Randomized Algorithms and Lower Bounds for Quantum Simulation

Chi Zhang

1Department of Computer Science, Columbia University, New York, USA, 10027

(Dated: October 21, 2009)

We consider deterministic and randomized quantum algorithms simulating e^{-iHt} by a product of unitary operators $e^{-iA_jt_j}$, $j = 1, \ldots, N$, where $A_j \in \{H_1, \ldots, H_m\}$, $H = \sum_{i=1}^{m} H_i$ and $t_j > 0$ for every j. Randomized algorithms are algorithms approximating the final state of the system by a mixed quantum state. First, we provide a scheme to bound the trace distance of the final quantum states of randomized algorithms. Then, we show some randomized algorithms, which have the same efficiency as certain deterministic algorithms, but are less complicated than their opponents. Moreover, we prove that both deterministic and randomized algorithms simulating e^{-iHt} with error ε at least have $\Omega(t^{3/2} \varepsilon^{-1/2})$ exponentials.

PACS numbers: 03.67.Ac, 03.67.Lx

I. INTRODUCTION

While the computational cost of simulating many particle quantum systems using classical computers grows exponentially with the number of particles, quantum computers nonetheless have the potential to carry out the simulation efficiently [3]. This property, pointed out by Feynman, is one of the founding ideas of the field of quantum computation. The simulation problem is also related to quantum walks and adiabatic optimization [8, 9, 10, 11, 12, 13].

A variety of quantum algorithms have been proposed to predict and simulate the behavior of different physical and chemical systems. Of particular interest are splitting methods that simulate the unitary evolution e^{-iHt}, where H is the system Hamiltonian, by a product of unitary operators of the form $e^{-iA_jt_j}$, $j = 1, \ldots, N$, where $A_j \in \{H_1, \ldots, H_m\}$, $H = \sum_{i=1}^{m} H_i$ and assuming the H_i do not commute.

A recent paper [1] shows that high order splitting methods [3, 4] can be used to derive bounds for N that are asymptotically tight. This work also provides algorithms that achieve the upper bounds. However, the derived algorithms require some of the t_j to be negative, which may limit their application. For instance, the algorithms cannot be used for the simulation of diffusion operators, because there exists no inverse exponential diffusion operator, as noted by Suzuki [3] who proposed the high order splitting methods. The reason is that for splitting methods with order of convergence greater than or equal to three, some of the $\{t_j\}$ must be negative [4].

In this paper, we consider deterministic and randomized quantum algorithms simulating e^{-iHt} using only positive $\{t_j\}$. By randomized algorithms we mean algorithms approximating the final state of the system by a mixed quantum state. We show that:

1. The increase in the trace distance of the quantum states in a randomized algorithm is bounded from above by

\[2 \| E(U_\omega) - U_0 \| + E(\| U_\omega - U_0 \|^2), \]

where U_0 is the unitary evolution being simulated, U_ω denotes the randomized algorithm and $E(\cdot)$ is the expectation.

2. Deterministic and randomized algorithms simulating e^{-iHt} by approximating it by $\prod_{j=1}^{N} e^{-iA_jt_j}$ with error ε must satisfy

\[N = \Omega(t^{3/2} \varepsilon^{-1/2}). \]

3. The optimal deterministic algorithm is based on the Baker-Campbell-Housdorf formula [3].

4. An optimal randomized algorithm is obtained by a direct application of the Trotter formula [7].

*Electronic address: cz2165@columbia.edu
II. RANDOMIZED ALGORITHMS FOR QUANTUM SIMULATION

Let us now state the problem in more details, then discuss the algorithms and their performance. A quantum system evolves according to the Schrödinger equation

$$i\frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle,$$

where H is the system Hamiltonian. For a time-independent H, the solution of the Schrödinger is

$$|\psi(t)\rangle = e^{-iHt}|\psi_0\rangle,$$

where $|\psi_0\rangle$ is the initial state at $t = 0$. Here we assume that H is the sum of local Hamiltonians, i.e.,

$$H = \sum_{k=1}^{m} H_k,$$

and all the H_k are such that $e^{-iH_k\tau}$ can be implemented efficiently for any $\tau > 0$. Therefore, we will be using a product of the unitary operators $U = \prod_{j=1}^{N} e^{-iA_j t_j}$, where $A_j \in \{H_1, \ldots, H_m\}$, $t_j > 0$, to simulate $U_0 = e^{-iHt}$. However, since the H_k do not commute in general, it introduces an error in the simulation. We measure this error using the trace distance, as in [1]. Our goal is to obtain tight bounds for N for algorithms achieving accuracy ε in the simulation and to show optimal algorithms.

Variations of this problem that do not set restrictions on t_j have been extensively studied in the literature, see, e.g., [1, 3, 5, 6]. As far as we know only deterministic algorithms have been considered. In this paper, we propose a randomized model for simulating quantum systems, which simplifies the design of algorithms without compromising their efficiency.

In the randomized model, the sequence of unitary operators is selected randomly according to a certain probability distribution. The distribution can be realized either by “coin-flips” or by “control qubits”, which requires some ancillary qubits. As a result, the algorithm is a product of a random sequence of unitary operators $U_\omega = \prod_{j=1}^{N_{\omega}} e^{-iA_{j,\omega} t_j}$ selected with probability p_ω. Hence, the final state of the quantum algorithm is the mixed state

$$\rho = \sum_{\omega} p_\omega U_\omega |\psi_0\rangle \langle \psi_0| U_\omega^\dagger$$

(4)

For more general cases, where the input state of the simulation is not exactly $|\psi_0\rangle$, but a different mixed state ρ_0, the final state is $\rho = \sum_{\omega} p_\omega U_\omega \rho_0 U_\omega^\dagger$.

In order to analyze the efficiency of randomized algorithms, we show an upper bound for the trace distance between the desired final state and the one computed by a randomized algorithm.

Lemma 1. Let U_0 be the unitary evolution being simulated by a set of random unitary evolutions U_ω as we described above. Then the trace distance between $\sigma = U_0 |\psi_0\rangle \langle \psi_0| U_0^\dagger$ and ρ is bounded from above by

$$D(\rho_0, |\psi_0\rangle \langle \psi_0|) + 2 \sum_{\omega} p_\omega \| U_\omega - U_0 \| + \sum_{\omega} p_\omega \| U_\omega - U_0 \|^2$$

$$= D(\rho_0, |\psi_0\rangle \langle \psi_0|) + 2 \| E(U_\omega) - U_0 \| + E(\| U_\omega - U_0 \|^2),$$

where $D(\cdot)$ denotes the trace distance and $E(\cdot)$ denotes the expectation.

Proof. First, we calculate the difference of the output states ρ_1 and ρ'_1, which is

$$\sum_{\omega} p_\omega U_\omega \rho_0 U_\omega^\dagger - U_0 |\psi_0\rangle \langle \psi_0| U_0^\dagger$$

$$= \sum_{\omega} (U_\omega + U_\omega - U_0) \rho_0 (U_\omega + U_\omega - U_0)^\dagger - U_0 |\psi_0\rangle \langle \psi_0| U_0^\dagger$$

$$= \sum_{\omega} p_\omega (U_\omega - U_0) \rho_0 U_\omega^\dagger + \sum_{\omega} p_\omega U_\omega \rho_0 (U_\omega - U_0) + \sum_{\omega} p_\omega (U_\omega - U_0) \rho_0 (U_\omega - U_0)^\dagger + \sum_{\omega} p_\omega U_\omega \rho_0 U_\omega^\dagger - U_0 |\psi_0\rangle \langle \psi_0| U_0^\dagger$$

$$= \sum_{\omega} p_\omega (U_\omega - U_0) \rho_0 U_\omega^\dagger + U_0 \rho_0 (\sum_{\omega} p_\omega U_\omega - U_0)^\dagger + \sum_{\omega} p_\omega (U_\omega - U_0) \rho_0 (U_\omega - U_0) + U_0 (\rho_0 - |\psi_0\rangle \langle \psi_0|) U_0^\dagger.$$

(6)
Hence,
\[
D(\rho'_1, \rho_1) = \text{Tr}|\rho'_1 - \rho_1|
\]
\[
\leq \text{Tr}(\sum_\omega p_\omega U_\omega - U_0)\rho_0 U_0\| + \text{Tr}|U_0\rho_0(\sum_\omega p_\omega U_\omega - U_0)^\dagger| + \sum_\omega p_\omega \text{Tr}|(U_\omega - U_0)\rho_0(U_\omega - U_0)| + \text{Tr}|\rho_0 - |\psi_0\rangle\langle\psi_0||
\]
\[
\leq 2 \| \sum_\omega p_\omega U_\omega - U_0 \| + \sum_\omega p_\omega \| U_\omega - U_0 \|^2 + \text{Tr}|\rho_0 - |\psi_0\rangle\langle\psi_0||
\]
\[
= D(\rho_0, |\psi_0\rangle\langle\psi_0|) + 2 E(U_0) - U_0 \| + E(\| U_\omega - U_0 \|^2).
\]

Let \(\Delta D = D(\rho_1, \rho'_1) - D(\rho_0, |\psi_0\rangle\langle\psi_0|) \), which is the augment of trace distance. From the above lemma, we know in the simulation, \(\Delta D \) is bounded from above by \(\| E(U_\omega) - U_0 \| \) and \(E(\| U_\omega - U_0 \|^2) \). Moreover, it is easy to check that \(\Delta D = \Theta(\| E(U_\omega) - U_0 \|) \) for certain \(\rho_0 \), as well as \(\Delta D = \Theta(E(\| U_\omega - U_0 \|^2)) \) for some other \(\rho_0 \). Therefore, the lower bound is also tight asymptotically, i.e.,
\[
\Delta D = \Theta(2 \| E(U_\omega) - U_0 \| + E(\| U_\omega - U_0 \|^2)).
\]

For the convenience of the reader, below we give two examples of randomized algorithms and we use the lemma above to analyze their cost. It turns out that the second algorithm is optimal.

- **Algorithm 1**

 Divide the total evolution time \(t \) into equal \(K \) small segments of size \(\Delta t \).

 Let \(\rho_0 = |\psi_0\rangle\langle\psi_0| \) be the input to the first stage of the algorithm.

 Consider the \(k \)-th stage of the algorithm where the input is \(\rho_{k-1} \), \(k = 1, \ldots, mK \). The algorithm chooses uniformly and independently at random operators from \(\{e^{-iH_1\Delta t}, \ldots, e^{-iH_m\Delta t}\} \). Hence, the output of stage \(k \) is

 \[
 \rho_k = \sum_{j=1}^m \frac{1}{m} e^{-iH_j\Delta t} \rho_{k-1} e^{iH_j\Delta t}.
 \]

 The final result of the algorithm is \(\rho_{mK} \) and is used to approximate \(\sigma \).

 Due to Lemma 1, the error of this algorithm for simulating \(e^{-iH\Delta t} \) by \(m \) consecutive stages (i.e., by the stages \(km + 1 \) and \((k+1)m \), for any \(k = 0, \ldots, K - 1 \) is bounded by two elements, \(\| E(U_\omega) - U_0 \| \) and \(E(\| U_\omega - U_0 \|^2) \), where \(U_\omega \) is the product of the sequence \(m \) operators. Since the selection in each stage is independent and uniform,

 \[
 E(U_\omega) = (\frac{1}{m} \sum_{j=1}^m H^{-iH_m\Delta t})^m = I - i \sum_{j=1}^m H_j \Delta t + O(\Delta t^2).
 \]

 Hence, \(\| E(U_\omega) - U_0 \| = O(\Delta t^2) \). Furthermore, for any \(\omega, U_\omega = I + O(\Delta t) \), then \(E(\| U_\omega - U_0 \|^2) = O(\Delta t^2) \). Therefore, the error in each \(m \) consecutive stages is \(O(\Delta t^2) \). Thus, the total error is \(\varepsilon = O(K\Delta t^2) \) and the total number of exponentials used is \(N = mK = O(t^2/\varepsilon) \).

 We remark that this is equal modulo a constant to the cost of the deterministic algorithm that is based on a direct application of the Trotter formula, i.e., the one that uses

 \[
 \prod_{j=1}^m e^{-iH_j\Delta t}
 \]

 to simulate \(e^{-iH\Delta t} \). However, **Algorithm 1** has certain advantages over this deterministic algorithm. In the deterministic algorithm, in order to simulate \(e^{-iH\Delta t} \), we need to store the current index \(j \) of \(e^{-iH_j\Delta t} \), for \(j = 1, \ldots, m \). However, in **Algorithm 1**, each stage is independent and the algorithm is “memoryless”.

- **Algorithm 2**

 Divide the total evolution time \(t \) into equal \(K \) small segments of size \(\Delta t \).

 Let \(\rho_0 = |\psi_0\rangle\langle\psi_0| \) be the input to the first stage of the algorithm.
Consider the k-th stage of the algorithm where the input is ρ_{k-1}, $k = 1, \ldots, K$. The algorithm selects an operator uniformly and independently at random from the set of operators

$$\{\prod_{j=1}^{m} e^{-iH_\sigma(j)\Delta t} : \sigma \text{ varies over all permutations on } m \text{ symbols }\}.$$

Then, the output of the k-th stage is

$$\rho_k = \sum_{\sigma} \frac{1}{m!} \prod_{j=1}^{m} e^{-iH_\sigma(j)\Delta t} \rho_{k-1} \prod_{j=1}^{m} e^{iH_\sigma(j)\Delta t}.$$

The final result of the algorithm is ρ_K and is used to approximate σ.

Let

$$U_\sigma = \prod_{j=1}^{m} e^{-iH_\sigma(j)\Delta t}$$

$$= \prod_{j=1}^{m} (I - iH_\sigma(j)\Delta t - \frac{1}{2} H_\sigma^2(j)\Delta t^2 + O(\Delta t^3))$$

$$= I - i \sum_{j=1}^{m} H_\sigma(j)\Delta t - \frac{1}{2} \sum_{j=1}^{m} H_\sigma^2(j)\Delta t^2 - \sum_{j<k} H_\sigma(j) H_\sigma(k)\Delta t^2 + O(\Delta t^3)$$

$$= I - i \sum_{j=1}^{m} H_\sigma(j)\Delta t - \frac{1}{2} \sum_{j=1}^{m} H_\sigma^2(j)\Delta t^2 - \frac{1}{2} \sum_{j<k} H_\sigma(j) H_\sigma(k)\Delta t^2 + O(\Delta t^3).$$

(9)

In each stage, the simulating operator U_σ could be U_σ with probability $1/m!$, for each σ in the permutations on m symbols. Since, for each σ, $\|U_\sigma - U_0\| = O(\Delta t^2)$, so $E(\|U_\sigma - U_0\|^2) = O(\Delta t^4)$. Moreover, $E(U_\omega) = I - i \sum_{j=1}^{m} H_j\Delta t - \frac{1}{2} (\sum_{j=1}^{m} H_j)^2 \Delta t^2 + O(\Delta t^3)$, hence $\|E(U_\omega) - U_0\| = O(\Delta t^3)$. Due to Lemma 1, the error of this algorithm for simulating $e^{-iH\Delta t}$ in each stage is $O(\Delta t^3)$. Thus the total error $\varepsilon = O(K\Delta t^3)$. Hence, for a given ε the value of K in Algorithm 2 is smaller than that in Algorithm 1. The total number of exponentials used is $N = mK = O(\varepsilon^{3/2}/\varepsilon^{1/3})$.

We remark that this is equal modulo a constant to the cost of a deterministic algorithm solving the problem. The difference is that the deterministic algorithm is more slightly more complicated than the one discussed in the previous item. It is based on the Baker-Campbell-Housdorff formula (Strang splitting) and uses

$$\prod_{j=1}^{m} e^{-iH_j\Delta t/2} \prod_{j=m}^{1} e^{-iH_j\Delta t/2}$$

to simulate $e^{-iH\Delta t}$.

III. LOWER BOUNDS FOR RANDOMIZED ALGORITHMS

In fact, Algorithm 2 is asymptotically optimal among all randomized algorithms simulating the evolution of the quantum system. Before proving the optimality of Algorithm 2, we start with a lemma.

Lemma 2. For any $0 \leq x_i \leq 1$, $i = 1, \ldots, N$, and $\sum_{i=1}^{N} x_i = 2$, let S be the sum of all elements in $\{x_ix_jx_k : i < j < k; 2|k - i; 2 \notin \{j - i\}\}$. Then $S < 1/3$.

Proof. For $N = 3$, it is easy to check $S \leq (2/3)^3 < 1/3$.

Assume that, for $N < M$, the conclusion holds.

For the case $N = M$, the global minimum of S will be achieved at a local minimum or the border. Moreover, if the global minimum is obtained at the border, which means some $x_i = 0$ or 1, it reduces to the case $N < M$. Then, we only consider its local minimum and assume $x_i \neq 0$ for each i.

Let \(f(x) = S - \lambda(\sum_i x_i - 2) \). In any local minimum, \(\frac{\partial f}{\partial x_i} = 0 \), for each \(x_i \). Then
\[
\frac{\partial f}{\partial x_i} = \sum_{i<j<k} x_j x_k + \sum_{j<i<k} x_j x_k + \sum_{j<k<i} x_j x_k - \lambda = 0
\]
and
\[
\frac{\partial f}{\partial x_{i+2}} = \sum_{i+2<j<k} x_j x_k + \sum_{j<i+2<k} x_j x_k + \sum_{j<k<i+2} x_j x_k - \lambda = 0.
\]
Combined these two equations, we have
\[
x_{i+1}(\sum_{k \geq i+2} x_k + \sum_{k \leq i-1} x_k - \sum_{k \geq i+3} x_k - \sum_{k \leq i} x_k) = 0.
\]
From the assumption, \(x_{i+1} \neq 0 \), we have
\[
\cdots + x_{i-3} + x_{i-1} + x_{i+2} + x_{i+4} + \cdots = \cdots + x_{i-2} + x_i + x_{i+3} + x_{i+5} + \cdots
\]
Then, we consider \(\frac{\partial f}{\partial x_{i+1}} = 0 \) and \(\frac{\partial f}{\partial x_{i+3}} = 0 \), which can derive
\[
\cdots + x_{i-1} + x_{i+1} + x_{i+4} + x_{i+5} + \cdots = \cdots + x_{i-2} + x_i + x_{i+3} + x_{i+5} + \cdots
\]
Combine them together, we have \(x_{i+1} = x_{i+2} \). Therefore, \(x_2 = x_3 = \cdots = x_{N-1} \). Then, by considering \(\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial x_2} \) and \(\frac{\partial f}{\partial x_3} = \frac{\partial f}{\partial x_{i+1}} \), we have \(x_1 = 0 \) when \(N \) is even; and \(x_1 = x_2 = \cdots = x_N \) when \(N \) is odd. Since the first case is contradict to our assumption, we need only consider the case \(N \) is odd. Let \(N = 2K + 1 \), then each term in \(S \) is \((\frac{2}{N})^3\), and there are \(\frac{1}{6}K(\frac{1}{2}K+1)\) terms. Therefore, at the local minimum
\[
S = \frac{1}{6}K(\frac{1}{2}K+1)(\frac{2}{2K+1})^3 = \frac{1}{3}(1 - \frac{1}{N^2}) < \frac{1}{3}.
\]
Hence, for any \(N \) the conclusion holds.

From the above Lemmas, we have the following two theorems.

Theorem 1. For both deterministic or randomized algorithms, the error of simulating \(e^{-iH\Delta t} \) is no less than \(\Omega(\Delta t^3) \).

Proof. Since deterministic algorithms are special cases of randomized algorithms, it is enough to consider randomized algorithms. Assume \(e^{-iH\Delta t} \) is simulated by \(U_\omega \) with probability \(p_\omega \). Consider the Hamiltonians \(H_1 \) and \(H_2 \), in a given \(U_\omega \), let \(\alpha_1 \Delta t, \alpha_2 \Delta t, \cdots, \alpha_K \Delta t \) be the total evolution time of \(H_1 \) between two consecutive evolution of \(H_2 \), while \(\beta_1 \Delta t, \beta_2 \Delta t, \cdots, \beta_K \Delta t \) are the total evolution time of \(H_2 \) between two consecutive evolution of \(H_1 \). For example, if
\[
U_\omega = e^{-iH_1 \alpha_1 \Delta t} e^{-iH_2 \alpha_2 \Delta t} e^{-iH_1 \alpha_3 \Delta t} e^{-iH_2 \alpha_4 \Delta t} e^{-iH_1 \alpha_5 \Delta t} e^{-iH_2 \alpha_6 \Delta t} e^{-iH_1 \alpha_7 \Delta t},
\]
then \(\alpha_1 = \lambda_1, \alpha_2 = \lambda_5 + \lambda_7 \) and \(\beta_1 = \lambda_2 + \lambda_4 \). So, it is easy to see \(|K - K'| \leq 1 \). Due to Lemma 1, the difference of trace distance is decided by \(E(||U_\omega - U_0||^2) \) and \(E(U_\omega) - U_0 \). If \(\sum_{j=1}^K \alpha_j \neq 1 \) or \(\sum_{j=1}^{K'} \beta_j \neq 1 \) for some \(\omega, ||U_\omega - U_0||^2 = \Omega(\Delta t^2) \), hence \(E(||U_\omega - U_0||^2) = \Omega(\Delta t^2) \). Hence, we only need to consider the situation \(\sum_{j=1}^K \alpha_j = 1 \) and \(\sum_{j=1}^{K'} \beta_j = 1 \). Let us focus on the terms \(iH_1 H_2 H_3 \Delta t^3 \) and \(iH_2 H_3 H_4 \Delta t^3 \). In \(e^{-iH\Delta t} \), each of which has coefficients \(1/6 \). If the simulation has an error less than \(O(\Delta t^3) \), the coefficients of them in \(E(U_\omega) \) must also be \(1/6 \), therefore the sum of them should be \(1/3 \). However, we will show in every \(U_\omega \), the sum of these two coefficients is less than \(1/3 \). Without loss of generality, assume \(K \geq K' \), let \(x_{2j-1} = \alpha_j \), for \(j = 1, \cdots, K \), and \(x_{2j} = \beta_j \), for \(j = 1, \cdots, K' \). Then, the coefficient of \(iH_1 H_2 H_3 \Delta t^3 \) is the sum of \(x_j x_k x_l \), where \(j < k < l \), \(j, l \) are odd, and \(k \) is even, while the coefficient of \(iH_2 H_3 H_4 \Delta t^3 \) is the sum of \(x_j x_k x_l \), where \(j < k < l, j, l \) are even, and \(k \) is odd. Since \(\sum_{j=1}^K x_j = \sum_{j=1}^K \alpha_j + \sum_{j=1}^{K'} \beta_j = 2 \), due to Lemma 2, the sum of the coefficients is always less than \(1/3 \). Since there always exists \(\Theta(\Delta t^3) \) term in any simulation, the error of any simulation is no less than \(\Omega(\Delta t^3) \).
Theorem 2. Any deterministic or randomized algorithm simulating e^{-iHt} by approximating it by $\prod_{j=1}^{N} e^{-iA_{j}t_{j}}$, $t_{j} > 0$, with error ε satisfies

$$N = \Omega(t^{3/2}\varepsilon^{-1/2}).$$

Proof. Assume the simulation is comprised of K stages, and in the j-th stage, there are constant exponentials used to simulate $e^{-iH_{j}t_{j}}$, where $\sum_{j=1}^{N} = t_{j}$. From the above theorem, the final error is $\Omega(\sum_{j=1}^{K} t_{j}^{3})$, the minimum of which is $\Omega(\frac{t^{3}}{K})$. Hence, to guarantee the final error is bounded by ε, $K = \Omega(t^{3/2}\varepsilon^{-1/2})$. Therefore, $N = \Omega(K) = \Omega(\frac{t^{3/2}}{\varepsilon^{-1/2}})$. \hfill \Box

From Theorem 2 it is straightforward to obtain the following two Corollaries.

Corollary 1. The deterministic algorithm based on the Baker-Campbell-Hausdorff formula (Strang splitting) is asymptotically optimal.

Corollary 2. The randomized algorithm Algorithm 2 is asymptotically optimal.

IV. SUMMARY

In summary, we provide the randomized model of quantum simulation, and provide some randomized algorithms which are easier to implement than certain deterministic algorithms, but have the same efficiency. Moreover, we provide a lower bound for quantum simulation, therefore prove the optimality of the deterministic algorithm based on Strang splitting and one of our randomized algorithms. Note that, the lower bound and the optimality is under the assumption t_{j} is positive in the simulation. Without this restriction, some algorithms have faster running time than the lower bound [1]. Furthermore, randomized algorithms also bring certain benefits in this unrestricted situation. For instance, when $m = 2$, to simulate $e^{-iH\Delta t}$, it needs at least 7 exponentials to obtain an error bound $\Theta(\Delta t^{3})$ [3], however a randomized algorithm can obtain the same error bound with only 4 exponentials [14].

We are grateful to Anargyros Papageorgiou, Joseph F. Traub, Columbia University for their very helpful discussions and comments.

[1] D. W. Berry, G. Ahokas, R. Cleve, B. C. Sanders, Efficient quantum algorithms for simulating sparse Hamiltonians, Communications in Mathematical Physics 270, 359 (2007)
[2] G. Strang, On the construction and comparison of difference schemes, SIAM J. Num. Analysis, 506-517 (1968)
[3] M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146, 319-323 (1990)
[4] M. Suzuki, General theory of fractal path integrals with application to many-body theories and statistical physics, J. Math. Phys, 32, 400-407 (1991)
[5] C. Zalka, Simulating Quantum Systems on a Quantum Computer, Proc. R. Soc. Lond. A, 454, 313-323 (1998)
[6] I. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, A. Aspuru-Guzik, Polynomial-time quantum algorithm for the simulation of chemical dynamics, Proc. Natl. Acad. Sci. 105, 18681(2008)
[7] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000)
[8] D. Aharonov, A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theor of Computing, 20-29 (2003)
[9] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution, quant-ph/0001106 (2000)
[10] A. Childs, E. Farhi, S. Gutmann, An example of the difference between quantum and classical random walks, J. Quant. Inf. Proc. 1, 35-43 (2002)
[11] E. Farhi, J. Goldstone, S. Gutmann, A Quantum Algorithm for the Hamiltonian NAND Tree, quant-ph/0702144 (2007)
[12] A. Childs, Universal computation by quantum walk, Phys. Rev. Lett, 102, 180501 (2009)
[13] A. Childs, On the relationship between continuous- and discrete-time quantum walk, quant-ph/0810.0312 (2008)
[14] C. Zhang, Randomized algorithms for quantum simulation, to be appear