FOOD SCIENCE & TECHNOLOGY | RESEARCH ARTICLE

In vitro bactericidal and fungicidal activities of various extracts of saffron (*Crocus sativus* L.) stigmas from Jammu & Kashmir, India

Syed Muzaffar¹, Sajad A. Rather* and Khaliquz Zaman Khan¹

Abstract: Antimicrobial activities of methanolic and petroleum ether extracts of *Crocus sativus* L. (saffron) stigmas, were tested against various bacterial strains (*Proteus vulgaris*, *Klebsiella pneumonia*, *Pseudomonas aeruginosa*, *Staphylococcus aureus* and *Escherichia coli*) and fungi (*Candida albicans*, *Aspergillus niger* and *Aspergillus fumigatus*) by agar well diffusion method. Minimal inhibitory concentration and minimum bactericidal and fungicidal concentration values of each active extract were also determined. The results showed a strong activity of the petroleum ether and methanolic extracts of saffron stigmas against bacteria and fungi used as test organisms. The results of different antimicrobial assays also indicate that the extracts had significantly higher bactericidal than fungicidal activities (*p* < 0.05). The results suggest that these extracts can be used in pharmaceutical and food formulations for inhibiting pathogenic bacterial and fungal species.

Subjects: Bioscience; Engineering & Technology; Food Science & Technology

Keywords: antimicrobial; methanolic; petroleum ether; bacteria; fungi

1. **Introduction**

Crocus sativus L. (saffron) (Fam. Iridaceae) is a widely used plant, especially as a food additive and colouring agent. Saffron is cultivated almost exclusively for its stigma, which once dried forms saffron spice, the most expensive in the world (Muzaffar, Rather, Khan, & Akhter, 2015; Sánchez-Vioque et al., 2012). This spice has been used in seasoning, medicine, cosmetics, perfume and dye for over three millennia (Ulbricht et al., 2011). These properties are basically related to its contents of picrocrocin,
safranal and crocins (Carmona, Zalacain, & Alonso, 2006; Carmona, Zalacain, Salinas, & Alonso, 2007). Picrocrocin is the glycoside precursor of safranal (2,6,6-trimethyl-1,3-cyclohexadiene-1-carboxaldehyde), which is in turn the most abundant of the volatile compounds responsible for the aroma of saffron (Maggi et al., 2011). Crocins are crocetin esters with glucose, gentiobiose, neapolitanose or triglucose sugar moieties. Spices have been used since ancient times to hide spoilage in foods.

Antibiotics have been used for the treatment of infectious diseases for a long time. But, antimicrobial resistance, among pathogenic bacteria, against drugs used in the treatment of human infection is increasing. This situation has forced scientists to search for new antimicrobial substances from various plants which are the good sources of novel antimicrobial chemotherapeutic agents (Karaman et al., 2003). For a long past, plants have been used as a valuable source of natural products for maintaining human health, with more intensive studies for natural therapies. The antimicrobial compounds from plants may inhibit bacteria by different mechanisms than the presently used antibiotics and may have clinical value in treatment of resistant microbial strains. Because of the side effects and microbial resistance against the antibiotics, the scientists developed new drugs from natural sources such as plants, which have been extensively used as alternative treatment for diseases (Manoj, Kailas, Balaji, & Sajid, 2010; Sumitra & Yogesh, 2010).

Interest in the antimicrobial properties of active compounds is strengthened by the findings that they affect the behaviour of pathogenic bacteria or fungi of agro-food or medical field. Indeed, their use as natural additives in food industry is increased in recent years (Nazzaro et al., 2009). Antimicrobial agents, including food preservatives and organic acids, have been used to inhibit food-borne microbes and extend shelf life of processed foods. Many naturally occurring compounds found in edible and medicinal plants, herbs and spices have been shown to possess antimicrobial function and could serve as a source of antimicrobial agents against food pathogens (Lai & Roy, 2004). The antifungal activity of saffron has been investigated by earlier workers (Kamble & Patil, 2007; Sekine, Sugano, Majid, & Fujii, 2007). In addition, the inhibition of Helicobacter pylori by methanol extracts, as well as by safranal and crocin, has also been reported (Nakhaei, Khaje-Karamoddin, & Ramezani, 2008). Therefore, in this work we examine the in vitro antimicrobial activities of petroleum ether and methanolic extracts of C. sativus stigmas obtained from Jammu and Kashmir, India.

2. Materials and methods

2.1. Sample collection
The samples (Crocus sativus L.) were collected from Pampore Pulwama, Kashmir, India during October–November, 2014. Fresh stigmas were separated manually from the whole flowers of saffron by traditional procedure. The samples were vacuum dried and kept at 4°C in absence of light until their analysis. All solvents used were purchased from Hi Media, Pvt. Ltd. Mumbai, India.

2.2. Preparation of the crude extract
Ten gram of fresh C. sativus stigmas of plant material was extracted with 200 ml of methanol in a shaking incubator (100 rpm) overnight at room temperature. The methanolic extracts were filtered using Whatman No. 1 filter paper. Similarly, 10 g of C. sativus stigmas was used for petroleum ether extraction in a soxhlet apparatus (6 h for each solvent). The extracts were evaporated under reduced pressure and dried using rotary evaporator. Dried extracts were stored in labelled sterile screw capped bottles at ~20°C.

2.3. Test organisms for evaluation of antimicrobial activity
The test micro-organisms used in this study were bacterial ssp. (Proteus vulgaris, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli) and fungal ssp. (Candida albicans, Aspergillus niger and Aspergillus fumigatus) obtained from Bacteriological and Mycological section of Department of Microbiology, SKIMS, Soursa, Srinagar and Veterinary Microbiology and Immunology Division, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama.
2.4. Antimicrobial activity
The in vitro antimicrobial activity test was carried out by agar well diffusion method. Standard cork borer of 5-mm diameter was used to make wells. Chloramphenicol and Amphotericin-B (Sigma–Aldrich) were used as positive control for bacteria and fungi, respectively, and DMSO alone as negative control. Every Petri dish was sealed with parafilm to avoid contamination. The plates were then incubated at 37 ± 1°C for 16–20 h in case of bacterial strains and 35 ± 2°C for 36–48 h for fungal strains. Finally, zone of inhibition was measured to the nearest size in mm with the help of standard scale (Norrel & Messley, 1997).

2.5. Minimal inhibitory concentration
The micro-dilution broth susceptibility assay was used for the evaluation of minimal inhibitory concentration (MIC) as recommended by (Clinical & Laboratory Standards Institute, 2012). After incubation, the first well without turbidity was determined as the MIC.

2.6. Determination of minimum bactericidal/fungicidal concentration
Equal volume of the various concentrations of each extract and Mueller Hinton broth (Hi-Media, Pvt. Ltd. Mumbai, India) were mixed in micro-tubes to make up 0.5 ml of solution. Then 0.5 ml of the organism suspension was added to each tube (Shahidi Bonjar, 2004). The tubes were incubated aerobically at 37 and 25°C for 24 h for bacterial and fungal strains. Two control tubes were maintained for each test batch. These include tube containing extract without inoculums and the tube containing the growth medium and inoculums. The MBC and MFC was determined by subculturing the test dilution on Nutrient Agar medium/Potato Dextrose Agar and further incubated for 24 h. The highest dilution that yielded no single bacterial colony was taken as the Minimum bactericidal Concentration (Akinyemi, Oladapo, Okwara, Ibe, & Fasure, 2005).

3. Statistical analysis
All the experiments were carried out in triplicates. Mean values, standard deviation and analysis of variance were computed using a commercial statistical package SPSS 16 (USA). The data were then compared using Duncan’s multiple range tests at 5% significance level.

4. Results and discussion
4.1. Antimicrobial activity of C. sativus extracts
The test for antimicrobial effect of petroleum ether and methanolic extracts of C. sativus stigmas represents an important source of substances with antimicrobial activity. The results of the study provide evidence that C. sativus stigmas can be a potential source of new antimicrobial agents. The antimicrobial activity of extracts at different concentrations (500, 750 and 1,000 μg/disc) were assessed by the presence or absence of inhibition zone and zone diameter (Table 1). The petroleum ether extract showed maximum zone inhibition against P. vulgaris, Bacillus subtilis and Pseudomonas aeruginosa, respectively. Whereas, methanolic extract showed maximum zone inhibition against S. aureus and E. coli, respectively. The extracts were found to differ significantly in their activity against different test micro-organisms (p < 0.05). In addition as the concentration of different extracts increased, the antimicrobial spectrum of extracts also increased significantly (p < 0.05). Similar results were reported by earlier workers (Soureshjan & Heidari, 2014), who found an increase in antimicrobial activity of Glaucium elegans and Crocus stavius extracts with increasing concentrations. The results also indicated that no antimicrobial activity was observed against A. niger and A. fumigatus by petroleum ether and against C. albicans and A. niger by methanolic extracts at 500 μg/disc dosage level. The standard antimicrobial compounds showed significantly highest zone of inhibition against tested micro-organism (p < 0.05). In other studies, the methanolic extracts of various Crocus spp. were found to have significant antimicrobial effect against different bacteria (Acar, Dogan, Duru, & Kivrak, 2010). The antimicrobial activities of saffron extracts have been reported by safranal and crocin compounds (Carmona et al., 2007). These compounds can easily reach the contaminant micro-organism because of their volatility and/or water solubility and contribute to microbial killing.
Therefore, the antimicrobial activity of *C. sativus* stigma extracts described here represents an added value for saffron as a means of use in pharmaceutical and food industry.

4.2. Minimal inhibitory concentration

Some of the uses of saffron in traditional medicine have been related to its antimicrobial activity due to the presence of components such as safranal and crocin (Pintado et al., 2011; Soureshjan & Heidari, 2014). In the present study, the MIC of *C. sativus* stigma extracts was tested against six species of bacteria and three species of fungus. The MIC of petroleum ether and methanolic extracts is shown in Table 2. The MIC of petroleum ether extract ranged from 0.4 to 0.66 mg/ml for bacterial strains and from 2.13 to 3.2 mg/ml for fungal strains, respectively. Similarly, the MIC of methanolic extracts ranged from 0.40 to 0.80 mg/ml for bacterial strains and 3.13–3.2 mg/ml for fungal strains, respectively. The results indicate that petroleum ether extracts showed most effective MIC values for *P. vulgaris* and *Pseudomonas aeuroginosa* and methanolic extracts showed for *S. aureus* and *E. coli* bacterial strains. However, both the extracts showed significantly higher MIC values than the standard antibacterial chloramphenicol (*p* < 0.05). In case of MIC values of *C. sativus* extracts for fungal strains, the petroleum ether extract showed the most effective MIC value for *C. albicans* and methanolic extract showed most effective value for *Aspergillus fumigatus* (*p* < 0.05). The MIC values were significantly higher than standard antifungal amphotericin-B (*p* < 0.05). In our study, the petroleum ether and methanolic extracts showed the most effective MIC values than the earlier workers (Vahidi, Kamalinejad, & Sedaghati, 2002) who used ethyl acetate extracts of different *C. sativus* parts against bacterial and fungal strains.

4.3. Determination of MBC and MFC

The minimum bactericidal and fungicidal concentrations (MBC and MFC) of petroleum ether extract ranged between 3.2–6.4 mg/ml and 10.67–12.8 mg/ml, respectively, for bacterial and fungal strains (Table 3). Similarly, MBC and MFCs of methanolic extract ranged between 1.6–6.4 mg/ml and 8.53–12.8 mg/ml, respectively, for bacterial and fungal strains (Table 3). The results indicate that both petroleum ether and methanolic extracts from the *C. sativus* stigma extracts were active against tested micro-organisms. The methanolic extract showed significantly lower antimicrobial activities against *S. aureus*, *E. coli* and *C. albicans* (*p* < 0.05). However, both the extracts were less active against

Table 1. Antimicrobial activities (inhibition areas diameter) of petroleum ether and methanol extracts of *C. sativus* stigmas using agar well diffusion method

Compounds and extracts tested	Concentration (μg/disc)	Inhibition zone (mm)	Bacterial strains	Fungal strains						
			P.v. K.p. B.s. P.a. S.a. E.c. C.a. A.n. A.f.							
Petroleum ether extract	500	3 ± 0.11ab	2 ± 0.07ab	3 ± 0.00ab	3 ± 0.11ab	2 ± 0.22ab	2 ± 0.12ab	1 ± 0.41ab	ND ND	
	750	8 ± 0.12ab	6 ± 0.00ab	9.2 ± 0.13ab	9 ± 0.22ab	7 ± 0.17ab	6 ± 0.00ab	4 ± 0.31ab	2 ± 0.17ab	3 ± 0.24ab
	1,000	14 ± 0.11ab	13 ± 0.12ab	13.96 ± 0.32ab	14 ± 0.07ab	12 ± 0.11ab	13 ± 0.24ab	6 ± 0.22ab	5 ± 0.11ab	4 ± 0.11ab
Methanolic extract	500	2 ± 0.20ab	1 ± 0.12ab	2 ± 0.23ab	2 ± 0.22ab	4 ± 0.10ab	3 ± 0.09ab	ND ND 1.23 ± 0.10ab		
	750	7 ± 0.20ab	6 ± 0.21ab	6 ± 0.14ab	7 ± 0.14ab	9 ± 0.22ab	7.84 ± 0.22ab	3 ± 0.12ab	2 ± 0.13ab	4 ± 0.22ab
	1,000	12 ± 0.03bc	10 ± 0.70bc	11 ± 0.33bc	12 ± 0.24bc	15 ± 0.14bc	14 ± 0.23bc	5 ± 0.11bc	4 ± 0.07bc	6 ± 0.13bc
Amphotericin-B	10 μL	ND	ND	ND	ND	ND	38 ± 0.12ab	33 ± 0.11ab	31 ± 0.14ab	
Chloramphenicol	10 μL	28 ± 0.01ab	34 ± 0.00ab	31 ± 0.22ab	25 ± 0.03ab	27 ± 0.11ab	33 ± 0.22ab	ND ND ND		

All values are mean ± standard deviation of three replicates.

Means in the same row (A–D) and column (a–d) with different superscripts differ significantly: *p* < 0.05.

Diameter in mm of the zone of inhibition; ND: No zone of inhibition; P.v.: Proteus vulgaris, K.p.: Klebsiella pneumonia; B.s.: Bacillus subtilis, P.a.: Pseudomonas aeruginosa, S.a.: Staphylococcus aureus, E.c.: Escherichia coli, C.a.: Candida albicans, A.n.: Aspergillus niger, A.f.: Aspergillus fumigatus.

(Pintado et al., 2011). Therefore, the antimicrobial activity of *C. sativus* stigma extracts described here represents an added value for saffron as a means of use in pharmaceutical and food industry.
tested micro-organisms than the standard chloramphenicol and amphotericin-B the antifungal and antibacterial compounds ($p < 0.05$).

5. Conclusion
The results concluded that both petroleum ether and methanolic extracts of C. sativus stigmas have great potential as antimicrobial compounds against bacteria and fungi. However, the results showed that the extracts exhibited strong bactericidal than fungicidal effects. Thus, they can be used in the treatment of infectious diseases caused by resistant microbes and can have wide applications in pharmaceutical, food and medical fields.

Table 2. Determination of minimum inhibitory concentration (MIC) of petroleum ether and methanol extracts of C. sativus stigmas

Compounds and extracts tested	MIC (mg/ml)	Bacterial strains	Fungal strains							
		P.v.	K.p.	B.s.	P.a.	S.a.	E.c.	C.a.	A.n.	A.f.
Petroleum ether extract		0.4 ± 0.0²Á	0.66 ± 0.23bc	0.53 ± 0.23bc	0.4 ± 0.0²Á	0.53 ± 0.23bc	0.66 ± 0.23bc	2.13 ± 0.92²Á	3.2 ± 0.0²Á	3.2 ± 0.0²Á
Methanolic extract		0.66 ± 0.23²Á	0.8 ± 0.0²Á	0.8 ± 0.0²Á	0.53 ± 0.23²Á	0.4 ± 0.0²Á	0.4 ± 0.0²Á	3.2 ± 0.0²Á	3.2 ± 0.0²Á	2.13 ± 0.92²Á
Amphotericin-B	ND	ND	ND	ND	ND	ND	ND	0.0003 ± 0.0001²Á	0.0006 ± 0.0003²Á	0.0006 ± 0.03²Á
Chloramphenicol		0.0008 ± 0.0²Á	0.004 ± 0.0²Á	0.004 ± 0.0²Á	0.128 ± 0.0²Á	0.0066 ± 0.0023²Á	0.004 ± 0.0²Á	ND	ND	ND

Table 3. Determination of minimum bactericidal/fungicidal concentration (MBC/MFC) of petroleum ether and methanol extracts of C. sativus stigmas

Compounds and extracts tested	MBC and MFC (mg/ml)	Bacterial strains	Fungal strains							
		P.v.	K.p.	B.s.	P.a.	S.a.	E.c.	C.a.	A.n.	A.f.
Petroleum ether extract		3.200 ± 0.0	6.400 ± 0.0	4.260 ± 1.85	3.200 ± 0.0	6.400 ± 0.0	4.260 ± 1.85	10.670 ± 3.69	12.800 ± 0.0	10.670 ± 3.69
Methanolic extract		5.330 ± 1.85	4.260 ± 1.85	3.200 ± 0.0	6.400 ± 0.0	1.600 ± 0.0	1.600 ± 0.0	8.530 ± 3.69	10.670 ± 3.69	12.800 ± 0.0
Amphotericin-B	ND	ND	ND	ND	ND	ND	ND	0.0013 ± 0.0006	0.0066 ± 0.0023	0.0066 ± 0.0023
Chloramphenicol	0.064 ± 0.0	0.008 ± 0.0	0.064 ± 0.0	0.512 ± 0.0	0.0533 ± 0.0185	0.064 ± 0.0	ND	ND	ND	

ND: not determined (showing no bactericidal effect up to 12.8 mg/ml, the highest tested concentration).

5. Conclusion
The results concluded that both petroleum ether and methanolic extracts of C. sativus stigmas have great potential as antimicrobial compounds against bacteria and fungi. However, the results showed that the extracts exhibited strong bactericidal than fungicidal effects. Thus, they can be used in the treatment of infectious diseases caused by resistant microbes and can have wide applications in pharmaceutical, food and medical fields.

Funding
The authors received no direct funding for this research.

Competing Interests
The authors declare no competing interest.

Author details
Syed Muzaffar1
E-mail: rsajad_ms@yahoo.com
Sajad A. Rather2
E-mail: rsajad.mt@gmail.com
Khaliquz Zaman Khan1

The authors received no direct funding for this research.

The authors declare no competing interest.
E-mail: khaliq.ku@gmail.com

1 Department of Chemistry, University of Kashmir, Srinagar 190006, India.
2 Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India.

Citation information
Cite this article as: In vitro bactericidal and fungidical activities of various extracts of saffron (Crocus sativus L.) stigmas from Jammu & Kashmir, India, Syed Muzaffar, Sojad A. Rather & Khaliquz Zaman Khan, Cogent Food & Agriculture (2016), 2: 1158999.

References
Acar, G., Dogan, N. M., Duru, M. E., & Kivrak, I. (2010). Phenolic profiles, antimicrobial and antioxidant activity of the various extracts of Crocus species in Anatolia. African Journal of Microbiology Research, 4, 1154–1161.
Akinyemi, K. O., Oladapo, O., Okwara, C. E., Ibe, C. C., & Fasure, K. A. (2005). Screening of crude extracts of six medicinal plants used in southwest Nigerian unorthodox medicine for antimethicillin resistant Staphylococcus aureus activity. BMC Complementary and Alternative Medicine, 5, 6.
http://dx.doi.org/10.1186/1472-6882-5-6
Carmona, M., Zalacain, A., & Alonso, G. L. (2006). The chemical composition of saffron: Colour, taste and aroma (1st ed.). Bomarzo: Albacete.
Carmona, M., Zalacain, A., Salinas, M. R., & Alonso, G. L. (2007). A new approach to saffron aroma. Critical Reviews in Food Science and Nutrition, 47, 145–159.
http://dx.doi.org/10.1080/10408390600626511
Clinical and Laboratory Standards Institute (2012). Performance standards for antimicrobial susceptibility testing; Twenty second international supplement, M100-S22, Vol. 32.
Kamble, V. A., & Patil, S. D. (2007). Antimicrobial effects of certain spices and condiments used in an Indian indigenous system of medicine. Zeitschrift für Arznei- & Gewürzpflanzen, 12, 188–193.
Karaman, I., Sahin, F., Güllüce, M., Ögütçü, H., Sengül, M., & Adagüzel, A. (2003). Antimicrobial activity of aqueous and methanol extracts of Juniperus arzyedus L. Journal of Ethnopharmacology, 85, 213–215.
Lai, P., & Roy, J. (2004). Antimicrobial and chemopreventive properties of herbs and spices. Current Medicinal Chemistry, 11, 1451–1460.
http://dx.doi.org/10.2174/0929867043365107
Maggi, L., Sánchez, A. M., Carmona, M., Kanakis, C. D., Anastasoki, E., Tarantilis, P. A., & Alonso, G. L. (2011). Rapid determination of safranal in the quality control of saffron spice (Crocus sativus L.). Food Chemistry, 127, 369–373.
Manoj, M., Kailas, C., Bolaji, V., & Sajid, N. (2010). Effect of plants extracts. International Journal of PharmTech Research, 2, 899–901.
Muzaffar, S., Rather, S. A., Khan, K. H., & Akhter, R. (2015). Nutritional composition and in vitro antioxidant properties of two cultivars of Indian saffron. Journal of Food Measurement and Characterization. doi:10.1007/s11694-015-9292-x.
Nokhre, M., Khanj-Karamadolin, M., & Ramezani, M. (2008). Inhibition of Helicobacter pylori growth in vitro by saffron (Crocus sativus L.). Iranian Journal of Basic Medical Sciences, 11, 91–96.
Nazzaro, F., Caliendo, G., Arnesi, G., Veronesi, A., Sarzi, P., & Rotgier, R. (2011). Bactericidal effect of saffron (Crocus sativus L.) on Salmonella enterica during storage. Food Control, 22, 638–642.
http://dx.doi.org/10.1016/j.foodcont.2010.09.031
Sánchez-Vioque, R., Rodríguez-Conde, M. F., Reina-Ureha, J. V., Escolano-Tercero, M. A., & Herrera-Pé-nalvera, D., Santana-Merídas, O. (2012). In vitro antioxidant and metal chelating properties of corn, tepal and leaf from saffron (Crocus sativus L.). Industrial Crops and Products, 39, 149–153.
http://dx.doi.org/10.1016/j.indcrop.2012.02.028
Sekine, T., Sugano, M., Majid, A., & Fujiy, Y. (2007). Antifungal effects of volatile compounds from black zira (Bunium persicum) and other spices and herbs. Journal of Chemical Ecology, 33, 2123–2132.
http://dx.doi.org/10.1007/s10886-007-9374-2
Shahidi Bonjar, G. H. (2004). Evaluation of antibacterial properties of Iranian medicinal plants against Micrococcus aureus, Serratia marcescens, Klebsiella pneumoniae and Bordella bronchoseptica. Asian Journal of Plant Science, 3, 82–86.
Soureshejan, E. H., Heidari, M. (2014). In vitro Variation in antibacterial activity plant extracts on Glauicium elegans and Saffron (Crocus sativus L.) Onios. Electronic Journal of Biology, 10, 64–67.
Sumitra, C., & Yogesh, B. (2010). Extraction of active compounds of some medical plants. African Journal of Biotechnology, 9, 3210–3217.
Ulbricht, C., Conquer, J., Costa, D., Hollands, W., Iannuzzi, C., Isaac, R., ... Varghese, M. (2011). An evidence-based systematic review of saffron (Crocus sativus) by the natural standard research collaboration. Journal of Dietary Supplements, 8, 58–114.
http://dx.doi.org/10.3109/19390211.2011.547666
Vohidi, H., Kamalinejad, M., & Sedaghati, N. (2002). Antimicrobial properties of Crocus sativus L. Iranian Journal of Pharmaceutical Research, 1, 33–35.
