ABSTRACT
We have used archival GMRT data to image and study 39 galaxy clusters. These observations were made as part of the GMRT Key Project on galaxy clusters between 2001 and 2004. The observations presented in this sample include 14 observations at 610 MHz, 29 at 325 MHz and 3 at 244 MHz covering a redshift range of 0.02 to 0.62. Multi-frequency observations were made for 8 clusters. We analysed the clusters using the SPAM processing software and detected the presence of radio halo emission for the first time in the clusters RXC J0510-0801 and RXC J2211.7-0349. We also confirmed the presence of extended emission in 11 clusters which were known from the literature. In clusters where halos were not detected upper limits were placed using our own semi-automated program. We plot our detections and non-detections on the empirical $L_{500} - P_{1.4}$ and $M_{500} - P_{1.4}$ relation in radio halo clusters and discuss the results. The best fits follow a power law of the form $L_{500} \propto P_{1.82}^{1.4}$ and $M_{500} \propto P_{3.00}^{1.4}$ which is in accordance with the best estimates in the literature.

Key words:
It has also been observed that radio halos exhibit an empirical correlation between their radio power at 1.4 GHz ($P_{1.4}$) and the X-ray luminosity (L_X) of their host galaxy cluster (Feretti 2000; Liang et al. 2000; Govoni et al. 2001; Bacci et al. 2003; Brunetti et al. 2007, 2009). Since most halos have been detected in luminous galaxy clusters, this relation tends to hold true in that regime. However, if the secondary model is to be believed then there must also exist radio halos with weak radio power that the current generation of radio telescopes are not sensitive enough to detect. The next generation of radio interferometric telescopes like the Murchison Widefield Array (MWA) (Lonsdale et al. 2009; Bowman et al. 2013; Tingay et al. 2013), Australian SKA Pathfinder (ASKAP) (Johnston et al. 2009), LOw Frequency ARray (LOFAR) (van Haarlem et al. 2013) and the upcoming Square Kilometer Array (SKA) (Dewdney et al. 2013) are expected to improve in low surface brightness sensitivity and uv-coverage as compared to the existing telescopes. It is possible then that many new low radio power radio halos could be detected which will shed new light on the science behind their formation.

The Giant Metrewave Radio Telescope (GMRT) has been at the forefront of the study of radio halos and relics at low frequencies (<1 GHz). The GMRT Radio Halo Survey (GRHS) (Venturi et al. 2007, 2008) and its follow up the extended GMRT Radio Halo Survey (eGRHS) (Kale et al. 2013, 2015) detected several radio halos, relics as well as mini-halos in a flux limited cluster sample. They also placed upper limits to halo emission in clusters where no halo was detected. These upper limits suggest a bi-modal nature of galaxy clusters in the $L_X - P_{1.4}$ plot. While it is possible that these clusters truly do not contain any halos it is also possible that their detection is simply limited by the sensitivity limit of the GMRT. However, even before the (e)GRHS there was another attempt to observe and study extended emission from galaxy clusters with the GMRT.

1.1 GMRT Cluster Key Project

The GMRT Key Project was initiated by V. K. Kulkarni and Gopal-Krishna in 2001 with the aim of imaging a well-defined sample of galaxy clusters to search for sources of diffuse radio emission in them. Over the course of 5 GMRT cycles, 39 clusters were observed with the GMRT at 244, 325 and 610 MHz. There were 14 clusters observed at 610 MHz and only 3 observed at 244 MHz. The majority of the clusters (29) were observed at 325 MHz. Multi-frequency observations (2 or more frequency bands) were available for only 8 clusters. The aim when creating the sample was to map the parameter space across three axes: halo/relic radio luminosity, X-ray luminosity, and a quantifier of the cluster’s dynamical state (inferred from the X-ray distribution). Furthermore, the project was to be complemented with X-ray observations from the Chandra and XMM-Newton telescopes which could be used to estimate the X-ray luminosity/temperature of the cluster and also quantify the dynamical state of the cluster.

The clusters in the sample ranged in redshift from 0.02 to 0.62. The motivation to observe clusters at moderate redshifts ($z > 0.3$) was to look for evolutionary trends in the radio properties since merger activity is expected to be higher at intermediate redshifts.

Figure 1 shows the mass distribution of all the clusters in our sample. The masses have been obtained from the Meta-Catalogue of X-ray Clusters (MCXC, Piffaretti et al. (2011)). All the masses were obtained from various surveys based on the ROSAT All-Sky Survey (RASS, Truemper (1993)). The luminosities and masses of the clusters in the various surveys were homogenised to L_{500} and M_{500} by the authors. In our sample, the L_{500} ranges from 0.22×10^{44} erg s$^{-1}$ to 24×10^{44} erg s$^{-1}$. We that no values could be found for the cluster RX J1046.8-2535. Note that L_{500} and M_{500} are the X-ray luminosity and mass of the cluster within the radius R_{500} of the cluster, where R_{500} is the radius at which the cluster mass density is 500 times the critical mass density of the Universe. The masses in particular were calculated from the X-ray luminosities using the luminosity mass relation for galaxy clusters as provided by Arnaud et al. (2010).

In Figure 2 we also compare all the clusters in our sample with all other clusters in the MCXC in an X-ray luminosity vs redshift plot. In Section 2 we give the details about the observations and the software used for our analysis. In Section 3 we briefly discuss the results of our analysis including two new detections of radio halos. Finally, we end with Sections 4 and 5 with a discussion on our results including how non-detections were handled and the main conclusions of this paper. The cosmology used in this paper is as follows: $\Omega_0 = 0.3, \Omega_\Lambda = 0.7, H_0 = 68$ km s$^{-1}$ Mpc$^{-1}$.

2 OBSERVATIONS AND ANALYSIS

The 39 clusters in this sample were observed between 11 January 2002 and 25 April 2004 which corresponds to Cycle 1 to Cycle 5 of the GMRT. Table 1 shows the list of clusters and the date they were observed along with the time spent on source at each frequency. These observations used the old GMRT hardware correlator as the backend. We used the software SPAM (Intema 2014; Intema et al. 2017) to analyse the data initially. Subsequent analysis that required continuum uv-subtraction to image the extended
emission in the galaxy cluster were performed using the CASA software package (McMullin et al. 2007).

2.1 SPAM

SPAM (Source Peeling and Atmospheric Modeling) is a radio astronomy data processing software developed by Huib Intema. The software uses Parseltongue (Kettenis & Sipior 2012) and Obit (Cotton 2013) as wrappers around the well-known software AIPS (Astronomical Image Processing Software) (Wells 1985) to provide a python interface for radio data processing. Several python packages like numpy and scipy are used in scripts that call on Parseltongue and subsequently AIPS for analysis.

The software uses the flux calibrator as the primary source for calibration and uses it to perform both flux and phase calibration on the target source. RFI (Radio Frequency Interference) mitigation is performed using a combination of outlier removal along the time and channel axes as well as modelling and subtraction of low level RFI and excision of particular high amplitude data in the uv-plane with greater weights. Both direction-independent as well as direction-dependent calibration are performed by the software.

The raw visibility file is provided to SPAM which performs an initial calibration (using the primary calibrator) and RFI excision from the visibilities to produce a calibrated visibility file for all sources. In the next step, the target visibility file is processed while also undergoing further flagging and calibration (including self-calibration) during the process. The imaging parameters are provided at this stage. For our analysis, since we are interested in extended emission we used the briggs weighting scheme with a robust value of 0. This provides a decent compromise between sensitivity and resolution that we require. The final image produced at the end of this process is used for analysis. All other SPAM configuration parameters were kept at their default values.

Since all of the data used in this work was recorded with the old GMRT correlator an additional step was sometimes required at the beginning of the process. In cases where the data was split into the upper side-band (USB) and lower side-band (LSB) the data had to be combined before processing it through SPAM. This is also done using the combine_usb_lsb task in SPAM.

Table 1. Cluster list with date of observation and time on source

Source	Frequency (MHz)	Date of Observation (dd-mm-yyyy)	Time on Source (min)
RX J1334.4+5030	610	11/01/2002	417
RX J0505.3-2849	325	22/08/2002	134
	610	07/09/2002	254
	610	11/10/2002	202
RX J1241.5+3250	325	06/02/2003	416
RX J0256.5+0006	610	12/01/2002	311
RX J0318.2-0301	325	21/08/2002	346
	610	02/05/2002	152
RX J1200.8-0327	325	01/03/2002	225
	610	02/05/2002	277
	610	02/06/2002	169
Abell 2597	610	03/05/2002	336
RX J0426.1+1655	325	02/01/2002	261
	610	06/10/2002	256
	610	02/06/2002	274
RX J2237.0-1516	325	02/03/2002	261
	610	11/01/2002	297
	610	02/06/2002	169
Abell 2319	325	02/06/2002	253
Abell 2163	325	29/12/2003	380
	610	17/07/2002	206
Abell 2345	610(E)	06/09/2002	41
	610(E)	07/09/2002	115
	610(W)	06/09/2002	41
	610(W)	07/09/2002	162
RX J1031.3+4414	325	21/08/2002	189
Abell 2390	244	18/07/2002	200
Abell 665	244	19/07/2002	229
RXC J1308.5+5342	325	14/02/2003	392
	610	19/12/2002	382
RX J0847.1+3440	325	05/02/2003	318
	610	19/12/2002	333
Abell 8090	325	05/03/2003	251
RX J1120.1+4318	325	13/02/2003	361
Abell 1084	325	19/07/2003	798
RXC J2211.7-0349	325	19/07/2003	761
Abell 0545	325	19/07/2003	521
Abell 1469	325	20/07/2003	413
RXC J2014.8-2430	325	20/07/2003	497
Abell 0901	325	29/12/2003	372
Abell 0291	325	29/12/2003	465
RXC J1212.3-1416	325	31/12/2003	612
RXJ1046.8-2535	325	19/10/2004	427
AS0780	325	20/10/2004	504
Abell 2485	325	19/10/2004	513
RX J0347.1+0043	325	25/04/2004	402
Abell 0907	325	25/04/2004	63
Abell 3444	325	25/04/2004	126
Abell 1300	325	25/04/2004	252
RXC J1504.1-0248	325	25/04/2004	282
RXC J1514.9-1523	325	25/04/2004	292
Abell 2537	325	25/04/2004	493
3 RESULTS

Table 2 contains the list of all clusters as well as some information about the clusters and the images produced with SPAM.
Table 2. Cluster list. Col. 1: Source Name, Col. 2: Redshift, Col. 3: Right Ascension (J2000), Col. 4: Declination (J2000), Col. 5: X-ray Luminosity in the [0.1-2.4] keV range, Col. 6: Total mass, Col. 7: Cluster radius, Col. 8: Frequency of observation (MHz), Col. 9: RMS of the image, Col. 10: Beam size (in arcsec × arcsec) and position angle (in degree).

Source	z	RA	DEC	L_{500}	M_{500}	R_{500}	Frequency	RMS	Beam size (arcsec) × (arcsec), °
RX J1334.3+5030	0.62	13:34:20.4	50:31:05.02	3.4056	2.6559	0.7786	610	0.15	9.70 × 8.10, -74.99
RX J0505.3-2849	0.509	05:05:19.9	-28:49:05.2	1.1966	1.5420	0.6788	325	0.23	13.44 × 8.68, -9.69
RX J1241.5+3250	0.39	12:41:33.2	32:50:23	2.7505	2.8284	0.8704	325	0.16	11.16 × 9.52, -16.92
RX J0256.5+0006	0.36	02:56:33	00:06:12	3.6630	3.4520	0.941	610	0.18	12.20 × 6.00, 88.84
RX J0318.2-0301	0.37	03:18:17.5	-03:01:14.02	0.9629	1.5161	0.7125	325	0.29	11.40 × 8.30, 35.22
RX J1200.8-0327	0.396	12:00:49.4	-03:27:30	1.3039	1.7854	0.745	325	2.21	18.50 × 13.68, 57.26
RX J0426.1+1655	0.38	04:26:07.4	16:55:12	2.8406	2.9084	0.8820	610	1.48	6.63 × 4.73, 3.8
RX J2207.0-1516	0.299	22:37:00.7	-15:16:08	1.1314	1.7713	0.7709	325	0.25	16.45 × 9.44, 60.86
Abell 2597	0.0852	23:25:20	-12:07:38	1.3039	1.7854	0.745	610	0.40	9.00 × 6.26, -40.96
RX J0426.1+1655	0.38	04:26:07.4	16:55:12	2.8406	2.9084	0.8820	610	2.44	19.37 × 6.42, 55.69
RX J2207.0-1516	0.299	22:37:00.7	-15:16:08	1.1314	1.7713	0.7709	610	1.48	5.61 × 4.05, 64.32
Abell 2345	0.176	21:27:11	-12:09:33.01	3.9026	4.1441	1.0699	610 (E)	0.38	5.93 × 5.30, 36
RX J1701.3+6414	0.453	17:01:08.3	64:14:38.4	3.4926	3.1055	0.8763	325	0.24	15.77 × 9.82, -5.18
Abell 2390	0.2329	21:53:35.5	17:41:12.01	14.815	8.9525	1.3554	244	0.81	18.50 × 13.68, 57.26
Abell 665	0.1818	08:30:45.19	65:52:55.31	8.9977	6.8668	1.2635	244	0.74	19.37 × 13.84, -6.7
RXC J1308.5+5342	0.33	13:08:31.1	53:42:06.98	0.8107	1.4101	0.7062	325	0.12	11.40 × 8.30, 35.22
RX J0847.1+3449	0.56	08:47:11.3	34:49:16	1.1916	1.9683	0.7216	325	0.10	10.06 × 8.70, 26.6
Abell 0400	0.0238	02:56:30	06:10:00	0.2211	0.8012	0.6505	325	0.84	10.01 × 9.50, 43.67
RX J1120.1+4318	0.6	11:20:07.38	43:18:07.16	4.9580	3.3968	0.8519	325	0.17	11.60 × 8.90, 28.99
Abell 1084	0.1342	10:44:33	-07:04:22	4.2956	4.5308	1.1182	325	0.20	15.80 × 8.80, 62.54
Source	z	RA hh:mm:ss	DEC dd:mm:ss	L_{500} 1044 erg s$^{-1}$	M_{500} 1014M$_{\odot}$	R_{500} Mpc	Frequency MHz	RMS mJy beam$^{-1}$	Beam size (arcsec)\times(arcsec), $^\circ$
--------	------	-------------	-------------	-----------------	-----------------	-----------	---------------	-----------------	---
RXC J2211.7-0349	0.397	22:11:44.6	-03:49:47	24.0000	18.1000	1.6100	325	0.20	12.80 \times 9.80, 72.06
Abell 0545	0.154	05:32:23.1	-11:31:50.02	5.0062	4.9028	1.1403	325	0.32	12.70 \times 8.80, 30.58
Abell 1689	0.1832	13:11:29.5	-01:20:17.02	12.5240	8.3920	1.3502	325	0.30	12.20 \times 8.40, 48.93
RXC J2014.8-2430	0.1612	20:14:50	-24:30:35	9.4586	7.1884	1.2922	325	-	-
Abell 0901	0.1634	09:56:26.4	-10:04:12	5.6296	5.2030	1.1613	325	0.2	13.60 \times 8.60, 39.77
Abell 0291	0.196	02:01:44.2	-02:12:02.99	4.2718	4.3137	1.0767	325	0.21	11.30 \times 10.40, -21.51
RXC J1212.3-1816	0.269	12:12:18.9	-18:16:43	5.6441	4.8327	1.0892	325	0.16	15.10 \times 9.60, 12.58
RXJ1046.8-2535	0.243	10:46:48	-25:34:59.99	-	-	-	325	0.16	17.10 \times 8.70, 34.55
Abell 2104	0.1533	15:40:07.5	-03:18:29.02	4.2260	4.4239	1.1021	325	0.45	10.20 \times 8.30, -80.66
RXC J0510.7-0801	0.2195	05:10:47.91	-08:01:44.29	7.7286	6.0827	1.1974	325	0.26	14.60 \times 8.50, 53.62
AS0780	0.2357	14:59:29.3	-18:11:12.98	13.9675	8.6180	1.3370	325	0.17	14.30 \times 9.60, -16.44
Abell 2485	0.2472	22:48:32.9	-16:06:23	4.6638	4.3759	1.0622	325	0.37	12.86 \times 9.43, 10.65
RXC J0437.1+0043	0.2842	04:37:10.1	00:43:37.99	8.9950	5.9496	1.1608	325	0.21	11.00 \times 9.37, 50.02
Abell 0907	0.1669	09:58:22.2	-11:03:34.99	5.2999	5.0282	1.1448	325	0.59	13.58 \times 9.30, 55.59
Abell 3444	0.2542	10:23:50.8	-27:15:31	11.9196	7.7124	1.2798	325	0.46	13.60 \times 10.90, -10.11
Abell 1300	0.3075	11:31:54.4	-19:55:41.99	12.4620	7.5980	1.2485	325	0.72	16.30 \times 13.10, 30.19
RXC J1504.1-0248	0.2153	15:04:07.5	-02:48:15.98	24.9688	12.4750	1.5235	325	0.41	14.30 \times 9.30, 69.06
RXC J1514.9-1523	0.2226	15:14:58	-15:23:10.0	6.4277	5.4232	1.1511	325	0.26	12.80 \times 10.70, 59.53
Abell 2537	0.2966	23:08:23.2	-02:11:30.98	9.3659	6.4393	1.1864	325	0.25	13.18 \times 10.14, 82.04
3.1 New Detections

In our sample of 38 clusters we have detected 2 new possible candidate radio halos - RXC J0510.7-0801 and RXC J2211.7-0349.

3.1.1 RXC J0510.7-0801

This is a massive ($M = 7.4 \times 10^{14} M_{\odot}$) (Giacintucci et al. 2017), luminous ($L_X = 12.83 \times 10^{44}$ erg s$^{-1}$ Böhringer et al. (2004))) cluster at a redshift of $z = 0.22$ (De Grandi et al. 1999). Kale et al. (2015) analysed this cluster but could not detect any extended emission as the quality of the data were poor.

Figure 3 shows the greyscale radio image of the cluster in the left panel. Also shown is the R_{500} range in the dashed circle. The right panel of the figure shows the contours of the radio image overlaid on the X-ray image from XMM-Newton. The bottom panel of the image shows the point source subtracted image smoothed and overlaid on the X-ray image. Point source subtraction was performed in CASA by first only imaging the point sources by setting the uv-cutoff above 3k and then using the task UVSUB to remove the point sources from the visibility file. Finally, in order to bring out the extended emission better, imaging was performed using only the first 5k using the modified visibility file.

3.1.2 RXC J2211.7-0349

This is also an extremely massive ($M_X = 10.5 \times 10^{14} M_{\odot}$) and luminous ($L_X = 15.84 \times 10^{44}$ erg s$^{-1}$ Ebeling et al. 2010)) cluster at a redshift of $z = 0.3977$. The gas temperature of the cluster was estimated to be $T_X = 11.3_{-1.7}^{+1.46}$ keV (Cavagnolo et al. 2008).

The radio image of this cluster is shown in the left panel of Fig. 4. The right panel shows the radio contours on the colour X-ray image. The X-ray image is also from the XMM-Newton as before. The bottom panel of the image shows the point source subtracted image smoothed and overlaid on the X-ray image. This image was also created using the same method as mentioned above for RXC J0510.7-0801.

Rossetti et al. (2016) studied this cluster as part of a Planck selected sample of clusters to characterize the dynamical state of clusters. For this cluster they used results from Wen et al. (2012) who cross-matched clusters between optical (SDSS) and X-ray (ROSAT) catalogs. Based on their analysis they estimated the X-ray peak of the cluster to be offset from the BCG in the cluster by 7.16" (38.3 kpc).

In radio the cluster was observed with the GMRT again in 2009 (Project ID: 16,117) at 610 MHz. We analysed these data as well using the same method described before. However, no sources of extended emission were detected in this image (Beam = $6.15'' \times 4.87''$, RMS = 50 mJy beam$^{-1}$).

3.2 Known sources of diffuse emission

Of the 39 clusters in our sample 11 clusters are known in the literature to host radio halos and relics. The archival data we used was able to detect all the sources of extended emission in the clusters. Table 3 contains the list of these clusters as well as the flux density values of the sources as estimated by this work compared to the literature. It should be noted that difference in flux density values for sources at the same frequency could be due to several reasons such as calibration or different sizes of the source taken during estimation.

3.2.1 RX J0256.5+0006

The cluster is at a redshift of $z = 0.36$ (Romero et al. 2000). Plionis et al. (2005) also give the X-ray luminosity of the cluster to be $L_X = 2.84 \times 10^{44}$ erg s$^{-1}$ and a temperature of $T_X = 5.6_{-0.5}^{+0.7}$ Detailed XMM–Newton observations of the cluster by Majerowicz et al. (2004) revealed that this cluster shows two peaks in X-ray – one corresponding to the main cluster centre and another to its west – which suggests the cluster is in a merger state. A study of its dynamics showed that the merger is on-axis and the subcluster is roughly 20–30% of the main cluster by mass.

Recent GMRT 325 MHz and 610 MHz observations of the cluster (Knowles et al. 2016, 2019) revealed that the cluster does indeed host a faint radio halo.

3.2.2 Abell 2163

A2163 is another massive cluster at a redshift of $z = 0.203$ (Struble & Rood 1999). It has an X-ray luminosity of $L_X = 34.37 \times 10^{44}$ erg s$^{-1}$ and a temperature of $T_X = 13.4_{-10.4}^{+0.5}$ keV (Planck Collaboration et al. 2011). The cluster hosts a ~3 Mpc size radio halo (Herbig & Birkinshaw 1994; Feretti et al. 2001, 2004).

3.2.3 Abell 2345

A2345 is an intermediate redshift ($z = 0.176$ Struble & Rood (1999)) cluster with an X-ray luminosity of $L_X = 6.47 \times 10^{44}$ erg s$^{-1}$. The cluster contains double relics on opposite ends of the cluster (Bonafede et al. 2009).

3.2.4 Abell 665

The cluster is at a redshift of $z = 0.182$ (Struble & Rood (1999)) and has an X-ray luminosity of $L_X = 15.17 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2000). The temperature of this cluster has been estimated to be $T_X = 7.5_{-0.2}^{+0.4}$ keV (Maughan et al. 2008). This cluster is well known to host a 1.8 Mpc radio halo (Moffet & Birkinshaw 1989; Giovannini & Feretti 2000).

3.2.5 Abell 0545

A545 has a redshift of $z = 0.154$ (Struble & Rood 1999) and an X-ray luminosity of $L_X = 8.37 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004) with a temperature of $T_X = 5.5_{-2.1}^{+3.3}$ (David et al. 1993). The X-ray structure of the cluster is disturbed (Bacchi et al. 2003) and radio observations of the cluster (Bacchi et al. 2003) reveal the presence of a giant radio halo.
AS0780 or RXCJ1459.4-1811 is a highly luminous cluster $L_X = 22.94 \times 10^{44}$ erg s$^{-1}$ found at a redshift of $z = 0.236$ (Böhringer et al. 2004). Giacintucci et al. (2017) first claimed the cluster to host a mini-halo based on VLA 1.4 GHz observations. Using new GMRT and VLA observations Giacintucci et al. (2019) confirmed the presence of the mini-halo.

A907 has a redshift of $z = 0.153$ (Ebeling et al. 1996) and an X-ray luminosity of $L_X = 7.59 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004). The gas temperature in the cluster has been estimated to be $T_X = 5.3^{+0.4}_{-0.1}$ keV (Maughan et al. 2008). Giacintucci et al. (2019) claim that the cluster hosts a 65 kpc mini-halo.
3.2.8 Abell 3444

A3444 is an intermediate redshift ($z = 0.253$ Struble & Rood (1999)) highly luminous galaxy cluster ($L_X = 18.11 \times 10^{44}$ erg s$^{-1}$ Böhringer et al. (2004)) with a temperature of $T_X = 5.6^{+0.24}_{-0.18}$ keV (Matsumoto et al. 2001). X-ray analysis by Lemonon et al. (1997) suggested that this is a cool-core cluster. The GRHS detected a possible extended emission which was confirmed to be a mini-halo recently by Giacintucci et al. (2019).

3.2.9 Abell 1300

A1300 is another highly luminous galaxy cluster ($L_X = 19.23 \times 10^{44}$ erg s$^{-1}$ Ebeling et al. (2010)) at a redshift of $z = 0.307$ (Struble & Rood 1999). The cluster has a temperature of $T_X = 7.75^{+0.31}_{-0.31}$ keV (Planck Collaboration et al. 2011). X-ray and optical observations (Lemonon et al. 1997) revealed that revealed that the cluster has a highly disturbed morphology and substructures. A radio halo and relic were first detected in this cluster by Reid et al. (1999). A low frequency follow-up observation with the GMRT was carried out by Giacintucci (2011) and Venturi et al. (2013) where the authors detected a faint bridge emission between the...
halo and relic. Parekh et al. (2017) also performed a multi-frequency analysis of the cluster and confirmed the presence of this bridge as well as a second relic close to the halo.

3.2.10 RXC J1504.1-0248

The cluster has a redshift of $z = 0.215$. Chandra analysis of the X-ray luminosity of the cluster to be $L_X = 2.3 \times 10^{45}$ erg s$^{-1}$ (Böhringer et al. 2005). This study revealed the cluster to be the most luminous cluster in the southern sky at redshifts < 0.3 with an extremely compact and dense core. High frequency radio observations by Mittal et al. (2009) show that the AGN in the cluster has a flat spectral index (~ 0.29) between 1.4 GHz and 4.86 GHz. Low frequency observations of the cluster at 327 MHz reveal the presence of a radio mini-halo nearly 140 kpc in size (Giacintucci et al. 2011a).

3.2.11 RXC J1514.9-1523

This cluster has a redshift of $z = 0.223$ and an X-ray luminosity of $L_X = 10.63 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004). Radio observations of the cluster show that it contains an ultra steep spectrum radio halo (Giacintucci et al. 2011b).

4 DISCUSSION

Of the 39 clusters in the original sample we were able to image 38 clusters. The data for the cluster RXC J2014.8-2430 was too corrupted for us to properly image. The remaining 38 clusters were imaged with the SPAM software package. In the case of another cluster (RXJ1046.8-2535) no detailed X-ray information was available.

In Figure 5 we show the empirical relation between halo radio power at 1.4 GHz ($P_{1.4}$) and the cluster X-ray luminosity (L_{500}) and mass (M_{500}). These studies of the relation between the radio properties of halos and the X-ray component of galaxy clusters can provide information about the origin of the synchrotron emission from the ICM. The radio power values for these plots were obtained from van Weeren et al. (2019) and references therein while the L_{500} and M_{500} values were obtained from Piffaretti et al. (2011). All the known halos from the literature are shown in black while all the upper limits from the literature are shown in red arrows. The best fit line was obtained following a method

Source	v_0 (MHz)	S_0 (mJy)	v_1 (MHz)	S_1 (mJy)	Reference
RXC J0256.5+0006	610	30.99	610	6.9 ± 0.7	Knowles et al. (2016, 2019)
A2163	325	1126.69 H/98 (R)	325	861 ± 10	Feretti et al. (2001, 2004)
A2345	610	565.170(8)-408.48(E)	325	291 ± 40(E)/188 ± 3(E)	Bonafede et al. (2009)
A665	240	462.58	325	197 ± 6	Giovannini & Feretti (2000); Feretti et al. (2004)
A0545	325	624.9	1400	23 ± 1	Bacchi et al. (2003)
A0769	325	123.3 (MH)	610	34 ± 2	Giacintucci et al. (2019)
A907	325	44.7 (MH)	610	34.9 ± 5.6	Giacintucci et al. (2019)
A3444	325	21.36 (MH)	610	10.0 ± 0.8	Venturi et al. (2007); Giovannini et al. (2009)
A1300	325	207.67(H)/90.59(R)	325	130 ± 10(H)/75 ± 6(R)	Reid et al. (1999); Venturi et al. (2013); Parekh et al. (2017)
RXC J1504.1-0248	325	220.8 (MH)	325	215 ± 11	Giacintucci et al. (2011b)
RXC J1514.9-1523	325	18.95	325	902 ± 9	Giacintucci et al. (2011a)

Table 4. Estimated upper limits to radio halo emission in our sample. Col. 1: Cluster name, Col. 2: RMS in the central region, Col. 3: Frequency of image, Col. 4: Upper limit at this frequency, Col. 5: Log of the extrapolated radio power at 1.4 GHz

Source	RMS [mJy beam$^{-1}$]	v [MHz]	$S_{UL}^{MK} [\text{mJy}]$	log($P_{1.4}^{UL}$) [W Hz$^{-1}$]
RX J1334.3+5030	0.14	618	10.5	24.86
RX J1241.5+3250	0.16	333	24.7	24.38
RX J0318.2-0301	0.154	318	13.69	23.65
RX J1200.8-0327	0.2	618	1.82	22.58
Abell 2345	0.577	618	125.1	24.62
RX J1701.3+6414	0.284	333	8.5	24.07
Abell 2890	0.9	240	45.2	23.92
RXC J1308.5+5342	0.045	618	6.00	23.33
RX J0847.1+3449	0.069	618	11.09	23.97
RX J1720.1+4318	0.181	333	36.2	25.01
Abell 1084	0.203	318	101.6	23.89
Abell 1689	0.331	317	66.12	24.01
Abell 0291	0.264	317	57.23	24.01
RXC J1212.3-1816	0.148	317	13.57	23.7
Abell 2104	0.449	317	89.8	23.97
Abell 2485	0.338	317	16.88	23.71
RXC J0437.1+0043	0.278	317	55.5	23.47
Abell 0907	0.634	317	422	24.72
Abell 2537	0.254	317	50.8	24.38

Table 5. Clusters with no upper limits calculated.

Source	v (MHz)	Remarks
RX J0505.3-2849	325/610	Bright source at cluster centre
A2597	610	Bright source at cluster centre
RX J0426.1+1655	244/325/610	Bright source at cluster centre
RX J2237.0+1516	325/610	Bad image
A2319	325	Bad image
A0400	325	Bright source at cluster centre
A0901	325	Bad image

Table 6. Best fit values for $L_X - P_{1.4}$ plot using four methods. The values correspond to a $Y = AX + B$ model where $X = \log(L_{500})$ and $Y = \log(P_{1.4})$. The values in bold are used in the plot.

Method	A	σ_A	B	σ_B	
OLS (Y	X)	1.8190	0.3126	-56.9956	14.0065
OLS (X	Y)	4.3765	0.9952	-171.7180	44.7165
bisector	2.6276	0.2825	-93.2691	12.7114	
orthogonal	4.0723	0.9102	-158.0726	40.9044	

MNRAS 000, 1–16 (2019)
Table 7. Best fit values for $M_X - P_{1.4}$ plot using four methods. The values correspond to a $Y = AX + B$ model where $X = \log(M_{500})$ and $Y = \log(P_{1.4})$. The values in bold are used in the plot.

Method	A	σ_A	B	σ_B
OLS (Y/X)	3.0095	0.5969	-19.8687	8.8032
OLS (X/Y)	8.9090	2.1277	-94.9471	31.4991
bisector	4.4325	0.5995	-40.8957	7.5512
orthogonal	7.8851	2.0587	-91.9113	30.4801

similar to Brunetti et al. (2009). Table 6 and 7 show the best fit values for the plots using four methods: Ordinary Least Squares (OLS) Y over X and X over Y, the bisector method and the orthogonal method. The authors recommend using the bisector method to estimate the best fit as suggested by Isobe et al. (1990) since it treats both variables symmetrically. However, in our case Piffaretti et al. (2011) do not provide error values for L_{500} and M_{500}. Therefore, using a method that requires errors on both variables will not be appropriate. So we use OLS (Y/X) for our best fit in the plots.

Recently, Cuciti et al. (2021) performed a similar analysis on a slightly larger cluster sample where they estimated the M_{500} values themselves and thus have errors on those variables. They provide best fits for both the Y/X method as well as the bisector method. Our best fit also agrees with their estimate of 2.96 ± 0.5 for the slope using the Y/X method.

The green diamonds correspond to the two new detections from our sample. The flux density value of the halo at 325 MHz in our images was estimated from the uv-subtracted images shown in Fig. 3 and 4 and then scaled to 1.4 GHz (with k-correction applied) using an average halo spectral index of -1.3 (Feretti et al. 2012). While RXC J0510.7-0801 fits the line very well, the detected halo in the massive cluster RXC J2211.7-0349 is almost an order of magnitude weaker in the $M_{500} - P_{1.4}$ plot. Similar to Cuciti et al. (2018) who discovered two underluminous radio halos, the halo in this cluster could be the result of a minor merger or a result of the secondary model of halo formation due to hadronic collisions. It should be noted from Fig. 4 that the X-ray morphology of the cluster is much more relaxed and not that disturbed as compared to RXC J0510.7-0801 in Fig. 3. Thus, it is possible that the halo emission seen in the cluster is a remnant emission from early in the cluster's history and is now comparatively much weaker after the merger is complete. Alternatively, the cluster could be in the earlier stages of a merger and the X-ray emission has not been disturbed yet.

For clusters in our sample where radio halos were not detected we tried to estimate upper limits (blue arrows in Fig. 5). The upper limits were estimated semi-automatically. The details of the process are described in detail in George et al. (2020). Briefly, for every cluster, a model halo image with an exponential profile (Bonafede et al. 2017) is created with a fixed position, redshift, size and flux density of the halo. This image is then Fourier transformed and added to the visibility file of the cluster on a per channel basis. The new visibility file is then imaged in the visibility file of the cluster on a per channel basis. The halo image is then Fourier transformed and added to the visibility file of the cluster on a per channel basis. The process is repeated for several flux densities until the halo is confirmed to be “detected.” The code used to estimate halo upper limits is available here \(^1\).

Table 4 shows the estimated upper limits to halo flux densities at the corresponding reference frequencies as well as the extrapolated radio power upper limits at 1.4 GHz for other clusters in our sample. No limits are given for the following clusters: A2597, RX J0426.1+1655, RX J2237.0+1516, A2319, RXC J1308.5+5342, A0400, A0901 and A2485. We were unable to estimate the limits in these clusters for a few reasons as shown in Table 5. In some cases the quality of the image was extremely poor as a result of which proper estimates could not be made while in others the extent and brightness of the central BCG made estimation of any upper limit in the image extremely difficult. Note also that no upper limit has been estimated for the cluster RXJ1046.8-2535 since no relevant X-ray information is available for the cluster.

The GMRT Key Project on galaxy clusters was one of the first dedicated projects to make full use of the then untested capabilities of a low frequency telescope. The sample of clusters chosen to observe was a mix of clusters where halos had been previously detected at high frequencies (Giovaninni et al. 1999) and others based on discussions with X-ray astronomers. The clusters spanned a wide range of redshifts and cluster mass so as to cover all possibilities of radio halo detection in a then burgeoning realm of radio astronomy. As discussed in the previous section many of these clusters did turn out to host sources of extended emission when they were later observed after improving the telescope’s capabilities. In this paper we showed that with modern processing techniques such as direction dependant calibration found in SPAM it was still possible to detect the extended emission if not outright recover it. Blind surveys like this need to be conducted even in the future when new radio telescopes will be developed and their data needs to be carefully archived as they can lead to new discoveries when new processing techniques are discovered.

5 CONCLUSIONS

In this work we have analysed nearly two decade old archival GMRT observations of galaxy clusters using modern processing methods. The GMRT Key Project on galaxy clusters was undertaken within the first few years after the inauguration of the GMRT. The clusters chosen for observation were done so after careful consideration and deliberation with X-ray astronomers in order to make full use of the capabilities of the new telescope.

We analysed 38 galaxy clusters and were able to detect two new radio halos in the clusters RXC J0510.7-0801 and RXC J2211.7-0349. The former exhibits a highly disturbed X-ray morphology and is an example of a typical giant radio halo. It agrees fairly well with the observed correlation between cluster luminosity and radio halo power. RXC J2211.7-0349 on the other hand is a massive galaxy cluster that is quite relaxed and yet shows the presence of a weak radio halo. This cluster does not agree with the empirical relation very well. This could suggest that the halo emission is old and

\(^1\) https://github.com/lijotgeorge/upper-limit-calculator
thus weaker now that there are no more sources generating ultra-relativistic electrons in the ICM. Or else the cluster is new and is in the very early stages of its merger or that the halo is a result of a minor merger or due to the secondary model of halo formation.

We also confirmed the presence of several halos and mini-halos known in the literature from the archival data. Most of these clusters were later reobserved with the GMRT when the sensitivity of the telescope was much better and thus the data were of better quality. In the remaining 26 clusters we attempted to estimate upper limits to a possible radio halo emission. For this purpose we developed our own semi-automated upper limit calculator. We were able to estimate upper limits on 19 clusters in this manner. Upper limit estimation in the remaining clusters was not possible for various reasons.

Blind surveys like the GMRT Key Project are crucial when a new telescope becomes operational both to test the capabilities of the telescope as well as for the possibility of discovering new objects of scientific importance. This project also shows that even legacy data with all its shortcomings can still be useful when new analytical techniques and algorithms are developed and can lead to new discoveries.

ACKNOWLEDGEMENTS

We thank the anonymous referee for providing their valuable comments to this paper which have helped improve it. We acknowledge the support of the Department of Atomic Energy, Government of India, under project no. 12-R&D-TFR-5.02-0700. We thank the staff of the GMRT that made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. RK acknowledges support from the DST-INSPIRE Faculty Award of the Government of India. This research made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013; Price-Whelan et al. 2018). This research made use of Astroquery, an astropy affiliated package that contains a collection of tools to access online Astronomical data (Ginsburg et al. 2019). This research has made use of the X-Rays Clusters Database (BAX) which is operated by the Laboratoire d’Astrophysique de Toulouse-Lattes (LATT), under contract with the Centre National d’Etudes Spatiales (CNES). This research has made use of NASA’s Astrophysics Data System.

Data Availability: The data underlying this article were accessed from the GMRT Online Archive (Project IDs: 01VKK01, 02VKK01, 03VKK01, 04VKK01, 05VKK01). The derived data generated in this research will be shared on reasonable request to the corresponding author.

REFERENCES

Ackermann M., Ajello M., Allafort A., Baldini L., et al., 2010, *ApJ*, 717, L71

Aharonian F., Akhperjanian A. G., Anton G., Barres de Almeida U., et al., 2009a, *A&A*, 495, 27

Aharonian F., Akhperjanian A. G., Anton G., Barres de Almeida U., et al., 2009b, *A&A*, 502, 437

2 http://www.astropy.org

3 https://naps.ncra.tifr.res.in/goa/data/search
APPENDIX A: OTHER CLUSTERS

A1 RX J1334.3+5030
At a redshift of \(z = 0.62 \) (Romer et al. 2000) this cluster has the highest redshift in the sample. It has an X-ray luminosity of \(L_X = 3.9 \times 10^{44} \text{ erg s}^{-1} \) (Lumb et al. 2004). The temperature of the cluster was estimated by Kotov & Vikhlinin (2005) to be \(T_X = 4.6 \pm 0.5 \times 10^{44} \text{ M}_\odot \).

A2 RX J0505.3-2849
This cluster if at a redshift \(z = 0.509 \) (Burke et al. 2003) and has an X-ray luminosity of \(L_X = 1.1 \times 10^{44} \text{ erg s}^{-1} \) and is at a temperature of \(T_X = 2.5_{-0.3}^{+0.3} \text{ keV} \) (Lumb et al. 2004). X-ray observations of the cluster with the XMM–Newton show the presence of two peaks one of which has been claimed to be due to confusion with a double point source (Dietrich et al. 2007).

A3 RX J1241.5+3250
This cluster has a redshift of \(z = 0.39 \) and an X-ray luminosity of \(L_X = 4.8 \times 10^{44} \text{ erg s}^{-1} \) (Romer et al. 2000). The temperature of the cluster was estimated to be \(T_X = 6 \text{ keV} \).

A4 RX J0318.2-0300
The cluster has a redshift \(z = 0.37 \) (Romer et al. 2000). X-ray analysis of the clusters give the luminosity of the cluster to be \(L_X = 1.74 \times 10^{44} \text{ erg s}^{-1} \) (Burke et al. 2003) and a temperature of \(T_X = 5.7_{-0.3}^{+0.3} \text{ keV} \) (Ehlert & Ulmer 2009).

A5 RX J1200.8-0327
This cluster has a redshift of \(z = 0.396 \) (Mullis et al. 2003) and an X-ray luminosity of \(L_X = 2.02 \times 10^{44} \text{ erg s}^{-1} \) (Vikhlinin et al. 1998). The X-ray distribution of the cluster is spherically symmetric and it seems to be in a relaxed state with a global temperature of \(T_X = 5.1_{-0.7}^{+0.7} \text{ keV} \) (Majerowicz et al. 2004).

A6 Abell 2597
A2597 is a nearby cool-core cluster with a redshift of \(z = 0.085 \) (Struble & Rood 1999). It has an X-ray luminosity of \(L_X = 6.62 \times 10^{44} \text{ erg s}^{-1} \) (Reiprich & Böhringer 2002) and a temperature of \(T_X = 4.05 \text{ keV} \) (Hudson et al. 2010). X-ray observations by show the presence of cold, accretion flow in the cluster towards the central supermassive black hole.
A7 RX J0426.1+1655

The cluster has a redshift of $z = 0.38$ and an X-ray luminosity of $L_X = 4.94 \times 10^{44}$ erg s$^{-1}$ (Romer et al. 2000). The temperature of the cluster has been estimated to be $T_X = 5.40^{+0.4}_{-0.4}$ keV (Ehlert & Ulmer 2009).

A8 RX J2237.0-1516

This cluster is an intermediate redshift ($z = 0.299$) cluster with a weak X-ray luminosity $L_X = 2.18 \times 10^{44}$ erg s$^{-1}$ (Romer et al. 2000). The mean temperature of the cluster was estimated to be $T_X = 3.04^{+0.4}_{-0.3}$ keV (Majerowicz et al. 2004). XMM-Newton analysis do not reveal any structure in the X-ray distribution (Majerowicz et al. 2003).

A9 Abell 2319

A2319 is a highly luminous nearby cluster with a redshift of $z = 0.056$ (Struble & Rood 1999) and an X-ray luminosity of $L_X = 15.78 \times 10^{44}$ erg s$^{-1}$ (Reiprich & Böhringer 2002). It has a temperature of $T_X = 8.40_{-0.18}^{+0.18}$ keV (Ikebe et al. 2002). VLA and GBT observations of the cluster reveal the presence of a ~ 2 Mpc size radio halo with a complex morphology (Feretti et al. 1997; Farnsworth et al. 2013; Storm et al. 2015).

A10 RX J1701.3+6414

This is high redshift cluster ($z = 0.453$) with an X-ray luminosity of $L_X = 3.4 \times 10^{44}$ erg s$^{-1}$ (Lumb et al. 2004) and a temperature of $T_X = 4.36^{+0.06}_{-0.46}$ keV (Vikhlinin et al. 2009).

A11 Abell 2390

This massive cluster has a redshift of $z = 0.228$ (Struble & Rood 1999) and an X-ray luminosity of $L_X = 25.09 \times 10^{44}$ erg s$^{-1}$ (Allen et al. 2003) and a gas temperature of $T_X = 8.89_{-0.24}^{+0.24}$ keV (Planck Collaboration et al. 2011). The extended emission in this cool-core cluster was initially identified as a mini-halo (Bacchi et al. 2003). Later observations revealed however, that the emission was much larger than previously measured and the source is in fact a radio halo with a steep spectrum (Sommer et al. 2017).

A12 RXC J1308.5+5342

This cluster has a redshift of $z = 0.33$ and an X-ray luminosity of $L_X = 1.53 \times 10^{44}$ erg s$^{-1}$ (Lumb et al. 2004). The temperature of the cluster is $T_X = 4.36^{+0.38}_{-0.38}$ keV (Ettori & Balestra 2009).

A13 RX J0847.1+3449

This is a high redshift cluster ($z = 0.56$ Vikhlinin et al. (1998)) and is not very Luminous ($L_X = 1.59 \times 10^{44}$ erg s$^{-1}$ Lumb et al. (2004)). The X-ray temperature of the cluster gas has also been estimated by Lumb et al. (2004) to be $T_X = 3.62^{+0.58}_{-0.51}$ keV.

A14 Abell 0400

A400 is a low redshift cluster ($z = 0.024$ Struble & Rood (1999)) with a very low X-ray luminosity of $L_X = 0.71 \times 10^{44}$ erg s$^{-1}$ and a temperature of $T_X = 2.43_{-0.8}^{+0.8}$ keV. GBT observations by Farnsworth et al. (2013) were not able to detect any source of extended emission as the central cluster is dominated by emission due to the tailed radio galaxy 3C275.

A15 RX J1120.1+4318

This is another high redshift cluster ($z = 0.6$ Romer et al. (2000)). Lumb et al. (2004) estimated the X-ray luminosity of the cluster as $L_X = 6.07 \times 10^{44}$ erg s$^{-1}$ and temperature to be $T_X = 5.45^{+0.3}_{-0.3}$ keV.

A16 Abell 1084

A1084 has a redshift of $z = 0.132$ (Pimbblet et al. 2006). The cluster has an X-ray luminosity of $L_X = 6.82 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004) and a temperature of $T_X = 3.56_{-0.5}^{+0.5}$ keV (Pratt et al. 2007). Visual inspection of the ROSAT image for this cluster showed that it has an irregular morphology (Pimbblet et al. 2006).

A17 Abell 1689

A1689 is a highly luminous galaxy cluster ($L_X = 19.88 \times 10^{44}$) erg s$^{-1}$ (Reiprich & Böhringer 2002) at a redshift of $z = 0.183$ (Struble & Rood 1999). It has an X-ray temperature of $T_X = 8.17_{-0.12}^{+0.12}$ keV (Planck Collaboration et al. 2011).

A18 RXC J2014.8-2430

This cluster has a redshift of $z = 0.161$ and an X-ray luminosity of $L_X = 15.1 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004). The temperature of the cluster is $T_X = 4.76_{-0.2}^{+0.2}$ keV (Pratt et al. 2009). A morphological analysis of the cluster (Weißmann et al. 2013) revealed the cluster to be in a relaxed state.

A19 Abell 0901

A901 is at a redshift of $z = 0.17$ (Schindler 2000) and an X-ray luminosity of $L_X = 10.73 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004). It also has a temperature of $T_X = 3.2_{-0.2}^{+0.2}$ keV (Zhang et al. 2008). The X-ray analysis by Schindler (2000) revealed the cluster to have a relaxed morphology.

A20 Abell 0291

A0291 is at a redshift of $z = 0.197$ (Struble & Rood 1999) and has an X-ray luminosity of $L_X = 6.81 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004).

A21 RXC J1212.3-1816

This cluster has a redshift of $z = 0.269$ and an X-ray luminosity of $L_X = 9.17 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004). The cluster was observed by Kale et al. (2013, 2015) but no sources of extended emission were found.
A22 RX J1046.8-2535

The cluster is at a redshift of $z = 0.2426$ (Pierre et al. 1994). Not much is known about this cluster either in X-ray or radio.

A23 Abell 2104

This cluster has a redshift of $z = 0.153$ (Pimbblet et al. 2006). The X-ray luminosity of the cluster is $L_X = 7.26 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004) and a temperature of $T_X = 6.76^{0.19}_{0.19}$ keV (Baldi et al. 2007).

A24 Abell 2485

This cluster is at a redshift $z = 0.247$ and has an X-ray luminosity of $L_X = 7.73 \times 10^{44}$ erg s$^{-1}$ (Böhringer et al. 2004). Kale et al. (2013) did not find any source of diffuse emission in the cluster.

A25 RXC J0437.1+0043

This cool core cluster is at a redshift of $z = 0.285$ and has an X-ray luminosity of $L_X = 7.91 \times 10^{44}$ erg s$^{-1}$ (Ebeling et al. 2000). Zhang et al. (2006) estimate the temperature of the cluster to be $T_X = 5.10^{0.3}$ keV and the mass of the cluster to be $M_X = 6.1 \pm 2.2 \times 10^{14} M_\odot$. VLA observations of the cluster (Feretti et al. 2005) did not reveal the presence of any diffuse emission in the cluster.

A26 Abell 2537

A2537 is a hot ($T_X = 8.4^{0.76}_{0.68}$ keV Cavagnolo et al. (2008)), highly luminous ($L_X = 14.78 \times 10^{44}$ erg s$^{-1}$ Cruddace et al. (2002)) with a redshift of $z = 0.295$ (Dahle et al. 2002). The cluster was observed as part of the GRHS (Venturi et al. 2007) and the authors did not detect any source of extended emission in the cluster. The authors in their observations mention the emission in the cluster to be dominated by a tailed radio galaxy near the centre which has been detected by our analysis as well.

This paper has been typeset from a TeX/LaTeX file prepared by the author.
Figure A1. Radio images for the clusters in our sample. Dashed circles represents R_{500} as given by MCXC. The units of the colourbar are in Jansky/beam. These images were created using astropy with interval levels determined automatically for each image using the PercentileInterval option. By default, 99% of the pixels were used to estimate the limits with the exceptions being RXC J0847.1+3449 and RX J1048.8-2535 where 98% of the pixels were used.
(b) Radio images contd.
(c) Radio images contd.
(d) Radio images contd.
(e) Radio images contd.
(f) Radio images contd. Note that no R_{500} circle is shown for RXJ1046.8-2535 since no X-ray information is available for that cluster.
(g) Radio images contd.
(h) Radio images contd.