In vivo postprandial lipid partitioning in liver and skeletal muscle in prediabetic and diabetic rats

R. A. M. Jonkers · L. J. C. van Loon · K. Nicolay · J. J. Prompers

Abstract
Aims/hypothesis Insulin resistance and type 2 diabetes have been associated with ectopic lipid deposition. This study investigates the derangements in postprandial lipid handling in liver and skeletal muscle tissue at different stages during the pathogenesis of type 2 diabetes in a rat model.

Methods Four groups (n=6) of male Zucker diabetic fatty rats were used for this study: prediabetic fa/fa rats and healthy fa/+ littermates at the age of 6 weeks, and diabetic fa/fa rats and healthy fa/+ littermates at the age of 12 weeks. In vivo 1H-[13C] magnetic resonance spectroscopy measurements were performed in liver and tibialis anterior muscle at baseline and 4, 24 and 48 h after oral administration of 1.5 g [U-13C]algae lipid mixture per kilogram body weight. Total and 13C-labelled intracellular lipid contents were determined from the magnetic resonance spectra.

Results In both prediabetic and diabetic rats, total lipid contents in muscle and liver were substantially higher than in healthy controls and this was accompanied by a 2.3-fold greater postprandial lipid uptake in the liver (p<0.001). Interestingly, in prediabetic rats, skeletal muscle appeared to be protected from excess lipid uptake whereas after developing overt diabetes muscle lipid uptake was 3.4-fold higher than in controls (p<0.05). Muscle lipid use was significantly lower in prediabetic and diabetic muscle, indicative of impairments in lipid oxidation.

Conclusions/interpretation In vivo postprandial lipid handling is disturbed in both liver and skeletal muscle tissue in prediabetic and diabetic rats, but the uptake of dietary lipids in muscle is only increased after the development of overt diabetes.

Keywords Carbon-13 · Insulin resistance · Intrahepatocellular lipids · Intramyocellular lipids · Lipid uptake · Magnetic resonance spectroscopy · Prediabetes · Type 2 diabetes · ZDF rat

Abbreviations
En% Energy per cent
FAT/CD36 Fatty acid translocase CD36
GC-C-IRMS Gas chromatography–combustion–isotope ratio mass spectrometry
ICL Intracellular lipids
IHCL Intrahepatocellular lipids
IMCL Intramyocellular lipids
LASER Localisation by adiabatic selective refocusing
MRS Magnetic resonance spectroscopy
POCE Proton-observed, carbon-edited
SWAMP Sequence for water suppression with adiabatic modulated pulses
TA Tibialis anterior
TAG Triacylglycerol
ZDF Zucker diabetic fatty

Introduction
Insulin resistance and type 2 diabetes have been associated with excess lipid accumulation in non-adipose tissues such as skeletal muscle [1, 2] and liver [3, 4]. The mechanistic link between intracellular lipid overload and insulin resistance is believed to reside in the accumulation of lipid-derived intermediates, such as diacylglycerols and
ceramides, which trigger activation of novel protein kinase C isozymes leading to impairments in insulin signalling [5]. It remains unknown, however, whether the excess storage of lipids in insulin-resistant muscle and liver is a consequence of greater lipid uptake from the circulation, decreased lipid use through oxidation, release and/or secretion, or a combination of both.

Results from studies on intracellular lipid handling in insulin-resistant skeletal muscle and liver tissue are far from consistent. Lipid uptake in muscle of insulin-resistant and type 2 diabetic individuals and corresponding animal models has been reported to be either higher (mostly but not exclusively in postprandial conditions) [6–15], similar [16–20] or lower (mostly but not exclusively in postabsorptive conditions) [9, 21–28] when compared with insulin-sensitive controls. Lipid oxidation in insulin-resistant or type 2 diabetic muscle has also been reported to be either lower [9, 17, 18, 20–25, 29] or unchanged [6, 7, 14, 19] when compared with healthy controls. Data on lipid uptake in insulin-resistant and type 2 diabetic liver tissue are scarce and have predominantly been obtained from animal models, showing either an increase [12, 21, 30] or no significant difference [8, 20, 31] compared with controls. Liver lipid secretion, as measured by the production of VLDL particles, is generally reported to be greater in an insulin-resistant or type 2 diabetic state [32–34]. Differences in study design, such as the nutritional state (postprandial vs postabsorptive conditions), can only explain part of the discrepancy in the literature. In addition, other factors, such as the stage of type 2 diabetes pathogenesis and the methodology applied to assess lipid handling, are likely to contribute to the apparent inconsistency.

Recently, we introduced the application of 1H-[13C] magnetic resonance spectroscopy (MRS) in combination with the oral administration of [U-13C]agal lipid mixture. Based on previous observations, we hypothesised that postprandial lipid handling is disturbed in both liver and skeletal muscle tissue of prediabetic rats, and that these disturbances are further exacerbated following the development of overt type 2 diabetes.

Methods

Animals and study design Four groups (n=6) of male Zucker diabetic fatty (ZDF) rats (Charles River Laboratories, Sulzfield, Germany) were used for this study: (1) obese, prediabetic fa/fa rats at the age of 6 weeks; (2) lean, healthy fa/+ littermates at the age of 6 weeks; (3) obese, diabetic fa/fa rats at the age of 12 weeks and (4) lean, healthy fa/+ littermates at the age of 12 weeks [36, 37]. The rats were housed in pairs at 20°C and 50% humidity, on a 12 h light–dark cycle with free access to Purina 5008 diet (19 energy per cent [En%] from fat, 54 En% from carbohydrates and 27 En% from protein; SM R/M modified 5008 diet; Ssniff Spezialdiäten, Soest, Germany) and water during the entire period of the experiment. All experimental procedures were reviewed and approved by the local institutional animal care committee (Maastricht University, Maastricht, the Netherlands).

Before the administration of [13C]-labelled lipids, 1H-[13C] MRS measurements were carried out on all rats to determine total (12C+13C) and 13C-enriched intracellular lipid (ICL) concentrations in the tibialis anterior (TA) muscle (intramyocellular lipids, IMCL) and liver (intrahepatocellular lipids, IHCL) at baseline. Two days later, rats were orally administered 1.5 g [U-13C]agal lipid mixture (13C enrichment >98%; fatty acid composition: 53% palmitic acid, 9% palmitoleic acid, 28% oleic acid, and 6% linoleic acid; Cambridge Isotope Laboratories, Andover, MA, USA) per kg body weight. 1H-[13C] MRS measurements were performed at 4, 24 and 48 h after administration of [13C]-labelled lipids.

Blood samples were taken from the vena saphena after each MRS experiment and were used for the determination of plasma glucose, NEFA and triacylglycerol (TAG) concentrations.

MRS experiments During the MRS experiments, rats were anaesthetised using 1.5–2.5% isoflurane (IsoFlo; Abbott Laboratories, Maidenhead, UK). Body temperature was maintained at 37±1°C using heating pads. All MRS experiments were performed on a 6.3 T horizontal Bruker MR system (Bruker, Ettlingen, Germany). In each rat, localised 1H-[13C] MRS was performed first on a 3.5×3.5×3.5 mm³ (in fa/+ rats) or 3×3×3 mm³ (in fa/fa rats) voxel placed in the thigh (1H CL) or liver (1H IHCL) of the rat. MRS measurements were performed on a 3.5×3.5×3.5 mm³ (in fa/+ rats) or 3×3×3 mm³ (in fa/fa rats) voxel placed in the liver (1H IHCL) of the rat.
the TA muscle (Fig. 1a,b) and, after repositioning, on a 4×2×4 mm³ voxel in the median lobe of the liver (Fig. 1c,d) using the LASER-POCE method as described previously [35]. For each voxel, 64 water-suppressed LASER-POCE experiments, consisting of 16 averages each, were performed serially in an interleaved fashion with the 13C-editing pulse turned on every other experiment. An unsuppressed water spectrum, consisting of 16 averages, was recorded from the same voxel and was used as internal reference.

MRS data analysis Spectra from the 32 LASER-POCE experiments with and without 13C editing were added separately and the difference spectrum was calculated using Matlab (R2009b; Mathworks, Natick, MA, USA). Water and ICL methylene (ICL-CH2 signal at 1.3 ppm) peak areas were quantified from the unsuppressed and suppressed spectra, respectively, using the jMRUI software package [38] as described previously [39]. Total (12C+13C) and 13C-labelled ICL levels were determined from the LASER-POCE spectra without 13C editing and the difference spectra, respectively, and are presented as a percentage of the unsuppressed water signal measured in the same voxel. The average relative 13C enrichment determined at baseline was used to correct the 13C-labelled ICL levels at 4, 24 and 48 h after 13C-labelled lipid administration for natural abundance of 13C and determined in both IMCL and IHCL pools [35].

Plasma analysis Blood samples were collected in K-EDTA-coated tubes at baseline and at 4, 24 and 48 h after 13C-labelled lipid administration, centrifuged for 10 min at 1,000 g, and portioned plasma volumes were frozen in liquid nitrogen and stored at −80°C. Concentrations of plasma glucose, NEFA and TAG were determined using an automatic glucometer (FreeStyle; Abbott, Abbott Park, IL, USA), the NEFA-HR(2) kit (Wako Chemicals, Neuss, Germany) and the serum TAG determination kit (Sigma-Aldrich, Zwijndrecht, the Netherlands), respectively.

Statistics All data (n=6 per group) are expressed as means±SEM. Data were analysed using mixed-model repeated-measures ANOVA with time point (baseline and 4, 24 and 48 h post) as the within-subject factor, and age (6 and 12 weeks) and genotype (fa/+ and fa/fe) as between-subject factors. Only if the interaction term between the factors was found to be significant, the effect of each factor was analysed separately using one-way ANOVA (time point) or unpaired Student’s t tests (age and genotype). Bonferroni corrections were applied when appropriate.

Results

Body weight The body weight of fa/fe rats was 18% higher than that of fa/+ rats (p<0.001), independent of age (Table 1). Rats at 12 weeks of age were 95% heavier than rats at 6 weeks of age (p<0.001), independent of genotype. The amount of 13C-labelled lipids that was administered to the rats was scaled to body weight (Table 1).

Plasma glucose, NEFA and TAG Results of the plasma analyses are shown in Table 2. Plasma glucose concentrations were higher in fa/fe rats compared with fa/+ rats independent of time point both at 6 (12.2±0.7 vs 7.3±0.3 mmol/l, p<0.001) and 12 (18.9±0.8 vs 6.9±0.3 mmol/l, p<0.001) weeks of age. In diabetic fa/fe rats at 12 weeks of age, plasma glucose was 50% higher when compared with the prediabetic fa/+ rats at 6 weeks of age independent of time point (p<0.01). The administration of 13C-labelled lipids did not affect plasma glucose levels after 4, 24 and 48 h in any group (p=0.296). At 6 weeks of age, plasma NEFA concentrations did not differ between prediabetic fa/fe rats and their control littermates (p=0.820). In contrast, at 12 weeks of age, plasma NEFA concentrations in diabetic fa/fe rats were 86% higher than in fa/+ rats independent of time point (p<0.05). Plasma NEFA at 4 and 24 h after the administration of 13C-labelled lipids was not significantly different from baseline, but at 48 h after 13C-labelled lipid administration it had decreased by as...
much as 60±6% when compared with the earlier time points in all groups. Plasma TAG concentrations were higher in fa/−fa/− rats compared with fa/++ rats, independent of age and time point (1.64±0.10 vs 0.43±0.02 mmol/l, p<0.001). The administration of 13C-labelled lipids did not affect plasma TAG levels after 4, 24 and 48 h in any group.

MRS data Figure 2 displays typical examples of water-suppressed LASER-POCE spectra acquired from TA muscle and liver at 4 h after the administration of 13C-labelled lipids in a healthy fa/++ rat and a diabetic fa/−fa/− rat at 12 weeks of age. The lipid methylene signal at 1.30 ppm in the normal 1H spectra without the 13C-editing pulse was used for quantification of total (12C+13C) IMCL and IHCL. The difference spectra, resulting from the subtraction of the experiments with and without the 13C-editing pulse, only contain signals from 1H-13C coupled resonances and were used to determine the 13C enrichment of the IMCL and IHCL pools.

Table 1 Body weight of rats and amount of 13C-labelled lipid mixture administered

Body weight/amount of lipid administered	6 weeks	12 weeks
fa/++	fa/−fa	fa/++
Body weight (g)		
166±7	190±12***	319±10†††
13C-labelled algal lipid mixture (mg)		
247±26	286±43***	478±15†††

Data are means ± SEM
***p<0.001, compared with fa/++; †††p<0.001, compared with 6 weeks

Table 2 Plasma glucose, NEFA and TAG concentrations at baseline and 4, 24 and 48 h after oral administration of the 13C-labelled lipid mixture to rats

Variable	6 weeks	12 weeks
	fa/++	fa/−fa
	fa/++	fa/−fa
Plasma glucose (mmol/l)		
Baseline	7.0±0.3	11.8±1.3***
4 h post	7.2±0.4	11.0±0.9***
24 h post	6.9±0.1	13.5±0.8***
48 h post	8.1±1.2	12.6±2.2***
Plasma NEFA (mmol/l)		
Baseline	0.32±0.03	0.38±0.06
4 h post	0.28±0.04	0.29±0.04
24 h post	0.35±0.05	0.26±0.05
48 h post	0.15±0.05†††	0.13±0.02†††
Plasma TAG (mmol/l)		
Baseline	0.47±0.05	1.54±0.30***
4 h post	0.40±0.03	1.66±0.34***
24 h post	0.33±0.05	1.28±0.18***
48 h post	0.42±0.05	1.97±0.31***

Data are means ± SEM
* p<0.05, ***p<0.001 compared with fa/++; ††p<0.01, compared with 6 weeks; †††p<0.001, compared with baseline; ‡p<0.05, compared with 4 h post lipid administration; §p<0.05, compared with 24 h post lipid administration

are shown in Fig. 3. Data are expressed as percentage of the unsuppressed water signal measured in the same voxel. At both ages, total IMCL and IHCL content were higher in fa/−fa/− rats compared with fa/++ rats. In fa/−fa/− rats, IMCL content was 73% higher at 12 weeks compared with 6 weeks (p<0.001), whereas in fa/++ rats IMCL was 43% lower at 12 weeks than at 6 weeks (p<0.001). IHCL content was 48% higher at 12 weeks of age compared with 6 weeks, independent of genotype (p<0.05). The administration of 13C-labelled lipids did not affect total IMCL and IHCL levels, except for a very slight decrease in IMCL in all groups at 48 h after administration, which is probably related to the decrease in plasma NEFA concentration at this time point.

The relative 13C enrichments of IMCL and IHCL measured at baseline were 1.19±0.04% and 1.39±0.06%, respectively, both independent of genotype and age. These values were used to correct 13C-labelled IMCL and IHCL levels at 4, 24 and 48 h after the administration of 13C-labelled lipids for natural abundance of 13C and the results are shown in Fig. 4. Thus, 13C-enriched IMCL and
At 4 h after the oral administration of 13C-labelled lipids, the 13C enrichment of IHCL was 2.3-fold greater in fa/fa rats compared with $fa/+\ $rats ($p<0.001$), independent of age, implying that postprandial liver lipid uptake was greater in both prediabetic and diabetic rats compared with controls (Fig. 4c,d). At 12 weeks of age, 13C-labelled IHCL content was $\sim 50\%$ higher compared with the content at 6 weeks of age ($p<0.05$), independent of genotype and time point (Fig. 4c,d). In all groups, the 13C enrichment of IHCL at 24 and 48 h was lower than at 4 h after the administration of 13C-labelled lipids ($p<0.001$), but it was always higher in fa/fa rats than in $fa/+\ $rats ($p<0.001$) (Fig. 4c,d).

Discussion

This study aimed to clarify whether intracellular lipid accumulation in insulin-resistant and diabetic liver and skeletal muscle tissue is a consequence of increased lipid uptake, decreased lipid use, or a combination of both. Using non-invasive 1H-$[^{13}$C$]$ MRS combined with the oral administration of a 13C-labelled lipid mixture [35], we showed that in vivo postprandial lipid uptake in liver in both prediabetic and diabetic rats was greater than the uptake in healthy, insulin-sensitive controls, while liver lipid use was not affected. Whereas skeletal muscle appeared to be protected from excess lipid uptake in the prediabetic state, muscle lipid uptake was massively increased following the development of overt type 2 diabetes. Skeletal muscle lipid turnover was significantly reduced in prediabetic and diabetic rats.

In this study, we used the ZDF rat as an animal model of type 2 diabetes. We, as well as others, have previously shown that $fa/\ $ZDF rats progress from prediabetes to overt type 2 diabetes in a highly predictable age-dependent fashion [37, 40]. At the age of 6 weeks, $fa/\ $rats are in an insulin-resistant, prediabetic state characterised by normal plasma glucose levels in fasting conditions, slightly increased plasma glucose levels in the fed state, normal plasma NEFA but elevated plasma insulin and TAG levels [37, 40], which was confirmed in the present study. Between 8 and 10 weeks of age, $fa/\ $rats progress from a normoglycaemic–hyperinsulinaemic to a hyperglycaemic–hyperinsulinaemic state [37, 40]. In this study, we confirmed that the $fa/\ $rats at 12 weeks of age developed overt type 2 diabetes. Heterozygous $fa/+\ $rats remained normoglycaemic and normoinsulinaemic and served as healthy controls [37, 40].

In liver of prediabetic and diabetic $fa/\ $rats, the lipid content was 5.6-fold greater when compared with the healthy controls and this was accompanied by a 2.3-fold greater dietary lipid uptake in the liver 4 h after lipid administration. These data are in accordance with previous observations of elevated lipid uptake in insulin-resistant
and diabetic liver [8, 12, 20, 21, 30]. During periods of high lipid influx, such as during the immediate postprandial period, the liver acts as a systemic lipid buffer by taking up NEFA from the spillover pathway and chylomicron remnants, which are later re-secreted back into the circulation as VLDL [41, 42]. It has been suggested that in the insulin-resistant state, a greater proportion of meal derived fatty acids may be handled by the liver in the postprandial period [42], which is consistent with our data of increased hepatic lipid uptake in prediabetic and diabetic rats. Relative decreases in 13C-labelled IHCL content between 4 and 48 h after administration of $[^{13}$C$]$algal lipid mixture ($n=6$ per group) in $fa/+$ rats and fa/fa rats at 12 weeks was significantly different from 6 weeks, independent of time point ($p<0.05$). IHCL content was significantly higher at 12 weeks than at 6 weeks, independent of genotype and time point ($p<0.05$). ***$p<0.001$, compared with $fa/+$ rats; †$p<0.05$, compared with baseline; ‡$p<0.05$, compared with 24 h post lipid administration.

Fig. 3 Total (12C+13C) intracellular lipid content in TA muscle (IMCL; a, b) and liver (IHCL; c, d) of $fa/+$ rats (black bars) and fa/fa rats (white bars) at 6 (a, c) and 12 (b, d) weeks of age measured at baseline and at 4, 24 and 48 h after the oral administration of $[^{13}$C$]$algal lipid mixture ($n=6$ per group). Data are expressed as a mean percentage of the unsuppressed water signal±SEM. IMCL content in $fa/+$ rats and fa/fa rats at 12 weeks was significantly different from 6 weeks, independent of time point ($p<0.05$). IHCL content was significantly higher at 12 weeks than at 6 weeks, independent of genotype and time point ($p<0.05$). ***$p<0.001$, compared with $fa/+$ rats; †$p<0.05$, compared with baseline; ‡$p<0.05$, compared with 24 h post lipid administration.

Between 6 and 12 weeks of age, liver lipid content increased in both $fa/+$ and fa/fa rats by 48%, which was accompanied by a 62% higher uptake of dietary lipids in the liver, also independent of genotype. These increases in liver lipid content and uptake can therefore be ascribed to a general effect of ageing and are not necessarily specific for the transition from prediabetes to overt type 2 diabetes in $fa/+$ rats. In addition, the greater liver lipid uptake at 12 weeks could be due to the twofold higher amount of 13C-labelled lipids that was administered to the rats at 12 weeks compared with rats at 6 weeks of age. However, at 4 h after intake of the 13C-labelled lipids, the relative increase in liver lipid uptake in $fa/+$ rats between 12 and 6 weeks of age was much larger than in fa/fa rats. This might indicate that in diabetic rats the maximum lipid buffer capacity of the liver is reached during the early postprandial period (<4 h), exposing other tissues, such as skeletal muscle, to increased plasma TAG and NEFA fluxes.

In addition to the steatotic liver, prediabetic $fa/+$ rats also had 2.3-fold higher intracellular lipid levels in skeletal muscle when compared with the healthy controls. However, the greater IMCL content in prediabetic rats was not associated with excess postprandial muscle lipid uptake. In contrast to the highly elevated postprandial lipid uptake in liver, the uptake of dietary lipids in muscle at 4 h after intake was 31% lower in prediabetic rats when compared with the healthy controls. This result is in quantitative agreement with data from previous studies in insulin-resistant obese Zucker rats using orally administered 14C-labelled lipids [20, 21]. However, in contrast to these reports and our own data, other studies have shown an increased postprandial muscle lipid uptake in insulin-resistant individuals and animals [8, 11, 15]. In addition, in vitro measurements in
isolated muscle preparations and giant sarcolemmal vesicles yielded increased lipid uptake rates in muscle from insulin-resistant obese individuals and obese Zucker rats [7, 10, 13, 14]. Whereas fatty acid concentrations in these in vitro experiments were identical for insulin-resistant and control muscle, muscle of prediabetic rats in our in-vivo studies was exposed to fourfold higher plasma TAG levels compared with controls. The amount of 13C-labelled lipids that was administered to the rats was scaled to body weight, but was only 1.2-fold higher in prediabetic rats than in controls. Therefore, the 13C-labelled lipids that was administered to the rats was scaled to body weight, but was only 1.2-fold higher in prediabetic rats than in controls. Therefore, the 13C-labelled lipids that was administered to the rats was scaled to body weight, but was only 1.2-fold higher in prediabetic rats than in controls. Therefore, the 13C-labelled lipids that was administered to the rats was scaled to body weight, but was only 1.2-fold higher in prediabetic rats than in controls. Therefore, the 13C-labelled lipids that was administered to the rats was scaled to body weight, but was only 1.2-fold higher in prediabetic rats than in controls. Therefore, the

Between 6 and 12 weeks of age, intracellular lipid content in skeletal muscle decreased by 43% in fa/+ rats, whereas it increased by 73% in fa/fa rats. These age-dependent changes in IMCL content are in excellent agreement with our previous study in ZDF rats [40]. The decreased IMCL content in fa/+ rats at 12 weeks of age was accompanied by a 44% lower dietary lipid uptake at 4 h after administration compared with fa/+ rats at 6 weeks of age. In diabetic fa/fa rats at 12 weeks, on the other hand, the increased IMCL content was associated with a 217% higher dietary lipid uptake at 4 h compared with prediabetic fa/+/fa rats at 6 weeks of age. As a result, postprandial lipid uptake in muscle of diabetic rats was 3.4-fold higher when compared with controls, which is in accordance with previous reports of increased muscle lipid uptake in patients with type 2 diabetes during postprandial conditions [6, 9, 12]. In contrast, during postabsorptive conditions, muscle lipid uptake has generally been found to be decreased in type 2 diabetes patients [9, 22, 23, 25].

The elevated uptake of dietary lipids in diabetic muscle is in sharp contrast with the lower muscle lipid uptake in prediabetic rats when compared with insulin-sensitive controls. Our data on liver lipid uptake suggest that in diabetic rats the maximum lipid buffer capacity of the liver has been reached, which might expose skeletal muscle to greater...
plasma TAG and NEFA fluxes in the immediate postprandial period, leading to an increase in muscle lipid uptake. Alternatively, the increased postprandial muscle lipid uptake after the progression from prediabetes to overt type 2 diabetes could also be due to changes at the level of skeletal muscle itself. In type 2 diabetes, hyperinsulinaemia increases skeletal muscle lipoprotein lipase activity [43], which could lead to an increased fatty acid delivery to the diabetic muscle. Fatty acid transport into the myocyte is largely mediated by proteins, of which fatty acid translocase CD36 (FAT/CD36) plays a key role [44]. The increased fatty acid uptake in giant sarcolemmal vesicles from muscle of type 2 diabetic patients and obese Zucker rats could, however, not be explained by an increased production of FAT/CD36 [7, 10]. Instead, the increase in fatty acid transport was associated with an increased abundance of FAT/CD36 at the plasma membrane [7, 10]. Our findings of reduced muscle lipid uptake in prediabetic rats and increased lipid uptake in muscle of rats with overt type 2 diabetes suggest that during the progression from prediabetes to diabetes, the expression and/or plasmalemmal content of FAT/CD36 has been increased. Indeed, in giant sarcolemmal vesicles from red muscle of ZDF rats there was a marked increase in both protein production and plasmalemmal content of FAT/CD36 between 6 and 12 weeks of age [45]. However, in white muscle this upregulation was completely absent [45]. Rat TA muscle is composed of a red region and a white region and the MRS voxel contained both red and white muscle. Therefore, while our results might not be universally true for all muscle types, they might be representative for mixed muscles, such as most human skeletal muscles.

In contrast to findings in healthy control rats, 13C-labelled IMCL in prediabetic and diabetic rats did not significantly decrease between 4 and 24 h after the administration of 13C-labelled lipids, indicating lower lipid oxidation. Daily activity levels are very similar in fa/+ and fa/fa rats [46] and therefore the lower lipid turnover in fa/fa rats is likely the result of an impairment in lipid oxidation. These results are in accordance with previous reports of reduced lipid oxidation in insulin-resistant and type 2 diabetic muscle [9, 17, 18, 20–25, 29].

In conclusion, we have shown that in both prediabetic and diabetic rats, total lipid contents in skeletal muscle and liver are substantially higher than in healthy controls. In the liver, this is accompanied by a highly elevated in-vivo postprandial lipid uptake in both prediabetic and diabetic rats. In contrast, skeletal muscle of prediabetic rats is protected from excess lipid uptake and muscle lipid uptake is only elevated following the development of overt diabetes. Our data suggest that the accumulation of lipids in prediabetic muscle is mainly attributed to impaired lipid oxidation, whereas lipid uptake is strongly increased following the development of an overt type 2 diabetic state.

Acknowledgements The authors would like to acknowledge D. Veraart, L. Niesen, J. Habets and T. Geraedts (Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands) for technical assistance.

Funding J. J. Prompers is supported by a VIDI grant (project No. 700.58.421) from the Netherlands Organisation for Scientific Research (NWO).

Duality of interest The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement All authors contributed to the study concept and design and the interpretation of the data. RAMJ and JJP acquired and analysed the data and drafted the manuscript. LJCvL and KN reviewed the manuscript for important intellectual content. All authors revised the article and approved the final version to be published.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Krssak M, Falk Petersen K, Dressner A et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42:113–116
2. Perseghin G, Scifo P, de Cobelli F et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600–1606
3. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC (2003) Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab 285:E906–E916
4. Ryysy L, Hakkinen AM, Goto T et al (2000) Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49:749–758
5. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375:2267–2277
6. Bell JA, Volpi E, Fujita S, Cadenas JG, Rasmussen BB (2006) Dysregulation of muscle fatty acid metabolism in type 2 diabetes is independent of malonyl-CoA. Diabetologia 49:2144–2152
7. Bonen A, Parolin ML, Steinberg GR et al (2004) Triacylglycerol accumulation in human obesity and type 2 diabetes is associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36. FASEB J 18:1144–1146
8. Hegarty BD, Cooney GJ, Kraegen EW, Furler SM (2002) Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes 51:1477–1484
9. Kelley DE, Simoneau JA (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest 94:2349–2356
10. Luiken JJ, Arumugam Y, Dyck DJ et al (2001) Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 276:40567–40573
11. Moors CC, van der Zijl NJ, Diamant M, Blok EE, Goossens GH (2012) Impaired insulin sensitivity is accompanied by disturbances in skeletal muscle fatty acid handling in subjects with impaired glucose metabolism. Int J Obes (Lond) 36:709–717
