Near-Full-Length Genome Sequences Representing an Event of Zooanthroponotic Transmission of SARS-CoV-2 Lineage B.1.189 in Mexico during 2020

Roberto Navarro-Lopez,a Mario Solis-Hernandez,a Marisol K. Rocha-Martinez,b Samantha Eberl,c Ninnet Gomez-Romero,a Lauro Velazquez-Salinas,d J. Guillermo Estrada-Francoe

aComision Mexico–Estados Unidos para la Prevencion de la Fiebre Aftosa y Otras Enfermedades Exoticas de los Animales (CPA), Mexico City, Mexico
bCentro Nacional de Servicios de Constatacion en Salud Animal (CENAPA), Morelos, Mexico
cDepartment of Psychological Science, Central Connecticut State University, New Britain, Connecticut, USA
dCollege of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
eCentro de Biotecnologia Genomica del Instituto Politecnico Nacional, Reynosa, Tamaulipas, Mexico

ABSTRACT
Here, we report three near-full-length genome sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) obtained in Mexico City, Mexico, during the pandemic of coronavirus disease 19 (COVID-19) in 2020, representing a zooanthroponotic transmission event between humans and a dog. All three genomes belong to the B.1.189 lineage based on the pangolin classification.

Considered the biggest sanitary event of the century, the coronavirus disease (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a member of the Coronaviridae family within the Betacoronavirus genus. To date (8 May 2022), the cases and deaths produced by this virus have been 513,955,910 and 6,249,700, respectively. Mexico has been one of the countries with the highest number of deaths (324,334) during this pandemic (https://covid19.who.int/), representing 5.18% of the total mortality worldwide.

The remarkable genome plasticity displayed by SARS-CoV-2 (1) leads to the divergence of multiple phylogenetic clades and the consequent emergence of different viral variants of concern (2). Therefore, the control of this pandemic has represented a major challenge (3, 4).

Recent reports documented the zooanthroponotic spillover of variants of concern like Delta (cats, dogs, pumas, lions, and hamsters) and Omicron (white-tailed deer) in wild and domestic animals (5, 6). Thus, documented infections produced by human-to-animal transmission are increasing (7, 8).

Here, we report three near-full-length genome sequences of SARS-CoV-2 strains obtained from nasopharyngeal swab specimens recovered during a zooanthroponotic spillover event between humans and a dog in Mexico City, Mexico, in 2020. All sequences were classified as part of the pangolin lineage B.1.189 (Fig. 1). Interestingly, no changes were observed in the consensus sequence obtained from the dog, showing the apparent genetic stability of this lineage after infection in different species.

Viral isolation was performed in Vero cells (ATCC C1008). Subsequently, RNA from the three viral isolates was extracted using the high pure viral RNA kit (Roche), following the manufacturer’s protocol. Next-generation sequencing (NGS) of amplicons was conducted to obtain the SARS-CoV-2 sequences reported in this announcement. For this purpose, a set of 15 primers were developed to cover the genome of SARS-CoV-2 (Table 1). Reverse transcriptase PCR (RT-PCR) reactions were conducted using the SuperScript III one-step RT-PCR system with Platinum Taq DNA polymerase kit, following the manufacturer’s instructions. Libraries were prepared using the Nextera XT DNA library preparation kit.
following the manufacturer’s protocol. Sequencing and analyses were conducted on the MiSeq system (Illumina). Raw data of samples identified as hCoV-19/dog/Mexico/CPALB32021033/2020, hCoV-19/Mexico/CPALB32021034/2020, and hCoV-19/Mexico/CPALB32021035/2020 consisting of 3,348,413, 8,248,286, and 9,425,298 reads, respectively,
with an average read length of 200 bp were analyzed. All analyses were performed in CLC Genomics Workbench v11.0. The paired reads were quality trimmed using default parameters. Reads were then mapped to the reference strain sequence (GenBank accession number NC045512.2). Consensus sequences were obtained using default parameters and annotated based on a comparison with the reference strain. All work conducted in humans and animals was approved by bioethics committee Escuela Nacional de Medicina y Homeopatía (ENMH) number CBE/006/2020 on the project “Zoonosis Virales Emergentes en Tiempos de Circulación de COVID-19 en México.” The information from these events is useful for defining the potential role of dogs as reservoirs or intermediate hosts of SARS-CoV-2. In addition, future studies may help evaluate the possible differences in the transmission in animal species among SARS-CoV-2 lineages.

Data availability. Sequences are available in the Global Initiative on Sharing All Influenza Data (GISAID) database under the following accession numbers: EPI_ISL_11991713 (hCoV-19/dog/Mexico/CPALB32021033/2020), EPI_ISL_11988443 (hCoV-19/Mexico/CPALB32021034/2020), and EPI_ISL_11988444 (hCoV-19/Mexico/CPALB32021035/2020). The raw sequencing data of this project are available in the NCBI Sequence Read Archive (SRA) under the BioProject number PRJN827138.

ACKNOWLEDGMENTS

This study was supported by grants from SIP-IPN 20196739, 20200873, and 20202442. Sequencing was carried out following standard procedures at sequencing facilities of the Mexican Agriculture Ministry (SADER).

TABLE 1 Sequencing considerations

Amplicon no.	Primer ID	Primer sequence (5’–3’	Location in reference sequence	Size (bp)	Annealing temp (°C)
1	1FCOVID	GCC TTC CCA GGT ACG AAS CCA ACC	15–1931	1,916	58
2	2FCOVID	GAG CAG TTT CAA GAG TGC GAG	1686–4148	2,280	56
3	3FCOVID	GCA TTT GCA TGA GGT GCT GCT CG	4046–6371	2,325	58
4	4FCOVID	GCC AAT CTT CAT CCA GAT TCT GGC	6008–8372	2,364	56
5	5FCOVID	TGT CCT GGG CTG CCT CTG ACT TC	8169–10209	2,040	58
6	6FCOVID	CAG CAG TCT GGC AAG GGT TTG TTG	81222–12261	2,239	56
7	7FCOVID	CCA AAG CCC TCT ATC ACC TCA GCT G	12078–14333	2,255	55
8	8FCOVID	CGA GCT AGT CAC ATG TTG ACA CTG	14195–16411	2,216	55
9	9FCOVID	CGG TGA CAT CAC AAG GGT CAC CG	16215–18466	2,251	58
10	10FCOVID	CGG TGT GGA CAT TGC TGC TAC CAC TAA C	18306–2099	1,793	57
11	11FCOVID	GGTT GTG GTA CAT TGC TGC TAC CAC TAA C	19845–22446	2,601	56
12	12FCOVID	GGG TGA GGA CAT TGC TGC TAC CAC TAA C	22332–24239	1,907	58
13	13FCOVID	GCC ACC TTT GTC GAC AGA TGA AAT G	24145–26353	2,208	55
14	14FCOVID	GCC GCG TAA GGA TGG GTA GTG	26192–28375	2,183	60
15	15FCOVID	GCC CCC CCG ATT AGC TTT GGC TG	28307–29798	1,491	60

Description of multiple sets of primers developed in this study to conduct the NGS amplicon sequencing described in this study. The location of the primers corresponds to the nucleotide positions in the reference sequence of SARS-CoV-2 under the accession no. NC045512.2.

*ID, identification.
REFERENCES
1. Velazquez-Salinas L, Zarate S, Eberl S, Gladue DP, Novella I, Borca MV. 2020. Positive selection of ORF1ab, ORF3a, and ORF8 genes drives the early evolutionary trends of SARS-CoV-2 during the 2020 COVID-19 pandemic. Front Microbiol 11: 550674. https://doi.org/10.3389/fmicb.2020.550674.
2. Tian D, Sun Y, Zhou J, Ye Q. 2022. The global epidemic of SARS-CoV-2 variants and their mutational immune escape. J Med Virol 94:847–857. https://doi.org/10.1002/jmv.27376.
3. Schafer EA, Eberl S, Velazquez-Salinas L. 2022. Beyond the biology: evaluating the role of political, economic, and social factors associated with the incidence and mortality of SARS-CoV-2 during the first seven months of the COVID-19 pandemic. arXiv Preprint arXiv:2204.13995.
4. Schafer AE, Velazquez-Salinas L. 2021. Controlling the COVID-19 pandemic: the complex epidemiological triad of SARS-CoV-2. Int Jr Infect Dis & Epidemiy 2: 41–42.
5. Koeppel KN, Mendes A, Strydom A, Rotherham L, Mulumba M, Venter M. 2022. SARS-CoV-2 reverse zoonoses to Pumas and Lions, South Africa. Viruses 14:120. https://doi.org/10.3390/v14010120.
6. Vandegrift KJ, Yon M, Surendran-Nair M, Gontu A, Amirthalingam S, Nissly RH, Levine N, Stuber T, DeNicola AJ, Boulanger JR, Kotschwar N, Aucoin SG, Simon R, Toal K, Olsen RJ, Davis JJ, Bold D, Gaudreault NN, Richt JA, Musser JM, Hudson PJ, Kapur V, Kuchipudi SV. 2022. Detection of SARS-CoV-2 Omicron variant (B.1.1.529) infection of white-tailed deer. bioRxiv [Preprint]. https://doi.org/10.1101/2022.02.04.479189.
7. Mahdy MAA, Younis W, Ewaida Z. 2020. An overview of SARS-CoV-2 and animal infection. Front Vet Sci 7:596391. https://doi.org/10.3389/fvets.2020.596391.
8. Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. 2021. SARS-CoV-2 infections in animals: reservoirs for reverse zoonosis and models for study. Viruses 13:494. https://doi.org/10.3390/v13030494.
9. Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, Akite N, Ho J, Lee RT, Yeo W, Curation Team GC, Maurer-Stroh S. 2021. GISAID’s role in pandemic response. China CDC Wkly 3:1049–1051. https://doi.org/10.46234/ccdcw2021.255.