ON THE NUMBER OF kTH POWERS INSIDE ARITHMETIC PROGRESSIONS

JEAN BOURGAIN AND CIPRIAN DEMETER

Abstract. We find upper bounds that are sharp for the number of kth powers inside arbitrary arithmetic progressions whose step has $O(1)$ many divisors.

For fixed $k \geq 2$, how many kth powers of integers t^k can lie inside an arithmetic progression of length N? By considering the progression $\{1, 2, \ldots, N\}$ we see that this number can be as large as $\sim N^{1/k}$. In this note we search for upper bounds, and show that they match the above lower bound in the special case when the step of the progression has $O(1)$ many divisors.

More precisely, let $Q_k(N; q, a)$ denote the number of kth powers in the arithmetic progression $a + q, a + 2q, \ldots, a + Nq$. Write

$$Q_k(N) = \sup_{a, q \in \mathbb{N}_{q \neq 0}} Q_k(N; q, a).$$

Rudin [5] has conjectured that $Q_2(N) \sim N^{1/2}$. We may similarly conjecture that for each $k \geq 2$

$$Q_k(N) \lesssim N^{1/k},$$

where \lesssim denotes logarithmic losses of the form $(\log N)^{O(1)}$. The logarithmic loss here is added for extra safety, it is not clear whether it is really needed.

The best known upper bound for $Q_2(N)$ is due to Bombieri and Zannier [2]

$$Q_2(N) \lesssim N^{3/4}.$$

This builds on earlier work [1] of Bombieri, Granville and Pintz that proved the result with exponent $\frac{2}{3}$ in place of $\frac{3}{4}$. These rely on deep results in number theory regarding rational points on curves.

The papers [4] and [3] contain a nice discussion on the problem. In particular, they mention a refined version of Rudin’s conjecture, according to which the progression $\{24n + 1 : 0 \leq n \leq N - 1\}$ contains the largest number of squares.

We verify the conjectured inequality (1) in the case when the step q of the progression has $O(1)$ divisors. In fact we observe that the argument extends to arbitrary polynomials. It would be of interest to lower the exponent of $d(q)$ as much as possible.

Theorem 0.1. Let $d(q)$ be the number of divisors of q. Then for each polynomial P_k of degree $k \geq 1$ with integer coefficients and each $a, q, N \in \mathbb{Z}$ we have

$$|\{t \in \mathbb{Z} : P_k(t) \in \{a + q, a + 2q, \ldots, a + Nq\}\}| \lesssim d(q)^{k-1}N^{1/k}.$$

The implicit constant depends only on k.

The authors are partially supported by the Collaborative Research NSF grant DMS-1800305.
Proof We use induction on \(k \). The case \(k = 1 \) is trivial. Assume the statement holds for \(k \), and let \(P_{k+1} \) be a polynomial of degree \(k + 1 \). Fix \(t_0 \neq t \) such that
\[
P_{k+1}(t), P_{k+1}(t_0) \in \{a + q, a + 2q, \ldots, a + Nq\}.
\]
Write
\[
P_{k+1}(t) - P_{k+1}(t_0) = (t - t_0)P_k(t),
\]
for some polynomial \(P_k \) of degree \(k \). We must have
\[
\begin{aligned}
(t - t_0) &= n_1q_1 \\
P_k(t) &= q_2n_2
\end{aligned} \tag{2}
\]
with \(q_1q_2 = q \). Moreover \(n_1n_2 \leq N \). We must have that either
\[
n_1 \leq N^{\frac{k}{k+1}}
\]
or
\[
n_2 \leq N^{\frac{k}{k+1}}.
\]
Let us fix the pair \((q_1, q_2)\). In the first case, there are \(\leq N^{\frac{k}{k+1}} \) possible values of \(t \) (considering only the first equation in (2)), while in the second case there are \(O(d(q_2)^{k-1}N^{\frac{1}{k+1}}) \) values of \(t \), due to the induction hypothesis (considering only the second equation in (2)). Since there are \(d(q) \) many ways to choose the pair \((q_1, q_2)\) we conclude that the total contribution is
\[
\lesssim d(q)(N^{\frac{1}{k+1}} + d(q)^{k-1}N^{\frac{1}{k+1}}) \lesssim d(q)^kN^{\frac{1}{k+1}}.
\]

Acknowledgment. This argument was discovered after Igor Shparlinski and Houcine el Abdalaoui have informed us of an alternative, equally simple argument. We are grateful to them for alerting us of their argument and for helpful discussions.

References

[1] Bombieri, E., Granville, A. and Pintz, J. Squares in arithmetic progressions, Duke Math. J. 66 (1992), no. 3, 369-385
[2] Bombieri E. and Zannier U. Note on squares in arithmetic progressions II, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 2, 69-75
[3] Cilleruelo, Javier; Granville, Andrew Lattice points on circles, squares in arithmetic progressions and sunsets of squares. Additive combinatorics, 241262, CRM Proc. Lecture Notes, 43, Amer. Math. Soc., Providence, RI, 2007
[4] Granville, A. Squares in arithmetic progressions and infinitely many primes, Amer. Math. Monthly 124 (2017), no. 10, 951-954
[5] Rudin, W. Trigonometric series with gaps, Journal of Mathematics and Mechanics, 9 (1960), no. 2, 203-227

Department of Mathematics, Princeton University
E-mail address: bourgain2010@gmail.com

Department of Mathematics, Indiana University, Bloomington IN
E-mail address: demeterc@indiana.edu