Unveiling a Novel, Cation-Rich Compound in a High-Pressure Pb–Te Binary System

Hulei Yu, Xiaohuan Lin, Kuo Li, and Yue Chen

Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
HKU Zhejiang Institute of Research and Innovation, 1623 Dayuan Road, Lin An 311305, China
Center for High Pressure Science and Technology Advanced Research, 10 Dongbeiwang West Road, Haidian, Beijing, China

Supporting Information

ABSTRACT: Because of the common oxidation states of group IV elements (+2 or +4) and group VI elements (−2), 1:1 and 1:2 are two typical stoichiometries found in the IV–VI compounds. Particularly, in the Pb–Te binary system, the 1:1 stoichiometric PbTe is believed to be the only stable compound. Herein, using evolutionary algorithms, density functional theory, a laser-heated diamond anvil cell, and synchrotron X-ray diffraction experiments, we discovered a novel Pb–Te compound with an unexpected stoichiometry of 3:2 above 20 GPa. This tetragonal Pb3Te2 is the one of the very few cation-rich compounds that has ever been discovered in the entire IV–VI binary system. Further analyses based on electron density distribution, electron localization function, and Bader charge have shown that this newly discovered compound has a mixed character of chemical bonding with a decreased ionicity. By further calculating the electron–phonon interaction, Pb3Te2 is predicted to exhibit a superconducting transition at low temperatures. The discovery of Pb3Te2 paves the way for further explorations of other novel cation-rich IV–VI group compounds.

INTRODUCTION

Lead telluride (PbTe) is one of the most representative semiconductors in the IV–VI group compounds, and it attracts much research interest due to its outstanding thermoelectric and photovoltaic properties. As Pb has an oxidation state of +2 or +4 and tellurium has a −2 oxidation state, compounds with 1:1 and 1:2 stoichiometries are expected to exist in the Pb–Te binary system. At ambient conditions, only the 1:1 stoichiometric PbTe compound has been observed. The PbTe compound has a rocksalt B1 crystal structure with a narrow band gap and does not show any temperature-induced phase transition below the melting point. By exerting a hydrostatic pressure of approximately 6 GPa, PbTe undergoes a structural phase transition from the rocksalt B1 structure with a space group of PbTe (B1) structure through the -FeB type (Pnma) structure above 113 GPa based on evolutionary structural searches. Our previous work also unveiled a new superconducting Sn3Se4 compound under high pressures. In this work, we systematically investigate the Pb–Te system under hydrostatic pressures up to 40 GPa by combining density functional theory (DFT) and evolutionary algorithms. In addition to the well-known PbTe compound, a novel, cation-rich compound, Pb3Te2, is predicted to be both energetically preferable and dynamically stable at high pressures. Subsequent synthesis of Pb3Te2 was conducted in a laser-heated diamond anvil cell (DAC). Bader charge and electron localization function were also calculated to study its diverse atomic bonding. Furthermore, the electronic band structures and electron–phonon interaction were also calculated, and it was found that Pb3Te2 exhibits a lower superconducting transition temperature comparing to PbTe.

RESULTS AND DISCUSSION

The results of our structural search for stable Pb–Te compounds are shown in Figure 1a. At pressures below 10 GPa, there is only one compound (PbTe) that appears on the convex hulls and is energetically preferable. As expected, PbTe undergoes a structural phase transition from the rocksalt Fm3m (B1) structure through the -FeB type Pnma structure to a higher symmetry Pm3m (B2) structure with increasing pressure. The computed phase transition pressures from Fm3m to Pnma and from Pnma to Pm3m are 9 and 13 GPa, respectively.

Received: January 25, 2019
Published: April 9, 2019
shows the Rietveld refinement result of the Pb–Te system at about 20 GPa and 1315 K. The characteristic peaks of the predicted Pb$_3$Te$_2$ compound can be clearly identified on the synchrotron X-ray diffraction (XRD) patterns. The nonfitted peaks may be attributed to the formation of unidentified metastable phases during laser heating. The refined lattice parameters from the XRD data are $a = 3.60$ Å and $c = 17.68$ Å, and the space group is $I4/mmm$. The experimental results are in good agreement with our predictions; the theoretical lattice parameters at 20 GPa and 0 K are $a = 3.69$ Å and $c = 17.80$ Å.

Because of the typical oxidation states of group IV and VI elements, the binary compounds usually have 1:1 or 1:2 stoichiometries. Therefore, the successful synthesis of the counterintuitive Pb$_3$Te$_2$ compound indicates the discovery of another rare cation-rich compound in the important IV–VI binary system.

To better understand the formation of Pb$_3$Te$_2$, we further analyzed its atomic bonding. From the calculations of Bader charge20 (see Table 1), it is seen that in rocksalt $Fm\overline{3}m$ PbTe, each Pb atom donates 0.67 electron to Te at 0 GPa. As the pressure increases to 20 GPa, fewer electrons are transferred between Pb and Te atoms in the stable $Pm\overline{3}m$ PbTe phase and the Pb$_3$Te$_2$ compound. Additionally, it is also noticed that the numbers of electrons donated by the nonequivalent Pb atoms in Pb$_3$Te$_2$ are different, which may be related to the different nearest neighbor atomic environments. The decrease of electron transfer between Pb and Te atoms under pressures suggests a weakening ionic character of Pb$_3$Te$_2$.

![Figure 1](image1.png)

Figure 1. (a) Enthalpies of formation of the predicted stable compounds in the Pb–Te binary system. Solid lines represent the convex hulls at different hydrostatic pressures. (b) Phonon dispersions of the predicted Pb$_3$Te$_2$ compound calculated at a hydrostatic pressure of 20 GPa using the small displacement method.

In addition to the energetics, phonon calculations have also been performed to investigate the dynamical stability of Pb$_3$Te$_2$. It is seen from the phonon dispersions shown in Figure 1b that no imaginary phonon frequencies are observed in Pb$_3$Te$_2$ at 20 GPa, suggesting that the lattice is dynamically stable. On the basis of the enthalpy and phonon calculations, Pb$_3$Te$_2$ is predicted to be both energetically and dynamically stable at pressures above 20 GPa. The tetragonal crystal structure of Pb$_3$Te$_2$ belongs to the Os$_2$Al$_3$ prototype, which is most commonly observed in compounds formed between metallic elements and in high-pressure oxides.19 All Te atoms in Pb$_3$Te$_2$ are in equivalent lattice sites, and each Te atom has eight nearest neighbor Pb atoms, which is similar to that in the B2 phase of PbTe. On the other hand, there are two nonequivalent Pb lattice sites (denoted as Pb1 and Pb2) in Pb$_3$Te$_2$ with either four or eight nearest neighbor Te atoms. The predicted Wyckoff positions of Pb1, Pb2 and Te are 4e (0, 0, 0.8), 2a (0,0,0), and 4e (0, 0, 0.4), respectively.

The relatively large pressure range where Pb$_3$Te$_2$ is predicted to be stable suggests it is possible to further synthesize the compound. To verify our prediction, corresponding high-pressure experiments were performed. Figure 2 shows the Rietveld refinement of the Pb–Te binary system under 20 GPa and 1315 K. The experimental and calculated data are shown in black circles and red solid curve, respectively; their difference is shown in blue curve. The Bragg positions of Pb, Te, and Pb$_3$Te$_2$ are indicated by green, purple, and orange vertical bars, respectively.

![Figure 2](image2.png)

Figure 2. Rietveld refinement of Pb–Te binary system under 20 GPa and 1315 K. The experimental and calculated data are shown in black circles and red solid curve, respectively; their difference is shown in blue curve. The Bragg positions of Pb, Te, and Pb$_3$Te$_2$ are indicated by green, purple, and orange vertical bars, respectively.

![Table 1](image3.png)

Table 1. Bader Charge Analysis on Different Pb–Te Compounds

Compound	P (GPa)	Pb (e)	Te (e)
Pb$_3$Te$_2$	20	0.28 (Pb1)	−0.52
		0.48 (Pb2)	
$Pm\overline{3}m$ PbTe	20	0.51	−0.51
$Fm\overline{3}m$ PbTe	0	0.67	−0.67

DOI: 10.1021/acscentsci.9b00083
ACS Cent. Sci. 2019, 5, 683–687

684
located between one Pb atomic layer and one Te atomic layer are more anisotropic. We attribute the delocalization of electrons around Te in Pb$_3$Te$_2$ to the reduced lattice parameters as it is seen from Figure S2 (Supporting Information) that these electrons are more localized at 0 GPa. It is also notable that the charge density distribution is directional in Pb$_3$Te$_2$ (see Figure 3b). The charge density distribution and the bond length between Pb$_2$ and Te ($L_{Pb_2-Te} = 3.19$ Å) in Pb$_3$Te$_2$ are similar to those between Pb and Te in Pm$_3$m PbTe ($L_{Pb-Te} = 3.16$ Å). The slightly shorter bond length between Pb$_1$ and Te ($L_{Pb_1-Te} = 3.10$ Å) in Pb$_3$Te$_2$ leads to a larger charge density. On the other hand, the more diverse bonding environment around the Pb$_1$ atom leads to a wider and more evenly distributed projected phonon density of states (PHDOS), as shown in Figure 3c. The projected PHDOS onto the Pb$_2$ atoms mostly locate between 1.5 and 2.5 THz, which is more similar to that of the Pb atoms in Pm$_3$m PbTe. Therefore, the projected PHDOS is consistent with the analysis of the atomic bonding environment.

The electronic band structures and density of states (DOS) of the different Pb–Te compounds have also been computed under high pressures. As shown in Figure 4a, Pb$_3$Te$_2$ does not have a band gap at 20 GPa, suggesting a metallic state. The Fermi level is located near a pseudogap, which may imply a higher stability21,22 and a character of covalent bonding. From the projected DOS, it is found that the DOS at the Fermi level is mainly contributed by the Pb$_1$ and Pb$_2$ 4p states. The majority of the electronic states below Fermi level are the Te 5p states. On the other hand, Pm$_3$m PbTe is also metallic with a gapless band structure at 20 GPa, as shown in Figure 4b. Different from Pb$_3$Te$_2$, the largest contribution to DOS at the Fermi level comes from the Te 5p states. The projected DOS of Pb$_3$Te$_2$ and Pm$_3$m PbTe near the Fermi level are rather different from Pb$_3$Te$_2$, the largest contribution to DOS at the Fermi level is mainly contributed by the Pb$_1$ and Pb$_2$ 4p states. The electron–phonon interaction, Eliashberg spectral functions $\alpha^2 F(\omega)$, and the integrated electron–phonon coupling parameters $\lambda(\omega)$ of Pb$_3$Te$_2$ (a) and Pm$_3$m PbTe (b), as calculated from DFPT at 20 GPa.

 optical phonon modes of Pb$_3$Te$_2$ in the range of 2.5–5 THz have larger linewidths (i.e., shorter lifetimes) compared to the lower-frequency modes, suggesting the higher-frequency modes have stronger coupling to the electrons. On the other hand, the optical and acoustic phonons above 1 THz in the high-pressure Pm$_3$m phase of PbTe have larger linewidths than the lower-frequency acoustic phonons near the Brillouin zone center. The phonon linewidths of Pb$_3$Te$_2$ are generally smaller than those of Pm$_3$m PbTe; therefore, the total EPC parameter of Pb$_3$Te$_2$ at 20 GPa ($\lambda = 0.55$) is also smaller than that of Pm$_3$m PbTe ($\lambda = 1.00$). As a result, the smaller λ leads to a lower superconducting transition temperature of Pb$_3$Te$_2$ ($T_c = 1.1\pm2.0$ K) than that of Pm$_3$m PbTe ($T_c = 5.76\pm7.10$ K). This lower T_c value may also be correlated to the lower DOS at the Fermi level of Pb$_3$Te$_2$ at 20 GPa (see Figure 4).

CONCLUSIONS

In summary, we have performed first-principles evolutionary structural searches for new Pb–Te compounds under hydrostatic pressures up to 40 GPa. A novel, cation-rich compound
with an unconventional stoichiometry of 3:2 is predicted to be stable above 20 GPa from enthalpy and phonon calculations. The prediction is further verified through laser-heated DAC experiments with synchrotron X-ray diffraction. The novel Pb$_3$Te$_2$ compound has a tetragonal crystal structure with a space group of 4/mmm. Atomic bonding analysis unveils a decreased ionicity and a more delocalized electron distribution in Pb$_3$Te$_2$. The electronic band structure and electron–phonon coupling calculations show that Pb$_3$Te$_2$ is metallic and has a low superconducting transition temperature under pressures. Our discovery paves the way for further explorations of other potentially hidden, cation-rich IV–VI group compounds with counterintuitive stoichiometries.

Computational Section

Variable-composition structural searches under hydrostatic pressures based on first-principles evolutionary algorithm were performed by using USPEX and VASP.24,25 A maximum number of 16 atoms was allowed in a unit cell during the structural searches. New generations of crystal structures were created through heredity (40%), random (20%), lattice mutation (20%), and transmutation (20%) based on the best 60% crystal structures in the previous generations. Structural relaxations and electronic property calculations were performed in the framework of the projector-augmented wave (PAW) method26 using the generalized gradient approximation (GGA) and the Perdew-Burke and Ernzerhof (PBE) functional30 with 6s26p2 and 5s25p4 as the valence electrons of Pb and Te, respectively. A plane-wave energy cutoff of 350 eV, a Γ-centered k-point grid of 0.03 Å$^{-1}$, and a convergence criterion of 10$^{-6}$ eV were applied in the electronic self-consistent calculations. Phonon dispersions were computed using the small displacement method28 with a 3 × 3 × 3 supercell of Pb$_3$Te$_2$ for more accurate atomic forces, the total energy convergence criterion was increased to 10$^{-6}$ eV, and a higher cutoff energy of 450 eV was used. Density functional perturbation theory (DFPT) as implemented in Quantum-Espresso30 has been used to calculate the electron–phonon coupling (EPC) with norm-conserving pseudopotentials.30 An 80 Ry cutoff energy was utilized in EPC calculations with a 4 × 4 × 4q-point mesh and a 16 × 16 × 16k-sampling. The Gaussian broadening was set to 0.03 Ry. Interpolation over the Brillouin zone was adopted to obtain the electron–phonon coefficient λ.31 Superconducting transition temperature (T_c) was computed using the Allen–Dynes modified McMillan equation29 with typical values of the Coulomb pseudopotential μ^* (0.1–0.14).

Experimental Section

We loaded the reactant (Pb and Te powder mixed with a molar ratio of 3:2) into a symmetric DAC equipped with Boehler-type diamonds and stainless steel gaskets. The diameter of the diamond culets is approximately 300 μm, and the cell opening angle is about 42° (4-θ). Ne was loaded as the pressure medium and thermal insulator. In situ laser heating and XRD experiment were carried out at HPCAT 16-ID-B, Advanced Photon Source, Argonne National Lab. The sample was compressed to 20.0 GPa as calibrated by Ruby and then heated by two identical IPG YLR-100-1064-WC fiber lasers on both sides. The diameter of the laser spot is 40–50 μm. In situ XRD data were collected 5–10 s after the laser power was increased. The incident X-ray was monochromated to a wavelength of 0.3445 Å, and the beam size was ~10 μm. Mar165CCD was used as the detector. Each data collection lasted for 3 s, and laser power was increased when the repeated data looked the same as the previous one. Rietveld refinement was conducted by JANA2006.33,34

Safety Statement. No unexpected or unusually high safety hazards were encountered.

References

1. Tan, G.; Shi, F.; Hao, S.; Zhao, L.-D.; Chi, H.; Zhang, X.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nat. Commun. 2016, 7, 12167.
2. Bohm, M. L.; Jellicoe, T. C.; Tabachnyk, M.; Davis, N. J.; Winnefsky-Rocca-Rivora, F.; Ducati, C.; Ehler, B.; Bakulin, A. A.; Greenham, N. C. Lead telluride quantum dot solar cells displaying external quantum efficiencies exceeding 120%. Nano Lett. 2015, 1S, 7987–7993.
3. Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554–557.
4. Berchenko, N.; Fadeev, S.; Savchyn, V.; Kurbanov, K.; Trzyna, M.; Cebulska, J. Pb-Te-O phase equilibrium diagram and the lead telluride thermal oxidation. Thermochim. Acta 2014, 579, 64–69.
5. Bajaj, S.; Pomrehn, G. S.; Doak, J. W.; Gierlotka, W.; Wu, H.-J.; Chen, S.-W.; Wolverton, C.; Goddard, W. A.; Snyder, G. J. Ab initio study of intrinsic point defects in PbTe: an insight into phase stability. Acta Mater. 2015, 92, 72–80.
(6) Dariel, M.; Dashevsky, Z.; Jarashnely, A.; Shusterman, S.; Horowitz, A. Carrier concentration gradient generated in p-type PbTe crystals by unidirectional solidification. J. Cryst. Growth 2002, 234, 164−170.

(7) Rousse, G.; Klotz, S.; Saitta, A.; Rodriguez-Carvajal, J.; McMahon, M.; Couzinot, B.; Mezour, M. Structure of the intermediate phase of PbTe at high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 71, 224116.

(8) Demiray, F.; Berber, S. Ab initio investigation of B16 (GeS), B27 (FeB) and B33 (CrB/TlI) phases of lead chalcogenides. Phys. Scr. 2013, 88, 015603.

(9) Chattopadhyay, T.; Werner, A.; Von Schnering, H.; Pannetier, J. Temperature and pressure induced phase transition in IV-VI compounds. Rev. Phys. Appl. 1984, 19, 807−813.

(10) Brandt, N.; Gitsud, D.; Popovich, N.; Sidorov, V.; Chudinov, S. Superconductivity of the compounds PbTe and PbSe under high pressure. J. Pet. Lett. 1975, 22, 104−106.

(11) Chi, Z.; Chen, X.; Yen, F.; Feng, F.; Zhou, Y.; Zhu, J.; Zhang, Y.; Liu, X.; Lin, C.; Chu, S.; Li, Y.; Zhao, J.; Kagayama, T.; Ma, Y.; Yang, Z. Superconductivity in pristine 2Ha-MoS2 at ultrahigh pressure. Phys. Rev. Lett. 2018, 120, 037002.

(12) Drozdov, A.; Eremets, M.; Troyan, I.; Ksenofontov, V.; Shylin, S. Conventional superconductivity at 203 K at high pressures in the sulfur hydride system. Nature 2015, 525, 73.

(13) Einaga, M.; Sakata, M.; Ishikawa, T.; Shimizu, K.; Eremets, M. I.; Drozdov, A. P.; Troyan, I. A.; Hirao, N.; Ohishi, Y. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 2016, 12, 835.

(14) Dalladay-Simpson, P.; Howie, R. T.; Gregorzyan, E. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 2016, 529, 63.

(15) Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; Gatti, C. Evolutionary crystal structure prediction as a method for the discovery of minerals and materials. Rev. Mineral. Geochem. 2010, 71, 271−298.

(16) Zhang, W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boullé, S. E.; Lyakhov, A. O.; Stavrou, E.; Somayazula, M.; Prakapenka, V. B.; Konópková, Z. Unexpected stable stoichiometries of sodium chlorides. Science 2013, 342, 1502−1505.

(17) Dong, X.; et al. A stable compound of helium and sodium at high pressure. Nat. Chem. 2017, 9, 440.

(18) Yu, H.; Lao, W.; Wang, L.; Li, K.; Chen, Y. Pressure-stabilized tin selenide phase with an unexpected stoichiometry and a predicted superconducting state at low temperatures. Phys. Rev. Lett. 2017, 118, 137002.

(19) Zhang, Q.; Wu, X.; Qin, S. A nine-fold coordinated vanadium by oxygen in V2O3 from first-principles calculations. Eur. Phys. J. B 2012, 85, 267.

(20) Tang, W.; Sanville, E.; Henkelman, G. A grid-based bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009, 21, 084204.

(21) Öğüt, S.; Rabe, K. M. Band gap and stability in the ternary intermetallic compounds NiSnM (M= Ti, Zr, Hf): a first-principles study. Phys. Rev. B: Condens. Matter Mater. Phys. 1995, 51, 10443.

(22) Feng, L.; Liu, E.; Zhang, W.; Wang, W.; Wu, G. First-principle investigation of electronic structure, magnetism and phase stability of Heusler-type Pt2-xMnxGa alloys. J. Magn. Magn. Mater. 2015, 377, 40−43.

(23) Zhang, B.; Wu, L.; Li, Z. Predicted structural evolution and detailed insight into configuration correlation, mechanical properties of silicon-boron binary compounds. RSC Adv. 2017, 7, 16109−16118.

(24) Lyakhov, A. O.; Oganov, A. R.; Valle, M. Crystal structure prediction using evolutionary approach. In Modern Methods of Crystal Structure Prediction; Wiley-Blackwell, 2010; Chapter 7, pp 147−180.

(25) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15−50.

(26) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953−17979.

(27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865−3868.

(28) Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 134106.

(29) Giannozzi, P.; et al. QUANTUM ESRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.

(30) Senemok, D. V.; Kvasnin, A. G.; Kruglov, I. A.; Oganov, A. R. Actinium hydrides AcH0, AcH2, and AcH6 as high-temperature conventional superconductors. J. Phys. Chem. Lett. 2018, 9, 1920−1926.

(31) Wierzbowska, M.; de Gironcoli, S.; Giannozzi, P. Origins of low- and high-pressure discontinuities of Tc in niobium. arXiv e-prints, 2005, cond-mat/0504077.

(32) Allen, P. B.; Dynes, R. C. Transition temperature of strongly-coupled superconductors reanalyzed. Phys. Rev. B 1975, 12, 905−922.

(33) Palatinus, L.; Chapuis, G. SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786−790.

(34) Petriček, V.; Dusek, M.; Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. Crist. Mater. 2012, 229, 345−352.