Calibration of the Total Carbon Column Observing Network Using Aircraft Profile Data

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Wunch, D., G. C. Toon, P. O. Wennberg, S. C. Wofsy, B. B. Stephens, M. L. Fischer, O. Uchino, et al. 2010. Calibration of the Total Carbon Column Observing Network Using Aircraft Profile Data. Atmospheric Measurement Techniques 3, no. 5: 1351–1362.

Published Version
doi:10.5194/amt-3-1351-2010

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:30761258

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Calibration of the Total Carbon Column Observing Network using aircraft profile data

D. Wunch¹, G. C. Toon², P. O. Wennberg¹, S. C. Wofsy³, B. B. Stephens⁴, M. L. Fischer⁵, O. Uchino⁴, J. B. Abshire⁶, P. Bernath⁷, S. C. Biraudy⁸, J.-F. L. Blavier⁹, C. Boone¹⁰, K. P. Bowman¹¹, E. V. Browell¹², T. Campos¹³, B. J. Connor¹⁴, B. C. Daube¹⁵, N. M. Deutscher¹⁶, M. Diao¹⁷, J. W. Elkins¹⁸, C. Gerbig¹⁹, E. Gottlieb²⁰, D. W. T. Griffith²¹, D. F. Hurst²², R. Jiménez²³, G. Keppel-Aleks¹, E. A. Kort³, R. Macatangay⁵, T. Machida⁴, H. Matsueda¹⁹, F. Moore¹⁸, I. Morino¹⁴, S. Park³, J. Robinson²⁰, C. M. Roehl¹, Y. Sawa¹⁹, V. Sherlock⁶, C. Sweeney¹⁸, T. Tanaka¹⁹, and M. A. Zondlo¹⁵

¹California Institute of Technology, Pasadena, CA, USA
²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
³Harvard University, Cambridge, MA, USA
⁴National Center for Atmospheric Research, Boulder, CO, USA
⁵Center for Atmospheric Chemistry, University of Wollongong, Wollongong, NSW, Australia
⁶National Institute of Water & Atmospheric Research, Wellington, New Zealand
⁷BC Consulting Limited, Alexandra, New Zealand
⁸University of Waterloo, Waterloo, ON, Canada
⁹York University, York, UK
¹⁰Lawrence Berkeley National Laboratories, Berkeley, CA, USA
¹¹NASA Langley Research Center, Hampton, VA, USA
¹²NASA Goddard Space Flight Center, Greenbelt, MD, USA
¹³Texas A&M University, College Station, TX, USA
¹⁴National Institute for Environmental Studies, Tsukuba, Japan
¹⁵Princeton University, Princeton, NJ, USA
¹⁶Max-Planck-Institut für Biogeochemie, Jena, Germany
¹⁷National Oceanic and Atmospheric Administration, Boulder, CO, USA
¹⁸Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
¹⁹Meteorological Research Institute, Tsukuba, Japan
²⁰National Institute of Water & Atmospheric Research, Lauder, New Zealand
²¹Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia

Received: 27 May 2010 – Published in Atmos. Meas. Tech. Discuss.: 17 June 2010
Revised: 16 September 2010 – Accepted: 17 September 2010 – Published: 6 October 2010

Abstract. The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO₂, CO, CH₄, N₂O and H₂O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measurements. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. These calibrations are compared with similar observations made in 2004 and 2006. The results indicate that a single, global calibration factor for each gas accurately captures the TCCON total column data within error.
1 Introduction

The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier transform spectrometers that precisely measure total columns of CO$_2$, CO, CH$_4$, N$_2$O, H$_2$O, HF and other gases (Wunch et al., 2010). The TCCON instruments measure the absorption of direct sunlight by atmospheric gases in the near infrared (NIR) spectral region. To derive a total column measurement of the gases from these spectra, external information about the atmosphere (e.g. temperature, pressure, a priori mixing ratio) and NIR spectroscopy is required. A significant effort is put into minimizing errors in this external information, and the resulting total columns are precise (e.g. <0.25% in CO$_2$).

Due to systematic biases in the spectroscopy, the absolute accuracy of the column measurements is ~1%, which is inadequate for use in combination with in situ measurements for carbon cycle science. In order to make TCCON column measurements useful for these combined analyses, they must be calibrated to the World Meteorological Organization (WMO) in situ trace gas measurement scales. To do this, we use profiles obtained with in situ instrumentation flown on aircraft over TCCON sites. A set of profiles were measured over the Park Falls, Wisconsin TCCON site in 2004–2005 (Washenfelder et al., 2006) during the Intercontinental Chemical Transport Experiment–North America campaign (INTEX-NA, Singh et al., 2006) and the CO$_2$ Budget and Rectification Airborne – Maine experiment (COBRA-ME, Gerbig et al., 2003; Lin et al., 2006). A single profile was measured coincidently with the Darwin, Australia site in 2006 as part of the Tropical Warm Pool International Cloud Experiment (TWP-ICE, Deutscher et al., 2010; May et al., 2008). Since then, other TCCON sites have begun operational measurements. In this paper, we describe the first global calibration of five TCCON sites (Park Falls, Lamont, Darwin, Lauder and Tsukuba), using instrumentation calibrated to WMO scales aboard the HIAPER aircraft, during the START-08 and HIPPO overpasses in 2008 and 2009, Learjet overflights of Lamont in 2009, and a Beechcraft King Air 200T aircraft profile over Tsukuba, Japan in 2009 (Tanaka et al., 2009). We present the calibration of CO$_2$, CO, CH$_4$, N$_2$O and H$_2$O.

2 TCCON

The TCCON was developed to provide a long, nearly continuous time series to serve as a transfer standard between in situ networks and satellite measurements, and to provide insights into the carbon cycle (e.g., Yang et al., 2007; Keppel-Aleks et al., 2008; Wunch et al., 2009; Deutscher et al., 2010). TCCON sites are located worldwide (Fig. 1). The first TCCON site, located in Park Falls, is described by Washenfelder et al. (2006).

Total column abundances are retrieved from spectra measured with the TCCON instruments using a nonlinear least-squares spectral fitting algorithm (GFT), which scales an a priori profile to produce a synthetic spectrum that achieves the best fit to the measured spectrum. We use the spectral windows and spectroscopic data listed in Table 1.

Fig. 1. TCCON site locations. The HIPPO flight path is overlaid in solid black, START-08 in solid green. The King Air flight path is marked by black stars (*) directly over the Tsukuba site, and the Lear flight path is marked in black plusses (+) directly over the Lamont site.

Molecule	Central wavenumber (cm$^{-1}$)	Spectral width (cm$^{-1}$)	Spectroscopic line list
CO$_2$	6220.00	80.00	1, 2
	6339.50	85.00	1, 2
CO	4233.00	48.60	1
	4290.40	56.80	1
CH$_4$	5938.00	116.00	1, 3
	6002.00	11.10	1, 3
	6076.00	138.00	1, 3
N$_2$O	4395.50	37.70	1
	4429.80	23.60	1
O$_2$	7885.00	240.00	1, 2, 4, 5, 6
HF	4038.95	0.32	1
H$_2$O	6076.90	3.85	1, 7, 8
	6099.35	0.95	1, 7, 8
	6125.85	1.45	1, 7, 8
	6177.30	0.83	1, 7, 8
	6255.95	3.60	1, 7, 8
	6301.35	7.90	1, 7, 8
	6392.45	3.10	1, 7, 8
	6401.15	1.15	1, 7, 8
	6469.60	3.50	1, 7, 8

Table 1. TCCON spectral windows and spectroscopy. If a single molecule is retrieved in multiple windows, the results are averaged. References are 1, Rothman et al. (2009); 2, Rothman et al. (2009, November update); 2, Toth et al. (2008); 3, Frankenberg et al. (2008); 4, Smith and Newnham (2000); 5, Yang et al. (2005); 6, Gordon et al. (2010); 7, Toth (2005); 8, Jenouvrier et al. (2007).
Table 2. Aircraft instrumentation used in this study. Demonstrated in-flight precision and estimated accuracy for each instrument and molecule are listed in column 4.

Flight	Instrument	Species	Precision, Accuracy	Notes
HIPPO	HAIS/Harvard Quantum Cascade Laser Spectrometer (QCLS)	CO₂	0.02 ppm, 0.1 ppm	1 s, 1σ precision; 1σ accuracy
		CH₄	0.5 ppm, 1 ppm	1 s, 1σ precision; 1σ accuracy
		CO	0.15 ppm, 3.5 ppb	1 s, 1σ precision; 1σ accuracy
		N₂O	0.09 ppm, 0.2 ppb	1 s, 1σ precision; 1σ accuracy
Harvard OMS		CO₂	0.1 ppm, 0.1 ppm	1 s, 1σ precision; 1σ accuracy
NCAR Airborne Oxygen (AO2) Li-840		CO₂	0.3 ppm, 0.1 ppm	10 s, 1σ precision; long-term (>1 min) 1σ accuracy
NCAR Research Aviation Facility (RAF)		CO	2 ppb, ± 2 ppb + 5%	10 s, 1σ precision; 1σ accuracy
HAIS/Princeton Vertical Cavity Surface Emitting Laser Hygrometer (VCSEL)		H₂O	<3%, 5%	1 s, 1σ precision
START-08/ pre-HIPPO	HAIS/Harvard Quantum Cascade Laser Spectrometer (QCLS)	CO₂	0.16 ppm, 0.16 ppm	10 s, 1σ precision; 1σ accuracy
		CH₄	4.5 ppm, 4.5 ppb	10 s, 1σ precision; 1σ accuracy
		CO	1.3 ppm, 3.5 ppb	10 s, 1σ precision; 1σ accuracy
		N₂O	0.7 ppm, 0.7 ppb	10 s, 1σ precision; 1σ accuracy
		CO₂	0.3 ppm, 0.1 ppm	10 s, 1σ precision; long-term (>1 min) 1σ accuracy
		CO	2 ppb, ± 2 ppb + 5%	10 s, 1σ precision; 1σ accuracy
		H₂O	<3%, 5%	1 s, 1σ precision
NCAR Airborne Oxygen (AO2) Li-840		CO₂	0.3 ppm, 0.1 ppm	10 s, 1σ precision; long-term (>1 min) 1σ accuracy
NCAR Research Aviation Facility (RAF)		CO	2 ppb, ± 2 ppb + 5%	10 s, 1σ precision; 1σ accuracy
NOAA Unmanned Aircraft Systems Chromatograph for Atmospheric Trace Species (UCATS)		H₂O	5%, 7%	1σ precision and accuracy
Learjet	NOAA Flask Samplers	CO₂	0.03 ppm, 0.155 ppm	1σ for 12 flasks (~28 day) precision and accuracy
		CH₄	1.2 ppm, 1.06 ppm	1σ for 12 flasks (~28 day) precision and accuracy
		CO	0.3 ppm, 0.8 ppb	1σ for 12 flasks (~28 day) precision and accuracy
		N₂O	0.4 ppm, 0.3 ppb	1σ for 12 flasks (~28 day) precision and accuracy
Beechcraft	Continuous Measurement Equipment (CME)	CO₂	0.2 ppm, 0.12 ± 0.02 ppm	10 s, 1.64σ (90%) precision; 1σ accuracy
King Air 200T	Li-COR 840 non-dispersive infrared analyser	CH₄	1.7 ppm, 4.1 ± 0.6 ppm	1σ precision and accuracy
COBRA-ME	Hand-operated Flask Sampling Equipment (HSE)	CO₂	0.1 ppm, 0.1 ppm	1 s, 1σ precision; 1σ accuracy
Harvard OMS		CO	2 ppb, ± 3 ppb + 3%	1 s, 1σ precision; 1σ accuracy
INTEX-NA	Li-COR 6252	CO₂	0.1 ppm, ±0.25 ppm	1 s, 1σ precision; 1σ accuracy
	UCI Grab samples analyzed with GC and GC/MS	CH₄	±0.1%, 1%	1σ precision; 1σ accuracy
TWP-ICE	Harvard OMS	CO₂	0.1 ppm, 0.1 ppm	1 s, 1σ precision; 1σ accuracy

Column-averaged dry-air mole fractions (DMF), denoted \(X_G \) for gas G, are computed using the retrieved O₂ columns as a measure of the dry air column.

\[
X_G = 0.2095 \frac{\text{column}_G}{\text{column}_O_2} \quad (1)
\]

Dividing by O₂ improves the precision of the measurement by significantly reducing the effects of instrumental or measurement errors that are common to both the gases (e.g. solar tracker pointing errors, zero level offsets, instrument line shape errors, etc. described in Wunch et al., 2010). However, any errors specific to either column\(_G\) or column\(_O_2\) will create errors in the DMFs of each gas.

Atmospheric O₂ is not, as assumed by GFIT, constant. The seasonal cycle in the O₂/N₂ ratio ranges globally by ~10–30 ppm of O₂ (Bender et al., 1998), peaking in the summer, when the CO₂ amounts are at their minimum. Using a constant O₂ amount overestimates the seasonal cycle in X_CO₂ by ~0.05 ppm. The long-term depletion of O₂ is about twice the rate of the atmospheric CO₂ increase (Tohjiima et al., 2005; Bender et al., 1998). Assuming a ~2 ppm annual CO₂ increase, GFIT will overestimate the secular increase by ~0.4%, or ~0.01 ppm X_CO₂/year. This small time-dependence will be built into a future version of our processing algorithm.

All TCCON X_CO₂ data have an airmass-dependent artifact, which causes the retrievals to be ~1% larger at low solar zenith angles than at high solar zenith angles (Wunch et al., 2010). This artifact is caused primarily by spectroscopic inadequacies which are common to all TCCON instruments (e.g. line widths, neglect of line-mixing, inconsistencies in the relative strengths of weak and strong lines). The airmass-dependent artifact is removed from the TCCON data with a single empirical correction factor before calibration. Airmass dependent artifacts have not been seen in X_CH₄, X_CO, X_N₂O or X_H₂O.

For comparison with the aircraft profiles, which are not measured instantaneously, averages are taken of TCCON X_CO₂, X_CH₄, X_CO, and X_N₂O columns retrieved while the aircraft measurements were taking place, weather permitting. Typical durations are between 0.5–4 h. The standard deviations (1σ) of the measurements are taken as the TCCON errors. One hour of TCCON measurements of X_H₂O are averaged to compare with each sonde profile, centered on the...
sonde launch time. Twice the standard deviations (2σ) of the \(X_{H_2O} \) measurements are taken as the TCCON errors, because the atmospheric variability of \(H_2O \) can be much greater than for the other molecules (Sussmann et al., 2009).

3 Aircraft campaigns

Three independent aircraft campaigns were held in 2008 and 2009 that included profiles over four TCCON stations. The instrumentation on each aircraft used for the calibration are listed in Table 2, and the dates of the profiles over TCCON sites are listed in Table 3. The WMO calibration scales used for the aircraft instrumentation are described for CO2 in Zhao and Tans (2006) and Keeling et al. (2002), for \(N_2O \) in Hall et al. (2007), for \(CH_4 \) in Dlugokencky et al. (2005) and for CO in Novelli et al. (1994). Demonstrated precision and accuracy for each instrument and each molecule are listed in Table 2.

3.1 START-08/pre-HIPPO and HIPPO-1

The NCAR/NSF High-performance Instrumented Airborne Platform for Environmental Research (HIAPER), is a modified Gulfstream V (GV) jet which hosted the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08) campaign (Pan et al., 2010) and the preliminary HIAPER Pole-to-Pole Observations (pre-HIPPO) campaign during 2008. The two campaigns shared flight time and instrumentation and made observations across North America, including a vertical profile above the Park Falls site in May, 2008. The HIAPER Pole-to-Pole Observations (HIPPO-1) campaign (Wofsy et al., 2010) covered a cross-section of the globe that spanned the Arctic to the Antarctic (Fig. 1) with profiles over Lamont and Lauder in January, 2009. The START-08/pre-HIPPO and HIPPO-1 missions used similar in situ instrumentation (Table 2). The water profiles are from the available \(H_2O \) measurements on board the aircraft (e.g., VCSEL: Zondlo et al., 2010), with additional stratospheric information supplied by the noontime NCEP/NCAR specific humidity profile for that day. The HIPPO-1 profiles used in this analysis over Lamont are shown in Fig. 2.

3.2 Learjet

The NASA Glenn Lear-25 aircraft performed three profiles from 5–13 km altitude over the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) Lamont site during a campaign from 31 July 2009 to 5 August 2009 (Abshire et al., 2010). Lower altitude (0.3–5 km) profiles were measured with a Cessna 210 at essentially the same times and locations. On both aircraft, the \(CO_2 \), \(CH_4 \), \(N_2O \) and CO measurements were made by flask samplers, which were analysed at the National Oceanic and Atmospheric Administration’s Earth System Research Laboratory (NOAA’s ESRL). Precisions and accuracies listed in Table 2 for the NOAA Flask Samplers are from Ness et al. (2010) (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/qc.html). Water profiles were obtained from on-site sonde measurements taken at 11:30 a.m. LT.

Many years of bi-weekly Cessna 0–5 km flights are also available over Park Falls and Lamont and will be used in a future analysis to assess possible calibration drifts for those sites. The ceiling of these flights is insufficiently high for use in this analysis.

3.3 Beechcraft King Air

The Beechcraft King Air 200T aircraft measures \(CO_2 \) continuously with a Li-COR (LI-840) non-dispersive infrared analyzer. \(CH_4 \) and other gases are measured using hand-operated flask samplers, which are analysed at the National Institute for Environmental Studies (NIES). Precisions and accuracies for the Beechcraft King Air instrumentation listed in Table 2 are from Machida et al. (2008), Machida et al. (2007) and Zhou et al. (2009).

The aircraft overpasses of the Tsukuba FTS instrument were carried out on 7 and 15 January 2009 over Tsukuba (36.1° N, 140.1° E) and Kumagaya (36.15° N, 139.38° E). Due to air traffic control restrictions, the higher part of the profile (2 to 7 km) was observed over Kumagaya, and the lower altitude range (0.5 to 2 km) was observed over Tsukuba. For the purposes of the FTS calibration, only data from the 15 January overflight is used, because of heavy cloud cover on 7 January. Water profiles were obtained from nearby radiosonde measurements taken at the Tateno Aerological Observatory near the time of the overpass.

4 Numerical integration of aircraft in situ profiles

To calibrate the total column measurements of the TCCON network, the aircraft in situ profiles must be integrated with respect to altitude. In order to properly compare the ground-based FTS measurements with the in situ aircraft measurement, which we consider the best measure of the true state of the atmosphere, the averaging kernels of the FTS measurements (A) must be taken into account. From the aircraft profiles (\(x_h \)), an averaging kernel-smoothed profile (\(x_s \)) can be computed that, when integrated, can be directly compared with the FTS retrieved total columns. The smoothed profile represents the profile that should be retrieved, if the FTS were measuring the true atmospheric profile without spectroscopic errors, given the GFIT a priori profile (\(x_a \)) and retrieved profile scale factor (\(\gamma \)). We use Eq. (4) of Rodgers and Connor (2003),

\[
x_s = \gamma x_a + A(x_h - \gamma x_a).
\]

(2)

Note that for a GFIT scaling retrieval, the kernels are calculated for the solution mole fraction profile, not the a priori profile, so the point of linearization of the Taylor expansion producing Eq. (2) is \(\gamma x_a \) and not \(x_a \).
Table 3. Aircraft overflights. The TCCON site, location and altitudes are listed below, as are the aircraft campaign name, dates and molecules measured and used in this study. In most cases, H$_2$O radiosonde profiles were measured along with the aircraft campaign, and those are listed separately in column 5, along with the radiosonde type. Column 6 lists the altitude range of the aircraft profiles.

Site	Location	Aircraft campaign	Dates	Species	Altitudes
Park Falls	45.9 N, 90.3 W	INTEX-NA	12, 15 Jul 2004	CO$_2$, CH$_4$	0.6–10 km
	0.44 km	COBRA-ME	15 Jul; 14, 15 Aug 2004	CO$_2$, CO	0.7–(8–10) km
		START-08/pre-HIPPO	12 May 2008	CO$_2$, CO, CH$_4$, N$_2$O, H$_2$O	1.2–9 km
Darwin	12.4S, 130.9 E	TWP-ICE	4 Feb 2006	CO$_2$	0.9–14 km
Lamont	36.6 N, 97.5 W	HIPPO	30 Jan 2009	CO$_2$, CO, CH$_4$, N$_2$O, H$_2$O	0.4–13 km
	0.32 km	Lear	31 Jul; 2, 3 Aug 2009	CO$_2$, CO, CH$_4$, N$_2$O, H$_2$O	0.3–13 km
				H$_2$O (RS92-15 Vaisala)	
Lauder	45.0 S, 169.7 E	HIPPO	21 Jan 2009	CO$_2$, CO, CH$_4$, N$_2$O, H$_2$O	0.6–14.5 km
	0.37 km			H$_2$O (RS92-KL, Vaisala)	
Tsukuba	36.1N, 140.1 E	Beechcraft King Air 200T	7, 15 Jan 2009	CO$_2$, CH$_4$	0.5–7 km
	0.03 km			H$_2$O (RS2-91 Meisei Electric)	

Fig. 2. Lamont profiles from the 30 January 2009 HIPPO overpass. The colored dots show the aircraft data. The thick grey line in the CO panel shows the mean ACE-FTS CO profile. The thin black lines show the GFIT a priori profile for 30 January 2009 over Lamont. The thick black line is the profile that is integrated.

For column measurement calibration, Eq. (2) is integrated vertically:

\[\hat{c}_s = \gamma c_a + a^T(x_h - \gamma x_a) \]

where \(\hat{c}_s \) is the smoothed column-averaged DMF, \(c_a \) is the column-averaged DMF from integrating the a priori profile and \(a \) is a vector containing the FTS dry pressure-weighted column averaging kernel (plotted in Fig. 3). The \(a^T(x_h - \gamma x_a) \) term represents the column averaging kernel-weighted vertical integration of the difference between the in situ profile and the scaled a priori profile. Column averaging kernels vary as a function of pressure and solar zenith angle.

Integrating these profiles is done most accurately on a pressure grid, under the assumption that the atmosphere...
is in hydrostatic balance. The total vertical column for gas G ($V_C G$) is then defined in the following manner:

$$V_C G = \int_0^{P_s} \frac{f_G(p)}{g \cdot m} dp$$

(4)

where $f_G = f_G^{dry}(1 - f_{H_2O})$ is the true mole fraction of gas G, P_s is the surface pressure, and g is the gravitational acceleration, which is a function of altitude (z) and latitude (ϕ). We distinguish between the true mole fraction (f_G), and the dry mole fraction (f_G^{dry}), which is what the aircraft in situ instrumentation measures. The mean molecular weight of air, m, can be expressed in terms of its wet and dry components as well: $m = m_{H_2O} \cdot f_{H_2O} + m_{air}^{dry}(1 - f_{H_2O})$. Substituting these into Eq. (4) and rearranging yields a useful, numerically integrable relationship to compute $V_C G$.

$$V_C G = \int_0^{P_s} \frac{f_G^{dry}(p)}{g(z(p), \phi) \cdot m_{air}^{dry} \left[1 + f_{H_2O}^{dry}(p) \cdot (m_{H_2O} / m_{air})\right]} dp$$

(5)
where \(f_{G,\text{dry}} \) is the aircraft profile of gas \(G \),
\[
f_{G,\text{dry}} = \frac{f_{G,H_2O}}{1-f_{H_2O}}
\]
where \(f_{H_2O} \) is the \(H_2O \) aircraft or sondé profile,
\[
m_{H_2O} = 18.02 \times 10^{-3}/N_A \text{kg/molecule},
\]
\[
m_{\text{air}} = 28.964 \times 10^{-3}/N_A \text{kg/molecule},
\]
and \(N_A \) is Avogadro’s constant. To compute the column a
verage kernel-weighted vertical column (to satisfy the right-hand
term in Eq. 3), the column averaging kernel \((a(p)) \) must be
included at every level in the integral.

\[
VC_{G,ak} = \int_0^h \frac{f_{G,\text{dry}}(p) - a(p)}{g(z(p), \phi) \cdot m_{\text{air}} (1 + f_{H_2O}(p) - m_{H_2O}/m_{\text{air}})} dp
\]

The column of dry air \((VC_{\text{air}}) \) is computed by setting
the numerator in Eq. (6) to 1. The column-averaged DMF is
defined by dividing the appropriate vertical columns by
the column of dry air. Hence, Eq. (3) becomes:

\[
\hat{c}_s = \gamma c_a + \left(\frac{VC_{\text{air}_{G,ak}} - \gamma VC_{\text{prior}_{G,ak}}}{VC_{\text{air}}_G} \right)
\]

Aircraft measurements have good accuracy, but are limited
in altitude floor and ceiling, and so we must use additional in
formation for the surface and the stratosphere. When multi
ple instruments aboard the aircraft measure the same species,
a running mean is applied. There is one instance where two
CO measurements on HIPPO-1 disagree over Lader in the
upper troposphere (RAF and QCLS): in this case, QCLS is
used.

Most TCCON sites are co-located with tower or surface in
situ measurements. In the event that there were no surface or
tower measurements available, and the aircraft did not mea
sure down to the surface, the lowest measured aircraft value
was assumed to be the surface value (e.g. Park Falls on 14
July 2004).

In general, the unknown state of the atmosphere above the
aircraft ceiling is the largest source of uncertainty in the to
tal integrated column (Table 4). For stratospheric CO\(_2\), the
mole fractions are predictable at the 0.3% level. The CO\(_2\)
profiles in the stratosphere are empirically derived from in
situ measurements on high-altitude balloons and include re
alistic latitude and time-dependencies. The stratosphere is
set by an exponential decrease above the tropopause, based
on the age of air measurements of Andrews et al. (2001).
The tropopause pressure comes from the NCEP/NCAR four
times daily analysis, which is interpolated to local noon at
the latitude and longitude of the site. A generous error of
\(\pm 1 \) ppm is assumed for the GPT nor feeding a priori profile.
These stratospheric profiles are used as a priori informa
tion for all TCCON retrievals. A priori profiles for the tropo
sphere are derived from GLOBALVIEW (GLO
BALVIEW- CO\(_2\), 2006).

Stratospheric N\(_2\)O and CH\(_4\) mole fractions are more diffi
cult to estimate than CO\(_2\) because they decrease rapidly with
altitude, causing transport-driven variations in the strato
spheric column. To account for these transport-driven vari
ations, columns of HF can be used, which are measured co
cidently with N\(_2\)O and CH\(_4\) by the TCCON FTS instru
ments. Due to a complete absence of HF in the troposphere,
HF is a sensitive indicator of ascent and descent in the strato
sphere. Indeed, a 1 km vertical shift in the HF profile pro
duces a \(\sim 15\% \) change in the total column, which is easily
measureable. Furthermore, strong stratospheric CH\(_4\)-HF and
N\(_2\)O-HF correlations have been observed globally by Luo
et al. (1995) and Washenfelder et al. (2003), which we exploit
in this analysis to determine the best stratospheric profile for
a given overpass.

The GPT CH\(_4\), N\(_2\)O, CO and HF a priori profiles are gen
erated from MkIV FTS balloon profiles (Toon, 1991). The
profiles are shifted up or down in altitude depending on the
tropopause pressure for local noon on that day. The CH\(_4\)-HF
and N\(_2\)O-HF correlations in the a.priori profiles are consist
ent with those observed by Luo et al. (1995) and Washenfel
der et al. (2003) and are preserved under the vertical shifting.
Since HF is a long-lived, stable stratospheric tracer, we
assume that any difference in the retrieved HF column from
the a priori value is due to the stratospheric dynamics and
will be anti-correlated with the stratospheric N\(_2\)O and CH\(_4\).
The magnitude of the deviation of the HF column from the
a priori HF column is used to adjust the CH\(_4\) and N\(_2\)O strato
sphere profiles to generate our best estimate of the “true”
stratospheric profile for a given overpass. An illustration of
this is in Fig. 4. The average adjustment is 0.4 km, and the
maximum adjustment is 1.8 km. Note that even small er
rors in the stratospheric a priori profile of N\(_2\)O will be very
important in this analysis, because the N\(_2\)O column avera
ging kernels increase significantly in the stratosphere (Fig. 3).
The stratospheric error contribution for both CH\(_4\) and N\(_2\)O is
estimated by shifting the stratospheric profile up and down
by 1 km and integrating the results, giving upper and lower
bounds on the column due to errors in the stratospheric pro
file.

Unlike CH\(_4\) and N\(_2\)O, stratospheric CO is highly vari
able and does not have a simple relationship with HF. To
estimate the CO stratospheric contributions, v2.2 profiles
from the low-Earth orbiting ACE-FTS instrument (Bern
ath et al., 2005) were averaged within one month of the over
pass and \(\pm 5 \) degrees latitude of the site. The work by
Clerbaux et al. (2008) has shown that the ACE-FTS CO val
ues are accurate to 30% in the upper troposphere/lower strato
sphere, and 25% above. For our stratospheric error bu
get, we have taken the larger of the standard deviation of the
ACE profiles and the estimated error by Clerbaux et al.
(2008), and summed that in quadrature with shifting the
stratospheric profile up and down by 1 km.

If water vapor profiles are not available from the aircraft in
situ data (Tsukuba, Darwin and during the Learjet overpasses
of Lamont), radiosonde measurements of H\(_2\)O are used in
Eqs. (5) and (6). Any additional stratospheric information is
provided from GPT a priori profiles, which are derived
and the derived column-average integrated via Eqs. (5).

Lamont and Darwin, the errors on the H2O columns are extended upwards using a model based on MkIV balloon profiles. Because most of the water column is located at altitudes below ~5 km, errors in the upper altitude water profile do not significantly affect the total columns of CO2, CH4, N2O and CO.

Table 4. Aircraft integration error budget. The mean errors (minimum, maximum errors) for the various overpasses indicate the contribution of the error source to the error in the integrated total column. The error is split into three sources: the contribution from the unknown stratospheric profile, the contribution from the unknown surface value (if applicable), and the contribution from the aircraft profile itself. The total error is the sum, in quadrature, of the three errors. The stratospheric error for CO2 was estimated from a sum, in quadrature, of the errors from shifting the a priori stratospheric profile up by 1 km, and adding 0.3% error to the stratospheric profile. The stratospheric CO contribution was estimated by shifting the stratospheric profile by 1 km and adding 25% error to the stratospheric profile (due to the ACE-FTS profile uncertainty). For CH4 and N2O, only the contribution of shifting the stratospheric a priori by 1 km is included. The surface contribution to the error in the total column is generally negligible, since most of these overpasses either had coincident surface in situ measurements available, or reached very close to the surface themselves. The aircraft error was estimated by adding twice the precision of the aircraft measurement to the profile and re-integrating the profile.

Molecule	Stratospheric Error	Surface Error	Aircraft Error	Total Error
CO2	0.3 ppm (0.1, 0.5)	0.03 ppm (0, 0.2)	0.3 ppm (0.1, 0.7)	0.4 ppm (0.2, 0.8)
CO	3 ppb (1, 5)	0.04 ppb (0.01, 0.08)	4 ppb (1, 8)	5 ppb (2, 9)
CH4	10 ppb (7, 14)	0.1 ppb (0.02, 0.3)	3 ppb (1.5, 6)	10 ppb (7, 15)
N2O	4 ppb (4, 5)	0.02 ppb (0, 0.09)	0.4 ppb (0.3, 0.8)	4 ppb (4, 5)

Table 5. TCCON scale factors. The TCCON data are divided by the scale factors to calibrate to the WMO scale. Columns 5 and 6 describe the uncertainties associated with each species, and the WMO-recommended inter-network comparabilities. There are no WMO recommendations for H2O.

Molecule	Scale factor (TCCON/Aircraft)	Best fit standard error	TCCON:Aircraft ratio uncertainty (2σ)	Species uncertainty (2σ)	WMO recommendation
CO2	0.989	0.001	0.002	0.8 ppm	0.1 ppm
CO	0.98	0.02	0.04	4 ppb	2 ppb
CH4	0.978	0.002	0.004	7 ppb	2 ppb
N2O	0.958	0.005	0.01	3 ppb	0.1 ppb
H2O	1.03	0.01	0.1	0.4 ppb	–

from NCEP profiles, and extended upwards using a model based on MkIV balloon profiles. Because most of the water column is located at altitudes below ~5 km, errors in the upper altitude water profile do not significantly affect the total columns of CO2, CH4, N2O and CO.

To estimate the H2O calibration curve for the TCCON, the radiosonde profiles over Tsukuba, Darwin, Lamont, Lauder and Park Falls are used, which tend to reach higher altitudes than the aircraft (generally well above the tropopause). Water profiles are available from daily sonde measurements at Lamont and Darwin. The errors on the H2O columns are estimated to be ±5% of the total column.

Once full profiles of the gas of interest and H2O are generated on a fine altitude or pressure grid, the profiles are integrated via Eqs. (5) or (6), and the smoothed profile is computed via Eq. (7).

5 Results

Aircraft overflights of the Park Falls, Darwin, Lamont, Lauder and Tsukuba TCCON stations are listed in Table 3, including their dates and which molecules were measured on the aircraft. Sample profiles from the HIPPO aircraft over Lamont are shown in Fig. 2 and the derived column-average calibration data are shown in Figs. 5–9. Errors computed for the smoothed, integrated aircraft measurements are the sum in quadrature of estimated stratospheric and surface measurement uncertainties and the estimated error on the aircraft or sonde profiles in the troposphere (Table 4). In all cases (except H2O), the stratospheric uncertainty is a significant component of the total error. The slopes of the calibration curves are listed in Table 5. Errors on the slopes are quoted as standard errors on the best fit, calculated using the errors in both the x and y axis (York et al., 2004) and as 2 standard deviations of the individual measurement ratios.

Our retrieval method is predicted to be both linear and have no intercept. We thus fit the data with a linear least-squares and force a zero intercept. When the least-squares fits are allowed a nonzero y-intercept, all have a y-intercept that is zero within the uncertainty. To attempt to remove any biases added from errors in the GFIT a priori information, the aircraft profile with our best estimate of the stratospheric profile was input as the a priori profile. The same spectra...
Fig. 5. The TCCON calibration curve for CO$_2$. The smoothed aircraft value is \hat{c}_s from Eq. (7).

Fig. 6. As in Fig. 5, but for CO.

Fig. 7. As in Fig. 5, but for CH$_4$.

Fig. 8. As in Fig. 5, but for N$_2$O.

were processed using the standard GFIT a priori profiles as well. The calibration coefficient for both cases have identical slopes within standard error, suggesting that the GFIT a priori profiles do not add a significant bias to the retrievals. Figures 5–9 show the calibration curves calculated using the aircraft profile as the a priori profiles.

For all molecules, there is excellent consistency between the TCCON calibrations obtained from different sites and seasons. Within measurement error, all stations can be described by a single regression line and hence single calibration factor, with variations around the regression line being explicable by instrumental and site differences. Hence, the reported TCCON columns are produced by dividing the retrieved columns by the values listed in Table 5. With the exception of H$_2$O, all the calibration values are <1. This is because the O$_2$ spectroscopy has an error that causes the O$_2$ columns to be ~2% high. The largest uncertainties in the calibration coefficients are for H$_2$O. The H$_2$O calibration curve shows that over a large range of humidities, the FTS instruments are capable of measuring water columns to a good degree of accuracy, but due to the high variability of tropospheric H$_2$O, we do not expect calibration errors as small as for CO$_2$, CH$_4$, CO or N$_2$O.

The uncertainties on the slopes, listed in Table 5, are used to compute the species uncertainty of each molecule, and can be compared with the WMO-recommended intercomparability for the molecules (WMO, 2007). The calibrated TCCON data, though less precise and accurate than the in situ data, provide long time series of total column measurements of atmospheric CO$_2$, CH$_4$, CO and N$_2$O.
6 Conclusions

The TCCON column-averaged dry-air mole fractions of CO₂, CO, CH₄ and N₂O have been calibrated to the WMO scale using aircraft profiles measured between 2004 and 2009. The TCCON H₂O columns have been calibrated using radiosonde measurements. The calibration curves show excellent consistency between the different TCCON sites and seasons, and can be described by a single calibration factor for each molecule. Future plans include extending this calibration set using additional HIPPO campaigns and other aircraft programs. We expect that all TCCON sites will eventually be calibrated using WMO-scale in situ measurements.

Acknowledgements. The authors wish to thank Stephanie Vay and Donald R. Blake for guidance and the use of the INTEX-NA CO₂ and CH₄ profiles, respectively. The INTEX-NA data were downloaded from ftp://ftp-air.larc.nasa.gov/pub/INTEXA/DC8_AIRCRAFT/ on 10 September 2010. NCEP Reanalysis analysis is provided by the NOAA OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.cdc.noaa.gov/. Data were obtained through the Atmospheric Radiation Measurement (ARM) Program sponsored by the US Department of Energy, Office of Science, Office of Biogeochemical and Environmental Research. Data were generated by the National Oceanic and Atmospheric Administration (NOAA), Earth System Research Laboratory (ESRL), Carbon Cycle Greenhouse Gases Group, including flask data from Andrews et al. (2009). The Meteorological Research Institute tower measurements are described by Inoue and Matsueda (1996). US funding for TCCON comes from NASA’s Terrestrial Ecology Program, the Orbiting Carbon Observatory project and the DOE/ARM Program. Part of this work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. ACE is funded primarily by the Canadian Space Agency. Support for the Learjet-25 measurements was provided by the NASA ASCENDS development and ESTO IIP programs. Support for the flask measurements at the SGP ARM site is from LBNL-DOE contract DE-AC02-05CH11231. We acknowledge funding for Darwin and Wollongong from the Australian Research Council, Projects DP0879468 and LP0562346 with the Australian Government House. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Edited by: H. Worden

References

Abshire, J. B., Riris, H., Allan, G. R., Weaver, C., Mao, J., Sun, X., and Hasselbrack, W.: Pulsed Airborne Lidar Measurements of Atmospheric CO₂ Column Absorption from 3-13 km Altitudes, in: 25th International Laser Radar Conference, 2010.

Andrews, A., Boering, K., Daube, B., Wofsy, S., Loewenstein, M., Jost, H., Podolske, J., Webster, C., Herman, R., Scott, D., et al.: Mean ages of stratospheric air derived from in situ observations of CO₂, CH₄, and N₂O, J. Geophys. Res.-Atmos., 106, 32295–32314, 2001.

Andrews, A., Kofler, J., Bakwin, P., Zhao, C., and Tans, P.: Carbon Dioxide and Carbon Monoxide Dry Air Mole Fractions from the NOAA ESRL Tall Tower Network, 1992–2009, Version: 2010-03-29, ftp://ftp.cmdl.noaa.gov/ccg/towers/, 2009.

Bender, M. L., Battle, M., and Keeling, R. F.: The O₂ Balance of the Atmosphere: A Tool for Studying the Fate of Fossil-Fuel CO₂, Annual Review of Energy and the Environment, 23, 207–223, doi:10.1146/annurev.energy.23.1.207, 1998.

Bernath, P., McElroy, C., Abrams, M., Boone, C., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P., Colin, R., et al.: Atmospheric chemistry experiment (ACE): mission overview, Geophys. Res. Lett., 32, L15S01, doi:10.1029/2005GL022386, 2005.

Clerbaux, C., George, M., Turquet, S., Walker, K. A., Barret, B., Bernath, P., Boone, C., Borsdorff, T., Cammas, J. P., Catoire, V., Coffey, M., Coheur, P.-F., Deeter, M., De Mazière, M., Drummond, J., Duchatelet, P., Dupuy, E., de Zafra, R., Edlundia, F., Edwards, D. P., Emmons, L., Funke, B., Gille, J., Griffith, D. W. T., Hannigan, J., Hase, F., Höpfner, M., Jones, N., Kagawa, A., Kasai, Y., Kramer, I., Le Flochmœn, E., Livesey, N. J., López-Puertas, M., Luo, M., Mahieu, E., Murtagh, D., Nédélec, P., Pazmino, A., Pumphrey, H., Ricaud, P., Rinsland, C. P., Robert, C., Schneider, M., Senten, C., Stiller, G., Strandberg, A., Strong, K., Sussmann, R., Thouret, V., Urban, J., and Wielick, A.: CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations, Atmos. Chem. Phys., 8, 2569–2594, doi:10.5194/acp-8-2569-2008, 2008.

Deutscher, N. M., Griffith, D. W. T., Bryant, G. W., Wennberg, P. O., Toon, G. C., Washenfelder, R. A., Keppel-Aleks, G., Wunch, D., Yavin, Y., Allen, N. T., Blavier, J.-F., Jimenez, R., Daube, B. C., Bright, A. V., Matross, D. M., Wofsy, S. C., and Park, S.: Total column CO₂ measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles, Atmos. Meas. Tech., 3, 947–958, doi:10.5194/amt-3-947-2010, 2010.

Dlugokencky, E., Myers, R., Lang, P., Masarie, K., Crotwell, A., Thoning, K., Hall, B., Elkins, J., and Steele, L.: Conversion of NOAA atmospheric dry air CH₄ mole fractions to a...
Wunch et al.: TCCON calibration

...
dioxide column abundances at the Wisconsin Tall Tower site, J. Geophys. Res., 111, D22305, doi:10.1029/2006JD007154, 2006.

WMO: 14th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracers Measurement Techniques, Tech. rep., WMO/IAEA, Helsinki, Finland, http://www.fmi.fi/kuvat/14thExpertsRecom.pdf, 2007.

Wofsy, S. C., Daube, B. C., Jimenez, R., Kort, E., Pittman, J. V., Park, S., Commare, R., Xiang, B., Santoni, G., Jacob, D., Fisher, J., Pickett-Heaps, C., Wang, H., Wecht, K., Wang, Q.-Q., Stephens, B. B., Schertz, S., Romashkin, P., Campos, T., Haggerty, J., Cooper, W. A., Rogers, D., Beaton, S., Elkins, J. W., Fahey, D., Gao, R., Moore, F., Montzka, S. A., Schwartz, J. P., Hurst, D., Miller, B., Sweeney, C., Oltmans, S., Nance, D., Hintsa, E., Dutton, G., Watts, L. A., Spackman, R., Rosenlof, K., Ray, E., Zondlo, M., Diao, M., Mahoney, M. J., Chahine, M., Olsen, E., Keeling, R., Bent, J., Atlas, E. A., Lueb, R., Patra, P., Ishijima, K., Engelen, R., Nassar, R., Jones, D. B., and Mikaloff-Fletcher, S.: HIAPER Pole-to-Pole Observations (HIPPO): Fine grained, global scale measurements for determining rates for transport, surface emissions, and removal of climatically important atmospheric gases and aerosols, Philos. T. R. Soc. A, in press, 2010.

Wunch, D., Wennberg, P., Toon, G., Keppel-Aleks, G., and Yavin, Y.: Emissions of greenhouse gases from a North American megacity, Geophys. Res. Lett., 36, L15810, doi:10.1029/2009GL039825, 2009.

Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network (TCCON), Philos. T. R. Soc. A, in press, 2010.

Yang, Z., Wennberg, P., Cageao, R., Pongetti, T., Toon, G., and Sander, S.: Ground-based photon path measurements from solar absorption spectra of the O₂ A-band, J. Quant. Spectrosc. Ra., 90, 309–321, 2005.

Yang, Z., Washenfelder, R., Keppel-Aleks, G., Krakauer, N., Randerson, J., Tans, P., Sweeney, C., and Wennberg, P.: New constraints on Northern Hemisphere growing season net flux, Geophys. Res. Lett., 34, L12807, doi:10.1029/2007GL029742, 2007.

York, D., Evensen, N., Martínez, M., and Delgado, J.: Unified equations for the slope, intercept, and standard errors of the best straight line, American Journal of Physics, 72, 367, 2004.

Zhao, C. and Tans, P.: Estimating uncertainty of the WMO mole fraction scale for carbon dioxide in air, J. Geophys. Res., 111, D08S09, doi:10.1029/2005JD006003, 2006.

Zhou, L., Kitzis, D., and Tans, P.: 2.3 Report of the Fourth WMO Round-Robin Reference Gas Intercomparison, in: WORKSHOP PROCEEDINGS, p. 40, 2009.

Zondlo, M. A., Paige, M., Massick, S., and Silver, J.: Vertical Cavity Laser Hygrometer for the National Science Foundation Gulfstream-V Aircraft, J. Geophys. Res.-Atmos., doi:10.1029/2010JD014445, in press, 2 August 2010.