Study of Performance Enhancement of Single and Double Pass Solar Air Heater with Change in Surface Roughness

S Dogra*1, Dr. R D Jilte2 and A Sharma1

1 Research Scholar, School of Mechanical Engineering, Lovely Professional University, Jalandhar, India.
2 Professor, School of Mechanical Engineering, Lovely Professional University, Jalandhar, India.

E-mail: Sudhanshu.dogra86@gmail.com

Abstract: The performance of Solar Air heaters can be enhanced by placing ribs of different geometries over the absorber plate which increases turbulence and thereby increasing its heat transfer and friction factor characteristics. It has been reported by various researchers that Double pass solar air heaters are more efficient than single pass solar air heaters in terms of its Thermal performance. It is also reported that using discrete ribs over the absorber plate in place of continuous ribs gives more heat transfer. The present paper gives us the details of various artificial roughness provided over the absorber plate to increase turbulence. This paper gives a brief overview of various researches done on Single as well as Double pass solar air heaters in terms of its Thermal and Thermohydraulic efficiencies along with Nusselt Number and Friction Factor enhancement.

Keywords: Solar Air Heater, Double pass solar air heater, Nusselt Number, Friction factor, Thermal efficiency, Thermohydraulic efficiency

Nomenclature:

- e: Roughness element height (mm)
- W: Width of duct (m)
- A_c: Absorber plate area (m²)
- A_o: Throat area of orifice meter (m²)
- D_h: Hydraulic Diameter (m)
- H: Height of duct (m)
- Pr: Prandtl Number
- Re: Reynolds Number
- e/D_h: Relative roughness height
- f: Friction factor
- Nu: Nusselt Number
- Nu_max: Maximum Nusselt Number
- W/H: Aspect Ratio
- p: Pitch
- p/e: Relative Roughness pitch

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
α Angle of attack
η Thermal efficiency
η_{th} Thermohydraulic efficiency
HT Heat Transfer
\eta_{\text{max}} Maximum efficiency

1. Introduction

Energy is the most global measure of all kinds of work done. The energy sources are categorized into three ways. These are Primary, Secondary and Supplementary energy sources. Out of these, Primary energy sources are dependent generally upon fossil fuels and also if the present trend of energy consumption continues, fossil fuels will get depleted soon due to ever increasing demands. So, there is a need to switch over our focus to some other sources so that dependency on fossils get decreased. One such method is to shift towards Non-conventional energy sources like Solar energy, Wind energy, Ocean-Thermal energy etc. These sources are in plenty and are ecofriendly too. Out of these Solar energies is in abundance and also harnessing of solar energy to its maximum extent has not been achieved yet. One of the ways to use Solar energy is to change it into some other useful type of energy like Thermal.

One such method is to use Solar Heaters which converts Solar energy into Thermal energy by various arrangements. Generally, two types of solar heaters are there. One is Solar water heater and other is solar air heater. Out of these, as air is easily available from the atmosphere, so solar air heaters are the best way to harness it. Solar energy is available in plenty and is non-polluting also. The best way of using solar energy in solar air heaters is to convert it into Thermal energy thereby decreasing dependency in fossil fuels. In solar air heaters, energy from the sun is taken up by absorber plate which in turns heats up the air flowing in its periphery, which then be used for various purposes like drying of crops or Room heating etc. Many researchers have done their work in this regard.

There are two types of solar air heaters. One is single pass solar air heater in which the air passes once over the absorber plate taking the necessary heat from plate. Other is Double pass solar air heater, in which air passes two times over the absorber plate. Many researchers have done their experiments in both Single and Double pass solar air heaters to increase its thermal efficiency which is generally less due to less heat transfer between the absorber plate and air. It has been found out from the literature that thermal efficiency can be increased by increasing turbulence.

The easiest way to increase it is by using artificial roughness over the absorber plate in the forms of ribs and other restrictions. It can also be increased by increasing heat transfer area using fins or wire mesh. So, this paper presents the work done by various researchers on solar air heaters in terms of increasing its efficiency. Some of the researchers used Phase change material (PCM) like paraffin wax to store solar energy for further use during off sun periods. Many experimenters have done their experiments for increasing Heat transfer rate of solar air heaters by different methods to increase turbulence. Also, it was noted from the literature that Double pass solar air heaters are more efficient than single pass solar air heaters and using discrete ribs over the absorber plate in place of continuous ribs gives more heat transfer rate. So, this paper in brief presents the contribution of various researchers in the field of both single
and two-pass solar air heaters in terms of various type of artificial roughness employed to increase turbulence.

2. Review on Single pass solar air heater

A single pass solar air heater is a type of heater in which air flows over the absorber plate in a single pass only for taking heat from the absorber plate. Many researchers investigated its performance by taking ribs of different geometries over the absorber plate. Some of the contributions are given below. Schematic diagram is given below.

Fig.1. Single pass

Gupta et al. [1] did their experimentation by taking parameters \(e/D_h\) and Inclination of the ribs(\(\alpha\)) with respect to Reynolds number (Re) on Thermal performance of a solar air heater.

Fig.2. Inclined ribs [1]

They concluded that thermal performance increases with increase in relative roughness height. Following results are concluded form their experimentation:

- Heat Transfer increased by 1.8 folds than smooth plate.
- Friction factor increased by 2.7 folds than smooth plate.
- Angle of inclination is 60˚.
- \(e/D_h=0.023\).
- Reynolds No.=14000.

Bhagoria et al. [2] experimented on wedge shaped ribs and investigated its effect on various parameters. They have taken the following parameters:

Fig. 3. Wedge Shaped ribs [2]

- Reynolds No.=3000-18000
- \(e/D_h=0.015-0.033\)
- wedge angle= 8˚-15˚
- Observations: Nu increased by 2.4 times that of smooth plate.
Friction factor increases by 5.3 times that of smooth plate.

Momin et. al [3] investigated on v-shaped ribs. They have taken following parameters for their analysis:

- Reynolds No.= 2500-18000
- \(e/D_h = 0.02-0.034 \)
- Angle of attack= 30˚-90˚
- \(p/e = 10 \)

They concluded that with an increase in Reynolds No. friction factor goes on decreasing and Nusselt No. increases.

- Maximum enhancement is 2.30 times of Nusselt No. as compared to the smooth plate. (Angle of attack=60˚)
- Maximum enhancement is 2.83 times of friction factor as compared to the smooth plate. (Angle of attack=60˚)

Sahu and Bhagoria [4] did their experimentations on transverse broken ribs and analyzed their impacts on heat transfer characteristics.

- They have taken following parameters:
 - Roughness pitch=10-30 mm
 - Rib height= 1.5 mm
 - Aspect ratio= 8
 - Reynolds number= 3000-12000

![Fig. 4. Broken transverse ribs [4]](image)

Findings are as follows:
- Nusselt No.is maximum at roughness pitch of 20 mm.
- Thermal efficiency range= 51-83.5%
- Heat transfer coefficient is 1.25-1.4 times that of smooth plate.

Varun et.al [5] did their work on the combination of Discrete and Transverse ribs. They used following parameters:

- Reynolds No.=2000-14000
- \(p/e = 3-8 \)
- \(e/D_h = 0.030 \)

![Fig. 5. Inclined and transverse ribs combined [5]](image)

According to them the best thermal performance occurred at \(p/e \) of 8. He also developed mathematical correlations for Nusselt No. and Friction factor.
Aharwal et. al [6] experimented and analysed the effect of gap width and gap position on heat transfer and friction factor characteristics. They had taken inclined Discrete ribs for their analysis.

![Image of ribs with gap](image)

Fig. 6. Ribs with gap [6]

The observations are as follows:
Heat Transfer (Maximum) = At relative gap position of 0.25
At relative gap width of 1.0
p/e of 8
Angle of attack of 60˚
e/Dh of 0.037

Arvind et al. [7] did their work on W-shaped Discrete ribs over the absorber plate of a single pass solar air heater. Following parameters were taken:
W/H= 8:1
Re= 3000-15000
e/Dh of 0.0168-0.0338
p/e=10
α= 30˚-75˚.

![Image of W-shaped ribs](image)

Fig. 7. Discrete w-shaped ribs [7]

They concluded that Nusselt no. and friction factor is maximum at 60˚ and is 2.16 and 2.75 times of smooth plate for e/Dh of 0.0338 respectively.

Hans et. al [8] did their experiments on V-shaped ribs on absorber plate. They studied Heat transfer and friction factor characteristics over this shape. They have taken the following parameters:
e/D₀ = 0.019-0.043
Reynolds No. - 2000-20000
α= 30°-75°
Relative roughness width = 1-10
p/e= 6-12

Fig. 8. Multiple V-ribs [8]

The findings are as follows:
Maximum Heat transfer occurred at: Relative roughness width= 6
Maximum Friction factor occurred at: Relative roughness width=10
Correlations were also developed for the same.

Prashant et. al [9] worked on the analytical model to see the performance of parallel flow packed bed solar air heater where packed material is placed at the upper channel.

Fig. 9. Packed bed integrated [9]

They found that by comparing the efficiencies of packed bed type solar air heater with that of a conventional solar air heater, thermal efficiency was found to be 10-20% higher than the conventional heater.

Brij Bhushan et. al [10] gave the correlations for Nusselt No. and Friction factor. They have taken protrusions as roughness.

Fig.10. Protruded roughness geometry on absorber plate [10]

Findings:
Nusselt No. enhancement: 3.8 times that of smooth plate
Friction factor enhancement: 2.2 times that of smooth plat
They also developed correlations for the same.
Sukhmeet et al. [11] investigated heat transfer and friction factor correlations with discrete V-down ribs. Various parameters and their ranges are as follows:

- Relative gap width: 0.5-2.0mm
- Reynolds No.: 3000-15000
- p/e: 4-12mm
- α: 30°-75°
- Relative roughness height: 0.015-0.043mm
- Relative gap position: 0.20-0.80mm

Fig. 11. Discrete v-down ribs arrangement [11]

From experiment they concluded that the maximum value of Nusselt no. and friction factor comes out to 3.04 and 3.11 times respectively as compared to the smooth plate.

Lanjewar et. al [12] did their experiments on W-shaped ribs. They analysed the flow both up steams and down streams. The parameters taken were:

- Aspect Ratio(W/H) = 8
- e/Dh = 0.03375
- Angle of attack: 30°-75°
- Reynolds No.: 2300-14000
- p/e = 10

Fig. 12. W-shaped ribs [12]

Observations are as follows:

Thermohydraulic performance: W-Down Ribs> W-Up Ribs
For W-Down Ribs = 1.98 than that of smooth plate.
For W-Up Ribs = 1.81 than that of smooth plate.

Manivannan et al. [13] provided artificial roughness as v-shaped ribs at 60° on a single pass solar air heater.

Fig. 13. v-shaped ribs [13]
They concluded that maximum temperature difference between inlet and exit of collector is 25°C and 34°C respectively for smooth plate and roughened plate. He also concluded that thermal efficiency is enhanced by 14% than the conventional heater.

3. Review on Double pass solar air heater

A double pass solar air heater is that in which the air flows over the absorber plate in two passes. The schematic view is given below in figure.

![Diagram of Double Pass Solar Air Heater](image)

Fig.14. Double pass

Satunanathan et. al [14] did their work on double pass solar air heater having counter flow. The flow is between absorber plate and glass and then get into the duct. They concluded that Thermal losses can be minimized by placing one or more glass covers. They also concluded that Thermal efficiency of Double pass > Single pass Solar air heater.

Wijeysundera et. al [15] compared two pass solar air heater with that of the conventional heater. From his experiments he concluded that two pass mode is inexpensive method to improve the collector efficiency. It improves it by 10-15%.

Sodha et. al [16] studied the performance of Double flow type solar air heater with that of single pass for the same mass flow rate and parameters.

He found that for similar conditions Double flow type solar air heater is more efficient than single pass due to higher heat flux in double type.

Yeh et. al [17] did their experiments to study the collector efficiency of a double flow solar air heater. For this he attached fins and did both experimental and analytical approach.

![Diagram of Fins Attached](image)

Fig.15. Fins attached [17]
They concluded that due to fins the collector efficiency always increases. But while employing it, it must also be kept in mind that due to fins fan power must not be increased. So, fins attached must be as compared to the width of collector.

Naphon [18] focused upon the entropy generation integrated with longitudinal fins. Mass flow rate for the experiment was taken in between 0.02 kg/s to 0.1 kg/s.

He concluded that:
 a) Amount of entropy generated depends inversely upon height and no. of fins.
 b) Thermal efficiency increases with increasing no. of fins.
 c) Thermal efficiency increases with height of fins.

M. Samiev [19] did his experiments for finding the efficiency of solar air heater. He took a solar air heater having a non-stationary plate mounted on it.

His findings are as follows:
Heating temperature = Ranges from 40°C-60°C
Stationary efficiencies = Between 37%-50%

Khawajah et. al [20] experimented over a double pass solar air heater integrated with transverse fins. He experimented on thermal performance with 2, 4 and 6 fins attached.

Mass flow rate ranges = 0.0121-0.042 kg/s.
Fig. 18. Transverse fins on a double pass solar air heater using wire mesh as an absorber [20]

Findings:
Efficiency goes on increasing with increase in mass flow rate.

Mass flow Rate (kg/s)	Fins attached	Maximum efficiency (%)
0.042	2	75
0.042	4	82.1
0.042	6	85.9

Chii Dong Ho et. al [21] did their investigations on collector efficiency. They took a double pass solar air heater for their analysis which was integrated with fins. From their experiment they found that collector efficiency increases with increase in mass flow rate. And by recycling operation it is further improved by 80%.

Fudholi et al. [22] experimented on the thermal efficiency of double pass solar air heater having longitudinal fins on the absorber plate. 3 types of solar air heater were used.
Type 1: Fins at upper portion.
Type 2: Fins at lower portion.
Type 3: On both sides.

Fig. 19. Longitudinal fins [22]

They found that the efficiency of collector always increases with mass flow rate. It also increases with no. and height of fins.
From going from 0.02 to 0.1 kg/s mass flow rate efficiency increases by 30%.
Efficiency is 36-73% for Type 1.
Efficiency is 37-75% for Type 2.
Efficiency is 46-74% for Type 3.
Prashant et al. [23] investigated the effect of Differential air mass flow rate on packed bed solar air heater. In this he measured the range of flow rate in which thermal performance of parallel pass system is higher than that of counter pass system.

They found that parallel pass packed bed system is 72% and 44% efficiency having 0.2 and 0.8 fixed and total mass flow rate of 0.01 kg/s.

Chabane et al. [24] experimentally studied the heat transfer and Thermal performance of solar air heater with longitudinal fins. For his experiment he placed longitudinal fins below the absorber plate. He has done experiments by varying the mass flow rate.

Mass flow rate: 0.012-0.016 kg/s.

From experiment they concluded that the efficiency gets its higher value when fins are attached to the absorber plate. The results are as follows:

Mass Flow rate/ Type of SAH	With Fins	Without fins
0.012 kg/s	40.02%	34.92%
0.016 kg/s	51.50%	43.94%

They also concluded that efficiency is maximum when solar air heater is placed 45˚ to the horizontal and with increasing mass flow rate efficiency also gets into the higher side.

Summarized report and contribution of other researchers in chronological order:

Researcher	Solar Air Heater Type	Parameters/Processes Used	Findings	
Satcunanathan et al. (1973) [14]	Double pass	Counter flow	η (Double pass) > η (Single pass)	
Wijeysundera et al. (1982) [15]	Double pass	Comparison with single pass	η (Double pass) > η (Single pass) by 10-15%	
Sodha et al. (1982) [16]	Double flow type	Comparison with single pass	Double flow type is more efficient	
Prasad et al. (1988) [25]	Single pass	Transverse ribs $p/e, e/D_h$	Maximum heat transfer at $e/D_h=0.033$ and $p/e=10$	
			$[HT]_{\text{increase}}=2.38$ times $\eta_{\text{increase}}=4.25$ times of smooth plate	
Prasad et al. (1991) [26]	Single pass	$p/e, e/D_h$	HT_{max} at p/e of 10	
Author(s)	Passage Type	Cost Analysis	Double Pass with Single Cover is Most Cost Effective	
-------------------	--------------	---------------	--	
Choudhury et al.	Single & Two	Cost analysis	Double pass with single cover is most cost effective	
Gupta et al.	Single pass	Inclined ribs	[(HT) increase= 1.8 times (f) increase= 2.7 times] of smooth plate	
Bhagoria et al.	Single pass	Re= 3000-18000	[(Nu) increase= 2.4 times (f) increase= 5.3 times] of smooth plate	
Yeh et al.	Double pass	Attached fins	Collector efficiency increases significantly	
Momin et al.	Solar Air heater	v-shaped ribs	[(Nu) increase= 2.3 times (f) increase= 2.83 times] of smooth plate at α= 60˚	
Inci et al.	Single pass	Integrated concentrator	Conical concentrator attained temp up to 150˚C	
Sahu et al.	Single pass	Broken Transverse ribs	Nu max = At p=20 mm	
Naphon	Double pass	Longitudinal fins with \(\dot{m} = 0.02-0.1 \) kg/s	[I] increases with height of fins and no. of fins	
Mittal et al.	Single pass	Wire mesh packed	Thermohydraulic performance is greater in case of wire mesh	
Jaurker et al.	Single pass	Rib grooved type artificial roughness	Maximum HT at p/e=6 and it decreases on either side	
Karim et al.	Collectors	Flat plate collector	[I] is maximum for corrugated collectors and least for flat plate collectors	
Bashria et al.	Single & Double pass both	v-grooved absorber plate	Double pass [I] without porous = 4.5% [I] with porous =7% than single pass	
M. Samiev	Solar air heater with non-stationary plate	Non-stationary plate	Heating temperature= Ranges from 40˚C-60˚C	
Pongjet et al.	Single pass	Ribs shape: Triangular, wedge and rectangular	Heat Transfer rate is more for inline arrangement	
Varun et al.	Single pass	Discrete and Transverse ribs	Thermal performance is best at p/e of 8	
Authors (Year)	Type	Description	Re=2000-14000	Notes
---------------	------	-------------	----------------	-------
Esen (2008) [35]	Double pass	$\dot{m}= 0.015-0.025$ kg/s Artificial roughness: Obstacle Thermocouple= T-Type Heater inclined at 38° with the horizontal	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Aharwal et al. (2009) [6]	Single pass	Discrete inclined ribs Maximum HT at= [Relative gap position= 0.25, Relative gap width=1.0, p/e=8, Angle of attack=60° and of e/D_h=0.037]	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Sharad et al. (2009) [36]	Solar heater	Arc shaped e/D_h= 0.0299-0.0426 Re=6000-18000 Solar intensity- 1000W/m² Relative angle of attack= 0.0333-0.666	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Arvind et al. (2009) [7]	Single pass	Discrete w-shaped ribs W/H= 8:1 Re= 3000-15000 e/D_h of 0.0168-0.0338 p/e=10 Angle of attack= 30°-75°	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Esen et al. (2009) [37]	Double pass	$\dot{m}= 0.03-0.05$ kg/s Type 1: Aluminum cans in staggered form Type 2: Aluminum cans in arranged form Type 3: Smooth plate with no cans	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Hans et al. (2010) [8]	Single pass	Multiple v-ribs e/D_h= 0.019-0.043 p/e= 6-12 $\alpha= 30°-75°$ Relative roughness width = 1-10 Re=2000-20000	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Omojaro et al. (2010) [38]	Single and Double pass	With fins and steel wire mesh $\dot{m}= 0.012-0.038$ kg/s	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Prashant et al. (2011) [9]	Single pass	Parallel flow packed bed	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
El Sebai et al. (2011) [39]	Double pass	v-corrugated ribs $\dot{m}= 0.0125-0.0225$ kg/s	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Khawajah et al. (2011) [20]	Double pass	Transverse fins $\dot{m}= 0.0121-0.042$ kg/s	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Brij Bhushan et al. (2011) [10]	Solar air heater	Protrusions as artificial roughness	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Sukhmeet et al.	Single pass	Discrete V-down ribs	![Image of a table with data entries](https://via.placeholder.com/150)	![Image of a table with data entries](https://via.placeholder.com/150)
Reference	Method	Description		
---------------------------------	-------------	---		
Lanjewar et al. (2011) [12]	Single pass	W-shaped ribs, $Re=3200-14000$, $p/e=4-12$ mm, $\alpha=30\degree$-$75\degree$, $e/D_h=0.015-0.043$ mm		
		Thermohydraulic performance: $[W_{Down Ribs}>W_{Up ribs}]$		
		$[W_{Down}=1.98 \text{ times and } W_{Up ribs}=1.81 \text{ times}]$ of smooth plate		
Chii Dong et al. (2011) [21]	Double pass	Integrated with fins		
		Through recycling, efficiency increases up to 80%		
Fudholi et al. (2011) [22]	Double pass	Fins: Type 1: Fins at upper portion, Type 2: Fins at lower portion, Type 3: On both sides.		
		η (Type 1) = 36-73\%, η (Type 2) = 37-75\%, η (Type 3) = 46-74\%		
Bhupendra et al. (2012) [56]	Both Single and Double pass	Thermal Efficiency (Porous and Non-Porous media)		
		Double pass efficiency is more than single by 5\%		
Yeh et al. (2012) [40]	Double pass	Downward-type double pass		
		η with fins attached is more		
Prashant et al. (2012) [41]	Double pass	Packed Bed Parallel and Counter flow		
		Efficiency of parallel flow is more than counter flow at mass flow rate of 0.01 kg/s		
Prashant et al. (2012) [23]	Double pass	Packed Bed Parallel and Counter flow		
		Efficiency is 50\% which is less due to low mass flow rate		
Krishnananth et al. (2013) [42]	Double pass	Paraffin wax for storage		
		Paraffin wax used above recorded highest efficiency		
Gonzalez et al. (2014) [43]	Double pass	Heater inclined at 40° to the horizontal		
		Efficiency is 50\% which is less due to low mass flow rate		
Chabane et al. (2014) [24]	Double pass	Longitudinal fins, $n=0.012-0.016$ kg/s		
		η (with fins) = 51.50\%, η (without fins) = 43.9\%		
Manivannan et al. (2014) [13]	Single pass	v-shaped ribs at 60°		
		$\Delta T=25^\circ$C (smooth plate), $\Delta T=34^\circ$C (rough plate)		
		η enhancement = 14\%		
		η (with fins) = 42.73\%, η (without) = 36.04\% at 3:00PM and 2.2 m/s		
Harshal et al. (2014) [44]	Single pass	Comparison with and without fins Heater inclined at 27° to the horizontal		
		η enhancement = 14\%		
		Relationship between solar irradiations, heat flow, air outlet velocity, air flow rate etc. were accounted for thermal efficiency of collector.		
		50 min are required for air collectors with baffles of a double pass solar air heater to reach 50\% efficiency.		
Budea (2014) [45]	Double pass	Baffles and Longitudinal fins		
		η (with baffles) > η (Longitudinal fins)		
Kaushik et al. (2015) [46]	Double pass			
Findings

Shameer et al. (2015) [47]
- **Collector Type**: Double pass
- **Material**: Paraffin wax for storage
- **Findings**: Thermal efficiency reaches up to 75%.

Bhushan et al. (2015) [48]
- **Collector Type**: Double pass
- **Material**: Inclined at 60°
- **Findings**: Absorption coefficient: 0.95

Alta et al. (2015) [49]
- **Collector Type**: Single pass
- **Material**: Exergy and Energy analysis
- **Findings**: Temperature _{max} = 1 m/s, Energy Efficiency _{max} = 4 m/s, Exergy Efficiency _{max} = 1 m/s.

Manish et al. (2015) [50]
- **Collector Type**: Double pass
- **Material**: W-shaped ribs
- **Findings**: η_{thermal} = 1.45 times of smooth plate, η_{thermohydraulic} = 1.4 times of smooth plate.

Chaudhary et al. (2016) [51]
- **Collector Type**: Double pass
- **Material**: Type 1: Without spring, Type 2: With spring, Type 3: In zigzag manner
- **Findings**: Air velocity: 2-10 m/s, η_{Type 3 > Type 2 > Type 1}.

Srivastava et al. (2016) [52]
- **Collector Type**: Single pass
- **Material**: Thermocouple-J-Type
- **Findings**: Temperature _{max} = 25° N, 81° E climatic conditions, η_(avg collector) = 28.91%, η_(thermal) = 79%, η_(avg energy) = 0.75%.

Kumar et al. (2016) [53]
- **Collector Type**: Single pass
- **Material**: Discrete v-baffles
- **Findings**: Re = 3000-21000, α = 30°-70°, Relative pitch ratio = 1.0, Relative discrete width = 1.5, (Nu)increase = 4.2, (f)increase = 5.9 times of smooth plate.

Wadhawan et al. (2017) [54]
- **Collector Type**: Single pass
- **Material**: Lauric acid as PCM
- **Findings**: Rise in output air is 86.54%.

Tamilselvan et al. (2017) [55]
- **Collector Type**: Double pass
- **Material**: Sensible heat storage media
- **Findings**: Efficiency is maximum with sensible heat storage.

Devecioglu et al. (2017) [56]
- **Collector Type**: Single pass
- **Material**: Heater inclined at 15°, m
- **Findings**: Re = 0.031-0.038 kg/s, Thermal efficiency: 25-57%, Thermohydraulic efficiency: 14-44%.

Pramanik et al. (2017) [57]
- **Collector Type**: Double pass
- **Material**: Longitudinal fins
- **Findings**: Absorber coating Inclined at 15°-17°, η = 69%, Temperature _{max} = 94°C.

Chii Dong (2018) [58]
- **Collector Type**: Double pass
- **Material**: Cross corrugated double pass
- **Findings**: More turbulence and heat transfer area are there in cross corrugated double pass heater.

Gajendra et al. (2018) [59]
- **Collector Type**: Double pass
- **Material**: V-type Baffles
- **Findings**: Thermal performance is more in case of V-type baffles in comparison to smooth plate.

Also, a lot has been done in respect of solar collectors used in various systems to enhance the heat transfer characteristics. Some contributions are listed below.

Researcher	Collector Type	Findings
Sharma et al. (2015) [60]	Solar collector review with nano fluids	Collector efficiency increases with nano-fluids if taken in optimum volume fraction.
Bhatia et al. (2017) [61]	Analytical investigation of various collectors	Increase in angle of tilt, transmissivity, absorptivity and intensity increases the efficiency of collector.
4. Conclusion

From the experiments done by various researchers, it has been concluded that Double pass solar air heaters are more efficient than single pass solar air heater having similar geometries over the absorber plate. It also came to notice that employing discrete ribs over the absorber plate gives more Heat transfer than continuous ribs. In Double pass solar air heaters maximum thermal efficiency may reach up to 80% and with fins or wire mesh type of arrangement it may well reach above 85% too.

References

[1] Gupta D, Solanki SC, Saini JS.1997. Thermohydraulic performance of solar air heater with roughened absorber plates. *Solar energy* 61 (1997), 33-42.
[2] Bhagoria JL, Saini JS, Solanki SC.2002. Heat transfer coefficient and friction factor correlation for rectangular solar air heater duct having transverse wedge shape rib roughness on the absorber plate. *Renewable energy* 25 (2002), 341-369.
[3] Momin AME, Saini JS, Solanki SC.2002. Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate, *International Journal of Heat and Mass Transfer* 45 (2002) 3383–3396.
[4] Sahu MM and Bhagoria JL.2005. Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater. *Renewable energy* 30 (2005), 2057-2063.
[5] Varun, Saini RP, Singal SK.2008. Investigation of thermal performance of solar air heater having roughness elements as a combination of inclined and transverse ribs on absorber plate. *Renewable energy* 133 (2008), 1398-1405.
[6] Aharwal KR, Gandhi BK, Saini JS.2009. Heat transfer and friction characteristics of solar air heater ducts having integral inclined discrete ribs on absorber plate. *Int. J. of Heat and Mass Transfer* 52 (2009), 5970-5977.
[7] Kumar A, Bhagoria JL, Sarviya RM.2009. Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs. *Energy Conversion and management* 50(2009) 2106-2117.
[8] Hans VS, Saini RP, Saini JS.2010. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple V-ribs. *Solar energy* 84 (2010), 898-911.
[9] Dhiman P, Thakur NS, Kumar A, Singh S.2011. An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater. *Applied Energy* 2011; 88:2157–67.
[10] Bhushan B, Singh R. 2011. Nusselt number and friction factor correlations for solar air heater duct having artificially roughened absorber plate. Solar energy 85 (2011) 1109-1118.
[11] Singh S, Chander S, Saini JS. 2011. Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs. Energy 36 (2011) 5053e5064.
[12] Lanjewar A, Bhagoria JL, Sarviya RM. 2011. Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-rib roughness. Experimental Thermal and Fluid Science 35 (2011), 986-995.
[13] Manivannan A, Velmurugan M. 2014. Performance of Single Pass Down Stream Solar Air Collector with Inclined Multiple V-Ribs. World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering Vol:8, No:8, 2014.
[14] Satcunanathan S and Deonarine S. 1973. A two-pass solar air heater. Solar Energy 15(1) (1973), 41–49.
[15] Wijeysundera NE, Lee AH, Tjoe LE. 1982. Thermal performance study of two-pass solar air heaters. Solar Energy 1982; 28:363–70.
[16] Sodha MS, Bansal NK, Singh D. Analysis of a non-porous double-flow solar air heater. Applied Energy 1982; 12:251–8.
[17] Yeh HM, Ho CD, Hou JZ. Collector efficiency of double pass solar air heater. Energy 27 (2002) 715–727.
[18] Paisarn Naphon. 2005. On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renewable Energy 30 (2005) 1345–1357
[19] Smiev M. Efficiency of solar air heater. Applied solar energy, 2008, Vol.44, No.4, pp.258-261.
[20] El-Khawajah MF, Aldabagh LBY, Egelioglu F. 2011. The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber. Solar Energy 85 (2011) 1479–1487.
[21] Ho CD, Yeh HM, Chen TC. 2011. Collector efficiency of upward-type double-pass solar air heaters with fins attached. International Communications in Heat and Mass Transfer 38 (2011) 49–56.
[22] Fudholi A, Sopian K, Ruslan MH, Othman MY, Yahya M. 2011. Thermal Efficiency of Double Pass Solar Collector with Longitudinal Fins Absorbers. American Journal of Applied Sciences 8 (3): 254-260, 2011 ISSN 1546-9239.
[23] Kumar P. 2012. Effect of differential mass flow rate on the thermal performance of double duct packed bed solar air heaters. International conference on renewable energies and power quality, 28th to 30th March; 2012.
[24] Chabane F, Moumni N, Benramache S. 2014. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater. Journal of Advanced Research (2014) 5, 183–192.
[25] Prasad BN and Saini JS. 1988. Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Solar Energy 41 (1988), 555-560.
[26] Prasad BN and Saini JS. 1991. Optimal thermohydraulic performance of artificial roughened solar air heater. Solar energy 41 (1991), 91-96.
[27] Choudhary C, Chauhan PM, Garg HP. 1995. Performance and cost analysis of two pass solar air heaters. Heat Recovery Sys CHP 1995;15(8):755–73.
[28] Yeh HM, Ho CD, Hou JZ. 2002. Collector efficiency of double pass solar air heater. Energy 27 (2002) 715–727.
[29] Togrul IT, Pehliven D, Akosman C.2004. Development and testing of solar air heater with conical concentrator. Renewable Energy 29 (2004) 263–275.
[30] Mittal MK, Varshney L.2006. Optimal thermohydraulic performance of a wire mesh packed solar air heater. Solar Energy 80 (2006) 1112–1120.
[31] Jaurker AR, Saini JS, Gandhi BK.2006. Heat transfer and friction characteristics of rectangular solar air heater duct using rib-grooved artificial roughness. Solar Energy 80 (2006) 895–907.
[32] Karim MA, Hawladar MNA.2006. Performance investigation of flat plate v- corrugated and finned air collectors. Energy 2006; 31:452–70.
[33] Bashria A, Yousef A, Adam NM, K Sopian, Zaharim A, Alghoul M.2007. Analysis of Single and Double Passes V-Grooves Solar Collector with and Without Porous Media. International journal of energy and environment Issue 2, Volume 1, 2007.
[34] Promvonge P, Thianpong C.2008. Thermal performance assessment of turbulent channel flows over different shaped ribs. International Communications in Heat and Mass Transfer 35 (2008) 1327–1334.
[35] Esen H. 2008. Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Building and Environment 43 (2008) 1046–1054.
[36] Kumar S, Saini RP. 2009. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable Energy 34 (2009) 1285–1291.
[37] Ozgen F, Esen M, Esen H. 2009. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans. Renewable Energy 34 (2009) 2391–2398.
[38] Omojaro AP, Aldabbagh LBY. 2010. Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber. Applied Energy 87 (2010) 3759–3765.
[39] El-Sebaii AA, Aboiul-Enein S, Ramadan MRI, Shalaby SM, Moharram BM. 2011. Thermal performance investigation of double pass-finned plate solar air heater. Applied Energy 88 (2011) 1727–1739.
[40] Yeh HM and Ho CD. 2012. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle. Energies 2012, 5, 2692-2707; doi:10.3390/en5082692.
[41] Dhiman P, Thakur NS, Chauhan SR. 2012. Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters. Renewable Energy 2012; 46:259–68.
[42] Krishnananth SS, Kalidasa Murugavel K. 2013. Experimental study on double pass solar air heater with thermal energy storage. Journal of King Saud University – Engineering Sciences (2013) 25, 135–140.
[43] González SM, Larsen SF, Hernández A, Lesino G. 2014. Thermal evaluation and modeling of a double-pass solar collector for air heating. Energy Procedia 57 (2014) 2275–2284.
[44] Gupta H, Chourasia Pbl, Singh HR, Ansari A, Jain V. 2014. Experimental Investigation of Thermal Performance of Solar Air Heaters with and without Fins. International Journal of Science, Engineering and Technology Issn: 2348-4098 Volume 2 Issue 7 September 2014.
[45] Budea S.2014. Solar Air Collectors for Space Heating and Ventilation Applications Performance and Case Studies under Romanian Climatic Conditions. Energies 2014, 7, 3781-3792; DOI:10.3390/en7063781.
[46] Patel K, Soni S, Travadi S. Comparative Study of Double Pass Solar Air Heater with Solar Air Heater with Baffles & With Longitudinal Fins. International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169 Volume: 3 Issue: 5 2790 – 2794.
[47] Shameer PM. and Nishath PM. 2015. Designing and Fabrication of Double Pass Solar Air Heater Integrated with Thermal Storage. *International Journal of Science and Research (IJSR)* ISSN (Online): 2319-7064, **Volume 4** Issue 1, January 2015.

[48] Bhushan C and Singh SN. Experimental investigation of double-pass solar air heater. *ELK Asia Pacific Journals* – Special Issue ISBN: 978-81-930411-8-5.

[49] Alta ZD, Glayan NCA, Atmaca I, Ertek C. 2014. Theoretical and experimental investigation of the performance of back-pass solar air heaters. *Turkish J Eng Env Sci (2014)* **38**: 293 doi:10.3906/muh-1310-2.

[50] Tated MK, Singh DP, Singh S. 2015. An Experimental Analysis for Thermal and Thermohydraulic Performance of Double Pass Solar Air Heater having W-shaped Artificial Roughness on Absorber Plate. *International Journal of Engineering Research and Technology. Volume 8*, Number 1, ISSN 0974-3154

[51] Chaudhary R and Lt Piyush Nema. 2016. Experimental based on solar air heater using double pass with different segmentation on absorber plate. 2016 *IJEDR | Volume 4*, Issue 3 ISSN: 2321-9939.

[52] Srivastava RK and Rai AK. 2016. Studies on the thermal performance of a solar air heater. *International Journal of Mechanical Engineering and Technology (IJMET)* **Volume 7**, Issue 6, November–December 2016, pp.518–527.

[53] Kumar R, Chauhan R, Sethi M, Sharma A, Kumar A. 2016. Experimental investigation of effect of flow attack angle on thermohydraulic performance of air flow in a rectangular channel with discrete V-pattern baffle on the heated plate. *Advances in Mechanical Engineering 2016, Vol. 8*(5) 1–12 DOI: 10.1177/1687814016641056.

[54] Wadhawan A, Dhoble AS, Gawande VB. 2017. Analysis of the effects of use of thermal energy storage device (TESD) in solar air heater” “Alexandria Engineering Journal (2017).

[55] Tamilselvan, Kumar JH, Samuel JJ, Prakash AJ. 2017. Experimental Analysis of Double Pass Solar Air Heater with and without Sensible Storage Media. *International Journal of Scientific & Engineering Research Volume 8*, Issue 7, July-2017 ISSN 2229-5518.

[56] Devecioglu AG and Oruc V. 2017. Experimental investigation of thermal performance of a new solar air collector with porous surface. *Energy Procedia 113*(2017) 251-258.

[57] Pramanik RN, Sahoo SS, Swain RK, Mohapatra TP, Srivastava AK. 2017. Performance Analysis of Double Pass Solar Air Heater with Bottom Extended Surface. *Energy Procedia 109* (2017) 331 – 337.

[58] Ho CD, Chang H, Hsiao CF, Huang CC. 2018. Device Performance Improvement of Recycling Double-Pass Cross-Corrugated Solar Air Collectors. *Energies 2018, 11*, 338; doi:10.3390/en11020338.

[59] Kumar G, Singh AK, Verma A. Performance Evaluation on Double Pass Solar Air Heater with Broken Multiple V-Type Baffles- A Review. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)* ISSN: 2321-9653.

[60] Sharma K, Singh S, Yadav M, Yadav S, Tripathi NM. 2015. A Review on The Performance of the Nanofluid Based Solar Collectors - Solar Energy. *ELK Asia Pacific Journals – Special Issue. ISBN: 978-81-930411-4-7*

[61] Bhatia H, Agarwal R, Vaibhav V, Saini S. 2017. Parametric Investigation on the Performance of Flat-Plate Solar Collector. *International Journal of Engineering, Science and Mathematics. Volume 6* Issue 8, December 2017 (Special Issue)

[62] Vaibhav V, Agarwal R, Thakur J, Vyas G. 2017. *International Journal of Engineering, Science and Mathematics. Volume 6* Issue 8, December 2017 (Special Issue)
[63] Singh V, Thakur J, Agarwal R, Vyas G, Dondapati RS. 2018. Computational Evaluation of Thermal and Hydraulic Characteristics of Flat-Plate Solar Collector for Different Glazing Material. *Materials Today: Proceedings* 5 (2018) 28211–28220

[64] Shemelin V, Matuska T. 2019. Performance Modelling of Dual Air/Water Collector in Solar Water and Space Heating Application. *Hindawi International Journal of Photoenergy.* Volume 2019, Article ID 8560193