.30861

[42] Ahn S N, Lee H J, Kim B J, Tan L S and Baek J B 2008 Epoxy/amine-functionalized short-length vapor-grown carbon nanofiber composites. *Journal Polym. Sci.* **46** 7473
https://doi.org/10.1002/pola.23052

[43] Wangab Q, Wenb G, Chenab J and Dang S S 2018 Reinforcing epoxy resin with nitrogen doped carbon nanotube: a potential lightweight structure material. *Journal of Mater. Sci. Technol.* **34** 2205 https://DOI: 10.1016/j.jmst.2018.02.021

[44] Jaemin C, Gwang H J, Jong K P, Jung C K, Ho J R and Soon H H 2017 Improvement of modulus, strength and fracture toughness of cnt/epoxy nanocomposites through the functionalization of carbon nanotubes. *Compos. part B: Eng.* **129** 169 https://doi.org/10.1016/j.compositesb.2017.07.070

[45] Chen W, Shen H, Auad M L, Huang C and Nutt S 2009 Basalt fiber–epoxy laminates with functionalized multi-walled carbon nanotubes. *Compos. part A: Appl. Sci. Manufact.* **40** 1082 https://doi.org/10.1016/j.compositesa.2009.04.027

[46] Gojny F H, Wichmann M H, Fiedler B, Bauhofer W and Schulte K 2005 Influence of nanomodification on the mechanical and electrical properties of conventional fibre-reinforced composites. *Compos. part A: Appl. Sci. Manufact.* **36** 1525 https://doi.org/10.1016/j.compositesa.2005.02.007

[47] Rahmanian S, Suraya A R, Shazed M A, Zahari R and Zainudin E S 2014 Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers. *Mater. & Design.* **60** 34 https://doi.org/10.1016/j.matdes.2014.03.039

[48] Aradhana R, Mohanty S and Kumar S N 2018 Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. *Journal in Polym.* **141** 109 https://DOI: 10.1016/j.polymer.2018.03.005

[49] Bhattacharyya A, Rana S, Parveen S, Fangueiro R, Alagirusamy R and Joshi M 2013 Mechanical and thermal transmission properties of carbon nanofiber-dispersed carbon/phenolic multiscale composites. *Journal of Appl. Polym. Sci.* **129** 2383 https://doi.org/10.1002/app.38947

[50] Rana S, Alagirusamy R and Joshi M 2011 Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. *Compos. part A: Appl. Sci. Manufact.* **42** 439 https://doi.org/10.1016/j.compositesa.2010.12.018

[51] Bekyarova E et al 2007 Multiscale carbon nanotube–carbon fiber reinforcement for advanced epoxy composites. *Langmuir* **23** 3970 https://DOI: 10.1021/la062743p

[52] Ali S, Boming Z and Changchun W 2014 Mechanical characterization of glass/epoxy polymer composites sprayed with vapor grown carbon nano fibers. *Conf. on Appl. Sci. & Technol* **I** 52 https://DOI: 10.1109/IBCAST.2014.6778120