Supporting Information

B-site modified photoferroic Cr$^{3+}$-doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties

I. C. Amaechi†, G. Kolhatkar†, A. Hadj Youssef†, D. Rawach‡, S. Sun†, and A. Ruediger†

†. Institut National de la Recherche Scientifique, Centre Énergie, Matériaux, Télécommunications (INRS-EMT), 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada.

‡. Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada.

Corresponding author: ruediger@emt.inrs.ca

Misconception of band gap narrowing

The defect chemistry has long been established as a practical way of extending the absorption cross-section of a material through doping. In principle, the atoms of the dopant create localized defect states, which often introduce intermediate electronic levels within the forbidden gap of the host lattice. These localized states can also be referred to as the charge transfer centers of the dopant atom. Depending on the electronic states of the dopant atom, the conduction band (CB) or the valence band (VB) can be populated with electrons or holes respectively by thermal or optical excitation1. At all times, for moderate doping, the band gap remains a generic property of the host lattice. The dopants however may introduce substantial absorption peak below the band gap2 broadened into bands due to the strong electron-phonon coupling in perovskites. This is illustrated in Fig. S1 illustrating the fundamental absorption, the presence of a broad absorption band partially overlapping with the fundamental absorption as a possible result of the Frank-Condon principle.

The sum of both absorptions representing the net observable absorption signature of the doped
material is also depicted. The experimental configuration for almost all absorption experiments is based on transmission experiments where absorbance is calculated from the loss of optical transmittance. For strong optical absorption, the detectors will operate near or within the noise level thus imposing an upper limit for the detectable absorbance (indicated by a dotted horizontal line). The observable absorption edge has now red-shifted with respect to the fundamental absorption and it is thus a common misinterpretation that the bandgap itself has shrunk. The value of the band gap corresponds to the Fourier-component of the crystal potential (textbook knowledge) and any modification of the corresponding fundamental absorption requires extremely high doping levels that eventually alter the host lattice.

Fig. S1: The optical absorption spectra indicating (a) the absorption edge of the host lattice (b) the extra absorption introduced by the dopant, and (c) the cumulative spectrum obtained from the spectrometer.
Fig. S2: A Lorentzian peak fit of the Raman spectra for the samples with different Cr compositions.
Fig. S3: The EDX spectra of the undoped and 4 mol.% Cr^{3+}-doped BaTiO_3 sample.
Fig. S4: The adsorption capacity of undoped and doped photoferroic samples after 90 min in the dark.

Table S1: Comparison of degradation efficiency for different photocatalysts.

Photocatalyst	Additive amount (mg)	Organic dye used	Degradation concentration (mg L⁻¹)	Degradation rate (%)	Irradiation time (min)	Light source
This study	50	Methyl orange	20	~87	90	Simulated sunlight*
Cr³⁺-TiO₂	60	XRG	100	~76/71	60/420	UV/Visible ³
N-BaTiO₃	300	RhB	10	~48	240	Visible ⁴
BaTiO₃	600	Humic acid	10	~99	120	UV ⁵
TiO₂/BaTiO₃	-	Methylene blue	10	~72	180	UV ⁶
BaTiO₃	500	Crystal violet	10	~99	2880	UV ⁷
Fe₂O₃/BaTiO₃	150	RhB	10	~95	120	Simulated sunlight ⁸
Hermin/BaTiO₃	300	4-Chlorophenol	-	~92	150	Visible ⁹
BaTiO₃	50	Methyl blue	5	~50	50	Simulated sunlight ¹⁰
Fig. S5: The Raman spectra of 4 mol.% Cr$^{3+}$-doped BaTiO$_3$ sample before (black) and after (red) recycling.

References

1. M. S. Hamdy, W. H. Saputera, E. J. Groenen and G. Mul, A novel TiO2 composite for photocatalytic wastewater treatment, *Journal of Catalysis*, 2014, 310, 75-83.

2. O. F. Schirmer, A. Mazur, C. Veber and A. Rüdiger, presented in part at the Advances in Photorefractive Materials, Effects and Devices, 1999.

3. J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang and L. Zhang, Hydrothermal doping method for preparation of Cr$^{3+}$-TiO2 photocatalysts with concentration gradient distribution of Cr$^{3+}$, *Applied Catalysis B: Environmental*, 2006, 62, 329-335.

4. J. Cao, Y. Ji, C. Tian and Z. Yi, Synthesis and enhancement of visible light activities of nitrogen-doped BaTiO3, *Journal of Alloys and Compounds*, 2014, 615, 243-248.
5. P. Wang, C. Fan, Y. Wang, G. Ding and P. Yuan, A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water, *Materials Research Bulletin*, 2013, **48**, 869-877.

6. R. Li, Q. Li, L. Zong, X. Wang and J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity, *Electrochimica Acta*, 2013, **91**, 30-35.

7. W. W. Lee, W.-H. Chung, W.-S. Huang, W.-C. Lin, W.-Y. Lin, Y.-R. Jiang and C.-C. Chen, Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method, *Journal of the Taiwan Institute of Chemical Engineers*, 2013, **44**, 660-669.

8. Y. Cui, J. Briscoe, Y. Wang, N. V. Tarakina and S. Dunn, Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO3/alpha-Fe2O3 and the Significance of Interface Morphology Control, *ACS Appl Mater Interfaces*, 2017, **9**, 24518-24526.

9. L. Gomathi Devi and P. M. Nithya, Photocatalytic activity of Hemin (Fe(iii) porphyrin) anchored BaTiO3 under the illumination of visible light: synergetic effects of photosensitization, photo-Fenton & photocatalysis processes, *Inorganic Chemistry Frontiers*, 2018, **5**, 127-138.

10. S. Kappadan, T. W. Gebreab, S. Thomas and N. Kalarikkal, Tetragonal BaTiO3 nanoparticles: An efficient photocatalyst for the degradation of organic pollutants, *Materials Science in Semiconductor Processing*, 2016, **51**, 42-47.