A Unified Approach to Minimum Risk Training and Decoding

Abhishek Arun, Barry Haddow and Philipp Koehn

University of Edinburgh

Fifth Workshop on Machine Translation, Uppsala, July 16th 2010
Outline

- Current Approaches to Minimum Risk Decoding
- A Unified Approach
- Markov Chain Monte Carlo for Phrase-based MT
- Minimum risk training
- Optimising corpus BLEU
- Experiments
- Conclusions and Future work
Minimum Risk Decoding in MT

Optimal Decision Rule?
- Find the target sentence which minimises expected risk
 - Equivalently: Maximises expected gain
- Summarised by the following equation

\[e^* = \arg \max_e \sum_{e'} p(e'|f) \text{Gain}(e', e) \]

- We use \textbf{BLEU} as the gain function
- Referred to as \textbf{Minimum Bayes Risk (MBR) Decoding.}
Current Approaches to MBR Decoding

- First-pass decoder scores translations with linear model
- The scores must be scaled and normalised to give probabilities
 - Scaling requires hyper-parameter search
 - Normalisation requires intractable sum
- MBR Decoding implemented as a list re-ranker
- Feature weights in linear model trained with MERT
 - Non-probabilistic training algorithm
 - Aims to maximise 1-best (MAP) performance
Lattice-Based Approaches

- Represent many hypotheses compactly
- State-of-the-art performance from Lattice MBR
- But
 - Feature weights trained with MERT
 - Biased pruning - May be bad for sparse features
 - Need to approximate BLEU- more hyperparameters
A Unified Approach

Training	Decoding
Optimise Expected BLEU	Maximise Expected BLEU

- Objective is differentiable
 - Can use gradient-based optimisation
- Use **Markov Chain Monte Carlo (MCMC)** to estimate:
 - Feature expectations during training - for gradient
 - Expected BLEU during decoding
Benefits of Our Approach

- Maintains a probabilistic formulation throughout
 - Theoretically sound
 - Unbiased estimates
- Avoids dynamic programming so non-local features easier
- Compared to MERT:
 - More stable
 - Generalises better
 - Gives better performance
MCMC Sampler for Phrase-based MT

- Used to draw samples \{ (e_i, a_i) \} from \(p(e, a | f) \)
 - Use the samples to estimate expectations

\[
E(h) \approx \frac{1}{N} \sum_{(e_i, a_i)} h(e_i, a_i, f)
\]

- Transitions \(T_i \) defined by Transition Operators
 - Make small local changes to hypothesis
 - Apply all operators in sequence before collecting sample
MCMC Operators

RETRANS
Retranslates one source-target phrase pair

MERGE-SPLIT
Operates at an inter-word position. May merge or split segments as appropriate, and retranslate.

REORDER
Swaps target position of two source-target phrase pairs
MCMC Example

(a) c’est un résultat remarquable
Initial
\[\text{it is some result remarkable}\]

(b) c’est un résultat remarquable
RETRANS
\[\text{but some result remarkable}\]

(c) c’est un résultat remarquable
MERGE
\[\text{it is a result remarkable}\]

(d) c’est un résultat remarquable
REORDER
\[\text{it is a remarkable result}\]
Minimum Risk Training

Our objective is the expected gain plus an entropic prior

\[\hat{G} = \sum_{\langle \hat{e}, f \rangle \in D} \left[\left(\sum_{e, a} p(e, a \mid f) \text{BLEU}_{\hat{e}}(e) \right) + T \cdot H(p) \right] \]

- The temperature \((T)\) starts off high and is gradually reduced.
- This moves from high entropy to low entropy, and helps avoid local maxima
- Known as **Deterministic Annealing (DA)**
- The gradient is calculated using the sampler, and optimisation is by stochastic gradient descent
But we’re optimising sentence BLEU
- And testing with corpus BLEU
To eradicate this mismatch, we propose Corpus Sampling
- Each sample is an aligned translation of the whole corpus
 - Sentence samples are collected for all sentences
 - These are resampled to give corpus samples
 - Now we can optimise corpus BLEU
Corpus Sampling Illustration

SAMPLE FROM

P(e,a | f)

f1	f2	f3
A	D	K
B	E	L
A	F	L
C	G	L
B	H	M

SAMPLE FROM EMPIRICAL DISTRIBUTION

f1	f2	f3
A	F	L
B	E	L

Extract Corpus Samples

Corpus Sample 1	{A, F, L}
Corpus Sample 2	{B, E, L}
Experimental Setup

NIST Arabic-English	Europarl French-English	Europarl German-English
300k Sents Train In-Domain Test	1.4M Sents Train In-Domain Test Out-of-domain Test	1.4M Sents Train In-Domain Test Out-of-domain Test

Moses Setup

- Standard phrase extraction pipeline
- Standard features (no lexicalised reordering)
- MERT/Moses for baselines
Effect of deterministic Annealing

- Graphs show heldout performance
- Converges much quicker without DA
- Maximum is lower
- At high entropy, MBR much better than max-derivation
- Advantage reduces with temperature
- We use early stopping to find best weights
Corpus Sampling vs Sentence Sampling

Test Set	Sentence	Corpus
AR-EN MT05	44.6 (0.990)	44.5 (0.989)
FR-EN In-domain	32.9 (1.003)	33.2 (0.997)
FR-EN Out-domain	19.7 (1.049)	19.8 (1.041)
DE-EN In-domain	26.9 (0.987)	27.8 (0.993)
DE-EN Out-domain	16.6 (0.975)	16.6 (0.980)

- Expected **BLEU** training, MBR decoding
- Table shows **BLEU** and length penalty
- Corpus sampling slightly better
Comparison with Moses Baseline

Test set	MERT/Moses	Expected BLEU		
	Best	σ	MBR	σ
AR-EN MT05	44.5 (lMBR)	0.12	44.5	0.14
FR-EN In	33.4 (nMBR)	0.12	33.2	0.06
FR-EN Out	19.5 (nMBR)	0.12	19.8	0.05
DE-EN In	27.8 (MAP)	0.10	27.8	0.11
DE-EN Out	16.0 (lMBR)	0.30	16.6	0.12

- Compare corpus sampler with best MERT/moses result
 - For sampler, decode with n-best MBR
 - For Moses, best out of MAP, n-best MBR and lattice MBR
- Five runs of expected BLEU, ten runs of MERT, averaged.
Expected Bleu Training, Moses Decoding

Test Set	MAP	nMBR	IMBR	Sampler MBR
AR-EN MT05	44.2	44.4	44.8	44.8
FR-EN In	33.1	33.2	33.3	33.3
FR-EN Out	19.6	19.8	19.9	19.9
DE-EN In	27.7	27.9	28.0	28.0
DE-EN Out	16.0	16.3	16.6	16.6

- We use the best expected BLEU trained weights
- Decoding with Moses (first three columns) or sampler
- Suggests that expected BLEU weights better for IMBR
Conclusions

- Unified Training and Decoding beats or equals MERT/Moses
- Deterministic Annealing (entropic prior) provides better performance
- Corpus sampling provides small gains over sentence sampling
- Expected bleu trained weights more suited to lattice MBR decoding, than MERT weights
- MBR and maximum-translation decoding better than maximum-derivation
Future Work

- Supplement dense features with many sparse features
 - eg. discriminative language models
- Incorporate non-local features
 - eg. long-distance agreement
- Metropolis-Hastings step to efficiently incorporate slow features
 - eg. higher-order language model
Thank you!

Questions?

Code:

https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/branches/josiah