Supplementary Information for “Rapid genotype imputation from sequence without reference panels”

Davies et al.

May 11, 2016

Contents

1 Supplementary Note ... 2
 1.1 Pseudo-haploid model .. 3
 1.2 Maximization and parameter updating 6
 1.2.1 Useful Variables .. 7
 1.2.2 Haploid model ... 8
 1.2.3 Pseudo-haploid model 10
 1.2.4 Diploid model ... 11
 1.3 Efficient calculation of forward backward variables 14
 1.4 Initialization .. 16
 1.5 Parameter bounding .. 16
 1.6 Heuristics ... 16
 1.7 Guidance behind parameter options 17

2 Supplementary Tables .. 19
1 Supplementary Note

Definitions for commonly used variables

Symbol	Definition	
K	Number of ancestral or founder haplotypes	
T	Number of SNPs in region	
N	Number of sample individuals	
G	Number of generations since population founding	
R_r	Read with index r which spans J_r SNPs, with SNP indices u_r, sequenced bases s_r and base qualities b_r, or $R_r = \{u_r, s_r, b_r\}$	
J_r	Number of SNPs spanned by read R_r	
c_r	Central SNP for read R_r	
O_t	Set of reads with central SNP t, $O_t = \{R_r	c_r = t\}$
O	Set of observations for each SNP t on the chromosome, $O = \{O_t	t = 1, ..., T\}$
$u_{r,j}$	For SNP j in read R_r, its index with respect to the chromosomal listing of SNPs (e.g., If the physical position of SNP t in the region is L_t for $t = 1, ..., T$, then SNP j in read R_r has physical position $L_{u_{r,j}}$)	
$s_{r,j}$	Sequencing base for SNP j in read R_r, with $s_{r,j} = 1$ for the alternate base and 0 for the reference base	
$b_{r,j}$	Base quality for SNP j in read R_r	
$R_{r,j}$	Subset of read R_r for SNP j, or $R_{r,j} = \{u_{r,j}, s_{r,j}, b_{r,j}\}$	
$\phi_{r,j}^i$	Probability of SNP j from read R_r coming from an underlying genotype i, or $P(s_{r,j}	g = i)$
I_t	Variable counting the number of recombinations that take place between SNPs t and $t + 1$	
$H_{r,t}$	Variable that takes value 1 if SNP j from read R_r is the alternate base and value 0 if it is the reference base	
H_r	Variable that takes value 1 if read R_r comes from the maternal haplotype and 2 if it comes from the paternal haplotype	
π_k	Probability of starting in state k at the first SNP	
σ_t	Recombination distance between SNPs t and $t + 1$	
$\alpha_{t,k}$	Probability of switching into state k between SNPs t and $t + 1$	
$\theta_{t,k}$	Probability that haplotype k emits the alternate base at SNP t	
λ	Parameters of the model $\lambda = \{\pi, \sigma, \alpha, \theta\}$	

In the main text, we described the model by showing one would simulate it, and more formally laid out the details necessary to generate probabilities under the model. Here, we further specify the model by describing how the expectation of the complete data likelihood can be used in an EM framework to provide updated parameters λ^{t+1} which guarantee no decrease in the likelihood of the observed data. Doing this requires state space augmentation and calculating expectations over hidden states in the Markov model. Here we show how these
expectations are calculated for the haploid, diploid and pseudo-haploid cases. Later, initialization, bounding, and heuristics of the model are given as well.

First, we give a brief review of notation (and see list above). We consider a genomic region with \(T \) SNPs, and sequencing reads from \(N \) individuals. For each individual, we index their reads with \(r \) so we speak of read \(R_r \). We define a central SNP \(c_r \) for read \(R_r \), so that for each SNP in the region, we observe a set of reads, \(O_t = \{ R_r | c_r = t \} \). Read \(R_r \) consists of a triplet of vectors: \(u_r \), the indices; \(s_r \) the reference (0) or alternate (1) bases; and the base qualities \(b_r \). From this we use \(\phi_r^{i,j} \), the probability SNP \(j \) in read \(R_r \) has underlying genotype \(i \).

We model our population as having been founded \(G \) generations ago with \(K \) ancestral haplotypes. Sampling a set of observations for an individual can be thought of as 1) choosing an initial haplotype \(k \) according to \(\pi_k \), the prior probability of starting in state \(k \); 2) choosing where to switch states according to \(\sigma_t \), the genetic distance between SNPs \(t \) and \(t+1 \); 3) choosing which haplotype \(k \) to sample at recombination breakpoints according to \(\alpha_{t,k} \), the local probability of switching into haplotype \(k \) at SNP \(t+1 \); and 4) sampling reads by i) choosing read breakpoints and determining \(u_{r,j} \), the indices of the SNPs in the read; ii) obtaining \(b_{r,j} \), the base qualities of the SNPs in the read; iii) choosing the real bases of the SNPs in the read according to \(\theta_{u_{r,j},k} \), the probability that haplotype \(k \) emits the alternate base at SNP \(u_{r,j} \); iv) observing sequenced bases \(s_{r,j} \) according to \(b_{r,j} \) and the real bases.

In the unaugmented hidden state space, the haploid model corresponds to a set of \(k_t \in \{1, \ldots, K\} \forall t = 1, \ldots, T \). For the diploid model, this consists of a set of pairs of states \((k_{t,1}, k_{t,2}) \), while for the pseudo-haploid mode, it is two hidden states \(k_{t,1} \) and \(k_{t,2} \). In the augmented hidden state space, we further consider knowledge of: how many recombinations occur between SNPs \(t \) and \(t+1 \), defined by variable \(I_t \); whether base \(j \) of read \(R_r \) is a reference or alternate base, defined by variable \(H_j \); and whether read \(R_r \) comes from the maternal or paternal haplotype, defined by variable \(H_r \). Utilization of the augmented hidden state space is necessary for updating parameters, as explained below.

1.1 Pseudo-haploid model

The diploid model presented here and used in fastPHASE and other similar algorithms suffers from a quadratic computational complexity due to the need to sum over \(K^2 \) possible diploid states at each site. With sequencing reads, the observed data fundamentally comes from either the first (e.g. maternal) or second (e.g. paternal) haplotype. If we had labels for each read as to whether they came from the maternal or paternal haplotype, we would have separable likelihoods, and could use the maternal reads to infer the maternal states, and likewise for the paternal reads and paternal states, which would have computational cost proportional to \(2 \times K \) as opposed to \(K^2 \).

In the diploid EM algorithm, we use the current set of parameters to generate the posterior probability of the pair of hidden states given the observations, and use these to generate a new set of parameters that maximize the
likelihood. An alternative approach is to average over sampled hidden states realized through a hypothetical Gibbs sampler that i) samples labels conditional on states, observations, and parameters, and ii) samples states conditional on labels, observations and parameters. Implementing such a Gibbs sampler in reality would be computationally unwise, as it would likely take at least as long as the original diploid EM. However, with certain assumptions about the posterior distribution of the labels, we can approximate the posterior distribution of the hidden states quickly.

Let \(q_1 \) be the full hidden state for haplotype 1, the maternal haplotype. Let \(H_r \) be the label for read \(r \) with \(H_r = 1 \) corresponding to the maternal haplotype and \(H_r = 2 \) corresponding to the paternal haplotype. Let \(O = \{ R_r \} \) be the set of all reads, with \(|O|\) reads in total, and let \(H \) correspond to an assignment of labels \(H \in \mathcal{H} = \{1, 2\}^{\mid O\mid} \). Let \(R_h = \{ R_r \mid H_r = h \} \) be the set of reads with label \(h \). Then we have

\[
P(q_1 \mid O, \lambda) = \sum_{H \in \mathcal{H}} P(q_1, H \mid O, \lambda) \tag{1}
\]

\[
= \sum_{H \in \mathcal{H}} P(q_1 \mid H, O, \lambda) P(H \mid O, \lambda) \tag{2}
\]

\[
= \sum_{H \in \mathcal{H}} P(q_1 \mid H, O, \lambda) \prod_{r=1}^{|O|} P(H_r \mid O, \lambda) \tag{3}
\]

where the last equality requires the approximation that the probability of the labels are independent of each other. Now, the probability of a state given labels and reads can be further written as

\[
P(q_1 \mid H, O, \lambda) = \frac{P(O \mid H, q_1, \lambda) P(q_1 \mid H, \lambda)}{P(O \mid H, \lambda)} \tag{4}
\]

\[
= \frac{\left(\prod_{r:H_r=1} P(R_r \mid q_1, \lambda) \right) P(R_2 \mid \text{hap2}, \lambda) P(q_1 \mid \lambda)}{P(R_1 \mid \text{hap1}, \lambda) P(R_2 \mid \text{hap2}, \lambda)} \tag{5}
\]

where we use \(P(q_1 \mid H, \lambda) = P(q_1 \mid \lambda) \), since labels don’t affect state probabilities without observations, and where \((R_1 \mid \text{hap1}, \lambda) \) is the probability of observing the set of reads labeled as coming from haplotype 1, conditional on their having come from haplotype 1. If we further approximate \(P(R_1 \mid \text{hap1}, \lambda) = \prod_{r:H_r=1} P(R_r \mid \text{hap1}, \lambda) \), and approximate \(P(R_r \mid \text{hap1}, \lambda) = P(R_r \mid \lambda) \), we get that

\[
P(q_1, H, O, \lambda) = P(q_1 \mid \lambda) \prod_{r:H_r=1} \frac{(P(R_r \mid q_1 \mid \lambda))}{(P(R_r \mid \lambda))} \tag{6}
\]
This gives us that

$$P(q_1|O, \lambda) = \left(\sum_{H \in \mathcal{H}} P(q_1|\lambda) \left(\prod_{r:H_r=1} \frac{P(R_r|q_1, \lambda)}{P(R_r|\lambda)} \right) \left(\prod_{r=1}^{|O|} P(H_r|O, \lambda) \right) \right)$$ \hspace{1cm} (7)

$$= P(q_1|\lambda) \sum_{H \in \mathcal{H}} \prod_{r=1}^{|O|} \left(P(H_r|O, \lambda) \left(I\{H_r = 1\} \frac{P(R_r|q_1, \lambda)}{P(R_r|\lambda)} + I\{H_r = 2\} \right) \right)$$ \hspace{1cm} (8)

$$= P(q_1|\lambda) \prod_{r=1}^{|O|} \left(P(H_r = 1|O, \lambda) \frac{P(R_r|q_1, \lambda)}{P(R_r|\lambda)} + P(H_r = 2|O, \lambda) \right)$$ \hspace{1cm} (9)

Therefore, we get that read r contributes $P(H_r = 1|O, \lambda)P(R_r|q_1, \lambda) + P(H_r = 2|O, \lambda)P(R_r|\lambda)$ to the likelihood, after multiplying by the constant $P(R_r|\lambda)$, as opposed to $P(R_r|q_1, \lambda)$ as it would under a fully separable model. When testing on real data, we found that we achieved marginally but consistently better performance using $P(H_r = 1|O, \lambda)P(R_r|q_1, \lambda) + P(H_r = 2|O, \lambda)P(R_r|\lambda)$ instead, so this equation was used when calculating the state probabilities.

To use this, we need an estimate of the probability of a label given the data. To do this, consider a read R_r, with lead SNP c_r, and label H_r. Then we can calculate the following

$$P(H_r = 1|O, \lambda) = \sum_{q_1, q_2} P(H_r|q_1, q_2, O, \lambda)P(q_1, q_2|O, \lambda)$$ \hspace{1cm} (10)

$$= \sum_{q_1, q_2} P(H_r|q_1, q_2, R_r, \lambda)P(q_1, q_2|O, \lambda)$$ \hspace{1cm} (11)

$$= \sum_{q_1, q_2} \frac{P(R_r|q_1, \lambda)}{P(R_r|\lambda)} P(q_1, q_2|O, \lambda)$$ \hspace{1cm} (12)

$$= \mathbb{E}_{q_1, q_2} \left[\frac{P(R_r|q_1, \lambda)}{P(R_r|\lambda)} \right]|O, \lambda \right]$$ \hspace{1cm} (13)

$$\approx \frac{\mathbb{E}_{q_1} \left[P(R_r|q_1, \lambda)|O, \lambda \right]}{\sum_{h=1}^2 \mathbb{E}_{q_h} \left[P(R_r|q_h, \lambda)|O, \lambda \right]}$$ \hspace{1cm} (14)

This uses a prior probability on labels of $P(H_r = 1) = P(H_r = 2) = \frac{1}{2}$. We also use the approximation that the expectation of ratios is equivalent to the ratio of expectations, to avoid a calculation with computational complexity of order K^2. To perform this calculation we use

$$P(R_r|haph, \lambda) = \mathbb{E}_{q_h} \left[P(R_r|q_h, \lambda)|O, \lambda \right] \approx \sum_{k=1}^K P(R_r|q_h = k, \lambda')P(q_k|O, \lambda')$$ \hspace{1cm} (15)

where λ' are the parameters from the previous iteration.

Therefore, in calculating the complete data probability for the pseudo-haploid model for haplotype $H = 1$, we use the probability of the observation at SNP t
given state $q_t = k_t$ and parameters λ as

$$
P_{H = h} (O_t | q_t = k_t, \lambda) = \prod_{j=1}^{J_r} P_{H = h} (R_r | q_t = k_t, \lambda)
$$

$$
= \prod_{j=1}^{J_r} P(H_r = h | O, \lambda) P(R_r | q_t = k_t, \lambda) + P(H_r \neq h | O, \lambda) P(R_r | \text{hap}, \lambda)
$$

(16)

where $P(H_r = h | O, \lambda)$ is from Equation 14, $P(R_r | q_t = k_t, \lambda)$ is as defined in the main text, $P(H_r \neq h | O, \lambda) = 1 - P(H_r = h | O, \lambda)$, and $P(R_r | \text{hap}, \lambda)$ is from Equation 15.

1.2 Maximization and parameter updating

In the EM algorithm, one defines a “complete dataset” D including the observed data (O, the reads), as well as the hidden parameters (Q, the hidden states). Given a set of parameters λ, one defines the log-likelihood of the complete data as $L(\lambda) = \log(l(\lambda|D)) = \log(l(\lambda|D = (O,Q)))$. Given a current set of parameters λ_i, we generate a new set of parameters λ_{i+1} to maximize the expectation of $l(\lambda_{i+1})$ with respect to the distribution of hidden parameters obtained by λ_i

$$
U(\lambda_{i+1}, \lambda_i) = \mathbb{E}[l(\lambda_{i+1})|O, \lambda_i]
$$

$$
= \sum_Q P(Q|O, \lambda_i) \log(P(O, Q|\lambda_{i+1}))
$$

(17)

Standard theory implies that by choosing λ_{i+1} to maximize $U(\lambda_{i+1}, \lambda_i)$, we also increase the likelihood of the observed data, $l(\lambda_{i+1}|O) > l(\lambda_i|O)$.

In applying the EM algorithm, we first initialize with a set of parameters λ^0. For each subsequent iteration $i = 1, 2, ..., \lambda^i$, we then iteratively alternate between the “Expectation” phase, where we calculate $U(\lambda^{i+1}, \lambda^i)$, and the “Maximization” phase, where we calculate λ^{i+1} to maximize $U(\lambda^{i+1}, \lambda^i)$. In the Expectation phase, the crucial component is calculating the state probabilities $P(Q|O, \lambda^i)$ - these are calculated using the forward and backward algorithms. To calculate the updates in the Maximization stage, we must further augment the latent space to model how many recombinations occur between SNPs, whether emissions were due to occurrences of an alternate base or a reference base, and whether observed reads were from the maternal or paternal haplotype. To calculate the updates in the Maximization stage, we must further augment the latent space to model whether transitions occur due to recombinations or not, and whether emissions were due to occurrences of an alternate base or a reference base. In this new augmented latent space, for some fixed set of hidden parameters for the N samples, consider some sums that can be calculated. Let n^t_k be the number of sample haplotypes in state k at the first SNP, n^t_{st} be the number of sample haplotypes which do not recombine between SNPs t and $t+1$, n^t_{switch} be the number of sample haplotypes which switch into ancestry k
between SNPs t and $t+1$, and $n_{k,s}^t$ be the number of reads that have a reference $s = 0$ or alternate $s = 1$ base for SNP t that are in state k for their central SNP.

Then the complete data log likelihood is

$$l(\lambda) = \log(P(O, Q|\lambda))$$

$$= \sum_{k=1}^{K} n_{k}^1 \log(\pi_k)$$

$$+ \sum_{t=1}^{T-1} n_{\text{stay}}^{t} \log(e^{-G \sigma_t}) + \sum_{t=1}^{T-1} \sum_{k=1}^{K} n_{\text{switch},k}^{t} \log((1 - e^{-G \sigma_t}) \alpha_{t,k})$$

$$+ \sum_{t=1}^{T} \sum_{k=1}^{K} n_{k,1}^{t} \log(\theta_{t,k}) + \sum_{t=1}^{T} \sum_{k=1}^{K} n_{k,0}^{t} \log((1 - \theta_{t,k})) \quad (18)$$

Calculating updates for a parameter is done by taking the derivative of $U(\lambda^{i+1}, \lambda^i)$ with respect to that parameter, setting it equal to 0 and solving. Employing the notation $E[x|O, \lambda] = E_{\lambda}[x]$, it is easy to calculate the following updates for $\lambda^{i+1} = (\pi^{i+1}, \theta^{i+1}, \alpha^{i+1}, \sigma^{i+1})$

$$\pi^{i+1}_k = \frac{E_{\lambda^i}[n_{k}^1]}{\sum_{j=1}^{K} E_{\lambda^i}[n_{j}^1]} \quad (19)$$

$$\theta^{i+1}_{t,k} = \frac{E_{\lambda^i}[n_{k,1}^{t}]}{E_{\lambda^i}[n_{k,0}^{t}] + E_{\lambda^i}[n_{k,1}^{t}]} \quad (20)$$

$$\alpha^{i+1}_{t,k} = \frac{E_{\lambda^i}[n_{\text{switch},k}^{t}]}{\sum_{j=1}^{K} E_{\lambda^i}[n_{\text{switch},j}^{t}]} \quad (21)$$

$$\sigma^{i+1}_t = \frac{1}{-G} \log \left(\frac{\sum_{k=1}^{K} E_{\lambda^i}[n_{\text{switch},k}^{t}]}{\sum_{k=1}^{K} E_{\lambda^i}[n_{\text{switch},k}^{t}] + E_{\lambda^i}[n_{\text{stay}}^{t}]} \right) \quad (22)$$

1.2.1 Useful Variables

We use a standard forward backward HMM implementation with a set of parameters λ. Recall that q_t is the hidden state at SNP t. We use the following notations for states k_t at SNP t and k_{t+1} at SNP $t+1$

$$\alpha_t(k_t) = P(O_1O_2...O_t, q_t = k_t|\lambda)$$

$$\beta_t(k_t) = P(O_{t+1}O_{t+2}...O_T|q_t = k_t, \lambda)$$

$$\gamma_t(k_t) = P(q_t = k_t|O, \lambda) = \frac{\alpha_t(k_t) \beta_t(k_t)}{P(O|\lambda)}$$

$$\xi_t(k_t, k_{t+1}) = P(q_t = k_t, q_{t+1} = k_{t+1}|O, \lambda)$$

$$= \frac{\alpha_t(k_t)P(q_{t+1} = k_{t+1}|q_t = k_t, \lambda)\beta_{t+1}(k_{t+1})P(O_{t+1}|q_{t+1} = k_{t+1}, \lambda)}{P(O|\lambda)}$$
Recall that \(\xi\) switch into state \(k\) the main text as probability that the sample is in the first state at SNP \(t\)

To update the prior parameters, we need the expectation of

\[\text{Initial probabilities} \]

1.2.2 Haploid model

Define a variable \(I\) as the count of the number of sample haplotypes in state \(k\) at the first SNP. Denote the probability that the sample is in the first state at SNP \(t\) by \(\gamma_t(k)\). Let \(\gamma_{n,t}(k)\) be \(\gamma_t(k)\) for sample \(n\). We can therefore calculate the required expectation from the main text as

\[
E_{\lambda}[n_{k}^{1}] = \sum_{n=1}^{N} \gamma_{n,1}(k)
\]

(23)

1.2.2 Haploid model

Initial probabilities

To update the prior parameters, we need the expectation of \(n_{k}^{1}\), which we define as the number of sample haplotypes in state \(k\) at the first SNP. Denote the probability that the sample is in the first state at SNP \(t\) by \(\gamma_t(k)\). Let \(\gamma_{n,t}(k)\) be \(\gamma_t(k)\) for sample \(n\). We can therefore calculate the required expectation from the main text as

\[
E_{\lambda}[n_{k}^{1}] = \sum_{n=1}^{N} \gamma_{n,1}(k)
\]

(23)

Transition matrix probabilities

To update the transition parameters, we use an augmented state space where we have knowledge of how many recombinations occurred between two SNPs. Define a variable \(I_t\) as the count of the number of recombinations between SNPs \(t\) and \(t+1\); in the haploid model, this takes value 0 or 1. This will allow us to calculate the expectation of \(n_{\text{stay}}^{t}\), the number of sample haplotypes that do not recombine between SNPs \(t\) and \(t+1\), and \(n_{\text{switch},k}^{t}\), the number that switch into state \(k\) between SNPs \(t\) and \(t+1\).

We extend our transition probability to include \(I_t\) as follows

\[
P(q_{t+1} = k_{t+1}, I_t | q_t = k_t, \lambda) = \begin{cases}
 e^{-G\sigma_t} & \text{if } k_t = k_{t+1} \text{ and } I_t = 0 \\
 0 & \text{if } k_t \neq k_{t+1} \text{ and } I_t = 0 \\
 (1 - e^{-G\sigma_t})\alpha_{t,k_{t+1}} & \text{if } I_t = 1
\end{cases}
\]

Recall that \(\xi_t(k_t, k_{t+1})\) is

\[
\xi_t(k_t, k_{t+1}) = \frac{\alpha_t(k_t)P(q_{t+1} = k_{t+1}|q_t = k_t, \lambda)\beta_{t+1}(k_{t+1})P(O_{t+1}|q_{t+1} = k_{t+1}, \lambda)}{P(O|\lambda)}
\]

(24)
Denote the probability given the observed data O that across SNP t, the sample has states k_t, k_{t+1} and indicator I_t by $\xi_t(k_t, k_{t+1}, I_t)$. Then

$$
\xi_t(k_t, k_{t+1}, I_t) = \frac{\alpha_t(k_t)P(q_{t+1} = k_{t+1}, I_t|q_t = k_t, \lambda)\beta_{t+1}(k_{t+1})P(O_{t+1}|q_{t+1} = k_{t+1}, \lambda)}{P(O|\lambda)}
$$

Let $\xi_t(k_t, k_{t+1}, I_t)$ be $\xi_{n,t}(k_t, k_{t+1}, I_t)$ for sample n. We can therefore calculate expectations as

$$
E_\lambda[n_{\text{stay}}^t] = \sum_{n=1}^{N} \sum_{k=1}^{K} \xi_{n,t}(k, k, I_t) = 0
$$

$$
E_\lambda[n_{\text{switch}}^t] = \sum_{n=1}^{N} \sum_{i=1}^{K} \sum_{k=1}^{K} \xi_{n,t}(i, k, I_t) = 1
$$

and since

$$
E_\lambda[n_{\text{stay}}^t] = 1 - \sum_{n=1}^{N} \sum_{i=1}^{K} \sum_{k=1}^{K} \xi_{n,t}(i, k, I_t) = 1 - \sum_{k=1}^{K} E_\lambda[n_{\text{switch}}^t]
$$

it is therefore sufficient to calculate $E_\lambda[n_{\text{switch}}^t]$ to perform the EM updating from the main text.

Emission matrix probabilities

To update the emission parameters, we use an augmented state space where we have knowledge of whether emissions were due to the alternate or reference base. Recall that $\phi_{r,j}^i$ is the probability SNP j in read R_r came from a read with underlying genotype i. Denote by H_{j}^r a variable which takes value 1 if the underlying base is the alternate base and 0 if it is the reference base. We will use this to calculate the expectation of $n_{s,a}^t$, the number of reads with a base at SNP t that contain the alternate ($s=1$) or reference ($s=0$) base where the sample was in state k at the central SNP of the read.

Recall that the original definition of the probability of read R_r given hidden state k at SNP t and parameters λ is

$$
P(R_r|q_t = k, \lambda) = \prod_{j=1}^{J_r} P(R_{r,j}|q_t = k, \lambda) = \prod_{j=1}^{J_r} (\phi_{r,j}^1 \theta_{u_{r,j},k} + \phi_{r,j}^0 (1 - \theta_{u_{r,j},k}))
$$

We extend our emission probability to include H_{j}^r as follows

$$
P(R_r, H_{j}^r|q_t = k_t, \lambda) = \left\{ \begin{array}{ll}
\prod_{i \neq j} P(R_{r,i}|q_t = k_t, \lambda) \phi_{r,j}^1 \theta_{u_{r,j},k} & \text{if } H_{j}^r = 1 \\
\prod_{i \neq j} P(R_{r,i}|q_t = k_t, \lambda) \phi_{r,j}^0 (1 - \theta_{u_{r,j},k}) & \text{if } H_{j}^r = 0
\end{array} \right.
$$

For read R_r with central SNP c_r, the probability of the observation (set of reads)
at SNP \(t = c_r \) and \(H_f^r \) becomes

\[
P(O_t, H_f^r | q_t = k_t, \lambda) = \begin{cases}
P(O_t | q_t = k_t, \lambda) \frac{\phi^l_{r,j} \theta_{u_{r,j}, k}}{\phi^l_{r,j} \theta_{u_{r,j}, k} + \phi^r_{r,j} (1 - \theta_{u_{r,j}, k})} & \text{if } H_f^r = 1 \\
P(O_t | q_t = k_t, \lambda) \frac{\phi^r_{r,j} (1 - \theta_{u_{r,j}, k})}{\phi^l_{r,j} \theta_{u_{r,j}, k} + \phi^r_{r,j} (1 - \theta_{u_{r,j}, k})} & \text{if } H_f^r = 0
\end{cases}
\]

We expand \(\gamma_t(k_t) \) as

\[
\gamma_t(k_t) = \frac{\alpha_t(k_t) \beta_t(k_t)}{P(O | \lambda)} = \frac{\sum_{l=1}^{K} \alpha_{t-1}(l) P(q_t = k_t | q_{t-1} = l, \lambda) P(O_t | q_t = k, \lambda) \beta_t(k_t)}{P(O | \lambda)}
\]

where we note that for \(t = 1 \), we substitute \(\pi_k \) for \(\sum_{l=1}^{K} \alpha_{t-1}(l) P(q_t = k_t | q_{t-1} = l, \lambda) \). Denote the probability that for SNP \(j \) in read \(R_r \) with central SNP \(t = c_r \), the sample has a hidden state \(k_t \) and has indicator \(H_f^r \) given observed data \(O \) and parameters \(\lambda \) by \(\gamma_t(k_t, H_f^r) \). Then

\[
\gamma_t(k_t, H_f^r) = \frac{\sum_{l=1}^{K} \alpha_{t-1}(l) P(q_t = k_t | q_{t-1} = l, \lambda) P(O_t, H_f^r | q_t = k, \lambda)}{P(O | \lambda)}
\]

\[
\gamma_t(k_t, H_f^r) = \begin{cases}
\gamma_t(k_t) \frac{\phi^l_{r,j} \theta_{u_{r,j}, k}}{\phi^l_{r,j} \theta_{u_{r,j}, k} + \phi^r_{r,j} (1 - \theta_{u_{r,j}, k})} & \text{if } H_f^r = 1 \\
\gamma_t(k_t) \frac{\phi^r_{r,j} (1 - \theta_{u_{r,j}, k})}{\phi^l_{r,j} \theta_{u_{r,j}, k} + \phi^r_{r,j} (1 - \theta_{u_{r,j}, k})} & \text{if } H_f^r = 0
\end{cases}
\]

Let \(\gamma_n(k_t, H_f^r) \) be \(\gamma_t(k_t, H_f^r) \) for sample \(n \), and let \(A_n \) be the complete set of SNPs \(j \) from reads \(R_r \) for sample \(n \) such that \(u_{r,j} = t \). We can therefore calculate the required expectations from the main text as

\[
E_{\lambda}[n^t_{k,r} |] = \sum_{n=1}^{N} \sum_{(r,j) \in A_n} \gamma_n(k, H_f^r = 1) \tag{34}
\]

\[
E_{\lambda}[n^t_{k,r} |] = \sum_{n=1}^{N} \sum_{(r,j) \in A_n} \gamma_n(k, H_f^r = 0) \tag{35}
\]

1.2.3 Pseudo-haploid model

In the pseudo-haploid model, the only changes to the likelihood occur through the emissions; as such, we need to re-calculate Equations [34] and [35]. To update the emission parameters for the pseudo-haploid model, we use an augmented state space where we have knowledge of whether emissions were due to the alternate or reference base, and further have knowledge of whether the read came from the maternal or paternal haplotype. Recall that \(\phi^l_{r,j} \) is the probability that observed base \(j \) in read \(R_r \) came from a read with underlying genotype \(i \).
Recall that H^j_t is an indicator variable which takes value 1 if the underlying base is the alternate base and 0 if it is the reference base. Let H_r take value 1 if the read came from the maternal haplotype and 2 if it came from the paternal haplotype. We will use these to calculate the expectation of $n^j_{k,s}$, the number of reads that emit the alternate base ($s = 1$) or reference base ($s = 0$) given they are in state k at the central SNP of the read.

Recall that for each individual, we make two forward backward passes of the algorithm, once for the maternal haplotype ($h = 1$), and a second time for the paternal haplotype ($h = 2$). We also attempt to probabilistically infer for each read which haplotype it came from. Let H refer to the haplotype we are currently modelling (maternal or paternal).

First, recall that the original definition of the probability while modelling haplotype h of read R_r given hidden state k at SNP t and parameters λ is

$$P_{H=h}(R_r | q_t = k_t, \lambda) = P(R_r | q_t = k_t, \lambda)P(H_r = h(O, \lambda)$$

$$+ P(R_r | H_r \neq h, \lambda)P(H_r \neq h(O, \lambda))$$ \hspace{1cm} (36)$$

For notational convenience, set $F_{r,j,h} = P(H_r = h | O, \lambda)\left[\prod_{i \neq j} P(R_{r,i} | q_t = k, \lambda) \right]$. We therefore expand the emission probability to include H^j_t and H_r as follows

$$P_{H=h}(R_r, H^j_r, H_r | q_t = k, \lambda) = \begin{cases} F_{r,j,h} \theta_{ur,j,k} \phi^1_{r,j} & \text{if } H^j_t = 1, H_r = h \\ F_{r,j,h}(1 - \theta_{ur,j,k}) \phi^0_{r,j} & \text{if } H^j_t = 0, H_r = h \\ P(H_r \neq h | O, \lambda)P(R_r | H_r \neq h, \lambda) & \text{if } H_r \neq h \end{cases}$$

Denote the probability that haplotype h of the sample is in state k_t at SNP t with H^j_r and H_r given observed data O and parameters λ by $\gamma_{t,h}(k_t, H^j_r, H_r)$. Then, we get that

$$\gamma_{t,h}(k_t, H^j_r, H_r) = \begin{cases} \gamma_{t,h}(k_t) \frac{F_{r,j,h} \theta_{ur,j,k} \phi^1_{r,j}}{P_{H=h}(R_r | q_t = k_t, \lambda)} & \text{if } H^j_t = 1, H_r = h \\ \gamma_{t,h}(k_t) \frac{F_{r,j,h}(1 - \theta_{ur,j,k}) \phi^0_{r,j}}{P_{H=h}(R_r | q_t = k_t, \lambda)} & \text{if } H^j_t = 0, H_r = h \end{cases}$$

Let $\gamma_{n,t,h}(k_t, H^j_r, H_r)$ be $\gamma_{t,h}(k_t, H^j_r, H_r)$ for sample n, and let A_n be the complete set of SNPs j from reads R_r for sample n such that $ur,j = t$. We can therefore calculate the required expectations from the main text as

$$\mathbb{E}_\lambda[n^1_{k,s}] = \sum_{n=1}^N \sum_{(r,j) \in A_n} \sum_{h=1}^2 \gamma_{n,c,r,h}(k, H^j_r = 1, H_r = h)$$ \hspace{1cm} (37)$$

$$\mathbb{E}_\lambda[n^0_{k,s}] = \sum_{n=1}^N \sum_{(r,j) \in A_n} \sum_{h=1}^2 \gamma_{n,c,r,h}(k, H^j_r = 0, H_r = h)$$ \hspace{1cm} (38)$$

1.2.4 Diploid model

Initial probabilities
To update the prior parameters, we need the expectation of \(n_t^k \), which we define as the number of sample haplotypes in state \(k \) at the first SNP. Denote the probability that sample \(n \) is in pairs of states \((k_{t,1}, k_{t,2})\) at SNP \(t \) given observed data \(O \) by \(\gamma_{n,t}(k_{t,1}, k_{t,2}) \). We can therefore calculate the required expectation from the main text as

\[
E_\lambda [n_t^k] = \sum_{n=1}^{N} \sum_{j=1}^{K} (\gamma_{n,1}(k,j) + \gamma_{n,1}(j,k))
\]

Transition probabilities

To update the transition parameters for the diploid model, we use an augmented state space where we have knowledge of how many recombinations occurred between two SNPs. Here we define a variable \(I_t \) which counts the number of recombinations that occur between SNPs \(t \) and \(t+1 \) for the two haplotypes of the diploid sample, and takes values 0, 1 or 2. This will allow us to calculate the expectation of \(n_{t,stay}^k \), the number of sample haplotypes that do not recombine between SNPs \(t \) and \(t+1 \), and \(n_{t,switch,k}^t \), the number of sample haplotypes that switch into state \(k \) between SNPs \(t \) and \(t+1 \).

We can therefore extend the diploid transition probability to include \(I_t \) by multiplying the haploid transition probabilities as follows

\[
P(q_{t+1} = (k_{t+1,1}, k_{t+1,2}), I_t | q_t = (k_{t,1}, k_{t,2}), \lambda) =
\]

\[
\begin{cases}
 e^{-2G \sigma_t} & \text{if } I_t = 0 \text{ and } k_{t+1,1} = k_{t,1} \text{ and } k_{t+1,2} = k_{t,2} \\
 e^{-G \sigma_t} (1 - e^{-G \sigma_t}) \alpha_{t,k_{t+1,1}} & \text{if } I_t = 1 \text{ and } k_{t+1,1} \neq k_{t,1} \text{ and } k_{t+1,2} = k_{t,2} \\
 e^{-G \sigma_t} (1 - e^{-G \sigma_t}) \alpha_{t,k_{t+1,2}} & \text{if } I_t = 1 \text{ and } k_{t+1,1} = k_{t,1} \text{ and } k_{t+1,2} \neq k_{t,2} \\
 e^{-G \sigma_t} (1 - e^{-G \sigma_t}) (\alpha_{t,k_{t+1,1}} + \alpha_{t,k_{t+1,2}}) & \text{if } I_t = 1 \text{ and } k_{t+1,1} = k_{t,1} \text{ and } k_{t+1,2} = k_{t,2} \\
 (1 - e^{-G \sigma_t})^2 \alpha_{t,k_{t+1,1}} \alpha_{t,k_{t+1,2}} & \text{if } I_t = 2 \\
 0 & \text{otherwise}
\end{cases}
\]

Denote the probability under the diploid model that the sample is in states \((k_{t,1}, k_{t,2})\) at SNP \(t \) and states \((k_{t+1,1}, k_{t+1,2})\) at SNP \(t+1 \) and has indicator variable \(I_t \) given observed data \(O \) and parameters \(\lambda \) by \(\xi_t((k_{t,1}, k_{t,2}), (k_{t+1,1}, k_{t+1,2}), I_t) \). Then

\[
\xi_t((k_{t,1}, k_{t,2}), (k_{t+1,1}, k_{t+1,2}), I_t) = \frac{1}{P(O | \lambda)} \alpha_{t,k_{t,1}} \beta_{t+1,k_{t+1,1},k_{t+1,2}} P(O_{t+1} | q_t = (k_{t,1}, k_{t,2}), \lambda) \\
P(q_{t+1} = (k_{t+1,1}, k_{t+1,2}), I_t | q_t = (k_{t,1}, k_{t,2}), \lambda)
\]

Let \(m_{switch,k}^t \) be the number of haplotypes of the sample that switch into state \(k \) between SNPs \(t \) and \(t+1 \). We can calculate \(E_\lambda [m_{switch,k}^t] \), and from this \(E_\lambda [n_{t,stay}^k] \), by summing across \(E_\lambda [m_{switch,k}^t] \) for all \(N \) samples, and so we can calculate the required expectations from the main text by performing the calculations below. Note that we simplify the summation to give a formulation that enables
quadratic versus linear computational complexity in K. A similar approach is done for the haploid model to achieve linear versus quadratic computational complexity (not shown).

$$
\mathbb{E}_\lambda [m_{\text{switch,k}}] = \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \sum_{k_3=1}^{K} \sum_{j=0}^{2} j \times \left(\xi_t ((k_1, k_2), (k, k_3), I_t = j) + \xi_t ((k_1, k_2), (k, k_3), I_t = j) \right)
= \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} 1 \times \left(\xi_t ((k_1, k_2), (k, k_2), I_t = 1) + \xi_t ((k_1, k_2), (k, k_1), I_t = 1) \right)
+ \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \sum_{k_3=1}^{K} 2 \times \left(\frac{1}{2} \xi_t ((k_1, k_2), (k, k_3), I_t = 2) + \frac{1}{2} \xi_t ((k_1, k_2), (k, k_3), I_t = 2) \right)
$$

$$
= \sum_{k_1=1}^{K} \sum_{k_3=1}^{K} 2 \times \xi_t ((k_1, k_3), (k, k_3), I_t = 1)
+ \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \sum_{k_3=1}^{K} 2 \times \xi_t ((k_1, k_2), (k, k_3), I_t = 2)
\tag{42}
$$

$$
= 2 \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \sum_{k_3=1}^{K} \alpha_t (k_1, k_3) \beta_{t+1} (k, k_3) P(O_{t+1} | q_t = (k, k_3), \lambda) \alpha_{t,k} (1 - e^{-G_{\sigma_t}}) e^{-G_{\sigma_t}} P(O | \lambda)
+ 2 \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \sum_{k_3=1}^{K} \alpha_t (k_1, k_2) \beta_{t+1} (k, k_3) P(O_{t+1} | q_t = (k, k_3), \lambda) \alpha_{t,k} \alpha_{t,k_3} (1 - e^{-T_{\sigma_t}})^2 P(O | \lambda)
$$

$$
= \frac{2 \alpha_{t,k}}{P(O | \lambda)} \sum_{k_3=1}^{K} \left(1 - e^{-G_{\sigma_t}} e^{-G_{\sigma_t}} \sum_{k_1=1}^{K} \alpha_t (k_1, k_3) \right)
+ \alpha_{k_3}^t (1 - e^{-G_{\sigma_t}})^2 \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \alpha_t (k_1, k_2) \beta_{t+1} (k, k_3) P(O_{t+1} | q_t = (k, k_3), \lambda)
\tag{44}
$$

Emission probabilities

To update the emission parameters for the diploid model, we use an augmented state space as in for the pseudo-haploid model where we have knowledge of whether emissions were due to the alternate or reference base, and further have knowledge of whether the read came from the maternal or paternal haplotype. Recall that: $\phi_{t,j}^k$ is the probability that observed base j in read R_j came from a read with underlying genotype i; H^j_r is an variable which takes value 1 if the underlying base is the alternate base and 0 if it is the reference base; and H^r is a variable that takes value 1 if the read came from the maternal haplotype and 2 if from the paternal haplotype. We will use these to calculate the expectation of $n_{k,s}^t$, the number of reads that emit the alternate base ($s = 1$) or reference base ($s = 0$) given they are in state k at their central SNP.
Recall from the main text that the probability of an observation (set of reads) at SNP \(t \) in the diploid model is

\[
P(O_t | q_t = (k_{t,1}, k_{t,2}), \lambda) = \frac{1}{2} P(R_r | q_t = k_{t,1}, \lambda) + \frac{1}{2} P(R_r | q_t = k_{t,2}, \lambda) \quad (45)
\]

For notational convenience set

\[
F_{r,j,H_r} = \frac{1}{2} P(R_r | q_t = k_{H_r}, \lambda) \left(\frac{1}{2 \theta_{t,k_{t,H_r}} \phi_{r,j}^1} + (1 - \theta_{t,k_{t,H_r}}) \phi_{r,j}^0 \right)
\]

We can therefore calculate the probability that SNP \(j \) in read \(R_r \) with central SNP \(c_r \) has indicator variable \(H^j_r \) and \(H_r \) and observation for SNP \(t = c_r \) of \(O_t \) given the pair of hidden states \((k_{t,1}, k_{t,2}) \) and parameters \(\lambda \) as

\[
P(O_t, H^j_r, H_r | q_t = (k_{t,1}, k_{t,2}), \lambda) = \begin{cases}
P(O_t, | q_t = (k_{t,1}, k_{t,2}), \lambda) F_{r,j,H_r} \theta_{t,k_{t,H_r}} \phi_{r,j}^1 & \text{if } H^j_r = 1 \\ P(O_t, | q_t = (k_{t,1}, k_{t,2}), \lambda) F_{r,j,H_r} (1 - \theta_{t,k_{t,H_r}}) \phi_{r,j}^0 & \text{if } H^j_r = 0 \end{cases}
\]

Denote the probability for SNP \(j \) in read \(R_r \) that at the central SNP of the read \(t = c_r \) is in the pair of states \((k_{t,1}, k_{t,2}) \) given the observed data \(O \) and parameters \(\lambda \) by \(\gamma_t(k_{t,1}, k_{t,2}, H^j_r, H_r) \). Then

\[
\gamma_t(k_{t,1}, k_{t,2}, H^j_r, H_r) = \begin{cases}
\gamma_t(k_{t,1}, k_{t,2}) F_{r,j,H_r} \theta_{t,k_{t,H_r}} \phi_{r,j}^1 & \text{if } H^j_r = 1 \\
\gamma_t(k_{t,1}, k_{t,2}) F_{r,j,H_r} (1 - \theta_{t,k_{t,H_r}}) \phi_{r,j}^0 & \text{if } H^j_r = 0
\end{cases}
\]

Let \(\gamma_n(k_{t,1}, k_{t,2}, H^j_r, H_r) \) be \(\gamma_t(k_{t,1}, k_{t,2}, H^j_r, H_r) \) for sample \(n \), and let \(A_n \) be the complete set of SNPs \(j \) and reads \(R_r \) for sample \(n \) such that \(u_{r,j} = t \). We can calculate the required expectations from the main text as

\[
E_{\lambda}[n^k_{k,s}] = \sum_{n=1}^{N} \sum_{(r,j) \in A_n} \sum_{i=1}^{K} \left(\gamma_{n,c_r}(k, i, H^j_r = s, H_r = 1) + \gamma_{n,c_r}(i, k, H^j_r = s, H_r = 2) \right) (47)
\]

1.3 Efficient calculation of forward backward variables

We take the time here to write out the forward backwards calculations that we used for the diploid case, as symmetries in the transition matrix allow us to make the calculation in quadratic, rather than quartic time with respect to \(K \). Similar calculations (not shown) are used for the haploid model to ensure linear versus quadratic computational complexity in \(K \). We note that these calculations are not original and are given in very similar form in the original fastPHASE paper [2], but we reproduce them here as they represent important simplifications for computational reasons.
\[
\alpha_{t+1}(k_3, k_4) = \left[\sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \alpha_t(k_1, k_2) P(q_{t+1} = (k_3, k_4)|q_t = (k_1, k_2), \lambda) \right] P(O_{t+1}|q_{t+1} = (k_3, k_4), \lambda) \\
= \left[\alpha_t(k_3, k_4)(e^{-G_{\sigma t}})^2 + \sum_{k=1}^{K} e^{-G_{\sigma t}}(1 - e^{-G_{\sigma t}})\alpha_{t,k_3}\alpha_t(k, k) + \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} (1 - e^{-G_{\sigma t}})^2\alpha_{t,k_3}\alpha_{t,k_4}\alpha_t(k_1, k_2) \right] P(O_{t+1}|q_{t+1} = (k_3, k_4)) \\
= \left[\alpha_t(k_3, k_4)(e^{-G_{\sigma t}})^2 + \alpha_{t,k_3}A_{t,1}(k_4) + \alpha_{t,k_4}A_{t,2}(k_3) + \alpha_{t,k_3}\alpha_{t,k_4}B_t \right] \times P(O_{t+1}|q_{t+1} = (k_3, k_4), \lambda)
\]

where

\[
A_{t,1}(k_4) = e^{-G_{\sigma t}}(1 - e^{-G_{\sigma t}})\sum_{k=1}^{K} \alpha_t(k, k_4) \\
A_{t,2}(k_3) = e^{-G_{\sigma t}}(1 - e^{-G_{\sigma t}})\sum_{k=1}^{K} \alpha_t(k_3, k) \\
B_t = (1 - e^{-G_{\sigma t}})^2 \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \alpha_t(k_1, k_2)
\]

As such, the forward calculation can be done in quadratic time with respect to the number of ancestral haplotypes \(K \).

Similarly, for the backward calculation we get that

\[
\beta_t(k_1, k_2) = \sum_{k_3=1}^{K} \sum_{k_4=1}^{K} P(q_{t+1} = (k_3, k_4)|q_t = (k_1, k_2), \lambda)P(O_{t+1}|q_{t+1} = (k_3, k_4), \lambda)\beta_{t+1}(k_3, k_4) \\
= (e^{-G_{\sigma t}})^2 P(O_{t+1}|q_{t+1} = (k_1, k_2), \lambda)\beta_{t+1}(k_3, k_4) + (e^{-G_{\sigma t}})(1 - e^{-G_{\sigma t}}) \left(\sum_{k=1}^{K} \alpha_{t,k}P(O_{t+1}|q_{t+1} = (k, k_2), \lambda)\beta_{t+1}(k, k_2) + \sum_{k=1}^{K} \alpha_{t,k}P(O_{t+1}|q_{t+1} = (k_1, k), \lambda)\beta_{t+1}(k_1, k) \right) + (1 - e^{-G_{\sigma t}})^2 \sum_{k_1=1}^{K} \sum_{k_2=1}^{K} \alpha_{t,k_3}\alpha_{t,k_4}P(O_{t+1}|q_{t+1} = (k_3, k_4), \lambda)\beta_{t+1}(k_3, k_4) \\
= (e^{-G_{\sigma t}})^2 P(O_{t+1}|q_{t+1} = (k_1, k_2), \lambda)\beta_{t+1}(k, k_2) + E_{t,1}(k_2) + E_{t,2}(k_1) + F_t
\]
where

\[E_{t,1}(k_2) = (e^{-G\sigma_t})(1 - e^{-G\sigma_t}) K \sum_{k=1}^{K} \alpha_{t,k} P(O_{t+1}|q_{t+1} = (k, k_2), \lambda) \beta_{t+1}(k, k_2) \]

(51)

\[E_{t,2}(k_1) = (e^{-G\sigma_t})(1 - e^{-G\sigma_t}) K \sum_{k=1}^{K} \alpha_{t,k} P(O_{t+1}|q_{t+1} = (k_1, k), \lambda) \beta_{t+1}(k_1, k) \]

(52)

\[F_t = (1 - e^{-G\sigma_t})^2 K \sum_{k_3=1}^{K} \sum_{k_4=1}^{K} \alpha_{t,k_3} \alpha_{t,k_4} P(O_{t+1}|q_{t+1} = (k_3, k_4), \lambda) \beta_{t+1}(k_3, k_4) \]

(53)

1.4 Initialization

Haploid probabilities \(\pi_k \) are initialized with equal weights \(\pi_k = \frac{1}{K} \), as are diploid priors \(\pi_{k_1,k_2} = \frac{1}{K^2} \). The state probabilities \(\alpha_{t,k} \) are also initialized with equal weights \(\alpha_{t,k} = \frac{1}{K} \). The recombination distance is initialized assuming a constant recombination rate multiplied by the physical distance between SNPs, for example assuming \(\sigma_t = d_t \times 0.5\text{cM/Mb} \) where \(d_t \) is the physical distance between SNPs \(t \) and \(t+1 \). Finally, given a lower bound \(\delta \) on emission probabilities, for example \(\delta = 0.0001 \), \(\theta_{t,k} \) are sampled from a uniform distribution with minimum value \(\delta \) and maximum value \(1 - \delta \). Note that \(G \) is left as a user set parameter, which can be approximated for outbred populations using external estimates of \(N_e \) with \(G = \frac{4N_e}{K} \).

1.5 Parameter bounding

After parameter updating, newly calculated parameters are bounded with default but user tunable parameters. Prior probabilities \(\pi_k \), new state parameters \(\alpha_{t,k} \), and emission probabilities \(\theta_{t,k} \) (and \(1 - \theta_{t,k} \)) whose values are less than a threshold are set equal to that threshold, and then probabilities re-normalized as appropriate to have sum 1. Under default conditions this bound is \(1 \times 10^{-4} \). For the recombination distance, values of \(\sigma_t \) that exceed implied upper (default 100 cM/Mb) and lower (default 0.1 cM/Mb) bounds are reset to the bound value.

1.6 Heuristics

Since emission probabilities \(\theta \) are initialized at random, STITCH can get stuck in local minima, for which two heuristics are employed at various (default) iterations. First, to help overcome unnecessary switches between ancestral haplotype backgrounds, at iterations 4, 8, 12 and 16, pairs of haplotype states are calculated for each sample between pairs of nearby SNPs (starting at SNP 51, then every further 100th SNP) by multiplying their marginal ancestral haplotype
probabilities. If, across all samples, for each pair of nearby SNPs, there exists a re-ordering of ancestral haplotype states that minimizes switching, then that switch, or switches, is performed, and local SNPs (plus or minus 20 from the break) are reset with θ from a $U(0,1)$ distribution. Second, to help fill unused ancestral haplotypes, and to overcome superimposed ancestral haplotypes, at iterations 6, 10, 14 and 18, ancestral haplotype usage in the most recent iteration is discretized by averaging over 100 SNP intervals, and every continuous interval of infrequently used ancestral haplotype ($<0.5\%$) is identified. Values of θ over each interval are then refilled for that ancestral haplotype by copying from another sampled ancestral haplotype chosen with sampling probability proportional to ancestral haplotype usage over that interval. θ is then reset using 80% of these filled values and 20% noise from a $U(0,1)$ distribution.

1.7 Guidance behind parameter options

STITCH contains many parameter options that can be modified by the user, for example upper and lower bounds on recombination rate. However, most of these are reasonable for the majority of anticipated applications of STITCH. For the analyses presented here for the CFW and CONVERGE populations, we varied: K (option K), the number of ancestral haplotypes; whether the diploid or pseudo-haploid method was used (option method); the number of pseudo-haploid iterations (option switchModelIteration): the number of generations when the population was founded (or can be so approximated) G (option nGen) (which we set as 100 for the CFW analyses and $4\times20000K$ for the CONVERGE studies). We also, for model evaluation purposes only, invoked a flag on whether reads were split into new reads containing one SNP each (option readAware), the number of computer cores available to the process (option nCores), and whether the process is running in a server or cluster environment (option environment).

We anticipate that in using STITCH, the majority of users will achieve desired results, both in terms of accuracy and computational speed, through varying K, G, the method (diploid or pseudo-haploid), and the number of pseudo-haploid iterations.

In terms of selecting K, the diploid or pseudo-haploid method, and the number of pseudo-haploid iterations, we recommend imputing a small region of the genome, such as a chromosome, using the diploid mode with a range of K, and then evaluate performance. We recommend that to evaluate imputation performance, users obtain validation data, using either genotyping microarrays or higher coverage sequencing (like 10X). In the absence of external validation data, we recommend the info score distribution or its average. If, for the diploid method and a choice of K, results start to deteriorate, then choose the diploid mode and K that gave optimal performance. If results do not deteriorate but become computationally impractical, we recommend applying the pseudo-haploid method for a range of pseudo-haploid and diploid iterations (as was done here for CONVERGE), and choosing the combination that gives optimal results under the given computational constraints.

For G (or nGen), we recommend setting this to a reasonable $a\ priori$ esti-
mate, like was available for the CFW mice, or to use $4 \times \frac{N_e}{K}$, when the population is wild or has not been through a strong bottleneck. We note that STITCH should be fairly robust to this parameter choice. Users may also increase the minimum and maximum allowed recombination rates if they are less certain about this parameter.

Finally, while we do not give specific guidance on study design strategies and sequencing depths, we note that in designing low coverage sequencing only studies, users should try to ensure adequate population sequencing coverage to ensure the ancestral haplotypes are well reconstructed, particularly in the case when the founding structure is well known. For example, if a population was founded with $K = 8$ haplotypes, then to achieve a given level of per-ancestral haplotype coverage (e.g. 30X), while sequencing each sample at a given level (e.g. 0.2X), one should consider sequencing in excess of $\frac{30 \times K}{0.2} = 1200$ samples. Drift in the population (i.e. non-equal ancestral haplotype usage in the population) would require additional samples or depth for reconstruction of rare haplotypes in the population.
2 Supplementary Tables
Supplementary Table 1A: Genotype concordance for CFW using STITCH (K=4, diploid) at all SNPs

Results give genotype concordance stratified by genotype class and allele frequency. Discrete genotype calls are generated for imputation as the genotype with the maximum genotype posterior probability. Results are given genome-wide (autosomal and chromosome X). Allele freq = allele frequencies are the frequency of the minor allele. Type is either High Cov = high coverage (10X) sequencing (4 samples) or Array = MegaMuga (44 samples). Columns contain either Num = Number of non-missing genotypes considered (samples times SNPs for sequencing or array), or Per = Percent of imputed best guess genotypes that match sequencing or array genotypes. Hom Major = homozygous for the major allele, Het = heterozygous, Hom Minor = homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain some missing data.

Allele freqs	Type	Num	Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0.0,0.01)	High Cov	1,139,724	99.98	3.958	17.08	14	0	
[0.01,0.02)	High Cov	1,016,641	99.84	20,516	64.72	124	4.84	
[0.02,0.05)	High Cov	3,756,581	99.71	213,186	81.62	3,407	52.51	
[0.05,0.1]	High Cov	4,072,071	99.57	552,747	89.85	22,958	75.8	
[0.1,0.2)	High Cov	3,781,946	99.23	1,164,122	92.84	117,126	90.83	
[0.2,0.3)	High Cov	1,973,117	98.69	1,274,057	94.86	204,474	93.69	
[0.3,0.4]	High Cov	1,201,299	98.08	1,296,792	95.83	328,621	95.31	
[0.4,0.5]	High Cov	730,043	97.29	1,417,056	96.59	452,854	96.13	
[0.0,0.01)	Array	3,101	99.97	106	56.6	3	33.33	
[0.01,0.02)	Array	19,788	99.93	803	84.43	20	50	
[0.02,0.05)	Array	135,504	99.9	9,386	93.51	312	73.08	
[0.05,0.1)	Array	161,620	99.86	24,850	95.99	1,238	81.18	
[0.1,0.2)	Array	163,416	99.76	55,438	97.59	5,965	94.25	
[0.2,0.3)	Array	82,595	99.57	54,880	98.27	9,586	97.83	
[0.3,0.4]	Array	45,709	99.33	49,416	98.36	14,094	98.24	
[0.4,0.5]	Array	33,823	99.21	53,605	98.79	22,887	98.93	
Supplementary Table 1B: Genotype concordance for CFW using Beagle (default) at all SNPs

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0.0,0.01)	High Cov	1,139,728	95	3,958	19.45	10	0
[0.01,0.02)	High Cov	1,016,641	91.05	20,516	14.9	124	0
[0.02,0.05)	High Cov	3,756,615	90.2	213,186	16.04	3,373	0.18
[0.05,0.1)	High Cov	4,072,282	84.46	552,747	23.3	22,747	0.32
[0.1,0.2)	High Cov	3,782,741	65.12	1,164,122	45.7	116,331	0.87
[0.2,0.3)	High Cov	1,973,436	23.14	1,274,072	84.16	204,155	2.16
[0.3,0.4)	High Cov	1,196,914	14.13	1,296,792	90.73	333,006	3.85
[0.4,0.5]	High Cov	718,518	13.02	1,417,056	90.02	464,379	6.1
[0,0.01)	Array	3,101	91.36	106	17.92	3	0
[0.01,0.02)	Array	19,788	93.68	803	15.44	20	0
[0.02,0.05)	Array	135,504	90.06	9,386	17.45	312	0
[0.05,0.1)	Array	161,581	84.58	24,850	23.57	1,277	0.23
[0.1,0.2)	Array	163,393	63.19	55,438	48.4	5,988	0.78
[0.2,0.3)	Array	82,553	21.1	54,880	88.32	9,628	1.65
[0.3,0.4)	Array	45,562	15.71	49,416	92.11	14,241	1.94
[0.4,0.5]	Array	33,002	15.13	53,605	91.53	23,708	3.28
Supplementary Table 1C: Genotype concordance for CFW using findhap (maxlen=10000, minlen=100, steps=3, iters=4) at all SNPs

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0,0.01)	High Cov	1,138,593	96.5	3,958	30.19	1,145	12.4
[0.01,0.02)	High Cov	1,012,728	92.28	20,516	52.67	4,037	9.14
[0.02,0.05)	High Cov	3,739,212	89.72	213,186	81.45	20,776	13.59
[0.05,0.1)	High Cov	4,040,317	89.29	552,747	86.98	54,712	15.61
[0.1,0.2)	High Cov	3,730,302	91.25	1,164,122	79.28	168,770	34.79
[0.2,0.3)	High Cov	1,966,686	93.17	1,274,072	71.31	210,905	51.8
[0.3,0.4)	High Cov	1,198,042	90.45	1,296,792	62.92	331,878	64.81
[0.4,0.5]	High Cov	722,465	87.28	1,417,056	57.79	460,432	74.34
[0.001)	Array	3,101	97.84	106	37.74	3	0
[0.01,0.02)	Array	19,745	93.78	803	69.12	63	7.94
[0.02,0.05)	Array	135,174	90.06	9,386	86.74	642	19.47
[0.05,0.1)	Array	160,288	87.06	24,850	89.34	2,570	18.6
[0.1,0.2)	Array	161,093	89.2	55,438	82.78	8,288	33.69
[0.2,0.3)	Array	82,595	91.56	54,880	73.4	9,586	52.22
[0.3,0.4)	Array	45,673	87.74	49,416	68	14,130	61.78
[0.4,0.5]	Array	33,145	83.72	53,605	63.99	23,565	69.89
Supplementary Table 1D: Genotype concordance for CFW using STITCH (K=4, diploid) at all SNPs (post QC)

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0.001)	High Cov	1,139,724	99.98	3,958	17.08	14	0
[0.001,0.02)	High Cov	1,016,641	99.84	20,516	64.72	124	4.84
[0.02,0.05)	High Cov	3,756,581	99.71	213,186	81.62	3,407	52.51
[0.05,0.1)	High Cov	4,072,071	99.57	552,747	89.85	22,958	75.8
[0.1,0.2)	High Cov	3,781,946	99.23	1,164,122	92.84	117,126	90.83
[0.2,0.3)	High Cov	1,973,117	98.69	1,274,072	94.86	204,474	93.69
[0.3,0.4)	High Cov	1,201,299	98.08	1,296,792	95.83	328,621	95.31
[0.4,0.5]	High Cov	730,043	97.29	1,417,056	96.59	452,854	96.13
[0.001)	Array	3,101	99.97	106	56.6	3	33.33
[0.01,0.02)	Array	19,788	99.93	803	84.43	20	50
[0.02,0.05)	Array	135,504	99.9	9,386	93.51	312	73.08
[0.05,0.1)	Array	161,620	98.86	24,850	95.99	1,238	81.18
[0.1,0.2)	Array	163,416	99.76	55,438	97.59	5,965	94.25
[0.2,0.3]	Array	82,595	99.57	54,880	98.27	9,586	97.83
[0.3,0.4]	Array	45,709	99.33	49,416	98.36	14,094	98.24
[0.4,0.5]	Array	33,823	99.21	53,605	98.79	22,887	98.93
Supplementary Table 2: Performance of CFW study under different programs and options

Results are given for chromosomes 18 and 19. All STITCH results are for the diploid model with 40 iterations. Program options are as follows. For STITCH, RU refers to read unaware (i.e. split each read spanning multiple SNPs into sub-reads spanning one read each). For Beagle, shown are the number of iterations (i.e. burnin-its, phase-its, and impute-its to this value), window is the window size, and msf is the (singlescale) model scale factor. For findhap, options correspond directly to parameter options. Note that times for STITCH do not include the generation of input data from BAMs, which took about 1-1.5 hours per chromosome for chromosomes 18 and 19, irrespective of other program options. Similarly, times for findhap do not include conversion time from VCF to the findhap input format. Av r^2 is the average r^2 for SNPs on the Illumina MegaMUGA array, with no filtration for QC for any method. Time is the average time in hours for chromosomes 18 and 19, where all programs were run on 1 core on 2.60 GHz Intel E5-2650 chips.

Program	Options	Time	Av r^2
STITCH	K=2	7.2	0.622
STITCH	K=3	11.3	0.957
STITCH	K=4	18.6	0.972
STITCH	K=5	25.3	0.97
STITCH	K=6	37.5	0.966
STITCH	K=7	49	0.964
STITCH	K=8	59	0.967
STITCH	K=4, RU	18.8	0.873
Beagle	its=5, window=50000, msf=1	6.1	0.074
Beagle	its=5, window=100000, msf=1	4.7	0.073
Beagle	its=10, window=50000, msf=1	17.2	0.085
Beagle	its=20, window=50000, msf=1	34.1	0.109
Beagle	its=5, window=50000, msf=0.4	72.4	0.088
Beagle	its=5, window=50000, msf=0.6	7.7	0.079
Beagle	its=5, window=50000, msf=0.8	6.6	0.073
Beagle	its=5, window=50000, msf=1.0	5.3	0.072
Beagle	its=5, window=50000, msf=1.2	4.9	0.071
Beagle	its=5, window=50000, msf=1.4	5.7	0.071
Beagle	its=5, window=50000, msf=1.6	5.2	0.071
Beagle	its=5, window=50000, msf=1.8	5.2	0.071
Beagle	its=5, window=50000, msf=2.0	5.1	0.071
findhap	maxlen=100000, minlen=1000, steps=3, iters=4	0.6	0.225
findhap	maxlen=100000, minlen=1000, steps=2, iters=6	0.7	0.226
findhap	maxlen=100000, minlen=1000, steps=5, iters=10	2.2	0.15
findhap	maxlen=10000, minlen=100, steps=3, iters=4	0.5	0.523
findhap	maxlen=50000, minlen=500, steps=3, iters=4	0.6	0.281
findhap	maxlen=200000, minlen=2000, steps=3, iters=4	0.5	0.169
Supplementary Table 3: Performance of CONVERGE study under different programs and options with no reference panel

Results are given for the first 10 Mbp of chromosome 20, run in 0.5 Mbp regions with 0.1 Mbp buffers. Program options are as follows. For STITCH, all options were run using 40 EM iterations, split into either diploid (D) or pseudo-haploid (PH) iterations, while RU refers to read unaware (i.e. split each read spanning multiple SNPs into sub-reads spanning one read each). For Beagle, shown are the number of iterations (i.e. burnin-its, phase-its, and impute-its to this value). For findhap, options correspond directly to parameter options. Note that times for STITCH do not include the generation of input data from BAMs, which took about 30 minutes per region, irrespective of other program options. Similarly, times for findhap do not include conversion time from VCF to the findhap input format. Av r² is the average r² for SNPs on the Illumina HumanOmniZhongHua-8 array for common (MAF 5% to 95%) variants, with no filtration for QC for any method. Time is the average in hours for each 0.5Mbp region, where all programs were run on 4 cores on 2.60 GHz Intel E5-2650 chips.

Program	Options	Time	Av r²
STITCH	K=20, its=40D	24.5	0.922
STITCH	K=20, its=40PH	8.0	0.875
STITCH	K=20, its=34PH;6D	10.6	0.920
STITCH	K=20, its=35PH;5D	9.9	0.919
STITCH	K=20, its=36PH;4D	9.6	0.918
STITCH	K=20, its=37PH;3D	9.3	0.917
STITCH	K=20, its=38PH;2D	8.8	0.911
STITCH	K=20, its=39PH;1D	8.4	0.898
STITCH	K=20, its=38PH;2D, RU	9.4	0.910
STITCH	K=30, its=40D	52.2	0.927
STITCH	K=30, its=38PH;2D	12.4	0.917
STITCH	K=40, its=38PH;2D	16.5	0.920
STITCH	K=60, its=38PH;2D	27.7	0.923
STITCH	K=80, its=38PH;2D	42.2	0.925
STITCH	K=100, its=38PH;2D	61.1	0.927
Beagle	its=5	12.5	0.874
findhap	maxlen=100000, minlen=1000, steps=3, iters=4	0.4	0.437
findhap	maxlen=100000, minlen=1000, steps=2, iters=6	0.4	0.437
findhap	maxlen=100000, minlen=1000, steps=5, iters=10	1.4	0.426
findhap	maxlen=100000, minlen=100, steps=3, iters=4	0.3	0.434
findhap	maxlen=500000, minlen=500, steps=3, iters=4	0.4	0.448
findhap	maxlen=200000, minlen=2000, steps=3, iters=4	0.5	0.414
Supplementary Table 4A: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations, 2 D iterations) (without a reference panel) at all SNPs

Results give genotype concordance stratified by genotype class and allele frequency. Discrete genotype calls are generated for imputation as the genotype with the maximum genotype posterior probability. Results are given for the first 10 Mbp region of chromosome 20, run in 20 0.5 Mbp regions with 0.1 Mbp buffers. Allele freqs = allele frequencies are the frequency of the minor allele. Type is either High Cov = high coverage (10X) sequencing (9 samples) or Array = HumanOmniZhongHua-8 (72 samples). Columns contain either Num = Number of non-missing genotypes considered (samples times SNPs for sequencing or array), or Per = Percent of imputed best guess genotypes that match sequencing or array genotypes. Hom major = homozygous for the major allele, Het = heterozygous, Hom Minor = homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain some missing data.

Allele freqs	Type	Num	Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0,0.01)	High Cov	16234	99.98	879	27.19	14	0	
[0.01,0.02)	High Cov	3973	99.72	483	62.11	6	16.67	
[0.02,0.05)	High Cov	11325	99.59	1725	83.65	31	19.35	
[0.05,0.1)	High Cov	14634	99.33	2931	91.23	116	65.52	
[0.1,0.2]	High Cov	28004	99.13	10059	96.01	1183	84.53	
[0.2,0.3]	High Cov	18880	98.59	12285	96.81	2134	90.63	
[0.3,0.4]	High Cov	15750	97.69	15356	97.49	4300	94.12	
[0.4,0.5]	High Cov	15750	97.69	15356	97.49	4300	94.12	
[0.01,0.02)	Array	9691	99.95	100	70	0	NA	
[0.02,0.05]	Array	4519	99.91	156	73.08	0	NA	
[0.05,0.1]	Array	11883	99.82	834	88.13	12	83.33	
[0.1,0.2]	Array	18317	99.42	3003	91.44	114	73.68	
[0.2,0.3]	Array	29193	98.92	10165	93.38	866	85.68	
[0.3,0.4]	Array	20139	97.89	12835	94.39	2201	89.41	
[0.4,0.5]	Array	14833	97.2	15879	95.44	4171	93.02	
[0.01,0.02)	Array	10172	96.29	16290	95.67	6766	94.8	
Supplementary Table 4B: Genotype concordance for CONVERGE using Beagle (default) (without a reference panel) at all SNPs

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0,0.01)	High Cov	16,234	100	879	56.09	14	0
[0.01,0.02)	High Cov	3,973	100	483	64.6	6	0
[0.02,0.05)	High Cov	11,325	99.97	1,725	73.74	31	6.45
[0.05,0.1)	High Cov	14,634	99.64	2,931	84.61	116	50.86
[0.1,0.2)	High Cov	28,004	99.49	10,059	90.55	1,183	82.25
[0.2,0.3)	High Cov	18,880	98.98	12,285	93.09	2,134	88.71
[0.3,0.4]	High Cov	15,750	97.96	15,356	94.27	4,300	93.37
[0.4,0.5]	High Cov	10,469	97.05	16,280	95.12	7,445	96.55
[0.0,0.01)	Array	9,691	100	100	54	0	NA
[0.01,0.02)	Array	4,519	100	156	57.69	0	NA
[0.02,0.05)	Array	11,883	99.91	834	76.5	12	75
[0.05,0.1]	Array	18,317	99.77	3,003	81.22	114	69.3
[0.1,0.2]	Array	29,193	99.47	10,165	86.54	866	83.03
[0.2,0.3]	Array	20,139	98.46	12,835	89.44	2,201	86.37
[0.3,0.4]	Array	14,833	97.5	15,879	91.91	4,171	91.63
[0.4,0.5]	Array	10,172	96.23	16,290	92.98	6,766	94.66
Supplementary Table 4C: Genotype concordance for CONVERGE using findhap (maxlen=50000, minlen=500, steps=3, iters=4) (without a reference panel) at all SNPs

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0,0.01]	High Cov	13,485	99.69	562	48.22	10	0
[0.01,0.02)	High Cov	3,701	99.08	453	60.71	5	20
[0.02,0.05)	High Cov	10,771	97.96	1,623	61.06	27	3.7
[0.05,0.1]	High Cov	14,328	94.45	2,875	68.49	115	18.26
[0.1,0.2)	High Cov	26,632	93.43	9,443	69	1,083	42.84
[0.2,0.3)	High Cov	17,884	87.82	11,566	66.72	1,964	50.61
[0.3,0.4)	High Cov	15,229	84.5	14,665	67.23	4,212	60.73
[0.4,0.5]	High Cov	9,766	77.63	15,546	67.34	7,050	67.48
[0,0.01]	Array	8,690	99.57	94	46.81	0	NA
[0.01,0.02)	Array	3,894	98.02	133	46.62	0	NA
[0.02,0.05)	Array	11,302	97.34	773	56.4	8	37.5
[0.05,0.1]	Array	17,884	93.63	2,934	63.53	113	20.35
[0.1,0.2)	Array	27,294	91.11	9,529	62.09	813	31.12
[0.2,0.3)	Array	18,845	85.16	12,052	63.57	2,046	40.27
[0.3,0.4]	Array	14,260	78.72	15,331	65.34	4,068	49.68
[0.4,0.5]	Array	9,903	72.2	15,787	66.08	6,003	58.47
Supplementary Table 4D: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations, 2 D iterations) (without a reference panel) at all SNPs (that pass QC)

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0.0,0.01)	High Cov	6,266	99.97	241	83.82	1	0
[0.01,0.02)	High Cov	2,725	99.67	323	85.45	2	50
[0.02,0.05)	High Cov	10,001	99.59	1,541	90.53	29	17.24
[0.05,0.1)	High Cov	13,916	99.35	2,760	94.28	109	68.81
[0.1,0.2)	High Cov	27,327	99.19	9,773	97.24	1,155	85.97
[0.2,0.3)	High Cov	18,291	98.9	11,938	97.76	2,064	92.34
[0.3,0.4)	High Cov	15,294	98.12	14,869	98.14	4,170	95.4
[0.4,0.5]	High Cov	10,174	97.67	15,802	98.15	7,260	96.85
[0.0,0.01)	Array	6,763	99.94	76	90.79	0	NA
[0.01,0.02)	Array	3,898	99.9	132	84.09	0	NA
[0.02,0.05)	Array	11,068	99.83	787	92.12	11	90.91
[0.05,0.1)	Array	17,968	99.49	2,925	92.89	110	76.36
[0.1,0.2)	Array	27,902	99.06	9,643	95.49	809	90.36
[0.2,0.3)	Array	18,709	98.36	11,832	96.49	2,047	92.82
[0.3,0.4)	Array	14,263	97.69	15,252	96.48	4,000	95.15
[0.4,0.5]	Array	9,573	97.49	15,336	96.77	6,376	96.86
Supplementary Table 5: Performance of CONVERGE study under different programs and options with a reference panel

Results are given for the first 10 Mbp of chromosome 20, run in 0.5 Mbp regions with 0.1 Mbp buffers. Program options are as follows. For STITCH, all options were run using 40 EM iterations, split into either diploid (D) or pseudo-haploid (PH) iterations. For Beagle, shown are the number of iterations (i.e. burnin-its, phase-its, and impute-its to this value). Note that times for STITCH do not include the generation of input data from BAMs, which took about 30 minutes per region, irrespective of other program options. Av r2 is the average r^2 for SNPs on the Illumina HumanOmniZhongHua-8 array for common (MAF 5% to 95%) variants, with no filtration for QC for any method. Time is the average in hours for each 0.5Mbp region, where all programs were run on 4 cores on 2.60 GHz Intel E5-2650 chips.

Program	Options	Time	Av r2
STITCH	K=20, its=38PH:2D	5.4	0.911
STITCH	K=40, its=38PH:2D	10.2	0.922
STITCH	K=60, its=38PH:2D	16.6	0.925
Beagle	its=5, no ref panel	7.8	0.886
Beagle	its=4	114.4	0.946
Beagle	its=3	74.5	0.943
Beagle	its=2	39.7	0.939
Beagle	its=1	12.0	0.930
Supplementary Table 6A: Genotype concordance for CONVERGE using STITCH (K=40, 38 PH iterations, 2D iterations) (without a reference panel) at reference panel SNPs (1000G ASN). Results give genotype concordance stratified by genotype class and allele frequency. Discrete genotype calls are generated for imputation as the the genotype with the maximum genotype posterior probability. Results are given for the first 10 Mbp region of chromosome 20, run in 20 0.5 Mbp regions with 0.1 Mbp buffers. Allele freqs = allele frequencies are the frequency of the minor allele. Type is either High Cov = high coverage (10X) sequencing (9 samples) or Array = HumanOmniZhongHua-8 (72 samples). Columns contain either Num = Number of non-missing genotypes considered (samples times SNPs for sequencing or array), or Per = Percent of imputed best guess genotypes that match sequencing or array genotypes. Hom major = homozygous for the major allele, Het = heterozygous, Hom Minor = homozygous for the minor allele. Note that truth (sequencing or array) genotypes contain some missing data.

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0.0,0.01)	High Cov	13,968	99.96	596	35.91	10	0
[0.01,0.02)	High Cov	3,798	99.74	460	63.04	6	0
[0.02,0.05)	High Cov	11,259	99.72	1,714	85.3	31	16.13
[0.05,0.1)	High Cov	14,634	99.33	2,931	91.88	116	63.79
[0.1,0.2)	High Cov	27,980	99.1	10,054	95.91	1,183	85.88
[0.2,0.3)	High Cov	18,875	98.56	12,282	96.88	2,133	90.53
[0.3,0.4)	High Cov	15,737	97.59	15,315	97.43	4,298	94.04
[0.4,0.5]	High Cov	10,463	96.82	16,261	97.72	7,434	95.96
[0.0,0.01)	Array	8,975	99.96	97	64.95	0	NA
[0.01,0.02)	Array	4,519	99.82	156	80.13	0	NA
[0.02,0.05)	Array	11,740	99.74	833	88.36	12	83.33
[0.05,0.1)	Array	18,317	99.45	3,003	91.81	114	76.32
[0.1,0.2)	Array	29,144	98.93	10,142	93.7	866	86.95
[0.2,0.3)	Array	20,139	97.85	12,835	94.66	2,201	90.37
[0.3,0.4)	Array	14,833	97.01	15,879	95.54	4,171	92.78
[0.4,0.5]	Array	10,172	96.06	16,290	95.75	6,766	94.77
Supplementary Table 6B: Genotype concordance for CONVERGE using Beagle (default) (without a reference panel) at reference panel SNPs (1000G ASN)

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0.01,0.02)	High Cov	13,968	100	596	55.54	10	0
[0.02,0.05)	High Cov	3,798	100	460	66.09	6	0
[0.05,0.1)	High Cov	11,259	99.95	1,714	75.61	31	12.9
[0.1,0.2)	High Cov	27,980	99.41	10,054	91.87	1,183	83.94
[0.2,0.3)	High Cov	18,875	98.95	12,282	93.93	2,133	89.45
[0.3,0.4)	High Cov	15,737	97.99	15,315	95.09	4,298	93.9
[0.4,0.5]	High Cov	10,463	97.24	16,261	95.79	7,434	96.7
[0.01,0.02]	Array	8,975	100	97	56.7	0	NA
[0.02,0.05]	Array	4,519	100	156	58.33	0	NA
[0.05,0.1]	Array	11,740	99.88	833	78.63	12	75
[0.1,0.2]	Array	18,317	99.72	3,003	83.25	114	71.05
[0.2,0.3]	Array	29,144	99.32	10,142	88.55	866	84.06
[0.3,0.4]	Array	20,139	98.38	12,835	90.7	2,201	87.6
[0.4,0.5]	Array	14,833	97.57	15,879	92.88	4,171	92.14
[0.01,0.02]	Array	10,172	96.26	16,290	93.49	6,766	95.26
Supplementary Table 6C: Genotype concordance for CONVERGE using Beagle (its=3) (with a reference panel) at reference panel SNPs (1000G ASN)

Allele freqs	Type	Num Hom Major	Per Hom Major	Num Het	Per Het	Num Hom Minor	Per Hom Minor
[0.0,0.01)	High Cov	13,968	99.96	596	66.95	10	0
[0.01,0.02]	High Cov	3,798	99.63	460	81.09	6	33.33
[0.02,0.05)	High Cov	11,259	99.86	1,714	91.54	31	19.35
[0.05,0.1]	High Cov	14,634	99.55	2,931	95.19	116	67.24
[0.1,0.2)	High Cov	27,980	99.32	10,054	97.13	1,183	88.33
[0.2,0.3)	High Cov	18,875	98.95	12,282	97.44	2,133	92.45
[0.3,0.4]	High Cov	15,737	98.2	15,315	97.54	4,298	95.23
[0.4,0.5]	High Cov	10,463	97.69	16,261	97.82	7,434	97.19
[0.0,0.01)	Array	8,975	99.98	97	81.44	0	NA
[0.01,0.02]	Array	4,519	99.96	156	83.33	0	NA
[0.02,0.05]	Array	11,740	99.8	833	93.28	12	83.33
[0.05,0.1]	Array	18,317	99.6	3,003	94.21	114	84.21
[0.1,0.2]	Array	29,144	99.22	10,142	95.5	866	91.11
[0.2,0.3]	Array	20,139	98.72	12,835	95.96	2,201	94
[0.3,0.4]	Array	14,833	97.9	15,879	96.52	4,171	95.35
[0.4,0.5]	Array	10,172	97.53	16,290	96.62	6,766	97.04
Supplementary Table 7: Performance of STITCH on CONVERGE study original imputation

Results are over the first 10 Mbp of chromosome 20. Beagle methodology was the same as done in the original CONVERGE paper and as explained in the text. STITCH results are for $K = 40, 38$ pseudo-haploid iterations, 2 diploid iterations. All sites with removal of SNPs failing QC also removed SNPs with Hardy-Weinberg p-value less than 10^{-6}. Av r^2 is the average r^2 for SNPs on the Illumina HumanOmniZhongHua-8 array for high frequency (MAF 5% to 95%) variants.

Method	SNP set	% SNPs	Av r^2
Beagle	All	100	0.933
STITCH	All	100	0.92
Beagle	info>0.4	90	0.939
STITCH	info>0.4	90	0.939
Beagle	info>0.9	78	0.968
STITCH	info>0.9	75	0.972
Supplementary Table 8: Effect of filtering on imputation performance

Results are given for chromosome 19. QC is defined per-run and reflects info > 0.4 and HWE p-value > 1×10^{-6}. r^2 values are against the 4 10X mice.

Set	Description	SNPs	Number of SNPs	T1/Tv	VQSR r²	No VQSR r²
1	VQSR	All	152,486	2.07	0.937	
2	VQSR	Post-QC	122,878	2.21	0.968	
3	No VQSR, Round 1	All	355,123	1.48	0.745	0.945
4	No VQSR, Round 1	Post-QC	136,164	2.08	0.938	
5	No VQSR, Round 2	All	136,164	2.08	0.938	
6	No VQSR, Round 2	Post-QC	128,054	2.14	0.952	
7	Intersect Set 2 and Set 6		115,567	2.22	0.967	0.969
8	Present Set 2, absent Set 6		7,311	2.13	0.915	
9	Present Set 6, absent Set 2		12,487	1.55	0.930	
References

[1] Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Series B (Methodological). 1977;39(1):1–38. Available from: http://www.jstor.org/stable/2984875

[2] Scheet P, Stephens M. A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. The American Journal of Human Genetics. 2006 Apr;78(4):629–644. Available from: http://www.sciencedirect.com/science/article/pii/S000292970763701X