Fractal Properties of Pore Distribution of Electrospun Nanofiber Membrane

Bai Chun-yu¹, Chen Ying², Liu Yong³, Shi Luo-yi¹ and Chen Ru-dong¹*

¹School of Mathematics Science, Tiangong University, Tianjin, 300399, China.
²Tianjin Vocational and Technical Normal University, Tianjin, 300222, China.
³School of Textile Science, Tiangong University, Tianjin, 300399, China.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors BC and CY designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors CR and SL managed the analyses of the study. Author LY managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2020/v35i730307

Original Research Article

Received: 20 July 2020
Accepted: 25 September 2020
Published: 15 October 2020

Abstract

Due to the complex and chaotic characteristics of electrospun nanofiber membrane, fractal theory is a suitable mathematical framework. Using the fractal theory, Matlab and other computer software in Mathematics, the fractal properties of pore distribution of electrospun nanofiber membrane and the relationship between the fractal dimension and the physical properties of nonwovens are studied. Thirty samples were produced by using polyvinyl alcohol (PVA) on the DXES-01 automatic electrostatic spinning machine; BMP images of 30 samples were obtained by TM-1000 table scanning electron microscope; The scanning electron micro-scope images were grayed by digital image processing technology, and the average pore width of the samples was further calculated by Matlab software from the gray value matrix; G-P algorithm is used to calculate the fractal dimension of pore width distribution; The relationship between air flow resistance and the fractal dimension of pore width distribution of electrospun nanofiber membrane was analyzed. Finally, the correlation fractal dimension of the average pore width obtained is consistent with the fractal dimension of porosity obtained by Ting Wang under the meaning of the relative error less than 10% is the same.
Keywords: Electrospun nanofibers; average pore width; correlation fractal dimension; the fractal.

1 Introduction and Preparation

With the rapid development of nanotechnology, electrospinning technology [1-3] has attracted extensive attention as a manufacturing method of nanometer nonwovens. Compared with the traditional method, electrospun nanofiber membrane is thinner and it can reach the nanometer level. As a result, the application of electrospun nanofiber membrane is more extensive, and it is more difficult to study the properties of it.

Mandelbrot has proposed the concept of fractals at first in 1973. Fractal is a "shape" that has parts and a whole that are somewhat similar, and points out that the shape of objects in nature is mostly irregular and complex. In 1977, his works fractal: shape, opportunity and dimension and fractal geometry in nature were described in detail, which marked the birth of fractal theory [4,5].

The pore distribution of electrospun nanofiber membrane is complex and disordered, so it is very natural to use fractal theory as a tool to study its properties. On the basis of comparing various fractal definitions, aiming at the characteristics of pore distribution of electrospun nanofiber membrane, a fractal dimension -- correlation fractal dimension[6-8] defined on the basis of G-P algorithm was selected.

The concept of G-p algorithm and correlation dimension:

First, take such a system

\[\{x_k: k = 1, 2, ..., N\} \] \hspace{1cm} (1)

convert to M dimensional Euclidean space, as follows:

\[X_{(M,t)} = \{x_n, x_{n+r}, ..., x_{n+(M-1)r}, n = 1, 2, ..., N\} \] \hspace{1cm} (2)

And define the correlation function \(C(r) \) as

\[C_M(r) = \frac{1}{N(N-1)} \sum_{i \neq j} \theta(r - |X_i - X_j|) \] \hspace{1cm} (3)

Where, \(\theta(x) \) is Heaviside step function, namely

\[H(x) = \begin{cases} 1, & x > 0 \\ 0, & x \leq 0 \end{cases} \] \hspace{1cm} (4)

Where \(|\cdot|\) represents the distance between the state vectors \(X_i \) and \(X_j \) in Euclidean space.

When \(r \) is small enough, define a constant \(D(M, r) \) relative to \(M \) and \(r \) :

\[D(M, r) = \frac{d \ln C_M(r)}{d \ln r} \] \hspace{1cm} (5)

By selecting the appropriate \(M \), the correlation fractal dimension can be obtained[9-10]: When the double log curve \(\ln C_M(r) - \ln r \) is nearly linear, the sample is considered to have a fractal structure, and the slope of the line corresponding to the linear interval is \(D \), namely the correlation fractal dimension of the sample.

We will study the fractal characteristics of electrospun nanofiber membrane and its relationship with physical properties by using the correlation fractal dimension.
2 Experimental and Data Acquisition

2.1 Sample preparation and physical data acquisition

First of all, 30 samples of electrospun nanofiber membrane were prepared by using the DXES-01 automatic electrostatic spinning machine with PVA and using the method of orthogonal design to increasing the number of samples. The scanning electron microscope images of them are shown in Fig. 1.
The air flow resistance of each sample was measured with TSI8130 automatic filter, as shown in Table 1.

Table 1. Air flow resistance of the sample

No.	Needle-to-collector distance (cm)	Applied voltage (kv)	Volume flow rate (ml/h)	Concentration (wt%)	resistance (pa)
1	11	15	0.5	12	11.1
2	13	15	0.7	12	22.1
3	15	15	1	12	21
4	17	15	1.2	12	11.1
5	19	15	1.2	12	8.9
6	19	15	1.5	12	6.1
7	11	18	0.5	12	11.5
8	11	18	0.7	12	19.3
9	13	18	1	12	15.6
10	15	18	1.2	12	19.8
11	17	18	1.5	12	9
12	19	18	0.5	12	8.1
13	11	20	1	12	31.2
14	13	20	1.2	12	27.5
15	15	20	0.7	12	9
16	15	20	1.5	12	43.1
17	17	20	0.5	12	8.5
18	19	20	0.7	12	4.9
19	11	23	1.2	12	30.1
20	13	23	1.5	12	29
21	15	23	0.5	12	7
22	17	23	0.7	12	5.8
23	17	23	1.5	12	7.3
24	19	23	1	12	9
25	11	26	1.5	12	15.7
26	13	26	0.5	12	9.9
27	13	26	1	12	25.9
28	15	26	0.7	12	8
29	17	26	1	12	5.7
30	19	26	1.2	12	4.3

2.2 Calculation of the average pore width of sample

Taking sample 2 as an example, the BMP images of nanofibers were grayed successively, and the gray-value matrix was obtained by Matlab. We adopted the idea of Ting Wang and Ying Chen [13], and use 85% of the average gray value as the threshold value to transform the gray matrix into a 0-1 matrix, the number of 1 or -1 obtained by subtracting adjacent elements in each row of the 0-1 matrix, namely the number of pore or fibers in the row. Then, divide by the total length of the fiber pore (the sum of all zeroes for each row in the 0-1 matrix) to get the width of the average pore, or the average pore for short. Average the pore width of each
row to get the average pore of the sample. Because of too much data, the average pore data of each sample was obtained by taking one data every five. After obtaining the average pore data, multiply it by $e^{1.6a}$, where $a=2.5029078750...$ (Feigenbaum's constant [13]):

![Fig. 2. The average pore distribution of sample 2](image)

It is called the relative average pore distribution. The same method can be used to obtain the relative average pore distribution of other samples.

3 The Correlation Fractal Dimension Calculation of Samples

Using the relative average pore width sequence of each sample, Matlab [11,12] was used to calculate the correlation fractal dimension of the average pore width. Set M as 5, 10, 15, 20, 25, 30, 35, 40, and then observe the double log curves of its operation to determine the appropriate M value according to the curve characteristics. The appropriate interval is selected according to the criterion of long linear interval and good linearity, and the correlation fractal dimension is obtained by linear fitting on this interval. The double log curves of sample 2 are shown in Fig. 3.

![Fig. 3. Double log graphs corresponding to different M values](image)

It can be seen from Fig. 2 that when M=40, the collinearity of the curve is good and the collinearity range is longer. The interval [ln244, ln304] with good linearity corresponding to M=40 is selected for linear fitting to obtain the correlation fractal dimension of the sample. The double log curves of sample 2 are shown in Fig. 4.
The correlation fractal dimension is $D = 1.442937449$, the correlation coefficient is $R = 0.991458805$, and F test is $F = 6848.69888$.

Table 2. Correlation fractal dimension of average pore distribution of 30 samples

No.	Correlation dimension	Intercept of fitting line	Correlation coefficient	F test	Left end point of collinear interval	Right end point of collinear interval	M-value
1	1.495840727	-8.641611365	0.947164025	448.1624686	304	330	35
2	1.442937449	-8.204860069	0.991458805	6848.69888	244	304	40
3	1.537743878	-8.675917722	0.974328110	1935.608702	232	284	30
4	1.46214790	-8.112467211	0.946991332	357.2967875	244	265	35
5	1.624468238	-8.987105480	0.976523379	4034.770128	347	445	20
6	1.555059522	-11.26135497	0.992443985	111117.7883	492	1339	15
7	1.234365431	-7.884254344	0.980479020	5424.509249	492	601	15
8	1.604770633	-9.592653776	0.969725871	2306.26822	330	403	15
9	1.712486420	-9.550290523	0.962615626	643.7286148	244	270	25
10	1.722798614	-8.969877712	0.960642619	1171.593343	265	314	15
11	1.4619181645	-9.091258849	0.985621047	6717.517291	284	383	30
12	1.450061511	-8.619830077	0.961193321	2922.713716	284	403	20
13	1.397007462	-8.090111174	0.960572695	1437.424874	270	330	25
14	1.651033607	-9.745852433	0.976978755	3607.241671	244	330	20
15	1.472982426	-8.641505401	0.971618558	3663.069283	257	365	15
16	1.133025970	-6.45224860	0.941297660	513.123125	278	311	35
17	1.532052129	-8.812485762	0.983796959	1275.053063	270	292	35
18	1.497045485	-9.193017337	0.96881497	1217.313227	424	468	20
19	1.580897087	-8.883748333	0.953541089	697.8294809	249	284	30
20	1.582398585	-8.878926682	0.967175600	589.3028510	257	278	35
21	1.477796157	-9.236937260	0.985808347	11808.87302	347	518	15
22	1.326070403	-8.105746417	0.969056902	3037.786409	347	445	20
23	1.495447966	-9.563095416	0.975193786	14388.36778	298	665	20
24	1.523309022	-9.467649122	0.962211726	5423.669318	330	544	20
25	1.749428379	-10.28484146	0.993132651	7375.44675	278	330	15
26	1.553981755	-9.179152179	0.978150032	4208.065819	270	365	15
27	1.443057877	-8.778185238	0.96190023	1918.762876	347	424	40
28	1.587684342	-9.052362086	0.958611479	990.3039788	257	304	25
29	1.680042749	-10.49292150	0.985090888	11695.86116	365	544	35
30	1.357785562	-8.788310245	0.987431935	32919.46721	181	601	5
After the other samples are treated in the same way, we can obtain their correlation dimension, intercept of fitting line, correlation coefficient, F test and other data. The calculation results of the fractal dimension of the average pore of other samples are shown in Table 2.

4 Conclusion

In this paper, the correlation fractal dimension was selected as a tool to analyze the chaotic and disordered pore distribution of electrospun nanofiber membrane. The relationship between the correlation fractal dimension of the average pore width of samples and its resistance [13,14] is shown in Table 3.

Table 3. Relationship between correlation fractal dimension and air flow resistance of samples

Source of variance	Sum of square	Degrees of freedom	Square	F	Conspicuousness
Regression	SSR	2	SSR/2	15.79591077	Extremely significant
Residual	SSE	27	SSE/27	108.92559	5.74704825
Sum	Lxx	29			

Matlab was used to fit Table 3, and the correlation fractal dimension of the average pore width of the sample has a quadratic function relation with its resistance, that is,

\[y = -0.00076226660605591x^2 + 0.0288271256410095x + 1.3232485018709. \]

(Where y is the correlation fractal dimension and x is the air flow resistance)

F test: After looking up the table, F_{0.99}(2,27)= 6.48851, F-test value: F=15.7959107696337, indicating an extremely significant relationship in Table 4.

Table 4. F checklist

Source of variance	Sum of square	Degrees of freedom	Square	F	Conspicuousness
Regression	SSR	2	SSR/2	15.79591077	Extremely significant
Residual	SSE	27	SSE/27	108.92559	5.74704825
Sum	Lxx	29			

The fitting effect is shown in Fig. 5.
Therefore, the relationship between the fractal properties of the average pore width of electrospun nanofiber membrane and the air flow resistance is a quadratic function, and the correlation is significant. It can be seen from the relation diagram of correlation dimension and resistance that when the fractal dimension is about 19pa, the fractal dimension reaches the maximum. A new way to explore electrospun nanofiber membrane was established.

5 A Little Though

In this paper, We used the average pore width value as the basis to calculate the fractal. However, the results obtained were surprisingly consistent with the results of Ting Wang, Ying Chen etc.[13] under the meaning of the relative error less than 10%, as shown in Table 5.

The fractal dimension of the average pore width obtained is consistent with the fractal dimension of porosity obtained by Ting Wang etc.[13] under the meaning of the relative error less than 10%, this shows that it is reasonable to discuss the correlation fractal dimension.

Table 5. Comparison with fractal dimensions in [13] paper

No.	Average pore width dimensions	Porosity dimension	Relative error
1	1.495841	1.56139686	0.0438256
2	1.442937	1.38839672	0.0377984
3	1.537744	1.44812325	0.0582806
4	1.462115	1.43159072	0.0208767
5	1.624468	1.48468356	0.0860495
6	1.55506	1.58022408	0.0161824
7	1.234365	1.3369629	0.0831176
8	1.604771	1.55601202	0.0303835
9	1.712486	1.6217215	0.0530018
10	1.722799	1.69049555	0.0187503
11	1.461982	1.39038706	0.0489709
12	1.450062	1.43218884	0.0123255
13	1.397007	1.3597149	0.0265109
14	1.651034	1.61659512	0.0208587
15	1.472982	1.35311754	0.0813756
16	1.133026	1.02169	0.098264
17	1.532052	1.500271	0.020744
18	1.497045	1.440925	0.037487
No.	Average pore width dimensions	Porosity dimension	Relative error
-----	-------------------------------	--------------------	---------------
19	1.580897	1.544863	0.022794
20	1.582399	1.509439	0.046107
21	1.477796	1.39264	0.057623
22	1.326607	1.322473	0.003116
23	1.495448	1.412103	0.055732
24	1.523301	1.559902	0.024028
25	1.749428	1.662555	0.049658
26	1.553982	1.41934	0.086643
27	1.443058	1.557588	0.079366
28	1.587684	1.447892	0.088048
29	1.680043	1.59986	0.047727
30	1.357786	1.428429	0.052028

Competing Interests

Authors have declared that no competing interests exist.

References

1. Shi Qisong, YU Jianxiang, GU Kezhuang et al. Electrostatic spinning technology and its application [J]. Chemistry World. 2005;(05):313-316.
2. Tan Xiaohong, Wang Shanyuan. Technology principle, present situation and application prospect of electrospinning nanofibers [J]. High-tech Fibers and Applications. 2004;(02):28-32.
3. Nanotechnology - Nanofibers; Investigators at Korea Advanced Institute of Science and Technology (KAIST) Report Findings in Nanofibers (Design of Hollow Nanofibrous Structures Using Electrospinning: an Aspect of Chemical Sensor Applications) [J]. Nanotechnology Weekly; 2020.
4. Wang Dongsheng, Tang Hongxiao, Luan Zhaokun. Fractal theory and its research methods [J]. Chinese Journal of Environmental Science. 2001;(S1):10-16.
5. Jiang Zhiqiang. Several problems, current situation and Prospect analysis of fractal Theory application Research [J]. Journal of Jilin University (Information Science edition). 2004;(01):57-61.
6. Shao Hui, Shi Zhirong, Zhao Qingxian. Analysis of fractal Characteristics of accident correlation dimension [J]. Systems Engineering Theory and Practice. 2006;(04):141-144.
7. Rodkin MV, Shatakhtsyan AR. Study of ore deposits by the dynamic systems investigation methods: 1. Calculation of the correlation dimension [J]. Izvestiya, Physics of the Solid Earth. 2015;51(3).
8. Sebastian Zurek, Przemyslaw Guzik, Sebastian Pawlak, et al. On the relation between correlation dimension, approximate entropy and sample entropy parameters, and a fast algorithm for their calculation[J]. Physica A: Statistical Mechanics and its Applications. 2012;391(24).
9. Lee Chunwoo, Kramer Timothy A. Prediction of three-dimensional fractal dimensions using the two-dimensional properties of fractal aggregates. [J]. Advances in colloid and interface science. 2004;112(1-3).
10. Paul Gerald,Stanley H Eugene. Fractal dimension of 3-blocks in four-, five-, and six-dimensional percolation systems.[J]. Physical review. E, Statistical, Nonlinear, and Soft Matter Physics. 2003;67(2 Pt 2).
11. Juan Ruiz de Miras, Guillermo Martinez-Lledó, William Orwig, Jorge Sepulcre. A MATLAB tool for computing the spherical harmonic fractal dimension of the cerebral cortex[J]. Computer Physics Communications. 2020;254.
12. Francisca Ferrón-Carrillo, Juan Carlos Gómez-Cortés, Julio Regalado-Sánchez, et al. Algorithm implementation in MATLAB for root measurement[J]. Computers and Electronics in Agriculture. 2020;174.
13. Ting Wang#, Ying Chen#,*, Wenxia Dong, et al, Tiandi Pan, Fractal Characteristics of Porosity of Electrospun nanofiber membranes, Mathematical Problems in Engineering. 2020;2020(1):1-9. Available:https://doi.org/10.1155/2020/2503154.

14. Wang Jiaona, Li Chan, Li Li, Li Congju. Studies on electrostatic spinning PES microspheres/fibers with low resistance composite air filtration membrane [J]. Chinese Polymer Journal,2014(11):1479-1485.

© 2020 Chun-yu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar).
http://www.sdiarticle4.com/review-history/61494