On calculating the mean values of quantum observables in the optical tomography representation

G. G. Amosov1, Ya. A. Korennoy2, V. I. Man’ko2

1Steklov Mathematical Institute
ul. Gubkina 8, Moscow 119991, Russia
2P.N. Lebedev Physics Institute,
Leninsky prospect 53, 117924 Moscow, Russia

Abstract

Given a density operator $\hat{\rho}$ the optical tomography map defines a one-parameter set of probability distributions $w_\hat{\rho}(X, \phi)$, $\phi \in [0, 2\pi)$, on the real line allowing to reconstruct $\hat{\rho}$. We introduce a dual map from the special class \mathcal{A} of quantum observables \hat{a} to a special class of generalized functions $a(X, \phi)$ such that the mean value $<\hat{a}>_\hat{\rho} = \text{Tr}(\hat{\rho} \hat{a})$ is given by the formula $<\hat{a}>_\hat{\rho} = \frac{2\pi}{\int_{-\infty}^{+\infty}} \int_{0}^{2\pi} w_\hat{\rho}(X, \phi) a(X, \phi) dX d\phi$. The class \mathcal{A} includes all the symmetrized polynomials of canonical variables \hat{q} and \hat{p}.

1 Introduction

Given an observable (hermitian operator) \hat{a} in a Hilbert space H the spectral theorem reads

$$\hat{a} = \int_{\mathbb{R}} X d\hat{E}((\infty, X]),$$

where \hat{E} in an orthogonal projection valued measure defined on all Borel sub-sets $\Omega \subset \mathbb{R}$ such that $\hat{E}(\Omega)$ is an orthogonal projection and the projections $\hat{E}(\Omega_1)$, $\hat{E}(\Omega_2)$ are orthogonal for all open $\Omega_1, \Omega_2 \subset \mathbb{R}$, $\Omega_1 \cap \Omega_2 = \emptyset$. Using the projection valued (spectral) measure \hat{E} transforms the Hilbert space H to the Hilbert space $H_\hat{a} = L^2(\mathbb{R})$ formed by wave functions $\psi_\hat{a}(\cdot)$ obtaining from $\psi \in H$ by the formula

$$\psi_\hat{a}(X) = \frac{d}{dX} \left(\hat{E}((\infty, X])(\psi) \right).$$

The Hilbert space $H_\hat{a}$ is said to be a space of representation associated with the observable \hat{a}.

Suppose that $\hat{\rho}$ is a density operator (positive unit-trace operator), then in any space of representation $H_\hat{a}$ it can be represented as an integral operator

$$(\hat{\rho}\psi_\hat{a})(X) = \int_{\mathbb{R}} \rho_\hat{a}(X, Y) \psi_\hat{a}(Y) dY,$$
ψ_a(⋅) ∈ H_a. In the case, the Hilbert-Schmidt kernel ρ̂_a(⋅, ⋅) is said to be a density matrix of ̂ρ in the space of representation H_a. Analogously, one can define the density matrix b(⋅, ⋅) (which can be a generalized function) associated with a observable b in the space of representation H_a.

In [1] the Wigner function W(q, p) associated with the density matrix ̂ρ(⋅, ⋅) in the space of representation associated with the position operator ̂q was introduced as

\[W(q, p) = \frac{1}{2\pi} \int_R e^{-ipx} \rho \left(q + \frac{x}{2}, q - \frac{x}{2} \right) dx. \]

The Moyal representation of quantum mechanics [2] defines a map between quantum observables ̂a and functions a(q, p) on the phase space under which the mean value \(\langle ̂a \rangle_̂ρ = Tr(̂ρ ̂a) \) is given by the formula

\[\langle ̂a \rangle_̂ρ = \int \int W(q, p)a(q, p)dqdp. \]

Unfortunately, although the normalization rule \(\int \int W(q, p)dqdp = 1 \) holds, the Wigner function W(q, p) is not positive definite in general. In [3][4] the optical tomogram w(X, φ) which can be calculated under experimental measuring a generalized homodyne quadrature was introduced as the Radon transform of the Wigner function,

\[w(X, \phi) = \int \int W(q, p)\delta(X - \cos(\phi)q - \sin(\phi)p)dqdp, \]

where ̂q and ̂p are the position and momentum operators. The one-parameter set \{ w(X, φ), φ ∈ [0, 2π] \} consists of probability distributions on the real line. The optical tomogram can be calculated from the density operator directly by means of the formula [5]

\[w(X, \phi) = Tr(̂ρ\delta(X - \cos(\phi) ̂q - \sin(\phi) ̂p)). \]

The inverse Radon transform [6] allows to reconstruct the Wigner function from the optical tomogram.

For a density operator ̂a one can define a function of complex variable z by the formula

\[a(z, \phi) = -2\pi Tr(̂a(z - \cos(\phi) ̂q - \sin(\phi) ̂p)^{-2}), \]

\[z ∈ C, \ Im(z) \neq 0, \ φ ∈ [0, 2\pi]. \]

In the present paper we shall correct the mistake in [7]. Our goal is to prove the following statements.

Theorem 1. For any density operator ̂ρ the following identity holds,

\[\lim_{\varepsilon \to +0} \int_0^{2\pi} \int_{-∞}^{+∞} w_̂ρ(X + iε, φ)a(X + iε, φ)dXdφ = Tr(̂ρ ̂a). \]
Definition. We shall call the relation (1) a map dual to the optical tomogram map.

It should be noted that the notion of duality we introduce is different from the known concept of [8].

Denote \(D \) the convex set of density operators whose kernels in the coordinate representation belong to the Schwartz space \(S(\mathbb{R}^2) \). Then, optical tomograms corresponding to states from \(D \) belong to the space \(\Omega \) consisting of functions \(w(X, \phi) \) which are from the Schwartz space in \(x \) and infinitely differentiable in \(\phi \). Notice that \(A = D^* \) contains all bounded quantum observables at least.

Corollary 2. The dual map (1) can be extended to any \(\hat{a} \in A \). The extension \(a(X, \phi) \) belongs to the adjoint space \(\Omega^* \). Moreover, for any density operator \(\hat{\rho} \in D \) the equality

\[
\int_0^{2\pi} \int_{-\infty}^{+\infty} w_{\hat{\rho}}(X, \phi)a(X, \phi)dXd\phi = Tr(\hat{\rho} \hat{a})
\]

holds.

Let us define a symmetrized product of canonical quantum observables \(\hat{q}^m \hat{p}^n \) as

\[
\{\hat{q}^m \hat{p}^n\}_s = \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} \hat{q}^k \hat{p}^{n-k}.
\]

(2)

Below we use the trigonometric polynomials \(Q^m_n(\cos(\phi)) \) defined in Appendix.

Theorem 3. The action of the dual map (1) to the observables (2), gives rise to \(a_{mn}(X, \phi) \) of the form

\[
a_{mn}(X, \phi) = Q^m_{n+m}(\cos(\phi))X^{n+m}.
\]

2 The Parseval equality associated with the characteristic functions

Given a density operator \(\hat{\rho} \) the function \(F(\mu, \nu) = Tr(\hat{\rho} e^{i\mu \hat{q} + i\nu \hat{p}}) \) is said to be a characteristic function of the state \(\hat{\rho} \). The associated set of probability distributions is said to be a symplectic quantum tomogram [5]

\[
w(X, \mu, \nu) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-iXt} F(t\mu, t\nu)dt
\]

which is connected with the optical tomogram by the formula

\[
w(X, \phi) = w(X, \cos(\phi), \sin(\phi)).
\]
In this way,

\[F(t \cos(\phi), t \sin(\phi)) = \int_{-\infty}^{+\infty} e^{itX} w(X, \phi) dX. \]

The standard identity \(e^{i\mu \hat{q} + i\nu \hat{p}} = e^{i\frac{1}{2} \mu \nu} e^{i\mu \hat{q}} e^{i\nu \hat{p}} \) results in

\[F(\mu, \nu) = \int_{-\infty}^{+\infty} e^{i\mu x} \rho \left(x + \frac{\nu}{2}, x - \frac{\nu}{2} \right) dx. \]

It immediately follows from (4) that the following Parseval-type equality holds,

\[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |F(\mu, \nu)|^2 d\mu d\nu = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \rho(X, Y) dX dY = \frac{1}{2\pi} \text{Tr}(\hat{\rho}^2), \]

which is equivalent to

\[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_{\hat{\rho}}(\mu, \nu) F_{\hat{a}}(\mu, \nu) d\mu d\nu = \frac{1}{2\pi} \text{Tr}(\hat{\rho} \hat{a}) \]

for the characteristic functions of any two density operators \(\hat{\rho} \) and \(\hat{a} \).

Taking into account the Parseval-type equality (5) it is possible to extend the map \(\hat{\rho} \rightarrow F_{\hat{\rho}} \) to all operators of Hilbert-Schmidt class. Moreover, one can construct a tempered distribution \(F_{\hat{a}} \in S'(\mathbb{R}^2) \) associated with an observable \(\hat{a} \) such that

\[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_{\hat{\rho}}(\mu, \nu) F_{\hat{a}}(\mu, \nu) d\mu d\nu = \frac{1}{2\pi} \text{Tr}(\hat{\rho} \hat{a}) \]

for all density operators \(\hat{\rho} \in \mathcal{D} \). The following result is well-known (2) and we put it for the sake of completeness.

Proposition 4. The tempered distributions \(F_{\hat{a}} \equiv F_{mn} \) associated with the observables \(\hat{a} \) of the form (2) are given by the formula

\[F_{mn}(\mu, \nu) = (-i)^{m+n} \delta^{(m)}(\mu) \delta^{(n)}(\nu). \]

Proof. Using the Parseval type identity (5) we get

\[\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_{\hat{\rho}}(\mu, \nu) F_{00}(\mu, \nu) d\mu d\nu = \frac{1}{2\pi} \text{Tr}(\hat{\rho}) = \frac{1}{2\pi}. \]

Since \(F_{\hat{\rho}}(0,0) = 1 \) for all density operators \(\hat{\rho} \) it results in

\[F_{00}(\mu, \nu) = \delta(\mu) \delta(\nu). \]
Notice that the statement holds if either \(m \) or \(n \) equals zero. Suppose that it is true for all integer numbers up to fixed \(m \) and \(n \), let us prove that it holds for \(m + 1 \) and \(n + 1 \). Using the equalities
\[
\hat{p}^k \hat{q}^m \hat{p}^{-k} = \hat{p}^k \hat{q}^{m+1} \hat{p}^{-k} - i(n-k)\hat{p}^k \hat{q}^m \hat{p}^{-k-1}
\]
and
\[
\nu \delta (\nu) = 0, \nu \delta^{(n)} (\nu) = -n \delta^{(n-1)} (\nu), \ n \geq 1,
\]
we get
\[
\frac{\partial}{\partial \mu} \left(\text{Tr} (\{ \hat{q}^m \hat{p}^n \}_s e^{i \mu \hat{q} + i \nu \hat{p}}) \right) = \text{Tr} \left(\{ \hat{q}^m \hat{p}^n \}_s (i \hat{q} + \frac{i \nu}{2} e^{-i \mu \hat{q} e^{i \nu \hat{p}}} \right) =
\]
\[
i \text{Tr} \left(\{ \hat{q}^m \hat{p}^n \}_s \hat{q} e^{i \mu \hat{q} + i \nu \hat{p}} \right) - \frac{i}{2} n \delta^{(m)} (\mu) \delta^{(n-1)} (\nu) = i \text{Tr} \left(\{ \hat{q}^{m+1} \hat{p}^n \}_s e^{i \mu \hat{q} + i \nu \hat{p}} \right).
\]
On the other hand, the equality
\[
\hat{p} \frac{1}{2} \{ \hat{q}^m \hat{p}^n \}_s + \{ \hat{q}^m \hat{p}^n \}_s \frac{1}{2} \hat{p} = \{ \hat{q}^m \hat{p}^{n+1} \}_s
\]
results in
\[
\frac{\partial}{\partial \nu} \left(\text{Tr} (\{ \hat{q}^m \hat{p}^n \}_s e^{i \mu \hat{q} + i \nu \hat{p}}) \right) = \text{Tr} \left(\{ \hat{q}^m \hat{p}^n \}_s e^{\frac{i \mu}{2} e^{i \nu \hat{p}}} (i \hat{p} + \frac{i \mu}{2} e^{i \nu \hat{p}}) \right) =
\]
\[
\text{Tr} \left(\frac{i \hat{p}}{2} \{ \hat{q}^m \hat{p}^n \}_s e^{\frac{i \mu}{2} e^{i \nu \hat{p}}} \right) + \text{Tr} \left(\{ \hat{q}^m \hat{p}^n \}_s e^{\frac{i \mu}{2} e^{i \nu \hat{p}}} \right) + \text{Tr} \left(\{ \hat{q}^m \hat{p}^n \}_s e^{\frac{i \mu}{2} e^{i \nu \hat{p}}} \right) + \frac{i m}{2} \delta^{(m-1)} (\mu) \delta^{(n)} (\nu) =
\]
i \text{Tr} \left(\{ \hat{q}^{m+1} \hat{p}^n \}_s e^{i \mu \hat{q} + i \nu \hat{p}} \right).
\]
\[\square\]

3 The dual map

To prove Theorem 1 and Corollary 2 we need the following result.

Proposition 5. Given a density operator \(\hat{a} \) the relation between the dual map \[\text{[4]}\] and the characteristic function \(F_{\hat{a}} \) is given by
\[
\tau F_{\hat{a}} (t \cos (\phi), t \sin (\phi)) = \frac{1}{(2\pi)^2} \lim_{\varepsilon \to 0} \int_{-\infty}^{+\infty} e^{itX a(X - i \varepsilon, \phi) dX, \ t > 0.}
\]

Proof. Let us consider the representation of \(\cos (\phi) \hat{p} + \sin (\phi) \hat{q} \) in the space \(H_\phi = L^2 (\mathbb{R}) \) such that
\[
((\cos (\phi) \hat{p} + \sin (\phi) \hat{q}) f)(x) = xf(x), \ f \in H_\phi.
\]

5
Then, given \(f, g \in H_\phi \)
\[
\int_{-\infty}^{+\infty} e^{itX} (g, (X - i\varepsilon - \cos(\phi)\hat{p} - \sin(\phi)\hat{q})^{-2}f) dX =
\]
\[
\int_{-\infty}^{+\infty} \overline{g(x)} f(x) \int_{-\infty}^{+\infty} e^{itX} \frac{1}{(X - x - i\varepsilon)^2} dX dx \equiv I
\]
Calculating the residue in \(z_0 = x + i\varepsilon \) we obtain
\[
I = 2\pi i \begin{cases}
 it(g, e^{it(\cos(\phi)\hat{q} + \sin(\phi)\hat{p} + i\varepsilon)} f), & t > 0 \\
 0, & t < 0
\end{cases}
\]
□

Proof of Theorem 1.
Using the expression of \(\hat{w}_\rho \) through the characteristic function \(\hat{F}_\rho \) and the definition of \(a(z, \phi) \) we obtain
\[
\lim_{\varepsilon \to +0} \frac{2\pi}{2\pi} \int_{0}^{2\pi} \int_{-\infty}^{+\infty} w_\rho(X + i\varepsilon, \phi) a(X + i\varepsilon, \phi) dX d\phi =
\]
\[
- \lim_{\varepsilon \to +0} \int_{0}^{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-itX} F_\rho(t \cos(\phi), t \sin(\phi)) Tr(\hat{a}(X - i\varepsilon - \cos(\phi)\hat{q} - \sin(\phi)\hat{p})^{-2}) dtdXd\phi =
\]
\[
- \lim_{\varepsilon \to +0} \int_{0}^{2\pi} \int_{-\infty}^{+\infty} F_\rho(t \cos(\phi), t \sin(\phi)) \left(\int_{-\infty}^{+\infty} Tr(\hat{a} e^{-itX} (X - i\varepsilon - \cos(\phi)\hat{q} - \sin(\phi)\hat{p})^{-2}) dX \right) dtd\phi =
\]
\[
2\pi \lim_{\varepsilon \to 0} \int_{0}^{2\pi} \int_{-\infty}^{+\infty} F_\rho(t \cos(\phi), t \sin(\phi)) \left(-\frac{1}{2\pi} \int_{-\infty}^{+\infty} Tr(\hat{a} e^{itX} (X - i\varepsilon - \cos(\phi)\hat{q} - \sin(\phi)\hat{p})^{-2}) dX \right) dtd\phi \equiv I
\]
Substituting the relation of Proposition 5 we get
\[
I = 2\pi \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F_\rho(\mu, \nu) \overline{F_\rho(\mu, \nu)} d\mu d\nu = Tr(\hat{a})
\]
□

Proof of Corollary 2.
If a density operator \(\hat{\rho} \in D \), i.e. the density matrix in the coordinate representation \(\rho(\cdot, \cdot) \in S(\mathbb{R}^2) \), then its characteristic function
\[
F_\rho(\mu, \nu) = \int_{-\infty}^{+\infty} e^{ix\mu} \rho \left(x + \frac{\nu}{2}, x - \frac{\nu}{2} \right) dx
\]
is also from the Schwartz space $S(\mathbb{R}^2)$. Thus, the corresponding optical tomo-
gram
\[
\omega(X, \phi) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itX} F_\rho(t \cos(\phi), t \sin(\phi)) dt
\]
belongs to $S(\mathbb{R})$ in X and infinitely differentiable in ϕ. Using the Parseval type
equation of Theorem 1
\[
\lim_{\varepsilon \to +0} \frac{2\pi}{0} \int_{-\infty}^{+\infty} w_\rho(X + i\varepsilon, \phi) a(X + i\varepsilon, \phi) dX d\phi = Tr(\hat{\rho} \hat{a})
\]
we can define the extension of dual tomographic map $\hat{\omega}_\rho \rightarrow a(X, \phi)$ such that
\[
< a, \omega_\rho > = Tr(\hat{\rho} \hat{a}).
\]
□

Proof of Theorem 3.
Given an optical tomogram $\omega_\rho(X, \phi)$ of a density operator $\hat{\rho}$ we get
\[
\int_{-\infty}^{+\infty} \int_{0}^{2\pi} X^{n+m} Q_{n+m}^m(\cos(\phi)) \omega_\rho(X, \phi) dX d\phi =
\]
\[
\frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{0}^{2\pi} X^{n+m} Q_{n+m}^m(\cos(\phi)) \int_{-\infty}^{+\infty} e^{-itX} F_\rho(t \cos(\phi), t \sin(\phi)) dt dX d\phi =
\]
\[
i^n \int_{-\infty}^{+\infty} \int_{0}^{2\pi} \delta^{(n+m)}(t) F_\rho(t \cos(\phi), t \sin(\phi)))Q_{n+m}^m(\cos(\phi)) dt d\phi =
\]
\[
(-i)^n \sum_{k=0}^{n+m} C_{n+m}^k \frac{\partial^{n+m} F_\rho}{\partial \mu^k \partial \nu^{n+m-k}}(0, 0) \cos^k(\phi) \sin^{m+k}(\phi) Q_{n+m}^m(\cos(\phi)) d\phi =
\]
\[
(-i)^n \frac{\partial^{n+m} F_\rho}{\partial \mu^m \partial \nu^n}(0, 0).
\]
Now the result follows from Proposition 4. □

Appendix

Let us consider the trigonometric system $\{\sin^k(\phi) \cos^{n-k}(\phi), 0 \leq k \leq n\}$. Taking
derivatives of $\sin^k(\phi) \cos^{n-k}(\phi)$ give rise to linear combinations of these elements. It follows that $\sin^k(\phi) \cos^{n-k}(\phi)$ satisfy to the linear differential equation of $n + 1$th order. Notice that
\[
(sin^k(\phi) \cos^{n-k}(\phi))^{(s)} = 0, \ 0 \leq s < k, \ (\sin^k(\phi) \cos^{n-k}(\phi))^{(k)} = k!, \ if \ \phi = 0.
\]
Hence the Wronskian \(w(0) = \prod_{k=0}^{n} k! \neq 0 \) and the elements of this system are linear independent on the segment \([0, 2\pi]\). Thus, there exists the biorthogonal system \(\tilde{Q}_n^m(\cos(\phi)) \) consisting of polynomials in \(\sin^k(\phi) \cos^{n-k}(\phi) \) such that

\[
\int_0^{2\pi} \sin^k(\phi) \cos^{n-k}(\phi) \tilde{Q}_n^m(\cos(\phi)) d\phi = \delta_{km}.
\]

Put \(Q_n^m(\cos(\phi)) = \frac{1}{n!} \tilde{Q}_n^m(\cos(\phi)) \). The first several polynomials are

\[
Q_0^0(\cos(\phi)) = \frac{1}{2\pi}, \quad Q_1^0(\cos(\phi)) = \frac{1}{\pi} \cos(\phi), \quad Q_1^1(\cos(\phi)) = \frac{1}{\pi} \sin(\phi),
\]

\[
Q_2^0(\cos(\phi)) = -\frac{1}{2\pi} \cos^2(\phi) + \frac{3}{2\pi} \sin^2(\phi),
\]

\[
Q_2^1(\cos(\phi)) = \frac{2}{\pi} \sin(\phi) \cos(\phi),
\]

\[
Q_2^2(\cos(\phi)) = \frac{3}{2\pi} \cos^2(\phi) - \frac{1}{2\pi} \sin^2(\phi).
\]

Acknowledgments

The work of GGA and VIM is partially supported by RFBR, grant 09-02-00142, 10-02-00312, 11-02-00456.

References

[1] Wigner E. Phys. Rev. 40, 749 (1932).

[2] Moyal J.E. Proc. Cambr. Phil. Soc. 45, 91 (1949).

[3] Bertrand J. and Bertrand P. Found. Phys. 17, 397 (1987).

[4] Vogel K., Risken H. Phys. Rev. A 40, 2847 (1989).

[5] Mancini S., Man’ko V.I., Tombesi P. Quantum Semiclass. Opt., 7, 615 (1995).

[6] d’Ariano G.M., Leonhardt U., Paul H. Phys. Rev. A 52, 1801 (1995).

[7] Amosov G.G., Man’ko V.I. J. Russ. Las. Res., 30, 435 (2009).

[8] Man’ko O., Man’ko V.I. J. Russ. Las. Res., 18, 407 (1997).