Optimization of hydrolyzation procedure for amino acid analysis in fish meat with HPLC-DAD by Response Surface Methodology (RSM)

Balık etinde HPLC-DAD ile yapılan amino asit analizi hidrolizasyon prosedürünnün Yanıt Yüzey Metodu (RSM) ile optimizasyonu

Ekrem Cem Çankırılıgil1 ● Nermin Berik2* ● Esen Alp Erbay3

1Central Fisheries Research Institute, Department of Aquaculture, 61100, Trabzon, Turkey
2Faculty of Marine Sciences and Technology, Department of Fisheries and Processing Technology, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey
3Central Fisheries Research Institute, Department of Food Technology, 61100, Trabzon, Turkey

Corresponding author: nberik@yahoo.com

How to cite this paper:
Çankırılıgil, E.C., Berik, N. & Erbay, E.A. (2020). Optimization of hydrolyzation procedure for amino acid analysis in fish meat with HPLC-DAD by Response Surface Methodology (RSM). Ege Journal of Fisheries and Aquatic Sciences, 37(2), 113-123. DOI: 10.12714/egejfas.37.2.01

INTRODUCTION

Fish and other seafood are ideal food sources for a healthy diet (Hosomi et al., 2012) with high composition of omega 3 fatty acids (Musarskaya et al., 2018), some beneficial nutrients (Biesalski, 2005) low carbohydrate content (Krzywown & Murphy, 1987) and high quality proteins (Talkergorabi & Hosseini, 2016). That protein content has biologically important (Köksal & Özel, 2008) and well-balanced amino acid composition (Lund, 2013) as well as rich in terms of essential amino acids (Çankırılıgil & Berik, 2017) which are fundamental for humans (Hou et al., 2015). Essential amino acids are plays such roles in metabolism just as protein synthesis, hormonal secretions, gene expression and cell signalling (Wu, 2009). Besides, non-essentials also contribute to body growth and health (Wu et al., 2013) along with essentials ones.

Considering these benefits, several studies that carried out on amino acid composition of various fish species. Thus, determination techniques of amino acids had gained importance parallel with such studies with the aim of getting more concise results. Despite the fact that, developing several well-designed analyse methods as rapid and accurate, these methods can be as good as the applied hydrolyzation procedure of samples scarcely due to severe conditions of hydrolyzation that cause degradation of amino acid content. Conventional hydrolyzation procedures are based on the digesting of fish meat with hydrochloric acid having high normality at high temperature for hours in drying oven. However, these factors affects each amino acids with different ways and some of them can be degraded and should be well-optimized.
The optimization of experimental design is very important when the analytical procedures are developed and validated (Vera et al., 2014). Response surface methodology (RSM) as an optimization tool for analytical methods (Bézerra et al., 2008) and using for optimization of all chemical and biochemical processes (Baş & Boyacı, 2007). RSM is using an empirical model building with considering relationships between independent variables and data that obtained by mathematical and statistical techniques from conducted experiments (Alvarez, 2000; Said Mohamad & Mohamed Amin, 2015) which is much more time saving than conventional designing methods (Widyaningsih et al., 2018). In this research, RSM was used to specify optimum conditions for pretreatment of amino acid analysis. Before the applying RSM, the experimental design should be specified by choosing the factors that directly affect to responses (Hwang et al., 2016).

The aim of this study is to maximize essential amino acids and reducing losses of non-essential amino acids with applying different ranges of normality, temperature and duration times in the hydrolyzation procedure of fish meat. Furthermore, the composition of some vulnerable amino acids such as tryptophan (Trp), glutamine (Gln), asparagine (Asn) are decrease more than others when they exposed to high temperature and low pH (Varlık et al., 2004) whereas causing an increase on aspartic acid and glutamic acid (Dong et al., 2003), inversely. Also, the optimum conditions for aforementioned amino acids were determined. Ultimately, two suggested hydrolyzation conditions by the RSM were performed as pre-treatment for both essential amino acids and vulnerable ones.

MATERIAL AND METHODS

Chemical, solutions and consumables

Hydrochloric acid fuming %37 (HCl), sodium phosphate dibasic solution (Na₂HPO₄), sodium hydroxide (NaOH), methanol (MeOH; GC grade) and acetonitrile (ACN; GC grade) were purchased from Merck. Borate buffer, α-phthalaldehyde reagent (OPA), 9-fluorenylmethyl chloroformate reagent (FMOC), amino acid standard solutions (mix of L-alanine, L-arginine, L-aspartic acid, L-cystine, L-glutamic acid, glycine, L-histidine hydrochloride monohydrate, L-isoleucine, L-leucine, L-lysine hydrochloride, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tyrosine, L-valine stored in 0.1N HCl with different dosages as 1nmol, 250pmol, 100pmol, 25pmol and 10pmol) and extended amino acid standards for sensitive ones such as L-glutamine, L-asparagine, L-tryptophan and L-4-hydroxyprolin in the form of powder were obtained from Agilent Technologies. Water purified (18.1 megaohm purity) with Thermo Scientific Nanopure. Amino acid column for HPLC system (Zorbax clip AAA, 5µm, 4.6x150m), 1.5ml amber vials with polитетrafluoroctilen caps (PTFE) and syringe filters (0.45µm) were also purchased from Agilent Technologies.

Fish material

In this research, rainbow trout (Oncorhynchus mykiss) was preferred as fish material for the purpose of the amino acid studies carried out with this species are very common and discussion were done considering such studies. Trouts were obtained from Central Fisheries Research Institute operated in Trabzon, Turkey and 50 individuals which are 250 g each were used. Firstly, trouts were washed and deskinned. Fillets were homogenized with Stomacher 400 Circulator in 300 rpm and samples were stored in +2°C for further stages.

Experimental design

In this study, the effects of three independent variables such as normality, temperature and time on amino acid content of fish meat were evaluated. Thus, the Box-Behnken analysis of response surface methodology (RSM) was used for experimental design. In this method, the most effective values of factors affecting responses were determined for selected responses. The maximum and minimum values of these factors were determined according to preliminary results and upper or lower values of these factors caused some false and irregularities in amino acid analysis due to excessive or insufficient hydrolysing. The values were coded as -1, 0 and +1 for minimum values, mean values and maximum values, respectively (Table 1). In the values ranging 1 N- 3 N, 70°C-90°C and 8-12 hours samples were not completely digested. Above the 8 N, 110°C and 24 hours caused losses of some amino acids completely. For this reason, the factors were selected as normality ranging from 3 N to 8 N, temperature ranging from 90°C to 110°C and duration ranging from 12 to 24 hours. Besides, content of total amino acids (TAA), total essential amino acids (TEAA), threonine (Thr), valine (Val), methionine (Met), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), lysine (Lys), tryptophan (Trp), asparagine (Asn), aspartic acid (Asp), glutamine (Gln), glutamic acid (Glu), serine (Ser), glycine (Gly), histidine (His), alanine (Ala), tyrosine (Tyr), cysteine (Cys), hydroxyproline (Hyp) were selected as responses individually. Thus, according to Box-Behnken design, 16 experiments having differences in the combination of these factors were determined. In the following, 1 gram of homogenised fish meat and 10ml HCl which have different normalities put on autoclave bottle enduring high temperature and pressure were digested in drying oven in varied temperatures and duration time in accordance with design matrix. Box-Behnken design matrix of the dependent variables was shown in Table 1. All experiments were replicated 3 times (n=3).
Table 1. Box-Behnken design matrix of pre-treatment of fish meat for amino acid analyses

Design Order	Temperature (°C) X1	Normality (%) X2	Duration (hour) X3	Responses Y
1	-1	-1	0	-
2	1	-1	0	-
3	-1	1	0	-
4	1	1	0	-
5	-1	0	-1	-
6	1	0	-1	-
7	-1	0	1	-
8	1	0	1	-
9	0	-1	-1	-
10	0	1	-1	-
11	0	-1	1	-
12	0	1	1	-
13	0	0	0	-
14	0	0	0	-
15	-1	-1	-1	-
16	1	1	1	-

*TAA, TEAA, Ala, Asn, Asp, Cys, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr, Val were selected as responses, individually.

Amino acid analyses

Subsequent to hydrolysing procedure, obtained samples were filtered by syringe filter (0.45µm), diluted as 10⁻¹ with purified water and finally they stored in 1.5ml amber vials equipped with PTFE caps for the amino acid analysis. Amino acid analyses were carried out with Agilent HPLC Infinity II system equipped with diode array detector (DAD) and autosampler. Amino acid analyses were done according to the method of Henderson et al. (2000). In this method, 0.5µL sample was drawn from vial with an automatic sampler and it was derivatized with borate buffer, OPA and FMOC reagents. Subsequent to derivatization, samples were injected to the system individually. Separation of amino acids was carried out by Zorbax Eclipse AAA amino acid column at 40°C in gradual mobile phase which are mix of 40mM Na₂HPO₄ (A) adjusted to 7.8 pH with 10N NaOH and MeOH:ACN:H₂O (B) in the ratio of 45%:45%:10% with 2mL/min flow rate, approximately for 26 minutes. Gradient stages of mobile phase were applied as A:100%, B:0%; A:43%, B:57%; A:0%, B:100%; A:0%, B:100%; A:100%, B:0% in 1.9min, 18.1min, 18.6min, 22.3min, 23.2min, respectively. Detection was done in two different wavelengths in 338nm, 10nm bandwidth for OPA-amino acids and 262nm, 16nm bandwidth for FMOC-amino acids. All samples were analysed for 3 times (n=3). Obtained results were calibrated automatically and expressed as g/100g.

Data evaluation

Obtained results from amino acid analysis were written in response column in Box-Behnken design matrix and evaluated with Design Expert 7.16 software. All models were formulated in compliance with results along with the significance of models and lack of fit which were evaluated for all responses as TAA, TEAA, Ala, Asn, Asp, Cys, Glu, Gly, His, Hyp, Ile, Leu, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val. Besides, along with responses of TAA and TEAA, they were also evaluated with the sum of mentioned amino acids. Finally, optimum values for to get maximal total amino acid content as well as essential amino acids and maximized vulnerable amino acids were determined considering the results of 16 experiments. The used functions of models were given below.

\[y = \beta_0 + \sum \beta_i X_i \] (Linear model)

\[y = \beta_0 + \sum \beta_{ij} X_i X_j \] (Two factor interaction model)

\[y = \beta_0 + \sum \beta_{ij} X_i X_j + \sum \beta_{ii} X_i^2 \] (Quadratic model)

Where \(y \) is one of the responses, \(\beta_0 \) is the regression intercept, \(X \) symbols are independent variables, \(\beta_i \) is coefficient of the linear parameters, \(\beta_{ij} \) is coefficient of interaction between factors, and \(\beta_{ii} \) is the coefficient of the quadratic parameters (Davarnejad et al., 2018; Nadarajan et al., 2018).

Differences among amino acid composition of all experiments were determined by one-way analysis of variance one-way ANOVA in SPSS 12 after testing the homogeneity of the data (Levene test). Results were expressed as mean ±SD (n=9) and significance level was set as P≤0.05 (Zar, 1999).

Achieved optimum values of factors for both total amino acids and vulnerable ones were expressed as optimization 1 (O₁) and optimization 2 (O₂), respectively. In the evaluation of O₁, the essential amino acids except tryptophan were selected as for getting maximum along with other amino acids. In the second one (O₂), an additional optimization procedure was carried out for getting maximized some special amino acids that show variations in quantity with high temperature and low pH such as Trp, Asn, Gin. With these extreme conditions, Asn and Gin can be transformed to Asp and Glu, respectively. Therefore, Asp, Asn, Gin and Glu were evaluated separately along with Trp which is amongst most vulnerable ones. Ultimately, these two optimization procedures were applied as 17th and 18th experiments and amino acid composition of these experiments was determined and compared to previous runs.

RESULTS AND DISCUSSION

According to experiments, linear model was applied for TAA, TEAA, Glu, Ser, Gly, Thr, Tyr, Val, Met, Trp, Iso, Leu; two factor interaction (2FI) model was applied for Asp, Asn, Gin,
His, Ala, Lys; and quadratic model was applied Cys and Hyp. The final equations of coded factors for models are;

\[TAA = 11.76 + 3.14A - 0.66B + 0.49C \]
\[TEAA = 4.52 + 1.43A - 0.22B + 0.29C \]
\[Axp = 1.03 + 0.34A - 0.4B + 0.036C - 0.29AB - 0.045AC + 0.218BC \]
\[Glu = 1.64 + 0.47A - 0.14B + 0.1C \]
\[Asn = 0.46 + 0.14A - 0.064B + 0.016C - 0.092AB - 0.039AC + 0.0498BC \]
\[Ser = 1.08 + 0.19A + 0.013B + 0.014C \]
\[Glm = 0.44 + 0.21A - 0.065B + 0.040C - 0.12AB - 0.054AC + 0.048BC \]
\[His = 0.28 + 0.03A - 0.068 + 0.09C - 0.033AB + 0.0424AC + 0.042BC \]
\[Gly = 0.42 + 0.11A + 0.012B + 0.026C \]
\[Thr = 1.14 + 0.27A - 0.09B + 0.032C \]
\[Ala = 0.19 + 0.071A - 0.024B + 0.012C - 0.043AB - 0.019AC + 0.0218BC \]
\[Tyr = 0.34 + 0.013A + 0.12B + 0.041C \]
\[Cys = 0.082 - 0.0064A - 0.0066B + 0.005C - 0.0005AB + 0.011AC + 0.015BC - 0.0134^{2} - 0.018B^{2} - 0.0052C^{2} \]
\[Val = 0.66 + 0.24 + 0.0118 + 0.063C \]
\[Met = 0.41 + 0.15A + 0.0148 + 0.031C \]
\[Trp = 0.28 - 0.045A - 0.05B - 0.056C \]
\[Phe = 0.51 + 0.19A - 0.0032B + 0.05C \]
\[Ile = 0.35 + 0.19A + 0.0036B + 0.068C \]
\[Leu = 0.93 + 0.32A - 0.0398 + 0.055C \]
\[Lys = 0.084 + 0.33A - 0.16B + 0.031C - 0.18AB - 0.097AC + 0.092BC \]
\[Hyp = 0.41 - 0.012A + 0.06B + 0.021C + 0.064B + 0.026BC - 0.13A^{2} - 0.039B^{2} - 0.068C^{2} \]

Among these models, linear models of TAA and TEAA were found significant with a very low pure error. Analysis of variance for the responses of total amino acids and essential amino acids were shown in Table 2. The response surface models of amino acids and essential amino acids were also shown in Figure 1.

![Figure 1](image-url)

Figure 1. Response surface plots for total amino acids and essential amino acids

| Table 2. Analysis of variance for models of total amino acids and essential amino acids |
|---------------------------------|---------|---------|---------|---------|
| **Total A.A.** | SS | df | MS | F Value | p-value |
| Linear Model | 115.02 | 3 | 38.34 | 5.03 | 0.0143 | significant |
| A:Temperature | 112.54 | 1 | 112.54 | 14.76 | 0.0018 |
| B:Normality | 4.87 | 1 | 4.87 | 0.64 | 0.4377 |
| C:Time | 2.79 | 1 | 2.79 | 0.37 | 0.5552 |
| Residual | 106.75 | 14 | 7.63 | | | |
| Lack of Fit | 106.75 | 13 | 8.21 | 2830.61 | 0.0147 | significant |
| Pure Error | 0.0029 | 1 | 0.00 | | | |
| **Total E.A.A.** | SS | df | MS | F Value | p-value |
| Linear Model | 24.38 | 3 | 8.13 | 5.59 | 0.0099 | significant |
| A:Temperature | 23.42 | 1 | 23.42 | 16.1 | 0.0013 |
| B:Normality | 0.44 | 1 | 0.44 | 0.3 | 0.5906 |
| C:Time | 0.95 | 1 | 0.95 | 0.65 | 0.4329 |
| Residual | 20.37 | 14 | 1.45 | | | |
| Lack of Fit | 20.37 | 13 | 1.57 | 7340.16 | 0.0091 | significant |
| Pure Error | 0.0002 | 1 | 0.0002 | | | |

*SS: Sum of squares, df: Degrees of freedom, MS: Mean squares.
**Tryptophan was evaluated separately apart from the essential amino acids due to sensitive high temperature and low pH. (A.A.: Amino acids, E.A.A.: Essential amino acids).

When the essential amino acids evaluated individually, all models except tryptophan were found significant. The linear model of methionine was determined as significant, in spite of the model’s lack of fit was found as not significant. Analysis of variance for the responses of some amino acids were shown in Table 3.
sparagine and glutamine are sensitive to high temperature and they can transform to aspartic acid and glutamic acid, respectively. According to models, the lack of fit parameters were found not significant (Table 3). As we mentioned before, asparagine and glutamine are sensitive to high temperature and they can transform to aspartic acid and glutamic acid in the presence of heat and low pH (Dong et al., 2005). However; Asp, Glu, Asn and Gln are increasing together with the heat and pH in spite of this transforming process. Our results show that, asparagine and glutamine are increasing till the some point due to degradation of proteins to amino acids by digestion process. That's the reason why the models have shown similarities for independent variables contrary to expectations. Analysis of variance for the responses of asparagine and glutamine shown in Table 4. The response surface models of Gln and Asn were shown in Figure 2.

Table 3. Analysis of variance for some models of amino acids

Response	SS	df	MS	F Value	p-value	
THR (Linear model)	0.86	3	0.29	3.41	0.0474	significant
Lack of Fit	1.17	13	0.090	296.10	0.0455	significant
VAL (Linear model)	0.51	3	0.17	7.99	0.0024	significant
Lack of Fit	0.30	13	0.023	348.25	0.0419	significant
MET (Linear model)	0.28	3	0.065	6.37	0.0060	significant
Lack of Fit	0.21	13	0.016	100.82	0.0778	not significant
PHE (Linear model)	0.45	3	0.15	5.62	0.0097	significant
Lack of Fit	0.37	13	0.029	306.86	0.0447	significant
ISO (Linear model)	0.51	3	0.17	9.46	0.0011	significant
Lack of Fit	0.25	13	0.019	714.55	0.0293	significant
LEU (Linear model)	1.20	3	0.40	4.96	0.0150	significant
Lack of Fit	1.13	13	0.087	493.23	0.0352	significant
LYS (2FI model)	1.52	6	0.25	6.40	0.0042	significant
Lack of Fit	0.43	10	0.043	4074.21	0.0122	significant
ASP (2FI model)	2.91	6	0.49	6.58	0.0037	significant
Lack of Fit	0.61	10	0.081	25311.75	0.0049	significant
GLU (Linear model)	4.20	3	1.40	4.56	0.0198	significant
Lack of Fit	4.29	13	0.33	32.86	0.1358	not significant

* SS: Sum of squares, df: Degrees of freedom, MS: Mean squares

Table 4. Analyses of variance for models of asparagine and glutamine

Response	SS	df	MS	F Value	p-value	
2FI Model	0.28	6	0.047	4.66	0.0135	significant
A:Temperature	0.2	1	0.2	20.17	0.0009	significant
B:Normality	0.042	1	0.042	4.17	0.0658	significant
C:Time	0.0026	1	0.0026	0.26	0.6185	not significant
AB	0.058	1	0.058	5.75	0.0354	significant
AC	0.0094	1	0.0094	0.94	0.3542	significant
BC	0.016	1	0.016	1.63	0.2276	not significant
Residual	0.11	11	0.01	191.02	0.0563	not significant
Lack of Fit	0.11	10	0.011	61.98	0.0784	not significant
Pure Error	0.0001	1	0.0001	0.29	0.0045	significant

Response	SS	df	MS	F Value	p-value	
2FI Model	0.59	6	0.099	6.29	0.0045	significant
A:Temperature	0.46	1	0.46	29.25	0.0002	significant
B:Normality	0.044	1	0.044	2.8	0.1224	not significant
C:Time	0.017	1	0.017	1.11	0.3154	significant
AB	0.099	1	0.099	6.27	0.0293	significant
AC	0.019	1	0.019	1.18	0.3012	not significant
BC	0.016	1	0.016	0.99	0.3414	significant
Residual	0.17	11	0.016	33.74	0.1333	not significant
Lack of Fit	0.17	10	0.017	6.29	0.0293	not significant
Pure Error	0.0005	1	0.0005	0.29	0.0045	significant

* SS: Sum of squares, df: Degrees of freedom, MS: Mean squares
Tryptophan is vulnerable for high temperatures and low pH (Marinho et al., 2015; Varlık et al., 2004) and the most intense losses occur at 100°C in the pH ranging 2 to 7 (Cuq & Firedman, 1989). Thus, it can be easily degraded during any pre-treatment based on digestion with the acidic environment at high temperatures. So, with the aim of more concise results, tryptophan was evaluated separately from the others due to this unique structure.

Linear model was applied for tryptophan which is determined via Box-Behnken design matrix. According to results, neither model nor lack of fit parameters found significant. According to our results, its severe conditions that directly changes the composition of tryptophan have an effect on the model. Analysis of variance for the response and surface response plot of tryptophan were shown in Table 5 and Figure 3.

![Figure 2. Response surface plots for asparagine and glutamine](image1)

![Figure 3. Response surface plot of tryptophan](image2)

Table 5. Analysis of variance for the model of tryptophan

TRP	SS	df	MS	F Value	p-value
Linear Model	0.11	3	0.037	1.32	0.3062
A:Temperature	0.023	1	0.023	0.82	0.3818
B:Normality	0.028	1	0.028	1	0.3341
C:Time	0.036	1	0.036	1.28	0.2768
Residual	0.4	14	0.028		
Lack of Fit	0.39	13	0.03	5.29	0.3292
Pure Error	0.0057	1	0.0057		

* SS: Sum of squares, df: Degrees of freedom, MS: Mean squares
The obtained results were evaluated with numerical optimization option in Design Expert 7.16 software. In numerical optimization, responses of all amino acids which is amino acid content (y) in our study can be selected as “maximum”, “minimum”, “in the range” and “exclude”. With this selection, the amounts of amino acids can be maximized or minimized with regard to factors (X1, X2 and X3) which are values of normality, temperature and duration in this study. In optimization one (O1), essential amino acids except tryptophan were selected as “maximum” and the rest of them selected as “in the range” choice with the aim of getting maximum of essential amino acids along with moderate non-essential amino acids. According to results, the most reliable solution having the highest desirability (0.981) specified as hydrolysing in 3.79N at 110°C in 23.98 hours. Desirability ramp for optimization procedure 1 shown in Figure 4.

In optimization two (O2), tryptophan, asparagine and glutamine were selected as “maximum” and aspartic acid and glutamic acid were selected as “in the range”.

After the optimization, achieved two optimizations procedure were applied and compared to previous runs. According to results; glutamine, serine, histidine, threonine, tyrosine, valine, phenylalanine, isoleucine, leucine, lysine and total amino acids were found highest statistically in the optimization 1 (O1) among all experiments.

![Figure 4](image-url). Figure 4. Optimized hydrolyzation procedure for essential amino acids. All essential amino acids except tryptophan were selected as “maximum”, the sum of remain amino acids and tryptophan selected as “in the range”.

![Figure 5](image-url). Figure 5. Optimized digestion procedure for sensitive amino acids. While tryptophan, asparagine and glutamine were selected as maximum, aspartic acid and glutamic acid were selected as in the range.

Only methionine was detected as the second highest in O1 consonant with their model. Considering the importance of the essential amino acids along with non-essentials which are supports growth and maintaining health (Hou et al., 2015; Lund, 2013; Wu, 2009; Wu et al., 2013), the hydrolyzation procedure 1 (O1) can be suggested as a pre-treatment for amino acid analyses in the fish meat.

Asparagine and glutamine are vulnerable to high temperature and they can transform to aspartic and glutamic acids by high temperature. Several researchers are either not analysed asparagine and glutamine (Chen et al., 2007; Kang et al., 2014; Mohanty et al., 2014; Unusan, 2007) or they stated that asparagine and glutamine are very low or none in the fish meat (Boonyoung et al., 2012; Dong et al., 2005; Rebolé et al., 2015; Sarma et al., 2013) contrary to aspartic acid and glutamic acid which are found highest amino acids, often (Özden, 2005; Park et al., 2006). Reason for this, asparagine and glutamine are directly affected by the severe conditions of the digestion process. In this research, after the optimization 2 (O2), the highest asparagine and glutamine were detected with moderate aspartic acid and glutamic acid.

Tryptophan is also not detected in most of the studies related to various fish species (Boonyoung et al., 2012; Galla et al., 2012; Joshi et al., 2017; Oluwaniyi et al., 2010). Despite the fact that the tryptophan model is not significant, the second pre-treatment suggestion (O2) is more successful than other experiments. In this research, one of the main aims is to determine the rapid and precise digestion procedure for amino acid analysis aforementioned before. For this reason, optimization 2 can be used for total determination of sensitive amino acids just like tryptophan, asparagine, glutamine along with aspartic acid and glutamic acid.

For more concise and precise results for tryptophan individually, other digestion procedures based on alkaline digestion methods (Bech-Andersen, 1991; Nielsen & Hurrell, 1984) or enzymatic hydrolysis (Kurozawa et al., 2008; Nilsang et al., 2005) can be used. The obtained amino acid results of the experiments were shown in Table 6.
Table 6. Amino acid composition of fish meat according to conducted experiments (g/100g)

D.O.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	O₁	O₂	
ASP	1.04⁺	1.93⁺	0.35⁺	0.98⁺	0.63⁺	1.15⁺	0.79⁺	1.19⁺	1.79⁺	0.41⁺	1.66⁺	0.73⁺	1.14⁺	1.14⁺	0.74⁺	0.81⁺	1.41⁺	1.02⁺	
(±SE)	±0.06	±0.06	±0.08	±0.04	±0.02	±0.05	±0.03	±0.17	±0.05	±0.08	±0.04	±0.13	±0.05	±0.06	±0.08	±0.06	±0.05	±0.06	±0.05
GLU	1.04⁺	2.54⁺	0.68⁺	2.01⁺	1.08⁺	2.18⁺	1.18⁺	2.24⁺	2.51⁺	0.92⁺	2.65⁺	1.57⁺	2.02⁺	2.16⁺	0.79⁺	1.76⁺	2.53⁺	1.51⁺	
(±SE)	±0.03	±0.22	±0.02	±0.06	±0.05	±0.04	±0.06	±0.10	±0.26	±0.12	±0.15	±0.11	±0.22	±0.06	±0.06	±0.13	±0.04	±0.04	±0.04
ASN	0.29⁺	0.67⁺	0.25⁺	0.54⁺	0.35⁺	0.56⁺	0.38⁺	0.52⁺	0.62⁺	0.27⁺	0.60⁺	0.38⁺	0.55⁺	0.54⁺	0.21⁺	0.45⁺	0.61⁺	0.77⁺	
(±SE)	±0.01	±0.03	±0.01	±0.02	±0.01	±0.04	±0.03	±0.07	±0.03	±0.02	±0.05	±0.03	±0.02	±0.01	±0.01	±0.01	±0.02	±0.02	±0.02
SER	0.84⁺	1.17⁺	0.79⁺	1.35⁺	0.87⁺	1.24⁺	0.70⁺	1.12⁺	1.33⁺	0.93⁺	1.28⁺	1.08⁺	1.22⁺	1.17⁺	0.71⁺	1.23⁺	1.64⁺	1.12⁺	
(±SE)	±0.01	±0.02	±0.02	±0.21	±0.11	±0.13	±0.04	±0.19	±0.16	±0.01	±0.02	±0.03	±0.02	±0.03	±0.14	±0.02	±0.02	±0.02	±0.02
GLN	0.17⁺	0.74⁺	0.16⁺	0.57⁺	0.17⁺	0.59⁺	0.24⁺	0.56⁺	0.54⁺	0.25⁺	0.66⁺	0.35⁺	0.59⁺	0.56⁺	0.11⁺	0.46⁺	0.44⁺	0.81⁺	
(±SE)	±0.01	±0.02	±0.03	±0.02	±0.01	±0.01	±0.02	±0.06	±0.03	±0.01	±0.06	±0.05	±0.00	±0.01	±0.02	±0.01	±0.00	±0.03	±0.03
HIS	0.41⁺	0.49⁺	0.27⁺	0.42⁺	0.39⁺	0.27⁺	0.33⁺	0.43⁺	0.56⁺	0.29⁺	0.49⁺	0.33⁺	0.43⁺	0.40⁺	0.41⁺	0.39⁺	0.55⁺	0.43⁺	
(±SE)	±0.02	±0.02	±0.01	±0.04	±0.02	±0.01	±0.01	±0.02	±0.07	±0.02	±0.04	±0.03	±0.01	±0.01	±0.02	±0.03	±0.02	±0.02	±0.01
GLY	0.24⁺	0.55⁺	0.26⁺	0.56⁺	0.29⁺	0.50⁺	0.29⁺	0.49⁺	0.48⁺	0.35⁺	0.51⁺	0.43⁺	0.50⁺	0.53⁺	0.19⁺	0.51⁺	0.40⁺	0.35⁺	
(±SE)	±0.01	±0.02	±0.01	±0.02	±0.03	±0.03	±0.05	±0.02	±0.01	±0.03	±0.02	±0.04	±0.01	±0.04	±0.08	±0.01	±0.01	±0.01	±0.01
THR	0.87⁺	1.42⁺	0.61⁺	1.36⁺	0.93⁺	1.38⁺	0.94⁺	1.35⁺	1.62⁺	0.72⁺	1.52⁺	0.91⁺	1.36⁺	1.34⁺	0.68⁺	1.18⁺	1.63⁺	1.41⁺	
(±SE)	±0.03	±0.08	±0.09	±0.04	±0.01	±0.03	±0.03	±0.08	±0.17	±0.07	±0.02	±0.13	±0.09	±0.02	±0.03	±0.02	±0.12	±0.08	±0.08
ALA	0.08⁺	0.28⁺	0.08⁺	0.24⁺	0.11⁺	0.24⁺	0.13⁺	0.24⁺	0.23⁺	0.11⁺	0.27⁺	0.14⁺	0.25⁺	0.24⁺	0.08⁺	0.18⁺	0.18⁺	0.20⁺	
(±SE)	±0.01	±0.01	±0.01	±0.01	±0.02	±0.01	±0.01	±0.03	±0.01	±0.01	±0.03	±0.01	±0.03	±0.01	±0.01	±0.01	±0.02	±0.02	±0.02
TYR	0.17⁺	0.17⁺	0.41⁺	0.39⁺	0.27⁺	0.24⁺	0.23⁺	0.34⁺	0.28⁺	0.56⁺	0.23⁺	0.59⁺	0.34⁺	0.37⁺	0.14⁺	0.65⁺	0.62⁺	0.53⁺	
(±SE)	±0.00	±0.02	±0.05	±0.02	±0.02	±0.01	±0.02	±0.03	±0.04	±0.06	±0.01	±0.04	±0.04	±0.03	±0.01	±0.07	±0.03	±0.03	±0.03
Optimization of hydrolyzation procedure for amino acid analysis in fish meat with HPLC-DAD by Response Surface Methodology (RSM)

CYS	0.08±	0.03±	0.04±	0.04±	0.07±	0.04±	0.04±	0.09±	0.07±	0.04±	0.05±	0.06±	0.09±	0.08±	0.07±	0.07±	0.05±	0.06±
(±SE)	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01	±0.01

VAL	0.19±	0.71±	0.17±	0.66±	0.23±	0.59±	0.21±	0.67±	0.46±	0.29±	0.63±	0.43±	0.61±	0.59±	0.15±	0.57±		
(±SE)	±0.01	±0.02	±0.02	±0.02	±0.02	±0.02	±0.02	±0.04	±0.02	±0.02	±0.02	±0.07	±0.06	±0.01	±0.01	±0.02	±0.02	±0.02

MET	0.19±	0.61±	0.17±	0.55±	0.24±	0.52±	0.26±	0.54±	0.52±	0.29±	0.57±	0.36±	0.52±	0.52±	0.14±	0.46±		
(±SE)	±0.01	±0.02	±0.02	±0.02	±0.02	±0.02	±0.03	±0.02	±0.05	±0.03	±0.05	±0.04	±0.01	±0.01	±0.02	±0.02	±0.06	±0.06

TRP	0.26±	0.28±	0.35±	0.23±	0.61±	0.17±	0.06±	0.15±	0.64±	0.09±	0.15±	0.27±	0.32±	0.43±	0.17±	0.12±		
(±SE)	±0.01	±0.01	±0.01	±0.05	±0.01	±0.01	±0.01	±0.02	±0.01	±0.01	±0.02	±0.04	±0.01	±0.01	±0.02	±0.04	±0.01	±0.04

PHE	0.23±	0.76±	0.22±	0.76±	0.28±	0.65±	0.31±	0.63±	0.61±	0.29±	0.68±	0.45±	0.64±	0.63±	0.16±	0.59±		
(±SE)	±0.01	±0.02	±0.04	±0.03	±0.01	±0.01	±0.03	±0.05	±0.06	±0.04	±0.03	±0.07	±0.08	±0.01	±0.02	±0.03	±0.02	±0.02

ISO	0.06±	0.57±	0.08±	0.48±	0.08±	0.52±	0.12±	0.61±	0.34±	0.22±	0.53±	0.35±	0.51±	0.52±	0.04±	0.49±		
(±SE)	±0.01	±0.02	±0.03	±0.03	±0.01	±0.03	±0.03	±0.04	±0.04	±0.03	±0.08	±0.08	±0.02	±0.01	±0.04	±0.05	±0.09	±0.09

LEU	0.63±	1.32±	0.52±	1.31±	0.63±	1.22±	0.58±	1.18±	1.13±	0.54±	1.28±	0.62±	1.18±	1.16±	0.29±	1.04±		
(±SE)	±0.07	±0.07	±0.08	±0.02	±0.02	±0.05	±0.06	±0.10	±0.07	±0.04	±0.06	±0.10	±0.02	±0.02	±0.07	±0.04	±0.09	±0.07

LYS	0.48±	1.27±	0.38±	1.06±	0.49±	1.21±	0.53±	1.14±	1.19±	0.46±	1.25±	0.63±	0.89±	0.32±	0.39±	0.74±		
(±SE)	±0.04	±0.04	±0.06	±0.03	±0.02	±0.10	±0.02	±0.11	±0.01	±0.08	±0.03	±0.02	±0.04	±0.02	±0.09	±0.08	±0.07	±0.07

HYP	0.13±	0.06±	0.33±	0.33±	0.28±	0.31±	0.29±	0.42±	0.40±	0.43±	0.39±	0.43±	0.47±	0.49±	0.45±	0.54±		
(±SE)	±0.01	±0.01	±0.02	±0.02	±0.01	±0.02	±0.01	±0.03	±0.02	±0.04	±0.04	±0.03	±0.02	±0.05	±0.04	±0.02	±0.02	±0.02

TAA	7.52±	14.45±	7.66±	13.91±	7.52±	13.61±	7.70±	15.76±	16.57±	10.03±	16.40±	9.38±	13.48±	13.53±	6.19±	12.15±		
(±SE)	±0.03	±0.04	±0.27	±0.17	±0.09	±0.37	±0.49	±0.32	±0.48	±0.22	±0.12	±0.84	±0.78	±0.45	±0.12	±0.51	±0.24	±0.23

*Superscripts with different letters in a row are significantly different 0.05 (DO:Design order, TAA:Total Amino acids), ** Optimization procedures suggested by the RSM were performed and obtained data given in O₁ and O₂.
CONCLUSION

In the view of the results, two different hydrolysing procedures were suggested for amino acid analysis in fish meat. Our results were also corrected by the RSM models. According to models, the first procedure was suggested as hydrolysing in 3.79 N at 110°C in 24 hours to get maximum total and essential amino acid contents. The second one was suggested as 3.42 N at 106.8°C in 12.02 hours for maximizing Trp-Asn-Glu which are degraded conventional digestion procedures, often. Besides, despite the acidic hydrolyzation procedure with HCl is cheap, it can be uneconomic in long-standing processes due to an increasing amount of HCl and operational costs such as electricity by virtue of constant heating. Leastwise, aforementioned costs were lessened with optimization in the study. In conclusion, the mentioned hydrolyzation procedures are reliable as well as accurate and they can be used in amino acid analysis by HPLC-DAD as pretreatment in fish meat.

ACKNOWLEDGMENT

All authors have contributed equally to the article. The data used in this research were obtained from a project which name is “A Research on Possibilities of Using Some Phytobiotic Containing Diets in Black Sea Trout (Salmo trutta labrax PALLAS, 1814) nutrition” supported by General Directorate of Agricultural Research and Policies (TAGEMENT), Ministry of Agriculture and Forestry, Republic of Turkey. Also authors would like to thank Oytun Ortaçlı for technical assistance on Agilent Infinity II HPLC system.

REFERENCES

Alvarez, L.V. (2000). Design optimization based on genetic programming. Department of Civil and Environmental Engineering University of Bradford, UK.

Baş, D. & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. DOI: 10.1016/j.jfoodeng.2005.11.024

Bach-Andersen, S. (1991). Determination of tryptophan with HPLC after alkaline hydrolysis in autoclave using a-methyl-tryptophan as Internal standard. Acta Agriculturae Scandinavica, 41, 305–309. DOI: 10.1080/00015199109436913

Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escalera, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977. DOI: 10.1016/j.talanta.2008.05.019

Biesalski, H.K. (2005). Meat as a component of a healthy diet – are there any risks or benefits if meat is avoided in the diet? Meat Science, 70(3), 509–524. DOI: 10.1016/j.meatsci.2004.07.017

Boonyoung, S., Haga, Y. & Sahito, S. (2012). Preliminary study on effects of methionine hydroxy analog and taurine supplementation in a soy protein concentrate-based diet on the biological performance and amino acid composition of rainbow trout [Oncorhynchus mykiss (Walbaum)]. Aquaculture Research, 1–9. DOI: 10.1111/j.1365-2029.2012.03138.x

Çankırılıgil, E. C. & Beri, M. (2008). Effects of deep-frying to sardine croquettes’ chemical composition. Ege Journal of Fisheries and Aquatic Sciences, 34(3), 293–302. DOI: 10.12714/egejfas.2017.34.3.08

Chen, Y.C., Tou, J.C. & Jaczynski, J. (2007). Amino Acid, fatty acid, and mineral profiles of materials recovered from rainbow trout (Oncorhynchus mykiss) processing by-products using isoelectric solubilization/precipitation. Food Chemistry and Toxicology, 72(9), 528–536. DOI: 10.1016/j.ijt.2007.05.022.x

Cuq, J.L. & Friedman, M. (1989). Effect of heat on tryptophan in food: Chemistry, Toxicology, and nutritional consequences. In M. Friedman (Ed.), Absorption and utilization of amino acids (Volume 3, pp. 103–128). Boca Raton: Taylor & Francis.

Davanejad, R., Keshavarz Moraveji, M. & Havaie, M. (2018). Integral technique for evaluation and optimization of Ni (II) ions adsorption onto regenerated cellulose using response surface methodology. Arabian Journal of Chemistry, 11(3), 370–379. DOI: 10.1016/j.arabjc.2015.05.022

Dong, Y., Sheng, G., Fu, J. & Wen, K. (2005). Chemical characterization and anti-anaemia activity of fish protein hydrolysate from Saourda elongata. Journal of the Science of Food and Agriculture, 85(6), 2033–2039. DOI: 10.1016/j.jsfa.2011.12.009

Galla, N.R., Karakala, B., Akula, S. & Padmighantam, P.R. (2012). Physico-chemical, amino acid composition, functional and antioxidiant properties of the protein concentrates obtained from Channa striatus and Lates calcarifer. Food Chemistry, 132(3), 1171–1176. DOI: 10.1016/j.foodchem.2011.11.055

Henderson, J.W., Ricker, R.D., Bidlingmeyer, B.A. & Woodward, C. (2000). Rapid, accurate, sensitive, and reproducible HPLC analysis of amino acids. U.S.A.

Hosomi, R., Yoshida, M. & Fukunaga, K. (2012). Seafood consumption and components for health. Global Journal of Health Sciences, 4(3), 72–86. DOI: 10.5538/gjhs.v4n3p72

Hou, Y., Yin, Y. & Wu, G. (2015). Dietary essentiality of “ nutritionally non-essential amino acids “ for animals and humans. Experimental Biology and Medicine, 240, 1007–1007. DOI: 10.1777/153370215537013

Hwang, S.H., Kwon, S.H., Wang, Z., Kim, T.H., Kang, Y.H., Lee, J.Y. & Lim, S. S. (2016). Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1B), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM). BMC Complementary and Alternative Medicine, 16(317), 1–10. DOI: 10.1186/s12906-016-1296-5

Joshi, V., Prakash, M.S.A. & Deepgote, S. (2017). Protein and amino acid composition of Indian Himalayan snow trout and their dietary significance. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 1–6. DOI: 10.1007/s40011-017-0898-1

Kang, S.I., Kim, K.H., Lee, J.K., Park, S., Kim, M.W., Choi, B.D., Kim, D. & Kim, J. (2014). Comparison of the food quality of freshwater rainbow trout Oncorhynchus mykiss cultured in different regions. Korean Journal of Fisheries and Aquatic Sciences, 47(1), 103–113. DOI: 10.5637/KFAS.2014.0103

Köksozal, G. & Özel, H.G. (2008). Sağlıklı Bakılanlığı Yayımlı No: 726, Şubat 2008, Ankara. Erişim tarihi 19 Ağustos 2016. Retrieved from: http://www.saglik.gov.tr/TR/dosya/1-364209a-6- bebek-beslenmesi.pdf (in Turkish).

Krzynowek, J. & Murphy, J. (1987). Proximate composition, energy, fatty acid, sodium, and cholesterol content of finfish, shellfish, and their products. NOAA Technical Report NMFS, 55(July), 53. Retrieved from: http://spof.nmfs.noaa.gov/tr55opt.pdf

Kurzowa, L.E., Park, K.J. & Hubiner, M.D. (2008). Optimization of the enzymatic hydrolysis of chicken meat using response surface methodology. Journal of Food Science, 73(6), 405-412. DOI: 10.1111/j.1750-3841.2008.00765.x

Lund, E.K. (2013). Health benefits of seafood; Is it just the fatty acids? Food Chemistry, 140(3), 413–420. DOI: 10.1016/j.foodchem.2013.01.034

Marinho, G.S., Holdt, S.L. & Angelidaki, I. (2015). Seasonal variations in the amino acid profile and protein nutritional value of Saccharina latissima
cultivated in a commercial IMTA system. Journal of Applied Phycology, 27(5), 1991–2000. DOI: 10.1016/s1061-015-0546-0

Mohanty, B., Mahanta, A., Ganguly, S., Sankar, T.V., Chakraborty, K., Rangasamy, A., Paul, B., Sarma, D., Mathew, S., Asha, K.K., Behera, B., Debnath, D., Vijayagopal, P., Shridhar, N., Akhtar, M.S., Sahi, N., Mitra, T., Banerjee, S., Paria, P., Das, D., Das, P., Vijayan, K.K., Laxmanan, P. T. & Sharma, A. P. (2014). Amino acid compositions of 27 food fishes and their importance in clinical nutrition. Journal of Amino Acids, 2014, 1–7. DOI: 10.1155/2014/269797

Musanska, M., Birch, D. & Memery, J. (2018). To eat or not to eat: Seafood consumption habit formation. Journal of International Food & Agribusiness Marketing, 30(3), 227–235. DOI: 10.1080/08974438.2017.1412376

Nadarajan, R., Azelee, W., Abu, W., Ali, R. & Ismail, R. (2018). Photocatalytic degradation of 1,2-dichlorobenzene using immobilized TiO2/SnO2/WO3 photocatalyst under visible light: Application of response surface methodology. Arabian Journal of Chemistry, 11(1), 34–47. DOI: 10.1016/j.arabjc.2016.03.006

Nielsen, H.K. & Hurrell, R.F. (1984). Tryptophan determination of food proteins by h.p.l.c. after alkaline hydrolysis. Journal of Science Food and Agriculture, 36, 693–907. DOI: 10.1002/jsfa.2740360920

Nilsang, S., Lert, J., Nielsen, H.K. & Hur, Y. (2018). Nutritional quality of marinated fish. Journal of the Science of Food and Agriculture, 123(4), 712–719. DOI: 10.1002/jsfa.8550

Özden, Ó. (2005). Changes in amino acid and fatty acid composition during shell-life of marinated fish. Journal of the Science of Food and Agriculture, 85(12), 2015–2020. DOI: 10.1002/jsfa.2207

Park, E.Y., Brekke, C.J. & Bransen, A.L. (2006). Use of Pacific hake (Merluccius products) in a Frankfurter formulation. Journal of Food Science, 43(6), 1637–1640. DOI: 10.1111/j.1365-2621.1978.tb07376.x

Rebolé, A., Velasco, S., Rodriguez, M.L., Treviño, J., Azueta, C., Tejedor, J.L., & Ortiz, L.T. (2015). Nutrient content in the muscle and skin of fillets from farmed rainbow trout (Oncorhynchus mykiss). Food Chemistry, 174, 614–620. DOI: 10.1016/j.foodchem.2014.11.072

Said Mohamad, K.A. & Mohamed Amin, M.A. (2015). Overview on the response surface methodology (RSM) in extraction processes. Journal of Applied Science & Process Engineering, 2(1), 8–17. DOI: 10.33736/jaspe.161.2015

Sarma, D., Akhtar, M.S., Das, P., Das, P., Shani, N., Ciji, A., Mahanta, P.C., Yengiohram, S. & Debnath, D. (2013). Nutritional quality in terms of amino acid and fatty acid of five coldwater fish species: Implications to human health. National Academy Science Letters, 36(4), 385–391. DOI: 10.1007/s40009-013-0151-1

Tahergordabi, R. & Hosseini, S. V. (2018). Importance of fish consumption in disease prevention. Journal of Birjand University of Medical Sciences, 25(1), 1–9.

Unusan, N. (2007). Change in proximate, amino acid and fatty acid contents in muscle tissue of rainbow trout (Oncorhynchus mykiss) after cooking. International Journal of Food Science and Technology, 42, 1087–1093. DOI: 10.1111/j.1365-2621.2006.01354.x

Varlik, C., Erkan, N., Özdin, Ö., Mol, S. & Baygår, T. (2004). Su ürünleri işleme teknolojisi. İstanbul: İstanbul Üniversitesi Yayını No 4465 Su Ürünleri Fak. No 7.

Vera, L., Zan, M.M. De, Cámara, M.S. & Goicoechea, C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124, 123–138. DOI: 10.1016/j.talanta.2014.01.034

Widyaningsih, T.D. & Ayudhah, E. (2013). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70, 571–578. DOI: 10.1016/j.jfoodeng.2004.10.011

Widiyaninggih, T.D., Widjaranko, S.B., Waziroh, E., Wiljayantr, N. & Maslukhah, Y.J. (2018). Pilot plant scale extraction of black cincau (Mesona palustris BL) using historical-data response surface methodology. International Food Research Journal, 25(2), 712–719.

Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids (2009), 37, 1–17. DOI: 10.1007/s00726-009-0269-0

Wu, G., Wu, Z., Dai, Z., Yang, Y., Wang, W., Liu, C., Wang, B., Wang, J. & Yin, Y. (2013). Dietary requirements of “ nutritionally non-essential amino acids ” by animals and humans. Amino Acids (2013), 44, 1107–1113. DOI: 10.1007/s00726-012-1444-2

Zar, J. H. (1999). Biostatistical analysis (4th ed). New Jersey, Prentice-Hall.