Fast Quantum Modular Exponentiation

Rodney Van Meter1 and Kohei M. Itoh1

1Graduate School of Science and Technology, Keio University and CREST-JST
3-14-1 Hiyoshi, Kohoka-ku, Yokohama-shi, Kanagawa 223-8522, Japan

(Dated: submitted July 28, 2004; revised Feb. 9, 2005; accepted Mar. 4, 2005.)

We present a detailed analysis of the impact on quantum modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space tradeoffs. We find that to exponentiate an n-bit number, for storage space $100n$ (twenty times the minimum $5n$), we can execute modular exponentiation two hundred to seven hundred times faster than optimized versions of the basic algorithms, depending on architecture, for $n = 128$. Addition on a neighbor-only architecture is limited to $O(n)$ time while non-neighbor architectures can reach $O(\log n)$, demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices.

PACS numbers: 03.67.Lx, 07.05.Bx, 89.20.Ff

I. INTRODUCTION

Research in quantum computing is motivated by the possibility of enormous gains in computational time \cite{2,3,4,5}. The process of writing programs for quantum computers naturally depends on the architecture, but the application of classical computer architecture principles to the architecture of quantum computers has only just begun.

Shor’s algorithm for factoring large numbers in polynomial time is perhaps the most famous result to date in the field \cite{1}. Since this algorithm is well defined and important, we will use it as an example to examine the relationship between architecture and program efficiency, especially parallel execution of quantum algorithms. Shor’s factoring algorithm consists of main two parts, quantum modular exponentiation, followed by the quantum Fourier transform. In this paper we will concentrate on the quantum modular exponentiation, both because it is the most computationally intensive part of the algorithm, and because arithmetic circuits are fundamental building blocks we expect to be useful for many algorithms.

Fundamentally, quantum modular exponentiation is $O(n^3)$; that is, the number of quantum gates or operations scales with the cube of the length in bits of the number to be factored \cite{6,7,8}. It consists of $2n$ modular multiplications, each of which consists of $O(n)$ additions, each of which requires $O(n)$ operations. However, $O(n^3)$ operations do not necessarily require $O(n^3)$ time steps. On an abstract machine, it is relatively straightforward to see how to reduce each of those three layers to $O(\log n)$ time steps, in exchange for more space and more total gates, giving a total running time of $O(\log^2 n)$ if $O(n^3)$ qubits are available and an arbitrary number of gates can be executed concurrently on separate qubits. Such large numbers of qubits are not expected to be practical for the foreseeable future, so much interesting engineering lies in optimizing for a given set of constraints. This paper quantitatively explores those tradeoffs.

This paper is intended to help guide the design and experimental implementation of actual quantum computing devices as the number of qubits grows over the next several generations of devices. Depending on the post-quantum error correction, application-level effective clock rate for a specific technology, choice of exponentiation algorithm may be the difference between hours of computation time and weeks, or between seconds and hours. This difference, in turn, feeds back into the system requirements for the necessary strength of error correction and coherence time.

The Schönhage-Strassen multiplication algorithm is often quoted in quantum computing research as being $O(n \log n \log \log n)$ for a single multiplication \cite{9}. However, simply citing Schönhage-Strassen without further qualification is misleading for several reasons. Most importantly, the constant factors matter \cite{42}: quantum modular exponentiation based on Schönhage-Strassen is only faster than basic $O(n^3)$ algorithms for more than approximately 32 kilobits. In this paper, we will concentrate on smaller problem sizes, and exact, rather than $O(n^3)$, performance.

Concurrent quantum computation is the execution of more than one quantum gate on independent qubits at the same time. Utilizing concurrency, the latency, or circuit depth, to execute a number of gates can be smaller than the number itself. Circuit depth is explicitly considered in Cleve and Watrous’ parallel implementation of the quantum Fourier transform \cite{9}. Gossett’s quantum carry-save arithmetic \cite{10}, and Zalka’s Schönhage-Strassen-based implementation \cite{11}. Moore and Nilsson define the computational complexity class QNC to describe certain parallelizable circuits, and show which gates can be performed concurrently, proving that any circuit composed exclusively of Control-NOTs (CNOTs) can be parallelized to be of depth $O(\log n)$ using $O(n^2)$ ancillae on an abstract machine \cite{12}.

We analyze two separate architectures, still abstract but with some important features that help us understand performance. For both architectures, we assume any qubit can be the control or target for only one gate at a time. The first, the ACC, or Abstract Concurrent, architecture, is our abstract model. It supports CCNOT (the three-qubit Toffoli gate, or Control-
Control-NOT), arbitrary concurrency, and gate operands any distance apart without penalty. It does not support arbitrary control strings on control operations, only CCNOT with two ones as control. The second, the NTC, or Neighbor-only, Two-qubit-gate, Concurrent architecture, is similar but does not support CCNOT, only two-qubit gates, and assumes the qubits are laid out in a one-dimensional line, and only neighboring qubits can interact. The 1D layout will have the highest communications costs among possible physical topologies. Most real, scalable architectures will have constraints with this flavor, if different details, so AC and NTC can be viewed as bounds within which many real architectures will fall. The layout of variables on this structure has a large impact on performance; what is presented here is the best we have discovered to date, but we do not claim it is optimal.

The NTC model is a reasonable description of several important experimental approaches, including a one-dimensional chain of quantum dots [13], the original Kane proposal [14], and the all-silicon NMR device [15]. Superconducting qubits [16,17] may map to NTC, depending on the details of the qubit interconnection.

The difference between AC and NTC is critical; beyond the important constant factors as nearby qubits shuffle, we will see in section IIIB that AC can achieve \(O(\log n) \) performance where NTC is limited to \(O(n) \).

For NTC, which does not support CCNOT directly, we compose CCNOT from a set of five two-qubit gates [18], as shown in figure I. The box with the bar on the right represents the square root of \(X \), and the box with the bar on the left its adjoint. Time flows left to right, each horizontal line represents a qubit, and each vertical line segment is a quantum gate.

![Figure 1: CCNOT Constructions for our Architectures AC and NTC.](image)

II. BASIC CONCEPTS

A. Modular Exponentiation and Shor’s Algorithm

Shor’s algorithm for factoring numbers on a quantum computer uses the quantum Fourier transform to find the order \(r \) of a randomly chosen number \(x \) in the multiplicative group \(\langle n \rangle \cap \mathbb{N} \). This is achieved by exponentiating \(x \), modulo \(N \), for a superposition of all possible exponents \(a \). Therefore, efficient arithmetic algorithms to compute modular exponentiation in the quantum domain are critical.

Quantum modular exponentiation is the evolution of the state of a quantum computer to hold

\[
 j i \hat{D}! \quad j i k \mod N i
\]

When \(j \) is the superposition of all input states \(a \) up to a particular value \(2N^2 \),

\[
 j i = \frac{1}{N} \sum_{a=0}^{2N^2} j a i \hat{D}!
\]

The result is the superposition of the modular exponentiation of those input states,

\[
 \frac{1}{N} \sum_{a=0}^{2N^2} j a i k^a \mod N i
\]

Depending on the algorithm chosen for modular exponentiation, \(x \) may appear explicitly in a register in the quantum computer, or may appear only implicitly in the choice of instructions to be executed.

In general, quantum modular exponentiation algorithms are created from building blocks that do modular multiplication,\[j i \hat{D}! \quad j i j \mod N i \]

where \(N \) may or may not appear explicitly in quantum registers. This modular multiplication is built from blocks that perform modular addition,

\[j i \hat{D}! \quad j i j \mod N i \]

which, in turn, are usually built from blocks that perform addition and comparison.

Addition of two \(n \)-bit numbers requires \(O(\log n) \) gates. Multiplication of two \(n \)-bit numbers (including modular multiplication) combines the convolution partial products (the one-bit products) of each pair of bits from the two arguments. This requires \(O(\log n) \) additions of \(n \)-bit numbers, giving a gate count of \(O(n^2) \). Our exponentiation for Shor’s algorithm requires \(2n \) multiplications, giving a total cost of \(O(n^3) \).

Many of these steps can be conducted in parallel; in classical computer system design, the latency or circuit depth, the time from the input of values until the output becomes available, is as important as the total computational complexity. Concurrency is the execution of more than one gate during the same execution time slot. We will refer to the number of gates...
executing in a time slot as the concurrency or the concurrency level. Our goal through the rest of the paper is to exploit parallelism, or concurrency, to shorten the total wall clock time to execute modular exponentiation, and hence Shor’s algorithm.

The algorithms as described here run on logical qubits, which will be encoded onto physical qubits using quantum error correction (QEC) \([19]\). Error correction processes are generally assumed to be applied in parallel across the entire machine. Executing gates on the encoded qubits, in some cases, requires additional ancillae, so multiple concurrent logical gates will require growth in physical qubit storage space \([20, 21]\). Thus, both physical and logical concurrency are important; in this paper we consider only logical concurrency.

B. Notation and Techniques for Speeding Up Modular Exponentiation

In this paper, we will use \(N\) as the number to be factored, and \(n\) to represent its length in bits. For convenience, we will assume that \(n\) is a power of two, and the high bit of \(N\) is one. \(x\) is the random value, smaller than \(N\), to be exponentiated, and \(y\) is our superposition of exponents, with \(a < 2N^{2}\) so that the length of \(a\) is \(2n + 1\) bits.

When discussing circuit cost, the notation is \(\langle \text{CNOT}_{s} \mid \text{CNOT}_{s} \mid \text{NOT}_{s} \rangle\) or \(\langle \text{CNOT}_{s} \mid \text{NOT}_{s} \rangle\). The values may be total gates or circuit depth (latency), depending on context. The notation is sometimes enhanced to show required concurrency and space, \(\langle \text{CNOT}_{s} \mid \text{CNOT}_{s} \mid \text{NOT}_{s} \rangle\) (concurrency; space).

\(t\) is time, or latency to execute an algorithm, and \(S\) is space, subscripted with the name of the algorithm or circuit subroutine. When \(t\) or \(S\) is superscripted with \(\text{AC}\) or \(\text{NTC}\), the values are for the latency of the construct on that architecture. Equations without superscripts are for an abstract machine assuming no concurrency, equivalent to a total gate count for the \(\text{AC}\) architecture. \(R\) is the number of calls to a subroutine, subscripted with the name of the routine.

\(m\), \(g\), \(f\), \(p\), \(h\), and \(s\) are parameters that determine the behavior of portions of our modular exponentiation algorithm. \(m\), \(g\), and \(f\) are part of our carry-select/conditional-sum adder (sec. \[III\C\]). \(p\) and \(b\) are used in our indirection scheme (sec. \[III\E\]). \(s\) is the number of multiplier blocks we can fit into a chosen amount of space (sec. \[III\C\]).

Here we summarize the techniques which are detailed in following subsections. Our fast modular exponentiation circuit is built using the following optimizations:

- Select correct qubit layout and subsequences to implement gates, then hand optimize (no penalty) \([22, 23, 24, 25, 26, 27, 28]\).
- Look for concurrency within addition/multiplication (no space penalty, maybe noise penalty) (sec. \[III\A\]).
- Select multipandic using table/indirection (exponential classical cost, linear reduction in quantum gate count)\([29]\), sec. \[III\E\].

Do multiplications concurrently (linear speedup for small values, small cost in space, small gate count increase; requires quantum-quantum (Q-Q) multiplier, as well as classical-quantum (C-Q) multiplier) (sec. \[III\C\]).

Move to e.g. carry-save adders (space penalty for reduction to log time, increases total gate count)\([10]\), sec. \[III\C\], conditional-sum adders (sec. \[III\C\]), or carry-lookahead adders (sec. \[III\C\]).

Reduce modulo comparisons, only do subtract \(N\) on overflow (small space penalty, linear reduction in modulo arithmetic cost) (sec. \[III\D\]).

C. Existing Algorithms

In this section we will review various components of the modular exponentiation which will be used to construct our parallelized version of the algorithm in section \[III\]. There are many ways of building adders and multipliers, and choosing the correct one is a technology-dependent exercise \([30]\). Only a few classical techniques have been explored for quantum computation. The two most commonly cited modular exponentiation algorithms are those of Vedral, Barenco, and Ekert \([7]\), which we will refer to as VBE, and Beckman, Chari, Devabhatuni, and Preskill \([3]\), which we will refer to as BCDP. Both BCDP and VBE algorithms build multipliers from variants of carry-ripple adders, the simplest but slowest method; Cuccaro et al. have recently shown the design of a smaller, faster carry-ripple adder. Zalka proposed a carry-select adder; we present our design for such an adder in detail in section \[III\E\]. Draper et al. have recently proposed a carry-lookahead adder, and Gossett a carry-save adder. Beauregard has proposed a circuit that operates primarily in the Fourier transform space.

Carry-lookahead (sec. \[III\C\]), conditional-sum (sec. \[III\C\]), and carry-save (sec. \[III\C\]) all reach \(O(\log n)\) performance for addition. Carry-lookahead and conditional-sum use more space than carry-ripple, but much less than carry-save. However, carry-save adders can be combined into fast multipliers more easily. We will see in sec. \[III\] how to combine carry-lookahead and conditional-sum into the overall exponentiation algorithms.

1. VBE Carry-Ripple

The VBE algorithm \([7]\) builds full modular exponentiation from smaller building blocks. The bulk of the time is spent in \(20n^{2}\) \(5n\) ADDERS \([43]\). The full circuit requires \(7n + 1\) qubits of storage: \(2n + 1\) for \(a\), \(n\) for the other multiplicand, \(n\) for a running sum, \(n\) for the convolution products, \(n\) for a copy of \(N\), and \(n\) for carries.

In this algorithm, the values to be added in, the convolution partial products of \(x^{a}\), are programmed into a temporary register (combined with a superposition of \(y|a\) as necessary) based on a control line and a data bit via appropriate CCNOT
gates. The latency of ADDER and the complete algorithm are

\[t_{A, D} = (4n \ 4; n \ 3; 0) \]

\[t_{V} = (20n^2 \ 5n) + t_{A, D, D} \]
\[= (60n^3 \ 100n^2 + 20n; 96n^3 \ 84n^2 + 15n; \]
\[8n^2 \ 2n + 1) \]

2. **BCDP Carry-Ripple**

The BCDP algorithm is also based on a carry-ripple adder. It differs from VBE in that it more aggressively takes advantage of classical computation. However, for our purposes, this makes it harder to use some of the optimization techniques presented here. Beckman et al. present several optimizations and tradeoffs of space and time, slightly complicating the analysis.

The exact sequence of gates to be applied is also dependent on the input values of N and x, making it less suitable for hardware implementation with fixed gates (e.g., in an optical system). In the form we analyze, it requires 5n + 3 qubits, including 2n + 1 for \(y \). Borrowing from their equation 6.23,

\[t_{E} = (54n^3 \ 127n^2 + 108n \ 29; \]
\[10n^3 + 15n^2 \ 38n + 14; \]
\[20n^3 \ 38n^2 + 22n \ 4) \]

3. **Cuccaro Carry-Ripple**

Cuccaro et al. have recently introduced a carry-ripple circuit, which we will call **CUCA**, which uses only a single ancilla qubit [31]. The latency of their adder is \((2n \ 1; 5; 0) \) for the \(AC \) architecture.

The authors do not present a complete modular exponentiation circuit; we will use their adder in our algorithms F and G. This adder, we will see in section 4.2 is the most efficient known for \(NTC \) architectures.

4. **Gossett Carry-Save and Carry-Ripple**

Gossett’s arithmetic is pure quantum, as opposed to the mixed classical-quantum of BCDP. Gossett does not provide a full modular exponentiation circuit, only adders, multipliers, and a modular adder based on the important classical techniques of **carry-save arithmetic** [10].

Gossett’s carry-save adder, the important contribution of the paper, can run in \(O \ (\log n) \) time on \(AC \) architectures. It will remain impractical for the foreseeable future due to the large number of qubits required; Gossett estimates \(8n^2 \) qubits for a full multiplier, which would run in \(O \ (\log^2 n) \) time. It bears further analysis because of its high speed and resemblance to standard fast classical multipliers.

Unfortunately, the paper’s second contribution, Gossett’s carry-ripple adder, as drawn in his figure 7, seems to be incorrect. Once fixed, his circuit optimizes to be similar to VBE.

5. **Carry-Lookahead**

Draper, Kutin, Rains, and Svore have recently proposed a carry-lookahead adder, which we call **QCLA** [32]. This method allows the latency of an adder to drop to \(O \ (\log n) \) for \(AC \) architectures. The latency and storage of their adder is

\[t_{CL, A} = (4 \ log_2 n + 3; 4; 2) \]
\[\# (n; 4n \ log n \ 1) \]

The authors do not present a complete modular exponentiation circuit; we will use their adder in our algorithm E, which we evaluate only for \(AC \). The large distances between gate operands make it appear that QCLA is unattractive for \(NTC \).

6. **Beauregard/Draper QFT-based Exponentiation**

Beauregard has designed a circuit for doing modular exponentiation in only \(2n + 3 \) qubits of space [33], based on Draper’s clever method for doing addition on Fourier-transformed representations of numbers [34].

The depth of Beauregard’s circuit is \(O \ (n^3) \), the same as VBE and BCDP. However, we believe the constant factors on this circuit are very large; every modulo addition consists of four Fourier transforms and five Fourier additions.

Fowler, Devitt, and Hollenberg have simulated Shor’s algorithm using Beauregard’s algorithm, for a class of machine they call linear nearest neighbor (LN N) [35, 36]. LN N corresponds approximately to our NTC. In their implementation of the algorithm, they found no significant change in the computational complexity of the algorithm on LN N or an AC-like abstract architecture, suggesting that the performance of Draper’s adder, like a carry-ripple adder, is essentially architecture-independent.

III. RESULTS: ALGORITHMIC OPTIMIZATIONS

We present our concurrent variant of VBE, then move to faster adders. This is followed by methods for performing exponentiation concurrently, improving the modulo arithmetic, and indirection to reduce the number of quantum multiplications.

A. **Concurrent VBE**

In figure 2, we show a three-bit concurrent version of the VBE ADDER. This figure shows that the delay of the concurrent ADDER is \((3n \ 3)CCTOT + (2n \ 3)CNO T \), or
FIG. 2: Three-bit concurrent VBE ADDER, \(\mathcal{A}\mathcal{C} \) abstract machine. Gates marked with an ‘x’ can be deleted when the carry in is known to be zero.

\[
t_{\mathcal{A}\mathcal{C}}^{\mathcal{A}\mathcal{D}} = (3n; 3; 2n; 3; 0) \quad (10)
\]
a mere 25% reduction in latency compared to the unoptimized \((4n; 4; 4n; 3; 0)\) of equation 6.

Adapting equation 7, the total circuit latency, minus a few small corrections that fall outside the ADDER block proper, is

\[
t_{\mathcal{V}}^{\mathcal{A}\mathcal{C}} = (20n^3; 5n^2 + 15n; 40n^3; 70n^2 + 15n; 0) \quad (11)
\]

This equation is used to create the first entry in table II.

B. Carry-Select and Conditional-Sum Adders

Carry-select adders concurrently calculate possible results without knowing the value of the carry in. Once the carry in becomes available, the correct output value is selected using a multiplexer (MUX). The type of MUX determines whether the behavior is \(\mathcal{O}(\sqrt{n}) \) or \(\mathcal{O}(\log n) \).

I. \(\mathcal{O}(\sqrt{n}) \) Carry-Select Adder

The bits are divided into \(q \) groups of \(m \) bits each, \(n = qm \). The adder block we will call CSLA, and the combined adder, MUXes, and adder undo to clean our ancillae, CSLAMU. The CSLAs are all executed concurrently, then the output MUXes are cascaded, as shown in figure 4. The first group may have a different size, \(\ell \), than \(m \), since it will be faster, but for the moment we assume they are the same.

Figure 3 shows a three-bit carry-select adder. This generates two possible results, assuming that the carry in will be zero or one. The portion on the right is a MUX used to select which carry to use, based on the carry in. All of the outputs without labels are ancillae to be garbage collected. It is possible that a design optimized for space could reuse some of those qubits; as drawn a full carry-select circuit requires \(5m + 1 \) qubits to add two \(m \)-bit numbers.

The larger \(m \)-bit carry-select adder can be constructed so that its internal delay, as in a normal carry-ripple adder, is one additional CNOT for each bit, although the total number of gates increases and the distance between gate operands...
increases. The latency for the CSLA block is

$$t_{CS} = m + 2$$

(12)

Note that this is not a “clean” adder; we still have ancillae to return to the initial state.

The problem for implementation will be creating an efficient MUX, especially on $N \geq C$. Figure 4 makes it clear that the total carry-select adder is only faster if the latency of MUX is substantially less than the latency of the full carry-ripple. It will be difficult for this to be more efficient that the single-CNOT delay of the basic VBE carry-ripple adder on $N \geq C$. On $N \geq C$, it is certainly easy to see how the MUX can be used a fanout tree consisting of more ancillae and CNOT gates to distribute the carry in signal, as suggested by Moore [12], allowing all MUX Fredkin gates to be executed concurrently. A full fanout requires an extra m qubits in each adder.

In order to unwind the ancillae to reuse them, the simplest approach is the use of CNOT gates to copy our result to another n-bit register, then a reversal of the circuitry. Counting the copy out for ancilla management, we can simplify the MUX to two CNOTs and a pair of NOTs.

The latency of the carry ripple from MUX to MUX (not qubit to qubit) can be arranged to give a MUX cost of $(4g + 2m, 6; 2g + 2)$). This cost can be accelerated somewhat by using a few extra qubits and “fanning out” the carry. For intermediate values of m, we will use a fanout of 4 on $N \geq C$, reducing the MUX latency to $(4g + m = 2; 6; 2g; 2)$ in exchange for 3 extra qubits in each group.

Our space used for the full, clean adder is $(6m + 1)(g + 1) + 3f + 4g$ when using a fanout of 4.

The total latency of the CSLA, MUX, and the CSLA undo is

$$t_{CUM} = 2t_{CS} + t_{MU}$$

(13)

Optimizing for $N \geq C$, based on equation 13, the delay will be the minimum when

$$g \geq 5.$$ Zalka was the first to propose use of a carry-select adder, though he did not refer to it by name [11]. His analysis does not include an exact circuit, and his results differ slightly from ours.

2. $(\log n)$ Conditional Sum Adder

As described above, the carry-select adder is $O(\log n + g)$, for $n = m, g$, which minimizes to be $O(\frac{1}{n})$. To reach $O(\log n)$ performance, we must add a multi-level MUX to our carry-select adder. This structure is called a conditional sum adder, which we will label CSUM. Rather than repeatedly choosing bits at each level of the MUX, we will create a multi-level distribution of MUX select signals, then apply them once at the end. Figure 5 shows only the carry signals for eight CSLA groups. The e signals in the figure are our effective swap control signals. They are combined with a carry in signal to control the actual swap of variables. In a full circuit, a ninth group, the first group, will be a carry-ripple adder and will create the carry in; that carry in will be distributed concurrently in a separate tree.

The total adder latency will be

$$t_{CS} = 2t_{CS} +$$

$$= 2e +$$

$$+ (2; 0; 2) +$$

$$+ (4; 0; 4)$$

$$+ (4; 2; 0)$$

$$+ (4; 4; 2)$$

$$= (2m + 4dlog_2(e + 2; 4; 4dlog_2(e + 2; 4;$$

$$= (2m + 4dlog_2(e + 2; 4;$$

(14)

where e indicates the smallest integer not smaller than x.

For large n, this generally reaches a minimum for small m, which gives asymptotic behavior $4 \log_2 n$, the same as QCLA. CSUM is noticeably faster for small n, but requires more space.

The MUX uses $3(\log n + 1) = 2e$ 2 qubits in addition to the internal carries and the tree for dispersing the carry in. Our space used for the full, clean adder is $(6m + 1)(g + 1) + 3f + 1 = 2e$.

FIG. 5: $O(\log n)$ MUX for conditional-sum adder, for $g = 9$ (the first group is not shown). Only the $c(i,j)$ carry out lines from each m-qubit block are shown, where i is the block number and j is the carry in value. At each stage, the span of correct effective swap control lines $e(i,j)$ doubles. After using the swap control lines, all but the last must be cleaned by reversing the circuit. Unlabeled lines are ancillae to be cleaned.
To multiply the necessary times, use four. Naturally, this can be built up to always have to execute ular multiplications, but Cleve and Watrous pointed out that these can easily be parallelized, at linear cost in space [9]. We

FIG. 6: Concurrent modular multiplication in modular exponentiation for $s = 2$. QSET simply sets the sum register to the appropriate value.

C. Concurrent Exponentiation

Modular exponentiation is often drawn as a string of modular multiplications, but Cleve and Watrous pointed out that these can easily be parallelized, at linear cost in space [9]. We always have to execute $2n$ multiplications; the goal is to do them in as few time-delays as possible.

To go (almost) twice as fast, use two multipliers. For four times, use four. Naturally, this can be built up to n multipliers to multiply the necessary $2n + 1$ numbers, in which case a tree recombining the partial results requires $\log_2 n$ quantum-quantum (Q-Q) multiplier latency times. The first unit in each chain just sets the register to the appropriate value if the control line is 1, otherwise, it leaves it as 1.

For s multipliers, $s < n$, each multiplier must combine $r = b(2n + 1) = \text{sec or } r + 1$ numbers, using $r - 1$ or r multiplications (the first number being simply set into the running product register), where sec indicates the largest integer not larger than x. The intermediate results from the multipliers are combined using $\text{clog}_2 = \text{Q-Q multiplication steps}$. For a parallel version of VBE, the exact latency, including cases where $rs \geq 2n + 1$, is

$$ R_V = 2r + 1 + \text{clog}_2 (d(s 2n 1 + rs) = 4e + 2n + 1 rs) $$

(15)
times the latency of our multiplier. For small s, this is $O(n)$; for larger s,

$$ \lim_{s \to \infty} \frac{\text{log } s}{\text{log } n} = 0 \left(\text{log } n \right) $$

(16)

D. Reducing the Cost of Modulo Operations

The VBE algorithm does a trial subtraction of N in each modulo addition block; if that underflows, N is added back in to the total. This accounts for two of the five ADDER blocks and much of the extra logic to compose a modulo adder. The last two of the five blocks are required to undo the overflow bit.

FIG. 7: More efficient modulo adder. The blocks with arrows set the register contents based on the value of the control line. The position of the black block indicates the running sum in our output.

Figure 7 shows a more efficient modulo adder than VBE, based partly on ideas from BCDP and Gossett. It requires only three adder blocks, compared to five for VBE, to do one modulo addition. The first adder adds x^1 to our running sum. The second conditionally adds $2^0 x^3 N$ or $2^1 x^3$, depending on the value of the overflow bit, without affecting the overflow bit, arranging it so that the third addition of x^3 will overflow and clear the overflow bit if necessary. The blocks pointed to by arrows are the addend register, whose value is set depending on the control lines. Figure 7 uses n fewer bits than VBE’s modulo arithmetic, as it does not require a register to hold N.

In a slightly different fashion, we can improve the performance of VBE by adding a number of qubits, p, to our result register, and postponing the modulo operation until later. This works as long as we don’t allow the result register to overflow; we have a redundant representation of modulo N values, but that is not a problem at this stage of the computation.

The largest number that doesn’t overflow for p extra qubits is $2^{n+p} 1$; the largest number that doesn’t result in subtraction is $2^{n+p} 1$. We want to guarantee that we always clear that high-order bit, so if we subtract lN, the most iterations we can go before the next subtraction is h

$$ \text{the largest multiple of } N \text{ we can subtract is } 2^{n+p} 1 \equiv N $$

Since $2^{n+1} < N < 2^n$, the largest b we can allow is, in general, $2^p 1$.

For example, adding three qubits, $p = 3$, allows $b = 4$, reducing the 20 ADDER calls VBE uses for four additions to 9 ADDER calls, a 55% performance improvement. As p grows larger, the cost of the adjustment at the end of the calculation also grows and the additional gains are small. We must use $3p$ adder calls at the end of the calculation to perform our final modulo operation. Calculations suggest that p of up to 10 or 11 is still faster.

The equation below shows the number of calls to our adder block necessary to make an n-bit modulo multiplier.

$$ R_M = n (2b + 1) = b $$

(17)

E. Indirection

We have shown elsewhere that it is possible to build a table containing small powers of x, from which an argument to a multiplier is selected [23]. In exchange for adding storage space for $2^p n$-bit entries in a table, we can reduce the number
FIG. 8: Implicit Indirection. The arrows pointing to blocks indicate the setting of the addend register based on the control lines. This sets the addend from a table stored in classical memory, reducing the number of quantum multiplications by a factor of \(w \) in exchange for \(2^w \) argument setting operations.

of multiplications necessary by a factor of \(w \). This appears to be attractive for small values of \(w \), such as 2 or 3.

In our prior work, we proposed using a large quantum memory, or a quantum-addressable classical memory (QACM) [3]. Here we show that the quantum storage space need not grow; we can implicitly perform the lookup by choosing which gates to apply while setting the argument. In figure 8, we show the setting and resetting of the argument for \(w = 2 \), where the arrows indicate CCNOTs to set the appropriate bits of the 0 register to 1. The actual implementation can use a calculated enable bit to reduce the CCNOTs to CNOTs. Only one of the values \(x^w \), \(x^w \), \(x^w \), or \(x^w \) will be enabled, based on the value of \(a_1, a_0 \).

The setting of this input register may require propagating \(a_1 \) or the enable bit across the entire register. Use of a few extra qubits (\(2^w - 1 \)) will allow the several setting operations to propagate in a tree.

\[
\begin{align*}
\mathcal{I}_w^{A_{AC}} &= 2^w(1; 0; 1) = (4; 0; 4) \quad w = 2 \\
\mathcal{I}_w^{A_{AC}} &= 2^w(3; 0; 1) \quad w = 3; 4
\end{align*}
\]

For \(w = 2 \) and \(w = 3 \), we calculate that setting the argument adds \((4; 0; 4) \) and \((2; 3; 0) \) respectively, to the latency, concurrency and storage of each adder. We create separate enable signals for each of the \(2^w \) possible arguments and pipeline flowing them across the register to set the addend bits. We consider this cost only when using indirection. Figure 9 shows circuits for \(w = 3; 4 \).

Adapting equation 15 to both indirection and concurrent multiplication, we have a total latency for our circuit, in multipler calls, of

\[
R_i = 2r + 1 + \log_2d(\lfloor d/2 \rfloor 2n r + 1 + rs)e = 4e + 2n + 1 \quad rs \leq s e (19)
\]

where \(r = \text{bd}(2n + 1)w e = sc \).

IV. EXAMPLE: EXPONENTIATING A 128-BIT NUMBER

In this section, we combine these techniques into complete algorithms and examine the performance of modular exponentiation of a 128-bit number. We assume the primary engineering constraint is the available number of qubits. In section III C, we showed that using twice as much space can almost double our speed, essentially linearly until the log term begins to kick in. Thus, in managing space tradeoffs, this will be our standard; any technique that raises performance by more than a factor of \(c \) in exchange for \(c \) times as much space will be used preferentially to parallel multiplication. Carry-select adders (sec. III B) easily meet this criterion, being perhaps six times faster for less than twice the space.

Algorithm D uses 100n space and our conditional-sum adder \(C \sum \). Algorithm E uses 100n space and the carry-lookahead adder \(Q \sum \). Algorithms F and G use the Cuccaro adder and 100n and minimal space, respectively. Parameters for these algorithms are shown in table II. We have included detailed equations for concurrent VBE and D and numeric results in table III. The performance ratios are based only on the CCNOT gate count for \(A \sum \), and only on the CCNOT gate count for \(N TC \).

A. Concurrent VBE

On \(A \sum \), the concurrent VBE ADDER is \((3n 3; 2n 3; 0) = (381; 253; 0) \) for 128 bits. This is the value we use in the concurrent VBE line in table II. This will serve as our best baseline time for comparing the effectiveness of more drastic algorithmic surgery.

FIG. 9: Argument setting for indirectation for different values of \(w \), for the \(A \sum \) architecture. For the \(w = 4 \) case, the two CCNOTs on the left can be executed concurrently, as can the two on the right, for a total latency of 3.
TABLE I: Parameters for our algorithms, chosen for 128 bits.

Algorithm	Adder	Modulo	Indirect	Multipliers (s)	Space	Concurrent	
Concurrent VBE	VBE	VBE	N/A	1	897	2	
Algorithm D	CSUM(m = 4)	p = 11; b = 1024	w = 2	12	11969	126	12 = 1512
Algorithm E	QCLA	p = 10; b = 512	w = 2	16	12657	128	16 = 2048
Algorithm F	CUCA	p = 10; b = 512	w = 4	20	11077	20	2 = 40
Algorithm G	CUCA	p = 10; b = 512	w = 4	16	660	2	

TABLE II: Latency to factor a 128-bit number for various architectures and choices of algorithm. A C, abstract concurrent architecture. N TC, neighbor-only, two-qubit gate, concurrent architecture. perf, performance relative to VBE algorithm for that architecture, based on CCNOTs for A C and CNOTs for N TC.

B. Algorithm D

The overall structure of algorithm D is similar to VBE, with our conditional-sum adders instead of the VBE carry-ripple, and our improvements in indirectness and modulo. As we do not consider CSUM to be a good candidate for an algorithm for N TC, we evaluate only for A C. Algorithm D is the fastest algorithm for n = 8 and n = 16.

\[
\begin{align*}
 t_D &= R_1 R_N \\
 (t_{\text{CSUM}} + t_{\text{ARG}}) + 3p t_{\text{CSUM}}
\end{align*}
\]

(22)

Letting \(r = \log(2n + 1) = \log(128) \), the latency and space requirements for algorithm D are

\[
\begin{align*}
 t_{0C} &= 2r + 1 + d \log_2 (d(s 2n + 1 + r) + 4e) + 2n + 1 + s(7n + 3m + g + 2^e + p + d3) + 2 + (n m) = 2e) + 2n + 1
\end{align*}
\]

(23)

and

\[
\begin{align*}
 S_D &= s + S_{\text{CSUM}} + 2^e + 1 + p + n) + 2n + 1 \]
\]

(24)

C. Algorithm E

Algorithm E uses the carry-lookahead adder QCLA in place of the conditional-sum adder CSUM. Although CSUM is slightly faster than QCLA, its significantly larger space consumption means that in our 100n fixed-space analysis, we can fit in 16 multipliers using QCLA, compared to only 12 using CSUM. This allows the overall algorithm E to be 28% faster than D for 128 bits.

1. Algorithms F and G

The Cuccaro carry-ripper adder has a latency of (10n + 5; 0) for N TC. This is twice as fast as the VBE adder. We use this in our algorithms F and G. Algorithm F uses 100n space, while G is our attempt to produce the fastest algorithm in the minimum space.

D. Smaller n and Different Space

Figure 12 shows the execution times of our three fastest algorithms for n from eight to 128 bits. Algorithm D, using CSUM, is the fastest for eight and 16 bits, while E, using QCLA, is fastest for larger values. The latency of 1072 for n = 8 bits is 32 times faster than concurrent VBE, achieved with 60n = 480 qubits of space.

Figure 12 shows the execution times for n = 128 bits for various amounts of available space. All of our algorithms have reached a minimum by 240n space (roughly 1.9n^2).

E. Asymptotic Behavior

The focus of this paper is the constant factors in modular exponentiation for important problem sizes and architectural characteristics. However, let us look briefly at the asymptotic behavior of our circuit depth.

In section LTC, we showed that the latency of our complete
Our multiplication algorithm is still
\[\mathcal{O}(\log n) \] latency of addition \hfill (26)

Algorithms D and E both use an \(\mathcal{O}(\log n) \) adder. Combining equations (25) and (26) with the adder cost, we have asymptotic circuit depth of
\[t^{AC}_D = t^{AC}_E = \mathcal{O}(n \log n + \log s) \] \hfill (27)
for algorithms D and E. As \(s \not= n \), these approach \(\mathcal{O}(n \log^2 n) \) and space consumed approaches \(\mathcal{O}(n^2) \).

Algorithm F uses an \(\mathcal{O}(n) \) adder, whose asymptotic behavior is the same on both \(AC \) and \(NT\!C \), giving
\[t^{AC}_F = t^{NT\!C}_F = \mathcal{O}(n + \log s) \] \hfill (28)
approaching \(\mathcal{O}(n^2 \log n) \) as space consumed approaches \(\mathcal{O}(n^3) \).

This compares to asymptotic behavior of \(\mathcal{O}(n^3) \) for VBE, BCDP, and algorithm G, using \(\mathcal{O}(n) \) space. The limit of performance, using a carry-save multiplier and large \(s \), will be \(\mathcal{O}(n^2 \log n) \) in \(\mathcal{O}(n^3) \) space.

\[\text{V. DISCUSSION AND FUTURE WORK} \]

We have shown that it is possible to significantly accelerate quantum modular exponentiation using a stable of techniques. We have provided exact gate counts, rather than asymptotic behavior, for the \(n = 128 \) case, showing algorithms that are faster by a factor of 200 to 700, depending on architectural features, when 100\(n \) qubits of storage are available. For \(n = 1024 \), this advantage grows to more than a factor of 5,000 for non-neighbor machines (\(AC \)). Neighboring only (\(NT\!C \)) machines can run algorithms such as addition in \(\mathcal{O}(n) \) time at best, when non-neighbor machines (\(AC \)) can achieve \(\mathcal{O}(n \log^2 n) \) performance.

In this work, our contribution has focused on parallelizing execution of the arithmetic through improved adders, concurrent gate execution, and overall algorithmic structure. We have also made improvements that resulted in the reduction of modulo operations, and traded some classical for quantum computation to reduce the number of quantum operations. It seems likely that further improvements can be found in the
overall structure and by more closely examining the construction of multipliers from adders. We also intend to pursue multipliers built from hybrid carry-save adders.

The three factors which most heavily influence performance of modular exponentiation are, in order, concurrency, the availability of large numbers of application-level qubits, and the topology of the interconnection between qubits. Without concurrency, it is of course impossible to parallelize the execution of any algorithm. Our algorithms can use up to \(2n^2\) application-level qubits to execute the multiplications in parallel, executing \(n\) multiplications in \(\log n\) time steps. Finally, if any two qubits can be operands to a quantum gate, regardless of location, the propagation of information about the carry allows an addition to be completed in \(\log n\) time steps instead of \(n\). We expect that these three factors will influence the performance of other algorithms in similar fashion.

Not all physically realizable architectures map cleanly to one of our models. A full two-dimensional mesh, such as neutral atoms in an optical lattice, and a loose trellis topology, probably fall between \(\text{AC}\) and \(\text{NTC}\). The behavior of the scalable ion trap is not immediately clear. We have begun work on expanding our model definitions, as well as additional ways to characterize quantum computer architectures.

The process of designing a large-scale quantum computer has only just begun. Over the coming years, we expect advances in the fundamental technology, the system architecture, algorithms, and tools such as compilers to all contribute to the creation of viable quantum computing machines. Our hope is that the algorithms and techniques in this paper will contribute to that engineering process in both the short and long term.

Acknowledgments

The authors would like to thank Eisuke Abe, Fumiko Yamaguchi, and Kevin Binkley of Keio University, Thaddeus Ladd of Stanford University, Seth Lloyd of MIT, Y. Kawano and Y. Takahashi of NTT Basic Research Laboratories, Bill Munro of HP Labs, Kae Nemoto of NII, and the referee for helpful discussions and feedback.

[1] P. W. Shor, SIAM J. Comp. 26, 1484 (1997).
[2] L. Grover, in Proc. 28th Annual ACM Symposium on the Theory of Computation (1996), pp. 212–219.
[3] D. Deutsch and R. Jozsa, Proc. Roc. Soc. London Ser. A, 439, 553 (1992).
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
[5] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill, Phys. Rev. A 54, 1034 (1996).
[6] P. W. Shor, in Proc. 35th Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 124–134.
[7] Y. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147 (1996).
[8] D. E. Knuth, The Art of Computer Programming, volume 2 (Addison-Wesley, Reading, MA, 1998), 3rd ed.
[9] R. Cleve and J. Watrous, in Proc. 41st Annual Symposium on Foundations of Computer Science (ACM, 2000), pp. 526–536.
[10] P. Gossett, Quantum carry-save arithmetic, http://arXiv.org/quant-ph/9808061 (1998).
[11] C. Zalka, Fast versions of Shor’s quantum factoring algorithm, http://arXiv.org/quant-ph/9906084 (1998).
[12] C. Moore and M. Nilsson, SIAM J. Computing 31, 799 (2001).
[13] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[14] B. E. Kane, Nature 393, 133 (1998).
[15] T. D. Ladd, J. R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, and K. M. Itoh, Physical Review Letters 89, 17901 (2002).
[16] Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, Nature 421, 823 (2003).
[17] J. Q. You, J. S. Tsai, and F. Nori, Phys. Rev. Lett. 89 (2002).
[18] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).
[19] P. W. Shor, in Proc. 37th Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, CA, 1996), pp. 56–65.
[20] A. M. Steane and B. Ibinson, Fault-tolerant logical gate networks for CSS codes, http://arXiv.org/quant-ph/0311014 (2003).
[21] A. M. Steane, Quantum Information and Computation 2, 297 (2002).
[22] A. V. Aho and K. M. Svore, Compiling quantum circuits using the palindrome transform, http://arXiv.org/quant-ph/0311008 (2003).
[23] G. Ahokas, R. Cleve, and L. Hales, in [41].
[24] Y. Kawano, S. Yamashita, and M. Kitagawa (2004), private communication, submitted to PRA.
[25] N. Kunihiro (2004), private communication.
[26] Y. Takahashi, Y. Kawano, and M. Kitagawa, in [41].
[27] L. M. K. Vandersypen, Ph.D. thesis, Stanford University (2001).
[28] A. Yao, in Proceedings of the 34th Annual Symposium on Foundations of Computer Science (Institute of Electrical and Electronic Engineers Computer Society Press, Los Alamitos, CA, 1993), pp. 352–361.
[29] R. Van Meter, in Proc. Int. Symp. on Mesoscopic Superconductivity and Spintronics (M5S2004) (2004).
[30] M. D. Ercegovac and T. Lang, Digital Arithmetic (Morgan Kaufmann, San Francisco, CA, 2004).
[31] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, A new quantum ripple-carry addition circuit, http://arXiv.org/quant-ph/0410184 (2004).
[32] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, A logarithmic-depth quantum carry-lookahead adder, http://arXiv.org/quant-ph/0406142 (2004).
[33] S. Beauregard, Quantum Information and Computation 3, 175 (2003).
[34] T. G. Draper, Addition on a quantum computer,
http://arXiv.org/quant-ph/0008033 (2000), first draft dated Sept. 1998.

[35] A. G. Fowler, S. J. Devitt, and L. C. Hollenberg, Quantum Information and Computing 4, 237 (2004).

[36] S. J. Devitt, A. G. Fowler, and L. C. Hollenberg, Simulations of Shor’s algorithm with implications to scaling and quantum error correction, http://arXiv.org/quant-ph/0408081 (2004).

[37] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000), pp. 266–268.

[38] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Physical Review Letters 82, 1060 (1999).

[39] M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz, in Computer Architecture News, Proc. 30th Annual International Symposium on Computer Architecture (ACM, 2003).

[40] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).

[41] Proc. ERATO Conference on Quantum Information Science (EQIS2003) (2003).

[42] Shor noted this in his original paper, without explicitly specifying a bound. Note also that this bound is for a Turing machine; a random-access machine can reach $O(n \log n)$.

[43] When we write ADDER in all capital letters, we mean the complete VBE n-bit construction, with the necessary undo; when we write adder in small letters, we are usually referring to a smaller or generic circuit block.