The *dorsal* morphogen gradient regulates the mesoderm determinant *twist* in early *Drosophila* embryos

Jin Jiang, David Kosman, Y. Tony Ip, and Michael Levine

A gradient of the maternal morphogen *dorsal* (*dl*) initiates the differentiation of various tissues along the dorsal–ventral axis of early *Drosophila* embryos. *dl* is a sequence-specific DNA-binding protein that is related to the mammalian regulatory factor NF-κB. Previous studies suggest that *dl* can function as a transcriptional repressor. To determine how *dl* functions as an activator we have examined the promoter of the mesoderm determinant gene *twist* (*twi*). Genetic studies suggest that peak levels of *dl* protein in ventral regions of early embryos initiate *twi* expression. Using a combination of promoter fusion–P-transformation assays, and in vitro DNA-binding assays coupled with site-directed mutagenesis, we establish a direct link between *dl*-binding sites and *twi* expression in the early embryo. We also present evidence that the dorsal–ventral limits of *twi* expression depend on the number and affinity of *dl*-binding sites present in its promoter. A comparison of *twi* with a second *dl* target gene, *zen*, suggests a correlation between the affinities of *dl*-binding sites and response to different thresholds of *dl* morphogen.

[Key Words: *twist, dorsal, Drosophila* embryos, dorsal–ventral pattern]
proteins must enter nuclei to regulate gene expression and influence cell fate. Studies on the target gene zen suggest that dl may function as a transcriptional repressor, which is responsible for keeping zen expression off in ventral regions of early embryos [Ip et al. 1991]. Repression is mediated by a distal region of the zen promoter, called the ventral repression (VR) element [Doyle et al. 1989]. The VR element has the properties of a silencer sequence, in that it can act over long distances to mediate the VR of heterologous promoters [Doyle et al. 1989; Ip et al. 1991]. dl is likely to mediate long range repression as the VR element contains several high-affinity dl-binding sites.

Genetic studies and sequence similarities with NF-kB suggest that dl may also function as an activator, which turns on genes in ventral regions of early embryos. Peak levels of dl initiate the expression of two target genes called twi and snail, which encode regulatory factors responsible for the differentiation of the ventral mesoderm [Boulay et al. 1987; Thiss et al. 1987; 1988]. twi” and snail” embryos display a similar failure of ventral furrow formation and loss of the mesoderm and its derivatives [Leptin and Grunewald 1990]. The present study is concerned with how dl activates the expression of twi, to complement our previous studies on the zen promoter. twi and zen appear to differ in two important ways with respect to their regulation by the dl morphogen gradient. First, twi is activated, whereas zen is repressed. Second, zen is sensitive to lower levels of the morphogen than twi. For example, in mutants where dl is expressed at uniformly low levels in all nuclei, twi is not activated but zen is completely repressed [Roth et al. 1989].

Here we show that a relatively small region (1.2 kb) of twi 5′-flanking sequence is sufficient to generate an essentially normal twi pattern when it is attached to a lacZ reporter gene and expressed in P-transformed embryos. DNA-binding studies reveal a total of four dl-binding sites in the promoter, and site-directed mutagenesis establishes a direct link between these sites and expression in vivo. The dl sites present in the twi promoter possess lower affinities than those in zen, which might account for the different sensitivities of the two promoters to the dl gradient.

Results

As a first step toward identifying potential dl response elements in the twi promoter, we attached different 5′-flanking sequences to the bacterial lacZ reporter gene, as summarized in Figure 1. The arrow indicates the position of the transcription start site, based on studies by Thiss et al. [1988]. twi 5′-flanking sequences were isolated from a genomic DNA library by using a cDNA fragment containing the first 340 bp of the protein-coding sequence. We determined the nucleotide sequence of a 3-kb region, extending from −2.9 kb upstream of the transcription start site to the initiating ATG [not shown]. A partial restriction map of the twi promoter is presented in Figure 1.

The promoter fusions that were examined include the twi basal promoter, as well as 160 bp of untranslated leader sequences. The initial experiments involved a set of seven truncated promoters, with the largest containing 2.9 kb of 5′-flanking sequence and the smallest including the first 180 bp of proximal promoter sequences. The twi–lacZ fusions were introduced into embryos with the CasPer transformation vector [Thummel et al. 1988] and standard P-transformation methods [see Materials and methods]. The expression of the lacZ reporter gene was monitored by in situ hybridization with an RNA hybridization probe and whole-mount preparations of P-transformed embryos [Tautz and Pfeifle 1989; Kosman et al. 1991]. This procedure is quite sensitive and permits detection of reporter gene expression in early
embryos, comparable to the time when the endogenous
twi gene is regulated.

5'-Flanking sequence of 1.2 kb generates an authentic twi pattern

The first twi–lacZ fusion that we tested contains 2.9 kb of 5'-flanking sequence [see Fig. 1], which directs an expression pattern that is indistinguishable from the endogenous twi gene (Fig. 2). Reporter gene expression is detected as early as nuclear cycle 12 [data not shown], comparable to the time when twi RNAs are first observed (Thiss et al. 1987; Leptin and Grunewald 1990). By cycle 14, intense expression is observed along the ventral surface and extends through the anterior and posterior poles (Fig. 2A). The lateral limits include an average of ~20 cells, with ~10 cells on either side of the ventral midline (Fig. 2B). The lateral borders appear to be quite sharp, with reduced levels of expression spanning just two or three cells. Reporter gene expression persists after the invagination of the ventral furrow and is detected during germ-band elongation (Fig. 2C). The dorsal patch of staining that is occasionally seen (Fig. 2A, arrow) is not due to twi promoter sequences but, rather, results from the P-transformation vector (J. Jiang, Y.T. Ip, and S. Small, unpubl.).

Similar expression patterns were obtained with truncated twi–lacZ fusion genes containing 2 or 1.2 kb of 5'-flanking sequence [see Fig. 1]. In both cases, expression extends along the ventral surface and encompasses the poles [Fig. 3A]. The lateral limits span the entire presumptive mesoderm and appear to extend into the mesectoderm [Fig. 3B]. Expression persists during germ-band elongation (not shown).

Five of six independent P-transformed lines containing a 1-kb truncated promoter [see Fig. 1] showed a pattern similar, but somewhat narrower, than those obtained with the 2.9-, 2.0-, and 1.2-kb promoters [cf. Fig. 3C,D with A,B and Fig. 2]. Expression is observed in ~16–18 ventral cells, whereas the larger promoters yield patterns encompassing ~20 cells. This observation suggests that sequences located between ~1.2 and ~1 kb are important for expression in lateral regions containing low levels of the dl morphogen. One of the lines containing the 1-kb fusion gene displayed a discontinuous staining pattern, with gaps in anterior and posterior regions [data not shown]. A similar abnormal pattern is observed for twi in dl/+;twi/+ double heterozygotes [Kosman et al. 1991].

Further truncations of the twi promoter cause even more substantial disruptions in expression. Fusion genes containing either 800 or 440 bp of 5'-flanking sequence display similar abnormal patterns. In both cases, expression is lost from the poles [Fig. 3E] and there is a substantial narrowing in the lateral limits [Fig. 3F]. Staining does not encompass the entire presumptive mesoderm, but instead includes an average of ~14 cells in the ventral-most regions. Furthermore, the lateral borders of expression appear to be less sharply defined than those seen for the larger twi–lacZ fusions and the endogenous twi RNA. Thus, it appears that the removal of sequences between ~1.0 kb and ~800 bp causes erratic and narrower limits of expression. Removal of sequences between ~440 and ~180 bp [see Fig. 1] results in the complete loss of expression in ventral regions, indicating the importance of this region in mediating activation by peak levels of the dl morphogen.
Jiang et al.

The *twi* promoter contains separable distal and proximal elements

The results obtained by progressively truncating the *twi* promoter suggest that optimal expression depends on two regulatory elements, a distal element (DE) located between −1.2 kb and −800 bp, and a proximal element (PE) located between −440 and −180 bp. To determine whether the DE can function autonomously we prepared the 1 × DE and 2 × DE fusion genes summarized in Figure 1. The 1 × DE construct contains one copy of the DE attached to a minimal 180-bp *twi–lacZ* fusion, whereas 2 × DE contains two tandem copies of the DE. Both fusion genes direct intense expression of the *lacZ* reporter in ventral and polar regions of early embryos (Fig. 4). One copy of the DE gives an initial pattern of expression that is quite similar to fusion genes containing 2.9, 2.0, or 1.2 kb of 5′-flanking sequence. Expression extends along the entire ventral surface and includes both poles (cf. Fig. 4A with Figs. 2 and 3A–D). The lateral limits of expression encompass the presumptive mesoderm and mesectoderm and span an average width of ~20 cells (Fig. 4B). However, after cellularization, crude pair-rule modulations in expression appear, whereby the normal pattern becomes stripy, owing to reduced expression in interstripe regions (Fig. 4B).

The initial staining pattern obtained with two tandem copies of the DE is substantially more intense and broader than the wild-type pattern and encompasses ~26 cells (cf. Fig. 4C,D with A,B). After cellularization the expression pattern includes quite distinctive pair-rule stripes, with interstripe regions being narrower by about three cells as compared with the lateral limits of the stripes (Fig. 4D). The origin of the interstripes is not
dorsal morphogen controls twist determinant

Figure 4. Autonomous action of the DE and the role of twi autofeedback. P-transformed embryos containing the $1 \times$ DE (A,B) and $2 \times$ DE promoter fusions [C,D]. Embryos were stained and oriented as described in the legends to Figs. 2 and 3. (A) Early cycle 14 embryo expressing the $1 \times$ DE fusion. An essentially normal pattern of expression is observed, with staining extending through the anterior and posterior poles. Staining is uniform along the ventral surface. (B) A late cycle 14 embryo (ventral view) expressing the $1 \times$ DE fusion. The pattern is becoming discontinuous along the ventral surface (the arrow indicates one of the crude stripes). (C) Early cycle 14 embryo expressing the $2 \times$ DE fusion. Intense staining is detected along the ventral surface and extends through the anterior and posterior poles. At this early stage there is no evidence of discontinuities in the staining pattern. (D) A cellularizing embryo expressing the $2 \times$ DE fusion. At this later stage there are clear pair-rule modulations in the staining pattern [i.e., arrow], resulting from the repression of expression in interstripe regions. The lateral limits of the interstripes are recessed by about three cells relative to the stripes. Initially, in earlier embryos, the ventral–lateral border is homogenous and coincides with the edges of the stripes [not interstripes] seen in this older embryo. (E) A wild-type cellularizing embryo showing the endogenous twi RNA pattern. Expression extends through the poles, and the ventral–lateral limits include ~20 cells [cf. Figs. 2B and 3B]. (F) The twi RNA pattern in an embryo lacking twi protein (twiID96/twiID96 homozygote). The ventral–lateral limits are narrower than those seen in wild type, and there are pair-rule modulations in staining along the ventral surface. The lateral limits of each stripe includes 14 cells, the interstripe regions include only 10 cells.

known; however, the pattern of twi expression observed in twi mutants suggests that they might reflect a property of twi$^+$ gene activity. Embryos homozygous for a twi protein null mutation show reduced and stripy expression of the twi RNA, suggesting that optimal expression depends on some type of autofeedback process [cf. Fig. 4F with the wild-type twi RNA pattern in Fig. 4E].

The twi promoter contains dl-binding sites

Systematic gel-shift assays were done to determine whether there are any dl-binding sites within the DE or PE regions of the twi promoter. This analysis involved digesting DNA fragments encompassing these regions into 60- to 150-bp pieces, labeling them with 32P, and incubating the DNAs with dl protein made in bacteria. Electrophoresis on native gels revealed that three of the fragments contain dl-binding sites, including a 147-bp HindIII fragment [located between −398 and −251 bp in the PE], a 93-bp EcoRI–TaqI fragment [−876 to −783 bp in the DE], and a 63-bp BstNI fragment [−1.16 to −1.10 kb in the DE].

Previous DNA-binding studies identified four dl-binding sites in the zen promoter [Ip et al. 1991]. These sites share a common consensus sequence: GGG[A/T]$_p$CCA. There are either 4 or 5 central nucleotides, usually A’s and T’s, that separate the GGG and CCA half-sites. To determine the core recognition sequences in the twi promoter we scanned the DNA fragments identified in the gel-shift assays for matches to the zen consensus. The distal-most fragment located at about −1.1 kb includes the sequence GGGCAAAACCC (TD2; see Fig. 6, below).
Figure 5. The dl protein binds to specific sites in the twi promoter. (A) Gel-shift assay comparing the relative affinities of the zen oligo B sequence [Ip et al. 1991] with the TD2 and TD3 \textit{dl}-binding sites in the DE. The zen oligo B sequence (lane 1), as well as oligonucleotides that encompass the TD2 (lane 2) and TD3 (lane 3) sequences, were 32P-labeled, incubated with a truncated dl protein made in bacteria, and run on a native polyacrylamide gel. The three oligonucleotides were labeled to the same extent, so that the relative intensities of the protein–DNA complexes (arrow) represent an approximate measure of binding affinity. The zen oligo B sequence has at least 5–10 times higher affinity than the TD2 site and is >20 times stronger than the TD3 site. (B) DNase I footprint assays with a wild-type [lanes 1–3] and mutagenized [lanes 4–6] DNA fragment spanning the PE region of the promoter [for details, see Materials and methods]. The locations of these binding sites within the twi promoter are summarized in Fig. 6. The fragment was labeled with 32P, incubated with increasing amounts of \textit{dl} protein, partially digested with DNase I, and electrophoresed on a polyacrylamide–urea gel. Lane 1 is a control showing the DNase I digestion pattern without added protein, lanes 2 and 3 contain increasing amounts of the \textit{dl} protein [fivefold increases]. Increasing amounts of \textit{dl} protein result in an extended region of protection, spanning ~30 bp. The diagram at right shows the nucleotide sequence of the binding sites located ~300 bp upstream from the transcription start site. Increasing amounts of \textit{dl} protein fail to fill the mutagenized TD4/TD5 sites [arrow, lanes 4–6]. Lanes 7–9 show the DNase I digestion pattern of a 400-bp fragment from the zen promoter, located between approximately −1300 bp to −900 bp upstream from the transcription start site. This fragment contains three \textit{dl}-binding sites (at −1270, −1200, and −1150 bp). Site 2 at −1200 bp corresponds to the oligo B sequence. The same increasing amounts of \textit{dl} protein were used as in lanes 1–6. Note that bands of comparable intensity in the twi TD4/TD5 region and the zen oligo B site [arrows] are not protected to the same extent with equivalent amounts of \textit{dl} protein. The level of protection seen in lane 3 for \textit{twi} is comparable to that observed in lane 8 for \textit{zen}, indicating that fivefold more protein is needed to give equivalent binding to the \textit{twi} site.

which is similar to the consensus-binding site present in the \textit{zen} promoter. The second \textit{dl} site in the DE is located at −820 bp and contains the sequence GGGGAACTCA (TD3; see Fig. 6). Oligonucleotides were synthesized for each site and used in gel-shift assays [Fig. 5A]. Both oligonucleotides bind the \textit{dl} protein, and the binding can be specifically competed with an oligonucleotide that contains a high-affinity \textit{dl} site from the \textit{zen} promoter [oligo B, data not shown]. Comparison of the TD2 and TD3 oligonucleotides with the zen oligo B sequence indicates that the \textit{zen} site has at least a 5- to 10-fold higher affinity for the \textit{dl} protein than either TD2 or TD3 [Fig. 5A].

The nucleotide sequence of the 147-bp \textit{Hinfl} fragment within the PE region of the \textit{twi} promoter that tested positive in the gel-shift assays includes six copies of the \textit{zen} half-site sequence, but no obvious match with the full consensus sequence. DNase I footprint assays were done to identify the sequence recognized by the \textit{dl} protein. A 465-bp DraI–XhoI DNA fragment that extends from −649 bp to −184 bp and encompasses the potential binding sites was 32P-labeled at the XhoI site, incubated with increasing amounts of the truncated \textit{dl} protein, and electrophoresed in a polyacrylamide/urea gel after digestion with DNase I [Fig. 5B]. The highest concentration of \textit{dl} protein results in an extended region of protection, spanning ~30 bp. The nucleotide sequence of the protected region is shown to the right of the autoradiogram. It includes two tandem sequences [TD4 and TD5] that are related, but not identical, to the \textit{dl} consensus discussed above. Smaller DNA fragments containing either one of these sequences failed to form detectable complexes with the \textit{dl} protein in gel-shift assays [data not shown]. This observation suggests that either sequence alone binds with only low affinity, but the juxtapositioning of the sites might allow cooperative binding of the \textit{dl} protein. Comparison of the TD4 and TD5 sites with those present in the \textit{zen} promoter indicates that the \textit{twi} sites possess at least four- to fivefold lower affinities for the \textit{dl} protein than the \textit{zen} oligo B site [Fig. 5B, cf. lanes 2 and 3 with 8 and 9].

dl-binding sites mediate activation in vivo

To determine whether \textit{dl} regulates \textit{twi} expression di-
directly, we mutagenized the dl-binding sites present in the twi promoter. Site-specific changes were made in each of the four sites by using mutagenic oligonucleotides, as summarized in Figure 6. In each case, the GGG motif that is conserved in all dl-binding sites was substituted with T's or A's. Gel-shift and DNase I footprint assays indicate that these mutations either reduce or abolish dl binding (i.e., see Fig. 5B, lanes 4–6).

The importance of the dl sites in the DE was examined by expressing a twi-lacZ fusion gene that contains the mutagenized TD2 and TD3 sites in the context of an otherwise normal 1.2-kb construct (see Figs. 1 and 3A, B). The mutagenized twi promoter shows an abnormal pattern of expression (Fig. 7A, B) that is similar to the twi pattern seen in dl+, twi+ double heterozygotes (Kosman et al. 1991), and to one of the lines containing 1 kb of 5′-flanking sequence (data not shown; see Figs. 1 and 3D). Most notably, there are gaps in the pattern near the head and tail, narrower limits of expression in ventral regions (from ~20 to ~18 cells), and reduced expression at the anterior and posterior poles (Fig. 7A). These results suggest that the dl-binding sites present in the DE are essential for normal twi expression.

The role of the dl-binding sites in the proximal element was investigated by examining the expression of a truncated twi-lacZ fusion gene containing the mutagenized TD4 and TD5 sites (see Fig. 6 summary). The first 440 bp of twi 5′-flanking sequence was used, which normally directs expression in the ventral-most 14 cells containing peak levels of the dl morphogen (Fig. 7C). Disruptions in the TD4 and TD5 sites result in a marked reduction in expression (Fig. 7D), although there are variations in the levels that are obtained, ranging from the complete loss of expression to about a fivefold reduction as compared with the wild-type promoter. This observation indicates that the TD4 and TD5 sites directly mediate activation of the twi promoter in vivo.

Discussion

We have presented evidence that the number and affinities of dl-binding sites determine the dorsal–ventral limits of target gene expression in the early embryo. The twi promoter contains two cis regulatory elements (summarized in Fig. 8). The cis regulatory elements are sufficient for the complete repression of the dl morphogen, whereas the DE is responsible for expression in lateral regions containing lower levels of the morphogen. The PE and DE each contain two dl-binding sites, and mutations in these sites reduce or abolish expression in the embryo. Multimerization of the intact DE results in expanded limits of expression, which extend into the presumptive neuroectoderm where there are only very low levels of dl protein. We have also shown that the highest-affinity dl-binding sites present in the twi promoter have substantially lower affinities for the dl protein as compared with the highest-affinity sites in the zen promoter. This observation may explain how the dl concentration gradient differentially regulates the two genes in early embryos.

The dl concentration gradient differentially regulates twi and zen

The role of dl in tissue differentiation provides an excellent paradigm for understanding the so-called French flag model of morphogenesis, whereby a concentration gradient of a morphogen controls cell fate by regulating gene expression in a threshold-dependent manner (Wolpert 1969). Previous studies have shown that the expression of twi and zen depends on different threshold levels of the dl morphogen (Roth et al. 1989). Low levels of dl that are not sufficient to trigger twi expression are adequate for the complete repression of zen. These different thresholds might reflect the quality of the dl-binding sites present in the two promoters. The region of the zen promoter that is responsible for mediating repression contains four closely linked high-affinity dl-binding sites, which might be filled by even low levels of the protein (Ip et al. 1991). In contrast, the binding sites present in the twi promoter possess relatively low affinities and might be filled only by peak levels of the dl protein present in the ventral-most regions of early embryos. Direct comparison of the zen- and twi-binding sites in gel-shift and footprint assays suggests that the strongest zen sites possess at least a higher affinity than the twi sites (see Fig. 5).
Figure 7. The \(dl \)-binding sites are important for \(twi \) expression. P-transformed embryos were hybridized to show the RNA patterns of the \(lacZ \) reporter gene. (A,B) P-transformed embryos expressing the 1.2-kb \(twi-lacZ \) fusion gene containing point mutations in the two \(dl \)-binding sites (TD2 and TD3) in the DE. (C,D) P transformants expressing the normal (C) and mutagenized (D) 440-bp \(twi-lacZ \) fusion. (A) A lateral view of a cycle 14 embryo showing the expression of the mutagenized 1.2-kb \(twi \) promoter. Mutations in the TD2 and TD3 sites cause reduced expression at the poles and slight gaps in the pattern near the head and tail (arrowheads). This pattern is similar to the expression of \(twi \) RNA pattern in \(dl/+,twi/+ \) double heterozygotes [Kosman et al. 1991]. (B) A ventral-lateral view of an embryo similar to the one shown in A. (C) Lateral view of a mid-cycle 14 embryo showing the expression of the normal 440-bp \(twi-lacZ \) fusion gene. Staining is homogenous along the ventral surface, but expression is lost from the poles (as compared with the normal \(twi \) pattern). The arrow indicates weak staining in a dorsal patch due to the P-transformation vector. (D) Lateral view of a late cycle 14 embryo showing the expression of the 440-bp \(twi-lacZ \) fusion gene containing point mutations in the TD4 and TD5 \(dl \)-binding sites. Ventral expression is essentially abolished. Expression in the dorsal head patch (arrow) indicates that the embryo was stained long enough to reveal any expression specified by the mutagenized \(twi \) promoter.

Comparison of the expression limits obtained with the 1 × DE versus 2 × DE \(twi-lacZ \) fusions (see Fig. 4) is consistent with the notion that the number and quality of \(dl \)-binding sites determine the threshold response. One copy of the DE drives normal ventral-lateral limits of expression (~20 cells). In contrast, two copies of the DE (containing four rather than two \(dl \)-binding sites) drive a broader pattern of expression, including a total of 26 cells. It would appear that the additional \(dl \) response elements permit expression in lateral regions containing low levels of the \(dl \) protein, which are normally insufficient to activate the \(twi \) promoter. Similar results were obtained with \(bcd \) response elements in the \(hunchback \) (\(hb \)) promoter. As these were multimerized, expression was obtained in progressively more posterior regions containing diminishing levels of \(bcd \) [Driever et al. 1989; Struhl et al. 1989]. One interpretation of these results is that multimerization of \(bcd \) and \(dl \) response elements facilitates cooperative binding to DNA, so that low levels of the morphogen can interact productively with the target promoters.

The expanded limits seen for the 2 × DE promoter extend beyond the mesoderm and mesectoderm into ventral regions of the presumptive neuroectoderm, suggesting that there may be a direct link between the \(dl \) morphogen and the activation of regulatory genes responsible for the differentiation of the neuroectoderm. In principle, a target promoter containing numerous high-affinity \(dl \)-binding sites could be activated directly by the \(dl \) morphogen in the presumptive neuroectoderm. During the final stages of preparing this discussion, Thirse et al. [1991] published a study on \(dl \) response elements in the \(twi \) promoter that were identified on the basis of transient cotransfection assays. These investigators identified two clusters of \(dl \)-binding sites, and there is a good correlation between the locations of these clusters and the limits of the DE and PE sequences identified in our study. However, the earlier study identified a total of eight \(dl \)-binding sites in the \(twi \) promoter, three in the PE, and four in the DE (the eighth maps just proximal to the PE). Two of the three sites in the PE correspond to the TD4 and TD5 sites identified here, but none of the four sites identified previously corresponds to our TD2 and TD3 sites in the DE. The TD2 and TD3 sites are located on opposite ends of the DE (see Fig. 8) and bracket the cluster described by Thirse et al. [1991]. We believe that the four sites identified here represent the highest-affinity sites present in the \(twi \) promoter and...
Cooperative interactions between dl and twi

The DE is responsible for expression in lateral regions where there are diminishing levels of the dl protein. Gene-dosage studies suggest that this might involve cooperative interactions between the dl and twi proteins. The twi expression pattern is highly abnormal in dl^{-}/+,twi^{-}/+ double heterozygotes, including a catastrophic reduction in lateral and polar regions, and gaps near the head and tail (Kosman et al. 1991). It is conceivable that one or more of the low-affinity sites (some of which we fail to detect in our binding assays) identified previously act in concert with the high-affinity sites to drive optimal expression.

Activation vs. repression

It is not clear how dl acts as both an activator of twi and a repressor of zen in the same cells of early embryos. One possibility is that the binding sites present in the zen promoter mediate repression, whereas the binding sites in twi mediate activation. Although the dl sites present in the two promoters are clearly related there may be important differences. All eight binding sites in the two promoters contain the GGG half-site (i.e., see Fig. 6), but there is considerable variation in the sequence and spacing of the second half-site. By analogy to NF-{kappa}b, perhaps dl forms a heteromeric complex with one or more as yet unknown rel-related subunits (Ghosh et al. 1990; Kieran et al. 1990). The dl subunit might interact with the conserved GGG half-site, whereas a different subunit contacts the distinct half-sites present in the zen versus twi dl recognition sequences. Thus, one form of the complex may recognize the zen sites and repress transcription, whereas another form binds the distinct sites in the twi promoter and activates expression. A prediction of this model is that there are additional rel-related proteins active in the early embryo. An alternative possibility is that unknown “cofactors” interact with dl to mediate either transcriptional activation or repression. According to this model, the dl sites present in the zen promoter may map near binding sites for unknown factors that act in concert with dl to mediate repression. In contrast, the twi promoter might contain sites for a different unknown factor that interacts with dl to activate transcription.

Materials and methods

Construction of twi-lacZ fusion genes

The twi promoter was isolated by screening a genomic DNA library (kindly provided by D. Goldberg) with a 340-bp fragment from the 5' end of a full-length twi cDNA. The cDNA was obtained from the 0- to 4-hr library prepared by Brown and Kafatos (1988), which was screened with a 500-bp DNA fragment within the twi-coding region (kindly provided by Dr. Perrin-Schmidt). The nucleotide sequence of a 3-kb region of the twi promoter, extending from –2.9 kb upstream of the transcription start site to the initiating AUG, was determined by using double-stranded DNA and the Sequenase kit purchased from U.S. Biochemical (Cleveland, OH).

The pCaSpeR-AUG P-transformation vector (Thummel et al. 1988) was used for all twi-lacZ fusions. This vector uses the white gene as a marker and contains the bacterial lacZ-coding sequence with an in-frame AUG codon. A polylinker containing a unique EcoRI and BamHI site was placed just upstream of the AUG. To subclone twi promoter sequences into the vector we used site-directed mutagenesis to create a BamHI site at the initiating AUG of the twi gene. The desired twi fragments were obtained by digesting with BamHI [3' limit] and a series of restriction sites in the upstream region. The fragments were cloned into the BamHI and EcoRI sites within the polylinker of the vector. The cloning was facilitated by abolishing the BamHI located at –10 bp of the wild-type gene by creating a 1-nucleotide substitution [GGATCC to AGATTC].

The 1 x DE and 2 x DE constructs were made by isolating a 400-bp HindIII–EcoNI fragment, located between –1.2 kb and

Figure 8. Summary of twi promoter elements. To generate a normal pattern of expression, 1.2 kb of twi 5'-flanking sequence appears to be sufficient. We have presented evidence that this region contains two ventral activation elements, the DE located between –1.2 kb and –800 bp and the PE located between –440 and –180 bp. The DE and PE each contain two dl-binding sites. The PE is responsible for activating the twi promoter in the ventral-most cells of early embryos in response to peak levels of the dl morphogen. The DE is responsible for three aspects of the normal twi pattern. First, it is required for expression in lateral regions containing low levels of the dl morphogen. Second, the DE mediates expression at the anterior and posterior poles. Finally, it causes a slight narrowing of the normal pattern of expression. It is conceivable that one or more of the low-affinity sites (some of which we fail to detect in our binding assays) identified previously act in concert with the high-affinity sites to drive optimal expression.
- 800 bp. The fragment was blunted with Klenow and ligated into the unique EcoRV site of the pBluescript SK- vector [Promega, Madison, WI] at a high insert/vector molar ratio. Recombinants containing one or two copies of the 400-bp insert in the correct orientation were isolated and excised from the vector by digestion with Smal and Xhol. These fragments, containing either one or two copies of the original 400-bp fragment, were mixed with a 340-bp Xhol–BamHI fragment containing 180 bp of 5′-flanking sequence and the untranslated leader. These fragments were ligated together into the CaSpeR-AUG vector cut with BamHI and EcoRI.

The 1.2-kb twi-lacZ fusion containing point mutations in the TD2 and TD3 dl-binding sites was prepared with a 1-kb HindIII–XhoI twi DNA fragment bearing the two mutagenized sites (see below). This fragment was ligated with the 340-bp XhoI–BamHI fragment containing the twi minimal promoter and leader sequence, and inserted into the P-transformation vector cut with BamHI and EcoRI. This construct is identical to the wild-type 1.2-kb-twI fusion, except for the point mutations in the TD2 and TD3 dl-binding sites. A similar approach was used to obtain the 440-bp twi-lacZ fusion gene that contains mutations in the TD4 and TD5 sites.

In vitro mutagenesis

Base-pair substitutions were made with mutagenic oligonucleotides using the Mutagen kit [Bio-Rad, Richmond, CA] as described previously [Jiang et al. 1991]. The two dl-binding sites present in the DE were mutated by preparing a single-stranded DNA template containing a HindIII–XhoI twi fragment [from −1.2 kb to −180 bp] within the pGem-7Zf (+) vector [Promega]. Mutagenic oligonucleotides that change three crucial G residues in the binding sites to either A’s or T’s were synthesized (see below). The substitutions create DraI restriction sites, which facilitated the screening for mutagenized templates. The same template was used to prepare mutations in the TD4- and TD5-binding sites present in the PE.

P-transformation and whole-mount in situ hybridization

P-transposons containing twi-lacZ fusion genes were introduced into the Drosophila germ line by injection (Rubin and Spradling 1982). white− embryos homozygous for the w67 allele were used for all injections. P-transposons were co-injected with the Δ2,3 helper [kindly provided by Dr. F. Laski]. Multiple independent transformed lines were generated for all of the twi-lacZ fusions, and in each case, the expression patterns were determined for at least three independent lines.

Whole-mount in situ hybridization was used to detect the expression pattern of the lacZ reporter [Tautz and Pfeifle 1989]. The procedure that was used is similar to the one reported by Kosman et al. [1991], except that antisense RNA probe was used in place of DNA probes. RNA probes were labeled with a dig-UTP reporter (Boehringer Mannheim, Germany). Hybridizations were done at 55°C for 36 hr in a buffer containing 50% deionized formamide, 5× SSC, 100 mg/ml of sonicated salmon sperm DNA, 50 mg/ml of heparin, and 0.1% Tween 80. Washes, treatment with anti-dig-U antibody, and histochemical staining were done as described previously [Tautz and Pfeifle 1989; Kosman et al. 1991].

To prepare lacZ antisense RNA, the pBluescript Ksl+ vector was used containing the 2.5-kb lacZ-coding sequence [kindly provided by J. Treisman and C. Desplan]. The plasmid was linearized by digestion with PstI and was transcribed in a buffer containing 40 mM Tris [pH 7.5], 6 mM MgCl₂, 10 mM NaCl, 2 mM spermidine-HCl, 1 mM each of ATG, GTP, CTP, and 0.6 mM UTP [pH 7.5], 0.4 mM digoxigenin-11-UTP [Boehringer Mannheim], 5 mM DTT, 5 U/μl of RNasin [Promega], and 4 U/μl of T3 RNA polymerase [Promega]. One microgram of linearized DNA template was added to the reaction mixture in a total volume of 10 μl. The transcription reaction was done at 37°C for 2 hr, and RNAs were hybridized by adding 15 μl of DEPC-treated H₂O and 25 μl of 2× carbonate buffer [120 mM Na₂CO₃ and 80 mM NaHCO₃ [pH 10.2]], and heating at 65°C for 40 min. The reaction was terminated by adding 50 μl of stop buffer [0.2 M NaOAc and 1% acetic acid [pH 6.0]], 10 μl 4 M LiCl, and 5 μl of Escherichia coli tRNA (20 μg/μl). The RNA probe was precipitated with ethanol, dissolved in 150 μl of hybridization buffer, and stored at −20°C. The probe was heated at 80°C for 3 min before use.

Preparation of dl protein and DNA-binding assays

A truncated dl protein [containing the amino-terminal 378 amino acid residues] was overexpressed in E. coli with a T7 vector, as described previously [Ip et al. 1991]. Crude extracts from induced bacteria were used for both gel-shift and DNase I footprint assays. Gel-shift assays were done as described by Ip et al. [1991].

TD2 and TD3 probes were prepared by annealing complementary 19-base oligonucleotides, which were synthesized according to the sequence of the twi promoter. The sequence of TD2 is GGGACAGGGCAAAACCTG, and the sequence of TD3 is AACCGAGGGGAATCCCG. The probes were end-labeled with 32P-labeled ATP and polynucleotide kinase, filled with Klenow, and purified from native polyacrylamide gels. The specific competitor oligo B [TGATTGGTTCTCCAGTTG] contains one of the strong dl-binding sites present in the zen repression element [Ip et al. 1991], and the nonspecific competitor Zen3A [TCGGGAACAGGTTACTG] is a mutated version of a different strong dl site in the zen promoter [which lacks a central nucleotide separating the two core half-sites]. The mutagenized TD2 and TD3 sites were tested in gel-shift assays with a 63-bp BstNI fragment and a 93-bp EcoRI–Taql fragment, respectively.

DNase I footprint assays were done essentially as described previously [Heberlein et al. 1985]. Binding reactions were done with 5 ng of 32P-labeled DNA probe in 50 μl of a binding buffer containing 10 mM HEPES [pH 7.9], 50 mM NaCl, 5 μg of BSA, 0.5 μg of poly[dI–dC], 6 mM β-mercaptoethanol, 5 mM EDTA, and 10% glycerol. After incubating at room temperature for 15 min, 50 μl of 10 mM MgCl₂ plus 5 μM CaCl₂ was added to the reaction mix, followed by freshly diluted DNase I [purified from Worthington]. The DNase I digestion was done at room temperature for 45 sec and quenched by adding 90 μl of stop buffer (1% SDS plus 20 mM EDTA). The samples were extracted with phenol/chloroform (1:1), ethanol-precipitated, and electrophoresed in 8% polyacrylamide/7.5 mM urea gels.

Acknowledgments

We thank Steve Small for help with the whole-mount in situ hybridizations, and Qing Zhou for help with the DNA cloning and P transformations. We are grateful to Dr. F. Perrin-Schmidt for providing a twi genomic DNA fragment. Y.T.I. is a Hoffmann-La Roche Fellow of the Life Sciences Research Foundation. This work was supported by a grant from the National Institutes of Health [GM 46638].

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.
Note added in proof

Similar results are reported by Pan et al. (this issue); they provide a detailed characterization of the PE region of the twi promoter.

References

Boulay, J.L., C. Dennefeld, and A. Alberga. 1987. The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature 330: 395–398.

Brown, N.H. and F.C. Kafatos. 1988. Functional cDNA libraries from Drosophila embryos. I. Mol. Biol. 203: 425–437.

Dreier, W. and C. Niisslein-Volhard. 1988. A gradient of bicoid protein in Drosophila embryos. Cell 54: 83–93.

———. 1989. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337: 138–143.

Dreier, W., G. Thoma, and C. Niisslein-Volhard. 1989. Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature 340: 363–367.

Ghosh, A.M., A.M. Gifford, L.R. Riviere, P. Tempst, G.P. Nolan, S.D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of NF-KB: Homology to rel and dorsal. Cell 62: 1019–1029.

Hartenstein, V., G.M. Technau, and J.A. Campos-Ortega. 1985. Fate-mapping in wild-type Drosophila melanogaster. III. A fate map of the blastoderm. Wilhelm Roux's Arch. Dev. Biol. 194: 213–216.

Heberlein, U., B. England, and R. Tjian. 1985. Characterization of Drosophila transcription factors that activate the tandem promoters of the alcohol dehydrogenase gene. Cell 41: 956–977.

Ip, Y.T., R. Kraut, M. Levine, and C. Rushlow. 1991. The dorsal morphogen is a sequence-specific DNA-binding protein that interacts with a long-range repression element in Drosophila. Cell 64: 439–446.

Jiang, J., T. Hoey, and M. Levine. 1991. Autoregulation of a segmentation gene in Drosophila: Combinatorial interaction of the even-skipped home box protein with a distal enhancer element. Genes & Dev. 5: 265–277.

Kieran, M., V. Blank, F. Logeat, J. Vandekerckhove, F. Lottspeich, O. Le Bail, M.B. Urban, P. Kourilsky, P.A. Baeuerle, and A. Israel. 1990. The DNA binding subunit of NF-xB: Homology to rel and dorsal. Cell 62: 1019–1029.

Kosman, D., Y.T. Ip, M. Levine, and K. Arora. 1991. The establishment of the mesoderm–neuroectoderm boundary in the Drosophila embryo. Science [in press].

Lassar, A.B., J.N. Buskin, D. Lockshon, R.L. Davis, S. Apane, S.D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58: 823–831.

Leptin, M. and B. Grunewald. 1990. Cell shape changes during gastrulation in Drosophila. Development 110: 73–84.

Murre, C., P.S. McCaw, and D. Baltimore. 1989a. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777–783.

Murre, C., P.S. McCaw, H. Vassim, M. Caudy, L.Y. Jan, Y.N. Jan, C. V. Cabrera, J.N. Buskin, S.D. Hauschka, A.B. Lassar, H. Weintraub, and D. Baltimore. 1989b. Interactions between heterologous helix–loop–helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544.

Niisslein-Volhard, C., H.G. Frohnoher, and R. Lehmann. 1987. Determination of anteroposterior polarity in Drosophila. Science 238: 1675–1681.

Roth, S., D. Stein, and C. Niisslein-Volhard. 1989. A gradient of nuclear localization of the dorsal protein determines dorsal-ventral pattern in the Drosophila embryo. Cell 59: 1189–1202.

Rubin, G. and A. Spradling. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218: 348–353.

Rushlow, C., M. Frasch, H. Doyle, and M. Levine. 1987. Maternal regulation of zerknullt: A homeobox gene controlling differentiation of dorsal tissues in Drosophila. Nature 330: 583–586.

Rushlow, C., K. Han, J.L. Manley, and M. Levine. 1989. The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell 59: 1165–1177.

St. Johnston, R.D. and W.M. Gelbart. 1987. Decapentaplegic transcripts are localized along the dorsal-ventral axis of the Drosophila embryo. EMBO J. 6: 2785–2791.

Simpson, P. 1983. Maternal-zygotic gene interactions during formation of the dorsoventral pattern in Drosophila embryos. Genetics 105: 615–632.

Stephens, R., N. Rice, R. Hiebsch, H. Bose, and R. Gilden. 1983. Nucleotide sequence of v-rel: The oncogene of reticuloendotheliosis virus. Proc. Natl. Acad. Sci. 80: 6229–6233.

Steward, R. 1987. Dorsal, an embryonic polarity gene in Drosophila is homologous to the vertebrate proto-oncogene, c-rel. Science 238: 692–694.

———. 1989. Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell 59: 1179–1188.

Steward, R., S.B. Zisman, L.H. Huang, and P. Schell. 1988. The dorsal protein is distributed in a gradient in early Drosophila embryos. Cell 55: 487–495.

Struhl, G., K. Struhl, and P.M. Macdonald. 1989. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57: 1259–1273.

Tautz, D. and C. Pfeifle. 1989. A nonradioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals a translational control of the segmentation gene hunchback. Chromosoma 98: 81–85.

Thisse, B., C. Stoezeltz, M.E. Messal, and F. Perrin-Schmitt. 1987. Genes of the Drosophila maternal dorsal group control the specific expression of the zygotic gene twist in presumptive mesodermal cells. Genes & Dev. 1: 709–715.

Thisse, B., C. Stoezeltz, C. Gorostiza-Thisse, and F. Perrin-Schmitt. 1998. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 7: 2175–2183.

Thisse, C., F. Perrin-Schmitt, C. Stoezeltz, and B. Thisse. 1991. Sequence-specific transactivation of the Drosophila twist gene by the dorsal gene product. Cell 65: 1191–1201.

Thummel, C.S., A.M. Boulet, and H.D. Lipschitz. 1988. Vectors for Drosophila P-element-mediated transformation and tissue culture transformation. Gene 74: 445–456.

Wolpert, L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25: 1–47.
The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos.

J Jiang, D Kosman, Y T Ip, et al.

Genes Dev. 1991, 5:
Access the most recent version at doi:10.1101/gad.5.10.1881

References
This article cites 34 articles, 9 of which can be accessed free at:
http://genesdev.cshlp.org/content/5/10/1881.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here.](#)