Chemical Constituents from *Diospyros discolor* Willd. and their Acetylcholinesterase Inhibitory Activity

Norhafizoh Abdul Somat1,2, Zaini Yusoff3, Che Puteh Osman1,2,*

ABSTRACT

Background: *Diospyros discolor* is commonly known as ‘buah mentega’ and traditionally used to treat various diseases. Many compounds especially triterpenes in *Diospyros* sp. were reported to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase enzymes *in vitro* and *in vivo*. *D. discolor* was reported to contain triterpenes, yet to be investigated for their AChE inhibitory activity. *D. discolor* leaves extract showed high (95.80 ± 1.57 %) AChE inhibitory activity at the concentration of 100 µg/mL. **Objective:** The aim of the present study is to identify chemical constituents from *D. discolor* and their AChE inhibitory activity. **Materials and Methods:** The leaves and stem barks of *D. discolor* were air dried, powdered and successively extracted using *n*-hexane, dichloromethane and methanol. The solvents were evaporated to obtain dried crude extracts. The compounds were purified using exhaustive chromatographic procedures and their structures were determined by analyses of spectral data. The AChE inhibitory activity was carried out using Ellman’s method. **Results:** A new flavonol, 7,4′-dihydroxy-5,3′,5′-trimethoxyflavonol (1), along with five known flavonoids (2-6) and six known triterpenes (7-13) were isolated from the leaves and stem barks of *D. discolor*. Selected compounds were evaluated for AChE inhibitory activity, in which stigmast-4-ene-3-one (7) showed the lowest inhibition concentration with an IC₅₀ value of 11.77 ± 2.11 µM. **Conclusion:** A new flavonol (1) and twelve known compounds were identified and characterized. Even though *D. discolor* extracts showed high percent inhibition against AChE enzyme, the isolated compounds showed moderate inhibition. **Keywords:** Ebenaceae, Triterpenes, Flavonoid, Acetylcholinesterase.

INTRODUCTION

Diospyros discolor Willd. (syn. *D. blancoi*) belongs to the family of Ebenaceae, and it is locally known as ‘buah mentega’. *D. discolor* is used traditionally to treat wounds, snakebites, spider bites, stomachache, diabetes, heart problems, hypertension, dysentery, diarrhea and eczema. *D. discolor* was reported to have free radical scavenging, anti-diarrheal, antimicrobial, analgesic and anti-inflammatory activities. *Diospyros* sp. are rich in naphthaquinones, triterpenes, followed by flavonoid, naphthalene and coumarin-based groups. The triterpenes found in *Diospyros* sp. were mostly of pentacyclic core especially lupane, ursane and oleanane skeletons. Many triterpenes in *Diospyros* sp. showed inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase enzymes *in vitro* and *in vivo*. *D. discolor* was reported to contain triterpenes, yet to be investigated for their AChE inhibitory activity. *D. discolor* leaves extract showed high acetylcholinesterase (AChE) inhibitory activity with 95.80 ± 1.57 % inhibition during preliminary screening of selected medicinal plants from Taman Herba Perlis. Therefore, this study is warranted to investigate the chemical constituents from the leaves and stem barks extracts of *D. discolor* and their AChE inhibitory activity.

MATERIALS AND METHODS

General experimental procedures

1H-NMR and APT-NMR spectra were recorded at 500 or 600 MHz and 125 or 150 MHz, respectively, using Bruker 500 Ultrashield Plus (Bruker, Switzerland) and Bruker Ascend 600 (Bruker, Switzerland). FTIR-ATR spectra were recorded on FTIR Spectrometer INVENIO (Bruker, Switzerland). The mass spectra were recorded using LC/MS/MS QTOF Agilent Technologies 6520 (Agilent, Santa Clara, USA). The absorbance for *in-vitro* analysis was obtained by Spectrostar Nano spectrometer (BMG Labtech, Germany). The solvents used for extraction and isolation were of analytical grade solvents. The silica gel used were silica gel 60 F₂₅₄ (1.07747), silica gel 60 (0.040-0.063 mm, 1.09385), silica gel 60 PF₂₅₄ (1.07749), and TLC silica gel 60 F₂₅₄ aluminium sheets (1.05554). The silica gel and TLC were purchased from Merck (Germany). All chemicals and reagents used for acetylcholinesterase inhibitory activity were purchased from Sigma Aldrich unless stated otherwise.

Plant materials

The leaves and stem barks of *D. discolor* (syn. *D. blancoi*) were collected from Kuala Nerang, Kedah, Malaysia in March 2016. The plant sample was identified by Dr Shamsul Khamis of Universiti Kebangsaan Malaysia and the voucher specimen.
(PID 210517-13) was deposited at Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia.

Extraction and isolation

The fresh plant samples (3.5 kg) were air dried and ground into powder using a hammer mill. The ground samples were extracted successively using n-hex, CHCl₃ and MeOH at room temperature. The filtrates were concentrated using rotary evaporator. n-Hex stem bark extract (3.38 g) was fractionated by VLC eluted with n-hex-CHCl₃-CH₂Cl₂-MeOH (9:12) was further fractionated using CC eluted with CHCl₃-MeOH (97:3) to obtain ursolic acid (10:0, 9:1). Fraction E3-10 was further purified by PTLC developed with n-hex-acetone (9:1) yielded stigmaster (9:1) and seven known compounds. Fraction A (8-11) was further fractionated using CC eluted with CH₂Cl₂-MeOH (9:1) was fractionated by CC eluted with CH₂Cl₂-MeOH (9:1). Further purification of B5-8 by using RC eluted with CH₂Cl₂-MeOH (2.9 mg). Fraction G (18-19) fractionated again with CC by isocratic elution CH₂Cl₂:MeOH (9:1→0:10) (25 mg).

CH₂Cl₂ stem bark extract (5 g) was fractionated by VLC eluted with n-hex-CH₂Cl₂-MeOH (n-hex:CH₂Cl₂, 1:9, 0:10, CH₂Cl₂:MeOH, 98:2→91:9) yielded 15 fractions. Fraction B (5-7) was further fractionated using CC eluted with n-hex-CHCl₃-CH₂Cl₂-MeOH (n-hex:CHCl₃, 1:9→1:9, CH₂Cl₂:MeOH, 10:0→7:3) of which purification of A19-25 using PTLC developed with n-hex-acetone (9:1) yielded stigmaster (9:1) and 7,4′-dihydroxy-5,3′,5′-trimethoxyflavonol (0.8 mg) (12) as (+)-epicatechin (2), kaempferol (3), astragalin (4), hyperin (5), isoorientin (6), stigmaster-3-O-glucopyranoside (10), betulin (11), betulinic acid (12), and ursolic acid (13) (20). A new flavonol (1) was obtained along with compound (2) as a mixture in the form of brown powder. A molecular formula of C_{36}H_{30}O_{14} was derived from LC-MS QTOF with its [M+H]^+ at m/z 361.3136 (cald 361.3179 for C_{36}H_{30}O_{14}). The FTIR-ATR spectrum showed a broad peak of hydroxyl (O-H) at 3384 cm⁻¹, a strong peak of carboxyl (C=O) at 1719 cm⁻¹, medium peak of aromatic (C=C) at 1609 cm⁻¹ and a strong peak of C=O stretch at 1719 cm⁻¹.

The 1H-NMR spectrum revealed three aromatic proton signals. A pair of meta-coupled signals resonated at δ_H 6.89 (1H, d, J=1.8 Hz) and 7.05 (1H, d, J=1.8 Hz, H-8) was assigned as H-6 and H-8 of ring A. A singlet aromatic proton signal at δ_H 7.45 assigned for two protons was assigned as H-2′ and H-6′ of ring B. A singlet appeared at δ_H 3.90 integrated for two protons assigned as H-2′ of ring B which β-sitosterol-3-O-glucopyranoside (10) (361.3179 for C_{36}H_{30}O_{14}). The FTIR-ATR spectrum showed a broad peak of hydroxyl (O-H) at 3384 cm⁻¹, a strong peak of carboxyl (C=O) at 1719 cm⁻¹, medium peak of aromatic (C=C) at 1609 cm⁻¹ and a strong peak of C=O stretch at 1719 cm⁻¹.

The 1H-NMR spectrum revealed three aromatic proton signals. A pair of meta-coupled signals resonated at δ_H 6.99 (1H, d, J=1.8 Hz) and 7.05 (1H, d, J=1.8 Hz, H-8) was assigned as H-6 and H-8 of ring A. A singlet aromatic proton signal at δ_C 152.1. The chemical shift for C-3 was not detected. The crude MeOH stem bark extract of *D. discolor* was dissolved in MeOH and subjected to LLE with EtO to reduce the tannin. The crude MeOH stem bark extract of *D. discolor* yielded a new flavonol (1), five known flavonoids (2-6) and seven known triterpenes (7-13) (Figure 1). The known compounds were identified as (+)-epicatechin (2), kaempferol (3), astragalin (4), hyperin (5), isoorientin (6), stigmaster-3-O-glucopyranoside (10), betulin (11), betulinic acid (12), and ursolic acid (13) (16-19).

Statistical analysis

The AChE inhibitory activity data were expressed as mean ± standard deviation. All the data were subjected to one-way analysis of variance (ANOVA) completed with Tukey’s post hoc test and p<0.05 was considered as statistically significant using IBM SPSS Statistic version 20. The IC₅₀ was obtained by plotting nonlinear-regression curve of percentage AChE inhibitory activity against logarithm of compound concentration using GraphPad Prism statistical software version 6.01.

RESULTS AND DISCUSSION

Phytochemical study on the leaves and stem barks of *D. discolor* yielded a new flavonol (1), five known flavonoids (2-6) and seven known triterpenes (7-13) (Figure 1). The known compounds were identified as (+)-epicatechin (2), kaempferol (3), astragalin (4), hyperin (5), isoorientin (6), stigmaster (8) and stigmasterol (9), β-sitosterol-3-O-glucopyranoside (10), betulin (11), betulinic acid (12), and ursolic acid (13) (16-19). A new flavonol (1) was obtained along with compound (2) as a mixture in the form of brown powder. A molecular formula of C_{36}H_{30}O_{14} was derived from LC-MS QTOF with its [M+H]^+ at m/z 361.3136 (cald 361.3179 for C_{36}H_{30}O_{14}). The FTIR-ATR spectrum showed a broad peak of hydroxyl (O-H) at 3384 cm⁻¹, a strong peak of carboxyl (C=O) at 1719 cm⁻¹, medium peak of aromatic (C=C) at 1609 cm⁻¹ and a strong peak of C=O stretch at 1719 cm⁻¹.

The 1H-NMR spectrum revealed three aromatic proton signals. A pair of meta-coupled signals resonated at δ_H 6.99 (1H, d, J=1.8 Hz) and 7.05 (1H, d, J=1.8 Hz) was assigned as H-6 and H-8 of ring A. A singlet aromatic proton signal at δ_C 152.1. The chemical shift for C-3 was not detected. The absence of typical singlet aromatic proton signal assignable to C-3 as well as chemical shift value for C-2 suggesting this compound is of flavonol moiety (18).
The assignment of H-8 of ring A was confirmed based on its HMBC correlations to C-7 and C-10 while the placement of H-6 was determined based of its HMBC correlations to C-5, C-7 and C-10. The hydroxyl group is located at C-7 based on HMBC cross peaks between H-6 and H-8 with C-7. Meanwhile the methoxy group was assigned to C-5 based on correlations observed between H-6 and C-5. The singlet proton signal of H-8 with C-7. Meanwhile the methoxy group was assigned to C-5 based of its HMBC correlations to C-5, C-7 and C-10. The hydroxyl group at C-4' was confirmed based on 'f' correlations of H-2' and H-6' with C-4. Even though no HMBC correlation was observed to confirm the assignment of C-4 and C-9 at ring C, their chemical shift values are quite typical of flavonol moiety. Close inspection of all spectroscopic data confirmed that compound 1 is 7,4'-dihydroxy-5, 3',5'-trimethoxyflavonol.

A flavonoid (4) and six triterpenes (7-12) from the leaves and stem barks of Diospyros discolor were examined for AChE inhibitory activity. All the compounds exhibited positive AChE inhibitory activity at 10 µM concentration, but only stigmast-4-en-3-one (7) showed inhibition of more than 50% (Table 1). When evaluated for AChE inhibitory activity...
in dose-dependent manner, it gave an IC₅₀ value of 11.77 ± 2.11 μM. Some of the compounds isolated in the present study showed moderate inhibition concentration against AChE. 20,21 while kaempferol (3) and β-sitosterol-3-O-glucopyranoside (10) were previously reported to have low inhibition concentration against AChE. 20,21,23

CONCLUSIONS

D. discolor (syn. *D. blancoi*) was found to inhibit AChE during random screening. Phytochemical study on the leaves and stem bark of *D. discolor* yielded a new flavonol, 7,4'-dihydroxy-3',5,3'-trimethoxyflavonol (1) along with five known flavonoids and six known triterpenes. The compounds examined for AChE inhibitory activity showed moderate inhibition concentration except for stigmasterol-3-O-glucopyranoside (10) & stigmasterol (β-sitosterol) (8) of *D. discolor* (syn. *D. blancoi*). It is postulated that the AChE inhibitory activity of the extract of *D. discolor* is due to synergistic effect of the phytochemicals collectively.

CONFLICTS OF INTEREST

None.

ACKNOWLEDGEMENT

This work was supported by the LESTARI (600-IRMI 5/3/LESTARI 027/2019) provided by Universiti Teknologi MARA.

REFERENCES

1. Howlader MSI, Sayeed MS, Ahmed MU. Characterization of chemical groups and study of Antioxidant, antibacterial, antimicrobial and cytotoxic activities of ethanol extract of Diospyros blancoi (Family: Ebenaceae) Leaves. Journal of Pharmacy Research. 2012;5:3080-2.
2. Lee JH, Lee YB, Seo WD, Kang ST, Lim JW, Cho KM. Comparative Studies on Antioxidant Activities and Nutritional Constituents of Persimmon Juice (Diospyros kaki L. cv. Gapubaeokmoi). Prev Nutr Food Sci. 2012;17:141-51.
3. Khan MA, Rahman MM, Sardar MN. Comparative investigation of the free radical scavenging potential and antioxidant property of Diospyros blancoi (Ebenaceae). Asian Pacific Journal of Tropical Biomedicine. 2016;6:410-7.
4. Akter S, Sarker A. Antimicrobial activities of seeds of Diospyros blancoi and Baccarrea ramiflora. International Journal of Advances in Pharmacy, Biology and Chemistry. 2015;4:789-93.
5. Akter S, Majumder T, Karim R, Ferdous Z, Mohasin S. Algalicic activities of Geodium densiflorum, Diospyros blancoi, Baccarrea ramiflora and Trichosanthes dioica. Journal of Pharmacognosy and Phytochemistry. 2015;4:209-14.
6. Mallawadhani UV, Panda AK, Rao YR. Pharmacology and Chemotaxonomy of Diospyros. Phytochemistry. 1998;49:901-51.
7. Rauf A, Uddin G, Patel S. Diospyros, an under-utilized, multi-purpose plant genus: A review. Biomedicine & Pharmacotherapy 2017;91:714-30.
8. Abdul Somat N, Osman CF, Ismail NH, Yusoff Z, Md Yusof Y. Screening of Medicinal Plants from Taman Herba Perlis for Acetylcholinesterase Inhibitory Activity. Science Letters. 2019;13:23-32.
9. Jamila N, Kharirudean M, Yeong KK, Osman H, Murugaiyah V. Cholinesterase inhibitory triterpenoids from the bark of Garcinia hombroniana. Journal of Enzyme Inhibition and Medicinal Chemistry. 2015;30:133-9.
10. Abd El-Razak MH. NMR Assignments of Four Catechin Epimers. Asian Journal of Chemistry. 2007;19:4867-72.
11. Singh R, Singh B, Singh S, Kumar N, Kumar S, Arora S. Anti-fibrosis activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicology in Vitro. 2008;22:1969-70.
12. Wei Y, Xie Q, Fisher D, Sutherland IA. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isoorhamnatin from Flaveria bidens (L.) Kunze by elution-pump-out high-performance counter-current chromatography. Journal of Chromatography A. 2011;1218:6206-11.
13. Estork DM, Gusmao DF, Paciencia ML. First chemical evaluation and toxicity of Casiniga-cheiraea to Balb-c male mice. Molecules. 2014;19:3973-87.
14. Estork. - 2014 - First chemical evaluation and toxicity of casiniga-cheiraea to balb-c male mice2.pdf.
15. Khatun M, Billah M, Quader A. Sterols and Sterol Glucoside from Phyllanthus Species. Dhaka Univ J. Sci. 2012;60:5-10.
16. Tijani A, Ndukwe IG, Ayo RG. Isolation and characterization of lup-20(29)-ene-3β,28-diol (betulin) from the stem bark of Adenium obesum (Apocynaceae). Tropical Journal of Pharmaceutical Research. 2012;11:259-62.
17. Uddin G, Siddiqui BS, Alam M, Sadat A. Chemical Constituents and Phytotoxicity of Solvent Extracted Fractions of Stem Bark of Grevia ovata scopulorum ex Burreet, Middle-East Journal of Scientific Research. 2011;8:85-91.
18. Feng W, Hao Z, Li M. Isolation and Structure Identification of Flavonoids. Flavonoids - From Biosynthesis to Human Health: IntechOpen. 2017;17:43-7.
19. Kim H, Moon BH, Ahn JH, Lim Y. Complete NMR Signal Assignments of Flavonol Derivatives. Magnetic Resonance in Chemistry. 2006;44:188-90.
20. Ali M, Muhammad S, Shah MR. Neurologically potent molecules from Crateagus oxyacantha; isolation, anticholinesterase inhibition, and molecular docking. Frontiers in Pharmacology. 2017;8:1-11.
21. Nguyen DH, Seo UM, Zhao BT. Ellagitannin and flavonoid constituents from Agrimonia piasa Ledebe with their protein tyrosine phosphatase and acetylcholinesterase inhibitory activities. Bioorganic Chemistry. 2017;72:293-300.
22. Gade S, Rajamanikyam M, Vadlapudi V. Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochimica et Biophysica Acta. 2017;1861:541-50.
23. Balkis A, Tran K, Lee YZ, Ng K. Screening Flavonoids for Inhibition of Acetylcholinesterase Identified Bicalain as the Most Potent Inhibitor. Journal of Agricultural Science. 2015;7:26-35.
Somat, et al.: Chemical Constituents from Diospyros discolor Willd. and their Acetylcholinesterase Inhibitory Activity

GRAPHICAL ABSTRACT

ABOUT AUTHORS

Norhafizoh Abdul Somat is a master student of Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia and conducts her research in Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Cawangan Selangor, Malaysia. She obtained her BSc (Hons.) Chemistry from Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, Malaysia. Her research is focused on the chemical constituents from Diospyros discolor and its acetylcholinesterase inhibitory activity.

Zaini Yusoff is a former senior lecturer in Phytochemistry as well as Chemical Analysis at Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis. She obtained both her bachelor’s degree and MSc (Chemistry) from Western Illinois University, Macomb, ILL, USA. She was actively involved in research in the field of natural product chemistry prior to her retirement.

Che Puteh Osman is a research fellow at Atta-ur-Rahman Institute for Natural Product Discovery and a senior lecturer at Faculty of Applied Sciences, Universiti Teknologi MARA, Malaysia. She obtained BSc (Hons.) Applied Chemistry and PhD in natural product chemistry from Universiti Teknologi MARA. Her research areas are bioactive metabolites from plants and optimization of hit compounds as potential bioactive agents.

Cite this article: Somat NA, Yusoff Z, Osman CP. Chemical Constituents from Diospyros discolor Willd. and their Acetylcholinesterase Inhibitory Activity. Pharmacogn. J. 2020;12(6)Suppl:1547-51.