New insights into the molecular phylogeny and taxonomy of the family Issidae (Hemiptera: Auchenorrhyncha: Fulgoroidea)

V.M. Gnezdilov*, F.V. Konstantinov1, 2 and S.Y. Bodrov1

1 Zoological Institute, Russian Academy of Sciences, 1 Universitetskaya Emb., Saint Petersburg 199034, Russia; e-mails: vgnezdilov@zin.ru, vmgnezdilov@mail.ru
2 Saint Petersburg State University, 7/9 Universitetskaya Emb., Saint Petersburg 199034 Russia; e-mail: f.konstantinov@spbu.ru

ABSTRACT
The phylogenetic relationships among major lineages of the planthopper family Issidae were explored by analyzing a molecular dataset of nine fragments (COI, CytB, 12S, H3, 16S, 18SII, 18SIII, 28S D3–D5, 28S D6–D7) and 48 terminal taxa. Bayesian and Maximum likelihood analyses yielded similar and mostly well-resolved trees with moderate to high support for most branches. The obtained results suggest subdivision of the family Issidae Spinola into two subfamilies, Issinae Spinola, 1839 (= Thioniinae Melichar, 1906, = Hemisphaeriinae Melichar, 1906) and Hysteropterinae Melichar, 1906. The Issinae was clustered into the tribes Issini Spinola, 1839, with the subtribes Issina Spinola, 1839 and Thioniina Melichar, 1906, Sarimini Wang, Zhang et Bourgoin, 2016, Parahiraciini Cheng et Yang, 1991, Hemisphaeriini Melichar, 1906, and Kodaianellini Wang, Zhang et Bourgoin, 2016. The Hysteropterinae incorporates the rest of Western Palaearctic taxa except Issina. Chimetopini Gnezdilov, 2017, stat. nov. is elevated to tribe from the subtribal level. Most well-supported clades showed clear geographical patterning. Newly obtained data contradicts the scenario of an early split of American Thioniinae from other Issidae and possible origin of the family in the New World, while the combination of Palaearctic Issus Fabricius and Latissus Dlabola with Oriental and American taxa in one well supported clade may serve as an evidence for a common ancestor for extant Oriental, American, and Palaearctic issids.

Key words: Hyteropterinae, Issinae, Issina, Issini, molecular phylogeny, taxonomy, Thioniina

Новый взгляд на молекулярную филогению и систематику семейства Issidae (Hemiptera: Auchenorrhyncha: Fulgoroidea)

В.М. Гнездилов*, Ф.В. Константинов1, 2 и С.Ю. Бодров1

1 Зоологический институт Российской академии наук, Университетская наб. 1, 199034 Санкт-Петербург, Россия; e-mails: vgnezdilov@zin.ru, vmgnezdilov@mail.ru
2 Санкт-Петербургский государственный университет, Университетская наб. 7/9, 199034 Санкт-Петербург, Россия; e-mail: f.konstantinov@spbu.ru

РЕЗЮМЕ
Выявлены филогенетические отношения среди основных групп семейства Issidae по результатам анализа 9 генных фрагментов (COI, CytB, 12S, H3, 16S, 18SII, 18SIII, 28S D3–D5, 28S D6–D7) и 48 видов. Использование Байесова анализа и анализа максимального правдоподобия позволили получить схожие и, в основном, хорошо разрешенные древеса с умеренной или высокой поддержкой большинства ветвей. Полученные результаты позволяют подразделить семейство Issidae Spinola на два
INTRODUCTION

The family Issidae Spinola, 1839 is a worldwide distributed group of planthoppers with more than 1000 species described in nearly 200 genera (Gnezdilov 2013a, 2016a; Bourgoin 2019) authentically known since Eocene (Gnezdilov and Bourgoin 2016). The Western Palearctic and Oriental regions harbour the richest faunas of the family while the Afrotropical issid fauna is poor and Australian one is still mostly undescribed (Gnezdilov 2013a, 2016a). Apparently rich Neotropical issid fauna is still in its initial stage of discovering (Gnezdilov 2018b, 2019a; Gnezdilov and Bartlett 2018). In dry habitats of Western Palearctic region issid species are associated with trees and shrubs, e.g. *Quercus*, *Astragalus*, *Amygdalus*, *Atraphaxis*, *Spiraea*, and *Echinospartum* species, and grasses, e.g. *Alhagi*, *Artemisia*, *Festuca*, *Tanacetum* species etc. (Emeljanov 1969, 1978; Dlabola 1980; Mitjaev 2002; Gnezdilov and Agu-in-Pombo 2014; Gnezdilov et al. 2019). In tropical areas issids inhabit forest canopies (Meng et al. 2013; Gnezdilov 2015; Gnezdilov et al. 2010; Gnezdilov and Bartlett 2018; Barringer et al. 2019), small trees and shrubs in the forests or cereals in opened places (Gnezdilov 2013c, 2016b). Some species, e.g. *Agalthra latissus* (Dlabola, 1980), *Thabena brun-nifrons* (Bonfils, Attie et Reynaud, 2001), are widely polyphagous and were easily distributed across the world (Gnezdilov and O’Brien 2006; Chan et al. 2013). Many issid species are peculiarly subbrachypterous, with beetle-shaped forewings (Gnezdilov et al. 2014), and flightless which makes this group of particular importance for historic biogeography and evolution of terrestrial biota.

The classification of the family since the group was established by Spinola (1839) was developed by Melichar (1906), Fennah (1954), Dlabola (1987), and Gnezdilov (2002, 2003, 2007, 2009, 2013a, 2016c). Particularly Gnezdilov (2013a) treated the family Issidae comprising one subfamily Issinae Spinola, 1839 with three tribes – Issini Spinola, 1839, Hemisphaerini Melichar, 1906, and Parahiracini Cheng et Yang, 1991. The tribe Thioniini Melichar, 1906 was placed in synonymy under Issini (Gnezdilov 2009). Later Gnezdilov (2016c, 2017a) resurrected the subtribe Thioniina Melichar, 1906 in the tribe Issini and erected the subtribe Chimetopina Gnezdilov, 2017 to accommodate African taxa with well-developed hind wings. Finally Gnezdilov and Bartlett (2018) and Gnezdilov (2018a, 2018b, 2019a) resurrected the subfamily Thioniinae Melichar, 1906, with the tribes Thioniini, comprising three subtribes (Thioniina, Oronoquina Gnezdilov, 2018, Waoraniina Gnezdilov et Bartlett, 2018), Guianaphrynini Gnezdilov, 2018, and Cordelini Gnezdilov, 2019 (Table 1).

Despite considerable progress in taxonomic studies, no phylogenetic treatment of the group had been published until recently. Starting from 2015 several studies appeared dealing with phylogeny of Issidae based on morphological (Gnezdilov 2016a, 2016c) and on molecular data (Gnezdilov et al. 2015; Sun et al. 2015; Wang et al. 2016). Before these studies some species of the family Issidae were involved in the molecular analysis devoted to the phylogeny of Fulgoroidea as a whole or issiod group of families comprising Issidae, Caliscelidae, Tropiduchidae, Nogodinidae, and Acanaloniidae (Yeh et al. 1998, 2005; Yeh and Yang 1999; Bourgoin et al. 1997; Urban and Cryan 2007; Song and Liang 2013).
Sun with coauthors (Sun et al. 2015) built the first phylogenetic tree of Issidae based on sequences of 18S and Wg of 34 species from 20 genera using Bayesian analysis. In this study the monophyly of Issidae was weakly supported (0.61), but three well supported clades were recognized within the family which corresponds to Issini sensu Gnezdilov (2009) or Sarimini + Kodaianellini sensu Wang et al. (2016), Hemisphaeriini, and Parahiraciini. The two latter clades were sister groups on the tree with a support 0.84. Unfortunately several terminal taxa were misidentified by the authors, e.g. the species identified as Sivaloka Distant, 1906 in fact belongs to the genus Kodaianella Fennah, 1956, Jagannata sp.1 and Jagannata sp.2 belong to the genus Eusarima Yang, 1994, while Kodaiana sp. in fact belongs to the genus Thabena Stål, 1866. Correct identifications were made by the senior author during his visit to North-West A&F University in Yangling (Shaanxi, China) (unpublished).

Gnezdilov with coauthors (Gnezdilov et al. 2015) published phylogenetic study of issidoid families of Fulgoroidea sensu Gnezdilov (2013b) based on sequences of COI, 28S (D4, D5, and D6), and 18S (helix 17 – helix 50) of 32 species from 29 genera of Issidae, Caliscelidae, Tropiduchidae, Nogodinidae, Ricinaidae, Dictyopharidae, Flatidae, and Aphrophoridae as an outgroup. Seventeen issid species from 14 genera were involved in this study. Parsimony analysis revealed polyphyly of the genus Bubastia Emelianov, 1971 and Hysteropterum Amyot et Serville, 1843 with a support 90, which resulted later in synonymization of Hysteropterina Melichar, 1906 and Agalmatiina Gnezdilov, 2002 (Gnezdilov 2016c).

Wang et al. (2016) provided new phylogenetic analysis and classification of the family Issidae based on 18S, two parts of 28S (D3–D5, D6–D7), COI and CytB genes sequences from 79 species belonging to 50 genera using both Maximum likelihood and Bayesian analyses. According to the resulting classification, the family Issidae was divided into three subfamilies with seven tribes. In particular, the subfamily Thioniinae, with the tribe Thioniini, was reestablished to accommodate Neotropical issids as an independent lineage sister to all other Issidae including the subfamilies Issinae, with the tribes Issini and Hysteropterini, for Palaearctic issids, and Hemisphaeriinae, with the tribes Hemisphaeriini, Kodaianellini Wang, Zhang et Bourgoin, 2016, Sarimini Wang, Zhang et Bourgoin, 2016, and Parahiraciini, for Oriental, Australian, and African issids. American genus Picumna Stål, 1864 was provisionally placed in the Hemisphaeriinae as well (Wang et al. 2016). However three years later Zhao et al. (2019) describing new genus of Hemisphaeriini suggested another topology for the family recovering subfamily rank for Hysteropterinae – Thioniinae, Hysteropterinae, Issinae + Hemisphaeriinae (Zhao et al. 2019, fig. 22). In the same paper reassessment of the subtribal division of the Hemisphaeriini proposed by Wang with coauthors (Wang et al. 2016) was suggested. Based mainly on the same data Bourgoin with coauthors (Bourgoin et al. 2018) proposed a calibrated molecu-
lar tree of Issidae and suggested early Cretaceous origin of the group (110 Mya) with a basal split of the family between Neotropical taxa (Thioniinae) and other Issidae (Issinae + Hemisphaeriinae) which is congruent with the opening of the South Atlantic Ocean separating South America and Africa.

Gnezdilov (2016a, 2016b) based on the analysis of morphological and biogeographical data proposed a phylogeny of the subtribe Issina Spinola (all Western Palaearctic taxa included) and suggested Eocene origin of Issidae in the Oriental Region with the subsequent dispersal to the Palaearctic region, Africa, and Australia, and to the New World via Beringia.

Aiming to get a better understanding of phylogenetic relationships within Issidae and to test previously suggested phylogenetic hypotheses we assemble a new molecular dataset that includes 48 terminals representing all major issid clades and data on nine fragments (COI, CytB, 12S, H3, 16S, 18SII, 18SIII, 28S D3–D5, 28S D6–D7).

MATERIAL AND METHODS

Taxon sampling

This study incorporates 48 species out of 43 genera comprising 46 ingroup taxa representing main tribes of the family Issidae and two outgroups from the families Fulgoridae and Kinnaridae. Thirty two species were directly sequenced by us for nine markers, including four mitochondrial (COI, CytB, 12S, 16S), and five nuclear (H3, 18SII, 18SIII, 28S D3–D5, 28S D6–D7) fragments. Sequences of CytB, H3, 18S, 28S D3–D5, and 28S D6–D7 for 16 included species were downloaded from NCBI and were mainly received by Wang et al. (2016). Voucher specimens sequenced in this study are retained in the Auchenorrhyncha collection of the Zoological Institute of the Russian Academy of Sciences in Saint Petersburg (see Table 2).

DNA sequencing and alignment

Total genomic DNA was extracted from thoracic musculature of the specimens preserved in 96% alcohol using a Thermo Scientific GeneJet Genomic DNA Purification Kit with the standard protocol.

Primer pairs used for amplification are provided in Table 3. PCRs were performed in a 20 µL reaction mixture containing 1–2 µL of genomic DNA template with the following protocol: an initial denaturation 5’ at 94 °C for 5 min, followed by 35 cycles of denaturation in 40 s at 94 °C, 40 s annealing at 48–58° (see Table 3), 1 min elongation at 72 °C, and a final elongation for 10 min at 72 °C. The amplification was performed with 0.4 µM of each primer using a ScreenMix reaction mixture (Evrogen, Russia) containing DNA polymerase, dNTP, MgCl2 and enhancers at optimal concentrations. Amplified fragments were purified with a PCR purification kit (Evrogen, Russia). Purified PCR products were sequenced in both directions at Evrogen Inc.

All sequences were checked using BLAST through the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Forward and reverse sequences were concatenated and manually verified with Geneious Prime 2019.03 (https://www.geneious.com). The 18S gene was sequenced in two overlapping parts using the coupled primers 3F-Bi and A2–9R and subsequently spliced into one sequence. Obtained sequences were aligned with data on 16 species taken from Genbank. The accession numbers for all sequences are provided in Table 2. Sequence summary statistics are given in Table 4 including information on total/average length and base frequencies. Alignment was completed using the Muscle algorithm (Edgar 2004) and subsequently checked in Geneious. All genes were concatenated in Sequence Matrix 1.7.8 (Vaidya et al. 2011) to create a master alignment of 5587 bp.

Phylogenetic analysis

Bayesian estimation search (BI) was performed using MrBayes (Ronquist et al. 2011) on the CIPRES Science Gateway V3.1 Portal. Two runs with 12 chains were running simultaneously for 12 × 10^6 generations with 0.1 temperature setting; burn-in was set at 25%. We applied the most complex model GTR+G+I applied to each partition, as it usually provides a better fit for real data (Arenas 2015; Abadi et al. 2019). Chains were sampled every 1000 generations and the respective trees written to a tree file. After the analysis the stdout file was checked to ensure that the average standard deviation of split frequencies was below 0.01. Fifty-percent majority-rule consensus trees and posterior probabilities of clades were calculated using the trees sampled after the chains converged. The posterior probability supports are provided on Fig. 1.
Species	Locality	Taxonomy	Specimen identifier	COI	CytB	H3	12S	16S	18S	28S D3-D5	28S D6-D7	Source
Agalmatium flavescens	Russia	Hysteropterum-group	ZISP_ISSID G025	MN194180	MN191521	MN267374	MN219666	MN227704	MN165781	MN266987	MN266956	Present study
Anatolodus musinus	Turkey	Bubastia-group	ZISP_ISSID G005	MN194181								Present study
Baldula una	Mexico	Issini, Thioniina	ZISP_ISSID G017	MN191522	MN267376	MN219665	MN227706	MN165783	MN266989	MN266958	Present study	
Bootheca taurus	Bulgaria	Kervillea-group	ZISP_ISSID G034	MN194182	MN267377	MN219667	MN227707	MN165784	MN266990	MN266959	Present study	
Bubastia sp.	Greece	Bubastia-group	ZISP_ISSID G018	MN191524	MN267378	MN219668	MN227708	MN165785	MN266991	MN266960	Present study	
Cheiloceps argo	USA	Issini, Thioniina		DQ532696	DQ532543						Urban & Cryan, 2007	
Conosimus coelatus	France	Conosimus-group	ZISP_ISSID G012	MN194183	MN191526	MN267379	MN219669	MN227710	MN165787	MN266993	MN266962	Present study
Dactylissus armillarius	Vietnam	Sarimini		KX702879							Wang et al., 2016	
Darwalia barbata	Vietnam	Sarimini		KX702888							Wang et al., 2016	
Dorysarthus mobilicornis	UAE	Fulgoridae	ZISP_ISSID G028	MN194184		MN267380	MN219670	MN227711	MN165788	MN266994	MN266963	Present study
Euroxenus vayssieresi	Reunion	Sarimini	ZISP_ISSID G004	MN267381	MN19671							Present study
Euxaldar lenis	Vietnam	Hemisphaeriini		KX761565	KX761412						Wang et al., 2016	
Falcidius limbatus	Italy	Bubastia-group	ZISP_ISSID G016	MN194185		MN267375	MN219672	MN227712	MN165790	MN266996	MN266965	Present study
Flavina hainana	China	Parahiraciini		KX702912							Wang et al., 2016	
Thabena litaoensis	China	Parahiraciini		KX702823	KX761452	KX702811					Wang et al., 2016	
Species	Locality	Taxonomy	Specimen identifier	COI	CytB	H3	12S	16S	18S	28S D3-D5	28S D6-D7	Source
---------------------------------	------------	----------------	--------------------	-------------	-------------	------------	------------	------------	------------	------------	------------	----------------------
Hemisphaerius coccinelloides	Philippines	Hemisphaerini										Wang et al., 2016
(Burmeister, 1834)				KX702884								
Hysteropterum dolichotum	France	Hysteropterum-	ZISP_ISSID G013	MN267382	MN219673	MN227713	MN165791	MN266997	MN266966	Present study		
Gnezdilov et Mazzoni, 2004		group									Present study	
Issus coleopterus	Italy	Issini, Issina	ZISP_ISSID G030	MN194186	MN191527	MN267383	MN219674	MN227714	MN165792	MN266998	MN266967	Present study
(Fabricius, 1781)											Present study	
Issus lauri	Italy	Issini, Issina	ZISP_ISSID G019	MN191528	MN267384	MN219675	MN227715	MN165793	MN266999	MN266968	Present study	
Ahrens, 1814											Present study	
Kervillea conspurcata	Slovenia	Kervillea-	ZISP_ISSID G024	MN194187	MN191529	MN219676	MN227716	MN165794	MN267000	MN266969	Present study	
(Spinola, 1839)		group									Present study	
Kodaianella bicincti-frons	China	Kodaianellini										Wang et al., 2016
Fennah, 1956											Present study	
Latematium latifrons	Bulgaria	Kervillea-	ZISP_ISSID G009	MN194188	MN191530	MN267385	MN219677	MN227717	MN165795	MN267001	MN266970	Present study
(Fieber, 1877)		group										Present study
Latilica antalyica	Greece	Bubastia-	ZISP_ISSID G022	MN267386	MN219678	MN227718	MN165796	MN267002	MN266971			Present study
(Dlabola, 1986)		group										Present study
Latilica oertzeni	Greece	Bubastia-	ZISP_ISSID G033	MN191531	MN267386	MN219679						Present study
(Matsumura, 1910)		group										Present study
Latissus dilatus	Slovenia	Issini, Issina	ZISP_ISSID G031	MN191532	MN267387	MN227719	MN165797	MN267003	MN266972			Present study
(Fourcroy, 1785)												Present study
Macrodaruma pertinax	Vietnam	Hemisphaerini										Wang et al., 2016
Fennah, 1978				KX702882								Present study
Macrodarumoides petalinus	China	Parahiraciini										Wang et al., 2016
Che, Zhang et Wang, 2012				KX702880							Present study	
Mongoliana triangularis	China	Hemisphaerini										Wang et al., 2016
Che, Wang et Chou, 2003				KX761510							Present study	
Mycterodus drosopoulou-siios	Greece	Mycterodus-	ZISP_ISSID G006	MN194189	MN191533	MN219680						Present study
Dlabola, 1982		group										Present study
Mycterodus goricus	Armenia	Mycterodus-	ZISP_ISSID G001	MN194190	MN191534	MN267388	MN219681					Present study
(Dlabola, 1958)		group										Present study
Ophthalmosphaerius triobulus	China	Hemisphaerini										Wang et al., 2016
(Che, Zhang et Wang, 2006)				KX702914							Present study	
Species	Locality	Taxonomy	Specimen identifier	COI	CytB	H3	12S	16S	18S	28S D3-D5	28S D6-D7	Source
---------	----------	----------	---------------------	-----	------	----	-----	-----	-----	----------	----------	--------
Palmallorcus punctulatus (Rambur, 1840)	Portugal	Bubastia-group	ZISP_ISSID G010	MN191535	MN267389	MN219682	MN227720	MN165800	MN267006	MN266975	Present study	
Perloma brunneoscens (Emeljanov, 1984)	UAE	Kinnariidae	ZISP_ISSID G029	MN194192	MN191536	MN267391	MN227722	MN165802	MN267008	MN266977	Present study	
Pictuma sp.	Mexico	Issinae	ZISP_ISSID G027	MN191491	MN267390	MN219683	MN227721	MN165801	MN267007	MN266976	Present study	
Proteinissus bilimeki Fowler, 1904	Mexico	Issini, Thioniina	ZISP_ISSID G002	MN194193	MN191537	MN267392	MN219684	MN165803	MN267009	MN266978	Present study	
Sarina bifurca Meng et Wang, 2016	China	Sarimini	KX761552	X702819	X761447	X702808	Wang et al., 2016					
Scorlupaster heptapotamicum Mitjaev, 1971	Kazakhstan	Phasmen-group	ZISP_ISSID G011	MN267393	MN227723	MN267010	MN266979	Present study				
Scorlepella disolor (Germain, 1821)	Bulgaria	Kervillea-group	ZISP_ISSID G008	MN267394	MN219685	MN227724	MN165804	MN267011	MN266980	Present study		
Tetricissus phalo (Fennah, 1978)	Vietnam	Kodaianellini	KX702889	KX702839	Wang et al., 2016							
Tetricodes songae Zhang et Chen, 2009	China	Parahiraciini	KX702946	KX702841	KX761457	Wang et al., 2016						
Tetricodissus pandlineus Wang, Bourgoin et Zhang, 2015	China	Parahiraciini	KX702907	KX702817	KX761445	KX702807	Wang et al., 2016					
Thalassana ephialtes (Linnavuori, 1971)	Turkey	Mycterodus-group	ZISP_ISSID G015	MN194194	MN191538	MN267396	MN219686	MN165805	MN267012	MN266981	Present study	
Tingissus guadarramense (Melichar, 1906)	Portugal	Hysteropterum-group	ZISP_ISSID G021	MN267397	MN219687	MN227725	MN165806	MN267013	MN266982	Present study		
Traxus fulus Metcalf, 1923	Mexico	Issini, Thioniina	ZISP_ISSID G014	MN194195	MN191539	MN267398	MN219688	MN227726	MN165807	MN267014	MN266983	Present study
Tshurtshurnella biokorata Gnezdilov et Oezgen, 2018	Turkey	Mycterodus-group	ZISP_ISSID G007	MN194196	MN191540	MN227727	MN165808	MN267015	MN266984	Present study		
Tshurtshurnella zelleri (Kirschbaum, 1868)	Italy	Mycterodus-group	ZISP_ISSID G032	MN191541	MN267399	MN219689	MN227728	MN165809	MN267016	MN266985	Present study	
Zopherisca penelopeae (Dlabola, 1974)	Greece	Mycterodus-group	ZISP_ISSID G003	MN165810	MN267017	MN266986	Present study					
Maximum Likelihood (ML) analysis was performed using RAxML (Stamatakis 2016) via the CIPRES Science Gateway V. 3.3 (http://www.phylo.org/sub_sections/portal/) (Miller et al., 2010). We used RAxML-HPC BlackBox tool with 10000 bootstrap iterations and a subsequent thorough ML search, using the General-Time-Reversible (GTR) algorithm with gamma distributed substitution rates and invariable sites (GTR+I+G) for each partition independently. The bootstrap supports are provided on Fig. 2.
RESULTS

Tree topologies recovered by both BI and ML analyses were largely congruent (Figs 1, 2). The ML tree shows less resolution and did not recover Issini and Parahiracini as monophyletic groups, while the BI analysis recovering both tribes with high support (93% and 100% respectively). Nodes of the major clades are numbered from 1 to 12.

Node 1 (BI: 100; ML: 77) supports the monophyly of the subfamily Issiniae (= Thioniinae, = Hemisphaeriidae Melichar, 1906) sensu Gnezdilov (2009, 2013a). This clade includes Issini, Thioniinae and Hemisphaerini sensu Wang et al. (2016) or Issini sensu Gnezdilov (2002) + Hemisphaerini + Parahiracini sensu Gnezdilov (2013a) (Table 5). In this combination of taxa the subfamily Issiniae is defined for the first time. Many taxa of this subfamily are characterized by furcating CuA on forewings and well-developed hind wings.

Node 2 (BI: 100; ML: 69) represents the subfamily Hysteropterinae and comprises Hysteropterini sensu Wang et al. (2016) or Issinia, excluding Issus Fabricius, 1803 and Latissus Dlabola, 1974, sensu Gnezdilov (2016a, 2016c), or Hysteropterina + Agalmatiina sensu Gnezdilov (2002). This clade includes Western Palaearctic taxa with rudimentary anal lobe of hind wings, without vannal cleft or with reduced hind wings (Gnezdilov 2016a).

Node 3 (BI: 93; not recovered in ML) forms the tribe Issini and combines Western Palaearctic Issus Fabricius and Latissus Dlabola together with all American taxa involved in the current analysis viz., Balduza Gnezdilov et O’Brien, 2006, Proteinissus Fowler, 1904, Cheiloceps Uhler, 1895, and Traxus Metcalf, 1923. In this combination of taxa the tribe issini is defined for the first time. The composition of this clade may serve as a confirmation of the synonymy of Issini and Thionini proposed by Gnezdilov (2009) since Cheiloceps Uhler belongs to the subtribe Thioniina Melichar, 1906) sensu Gnezdilov (2017b). Most included genera are characterized by bi-lobed hind wing, with deep cubital cleft and more or less reduced anal lobe.

Node 4 (BI: 100; ML: 100) corresponds to the subtribe Issina sensu Gnezdilov (2002) and Issus group of genera sensu Gnezdilov (2002) and Issus group of genera sensu Gnezdilov (2016a, 2016c). This clade includes two genera Issus Fabricius and Latissus Dlabola which are morphologically related by a unique synapomorphy – the presence of paired digitate processes on the inner side of the dorsolateral lobes of the phallobase (Gnezdilov 2016c, figs 1–4). This group retained many ancestral characters within Western Palaearctic Issidae (Gnezdilov 2016a, 2017a) including bi-lobed hind wings, with vannal cleft only and anal lobe reduced to a small appendage with simple second anal vein. Issus pospisili Dlabola, 1958 has hind wing with partly fused CuA and anterior branch of first anal vein (Gnezdilov 2017a, Fig. 22) which apparently relates Issina to Oriental issid taxa and to American subtribe Thioniina sensu Gnezdilov (2018a).

Node 5 (BI: 100; ML: 78) corresponds to the subtribe Thioniina sensu Gnezdilov (2018a) with inclusion of American taxa, characterized by reduced or rudimentary hind wings, and to the subfamily Thioniinae sensu Wang et al. (2016) (Table 5).

Node 6 (BI: 100; ML: 100) the tribe Sarimini sensu Wang et al. (2016) was not recovered in our analysis (Figs 1, 2). However all genera currently assigned to this group (Wang et al. 2016; Gnezdilov 2019b) are characterized by tri-lobed hind wings with deep cubital cleft and often with CuA and Cup fusing apically with flattening. The genus Euroxenus Gnezdilov, 2009 also shares these characters and might belong to this group from the morphological standpoint.

Node 7 (BI: 100; not recovered in ML) corresponds to Parahiracini sensu Wang et al. (2016) and Gnezdilov (2017b). Most included genera are characterized by bi-lobed hind wing, with deep cubital cleft and more or less reduced anal lobe.

Node 8 (BI: 90; ML: 88) represents the tribe Hemisphaerini sensu Wang et al. (2016) and contains genera with hemisphaerical fore wings and single-lobed or rudimentary hind wings.

Node 9 (BI and ML: 93) forms the tribe Kodai-anellini. Members of this tribe are united by the three-lobed hind wings, with large remigial lobe and small remigio-vannal and anal lobes (Wang et al. 2016).

Node 10 (BI: 100; ML: 92) corresponds to the Keruellea group of genera sensu Gnezdilov (2016a, 2016c). These genera are characterized by a peculiar structure of the phallobase with a pair of long folds which frequently conceals ventrally its ventral lobe and separated lobes of gonoplacs (Gp 1 and Gp 2) (Gnezdilov 2016a, 2016c).

Node 11 (BI: 69; ML: 59) represents the Mycterodrus group of genera sensu Gnezdilov (2016a, 2016c). This group is united by the structure of penis with
Fig. 1. Bayesian 50% consensus tree based on combined dataset (BI). Nodes of the major clades are numbered and refer to text. Each node is documented with its posterior probability supports.
Fig. 2. Maximum Likelihood (ML) tree estimated from the combined dataset. At each node, values indicate bootstrap supports.
the aedeagus not entirely concealed by the phallobase and clearly visible from the outside and the fused apical aedeagal processes forming cylinder (Gnezdilov 2016a, 2016c).

Node 12 (BI: 72; ML: 76) corresponds to the Hysteropterum group of genera sensu Gnezdilov (2016a, 2016c). According to Kusnezova and Aguin-Pombo (2015) the genera Hysteropterum Amyot et Serville, 1843 and Agalmatium Emeljanov, 1971 are similar in having nucleolus organizer regions (NORs) located sub-terminally in the largest pair of autosomes although this character occur in other groups of Auchenorrhyncha as well.

DISCUSSION

Our study involves more molecular markers than previously and recovered a mostly well-resolved tree with moderate to high support for most branches.

The combination of Palaearctic Issus Fabricius and Latissus Dlabola with Oriental and American taxa in one well-supported clade of Issinae (Node 1) confirms the existence of a common ancestor for extant Oriental, American, and Palaearctic issids earlier hypothesized by Gnezdilov (2016a). Thus newly obtained data contradicts the scenario of an early split of American Thioniinae from other Issidae and possible origin of the family in the New World recently suggested by Wang et al. (2016) and Bourgoin et al. (2018). At the same time monophyly of the tribe Kodaianellini erected by Wang et al. (2016) is confirmed by our study while monophyly of Sarimini Wang, Zhang et Bourgoin, 2016 was not supported by our data.

Within the subfamily Issinae five clades are well supported (Fig. 1) and correspond to the tribes Hemisphaeriini (Euxaldar Fennah, 1978 – Hemisphaerius Schaum, 1850 – Ophthalmosphaerius Gnezdilov, 2018 – Macrodaruma Fennah, 1978 – Mongolianina Distant, 1909) (Node 8), Kodaianellini (Tetricissus Wang, Bourgoin et Zhang, 2017 – Kodaianella Fennah, 1956) (Node 9), Sarimini (Dactylissus Gnezdilov et Bourgoin, 2014 – Sarima Melichar, 1903) (Node 6), and Thioniina (Traxus Metcalf, 1923 – Cheiloceps Uhler, 1895 – Balduz Gnezdilov et O’Brien, 2006 – Proteinissus Fowler, 1904) (Node 5) and Issina (Issus Fabricius – Latis- sus Dlabola) (Node 4) of the tribe Issini (Node 3).

Sixth clade corresponding to the tribe Parahiraciini (Node 7) is well supported in the Bayesian tree and forms a sister group to Sarimini with a support 59 (Fig. 1), but was not recovered in RAxML analysis (Fig. 2). The relationships of these tribes within Issinae are still not clear. The tribe Hemisphaeriini forms a sister group to Sarimini + Parahiraciini in the BI analysis with a support of 83. Close relationships of Sarimini, Parahiraciini, Hemisphaeriini, and Kodaianellini revealed by Wang et al. (2016) were also confirmed in the BI with a support 94 of this clade (Fig. 1), although it was not recovered in the ML tree (Fig. 2).

Our concept of Issinae includes all taxa with well-developed hind wings. This feature was treated by Gnezdilov (2016a, 2016b, 2016c, 2017a) as an ancestral trait in comparison to Hysteropterinae having reduced or rudimentary hind wings. Most part of American taxa involved in the current analysis are combined in one clade (Figs 1, 2) which supports the assumption of the existence of a common ancestor for extant Nearctic and Neotropical issid taxa even the relationships of North American Picumna Stål, 1864 to other American and Oriental taxa is still unclear.
In accordance with the above treatment of the subfamily Issinae and the taxonomic ranks of other groups under study, the subtribe Chimetopina Gnezdilov, 2017 from tropical Africa (Gnezdilov 2017a) should be treated as a group of the tribal level – Chimetopini Gnezdilov, 2017, stat. nov.

Our data suggest that the subtribe Issina sensu Gnezdilov (2002), comprising Issus Fabricius and Latissus Dlabola, is combined with Oriental and American taxa and is not related to other Western Palaearctic Issidae belonging to Hysteropterinae. The last group is represented on the trees (Figs 1, 2) by three distinct clades (BI: 69–100; ML: 67–83): (1) Hysteropterum group + Conosimus Mulsant et Rey, 1855 + Palmallorocus Gnezdilov, 2003; (2) Ker- villea group + Bubastia Emeljanov, 1975 + Thalassana Gnezdilov, 2016 + Latilica Emeljanov, 1971; (3) Mycterodus group + Scorlpuster Emeljanov, 1971 + Anatolodus Dlabola, 1982. The genus Falcidius Stål, 1866 occupies separate position on the trees.

The Bubastia group of genera sensu Gnezdilov (2016a, 2016c) which includes the genera Bubastia Emeljanov, Falcidius Stål, and Latilica Emeljanov is rendered as non-monophyletic. Close relationships of Conosimus Mulsant et Rey and Palmallorocus Gnezdilov (BI: 100; ML: 91) and association of this clade with Hysteropterum group (Node 12) as well as close relationships of Anatolodus Dlabola and Scorlpuster Emeljanov (BI: 100; ML: 96) and association of this clade with Mycterodus group (Node 11) are revealed for the first time. Thalassana Gnezdilov, previously treated as a member of Mycterodus group of genera by Gnezdilov (2016a, 2016c), forms a sister group to Bubastia Emeljanov, although support for this clade is very low (BI: 56; ML: 59).

CONCLUSIONS

The BI and ML trees obtained in our study (Figs 1, 2) suggest the subdivision of the family Issidae into two subfamilies – Issinae and Hysteropterinae. The combination of all taxa with developed hind wings (ancestral condition) in the subfamily Issinae favors the concept of a common ancestor for Oriental and American issids previously hypothesized by Gnezdilov (2016a, 2019a). The obtained results well demonstrate a geographical pattern of Issidae already pointed out by Wang et al. (2016) e.g., Hysteropterinae are restricted in distribution to Western Palaearctic region while the clade Sarimini + Parahiraciini + Hemisphaeriini + Kodaianellini is distributed in the Oriental Region.

More taxa from the Neotropics, tropical Africa, and Australia have to be involved in further analysis to clarify the tribal positions of the genera not included in the current study, to elucidate the taxonomic status of currently recognized tribes and subtribes, and to test the hypothesis of the origin and dispersal of Issidae from the Oriental region to Africa and New World proposed by Gnezdilov (2016a, 2016b, 2019a).

Morphological data suggest inclusion of substantial number of American and tropical African taxa not accessible for current analysis in the subfamily Issinae (Gnezdilov 2013a, 2016a, 2016b, 2016d, 2017a, 2019a). Our study corroborates the placement of some American taxa within the tribe Issini (Table 1, Figs 1, 2). Australian issid fauna, as currently known, is largely derived from the Orient region (Gnezdilov 2013a; Gnezdilov and Fletcher 2010) which may suggest close relationships of Australian taxa with the tribe Sarimini. Perhaps the status of main groups recognized above within the subfamily Hysteropterinae is of tribal level, but a much broader sample of Western Palaearctic taxa is clearly needed for testing and this issue will be addressed in the subsequent study.

ACKNOWLEDGEMENTS

We thank our colleagues and friends who collected the material for our study and helped us in the field – Dr. Gabriel Seljak (Nova Gorica, Slovenia), Dr. Ilija V. Gjovon (Sofia, Bulgaria), Dr. Antonios Tsagkarakis and Mr. Anastassis Piperkas (Athens, Greece), Dr. İnanç Özgen (Elaziğ, Turkey), Dr. Adalgisa Guglielmino (Viterbo, Italy), Dr. Christoph Bücke (Tübingen, Germany), Dr. Sofia Seabra (Lisbon, Portugal), Dr. Dmitry A. Gapon (Saint Petersburg, Russia), Dr. Vincenzo Cavalieri (Bari, Italy), Dr. Dmitry Yu. Tishechkin and Dr. Roman Rakitov (Moscow, Russia).

We are especially grateful to Mrs Olga Bondareva (Saint Petersburg, Russia) who made most DNA extractions and PCR amplifications for the project. The project is financially supported by the Russian Foundation for Basic Research (grant No. 18-04-00065).

REFERENCES

Abadi S., Azouri D., Pupko T. and Mayrose I. 2019. Model selection may not be a mandatory step for phylogeny reconstruction. Nature communications, 10(1): 934. https://doi.org/10.1038/s41467-019-08822-w
Arenas M. 2015. Trends of substitution models of molecular evolution. *Frontiers in genetics*, 6, article 319. https://doi.org/10.3389/fgene.2015.00319

Barringer L.E., Bartlett C.R. and Erwin T.L. 2019. Canopy assemblages and species richness of planthoppers (Hemiptera: Fulgoroidea) in the Ecuadorian Amazon. *Insecta Mundi*, 726: 1–16.

Belshaw R. and Quicke D.L.J. 2002. Robustness of ancestral state estimates: evolution of life history strategy in ichneumonoid parasitoids. *Systematic Biology*, 51: 450–477. https://doi.org/10.1080/10635150290069896

Bourgoin T. 2019. FLOW (Fulgoromorpha Lists on The Web): a world knowledge base dedicated to Fulgoromorpha. Available from: http://hemiptera-databases.org/flow (accessed 5 September 2019)

Bourgoin T., Guilbert E. and Wang Menglin. 2018. *Molecular phylogeny of Issidae*. Entomologicheskoe Obozrenie, 97(4): 317–334. [In Russian]. (English translation published in *Entomological Review*, 57(2): 316–332. [In Russian]. (English translation published in *Entomological Review*, 57(2): 220–233).

Fennah R.G. 1954. The higher classification of the family Issidae (Homoptera: Fulgoroidea) with descriptions of new species. *Transactions of the Royal Entomological Society of London*, 105(19): 455–474. https://doi.org/10.1111/j.1365-2311.1954.tb00772.x

Giribet G., Carranza S., Baguna J., Riutort M. and Ribera C. 1996. First molecular evidence for the existence of a Tardigrada + Arthropoda clade. *Molecular Biology and Evolution*, 13(1): 76–84. https://doi.org/10.1093/oxfordjournals.molbev.a025573

Gnezdilov V.M. 2002. Morphology of the ovipositor in members of the subfamily Issinae (Homoptera, Cicadinae). *Entomologischesko obozrenie*, 81(3): 605–626. [In Russian]. (English translation published in *Entomological Review* (2004), 82(8): 957–974).

Gnezdilov V.M. 2003. Review of the family Issidae (Homoptera, Cicadinae) of the European fauna, with notes on the structure of ovipositor in planthoppers. *Meetings in memory of N.A. Cholodkovsky*, St. Petersburg, 56(1): 1–145. [In Russian with English summary].

Gnezdilov V.M. 2007. On the systematic positions of the Bladinnini Kirkaldy, Tonginae Kirkaldy, and Trienopinae Fennah (Homoptera, Fulgoroidea). *Zoosystematica Rossica*, 45(2): 293–297.

Gnezdilov V.M. 2009. Revisionary notes on some tropical Issidae and Nogodinidae (Hemiptera: Fulgoroidea). *Acta Entomologica Musei Nationalis Pragae*, 49(1): 75–92.

Gnezdilov V.M. 2013a. Modern classification and the distribution of the family Issidae Spinola (Homoptera, Auchenorrhyncha: Fulgoroidea). *Entomologischesko Obozrenie*, 92(4): 724–738. [In Russian]. (English translation published in *Entomological Review* (2014), 94(5): 687–697). https://doi.org/10.1134/S0013873814050054

Gnezdilov V.M. 2013b. Issidisation of fulgorid planthoppers (Homoptera, Fulgoroidea) as an evidence of parallel adaptive radiation. *Entomologischesko obozrenie*, 92(1): 62–69. [In Russian]. (English translation published in *Entomological Review* (2013), 93(7): 825–830). https://doi.org/10.1134/S001387381307004X

Gnezdilov V.M. 2013c. Notes on planthoppers of the tribe Hemiisphaeriini (Homoptera, Fulgoroidea, Issidae) from Vietnam with description of a new genus and new species. *Zoologichesky Zhurnal*, 92(6): 659–663. [In Russian]. (English translation published in *Entomological Review* (2013), 93(8): 1024–1028). https://doi.org/10.1134/S0013873813080095

Gnezdilov V.M. 2015. Description of a new genus and species of Hemiisphaeriini from Brunei with an identification key to the Bornean species of the tribe (Hemiptera: Fulgoroidea: Issidae). *Acta Entomologica Musei Nationalis Pragae*, 55(1): 9–18.
Gnezdilov V.M. 2016a. Planthoppers of the family Issidae (Hemiptera, Fulgoroidea) of Western Palaearctic. Thesis of Doctoral Dissertation (Dr. Sci. habilitation), St.-Petersburg, 44 p. [In Russian].

Gnezdilov V.M. 2016b. A review of the genus Ikonza Hesse with notes on evolution of the family Issidae (Hemiptera: Auchenorrhyncha: Fulgoroidea). Entomologicheske Obozrenie, 95(1): 185–195. [In Russian]. (English translation published in Entomological Review (2016), 96(2): 225–234). https://doi.org/10.1134/S0013873816020093

Gnezdilov V.M. 2016c. To the knowledge of the African fauna of the family Issidae (Hemiptera, Fulgoroidea) of the Western Palaearctic fauna, with description of two new genera. Entomologicheske Obozrenie, 95(2): 362–382. [In Russian]. (English translation published in Entomological Review (2016), 96(3): 332–347). https://doi.org/10.1134/S0013873816030106

Gnezdilov V.M. 2016d. A new species of the genus Eusarima Yang (Hemiptera: Fulgoroidea: Issidae) from Pakistan. Entomologicheske Obozrenie, 95(1): 176–184. [In Russian]. (English translation published in Entomological Review (2016), 96(2): 218–224). https://doi.org/10.1134/S0013873816020081

Gnezdilov V.M. 2017a. To the knowledge of the African fauna of the family Issidae (Hemiptera, Auchenorrhyncha: Fulgoroidea) with descriptions of new genera and new species. Entomological Review, 96(9): 1234–1260. https://doi.org/10.1134/S0013873816090074

Gnezdilov V.M. 2017b. New genus and species of the tribe Parahiracini (Hemiptera, Fulgoroidea, Issidae) from the Philippines and Vietnam. Acta Zoologica Academiae Scientiarum Hungaricae, 63(4): 429–442. https://doi.org/10.17109/AZH.63.4.2017

Gnezdilov V.M. 2018a. To the revision of the genus Thionia Stål (Hemiptera, Fulgoroidea, Issidae), with description of new genera and new subtribe. Zootaxa, 4434(1): 158–170. https://doi.org/10.11646/zootaxa.4434.1.10

Gnezdilov V.M. 2018b. A new genus representing a new tribe of the family Issidae (Hemiptera: Auchenorrhyncha: Fulgoroidea) from the forest canopy of French Guiana. Zoosystematica Rossica, 27(1): 122–129. https://doi.org/10.31610/zsr.2018.27.1.122

Gnezdilov V.M. 2019a. A new genus and a new species, representing a new tribe of the family Issidae (Hemiptera: Auchenorrhyncha: Fulgoroidea), from Costa Rica. Zoosystematica Rossica, 28(1): 108–115. https://doi.org/10.31610/zsr/2019.28.1.108

Gnezdilov V.M. 2019b. On the taxonomic position of Thabenoides smedleyi Baker, 1927 (Hemiptera, Auchenorrhyncha, Fulgoroidea: Issidae). Entomological Review, 98(9): 1175–1176. https://doi.org/10.1134/S0013873818090038

Gnezdilov V.M. and Aguin-Pombo D. 2014. A new species of the planthopper genus Conosimus associated with an endemic shrub in southern Spain. Journal of Insect Science, 14(1), article 92. http://www.insectscience.org/14.92 https://doi.org/10.1093/jis/14.1.92

Gnezdilov V.M. and Bartlett C.R. 2018. A new genus and two new species of the family Issidae (Hemiptera, Auchenorrhyncha: Fulgoroidea) from Amazonian Ecuador. Proceedings of the Entomological Society of Washington, 120(1): 62–75. https://doi.org/10.4289/0013-8797.120.1.62

Gnezdilov V.M., Bonfils J., Aberlene H.-P. and Basset Y. 2010. Review of the Neotropical genus Oroquoa Fen nah, 1947 (Insecta, Hemiptera, Issidae). Zoosystema, 32(2): 247–257. https://doi.org/10.5252/z2010n2a3

Gnezdilov V.M., Bouhachem S. and Konstantinov F.V. 2019. New records for the genus Issus Fabricius (Hemiptera: Auchenorrhyncha: Fulgoroidea: Issidae) from northern Africa and Spain. Zootaxa, 4613(3): 546–556. https://doi.org/10.11646/zootaxa.4613.3.7

Gnezdilov V.M. and Bourgoin T. 2016. On the taxonomic position of Issus reticulatus Bervoets, 1910 (Hemiptera: Fulgoroidea: Issidae) from Baltic amber. Entomological Review, 96(5): 631–633. https://doi.org/10.1134/S0013873816050092

Gnezdilov V.M., Bourgoin T., Mozaffarian F. and Manzari S. 2015. Difficulties in building a molecular phylogeny of the issidoid planthopper lineages (Insecta: Hemiptera: Fulgoroidea). Proceedings of the 1st Iranian International Congress of Entomology, Part II: 218–227.

Gnezdilov V.M. and Fletcher M. J. 2010. A review of the Australian genera of the planthopper family Issidae (Hemiptera: Fulgoromorpha) with description of an unusual new species of Chlamydopteryx Kirkaldy. Zootaxa, 2366: 35–45. https://doi.org/10.11646/zootaxa.2366.1.2

Gnezdilov V.M., Holzinger W.E. and Wilson M.R. 2014. The Western Palaearctic Issidae (Hemiptera, Fulgoroidea); an illustrated checklist and key to genera and subgenera. Proceedings of the Zoological Institute RAS, 318, Supplement 1: 1–124. http://www.zin.ru/journals/trudyzin/doc/vol_318_s1/TZ_318_1_Supplement_Gnezdilov.pdf

Gnezdilov V.M. and O’Brien L.B. 2006. Hysteropterus severini Caldwell & DeLong, 1948, a synonym of Agalma tium bilobum (Fieber, 1877) (Hemiptera: Fulgoroidea: Issidae). The Pan-Pacific Entomologist, 82(1): 50–53.

Kusnezova V. and Aguin-Pombo D. 2015. Comparative cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera); a review. Zootaxa, 385: 63–93. https://doi.org/10.3897/zootaxa.385.6724

Lunt D.H., Zhand D.X., Szymura J.M. and Hewitt G.M. 1996. The insect cytochrome oxidase I gene evolutio-
nary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 5: 153–165. [https://doi.org/10.1111/j.1365-2583.1996.tb00049.x]

Melichar L. 1906. Monographie der Issiden (Homoptera). Abhandlungen der K. K. Zoologisch-botanischen Gesellschaft in Wien, 3(4): 1–327.

Meng Rui, Wang Yinglun and Qin Daozheng. 2013. A new genus of the tribe Hemisphaeriini (Hemiptera: Fulgoromorpha: Issidae) from China. Zootaxa, 3691: 283–290. [https://doi.org/10.11646/zootaxa.3691.2.7]

Miller M.A., Pfeiffer W. and Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA: 1–8. [https://doi.org/10.1109/gce.2010.5676129]

Mitjaev I.D. 2002. Fauna, biology, and zoogeography of Cicadinea (Homoptera) of Kazakhstan. Tethys Entomological Research, 5: 1–171. [In Russian].

Ogden T.H. and Whiting M. 2003. The problem with “the Paleoptera problem”: sense and sensitivity. Cladistics, 19: 432–442. [https://doi.org/10.1111/j.1096-0031.2003.tb00313.x]

Ronquist F., Huelsenbeck J. and Teslenko M. 2011. MrBayes version 3.2 Manual: Tutorials and Model Summaries. Available at: [http://mrbayes.sourceforge.net/mrb3.2_manual.pdf]

Simon C., Frati F., Beckenbach A., Crespi B., Liu H. and Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651–701. [https://doi.org/10.1093/aesa/87.6.651]

Song Nan and Liang Ai-Ping. 2013. A Preliminary Molecular Phylogeny of Planthoppers (Hemiptera: Fulgoroidea) Based on Nuclear and Mitochondrial DNA Sequences. PLoS ONE, 8(3), e58400: 1–11. [https://doi.org/10.1371/journal.pone.0058400]

Spinola M. 1839. Sur les Fulgorelles, sous-tribu de la tribu des Cicadaires, ordre des Rhyngoites. Suite. Annales de la Société Entomologique de France, 8: 339–454.

Stamatakis A. 2016. The RAxML v8.2.X manual. Heidelberg Institute for Theoretical Studies. Available at: [https://cme.h-its.org/exelixis/resource/download/NewManual.pdf]

Sun Yanchun, Meng Rui and Wang Yinglun. 2015. Molecular systematics of the Issidae (Hemiptera: Fulgoroidea) from China based on wingless and 18S rDNA sequence data. Entomotaxonomia, 37(1): 15–26. [https://doi.org/10.11680/entomotax.2015003]

Urban J. M. and Cryan J. R. 2007. Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea). Molecular Phylogenetics and Evolution, 42: 556–572. [https://doi.org/10.1016/j.ympev.2006.08.009]

Vaidya G., Lohman D.J. and Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27(2): 171–180. [https://doi.org/10.1111/j.1096-0031.2010.00329.x]

Wang Menglin, Zhang Yalin and Bourgoin T. 2016. Planthopper family Issidae (Insecta: Hemiptera: Fulgoromorpha): linking molecular phylogeny with classification. Molecular Phylogenetics and Evolution, 105: 224–234. [https://doi.org/10.1016/j.ympev.2016.08.012]

Yeh Wen-Bin and Yang Chung-Tu. 1999. Fulgoromorpha phylogeny based on 28S rDNA nucleotide sequence. Chinese Journal of Entomology. Special publication, 11: 87–111.

Yeh Wen-Bin, Yang Chung-Tu and Hui Cho-Fat. 1998. Phylogenetic relationships of the Tropiduchidae-group (Homoptera: Fulgoroidea) of planthoppers inferred through nucleotide sequences. Zoological Studies, 37(1): 45–55.

Yeh Wen-Bin, Yang Chung-Tu and Hui Cho-Fat. 2005. A molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea) inferred from mitochondrial 16S rDNA sequences. Zoological Studies, 44(4): 519–535.

Zhao Songping, Bourgoin T. and Wang Menglin. 2019. The impact of a new genus on the molecular phylogeny of Hemisphaeriini (Hemiptera, Fulgoromorpha, Issidae). ZooKeys, 880: 61–74. [https://doi.org/10.3897/zookeys.880.36828]

Submitted December 16, 2019; accepted January 31, 2020.