Hadron Structure

S. Collins
University of Regensburg

Lattice 2016, Southampton, 26th July.
Outline

Nucleon charges:

\[g_A \]: benchmark quantity.

\[g_S, g_T \] → searching for BSM signals in precision \(\beta \) decay experiments.

Isovector nucleon form factors:

Electromagnetic: \(G_E(Q^2), G_M(Q^2) \) → proton radius puzzle, large \(Q^2 \) behaviour.

Axial: \(G_A(Q^2) \) → neutrino oscillation experiments.

Isoscalar nucleon form factors:

\[G_{E,M}^s(Q^2), G_A^s(Q^2) \] → contributions of strangeness to properties of nucleon.

Pion form factor: electromagnetic, \(f_+(Q^2) \) → large \(Q^2 \) behaviour to be studied at JLab Hall C to 6 GeV\(^2\).

Nucleon sigma terms: \(\sigma_{\pi N}, \sigma_s, \sigma_{c,b,t} \) → predicting dark matter scattering cross-sections.

Nucleon quark momentum fraction. EM transition form factors of resonances.

Summary/Outlook. Many results are preliminary and can change!
General considerations: $\langle N|\bar{q}\Gamma q|N\rangle$

(Isospin symmetric limit) Isovector combinations only connected. Isoscalar also disconnected.

Systematics:

- **Excited state pollution.**
- **Renormalisation+ improvement:** for $\bar{p} = \bar{p}' = 0$ some operators/actions $c_\mathcal{O} = 0$ or $b_\mathcal{O} = 0$
 \[\mathcal{O}^{\overline{\text{MS}}} (\mu) = Z^{\overline{\text{MS}},\text{latt}} (a\mu) \left[(1 + b_\mathcal{O} a m_q) \mathcal{O}^{\text{latt}} + a c_\mathcal{O} \mathcal{O}^{1\text{latt}} \right] \]
- **Volume:** exponentially suppressed $\sim e^{-L m_\pi}$, $L m_\pi > 4$.
- **Discretisation effects:** $\mathcal{O}(a)$ or $\mathcal{O}(a^2)$.
- **Physical point extrapolation:** chiral pert. (inspired) $m_\pi \to m_\pi^{\text{phys}}$.
Ensembles used for hadron structure 3pt functions

\[N_f = 2: \text{RQCD (RQCD/QCDSF), ETMC, Mainz (CLS), QCDSF} \]

\[N_f = 2 + 1: \text{LHPC (BMW-c), RBC/UKQCD, Mainz (CLS), RQCD (CLS), JLQCD, PACS, } \chi \text{QCD (RBC/UKQCD), NME (JLab/W&M), QCDSF/UKQCD/CSSM} \]

\[N_f = 2 + 1 + 1: \text{PNDME (MILC), HPQCD (MILC), ETMC} \]
Nucleon isovector charges and form factors

Charged currents ($n \rightarrow p$): $\bar{u} \Gamma d$

Neutral currents ($p \rightarrow p$): $\bar{u} \Gamma u$, $\bar{d} \Gamma d$, $\bar{s} \Gamma s$

Isospin limit: $\langle p | \bar{u} \Gamma d | n \rangle = \langle p | \bar{u} \Gamma u - \bar{d} \Gamma d | p \rangle = \langle n | \bar{d} \Gamma d - \bar{u} \Gamma u | n \rangle$

Also: $\Gamma = \gamma_\mu$, $\langle p | \bar{u} \gamma_\mu d | n \rangle = \langle p | J_{em} | p \rangle - \langle n | J_{em} | n \rangle$ etc.

Isovector form factors:

$\Gamma = \gamma_\mu$

$F_1^\nu(Q^2) \gamma_\mu + \frac{F_2^\nu(Q^2)}{2m_N} \sigma_{\mu\nu} Q^\nu \quad Q^2 \rightarrow 0 \quad 1$

$\Gamma = \gamma_\mu \gamma_5$

$G_A^\nu(Q^2) \gamma_\mu \gamma_5 - i \gamma_5 \frac{\tilde{G}_P^\nu(Q^2)}{2m_N} Q_\mu \quad \rightarrow g_A$

$\Gamma = \sigma_{\mu\nu}$

$G_T^\nu(Q^2) \sigma_{\mu\nu} \quad \rightarrow g_T$

$\Gamma = 1$

$G_S^\nu(Q^2) 1 \quad \rightarrow g_S$

$\Gamma = \gamma_5$

$G_P^\nu(Q^2) \gamma_5 \quad \rightarrow g_P$
Isovector charges $g_A = \Delta u - \Delta d$

β-decay, $g_A/g_V = 1.2723(23)$ PDG 2015.

Benchmark quantity sensitive to systematics.

Presented 2016:
PNDME, NME, Mainz, RQCD, ETMC, PACS, χQCD, QCDSF, ...
Excited state contamination.
Mainz: [von Hippel, 1605.00564]

Vary interpolator

CSSM [Dragos, 1606.03195]

Finite volume

RQCD [Bali, 1412.7336]

Vary interpolator

PNDME [Bhattacharya, 1606.07049].
Isovector charges \(g_A \)

Several \(m_\pi < 165 \text{ MeV} \) results.

Impose \(Lm_\pi > 4, \ a < 0.1 \text{ fm} \)

ETMC: [Alexandrou, Mon, 15:15] \(N_f = 2 \) twisted mass fermions, \(Lm_\pi = 3 \). Increased statistics on 1507.04936, 579 configs \(\times \) 16 measurements, \(g_A = 1.22(3)(2) \) - systematics from fitting.

PACS: [Kuramashi, Thu, 16:30] \(N_f = 2 + 1 \) NP clover, stout smeared links, \(m_\pi = 145 \text{ MeV}, \ a = 0.085 \text{ fm} \), 146 configs \(\times \) 64 measurements, \(t_f - t_i = 1.3 \text{ fm}, \ Lm_\pi = 6 \)

PNDME: [Gupta, Thu, 17:50]
Isovector charges g_A

PNDME: 1606.07049: $N_f = 2 + 1 + 1$ MILC HISQ, $a = 0.06 - 0.12$ fm Valence clover (tree-level, tadpole improved) $m_\pi = 135 - 315$ MeV

Final result: $g_A = 1.195(33)(20)$

NME: [Gupta, Thu, 17:50] $N_f = 2 + 1$ JLab/W&M tadpole clover, $a = 0.114$ and 0.080 fm, $m_\pi = 200, 315$ MeV.
Isovector charges \(g_A \)

CLS: \(N_f = 2 + 1 \) NP clover

Physical point along:

\(2m_l + m_s = \text{const.} \) and \(m_s = \text{const.} \)

\(a = 0.039 - 0.085 \) fm

RQCD: [Bali,Fri,16:50] Had. Spec. & Int.

Mainz: [Harris,Thu,16:50]

Improved axial vector currents: QCDSF [Perlt,Tue,17:50], \(\chi QCD \) [Yi-Bo,Mon,14:35]
Feynman-Hellmann theorem: [Walker-Loud,Mon,16:45].
Isovector charges: \(g_S \) and \(g_T \)

BSM contributions to \(\beta \) decay.

\[
\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \left[\epsilon_S \bar{e}(1 - \gamma_5)\nu_\ell \cdot \bar{u}d + \epsilon_T \bar{e}\sigma_{\mu\nu}(1 - \gamma_5)\nu_\ell \cdot \bar{u}\sigma^{\mu\nu}(1 - \gamma_5)d \right]
\]

Studied in planned precision \(\beta \) decay expts. + LHC \(pp \to e\nu + X \)

Estimate of \(g_T \):

Transverse spin \(g_T = \int dx [\delta u(x) - \delta d(x)] \)

Phenomenological estimates from fits to SIDIS data \(g_T \approx 1, \Delta g_T/g_T \gtrsim 25\% \).

Estimate of \(g_S \):

CVC relation \(\partial_\mu(\bar{u}\gamma_\mu d) = -i(m_u - m_d)\bar{u}d \) applied to \(\langle p(p_\ell)|\bar{u}\gamma_\mu d|n(p_i)\rangle \)

Forward limit: \((m_u - m_d)g_S = (m_p - m_n)^{QCD} \).

[Gonzalez-Alonso,1309.4434]:

Lattice estimates of \(m_u - m_d \) and \((m_p - m_n)^{QCD} \to g_S = 1.02(11) \).
Isovector charges: g_S and g_T

PNDME: [Gupta, Thu, 17:50], NME: [Gupta, Thu, 17:50], Mainz: [von Hippel, Wed, 9:40], ETMC: [Alexandrou, Mon, 15:15]
Isovector charges: g_S and g_T

PNDME
[Bhattacharya,1606.07049]:
continuum + chiral extrap
$g_{S}^{u-d} = 0.97(12)(6)$
$g_{T}^{u-d} = 0.987(51)(20)$
Aim for precision: improving statistics

- Increase sampling per configuration.
- More sources/volume averaging/low modes.
- Cost mitigated by using e.g. All-mode-averaging (AMA) techniques [Blum,1208.4349].

AMA (truncating the solver [Bali,0910.3970]):

\[
\langle C \rangle^{AMA} = \frac{1}{n} \sum_{source\ i=1}^{n} \langle C_{x_i}^{approx} \rangle + \langle C_{x_0}^{exact} - C_{x_0}^{approx} \rangle
\]

Efficiency depends on the solver + smearing/contraction overhead.

NME: [Yoon,1602.07737]: Multigrid solver [Babich,1005.3043] \(\rightarrow\) factor of \(\sqrt{2}\) reduction in errors for fixed cost at \(m_\pi = 312\) MeV.

Cost effectiveness improves as \(m_\pi\) decreases [Bhattacharya,1606.07049].

Mainz: [von Hippel,1605.00564]: Locally deflated SAP-preconditioned solver (OpenQCD) \(\rightarrow\) factor of 2 reduction in errors.
Aim for precision: excited state contamination

Keeping statistical errors small \rightarrow small sink-source separation \rightarrow excited state contamination.

$m_\pi \sim 280 - 320$ MeV

More smearing, pro: smaller $t_f - t_i$, con: more expensive ($a \rightarrow 0$), larger errors.

Strategies:
(A) multiple $t_f - t_i$, single smearing \rightarrow 2-state fits, summation method, ...
(B) single $t_f - t_i$, multiple smearings \rightarrow variational method.

Investigated in CSSM: [Dragos,1606.03195] and NME: [Yoon,1602.07737].

Also on excited states: [Hansen,Fri,14:20], [Walker-Loud,Mon,16:45]
Nucleon isovector form factors

\[\langle p(p_f) | V_{\mu}^{u-d} | p(p_i) \rangle = \bar{u}_p(p_f) \left[F_1^\gamma(Q^2) \gamma_\mu + \frac{F_2^\gamma(Q^2)}{2m_N} \sigma_{\mu\nu} Q^\nu \right] u_p(p_i) \]

\[\langle p(p_f) | A_{\mu}^{u-d} | p(p_i) \rangle = \bar{u}_p(p_f) \left[G_A^\gamma(Q^2) \gamma_\mu - i \frac{\tilde{G}_P^\gamma(Q^2)}{2m_N} Q_\mu \right] \gamma_5 u_p(p_i) \]

Sachs ff.:

\[G_E^\gamma(Q^2) = F_1^\gamma(Q^2) - \frac{Q^2}{4m_N^2} F_2^\gamma(Q^2), \quad G_M^\gamma(Q^2) = F_1^\gamma(Q^2) + F_2^\gamma(Q^2) \]

Forward limit:

\[G_E^\gamma(0) = F_1^\gamma(0) = 1, \quad G_A^\gamma(0) = g_A, \quad G_M^\gamma(0) = 1 + F_2^\gamma(0) = \mu^{p-n} = 1 + \kappa^{p-n} = 4.79 \]

Shape at low \(Q^2 \), \(\langle r_X^2 \rangle = -6 \frac{dG_X(Q^2)}{dQ^2} \): different probe \(\rightarrow \) different radius.

\[G_X(Q^2) = G_X(0) \left[1 - \frac{1}{6} \langle r_X^2 \rangle Q^2 + \ldots \right] \]
Nucleon isovector form factors

Challenges for the lattice:

Achieving low Q^2, (conventionally) \rightarrow large L, $ap = (2\pi n/L)$.

Very sensitive to m_π: radii diverge as $m_\pi \rightarrow 0$.

Parameterising \rightarrow dipole form, z expansion etc $\rightarrow \langle r^2_E \rangle$, $\langle r^2_A \rangle$.

Extrapolation $\rightarrow \tilde{G}^\nu_P(0)$, $G^\nu_M(0)$, $\langle r^2_M \rangle$.
Electromagnetic form factors

Proton charge radius:

Radius: would need $< 2\%$ error with all systematics included.

Compute isovector form factors: comparing with $\langle r_E^2 \rangle^v = \langle r_E^2 \rangle^{p-n}$.
\(G^V_E(Q^2) \) and \(G^V_M(Q^2) \)

\[
\langle r^2_{E,M} \rangle \quad \text{increase as} \quad m_\pi \to 0, \quad \langle r^2_E \rangle \quad \text{decreases as} \quad a \to 0
\]

\textbf{PNDME}: \(N_f = 2 + 1 + 1 \) MILC HISQ, \(a = 0.06 - 0.12 \) fm Valence clover (tree-level, tadpole improved) \(m_\pi = 135 - 315 \) MeV, AMA

\textbf{NME}: \(N_f = 2 + 1 \) JLab/W&M tadpole clover, \(a = 0.114 \) and \(0.080 \) fm, \(m_\pi = 200, 315 \) MeV, AMA. \textit{Consistency between clover+HISQ and clover-clover results.}
$G_E(Q^2)$ and $G_M(Q^2)$

![Graphs showing $G_E(Q^2)$ and $G_M(Q^2)$ vs Q^2]

Mainz: [Harris, Thu, 16:50] $N_f = 2 + 1$, NP clover CLS, $m_\pi = 200 - 350$ MeV, $Lm_\pi \gtrsim 4$, $a = 0.084, 0.06$ fm, 8000 – 30000 measurements (AMA), $t_f - t_i = 0.7 - 1.3$ fm.
$G_E^V(Q^2)$ and $G_M^V(Q^2)$

ETMC: [Koutsou, Thu, 17:10] $m_\pi = 131$ MeV, $a = 0.093$ fm, $Lm_\pi = 3$, $L = 4.5$ fm
$N_f = 2$ twisted mass with clover term, $t_f - t_i = 1.1 - 1.7$ fm, 6816-69784 measurements.

PNDME: [Jang, Thu, 15:00] $m_\pi = 138$ MeV, $a = 0.09$ fm, $Lm_\pi = 3.9$, $L = 5.6$ fm
$G_E(Q^2)$ and $G_M(Q^2)$

PACS: [Kuramashi, Thu, 16:30], $m_\pi = 145$ MeV, $a = 0.085$ fm, $Lm_\pi = 6$, $L = 8.1$ fm
$N_f = 2 + 1$ NP clover, stout smeared links, 146 configs \times 64 measurements, $t_f - t_i = 1.3$ fm

ETMC: [Koutsou, Thu, 17:10] $m_\pi = 131$ MeV, $a = 0.093$ fm, $Lm_\pi = 3$, $L = 4.5$ fm
$N_f = 2$ twisted mass with clover term, $t_f - t_i = 1.1 - 1.7$ fm, 6816-69784 measurements.

PNDME: [Jang, Thu, 15:00] $m_\pi = 138$ MeV, $a = 0.09$ fm, $Lm_\pi = 3.9$, $L = 5.6$ fm
Direct extraction of radii and anomalous magnetic moment

Applying similar methods to those used in hadronic vacuum polarisation studies.

E.g. \(C_{3pt}^i(t, \vec{q}, \Gamma_k) = \Gamma_k \langle \mathcal{N}(\vec{p}_f, t_f) J_{i}^{em,u-d}(\vec{q}, t) \mathcal{N}(\vec{0}, 0) \rangle \propto \epsilon_{ijk} q_j G_M(Q^2) \)

Extract \(G_M(0) \) using \(\lim_{q^2 \to 0} \frac{\partial}{\partial q_j} C_{3pt}^i(t, \vec{q}, \Gamma_k) \)

ETMC: [Koutsou, Thu, 17:10]:

Position space method: lattice version of \(\int d^3x \, i x_j \, C_{3pt}^i(t, \vec{x}, \Gamma_k) \)

Tested with \(C_{3pt}^i(t, \vec{q}, \Gamma_i) \propto q_i G_E(Q^2) \)

\[[\text{Alexandrou}, 1605.07327] \]
\[N_f = 2 + 1 + 1, \]
\[m_\pi = 373 \text{ MeV}, \]
\[a = 0.08 \text{ fm}. \]
\[G_M^v(0) = 4.45(17)(7), \]
previously 3.93(12).
Direct extraction of radii and anomalous magnetic moment

[Chang, Thu, 14:40]

\(N_f = 2 + 1 \) clover with \(a = 0.12 \) fm,
\(m_\pi = 400 \) MeV

Also: LHPC [Hasan, Thu, 15:20] using “Rome method” [de Divitiis, 1208.5914]:

Expand correlation functions with respect to the spatial components of external momenta.

\[
C[\vec{p}; U] = C^{(0)}[U] + p_k C_k^{(1)}[U] + \frac{p_h p_k}{2} C_{hk}^{(2)}[U] + \cdots .
\]
Isovector form factors

Achieving large Q^2: momentum smearing RQCD [Bali,1602.05525]

Poster: B. Lang (RQCD) for pion. Talk: [Syritsyn,Mon,15:55]

Achieving large Q^2: Feynman-Hellmann approach CSSM/QCDSF/UKQCD [Chambers,Mon,17:05]

Also:

Variational method for form factors including parity projection for $\vec{p} \neq \vec{0}$ [Stokes,Phys.Rev.D92,114506] and [Stokes,Fri,15:40] → extract EM form factors for first three states of $P = \pm$ nucleon at $m_\pi = 515$ MeV.
Nucleon axial form factor $G_A(Q^2)$

Previously, [Lin,0802.0863], [Yamazaki,0904.2039], [Bratt,1001.3620], [Bali,1412.7336]

Needed for neutrino oscillation experiments:

Charged current quasielastic (CCQE) neutrino-nucleus interaction must be known to high precision.

Connecting quark - nucleon level: $G_A(Q^2)$ form factor.

nucleon - nucleus level: nuclear model.

Traditionally: information on $G_A(Q^2)$ extracted from expt. using dipole fit:

$$G_A(Q^2) = \frac{g_A}{(1 + \frac{Q^2}{M_A^2})^2}$$

$$\langle r_A^2 \rangle = \frac{12}{M_A^2}$$

World average (pre 1990) from ν scattering $M_A = 1.026(21) \text{ GeV}$.

Overconstrained form: different measurements, different M_A.

Lower energy expts: e.g. MiniBooNE: $M_A = 1.35(17) \text{ GeV}$ [Aguilar-Arevalo,1002.2680]

Systematics being explored including new analysis of old expt data:

$$\langle r_A^2 \rangle = 0.46(22) \text{ fm}^2 \rightarrow M_A = 1.01(24) \text{ GeV} \text{ from z-expansion} \ [Meyer,1603.03048]$$
Nucleon axial form factor $G_A(Q^2)$

Mainz: [von Hippel, Wed, 9:40], SM params & renorm.

$N_f = 2$ CLS NP clover, $m_\pi = 195 - 450$ MeV, $Lm_\pi \gtrsim 4$, $t_f - t_i \sim 0.6 - 1.4$ fm

$\langle r_A^2 \rangle$ extracted using z-expansion.

Expt: dipole form with $M_A = 1.02$.
Nucleon axial form factor $G_A(Q^2)$

![Graph showing the dependence of G_A/Q_A on Q^2 with different lattice spacings and masses.

[Jang, Thu, 15:00]

Small dependence of $\langle r_A^2 \rangle$ on lattice spacing (dipole fit).

PNDME: $N_f = 2 + 1 + 1$ MILC HISQ, $a = 0.06 - 0.12$ fm Valence clover (tree-level, tadpole improved) $m_\pi = 135 - 315$ MeV

NME: $N_f = 2 + 1$ JLab/W&M tadpole clover, $a = 0.114$ and 0.080 fm, $m_\pi = 200, 315$ MeV. Consistency between clover+HISQ and clover-clover results.
Nucleon axial form factor $G_A(Q^2)$

Also:

RBC/UKQCD: [Ohta, Mon, 17:25] \(N_f = 2 + 1 \) domain wall

PACS: [Kuramashi, Thu, 16:30] \(N_f = 2 + 1 \) NP clover, stout smeared links

FERMILAB: [Meyer, Thu, 18:10] \(N_f = 2 + 1 + 1 \) HISQ

ETMC: [Koutsou, Thu, 17:10] \(N_f = 2 \) twisted mass
Nucleon strangeness electric and magnetic form factors

Expt: extracted from parity violating $e - N$ scattering, interference between γ and Z exchange.

Last year: LHPC [Green,1505.01803], $N_f = 2 + 1$ BMW-c clover ensembles, clover valence fermions, $m_\pi = 317$ MeV, $a = 0.11$ fm.

This year: χQCD [Sufian,1606.07075], $N_f = 2 + 1$, RBC/UKQCD domain wall ensembles, overlap valence fermions, $a = 0.08, 0.11$ fm, $m_\pi = 139, 300$ and 330 MeV + non-unitary values.

Shown $m_\pi = 330$ MeV

[Liu,Mon,17:45]

Expt: e.g. HAPPEX [1107.0913]

$G_M^s(0.62 \text{GeV}^2) = -0.070(67)$
Nucleon strangeness electric and magnetic form factors

LHPC [Green,1505.01803]

\[\langle r_E^2 \rangle_s = -0.0067(10)(17)(15) \text{fm}^2 \]
\[\langle r_M^2 \rangle_s = -0.018(6)(5)(5) \text{fm}^2 \]
\[\mu_s = -0.022(4)(4)(6) \mu_N \]

\[\chi_{QCD} \] [Sufian,1606.07075]

\[\langle r_E^2 \rangle_s = -0.0046(21)(02)(09)(04) \text{fm}^2 \]
\[\mu_s = -0.073(17)(04)(06)(04) \mu_N \]
Isoscalar axial form factor

Renormalisation: non-singlet currents: \(Z^{ns} = Z^{ns}(a) \).

Singlet currents: (cont.) \(U_{A}(1) \) anomaly means \(Z^{s} = Z^{s}(\mu, a) \).

Deviation \(z(\mu, a) = Z^{s}(\mu, a) - Z^{ns}(a) \) is \(O(\alpha^{2}) \) in pert. theory.

Leads to mixing matrix (no \(O(a) \)):

\[
\begin{pmatrix}
\Delta u(\mu) + \Delta d(\mu) \\
\Delta s(\mu)
\end{pmatrix}
= \begin{pmatrix}
Z^{ns} + \frac{1}{3}z & \frac{1}{3}z \\
\frac{1}{3}z & Z^{ns} + \frac{1}{3}z
\end{pmatrix}
\begin{pmatrix}
\Delta u(a) + \Delta d(a) \\
\Delta s(a)
\end{pmatrix}
\]

LHPC: non-perturbative determination via Rome-Southampton method. [Green, Thu, 15:40]

\(m_{\pi} = 317 \text{ MeV, } a = 0.11 \text{ fm} \).

Also RQCD \(N_{f} = 2 \) [Piemonte, Wed, 9:20], SM params & renorm.
Isoscalar axial and induced pseudoscalar form factors

LHPC: $N_f = 2 + 1$ BMW-c clover ensembles, clover valence fermions, $m_\pi = 317$ MeV, $a = 0.11$ fm.

- Data points: statistical errors only. Fits using z-expansion, stat.+sys. error shown.
- G_A^s is small.
Pion electromagnetic form factors

Expt: JLab Hall C Fpi12, charged pion form factor to 6 GeV2.

HPQCD [Koponen,1511.07382]: $N_f = 2 + 1 + 1$ MILC HISQ, $a = 0.088 - 0.15$ fm, $m_\pi \sim 133$ MeV, $Lm_\pi = 3.3 - 3.9$, $t_f - t_i = 1.4 - 2.3$ fm.

Twisted b.c.: q^2 down to -0.006 GeV2 $\langle r_E^2 \rangle = 0.403(18)(6)$ fm2

Fit:

$$f_+(q^2) = \frac{1}{(1 - \langle r^2 \rangle q^2/6)}$$

modified for disc. effects
+ mistuning m_q^{sea},
$m_\pi \neq m_\pi^{phys}$.
Pion electromagnetic form factors

ETMC: [Kostrzewa,Fri,15:00] \(N_f = 2 \) clover twisted mass, \(m_\pi \sim 131 \) MeV, \(a = 0.093 \) fm, \(Lm_\pi = 3 \) and 4.

Twisted b.c.: \(Q^2 \) down to 0.0078 GeV^2.

\[
\langle r_E^2 \rangle_{\text{eff}} = 6 \left(1 - f_+(Q^2) \right) \frac{Q^2}{Q^2}
\]

Fits to \(f_+(Q^2) \): \(1 - \langle r^2 \rangle/6Q^2 + cQ^4 \), \(c \approx 0 \)

\[
L=48 \quad \langle r_E^2 \rangle = 0.328(29) \text{ fm}^2
\]

\[
L=64 \quad \langle r_E^2 \rangle = 0.437(42) \text{ fm}^2
\]
Pion electromagnetic form factors

PACS: [Kakazu,Fri,14:40] \(N_f = 2 + 1 \) NP clover, stout smeared links, \(m_\pi = 145 \) MeV, \(a = 0.085 \) fm, 40 configs \(\times 32 \) measurements, \(t_f - t_i = 3 \) fm, \(Lm_\pi = 6 \).

Large volume: \(L \sim 8.1 \) fm

\(Q^2_{\text{min}} \sim 0.019 \) GeV\(^2\)

\[
\langle r_E^2 \rangle^\text{eff} = 6 \left(1 - f_+(Q^2) \right) \frac{Q^2}{Q^2}
\]

Fit NLO SU(2) ChPT expression for \(f_+(Q^2) \rightarrow \) l.e.c. \(l_6 = -0.01234(72) \) (consistent with FLAG 2015)

Adjust to \(m_\pi^{\text{phys}} \), \(\langle r_E^2 \rangle = 0.412(21) - 0.415(20) \) fm\(^2\).
Pion electromagnetic form factors

PACS: [Kakazu,Fri,14:40]

Also Mainz [Brandt,1306.2916] $\langle r_E^2 \rangle = 0.481(33)(13) \text{ fm}^2$ in chiral limit.
Sigma terms: \(\sigma_q = m_q \left(\langle N | \bar{q}q | N \rangle - \langle 0 | \bar{q}q | 0 \rangle \right) \)

Scattering of DM candidates off nuclei (near zero recoil).

Spin-independent effective interaction
\(\sim \bar{\chi} \chi \bar{q}q \)
\(\sigma_{SI}^{N} \propto |f_N|^2 \)
\(N = p, n. \)

\[
\frac{f_N}{m_N} = \sum_{q \in \{u,d,s,c,b,t\}} f_{T_q}^N \frac{\alpha_q}{m_q}, \quad f_{T_q}^N = \frac{\sigma_q^N}{m_N}
\]

Higgs example: \(\alpha_q \propto m_q / m_W \)

For heavy flavours \(\langle \bar{h}h \rangle_N \propto 1/m_h, m_h \rightarrow \infty \).

If \(\alpha_q \propto m_q, t, b \) and \(c \) matter.

If \(\alpha_q \) insensitive to \(m_q \), only \(u, d, (s) \) play a role.
Sigma terms: experiment

21st July 2016, referring to the Lux expt.

PDG 2015
Direct determinations of $\sigma_{\pi N} = \sigma_u + \sigma_d$

RQCD [Bali,1603.00827], ETMC [Abdel-Rehim,1601.01624], ETMC [Dinter,1202.1480], χQCD [Yang,1511.09089]

Note: $a c_{\text{FF}} \langle FF \rangle$ neglected $\rightarrow \mathcal{O}(a)$ errors for all actions.

ETMC: [Alexandrou,Mon,15:15], [Vaquero,Thu,17:30]: update with increased statistics, $\sigma_{\pi N} = 36(2) \text{ MeV}$ - statistical errors only.
Strangeness: \(f_{Ts} = \frac{\sigma_s}{m_N} \) and \(y = \frac{2\langle \bar{s}s \rangle}{\langle \bar{u}u + \bar{d}d \rangle} \)

ETMC: [Alexandrou, Mon, 15:15], [Vaquero, Thu, 17:30]: update with increased statistics, \(\sigma_s = 37(8) \) MeV \(\rightarrow f_{Ts} = 0.039(9) \) - statistical errors only.

Also: JLQCD [Ohki, 1208.4185] \(N_f = 2 + 1 \) overlap, \(a = 0.11 \) fm, \(m_\pi = 300 - 540 \) MeV, \(f_{Ts} = 0.009(22) \).

RQCD [Bali, 1603.00827] \(N_f = 2 \), RQCD/QCDSF NP clover, \(a = 0.06 - 0.08 \) fm, \(f_{Ts} = 0.037(13) \).

Hybrid method: [Freeman and Toussaint, 1204.3866] \(N_f = 2 + 1 \) MILC Asqtad \(f_{Ts} = 0.061(9) \), \(N_f = 2 + 1 + 1 \) MILC HISQ, \(a = 0.06 - 0.15 \) fm, \(f_{Ts} = 0.044(1) \).
Nucleon sigma terms from Feynman-Hellmann theorem

\[\sigma_{\pi N} = \sigma_u^N + \sigma_d^N = m_u \frac{\partial m_N}{\partial m_u} + m_d \frac{\partial m_N}{\partial m_d} \approx m_\pi^2 \frac{\partial m_N}{\partial m_\pi^2}, \]

\[\sigma_s^N = m_s \frac{\partial m_N}{\partial m_s} \approx m_{ss}^2 \frac{\partial m_N}{\partial m_{ss}^2}. \]

BMW-c [Dürr,1510.08013]:

\(N_f = 2 + 1, \) 2HEX-Clover,

\(a = 0.054 - 0.116 \) fm,

\(m_\pi \geq 120 \) MeV.

Figure: [Dürr,1011.2711]
Nucleon sigma terms from Feynman-Hellmann theorem

BMW-c [Dürr,1510.08013]

\[M_N = M_N^{(\Phi)} (1 + g_N^a(a)) (1 + g_N^{FV}(M_\pi, L)) \left(1 + c_N^{a,ud}(a) \tilde{m}_{ud} + c_N^{a,s}(a) \tilde{m}_s + \ldots \right) \]

\[\sigma_{\pi N} = 38(3)(3) \text{ MeV} \quad \sigma_s = 105(41)(37) \text{ MeV} \]

Also: PACS [Ishikawa,1511.09222]

\[m_{ud}^{RGI} = 40 \text{ MeV} \rightarrow m_\pi \approx 400 \text{ MeV}. \quad \text{Update: [Lellouch, Thu, 14:20]} \quad N_f = 1 + 1 + 1 + 1, \]

Also: PACS [Ishikawa,1511.09222]
Summary of sigma terms and f_{Tq}

Values from phenomenological analyses of π-N scattering tend to be higher.

[Hoferichter,1506.04142] $\sigma_{\pi N} = 59.1(3.5)$ MeV.

[Hoferichter,1602.07688] request for a lattice computation of πN scattering lengths.

Also interesting: $\sigma_{\pi N}(Q^2 = -2m_{\pi}^2) - \sigma_{\pi N}(0) \rightarrow$ scalar radius from form factor.
Heavy quark sigma terms

HQET relates $\sigma_{h=c,b,t}^N$ to $(2/27)(m_N - \sum_{q=u,d,s}^{q=H} \sigma_q^H)$ at leading order in $1/m_h$ and α [Shifman,1978].

Taking:
$\sigma_{\pi N} = 35(6)\text{ MeV}$, $\sigma_s = 35(12)\text{ MeV}$
gives
$f_{T_c} = 0.075(4)$,
$f_{T_b} = 0.072(2)$,
$f_{T_t} = 0.070(1)$,
using N^3LO:[Chetyrkin,hep-ph/9708255] + others

ETMC: [Alexandrou,Mon,15:15], [Vaquero,Thu,17:30]: update with increased statistics, $\sigma_c = 87(17)\text{ MeV}$ - statistical errors only.
Quark and gluon momentum fraction

First moment of q/g parton distribution function: $\langle x \rangle_{q/g} = \int dx \, x \, F_{q/g}(x)$.

Connected insertion: u, d.
Disconnected insertion: u, d, s, g

ETMC: [Vaquero, Thu, 17:30] $N_f = 2$ twisted mass with clover term,

$m_\pi = 131$ MeV, $Lm_\pi = 3$,
$a = 0.093$ fm.
Stout smearing to reduce noise.
Approx: 2000 (cfgs) \times 100 (sources)

Renormalisation: mixing between $\sum_q \langle x \rangle_q$ and $\langle x \rangle_g$: 1-loop to $\overline{\text{MS}}$ at 2 GeV.

$\langle x \rangle_{g, \text{bare}} = 0.318(24) \rightarrow \langle x \rangle_{g, \overline{\text{MS}}} = 0.320(24), \quad (\langle x \rangle_u + \langle x \rangle_d + \langle x \rangle_s)_{\overline{\text{MS}}} = 0.72(11)$

Momentum sum satisfied: $\sum_q \langle x \rangle_q + \langle x \rangle_g = 1.04(11)$

Consistent with χ_{QCD} quenched calculation [Deka, 1312.4816].

Also computed: $g_A^{u,d}$, $g_T^{u,d}$, $g_S^{u,d}$.
P wave $\pi \pi \rightarrow \pi \gamma$

Extracting $\rho \rightarrow \pi \gamma$ form factor first step towards e.g. $N\gamma^* \rightarrow \Delta \rightarrow N\pi$

HSC: using formalism developed in [Briceño,1406.5965] for $1 \rightarrow 2$ particle transition amplitudes.

Infinite volume amplitude $A_{\pi \pi,\pi,\gamma^*}(E_{\pi \pi}^*, Q^2)$ related to finite volume $\tilde{A}(E_{\pi \pi}^*, Q^2; L)$

Anisotropic $N_f = 2+1$ clover fermions $a_s/a_t \approx 3.5$, $a_s \approx 0.12$ fm, $m_\pi \approx 400$ MeV..

See also talk by David Wilson and for another study [Leskovec,Fri,17:50].
Summary

Benchmark quantities:

- First calculations with main systematics considered (continuum limit, finite V, physical point results, excited states, ...). More in progress.
- The same effort needs to be applied to $\langle x \rangle_{u-d}$.

Overall agreement on charges: g_S, g_T.

Efficient methods for achieving statistical precision + m^{phys}_π simulations.

Impact on:

- Form factor determinations, $f_+^{\pi}(Q^2)$, $G_{E,M}(Q^2)$, $G_A(Q^2)$.
- $\sigma_{\pi N}$.
- Systematics needs to be explored.

Progress in disconnected techniques:

- Enable calculations of strangeness form factors.
- Estimates of disconnected contributions also at the physical point $\rightarrow G_M^s(Q^2)$, $\langle x \rangle_q$, $g_{A,S,T}^q$.

\Box
Thanks for results/correspondence with:

J. Green P. Junnarkar E. Shintani
K.-F. Liu Y.-B. Yang F. Stokes
T. Kaneko R. Sufian C. C. Chang
T. Harris C. Alexandrou R. Gupta
R. Briceño B. Kostrzewa T. Yamazaki
G. von Hippel H. Perl C. Urbach

Apologies to those not included!