A correlation between the stellar and [Fe II] velocity dispersions in active galaxies

Rogemar A. Riffel,1,⋆ Thaisa Storchi-Bergmann,2 Rogério Riffel,2 Miriani G. Pastoriza,2 Alberto Rodríguez-Ardila,3 Oli L. Dors Jr,4 Jaciara Fuchs,1 Marlon R. Diniz,1 Astor J. Schönell Júnior,1 Moiré G. Hennig1 and Carine Brum1

1Departamento de Física/CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
2Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, Porto Alegre 91501-970, RS, Brazil
3Laboratório Nacional de Astrofísica/MCT, Rua dos Estados Unidos 154, Itajubá, MG, Brazil
4Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000, SLo José dos Campos SP, Brazil

Accepted 2012 December 2. Received 2012 November 28; in original form 2012 September 7

ABSTRACT
We use near-infrared (near-IR) spectroscopic data from the inner few hundred parsecs of a sample of 47 active galaxies to investigate possible correlations between the stellar velocity dispersion (σ⋆), obtained from the fit of the K-band CO stellar absorption bands, and the gas velocity dispersion (σ), obtained from the fit of the emission-line profiles of [S II]λ0.953 μm, [Fe II]λ1.257 μm, [Fe II]λ1.644 μm and H2 λ2.122 μm. While no correlations with σ⋆ were found for H2 and [S II], a good correlation was found for the two [Fe II] emission lines, expressed by the linear fit σ⋆ = 95.4 ± 16.1 + (0.25 ± 0.08) × σ[Fe II]. Excluding barred objects from the sample, a better correlation is found between σ⋆ and σ[Fe II], with a correlation coefficient of R = 0.80 and fitted by the following relation: σ⋆ = 57.9 ± 23.5 + (0.42 ± 0.10) × σ[Fe II]. This correlation can be used to estimate σ⋆ in cases where it cannot be directly measured and the [Fe II] emission lines are present in the spectra, allowing us to obtain the mass of the supermassive black hole (SMBH) from the M⋆ -σ⋆ relation. The scatter from a one-to-one relationship between σ⋆ and its value derived from σ[Fe II] using the equation above for our sample is 0.07 dex, which is smaller than that obtained in previous studies which use σ[O III] in the optical as a proxy for σ⋆. The use of σ[Fe II] in the near-IR instead of σ[O III] in the optical is a valuable option for cases in which optical spectra are not available or are obscured, as in the case of many active galactic nuclei. The comparison between the SMBH masses obtained using the M⋆ -σ⋆ relation in which σ⋆ was directly measured with those derived from σ[Fe II] reveals only a small average difference of Δ log M⋆ = 0.02 with a scatter of 0.32 dex for the complete sample and Δ log M⋆ = 0.00 with a scatter of 0.28 dex for a subsample excluding barred galaxies.

Key words: black hole physics – galaxies: active – galaxies: nuclei – infrared: galaxies.

1 INTRODUCTION
In the present paradigm of galaxy evolution, most galaxies which form a bulge also form a supermassive black hole (SMBH) in their nuclei (e.g. Magorrian et al. 1998; Richstone et al. 1998; Ferrarese & Merrit 2000; Gebhardt et al. 2000). The central SMBH seems to play a fundamental role in the galaxy evolution, and cosmological simulations without considering the presence of a SMBH and its associated feedback predict masses for the galaxies much higher than those observed (Di Matteo, Springel & Hernquist 2005; Springel, Di Matteo & Hernquist 2005; Bower et al. 2006). In a scenario of co-evolution of the SMBH and its host galaxy, mass accretion to the central region of the galaxy leads to the growth of the galaxy bulge, while the feeding of the SMBH triggers episodes of nuclear activity which results in feedback in the form of radiation pressure and mass ejections from the accretion disc surrounding the SMBH. This episodic feedback may halt the mass accretion to the galaxy, preventing its growth in the active phase (Nemmen et al. 2007). This co-evolution may be the mechanism which leads to the empirical relation between the mass of the SMBH and the stellar...
velocity dispersion of the bulge, $M_\ast - \sigma_\ast$ (Ferrarese & Ford 2005; but see also Jahnke & Maccio 2011).

The $M_\ast - \sigma_\ast$ relation has been extensively used to estimate the mass of SMBHs from the stellar kinematics, as direct determinations of the SMBH masses are possible only for the closest galaxies for which the radius of influence of the SMBH can be resolved (e.g. Ferrarese & Ford 2005). Although allowing us to estimate the masses of the SMBHs for a large number of galaxies, the use of the $M_\ast - \sigma_\ast$ relation requires the measurement of σ_\ast, which is not always easy to obtain, particularly in active galaxies, where the active galactic nucleus (AGN) continuum dilutes the stellar absorption lines. In order to overcome this difficulty, a number of scaling relations using the width and luminosities of emission lines to determine M_\ast have been proposed (e.g. Nelson & Whittle 1996; Onken et al. 2004; Greene & Ho 2005, 2006; Kaspi et al. 2005; Salviander et al. 2006; Vestergaard & Peterson 2006; Peterson 2008; Wu 2009; Booth & Schaye 2011). Nevertheless, most of these relations are for the optical domain of the electromagnetic spectrum. With the improvement of infrared (IR) detectors, IR spectra of many AGNs have become recently available, and have the advantage of being less affected by reddening than optical spectra. In this paper, we investigate the possibility of using the widths of emission lines in the near-IR as proxies for σ_\ast.

Recent studies by our group, using near-IR integral field spectroscopy of active galaxies, have allowed the mapping of the flux distributions and kinematics of the molecular (H$_2$) and ionized gas. We have found, in particular, that the H$_2$ usually shows small velocity dispersions and a velocity field dominated by rotation, while the ionized gas shows higher velocity dispersions and is not dominated by rotation (e.g. Riffel et al. 2006a, 2008, 2009; Storchi-Bergmann et al. 2009, 2010; Riffel, Storchi-Bergmann & Nagar 2010; Riffel & Storchi-Bergmann 2011a,b). The kinematics and flux distributions are also consistent with a location for the H$_2$ gas in the galaxy plane, while the ionized gas, and, in particular [Fe ii], extends to high galactic latitudes.

In this paper, we investigate the correlation between the gas and stellar kinematics derived from near-IR spectroscopy, with the goal of looking for a ‘proxy’ for σ_\ast, among the brightest emission lines in this wavelength range. This paper is organized as follows. In Section 2, we describe the sample and the observational data; in Section 3, we describe the methods used to measure the stellar and gaseous velocity dispersions. The results are presented in Section 4 and discussed in Section 5, while the conclusions are drawn in Section 6.

2 OBSERVATIONAL DATA

The spectroscopic data used in this work are from Riffel, Rodríguez-Ardila & Pastoriza (2006b), Rodríguez-Ardila, Contini & Viegas (2005) and Rodríguez-Ardila et al. (2004). The sample comprises 47 active galaxies with a range of activity types, and the spectra cover, on average, the inner 300 pc radius of the galaxies.

The near-IR spectra were obtained with the NASA 3-m Infrared Telescope Facility (IRTF), using the SpeX spectrograph in the short cross-dispersed mode (0.8–2.4 μm). The detector employed was a 1024 × 1024 ALADDIN 3 InSb array with a spatial scale of 0.15 arcsec pixel$^{-1}$. A 0.8 × 1.5 arcsec2 slit was used and the spectral resolution is 300 km s$^{-1}$, obtained from the measurement of the full width at half-maximum of Arc lamp lines, or 127 km s$^{-1}$ in σ. The data reduction followed standard procedures. For more details on the instrumental configuration, data reduction, calibration processes and details of the extraction of the spectra, see Riffel et al. (2006b).

The above sample was chosen for this work because it is a unique data set of near-IR spectroscopy of active galaxies, observed with the same instrumental setup (thus with no instrumental bias), covering the near-IR Z, J, H and K bands, and including several emission and absorption features allowing the comparison of the stellar and gas kinematics.

3 METHODS

In order to obtain the gaseous velocity dispersion σ, we fitted the emission-line profiles of [S ii] λ0.953 μm, [Fe ii] λ1.257 μm, [Fe ii] λ1.644 μm and H$_2$ λ2.122 μm by single Gaussian curves and adopted as the measured velocity dispersion the σ of the Gaussian. These emission lines have been chosen because they are the strongest in the near-IR spectra of active galaxies (e.g. Riffel et al. 2006b). We excluded the H and He recombination lines due to uncertainties in the fit for type 1 objects, for which is not always easy to separate the narrow from the broad components. The fitting of the emission-line profiles was done by adapting the PROFIT routine (Riffel 2010), which outputs the emission-line flux, the centroid velocity, the velocity dispersion and the uncertainties for each of these parameters. The velocity dispersion was then corrected for the instrumental $\sigma_{\text{inst}} = 127$ km s$^{-1}$, which was subtracted in quadrature from the σ obtained from the fit of the Gaussians to the line profiles.

We measured the stellar velocity dispersion (σ_\ast) using the pPXF (penalized Pixel-Fitting) method of Cappellari & Emsellem (2004) in order to fit the CO absorption bands at ~2.3 μm in the K band. The pPXF method requires the use of stellar spectra as templates. We used for this the spectra of 60 late-type stars, 40 of them from the Gemini Near-IR Late-type stellar library (Winge, Riffel & Storchi-Bergmann 2009) and the remaining 20 spectra are from stars with public NIFS observations in the Gemini data archive (Diniz et al., in preparation). The uncertainties on the measurements of σ_\ast were estimated using 100 Monte Carlo iterations as in Riffel & Storchi-Bergmann (2011b).

In order to illustrate our procedures, we show in Fig. 1 sample fits of the CO absorption band heads at 2.3 μm using the pPXF method, as well as fits of the emission-line profiles using PROFIT for the spectrum of the galaxy NGC 5929.

4 RESULTS

The resulting measurements for the stellar and gas velocity dispersions for the galaxies of our sample are shown in Table 1. The dashes in the table are due to the fact that for a few objects we were not able to measure one or more values due to the absence of the absorption/emission lines or due to a low signal-to-noise ratio.

We have looked for correlations between the stellar and gaseous velocity dispersions using the values of Table 1 to construct the graphs of Figs 2, 3 and 4. We have used the IDL routine R_CORRELATE to obtain the Spearman correlation coefficient R for each graph. Fig. 2 shows σ_\ast versus σ_{H_2}. The range of the σ_\ast and σ_{H_2} values is approximately the same, something we have noticed in our previous studies of individual galaxies using integral field spectroscopy of the inner hundreds of parsecs (e.g. Riffel et al. 2008, 2009; Riffel & Storchi-Bergmann 2011a,b). Nevertheless, we have obtained only a very weak correlation between σ_{H_2} and σ_\ast, with $R = 0.35$, but we note that the H$_2$ line is unresolved for several objects.

The relation between σ_\ast and $\sigma_{[Fe II]}$ is presented in Fig. 3, showing that $\sigma_{[Fe II]}$ is usually higher than σ_\ast, which is also in agreement with
the results from the integral field spectroscopic studies above. A better correlation is observed between \(\sigma_* \) and \(\sigma_{[\text{Fe} \ II]} \) than with \(\sigma_{[\text{H}_2]} \), corresponding to a correlation coefficient \(R = 0.56 \) obtained as described above. We fitted the data by a linear equation of the form \(\sigma_* = A + B \times \sigma_{[\text{Fe} \ II]} \) using the IDL routine LINMIX_ERR, which uses a Bayesian approach to linear regression with errors in both variables and takes into account upper limits for some measurements (Kelly 2007). The best fit to the data is given by

\[
\sigma_* = 95.4 \pm 16.1 + (0.25 \pm 0.08) \times \sigma_{[\text{Fe} \ II]} \quad (1)
\]

which is shown as a dashed line in Fig. 3.

Finally, the relation between \(\sigma_* \) and \(\sigma_{[\text{S} \ II]} \) is shown in Fig. 4, resulting in a correlation coefficient \(R = 0.32 \), suggesting only a very weak correlation. This figure also shows that \(\sigma_{[\text{S} \ II]} \) is larger than \(\sigma_* \) by more than a hundred km s\(^{-1} \), on average.

5 DISCUSSION

The use of the velocity dispersion from the narrow-line region emission lines as a proxy for \(\sigma_* \) in order to obtain an estimate for the SMBH mass via the \(M_{\text{BH}}-\sigma_* \) relation in active galaxies is not new. It has been previously used in the optical domain, where the emission line most commonly used is [O \(\text{III} \)] \(\lambda 5007 \) \(\mu \text{m} \) (e.g. Onken et al. 2004; Kaspi et al. 2005; Salviodier et al. 2006; Wu 2009). This emission line has been used instead of \(\sigma_* \) because in active galaxies \(\sigma_* \) cannot be easily measured due to dilution of the stellar absorption lines by the AGN continuum or its scattered light.

In this paper, we present an alternative to be used in the near-IR. As shown above, we found a correlation between \(\sigma_* \) and \(\sigma_{[\text{Fe} \ II]} \), indicating that the latter can be used to estimate \(\sigma_* \) using equation (1). [Fe \(\text{II} \)] has two similarly strong emission lines which can be observed in the near-IR: [Fe \(\text{II} \)] \(\lambda 1.257 \) \(\mu \text{m} \) in the \(J \) band and [Fe \(\text{II} \)] \(\lambda 1.644 \) \(\mu \text{m} \) in the \(H \) band. In Fig. 5 we present a comparison between the \(\sigma_* \) of these two lines, where the solid line shows a one-to-one relationship. This comparison shows that the width of these lines is the same within the errors, with a mean difference of \(\sigma_{[\text{Fe} \ II]} \lambda 1.644 - \sigma_{[\text{Fe} \ II]} \lambda 1.257 = 8 \) km s\(^{-1} \) and a scatter of 47 km s\(^{-1} \), as seen in the top panel of Fig. 5. This scatter may be partially due to the fact that [Fe \(\text{II} \)] \(\lambda 1.644 \) is close in wavelength to Brackett 12, which usually appears in absorption and may affect the measurement of the [Fe \(\text{II} \)] line.

Why is \(\sigma_{[\text{Fe} \ II]} \) better correlated with \(\sigma_* \) than \(\sigma_{[\text{H}_2]} \)? As pointed out in the Introduction, our previous studies using integral field spectroscopy (Riffel et al. 2008, 2009; Riffel & Storchi-Bergmann 2011a,b) showed that the H\(_2\) kinematics frequently show a rotation pattern and a smaller velocity dispersion than that of the ionized gas. This also led to the conclusion that the H\(_2\) gas was more restricted to the galaxy plane, while the ionized gas – and in particular [Fe \(\text{II} \)] – extended to higher galactic latitudes. The integrated value of \(\sigma_* \) from the nuclear region of galaxies is dominated by the contribution of bulge stars, which are not restricted to the plane, showing ‘hotter’ kinematics. Thus, it can be understood that the velocity dispersion of gas which is restricted to the plane does not correlate with that of bulge stars, while that of gas extending to higher latitudes, similar to that of the bulge, such as the [Fe \(\text{II} \)] emitting gas, is correlated to that of the bulge stars. The higher values of \(\sigma_{[\text{Fe} \ II]} \) relative to \(\sigma_* \) are probably due to extra heating provided by a nuclear AGN outflow.

Our results can be compared with previous ones in the optical using the \(\sigma_* \) of the [O \(\text{III} \)] \(\lambda 5007 \) \(\mu \text{m} \) emission line as a proxy for \(\sigma_* \). For a sample of 66 Seyfert galaxies, Nelson & Whittle (1996) found a scatter of 0.20 dex around a one-to-one relation between \(\sigma_* \) and \(\sigma_{[\text{O} \ II]} \), while Onken et al. (2004) found a smaller scatter of 0.15 dex for a sample of 16 AGNs, for which 25 per cent of their sources have \(\sigma_{[\text{O} \ II]} \) deviating by more than 0.20 dex from the values expected based on their \(\sigma_* \). We found a scatter of 0.07 dex between the values obtained via equation (1) and the measured values for \(\sigma_* \), which is thus smaller than that for \(\sigma_{[\text{O} \ II]} \).
A cautionary note is the observation of recent spatially resolved studies (e.g. our previous studies already mentioned) that the [Fe ii] emission originates at least in part in outflowing gas. Thus, the width of the line is not only due to orbital motion in the gravitational potential of the galaxy, but also due to broadening by the outflow, what is consistent with the observation that $\sigma_{[\text{Fe}\,\text{ii}]}$ is larger than σ_*.

Similar outflows – most probably the same – are observed in the [O iii]-emitting gas (e.g. Das et al. 2005; Crenshaw & Kraemer 2007; Das, Crenshaw & Kraemer 2007; Crenshaw et al. 2009, 2010; Fischer et al. 2010, 2011). Nevertheless, this line has been frequently used as a proxy for σ_*, as discussed above, due to the lack of a better indicator. Our argument is that $\sigma_{[\text{Fe}\,\text{ii}]}$ is at least as good a σ_* proxy as $\sigma_{[\text{O}\,\text{iii}]}$, and can be used when the latter is not available.

We thus propose the use of $\sigma_{[\text{Fe}\,\text{ii}]}$ to obtain σ_* via equation (1) in cases for which it is not possible to measure the stellar kinematics of the galaxy, and the optical spectrum is obscured or not available, so that the [O iii] $\lambda 5007$ emission line is also not available. Nevertheless, this suggestion should be used with care, since the $M_\star - \sigma_*$ relation is calibrated from a parent sample of mostly early-type galaxies and, as seen in Table 1, some of the objects of our sample are late type. Late-type galaxies can have distinct σ_* values from those of early-type galaxies, since the orbits of the stars in a disc are different from the orbits of the stars in the bulge. Additionally,
Stellar velocity dispersion versus [Fe II] velocity dispersion

Figure 2. Comparison between the gas velocity dispersions obtained from the H$_2$ λ2.122 µm emission line (σ_{H_2}) and the stellar velocity dispersions from the CO stellar absorptions at ~2.3 µm (σ_{\star}). The points with no error bars in one or both axes represent measurements that are unresolved by our observations and should be considered as upper limits.

Figure 3. Same as Fig. 2 but for the gas velocity dispersion derived using [Fe II] λ1.257 µm. The dashed line represents the best linear fit of the data, given by: $\sigma_{\star} = 95.4 \pm 16.1 + (0.25 \pm 0.08) \times \sigma_{[Fe II]}$.

some of the galaxies of our sample have bars, circumnuclear star-forming rings or nuclear starbursts or even are classified as peculiar objects and thus the σ_{\star} measured for these objects could be very different from those for the classical bulge, used to calibrate the $M_\star-\sigma_{\star}$ relationship.

5.1 The effect of galaxy morphology on the $M_\star-\sigma$ relation

As pointed out above, the $M_\star-\sigma_{\star}$ relation is calibrated using a parent sample of mostly early-type galaxies. However, Table 1 shows that about 30 per cent of the galaxies of our sample are late type, which can have distinct σ_{\star} values from those of early-type galaxies, since the orbits of the stars in a disc (which dominate in late-type galaxies) are distinct from those in a bulge (which dominate in early-type galaxies). Additionally, ≈30 per cent of the galaxies of our sample have bars, and another 30 per cent have uncertain classifications and are peculiar objects which may not obey the the $M_\star-\sigma_{\star}$ relationship.

Xiao et al. (2011) investigated the $M_\star-\sigma_{\star}$ relation for late-type galaxies for a sample of 93 objects with a Seyfet 1 nucleus. They examined the $M_\star-\sigma_{\star}$ relationship for subsamples of barred and unbarred host galaxies and found no difference in slope. They only found a mild offset in the relation between low- and high-inclination disc galaxies, with the latter tending to have larger σ_{\star} for a given value of the black hole mass.
The $M_\star-\sigma_\star$ relationship for galaxies of different Hubble types have also been studied by Graham et al. (2011) using a sample of 64 galaxies. They found that restricting the sample to elliptical galaxies, or to non-barred galaxies, results in tighter relations (with less scatter) and a smaller slope than when using the full sample of galaxies. The $M_\star-\sigma_\star$ relation obtained when the sample is restricted to barred galaxies only lies ≈ 0.45 dex below the relation obtained for elliptical and non-barred galaxies.

In order to investigate the effect of the presence of a bar in the $M_\star-\sigma_\star$ relation of Fig. 3, we divided our sample into two subsamples: one composed of barred galaxies only and the other of unbarred galaxies. We found a much better correlation between $\sigma_{[\text{Fe} \text{II}]}$ and σ_\star for the unbarred galaxies than for the total sample, as illustrated in Fig. 6. The correlation coefficient is $R = 0.80$ and a linear regression to the relation is given by

$$\sigma_\star = 57.9 \pm 23.5 + (0.42 \pm 0.10) \times \sigma_{[\text{Fe} \text{II}]}.$$

(2)

On the other hand, no correlation was found for the barred galaxies, for which the correlation coefficient between $\sigma_{[\text{Fe} \text{II}]}$ and σ_\star is only $R = 0.20$.

Approximately half of our sample is composed of early-type galaxies (half of which are barred), the remainder being late-type galaxies with uncertain morphology (usually because they are distant and compact). However, the number of galaxies of our sample is not large enough to further investigate the effect of morphology (besides the effect of bars discussed above) on the $\sigma_\star-\sigma_{[\text{Fe} \text{II}]}$ relation. This will be possible only when more near-IR AGN spectra become available, and equations (1) and (2) could be better calibrated using large non-biased samples of galaxies.

On the other hand, when applying the $\sigma_\star-\sigma_{[\text{Fe} \text{II}]}$ relation to distant galaxies, it will be hard to ascertain a Hubble type to such galaxies, and it will probably be better to just use the relation for the whole sample (equation 1), despite the fact that a relation for restricted Hubble types (e.g. for galaxies without bars) shows less scatter.

Many present/future missions are discovering/will discover large numbers of obscured AGNs, such as the WISE mission.
the stellar velocity dispersion (σ_*), obtained from the fit of the K-band CO absorption band heads, and the gas velocity dispersion (σ), obtained from the fit of the profiles of the [S II] λ95332 μm, [Fe II] $\lambda\lambda$1.25702 μm, [Fe II] λ1.644 μm and H$_2$ $\lambda\lambda$1.21 μm emission lines. The main conclusions of this paper are as follows:

(i) Very weak correlations are found between σ_* and both $\sigma_{[3]}$ and $\sigma_{[S\ II]}$.

(ii) The best correlation is found for the [Fe II] emitting gas with $R = 0.58$ for the Spearman rank correlation coefficient between σ_* and $\sigma_{[Fe\ II]}$ (both $\lambda\lambda$1.257 μm and λ1.644 μm emission lines can be used). A better correlation is found if we exclude the barred galaxies from the sample ($R = 0.80$), while no correlation is found for the subsample of barred galaxies.

(iii) $\sigma_{[Fe\ II]}$ can thus be used to estimate σ_* for objects for which the stellar velocity dispersion cannot be measured or is unknown. The best fit of the data is given by the equation σ_* = 95.4 ± 16.1 + (0.25 ± 0.08) \times $\sigma_{[Fe\ II]}$ for the complete sample and σ_* = 57.9 ± 23.5 + (0.42 ± 0.10) \times $\sigma_{[Fe\ II]}$ for the subsample of unbarred galaxies.

(iv) The equations above should be improved and re-calibrated when larger and non-biased samples of near-IR spectra of AGNs become available.

(v) The scatter from a one-to-one relationship between σ_* and its value derived from $\sigma_{[S\ II]}$ using the above equation for our sample is 0.07 dex, which is smaller than the scatter of previous relations using $\sigma_{[O\ III]}$ in the optical as a proxy for σ_*.

(vi) The use of $\sigma_{[Fe\ II]}$ in the near-IR instead of $\sigma_{[O\ III]}$ in the optical is particularly important for cases in which the optical spectra are not available or are obscured, as in the case of many AGNs.

(vii) The comparison of the masses for SMBHs obtained from the direct use of σ_* in the M_\bullet–σ_* relation with those using $\sigma_{[Fe\ II]}$ to obtain σ_* reveals only a small average difference of $\Delta \log M_\bullet = 0.02 \pm 0.32$ for the complete sample and $\Delta \log M_\bullet = 0.00 \pm 0.28$ excluding barred galaxies from the sample.

ACKNOWLEDGMENTS

We thank an anonymous referee for useful suggestions which helped to improve the paper. This paper is based on observations obtained at the IRTF, which is operated by the University of Hawaii under Cooperative Agreement no. NNX-08AE38A with the National Aeronautics and Space Administration, Space Mission Directorate, Planetary Astronomy Program. This research has made use of NED which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We acknowledge the usage of the HyperLeda data base (http://leda.univ-lyon1.fr). This work has been partially supported by the Brazilian institution CNPq and FAPERGS.

REFERENCES

Booth C. M., Schaye J., 2011, MNRAS, 413, 1158
Bower R. G. et al., 2006, MNRAS, 370, 645
Cappellari M., Emsellem E., 2004, PASP, 116, 138
Crenshaw D. M., Kraemer S. B., 2007, ApJ, 659, 250
Crenshaw D. M., Kraemer S. B., Schmitt H. R., Kaasstra J. S., Arav N., Gabel J. R., Korista K. T., 2009, ApJ, 698, 281
Crenshaw D. M., Kraemer S. B., Schmitt H. R., Jaffé Y. L., Deo R. P., Collins N. R., Fischer T. C., 2010, AJ, 139, 871
Das V., Crenshaw D. M., Kraemer S. B., 2007, ApJ, 656, 699
Das V. et al., 2005, AJ, 130, 945
Di Matteo T., Springel V., Hernquist L., 2005, Nat, 433, 604
Ferrarese L., Ford H. C., 2005, Space Sci. Rev., 116, 523
Ferrarese L., Merrit D., 2000, ApJ, 547, 140
Fischer T. C., Crenshaw D. M., Kraemer S. B., Schmitt H. R., Trippe M. L., 2010, AJ, 140, 577
Fischer T. C., Crenshaw D. M., Kraemer S. B., Schmitt H. R., Mushotsky R. F., Dunn J. P., 2011, ApJ, 727, 71
Gebhardt K. et al., 2000, ApJ, 539, 13
Graham A. W., Onken C. A., Athanassoula E., Combes F., 2011, MNRAS, 412, 2211
Greene J. E., Ho L. C., 2005, ApJ, 630, 122
Greene J. E., Ho L. C., 2006, ApJ, 641, L21
Jahnke K., Macciò A. V., 2011, ApJ, 734, 92
Kaspi S., Maoz D., Netzer H., Peterson B. M., Vestergaard M., Jannuzi B. T., 2005, ApJ, 629, 61
Kelly B. C., 2007, ApJ, 665, 1489
Magorrian J. et al., 1998, AJ, 115, 2285
Nelson C. H., Whittle M., 1996, ApJ, 465, 96
Nenner R., Bower R., Babul A., Storchi-Bergmann T., 2007, MNRAS, 377, 1652
Onken C. A., Ferrarese L., Merritt D., Peterson B. M., Pogge R. W., Vester- gaard M., Wandel A., 2004, ApJ, 615, 645
Paturel G., Petit C., Prugniel Ph., Thureau G., Rousseau J., Brouty M., Dubois P., Cambrésy L., 2003, A&A, 412, 45
Peterson B. M., 2008, New Astron. Rev., 52, 240
Richstone D. et al., 1998, Nat, 395, A14
Riffel R. A., 2010, Ap&SS, 327, 239
Riffel R. A., Storchi-Bergmann T., 2011a, MNRAS, 411, 469
Riffel R. A., Storchi-Bergmann T., 2011b, MNRAS, 417, 2752
Riffel R. A., Storchi-Bergmann T., Winge C., Barbosa F. K. B., 2006a, MNRAS, 373, 2
Riffel R., Rodríguez-Ardila A., Pastoriza M. G., 2006b, A&A, 457, 61
Riffel R. A., Storchi-Bergmann T., Winge C., McGregor P. J., Beck T., Schmitt H., 2008, MNRAS, 385, 1129
Riffel R. A., Storchi-Bergmann T., Dors O. L., Winge C., 2009, MNRAS, 393, 378
Riffel R. A., Storchi-Bergmann T., Nagar N. M., 2010, MNRAS, 404, 166
Rodríguez-Ardila A., Pastoriza M. G., Viegas S. M., Sigut T. A. A., Pradhan A. K., 2004, A&A, 425, 457
Rodríguez-Ardila A., Contini M., Viegas S. M., 2005, MNRAS, 357, 220
Salviander S., Shields G. A., Gebhardt K., Bonning E. W., 2006, New Astron. Rev., 50, 803
Springel V., Di Matteo T., Hernquist L., 2005, ApJ, 620, 79
Storchi-Bergmann T., McGregor P. Riffel, Rogemar A., Simões Lopes R., Beck T., Dopita M., 2009, MNRAS, 394, 1148
Storchi-Bergmann T., Simões Lopes R., McGregor P. Riffel, Rogemar A., Beck T., Martini P., 2010, MNRAS, 402, 819
Vestergaard M., Peterson B. M., 2006, ApJ, 641, 689
Winge C., Riffel, Rogemar A., Storchi-Bergmann T., 2009, ApJS, 185, 186
Wu Q., 2009, MNRAS, 398, 1905
Xiao T., Barth A. J., Greene J. E., Ho L. C., Bentz M. C., Ludwig R. R., Jiang Y., 2011, ApJ, 739, 28

This paper has been typeset from a \TeX file prepared by the author.