Discovery potential of LHC for extended gauge symmetries

Gernot Krobath
Ludwig-Maximilians-Universität München
E-Mail: gernot.krobath@physik.uni-muenchen.de
Overview

- LHC & ATLAS & CMS
- extended gauge theories
- experimental searches for:
 - W'
 - Z'
 - heavy majorana neutrinos, W^R
 - 2nd generation Leptoquarks
- conclusions
LHC schedule/luminosities

- 1st run at 14 TeV: July 2008
- $\int L \, dt$ in 1st month (August 2008): a few pb\(^{-1}\)
- $\int L \, dt$ until end of 2008: up to 1fb\(^{-1}\)
The Detectors

ATLAS

Diameter
15 m

Length
21.5 m

Magnetic field
4 T

Overall weight
12500 t

CMS

Diameter
25 m

Barrel toroid length
26 m

End-cap end-wall chamber span
46 m

Overall weight
7000 Tons
Extended Gauge Symmetries

• Many extensions of the Standard Model rely on larger symmetry groups → Extended Gauge Symmetries:

 • Left-right-symmetric models (LRSM)
 → \(Z', W_R' \), heavy majorana neutrinos etc.

 • Sequential standard model
 → \(Z', W' \) etc.

 • Superstring inspired \(E_6 \)-models
 → \(Z', \) Leptoquarks etc.

 • Grand-Unifying-Theories (GUTs)
 → \(\) Leptoquarks etc.

 • Little Higgs Model
 → \(Z' \) etc.
W' in the sequential Standard Model:

- W' is an additional heavy gauge boson
- W' has same couplings with left-handed fermions like W;
 no interaction with other heavy gauge bosons (W, Z, Z')
- lower bound on W' mass (direct searches): ~ 1 TeV

studied channel at ATLAS: \(W' \rightarrow \mu + \nu_{\mu} \)

Standard model backgrounds considered:

- \(W \rightarrow \mu_{\mu} + X \)
- \(Z \rightarrow \mu_{\mu} + X \)
- QCD (dijet processes)

W' signature: high energy muon accompanied by missing energy allows easy separation of signal and background reactions
Expected luminosity needed for a 5σ discovery (likelihood ratio method)

ATLAS Preliminary

"Recent results on W’ observability" Z. Ropas

W' mass (TeV)	Luminosity (pb⁻¹)
1	3.0 ± 0.3
1.5	14.6 ± 1.4
2	84 ± 9
2.5	283 ± 31

assumed sys. uncertainties:
- signal 5%
- background 20%
- same channel studied as in ATLAS:
 \[W' \rightarrow \mu + \nu_\mu \]

 → same background channels and same \(W' \) signature as in ATLAS

- number of events for signal and background after selection cuts

discovery limits for \(W' \)

CMS PTDR 2006
• Z' is an additional heavy gauge boson, predicted in many extended gauge theories, excluded mass: ~ 1 TeV (direct searches)

Model	Γ/M \%	$Z' \rightarrow \mu^+\mu^-$ BR in \%	$\sigma^{LO} \cdot \text{Br, full interference, fb}$ (PYTHIA)		
			1 TeV/c2	3 TeV/c2	5 TeV/c2
Z_{SSM}	3.1	3.0	610	2.8	0.050
Z_ψ	0.6	4.0	340	1.7	0.032
Z_η	0.7	3.4	370	1.8	0.035
Z_χ	1.3	5.7	500	2.2	0.038
Z_{LRM}	2.2	2.3	500	2.3	0.040
Z_{ALRM}	1.6	8.6	740	3.7	0.077

- Z_{SSM} within the sequential standard model
- Z_η, Z_ψ, Z_χ arising in E_6 (and SO(10)) GUT groups
- Z_{LRM} and Z_{ALRM} arising in the framework of the so-called “left-right” and “alternative left-right” models ($g_R = g_L$ chosen)

k-factor used: 1.35 (mass-independent)
- Decay channels (assumption: no exotics channels opened):
 - \(Z' \rightarrow \mu^+\mu^- \) promising
 - \(Z' \rightarrow e^+e^- \) promising
 - \(Z' \rightarrow \tau^+\tau^- \) instrumental background from QCD
 - \(Z' \rightarrow \) hadrons instrumental background from QCD

- \(Z' \) signal:
 - high invariant mass peak above Drell-Yan line shape

- studied channel (ATLAS):
 - \(Z' \rightarrow e^+e^- \)

- dominant and irreducible background:
 - \(pp \rightarrow \gamma/Z^0 \rightarrow e^+e^- \)

studied channel: \(Z' \rightarrow \mu^+\mu^- \) (CMS)(assumption: no exotic channels opened)

- overall efficiency (incl. acceptance, trigger, reconstruction) for \(Z' \rightarrow \mu^+\mu^- \) events at CMS:
 - 75%-85%
Z' (CMS)

- dominant and irreducible background: $pp \rightarrow \gamma/Z^0 \rightarrow \mu^+\mu^-$
- other backgrounds negligible (after signal-selection criteria)

luminosity needed to discover Z' in $Z' \rightarrow \mu^+\mu^-$ channel with 5σ significance

- bands correspond to predictions with ±1σ theoretical uncertainty

- discovery potential with 1 fb$^{-1}$:
 \[Z_{\text{SSM}}^{\psi} (2.6 \text{ TeV}), Z_{\eta} (2 \text{ TeV}), Z_{\psi} (1.95 \text{ TeV}), Z_\chi (2.5 \text{ TeV}), Z_{\text{LRM}} (2.5 \text{ TeV}) \text{ and } Z_{\text{ALRM}} (2.7 \text{ TeV}) \]
Heavy Majorana neutrinos, W_R (CMS)

- LRSM model ($SU_C(3) \otimes SU_L(2) \otimes SU_R(2) \otimes U(1)$) incorporates three additional heavy gauge bosons W_R, Z' and the heavy right-handed Majorana neutrino states N.

- The Ns can be partner of light neutrino states and can provide their non-zero masses through the see-saw mechanism.
- assumption: $g_R = g_L$
- studied channel: $pp \rightarrow W_R \rightarrow eN$ (cross-section for this channel is 10 times higher than for $pp \rightarrow Z' \rightarrow N\bar{N}_e$)

- **W_R signal**: 2 leptons + 2 jets
- **N signal**: 1 lepton + 2 jets

- main backgrounds: Z+jets and $ttbar$
Scalar Leptoquarks (ATLAS)

- Leptoquarks (LQ) are particles which carry both lepton- and baryon-numbers. LQ interactions conserve the lepton- and baryon-numbers separately.

- 1st Assumption: LQ couple only to one generation of quarks and to one generation of leptons of the standard model → 3 generations of LQ

- 2nd assumption: LQ interactions are chiral

- With these assumptions there are 14 kinds (mBRW model) of LQ

- only pair production of scalar LQ considered here → single production depends on the unknown Yukawa (q-ℓ-LQ) coupling
Scalar Leptoquarks

• 2nd generation LQ

\[\sigma(pp \rightarrow \text{LQ+LQ+X}) \ [\text{pb}] \]
\[\sqrt{s} = 14 \ \text{TeV} \]

“Pair production of scalar leptoquarks at the LHC”
M. Krämer et al.

• main background channels:

process	\(\sigma \times \text{BR (in pb)} \)
\(Z /\gamma^* (\mu\mu)+\text{jets} \) \(p_T^\text{jet} > 20 \text{GeV} \)	313
\(tt (\mu\nu \mu\nu) \)	9.5
\(ZZ (\mu\mu \ jj) \)	1.2
\(ZW (\mu\mu \ jj) \)	1.2
\(WW (\mu\nu \mu\nu) \)	1.1

• 2nd generation Leptoquark decay channels: \(\text{LQ} \rightarrow q + \mu \) or \(\text{LQ} \rightarrow q + \nu_\mu \)

• assumed: 100% of 2nd generation LQ decays: \(\text{LQ} \rightarrow q + \mu \)

• excluded mass for 2nd generation LQ (so far): ~ 250 GeV

• signal: 2 high energetic jets, 2 high energetic muons

ATLAS Preliminary

Leptoquark mass	Expected Luminosity for exclusion with 95% C.L.
300 GeV	2.8 pb\(^{-1}\)
400 GeV	6.6 pb\(^{-1}\)
600 GeV	40 pb\(^{-1}\)
800 GeV	220 pb\(^{-1}\)
Conclusions

• presented a selection of analyses on particles predicted by extended gauge theories

• LHC with ATLAS and CMS provides a powerful tool to discover or exclude many particles predicted by extended gauge theories

• many particles can be discovered or excluded already in the early phase of the LHC

• exciting years ahead