Belle CP violation in $b \to sq\bar{q}$ and $u\bar{u}d$ processes

C.C.Wang
Department of Physics, National Taiwan University,
No. 1, Sec. 4, Roosevelt Rd, Taipei, Taiwan, 106, R.O.C.

We report the analysis of time-dependent CP violation in neutral B meson system using a data sample corresponding to $140 fb^{-1}$ collected by Belle detector and KEKB e^+e^- collider. One B meson decaying into CP eigenstate is fully reconstructed and the accompanying B meson flavor is identified by its decay products. The CP violation parameters are determined from the distribution of proper time intervals between the two B decays. Here we cover measurements of CP violation in $b \to u\bar{u}d$ and $b \to sq\bar{q}$ processes.

1 Introduction

In the standard model (SM) of elementary particles, CP violation arises from the Kobayashi-Maskawa (KM) phases in weak interaction quark-mixing matrix. In particular, the SM predicts CP asymmetries in the time-dependent rates for B^0 and $\bar{B^0}$ decays to a common CP eigenstate.

We report the time dependent studies of $B^0 \to \pi^+\pi^-$, $B^0 \to \phi K_S$, $B^0 \to K^+K^-K_S^0$, and $B^0 \to \eta'K_S^0$. The $B^0 \to \pi^+\pi^-$ decay is sensitive to the CP-violation parameter ϕ_2 which is dominated by $b \to u\bar{u}d$ transition. Direct CP violation may also occur in this decay because of interference between $b \to u$ tree (T) and $b \to d$ penguin (P) amplitudes. For the charmless decays of $B^0 \to \phi K_S$, $B^0 \to K^+K^-K_S^0$, and $B^0 \to \eta'K_S^0$ which is mediated by $b \to sss$, suu, and sdd transitions are sensitive to new CP-violation phases from physics beyond the SM.

2 Time-dependent CP violation at Belle

The Belle detector is a large-solid-angle general purpose spectrometer that consists of a silicon vertex detector (SVD), a central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), time-of-flight scintillation counter (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides
1.5 T magnetic field. An iron flux return located outside the coil is instrumented to detect K^0_L mesons and identify muons.

The Belle detector collects the data at the KEKB asymmetric-energy e^+e^- collider, in which 8.0 GeV e^- collides with 3.5 GeV e^+ at the $\Upsilon(4S)$ resonance. The $\Upsilon(4S)$ is produced with a Lorentz boost of $\beta\gamma = 0.425$ nearly along the electron beamline (z). In the decay chain $\Upsilon(4S) \rightarrow B^0\bar{B}^0 \rightarrow f_{CP}f_{\text{tag}}$, where one of the B mesons at time t_{CP} decays to the final state f_{CP} and the accompanying B decays at time t_{tag} decays to the final state f_{tag} which distinguishes between B^0 and \bar{B}^0. The decay rate has a time dependence given by

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{\text{tag}}}}{4\tau_{\text{tag}}} \left\{ 1 + q \cdot \left[\sin(\Delta m_d \Delta t) + \cos(\Delta m_d \Delta t) \right] \right\},$$

where τ_{tag} is the B^0 lifetime, Δm_d is the mass difference between the two B^0 mass eigenstates, $\Delta t = t_{CP} - t_{\text{tag}}$, and the b-flavor charge $q = +1$ (-1) when accompanying B meson is a B^0 (\bar{B}^0). S and A are mixing-induced and direct CP-violation parameters, respectively. Since B^0 and \bar{B}^0 are approximately at rest in the $\Upsilon(4S)$ center-of-mass system (cms), Δt can be determined from the displacement of z between the two B mesons: $\Delta t \simeq (z_{CP} - z_{\text{tag}})/\beta\gamma c \equiv \Delta z/\beta\gamma c$.

3 Time-dependent CP-violation Analysis

3.1 Event Extraction

For reconstruction of $B^0 \rightarrow \pi^+\pi^-$ candidates, we use the oppositely charged track pairs which are identified as pions to form the B meson. The reconstruction of $B^0 \rightarrow \phi K_S^0$, $B^0 \rightarrow K^+K^-K_S^0$, and $B^0 \rightarrow \eta'K_S^0$ events from the following intermediate meson decay chains: $\eta' \rightarrow \rho^0(\rightarrow \pi^+\pi^-)\gamma$, or $\eta' \rightarrow \pi^+\pi^-\eta(\rightarrow \gamma\gamma)$, $K_S^0 \rightarrow \pi^+\pi^-$, and $\phi \rightarrow K^+K^-$. Candidate $K_S^0 \rightarrow \pi^+\pi^-$ and $\phi \rightarrow K^+K^-$ decays are selected with the same criteria as those used for the previous branching fraction measurement. The K^+K^- pairs are rejected if they are consistent with $D^0 \rightarrow K^+K^-$, $\chi_{c0} \rightarrow K^+K^-$, or $J/\psi \rightarrow K^+K^-$ decays. $D^+ \rightarrow K_S^0K^+$ candidates are also removed. We also applied the same selection criteria for $B^0 \rightarrow \eta'K_S^0$ as our previous analysis. The pion and kaon identification are according to the combined information from ACC and the CDC dE/dx measurements.

Candidate B mesons are reconstructed using the energy difference $\Delta E \equiv E_{B}^{\text{cms}} - E_{\text{beam}}^{\text{cms}}$ and the beam-constraint mass $M_{\text{bc}} \equiv \sqrt{(E_{\text{beam}}^{\text{cms}})^2 - (p_B^{\text{cms}})^2}$, where $E_{\text{beam}}^{\text{cms}}$ is the cms beam energy, and E_{B}^{cms} and p_B^{cms} are the cms energy and momentum of the B candidate. The signal region for $B^0 \rightarrow \pi^+\pi^-$ is defined as $|\Delta E| < 0.064$ GeV, and 5.271 GeV/c$^2 < M_{\text{bc}} < 5.287$ GeV/c2. The definition for $B^0 \rightarrow \phi K_S^0$, $B^0 \rightarrow K^+K^-K_S^0$, $B^0 \rightarrow \eta' (\rightarrow \rho\gamma)K_S^0$, and $B^0 \rightarrow \eta' (\rightarrow \pi^+\pi^-\eta)K_S^0$ are $|\Delta E| < 0.06$ GeV, $|\Delta E| < 0.04$ GeV, $|\Delta E| < 0.06$ GeV, and $-0.1\text{GeV} < \Delta E < 0.08$ GeV all with 5.27 GeV/c$^2 < M_{\text{bc}} < 5.29$ GeV/c2.

In order to suppress the $e^+e^- \rightarrow q\bar{q}$ continuum background ($q = u, d, s, c$), we form the signal and background likelihood function, L_s and L_{BG}, from the event topology, and apply the likelihood ratio selection on the reconstructed candidates.

3.2 Flavor Tagging

The flavor of the accompanying B meson is identified from inclusive properties of particles that are not associated with the reconstructed CP side decay, the same as Belle $\sin2\phi_1$ measurement. We used two parameters, q and r, to represent the tagging information. The first, q, is already defined in Eq. 1. The parameter r is and event-by-event, MC-determined flavor-tagging dilution factor that ranges from $r = 0$ for no flavor discrimination to $r = 1$ for unambiguous flavor assignment. It is used only to sort data into six r intervals. The wrong tag fraction for the six
r intervals, w_l ($l = 1, 6$), and difference between B^0 and \bar{B}^0 decays, Δw_l are determined from the data.

3.3 Vertex Reconstruction

The decay vertices of B^0 meson are reconstructed using tracks that have enough SVD hits. The vertex position for the f_{CP} decay is reconstructed using charged tracks, and the tracks from the K^0_S decays are excluded. The f_{tag} vertex is determined using charged tracks except those used for f_{CP} and tracks that form a K^0_S or a Λ candidate. Each vertex position is constrained by the interaction point profile with average transverse B meson decay length smearing.

3.4 Event Distribution Function

We got 373, 106, 361, and 421 events in the signal box for $B^0 \rightarrow \pi^+\pi^-$, $B^0 \rightarrow \phi K_S$, $B^0 \rightarrow K^+K^-K^0_S$, and $B^0 \rightarrow \eta'K^0_S$ decays respectively. We determined event distribution function in the $\Delta E - M_{bc}$ plane for both signal and background to do the signal purity estimation.

Figure 1 shows the ΔE distribution for the $B^0 \rightarrow \pi^+\pi^-$ candidates are in M_{bc} signal region. The background contains the continuum $q\bar{q}$, $K\pi$, and charmless three-body B decay events. Figure 2 shows the M_{bc} distribution for $B^0 \rightarrow \phi K_S$, $B^0 \rightarrow K^+K^-K^0_S$, and $B^0 \rightarrow \eta'K^0_S$ in ΔE signal region. The background is dominated by continuum $q\bar{q}$ events.

3.5 Maximum-likelihood Fit

The time-dependent CP violation parameters, S and A, are determined by performing an unbinned maximum-likelihood fit. The probability density function (PDF) expected for the signal distribution is given by Eq. 1 modified to incorporate the effect of incorrect flavor assignment. The distribution is convolved with the proper-time interval resolution function R_{sig}. A small component of broad outliers in the Δz distribution is represented by $P_d(\Delta t)$. The
Figure 2: The beam-energy constrained mass distribution for (a) $B^0 \rightarrow \phi K_S$, (b) $B^0 \rightarrow K^+ K^- K_S$, and (c) $B^0 \rightarrow \eta' K_S$ within ΔE signal region. The dashed curve show the background contributions and the solid curve shows the fit to signal plus background distribution.

likelihood for each event is determined from following PDF:

$$P_i(\Delta t_i; S, A) = (1 - f_{ol}) \int_{-\infty}^{\infty} f_{\text{sig}} P(\Delta t', q, w_l, \Delta w_l) R_{\text{sig}}(\Delta t_i - \Delta t') d(\Delta t') + (f_{\text{bkg}}) P_{\text{bkg}}(\Delta t') R_{\text{bkg}}(\Delta t_i - \Delta t') d(\Delta t'),$$ (2)

where f_{ol} is the outlier fraction and f_{sig} (f_{bkg}) is the event-by-event signal (background) probability depends on r, ΔE and M_{bc}. $P_{\text{bkg}}(\Delta t)$ and R_{bkg} are the background PDF and resolution function. The only free parameters in the final fit are S and A, which are determined by maximizing the likelihood function

$$L = \prod_i P_i(\Delta t_i; S, A),$$ (3)

where the product is over all events.

4 Result

4.1 $B^0 \rightarrow \pi^+ \pi^-$

After the unbinned maximum-likelihood fit we got $S = -1.00 \pm 0.21$ (stat.) ± 0.07 (syst.) and $A = +0.58 \pm 0.15$ (stat.) ± 0.07 (syst.). Figure 3 shows the result. The statistical significance is determined from the Feldman-Cousins frequentist approach. Figure 4 shows the resulting two-dimensional confidence regions in S and A plane. We have 5.2σ significance for CP violation.
and 3.2σ significance for direct CP violation. If the source of CP violation is only due to $B - \bar{B}$ mixing or $\Delta B = 2$ transitions so called as super-weak scenarios, then the statistical significance for $(S, A) = (\sin 2\phi_1, 0)$ is 3.3σ.\cite{13, 14}

The range of ϕ_2 that corresponds to the 95.5% confidence level (CL) for S and A in Figure 4 is $90^\circ \leq \phi_2 \leq 146^\circ$ with $\sin 2\phi_1 = 0$. This result is in agreement with constraints on the unitary triangle from other indirect measurements. The 95.5% CL region for S and A excludes $|P/T| < 0.17$.

4.2 $B^0 \to \phi K_S$, $B^0 \to K^+ K^- K_S^0$, and $B^0 \to \eta' K_S^0$

After the unbinned maximum-likelihood fit we got $S = -0.96 \pm 0.50$ (stat.) ± 0.11 (syst.), $A = -0.15 \pm 0.29$ (stat.) ± 0.07 (syst.) for $B^0 \to \phi K_S$ decay, $S = -0.51 \pm 0.26$ (stat.) ± 0.05 (syst.) ± 0.00, $A = -0.17 \pm 0.16$ (stat.) ± 0.04 (syst.) for $B^0 \to K^+ K^- K_S^0$, and $S = +0.43 \pm 0.27$ (stat.) ± 0.05 (syst.), $A = -0.01 \pm 0.16$ (stat.) ± 0.04 (syst.) for $B^0 \to \eta' K_S^0$, while the third error for $K^+ K^- K_S^0$ mode arises from the uncertainty in the fraction of the CP-odd component. Figure 5 shows the result. Based on Feldman-Cousins frequentist approach, we get 3.5σ statistical significance of the observed deviation from the SM in $B^0 \to \phi K_S$.\cite{12}

References

1. M. Kobayashi and T. Maskawa, Prog. Theor. Phys., 49, 652 (1973).
2. A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981); I. I. Bigi and A. I. Sanda, Nucl. Phys. B 193, 85 (1981).
Figure 4: Confidence regions for S and A.

Figure 5: (a) The asymmetry, in each Δt bin for $B^0 \rightarrow \phi K_S$ with $0 < r \leq 0.5$, (b) with $0.5 < r \leq 1.0$, (c) $B^0 \rightarrow K^+ K^- K_S^0$ with $0 < r \leq 0.5$, (d) with $0.5 < r \leq 1.0$, (e) $B^0 \rightarrow \eta' K_S^0$ with $0 < r \leq 0.5$, and (f) with $0.5 < r \leq 1.0$, respectively. In (b) through (g), the solid curves show the result of the unbinned maximum-likelihood fit. The dashed curves show the SM expectation with $\sin^2 \phi_1 = +0.731$ and $|\lambda| = 1$.
3. M. Gronau, *Phys. Rev. Lett.* **63**, 1451 (1989); D. London and R. Peccei, *Phys. Lett.* B **223**, 257 (1989).

4. S. Kurokawa and E. Kikutani, *Nucl. Instrum. Methods* A **499**, 1 (2003).

5. Belle collaboration, A. Abashian et al, *Nucl. Instrum. Methods* A **479**, 117 (2002).

6. Y. Grossman and M. P. Worah, *Phys. Lett.* B **395**, 241 (1997).

7. Belle collaboration, K.-F. Chen and A. Bozek et al, *Phys. Rev. Lett.* **91**, 201801 (2003).

8. Belle collaboration, K.-F. Chen and K. Hara et al, *Phys. Lett.* B **546**, 196 (2002).

9. Belle collaboration, K. Abe. *et al*, hep-ex/0401029

10. Belle collaboration, K. Abe. *et al*, *Phys. Rev. Lett.* **91**, 261602 (2002).

11. Belle collaboration, K. Abe. *et al*, hep-ex/0308036

12. G. J. Feldman and R. D. Cousins, *Phys. Rev.* D **57**, 3873 (1998).

13. I. I. Bigi, *Phys. Lett.* B **535**, 155 (2002).

14. L. Wolfenstein and F. Wu, *Europhys. Lett.* **58**, 49, (2002).

15. M. Gronau and J. L. Rosner, *Phys. Rev.* D **65**, 093012 (2002).

16. Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag

17. K. R. Schubert, to appear in the Proceedings of the XXI International Symposium on Lepton and Photon Interactions at High Energies, Aug.11-16, 2003, Fermilab, Illinois, USA.