FURTHER SOLUTIONS OF FRACTIONAL
REACTION-DIFFUSION EQUATIONS IN TERMS OF THE
H-FUNCTION

H.J. HAUBOLD
Office for Outer Space Affairs, United Nations
P.O. Box 500, A1400, Vienna, Austria
and Centre for Mathematical Sciences, Pala-686 574, Kerala State, India

A.M. MATHAI
Department of Mathematics and Statistics, McGill University
Montreal, Canada H3A 2K6
and Centre for Mathematical Sciences, Pala-686 574, Kerala State, India

R.K. SAXENA
Department of Mathematics and Statistics, Jai Narain Vyas University
Jodhpur-342004, India

Abstract. This paper is a continuation of our earlier paper in which we have
derived the solution of an unified fractional reaction-diffusion equation asso-
ciated with the Caputo derivative as the time-derivative and the Riesz-Feller
fractional derivative as the space-derivative. In this paper, we consider an uni-
fied reaction-diffusion equation with Riemann-Liouville fractional derivative as
the time-derivative and Riesz-Feller derivative as the spacederivative. The so-
lution is derived by the application of the Laplace and Fourier transfo rms in a
compact and closed form in terms of the H-function. The results derived are
of general character and include the results investigated earlier by Kilbas et al.
(2006a), Saxena et al. (2006c), and Mathai et al. (2010). The main result is
given in the form of a theorem. A number of interesting special cases of the
theorem are also given as corollaries.

1 Introduction

In recent years, fractional reaction-diffusion models are studied due to their use-
fulness and importance in many areas of mathematics, statistics, physics, and
chemistry (Mainardi, 2010; Mathai and Haubold, 2008; Haubold and Mathai,
2010; Mathai et al. 2010). Such models, formulated in standard or fractional
calculus, greatly contribute to the understanding of the behavior of many-body
systems far from equilibrium and emerging spatio-temporal pattern formation.
Recently, coupled fractional reactiondiffusion equations are solved by Gafiychuk
et al. (2006). Turing pattern formation through linear stability analysis and
numerical simulation are discussed by Langlands et al. (2007). Nonlinear oscil-
lations and stability domains in fractional diffusion systems with two types of
variables activator and inhibitor are demonstrated by Gafiychuk et al. (2007).
General models for reaction-diffusion systems are investigated by Henry and Wearne (2000, 2002) and Henry et al. (2005).

This paper deals with the investigation of the solution of an unified model of reaction-diffusion system associated with the Riemann-Liouville fractional derivative as the time-derivative and the Riesz-Feller derivative as the space-derivative. This new model provides the extension of the models discussed earlier by Kilbas et al. (2006a), Saxena et al. (2006c), and Mathai et al. (2010). As special cases of this general model, we discuss neutral fractional diffusion model, time-fractional diffusion model and space-time fractional diffusion model. The present study is in continuation of our earlier works, Haubold and Mathai (1995, 2000, 2008, 2010), Haubold et al. (2007, 2010) and Saxena et al. (2006a, 2006b, 2006c).

2 Results Required in the Sequel

The Riemann-Liouville fractional integral of order \(\nu \) is defined by Miller and Ross (1993, p. 45) and Kilbas et al. (2006)

\[
o_0D_t^{-\nu}N(x,t) = \frac{1}{\Gamma(\nu)} \int_0^t (t-u)^{\nu-1} N(x,u) du,
\]

where \(Re(\nu) > 0 \).

The Riemann-Liouville fractional derivative of order \(\alpha > 0 \) is defined as (Samko et al., 1990, p.37; see also Kilbas et al., 2006)

\[
o_0D_t^\alpha f(x,t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^n}{dt^n} \int_0^t \frac{f(x,\tau)d\tau}{(t-\tau)^{\alpha+1-n}} \ (n = [\alpha] + 1), \ n \in \mathbb{N}, \ t > 0
\]

where \([\alpha]\) means the integral part of the number \(\alpha \).

The Laplace transform of the Riemann-Liouville fractional derivative is given by Oldham and Spanier (1974, eq.(3.1.3); see also Kilbas et al., 2006)

\[
L\{o_0D_t^\alpha N(x,t);s\} = s^\alpha N(x,s) - \sum_{r=1}^{n} s^{\alpha-1} o_0D_t^{\alpha-r} N(x,t)|t=0
\]

The Riesz-Feller space-fractional derivative of order \(\alpha \) and skewness \(\theta \) is defined in terms of its Fourier transform as (Feller, 1952, 1971):

\[
F\{x_0D_t^\alpha f(x);k\} = -\Phi^\theta_{\alpha}(k)f^*(k),
\]

where \(f^*(k) \) denotes the Fourier transform of \(f(t) \), defined by

\[
f^*(k) = \int_{-\infty}^{\infty} exp(-ikt)f(t)dt.
\]
\[\Phi^0_\alpha(k) = |k|^{\alpha} \exp[i(\text{sign}k)\frac{\theta\pi}{2}], \quad 0 < \alpha \leq 2, \quad |\theta| \leq \min \{\alpha, 2 - \alpha\}. \quad (6) \]

When \(\theta = 0 \), we have a symmetric operator with respect to \(x \) that can be interpreted as
\[xD_0^\alpha = -\left(-\frac{d^2}{dx^2} \right)^{\alpha/2}. \quad (7) \]

This can be formally deduced by writing \(-(k)\alpha = -(k^2)^{\alpha/2} \). Eq. (4) then reduces to
\[F \{xD_0^\alpha f(x); k\} = -|k|^{\alpha}, \quad (8) \]

which is the Fourier transform of the Weyl fractional operator, defined by
\[-\infty D_0^\mu f(t) = \frac{1}{\Gamma(n - \mu)} \frac{d^n}{dt^n} \int_{-\infty}^{t} f(u)du \left(t - u \right)^{\mu - n + 1}. \quad (9) \]

This shows that Riesz-Feller operator may be regarded as a generalization of Weyl operator. An alternative notation for the symmetric fractional derivative \(\theta D_0^\alpha \) has been given by Saichev and Zaslavsky (1997) in the form
\[\theta D_0^\alpha = \frac{d^\alpha}{d|x|^\alpha}. \quad (10) \]

In its regularized form, which holds for \(0 < \alpha < 2 \), the Riesz-Feller derivative admits the explicit representation
\[xD_0^\alpha f(x) = \frac{\Gamma(1 + \alpha)}{\pi} \sin \left(\frac{\alpha \pi}{2} \right) \int_{0}^{\infty} f(x + \xi) - 2f(x) + f(x - \xi) \frac{\xi^{1+\alpha}}{\xi^{1+\alpha}} d\xi. \quad (11) \]

For \(\alpha = 1 \), the Riesz derivative is related to the Hilbert transform as pointed out by Feller (1952). We have
\[xD_1^\eta f(x) = -\frac{1}{\pi} \frac{d}{dx} \int_{-\infty}^{\infty} \frac{f(\xi)d\xi}{x - \xi}. \quad (12) \]

For \(0 < \alpha < 2 \) and \(|\eta| \leq \min \{\alpha, 2 - \alpha\} \), the Riesz-Feller derivative can be shown to possess the following integral representation in \(x \) domain:
\[xD_0^\alpha f(x) = \frac{\gamma(1 + \alpha)}{\pi} \left\{ \sin[(\alpha + \theta)\pi/2] \int_{0}^{\infty} \frac{f(x + \xi) - f(x)}{\xi^{1+\alpha}} d\xi + \sin[(\alpha - \theta)\pi/2] \int_{0}^{\infty} \frac{f(x - \xi) - f(x)}{\xi^{1+\alpha}} d\xi \right\}. \quad (13) \]
3 Unified Fractional Reaction-Diffusion Equation

In this section, we will investigate the solution of the reaction-diffusion system (14) under the initial conditions (15).

Theorem. Consider the unified fractional reaction-diffusion model associated with Riemann-Liouville fractional derivative $_0D^\alpha_t$ defined by (2) and the Riesz-Feller space fractional derivative $x^\alpha D^{\alpha}_\theta$ of order α and asymmetry θ defined by (4)

\[
_0D^\beta_t N(x, t) = \eta_x D^\alpha_x N(x, t) + \Phi(x, t),
\]

where $\eta, t > 0, x \in \mathbb{R}; \alpha, \theta, \beta$ are real parameters with the constraints

\[
0 < \alpha \leq 2, |\theta| \leq \min(\alpha, 2 - \alpha), 1 < \beta \leq 2,
\]

and the initial conditions

\[
_0D^{\beta - 1}_t N(x, 0) = f(x), \quad _0D^{\beta - 2}_t N(x, 0) = g(x) \quad \text{for} \quad x \in \mathbb{R}, \quad \lim_{x \to \pm\infty} N(x, t) = 0, t > 0.
\]

Here $_0D^{\beta - 1}_t N(x, 0)$ means the Riemann-Liouville fractional partial derivative of $N(x, t)$ with respect to t of order $\beta - 1$ evaluated at $t = 0$. Similarly $_0D^{\beta - 2}_t N(x, 0)$ is the Riemann-Liouville fractional partial derivative of $N(x, t)$ with respect to t of order $\beta - 2$ evaluated at $t = 0$. In (13), η is a diffusion constant and $\Phi(x, t)$ is a nonlinear function belonging to the area of reaction-diffusion. Then for the solution of (14), subject to the above constraints, there holds the formula

\[
N(x, t) = \frac{t^{\beta - 1}}{2\pi} \int_{-\infty}^{\infty} f^\ast(k)E_{\beta, \beta}(-\eta^\alpha \psi^\beta_\alpha(k))exp(-ikx)dk
\]

\[
+ \frac{t^{\beta - 2}}{2\pi} \int_{-\infty}^{\infty} g^\ast(k)E_{\beta, \beta - 1}(-\eta^\alpha \psi^\beta_\alpha(k))exp(ikx)dk
\]

\[
+ \frac{1}{2\pi} \int_0^t \zeta^{\beta - 1}d\zeta \int_{-\infty}^{\infty} \varphi^\ast(k, t - \zeta)E_{\beta, \beta}(-\eta^\alpha \psi^\beta_\alpha(k))exp(-ikx)dk,
\]

where $E_{\alpha, \beta}(z)$ is the generalized Mittag-Leffler, defined by the series

\[
E_{\alpha, \beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)} (\alpha, \beta) \in \mathbb{C}, \quad Re(\alpha) > 0, Re(\beta) > 0.
\]

Proof. If we apply the Laplace transform with respect to the time variable t, Fourier transform with respect to space variable x and use the initial conditions (15) and the formula (17), then the given equation transforms into the form

\[
s^\beta \tilde{N}(k, s) - f^\ast(k) - sg^\ast(k) = -\eta^\alpha \psi^\beta_\alpha(k)N^\ast(k, s) + \varphi^\ast^\ast(k, s),
\]
where according to the conventions followed, the symbol \sim will stand for the Laplace transform with respect to time variable t and $*$ represents the Fourier transform with respect to space variable x. Solving for $N^\sim(k, s)$, it yields

$$N^\sim(k, s) = \frac{f^*(k)}{s^\beta + \eta \psi^\theta(k)} + \frac{sg^*(k)s^{\beta-2}}{s^\beta + \eta \psi^\theta(k)} + \frac{\phi^\sim(k)}{s^\beta + \eta \psi^\theta(k)}. \quad (17)$$

On taking the inverse Laplace transform of (16) by using the formula

$$L^{-1}\left\{\frac{s^{\beta-1}}{a + s^\alpha}\right\} = t^{\alpha-\beta} E_{\alpha, \alpha+\beta+1}(-at^\alpha), \quad (18)$$

where $Re(s) > 0, Re(\alpha) > 0, Re(\alpha - \beta) > -1$; it is seen that

$$N^*(k, t) = t^{\beta-1} f^*(k) E_{\beta, \beta}(\eta t^\beta \psi^\theta(k)) + t^{\beta-2} g^*(k) t E_{\beta, \beta-1}(\eta t^\beta \psi^\theta(k))$$

$$+ \int_0^t \varphi^*(k, t - \xi) \xi^{\beta-1} E_{\beta, \beta}(\eta \psi^\theta(k) \xi^\beta) d\xi. \quad (19)$$

The required solution (16) is now obtained by taking the inverse Fourier transform of (19). This completes the proof of the theorem.

4 Special Cases

If we set $\theta = 0$ by virtue of the results (6), the theorem reduces to the following

Corollary 1. Consider the unified fractional reaction-diffusion model associated with Riemann-Liouville fractional derivative $0D_t^\alpha$ defined by (2) and the Riesz-Feller space fractional derivative $\frac{D_0^\beta}{0}$ of order α defined by (11)

$$0D_t^\beta N(x, t) = \eta \frac{D_0^\alpha}{0} N(x, t) + \varphi(x, t), \quad (20)$$

where $\eta, t > 0, x \in \mathbb{R}; \alpha, \beta$ are real parameters with the constraints

$$0 < \alpha < 2, 1 < \beta \leq 2,$$

and the initial conditions

$$0D_t^{\beta-1} N(x, 0) = f(x), \ 0D_t^{\beta-2} N(x, 0) = g(x) \ \text{for} \ x \in \mathbb{R}, \ \lim_{x \to \pm\infty} N(x, t) = 0, t > 0. \quad (21)$$

Here $0D_t^{\beta-1} N(x, 0)$ means the Riemann-Liouville fractional partial derivative of $N(x, t)$ with respect to t of order $\beta - 1$ evaluated at $t = 0$. Similarly $0D_t^{\beta-2} N(x, 0)$ is the Riemann-Liouville fractional partial derivative of $N(x, t)$ with respect to t of order $\beta - 2$ evaluated at $t = 0$. The η is a diffusion constant and $\varphi(x, t)$ is a nonlinear function belonging to the area of reaction-diffusion.
Then for the solution of (14), subject to the above constraints, there holds the formula

\[
N(x,t) = \frac{t^{\beta-1}}{2\pi} \int_{-\infty}^{\infty} f^*(k) E_{\beta,\beta}(-\eta t^\beta |k|^\alpha) \exp(-ikx) dk \\
+ \frac{t^{\beta-2}}{2\pi} \int_{-\infty}^{\infty} g^*(k) E_{\beta,\beta-1}(-\eta t^\beta |k|^\alpha) \exp(-ikx) dk \\
+ \frac{1}{2\pi} \int_0^t \zeta^{\beta-1} d\zeta \int_{-\infty}^{\infty} \varphi^*(k, t-\zeta) E_{\beta,\beta}(-\eta t^\beta |k|^\alpha) \exp(-ikx) dk,
\]

When \(g(x) = 0 \), then by the application of the convolution theorem of the Fourier transform to the solution (16) of the theorem, it readily gives

Corollary 2. The solution of fractional reaction-diffusion equation

\[
_0D^\beta_t N(x, t) - \eta _0D^\alpha_0 D^\beta_0 N(x, t) = \varphi(x, t), x \in R, \ t > 0, \eta > 0, \quad (23)
\]

with initial conditions

\[
_0D^\beta_0 N(x, 0) = f(x), \ _0D^\alpha_0 D^\beta_0 N(x, 0) = 0, \\
\text{for } x \in R, -\infty \leq \alpha \leq 1, 1 < \beta \leq 2, \lim_{x \to \pm\infty} N(x, t) = 0, \quad (24)
\]

where \(\eta \) is a diffusion constant and \(\varphi(x, t) \) is a nonlinear function belonging to the area of reaction-diffusion; \(\eta, t > 0, x \in R; \alpha, \theta, \beta \) are real parameters with the constraints

\[
0 < \alpha \leq 2, |\theta| \leq \min(\alpha, 2 - \alpha), 1 < \beta \leq 2
\]

is given by

\[
N(x, t) = \int_0^\alpha G_1(x - \tau, t)f(\tau)d\tau \\
+ \int_0^t d\xi (t - \xi)^{\beta-1} \int_0^\alpha G_2(x - \tau, t - \xi)\varphi(\tau, \xi)d\tau,
\]

where

\[
\rho = \frac{\alpha - \theta}{2\alpha}, \\
G_1(x, t) = \frac{t^{\beta-1}}{2\pi} \int_{-\infty}^{\infty} \exp(-ikx) E_{\beta,\beta}(-\eta t^\beta \psi^\alpha_\alpha(k)) dk \\
= \frac{t^{\beta-1}}{\alpha |x|} H^{2,1}_{3,3} \left[\frac{|x|}{\eta^{1/\alpha}t^{\beta/\alpha}} \left(\frac{1.1/\alpha, (\beta, \beta/\alpha, 1, \rho)}{1.1, (1, 1), (1, 1, 1, 1, 1, 1)} \right) \right], \quad (\alpha > 0) \quad (26)
\]
and
\[G_2(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(-ikx)E_{\beta,\beta}(-\eta t^\beta \psi_\alpha(k))dk \]
\[= \frac{1}{\alpha|x|} H_{3,3}^{2,1} \left[\frac{|x|}{\eta^{1/\alpha} t^{\beta/\alpha}} \left|_{(1/\alpha,1,1/\alpha,1)} \right|_{(1,1/\alpha,1,1)} \right] (\alpha > 0). \] (27)

Here \(H_{3,3}^{2,1}(.) \) is the H-function, defined in Mathai and Saxena (1978, p.2; see also Mathai et al. 2010). In deriving the above results, we have used the inverse Fourier transform formula (Haubold et al., 2007)
\[F^{-1} \left[E_{\beta,\gamma}(-\eta t^\beta \psi_\alpha(k); x) \right] = \frac{1}{\alpha|x|} H_{3,3}^{2,1} \left[\frac{x}{\eta^{1/\alpha} t^{\beta/\alpha}} \left|_{(1/\alpha,1,1/\alpha,1)} \right|_{(1,1/\alpha,1,1)} \right], \] (28)
where \(\text{Re}(\alpha) > 0, \text{Re}(\beta) > 0, \text{Re}(\gamma) > 0. \)

It is interesting to observe that for \(\theta = 0 \) Corollary 1 reduces to a result given by the authors (Saxena et al., 2006c). On the other hand if we set \(f(x) = \sigma(x) \), where \(\sigma(x) \) is the Dirac-delta function, it yields

Corollary 3. Consider the following reaction-diffusion model
\[0D_t^\beta N(x,t) = \eta x D_t^\alpha N(x,t), \] (29)
with the initial conditions \(0D_t^{\beta-1}N(x,0) = \sigma(x), 0 \leq \beta \leq 1, \lim_{x \to \pm\infty} N(x,t) = 0 \), where \(\eta \) is a diffusion constant; \(\eta, t > 0, x \in R; \alpha, \theta, \beta \) are real parameters with the constraints
\[0 < \alpha \leq 2, |\theta| \leq \text{min}(\alpha, 2 - \alpha), \]
and \(\delta(x) \) is the Dirac-delta function. Then for the fundamental solution of (29) with initial conditions, there holds the formula
\[N(x,t) = t^{\beta-1} \frac{1}{\alpha|x|} \left[x \left|_{\eta^{1/\alpha} t^{\beta/\alpha}} \right|_{(1/\alpha,1,1/\alpha,1)} \right] (\alpha > 0) \] (30)
where \(\rho = \frac{\alpha - \theta}{2\alpha} \). For \(\theta = 0 \) we obtain the result given by Kilbas et al. (2006a) obtained in a different form. In this case the authors have given the result in a closed form (Saxena et al., 2006c, p.309).

Remark. We note that the equation (29), when the Riemann-Liouville operator appearing on its left is replaced by a Caputo derivative (Caputo, 1969; Mainardi, 2010), has been solved by Mainardi et al. (2001, 2005).

The following special cases of (29) are worth mentioning:

(i) For \(\alpha = \beta \), the corresponding solution of (29), denoted by \(N_\alpha^\theta \), we call as the neutral fractional diffusion, which can be expressed in terms of the H-function as given below and can be defined for \(x > 0 \):
Neutral fractional diffusion: $0 < \alpha = \beta < 2; \theta \leq \min \{\alpha, 2 - \alpha\}$,

$$N_{\alpha}^\theta(x) = \frac{t^{\alpha-1}}{\alpha|x|} H_{3,3}^{1,1} \left[\begin{array}{c} |x| \\ (1, 1/\alpha, (1, 1), (1, \rho)) \end{array} \right], \quad t = \frac{\alpha - \theta}{2\alpha}. \quad (31)$$

Next we derive some stable densities in terms of the H-function as special cases of the solution of the equation (26). (ii) When $\beta = 1$, $0 < \alpha \leq 2; \theta \leq \min \{\alpha, 2 - \alpha\}$ then (29) reduces to space-fractional diffusion equation, which we denote by is the fundamental solution of the following space-time fractional diffusion model:

$$\frac{\partial N(x, t)}{\partial t} = \eta D_{\alpha}^\theta N(x, t), \eta > 0, x \in R \quad (32)$$

with the initial conditions $N(x, t = 0) = \sigma(x), \lim_{x \to \pm \infty} N(x, t) = 0$, where η is a diffusion constant and $\delta(x)$ is the Dirac-delta function. Hence for the solution of (29) there holds the formula

$$L_{\alpha}^\theta(x) = \frac{1}{\alpha(\eta t)^{1/\alpha}} H_{2,2}^{1,1} \left[\begin{array}{c} \frac{|x|}{(\eta t)^{1/\alpha}} \\ (1/\alpha, (1-\rho, 1-\rho)) \end{array} \right], 0 < \alpha < 1, |\theta| \leq \alpha, \quad (33)$$

where $\rho = \frac{\alpha - \beta}{2\alpha}$. The density represented by the above expression is known as α-stable Lévy density. Another form of this density is given by

$$L_{\alpha}^\theta(x) = \frac{1}{\alpha(\eta t)^{1/\alpha}} H_{2,2}^{1,1} \left[\begin{array}{c} \frac{|x|}{(\eta t)^{1/\alpha}} \\ (1/\alpha, (1-\rho, 1-\rho)) \end{array} \right], 1 < \alpha < 2, |\theta| \leq 2 - \alpha. \quad (34)$$

Note: A comprehensive account of stable densities with applications is available from the monograph of Uchaikin and Zolotarev (1999).

(iii) Next, if we take $\alpha = 2, 0 < \beta < 2; \theta = 0$, then we obtain the time-fractional diffusion, which is governed by the following time-fractional diffusion model:

$$\frac{\partial^\beta N(x, t)}{\partial t^\beta} = \eta D_{0}^\beta N(x, t), \eta > 0, x \in R, 0 < \beta \leq 2, \quad (35)$$

with the initial conditions $D_{0}^{\beta-1} N(x, 0) = \sigma(x) D_{0}^{\beta-2} N(x, 0) = 0$, for $x \in R, \lim_{x \to \pm \infty} N(x, t) = 0$ where η is a diffusion constant and $\sigma(x)$ is the Dirac-delta function, whose fundamental solution is given by the equation

$$N(x, t) = \frac{t^{\beta-1}}{2|x|} H_{1,1}^{1,0} \left[\begin{array}{c} |x| \\ (\eta t^{\beta/2})_{1/2} \end{array} \right] (\beta, \beta/2 (1, 1)). \quad (36)$$

Further, if we set $\alpha = 2, \beta = 1$ and $\theta \to 0$, then for the fundamental solution of the standard diffusion equation

$$\frac{\partial}{\partial t} N(x, t) = \eta \frac{\partial^2}{\partial x^2} N(x, t), \quad (37)$$
with initial condition

\[N(x, t = 0) = \sigma(x), \quad \lim_{x \to \pm \infty} N(x, t) = 0, \quad (38) \]

there holds the formula

\[N(x, t) = \frac{1}{2|x|} H^{1,0}_{1,1} \left[\frac{|x|}{\eta^{1/2} t^{1/2}} \right]_{(1,1/2)}^{(1,1)} = (4\pi\eta t)^{-1/2} \exp \left[-\frac{|x|^2}{4\eta t} \right], \quad (39) \]

which is the classical Gaussian density.

In conclusion, it is seen that the solution given by (27) does not admit a probabilistic interpretation in contrast with fractional reaction-diffusion based on Caputo derivative derived by the authors (Haubold et al., 2007). However, when \(\beta \to 1 \), then it has a probabilistic interpretation, as can be seen in special cases of corollary 3.

Acknowledgment
The authors would like to thank the Department of Science and Technology, Government of India, New Delhi, for the financial assistance under the project SR/S4/MS: 287/05.

References
Caputo, M. (1969). *Elasticita e Dissipazione*, Zanichelli, Bologna.
Feller, W. (1952). On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. *Medd. Lunds Univ. Seminarium* (Comm. Sém. Mathém. Université de Lund), Tome suppl. Dédié á M.Riesz, Lund, 73-81.
Feller, W. (1971). *An Introduction to Probability Theory and its Applications*, Vol. 2, 2nd Edition, Wiley, New York (1st Edition 1966).
Gafiychuk, V., Datsko, B. and Meleshko, V. (2006). Mathematical modeling of pattern formation in sub- and superdiffusive reaction-diffusion systems, arXiv: nlin. AO/0611005 v3.
Gafiychuk, V., Datsko, B. and Meleshko, V. (2007). Nonlinear oscillations and stability domains in fractional reaction-diffusion systems, arXiv: nlin PS/0702013v1.
Haubold, H.J., Kumar, d., Nair, S. and Joseph, D.P. (2010). Special functions and pathways for problems in astrophysics: An essay in honor of A.M. Mathai, *Fractional Calculus and Applied Analysis*, 13, 133-157.
Haubold, H.J., Mathai, A.M. and Saxena, R.K. (2007). Solution of fractional reaction-diffusion equations in terms of the H-function, Proceedings of the Second UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and basic Space Science, Indian Institute of Astrophysics, Bulletin of the Astronomical Society of India, 35, 681-689.
Haubold, H.J. and Mathai, A.M. (1995). A heuristic remark on the periodic variation in the number of solar neutrinos detected on Earth. *Astrophysics and Space Science*, **228**, 113-124.

Haubold, H.J. and Mathai, A.M. (2000). The fractional kinetic equation and thermonuclear functions, *Astrophysics and Space Science*, **273**, 53-63.

Haubold, H.J. and Mathai, A.M. (2010). *Proceedings of the Third UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science*, National Astronomical Observatory of Japan, Astrophysics and Space Science Proceedings, Springer, Berlin Heidelberg.

Henry, B.I. and Wearne, S.L. (2000). Fractional reaction-diffusion, *Physica A*, **276**, 448-455.

Henry, B.I. and Wearne, S.L. (2002). Existence of Turing instabilities in a two-species fractional reaction-diffusion system, *SIAM Journal of Applied Mathematics*, **62**, 870-887.

Henry, B.I., Langlands, T.A.M., and Wearne, S.L. (2005). Turing pattern formation in fractional activator-inhibitor systems, *Physical Review E*, **72**, 026101.

Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006). *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam.

Kilbas, A.A., Pierantozzi, T. and Trujillo, J.J. (2006a). On generalized fractional evolution-diffusion equations, published as a chapter in the book *Differentiation and its Applications*, A Le Hahauté, J.A. Tenreiro, J.C. Trigeassouy, J. Sabatier (Eds.), Books on demand, Alemania (ISBN 3-8608-026-3).

Langlands, T.A.M., Henry, B.I. and Wearne, S.L. (2007). Turing pattern formation with fractional diffusion and fractional reactions, *Journal of Physics: Condensed Matter*, **19** (2007) 065115.

Mainardi, F. (2010). *Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models*, Imperial College Press, London.

Mainardi, F., Luchko, Y. and Pagnini, G., (2001). The fundamental solution of the space-time fractional diffusion equation, *Fractional Calculus and Applied Analysis*, **4**, 153-192.

Mainardi, F., Pagnini, G. and Saxena, R.K. (2005). Fox H-functions in fractional diffusion, *Journal of Computational and Applied Mathematics*, **178**, 321-331.

Mathai, A.M. and Saxena, R.K. (1978). *The H-function with Applications in Statistics and Other Disciplines*, John Wiley and Sons, New York, London and Sydney.

Mathai, A.M. and Haubold, H.J. (2008). *Special Functions for Applied Scientists*, Springer, New York.

Mathai, A.M., Saxena, R.K. and Haubold, H.J. (2010). *The H-Function: Theory and Applications*, Springer, New York.
Miller, K.S. and Ross, B. (1993). *An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley and Sons, New York.

Oldham, K.B. and Spanier, J. (1974). *The Fractional Calculus. Theory and Applications of Differentiation and Integration of Arbitrary Order*, Academic Press, New York.

Saichev, I.A. and Zaslavsky, G.M. (1997). Fractional kinetic equations : Solutions and applications, *Chaos*, 7 (4), 753-764.

Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993). *Fractional Integrals and Derivatives: Theory and Applications*, Gordon and Breach, New York.

Saxena, R.K., Mathai, A.M. and Haubold, H.J.(2006a). Fractional reaction-diffusion equations, *Astrophysics and Space Science*, 305, 289-296.

Saxena, R.K., Mathai, A.M. and Haubold, H.J. (2006b). Reaction-diffusion systems and nonlinear waves, *Astrophysics and Space Science*, 305, 297-303.

Saxena, R.K., Mathai, A.M. and Haubold, H.J. (2006c). Solution of generalized fractional reaction-diffusion equations, *Astrophysics and Space Science*, 305, 305-313.

Uchaikin, V.V. and Zolotarev, V.M. (1999). *Chance and Stability: Stable Distributions and Their Applications*, VSP, Utrecht.