Case Report

Lingual Thyroid: Case report and brief review of the literature✩

Thomas Fakadej, BSa, Aneri B Balar, MDb, Srijarsha Kota, DOb, Dhairya A. Lakhani, MDb, Joe T Joseph, MDc,∗

aWest Virginia University School of Medicine, Morgantown, WV, USA
bDepartment of Radiology, West Virginia University, Morgantown, WV, USA
cDepartment of Neuroradiology, West Virginia University, Morgantown, WV, USA

ABSTRACT

Lingual thyroid is by far the most common presentation of ectopic thyroid. Though mostly asymptomatic it is associated with congenital hypothyroidism and importantly, absence of orthotopic thyroid making it the only functional thyroid tissue a patient has in many cases. It appears indistinguishable to orthotopic thyroid tissue on imaging, with avid homogeneous enhancement on contrast computed tomography. Here we report clinical presentation and imaging findings of lingual thyroid in a 38-year-old man.

© 2022 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Background

Lingual thyroid is usually described as ectopic thyroid tissue in the midline of the base of the tongue between the circumvallate papillae and the epiglottis [1,2]. Its prevalence is approximately 1 in 100,000 which increases to 1 in 4000 in patients with thyroid disease [3]. Most ectopic thyroids are asymptomatic but dysphagia, dysphonia, cough, snoring, sensation of foreign body, sleep apnea, bleeding and dyspnea have all been reported [4,5]. Ectopic thyroid glands frequently present as congenital hypothyroidism with hypoplasia of the thyroid gland accompanying the ectopia in the majority of cases. This accounts for 40%-45% of permanent congenital hypothyroidism in iodine-sufficient countries [6]. Hypothyroidism has been found in 61.9% of ectopic thyroid patients and ranges from 14.5% to 70% in lingual thyroid patients [7–10]. A more serious concern is thyroid carcinoma which

Abbreviation: CT, computed tomography; MRI, magnetic resonance imaging; US, ultrasound; FNAC, fine needle aspiration cytology; TIA, transient ischemic attack; TSH, thyroid stimulating hormone; Tc-99m, Technetium 99m; MR, magnetic resonance; SPECT, single-photon emission computed tomography.

✩ Competing Interests: There are no financial or personal relationships with other people or organizations to declare that would inappropriately influence this work.

∗ Corresponding author.

E-mail address: jjoseph@hsc.wvu.edu (J.T. Joseph).

http://dx.doi.org/10.1016/j.radcr.2022.10.059

1930-0433/© 2022 The Authors. Published by Elsevier Inc. on behalf of University of Washington. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
is a rare complication of lingual thyroids with only 51 cases reported between 1910 and 2016; papillary carcinoma being the most common [11].

Treatment depends on the symptoms, size, or complications such as hemorrhage [12]. Thyroxine is used to suppress and reduce the growth of the tissue in cases with mild symptoms as well as treat concurrent hypothyroidism [12]. If suppression is not effective for relief surgical resection or iodine-131 ablation could be considered [13]. In asymptomatic and euthyroid patients continued follow-up is suggested to monitor for any developing complications [5]. Scintigraphy is vital at determining not only the location of the ectopic thyroid tissue but any other functional thyroid tissue. This is an important consideration for surgery as 70% of patient with lingual thyroids have an absence of orthotopic thyroid tissue, thyroid in the normal position in the body [14]. Computer tomography (CT), ultrasound (US), and magnetic resonance imaging (MRI) all have utility in determining the location and extension of ectopic tissue. While, a fine needle aspiration cytology plays a role in confirming the diagnosis and differentiating between benign and malignant tissue [5].

Here, we present a case of a 38-year-old man with a diagnosis of lingual thyroid.

Case presentation

A 38-year-old male with a past medical history of congenital hypothyroidism (on levothyroxine) presented to our hospital for blurred vision direct from an outpatient office. He was evaluated by neurology for transient ischemic attack episode.

CT angiograms of intracranial and extracranial structures with and without contrast were ordered for further workup. The findings on the intracranial CT angiogram were unremarkable. The extracranial CT did not reveal any significant atherosclerotic disease, stenosis or occlusion of the large vessels. However, incidentally, a 1.0 cm x 1.0 cm x 1.2 cm homogeneously enhancing mass at the base of the tongue was noted, on arterial phase of the examination (Fig. 1). No thyroid tissue was visible on either side at the level of the thyroid cartilage (showed in Fig. 2). Findings were compatible with ectopic lingual thyroid.

The thyroid gland tissue is derived from endodermal cells from the foregut which normally start migrating from the foramen cecum, at the posterior of the tongue, by day 24 of development, forming the thyroglossal duct as it travels caudally. It descended anteriorly to the developing hyoid bone, then travels inferiorly and posteriorly around the hyoid bone. It continues to its orthotopic position anterior to the thyrohyoid membrane and thyroid cartilage where it stops migrating at day 45-50 of development [15,16]. While ectopic thyroids can be found all along the path of descent at the hyoid bone, midline infrahyoid neck and more rarely the lateral neck, the lingual location represents 90% of the cases [16,17]. Rarer cases have shown intratracheal, intrathoracic and intracardial thyroid [5].

Most ectopic thyroid tissue is asymptomatic with its discovery on imaging is frequently incidental [18]. In fact in a study looking at 200 autopsies found 10% of individuals had lingual thyroid tissue ranging from microscopic to 1 cm indicating how common the condition could be [19]. Intuitively, ectopic thyroid gland tissue will be indistinguishable to orthotopic thyroid gland tissue on imaging, though differently shaped [16].

Scintigraphy may not have the resolution of CT or MRI, however it allows for the identification of ectopic thyroid foci.
The pseudosolid thyroid, either adjacent to or pathologic, can be assessed by various imaging modalities. Among these, US and iodine-131 scintigraphy are frequently utilized. US appears useful in localizing ectopic tissue, especially when the mass is well-circumscribed and echogenic, allowing for better spatial and contrast resolution compared to iodine-131 imaging. However, US may not be definitive, as the uptake of iodine-131 can be increased in areas with inflammation, benign tumors, or malignant tumors. False-positives in US can be reduced by the addition of single-photon emission computed tomography imaging.

The primary benefit of US has been reported as determining the precise location and anatomy of ectopic tissue, which is useful in guiding fine needle aspiration for confirmation of diagnosis. US can also be effective in identifying small masses. However, US may not be as sensitive as iodine-131 imaging in differentiating between ectopic thyroid tissue and thyroglossal duct cysts. Iodine-131 uptake can be visualized as a distinct area, which can help differentiate between these structures.

When considering improved assessment, colored doppler was found to have a higher sensitivity than gray scale US for detecting ectopic thyroid tissue, with increased color flow signal seen in the ectopic areas that decreased with thyroid hormone replacement.

Similarly to US, CT scan and MRI are useful in determining the location, particularly when distant from the normal path of descent of the thyroid and extension of ectopic tissue, which is helpful in pre-surgical planning. These imaging modalities are also beneficial in assessment when US is not able to identify orthotopic thyroid or when the radioactive uptake in ectopic thyroid tissue is masked by uptake in the normal thyroid. Ectopic thyroid tissue on CT appears indistinguishable from orthotopic thyroid tissue except for the positioning and bilobed shape. The ectopic thyroid tissue is homogeneous, well-circumscribed, and avidly enhancing on contrast CT, due to vascularity. On CT without contrast, the tissue had mildly increased attenuation compared to adjacent muscle due to iodine content, at approximately 70 HU ± 10. A downside of CT scanning is that the use of iodinated contrast means iodine-based scintigraphy cannot be performed within 6 weeks due to contrast uptake in the thyroid. Ectopic thyroid tissue, on T1-weighted MR images appears as a rounded mass iso- to mildly hyperintense relative to muscle. This tissue appears mildly hyperintense and variably enhanced with gadolinium contrast on T2-Weighted MR images.

Other diagnoses to consider include a lingual thyroglossal duct cyst which, in contrast to a lingual thyroid, would have a well-circumscribed thin wall with possible rim enhancement on CT scan. The MRI would show low signal intensity on T1 weighted-sequences and high signal intensity on T2 weighted-sequences. It should be noted that ectopic tissue is found in <5% of thyroglossal duct cyst walls. If the thyroglossal duct cyst were to appear nodular malignancy should be assessed. Other cysts on the differential include: branchial cleft cyst, which would normally be found
between the sternocleidomastoid muscle and submandibular gland, dermoid cysts, which have a high fat content in contrast to thyroglossal duct cysts, and epidermoid cyst, which have diffusion restriction [16]. A lingual abscess would reveal a central hypointensation with thick enhancing rim on CT along with clinical symptoms [16]. Lymphatic malformations would have hypointensating multilocular masses on CT and possibly present with swelling [16]. In contrast to lingual thyroid, squamous cell carcinomas of the tongue would be seen with heterogenic, only moderately enhancing tumors with poorly-defined borders on contrast CT. The T1-signal intensity will depend on the fat content of the tumor with higher fat leading to lower intensity [32].

The patient presented with the typical lingual thyroid incidentally found on imaging with congenital hypothyroidism, though less typical, the patient was male as the incidence lingual thyroid favors women in a ratio 4:1 [33]. Biopsy or scintigraphy could be used to confirm lingual thyroid but with the classic imaging findings of a homogeneously enhancing mass in the most common location for ectopic lingual thyroid is the most likely diagnosis. Further support for this diagnosis is the lack of an orthotopic thyroid gland on imaging which would be expected in alternative diagnoses and, again, hypothyroidism which is common in patients with a lingual thyroid. The most common differential diagnosis, thyroglossal duct cyst, would have a thin wall and rim enhancement not seen in this case. A malignant process would more likely show heterogeneity of enhancement and less-well-defined borders. While scintigraphy would be more specific for a lingual thyroid diagnosis, incidental finding on CT is likely more common and so this case’s findings have utility in community practice. The lack of a lingual thyroid seen on laryngoscopy further shows imaging’s place in the diagnosis of this condition. The case demonstrates the importance of recognizing ectopic thyroid on imaging since for most patients with lingual thyroid it represents the only thyroid tissue and if removed without consideration could lead to the loss of all functional thyroid tissue.

Patient consent

Consent was obtained for the publication of current case. No patient identifiers disclosed.

Written informed consent for publication of this case was obtained from the patient and is available upon request.

Acknowledgments

This work was supported by Resident managed peer-mentorship program at West Virginia University. Lakhanji DA, Swayne KJ, Hogg JP. “Resident Managed Peer-Mentoring Program”: A Novel Way to Engage Medical Students and Radiology Residents in Collaborative Research. Acad Radiol. 2021 Dec 1:S1076-6332(21)00531-6. doi:10.1016/j.acra.2021.11.004.

REFERENCES

[1] Weider DJ, Parker W. Lingual thyroid: review, case reports, and therapeutic guidelines. Ann Otol Rhinol Laryngol 1977;86(6 Pt 1):841–8. doi:10.1177/00034894778606021.

[2] Kalan A, Turiq M. Lingual thyroid gland: clinical evaluation and comprehensive management. Ear Nose Throat J 1999;78(5):340–1 345–349.

[3] SCHILLING JA, KARR JW, HURSH JB. The treatment of a lingual thyroid with radioactive iodine. Surgery 1950;27(1):130–8 illus.

[4] Toso A, Colombani F, Averno G, Aluffi P, Pia F. Lingual thyroid causing dysphagia and dyspnoea. Case reports and review of the literature. Acta Otorhinolaryngol Ital 2009;29(4):213–17.

[5] Neoussis G, Anagnostis P, Goulis DG, Lappas D, Natsis K. Ectopic thyroid tissue: anatomical, clinical, and surgical implications of a rare entity. Eur J Endocrinol 2011;165(3):375–82. doi:10.1530/EJE-11-0461.

[6] Abduljabbar MA, Affi AM. Congenital hypothyroidism. J Pediatr Endocrinol Metab 2012;25(1-2):13–29. doi:10.1515/jpem.2011.408.

[7] Yoon JS, Won KC, Cho HI, Lee JT, Lee HW. Clinical characteristics of ectopic thyroid in Korea. Thyroid 2007;17(11):1117–21. doi:10.1089/thy.2007.0004.

[8] Montgomery ML. Lingual thyroid—a comprehensive review. West J Surg 1936;44:237–47.

[9] Neinas FW, Gorman CA, Devine KD, Woolner LB. Lingual thyroid. Clinical characteristics of 15 cases. Ann Intern Med 1973;79(2):205–10. doi:10.7326/0003-4819-79-2-205.

[10] Baughman RA. Lingual thyroid and lingual thyroglossal tract remnants. A clinical and histopathologic study with review of the literature. Oral Surg Oral Med Oral Pathol 1972;34(5):781–99. doi:10.1016/0030-4220(72)90296-4.

[11] Sturniolo G, Violi MA, Galletti B, Baldari S, Campenni A, Vermiglio F, et al. Differentiated thyroid carcinoma in lingual thyroid. Endocrine 2016;51(1):189–98. doi:10.1007/s12020-015-0593-y.

[12] Kansal P, Sakati N, Rifa'i A, Woodhouse N. Lingual thyroid. Diagnosis and treatment. Arch Intern Med 1987;147(11):2046–8.

[13] Batsakis JG, El-Naggar AK, Luna MA. Thyroid gland ectopias. Ann Otol Rhinol Laryngol 1996;105(12):996–1000. doi:10.1177/000348949610501212.

[14] WATERS ZJ, MCCULLOUGH K, THOMAS NR. Lingual thyroid; historical data, developmental anatomy, and report of a case. AMA Arch Otolaryngol 1953;57(1):60–78. doi:10.1001/archotol.1953.0070030077007.

[15] De Felice M, Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 2004;25(5):722–46. doi:10.1210/er.2003-0028.

[16] Zander DA, Smoker WR. Imaging of ectopic thyroid tissue and thyroglossal duct cysts. Radiographics 2014;34(1):37–50. doi:10.1148/rg.341135055.

[17] NOYEK AM, Friedberg J. Thyroglossal duct and ectopic thyroid disorders. Otolaryngol Clin North Am 1981;14(1):187–201.

[18] Alhay C, Erdogan N, Karasu S, Uluc E, Saralimaz A, Mete B, et al. CT and MRI findings of developmental abnormalities and ectopia varieties of the thyroid gland. Diagn Interv Radiol 2012;18(4):335–43. doi:10.4261/1305-3825.DIR.4913-11.2.

[19] Sauk JJ. Ectopic lingual thyroid. J Pathol 1970;102(4):239–43. doi:10.1002/path.1711020408.

[20] Guerra G, Cinelli M, Mesolella M, Tafuri D, Roccia A, Amato B, et al. Morphological, diagnostic and surgical features of ectopic thyroid gland: a review of literature. Int J Surg 2014;12(Suppl 1):S3–11. doi:10.1016/j.ijsu.2014.05.076.
Carlson C, Babcock DS, Chang YW, Marinovic S, Oh JS, Aktolun C, Demir H, Berk F, Metin Kir K. Diagnosis of complete ectopic lingual thyroid with Tc-99m pertechnetate scintigraphy. Clin Nucl Med 2001;26(11):933–5. doi: 10.1097/00003072-200111000-00009.

Oh JR, Ahn BC. False-positive uptake on radiiodine whole-body scintigraphy: physiologic and pathologic variants unrelated to thyroid cancer. Am J Nucl Med Mol Imaging 2012;2(3):362–8.

Oh JR, Byun BH, Hong SP, Chong A, Kim J, Yoo SW, et al. Comparison of ¹³¹I whole-body imaging, ¹¹¹In SPECT/CT, and ¹⁸F-FDG PET/CT in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging 2011;38(8):1459–68. doi: 10.1007/s00259-011-1809-x.

Marinovic D, Garel C, Czernichow P, Léger J. Ultrasonographic assessment of the ectopic thyroid tissue in children with congenital hypothyroidism. Pediatr Radiol 2004;34(2):109–13. doi: 10.1007/s00247-003-1043-1.

Chang YW, Hong HS, Choi DL. Sonography of the pediatric thyroid: a pictorial essay. J Clin Ultrasound 2009;37(3):149–57. doi: 10.1002/jcu.20555.

Babcock DS. Thyroid disease in the pediatric patient: emphasizing imaging with sonography. Pediatr Radiol 2006;36(4):299–308 quiz 372–293. doi: 10.1007/s00247-005-0062-5.

Carlson S, Campbell L, Janitz E. Ectopic thyroid tissue presenting as a new neck mass in a pediatric patient. Radiol Case Rep 2019;14(1):55–7. doi: 10.1016/j.radcr.2018.09.018.

Rose SR, Brown RS, Foley T, Kaplowitz PB, Kaye CI, Sundararajan S, et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 2006;117(6):2290–303. doi: 10.1542/peds.2006-0915.

Ohnishi H, Sato H, Noda H, Inomata H, Sasaki N. Color Doppler ultrasonography: diagnosis of ectopic thyroid gland in patients with congenital hypothyroidism caused by thyroid dysgenesis. J Clin Endocrinol Metab 2003;88(11):5145–9. doi: 10.1210/jc.2003-030743.

Bin Saedan MR, Aljahani IM, Khushaim AO, Bukhari SQ, Elnaas ST. Thyroid computed tomography imaging: pictorial review of variable pathologies. Insights Imaging 2016;7(4):601–17. doi: 10.1007/s13244-016-0506-5.

Hammond RJ, Meakin K, Davies JE. Case report: lateral thyroid ectopia–CT and MRI findings. Br J Radiol 1996;69(828):1178–80. doi: 10.1259/0007-1285-69-828-1178.

Takashima S, Ueda M, Shibata A, Takayama F, Momose M, Yamashita K. MR imaging of the lingual thyroid. Comparison to other submucosal lesions. Acta Radiol 2001;42(4):376–82.

Kamat MR, Kulkarni JN, Desai PB, Jussawalla DJ. Lingual thyroid: a review of 12 cases. Br J Surg 1979;66(8):537–9. doi: 10.1002/bjs.1800660805.