On global location-domination in bipartite graphs

Carmen Hernando, Merce Mora, Ignacio M. Pelayo

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

A dominating set S of a graph G is called locating-dominating, LD-set for short, if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. Locating-dominating sets of minimum cardinality are called LD-codes and the cardinality of an LD-code is the location-domination number $\lambda(G)$. An LD-set S of a graph G is global if it is an LD-set of both G and its complement \overline{G}. The global location-domination number $\lambda_g(G)$ is the minimum cardinality of a global LD-set of G.

For any LD-set S of a given graph G, the so-called S-associated graph G^S is introduced. This edge-labeled bipartite graph turns out to be very helpful to approach the study of LD-sets in graphs, particularly when G is bipartite.

This paper is mainly devoted to the study of relationships between global LD-sets, LD-codes and the location-domination number in a graph G and its complement \overline{G}, when G is bipartite.

Keywords: Domination, Global domination, Locating domination, Complement graph, Bipartite graph.

1 Introduction

Let $G = (V,E)$ be a simple, finite graph. The open neighborhood of a vertex $v \in V$ is $N_G(v) = \{u \in V : uv \in E\}$. The complement of a graph G, denoted by \overline{G}, is the graph on the same vertices such that two vertices are adjacent in \overline{G} if and only if they are not adjacent in G. The distance between vertices $v,w \in V$ is denoted by $d_G(v,w)$. We write $N(u)$ or $d(v,w)$ if the graph G is clear from the context. Given any pair of sets A and B, $A \triangle B$ denotes its symmetric difference, that is, $(A \setminus B) \cup (B \setminus A)$. For further notation and terminology, we refer the reader to [6].

A set $D \subseteq V$ is a dominating set if for every vertex $v \in V \setminus D$, $N(v) \cap D \neq \emptyset$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G [8]. A dominating set is global if it is a dominating set of both G and its complement graph, \overline{G}. The minimum cardinality of a global dominating set of G, denoted by $\gamma_g(G)$, is the global domination number of G [3,4,14]. If D is a subset of V and $v \in V \setminus D$, we say that v dominates D if $D \subseteq N(v)$.

A dominating set $S \subseteq V$ is a locating-dominating set, LD-set for short, if for every two different vertices $u,v \in V \setminus S$, $N(u) \cap S \neq N(v) \cap S$. The location-domination number of G, denoted by $\lambda(G)$, is the minimum cardinality of a locating-dominating set. A locating-dominating set of cardinality $\lambda(G)$ is called an LD-code [13,15]. Certainly, every LD-set of a non-connected graph G is the union of LD-sets of its connected components and the location-domination number is the sum of the location-domination number of its connected components. LD-codes and the location-domination parameter have been intensively studied during the last decade; see [1,2,5,7,11,9]. A complete and regularly updated list of papers on locating-dominating codes is to be found in [12].
The remaining part of this paper is organized as follows. In Section 2, we deal with the problem of approaching the relationship between $\lambda(G)$ and $\lambda(\overline{G})$, for any arbitrary graph G. In Section 3, we introduce the so-called LD-set-associated graph G^S, which is an edge-labeled bipartite graph constructed from an arbitrary LD-set S of a given graph G, and show some basic properties of this graph. Finally, Section 4 is concerned with the study of relationships between the location-domination number $\lambda(G)$ of a bipartite graph G and the location-domination number $\lambda(\overline{G})$ of its complement \overline{G}.

2 General case

This section is devoted to approach the relationship between $\lambda(G)$ and $\lambda(\overline{G})$, for any arbitrary graph G. Some of the results we present were previously shown in [9, 10] and we include them for the sake of completeness.

Notice that $N_G(x) \cap S = S \setminus N_G(x)$ for any set $S \subseteq V$ and any vertex $x \in V \setminus S$. A straightforward consequence of this fact are the following results.

Proposition 1 ([10]). If $S \subseteq V$ is an LD-set of a graph $G = (V, E)$, then S is an LD-set of \overline{G} if and only if S is a dominating set of \overline{G}.

Proposition 2 ([9]). Let $S \subseteq V$ be an LD-set of a graph $G = (V, E)$. Then, the following holds.

(a) There is at most one vertex $u \in V \setminus S$ dominating S, and in the case it exists, $S \cup \{u\}$ is an LD-set of \overline{G}.

(b) S is an LD-set of \overline{G} if and only if there is no vertex in $V \setminus S$ dominating S in G.

The following theorem is a consequence of the preceding propositions.

Theorem 1 ([9]). For every graph G, $|\lambda(G) - \lambda(\overline{G})| \leq 1$.

According to the preceding inequality, for every graph G, $\lambda(\overline{G}) \in \{\lambda(G) - 1, \lambda(G), \lambda(G) + 1\}$, all cases being feasible for some connected graph G. See Table 1 for some basic examples covering all possible cases.

We intend to obtain either necessary or sufficient conditions for a graph G to satisfy $\lambda(\overline{G}) > \lambda(G)$, i.e., $\lambda(\overline{G}) = \lambda(G) + 1$. This problem was approached and completely solved in [10] for the family of block-cactus. In this work, we carry out a similar study for bipartite graphs. After noticing that solving the equality $\lambda(\overline{G}) = \lambda(G) + 1$ is closely related to analyzing the existence or not of sets that are simultaneously locating-dominating sets in both G and its complement \overline{G}, the following definitions were introduced in [10].

Definition 1 ([10]). A set S of vertices of a graph G is a global LD-set if S is an LD-set of both G and its complement \overline{G}. The global location-domination number of a graph G, denoted by $\lambda_g(G)$, is defined as the minimum cardinality of a global LD-set of G.

2
According to Proposition [2], an LD-set \(S \) of a graph \(G \) is non-global if and only if there exists a (unique) vertex \(u \in V(G) \setminus S \) which dominates \(S \), i.e., such that \(S \subseteq N(u) \). Notice that, for every graph \(G \), \(\lambda_g(G) = \lambda_g(\overline{G}) \), since for every set of vertices \(S \subset V(G) = V(\overline{G}) \), \(S \) is a global LD-set of \(G \) if and only if it is a global LD-set of \(\overline{G} \). Observe also that an LD-code \(S \) of \(G \) is a global LD-set if and only if it is both an LD-code of \(G \) and an LD-set of \(\overline{G} \).

Theorem 2 ([10]). For any graph \(G = (V, E) \), \(\max\{\lambda(G), \lambda(\overline{G})\} \leq \lambda_g(G) \leq \min\{\lambda(G) + 1, \lambda(\overline{G}) + 1\} \). Moreover,

(a) If \(\lambda(G) \neq \lambda(\overline{G}) \), then \(\lambda_g(G) = \max\{\lambda(G), \lambda(\overline{G})\} \).

(b) If \(\lambda(G) = \lambda(\overline{G}) \), then \(\lambda_g(G) \in \{\lambda(G), \lambda(G) + 1\} \), and both possibilities are feasible.

(c) \(\lambda_g(G) = \lambda(G) + 1 \) if and only if every LD-code of \(G \) is non-global.

Corollary 1. If \(G \) is a graph with a global LD-code, then \(\lambda(\overline{G}) \leq \lambda(G) \).

In Table 1, the location-domination number of some families of graphs is displayed, along with the location-domination number of its complement graphs and the global location-domination number. Concretely, we consider the path \(P_n \) of order \(n \geq 7 \); the cycle \(C_n \) of order \(n \geq 7 \); the wheel \(W_n \) of order \(n \geq 8 \), obtained by joining a new vertex to all vertices of a cycle of order \(n - 1 \); the complete graph \(K_n \) of order \(n \geq 2 \); the complete bipartite graph \(K_{r,n-r} \) of order \(n \geq 4 \), with \(2 \leq r \leq n-r \) and stable sets of order \(r \) and \(n-r \), respectively; the star \(K_{1,n-1} \) of order \(n \geq 4 \), obtained by joining a new vertex to \(n-1 \) isolated vertices; and finally, the bi-star \(K_2(r,s) \) of order \(n \geq 6 \) with \(3 \leq r \leq s = n-r \), obtained by joining the central vertices of two stars \(K_{1,r-1} \) and \(K_{1,s-1} \) respectively.

Proposition 3 ([10]). Let \(G \) be a graph of order \(n \). If \(G \in \{ P_n, C_n, W_n, K_n, K_{1,n-1}, K_{r,n-r}, K_2(r,s) \} \), then the values of \(\lambda(G), \lambda(\overline{G}) \) and \(\lambda_g(G) \) are known and they are displayed in Table 1.

\(G \)	\(P_n \)	\(C_n \)	\(W_n \)	\(K_n \)	\(K_{1,n-1} \)	\(K_{r,n-r} \)	\(K_2(r,s) \)
\(n \)	\(n \geq 7 \)	\(n \geq 7 \)	\(n \geq 8 \)	\(n \geq 2 \)	\(n \geq 4 \)	\(2 \leq r \leq n-r \)	\(3 \leq r \leq s \)
\(\lambda(G) \)	\(\lfloor \frac{2n}{3} \rfloor \)	\(\lfloor \frac{2n}{3} \rfloor \)	\(\lfloor \frac{2n-2}{5} \rfloor \)	\(n-1 \)	\(n-1 \)	\(n-2 \)	\(n-2 \)
\(\lambda(\overline{G}) \)	\([\frac{2n}{3}] \)	\([\frac{2n}{3}] \)	\([\frac{2n-2}{5}] \)	\(n \)	\(n-1 \)	\(n-2 \)	\(n-3 \)
\(\lambda_g(G) \)	\(\lfloor \frac{2n}{3} \rfloor \)	\(\lfloor \frac{2n}{3} \rfloor \)	\(\lfloor \frac{2n+1}{5} \rfloor \)	\(n \)	\(n-1 \)	\(n-2 \)	\(n-2 \)

Table 1: The values of \(\lambda(G), \lambda(\overline{G}) \) and \(\lambda_g(G) \) for some families of graphs.

3 The LD-set-associated graph

Let \(S \) be an LD-set of a graph \(G \). We introduce in this section a labeled graph associated to \(S \) and study some general properties. This graph will allow us to derive some properties related to LD-sets and the location-domination number of \(G \).

Definition 2. Let \(S \) be an LD-set with exactly \(k \) vertices of a connected graph \(G = (V, E) \) of order \(n \). Consider \(z \notin V(G) \) and define \(N_G(z) = \emptyset \). The so-called \(S \)-associated graph, denoted by \(G^S \), is the edge-labeled graph defined as follows.
(1) \(V(G^S) = (V \setminus S) \cup \{z\} \);

(2) For every pair of vertices \(x, y \in V(G^S) \), \(xy \in E(G^S) \) if and only if \(|(N_G(x) \cap S) \triangle (N_G(y) \cap S)| = 1 \);

(3) The label \(\ell(xy) \) of edge \(xy \in E(G^S) \) is the only element of \((N_G(x) \cap S) \triangle (N_G(y) \cap S) \in S \).

Figure 1: Left: a graph \(G \). Right: the LD-set-associated graph \(G^S \), where \(S = \{1, 2, 3, 4, 5\} \).

Notice that two vertices of \(V \setminus S \) are adjacent in \(G^S \) if their neighborhood in \(S \) differ in exactly one vertex, the label of the edge, and \(z \) is adjacent to vertices of \(V \setminus S \) with exactly a neighbor in \(S \). Therefore, we can represent the graph \(G^S \) with the vertices lying on \(|S| + 1 \) levels, from bottom (level 0) to top (level \(|S| \)), in such a way that vertices with exactly \(k \) neighbors in \(S \) are at level \(k \). There is at most one vertex at level \(|S| \) and, if it is so, this vertex is adjacent to all vertices of \(S \). The vertices at level 1 are those with exactly one neighbor in \(S \) and \(z \) is the unique vertex at level 0. An edge of \(G^S \) has its endpoints at consecutive levels. Moreover, if \(e = xy \in E(G^S) \), with \(\ell(e) = u \in S \), and \(x \) is at exactly one level higher than \(y \), then \(N(x) \cap S = (N(y) \cap S) \cup \{u\} \), i.e., \(x \) and \(y \) have the same neighborhood in \(S \setminus \{u\} \). Therefore, the existence of an edge in \(G^S \) with label \(u \in S \) means that \(S \setminus \{u\} \) is not an LD-set. Hence, if \(S \) is an LD-code, then for every \(u \in S \) there exists at least an edge in \(G^S \) with label \(u \). See Figure 1 for an example of an LD-set-associated graph.

The following proposition states some properties of LD-set-associated graphs.

Proposition 4. Let \(S \) be an LD-set with exactly \(k \) vertices of a connected graph \(G = (V, E) \) of order \(n \). Let \(G^S \) be its \(S \)-associated graph. Then the following holds.

1. \(|V(G^S)| = n - k + 1 \).
2. \(G^S \) is bipartite.
3. Incident edges have different labels.
4. Every cycle of \(G^S \) contains an even number of edges labeled \(v \), for all \(v \in S \).
5. Let ρ be a walk with no repeated edges in G^S. If ρ contains an even number of edges labeled v for every $v \in S$, then ρ is a closed walk.

6. If $\rho = x_0x_1x_2 \ldots x_{i+h}$ is a path satisfying that vertex x_{i+h} lies at level $i + h$, for any $h \in \{0, 1, \ldots, h\}$, then

(a) the edges of ρ have different labels;
(b) for all $j \in \{i + 1, i + 2, \ldots, i + h\}$, $N(x_j) \cap S$ contains the vertex $\ell(x_kx_{k+1})$, for any $k \in \{i, i + 1, \ldots, j - 1\}$.

Proof. 1. It is a direct consequence from the definition of G^S.

2. Consider the sets $V_1 = \{x \in V(G^S) : |N(x) \cap S| \text{ is odd}\}$ and $V_2 = \{x \in V(G^S) : |N(x) \cap S| \text{ is even}\}$. Then $V(G^S) = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$. Since $|N(x) \cap S| - |N(y) \cap S| = 1$ for any $xy \in E(G^S)$, it is clear that the vertices x, y are not in the same subset V_i, $i = 1, 2$.

3. Suppose that the sets $N(x) \cap S$ and $N(y) \cap S$ differ only in element v and the sets $N(y) \cap S$ and $N(z) \cap S$ differ only in element $v \in S$. It is only possible if $N(x) \cap S = N(z) \cap S$, implying that $x = z$.

4. Let ρ be a cycle such that $E(\rho) = \{x_0x_1, x_1x_2, \ldots, x_{k+1}x_0\}$. The set of neighbors in S of two consecutive vertices differ exactly in one vertex. If we begin with $N(x_0) \cap S$, each time we add (remove) the vertex of the label of the corresponding edge, we have to remove (add) it later in order to obtain finally the same neighborhood, $N(x_0) \cap S$. Therefore, ρ contains an even number of edges with label v.

5. Consider the vertices $x_0, x_1, x_2, x_3, \ldots, x_{2k}$ of the walk ρ. In this case, $N(x_{2k}) \cap S$ is obtained from $N(x_0) \cap S$ by adding or removing the labels of all the edges of the walk. Since every label appears an even number of times, for each element $v \in S$ we can match its appearances in pairs, and each pair means that we add and remove (or remove and add) it from the neighborhood in S. Therefore, $N(x_{2k}) \cap S = N(x_0) \cap S$, and hence $x_0 = x_{2k}$.

6. It straightforward follows from the fact that $N(x_j) \cap S = N(x_{j-1} \cap S) \cup \{\ell(x_{j-1}x_j)\}$, for any $j \in \{i + 1, \ldots, i + h\}$. \hfill \Box

4 The bipartite case

In the sequel, $G = (V, E)$ stands for a bipartite connected graph of order $n = r + s \geq 4$, such that $V = U \cup W$, being U, W their stable sets and $1 \leq |U| = r \leq |W| = s$.

This section is devoted to solving the equation $\lambda(G) = \lambda(G) + 1$ when we restrict ourselves to bipartite graphs. According to Corollary 1, this equality is feasible only for graphs without global LD-codes.

Lemma 1. Let S be an LD-code of G. Then, $\lambda(G) \leq \lambda(G)$ if any of the following conditions holds.

1. $S \cap U \neq \emptyset$ and $S \cap W \neq \emptyset$.
2. \(r < s \) and \(S = W \).
3. \(2^r \leq s \).

Proof. If \(S \) satisfies item 1., then there is no vertex dominating \(S \) and, by Proposition 2, \(S \) is a global LD-code of \(G \), which, according to Corollary 1, means that \(\lambda(G) \leq \lambda(G) \). Next, assume that \(r < s \) and \(S = W \). In this case, \(U \) is not an LD-set, but is a dominating set since \(G \) is connected. Therefore, there exists a pair of vertices \(w_1, w_2 \in W \) such that \(N(w_1) = N(w_2) \). Hence, \(W - \{w_1\} \) is an LD-set of \(G - w_1 \). Let \(u \in U \) be a vertex adjacent to \(w_1 \) (it exists since \(G \) is connected), and notice that \((W \setminus \{w_1\}) \cup \{u\} \) is an LD-code of \(G \) with vertices in both stable sets, which, by the preceding item, means that \(\lambda(G) \leq \lambda(G) \). Finally, if \(2^r \leq s \) then \(S \neq U \), which means that \(S \) satisfies either item 1. or item 2. \(\square \)

Corollary 2. If \(\lambda(G) = \lambda(G) + 1 \), then \(r \leq s \leq 2^r - 1 \). Moreover, if \(r < s \) then \(U \) is the unique LD-code of \(G \), and if \(r = s \) we may assume that \(U \) is a non-global LD-code of \(G \).

Proposition 5. If \(G \) has order at least 3 and \(1 \leq r \leq 2 \), then \(\lambda(G) \leq \lambda(G) \).

Proof. If \(r = 1 \), then \(G \) is the star \(K_{1,n-1} \) and \(\lambda(G) = \lambda(G) = n - 1 \).

\(r \)	\(\lambda(G) \)	\(\lambda(G) - 1 \)
1	\(\lambda(G) \)	\(\lambda(G) - 1 \)
2	\(\lambda(G) \)	\(\lambda(G) - 1 \)
	\(\lambda(G) \)	\(\lambda(G) - 1 \)

Figure 2: Some bipartite graphs with \(1 \leq r \leq 2 \).

Suppose that \(r = 2 \). If \(s \geq 2^2 = 4 \) then, by Lemma 1, \(\lambda(G) \leq \lambda(G) \).

If \(s = 2 \), then \(G \) is either \(P_4 \) and \(\lambda(P_4) = \lambda(P_4) = 2 \), or \(G \) is \(C_4 \) and \(\lambda(C_4) = \lambda(C_4) = 2 \).

If \(s = 3 \), then \(G \) is \(P_5, K_{2,3}, K_2(1,2), \) or a banner \(P \), and \(\lambda(P_5) = \lambda(P_5) = 2, \lambda(K_{2,3}) = \lambda(K_{2,3}) = 3, 2 = \lambda(K_2(1,2)) < \lambda(K_2(1,3)) = 3, \) and \(2 = \lambda(P) < \lambda(P) = 3. \) \(\square \)

Notice that the only bipartite graphs \(G \) such that \(\lambda(G) = 2 \) are \(P_3, P_4, C_4 \) and \(P_5 \). Observe also that every bipartite graph \(G \) such that \(\lambda(G) = \lambda(G) + 1 \) satisfies \(\lambda(G) \geq r \), being \(r \) the order of its smallest stable set.

Next, we approach the case \(\lambda(G) \geq 3 \). That is to say, from now on we assume that \(r \geq 3 \).

Lemma 2. If \(\lambda(G) = \lambda(G) + 1 \) and \(U \) is an LD-code of \(G \), then \(G^U \) contains, for every vertex \(u \in U \), at least two edges with label \(u \).
Lemma 3. Let $\lambda(\mathcal{G}) = \lambda(G) + 1$ and assume that U is an LD-code of G. Consider a subgraph H of G^U induced by a set of edges containing exactly two edges with label u, for each $u \in U$. Then, all connected components of H are cactus.

Proof. We will prove that there is no edge lying on two different cycles of H. Suppose on the contrary that there is an edge e_1 contained in two different cycles C_1 and C_2 of H. If the label of e_1 is $u \in U$, by Proposition 4 both cycles C_1 and C_2 contain the other edge e_2 of H labeled with u. Suppose that $e_1 = x_1y_1$ and $e_2 = x_2y_2$ and assume w.l.o.g. that there exist $x_1 - x_2$ and $y_1 - y_2$ paths in C_1 not containing edges e_1, e_2. Let P_1 and P_1' denote respectively those paths (see Figure 4(a)).
We have two possibilities for C_2: (i) there are $x_1 - x_2$ and $y_1 - y_2$ paths in C_2 not containing neither e_1 nor e_2. Let P_2 denote the $x_1 - x_2$ path in C_2 in that case (see Figure 4(b); (ii) there are $x_1 - y_2$ and $y_1 - x_2$ paths in C_2 not containing neither e_1 nor e_2 (see Figure 4(c)).

In case (ii), the closed walk formed with the path P_1, e_1 and the $y_1 - x_2$ path in C_2 would contain a cycle with exactly an edge labeled with u, which is a contradiction (see Figure 4(d)).

In case (i), at least one the following cases holds: the $x_1 - x_2$ paths in C_1 and in C_2, P_1 and P_2, are different or the $y_1 - y_2$ paths in C_1 and in C_2 are different (otherwise, $C_1 = C_2$).

![Figure 4](image)

Figure 4: All connected components of the subgraph H are cactus.

Assume that P_1 and P_2 are different. Let z_1 be the last vertex shared by P_1 and P_2 advancing from x_1 and let z_2 be the first vertex shared by P_1 and P_2 advancing from z_1 in P_2. Notice that $z_1 \neq z_2$. Consider the cycle C_3 formed with the $z_1 - z_2$ paths in P_1 and P_2. Let P_1^* and P_2^* be respectively the $z_1 - z_2$ subpaths of P_1 and P_2 (see Figure 4(e)). We claim that the internal vertices of P_2^* do not lie in P_1^*. Otherwise, consider the first vertex t of P_1^* lying also in P_2^*. The cycle beginning in x_1, formed by the edge e_1, the $y_1 - t$ path contained in P_1^*, the $t - z_1$ path contained in P_2^* and the $z_1 - x_1$ path contained in P_1 has exactly one appearance of an edge with label u, which is a contradiction (see Figure 4(f)). By Proposition 3, the labels of edges belonging to P_1^* appear exactly two times in cycle C_3, but they also appear exactly two times in cycle C_1. But this is only possible if they appear exactly two times in P_1^*, since H contains exactly to edges with the same label. By Proposition 4, P_1^* must be a closed path, which is a contradiction.

We present next some properties relating parameters of bipartite graphs having cactus as connected components.

Lemma 4. Let H be a bipartite graph of order at least 4 such that all its connected components are cactus. If H has $cc(H)$ connected components and $cy(H)$ cycles, then the following holds.
1. \(|V(H)| = |E(H)| - \text{cy}(H) + \text{cc}(H)|.

2. If \(\text{ex}(H) = |E(H)| - 4\text{cy}(H)\), then \(\text{ex}(H) \geq 0\) and \(|V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H)|.

3. \(|V(H)| \geq \frac{3}{4}|E(H)| + 1|.

4. \(|V(H)| = \frac{3}{4}|E(H)| + 1| \text{ if and only if } H \text{ is connected and all blocks are cycles of order } 4|.

Proof. 1. Since \(H\) is a planar graph with \(\text{cy}(H) + 1\) faces and \(\text{cc}(H)\) connected components, the equality follows from the generalization of Euler’s Formula:

\[
(\text{cy}(H) + 1) + |V(H)| = |E(H)| + (\text{cc}(H) + 1)\]

2. All cycles of a bipartite graph have at least 4 edges, hence \(\text{ex}(H) \geq 0\). By the preceding item,

\[
|V(H)| = |E(H)| - \text{cy}(H) + \text{cc}(H) = |E(H)| - \frac{1}{4}(|E(H)| - \text{ex}(H)) + \text{cc}(H) = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H).
\]

3. It immediately follows from the preceding item.

4. Observe first that if \(H\) is connected and all blocks are cycles of order 4, then \(\text{cc}(H) = 1\) and \(|E(H)| = 4\text{cy}(H)|. Hence, \(\text{ex}(H) = |E(H)| - 4\text{cy}(H) = 0\) and by item 2, \(|V(H)| = \frac{3}{4}|E(H)| + 1|.

Conversely, suppose that \(|V(H)| = \frac{3}{4}|E(H)| + 1|\. The graph \(H\) must be connected, since otherwise \(|V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H) \geq \frac{3}{4}|E(H)| + 2|\). On the other hand, if \(H\) contains a cycle of order at least 6 or a bridge, then \(\text{ex}(H) = |E(H)| - 4\text{cy}(H) > 0|\) implying that \(|V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H) > \frac{3}{4}|E(H)| + \text{cc}(H) = \frac{3}{4}|E(H)| + 1|\. \]

Proposition 6. If \(r \geq 3\) and \(\lambda(G) = \lambda(G) + 1|\), then \(\frac{3r}{2} \leq s \leq 2r - 1|\).

Proof. By Corollary 2, we have that \(s \leq 2^r - 1\), and we may assume that \(U\) is a non-global LD-code and there is no LD-code with vertices in both stable sets.

Consider a subgraph \(H\) of \(G^U\) with exactly two edges with label \(u\) for any \(u \in U\). The graph \(H\) is bipartite since it is a subgraph of \(G^U\) and by Lemma 4,

\[
s + 1 = |V(G^U)| \geq |V(H)| \geq \frac{3}{4}|E(H)| + 1 = \frac{3}{4}(2r) + 1 = \frac{3r}{2} + 1
\]

and consequently \(s \geq \frac{3r}{2}\). \]

Lemma 5. If \(\lambda(G) = \lambda(G) + 1|\) and \(U\) is an LD-code of \(G\), let \(z\) be the vertex of \(G^U\) introduced in Definition 2 and let \(H\) be a subgraph of \(G^U\) with exactly two edges with label \(u\), for each \(u \in U\). Then the following holds.

1. If \(H\) has at least two connected components, then \(s \geq \frac{3r}{2} + 1\).

2. If \(\text{deg}_{G^U}(z) = 0\), then \(s \geq \frac{3r}{2} + 1|\).

3. \(\text{deg}_{G^U}(z) \neq 0\) if and only if there is at least a vertex in \(W\) of degree 1 in \(G|\).

4. If \(G\) has no vertex of degree 1 in \(W\), then \(s \geq \frac{3r}{2} + 1\).
Proof. 1. By Lemma 4, \(s+1 \geq |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H) \geq \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \frac{1}{4} \), and thus, \(s \geq \frac{3r}{2} + 1 \).

2. If \(\text{deg}_{G'}(z) = 0 \), then \(z \) is not a vertex of \(H \). Hence, \(s \geq |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H) \geq \frac{3}{4}|E(H)| + 1 = \frac{3r}{2} + 1 \).

3. We know that \(\text{deg}_{G'}(z) \neq 0 \) if and only if there is a vertex \(w \in W \) satisfying \(N(w) \bigtriangleup N(z) = 0 \), i.e. if and only if \(\text{deg}_{G'}(w) = 1 \).

4. It is a straight consequence of items 2 and 3.

Proposition 7. There are no bipartite graphs \(G \) satisfying \(\lambda(G) = \lambda(G) + 1 \) if \(\frac{3r}{2} \leq s < \frac{3r}{2} + 1 \).

Proof. Suppose on the contrary that \(G \) is a bipartite graph satisfying the conditions of the proposition. Condition \(\lambda(G) = \lambda(G) + 1 \) implies that we may assume that \(U \) is an LD-code of \(G \), there is no LD-code with vertices in both stable sets and \(U \) is not an LD-set of \(\bar{G} \). Consider a subgraph \(H \) of \(G' \) with exactly two edges with label \(u \), for each \(u \in U \) (it exists by Lemma 2).

Observe that the inequality is only possible for \(s = \frac{3r}{2} \), whenever \(r \) is even, and for \(s = \frac{3r+1}{2} \), whenever \(r \) is odd. If \(r \) is even and \(s = \frac{3r}{2} \), then

\[
\frac{3r}{2} + 1 = s + 1 = |V(G')| \geq |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H) = \frac{3r}{2} + \frac{1}{4}\text{ex}(H) + \text{cc}(H).
\]

Since \(\text{ex}(H) \geq 0 \) and \(\text{cc}(H) \geq 1 \), this is only possible for \(\text{ex}(H) = 0 \), \(\text{cc}(H) = 1 \), and \(V(G') = V(H) \). By Lemma 4, \(H \) is a cactus with all blocks cycles of order 4, concretely, \(\frac{r}{2} \) cycles. If \(r \) is odd and \(s = \frac{3r+1}{2} \), then

\[
\frac{3r+1}{2} + 1 = s+1 = |V(G')| \geq |V(H)| = \frac{3}{4}|E(H)| + \frac{1}{4}\text{ex}(H) + \text{cc}(H) = \frac{3r}{2} + \frac{1}{4}\text{ex}(H) + \text{cc}(H).
\]

This is only possible for \(\text{ex}(H) = 2 \), \(\text{cc}(H) = 1 \), and \(V(G') = V(H) \). By Lemma 4, \(H \) is a cactus with exactly \(\frac{r-1}{2} \) cycles: \(\frac{r-1}{2} - 1 \) cycles of order 4 and a cycle of order 6, or \(\frac{r-1}{2} \) cycles of order 4 and two bridges.

We also know that condition \(\lambda(G) = \lambda(G) \) implies the existence of a vertex \(w^* \in V(G) \subseteq V(G') = V(H) \) such that \(N_G(w^*) = U \), i.e., \(H \) has a vertex at the highest level. Lemma 5 allows us to conclude that \(H \) is connected and \(z \in V(H) \). Thus, \(H \) must be a chain of cycles of order 4, or a chain of a cycle of order 6 and cycles of order 4, or a chain of a bridge and cycles of order 4, plus another bridge hanging from a vertex of this chain, with both bridges having the same label and, by Proposition 4, not lying in a path with all vertices at different levels (see Figure 5).

In consequence, one of the following cases holds in \(H \): (i) \(z \) belongs to a cycle \(C \) of order 4; (ii) \(z \) belongs to a cycle \(C \) of order 6; (iii) \(z \) belongs to a bridge, \(e \). In this case, there is no \(x - z \) path of length \(i \) in \(H \) with consecutive vertices in levels \(i, i-1, \ldots, 1, 0 \) respectively containing both edges of \(H \) with label \(\ell(e) \). We may assume w.l.o.g. that the labels \(a, b, c \in U \) of the edges of \(C \) and \(e \) are those of Figure 6. Let \(w_0 \) be the vertex of \(G \) indicated in the same figure.

We claim that the set \(S = (U \setminus \{a\}) \cup \{w_0\} \) is an LD-set of \(\bar{G} \) with exactly \(r \) vertices. Indeed, if \(w_0 \neq w^* \), then \(N_G(a) \cap S = S \setminus \{w_0\} \), \(N_G(w^*) \cap S = \{w_0\} \) and for any \(x \in W \setminus \{w^*, w_0\}, N_G(x) \cap S = \{w_0\} \cup S' \), where \(S' = U \setminus (N_G(x) \cup \{a\}) \neq \emptyset \), since \(N_G(x) \neq U \setminus \{a\} \). Moreover, for
Figure 5: Examples of subgraphs H.

Figure 6: Possible cases for vertex z in subgraph H.

any pair of different vertices $x, y \in W \setminus \{w^*, w_0\}$, $N_G(x) \cap (U \setminus \{a\}) \neq N_G(y) \cap (U \setminus \{a\})$, implies that $N_{\overline{G}}(x) \cap S \neq N_{\overline{G}}(y) \cap S$. If $w_0 = w^*$, then $N_{\overline{G}}(a) \cap S = S \setminus \{w^*\}$, and for any $x \in W \setminus \{w^*\}$, $N_{\overline{G}}(x) \cap S = \{w^*\} \cup S'$, where $S' = U \setminus (N_G(x) \cup \{a\})$. Moreover, for any pair of different vertices $x, y \in W \setminus \{w^*\}$, $N_G(x) \cap (U \setminus \{a\}) \neq N_G(y) \cap (U \setminus \{a\})$, implies that $N_{\overline{G}}(x) \cap S \neq N_{\overline{G}}(y) \cap S$.

Proposition 8. For every pair (r, s), $r, s \in \mathbb{N}$, such that $3 \leq r$ and $\frac{3r}{2} + 1 \leq s \leq 2^r - 1$, there exists a bipartite graph $G(r, s)$ such that $\lambda(G) = \lambda(G) + 1$.

Proof. Let $s = \left\lceil \frac{3r}{2} + 1 \right\rceil$. Consider the bipartite graph $G(r, \left\lceil \frac{3r}{2} + 1 \right\rceil)$ such that $V = U \cup W$, $U = [r] = \{1, 2, \ldots, r\}$, and $W \subseteq \mathcal{P}([r]) \setminus \{\emptyset\}$ is defined as follows. For $r = 2k$ even:

$$W = \{[r]\} \cup \{[r] \setminus \{i\} : i \in [r]\} \cup \{[r] \setminus \{2i - 1, 2i\} : 1 \leq i \leq k\}$$

and for $r = 2k + 1$ odd:

$$W = \{[r]\} \cup \{[r] \setminus \{i\} : i \in [r]\} \cup \{[r] \setminus \{2i - 1, 2i\} : 1 \leq i \leq k - 1\}$$

$$\cup \{[r] \setminus \{r - 2, r - 1\}, [r] \setminus \{r - 1, r\}, [r] \setminus \{r - 2, r - 1, r\}\}$$
By construction, U is an LD-set of G with r vertices and by Corollary 2, U is not an LD-set of G (see in Figure 7 the U-associated graph, G^U). We claim that there is no LD-set in G with at most r vertices.

Suppose that S is an LD-set of G. We already know that $S \neq U$. Let us assume that $|S \cap U| = r - k$, $k \geq 1$. Consider the subgraph H of G^U induced by $2k$ edges of G^U with label $u \in U \setminus S$. Notice that, by definition, this subgraph exists and $z \notin V(H)$. Moreover, by Lemma 3 all connected components of H are cactus. Observe that, by definition of the associated graph G^U, the vertices lying at the same connected component of H have the same neighborhood in $S \cap U$. We know also that W induces a complete graph in G. Therefore, at least all but one vertex of each connected component of H must be in S. By Lemma 3, this value is

$$|V(H)| - cc(H) = \frac{3}{4} |E(H)| + \frac{1}{4} ex(H) = \frac{3}{4} 2k + \frac{1}{4} ex(H) = \frac{3}{2} k + \frac{1}{4} ex(H) \geq \frac{3}{2} k.$$

Hence, $|S| \geq (r - k) + \frac{3}{2} k = r + \frac{1}{2} k > r$.

Remark. We derive from this result that $\lambda(G) = r$. Nevertheless, a direct proof of this fact can be given: it can be proved in a similar way that there is no LD-set of G with less than r vertices.

For $s > \lceil \frac{3r}{2} + 1 \rceil$, we can add up to $2^r - 1 - r$ vertices to the set W of the graph $G(r, \lceil \frac{3r}{2} + 1 \rceil)$ taking into account that the neighborhoods in U of the vertices of W must be different and non-empty.

Theorem 3. Let r, s be a pair of integers such that $3 \leq r \leq s$.

1. There exists a bipartite graph $V(G) = U \cup W$ such that $|U| = r$, $|W| = s$ and $\lambda(G) = \lambda(G) - 1$.
2. There exists a bipartite graph $V(G) = U \cup W$ such that $|U| = r$, $|W| = s$ and $\lambda(G) = \lambda(G)$.
3. There exist a bipartite graph $V(G) = U \cup W$ such that $|U| = r$, $|W| = s$ and $\lambda(G) = \lambda(G) + 1$ if and only if $\frac{3r}{2} + 1 \leq s \leq 2^r - 1$.

Proof. To prove item (1), take the bi-star $K_2(r, s)$ and check that $\lambda(K_2(r, s)) = r + s - 2$ and $\lambda(K_2(r, s)) = r + s - 3$. To prove item (2), take the biclique $K_{r,s}$ and check that $\lambda(K_{r,s}) = \lambda(K_{r,s}) = r + s - 2$. Finally, observe that item (3) is a corollary of Propositions 3, 7 and Proposition 8.
References

[1] N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes on chains and cycles, *Eur. J. Combin.*, **25** (2004) 969–987.

[2] M. Blidia, M. Chellali, F. Maffray, J. Moncel, A. Semri, Locating-domination and identifying codes in trees, *Australas. J. Combin.*, **39** (2007) 219–232.

[3] R.C. Brigham, J.R. Carrington, Global domination, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs, Advanced Topics, Marcel Dekker, New York, 1998, pp. 30–320.

[4] R. C. Brigham, R. D. Dutton, Factor domination in graphs, *Discrete Math.*, **86**(1-3) (1990) 127–136.

[5] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, Locating-dominating codes: Bounds and extremal cardinalities, *Appl. Math. Comput.*, **220** (2013) 38–45.

[6] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, fifth edition, CRC Press, Boca Raton (FL), (2011).

[7] C. Chen, R. C. Lu, Z. Miao, Identifying codes and locating-dominating sets on paths and cycles, *Discrete Appl. Math.*, **159**(15) (2011) 1540–1547.

[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, *Fundamentals of domination in graphs*, Marcel Dekker, New York, 1998.

[9] C. Hernando, M. Mora, I. M. Pelayo, Nordhaus-Gaddum bounds for locating domination, *Eur. J. Combin.*, **36** (2014) 1–6.

[10] C. Hernando, M. Mora, I. M. Pelayo, On global location-domination in graphs, http://arxiv.org/abs/1312.0772, 2014.

[11] I. Honkala, T. Laihonen, On locating-dominating sets in infinite grids, *Eur. J. Combin.*, **27**(2) (2006) 218–227.

[12] A. Lobstein, Watching systems, identifying, locating-dominating ans discriminating codes in graphs, http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf

[13] D. F. Rall, P. J. Slater, On location-domination numbers for certain classes of graphs, *Congr. Numer.* **45** ((1984) 97–106.

[14] E. Sampathkumar, The global domination number of a graph, *J. Math. Phys. Sci.* **23** ((1989) 377–385.

[15] P. J. Slater, Dominating and reference sets in a graph, *J. Math. Phys. Sci.* **22** (1988) 445–455.