The Role of Exchangeability in Causal Inference
Olli Saarela, David A. Stephens and Erica E. M. Moodie 369

Aitchison’s Compositional Data Analysis 40 Years on: A Reappraisal
Michael Greenacre, Éric Grunsky, John Bacon-Shone, Jonas Erb and Thomas Quinn 386

Statistical Embedding: Beyond Principal Components
Dag Tjøstheim, Martin Jullum and Anders Løland 411

Can We Reliably Detect Biases that Matter in Observational Studies? Paul R. Rosenbaum 440

Experimental Design in Marketplaces Patrick Bajari, Brian Burdick, Guido W. Imbens,
Lorenzo Masoero, James McQueen, Thomas S. Richardson and Ido M. Rosen 458

Parameter Restrictions for the Sake of Identification: Is There Utility in Asserting That
Perhaps a Restriction Holds? Paul Gustafson 477

Variational Inference for Cutting Feedback in Misspecified Models
Xuejun Yu, David J. Nott and Michael Stanley Smith 490

Note on Legendre’s Method of Least Squares Jukka Nyblom 510

A Conversation with Mary E. Thompson Rhonda J. Rosychuk 514
The Role of Exchangeability in Causal Inference
Olli Saarela, David A. Stephens and Erica E. M. Moodie

Aitchison’s Compositional Data Analysis 40 Years on: A Reappraisal
Michael Greenacre, Eric Grunsky, John Bacon-Shone, Ionas Erb and Thomas Quinn

Statistical Embedding: Beyond Principal Components
Dag Tjøstheim, Martin Jullum and Anders Løland

Can We Reliably Detect Biases that Matter in Observational Studies?
Paul R. Rosenbaum

Experimental Design in Marketplaces
Patrick Bajari, Brian Burdick, Guido W. Imbens, Lorenzo Masoero, James McQueen, Thomas S. Richardson and Ido M. Rosen

Parameter Restrictions for the Sake of Identification: Is There Utility in Asserting That Perhaps a Restriction Holds?
Paul Gustafson

Variational Inference for Cutting Feedback in Misspecified Models
Xuejun Yu, David J. Nott and Michael Stanley Smith

Note on Legendre’s Method of Least Squares
Jukka Nyblom

A Conversation with Mary E. Thompson
Rhonda J. Rosychuk
The Role of Exchangeability in Causal Inference

Olli Saarela, David A. Stephens and Erica E. M. Moodie

Abstract. Though the notion of exchangeability has been discussed in the causal inference literature under various guises, it has rarely taken its original meaning as a symmetry property of probability distributions. As this property is a standard component of Bayesian inference, we argue that in Bayesian causal inference it is natural to link the causal model, including the notion of confounding and definition of causal contrasts of interest, to the concept of exchangeability. Here, we propose a probabilistic between-group exchangeability property as an identifying condition for causal effects, relate it to alternative conditions for unconfounded inferences (commonly stated using potential outcomes) and define causal contrasts in the presence of exchangeability in terms of posterior predictive expectations for further exchangeable units. While our main focus is on a point treatment setting, we also investigate how this reasoning carries over to longitudinal settings.

Key words and phrases: Bayesian inference, causal inference, confounding, exchangeability, posterior predictive inference.

REFERENCES

ARJAS, E. (2012). Causal inference from observational data: A Bayesian predictive approach. In Causality: Statistical Perspectives and Applications (C. Berzuini, A. P. Dawid and L. Bernardinelli, eds.) 71–84. Wiley, NY.

ARJAS, E. and PARNER, J. (2004). Causal reasoning from longitudinal data. Scand. J. Stat. 31 171–187. MR2066247 https://doi.org/10.1111/j.1467-9469.2004.0134.x

BAKER, S. G. (2013). Causal inference, probability theory, and graphical insights. Stat. Med. 32 4319–4330. MR3118357 https://doi.org/10.1002/sim.5828

BERNARDO, J.-M. and SMITH, A. F. M. (1994). Bayesian Theory. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, Chichester. MR1274699 https://doi.org/10.1002/sim.5828

BIJLSMA, M. J., TARKIAINEN, L., MYRSKYLÄ, M. and MARTIKAINEN, P. (2017). Unemployment and subsequent depression: A mediation analysis using the parametric G-formula. Soc. Sci. Med. 194 142–150.

BUHLMANN, P. (2020). Invariance, causality and robustness: 2018 Neyman Lecture. Statist. Sci. 35 404–426. MR4148216 https://doi.org/10.1214/19-STS721

CHAKRABORTY, B. and MURPHY, S. A. (2014). Dynamic treatment regimes. Annu. Rev. Stat. Appl. 1 447–464.

CHIB, S. (2007). Analysis of treatment response data without the joint distribution of potential outcomes. J. Econometrics 140 401–412. MR2408912 https://doi.org/10.1016/j.jeconom.2006.07.009

COLE, S. R. and FRANGAKIS, C. E. (2009). The consistency statement in causal inference: A definition or an assumption? Epidemiology 20 3–5.

COMMENGES, D. (2019). Causality without potential outcomes and the dynamic approach. Preprint. Available at arXiv:1905.01195.

COMMENGES, D. and GÉGOUT-PETIT, A. (2015). The stochastic system approach for estimating dynamic treatments effect. Lifetime Data Anal. 21 561–578. MR3397506 https://doi.org/10.1007/s10985-015-9322-3

DAWID, A. P. (2000). Causal inference without counterfactuals. J. Amer. Statist. Assoc. 95 407–448. MR1803167 https://doi.org/10.2307/2669377

DAWID, P. (2021). Decision-theoretic foundations for statistical causality. J. Causal Inference 9 39–77. MR4289525 https://doi.org/10.1515/jci-2020-0008

DAWID, A. P. and DIDELEZ, V. (2010). Identifying the consequences of dynamic treatment strategies: A decision-theoretic overview. Stat. Surv. 4 184–231. MR2740837 https://doi.org/10.1214/10-SS081

DAWID, A. P., MUSIO, M. and Fienberg, S. E. (2016). From statistical evidence to evidence of causality. Bayesian Anal. 11 725–752. MR3498044 https://doi.org/10.1214/15-BA968

DE FINETTI, B. (1928). Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 di Settembre di 1928 179–190.

DE FINETTI, B. (1929). Sur la condition d’équivalence partielle. Actual. Sci. Ind. 739. Translated In: Studies in Inductive and Proba-
WESTREICH, D., COLE, S. R., YOUNG, J. G., PALELLA, F.,
Tien, P. C., KINGSLEY, L., GANGE, S. J. and HERNÁN, M. A.
(2012). The parametric g-formula to estimate the effect of highly
active antiretroviral therapy on incident AIDS or death. *Stat. Med.*
31 2000–2009. MR2956032 https://doi.org/10.1002/sim.5316
Aitchison’s Compositional Data Analysis 40 Years on: A Reappraisal

Michael Greenacre®, Eric Grunsky®, John Bacon-Shone®, Ionas Erb® and Thomas Quinn®

Abstract. The development of John Aitchison’s approach to compositional data analysis is followed since his paper read to the Royal Statistical Society in 1982. Aitchison’s logratio approach, which was proposed to solve the problematic aspects of working with data with a fixed-sum constraint, is summarized and reappraised. It is maintained that the properties on which this approach was originally built, the main one being subcompositional coherence, are not required to be satisfied exactly—quasi-coherence is sufficient, that is near enough to being coherent for all practical purposes. This opens up the field to using simpler data transformations, such as power transformations, that permit zero values in the data. The additional property of exact isometry, which was subsequently introduced and not in Aitchison’s original conception, imposed the use of isometric logratio transformations, but these are complicated and problematic to interpret, involving ratios of geometric means. If this property is regarded as important in certain analytical contexts, for example, unsupervised learning, it can be relaxed by showing that regular pairwise logratios, as well as the alternative quasi-coherent transformations, can also be quasi-isometric, meaning they are close enough to exact isometry for all practical purposes. It is concluded that the isometric and related logratio transformations such as pivot logratios are not a prerequisite for good practice, although many authors insist on their obligatory use. This conclusion is fully supported here by case studies in geochemistry and in genomics, where the good performance is demonstrated of pairwise logratios, as originally proposed by Aitchison, or Box–Cox power transforms of the original compositions where no zero replacements are necessary.

Key words and phrases: Box–Cox transformation, compositional modeling, correspondence analysis, isometry, logratio transformations, log-contrast, principal component analysis, Procrustes analysis, subcompositional coherence.

REFERENCES

[1] AITCHISON, J. (1982). The statistical analysis of compositional data. J. Roy. Statist. Soc. Ser. B 44 139–177. MR0676206
[2] AITCHISON, J. (1986). The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. CRC Press, London. MR0865647 https://doi.org/10.1007/978-94-009-4109-0
[3] AITCHISON, J. (1997). The one-hour course in compositional data analysis, or compositional data analysis is simple. In Proceedings of IAMG ’97 (V. Pawlowsky-Glahn, ed.) 3–35. CIMNE, Barcelona.
[4] AITCHISON, J. (2008). The single principle of compositional data analysis, continuing fallacies, confusions and misunderstandings and some suggested remedies. In Proceedings of CodaWork’08, Keynote Address 3–35 URL: https://core.ac.uk/download/pdf/132548276.pdf.
[5] AITCHISON, J. and BACON-SHONE, J. (1984). Log constrast models for experiments with mixtures. Biometrika 71 323–330.
[6] AITCHISON, J. and GREENACRE, M. (2002). Biplots of com-
[77] Quinn, T. P., Richardson, M. F., Lovell, D. and Crowley, T. M. (2017). Propr: An R-package for identifying proportionally abundant features using compositional data analysis. Sci. Rep. 7 16252–16259.

[78] Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. J. Amer. Statist. Assoc. 66 846–850.

[79] Ren, B., Bacallado, S., Favaro, S., Holmes, S. and Trippa, L. (2017). Bayesian nonparametric ordination for the analysis of microbial communities. J. Amer. Statist. Assoc. 112 1430–1442. MR3750866 https://doi.org/10.1080/01621459.2017.1288631

[80] Rey, F., Greenacre, M., Silva Neto, G. M., Bueno-Pardo, J., Domingues, M. R. and Calado, R. (2022). Fatty acid ratio analysis identifies changes in competent meroplanktonic larvae sampled over different supply events. Mar. Environ. Res. 173 105517.

[81] Scayl, J. L. and Welsh, A. H. (2011). Regression for compositional data by using distributions defined on the hypersphere. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 351–375. MR2815780 https://doi.org/10.1111/j.1467-9868.2010.00766.x

[82] Scayl, J. L. and Welsh, A. H. (2014). Colours and cocktails: Compositional data analysis 2013 Lancaster lecture. Aust. N. Z. J. Stat. 56 145–169. MR3226434 https://doi.org/10.1111/anzs.12073

[83] Smithson, M. and Broomell, S. B. (2022). Compositional data analysis tutorial. Psychol. Methods 27. https://doi.org/10.1037/met0000464

[84] Smyth, D. (2007). Methods used in the Tellus Geochemical Mapping of Northern Ireland. British Geological Survey, Open Report, OR/07/022.

[85] Stanley, C. R. (2019). Molar element ratio analysis of litho-geochemical data: A toolbox for use in mineral exploration and mining. Geochem., Explor. Environ. Anal. 20 233–256.

[86] Stephens, M. A. (1982). Use of the von Mises distribution to analyse continuous proportions. Biometrika 69 197–203. MR0655685 https://doi.org/10.1093/biomet/69.1.197

[87] te Beest, D. E., Nijhuis, E. H., Möhlmann, T. W. R. and ter Braak, C. J. F. (2021). Log-ratio analysis of microbiome data with many zeroes is library size dependent. Mol. Ecol. Resour. 21 1866–1874. https://doi.org/10.1111/1755-0998.13391

[88] R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[89] Townes, F. W., Hicks, S. C., Aryee, M. J. and Irizarry, R. A. (2019). Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. Genome Biol. 20 295. https://doi.org/10.1186/s13059-019-1861-6

[90] Van den Boogaart, K. G. and Tolosana-Delgado, R. (2013). Analyzing Compositional Data with R. Use R! Springer, Heidelberg. MR3099409 https://doi.org/10.1007/978-3-642-36809-7

[91] Van den Wollenberg, A. L. (1977). Redundancy analysis, an alternative for canonical analysis. Psychometrika 42 207–219.

[92] Wood, J. and Greenacre, M. (2021). Making the most of expert knowledge to analyse archaeological data: A case study on Parthian and Sasanian glazed pottery. Archael. Anthrop. Sci. 13 110.

[93] Yoo, J., Sun, Z., Greenacre, M., Mad, Q., Chung, D. and Kim, Y. M. (2022). A guideline for the statistical analysis of compositional data in immunology. Commun. Stat. Appl. Methods 29 453–469.
Statistical Embedding: Beyond Principal Components

Dag Tjøstheim, Martin Jullum and Anders Løland

Abstract. There has been an intense recent activity in embedding of very high-dimensional and nonlinear data structures, much of it in the data science and machine learning literature. We survey this activity in four parts. In the first part, we cover nonlinear methods such as principal curves, multidimensional scaling, local linear methods, ISOMAP, graph-based methods and diffusion mapping, kernel based methods and random projections. The second part is concerned with topological embedding methods, in particular mapping topological properties into persistence diagrams and the Mapper algorithm. Another type of data sets with a tremendous growth is very high-dimensional network data. The task considered in part three is how to embed such data in a vector space of moderate dimension to make the data amenable to traditional techniques such as cluster and classification techniques. Arguably, this is the part where the contrast between algorithmic machine learning methods and statistical modeling, represented by the so-called stochastic block model, is at its greatest. In the paper, we discuss the pros and cons for the two approaches. The final part of the survey deals with embedding in \mathbb{R}^2, that is, visualization. Three methods are presented: t-SNE, UMAP and LargeVis based on methods in parts one, two and three, respectively. The methods are illustrated and compared on two simulated data sets; one consisting of a triplet of noisy Ranunculoid curves, and one consisting of networks of increasing complexity generated with stochastic block models and with two types of nodes.

Key words and phrases: Statistical embedding, principal component, nonlinear principal component, multidimensional scaling, local linear method, ISOMAP, graph spectral theory, diffusion mapping, reproducing kernel Hilbert space, random projection, topological data analysis and embedding, persistent homology, persistence diagram, the Mapper, network embedding, spectral embedding, stochastic block modeling, Skip-Gram, neighborhood sampling strategies, visualization, t-SNE, LargeVis, UMAP.

REFERENCES

Aizerman, M. A., Braverman, E. M. and Rozonoer, L. I. (1956). Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control 25 821–137.

Armillotta, M., Fokianos, K. and Krikidis, I. (2022). Generalized linear models network autoregression. In Network Science 112–125. International Conference on Network Science.

Baglama, J. and Reichel, L. (2005). Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput. 27 19–42. MR2201173 https://doi.org/10.1137/04060593X

Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Information Processing Systems (T. K. Leen, T. G. Dietterich and V. Treps, eds.). MIT Press, Cambridge, MA.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15 1373–1396.

Bian, R., Koh, Y. S., Dobbie, G. and Divoli, A. (2019). Network embedding and change modeling in dynamic heterogeneous networks. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval 861–864.

Bickel, P. and Chen, A. (2009). A nonparametric view of network models and Newman–Girvan and other modularities. Proc. Natl. Acad. Sci. 106 21068–21073.

Dag Tjøstheim is Professor Emeritus at the Department of Mathematics, University of Bergen, Bergen, Norway and Professor II at the Norwegian Computing Center, Oslo, Norway (e-mail: Dag.Tjostheim@uib.no). Martin Jullum is Senior Research Scientist at the Norwegian Computing Center, Oslo, Norway (e-mail: Martin.Jullum@nr.no). Anders Løland is Research Director at the Norwegian Computing Center, Oslo, Norway (e-mail: Anders.Loland@nr.no).
Can We Reliably Detect Biases that Matter in Observational Studies?

Paul R. Rosenbaum

Abstract. In an observational study of the effects caused by a treatment, biases from unmeasured covariates remain a concern even after successful adjustments for measured covariates. This concern is partly addressed by demonstrating that the qualitative conclusions of the primary analysis would not be altered by small or moderate biases—that these conclusions are insensitive to small or moderate bias. Additionally, the concern is partly addressed by collecting additional information, such as outcomes known to be unaffected by the treatment, and using this information as a test of various biases. Is there a gap between these two activities? Perhaps the study is insensitive to small biases, and we can detect large biases, but the study is sensitive to moderate biases that cannot be detected—that is an informal description of a gap. The concept of “no gap” is defined formally in Definition 3.1, and the probability of “no gap” is determined under various sampling situations. When there is no gap, ask: Are causal conclusions measurably strengthened? If so, by how much? The answer depends upon the covering design sensitivity, $\tilde{\Gamma}$, defined to be the smallest bias that can explain both the ostensible effect of the treatment on the primary outcome and the evidence of bias provided by the unaffected outcome. The covering design sensitivity is calculated in various contexts. A small observational study of the effects of light alcohol consumption on HDL cholesterol is used to illustrate ideas and methods.

Key words and phrases: Causal inference, detecting bias, observational study, sensitivity analysis.

REFERENCES

[1] AGENCY, U. E. P. (2021). How people are exposed to mercury. Available at www.epa.gov/mercury.
[2] ALBERS, W., BICKEL, P. J. and VAN ZWET, W. R. (1976). Asymptotic expansions for the power of distribution free tests in the one-sample problem. *Ann. Statist.* 4 108–156. MR0391373
[3] BERGER, R. L. and BOOS, D. D. (1994). P values maximized over a confidence set for the nuisance parameter. *J. Amer. Statist. Assoc.* 89 1012–1016. MR1294746
[4] BERK, R. H. and JONES, D. H. (1978). Relatively optimal combinations of test statistics. *Scand. J. Stat.* 5 158–162. MR0509452
[5] BIRCH, M. W. (1964). The detection of partial association. I. The 2×2 case. *J. Roy. Statist. Soc. Ser. B* 26 313–324. MR0176562
[6] BONVINI, M. and KENNEDY, E. H. (2022). Sensitivity analysis via the proportion of unmeasured confounding. *J. Amer. Statist. Assoc.* 117 1540–1550. MR4480730 https://doi.org/10.1080/01621459.2020.1864382
[7] BROWN, B. M. (1981). Symmetric quantile averages and related estimators. *Biometrika* 68 235–242. MR0614960 https://doi.org/10.1093/biomet/68.1.235
[8] CAMPBELL, D. T. (1969). Prospective: Artifact and control. In *Artifacts in Behavioral Research* (R. Rosenthal and R. Rosnow, eds.) Academic Press, New York.
[9] FISHER, R. A. (1935). *The Design of Experiments*. Oliver & Boyd, Edinburgh.
[10] FOGARTY, C. B. and SMALL, D. S. (2016). Sensitivity analysis for multiple comparisons in matched observational studies through quadratically constrained linear programming. *J. Amer. Statist. Assoc.* 111 1820–1830. MR3601738 https://doi.org/10.1080/01621459.2015.1120675
[11] GASTWIRTH, J. L. (1966). On robust procedures. *J. Amer. Statist. Assoc.* 61 929–948. MR0205397
[12] GASTWIRTH, J. L., KRIEGER, A. M. and ROSENBAUM, P. R. (2000). Asymptotic separability in sensitivity analysis. *J. R. Stat. Soc. Ser. B. Stat. Methodol.* 62 545–555. MR1772414 https://doi.org/10.1111/1467-9868.00249
[13] GOODMAN, S. N., SCHNEEWEISS, S. and BAIOCCHI, M. (2017). Using design thinking to differentiate useful from misleading evidence in observational research. *J. Amer. Med. Assoc.* 317 705–707.
[14] GROENEVELD, R. A. (1972). Asymptotically optimal group rank tests for location. *J. Amer. Statist. Assoc.* 67 847–849.
[54] SHI, X., MIAO, W. and TCHETGEN TCHETGEN, E. (2020). A selective review of negative control methods in epidemiology. *Curr. Epidemiol. Rep.*, 7 190–202.

[55] SUH, I., SHATEN, B. J., CUTLER, J. A. and KULLER, L. H. (1992). Alcohol use and mortality from coronary heart disease: The role of high-density lipoprotein cholesterol. The multiple risk factor intervention trial research group. *Ann. Intern. Med.* **116** 881–887. https://doi.org/10.7326/0003-4819-116-11-881

[56] SUNDARAM, R. K. (1996). *A First Course in Optimization Theory*. Cambridge Univ. Press, Cambridge. MR1402910 https://doi.org/10.1017/CBO9780511804526

[57] TARDIF, S. (1987). Efficiency and optimality results for tests based on weighted rankings. *J. Amer. Statist. Assoc.* **82** 637–644. MR0898370

[58] TCHETGEN TCHETGEN, E. J. (2014). The control outcome calibration approach for causal inference with unobserved confounding. *Amer. J. Epidemiol.* **179** 633–640.

[59] TCHETGEN TCHETGEN, E. J., YING, A., CUI, Y., SHI, X. and MIAO, W. (2020). An introduction to proximal causal learning. ArXiv Preprint. Available at arXiv:2009.10982.

[60] YU, B. and GASTWIRTH, J. L. (2005). Sensitivity analysis for trend tests: Application to the risk of radiation exposure. *Biostatistics* **6** 201–209.

[61] ZHAO, Q. (2019). On sensitivity value of pair-matched observational studies. *J. Amer. Statist. Assoc.* **114** 713–722. MR3963174 https://doi.org/10.1080/01621459.2018.1429277
Experimental Design in Marketplaces

Patrick Bajari, Brian Burdick, Guido W. Imbens, Lorenzo Masoero, James McQueen, Thomas S. Richardson and Ido M. Rosen

Abstract. Classical Randomized Controlled Trials (RCTs), or A/B tests, are designed to draw causal inferences about a population of units, for example, individuals, plots of land or visits to a website. A key assumption underlying a standard RCT is the absence of interactions between units, or the stable unit treatment value assumption (Ann. Statist. 6 (1978) 34–58). Modern experimentation, however, is often conducted in settings characterized by complex interactions between units. Such interactions can invalidate the standard estimators and make classical experimental designs ineffective. Although the presence of interference forces us to make untestable assumptions on the nature of the interactions even under randomization, sophisticated experimental designs can ameliorate the dependence on such assumptions. In this manuscript, we review the recent and rapidly growing literature on novel experimental designs for these settings. One key feature common to many of these designs is the presence of multiple layers of randomization within the same experiment. We discuss a novel experimental design, called Multiple Randomization Designs or MRDs, that provides a general framework for such experiments. Through these complex designs, we can study questions about causal effects in the presence of interference that cannot be answered by classical RCTs.

Key words and phrases: Experimental design, causal inference, online experimentation, multiple randomization designs, two-sided marketplaces.

REFERENCES

ARONOW, P. M. (2012). A general method for detecting interference between units in randomized experiments. Sociol. Methods Res. 41 3–16. MR3190698 https://doi.org/10.1177/0049124112437535

ARONOW, P. M. and SAMII, C. (2017). Estimating average causal effects under general interference, with application to a social network experiment. Ann. Appl. Stat. 11 1912–1947. MR3743283 https://doi.org/10.1214/16-AOAS1005

ATHEY, S., ECKLES, D. and IMBENS, G. W. (2018). Exact p-values for network interference. J. Amer. Statist. Assoc. 113 230–240. MR3803460 https://doi.org/10.1080/01621459.2016.1241178

ATHEY, S. and IMBENS, G. W. (2022). Design-based analysis in difference-in-differences settings with staggered adoption. J. Econometrics 226 62–79. MR4348786 https://doi.org/10.1016/j.jeconom.2020.10.012

BACKSTROM, L. and KLEINBERG, J. (2011). Network bucket testing. In Proceedings of the 20th International Conference on World Wide Web 615–624.

Bajari, P., Burdick, B., Imbens, G. W., Masoero, L., McQueen, J., Richardson, T. and Rosen, I. M. (2021). Multiple randomization designs. arXiv preprint. Available at arXiv:2112.13495.

Basse, G. W., Feller, A. and Toulis, P. (2019). Randomization tests of causal effects under interference. Biometrika 106 487–494. MR3949317 https://doi.org/10.1093/biomet/asy072

Bojinov, I., Simchi-Levi, D. and Zhao, J. (2020). Design and analysis of switchback experiments. Available at SSRN 3684168.

Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D., Marlow, C., Settle, J. E. and Fowler, J. H. (2012). A 61-million-person experiment in social influence and political mobilization. Nature 489 295–298.

Brandt, A. (1938). Tests of significance in reversal or switchback trials. Iowa Agric. Home Econ. Exp. Stat. Res. Bull. 21 1.

Brown, B. W. Jr. (1980). The crossover experiment for clinical trials. Biometrics 69–79.

Cochran, W. (1939). Long-term agricultural experiments. Suppl. J. R. Stat. Soc. 6 104–148.

Patrick Bajari is Vice President, Amazon, Seattle, WA 98109, USA (e-mail: patrickbajari@gmail.com). Brian Burdick was Director of Research at Core-AI at Amazon while doing this work. Guido W. Imbens is Professor of Economics, Graduate School of Business and Department of Economics, Stanford University, SIEPR, NBER, Stanford, California 94305, USA (e-mail: imbens@stanford.edu). Lorenzo Masoero is Research Scientist, Amazon, Seattle, WA 98109, USA (e-mail: masoerl@amazon.com). James McQueen is Principal Scientist, Amazon, Seattle, WA 98109, USA (e-mail: jmcq@amazon.com). Thomas S. Richardson is Professor of Statistics, University of Washington, Seattle, WA 98195, USA (e-mail: thomasr@uwashington.edu). Ido M. Rosen is Sr Principal Scientist, Core AI, Amazon, Seattle, WA 98109, USA (e-mail: ido@uchicago.edu).
Parameter Restrictions for the Sake of Identification: Is There Utility in Asserting That Perhaps a Restriction Holds?

Paul Gustafson

Abstract. Statistical modeling can involve a tension between assumptions and statistical identification. The law of the observable data may not uniquely determine the value of a target parameter without invoking a key assumption, and, while plausible, this assumption may not be obviously true in the scientific context at hand. Moreover, there are many instances of key assumptions which are untestable, hence we cannot rely on the data to resolve the question of whether the target is legitimately identified. Working in the Bayesian paradigm, we consider the grey zone of situations where a key assumption, in the form of a parameter space restriction, is scientifically reasonable but not incontrovertible for the problem being tackled. Specifically, we investigate statistical properties that ensue if we structure a prior distribution to assert that maybe or perhaps the assumption holds. Technically this simply devolves to using a mixture prior distribution putting just some prior weight on the assumption, or one of several assumptions, holding. However, while the construct is straightforward, there is very little literature discussing situations where Bayesian model averaging is employed across a mix of fully identified and partially identified models.

Key words and phrases: Bayesian model averaging, Bayes risk, large-sample theory, partial identification.

REFERENCES

BERGER, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer Series in Statistics. Springer, New York. MR0804611 https://doi.org/10.1007/978-1-4757-4286-2

CASELLA, G. and BERGER, R. L. (2002). Statistical Inference, 2nd ed. Duxbury, N. Scituate.

CHEN, C. F. (1985). On asymptotic normality of limiting density functions with Bayesian implications. J. Roy. Statist. Soc. Ser. B 47 540–546. MR0844485

DANIELS, M. J. and HOGAN, J. W. (2008). Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis. Chapman & Hall, CRC Press, New York. https://doi.org/10.1201/9781420011180

FOX, M. P., MACLEHOSE, R. F. and LASH, T. L. (2022). Applying Quantitative Bias Analysis to Epidemiologic Data, 2nd ed. Springer, Berlin. https://doi.org/10.1007/978-3-030-82673-4

FRANKS, A. M., D’AMOUR, A. and FELLER, A. (2020). Flexible sensitivity analysis for observational studies without observable implications. J. Amer. Statist. Assoc. 115 1730–1746. MR4189753 https://doi.org/10.1080/01621459.2019.1604369

GREENLAND, S. (2003). The impact of prior distributions for uncontrolled confounding and response bias: A case study of the relation of wire codes and magnetic fields to childhood leukemia. J. Amer. Statist. Assoc. 98 47–54. MR1977199 https://doi.org/10.1198/01621450338861905

GREENLAND, S. (2005). Multiple-bias modelling for analysis of observational data. J. Roy. Statist. Soc. Ser. A 168 267–306. MR2119402 https://doi.org/10.1111/j.1467-985X.2004.00349.x

GUSTAFSON, P. (2007). Measurement error modelling with an approximate instrumental variable. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 797–815. MR2368571 https://doi.org/10.1111/j.1467-9868.2007.00611.x

GUSTAFSON, P. (2015). Bayesian Inference for Partially Identified Models: Exploring the Limits of Limited Data. Monographs on Statistics and Applied Probability 141. CRC Press, Boca Raton, FL. MR3642458

GUSTAFSON, P. (2023). Supplement to “Parameter restrictions for the sake of identification: Is there utility in asserting that perhaps a restriction holds?.” https://doi.org/10.1214/23-STS885SUPP

GUSTAFSON, P. and GREENLAND, S. (2009). Interval estimation for messy observational data. Statist. Sci. 24 328–342. MR2757434 https://doi.org/10.1214/09-STS305

Paul Gustafson is Professor, Department of Statistics, University of British Columbia, Vancouver, Canada (e-mail: gustaf@stat.ubc.ca).
Gustafson, P., Le, N. D. and Sasaki, R. (2001). Case-control analysis with partial knowledge of exposure misclassification probabilities. *Biometrics* **57** 598–609. MR1855698 https://doi.org/10.1111/j.0006-341X.2001.00598.x

Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors). *Statist. Sci.* **14** 382–417. MR1765176 https://doi.org/10.1214/ss/1009212519

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. *J. Amer. Statist. Assoc.* **90** 773–795. MR3363402 https://doi.org/10.1080/01621459.1995.10476572

Keele, L. and Quinn, K. M. (2017). Bayesian sensitivity analysis for causal effects from 2×2 tables in the presence of unmeasured confounding with application to presidential campaign visits. *Ann. Appl. Stat.* **11** 1974–1997. MR3743285 https://doi.org/10.1214/17-AOAS1048

Lash, T. L., Fox, M. P., MacLehose, R. F., Maldonado, G., McCandless, L. C. and Greenland, S. (2014). Good practices for quantitative bias analysis. *Int. J. Epidemiol.* **43** 1969–1985. https://doi.org/10.1093/ije/dyu080

Little, R. J. A. and Rubin, D. B. (2019). *Statistical Analysis with Missing Data*, Vol. 793, 3rd ed. Wiley, New York.

Manski, C. F. (2003). *Partial Identification of Probability Distributions*. *Springer Series in Statistics*. Springer, New York. MR2151380

Scharfstein, D. O., Daniels, M. J. and Robins, J. M. (2003). Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes. *Biostatistics* **4** 495–512. https://doi.org/10.1093/biostatistics/4.4.495

Vansteelandt, S., Goetghebeur, E., Kenward, M. G. and Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. *Statist. Sinica* **16** 953–979. MR2281311

Verstraeten, T., Farah, B., Duchateau, L. and Matu, R. (1998). Pooling sera to reduce the cost of HIV surveillance: A feasibility study in a rural Kenyan district. *Trop. Med. Int. Health* **3** 747–750. https://doi.org/10.1046/j.1365-3156.1998.00293.x

Wang, F. and Gelfand, A. E. (2002). A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models. *Statist. Sci.* **17** 193–208. MR1925941 https://doi.org/10.1214/ss/1030550861

Wasserman, L. (2000). Bayesian model selection and model averaging. *J. Math. Psych.* **44** 92–107. MR1770003 https://doi.org/10.1006/jmps.1999.1278

White, H. (1982). Maximum likelihood estimation of misspecified models. *Econometrica* **50** 1–25. MR0640163 https://doi.org/10.2307/1912526

Xia, M. and Gustafson, P. (2016). Bayesian regression models adjusting for unidirectional covariate misclassification. *Canad. J. Statist.* **44** 198–218. MR3507780 https://doi.org/10.1002/cjs.11284

Xia, M. and Gustafson, P. (2018). Bayesian inference for unidirectional misclassification of a binary response trait. *Stat. Med.* **37** 933–947. MR3760458 https://doi.org/10.1002/sim.7555
Variational Inference for Cutting Feedback in Misspecified Models

Xuejun Yu, David J. Nott and Michael Stanley Smith

Abstract. Bayesian analyses combine information represented by different terms in a joint Bayesian model. When one or more of the terms is misspecified, it can be helpful to restrict the use of information from suspect model components to modify posterior inference. This is called “cutting feedback,” and both the specification and computation of the posterior for such “cut models” is challenging. In this paper, we define cut posterior distributions as solutions to constrained optimization problems, and propose variational methods for their computation. These methods are faster than existing Markov chain Monte Carlo (MCMC) approaches by an order of magnitude. It is also shown that variational methods allow for the evaluation of computationally intensive conflict checks that can be used to decide whether or not feedback should be cut. Our methods are illustrated in a number of simulated and real examples, including an application where recent methodological advances that combine variational inference and MCMC within the variational optimization are used.

Key words and phrases: Bayesian model criticism, cutting feedback, model misspecification, modular inference.

REFERENCES

[1] ALQUIER, P., RIDGWAY, J. and CHOPIN, N. (2016). On the properties of variational approximations of Gibbs posteriors. J. Mach. Learn. Res. 17 239. MR3595173

[2] BENNETT, J. and WAKEFIELD, J. (2001). Errors-in-variables in joint population pharmacokinetic/pharmacodynamic modeling. Biometrics 57 803–812. MR1863449 https://doi.org/10.1111/j.0006-341X.2001.00803.x

[3] BISSIRI, P. G., HOLMES, C. C. and WALKER, S. G. (2016). A general framework for updating belief distributions. J. R. Stat. Soc. Ser. B, Stat. Methodol. 78 1103–1130. MR3557191 https://doi.org/10.1111/rssb.12158

[4] BLANGIARDO, M., HANSELL, A. and RICHARDSON, S. (2011). A Bayesian model of time activity data to investigate health effect of air pollution in time series studies. Atmos. Environ. 45 379–386.

[5] BLEI, D. M., KUCUKELBIR, A. and MCÄULIFFE, J. D. (2017). Variational inference: A review for statisticians. J. Amer. Statist. Assoc. 112 859–877. MR3671776 https://doi.org/10.1080/01621459.2017.1285773

[6] CARMONA, C. and NICCHOLS, G. (2020). Semi-modular inference: Enhanced learning in multi-modular models by tempering the influence of components. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics (S. Chiappa and R. Calandra, eds.). Proceedings of Machine Learning Research 108 4226–4235.

[7] CARMONA, C. and NICHOLLS, G. (2022). Scalable Semi-Modular Inference with Variational Meta-Posteriors. Available at arXiv:2204.00296.

[8] CARPENTER, B., GELMAN, A., HOFFMAN, M. D., LEE, D., GOODRICH, B., BETANCOURT, M., BRUBAKER, M., GUO, J., LI, P. et al. (2017). Stan: A probabilistic programming language. J. Stat. Softw. 76 1–32.

[9] DEL MORAL, P., DOUCET, A. and JASRA, A. (2006). Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B, Stat. Methodol. 68 411–436. MR2278333 https://doi.org/10.1111/j.1467-9868.2006.00553.x

[10] EVANS, M. (2015). Measuring Statistical Evidence Using Relative Belief. Monographs on Statistics and Applied Probability 144. CRC Press, Boca Raton, FL. MR3616661

[11] FRAZIER, D. T., LOAIZA-MAYA, R., MARTIN, G. M. and KOO, B. (2021). Loss-Based Variational Bayes Prediction. Available at arXiv:2104.14054.

[12] FRAZIER, D. T. and NOTT, D. J. (2022). Cutting feedback and modularized analyses in generalized Bayesian inference. Available at arXiv:2202.09968.

[13] GELMAN, A., MENG, X.-L. and STERN, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statist. Sinica 6 733–807. MR1422404

[14] HAN, S., LIAO, X., DUNSON, D. and CARIN, L. (2016). Variational Gaussian copula inference. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics

Xuejun Yu is Research Fellow, Department of Paediatrics, NUS Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore. David J. Nott is Associate Professor, Department of Statistics and Data Science, National University of Singapore, 117546, Singapore (e-mail: standj@nus.edu.sg). Michael Stanley Smith is Chair of Management (Econometrics), Melbourne Business School, University of Melbourne, 200 Leicester Street, Carlton, Victoria 3053, Australia.
[48] TITSIAS, M. and LÁZARO-GREDILLA, M. (2014). Doubly stochastic variational Bayes for non-conjugate inference. In Proceedings of the 31st International Conference on Machine Learning (E. P. Xing and T. Jebara, eds.). Proceedings of Machine Learning Research 32 1971–1979.

[49] WAND, M. P. (2017). Fast approximate inference for arbitrarily large semiparametric regression models via message passing. J. Amer. Statist. Assoc. 112 137–156. MR3646558 https://doi.org/10.1080/01621459.2016.1197833

[50] WANG, Y. and BLEI, D. M. (2019). Variational Bayes under model misspecification. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada (H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox and R. Garnett, eds.) 13357–13367.

[51] WINN, J. and BISHOP, C. M. (2005). Variational message passing. J. Mach. Learn. Res. 6 661–694. MR2249835

[52] WOODARD, D. B., CRAINICEANU, C. and RUPPERT, D. (2013). Hierarchical adaptive regression kernels for regression with functional predictors. J. Comput. Graph. Statist. 22 777–800. MR3173742 https://doi.org/10.1080/10618600.2012.694765

[53] YAO, Y., VEHTARI, A., SIMPSON, D. and GELMAN, A. (2018). Yes, but did it work?: Evaluating variational inference. In Proceedings of the 35th International Conference on Machine Learning (J. Dy and A. Krause, eds.). Proceedings of Machine Learning Research 80 5581–5590.

[54] YE, L., BESKOS, A., DE IORIO, M. and HAO, J. (2020). Monte Carlo co-ordinate ascent variational inference. Stat. Comput. 30 887–905. MR4108683 https://doi.org/10.1007/s11222-020-09924-y

[55] YU, X., NOTT, D. J., TRAN, M.-N. and KLEIN, N. (2021). Assessment and adjustment of approximate inference algorithms using the law of total variance. J. Comput. Graph. Statist. 30 977–990. MR4356599 https://doi.org/10.1080/10618600.2021.1880921

[56] ZEILER, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. Available at arXiv:1212.5701.

[57] ZHANG, L., BEAL, S. L. and SHEINER, L. B. (2003). Simultaneous vs. sequential analysis for population PK/PD data I: Best-case performance. J. Pharmacokinet. Pharmacodyn. 30 387–404. https://doi.org/10.1023/b:jopa.0000012998.04442.1f

[58] ZHANG, L., BEAL, S. L. and SHEINER, L. B. (2003). Simultaneous vs. sequential analysis for population PK/PD data II: Robustness of models. J. Pharmacokinet. Pharmacodyn. 30 305–416.

[59] ZIGLER, C. M., WATTS, K., YEH, R. W., WANG, Y., COULL, B. A. and DOMINICI, F. (2013). Model feedback in Bayesian propensity score estimation. Biometrics 69 263–273. MR3058073 https://doi.org/10.1111/j.1541-0420.2012.01830.x
Note on Legendre’s Method of Least Squares

Jukka Nyblom

Abstract. In the first published treatment of the least squares, Legendre applied his new method to the French meridian data measured for the determination of the length of the meter (Nouvelles méthodes pour la détermination des orbites des comètes (1805) 76 Firmin Didot). Legendre treated one error term as a constant. It is shown here that it turns out to be equivalent to the generalized least squares solution of his model (Nouvelles méthodes pour la détermination des orbites des comètes (1805) 77 Firmin Didot).

Key words and phrases: French meridian data, meridian arc length, generalized least squares, flattening of the Earth, determination of meter.

REFERENCES

Euler, L. P. (1755). Éléments de la Trigonométrie sphéroïdique tirés de la méthode des plus grandes et plus petits. Mémoires de Berlin 1753 IX 258–293.

Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. Wiley Series in Probability and Statistics: Texts and References Section. Wiley, New York. MR1619032

Laplace, P. S. (1799). Traité de Mécanique Céleste 2. Duprat, Paris.

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des comètes. Firmin Didot, Paris.

Stigler, S. M. (1981). Gauss and the invention of least squares. Ann. Statist. 9 465–474. MR0615423

Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty Before 1900. The Belknap Press of Harvard Univ. Press, Cambridge, MA. MR0852410

Torge, W. (2001). Geodesy. de Gruyter, Berlin.

Jukka Nyblom is Professor Emeritus of Statistics, Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland (e-mail: jukka.nyblom@jyu.fi).
A Conversation with Mary E. Thompson

Rhonda J. Rosychuk

Abstract. Mary E. Thompson (née Beattie) was born September 9, 1944, in Winnipeg, Manitoba, Canada. She obtained a B.Sc. in Mathematics from the University of Toronto in 1965, and earned M.Sc. (1966) and Ph.D. (1969) degrees in Mathematics from the University of Illinois at Urbana-Champaign. She joined the Department of Statistics at the University of Waterloo as a Lecturer in 1969 and became an Assistant Professor in 1971. In 2004, she was awarded the honour of University Professor and in 2011 became Distinguished Professor Emerita at the University of Waterloo. She has served in many leadership roles including Chair of the Department of Statistics and Actuarial Science, Acting Dean of the Faculty of Mathematics, President of the Statistical Society of Canada (SSC) and Chair of the COPSS Presidents’ Award Committee. She chaired the Development Committee for the Canadian Statistical Sciences Institute (CANSSI) and was its founding Scientific Director.

Thompson has received numerous honours and awards including the SSC’s Gold Medal, the Elizabeth L. Scott Award, the Waksberg Award of Survey Methodology and the Governor General’s Innovation Award. She is an elected member of the International Statistical Institute, an Honorary Member of the SSC and is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics, the Royal Society of Canada and the Fields Institute.

Thompson has made fundamental contributions to several areas in statistics including sampling theory and the analysis of surveys. She is the author of two books in these areas: Theory of Sample Surveys (1997) and Sampling Theory and Practices (2020 with C. Wu). She has also made key contributions in estimation theory and stochastic processes. As the author of over 150 published, refereed papers, Thompson has influenced the theory and practice of statistics.

The following conversation took place virtually in September 2022 with interviewer Rhonda J. Rosychuk of the University of Alberta.

Key words and phrases: University of Waterloo, Statistical Society of Canada, Canadian Statistical Sciences Institute, sampling theory, survey methodology, estimation theory, stochastic processes.

REFERENCES

[1] Binder, D. A. (1983). On the variances of asymptotically normal estimators from complex surveys. Int. Stat. Rev. 51 279–292. MR0731144 https://doi.org/10.2307/1402588
[2] Birnbaum, A. (1962). On the foundations of statistical inference. J. Amer. Statist. Assoc. 57 269–326. MR0138176
[3] Fisher, R. A. (1956). Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh, UK.
[4] Godambe, V. P. (1955). A unified theory of sampling from finite populations. J. Roy. Statist. Soc. Ser. B 17 269–278. MR0077037
[5] Godambe, V. P. (1966). A new approach to sampling from finite populations. I. Sufficiency and linear estimation. J. Roy. Statist. Soc. Ser. B 28 310–319. MR0216720
[6] Godambe, V. P. and Thompson, M. E. (1971). Bayes, fiducial and frequency aspects of statistical inference in regression analysis in survey-sampling. J. Roy. Statist. Soc. Ser. B 33 361–390. MR0362603
[7] Godambe, V. P. and Thompson, M. E. (1986). Parameters of superpopulation and survey population: Their relationships and estimation. Int. Stat. Rev. 54 127–138. MR0962931 https://doi.org/10.2307/1403139

Rhonda J. Rosychuk is Professor, Department of Pediatrics, University of Alberta, 11405 87 Avenue NW, Edmonton, Alberta, Canada T6G 1C9 (e-mail: rhonda.rosychuk@ualberta.ca).
[8] Godambe, V. P. and Thompson, M. E. (1989). An extension of quasi-likelihood estimation. *J. Statist. Plann. Inference* **22**, 137–172. MR1004344 https://doi.org/10.1016/0378-3758(89)90106-7
[9] Jiang, C., Wallace, M. P. and Thompson, M. E. (2022). Dynamic treatment regimes with interference. *Canad. J. Statist.* To appear. https://doi.org/10.1002/cjs.11702
[10] Ramírez-Ramírez, L. L. and Thompson, M. E. (2014). Applications of the variance of final outbreak size for disease spreading in networks. *Methodol. Comput. Appl. Probab.* **16**, 839–862. MR3270598 https://doi.org/10.1007/s11009-013-9325-z
[11] Thompson, M. E. (1984). Model and design correspondence in finite population sampling. *J. Statist. Plann. Inference* **10**, 323–334. MR0766648 https://doi.org/10.1016/0378-3758(84)90057-0
[12] Thompson, M. E. (1997). *Theory of Sample Surveys*. Monographs on Statistics and Applied Probability **74**, CRC Press, London. MR1462619 https://doi.org/10.1002/1097-0258(20000715)19:13<1825::AID-SIM466>3.0.CO;2-E
[13] Thompson, M. E. (2001). Likelihood principle and randomization in survey sampling. In *Data Analysis from Statistical Foundations* **9**–25. Nova Sci. Publ., Huntington, NY. MR2034504
[14] Thompson, M. E., Ramírez Ramírez, L. L., Lyubchich, V. and Gel, Y. R. (2016). Using the bootstrap for statistical inference on random graphs. *Canad. J. Statist.* **44**, 3–24. MR3474218 https://doi.org/10.1002/cjs.11271
[15] Thompson, M. E., Sedransk, J., Fang, J. and Yi, G. Y. (2022). Bayesian inference for a variance component model using pairwise composite likelihood with survey data. *Surv. Methodol.* **48**, 73–93.
[16] Thompson, M. E. B. (1969). *Some Aspects of Optimal Stopping Theory*. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)—University of Illinois at Urbana-Champaign. MR2619132
[17] Wu, C. and Thompson, M. E. (2020). *Sampling Theory and Practice*. ICSA Book Series in Statistics. Springer, Cham. MR4180686 https://doi.org/10.1007/978-3-030-44246-0
INSTITUTE OF MATHEMATICAL STATISTICS

(Organized September 12, 1935)

The purpose of the Institute is to foster the development and dissemination of the theory and applications of statistics and probability.

IMS OFFICERS

President: Michael Kosorok, Department of Biostatistics and Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA

President-Elect: Tony Cai, Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104-6304, USA

Past President: Peter Bühlmann, Seminar für Statistik, ETH Zürich, 8092 Zürich, Switzerland

Executive Secretary: Peter Hoff, Department of Statistical Science, Duke University, Durham, NC 27708-0251, USA

Treasurer: Jiashun Jin, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

Program Secretary: Annie Qu, Department of Statistics, University of California, Irvine, Irvine, CA 92697-3425, USA

IMS EDITORS

The Annals of Statistics. Editors: Enno Mammen, Institute for Mathematics, Heidelberg University, 69120 Heidelberg, Germany. Lan Wang, Miami Herbert Business School, University of Miami, Coral Gables, FL 33124, USA

The Annals of Applied Statistics. Editor-in-Chief: Ji Zhu, Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA

The Annals of Probability. Editors: Alice Guionnet, Unité de Mathématiques Pures et Appliquées, ENS de Lyon, Lyon, France. Christophe Garban, Institut Camille Jordan, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France

The Annals of Applied Probability. Editors: Kavita Ramanan, Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. Qi-Man Shao, Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China

Statistical Science. Editor: Moulinath Banerjee, Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA

The IMS Bulletin. Editor: Vlada Limic, UMR 7501 de l’Université de Strasbourg et du CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France
The Institute of Mathematical Statistics presents

IMS TEXTBOOKS

Exponential Families in Theory and Practice

Bradley Efron, Stanford University

During the past half-century, exponential families have attained a position at the center of parametric statistical inference. Theoretical advances have been matched, and more than matched, in the world of applications, where logistic regression by itself has become the go-to methodology in medical statistics, computer-based prediction algorithms, and the social sciences. This book is based on a one-semester graduate course for first year Ph.D. and advanced master’s students. After presenting the basic structure of univariate and multivariate exponential families, their application to generalized linear models including logistic and Poisson regression is described in detail, emphasizing geometrical ideas, computational practice, and the analogy with ordinary linear regression. Connections are made with a variety of current statistical methodologies: missing data, survival analysis and proportional hazards, false discovery rates, bootstrapping, and empirical Bayes analysis. The book connects exponential family theory with its applications in a way that doesn’t require advanced mathematical preparation.

www.imstat.org/cup/

Cambridge University Press, with the Institute of Mathematical Statistics, established the *IMS Monographs* and *IMS Textbooks* series of high-quality books. The series editors are Mark Handcock, Ramon van Handel, Arnaud Doucet, and John Aston.