Theorem 1. [4] Let n be an arbitrary positive integer. Given any sequence S of $2n - 1$ integers, there is a subsequence T of S with length n, the sum of whose terms is divisible by n.

The natural generalization of this result is the study of sequences over finite abelian groups which are guaranteed to have zero-sum subsequences of some prescribed length.

We will operate extensively with sets of integers. Write \mathbb{N} for the set of all positive integers and \mathbb{Z} for the set of all integers. We use the notation $[a, b]$ to denote the set of all integers $\{a, a + 1, \ldots, b\}$ between a and b inclusive. For a set $K \subset \mathbb{Z}$ and an integer q, write $Kq = \{kq : k \in K\}$, $K + q = \{k + q : k \in K\}$, and $q - K = \{q - k : k \in K\}$.

Let $(G, +)$ be a finite abelian group written additively. Then, we write $|G|$ for the size of G and $\exp(G)$ for the exponent of G, i.e. the largest order of any element of G. A sequence S over G will be written multiplicatively in the form

$$S = g_1 g_2 \cdots g_\ell = \prod_{g \in G} g^{v_g(S)},$$

with $v_g(S) \geq 0$ being the number of times that g appears in S. If S_1, S_2 are two sequences then we write

$$S_1 S_2 = \prod_{g \in G} g^{v_g(S_1) + v_g(S_2)}$$

for their product, or concatenation.
With these definitions, we call

$$|S| = \sum_{g \in G} v_g(S)$$

the length of S and

$$\sigma(S) = \sum_{g \in G} v_g(S) \cdot g$$

the sum of S (which is an element of G). A sequence S is zero-sum if $\sigma(S) = 0$.

Throughout, we write C_m for the cyclic group of order m and identify it with $\mathbb{Z}/m\mathbb{Z}$.

We say that T is a subsequence of S, written $T|S$, if $v_g(T) \leq v_g(S)$ for every $g \in G$. If T is a subsequence of S then we write ST^{-1} for the sequence

$$ST^{-1} = \prod_{g \in G} g^{v_g(S) - v_g(T)}.$$

Following Gao and Thangadurai [11], we define $s_k(G)$ to be the smallest positive integer ℓ for which any sequence S of length ℓ over G contains a zero-sum subsequence of length k. We will only be concerned with the case where $\exp(G)|k$; it is easy to check that if $\exp(G) \nmid k$ then $s_k(G) = \infty$. Theorem 1 proved that $s_n(C_n) = 2n - 1$, where C_n is the cyclic group of order n. The case $G = C_n^d$ and $k = n$ was first studied by Harborth [13].

We generalize this definition to sets of lengths, following notation from Geroldinger, Grynkiewicz and Schmid [9]. For any set K of positive integers, let $s_K(G)$ be the shortest length ℓ for which any sequence S of length ℓ over G contains a zero-sum subsequence with length in K. Geroldinger, Grynkiewicz and Schmid were interested in the case that K is an infinite progression $a\mathbb{N}$, but we will primarily work with finite sets K.

As an important special case, define $D(G) = s_2(G)$ to be the Davenport constant of G, which is the shortest length ℓ for which any sequence S of length ℓ has some nontrivial zero-sum subsequence. For a p-group of the form

$$G = \bigoplus_{i=1}^d C_{p^{\alpha_i}},$$

the Davenport constant was determined by Olson [16] to be

$$D(G) = 1 + \sum_{i=1}^d (p^{\alpha_i} - 1).$$

It will henceforth be implicitly understood that tight lower bounds on all of the quantities $s_K(G)$ can be proved by construction and that it suffices to prove upper bounds.

In the rank 2 case it was first conjectured by Kemnitz [14] that $s_n(C_n^2) = 4n - 3$. Alon and Dubiner [1, 2] obtained the first linear bound $s_n(C_n^2) \leq 6n - 5$. Later Rónyai [18] showed for primes p, $s_p(C_p^2) \leq 4p - 2$, and the full Kemnitz conjecture was resolved by Reiher [17]. All of these results follow from algebraic considerations related to the Chevalley-Warning theorem.

In this paper we are primarily interested in finite abelian p-groups of higher rank, for which the following conjecture has been made. If G has exponent q it will be convenient to write $d = \left\lceil \frac{D(G)}{q} \right\rceil$.
Conjecture 2. [11, 15] Let p be a prime and let G be a finite abelian p-group with $\exp(G) = q$ and $\left\lceil \frac{D(G)}{q} \right\rceil = d$. Then for any $k \geq d$, we have $s_{kq}(G) = kq + D(G) - 1$.

Conjecture 2 has been proved when G has rank at most 2: see for instance Theorem 6.12 in the survey of Gao and Geroldinger [8]. For groups of higher rank, progress has been made towards the computation of $s_{kn}(C_n^r)$ for $r = 3, 4$ by Edel et al. [3], and more general inductive bounds for arbitrary rank have been obtained by Fan, Gao, and Zhong [5].

Our first main result bounds $s_{Kq}(G)$ when p is prime, G is a p-group with exponent q, and $|K| \geq d$. The same result was proved for the special case $G = C_q^d$ by Kubertin [15], and our argument is similar.

Theorem 3. Let p be a prime and let G be a finite abelian p-group with $\exp(G) = q$ and $\left\lceil \frac{D(G)}{q} \right\rceil = d$. If $K \subseteq [1, p]$ is a set satisfying $|K| \geq d$, then

$$s_{Kq}(G) \leq (\max K + 1 - |K|)q + D(G) - 1.$$

Gao, Han, Peng, and Sun [6, 10] have shown the following preliminary results in the most general setting, assuming nothing about G.

Theorem 4. [6, 10] Let G be a finite abelian group with $\exp(G) = n$. Then for any $k \geq 1$, we have $s_{kn}(G) \geq kn + D(G) - 1$. If $kn \geq |G|$, then equality holds, whereas if $kn < D(G)$, then the inequality is strict.

From here they introduced the threshold function $\ell(G)$ defined as the smallest positive integer ℓ for which $s_{kn}(G) = kn + D(G) - 1$ for any $k \geq \ell$. From Theorem 4 we have

$$\frac{D(G)}{\exp(G)} \leq \ell(G) \leq \frac{|G|}{\exp(G)}.$$

The lower bound is conjectured to be tight; our primary goals in this paper are to bound the growth of $s_{kn}(G)$ and in turn give a much stronger upper bound on $\ell(G)$ when G is a p-group.

Using Theorem 3 it is possible to prove the following bound on $s_{kq}(G)$ when G is a p-group with exponent q. For comparison, Kubertin’s methods [15] allow one to prove $s_{kq}(C_q^d) \leq (k + Cq^2)q - d$ for some fixed constant $C > 0$.

Theorem 5. Let p be a prime, let G be a finite abelian p-group with $\exp(G) = q$ and $\left\lceil \frac{D(G)}{q} \right\rceil = d$. If $p \geq 2d - 3 + 3\left\lceil \frac{D(G)}{2q} \right\rceil$, and $k \geq d$, then

$$s_{kq}(G) \leq (k + 2d - 2)q + 3D(G) - 3.$$

When restricted to $G = C_q^d$, the Davenport constant is just $D(G) = qd - d + 1$. Thus, the bound reduces to $s_{kq}(C_q^d) \leq (k + 5d - 2)q - 3d$ when $2p \geq 7d - 3$ and $k \geq d$, achieving a bound linear in d where Kubertin proved only a quadratic one. Theorem 5, together with Olson’s calculation of $D(G)$, gives a new bound for $\ell(G)$ for a p-group.

Corollary 6. Let p be a prime and let G be a finite abelian p-group with $\exp(G) = q$ and $\left\lceil \frac{D(G)}{q} \right\rceil = d$. If $p \geq 4d - 2$, then $\ell(G) \leq p + d$. That is, $s_{kq}(G) = kq + D(G) - 1$ whenever $k \geq p + d$.
In the next section, we collect two well-known lemmas about the behavior of $s_{kq}(G)$, before proceeding to the proofs of Theorems 3 and 5. For more discussion of the implications of Theorem 5 and Corollary 6 on the general problem and on open questions, see the final section.

Preliminary Lemmas

First, we show a sub-additivity result on $s_k(G)$ for general G. Note that if $\exp(G) \nmid a$ or $\exp(G) \nmid b$, the following lemma is vacuously true.

Lemma 7. If G is a finite abelian group and $a, b \in \mathbb{N}$, then
$$s_{a+b}(G) \leq \max\{s_a(G) + b, s_b(G)\}.$$

Proof. Suppose that S is a sequence over G with $|S| \geq s_a(G) + b$ and $|S| \geq s_b(G)$. By the latter inequality, S has a zero-sum subsequence S'_1 of length b. By the former inequality, SS'_1^{-1} has a zero-sum subsequence S'_2 of length a. Thus, S contains a zero-sum subsequence $S'_1S'_2$ of length $a + b$ as desired. \hfill \Box

Also we will need an easy special case of Conjecture 2, which follows directly from a result of Geroldinger, Grynkiewicz and Schmid [9]. We include a quick proof for convenience, using the result of Olson [16] which determines the value of $D(G)$ for all p-groups.

Lemma 8. Let p be a prime and let G be a finite abelian p-group with $\exp(G) = q$ and $\frac{D(G)}{q} = d$. If $p \geq d$, then $s_{kpq}(G) = kpq + D(G) - 1$ for any integer $k \geq 1$.

Proof. It suffices by Theorem 4 and Lemma 7 to prove that $s_{pq}(G) \leq pq + D(G) - 1$. Let S be a sequence of this latter length over G.

Let e be a generator of C_{pq}. Construct a sequence S' over $G \oplus C_{pq}$ such that if $S = \prod_{g \in G} g^{\nu_g(S)}$, then $S' = \prod_{g \in G} (g, e)^{\nu_g(S)}$. Then, a zero-sum subsequence of S' corresponds exactly to a zero-sum subsequence of S with length divisible by pq. Since $|S| = pq + D(G) - 1 < 2pq$, it follows that any such subsequence would have length exactly pq.

Since $D(G \oplus C_{pq}) = pq + D(G) - 1$ by Olson’s theorem [16], it follows that S itself had a length pq zero-sum subsequence, as desired. \hfill \Box

Combining Lemmas 7 and 8, it remains to control the behavior of $s_{kq}(G)$ in the finite interval $k \in [d, p - 1]$.

The Algebraic Method of Rónyai and Kubertin

In this section we generalize the algebraic method of Rónyai [18], who showed that $s_p(C_p^2) \leq 4p - 2$ for all primes p, to prove Theorem 3. Theorem 3 was proved for C_q^d in the paper of Kubertin [15].

We require the following elementary result. Rónyai used the same statement for fields [18], but we will also need the case $R = \mathbb{Z}$.

Lemma 9. Let R be an integral domain and m a positive integer. Then the (multilinear) monomials $\prod_{i \in I} x_i, I \subseteq [1, m]$, constitute a basis for the free R-module M of all functions from $\{0, 1\}^m$ to R. (Here 0 and 1 are viewed as elements of R.)
Proof. For a given point \(\mathbf{a} = (a_1, a_2, \ldots, a_m) \in \{0, 1\}^m \), we define the indicator function

\[
p_{\mathbf{a}}(\mathbf{x}) = (-1)^{m - \sum_{i=1}^{m} a_i} \prod_{i=1}^{m} (x_i - 1 + a_i),
\]

where \(\mathbf{x} = (x_1, \ldots, x_m) \in \{0, 1\}^m \). Thus \((p_{\mathbf{a}}(\mathbf{x}), \mathbf{a} \in \{0, 1\}^m) \) is a basis for \(M \).

Since \(p_{\mathbf{a}}(\mathbf{x}) \) is a \(R \)-linear combination of the given monomials \(\prod_{i \in I} x_i, I \subseteq [1, m] \), these monomials generate \(M \). There are \(2^m \) monomials in this set of generators and \(M \) has rank \(2^m \), so we conclude that the given monomials \(\prod_{i \in I} x_i, I \subseteq [1, m] \) form a basis for \(M \). □

Using this lemma, we can prove Theorem 3.

Proof. (of Theorem 3) Let \(G = C_{q_1} \oplus \cdots \oplus C_{q_e} \) with each \(q_i = p^{m_i} \) for some \(m_i > 0 \). Write \(q = \exp(G) = \max(q_i) \). Let \(S = \prod_{i=1}^{m_i} g_i \) be a sequence over \(G \) with length

\[
m = (\max K + 1 - |K|)q + D(G) - 1
\]

\[
= (\max K + 1 - |K|)q + \sum_{i=1}^{e} q_i - e.
\]

We show that, given any set \(K \) of positive integers in \([1, p]\) with cardinality at least \(d \), some zero-sum subsequence of \(S \) has length in \(Kq \). Suppose otherwise.

Working over the field \(\mathbb{Q} \), we define the following polynomial on \(m \) variables \(x_1, x_2, \ldots, x_m \). Write \(\mathbf{x} = (x_1, \ldots, x_m) \). By identifying \(C_{q_i} \) with \(\mathbb{Z}/q_j \mathbb{Z} \) and picking representatives \([0, q_j - 1] \subseteq \mathbb{Z} \) for this quotient, we let \(a_{i,j} \) denote the representative in \([0, q_j - 1] \) for the \(j \)-th component of \(g_i \in S \), where \(i \in [1, m] \) and \(j \in [1, e] \). Also, given a polynomial \(Q(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}] \) and an integer \(n \geq 0 \), we define

\[
\binom{Q(\mathbf{x})}{n} = \frac{Q(\mathbf{x})(Q(\mathbf{x}) - 1) \cdots (Q(\mathbf{x}) - (n-1))}{n!} \in \mathbb{Q}[\mathbf{x}],
\]

with an empty product taken to be 1. Then, define \(P \) to be the integer-valued polynomial

\[
P(\mathbf{x}) = P_L(\mathbf{x})P_S(\mathbf{x})P_K(\mathbf{x}),
\]

where

\[
P_L(\mathbf{x}) = \binom{\sum_{i=1}^{m} x_i - 1}{q - 1}
\]

\[
P_S(\mathbf{x}) = \prod_{j=1}^{e} \binom{\sum_{i=1}^{m} a_{i,j} x_i - 1}{q_j - 1}
\]

\[
P_K(\mathbf{x}) = \prod_{\ell \in [1, \max K] \setminus K} \left(\binom{\sum_{i=1}^{m} x_i}{q} - \ell \right).
\]

Each \(\mathbf{x} \in \{0, 1\}^m \) uniquely indexes a subsequence \(T_\mathbf{x}|S \) with the terms of \(T_\mathbf{x} \) precisely those \(g_i \) for which \(x_i = 1 \). Now \(P \) vanishes modulo \(p \) except when \(\mathbf{x} = \mathbf{0} \) (the null vector). Suppose \(\mathbf{x} \neq \mathbf{0} \) and indexes a sequence \(T_\mathbf{x}|S \). The classical theorem of Lucas, of which Granville gave an excellent exposition [12], implies that for any power \(q_j \) of \(p \),

\[
\binom{y - 1}{q_j - 1} \equiv \begin{cases} 1 \pmod{p} & \text{if } q_j|y \\ 0 \pmod{p} & \text{otherwise}, \end{cases}
\]

"
and furthermore
\[
\left(\frac{\ell q_j}{q_j} \right) \equiv \ell \pmod{p},
\]
for any integers \(y, \ell \). Thus the polynomial \(P_L \) vanishes modulo \(p \) whenever \(|T_x| \) is not a multiple of \(q \), and the polynomial \(P_S \) vanishes modulo \(p \) whenever \(\sigma(T_x) \neq 0 \). Given that \(|T_x| = \ell q \) for some \(\ell > 0 \), the polynomial \(P_K \) vanishes modulo \(p \) whenever \(\ell \in [1, \max K] \setminus K \).

It follows that the only possibility for \(Q(x) \) not to vanish modulo \(p \) is if \(T_x \) is a zero-sum sequence with length congruent to \(\ell q \) for some \(\ell \in K \cup [\max K + 1, \ell] \pmod{p} \). But since \(|T_x| = \max |S| = m \) and \(m \) is constructed to be less than \((\max K + 1)q \), it follows that \(|T_x| \in Kq \), a contradiction.

We see that \(P \) vanishes modulo \(p \) on \(\{0, 1\}^m \) with the sole exception of the all-0’s vector. On that vector we can explicitly compute
\[
P(0) = P_L(0)P_S(0)P_K(0) = (-1)^{q-1} \prod_{i=1}^{\ell} (-1)^{q_{ij}-1} \prod_{\ell \in [1, \max K] \setminus K} (-\ell),
\]
which is nonzero mod \(p \) as \([1, \max K] \setminus K \) is a subset of \([1, p-1] \). Now \(P \) is an integer-valued polynomial which vanishes everywhere modulo \(p \) except at \(0 \). Applying Lemma 9 with \(R = \mathbb{Z}/p\mathbb{Z} \), we can write
\[
P(x) \equiv C \prod_{i=1}^{m} (1 - x_i) \pmod{p},
\]
as functions \(\{0, 1\}^m \to \mathbb{Z}/p\mathbb{Z} \) for some \(C \in \mathbb{Z} \) not divisible by \(p \). Pulling back to the integers, we have
\[
P(x) = C \prod_{i=1}^{m} (1 - x_i) + pQ_1(x)
\]
as functions \(\{0, 1\}^m \to \mathbb{Z} \) for some integer-valued function \(Q_1(x) \). We can then apply Lemma 9 to \(Q_1 \) with \(R = \mathbb{Z} \). Thus \(Q_1(x) \) is equal as a function to some integer linear combination \(Q_2 \) of monomials \(\prod_{i \in I} x_i, I \subseteq [1, m] \) satisfying \(Q_2 \in \mathbb{Z}[x] \) and \(\deg Q_2 \leq m \). Writing
\[
Q(x) = C \prod_{i=1}^{m} (1 - x_i) + pQ_2(x),
\]
we see that \(P \) and \(Q \) agree as functions \(\{0, 1\}^m \to \mathbb{Z} \). Since \(p \nmid C \), the top-degree term \(\prod_{i=1}^{m} x_i \) in \(Q(x) \) has a nonzero coefficient, so \(\deg Q = m \).

On the other hand, \(P \) can be written as a linear combination of basis monomials over \(\mathbb{Q} \) in another way, simply by expanding the product \(P = P_LP_SP_K \) and applying the relation \(x_i^2 = x_i \) for functions on \(\{0, 1\}^m \). Both expansions represent \(P \) in terms of the basis \(\{\prod_{i \in I} x_i, I \subseteq [1, m]\} \) for functions \(\{0, 1\}^m \to \mathbb{Q} \). By Lemma 9 with \(R = \mathbb{Q} \), they to be equal, so their degrees must equate. On the other hand, the second expansion has degree at most \(\deg P_L + \deg P_S + \deg P_K \), which we easily compute to be
\[
\deg P_L + \deg P_S + \deg P_K = (q - 1) + (D(G) - 1) + (\max K - |K|)q = m - 1
\]
by the definition of \(m \). This cannot agree with the degree of \(Q \), so we have a contradiction and the theorem is proved. \(\square \)
Bounds on Small Lengths

We now prove Theorem 5. Theorem 3 gives us
\[s_{Kq}(G) \leq (\max K + 1 - |K|)q + D(G) - 1 \]
whenever \(|K| \geq d\) and \(\max(K) \leq p\). For the next step, we obtain a bound for \(s_{Kq}(G)\) when
\(|K| \geq d/2\), allowing for \(K\) half as large.

Lemma 10. Let \(p\) be a prime and let \(G\) be a finite abelian \(p\)-group with \(\exp(G) = q\) and
\[\left\lceil \frac{D(G)}{q} \right\rceil = d. \]
If \(K \subset \mathbb{N}\) is a finite set with \(|K| \geq d/2\) and \(2\max K + |K| \leq p\), then
\[s_{Kq}(G) \leq (2\max K + 1 - |K|)q + D(G) - 1. \]

Proof. For any zero-sum sequence \(T\) with \(|T| = nq\) and \(2\max K + 1 \leq n \leq p + 1\), we can
define \(L = K \cup (n - K) \subseteq [1, p]\) having \(|L| = 2|K| \geq d\) and \(\max L \leq n - 1\). Since
\[|T| = nq \geq (n - 2|K|)q + D(G) \geq (\max L + 1 - |L|)q + D(G) - 1, \]
we can apply Theorem 3 to \(T\) with length set \(L\). Thus \(T\) has a zero-sum subsequence with
length in \(Lq = Kq \cup (n - K)q\). However, if it had a zero-sum subsequence \(T_1\) with length
\((n - k)q\) and \(k \in K\), then \(TT_1^{-1}\) has length \(kq\) with \(k \in K\), and is also zero-sum since \(T\)
itself is zero-sum. It follows that \(T\) has a zero-sum subsequence with length in \(Kq\).

Let \(S\) be a sequence over \(G\) of length \((2\max K + 1 - |K|)q + D(G) - 1\). Let \(K' = K \cup \{2\max(K) + i : i \in [1, |K|]\}\). We have \(|K'| = 2|K| \geq d\) and \(\max(K') = 2\max(K) + |K| \leq p\), by hypothesis. Also,
\[|S| = (2\max K + 1 - |K|)q + D(G) - 1 \geq (\max K' + 1 - |K'|)q + D(G) - 1, \]
so by Theorem 3 again, this time applied to \(K'\) and \(S\), we see that \(S\) has a zero-sum subsequence \(T\) with length in \(K'q\). If \(|T| \in Kq\) we’re done. Otherwise, \(|T| = nq\) with
\[2\max K + 1 \leq n \leq 2\max K + |K| \leq p. \]
But then \(T\) itself has a zero-sum subsequence with length in \(Kq\) by the previous argument, and
so \(S\) does as well. \(\square\)

Next we prove a much stronger bound than Theorem 5 on the interval \(k \in [2d - 1, p]\).

Lemma 11. Let \(p\) be a prime, let \(G\) be a finite abelian \(p\)-group with \(\exp(G) = q\) and
\[\left\lceil \frac{D(G)}{q} \right\rceil = d, \]
and let \(k \in [2d - 1, p]\) be an integer. Then,
\[s_{kq}(G) \leq kq + 2D(G) - 2. \]

Proof. Let \(S\) be a sequence over \(G\) satisfying \(|S| = kq + 2D(G) - 2\). Factor \(S = S_1S_2\) where
\(|S_1| = (k + 1 - d)q + D(G) - 1\) and \(|S_2| = (d - 1)q + D(G) - 1\).

If \(d = 1\), then \(G\) is cyclic and the result is a consequence of the Erdős-Ginzburg-Ziv
Theorem, so assume \(d \geq 2\). Let \(K\) be any \(d\)-subset of \([1, 2d - 2]\), and apply Theorem 3 to \(S_2\)
with length set \(Kq\). By ranging \(K\) through all possible \(d\)-subsets of \([1, 2d - 2]\), we see that
at least \(d - 1\) of the lengths in \([1, 2d - 2]q\) appear as the lengths of zero-sum subsequences
of \(S_2\). Together with the empty subsequence, these lengths form a \(d\)-subset \(L \subset [0, 2d - 2]\)
such that every length in \(Lq\) is the length of some zero-sum subsequence \(T_2|S_2\).

It remains to show that some length in \(kq - Lq\) is the length of a zero-sum subsequence
\(T_2|S_1\). But \(kq - Lq\) has cardinality \(d\) and maximum at most \(kq\). Since \(|S_1| \geq (k + 1 - d)q + D(G) - 1\) we can apply Theorem 3 to conclude that \(S_1\) indeed contains a zero-sum
subsequence T_1 with length in $kq - Lq$. Combining T_1 with the corresponding $T_2 | S_2$ with $|T_2| \in Lq$, we find that S has a zero-sum subsequence $T_1 T_2$ with the desired length kq. \hfill \square

Using Lemma 10 and Lemma 11 together we can prove Theorem 5.

Proof. (of Theorem 5) For $k \in [2d -1, p]$, the result follows by Lemma 11, and since $p \geq 2d -1$ this interval is nonempty.

Suppose $d \geq 2$ and $k \in [d, 2d-2]$, so that $k \leq p -1$. Let $m = \lceil \frac{D(G)}{2q} \rceil$ and

$$t = \left\lfloor \frac{k}{2} \right\rfloor + m - 1.$$

Note that since $k \geq d$ we have $t \geq 2m - 2$. Factor $S = S_1 S_2$ with lengths satisfying

$$|S_1| \geq (2t - m + 1)q + D(G) - 1 \quad \text{and} \quad |S_2| \geq (2k - 2t + 3m - 3)q + D(G) - 1. \quad (1)$$

We can apply Lemma 10 to S_1 with all possible m-subsets K of $[t - 2m + 2, t]$. This is possible because for such a set K we have $2 \max K + |K| \leq 2t + m \leq p$ by the hypothesis of the theorem. Thus there is a set $L \subset [t - 2m + 2, t]$ of cardinality m such that every element of Lq appears as the length of some zero-sum subsequence $T_1 | S_1$. In the case that $t = 2m - 2$ exactly, we first apply Lemma 10 to m-subsets of $[1, t]$ to get an $|L| = m - 1$, and then include the empty sequence afterwards, so that L contains 0 and has the correct size m.

Now, we simply apply Lemma 10 to S_2 with the set $k - L$. This set has cardinality m and maximum value at most $k - t + 2m - 2$, and p satisfies

$$2(k - t + 2m - 2) + m \leq 2d + 3m - 3 \leq p,$$

so the conditions are satisfied and some $T_2 | S_2$ has sum zero and length $|T_2| \in kq - Lq$. Concatenating it with the corresponding subsequence of S_1, the theorem is proved for $k \in [d, 2d - 2]$.

Finally it is easy to apply Lemma 7 to prove the theorem inductively on all $k \geq 2d$. If $k \geq 2d$, then we can write $k = d + k'$ with $k' \geq d$ and Lemma 7 gives

$$s_{kq}(G) \leq \begin{cases} s_{dq}(G) + k'q, s_{k'q}(G) \end{cases} \leq (k + 2d - 2)q + 3D(G) - 3,$$

and by induction the bound is proved for all $k \geq 2d$. \hfill \square

We can now show Corollary 6.

Proof. (of Corollary 6.) From Lemma 8, we have $s_{pq}(G) = pq + D(G) - 1$, and from Theorem 5, we have $s_{kq}(G) \leq (k + 2d - 2)q + 3D(G) - 3$ if $k \geq d$. Combining these via Lemma 7, we get for any $k \geq p + d$,

$$s_{kq}(G) \leq \max \left\{ s_{pq}(G) + (k - p)q, s_{(k-p)q}(G) \right\} = \max \left\{ kq + D(G) - 1, (k - p + 2d - 2)q + 3D(G) - 3 \right\}.$$

It suffices to show that under the additional assumption $p \geq 4d - 2$, the first term is larger. In fact, we have

$$p \geq 4d - 2 \quad \text{and} \quad pq \geq (4d - 2)q.$$

If $kq + D(G) - 1 \geq (k - p + 2d - 2)q + 3D(G) - 3$,

$$p \geq 4d - 2 \quad \text{and} \quad pq \geq (4d - 2)q.$$
as desired. □

CLOSING REMARKS AND OPEN PROBLEMS

We first make a few observations regarding the problem of Gao on the threshold \(\ell(G) \) after which \(s_{kn}(G) = kn + D(G) - 1 \) for all \(k \geq \ell(G) \), where \(n = \exp(G) \). Gao et al. [10] proved Theorem 4 which shows in general that

\[
D(G) \leq n \ell(G) \leq |G|.
\]

It is conjectured by Gao et al. [10] that the lower bound is tight, i.e.

\[
\ell(G) = \left\lceil \frac{D(G)}{n} \right\rceil
\]

for all \(G \). Thus we are mainly interested in improving the upper bound \(|G|/n \). In the case that \(G \) is a \(p \)-group we can do much better than \(\ell(G) \leq |G|/n \) using Theorem 5, getting \(\ell(G) \leq p + d \) when \(p \) and \(d \) satisfy the conditions of Theorem 5.

For comparison, the results of Kubertin give \(\ell(C_q^d) \leq q + Cd^2 \) for a constant \(C > 0 \), while conjectural value is \(\ell(C_q^d) = d \), so any bound independent of \(p \) would be a significant improvement on Theorem 6. The only available method for proving bounds on \(\ell(G) \) is combining bounds of the sort in Theorem 5 with Lemma 8, which depends on \(p \).

Problem. Can we remove the dependence on \(p \) in Corollary 6?

Just as in the special case \(k = 1 \), bounds on \(s_{kq}(C_q^d) \) give rise to bounds on \(s_{kn}(C_q^d) \), although in general the dependence is weaker. As an easy consequence of Theorems 5 and 6 we prove the following multiplicativity lemma.

Lemma 12. Let \(p \) be a prime, let \(q \) be a power of \(p \), and let \(G \) be a finite abelian group with \(\exp(G) = q^n \) such that the quotient group \(H = G/qG \) satisfies \(\left\lceil \frac{D(H)}{q} \right\rceil = d \) and \(p \geq 2d + 3 \left\lceil \frac{D(H)}{2q} \right\rceil - 3 \). If \(a, b \in N \) and \(b \geq d \), then

\[
s_{abq^n}(G) \leq s_{an}(qG)bq + (2d - 2)q + 3D(G) - 3.
\]

Furthermore, if \(p \geq 4d - 2 \) and \(b \geq p + d \), then

\[
s_{abq^n}(G) \leq s_{an}(qG)bq + D(G) - 1.
\]

Proof. Let \(S \) be a sequence over \(G \) with length at least \(s_{an}(qG)bq + (2d - 2)q + 3D(G) - 3 \). From \(S \) we can repeatedly remove, using Theorem 5 on \(G/qG \), length \(bq \) subsequences of \(S \) whose sums lie in \(qG \). Repeating until \(|S| \) falls below \((b + 2d - 2)q + 3D(G) - 3\), we extract a total of \(s_{an}(qG) \) disjoint zero-sum subsequences. The same can be done using Corollary 6 instead if \(b \geq p + d \).

In either case, we end up with \(s_{an}(qG) \) disjoint subsequences of \(G \), each of length \(bq \) and having sum in \(qG \). Thus there is a zero-sum subsequence of the sequence of their sums, with length \(an \), corresponding to a zero-sum subsequence of \(S \) with length \(abq^n \) as desired. □

We can bound \(s_{kn}(G) \) directly from Lemma 12 by induction. The empty product is taken to be 1.
Proposition 13. Let G be a finite abelian group with $\exp(G) = n$, decomposed as

$$G = \bigoplus_{i=1}^{r} G_{p_i},$$

a direct sum of p_i-groups G_{p_i} with $\exp(G_{p_i}) = q_i$ and $\left\lfloor \frac{\exp(G_{p_i})}{q_i} \right\rfloor = d_i$, satisfying $p_i \geq 2d_i + 3 \left\lfloor \frac{\exp(G_{p_i})}{2q_i} \right\rfloor - 3$, where p_i are pairwise distinct primes, $i \in [1, r]$. Then,

$$s_{kn}(G) \leq kn + \sum_{i=0}^{r-1} \left(\prod_{j=1}^{i} a_j q_j \right) ((2d_{i+1} - 2)q_{i+1} + 3\exp(G_{p_{i+1}}) - 3),$$

where k is any positive integer that can be written as a product $k = a_1 \cdots a_r$ of positive integers $a_i \geq d_i$. Also,

$$s_{kn}(G) \leq kn + \sum_{i=0}^{r-1} \left(\prod_{j=1}^{i} a_j q_j \right) (\exp(G_{p_{i+1}}) - 1)$$

if each p_i satisfies $p_i \geq 4d_i - 2$ and each a_i satisfies $a_i \geq p_i + d_i$.

Proof. Apply Lemma 12 with the filtration $G_j = \bigoplus_{i=1}^{j} G_{p_i}, j = 0, \ldots, r$ of G. Each subquotient $G_j/G_{j-1} \cong G_{p_j}, j \in [1, r]$, is a p_j-group so the lemma applies.

As a corollary, we have the following inequality by bounding the error term crudely by a geometric series. For clarity, we state it in terms of groups of the form C_n^d though bounds on any finite abelian group can be made in the same way.

Corollary 14. For $d > 0$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ with distinct prime factors $p_1, \ldots, p_r \geq \frac{7}{2}d - 3$, and $k = a_1 a_2 \cdots a_r$ a product of positive integers $a_1, a_2, \ldots, a_r \geq d$,

$$s_{kn}(C_n^d) \leq 6kn.$$

If furthermore each p_i satisfies $p_i \geq 4d - 2$ and each a_i satisfies $a_i \geq p_i + d$, $i \in [1, r]$, then

$$s_{kn}(C_n^d) \leq 3kn.$$

Proof. Applying the first part of Proposition 13, the first inequality reduces to showing

$$\sum_{i=0}^{r-1} \left(\prod_{j=1}^{i} a_j p_j^{\alpha_j} \right) ((2d - 2)p_{i+1}^{\alpha_{i+1}} + 3\exp(C_n^d_{p_{i+1}}) - 3) \leq 5kn.$$

Let T_i be the i-th term of this sum. First, we have the explicit formula [16]

$$\exp(C_n^d_{p_{i+1}}) - 1 = (p_{i+1}^{\alpha_{i+1}} - 1)d,$$

giving

$$T_i \leq 5d \left(\prod_{j=1}^{i} a_j p_j^{\alpha_j} \right) p_{i+1}^{\alpha_{i+1}} \leq 5 \prod_{j=1}^{i+1} a_j p_j^{\alpha_j}.$$
If \(d = 1 \) the result follows from Erdős-Ginzburg-Ziv, so we may assume \(d \geq 2 \) and \(p_i \geq \frac{d}{2} - 3 = 4 \), whence \(p_i \geq 5 \) since \(p_i \) is prime, \(i \in [1, r] \). As a result, we have

\[
T_i \leq 5kn \left(\prod_{j=i+2}^{r} a_j p_j^{a_j} \right)^{-1} \leq 5 \cdot 10^{-r-i-1}kn.
\]

Upon summing, it follows that

\[
\sum_{i=0}^{r-1} T_i \leq \frac{50}{11}kn,
\]

as desired. The second inequality follows similarly from the second part of Proposition 13.

This is stronger than can be obtained by the iterative application of Alon and Dubiner’s general bounds [1, 2] on \(s_n(C_d^n) \), but only holds for a thin set of pairs \((k, n) \). Of course, for any given \(n \) satisfying the conditions of Proposition 13, the inequality can be extended to all values of \(k \) in the semigroup generated additively by the \(k \) satisfying the stated condition, by Lemma 7, giving \(s_{kn}(C_d^n) \leq 6kn \) for all \(k \geq d^n (d+1)^r \), where \(r \) is the number of distinct prime factors of \(n \). Any technique achieving a bound of a strength similar to that of Corollary 14 but with the threshold of \(k \) independent of \(n \) would be significant.

Acknowledgements

This research was conducted at the Duluth Research Experience for Undergraduates program in 2014, supported by National Science Foundation grant number DMS-1358659 and National Security Agency grant number H98230-13-1-0273. The author would like to thank Professor Joe Gallian of the University of Minnesota-Duluth for organizing the program and for his support in all stages of this work. Also, thanks go out to Daniel Kriz for his many helpful suggestions. Input from an anonymous referee was essential for reformulations of our results to their most general form.

References

[1] N. Alon and M. Dubiner, A lattice point problem and additive number theory, Combinatorica 15-3 (1995), 301–309.
[2] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, Combinatorics, Paul Erdős Is Eighty, Vol. 1 (D. Miklos, V. T. Sos, and T. Szonyi, eds.), Bolyai Soc. Math.
[3] Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin, and L. Rackham, Zero-sum problems in finite abelian groups and affine caps, Q. J. Math. 58 (2007), 159–186.
[4] P. Erdős, A. Ginzburg, and A. Ziv, Theorem in the additive number theory, Bull. Research Council Israel 10F (1961), 41–43.
[5] Y. Fan, W. Gao, and Q. Zhong, On the Erdős-Ginzburg-Ziv constant of finite abelian groups of high rank, J. Number Theory 131 (2011), 1864–1874.
[6] W. Gao, A combinatorial problem on finite abelian groups, J. Number Theor. 58 (1996), 100–103.
[7] W. Gao, On zero-sum subsequences of restricted size II, Discrete Math. 271 (2003), 51–59.
[8] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337–369.
[9] A. Geroldinger, D. Grynkiewicz, and W. Schmid, Zero-sum problems with congruence conditions, Acta Math. Hungar., 131-4 (2011), 323–345.
[10] W. Gao, D. Han, J. Peng, and F. Sun, On zero-sum subsequences of length \(k \exp(G) \), J. Combin. Theory Ser. A 125 (2014), 240–253.
[11] W. Gao and R. Thangadurai, *On zero-sum sequences of prescribed length*, Aequationes Math. 72 (2006), 201–212.

[12] A. Granville, *Arithmetic Properties of Binomial Coefficients I: Binomial coefficients modulo prime powers*, Canad. Math. Soc. Conf. Proc. 20 (1997): 253–275.

[13] H. Harborth, *Ein Extremalproblem Für Gitterpunkte* J. Reine Angew. Math., 262/263 (1973), 356–360.

[14] A. Kemnitz, *Extremalprobleme für Gitterpunkte*, Ph.D. Thesis, Technische Universität Braunschweig, 1982.

[15] S. Kubertin, *Zero-sums of length kq in Z^d_q*, Acta Arith. 116-2 (2005), 145–152.

[16] J. E. Olson, *On a combinatorial problem on finite Abelian groups I and II*, J. Number Theory 18-10 (1969), 195–199.

[17] C. Reiher, *On Kemnitz’ conjecture concerning lattice-points in the plane*, Ramanujan J. 13 (2007), 333–337.

[18] L. Rónyai, *On a conjecture of Kemnitz*, Combinatorica 20-4 (2000), 569–573.

[19] S. Savchev and F. Chen, *Long n-zero-free sequences in finite cyclic groups*, Discrete Math. 308 (2008), 1–8.

E-mail address: xiaoyuhe@college.harvard.edu

Eliot House, Harvard College, Cambridge, MA 02138.