Open Mathematics

Research Article

A. Zuevsky*

Algebraic proofs for shallow water bi–Hamiltonian systems for three cocycle of the semi-direct product of Kac–Moody and Virasoro Lie algebras

https://doi.org/10.1515/math-2018-0002
Received November 30, 2016; accepted January 4, 2018.

Abstract: We prove new theorems related to the construction of the shallow water bi-Hamiltonian systems associated to the semi-direct product of Virasoro and affine Kac–Moody Lie algebras. We discuss associated Verma modules, coadjoint orbits, Casimir functions, and bi-Hamiltonian systems.

Keywords: Affine Kac–Moody Lie algebras, Bi-Hamiltonian systems, Verma modules, Coadjoint orbits

MSC: 17B69, 17B08, 70G60, 82C23

1 Introduction: The semi-direct product of Virasoro algebra with the Kac–Moody algebra

This paper is a continuation of the paper [1] where we studied bi-Hamiltonian systems associated to the three-cocycle extension of the algebra of diffeomorphisms on a circle. In this note we show that certain natural problems (classification of Verma modules, classification of coadjoint orbits, determination of Casimir functions) [2–5] for the central extensions of the Lie algebra \(\text{Vect}(S^1) \times LG \) reduce to the equivalent problems for Virasoro and affine Kac–Moody algebras (which are central extensions of \(\text{Vect}(S^1) \) and \(LG \) respectively). Let \(G \) be a Lie group and \(\mathcal{G} \) its Lie algebra. The group \(\text{Diff}(S^1) \) of diffeomorphisms of the circle is included in the group of automorphisms of the Loop group \(LG \) of smooth maps from \(S^1 \) to \(G \). For any pairs \((\phi, \psi) \in \text{Diff}(S^1)^2 \) and \((g, h) \in LG^2 \) the composition law of the group \(\text{Diff}(S^1) \times LG \) is

\[
(\phi, a) \cdot (\psi, b) = (\phi \circ \psi, a \cdot b \circ \phi^{-1}).
\]

The Lie algebra of \(\text{Diff}(S^1) \times LG \) is the semi-direct product \(\text{Vect}(S^1) \ltimes LG \) of the Lie algebras \(\text{Vect}(S^1) \) and \(LG \).

Let \(\mathcal{G} \) be a Lie algebra and \(\langle , \rangle \) a non-degenerated invariant bilinear form. \(\text{Vect}(S^1) \) is the Lie algebra of vector fields on the circle and \(LG \) the loop algebra (i.e., the Lie algebra of smooth maps from \(S^1 \) to \(\mathcal{G} \)).

\(\text{Vect}(S^1)_C \) is the Lie algebra over \(C \) generated by the elements \(L_n, n \in \mathbb{Z} \) with the relations

\[
[L_m, L_n] = (n - m)L_{n+m}.
\]

We denote by \(LG_C \) the Lie algebra over \(C \) generated by the elements \(g_n, n \in \mathbb{Z}, g \in \mathcal{G} \) where \((\lambda g + \mu h)_n\) is identified with \(\lambda g_n + \mu h_n \) with the relations

\[
[g_n, h_m] = [g, h]_{n+m}.
\]

*Corresponding Author: A. Zuevsky: Institute of Mathemtics, Czech Academy of Sciences, Prague, Czech Republic, E-mail: zuevsky@yahoo.com
The semi-direct product of \(\text{Vect}(S^1) \) with \(\mathcal{L}G \) is as a vector space isomorphic to \(C^\infty(S^1, \mathbb{R}) \oplus C^\infty(S^1, \mathcal{G}) \) [6]. The Lie bracket of \(\overline{\mathcal{U}}(\mathcal{G}) \) has the form

\[
[(u, a), (v, b)] = ([\cdot, \cdot], u \otimes v, va' - ub' + [a, b]),
\]

for any \((u, v) \in C^\infty(S^1, \mathbb{R})^2\) and any \((a, b) \in C^\infty(S^1, \mathcal{G})^2\), where prime denote derivative with respect to a coordinate on \(S^1 \). The Lie algebra \(\text{Vect}(S^1) \rtimes \mathcal{L}G \) can be extended with a universal central extension \(\overline{\mathcal{U}}(\mathcal{G}) \) by a two-dimensional vector space. Let us denote by \(\mathcal{J}(u) = \int u \). Two independent cocycles are given by

\[
\omega_{\mathcal{U}}((u, a), (v, b)) = \mathcal{J}(u''v), \quad \omega_{\mathcal{K}-\mathcal{M}}((u, a), (v, b)) = \mathcal{J}((a', b)).
\]

We denote by \((u, a, \chi, \alpha)\) the elements of \(\mathcal{U}(\mathcal{G}) \) with \(u \in C^\infty(S^1, \mathbb{R}), a \in C^\infty(S^1, \mathcal{G}) \) and \((\chi, \alpha) \in \mathbb{R}^2\). The algebra \(\mathcal{U}(\mathcal{G}) \) can be also represented as the semi-direct product of Virasoro algebra on the affine Kac–Moody algebra. We denote by \(c_{\mathcal{V}i} \) and \(c_{\mathcal{K}-\mathcal{M}} \) the elements \((0, 0, 1, 0)\) and \((0, 0, 0, 1)\) respectively. If \(\mathcal{G} = \mathbb{R} \), then the Lie algebra \(\text{Vect}(S^1) \rtimes \mathcal{L}R \) has a universal central extension \(\overline{\mathcal{U}}(\mathbb{R}) \) by a three-dimensional vector space. The third independent cocycle is given by

\[
\omega_{\mathcal{U}}((u, a), (v, b)) = \mathcal{J}(ub'' - va'').
\]

We denote by \((u, a, \chi, \alpha, \gamma, \delta)\) elements of \(\overline{\mathcal{U}}(\mathbb{R}) \) with \(u \in C^\infty(S^1, \mathbb{R}), a \in C^\infty(S^1, \mathcal{G}) \), and \((\chi, \alpha, \gamma) \in \mathbb{R}^3\). The Lie bracket of \(\overline{\mathcal{U}}(\mathbb{R}) \) is given by

\[
[(u, a, \phi, \chi, \alpha, \gamma, (v, b, \xi, \beta, \delta)) = (vu' - u'v, [a, b] - ub' + va', \mathcal{J}(u''v), \mathcal{J}((a', b)), \mathcal{J}(ub'' - va'')).
\]

In this paper we discuss a few questions. Let us mention the main results. First, in Section 2 we consider Kirillov-Kostant Poisson brackets [7] of the regular dual of the semi-direct product of Virasoro Lie algebra with the Affine Kac–Moody Lie algebra. Let us denote by \(\overline{\mathcal{U}}(\mathcal{G})' \) the subset of \(\overline{\mathcal{U}}(\mathcal{G}) \) of elements \((u, a, \xi, \beta)\) with non-vanishing \(\beta \). We denote by \(\text{Vect}(S^1) \oplus \mathcal{L}G \)' the subset of \(\text{Vect}(S^1) \oplus \mathcal{L}G \) composed of elements \((u, a, \xi, \beta)\) with \(\beta \neq 0 \). Then introduce two new maps \(\mathcal{I}(u, a, \xi, \beta) \) from \(\overline{\mathcal{U}}(\mathcal{G})' \) to \(\text{Vect}(S^1) \oplus \mathcal{L}G \)', and \(\overline{\mathcal{I}}(u, a, \xi, \beta, \gamma) \) from \(\overline{\mathcal{U}}(\mathcal{G}) \) to \(\text{Vect}(S^1) \oplus \mathcal{L}R \). We prove that \(\mathcal{I}(u, a, \xi, \beta) \) and \(\overline{\mathcal{I}}(u, a, \xi, \beta, \gamma) \) are Poisson maps. In Section 3 we discuss coadjoint orbits and Casimir functions for \(\overline{\mathcal{U}}(\mathcal{G}) \). Let \(\mathcal{H} \) be a central extension of a Lie algebra \(\mathcal{H} \) and \(\mathcal{H} \) be a Lie group with Lie algebra is \(\mathcal{H} \). We find explicit form for the the coadjoint actions of the groups \(\text{Diff}(S^1) \times \mathcal{L}G \) and \(\text{Diff}(S^1) \times \mathcal{L}R \). As a result we obtain the following new theorem. We prove that a coadjoint orbit of \(\overline{\mathcal{U}}(\mathcal{G}) \) is mapped by \(\mathcal{I} \) to a coadjoint orbit of \(\text{Vect}(S^1) \oplus \mathcal{L}G \) to a coadjoint orbits of \(\text{Vect}(S^1) \). We prove that the map \(\overline{\mathcal{I}} \) sends the coadjoint orbits of \(\overline{\mathcal{U}}(\mathcal{G}) \) to coadjoint orbits of \(\text{Vect}(S^1) \oplus \mathcal{L}G \). Previously, we determined Casimir functions on \(\overline{\mathcal{U}}(\mathcal{G})' \) and \(\overline{\mathcal{U}}(\mathbb{R}) \). We then prove new propositions concerning the explicit form of Casimir functions on \(\overline{\mathcal{U}}(\mathcal{G}) \), and in particular on \(\overline{\mathcal{U}}(\mathbb{R}) \). This paper was partially inspired by the construction of bi-Hamiltonian systems as natural generalization of the classical Korteweg-de Vries equation. [1, 8–11]. It has been showed in [1], that the dispersive water waves system equation \([9, 10, 12]\) is a bi–Hamiltonian system related to the semi-direct product of a Kac–Moody and Virasoro Lie algebras, and the hierarchy for this system was found. In Section 4 some results of [1] are obtained from another point of view. We prove new proposition for pairwise commuting functions under certain brackets. In section 5 we discuss properties of the universal enveloping algebra of \(\overline{\mathcal{U}}(\mathcal{G}) \). In subsection 5.1 we consider a decomposition of the enveloping algebra of a semi-direct product. We introduce the notion of realizability of the action of \(\mathcal{K} \) on \(\mathcal{H} \) in \(\mathcal{U}_{\omega_{\mathcal{K}-\mathcal{M}}}(\mathcal{H}) \). Then we show (Theorem 5.1) that the realizability of the action of \(\mathcal{K} \) in \(\mathcal{U}_{\omega_{\mathcal{K}-\mathcal{M}}}(\mathcal{H}) \) leads to the isomorphism

\[
\mathcal{U}_{\omega_{\mathcal{K}-\mathcal{M}}}(\mathcal{K} \ltimes \mathcal{H}) \cong \mathcal{U}_{\omega_{\mathcal{K}-\mathcal{M}}}(\mathcal{K}) \otimes \mathcal{U}_{\omega_{\mathcal{K}-\mathcal{M}}}(\mathcal{H})
\]

In subsection 5.2 the case of \(\mathcal{U}_{\mathcal{L}}(\mathcal{G}) \) is considered. In subsection 5.3 we discuss representations of \(\overline{\mathcal{U}}(\mathcal{G}) \). We prove that positive energy representation \(V \) of \(\mathcal{U}_{\mathcal{L}}(\mathcal{G}) \) with non-vanishing \(\beta \partial \delta \)-action of the cocyle \(c_{\mathcal{K}-\mathcal{M}} \) delivers a pair of commuting representations of Virasoro and affine Kac–Moody Lie algebras. This proposition determines whether a \(\mathcal{U}_{\mathcal{L}}(\mathcal{G}) \) Verma module is a sub-module of another Verma module of \(\mathcal{U}_{\mathcal{L}}(\mathcal{G}) \). We also prove a proposition regarding a linear form over \(\mathfrak{h} \) with non-vanishing \(\lambda(c_{\mathcal{K}-\mathcal{M}}) \). In this paper we present proofs for corresponding theorems and lemmas.
2 The Kirillov-Kostant structure of $SU(G)$

Now we consider Kirillov-Kostant Poisson brackets of the regular dual of the semi-direct product of Virasoro Lie algebra with the Affine Kac–Moody Lie algebra. Let K be a Lie algebra with a non-degenerated bilinear form (\cdot, \cdot). A function $f : K \to \mathbb{R}$ is called regular at $x \in K$ if there exists an element $\nabla f(x)$ such that

$$f(x + \epsilon a) = f(x) + \epsilon (\nabla f(x), a) + o(\epsilon),$$

for any $a \in K$. For two regular functions $f, g : K \to \mathbb{R}$, we define the Kirillov-Kostant structure as a Poisson structure on K with

$$\{f, g\}(x) = \langle x, [\nabla f(x), \nabla g(x)] \rangle.$$

Then for any $e \in G$, the second Poisson structure $\{f, g\}_e(x)$ compatible with the Kirillov-Kostant Poisson structure is defined by

$$\{f, g\}_e(x) = \langle e, [\nabla f(x), \nabla g(x)] \rangle.$$

A non-degenerated bilinear form on $SU(G)$ and $\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G}$ is defined by

$$\langle (u_1, a_1, \beta_1, \xi_1), (u_2, a_2, \beta_2, \xi_2) \rangle = \int_S u_1 u_2 + \int_S \langle a_1, a_2 \rangle + \xi_1 \xi_2 + \beta_1 \beta_2.$$

We denote by $SU(G)'$ the subset of $SU(G)$ of elements (u, a, ξ, β) with non-vanishing β. Let $u' = u - \frac{1}{\beta} a$. We denote by $(\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G})'$ the subset of $\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G}$ composed of elements (u, a, ξ, β) with $\beta \neq 0$. Let us introduce a new map $\overline{\mathcal{I}}(u, a, \xi, \beta) = (u', a, \xi, \beta)$ from $SU(G)'$ to $(\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G})'$. Then for non-vanishing β, let us introduce another new map $\overline{\mathcal{I}}(u, a, \xi, \beta, \gamma) = (u' + \frac{\gamma}{\beta} a', a, \xi - \frac{\gamma^2}{\beta^2}, \beta)$ from $SU(G)$ to $\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G}$. Here we give a proof for the following new theorem:

Theorem 2.1. \mathcal{I} and $\overline{\mathcal{I}}$ are Poisson maps.

Proof. For any regular function $f(u, a, \xi, \beta)$ from $\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G}$ to \mathbb{R} let us define a regular function \overline{f} from $SU(G)'$ to \mathbb{R} by $\overline{f}(u, a, \xi, \beta) = f(u', a, \xi, \beta)$. For $f(u, a, \xi, \beta)$ a function on $SU(G)$ or $(\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G})$, let us denote by f_a the function of the variables a and ξ that we get when we fix u and ξ. Let us denote f_a the function of the variables u and ξ that we get when we fix a and β. With the previous notations, one has for $\beta \neq 0$ for the bracket $\langle \cdot, \cdot \rangle_{SU(G)}$

$$\{f, g\}_{SU(G)}(u, a, \xi, \beta) = \left[\{f_a, g_a\} + \{f_u, g_u\} + \{f_\xi, g_\xi\} \right](u, a, \xi, \beta),$$

and for the bracket $\langle \cdot, \cdot \rangle_{\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G}}$ we have

$$\{f, g\}_{\overline{\text{Vect}}(\tilde{S}^1) \oplus \overline{\mathbb{C}G}}(u, a, \xi, \beta) = \{f_u, g_u\} + \{f_\xi, g_\xi\}. $$

Then the map π_1 from $SU(G)$ onto $\overline{\text{Vect}}(\tilde{S}^1)$ which sends (u, a, ξ, β) onto (u', ξ) is a Poisson morphism. The map π_2 from $SU(G)$ onto $\overline{\mathbb{C}G}$ which sends (u, a, ξ, β) to (a, β) is a Poisson morphism. For any regular function f on $\overline{\text{Vect}}(\tilde{S}^1)$ and any regular function g on $\overline{\mathbb{C}G}$ we have

$$\{\pi_1^* f, \pi_2^* g\}_U = 0.$$

Indeed, for $i = 1, 2$, \(\delta_a - \frac{g}{\beta} \delta_u \) $f_i(\overline{u}, \xi, 0) = 0$. We have:

$$\{f_1(\overline{u}, \xi), f_2(\overline{u}, \xi)\}_{\xi, \beta}(u, a, \xi, \beta) = \mathcal{J}(\xi(\delta f_1, u)(\overline{u}, \xi), \xi)\delta f_2, u(\overline{u}, \xi) + 2(\delta f_1, u)(\overline{u}, \xi) x \delta f_2, u(\overline{u}, \xi) u$$

$$+ \delta f_1, u(\overline{u}, \xi) u_x \delta f_2, u(\overline{u}, \xi) - \beta^{-1}(\delta f_1, u)(\overline{u}, \xi) x \parallel a \|^2 \delta f_2, u(\overline{u}, \xi)$$

$$- \langle (\delta f_1, u)(\overline{u}, \xi) a, \delta f_2, u(\overline{u}, \xi), \delta f_2, u(\overline{u}, \xi) a \rangle).$$

This gives

$$\{f_1(\overline{u}, \xi), f_2(\overline{u}, \xi)\}_{\xi, \beta}(u, a) = \mathcal{J}(\xi(\delta f_1, u)(\overline{u}, \xi)).$$
Proposition 3.1. Let \(g_i(\alpha, \beta), i = 1, 2 \) be two regular functions on the affine Kac–Moody algebra. One notes that \(\delta g_{1, u} = \delta g_{2, u} = 0 \). Therefore,

\[
\{g_1, g_2\}^U_{\xi, \beta}(u, a, \xi, \beta) = \{f, g\} \mathcal{C}_{\mathcal{G}}(a, \beta).
\]

We have:

\[
\{f(u, \xi), g(a, \beta)\}^U = \mathcal{J}(\{(\delta f_u(u, \xi), a, \xi), \delta g(a, \beta)\} - x a, g(a, \beta) + [a, g(a, \beta)])).
\]

The sum of the first two terms is equal to 0. The last term is \(\mathcal{J}(\delta f_u([a, a], \delta g_a)) \), and is equal to zero. One can proceed similarly for \(\mathcal{I} \).

\[\Box\]

3 Coadjoint orbits Casimir functions and for \(SU(\mathcal{G}) \)

Let \(\mathcal{H} \) be a central extension of a Lie algebra \(\mathcal{H} \), and \(H \) be a Lie group with Lie algebra is \(\mathcal{H} \). Then \(H \) acts on \(\mathcal{H}^* \) by the coadjoint action along coadjoint orbits.

Proposition 3.1. The coadjoint actions of the groups \(Diff(S^1) \times \mathcal{L}G \) and \(\mathcal{L}G \) are given by

\[
Ad^*(\phi, g)^{-1}(u, a, \xi, \beta) = \left((u \circ \phi)^{\phi'^2} + \xi S(\phi) + (g^{-1}g', a) \phi'^2 + \frac{1}{2} \left\| g^{-1}g' \right\|^2, \phi' \mathcal{A}(g^{-1}) a \circ \phi + g^{-1}g', \xi, \beta \right),
\]

\[
(\{u \circ \phi\}^{\phi'^2} + \xi S(\phi) + (g'g^{-1}, a) \phi'^2 + \frac{1}{2} \beta (g'g^{-1})^2 + \gamma g'g^{-1}, \phi' \mathcal{A}(g^{-1}) a \circ \phi + \beta g^{-1}g' - \gamma g'g^{-1}, \xi, \beta, \gamma).
\]

The classification of coadjoint orbits of \(\mathcal{V}_{\mathcal{L}G} \) can be known from the classification of coadjoint orbits of the Virasoro and affine Kac-moody algebra. Here we obtain the following new

Theorem 3.2. A coadjoint orbit of \(SU(\mathcal{G}) \) is mapped by \(\mathcal{I} \) to a coadjoint orbit of \(\mathcal{V}_{\mathcal{L}G} \) to a coadjoint orbit of \(\mathcal{V}_{\mathcal{L}G} \).

In other words, this means that if \(\beta_1 \neq 0 \), the elements \((u_1, a_1, \xi_1, \beta_1) \) and \((u_1, a_1, \xi_2, \beta_2) \) are in the same coadjoint orbit if and only if: \(\xi_1 = \xi_2, \beta_1 = \beta_2, (a_1, \beta_1) \) and \((a_2, \beta_2) \) are on the same coadjoint orbit of \(\mathcal{L} \), \((u_1 - \frac{\phi_1}{\beta_1}, \xi_1) \) and \((u_2 - \frac{\phi_2}{\beta_2}, \xi_2) \) are elements of the same coadjoint orbit of \(\mathcal{V}_{\mathcal{L}G} \).

Proof. For any \(\phi \in Diff(S^1) \), there exists \(h \in \mathcal{L}G \) such that

\[
hah^{-1} + \beta \frac{\partial h(x)}{\partial x} \cdot h^{-1} = a \circ \phi' \circ h.
\]

By direct computation we check that

\[
\mathcal{I}(Ad^*(\phi, g)(u, a, \xi, \beta)) = (Ad^*(\phi, g, h)\mathcal{I}(u, a, \xi, \beta).
\]

This implies Theorem 3.2. \(\Box\)
Proposition 3.3. The map \(\tilde{f} \) sends the coadjoint orbits of \(\tilde{SU}(\mathcal{G}) \) to coadjoint orbits of \(\text{Vect}(S^1) \otimes \tilde{\mathcal{G}} \).

In other words, this means that if \(\beta_1 \neq 0 \) the elements \((u_1, a_1, \xi_1, \beta_1, \gamma_1) \) and \((u_1, a_1, \xi_2, \beta_2, \gamma_2) \) are in the same coadjoint orbit if and only if \(\gamma_1 = \gamma_2, \xi_1 = \xi_2, \beta_1 = \beta_2, (a_1, \beta_1) \) and \((a_2, \beta_2) \) are on the same coadjoint orbit of \(\tilde{\mathcal{G}} \), \((u_1 - \frac{d_1}{2 \pi}, \xi_1 - \frac{\gamma_1}{2}) \) and \((u_2 - \frac{d_1}{2 \pi}, \xi_2 - \frac{\gamma_2}{2}) \) are elements of the same coadjoint orbit of \(\text{Vect}(S^1) \). In a particular case, if \(\beta_1 = \beta_2 = 0 \), then:

Proposition 3.4. If the elements \((u_1, a_1, \xi_1, \beta_1, \gamma_1) \) and \((u_1, a_1, \xi_2, \beta_2, \gamma_2) \) are in the same coadjoint orbit then \(\gamma_1 = \gamma_2, (a_1^2 + \gamma_1 a_1^3, \gamma_1) \) and \((a_2^2 + \gamma_2 a_2^3, \gamma_2) \) are in the same coadjoint orbit of the Virasoro Lie algebra.

Proof. We have: \(\text{Ad}(\phi, g)(a_1^2 + \gamma_1 a_1^3) = (a_1^2 + \gamma_1 a_1^3) \circ \phi + \gamma_1 \mathcal{S}(\phi) \). \(\square \)

Previously, we determined Casimir functions on \(\tilde{SU}(\mathcal{G})' \) and \(\tilde{SU}(\mathbb{R})' \). We gave the following proposition:

Proposition 3.5. Let \(C_{\text{Vir}}, C_{\text{K-M}}, C_{\text{A}} \) be Casimir functions for Virasoro, affine Kac–Moody, and the Heisenberg Lie algebras \(A \) correspondingly. Let \(\tilde{SU}(\mathcal{G})', \tilde{SU}(\mathbb{R})' \) be Poisson submanifolds of \(\tilde{SU}(\mathcal{G}) \) and \(\tilde{SU}(\mathbb{R}) \) defined by \(\xi = 0 \). Then the functions \(C_{\text{Vir}}(u', \xi), C(u, a, \beta, \xi) = C_{\text{K-M}}(a, \beta), \) and \(\int_{S^1} |u'|^{1/2} \), are Casimir functions on \(\tilde{SU}(\mathcal{G})' \). In particular, the functions \(C_{\text{A}}(u, a, \beta, \xi) = C_{\text{A}}(a, \beta), C_{\text{Vir}}(u' - \frac{\xi}{\beta} a', \xi), \) and \(\int_{S^1} |u' - \frac{\xi}{\beta} a'|^{1/2} \), are Casimir functions on \(\tilde{SU}(\mathbb{R})' \).

4 Bi–Hamiltonian dispersive water waves systems associated to \(SU(\mathcal{G}) \)

It has been showed in [1], that the dispersive water waves system equation [9, 10, 12] is a bi–Hamiltonian system related to the semi–direct product of a Kac–Moody and Virasoro Lie algebras, and the hierarchy for this system was found. In this section some results of [1] are obtained from another point of view. We obtain new

Proposition 4.1. The functions \(\{ \phi_i(A(u + B \frac{d a}{d x} + C)) | \lambda \in \mathbb{R} \} \) commute pairwise for the Sugawara {\(\{ \cdot \} \)} Sug and e–braket \(\{ \cdot, \cdot \} \) with \(e = (1, 0, 0, 2, 0) \), and \(A = (\xi - \frac{\gamma}{\pi - 2 \lambda}), \ B = -\frac{\gamma}{\pi - 2 \lambda}, \) \(C = -\frac{|\vec{a}|^2}{2|\bar{a}|^2-\lambda} \). \(\square \)

The function \(\lambda \mapsto \phi_1(A(u + B \frac{d a}{d x} + C)) \) has an asymptotic development. The coefficients of this development form a hierarchy. The first term of this development is \(\int_{S^1} u \), and the second one is \(\int_{S^1} (u^2 + \gamma u + \parallel a \parallel^2) \).

A linear combination of these two terms gives the Hamiltonian of equations \(H(u, a) = \int_{S^1} (u^2 + \parallel a \parallel^2) \).

Let \(\{ \phi_i, i \in I \} \) be a set of Casimir functions and \(e \in \mathcal{G} \). Define \(x_\chi = x - \chi e \), for some \(\chi \in \mathbb{R} \).

Lemma 4.2. For any \((i, j) \in I^2 \) and any \((\lambda, \mu) \in \mathbb{R}^2 \) we have \(\{ \phi_i(x_\lambda), \phi_j(x_\mu) \} = \{ \phi_i(x), \phi_j(x) \} \cdot e = 0 \).

Lemma 4.3. Suppose \(\phi_i(x_\lambda) \) can be expanded in terms of inverse powers of \(\lambda \) with some extra function \(f(\lambda) \), and modes \(F_{i,k}(x) \), i.e.,

\[
\phi_i(x_\lambda) = f(\lambda) \sum_{k \in \mathbb{R}} \lambda^{-k} F_{i,k}(x),
\]

then \(\{ F_{i,k+1}, f \} = \{ F_{i,k}, f \} \cdot e \). We can choose \(e \) so that the Hamiltonian \(H(x) = \frac{1}{2} (\chi, x, x) \) commute with these functions.

Lemma 4.4. If an element \(e \in \mathcal{G} \) satisfies two conditions: (i) \(ad^*(\cdot) e = 0 \); (ii) for any \(u \in \mathcal{G}, \) \(ad^*(u) e \) belongs to the tangent space to the coadjoint orbit of \(u \) (i.e., for any \(u \in \mathcal{G} \) there exists \(v \in \mathcal{G} \) such that \(ad^*(u) e = ad^*(v) u \)). then the functions \(\phi(a - \lambda e) \) commute with the Hamiltonian of the geodesics \(H(a) = \frac{1}{2} (a, a) \) with respect to the brackets \(\{ \cdot, \cdot \} \) and \(\{ \cdot, \cdot \} \).
5 The universal enveloping algebra of $\mathcal{SU}(\mathcal{G})$

When $\mathcal{H} = \sum_{k \in \mathbb{Z}} \mathcal{H}_k$ has a structure of graded algebra, its universal enveloping algebra $\mathcal{U}(\mathcal{H})$ is also naturally endowed with a structure of a graded Lie algebra. Indeed, the weight of a product $h_1, \ldots, h_n \in \mathcal{U}(\mathcal{H})$ of homogeneous elements is defined to be the sum of the weights of the elements h_i, $i = 1, \ldots, n$. The universal enveloping algebra $\mathcal{U}(\mathcal{H})$ admits a filtration $\mathcal{U}(\mathcal{H}) = \bigcup_{n=0}^{\infty} F_n$ where F_k is the vector space generated by the products of at most k elements of \mathcal{H}. The generalized enveloping algebra is the algebra of the elements of the form $\sum_{k \leq n} u_k$ where u_k is an element of weight k of $\mathcal{U}(\mathcal{H})$. The product of two such elements is defined by:

$$
\sum_{k \leq n} u_k \sum_{k \leq m} v_k = \sum_{k \leq n} w_k,
$$

where $w_k = \sum_{i \leq k} u_i v_k$, which is a finite sum. Let $\omega_1, \ldots, \omega_n$ be two-cocycles on the Lie algebra \mathcal{H}, let $\widetilde{\mathcal{H}}$ be the central extension associated with and let e_1, \ldots, e_n be the central elements associated with these cocycles.

The modified generalized enveloping algebra $\mathcal{U}_{\omega_1, \ldots, \omega_n}(\mathcal{H})$ is defined to be the quotient of the generalized enveloping algebra of $\widetilde{\mathcal{H}}$ by the ideal generated by the elements $\{e_1 - 1, \ldots, e_n - 1\}$. We denote again by 1 the neutral element of $\mathcal{U}_{\omega_1, \ldots, \omega_n}(\mathcal{H})$. The algebra $\mathcal{U}_{\omega_1, \ldots, \omega_n}(\mathcal{H})$ is by construction a graded algebra and a filtered algebra.

We denote by F_n, $n \in \mathbb{N}$ its filtration. Let us recall shortly the main properties of the modified generalized enveloping algebra. Let V be a module over \mathcal{H} such that for any $v \in V$, there exists $n_0 \in \mathbb{Z}$ such that for any $n > n_0$ and any $h \in \widetilde{\mathcal{H}}_n$ we have $h.v = 0$. Such modules are called representations of positive energy, and e_i acts on V by $\lambda_i 1d$. Then V is a module over $\mathcal{U}_{\omega_1, \ldots, \omega_n}(\mathcal{H})$. Such modules are named modules of positive energy. The anticommutator provides a structure of Lie algebra on $\mathcal{U}_{\omega_1, \ldots, \omega_n}(\mathcal{H})$. For this bracket F_1 is a Lie sub-algebra isomorphic to the central extension of \mathcal{H} by the cocycle $\omega = \sum_{i=1}^n \omega_i$. We denote by i be the natural inclusion of \mathcal{H} into $\mathcal{U}_{\omega_1, \ldots, \omega_n}(\mathcal{H})$ given by this identification.

5.1 Decomposition of the enveloping algebra of a semi-direct product

In some very particular cases, the modified generalized enveloping algebra of a semi-direct product $\mathcal{K} \rtimes \mathcal{H}$ of two Lie algebras is isomorphic to the tensor product of some modified generalized enveloping algebras of \mathcal{K} and of \mathcal{H}. Let $\widetilde{\mathcal{H}}$ be the central extension of \mathcal{H} with the two-cocycle $\omega_\mathcal{H}$. Denote by \cdot the action of the Lie algebra \mathcal{K} on the Lie algebra $\widetilde{\mathcal{H}}$. Let us introduce the semi-direct product $\mathcal{K} \rtimes \mathcal{H}$ which is a central extension of $\mathcal{K} \rtimes \mathcal{H}$ by a two-cocycle $\omega_{\mathcal{K} \rtimes \mathcal{H}}$ with

$$
\omega_{\mathcal{K} \rtimes \mathcal{H}}((0, h_1), (0, h_2)) = \omega_\mathcal{H}(h_1, h_2).
$$

A two-cocycle $\omega_\mathcal{K}$ on \mathcal{K} defines also a two-cocycle $\omega'_{\mathcal{K}}$ by

$$
\omega'_{\mathcal{K}}((g_1, h_1), (g_2, h_2)) = \omega_\mathcal{K}(g_1, g_2),
$$

of $\mathcal{K} \rtimes \mathcal{H}$. Let I be the natural inclusion of \mathcal{H} into $\mathcal{U}_{\omega_\mathcal{H}}(\mathcal{H})$ and J be the natural inclusion of \mathcal{H} into $\mathcal{U}_{\omega_\mathcal{K}, \omega'_{\mathcal{K}}}(\mathcal{K} \rtimes \mathcal{H})$.

We call the action of \mathcal{K} on \mathcal{H} realizable in $\mathcal{U}_{\omega_\mathcal{H}}(\mathcal{H})$ when there exists a map $F : \mathcal{K} \rightarrow \mathcal{U}_{\omega_\mathcal{H}}(\mathcal{H})$ and a two-cocycle α on \mathcal{K} such that for any pair (g_1, g_2) in \mathcal{K}^2

$$
F([g_1, g_2]) = [F(g_1), F(g_2)] + \alpha(g_1, g_2) 1,
$$

and the map F satisfies the compatibility condition, i.e., for any $g \in \mathcal{K}$ and $h \in \mathcal{H}$ with the anti-commutator $[F(g), I(h)] = I(g \cdot h)$, of the algebra $\mathcal{U}_{\omega_\mathcal{H}}(\mathcal{H})$.

Theorem 5.1. If the action of \mathcal{K} is realizable in $\mathcal{U}_{\omega_\mathcal{H}}(\mathcal{H})$ then

$$
\mathcal{U}_{\omega_\mathcal{K}, \omega'_{\mathcal{K}}}(\mathcal{K} \rtimes \mathcal{H}) = \mathcal{U}_{\omega_\mathcal{K}, -\alpha}(\mathcal{K}) \otimes \mathcal{U}_{\omega_\mathcal{H}}(\mathcal{H})..
$$
Proof. Let \(\mathcal{U}_g = \{ g \in K \} \) with be the unitary subalgebra of \(\mathcal{U}_{\omega_K, \omega_H} (K \ltimes H) \) generated by the elements \(g = g - F(g) \), and \(\mathcal{U}_l = \{ j(h), h \in H \} \) be the unitary subalgebra of \(\mathcal{U}_{\omega_K, \omega_H} (K \ltimes H) \). For any \((g, h) \) this implies that the generators of \(\mathcal{U}_g \) and \(\mathcal{U}_l \) commute, i.e., \([g, j(h)] = 0\). The subalgebras \(\mathcal{U}_g \) and \(\mathcal{U}_l \) therefore commute. The subalgebra \(\mathcal{U}_g \) is isomorphic to \(\mathcal{U}_{\omega_K - \alpha} (K) \). Let us check that the generators \(\{ g \} \) of this algebra satisfy the relations of the generators of \(\mathcal{U}_{\omega_K - \alpha} (K) \):

\[
[g_1, g_2] = [g_1, g_2] + \omega_K (g_1, g_2) 1 + [F(g_1), F(g_2)] - [F(g_1), g_2] - [g_1, F(g_2)].
\]

Since \(F(g_1) \) is an element of \(\mathcal{U}_g \) and since the algebras \(\mathcal{U}_g \) and \(\mathcal{U}_l \) commute \([F(g_1), g_2] = [F(g_1), F(g_2)] \) and \([g_1, F(g_2)] = [F(g_1), F(g_2)] \). Therefore:

\[
[g_1, g_2] = [g_1, g_2] + \omega_K (g_1, g_2) 1 - [F(g_1), F(g_2)],
\]

and finally

\[
[g_1, g_2] = [g_1, g_2] - F([g_1, g_2]) + (\omega_K (g_1, g_2) - \alpha (g_1, g_2)) 1.
\]

The subalgebra \(\mathcal{U}_l \) is obviously isomorphic to \(\mathcal{U}_{\omega_K} (H) \). The generalized modified enveloping algebra \(\mathcal{U}_{\omega_K + \omega_H} (K \ltimes H) \) is therefore isomorphic to the tensor product over \(\mathbb{C} \) of \(\mathcal{U}_{\omega_K - \alpha} (K) \) with \(\mathcal{U}_{\omega_K} (H) \).

\[\square\]

5.2 The case of \(\mathcal{SU}_C (G) \)

Let \(G \) be a complex Lie algebra and \(C_p \), its dual Coxeter number. Introduce the \(\{ K_1, \ldots, K_n \} \) a basis of \(G \), and the dual basis \(\{ K_1^*, \ldots, K_n^* \} \) with respect to the Killing form \((\cdot, \cdot) \). We apply Theorem 5.1 for \(K = \text{Vect}(S^1) \), \(H = LG \), \(\omega_K = \xi \omega_{Vir} \), and \(\omega_H = \beta \omega_{K-M} \). In this case, \(\omega_H'^* = \beta \omega_{K-M} \). For \(\eta = \beta + C_p \neq 0 \), the Sugawara construction, delivers a map \(F: \text{Vect}(S^1) \rightarrow \mathcal{U}_g (LG \otimes C) \) defined by

\[
(\beta + \eta) F(L_n) = K \cdot K^*,
\]

where

\[
K \cdot K^* = \sum_{i \in \mathbb{Z}, j = 1, \ldots, n} : (K_j) (K_i^*)_{n-i} :,
\]

(here dots denote the normal ordering), i.e., the action of \(\text{Vect}(S^1) \) is realizable in \(\mathcal{U}_{\beta \omega_{K-M}} (LG) \), with \(\alpha = \beta \omega_{Vir} / 12 \eta \). Thus we obtain

Proposition 5.2. If \(\eta \neq 0 \), then \(\mathcal{U}_{\xi \omega_{Vir}, \beta \omega_{K-M}} (\mathcal{SU}_C (G)) = \mathcal{U}_{\beta \omega_{K-M}} (\text{Vect}(S^1) \otimes C_{(\xi - \alpha)}) \otimes \mathcal{U} (LG) \).

The Lie algebra \(\text{Vect}_C (S^1) \) acts on the Heisenberg algebra by

\[
L_n \cdot a_m = ma_{n+m} + \delta_{n-m} m^2 c_{K-M}.
\]

In this case, on has \(\omega_H'^* = \beta \omega_H + \gamma \omega_{Sp} \). The map \(F: \text{Vect}(S^1) \rightarrow \mathcal{SU}_C (C) \) defined by

\[
\beta F(L_n) = \frac{1}{2} \sum_{i \in \mathbb{Z}} : a_i a_{n-i} : + \gamma a_n,
\]

for a cocycle \(\alpha = (\alpha + \gamma^2 \beta^{-1}) \omega_{Vir} \). For \(\mathcal{SU}_C (C) \) we obtain

Proposition 5.3. For \(\beta \neq 0 \), we have

\[
\mathcal{U}_{\xi \omega_{Vir}, \beta \omega_{K-M}, \gamma \omega_{Sp}} (\mathcal{SU}_C (C)) = \mathcal{U}_{\theta \omega_{Sp}} (\text{Vect}(S^1) \otimes \mathcal{U}_{\omega_{K-M}} (LG)),
\]

with \(\theta = \xi - \gamma^2 / \beta - 1 / 12 \).
5.3 Representations of $\mathfrak{sl}(\mathfrak{g})$

Proposition 5.4. A positive energy representation V of $\mathfrak{sl}(\mathfrak{g})$ with non-vanishing βId-action of the cocyle c_{K-M} brings about a pair of commuting representations of Virasoro and affine Kac–Moody Lie algebras.

This proposition determines whether a $\mathfrak{sl}(\mathfrak{g})$ Verma module is a sub-module of another Verma module of $\mathfrak{sl}(\mathfrak{g})$. Let \mathfrak{h} be a Cartan algebra of \mathfrak{g} with a basis $\{h_1, \ldots, h_l\}$. The Lie subalgebra \mathfrak{t} of $\mathfrak{sl}(\mathfrak{g})$ is generated by the elements $\{c_{\text{Vir}}, c_{K-M}, u_0, (h_1)_0, \ldots, (h_l)_0\}$. A Verma module $V_{\lambda}(\mathfrak{sl}(\mathfrak{g}))$ of $\mathfrak{sl}(\mathfrak{g})$ is associated to any linear form $\lambda \in \mathfrak{h}^\ast$. Verma modules $V^{\text{Vir}}_\mu, V^{\text{K-M}}_\mu$, are associated to linear forms μ, ν over the spaces generated by c_{Vir} and u_0, c_{K-M} and $\{(h_1)_0, \ldots, (h_l)_0\}$ correspondingly. For any $\lambda \in \mathfrak{t}^\ast$, the Verma module $V_{\lambda}(\mathfrak{sl}(\mathfrak{g}))$ is a positive energy representation. Thus, $V_{\lambda}(\mathfrak{sl}(\mathfrak{g}))$ is Virasoro and affine Kac–Moody algebra module. The generator e of $V_{\lambda}(\mathfrak{sl}(\mathfrak{g}))$ brings about a Verma module V^{Vir}_ν for Virasoro algebra. It generates also a Verma module V^{Vir}_{μ} for the affine Kac–Moody algebra. The linear form ν satisfies $\nu(u_0) = \lambda(u_0 - F(u_0))e$, i.e.,

$$\lambda(u_0) = (\beta + \eta)^{-1} K \cdot K^\ast e = \nu(u_0) e.$$

Suppose the action of a Casimir element of \mathfrak{g} is given by acts by $D(\lambda)\text{Id}$ for $D(\lambda) \in \mathbb{C}$. We then have

$$\lambda(u_0) = \lambda(u_0) - \frac{D(\lambda)}{2\eta} \cdot e.$$
This implies $\nu(u_0) = \lambda(u_0) - \frac{D(\lambda)}{2\eta}$. The other values of μ and ν can be computed by the same method.

Proposition 5.5. Let λ be a linear form over \mathfrak{h} with non-vanishing $\lambda(c_{K-M})$. Then

$$V_{\lambda}(\mathfrak{sl}(\mathfrak{g})) = V^{\text{Vir}}_{\nu} \otimes V^{\text{K-M}}_{\mu},$$

where $\mu(e_i) = \lambda(e_i), i = 1, \ldots, n$, defines $\mu, \mu(c_{K-M}) = \lambda(c_{K-M})$, and $\nu(c_{\text{Vir}}) = \lambda(c_{\text{Vir}}) - \frac{\beta}{2\eta}$ defines ν,

$$\nu(u_0) = \lambda(u_0) - \frac{D(\lambda)}{2\eta}.$$

References

[1] Zuevsky A., Hamiltonian structures on coadjoint orbits of semidirect product $G = \text{Diff}_c(S^1) \ltimes C^\infty(S^1, \mathbb{R})$. Czechoslovak J. Phys., 2004, 54, no. 11, 1399-1406

[2] Arnold V.I., Mathematical methods of classical mechanics, 1978, Springer

[3] Kirillov A., Infinite dimensional Lie groups; their orbits, invariants and representations. The geometry of moments, Lecture Notes in Math., 1982, Vol. 970, 101-123

[4] Segal G., The geometry of the KdV equation, Int. J. of Modern Phys., 1991, Vol. 6, No. 16, 2859-2869

[5] Witten E., Coadjoint orbits of the Virasoro Group, Comm. in Math. Phys., 1998, v. 114, 1-53

[6] Ovsienko V., Roger C., Generalizations of Virasoro group and Virasoro algebra through extensions by modules of tensor densities on S^1, 1998, Indag. Math. (N.S.) 9, no. 2, 277-288

[7] Enriquez B., Khoroshkin S., Radul A., Rosly A., Rubtsov V. Poisson-Lie aspects of classical W-algebras. The interplay between differential geometry and differential equations, 1995, Amer. Math. Soc. Transl. Ser. 2, 167, Adv. Math. Sci., 24, Amer. Math. Soc., Providence, RI, 37-59

[8] Das A., Integrable models, 1989, World Scientific Publishing

[9] Harnad J., Kupershmidt B.A., Symplectic geometries on $T^* \mathfrak{g}$, Hamiltonian group actions and integrable systems, 1995, J. Geom. Phys., 16, no. 2, 168-206

[10] Kupershmidt B.A., Mathematics of dispersive water waves, Commun. Math. Phys., 1985, v. 99, No.1, 51-73

[11] Reiman A. G., Semenov-Tyan-Shanskii M. A., Hamiltonian structure of equations of Kadomtsev-Petviashvili type. (Russian. English summary) Differential geometry, Lie groups and mechanics, VI. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1984, 133, 212-227

[12] Vishik S.M., Dolzhansky F.V., Analogues of the Euler-Poisson equations and magnetic hydrodynamics connected to Lie groups. Reports of the Academy of Science of the USSR, 1978, vol. 238, No. 5 (in Russian).