Abstract. We show that any \(nD \) measures in \(\mathbb{R}^n \) can be bisected by an arrangement of \(D \) hyperplanes, when \(n \) is a power of two.

1. Introduction

Let \(\mathcal{H} = \{ H_1, H_2, \ldots, H_D \} \) be a finite set of hyperplanes, \(\{ A_1, A_2, \ldots, A_D \} \) affine functions such that the zero set of \(A_i \) is \(H_i \), and \(P^H = A_1 A_2 \ldots A_D \) the product of these affine functions. If \(\mu \) is a measure in \(\mathbb{R}^n \), we will say that \(\mathcal{H} \) bisects \(\mu \) if

\[
\mu \left\{ v \in \mathbb{R}^n : P^H(v) > 0 \right\} \leq \frac{\mu(\mathbb{R}^n)}{2} \quad \text{and} \quad \mu \left\{ v \in \mathbb{R}^n : P^H(v) < 0 \right\} \leq \frac{\mu(\mathbb{R}^n)}{2}.
\]

Theorem 1. Let \(n \) and \(D \) be integers such that \(D > 0 \) and \(n > 1 \) is a power of two. Given \(nD \) finite measures \(\mu_1, \mu_2, \ldots, \mu_{nD} \) in \(\mathbb{R}^n \), there exists an arrangement of at most \(D \) hyperplanes that bisect each of the measures.

Observe that a family of \(nD + 1 \) delta masses based at a set of points, no \(n + 1 \) of which lie on the same hyperplane cannot be simultaneously bisected by less than \(D + 1 \) hyperplanes. Barba and Schnider [2] conjectured that the previous theorem holds for any \(n \) and confirmed this conjecture for the case of four measures in the plane (\(n = D = 2 \)). Notice that the case \(D = 1 \) of this conjecture corresponds to the classical ham sandwich theorem (see the book [3] for many other ham sandwich type results).

2. Parametrization of arrangements

Parametrize hyperplanes in \(\mathbb{R}^n \) by elements of \(S^n \) mapping \((a_0, a_1, \ldots, a_n) \in S^n \) to the affine function

\[
A(x) = a_0 + a_1 x_1 + \cdots + a_n x_n.
\]

Parametrize hyperplane arrangements by elements of \((S^n)^D \). An element of \((S^n)^D \) corresponds to \(D \) affine functions \(A_1, \ldots, A_D \) and the polynomial corresponding to \(\mathcal{H} = \{ A_1^{-1}(0), A_2^{-1}(0), \ldots, A_D^{-1}(0) \} \) of degree \(D \) is given by

\[
P^H(x) = A_1(x) \ldots A_D(x).
\]

Let \(S_D \) be the symmetric group of permutations of \(D \) elements, and \(\mathbb{Z}/2^D \) be the \(D \)-fold product of the abelian group on two elements. Let \(G = S_D \ltimes \mathbb{Z}/2^D \) be their semi-direct product. The group \(\mathbb{Z}/2^D \) acts on \((S^n)^D \) by the antipodal map \(A \mapsto -A \) on each \(S^n \) factor, this action is free, the group \(S_D \) acts on \((S^n)^D \) by permuting the factors. Their semi-direct product acts by permuting and applying antipodal maps on some of the factors.

The action of \(G \) on \((S^n)^D \) is not free. Its non-free part \(\Sigma \) corresponds to \(D \)-tuples \((A_1, \ldots, A_D) \) such that \(A_i = A_j \) or \(A_i = -A_j \) for some \(i \neq j \).

* Supported by the Russian Foundation for Basic Research grant 18-01-00036.
3. Approximation of measures

We prove the theorem for a subspace of measures, which is a dense subset of \(\mathcal{P} \), the space of Borel probability measures with the weak topology; then we deduce the general case by approximation. We denote by \(\mathcal{P}^k \) its \(k \)-fold Cartesian product, whose elements are sets \(\{\mu_1, \mu_2 \ldots \mu_k\} \) of Borel probability measures in \(\mathbb{R}^n \). The material that we need from measure theory is covered in many analysis books, see for instance [5, 7].

Lemma 2. For \(k, D > 0 \), the set of ordered \(k \)-tuples of Borel measures that are not bisectable by \(D \) hyperplanes is open in \(\mathcal{P}^k \).

Proof. Assume that \(M = (\mu_1, \ldots, \mu_k) \in \mathcal{P}^k \) is a \(k \)-tuple of Borel probability measures that cannot be bisected by an arrangement of \(D \) hyperplanes \(\mathcal{H} \). For any polynomial \(P^H \), there exists a sign \(\pm \) and an \(i \in \{1 \ldots, k\} \) such that

\[
\mu_i \{ \pm P^H > 0 \} > 1/2.
\]

From continuity of the measure \(\mu_i \) we can choose an open set \(W \) whose closure is compact and is contained in \(\{ \pm P^H > 0 \} \) such that,

\[
\mu_i(W) > 1/2.
\]

By definition, the ordered \(k \)-tuples of Borel probability measures \(M' = (\mu'_1, \ldots, \mu'_k) \) such that \(\mu'_i(W) > 1/2 \) constitute a neighborhood \(\mathcal{U} \ni M \) in the weak topology. The arrangements of hyperplanes \(\mathcal{H}' \) such that \(P^{H'} \) is positive on the closure of \(W \) constitute a neighborhood \(\mathcal{V} \ni \mathcal{H} \) in the topology on the space of arrangements. Any pair of \(M' \in \mathcal{U} \) and \(\mathcal{H}' \in \mathcal{V} \) have the property that \(\mathcal{H}' \) does not bisect \(M' \).

Since the space of arrangements \((S^n)^D \) is compact, a finite number of such \(\mathcal{V}_1, \ldots, \mathcal{V}_N \) cover the whole space of arrangements. The intersection of the respective \(\mathcal{U}_1, \ldots, \mathcal{U}_N \) produce a neighborhood of \(M \) every member of which cannot be bisected with any arrangement of hyperplanes. \(\square \)

Corollary 3. Theorem 1 for Borel measures follows from its validity on any dense subset of \(\mathcal{P}^k \).

Denote by \(\delta_v \) the Dirac delta mass at the point \(v \), i.e. for a Borel set \(X \), \(\delta_v(X) = 1 \) if \(v \in X \) and \(\delta_v(X) = 0 \) otherwise. We call measures of the form \(\frac{1}{N} \sum_{k=1}^N \delta_{v_k} \) with odd \(N \) and \(v_1, \ldots, v_N \) in general position, oddly supported measures. We say that a finite family of measures is in general position if no hyperplane intersects \(n+1 \) connected components of the union of their supports.

Lemma 4. Oddly supported measures in general position are dense in \(\mathcal{P} \). Ordered \(k \)-tuples of oddly supported measures in general position are dense in \(\mathcal{P}^k \).

Proof. Assume the contrary, then there is a Borel probability measure \(\mu \) whose weak neighborhood \(\mathcal{V} \) contains no oddly supported measure. It is sufficient to consider \(\mathcal{V} \) from the base of the weak topology given by a finite set of inequalities

\[
\mu'(U_1) > m_1, \ldots, \mu'(U_\ell) > m_\ell
\]

for open \(U_i \) and real \(m_i \). Let \(N \) be an odd number. Sample \(N \) points \(v_k \) independently, distributed according to \(\mu \) and consider the random measure

\[
\nu_N = \frac{1}{N} \sum_{k=1}^N \delta_{v_k}.
\]
The random variable $\nu_N(U_i)$ is given by,

$$\nu_N(U_i) = \frac{\#\{k = 1, \ldots, N : v_k \in U_i\}}{N}$$

This is a sum of N independent Bernoulli random variables with expectation $\mu(U_i)$. By the law of large numbers $\nu_N(U_i)$ converges almost surely to $\mu(U_i)$. Hence for sufficiently large N the probability of satisfying the inequalities $\nu_N(U_i) > m_i$ simultaneously is arbitrarily close to 1; and we might perturb the points v_k so that none of them leave any U_i it belonged to so that for the perturbed measure $\nu_N(U_i)$ is still in \mathcal{V}.

The second statement follows immediately, we do the same for k measures and take a single sufficiently large odd N. After that we perturb the total Nk support points so that none of them leaves any U_i (from the definition of a weak neighborhood) it belonged to.

Let η_v be an ε-smoothening of the delta mass at v. More precisely η_v is a Borel probability measure centrally symmetric around v, which is supported inside a ball $B_v(\varepsilon)$ of radius ε centered at v and has a continuous density. Now take points in general position v_1, \ldots, v_N and consider a sum of ε-smoothenings

$$\mu = \frac{1}{N} \sum_{k=1}^{N} \eta_{v_k}.$$

If N is an odd number and no $n+1$ tuple of the $B_{v_k}(\varepsilon)$ are intersected by a hyperplane, then we include μ in the set \mathcal{M}_ε. Finally we put $\mathcal{M} := \cup_{\varepsilon>0} \mathcal{M}_\varepsilon$, this is the set of measures we will work with.

Lemma 5. The set \mathcal{M} is dense in the space of probability measures with the weak topology, moreover the set of ordered k-tuples of measures in general position in \mathcal{M}^k is dense in P^k.

Proof. For any oddly supported measure, we weakly approximate every delta mass δ_{v_k} by its respective η_{v_k} supported in the respective $B_{v_k}(\varepsilon)$. If ε is sufficiently small then no $n+1$ of the balls will be intersected by a single hyperplane. So \mathcal{M} is dense in the space of oddly supported measures which by Lemma 4, is dense in P. Similarly, \mathcal{M}^k is dense in P^k. \square

4. Bisecting well separated sets of measures

We say that a family of sets X_1, X_2, \ldots, X_m in \mathbb{R}^n is well separated if no n-tuple of their convex hulls $\text{conv}(X_1), \text{conv}(X_2) \ldots \text{conv}(X_m)$ is intersected by an $(n-2)$-dimensional affine space. A family of measures is well separated if their supports are well separated. The following lemma was shown in [1] for absolutely continuous measures.

Lemma 6. For any family of well separated measures in general position $\mu_1, \mu_2, \ldots, \mu_n \in \mathcal{M}$ there exists a unique hyperplane H that bisects each of the measures.

Proof. The existence of this hyperplane is provided by the ham sandwich theorem, we only need to show the uniqueness. Assume we have a pair of halving hyperplanes H and H', since the measures are well-separated, the intersection $H \cap H'$ does not touch the convex hull of the support of some μ_i. The both hyperplanes must intersect the interior of the support of μ_i, since it is constructed from an odd number of equal measures. Now it is clear that one of the halves $H_- \cap \text{conv supp } \mu_i$ and $H_+ \cap \text{conv supp } \mu_i$ strictly
contains some of $H'_+ \cap \text{conv supp } \mu_i$ and $H'_- \cap \text{conv supp } \mu_i$ and therefore H and H' cannot equipartition μ_i at the same time. \hfill \Box

The following lemma describes the bisecting arrangements of hyperplanes in the case when the measures are well separated.

Lemma 7. For any family of nD well separated measures in general position, an arrangement of D hyperplanes \mathcal{H} is bisecting, if and only if, there is bijection φ between the elements of \mathcal{H} and a partition of $[nD]$ into n-tuples such that the hyperplane $H_i \in \mathcal{H}$ bisects the n-tuple of measures with indices in $\varphi(H_i)$.

Proof. Given a partition Y of $[nD]$ into n-tuples $\{Y_1, Y_2 \ldots Y_D\}$. By Lemma 6, for each n-tuple Y_i, the corresponding measures are bisected by a unique ham sandwich cut, this defines a bijection $\varphi^{-1}: Y \rightarrow \mathcal{H}$. Since the measures are well separated, any measure with index not in $\varphi(H)$ is not intersected by H. So the arrangement is simultaneously bisecting. Conversely, since the supports are well separated, each hyperplane of a bisecting arrangement must intersect the supports of precisely n of the measures, otherwise at least one measure cannot be bisected. In this situation each hyperplane bisects n measures and does not touch the convex hulls of the supports the remaining measures. By Lemma 6, such a hyperplane must be the unique ham sandwich cut of the corresponding n-tuple of measures. \hfill \Box

Let $N(n, D)$ be the number of unordered partitions of a set of nD elements into D sets of n elements each. Clearly

$$N(n, D) = \frac{(nD)!}{D!(n!)^D},$$

but we will not use this formula.

Lemma 8. If n is a power of two then $N(n, D)$ is odd.

Proof. Consider the action of the 2-Sylow subgroup $S \subset \mathfrak{S}_{nD}$ on these partitions. To describe this Sylow subgroup we need to make a binary tree with 2^m leaves, where 2^m is the smallest power of two not smaller than nD. Then we drop the leaves that have numbers strictly greater than nD and drop the corresponding higher vertices of the tree. Then S is the symmetry group of the remaining tree and its embedding into \mathfrak{S}_{nD} is obtained by looking at the leaves of the tree and how they are permuted by S. It is a Sylow subgroup just because by construction its order equals

$$2\sum_{k \geq 1} [nD/2^k],$$

which is the largest power of two that divides $(nD)! = |\mathfrak{S}_{nD}|$.

The set nD has a decomposition into consecutive n-tuples $P_1 \cup \cdots \cup P_D$. As it is easily seen, when n is a power of two, each P_i corresponds to a full binary subtree. Hence the group S can permute transitively each of P_i while fixing all elements of the other P_j, $j \neq i$. This guarantees that an unordered partition into n-tuples that is fixed by S must coincide with the chosen partition $P_1 \cup \cdots \cup P_D$. Other partitions are not fixed under the S action, so they come in orbits. Since S is a 2-group, all such orbits are even, hence the total number of partitions into n-tuples is odd. \hfill \Box
5. Proof of the Theorem

By Lemmas 5 and Corollary 3 it is sufficient to prove the theorem for measures in \mathcal{M} (smoothed oddly supported measures) in general position. Denote by A_i the support of the measure μ_i, and by C_i the set of centers of balls whose union is A_i. We say that the points on A_i are of color i. Denote by M the family $\{\mu_1, \mu_2, \ldots, \mu_D\}$. Arguing similarly to Lemma 6 observe that for any family of measures in general position in \mathcal{M} (not necessarily well-separated) a bisecting arrangement has to be the union of D hyperplanes each of which intersects a heterochromatic set of n connected components, otherwise some of the measures will not be bisected. We only need to count such arrangements.

We deform the measures μ_i continuously to a situation where we can easily count the number of bisecting arrangements of the family. We use measures in \mathcal{M} throughout, so we might prescribe a trajectory of C_i and choose $\varepsilon > 0$ later. In the following all the objects that we deal with depend on $t \in [0, 1]$ which we call time, and denote this time with a subindex t. For each $t \in [0, 1]$ we consider a measure $\mu_{i,t} \in \mathcal{M}$ that depends continuously on t such that $\mu_{i,0} := \mu_i$ and the family $M_1 := \{\mu_{1,1}, \mu_{2,1}, \ldots, \mu_{nD,1}\}$ (at time $t = 1$) is well separated and in general position. By Lemma 7 we know that the family M_1 has exactly $N(n, D)$ bisecting arrangements.

Let us further describe the motion of M_t in more detail. We want to describe a generic trajectory of measures in general position. Consider a point b_i from a general position set b_1, b_2, \ldots, b_{nD}. Choose $\alpha > 0$ so that the balls $B(b_i, \alpha)$ are well separated. Then move each of the points of C_i towards b_i in such a way that each set C_i is always in general position within itself and at the end, the support of the $\mu_{i,1}$ is contained in $B(b_i, \alpha)$. For example, the deformation could follow a homothety with center b_i. By perturbing the speed of the trajectories if necessary, we can assume that at no moment of time there exist two $(n+1)$-tuples of connected components of the A_i, each of which is intersected by a hyperplane. In particular, at no time t, an $(n+2)$-tuple of connected components is intersected by a single hyperplane. To put it short, in a generic trajectory the events when some $n+1$ supporting balls of the measures can be intersected by a hyperplane come one by one.

Denote by Z_t the subset of points of $(\mathbb{S}^n)^D$ corresponding to bisecting arrangements of the family M_t. Our crucial observation is that Z_t does not touch the non-free part $\Sigma \subset (\mathbb{S}^n)^D$. An assumed G-fixed point of Z_t corresponds to a set of hyperplanes in which two of the hyperplanes coincide. From the assumption on the generic trajectory it follows that we thus have at most $D - 1$ distinct hyperplanes that intersect at least nD supporting balls of the measures in the set M_t. But there is a unique $(n+1)$-tuple of such balls that can be intersected by a single hyperplane, in all other situations the hyperplanes intersect at most n balls each. The inequality $n(D - 1) + 1 < nD$ thus gives a contradiction, so the non-free part of the space of arrangements is not touched during the motion.

Let us show that the parity of the number of bisecting arrangements stays invariant during the motion; then Lemma 8 delivers the result in the case we are interested in.

Consider the continuous G-equivariant map $f : (\mathbb{S}^n)^D \times [0, 1] \to \mathbb{R}^{nD}$ given by

$$(f_t(x))_i = \mu_{i,t}\{P > 0\} - \mu_{i,t}\{P < 0\},$$

where P is the polynomial we associate to $x \in (\mathbb{S}^n)^D$. We have the solution set $Z_t = f_t^{-1}(0) \subset (\mathbb{S}^n)^D \setminus \Sigma$ at time t. We need to show that $Z_0 \neq \emptyset$ and let us assume the contrary, that $Z_0 = \emptyset$.

If fact, the union of all such Z_t for $t \in [0, 1]$ is the preimage of zero $Z = f^{-1}(0)$, a closed subset of the product $(S^n)^D \times [0, 1]$, not touching the non-free part of this product $\Sigma \times [0, 1]$. Denote the free part

$$F = ((S^n)^D \setminus \Sigma) \times [0, 1]$$

for brevity. Using the Thom transversality theorem \cite{6, 4} (on the free part F we just apply the non-equivariant transversality for the sections of the vector bundle F with $t = 0, 1$ since for $t = 0, 1$ the map f was already transversal to zero. Now we have Z' with $Z'_0 = Z_0 = \emptyset$ and such that Z'_1 consists of an odd number of G-orbits. But Z'_1 is the boundary of the one-dimensional compact manifold Z' with free action of G that cannot consist of an odd number of G-orbits, a contradiction.

Remark 9. The previous version of this paper incorrectly claimed Theorem 1 for any n. It was claimed that the cohomology class that was denoted there by e_i vanished on the complement of the set of arrangements of D hyperplanes bisecting a single measure. Actually the argument given there with the curve γ_i provides this fact for the class $\sum_{i=1}^D e_i$, the modulo two Euler class of the one-dimensional representation of $(Z/2)^D$, on which each generator of every $Z/2$ acts antipodally. The vanishing lemma implies that if $(e_1 + \cdots + e_D)^k$ is nonzero in the cohomology ring of the product of projective spaces, then for every k measures there exist an arrangement of D hyperplanes bisecting the measures. This in turn amounts to finding an odd multinomial coefficient, $\binom{k}{k_1, k_2, \ldots, k_D} = \binom{k}{k_1} \binom{k-k_1}{k_2} \cdots \binom{k-k_1-\cdots-k_{D-1}}{k_D}$ with $k_1, \ldots, k_D \leq n$. For such a coefficient to be odd, when we add the numbers in the sum $k_1 + \cdots + k_D$ in binary representation then no carry should occur. Consider the largest m such that, $2^m \leq n$, then we need $k_1 + \cdots + k_D \leq 2^{m+1} - 1$. There is an example of such a sum with no carry if we put for $D \leq m + 2$, $k_1 = 2^m, k_2 = 2^{m-1}, \ldots, k_{D-1} = 2^{m-D+2}, k_D = 2^{m-D+2} - 1$, and for $D \geq m + 2$, $k_1 = 2^m, k_2 = 2^{m-1}, \ldots, k_m = 2, k_{m+1} = 1, k_{m+2} = \cdots = k_D = 0$. From which we can conclude that we can bisect $2^{m+1} - 1 \leq 2n - 1$ measures with at most 2 hyperplanes, and taking more hyperplanes, does not yield anything new with this technique (not using the permutations \mathfrak{S}_D).

On the other hand, if $2^m \leq n$ and we have 2^mD measures in \mathbb{R}^n, we can project linearly to \mathbb{R}^{2m}, apply Theorem 1 to obtain a bisecting arrangement of D hyperplanes in \mathbb{R}^{2m} and look at their inverse image, an arrangement of D hyperplanes in \mathbb{R}^n that bisects the original measures. Since $2^mD > 2^{m+1} - 1$ in the nontrivial case $D \geq 2$, Theorem 1 always provides a better result then the above cohomological argument.

Acknowledgements. We acknowledge and thank Pavle V. M. Blagojević for corrections and useful comments.

References

[1] Imre Bárány, Alfredo Hubard, and Jesús Jerónimo. Slicing convex sets and measures by a hyperplane. *Discrete & Computational Geometry*, 39(1):67–75, Mar 2008.

[2] Luis Barba and Patrick Schnider. Sharing a pizza: bisecting masses with two cuts. In *Proceedings of the 29th Canadian Conference on Computational Geometry*, CCCG’17, July 2017.

[3] Jiří Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry. Springer Publishing Company, Incorporated, 2007.
[4] J.W. Milnor. *Topology from the Differentiable Viewpoint*. Princeton Landmarks in Mathematics. Princeton University Press, 1997.

[5] T. Tao. *An Introduction to Measure Theory*. Graduate studies in mathematics. American Mathematical Society, 2013.

[6] Réné Thom. Quelques propriétés globales des variétés différentiables. *Commentarii Mathematici Helvetici*, 28:17–86, 1954.

[7] S.R.S. Varadhan. *Probability Theory*. American Mathematical Society, 2001.

E-mail address: alfredo.hubard@u-pem.fr

Université Paris-Est Marne-la-Vallée, LIGM. UMR 8049, CNRS, ENPC, ESIEE, UPEM, F-77454, Marne-la-Vallée, France.

E-mail address: r.n_karasev@mail.ru
URL: http://www.rkarasev.ru/en/

Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Russia 141700

Institute for Information Transmission Problems RAS, Bolshoy Karetny per. 19, Moscow, Russia 127994