Production of Prostaglandin E2 and I2 Is Coupled with Cyclooxygenase-2 in Human Follicular Dendritic Cells

Whajung Cho1, Jini Kim1, Kyu-Bong Cho2 and Jongseon Choe1*

1Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon 200-701, 2Department of Clinical Laboratory Science, Shinheung College, Uijeongbu 480-701, Korea

Background: Prostaglandins (PGs) play pathogenic and protective roles in inflammatory diseases. The novel concept of PGs as immune modulators is being documented by several investigators. By establishing an in vitro experimental model containing human follicular dendritic cell-like cells, HK cells, we reported that HK cells produce prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) and that these PGs regulate biological functions of T and B cells. Methods: To investigate the respective contribution of cyclooxygenase-1 (COX-1) and COX-2 to PGE2 and PGI2 production in HK cells, we performed siRNA technology to knock down COX enzymes and examined the effect on PG production. Results: Both PGE2 and PGI2 productions were almost completely inhibited by the depletion of COX-2. In contrast, COX-1 knockdown did not significantly affect PG production induced by lipopolysaccharide (LPS). Conclusion: The current results suggest that mPGES-1 and PGIS are coupled with COX-2 but not with COX-1 in human follicular dendritic cell (FDC) and may help understand the potential effects of selective COX inhibitors on the humoral immunity.

INTRODUCTION

Prostanoids are small lipid molecules, playing important roles in various physiological and pathological processes, such as kidney function, vasodilation, platelet aggregation, and cancer progress (1). Prostanoids are derived from membrane glycerophospholipids in response to inflammatory stimuli via three sequential enzymatic reactions. The first reaction is mediated by phospholipase A2, which liberates arachidonic acids from membrane phospholipids (2). The arachidonic acids are subjected to the second reactions and converted to prostaglandin (PG) G2 and then PGH2 by cyclooxygenases (COXs), COX-1 or COX-2. The last steps of prostanoid production depend on tissue- and cell-specific terminal synthases. PGH2 are metabolized to PGE2, PGI2, PGD2, PGF2α, and thromboxane A2 (TXA2) by respective actions of PGE2 synthase (PGES), PGI2 synthase (PGIS), PGD2 synthase (PGDS), PGF2α synthase (PGFS), and thromboxane synthase (3). In particular, PGE2 is catalyzed by three different PGESs, cytosolic PGES (cPGES) and two membrane-bound PGESs, mPGES-1 and mPGES-2 (4). The expression of cPGES and mPGES-2 are constitutive, while mPGES-1 is induced during inflammation.

In addition to the well-known roles of prostanoids as inflammatory and vascular mediators (5,6), they are recognized as important immune modulators (7-9). For instance, PGE2 exhibits immunostimulatory as well as immunosuppressive activities depending on its concentrations, PGE2 inhibits activation, proliferation, and differentiation of T cells at micromolar concentrations, whereas it potentiates Th1 and Th17 differentiation and proliferation of T cells at nanomolar concentrations (10).

Using an in vitro model of germinal center reactions that contains human follicular dendritic cell (FDC)-like cells HK (11), we have demonstrated that both FDC and HK cells express PGI2 synthase (12), PGI2 production is not controlled by the induction of PGIS but by COX-2 (13), HK cells secrete PGI2 and PGE2 but not TXA2 (14), PGs produced by HK cells...
inhibit proliferation and apoptosis T cells (14), T cells control PG production from HK cells via IL-4-Janus kinase 1 (JAK1)-Signal transducer and activator of transcription 6 (STAT6)-COX-2 pathway (15), and PGI_2 and its analogues enhance CD86 expression on the surface of activated B cells (16). These results support the emerging concept of PGs as critical immune modulators.

In this study, we investigated the relative contribution of COX-1 and COX-2 to PGI_2 and PGE2 synthesis in HK cells. Several studies demonstrated the coupling between COXs and terminal prostanoid synthases. However, most studies were performed using murine cells (2). The current results suggest that mPGES-1 and PGIS are coupled with COX-2 but not with COX-1 in human FDC and imply that chronic administration of selective COX-2 inhibitors might disturb the normal humoral immune responses taking place in the culminating site of germinal centers.

MATERIALS AND METHODS

Culture of HK cells
HK cells are primary cells obtained from human tonsils and used until they display degenerate features in culture. They are prepared as described by Kim et al. (17) and maintained in RPMI-1640 (Irvine Scientific, Santa Ana, CA) containing 10% fetal calf serum (Hyclone, Logan, UT), 2 mM L-glutamine (Invitrogen, Carlsbad, CA), 100 U/ml penicillin G (Sigma-Aldrich, St. Louis, MO), and 100 μg/ml streptomycin (Invitrogen). Lipopolysaccharide (LPS) was purchased from Sigma-Aldrich.

Immunoblotting
The whole cell lysates of HK cells were subject to immunoblotting as previously described (18). The protein concentrations of each fraction were assayed with a bicinchoninic acid (BCA) assay. Used antibodies were against COX-1, COX-2 (Cayman Chemical, Ann Arbor, MI), β-actin (Sigma-Aldrich), and horseradish peroxidase (HRP)-conjugated anti-mouse IgG (Jackson Immunoresearch, West Grove, PA). The membranes were incubated with SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford, IL) and exposed to X-ray films.

siRNA transfection
The siRNA duplexes used (Ambion Inc, Austin, TX) were constructed with the following target sequences, Control (Neg-siRNA#2, sequence not disclosed by Ambion); COX-1, sense (5'-GCUCUUUAAGGAUGGAAATT-3'), antisense (5'-UUCCOAUCCUAAGAGCGG-3'); COX-2, sense (5'-CCA CC CAUGUCAAAACGGAT-3'), antisense (5'-UGC GUUUUGA CAUGGGUGGGGA-3'). HK cells were cultured to 50~60% confluence in 100 mm plates. For each plate, 40 nM of each siRNA and 2μl LipofectamineTM (Invitrogen) were separately diluted in 400 μl serum-free medium without antibiotics, mixed together, and incubated at RT for 45 min. The plates were then washed with serum-free medium, added with 5 ml serum-free medium, and then with the diluted solutions. The plates were incubated at 37°C for 8 h, followed by the addition of a growth medium containing 10% serum. After 48 h of additional incubation, cells were used for experiments. The degree of gene-silencing was assayed by immunoblotting.

Enzyme immunoassay to measure prostaglandins
HK cells were cultured with LPS for 48 h to harvest the supernatants. The amounts of PGE2 and 6-keto-PGF1α, stable metabolite of PGI_2, were measured using enzyme immunoassay (EIA) kits as described previously (14), PG concentration was normalized to total cellular protein and expressed as ng/mg protein.

Statistical analysis
Statistical analysis and graphic presentation were carried out with GraphPad Prism 4.0. The statistical significance of differences was determined by Student’s t-test; p<0.05 was considered significant.

RESULTS
To investigate the relative contribution of COX-1 and COX-2 to the production of PGE2 and PGI_2, we carried out siRNA technology to knock down COX-1 and COX-2 proteins in HK cells. HK cells were transfected with siRNA duplexes specific to COX-1 and COX-2 and cultured for 48 h, followed by further cultures in the presence or absence of LPS. The silencing of target proteins was demonstrated by immunoblotting. As shown in Fig. 1, COX-2 protein levels were up-regulated by LPS stimulation in control HK cells, whereas COX-1 levels were unaffected by LPS treatment. Transfection with COX-1-specific siRNA resulted in significant reduction of COX-1 protein levels regardless of LPS stimulation. Interestingly, LPS-induced COX-2 levels in COX-1 siRNA-transfected HK cells were lower than in control cells.
Prostaglandin Production Depends on COX-2 in Human FDC
Whajung Cho, et al.

Figure 1. COX-1 and COX-2 proteins were markedly depleted in HK cells by siRNA technology. Control, COX-1, or COX-2 siRNA-transfected HK cells (1×10^5 cells) were cultured for 48 h, followed by further incubation in the presence or absence of LPS (1 μg/ml) for 8 h. The depletion degree of target proteins was evaluated by immunoblotting. β-actin was used to demonstrate equal loading of lysates. The results were reproducible in three independent experiments.

Figure 2. Depletion of COX-2 but not COX-1 prevents LPS-induced production of PGE2 and PGI2. Control, COX-1, or COX-2 siRNA-transfected cells were markedly higher compared to control cells. Transfection with COX-2-specific siRNA almost completely prevented induction of COX-2 proteins that was triggered by LPS. COX-2 silencing did not significantly affect COX-1 expression levels. These results indicate that COX-1 and COX-2 proteins were successfully knocked down in HK cells by siRNA duplexes. We next measured the concentrations of PGE2 and 6-keto-PGF_1α in the culture supernatants after incubation of siRNA-transfected cells in the presence or absence of LPS for 48 h, 6-keto-PGF_1α is the hydrolysis product of unstable PGI2. PGE2 and 6-keto-PGF_1α concentrations in control cells were increased 4- and 5-folds, respectively, by LPS stimulation (Fig. 2). Similar levels of enhancement were obtained in COX-1 siRNA-transfected cells. In contrast, COX-2 silencing almost completely prevented the PG production to background levels. We observed that knock down of COX-1 resulted in a significant increase of PGE2 but not PGI2 without LPS stimulation (Fig. 2A). Whether this result reflects a preferential coupling of COX-2 with PGES over PGIS is currently unclear. Based upon these results, we conclude that PGE2 and PGI2 production is coupled with COX-2 but not with COX-1 in HK cells.

DISCUSSION

In this study, we demonstrate that LPS stimulates FDC-like cells to produce PGE2 and PGI2, which depends on the presence of COX-2. Our results imply that FDC is a physiologic source of PG during inflammatory immune responses to bacterial infection. PGs secreted from FDC may exert regulatory roles in the various processes taking place in germinal centers of the secondary lymphoid tissues (7-9).

PGE2 and PGI2 are biosynthesized by mPGES-1 and PGIS. In line with the current data, we previously provided evidence that COX-2 and mPGES-1 are functionally associated, COX-2 and mPGES-1 mRNA and proteins were increased by LPS treatment, which was inhibited by IL-4 (14,15). mPGES-1 induction by LPS stimulation occurred following COX-2 induction in HK cells (14). This coordinated kinetics of COX-2 and mPGES-1 induction may contribute to the efficient production of PGE2. In contrast, PGIS is constitutive in HK cells (13,14). Therefore, the PGI2 production in HK cells may depend on the substrate supply for downstream PGIS from upstream COX-2, suggesting the coupling of COX-2 with PGIS. This interpretation is compatible with the general belief that inducible COX-2 is required for delayed PG synthesis whereas
constitutive COX-1 is necessary for immediate PG production after inflammatory stimulation (2). Further investigation is necessary to determine whether the functional association of COX-2 with mPGES-1 and PGIS results from physical coupling of these enzymes. Confocal microscopy may be a useful method to study their possible colocalization and subcellular localization. However, the coupling between COX-2 and PGIS is not absolute and appears to vary depending on cell types. Different from HK cells, Bolego et al. reported that PGI₂ production is coupled with COX-1 but not with COX-2 in human endothelial cells (19). PGIS is constitutively expressed in human endothelial cells (20). Furthermore, stimulus types and the degree of substrate abundance seem to affect the functional coupling between COX and PGIS or mPGES-1.

Considering the accumulating reports on the side effects of selective COX inhibitors (21), the current data may help understand the potential effects of selective COX inhibitors on the humoral immunity.

ACKNOWLEDGEMENTS

This work was supported by the Grants of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Medical & Bio-Materials Research Center and the Basic Research Promotion Fund No. 2009-0068105).

CONFLICTS OF INTEREST

The authors have no financial conflict of interest.

REFERENCES

1. Fosslien E: Cardiovascular complications of non-steroidal anti-inflammatory drugs, Ann Clin Lab Sci 35;347-385, 2005.
2. Ueno N, Takegoshi Y, Kamei D, Kudo I, Murakami M: Coupling between cyclooxygenases and terminal prostaglandin synthases, Biochem Biophys Res Commun 338;70-76, 2005.
3. Nakashima K, Ueno N, Kamei D, Tanigaki T, Nakatani Y, Murakami M, Kudo I: Coupling between cyclooxygenases and prostaglandin F(2alpha) synthase. Detection of an inducible, glutathione-activated, membrane-bound prostaglandin F(2alpha)-synthetic activity, Biochim Biophys Acta 1633; 96-105, 2005.
4. Chandrasekharan S, Foley NA, Jania L, Clark P, Audoly LP, Koller BH: Coupling of COX-1 to mPGES1 for prostaglandin E2 biosynthesis in the murine mammary gland. J Lipid Res 46:2636-2648, 2005.
5. Cheng Y, Wang M, Yu Y, Lawson J, Funk CD, Fitzgerald GA: Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function, J Clin Invest 116:1391-1399, 2006.
6. Vane J, Corin RE: Prostacyclin: a vascular mediator, Eur J Vasc Endovasc Surg 26:571-578, 2003.
7. Hartzi H, Guadale N: The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells, Tissue Antigens 65;507-514, 2005.
8. Harris SG, Padilla J, Koumas I, Ray D, Phipps RP: Prostaglandins as modulators of immunity, Trends Immunol 23: 144-150, 2002.
9. Rocca B, FitzGerald GA: Cyclooxygenases and prostaglandins: shaping up the immune response, Int Immunopharmacol 2;603-630, 2002.
10. Sreramikumar V, Ghezzi P, Cuesta N: Prostaglandin E(2) and T cells: Friends or foes? Immunol Cell Biol 89;893-903, 2011. [Epub ahead of print]
11. Lee SY, Lee JH, Park WY, Nam EC, Shin YO, Choe JS: A novel monoclonal antibody directed against a follicular dendritic cell line, HK, Immune Innat 2;36-31, 2001.
12. Lee SY, Ko EM, Kim SH, Jeoung DI, Choe J: Human follicular dendritic cells express prostacyclin synthase: a novel mechanism to control T cell numbers in the germinal center, J Immunol 175:1658-1664, 2005.
13. Lee SY, Baek YD, Jeoung DI, Kang D, Park CH, Kim SH, Choe J: Prostacyclin production is not controlled by prostacyclin synthase but by cyclooxygenase-2 in a human follicular dendritic cell line, HK, Mol Immunol 44;3168-3172, 2007.
14. Lee SY, Cho W, Kim J, Park CS, Choe J: Human follicular dendritic cells interact with T cells via expression and regulation of cyclooxygenases and prostaglandin E and I synthases, J Immunol 180;1390-1397, 2008.
15. Cho W, Kim Y, Jeoung DI, Kim YM, Choe J: IL-4 and IL-13 suppress prostaglandins production in human follicular dendritic cells by repressing COX-2 and mPGES-1 expression through JAK1 and STAT6, Mol Immunol 48;966-972, 2011.
16. Kim J, Park CS, Park CH, Jeoung DI, Kim YM, Choe J: Beraprost enhances the APC function of B cells by upregulating CD86 expression levels, J Immunol 186;3866-3873, 2011.
17. Kim HS, Zhang X, Choi YS: Activation and proliferation of follicular dendritic cell-like cells by activated T lymphocytes, J Immunol 153;2951-2961, 1994.
18. Lee SY, Ha KS, Choe J: A novel protein expressed by human follicular dendritic cells, Biochem Biophys Res Commun 305;624-630, 2003.
19. Bolego C, Boccellati C, Prada A, Gaion RM, Folco G, Sala A: Critical role of COX-1 in prostacyclin production by human endothelial cells under modification of hydroperoxide tone, FASEB J 23;605-612, 2009.
20. Spisni E, Bartolini G, Orlandi M, Belletti B, Santi S, Tomasi V: Prostacyclin (PGI2) synthase is a constitutively expressed enzyme in human endothelial cells, Exp Cell Res 219;507-513, 1995.
21. Fosbol EL, Koher L, Torp-Pedersen C, Gislason GH: Cardiovascular safety of non-steroidal anti-inflammatory drugs among healthy individuals, Expert Opin Drug Saf 9;893-903, 2010.