Geo-electric Investigation of the Groundwater Potential of the Federal Housing Estate, Eastern Part of Ado-Ekiti, Southwestern Nigeria

*Olayiwola Olaseeni, 1Ajibola Oyebamiji, 1Oluwaseun Olaoke, 3Bosede Ojo and 3Ayokunle Akinlalu
1Department of Geophysics, Federal University Oye-Ekiti, Nigeria
2Department of Geology, Federal University Oye-Ekiti, Nigeria
3Department of Applied Geophysics, Federal University of Technology, Akure, Nigeria

Received: 16-APR-2020; Reviewed: 10-MAY-2020; Accepted: 28-MAY-2020

Abstract- This study aimed at evaluating the potential for groundwater development in the eastern part of Ado-Ekiti, Southwestern Nigeria using Vertical Electrical Sounding (VES). Data were acquired with ABEM SAS 300 and processed through partial curve matching techniques and assisted with 1-D forward modelling. Geoelectric parameters were determined from the VES interpreted result. Seven (7) different VES type curves (H, A, HA, KH, HK, GH and HKH) indicating inhomogeneity of the subsurface layer beneath the study area were observed. Weathered layer resistivity map having values ranging from 3.2 – 272 Ωm, overburden thickness value varies between 0 and 28 m and bedrock relief values range from 360 – 480 m were delineated. It was estimated from the result that the northwestern and southeastern part which constituted about 15% of the study area possess high groundwater potential while the remaining 85% of the study area exhibit low/moderate potentials for yielding substantial water. Hence, the groundwater potential rating of the area was considered generally low.

Keywords- Geoelectric, Groundwater potential, Overburden thickness, Vertical Electrical Sounding.

1 INTRODUCTION

The incessant upsurge in population along with enormous industrial and agricultural complexes has globally led to a great demand for water (Omosuyi et al., 2008). Water is one of the most precious of all natural resources. However, its availability remains a source of concern for human race. Water is used for agricultural, recreational, domestic and industrial purposes. Groundwater is defined as water that exists below the earth surface within saturated layers of sand, gravel and pore spaces in crystalline as well as sedimentary rocks (Akinlalu et al., 2017). Indiscriminate sinking of boreholes without employing systematic pre-drilling geophysical investigation has led to unsuccessful boreholes with poor or low yield (Bayode et al., 2007). Groundwater is believed to serve as a principal source of highly potable water for domestic, industrial and agricultural purposes. Olorunfemi and Oloruniwo (1987) using electrical resistivity in basement terrain, SW Nigeria established that both the weathered and the fractured basement layers make up aquifer zones. This was furthered collaborated by the work of Ariyo and Adeyemi (2004), that characterized the lithologic units of Iware and discovered two main aquifer systems while using Vertical Electrical Sounding (VES) technique.

Olorunfemi and Fasuyi (1993) delineated five kinds of aquifer in the basement complex of southwestern Nigeria via geophysical techniques. Anomohanran (2011) in Olowe, Nigeria and Al-Amoush (2012) in Wadi Al-Butum Area, Jordan discovered a disparity in lithologic units identified from borehole logs and that of electrical resistivity method they had employed. Afterward, several others utilizing electrical resistivity method of geophysical investigations were carried out in various locations. Abiola et al. (2009) carried out groundwater potential and aquifer protective capacity of overburden units in Ado-Ekiti and discovered that clay content of the overburden was high, which informed low groundwater potential rating of the area.

Ademilua and Eluwole (2013) classified Afe Babalola University Ado-Ekiti into good, moderate and poor groundwater potential zones using the electrical resistivity method of geophysical prospecting. Hydrogeological importance can be deduced from some VES curve types, such that the KH and HKH curve types that often indicate probable zones of fracturing and groundwater accumulation (Oladope, 2004). An inadequate supply of water is observed at the study area (area around federal housing corporation, Ado-Ekiti) due to failed boreholes. Hence, there is need for appropriate geophysical investigation of the area to enhance delineation of its groundwater prospects.

2 METHODOLOGY

2.1 DESCRIPTION OF INVESTIGATED SITE ENVIRONMENT

The area of research is located between Latitudes 7°37’ and 7°39’N and Longitudes 5°13’E and 5°22’E (Fig. 1) within Ado-Ekiti, Southwestern Nigeria with an elevation of approximately 500 m. The study area is well accessible through a good road network system. The study area lies within the Precambrian Basement Complex rock of Southwestern Nigeria (Rahaman, 1988); and is underlain principally by Migmatite-Gneiss (Fig. 2).

2.2 METHODS

Three (3) traverses were established across the study area and forty-two (42) Vertical Electrical Soundings (VES) were carried out using the Schlumberger configuration. The electrode spacing (AB/2) varied from 1- 180m. The apparent resistivity values were plotted against electrode spacing (AB/2) on a bi-logarithmic graph sheet to generate depth sounding curves. Partial curve matching was carried out on the field curves and assisted by 1-D forward modelling computer using WINRESIST version1.0 software as described by Varder-Velper (1988) in Akintoninwa and Adelusi (2009) in order to generate the geoelectric parameters (layer resistivity and thickness).

*Corresponding Author

© 2020 The Author(s). Published by Faculty of Engineering, Federal University Oye-Ekiti. This is an open access article under the CC BY NC license. (https://creativecommons.org/licenses/by-nc/4.0/)

http://dx.doi.org/10.46792/fuoyejet.v5i2.502

engineering.fuoye.edu.ng/journal
3 RESULTS AND DISCUSSIONS

3.1 GEOELECTRIC CHARACTERISTICS

The types of VES curves encountered in the study area range from H, A, HA, HK, QH, to HKH (Figs. 3a and 3b), however the dominant is the H type. The KH and HKH curves thus suggest subsurface geoelectric configurations apparently favourable for groundwater occurrence (Oladapo, 2004). The A-type curves, which are characterized by an increase in the resistivity from topsoil to the bedrock, therefore indicate non-permeable zones. The summaries of the geoelectric interpretation results (layer resistivity and thickness) were presented in Table 1. These results were further used to generate weathered layer, overburden thickness and bedrock relief maps.

![Fig 1: Location map of the study area](image1)

![Fig 2: Geological map of study area (Ademilua and Eluwole, 2013)](image2)

![Fig 3 (a): Typical VES curve (H-type) from the study area.](image3a)

![Fig 3 (b): Typical VES curve (KH-type) from the study area.](image3b)

![Table 1. Curve Interpretation](table1)

VES Curve	Lithology	Resistivity	Thickness	Depth	
HA	Top soil	360	0.8	0.8	
	Weathered layer	223	1.1	1.9	
	Partly weathered	3293	9.4	11.3	
	Fresh basement	8488	-	-	
KH	Top soil	160	1.2	1.2	
	Weathered layer	514	0.6	1.8	
	Fractured basement	55	1.5	3.3	
	Fresh basement	6660	-	-	
H	Top soil	250	0.9	10.9	
	Weathered layer	272	0.8	1.7	
	Fresh basement	1657	-	-	
HK	Top soil	100	0.7	0.7	
	Clayey layer	71	1.3	2.0	
	Fresh basement	262	1.6	3.6	
	Fractured basement	66	-	-	
HA	Top soil	23	0.5	0.5	
	Weathered layer	4	0.4	0.9	
	Partly weathered	10	8.7	9.6	
	Fresh basement	615	-	-	
H	Top soil	179	0.7	0.7	
	Weathered layer	49	18	18.7	
	Fresh basement	804	-	-	
HA	Top soil	226	1.5	1.5	
	Weathered layer	27	5.8	7.3	
No.	Location	Partly Weathered Layer	Weathered Layer	Fractured Layer	Fresh Basement
-----	----------	------------------------	----------------	---------------	---------------
8	QH	61	7.3	14.5	
		Fresh Basement	Infinity	-	
9	HA	69	3.3	3.3	
		Weathered Layer	56	0.8	
		Fractured Layer	28	12.3	
		Fresh Basement	366	-	
10	HKH	145	0.8	0.8	
		Top Soil	89	0.7	
		Weathered Layer	386	2.0	
		Fractured Layer	30	7.3	
		Fresh Basement	1206	-	
11	H	72	1.0	1.0	
		Top Soil	57	5.3	
		Weathered Layer	405	-	
12	H	98	0.1	0.1	
		Top Soil	35	15.1	
		Weathered Layer	373	-	
13	KH	118	0.7	0.7	
		Top Soil	591	1.5	
		Lateralitic Layer	15	7.3	
		Fractured Layer	152	-	
14	H	295	0.0	0.6	
		Top Soil	16	5.4	
		Weathered Layer	142	-	
15	H	67	1.5	1.5	
		Top Soil	15	3.4	
		Weathered Layer	619	-	
16	H	288	1.3	1.3	
		Top Soil	26	5.8	
		Weathered Layer	724	-	
17	A	133	1.0	1.0	
		Top Soil			

No.	Location	Weathered Layer	Fractured Layer	Fresh Basement
18	H	143	2.9	3.9
		Top Soil	414	0.8
		Weathered Layer	18	2.8
		Fresh Basement	1151	-
19	H	62	1.8	2.7
		Top Soil	194	0.9
		Weathered Layer	6205	-
		Fresh Basement		
20	HA	42	2.3	3.5
		Partly Weathered Layer	281	2.1
		Fresh Basement	588	-
21	H	390	0.6	0.6
		Top Soil	60	5.9
		Weathered Layer	3785	-
		Fresh Basement		
22	HA	188	1.1	1.1
		Top Soil	118	1.8
		Weathered Layer	1021	-
		Fractured Layer	46	3.1
		Fresh Basement		
23	HA	1120	0.8	0.8
		Top Soil	24	2.4
		Weathered Layer	5676	1.3
		Fresh Basement		
24	KH	375	1.2	1.2
		Top Soil	562	-
		Fractured Layer	1081	0.5
		Fresh Basement		
25	H	205	0.8	0.8
		Top Soil	80	6.8
		Weathered Layer	821	-
		Fresh Basement		
26	H	63	1.2	1.2
		Top Soil	34	5.3
		Weathered Layer	2702	-
		Fresh Basement		
27	H	124	2.5	2.5
		Top Soil	9	3.8
		Weathered Layer		

ISSN: 2579-0625 (Online), 2579-0617 (Paper)
The weathered layer isoresistivity map (Fig. 4) shows that weathered layer resistivity values vary between 3.2 – 272 Ωm. This depicts a relatively porous and permeable geologic formation with tendency for relatively high groundwater yielding capacity. Low resistivities zones (< 90 Ωm), characterized as zones composed of clayey formation, encountered at the western part of the study area. These layers of low resistivity material are known to be porous but less permeable and therefore exhibit low groundwater potential.

3.3 Overburden Thickness Map

The overburden thickness map of the study area (Fig. 5) shows that the thicknesses of overburden layers vary between 0 and 28 m; with the southwestern part associated with thicknesses greater than 25 m. Areas around VES 42, 6, 9, 12 and 24 have moderate overburden thickness. The remaining parts of the study area are underlain by thin (0.9 m) overburden. The relatively thin overburden thickness (< 9 m) characterizing most of the study area implies low groundwater storage capacity.

3.4 Bedrock Relief Map

The bedrock relief map (Fig. 6) shows the relief of the bedrock of the area, with the northeastern and the southeastern parts indicating low bedrock relief (360-400 m); while moderate to high bedrock relief ranging from (400 to 480 m) are observed in the northwestern and southwestern parts. The accumulation of groundwater would tend towards the northern and southeastern part of the study area because of the low relief.

3.5 Groundwater Potential Map

Figure 7 shows the groundwater potential map of the study area. The northwestern and southeastern part of the study area constitutes high groundwater potential zones (about 15%) while the remaining 85% of the study area are inferred to be low/moderate groundwater potential zones due to clayey weathered layer, thin overburden and high bedrock relief. Therefore, suggests a generally low potential for groundwater zone in this study area.
4 CONCLUSIONS

Groundwater potential evaluation of the eastern part of Ado-Ekiti, Southwestern Nigeria was carried out. The VES results identified seven (7) different VES type curves (H, A, HA, KH, HK, QH and HKH) indicating inhomogeneity of the subsurface layer beneath the study area. The weathered layer and the partly weathered/fractured basement constitute the aquifer units within the study area. The overburden thickness is relatively moderate (0 – 28 m). Based on the relatively thin overburden, the clayey nature of the weathered layer and high bedrock relief of the study area, it can be concluded that the groundwater potential of the study area is low.

REFERENCES

Abiola, O., Enikanselu, P. A. & Oladapo, M.I. (2009). Groundwater potential and aquifer protective capacity of overburden units in Ado-Ekiti, Southwestern Nigeria. International Journal of Physical Sciences, 4 (5), 120-132.

Ademilua, O. L., &Eluwole, A. B. (2013B). Hydrogeophysical Evaluation of the Groundwater Potential of Afe Babalola University Ado-Ekiti, Southwestern Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences, 4(1), 77-83.

Akinlalu, A.A., Adegbuyiro, A., Adiat, K.A.N., Akeredolu, B.E. & Lateef, W.Y. (2017). Application of Multi-criteria Decision Analysis in Prediction of Groundwater Resources Potential: A Case of Oke-Ana, Ilesa Area, Southwestern, Nigeria. NRIAG Journal of Astronomy and Geophysics. 6, 182-200.

Akinrinwa, O. J., & Adelusi, A. O. (2009). Integration of geophysical and geotechnical investigations for a proposed lecture room complex at the Federal University of Technology, Akure, SW, Nigeria. Journal of Applied Sciences, 2(3), 241-254.

Al-Amoush, H. (2012). Hydro-Geophysical Investigations for the Purposes of Groundwater Artificial Recharge in Wadi Al-Butum Area, Jordan. Journal of Water Resource and Protection, 4(7), 507-515. http://dx.doi.org/10.4236/jwarp.2012.47059

Anomohanran, O. (2011). Underground water exploration of Oleh, Nigeria using the electrical resistivity method. Scientific Research and Essays, 6(20), 4295-4300.

Ariyo, S.O. & Adeyemi, G.O. (2004). Geophysical survey for groundwater potential in Iware area, Southwestern Nigeria. Bulletin of Science Association of Nigeria, Vol.25 Pp9-16.

Bayode, S., Ojo, J. S., & Olorunfemi, M. O. (2007). Geophysical exploration for groundwater in Ejigbo and its environs, Southwestern Nigeria. Global Journal of Geological Sciences, 5(1).

Oladapo, M.I. (2004). Groundwater development.Geophysical investigation for groundwater in Precambrian terrain. Journal of African Earth Sci. Vol. 6, pp.787-796

Olorunfemi, M. O., & Fasuyi, S. A. (1993). Aquifer types and the geoelectric/hydrogeologic characteristic of part of the central basement terrain of Nigeria. Journal of Africa Earth Science, 16(3), 309-317. http://dx.doi.org/10.1016/0899-5362(93)90051-Q

Olorunfemi, M.O. & Olorunniwo, M.A. (1987). Geophysical investigation for groundwater in Precambrian terrain. Journal of African Earth Sci. Vol. 6, pp.787-796

Omotosuyi, G.O. & Adagoke, A.O. & Adelusi, A., (2008). Interpretation of electromagnetic and geoelectric sounding data for groundwater resources around Obanla-Obakeke, near Akure, Southwestern Nigeria. Pacific J. Sci. Technol., 9(2), 509-525.

Rahaman, M. A. (1988). Recent advances in the study of the basement complex of Nigeria. Pre Cambrian geology of Nigeria, 11-41.