Development and characterization of EST-SSR markers for *Camellia reticulata*

Yan Tong¹,² and Li-Zhi Gao³,⁴

Camellia reticulata Lindl. (Theaceae) is an economically important ornamental flowering shrub or small tree that grows in Yunnan Province, southwestern Sichuan Province, and western Guizhou Province of China (Ming et al., 2000). As an ornamental plant, *C. reticulata* has over 1000 years of history of cultivation, and many outstanding cultivars have been selected or bred from wild *C. reticulata* for many centuries in China (Xia et al., 1994; Gu, 1997). *Camellia reticulata* is notable for its large flowers, brilliant colors, numerous cultivars, and long flowering duration (Xia et al., 1994; Ming et al., 2000). Furthermore, it is valued not only as a flowering ornamental but also as a source of oils. Its seeds have a high content of oil that is rich in unsaturated fatty acids, oleic acid, vitamin E, and other physiologically active substances, making it a valuable economic crop.

In recent years, there has been a decline in the number and size of natural populations of *C. reticulata* because of overharvesting and habitat destruction. This alarming situation necessitates an in-depth understanding of the current status of the genetic diversity of this species. Studies have been conducted on the genetic diversity of *C. reticulata* via inter-simple sequence repeat markers, chloroplast microsatellites, and amplified fragment length polymorphisms (Wang and Ruan, 2012; Tong et al., 2013; Yao et al., 2016; Xin et al., 2017). Yao et al. (2016) designed 20 expressed sequence tag–simple sequence repeat (EST-SSR) primer pairs based on the transcriptome of diploid *C. reticulata*. Of these, 18 were successfully amplified, detecting seven polymorphic loci in 24 *C. reticulata* individuals. We further tested these 20 markers in four natural populations, showing four loci with polymorphisms. These are not sufficient for inclusive studies on *C. reticulata*. Therefore, in this study, we aimed to develop new microsatellite markers that will help to investigate the reproductive...
characteristics of *C. reticulata*, evaluate its evolutionary potential, and develop effective strategies for the conservation, development, and utilization of wild natural populations. In addition, we tested the cross-species transferability of these markers in three other species of *Camellia*: *C. saluenensis*, *C. pitardii*, and *C. yunnanensis*, which are thought to be involved in the polyploidy of *C. reticulata*.

METHODS AND RESULTS

Fresh healthy leaves collected from 90 individuals of *C. reticulata* sampled from four wild populations from Yunnan Province, China, were freeze-dried or silica-dried. Forty samples from three populations of *C. saluenensis*, *C. pitardii*, and *C. yunnanensis* were also collected to test the cross-amplification of the markers. Voucher specimens were deposited at the Kunming Institute of Botany, Chinese Academy of Sciences (KUN) (Appendix 1). Genomic DNA was extracted from 20–30 mg of dried leaf tissue using a modified cetyltrimethylammonium bromide (CTAB) method (Doyle and Doyle, 1987).

We obtained 50,287 EST sequences from the National Center for Biotechnology Information (NCBI) expressed sequence tags database (dbEST) (accessed on June 2019) (Boguski et al., 1993). To obtain a nonredundant EST data set for SSR identification and primer design, vectors were removed from EST sequences using SeqTrim (Falgueras et al., 2010) and poly(A) tails were trimmed using downstream applications (PREMIER Biosoft International, Palo Alto, California, USA) as a reference. The ploidy level of the sampled populations was unknown, but multiple copy bands per locus due to polyploidy were not observed. Of the 70 primer pairs tested, 50 yielded clear and reproducible amplicons in *C. reticulata*; the others were unstable or gave no product. Eleven loci showed polymorphisms (Table 1), and 39 loci were monomorphic (Appendix 2). These 11 polymorphic primers were used in 90 individuals of *C. reticulata* (four populations) for the population genetic analyses using the same protocol as the initial test. The polymorphic SSR loci were analyzed with POPGENE 32 software (Yeh et al., 2000) and GenALEX (Peakall and Smouse, 2006) for the number of alleles per locus, observed heterozygosity, and expected heterozygosity (Table 2). Hardy–Weinberg equilibrium by 1000 randomizations and linkage disequilibrium were estimated using POPGENE 32 software (Yeh et al., 2000).

TABLE 1. Characteristics of 11 polymorphic microsatellite loci developed in *Camellia reticulata*.a

Locus	Primer sequences (5′−3′)	Repeat motif	Expected allele size (bp)	*T∗* (°C)	Putative function (Organism)	GenBank accession no.
CSSR2	F: GGAAATGCGCTCGGTAGGT	(TTG)2	186	54	Hypothetical protein TEA_012945 (*Camellia sinensis* var. *sinensis*)	FS951581.1
	R: CCTCTGCTCCTTCACCAATCTAC					
CSSR5	F: GCTTAGGGGCAAAGATGAA	(GGTGCT)5	196	55	Glycine-rich cell wall structural protein 1.8-like (*Camellia sinensis*)	FS952802.1
	R: CACTCCACTCTCCATATCCA					
CSSR7	F: GCCCTACCTCCCTCCTGTA	(AG)13	123	56	Growth-regulating factor 4-like isoform X2 (*Camellia sinensis*)	FS950234.1
	R: CTATGCGGTAGGTCTTCTT					
CSSR8	F: AGGGAGAGAGGAGAGAGAGA	(CCTCA)5	130	50	NONE	GH710908.1
	R: TTTGGGAGGGGCACTTGGC					
CSSR9	F: TCGCTGCTCTCCTCACTCT	(CTT)4	114	56	Hypothetical protein TEA_017838 (*Camellia sinensis* var. *sinensis*)	FS945416.1
	R: TCTACATGGGAGACTGACCTTAG					
CSSR35	F: GCTCATGCGCATGCTACCC	(CTT)3	167	55	sm-like protein LSM1B (*Camellia sinensis*)	GH710926.1
	R: TACCCCTTATACACCTGGT					
CSSR36	F: ATGCGAG ACAAGAAGAAGA	(TGA)3	105	55	Probable E3 probable E3 ubiquitin-protein ligase XERO (*Camellia sinensis*)	FS947941.1
	R: GGAGGAGATGGTAGATGGA					
CSSR45	F: AGGTCTGGTGTGATAGGTGT	(TC)14	117	55	Histone H1-like protein (*Camellia sinensis*)	JK711494.1
	R: ACCTCCAATCTCCACCAAC					
CSSR48	F: GCTATGGCGCTAATGGGAC	(TGA)5	117	55	Protein PAT1 2 like (*Actinidia chinensis* var *chinensis*)	FS949009.1
	R: CCAGAAACATCACAACCAACA					

Note: *T∗* = annealing temperature.

a All values are based on 90 samples representing populations from southwestern China (*N* = 18–27 for each); see Appendix 1 for locality and voucher information.
TABLE 2. Genetic variation in the 11 polymorphic EST-SSR markers in four *Camellia reticulata* populations.a

Locus	TC (n = 18)	XD (n = 26)	SM (n = 19)	CX (n = 27)	Total (n = 90)											
	A	H_o	H_e	H_E												
CSSR2	3	0.222	0.541	0.032	3	0.462	0.503	0.027	2	0.000	0.102	0.000	3	0.000	0.140	0.000
CSSR5	2	0.167	0.322	0.029	3	0.462	0.585	0.000	3	0.053	0.363	0.000	3	0.296	0.319	0.008
CSSR11	4	0.222	0.630	0.000	4	0.115	0.664	0.000	5	0.000	0.677	0.000	4	0.037	0.505	0.000
CSSR17	4	0.722	0.589	0.618	5	0.846	0.686	0.000	3	0.053	0.317	0.000	4	0.111	0.357	0.000
CSSR18	3	0.722	0.643	0.026	5	0.846	0.787	0.000	4	0.421	0.563	0.000	2	0.296	0.377	0.144
CSSR19	2	0.000	0.508	0.000	2	0.462	0.498	0.705	2	0.000	0.102	0.000	2	0.148	0.201	0.136
CSSR35	2	0.056	0.056	1.000	3	0.039	0.112	0.000	2	0.000	0.102	0.000	3	0.148	0.322	0.000
CSSR36	3	0.111	0.641	0.000	4	0.039	0.612	0.000	3	0.000	0.199	0.000	3	0.037	0.238	0.000
CSSR38	3	0.222	0.298	0.000	4	0.192	0.250	0.000	2	0.000	0.398	0.000	4	0.111	0.357	0.000
CSSR45	3	0.778	0.560	0.267	4	0.769	0.719	0.012	4	0.158	0.289	0.000	3	0.444	0.444	0.000
CSSR48	3	0.722	0.532	0.220	2	0.000	0.462	0.000	2	0.000	0.102	0.000	2	0.074	0.352	0.000
Mean	2.909	0.359	0.484	3.546	0.385	0.534	2.909	0.062	0.292	3.091	0.155	0.328	4.182	0.242	0.457	

Note: A = number of alleles sampled; H_o = observed heterozygosity; H_e = expected heterozygosity; H_E = Hardy–Weinberg equilibrium; n = number of individuals sampled.

*aLocality and voucher information are provided in Appendix 1.

TABLE 3. Cross-amplification and genetic diversity statistics of EST-SSR markers developed for *Camellia reticulata* in three related species.a

Locus	JCPT (n = 13)	JCPL (n = 15)	JCYN (n = 12)									
	A	A_e	H_o	H_e	A	A_e	H_o	H_e	A	A_e	H_o	H_e
CSSR2	3	1.476	0.154	0.335	2	1.385	0.067	0.287	2	1.180	0.000	0.159
CSSR5	2	1.257	0.077	0.212	2	1.220	0.067	0.186	1	1.000	0.000	0.000
CSSR11	3	1.660	0.154	0.394	3	1.312	0.067	0.246	3	1.405	0.083	0.301
CSSR17	3	1.733	0.077	0.440	3	1.495	0.133	0.343	2	1.280	0.083	0.228
CSSR18	2	1.451	0.077	0.323	2	1.220	0.067	0.186	2	1.280	0.083	0.228
CSSR19	2	1.451	0.077	0.323	2	1.220	0.067	0.186	1	1.000	0.000	0.000
CSSR35	3	1.751	0.154	0.446	3	1.402	0.133	0.297	3	1.412	0.000	0.304
CSSR36	3	1.808	0.231	0.465	3	1.495	0.067	0.343	3	1.412	0.000	0.304
CSSR38	2	1.257	0.077	0.212	2	1.220	0.067	0.186	2	1.180	0.000	0.159
CSSR45	3	1.660	0.000	0.394	3	1.226	0.067	0.191	2	1.180	0.000	0.159
CSSR48	3	1.257	0.077	0.212	2	1.142	0.000	0.129	1	1.000	0.000	0.000
Mean	2.546	1.514	0.105	0.342	2.455	1.303	0.073	0.235	2.000	1.212	0.023	0.168

Note: A = number of alleles sampled; A_e = effective number of alleles; H_o = observed heterozygosity; H_e = expected heterozygosity; n = number of individuals sampled.

*aLocality and voucher information are provided in Appendix 1."
Among the 11 polymorphic loci, the number of alleles per locus ranged from two to seven with a mean of 4.182. The levels of observed and expected heterozygosity were 0.044–0.567 and 0.166–0.642, with averages of 0.242 and 0.457, respectively (Table 2). Four SSR markers were able to detect levels of expected heterozygosity above 0.5, indicating a high level of polymorphism in *C. reticulata*. All 11 polymorphic loci showed deviation from Hardy–Weinberg equilibrium within two or more populations (Table 2) as a result of heterozygosity deficits. This was most likely the result of the reproduction mode, habitat fragmentation, and inbreeding. We found no consistent deviation from linkage disequilibrium for any loci within the populations (*P* > 0.001). Cross-species amplification of the 11 polymorphic loci was tested on *C. saluenensis*, *C. pitardii*, and *C. yunnanensis*. All 11 EST-SSR markers were amplified successfully, using the same PCR protocol for *C. reticulata*, and were shown to be polymorphic (Table 3).

CONCLUSIONS

The EST-SSR polymorphic markers developed in this study will add to the existing resources of molecular markers and are expected to be useful for studies on population structure and genetic diversity in *C. reticulata*. The microsatellite loci described here were successfully cross-amplified in *C. saluenensis*, *C. pitardii*, and *C. yunnanensis*, suggesting that these markers may also be applicable to the study of genetic diversity in other *Camellia* species.

ACKNOWLEDGMENTS

This work was supported by the Surface Project of the Natural Science Foundation of Yunnan Province (2016FB031) (to Y.T.), the Key Project of the Natural Science Foundation of Yunnan Province (2015FA030), and the Yunnan Innovation Team Project (to L.Z.G.).

DATA AVAILABILITY

Expressed sequence tag sequences for the newly developed primers have been deposited to the National Center for Biotechnology Information (NCBI)’s GenBank database; accession numbers are listed in Table 1 and Appendix 2.

LITERATURE CITED

Boguski, M. S., T. M. Lowe, and C. M. Tolstoshev. 1993. dbEST—database for “expressed sequence tags”. *Nature Genetics* 4(4): 332–333.

Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

Falgueras, J., A. J. Lara, N. Fernández-Pozo, F. R. Cantón, G. Pérez-Trabado, and M. G. Claros. 2010. SeqTrim: A high-throughput pipeline for pre-processing any type of sequence read. *BMC Bioinformatics* 11: 38.

Gu, Z. J. 1997. The discovery of tetraploid *Camellia reticulata* and its implication in studies on the origin of this species. *Acta Phytotaxonomica Sinica* 35: 107–116.

Gu, Z. J., and H. Xiao. 2003. Physical mapping of the 18S-26S rDNA by fluorescence in situ hybridization (FISH) in *Camellia reticulata* polyploid complex (Theaceae). *Plant Science* 164: 279–285.

Huang, X., and A. Madan. 1999. CAP3: A DNA sequence assembly program. *Genome Research* 9(9): 868–877.

Kondo, K., Z. J. Gu, H. Y. Na, and L. Xia. 1986. A cytological study of *Camellia reticulata* and its closely related species in Yunnan, China. *Kromosomo II* 43–44: 1405–1419.

Liu, L. Q., and Z. J. Gu. 2011. Genomic in situ hybridization identifies genome donors of *Camellia reticulata* and its closely related species in Yunnan, China. *Kromosomo* 43–44: 1405–1419.

Ming, T. L., Z. J. Gu, W. J. Zhang, and L. S. Xie. 2000. Monograph of the genus *Camellia*. Yunnan Science and Technology Press, Kunming, Yunnan, China.

Peakall, R., and P. E. Smouse. 2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes* 6: 288–295.

Thiel, T., V. Michalek, and A. Grafer. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). *Theoretical and Applied Genetics* 106: 411–422.

Tong, Y., C. Y. Wu, and L. Z. Gao. 2013. Characterization of chloroplast microsatellite loci from whole chloroplast genome of *Camellia taliensis* and their utilization for evaluating genetic diversity of *Camellia reticulata* (Theaceae). *Biochemical Systematics and Ecology* 50: 207–211.

Wang, B. Y., and Z. Y. Ruan. 2012. Genetic diversity and differentiation in *Camellia reticulata* (Theaceae) polyploid complex revealed by ISSR and ploidy. *Genetics and Molecular Research* 11(1): 503–511.

Xia, L. F., Z. J. Gu, Z. L. Wang, T. J. Xiao, L. Wang, and K. Kondo. 1994. Dawn on Camellia: The new discovery of its wild diploid in Jinhaijiang Valley. *Acta Botanica Yunnanica* 16(3): 255–262.

Xin, T., W. J. Huang, J. D. Riek, S. Zhang, S. Ahmed, V. H. Johan, and C. L. Long. 2017. Genetic diversity, population structure, and traditional culture of *Camellia reticulata*. *Ecology and Evolution* 7: 8915–8926.

Yao, Q. Y., H. Huang, Y. Tong, E. H. Xia, and L. Z. Gao. 2016. Transcriptome analysis identifies candidate genes related to triacylglycerol and pigment biosynthesis and photoperiodic flowering in the ornamental and oil-producing plant, *Camellia reticulata* (Theaceae). *Frontiers in Plant Science* 7: https://doi.org/10.3389/fpls.2016.00163.

Yeh, F. C., R. Yang, T. J. Boyle, Z. Ye, and J. M. Xijian. 2000. POPGENE 32, Microsoft Windows–based freeware for population genetics analysis, Version 1.32. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton, Canada.
APPENDIX 1. Locality and voucher information for *Camellia* species used in this study.

Species	Population code	Voucher no.	Location	Geographic coordinates	Elevation (m)	N
C. reticulata Lindl.	TC	CR-TY-021	Mazhan, Tengchong, Yunnan, China	25°12′03.65″N, 98°28′34.46″E	1980	18
C. reticulata	XD	CR-TY-013	Niujie, Xundian, Yunnan, China	25°19′21.03″N, 102°53′28.21″E	2121	19
C. reticulata	SM	CR-TY-004	Baiyi, Songming, Yunnan, China	24°59′54.33″N, 101°25′10.77″E	2318	27
C. reticulata	CX	CR-TY-018	Fuyuan, Songming, Yunnan, China	25°15′33″N, 102°55′18″E	2147	13
C. saluenensis Stapf ex Bean	JCPT	CS-TY-01	Fuyuan, Songming, Yunnan, China	24°37′13.58″N, 104°9′28.4″E	2031	15
C. pitardii Cohen-Stuart	JCPL	CP-TY-01	Junzi Mountain, Shizong, Yunnan, China	25°15′53″N, 102°55′18″E	18	
C. yunnanensis (Pit. ex Diels)	JCYN	CY-TY-01	Machang, Heqing, Yunnan, China	26°28′26.68″N, 100°3′13.53″E	3113	12

Note: N = number of individuals sampled.

All voucher specimens are deposited in the Herbarium of the Kunming Institute of Botany (KUN), Kunming, Yunnan Province, China.

APPENDIX 2. Characteristics of 39 monomorphic microsatellite loci developed in *Camellia reticulata*.

Locus	Primer sequences (5′-3′)	Repeat motif	Expected allele size (bp)	GenBank accession no.
CSSR1	F: CAAAGCCAAATGGAATTTGTC	(A)30	179	FS943489.1
	R: GCCAGTGAATTGTAATACGA			
CSSR3	F: TTCCTCCATTTGCGTGAAA	(AG)13	194	FS951626.1
	R: ACCGTCAGCCCTCACAATC			
CSSR4	F: TGTTGACAATTCTTGTTGG	(CTT)12	128	FS951901.1
	R: TTGGTACAGATGGAGATTG			
CSSR6	F: TGTCTCTGATCCACCTTCTG	(TCA)6	140	FS953739.1
	R: GGCACGAAATTGCCCTTGG			
CSSR7	F: AAGATGAAAGTGTGGATTCC	(TG)25	148	GH159087.1
	R: GTAACAACCATCACCAACAT			
CSSR8	F: GCAGTAGTTGTTGAGTTGAG	(A)31	180	GW863559.1
	R: CAGTGAATTGTAATACGACTC			
CSSR9	F: TTGTATGCTCCAAGGATCTG	(A)20	201	GW863563.1
	R: GACTCCTGATAGGGCAGAT			
CSSR10	F: TGCTGCTACACTCCCTCT	(AG)20	104	GW342632.1
	R: GGTGCTGAGCTGCTGAT			
CSSR12	F: ACCTTGGCTTTGCTCTCT	(AAG)13	135	GO255031.1
	R: TTGACGCGGAAACCTCCT			
CSSR13	F: TGCTGCTCCTACATAAGGTC	(A)10	192	GW315083.1
	R: GCCAGTGAATTGTAATACGA			
CSSR14	F: GGAAGCTGCTTGTTAGACCAT	(A)10	196	GW863601.1
	R: ACGGCCGATGGTATGTAAT			
CSSR15	F: TCTTAAGCCAGCTCCTCAAC	(A)10	179	GH734011.1
	R: GACCTCCTGATTGGGAGAT			
CSSR16	F: TCACTAGCACCAGTGCTCTA	(TG)25	187	GH734178.1
	R: GTGAAATGTAATACGGATCTC			
CSSR20	F: GCAGCTCTCCTCTTGCTAT	(A)31	206	GH709471.1
	R: GCCAGTGAATTGTAATACGA			
CSSR21	F: GTTGCTAATCTGCTGTCTAC	(A)10	177	GH709922.1
	R: GCCAGTGAATTGTAATACGA			
CSSR22	F: GAAATGATGACATCTCCTCA	(CTCCAG)4	107	GH709760.1
	R: ATAGGGAGGATGTAACTTG			
CSSR23	F: TTGGACACCTTGAAATGACT	(A)20	114	GH612882.1
	R: TAGTCTGATAGCGGTCTGC			
CSSR24	F: TGATGTAGTACAGCTGAG	(A)20	110	GH613058.1
	R: TAGTCTGATAGCGGTCTGC			
CSSR25	F: GCCAGGAGAATTCTTGATG	(A)10	210	GE650217.1
	R: GCGTGAAATTGTAATACGA			
CSSR26	F: TGATGCTGATAGCGGTCTGC	(A)10	126	GH623471.1
	R: TAGTCTGATAGCGGTCTGC			
CSSR27	F: CATATGTCATGGTAATTTTG	(A)31	176	GW696815.1
	R: AGTGATACAGGCGGAGAG			
CSSR28	F: CACATCCTCTCCTGTTGCTA	(A)14	148	FS944961.1
	R: CCTCTTGTCTGCTCTTCCTC			
CSSR29	F: GCTGCTGCTGTCTGACG	(GA)12	163	FE861335.1
	R: TCTCTTCTCCTCCTCCTC			

(Continues)
Locus	Primer sequences (5′–3′)	Repeat motif	Expected allele size (bp)	GenBank accession no.
CSSR30	F: AGAAAGAAGCTGCAAGGG	(TTCT)₅	128	FE861638.1
	R: CTTAGATGAGGGCTGAGAG			
CSSR31	F: AGCGCTGAAGTCCAAATCC	(GCC)₆	145	CV699742.1
	R: AGTGCTCTCCGGTCTCAC			
CSSR32	F: AACACTCAATCATCAGTGGTT	(A)₂₉	207	GH733834.1
	R: GTAAATACGTCCACTACATGAG			
CSSR33	F: GCGAAATGGGCTGATTGGTT	(A)₂₉	172	FS959890.1
	R: GCCAGTGAATTGTTAATACGA			
CSSR34	F: CATGACATGCTGCTCATT	(TC)₁₅	128	FS947495.1
	R: GATGACATGTGAACTGCTA			
CSSR37	F: ACCCAAGCAAAGCAAT	(AG)₁₃	103	FS948821.1
	R: AACTGCTGAAGATAGAGAGAGG			
CSSR39	F: TCCATCAAGACACACATCA	(TTTC)₆	100	FS949741.1
	R: TCAACATCACAATACACAG			
CSSR40	F: GGAATGTACTTGATGTTCCTTC	(A)₁₃	197	FS954738.1
	R: CCAGTGATTGTAATACGACTC			
CSSR41	F: CCTCCTCTATCTCTGTAATCAATA	(GA)₁₂	110	FS949096.1
	R: CGTAAACGCAATTCCTCTCT			
CSSR42	F: GTAGCAATGGATACTCTGCA	(A)₁₀	186	GH623925.1
	R: TCATGATTGGGAATTG			
CSSR43	F: CGCTATTTATCTCGTCGGTT	(A)₁₃	133	GH623383.1
	R: GTGTATGCCACCGAGAGTA			
CSSR44	F: CCACACACGTACATCTACA	(CAC)₁₅	157	FS949501.1
	R: GTGAGGGAGAGTTGAGTA			
CSSR46	F: GCCGGAAAGATATTGGGGT	(A)₁₄	149	GH623235.1
	R: TAGTAGGAGGCTGTGCTG			
CSSR47	F: CTAGTGATAGCGTGTCTG	(T)₁₅(T)₅₀	148	GH623319.1
	R: GTGTGATACGACCTCGA			
CSSR49	F: TAAACTTATGACCTACAGT	(A)₁₁	215	GW863554.1
	R: CAGTGATATGGTAATACGACTC			
CSSR50	F: TCCATAAAGGACCTCTAGC	(CT)₁₁	164	JKS11141.1
	R: TCCACACATCTCCCAACT			