Elastic properties of single crystal Bi$_{12}$SiO$_{20}$ as a function of pressure and temperature and acoustic attenuation effects in Bi$_{12}$MO$_{20}$ ($M =$ Si, Ge and Ti)

Eiken Haussühl$^1$ , Hans Josef Reichmann$^1$, Jürgen Schreuer$^1$, Alexandra Friedrich$^{1,4}$, Christian Hirschle$^1$, Lkhamsuren Bayarjargal$^1$, Björn Winkler$^1$, Igor Alencar$^3$, Leonore Wiehl$^{1,6}$ and Steffen Ganschow$^7$

1. Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferalle 1, D-60438 Frankfurt a.M., Germany
2. Helmholtz-Zentrum Potsdam, Deutsches Geoforschungszentrum—GFZ, Telegrafenberg, D-14473 Potsdam, Germany
3. Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
4. Present Address: Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
5. Instituto de Física, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP-91501-970 Porto Alegre-RS, Brazil
6. Present Address: Technische Universität Darmstadt, Otto-Berndt-Strasse 3, D-64287 Darmstadt, Germany
7. Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Straße 2, D-12489 Berlin, Germany

E-mail: haussuhl@kristall.uni-frankfurt.de

Keywords: sillenites, elasticity, piezoelectricity, ultrasound damping, resonant ultrasound spectroscopy, Brillouin spectroscopy, high pressure and temperature

Abstract

A comprehensive study of sillenite Bi$_{12}$SiO$_{20}$ single-crystal properties, including elastic stiffness and piezoelectric coefficients, dielectric permittivity, thermal expansion and molar heat capacity, is presented. Brillouin-interferometry measurements (up to 27 GPa), which were performed at high pressures for the first time, and \textit{ab initio} calculations based on density functional theory (up to 50 GPa) show the stability of the sillenite structure in the investigated pressure range, in agreement with previous studies. Elastic stiffness coefficients $c_{44}$ and $c_{12}$ are found to increase continuously with pressure while $c_{44}$ increases slightly for lower pressures and remains nearly constant above 15 GPa. Heat-capacity measurements were performed with a quasi-adiabatic calorimeter employing the relaxation method between 2 K and 395 K. No phase transition could be observed in this temperature interval. Standard molar entropy, enthalpy change and Debye temperature are extracted from the data. The results are found to be roughly half of the previous values reported in the literature. The discrepancy is attributed to the overestimation of the Debye temperature which was extracted from high-temperature data. Additionally, Debye temperatures obtained from mean sound velocities derived by Voigt-Reuss averaging are in agreement with our heat-capacity results. Finally, a complete set of electromechanical coefficients was deduced from the application of resonant ultrasound spectroscopy between 103 K and 733 K. No discontinuities in the temperature dependence of the coefficients are observed. High-temperature (up to 1100 K) resonant ultrasound spectra recorded for Bi$_{12}$MO$_{20}$ crystals revealed strong and reversible acoustic dissipation effects at 870 K, 960 K and 550 K for $M =$ Si, Ge and Ti, respectively. Resonances with small contributions from the elastic shear stiffness $c_{44}$ and the piezoelectric stress coefficient $d_{123}$ are almost unaffected by this dissipation.

1. Introduction

The cubic mineral sillenite, Bi$_{12}$SiO$_{20}$, first found at Durango, Mexico (Frondel 1943), is closely related to $\gamma$-Bi$_2$O$_3$ synthesized by Sillen in 1938 (Sillen 1938). $\gamma$-Bi$_2$O$_3$ is metastable at ambient conditions (Wells 1984), but can be stabilized by addition of metal oxides leading to the general sillenite composition Bi$_{12}M$O$_{20+x}$. In stoichiometric sillenites $M$ is tetravalent and the oxygen lattice is fully occupied ($x = 1$, $\delta = 0$) (Wiehl \textit{et al} 2010). The most
prominent members of the sillenite family are those with \( M = \) Si, Ge, and Ti, which are abbreviated in the following as BSO, BGO, and BTO (Tissot and Lartigue 1988, Yu and Min 2004, Wiehl et al 2010, Melničko 2011, Wiehl et al 2013).

The sillenite structure type (space group \textit{I23}) is characterized by \( MO_4 \) tetrahedra located at the center and the corners of the cubic unit cell. These tetrahedra are linked by Bi2\( \square \) octahedra where the stereochemically active Bi\( ^{3+} \) lone electron pair partially fills the unoccupied site \( \square \) (figure 1). In combination with the lack of inversion symmetry this is the source of outstanding electrical and optical properties suitable for photorefractive applications (Buse 1997, Baade et al 2001, Georges et al 2001). For example, sillenites are used in devices utilized for optical computing, optical information processing, and high-sensitive photo detectors (Tempel 1993, Filippov et al 2000). Sillenite single crystals exhibit low acoustic wave velocities and are therefore candidates for delay lines in electronic circuits (Melničko 2011). Due to its high photosensitivity BSO can be used as light modulator as well as a crystal for recording and reproducing phase holograms (Melničko et al 2011).

Electromechanical coupling effects allow the conversion of mechanical into electrical energy and vice versa. The fundamental properties for this type of conversion are the elasticity, piezoelectricity and permittivity. Sillenites exhibit large piezoelectric effects, i.e. \( d_{123} \) of BSO is about 20 pC N\(^{-1}\), which is about 8 times larger than \( d_{111} \) of \( \alpha \)-Quartz, and they are potential piezoelectric materials for electromechanical applications (Shen et al 2014).

In contrast to their high potential for applications, surprisingly little is known about the elastic behavior of sillenites at non-ambient conditions especially at high pressures above tens of GPa and high temperatures close to their melting points. Full sets of elastic stiffness coefficients have been reported for BSO in the temperature range of 250 K–300 K (Gospodinov et al 1988, 1992) and at pressures up to 0.16 GPa (Gospodinov et al 1988). Shen et al (2014) investigated full sets of electromechanical parameters of BSO and BTO between 300 K and 773 K. The stability of BSO up to 770 K was confirmed by Raman-spectroscopic measurements (Salke and Rao 2012).

Recently, the pressure-dependence of the structures of BTO, BSO and BGO have been studied up to 37 GPa, 39 GPa and 50 GPa, respectively, and the vibrational properties of BSO up to 39 GPa, (Rao et al 2010, Wiehl et al 2010, 2013). Broadening of X-ray reflections and anomalies of the BSO and BTO lattice compression in comparison to the behavior of related sesquioxides were attributed to a high sensitivity of the sillenite structure to even slight deviatoric stress rather than to the occurrence of a phase transition.

Considering the potential scientific and industrial importance of sillenites and in order to complement our earlier work on sillenites, we report here on the complete sets of elastic stiffness coefficients, \( c_{ij} \), of BSO, determined by resonant ultrasound spectroscopy (RUS) in the temperature range from 103 K to 733 K, Brillouin interferometry up to 27 GPa and by density functional theory (DFT) based model calculations in the athermal limit. The DFT calculations were carried out in order to extrapolate the \( c_{ij} \) coefficients beyond the experimental pressure limits. RUS experiments up to 1123 K were performed on BSO, BGO and BTO to study the temperature dependence of ultrasound dissipation effects in sillenites.

Finally, standard molar entropy, enthalpy change and Debye temperature were extracted from low-temperature heat capacity measurements. Heat capacity measurements of BSO were performed only at elevated temperatures so far (Suleimenova and Skorikov 1992, Licea and Ioanid 1999, Denisova et al 2010, Melničko et al 2011, Wiehl et al 2013).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Crystal structure of BSO at ambient conditions (Wiehl et al 2010). The Bi\(^{3+}\) 6\( s \) lone electron pairs are oriented along the closest Bi–Bi contacts which are plotted as dashed lines.}
\end{figure}
2. Experimental details

2.1. Sample preparation

All BSO and BGO samples used in this investigation were grown by the Czochralski technique. BTO was grown by the top-seeded flux method. A slightly reddish brown single crystal of BSO with about 10 mm in diameter and 20 mm in length was purchased from Vladimir L. Tarasov (Russia). Samples from the same boule were used in our recent high-pressure synchrotron diffraction study (Wiehl et al. 2010). Electron microprobe analyses revealed an almost pure stoichiometric composition. Two further BSO single crystals were provided by the IKZ, Germany, for dielectric permittivity measurements. BGO was provided by Daniel S. Pantsurkin (Nikolaev Institute of Inorganic Chemistry, Russia). Samples of BTO were purchased from the Sillenites Ltd. company (Russia). Lattice parameters and densities as derived from X-ray diffraction experiments are summarized in Table 1.

Table 1. Lattice parameter $a_i$ taken from literature (Wiehl et al. 2010, 2013), dimensions $l_i$ of RUS-samples and densities $\rho_{\text{xray}}$ (derived from unit cell volume and ideal chemical composition), $\rho_b$ (determined by buoyancy method in pure water at 293 K) and $\rho_c$ (calculated from dimensions and mass of RUS-samples) of investigated sillenite samples at ambient conditions.

| Compound | Sample no. | $a_1$ Å | $l_1$ mm | $l_2$ mm | $l_3$ mm | $\rho_{\text{xray}}$ g cm$^{-3}$ | $\rho_b$ g cm$^{-3}$ | $\rho_c$ g cm$^{-3}$ |
|----------|------------|---------|----------|----------|----------|----------------|----------------|----------------|
| BSO      | BSO-1a     | 10.105(1) | 6.308(2) | 4.732(2) | 4.355(2) | 9.19(1)         | 9.207(5)       | 9.16(1)        |
| BSO      | BSO-3      | 10.105(1) | 5.257(2) | 6.202(2) | 7.970(2) | 9.19(1)         | 9.203(5)       | 9.17(1)        |
| BGO      | BGO-3      | 10.147(1) | 5.887(2) | 7.218(2) | 8.020(2) | 9.22(1)         | 9.249(5)       | 9.20(1)        |
| BTO      | BTO-1      | 10.181(1) | 5.547(2) | 7.084(2) | 8.021(2) | 9.05(1)         | 9.086(5)       | 9.01(1)        |

Onderka (2015) and some discrepancies were observed in the previously published data. Hence, here we performed measurements between 2 K and 395 K.
The deviation from ideal orientation was kept below $0.4^\circ$ and the deviation from plane-parallelism of opposing faces was smaller than $\pm 2 \, \mu m$.

For the measurements of the dielectric permittivity of BSO thin plates of about 1 mm thickness and diameters ranging from 12 mm to 15 mm were cut parallel to the crystallographic faces $(100)$ and $(111)$. The samples were polished flat with a deviation from plane parallelism of $\pm 2 \, \mu m$. The large faces were covered with silver electrodes.

2.2. Brillouin scattering

For high-pressure experiments the BSO samples were loaded in a Boehler-Almax diamond anvil cell (Boehler 2006). The culets of the diamonds were 300 $\mu m$ in diameter; the gasket material was tungsten, or rhenium for pressures $> 14$ GPa. The gaskets with an initial thickness of 200 $\mu m$ were pre-indented to thicknesses between 31 $\mu m$ and 47 $\mu m$ for the high-pressure runs. Holes of 140 $\mu m$ to 170 $\mu m$ in diameter were machined in the gaskets by means of a laser lathe. In all high-pressure runs helium was used as the pressure-transmitting medium in order to guarantee that the non-hydrostaticity was as low as possible (Wiehl et al 2013). Pressures were determined using the ruby R1 fluorescence-shift calibration according to Mao et al (1986). A vertically polarized solid state laser ($\lambda_0 = 532$ nm, output during experiments $= 700$ mW) and a 6-pass-tandem Fabry–Perot interferometer by JRS Scientific Instruments were employed for the Brillouin experiments. All measurements were performed in forward symmetric geometry. The details of this technique have been described elsewhere (Sinogeikin et al 1998, Speziale and Duffy 2002, Sinogeikin et al 2004). In brief, the incoming laser beam is scattered by thermally activated acoustic phonons in the sample and analyzed and detected by the Brillouin-interferometer using a photo multiplier tube. The scattering angle $\theta$ (the angle between incident and scattered beam) was $60^\circ$. At each pressure, 12 Brillouin spectra were collected at $\chi$-angles between $0^\circ$ and $180^\circ$ (examples are depicted in figure 3).

In forward geometry, the Brillouin frequency shift $\Delta \omega$ is related to the acoustic velocity $v$ through

$$v = \frac{\Delta \omega \lambda_0}{2 \sin(\theta/2)}$$  \hspace{1cm} (1)

where $\lambda_0$ is the laser wavelength and $\theta$ is the scattering angle. Using the platelet geometry, the refractive index of the sample cancels out (Whitfield et al 1976). The single crystal elastic coefficients have been calculated from the acoustic velocities $v_{P,S}$ of the longitudinal pressure (P) and shear waves (S) by a least-squares inversion of the Christoffel’s equation (Every 1979, 1980).

2.3. Resonant ultrasound spectroscopy, dilatometry and dielectric permittivity measurements

The thermoelastic and the piezoelectric behavior of BSO as well as the ultrasound dissipation of BSO, BGO and BTO were studied with resonant ultrasound spectroscopy (RUS) (Leisure and Willis 1997, Migliori and Sarrao 1997). For this purpose a custom-built high-temperature RUS-device was employed (Haussühl et al 2011, 2012). The temperature stability inside the furnace (1600 $^\circ$C furnace type 6.219,1–26 from Netzsch) achieved by a cascading temperature controller (EPC 900 from Eurotherm) was better than $\pm 0.5$ K. The
accuracy of the S-type thermocouple at the maximum temperature was better than ±0.1 K. For the temperature
dependent RUS measurements the samples were slightly clamped at opposite corners between the ends of two
horizontally arranged corundum ceramic rods which acted simultaneously as ultrasonic wave guides. The
ultrasound generator and detector were mounted on the cold ends of the corundum rods outside the heated
area. The force acting on the opposed corners of the sample was kept below 0.05 N. This ensured that the
experimental setup fulfilled the conditions of a nearly freely vibrating body. In the case of the high-temperature
RUS measurements which were performed in air the signal generation and detection was achieved using
network analyzers (HP4194A and 4394A from Keysight) in combination with a high speed signal amplifier (type
4400 and HSA4101 from NF-electronics). In addition, low-temperature RUS measurements were performed in
a He atmosphere on a second BSO sample in a commercial resistance furnace (500 °C furnace type 6.219.1–22
from Netzsch). Signal generation and detection was achieved using a network analyzer and a signal amplifier
(FRA5087 and BA4825 from NF Corporation) also employing two corundum ceramic rods as in the case for
high-temperature measurements. Temperature measurement and control involved the furnace, liquid nitrogen
cooling, type E thermocouples and a cascading temperature controller (2704 from Eurotherm).

Resonance spectra in the frequency range between 50 kHz and 800 kHz with a resolution of 0.0025 kHz were
collected between 293 K and 1073 K in steps of 10 K for BSO and BTO, respectively, and between 293 K and
1123 K in steps of 5 K for BGO. For a second sample of BSO further RUS-measurements were conducted from
ambient conditions down to 103 K in steps of 20 K and up to 713 K in steps of 10 K. Temperature stability was
within ±0.1 K. The frequency range for the low-temperature measurements was 100 kHz to 1250 kHz with a
resolution of 0.01 kHz. At each temperature step the samples were first allowed to equilibrate for at least 30
minutes before the resonance spectrum was recorded.

In order to study the effects of acoustical dissipation the profiles of selected resonances were approximated by
modified Lorentzians according to

\[ A_i(f) = A_{i0} \left(1 + \frac{(f - f_i)^2}{0.25 \cdot w_i^2}\right)^n_i \]

where \( A_{i0} \) and \( f_i \) are amplitude and frequency, respectively, of the specific \( i \)th eigenmode. The exponent \( n_i \)
describes the shape of the resonance peak which also affects its value of the full-width at half-maximum (fwhm). \( w_i \) corresponds to the fwhm \( \Delta f_i \) which is related to the inverse quality factor \( Q_i^{-1} \) of the resonance by

\[ Q_i^{-1} = \frac{\Delta f_i}{f_i} \]

In the case of BSO the independent elastic coefficients \( c_{11}, c_{12} \) and \( c_{44} \), and the piezoelectric stress coefficient
\( e_{123} \) were derived for each temperature from the corresponding resonance spectrum using the frequencies of at
least 100 observed eigenmodes. The evaluation was carried out by a non-linear least-squares procedure in which
the observed resonance frequencies were compared to those calculated from sample dimensions, experimental
density, dielectric permittivity and a trial set of elastic coefficients. Initial values of \( c_{ij} \) were taken from literature (Schwepe and Quaddlug 1974, Gospodinov et al 1988, Yu and Min 2004, Shen et al 2014). The calculated resonance frequencies were obtained by solving a general eigenvalue problem, the
rank of which was equivalent to the number of basis functions used for the development of the components of the
displacement vector. In the non-linear least-squares refinement procedure the quantity

\[ \chi^2 = \sum_{i=1}^{n} w_i \cdot (\omega_i^c - \omega_i^o)^2 \]

calculated for \( n \) circular eigenmodes with resonance frequencies \( f_i = \omega_i / 2\pi \) was minimized by varying the elastic
coefficients \( c_{ij}^{p} \) at constant electric field and the piezoelectric stress coefficient \( e_{123} \) of the sample. The \( w_i \) are individual weights calculated by assuming experimental errors of ±0.1 kHz for each observed resonance
frequency. In order to minimize errors due to truncation effects, up to 8775 normalized Legendre polynomials
were used for the expansion of the displacement vector. The code for the RUS-refinement also provides the
means for checking the influence of each refined coefficient in a given mode.

Dielectric permittivity measurements were performed at 295 K applying the geometric method to thin
plane-parallel plates with arbitrary shape and a network analyzer (HP 4194 from Keysight) in a frequency range
between 10 kHz and 10 MHz. For the calculation of the relative dielectric permittivity at constant stress the
following equation was applied

\[ \epsilon_{11}^e / \epsilon_0 = \frac{\epsilon_1^c / \epsilon_0}{M / \rho} \]

where \( t \) is the thickness, \( \rho \) the density, \( C_\text{el} \) the capacity and \( M \) the mass of the sample, respectively. \( \epsilon_0 \) denotes the
permittivity of vacuum. The change of the relative dielectric permittivity at constant stress within the
temperature range between 300 K and 700 K was neglected due to a minor variation in $\varepsilon_{11}/\varepsilon_0$ of about ±1% (Shen et al. 2014).

The accurate determination of the temperature dependence of the elastic coefficients requires also a correction for changes in sample dimensions and density due to thermal expansion effects (Haussühl et al. 2012). In order to determine the independent coefficient of thermal expansion of BSO, the temperature-induced strain was studied between 100 K and 1070 K on plane-parallel plates using two commercial inductive gauge dilatometers (DIL 402C from Netzsch) equipped with a low-temperature or a high-temperature furnace, respectively. The BSO-sample was measured at least three times with heating/cooling rates of 1 K min$^{-1}$ under He purge gas atmosphere for the low-temperature dilatometer and air for the high-temperature dilatometer. The dilatometers were calibrated with standard samples made of fused silica or $\alpha$-Al$_2$O$_3$.

2.4. Heat capacity measurements

The heat capacity measurements were performed at temperatures between 2 K and 395 K using a relaxation calorimeter (heat capacity option of the Physical Properties Measurement System (PPMS) from Quantum Design). A single crystal with a mass of 35.57(2) mg was measured at 150 different temperatures from 395 K to 2 K with logarithmically-reduced steps. At each temperature, the heat capacity was measured three times by the relaxation method using the two-$\tau$ model (Kennedy et al. 2007). The samples were thermally coupled to the sapphire holder by Apiezon N grease. The absolute accuracy of our experiments was checked by measuring the standard reference materials SRM-720 (Al$_2$O$_3$) and Cu (Alfa Aesar, 99.999%). The deviation of our data for SRM-720 from those published by Ditmars et al. (1982) was within 2% in the range of 395 K to 50 K and within 6% below 5 K. The deviation of our data for Cu from those reported by Lashley et al. (2003) was 1% in the range from 300 K to 40 K, and 2% below 40 K.

Molar heat capacities were fitted with polynomials of higher order to facilitate the numerical integration. The standard molar entropy $S^0_{298.15}$ and the enthalpy change between 0 K and 298.15 K, $\Delta H_{0-298.15}$ were computed with the following equations:

$$S^0_{298.15} = \int_0^{298.15} \frac{C_P}{T} dT \quad (6)$$

and

$$\Delta H_{0-298.15} = \int_0^{298.15} C_P dT. \quad (7)$$

Neglecting the difference between $C_p$ and $C_V$ at lower temperatures, the Debye temperature $\Theta_{CP}$ can be determined using

$$C_V = \frac{12\pi^4}{5} n R \left(\frac{T}{\Theta_{CP}}\right)^3 \quad (8)$$

where $n$ is the number of atoms per unit cell and $R = 8.314 \ 46 \ \text{J \ mol}^{-1} \ \text{K}^{-1}$ (Carslaw and Jaeger 1959).

2.5. Computational details

DFT-based calculations were performed with academic and commercial versions of the CASTEP program (Milman et al. 2000, Clark et al. 2005, CASTEP User Guide 2008) using a generalized gradient approximation in the Wu-Cohen formulation (Wu and Cohen 2006). For all calculations, ultrasoft pseudopotentials from the CASTEP data base were generated on the fly, with 6, 5 and 4 valence electrons for O, Bi and Si, respectively. The maximum cutoff energy of the plane waves was 800 eV. In addition to the cutoff energy, the quality of the calculations was determined by the density of the grid of $k$-points in the Brillouin zone. Here, distances between the points were less than 0.036 Å$^{-1}$. The wave vectors for the sampling points were chosen according to the scheme proposed by Monkhorst and Pack (1976). Full geometry optimization calculations were performed. Structures were considered to be converged when the largest residual component of the stress tensor was less than 0.02 GPa and the largest residual force acting on an atom was less than 0.01 eV Å$^{-1}$. The elastic stiffness coefficients were obtained as the proportionality constants between applied strains and resultant stresses. Strain patterns were imposed with several magnitudes up to a maximum strain amplitude of 0.003, and after geometry optimization of the internal parameters the resultant stresses were computed. The present calculations are restricted to the athermal limit, in which temperature effects and zero-point motions were neglected. The calculations of the elastic stiffness coefficients were performed for 5 pressure points between 0 GPa and 50 GPa.
3. Results and discussion

3.1. Heat capacity measurements

Previous heat capacity measurements of BSO were performed only at elevated temperatures using DSC or DTA so far (Suleimenova and Skorikov 1992, Licea and Ioanid 1999, Denisova et al 2010, Onderka 2015). Figure 4 shows the heat capacity data obtained here together with the results of previous studies. Our heat capacities around 400 K are in good agreement with the results by Onderka (2015) and one of the measurements by Suleimenova and Skorikov (1992). However, these data are 3% smaller than our results at around 350 K. The other measurement by Suleimenova and Skorikov (1992) and the data by Denisova et al (2010) differ up to 5% from our measurement. The results by Licea and Ioanid (1999) differ significantly by about 15% from our and other previous studies. We assume that the reason for this large deviation might be a reduced thermal contact of the polycrystalline samples to the sample holder. No phase transition was observed between 395 K and 2 K using heat capacity measurements.

The enthalpy of BSO at 298.15 K is $131.8(13) \text{kJ mol}^{-1}$ and the standard entropy computed from the heat capacities using equation (6) is $926(9) \text{J K}^{-1} \text{mol}^{-1}$. The Debye temperature derived from our heat capacity measurements is $\Theta_{\text{Cp}} = 248(2) \text{K}$ (figure 5). Onderka (2015) estimated the standard entropy of BSO using an extrapolation of the low-temperature heat capacity data from his high-temperature heat capacities applying the Debye model. This led to an overestimation of the Debye temperature ($\Theta_{\text{Cp}} = 686(13) \text{K}$), which further resulted in an underestimated value of $517(72) \text{J K}^{-1} \text{mol}^{-1}$ for the standard entropy in his study. It differs by more than 40% from our results.

3.2. Elastic properties at ambient conditions

The single-crystal elastic stiffness coefficients and aggregate moduli of BSO are compared with those reported by various authors in table 2. The elastic coefficients obtained at ambient conditions by RUS and Brillouin spectroscopy in this study and by Gospodinov et al (1988) (improved Schaefer-Bergmann method) are in excellent agreement within experimental errors (table 2). The $c_{ij}$ values of our theoretical study using DFT-calculations valid for ambient pressure and 0 K are in reasonable agreement with the experimental data, while being systematically larger. The results by Yu and Min (2004) (Brillouin interferometry) as well as Schewepe and Quadflieg (1974) are comparable with our results (table 2). The single-crystal elastic stiffness coefficients $c_{11}$ and $c_{12}$ by Shen et al (2014) deviate considerably from the results of this paper (table 2).

The elastic stiffness coefficients can be used to estimate mean sound velocities which then can be employed to compute the Debye temperature according to Robie and Edwards (1966)

$$\Theta_{\text{elastic}} = (h/k)(3nN\rho)/(4\pi M)^{1/3}v_m$$

where $h$ and $k$ are the Planck and Boltzmann constants, $n$ is the number of atoms per formula unit, $N$ is Avogadro’s number, $M$ the formula weight and $v_m$ the mean sound velocity, respectively. A rough estimation of the mean sound velocity $v_m$ was computed according to the approach described by Robie and Edwards (1966).
Temperature-dependent measurements reveal strong ultrasound dissipation at elevated temperatures (figure 6), thus reliable $c_{ij}$ coefficients could only be obtained up to 733 K. Between 103 K and 773 K the evolution of the $c_{ij}$ (figure 7) and $e_{123}$ (figure 8), respectively, with temperature is almost linear. The small deviations between the two linear fitting curves of $e_{123}$ might stem from sample preparation of BSO-1a and from different internal sample quality. However, the temperature dependent coefficients $\partial e_{123}/\partial T$ are similar within experimental uncertainties. Results of corresponding fits are presented in table 3. A comparison with the results of

$$v_m = [1/3((1/v_l^3) + (2/v_s^3))]^{-1/3},$$  \hfill (10)
Gospodinov et al (1988) reveals reasonable agreement of the temperature coefficients for $c_{11}$ and $c_{44}$ but a discrepancy of about 40% in the case of $c_{12}$.

The thermal expansion of BSO is slightly non-linear (figure 9), thus second-order polynomials of the type

$$x_{ij}(T) = \alpha_{ij} \Delta T + \beta_{ij} (\Delta T)^2$$

with $\Delta T = T - T_0$ are required for a proper approximation of the strains $x_{ij}$ over the entire investigated temperature range. $T_0 = 293$ K denotes the reference temperature and $\alpha_{11} = 14.4(4) \cdot 10^{-6}$ K$^{-1}$, and $\beta_{11} = 2.8(1) \cdot 10^{-9}$ K$^{-2}$ are the corresponding coefficients of linear and quadratic thermal expansion, respectively. Our linear thermal expansion coefficient deviates from the reported value of Gospodinov et al (1988) by about 20%.

3.4. Acoustic attenuation of BSO, BGO and BTO

The sound attenuation encouraged us to investigate additionally the quality factors of selected resonances of BSO and related BGO and BTO up to 1123 K. We observed strong and reversible acoustic dissipation effects, which are characterized by Debye peak-like attenuation maxima at about 870 K for BSO, at 960 K for BGO and at 550 K for BTO, respectively (figure 10). Debye peaks are typical for anelastic relaxation processes of point defects (Nowick and Berry 1972). Modes with small contributions of the elastic shear stiffness $c_{44}$ and of the piezoelectric stress coefficient $e_{123}$ are almost unaffected by the dissipation (see e.g. mode no. 21 of BGO-3, figure 11). The nearly linear evolution of frequency with temperature for this mode is depicted in figure 11(a),
whereas a strong peak of the inverse quality factor could be detected at about 960 K (figure 11(b)). Therefore, piezoelectric/carrier relaxation as observed for example in piezoelectric langasite type materials (Johnson et al 2008, Fritze 2010, Hirschle and Schreuer 2018) might play an important role here, too. A more detailed study of the frequency dependence of the dissipation maxima would allow for the determination of activation energies offering a deeper insight into the underlying atomistic processes.

3.5. Pressure dependence of elastic properties
To the best of our knowledge, besides the low-pressure data up to 0.16 GPa (Gospodinov et al 1988), no high-pressure data of single-crystal elastic stiffness coefficients $c_{ij}$ has been reported so far. Brillouin measurements were performed up to 27 GPa. No indications for pressure-induced amorphisation or structural phase transition were observed. In figure 12, the three independent single-crystal elastic stiffness coefficients are depicted as a function of pressure.
pressure up to 27 GPa together with the RUS data at ambient conditions and DFT data calculated up to 50 GPa. The $c_{ij}$ values at ambient conditions by Yu and Min (2004), and Landolt-Börnstein (Landolt and Börnstein1961) are also shown in figure 12. The first and second pressure derivatives of the elastic stiffness behaviour as well as the adiabatic bulk and shear moduli calculated from the single-crystal moduli (Voigt-Reuss average) of BSO are listed in table 4. The deviations between the low-pressure derivatives $dc_{ij}/dp$ measured by Gospodinov et al (1988) and our findings range between 16% and 31% (table 4). The pressure dependencies of the aggregate moduli are depicted in figure 13. The elastic coefficients $c_{11}$ and $c_{12}$ measured by Brillouin interferometry increase with increasing pressure while $c_{44}$ first increases up to a pressure of 15 GPa and then remains almost constant on further pressure increase to 27 GPa.

Figure 9. Temperature-induced strain $x_{11}$ of BSO as observed by dilatometry.

Figure 10. Evolution of the inverse quality factor of distinct RUS-modes for (a) BSO, (b) BGO and (c) BTO with temperature. The symbols (+) denote measurements using heating ramps and (-) measurements using cooling ramps, respectively.
At high pressures the curve characteristics of the calculated $c_{ij}$ using DFT are similar to the experimental ones: the elastic stiffness coefficients $c_{11}$ and $c_{12}$ increase while $c_{44}$ flattens with pressure, or may even slightly decrease as can be deduced from the theoretical value at 50 GPa. Both, the non-linear curvatures of the pressure dependencies of $c_{11}$ and $c_{44}$ and the linearity of the $c_{12}$ pressure dependence are well reproduced in experiment and theory. While the absolute agreement of the experimental and theoretical pressure dependencies of elastic tensor components $c_{11}$ and $c_{44}$ is very good, the pressure increase of $c_{12}$ is significantly overestimated in the calculations.

Neither our experimental data nor our theoretical calculations on BSO show any signs of a phase transition in the investigated pressure range up to 27 and 50 GPa, respectively, which is in agreement with the experimental powder X-ray compression data by Rao et al. (2010) collected up to 26 GPa. Both, the Brillouin as well as the ultrasound measurements (table 2) of this study and the X-ray compression measurements by Wiehl et al. (2010) result in the same value of the adiabatic and isothermal bulk modulus, namely $K = 63$ GPa (table 4). The relation between adiabatic and isothermal bulk moduli, $K_s$ and $K_t$, is given by

$$K_s / K_t = (1 + \alpha \gamma_{th} T),$$

where $\alpha$ is the thermal expansion, $\gamma_{th}$ is the thermodynamic Grüneisen parameter and $T$ is the temperature. The pressure derivative of the adiabatic bulk modulus $K_{s0}' = 6.1(2)$ is also equivalent within uncertainty to the pressure derivative of the isothermal bulk modulus $K_{t0}' = 5.6(5)$ and $K_{t0}' = 6.6(3)$ reported for powder and single crystal X-ray diffraction data, respectively, by Wiehl et al. (2010, 2013) (table 4). These values are considerably smaller than $K_{t0}' = 16.7$ (with $K_{t0} = 36$ GPa) reported by Rao et al. (2010) obtained by X-ray
compression measurements on powder samples up to 24 GPa (table 4). This inconsistency in both the bulk modulus and its pressure derivative reported by Rao et al (2010) if compared to the other existing data, might be partly attributed to the use of an alcohol mixture as the pressure-transmitting medium, which is known to provide hydrostatic conditions only below 10 GPa (Klotz et al 2009).

Rao et al (2010) determined the mode Grüneisen parameters from Raman measurements on BSO. These values lie in a small range 0.14 < γ < 0.84 (Rao et al 2010). To estimate the thermodynamic Grüneisen parameter γ_ih, the average of the mode Grüneisen parameters is taken, 〈γ_i〉 = γ_ih = 0.38. Given the fact, that the thermal expansion α_11 of BSO is between 14.4·10^{-6} K^{-1} and 16·10^{-6} K^{-1} (this work and Salke and Rao (Salke and Rao 2012)) the isothermal bulk modulus K_0 is calculated to be 63.1 GPa, which fits within experimental error to the experimental results of K_0 by Wiehl et al (2010).

The anisotropy according to the definition by Zener (1947)  \( A = 2c_{44}/(c_{11} - c_{12}) \) and the ratio of the maximum and minimum of the longitudinal elastic stiffness \( c'(u) = u_iu_ju_kc_{ijkl} \) with pressure of BSO is shown in figure 14, where \( u_i \) are the direction cosines. The anisotropy increases slightly from 0.5 at ambient pressure to 0.54 at 10 GPa and decreases subsequently to 0.52 at highest pressure of this study. The fact that the anisotropy of BSO does not change drastically with pressure supports the findings by Wiehl et al (2013) that the crystal structure is stable up to 39 GPa.

**Figure 13.** The aggregate bulk and shear moduli (\( K_s, G \)) of BSO as a function of pressure. The dashed black line indicates the isothermal bulk modulus \( K_t \) determined by Wiehl et al (2010).

**Table 4.** Pressure derivatives of elastic stiffness of BSO for room temperature from this study (2nd order polynomial fit) and from literature. \( K_0 \) adiabatic bulk (GPa) and \( G_0 \) shear moduli (GPa) calculated from the c_i coefficients (Voigt - Reuss average), \( K_0 \) isothermal bulk modulus (GPa).

| Reference | This work | (Gospodinov et al 1989) | (Wiehl et al 2010) | (Rao et al 2010) |
|-----------|-----------|------------------------|-------------------|------------------|
| p_{max}/GPa | 27 | 0.16 | 23 | 24 |
| \( c_{11}' \) = \( P_1 \) | 9.7(4) | 11.55(2) | — | — |
| \( c_{11}' / \text{GPa}^{-1} \) | —0.10(2) | — | — | — |
| \( c_{12}' \) | 4.2(3) | 5.7(3) | — | — |
| \( c_{12}' / \text{GPa}^{-1} \) | —0.02(1) | — | — | — |
| \( c_{44}' = P_4 \) | 1.7(1) | 2.48(8) | — | — |
| \( c_{44}' / \text{GPa}^{-1} \) | —0.029(4) | — | — | — |
| \( K_0 / \text{GPa} \) | 63(1) | 63.08 | — | — |
| \( K_0' / \text{GPa} \) | — | — | 63(4) | 36 |
| \( K_0'' / \text{GPa} \) | 6.1(2) | — | — | — |
| \( K_0'' / \text{GPa}^{-1} \) | —0.051(8) | — | — | — |
| \( G_0 / \text{GPa} \) | 34(1) | — | — | — |
| \( G_0' / \text{GPa} \) | 2.0(1) | — | — | — |
| \( G_0'' / \text{GPa}^{-1} \) | —0.034(3) | — | — | — |
3.6. Conclusions

The cubic crystal structure of BSO exhibits a remarkable pressure stability despite its high compressibility. Single-crystal Brillouin measurements up to 27 GPa and ab initio calculations by density functional theory up to 50 GPa show no indications of a structural phase transition in this pressure range. We found that the elasticity coefficients $c_{11}$ and $c_{12}$ continuously increase with pressure while $c_{44}$ only slightly increases and remains nearly constant within standard deviation above 15 GPa. In addition, the elastic properties of sillenites were investigated with the aid of resonant ultrasound spectroscopy (RUS) between 100 K and ca. 1100 K. We observed surprisingly strong and reversible acoustic dissipation effects, which are characterized by attenuation peaks at about 870 K for BSO, at 960 K for BGO, and at 550 K for BTO, respectively. Those peaks resemble Snoek-effect like anelastic relaxation peaks (Nowick and Berry 1972). However, modes with small contributions of the elastic shear stiffness $c_{44}$ and also small piezoelectric stress coefficient $e_{123}$ are almost unaffected by the dissipation. Therefore, piezoelectric/carerrier relaxation, which was also observed in piezoelectric langasite type materials (Johnson et al 2008, Fritze 2010, Hirschle and Schreuer 2018), might play an important role here as well. A more detailed study of the frequency dependence of the dissipation maxima would allow for the determination of activation energies offering a deeper insight into the underlying atomistic processes.

Acknowledgments

The authors gratefully acknowledge Danil S. Pantsurkin (Nikolaev Insitute of Inorganic Chemistry SB RAS, Novosibirsk, Russia) for the provision of BGO crystals and the Deutsche Forschungsgemeinschaft, DFG for financial support of this investigation (HA 5137/3 and HA 5137/5). AF appreciates financial support from the DFG within priority program SPP-1236 (FR 2491/2–1).

ORCID iDs

Eiken Haussühl https://orcid.org/0000-0002-3244-8163
Jürgen Schreuer https://orcid.org/0000-0002-8611-6842
Alexandra Friedrich https://orcid.org/0000-0002-1411-7336
Christian Hirschle https://orcid.org/0000-0002-0086-5026
Igor Alencar https://orcid.org/0000-0002-7384-0110
Steffen Ganschow https://orcid.org/0000-0003-1328-1617

References

Baade T, Kieseling A and Kowarschik R 2001 J. Opt. 3 250–4
Boehler R 2006 Rev. Sci. Instrum. 77 115103
Buse K 1997 Appl. Phys. B 64 391–407
Carslaw H and Jaeger J 1959 Heat in Solids vol 1 (Oxford: Clarendon)
CASTEP User Guide 2008 (San Diego, CA: Accelrys Inc.)
Clark S, Segall M, Pickard C, Hasnip P, Probert M, Rfeson K and Payne M 2005 Z. Kristallogr. 220 567–70
Denisova I, Iyuygo L, Denisov V and Birori V 2010 J. Siberian Fed. Univ. Eng. Technol. 3 214–9
Ditmas D, Ishihara S, Chang S, Bernstein G and West E 1982 J. Res. Natl. Bur. Stand. 87 159–63
Every A 1979 Phys. Rev. Lett. 42 1065–8
Every A 1980 Phys. Rev. B 22 1746–60
Filippov V N, Starodumov A N, Barmenkov Y O and Makarov V V 2000 Appl. Opt. 39 1389–93
Fritze H 2010 J. Electroceram. 26 122–61
Frondel C 1943 Acta Cryst. 28 521–35
Georges M P, Scauflaire V and Lemaire P C 2001 Appl. Phys. B 72 761–5
Gospodinov M, Haussühl S, Sveshtarov P, Dobrev S and Sampil A 1992 Mat. Res. Bull. 27 1415–21
Gospodinov M, Haussühl S, Sveshtarov P, Tassev V and Petkov N 1988 Bulg. J. Phys. 15 140–3
Haussühl E, Schreuer J, Winkler B, Haussühl S, Bayarjargal L and Milman V 2012 J. Phys.: Condens. Matter 24 345402
Haussühl E, Vinograd V L, Krenzle T F, Schreuer J, Wilson D J and Ottinger J 2011 Z. Kristallogr. 226 236–53
Hirschel C and Schreuer J 2018 IEEE Trans. Ultrason. Ferroelect. Freq. Control. 65 1250
Johnson W L, Schulz M and Fritze H 2008 IEEE Trans. Ultrason. Ferroelect. Freq. Control. 61 1433–41
Kennedy C A, Stancescu M, Marriott R A and White M A 2007 Cryogenics 47 107–12
Klotz S, Chervin J C, Munsch P and Le Marchand G 2009 J. Phys. D 42 075413
Landolt H H and Börnstein R 1961 Pergamon (Oxford), Course of Theoretical Physics 4 495
Lashezy J et al 2003 Cryogenics 43 369–78
Leisure R and Willis F 1997 J. Phys.: Condens. Matter 9 6001–29
Licea I and Ioanid A 1999 Phys. Stat. Sol. (b) 212 27–36
Mao H, Xu J and Bell P 1986 J. Geophys. Res. 91 4673–6
Meltikova T, Kuzmicheva G, Rybakov V, Bolotina N and Dubovsky A 2011 Inorg. Chem. 50 2002–9
Migliori A and Sarrao J 1997 Resonant Ultrasonic Spectroscopy (New York: Wiley)
Milman V, Winkler B, White J, Pickard C, Payne M, Akhmatskaya E and Nobes R 2000 Int. J. Quantum Chem. 77 895–910
Monkhorst H and Pack J 1976 Phys. Rev. B 13 5188–92
Nowick A and Berry B 1972 Anelastic Relaxation in Crystalline Solids (New York: Academic)
Onderka B 2015 Thermochim. Acta 601 68–74
Rao R, Garg A and Sakuntala T 2010 J. Appl. Phys. 108 082508
Robie R A and Edwards J I 1966 J. Appl. Phys. 37 2659–63
Salke N and Rao R 2012 AIP Conf. Proc. 1447 813–4
Schweppe H and Quadrle B 1974 IEEE Trans. Sonics Ultrason. SU-21 56–7
Shen C, Zhang H, Zhang Y, Xu H, Yu H, Wang J and Zhang S 2014 Crystals 4 141–51
Sillen L 1938 Ark. Kemi. Min. Geol. 12 1–15
Sinogeikin S, Katsura T and Bass J 1998 J. Geophys. Res. 103 20819–25
Sinogeikin S, Lakshitanov D, Nicholas J and Bass J 2004 Phys. Earth Planet. Inter. 143 575–86
Spezieia S and Duffy T 2002 Phys. Chem. Miner. 29 465–72
Suleimenova G S and Skorikov V M 1992 Thermochim. Acta 196 203–11
Tempel C M M v 1993 Appl. Opt. 32 4869–74
Tissot P and Lartigue H 1988 Thermochim. Acta 127 377–83
Wells A 1984 Structural Inorganic Chemistry 5th edn (Oxford: Clarendon)
Whitfield C H, Brody E M and Bassett W A 1976 Rev. Sci. Instrum. 47 942–7
Wiehl L, Friedrich A, Haussühl E, Morgenroth W, Bieler J, Winkler B and Hanfland M 2013 J. Solid State Chem. 208 35–42
Wiehl L, Friedrich A, Haussühl E, Morgenroth W, Grzechnik A, Friese K, Winkler B, Refson K and Milman V 2010 J. Phys.: Condens. Matter 22 505401
Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116
Yi Y and Min B 2004 J. Eur. Ceram. Soc. 24 1161–4
Zener C 1947 Phys. Rev. 71 846–51