The clinical characteristics and prognosis of pertussis among unvaccinated infants in the pediatric intensive care unit

Yoğun bakımda boğmaca tanı ile izlenen aşısız süt çocuklarının klinik özellikleri ve seyri etkileyen etmenler

The known about this topic
Pertussis is a vaccine-preventable disease. The causative agent is **Bordetella pertussis**. It frequently leads to pneumonia in infants. It may cause severe disease in unvaccinated infants.

Contribution of the study
Among patients admitted to intensive care unit, severe pertussis occurs more frequently in infants who are too young to be protected with active immunization. Maternal immunization and the cocoon strategy may provide success to protect this age group. Severe pulmonary hypertension on echocardiographic examination and presence of leukocytosis in laboratory tests are associated with poor prognosis.

Abstract
Aim: To evaluate the clinical characteristics, risk factors, and prognosis of pertussis in the pediatric intensive care unit.

Material and Methods: Patients who were hospitalized in pediatric intensive care unit between January 2017 and January 2019 and diagnosed as having pertussis were retrospectively evaluated. Samples were taken from tracheal aspirate material in intubated patients and nasopharyngeal swabs in the other patients. Samples for **Bordetella pertussis** were studied using multiplex real-time polymerase chain reaction.

Results: Eighteen patients were admitted to our pediatric intensive care unit with a diagnosis of pertussis. Ten patients were female (55.5%), and all patients were unvaccinated. The median age was 40 (range, 38–47.5) days and the median intensive care unit stay was 9 (range, 5–14) days. All patients had respiratory distress, 14 patients had cough (77.7%), four patients had fever (22.2%), and three patients had convulsions (16.6%). Seven patients were intubated. Three patients died of multiple organ failure and cardiogenic shock despite extracorporeal treatment. Respiratory syncytial virus was found in two patients and rhinovirus was found in one patient. The median leukocyte count was significantly higher in non-survivors than in survivors. Blood exchange was performed in four patients.

Corresponding Author/Sorumlu Yazar: Güntülü Şık
E-mail/E-posta: drguntulu@hotmail.com
Received/Geliş Tarihi: 31.05.2019
Accepted/Kabul Tarihi: 08.01.2020
©Copyright 2020 by Turkish Pediatric Association - Available online at www.turkpediatriarsivi.com
DOI: 10.14744/TurkPediatriArs.2020.82435
OPEN ACCESS
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

OZ
Amaç: Çocuk yoğun bakım biriminde boğmaca tanı ile izlenen hastaların klinik özellikleri, risk etkenlerini ve seyri etkileyen etkenleri değerlendirmeyi amaçladık.

Gereç ve Yöntemler: Çocuk yoğun bakım birimimizde Ocak 2017–Ocak 2019 tarihleri arasında yatan ve boğmaca tanı tanesi olan hastalar gözlemlendi. Örnekleme, intübe hastaların trakeal aspirat malzemeleri ve diğer hastaların nazofaringeal swabsından elde edildi. Örneklere **Bordetella pertussis** multiplex real-time polimeraz zincir reaksiyonu yöntemi ile çalışıldı.

Bulgular: Yağışlı hastaların %66,6’sında, %22,2’sinde ateş ve %16,6’sında konvülzyon saptandı. Yedi hastada intübe edilen hastaların %22,2’sinde respiratuar sinyal virüs, %16,6’ininde rhinovirus enfeksiyonu tespit edildi. Ölen hastaların %55’sinde intravasküler kardiyovasküler olgular saptandı. Bu nedenle, boğmaca tanısı ile ilgili bir tedavi protokolü geliştirilmesi önerildi.

Cite this article as: Şık G, Demirbuğa A, Annayev A, Çıtak A. The clinical characteristics and prognosis of pertussis among unvaccinated infants in the pediatric intensive care unit. Turk Pediatri Ars 2020; 55(1): 54–59.
Pertussis is an infectious disease caused by Bordetella pertussis (B. pertussis), which is frequently observed in infants, and it may lead to pneumonia, encephalopathy, apnea, pulmonary hypertension, and mortality. Worldwide, it ranks number five among the fatal but vaccine-preventable diseases in children aged below 5 years, and continues to be an important health problem. According to data of the World Health Organization (WHO), 139,535 patients with pertussis were reported worldwide in 2017 (1–3).

Pertussis causes severe disease especially in newborns and unvaccinated infants. The clinical picture may have a mild course or it may be manifested by respiratory failure, bronchopneumonia, and apnea attacks. Severe cases accompanied by pulmonary hypertension, cardiogenic shock, and hyperleukocytosis are defined as malignant pertussis. In these patients, the mortality rate is high despite supportive treatment (4).

In clinically suspicious patients, the definite diagnosis is made by examination of nasopharyngeal swab specimens or tracheal aspirate specimens through culture or with polymerase chain reaction (PCR). Culture is considerably specific, but its sensitivity varies depending on the presence of sufficient material, inappropriate transport, and previous antibiotic use. Examination with PCR is considered the gold standard because it provides definite and rapid diagnosis.

In this study, we aimed to retrospectively evaluate patients who were followed up in our pediatric intensive care unit (PICU) with a diagnosis of pertussis, to investigate the clinical characteristics and risk factors, and to specify the factors influencing the prognosis.

Material and Methods

Eighteen patients who were followed up in the PICU between January 2017 and January 2019 and diagnosed as having pertussis were included in the study; the patients were evaluated retrospectively. Our study was conducted in accordance with the Declaration of Helsinki. Approval was obtained from Acıbadem Mehmet Aydınlar University Ethics Committee (2019-10/13).

Conclusion: We found that high leukocyte count, viral co-infection, and severe pulmonary hypertension were associated with mortality and morbidity in pertussis.

Keywords: Bordetella pertussis, cocooning strategy, extracorporeal membrane oxygenation, pediatric intensive care, Pertussis, pulmonary hypertension, whooping cough

Tracheal aspirate samples were obtained in the intubated patients who were followed up and nasopharyngeal swab specimens were obtained in the other patients. The samples were obtained by physicians or nurses who took preventive precautions (mask, sterile apron, protective glasses and gloves) and the transport boxes were kept open only during the time of sampling. In all patients, B. pertussis was found to be positive with PCR in nasopharyngeal swab specimens or tracheal aspirate material.

The patients’ demographic properties, history of contact, vaccination status, duration of stay in the PICU, respiratory support and its duration, vital findings, use of inhaled nitric oxide, whole blood exchange, extracorporeal supportive therapies, vasoactive inotropic score, Pediatric Risk of Mortality (PRISM) scores, and total leukocyte and lymphocyte counts were recorded.

A diagnosis of pneumonia was made with clinical evaluation and presence of pulmonary consolidation and parenchymal opacity. All patients were evaluated by a pediatric cardiologist with echocardiographic examinations.

Statistical Analysis

The SPSS software was used for the analysis of data. Median and minimum-maximum values were used for the descriptive data, and the Mann-Whitney U test was used for the comparison of continuous inter-group values. A p value of <0.05 was considered significant.

Results

In the two-year study period, a diagnosis of pertussis was made in 18 patients. The median age was 40 (range, 38–47.5) days, and 94.4% of the patients (n=17) were aged below 2 months; nine of these patients were aged below 6 weeks. Only one patient was aged 6 months. Ten (55.5%) patients (n=10) were female. All patients, their parents, and individuals living in the same house were unvaccinated.

All patients had respiratory distress at the time of presentation. Cough was found in 14 patients (77.7%). The median duration of cough before presentation to hospital was found as 4 (range, 2–9) days. Four patients had fever (22.2%), three

Çık劳务派遣

Boğmaca, Bordetella pertussis, çocuk yoğun bakım, ekstrakorporeal membran oksijenasyonu, koza stratejisi, öksürük, pulmoner hipertansiyon

Introduction

Pertussis is an infectious disease caused by Bordetella pertussis (B. pertussis), which is frequently observed in infants, and it may lead to pneumonia, encephalopathy, apnea, pulmonary hypertension, and mortality. Worldwide, it ranks number five among the fatal but vaccine-preventable diseases in children aged below 5 years, and continues to be an important health problem. According to data of the World Health Organization (WHO), 139,535 patients with pertussis were reported worldwide in 2017 (1–3).

Pertussis causes severe disease especially in newborns and unvaccinated infants. The clinical picture may have a mild course or it may be manifested by respiratory failure, bronchopneumonia, and apnea attacks. Severe cases accompanied by pulmonary hypertension, cardiogenic shock, and hyperleukocytosis are defined as malignant pertussis. In these patients, the mortality rate is high despite supportive treatment (4).

In clinically suspicious patients, the definite diagnosis is made by examination of nasopharyngeal swab specimens or tracheal aspirate specimens through culture or with polymerase chain reaction (PCR). Culture is considerably specific, but its sensitivity varies depending on the presence of sufficient material, inappropriate transport, and previous antibiotic use. Examination with PCR is considered the gold standard because it provides definite and rapid diagnosis.

In this study, we aimed to retrospectively evaluate patients who were followed up in our pediatric intensive care unit (PICU) with a diagnosis of pertussis, to investigate the clinical characteristics and risk factors, and to specify the factors influencing the prognosis.

Material and Methods

Eighteen patients who were followed up in the PICU between January 2017 and January 2019 and diagnosed as having pertussis were included in the study; the patients were evaluated retrospectively. Our study was conducted in accordance with the Declaration of Helsinki. Approval was obtained from Acıbadem Mehmet Aydınlar University Ethics Committee (2019-10/13).

Conclusion: We found that high leukocyte count, viral co-infection, and severe pulmonary hypertension were associated with mortality and morbidity in pertussis.

Keywords: Bordetella pertussis, cocooning strategy, extracorporeal membrane oxygenation, pediatric intensive care, Pertussis, pulmonary hypertension, whooping cough

Tracheal aspirate samples were obtained in the intubated patients who were followed up and nasopharyngeal swab specimens were obtained in the other patients. The samples were obtained by physicians or nurses who took preventive precautions (mask, sterile apron, protective glasses and gloves) and the transport boxes were kept open only during the time of sampling. In all patients, B. pertussis was found to be positive with PCR in nasopharyngeal swab specimens or tracheal aspirate material.

The patients’ demographic properties, history of contact, vaccination status, duration of stay in the PICU, respiratory support and its duration, vital findings, use of inhaled nitric oxide, whole blood exchange, extracorporeal supportive therapies, vasoactive inotropic score, Pediatric Risk of Mortality (PRISM) scores, and total leukocyte and lymphocyte counts were recorded.

A diagnosis of pneumonia was made with clinical evaluation and presence of pulmonary consolidation and parenchymal opacity. All patients were evaluated by a pediatric cardiologist with echocardiographic examinations.

Statistical Analysis

The SPSS software was used for the analysis of data. Median and minimum-maximum values were used for the descriptive data, and the Mann-Whitney U test was used for the comparison of continuous inter-group values. A p value of <0.05 was considered significant.

Results

In the two-year study period, a diagnosis of pertussis was made in 18 patients. The median age was 40 (range, 38–47.5) days, and 94.4% of the patients (n=17) were aged below 2 months; nine of these patients were aged below 6 weeks. Only one patient was aged 6 months. Ten (55.5%) patients (n=10) were female. All patients, their parents, and individuals living in the same house were unvaccinated.

All patients had respiratory distress at the time of presentation. Cough was found in 14 patients (77.7%). The median duration of cough before presentation to hospital was found as 4 (range, 2–9) days. Four patients had fever (22.2%), three
Şık et al. The clinical characteristic and prognosis of pertussis

Turk Pediatri Ars 2020; 55(1): 54–59

had convulsions (16.6%), and six patients had difficulty in feeding. There was no morbidity in the patients’ personal medical histories. Macrolid group antibiotic treatment was initiated in all patients.

B. pertussis was detected using PCR in nasopharyngeal secretion samples in 12 patients and in tracheal aspirate samples in six patients.

Fifteen patients needed respiratory support during hospitalization in the PICU (83.3%). Mechanical ventilation was performed in seven patients, non-invasive mechanical ventilation was administered in three patients, and high-flow nasal oxygen treatment was given in five patients (Table 1). The duration of mechanical ventilation was 8.8 days (range, 4–21 days). Five patients needed vasoactive-inotropic medications. Nitric oxide and sildenafil were administered to four patients and sildenafil alone was administered to three patients because of pulmonary hypertension. Hydrocortisone treatment was initiated in four patients with a diagnosis of catecholamine-resistant shock. Whole blood exchange was performed in three patients because of hyperleukocytosis.

Lung radiography revealed pneumonic infiltration and consolidation in 13 patients (72.2%) and pneumothorax in two patients. Chest tubes were placed in patients who were found to have pneumothorax.

Viral co-infection was found in four patients [respiratory syncytial virus (RSV) in two patients and rhinovirus (RV) in two patients]. In these patients, the need for mechanical ventilation and mortality rates were found to be higher compared with patients who were B. pertussis-positive only (n=14).

When the total leukocyte values at the time of admission to the PICU were evaluated, the total leukocyte count in the patient group who died (median 37100/mm³, IQR 28730–50180/mm³) was higher compared with the patients who survived (median 11630/mm³, IQR 8660–19425/mm³) (p=0.005). When the highest values obtained during hospitalization were evaluated, the total leukocyte count in the patient group who died (median 64970/mm³, IQR 50180–76280/mm³) was again higher compared with the patients who survived (15200/mm³, IQR 11785–21750/mm³) (p<0.001). The lymphocyte count was higher in patients who died (median 35800/mm³, IQR 26200–44200/mm³) compared with patients who survived (median 9490/mm³, IQR 4515–16000/mm³) (p=0.005) (Table 2).

Viral co-infection was present in all three patients who died (2 RSV, 1 RV).

Three patients died of multi-organ failure, catecholamine-resistant cardiogenic shock, and severe pulmonary hypertension. Sildenafil, inhaled nitric oxide, and supportive treatment with veno-arterial extracorporal membrane oxygenation (VA ECMO) were administered to these patients. Comorbid viral infection was present in all three patients who died (2 RSV, 1 RV).

Discussion

Pertussis is a disease that can be prevented by immunization, and the most important way for protection is active

Table 1. Demographic and clinical properties

Property	Median (IQR) or n (%)
Age (days)	40 (38–47.5)
Sex (female/male)	10/8 (55.6/44.4)
Duration of cough (days)	4 (2–9)
Presence of viral co-infection	4 (22.2%)
Use of invasive mechanical ventilation	7 (38.8%)
Use of non-invasive mechanical ventilation	3 (16.6%)
Use of high-flow oxygen treatment	5 (27.7%)
Duration of hospitalization in intensive care unit (days)	9 (5–14)

IQR: Interquartile range

Table 2. Comparison of the patients who did and did not survive

Property	Total (n=18) Mean (IQR)	Survivor (n=15) Mean (IQR)	Lost (n=3) Mean (IQR)	p
Age (days)	40 (38–47.5)	40 (37.25–51.25)	45 (38–45)	0.911a
Female/male	10/8	8/7	2/1	0.407b
Total leukocyte count (at the time of hospital admission)/mm³	12365 (9505–28132)	11630 (8660–19425)	37100 (28730–50180)	0.005a
Total leukocyte count (maximum)/mm³	18085 (11987–47720)	15200 (11785–21750)	64970 (50180–76280)	<0.001a
Lymphocyte count (at the time of hospital admission)/mm³	8015 (3412–20175)	4920 (2835–14750)	26200 (17500–28000)	0.005a
Lymphocyte count (maximum)/mm³	10975 (4685–29800)	9940 (4515–16000)	35800 (26200–44200)	0.005a
Viral co-infection	4	1	3	0.952b

IQR: Interquartile range; a: Mann Whitney U test; b: Ki-kare test
immunization by way of vaccination. Vaccination at an early age is important because the mortality is high in infants (5). In our country, pertussis vaccine has been included in the Ministry of Health’s vaccination schedule since 2009 as acellular vaccine and is given a total of four times at the 2nd, 4th, 6th, and 18–24th months (rapel dose) as DaBT-IPA-Hib (diptheria, acellular pertussis, tetanus, inactive polio, Haemophilus influenzae type b vaccine/pentavalent combination vaccine) (6).

Unvaccinated infants below the age of 6 weeks constitute 41.8% of patients who are hospitalized in PICUs because of pertussis, partially vaccinated infants aged between 6 weeks and 6 months constitute 46.7%, and fully vaccinated infants aged over 6 months constitute 11.5% (7, 8). In a study conducted in the United Kingdom, it was shown that vaccination of babies at the time of birth induced antibody response and contributed to protection against pertussis in patients aged under 6 months. In addition, maternal vaccination provides nearly 91% protection in children aged below 2 months (8–11). In 2011, the United Kingdom National Vaccination Program recommended that the first dose of pertussis vaccine should be given at the 6th week to provide early protection. At the end of 2011, the first dose of pertussis vaccine was applied in 50–70% of children aged between 6 and 8 weeks in some states of the United States of America, and it was shown that hospitalizations because of pertussis decreased by 10% (12). All these studies emphasize the importance of vaccination in preventing pertussis and protecting infants.

In our study, the median duration of cough was 4 (range, 2–9) days before presenting to hospital. This finding was similar to the findings of other studies (13–15). Pertussis may also be manifested by apnea and convulsions in infants (16). Although it has been reported that convulsions increase mortality and morbidity, convulsions were found in only two of our patients at the time of presentation and these convulsions could be easily controlled.

Severe inflammation is not observed during the natural course of pertussis unless bacterial or viral secondary infection is added to the picture. Therefore, fever may not be observed in patients, and this leads to a delay in presentation to hospital. In our study, 22.2% of patients (n=4) had fever and viral infection accompanied in three of these patients. The frequency of fever was similar to the literature (17, 18).

Studies conducted in our country have reported that the main source of pertussis for infants younger than one year was family members close to the infant (>55%) (5). It was found that pertussis was transmitted to children aged below one year from their mothers with a rate of 42.8% (19). As a response to increasing pertussis reports across Turkey, the cocoon vaccination strategy was initiated. The cocoon strategy involves vaccination of all individuals who are in close contact with the newborn who is vulnerable to infectious agents (20). In this way, the newborn is put under protection, because all individuals around have been vaccinated against the infectious agent (20, 21). In our study, all patients were unvaccinated because 17 patients were aged below 2 months and the family of one patient refused vaccination, and vaccination compatible with the cocoon strategy was not given to family members. In addition, all patients who were aged below 2 months had a history of being present in crowded environments approximately 5–7 days before the symptoms. This supports literature that emphasizes the protective-ness of the vaccine against pertussis and the importance of the cocoon strategy (1–3, 22–24).

In our study, three patients (16.6%) died of multi-organ failure and cardiogenic shock. Respiratory syncytial virus or RV was positive and severe pulmonary hypertension was found on echocardiographic examination in all these patients. The mortality rate was similar to other studies. In a study conducted in 2017, B. pertussis PCR was found to be positive in 11 of 301 infants who needed hospitalization in the PICU because of acute respiratory failure and 18% of these patients died. In contrast to our patients, co-infection was not found in these patients and the highest leukocyte count at the time of presentation was found to be 23 000/mm³ (25). In a study conducted in Brazil between 2008 and 2014, 55 patients were admitted to hospital with a diagnosis of laboratory-confirmed B. pertussis, 17 patients (30.9%) needed intensive care and six patients (10.9%) died (26). All patients who died were aged below 2 months and unvaccinated, and RSV was found to be positive in three patients. In addition, the total leukocyte count was found as 55 250/mm³ in patients who died and severe pulmonary hypertension unresponsive to nitric oxide treatment was found in five of these patients. In our study, comorbid viral infection was present in four patients (2 RSV, 2 RV). Two patients who were found to be respiratory syncytial virus positive and one patient who was RV positive died. In the patient group that died, co-morbid RSV infection was found with a higher rate. With these results, we argue that comorbid viral or bacterial infection influences prognosis in children hospitalized with a diagnosis of pertussis (1).

High leukocyte and lymphocyte counts are associated with mortality and need for intensive care. Similar to our results, Guinto-Ocampo et al. (27) showed that a high lymphocyte count was predictive for poor prognosis in
patients with pertussis aged less than one year. In a study conducted by Murray et al. (28), it was found that a high leukocyte count was associated with an increased need for mechanical ventilation, severe pulmonary hypertension, and mortality in patients hospitalized with a diagnosis of pertussis. All these results show that increased leukocyte count (>30,000/mm³) in children with B. pertussis infection is associated with disease severity and mortality (28, 29).

In pertussis, the pathogenesis of pulmonary hypertension is complex and multi-factorial. Hyperleukocytosis leads to irreversible pulmonary hypertension because of leukocyte aggregates in the pulmonary artery, pulmonary vein, and lymphatic channels. Therefore, reducing the leukocyte count by blood exchange and leukopheresis decreases mortality (16, 28). In our study, we found pathologic findings on echocardiographic examinations in four patients. Three patients had severe pulmonary hypertension and one patient had mild pulmonary hypertension. Right heart failure findings accompanied in two of the patients who had severe pulmonary hypertension. Sildenafil and inhaled nitric oxide were administered to three patients and only sildenafil was administered to one patient. Supportive treatment with VA ECMO was administered in three patients because of multi-organ failure, catecholamine-resistant cardiogenic shock and severe pulmonary hypertension. However, all three patients died.

ECMO has been used in patients with pertussis with multi-organ failure and severe pulmonary hypertension for many years (30–32). However, mortality is considerably high in infants who undergo ECMO because of pertussis (70%). This rate increases up to 84% in infants aged below 6 weeks (18, 33). In our study, three patients who received ECMO supportive treatment died of multi-organ failure and resistant cardiogenic shock.

The limitation of our study was that it was a single-center and retrospective study. A higher number of patients is needed to generalize the results. However, the strong aspect of our study was the fact that the diagnosis of pertussis was confirmed by the laboratory with B. pertussis PCR positivity in all patients.

Conclusion

Infants who are too young to be protected by active immunization are more frequently admitted to PICUs with severe pertussis. Maternal immunization and the cocoon strategy may provide success in protecting this age group. In addition, increased leukocyte and lymphocyte counts at the time of presentation and during hospitalization, and accompanying secondary infection and severe pulmonary hypertension, are associated with increased mortality and morbidity.

Ethics Committee Approval: Our study was conducted in accordance with the Declaration of Helsinki. Approval was obtained from Acibadem Mehmet Aydınlar University Ethics Committee (2019-10/13).

Informed Consent: As it was a retrospective study, consent was not obtained from the patients.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - A.Ç.; Design - G.Ş.; Supervision - A.Ç.; Data Collection and/or Processing - G.Ş.; Analysis and/or Interpretation - G.Ş., A.A.; Literature Review - A.D.; Writing - G.Ş.; Critical Review - A.Ç.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

Etik Kurul Onay: Çalışmamız Helsinki Deklarasyonu ilke-lerine uygun olarak yapılmıdı. Acibadem Mehmet Aydınlar Üniversitesi Etik Kurulu’ndan onay alındı (2019-10/13).

Hasta Onamı: Geriye dönük bir çalışma olduğu için hasta-lardan onam alınmamıştır.

Hakem Değerlendirmesi: Dış bağımsız.

Etik Kurul Onay: Çalışmamız Helsinki Deklarasyonu ilke-lerine uygun olarak yapılmıdı. Acibadem Mehmet Aydınlar Üniversitesi Etik Kurulu’ndan onay alındı (2019-10/13).

Hasta Onamı: Geriye dönük bir çalışma olduğu için hasta-lardan onam alınmamıştır.

Hakem Değerlendirmesi: Dış bağımsız.

Yazar Katkıları: Fikir - A.Ç.; Tasarım - G.Ş.; Denetleme - A.Ç.; Veri Toplanması ve/veya İşlemesi G.Ş.; Analiz ve/veya Yorum - G.Ş., A.A.; Literatür Taraması - A.D.; Yazıyı Yazar - G.Ş.; Eleştirel İnceleme - A.Ç.

Çıkar Çatışması: Yazarlar çıkar çatışması bildirmemişlerdir.

Mali Destek: Yazarlar bu çalışma için mali destek almamı-klarını beyan etmişlerdir.

References
1. Marshall H, Clarke M, Rasiah K, et al. Predictors of disease severity in children hospitalized for pertussis during an epidemic. Pediatr Infect Dis J 2015; 34: 339–45.
2. Elliott E, McIntyre P, Ridley G, et al. National study of infants hospitalized with pertussis in the acellular vaccine era. Pediatr Infect Dis J 2004; 23: 246–52.
3. World Health Organization (WHO). Pertussis vaccines: WHO position paper-August 2015. Weekly epidemiological record. Vol 90. Switzerland: World Health Organization; 2015.p.433–60.
4. Beard FH. Pertussis immunisation in pregnancy: a summary of funded Australian state and territory programs.
Şık et al. The clinical characteristic and prognosis of pertussis

Commun Dis Intell Q Rep 2015; 39: E329–36.
5. Otar G, Yıldız İ, Külaş A, Varkal MA, Devecioğlu E. Principles of Protection from Whooping Cough. J Child 2014; 14: 52–9.
6. T.C. Sağlık Bakanlığı Temel Sağlık Hizmetleri Genel Müdürlüğü. Genişletilmiş Başıklıkma Programı Genelgesi: 13.03.2009/ 7941. Available from: http://www saglik.gov.tr/TR/dosya/1-44926/h/gbp-genelgesi-2009.doc.
7. Kaczmarek MC, Warte RS, McEniery JA, Couthard MG, Lambert SB. Epidemiology of pertussis-related paediatric intensive care unit (ICU) admissions in Australia, 1997-2013: an observational study. BMJ Open 2016; 6: e010386.
8. Amirthalingam G, Andrews N, Campbell H, et al. Effectiveness of maternal pertussis vaccination in England: an observational study. Lancet 2014; 384: 1521–8.
9. Swamy GK, Wheeler SM. Neonatal pertussis, cocooning and maternal immunization. Expert Rev Vaccines 2014; 13: 1107–14.
10. Wood N, Marshall H, White Oj, Holt PG, McIntyre P. Antibody and cell-mediated immunity to pertussis 4 years after monovalent acellular pertussis vaccine at birth. Pediatr Infect Dis J 2014; 33: S11–7.
11. Dabrera G, Amirthalingam G, Andrews N, et al. A case-control study to estimate the effectiveness of maternal pertussis vaccination in protecting newborn infants in England and Wales, 2012–2013. Clin Infect Dis 2015; 60: 333–7.
12. Klein NP. Licensed pertussis vaccines in the United States. History and current state. Hum Vaccin Immunother 2014; 10: 2684–90.
13. Farizo KM, Cochi SL, Zell ER, Brink EW, Wassilak SG, Patricra PA. Epidemiological features of pertussis in the United States, 1980–1989. Clin Infect Dis 1992; 14: 708–19.
14. Halperin SA, Wang EE, Law B, et al. Epidemiological features of pertussis in hospitalized patients in Canada, 1991-1997: report of the Immunization Monitoring Program--Active (IMPACT). Clin Infect Dis 1999; 28: 1238–43.
15. Bayhan G, Tanur G, Nar-Otgun S, Aydin-Tekе T, Metintimur Ö, Öz FN. The clinical characteristics and treatment of pertussis patients in a tertiary center over a four-year period. Turk J Pediatr 2012; 54: 596–604.
16. Winter K, Zipprich J, Harriman K, et al. Risk Factors Associated With Infant Deaths From Pertussis: A Case-Control Study. Clin Infect Dis 2015; 61: 1099–106.
17. Cherry JD. Pertussis in Young Infants Throughout the World. Clin Infect Dis 2016; 63: S19–22.
18. Cherry JD, Wendorf K, Bregman B, et al. An Observational Study of Severe Pertussis in 100 Infants ≤120 Days of Age. Pediatr Infect Dis J 2018; 37: 202–5.
19. Tamburaci Uslu ZD, Ceyhan M, Dinleyici EC, et al. Detection of the presence of Bordetella pertussis by real-time polymerase chain reaction in children diagnosed with pertussis and among their household contacts. J Vaccines Vaccin 2013; 4: 199.
20. Terzi H, Kitiş Y. A Different Approach to Pertussis Immunization: Cocooning Strategy. Turkiye Klinikleri J Nurs Sci 2018; 10: 88–94.
21. Aydın D, Şahin N, Akay B. Effects of immigration on children’s health. İzmir Dr Behçet Uz Çocuk Hastalıkları Dergisi 2017; 7: 8–14.
22. Wood N, Quinn HE, McIntyre P, Elliott E. Pertussis in infants: preventing deaths and hospitalisations in the very young. J Paediatr Child Health 2008; 44: 161–5.
23. Pillsbury A, Quinn HE, McIntyre PB. Australian vaccine preventable disease epidemiological review series: pertussis, 2006-2012. Commun Dis Intell Q Rep 2014; 38: E179–94.
24. Akçaboy M, Oğuz MM, Altunel EA, Yüksel D, Şenel S, Zorlu P. A case of whooping cough with complications: the importance of “cocooning” immunization. Gazi Medical Journal 2016; 28: 48-50.
25. Phadke VK, McCracken JP, Kriss J, et al. Clinical Characteristics of Hospitalized Infants With Laboratory-Confirmed Pertussis in Guatemala. J Pediatric Infect Dis Soc 2018; 7: 310–6.
26. Palvo F, Fabro AT, Cervi MC, Aragon DC, Ramalho FS, Carlotti APCP. Severe pertussis infection: A clinicopathological study. Medicine (Baltimore) 2017; 96: e8823.
27. Guino-Ocampo H, Bennett JE, Attila MW. Predicting pertussis in infants. Pediatr Emerg Care 2008; 24: 16–20.
28. Murray EL, Nieves D, Bradley JS, et al. Characteristics of Severe Bordetella pertussis Infection Among Infants ≤90 Days of Age Admitted to Pediatric Intensive Care Units - Southern California, September 2009-June 2011. Pediatric Infect Dis Soc 2013; 2: 1–6.
29. Cherry JD. Pertussis: challenges today and for the future. PLoS Pathog 2013; 9: e1003418.
30. Berger JT, Caccilo JA, Shonley TP, et al. Critical pertussis illness in children: a multicenter prospective cohort study. Pediatr Crit Care Med 2013; 14: 356–65.
31. Namachivayam P, Shimizu K, Butt W. Pertussis: severe clinical presentation in pediatric intensive care and its relation to outcome. Pediatr Crit Care Med 2007; 8: 207–11.
32. De Berry BB, Lynch JE, Chung DH, Zwischenberger JB. Pertussis with severe pulmonary hypertension and leukocytosis treated with extracorporeal membrane oxygenation. Pediatr Surg Int 2005; 21: 692–4.
33. Rowlands HE, Goldman AP, Harrington K, et al. Impact of rapid leuakdepletion on the outcome of severe clinical pertussis in young infants. Pediatrics 2010; 126: e816–27.