ON THE SPECTRUM OF THE STOKES OPERATOR

ALEXEI A. ILYIN

ABSTRACT. We prove Li–Yau-type lower bounds for the eigenvalues of the Stokes operator and give applications to the attractors of the Navier–Stokes equations.

1. Introduction

The monotonically ordered eigenvalues \(\{\mu_k\}_{k=1}^{\infty} \) of the scalar Dirichlet problem for the Laplacian in a bounded domain \(\Omega \subset \mathbb{R}^n \)

\[-\Delta \varphi_k = \mu_k \varphi_k, \quad \varphi_k|_{\partial \Omega} = 0 \]
satisfy the classical H.Weyl asymptotic formula

\[\mu_k \sim \left(\frac{(2\pi)^n}{\omega_n|\Omega|} \right)^{2/n} k^{2/n} \quad \text{as } k \to \infty, \]

where \(|\Omega| \) is the \(n \)-dimensional Lebesgue measure of \(\Omega \) and \(\omega_n = \pi^{n/2}/\Gamma(1 + n/2) \) is the volume of the unit ball in \(\mathbb{R}^n \). This implies that

\[\sum_{k=1}^{m} \mu_k \sim \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n|\Omega|} \right)^{2/n} m^{1+2/n} \quad \text{as } m \to \infty. \]

In fact,

\[\sum_{k=1}^{m} \mu_k \geq \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n|\Omega|} \right)^{2/n} m^{1+2/n}. \quad (1.1) \]

This remarkable sharp lower bound was proved in [14] and holds for all \(m = 1, 2, \ldots \) and for any domain with \(|\Omega| < \infty \).

In this paper we prove Li–Yau-type lower bounds for the spectrum \(\{\lambda_k\}_{k=1}^{\infty} \) of the Stokes operator:

\[-\Delta v_k + \nabla p_k = \lambda_k v_k, \quad \text{div } v_k = 0, \quad v_k|_{\partial \Omega} = 0, \quad (1.2)\]

where \(\Omega \subset \mathbb{R}^n, |\Omega| < \infty, n \geq 2 \). The asymptotic behavior of the eigenvalues is known [1] (\(n = 3 \), [17] (\(n \geq 2 \)):

\[\lambda_k \sim \left(\frac{(2\pi)^n}{\omega_n(n-1)|\Omega|} \right)^{2/n} k^{2/n} \quad \text{as } k \to \infty. \quad (1.3) \]

The main result of this paper proved in Section [2] is the following sharp lower bound for the spectrum of the Stokes operator:

\[\sum_{k=1}^{m} \lambda_k \geq \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n(n-1)|\Omega|} \right)^{2/n} m^{1+2/n}. \]

Key words and phrases. Stokes operator, Navier–Stokes equations, attractor dimension, Lieb–Thirring inequalities.

This work was supported in part by the Russian Foundation for Basic Research, grant nos. 06-001-0096 and 05-01-00429, and by the the RAS Programme no. 1 ‘Modern problems of theoretical mathematics’.
In addition, $\lambda_1 > \mu_1$. Then in Section 3 we apply this bound with $n = 2$ and the Lieb-Thirring inequality with improved constant to the estimates of the dimension of the attractors of the Navier-Stokes system with Dirichlet boundary conditions.

2. Li-Yau bounds for the spectrum of the Stokes operator

Throughout Ω is an open subset of \mathbb{R}^n with finite n-dimensional Lebesgue measure $|\Omega|$: $\Omega \subset \mathbb{R}^n$, $n \geq 2$, $|\Omega| < \infty$.

We recall the basic facts in the theory of the Navier-Stokes equations [5, 13, 19, 21]. We denote by \mathcal{V} the set of smooth divergence-free vector functions with compact supports $\mathcal{V} = \{u : \Omega \rightarrow \mathbb{R}^n, u \in C_0^\infty(\Omega), \text{div } u = 0\}$ and denote by H and V the closure of \mathcal{V} in $L^2(\Omega)$ and $H^1(\Omega)$, respectively. The Helmholtz-Leray orthogonal projection P maps $L^2(\Omega)$ onto H, $P : L^2(\Omega) \rightarrow H$. We have (see [19])

$L^2(\Omega) = H \oplus H^\perp$, $H^\perp = \{u \in L^2(\Omega), u = \nabla p, p \in L^2_{\text{loc}}(\Omega)\}, \quad V \subseteq \{u \in H^1_0(\Omega), \text{div } u = 0\},$

where the last inclusion becomes equality for a bounded Ω with Lipschitz boundary.

The Stokes operator A is defined by the relation

$$(Au, v) = (\nabla u, \nabla v) \quad \text{for all } u, v \in V \quad (2.1)$$

and is an isomorphism between V and V'. For a sufficiently smooth u

$$Au = -P\Delta u.$$

The Stokes operator A is an unbounded self-adjoint positive operator in H with compact inverse. It has a complete in H and V system of orthonormal eigenfunctions $\{v_k\}_{k=1}^\infty \in V$ with corresponding eigenvalues $\{\lambda_k\}_{k=1}^\infty$, $\lambda_k \rightarrow \infty$ as $k \rightarrow \infty$:

$$Av_k = \lambda_k v_k, \quad 0 < \lambda_1 \leq \lambda_2 \leq \ldots. \quad (2.2)$$

Taking the scalar product with v_k we have by orthonormality and (2.1) that

$$\lambda_k = \|\nabla v_k\|^2. \quad (2.3)$$

In case when Ω is a bounded domain with smooth boundary the eigenvalue problem (2.2) goes over to (1.2).

Our main goal is to prove uniform estimates for the Fourier transforms of orthonormal families of divergence-free vector functions (see Lemma 2.4).

Given a function $\varphi \in L^2(\Omega)$ we denote by $\hat{\varphi}(\xi)$ the Fourier transform of its extension by zero outside Ω:

$$(\mathcal{F}\varphi)(\xi) = \hat{\varphi}(\xi) = \int e^{-ix\xi} \varphi(x) \, dx.$$

\textbf{Lemma 2.1.} Let the family $\{\varphi_k\}_{k=1}^m$ be orthonormal in L^2: $(\varphi_k, \varphi_l) = \delta_{kl}$. Then

$$\sum_{k=1}^m |\hat{\varphi}_k(\xi)|^2 \leq |\Omega|. \quad (2.4)$$

\textbf{Proof.} Denoting by $*$ the complex conjugate we have by orthonormality

$$0 \leq \int \left(e^{-ix\xi} - \sum_{k=1}^m \hat{\varphi}_k(\xi) \varphi_k(x) \right) \left(e^{-ix\xi} - \sum_{l=1}^m \hat{\varphi}_l(\xi) \varphi_l(x) \right)^* \, dx = |\Omega| - \sum_{k=1}^m |\hat{\varphi}_k(\xi)|^2. \quad \Box$$
Remark 2.1. Inequality (2.4) is nothing other than Bessel’s inequality applied to the function \(h(x) = e^{-i\xi x} \) with \(\|h\|_{L^2}^2 = |\Omega| \) and the orthonormal family \(\{\varphi_j(x)\}_{j=1}^m \). \([14] \)

Next we observe that Lemma 2.1 still holds if we replace the orthonormality condition by suborthonormality.

Definition 2.1. A family \(\{\varphi_i\}_{i=1}^m \) is called suborthonormal if for any \(\zeta \in \mathbb{C}^m \)

\[
\sum_{i,j=1}^m \zeta_i \zeta^*_j (\varphi_i, \varphi_j) \leq \sum_{j=1}^m |\zeta_j|^2. \tag{2.5}
\]

Remark 2.2. This convenient and flexible notion of suborthonormality was introduced in \([9] \) with real \(\zeta \in \mathbb{R}^m \) and is equivalent to the formally more general Definition 2.1.

Lemma 2.2. Let the family \(\{\varphi_k\}_{k=1}^m \) be suborthonormal. Then

\[
\sum_{k=1}^m |\varphi_k(\xi)|^2 \leq |\Omega|. \tag{2.6}
\]

Proof. As in Lemma 2.1 with (2.5) instead of orthonormality we have

\[
0 \leq \int \left(e^{-i\xi x} - \sum_{k=1}^m \hat{\varphi}_k(\xi) \varphi_k(x) \right) \left(e^{-i\xi x} - \sum_{l=1}^m \hat{\varphi}_l(\xi) \varphi_l(x) \right)^* \, dx = \]

\[
= |\Omega| - 2 \sum_{k=1}^m |\hat{\varphi}_k(\xi)|^2 + \sum_{k,l=1}^m \hat{\varphi}_k(\xi) \hat{\varphi}_l(\xi)^*(\varphi_k, \varphi_l) \leq |\Omega| - \sum_{k=1}^m |\varphi_k(\xi)|^2. \]

We now turn to orthonormal families of vector functions \(\{u_k\}_{k=1}^m, u_k = (u_k^1, \ldots, u_k^n) \).

Lemma 2.3. Let the family of vector functions \(\{u_k\}_{k=1}^m \) be orthonormal in \(L^2(\Omega) \) and let \(Q \) be an arbitrary orthogonal projection. Then the family \(\{Qu_k\}_{k=1}^m \) is suborthonormal.

Proof. We set \(u_k = v_k + w_k, v_k = Qu_k \) and \(w_k = (I - Q)u_k \). Then \((v_k, v_l) = 0 \) for all \(k,l = 1, \ldots, n \) and \((u_k, u_l) = (v_k, v_l) + (w_k, w_l) \). Therefore

\[
\sum_{k,l=1}^m \zeta_k \zeta^*_l (v_k, v_l) = \sum_{k,l=1}^m \zeta_k \zeta^*_l (u_k, u_l) - \sum_{k,l=1}^m \zeta_k \zeta^*_l (w_k, w_l) = \]

\[
= \sum_{k=1}^m |\zeta_k|^2 - \left\| \sum_{k=1}^m \zeta_k w_k \right\|^2 \leq \sum_{k=1}^m |\zeta_k|^2. \]

Corollary 2.1. If the family of vector functions \(\{u_k\}_{k=1}^m \) is orthonormal in \(L^2 \), then

\[
\sum_{k=1}^m |\bar{u}_k(\xi)|^2 \leq n|\Omega|. \tag{2.7}
\]

Proof. By Lemma 2.3 each family \(\{u'_k\}_{k=1}^m \) is suborthonormal \(j = 1, \ldots, n \), and (2.7) follows from Lemma 2.2.

The next lemma is the central point in the proof of the lower bounds for the spectrum and says that under the divergence-free condition the estimate (2.7) goes over to (2.8).
Lemma 2.4. If the family of vector functions \(\{u_k\}_{k=1}^m \) is orthonormal and \(u_k \in H^1_0(\Omega) \), \(\text{div} u_k = 0, \ k = 1, \ldots, m \), then
\[
\sum_{k=1}^m |\hat{u}_k(\xi)|^2 \leq (n - 1)|\Omega|.
\] (2.8)

Proof. We first observe that for all \(\xi \in \mathbb{R}^n_\rho \)
\[
\xi \cdot \hat{u}_k(\xi) = \xi \cdot \int e^{-i\xi x} u_k(x) \, dx = i \int u_k \cdot \nabla_x e^{-i\xi x} \, dx = -i \int e^{-i\xi x} \text{div} u_k \, dx = 0.
\]
Let \(\xi_0 \neq 0 \) be of the form:
\[
\xi_0 = (a, 0, \ldots, 0), \quad a \neq 0.
\] (2.9)
Since \(\xi_0 \cdot \hat{u}_k(\xi_0) = 0 \) for \(k = 1, \ldots, m \), which in view of Lemmas 2.3 and 2.2 proves the estimate (2.8) for \(\xi \) of the form (2.9):
\[
\sum_{k=1}^m |\hat{u}_k(\xi_0)|^2 = \sum_{j=2}^n \sum_{k=1}^m |\hat{u}_k(\xi_0)|^2 \leq (n - 1)|\Omega|.
\]

The general case reduces to the case (2.9) by the corresponding rotation. Let \(\rho \) be a rotation of \(\mathbb{R}^n \) about the origin represented by the orthogonal \((n \times n)-\)matrix \(\rho \) with entries \(\rho_{ij} \). Given a vector function \(u(x) = (u^1(x), \ldots, u^n(x)) \) we consider the vector function
\[
u(x) := \rho u(\rho^{-1}x), \quad x \in \rho \Omega.
\]
Let us calculate the divergence of \(u_{\rho}(x) \). Setting \(\rho^{-1}x = y, \ y_l = \sum_k (\rho^{-1})_{lk} x_k \) we have
\[
\frac{\partial u_i}{\partial x_i} = \frac{\partial}{\partial x_l} \left(\sum_j \rho_{ij} u^j(y) \right) = \sum_j \rho_{ij} \sum_l \frac{\partial u^j(y)}{\partial y_l} \frac{\partial y_l}{\partial x_i} = \sum_j \rho_{ij} \sum_l \frac{\partial u^j(y)}{\partial y_l} (\rho^{-1})_{li}.
\]
Therefore
\[
\text{div} u_{\rho}(x) = \sum_{i,j,l} \rho_{ij} \frac{\partial u^j(y)}{\partial y_l} (\rho^{-1})_{li} = \sum_{i,j,l} \frac{\partial u^j(y)}{\partial y_l} (\rho^{-1})_{li} \rho_{lj} = \text{div} u(y).
\]
In addition,
\[
(u_{\rho}, v_{\rho}) = \int \rho u(\rho^{-1}x) \cdot \rho v(\rho^{-1}x) \, dx = \int u(\rho^{-1}x) \cdot v(\rho^{-1}x) \, dx = \int u(y) \cdot v(y) \, dy = (u, v).
\]
Combining this we obtain that the family \(\{u_k\}_{k=1}^m \) belongs to \(H^1_0(\rho \Omega) \), is orthonormal and \(\text{div}(u_k)_{\rho} = 0 \).

Next we calculate \(\hat{u}_{\rho} \) and show that
\[
\hat{u}_{\rho}(\xi) = \rho \hat{u}(\rho^{-1}\xi).
\] (2.10)
In fact,
\[
(Fu_{\rho})(\xi) = \hat{u}_{\rho}(\xi) = \int e^{i\xi x} u_{\rho}(x) \, dx = \rho \int e^{i\xi x} u(\rho^{-1}x) \, dx = \rho \int e^{i\rho^{-1}\xi y} u(y) \, dy = \rho \hat{u}(\rho^{-1}\xi).
\]

We now fix an arbitrary \(\xi \in \mathbb{R}^n, \ \xi \neq 0 \) and set \(\xi_0 = (|\xi|, 0, \ldots, 0) \). Let \(\rho \) be the rotation such that \(\xi = \rho^{-1}\xi_0 \). Then we have
\[
\sum_{k=1}^m |\hat{u}_k(\xi)|^2 = \sum_{k=1}^m |\hat{u}_k(\rho^{-1}\xi_0)|^2 = \sum_{k=1}^m |(\rho^{-1}u_k)_{\rho}(\xi_0)|^2 = \sum_{k=1}^m |(u_k)_{\rho}(\xi_0)|^2 \leq (n - 1)|\Omega|,
\]
where we have used (2.10) and the fact that inequality (2.8) has been proved for \(\xi \) of the form (2.9) for any orthonormal family of divergence-free vector functions. Finally, the estimate (2.8) is extended to \(\xi = 0 \) by continuity (observe that \(u_k \in L_1 \) since \(|\Omega| < \infty \) and hence the Fourier transforms \(\hat{u}_k \) are continuous.)

\[\square \]

Remark 2.3. In fact, (2.8) holds under milder assumption that \(u_k \in H \), \(k = 1, \ldots, m \).

We need the following lemma from [14], whose proof we give for the sake of completeness.

Lemma 2.5. (See [14].) Let a function \(f(\xi), f : \mathbb{R}^n \to \mathbb{R} \) satisfy

\[0 \leq f(\xi) \leq M_1 \quad \text{and} \quad \int |\xi|^2 f(\xi) d\xi \leq M_2. \]

Then

\[\int f(\xi) d\xi \leq (M_1 \omega_n)^{2/(2+n)} (M_2 (2 + n)/n)^{n/(2+n)}. \]

(2.11)

Proof. We first observe that (2.11) turns into equality for a constant multiple of the characteristic function \(g(\xi) \) of any ball centered at the origin in \(\mathbb{R}^n \). We set

\[g(\xi) = \begin{cases} M_1, & |\xi| \leq R; \\ 0, & |\xi| > R. \end{cases} \]

Then \((|\xi|^2 - R^2)(f(\xi) - g(\xi)) \geq 0 \) so that

\[R^2 \int (f(\xi) - g(\xi)) d\xi \leq \int |\xi|^2 (f(\xi) - g(\xi)) d\xi \leq 0, \]

where the second inequality holds provided that \(R \) is defined by the equality

\[\int |\xi|^2 g(\xi) d\xi = M_2. \]

Hence

\[\int f(\xi) d\xi \leq \int g(\xi) d\xi = (M_1 \omega_n)^{2/(2+n)} (M_2 (2 + n)/n)^{n/(2+n)}. \]

\[\square \]

We can now formulate our main results.

Theorem 2.1. Suppose that the family of vector functions \(\{u_k\}_{k=1}^m \in H^1_0(\Omega) \) is orthonormal and, in addition, \(\text{div} \, u_k = 0 \), \(k = 1, \ldots, m \). Then

\[\sum_{k=1}^m \|\nabla u_k\|^2 \geq \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n (n-1) |\Omega|} \right)^{2/n} m^{1+2/n}. \]

(2.12)

Proof. We set

\[f(\xi) = \sum_{k=1}^m |\hat{u}_k(\xi)|^2. \]

By Lemma 2.4 and the Plancherel theorem \(f \) satisfies

1. \(0 \leq f(\xi) \leq (n-1)|\Omega|; \)
2. \(\int f(\xi) d\xi = (2\pi)^n m; \)
3. \(\int |\xi|^2 f(\xi) d\xi = (2\pi)^n \sum_{k=1}^m \|\nabla u_k\|^2. \)
Using Lemma 2.5 we find that
\[(2\pi)^n m = \int f(\xi) \, d\xi \leq \left((n-1)|\Omega| \omega_n \right)^{2/(2+n)} \left((2\pi)^n \sum_{k=1}^m \|\nabla u_k\|^2 (2 + n)/n \right)^{n/(2+n)}, \]
which is (2.12).

\[\square \]

Theorem 2.2. The eigenvalues \(\lambda_k \) of the Stokes operator satisfy the following lower bound:
\[\sum_{k=1}^m \lambda_k \geq \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n (n-1)|\Omega|} \right)^{2/n} m^{1+2/n}. \]

Proof. Since \(V \subseteq \{ u \in H^1_0(\Omega), \, \text{div} \, u = 0 \} \) we can chose the first \(m \) eigenvectors for the \(u_k \)'s in (2.12) and taking into account (2.3) we obtain (2.13). \(\square \)

Remark 2.4. In view of the asymptotics (1.3) this lower bound is sharp in the sense that the inequality with the coefficient of \(m^{1+2/n} \) larger than in (2.13) cannot hold for a sufficiently large \(m \).

Remark 2.5. Weaker lower bounds based on the estimate (2.7)
\[\sum_{k=1}^m \lambda_k \geq \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n (n-1)|\Omega|} \right)^{2/n} m^{1+2/n} \]
have earlier been proved in [10] for \(n = 2, 3 \).

Remark 2.6. In fact, for any orthonormal family \(\{u_k\}_{k=1}^m \in V \) we have
\[\sum_{k=1}^m \|\nabla u_k\|^2 \geq \sum_{k=1}^m \lambda_k. \]

Corollary 2.2. Each eigenvalue \(\lambda_k \) satisfies
\[\lambda_k \geq \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n (n-1)|\Omega|} \right)^{2/n} k^{2/n}, \]
while \(\lambda_1 \) satisfies
\[\lambda_1 > \mu_1 \geq \frac{n}{2 + n} \left(\frac{(2\pi)^n}{\omega_n |\Omega|} \right)^{2/n}. \]

Proof. The sequence \(\{\lambda_k\}_{k=1}^\infty \) is nondecreasing and (2.14) is obvious. Since \(V \subset H^1_0(\Omega) \),
\[\mu_1 = \min_{u \in H^1_0(\Omega)} \frac{\|\nabla u\|^2}{\|u\|^2} \leq \min_{u \in V} \frac{\|\nabla u\|^2}{\|u\|^2} = \lambda_1 \]
and the second inequality in (2.15) is (1.1) with \(m = 1 \). Let us prove that \(\lambda_1 > \mu_1 \). Suppose that \(\mu_1 = \|\nabla u_0\|^2/\|u_0\|^2 \) for some \(u_0 \in H^1_0(\Omega) \). It is well known that \(\mu_1 \) is a simple eigenvalue with (up to a constant factor) eigenfunction \(\varphi_1 \). Therefore any such \(u_0 \) is of the form \(u_0(x) = (l_1 \varphi_1(x), l_2 \varphi_1(x), \ldots, l_n \varphi_1(x)) \) for some constants \(l_1, \ldots, l_n \), \(|l| > 0\). (Without loss of generality we can assume that \(|l| = 1\)) Now \(\lambda_1 = \mu_1 \) if and only if \(u_0 \) so obtained satisfies, in addition, \(\text{div} \, u_0 = 0 \). Therefore \(\frac{\partial \varphi_1}{\partial t} = \text{div} \, u_0 = 0 \), and \(\varphi_1 \) is constant along the lines parallel to \(l \), which is impossible. \(\square \)
3. Applications to the Navier–Stokes system

We write the two-dimensional Navier–Stokes system as an evolution equation in H

$$\partial_t u + \nu A u + B(u, u) = f, \quad u(0) = u_0,$$

(3.1)

where $A = -P \Delta$ is the Stokes operator and $B(u, v) = P(\sum_{i=1}^{2} u^i \partial_i v)$. The equation (3.1) generates the semigroup $S_t : H \to H$, $S_t u_0 = u(t)$, which has a compact global attractor $A \in H$ (see, for instance, [2], [5], [7], [21] for the case of a domain with smooth boundary $\partial \Omega$, and [12], [18] for a nonsmooth domain). The attractor A is the maximal strictly invariant compact set.

Theorem 3.1. The fractal dimension of A satisfies the following estimate

$$\dim_F A \leq \frac{1}{(8\sqrt{3} \pi)^{1/2}} \left(\lambda_1 |\Omega|\right)^{1/2} \left\|\frac{f}{\lambda_1} \right\| < \frac{1}{4\pi^{3/4}} \left\|\frac{f}{\nu} \right\|.$$

(3.2)

Proof. Since for the proof of (3.2) we need to use in [3] Theorem 4.1 the new improved constants in the Lieb–Thirring inequality (3.6) below and in the lower bound (2.12) for $n = 2$, the proof of the theorem will only be outlined. The solution semigroup S_t is uniformly differentiable in H with differential $L(t, u_0) : \xi \to U(t) \in H$, where $U(t)$ is the solution of the variational equation

$$\partial_t U = -\nu AU - B(U, u(t)) - B(u(t), U) =: \mathcal{L}(t, u_0)U, \quad U(0) = \xi.$$

(3.3)

We estimate the numbers $q(m)$ (the sums of the first m global Lyapunov exponents):

$$q(m) \leq \limsup_{t \to \infty} \sup_{u_0 \in A} \sup_{\{v_j\}_{j=1}^m \in V} \frac{1}{t} \int_0^t \sum_{j=1}^m (\mathcal{L}(\tau, u_0)v_j, v_j) d\tau,$$

(3.4)

where $\{v_j\}_{j=1}^m \in V$ is an arbitrary orthonormal system of dimension m [2], [4], [5], [21].

$$\sum_{j=1}^m (\mathcal{L}(t, u_0)v_j, v_j) = \nu \sum_{j=1}^m \|\nabla v_j\|^2 - \int \sum_{j=1}^m \sum_{k,i=1}^2 v_j^k \partial_k u^i v_j^i dx \leq$$

$$-\nu \sum_{j=1}^m \|\nabla v_j\|^2 + 2^{-1/2} \int \rho(x) |\nabla u(t, x)| dx \leq$$

$$-\nu \sum_{j=1}^m \|\nabla v_j\|^2 + 2^{-1/2} \|\rho\| \|\nabla u\| \leq$$

$$-\nu \sum_{j=1}^m \|\nabla v_j\|^2 + 2^{-1/2} \left(c_{LT} \sum_{j=1}^m \|\nabla v_j\|^2 \right)^{1/2} \|\nabla u(t)\| \leq$$

$$-\nu \sum_{j=1}^m \|\nabla v_j\|^2 + \frac{c_{LT}}{4\nu} \|\nabla u(t)\|^2 \leq -\nu \frac{c_{sp} m^2}{2|\Omega|} + \frac{c_{LT}}{4\nu} \|\nabla u(t)\|^2,$$

Here we used the inequality $|\sum_{k=1}^2 v^k \partial_k u^i v^i| = |\nabla u v \cdot v| \leq 2^{-1/2} |\nabla u| v|^2$ [3] Lemma 4.1, and, finally, (2.12), written for $n = 2$ and the orthonormal family $\{v_j\}_{j=1}^m \in V$ as follows

$$\sum_{k=1}^m \|\nabla v_k\|^2 \geq \frac{c_{sp} m^2}{|\Omega|}, \quad c_{sp} = 2\pi.$$

(3.5)
Using the well-known estimate
\[
\limsup_{t \to \infty} \sup_{u_0 \in A} \frac{1}{t} \int_0^t \| \nabla u(\tau) \|^2 d\tau \leq \frac{\| f \|^2}{\lambda_1 \nu^2} = \lambda_1 \nu^2 G^2, \quad G = \| f \| / \lambda_1 \nu^2
\]
for the solutions lying on the attractor we obtain for the numbers \(q(m) \):
\[
q(m) \leq -\frac{\nu csp m^2}{2|\Omega|} + \frac{\nu \lambda_1 c_{LT} G^2}{4}.
\]
It was shown in [4] (see also [5, 21]) and in [3], respectively, that both the Hausdorff and fractal dimensions of \(A \) are bounded by the number \(m_* \) for which \(q(m_*) = 0 \). This gives that
\[
\dim_F A \leq \left(\frac{c_{LT}}{2c_{sp}} \right)^{1/2} (\lambda_1 |\Omega|)^{1/2} G,
\]
which in view of (3.6) and (3.5) proves the first inequality in (3.2), while the second inequality follows from (2.15) with \(n = 2: \lambda_1 > 2\pi /|\Omega| \).

\[\square\]

Theorem 3.2. Let the family \(\{ v_j \}_{j=1}^m \in H^1_0(\Omega), \Omega \subseteq \mathbb{R}^2 \) be orthonormal and \(\text{div} v_j = 0, j = 1, \ldots, m \). Then the following inequality holds for \(\rho(x) = \sum_{k=1}^m |v_k(x)|^2 \):
\[
\| \rho \|^2 = \int \left(\sum_{j=1}^m |v_j(x)|^2 \right)^2 dx \leq c_{LT} \sum_{j=1}^m \| \nabla v_j \|^2, \quad c_{LT} \leq \frac{1}{2\sqrt{3}}.
\]

Proof. It was proved in [3, 11] that the best (by notational definition) constant \(c_{LT} \) in (3.6) satisfies
\[
c_{LT} \leq 4L_{1,2},
\]
where the constant \(L_{1,2} \) comes from the Lieb–Thirring spectral estimate [16]
\[
\sum_{\mu_j < 0} |\mu_j|^{7/2} \leq L_{\gamma,n} \int_{\mathbb{R}^n} f(x)^{\gamma + n/2} dx
\]
for the negative eigenvalues of the scalar Schrödinger operator \(-\Delta - f \) in \(\mathbb{R}^n, f \geq 0 \). For \(L_{\gamma,n} \) we always have
\[
L_{\gamma,n} \geq L_{\gamma,n}^{cl} := \frac{\Gamma(\gamma + 1)}{(4\pi)^{n/2} \Gamma(\gamma + n/2 + 1)}.
\]
It was recently shown in [6] that for \(n \geq 1 \)
\[
L_{\gamma,n} \leq R \cdot L_{\gamma,n}^{cl}, \quad R = \pi / \sqrt{3} = 1.8138 \ldots , \quad \gamma \geq 1,
\]
which improves the previous important estimate \(L_{\gamma,n} \leq 2L_{\gamma,n}^{cl} \) established in [8]. Hence \(c_{LT} \leq 4R L_{1,2}^{cl} = 1/(2\sqrt{3}) \). The proof is complete.

\[\square\]

Remark 3.1. The idea to use Lieb–Thirring inequalities in the context of the Navier–Stokes equations [15] has led to estimates of dimension that are linear with respect to the Grashof number \(G \) [20]. First explicit estimates for the dimension of the attractors were obtained in [10] and improved in [3]. The explicit constants in (3.2) are further improvements (by the factor \((2 \cdot (2/R))^{1/2} = 1.485 \ldots \)) of the corresponding constants in [3].

Acknowledgments

The author acknowledges helpful discussions with V.V. Chepyzhov and Yu.G. Rykov.
References

1. Babenko K.I. On the asymptotic behavior of the eigenvalues of linearized Navier–Stokes equations. *Dokl. Akad. Nauk SSSR* 263 (1982), 521–525. English transl. *Soviet Math. Dokl.* 25 (1982), 359–364.
2. Babin A.V and Vishik M.I. *Attractors of Evolution Equations*. Nauka, Moscow, 1988; English transl. North-Holland, Amsterdam, 1992.
3. Chepyzhov V.V. and Ilyin A.A. On the fractal dimension of invariant sets; applications to Navier–Stokes equations. *Discrete and Continuous Dynamical Systems* 10, nos.1&2 (2004) 117–135.
4. Constantin P. and Foias C. Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for the 2D Navier–Stokes equations. *Comm. Pure Appl. Math.* 38 (1985), 1–27.
5. Constantin P. and Foias C. *Navier–Stokes Equations*. The University of Chicago Press, 1988.
6. Dolbeault J., Laptev A., and Loss M., Lieb–Thirring inequalities with improved constants. *J. European Math. Soc.* to appear; arXiv:0708.1165v2 [math.AP].
7. Foias C., Manley O., Rosa R. and Temam R. *Navier–Stokes Equations and Turbulence*. Cambridge, UK, Cambridge Univ. Press, 2001.
8. Hundertmark D., Laptev A., and Weidl T. New bounds on the Lieb–Thirring constants. *Inventiones Mathematicae* 140 (2000), 3, 693–704.
9. Ghidaglia J. M., Marion M. and Temam R. Generalization of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors. *Differential and Integral Equations* 1 (1988), 1–21.
10. Ilyin A.A. Attractors for Navier–Stokes equations in domains with finite measure. *Nonlinear Anal.* 27, 605–616 (1996).
11. Ilyin A.A. Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations. *Mat. Sbornik* 196:1 (2005), 33-66; English transl. in *Sb. Math.* 196:1 (2005).
12. Ladyzhenskaya O.A. First boundary value problem for Navier–Stokes equations in domain with non smooth boundaries. *C. R. Acad. Sc. Paris* 314, serie 1 (1992), 253–258.
13. Ladyzhenskaya O.A. *The Mathematical Theory of Viscous Incompressible Flow*, Nauka, Moscow 1970; English transl. Gordon and Breach, New York 1969.
14. Li P. and Yau S.-T. On the Schrödinger equation and the eigenvalue problem. *Commun. Math. Phys.* 8 (1983), 309–318.
15. Lieb E. On characteristic exponents in turbulence. *Commun.Math. Phys.* 92 (1984), 473–480.
16. Lieb E. and Thirring W. Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, Studies in Mathematical Physics. Essays in honor of Valentine Bargmann, Princeton University Press (1976), 269–303.
17. Metivier G. Valeurs propres des opérateurs définis sur la restriction de systèmes variationnels à des sous–espaces. *J. Math. Pures Appl.* 57 (1978), 133–156.
18. Rosa R. The global attractor for the 2D Navier–Stokes flow on some unbounded domains. *Nonlinear Anal.* 32 (1998), 71–85.
19. Temam R. *Navier–Stokes Equations. Theory and Numerical Analysis*, Amsterdam, North-Holland, 1984.
20. Temam R. Attractors for Navier–Stokes equations. *Research Notes in Mathematics* 122 (1985), 272–292.
21. Temam R. *Infinite Dimensional Dynamical Systems in Mechanics and Physics*, 2nd Edition. New York, Springer-Verlag, 1997.

Keldysh Institute of Applied Mathematics RAS
E-mail address: ilyin@keldysh.ru