Burgess’s Bounds for Character Sums

D.R. Heath-Brown
Mathematical Institute, Oxford

1 Introduction

Let $\chi(n)$ be a non-principal character to modulus q. Then the well-known estimates of Burgess [2, 4, 5] say that if

$$S(N; H) := \sum_{N<n \leq N+H} \chi(n),$$

then for any positive integer $r \geq 2$ and any $\varepsilon > 0$ we have

$$S(N; H) \ll_{\varepsilon, r} H^{1-1/r} q^{(r+1)/(4r^2)+\varepsilon} \tag{1}$$

uniformly in N, providing either that q is cube free, or that $r \leq 3$. Indeed one can make the dependence on r explicit, if one so wants. Similarly the q^ε factor may be replaced by a power of $d(q) \log q$ if one wishes. The upper bound has been the best-known for around 50 years. The purpose of this note is to establish the following estimate, which gives a mean-value estimate including the original Burgess bound as a special case.

Theorem Let $r \in \mathbb{N}$ and let $\varepsilon > 0$ be a real number. Suppose that $\chi(n)$ is a primitive character to modulus $q > 1$, and let a positive integer $H \leq q$ be given. Suppose that $0 \leq N_1 < N_2 < \ldots < N_J < q$ are integers such that

$$N_{j+1} - N_j \geq H, \quad (1 \leq j < J). \tag{2}$$

Then

$$\sum_{j=1}^J \max_{h \leq H} |S(N_j; h)|^{3r} \ll_{\varepsilon, r} H^{3r-3} q^{3/4+3/(4r)+\varepsilon}$$

under any of the three conditions

(i) $r = 1$;
(ii) $r \leq 3$ and $H \geq q^{1/(2r)+\varepsilon}$; or

(iii) q is cube-free and $H \geq q^{1/(2r)+\varepsilon}$.

The case $J = 1$ reduces to the standard Burgess estimate (which would be trivial if one took $H \leq q^{1/2r}$). Moreover one can deduce that there are only $O_{\varepsilon,r}(q^{(3r+1)\varepsilon})$ points N_j for which

$$\max_{h \leq H} |S(N_j; h)| \geq H^{1-1/r} q^{(r+1)/(4r^2)-\varepsilon},$$

for example. It would be unreasonable to ask for such a result without the spacing condition (2), since if A and B are intervals that overlap it is possible that the behaviour of both $\sum_{n \in A} \chi(n)$ and $\sum_{n \in B} \chi(n)$ is affected by $\sum_{n \in A \cap B} \chi(n)$.

There are other results in the literature with which this estimates should be compared. Friedlander and Iwaniec [8, Theorem 2’] establish a bound for $J \sum_{j=1}^J S(N_j; h)$ which can easily be used to obtain an estimate of the form

$$\sum_{j=1}^J |S(N_j; h)|^{2r} \ll_{\varepsilon,r} h^{2r-2} q^{1/2+1/(2r)+\varepsilon}.$$

This is superior to our result in that it involves a smaller exponent $2r$. However they do not include a maximum over h and their result is subject to the condition that $h(N_J - N_1) \leq q^{1+1/(2r)}$.

We should also mention the work of Chang [6, Theorem 8]. The result here is not so readily compared with ours, or indeed with the Burgess estimate (1). However, with a certain amount of effort one may show that our theorem gives a sharper bound at least when $JH^3 \leq q^2$.

It would have been nice to have established a result like our theorem, but involving the $2r$-th moment. The present methods do not allow this in general. However for the special case $r = 1$ one can indeed achieve this, in the following slightly more flexible form. Specifically, suppose that $\chi(n)$ is a primitive character to modulus q, and let I_1, \ldots, I_J be disjoint subintervals of $(0, q]$. Then for any $\varepsilon > 0$ we have

$$\sum_{j=1}^J \left| \sum_{n \in I_j} \chi(n) \right|^2 \ll_{\varepsilon} q^{1+\varepsilon} \tag{3}$$
with an implied constant depending only on \(\varepsilon \). This is a mild variant of Lemma 4 of Gallagher and Montgomery \([9]\). One can deduce the Pólya–Vinogradov as an immediate consequence of Lemma 4 (which is the same as Gallagher and Montgomery’s Lemma 4). In fact there are variants of (3) for quite general character sums. For simplicity we suppose \(q \) is a prime \(p \). Let \(f(x) \) and \(g(x) \) be rational functions on \(\mathbb{F}_p \), possibly identically zero. Then (3) remains true if we replace \(\chi(n) \) by \(\chi(f(n))e_p(g(n)) \), providing firstly that we exclude poles of \(f \) and \(g \) from the sum, and secondly that we exclude the trivial case in which \(f \) is constant and \(g \) is constant or linear. (The implied constant will depend on the degrees of the numerators and denominators in \(f \) and \(g \).) We leave the proof of this assertion to the reader.

For \(r = 1 \) the ideas of this paper are closely related to those in the article of Davenport and Erdős \([7]\), which was a precursor of Burgess’s work. For \(r \geq 2 \) the paper follows the route to Burgess’s bounds developed in unpublished notes by Hugh Montgomery, written in the 1970’s, which were later developed into the Gallagher and Montgomery article \([9]\). In particular the mean-value lemmas in §2 are essentially the same as in their paper, except that we have given the appropriate extension to general composite moduli \(q \). We reproduce the arguments merely for the sake of completeness.

After the mean-value lemmas in §2 have been established we begin the standard attack on the Burgess bounds in §3, but incorporating the sum over \(N_j \) in a non-trivial way in §4. It is this final step that involves the real novelty in the paper. This process will lead to the following key lemma.

Lemma 1 Let a positive integer \(r \geq 2 \) and a real number \(\varepsilon > 0 \) be given. Let 0 \(\leq N_1 < N_2 < \ldots < N_J < q \) be integers such that (3) holds. Then for any primitive character \(\chi \) to modulus \(q \), and any positive integer \(H \in (q^{1/(2r)}, q] \) we have

\[
\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^{r} \ll_{\varepsilon,r} q^{1/4+1/(4r)+\varepsilon} H^{r^{-1}} \left\{ J^{2/3} + J\left(H^{-1}q^{1/(2r)} + Hq^{-1/2-1/(4r)}\right) \right\},
\]

provided either that \(r \leq 3 \) or that \(q \) is cube-free.

Throughout the paper we shall assume that \(q \) is sufficiently large in terms of \(r \) and \(\varepsilon \) wherever it is convenient. The results are clearly trivial when \(q \ll_{\varepsilon,r} 1 \). We should also point out that we shall replace \(\varepsilon \) by a small multiple from time to time. This will not matter since all our results hold for all \(\varepsilon > 0 \). Using this convention we may write \(q^{\varepsilon} \log q \ll_{\varepsilon} q^{\varepsilon} \), for example.
2 Preliminary Mean-value Bounds

Our starting point, taken from previous treatments of Burgess’s bounds, is the following pair of mean value estimates.

Lemma 2 Let r be a positive integer and let $\varepsilon > 0$. Then if χ is a primitive character to modulus q we have

$$\sum_{n=1}^{q} |S(n; h)|^2 \ll_{\varepsilon} q^{1+\varepsilon} h$$

for any q, while

$$\sum_{n=1}^{q} |S(n; h)|^{2r} \ll_{\varepsilon, r} q^r (qh^r + q^{1/2}h^{2r})$$

under any of the three conditions

(i) q is cube-free; or

(ii) $r = 2$; or

(iii) $r = 3$ and $h \leq q^{1/6}$.

The case $r = 1$ is given by Norton [11, (2.8)], though the proof is attributed to Gallagher. For $r \geq 2$ the validity of the lemma under the first two conditions follows from Burgess [4, Lemma 8], using the same method as in Burgess [3, Lemma 8]. The estimate under condition (iii) is given by Burgess [5, Theorem B].

We proceed to deduce a maximal version of Lemma 2 as in Gallagher and Montgomery [9, Lemma 3].

Lemma 3 Let r be a positive integer and let $\varepsilon > 0$. Then if χ is a primitive character to modulus q and $H \in \mathbb{N}$ we have

$$\sum_{n=1}^{q} \max_{h \leq H} |S(n; h)|^2 \ll_{\varepsilon} q^{1+\varepsilon} H$$

for all q, while

$$\sum_{n=1}^{q} \max_{h \leq H} |S(n; h)|^{2r} \ll_{\varepsilon, r} q^r (qH^r + q^{1/2}H^{2r})$$

under either of the conditions.
(i) q is cube-free; or
(ii) $2 \leq r \leq 3$.

The strategy for the proof goes back to independent work of Rademacher [12] and Menchov [10], from 1922 and 1923 respectively. It clearly suffices to consider the case in which $H = 2^t$ is a power of 2. We will first prove the result under the assumption that $H \leq q^{1/(2r)}$. We will assume that $r \geq 2$, the case $r = 1$ being similar. Suppose that $|S(n; h)|$ attains its maximum at a positive integer $h = h(n) \leq H$, say. We may write

$$h = \sum_{d \in D} 2^{t-d}$$

for a certain set D of distinct non-negative integers $d \leq t$. Then

$$S(n; h) = \sum_{d \in D} S(n + v_{n,d}2^{t-d}, 2^{t-d})$$

where

$$v_{n,d} = \sum_{e \in D, e < d} 2^{d-e} < 2^d.$$

By Hölder’s inequality we have

$$|S(n; h)|^{2r} \leq \{|D|^{2r-1} \sum_{d \in D} |S(n + v_{n,d}2^{t-d}, 2^{t-d})|^{2r},$$

We now include all possible values of d and v to obtain

$$|S(n; h)|^{2r} \leq (t+1)^{2r-1} \sum_{0 \leq d \leq t} \sum_{0 \leq v < 2^d} |S(n + v2^{t-d}, 2^{t-d})|^{2r},$$

and hence

$$\max_{h \leq H} |S(n; h)|^{2r} \leq (t+1)^{2r-1} \sum_{0 \leq d \leq t} \sum_{0 \leq v < 2^d} |S(n + v2^{t-d}, 2^{t-d})|^{2r}.$$
We proceed to sum over \(n \) modulo \(q \), using Lemma 2, and on recalling that \(H = 2^t \leq q^{1/(2r)} \) we deduce that

\[
\sum_{n=1}^{q} \max_{h \leq H} |S(n; h)|^{2r} \leq (t+1)^{2r-1} \sum_{0 \leq d \leq t} \sum_{0 \leq v < 2^d} q^v (q2^{r(t-d)} + q^{1/2}2^{2r(t-d)})
\]

\[
\leq (t+1)^{2r-1} \sum_{0 \leq d \leq t} \sum_{0 \leq v < 2^d} (qH^r + q^{1/2}H^{2r})2^{-d}
\]

\[
= q^r (t+1)^{2r}(qH^r + q^{1/2}H^{2r})
\]

\[
\leq (t+1)^{2r}(qH^r + q^{1/2}H^{2r}).
\]

This establishes Lemma 3 when \(H \) is a power of 2 of size at most \(q^{1/(2r)} \).

To extend this to the general case, write \(H_0 \) for the largest power of 2 of size at most \(q^{1/(2r)} \). Then

\[
\max_{h \leq H} |S(n; h)| \leq \sum_{0 \leq j \leq H/H_0} \max_{h \leq H_0} |S(n + jH_0; h)|
\]

whence

\[
\sum_{n=1}^{q} \max_{h \leq H} |S(n; h)|^{2r} \leq (H/H_0)^{2r-1} \sum_{n=1}^{q} \sum_{0 \leq j \leq H/H_0} \max_{h \leq H_0} |S(n + jH_0; h)|^{2r}
\]

\[
= (H/H_0)^{2r-1} \sum_{0 \leq j \leq H/H_0} \sum_{n=1}^{q} \max_{h \leq H_0} |S(n + jH_0; h)|^{2r}
\]

\[
= (H/H_0)^{2r-1} \sum_{0 \leq j \leq H/H_0} \sum_{n \equiv (\mod q)} \max_{h \leq H_0} |S(n; h)|^{2r}
\]

\[
\leq (H/H_0)^{2r-1} \sum_{0 \leq j \leq H/H_0} q^v (qH_0^r + q^{1/2}H_0^{2r})
\]

\[
\leq (H/H_0)^{2r} (qH_0^r + q^{1/2}H_0^{2r}).
\]

However our choice of \(H_0 \) ensures that \(qH_0^r \ll q^{1/2}H_0^{2r} \) and the lemma follows.

A variant of Lemma 3 allows us to sum over well spaced points. We will only need the case \(r = 1 \).

Lemma 4 Suppose that \(\chi(n) \) is a primitive character to modulus \(q > 1 \), and let a positive integer \(H \leq q \) be given. Suppose that \(0 \leq N_1 < N_2 < \ldots <
$N_j < q$ are integers satisfying the spacing condition $[2]$. Then

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^2 \ll q (\log q)^2$$

To prove this we follow the argument in Gallagher and Montgomery $[9, \text{Lemma 4}]$. We first observe that for any $n \leq N$ we have

$$S(N; h) = S(n; N - n + h) - S(n; N - n).$$

If $h \leq H$ it follows that

$$|S(N; h)| \leq 2 \max_{k \leq 2H} |S(n; k)|$$

whenever $N - H < n \leq N$. Then, summing over integers $n \in (N - H, N]$ we find that

$$H |S(N; h)| \leq 2 \max_{n \in (N - H, N]} \sum_{k \leq 2H} |S(n; k)|$$

whence Hölder’s inequality yields

$$|S(N; h)|^{2r} \ll H^{-1} \max_{n \in (N - H, N]} |S(n; k)|^{2r}.\quad (5)$$

Since the intervals $(N_j - H, N_j]$ are disjoint modulo q we then deduce that

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^{2r} \ll H^{-1} q \max_{n \in (N - H, N]} \sum_{k \leq 2H} |S(n; k)|^{2r}$$

and the result follows from Lemma $[3]$.

We can now deduce (3). By a dyadic subdivision it will be enough to prove the result under the additional assumption that there is an integer H such that all the intervals I_j have length between $H/2$ and H. Thus we may write $I_j = (M_j, M_j + h_j]$ with $h_j \leq H$ for $1 \leq j \leq J$, and $M_{j+1} - M_j \geq H/2$ for $1 \leq j < J$. We may therefore apply the case $r = 1$ of Lemma $[4]$ separately to the even numbered intervals and the odd numbered intervals to deduce (3).

3 Burgess’s method

In this section we will follow a mild variant of Burgess’s method. Although there are small technical differences from previous works on the subject, there is no great novelty here.
For any prime \(p < q \) which does not divide \(q \) we will split the integers \(n \in (N, N + h] \) into residue classes \(n \equiv aq \pmod{p} \), for \(0 \leq a < p \). Then we can write \(n = aq + pm \) with \(m \in (N', N' + h'] \) say, where

\[
N' = \frac{N - aq}{p}, \quad h' = \frac{h}{p}.
\]

We then find that

\[
S(N; h) = \chi(p) \sum_{0 \leq a < p} S(N'; h')
\]

and hence

\[
|S(N; h)| \leq \sum_{0 \leq a < p} |S(N'; h')|.
\]

We now choose an integer parameter \(P \) in the range \((\log q)^2 \leq P < q/2 \), and sum the above estimate for all primes \(p \in (P, 2P] \) not dividing \(q \). Since the number of such primes is asymptotically \(P/(\log P) \) we deduce that

\[
P/(\log P)|S(N; h)| \ll \sum_{P < p \leq 2P} \sum_{0 \leq a < p} |S(N'; h')|.
\]

(6)

We now apply the inequality (5), with \(H \) replaced by \(H/P \). Since we have \(h' \leq H/P \) we deduce that

\[
HP^{-1}|S(N'; h')| \ll \sum_{n \in (N' - H/P, N']} \max_{j \leq 2H/P} |S(n; j)|.
\]

Inserting this bound into (6) we find that

\[
|S(N; h)| \ll (\log P)H^{-1} \sum_n A(n; N) \max_{j \leq 2H/P} |S(n; j)|,
\]

where

\[
A(n, N) := \#\{(a, p) : P < p \leq 2P, 0 \leq a < p, n \leq N' < n + H/P\},
\]

\[
= \#\{(a, p) : n \leq (N - aq)/p < n + H/P\}.
\]

Since

\[
\sum_n A(n, N) = \sum_{a, p} \#\{n : n \leq N' < n + H/P\} \leq \sum_{a, p} \frac{H}{P} \ll PH
\]

we deduce from H"older’s inequality that

\[
|S(N; h)|^r \ll (\log P)^r P^{r-1}H^{-1} \sum_n A(n; N) \max_{j \leq 2H/P} |S(n; j)|^r,
\]

8
for any $h \leq H$. It should be noted that $A(n, N) = 0$ unless $|n| \leq 2q$, so that the sum over n may be restricted to this range.

We proceed to sum over the values $N = N_j$ in Lemma 1, finding that

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^r \ll (\log P)^r P^{r-1} H^{-1} \sum_n A(n) \max_{j \leq 2H/P} |S(n; j)|^r,$$

where

$$A(n) := \#\{(a, p, N_j) : n \leq (N_j - aq)/p < n + H/P\}.$$

From Cauchy’s inequality we then deduce that

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^r \ll (\log P)^r P^{r-1} H^{-1} N^{1/2} \left\{ \sum_{|n| \leq 2q} \max_{j \leq 2H/P} |S(n; j)|^{2r} \right\}^{1/2},$$

where

$$N := \sum_n A(n)^2 \leq H^{-1} M,$$

with

$$M := \#\{(a_1, a_2, p_1, p_2, N_j, N_k) : |(N_j - a_1q)/p_1 - (N_k - a_2q)/p_2| \leq H/P\}.$$

Thus

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^r \ll (\log P)^r P^{r-3/2} H^{-1/2} M^{1/2} \left\{ \sum_{|n| \leq 2q} \max_{j \leq 2H/P} |S(n; j)|^{2r} \right\}^{1/2}.$$

The second sum on the right may be bounded via Lemma 3 giving

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^r \ll \varepsilon, r q^r P^{r-3/2} H^{-1/2} (q^{1/2}(H/P)^{r/2} + q^{1/4}(H/P)^r) M^{1/2},$$

on replacing ε by $\varepsilon/2$.

Naturally, in order to apply Lemma 3 we will need to have q cube-free, or $r \leq 3$. The natural choice for P is to take $2Hq^{-1/(2r)} \leq P \ll Hq^{-1/(2r)}$ so that $q^{1/2}(H/P)^{r/2}$ and $q^{1/4}(H/P)^r$ have the same order of magnitude. The conditions previously imposed on P are then satisfied provided that $H \geq q^{1/(2r)}$. With this choice for P we deduce that

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j; h)|^r \ll \varepsilon, r q^{1/4+3/(4r)+\varepsilon} H^{r-2} M^{1/2}. \quad (7)$$
4 Estimating \mathcal{M}

In this section we will estimate \mathcal{M} and complete the proof of Lemma 1. It is the treatment of \mathcal{M} which represents the most novel part of our argument.

We split \mathcal{M} as $\mathcal{M}_1 + \mathcal{M}_2$ where \mathcal{M}_1 counts solutions with $p_1 = p_2$ and \mathcal{M}_2 corresponds to $p_1 \neq p_2$. When $p_1 = p_2$ the defining condition for \mathcal{M} becomes
\[
| (N_j - N_k) - q(a_1 - a_2) | \leq p_1 H / P \leq 2H.
\]
Thus
\[
|a_1 - a_2| \leq q^{-1}(|N_j - N_k| + 2H) \leq 3.
\]
Moreover, given N_k and $a_1 - a_2$, there will be at most 5 choices for N_j, in view of the spacing condition (2). Thus we must allow for $O(P)$ choices for p_1, for $O(P)$ choices for a_1 and a_2, and $O(J)$ choices for N_j and N_k, so that
\[
\mathcal{M}_1 \ll P^2 J. \quad (8)
\]

To handle \mathcal{M}_2 we begin by choosing a prime ℓ in the range
\[
q/H < \ell \leq 2q/H.
\]
This is possible, by Bertrand’s Postulate. We then set
\[
M_j := \left\lfloor \frac{N_j \ell}{q} \right\rfloor, \quad (1 \leq j \leq J)
\]
so that the M_j are non-negative integers in $[0, \ell)$. Moreover the spacing condition (2) implies that
\[
M_{j+1} > \frac{N_{j+1} \ell}{q} - 1 \geq \frac{(N_j + H) \ell}{q} - 1 > \frac{N_j \ell}{q} \geq M_j,
\]
so that the integers M_j form a strictly increasing sequence. Since
\[
|N_j - qM_j / \ell| \leq q/\ell
\]
we now see that if $(a_1, a_2, p_1, p_2, N_j, N_k)$ is counted by \mathcal{M}_2 then
\[
\left| \frac{qM_j / \ell - a_1 q}{p_1} - \frac{qM_k / \ell - a_2 q}{p_2} \right| \leq \frac{H}{P} + \frac{q}{\ell p_1} + \frac{q}{\ell p_2},
\]
whence
\[
|p_2 M_j - p_1 M_k - \ell \delta| \leq \frac{H \ell p_1 p_2}{P q} + p_1 + p_2 \leq 12P,
\]
with \(\delta = a_1 p_2 - a_2 p_1 \). If \(p_1, p_2 \) and \(\delta \) are given, there is at most one pair of integers \(a_1, a_2 \) with \(0 \leq a_1 < p_1, 0 \leq a_2 < p_2 \) and \(a_1 p_2 - a_2 p_1 = \delta \). Thus

\[
\mathcal{M}_2 \leq \sum_{M_j, M_k} \# \{(p_1, p_2, m) : |m| \leq 12P, p_2 M_j - p_1 M_k \equiv m (\text{mod } \ell)\}.
\]

We now consider how many pairs \(p_1, p_2 \) there may be for each choice of \(M_j, M_k \). We define the set

\[
\Lambda := \{(x, y, z) \in \mathbb{Z}^3 : xM_j - yM_k \equiv z (\text{mod } \ell)\},
\]

which will be an integer lattice of determinant \(\ell \). Admissible pairs \(p_1, p_2 \) produce points \(x \bar{=} (x, y, z) \in \Lambda \) with \(x \neq y \) both prime and \(|x| \leq 12P \), where

\[
|x| := \max(|x|, |y|, |z|).
\]

The lattice \(\Lambda \) has a \(\mathbb{Z} \)-basis \(b_1, b_2, b_3 \) such that

\[
|b_1| \leq |b_2| \leq |b_3| \tag{9}
\]

and

\[
\det(\Lambda) \ll |b_1|, |b_2|, |b_3| \ll \det(\Lambda) = \ell, \tag{10}
\]

and with the property that there is an absolute constant \(c_0 \) such that if \(x \in \Lambda \) is written as \(\lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3 \) then

\[
|\lambda_i| \leq c_0 |x|/|b_i|, \quad (1 \leq i \leq 3).
\]

The existence of such a basis is a standard fact about lattices, see Browning and Heath-Brown [11, Lemma 1, (ii)], for example. When \(|b_3| \leq 12c_0 P \) we now see that the number of lattice elements of size at most \(12P \) is

\[
\leq \left(1 + \frac{12c_0 P}{|b_1|} \right) \left(1 + \frac{12c_0 P}{|b_2|} \right) \left(1 + \frac{12c_0 P}{|b_3|} \right)
\]

\[
\ll \frac{|b_1|, |b_2|, |b_3|}{P^3}
\]

\[
\ll \frac{\det(\Lambda)}{P^3} \ll HP^3 q^{-1}
\]

by (9) and (10). If \(|b_1| > 12c_0 P \) the only vector in \(\Lambda \) of norm at most \(12P \) is the origin, while if \(|b_1| \leq 12c_0 P < |b_2| \) the only possible vectors are of the form \(\lambda_1 b_1 \). In this latter case \((p_2, p_1, m) = \lambda_1 b_1 \) so that \(\lambda_1 \) divides \(\text{h.c.f.}(p_2, p_1) = 1 \). Hence there is at most 1 solution in this case.
There remains the situation in which $|b_2| \leq 12c_0P < |b_3|$, so that the admissible vectors are linear combinations $\lambda_1 b_1 + \lambda_2 b_2$. In this case we write $b_i = (x_i, y_i, z_i)$ for $i = 1, 2$ and set $\Delta = x_1y_2 - x_2y_1$. If $\Delta = 0$ then (x_1, y_1) and (x_2, y_2) are proportional, and hence are both integral scalar multiples of some primitive vector (x, y) say. However we then see that if $(p_2, p_1, m) = \lambda_1 b_1 + \lambda_2 b_2$ then (p_2, p_1) is a scalar multiple of (x, y), so that b_1 and b_2 determine p_1 and p_2. Thus when $\Delta = 0$ the primes p_1 and p_2 are determined by M_j and M_k. In order to summarize our conclusions up to this point we write \mathcal{M}_3 for the contribution to \mathcal{M}_2 corresponding to all cases except that in which $|b_2| \leq 12c_0P < |b_3|$ and $\Delta \neq 0$. With this notation we then have

$$\mathcal{M}_3 \ll (HP^3q^{-1} + 1)J^2. \tag{11}$$

Suppose now that $|b_2| \leq 12c_0P < |b_3|$ and $\Delta \neq 0$. We will write \mathcal{M}_4 for the corresponding contribution to \mathcal{M}. In this case we must have $\lambda_3 = 0$, and the number of choices for λ_1 and λ_2 will be

$$\leq \left(1 + \frac{12c_0P}{|b_1|}\right) \left(1 + \frac{12c_0P}{|b_2|}\right) \ll \frac{P^2}{|b_1|.|b_2|}.$$

Thus if $L < |b_1|.|b_2| \leq 2L$, say, the contribution to \mathcal{M}_4 will be $O(P^2L^{-1})$ for each pair M_j, M_k.

To estimate the number of pairs of vectors b_1, b_2 with $L < |b_1|.|b_2| \leq 2L$ we observe that there are $O(B_1^3B_2^3)$ possible choices with $B_1 < |b_1| \leq 2B_1$ and $B_2 < |b_2| \leq 2B_2$. A dyadic subdivision then shows that we will have to consider $O(L^3\log L)$ pairs b_1, b_2. Writing $b_i = (x_i, y_i, z_i)$ for $i = 1, 2$ as before we will have

$$x_1M_j - y_1M_k \equiv z_1 \pmod{\ell}, \quad x_2M_j - y_2M_k \equiv z_2 \pmod{\ell}.$$

These congruences determine ΔM_j and ΔM_k modulo ℓ, and since ℓ is prime and $0 \leq M_j, M_k < \ell$ we see that b_1 and b_2 determine M_j, M_k precisely, providing that $\ell \nmid \Delta$. However

$$|\Delta| \leq 2|b_1||b_2| \leq 2(|b_1|.|b_2|.|b_3|)^{2/3} \ll \det(\Lambda)^{2/3} = \ell^{2/3}$$

by (2) and (10). Since $\Delta \neq 0$ we then see that $\ell \nmid \Delta$ providing that q/H, or equivalently ℓ, is sufficiently large. Under this assumption we therefore conclude that there are $O(L^3\log L)$ pairs M_j, M_k for which $|b_2| \leq 12c_0P < |b_3|$ and $\Delta \neq 0$ and for which $L < |b_1|.|b_2| \leq 2L$. Thus each dyadic range $(L, 2L]$ contributes $O(P^2L^{-1}\min(J^2, L^3\log L))$ to \mathcal{M}_4. Since

$$P^2L^{-1}\min(J^2, L^3) \leq P^2L^{-1}(J^2)^{2/3}(L^3)^{1/3} = P^2J^{4/3}$$

12
we deduce that
\[M_4 \ll P^2 J^{2/3} \log q, \]
and comparing this with the bounds (8) and (11) we then see that
\[M \ll (HP^3 q^{-1} + 1) J^2 + P^2 J^{4/3} \log q. \]

We may now insert this bound into (7), recalling that \(P \) is of order \(Hq^{1/(2r)} \) to deduce, after replacing \(\varepsilon \) by \(\varepsilon / 2 \) that
\[\sum_{j=1}^J \max_{h \leq H} |S(N_j; h)|^r \ll \varepsilon, r \cdot q^{1/4 + 1/(4r) + \varepsilon} H^{-1} \left\{ J^{2/3} + J (H^{-1} q^{1/(2r)} + Hq^{-1/2 - 1/(4r)}) \right\}, \]
as required for Lemma 1.

5 Deduction of the theorem

We will prove the theorem by induction on \(r \). The result for \(r = 1 \) is an immediate consequence of Lemma 4, together with the Pólya–Vinogradov inequality.

For \(r \geq 2 \) we will use a dyadic subdivision, classifying the \(N_j \) according to the value \(V = 2^r \) for which
\[V/2 < \max_{h \leq H} |S(N_j; h)|^r \leq V. \] (12)
Clearly numbers \(N_j \) for which the corresponding \(V \) is less than 1 make a satisfactory contribution in our theorem, and so it suffices to assume that (12) holds for all \(N_j \).

We now give three separate arguments, depending on which of the three terms on the right of (11) dominates. If
\[\sum_{j=1}^J \max_{h \leq H} |S(N_j; h)|^r \ll_{\varepsilon, r} q^{1/4 + 1/(4r) + \varepsilon} H^{r-1} J^{2/3} \]
then
\[JV^r \ll_{\varepsilon, r} q^{1/4 + 1/(4r) + \varepsilon} H^{r-1} J^{2/3}, \]
whence
\[JV^{3r} \ll_{\varepsilon, r} q^{3/4 + 3/(4r) + 3\varepsilon} H^{3r-3}, \]
which suffices for the theorem. If the second term dominates we will have

$$\sum_{j=1}^{J} \max_{h \leq H} |S(N_j, h)| r \ll_{\epsilon, r} q^{1/4 + 1/(4r) + \epsilon} H^{r-1} J H^{-1} q^{1/(2r)},$$

so that

$$J V^r \ll_{\epsilon, r} q^{1/4 + 3/(4r) + \epsilon} H^{r-2} J.$$

In this case it follows that

$$V^r \ll_{\epsilon, r} q^{1/4 + 3/(4r) + \epsilon} H^{r-2}. \quad (13)$$

We now use Lemma 4, which implies that

$$J V^{2r} \ll_{\epsilon, r} q^\epsilon (q H^{r-1} + q^{1/2} H^{2r-1}) \ll_{\epsilon, r} q^{1/2 + \epsilon} H^{2r-1} \quad (14)$$

since $H \geq q^{1/(2r)}$. Coupled with (13) this yields

$$J V^{3r} \ll_{\epsilon, r} q^{3/4 + 3/(4r) + 2\epsilon} H^{3r-3}$$

which again suffices for the theorem. Finally, if the third term on the right of (4) dominates we must have

$$J V^r \ll_{\epsilon, r} q^{-1/4 + \epsilon} H^r J$$

whence $V \ll_{\epsilon} H q^{-1/(4r) + \epsilon/r}$. Here we shall use the inductive hypothesis, which tells us that

$$J V^{3r-3} \ll_{\epsilon, r} q^{3/4 + 3/(4r - 4) + \epsilon} H^{3r-6}$$

if either $r = 2$ or $H \geq q^{1/(2r-2)}$ and $r \geq 3$. Under this latter assumption we therefore deduce that

$$J V^{3r} \ll_{\epsilon, r} q^{3/4 + \phi + 4\epsilon} H^{3r-3}$$

with

$$\phi = \frac{3}{4r - 4} - \frac{3}{4r} \leq \frac{3}{4r}$$

for $r \geq 2$. It therefore remains to consider the case in which $r \geq 3$ and $q^{1/(2r)} \leq H \leq q^{1/(2r-2)}$. However for such H we may again use the bound (14), whence

$$J V^{3r} \ll_{\epsilon, r} q^{1/2 + \epsilon} H^{2r-1} q^{-1/4 + \epsilon} H^r = q^{1/4 + 2\epsilon} H^{3r-3} \left(H q^{-1/(2r-2)} \right)^2 q^{1/(r-1)} \leq q^{1/4 + 1/(r-1) + 2\epsilon} H^{3r-3}.$$

To complete the proof of this final case it remains to observe that $1/4 + 1/(r-1) \leq 3/4 + 3/(4r)$ for $r \geq 3$.

14
References

[1] T.D. Browning and D.R. Heath-Brown, Equal sums of three powers, *Invent. Math.*, 157 (2004), 553–573.

[2] D.A. Burgess, On character sums and primitive roots, *Proc. London Math. Soc. (3)*, 12 (1962), 179–192.

[3] D.A. Burgess, On character sums and L-series, *Proc. London Math. Soc. (3)*, 12 (1962), 193–206.

[4] D.A. Burgess, On character sums and L-series. II, *Proc. London Math. Soc. (3)*, 13 (1963), 524–536.

[5] D.A. Burgess, The character sum estimate with $r = 3$, *J. London Math. Soc. (2)*, 33 (1986), 219–226.

[6] M.-C. Chang, On a question of Davenport and Lewis and new character sum bounds in finite fields, *Duke Math. J.*, 145 (2008), 409–442.

[7] H. Davenport and P. Erdös, The distribution of quadratic and higher residues, *Publ. Math. Debrecen* 2 (1952), 252–265.

[8] J. Friedlander and H. Iwaniec, Estimates for character sums, *Proc. Amer. Math. Soc.*, 119 (1993), 365–372.

[9] P. X. Gallagher and H. L. Montgomery, A Note on Burgess's estimate, *Mathematical Notes*, 88 (2010), 321–329.

[10] D. Menchov, Sur les séries de fonctions orthogonales, *Fund. Math.*, 1 (1923), 82–105.

[11] K.K. Norton, On character sums and power residues, *Trans. Amer. Math. Soc.*, 167 (1972), 203–226.

[12] H. Rademacher, Eigen Staze über Reihn von allgemeinen Orthogonal-Funktionen, *Math. Ann.*, 87 (1922), 112–138.

Mathematical Institute, 24–29, St. Giles’, Oxford OX1 3LB UK

rhb@maths.ox.ac.uk