Stress-strain state of the earth’s crust of the Central Asian mountain belt: distant effect of the tectonic impact of the Indo-Eurasian collision

M M Buslov
Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences, 630090, 3 Ac. Koptyuga ave., Novosibirsk, Russia

E-mail: buslov@igm.nsc.ru

Abstract. In recent decades, extensive geological, geophysical and geochronological data have been obtained that characterize in detail the results of the distant tectonic impact of the Indo-Eurasian collision on the lithosphere of Central Asia, which led to the formation of the mountain systems of the Pamirs, Tien Shan, Altai-Sayan region and Transbaikalia from the Late Paleogene (about 25 million years ago). It has been established that the formation of the structure of Central Asia occurred as a result of the transmission of deformations from the Indo-Eurasian collision over long distances according to the "domino principle" through the rigid structures of Precambrian microcontinents located among the Paleozoic-Mesozoic folded belts. The study of peneplain surfaces deformed into simple folds on high-mountain plateaus surrounded by rugged mountain ranges made it possible to reveal the parameters of the deformations of the earth's crust, the interrelationship of the formation of relief and sedimentary basins. Apatite track dating data, structural and stratigraphic analyses of Late Cenozoic sediments in the basins prove a period of intense tectonic activation the entire lithosphere of Central Asia from the Indian continent to the Siberian platform starting from the Pliocene (about 3.5 million years). As a result of reactivation of the heterogeneous basement of Central Asia, high seismicity was manifested, which is concentrated mainly along the border of the microcontinents (Central Tianshan, Junggar and Tuva-Mongolian) and the Siberian craton, as well as in the zones of articulation of regional faults.

1. Introduction
The world's largest Central Asian mountain belt is a natural laboratory for studying the stress-strain state of the Earth's crust, driving forces and mechanisms, the evolution of structure and relief associated with intracontinental tectonics. In recent decades, extensive geological, geophysical and geochronological data have been obtained that characterize in detail the results of the distant tectonic impact of the Indo-Eurasian collision on the lithosphere of Central Asia, which led to the formation of the mountain systems of the Pamirs, Tien Shan, Altai-Sayan region and Transbaikalia from the Late Paleogene (about 25 million years ago). It has been established that the formation of the structure of Central Asia occurred as a result of the transmission of deformations from the Indo-Eurasian collision over long distances according to the "domino principle" through the rigid structures of Precambrian microcontinents located among the Paleozoic-Mesozoic folded belts [1-4]. As a result of compression, folded zones develop into...
mountain systems, and microcontinents serve as the foundation for the formation of Cenozoic basins (Tarim, Tajik, Junggar, etc).

2. Material and methods
The Indian continent collided with Eurasia at the end of the Eocene, over a period of 35 million years the collision boundary moved inward of Eurasia by a distance of more than 900 km (Figure 1).

Figure 1. Neotectonic scheme and geological section of Central Asia (modified after Dobretsov et al., 1996).

Its frontal part, according to seismotomography, sank to a distance of more than 1500 km and settled under Tarim [5]. Stratigraphic, structural and low-temperature geochronology data (track dating of apatite) show that the formation of the modern appearance of the Himalayas and Tibet began in the Oligocene (30-25 million years ago), the Pamirs and the southern Tien Shan began in the middle of the Miocene (18-11 million years ago), the Northern Tien Shan in the late Miocene (12-8 million years ago), in Junggar, the Altai-Sayan region and Mongolia in the Pliocene (6-3 million years ago), in Transbaikalia
in Quaternary time (last 3 million years ago). About 3 million years ago deformations reached a powerful passive stop of the Siberian craton, as a result of which a tense structure of a “compressed spring” was formed between the active “indenter” of the Indian continent and the craton. In this regard, high mountains have grown almost simultaneously throughout the entire territory of Central Asia. The peak of the maximum growth of mountain systems over the past 3 million years is particularly clearly revealed by the data of fission track dating of apatite and the formation of molasses in intermountain basins [6-19].

In the Neogene – Quaternary time, two factors influenced the formation of the structure and geodynamics of the Tien Shan: overthrusting of the Pamir and the subduction of the Tarim Plate. They created various structural and geodynamic provinces separated by the Talas-Ferghana fault zone. In the Pamirs and the Western Tien Shan, which were located near the pressure of the Punjab “indenter”, deformations manifested themselves in the form of thrust-overthrusts, thrusts and folds of northwestern vergence. To the east of the Talas-Ferghana right-hand shift, the general northern direction of compression from the Tarim side caused the Tien Shan to rise mainly along the thrusts and thrust-overthrusts of the northern and north-eastern vergences. In the Pliocene-Quaternary time, deformations manifested themselves in the form of strike-slips and shear-thrusts to the northeast of the Tien Shan and concentrated in the Altai-Sayan mountain region along the border of the Tuva-Mongolian plate (microcontinent) (Figure 1, 2).

Figure 2. Major topographic structures of Central Asia in Altai–Sayan in South Siberia and NE Kazakhstan and Kyrgyz Tien Shan. Background color in function of elevation (from GTOPO-30). Dots showing location of earthquake focal mechanisms with color in function of type and black lines indicating S_{max} direction (from Harvard CMTS). White lines with dot mark GPS derived slip vectors. Black squares, Novosibirsk (N) and Urumqi (U) towns (Delvaux et al., 2013).
As a result of the collision of the Indian-continent, folds and faults have appeared in the heterogeneous lithosphere of Central Asia. The regime of lithospheric deformation was revealed in the Tien Shan and Altai-Sayan mountain belts (figure 3) [20], including both lithospheric bending (folding) and the formation of fault structures in the upper crust.

Figure 3. Topographic profiles (blue lines) with Fourier transform spectral analysis (red lines). Top panel shows location of profiles. Left column: Tien Shan profiles (TS1–6); right column: Altai–Sayan profiles (AS1–5) (Delvaux et al., 2013).
As shown [21], different folding modes in the lithosphere depend on its structure and rheology: the folding of the upper part of the Earth's crust is monoharmonic, the folding of the lithospheric mantle is biharmonic, the folding of the entire lithosphere is polyharmonic. These three modes control the wavelength of folding, which manifests itself on the surface as bending the peneplain. The parameters of lithosphere bending can be characterized by the lengths of the manifestation of topographic waves, which are measured between the axes of the anticline and syncline folds. The maximum topographic wavelengths are about 200-300 km in the Altai-Sayan region and from 150-200 to 250-350 km in Tien Shan, and they reflect the deformation of the entire lithosphere. The wavelengths in the range of 35-70 km are in both regions along mountain ranges extending steadily in the west-east direction, alternating with Late Cenozoic tectonic depressions. It is likely that their manifestations are associated with the deformation of the upper part of the earth's crust. Over the past 3 million years, during the stage of maximum tectonic compression of the lithosphere of Central Asia, the deformation style was manifested by a combination of long waves of bending of the lithosphere and shorter waves of bending of the upper crust, accompanied by faulting. The axes of the lithospheric folds, as a rule, are perpendicular to the direction of the stress field [20].

3. Results and discussion
It has been revealed that large-scale bends of lithosphere cannot remain for more than 10 million years after the termination of compression [21]. This is due to the gravitational flow of the Earth's crust and erosion of surface, transport and re-deposition of sedimentary material. The erosive surface (peneplain) Central Asia, which has been stable for almost 150 million years, has been significantly disrupted as a result of the Indo-Eurasian collision only over the past few million years. Therefore, the morphology of peneplain is relatively well preserved until now and its fragments can be observed in all mountain systems of Central Asia [20, 22, 23].

The presence of peneplain surfaces deformed into simple folds on high-altitude plateaus surrounded by rugged mountain ranges is a unique information that allows us to study the parameters of deformations of the Earth's crust, the relationships between the formation of relief and sedimentary basins. Thus, the Kurai and Chui basins in the Altai-Sayan region and the Issyk-Kul basin on the Tien Shan are typical intermountain basins that develop under conditions of lithosphere bending [20,24]. Apatite track dating data, structural and stratigraphic analyses of Late Cenozoic sediments in the basins prove a period of intense tectonic activation the entire lithosphere of Central Asia from the Indian continent to the Siberian platform starting from the Pliocene (about 3.5 million years).

4. Conclusion
Thus, the collision of India and Eurasia caused not only the reduction and uplift of the Himalayas and Tibet, but also the continuous interaction between India and Eurasia and the growth of the Tibetan Plateau, which in the Pleistocene began to have an additional impact on the reactivation of lithosphere of the northern part of the Central Asian folded belt (Mongolia, southern Siberia). As a result of reactivation of the heterogeneous basement of Central Asia, high seismicity was manifested, which is concentrated mainly along the border of the microcontinents (Central Tian-Shan, Junggar and Tuva-Mongolian) and the Siberian craton, as well as in the zones of joining of regional faults [4, 19, 25].

The research was carried out within the framework of the state task of the IGM SB RAS.

5. References
[1] Dobretsov N L, Buslov M M, Delvaux D, Berzin N A, Ermikov V D 1996 Meso- and Cenozoic tectonics of the Central Asian mountain belt: effects of lithospheric plate interaction and mantle plumes Int. Geol. Rev. 38 pp 430–466
[2] De Grave J, Buslov M M, Van den Haute P 2004 Intercontinental deformation in Central Asia: distant effects of India—Eurasia convergence revealed by apatite fission-track thermochronology Himalayan J. Sci. 2(4) pp 121–122
[3] De Grave J, Buslov M M, Van den Haute P. 2007 Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission-track thermochronology Journal of Asian Earth Sciences 29 pp 188–204

[4] Buslov M M, De Grave J, Bataleva E A, Batalev V Yu 2007 Cenozoic tectonics and geodynamics in the Tian Shan: synthesis of geology and geophysical data. J. Asian Earth Sci. 29 pp 205–214

[5] Zabelina I V, Koukalov I Y, Buslov M M 2013 Deep mechanisms in the Kyrgyz Tien Shan orogen (from results of seismic tomography) Russian Geology and Geophysics 54(7) pp 695–706

[6] Bullen M E, Burbank D W, Garver J I, Abdurakhmatov K Ye 2001 Late Cenozoic tectonic evolution of the northwestern Tien Shan: new age estimates for the initiation of mountain building Geological Society of America Bulletin 113 pp 544-559

[7] Bullen M E, Burbank D W, Garver J I 2003 Building the northern Tien Shan: integrated thermal, structural and topographic constraints Journal of Geology 111 pp 149–165

[8] De Pelsmaeker E, Glorie S, Buslov M M, Zhimulev F I, Poujol M, Korobkin V V, Vanhaecke F, Vetrov E V, De Grave J 2015 Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement Tectonophysics 662, pp 416–433

[9] De Grave J, Van den haute P, Buslov M M, Dehandschutter B, Glorie S 2008 Apatite fission-track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region Radiation Measurements 43 pp 38–42

[10] De Grave J, Glorie S, Buslov M M, Stockli D F, McWilliams M O, Batalev V, Van den haute P 2013 Thermo-tectonic history of the Issyk-Kul basin (Kyrgyz Northern Tien Shan, Central Asia) Gondwana Research 23 pp 998–1020

[11] De Grave J, De Pelsmaeker E, Zhimulev F I, Glorie S, Buslov M M, Van den haute P 2014 Meso-Cenozoic building of the northern Central Asian Orogenic Belt: thermotectonic history of the Tuva region Tectonophysics 621 pp 44–59

[12] Glorie S, De Grave J, 2016 Exhuming the Meso-Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan: a review based on low-temperature thermochronology Geoscience Frontiers 7 pp 155–170

[13] Glorie S, Buslov M M, Izmer A, Fournier-Carrie A, Batalev V Y, Vanhaecke F, Elburg M A, Van den Haute P 2011 The thermo-tectonic history of the Song-Kul Plateau, Kyrgyz Tien Shan: constraints by apatite and titanite thermochronometry and zircon U/Pb dating Gondwana Research 20 pp 745–763

[14] Glorie S, De Grave J, Delvaux D, Buslov M M, Zhimulev F I, Vanhaecke F, Elburg M A, Van den Haute P 2012a Tectonic history of the Irtysh shear zone (NE Kazakhstan): New constraints from zircon U/Pb dating, apatite fission track dating and palaeostress analysis Journal of Asian Earth Sciences 45 pp 138–149

[15] Glorie S, De Grave J, Zhimulev F I, Buslov M M, Elburg M A, Van den Haute P, 2012b Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: insights from multi-method thermochronometry Tectonophysics 544–545 pp 75–92

[16] Gillespie J, Glorie S, Xiao W, Zhang Zh, Collins Alan S, Collins N 2017 Mesozoic reactivation of the Beishan, southern Central Asian Orogenic Belt: insights from low-temperature thermochronology Gondwana Research 43 pp 107–122

[17] Jolivet M, Ritz J-F, Vassallo R, Larroque C, Braucher R, Todbileg M, Chauvet A, Sue C, Arnaud N, De Vicente R, Arzhanikova A, Arzhanikov S 2007 Mongolian summits: an uplifted, flat, old but still preserved erosion surface Geology 35 pp 871–874

[18] Yuan W M, Carter A, Dong J Q, Bao Z K, An Y C, Guo Z J 2006 Mesozoic-tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: new constraints from apatite fission track data Tectonophysics 412 pp 183–193

[19] Vetrov E, Buslov M, De Grave J 2016 Evolution of tectonic events and topography in southeastern Gorny Altai in the Late Mesozoic–Cenozoic (data from apatite fission track thermochronology) Russ. Geol. Geophys 57 pp 95–110
[20] Delvaux D, Cloetingh S, Beekman F, Sokoutis D, Burov E, Buslov M M, Abdrakhmatov K E 2013 Basin evolution in a folding lithosphere: Altai-Sayan and Tien Shan belts in Central Asia Tectonophysics 602 pp 194–222
[21] Cloetingh S and Burov E B 2011 Lithospheric folding and sedimentary basin evolution: a review and analysis of formation mechanisms Basin Research 23(3) pp 257–290
[22] Cunningham W D, Windley B F, Dorjnamjaa D, Badamgarov G and Saandar M A 1996 A structural transect across the Mongolian Western Altai: active transpressional mountain building in Central Asia Tectonics 15(1) pp 142–156
[23] Novikov I S 2002 Late Paleozoic, Middle Mesozoic, and Late Cenozoic stages of the Altai orogeny Russian Geology and Geophysics 43 pp 432–443
[24] Medved I, Bataleva E and Buslov M 2021 Studying the Depth Structure of the Kyrgyz Tien Shan by Using the Seismic Tomography and Magnetotelluric Sounding Methods Geosciences 11, 122
[25] Dobretsov N L, Buslov M M, Rubanova E S, Vasilevsky A N, Kulikova A V, Bataleva E A 2017 Middle-Late Paleozoic geodynamic complexes and structure of Gorny Altai and their record in gravity data Russian Geology and Geophysics 58 pp 1277–1288