ORIGINAL PAPER

CLINICAL SIGNIFICANCE OF NESTIN AND ITS ASSOCIATION WITH SURVIVAL IN NEUROENDOCRINE LUNG TUMOURS

Barbara Brominska1, Piotr Gabryel2, Donata Jarmolowska-Jurczyszyn3, Małgorzata Janicka-Jedynska3, Maciej Trojanowski4, Nadia Sawicka-Gutaj1, Rafał Czepczyński1, Pawel Gut1, Gabriel Brominski1, Wojciech Dyszkiewicz2, Aldona Wozniak3, Marek Ruchała1

1Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poland
2Department of Thoracic Surgery, Poznan University of Medical Sciences, Poland
3Department of Clinical Pathology, Poznan University of Medical Sciences, Poland
4Department of Epidemiology and Cancer Prevention, Greater Poland Cancer Center, Poznan, Poland

Nestin is considered to be a cancer stem cell marker. Nestin expression in neuroendocrine tumours might be useful to predict prognosis and facilitate treatment planning. 88 patients with neuroendocrine lung tumours operated in the Department of Thoracic Surgery from 2007 to 2015 were included into the study. Immunohistochemical staining for nestin was performed. Clinicopathological and survival data were retrospectively analyzed. Nestin expression was detected in 15 (17%) specimens. Multivariate analysis showed that lymph node metastases (p = 0.0001; hazard ratio (HR) = 3.93; confidence interval (CI) 95%: 1.96-7.87), nestin expression (p = 0.034; HR = 2.30; CI 95%: 1.06-4.99) and patient’s age (p = 0.024; HR = 1.04; CI 95%: 1.00-1.09) were independent negative prognostic factors. Nestin expression was significantly higher in large cell neuroendocrine carcinoma when compared with carcinoids (p = 0.001). Collected data support the thesis that nestin can be regarded as a biomarker in patients with neuroendocrine lung tumours.

Key words: neuroendocrine markers, neuroendocrine tumours, pulmonary pathology.

Introduction

Nestin is an intermediate filament class VI, a neural stem cell marker. During development, it is present in mammalian nervous system [1], also in skeletal muscles, hepatic cells and umbilical cord blood. After maturation, nestin is replaced by other proteins. In adults it might appear after nervous system injury, in Leydig or corticotroph cells [2]. In general, after embryogenesis, nestin expression is characteristic for immature cells of high plasticity or pathologic conditions [3]. Cancer stem cells (CSC) represent a small, multipotent population within tumour mass, with an increased proliferative capacity. They play major role in growth, migration and invasion of a neoplasm. CSC are identified by presence of specific markers [4]. Nestin was found to be co-expressed with typical CSC markers in several types of tumours [5]. Moreover, nestin expression occurs in various human malignancies. As anticipated, it was commonly observed in neuroectodermal neuroepithelial tumours [6]. This protein was also recognized in other types of solid neoplasms e.g. osteosarcoma [7], germinoma [8] or those originating from epithelial tissues, like pancreatic adenocarcinoma [9]. Additionally, recent research proved that nestin expression is associated with clinical course of malignant disease. Zhong
et al. disclosed poorer outcome among nestin-positive patients with esophageal squamous cell carcinoma [10]. In mucosal melanoma nestin expression was connect- ed with a significantly worse overall survival in advanced stages [11]. Meta-analysis concerning relationship between nestin and neoplasm stage revealed that expression of this protein is associated with higher stages of tumour, thus possibly with adverse outcome. Author especially emphasized this relation in lung tumours [12].

The group of pulmonary neuroendocrine tumours comprises entities varying from typical carcinoid (TC), atypical carcinoid (AC) to small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC). Non-specific symptoms such as cough and dyspnea are very common. Carcinoid syndrome, Cushing syndrome or acromegaly occur rarely [13]. Although LCNEC and SCLC are clinically more aggressive and characterized by higher Ki-67 rate, they share common neuroendocrine features with carcino- ids, such as morphology and expression of specific markers [14]. Moreover, the same pulmonary neuroendocrine cells probably give rise to all of these tumour types [15]. In the light of increasing incidence of neuroendocrine neoplasms [16], there is a great need for marker identification, which would be useful to predict prognosis and facilitate treatment. We hypothesized that nestin, due to its role in car- cinoid tumor biological behavior is a marker in lung neuroendocrine tumours. In this study we analyzed association between nestin expression and survival in patients with lung neuroendocrine tumours.

Material and methods

We have performed retrospective chart review of all patients with neuroendocrine lung tumours, who were operated on in the Department of Thoracic Surgery in Poznań, Poland in the years 2007–2015. The diagnosis was established according to the 4th WHO classification [17]. For the study purpose all available specimens were re-analyzed to confirm previous di-
magnoses.

Patients were assessed according to 7th TNM clas-
sification [18]. We retrospectively evaluated multiple parameters, namely nodal involvement, nestin expression, and tumour vessel invasion. We also performed survival analysis. Overall survival time was determined as a time from operation to death or end of the follow-up.

Formalin-fixed tissue specimens were paraffin wax embedded and cut into 4-μm sections. Then we placed them on SuperFrost®Plus adhesive micro-

scope slides (Merzel Gläser). Next steps were: heating for 30 minutes at 97°C in a water bath in low pH Dako EnVision FLEX Target Retrieval Solution (Dako, Glostrup, Denmark) for 10 min. For the night, sections were left in humid chamber at 4°C with mouse monoclonal nestin Anti-

body (10c2) (Santa Cruz Biotechnology) (dilution 1 : 150) and monoclonal mouse Anti-Human Ki-67 An-
tigen antibody (Dako) (dilution 1 : 300). We diluted primary antibody in Dako EnVision FLEX Antibody Diluent (Glostrup, Denmark). Then, we conducted immunodetection with Novolink Polymer Detection System (Leica Biosystems), followed by visualization with 3’,5’-diaminobenzidine tetrachloride (DAB, Leica Microsystems). As the last step, we counterstained tissues with Mayer's haematoxylin, removed water, cleared and placed them in DPX mountant.

Two experienced pathologists assessed specimens after immunohistochemical staining. The cytoplas-
mic nestin expression was considered positive when at least 5% of cells were stained. We evaluated nestin expression in comparison to vascular endothelial cells staining, as in previous studies [19,20]. If reaction was negative, the score was 0, if it was present but weaker than in endothelial cells – 1. If the staining was similar to that of the endothelial cells, the score was 2, in case of more intensive reaction – score 3. We considered scores 2 and 3 as positive reaction.

Statistical analysis was performed by MedCalc Sta-
tistical Software version 16.4.3 (MedCalc Software bvba, Ostend, Belgium). Continuous variables were presented as median, minimal and maximal values, while categorical as numbers (%). p value less than 0.05 was considered significant. Cumulative survival was assessed by Kaplan-Meier method. To compare survival times between groups we used log rank test. Cox proportional hazards regression model was per-
fomed to evaluate effects of chosen variables on sur-

vival. Into the final analysis following variables were included: nestin expression, nodal involvement and patient’s age at the time of operation (entry level p < 0.05). Comparison between nestin expression in carcinoids and high grade neuroendocrine tumours was performed with χ² test.

The research protocol was approved by the local bioethical committee. All procedures performed were in accordance with the 1964 Helsinki declaration and its later amendments.

Results

Clinicopathological data are presented in Table 1. Nestin expression was positive in 15 (17%) cases including: 14 patients with LCNEC and one with typical carcinoid. Mean surveilllance time for the entire group was 37 months. Our study 30 patients died due to neuroendocrine lung tumour.

We registered 3 deaths due to other reasons. Nes-
tin-negative patients were observed for 39 months on average, positive ones for 25 months. At the end of the study 9 nestin-positive patients (60.0%) died (all cancer-related deaths), while from nestin-negative group – 24 (32.9%) died. Survival was significant-
ly shorter in nestin-positive patients when compared with negative ones (p = 0.041) (Fig. 1). In separate analysis of LCNEC, nestin expression did not affect survival length (p = 0.698), whereas lymph node metastases worsened prognosis (p = 0.0042).

Patients with lymph node metastases were charac-
terized by poorer outcome, than those without meta-

stases (p = 0.0061) (Fig. 2). Moreover, multivariate analy-

sis showed that lymph node metastasis (p = 0.0001; HR = 3.95; confidence interval (CI) 95%: 1.96-7.87), nestin expression (p = 0.034; HR = 2.30; CI 95%: 1.06-4.99) and patient’s age at the time of surgery (p = 0.024; HR = 1.04; CI 95%:1.00-1.09) were independent negative prognostic factors (Table II).

Nestin expression was significantly higher in LCNEC when compared with carcinoids (p = 0.0010). Figures 3 and 4 depict nestin expression.

Discussion

LCNEC is a highly malignant neoplasm, constituting 5% of operated primary lung cancers. Five-year survival rate is very low and varies from 20 to 55%. LCNEC is characterized by high mitotic rates and large areas of necrosis [21]. On the contrary, car-

cinoids are located in the opposite side of lung neu-

roendocrine tumours spectrum. TC comprise 1-2%, while AC 0.1-0.2 % of lung tumours. Their mitotic rate is low, necrosis is present focally (AC) or absent (TC). Also, prognosis is much better with 5-year sur-

vival rates for TC about 90% and AC ~78%. Still, in the 4th edition of the World Health Organization (WHO) classification of tumours of the lungs, pleura, thymus and heart they are presented as a single group [22]. Taking into account, their common origin we chose to assess nestin expression in the whole group. Additionally, data concerning nestin and its possible role in neuroendocrine lung tumours are scarce.

We found that nestin expression was present in 15 cases. In our study nestin expression was associated with a 2-fold increase of the hazard of death. To our

| Table II. Evaluation of chosen variables on survival. Cox proportional hazards regression model |
|-----------------|--------|---|-----------------|
| **Nestin** | **HR** | **95% CI** |
| Positive vs. negative | 0.0342 2.058 | 1.064-4.957 |
| Patient’s age at operation time | 0.0242 1.047 | 1.006-1.091 |
| Nodal involvement | | |
| Positive vs. negative | 0.0001 3.9347 | 1.966-7.8743 |
knowledge, there was only one study evaluating this protein and survival in LCNEC. Nestin was detected in 8/10 patients and it posed an independent prognostic factor, increasing three times the hazard of death [19]. The limitations of the study were: small sample size and short follow-up time [19]. In the whole group we found nestin expression to be a negative prognostic factor shortening the survival length, though in a separate analysis of LCNEC, lymph node metastasis and there was negative association with survival. On cell lines, it corresponded with increased proliferation, migration and invasion capacities [25]. Basing on our results and presented studies, nestin detection may serve in the future, as a biomarker used to predict prognosis and facilitate patient-oriented approach to treatment.

With regard to carcinoids, in our study, nestin was positive in just one out of 40 cases. At the end of the observation the nestin-positive patient was alive. In a single published study, Ehrman et al. investigated only 9 carcinoid specimens, using different method, the histoscore. Nestin staining was weak and heterogeneous, thus confirming our results and pointing to the histoscore. Nestin staining was weak and heterogeneous, thus confirming our results and pointing to the histoscore.

They also investigated several cell lines representing lung adenocarcinoma. Nestin expression in tumour samples positively correlated with tumour size, lymph node metastasis and there was negative association with survival. On cell lines, it corresponded with increased proliferation, migration and invasion capacities [25]. Basing on our results and presented studies, nestin detection may serve in the future, as a biomarker used to predict prognosis and facilitate patient-oriented approach to treatment.

With regard to carcinoids, in our study, nestin was positive in just one out of 40 cases. At the end of the observation the nestin-positive patient was alive. In a single published study, Ehrman et al. investigated only 9 carcinoid specimens, using different method, the histoscore. Nestin staining was weak and heterogeneous, thus confirming our results and pointing to the histoscore.
24. Janikova M, Skarda J, Dziechciarkova M, et al. Identification of CD133+/nestin+ putative cancer stem cells in non-small cell lung cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010; 154: 321-326.
25. Narita K, Matsuda Y, Seike M, et al. Nestin regulates proliferation, migration, invasion and stemness of lung adenocarcinoma. Int J Oncol 2014; 44: 1118-1130.
26. Ehrmann J, Kolar Z, Mokry J. Nestin as a diagnostic and prognostic marker: immunohistochemical analysis of its expression in different tumours. J Clin Pathol 2005; 58: 222-223.
27. Ladstein RG, Bachmann IM, Straume O, et al. Nestin expression is associated with aggressive cutaneous melanoma of the nodular type. Mod Pathol 2014; 27: 396-401.
28. Liu C, Shen B, Zhu J, et al. Clinical implications for nestin protein expression in breast cancer. Cancer Sci 2010; 101: 815-819.
29. Eichhorn F, Dienemann H, Muley T, et al. Predictors of survival after operation among patients with large cell neuroendocrine carcinoma of the lung. Ann Thorac Surg 2015; 99: 983-989.
30. Yeh YC, Chou TY. Pulmonary neuroendocrine tumors: study of 90 cases focusing on clinicopathological characteristics, immunophenotype, preoperative biopsy, and frozen section diagnoses. J Surg Oncol 2014; 109: 280-286.
31. Filosso PL, Ruffini E, Di Gangi S, et al. Prognostic factors in neuroendocrine tumours of the lung: a single-centre experience. Eur J Cardiothorac Surg 2014; 45: 521-526.
32. Fasano M, Della Corte CM, Papaccio F, et al. Pulmonary Large-Cell Neuroendocrine Carcinoma: From Epidemiology to Therapy. J Thorac Oncol 2015; 10: 1133-1141.

Address for correspondence
Barbara Bromińska
Department of Endocrinology, Metabolism and Internal Medicine Poznan University of Medical Sciences, Przybyszewskiego 49
60-553 Poznan, Poland
e-mail: barbarabrominska@gmail.com