Digital analysis of shaping ability and topographic changes in M and C wire rotary NiTi systems.

CURRENT STATUS: POSTED

Amr Khaled Abd El Aziz
Faculty of dentistry - Cairo University

amr.khaled.beshr@gmail.com Corresponding Author

DOI: 10.21203/rs.2.14267/v2

SUBJECT AREAS
Materials chemistry

KEYWORDS
m-wire, c-wire, shaping ability, surface tomography, SEM, structural analysis
Abstract
The primary outcome of this study intends to assess the Shaping ability and surface topographic changes of the 2 rotary Nickel Titanium systems:
A) One Curve (Micro Méga, Besançon, France)
B) ProTaper Next (Dentsply Maillefer, Ballaigues, Switzerland)

What's new in the study is the use of AutoCAD program to assess the shaping ability of both instruments, after using them in a standardized conditions to evaluate the minor differences between the two different alloys used in each instrument.

While the secondary outcome of this study is to evaluate the instruments after multiple uses under the SEM to detect any aberrations or deformation in the instruments to detect its points of strength and weaknesses.

The study is planned for one year and it is not expected to be more than that according to the sample size and the availability of the tools needed for the trial.

Introduction
The main objective of endodontic treatment is to eliminate or minimize microorganisms in the root canal system while maintaining the original shape and path of the root canal. However, no instrument/technique can predictably eliminate all the microorganisms from the root canal system. The cleaning efficacy of endodontic instruments significantly decreases at the apical third of root canals. Many root canals have curvatures, and endodontic instruments tend to return to their original straight position during instrumentation of curved canals. Dentinal wall thickness in root canals has a direct relationship with root resistance to lateral forces.

Instruments and instrumentation techniques should be chosen and combined based on their shaping ability, particularly in curved canals, and on the possibility to achieve faster preparations, without deviations. The various NiTi file systems commercially available have different characteristics in
terms of their cross-sectional shape, rake angle, taper, depth of flutes, and number of spirals or flutes per unit length all these conditions may affect file behavior.

Manufacturers are introducing various NiTi rotary systems with improved flexibility & superior canal anatomy preservation properties. Different methods have been conducted to improve the physical as well as the mechanical properties of the rotary NiTi. Among these methods is the heat treatment of NiTi to produce a better arrangement of the crystal structure. Thereby leading to increased flexibility and improve fatigue resistance or plastic behavior.

Equipment

Binocular stereo microscope

Scanning electron microscope

AutoCAD (Software)

Procedure

- Teeth will be collected and immersed in 5.25% NaOCl solution for 15 min

- The teeth will be stored in sterile saline until usage to preserve natural teeth hydration.

- Teeth will be radiographed using a conventional periapical radiograph

- According to radiograph, only Mesiobuccal canals with a 25°-40° degree curvature according to Schneider’s method and with a fully formed apices will be used in this study.

- Teeth will be flattened to obtain a standard root length of approximately 15 mm.

- The canals will be irrigated with Saline during instrumentation; 3 ml between each subsequent file size change.

- After preparation the canals will be dried with paper points.
- 15mm of the mesiobuccal canal only will be used and the distal root will be removed by a TF-13 stone. (MANI, Japan)

Samples will be divided into 2 equal groups:

- Group A: Samples will be prepared by OneCurve.
- Group B: Samples will be prepared by ProTaper Next.

Shaping ability of the suggested groups will be assessed by the percentage of the touched and the untouched walls.

- A custom-made brass mold will be constructed for embedding of teeth in resin blocks to standardize the photographs and facilitate the cutting and re-assembling procedures. The placement of the teeth in the uncured resin will be guided by a parallelogrameter to ensure that the long axis of the tooth is parallel to the long axis of the mold until setting.

After epoxy resin polymerization, all the blocks will be marked with a 0.5 indelible ink red marker at the determined apical, middle and coronal levels (3, 6, 9 mm from the apex respectively) as reference for sectioning using ISOMET™.

- A stereo microscope will be used to magnify and photograph the coronal aspect of each of the three sections (apical, middle and coronal) before and after instrumentation under a 16X magnification.

- After taking the post-instrumentation images and converting them to a JPEG format, a complete analysis will be made using the AutoCAD Software (Autodesk, CA, USA) to assess the surface area of the touched and the untouched walls in each group.

- Teeth will be post-operatively radiographed to assess the straightening of the canals after instrumentation which will be assessed by Schneider's method for each intervention group.

Troubleshooting

Reassembling the teeth is the process that could have some difficulties, and using a proper brass mould with tight corners can help avoiding any error while reassemblin.
Time Taken
Around a year.

Anticipated Results
Null hypothesis

References
1. **Saberi E, Farhad-Mollashahi N, Bijari S, Daryaeian M.** Comparative Evaluation of Root Canal Transportation by Three NiTi Single-File Systems in Curved Canals: A Cone Beam Computed Tomography Study. Int.J.Dent [Cited 2018 Dec 16th]:1-6 available from: http://www.ncbi.nlm.nih.gov/pubmed/29861728

2. **Mamede-Neto I, Borges AH, Guedes OA, de Oliveira D, Pedro FLM, Estrela C.** Root Canal Transportation and Centering Ability of Nickel-Titanium Rotary Instruments in Mandibular Premolars Assessed Using Cone-Beam Computed Tomography. Open Dent J [Internet]. 2017 Feb 14 [cited 2018 Dec 16];11(1):71–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28357000

3. **Gu Y, Kum K-Y, Perinpanayagam H, Kim C, Kum DJ, Lim S-M, et al.** Various heat-treated nickel-titanium rotary instruments evaluated in S-shaped simulated resin canals. J Dent Sci [Internet]. 2017 Mar 1 [cited 2018 Dec];12(1):14–20. Available from: https://www.sciencedirect.com/science/article/pii/S1991790216300289

4. **Saleh AM, Vakili Gilani P, Tavanafar S, Schäfer E.** Shaping Ability of 4 Different Single-file Systems in Simulated S-shaped Canals. J Endod [Internet]. 2015 Apr [cited 2018 Dec 16];41(4):548–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25576206

5. OneCurve - MICROMEGA [Internet].[cited 2018Dec16]. Available from: https://micromega.com/shaping/one-curve?lang=en
6. Specialist YE. One Shape. M Icro Mega. :1–24.

7. **Saber SEDM, Nagy MM, Schäfer E.** Comparative evaluation of the shaping ability of ProTaper Next, iRaCe and Hyflex CM rotary NiTi files in severely curved root canals. Int Endod J [Internet]. 2015 Feb [cited 2018 Dec 16];48(2):131–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24697590

8. **Goo H-J, Kwak SW, Ha J-H, Pedullà E, Kim H-C.** Mechanical Properties of Various Heat-treated Nickel-titanium Rotary Instruments. J Endod [Internet]. 2017 Nov [cited 2018 Dec 16];43(11):1872–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28951028

9. **Elnaghy AM, Elsaka SE.** Cyclic Fatigue Resistance of One Curve, 2Shape, ProFile Vortex, Vortex Blue, and RaCe Nickel-Titanium Rotary Instruments in Single and Double Curvature Canals. J Endod [Internet]. [Cited 2018 Dec 16];44(11):1725-30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30409450

10. **Ranya Eleman, José A. Capelas and Manuel F. Vieira.** Effect of Repeated use on Topographical Features of ProTaper Next Endodontic Rotary File. Page 448 Journal of International Oral Health 2016 Doi: 10.2047/jioh-08-04-07

11. **Ertas H, Capar ID.** An in vitro analysis of separation of multi-use ProTaper Universal and ProTaper Next instruments in extracted mandibular molar teeth. Scanning 2015;37(4):270-6.

12. **Pedullà E, Lo Savio F, Boninelli S, Plotino G, Grande NM, Rapisarda E, et al.** Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - Titanium instruments. Int Endod J
13. **Sattapan B, Nervo GJ, Palamara JE, Messer HH.** Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26(3):161-5.

14. **Elnaghy AM.** Cyclic fatigue resistance of ProTaper Next nickel-titanium rotary files. Int Endod J 2014;47(11):1034-9.

15. **Pirani C, Cirulli PP, Chersoni S, Micle L, Ruggeri O, Prati C.** Cyclic fatigue testing and metallographic analysis of nickel-titanium rotary instruments. J Endod 2011;37(7):1013-6.

16. **Ranya Eleman, José A. Capelas and Manuel F. Vieira.** Studying the topographic changes in ProTaper Next endodontic rotary file by Scanning Electron Microscopy (SEM). Page 1 Microscopy Society of America 2016 doi:10.1017/S1431927616000350

17. **Jorge Rubio, José Ignacio Zarzosa, Antonio Pallarés.** Comparison of Shaping Ability of 10 Rotary and Reciprocating Systems: an In Vitro Study with AutoCAD. Acta stomatol. Croat. 2017;51(3):207-216. DOI: 10.15644/asc51/3/4

18. **Troian CH, Só MVR, Figueiredo JAP, Oliveira EPM.** Deformation and fracture of RaCe and K3 endodontic instruments according to the number of uses. Int Endod J 2006; 39:616-625.
19. **Sam W. Schneider, D.D.S., Austin, Texas.** A comparison of canal preparations in straight and curved root canals Oral Surgery, Oral Medicine, Oral Pathology Volume 32, Issue 2, August 1971, Pages 271-275

20. **Habiba Suleiman Madjapa, Irene Kida Minja.** Root canal morphology of native Tanzanian permanent mandibular molar teeth. PanAfrican Medical Journal Published: 12/09/2018

21. **Cangül Keskin, Evren Sariyilmaz, Murat Demiral.** Shaping ability of Reciproc Blue reciprocating instruments with or without glide path in simulated S-shaped root canals. J Dent Res Dent Clin Dent Prospect 2018; 12(1):63-67 | DOI: 10.15171/joddd.2018.010

22. **Aida Rene Assayag Hanan, Daniely Amorin de Meireles, Emílio Carlos Sponchiado Júnior, Simone Hanan, Milton Carlos Kuga, Idomeo Bonetti Filho** Surface Characteristics of Reciprocating Instruments Before and After Use - A SEM Analysis Brazilian Dental Journal (2015) 26(2): 121-127 ISSN 0103-6440 http://dx.doi.org/10.1590/0103-6440201300208

Acknowledgements

- **Prof. Dr. Nehal Thabet (Main Supervisor)**
 - Affiliation: Professor of Endodontics, Faculty of Dentistry, Cairo University.
 - Role: Chief supervisor.

- **Dr. Sherif El-Khodary (Co-supervisor)**
 - Affiliation: Lecturer of Endodontics, Faculty of Dentistry, Cairo University.
• Role: Co-supervisor.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
Protocol 1.docx
Comparison of Shaping Ability of 10 Rotary and Reciprocating Systems: an In Vitro Study with AutoCAD
by Jorge Rubio, José Ignacio Zarzao, Antonio Pallarés
Acta Stomatologica Croatica (03 October, 2017)