Aim of the study: Results of recent published studies on the association between the COX-2 8473T>C polymorphism and the risk of breast cancer have often been conflicting. To make a more precise estimation of the potential relationship, a meta-analysis was performed.

Material and methods: A total of seven case-control studies with 7,033 cases and 9,350 controls were included in the current meta-analysis through searching the databases of PubMed, Embase, and Cochrane Library (up to March 1st, 2013). The odds ratio (OR) and 95% confidence interval (95% CI) were calculated to assess the strength of the association. The meta-analysis was conducted in a fixed/random effect model.

Results: We found no significant associations for all genetic models after all studies were pooled into the meta-analysis (for C vs. T: OR = 0.974, 95% CI: 0.906–1.047, \(p = 0.471\); for CC vs. TT: OR = 0.957, 95% CI: 0.803–1.140, \(p = 0.62\); for TC vs. TT: OR = 0.964, 95% CI: 0.881–1.055, \(p = 0.421\); for CC + TC vs. TT: OR = 0.963, 95% CI: 0.880–1.053, \(p = 0.406\); for CC vs. TT + TC: OR = 0.978, 95% CI: 0.831–1.15, \(p = 0.788\)). We also observed no obvious associations in the subgroup analyses by ethnicity (Caucasian) and source of controls (population based, PB) for all genetic models.

Conclusions: Current evidence suggests that the COX-2 8473T>C polymorphism is not associated with breast cancer risk.

Key words: breast cancer, polymorphism, meta-analysis, COX-2.
Inclusion and exclusion criteria

Studies were included if they met the following criteria: 1) evaluation of 8473T>C (rs5275) polymorphism of COX-2 and breast cancer risk; 2) retrospective case-control studies or prospective cohort studies; 3) sufficient data to examine an odds ratio (OR) with 95% confidence interval (CI); 4) conforming to Hardy-Weinberg equilibrium (HWE) in the control group. Studies were excluded when: 1) not case-control studies; 2) case reports, letters, reviews, editorial articles, and animal studies; 3) duplicate or insufficient data; 4) family-based design; 5) controls were not in HWE.

Data extraction

Data from published studies were extracted independently and carefully by two reviewers (Jiang J. and Quan X.F.). For each study, we collected the following information: first author, year of publication, country, ethnicity, numbers of cases and controls of different genotypes, source of controls, evidence of HWE and quality control.

Statistical analysis

The strength of the association between the 8473T>C polymorphism and breast cancer risk was calculated by ORs with 95% confidence intervals (95% CIs). We evaluated the risk of the dominant model (CC + TC vs. TT), the recessive model (CC vs. TT + TC), the homozygote comparison (CC vs. TT), the heterozygote comparison (TC vs. TT), and the allelic model (C vs. T). We also performed subgroup analyses including ethnicity and source of controls. The χ² test-based Q-statistic and I²-statistic [18] were used to analyze the heterogeneity (considered significant for \(p \leq 0.10 \)). Potential publication bias was investigated by funnel plot [21], and funnel plot asymmetry was assessed by the method of Egger’s linear regression test (bias considered significant for \(p < 0.05 \)) [22]. All statistical tests were performed with STATA version (Stata Corporation College Station, TX, USA). All the \(p \) values were two-sided.

Results

Study characteristics

According to the inclusion and exclusion criteria, a total of nine publications were included in this meta-analysis [23–31]. However, there is one study [29] just presenting the information for genotypes of TC + CC and TT, without data for other genotypes; we were unable to identify whether it fulfills Hardy-Weinberg equilibrium in the control group. Thus, this publication was excluded. We noticed that Cox et al. validated their primary results in two other independent populations [30] and each validation group was considered separately in pooling analyses. Therefore, ten studies including 7,033 cases and 9,350 controls from eight publications were finally selected in this meta-analysis [23–28, 30, 31]. Characteristics in this meta-analysis are summarized in Table 1.

Meta-analysis results

Table 2 presents the results of meta-analysis and the heterogeneity test. Clearly, no association can be found between the COX-2 8473T>C polymorphism and the risk of breast cancer in the total population (for C vs. T: OR = 0.974, 95% CI: 0.906–1.047, \(p = 0.471 \), and I² = 45.9% for heterogeneity; for CC vs. TT: OR = 0.957, 95% CI: 0.803–1.140, \(p = 0.62 \), and I² = 51% for heterogeneity (Fig. 1); for TC vs. TT: OR = 0.964, 95% CI: 0.881–1.055, \(p = 0.421 \), and I² = 33.7% for heterogeneity; for CC + TC vs. TT: OR = 0.963, 95% CI: 0.880–1.053, \(p = 0.406 \), and I² = 39.5% for heterogeneity; for CC vs. TT + TC: OR = 0.978, 95% CI: 0.831–1.15, \(p = 0.788 \), and I² = 49.2% for heterogeneity). We also found

First author	Year	Country	Ethnicity	Cases	Controls	Source of controls	PHWE*	Frequency C allele in controls
Gao	2007	China	Asian	18	20	PB	0.733	0.182
Langsenlehner	2006	Austria	Caucasian	62	33	PB	0.014	0.299
Vogel	2006	Denmark	Caucasian	44	41	PB	0.770	0.342
Schonfeld	2010	USA	Caucasian	96	144	HB	0.983	0.365
Gallicchio	2006	USA	Caucasian	11	33	PB	0.293	0.333
Abraham	2009	UK	Caucasian	260	259	PB	0.903	0.337
Cox 1	2007	USA	Caucasian	141	213	HB	0.383	0.359
Cox 2	2007	USA	Caucasian	30	81	HB	0.134	0.345
Cox 3	2007	USA	Caucasian	67	79	HB	0.925	0.347
Piranda	2010	Brazil	Mix	20	25	HB	0.496	0.305

*HB – hospital based, PB – population based, HWE – Hardy-Weinberg’s equilibrium, N.A. – not available
Table 2. Summary of Pooled ORs in the meta-analysis

Study groups (n)	Comparison	Test of association	Test of heterogeneity	Model				
		OR (95%)	Z	p	χ²	p	I² (%)	
					χ²	p		
					F (%)			
Total (10)	C vs. T	0.974 (0.906–1.047)	0.72	0.473	16.64	0.055	45.90	R
	CC vs. TT	0.957 (0.803–1.140)	0.5	0.62	18.38	0.031	51.00	R
	TC vs. TT	0.964 (0.881–1.055)	0.8	0.421	13.58	0.138	33.70	R
	CC + TC vs. TT	0.963 (0.880–1.053)	0.83	0.406	14.88	0.094	39.50	R
	CC vs. TT + TC	0.978 (0.831–1.151)	0.27	0.788	17.71	0.039	49.20	R
Ethnicity								
Caucasian (8)	C vs. T	0.967 (0.889–1.052)	0.78	0.435	16.04	0.025	56.40	R
	CC vs. TT	0.973 (0.797–1.187)	0.27	0.787	17.92	0.012	60.90	R
	TC vs. TT	0.949 (0.883–1.021)	1.41	0.159	8.45	0.294	17.20	F
	CC + TC vs. TT	0.942 (0.856–1.037)	1.22	0.223	11.66	0.112	40.00	R
	CC vs. TT + TC	0.988 (0.889–1.099)	0.22	0.826	15.84	0.027	55.80	R
Source								
PB (5)	C vs. T	1.048 (0.978–1.122)	1.34	0.182	4.91	0.296	18.60	F
	CC vs. TT	1.204 (0.922–1.573)	1.36	0.173	7.18	0.127	44.30	R
	TC vs. TT	1.006 (0.914–1.107)	0.12	0.906	2.83	0.586	0	F
	CC + TC vs. TT	1.031 (0.942–1.129)	0.66	0.509	3.26	0.515	0	F
	CC vs. TT + TC	1.226 (0.943–1.594)	1.52	0.128	7.52	0.111	46.80	R
HB (5)	C vs. T	0.908 (0.849–0.972)	2.77	0.066	3.35	0.501	0	F
	CC vs. TT	0.803 (0.690–0.934)	2.83	0.004	0.77	0.943	0	F
	TC vs. TT	0.959 (0.819–1.124)	0.52	0.606	9.37	0.052	57.30	R
	CC + TC vs. TT	0.920 (0.805–1.051)	1.23	0.218	7.47	0.113	46.40	R
	CC vs. TT + TC	0.860 (0.746–0.993)	2.06	0.039	0.97	0.914	0	F

Study ID

Study ID	OR (95% CI)	Weight
Gao 2007	0.96 (0.50–1.83)	5.46
Langsenlehner 2006	2.05 (1.30–3.26)	8.75
Vogel 2007	1.00 (0.62–1.61)	8.36
Schonfeld 2010	0.75 (0.56–1.01)	13.75
Gallicchio 2006	1.22 (0.61–2.44)	4.91
Abraham 2009	1.08 (0.89–1.31)	17.51
Cox 1 2007	0.86 (0.67–1.09)	15.69
Cox 2 2007	0.71 (0.45–1.14)	8.64
Cox 3 2007	0.84 (0.58–1.21)	11.31
Piranda 2010	0.77 (0.41–1.46)	5.61
Overall (I² = 51.0% p = 0.031)	0.96 (0.80–1.14)	100.00

NOTE Weights are from random effect analysis

Fig. 1. Forest plot for the overall meta-analysis for Cox-2 8473T>C and breast cancer risk (CC vs. TT). The squares and horizontal lines correspond to the OR and 95% CI, and the diamond represents the pooled OR and 95% CI.
no significant relationship in all genetic models of the sub-
group analyses by ethnicity (Caucasian) and source of
controls (population-based [PB] and hospital-based [HB]),
except the allelic model (C vs. T), the homozygote com-
parison (CC vs. TT) and the recessive model (CC vs. TT + TC) in
the “hospital-based” studies.

Publication bias

We also carried out Begg’s funnel plot and Egger’s re-
gression test to assess the publication bias of the litera-
ture. The shapes of the funnel plots did not show signif-
ificant asymmetry (Fig. 2), and Egger’s test did not reveal
any statistical evidence of publication bias (for C vs. T:
$p = 0.983$; for CC vs. TT: $p = 0.894$; for TC vs. TT: $p = 0.982$;
for CC + TC vs. TT: $p = 0.981$; for CC vs. TT + TC: $p = 0.897$).

Discussion

Numerous in vitro and in vivo experiments with respect
to COX-2 polymorphism have been conducted. In many
cancers, the association of over-expression of COX-2
and tumor progression is established. Moreover, COX-2
expression may be correlated with cancer prognosis [32].
Therefore, COX-2 polymorphism has received widespread
attention, and many meta-analyses have been reported to
assess the relationship between the polymorphism and
human cancers. However, the association in the field of
breast cancer remains unclear and its discovered is eagerly
awaited.

Only one meta-analysis has been conducted to as-
ss the strength of the association between the COX-2
8473T>C polymorphism and susceptibility to breast cancer
[33]. However, several issues should be considered after
carefully reading the report.

Firstly, though one of the inclusion criteria in that ar-
ticle was fulfilling Hardy-Weinberg equilibrium (HWE) in
the control group ($p > 0.01$ was eligible), one case-control
study without sufficient available data to calculate the
p value of HWE was eventually included [29]. Evidence
suggested that HWE might reflect the presence of popu-
lation stratification, genotyping errors, and selection bias
in the controls [34]. Secondly, the authors gave the geno-
type contrasts (the dominant and recessive model, the
heterozygous and homozygous carriers). However, the al-
lele (A genotype vs. T genotype) contrast was not included.
Thirdly, subgroup analyses concerning the source of con-
trols (HB and PB) were not performed. In order to reach
a more precise conclusion, we present this meta-analysis
to seek the association of breast cancer risk and the COX-2
8473T>C polymorphism.

The present meta-analysis, including 7,033 cases and
9,350 controls from 10 case-control studies, was intended to
explore the association between the 8473T>C polymor-
phism of COX-2 and susceptibility to breast cancer. Unfor-
unately, we did not discover any significant association
between COX-2 8473T>C polymorphism and breast can-
cer. Only among the analyses stratified by ethnicity and
source of controls did we observe some associations in
three studies from “hospital-based” settings. This phe-
nomenon may be due to small-study bias.

Although it is theoretically plausible that 8473T>C
polymorphism could increase the susceptibility to breast
cancer by influencing COX-2 expression, the current evi-
dence provides a negative result. The acceptable expla-
nation is that one single gene or polymorphism may have
a limited impact on the effect of the risk of breast cancer,
and susceptibility is decided by multiple genes or poly-
morphisms.

We should also be aware of some limitations in this
meta-analysis. First, the overall outcomes were based on
individual unadjusted ORs. The unadjusted ORs may lead
to confounding bias due to lack of individual information
of each study, such as joint effects of SNP-SNP or gene-
environment factors. Second, there was no study of an Afri-
can population and only one study of an Asian population.
Thus, publication bias might exist. Third, the majority of
controls were selected from a healthy population in which
some may have potential benign breast disease. Fourth,
recall and selection bias may exist since the meta-analysis
is a type of retrospective study.

In conclusion, we found that the 8473T>C polymor-
phism of the COX-2 gene might not be a risk factor for
breast cancer among Caucasians. Larger, well-designed,
and more comprehensive multicenter studies based on
African and Asian population should be performed, and
other SNPs of the COX-2 gene in breast carcinogenesis are
worthy of further research.

The authors declare no conflict of interest.

References

1. Al Zaman AS. Breast cancer in patients with sickle cell disease
can be treated safely with weekly paclitaxel. Saudi Med J 2013;
34: 199-201.
2. Romanowicz-Makowska H, Bryś M, Forma E, Maciejczyk R, Połać I, Samulak D, Michalska M, Smolarz B. Single nucleotide polymorphism (SNP) Thr241Met in the XRCC3 gene and breast cancer risk in Polish women. Pol J Pathol 2012; 63: 121-5.

3. Samulak D, Romanowicz-Makowska H, Smolarz B, Połać I, Zdrowska M, Westafal B, Sponny S. Association between single nucleotide polymorphisms of the DNA mismatch repair gene hMSH2 and postmenopausal breast cancer in Polish women. Prz Menopauz 2012; 16: 9-13.

4. Smolarz B, Samulak D, Michalska M, et al. 355G>C and 172G>T polymorphism in the 5' untranslated region of RAD51 and sporadic endometrial cancer risk in Polish women. Pol J Pathol 2011; 62: 157-62.

5. Mojgan H, Massoud H, Ahmad E. ERCC1 intron 1 was associated with breast cancer risk. Arch Med Sci 2012; 8: 655-8.

6. Michalak M, Filip A, Karczmarek-Borowska B, et al. Biological and clinical significance of BRCA2. Wspolczesna Onkol 2011; 15: 209-15.

7. Dong LM, Potter JD, White E, et al. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 2008; 299: 2423-36.

8. Changradsukhan NV, Simmons DL. The cyclooxygenases. Genome Biol 2004; 5: 241.

9. Chien SY, Kuo SJ, Chen YL, Chen DR, Cheng CY, Su CC. Tanshinone IIA inhibits human hepatocellular carcinoma cell growth by increasing Bax and caspase 3 and decreasing CD31 expression in vivo. Mol Med Rep 2012; 2: 282-6.

10. Ito A, Morikawa K, Kato Y, et al. Cyclooxygenase-2 is involved in the up-regulation of matrix metalloproteinase-9 in cholangiocarcinoma induced by tumor necrosis factor-alpha. Am J Pathol 2009; 174: 829-41.

11. Wang W, Bergh A, Damber JE. Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin Cancer Res 2005; 11: 3250-6.

12. Campa D, Zienolddiny S, Maggini V, Skaug V, Haugen A, Canziani F. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 2004; 25: 229-35.

13. Pereira C, Medeiros RM, Dinis-Ribeiro MJ. Cyclooxygenase polymorphisms in gastric and colorectal carcinogenesis: are conclusive results available? Eur J Gastroenterol Hepatol 2009; 21: 76-91.

14. Park JM, Choil JE, Chae MH, et al. Relationship between cyclooxygenase 8473T>C polymorphism and the risk of lung cancer: a case-control study. BMC Cancer 2006; 6: 70.

15. Lira MG, Mazzola S, Tassari G, et al. Association of functional gene variants in the regulatory regions of COX-2 gene (PTGS2) with nonmelanoma skin cancer after organ transplantation. Br J Dermatol 2007; 157: 49-57.

16. Peng WJ, Wang BX, He Q, Xiao CC, Zheng JQ, Wang J. Association of COX-2 8473T>C gene polymorphism with lung cancer risk. Asian Pacific J Cancer Prev 2010; 11: 309-16.

17. Dong L, Dai J, Zhang M, Hu Z, Shen H. Potentially functional COX-2 1995G>A polymorphism increases the risk of digestive system cancers: a meta-analysis. J Gastroenterol Hepatol 2010; 25: 1042-50.

18. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-60.

19. Mantel N, Haenszel W. Statistical aspects of the data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-48.

20. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-88.

21. Begg CB, Mazumdar M. Operating characteristics of a rank test for publication bias. Biometrics 1994; 50: 1088-101.

22. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-34.

23. Gao J, Ke Q, Ma HK, et al. Functional polymorphisms in the cyclooxygenase 2 (COX-2) gene and risk of breast cancer in a Chinese population. J Toxicol Environ Health A 2007; 70: 908-15.

24. Langsenlehner U, Yazdani-Biuki B, Eder T, et al. The cyclooxygenase-2 (PTGS2) 8473T>C polymorphism is associated with breast cancer risk. Clin Cancer Res 2006; 12: 1392-4.