Learning curves for Soft Margin Classifiers

Sebastian Risau-Gusman†§ and Mirta B. Gordon‡§

† Departamento de Física, Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria
1428 Buenos Aires, Argentina.
‡ Laboratoire Leibniz - IMAG
46 ave. Félix Viallet, 38031 Grenoble Cedex, France
§ Département de Recherche Fondamentale sur la Matière Condensée
CEA - Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France

February 28, 2002

Abstract

Typical learning curves for Soft Margin Classifiers (SMCs) learning both realizable and unrealizable tasks are determined using the tools of Statistical Mechanics. We derive the analytical behaviour of the learning curves in the regimes of small and large training sets. The generalization errors present different decay laws towards the asymptotic values as a function of the training set size, depending on general geometrical characteristics of the rule to be learned. Optimal generalization curves are deduced through a fine tuning of the hyperparameter controlling the trade-off between the error and the regularization terms in the cost function. Even if the task is realizable, the optimal performance of the SMC is better than that of a hard margin Support Vector Machine (SVM) learning the same rule, and is very close to that of the Bayesian classifier.
1 Introduction

The recently introduced Support Vector Machines (SVM) may be considered as an extension of the perceptron. The latter is only able to perform linear separations by a hyperplane in input space. When the problem is not linearly separable, instead of searching for more complex surfaces in input space, SVMs map the input patterns onto a space of much higher dimension with the hope that in this feature space the task be linearly separable. To cope with the problem of the very high dimensionality of the space, Cortes and Vapnik proposed to find the Maximal Stability Perceptron (which is the solution that maximizes the distance from the hyperplane to the closest pattern). The corresponding weight vector, normal to the hyperplane, has the remarkable property that it can be written as a linear combination of some of the training patterns, called Support Vectors. This weight vector w minimizes the SVM cost function,

$$ E = \frac{1}{2} w \cdot w, $$

subject to the following conditions, imposed to all the patterns $\mu = 1, \ldots, M$, of the training set $\mathcal{L}_M = \{(x_\mu, x_\mu^0)\}$ with $x \in \mathbb{R}^N, x_\mu^0 \in \{-1, 1\}$,

$$ x_\mu^0 (w \cdot x_\mu + b) \geq 1, \quad \mu = 1, \ldots, M. $$

where $|b|$ is the distance of the hyperplane to the origin. Conditions (2) impose that all the patterns be farther than a distance $1/\|w\|$ from the hyperplane, and minimization of (1) ensures that this distance is maximized.

It can be shown that the solution to this extremum satisfies $w = \sum_{\mu=1}^M \alpha_\mu x_\mu x_\mu^0$ where the coefficients α_μ are nonnegative, and many of them are vanishing. If we now introduce a mapping $x \rightarrow \Phi(x)$ the cost function for the SVM is given by eq. (1), but replacing everywhere x_μ by $\Phi(x_\mu)$.

This machines, called hard margin machines, have been successfully analyzed within the approach of statistical mechanics.

The preceding formulation supposes that the task is linearly separable in the working space, as otherwise conditions (2) cannot be
fulfilled for all the patterns μ. This may arise either because the selected mapping into the feature-space is not adequate, or because there is intrinsic noise in the data, and the task cannot be learned without training errors. To cope with this problem, a modification of the cost function (1) and the conditions (2) has been suggested [3], giving raise to the concept of Soft Margin Classifier, hereafter called SMC.

For simplicity, in this paper we restrict ourselves to consider SMCs acting on input space. This is a useful first step towards a better theoretical understanding of SMC’s with full functionality, i.e. using a mapping to a high dimensional feature space. We consider classifiers without bias.

To find the SMC, one has to minimize the function:

$$E_{C,k} = \frac{1}{2} w \cdot w + C \sum_{\mu=1}^{M} \zeta_{\mu}^k,$$

where k is a positive exponent and C a positive constant, subject to the following conditions for $\mu = 1, ..., M$

$$h_{\mu} \equiv x_{\mu}^0 w \cdot x_{\mu} \geq 1 - \zeta_{\mu},$$

$$\zeta_{\mu} \geq 0.$$ \hspace{1cm} (4)

The slack variable ζ_{μ} is a measure of how much the constraint (4) is violated for pattern μ. In particular, if $\zeta_{\mu} > 1$ then $h_{\mu} < 0$, which means that pattern μ is wrongly classified. Unlike hard margin classifiers, in which all the training patterns are excluded from a strip of width $1/\|w\|$ on both sides of the separating hyperplane, in the case of SMCs, patterns with $0 < \zeta_{\mu} < 1$ lie inside this strip, called soft margin.

The patterns with $\zeta_{\mu} > 0$, which are the training patterns either wrongly classified as well as those correctly classified lying within the above mentioned strip, are the Support Vectors.

The exponent k in (3) is usually set to 1 or 2 so that the cost function be a quadratic function of the unknowns w and ζ_{μ} (\(\mu = 1, ..., M\)).
1, . . . , M). Under these conditions, the minimum of the cost function is unique [2], a fact that gives the SVMs a big advantage over other learning algorithms which require a search of the lowest of several local minima.

For practical implementations it is useful to formulate the dual problem and use the corresponding Kuhn-Tucker conditions, as was done for our simulations. We do not go into further details here, as these have been extensively discussed in the literature [11].

The value of the hyperparameter C in (3) sets the compromise between large margins and small numbers of errors. In practice, C should be adjusted, either by trial and error or using more sophisticated methods [22, 23] to get the best performance out of the classifier.

The paper is organized as follows: in section 2 we clarify what is meant by *typical properties* of a classifier and give a brief survey of the method used. The learning curves for a variety of different tasks are determined and discussed in section 3. We analyze the problems of patterns whose classes are random variables (section 3.1), patterns classified with a rule given by a teacher with the same structure as the trained classifier (section 3.2), or a different structure (section 3.3). We also consider tasks where the patterns’ classes are corrupted by noise (section 3.4). We relate the different behaviours of the generalization error to simple geometrical properties of the rule to be learned. We also present the typical properties of the optimal generalizers, that is, obtained with the values of C that minimize the generalization error. The main results are summarized in the last section (4), where we discuss some perspectives of this work.

2 What are typical properties?

Worst case analysis of a learning machine gives exact bounds for different quantities of interest, like the generalization error, the training error, the number of support vectors, etc. However, very often these exact bounds are not tight. In this paper we focus on the *typical* properties of SMCs faced with particular classes of problems. Our results, obtained with the tools of statistical mechanics, predict the
expected (averaged over all the possible training sets) behaviour of SMCs. As in the case of perceptrons, this approach allows to get insight on the learning properties of the classifiers. The method, thoroughly described in a recent book [5], has already been presented elsewhere in the context of SVMs [19]. It was applied for the first time to learning machines by E. Gardner [6], who studied a perceptron learning a binary classification task. Statistical Mechanics is generally used to determine the properties of the minima of (cost) functions in very high dimensional spaces, when the cost depends on a large number of random variables, the training patterns. Like in statistical learning theory [25], these are assumed to be drawn independently from a probability distribution.

Schematically, training a classifier amounts to minimize a cost function (which plays the role of an energy) in the space of the classifier’s parameters, which in the case of SMCs, are the N-dimensional weight vector and the M slack variables. This minimization is done using the information contained in the set of M training patterns. The typical properties (training error, generalization error, etc.) are obtained through averages over all the possible training sets corresponding to the task, in the limit of very large N and M, keeping constant the ratio $M/N = \alpha$, hereafter called training set size. It can be proved that in the limit where both N and M diverge (called thermodynamic limit), with α held fixed, these averages coincide with the value taken by the considered property for almost every training set. This means that, if we made the “experiment” of training a given machine with a given training set for given (large enough) N and M, we would find that the value of, say, the generalization error is very close to the one calculated with Gardner’s method. Within this context, values of $N \approx 50$ are usually already large. The rigorous validity of the techniques used in these calculations has been established recently [24].

3 Results

As already stated, we consider perceptrons trained to minimize the cost function (3) with conditions (4) and (5), with $C > 0$. In the following we assume, for the sake of simplicity, that the components
of the input patterns are independently drawn from a gaussian distribution of variance $1/\sqrt{N}$:

$$P(x) = \frac{e^{-N x^2/2}}{(2\pi/N)^{N/2}}.$$ (6)

We study binary classification tasks. The label of each pattern, denoted by $x_\mu \in \{-1, 1\}$, is assigned following a rule, which may be deterministic or stochastic. In the latter case the labels are drawn from a probability distribution.

The training error ϵ_t is the fraction of patterns in the training set that, after training, are incorrectly classified:

$$\epsilon_t = \frac{1}{M} \sum_{\mu=1}^{M} \Theta(-h_\mu).$$ (7)

where h_μ is given in equation (5). The generalization error is defined as the probability of misclassifying a new pattern after the network has been trained:

$$\epsilon_g = \sum_{x^0} \int \! dx P(x^0|x)P(x)\Theta(-x^0 w \cdot x)$$ (8)

where $P(x^0|x)$ is the probability that pattern x belongs to class x^0 (notice that for deterministic rules this is a delta function). If the classifier cannot implement the rule with a vanishing generalization error for any training set size α (even for $\alpha \to \infty$), the rule is said to be unrealizable. Otherwise, it is realizable.

The pertinence of our analytic results has been verified by comparing them to numerical simulations. The latter, presented in the figures of the following paragraphs, were done for $N = 100$ and different values of M. This value of N is large enough for M/N to be a good approximation of α, which in the theoretical approach corresponds to the ratio of M/N in the limit $M \to \infty$, $N \to \infty$.

We present results for different kinds of rules, starting with the extreme case where there is no rule at all, following with the case of a realizable rule, and at the end we analyze several examples of non realizable rules. We also report results for different exponents k and values of C, including the optimal value and the limiting case
of $C \rightarrow \infty$, for each of the rules considered. We call \textit{optimal} the value $C_{\text{opt}}(\alpha)$ that gives, on average, the best generalizer, i.e. the lowest generalization error ϵ_g for each value of α.

3.1 Patterns with random classes

In this section we consider that the patterns are labelled randomly. Thus, it is impossible for any classifier to predict with any degree of certainty the correct label. Therefore, $\epsilon_g \equiv 1/2$. Gardner \cite{Gardner} analyzed with the statistical mechanics approach the properties of a perceptron learning such kind of task using the number of training errors $M\epsilon_t$ (see eq. (7)) as cost function. She obtained the average training error $\bar{\epsilon}_t$, which is the lowest curve in figure 1. This curve serves as a reference for the performance of the SMC, as by definition it gives the lowest training error that can be achieved on average. It is well known that $\epsilon_t = 0$ for $0 \leq \alpha < 2$, which means that it is possible to train a perceptron to classify correctly any set of training patterns only if $\alpha < 2$. The value $\alpha_c = 2$ is the \textit{typical capacity} of the perceptron: for $\alpha > \alpha_c$ only a subset of zero measure among all the possible training sets are learnable without training errors: the linearly separable ones. But, for $\alpha < 2$, a \textit{typical} training set has probability 1 of not being linearly separable.

In figure 1 we show our results for the SMCs. For finite values of C the average training error does not vanish at any α, as was to be expected from the fact that SMCs do not aim at minimizing this quantity. Moreover, the fraction of training errors is rather large compared to the minimal possible values. The best performance is obtained in the limit $C \rightarrow \infty$. In this limit, the SMC achieves the perceptron’s maximal capacity: its training error vanishes both with $k = 1$ and $k = 2$ if $\alpha < \alpha_c$. For $\alpha > \alpha_c$ the best performance is obtained using the exponent $k = 1$ in the cost function (3). This result is further discussed in the conclusions. Notice that when $k = 1$ the fraction of errors leaves the value 0 continuously, while the curve for $k = 2$ presents a discontinuity at $\alpha = \alpha_c$, where it jumps from $\epsilon_t = 0$ to a finite value $\epsilon_t = 0.105$.

\footnote{Although this curve is not exact, as the approximations used to obtain it break down for $\alpha > 2$, the corrections to it are believed to be small.}
Figure 1: Average value of the training error for different SMCs learning a random task. The points correspond to the result of simulations, averaged over ~ 100 different training sets.
Figure 2: Average value of the training and generalization errors for different SMCs learning a realizable task. The curve for C_{opt} almost coincides with the one with $C \to \infty$ for $k = 1$ and with the one of the Bayesian classifier for $k = 2$. The points correspond to simulations, averaged over the necessary number of training sets to ensure that the error bars are smaller than the symbols.

3.2 A realizable rule

Consider now a linearly separable rule so that, at least in principle, a perceptron is able to achieve a vanishing generalization error. To ensure that the rule is realizable, the labels of the examples are given by another perceptron called teacher:

$$x^0 = \text{sign} \left(w_0 \cdot x \right),$$ \hspace{2cm} (9)

where w_0 is the the teacher's weight vector. The average training and generalization errors for $k = 1$ and $k = 2$ are represented on figure 2, for different values of C.

Even though we are considering a realizable rule, which means that it is always possible to find a classifier achieving $\epsilon_t = 0$, all the SMCs (with finite C) end up with a finite fraction of training errors.
SMCs with \(k = 2 \) perform better, both in training and in generalization, than those with \(k = 1 \). This is so because the term proportional to \(\zeta^k \) in the cost function (3) penalizes more heavily the errors (which have \(\zeta > 1 \)) when \(k = 2 \).

The generalization error of the SMCs has a non monotonic behaviour as a function of \(C \). On increasing \(C \) at any given \(\alpha \), \(\epsilon_g \) first decreases, reaches a minimum value for \(C = C_{opt}(\alpha) \), and for larger values of \(C \) it increases. In the limit \(C \to \infty \), we obtain the hard margin solution, which has larger \(\epsilon_g \) than the optimum.

It is interesting to notice that with \(C = C_{opt}(\alpha) \), which gives (by definition) the smallest generalization error, the corresponding training errors are not minimal. A similar result has been obtained \[7\] for a perceptron learning with the algorithm Minimerror \[15\], which minimizes a temperature dependent logistic cost function. In that case, the parameter that plays the role of \(C \) is the temperature. It was shown that in the limit of zero temperature Minimerror converges to the maximal margin perceptron, which is nothing but the hard margin SVM, with \(\epsilon_t = 0 \). However, at finite temperature, the algorithm allows to obtain better generalization performance than the hard margin SVM, at the price of making training errors.

For the sake of comparison we included in the same figures the generalization error of the bayesian perceptron learning a realizable rule \[13\], which is known to be the optimal generalizer. We see that for \(C = C_{opt} \) the best SMC is obtained with \(k = 2 \). The relative difference of its generalization error with respect to the bayesian one is at most 1.7% (see fig 3). Thus, very good generalization is achieved at the expense of some training errors.

In the limit of very large values of \(\alpha \), the generalization error (that coincides in all cases with that of the training error), presents different behaviours. For all finite values of \(C \), and both for \(k = 1 \) and \(k = 2 \), \(\epsilon_g \sim C^{-1/6} \alpha^{-2/3} \). That is, \(\epsilon_g \) decreases with the training set size slower than the usual \(\alpha^{-1} \) law, found in the literature for zero training error solutions. This behaviour changes qualitatively if \(C \to \infty \) in which limit we recover the well known \[7\] hard margin result \(\epsilon_g \sim 0.5005/\alpha \). For the curves obtained using \(C_{opt} \) we obtain: \(\epsilon_g(k = 1) \sim 0.488\alpha^{-1} \) and \(\epsilon_g(k = 2) \sim 0.449\alpha^{-1} \). Despite the fact that \(C_{opt} \) is finite, the behaviour in this case is proportional to \(\alpha^{-1} \).
because C_{opt} depends on α. These results are to be compared with
the behaviour of the bayesian classifier for large α: $\epsilon_g \sim 0.442\alpha^{-1}$.
As will be discussed later, the expected value of the first term in
the cost function (3) is important to understand the behaviour of
the learning curves of SMCs. In the present case of a realizable rule
we obtain, for large α, $\langle \|w\| \rangle / \sqrt{N} \sim (C\alpha)^{1/3}$.

3.3 Deterministic unrealizable rules

Unrealizable rules are either deterministic, given by “teachers” that
have a more complex structure than the “student”, or stochastic,
which are inherently unrealizable because of the randomness in-
volved.
We have studied with great detail the behavior of SMCs facing
some deterministic unrealizable tasks elsewhere [20]. Here, we only
summarize our results. We consider rules corresponding to several
parallel separating hyperplanes, as those sketched on figure 4. The
class of an input vector x is given by:

$$x^0 = \text{sgn} (P(w_0 \cdot x)),$$

where P is, in principle, any function of its argument. In fact, the

$\epsilon_g (k=2)/\epsilon_g (\text{Bayes})$

Figure 3: Comparison between the generalization error for the SMC with C_{opt} and
$k = 2$ and the generalization error for the bayesian classifier.
Figure 4: Three nonlinear rules. A) $\mathcal{P}(z) = (z - \delta)$, B) $\mathcal{P}(z) = z(z - \delta)$, C) $\mathcal{P}(z) = (z - \delta)z(z + \delta)$

rule (11) only depends on the number of zeros of $\mathcal{P}(z)$ and not on its particular expression. We therefore assume, without loss of generality, that it is a polynomial. If it has m zeros, the rule (11) corresponds to a set of m parallel discriminating hyperplanes defined by the equations $w_0 \cdot x - z_i = 0$, where $\{z_i : i = 1, ..., m\}$ are the zeros of $\mathcal{P}(z)$. The distance to the origin of each hyperplane is $|z_i|/\|w_0\|$.

One quantity of interest is the distribution of stabilities of the M training patterns with respect to the SMC solution, defined by

$$\gamma_\mu = x_\mu^0 w \cdot x_\mu / \|w\| = h_\mu / \|w\|, \quad 1 \leq \mu \leq M. \quad (11)$$

If $\gamma_\mu > 0 (< 0)$ the pattern μ is correctly (incorrectly) classified. The norm of γ_μ is the distance of pattern μ to the hyperplane orthogonal to w_0 that contains the origin of coordinates. The support vectors have $\gamma_\mu \leq 1/\|w\|$. The distribution of stabilities of the training patterns, averaged over the possible training sets,

$$\rho(\gamma) = \frac{1}{M} \sum_{\mu=1}^{M} \delta(\gamma_\mu - \gamma). \quad (12)$$

gives useful information regarding the SMC’s solution. For the considered rules, the distribution of stabilities for any finite α is nonvanishing everywhere, and has a single discontinuity at $\gamma = \sqrt{N}/\|w\|$.

\footnote{Here, as in the rest of the paper, we call zeros the points where the function changes sign.}
Figure 5: Distribution of stabilities for two SMCs learning patterns given by the rule with \(P(z) = z(z - 2) \). The full lines represent simulations averaged over 100 training sets, for 200 examples with \(N = 100 \). The dashed lines are the theoretical predictions for \(\alpha = 2 \).

A) \(k = 1 \). The arrow shows the position of the Dirac delta as predicted by the theory.

B) \(k = 2 \).

In addition, if \(k = 1 \) there is a Dirac delta at this position, indicating that there is a finite fraction of training patterns placed exactly at the SMC’s margin. The absence of such delta peak for \(k = 2 \) is related to the fact that these patterns do not belong to the support vectors in this case\(^4\), whereas they are support vectors if \(k = 1 \). The generalization error and the average fraction of support vectors are obtained by performing the integral of \(\rho(\gamma) \) between \(-\infty \) and 0, and between \(-\infty \) and \(\sqrt{N/\|w\|} \), respectively. In fig. 5B we show an example of the distribution of stabilities for one particular unrealizable rule.

We analyzed three types of rules: the linear rule given by \(P(z) = z - \delta \), the “sandwich” rule \(P(z) = z(z - \delta) \) and the “reversed-wedge”

\(^4\)This results from the analysis of the Kuhn Tucker equations.
rule $\mathcal{P}(z) = (z - \delta)z(z + \delta)$. The corresponding learning curves present very different behaviours depending on the rules, but, given the rule, they are qualitatively similar for both exponents, $k = 1$ and $k = 2$.

For the reversed wedge rule with $\delta > \delta_c = \sqrt{2 \ln 2}$ and for the sandwich rule, $\epsilon_t(\alpha)$ approaches its finite asymptotic value for $\alpha \to \infty$ from above. ϵ_g decrease rapidly at small α, when ϵ_t is still relatively large. In both cases the best generalizer (with $C = C_{opt}(\alpha)$) is obtained with the exponent $k = 1$. This kind of rules are called hereafter rules of type I.

For the reversed wedge rule with $\delta < \delta_c = \sqrt{2 \log 2}$, and the linear rule, hereafter called rules of type II, we find that ϵ_t approaches its asymptotic value from below, whilst the decrease of ϵ_g at small α is slower than for rules of type I. The best generalizer (with $C = C_{opt}(\alpha)$) for rules of type II is obtained with exponent $k = 2$. Figure 6 presents the different kinds of behaviours for some rules of type I and II. The behaviour of C_{opt} as a function of α is also very different for each type of rules.

In fact, the two types of rules may be characterized by which patterns are necessarily misclassified by the “student” in the limit of $\alpha \to \infty$. In this limit, the weight vector of the SMC tends to be aligned either parallel or antiparallel to w_0, the normal to the discriminant hyperplanes corresponding to the rule. This is represented on figure 4, where the misclassified patterns lie in the shaded regions. For rules of type I, these regions are unbounded half-spaces. On the other hand, for type II rules errors are restricted to the bounded regions close to the origin. This remark allows to understand why the best performances in generalization are obtained with different exponents k depending on the type of rule. In general, the student’s (unique) hyperplane is rotated with respect to the teacher’s vector w_0 by an angle that depends on the type of rule and on the exponent k. If the training errors lie in the unbounded regions, the rotation angle with $k = 2$ will be larger than with $k = 1$ because this reduces the cost of the errors located far from the hyperplane. If this kind of errors cannot be avoided, as arises in rules of type I, the generalization error with $k = 2$ will be larger than with $k = 1$. On the other hand, when the unavoidable errors are relatively close to the
Figure 6: Comparison of the generalization errors of SMCs with $k = 1$ and $k = 2$ learning unrealizable rules. Figures A and B correspond to rules of type I and figures C and D correspond to rules of type II.
origin of coordinates, their larger cost when using $k = 2$ will induce an orientation of the hyperplane closer to w_0 than with $k = 1$. This results in a better generalization performance with $k = 2$ than with $k = 1$.

To conclude this study of deterministic unrealizable rules, we discuss some general results. In particular, the different rules can be characterized by a single quantity:

$$
\langle \gamma_0 \rangle = \int d\gamma \rho(\gamma) = \int Dz z \text{sign}(P(z)) = \sum_{i=1}^{m} (-1)^i e^{-z_i^2/2},
$$

where the z_i are the zeros of $P(z)$. $\langle \gamma_0 \rangle$ represents the average stability of the training patterns with respect to a hyperplane normal to w_0 passing through the origin.

One interesting result is that if the rule is such that $\langle \gamma_0 \rangle = 0$ then the SMC (for all values of C and k) is unable to generalize: $\epsilon_g = 1/2$ for all values of α, even though the training error remains small. This phenomenon is known as memorization without generalization [10]. A similar result has been obtained by Reimann and van den Broeck [16] when the classifier uses Hebb’s rule.

For large values of α the weight vector of the SMC tends to align parallel to w_0 if $\langle \gamma_0 \rangle > 0$ and antiparallel if $\langle \gamma_0 \rangle < 0$. Notice that this does not imply that the best generalization performance is reached asymptotically for $\alpha \to \infty$, as it can be shown that ϵ_g is not a monotonic function of α. The asymptotic value of the generalization error is

$$
\epsilon_{g}^\infty = \epsilon_g(\pm 1) = \int Dz \Theta(\mp z \cdot P(z))
$$

which can be even larger than $1/2$. This means that using the SMC for large α can be worse than classifying the patterns randomly. The asymptotic behaviour of ϵ_g only depends on whether $P(0) = 0$ or $P(0) \neq 0$, that is, whether one of the rule’s hyperplanes contains the origin or not. If $P(0) = 0$, we obtain a power law: $\epsilon_g - \epsilon_g^\infty \propto \alpha^{-1/2}$. The same exponent was found by Fontanari and Meir [12] for a machine learning a realizable rule with an algorithm accepting training errors. If $P(0) \neq 0$ the convergence is exponential: $\epsilon_g - \epsilon_g^\infty \sim$
Figure 7: Comparison of the regions with errors for $\alpha \to \infty$, of SMCs learning:
A) Sandwich rule (type I),
B) Reversed wedge rule, with $\delta > \delta_c$ (type I),
C) Linear rule (type II),
D) Reversed wedge rule, with $\delta < \delta_c$ (type II).
The arrows indicate the asymptotic orientation of the hyperplane of the SMC.
In the shaded region the patterns are incorrectly classified.
Figure 8: Comparison of two rules. The thick horizontal lines represent the hyperplanes of the teacher. The signs + and - are the classes assigned by the teacher inside the horizontal bands shown. The line perpendicular to \(w \) represents the SMC’s hyperplane. For \(\alpha \gg 1 \), the angle \(\beta \) between \(w \) and \(w_0 \) is \(\ll 1 \). The shaded regions contain the misclassified examples.

A) Rule with \(P(z) = z(z - \delta) \).

B) Rule with \(P(z) = z - \delta \).
\(\alpha^3 e^{-z_0^2 \alpha} \), where \(z_0 \) is the zero of \(P(z) \) with smallest norm. The existence of these two regimes is related to whether the patterns contributing to \(\epsilon_g \) lie close to or far from the student’s hyperplane. Figure 8 presents examples of both regimes. The angle \(\beta \ll 1 \) shown in the figure gives the orientation of the SMC’s hyperplane relative to that of the teacher, for large \(\alpha \). Within our approach, this angle can be calculated as function of \(\alpha \). In fig. 8A, we show the situation corresponding to the rule with \(P(z) = z(z - \delta) \). Consider the difference \(\epsilon_g(w_0) - \epsilon_g(w) \) of the generalization error with respect to its asymptotic value. It is proportional to the fraction of patterns that in the dark grey regions because the contributions of the light grey regions compensate each other. As the patterns’ distribution is gaussian, the main contribution is due to the fraction of points close to the origin, which is roughly proportional to the angle \(\beta \ll 1 \). In fig. 8B, we show the rule with \(P(z) = z - \delta \). Here again, the difference of generalization error is given by the points inside the dark grey regions, that in this case are placed far from the origin (the contributions from the light grey regions compensating each other). The fraction of points in this region is roughly proportional to \(\sim \exp(-\delta/\beta)^2/2) \).

The constants involved in the asymptotic terms do not depend on \(C \). This can be understood from the fact that in the limit of large \(\alpha \), the complexity term \(w^2/2N \) in the cost function tends to a constant and therefore it is the error term that dominates completely, thus turning \(C \) into a multiplicative constant to the cost. Notice that this is not the case for the realizable rule, where we have that \(w^2/N \to \infty \) if \(\alpha \to \infty \).

We have also calculated the behavior of the quantities of interest in the limit of very small number of examples, \(\alpha \ll 1 \). We find that the norm of the weight vector increases with \(\alpha \) like \(\|w\|/\sqrt{N} \sim C^2 \alpha \). The generalization error decreases as \(1/2 - \epsilon_g \sim \langle \gamma \rangle^2 \alpha^{1/2} \). This interesting result shows that for a small number of examples the SMC has some generalization power even for those rules where the asymptotic value of \(\epsilon_g \) for large \(\alpha \) is worse than if the new inputs were randomly classified.

Another interesting result is that for the SMC with \(k = 1 \), the fraction of support vectors that lie exactly on the margin tends to
1 for $\alpha \to 0$ if $C > 1$, but to 0 if $C < 1$.

3.4 Stochastic rules

In this section we consider rules that do not determine univocally the class of the patterns. In particular, we study rules where the output of the teacher is corrupted by a random noise. When the noise is additive the class of pattern x is

$$x^0_+ = \text{sgn} \left(\mathcal{P}(w_0 \cdot x + \eta) \right),$$ \hspace{1cm} (15)$$

where η is a random variable drawn from a distribution which we assume is a gaussian of variance Δ. If the noise is multiplicative, the class given is

$$x^0_\times = \text{sgn} \left(\mathcal{P}(w_0 \cdot x \eta) \right),$$ \hspace{1cm} (16)$$

where $\eta = \pm 1$ with $P(\eta = 1) = p$ and $P(\eta = -1) = 1 - p$. The effect of these two types of noise is the same as that of a corruption of the pattern to be classified. The gaussian noise only changes the class of patterns that are close to the separating hyperplanes whereas with the multiplicative noise the probability of changing the class of a pattern with respect to the deterministic rule does not depend on distances. The effect of additive noise has been studied using the statistical mechanics approach in the case of a perceptron learning a rule with $\mathcal{P}(z) = z$ by Gyorgyi and Tishby and by Opper and Haussler in their analysis of the bayesian perceptron.

The asymptotic behaviors we obtain for the SMCs learning noisy rules are qualitatively the same as the ones we obtained for unrealizable rules. The relative norm of the classifier, w/\sqrt{N}, tends to a constant value when $\alpha \to \infty$ for both types of noise. The alignment of the weight vector with the vector of the rule depends on the sign of $\langle \gamma_0 \rangle$.

The generalization error shows different asymptotic behaviours, depending on the type of noise. For multiplicative noise we obtain a power law behaviour if one of the hyperplanes of the rule contains the origin of coordinates and an exponential decay otherwise, like in the case of unrealizable rules. On the other hand, for gaussian additive noise, the rate of convergence does not depend on $\mathcal{P}(0)$ and
is a power law for all the rules: $\epsilon_g - \epsilon^\infty \sim \frac{\alpha^{-1}}{\psi} \sum_{i=1}^{m} (-1)^i \exp(-\frac{x^2}{2\psi})$
where m is the number of zeros of $P(z)$ and $\psi = \sqrt{1 + \Delta^2/\Delta}$. The suppression of the exponential convergence that exists in the case of a deterministic unrealizable rule with no teacher’s hyperplane passing thorough the origin can be understood in the same way as before. The important point is that additive noise alters the class of patterns that are close to the hyperplane. This introduces errors inside the central strip which are enough to suppress the exponential convergence, which is recovered in the limit of vanishing noise, when $\Delta \to 0$. Notice that the multiplicative noise does not introduce any errors inside the central band.

The learning curves for the particular case of rules with $P(z) = z$ with multiplicative noise are shown in figure 9. Figure 10 presents results for gaussian additive noise. We can see for these rules the same effects we observed for deterministic rules of type I and II respectively. Geometrically, the reason is clear: as the gaussian noise changes mostly the class of the patterns that are near the hyperplanes of the teacher, the errors made in this case will be bounded, whereas for multiplicative noise the alteration of the class does not depend on the distance, producing unbounded errors.

4 Conclusions

We have studied the typical properties of the Soft Margin Classifiers, using the tools of Statistical Mechanics, for several different scenarios. This approach allowed us to study also the properties of the optimal classifier, which is the one obtained when the hyperparameter C is tuned to obtain the lowest value of the generalization error. It turns out that, for realizable rules, the classifier obtained with C_{opt} is very close to the optimal performance, given by Bayesian learning. The best results are obtained with an exponent $k = 2$ for the slacks in the cost function; the relative difference between both learning curves is smaller than 1.7%, for all α.

As the generalization error cannot be known exactly in practice, the values of C_{opt} that we have obtained are only useful to provide a reference generalization error curve, against which the performance of the various algorithms devised to optimize C may be tested.
Figure 9: Training and generalization errors for an SMC learning a rule with $P(z) = z$ corrupted by multiplicative noise ($P(\eta = 1) = 0.922$). The horizontal line shows the asymptotic value of both errors. The symbols represent simulations made with $N=100$, averaged over enough training sets to make the error bars smaller than the symbols.
Figure 10: Training and generalization errors for an SMC learning a rule with $P(z) = z$ corrupted by additive gaussian noise ($\eta = 0.97$). The horizontal line shows the asymptotic value of both errors. The symbols represent simulations made with N=100, averaged over enough training sets to make the error bars smaller than the symbols.
In general, when the rule is non realizable and the SMC cannot avoid misclassification of some training patterns, the learning curves present two types of behaviours. In rules of type I, in which these unavoidable errors lie at large distances of the SMC’s hyperplane, the generalization performance is better if $k = 1$ is used as exponent of the slack variables in the cost function. Conversely, if errors are confined to a strip containing the origin, like in rules of type II, it may be more convenient to use a SMC with $k = 2$. This is due to the way errors are weighted in the cost function, and may be used as a rule of the thumb for applications, as it only uses as a criterion the distances of the misclassified patterns to the discriminating surface.

In the case of an SMC learning patterns whose classes are entirely random, the best learning performance is achieved for $k = 1$. This is not surprising, as this case is similar to the rules of type I, because as the classes are random, the errors made by the classifier are evidently unbounded.

For the unrealizable rules considered, the convergence of the training and generalization errors to their asymptotic values as a function of α in the limit $\alpha \gg 1$, follows either an exponential or a power law decay with exponent $1/2$, depending on whether or not one of the teacher’s hyperplanes contains the origin. If there is a gaussian additive noise, only the power law decay exists. It would be interesting to determine if this two types of asymptotic behaviours are universal for all the unrealizable rules or if there are still more possible regimes. It is remarkable that even though the asymptotic value of ϵ_t and ϵ_g can be larger than one half (which is worse than that achieved by randomly classifying the patterns), in the regime of small values of α we have always $\epsilon_t < 1/2$ and $\epsilon_g < 1/2$.

The statistical mechanics approach can be extended to consider more complicated (and probably more realistic) pattern distributions, like biased or non-gaussian distributions. The bias b can be included, but the calculations become much more complicated. If a bias is allowed, probably the asymptotic exponential behavior mentioned above would disappear, because in this case the hyperplane of the classifier can be shifted until it coincides with one of the hyperplanes of the considered rule. Classifiers using $k = 3$ in the cost function can also be studied within this approach, in much the same
way as $k = 1$ and $k = 2$, and they may present some interesting features, even though they are not used in practice. The model can be extended to include the mappings from the input space to a feature space, but at the expense of considerably increasing the complexity of the calculations.

Acknowledgments

We acknowledge discussions with the participants to the workshop “Statistical Mechanics of Information Processing in Cooperative Systems”, held in the Max Planck Institute für Komplexer Systeme in Dresden, on March 5-23, 2001.

References

[1] A. Buhot and M. B. Gordon Phys. Rev. E 57, 3326 (1998).

[2] C. J. C. Burges and D.J. Crisp, in Advances in Neural Information Processing Systems 12, edited by S. A. Solla, T. K. Leen, K-R. Muller (MIT Press, 2000), p. 223.

[3] C. Cortes and V. N. Vapnik, Machine Learning 20, 273 (1995).

[4] R. Dietrich, M. Opper and H. Sompolinsky, Phys. Rev. Lett. 82, 2975 (1999).

[5] A. Engel and Ch. Van den Broeck, Statistical mechanics of learning. Cambridge : Cambridge University Press, 2001.

[6] E. Gardner, Europhys. Lett. 4, 481 (1987).

[7] M. B. Gordon and D. R. Grempel, Europhys. Lett. 29 257 (1995).

[8] G. Györgyi and N. Tishby, in Neural networks and spin glasses, edited by Theumann, W. K. and Köberle R (World Scientific, Singapore 1990), p. 3.

[9] G. Györgyi and P. Reimann, Phys. Rev. Lett. 79, 2746 (1997).

[10] D. Hansel, G. Mato and C. Meunier, Europhys. Lett. 20, 471-476 (1992)
[11] Machine Learning **46** (2002), Special Issue on Support Vector Machines and Kernel Methods.

[12] R. Meir and J. F. Fontanari, Phys. Rev. A **45**, 8874 (1992).

[13] M. Opper and D. Haussler, Phys. Rev. Lett. **66**, 2677 (1991).

[14] P. Peretto, *An Introduction to the Modeling of Neural Networks* (Cambridge University Press, Cambridge (UK), 1992).

[15] B. Raffin and M. B. Gordon, Neural Computation **7**, 1206-1224 (1995).

[16] P. Reimann and C. Van den Broeck, Phys. Rev. E **53**, 3989 (1996).

[17] S. Risau-Gusman and M. B. Gordon, in *Advances in Neural Information Processing Systems* 12, edited by S. A. Solla, T. K. Leen, K-R. Muller (MIT Press, 2000), p. 321.

[18] S. Risau-Gusman and M. B. Gordon, Phys. Rev. E **62**, 7092 (2000).

[19] S. Risau-Gusman and M. B. Gordon, Machine Learning **46**, 53 (2002).

[20] S. Risau-Gusman and M. B. Gordon, Phys. Rev. E **64**, 031907 (2001).

[21] M. Seeger, in *Advances in Neural Information Processing Systems* 12, edited by S. A. Solla, T. K. Leen, K-R. Muller (MIT Press, 2000), p. 603.

[22] P. Sollich, in *Advances in Neural Information Processing Systems* 12, edited by S. A. Solla, T. K. Leen, K-R. Muller (MIT Press, 2000), p. 349.

[23] P. Sollich, in ref. [21], p. 21.

[24] M. Talagrand, Random Structures and Algorithms **14** 199-213 (1998).

[25] V. Vapnik, *The nature of statistical learning theory* (Springer Verlag, New York, 1995).