Research Article

Development of Ecological Health Tourism Products under the Background of Internet+

Xin Wang

Department of Culture and Tourism, Taiyuan University, Taiyuan, Shanxi 030032, China

Correspondence should be addressed to Xin Wang; wangxin@tyu.edu.cn

Received 23 June 2022; Revised 27 July 2022; Accepted 8 August 2022; Published 5 September 2022

Academic Editor: Yuan Li

Copyright © 2022 Xin Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of domestic economy and the improvement of people’s living standard, tourism has become more and more popular as a leisure lifestyle. The explosive growth of the mobile Internet has caused the problem of “information overload”. The travel recommendation system can help tourists obtain the travel information that users are interested in from the massive data. Ecological health tourism is a special tourism product with ecological environment as the background and leisure health activities as the theme. With the development of China’s urbanization and the intensification of population aging, the Chinese people’s demand for health tourism products and ecological health tourism market is becoming stronger and stronger, and the development prospect is extremely broad, but there is not much research in this field in the academic circles at present. This paper applies the Collaborative Filtering (CF) to travel recommendation to provide users with accurate travel recommendation services. However, because the traditional CF only relies on a single user’s rating data, and has its own defects, it cannot meet the complex needs of users in the tourism industry. This paper improves the traditional CF and designs and implements a tourism recommendation system on this basis. Combine Spark cloud computing platform technology and TC-Personal Rank algorithm to achieve a breakthrough in the algorithm. Through experiments, it can be found that the accuracy of product recommendation can be improved by 75.3% for the algorithm designed in this paper. Overall, the recall rate can reach 65.7%. And it can also achieve good results in recommendation satisfaction and recommendation coverage.

1. Introduction

Ecotourism is one of the hotspots and trends in global tourism development. Ecotourism resources are composed of ecotourism landscape and ecotourism environment. Scientific establishment of ecotravel resources evaluation index system and objective evaluation of ecotravel resources is an important foundation for rational development and utilization of ecotravel resources, tapping its potential, and promoting the healthy development of ecotravel [1, 2]. Therefore, people are enthusiastic about getting rid of diseases, keeping fit, and prolonging life, and there is a more urgent need for health knowledge [3]. With the return of traditional culture in recent years, people gradually understand the main guidance of humanism and tradition for spiritual attribution, and gradually rise the trend of reconstruction of spiritual home. Similarly, in terms of health preservation culture, people find that the essence of traditional culture is the true meaning of health preservation. Traditional culture is not only people’s spiritual home but also directly leads people to a scientific way of health preservation [4].

The development of new tourism products effectively combines our consumers and producers with the power of the Internet, which promotes not only the development of tourism but also the development of the service industry and the tertiary industry, making our new products the structure forms diversified development [5]. Under the conditions of the national macropolicy inclination and the increasing demand for national leisure and vacation, the development of ecotravel has obvious advantages, but it faces multiple obstacles. The arrival of the “Internet plus” era points out a new direction for the development of tourism industry. The high integration of information and tourism can provide new ideas for ecotourism, improve the quality of ecotourism, and promote the development of ecotourism [6, 7]. From the perspective of “Internet+”
ecotourism research and with the social progress, the tourism industry is becoming more and more information-based and gradually developed into the “Internet+ tourism” mode. The following problems are information overload [8]. The so-called information resource overload means that with the development of society, economy, and technology, more and more information is produced, and finally, the total amount of information greatly exceeds people’s needs, thus causing difficulties for people to choose and use. In the aspect of theoretical research, it is helpful to enrich the theoretical research system of “Internet plus tourism” and provide new modes and new ideas for the innovative development of ecotravel industry.

At this stage, domestic scholars lack of research on the new development model when studying the innovative development of ecotourism industry [9, 10]. This paper is based on the development model of "Internet+" and "+tourism", and on the basis of in-depth research on the construction of ecotravel network platform, combined with the characteristics of new media such as mobile app, to give full play to the marketing and publicity role of the Internet in the tourism industry, to a certain extent. It is helpful to enrich the theoretical research system of "Internet+tourism" [11]. As the online travel industry is emerging soon, the competition among major travel websites is becoming increasingly fierce, which makes major enterprises finance and integrate one after another, and it is a common problem that travel websites generally lose money by subsidizing and burning money [12, 13]. As a service-oriented tourism website, its core competitiveness is the high quality of its service, increasing the attraction to users and maintaining high loyalty. However, at present, some well-known domestic tourism websites have not provided personalized services to users, and some websites will cooperate with scenic spots and give priority to recommending cooperative scenic spots for users. Such recommendation results do not meet the personal characteristics of users. When building an ecotourism recommendation system, the research and selection of recommendation algorithms are crucial. Today, a single recommendation algorithm technology can no longer meet the needs of tourists for tourism information services, and the combined application of multiple recommendation algorithms has become a new direction of ecotourism recommendation system research [14]. However, the above research has not solved the problem of ecotravel scenic spot recommendation based on the Internet, so this paper puts forward the following innovations on this basis:

(1) Research on the storage, calculation, and analysis of tourism data information. Some existing recommendation algorithms do not consider the problems of tourism data storage and computing analysis. In view of this situation, this paper combines the Spark cloud computing platform technology, which is an excellent technology in the Internet field. The distributed storage platform of Hadoop is used to store tourist information data in a distributed manner, and the Spark distributed computing platform based on memory is used to run the algorithm model of scenic spots recommendation, so as to improve the timeliness of algorithm recommendation

(2) A TC-Personal Rank optimization algorithm with dynamic time weight is proposed [15]. After analyzing the traditional tourism recommendation algorithms, it is found that they often ignore the impact of user travel time on the recommendation results. Therefore, a TC-Personal Rank algorithm based on user consumption model and dynamic time weight is proposed

2. Related Work

Li et al. think that the rapid development of information and communication technology has changed people’s traditional way of life, such as communication and consumption. The establishment and development of virtual space not only provide us with more convenient life services but also open a broader vision [16]. Zhu et al. proposed health tourism as an emerging tourism method. Due to its late appearance, theoretical research is still lagging behind other tourism products and systems with more mature markets. There are many aspects of it. A systematic study on it, accurately defining the definition, nature, characteristics, classification of health tourism resources, and development of health tourism products will help clarify its theoretical framework and improve its theory [17]. The research of Liao et al. shows that with the change of the environment and development degree of tourism resources, the quality of tourism resources also show a dynamic change process. However, the original tourism resource evaluation index system focuses more on the evaluation of the current value of resources and less on the development of potential of resources, resulting in the value evaluation of ecotourism resources not being objective and comprehensive, it is difficult to give full play to the potential of ecotourism resources [18]. Cao believes that the rational transformation of tourism resources into economic benefits, how to effectively improve the situation of traditional rural areas, promote rural modernization and improve tourism information services, solve the brain drain in rural areas, lack of motivation for rural construction, etc., are all in the development of rural tourism. It is a common and urgent problem that needs to be solved [19]. Shen believes that the “+” in “Internet plus” determines the integration of the two formats, breaks the isolated relationship between traditional industries, integrates the wisdom of many fields with a more open attitude, advocates "group wisdom", and incorporates the traditional product research and development, production, marketing, publicity, and sales into the new development model [20]. The research of Shang et al. shows that due to their own defects and the complexity of scenic spots and tourism users, the CF cannot fully meet the needs of the users. In view of such characteristics, based on previous studies, it is found that the CF pays attention to user scoring and ignores the self attributes of scenic spots, another important participant of the recommendation system [21]. Chaudhary et al. pointed out that as a service-oriented travel website, its core competitiveness
is the high quality of its services, increasing its attractiveness to users and keeping them highly loyal. However, at present, some well-known tourism websites in China have not provided personalized services to users, and some websites will cooperate with scenic spots, giving priority to recommending cooperative scenic spots for users. Such recommendation results do not conform to users’ personal characteristics. After logging in to the website, users need to look up a lot of travel information by themselves, which makes users who have no clear destination feel confused and tired [22]. Alaei et al. use Bayesian network to build a tourism recommendation system. By obtaining the relevant information of scenic spots from tourism websites, and using Bayesian network to analyze the location, time, and user evaluation of scenic spots, we can provide personalized tourism suggestions for users in unfamiliar scenic spots. The system also provides an interface to display recommendation results and user feedback [23]. Magasic and Gretzel proposed a combined tourism recommendation scheme based on the HSS model and the newly designed MM-VBPR algorithm, which alleviates the sparsity problem of tourism data by利用 scenic spot images, and can well utilize multiple semantic correlations between image features, and finally, implement combinatorial recommendations based on lists generated from a multimodal and statistical perspective [24]. Son et al. put forward a tourist guidance system W2Go, which uses the attributes of tourist attractions obtained from tourism websites and the automatic landmark ranking algorithm developed by users. The system can automatically identify and sort the coordinates of tourist attractions and recommend the results to users [25]. Jiang believes that the model is verified by using dataset acquisition. By searching relevant data, it is summarized that the scenic spots are divided into nine categories: geographical scenic spot, water scenic spot, biological scenic spot, historical relics scenic spot, museum scenic spot, theme park scenic spot, resort, building scenic spot, and national folk custom scenic spot. According to the introduction of scenic spots, key words are extracted to classify all scenic spots in Hebei Province [26]. Qadar et al. believe the gradual promotion of "Internet+" to a strategic level at the national level, especially that government departments actively play the role of advocates and leaders of the "Internet+" model and deeply explore the potential of the market. With the corresponding and implementation of the slogan of "mass innovation, national innovation", "Internet+" will play a significant social effect and economic value in a certain period of time in the future [27].

On the basis of the above-mentioned research work, this paper determines the positive role of the research field of ecohealth tourism product development under the background of "Internet+", and constructs a recommendation algorithm model that combines various algorithms, and makes a deep analysis and research on the acquired and collected data by using big data algorithm, so as to make more effective use of the data and mine the valuable hidden behind the data.

3. Methodology

3.1. Research and Analysis of Related Theories

3.1.1. Tourism under the Internet+ Background. Since the reform and opening up, China’s tourism industry has developed rapidly with the support of the government and the stimulation of the market, and the number of tourists has been rising. Therefore, tourism is said to be a “sunrise industry”. With the emergence of new generation information technologies such as big data, cloud computing, and Internet of Things, the integration of the Internet industry and tourism can bring new vitality to generate. The "Internet+" tourism era is an era of mass entrepreneurship and innovation. "Internet+" not only provides a path for traditional tourism enterprises to transform and upgrade but also attracts more creative entrepreneurs to enter the tourism industry. "Internet+" breaks the limitation of time and region, integrates tourism product production, tourism service, tourism consumption, and tourism management into an organic system, reduces the participation of middlemen, and establishes a borderless and barrier-free communication channel.

From the application of Internet technology in tourism to the transformation of tourism in the "Internet plus" era, the influence of the Internet on tourism has been around for a long time. Ecological health tourism is different from other special tourism. It requires special health activities and strict requirements for the environment. At present, the more popular health preservation tourism projects include forest bath health preservation method, fog bath health preservation method, and ecological warm soup bath method. The emergence of the “Internet+tourism” development model has provided new development ideas for the tourism industry to solve problems such as excess investment and innovative development. In particular, the transformation of infrastructure investment in traditional scenic spots to investment in virtual service fields will help promote the tourism industry. This can optimize the allocation of resources and realize the modern management and development. Figure 1 is a comparison chart of the growth rate of online tourism at home and abroad in recent years.

3.1.2. Development and Trend of Ecological Health Tourism. Health-preserving tourism, as a new way of tourism, not
only has the basic characteristics of tourism, such as consumption, leisure, sociality, aesthetics, and other characteristics, but also has its own characteristics because it highlights the purpose of health-preserving. Health tourism is a healthy, ecological, and green way of tourism. No matter what kind of health tourism product, its consumption process is carried out on the premise of healthy ecological environment. Its goal is also implemented on the premise of maintaining the original ecology and low impact of the environment. Pursuing the sustainability of environment and health is to pursue a kind of original ecological demand. Ecology is the core pursuit of tourism development. It is also one of the core competitiveness of health tourism. With the diversified development trend of tourism demand, tourism content is also enriched. Because health tourism is highly sensitive to the environment, health tourism mostly exists in areas with good ecological environments such as mountains, forests, medical care, and leisure. The health functions are different, and the product content is also different. Ecotourism, as a special form of tourism, emphasizes the nature as the foundation, attaches importance to ecological environmental protection, environmental education, and community participation, and is a sustainable tourism form. Its basic core idea is to maintain the harmony and unity between man and land.

The differences in the understanding of ecotourism resources in tourism academic circles mainly focus on the definition of object attribute category. Strictly speaking, ecotourism resources only refer to pure natural scenery, that is, natural tourism resources with better environment. But at present, more understanding of ecotourism resources is to extend or expand on the basis of strict connotation of ecotourism resources; that is, the generalization of the concept of ecotourism resources is brought about under the background of the phenomenon of “generalization” of ecotourism, believing that ecotourism resources not only refer to nature with “natural beauty” but also include social and cultural landscapes that are in harmony with nature, full of ecological beauty, natural ecology, and human ecology, that is, natural humanistic or natural ten social tourism resources. It is the vitality of characteristic tourism products, and the brand is the business card and pass of tourism products, which often has a good and high image recognition. Characteristic and brand development has become the current trend of tourism product development. Tourists’ attention and choice of product features, themes, and product brands have become an important influencing factor of mass tourism consumption.

3.2 Research on Ecotourism Products Based on CF. In an increasingly information-rich world, recommendation systems have become an integral part of people’s daily lives, helping individuals quickly and accurately find information about items or services of interest to them in the overwhelming amount of information around them. Especially in the tourism industry, tourism recommendation system plays a vital role in promoting the development of tourism economy. It is a bridge connecting people and things, an advanced business intelligence platform for processing, developing, and applying massive tourism big data, and can provide personalized tourism information services for system users. Generally speaking, recommendation algorithms are divided into three parts: content-based recommendation, knowledge-based recommendation, and association rule-based recommendation. Figure 2 shows the basic recommendation process of CF.

The content-based recommendation is to find the correlation between products, and then analyze the user’s historical records to find the products that the user is interested in and recommend them to the user. Its core is to analyze the correlation between commodities and calculate the similarity of different commodities according to their different attributes. Knowledge-based recommendation is suitable for users in the absence of user history and is usually used in infrequent interaction scenarios. Association rules were first proposed in the field of data mining, which refers to the statistics of the relationship between different rules in historical data, that is, the probability that event A and event B will also occur. Support is the probability that a certain set \(\{A, B\} \) appears in the total set \(I \). The formula is as follows:

\[
\text{Support}(A \rightarrow B) = \frac{P(A, B)}{P(I)} = \frac{P(A \cup B)}{P(I)}. \tag{1}
\]
Confidence refers to the probability of inferring B according to the association rule under the condition that event A occurs. The formula is

$$\text{Confidence}(A \rightarrow B) = \frac{P(B|A)}{P(A)} = \frac{P(A \cup B)}{P(A)} . \quad (2)$$

At this time, the promotion degree indicates the ratio of the probability of containing B under the condition of containing A to the probability of containing B under the condition of not containing A. If the final calculation result is greater than 1, it indicates that there is a strong correlation between the two. When buying A, recommending B is better than directly recommending B; 1 indicates that it is irrelevant, and the purchase of A and B is an independent event. If it is less than 1, it means that the effect of recommending B when purchasing A is worse than that of directly recommending B. The formula looks like this:

$$\text{Lift}(A \rightarrow B) = \frac{P(B|A)}{P(B)} . \quad (3)$$

Evaluation index is an essential element to analyze the tourism competitiveness, which can show the characteristics of scenic spots in detail, and has a gain effect on the similarity calculation results of scenic spots. As a unified index evaluation system has not been formed at present, based on the study of a large number of documents, this paper analyzes and selects those with good quality and high reliability as the theoretical basis for the construction of the evaluation index system of tourist attractions in this paper. The evaluation index system is shown in Table 1.

The method used in this paper to determine the weight of data is AHP, which is a systematic and hierarchical analysis method combining qualitative and quantitative analysis. The determination process is as follows: firstly, the judgment matrix needs to be constructed, and the construction method is as follows: calculate the average value of each analysis item, and then divide by the average value to obtain the judgment matrix. The larger the average value, the higher the importance and the higher the weight. After the results are obtained, calculate the CR value. According to the results, the weights obtained are consistent, and the results are generally shown in Table 2.

Since Hadoop was born, after more than ten years of development, Hadoop has developed into a super ecosystem application system with more than 60 related components. Figure 3 shows the Hadoop big data application ecosystem. Among them, distributed file system HDFS is used as the storage layer of Hadoop, which can be used to store overloaded data information in a distributed way. YARN, as a resource management system of Hadoop, is used for unified management and scheduling of Hadoop cluster resources. MapReduce is a distributed computing system for parallel computing of data. Zookeeper is a distributed collaborative service component, which can solve the problems of data management in distributed environment. Spark is a memory-based distributed computing framework for improving the real-time performance of massive big data processing. Ambari is a web tool for creating, managing, and monitoring the operation of Hadoop clusters. Figure 3 shows the ecological model diagram of Hadoop big data application.

Compared with Hadoop MapReduce, Spark has a real-time and efficient data processing performance, which overcomes many defects in MapReduce. The advantages of Spark are as follows: strong data processing and analysis ability and Spark will be 100 orders of magnitude faster than Hadoop in data computing level, but actually, it is about 40 orders of magnitude higher. In addition, in terms of ease of use, Spark can use a variety of programming languages, and its shell can be used for interactive programming. For the versatility of application scenarios, Spark technology system includes Spark MLlib for machine learning, Spark Streaming for streaming computing, Spark Graphx for distributed graph computing, and Spark SQL for interactive query operations and batch processing; therefore, Spark can well cope with complex task computing scenarios.

Table 1: Evaluation index system.

Primary index	Secondary index	Tertiary indicators
Evaluation index tourist attractions	Competitiveness B1	Scenic area A1
Evaluation index tourist attractions	Competitiveness B2	Charging standard A2
Evaluation index tourist attractions	Charging standard A2	Scenic spot heat C1
Evaluation index tourist attractions	Charging standard A2	Service configuration C2

Maximum characteristic root	CI value	RI value	CR value	Consistency test results
12.000	0.000	1.450	0.000	Adopt

Table 2: Consistency test results.

3.3. About the Optimization Scheme in CF. By studying and analyzing the problems of traditional travel recommendation algorithms, this chapter proposes a TC-Personal Rank algorithm based on user consumption model and dynamic time weight. TC-Personal Rank algorithm selects tourism services that meet the user’s consumption level and consumption habits for users according to the built user consumption model. At the same time, considering the user’s current travel time, give priority to recommending tourism services that meet the user’s travel time.

The prediction accuracy is an offline evaluation index, which can measure and predict user behavior. The steps are as follows: first, divide the data into experimental sets and test sets, which are established offline, and then, use the experimental set to analyze the user’s behavior and the model of interest to conduct experiments. After the results of the experiment are obtained, the test set data is applied to the model for testing, and the accuracy of the model prediction is calculated according to the results of the experimental set and the test set. There are two main methods of
scoring, one is root mean square error, the other is average absolute error. Defined formula expressions are as follows:

\[
\text{RMSE} = \sqrt{\frac{\sum_{i,j \in T} (r_{ui} - \hat{r}_{ui})^2}{|T|}},
\]

\[
\text{MAE} = \frac{\sum_{i,j \in T} |r_{ui} - \hat{r}_{ui}|}{|T|},
\]

where \(T \) is the data set used to test the model. The number of element data in \(T \) is \(|T|\), \(u \) is the user, \(i \) is the article, is the real score of \(u \) on \(i \) obtained from the training set, and \(\hat{r}_{ui} \) is the predicted score of \(u \) on \(i \) obtained from the prediction set.

TOP-N recommendation is as follows: since the recommendation results of many recommendation systems are similar, the user’s interest will be lost in the long run. The TOP-N recommendation algorithm can provide users with personalized recommendation list services, and the results of the recommendation list can be judged by the recall rate and accuracy rate (recommended accuracy). The definition formulas are as follows:

\[
\text{Recall} = \frac{\sum_{u \in U} |R(u) \cap T(u)|}{\sum_{u \in U} |T(u)|},
\]

\[
\text{Precision} = \frac{\sum_{u \in U} |R(u) \cap T(u)|}{\sum_{u \in U} |T(u)|}.
\]

PageRank algorithm can mark different web pages in grades, and it is an index to measure the importance of web pages. In the web pages in the network, the number of all links pointing to the current web page is called the number of links in the web page. In the search engine, if you want to improve the level of a web page \(A \) in the search engine, you often do a lot of pages to point to the web page \(A \). In this way, although the level of the web page is improved, the quality of the web page has not been improved. According to the direct connection relationship of the nodes, start from the node of \(PR \neq 0 \), and set the probability to continue along the connected edge, and the probability of \(1 - \alpha \) choose not to continue along the edge but stop at the node. Therefore, the formula for calculating PR is as follows:

\[
PR(i) = (1 - \alpha)r_i + \alpha \sum_{j \in \text{in}(i)} \frac{PR(j)}{|\text{out}(j)|},
\]

in which \(r_i \) is \(i = u \) when \(r_j = 1 \) and \(i \neq u \) when \(r_j = 0 \).

In the traditional tourism recommendation system, the recommendation algorithm only cares about the relationship between users and scenic spots. However, the travel time of users has an important impact on the results of tourism recommendation. The travel time of the recommended tourist attractions in the recommendation system needs to conform to the travel arrangement of the user. If the travel time of the recommended travel route far exceeds the travel time plan of the user, the user will ignore the recommended data, which will ultimately affect the accuracy of the recommendation result. Therefore, it needs to be solved by weighted time weighting function, and its general calculation formula is as follows:

\[
F(u_i) = \log_{0.5} \left(\frac{T_{u_i}}{5} + 1 \right),
\]

where \(T_{u_i} \) refers to the travel time length of the user in the current time series. Taking 5 days as a travel unit, when the length of user travel time cannot be judged, \(F(u_i) = 0 \) indicates that the impact of user travel time on PR calculation is ignored. Then, the PR calculation formula for adding dynamic time weight is as follows:

\[
PR(i) = (1 - \alpha)r_i + \alpha \sum_{j \in \text{in}(i)} \frac{PR(j)}{|\text{out}(j)|} + \log_{0.5} \left(\frac{T_{u_i}}{5} + 1 \right).
\]
schedule according to the current time series of the user. Therefore, when the user’s travel schedule time is shorter, the recommendation system will give priority to recommending tourist attractions that are closer; the longer the user’s travel time is, the more distant tourist attractions can be recommended, and the user can accept the longer traffic time.

4. Result Analysis and Discussion

Based on the above research and analysis, in order to verify the effectiveness of the improved TC-Personal Rank CF, we choose to test the improved algorithm in the tourism recommendation system. In the experimental test, the improved algorithm is evaluated from the two aspects of accuracy and satisfaction. Among them, the accuracy is tested by root mean square error. Figures 4 and 5 are data analysis diagrams of CFs before and after improvement.

Compared with the traditional CF, the accuracy of the improved CF is greatly improved. With the increase of users’ usage time, the recommendation results are more accurate. However, the traditional CF still has the problem of reducing the accuracy when the time increases. Although both are better reflected in the stability, there is a large gap in the accuracy of recommendation. Therefore, the improved algorithm is more powerful in the development of ecological health tourism products. It can be seen from the observation that the improved algorithm after point 2 basically exhibits stable fluctuation. This is due to the normal fluctuation in the presence of a certain interference term. Since the interference influence needs to be balanced, there will be regular fluctuations to eliminate the influence of the interference term. This improves accuracy. In general, the accuracy of product recommendation is improved by 75.3%. It can be seen from the figure that the satisfaction of TC-Personal Rank algorithm is not very high at the beginning. This is because the training set did not fully understand the characteristics of users’ preferences at the beginning, and with the passage of time, the accuracy of the recommendation algorithm increases, which can recommend data more in line with the characteristics of users’ travel preferences for users. Finally, it is gradually stable because the user’s preference characteristics are relatively stable over a period of time, so the final satisfaction with users will be in a stable stage.

On the basis of the above experimental conclusions, this paper continues to carry out scientific experiments, and then analyzes the coverage rate and recall rate, as shown in Figures 6 and 7.

Coverage is a measure of the integrity and effectiveness of the test. It is verified by calculating the proportion of users who received recommendations in the total number of users. From the figure, it can be seen that the algorithm designed in this paper is better than the traditional algorithm structure as a whole, and it shows better results in actual calculation. Generally speaking, the recall rate is the ratio of the scenic spot recommendation results actually generated for users.
to the total scenic spots to be recommended. According to the recommendation list generated for users according to the test data, the results show that compared with the traditional CF, this algorithm model has higher recall rate and more accurate recommendation results. Taken together, the recall rate can reach 65.7%.

5. Conclusions

With the rapid development of information in today’s society, with the improvement of people’s material living standards and the increasing demand for spiritual civilization, the tourism industry is booming. The vigorous promotion of the state also stimulates the development of local tourism economy. In the face of such a huge potential tourist population, tourism service will also be a factor that cannot be ignored in the fierce competition of tourist attractions and tourism websites. This paper makes an in-depth understanding and exploration of related technologies and methods of tourism big data and related recommendation algorithms. In view of some problems faced by today’s tourist attractions recommendation, an optimization scheme of tourist attractions recommendation algorithm based on Spark cloud computing platform technology is proposed, aiming to use big data. Related technologies and related recommendation algorithms are used to provide users with good tourist attractions recommendation information services. At present, the traditional travel recommendation algorithm is studied. Through the research, it is found that the traditional travel recommendation system pays more attention to the relationship between users and tourist attractions but ignores that the consumption level and travel time of users will also have an important impact on the recommendation results. Based on the traditional CF, a TC-Personal Rank algorithm based on user consumption model and dynamic time weight is proposed. Through experiments, it can be found that the accuracy of product recommendation can be improved by 75.3%. Overall, the recall rate can reach 65.7%. And it can also achieve good results in recommendation satisfaction and recommendation coverage.

Data Availability

The labeled datasets used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author declares no competing interests.

Acknowledgments

This research was supported by the Planning of Philosophy and Social Science in Shanxi Province (2021YYS211) and Project of the 14th Five-Year Plan (2021–2025) of the Educational Science in Shanxi Province (GH-220916).

References

[1] L. Li, Z. Zhang, and S. Zhang, “Hybrid algorithm based on content and collaborative filtering in recommendation system optimization and simulation,” Scientific Programming, vol. 2021, no. 4, 11 pages, 2021.
[2] T. T. Pan, F. Wen, and Q. R. Liu, “Collaborative filtering recommendation algorithm based on rating matrix filling and item predictability,” Zhongguo Xuebao/Acta Automatica Sinica, vol. 43, no. 9, pp. 1597–1606, 2017.
[3] X. Li and D. Li, “An improved collaborative filtering recommendation algorithm and recommendation strategy,” Mobile Information Systems, vol. 2019, Article ID 3560968, 11 pages, 2019.
[4] X. Cheng, L. Feng, and Q. Gui, “Collaborative filtering algorithm based on data mixing and filtering,” International Journal of Performability Engineering, vol. 15, no. 8, p. 2267, 2019.
[5] C. Xiao-Long, D. Bo, S. Guo-Ping, and Y. Yan, “Multi-collaborative filtering algorithm for accurate push of command information system,” Revista de la Facultad de Ingeniería, vol. 32, no. 7, pp. 165–172, 2017.
[6] S. Ye, “Application of collaborative filtering algorithm in the design of library recommendation system in university library,” Revista de la Facultad de Ingeniería, vol. 32, no. 14, pp. 348–353, 2017.
[7] G. Luo and W. Ouyang, “A method of forest-fire image recognition based on collaborative filtering algorithm,” Boletín Tecnico/Technical Bulletin, vol. 55, no. 9, pp. 14–19, 2017.
[8] X. Qian and G. Liu, “Restricted Boltzmann machine collaborative filtering recommendation algorithm based on project tag improvement,” International Journal of Performability Engineering, vol. 14, no. 6, pp. 1109–1118, 2018.
[9] D. Margaris, D. Spiliotopoulos, G. Karagiorgos, and C. Vassilikis, “An algorithm for density enrichment of sparse collaborative filtering datasets using robust predictions as derived ratings,” Algorithms, vol. 13, no. 7, p. 174, 2020.
[10] R. Mu and X. Zeng, “Collaborative filtering recommendation algorithm based on knowledge graph,” Mathematical Problems in Engineering, vol. 2018, no. 4, 11 pages, 2018.
[11] T. Wang and M. Wang, “Distributed collaborative filtering recommendation algorithm based on DHT,” Cluster Computing, vol. 22, no. S2, pp. 2931–2941, 2019.
[12] W. Tao and M. Wang, "Distributed collaborative filtering recommendation algorithm based on DHT," Cluster Computing, vol. 22, no. 1, pp. 1–11, 2019.
[13] M. Alhaj, Q. Y. Shambour, and M. Tahrawi, "A hybrid collaborative filtering recommendation algorithm for requirements elicitation," International Journal of Computer Applications in Technology, vol. 63, no. 1-2, p. 135, 2020.
[14] C. Ji, "A heuristic collaborative filtering recommendation algorithm based on book personalized recommendation," International Journal of Performability Engineering, vol. 15, no. 11, p. 2936, 2019.
[15] B. Ajma and C. Addab, "Research-supported mobile applications and internet-based technologies to mediate the psychological effects of infertility: a review," Reproductive Biomedicine Online, vol. 42, no. 3, pp. 679–685, 2021.
[16] G. Li, Q. Chen, and L. Li, “Collaborative filtering recommendation algorithm based on rating prediction and ranking prediction,” Tien Teu Hisseh Pao/Acta Electronica Sinica, vol. 45, no. 12, pp. 3070–3075, 2017.
[17] L. Zhu, Y. Guo, C. Zhang et al., “Assessing community-level livability using combined remote sensing and internet-based big geospatial data,” Remote Sensing, vol. 12, no. 24, p. 4026, 2020.

[18] L. Liao, J. Wu, F. Zou, J. Pan, and T. Li, “Trajectory topic modelling to characterize driving behaviors with GPS-based trajectory data,” Journal of Internet Technology, vol. 19, no. 3, pp. 815–824, 2018.

[19] X. Cao, “E-shopping, spatial attributes, and personal travel: a review of empirical studies,” Transportation Research Record, vol. 2135, no. 1, pp. 160–169, 2018.

[20] H. Shen, “Modern information technology application in online travel service and hotel cooperation,” Boletin Tecnico/Technical Bulletin, vol. 55, no. 4, pp. 252–259, 2017.

[21] S. Gao, G. Tian, X. Dai et al., “B-spline method with AIS optimization for 2-D IoT-based overpressure reconstruction,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2005–2013, 2019.

[22] M. Chaudhary, S. Sharma, and A. Sharma, “Are small travel agencies ready for digital marketing? Views of travel agency managers,” Tourism Management, vol. 79, no. 8, p. 81, 2020.

[23] A. R. Alaei, S. Becken, and B. Stantic, “Sentiment analysis in tourism: capitalizing on big data,” Journal of Travel Research, vol. 58, no. 2, pp. 175–191, 2019.

[24] M. Magasic and U. Gretzel, “Travel connectivity,” Tourist Studies, vol. 20, no. 1, pp. 3–26, 2020.

[25] S. Son, A. Khattak, X. Wang, and J. Y. Chen, “Transferring telephone-based National Household Travel Survey to the internet: application to university students,” Transportation Research Record, vol. 2285, no. 1, pp. 91–99, 2018.

[26] J. Jiang, "Intelligent city traffic scheduling optimization based on internet of things communication," Wireless Communications and Mobile Computing, vol. 2021, Article ID 7823982, 10 pages, 2021.

[27] R. Qadar, W. B. Qaim, J. Nurmi, and B. Tan, "Effects of multi-path attenuation in the optical communication-based internet of underwater things," Sensors, vol. 20, no. 21, p. 6201, 2020.