First-Order Bayesian Regret Analysis of Thompson Sampling

Sébastien Bubeck and Mark Sellke

Abstract—We address online combinatorial optimization when the player has a prior over the adversary’s sequence of losses. In this setting, Russo and Van Roy proposed an information-theoretic analysis of Thompson Sampling based on the information ratio, allowing for elegant proofs of Bayesian regret bounds. In this paper we introduce three novel ideas to this line of work. First, we propose a new quantity, the scale-sensitive information ratio, which allows us to obtain more refined first-order regret bounds (i.e., bounds of the form $O(\sqrt{dL})$ where L^* is the loss of the best combinatorial action). Second, we replace the entropy over combinatorial actions by a coordinate entropy, which allows us to obtain the first optimal worst-case bound for Thompson Sampling in the combinatorial setting. We additionally introduce a novel link between Bayesian agents and frequentist confidence intervals. Combining these ideas we show that the classical multi-armed bandit first-order regret bound $O(\sqrt{dL})$ still holds true in the more challenging and more general semi-bandit scenario. This latter result improves the previous state of the art bounds $O(\sqrt{(d+m^3)L})$ by Lykouris, Sridharan and Tardos. Moreover, we sharpen these results with two technical ingredients. The first leverages a recent insight of Zimmert and Lattimore to replace Shannon entropy with more refined potential functions in the analysis. The second is a Thresholded Thompson Sampling algorithm, which slightly modifies the original algorithm by never playing low-probability actions. This thresholding results in fully T-independent regret bounds when $L^* \leq L$ is almost surely upper-bounded, which we show does not hold for ordinary Thompson Sampling.

Index Terms—Multi-armed bandits, Thompson sampling, information ratio.

I. INTRODUCTION

We first recall the general setting of online combinatorial optimization with both full feedback (full information game) and limited feedback (semi-bandit game). Let $\mathcal{A} \subset \{0,1\}^d$ be a fixed set of combinatorial actions, and assume that $m = \|a\|_1$ for all $a \in \mathcal{A}$. An (oblivious) adversary selects a sequence $\ell_1, \ldots, \ell_T \in \{0,1\}^d$ of linear functions, without revealing it to the player. At each time step $t = 1, \ldots, T$, the player selects an action $a_t \in \mathcal{A}$, and suffers

the instantaneous loss $\langle \ell_t, a_t \rangle$. The following feedback on the loss function ℓ_t is then obtained: in the full information game the entire loss vector ℓ_t is observed, and in the semi-bandit game only the loss on active coordinates is observed (i.e., one observes $\ell_t \odot a_t$ where \odot denotes the entrywise product). Importantly, the player has access to external randomness, and can select their action a_t based on the observed feedback so far. The player’s objective is to minimize their total expected loss $L_T = \mathbb{E} \left[\sum_{t=1}^T \langle \ell_t, a_t \rangle \right]$. The player’s performance at the end of the game is measured through the regret R_T, which is the difference between the achieved cumulative loss L_T and the best one could have done with a fixed action. That is, with $L^* = \min_{a \in \mathcal{A}} \sum_{t=1}^T \langle \ell_t, a \rangle$, one has $R_T = L_T - L^*$. The optimal worst-case regret $\sup_{\ell_1, \ldots, \ell_T \in [0,1]^d} R_T$ is known for both the full information and semi-bandit game. It is respectively of order $m\sqrt{T}$ ([15]) and \sqrt{mdT} ([2]).

A. First-Order Regret Bounds

It is natural to hope for strategies with regret $R_T = O(L^*)$. If this holds, one can then claim that $L_T = (1 + o(1))L^*$ (in other words the player’s performance is close to the optimal in-hindsight performance up to a smaller order term). However, worst-case bounds may fail to capture this behavior when $L^* \ll T$. The concept of first-order regret bound tries to remedy this issue, by asking for regret bounds scaling with L^* instead of T. In [15] an optimal version of such a bound is obtained for the full information game:

Theorem 1 [15]: In the full information game, there exists an algorithm such that for any loss sequence one has $R_T = \tilde{O}(\sqrt{dL^*})$.

In writing $\tilde{O}(\cdot)$ we suppress logarithmic terms, even $\log(T)$. However all our bounds stated in the main body explicitly state the logarithmic dependences.

The state of the art for first-order regret bounds in the semi-bandit game is more complicated. It is known since [1] that for $m = 1$ (i.e., the famous multi-armed bandit game) one can have an algorithm with regret $R_T = \tilde{O}(\sqrt{dL^*})$. On the other hand for $m > 1$ the best bound due to [18] is $\tilde{O}(\sqrt{(d+m^3)L^*})$. Using mirror descent and an entropic regularizer as in [2], the following bound can be shown:

Theorem 2: In the semi-bandit game, there exists an algorithm such that for any loss sequence one has $R_T = \tilde{O}(\sqrt{dL^*})$.

This bound is tight for $L^* = \Theta(mT)$ since the minimax regret for the semi-bandit problem is $\Theta(\sqrt{mdT})$ ([2]). We derive a version of this result using the recipe first proposed (in the context of partial feedback) in [9]. Namely,
to show the existence of a randomized strategy with regret bounded by B_T for any loss sequence, it is sufficient to show that for any distribution over loss sequences there exists a strategy with regret bounded by B_T in expectation. Indeed, this equivalence is a simple consequence of the Sion minimax theorem [9]. In other words to prove Theorem 2 it is sufficient to restrict our attention to the Bayesian scenario, where one is given a known prior distribution ν over the loss sequence $(\ell_1, \ldots, \ell_T) \in [0,1]^{d \times T}$ and aims for small expected regret with respect to that prior. Importantly note that there is no independence whatsoever in such a random loss sequence, either across times or across coordinates for a fixed time. Rather, the prior ν is completely arbitrary over the Td different values $(\ell_1(i))_{i \in [T], e \in [d]}$.

The rest of the paper is dedicated to the (first-order) regret analysis of a particular Bayesian strategy, the famous Thompson Sampling (25)). In particular we will show that Thompson Sampling implies Theorem 1 and an alternate regret analysis of a particular Bayesian strategy, the famous Thompson Sampling that allows us to prove first-order regret bounds. In various forms we show the following result:

Theorem 4: For any prior ν, Thompson Sampling satisfies the following regret bounds in the full information game $\mathbb{E}''[R_T] = \tilde{O}(m\sqrt{TD})$. Furthermore in the semi-bandit game, $\mathbb{E}''[R_T] = \tilde{O}(\sqrt{d\mathbb{E}[L^*]})$.

To the best of our knowledge such guarantees were not known for Thompson Sampling even in the full-information case with $m = 1$ (the so-called expert setting of [10]). Our analysis can be combined with recent work in [26] which allows for improved estimates based on using mirror maps besides the Shannon entropy.

The link between Theorems 4 and 2 requires some explanation. In order to recover the full strength of Theorem 2 via the minimax strategy, one would need a regret bound $O(\sqrt{mD})$ which is stronger than the guarantee of Theorem 4. However if an almost sure upper bound $L^* \leq L$ is known, then Theorem 4 implies the existence of a frequentist algorithm attaining regret

$$\mathbb{E}''[R_T] = \tilde{O}(\sqrt{d\mathbb{E}[L^*]}).$$

In fact the estimate in Theorem 4 can be made fully independent of T, e.g. with no hidden $\log(T)$ terms. As explained in Section VII, this is accomplished by a modified Thresholded Thompson Sampling algorithm which always avoids low-probability actions. Therefore a frequentist algorithm obtaining the same guarantee exists.

Finally, we note that Thompson Sampling against certain artificial prior distributions is also known to obey frequentist regret bounds in the stochastic case ([5], [19]). However we emphasize that in this paper, Thompson Sampling assumes access to the true prior distribution for the loss sequence and the guarantees are for expected Bayesian regret with respect to that prior.

The full analyses in Sections VI and VII of this paper are rather involved. We therefore begin with the full information problem with $m = 1$ and gradually add new ingredients to handle more difficult settings and refine the estimates. The organization is as follows:

- We begin in Section II with the full information case and with $m = 1$. We show how to refine the analysis of [23] to obtain first-order regret bounds using a scale-sensitive information ratio.
- In Section III we study the full information problem for general $m \geq 1$. We explain why the Shannon entropy is in some sense incapable of recovering optimal regret bounds, and show how to improve the analysis via coordinate entropy.
- In Section IV we study bandit feedback with $m = 1$. The corresponding generalization of [23] parallels the previous two sections but becomes somewhat more technical. Notably Theorem 6, which concerns the behavior of...
general Bayesian agents in unknown environments, plays a crucial role.

- In Section V, we refine the rates of Section IV. The idea is to replace the Shannon entropy with the Tsallis entropy and the log-barrier; indeed, any potential function obeying natural properties can be used in the analysis (see Definition 2). This parallels generalizations of EXP3 to more general mirror descent algorithms for the adversarial bandit problem as in e.g. [7] and [22].

- In Section VI we give several regret analyses for the combinatorial semi-bandit. This involves combining the ideas from the previous sections as well as more complicated coordinate-based refinements of entropy as discussed in Subsection VI-B.

- In Section VII we show how to remove \(\log(T) \) factors (and in fact any \(T \)-dependence at all) from the results in the previous sections given an almost sure upper bound \(L^* \leq T' \). These bounds apply to a slightly modified Thresholded Thompson Sampling algorithm which never plays low probability actions.

- In Section VIII we consider the case of graphical feedback and show how to remove certain independence assumptions from prior work using the coordinate entropy. The regret estimates in this section are not first-order, i.e. they scale with \(\sqrt{T} \).

- In Section IX we present several negative results on Thompson Sampling. Namely it may suffer sublinear regret with constant probability, it may fail to achieve \(T \)-independent regret without thresholding, and it does not obey small-loss regret bounds in the contextual setting.

- In the Appendix, we prove Theorem 6 using a combination of self-referential arguments for Bayesian agents and martingale concentration inequalities. A proof outline is given in Subsection IV-B.1 immediately after its statement.

II. INFORMATION RATIO AND SCALE-SENSITIVE INFORMATION RATIO

As a warm-up, and to showcase one of our key contributions, we focus here on the full information case with \(m = 1 \) (i.e., the expert setting). We start by recalling the general setting of Russo and Van Roy’s analysis (Subsection II-A), and how it applies in this expert setting (Subsection II-B). We then introduce a new quantity, the scale-sensitive information ratio, and show that it naturally implies a first-order regret bound (Subsection II-C). We conclude this section by showing a new bound between two classical distances on distributions (essentially the chi-squared and the relative entropy), and we explain how to apply it to control the scale-sensitive information ratio (Subsection II-D).

A. Preparation

Let us denote \(X_t \in \mathbb{R}^d \) for the feedback received at the end of round \(t \). That is in full information one has \(X_t = \ell_t \), while in semi-bandit one has \(X_t = \ell_t \circ a_t \). Let us denote by \(\mathbb{P}_t \) the posterior distribution of \(\ell_1, \ldots, \ell_T \) conditionally on \(a_1, X_1, \ldots, a_{t-1}, X_{t-1} \). We write \(\mathbb{E}_t \) for the expectation with respect to \(\mathbb{P}_t \), which returns a random variable measurable with respect to the sigma algebra generated by \((a_1, X_1, \ldots, a_{t-1}, X_{t-1}) \). In Thompson Sampling, we take \(a_t \sim p_t \) conditionally on \((a_1, X_1, \ldots, a_{t-1}, X_{t-1}) \), where again \(p_t \) is the distribution of \(a^* \) under \(\mathbb{P}_t \). Hence \(\mathbb{E}_t [a_t] = p_t \) when viewed as vectors in \(\mathbb{R}^d \). In particular, this implies the martingale property

\[
\mathbb{E}_t [p_{t+1}] = p_t
\]

which we will use crucially throughout. Let \(IG_t \) be the mutual information \(\mathbb{P}_t \) (denoted in general \(I_t \)) between \(a^* \) and \(X_t \), i.e.

\[
IG_t = I_t(a^*, X_t) = H(p_t) - \mathbb{E}_t[H(p_{t+1})].
\]

(The abbreviation \(IG \) stands for “information gain” as it represents the amount of new information about the unknown \(a^* \).) Let

\[
r_t = \mathbb{E}_t ((\ell_t, a_t - a^*))
\]

be the instantaneous regret at time \(t \). The information ratio introduced by Russo and Van Roy is defined as:

\[
\Gamma_t := \frac{r_t^2}{IG_t}.
\]

The point of the information ratio is the following result:

Proposition 1 (Proposition 1, [23]): Let \(\Gamma > 0 \) be a positive constant and consider a strategy such that \(\Gamma_t \leq \Gamma \) for all \(t \) almost surely. Then one has

\[
\mathbb{E}[R_T] \leq \sqrt{T \cdot \Gamma \cdot H(p_1)},
\]

where \(H(p_1) \) denotes the Shannon entropy of the prior distribution \(p_1 \) (in particular \(H(p_1) \leq \log(d) \)).

Proof: The main calculation is as follows:

\[
\mathbb{E}[R_T] = \mathbb{E} \left[\sum_{t=1}^T r_t \right] \leq \sqrt{T \cdot \Gamma \cdot \mathbb{E} \left[\sum_{t=1}^T IG_t \right]}.
\]

Moreover the total information accumulation \(\mathbb{E} \left[\sum_{t=1}^T IG_t \right] \) can be easily bounded via

\[
\mathbb{E} \left[\sum_{t=1}^T IG_t \right] = \mathbb{E} \left[\sum_{t=1}^T H(p_t) - H(p_{t+1}) \right] = \mathbb{E}[H(p_1) - H(p_{T+1})] \leq H(p_1).
\]

Substituting into (2) concludes the proof. \(\square \)

B. Pinsker’s Inequality and Thompson Sampling’s Information Ratio

We now describe how to control the information ratio (1) of Thompson Sampling in the expert setting. Let

\[
\text{Ent}(p, q) = \sum_{i=1}^d p(i) \log(p(i)/q(i))
\]
The third step holds because Jensen’s inequality and (6) in the important calculation for conditional expectations in the second step, we have the

\[E_t[p_{t+1}] = p_t \implies \]

\[E_t[\text{Ent}(p_{t+1}, p_t)] = E_t \left[\sum_{i=1}^{d} p_{t+1}(i) \log\left(\frac{p_{t+1}(i)}{p_t(i)}\right) \right] \]

\[= E_t \left[\sum_{i=1}^{d} p_{t+1}(i) \log p_{t+1}(i) \right] - d p_t(i) \log p_t(i) \]

\[= H(p_t) - E_t[H(p_{t+1})] \]

\[= IG_t. \quad (5) \]

We also recall Pinsker’s inequality:

\[\|p - q\|^2 \leq 2 \cdot \text{Ent}(p, q). \quad (6) \]

(Here on the left side we view \(p \) and \(q \) as vectors in \(\mathbb{R}^d \).)

Having completed our preparations we turn to bounding the information ratio. Observe that the posterior distribution \(p_t \) of \(a^* \in \{e_1, \ldots, e_d\} \) satisfies (again viewing \(p_t \) as a vector in \(\mathbb{R}^d \)): \(p_t = E_t[a^*] \). Using the tower rule \(E_t[E_{t+1}[X]] = E_t[X] \) for conditional expectations in the second step, we have the important calculation

\[r_t = E_t[(\ell_t, a_t - a^*)] \]

\[= E_t[E_{t+1}(\ell_t, a_t - a^*)] \]

\[= E_t[(\ell_t, E_{t+1}[(a_t - a^*)])] \]

\[= E_t[(\ell_t, p_t - p_{t+1})]. \quad (7) \]

The third step holds because \(\ell_t \) is known at time \(t + 1 \). We estimate the right hand side above via

\[(\ell_t, p_t - p_{t+1}) \leq \frac{1}{2} \|p_t - p_{t+1}\|_1 \quad (8) \]

using the observation \(\ell_t - (\frac{1}{2}, \ldots, \frac{1}{2}) \) \(\infty \leq \frac{1}{2} \) (and the fact that \(p_t \) and \(p_{t+1} \) have the same sum-of-coordinates). Combining (7) and (8) with Jensen’s inequality and (6) in the first step below and then using (5) yields:

\[r_t^2 \leq \frac{1}{2} E_t[\text{Ent}(p_{t+1}, p_t)] \leq IG_t. \]

We have shown:

Lemma 1 ([23]): In the expert setting, Thompson Sampling’s information ratio (1) satisfies \(T \leq \frac{n}{2} \) for all \(t \).

Using Lemma 1 in Proposition 1 one obtains the following worst case optimal regret bound for Thompson Sampling in the expert setting:

\[E[R_T] \leq \sqrt{T \log(d)/2}. \]

C. Scale-Sensitive Information Ratio

The information ratio (1) was designed to derive \(\sqrt{T} \)-type bounds (see Proposition 1). To obtain \(\sqrt{L^*} \)-type regret we propose the following quantity which we coin the scale-sensitive information ratio:

\[\Lambda_t := \frac{(r_t^+)^2}{IG_t, E_t[(\ell_t, a_t^*)]}, \quad (9) \]

where

\[r_t^+ := E_t[(\ell_t, \max(0, p_t - p_{t+1}))]. \]

With this new quantity we obtain the following refinement of Proposition 1:

Proposition 2: Let \(\Lambda > 0 \) be a positive constant and consider a strategy such that \(\Lambda_t \leq \Lambda \) for all \(t \) almost surely. Then one has

\[E[R_T] \leq \sqrt{E[L^*] \cdot \Lambda \cdot H(p_1) + \Lambda \cdot H(p_1)}. \]

Proof: The main calculation is now as follows:

\[E[R_T] \leq \sqrt{E[L_T] \cdot \Lambda \cdot E \left[\sum_{t=1}^{T} IG_t \right]} \]

\[\leq \sqrt{E[L_T] \cdot \Lambda \cdot E \left[\sum_{t=1}^{T} IG_t \right]} \]

\[\leq \sqrt{E[L_T] \cdot \Lambda \cdot H(p_1)}. \]

The proof is concluded from Lemma 2 just below, with \((a, b, c) = (E[L_T], E[L^*], \Lambda \cdot H(p_1)) \).

Lemma 2: Suppose \(a, b, c \geq 0 \) satisfy \(a-b \leq \sqrt{ac} \). Then \(a-b \leq \sqrt{bc} + c \).

Proof: We assume \(a \geq b+c \) as otherwise the result follows immediately. Then

\[c \leq \sqrt{ac} \]

\[\Rightarrow a-b+c \leq 2\sqrt{ac} \]

\[\Rightarrow (\sqrt{a} - \sqrt{c})^2 \leq b \]

\[\Rightarrow \sqrt{ac} - c \leq \sqrt{bc} \]

\[\Rightarrow a-b-c \leq \sqrt{bc}. \]

Here the first implication comes from the main hypothesis and the second from rearranging. The third implication follows by taking the square root of the previous line (both sides are positive since \(a \geq b+c \) and multiplying by \(\sqrt{c} \). The final implication follows by using again the main hypothesis.

D. Revers Chi-Squared/Relative Entropy Inequality

We now describe how to control the scale-sensitive information ratio (9) of Thompson Sampling in the expert setting. As we saw in Subsection II-B, the two key inequalities in the Russo-Van Roy information ratio analysis are a simple Cauchy–Schwarz followed by Pinsker’s inequality (recall (7)):

\[r_t = E_t[(\ell_t, p_t - p_{t+1})] \leq E_t[\|\ell_t\|_\infty \cdot \|p_t - p_{t+1}\|_1] \leq \sqrt{E_t[\text{Ent}(p_{t+1}, p_t)]} = \sqrt{IG_t}. \]

In particular, as far as first-order regret bounds are concerned, the “scale” of the loss \(\ell_t \) is lost in the first Cauchy–Schwarz. To control the scale-sensitive information ratio we propose to
do the Cauchy–Schwarz step differently and as follows (using the fact that $\ell_t(i)^2 \leq \ell_t(i)$):

$$r_t = \mathbb{E}_t[(\ell_t, p_t - p_{t+1})]$$

$$\leq \sqrt{\mathbb{E}_t \left[\sum_{i=1}^d \ell_t(i)p_t(i) \right] \cdot \mathbb{E}_t \left[\sum_{i=1}^d \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)} \right]}$$

$$= \sqrt{\mathbb{E}_t[(\ell_t, p_t)]} \cdot \mathbb{E}_t[\chi^2(p_t, p_{t+1})],$$

(10)

where $\chi^2(p, q) = \sum_{i=1}^d \frac{(p(i) - q(i))^2}{p(i)}$ is the chi-squared divergence. Thus, to control the scale-sensitive information ratio (9), it only remains to relate the chi-squared divergence to the relative entropy. Unfortunately it is well-known that in general one only has $\text{Ent}(q, p) \leq \chi^2(p, q)$ (which is the opposite of the inequality we need). Somewhat surprisingly we show that the reverse inequality in fact holds up to a factor of two true for a slightly weaker form of the chi-squared divergence, which turns out to be sufficient for our needs:

Lemma 3: For $p, q \in \mathbb{R}^d$ with $\sum_{i=1}^d p_i = \sum_{i=1}^d q_i$, consider the positive chi-squared divergence

$$\chi^2_+(p, q) = \sum_{i: p(i) \geq q(i)} \frac{(p(i) - q(i))^2}{p(i)}.$$

Then one has

$$\chi^2_+(p, q) \leq 2 \cdot \text{Ent}(q, p).$$

Proof: Consider the function $f_2(s) = s \log(s/t) - s + t$, and observe that $f_2''(s) = 1/s$. In particular f_2 is convex, and for $s < t$ it is $1/t$-strongly convex. Moreover one has $f_2(t) = f_2'(t) = 0$. This directly implies:

$$f_2(s) \geq \frac{1}{2t}(t - s)^2.$$

Writing

$$\text{Ent}(q, p) = \sum_{i=1}^d (q(i) \log(q(i)/p(i)) - q(i) + p(i))$$

$$= \sum_{i=1}^d q(i) \log(q(i)/p(i))$$

and using the above estimate for each $i \in [d]$ concludes the proof.

We can therefore redo the calculation (10) using r^+_t and then invoke Lemma 3 (together with the identity (5)) in the final step:

$$(r^+_t)^2 = \mathbb{E}_t[(\ell_t, p_t - p_{t+1})]^2$$

$$\leq \mathbb{E}_t \left[\sum_{i=1}^d \ell_t(i)p_t(i) \right] \cdot \mathbb{E}_t \left[\sum_{i: p_t(i) \geq p_{t+1}(i)} \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)} \right]$$

$$= \mathbb{E}[(\ell_t, p_t)] \cdot \mathbb{E}_t[\chi^2(p_t, p_{t+1})]$$

$$\leq 2 \cdot \mathbb{E}[(\ell_t, p_t)] \cdot IG_t.$$

(12)

Here in the first line, the positive part operation $(\cdot)_+$ is applied entry-wise to $(p_t - p_{t+1})$. We have shown the following:

Lemma 4: In the expert setting, Thompson Sampling’s scale-sensitive information ratio (9) satisfies $\Lambda_t \leq 2$ for all t.

Using Lemma 4 in Proposition 2 we arrive at the following new regret bound for Thompson Sampling:

Theorem 5: In the expert setting Thompson Sampling satisfies for any prior distribution:

$$\mathbb{E}[R_T] \leq \sqrt{2\mathbb{E}[L^*]} \cdot H(p_1) + 2H(p_1).$$

III. Combinatorial Setting and Coordinate Entropy

We now return to the general combinatorial setting, where the action set \mathcal{A} is a subset of $\{A \in \{0, 1\}^d : \|A\|_1 = m\}$, and we continue to focus on the full information game. Recall that, as described in Theorem 3, Russo and Van Roy’s analysis yields in this case the suboptimal regret bound $O(m^{3/2}\sqrt{T})$ (the optimal bound is $\text{m}v\sqrt{T}$). We first argue that this suboptimal bound comes from basing the analysis on the standard Shannon entropy. We then propose a different analysis based on the coordinate entropy.

A. Inadequacy of the Shannon Entropy

Let us consider the simple scenario where \mathcal{A} is the set of indicator vectors for the sets $a_k = \{1 + (k-1) \cdot m, \ldots, k \cdot m\}$, $k \in [d/m]$. In other words, the action set consists of d/m disjoint intervals of size m. This problem is equivalent to a classical expert setting with d/m actions, and losses with values in $[0, m]$. In particular there exists a prior distribution such that any algorithm must suffer regret $m\sqrt{T}\log(d/m) \geq m\sqrt{T}H(p_1)$ (the lower bound comes from the fact that there are only d/m available actions).

Thus we see that, unless the regret bound reflects some of the structure of the action set $\mathcal{A} \subset \{0, 1\}^d$ (besides the fact that elements have m non-zero coordinates), one cannot hope for a better regret than $m\sqrt{T}H(p_1)$. For larger action sets, $H(p_1)$ could be as large as $m\log(d/m)$. Thus, if we are to obtain a regret bound depending only on m and T via the entropy of the optimal action set, the best possible bound will be $m^{3/2}\sqrt{T}$. However the optimal rate for this online learning problem is known to be $\mathcal{O}(m^{3/4}\sqrt{T})$. This suggests that the Shannon entropy is not the right measure of uncertainty in this combinatorial setting, at least if we expect Thompson Sampling to perform optimally.

Interestingly a similar observation was made in [2] where it was shown that the regret for the standard multiplicative weights algorithm is also lower bounded by the suboptimal rate $m^{3/2}\sqrt{T}$. The connection to the present situation is that standard multiplicative weights corresponds to mirror descent with the Shannon entropy. To obtain an optimal algorithm, [2], [15] proposed to use mirror descent with a certain coordinate entropy. We show next that basing the analysis of Thompson Sampling on this coordinate entropy allows us to prove optimal guarantees.
B. Coordinate Entropy Analysis

For any vector \(v = (v_1, v_2, \ldots, v_d) \in [0, 1]^d \), we define its coordinate entropy \(H^c(v) \) to simply be the sum of the entropies of the individual coordinates:

\[
H^c(v) = \sum_{i=1}^{d} H(v_i) = -\sum_{i=1}^{d} v_i \log(v_i) + (1 - v_i) \log(1 - v_i).
\]

For a \(\{0, 1\}^d \)-valued random variable such as \(a^* \), we define \(H^c(a^*) = H^c(E[a^*]) \). Equivalently, the coordinate entropy \(H^c(a^*) \) is the sum of the (ordinary) entropies of the \(d \) Bernoulli random variables \(a^* \).

This definition allows us to consider the information gain in each event \(i \in a^* \) separately in the information theoretic analysis via

\[
IG^c_i = H^c_i(p_t) - \mathbb{E}_t[H^c_t(p_{t+1})],
\]

denoting now \(p_t = \mathbb{E}_t[a_t] \). We define for \(p, q \in [0, 1]^d \) with \(\sum_{i=1}^{d} p(i) = \sum_{i=1}^{d} q(i) \):

\[
\text{Ent}^c(p, q) = \sum_{i=1}^{d} \left(p(i) \log \frac{p(i)}{q(i)} + (1 - p(i)) \log \frac{1 - p(i)}{1 - q(i)} \right).
\]

For intuition, note that each term is the relative entropy between Bernoulli variables with means \(p(i) \) and \(q(i) \), and the above definitions are additive across coordinates. Similarly to (5), we have

\[
\mathbb{E}_t[\text{Ent}^c(p_{t+1}, p_t)]
\]

\[
= \mathbb{E}_t \left[\sum_{i=1}^{d} p_{t+1}(i) \log \frac{p_{t+1}(i)}{p_t(i)} \right]
\]

\[
+ \mathbb{E}_t \left[\sum_{i=1}^{d} (1 - p_{t+1}(i)) \log \frac{1 - p_{t+1}(i)}{1 - p_t(i)} \right]
\]

\[
= \mathbb{E}_t \left[\sum_{i=1}^{d} p_t(i) \log p_t(i) \right] - \mathbb{E}_t \left[\sum_{i=1}^{d} (1 - p_t(i)) \log (1 - p_t(i)) \right]
\]

\[
= H^c(p_t) - \mathbb{E}_t[H^c(p_{t+1})]
\]

\[
= IG^c_t.
\]

Moreover, Lemma 3 continues to hold with the coordinate entropy:

\[
\frac{1}{2} \chi^2_t(p_t, p_{t+1}) \leq \text{Ent}(p_{t+1}, p_t)
\]

\[
= \sum_{i=1}^{d} p(i) \log(p(i)/q(i))
\]

\[
\leq \sum_{i=1}^{d} p(i) \log(p(i)/q(i))
\]

\[
= \sum_{i=1}^{d} (1 - p(i)) \log \frac{1 - p(i)}{1 - q(i)}
\]

\[
+ \sum_{i=1}^{d} (1 - p(i)) \log \frac{1 - p(i)}{1 - q(i)}
\]

\[
= \text{Ent}^c(p_{t+1}, p_t).
\]

Here in the second-to-last step we used Jensen’s inequality and the fact that \(\sum_{i=1}^{d} p(i) = \sum_{i=1}^{d} p_{t+1}(i) \) (as in the usual proof that KL divergence is non-negative). Next, following (12), we estimate

\[
(r_t^*)^2 = \mathbb{E}_t[\ell_t(p_t - p_{t+1}^*)]^2
\]

\[
\leq \mathbb{E}_t \left[\sum_{i=1}^{d} \ell_t(i)p_t(i) \right] \times \mathbb{E}_t \left[\sum_{i=1}^{d} \frac{(p_t(i) - p_{t+1}(i))^2}{p_t(i)} \right]
\]

\[
= \mathbb{E}_t[\ell_t(p_t)] \cdot \mathbb{E}_t[\chi_t^2(p_t, p_{t+1})]
\]

\[
\leq 2 \cdot \mathbb{E}_t[\ell_t(p_t)] \cdot \mathbb{E}_t[\text{Ent}^c(p_{t+1}, p_t)]
\]

\[
= 2 \cdot \mathbb{E}_t[\ell_t(p_t)] \cdot IG^c_t.
\]

As a result, the scale-sensitive information ratio with coordinate entropy is

\[
\Lambda^c_t := \frac{(r_t^*)^2}{IG^c_t \cdot \mathbb{E}_t[\ell_t(a_t, a_t)]} \leq 2.
\]

By exactly the same argument as in Proposition 2, we find

\[
\mathbb{E}[R_T] \leq \sqrt{2 \mathbb{E}[L^*]H^c(p_t) + 2H^c(p_1)}.
\]

To establish the first half of Theorem 4 it remains to upper-bound \(H^c(p_1) \) using a function of \((m, d) \). By Jensen’s inequality,

\[
H^c(p_1) \leq H^c \left(\frac{m}{d}, \frac{m}{d}, \ldots, \frac{m}{d} \right)
\]

\[
= m \log \frac{d}{m} + (d - m) \log \frac{d}{d - m}.
\]

Using the inequality \(\log(1 + x) \leq x \) on the second term we obtain

\[
H^c(p_1) \leq m \log \left(\frac{d}{m} \right) + m \leq m \log(3d/m).
\]

Substituting into (18) gives the claimed estimate

\[
\mathbb{E}[R_T] \leq \sqrt{2m \log(3d/m)\mathbb{E}[L^*] + 2m \log(3d/m)}.
\]

Remark: The fact we use the coordinate entropy suggests that it is unnecessary to leverage information from correlations between different arms, and we can essentially treat them as independent. In fact, our proofs for Thompson Sampling apply to any algorithm which observes arm \(i \) at time \(t \) with probability \(p_t(i) \in a^* \). This remark extends to the thresholded variants of Thompson Sampling we study extensively in Section VII.

IV. BANDIT SETTING

Now we return to the \(m = 1 \) setting and consider the case of bandit feedback. We again begin by recalling the analysis of Russo and Van Roy, and then adapt it in analogy with the scale-sensitive framework. For most of this section,
we require that an almost sure upper bound $L^* \leq \mathcal{T}$ for the loss of the best action is given to the player. Under this assumption we show that Thompson Sampling obtains a regret bound $O(\sqrt{H(p_1)dL})$, by using a bandit analog of the method in the previous section. This estimate can be improved with the method of [26] which shows how to analyze Thompson Sampling based on online stochastic mirror descent. By using a logarithmic regularizer in the analysis, we obtain a regret bound depending only on $\mathbb{E}[L^*]$, i.e. without the assumption $L^* \leq \mathcal{T}$, matching the statement of Theorem 4.

A. The Russo and Van Roy Analysis for Bandit Feedback

In the bandit setting we cannot directly bound the regret based on the increment vectors $p_{t+1} - p_t$. Indeed, the calculation (7) relies on the fact that $\bar{\ell}_t$ is known at time $t+1$ which is only true for full feedback. However, a different information theoretic calculation gives a good estimate. Below, we set

$$\bar{\ell}_t(i) = \mathbb{E}_t[\ell_t(i)], \quad \text{and} \quad \bar{\ell}_t(i, j) = \mathbb{E}_t[\ell_t(i)|a^* = j] .$$

The analog of (7) which we take as our starting point follows.

For later flexibility we allow algorithms that are not Thompson Sampling.

Proposition 3: Suppose an algorithm for the bandit game has $p_t(i) = \mathbb{P}_t[i = a^*]$ and plays from $a_t \sim \hat{p}_t$. Then the expected regret is given by

$$R_T = \sum_{t=1}^T r_t$$

for

$$r_t = \sum_{i=1}^d (\hat{p}_t(i)\bar{\ell}_t(i) - p_t(i)\bar{\ell}_t(i, i)).$$

In the case $\hat{p}_t = p_t$ of Thompson Sampling, this formula simplifies to

$$r_t = \sum_{i=1}^d p_t(i)(\bar{\ell}_t(i) - \bar{\ell}_t(i, i)). \quad (19)$$

Proof: We will claim that $r_t = \mathbb{E}_t[\ell(a_t) - \ell(a^*)]$ which implies the first statement. Indeed, one immediately verifies that

$$\mathbb{E}_t[\ell(a_t)] = \sum_{i=1}^d \hat{p}_t(i)\bar{\ell}_t(i);$$

$$\mathbb{E}_t[\ell(a^*)] = \sum_{i=1}^d p_t(i)\bar{\ell}_t(i, i).$$

For $x, y \in [0, 1]$ we let

$$\text{Ent}[x, y] = -x \log(x/y) - (1-x) \log(1-x/1-y)$$

denote the binary entropy between the corresponding Bernoulli random variables. Thus $\text{Ent}[x, y] = \text{Ent}^c[x, y]$ for scalars $x, y \in [0, 1]$.

Lemma 5 [23]: In the bandit setting, Thompson Sampling’s information ratio satisfies $\Gamma_t \leq d$ for all t. Therefore it has expected regret $\mathbb{E}[R_T] \leq \sqrt{dTH(p_1)}$.

Proof: Using Proposition 3, Cauchy–Schwarz and finally Pinsker,

$$r_t = \sum_{i=1}^d p_t(i)(\bar{\ell}_t(i) - \bar{\ell}_t(i, i))$$

$$\leq d \sum_{i=1}^d p_t(i)^2(\bar{\ell}_t(i) - \bar{\ell}_t(i, i))^2$$

$$\leq d \sum_{i=1}^d p_t(i)^2 \text{Ent}[\bar{\ell}_t(i, i), \bar{\ell}_t(i)].$$

By Lemma 6 below, this means

$$r_t \leq \sqrt{d \cdot IG_t}$$

which is equivalent to $\Gamma_t \leq d$.

The following lemma generalizes a calculation in [23]. In it, we take $S \subseteq [d]$ to be a random set of arms. In the bandit setting we will always take $S = \{a^*\}$, but less obvious choices for S will be considered in the semi-bandit game. (In all our applications S will be a function of $(\ell_t(i))(t,i) \in [T] \times [d]$ but even this assumption is not necessary below.)

We also let $A_t \subseteq [d]$ be the set of actions chosen by the player at time t, so $A_t = \{a_t\}$ when $m = 1$. It will be convenient to use the notation:

$$p_t(i) \in S = \mathbb{P}_t[i \in S],$$

$$\hat{p}_t(i) = \mathbb{P}_t[i \in A_t],$$

$$\bar{\ell}_t(i, i) \in S = \mathbb{E}_t[\ell_t(i)| i \in S] ,$$

$$IG_t(S) = \sum_{i \in S} IG_t(i).$$

Throughout the later parts of this paper, we will use various choices of S, for instance the top m actions. In the proof below, we also denote by $\mathcal{L}_t(X)$ the law of the random variable X at time t. As mentioned previously we write $I_t[X, Y]$ to denote the mutual information between X and Y conditioned on all observations before time t. Below, we say a subset $S \subseteq [d]$ is oblivious if S is independent of the player’s decisions, conditioned on the full loss sequence $(\ell_t(i))(t,i) \in [T] \times [d]$. Thus an oblivious S may be viewed as being chosen by an oblivious adversary. In initial applications, S will consist of the top m actions. Later in the semi-bandit setting, we will take S to be certain subsets of the top m actions defined by their ranks.

Lemma 6: Suppose a Bayesian player is playing a semi-bandit game, choosing at each round $t \in [T]$ a (random) subset A_t of arms and observing the losses $\bar{\ell}_t(A_t) = (\ell_t(i))_{i \in A_t}$. Let $S \subseteq [d]$ be an oblivious subset of arms.
Then
\[
\sum_{i=1}^{d} \hat{p}_t(i) \left(p_t(i \in S) \text{Ent}[\tilde{\ell}_t(i, i \in S), \tilde{\ell}_t(i)] + p_t(i \notin S) \text{Ent}[\tilde{\ell}_t(i, i \notin S), \tilde{\ell}_t(i)] \right) \\
\leq IG_t^c[S].
\]

Proof: Let \(\tilde{\ell}_t(i) \) be a \(\{0, 1\} \)-valued random variable with expected value \(\ell_t(i) \) and conditionally independent of everything else. By definition, \(\mathbb{P}_t[\tilde{\ell}_t(i) = 1] = \ell_t(i) \). The data processing inequality gives the inequality
\[
I_t[\tilde{\ell}_t(i), 1_{i \in S}] \leq I_t[\ell_t(i), 1_{i \in S}]
\]
between mutual informations. We explicitly write out the mutual information on the left-hand side above using the fact that \(\tilde{\ell}_t(i) \) is Bernoulli:
\[
I_t[\tilde{\ell}_t(i), 1_{i \in S}] = p_t(i \in S) D_{KL}(\tilde{\ell}_t(i) | i \in S) \| \tilde{\ell}_t(i)) + p_t(i \notin S) D_{KL}(\tilde{\ell}_t(i) | i \notin S) \| \tilde{\ell}_t(i)) = p_t(i \in S) \text{Ent}[\tilde{\ell}_t(i, i \in S), \tilde{\ell}_t(i)] + p_t(i \notin S) \text{Ent}[\tilde{\ell}_t(i, i \notin S), \tilde{\ell}_t(i)].
\]

Recall that the event \([i \in A_t] \) holds with probability \(\hat{p}_t(i) \) given all information up to time \(t \). Using this in the third step below,
\[
\hat{p}_t(i) \left(p_t(i \in S) \text{Ent}[\tilde{\ell}_t(i, i \in S), \tilde{\ell}_t(i)] + p_t(i \notin S) \text{Ent}[\tilde{\ell}_t(i, i \notin S), \tilde{\ell}_t(i)] \right) \leq \hat{p}_t(i) I_t[\ell_t(i), 1_{i \in S}] = I_t[\ell_t(i), 1_{i \in S}] \leq I_t[A_t, \tilde{\ell}_t(A_t), 1_{i \in S}] = IG_t^c[1_{i \in S}] - IG_t[1_{i \in S}].
\]
The second inequality above is again the data processing inequality. The third inequality holds because \((A_t, \tilde{\ell}_t(A_t)) \) determines \(\ell_t(i) \). The final equality holds because \((A_t, \tilde{\ell}_t(A_t)) \) is exactly the feedback received at time \(t \). Summing over \(i \in [d] \) completes the proof.

The next lemma is a scale-sensitive analog of an information ratio bound for partial feedback, in the sense that a similar improved Cauchy–Schwarz inequality is used. However going from such a statement to a regret bound turns out to be more involved in the small loss setting, so we do not try to push the analogy too far.

\textbf{Lemma 7:} In the setting of Lemma 6,
\[
\sum_{i=1}^{d} \hat{p}_t(i) p_t(i \in S) \left(\frac{(\ell_t(i) - \tilde{\ell}_t(i, i \in S))^2}{\ell_t(i)} \right) \leq 2 \cdot IG_t^c[S].
\]

Proof: We apply Lemma 3 in the slightly modified form of (11) with \(p_t = \ell_t(i) \) and \(q_t = \tilde{\ell}_t(i, i \in S) \). (The condition \(\sum_{i=1}^{d} p_t = \sum_{i=1}^{d} q_t \) need not hold, but this enters the proof of Lemma 3 only in the final step.) We thus find:
\[
\sum_{i=1}^{d} \hat{p}_t(i) p_t(i \in S) \left(\frac{(\ell_t(i) - \tilde{\ell}_t(i, i \in S))^2}{\ell_t(i)} \right) \\
\leq 2 \sum_{i=1}^{d} \hat{p}_t(i) p_t(i) \\
\times \left(\text{Ent}(\ell_t(i, i \in S), \tilde{\ell}_t(i)) - \ell_t(i, i \in S) + \ell_t(i) \right) \\
\sum_{i=1}^{d} \hat{p}_t(i) p_t(i \notin S) \left(\frac{(\ell_t(i) - \tilde{\ell}_t(i, i \notin S))^2}{\ell_t(i)} \right) \\
\leq 2 \sum_{i=1}^{d} \hat{p}_t(i) p_t(i) \\
\times \left(\text{Ent}(\ell_t(i, i \notin S), \tilde{\ell}_t(i)) - \ell_t(i, i \notin S) + \ell_t(i) \right).
\]
Moreover note that computing \(\tilde{\ell}_t(i) \) by casework on the event \([i \in S] \) yields
\[
p_t(i \in S) \tilde{\ell}_t(i, i \in S) + p_t(i \notin S) \tilde{\ell}_t(i, i \notin S) = \ell_t(i).
\]
Combining the above calculations, we find:
\[
\sum_{i=1}^{d} \hat{p}_t(i) p_t(i \in S) \left(\frac{(\ell_t(i) - \tilde{\ell}_t(i, i \in S))^2}{\ell_t(i)} \right) \\
+ \sum_{i=1}^{d} \hat{p}_t(i) p_t(i \notin S) \left(\frac{(\ell_t(i) - \tilde{\ell}_t(i, i \notin S))^2}{\ell_t(i)} \right) \\
\leq 2 \sum_{i=1}^{d} \hat{p}_t(i) \left(p_t(i \in S) \text{Ent}(\ell_t(i, i \in S), \ell_t(i)) + p_t(i \notin S) \text{Ent}(\ell_t(i, i \notin S), \ell_t(i)) \right) \\
\leq 2 \cdot IG_t^c[S].
\]

\textbf{B. General Theorem on Bayesian Agents}

Here we state a theorem on the behavior of a Bayesian agent in an online learning environment. In the next subsection we use it to give a nearly optimal regret bound for Thompson Sampling with bandit feedback. This theorem is stated in a rather general way to encompass the semi-bandit setting as well as the Thresholded Thompson Sampling discussed later.

As with the rest of this paper, the theorem below concerns the Bayes-optimal setting, in which a Bayesian agent starts with a prior and the true environment is generated from that prior. As before, we let \(p_t(i) = \mathbb{P}_t[i \in A^*] \) be the time-\(t \) probability that \(i \) is one of the top \(m \) arms and \(\hat{p}_t(i) = \mathbb{P}_t[i \in A_t] \) the probability that the player plays arm \(i \) in round \(t \). We define
\[
L_t(i) = \sum_{s \leq t} \ell_s(i)
\]
and refer to \(L_T(i) \) as the total loss of arm \(i \).
We also suppose that there exist constants $\frac{1}{L} \leq \gamma_1 \leq \gamma_2$ and a time-varying partition
\[[d] = R_t \cup C_t \] (21)
of the action set into rare and common arms such that:
1) If $i \in C_t$, then $\tilde{p}_t(i) \cdot p_t(i) \geq \gamma_1$.
2) If $i \in R_t$, then $\tilde{p}_t(i) \leq p_t(i) \leq \gamma_2$.
The partition $[d] = R_t \cup C_t$ into arms with low and high probability to be optimal will be used to analyze the original Thompson Sampling algorithm, as well as Thresholded Thompson Sampling which plays only from C_t.

Theorem 6: Consider an online learning game with arm set $[d]$ and random sequence of losses $\ell_t(i)$, in the Bayes-optimal setting. Each round, the player plays some action $A_t \in \binom{[d]}{m}$, i.e. a set of $m \geq 1$ arms, and pays/observes the loss for each of them. Assume there almost surely exists an action A with total loss
\[L_T(A) = \sum_{i \in A} L_T(i) \leq L^* \]
for a deterministic value L^*. Moreover suppose a partition (21) exists and the properties above hold for it. Then the following statements hold for every $i \in [d]$.

A) The expected loss incurred by the player from arm i while $i \in R_t$ is rare is
\[\mathbb{E} \left[\sum_{t \in [T]} \tilde{p}_t(i) \ell_t(i) \right] \leq 2\gamma_2 L^* + 8 \log(T) + 4. \]

B) The expected total loss that arm i incurs while $i \in C_t$ is common is
\[\mathbb{E} \left[\sum_{t \in [T]} \ell_t(i) \right] \leq L^* + 2 \left(\log \left(\frac{1}{\gamma_1} \right) + 10 \right) \sqrt{\frac{L^*}{\gamma_1}}. \]

The usefulness of Theorem 6 will become clear in the remainder of this section. We give the proof in the Appendix but outline below some of the key ideas.

1) Proof Ideas for Theorem 6: As initial intuition for Theorem 6, recall that for any bandit algorithm satisfying $\tilde{p}_t(i) > 0$ for all $(t, i) \in [T] \times [d]$, one may construct the importance-weighted estimate
\[\tilde{L}_t(i) = \sum_{s \leq t} \ell_s(i) 1_{i \in A_s} \tilde{p}_s(i) \]
for $L_t(i) = \sum_{s \leq t} \ell_s(i)$. Moreover this estimate is unbiased in the sense that for all fixed $(t, i) \in [T] \times [d]$ and any fixed loss sequence, we have
\[\mathbb{E} \left[\tilde{L}_t(i) \right] = L_t(i). \]
In fact our analysis uses unbiased loss estimates for common arms $i \in C_t$, but underbiased estimates for $i \in R_t$. This is because dividing by $\tilde{p}_t(i)$ leads to a large variance in the natural unbiased estimate when $\tilde{p}_t(i)$ is small. Moreover we separately construct loss estimates for C_t and R_t. The precise definitions of the relevant loss estimators are given in (22).

Again, the definitions of C_t and R_t themselves will depend on the setting of interest.
\[\ell_t^R(i) = \ell_t(i) \cdot 1_{i \in R_t}, \quad \ell_t^C(i) = \ell_t(i) \cdot 1_{i \in C_t}, \]
\[u_t^R(i) = \frac{\ell_t^R(i) \cdot 1_{i \in A_t}}{\gamma_2}, \quad L_t^R(i) = \sum_{s \leq t} \ell_s^R(i), \]
\[U_t^R(i) = \sum_{s \leq t} u_s^R(i), \quad u_t^C(i) = \frac{\ell_t^C(i) \cdot 1_{i \in A_t}}{\tilde{p}_t(i)}, \quad L_t^C(i) = \sum_{s \leq t} \ell_s^C(i), \quad U_t^C(i) = \sum_{s \leq t} u_s^C(i). \]

The variables $\ell_t^R(i)$ and $\ell_t^C(i)$ are the losses of arm i, separated into rare and common contributions. Thus the variables L_t^R and L_t^C track the cumulative rare and common loses. Each $u_t^C(i)$ is an unbiased estimate of $\ell_t^C(i)$ while $u_t^R(i)$ is an underbiased estimate of $\ell_t^R(i)$. The same properties carry over for the U_t variables as unbiased or underbiased estimates of the L_t.

The central idea behind Theorem 6 is that the online player has enough information to compute the loss estimates $U_t^R(i)$ and $U_t^C(i)$. For example, suppose that $U_t^C(i) \gg L^*$ is much larger than L^*. It is easy to show that $U_t^C(i)$ is provably an accurate estimate for $L_t(i)$ in the frequentist sense (via a martingale generalization of the Chernoff bound). Given this, we might hope the Bayesian player would “automatically” infer that the optimality $i \in A^*$ of arm i is extremely unlikely, and hence in R_s, would hold for $s > t$. The Bayes-optimality assumption makes this hope a reality! Indeed the tower rule for conditional expectations implies
\[\mathbb{E} [P_s | E] = P[E] \]
for any event E. Then roughly speaking, if $P[E] \approx 1$, it follows that
\[P[|P_s - E| \approx 1] \approx 1. \]

Moreover by Bayes-optimality the algorithm plays based on P_s. In particular we might take E to be something like “the error $|U_t^C(i) - L_t^C(i)|$ is small”. Then on the event E, the observation $U_t^C(i) \gg L^*$ implies that $i \notin A^*$. Therefore (23) implies that with high probability, we have
\[P_s[i \in A^*] \leq 1 - P[E] \approx 1. \]

Roughly speaking this argument shows that $i \in R_s$ must hold with high probability once $U_t^C(i) \gg L^*$, as long as $|U_t^C(i) - L_t^C(i)|$ is relatively small with high probability.

In fact since $U_t^C(i)$ is an unbiased estimator for $L_t(i)$, the approximation error $|U_t^C(i) - L_t^C(i)|$ can be shown to be small with high probability when the variance of the estimate is controlled. This holds when the probabilities $\tilde{p}_t(i) \geq \gamma > 0$ are uniformly lower-bounded, which holds by construction within C_t. As a result, the above proof outline works for Theorem 6B.

The proof of Theorem 6A uses a similar technique although the quantity to be bounded is different. It argues that any player-incurred loss from rare arms must quickly make $U_t^R(i)$ extremely large. Indeed since all rare arms $i \in R_t$ have
\[\hat{p}_i(i) \leq \gamma_2, \] we expect
\[U_t^R(i) \gg \overline{L}^* \]
to hold once
\[\sum_{t \in [T]: i \in \mathcal{R}_t} \hat{p}_i(i) \ell_t(i) \gg \gamma_2 \overline{L}^*. \]

A statement of this form can in fact be shown using a one-sided martingale concentration inequality. However we take advantage of this conclusion in a different way. Namely we argue that once \(U_t^R \gg \overline{L}^* \) occurs, \(\hat{p}_i(i) \) must become so small that arm \(i \) is pulled extremely infrequently. For finite \(T \), the slow-down in exploring arm \(i \) is so drastic that arm \(i \) is only pulled \(O(\log(T)) \) times while \(i \in \mathcal{R}_t \).
The \(\log(T) \) term in the result is crucial here because we cannot argue that \(\hat{p}_i(i) \) becomes zero but only that it becomes extremely small. Given infinite time, Thompson Sampling can potentially return to explore every arm \(\overline{L}^* + 1 \) per arm (at which point \(p_t(i) \) finally becomes 0); see Theorem 17 for a concrete example. This issue is circumvented by the Thresholded Thompson Sampling algorithm discussed later, which does attain fully \(T \)-independent small loss regret when \(L^* \leq \overline{L}^* \) is known to hold almost surely.

C. First-Order Regret for Bandit Feedback

As suggested by Theorem 6, we split the action set into rare and common arms for each round. For the \(m = 1 \) bandit case, we define for some constant \(\gamma > 0 \):
\[\mathcal{R}_t = \{ i \in [d]: p_t(i) \leq \gamma \}, \quad \mathcal{C}_t = \{ i \in [d]: p_t(i) > \gamma \} \]
(24)

Note that an arm \(i \) can switch between rare and common over time. As in (22) we split the loss function into
\[\ell_t(i) = \ell_t^R(i) + \ell_t^C(i) \]
via
\[\ell_t^R(i) = \ell_t(i)1_{i \in \mathcal{R}_t}, \quad and \quad \ell_t^C(i) = \ell_t(i)1_{i \in \mathcal{C}_t}. \]

Recalling Proposition 3, in the bandit case it will be convenient to redefine
\[r_t^+ = p_t(i) \cdot (\ell_t(i) - \overline{\ell}_t(i, i))^+. \]

We are ready to prove the first-order bandit regret bound. **Theorem 7:** Suppose that \(L^* \leq \overline{L}^* \) almost surely. Then Thompson Sampling with bandit feedback obeys the regret estimate
\[\mathbb{E}[R_T] \leq O \left(\sqrt{H(p_1)d\overline{L}^*} + d \log^2(\overline{L}^*) + d \log(T) \right). \]

Proof: Fix \(\gamma > 0 \) and define \(\mathcal{R}_t \) and \(\mathcal{C}_t \) as in (24). We apply Proposition 3 and split off the rare arm losses at the start of the analysis:
\[\mathbb{E}[R_T] \leq \mathbb{E} \left[\sum_{t=1}^T r_t^+ \right] = \mathbb{E} \left[\sum_{t=1}^T p_t(i) \cdot (\ell_t(i) - \overline{\ell}_t(i, i))^+ \right] \leq \mathbb{E} \left[\sum_{(t,i): i \in \mathcal{R}_t} p_t(i) \overline{\ell}_t(i) \right] + \mathbb{E} \left[\sum_{(t,i): i \in \mathcal{C}_t} p_t(i) \cdot (\ell_t(i) - \overline{\ell}_t(i, i))^+ \right]. \]
(25)
The first term is bounded by Theorem 6A with the rare/common partition above, \(\gamma_1 = \gamma_2 = \gamma \), and \(\hat{p}_t(i) = p_t(i) \).
For the second term, again using Cauchy–Schwarz and then Lemmas 3 and 7 gives:
\[\mathbb{E} \left[\sum_{(t,i): i \in \mathcal{C}_t} p_t(i) \cdot (\ell_t(i) - \overline{\ell}_t(i, i))^+ \right] \leq \mathbb{E} \left[\sum_{(t,i): i \in \mathcal{C}_t} \ell_t(i) \right] \mathbb{E} \left[\sum_{(t,i): i \in \mathcal{C}_t} p_t(i)^2 \cdot \frac{(\ell_t(i) - \overline{\ell}_t(i, i))^2}{\ell_t(i)} \right] \leq 2 \cdot \mathbb{E} \left[\sum_{i \in \mathcal{C}_t} \ell_t(i) \right] \cdot H(p_1). \]
(26)
Substituting in the conclusion of Theorem 6B and combining gives:
\[\mathbb{E}[R_T] \leq d(2 \gamma \overline{L}^* + 8 \log(T) + 4) + \sqrt{H(p_1)d \left(\overline{L}^* + 2 \left(\log \left(\frac{1}{\gamma} \right) + 10 \right) \sqrt{\frac{\overline{L}^*}{\gamma}} \right)}. \]
Taking \(\gamma = \min \left(1, \frac{\log^2(\overline{L}^*)}{d} \right) \) completes the proof. \(\blacksquare \)

V. IMPROVED ESTIMATES BEYOND SHANNON ENTROPY

In recent work [26], it is shown that Thompson Sampling can be analyzed using any mirror map, with the same guarantees as online stochastic mirror descent. See also [17] which improves the Russo and Van Roy entropic bound using Tsallis entropy, and [16] which further elucidates the connection between generalized information ratios and mirror descent. Their work is compatible with our methods for first order analysis, allowing for further refinements. By using the Tsallis entropy we remove the \(\log(d) \) factor potentially coming from \(H(p_1) \) in Theorem 7, and also gain the potential for polynomial-in-\(d \) savings for informative priors. By using the log barrier we obtain a small loss bound depending only on \(\mathbb{E}[L^*] \) instead of requiring an almost sure upper bound \(\overline{L}^* \).
Definition 1: For $\alpha \in (0, 1)$, the α-Tsallis entropy of a probability vector p is
\[
H_\alpha(p) = \frac{\left(\sum_{i=1}^{d} p_i^\alpha\right) - 1}{\alpha(1 - \alpha)}.
\]
Note that with d actions, $H_\alpha(p) \leq \frac{d^{1-\alpha}}{\alpha(1-\alpha)}$.

Theorem 8: Suppose that $L^* \leq \mathcal{L}$ almost surely. Then for all $\alpha \in (0, 1)$, Thompson Sampling with bandit feedback obeys the regret estimate
\[
\mathbb{E}[R_T] \leq O\left(\sqrt{H_\alpha(p_1)d^{d/\alpha} + d\log^2(\mathcal{L}) + d\log(T)}\right).
\]
In particular for fixed α, taking the worst case $H_\alpha(p_1) = d^{1-\alpha}$ over p_1 yields the regret estimate
\[
\mathbb{E}[R_T] \leq O\left(\sqrt{d\mathcal{L}^2 + d\log^2(\mathcal{L}) + d\log(T)}\right).
\]

Theorem 9: Thompson Sampling with bandit feedback obeys the regret estimate
\[
\mathbb{E}[R_T] = O(\sqrt{d\mathbb{E}[L^2]} \log(T) + d\log(T)).
\]

The two results above are proved at the end of this section. We observe that for a highly informative prior, Theorem 8 may be much tighter than a worst case bound of p_1. For example if $p_1(i) \leq i^{-\beta}$ for some $\beta > 1$, then for $\alpha \geq \frac{1}{\beta}$, the value $H_\alpha(p_1)$ is bounded independently of d. Hence the main term of the regret will be $O_\alpha\left(\sqrt{d^{d/\alpha} \mathcal{L}}\right)$, meaning the regret bound is improved multiplicatively by a power of d.

We also remark that Theorem 9 actually does not require Theorem 6. As a result its proof is in the end somewhat shorter than that of Theorem 8. However the L^*-dependent results have the interesting advantage of leading to fully T-independent regret with Thresholded Thompson Sampling as explained in the next section. We now turn to the proofs which adapt the ideas of [26] to our setting.

Definition 2: A C^3 function $f : [0, 1] \to \mathbb{R}^+ \cup \{\infty\}$ is admissible if for all $x \in [0, 1],$
\begin{enumerate}
 1. $f'(x) \leq 0$.
 2. $f''(x) \geq 0$.
 3. $f'''(x) \leq 0$.
\end{enumerate}

For f admissible we consider the potential function
\[
F(v) = \sum_{i=1}^{d} f(v_i), \quad v \in [0, 1]^d.
\]
The admissible functions we will consider are:
- $f(x) = x \log(x)$ (negative entropy);
- $f(x) = -x^{3/2}$ (negative Tsallis entropy);
- $f(x) = -\log(Tx + 1)$ (log barrier).

Letting Δ_d denote the simplex of d-dimensional probability vectors, we set
\[
\text{Max}(F) = \max_{p \in \Delta_d} F(p), \quad \text{Min}(F) = \min_{p \in \Delta_d} F(p)
\]
and also
\[
\text{diam}(F) = \text{Max}(F) - \text{Min}(F).
\]
Note that convexity of f implies $\text{Max}(F) = F(1) + (d - 1)F(0)$ and $\text{Min}(F) = dF(1/d)$.

It will later be convenient to use semi-bandit analogs of these quantities. Let
\[
\Delta_{d,j} = \left\{ x \in [0,1]^d : \sum_{i=1}^{d} x_i = j \right\}
\]
and define
\begin{align*}
\text{Max}_j(F) &= \max_{p \in \Delta_{d,j}} F(p); \quad (27)
\text{Min}_j(F) &= \min_{p \in \Delta_{d,j}} F(p); \quad (28)
\text{diam}_j(F) &= \text{Max}_j(F) - \text{Min}_j(F). \quad (29)
\end{align*}

While studying the full-feedback scenario, we crucially used in Lemma 3 a one-sided strong convexity property of the entropy function. Admissibility is the condition required to generalize this calculation. Indeed, for $x, y \in [0, 1]$, admissibility implies
\[
f(y) - f(x) \geq f'(x)(y - x) + \frac{f''(x)}{2}(x - y)^2. \quad (30)
\]
This is because $f(b)$ is convex on $b \geq a$ and $f''(a)$–strongly convex on $b \leq a$.

The proposition below uses Cauchy–Schwarz with scale-sensitive scaling in this general setting. For the sake of later application we work in the general $m \geq 1$ setting. Similarly to before, for some random set $S \subseteq [d]$ of arms, we set
\[
\tilde{p}_t(i) = p_t[i \in S];
\hat{p}_t(i) = p_t[i \in A_t];
\ell_t(i, i) = E_t[\ell_t(i, i) | i \in S].
\]
Thus for Thompson Sampling, $S = \{a_1^*, \ldots, a_m^*\}$ and $\hat{p}_t = p_t$.

Proposition 4: Let f be admissible. Then
\[
\mathbb{E}_t[\text{F}(p_{t+1}) - F(p_t)] \\
\geq \sum_{i=1}^{d} \hat{p}_t(i)p_t(i)^2f''(p_t(i)) \left(\frac{\ell_t(i) - \ell_t(i, i)}{2\ell_t(i)}\right)^2.
\]

Proof: As in the proof of Lemma 6, define $\tilde{\ell}_t(i)$ to be a $\{0, 1\}$-valued random variable with mean $\ell_t(i)$, independently of everything else. Bayes rule implies:
\[
\mathbb{P}_t[i \in S | \tilde{\ell}_t(i) = 1] = \frac{\mathbb{P}_t[i \in S] \cdot \mathbb{P}_t[\tilde{\ell}_t(i) = 1 | i \in S]}{\mathbb{P}_t[\tilde{\ell}_t(i) = 1]} = \frac{p_t(i)\ell_t(i, i)}{\ell_t(i)}.
\]
Rearranging, we find
\[
\tilde{\ell}_t(i, i) = \mathbb{P}_t[i \in S | \tilde{\ell}_t(i) = 1] \frac{\tilde{\ell}_t(i)}{p_t(i)}.
\]
and so
\[
\ell_t(i) - \tilde{\ell}_t(i, i) = \tilde{\ell}_t(i) \left(\frac{p_t(i) - \mathbb{P}_t[i \in S | \tilde{\ell}_t(i) = 1]}{p_t(i)}\right).
\]
Therefore we may rewrite the right-hand side of the statement to be proved:

\[
\sum_{i=1}^{d} \tilde{p}_t(i)p_t(i)^2 f''(p_t(i)) \left(\tilde{\ell}_t(i) - \tilde{\ell}_t(i, i) \right) = \sum_{i=1}^{d} \tilde{p}_t(i)\tilde{\ell}_t(i)f''(p_t(i)) \left(p_t(i) - P_t[i \in S | \tilde{\ell}_t(i) = 1] \right) + .
\]

Below we will use the conditional probability \(P_t[i \in A^* | \tilde{\ell}_t(i)] \), which is a random variable which depends on information up to time \(t \) and also on the value \(\tilde{\ell}_t(i) \in \{0, 1\} \). (This is a completely standard use of notation, but we want to clarify that it involves conditioning on the random variable \(\tilde{\ell}_t(i) \) instead of the event \(\tilde{\ell}_t(i) = 1 \) as is done just above.)

Applying (30), we find:

\[
f \left(\mathbb{P}_t[i \in S | \tilde{\ell}_t(i)] - f(p_t(i)) \right)
\geq f'(p_t(i)) \cdot \mathbb{P}_t[i \in S | \tilde{\ell}_t(i)] - p_t(i) + f''(p_t(i)) \left(p_t(i) - P_t[i \in S | \tilde{\ell}_t(i) = 1] \right)^2 + .
\]

Note that

\[
\mathbb{E}_t \left[\mathbb{P}_t[i \in S | \tilde{\ell}_t(i)] \right] = p_t(i)
\]

by the tower rule for conditional expectations. Taking the expectation over \(\tilde{\ell}_t(i) \) in (32) yields

\[
\mathbb{E}_t \left[f(\mathbb{P}_t[i \in S | \tilde{\ell}_t(i)]) - f(p_t(i)) \right]
\geq \mathbb{E}_t \left[f''(p_t(i)) \left(p_t(i) - P_t[i \in S | \tilde{\ell}_t(i) = 1] \right)^2 + \right]
\geq f''(p_t(i)) \tilde{\ell}_t(i) \left(p_t(i) - P_t[i \in S | \tilde{\ell}_t(i) = 1] \right)^2 + .
\]

Here the latter step follows from the fact that \(\mathbb{P}_t[\tilde{\ell}_t(i) = 1] = \tilde{\ell}_t(i). \) (i.e. when considering \(\mathbb{P}_t[i \in S | \tilde{\ell}_t(i)], \) we use only the contributions from when \(\tilde{\ell}_t(i) = 1). \) Next, multiplying by \(\tilde{p}_t(i) \) (which is determined at time \(t \)) and summing over \(i \) yields

\[
\mathbb{E}_t \left[\sum_{i=1}^{d} \tilde{p}_t(i)\tilde{\ell}_t(i) f''(p_t(i)) \left(p_t(i) - P_t[i \in S | \tilde{\ell}_t(i) = 1] \right)^2 + \right]
\leq \mathbb{E}_t \left[\sum_{i=1}^{d} \tilde{p}_t(i) \left(f(\mathbb{P}_t[i \in S | \tilde{\ell}_t(i)]) - f(p_t(i)) \right) \right].
\]

Observe that because \(\tilde{\ell}_t(i) \) is just a noisy version of \(\ell_t(i), \) conditioning on \(\ell_t(i) \) is equivalent to conditioning on both \(\ell_t(i) \) and \(\tilde{\ell}_t(i). \) For each \(i \in [d] \) and \(i \in A \subseteq [d], \) we use the martingale

\[
\left(p_t(i), \mathbb{P}_t[i \in S | \tilde{\ell}_t(i)], \mathbb{P}_t[i \in S | \ell_t(i)], \mathbb{P}_t[i \in S | \tilde{\ell}_t(A)] \right).
\]

Convexity of \(f \) implies that \(f(X_t) \) is a submartingale for any martingale \(X_t. \) Applying this fact to (34), we find that for any \(i \in A \subseteq [d]:
\]

\[
\mathbb{E}_t \left[f(\mathbb{P}_t[i \in S | \tilde{\ell}_t(A)]) \right] \geq \mathbb{E}_t \left[f(\mathbb{P}_t[i \in S | \ell_t(i)]) \right] \geq \mathbb{E}_t \left[f(\mathbb{P}_t[i \in S | \tilde{\ell}_t(i)]) \right] \geq f(p_t(i)).
\]

Similarly, even if \(i \notin A, \) we still have

\[
\mathbb{E}_t \left[f(\mathbb{P}_t[i \in S | \tilde{\ell}_t(A)]) \right] \geq f(p_t(i)).
\]

Combining the results above allows us to finally conclude the proof. Using the notation \(\hat{p}_t(A) = \mathbb{P}_t[A_t = A] \), we find:

\[
\mathbb{E}_t[F(p_{t+1}(i)) - F(p_t(i))]
= \sum_{A \subseteq [d]} \hat{p}_t(A) \cdot \mathbb{E}_t[f(\mathbb{P}_t[i \in S | (A_t, \tilde{\ell}_t(A_t))]) - f(p_t(i))]
= \sum_{i \in A \subseteq [d]} \hat{p}_t(A) \cdot \mathbb{E}_t[f(\mathbb{P}_t[i \in S | (A_t, \tilde{\ell}_t(A_t))]) - f(p_t(i))]
+ \sum_{A \subseteq [d] \setminus \{i\}} \hat{p}_t(A) \cdot \mathbb{E}_t[f(\mathbb{P}_t[i \in S | (A_t, \tilde{\ell}_t(A_t))]) - f(p_t(i))]
\geq \sum_{i \in A \subseteq [d]} \hat{p}_t(A) \cdot \mathbb{E}_t[f(\mathbb{P}_t[i \in S | (A_t, \tilde{\ell}_t(A_t))]) - f(p_t(i))]
\geq \sum_{i \in A \subseteq [d]} \hat{p}_t(A) \cdot \mathbb{E}_t[f(\mathbb{P}_t[i \in S | (A_t, \tilde{\ell}_t(A_t))]) - f(p_t(i))]
+ \sum_{i \in A \subseteq [d]} \hat{p}_t(i)\tilde{p}_t(i)f''(p_t(i)) \left(p_t(i) - P_t[i \in S | \tilde{\ell}_t(i) = 1] \right)^2 +
\geq \sum_{i=1}^{d} \hat{p}_t(i)\tilde{p}_t(i)f''(p_t(i)) \left(\tilde{\ell}_t(i) - \ell_t(i) \right)^2 + 2\ell_t(i).
\]

Here the first step holds because

\[
\hat{p}_{t+1}(i) = \mathbb{P}_t[i \in S | (A_t, \tilde{\ell}_t(A_t))].
\]

The sixth step holds because \(\hat{p}_t(i) \) is known at time \(t. \)

Corollary 1: Let \(f \) be admissible (recall Definition 2), and define \(R_t, C_t \) as in (24) for \(\gamma > 0 \). Consider a bandit problem (with \(m = 1 \)) such that \(L^* \leq \hat{L} \) almost surely. Then Thompson Sampling satisfies

\[
\mathbb{E}[R_T] \leq \mathbb{E} \left[\sum_{\ell_t(i) : \ell_t(i) \notin R_t} \hat{p}_t(i)\ell_t(i) \right] + \mathbb{E} \left[\sum_{\ell_t(i) : \ell_t(i) \notin \ell_t(A)} \hat{p}_t(i)(\ell_t(i) - \ell_t(i)) \right].
\]
and the two terms are bounded by

\[
\mathbb{E} \left[\sum_{(t,i) : i \in C_t} p_t(i) \ell_t(i) \right] \leq \min \left(\gamma T, d \cdot (2\gamma T^* + 8 \log(T) + 4) \right);
\]

\[
\mathbb{E} \left[\sum_{(t,i) \in C_t} p_t(i) (\ell_t(i) - \ell_t(i, i))_+ \right] \leq 2(\text{Max}(F) - F(p_1)) \cdot \mathbb{E} \left[\sum_{i \in C_t} \frac{\ell_t(i)}{p_t(i) f''(p_t(i))} \right].
\]

(38)

Proof: The first inequality (37) follows exactly as (25) in the proof of Theorem 7.

For the first term, the upper bound \(\gamma T \) is immediate while Theorem 6 with \(\gamma_1 = \gamma_2 = \gamma \) implies

\[
\mathbb{E} \left[\sum_{(t,i) : i \in C_t} p_t(i) \ell_t(i) \right] \leq d \cdot (2\gamma T^* + 8 \log(T) + 4).
\]

For the second term,

\[
\mathbb{E} \left[\sum_{(t,i) \in C_t} p_t(i) (\ell_t(i) - \ell_t(i, i))_+ \right] \leq \mathbb{E} \left[\sum_{t,i \in [T] \times [d]} p_t(i)^3 f''(p_t(i)) \frac{(\ell_t(i) - \ell_t(i, i))^2}{\ell_t(i)} \right] + \mathbb{E} \left[\sum_{(t,i) \in C_t} p_t(i) f''(p_t(i)) \right] \leq 2(\text{Max}(F) - F(p_1)) \cdot \mathbb{E} \left[\sum_{i \in C_t} \frac{\ell_t(i)}{p_t(i) f''(p_t(i))} \right].
\]

(39)

Here the first inequality used Cauchy–Schwarz. The second expanded the first sum from \(\{(t,i) : i \in C_t\} \) to all of \([d] \times [T] \). The third applies Proposition 4 to the sum over \(i \), and the fourth inequality telescopes the resulting sum. The fifth and final inequality is trivial.

Now we can prove the refined bandit estimates. We begin with the Tsallis entropy.

Proof: of Theorem 8: We take \(f(x) = -x^{\alpha} \). Then

\[
f''(x) = \alpha(1 - \alpha)x^{\alpha - 2};
\]

\[
\text{Max}(F) = -1;
\]

\[
\text{Min}(F) = -d^{1 - \alpha}.
\]

Thus Corollary 1 yields

\[
\mathbb{E}[R_T] \leq d \cdot (2\gamma T^* + 8 \log(T) + 4)
\]

\[
+ \sqrt{2 \left(-1 + \sum_{i=1}^d p_1(i) \right) \cdot \mathbb{E} \left[\sum_{(t,i) \in C_t} \frac{\ell_t(i)p_t(i)^{1-\alpha}}{(1 - \alpha)} \right].
\]

Without the square-root, the first part of the last term is

\[
2 \left(-1 + \sum_{i=1}^d p_1(i) \right) \leq O(H_\alpha(p_1)).
\]

Removing the square-root and \(\frac{1}{\alpha(1 - \alpha)} \) from the second part and applying Hölder’s inequality,

\[
\mathbb{E} \sum_{(t,i) \in C_t} \ell_t(i)p_t(i)^{1-\alpha}
\]

\[
\leq \left(\mathbb{E} \sum_{(t,i) \in C_t} \ell_t(i) \right) \left(\mathbb{E} \sum_{(t,i) \in C_t} \ell_t(i)p_t(i) \right)^{1-\alpha}
\]

\[
\leq d^\alpha \left(L^* + 2 \left(\log \left(\frac{1}{\gamma} \right) + 10 \right) \sqrt{\frac{L^*}{\gamma}} \right)^\alpha \cdot \mathbb{E}[L_T]^{1-\alpha}.
\]

(41)

In (41) we bounded the first sum using Theorem 6B:

\[
\mathbb{E} \sum_{i=1}^d \ell_t(i) = \mathbb{E} \left[\sum_{i=1}^d \ell_t(i) \right] \leq d \left(L^* + 2 \left(\log \left(\frac{1}{\gamma} \right) + 10 \right) \sqrt{\frac{L^*}{\gamma}} \right).
\]

For the second sum in (41) we used that for each \(i \in [d] \),

\[
\mathbb{E} \sum_{i=1}^T \ell_t(i)p_t(i) = \mathbb{E}[L_T]
\]

is the expected loss incurred by Thompson Sampling. Setting \(\gamma = \frac{\log^2(L^*)}{L^*} \), we find

\[
L^* + 2 \left(\log \left(\frac{1}{\gamma} \right) + 10 \right) \sqrt{\frac{L^*}{\gamma}} \leq O(L^*).\]
Assuming $\mathbb{E}[R_T] \geq 0$ (else any regret statement is vacuous), we get
\[
\mathbb{E}[R_T] \leq d \cdot (2 \log^2(\mathcal{L}^d) + 8 \log(T) + 4) + O\left(\sqrt{H_\alpha(p_1)} \left(\mathcal{L}^{\alpha/2} \mathbb{E}[L_T]^{1-\alpha/2}\right)\right) \\
\leq d \cdot (2 \log^2(\mathcal{L}^d) + 8 \log(T) + 4) + O\left(\sqrt{H_\alpha(p_1) d^\alpha} \cdot \left(\mathcal{L} + \mathbb{E}[R_T]\right)^{1/2}\right).
\]
We finally apply Lemma 8 below with:
- $R = \mathbb{E}[R_T]$
- $X = d \cdot (2\gamma L^d + 8 \log(T) + 4)$
- $Y = O(\sqrt{H_\alpha(p_1) d^\alpha})$
- $Z = L^d$.

This gives the regret bound
\[
\mathbb{E}[R_T] \leq O\left(\sqrt{\alpha(1-\alpha)} \cdot \left(\mathcal{L}^{\alpha/2} \mathbb{E}[L_T]^{1-\alpha/2}\right)\right) + O\left(\frac{d \log^2(\mathcal{L}^d) + d \log(T)}{\sqrt{\alpha(1-\alpha)}}\right).
\]

Observing that $H_\alpha(p_1) d^\alpha \leq d \leq d \log T$ allows us to remove the $H_\alpha(p_1) d^\alpha$ term and thus complete the proof.

Lemma 8: If R, X, Y, and Z are non-negative real numbers and $R \leq X + Y \sqrt{Z} + R$, then $R \leq 2X + Y^2 + Y \sqrt{Z}$.

Proof: Rearranging, squaring, and further rearranging yields:
\[
R \leq X + Y \sqrt{Z} + R \\
\Rightarrow R^2 - 2RX + X^2 \leq Y^2Z + Y^2R \\
\Rightarrow R^2 - (2X + Y^2)R + \left(X^2 + XY^2 + \frac{Y^4}{4}\right) \leq \frac{Y^4}{4} + Y^2(X + Z) \\
\Rightarrow \left(R - \frac{X + Y^2}{2}\right)^2 \leq \frac{Y^4}{4} + Y^2(X + Z) \\
\Rightarrow R - \frac{X + Y^2}{2} \leq \sqrt{\frac{Y^4}{4} + Y^2(X + Z)} \\
\Rightarrow R \leq X + \frac{Y^2}{2} + \sqrt{\frac{Y^4}{4} + Y^2(X + Z)} \\
\leq X + \frac{Y^2}{2} + \left(\frac{Y^2}{2} + X\right) + Y \sqrt{Z} \\
\leq 2X + Y^2 + Y \sqrt{Z}.
\]

In the penultimate inequality we used the subadditivity of the square root function.

Proof: of Theorem 9: We apply Corollary 1 again, this time with $f(x) = -\log(Tx + 1)$. We have
\[
\text{diam}(F) = d \log(T)/(1 + o(1)); \\
f''(x) = \frac{1}{(x + T^{-1})^2}.
\]

Define \mathcal{R}_t and C_t using (24) with $\gamma = T^{-1}$. The \mathcal{R}_t contribution in Corollary 1 is at most $\gamma T = 1$ so it remains to estimate the C_t contribution.

To do this we observe that for $p_t(i) \geq \gamma = \frac{1}{T}$,
\[
f''(p_t(i))^{-1} = (p_t(i) + T^{-1})^2 \leq p_t(i)^2 + 3p_t(i)T^{-1}.
\]

Plugging in this estimate gives
\[
\sum_{t,i : i \in C_t} \frac{\tilde{\ell}_t(i)}{p_t(i) f''(p_t(i))} \leq \sum_{t,i} \left(p_t(i) \tilde{\ell}_t(i) + 3\tilde{\ell}_t(i) / T\right) \\
\leq \mathbb{E}[L_T] + 6d.
\]

Going back to the beginning and combining, we have shown
\[
\mathbb{E}[R_T] = O\left(\sqrt{d \log(T) (\mathbb{E}[L_T] + d)} + 1\right) \\
= O\left(\sqrt{d \mathbb{E}[L_T] \log(T) + d \sqrt{\log(T)}}\right).
\]

Recall from Lemma 2 $a - b \leq \sqrt{ac}$ implies $a - b \leq \sqrt{bc} + c$ for non-negative a, b, c. The proof is concluded by taking
- $a = \mathbb{E}[L_T]$
- $b = \mathbb{E}[L^*] + O(d \sqrt{\log(T)})$
- $c = O(d \log(T))$

and obtain
\[
\mathbb{E}[R_T] = O\left(\sqrt{d \mathbb{E}[L^*] \log(T) + d \log(T)}\right).
\]

VI. COMBINATORIAL SEMI-BANDIT SETTING

We now consider semi-bandit feedback in the combinatorial setting, combining the intricacies of Sections III and IV. We again have an action set A contained in the set $\{a \in \{0, 1\}^d : ||a||_1 = m\}$, but now we observe the m losses of the arms played. A natural generalization of the bandit $m = 1$ proof to higher m yields a first-order regret bound of $O(\sqrt{mdL^d})$. However, we give a refined analysis using an additional trick of ranking the m arms in a^* by their total loss and performing an information theoretic analysis on a certain set partition of these m optimal arms. This method allows us to obtain $O(\sqrt{mdL^d})$ regret bound for the semi-bandit regret. Theorems 8 and 9 based on other mirror maps are also generalized in Subsections VI-D and VI-E, respectively.

A. Naive Analysis and Intuition

We let $A^* \in A$ be the optimal set of m arms, and assume that A has total loss $L^* \leq \mathcal{L}$. (We assume A^* is uniquely defined, e.g. by breaking ties lexicographically.) Extending the definition before, let
\[
\tilde{\ell}_t(i, j) = \mathbb{E}[\ell_t(i)|j \in A^*].
\]

Ignoring the issue of exactly how to assign arms as rare/common, one expects that mimicking the proof of
Theorem 7 will imply:
\[
\mathbb{E}[R_T] = \mathbb{E} \left[\sum_{t,i} p_t(i)(\ell_t(i) - \ell_t(i,i)) \right] \\
\leq \mathbb{E} \left[\sum_{(t,i): j \in R_t} p_t(i)\ell_t(i) \right] + \mathbb{E} \left[\sum_{(t,i): j \in C_t} p_t(i) \cdot (\tilde{\ell}_t(i) - \ell_t(i,i))_+ \right].
\]

(Proposition 3 extends easily to the semi-bandit setting; see below for a careful statement.) The first term is again small due to Theorem 6A and the second term can be estimated by mimicking (26) and applying Cauchy–Schwarz to obtain
\[
\mathbb{E}[R_T] \leq \tilde{O} \left(\sqrt{\mathbb{H}^c(A^*)} \right) = \tilde{O} \left(\sqrt{m d L} \right).
\]

This argument is inefficient because it allows every arm to have loss \(\frac{L}{m} \) before becoming rare. However actually, only \(j \) optimal arms can have loss more than \(\frac{L}{j} \). So although the coordinate entropy of \(A^* \) can be as large as \(\tilde{O}(m) \), the coordinate entropy on the arms with large loss so far is much smaller. This motivates the rank ordering introduced in the next subsection.

Before moving on, let us justify the first step of the attempt above by generalizing Proposition 3. We give a careful statement but omit the proof as it is exactly identical. Recall the notation (44).

Proposition 5: Suppose an algorithm for the semi-bandit game has \(p_t(i) = \mathbb{P}[i \in A^*_t] \) and \(\hat{p}_t = \mathbb{P}[i \in A_t] \). Then the expected regret is given by
\[
R_T = \sum_{t=1}^T r_t
\]
for
\[
r_t = \sum_{i=1}^d (\hat{p}_t(i)\tilde{\ell}_t(i) - p_t(i)\ell_t(i,i)).
\]

In the case \(\hat{p}_t = p_t \) of Thompson Sampling, this formula simplifies to
\[
r_t = \sum_{i=1}^d (p_t(i)(\ell_t(i) - \ell_t(i,i))).
\]

\[B. Rare Arms and Rank Order\]

We introduce two notions needed for the semi-bandit proof. First, analogously to our definition of rare and common arms in the bandit \(m = 1 \) case, we partition \([d]\) into rare and common arms. The definition becomes slightly more complicated in the combinatorial setting, since setting some arms to be rare can affect probabilities for other arms.

We construct \(R_t \) and \(C_t \) starting with an empty subset \(R_t = \emptyset \subset [d] \) of rare arms and grow it as follows. While there exists \(i \in [d] \) satisfying
\[
\mathbb{P}_t[(i \in A^*) \text{ and } A^* \subset C_t] \leq \gamma,
\]
we choose such an arm \(i \) to add to \(R_t \). (Here \(C_t = [d] \setminus R_t \) at all stages during the algorithm. At the end, all \(i \in C_t \) do not satisfy (45). In particular,
\[
\mathbb{P}_t[(i \in A^*) \text{ and } A^* \subset C_t] > \gamma \quad \forall i \in C_t.
\]

Otherwise stated, we obtain a subset \(C_t \subset [d] \) of arms, each of which has a large probability at least \(\gamma \) to be in \(A^* \), even after removing actions which overlap \(R_t \) at all. In addition to (46), the resulting partition \([d] = R_t \cup C_t \) satisfies the following. For all \(i \in R_t \),
\[
p_t(i) \leq \mathbb{P}[A^* \not\subset C_i] \leq d\gamma.
\]

This is because each time an arm \(i \in [d] \) moves from \(C_t \) to \(R_t \) in the algorithm above, the quantity \(\mathbb{P}[A^* \not\subset C_i] \) increases by at most \(\gamma \). Comparing with the conditions after (21) suggests that in semi-bandit situations we should take \((\gamma_1, \gamma_2) = (\gamma, d\gamma) \) in applying Theorem 6. This is exactly what we will do.

The next step is to implement a rank ordering of the \(m \) coordinates. We take
\[
A^* = \{a^*_1, a^*_2, \ldots, a^*_m\}
\]
where
\[
L_T(a^*_1) \geq L_T(a^*_2) \geq \cdots \geq L_T(a^*_m)
\]
and ties are broken arbitrarily. Crucially, we observe that
\[
L_T(a^*_j) \leq \frac{L^*}{j}.
\]

We further consider a general partition of \([m]\) into disjoint subsets \(S_1, S_2, \ldots, S_r \). Define
\[
A^*_S = \{a^*_s : s \in S_k\}.
\]

We will carry out an information theoretic argument which treats separately the events \(\{i \in A^*_S\} \). At the end of the calculation, we will see that the dyadic partition \(S_k = \{2^{k-1}, \ldots, 2^k - 1\} \) improves the naive analysis above. In fact the naive analysis corresponds to the trivial partition \(S_1 = [m] \). Towards such an analysis it will be helpful to define
\[
p_t(i, S_k) = \mathbb{P}[i \in A^*_S];
\]
\[
\tilde{\ell}(i, S_k) = \mathbb{E}[\ell_t(i) \mid i \in A^*_S].
\]
C. Semi-Bandit Regret Bound via Shannon Entropy

Here we carry out the strategy just outlined for the Shannon entropy. We again begin by decomposing the regret into contributions from \(R_t \) and \(C_t \). We choose a small threshold \(\gamma \in [0,1/d] \) and apply the recursive procedure from the previous section, thus obtaining partitions \([d] = R_t \cup C_t \) which satisfy (46) and (47). We then apply Theorem 6 with \((\gamma_1, \gamma_2) = (\gamma, d')\) to bound the resulting terms.

Theorem 10: The expected regret of Thompson Sampling in the semi-bandit setting is

\[
O\left(\log(m)\sqrt{d\log\log(d) + md^2\log^2(L') + d\log(T)}\right).
\]

Proof: Set

\[
(\gamma_1, \gamma_2) = \left(\frac{m\log^2(L')}{L}, \frac{md^2\log^2(L')}{L}\right).
\]

Let \(S_1, \ldots, S_r \) be as discussed in the previous subsection. The analysis begins with another decomposition of the regret into rare and common contributions. Recall Proposition 5 and the notations (49) and (50). We have:

\[
\mathbb{E}[R_T] \leq \mathbb{E} \left[\sum_{(t,i): i \in R_t} p_t(i) \bar{\ell}_t(i) \right] + \mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i)(\bar{\ell}_t(i) - \ell_t(i, i)) \right]
\]

\[
= \mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i) \bar{\ell}_t(i) \right] + \mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i, S_k)(\ell_t(i, S_k) - \bar{\ell}_t(i, S_k)) \right].
\]

(51)

A direct application of Theorem 6A gives the bound

\[
\mathbb{E} \left[\sum_{(t,i): i \in R_t} p_t(i) \bar{\ell}_t(i) \right] \leq O\left(md^2\log^2(L') + d\log(T) \right)
\]

for the first term on the right-hand side. For the second term, we apply Cauchy–Schwarz for each \(k \in \{r\} \) separately. This yields

\[
\sum_{k=1}^r \mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i, S_k)(\ell_t(i, S_k) - \bar{\ell}_t(i, S_k)) \right]
\]

\[
\leq \sum_{k=1}^r \mathbb{E} \left[\sum_{t,i \in [T] \times [d]} p_t(i)p_t(i, S_k) \left(\frac{\bar{\ell}_t(i) - \ell_t(i, S_k)}{\ell_t(i)} \right)^2 \right]^{1/2}.
\]

By Lemma 7 the first expectation inside the square-root can be estimated information theoretically by \(H^c(A^*_S) \):

\[
\mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i)p_t(i, S_k) \left(\frac{\bar{\ell}_t(i) - \ell_t(i, S_k)}{\ell_t(i)} \right)^2 \right] \leq 2 \sum_t \mathcal{I}_t^c[S_k] \leq 2 \cdot H^c(A^*_S).
\]

Moreover we can change \(\ell_t(i) \) to \(\bar{\ell}_t(i) \):

\[
\mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i)p_t(i, S_k) \ell_t(i) \right] = \mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i)p_t(i, S_k) \bar{\ell}_t(i) \right]
\]

This is because \(p_t \) are probabilities at the start of round \(t \) and \(\bar{\ell}_t(i) = \mathbb{E}_t[\ell_t(i)] \). Substituting into (53), the common-arm regret term is upper-bounded by:

\[
\sum_{k=1}^r \mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i, S_k)(\ell_t(i) - \bar{\ell}_t(i, S_k)) \right]
\]

\[
\leq \sum_{k=1}^r 2 \cdot H^c(A^*_S) \mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i)p_t(i, S_k) \ell_t(i) \right].
\]

The reason for introducing the sets \(S_k \) now appears: to give a separate estimate for the inner expectation on the right-hand side. Let \(s_k = \min(S_k) \). Observe that if \(L_t(i) > \frac{T}{s_k} \), then we cannot have \(i \in A^*_S \) because

\[
L_t(a^*_j) \leq L_T(a^*_j) \leq L_t(i), \quad \forall j \in S_k.
\]

Roughly speaking, for each fixed \(i \) the sum

\[
\sum_{t \in [T]} \frac{p_t(i, S_k)\bar{\ell}_t(i)}{p_t(i)}
\]

will typically stop growing much once \(L_t(i) > \frac{T}{s_k} \) because \(p_t(i, S_k) \) will be very small while \(p_t(i) \geq \gamma \). Before this starts to happen, we have the simple estimate \(\frac{p_t(i, S_k)}{p_t(i)} \leq 1 \).

Therefore the sum should be bounded by approximately \(\frac{T}{s_k} \). In fact Lemma 11 below gives the estimate

\[
\mathbb{E} \left[\sum_{t \in [T] \times [d]} p_t(i)p_t(i, S_k) \bar{\ell}_t(i) \right] \leq \frac{T}{s_k} + O\left(\log(1/\gamma_1)\sqrt{\frac{T}{s_k\gamma_1}} \right).
\]

Using the estimate \(H^c(A^*_S) = O(|S_k| \log(d)) \) and multiplying by \(d \) to account for the \(d \) arms, the common arm regret
The tail-sum formula thus implies
\[\mathbb{E}[\sup_{t \geq 0} M_t] = \int_0^1 \mathbb{P}[\sup_{t \geq 0} M_t \geq q] dq \]
\[\leq p + \int_0^1 p/q dq \]
\[= p(1 - \log p) \]
as desired.

Lemma 11: Fix a subset \(S_k \subseteq [m] \), let \(s_k = \min(S_k) \), and assume
\[m/L \leq \gamma_1 \leq \frac{1}{2} \]

Combined with (54) and (55), this choice thus gives
\[\sum_{k=1}^r \mathbb{E} \left[\sum_{(t,i) \in C_i} p_t(i, S_k) (\ell_t(i) - \ell_t(i, S_k)) \right] \]
\[\leq \sum_{k=1}^r \sqrt{2d \log(d) |S_k| L'} \cdot \left(s_k^{-1} + \log(1/\gamma_1) \left(s_k \gamma_1 L' \right)^{-1/2} \right) \]
\[\leq \sqrt{d \log(d) L'} \cdot \mathcal{O} \left(\sum_{k=1}^r \frac{|S_k|}{s_k} \right) \]
\[\leq \mathcal{O} \left(\log(m) \sqrt{d \log(d) L'} \right). \]

Combining with the estimate (52) for rare arms and substituting into (51) finishes the proof.

D. Semi-Bandit Regret Bound From Tsallis Entropy

We improve the regret bound of Theorem 10 using Tsallis entropy. The main result follows.

Theorem 11: Suppose that the best combinatorial action almost surely has total loss at most \(L' \). Then Thompson Sampling with semi-bandit feedback obeys the regret estimate
\[\mathbb{E}[R_T] \leq \mathcal{O} \left(\log(m) \sqrt{d \log(d) L'} + m d^2 \log^2(T') + d \log(T) \right). \]

In proving Theorem 11 we require the technical Lemma 9 which is proved in the Appendix. It relies on Freedman’s martingale concentration inequality.

Lemma 9: Fix an arm \(i \in [d] \). In the context of Theorem 6, fix constants \(\lambda \geq 2 \) and \(L > 0 \) and assume \(\gamma_1 \geq 1/L \). With probability at least \(1 - 2e^{-\lambda/2} \), for all \(t \) such that \(L_t^c(i) \leq L' \):
\[U_t^c(i) \leq U_t^c(i) + \lambda \left(\frac{L}{\gamma_1} \right) \]

The following simple result will also be useful.

Lemma 10: Let \((M_t)_{t \geq 0} \) be a martingale started at \(M_1 = p \in [0, 1] \) such that almost surely, \(M_t \in [0, 1] \) for all \(t \). Then the expected supremum is
\[\mathbb{E}[\sup_{t \geq 0} M_t] \leq p(1 - \log p). \]

Proof: By Doob’s inequality,
\[\mathbb{P}[\sup_{t \geq 0} M_t \geq q] \leq p/q, \quad \forall q \in [p, 1]. \]

The tail-sum formula thus implies
\[\mathbb{E}[\sup_{t \geq 0} M_t] = \int_0^1 \mathbb{P}[\sup_{t \geq 0} M_t \geq q] dq \]
\[\leq p + \int_0^1 p/q dq \]
\[= p(1 - \log p) \]
as desired.
Then (under the prior ν) any algorithm satisfies
\[
E \left[\sum_{t \in [T]; \ i \in C_t} \frac{p_t(i, S_k) \tilde{f}_t(i)}{p_t(i)} \right] \leq \frac{T}{s_k} + O \left(\log \left(\frac{1}{\gamma_1} \right) \sqrt{\frac{T}{s_k \gamma_1}} \right).
\]

Proof: Recall the notation of (22). We first apply Lemma 9 with $\gamma_1 = \gamma$ and
\[
\tilde{T} = \frac{T}{s_k}.
\]
The conclusion is that for $\lambda \geq 2$ and $\gamma_1 \geq s_k/\tilde{T}$, with probability at least $1 - 2e^{-\lambda/2}$, all t with $L^C_t(i) \leq \frac{T}{s_k}$ also satisfy
\[
U^C_t(i) \leq L^C_t(i) + \lambda \sqrt{\tilde{T} s_k \gamma_1} \\
\leq \frac{T}{s_k} + \lambda \sqrt{\frac{T}{s_k \gamma_1}}.
\]
Note that $p_t(i, S_k) \leq p_t(i)$ and for $i \in C_t$ also $\gamma_1 \leq p_t(i)$. It follows that for any $C > 0$:
\[
E \left[\sum_{t \in [T]; \ i \in C_t} \frac{p_t(i, S_k) \tilde{f}_t(i)}{p_t(i)} \right] \ \leq \ C + 1 + \left(\frac{1}{\gamma_1} \right) E \left[\sum_{t \in [T]; \ i \in C_t, L^C_t(i) \geq C} p_t(i, S_k) \tilde{f}_t(i) \right].
\]
We rewrite the latter expectation, then essentially rewrite it again as a Riemann-Stieltjes integral. Letting $p_t(i, S_k) = p_{\{t\}}(i, S_k)$ for any positive real t,
\[
E \left[\sum_{t \in [T]; \ i \in C_t, L^C_t(i) \geq C} p_t(i, S_k) \tilde{f}_t(i) \right] = \left[\sum_{L^C_t(i) \geq C} p_t(i, S_k) \tilde{f}_t(i) \right] \\
\leq \int_{C}^{\infty} p_t(i, S_k) dL^C_t(i).
\]
Define τ_x to be the first value of t satisfying
\[
L^C_t(i) \geq x,
\]
where $\tau_x = \infty$ if $L^C_t(i) < x$. Since $\ell_t(i) \leq 1$ almost surely for all t, it follows that $t \geq \tau_{L^C_t(i)}$. Therefore, changing variables from t to $L^C_t(i)$ yields:
\[
E \left[\int_{C}^{\infty} p_t(i, S_k) dL^C_t(i) \right] \leq E \left[\int_{C}^{\infty} \max_{t \geq \tau_{L^C_t(i)}} (p_t(i, S_k)) \cdot 1_{\tau_x \leq \infty} dx \right] \\
\leq E \left[\int_{C}^{\infty} \max_{t \geq \tau_{L^C_t(i)}} (p_t(i, S_k)) \cdot 1_{\tau_x \leq \infty} dx \right] \\
\leq 1 + E \left[\int_{C}^{\infty} \max_{t \geq \tau_{L^C_t(i)}} (p_t(i, S_k)) \cdot 1_{\tau_x \leq \infty} dx \right].
\]
To translate the result of Lemma 9, we choose x and $\lambda > 2$ to satisfy
\[
x = \frac{T}{s_k} + \lambda \sqrt{\frac{T}{s_k \gamma_1}}.
\]
Then Lemma 9 implies
\[
E[p_{\tau_x}(i, S_k) 1_{\tau_x < \infty}] \leq 2e^{-\lambda/2}.
\]
Moreover Lemma 10 implies
\[
E_{\tau_x} \left[\max_{t \geq \tau_{\tau_x}} p_t(i, S_k) 1_{\tau_x < \infty} \right] \leq p_{\tau_x}(i, S_k) \cdot (1 - \log (p_{\tau_x}(i, S_k))) \cdot 1_{\tau_x < \infty}.
\]
The function $f(x) = x(1 - \log x)$ is increasing and concave with $f(0) = 0$. We set $y = p_{\tau_x}(i, S_k)$. Using optional stopping, (61), Jensen’s inequality, and finally (60), we obtain
\[
E[p_{\tau_x}(i, S_k) 1_{\tau_x < \infty}] \leq E[f(y)] \\
\leq f(E[y]) \\
\leq f(2e^{-\lambda/2}) \\
\leq \lambda e^{-\lambda/2}.
\]
Setting
\[
C = \frac{T}{s_k} + 10 \log \left(\frac{1}{\gamma_1} \right) \sqrt{\frac{T}{s_k \gamma_1}},
\]
we use (62), changing variables in (58) from integrating over λ to integrating over x. This yields the estimate
\[
E \left[\int_{C}^{\infty} \max_{t \geq \tau_{\tau_x}} (p_t(i, S_k)) \cdot 1_{\tau_x < \infty} dx \right] \ \leq \ \sqrt{\frac{T}{s_k \gamma_1}} \int_{10 \log(1/\gamma_1)}^{\infty} \lambda e^{-\lambda/2} d\lambda.
\]
The integral is bounded by $O(1)$ since $\gamma_1 \leq \frac{1}{2}$ and also $10 \log(1/\gamma_1) \geq 2$. (The latter bound is required because the above estimates only holds for $\lambda > 2$, which is due to the condition in Lemma 9.) Recalling our calculations starting from (57), we find
\[
E \left[\sum_{t \in [T]; \ i \in C_t} \frac{p_t(i, S_k) \tilde{f}_t(i)}{p_t(i)} \right] \ \leq \ \frac{T}{s_k} + O \left(\log \left(\frac{1}{\gamma_1} \right) \sqrt{\frac{T}{s_k \gamma_1}} \right).
\]
This completes the proof.

The next lemma is used also in the log-barrier based regret bound. Recall from (29) that diam$_F$ is the diameter of $F = \sum_{i=1}^d f(x_i)$ restricted to $x \in [0, 1]^d \cup \sum_{i=1}^d x_i = d$.

Lemma 12: Let f be admissible (recall Definition 2), and R_t, C_t be generated by (γ_1, γ_2) (recall (45) and below). Let $S_1 \cup \cdots \cup S_r \subset [d]$ be a rank-order partition. Thompson Sampling for the semibandit problem
satisfies
\[
E[R_T] \leq E \left[\sum_{\{t,i\} : i \in C_t} p_t(i)\bar{\ell}_t(i) \right] \\
+ E \left[\sum_{\{t,i,k\} : i \in C_t} p_t(i,S_k)(\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)) \right]
\]
where
\[
E \left[\sum_{\{t,i\} : i \in C_t} p_t(i)\bar{\ell}_t(i) \right] \\
\leq \min \left(\gamma_2 T, md^2 \log^2(T') + d \log(T) \right);
\]
\[
E \sum_{\{t,i,k\} : i \in C_t} p_t(i,S_k)(\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)) \\
\leq \sum_{k=1}^r 2 \cdot \text{diam}_{|S_k|(F)} \cdot E \sum_{\{t,i\} : i \in C_t} \frac{\bar{\ell}_t(i)}{p_t(i)f''(p_t(i,S_k))}.
\]

Proof: The inequality (63) is clear while (64) follows from Theorem 6, so we focus on (65). Fix \(k \in [r] \) and as before for all \(i \in [d] \) let
\[p_t(i,S_k) = \mathbb{P}_t[i \in S_k]. \]
Then the calculation (whose justification is identical to the \(m = 1 \) setting in (40)) goes:
\[
E \left[\sum_{\{t,i\} : i \in C_t} p_t(i,S_k) \cdot (\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)) \right] \\
\leq E \sum_{\{t,i,k\} : i \in C_t} p_t(i,S_k) \cdot (\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)) \\
\leq \left(\sum_{\{t,i\} : i \in C_t} p_t(i) f''(p_t(i,S_k)) \right)^{1/2} \frac{\bar{\ell}_t(i)}{f''(p_t(i,S_k))} \\
\times \sum_{\{t,i,k\} : i \in C_t} p_t(i,S_k) \cdot (\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)).
\]

Prop. 4:
\[
\leq 2 \sum_{t} E_\ell[F(p_{t+1}(\cdot,S_k)) - F(p_t(\cdot,S_k))]
\times E \sum_{\{t,i\} : i \in C_t} \bar{\ell}_t(i)
\leq 2 \sqrt{2 \cdot E[F(p_T(\cdot,S_k)) - F(p_1(\cdot,S_k))]} \\
\times E \sum_{\{t,i\} : i \in C_t} \bar{\ell}_t(i).
\]
Here \(p_t(\cdot,S_k) \in [0,1]^d \) is the vector with \(i \)-th coordinate \(p_t(i,S_k) \). This completes the proof.

We now prove Theorem 11 whose statement we recall for the reader’s convenience.

Theorem 11: Suppose that the best combinatorial action almost surely has total loss at most \(\overline{L} \). Then Thompson Sampling with semi-bandit feedback obeys the regret estimate
\[
E[R_T] \leq O \left(\log(m)\sqrt{d\overline{L}} + md^2 \log^2(\overline{T'}) + d \log(T) \right).
\]

Proof: Apply Lemma 12 with \(f(x) = -x^{1/2} \) and \(S_k \) the dyadic partition of \([m] \) (recall (56)) so that \(|S_k| \leq 2^k = \min(S_k) \). Here we take
\[(\gamma_1, \gamma_2) = \left(\frac{m \log^2(\overline{T'})}{\overline{L}}, \frac{md \log^2(\overline{T'})}{\overline{L}} \right). \]

Moreover
\[f''(x) = \frac{1}{4x^{3/2}}, \quad \text{and} \quad \text{diam}_j(F) \leq \sqrt{jd}. \]

The common arm regret in (65) is at most
\[
E \left[\sum_{\{t,i,k\} : i \in C_t} p_t(i,S_k)(\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)) \right] \\
\leq \left(\sum_{\{t,i\} : i \in C_t} p_t(i) f''(p_t(i,S_k)) \right)^{1/2} \frac{\bar{\ell}_t(i)}{f''(p_t(i,S_k))} \\
\times \sum_{\{t,i,k\} : i \in C_t} p_t(i,S_k) \cdot (\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)).
\]

Cauchy–Schwarz and \(p_t(i,S_k) \leq p_t(i) \) now imply:
\[
E \left[\sum_{\{t,i\} : i \in C_t} p_t(i,S_k) f''(p_t(i,S_k)) \right] \\
\leq \left(\sum_{\{t,i\} : i \in C_t} p_t(i) \bar{\ell}_t(i) \right)^{1/2} \left(\sum_{\{t,i\} : i \in C_t} p_t(i) \bar{\ell}_t(i) \right)^{1/2}
\times \sum_{\{t,i\} : i \in C_t} p_t(i,S_k) \cdot (\bar{\ell}_t(i) - \bar{\ell}_t(i,S_k)).
\]
Using $\gamma_1 = \frac{m \log^2(T)}{L \log(T)}$ and Lemma 11 (where an extra factor of d comes from summing over all arms) yields:

$$
\mathbb{E} \sum_{(t,i): i \in C_t} p_t(i, S_k) \bar{e}_t(i) / p_t(i) \leq d \cdot O \left(\frac{T}{2^k} + \log \left(\frac{1}{\gamma_1} \right) \sqrt{\frac{T}{2^k \gamma_1}} \right)
$$

$$
= O \left(\frac{dL^*}{2^k} \right).
$$

Since $p_t(i, S_k) \geq p_t(i)$ for all $i \in [d]$ and $S_k \subseteq [d]$, we find

$$
\mathbb{E} \sum_{(t,i): i \in C_t} p_t(i, S_k) \bar{e}_t(i) \leq \mathbb{E} \sum_{(t,i) \in [T] \times [d]} p_t(i) \bar{e}_t(i)
$$

$$
= \mathbb{E} [R_T].
$$

Combining and assuming $\mathbb{E}[R_T] \geq 0$, the common arm regret is at most:

$$
\mathbb{E} \left[\sum_{(t,i,k): i \in C_t} p_t(i, S_k) (\bar{e}_t(i) - \bar{e}_t(i, S_k)) \right]
$$

$$
\leq O \left(\sum_{k=1}^r \sqrt{2^{k/2} d^{1/2}} \cdot \sqrt{\frac{dL^*}{2^k} \cdot \mathbb{E}[L_T]} \right)
$$

$$
= O \left(\sum_{k=1}^r \sqrt{d(L^* + \mathbb{E}[R_T])} \right)
$$

$$
= O \left(\log(m) \sqrt{dL^* + \mathbb{E}[R_T]} \right).
$$

Using the bound (64) for the rare arm regret and combining, we find

$$
\mathbb{E}[R_T] \leq O \left(m d^2 \log^2(L^*) + d \log(T) + \log(m) \sqrt{d \cdot (L^* + \mathbb{E}[R_T])} \right).
$$

To finish we apply Lemma 8 with:

- $R = \mathbb{E}[R_T]
$
- $X = O(m d^2 \log^2(L^*) + d \log(T))
$
- $Y = O(\log(m) \sqrt{d})
$
- $Z = L^*$

We find

$$
\mathbb{E}[R_T] \leq O \left(\log(m) \sqrt{dL^*} + m d^2 \log^2(L^*) + d \log(T) \right).
$$

which is what we wanted to prove.

E. Semi-Bandit Regret Bound From Log Barrier

Theorem 12: Thompson Sampling with semi-bandit feedback obeys the regret estimate

$$
\mathbb{E}[R_T] \leq O \left(\sqrt{d \mathbb{E}[L^*] \log(T) + d \log(T)} \right).
$$

Proof: We apply Lemma 12 with $f(x) = -\log(Tx + 1)$ and $(\gamma_1, \gamma_2) = \left(\frac{d}{T}, \frac{T}{d} \right)$ with no partitioning scheme, i.e. $S_1 = [m]$. Then

$$
f''(x)^{-1} = (x + T^{-1})^2 \leq x^2 + \frac{3x}{T}
$$

for $x \geq T^{-1}$. Moreover

$$
\text{diam}(F) \leq d \log(T + 1) = O(d \log(T)).
$$

Therefore by (65), the common arm regret is at most

$$
\mathbb{E} \left[\sum_{(t,i): i \in C_t} p_t(i)(\bar{e}_t(i) - \bar{e}_t(i, S_k)) \right]
$$

$$
\leq O \left(\frac{d \log(T) \cdot \mathbb{E} \sum_{(t,i): i \in C_t} \bar{e}_t(i)}{\mathbb{E}[L_T]} \right)
$$

$$
\leq O \left(\frac{d \log(T) \cdot \mathbb{E} \sum_{(t,i): i \in C_t} (p_t(i) + 3T^{-1}) \bar{e}_t(i)}{\mathbb{E}[L_T] + 3d} \right)
$$

$$
\leq O \left(\sqrt{d \log(T) \cdot (\mathbb{E}[L_T] + 3d)} \right).
$$

The rare arm regret from (64) is at most $\gamma_2 T = d$; this is absorbed into the $O(d \sqrt{\log(T)})$ term. In light of (63), we have established exactly the same estimate as (43) in the proof of Theorem 9. The conclusion follows verbatim.

VII. Thresholded Thompson Sampling

Unlike in the full-feedback case, our first-order regret bound for bandit Thompson Sampling has an additive $O(d \log(T))$ term. Thus, even when an upper bound $L^* \leq L^*$ is known, the regret is T-dependent. In fact, some mild T-dependence is inherent for any $o(L^*)$ regret bound as shown later in Theorem 17.

However, this mild T-dependence can be avoided by using Thresholded Thompson Sampling. In Thresholded Thompson Sampling, the rare arms are never played, and the probabilities for the other arms are scaled up correspondingly. In the bandit setting for $\gamma < \frac{1}{4}$, the γ-thresholded Thompson Sampling algorithm is defined by letting $R_t = \{i: p_t(i) \leq \gamma\}$ and playing at time t from the distribution

$$
\hat{p}_t(i) = \begin{cases}
0 & \text{if } i \in R_t \\
\frac{p_t(i)}{1 - \sum_{j \in R_t} p_t(j)} & \text{if } i \in C_t.
\end{cases}
$$

In the combinatorial semi-bandit setting, the corresponding definition is as follows. Set

$$
\eta_t = \sum_{A' \in A: A' \not\subseteq C_t} p_t(A') \leq d\gamma.
$$

Then we set

$$
\hat{p}_t(A_t = A) = \begin{cases}
0 & \text{if } A \not\subseteq C_t \\
\frac{p_t(A)}{\eta_t} & \text{if } A \subseteq C_t.
\end{cases}
$$
The key point is that Thresholded Thompson Sampling plays arm i with probability either at least γ (if $i \in C_t$) or 0 (if $i \in R_t$).

This algorithm parallels the work [18] which uses an analogous modification of the EXP3 algorithm to obtain a first-order regret bound. Note that in the semi-bandit setting, for $i \in C_t$ it may be that $\hat{p}_t(i) < p_t(i)$. However $\hat{p}_t(i) \geq \gamma$ always holds, ensuring that Theorem 6 applies.

We first give our main guarantee for Thresholded Thompson Sampling in the bandit case with $m = 1$, which is based on Tsallis entropy. The result below could be slightly refined by incorporating the Tsallis entropy $H_\alpha(p_t)$ into the regret estimate as in Theorem 8, but we have instead elected for simplicity in the statement. The analysis works also with Shannon entropy (which again gives a slightly weaker bound), but seemingly not with the log barrier.

Theorem 13: Suppose that $L^* \leq T^*$ holds almost surely for a constant T^*. Thompson Sampling for bandit feedback, thresholded with $\gamma = \frac{\log(T^*)}{L^*} \leq \frac{1}{2d}$, has expected regret

$$\mathbb{E}[R_T] = O\left(\sqrt{dL^*} + d\log^2(T^*)\right).$$

Proof: For any $t, i \in [T] \times [d]$ it holds from (68) and (67) that

$$\hat{p}_t(i) \leq \frac{p_t(i)}{1 - \eta_t} \leq \frac{p_t(i)}{1 - \gamma d}.$$

(69)

We again apply Proposition 3, this time in the general setting which allows $\hat{p}_t \neq p_t$. The result is:

$$\mathbb{E}[R_T] = \mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} \hat{p}_t(i)\bar{E}_t(i) - p_t(i)\bar{E}_t(i,i)\right] = \mathbb{E}\left[\hat{p}_t(i)\bar{E}_t(i) - \bar{E}_t(i,i)\right] + \mathbb{E}\left[\hat{p}_t(i)\bar{E}_t(i) - \bar{E}_t(i,i)\right] \leq \left(\frac{\gamma d}{1 - \gamma d}\right) \cdot \mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} p_t(i)\bar{E}_t(i,i)\right] + \mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} \hat{p}_t(i)\bar{E}_t(i) - \bar{E}_t(i,i)\right] \leq 2\gamma d \cdot \mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} p_t(i)\bar{E}_t(i,i)\right] + \mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} \hat{p}_t(i)\bar{E}_t(i) - \bar{E}_t(i,i)\right].$$

Here the last step follows from the assumption $\gamma \leq \frac{1}{2d}$. The former expectation is

$$2\gamma d \cdot \mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} p_t(i)\bar{E}_t(i,i)\right] = 2\gamma d \cdot \mathbb{E}\left[\sum_{t=1}^T \bar{E}_t(a^*)\right] \leq 2\gamma d \cdot L^* \leq O(d\log^2(T^*)).$$

The latter can be bounded in the same way as the non-thresholded results. Intuitively, since (69) implies

$$\hat{p}_t(i) \leq 2p_t(i) \quad \forall i \in C_t,$$

(70)

the calculation should be almost the same. To make this precise we imitate (40), which is almost identical but with $\hat{p}_t = p_t$. The result is:

$$\mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} \hat{p}_t(i) \cdot (\bar{E}_t(i) - \bar{E}_t(i,i))_+\right] \leq \mathbb{E}\left[\sum_{(t,i) \in [T] \times [d]} \hat{p}_t(i) \cdot (\bar{E}_t(i) - \bar{E}_t(i,i))_+\right]$$

(71)

All justifications are identical to (40) (which is the special case $\hat{p}_t = p_t$ of the above). We complete the estimation using...
Tsallis entropy as in Theorem 8. Set \(f(x) = -x^\alpha \) so that
\[
f''(x) = \alpha(1 - \alpha)x^{\alpha - 2};
\]
\[
\text{Max}(F) = -1;
\]
\[
\text{Min}(F) = -d^{1-\alpha}.
\]
By (70), we then have (for \(c_\alpha, c'_\alpha \) constants depending on \(\alpha \)):
\[
\frac{\hat{p}_t(i)\ell_t(i)}{p_t(i)^2f''(p_t(i))} = c_\alpha \cdot \frac{\hat{p}_t(i)\ell_t(i)}{p_t(i)^{\alpha}}
\leq c'_\alpha p_t(i)^{1-\alpha}\ell_t(i).
\]
Then (71) specializes to
\[
\mathbb{E} \left[\sum_{(t,i)\in C_t^r} \hat{p}_t(i) \cdot (\ell_t(i) - \bar{\ell}_t(i,i))_+ \right]
\leq O(1) \cdot \sqrt{d^{1-\alpha} \cdot \mathbb{E} \sum_{(t,i)\in C_t^r} \frac{\hat{p}_t(i)\ell_t(i)}{p_t(i)^2f''(p_t(i))}}
\leq O_\alpha(1) \cdot \sqrt{d^{1-\alpha} \cdot \mathbb{E} \sum_{i\in C_t} \ell_t(i)p_t(i)^{1-\alpha}}.
\]
Applying Hölder’s inequality in the first step, we find
\[
\mathbb{E} \left[\sum_{(t,i)\in C_t^r} \bar{\ell}_t(i)p_t(i)^{1-\alpha} \right]
\leq \left(\mathbb{E} \sum_{i\in C_t^r} \bar{\ell}_t(i) \right) \left(\mathbb{E} \sum_{(t,i)\in C_t^r} \ell_t(i)\hat{p}_t(i) \right)^{1-\alpha}
\leq \left(\mathcal{L} + 2 \left(\log \frac{1}{\gamma} + 10 \right) \sqrt{\frac{L}{\gamma}} \right)^{\alpha} \cdot \mathbb{E}[L_T]^{1-\alpha}
\leq O(d\mathcal{L}^\alpha) \cdot \mathbb{E}[L_T]^{1-\alpha}.
\]
In the second step of (72), the first term is bounded as usual by Theorem 6. Paralleling (42), the second term is bounded by observing
\[
\mathbb{E} \left[\sum_{(t,i)\in C_t^r} \bar{\ell}_t(i)\hat{p}_t(i) \right] \leq \mathbb{E} \left[\sum_{(t,i)\in [T] \times [d]} \bar{\ell}_t(i)\hat{p}_t(i) \right] = \mathbb{E}[L_T].
\]
The last step in (72) again follows from the choice of \(\gamma \) which ensures
\[
\mathcal{L} + 2 \left(\log \frac{1}{\gamma} + 10 \right) \sqrt{\frac{L}{\gamma}} \leq O(\mathcal{L}').
\]
Assuming \(\mathbb{E}[R_T] \geq 0 \) and combining the above calculations, we find
\[
\mathbb{E}[R_T] \leq O_\alpha \left(d^2 \log(\mathcal{L}') + \sqrt{d(\mathcal{L}' + \mathbb{E}[R_T])} \right).
\]
Applying Lemma 8 as in Theorem 8 (but without the \(\log(T) \) term) and choosing arbitrary \(\alpha \in (0, 1) \) completes the proof.

In the semi-bandit setting, our previous analysis is similarly adapted.

Theorem 14: Suppose that the best combinatorial action almost surely has total loss at most \(\mathcal{L}' \). Thompson Sampling for semi-bandit feedback, thresholded with \(\gamma = \frac{m \log^2(\mathcal{L}')}{2} \leq \frac{1}{2d} \), has expected regret
\[
\mathbb{E}[R_T] = O \left(\log(m)\sqrt{d\mathcal{L}'} + md\log^2(\mathcal{L}') \right).
\]

Proof: Thresholding at \(\gamma \) removes at most \(d\gamma \) total probability of actions, so as before \(\hat{p}_t(i) \leq \frac{\hat{p}_t(i)}{1 - \gamma d} \). The start of the calculation (this time using Proposition 5) goes
\[
\mathbb{E}[R_T] = \mathbb{E} \sum_{(t,i)\in [T] \times [d]} \hat{p}_t(i)\ell_t(i,i) - p_t(i)\bar{\ell}_t(i,i)
\leq \mathbb{E} \left[(\frac{\gamma d}{1 - \gamma d}) \cdot \mathbb{E} \sum_{(t,i)\in [T] \times [d]} p_t(i)\bar{\ell}_t(i,i) \right]
\leq 2\gamma dL
\leq 2md\log^2(\mathcal{L}').
\]
Take the sets \(S_k \) as in (56), the dyadic partition of \([m] \), so that \(|S_k| \leq 2^k = \min(S_k) \). Thresholding at \(\gamma = \frac{m \log^2(\mathcal{L}')}{L} \), the first term above is
\[
2\gamma d\mathcal{L}' \leq 2md \log^2(\mathcal{L}').
\]
To control the main sum involving \(C_t \), we combine the analyses of Lemma 12 and Theorem 13. For each \(k \in [r] \), similarly to (40), (66), and (71) we obtain:
\[
\mathbb{E} \sum_{(t,i)\in C_t} \hat{p}_t(i)p_t(i, S_k)\hat{p}_t(i) \cdot (\ell_t(i,i) - \bar{\ell}_t(i,i, S_k))_+
\leq \mathbb{E} \sum_{(t,i)\in C_t} \hat{p}_t(i)p_t(i, S_k)^2f''(p_t(i, S_k)) \frac{(\ell_t(i,i) - \bar{\ell}_t(i,i, S_k))^2}{\ell_t(i)}
\times \mathbb{E} \sum_{(t,i)\in C_t} p_t(i, S_k)\hat{p}_t(i).
By definition, the first inner sum is bounded by

$$E \left[\sum_{\substack{(t,i) \in \mathcal{C}_t \cap [T] \times [d]}} \hat{p}_t(i) \tilde{\ell}_t(i) \right] \leq E \left[\sum_{\substack{(t,i) \in \mathcal{C}_t \cap [T] \times [d]}} \hat{p}_t(i) \tilde{\ell}_t(i) \right]$$

Using Lemma 11 for each $i \in [d]$ and then the definition of γ, we obtain

$$E \left[\sum_{\substack{(t,i) \in \mathcal{C}_t \cap [T] \times [d]}} \hat{p}_t(i) \tilde{\ell}_t(i) \right] \leq d \cdot O \left(\frac{L}{s_k} + \log \left(\frac{1}{\gamma} \sqrt{\frac{L}{s_k}} \right) \right) \leq O \left(\frac{dL}{s_k} \right).$$

Substituting the previous two displays into (78) and assuming $E[R_T] \geq 0$, we find

$$E \left[\sum_{k=1}^{r} \sum_{\substack{(t,i) \in \mathcal{C}_t \cap [T] \times [d]}} \hat{p}_t(i) \tilde{\ell}_t(i) \right] \leq O \left(\sum_{k=1}^{r} \sqrt{|S_k|d \cdot E[R_T]} \sqrt{\frac{dL}{s_k}} \right)^{1/4} \leq O \left(\sqrt{d(T' + E[R_T])} \right).$$

Combining with (73) and (74) we conclude that

$$E[R_T] \leq O \left(m d \log^2(T') + \log(m) \sqrt{d(T' + E[R_T])} \right).$$

The proof is now concluded via Lemma 8 similarly to the end of proving Theorem 11.

VIII. Graphical Feedback

We now consider online learning with graphical feedback. This model interpolates between full-feedback and bandits by embedding the actions as vertices of a (possibly directed) feedback graph G. Here playing action $a_t = i$ allows one to observe the losses $\ell_t(i)$ for all j such that an edge $i \rightarrow j$ exists in G. We assume that all vertices $i \in [d]$ have self-loops $i \rightarrow i$, i.e. that we always observe the loss incurred by the action played. Without this assumption, the optimal regret can be $\Theta(T^{2/3})$ even if every vertex is observable, see [3].

Previous work such as [20] and [24] analyzed the performance of Thompson Sampling for these tasks, giving $O(\sqrt{T})$-type regret bounds which scale with certain statistics of the graph. However, their analyses only applied for stochastic
losses rather than adversarial losses. In this section, we outline why their analysis applies to the adversarial case as well.

Let \(G = (V(G), E(G)) \) be an undirected feedback graph on \(d \) vertices. Let \(\alpha = \alpha(G) \) be the size of its maximum independent set, and let \(N(v) \subseteq V(G) \) denote the neighborhood of \(v \in V(G) \). We use the following lemma:

Lemma 13 ([21], Lemma 3): For any probability distribution \(\pi \) on \(V(G) \) (with the convention \((0/0 = 0) \):

\[
\sum_{i=1}^{d} \pi(i) - \frac{1}{\sum_{j \in \bar{N}(i)} \pi(j)} \leq \alpha.
\]

Recalling (19), the time \(t \) regret for Thompson Sampling on \(G \) is again

\[
r_t = \sum_{i=1}^{d} p_t(i)(\tilde{\ell}_t(i) - \tilde{\ell}_t(i, i)).
\]

Moreover recall the definition (13) of the coordinate information gain

\[
IG_t^c = H_t^c(p_t) - \mathbb{E}_t[H_t^c(p_{t+1})].
\]

Proposition 6: The coordinate information ratio of Thompson Sampling on an undirected graph \(G \) is at most \(\alpha(G) \) in the sense that

\[
\frac{r_t^2}{IG_t^c} \leq \alpha(G).
\]

Proof: Let \(p_t(i) = \mathbb{P}[i = a^*] \) be as usual for a vertex \(i \) and \(q_t(i) = \sum_{j \in \bar{N}(i)} p_t(i) \) the probability to observe \(\ell_t(i) \). Lemma 13 implies that \(\sum_{i=1}^{d} \frac{p_t(i)}{q_t(i)} \leq \alpha \). Using Cauchy-Schwarz in the second step, we find:

\[
\alpha \cdot IG_t^c \geq \left(\sum_{i=1}^{d} \frac{p_t(i)}{q_t(i)} \right)^2 \left(\sum_{i=1}^{d} p_t(i) q_t(i) (\ell_t(i) - \tilde{\ell}_t(i, i))^2 \right)
\]

\[
\geq \left(\sum_{i=1}^{d} p_t(i) (\tilde{\ell}_t(i) - \tilde{\ell}_t(i, i)) \right)^2.
\]

In the case of a directed graph, a natural analog of \(\alpha(G) \) is the maximum of

\[
\sum_{i=1}^{d} \pi(i)
\]

which is equal to \(\max \pi(G) \), the size of the maximal acyclic subgraph of \(G \). However, as noted in [20], if we assume

\[
\pi(i) \geq \varepsilon
\]

for all \((t, i) \in [T] \times [d] \), then [3] gives the upper bound

\[
\sum_{i=1}^{d} \frac{\pi(i)}{\sum_{j \in \bar{N}(i)} \pi(j)} \leq 4 \left(\alpha \cdot \log \left(\frac{4d}{\varepsilon} \right) \right).
\]

Of course, \(\varepsilon = (dT)^{-3} \) additional exploration has essentially no effect on the expected regret (as it induces \(O(T^{-2}) \) total variation distance between the two algorithms and hence adds \(O(1/T) \) regret). By mixing Thompson Sampling with an \(\varepsilon = (dT)^{-3} \) probability of uniform exploration at each time, the bound (78) thus applies and we obtain a \(\alpha \)-dependent bound for directed graphs as well. The following results follow exactly as in Proposition 1 using the information ratio estimates above.

Theorem 15: Thompson Sampling on a sequence \(G_t \) of undirected graphs achieves expected regret

\[
\mathbb{E}[R_T] = O \left(\sqrt{H^c(p_1) \sum_{i=1}^{T} \alpha(G_i)} \right).
\]

Moreover Thompson Sampling on a sequence \(G_t \) of directed graphs achieves expected regret

\[
\mathbb{E}[R_T] = O \left(\sqrt{H^c(p_1) \log(dT) \sum_{i=1}^{T} \alpha(G_i)} + O(1/T) \right).
\]

As in [20], this analysis applies even when the Thompson Sampling algorithm does not know the graphs \(G_t \), but only observes the relevant neighborhood feedback at each time \(t \).

IX. NEGATIVE RESULTS FOR THOMPSON SAMPLING

Here we present some negative results. First, Theorem 16 states that Thompson Sampling against an arbitrary prior may have \(\Omega(T) \) regret a constant fraction of the time (but will therefore also have \(-\Omega(T) \) regret a constant fraction of the time). By contrast, there exist algorithms which have low regret with high probability even in the frequentist setting [4]. Bridging this gap with a variant of Thompson Sampling would be very interesting.

Theorem 16: For all \(T \geq T_0 \) at least an absolute constant, there exists a prior distribution on \(d = 2 \) arms for which Thompson Sampling incurs at least \(\frac{T}{4} \) regret with probability at least \(\frac{1}{4} \) (with either full or bandit feedback).

Proof: We construct such a prior distribution with 2 arms. First for \(t \leq T/3 \) we take \(\ell_t(1) = 1 \) and \(\ell_t(2) = 0 \) almost surely. Afterward exactly one of the following two possibilities occurs, each with probability \(\frac{1}{4} \).

1) For \(t > T/3 \), we have \(\ell_t(1) = \ell_t(2) = 0 \).
2) For \(t > T/3 \), we have \(\ell_t(1) = 0 \) and \(\ell_t(2) = 1 \).

In this construction, Thompson Sampling will pick arm 1 with probability \(\frac{1}{2} \) during each of the first \(T/3 \) rounds. Hence there is an \(1 - o(T^{-\infty}) \) probability to have \(L_T \geq \frac{T}{4} \). On the other hand, \(L^* = 0 \) with probability \(\frac{1}{2} \) from the first case above. Therefore \(R_T \geq \frac{T}{4} \) with probability \(\frac{1}{4} - o(T^{-\infty}) \). This completes the proof.

Proof: We construct such a prior distribution with 2 arms. First for \(t \leq T/3 \) we take \(\ell_t(1) = 1 \) and \(\ell_t(2) = 0 \) almost surely. Afterward exactly one of the following two possibilities occurs, each with probability \(\frac{1}{4} \).

1) For \(t > T/3 \), we have \(\ell_t(1) = \ell_t(2) = 0 \).
2) For \(t > T/3 \), we have \(\ell_t(1) = 0 \) and \(\ell_t(2) = 1 \).

In this construction, Thompson Sampling will pick arm 1 with probability \(\frac{1}{2} \) during each of the first \(T/3 \) rounds. Hence there is an \(1 - o(T^{-\infty}) \) probability to have \(L_T \geq \frac{T}{4} \). On the other hand, \(L^* = 0 \) with probability \(\frac{1}{2} \) from the first case above. Therefore \(R_T \geq \frac{T}{4} \) with probability \(\frac{1}{4} - o(T^{-\infty}) \). This completes the proof.

Recall that even in Theorem 8 there was an additive \(d \log(T) \) term in the expected regret. Of course, once the player incurs loss \(\bar{L} + 1 \) on any arm \(i \), Thompson Sampling will never play arm \(i \) again. Therefore the total loss for Thompson Sampling (ordinary or Thresholded) can never be more than \(d \bar{L} + 1 \). Theorem 8 leaves open the possibility that \(\Omega(d \bar{L}) \) regret is eventually reached when \(T \) is extremely large. In other words, our regret bound for ordinary Thompson Sampling becomes trivial for extremely large \(T \) when \(d \) and \(\bar{L} \) are fixed. Theorem 17 below shows that this reflects reality. Namely,
there do exist prior distributions for which $\Omega(dL^*)$ expected regret is incurred by Thompson Sampling for large T.

Theorem 17: Let $d, L^* \geq 3$. There exists a prior distribution and positive integer T (both depending on d and L^*) against which Thompson Sampling achieves $\Omega(dL^*)$ expected regret with bandit feedback, even given the value L^*.

Proof: We construct such a prior distribution on $d \geq 3$ arms as follows. First pick a uniformly random “good” arm $a^* \in [d]$. For $i \in [d]\{a^*\}$, set arm i to be either “bad” or “terrible” uniformly at random, independently over different arms i. Denote by B and T the sets of bad and terrible arms, respectively.

The (random) loss sequence $(\ell_t(i))_{(t,i) \in [T] \times [d]}$ is constructed as follows. First at time t, we set

$$\ell_t(i) = 1_{i \neq a^*}, \quad i \in [d].$$

In other words, all arms except a^* receive a loss. Next for a^*, every subsequent loss $\ell_t(a^*)$ is uniformly random in $\{0, 1\}$ until the first time τ with total loss $L_\tau(a^*) = L^*$ is reached. For $t > \tau$, we set $\ell_t(a^*) = 0$.

For each bad arm $i \in B$, we do the same with $\ell_t(i)$ uniformly random in $\{0, 1\}$ for $t > 1$, but stop at total loss $L^* + 1$ instead of L^*.

For a terrible arm $i \in T$, let the losses $\ell_t(i) \in \{0, 1\}$ for $t > 1$ be uniformly random for all time (so e.g. the total loss grows linearly with T).

If $a_1 = a^*$, then Thompson Sampling will observe $\ell_t(a_1) = 0$ and thus infer that $a^* = a_1$. Hence in this case we have $a_t = a^*$ for all $t \geq 1$ and there will be no regret. However, suppose that $a_1 \neq a^*$, which holds with probability $\frac{d-1}{d}$. We claim that on this event, the player will pay loss $L^* + 1$ on each terrible arm with probability $1 - o(1)$ for sufficiently large T. This implies the desired result.

Indeed, suppose $i \in T$ satisfies $i \neq a_1$ was not played at time 1. Fix a time t and let $a_1(t) < t$ be the most recent time that $a_1 = i$ was played. Moreover suppose that $L_t(i) < L^*$. Then we claim that $p_t(i)$ is uniformly bounded away from 0 until the value $a_t(i)$ changes, i.e. until the next time $s > t$ that $a_s = i$.

To do this we consider the alternative hypothesis for the player which differs from the truth in that $a^* \in B$ is actually a bad arm, while i is actually the good arm. The former change only affects the distribution of the sequence $(\ell_t(a^*))_{t>1}$ in the value $\ell_1(a^*)$, which was not observed by assumption. Moreover the player only makes Bayesian updates regarding the latter change when $a_t = i$ is played. Finally this evidence is never conclusive until the player has suffered loss

$$\sum_{s \leq t} \ell_s(i) \cdot 1_{a_s = i} > L^*.$$

It follows that while $a_t(t)$ is constant, the posterior likelihood ratio between this alternative hypothesis and the true arm identities is at least $\varepsilon(a_t(t)) > 0$.

Additionally, with probability 1 the player’s probability assigned to the true arm configuration is bounded away from 0 uniformly in time. Indeed that probability is a martingale, and if this were false then the probability would have to converge to 0. But the player’s subjective probability of this (true) statement cannot converge to 0, because revealing more information (i.e. all losses for all times) would then also assign the true statement probability 0 by the martingale property, a contradiction.

Since for fixed $a_1(t)$ the Bayes factor between the truth and the alternative is bounded, we see that this alternative with arm i as the good arm has probability at least $\varepsilon'(a_1(t)) > 0$ not depending explicitly on t.

We have just argued that Thompson Sampling with this prior will have a uniformly positive probability to play such an arm i until the next time it plays i again. Thus, with probability $\frac{d-1}{d}$ (for the first arm not to be good), Thompson Sampling accumulates loss $L^* + 1$ on every terrible arm except the first arm it plays when run for an infinite amount of time. By countable exhaustion, the same holds for sufficiently large finite T with loss $L^* + 1 - o(1) \geq L^*$. This yields $\Omega(dL^*)$ regret as the average number of terrible arms is $\frac{d-1}{2}$.

Finally we show that Thompson Sampling does not achieve good small-loss bounds for contextual bandits. Recall that abstractly, contextual bandit is equivalent to graph feedback in which:

- The graphs change from round to round.
- All graphs are vertex-disjoint unions of at most K cliques.
- The losses for a round are constant within cliques.

The existence of an algorithm achieving $O(\sqrt{\Gamma})$ regret for contextual bandits was asked in [6] and resolved positively in [8] with a computationally intractable algorithm, and later in [12] with an efficient algorithm assuming access to a regression oracle. It would be interesting to design a natural Bayesian algorithm matching these guarantees.

Theorem 18: There exists a prior distribution on which Thompson Sampling achieves, with high probability, regret $\Omega(\sqrt{T})$ for a contextual bandit problem with $L^* = 0$ optimal loss, $K = 2$ cliques, and $d = O(\sqrt{T})$ total arms.

Proof: Set $S = \sqrt{T}$ and fix $d \geq 2S$. Form S distinct small cliques, with random but disjoint sets of $\frac{d}{2S}$ arms each. Call these cliques C_1, \ldots, C_S. Also generate independent uniformly random bits $b_1, \ldots, b_S \in \{0, 1\}$ for each $i \in \{0, 1, \ldots, \sqrt{T} - 1\}$, consider the set of times $T_j = \{j + 1, \ldots, (j + 1)S\} \subseteq [T]$.

For $t \in T_j$, we set the feedback graph G_t consist of the clique C_j and the complementary clique on $[d] \setminus C_j$. We take the loss on the small clique C_j to be b_j, and 0 on the complement $[d] \setminus C_j$. Finally, at the last time T pick at random a single arm a^* with no loss so far and make the loss

$$\ell_t(i) = 1_{i \neq a^*}.$$

(This corresponds to the trivial clique on a^*, and the clique on $[d] \setminus \{a^*\}$.) Then clearly $L^* = 0$ for arm a^*.

However Thompson Sampling will incur a constant expected loss for each clique C_j. This is because until
observing a loss on C_j during $t \in T_j$, there is a $Θ(T^{-1/2})$ probability that $a^* \in C_j$ eventually holds, and there are $|T_j| = Θ(T^{1/2})$ opportunities for Thompson Sampling to choose an arm in C_j. In all, Thompson Sampling incurs expected loss $Θ(S) = Θ(\sqrt{T})$ as claimed.

APPENDIX

Here we prove Theorem 6. Recall the statement:

Theorem 6: Consider an online learning game with arm set $[d]$ and random sequence of losses $L_t(i)$ in the Bayes-optimal setting. Each round, the player plays some action $A_t \in \binom{[d]}{m}$, i.e. a set of $m \geq 1$ arms, and pays/observes the loss for each of them. Assume there exists almost surely an action A with total loss $L_T(A) = \sum_{i \in A} L_T(i) \leq T^*$ for a deterministic value T^*. Moreover, suppose a partition (21) exists and the properties above hold for it. Then the following statements hold for every $i \in [d]$.

A) The expected loss incurred by the player from arm i while $i \in R_t$ is rare is

$$\mathbb{E} \left[\sum_{t \in [T]; i \in R_t} \hat{p}_t(i) L_t(i) \right] \leq 2\gamma_2 T^* + 8 \log(T) + 4.$$

B) The expected total loss that arm $i \in C_t$ is common is

$$\mathbb{E} \left[\sum_{t \in [T]; i \in C_t} L_t(i) \right] \leq T^* + 2 \left(\log \left(\frac{1}{\gamma_1} \right) + 10 \right) \sqrt{\frac{T}{\gamma_1}}.$$

We recall the notations from (22), which feature crucially in our proof.

$$\ell_t^R(i) = L_t(i) \cdot 1_{i \in R_t}, \quad \ell_t^C(i) = L_t(i) \cdot 1_{i \in C_t},$$

$$u_t^R(i) = \frac{\ell_t^R(i) \cdot 1_{i \in A_1}}{\gamma_2}, \quad L_t^R(i) = \sum_{s \leq t} \ell_s^R(i),$$

$$u_t^C(i) = \frac{\ell_t^C(i) \cdot 1_{i \in A_1}}{\hat{p}_t(i)}, \quad U_t^C(i) = \sum_{s \leq t} u_s^C(i).$$

To control the error of the estimators U_t we rely on Freedman’s inequality ([13]), a refinement of Hoeffding-Azuma which is more efficient for highly asymmetric summands.

Theorem 19 (Freedman’s Inequality): Let $S_t = \sum_{s \leq t} x_s$ be a martingale sequence, so that for some discrete-time filtration $(\mathcal{F}_t)_{t \in \mathbb{Z}_{\geq 0}}$,

$$\mathbb{E}[x_s | \mathcal{F}_{s-1}] = 0.$$

Suppose that a uniform and almost-sure one-sided estimate $x_s \leq M$ holds. Also define the conditional variance

$$W_s = \mathbb{V}ar[X_s | \mathcal{F}_{s-1}]$$

and set $V_t = \sum_{s \leq t} W_s$ to be the total variance accumulated so far.

Then with probability at least $1 - e^{-\frac{a^2}{2s \epsilon^2 \gamma \gamma_1}}$, we have $S_t \leq x$ for all t with $V_t \leq b$.

Martingale concentration is useful to analyze the error of the unbiased estimators $U_t^R(i)$. For the underbiased estimators it is correspondingly helpful to use supermartingale concentration. Recall that a supermartingale sequence $(S_t)_{t \geq 0}$ relative to a filtration \mathcal{F} satisfies

$$\mathbb{E}[S_t | \mathcal{F}_{t-1}] \leq S_{t-1},$$

i.e. it decreases on average. Using a discrete-time Doob-Meyer decomposition (see e.g. [14, Chapter 1.4]) of a bounded supermartingale into the sum of a martingale and a decreasing predictable process, we obtain the following. (Here “predictable” means that D_t is \mathcal{F}_{t-1}-measurable.)

Corollary 2: Let $S_t = \sum_{s \leq t} \tilde{S}_s$ be a supermartingale sequence for $t \geq 1$, so that $\mathbb{E}[\tilde{S}_s | \mathcal{F}_{s-1}] \leq 0$. Suppose there is a uniform one-sided estimate $\tilde{x}_s = \mathbb{E}[\tilde{x}_s | \mathcal{F}_{s-1}] \leq M$. Also define the conditional variance

$$W_s = \mathbb{V}ar[X_s | \mathcal{F}_{s-1}]$$

and set $V_t = \sum_{s \leq t} W_s$ to be the total variance accumulated so far.

Then with probability at least $1 - e^{-\frac{a^2}{2s \epsilon^2 \gamma \gamma_1}}$, we have $S_t \leq a$ for all t with $V_t \leq b$.

Proof: Write $S_t = M_t + D_t$ as the sum of a martingale M_t and a decreasing predictable process D_t with $D_0 = 0$.

Explicitly,

$$M_t = \sum_{1 \leq s \leq t} \tilde{S}_s - \sum_{1 \leq s \leq t-1} \mathbb{E}[\tilde{S}_{s+1} | \mathcal{F}_s];$$

$$D_t = \sum_{1 \leq s \leq t-1} (\tilde{S}_s - \mathbb{E}[\tilde{S}_{s+1} | \mathcal{F}_s]).$$

Then apply Theorem 19 to M_t and observe that $S_t \leq M_t$ almost surely for all t.

Towards proving the two claims in Theorem 6 we first prove two lemmas. They follow directly from proper applications of Freedman’s Theorem or its corollary. The second was used previously in the main body as well.

Lemma 14: In the context of Theorem 6, with probability at least $1 - \frac{2}{T^*}$, for all t with $U_t^R(i) \leq T^*$ it holds that

$$U_t^R(i) \leq 2T^* + \frac{8 \log T}{\gamma_2}.$$

Lemma 9: Fix an arm $i \in [d]$. In the context of Theorem 6, fix constants $\lambda \geq 2$ and $\tilde{L} > 0$ and assume $\frac{1}{\gamma_1} \geq 1/\tilde{L}$. With probability at least $1 - 2e^{-\frac{\gamma_1}{2\tilde{L}^2}}$, for all t such that $L_t^C(i) \leq \tilde{L}$:

$$U_t^C(i) \leq L_t^C(i) + \lambda \sqrt{\frac{L}{\gamma_1}}.$$

Remark: Lemma 9 has no dependence on T^* and holds with $T^* = \infty$. For proving Theorem 6 we will simply take $\tilde{L} = \frac{T^*}{\gamma_2}$. However it is necessary to apply Lemma 9 with $\tilde{L} \neq \frac{T^*}{\gamma_2}$ to analyze the semi-bandit setting.

Proof: of Lemma 14:
We analyze the (one-sided) error in the underestimate \(U_t^R(i) \) for \(L_t^R(i) \). Define the supermartingale \(S_t = \sum_{s \leq t} x_s \) for

\[
x_s = x_s(i) := u_s^R(i) - \ell_s^R(i).
\]

We apply Corollary 2 to this supermartingale, taking

\[
(a, b, M) = \left(4 \log T, \frac{4T \log T}{\gamma_2}, \frac{1}{\gamma_2} \right).
\]

For the filtration, we take the loss sequence \((\ell_t(i))_{t \in [T]} \) as known from the start so that the only randomness is from the player’s choices. Equivalently, we act as the observing adversary; note that \(S_t \) is still a supermartingale with respect to this filtration. Crucially, this means the conditional variance is bounded by \(W_t \leq \frac{L_t^R(i)}{\gamma_2^2} \). Therefore \(V_t \leq \frac{L_t^R(i)}{\gamma_2^2} \). Note also that with these parameters,

\[
e^{-\frac{\gamma_2^2 a}{4}} \leq e^{-\frac{a^2}{4}} + e^{-\frac{\gamma_2^2 a}{4}} \leq 1 + \frac{\gamma^2}{4} \leq 2.
\]

Therefore by Freedman’s inequality, with probability \(1 - \frac{2}{T} \), for all \(t \) with \(L_t^R(i) \leq L^* \) we have

\[
S_t \leq a = \frac{4 \log T}{\gamma_2} + 4 \sqrt{\frac{L^* \log T}{\gamma_2}}
\]

and hence

\[
U_t^R(i) \leq L_t^R(i) + \frac{4 \log T}{\gamma_2} + 4 \sqrt{\frac{L^* \log T}{\gamma_2}}
\]

\[
\leq L^* + \frac{4 \log T}{\gamma_2} + 4 \sqrt{\frac{L^* \log T}{\gamma_2}}
\]

\[
\leq 2L^* + \frac{8 \log T}{\gamma_2}.
\]

Proof: of Lemma 9:

As discussed previously we use the estimator

\[
U_t^C(i) = \sum_{s \leq t} \ell_s^C(i) \cdot 1_{i_s = i} \cdot \hat{p}_s(i).
\]

for \(L_t^C(i) \). We will again apply Freedman’s inequality from the point of view of the adversary, this time to the martingale sequence \(S_t = \sum_{s \leq t} x_s \) for

\[
x_s = x_s(i) := \left(u_s^C(i) - \ell_s^C(i) \right).
\]

We have \(x_s \leq \frac{1}{\gamma_1} = M \) and \(V_t \leq \frac{L_t^C(i)}{\gamma_1^2} \). We use the parameters \(b = \frac{1}{\gamma_1} \) and \(a = \lambda \sqrt{\frac{1}{\gamma_1}} \). Using \(\gamma \geq 2 \) in the penultimate inequality and then \(\lambda \geq 2 \) yields the estimate:

\[
e^{-\frac{a^2}{4b^2}} \leq e^{-\frac{a^2}{4}} + e^{-\frac{\gamma_2^2 a^2}{4b^2}} \leq e^{-\frac{\gamma_2^2 a}{4}} + e^{-\frac{a^2}{4b^2}} \leq 2e^{-\frac{a^2}{4b^2}}.
\]

Freedman’s inequality implies that with probability at least

\[
1 - 2e^{-\lambda^2/2}, \text{ for all } t \text{ with } L_t^C(i) \leq L,
\]

\[
U_t^C(i) \leq L_t^C(i) + \lambda \sqrt{\frac{L}{\gamma_1}}.
\]

Now we use these lemmas to prove Theorem 6. In both halves, the main idea is that if an event holds with high probability for any loss sequence, then the player must assign it high probability on average.

Proof: of Theorem 6A:

Let \(E \) be the event that for all \(t \) with \(L_t^R(i) \leq L^* \),

\[
U_t^R(i) \leq 2L^* + \frac{8 \log T}{\gamma_2}.
\]

By Lemma 14, \(\mathbb{P}[E] \geq 1 - \frac{T}{\sqrt{T}} \) for any fixed loss sequence. The player does not know what the true loss sequence is, but his prior is a mixture of possible loss sequences, and so the player also assigns \(E \) a probability at least \(1 - \frac{T}{\sqrt{T}} \) at the start of the game. Let \(F \) denote the event that

\[
\mathbb{P}_t[E] \geq 1 - \frac{1}{T}, \quad \forall t \in [T].
\]

Since \(\mathbb{P}_t[E] \) is a martingale, Doob’s inequality implies

\[
\mathbb{P}[F] \geq 1 - \frac{2}{T}.
\]

Assume now that \(F \) holds, so that \(\mathbb{P}_t[E] \geq 1 - \frac{T}{\sqrt{T}} \) at all times. Let \(\tau \) be the first time at which

\[
U_{\tau}^R(i) > 2L^* + \frac{8 \log T}{\gamma_2}.
\]

(If no such time exists, set \(\tau = +\infty \)). Then as long as \(E \) holds we must have \(L_t^R(i) > L^* \) and so \(a^* \neq i \). Therefore, if \(F \) holds then for all \(t \geq \tau \),

\[
\mathbb{P}_t[i \in A_\tau] = p_\tau(i) \leq \mathbb{P}_t[i \in A^*] \leq \mathbb{P}_t[L_t^R(i) \leq L^*] \leq 1 - \mathbb{P}_t[E] \leq 1/T.
\]

It follows that

\[
1 - F \cdot \sum_{t=\tau+1}^T p_t(i) \leq 1.
\]

On the other hand, since \(\mathbb{P}[F] \geq 1 - \frac{2}{T} \) the leftover contribution from \(F \) being false is bounded by

\[
\mathbb{E} \left[(1 - 1/F) \cdot \sum_{t=\tau+1}^T p_t(i) \right] \leq 2.
\]

To finish, note that

\[
\gamma_2 U_{\tau}^R(i) = \sum_{s \leq \tau} \ell_s^R(i) \cdot 1_{i_s = i},
\]

is exactly the total loss paid by the player from arm \(i \) while \(i \in R_\tau \) is rare. Therefore \(\tau \) is the smallest value satisfying

\[
\gamma_2 U_{\tau}^R(i) > \gamma_2 \left(2L^* + \frac{8 \log T}{\gamma_2} \right) = 2\gamma_2 L^* + 8 \log T.
\]
Since the increments of $U^C_t(i)$ are bounded by $1/\gamma_2$, we have almost surely
\[
\sum_{t \leq \tau} \ell_t(i) 1_{i \in A_t} = \gamma 2 U^C_t(i)
\]

Combining with (79) and (80) we finally obtain
\[
E \left[\sum_{t \in [T]} \hat{p}_t(i) \ell_t(i) \right] = E \left[\sum_{t \in [T]} \ell_t(i) 1_{i \in A_t} \right] = E \left[\sum_{t \in [T]} \ell_t^R(i) 1_{i \in A_t} \right] + E \left[(1 - 1_F) \sum_{t = \tau + 1}^T \ell_t^R(i) 1_{i \in A_t} \right]
\]
\[
\leq E \left[\sum_{t \leq \tau} \ell_t^R(i) 1_{i \in A_t} \right] + E \left[1_F \sum_{t = \tau + 1}^T \ell_t^R(i) 1_{i \in A_t} \right]
\]
\[
\leq 2\gamma_2 T^* + 8 \log T + 4.
\]

Proof: of Theorem 6B:

For $\lambda \geq 0$, let E_λ be the event that for all t with $L^C_t(i) \leq \overline{L}$, $U^C_t(i) \leq L^C_t(i) + \lambda \sqrt{L}/\gamma_1$. We apply Lemma 9 with $\overline{L} = \overline{T}^*$, obtaining
\[
P[E_\lambda] \geq 1 - 2e^{-\lambda^2/2}, \quad \forall \lambda > 2.
\]
Let τ_λ be the first time such that
\[
U^C_{\tau_\lambda}(i) > \overline{T}^* + \lambda \sqrt{L}/\gamma_1.
\]
(If no such time exists, take $\tau_\lambda = +\infty$.) As before, note that at the start we have
\[
P_1[E] \geq 1 - 2e^{-\lambda^2/2}
\]
since the initial prior is some mixture of loss sequences. By definition, if E_λ holds and $\tau_\lambda < \infty$ then $i \notin A^*$. Hence
\[
E[p_{\tau_\lambda \wedge T}(i)] \leq E[1 - P_{\tau_\lambda}[E_\lambda]] = 1 - P[E_\lambda] \leq 2e^{-\lambda^2/2}
\]
by optional stopping (on the martingale $p_t(i)$) since $U^C_t(i)$ is computable by the player (i.e. adapted to the player’s filtration). By Doob’s inequality applied to the same martingale,
\[
\mathbb{P} \left[\sup_{t \in [\tau_\lambda, T]} p_t(i) > \gamma_1 \right] \leq \frac{\mathbb{E}[p_{\tau_\lambda \wedge T}(i)]}{\gamma_1} \leq \frac{2e^{-\lambda^2/2}}{\gamma_1} = 2e^{-\lambda^2/2(1/\gamma_1)}.
\]
Now, let λ^* be such that $U^C_{\overline{T}^*}(i) = \overline{T}^* + \lambda^* \sqrt{L}/\gamma_1$ at the last time t when $p_t(i) > \gamma_1$. What we have just shown is equivalent to
\[
\mathbb{P}[\lambda^* > \lambda] \leq 2e^{-\lambda^2/2(1/\gamma_1^2)}.
\]
In other words, λ^* has tail bounded above by an exponential random variable with half-life $2 \log(2)$ starting at $2 \log(1/\gamma_1) + 2 \log(2)$, and therefore
\[
\mathbb{E}[\lambda^*] \leq 2 \log(1/\gamma_1) + 10.
\]
However, we always have $U^C_{\overline{T}^*}(i) = \overline{T}^* + \lambda^* \sqrt{L}/\gamma_1$, so after the last time t when $p_t(i) > \gamma_1$, the value of $U^C_t(i)$ cannot change. Recall also that $U^C_{\overline{T}}(i)$ is an unbiased estimator for $L^C_{\overline{T}}(i)$. Combining completes the proof:
\[
\mathbb{E}[L^C_{\overline{T}}(i)] = \mathbb{E}[U^C_{\overline{T}}(i)]
\]
\[
= \overline{T}^* + \mathbb{E}[\lambda^*] \sqrt{L}/\gamma_1
\]
\[
\leq \overline{T}^* + 2 \left(\log \frac{1}{\gamma_1} + 10 \right) \sqrt{L}/\gamma_1.
\]

References

[1] C. Allenberg, P. Auer, L. Gyorfi, and G. Ottucsak, “Hannan consistency in on-line learning in case of unbounded losses under partial monitoring,” in Proc. 17th Int. Conf. Algorithmic Learn. Theory (ALT), 2006, pp. 229–243.

[2] J. Y. Audibert, B. Sábastien, and L. Gábor, “Regret in online combinatorial optimization,” Math. Operat. Res., vol. 39, no. 1, pp. 31–45, 2014.

[3] N. Alon, N. Cesa-Bianchi, O. Dekel, and T. Koren, “Online learning with feedback graphs: Beyond bandits,” in Proc. Ann. Conf. Learn. Theory, vol. 40, 2015, pp. 23–35.

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1, pp. 48–77, Jan. 2002.

[5] S. Agrawal and N. Goyal, “Analysis of Thompson sampling for the multi-armed bandit problem,” in Proc. 25th Ann. Conf. Learn. Theory (COLT), vol. 23, 2012, p. 39.

[6] A. Agarwal et al., “Open problem: First-order regret bounds for contextual bandits,” in Proc. Conf. Learn. Theory, 2017, pp. 4–7.

[7] J. D. Abernethy, C. Lee, and A. Tewari, “Fighting bandits with a new kind of smoothness,” in Proc. Adv. Neural Inf. Process. Syst., vol. 28, 2015, pp. 1–9.

[8] Z. Allen-Zhu, S. Bubeck, and Y. Li, “Make the minority great again: First-order regret bound for contextual bandits,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 186–194.

[9] S. Bubeck, O. Dekel, T. Koren, and Y. Peres, “Bandit convex optimization: \sqrt{T} regret in one dimension,” in Proc. 28th Ann. Conf. Learn. Theory (COLT), 2015, pp. 266–278.

[10] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K. Warmuth, “How to use expert advice,” J. ACM, vol. 44, no. 3, pp. 427–485, May 1997.
[11] O. Chapelle and L. Li, “An empirical evaluation of Thompson sampling,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2011, pp. 1–9.

[12] D. J. Foster and A. Krishnamurthy, “Efficient first-order contextual bandits: Prediction, allocation, and triangular discrimination,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 18907–18919.

[13] D. A. Freedman, “On tail probabilities for Martingales,” Ann. Probab., vol. 3, no. 1, pp. 100–118, 1975.

[14] I. Karatzas and S. Shreve, Brownian Motion Stochastic Calculus, vol. 113. Cham, Switzerland: Springer, 2012.

[15] W. Koolen, M. Warmuth, and J. Kivinen, “Hedging structured concepts,” in Proc. 23rd Annu. Conf. Learn. Theory (COLT), 2010, pp. 93–105.

[16] T. Lattimore and A. György, “Mirror descent and the information ratio,” in Proc. Conf. Learn. Theory, 2021, pp. 2965–2992.

[17] T. Lattimore and C. Szepesvári, “An information-theoretic approach to minimax regret in partial monitoring,” in Proc. Conf. Learn. Theory (COLT), Phoenix, AZ, USA, Jun. 2019, pp. 2111–2139.

[18] T. Lykouris, K. Sridharan, and E. Tardos, “Small-loss bounds for online learning with partial information,” in Proc. 31st Annu. Conf. Learn. Theory (COLT), 2018, pp. 979–986.

[19] T. Lykouris, E. Tardos, and D. Wali, “Feedback graph regret bounds for Thompson sampling and UCB,” in Proc. 31st Int. Conf. Algorithmic Learn. Theory (ALT), 2020, pp. 592–614.

[20] F. Liu, Z. Zheng, and N. Shroff, “Analysis of Thompson sampling for graphical bandits without the graphs,” in Proc. 34th Conf. Uncertainty Artif. Intell. (UAI), 2018, pp. 1–12.

[21] S. Mannor and O. Shamir, “From bandits to experts: On the value of side-observations,” in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 684–692.

[22] A. Rakhlin and K. Sridharan, “Online learning with predictable sequences,” in Proc. Conf. Learn. Theory, 2013, pp. 993–1019.

[23] D. Russo and B. Van Roy, “An information-theoretic analysis of Thompson sampling,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2442–2471, 2015.

[24] A. C. Tossou, C. Dimitrakakis, and D. P. Dubhashi, “Thompson sampling for stochastic bandits with graph feedback,” in Proc. AAAI, 2017, pp. 2660–2666.

[25] W. R. Thompson, “On the likelihood that one unknown probability exceeds another in view of the evidence of two samples,” Biometrika, vol. 25, pp. 285–294, Dec. 1933.

[26] J. Zimmert and T. Lattimore, “Connections between mirror descent, Thompson sampling and the information ratio,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2019, pp. 11973–11982.

Sébastien Bubeck received the bachelor’s degree from ENS Cachan and the Ph.D. degree in mathematics from INRIA Nord Europe in 2010. From 2011 to 2014, he was an Assistant Professor in operations research and financial engineering at Princeton University, until joining Microsoft Research in Seattle, where he is currently a Senior Principal Research Manager.

Mark Sellke received the Ph.D. degree in mathematics from Stanford University in 2022 advised by Andrea Montanari and Sébastien Bubeck, following studies at MIT and the University of Cambridge. He is currently a member at IAS and will join Harvard University as an Assistant Professor of statistics in Fall 2023.