FIRST INTERFEROMETRIC IMAGES OF THE 36 GHZ METHANOL MASERS IN THE DR21 COMPLEX

VINCENT L. FISH1, TALITHA C. MUEHLBRAD1,6, PREETHI PRATAP1, LORÁNT O. SJOUWERMAN2, VLADIMIR STRELNITSKI3, YLVA M. PHILSTROM4,7, and TYLER L. BOURKE3

1 MIT Haystack Observatory, Route 40, Westford, MA 01886, USA; vfish@haystack.mit.edu, ppratap2002@gmail.com
2 National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA
3 Maria Mitchell Observatory, 4 Vestal Street, Nantucket, MA 02554, USA
4 Department of Physics and Astronomy, University of New Mexico, 800 Yale Boulevard NE, Albuquerque, NM 87131, USA
5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2010 September 16; accepted 2010 December 22; published 2011 February 4

ABSTRACT

Class I methanol masers are believed to be produced in the shock-excited environment around star-forming regions. Many authors have argued that the appearance of various subsets of class I masers may be indicative of specific evolutionary stages of star formation or excitation conditions. Until recently, however, no major interferometer was capable of imaging the important 36 GHz transition. We report on Expanded Very Large Array observations of the 36 GHz methanol masers and Submillimeter Array observations of the 229 GHz methanol masers in DR21(OH), DR21N, and DR21W. The distribution of 36 GHz masers in the outflow of DR21(OH) is similar to that of the other class I methanol transitions, with numerous multitransition spatial overlaps. At the site of the main continuum source in DR21(OH), class I masers at 36 and 229 GHz are found in virtual overlap with class II 6.7 GHz masers. To the south of the outflow, the 36 GHz masers are scattered over a large region but usually do not appear coincident with 44 GHz masers. In DR21W, we detect an “S-curve” signature in Stokes V that implies a large value of the magnetic field strength if interpreted as due to Zeeman splitting, suggesting either that class I masers may exist at higher densities than previously believed or that the direct Zeeman interpretation of S-curve Stokes V profiles in class I masers may be incorrect. We find a diverse variety of different maser phenomena in these sources, suggestive of differing physical conditions among them.

Key words: ISM: molecules – magnetic fields – masers – radio lines: ISM – stars: formation

Online-only material: color figures

1. INTRODUCTION

Methanol masers are often found in star-forming regions. There are two sets of transitions seen to produce methanol masers. Class I methanol masers (most importantly the 36 and 44 GHz transitions) are believed to be collisionally excited, while class II masers (including the 6.7 and 12 GHz transitions) are radiatively excited (Cragg et al. 1992). Class I and class II methanol masers are sometimes both found in association with the same source (e.g., Slysh et al. 1994), but the two classes of masers are very rarely seen at the same velocity or in close (subarcsecond) spatial overlap.

Class I methanol masers, in which shocks dominate over infrared radiation, have often been assumed to be tracing an earlier evolutionary state of star formation than class II methanol, water, or OH masers (e.g., Ellingsen 2006; Breen et al. 2010). Subcategorization of class I masers by physical conditions may be possible (Sobolev 1993), leading some authors to speculate that line intensity ratios among the class I masers may be a proxy for evolutionary stage (Pratap et al. 2008). However, class I maser studies have traditionally been biased toward regions hosting other tracers of star formation, and the cluster environments in which class I masers are found are usually quite complex, calling into question traditional models of the evolutionary timeline of class I masers (Section 4.4 of Voronkov et al. 2010b, and references therein).

Furthermore, class I masers have typically been observed with single-dish telescopes, which can identify whether or not a particular class I transition produces masers in a region (and how bright they are) but do not have the resolution to determine their location relative to masers in other transitions. Given the complex environments associated with clustered star formation, high angular resolution is required to identify the relations between masers and excitation sources (e.g., Araya et al. 2009) and between multiple transitions of methanol (Voronkov et al. 2006). Higher angular resolution is also necessary to understand the physical conditions that produce masers in each of the class I transitions, which may not be identical (e.g., Menten 1991; Johnston et al. 1992; Sobolev 1993).

These concerns motivated Pratap et al. (2008) to do an unbiased single-dish search for class I methanol masers in nearby molecular clouds, resulting in the detection of new class I maser features. Several sites within these clouds host previously known 44 GHz methanol masers, many of which have been mapped interferometrically (e.g., Mehringer & Menten 1997; Kogan & Slysh 1998; Kurtz et al. 2004). Imaging the 36 GHz masers, the other bright transition seen in numerous sources (Haschick & Baan 1989; Berulis et al. 1990; Liechti & Wilson 1996; Pratap et al. 2008), has heretofore not been possible due to the lack of interferometers operating at this frequency. However, recent upgrades to the Australia Telescope Compact Array and the Expanded Very Large Array (EVLA) are allowing the first arcsecond-resolution images of 36 GHz masers to be produced (Sarma & Momjian 2009; Sjouweraman et al. 2010; Voronkov et al. 2010a). In this paper, we report on the first EVLA maps of the 36 GHz masers in the DR21 star-forming complex.

6 Current address: Texas Lutheran University, 1000 West Court Street, Seguin, TX 78155, USA.
7 Adjunct astronomer at NRAO.
2. OBSERVATIONS AND DATA ANALYSIS

The EVLA was used to observe the 36.169 GHz $4 \rightarrow 3_0 E$ line of methanol in DR21(OH), DR21W, and DR21N on 2010 May 26. The array consisted of the 20 telescopes outfitted with Ka-band receivers. The EVLA was in its most compact (D) configuration, providing a synthesized beamwidth of approximately $2.1' \times 1.4'$. All three sources were observed in dual circular polarization centered on a fixed sky frequency of 36.1731 GHz and correlated with the new WIDAR correlator. The 4 MHz observing bandwidth was divided into 256 spectral channels, giving a velocity coverage of 33 km s$^{-1}$ with a channel spacing of 0.13 km s$^{-1}$. Conversion from sky frequency to LSR velocity was performed with the assistance of the EVLA Online Dopset tool. Total on-source observing time was ~ 12 minutes per source. Typical single-channel noise levels were $\lesssim 20$ mJy beam$^{-1}$ near the center of the field.

Data reduction was carried out using the NRAO Astronomical Image Processing System (AIPS). The flux scale was set using 3C48. Complex gain calibration was done using J2048+4310. EVLA transition issues precluded accurate bandpass calibration, although it could be determined from calibrator data that baseline phases were flat across the entire observing band and amplitudes were flat across about 75% of the observing band. Thus, our main results, including estimates of the positions of the detected masers, should not be significantly affected, although bandpass effects may lead to amplitude errors of a few percent over most of the observed velocity range. Data were imaged, and flux densities were corrected for primary beam attenuation.

Minor velocity errors may be introduced by two effects. First, the uncertainty in the rest frequency of the observed line ($36.169 \pm 0.030 $ MHz; Müller et al. 2004) is equivalent to a velocity uncertainty of 0.25 km s$^{-1}$ (two channels). Second, observations were performed at a fixed sky frequency, since Doppler tracking was unavailable. The sky frequency associated with the rest frequency drifted by about 0.015 MHz over the course of the observations, possibly resulting in an insignificant spectral broadening of maser features. Since the net uncertainty in determining the central velocity due to fixed-frequency observing ($<\pm 0.01 \text{ km s}^{-1}$) is only a fraction of the channel separation (and much smaller than a typical maser line width), the data were not corrected with the AIPS task CVEL.

We present 229.758 GHz $8 \rightarrow 7_0 E$ maser and 226 GHz continuum SMA data for all of our sources (P. Pratap et al. 2011, in preparation). The angular resolution of these observations is $\sim 1'' \times 0.9''$. The bandwidth of the 229 GHz observations covered the velocity range from -50 to $+81$ km s$^{-1}$ with a spectral resolution of 0.13 km s$^{-1}$. The flux densities of the 229 GHz masers were corrected for primary beam attenuation. The rms noise near field center was approximately 0.15 Jy beam$^{-1}$ for DR21(OH) and DR21N and 0.3 Jy beam$^{-1}$ for DR21W.

When possible, we compare our data against three other class I methanol maser transitions from the literature: 44 GHz ($7_0 \rightarrow 6_1 A^+$), 84 GHz ($5_1 \rightarrow 4_0 E$), and 95 GHz ($8_0 \rightarrow 7_1 A^+$). For DR21N, we also used archival 44 GHz data taken with the VLA in B configuration on 2006 June 16.

3. RESULTS

Parameters of detected masers are listed in Table 1. We detect 49 36 GHz maser features in the three observed DR21 sources: 21 in DR21N, 23 in DR21(OH), and 5 in DR21W.

Table 1

Source	R.A. Offset	Decl. Offset	v_{LSR} (km s$^{-1}$)	Peak Flux Density (Jy)
DR21N	-1.21	5.46	6.07	0.96
	3.30	1.33	0.76	23.72
	3.35	1.36	5.42	0.17
	5.10	3.25	-12.58	0.31
	6.01	-0.43	3.22	0.40
	6.19	-0.26	6.07	0.19
	6.24	-6.84	-3.38	1.63
	7.73	10.83	-1.31	0.28
	8.56	-1.12	-2.61	0.28
	9.63	4.45	-4.94	0.25
	10.77	3.29	-5.71	0.18
	11.01	-3.54	-4.42	0.96
	11.28	-2.57	-4.42	0.37
	11.57	-4.19	-4.16	0.06
	12.54	8.44	-5.71	0.15
	12.75	-0.09	-4.42	0.31
	13.07	-4.16	-4.03	0.60
	13.30	5.92	-4.16	0.36
	14.64	-6.39	-3.12	10.08
	16.74	-3.14	-4.03	0.22
	20.77	11.47	-5.20	6.46
DR21(OH)	-25.86	-24.96	-1.48	2.66
	-21.08	-20.95	-6.01	0.36
	-18.88	-30.34	0.47	2.67
	-16.99	0.75	0.47	30.26
	-16.34	-0.68	-1.35	1.26
	-14.39	-36.24	-5.62	0.60
	-11.92	1.25	-0.05	1.31
	-10.96	1.77	-1.35	0.52
	-10.52	-1.72	-0.57	1.49
	-9.93	-2.98	0.08	10.39
	-7.10	-0.57	-1.61	2.39
	-6.24	-2.10	0.08	1.81
	-2.38	-32.23	-5.49	0.82
	0.33	-29.47	-5.88	0.54
	2.63	-45.86	-4.20	7.61
	3.38	-45.66	-5.62	0.86
	3.45a	0.78	-3.68	0.15
	9.52	-4.73	-6.53	1.69
	13.40	-7.31	-5.88	0.42
	13.94	-2.89	-3.55	0.50
	15.48	-3.87	-4.71	0.85
	15.49	-4.07	-4.97	0.54
	15.50	-5.61	-3.68	0.46
DR21W	-9.57	-18.45	-4.90	0.30
	-8.08	-12.63	-5.54	0.43
	-7.78	-13.23	-2.31	0.93
	-2.16	0.69	-2.44	24.60
	-1.21	-1.40	-2.44	82.29

Notes. Offsets are measured from 2039m0008, $+$4222480’0 (2000) for DR21(OH), 2039m0002, $+$4225430’0 for DR21N, and 2038m550, $+$421922’0 for DR21W.

* Brightest channel of spectrally broad weak emission; see Section 3.1.

Figures 1 and 2 show the locations of the 36 GHz masers relative to other class I methanol transitions mapped with interferometric resolution. The LSR velocities of detected masers are consistent with previous single-dish observations (Pratap et al. 2008).

Spectra of the integrated flux of individual 36 GHz maser features are often not well fit by a single Gaussian. In some cases multiple spectral peaks are evident, while in others there

8 http://www.vla.nrao.edu/astro/guides/dopset/
Figure 1. Class I methanol maser plot of DR21(OH) showing the 36 GHz (this work), 44 GHz (Araya et al. 2009), 84 GHz (Batrla & Menten 1988), 95 GHz (Plambeck & Menten 1990), and 229 GHz (P. Pratap et al. 2011, in preparation) class I transitions and the 6.7 GHz class II transition (Harvey-Smith et al. 2008). Contours indicate 226 GHz continuum (P. Pratap et al. 2011, in preparation). The angular resolution of the 84 and 95 GHz data was lower than for the 36 GHz masers and should therefore be taken as indicative only of the general distribution and velocity structure of the emission in these transitions, which are consistent with nearby class I masers in other transitions. The dotted circle indicates the primary beam of the 226 GHz continuum and 229 GHz maser observations. The inset box shows an enlargement of the 3′′ square box near the origin, where 6.7, 36, and 229 GHz masers appear in close proximity and in the same velocity range. Coordinates are relative to the EVLA pointing center 20h39m00s, +42°22′48″ (J2000).

(A color version of this figure is available in the online journal.)
Figure 2. Class I methanol maser plots of DR21W (left) and DR21N (right). Symbols are same as in Figure 1. The 44 GHz masers in DR21W are from Kogan & Slysh (1998). The 44 GHz data in DR21N were taken with the VLA in B configuration. No 229 GHz continuum is detected in DR21W. Every 229 GHz maser in DR21N is found in close proximity to a 36 GHz maser. Coordinates are relative to the EVLA pointing center 20h38m55s0, +42°19′22″0 for DR21W and 20h39m02s0, +42°25′43″0 (J2000) for DR21N.

(A color version of this figure is available in the online journal.)

with the caveat that it is difficult to determine the position of the 36 GHz maser accurately given the weakness of the maser and the 2″ beamsize of the 36 GHz observations.

Several class I masers appear to the south (36 and 44 GHz) and north (44 GHz only) of the outflow. Unlike in the outflow, the 36 GHz masers in the south are usually not accompanied by cospatial 44 GHz masers. The northern and southern masers are generally redshifted and blueshifted, respectively, compared to the bulk of the masers in the outflow, although not all masers conform to this pattern. The southern masers are located closer to the sources DR21(OH)W, DR21(OH)S, and the ridge of ammonia emission connecting them (Mangum et al. 1992; see also Sjouwerman et al. 2010) than to the outflow in DR21(OH), and therefore are unlikely to be associated with the main source driving the outflow in DR21(OH).

3.2. DR21W

Despite the detection of only five maser features, DR21W contains the brightest (>80 Jy) 36 GHz maser in our sample. This maser is the only one for which we detect an antisymmetric Stokes V profile (Figure 3), which will be discussed further in Section 4.1. The bright masers near the origin in Figure 2 are coincident with the 44 GHz masers detected by Kogan & Slysh (1998) to better than a synthesized beamwidth. The velocities of the 36 GHz masers near the origin agree with the velocities of the brightest nearby 44 GHz masers to within 0.2 km s\(^{-1}\) or better.

3.3. DR21N

DR21N was first identified as a 36 GHz maser source by Pratap et al. (2008). We detect numerous 36 GHz masers in this source, mostly in the range from −6 to −4 km s\(^{-1}\), on the eastern side of the distribution of maser emission (Figure 2). Several redshifted masers in the range −1 to +5 km s\(^{-1}\) are found on the western side, along with one highly blueshifted maser (−14 km s\(^{-1}\)). All detected 229 GHz masers are found in close proximity to (<0′.5 from) a 36 GHz maser. In contrast, no 44 GHz maser is seen within 1′ of a 36 GHz maser.

4. DISCUSSION

4.1. Circular Polarization

As shown in Figure 3, we detect an antisymmetric “S-curve” Stokes V signature in the spectrum of the brightest
25 GHz job obtained a laboratory estimate of the Landé factor in any of the weaker masers. Not produce a detectable \((\text{Stokes } V/I) \text{ signal in DR21(OH)}\) or in any of the weaker masers.

However, there is significant uncertainty in the Zeeman splitting coefficient, which calls into question the direct Zeeman interpretation of methanol Stokes \(V \) \(S \) curves. Jen (1951) obtained a laboratory estimate of the Landé \(g \) factor for the 25 GHz \(J_2 \rightarrow J_1 \) series of transitions of methanol, but the obtained value is an average over several different transitions and, in any case, may not be appropriate for the 36 GHz transition of methanol. Vlemmings et al. (2006) and Vlemmings (2008) used the Jen (1951) \(g \) factor to estimate the Zeeman splitting coefficient for the 6.7 GHz transition, and Sarma & Momjian (2009) followed their method in deriving the Zeeman splitting coefficient at 36 GHz. A more recent look suggests that these calculations may have overestimated the Zeeman splitting coefficients by an order of magnitude (W. H. T. Vlemmings 2010, private communication), which would serve to increase proportionally the putative magnetic field strengths reported from methanol Zeeman splitting in this work and others (e.g., Vlemmings 2008; Surcis et al. 2009; Sarma & Momjian 2009, 2010).

Even if the Sarma & Momjian (2009) Zeeman splitting coefficient for the 36 GHz transition is (approximately) correct, a line-of-sight magnetic field strength of 58 mG is uncomfortably high. Measurements of the magnetic field strength are often used as a proxy for density. Using a scaling of \(|B| \propto n^{0.47}\) from the densities and magnetic fields of DR21 would give a number density around \(10^{10} \text{ cm}^{-3}\) (Crutcher 1999), a value several orders of magnitude higher than that thought to be suitable for 36 GHz maser excitation (e.g., Menten 1991; Johnston et al. 1992; Sobolev et al. 2005). Scaling from values typically found in OH masers instead (a few milligauss, \(n \approx 10^6 \text{ cm}^{-3}\); Pavlakis & Kylafis 1996; Fish et al. 2005) results in density estimates well in excess of \(10^8 \text{ cm}^{-3}\), which is still substantially larger than theoretical estimates (but see also Section 4.3 of Voronkov et al. 2005). The discrepancy between the implied density and theoretical calculations appropriate for class I maser activity grows by two orders of magnitude if a smaller Zeeman splitting factor is assumed (W. H. T. Vlemmings 2010, private communication).

If the Zeeman interpretation is correct, one possible explanation for the discrepancy is that the correlation between magnetic field strength and density does not hold in (all) the environments of class I methanol masers, implying that the magnetic energy density is much greater than the kinetic energy density (Sarma & Momjian 2009). Alternatively, it is possible that the high density implied by the large magnetic field is correct, and the bright 36 GHz maser in DR21W is produced via a pumping scheme not normally assumed for class I masers. Typically, class I masers are thought to be produced by collisional excitation followed by spontaneous cascade down to lower energy levels, with sink photons escaping or being absorbed by cold dust. This mechanism has an upper limit for density, above which the inverted transition is thermalized by collisions. One possible pumping mechanism at higher densities involves collisional excitation by a warm species and a collisional sink by a cooler species to produce the population inversion (Strelnitskij 1984). This mechanism requires a two-temperature mixture of particles, such as electrons (and/or ions) and neutrals, that may exist after the passage of a shock front. In principle, such a collisional–collisional pump can operate at arbitrarily high density, as long as the temperature difference between the two species is sustained.

However, it is more probable that the Stokes \(V \) signature we detect does not measure the magnetic field directly. Wiebe & Watson (1998) proposed a mechanism by which changes in the magnetic field orientation can convert linear polarization to circular polarization along the amplification path in a maser. The Stokes \(V \) signature produced by this mechanism can produce an \(S \) curve that can mimic the effect of Zeeman splitting of a much larger magnetic field. In the case of circumstellar SiO masers that Wiebe & Watson (1998) consider, their proposed mechanism could operate with a magnetic field as weak as 0.1% of the magnetic field strength implied from interpreting the \(S \) curve as purely due to Zeeman splitting. The Wiebe & Watson (1998) mechanism requires that the Zeeman splitting in units of frequency exceed both the stimulated emission rate and the decay rate appropriate for the masing transition, a condition likely to be satisfied for class I methanol masers (see Section 4.2 of Wiesemeyer et al. 2004).

Interestingly, DR21W (this work) and M8 (Sarma & Momjian 2009), the two sources with detected Zeeman splitting in the 36 GHz line, are also the two sources in which Wiesemeyer et al. (2004) detected circular polarization in the 133 GHz \((6_{1} \rightarrow 5_{0} E)\) transition. Future high-sensitivity observations at 133 GHz might permit detection of an \(S \)-curve signature in Stokes \(V \), thereby testing whether the magnetic field implied from a pure Zeeman interpretation is consistent with the values derived at 36 GHz. (Since the 36 GHz and 133 GHz methanol lines are both \(J_1 \rightarrow (J_1 - 1)_0 E\) transitions, the same Landé \(g \) factor would be applicable to each of them.) Careful laboratory measurements of the Zeeman splitting coefficients appropriate for the brightest methanol maser transitions would also be very helpful.

4.2. A Class I/Class II Overlap

Excitation models indicate that the physical conditions that are thought to produce inversion in class I transitions usually lead to anti-inversion in class II transitions and vice versa (Cragg et al. 1992; Slysh et al. 2002). In that regard, the existence of class I 36 and 229 GHz masers at the same velocity and location as the class II 6.7 GHz maser site is surprising. These masers are also coincident with the brightest continuum emission near the outflow, which may be an important clue to their origin.

There is precedent for overlaps between class I and class II methanol masers. Voronkov et al. (2005) deduce spatial coincidences between the 6.7 GHz class II and 25 GHz \(J_2 \rightarrow J_1 E\) series of class I methanol masers in OMC-1, although the angular resolution of their interferometric observations is much poorer than either the 229 GHz data on which we report or the Harvey-Smith et al. (2008) 6.7 GHz data. Voronkov et al. (2005) model
the 6.7/25 GHz overlap as arising from a lower-temperature regime than is typically assumed for class II masers. This pumping model requires an intermixed environment of gas and dust at a lower temperature (~60 K) than for traditional class II maser formation. The strong 226 GHz continuum emission in DR21(OH) likely marks such an environment that is rich in dust. The Voronkov et al. (2005) model did not investigate excitation at 229 GHz, but it does predict inversion at 36 GHz, which is also a $J_{-1} \rightarrow (J - 1)_0 A^+$ transition. The model predicts that 44 and 95 GHz masers should not appear at a low-temperature 6.7 GHz maser site, since the former are $J_0 \rightarrow (J - 1)_1 A^+$ transitions, while the latter is a $A^+ \rightarrow (J - 1)_0 A^+$ transition. Indeed, Kogan & Slysh (1998), Kurtz et al. (2004), and Araya et al. (2009) do not report 44 GHz masers at this location.

4.3. Multitransition Comparison of Class I Masers

In each of the sources we observed, the 36 GHz masers divide into two sets: those that are found to be copspatial with other class I maser transitions, and those that are spatially isolated. We address each of these two groups in turn.

In the outflow of DR21(OH) and in the cluster in the north of DR21W, we note that the distribution of the 36 GHz masers is similar to that of the 44, 84, 95, and 229 GHz masers. Additionally, the brightest masers in all of these transitions appear in the same location. In DR21(OH), the brightest masers in all class I transitions occur in a narrow velocity range ($v_{LSR} = +0.3$ to $+0.5\text{ km s}^{-1}$) at the western tip of the outflow. The next-brightest masers in each transition appear approximately $10''$ east of this position (i.e., $10''$ west of the origin in Figure 1). It is clear that these masers exist in a physical regime in which strong maser emission is produced in a large number of $J_{-1} \rightarrow (J - 1)_0 E$ and $J_0 \rightarrow (J - 1)_1 A^+$ transitions simultaneously. The existence of a nearby energetic source creating an outflow likely shocks the surrounding molecular material, pumping multiple transitions of methanol in the same location.

On the other hand, all sources contain regions in which 36 GHz masers are not found to be coincident with other transitions. For instance, numerous masers in both the 36 and 44 GHz masers are found to the south of the outflow in DR21(OH). For the most part, the two transitions are not seen to be spatially coincident. Most of the 36 GHz masers and some of the 44 GHz masers in the south are seen near the periphery of CS emission (Plambeck & Menten 1990). The common feature of the environment of these masers is the lack of a nearby energetic source. As in the Sagittarius A region, it is possible that these masers trace molecular density clumps that are shock excited by core collision or compression (Sjouwerman et al. 2010).

The 229 GHz masers appear to align more closely with the 44 GHz masers than with the 36 GHz masers in the DR21(OH) outflow. While 229 GHz masers are found to be coincident with 36 GHz masers on the western side of the outflow, there is always an accompanying 44 GHz maser. In contrast, several 229 GHz masers appear coincident with 44 GHz masers but without 36 GHz emission, especially on the eastern side of the outflow. However, we note several caveats about drawing conclusions from these points. First, the angular resolution of the observations of both the 44 GHz and the 229 GHz masers is higher than that of the 36 GHz observations on which we report, and it is possible that more sensitive, higher-resolution observations of the 36 GHz masers will uncover other features at the sites of the 44/229 GHz overlaps. Second, every detected 229 GHz maser in DR21N appears near a 36 GHz maser site (Figure 2). Third, at present the three DR21 sources on which we report are the only sources mapped in all three of the 36, 44, and 229 GHz transitions, and the field of view encompassed by the 229 GHz observations in DR21(OH) excludes nearly all of the masers south of the outflow as well as the eastern tip of the outflow itself. This constitutes a rather small set of sources from which to draw general conclusions about the properties of the 36, 44, and 229 GHz masers relative to each other. More interferometric observations of both the 36 and 229 GHz transitions will be required to fully understand the phenomenology of either.

5. CONCLUSIONS AND FUTURE WORK

We have interferometrically imaged three sources in the 36 and 229 GHz class I methanol maser lines. We find numerous masers in both transitions and a diversity of conditions among them. Notably, we identify the following three environments, each of which may correspond to a different set of excitation conditions.

1. The outflow in DR21(OH) contains a large number of overlaps in the 36, 44, and 229 GHz transitions. Strong emission is also seen at 84 and 95 GHz, although there is a lack of high-resolution observations of these lines. The brightest masers in all transitions appear at the same velocity and in the same location at the western tip of the outflow as traced by the masers.

2. The bright continuum source in DR21(OH) is associated with both the class II 6.7 GHz masers and class I 36 and 229 GHz E-type masers, but the class I 44 GHz A^+-type masers are conspicuously absent. This environment may be explained by the low-temperature intermixed dust and gas model of Voronkov et al. (2005).

3. The 229 GHz transition produces detectable masers at a subset of the 36 GHz maser sites in DR21N. In both this source and in DR21(OH) well south of the outflow, the 36 and 44 GHz masers have a similar large-scale distribution but are rarely found to produce a maser at the same site.

In addition, the brightest maser in DR21W produces an antisymmetric Stokes V profile that implies a large magnetic field if interpreted as being due to Zeeman splitting. There is a very large uncertainty in the Zeeman splitting coefficient appropriate for the 36 GHz transition, but the implied density (assuming $|B| \propto n^a$, $a \approx 0.5$) greatly exceeds the range over which class I masers are thought to form. It is possible that the circular polarization in this maser feature is produced by a much smaller magnetic field whose orientation changes over the amplification path of the maser (Wiebe & Watson 1998). In any case, careful laboratory measurement of Zeeman splitting coefficients appropriate for methanol maser transitions is warranted given the increasing number of Zeeman-like Stokes V signatures identified in methanol transitions over the past few years.

In order to realize the goal of being able to identify the physical conditions in a variety of star-forming regions by the presence or the absence of various methanol maser transitions, it will be necessary to understand a few sources in greater detail. Our results highlight the need for both increased theoretical effort and more sensitive observations of multiple class I transitions at higher angular resolution. In particular, higher-resolution maps of the 84 and 95 GHz transitions as well as higher-frequency
maser lines may be both enlightening and timely in the advent of the ALMA era. A further survey of sources in the 36 and 229 GHz transitions, when combined with 44 GHz maps in the literature, may also be helpful in determining the range of possible methanol excitation conditions in nature.

T.C.M. acknowledges support from the National Science Foundation’s Research Experiences for Undergraduates program. The National Radio Astronomy Observatory is a facility of the National Science Foundation (NSF) operated under cooperative agreement by Associated Universities, Inc. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. We thank W.H.T. Vlemmings and A. Sarma for helpful discussions regarding methanol Zeeman splitting coefficients.

Facilities: EVLA, SMA

REFERENCES

Araya, E. D., Kurtz, S., Hofner, P., & Linz, J. 2009, ApJ, 698, 1321
Batrla, W., & Menten, K. M. 1988, ApJ, 329, L117
Berulis, I. I., Kalenskii, S. V., & Logvinenko, S. V. 1990, Sov. Astron. Lett., 16, 179
Breen, S. L., Ellingsen, S. P., Caswell, J. L., & Lewis, B. E. 2010, MNRAS, 401, 2219
Cragg, D. M., Johns, K. P., Godfrey, P. D., & Brown, R. D. 1992, MNRAS, 259, 203
Crutcher, R. M. 1999, ApJ, 520, 706
Ellingsen, S. P. 2006, ApJ, 638, 241
Fish, V. L., Reid, M. J., Argon, A. L., & Zheng, X.-W. 2005, ApJS, 160, 220
Harvey-Smith, L., Soria-Ruiz, R., Duarte-Cabral, A., & Cohen, R. J. 2008, MNRAS, 384, 719
Haschick, A. D., & Baan, W. A. 1989, ApJ, 339, 949
Jen, C. K. 1951, Phys. Rev., 81, 197
Johnston, K. J., Gaume, R., Stolovy, S., Wilson, T. L., Walmsley, C. M., & Menten, K. M. 1992, ApJ, 385, 232
Kalenskii, S. V., Liljestrom, T., Val’ts, I. E., Vasil’kov, V. I., Slysh, V. I., & Urpo, S. 1994, A&AS, 103, 129
Kogan, L., & Slysh, V. 1998, ApJ, 497, 800
Kurtz, S., Hofner, P., & Alvarez, C. V. 2004, ApJS, 155, 149
Liechti, S., & Wilson, T. L. 1996, A&A, 314, 615
Mangum, J. G., Wootten, A. M., & Mundy, L. G. 1992, ApJ, 388, 467
Mehringer, D. M., & Menten, K. M. 1997, ApJ, 474, 346
Menten, K. M. 1991, in ASP Conf. Ser. 16, Atoms, Ions and Molecules: New Results in Spectral Line Astrophysics, ed. A. D. Haschick & P. T. P. Ho (San Francisco, CA: ASP), 119
Müller, H. S. P., Menten, K. M., & Mäder, H. 2004, A&A, 428, 1019
Pavlakis, K. G., & Kylafis, N. D. 1996, ApJ, 467, 309
Planbeck, R. L., & Menten, K. M. 1990, ApJ, 364, 555
Pratap, P., Shute, P. A., Keane, T. C., Batterby, C., & Sterling, S. 2008, AJ, 135, 1718
Sarma, A. P., & Momjian, E. 2009, ApJ, 705, L176
Sarma, A. P., & Momjian, E. 2010, in PoS(ISKAF2010), 074 http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=112
Sjouwerman, L. O., Pihlström, Y. M., & Fish, V. L. 2010, ApJ, 710, L111
Slysh, V. I., Kalenskii, S. V., Val’ts, I. E., & Otrupcek, R. 1994, MNRAS, 268, 464
Slysh, V. I., Kalenskii, S. V., & Val’ts, I. E. 2002, Astron. Rep., 46, 49
Sobolev, A. M. 1993, Astron. Lett., 19, 293
Sobolev, A. M., Ostrovskii, A. B., Kirsanova, M. S., Shelemei, O. V., Voronkov, M. A., & Malyshev, A. V. 2005, in IAU Symp. 227, Massive Star Birth: A Crossroads of Astrophysics, ed. R. Cesaroni, M. Felli, E. Churchwell, & M. Walmsley (Cambridge: Cambridge Univ. Press), 174
Strelntskii, V. S. 1984, MNRAS, 207, 339
Surcis, G., Vlemmings, W. H. T., Dodson, R., & van Langevelde, H. J. 2009, A&A, 506, 757
Vlemmings, W. H. T. 2008, A&A, 484, 773
Vlemmings, W. H. T., Harvey-Smith, L., & Cohen, R. J. 2006, MNRAS, 371, L26
Voronkov, M. A., Brooks, K. J., Sobolev, A. M., Ellingsen, S. P., Ostrovskii, A. B., & Caswell, J. L. 2006, MNRAS, 373, 411
Voronkov, M. A., Caswell, J. L., Britton, T. R., Green, J. A., Sobolev, A. M., & Ellingsen, S. P. 2010a, MNRAS, 408, 133
Voronkov, M. A., Caswell, J. L., Ellingsen, S. P., & Sobolev, A. M. 2010b, MNRAS, 405, 2471
Voronkov, M. A., Sobolev, A. M., Ellingsen, S. P., & Ostrovskii, A. B. 2005, MNRAS, 362, 995
Watson, W. D., & Wyld, H. W. 2001, ApJ, 558, L55
Wiebe, D. S., & Watson, W. D. 1998, ApJ, 503, L71
Wiesemeyer, H., Thum, C., & Walmsley, C. M. 2004, A&A, 428, 479