HYPERBOLICITY IN PRESENCE OF A LARGE LOCAL SYSTEM

YOHAN BRUNEBARBE

Abstract. We prove that the projective complex algebraic varieties admitting a large complex local system satisfy a strong version of the Green-Griffiths-Lang conjecture.

1. Introduction

Let X be a (non-necessarily smooth nor irreducible, but reduced) proper complex algebraic variety. Following Lang, we define three ‘special’ subsets of X that measure three different kind of hyperbolic behaviour:

- The subset $\text{Sp}(X) \subset X$ is defined as the union of the (positive-dimensional) integral closed subvarieties of X that are not of general type.
- The subset $\text{Sp}_{ab}(X) \subset X$ is defined as the union of all images of non-constant rational maps $A \to X$ from an abelian variety A.
- The subset $\text{Sp}_{h}(X) \subset X$ is defined as the union of all entire curves in X, i.e. the images of non-constant holomorphic maps $\mathbb{C} \to X$.

It is not clear from their definition whether these special subsets are Zariski-closed in X. The inclusions $\text{Sp}_{ab}(X) \subset \text{Sp}(X)$ and $\text{Sp}_{ab}(X) \subset \text{Sp}_{h}(X)$ always hold, see Proposition 2.1.

The following conjecture is a strong version of conjectures of Green-Griffiths [GG80] and Lang [Lan86].

Conjecture A. Let X be a projective complex algebraic variety. Then

1. $\text{Sp}(X) = \text{Sp}_{ab}(X) = \text{Sp}_{h}(X)$,
2. $\text{Sp}(X)$ is a closed algebraic subvariety of X,
3. $\text{Sp}(X) \neq X$ if and only if X is of general type.

The main result in this paper is the following (see [Zuo96, Yam10, CCE15, JR20] for other hyperbolicity results in presence of a local system).

Theorem A. Let X be a projective complex algebraic variety. Assume that for every integral closed subvariety $Z \to X$ there exists a complex local system on X whose pull-back to the normalization of Z is not isotrivial. Then X satisfies Conjecture A.

In particular, Theorem A shows that Conjecture A holds if X admits a large complex local system, i.e. a complex local system \mathcal{L} such that for every integral closed subvariety $Z \to X$ the pull-back of \mathcal{L} to the normalization of Z is not isotrivial. Equivalently, the Galois étale cover $X^\mathcal{L} \to X$ associated to the kernel of

1To be consistent with the conjecture, one says that a non-necessarily irreducible projective variety is of general type if at least one of its irreducible component is of general type.

2A local system on an algebraic variety X is called isotrivial if it becomes trivial on a finite étale cover of X.

3At least when X is normal, the assumptions of Theorem A are in fact equivalent to the existence of a large complex local system on X, see Proposition 6.3.
the monodromy representation of \mathcal{L} does not have any positive-dimensional compact complex subspaces, cf. Proposition [3.4]. This holds for example when the complex space $X^\mathbb{C}$ is Stein, and turns out to be equivalent at least when X is normal [Eys04, EKPR12]. Examples include:

(1) Projective complex algebraic varieties admitting a finite morphism to an abelian variety. In that case, Theorem [A] follows from works of Bloch [Blo26], Ueno [Uen75], Ochiai [Och77], Kawamata [Kaw80] and Yamanoi [Yam15a].

(2) Projective complex algebraic varieties admitting a (graded-polarizable) variation of \mathbb{Z}-mixed Hodge structure with a finite period map. When in addition the Hodge structures are pure, then it follows from works of Griffiths and Schmid [GS69] that $Sp(X) = Sp_{ab}(X) = Sp_h(X) = \emptyset$.

In a nutshell, the proof of Theorem [A] consists in reducing the general case to these two special cases by using general structure results from non-abelian Hodge theory.

Acknowledgements. We thank Marco Maculan for some useful discussions.

Conventions. A complex algebraic variety is a separated reduced finite type \mathbb{C}-scheme. One often makes no distinction between a complex algebraic variety and the associated complex analytic space. A fibration between two normal complex algebraic varieties is a proper surjective morphism $X \to Y$ with connected fibers.

2. Generalities on special sets

We gather some easy properties of special sets for future reference.

Proposition 2.1. Let X be a proper complex algebraic variety. Then

$$Sp_{ab}(X) \subset Sp(X) \text{ and } Sp_{ab}(X) \subset Sp_h(X).$$

Proof. The inclusion $Sp_{ab}(X) \subset Sp(X)$ follows from the fact that the image of a non-constant rational map $A \dashrightarrow X$ from an abelian variety A is not of general type (this is an easy consequence of a special case of Iitaka conjecture proved by Viehweg, cf. [Vie83, Corollary IV]). On the other hand, for every rational map $Y \dashrightarrow X$ with Y smooth projective, there exists a sequence of blow-ups $Y' \to Y$ along smooth subvarieties such that the composite rational map $Y' \to X$ is defined everywhere. Note that the exceptional locus of $Y' \to Y$ is covered by rational curves. The inclusion $Sp_{ab}(X) \subset Sp_h(X)$ follows, since every abelian variety is covered by entire curves. □

Proposition 2.2. Let $f : X \to Y$ be a finite étale cover between projective complex algebraic varieties. Then, for any $* \in \{\emptyset, ab, h\}$,

$$Sp_*(X) = f^{-1}(Sp_*(Y)).$$

Proposition 2.3. Let $f : X \to Y$ be a birational morphism between irreducible projective complex algebraic varieties. Then, for any $* \in \{\emptyset, ab, h\}$, $Sp_*(X)$ is Zariski-dense in X if, and only if, $Sp_*(Y)$ is Zariski-dense in Y.

Proof. Let $Z \subset Y$ be a strict closed subvariety such that f is an isomorphism over $Y \setminus Z$. Then $f(\text{Sp}_*(X)) \setminus Z = \text{Sp}_*(Y) \setminus Z$, and the result follows. □
Definition 2.4. Let $X \to Y$ be a proper morphism between projective complex algebraic varieties. For any $* \in \{\emptyset, ab, h\}$, we let

$$\text{Sp}_*(X/Y) := \bigcup_{y \in Y} \text{Sp}_*(X_y).$$

Proposition 2.5. Let $f : X \to Y$ be a proper morphism between projective complex algebraic varieties. Then, for any $* \in \{\emptyset, ab, h\}$,

$$\text{Sp}_*(X) \subset f^{-1}(\text{Sp}_*(Y)) \cup \text{Sp}_*(X/Y).$$

Lemma 2.6. Consider a proper complex algebraic variety X and a finite collection of surjective morphisms $X \to S_i$, $i \in I$, where the S_i's are proper complex algebraic varieties. If the induced morphism $p_i : X \to \prod_{i \in I} S_i$ is finite, then:

1. If $\text{Sp}_b(S_i) \neq S_i$ for every $i \in I$, then $\text{Sp}_b(X) \neq X$.
2. If $\text{Sp}_b(ab(S_i)) \neq S_i$ for every $i \in I$, then $\text{Sp}_b(ab(X)) \neq X$.

Proof. Let $\C \to X$ be a non-constant holomorphic map. Since the morphism $f : X \to \prod_{i \in I} S_i$ is finite, at least one of the map $\C \to S_i$ obtained by composing $\C \to X$ with one of the map $p_i : X \to S_i$ is non-constant. Therefore $\text{Sp}_b(X) \subset \bigcup_{i \in I} h_{-1}(\text{Sp}_b(S_i))$. Since the p_i's are surjective, it follows that $\text{Sp}_b(X) \neq X$. The proof of the second item is similar. \qed

3. Generalities on large local systems

3.1. Monodromy groups. Let k be a field. Let \mathcal{L} be a k-local system on a connected complex space X. For any $x \in X$, one has the corresponding monodromy representation $\pi_1(X, x) \to \text{GL}(\mathcal{L}_x)$. By definition, the monodromy group of \mathcal{L} is the image of the monodromy representation, and the algebraic monodromy group of \mathcal{L} is the Zariski-closure of the image of the monodromy representation. Different points in X yield isomorphic groups, respectively k-algebraic groups.

3.2. Equivalent definitions.

Definition 3.1. A local system \mathcal{L} on a projective complex algebraic variety X is called large if for every integral closed subvariety $Z \hookrightarrow X$, the pull-back of \mathcal{L} to the normalization of Z is not isotrivial.

If $f : X \to Y$ is a dominant morphism between two irreducible normal complex algebraic varieties, the image of the induced morphism of groups $f_* : \pi_1(X) \to \pi_1(Y)$ has finite index in $\pi_1(Y)$ [Cam91]. Therefore, a local system \mathcal{L} on a projective complex algebraic variety X is large if, and only if, for any non-constant morphism $f : Y \to X$ from an irreducible normal projective complex algebraic variety Y the local system $f^{-1}\mathcal{L}$ is not isotrivial. With this observation, the following results are immediate.

Proposition 3.2. Let X be a projective complex algebraic variety and \mathcal{L} be a large local system on X. Let $f : Y \to X$ be a finite morphism from another projective complex algebraic variety Y. Then the pull-back local system $f^{-1}\mathcal{L}$ on Y is large.

Proposition 3.3. Let $f : Y \to X$ be a finite étale morphism between projective complex algebraic varieties. Let \mathcal{L} be a complex local system on X. Then \mathcal{L} is large if, and only if, the pull-back local system $f^{-1}\mathcal{L}$ on Y is large.

The following result is useful to prove that a local system is large.

Proposition 3.4 (compare with [Kol93 Proposition 2.12]). Consider a local system \mathcal{L} on a connected projective complex algebraic variety X, and denote by $X^\mathcal{L} \to X$ the associated connected covering space. Then the local system \mathcal{L} is large if, and
only if, the complex analytic space X^L does not contain any positive dimensional compact complex subspaces.

Proof. This is essentially the same proof as in \[Kol93, Proposition 2.12\]. Let $Y \subset X^L$ be an irreducible compact complex subspace with normalization \overline{Y}. The induced holomorphic map $Y \to X$ has discrete (hence finite) fibres. Let $Z \subset X$ be the image of Y and \overline{Z} denote its normalization. Then the monodromy group of $L|_{\overline{Z}}$ is isomorphic to the Galois group of $\overline{Y}/\overline{Z}$, in particular it is finite. This shows that (up to deck transformations of $X^L \to X$) there is a one-to-one correspondence between irreducible compact complex subspaces $Z \subset X$ such that the pull-back of L to the normalization \overline{Z} is isotrivial. \square

3.3. Shafarevitch morphisms. We will use in several places the existence of the Shafarevitch morphism associated to a complex local system.

Theorem 3.5. Let L be a complex local system on a projective normal complex algebraic variety. Then there exists a surjective morphism with connected fibres $\sh_L^X : X \to \Sh_X^L$ onto a projective normal algebraic variety, unique up to unique isomorphism, such that the following property holds: for any connected normal projective complex algebraic variety Z and any morphism $f : Z \to X$, the composite map $\sh_L^X \circ f : Z \to \Sh_X^L$ is constant if, and only if, the local system f^*L is isotrivial. Moreover, when the monodromy group of L is torsion-free, there exists a complex local system M on \Sh_X^L such that $L = (\sh_L^X)^*M$. In particular, the local system M is large.

The map $\sh_L^X : X \to \Sh_X^L$ is called the Shafarevitch morphism associated to L. The theorem above is proved in \[Eys04\] when X is smooth projective and the complex local system L is semisimple, and more generally in \[EKPR12\] only assuming that X is smooth projective. See also \[CCE15\] for the case where X is a compact Kähler manifold. The existence of the Shafarevitch morphism when X is only normal is proved by applying the following result to a desingularization of X.

Proposition 3.6. Let $X' \to X$ be a surjective morphism with connected fibres between normal projective complex algebraic varieties. Let L be a complex local system on X and $\sh_{X'}^L : X' \to \Sh_{X'}^L$ be the Shafarevitch morphism associated to $L' := \nu^{-1}L$. Then there is a (unique) factorization

\[
\begin{array}{ccc}
X' & \longrightarrow & \Sh_{X'}^L \\
\downarrow & & \downarrow \\
X & \longrightarrow & \Sh_X^L
\end{array}
\]

and the induced morphism $X \to \Sh_{X'}^L$ is the Shafarevitch morphism associated to L.

Proof. Let F be an irreducible component of the normalization of a fiber of ν. Since the induced morphism $F \to X$ is constant, the restriction of L to F is trivial, therefore F is mapped to a point by the composition $F \to X' \to \Sh_{X'}^L$. Since the fibers of ν are connected and X is normal, this shows that $\sh_{X'}^L : X' \to \Sh_{X'}^L$ factorizes through a map $X \to \Sh_X^L$. The easy verification that this is the Shafarevitch morphism associated to L is left to the reader. \square
3.3.1. The abelian case. We recall a construction of the Shafarevitch morphism when the monodromy group is abelian. Let X be a smooth projective complex algebraic variety. Let \mathcal{L} be a complex local system on X with abelian monodromy, and let $\pi_1(X) \to \Gamma$ denote its monodromy representation. Since by assumption Γ is abelian, the monodromy representation factorizes through the abelianization $\pi_1(X) \to H_1(X, \mathbb{Z})$ of $\pi_1(X)$. Let $\text{Alb}(X) \to A_{\mathcal{L}}$ be the quotient of $\text{Alb}(X)$ by the biggest abelian subvariety T of $\text{Alb}(X)$ such that $\pi_1(T) \subset \ker(H_1(X, \mathbb{Z}) \to \Gamma)$. Then the Shafarevitch morphism associated to \mathcal{L} coincides with the Stein factorization of the composition of the Albanese morphism $X \to \text{Alb}(X)$ with $\text{Alb}(X) \to A_{\mathcal{L}}$.

3.3.2. The solvable case. We recall a construction of the Shafarevitch morphism when the monodromy group is solvable, cf. [CCE15, Théorème 4.4].

Proposition 3.7. Let \mathcal{L} be a complex local system on a normal projective complex algebraic variety X. Let $\pi_1(X) \to \Gamma \subset \text{Gl}(n, \mathbb{C})$ be its monodromy representation. Assume that its monodromy group Γ is solvable. If moreover the derived group $[\Gamma, \Gamma]$ is nilpotent, then the Shafarevitch morphism associated to \mathcal{L} is equal to the Shafarevitch morphism associated to the representation $\pi_1(X) \to \Gamma^{ab}$. In particular, X admits a finite morphism to an abelian variety.

Proof. Thanks to Proposition 3.6, one can assume that X is smooth. Then the Shafarevitch morphism of $\pi_1(X) \to \Gamma^{ab}$ is the Stein factorization of a morphism from X to an abelian variety T. Let Z be a smooth projective complex algebraic variety and $Z \to X$ a morphism. Assume that the composition $f : Z \to X \to T$ is constant. Then, up to replace Z by a finite étale cover, one can assume that the induced homomorphism $\pi_1(Z) \to \Gamma^{ab}$ is trivial, so that $f_\ast \pi_1(Z) \subset [\Gamma, \Gamma]$. Thanks to Lemma 3.8 below, $f_\ast (\pi_1(Z)/C^k \pi_1(Z)) = f_\ast \pi_1(Z)/C^k f_\ast \pi_1(Z)$ has finite image for every positive integer k. Since $f_\ast \pi_1(Z) \subset [\Gamma, \Gamma]$ and $[\Gamma, \Gamma]$ is nilpotent by assumption, it follows that $C^k f_\ast \pi_1(Z) = \{0\}$ for $k \gg 1$. Therefore $f_\ast \pi_1(Z)$ is finite.

Lemma 3.8. Let $f : X \to Y$ be a morphism between two smooth projective complex algebraic varieties. If the induced \mathbb{Q}-linear map $f_\ast : H_1(X, \mathbb{Q}) \to H_1(Y, \mathbb{Q})$ is zero, then $f_\ast (\pi_1(X)/C^k \pi_1(X))$ has finite image in $\pi_1(Y)/C^k \pi_1(Y)$ for every positive integer k. Here, for every group G, $\{C^k G\}_{k \geq 0}$ denote the descending central series of G, defined by $C^0 G = G$ and $C^{k+1} = [G, C^k G]$ for every integer $k \geq 0$.

In Proposition 3.6, the condition that $[\Gamma, \Gamma]$ is nilpotent is true up to replacing X by a finite étale cover defined from a finite index subgroup of Γ thanks to the following observation.

Proposition 3.9. If Γ is a subgroup of $\text{Gl}(n, \mathbb{C})$ whose Zariski-closure is connected and solvable, then $[\Gamma, \Gamma]$ is nilpotent.

Proof. Let G denote the Zariski-closure of Γ in $\text{Gl}(n, \mathbb{C})$. Since G is a connected solvable algebraic group, its derived group $[G, G]$ is a connected nilpotent algebraic group. It follows that $[\Gamma, \Gamma] \subset [G, G]$ is nilpotent.

3.3.3. The case of variations of Hodge structure with discrete monodromy. We recall the construction of the Shafarevitch morphism when the complex local system underlies a variation of Hodge structure with discrete monodromy.

Proposition 3.10. Let X be a connected normal projective complex algebraic variety and \mathcal{L} a large complex local system on X. Assume that \mathcal{L} underlies a polarized complex variation of pure Hodge structure $(\mathcal{L}, F^\bullet, h)$. Assume moreover that the monodromy group Γ of \mathcal{L} is discrete, so that the associated period map induces a holomorphic map $X \to \Gamma \setminus \mathcal{D}$. Then the Shafarevitch morphism associated to \mathcal{L} coincide with the Stein factorization of the proper holomorphic map $X \to \Gamma \setminus \mathcal{D}$.

Proposition 3.14. Let \(X \) be a normal irreducible projective complex algebraic variety supporting a large complex local system \(L \), and \(\mathcal{F} \) a large complex local system with torsion-free monodromy and a semisimple algebraic monodromy group. Assume that \(L \) underlies a polarized complex variation of pure Hodge structure with discrete monodromy. Then
\[
\text{Sp}(X) = \text{Sp}_{ab}(X) = \text{Sp}_h(X) = \emptyset.
\]

Proof. Thanks to \([GS69, Corollary 9.4]\), every horizontal holomorphic map \(C \to D \) is constant. This implies that \(\text{Sp}_{ab}(X) = \emptyset \). A fortiori, \(\text{Sp}_{ab}(X) = \emptyset \) thanks to Lemma 2.1. Finally, \(\text{Sp}(X) = \emptyset \) is a reformulation of the fact that any smooth projective complex variety that admits a polarized complex variation of pure Hodge structure with discrete monodromy and a generically finite period map is of general type, see e.g. \([CCE15, Proposition 3.5]\). \(\square \)

3.4. Three canonical decompositions.

Proposition 3.13. Let \(X \) be a normal irreducible projective complex algebraic variety supporting a large complex local system \(L \). Up to replacing \(X \) with a finite étale cover, there exists a surjective morphism with connected fibers \(f : X \to Y \) onto a normal irreducible projective complex algebraic variety \(Y \) such that:

- \(Y \) admits a large complex local system with torsion-free monodromy and a semisimple algebraic monodromy group;
- the monodromy of the restriction of \(L \) to the normalization of any fiber of \(f \) is solvable.

Proof. Consider the monodromy representation \(\pi_1(X) \to G(\mathbb{C}) \) of \(L \), where \(G \) is the algebraic monodromy group of \(L \). Up to replacing \(X \) with a finite étale cover, one can assume that \(G \) is connected. Let \(N \) be the (solvable) radical of \(G \), so that \(N \) is a (connected) solvable complex algebraic group. Let \(H \) be the quotient of \(G \) by \(N \), so that \(H \) is a connected semisimple complex algebraic group. The induced representation \(\pi_1(X) \to H(\mathbb{C}) \) has a Zariski-dense image, and replacing \(X \) with a finite étale cover, one can assume that it has torsion-free image thanks to Selberg Lemma.

Let \(f : X \to Y \) denote the Shafarevich morphism associated to \(\pi_1(X) \to H(\mathbb{C}) \). In particular, \(Y \) is a normal irreducible projective complex algebraic variety and \(f \) is surjective with connected fibres. Since the representation \(\pi_1(X) \to H(\mathbb{C}) \) has torsion-free image, it factorizes through the homomorphism \(\pi_1(X) \to \pi_1(Y) \), cf. Theorem 3.3. The induced homomorphism \(\pi_1(Y) \to H(\mathbb{C}) \) corresponds to a large complex local system with a semisimple algebraic monodromy group.

Let \(F \) be the normalization of an irreducible component of a fiber of \(f \). Since the induced morphism \(F \to Y \) is constant, the induced homomorphism \(\pi_1(F) \to \pi_1(X) \to H(\mathbb{C}) \) has finite image. But the image of \(\pi_1(F) \to H(\mathbb{C}) \) is torsion-free, hence the image of \(\pi_1(F) \to H(\mathbb{C}) \) is in fact trivial. Therefore it is contained in \(N(\mathbb{C}) \), from what it follows that it is solvable. \(\square \)

Proposition 3.14. Let \(X \) be a normal irreducible projective complex algebraic variety supporting a large complex local system \(L \). Up to replacing \(X \) with a finite
étale cover, there exists a surjective morphism with connected fibers \(f : X \to Y \) onto a normal irreducible projective complex algebraic variety \(Y \) such that:

- \(Y \) admits a large complex local system with torsion-free monodromy and a reductive algebraic monodromy group;
- the monodromy of the restriction of \(\mathcal{L} \) to the normalization of any fiber of \(f \) is unipotent;
- the normalization of every fiber of \(f \) admits a finite morphism to an abelian variety.

Proof. The two first assertions are proved exactly as in the proof of Proposition 3.13, replacing the solvable radical \(N \) of \(G \) with the unipotent radical \(U \) of \(G \). For the last assertion, let \(F \) be the normalization of an irreducible component of a fiber of \(f \). Since the monodromy of the restriction of \(\mathcal{L} \) to \(F \) is unipotent, one can apply Proposition 3.6 and Proposition 3.7 to infer that \(F \) admits a finite morphism to an abelian variety. The statement follows by taking a product over the irreducible components. \(\square \)

Proposition 3.15. Let \(X \) be a normal irreducible projective complex algebraic variety supporting a large complex local system \(\mathcal{L} \). Assume that the algebraic monodromy group \(G \) is reductive (equivalently, the complex local system \(\mathcal{L} \) is semisimple). Up to replacing \(X \) with a finite étale cover, there exists a surjective morphism with connected fibers \(f : X \to Y \) onto a normal irreducible projective complex algebraic variety \(Y \) and a morphism to an abelian variety \(g : X \to A \) such that:

- \(Y \) admits a large complex local system with torsion-free monodromy and a semisimple algebraic monodromy group;
- the monodromy of the restriction of \(\mathcal{L} \) to the normalization of any fiber of \(f \) is commutative;
- the induced morphism \((f, g) : X \to Y \times A\) is finite.

Proof. Consider the monodromy representation \(\rho : \pi_1(X) \to G(\mathbb{C}) \) of \(\mathcal{L} \), where \(G \) is the algebraic monodromy group of \(\mathcal{L} \). Up to replacing \(X \) with a finite étale cover, one can assume that \(G \) is connected. Then \(T := G/[G, G] \) is a torus and \(H := G/Z(G) \) is a connected semisimple algebraic group. Let \(\rho_T : \pi_1(X) \to T(\mathbb{C}) \) and \(\rho_H : \pi_1(X) \to H(\mathbb{C}) \) denote the induced representations. Since \(\rho \) has Zariski-dense image, both \(\rho_T \) and \(\rho_H \) have Zariski-dense image. Since \(\rho \) is large and the canonical morphism \(G \to T \times H \) is an isogeny, the morphism \(\mathrm{sh}^{\mathrm{ct}}_X \times \mathrm{sh}^{\mathrm{un}}_X : X \to \mathrm{Sh}^{\mathrm{ct}}_X \times \mathrm{Sh}^{\mathrm{un}}_X \) is finite. Up to replacing \(X \) with a finite étale cover, one can assume that the image of \(\rho_H \) is torsion-free, so that \(\rho_H \) factorizes through \(\mathrm{Sh}^{\mathrm{un}}_X \). Therefore, \(\mathrm{Sh}^{\mathrm{un}}_X \) admits a large complex local system with a semisimple algebraic monodromy group. On the other hand, recalling the construction of the Shafarevich morphism in the abelian case (cf. Proposition 3.6 and section 3.3.1), it follows that \(\mathrm{Sh}^{\mathrm{ct}}_X \) admits a finite morphism to an abelian variety \(A_{\text{pr}} \).

This proves the first and the third assertions if one lets \(f : X \to Y \) be the morphism \(\mathrm{sh}^{\mathrm{un}}_X : X \to \mathrm{Sh}^{\mathrm{un}}_X \) and \(g : X \to A \) be the composition of \(\mathrm{sh}^{\mathrm{ct}}_X : X \to \mathrm{Sh}^{\mathrm{ct}}_X \) with \(\mathrm{Sh}^{\mathrm{ct}}_X \to A_{\text{pr}} \).

Let \(F \) be the normalization of an irreducible component of a fiber of \(f \). Since the induced morphism \(F \to Y \) is constant, the induced homomorphism \(\pi_1(F) \to \pi_1(X) \to H(\mathbb{C}) \) has finite image. But the image of \(\pi_1(X) \to H(\mathbb{C}) \) is torsion-free, hence the image of \(\pi_1(F) \to H(\mathbb{C}) \) is in fact trivial. Therefore it is contained in \(T(\mathbb{C}) \), from what it follows that it is commutative. \(\square \)

3.5. Algebraic varieties with a large complex local system. The following statement collect some known results on algebraic varieties supporting a large complex local system.
Theorem 3.16. Let X be a connected normal projective complex algebraic variety with a large complex local system \mathcal{L}.

1. Assume that the monodromy group of \mathcal{L} is solvable (equivalently the algebraic monodromy group of \mathcal{L} is solvable). Then, up to a finite étale cover, X is isomorphic to the product of an abelian variety by a variety of general type.

2. Assume that X is Brody-special4. Then, up to a finite étale cover, X is isomorphic to an abelian variety.

3. Assume that the algebraic monodromy group of \mathcal{L} is semisimple. Then X is of general type.

4. Assume that X is weakly-special5. Then, up to a finite étale cover, X is isomorphic to an abelian variety.

Proof. For the first item, up to replacing X by a finite étale cover, one can assume that the derived group of the monodromy group is nilpotent, cf. Proposition 3.9. It follows from Proposition 3.7 that A admits a finite morphism to an abelian variety. Therefore, thanks to a result of Kawamata [Kaw81, Theorem 13], after passing to another finite étale cover, X is biholomorphic to a product $B \times X'$ of an abelian variety B and a projective variety of general type X' whose dimension is equal to the Kodaira dimension $\kappa(X)$ of X. The second item is due to Yamanoi, see [Yam10] and [Yam15b, Theorem 2.17]. The third item is due to Zuo [Zuo96], see also [CCE15, Théorème 6.3] for an alternative proof. For the last item, it follows from Proposition 3.13 that, up to replacing X with a finite étale cover, there exists a surjective morphism with connected fibers $f : X \to Y$ onto a normal irreducible projective complex algebraic variety Y such that:

- Y admits a large complex local system with a semisimple algebraic monodromy group, and
- the monodromy of the restriction of \mathcal{L} to the normalization of any fiber of f is solvable.

Thanks to the third item, Y is of general type. Since X is weakly-special, it follows that Y is a point and that \mathcal{L} has solvable monodromy. But then the result follows from the first item. \qed

4. The special subsets coincide

Theorem 4.1. Let X be a projective complex algebraic variety supporting a large complex local system \mathcal{L}. If X is not of general type, then $\text{Sp}(X) = \text{Sp}_{ab}(X) = \text{Sp}_{h}(X) = X$.

Proof. Thanks to Lemma 2.1, it is sufficient to prove that $\text{Sp}_{ab}(X) = X$. It is harmless to assume that X is irreducible. Note also that one can freely replace X with any projective complex algebraic variety X' not of general type and such that there exists a finite surjective morphism $X' \to X$. Indeed, the pull-back to X' of the local system \mathcal{L} is still large thanks to Proposition 3.2 whereas $\text{Sp}_{ab}(X') = X'$ implies $\text{Sp}_{ab}(X) = X$. In particular, one can assume that X is normal. We will also freely replace X by any finite étale cover.

Up to replacing X with a finite étale cover, one can assume that there exists a fibration $f : X \to Y$ as in Proposition 3.13. The normal projective variety Y admits a large complex local system with a semisimple algebraic group, hence it is

4A proper complex algebraic variety X is called Brody-special if there exists a Zariski-dense entire curve $\mathbb{C} \to X$.

5Following Campana [Cam04], a proper complex algebraic variety X is called weakly special if it does not admit a finite étale cover X' with a rational dominant map $X' \to Y$ to a positive dimensional variety of general type Y.

of general type thanks to Theorem 3.10. Since by assumption X is not of general type, the (geometric) generic fibre of f is a positive-dimensional variety which is not of general type.

Let C be an irreducible component of a fibre of f. Thanks to Theorem 4.2 below, C is not of general type. On the other hand, by definition of f, the restriction of L to the normalization of C is a large complex local system with solvable monodromy. Therefore, thanks to Theorem 3.16, the normalization of C is, up to a finite étale cover, a product of a positive dimensional abelian variety by a variety of general type. This proves that the fibers of f are covered by images of abelian varieties by finite maps, hence a fortiori $Sp_{ab}(X) = X$. □

Theorem 4.2 (Nakayama, [Nak04, Theorem VI.4.3]). Let $X \to S$ be a projective surjective morphism with connected fibres from a normal complex analytic variety onto a smooth curve and $0 \in S$. Let $X_0 = \cup_{i \in I} \Gamma_i$ the decomposition into irreducible components. If there is at least one irreducible component Γ_j which is of general type (i.e. its desingularisation is such), then for $s \in S$ general the fiber X_s is of general type.

Corollary 4.3. Let X be a projective complex algebraic variety supporting a large complex local system L. Then:

$$Sp(X) = Sp_{ab}(X) = Sp_h(X).$$

Proof. It follows from Theorem 4.1 that $Sp(X) \subset Sp_{ab}(X)$, hence the equality thanks to Lemma 2.1. Moreover, given an entire curve $C \to X$, the normalization Z of the Zariski-closure of its image in X is connected and Brody-special. Since the induced morphism $Z \to X$ is finite, the pull-back of L to Z is still a large complex local system (cf. Proposition 3.2). Therefore a finite étale cover of Z is isomorphic to an abelian variety thanks to Theorem 3.16. This proves the inclusion $Sp_h(X) \subset Sp_{ab}(X)$, hence the equality thanks to Lemma 2.1. □

5. A non-Archimedean detour

5.1. Katzarkov-Zuo reductions. The following result is due to Eyssidieux [Eys04, Proposition 1.4.7], based on former works of Katzarkov and Zuo [Kat97, Zuo96, Zuo99].

Theorem 5.1. Let k be a non-Archimedean local field\footnote{A local field is assumed to be locally compact by definition. Therefore, a non-Archimedean local field is either a finite extension of \mathbb{Q}_p for some prime p or a field of formal Laurent series $\mathbb{F}_q((T))$ over a finite field.} and G be a reductive algebraic group over k. Let X be a connected normal compact Kähler analytic space and $\rho : \pi_1(X) \to G(k)$ a representation with Zariski-dense image. Then there exists a surjective holomorphic map with connected fibres $\sigma_X^\rho : X \to S_X^\rho$ onto a connected normal compact Kähler analytic space such that the following property holds: for any connected normal compact complex analytic space Z and any holomorphic map $f : Z \to X$, the composition $\sigma_X^\rho \circ f : Z \to S_X^\rho$ is constant if, and only if, the representation $f^*\rho$ has bounded image.

Observe that a fibration $\sigma_X^\rho : X \to S_X^\rho$ with this property is unique, up to unique isomorphism. It is called the Katzarkov-Zuo reduction of (X, ρ). Its existence is proved in [Eys04] for a smooth X. However, one can argue as in Proposition 3.6 to prove its existence more generally when X is normal.

The following result is a key ingredient in the proof of Theorem A.
Theorem 5.2. Let k be a non-Archimedean local field and G be a reductive algebraic group over k. Let X be a connected normal compact Kähler analytic space and $\rho : \pi_1(X) \to G(k)$ a representation with Zariski-dense image. Assume moreover that G/k is absolutely simple and that ρ is a large representation with unbounded image. Then:

1. the Katzarkov-Zuo reduction $\sigma_X^\rho : X \to S_X^\rho$ is birational.
2. $\overline{Sp}_{ab}(X) \neq X$.

The first assertion is a result of Zuo [Zuo96]. It is a key ingredient in both Zuo’s paper [Zuo96] and Yamanoi’s paper [Yam10]. We give an alternative and arguably simpler argument below. The rest of this section is devoted to the proof of this theorem.

5.2. A construction of the Katzarkov-Zuo reduction. We give an alternative construction of the Katzarkov-Zuo reduction based on a construction of Klingler [Kli03].

Let k be a non-Archimedean local field and G be a reductive algebraic group over k. Let $\mathcal{B}(G, k)$ be the Bruhat-Tits building of G/k, W the Weyl group of G/k and W^{aff} the affine Weyl group of G/k. Let \mathcal{A} be the affine real vector space on which the apartments of $\mathcal{B}(G, k)$ are modelled, and let \mathcal{A}_C be its complexification. The group W^{aff} acts on \mathcal{A} by affine reflections.

Let X be a Riemannian manifold and $f : X \to \mathcal{B}(G, k)$ be a continuous map. A point $x \in X$ is called regular for f if there is an apartment in $\mathcal{B}(G, k)$ that contains a sufficiently small neighborhood of x [GS92, p.225]. Otherwise x is called singular. The map f is called harmonic if for every point $x \in X$, there exists a small ball B centered at x on which f minimizes the energy relatively to $f|_{\partial B}$ [GS92, p.232].

Assume now that X is a connected compact Kähler manifold and let $\rho : \pi_1(X) \to G(k)$ be a representation with Zariski-dense image. Thanks to [GS92, Theorem 7.8, Lemma 8.1] there exists a Lipschitz harmonic ρ-equivariant pluriharmonic map $f : \tilde{X} \to \mathcal{B}(G, k)$ from the universal covering of X (with finite energy since X is compact). The subset $R(\tilde{X}, \rho) \subset \tilde{X}$ of regular points for f is a $\pi_1(X)$-invariant open subset of \tilde{X}, and one denotes by $R(X, \rho)$ its image in X. The Hausdorff codimension of its complementary $S(X, \rho) \subset X$ is at least 2 [GS92 Theorem 6.4]. Moreover f is pluriharmonic, i.e. $\partial \overline{\partial} f = 0$ on $R(\tilde{X}, \rho)$ [GS92 Theorem 7.3], and for any holomorphic map $g : Y \to X$ from a connected compact Kähler manifold Y with universal covering \tilde{Y}, the representation $g^* \rho : \pi_1(Y) \to G(k)$ is reductive (i.e. the Zariski-closure of its image is a reductive group) and the composition $f \circ \tilde{g} : \tilde{Y} \to \mathcal{B}(G, k)$ is $g^* \rho$-equivariant and pluriharmonic [Eys04, Corollaire 1.3.8].

Klingler explains in [Kli03 section 2.2.2] the construction of a complex local system $F(X, \rho)$ with finite monodromy on $R(X, \rho)$ that corresponds intuitively to the pull-back by f of the complexified tangent bundle of the building $\mathcal{B}(G, k)$. We briefly recall the construction and refer to loc. cit. for the details.

Let $x \in R(\tilde{X}, \rho)$, so that there exists an isometric embedding $i : A \subset \mathcal{B}(G, k)$ and a neighborhood B of x in \tilde{X} such that the map $f|_B : B \to \mathcal{B}(G, k)$ factorizes through a pluriharmonic map $h : B \to A$. The map h is well-defined up to the action of W^{aff} on A. Since h is pluriharmonic, by taking the $(1,0)$-part of the complexification of its differential, one obtains a \mathbb{C}-linear map $A^{\omega}_C \to \Omega^1_B$, well-defined up to the action of W on A^{ω}_C. Globalizing, the map f defines a real local system...
with monodromy representation \(\pi_1(R(X, \rho)) \to W^{aff} \subset \text{Aut}(A) \). By composing with the homomorphism \(W^{aff} \to W \), one obtains a real local system \(F_\mathbb{R}(X, \rho) \) corresponding to the monodromy representation \(\pi_1(R(X, \rho)) \to W \subset \text{Aut}(A) \), and the derivative of \(f \) yields a real one-form \(\mu_X^{\mathbb{R}} \) with values in \(F_\mathbb{R}(X, \rho) \). We denote by \(F(X, \rho) \) the complex local system associated to \(F_\mathbb{R}(X, \rho) \). Since \(h \) is pluriharmonic, the complexification of \(\mu_X^{\mathbb{R}} \) is a holomorphic one-form \(\mu_X \) with values in \(F(X, \rho) \).

Since \(S(X, \rho) \) is a closed analytic subset of \(X \) [Eys04] Proposition 1.3.3] distinct from \(X \) and since the monodromy of \(F(X, \rho) \) is finite, there exists a normal ramified Galois covering \(p : Z \to X \) with Galois group \(\Lambda \subset W \) such that the complex local system \(p^*F(X, \rho) \) on \(p^{-1}(R(X, \rho)) \) is trivial, hence extends to \(Z \). Since \(f \) is Lipschitz, the holomorphic one-form \(\mu_Z = p^*\mu_X \) on \(p^{-1}(R(X, \rho)) \) is bounded, hence it extends as a holomorphic one-form \(\mu_Z \in H^0(Z, \Omega^1_Z \otimes \mathcal{A}) \). Moreover, \(\mu_Z \) is the zero one-form if, and only if, the map \(f \) is constant.

Let \(Z \to \text{Alb}(Z) \) denote the Albanese morphism of \(Z \) (we refer to [Eys11] Section 3.4.2] for the definitions of holomorphic forms and Albanese morphism for normal Kähler spaces). The map \(Z \to \text{Alb}(Z) \) is an initial object in the category of holomorphic maps \(Z \to T \) where \(T \) is a compact complex torus. In particular, \(\text{Alb}(Z) \) is equipped with a \(\Lambda \)-action such that \(Z \to \text{Alb}(Z) \) is \(\Lambda \)-equivariant. Moreover, the induced \(\mathbb{C} \)-linear \(\Lambda \)-equivariant map \(H^0(\text{Alb}(Z), \Omega^1) \to H^0(Z, \Omega^1) \) is an isomorphism.

There is a the largest subtorus \(B \) of \(\text{Alb}(Z) \) such that the composition of \(\mu_Z : \mathcal{A}^\vee \to H^0(Z, \Omega^1_Z) \) with \(H^0(\text{Alb}(Z), \Omega^1) \to H^0(B, \Omega^1) \) is zero. Since \(B \) is preserved by the action of \(\Lambda \), we get a commutative diagram:

\[
\begin{array}{ccc}
Z & \to & \text{Alb}(Z)/B \\
\downarrow & & \downarrow \\
X & \to & (\text{Alb}(Z)/B)/\Lambda
\end{array}
\]

It is easy to check that the Stein factorization of the holomorphic map \(X \to (\text{Alb}(Z)/B)/\Lambda \) is the Katzarkov-Zuo reduction of \((X, \rho) \).

5.3. A lemma.

Lemma 5.3. Let \(k \) be a non-Archimedean local field. Let \(G \) be an absolutely simple \(k \)-algebraic group. Let \(\Gamma \subset G(k) \) be a Zariski-dense and unbounded subgroup. Let \(\Delta \subset \Gamma \) be a normal subgroup. If \(\Delta \) is bounded in \(G(k) \), then \(\Delta \) is finite.

Proof. We briefly recall a class of compactifications of Bruhat-Tits buildings introduced in [Ber90] and generalized in [RTW10].

Up to replacing \(k \) with a finite extension, one can assume that \(G \) is \(k \)-isotropic. (One can even assume for simplicity that \(G/k \) is split.) Let \(\mathcal{B}(G, k) \) be the Euclidean Bruhat-Tits building associated to \(G/k \) equipped with its natural \(G(k) \)-action by isometries. For any \(G(k) \)-conjugacy class \(t \) of parabolic subgroups of \(G \), there exists a continuous, \(G(k) \)-equivariant map \(\theta_t : \mathcal{B}(G, k) \to \text{Par}_t(G)^{an} \) which is a homeomorphism onto its image. Here \(\text{Par}_t(G) \) denotes the connected component of type \(t \) in the proper \(k \)-algebraic variety \(\text{Par}(G) \) of all parabolic subgroups in \(G \) (on which \(G \) acts by conjugation). The superscript \(^{an}\) means that we pass from the \(k \)-variety \(\text{Par}_t(G) \) to the Berkovich \(k \)-analytic space associated with it. Note that the space \(\text{Par}(G)^{an} \) is compact since \(\text{Par}(G) \) is projective. Let \(\mathcal{B}_k(G, k) \) denote the
closure of the image of θ_t.

Two parabolic subgroups P and Q of G are called osculatory if their intersection $P \cap Q$ is also a parabolic subgroup of G. Moreover, each parabolic subgroup $P \in \text{Par}(G)$ defines a closed osculatory subvariety $\text{Osc}_t(P)$ of $\text{Par}_t(G)$, namely the one consisting of all parabolics of type t whose intersection with P is a parabolic subgroup. Then P is t-relevant if it is maximal among all parabolic k-subgroups defining the same osculatory subvariety. It is readily seen that each parabolic subgroup is contained in a unique t-relevant one.

The space $\overline{\mathcal{F}}_t(G, k)$ admits a stratification in disjoint locally closed subspaces that are indexed by the t-relevant parabolic k-subgroups in G. If $x \in \overline{\mathcal{F}}_t(G, k)$ belongs to the stratum indexed by the t-relevant parabolic k-subgroup Q, then the subgroup of $G(k)$ that fixes x is contained in $Q(k)$, cf. [RTW10, Theorem 4.11].

In particular, a subgroup of $G(k)$ that fixes a point in the boundary $\partial \overline{\mathcal{F}}_t(G, k) = \overline{\mathcal{F}}_t(G, k) \setminus \mathcal{F}_t(G, k)$ cannot be Zariski-dense in G.

Let us finish the proof of the lemma. Since Δ is normal in Γ, its Zariski-closure $\overline{\Delta}^{\text{Zar}}$ is normal in $\overline{\Gamma}^{\text{Zar}} = G$. Since G is simple, it follows that $\overline{\Delta}^{\text{Zar}}$ is either equal to G or is a finite group.

Let $\mathcal{F} \subset \overline{\mathcal{F}}_t(G, k)$ be the subset of points that are fixed by the induced action of Δ. It is compact, since the action of $G(k)$ on $\overline{\mathcal{F}}_t(G, k)$ is continuous and $\overline{\mathcal{F}}_t(G, k)$ is compact. Moreover, \mathcal{F} is non-empty since Δ is bounded by assumption. Since Δ is a normal subgroup of Γ, the action of Γ on $\overline{\mathcal{F}}_t(G, k)$ stabilizes \mathcal{F}. If \mathcal{F} was contained in $\mathcal{F}_t(G, k)$, then Γ would fix the barycenter of \mathcal{F}. This would be in contradiction with the assumption that Γ is unbounded. Therefore, \mathcal{F} meets the boundary $\partial \overline{\mathcal{F}}_t(G, k)$. By the preceding discussion, it follows that $\overline{\Delta}^{\text{Zar}}$ cannot be equal to G, so that it is necessary a finite group. This proves that Δ is finite. □

5.4. Proof of Theorem 5.2. Let us now turn to the proof of Theorem 5.2. We keep the notations introduced in section 5.2. We can assume without loss of generality that X is smooth. Let X_s be a general fiber of the Katzarkov-Zuo reduction $\sigma_X^k : X \to S_X^k$, so that there is an exact sequence of groups:

$$
\pi_1(X_s) \to \pi_1(X) \to \pi_1(S_X^k) \to 1.
$$

Let Γ be the image of $\rho : \pi_1(X) \to G(k)$ and Δ be the image of the composition $\pi_1(X_s) \to \pi_1(X) \to G(k)$. The assumption of Lemma 5.3 are fulfilled, hence Δ is finite. Since the representation ρ is large, this is only possible if X_s has dimension zero. This proves that σ_X^k is birational.

Let $Z \to X$ denote the Galois covering associated to the pair (X, ρ), whose construction is recalled in section 5.2. By construction, Z is a connected normal compact Kähler space.

Let us prove that Z is of general type, using an argument of Zuo [Zuo96]. Since the induced map $Z \to X$ is finite surjective, the image of the homomorphism $\pi_1(Z) \to \pi_1(X)$ has finite index in $\pi_1(X)$, hence the image of the induced representation $\rho_Z : \pi_1(Z) \to G(k)$ is also Zariski-dense and unbounded. Moreover, ρ_Z is also a large representation, hence it follows from the preceding paragraph that the Katzarkov-Zuo reduction of (Z, ρ_Z) is birational. But by construction, the image of the Katzarkov-Zuo reduction of (Z, ρ_Z) admits a finite morphism to a compact complex torus. Therefore, assuming by contradiction that Z is not of
general type, there would exist a finite étale cover $Z' \to Z$ and a non-trivial fibration $f : Z' \to Y$ whose general fibre is a compact complex torus [Kaw81, Theorem 23]. Consider the induced representation $\rho_{Z'} : \pi_1(Z') \to G(k)$. It is again large since $Z' \to Z$ is finite. Let F be a general fibre of f. There is an exact sequence of groups $\pi_1(F) \to \pi_1(Z') \to \pi_1(Y)$. Since $\pi_1(F)$ is normal in $\pi_1(Z')$ and the image of $\pi_1(Z')$ is Zariski-dense in G, the Zariski-closure H of the image of $\pi_1(F)$ in G is a normal algebraic subgroup of G. But $\pi_1(F)$ is abelian, hence H is abelian too. Since G is absolutely simple, H is necessarily a finite subgroup of G. This is a contradiction, since $\rho_{Z'}$ is large.

Let $a : A \dashrightarrow X$ be a non-constant rational map from an abelian variety. Since X possesses a large local system, it has no rational curves. It follows that a is defined everywhere. Since the fundamental group of A is abelian, the Zariski-closure H of the image of $\rho_{A} : \pi_1(A) \to G(k)$ is a torus. Therefore, the Bruhat-Tits building $\mathcal{B}(H, k)$ is an Euclidean space. On the other hand, if \tilde{A} is a universal covering of A, the composition $\tilde{A} \to X \to \mathcal{B}(G, k)$ is ρ_{A}-equivariant and pluriharmonic [Kys04, Corollaire 1.3.8]. By unicity (up to translation) of the harmonic map associated to a reductive representation, it follows that the composition $\tilde{A} \to X \to \mathcal{B}(G, k)$ takes values in a totally geodesic embedded copy of $\mathcal{B}(H, k)$ in $\mathcal{B}(G, k)$. Since the Weyl group of H/k is trivial, it follows that the complex local system $F(A, \rho_{A})$ introduced in section 5.2 is trivial.

Assume that the image of a is not contained in $S(X, \rho)$. By construction, the pullback to $R(A, \rho_{A})$ along a of the complex local system $F(X, \rho)$ is equal to $F(A, \rho_{A})$. Since the local system $F(A, \rho_{A})$ is trivial, there is a rational map $A \dashrightarrow Z$ lifting $a : A \to X$. It follows that $\overline{\text{Sp}_{\text{ab}}}(X)$ is contained in the union of $S(X, \rho)$ and the image of $\overline{\text{Sp}_{\text{ab}}}(Z)$. But Z is a projective variety of general type with a generically finite map to an abelian variety. It follows from a result of Yamanoi [Yam15a, Corollary 1] that $\overline{\text{Sp}_{\text{ab}}}(Z) \neq Z$, so that $\overline{\text{Sp}_{\text{ab}}}(X) \neq X$ by the preceding discussion.

6. Proof of Theorem A

6.1. A first reduction.

Definition 6.1. Let X be a projective complex algebraic variety. A collection of complex local systems $\{\mathcal{L}_i\}_{i \in \mathcal{I}}$ on X is large if for every integral closed subvariety $Z \hookrightarrow X$ the pullback to the normalization of Z of one of the \mathcal{L}_i’s is not isotrivial. Equivalently, for any non-constant morphism $f : Y \to X$ from an irreducible normal projective complex algebraic variety Y, there exists $i \in \mathcal{I}$ such that the local system $f^{-1}\mathcal{L}_i$ is not isotrivial.

In particular, a complex local system \mathcal{L} is large when the collection $\{\mathcal{L}\}$ is large.

Proposition 6.2. Let X be a projective complex algebraic variety and $\{\mathcal{L}_i\}_{i \in \mathcal{I}}$ a large collection of complex local systems on X. Let $f : Y \to X$ be a finite morphism from another projective complex algebraic variety Y. Then the collection $\{f^{-1}\mathcal{L}_i\}_{i \in \mathcal{I}}$ of complex local systems on Y is large.

Proposition 6.3. Let X be a projective normal complex algebraic variety. If X admits a large collection of complex local systems, then X admits a large complex local system.

Proof. For any complex local system \mathcal{L}, we have the associated Shafarevitch morphism $X \to \text{Sh}^\mathcal{L}$. If $\{\mathcal{L}_i\}_{i \in \mathcal{I}}$ is a large collection of complex local systems on X, then the morphism $X \to \prod_{i \in \mathcal{I}} \text{Sh}_{\mathcal{L}}^i$ does not contract any subvariety, therefore it is finite. By Noetherianity, there exists finitely many local systems $\mathcal{L}_{i_1}, \cdots, \mathcal{L}_{i_N}$ such
that the morphism $X \to \prod_{k=1}^{N} \text{Sh}^{L_{ik}}_{X}$ is finite. It follows that the complex local system $\bigoplus_{k=1}^{N} L_{ik}$ is large. \hfill \Box

In view of Proposition 6.2 and Proposition 6.3, the proofs of Theorem 4.1 and Corollary 4.3 immediately generalize as follows:

Theorem 6.4. Let X be a projective complex algebraic variety supporting a large collection of complex local systems. Then $\text{Sp}(X) = \text{Sp}_{\text{ab}}(X) = \text{Sp}_{h}(X)$, and $\text{Sp}(X) = \text{Sp}_{\text{ab}}(X) = \text{Sp}_{h}(X) = X$ if X is not of general type.

With the preceding results at hand, we first reduce Theorem A to the following result.

Theorem 6.5. Let X be a projective complex algebraic variety supporting a large collection of complex local systems. If X is of general type, then $\text{Sp}_{\text{ab}}(X)$ is not Zariski-dense in X.

Proof of Theorem A assuming Theorem 6.5. Recalling Theorem 6.4, we need only to check that $\text{Sp}(X) = \text{Sp}_{\text{ab}}(X) = \text{Sp}_{h}(X)$ is Zariski-closed in X. There is nothing to prove when $\dim X = 0$, so that one can assume that $\dim X > 0$. By Noetherian induction, let us assume that the result holds for all strict subvarieties of X. If X is not of general type, then the result follows from Theorem 6.4. Otherwise, if X is of general type, then $S := \text{Sp}_{\text{ab}}(X)$ is not Zariski-dense in X thanks to Theorem 6.5. Denoting by \bar{S} its Zariski-closure in X, observe that $\text{Sp}_{\text{ab}}(\bar{S}) = \text{Sp}_{\text{ab}}(X) = S$. Therefore, $\text{Sp}_{\text{ab}}(\bar{S})$ is Zariski-dense in \bar{S}. Since \bar{S} is a strict subvariety of X, it follows by Noetherian induction that \bar{S} is not of general type. Thanks to Theorem 6.4, \bar{S} is covered by images of abelian varieties, so that $S = \bar{S}$. \hfill \Box

6.2. Proof of Theorem 6.5

Let X be a projective complex algebraic variety supporting a large collection of complex local systems. Assume that X is of general type. Our goal in this section is to prove that $\text{Sp}_{\text{ab}}(X)$ is not Zariski-dense in X.

Let $X = \bigcup_{i} X_{i}$ be the decomposition of X in its irreducible components. Since $\text{Sp}_{\text{ab}}(X_{i}) \subset X_{i}$ for every i, it is sufficient to prove that $\text{Sp}_{\text{ab}}(X_{i})$ is not Zariski-dense in X_{i} for at least one of the X_{i}’s which is of general type. Therefore one can assume from now on that X is irreducible.

Let $\nu : \tilde{X} \to X$ denote the normalization of X and $Z \subset X$ the non-normal locus of X. Then $\nu(\text{Sp}_{\text{ab}}(\tilde{X})) \subset \text{Sp}_{\text{ab}}(X)$ since ν is finite, and $\text{Sp}_{\text{ab}}(X) \subset \nu(\text{Sp}_{\text{ab}}(\tilde{X})) \cup Z$ since ν is an isomorphism onto its image outside $\nu^{-1}(Z)$. Therefore, $\text{Sp}_{\text{ab}}(X)$ is Zariski-dense in X if, and only if, $\text{Sp}_{\text{ab}}(\tilde{X})$ is Zariski-dense in \tilde{X}. In view of Proposition 6.2 and Proposition 6.3, \tilde{X} admits a large complex local system. As a consequence, one can assume from now on that X is normal irreducible projective complex algebraic variety with a large complex local system. We denote by $\rho : \pi_{1}(X) \to G(\mathbb{C})$ the corresponding monodromy representation, with G its algebraic monodromy group.

Note also that it is harmless to replace X with a finite étale cover, cf. Proposition 2.2 and Proposition 3.3. In particular, one can assume that the algebraic monodromy group G is a connected algebraic group.

6.2.1. The semisimple case

Let us first finish the proof under the additional assumption that the algebraic monodromy group G is semisimple. Thanks to [Eys04], there exist finitely many representations ρ_{i} such that:
(1) Every ρ_i is of the form $\pi_i(X) \to G(k)$, with k a non-Archimedean local field and G an absolutely simple k-algebraic group, and ρ_i has Zariski-dense and unbounded image;

(2) If $X \to S_X^{ab}$ denote the Katzarkov-Zuo reduction of ρ_i, then the restriction of L to the normalization of any fiber of $X \to \prod_i S_X^{ab}$ underlies a polarized variation of pure Hodge structures with discrete monodromy.

Let $f : X \to Y$ denote the Stein factorization of the morphism $X \to \prod_i S_X^{ab}$. Note that for every i the induced morphism $Y \to S_X^{ab}$ is surjective, since its precomposition $X \to S_X^{ab}$ with the canonical morphism $X \to Y$ is surjective. Thanks to Theorem 6.6 and Proposition 6.2, $\text{Sp}_{ab}(S_X^{ab}) \neq S_X^{ab}$ for every $i \in I$. Using Proposition 2.6, it follows that $\text{Sp}_{ab}(Y) \neq Y$.

Therefore, in view of Proposition 2.3 it is sufficient to prove that $\text{Sp}_{ab}(X/Y)$ is not Zariski-dense in X. Since X is normal, there exists a Zariski-dense open Y^o of Y over which the (geometric) fibers of f are normal. Moreover, by construction, any such fiber X_y admits a large complex local system that underlies a polarized variation of pure Hodge structures with discrete monodromy. It follows from Proposition 3.12 that $\text{Sp}_{ab}(X_y) = \emptyset$ for any $y \in Y^o$. This proves that $\text{Sp}_{ab}(X/Y)$ is contained in $f^{-1}(Y\setminus Y^o)$, hence it is not Zariski-dense in X. This concludes the proof.

6.2.2. The reductive case. Assume that the algebraic monodromy group G is reductive. Thanks to Proposition 3.15 replacing X with a finite étale cover, we can assume that there exists a surjective morphism with connected fibers $f : X \to Y$ onto a normal irreducible projective complex algebraic variety Y such that:

- Y admits a large complex local system with torsion-free monodromy and a semisimple algebraic monodromy group;
- for y in a Zariski-dense open subset of Y, the fiber X_y admits a finite morphism to an abelian variety.

Let $X' \to X$ be a projective desingularization of X. Thanks to Proposition 2.3 it is equivalent to prove that $\text{Sp}_{ab}(X')$ is not Zariski-dense in X'. The composition $X' \to X \to Y$ is still a fibration, and there exists a Zariski-dense open subset Y^o of Y such that X'_y is a desingularization of X_y for every $y \in Y^o$. In particular, X'_y has maximal Albanese dimension (since X'_y admits a finite morphism to an abelian variety) and is of general type (since X' is of general type by assumption).

The set $\text{Sp}_{ab}(Y)$ is not Zariski-dense in Y thanks to the preceding section. Therefore, thanks to Proposition 2.3 it is sufficient to prove that $\text{Sp}_{ab}(X'/Y)$ is not Zariski-dense in X'. Since one can freely shrink Y to make the morphism $X' \to Y$ smooth, this is a consequence of the following result.

Theorem 6.6 (cf. [Brs16]). Let $f : X \to Y$ be a smooth projective surjective morphism with connected fibers between smooth complex algebraic varieties. Assume that the fibers of f over a Zariski-dense open subset of Y are of general type and of maximal Albanese dimension. Then $\text{Sp}_{ab}(X/Y)$ is not Zariski-dense in X.

6.2.3. The general case. For the general case, we can argue exactly as in the reductive case, making use Proposition 3.14 instead of Proposition 3.15.

References

[Ber90] Vladimir G. Berkovich, *Spectral theory and analytic geometry over non-Archimedean fields*, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709
[Yam15b] Yamamori, Koayashi hyperbolicity and higher-dimensional Nevanlinna theory, Geometry and analysis on manifolds, Progr. Math., vol. 308, Birkhäuser/Springer, Cham, 2015, pp. 209–273. MR 3331401

[Zuo96] Kang Zuo, Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π_1 of compact Kähler manifolds, J. Reine Angew. Math. 472 (1996), 139–156. MR 1384908

[Zuo99] Kang Zuo, Representations of fundamental groups of algebraic varieties, Lecture Notes in Mathematics, vol. 1708, Springer-Verlag, Berlin, 1999. MR 1738433