Neutrino Superbeam Scenarios at the Peak

V. Barger and D. Marfatia
Department of Physics, University of Wisconsin, Madison, WI 53706, USA

K. Whisnant
Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

We discuss options for U.S. long baseline neutrino experiments using upgraded conventional neutrino beams, assuming \(L/E \) is chosen to be near the peak of the leading oscillation. We find that for \(L = 1290 \text{ km} \) (FNAL–Homestake) or \(1770 \text{ km} \) (FNAL–Carlsbad, or BNL–Soudan) it is possible to simultaneously have good \(\sin^2 2\theta_{13} \) reach and \(\text{sgn}(\delta m^2_{31}) \) determination, and possibly sizeable \(\tau \) rates and some \(\delta \) sensitivity.

In this report we discuss possible--neutrino scenarios for long baseline neutrino experiments using upgraded conventional neutrino beams (superbeams). In each case we examine their ability to measure \(\nu_\mu \rightarrow \nu_e \) and \(\nu_\mu \rightarrow \nu_\tau \) appearance, discover CP violation, and to determine the sign of the leading \(\delta m^2 \). Details of our calculations can be found in Ref. [1]. For the \(\nu_\mu \rightarrow \nu_\tau \) oscillation probability we use the approximate analytic expressions of Ref. [2],[3], which are particularly helpful in determining the general properties described below. We emphasize that many other beam design and source–detector configurations are possible; the scenarios discussed here illustrate some of the capabilities of such facilities.

We choose five distances that could be appropriate for likely proton driver and detector sites (see Table I): 350 km (BNL–Cornell, or similar to the 295 km of JHF–SK), 730 km (FNAL–Soudan or CERN–Gran Sasso), 1290 km (FNAL–Homestake, or similar to the 1200 km of JHF–Seoul), 1770 km (FNAL–Carlsbad, or similar to the 1720 km of BNL–Soudan), and 2900 km (FNAL–SLAC, or similar to the 2920 km of BNL–Carlsbad). The latter distance would also be similar to FNAL–San Jacinto (2640 km) or BNL–Homestake (2540 km).

For each \(L \), we choose \(\langle E_\nu \rangle \) such that \(\Delta = 1.27 \delta m^2_{31} \text{ (eV)}^2 L \text{ (km)}/\langle E_\nu \rangle \text{ (GeV)} = \pi/2 \), i.e., \(L/E_\nu = 353 \text{ km}/\text{GeV} \) for \(\delta m^2_{31} = 3.5 \times 10^{-3} \text{ eV}^2 \). This has three important advantages: (i) the \(\nu_\mu \rightarrow \nu_\tau \) oscillation (which has only small matter effects) is maximal, (ii) the \(\nu_\mu \rightarrow \nu_e \) oscillation is nearly maximal, even when matter effects are taken into account [1], and (iii) in the relevant limits that \(\theta_{13} \) and \(\delta m^2_{21}/\delta m^2_{31} \) are small, the \(\delta \) dependence is pure \(\sin \delta \), even in the presence of matter [1]. The latter fact implies that there is no \(\delta–\theta_{13} \) ambiguity for a given \(\text{sgn}(\delta m^2_{31}) \). There is a \(\delta–(\pi–\delta) \) ambiguity, but it does not confuse a CP violating (CPV) solution with a CP conserving (CPC) one. However, for small enough \(\theta_{13} \) and/or \(L \), there is a \(\delta, \theta_{13}–\text{sgn}(\delta m^2_{31}) \) ambiguity, which sometimes can confuse CPV and CPC solutions; when combined with the \(\delta–(\pi–\delta) \) ambiguity it results in an overall four–fold ambiguity in parameters in these cases [1]. Thus distinguishing the sign of \(\delta m^2_{31} \) may be essential for determining the existence of CPV.

We assume a narrow band beam (NBB) with flux \(4 \times 10^{11}/\text{m}^2/\text{yr} \) at \(L = 730 \text{ km} \) (and proportional to \(1/L^2 \)), which would be about 1/5 of the flux (to represent the flux loss in making a NBB) of an upgraded NuMI ME beam with a 1.6 MW proton driver. The NBB has two advantages: (i) the lack of a significant high–energy tail reduces backgrounds, and (ii) nearly all of the neutrinos will be at the same beam with a 1.6 MW proton driver. The NBB has two advantages: (i) the lack of a significant high–energy tail reduces backgrounds, and (ii) nearly all of the neutrinos will be at the same beam with a 1.6 MW proton driver. The NBB has two advantages: (i) the lack of a significant high–energy tail reduces backgrounds, and (ii) nearly all of the neutrinos will be at the same beam with a 1.6 MW proton driver.

We choose 5 of the flux (to represent the flux loss in making a NBB) of an upgraded NuMI ME. This has three important advantages: (i) the \(\nu_\mu \rightarrow \nu_\tau \) oscillation (which has only small matter effects) is maximal, (ii) the \(\nu_\mu \rightarrow \nu_e \) oscillation is nearly maximal, even when matter effects are taken into account [1], and (iii) in the relevant limits that \(\theta_{13} \) and \(\delta m^2_{21}/\delta m^2_{31} \) are small, the \(\delta \) dependence is pure \(\sin \delta \), even in the presence of matter [1]. The latter fact implies that there is no \(\delta–\theta_{13} \) ambiguity for a given \(\text{sgn}(\delta m^2_{31}) \). There is a \(\delta–(\pi–\delta) \) ambiguity, but it does not confuse a CP violating (CPV) solution with a CP conserving (CPC) one. However, for small enough \(\theta_{13} \) and/or \(L \), there is a \(\delta, \theta_{13}–\text{sgn}(\delta m^2_{31}) \) ambiguity, which sometimes can confuse CPV and CPC solutions; when combined with the \(\delta–(\pi–\delta) \) ambiguity it results in an overall four–fold ambiguity in parameters in these cases [1]. Thus distinguishing the sign of \(\delta m^2_{31} \) may be essential for determining the existence of CPV.

We assume a narrow band beam (NBB) with flux \(4 \times 10^{11}/\text{m}^2/\text{yr} \) at \(L = 730 \text{ km} \) (and proportional to \(1/L^2 \)), which would be about 1/5 of the flux (to represent the flux loss in making a NBB) of an upgraded NuMI ME beam with a 1.6 MW proton driver. The NBB has two advantages: (i) the lack of a significant high–energy tail reduces backgrounds, and (ii) nearly all of the neutrinos will be at the same beam with a 1.6 MW proton driver. The NBB has two advantages: (i) the lack of a significant high–energy tail reduces backgrounds, and (ii) nearly all of the neutrinos will be at the same beam with a 1.6 MW proton driver. The NBB has two advantages: (i) the lack of a significant high–energy tail reduces backgrounds, and (ii) nearly all of the neutrinos will be at the same beam with a 1.6 MW proton driver.

We assume an effective 70 kt-yr of data accumulation for detecting \(\nu_e \)’s, which could be achieved by 2 years of running with a 70 kt liquid Argon detector [2] at 50% efficiency [2]. For \(\nu_\tau \) detection we assume 3.3 kt-yr (2 years with a 5 kt detector at 33% efficiency). For \(\nu_\bar{\nu} \)’s, we assume approximately 6–12 years of running (a factor of two longer to account for the lower \(\bar{\nu} \) cross section and another factor of 1.5–3 longer, depending on \(E_\nu \), to account for the reduced \(\bar{\nu} \) flux in the beam). Thus in the absence of matter and/or CPV the number of \(\nu \) and \(\bar{\nu} \) events would be the same. We assume a \(\nu_e \) background of 0.4% of the unoscillated CC signal, and a fractional uncertainty of the background of 10%.

We expect \(\delta m^2_{21} \) to be measured to 10% accuracy at KamLAND [2], and \(\delta m^2_{31} \) to be measured to about the same accuracy by K2K, MINOS, and ICANOE, and OPERA. Since \(E_\nu \) is chosen to be at the peak of the leading oscillation, the choice of \(E_\nu \) depends critically on the value of \(\delta m^2_{31} \); also, the size of the CPV and the potential

*Snowmass 2001 Workshop Contribution
TABLE I. Baseline distances for some detector sites (shown in parentheses) for neutrino beams from FNAL, BNL, JHF, and CERN.

Beam source	FNAL	BNL	JHF	CERN
730 (Soudan)	350 (Cornell)	295 (Super-K)	730 (Gran Sasso)	
1200 (Homestake)	1200 (Seattle)			
1700 (Carlsbad)	1700 (Soudan)			
2640 (San Jacinto)	2540 (Homestake)			
2900 (SLAC)	2920 (Carlsbad)			

for confusion between $\delta m_{31}^2 > 0$ and $\delta m_{31}^2 < 0$ increases with increasing δm_{31}^2. Our results for $\delta m_{31}^2 > 0$ with $\theta_{23} = \pi/4$ are presented in Table II (for two values of $\delta m_{31}^2 = 5 \times 10^{-5}$ eV2 (the value preferred from recent analyses of solar neutrino data) and $\delta m_{31}^2 = 10^{-6}$ eV2; the corresponding results for $\delta m_{31}^2 < 0$ are found by interchanging $(N_e) \leftrightarrow (\bar{N}_e)$ and $(\nu_\mu \rightarrow \nu_e) \leftrightarrow (\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$. For each value of δm_{31}^2 we show results for three values of δm_{23}^2 that cover the range inferred from Super–K atmospheric neutrino data. Given in the table are (i) the numbers of e and \bar{e} events (for $\sin^2 2\theta_{13} = 0.01$ and averaged over δ), background e events (B_e, assumed the same for e and \bar{e}), and τ events, (ii) the $\sin^2 2\theta_{13}$ reach at 3σ for $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ appearance, and the minimum $\sin^2 2\theta_{13}$ for which $\text{sgn}(\delta m_{31}^2)$ can be determined, and (iii) the smallest value of the CP phase δ that can be distinguished from $\delta = 0, \pi$ at the 3σ level for $\sin^2 2\theta_{13} = 0.01$ (not accounting for a possible $\text{sgn}(\delta m_{31}^2)$ ambiguity). The $\sin^2 2\theta_{13}$ reaches and δ sensitivity include the effects of statistical and systematic experimental uncertainties. The e and \bar{e} event rates approximately scale with $\sin^2 2\theta_{13}$. Results for JHF–SK running for 5 years with neutrinos only ν_μ, using a 2° off axis beam, are also shown in the table.

TABLE II. Scenarios with $\delta m_{31}^2 > 0$ (2 years ν, 6–12 years $\bar{\nu}$); the last entry in the table shows the results for JHF–SK [11] (5 years, ν only), $\theta_{23} = \pi/4$ is assumed.

| Scenario | δm_{31}^2 (eV2) | δm_{21}^2 (eV2) | L (km) | E (GeV) | $\langle N_e \rangle$ | $\langle \bar{N}_e \rangle$ | B_e | N_e | $\sin^2 2\theta_{13}$ reach at 3σ | $\text{sgn}(\delta m_{31}^2)$ | $|\delta| (\degree)$ at 3σ | $\sin^2 2\theta_{13} = 0.01$ |
|----------|----------------|-----------------|--------|--------|----------------|----------------|------|------|----------------|----------------|----------------|----------------|
| 5×10^{-5} | 2×10^{-6} | 350 | 0.57 | 180 | 148 | 116 | - | 0.0020 | 0.0025 | - | 26 |
| 730 | 1.18 | 95 | 63 | 56 | - | 0.0026 | 0.0042 | 0.10 | - | 35 |
| 1290 | 2.09 | 64 | 27 | 32 | - | 0.0031 | 0.0082 | 0.036 | - | 49 |
| 1770 | 2.86 | 53 | 15 | 23 | - | 0.0033 | 0.014 | 0.020 | - | 67 |
| 2900 | 4.70 | 39 | 4 | 14 | 10 | 0.0038 | 0.055 | 0.011 | - | 83 |
| 3.5×10^{-5} | | 350 | 0.57 | 294 | 217 | 204 | - | 0.0024 | 0.0029 | - | 39 |
| 730 | 2.07 | 156 | 100 | 97 | - | 0.0026 | 0.0042 | 0.050 | - | 52 |
| 1290 | 3.65 | 106 | 42 | 55 | 14 | 0.0027 | 0.0073 | 0.015 | - | 93 |
| 1770 | 5.01 | 88 | 22 | 40 | 36 | 0.0028 | 0.012 | 0.0093 | - | 30 |
| 2900 | 8.22 | 67 | 5 | 25 | 51 | 0.0029 | 0.043 | 0.0057 | - | 53 |
| 5×10^{-5} | | 350 | 1.41 | 412 | 331 | 289 | - | 0.0024 | 0.0030 | 0.009 | 54 |
| 730 | 2.96 | 219 | 139 | 139 | - | 0.0025 | 0.0040 | 0.028 | - | 80 |
| 1290 | 5.21 | 150 | 57 | 79 | 77 | 0.0025 | 0.0066 | 0.0095 | - | 90 |
| 1770 | 7.16 | 125 | 30 | 58 | 100 | 0.0025 | 0.011 | 0.0061 | - | 96 |
| 2900 | 11.74 | 95 | 7 | 35 | 102 | 0.0025 | 0.038 | 0.0044 | - | 110 |
| 10^{-4} | 2×10^{-4} | 350 | 0.57 | 233 | 261 | 116 | - | 0 | 14 |
| 730 | 1.18 | 120 | 88 | 56 | - | 0 | - | 18 |
| 1290 | 2.09 | 78 | 41 | 32 | - | 0.0007 | 0.0019 | 0.10 | - | 24 |
| 1770 | 2.86 | 62 | 24 | 23 | - | 0.0014 | 0.0059 | 0.055 | - | 30 |
| 2900 | 4.70 | 44 | 9 | 14 | 10 | 0.0023 | 0.036 | 0.023 | - | 51 |
| 3.5×10^{-5} | | 350 | 0.99 | 324 | 268 | 204 | - | 0.0013 | 0.0016 | - | 19 |
| 730 | 2.07 | 170 | 114 | 97 | - | 0.0017 | 0.0026 | - | - | 24 |
| 1290 | 3.65 | 114 | 50 | 55 | 14 | 0.0020 | 0.0065 | 0.040 | - | 32 |
| 1770 | 5.01 | 94 | 28 | 40 | 36 | 0.0022 | 0.0092 | 0.021 | - | 40 |
| 2900 | 8.22 | 69 | 8 | 25 | 51 | 0.0025 | 0.037 | 0.010 | - | 76 |
| 5×10^{-5} | | 350 | 1.41 | 433 | 353 | 289 | - | 0.0018 | 0.0023 | - | 25 |
| 730 | 2.96 | 229 | 149 | 139 | - | 0.0020 | 0.0032 | 0.081 | 31 |
| 1290 | 5.21 | 148 | 55 | 79 | 77 | 0.0021 | 0.0056 | 0.022 | - | 40 |
| 1770 | 7.16 | 129 | 34 | 58 | 100 | 0.0022 | 0.0092 | 0.012 | - | 50 |
| 2900 | 11.74 | 96 | 9 | 35 | 102 | 0.0023 | 0.033 | 0.0063 | - | 62 |
| 3×10^{-5} | | 295 | 0.7 | 12 | 22 | - | 0.016 | - | - | - | - | - | - |
which in some cases could include a CPV/CPC confusion; also, E_ν is generally below the τ threshold.

If δm_{21}^2 is at the low end of its expected range, CPV can only be tested at shorter L, with the loss of the τ signal and sgn(δm_{21}^2) determination sensitivity, and potential CPV/CPC confusion due to sgn(δm_{31}^2) (the four–fold ambiguity mentioned above). Longer L (such as $L = 2900$ km) could potentially do everything except for CPV, although if δm_{31}^2 is too low τ‘s are not observable. If $\delta m_{31}^2 \simeq 2 \times 10^{-3}$ eV2 and a large τ signal is desired, then the strategy outlined in this report will not work; E_ν must be increased, which would force L/E_ν to be off the peak of the oscillation.

For $L = 1290$ or 1770 km it is possible to simultaneously have good $\sin^2 2\theta_{13}$ reach and sgn(δm_{31}^2) determination, and possibly sizeable τ rates and some δ sensitivity if both δm_{21}^2 and δm_{31}^2 are at the high end of their expected ranges (see Table II); $L = 1770$ km is probably preferred in these cases due to its larger τ rate and better sgn(δm_{31}^2) determination.

We note that while a larger δm_{21}^2 in principle improves the CPV sensitivity, it also makes a sgn(δm_{31}^2) ambiguity more likely, leading to an overall four–fold ambiguity. Even if sgn(δm_{31}^2) is determined, measurements on the oscillation peak will leave a two–fold ambiguity between δ and $\pi - \delta$. Measurements at different L and/or E_ν will be required to resolve these ambiguities.

ACKNOWLEDGMENTS

We gratefully acknowledge helpful discussions with S. Geer and D. Harris. This research was supported by the U.S. Department of Energy under Grants No. DE-FG02-94ER40817 and No. DE-FG02-01ER41155, by a DPF Snowmass Fellowship and by the University of Wisconsin Research Committee with funds granted by the Wisconsin Alumni Research Foundation.