Calibrating Antarctic ice sheet mass loss due to millennial-scale ocean thermal forcing

Gavin Piccione (gpiccion@ucsc.edu)
University of California, Santa Cruz

Terrence Blackburn
University of California, Santa Cruz https://orcid.org/0000-0003-0029-0709

Slawek Tulaczyk
University of California, Santa Cruz https://orcid.org/0000-0002-9711-4332

Troy Rasbury
Stony Brook University https://orcid.org/0000-0003-0591-4461

Mathis Hain
University of California, Santa Cruz https://orcid.org/0000-0002-8478-1857

Daniel Ibarra
University of California, Berkeley https://orcid.org/0000-0002-9980-4599

Katharina Methner
Senckenberg https://orcid.org/0000-0002-3753-8256

Chloe Tinglof
University of California, Santa Cruz

Brandon Cheney
University of California, Santa Cruz

Paul Northrup
Stony Brook University

Kathy Licht
Indiana University Purdue University Indianapolis

Physical Sciences - Article

Keywords: Antarctic ice sheet, Pleistocene, ice sheet thickness, millennial-scale climate forcing

Posted Date: August 24th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-820445/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Calibrating Antarctic ice sheet mass loss due to millennial-scale ocean thermal forcing

Authors: G. Piccione1*, T. Blackburn1, S. Tulaczyk1, E.T. Rasbury2, M. Hain1, D.E. Ibarra3, K. Methner4, C. Tinglof1, B. Cheney1, P. Northrup2, K. Licht5

1Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
2Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA.
3Department of Earth and Planetary Science, University of California Berkeley, CA 94720 USA
4Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
5Department of Earth Sciences, Indiana University-Purdue University Indianapolis, IN 46202, USA

*Correspondence to: gpiccion@ucsc.edu

Throughout the Late Pleistocene, millennial-scale cycles in the rate of poleward heat transport resulted in repeated heating and cooling of the Southern Ocean. Ice sheet models suggest that this variation in Southern Ocean temperature can force fluctuations in the mass of the Antarctic ice sheet that transiently impact sea level by up to 15 meters. However, current geologic evidence for Antarctic ice response to this ocean thermal forcing is unable to calibrate these models, leaving large uncertainty in how Antarctica contributes to sea level on millennial timescales. Here we present a >100kyr archive of East Antarctic Ice Sheet response to Late Pleistocene millennial-scale climate cycles recorded by transitions from opal to calcite in subglacial precipitates. \(^{234}\text{U-230}\text{Th}\) dates for two precipitates define a time series for 32 mineralogic transitions that match Antarctic climate fluctuations, with precipitation of opal during cold periods and calcite during warm periods. Geochemical evidence indicates opal precipitation via cryoconcentration of silica in subglacial water and calcite precipitation from the admixture of meltwater flushed from the ice sheet interior. These freeze-flush cycles represent changes in subglacial hydrologic-connectivity driven by ice sheet thickness response to Southern Ocean temperature oscillations around the Ross Embayment. Changes in Ross Embayment ice mass require high ocean-ice heat exchange, and would occur only after retreat of the West Antarctic Ice Sheet and large portions of the East Antarctic Ice sheet margin. These results point to high Antarctic ice sheet sensitivity to millennial-scale ocean thermal forcing throughout the Late Pleistocene, and when combined with modeling results, predict that an Antarctic ice volume of at least 2–5 meters sea level equivalent is vulnerable to millennial-scale climate forcing.
proxy records indicate that variations on the order of 20m occur on millennial timescales, and in some cases these fluctuations match the Antarctic climate rhythm, implying that the AIS may have exerted considerable control on sea level within these timeframes. Modern observations of ice shelf thinning and ice sheet mass loss from the margins of both the West and East Antarctic Ice Sheets (WAIS and EAIS) suggest that the processes leading to rapid AIS sea level input may currently be underway.

Ice sheet simulations demonstrate the potential for AIS mass fluctuations on short timescales through perturbation of buttressing ice shelves brought on by changing Southern Ocean (SO) temperature (hereafter referred to as ocean thermal forcing). Millennial-scale SO temperature oscillations are driven by the rate of Atlantic Meridional Overturn Circulation (AMOC), which is responsible for cross-equatorial heat transport from the Southern Hemisphere to the Northern Hemisphere (SH and NH). Changes to the intensity of AMOC result in inverse interhemispheric temperature cycles recorded by isotopic climate proxies in polar ice cores, termed Dansgaard-Oeschger cycles in the Greenland and Antarctic Isotope Maxima (AIM) events in Antarctica. For example, during times of decreased AMOC or slow northerly transport of heat — e.g., 48 and 47ka in figure 1a, c — the SH temperature increases at the expense of NH, which is manifested as an increase in the δ18O composition in Antarctic ice cores and a decrease in δ18O composition in Greenland ice cores. As the AMOC circulation recovers — e.g., at 46.7ka in figure 1a, c — the NH temperature warms rapidly on decadal timescales while the SH gradually cools. This “bipolar seesaw” results in Antarctic atmospheric temperature shifts of only 1-2°C, but feedback between AMOC and the strength of the SH westerly winds causes significant fluctuations in the SO temperature structure by modulating the upwelling rate of warm circumpolar deep waters around the AIS.

Regional differences in ice bed topography, drainage geometry, and thickness of Antarctica lead to geographic variations in grounding line vulnerability to ocean thermal forcing. For example, numerical experiments indicate that major drainages of ice grounded below sea level in the Weddell Sea and Prydz Bay Embayments respond sensitively to even modest ocean temperature increases, while significant ice loss from the Ross Embayment and the EAIS margins require greater thermal forcing (Extended Data Fig. 1). In models simulating AIS response to temperature changes in the Southern Ocean, the majority of this sensitivity difference is expressed in the parameter describing heat exchange between the ocean and the ice sheet, which represents one of the largest sources of uncertainty in projections of Antarctic behavior during centennial to millennial-scale climate change. Geologic evidence of millennial-scale AIS evolution could calibrate this heat exchange parameter by describing what regions of the ice sheet lost or gained ice mass following a change in ocean temperature. However, existing records are limited to the highly sensitive Weddell Sea sector, and therefore cannot confirm a change in mass from the less sensitive Antarctic sectors, which make up the majority of the AIS margin. Given this lack of geologic constraint on millennial-scale AIS response to Southern Ocean temperature fluctuations, best estimates for Antarctic contribution on these timescales is between 0 and 15 meters sea level equivalent. Therefore, a long-term, high-resolution record of AIS evolution from a less temperature-sensitive ice sheet sector, as we document here, will improve our ability to constrain the broader Antarctic contribution to sea level on suborbital timescales and will help to parameterize projections of future AIS mass loss.

East Antarctic Ice Sheet Subglacial Hydrologic Response to Southern Ocean Temperature

In this study, we present observations from a novel archive of subglacial thermal and hydrologic evolution recorded by chemical precipitates that formed beneath the EAIS. These samples are deposited in aqueous systems beneath the ice sheet on the EAIS side of the Transantarctic mountains (TAM), and are transported to the surface in basal ice, which erodes them from subglacial environments and deposits them in supraglacial moraines. Results are presented here from two samples: PRR50489 formed in the David Glacier catchment and was exhumed at Elephant Moraine, and MA113 formed beneath ice feeding Law Glacier and was exhumed at the Mount Achernar moraine (Fig. 2). These precipitates are 3 and 9cm thick respectively, with alternating layers of calcite and opal indicating cyclic change in the subglacial waters (Extended Data Fig. 2).

We measured 234U-230Th ages on eleven opal layers from PRR50489 that constrain the timeframe of precipitation from 230 to 147ka (Fig. 1i), and five opal and calcite layers from MA113 ranging in age
from 55 to 42ka (Fig. 1f). Depth profiles of Si and Ca concentration, collected using Energy Dispersive X-ray Spectroscopy, provide a continuous representation of sample mineralogy: with high Ca areas representative of calcite and low Ca areas representative of opal. We construct depositional age models for each sample by using linear interpolation between dated layers, and pair these age-models with Ca concentration to create timeseries describing the oscillations of precipitate mineralogy. Mineralogic timeseries reveal a temporal cyclicity in opal deposition, with PRR50489 containing opal layers precipitated every 8-10kyr between marine isotope stages (MIS) 7 and 6, and MA113 containing opal layers precipitated every 2-4kyr during MIS 3. To investigate a possible link between cycles of precipitate mineralogy and climate, we compare mineralogic timeseries for each precipitate (Fig. 1f, i) with climate proxies in both Antarctic17,22 (Fig. 1a,b) and Greenland23 (Fig. 1c) ice cores. Comparison between the Ca-spectra and Antarctic temperature proxies shows a strong similarity, with calcite formation (high Ca wt%) during warm AIM peaks, and opal formation (low Ca wt%) during Antarctic cold periods (Fig. 1). These data indicate that thermal and hydrologic conditions beneath the EAIS respond to bipolar-seesaw-driven Antarctic climate cycles on sub-orbital timescales.

To understand the link between ocean-atmosphere-cryosphere teleconnections and the composition of subglacial waters, we first utilize geochemical and isotopic measurements to characterize the waters from which opal and calcite originate. Figure 3 shows the carbon and oxygen isotopic compositions of opal and calcite forming waters for PRR50489 (Fig. 3a) and MA113 (Fig. 3b), which provide evidence that opal and calcite form from two different subglacial fluids. The oxygen isotopic compositions (\(\delta^{18}O_{SMOW}\)) of opal and calcite forming waters are distinctly different, with calcites forming from waters with extremely depleted \(\delta^{18}O\) (<-50 \%), and opals forming from waters with \(\delta^{18}O\) values up to 7 \% more enriched (Fig. 3). Another distinguishing characteristic of opal and calcite forming waters are their cerium anomalies (Ce*), a proxy for redox conditions3 (Extended Data Fig. 3c). In both samples, Ce* correlates with sample mineralogy, with calcite Ce* values indicating precipitation from oxidizing waters (Ce*<1), while the most \(^{18}O\) enriched opals exhibit Ce* values indicating precipitation from reduced waters (Ce*>1) (Fig. 3). In most cases, \(\delta^{18}O\) opal values scale with Ce*, suggesting that mixing between oxidized and reducing water occurs during the formation of both minerals (Fig. 3). Calcite in both precipitates has \(\delta^{13}C\) and \(\delta^{18}O\) compositions that define a trend consistent with formation by mixing between two endmember fluids (Fig. 3). To match the trends in the calcite data for PRR50489 and MA113, one endmember fluid must have ~97\% and ~80\% of the total carbon in the system, indicating that the calcite forming water is carbon-rich and isotopically light with respect to carbon and oxygen. The depleted \(\delta^{18}O\) compositions of this endmember suggest derivation from meltwaters generated beneath the EAIS interior, as similarly depleted \(\delta^{18}O\) values are found only in ice from the high polar plateau25,26. Depleted \(\delta^{13}C\) compositions (-23 \% for PRR50489 and -18 \% for MA113) and high carbon concentration of calcite forming subglacial waters suggest that their carbon is sourced from subglacial organic matter that is oxidized during microbial respiration, consistent with observations beneath the EAIS27. Together, redox and isotopic data support the idea that calcite precipitating fluid is a glacial meltwater derived from beneath the EAIS. The heaviest \(\delta^{18}O\) compositions of the opal endmember fluid (~46.15\% for PRR50489 and -52.10\% for MA113) suggest that these waters originate closer to the ice sheet margin, and they match the \(\delta^{18}O\) of ice proximal to the region where samples were exhumed25,28. Mixing model results require that the \(\delta^{13}C\) of opal forming waters is heavier (~0 \%) and the carbon concentration is much lower than in the calcite forming meltwater. Similar mixing relationships between \(^{87}Sr/^{86}Sr\) and \(\delta^{18}O\) place ~98\% - 99\% of the total Sr in the opal forming waters, an observation supporting opal formation from a highly concentrated water, and calcite formation from a relatively dilute meltwater (Extended Data Fig. 10). The strontium and calcium concentrations in natural waters scale with one another29 due to their similar geochemical behavior. As such, \(^{87}Sr/^{86}Sr\) and \(\delta^{18}O\) mixing relationships demonstrate that 98 – 99% of both strontium and calcium are sourced from the opal forming water, while the calcite forming fluid is relatively dilute. Collectively, low carbon and high calcium concentration, heavy \(\delta^{13}C\) composition and reduced Ce* signature support the idea that opal layers precipitate from a subglacial brine. Candidate compositions for opal forming waters that are observed in the modern ice sheet include CaCl\textsubscript{2} brines that emanate from beneath the EAIS within the McMurdo Dry Valleys (MDV)30. In addition to being reduced31, \(\delta^{13}C\) heavy, carbon poor and calcium rich, the bulk REE
and 234U/238U of MDV brines32,33, match opal compositions from subglacial precipitates (Extended Data Fig. 4) and X-Ray florescence microprobe images show high abundance of Cl$^-$ in opal layers (Extended Data Fig. 5). In contrast, the high carbon and low calcium concentrations, extremely depleted δ13C and δ18O compositions, and oxidized Ce* signature indicate calcite forming are close in composition to glacial meltwaters originating beneath the high domes of East Antarctica. Subglacial water measurements from the EAIS are few, but one candidate water is the high carbon, low salinity jökulhlaup water measured at Casey Station34, which flush from subglacial lakes beneath Law Dome, and, like the precipitates studied here, produced subglacial calcite coincident with a 72 ka AIM warm period35.

We use the water speciation program PHREEQC36 to explore the conditions under which precursory waters precipitate opal during cold periods and calcite during warm periods, while matching geochemical conditions identified in the aforementioned analyses (see Methods for full description of PHREEQC models). Monomineralic opal layers represent periods of amorphous Si saturation, which can occur in subglacial environments due to cryoconcentration37,38. Extended Data figure 6 shows a set of PHREEQC simulations that demonstrate opal saturation during freezing of a CaCl$_2$ brine, while the deficiency of carbon in the brine precludes calcite precipitation. Since geochemical data suggest calcite precipitation from an oxidized, carbon-rich, and isotopically distinct glacial meltwater, we explore conditions under which calcite saturates upon mixing of opal-forming brine with plausible compositions of EAIS basal meltwater. Mixing the Casey Station meltwater with opal-forming brines, we identify a strong supersaturation in calcite over a broad range of mixing proportions (Extended Data Fig. 7), and a cessation of opal precipitation consistent with discrete calcite pulses during mixing. This model predicts that calcite precipitation occurs immediately upon addition of meltwater to brine, while there could be a significant lag in opal precipitation as the aqueous system transitions to basal freezing and cryoconcentration and in time becomes saturated with opal. Indeed, we may be seeing the effects of this lag in the comparison between climate cycles and precipitate mineralogy, where nearly all warming events have a corresponding calcite layer (e.g., 180 and 190ka), while some particularly short-lived cold events (<4kyr duration) do not have a detectable corresponding opal layer (e.g., 163 and 173 ka).

Collectively, the results presented here indicate that two chemical precipitates, separated by ~900km and deposited tens of thousands of years apart, form as a consequence of subglacial hydrologic cycles that match the patterns of Antarctic temperature changes, implying a link between AIS basal conditions and Antarctic climate. More specifically, the site of precipitate formation oscillates between the freezing of local brines sourced from the proximity of the TAM during cold periods, and the influx of far field EAIS meltwaters during warm periods. Predictions for subglacial thermal conditions39 indicate that large portions of the EAIS are at, or near, the pressure melting point, with widespread meltwaters in the ice sheet interior. In areas on the ice sheet edges, thinner ice permits pervasive basal freezing. Although the exact locations of sample formation are unknown, based on the sample collection sites (Fig. 2) and the short travel distance of most glacial sediment40, the most parsimonious explanation is that these chemical precipitates formed close to the boundary between basal melting and freezing regimes which exists where the ice sheet thins as it encroaches on the TAM39 (Extended Data Fig. 8). We thus propose that the cycles of basal melting and freezing interpreted from our opal-calcite precipitates are the result of migrations of this thermal and hydrologic boundary, causing changes in the connectivity between waters from the interior and edge of the ice sheet following millennial-scale climate cycles (Extended Data Fig. 8). Below, we explore a mechanism for these subglacial freeze-flush cycles.

Millennial-Scale Ice Sheet Thickness Changes Driven by Ocean Thermal Forcing

The key finding from our subglacial precipitate archive is that millennial-scale ocean-atmosphere- cryosphere teleconnections cause a hydrologic response beneath the EAIS where AIM warm phases drive increased melting and enhanced hydrologic connectivity between the ice sheet margin and interior. Subsequent AIM cold phases then promote expansion of subglacial freezing beneath the margin causing the subglacial aqueous system at the ice sheet edge to become hydrologically isolated from the ice sheet interior. We investigate how climate cycles may drive subglacial hydrologic change using a reduced complexity model of ice sheet thermodynamics, which simulates basal melting and freezing rates (see...
This finding has implications for assessment of future mass loss from Antarctica triggered by ongoing anthropogenic warming and for interpretation of distal evidence for sea-level high stands during Quaternary warm climate periods.

The periodic ice thickness change in regions adjacent to our sample locations suggested by our precipitate record corroborate models showing regional-scale ice volume fluctuations during periods of Antarctic millennial-scale climate variability. The driving mechanism for ice mass fluctuation on these timescales is generally regarded to be grounding line migration stemming from subsurface melting of ice shelves. During AIM cold periods, grounded ice advances towards the continental shelf edge. As the bipolar seesaw takes effect, the ocean-atmosphere teleconnection between slowing AMOC and strengthening SH westerly winds drive upwelling of warm circumpolar intermediate waters, which contact the base of the Antarctic ice shelves and accelerate melting. This ocean-driven reduction in ice shelf thickness reduces back stress and enhances grounding line ice discharge generating instability and retreat, resulting in enhanced shear stress and consequent melting at the ice sheet base. Comparison between SO sea surface temperature and our subglacial precipitate record shows a similar pattern of millennial-scale variability, corroborating the idea that bipolar seesaw driven SO temperature changes cause ice sheet thickness variations during AIM cycles. Therefore, we conclude that the freeze-flush cycles that lead to opal-calcite cycles in subglacial precipitates reflect ocean-forced AIS thickness changes (Fig. 2).

Simulations of AIS sea level contribution during millennial-scale climate cycles suggest that SO warming can lead to Antarctic input ranging from 0 to 15 m depending on SO temperature, the duration of warming, and the heat flux between the ocean and ice sheet. Model outputs predict spatial variability in ice sheet thickness changes and grounding line flux depending on these three variables (Fig. 2). On the basis of the Ross Embayment grounding line retreat implicit in our results, as well as recently published records of SO sea surface temperature and our subglacial precipitate record shows a similar pattern of millennial-scale variability, corroborating the idea that bipolar seesaw driven SO temperature changes cause ice sheet thickness variations during AIM cycles. Therefore, we conclude that the freeze-flush cycles that lead to opal-calcite cycles in subglacial precipitates reflect ocean-forced AIS thickness changes (Fig. 2).

Throughout the Pleistocene, global sea level has fluctuated by >100 m predominantly due to orbital forcing. Within our current interglacial, sea level fluctuations of this magnitude pose no immediate threat on human timescales, but there remains a possibility that the AIS will respond to more abrupt climate events. Here we show that over the past ~230kyr, millennial-scale ocean temperature fluctuations caused periodic widespread Antarctic ice loss and regrowth. Our results reveal millennial-scale ice sheet thinning in the Ross Sea Embayment, which provides constraints on the magnitude of heat-exchange between the
Southern Ocean and the AIS. Based on these this new calibration, we estimate an Antarctic sea level input equivalent to 2–5 m during AIM cycles. The >100kyr temporal constraints provided by this novel paleoclimate archive provide the first evidence that the AIS has responded to millennial-scale ocean thermal forcing outside of the last glacial termination, implying that the majority of the Antarctic margins is vulnerable to this forcing during the next millennia.
References:

1. Anderson, H. J., Pedro, J. B., Bostock, H. C., Chase, Z. & Noble, T. L. Compiled Southern Ocean sea surface temperatures correlate with Antarctic Isotope Maxima. *Quat. Sci. Rev.* **255**, 106821 (2021).

2. Blasco, J., Tabone, I., Alvarez-Solas, J., Robinson, A. & Montoya, M. The Antarctic Ice Sheet response to glacial millennial-scale variability. *Clim. Past* **15**, 121–133 (2019).

3. Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. *Nature* **458**, 329–332 (2009).

4. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. *Nature* **531**, 591–597 (2016).

5. Dutton, A. *et al.* Sea-level rise due to polar ice-sheet mass loss during past warm periods. *Science (80-.).* **349**, (2015).

6. Fretwell, P. *et al.* Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. *Cryosphere* **7**, 375–393 (2013).

7. Wilson, D. J. *et al.* Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. *Nature* **561**, 383–386 (2018).

8. Grant, K. M. *et al.* Sea-level variability over five glacial cycles. *Nat. Commun.* **5**, (2014).

9. Rohling, E. J. *et al.* Antarctic temperature and global sea level closely coupled over the past five glacial cycles. *Nat. Geosci.* **2**, 500–504 (2009).

10. Pritchard, H. D. *et al.* Antarctic ice-sheet loss driven by basal melting of ice shelves. *Nature* **484**, 502–505 (2012).

11. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the thwaites glacier basin, West Antarctica. *Science (80-.).* **344**, 735–738 (2014).

12. Roberts, J. *et al.* Ocean forced variability of Totten Glacier mass loss. *Geol. Soc. Spec. Publ.* **461**, 175–186 (2018).

13. Rignot, E. *et al.* Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. *Nat. Geosci.* **1**, 106–110 (2008).

14. Joughin, I., Alley, R. B. & Holland, D. M. Ice-Sheet Response to Oceanic Forcing. *Science (80-.).* **338**, 1172–6 (2013).

15. Crowley, T. J. North Atlantic Deep Water Cools the Southern Hemisphere. *Paleoceanography* **7**, 489–497 (1992).

16. Pedro, J. B. *et al.* Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. *Quat. Sci. Rev.* **192**, 27–46 (2018).

17. Jouzel, J. *et al.* Orbital and millennial antarctic climate variability over the past 800,000 years. *Science (80-.).* **317**, 793–796 (2007).

18. Toggweiler, J. R. & Samuels, B. Effect of drake passage on the global thermohaline circulation. *Deep. Res. Part I* **42**, 477–500 (1995).

19. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. *Nat. Geosci.* **5**, 171–180 (2012).

20. Fogwill, C. J., Turney, C. S. M., Golledge, N. R., Etheridge, D. M. & Rubino, M. Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination. *Nature* **1–10** (2017). doi:10.1038/srep39979

21. Weber, M. E. *et al.* Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. *Nature* **510**, 134–138 (2014).

22. Members, W. D. P. Precise interpolar phasing of abrupt climate change during the last ice age. *Nature* **520**, 661–665 (2015).

23. Andersen, K. K. *et al.* High-resolution record of Northern Hemisphere climate extending into the last interglacial period. *Nature* **431**, 147–151 (2004).

24. German, C. R. & Elderfield, H. Application of the Ce anomaly as a paleoredox indicator: The ground rules. *Paleoceanography* **5**, 823–833 (1990).

25. Graly, J. A., Licht, K. J., Kassab, C. M., Bird, B. W. & Kaplan, M. R. Warm-based basal sediment
entrainment and far-field Pleistocene origin evidenced in central Transantarctic blue ice through stable isotopes and internal structures. J. Glaciol. 64, 185–196 (2018).

26. Landais, A., Barkan, E. & Luz, B. Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett. 35, 1–5 (2008).

27. Yan, Y. et al. Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature 574, (2019).

28. Masson-Delmotte, V. et al. A review of antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling. J. Clim. 21, 3359–3387 (2008).

29. McNutt, R. H., Frape, S. K., Fritz, P., Jones, M. G. & MacDonald, I. M. The 87Sr/86Sr values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim. Cosmochim. Acta 54, 205–215 (1990).

30. Toner, J. D. & Sletten, R. S. The formation of Ca-Cl-rich groundwaters in the Dry Valleys of Antarctica: Field measurements and modeling of reactive transport. Geochim. Cosmochim. Acta 110, 84–105 (2013).

31. De Carlo, E. H. & Green, W. J. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim. Cosmochim. Acta 66, 1323–1333 (2002).

32. Lyons, W. B. et al. The Geochemistry of Englacial Brine From Taylor Glacier, Antarctica. J. Geophys. Res. Biogeosciences 124, 633–648 (2019).

33. Lyons, W. B. et al. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Appl. Geochemistry 32, 26–36 (2013).

34. Goodwin, I. D. The nature and origin of a jokulhlaup near Casey Station, Antarctica. J. Glaciol. 34, 95–101 (1988).

35. Goodwin, I. D. et al. Modern to Glacial age subglacial meltwater drainage at Law Dome, coastal East Antarctica from topography, sediments and jökulhlaup observations. Geol. Soc. Spec. Publ. 461, 215–230 (2018).

36. Parkhurst, D. L. & Appelo, C. a. J. Description of Input and Examples for PHREEQC Version 3 — A Computer Program for Speciation , Batch-Reaction , One-Dimensional Transport , and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43, 497 p. U.S. Geol. Surv. Tech. Methods, B. 6, chapter A43 6-43A (2013).

37. Hallet, B. Deposits formed by subglacial precipitation of CaCO3. Bull. Geol. Soc. Am. 87, 1003–1015 (1976).

38. Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L. & Lorrain, R. Segregation of solutes and gases in experimental freezing of dilute solutions: Implications for natural glacial systems. Geochim. Cosmochim. Acta 62, 3637–3655 (1998).

39. Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet / ice stream model. Earth Planet. Sci. Lett. 295, 451–461 (2010).

40. Clark, P. U. Subglacial Sediment Dispersal and till Composition. J. Geol. 95, 527–541 (1987).

41. Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–684 (2018).

42. Bahr, D. B., Pfeffer, W. T. & Kasar, G. A review of volume-area scaling of glaciers. Rev. Geophys. 53, 95–140 (2014).

43. Schoof, C. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, 1–19 (2007).

44. Steig, E. J. et al. Wionsinan and Holocene climate history from an ice core at Taylor Dome, western Ross embayment, Antarctica. Geogr. Ann. Ser. A Phys. Geogr. 82, 213–235 (2000).

45. Grootes, P. M. et al. The Taylor Dome Antarctic 18O record and globally synchronous changes in climate. Quat. Res. 56, 289–298 (2001).

46. Veres, D. et al. The Antarctic ice core chronology (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 9, 1733–1748 (2013).

47. Phillips, D. L. & Koch, P. L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125 (2002).
Fig. 1 | Comparison of precipitate mineralogy with climate records. Polar temperature records from a. West Antarctic Divide Ice Core (WDC)22. Our reduced complexity model of ice thermodynamics for sample MA113 is forced by ice thickness changes calculated as a linear function of the WDC isotopic record, with scale on the right y-axis. b. Taylor Dome Ice Core (TDC)44,45 c. Northern Greenland Ice Core Project (NGRIP)23. d. Southern Ocean sea surface temperature anomalies from stacked drill core records1. e. Reduced complexity ice sheet model output of basal heat budget over the time frame of sample MA113 in units of mm/year of equivalent basal freezing rate. Negative values indicate freezing. Positive values correspond to basal melt but are truncated at 0 mm/year. f. Subglacial precipitate sample MA113 Ca
concentration. Two versions of the record between 46.5ka and 52ka are shown: one based on opal and calcite accumulation rate (orange), and the second based on linear interpolation between 234U-230Th ages (grey dashed). g. δD record from EPICA Dome C Ice Core (EDC)17,46. To highlight bipolar-seesaw-related temperature fluctuations, the EDC record is detrended and converted to a z-score by zero-mean normalization to eliminate orbital trends. Forcing for our reduced complexity model of ice thermodynamics is provided by ice thickness changes calculated as a linear function of the EDC isotopic record, with scale on the right y-axis. h. As in e over the time frame of sample PRR50489. Reduced complexity model output of basal heat budget over the time frame of sample PRR50489 in units of mm/year of equivalent basal freezing rate. Negative values indicate freezing. Positive values correspond to basal melting but are truncated at 0 mm/yr. i. Subglacial precipitate sample PRR50489 Ca concentration. High values in precipitate records represent calcite precipitation; low values represent opal precipitation. Markers above f and i show locations of 234U-230Th ages with 2σ uncertainties; square markers represent calcite ages; circles represent opal ages. Records in e, d, and g are synchronized to AICC2012 chronology; the record in a is synchronized WD2014 chronology, the record in b is visually tuned to match the record in a. Isotope ratios are on the VSMOW (Vienna Standard Mean Ocean Water) scale. Marine Isotope substages are marked in grey and labeled. AIM events are marked in yellow and numbered. Yellow areas represent millennial-scale warm periods, white areas represent cold periods.
Fig. 2 | Antarctic Ice Sheet Thickness Change between Cold and Warm Climate Phases. Contour map of the change in ice sheet thickness between millennial-scale cold periods and warm periods in 100 m intervals. Darker areas are thinner during warm periods and thicker during cold periods. Markers indicate locations of spectra shown in figure 2. Sample locations occur adjacent to areas that experience >100 m thickness change during these timeframes. Yellow line delineates the grounding line during millennial cold period. Ice core locations shown as squares; precipitate locations shown as circles. Ice core abbreviations as in figure 1.
Fig. 3 | Stable isotope mixing models for precipitates PRR50489 and MA113. a. $\delta^{18}O$ of the precipitating fluid versus $\delta^{13}C$ composition of the C source, plotted for PRR50489 calcite (markers) and opal (horizontal lines). Endmembers (stars) include an opal precipitating fluid that is a carbon poor, reduced brine; and a calcite precipitating fluid that is a carbon rich, oxidizing meltwater. Solid curved line represents mixing model between the two endmembers. To fit calcite data, mixing model requires a 97:3 ratio of C concentration between the meltwater and brine. b. As in a, but data are from sample MA113. To fit calcite data, mixing model requires an 80:20 ratio of C concentration between the meltwater and brine. Isotopic compositions corrected to water compositions assuming equilibrium fractionation during calcite formation and a formation temperature corresponding to a datum specific mixing ratio between the -3.5°C brine and the -1.5°C meltwater (full description is provided in Methods). Dashed lines represent mixing models with different C ratios. All data are color coded by Ce* value, with blue being the lowest, most oxidizing values, and yellow being the highest, most reducing values.
Methods

Subglacial precipitate opal-calcite timeseries

Time series describing mineralogic shifts between opal and calcite in two subglacial precipitates are derived from 234U-230Th ages combined with elemental characterization (see supplementary text for full 234U-230Th dating methods). Elemental maps showing calcium and silicon concentration (Extended Data Fig. 2) were produced using Energy Dispersive X-ray Spectroscopy (EDS) measured on the Thermoscientific Apreo Scanning Electron Microscope (SEM) housed at UCSC. EDS data were generated using an Oxford Instruments UltimMax detector and were reduced using AZtecLive software. To quantify the opal-calcite transitions in the samples, Si and Ca concentration data were produced from line scans across precipitate layers (Extended Data Fig. 2). For sample MA113, detritus within two calcite layers results in Si peaks that do not correspond to opal. These areas are identified using Al and are corrected to reflect a calcite composition. An age versus depth model was produced for each precipitate by linear interpolation between each dated layer. In sample MA113, no dates were produced for layers corresponding to the timeframe between 48ka and 52ka, so the primary age versus depth model is derived by applying an accumulation rate for opal and calcite based on the two accumulation rates from the rest of the sample (Fig. 1f, orange curve). A secondary age versus depth model was also produced between 48ka and 52ka using linear interpolation (Fig. 1f, grey, dashed curve), but sparse data coverage during this timeframe likely makes this curve less accurate for this period. Timeseries in figure 1f and 1i were then generated by plotting the age versus depth model, against Si and Ca concentration spectra. 2σ uncertainties on each individual U-series age are between 0.5% and 2% for PRR50489 and between 1% and 5% for MA113; we interpolate across the mean age for each layer. Within these error bounds, we are not able to estimate leads or lags between the subglacial hydrologic system and climate cycles. Nonetheless, stratigraphic consistency between dated layers, the regular frequency of mean ages, and the striking similarity between our mineralogic timeseries and climate proxy records supports our conclusion of a link between climate teleconnections and subglacial hydrology. Furthermore, as was previously mentioned, calcite layers form rapidly upon introduction of carbon-rich, alkaline waters from the EAIS interior to the marginal system, and the system then slowly transitions back to opal precipitation after hydrologic connectivity is shut off and the waters freeze. Therefore, it is possible that there is missing time between calcite layers that is not accounted for by our linear interpolation. However, based on the regularity of opal depositional cycles, and the similarity between precipitate opal-calcite cycles and climate proxies, these unconformities do not represent enough time to disrupt the millennial-scale cyclicity of the precipitate mineralogy.

Geochemical analyses

Stable Isotopic Analyses

Carbonate isotope ratios (δ^{13}C$_{\text{CO}_3}$ and δ^{18}O$_{\text{CO}_3}$) were measured by UCSC Stable Isotope Laboratory using a Thermo Scientific Kiel IV carbonate device and MAT 253 isotope ratio mass spectrometer. Referencing δ^{13}C$_{\text{CO}_3}$ and δ^{18}O$_{\text{CO}_3}$ to VPDB is calculated by two-point correction to externally calibrated Carrera Marble 'CM12' and carbonatite NBS-183. Externally calibrated coral 'Atlantis II3 was measured for independent quality control. Typical reproducibility of replicates was significantly better than 0.05 % for δ^{13}C$_{\text{CO}_3}$ and 0.10 % for δ^{18}O$_{\text{CO}_3}$.

Opal layers were analyzed at the Stanford University Stable Isotope Biogeochemistry Laboratory for δ^{18}O$_{\text{SiO}_2}$ by conventional BrF$_5$ fluorination (e.g. refs. 4,5) and measured with O$_2$ gas as the analyte on a Thermo Scientific MAT 253+ dual-inlet isotope ratio mass spectrometer (IRMS)6,7. Briefly, 2-3 mg opal samples were loaded into nickel reaction tubes as described in ref.5 and heated for 2 hours at 250 °C at high vacuum. Samples were then repeatedly pre-fluorinated at room temperature with 30 mbar aliquots of BrF$_5$ until <1 mbar of non-condensable gas was present. A 30x stoichiometric excess of BrF$_5$ was added to the nickel tubes and sealed. The nickel tubes were then heated at 600 °C for 16 hours to quantitatively produce O$_2$. The generated O$_2$ gas is then sequentially released into the cleanup line, cryogenically cleaned and frozen onto a 5Å mole sieve trap immersed in liquid nitrogen, equilibrated at room temperature with the IRMS dual-inlet sample-side bellows and measured for δ^{18}O against a reference tank of known δ^{18}O
composition (24.3‰) (for details ref. 7). Opal δ^{18}O is reported based on daily corrections made to four primary silicate standards (NBS-28, UWG-2, SCO and L1/UNM_Q, which are quartz, garnet, olivine and quartz, respectively), spanning ~13‰, and have been recently calibrated to the VSMOW2-SLAP2 scale 5,8. Three secondary standards (BX-88 (Stanford Laboratory internal standard), UCD-DFS (obtained from H. Spero, UC Davis; values reported in ref. 9) and PS1772-8 (obtained from J. Dodd, Northern Illinois University; measured at U. of New Mexico and reported in ref 10, which are quartz, opal-CT and opal-A, respectively) were also analyzed over the course of the analyses. Replicate measurements of standards demonstrate reproducibility of <0.3‰ for all secondary and primary standards except the PS1772-8 standard, though heterogeneity in this standard is suspected with laboratory averages reported in the literature 10 ranging from 40.2 to 43.6‰ (average value of 41.5‰ in this study).

Sr Isotopic Analyses

Sr isotopic measurements were made at the UCSC Keck Isotope Laboratory. Sr compositions are measured on a TIMS in a one sequence static measurement: 88Sr is measured on the Axial Faraday cup, while 87Sr, 86Sr, 85Rb, and 84Sr are measured on the low cups. Accuracy of the 87Sr/86Sr measurements is evaluated using Sr standard SRM987 compared to a long-term laboratory average value of 0.71024, with a typical reproducibility of ±0.00004.

LA ICP-MS Methods

Laser ablation inductively coupled plasma–mass spectrometry (LA ICP-MS) analyses were conducted at the Facility for Isotope Research and Student Training (FIRST) at Stony Brook University. Analyses were made using a 213 UV New Wave laser system coupled to an Agilent 7500cx quadrupole ICP-MS. The National Institute of Standards and Technology (NIST) 612 standard was used for approximate element concentrations using signal intensity ratios. Laser data were reduced in iolite 11; element concentrations were processed with the trace-element data reduction schemes (DRS) in semiquantitative mode, which subtracts baselines and corrects for drift in signal.

Geochemical models of mineralogic cyclicity in subglacial precipitates:

To understand the conditions under which discrete pulses of opal and calcite are precipitated following cold and warm Antarctic climate periods respectively, we integrate geochemical and isotopic characterization of the precipitates to inform simulations run using the aqueous geochemical modeling program PHREEQC 12. The high ion concentrations of subglacial fluids necessitates the use of the Pitzer specific ion interaction approach, which allows PHREEQC to model the aqueous speciation and the mineral saturation index of brines, and has been shown to yield results 13 consistent with the subzero database FREZCHEM 14. Our modeling approach to simulating opal-calcite transitions can be describe in three parts: 1) Identify the water composition and conditions under which opal will precipitate and calcite will not; 2) Identify the composition and volume of water required to mix with opal forming fluids to produce calcite; 3) Utilize the δ^{18}O and δ^{13}C isotopic composition of calcite and opal, along with the known or inferred composition of mixing waters (Fig. 3) to constrain the relative volumes of brine and meltwater, thereby testing the validity of the mixing model. While the exact ionic strength of subglacial fluids and temperature of the subglacial aqueous system is unknown, we outline a plausible scenario for discrete layers of opal and calcite the fit modelled conditions at the base of the ice sheet 15, and the geochemical constraints measured in precipitates.

PHREEQC Simulations Part 1

Opal precipitation occurs when a solution is saturated with respect to amorphous silica. Opal solubility is both temperature and pH dependent 16, with lower pH favoring precipitation. The silicon concentrations of subglacial waters 17 and mature brines that emanate from ice sheets 18 are typically tens of ppm, —values similar to other surface waters 19— and Si concentration does not scale with total dissolved solids (TDS) 20. At these relatively low Si concentrations, saturation of amorphous silica cannot be achieved without a mechanism to concentrate Si in solution. For aqueous systems beneath an ice sheet, this mechanism is very
likely cryoconcentration via subglacial freezing, which extracts water from the cavity at the base of the ice sheet, concentrating solutes and raising mineral saturation21–23. Yet, most surface waters upon reaching saturation of amorphous silica will also be at saturation for calcite22,23, thus not matching the discrete opal layers observed in our precipitates. This suggests that the opals form from a mature brine20 that is relatively free of HCO\textsubscript{3}-. A candidate fluid that fits these compositional criteria are CaCl\textsubscript{2} brines, which occur in the McMurdo Dry Valleys (MDV) as shallow subsurface waters24–27, deep groundwaters13,26,28, and surface waters29–31, most notably feeding Lake Vanda18,32 and Don Juan Pond (DJP)28,33,34. Ca-CI-rich brines also occupy regions that were previously covered by the North American30 and Fennoscandian ice sheet15, implying that they are a natural product of fluid isolation beneath ice sheets. Therefore, CaCl\textsubscript{2} brines are a plausible composition for brine beneath the EAIS. The most well geochemically characterized MDV brines are those that feed DJP, therefore, we explore opal precipitation by equilibrating DJP brine with ice, calcite, and opal at a range of temperatures between -5°C to 5°C. At full concentration, DJP brine causes melting of the overlying ice due to its exceptionally high ionic strength, resulting in significant dilution of the original solution, which inhibits opal precipitation (Extended Data Fig.5a). Subsequent simulations of 10x and 50x diluted DJP brine over the same range of temperatures result in a gradual increase of opal saturation due to the incremental removal of water via cryoconcentration (Extended Data Fig. 5b, c). In these model runs, opal precipitation is controlled by the amount of water removed from the solution by freezing, which itself is controlled by ionic strength. At 10x concentrated, the solution does not freeze enough to drive opal precipitation, while opal is precipitated from the 50x diluted solution between -3°C and -4°C. A fourth PHREEQC model was run equilibrating DJP brine with ice, calcite, and opal over this temperature range, indicating that opal precipitation is reached once ~75% of the water in the original solution is lost via freezing, which occurs at -3.5°C (Extended Data Fig. 5d).

PHREEQC Simulations Part 2

Simulation of calcite precipitation during interglacial warm periods assumes that ‘meltwaters’ are mixed with the concentrated ‘glacial brines’ from part 1. The decision to model calcite precipitation using the admixture of new waters, rather than to reverse subglacial freezing, is based on the disparity in geochemistry between calcite and opal forming waters. Based on the hypothesis that calcite layers form when waters from the EAIS interior are flushed to the ice sheet edge (Extended Data Fig. 7), meltwaters driving calcite precipitation are likely to have become enriched in alkalinity and dissolved ions through water-rock interaction and chemical weathering of silicate minerals in the substrate during long-term storage beneath the EAIS. Calcite and opal data in 87Sr/86Sr vs δ^{18}O space provide further evidence that the two endmember waters — brine and subglacial meltwater— dissolve silicates with different provenance. Extended Data figure 10 shows 87Sr/86Sr vs δ^{18}O mixing curve between opals and calcite, showing that the brine provides 98% of Sr to the system from a source with an 87Sr/86Sr of 0.7135, while the meltwater endmember has a far lower concentration of Sr (2 %) derived from a reservoir with an 87Sr/86Sr of 0.709. These data are consistent with a brine that weathers silicate minerals over long periods, and a meltwater that drives silicate weathering with a very different provenance over a relatively short time duration. The δ^{13}C of the calcite (-23 %) (Fig. 3, Extended Data Fig. 2) also provides evidence for the chemical composition of meltwaters, implying that they accumulated carbon through microbial respiration, which does not fractionate during the transition from aqueous CO\textsubscript{2} to HCO\textsubscript{3}- if 100% of the carbon undergoes this conversion. Given, the similarity between δ^{13}C composition of calcite and that of respired carbon, it is unlikely that dissolution of sedimentary carbonates took place in the meltwater, which would have added a significantly less depleted source of carbon to the reservoir. This framework suggests that candidate compositions for calcite endmember fluids are waters with a similar history of subglacial exposure to glaciated sediments. The EAIS waters that best fit this description are jökulhlaup waters38 observed near Casey Station, Antarctica. Using PHREEQC, we explore mixing of brine from part 1 with jökulhlaup waters from Casey Station38, by simulating a range of possible mixing ratios between brine and meltwater. We assume, based on the Ca:Sr ratios from other surface water systems that contain CaCl\textsubscript{2} brine, that the ratio of Ca concentration between the brine and meltwater matches the ratio of Sr concentration between the two fluids (brine:meltwater = 98:2). Results show that without at least 30% meltwater the mixture too diluted with respect to Ca and
HCO$_3^-$ to precipitate calcite. PHREEQC mixing models successfully produced discrete pulses of calcite with mixtures between 30% and 80% meltwater; conditions under which the admixture is undersaturated with respect to opal because the solution is too dilute with respect to Si and is supersaturated with respect to calcite leading to precipitation (Extended Data Fig. 5b). Therefore, the addition of carbon-rich, alkaline meltwaters to opal precipitating, Ca-Cl-rich brines can trigger calcite supersaturation driving rapid calcite growth, consistent with our geochronologic outputs and calcite morphology. Collectively this modeling effort, along with the timescale data presented in figure 1, and the fibrous crystal textures suggests that calcite forms rapidly after meltwaters to the subglacial aqueous system. However, the relative volume of meltwater added is unclear from these results alone and requires further isotopic constraints.

C and O Isotopic Mixing Models Part 3

For both the calcite and opal oxygen isotope data, the formation water δ^{18}O (as plotted in our figures and used in mixing model) is calculated using the appropriate equilibrium water-mineral fractionation factors. For the temperature of precipitation, we use the ideal temperature for opal precipitation (-3.5°C shown in Extended Data Fig. 5) as the brine endmember temperature. Based on an addition of 2°C via shear heating to generate melting shown by reduced complexity ice sheet model outputs, we use -1.5°C as the meltwater endmember temperature. We then calculate the temperature of precipitation for each measured opal and calcite based on their relative amounts of brine and meltwater, calculated by their position on the stable isotope mixing model presented in figure 3. For calcite we use the empirical 1000lnα versus 1/T relationship of69 and for opal the 1000lnα versus 1/T2 relationship of60. The 1000lnα values for calcite and opal are 33.6‰ and 44.2‰, respectively, and we calculate the formation waters avoiding the non-linearity associated with delta notation far from the standard of choice (in this case VSMOW). As such, we calculate the formation waters composition as: $\alpha = (1000 + \delta^{18}O_{\text{mineral}})/(1000 + \delta^{18}O_{\text{water}})$.

Calcite data, in δ^{13}C vs δ^{18}O space, define a trend that suggests they form through admixture with an isotopically lighter water with respect to both carbon and oxygen. The carbon concentration dependent mixing curve that best fits that calcite data alone requires that the isotopically light endmember, what we’ll refer to here as the “meltwater” endmember carries a higher DIC than the isotopically heavier water, which we’ll now refer to as the brine endmember. In figure 3, we assume that isotopically heaviest opals record the δ^{18}O composition of the brine endmember and that the δ^{13}C composition matches marine carbon derived from the substrate (-0‰), the latter of which is recorded by sodic carbonates suspected of forming from brines in the Lewis cliff area41. Under such assumptions the carbon ratio between meltwater and brine is 97:3 for PRR50489 (Fig. 3a) and 80:20 in MA113 (Fig. 3b), a result that is consistent with the calcite precipitation model presented above, whereby the addition of a carbon rich, oxidized meltwater, to a reduced or intermediate CaCl$_2$ brine, triggers calcite precipitation. As shown in extended data figure 6, the calcite data imply formation when there is $>$30% of meltwater in the mixture. The array of calcite data can also be fit by a mixing model that assumes an isotopically lighter carbon composition (δ^{13}C = -15‰). While feasible, this is a less appealing solution as a δ^{13}C of -15‰ does not match the composition of any specific carbon source and would require a mixture of waters. The data presented here suggests that over the ~100ka of sample precipitation there are two consistent endmember waters: a reduced brine that is locally derived (star in second quadrant, Fig. 3), and an oxidized meltwater that is from the polar plateau (star in third quadrant, Fig. 3).

Ocean-ice heat exchange and sea level input calculations

Our reduced-complexity model of ice sheet thermodynamics requires that ice thickness changes reach an amplitude of a few hundred meters on AIM timescales in the two parts of Ross Embayment proximal to our sample locations. While thickness change adjacent to the David Glacier catchment occurs at moderate levels of ocean-ice heat exchange (>5 m a$^{-1}$ K$^{-1}$; Extended Data Fig. 1c), thickness change in the vicinity of Law Glacier, as required by sample MA113, necessitates levels of ocean-ice heat exchange >7 m a$^{-1}$ K$^{-1}$ (Extended Data Fig. 1d) and likely closer to 10 m a$^{-1}$ K$^{-1}$ (Fig. 2)$.^{52}$ We report AIS sea level contributions based on ice sheet thickness change calculated using the most conservative estimate of ocean-ice heat
exchange that results in substantial thinning of the Ross Sea Ice shelf: 7 m a⁻¹ K⁻¹. Therefore, both ocean-ice heat exchange and millennial-scale sea level contributions are minimum estimates. We calculate a 2 - 5 m sea level contribution during AIM events using a GRISLI-UCM Ice Sheet Model with a ocean-ice heat exchange value of 7 m a⁻¹ K⁻¹ and a range of sea surface temperatures based on ref. 43. To test this calculation for millennial-scale AIS sea level contribution, we model post-LGM Ross Sea ice thickness using the same parameters and compare the results to recent independent model simulations, which describe an AIS contribution of 5 m sea level equivalent following post-LGM collapse. The degree of ice sheet thickness variation we calculate based on precipitate location implies 10-30% ice loss in parts of the Ross Sea following the LGM. Based on simple scaling, a thickness change of this magnitude would result in a WAIS contribution of 0.5-1.5 m on AIM timescales, implying an additional contribution of 3.5 - 4.5 m from East Antarctica. This output is consistent with our estimates of AIS sensitivity to millennial-scale climate forcing that imply major EAIS ice loss on during AIM cycles.

Additional References

1. Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).
2. Coplen, T. B. et al. New Guidelines for δ13C Measurements. Anal. Chem. 78, 2439–2441 (2006).
3. Ostermann, D. R. & Curry, W. B. Calibration of stable isotopic data: An enriched δ18O standard used for source gas mixing detection and correction. Paleoceanography 15, 353–360 (2000).
4. Clayton, R. N. & Mayeda, T. K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 27, 43–52 (1963).
5. Wostbrock, J. A. G. et al. Calibration and application of silica-water triple oxygen isotope thermometry to geothermal systems in Iceland and Chile. Geochim. Cosmochim. Acta 234, 84–97 (2018).
6. Chamberlain, C. P. et al. Triple oxygen isotopes of meteoric hydrothermal systems - implications for palaeoaltimetry. Geochemical Perspect. Lett. 15, 6–9 (2020).
7. Ibarra, D. E., Kukla, T., Methner, K. A., Mulch, A. & Chamberlain, C. P. Reconstructing Past Elevations From Triple Oxygen Isotopes of Lacustrine Chert: Application to the Eocene Nevadaplano, Elko Basin, Nevada, United States. Front. Earth Sci. 9, 1–19 (2021).
8. Sharp, Z. D. & Wostbrock, J. A. G. Standardization for the Triple Oxygen Isotope System: Waters, Silicates, Carbonates, Air, and Sulfates. Rev. Mineral. Geochemistry 86, 179–196 (2021).
9. Menicucci, A. J., Matthews, J. A. & Spero, H. J. Oxygen isotope analyses of biogenic opal and quartz using a novel microfluidization technique. Rapid Commun. Mass Spectrom. 27, 1873–1881 (2013).
10. Chapligin, B. et al. Inter-laboratory comparison of oxygen isotope compositions from biogenic silica. Geochim. Cosmochim. Acta 75, 7242–7256 (2011).
11. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergtb, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).
12. Parkhurst, D. L. & Appelo, C. a. J. Description of Input and Examples for PHREEQC Version 3 — A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43, 497 p. U.S. Geol. Surv. Tech. Methods, B. 6, chapter A43 6-43A (2013).
13. Toner, J. D. & Sletten, R. S. The formation of Ca-Cl-rich groundwaters in the Dry Valleys of Antarctica: Field measurements and modeling of reactive transport. Geochim. Cosmochim. Acta 110, 84–105 (2013).
14. Marion, G. M., Mironenko, M. V. & Roberts, M. W. FREZCHEM: A geochemical model for cold aqueous solutions. Comput. Geosci. 36, 10–15 (2010).
15. Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet / ice stream model. Earth Planet. Sci. Lett. 295, 451–461 (2010).
16. Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. John Wiley and Sons Ltd., New York. (1979).
17. Hawking, J. R. *et al.* Enhanced trace element mobilization by Earth’s ice sheets. *Proc. Natl. Acad. Sci.* 1–12 (2020). doi:10.1073/pnas.2014378117

18. Green, W. J. & Canfield, D. E. Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. *Geochim. Cosmochim. Acta* 48, 2457–2467 (1984).

19. Tréguer, P. *et al.* The silica balance in the world ocean: A reestimate. *Science* (80-.) 268, 375–379 (1995).

20. Frape, S. K., Fritz, P. & McNutt, R. H. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. *Geochim. Cosmochim. Acta* 48, 1617–1627 (1984).

21. Bell, R. E. *et al.* Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base. *Science* (80-.) 331, 1592–1596 (2011).

22. Hallet, B. Deposits Formed by Subglacial Precipitation of CaCO3. *Geol. Soc. Am. Bull.* 268, 2457–2467 (1984).

23. Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L. & Lorrain, R. Segregation of solutes and gases in experimental freezing of dilute solutions: Implications for natural glacial systems. *Geochim. Cosmochim. Acta* 48, 1323–1333 (1995).

24. Carlson, C. A., Phillips, F. M., Elmore, D. & Bentley, H. W. Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica. *Geochim. Cosmochim. Acta* 54, 311–318 (1990).

25. Dickson, J. L., Head, J. W., Levy, J. S. & Marchant, D. R. Don Juan Pond, Antarctica: Near-surface CaCl2-brine feeding Earth’s most saline lake and implications for Mars. *Sci. Rep.* 3, 1–8 (2013).

26. Toner, J. D., Catling, D. C. & Sletten, R. S. The geochemistry of Don Juan Pond: Evidence for a deep groundwater flow system in Wright Valley, Antarctica. *Earth Planet. Sci. Lett.* 474, 190–197 (2017).

27. Nurmi, P. A., Kukkonen, I. T. & Lahermo, P. W. Geochemistry and origin of saline groundwaters in the Fennoscandian Shield. *Appl. Geochemistry* 3, 185–203 (1988).

28. Henderson, G. M., Hall, B. L., Smith, A. & Robinson, L. F. Control on (234U/238U) in lake water: A study in the Dry Valleys of Antarctica. *Chem. Geol.* 226, 298–308 (2006).

29. De Carlo, E. H. & Green, W. J. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. *Geochim. Cosmochim. Acta* 66, 1323–1333 (2002).

30. Goodwin, I. D. The nature and origin of a jokulhlaup near Casey Station, Antarctica. *J. Glaciol.* 34, 95–101 (1988).

31. Kim, S. T. & O’Neil, J. R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. *Geochim. Cosmochim. Acta* 61, 3461–3475 (1997).
40. Sharp, Z. D. et al. A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples. *Geochim. Cosmochim. Acta* **186**, 105–119 (2016).

41. Fitzpatrick, J. J., Muhs, D. R. & Jull, A. J. T. Saline Minerals in the Lewis Cliff Ice Tongue, Buckley Island Quadrangle, Antarctica. *Contrib. to Antarct. Res. I* **50**, 57–69 (1990).

42. Blasco, J., Tabone, I., Alvarez-Solas, J., Robinson, A. & Montoya, M. The Antarctic Ice Sheet response to glacial millennial-scale variability. *Clim. Past* **15**, 121–133 (2019).

43. Anderson, H. J., Pedro, J. B., Bostock, H. C., Chase, Z. & Noble, T. L. Compiled Southern Ocean sea surface temperatures correlate with Antarctic Isotope Maxima. *Quat. Sci. Rev.* **255**, 106821 (2021).

44. Pollard, D., Chang, W., Haran, M., Applegate, P. & DeConto, R. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: Comparison of simple and advanced statistical techniques. *Geosci. Model Dev.* **9**, 1697–1723 (2016).

45. Spector, P. et al. Rapid early-Holocene deglaciation in the Ross Sea, Antarctica. *Geophys. Res. Lett.* **44**, 7817–7825 (2017).

46. Goehring, B. M., Balco, G., Todd, C., Moening-Swanson, I. & Nichols, K. Late-glacial grounding line retreat in the northern Ross Sea, Antarctica. *Geology* **47**, 291–294 (2019).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- ExtendedDataTable3.xlsx
- ExtendedDataTable2.xlsx
- ExtendedDataTable1.xlsx
- SupplementaryText.pdf
- ExtendedDataFigures.pdf