We get by with a little help from our friends: diversity
begets diversity through shared adaptive genetic variation

Emilie J. Richards1,2 and Christopher H. Martin1,2

1Department of Integrative Biology, University of California, Berkeley
2Museum of Vertebrate Zoology, University of California, Berkeley

Correspondence: chmartin@berkeley.edu

Keywords: ecological speciation, ecomorph, adaptive radiation, novelty, innovation, selective sweep
Abstract

Adaptive radiations involve astounding bursts of phenotypic, ecological, and species diversity. However, the microevolutionary processes that underlie the origins of these bursts are still poorly understood. We report the discovery of a cryptic ‘wide-mouth’ intermediate scale-eating ecomorph in a sympatric radiation of Cyprinodon pupfishes which provides crucial information about the evolutionary and ecological transition from a widespread algae-eating generalist to a novel microendemic scale-eating specialist. We first show that this ecomorph occurs in sympatry with generalist C. variegatus and scale-eating specialist C. desquamator across several hypersaline lakes on San Salvador Island, Bahamas, but is genetically differentiated, morphologically distinct when reared in a common garden, and sometimes consumes scales. We then compared the timing of selective sweeps on shared and unique adaptive variants in both scale-eating species to characterize the evolutionary path to scale-eating. We predicted that adaptation to the intermediate C. sp. ‘wide-mouth’ scale-eating niche aided in the rapid divergence of the more specialized scale-eater C. desquamator. Therefore, selection for shared adaptive variants should occur first in ‘wide-mouth’. Contrary to our prediction, four of the six sets of shared adaptive alleles in both scale-eating species swept significantly earlier in C. desquamator. Adaptive introgression from desquamator into the ‘wide-mouth’ ancestor may have resulted in parallel evolution of their dietary niche. Conversely, no adaptive alleles for scale-eating were reused in a third sympatric molluscivore specialist C. brontotheriodes, despite sharing 9% of hard selective sweeps. Our work provides a microevolutionary framework for investigating how ‘diversity begets diversity’ during adaptive radiation.

Author Summary
Adaptive radiations present a paradox to our understanding of the mechanisms that drive speciation. The hallmark of adaptive radiation is a rapid, sustained burst of ecological, phenotypic, and species diversity yet many theoretical models predict that diversification should slow down with each event. Alternatively, radiations could be self-propagating and the diversity generated within the first stages of radiation could beget further diversity. The microevolutionary processes underlying this hypothesis are poorly understood. We propose that the exchange of adaptive alleles from one population could help other populations colonize new fitness peaks and promote further diversification across the fitness landscape. Here we explore the role of shared adaptive alleles in a recent radiation of trophic specialist pupfishes and characterize a cryptic new scale-eating species (C. sp. ‘wide-mouth’) through morphological, dietary, and genomic analyses. We discovered shared selective sweeps among all three specialists in this radiation despite their divergent morphologies and ecologies. We also found that adaptive introgression from the more specialized scale-eater C. desquamator may have provided access to a similar niche in the recently discovered intermediate scale-eater. Our findings of shared adaptive alleles and selective sweeps across multiple specialists within a radiation provide support for the hypothesis that diversity begets diversity and insight into the underlying microevolutionary process.

Introduction
Rapid bursts of diversification and repeated bouts of speciation like those seen in adaptive radiations contradict many of our existing mechanistic models for understanding speciation (reviewed in [1]). For example, many speciation models predict that diversification should slow with time as available niche space becomes increasingly subdivided and disruptive selection becomes weaker with each recurrent speciation event (e.g. [2–5]). Diversification on complex adaptive landscapes with multiple empty fitness peaks corresponding to different niches provides an alternative mechanism to niche subdivision and might better explain how a rapid burst of radiation can occur [6–9]. There is increasing empirical support for the complexity of fitness landscapes in nature [10–16]. However, these landscapes present a new problem: How do populations manage to escape local optima, cross fitness valleys, and access new fitness peaks [10–12,17–20]?

Colonizing new fitness peaks on the adaptive landscape often requires transitions in behaviors, morphological traits, or a combination of the two that allow organisms to adapt to new ecological niches [21]. Some of the most spectacular ecological transitions occur during adaptive radiations, such as blood-drinking [22] or plant carnivory [23,24]. Adaptation to novel fitness peaks is a hallmark of adaptive radiation, yet it is still poorly understood how such seemingly discontinuous transitions occur. An early hypothesis for how these transitions occurred was through ‘macromutational’ leaps that resulted in ‘hopeful monsters’ [25,26]. Although these ideas were eventually discounted by the insights of the Modern Synthesis [27–30], recent empirical and theoretical research on hybrid speciation has revived an appreciation for the rapid evolution of novelty through transgressive phenotypes resulting from hybridization. For example, hybridization between two species of sunflowers led to new hybrid species with suites of transgressive traits that allowed them to colonize novel sand dune and salt marsh
habitats [31,32]. However, the transgressive effects of hybridization are so myriad [33,34] that conditions for hybridization triggering the evolution of new species or new ecological niches are still poorly understood and contentious in diploid taxa [35,36].

Recent conceptual frameworks for understanding adaptation to novel fitness peaks suggest that ecological transitions are more likely to occur in stages [37–39]. The initial emergence of a novel trait is likely to require further adaptive refinement to become successfully incorporated into the functional ecology of an organism. One of the best examples is the evolution of the novel niche of aerobic citrate metabolism in *E. coli*, in which evolution of *citT* promotor capture in one intermediate lineage actualized the phenotype of aerobic citrate metabolism while further mutations at *dctA* in subsequent lineages refined the efficiency of citrate utilization that allowed it to fully occupy this niche [39–42]. This important set of studies suggests that novel ecological transitions are highly contingent on a complex series of mutations that potentiate, actualize, and refine the adaptations to colonize new fitness peaks [43].

This idea that adaptive alleles from one lineage can set the stage for further diversification of more lineages also underlies some general hypotheses about adaptive radiations, such as the hybrid swarm and syngameon hypotheses – in which radiations are driven by the exchange of genetic variation either from distinct lineages outside the radiation or within the radiation itself [44–46]. There is a wealth of evidence for extensive histories of hybridization in radiations (e.g. [47–53]), that suggests radiations are fueled by diversity that was generated across many lineages. Well documented cases of exchanges of adaptive variation aiding further diversification within a radiation include the exchange of beak shape alleles across Darwin’s finches [54] and wing pattern alleles across *Heliconius* species [49,55–57] that allow multiple species to converge on similar Mullerian mimicry patterns. However, we are only just beginning
to explore how the introduction of genetic diversity from such groups gives recipient lineages access to new fitness peaks and generates the wealth of ecological, morphological, and species diversity of adaptive radiations [1, 58, 59]. This is necessary to fully understand the extent to which diversity can self-perpetuate during the process of radiation [60].

An adaptive radiation of trophic specialist pupfishes on San Salvador Island in the Bahamas is an excellent system for understanding how the rapid evolution of major ecological transitions occur in nature. This radiation contains a wide-spread generalist pupfish species (*Cyprinodon variegatus*) that occurs in sympathy with two previously described trophic specialists that are endemic to many of the hypersaline lakes on the island: a molluscivore (*C. bronotheroides*) with a novel nasal protrusion which is an oral-sheller of gastropods (St. John et al. 2020) and a scale-eating specialist (*C. desquamator*) with two-fold larger oral jaws [61]. The evolutionary novelties in this system originated recently; the hypersaline lakes on San Salvador Island were dry during the last glacial maximum 6-20 kya years ago [62–64]. Intriguingly, we recently discovered a fourth species of pupfish living in sympathy with the two specialists and generalist on San Salvador Island. This species exhibits intermediate jaw morphology between *C. desquamator* and *C. variegatus* (Fig 1). Furthermore, in a previous whole genome resequencing study, individuals with this intermediate jaw morphology unexpectedly formed a monophyletic group across lake populations distinct from *C. desquamator* using the unsupervised machine-learning approach Saguaro [51, 65]. Here we refer to this new ecomorph as the ‘wide-mouth’ because its mouth is wider than any other species in the radiation. The multi-peak fitness landscape driving this radiation suggests that *C. desquamator* is isolated by a large fitness valley from *C. variegatus* and *C. bronotheroides* [10, 66] and this intermediate ‘wide-mouth’ may provide clues how this valley was traversed.
Here we first investigate the position of the ‘wide-mouth’ on the ecological spectrum from generalist to scale-eating specialist using a combination of morphological, behavioral, dietary, and genomic data. We then estimated the demographic history of the ‘wide-mouth’ and explore the timing of selection on shared and unique genetic variation involved in adaptation to scale-eating to better understand this ecological transition. Additionally, we explore the extent to which all trophic specialist pupfishes on this island share adaptive genetic variation, despite occupying divergent ecological niches. Our results show that diversification of one species in a radiation can promote further diversification by sharing adaptive genetic variation useful for specialization.
Fig. 1: Distribution of generalist, *C. brontotheriodes*, *C. desquamator*, and C. sp. ‘wide-mouth’ populations in hypersaline lakes on San Salvador Island. Pie charts indicate the presence of sympatric *Cyprinodon* species in each lake and are color-coded with representative pictures of generalist *C. variegatus* (gold), recently discovered C. sp. ‘wide-mouth’ ecomorph (red-orange) with intermediate jaws, scale-eater *C. desquamator* (teal) with the largest oral jaws, and molluscivore *C. brontotherioides* (purple) with characteristic nasal protrusion. Labeled lakes contain all known C. sp. ‘wide-mouth’ populations sampled for this study. Satellite image from Google Earth.
Results

Wide-mouth ecomorph is ecologically intermediate and morphologically distinct

We found the ‘wide-mouth’ ecomorph to be morphologically distinct from *C. desquamator* and *C. variegatus* across a suite of craniofacial traits (Fig. 2A-B). The lower jaw length of ‘wide-mouth’ was intermediate between *C. desquamator* and *C. variegatus* (Fig. 2C), while the buccal width and adductor mandibulae height were 8% larger in ‘wide-mouth’ than *C. desquamator* (Fig. 2E-F). These morphological differences were consistent across lakes that contained all three species (Osprey and Oyster) and within Great Lake which contained only ‘wide-mouth’ and generalists (Fig S1). Trait differences in the ‘wide-mouth’ were heritable in a common garden laboratory environment after one generation: ‘wide-mouth’ displayed 4% larger buccal width and 2% larger adductor mandibulae insertion height in the lab environment than *C. desquamator* (Fig S2).
Fig 2. The C. sp. ‘wide-mouth’ ecomorph has distinct morphology within the San Salvador Island adaptive radiation across multiple traits. A) First two principal components of morphological diversity for 8 size-corrected traits and 95% confidence ellipses by species (C. variegatus: gold; C. sp. ‘wide-mouth’: red-orange; C. desquamator: teal; C. brontotheriodes not shown). Shapes of points represent different lakes. PC1 is mainly described by lower jaw length and PC2 by adductor mandibulae insertion height, buccal width, and neurocranium width. B) Depictions of the three external measurements that best distinguished C. sp. ‘wide-mouth’ from both C. desquamator and C. variegatus, measured using digital calipers. C-E) The relationship between standard length (mm) of individuals and their C) lower jaw length, D) buccal cavity
width, and E) adductor mandibulae insertion height (AM insertion) across individuals of the three species in Osprey Lake. 95% confidence bands for linear models in gray.

‘Wide-mouth’ occupies a distinct intermediate scale-eating niche

We found that ‘wide-mouth’ ingest scales, but at a significantly lower frequency than C. desquamator (Wilcoxon Rank Sum test, $P = 0.004$; Fig. 3A). We did not detect any scales in C. variegatus guts (Fig 3A). A previous gut content analysis of more individuals also found nearly zero occurrence of scales in the C. variegatus diet [67]. All three sympatric species from Osprey Lake collected on the same day from the same site differed in $\delta^{15}N$ levels (ANOVA, $P > 1.29 \times 10^{-7}$; Fig. 3B); ‘wide-mouth’ $\delta^{15}N$ was intermediate between C. variegatus and C. desquamator (Tukey HSD; $P=0.04$ & 0.03 respectively). Similarly, high-speed scale-eating strikes on euthanized fish prey indicate an intermediate lower jaw angle in the ‘wide-mouth’ relative to generalist and scale-eating strikes (Fig. 3C; also see St. John et al. 2019 for analysis of scale-eating strikes relative to generalist).

Fig. 3: The C. sp. ‘wide-mouth’ individuals ingest scales. A) Dot plot of individual scale counts from gut content analysis of the hindgut of Osprey pupfish populations (10 individuals per species). B) Individual variation in relative trophic position ($\delta^{15}N$ stable isotope ratio) and
dietary carbon source (δ13C stable isotope ratio) with 95% confidence ellipses for the three species. C) Still images from Phantom VEO high-speed videos (1,100 frames per second) of scale-eating strikes in *C. desquamator* and *C.* sp. ‘wide-mouth’. Note the distinct lower jaw angle with the suspensorium at the point of impact with the prey.

’Wide-mouth’ did not result from hybridization between *variegatus* and *desquamator*

We tested whether ‘wide-mouth’ was the product of recent hybridization. First, extensive multi-year sampling efforts show that ‘wide-mouth’ populations are not found in every lake where both *C. variegatus* and *C. desquamator* are present (e.g. Crescent Pond; Fig. 1). However, we explored this possibility in more depth by resequencing 24 genomes of ‘wide-mouth’ across lake populations and comparing these to 86 resequenced genomes of *C. variegatus*, *C. brontotheriodes*, and *C. desquamator* from a previous study [68].

Several lines of genomic evidence support the ‘wide-mouth’ ecomorph as a distinct species. First, ‘wide-mouth’ individuals do not occupy an intermediate position between *C. desquamator* and *C. variegatus* along either of the first two principal components that represent the major axes of genetic variation in the radiation. Instead, ‘wide-mouth’ occupy a distinct cluster relative to the other three species (Fig. 4A). This is further corroborated by the model-based approach of ADMIXTURE, in which ‘wide-mouth’ individuals share more ancestry with each other than with either *C. desquamator* or *C. variegatus* under the two most likely K values based on cross-validation error estimates (K=6 and 7; Fig. 4B). This pattern holds when we decrease or increase the K value used in the analysis to model more or less population structure within groups (Fig. S3). Lastly, we used formal tests for introgression and admixed populations, f_3 and f_4-statistics, to assess the evidence that ‘wide-mouth’ are the byproduct of recent
admixture. The significant positive f_3-statistics and the non-significant f_4-statistics support our inference that the ‘wide-mouth’ is not a recent admixed population of any pairwise combinations of the *C. brontotherioides*, *C. variegatus*, or *C. desquamator* populations (Table S1).

‘Wide-mouth’ and *C. desquamator* populations are sister species which diverged shortly after the onset of adaptive radiation on San Salvador Island

To better understand the history of divergence and gene flow among the four species on San Salvador Island, we used *fastsimcoal2* [69] to run coalescent simulations and compare 28 different demographic models of divergence and gene flow on San Salvador Island (Table S2). These models represented all possible topologies among the four species and explored zero, early, and current gene flow scenarios. We evaluated their fit against our empirical site frequency spectrum (SFS) calculated from populations of the four species that occur in sympatry in Osprey Pond.

In the best supported model, ‘wide-mouth’ was sister to *desquamator* with current gene flow and a divergence time estimate of 11,658 years ago (95 CI: 8,257-20,113 years; Fig 4C-D) (Table 1 and S2). This model indicates that the ancestor to ‘wide-mouth’ and *C. desquamator* populations first diverged from *C. variegatus* 15,390 years ago (95% CI: 10,722-23,927 years; Fig 4D). This estimate of the origin of the radiation overlaps well with geological age estimates based on the filling of hypersaline lakes on San Salvador Island after the end of the last glacial maximum period (~6-19K years ago; [62–64]). *C. variegatus* and *C. brontotherioides* populations in Osprey Lake diverged much more recently than the two scale-eating populations 462 years ago (95% CI: 411-1,121 years; Fig 4D).
Table 1. Support for the five best-fitting demographic models for the evolution of the C. sp. ‘wide-mouth’ from the site frequency spectrum. The likelihood and AIC scores for the top five best-fitting models estimated in fastsimcoal2 for the Osprey populations of *C. variegatus* (var), *C. brontotheroides* (bro), *C. desquamator* (des), and C. sp. ‘wide-mouth’ (wid) are presented here with a complete list of all models tested reported in Table S2. Change in likelihood (ΔLnL) represents the difference in likelihood from the expected simulated SFS in the demographic model tested. Change in AIC (ΔAIC) represents the difference in AIC scores from the model with the smallest ΔAIC. All models presented here represent different divergence scenarios with recent gene flow allowed, which were better supported than models with no gene flow or early gene flow. Visual representations of the top five models are depicted in Figure S5.

Divergence Model	LnL	ΔLnL	AIC	ΔAIC
(1) ((des,wid),(bro,var)) + (des,wid) diverges first + recent gene flow	-11701	1077	54133	0
(2) ((des,bro),(var),wid)) + recent gene flow	-11780	1112	54296	35
(3) ((des,bro),wid),(var)) + recent gene flow	-11806	1138	54418	61
(4) ((bro,wid),(des),var)) + recent gene flow	-11808	1140	54423	63
(5) ((des,wid),(bro,var)) + (bro,var) diverges first + recent gene flow	-11846	1178	54602	101
Fig 4. C. sp. ‘wide-mouth’ population did not result from recent hybridization. A) Principal components analysis of the four focal groups on San Salvador Island based on an LD-pruned subset of genetic variants (78,840 SNPs). B) Ancestry proportions across individuals of the four focal groups. Proportions were inferred from ADMIXTURE analyses with 2 values of K with the highest likelihood on the same LD-pruned dataset in A. C) Best supported demographic model in which C. desquamator diverged from the C. sp. ‘wide-mouth’ based on an LD-pruned dataset with no missing information across all Osprey Lake individuals (67,400 SNPs). Divergence time is shown with the maximum likelihood point estimate from the run with the best fit and the 95% confidence interval for that parameter estimate based on 100 bootstrap replicates. D) Maximum
likelihood point estimate and 95% confidence intervals for migration rate parameters involved in the best fitting model depicted in units of the number of migrants per generation.

270 \textit{Shared signatures of selection across the three specialists in the radiation}

Next, we investigated whether the evolution of new trophic specialists on San Salvador Island may have been aided by reuse of the same underlying genetic variation. We characterized regions of the genome under selection in the Osprey Lake populations of the four species using the sliding window SFS-based approach SweeD (Pavlidis et al. 2013) and neutral simulation thresholds based on demographic changes in effective population size over time (Fig S4; Table S3). A higher percentage of the genome was under positive selection in all specialist populations compared to the \textit{C. variegatus} population (Fig 5A). This pattern might be expected given the divergent selection pressures the specialists face to adapt to different trophic niches. Of all the specialists, \textit{C. brontotheriodes} exhibited both the most selective sweeps and the longest selective sweeps (Fig 5A). This suggests that \textit{C. brontotheriodes} have undergone selection most recently among all the species in Osprey Lake and is supported by the recent divergence time between the \textit{C. brontotheriodes} and \textit{C. variegatus} populations (Fig 4D).

Additionally, we assessed patterns of genetic divergence across the four species in Osprey Lake. Allowing for some level of gene flow between species, we calculated the number of fixed and nearly-fixed SNPs (Fst \(\geq 0.95\)) between all pairwise combinations of populations in Osprey Lake. All specialists, including the two scale-eating species, were more genetically diverged from each other than to \textit{C. variegatus} species based on the number of SNPs fixed or nearly-fixed between them (Fig 5B). This pattern of stronger genetic divergence between
specialists also held across fixed SNPs, the top 1% of F_{st}, and genome-wide average F_{st} (Table S4). Next, we identified a set of candidate adaptive alleles for each specialist by filtering for SNPs that were fixed or nearly fixed ($F_{st} \geq 0.95$) relative to $C. variegatus$ and found within a hard selective sweep in the focal specialist. In this set of candidate adaptive alleles, $C. brontotheriodes$ had the fewest adaptive alleles while $C. desquamator$ had the most (Fig 5B).

Figure 5. Patterns of selection and genetic divergence in specialist genomes. A) Histogram of selective sweep length distributions across all four San Salvador Island species. Rug plot below each histogram representing the counts of selective sweeps binned into different lengths is included to highlight the presence of several larger selective sweeps in the tails of the
distribution. B) The total number of fixed or nearly-fixed SNPs ($F_{st} \geq 0.95$) between each group in Osprey Pond. C) Ridgeline plots for length distributions of selective sweeps shared between different combinations of specialists ($C. brontotheriodes$: purple, $C. desquamator$: teal, $C. sp.$ ‘wide-mouth’: red-orange). Full results of the GO enrichment analysis of the 57 genes contained in the shared selective sweep regions across all specialists. D) The number of adaptive alleles (nearly-fixed SNPS [$F_{st} \geq 0.95$] relative to $C. variegatus$ and under selection [CLR thresholds in Table S3]) in each population of specialists in Osprey Lake. Venn diagram highlights those adaptive alleles that are unique to each specialist and shared with other specialists.

Next, we looked for shared patterns of genetic divergence and selection across the specialist genomes. Despite divergent trophic specializations and morphology, we found evidence of 44 shared selective sweeps across all three specialist populations that were not shared with $C. variegatus$ populations (Fig 5C). These shared regions under selection in all specialists were significantly enriched for genes annotated for metabolic processes (Fig 5C), suggesting shared selection for a metabolism associated with a more protein-rich diet across trophic specialists (also see [70]). We also found evidence of shared selection across all pairwise combinations of two specialists. The shared selective sweeps were shorter than any of the selective sweeps unique to each of the specialists, suggesting that selection for these shared regions was not the most recent or strongest in any of the specialists (Fig 5C). We also found no shared fixed or nearly fixed ($F_{st} \geq 0.95$) adaptive alleles across all three specialists, although shared alleles did occur at lower frequencies ($F_{st} < 0.62$; Fig S6).
Shared and unique adaptive alleles in ‘wide-mouth’ and C. desquamator

We discovered that the two scale-eating populations shared a set of the same adaptive alleles not found in *C. brontotheriodes* or *C. variegatus* (Fig 5D). This consisted of 15 alleles in 6 shared hard selective sweeps in *C. desquamator* and ‘wide-mouth’: 10 SNPs were in unannotated regions, two were in the introns of the gene *daam2*, and three were in regulatory regions of the genes *usp50*, *atp8a1*, and *znf214* (one variant each).

Shared adaptive alleles in the gene *daam2*, a wnt signaling regulator, are intriguing because knockdown of this gene causes abnormal snout morphology, osteoporosis, and changes in insulin and alkaline phosphate levels in mice [71], and abnormal cranial and skeletal development in zebrafish (Kida et al. 2007). Craniofacial morphology is one of the rapidly diversifying traits in this system, suggesting that divergence in *daam2* may play a role in the shared craniofacial divergence of the two scale-eating species. Similarly, *usp50* functions in protein metabolism and deubiquination [72] and may play a role in shared metabolic adaptations to the higher-protein content of a scale-eating or snail-eating diet (also note microbiome divergence of *C. desquamator* with increased prevalence of collagenase-digesting bacteria when reared in a common garden: [73]). *atp8a1* is an ion transporter [74], *znf214* is a transcription binding factor, and the ten unannotated variants were not associated with lower jaw size variation in a previous genome-wide association study of the radiation (Richards et al. 2021).

Despite the divergent craniofacial features of the ‘wide-mouth’, none of the adaptive alleles unique to the ‘wide-mouth’ appear to be in or near genes annotated for craniofacial phenotypes in model organisms. In *C. desquamator*, three of the 13 sets of unique adaptive alleles are in or near genes annotated for craniofacial phenotypes: a *de novo* non-synonymous
coding substitution in the gene *twist1*, several putative regulatory variants near the gene *gnaq*, and 8 variants in and near the gene *bri3bp*, which is located inside a QTL region for cranial height in pupfish (St. John et al. 2021). In *C. brontotheriodes*, there is also a candidate craniofacial adaptive allele: a non-synonymous coding substitution in the gene *kat6b*, which is associated with abnormal craniofacial morphologies, including shorter mandibles in mice [75,76] and Ohdo Syndrome and bulbous noses in humans [77].

This pattern of unique alleles relevant to craniofacial phenotypes in *C. brontotheriodes* and *C. desquamator*, but not ‘wide-mouth’, holds if we lower the threshold to the top 1 percentile of *Fst* between specialists and generalist. ‘Roof of mouth development’, ‘bone development’ and ‘skeletal system development’ are in the top 20 most significantly enriched GO terms for *desquamator* candidate adaptive alleles, with 6 significantly enriched terms relevant to cranial and skeletal development (out of 165 enriched terms total). Similarly, ‘embryonic skeletal system development’ and ‘skeletal system development’ were significantly enriched terms for *brontotheriodes* candidate adaptive SNP alleles (out of 8 enriched terms total). However, ‘wide-mouth’ adaptive alleles at this lower *Fst* threshold were not significantly enriched for any GO terms related to craniofacial or skeletal morphology (n=52 terms; Fig S7).

Selection for adaptive alleles shared in both scale-eating populations preceded selection for adaptive alleles unique to *C. desquamator*

Additionally, we estimated the timing of selection on unique and shared adaptive alleles in ‘wide-mouth’ and *desquamator* to explore the evolution of scale-eating in this system. Previous studies indicate that the *C. desquamator* scale-eater phenotype is separated from *C. variegatus* generalist niche by a deep fitness valley on the adaptive landscape (Martin and Gould 2020;
Martin and Wainwright 2013), suggesting a difficult ecological transition. Adaptation to an intermediate scale-eating niche such by the ‘wide-mouth’ lineage may have provided an easier first step and the adaptive alleles involved may have set the stage for the more specialized scale-eater C. desquamator to evolve. To test this, we estimated the age at which the adaptive alleles first started sweeping in each population using the coalescent-based approach starTMRCA [78].

Across the 30 sets of adaptive alleles with selective sweep ages, we found an overall difference in timing of selection between shared and unique adaptive alleles in the two scale-eater populations (ANOVA P-value = 0.00478). In desquamator, shared adaptive alleles were under selection before any unique adaptive alleles (Tukey HSD P-value = 0.003217; Fig. 6). We found a similar trend in ‘wide-mouth’: shared adaptive alleles were generally under selection before those unique to the species (Fig. 6). However, this difference was not significant due to one set of unique adaptive alleles near the gene slitrk5 which was the oldest estimated sweep (ANOVA, Tukey HSD; P = 0.8367).

In contrast to our predictions, selection on 4 of the 6 shared sets of adaptive alleles occurred significantly earlier in desquamator than ‘wide-mouth’. Only a single set of these adaptive alleles had an older median age estimate in ‘wide-mouth’ than desquamator, although the 95% HPD intervals surrounding these point estimates overlapped between the two populations (Fig. 6). The other adaptive allele set that had overlapping 95% HPD intervals between the two populations were a set of unannotated de novo mutations.
Fig 6. Timing of selection on adaptive alleles in trophic specialists nested within the species demographic history. The mean and 95% HPD estimates for the timing of selection on sets of fixed or nearly fixed SNPs (named by the gene they are in or within 20-kb of) for C. desquamator, C. sp. ‘wide-mouth’, and C. brontotheroides populations found in sympatry in Osprey Lake (sweeps in C. variegatus not shown). The age of each beneficial allele is color coded by the species it swept in and the inferred demographic history is displayed in the background for comparison. Gene names highlighted in bold are associated with oral jaw size in model organisms.
Shared adaptive variation may have resulted from introgression between desquamator and ‘wide-mouth’ scale-eaters

Finally, we explored several selection scenarios surrounding the shared adaptive alleles between ‘wide-mouth’ and desquamator. The most parsimonious answer for why these two populations share adaptive alleles is that these alleles swept in their common ancestor and were retained in both post divergence. However, the timing of selection on these alleles is much more recent in both populations than the inferred divergence time (Fig 6), suggesting that these alleles were not selected upon in their most recent common ancestor. Second, the timing of selection on most of these shared adaptive alleles is significantly different between the populations (Fig 6), suggesting that these alleles were not selected upon in a single event in the shared ancestor. This left us to explore two other scenarios that could explain the shared adaptive alleles: 1) these alleles were segregating in both populations after they initially diverged from each other and independently swept to fixation or 2) these adaptive alleles introgressed from one population to another after being selected for in one population.

To distinguish between these two scenarios, we assessed the regions surrounding these shared adaptive alleles for signatures of introgression. Introgression between recently diverged sister species is often more challenging to detect in comparison to introgression with a more distantly related outgroup because of the high genetic similarity between sister species. However, introgression between sister species can be detected from population level polymorphism data by looking for regions of the genome with lower absolute genetic divergence than expected given the genome-wide average [79–82]. We thus calculated D_{xy} in sliding windows across the genomes of the Osprey Lake populations and compared the distribution of D_{xy} values in the regions surrounding the shared adaptive alleles to the distribution of D_{xy} values.
across the genome. The average D_{xy} of the shared adaptive alleles was two times lower than average genome-wide values between *desquamator* and ‘wide-mouth’ (Fig 7A). It was also slightly lower (1.2X) than the average D_{xy} for all selective sweep regions in the ‘wide-mouth’ genomes, suggesting it is not due to selection on these regions in general (Table S5). This lower D_{xy} was predominantly due to four out of the six regions containing shared adaptive alleles having ~2-5 times lower D_{xy} values than the genome-wide average. The other two regions had comparable (znf214) and higher (unannotated region on scaffold 43) D_{xy} values than the genome-wide average (Fig 7B). The lower genetic distance between *C. desquamator* and the ‘wide-mouth’ in these adaptive regions suggests they may have introgressed between the two groups rather than independent selection on ancestral polymorphisms since they diverged approximately 11,000 years ago.
Fig. 7. Absolute genetic divergence between ‘wide-mouth’ and *desquamator.* A) Distribution of D_{xy} values across 20-kb regions for the whole genome and regions with adaptive alleles shared between *desquamator* and ‘wide-mouth’. B) D_{xy} values across the 1 million base pairs surrounding the six regions of shared genetic variation between *desquamator* and ‘wide-mouth’. Vertical solid black lines indicate the position of the shared adaptive alleles between ‘wide-mouth’ and *desquamator*, horizontal dashed gray lines represent the genome-wide average D_{xy} between *desquamator* and ‘wide-mouth’. The smoothed lines represent D_{xy} between C. *desquamator* and C. sp. ‘wide-mouth’ (teal), *C. brontotheriodes* (purple), and *C. variegatus* (gold) across these portions of the scaffold. The D_{xy} values were summarized with smoothed splines using the smooth.spline() function in R for ease of visualization across the different comparisons. Gray boxes represent the nearest gene to the adaptive alleles and unannotated...
adaptive alleles were those in which no gene was located within 20-kb of the SNP (an approximate LD estimate from a previous study; [68]).

Discussion

Discovery of a new cryptic scale-eater evolved through reuse of shared adaptive alleles

The hallmark of adaptive radiation is a rapid burst of diversification which is predicted by theory to slow down over time as niche width driving further divergent selection diminishes (Martin and Richards 2019). An alternative possibility is that radiations can be self-propagating and that the diversity generated within the first stages of radiation helps beget further diversity [60]. This could happen through exploitation of new trophic levels created by new species (Seehausen et al. 2019) or physical alterations of the environment by new species (niche construction) that may create additional opportunities for speciation (reviewed in [1,58]). The diversity begets diversity hypothesis can be visualized as the exploration of a complex multi-peaked fitness landscape; as species in the radiation colonize new peaks, this provides access to additional neighboring fitness peaks to fuel rapid radiation.

At the microevolutionary level, shared adaptive variants can also help other populations colonize new or ecologically similar areas of the fitness landscape. However, the genetic basis and microevolutionary processes underlying major ecological transitions are still poorly understood in nature. Our discovery of a cryptic new scale-eating species through morphological, dietary, and genomic analyses revealed shared selective sweeps among all three trophic specialists in a radiation of pupfishes despite the divergent morphological and ecological adaptations between them. However, only in the two scale-eating populations, *C. desquamator*
and C. sp. ‘wide-mouth’, did we find shared nearly-fixed or fixed adaptive alleles. These species are sister species, suggesting a single origin for scale-eating. Nonetheless, these shared adaptive alleles were not selected upon in the ancestral population and swept first in the *C. desquamator* population. This contradicts our initial prediction that the evolution of the intermediate ‘wide-mouth’ scale-eater would aid the evolution of the more specialized scale-eater *C. desquamator*. Instead, adaptive alleles from *C. desquamator* may have introgressed and then selected upon in the ‘wide-mouth’ population. Additionally, unlike *C. brontotheriodes* and *C. desquamator*, the cryptic ‘wide-mouth’ appears to have little unique genetic variation relevant to craniofacial morphology, which is a major axis of diversification in the other trophic specialists [83]. An intriguing implication of these findings is that adaptive variants within one specialist may aid the evolution of another into a similar niche and promote further ecological divergence within radiations, in line with the diversity begets diversity hypothesis [60].

An adaptive walk underlies the major ecological transition from generalist to scale-eating specialist

One of the foundational models of adaptation is that it proceeds in ‘adaptive walks’ towards fitness optima that involve the sequential fixation of adaptive alleles that move a population in the phenotypic direction of the local optimum [84–88]. The distinct timing of selection across different adaptive alleles suggests that the ecological transition from generalist to novel scale-eating specialist involved such an adaptive walk rather than a sudden burst of concurrent selection events after some major environmental shift. These distinct, multiple bouts of selection could be caused by mutation-limited (i.e. waiting for new beneficial alleles; [89–91]) or mutation-order processes (i.e. epistatic interactions; [92–94]).
We found that all of the shared adaptive alleles between the scale-eating populations occurred at low frequency in generalist populations on other Caribbean islands in a previous study ([68]; Table S7). For example, three copies of the shared *usp50* adaptive allele were found outside of San Salvador Island (Table S7). This indicates that initial bouts of selection occurred on available standing genetic variation and that staggered timing of hard selective sweeps in each trophic specialist most likely reflects mutation-order processes in which selection on a beneficial allele was contingent on prior fixation of other adaptive alleles in each specialists’ genetic background. However, several adaptive alleles originated from introgression or de novo mutations found only on San Salvador Island (Table S7), so part of the adaptive walk may have also been mutation-limited.

Cryptic scale-eating species reveals features of the adaptive walk towards scale-eating specialization

Although the two scale-eating species shared a set of adaptive alleles and a recent common ancestor, 5 of 6 shared adaptive regions swept at significantly different times between the two species. This difference in timing may result from several different scenarios: 1) independent adaptive walks to the same scale-eating niche, 2) independent adaptive walks to different scale-eating niches or 3) the adaptive walk of one population depends on the adaptive walk of the other population. We explore each of these scenarios in turn.

First, the difference in timing of selection on the same shared adaptive alleles could indicate independent adaptive walks to the same scale-eating peak that occurred at different times and/or by slightly different routes. *C. desquamator* and ‘wide-mouth’ populations have
predominantly abutting ranges, with only a small amount of geographic overlap on San Salvador
Island in four lakes, Osprey, Oyster, Little Lake, and Mermaid’s Pond (Fig 1). If this current
distribution is representative of their historical ranges and the two lineages began diverging
about 11,000 years ago, it is possible that the adaptive walks took place in different lakes and
were largely independent of one another. The differences in timing on the shared adaptive alleles
and the presence of unique alleles observed in each population are reminiscent of mutation-order
speciation [93,95]. In mutation-order speciation the same alleles are favored in populations that
are adapting to similar environments, yet by chance and/or epistatic interactions with different
genetic backgrounds, similar adaptive alleles fix in just one population. At least one set of alleles
near the gene slitrk5 are unique to the ‘wide-mouth’ scale-eater and fixed well before selection
occurred on the shared adaptive variants between the two scale-eater populations (Fig 5).
Epistatic interactions of these slitrk5 alleles may have prevented the ‘wide-mouth’ from fixing
additional segregating alleles that are uniquely fixed in C. desquamator.

Second, the difference in timing of selection may have occurred because the two scale-
eating populations are adapting to two different scale-eating niches. The intermediate diet,
distinctly sized morphological traits, and smaller body size in the ‘wide-mouth’ scale-eater
compared to C. desquamator may indicate the ‘wide-mouth’ scale-eater is adapting to a different
scale-eating niche. While the two scale-eating populations do share some overlap in adaptive
alleles and selective sweeps, the majority of selective sweeps are unique to each species (Fig 5 &
6), including neurogenesis, brain, and nervous system development (slitrk5, sema4g, and
smarce1), whereas unique adaptive alleles in desquamator include craniofacial development
annotations (olfm1, gnaq, twist1) as well. This difference in gene annotations can also be seen at
the broader level of regions of the genome under selection (Fig S7). Therefore, the differences in
timing at shared adaptive alleles might reflect differences in relative strength of selection due to different selective regimes experienced by the two scale-eating populations. While starTMRCA is fairly robust in its timing estimates to different strengths of the selection [78], we cannot rule out that differences in relative timing of selection might partially reflect differences in strength of selection occurring in the two scale-eating populations.

Third, another scenario that could have led to the older timing of selection across shared adaptive alleles in *desquamator* than ‘wide mouth’ is one in which the adaptive walk of one population depended on adaptive alleles from another. The significantly older timing of selection in *desquamator* on shared adaptive alleles and the low absolute genetic divergence between these two scale-eating population in these regions (Fig 6) suggests that these alleles may have introgressed between the two populations. Given that these shared adaptive alleles appear as standing genetic variation across Caribbean populations, albeit at very low frequency in our sampling, it is likely that the shared alleles were present in the ancestor and were segregating in both populations after they diverged. There are several reasons why adaptive introgression may have been necessary for adaptive divergence of ‘wide-mouth’ despite the alleles initially segregating in the ancestral population. In line with mutation-order processes (e.g. Mani and Clarke 1990; Schluter 2009; Good et al. 2017), these alleles might not have been adaptive until the right genetic background was present in the ‘wide-mouth’. Introgression from *C. desquamator* in which the allele was already swept to high frequency could have raised the frequency of these alleles in ‘wide-mouth’ and increased the likelihood of fixation for the beneficial alleles (reviewed in [96]). This is consistent with previously proposed hypotheses for how diversity begets further diversity in adaptive radiations (Whittaker 1977; Stroud and Losos 2016; Martin and Richards 2019).
Shared aspects of genomic landscape of selection among all specialists additionally supports specialization promoting further specialization.

Intriguingly we also find evidence of selective sweeps shared across all three specialists despite their divergent adaptations and lack of a shared specialist ancestor. However, there are no commonly shared adaptive alleles fixed against C. variegatus in these shared selective sweep regions. Hard selective sweeps indicate a selection scenario in which a single beneficial allele of large effect on a trait is swept to high frequency (reviewed in [97]). The lack of highly divergent alleles in these regions might indicate polygenic selection events underlie the shared signatures across specialists. The broad-scale transition from dietary generalist to dietary specialist may involve polygenic selection with small shifts in the frequency of many alleles. Despite very different expectations about the genetic basis of adaptation, polygenic selection events may have been detected as a hard selective sweep in this study as the two selection types can be challenging to distinguish based solely on patterns of genetic variation [98–101]. Recently developed frameworks provide additional criteria to help distinguish between the two selective regimes [99] but are beyond the scope of this current study.

These shared selective sweeps across all specialists are not the longest selective sweeps in any of the specialist genomes (> 50-kb; Fig 5C), indicating they are not the most recent or strongest selection events. However, these shared selective sweeps appear to be relevant to dietary specialization as these regions are enriched for genes annotated for metabolic processes such as short chain fatty acid and propionate metabolism (Fig 5). Propionates and other short chain fatty acids are common microbiome metabolites [102]. A recent microbiome study in lab-reared populations found that C. desquamator microbiomes appear enriched for
Burkholderiaceae bacteria that can digest collagen, further supporting an adaptive role for microbiomes in the radiation [73].

We also see pairwise shared selective sweeps between all combinations of two specialists. In contrast to the sweeps shared between all specialists, we see stronger genetic divergence among species in these regions and a proportion of the selective sweeps shared between two specialists do contain fixed or nearly-fixed alleles. However, the specialists that share selective sweeps in these regions are fixed for different adaptive alleles, consistent with previously observed patterns of parallel differential gene expression in specialists despite divergent genotypes [70]. These alleles were possibly under balancing selection in the ancestor (most of these alleles are segregating at intermediate frequency in C. variegatus currently) and the alternate alleles were driven to fixation between the specialists during their respective divergences. While the species have discrete phenotypes across several morphological traits important to divergence in this system, these traits often lie on a continuous axis (i.e. shorter oral jaw lengths in C. brontotheriodes, intermediate jaw lengths in C. variegatus, and longer oral jaw lengths in ‘wide-mouth’ and C. desquamator). Some of the alleles that are alternatively fixed between specialists at the same position may have incomplete dominance effects on such traits.

In line with adaptation to divergent trophic niches across the species, we do still see many unique signatures of selection among the specialists. The C. variegatus population had the fewest selective sweep signatures. All three specialists had more selective sweeps potentially resulting from strong directional selection for adapting to new fitness peaks. However, while we might expect more selective sweeps in C. desquamator genomes given the deeper valley on the fitness landscape isolating the scale-eater phenotypes [10,12], C. brontotheriodes had the most selective sweeps detected in their genome. They also have the longest sweeps detected (e.g. 100-kb),
suggesting that selection may have occurred most recently in the *C. brontotheriodes*. This matches with the most recent divergence event being between generalist and *C. brontotheriodes* in Osprey Lake. An intriguing implication of this result is the potentially long wait time for speciation of *C. brontotheriodes* species compared *C. desquamator* despite the shallower fitness valley isolating *brontotherioides* from generalists. However, we cannot yet rule out that the recent divergence time estimated in Osprey Lake reflects a more recent arrival of *C. brontotheriodes* to that lake after initially diverging long ago in another lake not incorporated in our demographic model.

Methods

Sampling

The *C. sp.* ‘wide-mouth’ individuals were collected on San Salvador Island in the Bahamas using hand and seine nets between 2017 and 2018. ‘Wide-mouth’ individuals were collected from 5 lakes in which taxa occurs in sympatry with just *C. variegatus* (Great Lake, and Stout’s Lake) or with generalist and *C. desquamator* (Oyster Pond, Osprey Lake, and Mermaid’s Pond.; Fig. 1). In Oyster Pond and Little Lake, *C. desquamator* is extremely rare (only a single Oyster Pond individual grouped genetically and morphologically with *C. desquamator*), so Osprey Lake appears to be the only lake where all three species and the recently discovered ‘wide-mouth’ coexist at appreciable frequencies in sympatry. ‘Wide-mouth’ individuals have also been collected in Little Lake in the past (Bruce Turner, pers. obs. 1990s).

Fishes were euthanized in an overdose of buffered MS-222 (Finquel, Inc.) following approved protocols from the University of North Carolina at Chapel Hill Animal Care and Use.
Committee (#18-061.0), and the University of California, Berkeley Animal Care and Use Committee (AUP-2015-01-7053) and preserved in 95-100% ethanol.

Ecological and morphological characterization of ‘wide-mouth’ scale-eater

Multiple individuals from 3 lake populations (Osprey Lake, Great Lake, and Oyster Pond) in which we had measurable specimens of the species (n=84) were measured for 9 traits using dial calipers. Traits were selected for specific connections to foraging performance [103,104] and that differed across the three groups in a previous study when externally measured [10]. For each specimen we measured (1) standard length from the anterior tip of the premaxilla to the posterior margin on the midline of the caudal peduncle, (2) lower jaw length from the medial point of the dentary on the lower jaw to the distal point of rotation on the quadrate-articular joint, (3) the width of the buccal from the distance between the proximal sides of the buccal cavity in dorsal view, (4) the height of the adductor mandibulae insertion from the vertex between the vertical and horizontal arms of the preopercle to the dorsal margin of the hyomandibula, (5) the distance from the insertion of the first ray of the dorsal fin to the insertion of the first ray of the anal fin, (6) the height of the caudal peduncle from the dorsal and ventral procurent rays on the caudal fin, (7) neurocranium width from the narrowest distance between the eyes from the dorsal view, (8) body width from just behind the posterior margins of each operculum in dorsal view, and (9) diameter of the orbit. Measurements were made by a single observer (EJR). Repeatability of measurements was assessed by remeasuring a random subset of 10 individuals per species twice. Measurements on the full dataset were not taken until repeatability was above 85% per trait (r^2 in a linear regression of both sets of measurements). To remove the effects of body size on trait size, we used the residuals from a linear regression of the log-transformed trait on log
transformed standard length. We also compared these morphological measurements between lab-reared F2 and wild caught specimens to rule out strong plasticity in traits of interest.

For a subset of individuals collected from each population (*C. variegatus*, *C. desquamator*, and ‘wide-mouth’) in Osprey Lake, diet was characterized from stomach content analyses (*n*=10 each) and stable isotope analyses (*n*=75; 42 *C. variegatus*, 16 *C. desquamator*, 17 ‘wide-mouth’ individuals). These are two complementary approaches that reflect short-term and long-term snapshots of the dietary differences among these groups. For stomach content analysis, a single observer (EJR) dissected out a 1 cm portion of the gut from the posterior hindgut region and counted the number of scales found. For stable isotope analyses, muscle tissue samples were taken from the caudal peduncle region of each individual immediately after euthanasia in an overdose of MS-222. Muscle samples were individually labeled and dried at 60°C for at least 24 hours. Foil-wrapped tissue samples were then sent to the UC Davis Stable isotope facility and analyzed on a PDZ Europa ANCA-GSL elemental analyzer interfaced to a PDZ Europa 20-20 isotope ratio mass spectrometer to characterize the natural abundances of δ13C and δ15N among individuals.

Genomic library preparation

We sequenced 24 ‘wide-mouth’ individuals following protocols used in a previous study [105] in which we sequenced genomes from *Cyprinodon variegatus*, *C. desquamator*, and *C. bronototheroides*. Raw reads were mapped from these 24 individuals to a de-novo assembly of *Cyprinodon bronototheroides* reference genome (v 1.0; total sequence length = 1,162,855,435 bp; number of scaffolds = 15,698, scaffold N50 = 32 Mbp) with bwa-mem (v 0.7.12;[106]). Duplicate reads were identified using MarkDuplicates and BAM indices were created using
BuildBamIndex in the Picard software package (http://picard.sourceforge.net/v.2.0.1). We followed the best practices guide recommended in the Genome Analysis Toolkit (v 3.5;[107]) to call and refine our single nucleotide polymorphism (SNP) variant dataset using the program HaplotypeCaller. Variants in ‘wide-mouth’ individuals were called jointly with the 202 individuals sequenced from a previous study [105]. We filtered SNPs based on the recommended hard filter criteria (i.e. QD < 2.0; FS > 60; MQRankSum < -12.5; ReadPosRankSum < -8;[107,108]) because we lacked high-quality known variants for these non-model species. After selecting for only individuals from San Salvador Island, variants were additionally filtered to remove SNPs with a minor allele frequency below 0.05, genotype quality below 20, or containing more than 10% missing data across all individuals at the site using vcftools (v.0.1.15;[109]). Variants in poorly mapped regions were then removed using a mask file generated from the program SNPable (http://bit.ly/snpable; k-mer length =50, and ‘stringency’=0.5). Our final dataset after filtering contained 6.4 million variants with 7.9x median coverage per individual.

Testing for signatures of recent hybrids

We first tested whether these ‘wide-mouth’ individuals represented recent (e.g. F1/F2) hybrids of C. variegatus and C. desquamator in the wild. These two young species do reproduce with each other in the lab and rare hybrid spawning events have been observed in the wild (unpublished data ME St. John). As a first visual assessment, we conducted principal component analysis on C. desquamator, generalist, and ‘wide-mouth’ individuals to look for the genome-wide pattern expected in PCAs in which recent hybrids between two populations are included. To perform the PCA, the genetic dataset was first pruned for SNPs in strong linkage disequilibrium using the LD
pruning function (--indep-pairwise 50 5 0.5) in plink (v1.9;[110]), leaving 2.6 million variants.

We then ran a principal component analysis using the eigenvectors output by plink’s pca function (--pca). The first two principal components were plotted in R (R Core Team 2018 v3.5.0).

As a complementary assessment, we used an admixture model-based approach to estimate the proportion of shared ancestry among individuals in our dataset using ADMIXTURE (v.1.3.0)[111]. The number of populations (K) was decided upon using ADMIXTURE’s cross-validation method (--cv) across 1-10 population values of K. K = 4 was then chosen using the broken-stick method. Ancestry proportions estimated by ADMIXTURE were plotted in R for the K value with the highest likelihood and the two K values surrounding to explore whether the strong signatures of population structure in Crescent Pond C. desquamator individuals was masking hybridization signatures in any of the ‘wide-mouth’ populations.

Lastly, to discriminate among alternative evolutionary scenarios for the origin of ‘wide-mouth’ and to estimate divergence time among all four species, we used demographic modeling based on the folded minor allele frequency spectrum (mSFS). The observed mSFS was computed using the SFStools script from D. Marques available on github (https://github.com/marqueda/SFS-scripts). For these demographic model comparisons, we used only individuals from Osprey Lake (C. desquamator: n=10; C. variegatus : n=12; C. sp. ‘wide-mouth’: n=11; C. brontotheriodes: n=13) to avoid additional complex population structure across ponds. We contrasted 28 demographic models of different topologies and gene flow scenarios across the four groups (Fig S5;Table 1 and S2). For each model, the fit to the observed multidimensional mSFS was maximized using the composite-likelihood method fastsimcoal (v2.6.0.3;[69] with 100,000 coalescent simulations, 40 expectation-maximization cycles, and
pooling all entries with less than 20 SNPs). For parameter estimates, we used a wide search range with log-uniform distributions with the range of some priors informed by previous estimates of effective population size from MSMC and the age of the last glacial maximum (~20kya) prior to which the lakes would have been dry on SSI. These ranges were not upper bounded by these specified priors and so the simulations were free to explore parameter space that exceeded the priors.

For each demographic model, we ran 100 independent fastsimcoal2 runs to determine the parameter estimates with the maximum likelihood. The best fitting demographic model was identified using Akaike information criteria (AIC). To get confidence intervals for the parameter estimates from the best fitting model, we simulated 100 mSFS based on the maximum likelihood parameter estimates from our best fitting model and ran 50 independent runs with this model on each simulated SFS. The parameter point estimates from the run with the highest likelihood (of the 50 independent runs) from each simulated SFS were then used to compute 95 percentile confidence intervals as a measure of uncertainty in the parameter estimates from the observed SFS.

Testing for shared adaptive alleles

Patterns of directional selection

Various demographic histories can shift the distribution of low- and high-frequency derived variants to falsely resemble signatures of hard selective sweeps. In a previous study, we used MSMC analyses to infer histories of population size changes in C. variegatus, C. desquamator and C. brontotheriodes (Richards et al. 2021). In this study, we repeated the same analysis for the ‘wide-mouth’. In order to account for demography of the ‘wide-mouth’ population in
downstream analyses, we used the MSMC (v. 1.0.1;[112]) to infer historical effective population size (N_e) changes in the ‘wide-mouth’. We ran MSMC on unphased GATK-called genotypes separately for a single individual ‘wide-mouth’ from Osprey Lake with 16x mean coverage across its genome (Fig S4). As recommended in the MSMC documentation, we masked sites with less than half or more than double the mean coverage for that individual or with a genotype quality below 20. We also excluded sites with <10 reads as recommended by Nadachowska-Brzyska et al. [113]. To scale the output of MSMC to real time and effective population sizes, we used a one-year generation time [114] and the estimated spontaneous mutation rate of 1.56×10^{-8} estimated from high coverage sequencing of two independent pedigreed parent-offspring crosses of San Salvador Island species from a previous study (Richards et al. 2021).

Across all four populations in Osprey Lake, we looked for regions that appeared to be under strong divergent selection in the form of a hard selective sweep from the site frequency spectrum using SweeD (v.3.3.4;[115]). In this calculation of the composite likelihood ratio (CLR) of a sweep, we incorporated our empirical estimate of the decrease in population size for each focal population estimated from MSMC analyses in 50-kb windows across scaffolds that were at least 100-kb in length (99 scaffolds; 85.6% of the genome). We also calculated CLRs across 100,000 scaffolds consisting of neutrally evolving sequences simulated with ms-move [116], controlling for the impact of the inferred population size decreases over time for each population from MSMC runs mentioned above (Fig. S4; Table S3). The CLR ratios for the simulated datasets were then used to assess outlier CLR ratios from the empirical dataset. Regions with CLR ratios above the 95th percentile value of CLR from the neutral simulated dataset were considered candidate hard selective sweep regions (Table S3). We compared...
selective sweeps across *C. variegatus*, *C. desquamator*, *C. brontotheriodes*, and ‘wide-mouth’ to
look for shared and unique selective sweeps among the four groups.

Characterization of candidate adaptive alleles

We searched for candidate adaptive alleles underlying divergent traits among the species by
overlapping selective sweeps regions with regions of high genetic divergence based on fixed or
nearly fixed SNPs between groups. We chose to look at nearly fixed SNPs over only fixed
variation to accommodate the ongoing geneflow occurring between these young species. We
took two approaches to finding fixed or nearly-fixed variants: 1) a fixed threshold of $F_{st} \geq 0.95$
across all comparisons and 2) and threshold of the 99.9th percentile of F_{st}, which varied among
comparisons (range of F_{st} 0.73-0.83).

We made the following pairwise comparisons for F_{st} calculations including a) between *C.
variegatus* and each of the specialists, b) each specialist against all other groups and c) shared
between two or three specialists against *C. variegatus*. For nearly fixed variants with the $F_{st} \geq$
0.95 threshold, we looked for putative function of the candidate adaptive alleles by looking at
gene annotations of any gene the variant was in or near (within 20-kb of the gene, which is
within the 50-kb LD decay estimate). We used available gene annotations from model organisms
of mice and zebrafish from MGI, ZFIN, and we checked other annotation databases and studies
for verification of putative function, including Phenoscape Knowledgebase
(https://kb.phenoscape.org/#/home), NCBI’s PubMed (https://www.ncbi.nlm.nih.gov/pubmed),
and the Gene Ontology database using AMIGO2 [117].

For the 99.9th percentile F_{st} variants: We performed gene ontology (GO) enrichment analyses
for genes near candidate adaptive variants using ShinyGo (v.0.51;[118]). In the *C.
brontotheroides reference genome annotations (described in de novo genome assembly and annotation section), gene symbols largely match human gene symbols. Thus, the best matching species when we searched for enrichment across biological process ontologies curated mostly human gene functions.

Timing of selection on candidate adaptive alleles

Lastly, we also determined the relative age of candidate adaptive alleles by generating estimates of coalescent times using the R package starTMRCA (v0.6-1;[78]). For each candidate adaptive allele that was unique to the three specialists and the 16 shared alleles between C. desquamator and ‘wide-mouth’, a 1-Mb window surrounding the variant was extracted into separate vcfs for individuals within each species. The program requires complete genotype data so we first filtered out any individuals with more than 10% missing data (1 C. brontotherioides and 2 ‘wide-mouth’ individuals). With Tassel5 [119], we then used the LD KKNI command to infer missing sites based on LD for remaining individuals with less than 10% missing data. Subsequently we removed the small number of sites with any missing data across individuals within each population.

These sets of variants were then analyzed in starTMRCA with the mutation rate of 1.56x10⁻⁸ substitutions per base pair, and a recombination rate of 3.11x10⁻⁸ (from genome-wide recombination estimate for stickleback; [120]). Each analysis was run three times per focal adaptive allele and all runs were checked for convergence between and within runs. Most runs rapidly converged within the initial 6000 steps, but 5 runs did not converge after an additional 4000 steps and were discarded from further analysis.
Acknowledgements

We thank Priya Moorjani, Michelle St. John, Joseph McGirr, Jacquelyn Galvez, David Tian, Austin Patton, and Joseph Heras for helpful comments on the manuscript; the Gerace Research Centre and Troy Day for logistical support; the governments of the Bahamas for permission to collect and export samples; the Vincent J. Coates Genomics Sequencing Center and Functional Genomics Laboratory at UC Berkeley for performing whole-genome library preparation and sequencing (supported by NIH S10 OD018174 Instrumentation Grant), and the University of California Berkeley for computational resources. This research was funded by the National Science Foundation DEB CAREER grant #1749764, National Institutes of Health grant 5R01DE027052-02, the University of North Carolina at Chapel Hill, and the University of California, Berkeley to CHM, and graduate research funding from the Museum of Vertebrate Zoology to EJR.

Author Contributions

Conceptualization: EJR, CHM; Data Collection: EJR, CHM; Statistical analyses: EJR; Resources: CHM; Visualization: EJR, CHM; Original draft: EJR; Revising: EJR, CHM

Declaration of Interests

The authors declare no competing interests.

References

1. Martin CH, Richards EJ. The Paradox behind the Pattern of Rapid Adaptive Radiation: How Can the Speciation Process Sustain Itself through an Early Burst? Annu Rev Ecol Evol Syst. 2019;
2. Dieckmann U, Doebeli M. On the origin of species by sympatric speciation. Nature. Macmillan Magazines Ltd.; 1999;400: 354. Available: http://dx.doi.org/10.1038/22521

3. Polechová J, Barton NH, Gavriléfs S. Speciation through competition: a critical review. Evolution (N Y). The Society for the Study of Evolution; 2005;59: 1194–1210. doi:10.1554/04-691

4. Bolnick DI. Multi-species outcomes in a common model of sympatric speciation. J Theor Biol. 2006;241: 734–744. doi:10.1016/j.jtbi.2006.01.009

5. Ito HC, Dieckmann U. A new mechanism for recurrent adaptive radiations. Am Nat. 2007;170. doi:10.1086/521229

6. Kondrashov AS, Kondrashov FA. Interactions among quantitative traits in the course of sympatric speciation. Nature. Macmillan Magazines Ltd.; 1999;400: 351–354. Available: http://dx.doi.org/10.1038/22514

7. Gavriléts S. Models of speciation: where are we now? J Hered. 2014;105: 743–755. doi:10.1093/jhered/esu045

8. Gavriléts S. Fitness landscape and origin of species. Princeton, NJ: Princeton University Press; 2004.

9. Gavriléts S, Vose A. Dynamic patterns of adaptive radiation. Proc Natl Acad Sci U S A. 2005;102: 18040–18045. doi:10.1073/pnas.0506330102

10. Martin CH, Wainwright PC. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science. 2013;339: 208–11. doi:10.1126/science.1227710

11. Martin CH. Context dependence in complex adaptive landscapes: frequency and trait-dependent selection surfaces within an adaptive radiation of Caribbean pupfishes. Evolution (N Y). 2016;70: 1265–1282. doi:10.1111/evo.12932

12. Martin CH, Gould KJ. Surprising spatiotemporal stability of a multi-peak fitness landscape revealed by independent field experiments measuring hybrid fitness. Evol Lett. 2020; 530–544. doi:10.1002/evl3.195

13. Patton AH, Richards EJ, Gould KJ, Buie LK, Christopher H. Adaptive introgression and de novo mutations increase access to novel fitness peaks on the fitness landscape during a vertebrate adaptive radiation Keywords: fitness landscape; adaptive radiation; introgression; standing genetic variation; de novo mutation Introduction First conceptualized by Sewell Wright in 1932, the adaptive landscape describes the complex relationship between genotype or phenotype and fitness (1). The landscape is a concept, metaphor, and an empirical measurement that exerts substantial influence over all evolutionary dynamics (2–6). Fitness landscapes were originally depicted as high-dimensional networks spanning genotypic space in which each genotype is associated with fitness (1). Simpson (7) later described the phenotypic evolution of populations through time on a rugged landscape, in which isolated clusters of fitness peaks represent 'adaptive zones' to which populations evolve from adjacent regions of low fitness (8). Lande and Arnold formalized the analysis of selection and estimation of phenotypic fitness landscapes (9–11), leading to empirical studies of fitness landscapes in numerous empirical systems (12–18). Fitness surfaces also provide a central component of speciation models and theory (19–21). Populations may speciate through a process of divergent selection (22), either on static landscapes or negative frequency-dependent disruptive selection (23–28). A fundamental concept in fitness landscape theory is that not all genotypic trajectories are accessible (5, 29, 30); only those paths that monotonically increase in fitness at each mutational step are evolutionarily accessible, an
expectation stemming from Fisher’s fundamental theorem (31). These accessible
genotypic trajectories can thus be considered potential adaptive walks under Fisher’s
geometric model (31, 32). Experimental studies of adaptive walks in nature are
increasingly common, including the evolution of toxin resistance in monarch butterflies (33),
metabolism and citrate exploitation in E. coli (34) (35), and host-shift. 2021;
Pfaender J, Hadiaty RK, Schliewen UK, Herder F. Rugged adaptive landscapes shape a
complex, sympatric radiation. Proc R Soc B Biol Sci. 2016;283:11–13.
doi:10.1098/rspb.2015.2342
15. Arnegard ME, McGee MD, Matthews B, Marchinko KB, Conte GL, Kabir S, et al.
Genetics of ecological divergence during speciation. Nature. Nature Publishing Group, a
division of Macmillan Publishers Limited. All Rights Reserved.; 2014;511:1–17.
doi:10.1038/nature13301
16. Bank C, Matuszewski S, Hietpas RT, Jensen JD. On the (un)predictability of a large
intragenic fitness landscape. Proc Natl Acad Sci U S A. 2016;113:14085–14090.
doi:10.1073/pnas.1612676113
17. Wright S. The roles of mutation, inbreeding, crossbreeding and selection in evolution.
Proc Sixth Int Congr Genet. 1932;1:356–366.
18. Burch CL, Chao L. Epistasis and its relationship to canalization in the RNA virus φ6.
Genetics. 2004;167:559–567. doi:10.1534/genetics.103.021196
19. Arnold SJ, Pfrender ME, G. J. A. The Adaptive Landscape as a conceptual bridge between
micro- and macroevolution. Genetica. 2001;112–113:9–32.
20. Svennson E, Calsbeek R. The adaptive landscape in evolutionary biology. Oxford
University Press; 2012.
21. Calsbeek R, Irschick DJ. The quick and the dead: Correlational selection on morphology,
performance, and habitat use in island lizards. Evolution (N Y). 2007;61:2493–2503.
doi:10.1111/j.1558-5646.2007.00206.x
22. Grant PR, Grant RB. How and Why Species Multiply. Princeton University Press; 2008.
23. Givnish TJ, Systsma KJ, Smith J, Hahn W, DH B, Burkhardt E. Molecular evolution and
adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the
Guyana Shield. Molecular evolution and adaptive radiation. Cambridge: Cambridge
University Press; 1997. pp. 259–311.
24. Givnish TJ, Burkhardt EL, Happel RE, Weintrab JD. Carnivory in the Bromeliad
Brocchinia reducta, with a Cost / Benefit Model for the General Restriction of
Carnivorous Plants to Sunny, Moist, Nutrient-Poor Habitats. Am Nat. 1984;124:479–
497.
25. Goldschmidt R. Some Aspects of Evolution. Science (80-). American Association for the
Advancement of Science; 1933;78:539–547. Available:
http://www.jstor.org/stable/1660832
26. Goldschmidt R. The material basis of evolution. Yale University Press; 1940.
27. Mayr E. The emergence of evolutionary novelties. Evol after Darwin. 1960;
28. Charlesworth B, Lande R, Slatkin M. A Neo-Darwinian Commentary on Macroevolution.
Evolution (N Y). [Society for the Study of Evolution, Wiley]; 1982;36:474–498.
doi:10.2307/2408095
29. Simpson GG. The Major Features of Evolution [Internet]. Columbia University Press;
1953. doi:doi:10.7312/simp93764
30. Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press;
Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, et al. Major Ecological Transitions in Wild Sunflowers Facilitated by Hybridization. Science (80-). 2003;301: 1211–1216. doi:10.1126/science.1086949

Gross BL, Rieseberg LH. The ecological genetics of homoploid hybrid speciation. J Hered. 2005;96: 241–252. doi:10.1093/jhered/esi026

Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer. The genomic consequences of hybridization. 2020; Available: https://arxiv.org/pdf/2012.04077.pdf

Brice C, Zhang Z, Bendixsen D, Stelkens R. Hybridization Outcomes Have Strong Genomic and Environmental Contingencies. Am Nat. 2021;198: E000–E000. doi:10.1086/715356

Schumer M, Rosenthal GG, Andolfatto P. What do we mean when we talk about hybrid speciation? Heredity (Edinb). 2018;120: 379–382. doi:10.1038/s41437-017-0036-z

Nieto Feliner G, Álvarez-I, Fuertes-Aguilar J, Heuertz M, Marques I, Moharrek F, et al. Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity (Edinb). 2017;118: 513–516. doi:10.1038/hdy.2017.7

Erwin DH. Prospects for a General Theory of Evolutionary Novelty. J Comput Biol. 2019;26: 735–744. doi:10.1089/cmb.2019.0089

Erwin DH. A conceptual framework of evolutionary novelty and innovation. Biol Rev. 2021;96: 1–15. doi:10.1111/brv.12643

Blount ZD, Barrick JE, Davidson CJ, Lenski RE. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature. 2012;489: 513–518. doi:10.1038/nature11514

Blount ZD, Maddamsetti R, Grant NA, Ahmed ST, Jagdish T, Baxter JA, et al. Genomic and phenotypic evolution of escherichia coli in a novel citrate-only resource environment. Elife. 2020;9: 1–64. doi:10.7554/eLife.55414

Turner C, Blount Z, Mitchell D, Lenski R. Evolution and coexistence in response to a key innovation in a long-term evolution experiment with Escherichia coli. bioRxiv. 2015; 020958. doi:10.1101/020958

Quandt EM, Deatherage DE, Ellington AD, Georgiou G, Barrick JE. Recursive genomewide recombination and sequencing reveals a key refinement step in the evolution of a metabolic innovation in Escherichia coli. Proc Natl Acad Sci U S A. 2014;111: 2217–2222. doi:10.1073/pnas.1314561111

Jagdish T, Morris JJ, Wade BD, Blount ZD. Probing the Deep Genetic Basis of a Novel Trait in Escherichia coli* BT - Evolution in Action: Past, Present and Future: A Festschrift in Honor of Erik D. Goodman. In: Banzhaf W, Cheng BHC, Deb K, Hokekamp KE, Lenski RE, Ofria C, et al., editors. Cham: Springer International Publishing; 2020. pp. 107–122. doi:10.1007/978-3-030-39831-6_10

Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19: 198–207. doi:10.1016/j.tree.2004.01.003

Lotsy J. Species or Linnean. Genetica. 1925;7: 487–506.

Grant V. Plant Speciation. New York: Columbia University Press; 1981.

Meier JI, Stelkens RB, Joyce DA, Schliewen UK, Selz OM, Wagner CE, et al. Hybridization explains rapid adaptive radiation in Lake Mweru cichlid fis. shes. Nat Commun. Springer US; 2019; doi:10.1038/s41467-019-13278-z

Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffer L, Seehausen O. Ancient
hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun. Nature Publishing Group; 2017;8:14363. doi:10.1038/ncomms14363

49. The Heliconius Genome Consortium, Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. Nature Publishing Group; 2012;487:94–98. doi:10.1038/nature11041

50. Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature. Nature Publishing Group; 2015;518:371–375. doi:10.1038/nature14181

51. Richards EJ, Martin CH. Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. PLoS Genet. 2017;13:1–35. doi:10.1371/journal.pgen.1006919

52. Poelstra JW, Richards EJ, Martin CH. Speciation in sympathy with ongoing secondary gene flow and a potential olfactory trigger in a radiation of Cameroon cichlids. Mol Ecol. 2018;27:1–19. doi:10.1111/mec.14784

53. Richards EJ, Poelstra JW, Martin CH. Don’t throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. Evol Lett. 2018;2:524–540. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/evl3.78

54. Zhang W, Dasmahapatra KK, Mallet J, Moreira GRP, Kronforst MR. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. Genome Biology; 2016;17:25. doi:10.1186/s13059-016-0889-0

55. Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow RB, et al. Genomic architecture and introgression shape a butterfly radiation. Science (80-). 2019;366:594 LP – 599. doi:10.1126/science.aaw2090

56. Stroud JT, Losos JB. Ecological Opportunity and Adaptive Radiation. Annu Rev Ecol Evol Syst. 2016;47:507–532. doi:10.1146/annurev-ecolsys-121415-032254

57. Whittaker R. Evolution of species diversity in land communities. Evol Biol. 1977;

58. Martin CH, Wainwright PC. A remarkable species flock of Cyprinodon pupfishes endemic to San Salvador Island, Bahamas. Bull Peabody Museum Nat Hist. 2013;54:231–240.

59. Turner BJ, Duvernell DD, Bunt TM, Barton MG. Reproductive isolation among endemic pupfishes (Cyprinodon) on San Salvador Island, Bahamas: Microsatellite evidence. Biol J Linn Soc. 2008;95:566–582. doi:10.1111/j.1095-8312.2008.01079.x

60. Hagey FM, Mylroie J. Pleistocene lake and lagoon deposits, San Salvador Island, Bahamas. Geol Soc Am. 1995;30:77–90.

61. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al. The Last Glacial
65. Zamani N, Russell P, Lantz H, Hoepnner MP, Meadows JR, Vijay N, et al. Unsupervised genome-wide recognition of local relationship patterns. BMC Genomics. 2013;14: 347. doi:10.1186/1471-2164-14-347

66. Martin CH, Gould K, Bocklage C. Surprising spatiotemporal stability and frequency-independence across multiple fitness peaks driving adaptive radiation in the wild. 2019;

67. Martin CH, Wainwright PC. On the measurement of ecological novelty: scale-eating pupfish are separated by 168 my from other scale-eating fishes. PLoS One. 2013;8: e71164. doi:10.1371/journal.pone.0071164

68. Richards EJ, McGirr JA, Wang JR, St. John ME, Poelstra JW, Solano MJ, et al. A vertebrate adaptive radiation is assembled from an ancient and disjunct spatiotemporal landscape. Proc Natl Acad Sci U S A. 2021;118. doi:10.1073/pnas.2011811118

69. Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust Demographic Inference from Genomic and SNP Data. PLOS Genet. Public Library of Science; 2013;9: e1003905. doi:10.1371/journal.pgen.1003905

70. Mcgirr JA, Martin CH. Parallel evolution of gene expression between trophic specialists despite divergent genotypes and morphologies. Evol Lett. 2018;2: 62–75. doi:10.1002/evl3.41

71. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. Nature Publishing Group; 2016;537: 508–514. doi:10.1038/nature19356

72. Lee JY, Seo D, You J, Chung S, Park JS, Lee JH, et al. The deubiquitinating enzyme, ubiquitin-specific peptidase 50, regulates inflammasome activation by targeting the ASC adaptor protein. FEBS Lett. 2017;591: 479–490. doi:10.1002/1873-3468.12558

73. Heras J, Martin C. Nonadaptive radiation of the gut microbiome in an adaptive radiation of Cyprinodon pupfishes with minor shifts for scale-eating. bioRxiv. Cold Spring Harbor Laboratory; 2021;

74. Soupene E. ATP8A1 activity and phosphatidylserine transbilayer movement. J Receptor Ligand Channel Res. 2008;Volume 1: 1–10. doi:10.2147/jrlcr.s3773

75. Thomas T, Voss AK, Chowdhury K, Gruss P. Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development. England; 2000;127: 2537–2548.

76. Kraft M, Cirstea IC, Voss AK, Thomas T, Goehring I, Sheikh BN, et al. Disruption of the histone acetyltransferase MYST4 leads to a noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J Clin Invest. 2011;121: 3479–3491. doi:10.1172/JCI43428

77. Clayton-Smith J, O’Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, et al. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the say-barber-biesecker variant of Ohdo syndrome. Am J Hum Genet. The American Society of Human Genetics; 2011;89: 675–681. doi:10.1016/j.ajhg.2011.10.008

78. Smith J, Coop G, Stephens M, Novembre J. Estimating Time to the Common Ancestor for a Beneficial Allele. Mol Biol Evol. 2018;35: 1003–1017. doi:10.1093/071241

79. Hobbins MS, Hahn MW. Phylogenomic approaches to detecting and characterizing introgression. ecoevorxiv. 2021; doi:10.32942/osf.io/uahd8

80. Rosenzweig BK, Pease JB, Besansky NJ, Hahn MW. Powerful methods for detecting
introgressed regions from population genomic data. Mol Ecol. Wiley/Blackwell (10.1111); 2016;25: 2387–2397. doi:10.1111/mec.13610

Geneva AJ, Muirhead CA, Kingan SB, Garrigan D. A New Method to Scan Genomes for Introgression in a Secondary Contact Model. PLoS One. Public Library of Science; 2015;10: e0118621. Available: https://doi.org/10.1371/journal.pone.0118621

Joly S, McLenachan PA, Lockhart PJ. A statistical approach for distinguishing hybridization and incomplete lineage sorting. Am Nat. 2009;174. doi:10.1086/600082

Martin CH, Wainwright PC. Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of cyprinodon pupfish. Evolution (N Y). 2011;65: 2197–2212. doi:10.1111/j.1558-5646.2011.01294.x

Orr HA. The Population Genetics of Adaptation: The Distribution of Factors Fixed during Adaptive Evolution. Evolution (N Y). 1998;52: 935. doi:10.2307/2411226

Orr HA. The genetic theory of adaptation: A brief history. Nat Rev Genet. 2005;6: 119–127. doi:10.1038/nrg1523

Gillespie JH. Molecular Evolution Over the Mutational Landscape. Evolution (N Y). [Society for the Study of Evolution, Wiley]; 1984;38: 1116–1129. doi:10.2307/2408444

Kauffman S, Levin S. Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol. 1987;128: 11–45. doi:https://doi.org/10.1016/S0022-5193(87)80029-2

Maynard Smith J. Natural Selection and the Concept of a Protein Space. Nature. 1970;225: 563–564. doi:10.1038/225563a0

Bell G. Evolutionary rescue and the limits of adaptation. Philos Trans R Soc B Biol Sci. Royal Society; 2013;368: 20120080. doi:10.1098/rstb.2012.0080

Lindsey HA, Gallie J, Taylor S, Kerr B. Evolutionary rescue from extinction is contingent on a lower rate of environmental change. Nature. 2013;494: 463–467. doi:10.1038/nature11879

Rousselle M, Simion P, Tilak M-K, Figuet E, Nabholz B, Galtier N. Is adaptation limited by mutation? A timescale-dependent effect of genetic diversity on the adaptive substitution rate in animals. PLOS Genet. Public Library of Science; 2020;16: e1008668. Available: https://doi.org/10.1371/journal.pgen.1008668

Mani GS, Clarke BC. Mutational order: a major stochastic process in evolution. Proc R Soc London B Biol Sci. Royal Society; 1990;240: 29–37. doi:10.1098/rspb.1990.0025

Schluter D. Evidence for Ecological Speciation and Its Alternative. Science (80-). 2009;323: 737 LP – 741. doi:10.1126/science.1160006

Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551: 45–50. doi:10.1038/nature24287

Schluter D, Conte GL. Genetics and ecological speciation. Proc Natl Acad Sci. 2009;106: 9955–9962. doi:10.1073/pnas.0901264106

Patwa Z, Wahl LM. The fixation probability of beneficial mutations. J R Soc Interface. 2008;5: 1279–1289. doi:10.1098/rsif.2008.0248

Pavlidis P, Alachiotis N. A survey of methods and tools to detect recent and strong positive selection. J Biol Res. 2017;24: 7. doi:10.1186/s40709-017-0064-0

Höllinger I, Pennings PS, Hermisson J. Polygenic adaptation: From sweeps to subtle frequency shifts. PLOS Genet. Public Library of Science; 2019;15: e1008035. Available: https://doi.org/10.1371/journal.pgen.1008035

Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive selection. Nat Rev Genet. Springer US; 2020;21: 769–781.
100. Chevin LM, Hospital F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics. 2008;180: 1645–1660. doi:10.1534/genetics.108.093351

101. Thornton KR. Polygenic adaptation to an environmental shift: Temporal dynamics of variation under Gaussian stabilizing selection and additive effects on a single trait. Genetics. 2019;213: 1513–1530. doi:10.1534/genetics.119.302662

102. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9: 577–589. doi:10.1038/nrgastro.2012.156

103. Wainwright PC, Bellwood DR, Westneat MW, Grubich JR, Hoey AS. A functional morphospace for the skull of labrid fishes: Patterns of diversity in a complex biomechanical system. Biol J Linn Soc. 2004;82: 1–25. doi:10.1111/j.1095-8312.2004.00313.x

104. Patricia Hernandez L, Gibb AC, Ferry-Graham L. Trophic apparatus in cyprinodontiform fishes: Functional specializations for picking and scraping behaviors. J Morphol. 2009;270: 645–661. doi:10.1002/jmor.10711

105. Richards E, McGirr J, Wang J, St. John M, Poelstra J, Solano M, et al. Major stages of vertebrate adaptive radiation are assembled from a disparate spatiotemporal landscape. 2020; doi:10.1101/2020.03.12.988774

106. Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. Nature Publishing Group; 2011;475: 493–496. doi:10.1038/nature10231

107. DePristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43: 491–8. doi:10.1038/ng.806

108. Marsden CD, Lee Y, Kreppel K, Weakley A, Cornel A, Ferguson HM, et al. Diversity, differentiation, and linkage disequilibrium: prospects for association mapping in the malaria vector Anopheles arabiensis. G3 (Bethesda). 2014;4: 121–31. doi:10.1534/g3.113.008326

109. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27: 2156–2158. doi:10.1093/bioinformatics/btr330

110. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet. 2007;81: 559–575. doi:10.1086/519795

111. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. Cold Spring Harbor Lab; 2009;19: 1655–1664.

112. Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat Genet. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2014;46: 919. doi:10.1038/ng.3015

113. Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25: 1058–1072. doi:10.1111/mec.13540

114. Martin CH, Crawford JE, Turner BJ, Simons LH. Diabolical survival in Death Valley: recent pupfish colonization, gene flow and genetic assimilation in the smallest species range on earth. Proc R Soc B Biol Sci. 2016;283: 20152334. doi:10.1098/rspb.2015.2334
Supplemental Figures and Tables:

We get by with a little help from our friends: diversity begets diversity through shared adaptive genetic variation

Emilie J. Richards1,2 and Christopher H. Martin1,2

1Department of Integrative Biology, University of California, Berkeley
2Museum of Vertebrate Zoology, University of California, Berkeley

Correspondence: chmartin@berkeley.edu
Keywords: ecological speciation, ecomorph, adaptive radiation, novelty, innovation, selective sweep
Figure S1. Relationships between three divergent traits and standard length across ponds. The relationship between standard length (mm) of individuals and their D) lower jaw length, E) buccal cavity width, and F) adductor mandibulae muscle insertion height across individuals the three species *C. desquamator* (teal), *C. variegatus* (gold), and *C. sp. ‘wide-mouth’* (red-orange) across different ponds (Osprey, Oyster, and Great Lake). Colored lines represent linear model of these relationships for each species with their 95% confidence bands in gray.
Figure S2. Comparison of the three focal divergent traits in lab and wild populations. A. 95% CI of the standardized sizes of lower jaw length (left), buccal width (center) and preopercular insertion height (right) for C. variegatus (gold), C. sp. 'wide-mouth' (red-orange) and C. desquamator (teal). Lines (wild: solid; lab:dashed) are the 95% CI interval and symbols (wild: circle; lab: triangle) represent the mean values of traits from each population. Lab raised individuals include F1 and F2 generations.
Figure S3. C. sp. ‘wide-mouth’ is not an admixed population. ADMIXTURE analysis of San Salvador Island populations using an LD-pruned subset of genetic variants from 109 individuals (78,840 variants). A) Cross validation error estimates from ADMIXTURE that indicate a K model of 6-7 were the best fit. B) Ancestry proportions across individuals of the three focal groups. Proportions were inferred from ADMIXTURE analyses with 2 values of K with the highest likelihood on the same LD-pruned dataset in A.
Fig S4. Changes in effective population size over time for Osprey populations inferred using MSMC [112] on high-coverage (18-36X) genomes from single individuals of each of the four species in Osprey Lake, San Salvador Island Bahamas: *C. variegatus* (gold), *C. brontotheroides* (purple), *C. desquamator* (teal), and *C. sp. ‘wide-mouth’* (red-orange). Time was scaled using a mutation rate of 1.56x10^-8 mutations/basepair/generation and a generation time of 1 year.
Fig S5. Top five best fitting demographic models for Osprey Lake. From a genetic dataset that was LD-pruned and had no missing information across individuals comprised of 67,400 SNPs. Listed in order of lowest AIC scores (Table 1 and S2) with best supported model in A. All top models were of recent bidirectional gene flow but varied in topology among the four species.
Fig S6. Genetic divergence among populations in Osprey Lake in regions of shared selection across two or more specialists. Each panel represents pairwise F_{st} comparison between two populations for every SNP found in regions under shared selection across two or more specialist species on San Salvador Island: C. brontotheroides (bro); C. desquamator (des), C. sp. ‘wide-mouth’ (wid). Regions shared across all three specialists (bro+des+wid) do not contain highly divergent SNPs between any of the species in the radiation. Highly divergent SNPs ($F_{st} > 0.75$) are only found in regions shared between one or two specialists.
Fig S7. Top 20 enriched GO categories for divergent alleles in each of the three specialists. GO enrichment analyses were performed on genes in or near (within 20-kb) of a SNP that was under a hard selective sweep and strongly diverged from generalist species (top 1% of Fst values across genome) for a) ‘wide-mouth’ b) C. desquamator, and C) C. brontotheroides. GO categories that were significantly enriched for relevant terms corresponding to craniofacial development, the major axes of morphological divergence in this radiation, are highlighted in red. All terms included were significant at an FDR < 0.05 and full list of terms in Data S1-3.
Table S1. No significant genome-wide signature of admixture among populations on San Salvador Islands. Results from three formal tests for introgression to assess whether ‘wide-mouth’ populations are hybrids between generalist C. variegatus and scale-eater C. desquamator: D, f_3- and f_4-statistics across all possible combinations of Osprey Lake populations of generalist species. Significant f_3-statistic had Z-scores > -2; significant f_4 and D-statistic Z-scores were smaller than -2 and greater than 2. The only significant signature of admixture (bolded Z-scores) comes from D- and f_4-statistics based on relationships that violate the expected tree (((C. desquamator; ‘wide-mouth’),Generalist),Outgroup) and therefore should not be interpreted as evidence of ‘wide-mouth’ being an admixed population. C. variegatus population from Rum Cay, the nearest neighbor island in the Bahamas to San Salvador Island was used as an outgroup population for D- and f_4-statistics.

	f_3-statistic	f_4-statistic	D-statistic																					
	A	B	C	--	f_3	stderr	Z	$P1$	$P2$	$P3$	$P4$	f_4	stderr	Z	$P1$	$P2$	$P3$	Outgroup	D	stderr	Z			
$C. variegatus$	$C. desquamator$	C. sp. ‘wide-mouth’	0.004626	0.00088	5.257	C. sp ‘wide-mouth’	C. desquamator	C. variegatus	Rum Cay	-0.000196	0.000164	-1.2	0.003971	0.000268	14.836	0.000186	0.000201	0.927	0.035	0.002326	15.068	0.0017	0.001792	0.931
Table S2. Support for the 28 demographic models for the evolution of the ‘wide-mouths’ from the site frequency spectrum. The likelihood and AIC scores all demographic models estimated in fastsimcoal2 for the Osprey populations of *C. variegatus* var), *C. brontotheroides* (bro), *C. desquamator* (des), and *C. sp. ‘wide-mouth’ (wid) are presented here with a complete list of all models tested reported in Table S2. Change in likelihood (ΔLnL) represents the difference in likelihood from that of a simulated SFS expected by the demographic model tested. Change in AIC (ΔAIC) represents the difference in AIC scores from that of the model with the smallest ΔLnL. All models presented here represent different divergence scenarios with recent gene flow allowed, which had better support from the data than models with no gene flow or early gene flow. Visual representations of the top five models are depicted in Figure S5.

Divergence Model	LnL	ΔLnL	AIC	ΔAIC
1 ((des,wid),(bro,var)) + (des,wid) diverges first + recent gene flow	-11701	1077	54133	0
2 ((des,bro),(var),wid)) + recent gene flow	-11780	1112	54296	35
3 ((des,bro),(wid),var)) + recent gene flow	-11806	1138	54418	61
4 ((bro,wid),(des),var)) + recent gene flow	-11808	1140	54423	63
5 ((des,wid),(bro, var)) + (bro, var) diverges first + recent gene flow	-11846	1178	54602	101
6 ((des,wid),bro),(var)) + recent gene flow	-11855	1187	54642	110
7 ((des,bro),(var),wid)) + early gene flow	-12016	1348	55364	271
8 ((des,var),(bro), wid)) + recent gene flow	-12024	1356	55426	279
9 ((wid,bro),(des),var)) + early gene flow	-12086	1418	55688	341
10 ((wid,des),(bro),var)) + early gene flow	-11855	1419	55692	342
11 ((des,wid),(bro, var)) + early gene flow	-12139	1471	55929	394
12 ((des,wid),(bro, var)) + no gene flow	-12315	1648	56738	570
13 ((wid,bro),(des),var)) + no gene flow	-12326	1658	56787	581
14 ((des,bro),(var)) + (wid)) + no gene flow	-12334	1667	56826	589
15 ((des,wid),(bro, var)) + recent sister gene flow only	-12394	1726	57106	649
16 ((des,wid),(bro, var)) + no gene flow	-12396	1728	57109	651
17 ((wid,des),(bro),var)) + recent gene flow	-12399	1731	57148	654
18 ((wid,des),(bro),var)) + recent gene flow	-12401	1733	57157	656
19 ((w id,des),(bro),var)) + recent gene flow	-12401	1734	57163	657
20 ((wid,des),(bro, var)) + recent gene flow	-12420	1752	57244	675
21 ((wid,des),(bro, var)) + recent gene flow	-12425	1757	57265	680
22 ((des, wid),(bro),var)) + recent gene flow	-12425	1757	57267	680
23 ((w id,des),(bro, var)) + no gene flow	-23245	12577	107070	11500
24 ((wid, des),(bro, var)) + early gene flow	-23658	12990	108976	11913
25 ((wid, var),(bro,des)) + recent gene flow	-23659	12991	109003	11914
Table S3. Parameters for selective sweep analyses in SweeD.
The 95th percentile of composite likelihood ratio threshold based on neutral simulations under the demographic scenario of decreasing population size through time inferred with MSMC (Fig S4), and the population size change and haplotype number information parameters required by SweeD for each species.

Species	CLR threshold	SweeD Commands
C. variegatus	0.40320	-folded -strictPolymorphic -G 0.407 -eN 5.45 181.8 -s 24
C. brontotheroides	0.43473	-folded -strictPolymorphic -G 0.389 -eN 5.88 196 -s 32
C. desquamator	0.40537	-folded -strictPolymorphic -G 0.218 -eN 8.11 270 -s 16
C. sp. ‘wide-mouth’	0.39262	-folded -strictPolymorphic -G 0.203 -eN 8.57 276 -s 22

Table S4. Genetic divergence among the four populations in Osprey Lake, San Salvador Island across different thresholds of F_{st}. Relative measure of genetic divergence was calculated in pairwise combinations of the different species as the number of fixed SNPs between them, the number of fixed or nearly fixed SNPs between them, the top 1% of F_{st} between them from the distribution of F_{st} between SNPs and the genome-wide average F_{st} across all SNPs in the genome.

F_{st} Comparison	Number of fixed SNPs ($F_{st} = 1$)	Number of nearly fixed SNPs ($F_{st} \geq 0.95$)	Top 1%	Genome-wide average
C. sp. ‘wide-mouth’ vs C. desquamator	5,212	5,915	0.84	0.131
C. sp. ‘wide-mouth’ vs C. brontotheroides	5238	14,602	0.85	0.15
C. sp. ‘wide-mouth’ vs C. variegatus	247	869	0.68	0.104
C. desquamator vs C. brontotheroides	6941	22,088	0.86	0.17
C. desquamator vs C. variegatus	414	1,964	0.71	0.116
C. variegatus vs C. brontotheroides	110	567	0.637	0.09
Table S5. Comparison of the average absolute genetic divergence (D_{xy}) between the four species in Osprey Lake ‘wide-mouth’, *C. variegatus, C. desquamator* and *C. brontotheriodes* and the shared adaptive alleles between scale-eater populations.

Comparison	Mean D_{xy}
C. variegatus vs *C. brontotheriodes*	0.167
C. variegatus vs *C. desquamator*	0.169
C. variegatus vs *C. sp. ‘wide-mouth’	0.165
C. brontotheriodes vs *C. desquamator*	0.162
C. brontotheriodes vs *C. sp. ‘wide-mouth’	0.156
C. desquamator vs *C. sp. ‘wide-mouth’	0.157
Selective sweeps in *C. sp. ‘wide-mouth’	0.123
Shared genetic variants with *C. desquamator*	0.0814
Unique genetic variants in *C. sp. ‘wide-mouth’	0.24
Table S7. The distribution of shared adaptive alleles between the two scale-eating species across the Caribbean.

Numbers represent the copies of the *C. desquamator* and ‘wide-mouth’ allele present in outgroup populations collected from San Salvador Island (SS), Rum Cay (RC), Cat Island (CT), Exumas Islands (EX), Long Island (LG), Mayaguana (MG), New Providence Island (NPI) in the Bahamas. Lagunas Bavaro (BAV) and Etang Saumautre (ETA) in Dominican Republic, Sarasota Estuary in Florida (FL), Curacao (CUR), Caicos Island (CAI) and Isla Margarita (MAR) in Venezuela.

Allele	Gene	Distribution	SS	RC	CT	EX	LG	MG	FL	NC	NPI	BAV	ETA	CUR	CAI	MAR
HiC_scaffold_6:907101	NA	SGV	0	0	1	0	0	0	0	0	12	0	0	0	0	0
HiC_scaffold_6:907425	NA	SGV	0	1	0	0	0	0	0	0	7	0	0	0	0	0
HiC_scaffold_6:907665	NA	SGV	1	1	0	0	0	0	0	0	1	3	0	0	0	0
HiC_scaffold_6:908229	NA	SGV	0	5	0	1	0	0	1	0	6	0	0	0	0	0
HiC_scaffold_6:908889	NA	SGV	0	5	0	2	0	0	0	0	0	0	0	0	0	0
HiC_scaffold_6:923182	NA	SGV	1	1	0	0	0	0	0	0	0	0	0	0	0	0
HiC_scaffold_6:923590	NA	SGV	0	5	0	2	0	0	0	0	0	0	0	0	0	0
HiC_scaffold_6:924203	NA	de novo	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HiC_scaffold_6:929621	NA	SGV	1	2	1	0	0	0	0	0	0	0	0	0	0	0
HiC_scaffold_9:3176392	daam2	SGV	0	3	0	1	0	1	1	1	6	1	0	0	0	0
HiC_scaffold_9:31763400	daam2	SGV	0	5	0	1	1	0	1	1	10	8	0	0	0	0
HiC_scaffold_43:27389200	usp50	SGV	0	1	0	0	0	0	0	0	1	0	0	0	1	0
HiC_scaffold_43:27389200	usp50	SGV	0	1	0	0	0	0	0	0	1	0	0	0	1	0
HiC_scaffold_43:27389200	usp50	SGV	0	1	0	0	0	0	0	0	1	0	0	0	1	0
HiC_scaffold_43:27389200	usp50	SGV	0	1	0	0	0	0	0	0	1	0	0	0	1	0
HiC_scaffold_43:27389200	usp50	SGV	0	1	0	0	0	0	0	0	1	0	0	0	1	0
HiC_scaffold_43:27389200	usp50	SGV	0	1	0	0	0	0	0	0	1	0	0	0	1	0
