Приведены результаты расчетов напряженно-деформированного состояния нагельного соединения деревянных конструкций с применением стальных и углепластиковых цилиндрических нагелей по действующим нормативным документам. Выполнены машинные расчеты методом конечных элементов в расчетном программном комплексе ANSYS STATIC STRUCTURAL. Представлены сравнительные результаты экспериментальных данных, полученные в ходе натурных лабораторных испытаний нагельного соединения с применением углепластиковых и стальных цилиндрических нагелей. Определена несущая способность соединений. Построены графики зависимостей сдвиговых перемещений в соединении и изополя распределения напряжений для стального и композитного нагеля, выполнен сравнительный анализ полученных результатов. Сделаны выводы о возможности и целесообразности применения графитовых композитов при проектировании стыков клееных деревянных конструкций.

Ключевые слова: коррозия, клееные деревянные конструкции, сталь, углепластик, эксперимент, ANSYS, надежность, эксплуатация, долговечность, агрессия, среда, механические свойства, наблюдение, строительные материалы.

Введение. Дерево является одним из древнейших видов строительных материалов, дошедших до наших дней в своем первозданном виде. Применение древесины в качестве конструкционного материала обусловлено ее химическими, эстетическими, экологическими, экономическими и иными соображениями. В современном строительстве применяют как изделия из цельной древесины (брус, доска, элементы составного типа на
податливых соединениях), так и клеевые конструкции, изготавливаемые из пакетов досок с послойной kleевой запрессовкой.

На сегодняшний день во многих странах успешно применяют клеевые деревянные конструкции для создания большепролетных сооружений различной архитектурной формы и размеров. В качестве примера промышленных сооружений можно привести арочные и распорные системы, применяемые при строительстве складов, авиационных и корабельных ангаров, мостов и др. [1]. В гражданских сооружениях клеевые деревянные конструкции применяют в покрытиях общественных зданий, бассейнов, спортивных и сельскохозяйственных объектов [2].

При эксплуатации сооружений промышленного, так и гражданского назначения неизбежно формируются негативные факторы воздействия окружающей среды на несущие элементы конструкций. По своему агрегатному состоянию агрессивные среды бывают жидкими, твердыми, газообразными либо многофазными. Воздействие среды на строительные конструкции обусловливается их природой. В промышленных сооружениях, к примеру, при хранении калийных руд, газовоздушная среда агрессивна ко всем применяемым материалам. В гражданских зданиях для элементов конструкций, таких как покрытия бассейнов и торговых центров, повышенная влажность воздуха также будет являться катализатором развития коррозионных процессов [2].

1. Результаты наблюдений о воздействии агрессивной среды на материалы. Как показал многолетний опыт наблюдений, древесина в меньшей мере подвергается разрушающим воздействиям среды [3]. Эксплуатационные характеристики древесины в агрессивных средах значительно выше в сравнении со сталью и железобетоном. За весь обозримый период эксплуатации не выявлено ни одного случая аварии, связанного с химической коррозией древесины [4]. В то же время узлы соединений деревянных конструкций, проектируемые сегодня в виде гвоздей, стальных болтов, нагелей, накладных деталей, подвержены воздействию коррозии, что является наиболее частой причиной аварийных ситуаций.

Рассмотрим факторы, влияющие на прочность конструкции, выполненной из древесины и стальных нагелей.

Наиболее общим и существенным фактором, снижающим прочность древесины, является влажность. Экспериментально нами было установлено, что влажность древесины мало зависит от атмосферных условий. Микроклимат внутри сооружений, в основном, является постоянным с незначительными колебаниями в зависимости от времени года. Накоп-
Проникновение влаги древесиной конструкций и ее распространение в глубину сечения зависит от продолжительности эксплуатации. На рис. 1 показано распределение влажности по глубине сечения конструктивного элемента при ширине последнего более 150 мм и сроке эксплуатации 40 лет (данные получены эмпирическим путем при отборе и анализе пробных образцов с существующих сооружений).

Из графика видно, что наиболее интенсивно процесс проникновения влаги в глубину сечения происходит первые 5–8 лет. Затем процесс замедляется, и глубина увлажненной зоны не превышает 1/3 высоты элемента. Результаты эмпирических данных показали, что начиная с 20 лет разрушение некоторой части сечения древесины не приводит к лавинному разрушению по всей толщине, а происходит некоторое перераспределение напряжений в сечении. Экспериментальные и расчетные данные позволяют прогнозировать срок службы несущих деревянных конструкций при гигроскопическом увлажнении не менее 60 лет.

Для сравнения приведем результаты исследования коррозии стальных нагелей, используемых в качестве анкерных опорных конструкций деревянных полуарок склада хлористого калия. На рис. 2 видно, что поперечное сечение стальных цилиндрических нагелей будет полностью разрушено коррозионными процессами приблизительно через 60 лет эксплуатации в данных условиях, при этом очевидно, что дефицит несущей способности наступит гораздо раньше.

Одним из рациональных путей решения задачи проектирования надежных узлов стыка деревянных конструкций в агрессивной среде является замена стальных деталей материалами, не подвергаемыми коррозии. Наиболее перспективными из таких материалов сегодня являются конструкционные углепластики [5].
К углепластикам, или карбонам (лат. *carbonis* – уголь), относятся все композитные материалы, армирующей основой которых являются углеродные (графитовые) волокна [6]. Связующие при этом могут быть самыми разными. Углеродное волокно (углеволокно) – структурированный органический материал, в состав которого входит от 92 до 99 % углерода, ему присущи высокие значения модуля упругости, прочности и низкий удельный вес [7]. Конструкции из углепластиков применяются как в новом строительстве в качестве несущих конструкций, в узлах их соединения, так и для усиления, восстановления и защиты существующих объектов [8].

В настоящее время применительно к деревянным конструкциям углепластик используется только как материал для усиления сечения путем вклейки карбоновых стержней в массивное сечение под различными углами, укладкой слоев углепластика между слоями досок [9] и в качестве внешнего армирующего слоя [10].

В данной работе проанализирована возможность замены в соединениях деревянных конструкций стальных нагелей (сталь С255 [11]) на углепластиковые нагели (углепластик MONSTEROD ACK-6 производства ООО «НЦК», г. Москва). Физико-механические свойства материалов приведены в таблице.

Сравнение свойств углепластика и стали

Материал	Плотность ρ, кг/м³	Временное сопротивление ħₚ, МПа	Модуль упругости Eₚ, ГПа
Сталь С255	7850	380	200
Углепластик Monsterod ACK-6	1490	2250	115
Нагельными называют соединения на гибких связях, которые, работая на изгиб, препятствуют взаимному сдвигу соединяемых элементов. В таких соединениях усилие распределяется между элементами, работающими в контакте. При этом образцы разрушаются либо от смятия соединяемых элементов, либо вследствие изгиба нагелей.

Рассмотрены характерные особенности работы нагелей под нагрузкой на изгиб и характер смятия окружающей древесины при использовании стальных и углепластиковых нагелей. Выполнены натурные эксперименты, оценка несущей способности по инженерной методике, рекомендуемой СП [12] и расчеты в программном комплексе ANSYS.

2. Натурные эксперименты по определению несущей способности нагельного соединения. Схема образцов нагельного соединения деревянной конструкции с указанием прикладываемых нагрузок приведена на рис. 3. Схема расстановки нагелей принята в соответствии с требованиями п. 7.18 [12].

Испытания проводились до разрушения образца пошагово возрастающей нагрузкой на испытательном прессе ПГМ-500МГ4 с пределом нагружения до 500 кН. Значение разрушающей нагрузки снималось с динамометра пресса в момент, при котором наблюдался непрерывный рост перемещений нагружаемого центрального элемента нагельного соединения, а нагрузка при этом оставалась неизменной.

Для замера перемещений применялись измерители часового типа ИЧ-10. Влажность образцов определялась влагомером МГ-4 и составила 9,2 %. Температурно-влажностный режим внутри помещения определен термогигрометром МГ4-В, температура внутри помещения 21,3 °С, влажность 15,7 %.

Сдвиговые перемещения в соединении определялись как среднее арифметическое перемещений, замеренных индикаторами \(\delta_i \) и разности перемещений \(\Delta = \delta_i - \delta_{(n-i)} \).
По данным, полученным в ходе испытаний для каждого материала нагелей (сталь и углепластик), построены графики зависимости сдвигоевых перемещений от приложенной нагрузки (рис. 4).

Рис. 4. Зависимости сдвигоевых перемещений в соединении от нагрузки для стального (1) и углепластикового (2) нагеля по результатам испытаний

При разрушении соединения со стальными нагелями произошел изгиб нагелей и раскол среднего деревянного элемента соединения (рис. 5, а). Разрушающая нагрузка составила 11,1 кН, по достижении которой работа соединения перешла в стадию пластических деформаций. При этом наблюдалось значительное увеличение перемещений при незначительном увеличении нагрузки. Разрыв (трещина со сколом по среднему элементу) зафиксирован при нагрузке в 12,7 кН.

Для углепластиковых нагелей выявлены небольшие изгибы нагелей с незначительным растрескиванием полимерной матрицы и раскрытие образцов по плоскостям досок (рис. 5, б). При этом раскалывания деревянных элементов не произошло. Величина разрушающей нагрузки составила 12,6 кН, при достижении которой наблюдали развитие деформаций...
Строительные материалы и изделия

без увеличения прилагаемой нагрузки. При нагрузке в 13,9 кН произошло разрушение образца, выраженное в смещении досок в стороны с образованием зазоров между средней и крайними досками.

3. Расчет нагельного соединения по методике СП «Деревянные конструкции». Расчетная несущая способность соединения определяется по формуле (60) [5]:

\[T = T_{\min} n_n n_n \]

где \(T_{\min} \) – минимальная несущая способность нагеля на один шов сплачивания (условный срез); \(n_n \) – количество нагелей в соединении; \(n_n \) – число условных срезов одного нагеля.

Несущая способность стального нагеля на один шов сплачивания \(T_{\min} \) определяется как наименьшая одного из трех условий [12]:

1) смятия древесины бокового элемента, \(T_{cm}^a = 0,8ad \),
2) смятия древесины среднего элемента, \(T_{cm}^c = 0,5cd \),
3) изгиба нагеля \(T_{наг}^н = 1,8d^2 + 0,02a^2 \).

В этих формулах \(d \) – диаметр нагеля, \(a \) и \(c \) – толщины крайнего и среднего элемента соответственно. Все размеры приняты одинаковыми для стальных и углепластиковых нагелей: \(d = 5 \) мм, \(a = c = 25 \) мм. Эти формулы рекомендовано применять к стальным цилиндрическим нагелям. Для углепластиковых нагелей нормативная документация отсутствует, поэтому для них применялись те же расчетные формулы с учетом того, что временное сопротивление углепластика на порядок больше, чем у стали [13].

Определенная таким образом расчетная несущая способность нагеля равняется \(T_{\min} = 5 \) кН из условия смятия древесины среднего элемента. Фактическая разрушающая нагрузка, как правило, превышает расчетную в 2–3 раза [14]. Расчетную разрушающую нагрузку принимаем \(N_u = 12,5 \) кН.

4. Компьютерное моделирование и расчет нагельного соединения. Для анализа напряженно-деформированного состояния нагельного соединения и верификации полученных экспериментальных данных была создана расчетная модель образцов (древесина–сталь и древесина–углепластик) в программном комплексе ANSYS [15]. Для наглядности картины работы средней части соединения, с учетом симметрии конструкции, и расчет выполнен для половины сечения.

Поскольку при расчете необходимо учитывать работу сил трения по плоскости соприкосновения древесина–сталь и древесина–углепластик, в модель введены специальные контактные элементы. Решалась нелинейная контактная задача типа поверхность–поверхность. При моделировании
контактного взаимодействия использовались элементы: CONTACT173 (для поверхности древесины) и TARGET170 (для поверхности нагеля). Программа использует элементы контакта для отслеживания относительных положений двух поверхностей.

Смещение верхнего торца образца (площадка приложения нагрузки) для моделирования работы пресса выполнено с использованием уравнений совместности перемещений. Основание образца закреплено от смещений по всем направлениям.

При компьютерном моделировании, аналогично натурным испытаниям, усилие от пресса на образец передавалось пошагово (ступенями по 1 кН). Разрушающая нагрузка установлена отдельно для каждого из образцов.

По окончании расчета получены следующие результаты. Для стального образца разрушающей явилась нагрузка в диапазоне 14–15 кН. При этом взаимное перемещение контрольных узлов деревянных элементов, расположенных в нескольких точках образца составило 1,5 мм. Изополя распределения перемещений в древесине приведены на рис. 6, а. Изополя распределения усилий и характер деформации стальных нагелей приведены на рис. 6, б.

![Рис. 6. Изополя перемещений древесины и усилий в стальных нагелях](image)

Аналогичный расчет выполнен для нагелей, выполненных из углепластика. При этом получены следующие результаты: разрушающая нагрузка составила 15–16 кН; взаимное перемещение контрольных узлов деревянных элементов, расположенных в нескольких точках образца составило 2,46 мм. Изополя распределения перемещений в древесине приведены на рис. 7, а. Изополя распределения усилий и характер деформации углепластиковых нагелей приведены на рис. 7, б.
Рис. 7. Изополя перемещений древесины и усилий в углепластиковых нагелях

Заключение. По результатам работы можно сделать следующие выводы. Теоретические данные, результаты эксперимента и данные, полученные с помощью программного комплекса ANSYS, коррелируют между собой. Разброс значений вызван несовершенством (пороками) структуры древесины, а также отсутствием строительных норм на проектирование конструкций из углепластика. Разрушение конструкций, согласно ожиданиям, произошло в результате деформаций древесины. При этом характер деформации стержней играет значительную роль при определении несущей способности соединения и оказывает влияние на вид разрушения образца.

Экспериментальные и теоретические данные показывают, что в ряде случаев, а именно в агрессивных средах, применение композитных материалов в качестве строительных конструкций, не подвергаемых процессам коррозии, имеет под собой веские основания. Применение углепластиков совместно с древесиной также может быть обосновано схожестью их волокнистой структуры. Современное применение композитов в авиационной и космической отрасли показало их неоспоримые преимущества перед другими материалами. Необходимо расширение круга знаний о данных видах материалов, создание нормативной и материально-технической базы для более широкого их применения.

Библиографический список

1. Калугин А.В. Деревянные конструкции: учеб. пособие для вузов. – М.: Изд-во АСВ, 2008. – 286 с.
2. Lennartz M., Jacob-Freitag S. New Architecture in Wood: Forms and Structures. – Birkhauser, 2016.
3. Конструкции из дерева и пластмасс / под ред. Д.К. Арленинова. – М.: Изд-во АСВ, 2002. – 276 с.
4. Хрулев В.М. Деревянные конструкции и детали. – М.: Стройиздат, 1983. – 288 с.
5. Дорожная карта «Использование нанотехнологии в производстве углеродных волокон и продуктов на их основе» / ГК «РОСНАНОТЕХ». – М., 2010.
6. Перепелкин К.Е. Химические волокна: развитие производства, методы получения, свойства, перспективы / СПГУТД. – СПб., 2008. – 354 с.
7. Мэттъюз Ф., Ролингс Р. Композитные материалы. Механика и технология. – М.: Техносфера, 2004. – 408 с.
8. Симамура С. Углеродные волокна: пер. с япон. – М.: Мир, 1987. – 304 с.
9. Gugutsidze G., Draskovic F. Reinforcement of timber beams with carbon fibers reinforced plastics // Slovak Journal of Civil Engineering. – 2010. – No 2. – P. 1–6.
10. Паншичева Н.В., Назмеева Т.В. Усиление строительных конструкций с помощью углеродных композиционных материалов // Инженерно-строительный журнал. – 2010. – No 2. – C. 19–22.
11. СП 16.13330.2011. Актуализированная редакция СНиП II-23-81* «Стальные конструкции» / ЦНИИСК им. В.А. Кучеренко. – М., 2011.
12. СП 64.13330.2011. Актуализированная редакция СНиП II-25-80 «Деревянные конструкции» / ЦНИИСК им. В.А. Кучеренко. – М., 2011.
13. Гаппоев М.М. Конструкции из дерева и пластмасс. – М.: Изд-во АСВ, 2004. – 440 с.
14. High Performance Carbon Fibers. American Chemical Society National Historic Chemical Landmarks. – Ohio : GrafTech international, 2003.
15. Басов К.А. ANSYS в примерах и задачах. – М.: КомпьютерПресс, 2002. – 224 с.

References
1. Kalugin A.V. Dereviannye konstruktii [Wooden constructions]. Moscow, Izdatel'stvo ASV, 2008. 286 p.
2. Lennartz M., Jacob-Freitag S. New Architecture in Wood: Forms and Structures. Birckhauser, 2016.
3. Arleninov D.K. Konstruktsii iz dereva i plastmass [Timber and plastic structures]. Moscow: Izdatelstvo ACV, 2002, 276 p.
4. Khrulev V.M. Dereviannye konstruktii i detail [Wooden details and constructions]. Moscow, Stroiizdat, 1983. 288 p.
5. Dorozhnaya karta «Ispol'zovanie nanotekhnologii v proizvodstve uglerodnykh volokon i produktov na ikh osnove» [Road map «The usage of nanotechnology in carbon fiber production»]. GK «ROSANOTEKh». Moscow, 2010.
6. Perepelkin K.E. Khimicheskie volokna: razvitie proizvodstva, metody poluchenia, svoistva, perspektivy [Chemical fibers: production development, obtaining methods, properties, prospects]. Saint Petersburg, 2008. 354 p.
7. Mjett'juz F., Rolings R. Kompozitnye materialy. Mehanika i tehnologiya, [Composite materials. Mechanics and Technologt]. Moscow: Tehnosfera, 2004. 408 p.
8. Simamura S. Uglerodnye volokna [Carbon fiber]. Moscow: Mir, 1987.
9. Gugutsidze G., Draskovic F. Reinforcement of timber beams with carbon fibers reinforced plastics. Slovak Journal of Civil Engineering, 2010, no. 2, pp. 1-6.
10. Paranicheva N.V., Nazmeeva T.V. Usilenie stroitel'nykh konstruktii s pomoshch'yu uglerodnykh kompozitsionnykh materialov [Building constructions reinforcement using carbon composites]. Inzhenerno-stroitel'nyi zhurnal, 2010, no. 2, pp. 19–22.
11. SP 16.13330.2011. Aktualizirovannaia redaktsiia SNiP II-23-81* «Stal'nye konstruktii» [Actual version of national construction norms and regulations «Steel constructions»]. Moscow: TsNIISK im. V.A. Kucherenko, 2011.
12. SP 64.13330.2011. Aktualizirovannaia redaktsiia SNiP II-25-80 «Dereviannye konstruktii» [Actual version of national construction norms and regulations «Wood constructions»]. Moscow, TsNIISK im. V.A. Kucherenko, 2011.
13. Gappoev M.M. Konstruktsii iz dereva i plastmass [Timber and plastic structures]. Moscow: Izdatel'stvo ASV, 2004, 440 p.
14. High Performance Carbon Fibers. American Chemical Society National Historic Chemical Landmarks. Ohio: GrafTech international, 2003.
15. Basov K.A. ANSYS v primerakh i zadachakh [ANSYS examples]. Moscow: Komp'uterPress, 2002, 224 p.

Получено 31.01.2017
M. Vodiannikov, A. Vorobiov

ANALYSIS OF WOOD STRUCTURE CONNECTIONS USING CYLINDRICAL STEEL AND CARBON FIBER DOWEL PINS

This article gives an overview of the existing problems with the long-term operation of glued wooden structures and components of their interface in an aggressive environment. In this paper, the results of the statistical analysis of corrosion processes and moisture saturation of glued laminated timber structures and their joints in corrosive environment are shown. This paper includes calculation results for dowel connections of wood structures using steel and carbon fiber reinforced plastic cylindrical dowel pins in accordance with applicable regulatory documents by means of finite element analysis in ANSYS STATIC STRUCTURAL software, as well as experimental findings. Determination of bearing load capacity of connections is defined. Dependence diagrams are shown; comparative analysis of the results obtained is conducted. Conclusions on the possibility and expediency of graphite composites in the design of joints glued wooden structures are done.

Keywords: corrosion, glulam, timber, steel, carbon, experimental data, ANSYS, reliability, exploitation, durability, aggressive environment, mechanical properties, observation, materials, structure

Водянников Михаил Алексеевич (Пермь, Россия) – аспирант кафедры «Строительные конструкции и вычислительная механика», Пермский национальный исследовательский политехнический университет (614990, г. Пермь, Комсомольский пр-т, 29, e-mail: vodyannikov@mail.ru).

Воробьев Александр Владимирович (Пермь, Россия) – инженер АО «ВНИИ Галургия» (614010, г. Пермь, Сибирская, 94, e-mail: km02@ya.ru).

Vodiannikov Mikhail (Perm, Russian Federation) – Postgraduate Student of the Department of Building constructions and Computational Mechanics, Perm National Research Polytechnic University (614990, Perm, Komsomolsky av., 29, e-mail: vodyannikov@mail.ru).

Vorobiov Aleksandr (Perm, Russian Federation) – Engineer of JSC "Institute Halurgy" (614010, Perm, Sibirskaya str., 94, e-mail: km02@ya.ru).