Statistical Evaluation of the First Year of a Neonatal Intensive Care Unit Established in a Medical School Hospital

Hidehiko Narazaki, Makoto Watanabe, Makoto Migita, Ryuhei Kurashina, Yoshio Shima, Makiko Mine, Sakae Kumasaki, Gen Ishikawa, Takashi Yamada and Yasuhiko Itoh

1Department of Pediatrics, Nippon Medical School Hospital, Tokyo, Japan
2Department of Obstetrics and Gynecology, Nippon Medical School Hospital, Tokyo, Japan
3Department of Neonatology, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
4Department of Neonatology, Katsushika Red Cross Maternity Hospital, Tokyo, Japan
5Department of Obstetrics and Gynecology, Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan

Background: There has been significant progress in reducing perinatal mortality in Japan. However, due to changes in social conditions, the total fertility rate and the number of births are decreasing, whereas the number of low birth weight infants is increasing along with the number of newborn babies that require intensive care. Further, although the number of high-level perinatal medical centers has increased, so has that of infants who need long-term hospitalization. Conversely, the number of regular obstetric facilities has decreased, thus resulting in insufficient beds for neonatal care. To fill this gap, we established a neonatal intensive care unit (NICU) at our hospital. This study aimed to evaluate our new type by comparing the data from ours with that from other facilities.

Methods: The other facilities assessed were two high-level NICU facilities and two regular obstetric facilities. Data, including sex, gestational age, birth weight, Apgar scores at 1 and 5 min, delivery method, and presence of breathing disorders, were extracted from medical records.

Results: The birth weight and gestational age distributions were significantly different in the institutions, except in one facility without a NICU. The new NICU saw more infants with low birth weight and respiratory disorders than the regular obstetric facilities.

Conclusion: The comparison of birth weight and gestational age distributions, cases of respiratory disorders, and delivery methods indicate that our new NICU is positioned as an intermediate facility between a high-level NICU and a regular obstetrics facility. (J Nippon Med Sch 2021; 88: 283–290)

Key words: NICU, neonatal intensive care unit level, neonate, respiratory disorder

Introduction

In Japan, high-risk neonatal medical services were initiated in the 1950s, and the progress in neonatal medicine in recent decades has been remarkable. Due to the development of perinatal medical systems, respiratory aids for newborns, and artificial lung surfactants, Japan’s neonatal mortality rate has declined significantly, and is now one of the best in the world. Japan has an aging society with a declining birthrate, and the number of births has fallen below 1 million per year. Conversely, the number of high-risk pregnancies and low birth weight infants is increasing, in turn causing an increment in the number of neonates who need long-term hospitalization causing a critical lack of hospital beds. In addition, the number of obstetricians and gynecologists is considered to have decreased due to social issues such as litigation problems and overwork, along with the number of hospitals and clinics equipped for effective management.
during delivery. According to statistical data from the Japanese Ministry of Health, Labor and Welfare, the total number of hospitals and clinics equipped for childbirth decreased from 5,451 to 4,640 (by 15%) in 10 years from 2008 to 2017. Further, although neonatal intensive care units (NICUs) that manage premature and low birth weight infants are being established, maternity hospitals that manage normal newborns are also scarce. Currently, the total fertility rate in Japan continues to decline and is below 1.5 children per woman, and the proportion of low birth weight infants, which was approximately 5% in 1975, doubled by 2016 to approximately 10%.

To address this nationwide healthcare requirement, we established a NICU for high-risk deliveries at our hospital to bridge the gap between high-level NICUs and normal newborn facilities. The NICU + Growth Care Unit (GCU) of our hospital was started with 9 beds targeting newborns with a birth weight of 2,000 g or more after 35 weeks. However, after the unit was established, we found that some of the newborns were below this standard, and the criterion was changed to an estimated body weight of 2,000 g after 34 weeks of gestation.

Materials and Methods

Facilities Studied

The facilities investigated in this study were the recently established NICU (NICU 3 beds, GCU 6 beds) in the main university hospital (New NICU), the University Hospital’s Maternal and Child Perinatal Center (NICU 6 beds, GCU 12 beds; NICU-A), and the Mother and Child Perinatal Center (NICU 12 beds, GCU 20 beds; NICU-B) and the university hospital with no NICU (No-NICU-A) and community hospital with no NICU (No-NICU-B).

Our hospital is a prominent university hospital located in the center of Tokyo, wherein a considerable number of patients with congenital heart diseases have been treated by pediatricians and cardiac surgeons in the absence of a NICU. The recently established NICU is currently managed by pediatricians without full-time neonatologists. NICU-A is a university hospital branch that has a NICU with full-time neonatologists and pediatric surgeons who manage surgical cases. NICU-B is a facility specializing in high-level perinatal medical care that has a NICU with full-time neonatologists; however, there are no pediatric surgeons, and thus, surgical cases presenting to this center are transferred. No-NICU-A is a university hospital branch in the suburb and a general hospital equipped with an advanced emergency medical service center; however, there is no neonate specialist, although there is a facility with NICU nearby, and thus, high-risk pregnancies are not managed at No-NICU-A. No-NICU-B is a general hospital in Tokyo; however, there are no neonatologists, and the pediatricians only examine outpatients.

Subjects

In-hospital births at five facilities were included in the study, and transfers to other hospitals and stillbirths were excluded. For comparison, we referred to the Mother and Child Statistics Report of 2015 by Tokyo Metropolitan that was published in 2019. This report includes the information from all births in the Tokyo metropolitan area.

Data acquisition and Statistical Analyses

Data, including sex, gestational age, birth weight, Apgar score at 1 and 5 min, delivery method, and presence of breathing disorder, were extracted from medical records and investigated. Newborn information from 5 facilities and Tokyo metropolitan was compared by Fisher’s exact test. The distribution of the birth weights and gestational age in our hospital and the other four medical institutions was analyzed by the Mann-Whitney U test. When the P value was 0.05 or less, it was determined that there was a significant difference. Fisher’s exact test was used to assess the relative risk (RR) and odds ratio (OR) for respiratory disorders. Statistical analysis was performed using GraphPad Prism 8, and XLSTAT.

Results

Information regarding newborn babies at the 5 facilities from January 2018 to December 2018 and the data of Tokyo metropolitan are summarized in Table 1, and each facility’s admission criteria are compared in Table 2. The total number of newborns at our hospital was 466, with 238 girls (51.1%), 228 boys (48.9%); there were 12 twins (2.6%). The number of women with normal vaginal delivery was 244 (52.4%), scheduled cesarean section (SCS) 108 (23.2%), emergency cesarean section (ECS) 73 (15.7%), vacuum delivery (VD) 40 (8.6%), and forceps delivery (FD) 1 (0.2%). The birth weight of the infants managed in our hospital ranged from 1,630 g to 4,506 g (average 2,947.2 g, standard deviation 458, median 2,964 g), and 66 infants had low birth weight (14.2%). Smaller children were transferred to a high-level NICU. The gestational ages ranged from 34.0-42.1 weeks (mean 39.1 weeks, median 39.1 weeks). The Apgar score at 1 minute was generally normal (score ≥7; 437 [93.8%]), but indicated mild neonatal asphyxia (score, 4-6) in 10 (2.1%) and severe
Table 1 Comparison of the total number of deliveries, sex, delivery mode, birth weight, gestational age, and Apgar scores at the five target facilities

Information of delivery (Jan 1st – Dec 31st, 2018)	New NICU	NICU-A	NICU-B	No-NICU-A	No-NICU-B	Total birth of Tokyo (2016)	All Tokyo Perinatal Maternal and Child Medical Center (27 facilities, 2016)
Total number of births	466	757	537	117	259	111,962	29,451
Sex							
Female	238 (51.1%)	363 (48.0%)	240 (44.7%)	52 (44.4%)	119 (45.9%)	no data	no data
Male	228 (48.9%)	394 (52.0%)	297 (55.3%)	67 (57.3%)	140 (54.1%)		
Twin	12 (2.6%)	46 (6.1%)	70 (13.0%)	0 (0.0%)	0 (0.0%)		
Delivery mode							
NVD	244 (52.4%)	365 (48.2%)	167 (30.9%)	62 (53.0%)	186 (71.8%)	20,010 (68.0%)	4,727 (16.1%)
SCS	108 (23.2%)	129 (17.0%)	81 (15.1%)	23 (19.7%)	31 (12.0%)	4,714 (16.0%)	no data
ECS	73 (15.7%)	199 (26.3%)	252 (46.9%)	18 (15.4%)	31 (12.0%)	4,714 (16.0%)	no data
VD	40 (8.6%)	62 (8.2%)	35 (6.5%)	13 (11.1%)	6 (2.3%)		
FD	1 (0.2%)	3 (0.4%)	2 (0.4%)	1 (0.9%)	5 (1.9%)		
others	3 (0.6%)	1 (0.1%)	0 NA (0.0%)	0 NA (0.0%)	0 NA (0.0%)		
LBW	66 (14.2%)	99 (13.1%)	281 (52.3%)	12 (10.3%)	14 (5.4%)	9,528 (8.5%)	no data
VLBW	0 (0.0%)	49 (6.5%)	31 (5.8%)	0 NA (0.0%)	0 NA (0.0%)	447 (0.4%)	
ELBW	0 (0.0%)	31 (4.1%)	15 (2.8%)	0 NA (0.0%)	0 NA (0.0%)	318 (0.3%)	
Birth body weight (g)	range	1,630-4,506	520-4,576	470-4,030	2,300-4,300	1,730-4,134	no data
mean (SD)	2,947.2 (458.0)	2,813.3 (595.9)	2,517.1 (682.8)	2,995.7 (341.9)	3,104.7 (399.4)		
Gestational age (weeks)	range	34.0-41.9	25.1-41.9	24.0-42.0	35.4-41.4	36.3-41.9	
mean (SD)	39.1 (1.47)	38.2 (2.64)	36.9 (3.13)	39.0 (1.14)	39.6 (1.22)	39.7	
Apgar score							
1min Generally normal (≥ 7)	437 (93.8%)	732 (96.7%)	476 (88.6%)	115 (98.3%)	255 (98.5%)		
Mild neonatal asphyxia (4-6)	10 (2.1%)	19 (2.5%)	48 (8.9%)	1 (0.9%)	3 (1.2%)		
Severe neonatal asphyxia (<4)	23 (4.9%)	8 (1.1%)	17 (3.2%)	1 (0.9%)	1 (0.4%)		
5min Generally normal (≥ 7)	450 (96.6%)	754 (99.3%)	524 (97.6%)	117 (100.0%)	259 (100.0%)		
Mild neonatal asphyxia (4-6)	5 (1.1%)	3 (0.4%)	14 (2.6%)	0 NA (0.0%)	0 NA (0.0%)	0 NA (0.0%)	
Severe neonatal asphyxia (<4)	4 (0.9%)	0 NA (0.0%)	3 (0.6%)	0 NA (0.0%)	0 NA (0.0%)	0 NA (0.0%)	

NVD: normal vaginal delivery; SCS: scheduled cesarean section; ECS: emergency cesarean section; VD: vacuum delivery; FD: forceps delivery; NA: not applicable
ns, P>0.05; *, P ≤0.05; **, P ≤0.01; ***, P ≤0.001; ****, P ≤0.0001
neonatal asphyxia (score, <4) in 23 (4.9%). Similarly, the Apgar score at 5 minutes was generally normal (≥7; 450 [96.6%]), but indicated mild neonatal asphyxia in 5 (1.1%) and severe neonatal asphyxia in 4 (0.9%). Information regarding the other four facilities are shown in Table 1.

In birth body weight comparison, NICU-B managed significantly more LBW than other facilities. The rate of LBW managed in our NICU was significantly higher frequency than the LBW rate of Total birth of Tokyo metropolitan (in 2015). In delivery mode comparison, the frequency of NVD was less than the frequency of All Tokyo Perinatal Maternal and Child Medical Center (27 facilities, in 2016), and the frequency of cesarean section of our NICU was more.

The distribution of the birth weight and gestational age was not significantly different between No-NICU-A and our hospital’s NICU. Conversely, the distribution was different in all the other facilities when compared with that in our hospital. The distribution of gestational week was not significantly different between No-NICU-A and our hospital’s NICU. However, the distribution was significantly different from NICU-A, NICU-B and No-NICU-B (Fig. 1).

It seems that there is no significant difference between no-NICU-A and our NICU, However, in fact, there is a big difference between these facilities. In our hospital, there are 8 cases of congenital heart disease; atrioventricular septal defect, tetralogy of Fallot, Transposition of the great arteries, Ventricular septal defect, etc. Five cases have been operated by our pediatric cardiovascular surgeons, and the other three cases have been followed up in pediatric outpatient. On the other hand, in no-NICU-A, if a fetus requiring cardiac surgery is found out with echo diagnosis, mother will be referred to another hospital at the time. And If they are discovered after birth, they will be transported to the high level NICU.

Next, the RR and OR for respiratory disorders, including respiratory distress syndrome, transient tachypnea of the newborn, and meconium aspiration syndrome, were assessed according to groups based on the delivery method: emergency cesarean section (ECS), scheduled cesarean section (SCS), and normal vaginal delivery (NVD) (Table 3a, b, c, d).

No significant difference between ECS and SCS was noted in our hospital’s NICU. In the comparison between ECS and NVD, the RR was 4.2 and OR was 4.7, and that between SCS and NVD showed an RR of 3.7 and OR of 4.1 (Table 3c). There was a significant difference between ECS and SCS + NVD with an RR of 2.3 and OR of 2.5 (Table 3d).

Discussion

When comparing the five facilities and the data of Tokyo metropolitan with regards to the method of delivery, the new NICU in our hospital and no-NICU-A had a significantly higher frequency of SCS than in other institutions and All Tokyo Perinatal Maternal and Child Medical Center, which are high-level perinatal facilities (Table 1). Conversely, the frequency of ECS was significantly higher in NICU-A and NICU-B than in other facilities. In addition, two facilities, NICU-A and NICU-B, delivered several twins, especially NICU-B, in which the percentage exceed 10%. These two NICU facilities saw many ECS cases with high-risk deliveries such as those of preterm and low birth weight infants and twins, and pregnancies with complications. In addition, since No-NICU-A saw a small number of deliveries and has no neo-
Table 3a, b The number of respiratory disorder cases according to the delivery method at the five target facilities

Facility Type	NICU	NICU-A	NICU-B	no NICU-A	no NICU-B			
	RD	NP	RD	NP	RD	NP	RD	NP
ECS	10	63	60	139	194	58	4	14
SCS	13	94	12	117	53	28	0	23
NVD	8	236	29	336	79	88	1	61
VD	3	37	4	58	20	15	1	12
FD	0	1	0	3	1	1	0	1
Total	34	431	105	653	347	190	6	111

Table 3c, d Relative risks and odds ratios between delivery modes and respiratory disorders

Facility Type	NICU	NICU-A	NICU-B	no NICU-A	no NICU-B			
	RD	NP	RD	NP	RD	NP		
ECS	10	63	29	127	142	52	4	14
SCS	13	94	22	117	53	81	1	61
NVD	8	236	4	58	20	15	1	12
VD	3	37	1	1	0	1	0	1
FD	0	1	0	3	1	1	0	1
Total	34	431	67	641	284	177	6	111

ECS: emergency Caesarean section SCS: scheduled Caesarean section NVD: normal vaginal delivery VD: vacuum delivery FD: forceps delivery RD: respiratory disorder NP: nothing particular

“ECS vs. SCS” comparison for No-NICU-A could not be conducted because there were no cases of respiratory disorders associated with SCS.

ECS: emergency Caesarean section SCS: scheduled Caesarean section NVD: normal vaginal delivery VD: vacuum delivery FD: forceps delivery RD: respiratory disorder NP: nothing particular

rs, P>0.05; *, P≤0.05; **, P≤0.01; ***, P≤0.001; ****, P≤0.0001

J Nippon Med Sch 2021; 88 (4) 287
Fig. 1

(a) Birth weight dispersion dots plot at the five facilities. b, Gestational age dispersion dots plot at the five facilities. Gray zone represents full term (37-40 weeks).

The horizontal lines represent the medians.

ns, P>0.05; **, P ≤0.01; ***, P ≤0.001; ****, P ≤0.0001

HBW: high birth weight; NBW: normal birth weight; LBW: low birth weight; VLBW: very low birth weight; ELBW: extremely low birth weight.
A new NICU was recently established at our hospital for high-risk deliveries to bridge the gap between high-level NICUs and regular obstetric facilities. Our facility is configured to bridge the gap between high-level NICUs and regular obstetric facilities without NICU. And it is hoped that the work-life balance for the obstetrician, neonatologist and pediatrician will be improved.

Conflict of Interest: The authors declare that they have no conflict of interest.

References
1. Kelly LE, Shah PS, Hakansson S, et al. Perinatal health services organization for preterm births: a multinational comparison. J Perinatol. 2017 Jul;37(7):762–8.
2. Kusuda S, Fujimura M, Sakuma I, et al. Morbidity and mortality of infants with very low birth weight in Japan: center variation. Pediatrics. 2006 Oct;118(4):e1130–8.
3. Rawlings JS, Smith FR. Transient tachypnea of the newborn. An analysis of neonatal and obstetric risk factors. Am J Dis Child [Internet]. 1984 Sep;138(9):869–71. Available from: https://www.ncbi.nlm.nih.gov/pubmed/6540983
4. Tuttidi E, Gries K, Bucheler M, Mischelwitz B, Schlosser RL, Gortner L. Impact of labor on outcomes in transient tachypnea of the newborn: population-based study. Pediatrics. 2010 Mar;125(3):e577–83.
5. Fujiwara T, Konishi M, Chida S, et al. Surfactant replacement therapy with a single postventilatory dose of a reconstituted bovine surfactant in preterm neonates with respiratory distress syndrome: final analysis of a multicenter, double-blind, randomized trial and comparison with similar trials. The Surfactant-TA Study Group. Pediatrics. 1990 Nov;86(5):753–64.
6. Amizuka T, Wagakuri no shusanki iryo no mondai ten to kutsu wo chushin to shita sanfujinkai no shuro jokyo [The 2nd Survey on Working Status of Obstetricians and Gynecologists Focusing on Female Doctor—Absence of neonatal intensive care units in secondary medical care zones is an independent risk factor of high perinatal morbidity in Japan]. J Obstet Gynaecol Res. 2016 Oct;42(10):1304–9.
8. Eguchi NNM, Satoh K, Deguchi M, Sawa R. Dai 2 kai joseishi wo chushin to shita sanfujinkai no shuro jokyo ni tsuiteno chosa —Joseishi no keizokuteki shuro ni mukete— [The 2nd Survey on Working Status of Obstetricians and Gynecologists Focusing on Female Doctor — For continuous employment of female doctors—]. Nichiisoken Working Paper. 2014. Japanese.
9. Japanese Ministry of Health, Labor and Welfare. Heisei 20 (2018) nen iroyoshetsu (Dotai) chosa, byoin hokoku no gaikyo [Overview of health care facility (dynamic) survey and hospital report in 2018] [Internet]. 2019. Japanese.
10. Division of Emergency Disaster Medical, Department of Welfare and Health Bureau Medical Policy, Tokyo Metropolitan. Boshiryo Tokei 2016 ban (2015 nenji shineijika tokei) [Maternal and child medical statistics (2015 Neonatal Statistics)]. Japanese.

Conclusion
A new NICU was recently established at our hospital for high-risk deliveries to bridge the gap between high-level NICUs and regular obstetric facilities without a NICU. Infants over 34 weeks of gestational age were enrolled for this analysis. Based on our comparative study, our new NICU was positioned as an intermediate facility between a high-level NICU and a regular obstetric facility without NICU. The number of deliveries is on the decline, but high-risk deliveries are increasing in recent Japan.
11. Levine EM, Ghai V, Barton JJ, Strom CM. Mode of delivery and risk of respiratory diseases in newborns. Obstet Gynecol. 2001 Mar;97(3):439-42.
12. Kolas T, Saugstad OD, Daltveit AK, Nilsen ST, Oian P. Planned cesarean versus planned vaginal delivery at term: comparison of newborn infant outcomes. Am J Obstet Gynecol. 2006 Dec;195(6):1538-43.
13. Tamura M. NICU no seibi oyobi NICU kimmushi no jūsoku ni kansuru hokoku [Report on the maintenance of NICU and the satisfaction of NICU doctors]. 2017. Japanese.

Journal of Nippon Medical School has adopted the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) for this article. The Medical Association of Nippon Medical School remains the copyright holder of all articles. Anyone may download, reuse, copy, reprint, or distribute articles for non-profit purposes under this license, on condition that the authors of the articles are properly credited.