Regular Paper

Browning, Starch Gelatinization, Water Sorption, Glass Transition, and Caking Properties of Freeze-dried Maca (*Lepidium meyenii* Walpers) Powders

(Received August 26, 2020; Accepted October 1, 2020)

Alex Eduardo Alvino Granados¹ and Kiyoshi Kawai¹,², †

¹ Graduate School of Biosphere Science, Hiroshima University
(1–4–4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8528, Japan)
² Graduate School of Integrated Sciences for Life, Hiroshima University
(1–4–4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8528, Japan)

Abstract: The browning, gelatinization of starch, water sorption, glass transition, and caking properties of freeze-dried maca (*Lepidium meyenii* Walpers) powders were investigated and compared with a commercial maca powder. The freeze-dried maca powders had lower optical density (browning) and higher enthalpy change for starch gelatinization than the commercial maca. This resulted from a difference in thermal history. The equilibrium water contents of the freeze-dried maca powders were higher than those of commercial maca at each water activity (*a*_w) because of differences in amorphous part. The glass transition temperature (*T*_g) was evaluated by differential scanning calorimetry. There was a negligible difference in the anhydrous *T*_g (79.5–80.2 ºC) among the samples. The *T*_g-depression of freeze-dried maca powders induced by water sorption was more gradual than that of the commercial maca due to a difference in water insoluble material content. From the results, critical water activity (*a*_c) was determined as the *a*_w at which *T*_g becomes 25 ºC. There was negligible caking below *a*_c = 0.328. At higher *a*_c, the degree of caking remarkably increased with a large variation depending on the samples. The degree of caking could be described uniformly as a function of *a*_c/*a*_{uc}. From these results, we propose an empirical approach to predict the caking of maca powders.

Key words: maca, water sorption isotherm, glass transition temperature, caking, gelatinization

INTRODUCTION

Maca (*Lepidium meyenii* Walp.), a carbohydrate-rich vegetable root of the Brassicaceae family, is native to the high plateau of the central Andes of Peru and is one of the few vegetables adapted to high altitudes (3,800–4,500 m) and severe environmental conditions.¹ The maca root comes in several colors such as yellow, white, purple, and black. Although the phenotypic color does not considerably affect the primary nutritional composition (carbohydrate, protein, and fat),²⁻⁶ secondary metabolites such as glucosinolates, macaenes, and macamides have been reported to variate.³⁻⁶⁻⁷⁻⁸⁻⁹ The consumption of maca has notably increased all over the world because of interest in its bioactive compounds.²⁻⁹

There has been little effort to understand the physical properties of maca in comparison with its chemical and physiological properties. Maca powder is a multicomponent powder, and the amorphous part shows a glass-to-rubber transition (glass transition) upon changes in temperature and water content.¹⁰ Glass transition is characterized by the glass transition temperature (*T*_g).¹¹ Amorphous food powders in the glassy state (*T* < *T*_g) are physically stable because of an extremely low molecular mobility and/or high viscosity.¹² The *T*_g of hydrophilic food materials decreases with increasing water content, because water acts as a plasticizer to the amorphous part. The effect of water content on *T*_g has been described as the *T*_g-curve. From the *T*_g-curve, the water content at *T*_g = 25 ºC (as a typical ambient temperature) can be determined as critical water content (*w*_c). In addition, *w*_c can be converted to critical water activity (*a*_c) through the relationship between equilibrium water content and *a*_c.¹³ Glass transition occurs at 25 ºC when water content and *a*_c become higher than *w*_c and *a*_{uc}, respectively. The *w*_c and *a*_c parameters are useful for the prediction of physical deteriorations induced by water sorption at ambient temperature. For example, the caking of amorphous food powders can be understood based on the *w*_c and/or *a*_{uc}.¹⁴⁻¹⁶ Caking is an undesired physical phenomenon in which free-flowing powders agglomerate into hard lumps due to deformation and bridging of sticky particles as a result of plasticization and the decrease of surface viscosity.¹⁴⁻¹⁶

In our previous study, the glass transition and caking properties of a commercial maca powder cultivated in Peru were investigated.¹⁰ We found that the maca powder showed an extended glass transition, reflecting a wide distribution of molecular mobility. In addition, the degree of
caking drastically increased at an a_w under the rubbery state. Since maca powder showed extended glass transition behavior, the molecular mobility required for caking was thought to have been provided gradually by the increase in a_w under the rubbery state. The commercially available maca powder, however, had an unclear thermal history. Sliced maca is air-dried, powdered, and sterilized in different ways depending on the manufacturer.16,17 During processing, it is thought that the gelatinization of starch and browning progressively occur. These factors will affect the physical properties of the amorphous powders.

The purpose of this study was to understand browning, starch gelatinization, water sorption isotherm (relationship between equilibrium water content and a_w), T_g-curve, and caking behavior of freeze-dried maca powder. The freeze-dried maca powder was prepared from fresh maca roots cultivated in Japan. Since freeze-drying enables the drying of maca non-thermally, it is expected that browning and starch gelatinization do not occur during the processing.

MATERIALS AND METHODS

Materials. Fresh maca roots cultivated in Japan were purchased from the Maca Japan Corp., Tokyo, Japan. The roots were visually classified into yellow, white, purple, and black as shown in Fig. 1. For comparison, the commercial maca powder employed in our previous study10 was also used for some experiments.

Sample preparation. The maca roots were peeled manually and cut into small portions. The slices were distributed in an aluminum container and frozen in a freezer at $-20 \, ^\circ C$. The frozen samples were then transferred to a pre-cooled chamber and freeze-dried at a pressure of approximately 11 Pa as the temperature increased from $-35 \, ^\circ C$ to $5 \, ^\circ C$ in a constant stepwise manner over a 48-h period. The freeze-dried solids were powdered using a mixer and stored in a constant stepwise manner over a 48-h period. The frozen samples were then transferred to a pre-cooled chamber and freeze-dried at a pressure of approximately 11 Pa as the temperature increased from $-35 \, ^\circ C$ to $5 \, ^\circ C$ in a constant stepwise manner over a 48-h period. The freeze-dried solids were powdered using a mixer and stored below $5 \, ^\circ C$ prior to use.

Extent of browning. The freeze-dried maca and commercial maca powders were diluted to 0.05 g/mL with distilled water. The samples were centrifuged at approximately $1,000 \times G$ for 10 min, and the supernatant was filtered with a filter paper (pore size = 4 µm). Optical density at 420 nm (OD\textsubscript{420}) was evaluated for the supernatant using a UV-visible spectrophotometer (BioSpec-1600; Shimadzu Instruments Inc., Kyoto, Japan). In this way it was possible to quantify pigments produced by either enzymatic17 or non-enzymatic browning.18 The measurements were performed in triplicate and the results were averaged.

Enthalpy change for starch gelatinization. To confirm the gelatinization properties of starch in maca, gelatinization temperature (T_{gel}) and enthalpy change (ΔH_{gel}) were investigated using differential scanning calorimetry (DSC 60, Shimadzu Instruments Inc., Kyoto, Japan). Alumina powder was used as a reference, and temperature and heat flow were calibrated with indium and distilled water, respectively. Freeze-dried maca powder samples (4.8–6.0 mg) were placed into a DSC aluminum pan, and the water content adjusted above 70 % (w/w) by adding distilled water.19 The DSC measurements were obtained at 5 ºC/min in a temperature range of 10 to 100 ºC. The measurements were performed in triplicate and the results were averaged.

Water sorption isotherm. Freeze-dried maca powder (approximately 0.5 g) was placed in an aluminum dish (diameter = 40 mm), and the residual moisture in the samples was removed by vacuum drying at 25 ºC (stage temperature) for 6 h. The dried samples were equilibrated at 25 ºC for longer than 7 days in a desiccator with saturated salts: LiCl ($a_w = 0.113$), CH\textsubscript{3}COOK ($a_w = 0.225$), MgCl\textsubscript{2} ($a_w = 0.328$), K\textsubscript{2}CO\textsubscript{3} ($a_w = 0.432$), Mg(NO\textsubscript{3})\textsubscript{2} ($a_w = 0.529$), NaBr ($a_w = 0.576$), KI ($a_w = 0.688$), and NaCl ($a_w = 0.753$). The equilibrium water content of the samples was determined gravimetrically by oven-drying at 105 ºC for 16 h. The measurements were performed in triplicate for freeze-dried yellow maca powder and singly for the freeze-dried white, purple, and black maca powders.

Glass transition temperature. The glass transition temperature (T_g) of the samples was determined using the DSC as mentioned above. Each sample (20–30 mg) was hermetically sealed into a DSC aluminum pan. To evaluate the T_g of the anhydrous sample, it was vacuum-dried at 60 °C for 6 h, placed into a DSC aluminum pan, and subsequently oven-dried at 105 °C for 2 h. The DSC pan containing the fully dried sample was then hermetically sealed. The DSC measurements were obtained at 5 °C/min. To reset the thermal history of the glassy samples, the DSC scan was repeated two times.20 In the first scan, the DSC measurement was stopped at a slightly higher temperature than the endothermic shift expected as the glass transition, and then cooled down. In the second scan, the DSC measurement was stopped at a much higher temperature than the T_g suggested by first scan. The DSC thermogram was analyzed using software interfaced with the DSC, and the T_g values

Fig. 1. Maca root phenotypes.
were determined from the onset of the endothermic shift. The measurements were performed in triplicate for freeze-dried yellow maca powder and singly for the freeze-dried white, purple, and black maca powders.

Degree of caking. The degree of caking was investigated as described previously with minor modifications. The freeze-dried maca powder samples were separated through a 1.4-mm sieve with a vibration amplitude of 4.5 mm using a mechanical shaker (MVS-1; As One Instruments Co., Tokyo, Japan). The passed powder (approximately 0.5 g) was placed in an aluminum dish (diameter = 40 mm) and vacuum-dried at 25 °C for 6 h. The powder was equilibrated at 25 °C for 7 days in a desiccator with saturated salts as mentioned above. The equilibrated samples were vacuum-dried at 25 °C for 6 h. The dried samples were weighed and then sieved under the same conditions as the first treatment. After weighing the amount of sample retained on the sieve, the degree of caking was evaluated as a percentage of retained weight per pre-sieved weight. The measurements were performed in triplicate for freeze-dried yellow maca powder and singly for the freeze-dried white, purple, and black maca powders.

RESULTS AND DISCUSSION

Browning and starch gelatinization.

The values of OD$_{420}$ starch gelatinization temperature, and gelatinization enthalpy are shown in Table 1. Notably, the commercial maca powder had a significantly higher OD$_{420}$ than the freeze-dried samples. This was a consequence of air-drying and thermal sterilization during processing.

Interestingly, the freeze-dried purple and white maca powders showed slightly higher OD$_{420}$ values than the yellow and black ones. It is known that the carbohydrates in maca consist of 23% starch, 19% sugars, 9% water-soluble fiber, and 23% water-insoluble fiber. During thermal processing, some enzymes will contribute to non-enzymatic browning. For example, glucosinolates are hydrolyzed by endogenous myrosinases into glucose, and structural carbohydrates are hydrolyzed into low molecular weight sugars by endogenous amylase, pectinesterase, and polygalacturonase. Consequently, the freeze-dried purple and white maca powders showed slightly higher OD$_{420}$ values than the yellow and black ones. It is known that the carbohydrates in maca consist of 23% starch, 19% sugars, 9% water-soluble fiber, and 23% water-insoluble fiber.

During thermal processing, some enzymes will contribute to non-enzymatic browning. For example, glucosinolates are hydrolyzed by endogenous myrosinases into glucose, and structural carbohydrates are hydrolyzed into low molecular weight sugars by endogenous amylase, pectinesterase, and polygalacturonase. Consequently, the freeze-dried purple and white maca powders showed slightly higher OD$_{420}$ values than the yellow and black ones. It is known that the carbohydrates in maca consist of 23% starch, 19% sugars, 9% water-soluble fiber, and 23% water-insoluble fiber.

Table 1. Browning and gelatinization properties of maca powders.

Sample	OD$_{420}$	T_{gel} (°C)	ΔH_{gel} (J/g-DM)
White	0.28 ± 0.02	49.7 ± 0.3	2.0 ± 0.2
Purple	0.32 ± 0.01	49.2 ± 0.2	2.4 ± 0.1
Black	0.20 ± 0.01	50.0 ± 0.2	3.5 ± 0.1
Yellow	0.25 ± 0.03	47.7 ± 0.4	4.1 ± 0.2
Commercial	0.64 ± 0.01	48.4 ± 0.9	1.0 ± 0.1

Water sorption isotherm of freeze-dried maca powder.

The water sorption isotherm (effect of a_w on the equilibrium water content) of maca powders is shown in Fig. 3. For comparison, the data for commercial maca (except for the equilibrium water content at $a_w = 0.688$) was taken from our previous study; the equilibrium water content at $a_w = 0.688$ was determined additionally in this study in order to match the data points to the others. The equilibrium water content of the maca powders increased sigmoidally with increase of a_w, which is typical behavior for amorphous food powders. The water sorption isotherms were analyzed using the Guggenheim, Anderson, and De Boer (GAB) equation (Eq. (1)),

$$W = \frac{W_mCK}{(1 - K a_w)(1 + (C - 1)K a_w)}$$

where W is equilibrium water content (g/100 g-DM, dry matter), W_m is amount of water strongly adsorbed to specific sites at the material surface (g/100 g-DM), and C and K are factors that correct the sorption properties of the monolayer with respect to the bulk liquid and the properties of the multilayer with respect to the bulk liquid, respectively. The W_m, C, and K were determined by a quadratic regression approach. The GAB model (Eq. (1)) can be rearranged to Eq. (2),

$$a_w = \frac{a W}{a_w^2 \beta a_w + \gamma}$$

where $a = [K(1 - C)]/[W_m C]$, $\beta = (C - 2)/(W_m C)$, and $\gamma = 1/(W_m CK)$. Three parameters (a, β, and γ) were determined from the quadratic regression curve (a_w versus a_w plot), and W_m, C, and K were calculated (Table 2). The W_m values of freeze-dried maca powders were similar (6.90–7.29 g/100 g-DM), but slightly higher than that of commercial maca.
of commercial maca powder (5.54 g/100 g-DM). The W_m (monolayer water content) corresponds to the number of surface hydration sites of the powders. Commercial maca had a lower ΔH_{gel}, and thus higher W_m was expected in comparison to the freeze-dried maca; the larger the gelatinization, the more hydration sites are expected. The reason why commercial maca has lower W_m than freeze-dried maca samples is the difference in water insoluble material content (e.g., fiber). Maca root including husk (outer skin) is traditionally dried and then powdered, so the water insoluble materials of the husk will reduce the hydration of commercial maca powder. There were minor differences in the K values (0.899–1.041) among the samples, including the commercial maca. The fact that K is near 1 indicates that the water molecules in multiple layers have similar characteristics to bulk water. The C values, on the other hand, deviated largely between 13.28 and 47.14. This can be interpreted as the larger the C value, the stronger the bonds between water molecules in the monolayer and the binding sites on the surface of the powder. Realistically, a small deviation in the experimental data has been amplified to result in a large difference in the C values. k was treated as a fitting parameter. The GT parameters were used to transform water content to a_w in the following section.

Glass transition behavior of maca powder

Typical DSC thermograms for maca powders ($a_w = 0.328$) are shown in Fig. 4. A clear endothermic shift due to glass transition was observed, and T_g was determined from the onset point as indicated by arrows.

The effect of water content on the T_g for maca powders is shown in Fig. 5. The data for commercial maca (except for the T_g at $a_w = 0.529$) was taken from our previous study; the T_g value at $a_w = 0.529$ was determined additionally in this study in order to match the datapoints to the others. The anhydrous T_g was almost equivalent among the samples (79.5–80.2 °C), though physical parameters (gelatinization enthalpy, browning, and water sorption isotherm) were slightly different among the samples. From the composition data of maca, the amorphous part will be attributed mainly to low molecular weight carbohydrates. For instance, the anhydrous T_g is 68 °C for sucrose and 90 °C for maltose. The T_g decreased with the increase in water content because of the water plasticizing effect. In addition, the T_g-variation at each water content became slightly broad with the increase in water content. At each water content (except for the anhydrous state), commercial maca tended to have lower T_g than freeze-dried maca samples. As mentioned above, commercial maca had a lower W_m than freeze-dried maca samples because of a larger amount of water-insoluble material. The high content of water insoluble material in commercial maca makes it less hydrophilic than the freeze-dried maca samples. Since glass transition occurs in the hydrophilic part of the powder, the T_g will be significantly depressed by even a small increase in water content.

The effect of water content on the T_g was analyzed by the Gordon-Taylor (GT) equation (Eq. (3))

$$T_g = \frac{(1-X_w)T_{g(as)}+kX_wT_{g(w)}}{(1-X_w)+kX_w}$$

where X_w is weight fraction of water, $T_{g(as)}$ and $T_{g(w)}$ are T_g for anhydrous samples and water, respectively, and k is a constant. The $T_{g(as)}$ (136 K) was obtained from previous reports. The $T_{g(w)}$ was determined experimentally, and thus k was treated as a fitting parameter. The GT parameters ($T_{g(as)}$, and k) are listed in Table 3.

The k value indicates the sensitivity of T_g-depression caused by the water plasticizing effect; the higher the k value, the greater the water content dependence of T_g. The values of k varied between 4.17 and 4.87. The values were near those of glucose ($k = 4.52$), sucrose ($k = 5.42$), and starch ($k = 5.2$) as reported by Roos (1995). From
the T_g-curves, w_c was determined as the water content at which T_g becomes 25 °C (a typical ambient temperature). The w_c was converted to critical water activity (a_{wc}) through GAB analysis (Fig. 3 and Table 2). Glass transition occurs at 25 °C when water content and a_{wc} become higher than w_c and a_{wc}, respectively. The w_c and a_{wc} values are practically important parameters for the physical stability of dry food powders at 25 °C. The higher the w_c and a_{wc} values, the greater the resistance to caking of amorphous powder induced by water sorption.13)16) These results are also listed in Table 3.

The values of w_c varied from 6.92–8.16. The commercial maca had the lowest w_c among the samples. This was due to the higher k; the T_g was remarkably depressed by the increased water content because of an enhanced susceptibility provided by the greater water-insoluble material content.38) The a_{wc} varied in the range of 0.174–0.243. The commercial maca showed the lowest w_c but the highest a_{wc}. As shown in Fig. 3, the commercial maca showed lower equilibrium water content than freeze-dried maca powders at each water content because of differences in water insoluble material content.

Table 3. $T_{g(as)}$, k, w_c, and a_{wc} of maca powders.

Sample	$T_{g(as)}$ (°C)	k	R^2	w_c (g/100g-DM)	a_{wc}
White	80.2	4.17	0.993	8.16	0.228
Purple	79.8	4.39	0.998	7.71	0.174
Black	79.5	4.77	0.994	7.04	0.223
Yellow	80.0	4.29	0.995	7.90	0.210
Commercial	79.7	4.87	0.972	6.92	0.243

Fig. 4. Typical DSC thermograms of the second scan of maca powders at $a_w = 0.328$. Arrows indicate the T_g.

Fig. 5. Effect of water content on T_g of maca powders. The T_g-curves were obtained by the GT fitting.

Fig. 6. Effect of a_w (A) and a_w/a_{wc} (B) on the degree of caking of maca powders. The solid line (B) was obtained by the stretched exponential function fitting.

Caking behavior of freeze-dried maca samples.

The effect of a_w on the degree of caking for the freeze-dried maca samples is shown in Fig. 6A. The data for commercial maca was taken from our previous study.10) The degree of caking for the maca powders was almost negligible below $a_w = 0.328$. At higher a_w, the degree of caking remarkably increased with a large variation depending on the samples.

As mentioned above, the caking of amorphous powders is strongly affected by glass transition. In order to understand the degree of caking of the maca samples as a function of glass transition, a_w was normalized by the a_{wc} (Fig. 6B). It is known that the degree of caking for maltodextrin is negligible below a_{wc}, but it increases drastically up to 100 % higher than the a_{wc} value.10) In contrast, the degree of caking for commercial maca increased progressively with increase in a_w. As discussed previously, maltodextrin shows a homogeneous glass transition, and thus a drastic increase in molecular mobility will occur just above a_{wc}. Maca powder, on the other hand, shows a broad glass transition, and thus molecular mobility increases gradually above a_{wc}. From Fig. 6B, we see that the degree of caking of maca samples increased drastically up to 88 % at conditions higher than $a_w/a_{wc} = 2.0$. This behavior was independent from the type of maca. This indicates that the large variation of the degree of caking observed above $a_w = 0.432$ is due to differences in a_{wc}.

The effect of a_w/a_{wc} on the degree of caking was analyzed by the stretching exponential function (Eq. (4)).
Degree of caking(%) = 100 \left[1 - \exp \left(- \alpha \left(\frac{t}{\tau_{w,e}} \right)^n \right) \right] \quad (4)

where α and n are constants depending on the system. From the fitting analysis, $\alpha = 1.26 \times 10^{-3}$ and $n = 5.60$ were obtained ($R^2 = 0.920$). This equation is mathematically equivalent to the Avrami equation. The Avrami model describes effect of annealing time on the degree of crystallization at a constant temperature.\(^{43}\) Given that crystallization is an orderly aggregation of particles, the Avrami equation is analogically applicable for the caking (agglomeration) of powders. A novel modification of the proposed equation (Eq. (4)) is that the Avrami equation was changed from “time-dependency” of crystallization to “$a_{w,e}$-dependency” of caking. The present equation will be useful for predicting the caking of maca powder from the viewpoint of $a_{w,e}$. It is important to understand the applicability of the model in other types of food powders.

CONFLICTS OF INTEREST

The authors declare no conflict of interests.

ACKNOWLEDGMENTS

The authors thank The Maca Japan Corp. for supplying the maca root samples.

REFERENCES

1) M. Hermann and T. Bernert: *The transition of maca from neglect to market prominence: Lessons for improving use strategies and market chains of minor crops* [on line]. Agricultural Biodiversity and Livelihoods Discussion Papers 1. Bioversity International, Rome, Italy (2009). https://www.bioversityinternational.org/fileadmin/_migration/uploads/tx_news/The_transition_of_maca_from_neglect_to_market_prominence__nbsd_lessons_for_improving_use_strategies_and_market_chains_of_minor_crops_1318.pdf

2) L. Chen, J. Li, and L. Fan: The nutritional composition of maca in hypocotyls (Lepidium Meyenii Walp.) cultivated in different regions of China. *J. Food Qual.*, 2017, Article ID 3749627, 1–8 (2017).

3) C. Clément, D. Diaz, I. Manrique, B. Avula, I.A. Khan, D.D. Ponce Aguirre, C. Kunz, A.C. Mayer, and M. Kreuzer: Secondary metabolites in maca as affected by hypocotyl color, cultivation history, and site. *Agron. J.*, 102, 431–439 (2010).

4) H.O. Meissner, A. Mscisz, E. Piatkowska, M. Baraniak, S. Mielec, B. Kedzia, E. Holderna-Kedzia, and P. Pisulewski: Peruvian maca (Lepidium Peruvianum): (II) Physicochemical profiles of four prime maca phenotypes grown in two geographically-distant locations. *Int. J. Biomed. Sci.*, 12, 9–24 (2016).

5) C. Clément, D.A. Diazgrados, B. Avula, I.A. Khan, A.C. Mayer, D.D.P. Aguirre, I. Manrique, and M. Kreuzer: Influence of colour type and previous cultivation on secondary metabolites in hypocotyls and leaves of maca (Lepidium Meyenii Walpers). *J. Sci. Food Agric.*, 90, 861–869 (2010).

6) E. Esparza, A. Hadzich, W. Kofer, A. Mithöfer, and E.G. Cosio: Bioactive maca (Lepidium Meyenii) alkamides are a result of traditional andean postharvest drying practices. *Phytochemistry*, 116, 138–148 (2015).

7) E. Yábar, R. Pedreschi, R. Chirinos, and D. Campos: Glucosinolate content and myrosinase activity evolution in three maca (Lepidium Meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. *Food Chem.*, 127, 1576–1583 (2011).

8) J. Zhao, B. Avula, M. Chan, C. Clément, M. Kreuzer, and I.A. Khan: Metabolomic differentiation of maca (Lepidium Meyenii) accessions cultivated under different conditions using NMR and chemometric analysis. *Planta Med.*, 78, 90–10 (2012).

9) S. Wang and F. Zhu: Chemical composition and health effects of maca (Lepidium Meyenii). *Food Chem.*, 288, 422–443 (2019).

10) A.E. Alvino Granados, S. Fongin, Y. Hagura, and K. Kawai: Continuously distributed glass transition of maca (Lepidium Meyenii Walpers) powder and impact on caking properties. *Food Biophys.*, 14, 437–445 (2019).

11) F. Fan and Y. H. Roos: Glass transition-associated structural relaxations and applications of relaxation times in amorphous food solids: A review. *Food Eng. Rev.*, 9, 257–270 (2017).

12) C.A. Angell, R.D. Bressel, J.L. Green, H. Kanno, M. Oguni, and E.J. Sare: Liquid fragility and the glass transition in water and aqueous solutions. *J. Food Eng.*, 22, 115–142 (1994).

13) Y. H. Roos: Time-dependent phenomena. in *Phase Transitions in Foods*. Academic Press, San Diego, pp. 193–245 (1995).

14) J.M. Aguilera, J.M. del Valle, and M. Karel: Caking phenomena in amorphous food powders. *Trends Food Sci. Technol.*, 6, 149–155 (1995).

15) J.J. Fitzpatrick, M. Hodnett, M. Twomey, P.S.M. Cerqueira, J. O’Flynn, and Y.H. Roos: Glass transition and the flowability and caking of powders containing amorphous lactose. *Powder Technol.*, 178, 119–128 (2007).

16) S. Palzer: The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. *Chem. Eng. Sci.*, 60, 3959–3968 (2005).

17) S. Supapvanich, J. Pimsaga, and P. Srisujan: Physicochemical changes in fresh-cut wax apple (Syzygium Samaran genese [Blume] Merrill & L.M. Perry) during Storage. *Food Chem.*, 127, 912–917 (2011).

18) Y. H. Roos and M. J. Himberg: Nonenzymatic browning behavior, as related to glass transition, of a food model at chilling temperatures. *J. Agric. Food Chem.*, 42, 893–898 (1994).

19) K. Kawai, K. Fukami, and K. Yamamoto: State diagram of potato starch-water mixtures treated with high hydrostatic pressure. *Carbohydr. Polym.*, 67, 530–535 (2007).

20) K. Kawai, T. Hagiwara, R. Takai, and T. Suzuki: Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose, and trehalose. *Pharm. Res.*, 22, 490–495 (2005).
21) A. Farahunaky, N. Mansoori, M. Majzoobi, and F. Badii: Physicochemical and sorption isotherm properties of date syrup powder: antiplasticizing effect of maltodextrin. Food Bioprod. Process., 98, 133–141 (2016).

22) S. Fongin, A.E. Alvino Granados, N. Harnkarnsujarit, Y. Hagura, and K. Kawai: Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. J. Food Eng., 247, 95–103 (2019).

23) V.T. Karathanos, T. Karanikolas, A.E. Kostaropoulos, and G.D. Saravacos: Non enzymatic browning in air-drying of washed raisins. Dev. Food Sci., 37, 1057–1064 (1995).

24) H. Xu, Q. Hao, F. Yuan, and Y. Gao: Nonenzymatic browning criteria to sea buckthorn juice during thermal processing. J. Food Process Eng., 38, 67–75 (2015).

25) G.G. Rondán-Sanabria and F. Finardi-Filho: Physical-chemical and functional properties of maca root starch (Lepidium Meyenii Walpers). Food Chem., 114, 492–498 (2009).

26) G.G. Rondán-Sanabria, T.D.C.R. Pires, and F. Finardi Filho: Preliminary approach to detect amylolytic and pectinolytic activities from maca (Lepidium meyenii Walp.). Braz. J. Pharm. Sci., 42, 49–58 (2006).

27) H. J. Sun, J. Wang, X. M. Tao, J. Shi, M. Y. Huang, and Z. Chen: Purification and Characterization of Polyphenol Oxidase from Rape Flower. J. Agric. Food Chem., 60, 823–829 (2012).

28) A. Altay, T. Koktepe, L. Durmaz, F. Topal, İ. Gülçin, and E. Köksal: Purification and selected biochemical properties of peroxidase from cress (Lepidium sativum sub sp. sativum). Int. J. Food Prop., 21, 2610–2621 (2018).

29) T. Huarancca Reyes, E. Esparza, G. Crestani, F. Limonchi, R. Cruz, N. Salinas, A. Scartazza, L. Guglielminetti, and E. Cosio: Physiological responses of maca (Lepidium meyenii Walp.) plants to UV Radiation in its high-altitude mountain ecosystem. Sci. Rep., 10, 1–13 (2020).

30) F.G. Torres, O.P. Troncoso, D.A. Díaz, and E. Amaya: Morphological and thermal characterization of native starches from andean crops. Starch/Zeitschrift für Stärke, 63, 381–389 (2011).

31) L. Zhang, G. Li, S. Wang, W. Yao, and F. Zhu: Physicochemical properties of maca starch. Food Chem., 218, 56–63 (2017).

32) C. Fuentes, D. Perez-Rea, B. Bergenstähl, S. Carballo, M. Sjöö, and L. Nilsson: Physicochemical and structural properties of starch from five andean crops grown in Bolivia. Int. J. Biol. Macromol., 125, 829–838 (2019).

33) A.H. Al-Muhtaseb, W.A.M. McMinn, and T.R.A. Magee: Moisture sorption isotherm characteristics of food products: A review. Food Bioprod. Process., 80, 118–128 (2002).

34) E.J. Quirijns, A.J.B. Van Boxtel, W.K.P. Van Loon, and G. Van Straten: Sorption isotherms, GAB parameters and isosteric heat of sorption. J. Sci. Food Agric., 85, 1805–1814 (2005).

35) Y.H. Roos: Water and phase transitions. in Phase Transitions in Foods. Academic Press, San Diego, pp. 73–107 (1995).

36) S. Fongin, K. Kawai, N. Harnkarnsujarit, and Y. Hagura: Effects of water and maltodextrin on the glass transition temperature of freeze-dried mango pulp and an empirical model to predict plasticizing effect of water on dried fruits. J. Food Eng., 210, 91–97 (2017).

37) M.S. Rahman and R.H. Al-Belushi: Dynamic Isopiestic Method (DIM): Measuring moisture sorption isotherm of freeze-dried garlic powder and other potential uses of DIM. Int. J. Food Prop., 9, 421–437 (2006).

38) T. Ebara, Y. Hagura, and K. Kawai: Effect of water content on the glass transition and textural properties of hazelnut. J. Therm. Anal. Calorim., 135, 2629–2634 (2019).

39) G.P. Johari, A. Hallbrucker, and E. Mayer: The glass-liquid transition of hyperquenched water. Nature, 330, 552–553 (1987).

40) S. Sastry: Supercooled water going strong or falling apart? Nature, 398, 467–470 (1999).

41) K. Kawai, K. Fukami, P. Thanatukson, and C. Viriyaratnasak, K. Kaijwara: Effects of moisture content, molecular weight, and crystallinity on the glass transition temperature of inulin. Carbohydr. Polym., 83, 934–939 (2011).

42) Y.H. Roos: Food components and polymers. in Phase Transitions in Foods. Academic Press, San Diego, pp. 109–156 (1995).

43) M. Avrami: Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J. Chem. Phys., 8, 212–224 (1940).