Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter

Mark D. Condon1, Nicola J. Platt1, Yan-Feng Zhang1, Bradley M. Roberts1, Michael A. Clements1, Stefania Vietti-Michelina1, Min-Yee Tseu1, Katherine R. Brimblecombe1, Sarah Threlfell1,2, Edward O. Mann1 & Stephanie J. Cragg1,2

Mesostriatal dopaminergic neurons possess extensively branched axonal arbours. Whether action potentials are converted to dopamine output in the striatum will be influenced dynamically and critically by axonal properties and mechanisms that are poorly understood. Here, we address the roles for mechanisms governing release probability and axonal activity in determining short-term plasticity of dopamine release, using fast-scan cyclic voltammetry in the ex vivo mouse striatum. We show that brief short-term facilitation and longer short term depression are only weakly dependent on the level of initial release, i.e. are release insensitive. Rather, short-term plasticity is strongly determined by mechanisms which govern axonal activation, including K⁺-gated excitability and the dopamine transporter, particularly in the dorsal striatum. We identify the dopamine transporter as a master regulator of dopamine short-term plasticity, governing the balance between release-dependent and independent mechanisms that also show region-specific gating.
Dopamine (DA) release in the striatum plays key roles in action selection and behavioural reinforcement, and is dysregulated in diverse disorders including Parkinson’s disease and addictions. DA neurons generate action potentials tonically at frequencies below 10 Hz and in intermittent bursts with instantaneous frequencies of up to ~40 Hz in response to salient stimuli predicting reward value or action signals1–4. However, the extent to which action potential activity is conveyed into striatal DA release remains unclear; DA axons are important sites for local regulation5–7 where strong short-term plasticity can distort the relationship between activity and DA output8,9. Despite classical accounts of axons as high-fidelity cables, axonal neurotransmitter release is shaped by factors that regulate action potential propagation and axonal excitability such as axonal morphology and branching, the expression of ion channels and presynaptic receptors, and other diverse mechanisms that regulate vesicle pools, release probability and short-term plasticity10. Axons of DA neurons are remarkable: they comprise vast, extensively branched arbours11,12 that, from a binary tree model13, can be calculated to form ~16,000 branch points per nigrostriatal neuron. Axonal properties are therefore likely to be particularly important in governing striatal DA output. One major influence is the input from striatal cholinergic interneurons onto nicotinic receptors (nAChRs) on DA axons, which promote short-term depression (STD) of DA release2,7,9,14. Even in the absence of nAChR activation, DA release shows intrinsic short-term plasticity that ranges from short-term facilitation (STF) to STD7,9,15,16. The underlying mechanisms are poorly understood; existing evidence suggests that intrinsic short-term plasticity might be only weakly related to initial release15–17 but the dominant drivers remain undefined.

Here, we delineate the roles of three types of drivers that could underlie intrinsic short-term plasticity of DA release from striatal DA axons. We examine the potential roles for: firstly, initial release; secondly, K⁺–dependent mechanisms that will govern axonal excitability and repolarization; and thirdly, the dopamine transporter (DAT). Besides mediating DA uptake, DATs generate a depolarising transport-coupled conductance in midbrain DA neurons18,19 and have been suggested to limit vesicular release20–23. Thus, DATs have the potential to govern short-term plasticity of DA release via regulation of axonal activation and/or release probability (Pr).

We reveal that initial release plays a limited role in short-term plasticity except on the shortest of timescales (10–25 ms), when STF operates. The prevailing STD at longer timescales (25–200 ms) is independent of the level of initial release, i.e. it is “release-insensitive”. Rather, STD is strongly determined by mechanisms that influence membrane activation, particularly in dorsal striatum. Furthermore, we identify that DATs drive STF at shortest intervals and STD at longer, physiological inter-pulse intervals, effectively clamping release. We propose a region-specific hierarchy of interacting drivers of short-term plasticity, overseen by DATs, with DATs promoting release-insensitive over release-dependent mechanisms.

Results

Short-term plasticity in DA release is weakly release-dependent.

We assessed short-term plasticity of electrically evoked DA release in acute coronal striatal slices for slices paired at inter-pulse intervals (IPI) of 10–200 ms in dorsolateral striatum (caudate-putamen, CPU) and nucleus accumbens core (NAC). Confounding effects of nAChRs were excluded throughout by inclusion of the antagonist DHβE (see Methods). The ratio of DA release evoked by the second pulse compared to a single pulse (paired-pulse ratio, PPR) decreased with IPI in CPU (Fig. 1a, c) and in NAC (Fig. 1b, c). Short-term facilitation (STF, PPR > 1) was observed at the shortest IPIs (10 ms in CPU, 10–25 ms in NAC), whereas strong short-term depression (STD) (PPR < 1) was observed at longer IPIs (225 ms in CPU, >40 ms in NAC). STD was more pronounced in CPU than NAC (Fig. 1c, two-way ANOVA, region × IPI interaction, F4,25 = 4.195, P = 0.010, n = 7) suggesting region-specific gating of short-term plasticity.

PPR at classic fast transmitter synapses is typically inversely related to initial PPR, STF occurs where PPR is low, and STD when PPR is high24–26. STF at those synapses consists of several temporally overlapping processes with a range of time constants from 30 to 500 ms27. An inverse relationship between PPR and single pulse release of DA has been reported in CPU for IPIs of 10 ms but not 100 ms15, suggesting that short-term plasticity of DA release might reflect initial PPR at only very short intervals. We probed whether PPR and the extracellular concentration of DA ([DA]o) evoked by a single pulse (as a proxy for initial PPR) across a population of release sites with a 10-fold range in [DA]o, evoked by a single pulse (1p [DA]o). We found an inverse relationship between 1p [DA]o and PPR for IPI of 10 ms in CPU and NAC, and at 40 ms in NAC but in neither region at 100 ms (Fig. 1d, linear regressions, 10 ms, CPU: β = −0.79 ± 0.14 [95% CI: −1.08 to −0.50], F1,25 = 30.9, P = 3.56 × 10⁻⁶, n = 35; NAC: β = −0.52 ± 0.19 [95% CI: −0.93 to −0.11], F1,17 = 7.136, P = 0.016, n = 19; 40 ms, CPU = 0.152, n = 35; NAC 95% CI: −0.38 to −0.001, F1,17 = 4.489, P = 0.049, n = 19; 100 ms, CPU: P = 0.122, n = 35; NAC: P = 0.917, n = 19). These data indicate that DA PPR is a function of PPR at very short intervals, when STF can also be observed. These data also suggest that short-term plasticity in DA release is governed by release-dependent mechanisms at short intervals but by mechanisms unrelated to initial release at longer intervals.

The expression of STD was not due to activation of D₂ autoreceptors (D2Rs). Antagonism of D2Rs with L741,626 (1 µM) did not influence peak [DA]o (Fig. 1e) or PPR at IPIs up to 200 ms in CPU or NAC (Fig. 1f, two-way ANOVA, CPU: P = 0.420, n = 5, NAC: P = 0.2197, n = 6), although it did for longer IPIs (Supplementary Fig. 1) (>200 ms, <3 s), consistent with previous findings and with no tonic D2 action on DA release in slices8,28,29. We also ruled out an alternative hypothetical effect whereby higher DA remaining at shorter IPIs might drive more STF. We varied the intensity of the initial electrical stimulus to halve the [DA]o, evoked in CPU, and showed that the [DA]o evoked by a second pulse at a fixed IPI of 25 ms and a fixed stimulus strength remained constant regardless of the initial level of [DA]o (Supplementary Fig. 2).
plasticity between CPu and NAc cannot be attributed to the sensitivity of initial Pr to \([\text{Ca}^{2+}]_0\) (see Fig. 2g). Together these data show that short-term plasticity of DA release is not easily explained by \([\text{Ca}^{2+}]_0\)-limited mechanisms, suggesting that other mechanisms dominate that are independent of initial release.

To confirm that STD and insensitivity to \([\text{Ca}^{2+}]_0\) do not result from stimulation of an undefined input to DA axons, we used targeted optogenetic stimulation. In striatum from heterozygote DATRES-Cre mice expressing ChR2-eYFP after viral delivery, a brief light flash (2 ms, 473 nm wavelength) evoked \([\text{DA}]_0\) transients that varied with \([\text{Ca}^{2+}]_0\) (Fig. 2g) and with a steeper \([\text{Ca}^{2+}]_0\) concentration-response curve in CPu than in NAc (Fig. 2h, nonlinear regression, CPu: \(R^2 = 0.91\), \(n = 3\), NAc: \(R^2 = 0.94\), \(n = 3\), comparison of fits: \(F_{1.12} = 5.94, P = 2 \times 10^{-4}\)), as seen for electrically evoked DA release. Furthermore, at an interval of 40 ms, at which ChR2 reliably drives action potentials in DA neurons30 and DA release7, PPR was greater in NAc than CPu. However, even with optogenetic stimulation, there was no inverse relationship between PPR and 1p \([\text{DA}]_0\) (Fig. 2i, linear regression, CPu: \(P = 0.874, n = 3\), NAc: \(P = 0.286, n = 3\)). These data confirm that STD does not arise from stimulation of other inputs. For subsequent experiments, we used electrical stimulation to avoid confounding effects of \([\text{Ca}^{2+}]_0\) entry through ChR2 on Pr and short-term plasticity.

Release-independent STD is controlled by \(\text{K}^+\)-dependent gating

We tested whether STD was gated by axonal membrane excitability by varying \([\text{K}^+]_0\). Varying \([\text{K}^+]_0\) can alter membrane potential and repolarisation through Nernstian driving forces underlying \(\text{K}^+\)-mediated currents and through \(\text{K}^+\)-dependent inhibition of \(\text{K}^+\)-channel inactivation31. Reduced \([\text{K}^+]_0\) can thereby promote membrane hyperpolarisation and repolarisation between pulses, promoting de-inactivation of \(\text{Na}^+\) channels, but can also promote inactivation of \(\text{K}^+\)-channels, leading to use-dependent depolarisation and enhanced \(\text{Na}^+\)-channel recruitment.

Varying \([\text{K}^+]_0\) (1.25–7.5 mM) did not change 1p \([\text{DA}]_0\) in CPu (Fig. 3a) or NAc (Fig. 3b) but nonetheless modulated short-term plasticity (Fig. 3a–d). In CPu, PPR varied inversely with \([\text{K}^+]_0\) across IPIs, with STD minimised at lowest \([\text{K}^+]_0\) (Fig. 3c, two-way ANOVA, \([\text{K}^+]_0\) × IPI interaction, \(F_{2,30} = 7.66, P = 1.53 \times 10^{-3}, n = 3\)). In NAc, the effect of \([\text{K}^+]_0\) on PPR was less evident than in CPu, but showed an overall significance (Fig. 3d, two-way ANOVA, main effect of \([\text{K}^+]_0\), \(F_{2,30} = 15.15, P = 2.83 \times 10^{-5}, n = 3\)). Since we observed no effect of \([\text{K}^+]_0\) on 1p \([\text{DA}]_0\), these effects on PPR were unrelated to initial Pr (Fig. 3e). These findings demonstrate that short-term plasticity of DA release can be dissociated from initial release, i.e. there is a release-insensitive short-term plasticity. Furthermore, they
suggest that STD is governed by axonal membrane polarisation/activation, particularly in CPUs.

To identify whether the control of short-term plasticity by [K+]o is accounted for by voltage-dependent effects, we tested whether the effects of [K+]o on PPR could be substituted for, and prevented, by broadly blocking Kc channels. We hypothesised that a Kc blocker (4-aminopyridine, 4-AP) should promote STD and prevent the effects of changes in [K+]o. In CPUs, broad inhibition of Kc channels by 4-AP (100 µM), unlike changes in [K+]o alone, profoundly increased 1p [DA]o (Fig. 4a,b, two-way ANOVA, main effect of 4-AP: F1,3 = 33.63, P = 0.010, n = 4), an effect consistent with action potential widening32 and increased Ca2+ entry. In addition, 4-AP, like high [K+]o (see Fig. 3), but unlike high [Ca2+]o (see Fig. 2), reduced PPR across IPIs, and prevented the effects of [K+]o on PPR (Fig. 4c, d, two-way ANOVA, 4-AP × [K+]o interaction, F1,12 = 6.003, P = 0.031, n = 4). These findings indicate that inhibition of Kc channels promotes STD, enhanced Kc currents relieve STD, and that hyperpolarizing/repolarizing conditions limit STD and promote subsequent release.

In NAc, we observed no significant effect of 4-AP on 1p [DA]o (Fig. 4e, f, two-way ANOVA, P = 0.266, n = 3). However, 4-AP did decrease PPR at all IPIs, and there was no effect of [K+]o in control conditions or in the presence of 4-AP (Fig. 4g, h). These findings verify that STD can be distinct from the effects on initial P, and identify that STD is underpinned by the gating of axonal activation.

K+-dependent gating does not alter release-dependence. We investigated whether [K+]o-dependent STD prevents DA release from reflecting changes in P, or whether further regulatory mechanisms might be involved. We relieved STD (using low
[K+]_o) to test whether we could unmask a sensitivity of short-term plasticity to changes in initial release (using variation in [Ca2+]_o). In CPU, 1p [DA]_o varied with [Ca2+]_o in a similar manner to [K+]_o versus 5 mM [K+]_o (Fig. 5a–c) and although PPRs were elevated when [K+]_o was low (Fig. 5d) (as seen in Figs. 3c, 4c), there was no significant interaction between [K+]_o and [Ca2+]_o on PPR (Fig. 5d, two-way ANOVA, 10 ms IPI: \(P = 0.086, 100\) ms IPI: \(P = 0.654, n = 10\)). In NAC, 1p [DA]_o also varied with [Ca2+]_o in a manner that did not depend on [K+]_o (Fig. 5e–g) and there was no significant interaction between the effects of [K+]_o and [Ca2+]_o on PPR (Fig. 5h, two-way ANOVA, 10 ms IPI: \(P = 0.963, 100\) ms IPI: \(P = 0.883, n = 7\)). By limiting STD, we did not enhance Ca2+-dependent modulation of STF or STD in either CPU or NAC. This observation suggests that an additional mechanism may operate to limit the Ca2+ and release-dependence of short-term plasticity besides K\textsubscript{s} regulation of axonal excitability.

DATs regulate short-term plasticity of dopamine release. Alongside mediating DA uptake, dopamine transporters (DATs) have been shown to govern underlying DA release processes20,23. DATs also mediate electrogenic currents during DA binding and transport18,33 that modulate the membrane potential of DA neurons in vitro19. We investigated the hypothesis that DATs in striatum could consequently contribute to short-term plasticity.

To avoid adaptations to release seen after DAT knockout, we used inhibitors to prevent DAT function. Monoamine uptake inhibitors cocaine (5 µM), methylphenidate (MPH, 5 µM) and DAT inhibitor nomifensine (10 µM) altered the pattern of short-term plasticity in a similar manner. They increased peak amplitude and decreased the decay rate of [DA]_o transients in CPU and NAC, in keeping with DA uptake inhibition (Fig. 6a, c, d) and also prevented STF and relieved STD (Cocaine: Fig. 6a, b, two-way ANOVA, cocaine × IPI interaction, \(F_{4,30} = 11.97, P = 6.24 \times 10^{-6}, n = 4\), MPH: Fig. 6c, d, two-way ANOVA, MPH × IPI interaction, \(F_{4,40} = 5.316, P = 0.002, n = 5\); Nomifensine: Fig. 6e, f, two-way ANOVA, nomifensine × IPI interaction, \(F_{4,80} = 21.12, P = 6.5 \times 10^{-12}, n = 3\)). Thus, DATs are key regulators of short-term plasticity of DA release. At the shortest IPIs, DATs promote STF, whereas at longer IPIs, DATs clamp...
release to promote STD in CPu. In NAc, cocaine and MPH (we did not test nomifensine) prevented STF at 10 ms IPI (Fig. 6g, h, two-way ANOVA, cocaine × IPI interaction, \(F_{4,30} = 7.884, P = 1.82 \times 10^{-4}, n = 4\); MPH: Fig. 6i, j, two-way ANOVA, MPH × IPI interaction, \(F_{4,20} = 3.986, P = 0.016, n = 3\)), but in contrast to CPu, STD was not relieved. In NAc, DATs regulated short-term plasticity at only short inter-pulse intervals. Since it is at these intervals that short-term plasticity is related to Pr (see Fig. 1), these data suggest that the effect of DAT inhibition on promoting subsequent DA release underlies its effects on short-term plasticity at short intervals in NAc.

We ruled out activation of D₂ receptors as contributing to DAT-mediated changes in short-term plasticity. At longer inter-pulse intervals of 2–3 s when sufficient time has elapsed for D₂ receptors to be activated, the D₂ antagonist L-741,626 in the presence of cocaine can enhance evoked [DA]₀ at a second stimulus (Supplementary Fig. 3A, B, two-way ANOVA, main effect of L-741,626, \(F_{1,64} = 28.96, P < 0.0001, n = 4\)). However, the effect of cocaine on STF and STD at shorter intervals spanning 10–200 ms was not modified (Supplementary Fig. 3C, two-way ANOVA, main effect of L-741,626, \(F_{1,20} = 2.76, P > 0.05, n = 4\)). We also ruled out potential local anaesthetic actions of...
cocaine on voltage-gated Na+ channels (VGSCs), since lidocaine (5 µM), an inhibitor of VGSCs, did not alter short-term plasticity (Supplementary Fig. 4), consistent with reports that cocaine does not inhibit VGSCs at the concentration used here34.

We tested whether the effects of DAT inhibition on short-term plasticity were dependent on synapsin III which has been suggested to mediate the role of DATs in vesicle segregation and in limiting release20. However, the effects of cocaine on short-term plasticity persisted in mice lacking synapsin III (Supplementary Fig. 5), indicating a synapsin III-independent or other redundant mechanism.

DATs limit release-dependence of short-term plasticity. Since DATs operate a clamp on DA release in CPu that drives STD, we tested whether DATs might prevent short-term plasticity from being Ca2+- and release-dependent. We tested whether there was a stronger relationship between [Ca2+]\textsubscript{o} and PPR in CPu, in the presence of cocaine. In the absence of cocaine, there was no effect on PPR of changing [Ca2+]\textsubscript{o} (Fig. 7a, b, two-way ANOVA, \(P = 0.209, n = 4\)), but in the presence of cocaine there was a significant effect of [Ca2+]\textsubscript{o}; PPR at IPIs of 10–40 ms was significantly elevated by lowering [Ca2+]\textsubscript{o} (Fig. 7a, c–e, two-way ANOVA, [Ca2+]\textsubscript{o} × IPI interaction, \(F_{3,24} = 6.137, P = 0.003, n =

Fig. 5 K+-dependent gating does not alter release-dependence of short-term plasticity. a, b, e, f Mean profiles of [DA]\textsubscript{o} transients elicited by single or paired pulses in 1.2 mM [Ca2+]\textsubscript{o} (light grey), 2.4 mM [Ca2+]\textsubscript{o} (dark grey) and 3.6 mM [Ca2+]\textsubscript{o} (black) in either 5 mM [K+]\textsubscript{o} (a, e) or 1 mM [K+]\textsubscript{o} (b, f) in CPu (a, b, \(n = 11\)) and in NAc (e, f, \(n = 7\)). c, g Mean peak 1p [DA]\textsubscript{o} (± SEM, normalised to 2.4 mM [Ca2+]\textsubscript{o}) in 5 mM [K+]\textsubscript{o} (black) and 1 mM [K+]\textsubscript{o} (grey) in CPu (c) and in NAc (g). d, h Mean P2/P1 at 10 ms IPI (left) and 100 ms IPI (right) in 5 mM [K+]\textsubscript{o} (black) and 1 mM [K+]\textsubscript{o} (grey) in CPu (d) and in NAc (h). Two-way ANOVA with Bonferroni’s test for post hoc comparisons. Error bars are ± SEM. Source data are provided as a Source Data file.
Fig. 6 The dopamine transporter regulates short-term plasticity of dopamine release. a-g Mean profiles of [DA]_o transients elicited by single or paired electrical pulses in control conditions (black) or with 5 µM cocaine (blue) in CPu (a, n = 4) or NAc (g, n = 4). b, h Mean P2/P1 against IPI in control conditions (black) and with cocaine (blue) in CPu (b) or NAc (h). c, i Mean profiles of [DA]_o transients elicited by single or paired electrical pulses in control conditions (black) or with 5 µM methylphenidate (MPH, grey) in CPu (c, n = 5) or NAc (g, n = 3). d, j Mean P2/P1 vs IPI in control conditions (black) and with MPH (green) in CPu (d) or NAc (j). e Mean profiles of [DA]_o transients elicited by single or paired electrical pulses in control conditions (black) or with 10 µM nomifensine (red) in CPu (n = 3). f Mean P2/P1 vs IPI in control conditions (black) and with nomifensine (red) in CPu. Two-way ANOVA with Bonferroni’s test for post hoc comparisons; *P < 0.05, **P < 0.01, ***P < 0.001. Error bars are ± SEM. Source data are provided as a Source Data file.
4). There was a significantly stronger effect of $[\text{Ca}^{2+}]_o$ on PPR in the presence of cocaine than in control conditions at 25 ms (Fig. 7d; two-way ANOVA, $\text{cocaine} \times [\text{Ca}^{2+}]_o$ interaction; $F_{1,12} = 7.86, P = 0.016, n = 4$) and 40 ms IPI (Fig. 7d; two-way ANOVA, $\text{cocaine} \times [\text{Ca}^{2+}]_o$ interaction; $F_{1,12} = 4.72, P = 0.050, n = 4$), but not at 10 ms or 100 ms IPI. These effects were not due to a potential electrochemical change in dopamine adsorption/desorption kinetics at the electrode that might occur with a change in divalent cations, since these effects of cocaine prevailed when the reduction in $[\text{Ca}^{2+}]_o$ was compensated by substitution with Mg$^{2+}$ (Supplementary Fig. 6). Inhibition of DATs therefore relieves a limitation on the relationship between PPR and initial release, suggesting that DATs limit the release-dependence of short-term plasticity and drive STD.

DATs maintain K^{+}-dependent gating of short-term plasticity.

The effect of DAT inhibitors on STD resembled the effect of low $[K^+]_o$ in CPu. Firstly, in control conditions, that $[K^+]_o$-dependent gating of short-term plasticity in CPu was elicted by single or paired electrical pulses in 2.4 mM $[\text{Ca}^{2+}]_o$ ($n = 4$) (Fig. 8a, b, c). Cocaine prevented the effect of varying $[K^+]_o$ on PPR (Fig. 8d, e, f; two-way ANOVA, $[K^+]_o \times \text{cocaine}$ interaction, $F_{1,8} = 6.756, P = 0.032, n = 3$). The effects of $[K^+]_o$ on short-term plasticity are therefore abolished by cocaine, suggesting that short-term plasticity is regulated by a pathway common to $[K^+]_o$ and DATs. DATs therefore appear to regulate short-term plasticity by limiting Ca^{2+}-dependent gating whilst supporting $[K^+]_o$-dependent modulation.

DATs and K^{+} regulate axonal activation.

Finally, to validate that $[K^+]_o$ and DATs directly modulate the activation of DA axons, through mechanisms upstream of vesicular P, we imaged axonal Ca^{2+} dynamics during single and paired stimulus pulses at two IPIs, in a population of DA axons in CPu using genetically encoded calcium indicator GCaMP6f expressed in DAT-Cre: Ai95D mice (Fig. 9a). We noted firstly, in control conditions, that axonal Ca^{2+} levels evoked by 2p were significantly greater than those evoked by 1p, and were greater for IPIs of 10 ms than 40 ms ($P < 0.001$, two-tailed paired t-test, $n = 10$) (Fig. 9b–d), which paralleled our observations for $[\text{DA}]_o$ (e.g. see Fig. 1a, c). When we increased $[K^+]_o$, Ca^{2+} levels in DA axons evoked by paired pulses (normalised to 1p) were slightly but significantly decreased (Fig. 9b, c, two-way ANOVA, main effect of $[K^+]_o$, $F_{1,8} = 25.95, P = 0.0009, N = 5$ animals), consistent with reduced re-activation of DA axons at a second pulse and with the enhanced STD seen for DA release (see Fig. 3c). Furthermore, when we inhibited DATs with cocaine (5 µM), there was a significant interaction between cocaine and IPI, which increased Ca^{2+} levels at IPI of 40 ms, to levels equivalent to those seen at 10 ms (Fig. 9d, e, Two-way ANOVA, interaction, $F_{1,8} = 23.19, P = 0.0013, N = 5$ animals). This interaction paralleled the impact of DAT inhibition on DA release at these IPIs (compare Fig. 6a, b). This is consistent with STD in DA release being due at least in part to limited re-activation of DA axons in the presence of DAT action.
We addressed whether the mechanisms that control the short-term dynamic probability of DA release, in dorsal and ventral striatum, are governed by classic release-dependent or other release-independent mechanisms. We show that short-term plasticity is governed in only a limited manner by Ca\(^{2+}\)-dependent regulation of release probability, which participates in determining STF but not STD, and to greater extent in ventral than dorsal striatum. We reveal that mechanisms insensitive to the initial level of release drive strong STD, which is therefore not limited by the vesicular pool. Rather, we find that axonal excitability and DATs are major players in controlling STD, and they dominate over Ca\(^{2+}\)-dependent gating. DATs appear to be master regulators that set the dynamic level of DA release and its resulting STF, and clamp release leading to release-insensitive STD, particularly in dorsal striatum. The differences seen between dorsal and ventral striatum could underlie divergent DA outputs in response to changes in action potential firing and modulatory inputs.

Short-term plasticity at fast central synapses typically demonstrates an inverse relationship between PPR and initial Pr; STF is observed when Pr is low, and STD when Pr is high. Here, we show that, in NAc, an inverse relationship between STF and initial DA release could be observed for only short IPI.
corresponding to instantaneous frequencies seen during fast burst firing (≥25 Hz). STD at lower frequencies did not vary with initial release. By contrast, in CPu, there is almost no relationship between Ca\(^{2+}\)-limited initial release and plasticity of DA release for paired pulses. Here, other release-independent mechanisms are particularly influential. It is noteworthy that this apparent divergence from mechanisms typically operating at classic fast synapses is paralleled by differences in the molecular machinery supporting presynaptic active zones for DA release (e.g. RIM- and ELKS-dependence)\(^{17}\).

STF at other synapses is usually attributed to summation of residual Ca\(^{2+}\)\(^{26,36}\), or Ca\(^{2+}\)-dependent ultrafast recruitment of vesicles\(^{37}\). Ca\(^{2+}\) dynamics can vary with local Ca\(^{2+}\) buffering mechanisms\(^{36}\). In NAc, we saw a more pronounced Ca\(^{2+}\)-dependent STF than in CPu, despite a weaker relationship between [Ca\(^{2+}\)]\(_{o}\) and initial DA release in NAc. These regional differences might correspond to differences in Ca\(^{2+}\) handling. For example, the high-affinity fast Ca\(^{2+}\)-buffer calbindin-D\(_{28k}\) occurs at \(2–3\)-fold greater levels in DA neurons of ventral tegmental area (VTA) which innervate NAc than neurons of substantia nigra pars compacta (SNc) which innervate CPu\(^{38–40}\), and provides extra Ca\(^{2+}\) buffering capacity to limit initial DA release in NAc but not CPu\(^{41}\). However, while calbindin saturation at subsequent stimuli in some other neurons promotes STF\(^{42,43}\), calbindin does not apparently modify PPR in NAc\(^{41}\).

At longer inter-pulse intervals (40–200 ms) corresponding to a range of physiological firing frequencies (5–25 Hz), DA release shows strong STD. STD for other transmitters can arise from depletion of readily releasable vesicles\(^{44}\), but STD in DA release does not result from a limited availability of DA vesicles. Not only is a low fraction of presynaptic DA estimated to be released after stimulation\(^{8,17,45,46}\), but moreover STD was not relieved by reducing initial release. Ca\(^{2+}\)-dependent inactivation of VGCCs by a Ca\(^{2+}\) sensor has been proposed at some central synapses\(^{47,48}\), but since low [Ca\(^{2+}\)]\(_{o}\) did not relieve DA STD, this mechanism is unlikely to contribute here.

Since STD of DA release is not sensitive to the magnitude of initial release, it is a release-insensitive depression. We found particularly in CPu, that STD varied with [K\(^{+}\)]\(_{o}\), as seen at some other central synapses\(^{49}\). Variation in STD with constant initial

![Fig. 9 DATs and [K\(^{+}\)]\(_{o}\) gate intracellular Ca\(^{2+}\) dynamics during paired-pulse stimulations.](image-url)
release further demonstrates the uncoupling of STD from Pr. The effects of \([K^+]_o\) on DA release and on axonal Ca\(^{2+}\) levels showed that factors underpinning the ability to re-activate DA axons, such as membrane polarity/excitability, upstream of local regulation of vesicular Pr, are critical in determining STD for DA release. A range of K\(_c\) channel-types can regulate excitability and repolarisation of CNS axons\(^{50-53}\). Varying \([K^+]_o\) would be expected to change the Nernstian driving force for active K\(^{+}\) currents, altering action potential waveform and repolarisation and therefore the degree of Na\(^{+}\) channel inactivation, or alternatively might alter the rate of K\(^{+}\) channel inactivation\(^{39}\), leading to use-dependent changes in membrane potential which alter Na\(^{+}\) channel recruitment. We cannot distinguish here which of these opposing mechanisms dominates to govern short-term plasticity but in either scenario, Na\(^{+}\)-channel recruitment would be altered.

Together, these findings suggest that Ca\(^{2+}\)-dependent mechanisms can modify amplitude of DA signals, but will not change the dynamic contrast in DA signals when DA neurons change their firing frequency, except at very highest frequencies in NAc. Conversely, mechanisms that modulate the driving forces on membrane potential, will particularly influence dynamic contrast in DA signals.

The critical role for axonal excitability in DA STD is particularly pertinent given DA axon morphology. Midbrain DA neurons form small diameter, unmyelinated, extensively arborised axons with ~10\(^4\) branch points\(^{12,54}\). These morphological features will not readily favour conductive action potential\(^{55}\). Action potential properties and propagation failure could be key contributors to DA STD. The extent of DA axonal arbour invaded could be dynamically adapted by presynaptic activity and by neuromodulatory inputs. In this regard, it is noteworthy that nAChRs regulate DA release and can drive a strong STD that limits the frequency sensitivity in DA signals\(^9\). ACh input to nAChRs might play a strategic role in shaping action potential propagation and fidelity throughout the axonal arbour. Furthermore, the stronger K\(^{+}\)-dependent gating of STD we saw here in CPu than NAc might suggest that action potential propagation might be more dynamically gated in CPu than in NAc, leading to different extents of engagement of their axonal trees. This speculation could be tested in future studies with significant implications for distinct signal processing by these neurons.

DATs in striatum regulate DA transmission through several means. DATs can curtail the extracellular summation and lifetime of \([DA]_o\) through re-uptake, and also limit the DA release process\(^{20-23}\). Correspondingly, we show that DAT function promotes STF of DA release at short intervals when short-term plasticity of DA release co-varies most strongly with initial release. Furthermore, at longer intervals, corresponding to typical firing frequencies (5–25 Hz), when release is dominated by release-independent depression, we found that DATs promote STD, particularly in CPu. DAT function therefore can therefore promote both STF and STD. These effects are akin to changing both Ca\(^{2+}\)-dependent Pr and K\(^{+}\)-dependent excitability, but neither in isolation, and therefore indicate that DATs are limiting initial DA release probability and subsequent release through polarisation-dependent mechanisms.

The effects of DAT inhibition on STF at short IPIs seemed large given that, under control conditions, the relationship between initial release and STF was weak. This disparity is reconciled by our finding that DAT inhibition permitted Ca\(^{2+}\)-dependent modulation of short-term plasticity, suggesting that DATs are a critical player that controls and limits the relationship between Ca\(^{2+}\) and release probability. The mechanisms are not yet known. DATs have previously been suggested to inhibit Ca\(^{2+}\)-dependent vesicle mobilisation via interactions with synapsins, with synapsin-3 indicated as a potential candidate\(^{20,21}\). But our data with synapse-3 KOs do not readily support a synapsin3-dependent inhibition of vesicle recruitment by DATs. DATs are also electrogenic transporters that mediate a depolarising current\(^{18,19,33}\) and can interact directly with VGCCs\(^{56}\) which might influence depolarisation-dependent Ca\(^{2+}\) dynamics in DA axons. However, Ca\(^{2+}\) imaging in DA axons in CPu did not reveal an impact of DAT inhibition on Ca\(^{2+}\) levels for paired pulses at very short IPIs where STF occurs, suggesting that the impact of DATs on STF at very short intervals seems to be downstream of Ca\(^{2+}\) entry, e.g. in the mobilisation of vesicle pool or local regulation of vesicular Pr. There might be redundancy within the synapsin family to continue to support a synapsin-dependent mechanism in the absence of synapsin-3.

DATs, like \([K^+]_o\), also acted to promote depression at longer, physiological IPIs (40–200 ms). The overlap between the effects on STD of DATs, \([K^+]_o\), and K\(_c\) channel inhibitors suggested that DATs acts through mechanisms that govern axonal activation. Using Ca\(^{2+}\) imaging we validated that DATs indeed limit the ability to activate DA axons at subsequent stimuli at these intervals. Thus, DATs might act to attenuate propagation of subsequent action potentials through the DA axon arbour. Since hyperpolarisation and low \([K^+]_o\), can promote action potential renewal and propagation in some axon types\(^{37}\), the potential for DATs, like high \([K^+]_o\) to depolarise membrane potential\(^{18,19}\) might contribute to poor axonal re-activation in DA axons. It is of note that DATs are widely distributed throughout the length of DA axons\(^{58}\) and are found at locations thought to correspond to both release-active zones and inactive zones\(^{17}\). DAT function can also be modulated by DA D2 and D3-receptors\(^{59,60}\). DATs could be ideally positioned to govern a variety of processes including action potential propagation on axons and at branches, action potential waveform at release-active zones (e.g. ref.\(^{52}\) and/or the recruitment of vesicles or VGCCs at active zones, modulated by DA. The higher density of DATs in dorsolateral striatum, underpinned by greater DAT transcript levels in SNC than VTA neurons\(^{40}\), could lead to stronger limitations on action potential waveforms in CPu than NAc. Now defined, these hypotheses should be tested directly in future studies.

It is well known that DAT function can promote the frequency-dependence of DA release\(^{15,22,61,62}\). These effects are consistent with the effects of uptake on extracellular summation between stimuli and also with the role of DAT in the dynamic probability of release we have identified here. DATs might then determine both the fidelity and the spatial range of striatal DA transmission not only through their established roles in limiting DA diffusion, but also, by limiting the probability of DA release and extent of activation of the axonal arbour.

In conclusion, we propose a hierarchy of intrinsic mechanisms that control short-term plasticity of DA release. Within this hierarchy, DATs represents a ‘master regulator’, governing the balance between release-dependent and release-independent mechanisms that differently dominate in dorsal versus ventral striatum. In turn, DAT inhibitors such as cocaine will have profound effects on DA signalling through promoting Pr, relieving STD, and altering the timecourse and spatial field of DA signals.

Methods

Animals. Experiments were carried out using adult male C57Bl6/J mice (Jackson Laboratories), heterozygous DAT\(\text{RES-Cre}\) mice, synapsin-III knockout (S3KO) mice, or DAT-\(\text{Cre.A9SD}\) mice on a C57Bl6/J background. For experiments using optical stimulation of DA axons, male heterozygote DAT-internal ribosome entry site (IRES)-\(\text{Cre}\) mice were bred from homozygous DAT\(\text{IRES-Cre}\) mice on a C57Bl6/J background (B6.SJL-SgraMin1.icre/JBlmmj, stock # 006660, Jackson Laboratories). S3KO mice were bred as described previously\(^{69}\), and were kindly supplied by Professor HT Kao (Brown University). For Ca\(^{2+}\) imaging experiments, male
heterozygous DAT-CreAi95D mice (4–8 weeks) were bred from homozygous DAT-Cre mice (B6.SJL-Ptger3tm1.1(Jae)/J; JAX stock number 006660) crossed with hemizygous Ai95D mice (B6;129S-Gt(ROSA)26Sortm95.1(CAG-GCaMP6f)Hze/J, JAX stock number 028865). Animals were group-housed and maintained on a 12-h light/dark cycle with ad libitum access to food and water. All procedures were performed in accordance with the Animals in Scientific Procedures Act 1986 (Amended 2012) with ethical approval from the University of Oxford, and under authority of a Project Licence granted by the UK Home Office.

Surgery. Heterozygote DAT^{Cre}-GCaMP6f mice were injected intracerebrally with a Cre-inducible recombinant AAV serotype 5 vector containing an inverted gene for channelrhodopsin2 fused in-frame with a gene encoding enhanced yellow fluorescent protein (pAAV-double-fuse-chR2(H134R)-EYFP-WPRE-pA). Mice were placed in a stereotaxic frame under isoflurane anaesthesia and a craniotomy was made above the injection site. Injections of 1 µL virus were given either unilaterally or bilaterally in either VTA (co-ordinates from Bregma in mm: AP: −3.1, ML: ± 0.5, DV: −4.4) or in the SNc (from Bregma in mm: AP: −3.5, ML: ± 1.2, DV: −4.0) using a 2.5-µL 33-gauge Hamilton syringe at 0.2 µL/min with a microinjector. The syringe was left in place for 10 min following each injection, then retracted slowly. Animals were maintained for at least 3 weeks following surgery to allow virus expression in striatum.

Slice preparation. Mice were sacrificed by cervical dislocation and the brains removed and transferred to ice-cold HEPES-based buffer containing in mM: 120 NaCl, 20 NaHCO₃, 6.7 HEPES acid, 5 KCl, 3.3 HEPES salt, 2 CaCl₂, 2 MgSO₄, 1.2 KH₂PO₄, saturated with 95%O₂/5%CO₂. Acute 300 µm thick coronal slices were prepared in ice-cold HEPES-based buffer and cut using a vibratome (VT1000S or VT1200S; Leica). Slices were kept at room temperature in HEPES-based buffer for 1 h before being transferred to the recording chamber and superfused at 1.8–2.0 mL/min in bicarbonate buffer-based artificial CSF (aCSF) containing in mM: 124.3 NaCl, 26 NaHCO₃, 3.8 KCl, 2.4 CaCl₂, 1.3 MgSO₄, 1.2 KH₂PO₄, 10 glucose, saturated with 95% O₂/5% CO₂, at 31–33 °C. Recording medium also contained dihydro-β-erythroidine (DHβE, 1 µM). Slices were allowed to equilibrate for 30 min prior to recording.

Voltammetry and stimulation. Evoked extracellular DA concentration ([DA]_e) was measured using FCV at carbon-fibre microelectrodes (fibre diameter 7–10 µm, tip length 50–100 µm) implanted to a constant depth of 100 µm. A triangular voltage waveform was scanned across the microelectrode (−700 to +1360 mV and back, scan rate 500 mV/s) to elicit a Müller voltage light intensity (Millar, Barts and the London School of Medicine and Dentistry), with a sweep frequency of 8 Hz. This sampling rate is sufficient to capture the rising and falling phase of the DA transients; faster sampling rates do not change the data interpretations (not illustrated). Evoked currents were confirmed as DA by comparison of the electrically evoked DA release with DA release produced by a 2 ms, 470 nm light pulse from an LED system emitting light at 470 nm wavelength (OptoLED, Cairn Research³³). The LED system illuminated an area of 2.2 mm diameter. The current delivered by the LED power supply was set to produce a minimum-maximum range (i.e. the minimum light intensity able to evoke maximum [DA]_e) following a single 2 ms pulse. Since the perimaximal light intensity is dependent on the level of ChR2 expression, which varies between animals, the appropriate current was determined at the beginning of each experiment. Electrical or optical stimulations were delivered every 2.5 min. Before recording, it was confirmed that dopamine release was reproducible, and before acquisition of experimental data, peak evoked [DA]_e levels were allowed to reach this reproducible stable level.

DA release study design and analyses. The term release probability P_r used for DA here is a composite measure of synaptic P_r (a function of vesicular P_r and the number of releasable vesicles) and light-induced DA release corrected by the stimulus. Short-term plasticity in DA release was explored by applying alternating single pulses (1p) or paired pulses (2p) with inter-pulse intervals (IPIs) of 10–200 ms in pseudorandom order and in triplicate at each recording site. IPIs of 40–200 ms fall within the range commonly observed during burst firing in DA neurons both in vivo and in vitro. IPIs of 10–25 s have been observed during burst firing by DA neurons² but are particularly useful to interrogate short-term facilitation which occurs on this timescale.^{43,44}

We calculated paired-pulse ratio (PPR) as a measure of short-term plasticity. We define PPR as the ratio P2/P1, where P1 is peak [DA]_e detected following 1p stimulus and P2 is the peak [DA]_e attributable to the second stimulation only. P2 was determined by subtracting the entire [DA]_e transient including decay phase after a single pulse from the summated paired-pulse response, and we therefore account for summation and decay resulting from uptake kinetics. Any enhanced spillover resulting from uptake inhibition will occur for single and paired pulses and should therefore be controlled for. We cannot control for variable fibre recruitment for different stimuli, but can control for variable modulation by other local inputs: PPR on the timescourses explored here is not differently modified at different intervals by D2 dopamine receptors (see Results), or by GABA receptors (Lopes and Cragg, unpublished observations). We use the term "release-dependent" plasticity to indicate a relationship between PPR and P1 [DA]_e. "Release-insensitive" or "release-independent" refers to a PPR that varies independently of P1, or does not vary with P1.

Calcium concentration ([Ca²⁺]_e) in aCSF was varied by varying [CaCl₂]. In some experiments where stated, a reduction in Ca₂₊ was substituted with Mg₂₊. However, Ca₂₊ induced by Ca₂₊-induced current (AcH₂) can confound interpretation. Changes in [Ca²⁺]_e have been shown to alter Ca²⁺ currents through VGCC^{68,69}, alter G-protein-coupled receptor function, including dopamine D2 receptors⁶⁹, change the affinity of calcium-binding protein calbindin for Ca²⁺⁷⁰, trigger complexing of Ca²⁺ by ATP⁷¹, and also the sensitivity of FCV electrodes to DA⁷². We find that Ca²⁺/Mg²⁺ substitution reduces DA release to levels below those of reducing Ca²⁺ alone (Supplementary Fig. 6D).

Where extracellular potassium concentration ([K⁺]_e) was varied (1.0–7.5 mM), changes in osmolality were corrected by varying [Na]_e. The Na⁺ and K⁺-containing (in mM): in experiments were varied as follows (in mM): 120 NaCl, 10 Glucose, 2.7 NaHCO₃, 2.5 KCl, 1.2 CaCl₂, 1.2 MgSO₄, 14 HEPES, saturated with 95%O₂/5%CO₂. Recordings with extracellular potassium concentrations ranging from 1 to 7.5 mM have been shown to alter some experiments where stated, a reduction in CaCl₂ was substituted with MgCl₂. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂]. Where extracellular potassium concentration ([K⁺]_e) in aCSF was varied by [CaCl₂].
t-tests. All experiments were conducted in the presence of DHβE (1 μM). GCaMP6f responses were quantified as the mean ΔF/F value.

Immunocytochemistry. We verified the specificity of GCaMP6f expression to dopaminergic structures by comparing direct eGFP fluorescence to immunoreactivity to tyrosine hydroxylase (TH-ir). Acute slices of midbrain and striatum were fixed overnight at 4 °C in 4% paraformaldehyde dissolved in PBS, then stored in PBS. After resectioning to 40 μm, free-floating sections were washed in PBS 5 x 5 min and incubated in 0.5% Triton X-100, 1% normal goat serum and 1% foetal bovine serum for 30 min. Slices were subsequently incubated overnight with 1:2000 primary (rabbit anti-TH; Sigma) antibody dissolved in PBS containing 0.5% Triton X-100, 1% normal goat serum and 1% foetal bovine serum. Sections were washed with PBS and mounted on gelled slides with Vectashield mounting medium (Vector Labs) and imaged using a Zeiss LSM880.

Data availability. The authors declare that all data sets generated and analysed during this study are available within this paper and its supplementary files. The source data underlying all figures and supplementary figures are provided as a Source Data file.

Received: 25 January 2019 Accepted: 13 August 2019
Published online: 19 September 2019

References
1. Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).
2. Hyland, B. I. et al. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114, 475–492 (2002).
3. Schultz, W. Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. J. Neurophysiol. 56, 1439–1461 (1986).
4. Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).
5. Sulzer, D., Cragg, S. J. & Rice, M. E. Striatal dopamine neurotransmission: regulation of release and uptake. Brain Gend. 6, 123–148 (2016).
6. Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019).
7. Threlfell, S. et al. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75, 58–64 (2012).
8. Cragg, S. J. Variable dopamine release probability and short-term plasticity between functional domains of the primate striatum. J. Neurosci. 23, 4378–4385 (2003).
9. Rice, M. E. & Cragg, S. J. Nicotinic amides reward-related dopamine signals in striatum. Nat. Neurosci. 7, 583–584 (2004).
10. Debanne, D. Information processing in the axon. Nat. Rev. Neurosci. 5, 304–316 (2004).
11. Aransay, A. et al. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Front Neural. 9, 59 (2015).
12. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).
13. Passadak, E. K. & Bolam, J. P. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput. Neurosci. 7, 13 (2013).

14. Zhang, H. & Sulzer, D. Frequency-dependent modulation of dopamine release by nicotine. Nat. Neurosci. 7, 581–582 (2004).
15. Jennings, K. A., Platt, N. I. & Craig, S. J. The impact of a parkinsonian lesion on dynamic striatal dopamine transmission depends on nicotinic receptor activation. Neurobiol. Dis. 82, 262–268 (2015).
16. Brimblecombe, K. R. et al. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between neuronal domains. J. Physiol. 593, 949–959 (2015).
17. Liu, C. et al. Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172, 706–718, e15 (2018).
18. Carver, L. et al. Dopamine transporters desensitize neurons by a channel mechanism. Proc. Natl Acad. Sci. USA 101, 16046–16051 (2004).
19. Ingram, S. L., Prasad, B. M. & Amara, S. G. Dopamine transporter-mediated conductances increases excitability of midbrain dopamine neurons. Nat. Neurosci. 5, 971–978 (2002).
20. Kie, B. M. et al. Synapsins differentially control dopamine and serotonin release. J. Neurosci. 30, 9762–9770 (2010).
21. Venton, B. J. et al. Cocaine increases dopamine release by mobilization of a synapse-dependent reserve pool. J. Neurosci. 26, 3206–3209 (2006).
22. Daberkow, D. P. et al. ABA remethylation paradoxically augments excitatory dopamine release and phasic dopamine signals. J. Neurosci. 33, 452–463 (2013).
23. Hoffman, A. F., Spivak, C. E. & Lupica, C. R. Enhanced dopamine release by dopamine transporter inhibitors described by a restricted diffusion model and within cyclic voltammetry. ACS Chem. Neurosci. 7, 700–709 (2016).
24. Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).
25. Thomson, A. M. Molecular frequency filters at central synapses. Prog. Neurobiol. 62, 159–196 (2000).
26. Regehr, W. G. Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol. 4, a005702 (2012).
27. Fisher, S. A., Fischer, T. M. & Carew, T. J. Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci. 20, 170–177 (1997).
28. Phillips, P. E. M., Hancock, P. J. & Stanford, J. A. Time window of autoreceptor-mediated inhibition of limbic and striatal dopamine release. Synapse 44, 15–22 (2002).
29. Schmitz, Y., Schmauss, C. & Sulzer, D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors. J. Neurosci. 22, 8002–8009 (2002).
30. Cohen, J. Y. et al. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).
31. Baudewig, T. & Yellen, G. Modulation of K+ current by frequency and external [K+]c—a tale of two inactivation mechanisms. Neuron 15, 951–960 (1995).
32. Nedergraad, S. Regulation of action potential size and excitability in substantia nigra compacta neurons: sensitivity to 4-aminopyridine. J. Neurophysiol. 82, 2903–2913 (1999).
33. Senders, M. S. et al. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960–974 (1997).
34. Acevedo-Rodriguez, A. et al. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release. Front Synaptic Neurosci. 6, 19 (2014).
35. Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).
36. Chen, C. & Regehr, W. G. Contributions of residual calcium to fast synaptic transmission. J. Neurosci. 19, 6257–6266 (1999).
37. Doussau, F. et al. Frequency-dependent mobilization of heterogeneous pools of synaptic vesicles shapes presynaptic plasticity. Elife 6, e28935 (2017).
38. Chang, C. Y. et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709–1725 (2005).
39. Greene, J. G., Dingledine, R. & Greentemyre, I. T. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in Parkinsonism. Neurobiol. Dis. 18, 19–31 (2005).
40. Haber, S. N. et al. Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J. Comp. Neurol. 362, 400–410 (1995).
41. Brimblecombe, K. R. et al. Calbindin-D28k limits dopamine release in ventral but not dorsal striatum by regulating Ca2+ availability and dopamine transporter function. ACS Chem. Neurosci. https://doi.org/10.1021/acschemneuro.9b00325 (2019).
42. Blatow, M. et al. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38, 79–88 (2003).
43. Felmy, F., Neher, E. & Schneggenburger, R. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37, 801–811 (2003).
44. Stevens, C. F. & Williams, J. H. Discharge of the readily releasable pool with action potentials at hippocampal synapses. *J. Neurophysiol.* 98, 3221–3229 (2007).

45. Dreyer, J. K. et al. Influence of phasic and tonic dopamine release on receptor activation. *J. Neurosci.* 30, 14270–14283 (2010).

46. Rooney, K. E. & Wallace, L. J. Computational modeling of extracellular dopamine kinetics suggests low probability of neurotransmitter release. *Synapse* 69, 515–525 (2015).

47. Núñez, E. et al. Control of phasic dopamine release by CaV2.1+ channel contributes to short-term synaptic plasticity in hippocampal neurons. *Proc. Natl Acad. Sci. USA* 113, 1062–1067 (2016).

48. Xu, J. & Wu, L.-G. The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. *Neuron* 46, 633–645 (2005).

49. Zorumski, C. F. & Mennerick, S. Contribution of presynaptic Na+ channel inactivation to paired-pulse synaptic depression in cultured hippocampal neurons. *J. Neurophysiol.* 87, 925–936 (2002).

50. Geiger, J. R. P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+-channels in hippocampal mossy fiber boutons. *Neuron* 28, 927–939 (2000).

51. Ikeda, T. et al. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. *J. Neurosci.* 23, 10445–10453 (2003).

52. Kawaguchi, S.-y & Sakaba, T. Control of inhibitory synaptic outputs by low calcium channel. *J. Physiol.* 593, 1273–1288 (2015).

53. Ueda, A. & Wu, C.-F. Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations. *J. Neurosci.* 26, 6238–6248 (2006).

54. Bolam, J. P. & Pissadaki, E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. *Mov. Disord.* 27, 1478–1483 (2012).

55. Ofer, N., Sheh, S., Cai & Yuan, G. Branching morphology determines signal propagation dynamics in neurons. *Sci. Rep.* 7, 8877–8877 (2017).

56. Cameron, K. N. et al. Amphetamineactivates calcium channels through dopamine transporter-mediated depolarization. *Cell Calcium* 58, 457–466 (2015).

57. Smith, D. O. Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. *J. Physiol.* 301, 243–59 (1980).

58. Nirenberg, M. J. et al. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. *J. Neurosci.* 16, 436–447 (1996).

59. Chen, R. et al. Protein kinase Cbeta is a modulator of the dopamine D2 autoreceptor-activated trafficking of the dopamine transporter. *J. Neurochem.* 125, 663–672 (2013).

60. McGinnis, M. M., Siciliano, C. A. & Jones, S. R. Dopamine D3 autoreceptor inhibition enhances cocaine potency at the dopamine transporter. *J. Neurochem.* 138, 821–829 (2016).

61. Garris, P. A. & Wightman, R. M. Different kinetics govern dopaminergic transmission in the amygdala, prefrontal cortex, and striatum: an in vivo voltammetry study. *J. Neurosci.* 14, 442–450 (1994).

62. Zhang, L. et al. Controls of tonic and phasic dopamine transmission in the dorsal and ventral striatum. *Molec. Pharm.* 76, 396–404 (2009).

63. Feng, J. et al. Regulation of neurotransmitter release by synapsin III. *J. Neurosci.* 22, 4572–4580 (2002).

64. Kume-Kick, J. & Rice, M. E. Dependence of dopamine calibration factors on media Ca2+ and Mg2+ at carbon-fiber microelectrodes used with fast-scan cyclic voltammetry. *J. Neurosci. Meth.* 84, 55–62 (1998).

65. Wang, L. et al. Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice. *J. Physiol.* 592, 3559–76 (2014).

66. Gonon, F. G. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. *Neuroscience* 24, 19–28 (1988).

67. Agus, Z. S. et al. Cytosolic magnesium modulates calcium channel activity in mammalian ventricular cells. *Am. J. Physiol.* 256, C452–455 (1989).

68. Lansma, J. B., Hess, P. & Tsien, R. W. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. *J. Gen. Physiol.* 88, 321–347 (1986).

69. van der Westhuizen, E. T. et al. Endogenous allosteric modulators of G protein-coupled receptors. *J. Pharm. Exp. Therapeut.* 353, 246–260 (2015).

70. Berggård, T. et al. Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. *J. Biol. Chem.* 277, 16662–16672 (2002).

71. Michailova, A. & McGilvray, D. A. D. Model study of ATP and ADP buffering, transport of Ca2+ and Mg2+, and regulation of ion pumps in ventricular myocardce. *Biophys. J.* 81, 614–629 (2001).

72. John, C. E. & Jones, S. R. Voltammetric characterization of the effect of monoamine uptake inhibitors and releasers on dopamine and serotonin uptake in mouse caudate-putamen and substantia nigra slices. *Neuropsychopharmacology* 52, 1596–605 (2007).

73. Jones, S. R., Garris, P. A. & Wightman, R. M. Different effects of cocaine and nomifensine on dopamine uptake in the caudate-putamen and nucleus accumbens. *J. Pharm. Exp. Ther.* 274, 396–403 (1995).

Acknowledgements

Funding sources: MRC Doctoral Training Grants (to M.D.C., N.J.P.), BBSRC Doctoral Training Grants (to M.A.C., S.V.M.), Clarendon Fund Award (to B.M.R.), MRC grant (MR/K013866/1 to S.J.C.), Monument Trust Parkinson’s UK Discovery Award (J-1403), Parkinson’s UK (G-1369 to S.J.C.) and Christ Church Oxford.

Author contributions

M.D.C. designed and performed experiments, analysed and interpreted the data, and co-wrote the paper. N.J.P., M.A.C. and Y.-F.Z. designed and performed experiments, and analysed and interpreted the data. B.M.R., S.V.M. and M.Y.T. performed experiments and analysed data. K.R.B., S.T., E.O.M and S.J.C. supervised the work. S.J.C. designed the experiments, interpreted the data, and co-wrote the paper.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-12264-9.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available at http://npg.nature.com/reprintsandpermissions/

Peer review information *Nature Communications* thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.