Isolation and characterization of new polymorphic microsatellite markers for the tick Ixodes ricinus (Acari, Ixodidae)

Valérie Noël, E. Léger, E. Gómez-Díaz, A.-M. Risterucci, Karen McCoy

To cite this version:
Valérie Noël, E. Léger, E. Gómez-Díaz, A.-M. Risterucci, Karen McCoy. Isolation and characterization of new polymorphic microsatellite markers for the tick Ixodes ricinus (Acari, Ixodidae). Acarologia, Acarologia, 2012, 52 (2), pp.123-128. 10.1051/acarologia/20122041. hal-01566971

HAL Id: hal-01566971
https://hal.archives-ouvertes.fr/hal-01566971
Submitted on 21 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2017 (Volume 57): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2015): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
ISOLATION AND CHARACTERIZATION OF NEW POLYMORPHIC MICROSATellite MARKERS FOR THE TICK IXODES RICINUS (ACARI: IXODIDAE)

Valérie NOEL1*, Elsa LEGER1, Elena GÓMEZ-DÍAZ1,3, Ange-Marie RISTERUCCI2 and Karen D. MCCOY1

(Received 02 January 2012; accepted 01 March 2012; published online 22 June 2012)

1 Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle, UMR 5290 CNRS-IRD-UM1-UM2, Centre IRD, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France. (* corresponding author). valerie.noel@ird.fr; elsa.leger@ird.fr; elegomezdiaz@gmail.com; karen.mccoy@ird.fr
2 UMR Amélioration Génétique et Adaptation des Plantes, CIRAD, TA A 108/03 avenue Agropolis, 34398 Montpellier Cedex 5, France. risterucci@cirad.fr
3 Present address: Institut de Biologia Evolutiva (IBE, CSIC-UPF). Passeig Marítim de la Barceloneta, 37-49. E-08003 Barcelona, Spain.

ABSTRACT — Nine microsatellite markers were isolated from unfed larvae of *Ixodes ricinus* and were tested on two populations of nymphs collected on roe deer (N=21) and birds (N=39) in a French suburban forest. All markers were polymorphic, with limited evidence for deviations from linkage equilibrium. In accordance with previous markers developed for this species, we found large heterozygote deficits for six of the nine loci. Deficits were of the same order of magnitude within a tick infrapopulation, suggesting that population-level estimates were not due to a Wahlund effect among individual hosts, but more likely to technical problems (i.e., null alleles due to mutations in the flanking regions of the microsatellites). Although micro-geographic substructure (e.g., homogamy within infrapopulations) can not be ruled out, it is possible that null alleles could be an inherent problem associated with this tick species and specific genome-level studies are called for. Despite the possible presence of null alleles, the precision of population genetic estimates was improved by the addition of the newly-developed markers making them a useful addition for studying the population ecology of *I. ricinus*.

KEYWORDS — Ectoparasite; Genetic markers; Population genetics; Tick-borne disease

Ticks are haematophagous ectoparasites of major importance as vectors of human disease (Parola and Raoult 2001). *Ixodes ricinus* (Arthropoda, Acari, Ixodidae) is the main vector species in Europe, transmitting numerous human and livestock diseases including Lyme disease, tick-borne encephalitis, anaplasmosis and babesiosis (e.g., Stanek 2009). Efforts to understand the ecology of this tick in relation to disease transmission is difficult under natural conditions. This is particularly true for estimating patterns of dispersal and host use, two essential factors for understanding disease risk (McCoy 2008). Indirect methods that employ genetic markers are currently one of the best options to overcome the inherent difficulty in studying parasitic organisms, but require certain assumptions in order to make robust inferences (De Meuws et al. 2007). Microsatellite markers have been previously described and applied to populations of *I. ricinus* (Delaye et al. 1998, De Meuws et al. 2002, 2004a, 2004b, Røed
However, analyses using these markers have revealed significant deviations from Hardy-Weinberg proportions within populations. Hypotheses to explain these heterozygote deficits are numerous and not mutually exclusive: null alleles, short allele dominance, Wahlund effects or homogamy (Kempf et al. 2009). From previous studies, it is clear that technical problems are frequent (De Meeûs et al. 2004a). However, even after accounting for these problems, deficits are still apparent within populations suggesting the presence of population substructure (De Meeûs et al. 2004a, Kempf et al. 2010). Here, we outline the development of additional microsatellite markers for *I. ricinus* in an attempt to improve the precision of population genetic estimates used to study the biological factors that may be behind these patterns.

New microsatellite loci were isolated from a microsatellite-enriched library according to Billotte et al. (1999). We extracted Genomic DNA from unfed larvae with DNeasy Blood and Tissue Kit (Qiagen) following manufacturer’s instructions. DNA was restricted by HaeIII and fragments were ligated to Rsa21 and Rsa25 self-complementary primers (5'-CTCTTGCTTACCGTGACTA-3' and 5'-TAGTCCACCCGTAAAGACGCACA-3') and amplified by Polymerase Chain Reaction (PCR). Products were hybridized to a biotin-labelled I$_3$(GA)$_8$ probe and Streptavidin MagnetSphere Paramagnetic Particles (Promega). Enriched fragments were amplified by PCR, cloned in pGEM-T (Promega) and transformed in XL1-Blue competent cells (Stratagene). Recombinant colonies were randomly selected and amplified by PCR with Rsa21 primers. PCR products were run on a 1.1% agarose gel and transferred onto a Hybond N+ membrane (Amersham) which were hybridized with $[^{32}$P]dATP end-labelled (GA)$_{15}$ and (GT)$_{15}$ probes to verify amplification and improve fragment selection. Positive clones of differing fragment size were sent for sequencing (Beckman Coulter Ge-

Locus	Genbank Accession No.	Repeat motif	Primer sequence (5’-3’)	Size range	A_R
IRic04	JF724082	(AC)6(CA)7	F : ACGGGATGTAAAATTTGG		
R : GATCGACGAATGATCTCTG					
IRic05	JF724083	(GA)8	F : CTTTACCAACCTGTGCAC		
R : GAGCCAATTTITATGCAC					
IRic07	JQ349034	(CA)6(AC)7/(ACA)5 (ACACAA)3	F : TATTTCTTCTTCTGTG		
R : TGTATCTTCCAACAACGA					
IRic08	JF724084	(TG)9	F : TCAATGCTCCCTCCAGTACC		
R : AGAAAATAAGCCGGCCAGAAA					
IRic09	JQ349035	(CT)10	F : AAAAAACCCCAAGAAAACAA		
R : GGGAAGGAAAAATATGCTAA					
IRic11	JF724085	(AC)8	F : AGCTACGAGACTACATCAAAA		
R : TCAAAGACAGTGGAGGCTTA					
IRic13	JQ349036	(AC)8	F : ATGACGCGAGCCGAGATAAT		
R : TCTATATAGGGGTTGGCCGGAAT					
IRic17	JQ349037	(CA)10	F : ATAGTGAGCTTGTGAGCAAT		
R : CTGCCGTTTTAAATGAAAGTG					
IRic18	JQ349038	(CT)11	F : GTCCAGTCCTTTGACTCT		
R : GGAAAAAGGACCAAGAAA |

A_R: allelic richness based on 19 diploid individuals
nomics). Sequences were analysed and primers were designed using the SAT software (Dereeper et al. 2007).

We chose 19 loci for preliminary tests after checking that they differed from those described in previous studies. We performed PCR amplifications following a M13 protocol where each forward primer is 5’-tagged with the M13 sequence (5’-CACGACGTGTTAAAACGAC-3’) and a 5’-dye labelled M13 is added to the reaction mix. The 10 µL PCR mixture contained 20–50 ng of genomic DNA, 25 µM of each dNTP (Roche Diagnostics), 0.15 µM of each primer, 0.15 µM of labelled M13, 1 µL of 10x PCR buffer (Roche Diagnostics) and 0.25 U of Taq DNA polymerase (Roche Diagnostics). Amplifications were performed using a “touch down” PCR procedure consisting of an initial 2 min denaturation step at 94 °C, followed by 16 cycles with 45 s at 94 °C, 45 s at 60 °C with this annealing temperature decreasing by 0.5 °C at each cycle, 30 s at 72 °C, then 35 cycles with 45 s at 94 °C, 45 s at 52 °C, 30 s at 72 °C (25 cycles for IRic04, IRic05 and IRic18) and a final extension step of 10 mins at 72 °C. For genotyping, 0.5 µL of PCR products were pooled with 13 µL of Hi-Di Formamide and 0.25 µL of the GeneScan-500LIZ Size Standard (Applied Biosystems) and analysed on an ABI Prism 3130XL Genetic Analyser (Applied Biosystems). Raw data was sized using the associated GENEMAPPER software V4.0.

Of the 19 loci, we selected nine polymorphic loci that displayed good amplification results. These microsatellite loci were tested on two populations of nymphs from a suburban forest (Forêt de Sénart, Ile-de-France), one collected from five roe deer (N=21) and the other from twenty passerine birds (N=39). We considered these samples as representing potentially independent populations based on previous work that indicated the presence of host-associated races in this tick in some populations (Kempf et al. 2011). Data were analysed using GENEPOP 4.0.10 (Raymond and Rousset 1995) and FSTAT 2.9.3.2 (Goudet 1995). All markers were tested for independence using exact probability tests and for Hardy-Weinberg proportions by calculating Weir and Cocke...
TABLE 2: Tests of Hardy-Weinberg proportions for 14 microsatellite loci (nine new markers, IR25, IR27, IR32 and IR39 from Delaye et al. 1998, and IRN37 from Røed et al. 2006) in two nymphal populations of *I. ricinus* sampled respectively from birds and roe deer and in a tick infrapopulation from a single roe deer host.

Locus	Host	N	Ho	Hs	Fis	P value
IRic04	Bird	36	0.389	0.947	0.589	0.0000*
	Roe deer	20	0.650	0.963	0.325	0.0000*
	Roe deer infrapopulation	12	0.500	0.977	0.488	0.0000*
IRic05	Bird	33	0.727	0.813	0.105	0.1002
	Roe deer	20	0.850	0.836	-0.017	0.8174
	Roe deer infrapopulation	12	0.917	0.845	-0.085	0.9493
IRic07	Bird	38	0.684	0.862	0.207	0.0071
	Roe deer	20	0.650	0.795	0.182	0.4144
	Roe deer infrapopulation	11	0.545	0.723	0.245	0.3944
IRic08	Bird	36	0.667	0.856	0.221	0.0176
	Roe deer	21	0.619	0.886	0.301	0.0163
	Roe deer infrapopulation	12	0.500	0.822	0.392	0.0845
IRic09	Bird	39	0.615	0.923	0.334	0.0000*
	Roe deer	21	0.810	0.907	0.108	0.1134
	Roe deer infrapopulation	12	0.833	0.898	0.072	0.6401
IRic11	Bird	39	0.385	0.891	0.568	0.0000*
	Roe deer	19	0.263	0.943	0.721	0.0000*
	Roe deer infrapopulation	10	0.300	0.933	0.679	0.0000*
IRic13	Bird	33	0.273	0.718	0.620	0.0000*
	Roe deer	21	0.286	0.815	0.650	0.0000*
	Roe deer infrapopulation	12	0.250	0.864	0.711	0.0000*
IRic17	Bird	32	0.063	0.518	0.879	0.0000*
	Roe deer	19	0.053	0.585	0.910	0.0000*
	Roe deer infrapopulation	12	0.000	0.621	1.000	0.0000*
IRic18	Bird	37	0.432	0.922	0.531	0.0000*
	Roe deer	21	0.381	0.842	0.547	0.0000*
	Roe deer infrapopulation	12	0.417	0.883	0.528	0.0002*
IR25	Bird	33	0.455	0.895	0.492	0.0000*
	Roe deer	18	0.500	0.884	0.434	0.0000*
	Roe deer infrapopulation	11	0.545	0.864	0.368	0.0087

N: number of genotyped individuals
Ho: observed heterozygosity
Hs: expected heterozygosity
Fis: Weir and Cockerham’s (1984) estimator
P-value: Fis exact probability estimated by the Markov chain method
*: significant test for deviation from Hardy-Weinberg proportions after Bonferroni correction
Null alleles therefore seem to be common in this species and will require genome-level information in order to further understand their source. However, despite these technical issues, our new markers slightly improve the precision of previous population genetic estimates (Global F_{IS} estimate across loci and populations for pre-existing markers $F_{IS} = 0.549 \pm 0.066$, for new markers $F_{IS} = 0.418 \pm 0.078$, for all markers $F_{IS} = 0.464 \pm 0.057$), with the addition of one marker that presented no indication of null alleles in either of the examined populations (IRic05). Thus, in tandem with appropriate sampling strategies, these markers should represent useful additional tools for studying the ecology of I. ricinus populations and their role as disease vectors.

ACKNOWLEDGEMENTS

We thank Sarah Bonnet (INRA, Maisons-Alfort) for providing tick larvae for marker development, and Jean-Louis Chapuis and Pierre-Yves Henry (MNHN, Paris) for tick sampling. Christine Chevillon and Patrick Durand are thanked for assistance with marker development. Frédérique Cerqueira, Erick Desmarais (Labex "Centre Méditerranéen de l’Environnement et de la Biodiversité"), Elise Vauzourin, and Z. Sun (Queens University, Canada) assisted with genotyping. Jenna Boulinier helped with manuscript revisions. We thank two anonymous reviewers for comments. Financial support was provided by the CNRS and the IRD. E.L. was supported by a PhD fellowship from the University of Montpellier 1, and E.G.-D. by a Marie Curie fellowship (No. PIEF-GA-2008-221243).

REFERENCES

Billotte N., Lagoda P.J.L., Risterucci A.-M., Baurens F.C. 1999 — Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops — Fruits, 54: 277-288.

Delaye C., Aeschlimann A., Renaud F., Rosenthal B., De Meeus T. 1998 — Isolation and characterization of microsatellite markers in the Ixodes ricinus complex (Acar: Ixodidae) — Mol. Ecol., 7: 360-361.

De Meeus T., Béati L., Delaye C., Aeschlimann A., Renaud F. 2002 — Sex-biased genetic structure in the vector of
Lyme disease, *Ixodes ricinus* — Evolution, 56: 1802-1807.

De Meeûs T., Humair P.F., Grunau C., Delaye C., Renaud F. 2004a — Non-Mendelian transmission of alleles at microsatellite loci: an example in *Ixodes ricinus*, the vector of Lyme disease — Int. J. Parasitol. 34: 943-950. doi:10.1016/j.ijpara.2004.04.006

De Meeûs T., Lorimier Y., Renaud F. 2004b — Lyme borreliosis agents and the genetics and sex of their vector, *Ixodes ricinus* — Microbes Infect., 6: 299-304. doi:10.1016/j.micinf.2003.12.005

De Meeûs T., McCoy K.D., Prugnolle F., Chevillon C., Du-rand P., Hurtrez-Bousses S., Renaud F. 2007 — Population genetics and molecular epidemiology or how to "débusquer la bête" — Infect. Genet. Evol., 7: 308-332.

De Meeûs T., Guegan J.F., Teriokhin A.T. 2009 — Multi-Test V.1.2, a program to binomially combine independent tests and performance comparison with other related methods on proportional data — Bmc Bioinformatics, 10.

Dereeper A., Argout X., Billot C., Rami J.F., Ruiz M. 2007 — SAT, a flexible and optimized Web application for SSR marker development — BMC Bioinfor., 8: 465. doi:10.1186/1471-2105-8-465

Goudet J. 1995 — FSTAT (Version 1.2): A computer program to calculate F-statistics — Journal of Heredity, 86: 485-486.

Kempf F., De Meeus T., Arnathau C., Degelh B., McCoy K.D. 2009 — Assortative Pairing in *Ixodes ricinus* (Acar: Ixodidae), the European Vector of Lyme Borreliosis — J. Med. Entomol., 46: 471-474. doi:10.1603/033.046.0309

Kempf F., McCoy K.D., De Meeus T. 2010 — Wahlund effects and sex-biased dispersal in *Ixodes ricinus*, the European vector of Lyme borreliosis: New tools for old data — Infect. Genet. Evol., 10: 989-997. doi:10.1016/j.meegid.2010.06.003

Kempf F., De Meeus T., Vaumourin E., Noel V., Tarageľová V., Plantard O., Heylen D., Eyraud C., Chevillon C., McCoy, K.D. 2011 — Host races in *Ixodes ricinus*, the European vector of Lyme borreliosis — Infect. Genet. Evol., 11: 2043-2048. doi:10.1016/j.meegid.2011.09.016

McCoy K.D. 2008 — The population genetic structure of vectors and our understanding of disease epidemiology — Parasite, 15: 444-448.

Parola P., Raoult D. 2001 — Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. (vol 32, pg 897, 2001) — Clinical Infectious Diseases, 33: 749-749.

Roed K.H., Hasle G., Midthjell V., Skretting G., Leinaas H.P. 2006 — Identification and characterization of 17 microsatellite primers for the tick, *Ixodes ricinus*, using enriched genomic libraries — Mol. Ecol. Notes, 6: 1165-1167. doi:10.1111/j.1471-8286.2006.01475.x

Raymond M., Rousset F. 1995 — GenePop (Version-1.2) — Population-Genetics Software for Exact Tests and Ecumenicism — J. Heredity, 86: 248-249.

Stanek G. 2009 — Pandora’s Box: pathogens in *Ixodes ricinus* ticks in Central Europe — Wiener Klinische Wochenschrift, 121: 673-683. doi:10.1007/s00508-009-1281-9

Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. 2004 — MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data — Mol. Ecol. Notes, 4: 535-538. doi:10.1111/j.1471-8286.2004.00684.x

Weir B.S., Cockerham C.C. 1984 — Estimating F-Statistics for the Analysis of Population-Structure — Evolution, 38: 1358-1370.

COPYRIGHT

Noel V. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.