Abstract

Cancer is the second leading cause of death in Brazil, and head, neck, and lung cancer are among the five most common types in the male Brazilian population. It is reported that tobacco, alcohol and occupational agents are important risk factors for the disease. This study aims to describe the work profile and the use of alcohol and tobacco among patients diagnosed with these types of cancers. It is a quantitative, descriptive, exploratory, transversal study. The sample consisted of 118 patients seen and registered at a public hospital, who answered a questionnaire that contained sociodemographic and professional information, in addition to the Fagerstrom Test and the AUDIT. Most participants were men, white, married, with an average age of 60, an incomplete primary education, income below one minimum wage, with the main occupational activities related to rural work, civil construction, and cleaning and maintenance. The history of alcohol and tobacco abuse, which also occurred after the diagnosis of cancer, was raised, as well as living with family members and co-workers who also used these substances. It is concluded that there is a need for assistance aimed at changing lifestyles during cancer treatment, expanding the vision of studies related to cancer for specific sociodemographic groups, concerning lifestyle and consumption habits, work profile, as well as work environment.

Key words: Occupational Cancer, Smoking, Alcoholism.

INTRODUCTION

According to the World Health Organization, in 2018, cancer is the second leading cause of death worldwide, with an estimated occurrence of 18 million new cases, and 9.6 million deaths per year\(^1\). In Brazil, it is estimated that for each year in the 2020-2022 period, 625 thousand new cases of the disease will occur. Only for the year 2020, specifically, with regard to lung, bronchial and tracheal cancer, the occurrence of 30,200 new cases is estimated; for cases of cancer in the oral cavity, the number is 15,190 cases; in the larynx, the calculated number is 7,650 new cases\(^1\).

Regarding the etiology, some factors cause the incidence of cancer to increase, such as aging and population growth, the change in distribution and the prevalence of risk factors, especially those associated with socioeconomic development, such as consumption (food, medicine, tobacco, alcohol, and household products), the cultural

DOI: 10.15343/0104-7809.202044515527
environment (habits, customs, and lifestyle), and the occupational environment.

Cancer is a multifactorial disease in which there is a synergy of genetic and environmental effects. From the environmental point of view, there is the work environment where an individual is inserted, where occupational cancer is formed. This may be considered a form of delayed toxicity in its clinical course, and in its outcome, due to exposure to chemical, physical or biological agents classified as carcinogens, present in the work environment and responsible for at least 10% of cancer illnesses. On the other hand, there are the lifestyle and habits, whose studies have demonstrated for some time, that the consumption of tobacco (increases the chance for the development of lung cancer by 25%, for example), and alcoholic beverages, (whose harmful consumption are responsible for 4 to 25% of the global cancer burden), and are shown as important components for the carcinogenic development of the most varied types.

Particularly, in cases of lung cancer (included here, trachea and bronchi), and oral cavity, esophagus and larynx (known as head and neck cancer), active or passive smoking and excessive alcohol consumption are configured as main modifiable risk factors for the development of the disease. Smoking is the main contributor to the incidence of cancer and deaths expected for 2020 in Brazil. The fraction attributable to infections appears as the second preventable cause of cancer, as observed in low and middle income countries. In addition, factors related to occupational exposure, such as contact with physical or chemical agents (such as asbestos, silica, uranium, chromium, radon, wood and chemicals used in metallurgy, oil, plastics, textile industries), also appear in the list of these risk factors. Some studies that analyzed the impact of occupational agents on the overall cancer number in the Brazilian population, are still incipient, when compared to those of other countries, possibly related to the underreporting of cases related to informal jobs.

Cancer is a worldwide and growing problem; but it is not uniform. One third of cancer cases are considered to be due to preventable causes, however, there is a worldwide trend towards an increase in the number of new cancer cases in low-income or developing countries; often related to the transition of risk factors, such as the adoption of new life habits and new ways of working by these populations, which are still linked to types of cancer associated with infections. Evidence shows that the mortality risk rate in people with a lower socioeconomic level is 1.71 (95%CI: 1.44, 2.03), with the modifiable risk factors responsible for 45% of cases.

Low-income countries show a high prevalence of non-cardia gastric and cervical cancers, and can be prevented through tobacco control, infections, and healthy eating. On the other hand, breast, prostate, and colorectal cancers, common in high-income countries, require actions to change the sedentary lifestyle. Brazil lacks policies aimed at legislation and economic measures to promote the changes strongly impacted in the face of modifiable risk factors. Priority should be given to research projects to explore cancer risks among low-income population groups, who are at increased risk, and who live under conditions that make them extremely vulnerable.

Therefore, the need for actions and research that consider the multidimensional relationship in the genesis of the manifestations of the most different types of cancer, covering elements of the work environment and the main habits of life and
consumption (tobacco and alcohol), related to this problem is evident.

Thus, the aim of this study is to describe the characteristics of the work profile and the use of alcohol and tobacco in patients diagnosed with head, neck, or lung cancer.

METHODS

Experimental Design

This was a quantitative, descriptive, exploratory, cross-sectional study. The study was carried out at the Oncology Center of the Hospital de Clínicas, Universidade Federal de Uberlândia (HC-UFU). In this service, an average of 349 consultations are performed daily, 100 chemotherapy procedures and 120 radiotherapy procedures. This study included patients diagnosed with head and neck cancer (included in this group: oral cavity, oropharynx, nasopharynx, hypopharynx, and larynx), or lung cancer, with diagnoses confirmed by biopsy, undergoing treatment/follow-up in the period of April to November 2018, after approval by the Research Ethics Committee with the Opinion number: 2.570.195.

Population and sample

The study population consisted of 118 patients diagnosed with head, neck or lung cancer, confirmed by biopsy, that is, neoplasms classified by the ICD from C00.0 to C14.8, C31.0 to C32.9, C76.0 and C34, attended at the HC-UFU Oncology Center.

The survey sample was defined as a simple probabilistic and random type. For the analysis of the sample calculation of the study, so that it was considered a representation of the population to be studied, the 95% confidence level was taken into account, with a margin of error of more or less than 5%. The sample number needed was calculated as a minimum of 101 participants and a maximum of 148 participants (considering a safety margin of 10% for sample loss, filling out the data collection instrument incompletely and/or incorrectly).

Data collection instrument

The data collection instrument was composed of:

a) Sociodemographic, professional, and disease information.

The occupations and economic activities that present a relevant risk for work-related cancer were included in the questionnaire, according to the manual “Guidelines for the surveillance of work-related cancer”, a publication of the Ministry of Health. For data tabulation purposes, patients were divided into lung cancer patients and head and neck cancer patients.

b) Fagerstrom test: this test aimed to estimate the degree of nicotinic dependence, as it is an instrument used worldwide as an assessment tool. It was developed and introduced by the author in 1978, as a Fagerstrom tolerance questionnaire (FTQ).

c) Alcohol Use Disorders Identification Test (AUDIT): this is an instrument developed by the World Health Organization, in order to identify users who are in the initial stages, without a significant degree of harm related to alcohol. It presents questions that assess the quantity and frequency of alcoholism problems and alcohol dependence.
Data collection

The patients treated at the Oncology Center of HC-UFU were received at the department of the sector, responsible for separating the medical records and forwarding them to the waiting room of the doctors' offices. Starting from the knowledge of this routine, patients diagnosed with head, neck or lung cancer were identified and, during the period that awaited consultation, were approached by the researchers and invited to participate in the study, and were previously informed that their participation would occur on a voluntary and formalized basis, by signing the Informed Consent Form (ICF).

Inclusion and exclusion criteria

The inclusion criteria were: having a diagnosis of head, neck or lung cancer, confirmed by biopsy, over 18 years old, accepting to participate in the study, and signing the informed consent form. As an exclusion criterion, those patients that had a diagnosis of thyroid cancer and a diagnosis of skin cancer were excluded as there is no relationship with the risk factors being investigated according to the literature.

Data analysis

Data analysis was performed through the elaboration of a database in the Statistical Program of Social Science (SPSS) version 20.0, for Windows. Descriptive analyses were performed by calculating averages, percentages of variables, minimum values, maximum values, and standard deviation; meanwhile, the bivariate analysis of the data was performed using the Chi-squared and Fisher's exact tests. The level of significance (p-value) was set at 0.05 for all variables.

RESULTADOS

The sociodemographic characteristics of the studied population are shown in table 1. Regarding gender, there was a predominance of male cases (74.6%). When analyzing race/skin color, the majority of the sample 44.1% of the individuals identified themselves as white. Regarding religion, the predominant one was Catholic at 64.4%. It was observed that, in relation to the origin of the studied population, 51.7% live outside the municipality where they undergo their treatment. As for the level of education, most of the participants in the sample (47.5%) did not complete primary school. The income variable was investigated, taking into account the number of minimum wages received, and the majority of participants (59.8%) reported receiving one minimum monthly wage. Regarding marital status, 50.8% of individuals in the sample were married, and 48.3% said they lived with their spouse. When analyzing the age group of the studied group, of the 118 individuals, the median age was 60 years old, the maximum age found was 88 years, and the youngest individual was 25 years old.

Information related to the disease is also shown in Table 1. Among the individuals included in this study, the most frequent cancer was lung cancer, with 33.9% of cases. The average time to discover the diagnosis was 12.47 months, and the treatment was 9.89 months.

Table 2 describes the smoking habits of the individuals participating in the study, it is observed that of the total respondents, 81.4%, reported having already smoked, about 22.6 cigarettes per day. The average
age of onset of smoking was 15.4 years of age. When asked about living with smokers, 33.3% of participants reported that they lived with smokers at home. In relation to living with smokers in work environments, 75.4% of people said they had already worked with smokers and were exposed to cigarette smoke for an average of 6.66 hours a day. Table 2 also shows the results found by applying the Fagerstrom test. After applying the test to smokers participating in the study, it was identified that 30.21% of the individuals had a high degree of dependence.

The habits of alcohol consumption among patients with head, neck, and lung cancer, in this study are described in table 3. Among the 118 survey participants, 65.3% reported that they had used alcohol in the past. The average age when they started drinking alcoholic beverages was 18.28 years, and, on average, they stopped drinking at 51.38 years. Regarding the application of AUDIT, 36.6% were classified as consumers of low-risk alcoholic drinks or abstainers.

Table 4 shows the association between the variables gender, education, alcohol and tobacco use. It can be seen that the male participants said that they had already smoked (p=0.000) and had already consumed alcohol at least once a month (p=0.000). In addition, they also reported that they live with smokers (p=0.000), and work with people who smoke (p=0.000). Among individuals who did not complete their primary education, they responded more frequently that they worked with smokers (p=0.03), that they consumed “six or more doses” of alcoholic beverages at once (p=0.02), and demonstrated possible alcohol dependence, according to the AUDIT test (p=0.013).

It is possible to identify the association made between the most frequent occupations mentioned in the study and to analyze some aspects of their consumption of alcohol and tobacco. The individuals who work with cleaning and maintenance appeared to be associated with the fact that they have already caused damage or injury to themselves, or to others after drinking (p=0.01). The fact of working together with smokers was more frequent among rural workers (p=0.037) and among construction workers (p=0.047). Individuals working in agriculture and animal husbandry were those who smoked most frequently in the early hours of the day (p=0.050).

Table 5 describes the distribution of the type of occupation or economic activity of patients with head, neck, or lung cancer participating in the study. In relation to lung cancer, the most significant economic activities were in rural work at 10.2%. The most relevant occupation in relation to patients with head and neck cancer was that of construction at 9.3%, and the economic activity related to agriculture and animal husbandry. Still, according to table 5, patients with head, neck and lung cancer showed a greater need to smoke in the morning (p=0.041) and had a greater need to drink at least once a month (p=0.031). When establishing an association between the type of occupation of the subjects and the location of the cancer, a greater association can be observed between lung cancer and workers in activities related to cleaning and maintenance (p=0.001), civil construction (p=0.001) and rural work (p = 0.000). Moreover, among patients with head and neck cancer, the related occupational activity was that of a construction (p=0.013).
Table 1 – Sociodemographic information and types of head, neck, and lung cancer. Uberlândia (MG), 2018 (N=118).

Variables	Head and neck*	Type of Cancer	Lung	
	n	%	n	%
Sex				
Male	65	83.3%	23	57.5%
Female	13	16.7%	17	42.5%
Race				
White	35	44.9%	17	42.5%
Black	13	16.7%	5	12.5%
Yellow	0	0%	1	2.5%
Brown	30	38.5%	17	42.5%
Education				
Illiterate	3	3.8%	3	7.5%
Incomplete primary school	37	47.4%	19	47.5%
Incomplete high school	13	16.7%	7	17.5%
Complete high school	23	29.5%	8	20%
Higher education	2	2.6%	3	7.5%
Family income in amount of Minimum Wages (MW)				
Without income	2	2.6%	0	0
1 MW	43	55.8%	27	67.5%
2 MW	23	29.9%	10	25%
3 MW	4	5.2%	1	2.5%
4 MW	4	5.2%	1	2.5%
5 MW	0	0%	1	2.5%
10 MW	1	1.3%	0	0
Marital status				
Not married	13	16.7%	4	10%
Married	42	53.8%	18	45%
Widower	6	7.7%	4	10%
Divorced	9	11.5%	9	22.5%
Judicially separated	8	10.3%	5	12.5%
Who they live with				
Spouse	38	48.7%	19	47.5%
Children	7	9%	8	20%
Relatives	13	16.7%	7	17.5%
Institutionalized	1	1.3%	0	0
Caregiver	0	0%	0	0
Alone	5	6.4%	2	5%

*This variable includes the percentages of the following types of cancer: Oropharynx (21.2%), Hypopharynx (5.1%), Oral cavity (13.6%), Larynx (19.5%), Nasopharynx (6.8%).
Table 2 – Tobacco use among patients with head, neck, and lung cancer. Uberlândia (MG), 2018 (N=118).

Variables	Smoker					
	n	Average	Standard deviation	Median	Min	Máx
Smoker						
No	22					
Yes	96					
Total	118				100	
Smoker						
Age at onset	94	15,00	5.31	5,31	7	41
Age when stopped	71	57,00	13.21	13,21	1	75
Number of cigarettes smoked per day	96	20,00	14.83	14,83	3	80
Lived with a smoker						
No	78					
Yes	39					
Total	117				100	
Spouse's smoking habit						
Age at onset	10	16,00	3.47	3.47	10	22
Age when stopped	9	52,00	14.43	14,43	25	68
Number of cigarettes smoked per day	30	20,00	15.22	15,22	8	80
Works with Smokers						
No	29					
Yes	89					
Total	118				100	
Degree of dependence (Fagerstrom)						
Very low	14				14.58	
Low	22				22.92	
Medium	13				13.54	
High	29				30.21	
Very high	18				18.75	
Total	96				100	
Table 3 – Profile of alcohol consumption among patients with head, neck, and lung cancer. Uberlândia (MG), 2018 (N=118).

Alcohol consumption habits and history	n	%
Alcohol consumption		
Yes, still drink	14	11.9
Never drank	27	22.9
Only in the past	77	65.3

	N	Average	Median	Standard deviation	Min	Máx
Age at onset	88	18.28	16.00	6.91	7	41
Age when stopped	76	51.38	52.00	11.23	20	76

Assessment of alcohol consumption using the AUDIT application

Consumption characteristics	n	%
Low risk or abstinence	34	36.6
Risk consumption	25	26.9
High-risk harmful use	11	11.8
Probable dependence	23	24.7

Total 93 100

Table 4 – Association between work, sex, education, and alcohol and tobacco use. Uberlândia (MG), 2018 (N=118).

	Sexo masculino	Ensino fundamental incompleto	Valor de p*
Already smoked	80 (83.3%)		0.000
Live with smoker	21 (53.8%)		0.000
Worked with smoker	76 (85.4%)		0.000
Worked with smoker			0.033
Have you used alcohol at least once a month	67 (87%)		0.000
Weekly take “six or more drinks” of alcohol at once	14 (63.6%)		0.002
Possible alcohol dependence (AUDIT criterion)	11 (47.8%)		0.013

	Cleaning and maintenance	Rural work	Construction work	Agriculture and livestock	P Value*
In the past 12 months, have I caused injury or damage to myself or someone else after drinking?	3 (18.8%)	12 (13.5%)	11 (12.4%)	9 (25%)	0.01
Worked with smokers					0.037
Worked with smokers					0.047
Smokes more often in the early hours of the day, than during the rest of the day					0.050

* Qui-quadrado
Table 5 – Association between the location of head, neck, and lung cancer and occupation, alcohol and tobacco consumption in patients treated at the oncology sector at HC-UFU. Uberlândia (MG), 2018 (N=118).

	Head and neck cancer	Lung cancer	P value*
Cleaning and maintenance	05 (100%)	05 (100%)	0.001
Construction	11 (100%)	05 (100%)	0.013
Construction		12 (100%)	0.001
Rural work		17 (100%)	0.001
Agriculture and livestock		28 (77.8%)	0.041**
Do you smoke more often in the early hours of the day than at night?	13 (92.9%)	8 (22.2%)	0.031**
Still drinks at least once a month.		1 (7.1%)	

*Chi-squared ** Fisher’s exact test

DISCUSSION

The socioeconomic profile found in this study is men (74.6%), white (44.1%), married (50.8%), with an incomplete primary education (47.5%), Catholic (64.4%), with a monthly income of one minimum wage and a median age of 60 years. The most frequent type of cancer was lung cancer (33.9%), diagnosed in 12.47 months, and a treatment time of 9.89 months.

According to the National Cancer Institute José Alencar Gomes da Silva (INCA) (2019), currently in the world, lung cancer is among the main cancers in incidence, occupying the first position among men and third position among women, following the same proportion in Brazil. Cancer of the oral cavity appears with the fifth most frequent incidence in the male population, and esophageal and laryngeal cancers are also more common among people in this population.

Other sociodemographic characteristics, such as low income, low education, occupational activity, are also important in assessing the profile of cancer patients, since they are affected by their level of knowledge for adopting healthy lifestyle practices as well as to access to diagnosis and treatment of the disease already growing. There is a shortage of data on cancer diagnosis and treatment in Brazil; approximately 70% of lung cancer patients access health services with locally advanced or metastatic disease. The most frequent economic activities and occupations in this study were: cleaning and maintenance (4.2%), rural work/agriculture and animal husbandry (19.5%), construction worker (13.5%). It should be noted that the municipality in which the study was developed accounts for about 11.2% of the Gross Domestic Product (GDP) of the State of Minas Gerais, whose sectoral distribution of jobs is divided into services (48%), trade (22%), industry (17%), agriculture (8%), and civil construction (5%)¹⁰.

The main modifiable risk factor for cancer is smoking, especially with regard to the lung, head, and neck cancers, and it...
is associated with 70 to 85% of cases. In this study, it was identified that 81.4% of the participants reported having smoked, with an average of 22.6 cigarettes per day, and their age at the onset of the habit was 15.4 years old. A case-control study conducted in South Africa showed that using more than 14 grams of tobacco a day (equivalent to about half a pack of cigarettes), increases the risk of developing cancer in the larynx by four times.

Living with smokers and exposure to secondhand smoke also constitutes a risk for oncogenesis. In this study, it was identified that 33.3% of the participants lived with smokers at home, and 75.4% of these worked with smokers, with an average exposure to smoke of 6.66 hours a day. These rates are in line with a national survey of 39,425 participants that identified a 33% household exposure; however, with an environmental exposure of 55% for men and 45% for women, that is, below what was found in this study. A literature review showed a strong association between passive smoking and lung cancer (odds ratio between 1.16 and 1.44), and exposure in the workplace (odds ratio 1.04 and 1.68). One of the main complications for quitting smoking is due to the chemical and emotional dependence it causes; this study found that 30.21% of patients have a high degree of dependence on nicotine. In these cases, other evidence has shown that patients continue to use cigarettes after being diagnosed with cancer, with rates ranging from 12.8, 19, and 33%

As for the consumption of alcoholic beverages, this research identified that 65.3% of the participants reported consumption in the past. According to the National Survey of Alcohol and Drugs, 39% of people drink five or more alcoholic beverages regularly, and 16% had criteria for alcohol abuse or dependence. One study showed that people who ingest 53 grams more of ethanol a day had approximately five times greater chance of developing cancer (men OR=4.72, 95% CI 2.64-8.41; women OR=5.24, 95% CI 3.34-8.23), when compared to non-drinkers. The association of smoking and drinking alcohol increases the chances of developing esophageal cancer by 8.45 times (95% CI 5.51-12.96) compared to non-smokers and non-drinkers. Like cigarette smoking, alcohol abuse is a challenging factor in worsening patients with lung, head, and neck cancer, as according to this study 63.4% of patients had a harmful consumption or alcohol-dependency at the time of the study. A national study found that the habit of drinking five days or more a week was practically double among those who reported having cancer (OR=2.03; 95% CI 1.23-3.35), a national study found that the habit of drinking on 5 or more days of the week was found twice as much in individuals who had cancer over a period of ten years or more, when compared to people who were never diagnosed with a disease.

When assessing the associations between sociodemographic characteristics and the use of alcohol and tobacco, this study showed statistically significant associations (p=0.000) between males and the consumption of these substances. This finding corroborates other studies and exposes a greater vulnerability of men to their abuse and dependence. In addition, it is worth considering that men with cancer tend to have different perceptions, experiences, and therapeutic itineraries than those compared to women. For them, work appears as a guarantee of male identity, and a rupture in its stability, proven by the disease, can raise gender stereotypes and beliefs that define what being a male is, which represent obstacles in the search for medical care.

This study shows that having an incomplete
primary education was associated with working with smokers \((p=0.03) \), consuming more than six doses of alcohol at once \((p=0.02) \) and alcohol dependence \((p=0.013) \). With regards to tobacco, a national survey shows that the smoking population has fewer years of schooling than the non-smoking population\(^1\), which would explain the greater social contact (including at work) with smokers. Conversely to these results, other Brazilian studies have shown that alcohol abuse was higher, as individuals’ education increases; however, education was not associated with episodic excessive alcohol use\(^ {19-20} \). A hypothesis for this difference would be that the present study was carried out in a hospital with care totally funded by the Unified Health System (SUS), which would imply that people with a higher education, and possibly with higher income, would be using private hospital services or health plans.

The relationship between occupation/economic activity and the drinking habits of the participants in this study appeared in “having caused harm or injury to themselves, or to another after they drank”, with the occupation of cleaning and maintenance \((p=0.01) \); and the fact of working together with smokers was associated with being a rural worker \((p=0.037) \) or construction workers \((p=0.047) \). Evidence suggests that\(^ {21-22} \) workers in these segments may have problems related to alcohol abuse, tobacco and other substances, precisely because they perform physically exhausting tasks which require dedication and little leisure and induce the use of a substance as a physical and mental relaxation strategy. Another association that emerged was that of working with agriculture and animal husbandry and smoking in the early hours of the day \((p=0.050) \). An explanation for this finding may lie in the fact that, of course, the daily working hours of these workers begin at dawn.

The occurrence of cancer in the head and neck in this study showed a relationship with the need to smoke in the morning \((p=0.041) \), and the need to drink at least once a month \((p=0.031) \). According to other studies\(^ {2,4,11,23} \), the concomitant use of tobacco and alcohol enhances the carcinogenesis of this type of cancer, as well as that of several other forms and locations. This study indicated an association between the existence of lung cancer and activities related to cleaning and maintenance \((p=0.001) \), construction \((p=0.001) \), and rural work \((p=0.000) \).

According to the Ministry of Health, carcinogenic agents of this type of cancer may be present in work environments such as: arsenic (production of pesticides), beryllium (used as an alloying component in ceramics for electrical or electronic application), cadmium (whose soil contamination can also determine important exposure by ingestion), chromium (used in refractory bricks, in alloys, paints and pigments, in wood preservation, and leather tanning), dust inhalation at work in coal mines and other heavy metals. Head and neck cancers were associated with the construction occupation \((p=0.013) \). These workers may be exposed to carcinogens, such as: wood dust, work in the leather industry, exposure to crystalline silica, coal soot, wood, oil, asbestos, and organic solvents\(^2 \).

However, the results of this study should be observed sparingly, as it potentially had some limitations, such as: data collection was carried out in a single hospital (which possesses the regional characteristics, especially regarding the occupational profile), not having a control group with participants who do not have cancer to compare with, and not having been carried out with patients who did not come to the hospital during the data collection period or...
were in remission. In addition, it should be stressed that the potentially modifiable risk factors may explain up to half the incidence of cancer. Further studies are needed to better understand the work profile of these exposed patients. Moreover, in the field of research on occupational risks, it is essential to understand other modifiable risk factors, aiming at public health surveillance and planning. It is reported that further research is needed to better understand avoidable behaviors for the development of cancer, as well as new ways to promote changes in these behaviors.

CONCLUSION

It is concluded that the majority of patients diagnosed with lung and head and neck cancer are males, self-declared as white, married, have an incomplete primary education, and aged over 60 years with a history of alcohol abuse and smoking. The most prevalent occupations and economic activities were linked to rural activity, civil construction, and maintenance and cleaning. It was identified that patients continue to use alcoholic beverages and tobacco, even after diagnosis, and during the treatment of the disease. There was also noted exposure at their homes and in their work environments, with these substances. This study highlights the need for continuous, planned health care, with interventions and monitoring for changes in lifestyle, and the adoption of healthy habits; especially regarding the use of substances, including during cancer treatment. This study also corroborates the need to carry out actions to promote health and prevent oncogenic processes, of an individual and collective nature, in order to consider sociodemographic specificities, lifestyles and consumption habits, and work profiles, such as the work environment where people and communities are inserted.

REFERENCES

1. Ministério da Saúde (BR). Instituto Nacional do Câncer José Alencar Gomes da Silva. Estimativa 2020: incidência de câncer no Brasil [Internet]. Rio de Janeiro: INCA; 2019 [cited 2019 Aug 10]. Available from: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/estimativa-2020-incidencia-de-cancer-no-brasil.pdf
2. Ministério da Saúde (BR). Instituto Nacional do Câncer José Alencar Gomes da Silva. Diretrizes para a vigilância do câncer relacionado ao trabalho [Internet]. Rio de Janeiro: INCA; 2013 [cited 2019 Aug 10]. Available from: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document//diretrizes-vigilancia-cancer-relacionado-2ed.compressed.pdf
3. Arem H, Loftfield E. Cancer epidemiology: a survey of modifiable risk factors for prevention and survivorship. Am J Lifestyle Med. 2018; 12(3):200-10. Doi: 10.1177/1559827617700600
4. Silva GA, Rezende LFM, Gomes FS, Souza Júnior PRB, Szwarcwald CL, Eluf Neto J. Lifestyle among former cancer patients in Brazil in 2013. Cienc Saúde Colet. 2016; 21(2):379-88. Doi: 10.1590/1413-81232015211.24722015.
5. Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2014; 383(9916):549-57. Doi: 10.1016/s0140-6736(13)62224-2
6. Hastert TA, Ruterbusch JJ, Beresford SAA, Sheppard L, White E. Contribution of health behaviors to the association between area-level socioeconomic status and cancer mortality. Soc Sci Med. 2016; 148:52-8. Doi: 10.1016/j.socscimed.2015.11.023
7. Meneses-Gaya IC, Zuardi AW, Loureiro SR, Crippa JS. Psychometric properties of the Fagerström test for nicotine dependence. J Bras Pneumol. 2009; 35(1):73-82. Doi: 10.1590/S1806-37132009000100011
World Health Organization. AUDIT: the Alcohol Use Disorders Identification Test: guidelines for use in primary health care [Internet]. Geneva: WHO; 1982 [cited 2019 Aug 10]. Available from: https://www.who.int/publications/i/item/audit-the-alcohol-use-disorders-identification-test-guidelines-for-use-in-primary-health-care

9. Araújo LH, Baldotto C, Castro Júnior G, Katz A, Ferreira CG, Mathias C, et al. Lung cancer in Brazil. J Bras Pneumol. 2018; 44(1):55-64. Doi: 10.1590/s1806-3756201700000135

10. Federação de Comércio de Bens, Serviços e Turismo do Estado de Minas Gerais. Estudo sobre as regiões de planejamento de Minas Gerais [Internet]. Belo Horizonte: FecomercioMG; 2018 [cited 2019 Aug 10]. Available from: http://www.fecomerciomg.org.br/wp-content/uploads/2018/02/Projeto-Estadual-Tri%C3%A2ngulo-imprensa.pdf

11. Sewram V, Sitas F, O’Connell D, Myers J. Tobacco and alcohol as risk factors for oesophageal cancer in a high incidence area in South Africa. Cancer Epidemiol. 2016; 41:113-21. Doi: 10.1016/j.canep.2016.02.001

12. Passos VMA, Giatti L, Barreto SM. Passive smoking in Brazil: results from the 2008 Special Survey on Smoking. Ciênc Saúde Colet. 2011; 16(9):3671-8. Doi: 10.1016/j.canepe.2016.02.001

13. Almeida CPB, Silva DR. Passive smoking in Brazil: results from the 2008 Special Survey on Smoking. Rev G&S [Internet]. 2015 [cited 2019 Aug 10]; 6(2):1924-34. Available from: https://periodicos.unicamp.br/index.php/rgs/article/view/3036

14. Krane A, Terhorst L, Bovbjerg DH, Scheier MF, Kucinski B, Geller DA, et al. Putting the life in lifestyle: lifestyle choices after a diagnosis of cancer predicts overall survival. Cancer. 2018 Aug; 124(16):3417-26. Doi: 10.1002/cncr.31572

15. Silva PGB, Soares IL, Mendes FHO, Campêlo CSP, Cunha MPSS, Mota MRL, et al. Alcohol consumption history as a predictive factor of survival in patients with mouth and oropharyngeal squamous cell carcinoma: follow-up of 15 years. Rev Bras Cancerol. 2020; 66(1):e02573. Doi: 10.32635/2176-9745.RBC.2020v66n1.573

16. Instituto Nacional de Ciência e Tecnologia para Políticas Públicas do Álcool e Outras Drogas, Universidade Federal de São Paulo. II Levantamento Nacional de Álcool e Drogas: relatório 2012 [Internet]. São Paulo: INPAD/UNIFESP; 2014 [cited 2019 Aug 10]. Available from: https://inpad.org.br/wp-content/uploads/2014/03/Lenad-II-Relat%C3%A3orio.pdf

17. Fernandes MJM, Carvalho GB, Ferreira CB. Impact of the diagnosis of cancer for men and women: a comparative study. Rev SPAGESP [Internet]. 2019 [cited 2019 Aug 10]; 20(2):68-83. Available from: http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1413-81232019200000006&lng=pt

18. Bazzotti A, Finckel I, Conti IL, França MTA, Waquil PD. Smoking and poverty in Brazil: an analysis of the profile of the smoking population based on the 2008-09 brazilian government family budget survey. Ciênc Saúde Colet. 2016; 21(1):45-52. Doi: 10.1590/1413-81232015211.16802014.

19. Munhoz TN, Santos IS, Nunes BP, Mola CL, Silva ICM, Matijaševich A. Trends in alcohol abuse in brazilian state capitals from 2006 to 2013: an analysis of data from the VIGITEL survey. Cad Saúde Pública. 2017; 33(7):e00104516. Doi: 10.1590/0102-311X00104516

20. Machado Iê, Monteiro MG, Malta DC, Lana FCF. Pesquisa Nacional de Saúde 2013: relação entre uso de álcool e características sociodemográficas segundo o sexo no Brasil. Rev Bras Epidemiol. 2017; 20(3):408-22. Doi: 10.1590/1980-549720170030008

21. Costa AB, Silva JS, Oliveira TMS. Condições de trabalho que favorecem o desenvolvimento do alcoolismo. [article] [Internet]. Salvador: Escola Bahiana de Medicina e Saúde Pública; 2013 [cited 2020 Aug 12]. Available from: http://www7.bahiana.edu.br/jspui/bitstream/bahiana/594/1/Costa.AnitaBittencourt.2013.001.BAHIANA.pdf

22. Gavioli A, Mathias TAF, Rossi RM, Félix OML. Risks related to drug use among male construction workers. Acta Paul Enferm. 2014; 27(5):471-8. Doi: 10.1590/1982-0194201400077

23. Kfouri SA, Eluf Neto J, Koifman S, Curado MP, Menezes A, Daudt AW, et al. Fraction of head and neck cancer attributable to tobacco and alcohol in cities of three Brazilian regions. Rev Bras Epidemiol. 2018; 21:e180005. Doi: 10.1590/1980-549720180005

Received in march 2020.
Accepted in november de 2020.
Perfil ocupacional, consumo de álcool e tabaco em pacientes com câncer de cabeça, pescoço e pulmão na cidade Uberlândia/MG

Vanessa Silveira Navarro*
Lúcio Borges de Araújo*
Marcelle Aparecida de Barros Junqueira*

Resumo

O câncer é a segunda causa de morte no Brasil, e o câncer de cabeça, pescoço e pulmão está entre os cinco tipos mais incidentes na população brasileira masculina. Informa-se que o tabaco, o álcool e os agentes ocupacionais são importantes fatores de risco para a doença. Objetiva com este estudo descrever o perfil laboral e o uso de álcool e tabaco entre os pacientes diagnosticados com esses tipos de cânceres. Trata-se de um quantitativo, descritivo, exploratório, transversal. A amostra foi composta por 118 pacientes atendidos e cadastrados de um hospital público, que responderam a um questionário que continha informações sociodemográficas, profissionais, além do Teste de Fagerstrom e o AUDIT. A maioria dos participantes era de homens, brancos, casados, com média de idade de 60 anos, com primeiro grau incompleto, renda menor que um salário mínimo, tendo como principais atividades ocupacionais ligadas ao trabalho rural, à construção civil e à limpeza e manutenção. Levantou-se o histórico de uso abusivo de álcool e tabaco, que prevalece após o diagnóstico de câncer, bem como a convivência com familiares e colegas de trabalho que também faziam uso dessas substâncias. Conclui-se que há a necessidade de uma assistência voltada à mudança de estilo de vida durante o tratamento oncológico, a ampliação do olhar de estudos relacionados ao câncer para as especificidades sociodemográficas, aos hábitos de vida e de consumo, ao perfil laboral, bem como ao ambiente de trabalho.

Palavras-chave: Câncer Ocupacional, Tabagismo, Alcoolismo.

INTRODUÇÃO

De acordo com a Organização Mundial de Saúde, em 2018, o câncer é a segunda causa de morte no mundo, com uma estimativa de ocorrência de 18 milhões de novos casos, e, 9,6 milhões de óbitos ao ano¹. No Brasil, calcula-se que, para cada ano no triênio 2020-2022 acontecerão 625 mil novos casos da doença. Somente para o ano 2020, especificamente, quanto ao câncer de pulmão, brônquios e traqueia, calcula-se a ocorrência de 30.200 novos casos; para casos de câncer na cavidade oral, o número é de 15.190 casos; já na laringe o número calculado é de 7.650 novos casos¹.

No que concerne a etiologia, alguns fatores fazem com que a incidência de câncer aumente, como o envelhecimento e o crescimento populacional, a mudança na distribuição e a prevalência dos fatores de risco, especialmente, aqueles associados ao desenvolvimento socioeconômico, como o ambiente de consumo (alimentos, medicamentos, fumo, álcool e produtos domésticos), o ambiente cultural (estilo, costumes e hábitos de vida), e o ambiente ocupacional¹².

O câncer é uma doença multifatorial em que há uma sinergia de efeitos genéticos e
ambientais. Do ponto de vista ambiental, tem o mundo do trabalho onde o indivíduo está inserido, onde se molda o câncer ocupacional, considerado uma forma de toxicidade retardada em seu curso clínico, e em seu desfecho, devido à exposição aos agentes químicos, físicos ou biológicos, classificados como cancerígenos, presentes no ambiente de trabalho; responsáveis por no mínimo 10% do adoecimento por câncer. Por outro lado, tem-se o estilo e hábitos de vida, cujos estudos demonstram a algum tempo, que o consumo de tabaco (aumenta 25 vezes a chance para o desenvolvimento de câncer de pulmão, por exemplo), e bebidas alcóolicas, (cujo o consumo nocivo são responsáveis por 4 a 25% da carga global do câncer), e se mostram como componentes importantes para o desenvolvimento carcinogênico dos mais variados tipos.

Particularmente, nos casos de câncer de pulmão (incluídos aqui traqueia e brônquios), e de cavidade oral, esôfago e laringe (conhecidos como câncer de cabeça e pescoço), o tabagismo ativo ou passivo, e o consumo excessivo de álcool configuram-se como principais fatores de risco modificáveis para o desenvolvimento da doença. O tabagismo é o principal contribuinte para a incidência de câncer e mortes esperadas para 2020 no Brasil. A fração atribuível à infecção aparece como a segunda causa evitável de câncer, como observado em países de baixa e média renda. Ademais, os fatores relacionados à exposição ocupacional, como o contato com os agentes físicos ou químicos (como asbesto, sílica, urânio, cromo, radônio, madeira e produtos químicos utilizados na metalurgia, petróleo, plásticos, indústrias têxteis e o amianto), também aparecerem no rol desses fatores de risco. Alguns estudos que analisaram o impacto de agentes ocupacionais sobre o total de câncer na população brasileira, ainda são incipientes, se comparados aos de outros países, possivelmente relacionado à subnotificação de casos relacionados aos empregos informais.

O câncer é um problema mundial e crescente, porém, não é uniforme. Considera-se que um terço dos casos de câncer ocorrem por causas evitáveis, contudo, se percebe uma tendência mundial de aumento do número de casos novos de câncer em países de baixa renda ou em desenvolvimento; relacionado muitas vezes à transição de fatores de risco, como a adoção de novos hábitos de vida e novas formas de trabalho por essas populações, concatenados, ainda, com tipos de câncer associados às infecções. As evidências mostram que a taxa de risco de mortalidade em pessoas com nível socioeconômico mais baixo é de 1,71 (IC 95%:1,44, 2,03), tendo como os fatores de risco modificáveis os responsáveis em 45% dos casos.

Os países de baixa renda mostram uma alta prevalência de cânceres gástricos e cervicais não cardíacos, e podem ser evitados por meio do controle do tabaco, de infecções, e alimentação saudável. Por outro lado, cânceres de mama, próstata e colorretal, comuns em países de alta renda, exigem ações para mudar a vida sedentária. O Brasil carece de políticas voltadas à legislação e medidas econômicas para promover as mudanças fortemente impactadas no enfrentamento dos fatores de risco modificáveis. Deve ser dada prioridade aos projetos de pesquisa para explorar os riscos de câncer entre os grupos populacionais de baixa renda, que têm o risco aumentado, e que vivem sob condições que os tornam extremamente vulneráveis.

Desse modo, fica evidente a necessidade de ações e pesquisas que considerem a relação multidimensional na gênese das manifestações dos mais diferentes tipos de câncer, abarcando elementos do meio.
MÉTODO

Delineamento

Trata-se de um estudo quantitativo, descritivo, exploratório, transversal. O estudo foi realizado no Serviço de Oncologia do Hospital de Clínicas da Universidade Federal de Uberlândia (HC-UFU). Nesse serviço, são realizadas diariamente uma média de 349 consultas, 100 procedimentos quimioterápicos e 120 procedimentos radioterápicos. Foram incluídos, neste estudo, pacientes com diagnóstico de câncer de cabeça e pescoço (incluídos nesse grupo cavidade oral, orofaringe, nasofaringe, hipofaringe e laringe), ou pulmão, com diagnósticos confirmados por meio de biópsia, em tratamento/acompanhamento no período de abril a novembro de 2018, após a aprovação do Comitê de Ética em Pesquisa com o número do Parecer: 2.570.195.

População e amostra

A população do estudo foi composta por 118 pacientes com diagnóstico de câncer de cabeça, pescoço ou pulmão, confirmados por meio de biópsia, ou seja, neoplasias classificadas pelo CID de C00.0 a C14.8, C31.0 a C32.9, C76.0 e C34, atendidos no Serviço de Oncologia do HC-UFU.

A amostragem da pesquisa foi definida como do tipo probabilístico e aleatório simples. Para a análise do cálculo amostral, de forma que fosse considerada uma representatividade da população a ser estudada, levou-se em conta o grau de confiança de 95%, e margem de erro de 5% para mais ou para menos. O número da amostra a se perfazer, foi calculada em no mínimo, de 101 participantes, e de, no máximo, 148 participantes (considerando uma margem de segurança de 10%, para a perda amostral, preenchimento do instrumento de coleta de dados incompletos e/ou errados).

Instrumento de coleta de dados

O instrumento de coleta de dados foi composto por:

a) Informações sociodemográficas, profissionais e sobre a doença. Foram incluídas no questionário as ocupações e atividades econômicas que apresentam risco relevante para o câncer relacionado ao trabalho, de acordo com o manual “Diretrizes para a vigilância do câncer relacionado ao trabalho”, uma publicação do Ministério da Saúde, para fins de tabulação de dados, os pacientes foram divididos em: pacientes com câncer de pulmão e pacientes com câncer de cabeça e pescoço.

b) Teste de Fagerstrom: esse teste teve o objetivo de estimar o grau de dependência nicotínica, pois se trata de um instrumento utilizado mundialmente como ferramenta de avaliação. Foi desenvolvido e introduzido pelo autor em 1978, como questionário de tolerância de Fagerstrom (FTQ)³.

c) Teste para Identificação de Problemas Relacionados ao Uso de Álcool (AUDIT): trata-se de um instrumento desenvolvido pela Organização Mundial de Saúde, a fim de identificar usuários que estão nos estágios iniciais, sem um grau significativo de danos relacionados ao álcool. Apresenta questões que avaliam quantidade e frequência de problemas de alcoolismo e dependência de álcool.
Coleta de dados

Os pacientes atendidos no Serviço de Oncologia do HC-UFU foram recepcionados na secretaria do setor, responsável por separar os prontuários e encaminhá-los à sala de espera dos consultórios médicos. A partir do conhecimento dessa rotina, os pacientes com diagnóstico de câncer de cabeça, pescoço ou pulmão foram identificados e, durante o período que aguardavam a consulta, foram abordados pelos pesquisadores e convidados a participar do estudo, sendo previamente informados de que sua participação ocorreria de forma voluntária e formalizada, por meio da assinatura do Termo de Consentimento Livre e Esclarecido (TCLE).

Critérios de inclusão e exclusão

Os critérios de inclusão foram: ter diagnóstico de câncer de cabeça, pescoço ou pulmão, confirmados por biópsia, idade superior a 18 anos, aceitar participar da pesquisa e assinar o TCLE. Como critério de exclusão, foi utilizado o fato de os pacientes apresentarem diagnóstico de câncer de tireoide e com diagnóstico de câncer de pele, pois não há relação com os fatores de risco em estudo segundo a literatura.

Análise de dados

A análise dos dados foi realizada por meio da elaboração de um banco de dados no Statistical Program of Social Science (SPSS) versão 20, for Windows. Foram realizadas análises descritivas por meio de cálculo de médias, porcentagens das variáveis, valores mínimos, valores máximos e desvio padrão; análises bivariadas dos dados, com utilização dos testes Qui-quadrado e Teste Exato de Fischer. O nível de significância (valor de p) foi estabelecido em 0.05 para todas as variáveis.

RESULTADOS

As características sociodemográficas da população estudada são apresentadas na tabela 1. Em relação ao gênero, observou-se a predominância de casos do sexo masculino (74,6%). Ao se analisar raça/cor da pele, a maioria da amostra 44,1% dos indivíduos se autoidentificou como branco. Em relação à religião, a predominante foi a católica com 64,4%. Observou-se que, em relação à procedência da população estudada, 51,7% residem fora do município onde realizam o tratamento. Quanto ao grau de escolaridade, a maioria dos participantes da amostra 47,5% não concluíram o 1º grau. A variável renda foi investigada, levando-se em consideração o número de salários mínimos recebidos, a maioria, 59,8% dos participantes, refere receber um salário mínimo mensal. Em relação ao estado civil, 50,8% de indivíduos da amostra são casados, e 48,3% disseram conviver com o cônjuge. Ao se analisar a faixa etária do grupo estudado, dos 118 indivíduos, a mediana de idade foi de 60 anos, a idade máxima encontrada 88 anos, e o indivíduo mais jovem apresentou-se com 25 anos.

As informações relacionadas à doença também estão demonstradas na tabela 1. Entre os indivíduos incluídos neste estudo, o câncer mais frequente foi o câncer de pulmão, com 33,9% dos casos. O tempo médio de descoberta do diagnóstico foi 12,47 meses, e de tratamento 9,89 meses.

A tabela 2 descreve os hábitos de tabagismo dos indivíduos participantes da pesquisa, observa-se que do total de entrevistados, 81,4%, relataram já terem fumado, cerca de 22,6 cigarros por dia. A média de idade de início do hábito de fumar foi de 15,4 anos de idade. Ao serem questionados sobre a convivência...
com fumantes, 33,3% dos participantes informaram que conviviam com fumantes no domicílio, em relação à convivência com fumantes em ambientes de trabalho, 75,4% das pessoas disseram que já trabalharam com fumantes, ficando expostos à fumaça do cigarro por uma média 6,66 horas por dia. A tabela 2, ainda, apresenta os resultados encontrados por meio da aplicação do Teste de Fagerstrom. Após a aplicação do teste aos fumantes participantes da pesquisa, identificou-se que 30,21% dos indivíduos apresentaram grau de dependência elevada.

Os hábitos do consumo de álcool entre os pacientes com câncer de cabeça, pescoço e pulmão, participantes deste estudo estão descritos na tabela 3. Entre os 118 participantes da pesquisa, 65,3% informaram que tinham o hábito de consumir bebidas alcoólicas no passado. A média da idade de quando estes começassem a consumir bebidas alcoólicas foi de 18,28 anos, e, em média, pararam de beber com 51,38 anos. Em relação à aplicação do AUDIT, 36,6% foram classificados como consumidores de bebidas alcoólicas de baixo risco ou abstêmios.

A tabela 4 mostra a associação entre as variáveis sexo, escolaridade, o uso de álcool e o tabaco. Pode-se observar que os participantes do sexo masculino disseram que já fumaram (p=0,000) e já consumiram bebida alcoólica ao menos uma vez por mês (p=0,000). Além disso, ainda informaram que convivem com fumantes (p=0,000), e trabalham com pessoas que fumam (p=0,000). Entre os indivíduos que não possuem o primeiro grau completo, foi mais frequente as respostas de que trabalhavam com fumantes (p=0,03), o fato de consumir semanalmente “seis ou mais doses” de bebida alcoólica de uma vez (p=0,02), e demonstraram possível dependência de álcool, segundo o teste AUDIT (p = 0,013).

É possível identificar a associação feita entre as ocupações mais frequentes citadas no estudo e analisar alguns aspectos do seu consumo de álcool e tabaco. Ao serem questionados sobre o fato de já terem causado prejuízos ou ferimentos a ele mesmo, ou a outrem após terem bebido, os indivíduos que trabalham com limpeza e manutenção aparecem com essa associação (p=0,01). O fato de trabalhar junto com fumantes foi mais frequente entre os trabalhadores rurais (p=0,037), e, entre os pedreiros (p=0,047). Os indivíduos que trabalham com agricultura e criação de animais foram os que fumaram com maior frequência nas primeiras horas do dia (p=0,050).

A tabela 5 descreve a distribuição do tipo de ocupação ou atividade econômica dos pacientes com câncer de cabeça, pescoço ou pulmão participantes da pesquisa. Em relação ao câncer de pulmão, dentre as ocupações e atividades econômicas envolvidas na pesquisa, as ocupações relacionadas às atividades de limpeza e manutenção foram as mais significativas com 4,2%, e a atividade econômica aparece o trabalho rural com 10,2%, seguido da construção civil com 4,2%. A ocupação mais relevante em relação aos pacientes com câncer de cabeça e pescoço foi a de pedreiro 9,3%, e a atividade econômica relacionada com agricultura e criação de animais. Ainda, de acordo com a tabela 5, os pacientes com câncer de cabeça, pescoço e pulmão demonstraram maior necessidade de fumar no período da manhã (p=0,041) e, apresentaram maior necessidade de beber ao menos uma vez ao mês (p=0,031). Ao se estabelecer uma associação entre o tipo de ocupação dos sujeitos e a localização do câncer, pode-se observar uma maior associação entre câncer de pulmão e trabalhadores de atividades relacionadas à limpeza e manutenção (p=0,001), construção civil (p=0,001) e trabalho rural (p=0,000). E, entre os pacientes com câncer de cabeça e pescoço, a atividade ocupacional relacionada foi a de pedreiro (p=0,013).
Tabela 1 – Informações sociodemográficas e os tipos de câncer de cabeça, pescoço e pulmão. Uberlândia (MG), 2018 (N=118).

Variables	Cabeça e pescoço*	Tipo de Câncer	Pulmão			
	n	%	n	%	n	%
Sexo						
Masculino	65	83,3%	23	57,5%		
Feminino	13	16,7%	17	42,5%		
Raça						
Branco	35	44,9%	17	42,5%		
Preto	13	16,7%	5	12,5%		
Amarelo	0	0%	1	2,5%		
Pardo	30	38,5%	17	42,5%		
Escolaridade						
Analfabeto	3	3,8%	3	7,5%		
1º grau incompleto	37	47,4%	19	47,5%		
2º grau incompleto	13	16,7%	7	17,5%		
2º grau completo	23	29,5%	8	20%		
Nível superior	2	2,6%	3	7,5%		
Renda familiar em quantidade de Salários Mínimos (SM)						
Sem renda	2	2,6%	0	0%		
1 SM	43	55,8%	27	67,5%		
2 SM	23	29,9%	10	25%		
3 SM	4	5,2%	1	2,5%		
4 SM	4	5,2%	1	2,5%		
5 SM	0	0%	1	2,5%		
10 SM	1	1,3%	0	0%		
Estado civil						
Solteiro	13	16,7%	4	10%		
Casado	42	53,8%	18	45%		
Viúvo	6	7,7%	4	10%		
Divorciado	9	11,5%	9	22,5%		
Desquitado/separado judicialmente	8	10,3%	5	12,5%		
Com quem reside						
Cônjuge	38	48,7%	19	47,5%		
Filhos	7	9%	8	20%		
Familiares	13	16,7%	7	17,5%		
Institucionalizado	1	1,3%	0	0%		
Cuidador	0	0%	0	0%		
Sozinho	5	6,4%	2	5%		

*Nesta variável estão inseridos os percentuais dos seguintes tipos de câncer: Orofaringe (21,2%), Hipofaringe (5,1%), Cavidade oral (13,6%), Laringe (19,5%), Nasofaringe (6,8%).
Tabela 2 – Uso de tabaco entre os pacientes com câncer de cabeça, pescoço e pulmão. Uberlândia (MG), 2018 (N=118).

Variables	Análise descritiva	
Tabagismo	n	%
Não	22	18,6
Sim	96	81,4
Total	118	100

Tabagismo	n	Média	Mediana	Desvio Padrão	Min	Máx
Idade início	94	15,47	15,00	5,31	7	41
Idade que parou	71	55,10	57,00	13,21	1	75
Número de cigarros fumados por dia	96	22,68	20,00	14,83	3	80

Conviveu com fumante	n	%
Não	78	66,7
Sim	39	33,3
Total	117	100

Hábito de fumar do cônjuge	n	Média	Mediana	Desvio Padrão	Min	Máx
Idade início	10	16,70	16,00	3,47	10	22
Idade que parou	9	49,11	52,00	14,43	25	68
Número de cigarros fumados por dia	30	24,57	20,00	15,22	8	80

Trabalha com Fumantes	n	%
Não	29	24,6
Sim	89	75,4
Total	118	100

	n	Média	Mediana	Desvio Padrão	Min	Máx
Idade início	53	17,71	15,00	8,5	7	41
Idade que parou	58	55,71	57,00	9,39	25	73
Número de horas de exposição	77	6,66	8,00	3,45	0,5	12,0
Intensidade de fumaça	89	1,79	2,00	0,83	1	3

Grau de dependência (Fagerstom)	n	%
Muito baixa	14	14,58
Baixa	22	22,92
Média	13	13,54
Elevada	29	30,21
Muito elevada	18	18,75
Total	96	100
Tabela 3 – Perfil de consumo de álcool entre pacientes com câncer de cabeça, pescoço e pulmão. Uberlândia (MG), 2018 (N=118).

Hábitos e histórico de consumo de álcool	n	%
Consumo de bebida alcoólica		
Sim, ainda bebe	14	11,9
Nunca bebe	27	22,9
Só no passado	77	65,3
Idade de início		
N	88	18,28
Média	16,00	
Mediana	6,91	
Desvio Padrão	Min	Max
7	41	
Idade que parou		
N	76	51,38
Média	52,00	
Mediana	11,23	
Desvio Padrão	Min	Max
20	76	

Avaliação do consumo de bebidas alcoólicas com a aplicação do AUDIT	n	%
Características do consumo		
Baixo risco ou abstinência	34	36,6
Consumo de risco	25	26,9
Uso nocivo de alto risco	11	11,8
Provável dependência	23	24,7
Total	93	100

Tabela 4 – Associação entre trabalho, sexo, escolaridade e uso de álcool e tabaco. Uberlândia (MG), 2018 (N=118).

	Sexo masculino	Ensino fundamental incompleto	Valor de p*
Já fumou	80 (83,3%)		0,000
Vive com fumante	21 (53,8%)		0,000
Trabalhou com fumante	76 (85,4%)		0,000
Trabalhou com fumante			0,033
Já usou bebida alcoólica ao menos uma vez ao mês	67 (87%)		0,000
Semanalmente toma “seis ou mais doses” de bebida alcoólica de uma vez			0,002
Possível dependência de álcool (critério AUDIT)			0,013

	Limpeza e manutenção	Trabalho rural	Pedreiro	Agricultura e criação de animais	Valor de p*
Nos últimos 12 meses já causei ferimentos ou prejuízos a mim mesmo ou a outra pessoa após ter bebido?	3 (18,8%)				0,01
Trabalhou com fumantes		12 (13,5%)			0,037
Trabalhou com fumantes		11 (12,4%)			0,047
Fuma mais frequentemente nas primeiras horas do dia, do que durante o resto do dia				9 (25%)	0,050

* Qui-quadrado
Tabela 5 – Associação entre a localização do câncer de cabeça, pescoço e pulmão e a ocupação, consumo de álcool e tabaco nos pacientes atendidos no setor de oncologia do HC-UFU. Uberlândia (MG), 2018 (N=118).

	Câncer de cabeça e pescoço	Câncer de pulmão	Valor de p*
Limpeza e manutenção	05 (100%)	0,001	
Pedreiro	11 (100%)	0,013	
Construção civil	05 (100%)	0,001	
Trabalho rural	12 (100%)	0,000	
Agricultura e criação de animais	17 (100%)	0,001	
Você fuma mais frequentemente nas primeiras horas do dia do que durante a noite?	28 (77,8%)	8 (22,2%)	0,041**
Ainda bebe ao menos uma vez por mês.	13 (92,9%)	1 (7,1%)	0,031**

*Qui-quadrado ** Teste exato de Fischer

DISCUSSÃO

O perfil socioeconômico encontrado neste estudo é de homens (74,6%), brancos (44,1%), casados (50,8%), com primeiro grau incompleto (47,5%), católicos (64,4%), com renda mensal de um salário mínimo e idade mediana de 60 anos. O tipo de câncer mais frequente foi o de pulmão (33,9%), com diagnóstico em 12,47 meses, e tempo de tratamento de 9,89 meses.

De acordo o Instituto Nacional do Câncer José Alencar Gomes da Silva (INCA) (2019), atualmente no mundo, o câncer de pulmão configura-se entre os principais em incidência, ocupando a primeira posição entre os homens e terceira posição entre as mulheres, seguindo a mesma proporção no Brasil; o câncer da cavidade oral aparece com a incidência de quinto mais frequente na população do sexo masculino, sendo os cânceres de esôfago e laringe mais comuns entre pessoas dessa parcela populacional.

Outras características sociodemográficas, como baixa renda, baixa escolaridade, atividade ocupacional, também possuem importante relevância na avaliação do perfil dos pacientes com câncer, pois, afetam desde o nível de conhecimento para a adoção de práticas de estilo de vida saudáveis, até o acesso ao diagnóstico e tratamento da doença já instalada. Há uma escassez de dados sobre o diagnóstico e tratamento no câncer no Brasil; aproximadamente 70% dos pacientes com câncer de pulmão acessam os serviços de saúde com a doença localmente avançada ou metastática. As atividades econômicas e ocupações mais incidentes neste estudo foram: limpeza e manutenção (4,2%), trabalho rural/agricultura e criação de animais (19,5%), construção civil/pedreiro (13,5%). Cabe ressaltar que o município em que este foi desenvolvido responde por cerca de 11,2% do Produto Interno Bruto (PIB) do Estado de Minas Gerais, cuja distribuição setorial de empregos está dividida em serviços (48%), comércio (22%), indústria (17%), agropecuária (8%) e construção civil (5%).

O principal fator de risco modificável para
o câncer é o tabagismo, especialmente, no que concerne ao pulmão, cabeça e pescoço, e, está associado entre 70 a 85% dos casos\(^1\). Neste estudo foi identificado que 81,4% dos participantes relataram ter fumado, com uma média 22,6 cigarros por dia, e idade de início do hábito com 15,4 anos de idade. Uma pesquisa conduzida na África do Sul, do tipo caso-controle, evidenciou que usar mais de 14 gramas de tabaco ao dia (equivalente a cerca de meio maço de cigarros), aumenta em quatro vezes o risco para desenvolver câncer na laringe\(^1\).

A convivência com pessoas fumantes e exposição ao fumo passivo também se conforma em um risco para a oncogênese. Neste estudo, identificou-se que 33,3% dos participantes conviviam com fumantes no domicílio, e 75,4 % destes trabalharam com fumantes, com exposição média a fumaça de 6,66 horas por dia; essas taxas vão ao encontro de inquérito nacional com 39.425 participantes que identificou uma exposição domiciliar de 33%; porém, com exposição ambiental de 55% para homens e 45% para mulheres\(^1\), ou seja, abaixo do que foi encontrado neste estudo. Uma revisão de literatura mostrou uma forte associação entre o tabagismo passivo e o câncer de pulmão (\textit{odds ratio} entre 1,16 e 1,44), e no ambiente de trabalho (\textit{odds ratio} 1,04 e 1,68)\(^4\). Um dos principais complicadores para o abandono do vício de fumar se dá pela dependência química e emocional que ele causa; este estudo constatou que 30,21% dos pacientes apresentaram um grau de dependência elevado em relação à nicotina. Nesses casos, demais evidências mostraram que os pacientes continuam usando o cigarro após o diagnóstico de câncer, com taxas que variam de 12,8; 19 e 33%\(^3\)\(^13\)\(^15\).

Quanto ao consumo de bebidas alcoólicas, esta pesquisa identificou que 65,3% dos participantes relataram o consumo no passado. De acordo com o Levantamento Nacional de Álcool e Drogas, 39% das pessoas que usam álcool beem cinco doses ou mais em uma ocasião habitual, e 16% apresentaram critérios para abuso ou dependência alcoólica. Um estudo mostrou que pessoas que ingerem mais 53 gramas de etanol por dia tiveram aproximadamente cinco vezes (homens OR=4,72, IC 95% 2,64-8,41; mulheres OR=5,24, IC 95% 3,34-8,23), com mais chance de desenvolver câncer, se comparados com outras pessoas não bebedoras. A associação dos hábitos de fumar e ingerir bebidas alcoólicas faz aumentar em 8,45 vezes mais chances de desenvolver câncer de esôfago (IC95% 5,51-12,96) em comparação com os não-fumantes e não-bebedores\(^1\). Tal como o cigarro, o abuso de álcool é fator desafiador para a assistência aos portadores de câncer de pulmão, cabeça e pescoço, pois de acordo com este estudo 63,4% dos pacientes apresentaram consumo nocivo ou dependente de álcool no momento atual. Um estudo nacional detectou que o hábito de beber cinco dias ou mais por semana, e foi praticamente o dobro entre os que relataram terem tido câncer (RP=2,03; IC 95% 1,23 a 3,35), se comparado à população não diagnosticada com esse mal entre os indivíduos que tiveram diagnóstico de câncer há dez anos ou mais\(^4\)\(^13\)\(^15\)\(^16\).

Ao se avaliar as associações entre as características sociodemográficas e o uso de álcool e tabaco, este estudo apontou associações estatisticamente significantes (\(p=0,000\)) entre o sexo masculino e o consumo dessas substâncias; este achado corrobora com outros estudos\(^16\), e expõe uma maior vulnerabilidade dos homens para o abuso e dependência dos mesmos. Além disso, cabe considerar que os homens portadores de câncer tendem a apresentar percepções,
vivências e itinerários terapêuticos diferentes dos comparados às mulheres. Para eles, o trabalho aparece como uma garantia da identidade masculina, e uma ruptura de estabilidade deste, provado pela doença, pode suscitar estereótipos de gênero e crenças que definem o que é o ser masculino, os quais representam obstáculos na busca de cuidado médico

Este estudo mostra que ter o primeiro grau incompleto se associou a trabalhar com fumantes (p=0,03), consumir mais de seis doses de álcool de uma vez (p=0,02) e dependência alcoólica (p=0,013). Com relação ao tabaco, um levantamento nacional mostra que a população tabagista tem menos anos de escolaridade que a não tabagista, o que explicaria o maior contato social (inclusive no trabalho) com fumantes. Inversamente a esses resultados, outros estudos brasileiros mostraram que o consumo abusivo de álcool foi maior, na medida em que aumenta a escolaridade dos indivíduos, porém, a escolaridade não esteve associada ao uso episódico excessivo de álcool; uma hipótese para essa diferença seria a de que o estudo tenha sido realizado em um hospital com atendimento totalmente custeado pelo Sistema Único de Saúde (SUS), o que faria com que pessoas com maior escolaridade, e, possivelmente, com maior renda estejam utilizando de serviços hospitalares por convênio ou particular.

A relação entre a ocupação/atividade econômica com os hábitos de beber dos participantes deste estudo apareceu em “ter causado prejuízos ou ferimentos a ele mesmo, ou a outro após terem bebido”, com a ocupação de limpeza e manutenção (p=0,01); e, o fato de trabalhar junto com fumantes associou-se aos trabalhadores rurais (p=0,037), e aos pedreiros (p=0,047). As evidências sugerem que os trabalhadores desses segmentos podem ter problemas relacionados ao abuso de álcool, ao tabaco e a outras substâncias, justamente por executarem tarefas fisicamente exaustivas, que demandam dedicação e pouca lazer, e induz o uso da substância como estratégia de relaxamento físico e mental. Outra associação que surgiu foi a de trabalhar com a agricultura e a criação de animais e fumar nas primeiras horas do dia (p=0,050); uma explicação para esse dado pode residir no fato de que, naturalmente, a jornada laboral diária desses trabalhadores, comece ao amanhecer.

A ocorrência do câncer na cabeça e pescoço, neste estudo, mostrou relação com necessidade de fumar no período da manhã (p=0,041), e a necessidade de beber ao menos uma vez ao mês (p=0,031). De acordo com outros estudos, o uso concomitante de tabaco e álcool potencializa a carcinogênese desse tipo de câncer, bem como o de várias outras formas e localizações. Este estudo indicou uma associação entre a existência do câncer de pulmão e as atividades relacionadas à limpeza e manutenção (p=0,001), à construção civil (p=0,001), e ao trabalho rural (p=0,000).

Segundo o Ministério da Saúde, os agentes cancerígenos desse tipo de câncer podem estar presentes nos ambientes de trabalho como: arsênio (produção de agrotóxicos), berílio (é utilizado como componente de ligas, em cerâmicas para aplicação elétrica ou eletrônica), cádmio (cuja a contaminação do solo também pode determinar importante exposição pela ingestão), e cromo (utilizado em tijolos refratários, em ligas, tintas e pigmentos, na preservação da madeira e no curtimento do couro), a inalação de poeira no trabalho em minas de carvão e outros metais pesados. O câncer de cabeça e pescoço foi associado ao trabalho de construção civil (p=0,013), e ao trabalho de carreiro (p=0,013). Esses trabalhadores podem estar expostos aos
agentes cancerígenos; como por exemplo: à poeira de madeira, ao trabalho na indústria do couro, à exposição à silíca cristalina, à fuligem de carvão, à madeira, ao óleo, solventes orgânicos e ao asbesto².

Contudo, os resultados deste estudo devem ser observados com parcimônia, pois o mesmo apresentou, potencialmente, algumas limitações como: a coleta de dados ter sido em um único hospital (o que advém as características loco regionais, especialmente, no que diz respeito ao perfil ocupacional), e, não ter grupo controle, com participantes não portadores de câncer, para fins de comparação, e, não ter sido realizada junto aos pacientes que não compareceram ao hospital no período da coleta de dados, ou estavam em remissão. Ademais, deve se sublinhar que os fatores de risco, potencialmente, modificáveis podem explicar até metade da incidência de câncer. Outros estudos são necessários para entender melhor o perfil laboral dessas exposições. Além do mais, no campo de pesquisas sobre os riscos ocupacionais, é fundamental compreender outros fatores de risco modificáveis, visando a vigilância e a programação da saúde pública. Informa-se que, outras pesquisas adicionais são necessárias para entender melhor os comportamentos evitáveis para o desenvolvimento do câncer; bem como as novas formas de promover as mudanças nesses comportamentos³.

CONCLUSÃO

Conclui-se que; a maioria dos pacientes diagnosticados com câncer de pulmão e cabeça e pescoço é do sexo masculino, autodeclarados brancos, casados, primeiro grau incompleto e com idade acima de 60 anos, com histórico de abuso de bebidas alcoólicas e tabagistas. As ocupações e atividades econômicas mais prevalentes estavam ligadas à atividade rural, à construção civil e à manutenção e limpeza. Identificou-se que os pacientes continuam fazendo uso de bebidas alcoólicas e tabaco, mesmo após o diagnóstico, e durante o tratamento da doença. Notou-se uma convivência pessoal e no ambiente de trabalho deles, com essas substâncias.

Este estudo evidencia a necessidade de uma assistência à saúde contínua, articulada, com intervenção e acompanhamento para as mudanças do estilo vida, e a adoção de hábitos saudáveis, principalmente no que diz respeito ao uso de substâncias, inclusive durante o tratamento oncológico. E, ainda, corrobora com a necessidade de realizar ações de promoção à saúde e prevenção de processos ontogênicos, de caráter individual e coletivo, de forma a considerar as especificidades sociodemográficas, os hábitos de vida e de consumo, o perfil laboral, tal qual o ambiente de trabalho onde as pessoas e as comunidades estão inseridas.
REFERÊNCIAS

1. Ministério da Saúde (BR), Instituto Nacional do Câncer José Alencar Gomes da Silva. Estimativa 2020: incidência de câncer no Brasil [Internet]. Rio de Janeiro: INCA; 2019 [cited 2019 Aug 10]. Available from: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/estimativa2020-incidencia-de-cancer-no-brasil.pdf

2. Ministério do Trabalho (BR), Instituto Nacional do Câncer José Alencar Gomes da Silva. Diretrizes para a vigilância do câncer relacionado ao trabalho [Internet]. Rio de Janeiro: INCA; 2013 [cited 2019 Aug 10]. Available from: https://www.inca.gov.br/sites/ufu.sti.inca.local/files/media/document/diretrizes-vigilancia-cancer-relacionado-trabalho-2ed.compressed.pdf

3. Arem H, Loftfield E. Cancer epidemiology: a survey of modifiable risk factors for prevention and survivorship. Am J Lifestyle Med. 2018; 12(3):200-10. Doi: 10.1177/1559827617700600

4. Silva GA, Rezende LFM, Gomes FS, Souza Júnior PRB, Szwarzvald CL, Eluf Neto J. Lifestyle among former cancer patients in Brazil in 2013. Ciência Saúde Colet. 2016; 21(2):379-88. Doi: 10.1590/1413-8123201521124722015.

5. Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2014; 383(9916):549-57. Doi: 10.1016/s0140-6736(13)62224-2

6. Hastert TA, Ruterbusch JJ, Beresford SAA, Sheppard L, White E. Contribution of health behaviors to the association between area-level socioeconomic status and cancer mortality. Soc Sci Med. 2016; 148:52-8. Doi: 10.1016/j.socscimed.2015.11.023

7. Meneses-Caju IC, Zuardi AW, Loureiro SR, Crippa JS. Psychometric properties of the Fagerström test for nicotine dependence. J Bras Pneumol. 2009; 35(1):73-82. Doi: 10.1590/S1806-37132009000100011

8. World Health Organization. AUDIT: the Alcohol Use Disorders Identification Test: guidelines for use in primary health care [Internet]. Geneva: WHO; 1982 [cited 2019 Aug 10]. Available from: https://www.who.int/publications/i/item/audit-the-alcohol-use-disorders-identification-test-guidelines-for-use-in-primary-health-care

9. Araújo LH, Baldotto C, Castro Júnior G, Katz A, Ferreira CG, Mathias C, et al. Lung cancer in Brazil. J Bras Pneumol. 2018; 44(1):55-64. Doi: 10.1590/s1806-37562018000000135

10. Federação de Comércio de Bens, Serviços e Turismo do Estado de Minas Gerais. Estudo sobre as regiões de planejamento de Minas Gerais [Internet]. Belo Horizonte: Fecomércio MG; 2018 [cited 2019 Aug 10]. Available from: http://www.fecomerciomg.org.br/wp-content/uploads/2018/02/Projeto-Estadual-Tr%C3%A9ngulo-impressa.pdf

11. Sewram V, Sitas F, O’Connell D, Myers J. Tobacco and alcohol as risk factors for oesophageal cancer in a high incidence area in South Africa. Cancer Epidemiol. 2016; 41:113-21. Doi: 10.1016/j.canep.2016.02.001

12. Passos VMA, Giatti L, Barreto SM. Passive smoking in Brazil: results from the 2008 Special Survey on Smoking. Rev G&S [Internet]. 2015 [cited 2019 Aug 10]. Available from: https://www.who.int/publications/i/item/audit-the-alcohol-use-disorders-identification-test-guidelines-for-use-in-primary-health-care

13. Almeida CPB, Silva DR. Passive smoking in Brazil: results from the 2008 Special Survey on Smoking. Rev G&S [Internet]. 2015 [cited 2019 Aug 10]; 6(2):1924-34. Available from: https://periodicos.unb.br/index.php/rgs/article/view/3036

14. Krane A, Terhorst L, Bovbjerg DH, Scheier MF, Kucinski B, Geller DA, et al. Putting the life in lifestyle: lifestyle choices after a diagnosis of cancer predicts overall survival. Cancer. 2018 Aug; 124(16):3417-26. Doi: 10.1002/cncr.31572

15. Silva PGB, Soares IL, Mendes FHO, Campêlo CSP, Cunha MPSS, Mota MRL, et al. Alcohol consumption history as a predictive factor of survival in patients with mouth and oropharyngeal squamous cell carcinoma: follow-up of 15 years. Rev Bras Cancerol. 2020; 66(1):e-02573. Doi: 10.32635/2176-9745.RBC.2020v66n1.573

16. Instituto Nacional de Ciência e Tecnologia para Políticas Públicas do Álcool e Outras Drogas, Universidade Federal de São Paulo. II Levantamento Nacional de Álcool e Drogas: relatório 2012 [Internet]. São Paulo: INPAD/UNIFESP; 2012 [cited 2019 Aug 10]. Available from: https://periodicos.unb.br/index.php/rgs/article/view/3036

17. Fernandes MM, Carvalho GB, Ferreira CB. Impact of the diagnosis of cancer for men and women: a comparative study. Rev SPAGESP [Internet]. 2019 [cited 2019 Aug 10]; 6(2):1924-34. Available from: https://periodicos.unb.br/index.php/rgs/article/view/3036

18. Bazotti A, Finokiet M, Conti IL, Franchini DT, Falcão AT, Vieira LF. Smoking and poverty in Brazil: an analysis of the profile of the smoking population based on the 2008-09 Brazilian government family budget survey. Ciência Saúde Colet. 2016; 21(1):45-52. Doi: 10.1590/S1413-812320152116802014.

19. Munhoz TN, Santos IS, Nunes BP, Mola CL, Silva ICM, Matijasevich A. Trends in alcohol abuse in Brazilian state capitals from 2006 to 2013: an analysis of data from the VIGITEL survey. Cad Saúde Pública. 2017; 33(7):e00104516. Doi: 10.1590/0102-311x010041516

20. Machado JE, Monteiro MG, Malta DC, Lana FCF. Pesquisa Nacional de Saúde 2013: relação entre uso de álcool e características sociodemográficas segundo o sexo no Brasil. Rev Bras Epidemiol. 2017; 20(3):408-22. Doi: 10.1590/1980-549720170030005

21. Costa AB, Silva JS, Oliveira TMS. Condições de trabalho que favorecem o desenvolvimento do alcoolismo. [article] [Internet]. Salvador: Escola Bahiana de Medicina e Saúde Pública; 2013 [cited 2020 Aug 12]. Available from: http://www7.bahiana.edu.br/jspui/bitstream/bahiana/594/1/Costa.AnitaBittencourt.2013.001.BAHIANA.pdf

22. Bazotti A, Finokiet M, Conti IL, Franca AT, Vieira LF. Smoking and poverty in Brazil: an analysis of the profile of the smoking population based on the 2008-09 Brazilian government family budget survey. Ciência Saúde Colet. 2016; 21(1):45-52. Doi: 10.1590/1980-549720170030005

23. Kloufi SA, Eluf Neto J, Koifman S, Curado MP, Menezes A, Daudt AW, et al. Fraction of head and neck cancer attributable to tobacco and alcohol in cities of three Brazilian regions. Rev Bras Epidemiol. 2018; 21:e180005. Doi: 10.1590/1980-549720180005