Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue

Shalini Vellasamy, Pratheep Sandrasaigaran, Sharmili Vidyadaran, Elizabeth George, Rajesh Ramasamy

Shalini Vellasamy, Pratheep Sandrasaigaran, Sharmili Vidyadaran, Rajesh Ramasamy, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Elizabeth George, Haematology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Author contributions: All authors contributed to this study.

Supported by Research University Grant Scheme, Universiti Putra Malaysia, No. 04-01-09-0781RU; and Science Fund, Ministry of Science, Technology and Innovation, Malaysia, No. 02-01-04-SF1022
Correspondence to: Rajesh Ramasamy, PhD, Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. r.rajesh@medic.upm.edu.my
Telephone: +60-3-89472377 Fax: +60-3-89412787

Received: August 22, 2011 Revised: March 6, 2012 Accepted: March 15, 2012 Published online: June 26, 2012

Abstract

AIM: To explore the feasibility of placenta tissue as a reliable and efficient source for generating mesenchymal stem cells (MSC).

METHODS: MSC were generated from human placenta tissue by enzymatic digestion and mechanical dissociation. The placenta MSC (PLC-MSC) were characterized for expression of cell surface markers, embryonic stem cell (ESC) gene expression and their differentiation ability into adipocytes and osteocytes. The immunosuppressive properties of PLC-MSC on resting and phytohemagglutinin (PHA) stimulated allogenic T cells were assessed by means of cell proliferation via incorporation of tritium thymidine (³H-Tdr).

RESULTS: The generated PLC-MSC appeared as spindle-shaped cells, expressed common MSC surface markers and ESC transcriptional factors. They also differentiated into adipogenic and osteogenic lineages when induced. However, continuous cultivation up to passage 15 caused changes in morphological appearance and cellular senescence, although the stem cell nature of their protein expression was unchanged. In terms of their immunosuppressive properties, PLC-MSC were unable to stimulate resting T cell proliferation; they inhibited the PHA stimulated T cells in a dose dependent manner through cell to cell contact. In our study, MSC generated from human placenta exhibited similar mesenchymal cell surface markers; MSC-like gene expression pattern and MSC-like differentiation potential were comparable to other sources of MSC.

CONCLUSION: We suggest that placenta tissues can serve as an alternative source of MSC for future experimental and clinical studies.

© 2012 Baishideng. All rights reserved.

Key words: Mesenchymal Stem Cell; Placenta; Immunophenotyping; Immunomodulation; Growth Kinetics

Peer reviewers: Juergen Dittmer, PhD, Clinic for Gynecology, University of Halle, Ernst-Grube-Str. 40, 06120 Halle/Saale, Germany; Arianna Scuteri, PhD, Neuroscience and Biomedical Technologies Department, Faculty of Medicine, University of Milan-Bicocca, Via Cadore 48, 20052, Monza (MB), Italy

Vellasamy S, Sandrasaigaran P, Vidyadaran S, George E, Ramasamy R. Isolation and characterisation of mesenchymal stem cells derived from human placenta tissue. World J Stem Cells 2012; 4(6): 53-61 Available from: URL: http://www.wjgnet.com/1948-0210/full/v4/i6/53.htm DOI: http://dx.doi.org/10.4252/wjsc.v4.i6.53

INTRODUCTION

A substantial amount of research over the past two decades has resulted in greater understanding of human
adult stem cell biology not only in the basic sciences but also in relation to therapeutic usage[3-6]. Among stem cells, mesenchymal stem cells (MSC) have become an important component in stem cell-based neo-therapies for tissue regeneration and transplantation. MSC are widely distributed in a variety of adult tissues such as adipose tissue, bone, lung, peripheral blood and are either constantly present or their pool is replenished due to migration from the bone marrow[3-5]. It was recently demonstrated that MSC are also present in umbilical cord blood, placenta and foetal tissues[6,7].

Unlike other stem cells, MSC derived from bone marrow have been investigated extensively for their immunosuppressive activity and have been exploited in treating autoimmune diseases as well as graft vs host disease (GVHD)[8]. Current literature indicates MSC-exerted immunosuppression is an important modulator in the allogenic immune response that involves mainly lymphocytes[9-11] and antigen presenting cells[12-14]. Some of these effects have been well exploited in therapeutics, such as in induction of tolerogenic response in GVHD[8,9] and enhanced antitumor therapy[15,16]. In addition, studies in animal models have shown that transplanted MSC have the potential to migrate to sites of injury, differentiate into appropriate phenotype and regenerate the injured tissue[16-20].

Bone marrow is the most extensively studied source of MSC (BM-MSC). However, BM-MSC have to be aspirated using an invasive procedure that can cause discomfort to the donor. This limited accessibility is coupled with relatively low cell yield (0.001%-0.01%), with the numbers of stem cells significantly decreasing with age[3,6,21]. MSC derived from embryonic and aborted foetal tissues can overcome the volumetric problem but their usage in clinical application and research is still hindered by ethical issues and remains controversial. To overcome these problems, an alternative source of MSC which avoids ethical issues and is easily accessible at low cost is recommended.

In this study, we assessed the presence of MSC in human delivery waste tissues such as placenta which are more readily available for research at low cost[22]. We have showed that the MSC generated from human placenta tissues were able to expand and express similar characteristics as of BM-MSC in terms of mesenchymal and functional properties. We have also documented that placental MSC undergo cellular senescence as detected by morphological changes and thereby impose limitations on the culture expansion.

MATERIALS AND METHODS

Generation of MSC from human placenta tissue

Placenta samples ($n = 5$) were collected upon delivery from normal full term pregnancies with the assistance of gynaecologists from Britannia Women and Children Specialist Centre. All samples were obtained with written, informed consent in accordance with the ethical commit-

Immunophenotyping of PLC-MSC

Placenta MSC (PLC-MSC) were stained with a panel of MSC specific monoclonal antibodies: CD73-PE, CD29-PE, CD90-PE, MHC I-PE-Cy5, MHC II-FITC, CD45-FITC, CD34-FITC, CD80-PE, CD86-APC, (Becton Dickinson, Biosciences Pharmingen) and CD105-FITC, (Becton Dickinson). The single nucleated cells (30 × 10⁶ cells/T25 culture flask) were cultured in MSC complete media. Primary cultures were incubated for at least a week in a 37 °C humidified 5% CO₂ incubator and non-adherent cells were removed by replacing the media. Upon reaching 70% to 80% confluence, adherent MSC were harvested via trypsinisation (0.05% trypsin-EDTA, Invitrogen, BRL, Canada) for use in downstream experiments.

RT-PCR of PLC-MSC

Total RNA was extracted from PLC-MSC, differentiated adipocytes and osteocytes using TRIzol® Reagent (Invitrogen, USA). RT-PCR was performed using the ImPromII™ Reverse Transcription System (Promega, USA) and cDNA and Taq DNA Polymerase kit (Qiagen). Genes of interest were obtained using primers synthesized from EUROGENTEC AIT as shown in Table 1.

Differentiation assay

PLC-MSC at 100% confluence were induced to differentiate into adipocytes, and osteocytes using MSC Adipogenesis Kit and MSC Osteogenesis Kit (CHEMICON). Adipogenesis induction medium contained 10% FBS, 1 μmol/L dexamethasone, 0.5 mmol/L IBMX, 10 μg/mL insulin, 100 μmol/L indomethacin, 1% Penicillin and Strepto-
mycin and 90% DMEM/F12. Osteogenesis induction medium consisted of 10% FBS, 0.1 μmol/L dexamethasone solution, 0.2 mmol/L ascorbic acid 2-phosphate solution, 10 mmol/L glycerol 2-phosphate, 1% Penicillin and Streptomycin and 87% DMEM/F12. After differentiation, the adipocytes and osteocytes were fixed and stained with Oil Red O Solution and Alizarin Red Solution respectively. Chondrogenesis was induced using a Chondrocyte Differentiation Kit (STEMPRO®). Micromass cultures were generated by seeding 5 μL (1.6 × 10^6 cells/mL) droplets and were cultured in Chondrogenesis differentiation medium contained fresh 90% STEMPRO® Chondrocyte Differentiation Basal Medium and 10% STEMPRO® Chondrogenesis Supplements. After 21 d of cultivation, the chondrocytes were fixed and stained with 1% Alcian Blue solution and visualized under light microscope.

Growth Kinetics and doubling time

PLC-MSC (4 × 10^6 cell/well) were plated into 6-well plates and incubated at 37 °C in a 5% CO₂ humidified incubator. Media was changed twice weekly. Triplicates of PLC-MSC were harvested every 2 d until day 14 using 0.05% trypsin-EDTA and the growth curve of PLC-MSC was determined using trypan blue exclusion cell counts. About 0.3 × 10^6 of MSC from every passage were cultured in 100 mm Petri dishes and a trypan blue cell count was performed when the cells had attained full confluence. The initial seeding, days in culture and cell yield were recorded and the doubling time determined using the Patterson Formula \(Td = \frac{\ln 2}{\ln N_t/N_0} \), Td is the doubling time (h), T is the time taken for cells to proliferate from N0 to Nt (hour), and N is the cell count.

T cell proliferation assay

PLC-MSC was co-cultured with T cells at 1:5, 1:10, 1:50 and 1:100 ratios in a 96 well plate and stimulated with phytohemagglutinin (PHA) (Roche). Cultures were incubated for 72 h and pulsed with Tritium thymidine (\(^{3}H\)-TdR) [0.037 MBq/well (0.5 μCi/well) (Perkin Elmer)] for the final 18 h of incubation. At 72 h, cells were harvested onto glass fiber filter mats (A (Perkin Elmer)) using 0.05% trypsin-EDTA and the growth curve of PLC-MSC was determined by performing trypan blue exclusion cell count.

Table 1 Primers for transcription factors for indicated genes

Gene	Forward primer	Reverse primer
Nanog	ATGCCCAAGCTGAGCTGAGGC	CTGACGAGCTCGAGCTGAGGC
Sox2	ATGCCCAAGCTGAGCTGAGGC	CTGACGAGCTCGAGCTGAGGC
Rex-1	ATGCCCAAGCTGAGCTGAGGC	CTGACGAGCTCGAGCTGAGGC
4-Oct	ATGCCCAAGCTGAGCTGAGGC	CTGACGAGCTCGAGCTGAGGC
Osteopontin	ATGCCCAAGCTGAGCTGAGGC	CTGACGAGCTCGAGCTGAGGC
Osteocalcin	ATGCCCAAGCTGAGCTGAGGC	CTGACGAGCTCGAGCTGAGGC
GAPDH	ATGCCCAAGCTGAGCTGAGGC	CTGACGAGCTCGAGCTGAGGC

cells were physically separated from PLC-MSC by transwell chambers with 1 μm pore size membrane (Becton Dickinson).

Statistical analysis

The data were expressed as mean ± SE. The Student t-test was performed to compare the values of two means. Significance level was determined as \(P < 0.05 \).

RESULTS

PLC-MSC exhibit mesenchymal morphological features

Formation of heterogeneous monolayer, adherent and spindle shaped fibroblast-like cells were observed for PLC-MSC and an average of 14 d was required for PLC-MSC to attain confluence (Figure 1A). The initial growth of PLC-MSC cultures at passage 0 (P0) consisted of two different heterogeneous populations; one with fibroblast-like morphology and the other with epithelial-like morphology. Upon trypsinisation and sub-cultivation, the epithelial-like population disappeared from the culture and could no longer be found in subsequent passages (Figure 1B). PLC-MSC were successfully cultured and expanded till P15. At early passages, MSC were obtained with well-defined smaller sized spindle shaped cells. However, these features gradually changed at later passages (P15 onwards). PLC-MSC at later passages appeared less defined, larger in size, less adherent and produced more debris in the culture supernatant (Figure 1C).

Expression profile of PLC-MSC

Immunophenotyping of PLC-MSC was performed from P2 to P15. At early passage (P2), more than 90% of PLC-MSC were positive for integrin markers (CD29), mesenchymal markers (CD105 and CD73), CD90 and major histocompatibility class I antigen (MHC I) (Figure 2). All samples showed negative expression for hematopoietic cell markers (CD45 and CD34), co-stimulatory molecules (CD80 and CD86) and major histocompatibility class II antigen (MHC II). RT-PCR showed that PLC-MSC express embryonic stem cell (ESC) transcriptional factors such as Nanog, Sox2, Rex1and Oct4 (Figure 3). Expression of these markers was consistent for the subsequent passages.

PLC-MSC differentiate into mesodermal lineages

MSC were induced for adipogenic, osteogenic and chon-
drogenic differentiation along with standard culture medium as control. Histochemistry evaluation of PLC-MSC in inductive cultures showed their ability to differentiate into adipocytes, osteocytes and chondrocytes (Figure 4A).

Figure 1 Morphology of placenta mesenchymal stem cells primary cultures. A: The formation of heterogeneous populations of placenta mesenchymal stem cells (PLC-MSC) with fibroblastic and epithelioid morphologies at passage 0, P0 until confluence at day 14; B: Homogenous population of PLC-MSC at P1; Disappearance of the epithelioid population and appearance of fibroblast-like cells upon trypsinisation and passaging; C: Comparison of early and late passages of primary MSC cultures (C). Photomicrographs taken using phase contrast microscope at magnification 100×.
Adipogenic induction resulted in formation of lipid vacuoles which stained red with Oil-Red-O, whereas osteogenic induction resulted in deposition of calcium minerals (stained orangy-red with Alizarin Red). Chondrogenic induction resulted in formation of proteoglycans, stained blue by Alcian Blue solution. Images were captured using a phase contrast microscope. RNA analysis confirmed the osteogenic differentiation of PLC-MSC as the cells in osteogenic induction media expressed mRNA for the osteocalcin (OC) and osteopontin (OP) (Figure 4B).

Growth Kinetics analysis of PLC-MSC
Growth kinetics of PLC-MSC at early passage P3 (Figure 5A) showed a shorter lag-phase at day 1-6, followed by a rapid log-phase from day 6-12 until a plateau was reached. On average, the doubling time of PLC-MSC (Figure 5B) was 41 h.

PLC-MSC inhibit stimulated PBMC via cell to cell contact
The effect of PLC-MSC on T-cell proliferation was evaluated by co-culturing MSC with resting or PHA stimulated T lymphocytes and measured by ³H-TdR uptake. As shown in Figure 6, PLC-MSC were unable to stimulate the resting allogenic T cell but inhibited PHA stimulated T cells proliferation in a dose dependent manner. In order to determine the mode of inhibition, PLC-MSC were also co-cultured directly and physically separated by transwell inserts. T cells proliferation was significantly inhibited in direct co-culture whereas in the transwell system the suppression of T cells proliferation was less profound and not statistically significant. Meanwhile, PLC-MSC conditioned media (supernatant) did not suppress the activated T cell proliferation.

DISCUSSION
In this study, we have successfully generated MSC from human placental tissue by using a combination of enzymatic digestion and mechanical dissociation[24]. The method yielded a high number of nucleated cells upon expansion. The MSC population was enriched by plastic adherence as the expansion capacity of MSC are dependent on initial plating densities and plastic source for adhesion[25,26].
The initial primary culture of placenta-derived single cell suspensions gives rise to a heterogeneous population of mainly fibroblast and epithelial-like morphology (Figure 1). This phenomenon, previously reported as a heterogeneous population in primary cultures, might be due to variations in cultivation method such as culture media, growth supplements and other pre-selection criteria\(^{27,28}\). However, endothelial-like cells do not contribute to the proliferation as they failed to proliferate at P0 and were unable to sustain beyond P0 in pre-optimised MSC complete media. Others have also reported that upon trypsinisation and subsequent sub-culture, the fibroblastic cells predominate the primary culture and continued to proliferate\(^{29,30}\). The growth kinetics measured for epithelial-like cell free cultures showed that the early passages of PLC-MSC had rapid growth kinetics and with an average doubling time of PLC-MSC of 41 h (Figure 5). However, the growth kinetics of PLC-MSC at later passage (P15 onwards) was sluggish; consisting of prolonged lag and log phases; taking longer to attain confluence and showing higher doubling time in comparison to the earlier passages (data not shown).

We also evaluated the morphological changes of PLC-MSC throughout the numerous passages. In the early passages, PLC-MSC appeared to be firmly adherent, smaller in size and had a well defined shape. However, this morphology gradually changed as the passages increased. At later passages (P15 onwards), PLC-MSC appeared slightly...
Figure 5 Growth Kinetics of placenta mesenchymal stem cells. Placenta mesenchymal stem cells (PLC-MSC) (4000 cells/well) were plated in 6 well plates and medium was changed three times a week. A: Triplicate cultures were harvested for trypan blue exclusion cell count every 2 d. B: Doubling time of PLC-MSC was measured at every passage (B). Average doubling time of PLC-MSC was 41 h. Figure 5 is representative of 3 individual experiments with S.D, results considered significant at \(P < 0.05 \).

bigger, elongated, less defined, less proliferative and eventually underwent senescence. According to Mareddy et al.\(^3\) and others, MSC cultures undergo senescence upon expansion, as indicated by the slow growth and reduced differentiation ability of MSC even though they still express normal levels of MSC surface markers.\(^3\) In line with this, although the immunophenotype of later passage of PLC-MSC is unchanged (data not shown), continuous growth in culture and trypsinisation may be a major cause for loss of stemness as long term cultures are much inclined to spontaneous differentiation. In view of this, we have utilized PLC-MSC from early passages in our downstream experiments. However, the changes in morphology due to prolonged culture and trypsinisation need to be confirmed using karyotype analysis to determine cellular senescence.

There is no a single marker for depicting MSC. However, as per recommendation from International Society for Cellular Therapy (ISCT), a panel of antibodies was utilised as a minimal criterion to characterise human MSC. Dominici et al.\(^3\) have defined human MSC by immunophenotyping as they co-express CD105, CD73, CD90 while lacking expression for CD45, CD34, CD14 or CD11b, CD79a or CD19 and HLA-DR. Our expanded PLC-MSC cultures met most of these criteria and were non-hematopoietic and non-immunogenic as they did not express CD45, CD80, CD86 and MHC class II (HLA-DR) antigens while they were positive for typical MSC surface antigens (CD105, CD73, CD29, CD90 and MHC class I -Figure 2). Gene expression was found to be similar to that of BM-MSC and other sources of MSC.\(^4,5,21\). PLC-MSC express the distinct surface proteins for MSC and at molecular level they also express ESC markers; Nanog, Sox2, Rex-1 and Oct4 (Figure 3). Similar expression patterns were also reported for chorion and amnion derived MSC.\(^3\) These ESC markers are essential transcriptional factors and are usually expressed by pluripotent cells to maintain their undifferentiated state or “stemness.”\(^33,36\). The intrinsic stemness properties of PLC-MSC, as measured by surface staining and expression of transcription factors at the molecular level, further supports the functional properties of MSC when they directly differentiated into osteoblasts, adipocytes and chondrocytes (Figure 4). These findings suggest...
that MSC derived from placenta tissues can give rise to mesodermal lineages, comparable to other sources of MSC\(^{[27,38]}\). However, the utilization of early passage of PLC-MSC is desirable as PLC-MSC are subject to cellular ageing.

Despite the normal expression of MHC class I, PLC-MSC failed to stimulate the proliferation of resting allogenic T cells. The hypo-immunogenicity of PLC-MSC may be due to the lack of MHC class II and co-stimulatory molecule (CD80 and CD86) expression which prevents them from presenting antigens to allogenic T cells. Nevertheless, the proliferation of PHA stimulated T cells was found to be dramatically inhibited in a dose dependent manner when co-cultured with MSC at various ratios. A similar inhibitory pattern was observed in human bone marrow derived MSC\(^{[29]}\). Although the transwell experiments exclude the role of soluble factors in PLC-MSC mediated immunosuppression, a noticeable yet non-significant inhibition caused by the autocrine effect of PLC-MSC secreting inflammatory cytokines in the presence of activated T cells. However, this contradicts other studies where soluble factors were also found to inhibit T cells profoundly\(^{[28,30]}\).

In conclusion, our study has indicated that, upon successful expansion, PLC-MSC exhibit similar mesenchymal cell surface markers, an MSC-like gene expression pattern and MSC-like differentiation potential similar to other sources of MSC. This study indicates that placenta tissues have the potential to serve as an alternative to bone marrow as a source of MSC for future use experimental and clinical applications.

COMMENTS

Background

Mesenchymal stem cells (MSC) have been widely studied for their therapeutic use in regenerative medicine and immune related disorders. Although MSC can be derived from virtually all tissues human delivery waste tissue (placenta) represents an ideal source for MSC due to its unlimited availability and freedom from ethical concerns. In this study, MSC from human placenta tissues were generated and characterised by immunophenotyping, early embryonic gene expression and proliferation. Immunosuppression which also demonstrated the feasible use of these cells as an alternative to the bone marrow derived MSCs, thus meeting its objective. Overall, these data are convincing in that the cells the authors isolated are most likely MSCs.

Research frontiers

MSC have attracted tremendous interest in repairing tissue injuries and dampening the inflammatory response in many disease models. It has been shown that MSC have an inherent ability to home to inflammatory sites, promising great potential for targeted tissue repair and wound healing. Thus, finding an alternative source of MSC that has less ethical concerns and a continuous supply may spur the use of MSC in therapeutic applications.

Innovations and breakthroughs

In previous studies, MSC were generated using conventional enzymatic digestion giving a low yield of single cells which took a long time to develop into adherent cells. However, in this article, placenta was processed by a mechanical dissociation method and followed by a typical enzymatic digestion. The number of single cells generated by this method was extremely high and a shorter period was required for colony formation. The authors have also characterised MSC of placental origin according to all relevant parameters (surface marker expression, mesodermal differentiation, early embryonic gene expression and immunosuppression).

Applications

This study suggests the feasibility of utilising placenta-derived MSC for clinical application in regenerative medicine. Furthermore, it also confirmed the presence of MSC in human placenta.

Terminology

PLC-MSC: MSC that derived from human placenta; T cell proliferation: Human T lymphocytes activated with mitogen and their cell division is measured by initiated thymidine uptake.

Peer review

In this paper the authors demonstrate the feasibility of MSC derived from human placenta tissue, as an alternative to the bone marrow derived MSC. The authors show that the cells they isolated have features typical for MSCs. These features include the expression of CD105, CD73 and CD90, the deficiency of CD45 and CD34 as well as the ability to differentiate to adipocytes and osteocytes. The authors also demonstrate that, in line with the notion that MSC act immunosuppressively, these cells have the potential to inhibit the proliferation of PHA-stimulated T-cells. The experimental design is simple and essential, and does demonstrate the feasible use of these cells as an alternative to the bone marrow derived MSCs, thus meeting its objective. Overall, these data are convincing in that the cells the authors isolated are most likely MSCs.

REFERENCES

1. Minguell JJ, Conget P, Erices A. Biology and clinical utilization of mesenchymal progenitor cells. *Braz J Med Biol Res* 2000; 33: 881-887
2. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I. The role of mesenchymal stem cells in haemopoiesis. *Blood Rev* 2006; 20: 161-171
3. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. *Stem Cells* 2004; 22: 649-658
4. Erices A, Conget P, Minguell J. Mesenchymal progenitor cells in human umbilical cord blood. *Br J Haematol* 2000; 109: 235-242
5. Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? *Placenta* 2009; 30: 2-10
6. Bacenková D, Rosocha J, Tóthová T, Rosocha L, Šarrisová M. Isolation and basic characterization of human term amnion and chorion mesenchymal stromal cells. *Cytotaxonomy* 2011; 13: 1047-1056
7. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Has- san M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. *Lancet* 2004; 363: 1439-1441
8. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisantti S, Giani AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. *Blood* 2002; 99: 3838-3843
9. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F. The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. *Cell Immunol* 2008; 251: 131-136
10. Maqboul M, Vidyadaran S, George E, Ramasamy R. Human mesenchymal stem cells protect neutrophils from serum-deprived cell death. *Cell Biol Int* 2011; 35: 1247-1251
11. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. *Transplantation* 2007; 83: 71-76
12. Belyt S, Borovoy Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. *Blood* 2005; 105: 2214-2219
13. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. *Exp Hematol* 2002; 30: 42-48
14 Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells impact on in vivo tumor growth. Leukemia 2007; 21: 304-310
15 Sarmadi VH, Tong CK, Vidyadaran S, Abdullah M, Seow HF, Ramasamy R. Mesenchymal stem cells inhibit proliferation of lymphoid origin haematopoietic tumour cells by inducing cell cycle arrest. Med J Malaysia 2010; 65: 209-214
16 Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F. Reduced chondrogenic and adipogetic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 2002; 46: 704-713
17 Imitola J, Raddassi K, Park KL, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 2004; 101: 18117-18122
18 Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105: 93-98
19 Deb A, Wang S, Skelding KA, Miller D, Simper D, Caplice NM. Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation 2003; 107: 1247-1249
20 Mezey E, Key S, Vogelsang G, Szalayova I, Lange GD, Crain B. Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 2003; 100: 1364-1369
21 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147
22 Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev 2001; 122: 713-734
23 Ayusawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D, Tamura M. Naïve human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett 2009; 280: 31-37
24 Tong CK, Vellasamy S, Tan BC, Abdullah M, Vidyadaran S, Seow HF, Ramasamy R. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol Int 2011; 35: 221-226
25 Sotiropoulou PA, Perez SA, Salagianni M, Bavezanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 2006; 24: 462-471
26 Schallmoser K, Bartmann C, Rohde E, Reinisch A, Kashefer K, Stadelmeyer E, Drexler C, Lanzger W, Linkesch W, Strunk D. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transplantation 2007; 47: 1436-1446
27 Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC. A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 2010; 1: 8
28 Carrancio S, López-Holgado N, Sánchez-Guijo FM, Villarón E, Barbado V, Tabera S, Diez-Campeo M, Blanco J, San Miguel JF, Del Canizo MC. Optimization of mesenchymal stem cell expansion procedures by cell separation and culture conditions modification. Exp Hematol 2008; 36: 1014-1021
29 Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M, Shun CT, Yen ML, Lee MC, Chen YC. Isolation of multipotent cells from human term placenta. Stem Cells 2005; 23: 3-9
30 Miao Z, Lin J, Chen L, Zhu J, Huang W, Zhao J, Qian H, Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006; 30: 681-687
31 Mareddy S, Crawford R, Brooke G, Xiao Y. Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Eng 2007; 13: 819-829
32 Halleux C, Sottile V, Gasser JA, Seuwen K. Multi-lineage potential of human mesenchymal stem cells following clonal expansion. J Musculoskelet Neuronal Interact 2001; 2: 71-76
33 Dominici M, Le Blanc K, Mueller L, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 515-517
34 Rus Ciucci D, Sorajja O, Sułman S, Pop VI, Mihu CM. Isolation and characterization of chorionic mesenchymal stem cells from the placenta. Rom J Morphol Embryol 2011; 52: 803-808
35 Shi W, Wang H, Pan G, Geng Y, Guo Y, Pei D. Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem 2006; 281: 2319-2325
36 Hyslop I, Stojkovic M, Armstrong L, Walter T, Stojkovic P, Przyborski S, Herbert M, Murdoch A, Strachan T, Lako M. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 2005; 23: 1035-1043
37 Brooke G, Rossetti P, Pelekanos R, Ilic N, Murray P, Hancock S, Antonenas V, Huang G, Gottlieb D, Bradstock K, Atkinson K. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Br J Haematol 2009; 144: 571-579
38 Jones BJ, Brooke G, Atkinson K, McGTaggart SJ. Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta 2007; 28: 1174-1181
39 Yang SH, Park MJ, Yoon H, Kim SY, Hong SH, Shin JY, Nam HY, Kim YH, Kim B, Park CG. Soluble mediators from mesenchymal stem cells suppress T cell proliferation by inducing IL-10. Exp Mol Med 2009; 41: 315-324

S- Editor Wang JL L- Editor Hughes D E- Editor Zheng XM