HONO and NO$_2$ evolution from irradiated nitrate-doped ice and frozen nitrate solutions

T. Bartels-Rausch1,* and D. J. Donaldson1

1University of Toronto, Ontario M5S 3H6, Canada
now at: Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

Received: 4 September 2006 – Accepted: 16 October 2006 – Published: 20 October 2006
Correspondence to: D. J. Donaldson (jdonalds@chem.utoronto.ca)

Abstract

Nitrate photolysis in the wavelength range 250–1200 nm was studied on ice in a controlled laboratory experiment. Monolayer coverage of nitrate was achieved by dosing well-known amounts of HNO$_3$ from the gas phase onto a frozen water surface. Fluxes of HONO and NO$_2$ into the gas phase with time were quantified at temperatures between 193 K and 258 K and as a function of illumination wavelength in the range: 250–345 nm. Whereas HONO release showed a strong temperature dependence at colder temperatures, attributed to reversible adsorption processes, NO$_2$ fluxes were independent of temperature. The observed fluxes of HONO and NO$_2$ at high temperature were not affected by diffusion or adsorption processes, and could be used to estimate a quantum yield for HONO formation of $(3.8 \pm 0.6) \times 10^{-4}$. A different wavelength dependence for HONO and NO$_2$ fluxes indicates that additional reactions besides nitrate photolysis and subsequent release of the products contribute to the emission of nitrogen oxides.

1 Introduction

The photolysis of nitrate is generally thought to be the initial step of nitrogen oxide fluxes from irradiated snow and ice surfaces:

\[\text{NO}_3^- \xrightleftharpoons{h\nu} \text{NO}_2(g) + \text{O}^- \] \hspace{1cm} (R1)

\[\text{NO}_3^- \xrightarrow{h\nu} \text{NO}_2^- + \text{O}^\bullet(3\Pi) \xrightarrow{hv} \text{HONO}(g) \] \hspace{1cm} (R2)

This conclusion came from early studies which indicated that the mechanism of nitrogen oxide formation on snow surfaces might be analogous to reactions in the aqueous phase (Mack and Bolton, 1999; Honrath et al., 2000a; Cotter et al., 2003). However, it still remains a challenge to explain observed nitrogen oxide fluxes from snow cover in the environment (Beine et al., 2006). Consequently, much attention has recently been
2 Experimental

The experiments were performed in a photolysis chamber coupled to a chemical ionization mass spectrometer (CIMS). The photolysis chamber consisted of a 5 cm diameter Pyrex cylinder, 8 cm in length and closed at one end. This was contained within a vacuum-jacketed flask through which cooling fluid could circulate. The cylinder and its cooling jacket were capped (about 7 cm above the top of the cylinder) by a 5 cm diameter fused silica window, which was clamped onto the cell using a “o-ring” clamp, providing a vacuum seal to the cell. Feedthroughs allowed gases to enter the cell (at the top, below the window) and exit (from below, above the photolysis region). A detailed description of the CIMS has previously been published (Thornberry and Abbatt, 2004; Ullerstam et al., 2005). To start an experiment the chamber was cooled to approximately 250 K. Once an ice film had formed at the bottom of the chamber and its walls, the chamber was sealed, evacuated to a pressure of 2.5 hPa and cooled to the desired temperature, between 193 and 258 K. Usually, experiments were conducted with a 600–700 sccm flow of Helium through the photolysis chamber. The nitrate-doped ice film was prepared by freezing approximately 3 ml 18 MΩ ultra-pure water to which HNO₃ was dosed from the gas phase over the course of an experiment. For this a trace flow (3.5 sccm) of HNO₃-vapor in helium was added to the carrier gas. The mixture of HNO₃ in helium was prepared and stored in a glass bulb by freeze-pump-thaw cycles of a 3:1 mixture of sulfuric acid (96%) and nitric acid (70%). The pressure drop in the storage bulb was monitored during each experiment to determine the flow of HNO₃ to the photolysis chamber. In some other experiments ice frozen from a dilute (10 w%) nitric acid solution was used. Humidity of the carrier gas could be regulated over a wide range. This was done by passing part of the main flow through distilled water in a bubbler at room temperature as described by Ullerstam et al. (2005).

Once a temperature, humidity and HNO₃ equilibrium was established in the entire flow system, the irradiation experiments were started. For this the light beam exiting a 1000 W Xe-lamp was focused to a diameter of approximately 2 cm perpendicular to the ice surface using optical lenses and a mirror. The infrared portion of the light was removed using a water filter to avoid heating of the ice surface. To minimize the effect of photolytic reactions on the glass surfaces, great care was taken to avoid any irradiation of glass areas in the chamber. The wavelength dependence of HONO and NO₂ release was investigated using long-pass optical filters. The cut-on points of the individual filters, which are defined as 50% level of the broad transmission curve, were 295 nm, 305 nm, 320 nm and 345 nm.

The gas flow out of the photolysis chamber entered the ionization region of the CIMS,
which was pumped by a large rotary pump. HNO$_3$, HONO and NO$_2$ were ionized with SF$_6$, which was generated by passing a trace amount of SF$_6$ in a flow of nitrogen through a 210Po radioactive source situated at a right angle to the carrier gas flow. Nitric acid was detected as NO$_3^-$, HONO as NO$_2^-$, HF and NO$_2$ as NO$_2$·HF. During the experiments the ratio of signals at m/z = 46, 62 and 66, representing NO$_2^-$, NO$_3^-$ and NO$_2$·HF respectively, to that at m/z = 146, representing SF$_6^-$, was monitored to account for any changes in the intensity that arise from variations or drifts in concentration of the SF$_6$ reagent ion. Ullerstam et al. (2005) has found that the CIMS signal from nitric acid is linearly dependent on the acid partial pressure in the range of exposures used in this study. Based on this linear relationship and the known rate constants for the fast ion-molecule reactions with SF$_6^-$, the fluxes of HONO and NO$_2$ were estimated. Equation (1) gives the relationship used, where [HONO] is the gas-phase concentration of HONO in molecules cm$^{-1}$, S_{66} and S_{146} are the observed CIMS signal intensity at mass 66 and 146 in counts s$^{-1}$, and k is the rate coefficient of 0.6×10$^{-9}$ cm3 molec$^{-1}$ s$^{-1}$ for the reaction of HONO with SF$_6^-$ (Longfellow et al., 1998).

$$[\text{HONO}] = \frac{S_{66}/S_{146}}{k \cdot t}$$

A rate constant of 0.14×10$^{-9}$ cm3 molec$^{-1}$ s$^{-1}$ was used for the reaction of NO$_2$ (Huey et al., 1995). In either case the reaction time t has to be known to retrieve the gas phase concentration using Eq. (1). Under the assumption that the reaction times of the different nitrogen oxides with SF$_6^-$ in this experimental system are identical, the reaction time for the reaction of HNO$_3$ with SF$_6^-$ was used to calculate the gas phase concentrations of HONO and NO$_2$. This time of 0.5 ms was calculated using the known k of 2.0×10$^{-9}$ cm3 molec$^{-1}$ s$^{-1}$ as determined by Huey et al. (1995), the known gas phase concentration of HNO$_3$, and the measured CIMS signal intensity at mass 62.

3 Results and discussion

Figure 1 shows a result of a typical experimental run. Assuming gas-surface equilibrium and complete dissociation of adsorbed nitric acid, the surface concentration of nitrate was usually between 1.2 and 2.7×1014 molecules cm$^{-2}$, which roughly corresponds to one fully saturated surface layer (Ullerstam et al., 2005). Surface coverage values were obtained based on the observed NO$_3^-$ signal, the calibration of the CIMS signal to gas phase concentration and the gas-to-ice partitioning coefficient. The calibration and partitioning coefficient were taken from Ullerstam et al. (2005). Immediately upon irradiation HONO and NO$_2$ emissions were observed, with HONO showing approximately 10% of the flux of NO$_2$. This is consistent with field observations in the Arctic and Antarctic, which have generally shown that NO$_2$ is the main constituent of NO$_x$ fluxes from irradiated snow (Honrath et al., 2000b; Beine et al., 2002; Dibb et al., 2002).

A striking observation is the stability of the NO$_2$ release with time during each individual irradiation event. This stability was observed because HNO$_3$ was continually dosed to the ice surface from the gas phase in order to maintain a constant equilibrium surface concentration of nitrate. Consequently, diffusion of nitrate or its irradiation products from the bulk to the surface prior to detection can be neglected and a corresponding increase of nitrogen oxide emission with time was not observed. On the other hand, the absence of a significant decrease in release rates with time of continuous irradiation, as has been observed by Zhou et al. (2003) on pyrex glass surfaces, indicates that the heterogeneous reactivity on the ice surface does not show any sign of poisoning with time. This may perhaps be explained by the dynamic character of ice, where several mono-layers evaporate and condense to the surface per minute.

The HONO signal is characterized by a rather slower initial buildup of gas phase concentration than NO$_2$. The decrease of HONO once the irradiation is stopped also shows a different time dependence from that observed for NO$_2$. The slightly slower response of HONO signal suggests some retention of HONO after its production. At-
tempts to fit the time dependence of the HONO signals to first order kinetics, in order
to gain an estimate of the activation energy for this process, were unsuccessful. This
indicates that retention on the ice surface, caused by either adsorption on the surface
or by solvation in the upper part of the ice (vide infra), does not dominate the time
dependence of the HONO release signal. The slow build up and decay might rather
be explained by the involvement of several factors such as retention on the walls of the
CIMS apparatus and the flow tubes, as well as gas-phase transport.

3.1 Adsorptive processes

To shed some light on the different influences of photochemical production versus
physical processes, the temperature dependence of HONO and NO$_2$ release was in-
vestigated. Figure 2 shows results of nitrate irradiation experiments at temperatures
between 193 K and 253 K. A decreasing HONO equilibrium flux and a stable NO$_2$
release with decreasing temperatures is observed. The significant temperature de-
pendence of the HONO release at temperatures below 220 K suggests that physical
adsorption influences the measured flux. It has been shown previously that the adsorp-
tion equilibrium of HONO strongly shifts to the adsorptive state at temperatures below
200 K (Fenter et al., 1996; Bartels-Rausch et al., 2002). The rather moderate tempera-
ture dependence between 220 K and 253 K suggests that solvation in the upper part of
the ice surface (the so-called quasi-liquid layer) does not dominate the partitioning of
HONO in this temperature range. This observation is in agreement with earlier work by
Dibb et al. (2002). Recent field studies by Beine et al. (2006), where unexpected low
HONO fluxes from Antarctic snow-pack are discussed, also conclude that solvation in the
quasi-liquid layer is a negligible factor in HONO snow chemistry.

The activation energy associated with the appearance of the HONO product was
calculated using the slope of a linear regression over the temperature range 193 K–
253 K for the data shown in Fig. 2. The activation energy obtained in this manner
is (24 ± 3) kJ mol$^{-1}$. This value is quite consistent with reported heats of adsorption:
Bartels-Rausch et al. (2002): ~ 32 kJ mol$^{-1}$ and Chu et al. (2000): ~ 34 kJ mol$^{-1}$. Addi-
tional support for reversible uptake of HONO at low temperatures comes from one ex-
periment at temperatures below 208 K where no HONO release was observed during
irradiation for 3 h. However, when the light source was turned off and the temperature
was rapidly raised afterwards to 223 K a very large HONO release, outside the cali-
bration range of the instrument, was observed. This indicates that the production of
HONO continues even at cold temperatures, but its release is hindered by uptake on the
surface.

As expected from its much weaker heat of adsorption, (Bartels-Rausch et al., 2002)
NO$_2$ release is not affected by temperature changes in the range of 193 K and 253 K.
At higher temperatures, the stable release of NO$_2$ is in agreement with earlier work
by Cotter et al. (2003), who detected no effect of temperature changes in the range
of 243–253 K on NO$_2$ fluxes. Interestingly, this observation seems to be in contrast to
studies by Dubowski et al. (2001, 2002) and Boxe et al. (2006), who have observed
that NO$_2$ fluxes increase markedly with temperature at $T \geq 248$ K. This temperature de-
pendence was interpreted as an interplay of various processes such as diffusion or
the plasticity of the ice matrix. Because diffusion from the bulk ice was negligible in our
experiments due to the dosing of nitrate from the gas phase, comparison of the tempera-
ture influence on the photochemical NO$_2$ production is difficult. Also, as Boxe et al.
(2006) has pointed out, the temperature dependence is most significant at tempera-
utures above 253 K, just outside of the temperature range in the experiments presented
here.

The comparison is further complicated because the photolysis of nitrate was re-
stricted to the UV in Dubowski et al. (2001, 2002) and Boxe et al. (2006), but not in
Cotter et al. (2003) and the results discussed in this paper. The absence of a strong
temperature dependence of NO$_2$ release apart from the weak adsorptive processes at
low temperatures might indicate that photolysis in the visible wavelength region plays
an important role in heterogeneous nitrogen oxide chemistry on snow. Photochemi-
cal loss of photogenerated NO$_2$ prior to desorption or in the gas phase has long been
recognized (Dubowski et al., 2001; Cotter et al., 2003). A recent study by Boxe et al.
(2005) confirmed the role of photolysis Reaction $R3$. Also, because both NO_2^- and HONO adsorb at wavelengths in the visible and near-UV regions, ($R4$, $R5$), such photolysis reactions might mask the temperature dependence of NO_2 and HONO release. More laboratory studies are certainly needed to retrieve the relevant quantum yields.

\[
\text{NO}_2^-(\text{hν}) \rightarrow \text{NO} + \text{O}^{{(\text{3P})}} \quad \text{(R3)}
\]

\[
\text{NO}_2^- \rightarrow \text{NO} + \text{O}^- \quad \text{(R4)}
\]

\[
\text{HONO} \rightarrow \text{NO} + \text{OH} \quad \text{(R5)}
\]

Concluding, as the release of HONO at temperatures above 238 K is neither affected by adsorption nor by diffusion in our experimental set-up, the present results can be used to estimate the quantum yield of HONO formation from nitrate photolysis on ice surfaces. For this the observed relative fluxes of HONO to NO_2 and a mean quantum yield for NO_2 formation of 2×10^{-3} have been used (Dubowski et al., 2001, 2002; Chu and Anastasio, 2003). The resulting HONO quantum yield of $(3.8 \pm 0.6 \times 10^{-4})$ is approximately one order of magnitude lower than the reported quantum yield for NO_2 formation. The constant HONO quantum yield at temperatures between 238 K and 258 K also implies that, in agreement with current knowledge, temperature changes can not account for the significant differences in HONO releases observed at different sample sites (Davis et al., 2001; Dibb et al., 2002, 2004; Honrath et al., 2002; Boxe et al., 2006).

3.2 Photolysis mechanism

To investigate the influence of the irradiation spectrum on the relative product yields and to retrieve information of the relevant reaction pathways, the dependence of the release of HONO and NO_2 on wavelength was investigated. Figure 3 shows the observed NO_2 and HONO fluxes from irradiated frozen nitrate solution at different wavelengths.

Frozen nitric acid solutions as the source for nitrate were better suited for these experiments because the fluxes of NO_2 and HONO showed better signal to noise ratios than those obtained from nitrate samples deposited from the gas phase. Consequently, the influence of diffusion from the interior of either nitrate or its photolysis products is evident from Fig. 3, as the fluxes of NO_2 and HONO show a slow, continuous increase during each individual irradiation event.

Both nitrogen oxides show the strongest signal when the chamber was illuminated with the full spectrum of approximately 250 nm $\leq \lambda \leq$ 1200 nm, as seen in the signals at 8000 and 10 000 s in Fig. 3. When the incoming radiation below 300 nm is blocked, the release of both nitrogen oxides decreases significantly. However, the apparently different wavelength dependence of their release between 300 and 345 nm illustrates the complex nature of nitrogen oxide photochemistry in snow.

The HONO flux shows a wavelength dependence which is consistent with the absorption spectrum of aqueous nitrate. Its release is strongest when wavelengths below approximately 320 nm, where the absorption of nitrate is highest, are not filtered out. It ceases totally when wavelengths below 345 nm are blocked. Aqueous nitrate does not absorb above 345 nm. This observation hints to $R2$ as important pathway for HONO release from snow-packs – despite the minor importance of the initial photolysis step in $R2$ compared to $R1$. Support for this conclusion comes also form the ratio of HONO to NO_2 fluxes with irradiation in the UV region, which is similar to the previously published ratio of the two nitrate photolysis channels in aqueous solution at 298 K (Warneck and Wurzinger, 1988; Zellner et al., 1990; Mack and Bolton, 1999).

In contrast, the observed wavelength-independent NO_2 release and production of NO_2 at wavelengths above 345 nm was unexpected. In recent work the good agreement between NO_2 release and the aqueous nitrate absorption cross section was used to identify nitrate as an important NO_2 source via $R1$ (Cotter et al., 2003). Our observation of fluxes of NO_2 at wavelengths above 345 nm therefore cast some doubt on nitrate photolysis as the sole source of the gaseous nitrogen oxides, at least that of NO_2, observed in our experiments.
One possible explanation for NO$_2$ production at wavelengths longer than 320 nm involves photosensitization by organic impurities present in the ice. Photosensitization of NO$_2$ reduction by organics has recently been observed experimentally by Stemmler et al. (2006). It seems thus reasonable that impurities that might originate from the acid solutions used in these experiments result in an absorption spectrum different form pure nitrate. Further studies are certainly desirable to investigate the absorptive properties of nitrate in presence of organic, and possible inorganic, contaminants.

Another possibility is that NO$_2$ could be formed by vibrational overtone-induced dissociation of gas phase or adsorbed HNO$_3$ (or of a photoproduct containing the OH group). Overtone-induced dissociation of some atmospheric relevant acids in the gas-phase have been proposed to play in important role in the atmosphere (Donaldson et al., 2004). Although the yields for overtone-induced dissociation of gas phase HNO$_3$ are rather low (Brown et al., 2000), some component of the NO$_2$ might originate from gas phase photolysis of HNO$_3$. To determine the importance of gas-phase photolysis, the dependence of NO$_2$ fluxes on gas-phase nitric acid concentration was investigated. NO$_2$ fluxes did not decrease with decreasing HNO$_3$ concentrations in the range of 1×10^{-7} to 3×10^{-5} hPa; we therefore conclude that gas phase photolysis did not play a major role.

Overtone-induced dissociations on ice surfaces have to our knowledge not been investigated. Also, the question of the molecular state of adsorbed HNO$_3$ is still under debate: Recently Ullerstam et al. (2005) have argued that the non-dissociative Langmuir model can describe the HNO$_3$ uptake on ice and have consequently concluded that molecular HNO$_3$ might be present on the ice surface. This conclusion is supported by Ramazan et al. (2006) who found significant amounts of HNO$_3$-water complexes relative to nitrate in thin water films. In contrast, Zondlo et al. (1998) observed rapid dissociation of HNO$_3$ upon adsorption on ice.

Besides those proposed additional absorption pathways, our results indirectly suggest the formation of secondary photoproducts. The long lasting NO$_2$ and HONO release apparent in Fig. 3 after the irradiation has been stopped, is most pronounced when nitrate on the ice surface had been exposed to light with $\lambda \leq 300$ nm. This wavelength dependence is consistent with the formation of peroxides, such as HOONO$_2$ or HOONO. HOONO$_2$ may decompose to yield NO$_2$ or HONO (Zhu et al., 1993; Dentener et al., 2002). The thermal and photolytic decay of HOONO yields NO$_2$ (Konen et al., 2005). This would imply that the photolysis of either peroxide either in the UV region or at higher wavelengths might contribute to NO$_2$ fluxes. Recently, Matthews et al. (2004) showed experimentally that photolysis of excited HOONO$_2$ can be induced by a combined radiation at 390 nm and 590 nm. The analogous decay of HOONO can be induced by radiation of 980 nm (Konen et al., 2006).

Concluding, secondary heterogeneous reactions could significant modify the fluxes of NO$_2$ and the wavelength dependence of aqueous nitrate photolysis is not preserved in the NO$_2$ fluxes.

4 Conclusions

We have -to our knowledge for the first time- made measurements of HONO releases from irradiated ice under controlled laboratory conditions. Different wavelength dependences of NO$_2$- and HONO-release were observed, illustrating the complex nature of nitrate snow photolysis. We argue that primary photolysis is an important source of HONO in irradiated nitrate-containing snow and ice. The quantum yield for this product is approximately 10% that for NO$_2$. At lower temperatures, adsorption of HONO at the ice surface is apparent, but the solvation in the quasi-liquid layer at higher temperatures does not influence the HONO release.

In contrast, the NO$_2$ fluxes from nitrate irradiation on ice surfaces are insensitive to temperature, at least below 250 K. The flux of this product also seems to be sensitive to subsequent photolysis in the visible spectral region. We suggest that additional reactions, perhaps involving HOONO$_2$ or HOONO, might contribute to observed nitrogen oxide fluxes. However, there could also be a contribution to the photochemistry due to the participation of organic (or inorganic) impurities, which may act as photosensitizing
agents. Low concentrations of organics in environmental snow was used to partially explain unusual low HONO emission during a field study in Antarctica by Beine et al. (2006).

Acknowledgements. This project was funded by CFCAS. TBR thanks M. Ullerstam, K. Broekhuizen and J. Abbatt for continuing support and discussion on the CIMS instrument and trace-gas snow interaction. The authors thank J. Abbatt for the use of the CIMS apparatus and S. Mabury for providing the Xe-lamp.

References

Bartels-Rausch, T., Eichler, B., Zimmermann, P., Gäggeler, H., and Ammann, M.: The adsorption enthalpy of nitrogen oxides on crystalline ice, Atmos. Chem. Phys., 2, 235–247, 2002. 10715, 10719, 10720

Beine, H. J., Dominé, F., Simpson, W., Honrath, R. E., Sparapani, R., Zhou, X., and King, M.: Snow-pile and chamber experiments during the Polar Sunrise Experiment Alert 2000: exploration of nitrogen chemistry, Atmos. Environ., 36, 2707–2719, doi:10.1016/S1352-2310(02)00120-6, 2002. 10718

Beine, H. J., Amoroso, A., Dominé, F., King, M. D., Nardino, M., Ianniello, A., and France, J. L.: Small HONO emissions form snow surfaces at Browning Pass, Antarctica, Atmos. Chem. Phys. Discuss., 6, 615–648, 2006. 10714, 10719, 10725

Boxe, C., Colussi, A., Hoffmann, M., Murphy, J., Wooldridge, P., Bertram, T., and Cohen, R.: Photochemical production and release of gaseous NO3 from nitrate-doped water ice, J. Phys. Chem. A, 109, 8520–8525, doi:10.1021/jp0518815, 2005. 10715, 10720

Boxe, C., Colussi, A., Hoffmann, M., Perez, I., Murphy, J., and Cohen, R.: Kinetics of NO and NO2 evolution from illuminated frozen nitrate solutions, Journal of Physical Chemistry A, 110, 3578–3583, doi:10.1021/jp055037q, 2006. 10715, 10720, 10721

Brown, S. S., Wilson, R. W., and Ravishankara, A. R.: Absolute intensities for third and fourth overtone absorptions in HNO3 and H2O2 measured by Cavity Ring Down Spectroscopy, J. Phys. Chem. A, 104, 4976–4983, doi:10.1021/jp000439d, 2000. 10723

Chu, L., and Anastasio, C.: Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice, J. Phys. Chem. A, 107, 9594–9602, doi:10.1021/jp0349132, 2003. 10721

Chu, L., Diao, G., and Chu, L. T.: Heterogeneous interaction and reaction of HONO on ice films between 173 and 230 K, J. Phys. Chem. A, 104, 3150–3158, doi:10.1021/jp9937151, 2000. 10719

 Cotter, E. S. N., Jones, A. E., Wolff, E. W., and Bauguitte, S. J.-B.: What controls photochemical NO and NO2 production from Antarctic snow? Laboratory investigation assessing the wavelength and temperature dependence, J. Geophys. Res., 108, 8–1 –8–9, doi:10.1029/2002JD002602, 2003. 10714, 10720, 10722

Davis, D., Nowak, J. B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele, F., Mauldin, L., Tanner, D., Shetter, R., Lefer, B., and McMurry, P.: Unexpected high levels of NO observed at South Pole, Geophys. Res. Lett., 28, 3625–3628, doi:10.1029/2001GL012584, 2001. 10721

Dentener, F., Williams, J., and Metzger, S.: Aquatic phase reaction of HNO3: The impact on tropospheric chemistry, J. Atmos. Chem., 41, 109–134, doi:10.1023/A:1014233910126, 2002. 10724

Dibb, J. E., Arsenault, M., Peterson, M. C., and Honrath, R. E.: Fast nitrogen oxide photochemistry in Summit, Greenland snow, Atmos. Environ., 36, 2501–2511, doi:10.1016/S1352-2310(02)00130-9, 2002. 10718, 10719, 10721

Dibb, J. E., Huey, L. G., Slusher, D. L., and Tanner, D. J.: Soluble reactive nitrogen oxides at South Pole during ISCAT 2000, Atmos. Environ., 38, 5399–5409, doi:10.1016/j.atmosenv.2003.01.001, 2004. 10721

Donaldson, D. J., Tuck, A. F., and Vaida, V.: Atmospheric photochemistry via vibrational overtone absorption, Atmos. Environ., 38, 5399–5409, doi:10.1016/j.atmosenv.2003.01.001, 2004. 10723

Dubowski, Y., Colussi, A., and Hoffmann, M.: Nitrogen dioxide release in the 302 nm band photolysis of spray-frozen aqueous nitrate solutions. Atmospheric implications, Chem. Rev., 103, 4717–4729, doi:10.1021/cr2006519, 2001. 10720, 10721

Dubowski, Y., Colussi, A., Boxe, C., and Hoffmann, M.: Monotonic increase of nitrite yields in the photolysis of nitrate in ice and water between 238 and 294 K, J. Phys. Chem. A, 107, 9594–9602, doi:10.1021/jp0349132, 2002. 10720, 10721

Fenter, F. F., Caloz, F., and Rossi, M. J.: Heterogeneous kinetics of N2O5 uptake on salt, with a systematic study of the role of surface presentation (for N2O5 and HNO3), J. Phys. Chem. A, 100, 1008–1019, doi:10.1021/jp9503829, 1996. 10719

Honrath, R., Lu, Y., Peterson, M., Dibb, J., Arsenault, M., Cullen, N., and Steffen, K.: Vertical fluxes of NOx: HONO, and HNO3 above the snowpack at Summit, Greenland. Atmos.
Honrath, R. E., Guo, S., Peterson, M. C., Dziobak, M. P., Dibb, J. E., and Arsnaugl, M. A.: Photochemical production of gas phase NO$_x$ from ice crystal NO$_3^-$, J. Geophys. Res. Atmos., 105, 24 183–24 190, doi:10.1029/2000JD900361, 2000a. 10714

Honrath, R. E., Peterson, M. C., Dziobak, M. P., Dibb, J. E., Arsnaugl, M. A., and Green, S. A.: Release of NO$_x$ from sunlight-irradiated midlatitude snow, Geophys. Res. Lett., 27, 2237–2240, doi:10.1029/2000GL011286, 2000b. 10718

Huey, L., Hanson, D. R., and Howard, C. J.: Reactions of SF$_6$ and I$^-$ with atmospheric trace gases, J. Phys. Chem., 99, 5001–5008, doi:10.1021/j100014a021, 1995. 10717

Konen, I. M., Li, E. X. J., Stephenson, T. A., and Lester, M. I.: Second OH overtone excitation and statistical dissociation dynamics of peroxynitrous acid, J. Chem. Phys., 123, 204 318, doi:10.1063/1.2126968, 2005. 10724

Longfellow, C. A., Imamura, T., Ravishankara, A. R., and Hanson, D. R.: HONO solubility and heterogeneous reactivity on sulfuric acid surfaces, J. Phys. Chem. A, 102, 3323–3332, doi:10.1021/jp9807120, 1998. 10714, 10722

Matthews, J., Sharma, R., and Sinha, A.: Photodissociation of vibrationally excited pernitric acid: HO$_2$NO$_2$(2ν$_1$) + 390 nm, J. Phys. Chem. A, 108, 8134–8139, doi:10.1021/jp040285s, 2004. 10724

Ramazan, K. A., Wingen, L. M., Miller, Y., Chaban, G. M., Gerber, R. B., Xantheas, S. S., and Finlayson-Pitts, B. J.: New experimental and theoretical approach to the heterogeneous hydrolysis of NO$_2^-$: Key role of molecular nitric acid and its complexes, J. Phys. Chem. A, 110, 6886–6897, doi:10.1021/jp056426n, 2006. 10723

Stemmier, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.: Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid, Nature, 440, 195–198, doi:10.1038/nature04603, 2006. 10723

Thornberry, T. and Abbatt, J. P. D.: Heterogeneous reaction of ozone with liquid unsaturated fatty acids: detailed kinetics and gas-phase product studies, Physical Chemistry, Chem. Phys. (PCCP), 6, 84, doi:10.1039/b310149e, 2004. 10716

Ullerstam, M., Thornberry, T., and Abbatt, J. P. D.: Uptake of gas-phase nitric acid to ice at low partial pressures: evidence for unsaturated surface coverage, Faraday Discuss., 130, 211–226, doi:10.1039/b417418f, 2005. 10716, 10717, 10718, 10723

Warneck, P. and Wurzinger, C. J.: Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution, J. Phys. Chem., 92, 6278–6283, doi:10.1021/j100333a022, 1988. 10722

Zellner, R., Exner, M., and Herrmann, H.: Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H$_2$O$_2$ at 308 and 351 nm in the temperature range 278 and 353 K, J. Atmos. Chem., 10, 411, doi:10.1007/BF00115783, 1990. 10722

Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S. B., Civerolo, K., and Schwab, J.: Nitric acid photolysis on surfaces in low-NO$_x$ environments: Significant atmospheric implications, Geophys. Res. Lett., 30, 2217, doi:10.1029/2003GL018620, 2003. 10718

Zhu, T., Yarwood, G., Chen, J., and Niki, H.: Evidence for the heterogeneous formation of nitrous-acid from peroxynitric acid in environmental chambers, Environ. Sci. Technol., 27, 982–983, doi:10.1021/es00042a024, 1993. 10724

Zondlo, M. A., Barone, S. B., and Tolbert, M. A.: Condensed-Phase Products in Heterogeneous Reactions: N$_2$O$_5$, ClONO$_2$, and HNO$_3$ reacting on ice films at 185 K, J. Phys. Chem. A, 102, 5735–5748, doi:10.1021/jp980131a, 1998. 10723
Fig. 1. Typical result of an irradiation experiment at 223 K and with $\lambda \geq 250$ nm. Nitrate was dosed from the gas phase on pure ice. Note the different scales for HONO and NO$_2$ on the y-axis.

Fig. 2. Temperature dependence of the HONO and NO$_2$ release. Error bars show one standard deviation of the average of the result from several experiments performed under identical conditions.
Fig. 3. Effect of changes in the wavelength of irradiating light on the emission of nitrogen oxides. Experiments were done at 233 K on frozen nitrate solution. The wavelength denotes the cut-on point of the optical filters. Note the different scales for NO$_2$ and HONO.