Unique solvability of weakly homogeneous generalized variational inequalities

Xueli Bai · Mengmeng Zheng · Zheng-Hai Huang

Abstract

An interesting observation is that most pairs of weakly homogeneous mappings do not possess strongly monotonic property, which is one of the key conditions to ensure the unique solvability of the generalized variational inequality. This paper focuses on studying the uniqueness and solvability of the generalized variational inequality with a pair of weakly homogeneous mappings. By using a weaker condition than the strong monotonicity and some additional conditions, we achieve several results on the unique solvability to the underlying problem, which are exported by making use of the exceptional family of elements. As an adjunct, we also obtain the nonemptiness and compactness of the solution sets to the weakly homogeneous generalized variational inequality under some appropriate conditions. The conclusions presented in this paper are new or supplements to the existing ones even when the problem comes down to its important subclasses studied in recent years.

Keywords Generalized variational inequality · Weakly homogeneous mapping · Exceptional family of elements · Degree theory · Strictly monotone mapping

1 Introduction

Variational inequalities (VIs) and complementarity problems (CPs) have been widely studied because of their applications in many fields (see [3,4,9] for example). The unique solvability of these problems has always been one of the important issues, which has been extensively studied in the literature (see [2,14,16,22] for example).

In 1988, Noor [24] introduced a class of generalized variational inequalities (GVIs), which contains VIs and CPs as subclasses. The unique solvability of the GVI can be guaranteed
under several conditions, where one of the key conditions is the strong monotonicity of the mapping pair involved (see [26] for example). The strong monotonicity of a mapping pair is a generalization of the strong monotonicity of a single mapping. The latter is a classical condition to guarantee the unique solvability of VIs (see [3]). We find that the pair of weakly homogeneous mappings generally does not have the property of strong monotonicity.

In recent years, several classes of special VIs and CPs have attracted people’s attention, including tensor complementarity problems (TCPs) (see [11,12]), polynomial complementarity problems (PCPs) (see [6]), generalized polynomial complementarity problems (GPCPs) (see [18]), tensor variational inequalities (TVIs) (see [28]), polynomial variational inequalities (PVIs) (see [10]), and generalized polynomial variational inequalities (GPVIs) (see [27]). With the help of structural properties of tensors and properties of polynomials, lots of theoretical results for these problems have been obtained. Recently, Gowda and Sossa [7] studied the variational inequality with a weakly homogeneous mapping (WHVI) over a finite dimensional real Hilbert space, which is a unified model for the above classes of special problems. By making use of the degree theory and properties of the weakly homogeneous mapping, they obtained several profound results on the nonemptiness and compactness of solution sets of WHVIs. Moreover, they also obtained a uniquely solvable result of the complementarity problem with a weakly homogeneous mapping (WHCP), a subclass of WHVIs. More recently, the nonemptiness and compactness of solution sets of WHVIs was also investigated in [21].

Inspired by the works mentioned above, in this paper, we investigate the unique solvability of the GVI with a pair of weakly homogeneous mappings (WHGVI) over a finite dimensional real Hilbert space. This is nontrivial since we can prove that many pairs of weakly homogeneous mappings do not possess strongly monotonic property which is one of the key conditions to guarantee the unique solvability of the GVI. The contribution of this paper is as follows: we introduce a definition of exceptional family of elements for a pair of mappings and establish an alternative theorem for the WHGVI, and by which, we show that the WHGVI has a unique solution under some assumptions, where one of the key conditions is the strict monotonicity which is weaker than the strong monotonicity. An example is constructed to claim the advantage of the achieved result. Incidentally, we also get a new result on the nonemptiness and compactness of solution sets of WHGVIs. Moreover, since the WHGVI contains WHVIs (and more, TCPs, PCPs, GPCPs, WHCPs, TVIs, PVIs, and GPVIs) as its subclasses, we reduce our main results to these subclasses, which give some new observations for these subclasses.

This paper is divided into six parts. In Sect. 2, we briefly recall some basic concepts and conclusions in the VI as well as the degree theory. In particular, we give a definition of exceptional family of elements for a pair of mappings and present an alternative theorem by using the exceptional family of elements. In Sect. 3, we show that many pairs of weakly homogeneous mappings do not possess the strong monotonic property, which are also illustrated by several examples. In Sect. 4, we establish a uniquely solvable result of the WHGVI with the help of the exceptional family of elements for a pair of mappings, and we illustrate that this result is different from the well-known result achieved by Pang and Yao [26] by an example. In Sect. 5, we reduce our main results to several subcases of WHGVIs and compare the results with those existing ones for these subcases. In Sect. 6, we complete this paper via giving some conclusions.
2 Preliminary

Throughout this paper, let H be a finite dimensional real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$, and C be a closed convex cone in H. For any nonempty set Ω in H, $\text{int}(\Omega)$, $\partial \Omega$ and $\overline{\Omega}$ denote the interior, boundary and closure of Ω, respectively. In addition, for any continuous mapping $g : H \to H$ and a nonempty set K in H, $C \supseteq g^{-1}(K) := \{ x \in H \ | \ g(x) \in K \}$ means that if $g(x^*) \in K$, then $x^* \in C$.

For any $z \in H$ and a closed convex set K in H, $\Pi_K(z)$ denotes the orthogonal projection of z onto K, which is the unique vector $\tilde{z} \in H$ satisfying the inequality $\langle y - \tilde{z}, \tilde{z} - z \rangle \geq 0$ for all $y \in K$. Besides, as a mapping, $\Pi_K(z)$ is nonexpansive, that is, $\| \Pi_K(u) - \Pi_K(v) \| \leq \| u - v \|$ holds for any $u, v \in H$. For a projection mapping $\Pi_K(\cdot)$, we have the following property:

$$0 \in K \text{ and } u \in K^* \implies \Pi_K(-u) = 0,$$

(1)

where K^* denotes the dual cone of K which is defined by $K^* := \{ u \in H \ | \ u^T x \geq 0, \forall x \in K \}$. Let $N_K(z)$ denote the normal cone of K at z, which is defined by

$$N_K(z) := \begin{cases} \{ u \in H \ | \ u^T (y - z) \leq 0, \forall y \in K \}, & \text{if } z \in K, \\ \emptyset, & \text{otherwise}, \end{cases}$$

and K^∞ denote the recession cone of K which is defined by

$$K^\infty := \left\{ u \in H \ | \ \exists \ell_k \to \infty, \exists x^k \in K \text{ such that } \lim_{k \to \infty} \frac{x^k}{\ell_k} = u \right\}.$$

Then, with the definition of the recession cone K^∞, we have that the mapping

$$\mathcal{K}(t) = t K + K^\infty, \ 0 \leq t \leq 1$$

(2)

satisfies the following property:

$$\mathcal{K}(t) = t K + K^\infty = t K \ (t \neq 0) \text{ and } \mathcal{K}(0) = K^\infty,$$

where the first statement comes from the fact that K^∞ is a cone. In [7], the authors obtained the following result:

Lemma 1 ([7]) Let $\mathcal{K}(\cdot)$ be defined as (2) and $\theta(\cdot, \cdot) : H \times [0, 1] \to H$ be continuous. Then, the mapping $(x, t) \mapsto \Pi_{\mathcal{K}(t)} \theta(x, t)$ is continuous.

2.1 Variational inequalities with weakly homogeneous mappings

A continuous mapping $f : C \to H$ is said to be positively homogeneous of degree δ with $\delta \geq 0$, if $f(\lambda x) = \lambda^\delta f(x)$ holds for any $x \in C$ and $\lambda > 0$. Now, we recall the definition of the weakly homogeneous mapping.

Definition 1 ([7]) A mapping $f : C \to H$ is called to be weakly homogeneous of degree δ if $f = h + g$, where $h : C \to H$ is positively homogeneous of degree δ and $g : C \to H$ is continuous and $g(x) = o(\|x\|^\delta)$ (i.e., $\frac{g(x)}{|x|^\delta} \to 0$) as $\|x\| \to \infty$ in C.

Some basic properties of weakly homogeneous mappings are given below.

Proposition 1 ([7]) Let $f = h + g$ be a weakly homogeneous mapping of degree $\delta > 0$. Then, the following statements hold:
homogeneous generalized variational inequality, which will be investigated in this paper. In
with degrees $\delta_1 > 0$ and $\delta_2 > 0$, respectively; p and q are two constant items in f and g, respectively; and $
abla f(x) = f(x) - f^\infty(x) - p$ and $\nabla g(x) = g(x) - g^\infty(x) - q$. Obviously, $\nabla f(x) = o(\|x\|^{\delta_1})$ and $\nabla g(x) = o(\|x\|^{\delta_2})$

According to item (iii), we use f^∞ to represent h in f and call it the leading term. Hereafter, we denote two weakly homogeneous mappings f and g by

$$
f(x) := f^\infty(x) + \nabla f(x) + p \quad \text{and} \quad g(x) := g^\infty(x) + \nabla g(x) + q,$$

where f^∞ and g^∞ are two leading terms in f and g with degrees $\delta_1 > 0$ and $\delta_2 > 0$, respectively; p and q are two constant items in f and g, respectively; and $
abla f(x) = f(x) - f^\infty(x) - p$ and $\nabla g(x) = g(x) - g^\infty(x) - q$. Obviously, $\nabla f(x) = o(\|x\|^{\delta_1})$ and $\nabla g(x) = o(\|x\|^{\delta_2})$ as $\|x\| \to \infty$.

Given a nonempty closed convex set K in H and two continuous mappings $f, g : H \to H$. The generalized variational inequality, denoted by GVI(f, g, K), is to find an $x^* \in H$ such that

$$g(x^*) \in K, \quad \langle f(x^*), y - g(x^*) \rangle \geq 0, \quad \forall y \in K.$$ \hspace{1cm} (4)

When $f : C \to H$ and $g : H \to H$ with $g^{-1}(K) \subseteq C$ are weakly homogeneous mappings with degrees $\delta_1 > 0$ and $\delta_2 > 0$, respectively, we call the problem (4) to be a weakly homogeneous generalized variational inequality, which will be investigated in this paper. In the following, we denote this problem by WHGVI(f, g, K) for notational convenience.

- When $g(x) = x$, WHGVI(f, g, K) reduces to the WHVI, which is to find an $x^* \in K$ such that

$$\langle f(x^*), y - x^* \rangle \geq 0, \quad \forall y \in K.$$ \hspace{1cm} (5)

We denote it by WHVI(f, K).

- When K is a cone, WHGVI(f, g, K) is equivalent to a complementarity problem, called the weakly homogeneous generalized complementarity problem, which is to find an $x^* \in H$ such that

$$g(x^*) \in K, \quad f(x^*) \in K^* \quad \text{and} \quad \langle f(x^*), g(x^*) \rangle = 0.$$ \hspace{1cm} (5)

We denote it by WHGCP(f, g, K).

- Furthermore, if $g(x) = x$, then WHGCP(f, g, K) reduces to the weakly homogeneous conic complementarity problem, which is denoted by WHCP(f, K)

Remark 1 Actually, the WHGVI is a wide class of problems. Except from the above mentioned VIs and CPs, it also includes many other important problems as its special cases. Thus, by studying the properties of WHGVI, we can directly obtain many good results about these subclasses (please see Sect. 5 for details).

For any GVI(f, g, K), we recall that the natural mapping (see [3] for more details) is defined by

$$(f, g)^{nat}_K(x) := g(x) - \Pi_K[g(x) - f(x)].$$ \hspace{1cm} (6)

With the help of the natural mapping and the same technique in Proposition 1.5.8 given in [3], an equivalent reformulation of GVI(f, g, K) can be easily established.
Lemma 2 Let K be a closed convex set in H, and $f : C \to H$ and $g : H \to H$ be two continuous mappings. Then, $x^* \in H$ is a solution of GVI(f, g, K) if and only if $(f, g)^{\text{nat}}_K(x^*) = 0$.

Let SOL(f, g, K) denote the solution set of GVI(f, g, K). Then, by Lemma 2 it follows that $x^* \in \text{SOL}(f, g, K)$ if and only if $(f, g)^{\text{nat}}_K(x^*) = 0$.

Lemma 3 ([3]) Let $\Phi : S \subseteq \mathbb{R}^n \to \mathbb{R}^m$ be a continuous mapping defined on the nonempty closed set S. A continuous extension $\hat{\Phi} : \mathbb{R}^n \to \mathbb{R}^m$ exists such that $\hat{\Phi}(x) = \Phi(x)$ for all $x \in S$.

From Lemma 3 it can be easily deduced that for any weakly homogeneous mapping $f : C \to H$, there always exists continuous extension F of f from C to H. What is more, if WHGVI(f, g, K) satisfies $g^{-1}(K) \subseteq C$, then we have SOL$(f, g, K) = \text{SOL}(F, g, K)$.

Next, we give the definitions of three classes of mappings, which reduce to the ones in [26] when $D = H = \mathbb{R}^n$.

Definition 2 Let K be a nonempty closed convex subset of H, and $f : D \to H$ and $g : H \to H$ be two continuous mappings, where D is a nonempty subset of H with $g^{-1}(K) \subseteq D$. f is said to be

(i) Monotone with respect to g on K if

$$g(x), g(y) \in K \implies [f(x) - f(y)]^T [g(x) - g(y)] \geq 0;$$

(ii) Strictly monotone with respect to g on K if

$$[g(x), g(y) \in K, \text{ and } x \neq y] \implies [f(x) - f(y)]^T [g(x) - g(y)] > 0;$$

(iii) Strongly monotone with respect to g on K if there exists a scalar $c > 0$ such that

$$g(x), g(y) \in K \implies [f(x) - f(y)]^T [g(x) - g(y)] \geq c\|x - y\|^2.$$

When g is the identity mapping, we simply call that f is monotone on K, strictly monotone on K and strongly monotone on K, respectively.

From the above definitions, it can be easily seen that if f is strongly monotone with respect to g on K, then f must be strictly monotone with respect to g on K. However, the converse is not necessarily true. Besides, we have the following result about strictly monotone mappings, whose proof is similar to that of Theorem 2.3.3 (a) in [3], and hence, we omit it here.

Lemma 4 Let K be a closed convex set in H, and $f : C \to H$ and $g : H \to H$ be two weakly homogeneous mappings defined by (3) with $g^{-1}(K) \subseteq C$. Suppose that f is strictly monotone with respect to g on K. Then, WHGVI(f, g, K) has no more than one solution.

2.2 Degree theory

The degree theory has been extensively applied to the investigation of VIs and CPs (see [5] for example). In this subsection, we recall some basic notations used in the degree theory (readers can also refer to [3,20,25]). Let Ω be a bounded open set in H, $\phi : \bar{\Omega} \to H$ be a continuous mapping, and $b \in H$ satisfying $b \notin \phi(\partial \Omega)$. Then, the topological degree of ϕ over Ω with respect to b is defined, which is an integer and denoted by deg(ϕ, Ω, b).

In addition, if $x^* \in \Omega$ and $\phi(x) = \phi(x^*)$ has a unique solution x^* in $\bar{\Omega}$, then, let Ω' be any bounded open set containing x^*, deg$(\phi, \Omega', \phi(x^*))$ remains a constant, which is called
the index of ϕ at x^* and denoted by $\text{ind}(\phi, x^*)$. Especially, when the continuous mapping $\phi : H \to H$ satisfies $\phi(0) = 0$ if and only if $x = 0$, then,

$$\text{ind}(\phi, 0) = \deg(\phi, \Omega, \phi(0)) = \deg(\phi, \Omega, 0)$$

holds for any bounded open set Ω containing 0.

Furthermore, we review the following conclusions.

Lemma 5 ([25]) Let Ω be an open bounded set in H and $\phi : \bar{\Omega} \to H$ be continuous. If $b \in H$ with $b \notin \phi(\partial \Omega)$ and $\deg(\phi, \Omega, b) \neq 0$, then, $\phi(x) = b$ has a solution in Ω.

Lemma 6 ([25]) Let Ω be an open bounded set in H and $H(x, t) : \bar{\Omega} \times [0, 1] \to H$ be continuous. If $b \in H$ with $b \notin \{H(x, t) : x \in \partial \Omega, t \in [0, 1]\}$, then, $\deg(H(\cdot, t), \Omega, b)$ remains a constant as t varies over $[0, 1]$.

Lemma 6 is also known as the homotopy invariance of degree.

2.3 Exceptional family of elements

It is well-known that the exceptional family of elements is a powerful tool to study the existence of solutions to CPs and VIs. In the following, referring to [8] and [13], we present a definition of exceptional family of elements for a pair of mappings over a finite dimensional real Hilbert space.

Definition 3 Let $f : D \to H$ and $g : H \to H$ be two continuous mappings where D is a nonempty set in H, and K be a closed convex set in H with $g^{-1}(K) \subseteq D$. A set of points $\{x^r\} \subseteq D$ is called an exceptional family of elements for the pair (f, g) with respect to any $\hat{x} \in H$, if

(i) $\|x^r\| \to \infty$ as $r \to \infty$;
(ii) $g(x^r) \in K$ for any $r > 0$;
(iii) for any $r > \|\Pi_K(\hat{x})\|$, there exists a real number $\alpha_r > 0$ such that

$$- [f(x^r) + \alpha_r(g(x^r) - \hat{x})] \in N_K(g(x^r)).$$

Remark 2 When $D = H = \mathbb{R}^n$ and $g(x) = x$, Definition 3 reduces to Definition 2.1 in [8], in which an exceptional family of elements for the mapping f was defined.

By employing the degree theory, we can establish an alternative theorem for GVI(f, g, K), which is useful in later analysis.

Theorem 1 Let K be a nonempty closed convex set in H, f, $g : H \to H$ be two continuous mappings, and $\Omega_r^{\hat{x}} := \{x \in H \mid \|g(x)\| < r\}$ where $r > \|\Pi_K(\hat{x})\|$ for any given $\hat{x} \in H$. Suppose that

(a) the boundedness of $\|g(x)\|$ implies the boundedness of $\|x\|$; and
(b) $\deg(g(\cdot), \Omega_r^{\hat{x}}, \Pi_K(\hat{x}))$ is defined and nonzero.

Then, there exists either a solution of GVI(f, g, K) or an exceptional family of elements for the pair (f, g) with respect to any given $\hat{x} \in H$.

Proof The proof is similar to the one in [8, Theorem 2.2]. We hereby present it for the integrity of the paper. Suppose that GVI(f, g, K) has no solution. We will show that there
exists an exceptional family of elements for the pair \((f, g) \) with respect to any given \(\hat{x} \in H \).

Let homotopy \(\mathcal{H}(\cdot, \cdot) : H \times [0, 1] \rightarrow H \) be defined by

\[
\mathcal{H}(x, t) := g(x) - \Pi_K \{ t[g(x) - f(x)] + (1 - t)\hat{\cdot} \},
\]

and let

\[
S_r := \{ x \in H \mid \| g(x) \| < r \}, \quad \text{where } r > 0.
\]

First, we show the following result:

R1. For any \(r > \| \Pi_K(\hat{x}) \| \), there exists \(x^r \in \partial S_r \) and \(t_r \in [0, 1] \) such that

\[\mathcal{H}(x^r, t_r) = 0. \]

To this end, we assume that the result **R1** does not hold and derive a contradiction. Suppose that there exists an \(\tilde{r} > \| \Pi_K(\hat{x}) \| \) such that

\[0 \notin \{ \mathcal{H}(x, t) : x \in \partial S_{\tilde{r}}, t \in [0, 1] \}. \]

By using item (a), the continuity of \(\mathcal{H} \) and Lemma 6, we get that \(\deg(\mathcal{H}(\cdot, \cdot), S_{\tilde{r}}, 0) \) remains a constant on \([0, 1] \). From (8) we have \(\mathcal{H}(x, 0) = g(x) - \Pi_K(\hat{x}) \). Since \(\hat{x} \) is an arbitrary given element in \(H \) and \(\tilde{r} > \| \Pi_K(\hat{x}) \| \), from item (b) we obtain that \(\deg(\mathcal{H}(x, 0), S_{\tilde{r}}, 0) \neq 0 \), and then

\[
\deg(\mathcal{H}(x, 1), S_{\tilde{r}}, 0) = \deg(\mathcal{H}(x, 0), S_{\tilde{r}}, 0) \neq 0.
\]

From Lemma 5 and the fact that \(\mathcal{H}(x, 1) = g(x) - \Pi_K \{ g(x) - f(x) \} \), it immediately follows that \(\mathcal{H}(x, 1) = 0 \) has a solution. According to Lemma 2, this implies that GVI \((f, g, K)\) has a solution, which is a contradiction. Thus, **R1** holds. Then,

\[
g(x^r) = \Pi_K \{ t_r[g(x^r) - f(x^r)] + (1 - t_r)\hat{\cdot} \} \in K,
\]

which indicates that

\[
-\{ g(x^r) - [t_r(g(x^r) - f(x^r)) + (1 - t_r)\hat{\cdot}] \} \in N_K(g(x^r)).
\]

On the one hand, the truth that GVI \((f, g, K)\) has no solution leads to \(\mathcal{H}(x, 1) \neq 0 \), and then, \(t_r \neq 1 \) in (10). On the other hand, from (9) and **R1** we obtain that \(\| g(x^r) \| = r > \| \Pi_K(\hat{x}) \| \), which leads to \(\mathcal{H}(x, 0) \neq 0 \), and then, \(t_r \neq 0 \) in (10). These two aspects together give rise to the fact that \(t_r \in (0, 1) \) in (11). Denote \(\alpha_r := 1 - t_r \). According to the property of the normal cone, by dividing the left-hand side of (11) by \(t_r \), we obtain that

\[
-\{ f(x^r) + \alpha_r(g(x^r) - \hat{x}) \} \in N_K(g(x^r)).
\]

Besides, we have also obtained that \(g(x^r) \in K \) for all \(r > \| \Pi_K(\hat{x}) \| \) and \(\| g(x^r) \| \to \infty \) as \(r \to \infty \). So, based on the continuity of \(g \) and condition (a), we obtain that \(\| x^r \| \to \infty \) as \(r \to \infty \).

Up to now, we obtain a sequence \(\{ x^r \} \) which satisfies

(i) \(\| x^r \| \to \infty \) as \(r \to \infty \);

(ii) \(g(x^r) \in K \) for any \(r > \| \Pi_K(\hat{x}) \| \);

(iii) for any \(r > \| \Pi_K(\hat{x}) \| \), we have that (7) holds.

If \(\| \Pi_K(\hat{x}) \| < 1 \), then it follows from Definition 3 that \(\{ x^r \}_{r > \| \Pi_K(\hat{x}) \|} \) is an exceptional family of elements for the pair \((f, g)\) with respect to any given \(\hat{x} \in H \); otherwise, for each integer \(r \) satisfying \(0 < r \leq \| \Pi_K(\hat{x}) \| \), we choose \(x^r \in D \) such that \(g(x^r) \in K \), then the newly obtained sequence \(\{ x^r \}_{r > 0} \) is an exceptional family of elements for the pair \((f, g)\) with respect to any given \(\hat{x} \in H \).
Corollary 1 Given a nonempty closed convex set K in H, and two continuous mappings $g : H \to H$ and $f : C \to H$. Let $g^{-1}(K) \subseteq C$ and $\Omega^r_x := \{x \in H \mid \|g(x)\| < r\}$ where $r > \|\Pi_K(\hat{x})\|$ for any given $\hat{x} \in H$. Suppose that

(a) the boundedness of $\|g(x)\|$ implies the boundedness of $\|x\|$; and
(b) $\text{deg}(g(\cdot), \Omega^r_x, \Pi_K(\hat{x}))$ is defined and nonzero.

Then, there exists either a solution of GVI(f, g, K) or an exceptional family of elements for the pair (f, g) with respect to any given $\hat{x} \in H$.

Proof Suppose that GVI(f, g, K) has no solution. We will show that there exists an exceptional family of elements for the pair (f, g) with respect to any given $\hat{x} \in H$. Let F be any extension of f to H, then, it follows that GVI(F, g, K) has no solution. Thus, following the steps in Theorem 1, we can get an exceptional family of elements $\{x^r\} \subset H$ for the pair (F, g) with respect to any given $\hat{x} \in H$, which satisfies: $\|x^r\| \to \infty$ as $r \to \infty$; $g(x^r) \in K$ for any $r > 0$; and for any $r > \|\Pi_K(\hat{x})\|$, there exists a real number $\alpha_r > 0$ such that $-\{F(x^r) + \alpha_r(g(x^r) - \hat{x})\} \in N_K(g(x^r))$.

Since $g(x^r) \in K$ for any $r > 0$, we have $x^r \in g^{-1}(K) \subseteq C$, and then, $F(x^r) = f(x^r)$ for any $r > 0$. Thus, the set of points $\{x^r\} \subset H$ also satisfies $-\{f(x^r) + \alpha_r(g(x^r) - \hat{x})\} \in N_K(g(x^r))$ for any $r > \|\Pi_K(\hat{x})\|$, which shows that $\{x^r\}$ is also an exceptional family of elements for the pair (f, g) with respect to any given $\hat{x} \in H$.

3 Discussions of the strong monotonicity

In this paper, our aim is to investigate the unique solvability of WHGVI(f, g, K), where f and g are two weakly homogeneous mappings defined by (3). To see the need for this research, we first recall a well-known uniquely solvable result of GVI(f, g, K) achieved by Pang and Yao in [26], which is stated as follows.

Theorem 2 Let K be a nonempty closed convex subset of R^n, and $f, g : R^n \to R^n$ be two continuous functions with g being injective. Suppose there exists a vector $z \in g^{-1}(K)$ and positive scalars α and L such that $\|g(x) - g(z)\| \leq L\|x - z\|$ holds for any $x \in g^{-1}(K)$ with $\|x\| \geq \alpha$. If f is strongly monotone with respect to g on K, then there exists a unique vector $\bar{x} \in R^n$ satisfying $g(x) = \Pi_K[g(x) - f(x)]$.

From Lemma 2 we know that the unique vector \bar{x} in Theorem 2 is actually the unique solution of GVI(f, g, K). To obtain the unique solvability of GVI(f, g, K), Theorem 2 requires that the involved pair of mappings satisfies $\|g(x) - g(z)\| \leq L\|x - z\|$ for any $x \in g^{-1}(K)$ with $\|x\| \geq \alpha$ and possesses the strongly monotonic property. However, it can be seen that these two assumptions may not be true in lots of cases when both f and g are weakly homogeneous mappings. In the following, we only show that for many pairs of weakly homogeneous mappings f and g, it is impossible that f is strongly monotone with respect to g on K.

Proposition 2 Let K be a nonempty closed convex subset of H and $f, g : C \to H$ be weakly homogeneous mappings defined by (3) with degrees $\delta_1 > 0$ and $\delta_2 > 0$, respectively. Suppose that $g^{-1}(K)$ is unbounded. If $\delta_1 + \delta_2 < 2$, then f is not strongly monotone with respect to g on K.

Springer
By the unboundedness of g, where f to the degree of strongly monotone on K.

Example 1 Suppose that $x \in \mathbb{R}^2$, $C = \mathbb{R}^2$, and $K = \{(s, t) \mid s \geq 0, t \geq 1\}$. We define two weakly homogeneous mappings from C to H by

$$f(x) = \begin{pmatrix} x_1^{1/2} + 2 \\ x_2^{1/2} \end{pmatrix} \quad \text{and} \quad g(x) = \begin{pmatrix} x_1^{1/3} \\ x_2^{1/3} + 1 \end{pmatrix}. $$

In Example 1, $\delta_1 + \delta_2 = 1/2 + 1/3 = 5/6 < 1$. Suppose f is strongly monotone with respect to g on K. Since $g(0) \in K$, there exists a positive scalar $c > 0$ such that for any $g(x) \in K$,

$$[f(x) - f(0)]^T[g(x) - g(0)] = x_1^{5/6} + x_2^{5/6} \geq c \|x\|^2. $$

Dividing the above inequality both sides by $\|x\|^2$ we obtain that

$$\frac{x_1^{5/6} + x_2^{5/6}}{\|x\|^2} = \frac{1}{\|x\|^{7/6}} h(\bar{x}) \geq c,$$

where $\bar{x} = \frac{x}{\|x\|}$ and $h(x) = x_1^{5/6} + x_2^{5/6}$ is a positive homogeneous function with degree $5/6$. Let $\|x\| \to \infty$, then, the left-hand side of the above inequality tends to 0, which is a contradiction! Therefore, f is not strongly monotone with respect to g on K.

Remark 3 Suppose that $g(x) = x$. Then, the condition $\delta_1 + \delta_2 < 2$ in Proposition 2 reduces to the degree of f is less than one, that is, if the degree of f is less than one, then f is not strongly monotone on K.

Here, we use an example to illustrate Proposition 2.

Example 1 Suppose that $H = \mathbb{R}^2$, $C = \mathbb{R}^2$, and $K = \{(s, t) \mid s \geq 0, t \geq 1\}$. We define two weakly homogeneous mappings from C to H by

$$f(x) = \begin{pmatrix} x_1^{1/2} + 2 \\ x_2^{1/2} \end{pmatrix} \quad \text{and} \quad g(x) = \begin{pmatrix} x_1^{1/3} \\ x_2^{1/3} + 1 \end{pmatrix}. $$

In Example 1, $\delta_1 + \delta_2 = 1/2 + 1/3 = 5/6 < 1$. Suppose f is strongly monotone with respect to g on K. Since $g(0) \in K$, there exists a positive scalar $c > 0$ such that for any $g(x) \in K$,

$$[f(x) - f(0)]^T[g(x) - g(0)] = x_1^{5/6} + x_2^{5/6} \geq c \|x\|^2. $$

Dividing the above inequality both sides by $\|x\|^2$ we obtain that

$$\frac{x_1^{5/6} + x_2^{5/6}}{\|x\|^2} = \frac{1}{\|x\|^{7/6}} h(\bar{x}) \geq c,$$

where $\bar{x} = \frac{x}{\|x\|}$ and $h(x) = x_1^{5/6} + x_2^{5/6}$ is a positive homogeneous function with degree $5/6$. Let $\|x\| \to \infty$, then, the left-hand side of the above inequality tends to 0, which is a contradiction! Therefore, f is not strongly monotone with respect to g on K.

Proposition 3 Let K be a nonempty closed convex subset of H and $f, g : C \to H$ be two weakly homogeneous mappings. If there exists some $\tilde{x} \in C$ satisfying $g(\tilde{x}) \in K$ such that

$$\frac{(f(x) - f(\tilde{x}), g(x) - g(\tilde{x}))}{\|x - \tilde{x}\|^2} \to 0 \quad \text{as} \quad x \to \tilde{x},$$

then f is not strongly monotone with respect to g on K.
Proof Suppose on the contrary that f is strongly monotone with respect to g on K. Then, there exists a positive scalar $c > 0$ such that for any $g(x), g(y) \in K$,

$$\langle f(x) - f(y), g(x) - g(y) \rangle \geq c \|x - y\|^2,$$

and hence, we have

$$\frac{\langle f(x) - f(\hat{x}), g(x) - g(\hat{x}) \rangle}{\|x - \hat{x}\|^2} \geq c.$$

Let $x \to \hat{x}$, then, the left-hand side of the above inequality tends to zero, while the right-hand side is a positive constant, which is a contradiction!

Thus, f is not strongly monotone with respect to g on K. \qed

Now, we present an example to illustrate Proposition 3.

Example 2 Let $H = C = R^2$ and $K = R^2_+$. We define two weakly homogeneous mappings from R^2 to R^2 by

$$f(x) = \left(\frac{x_1^3 + 3}{x_2^3 + 6} \right) \quad \text{and} \quad g(x) = \left(\frac{x_1^4 + \cos x_1 + 1}{x_2^4 + 2} \right).$$

In Example 2, since $K = R^2_+$, we may take $\hat{x} = 0$, i.e., $g(\hat{x}) \in K$. Suppose that f is strongly monotone with respect to g on K. Then, since $g(0) \in K$, there exists a positive scalar $c > 0$ such that for any $g(x) \in K$,

$$\langle f(x) - f(0), g(x) - g(0) \rangle = x_1^7 + x_2^7 + x_1^3(\cos x_1 - 1) \geq c \|x\|^2.$$

Dividing both sides of the above inequality by $\|x\|^2$, we have

$$\frac{x_1^7 + x_2^7 + x_1^3(\cos x_1 - 1)}{\|x\|^2} \geq c.$$

Let $\|x\| \to 0$, then, the left-hand side of the above inequality tends to zero, while the right-hand side is a positive constant, which is a contradiction! Hence, f is not strongly monotone with respect to g on K.

From Proposition 3, the following result holds immediately.

Corollary 2 Let K be a nonempty closed convex subset of H and $f, g : C \to H$ be two weakly homogeneous mappings. Suppose that f and g are finite sums of homogeneous mappings on C of the forms:

$$f(x) = h_v(x) + h_{v-1}(x) + \cdots + h_1(x) + h_0(x),$$
$$g(x) = \tilde{h}_\omega(x) + \tilde{h}_{\omega-1}(x) + \cdots + \tilde{h}_1(x) + \tilde{h}_0(x),$$

respectively, where $v, \omega > 0$ are integers, $h_i(x)$ and $\tilde{h}_j(x)$ are positively homogeneous with degrees γ_i and β_j on C, and $\gamma_0 > \gamma_{\omega-1} > \cdots > \gamma_1 > \gamma_0 = 0, \beta_\omega > \beta_{\omega-1} > \cdots > \beta_1 > \beta_0 = 0$. If $g(0) \in K$ and $\gamma_1 + \beta_1 > 2$, then, f is not strongly monotone with respect to g on K.

Remark 4 (i) Suppose that $g(x) = x$. Then, the conditions $g(0) \in K$ and $\gamma_1 + \beta_1 > 2$ in Corollary 2 reduce to $0 \in K$ and the degree of $h_1(x)$ is no less than one.
(ii) Recall that for any positive integers m and n with $m, n \geq 2$, $A = (a_{i_1i_2\ldots i_m})$, where $a_{i_1i_2\ldots i_m} \in R$ for $i_j \in \{1, 2, \ldots, n\}$ and $j \in \{1, 2, \ldots, m\}$, is called an m-th order n-dimensional tensor. We denote the set of all m-th order n-dimensional tensor by $R^{[m,n]}$. For any $A = (a_{i_1i_2\ldots i_m}) \in R^{[m,n]}$ and $x = (x_1, \ldots, x_n)^\top \in R^n$, we have $Ax^{m-1} \in R^n$, whose the ith component is given by

\[
(Ax^{m-1})_i := \sum_{i_2,\ldots, i_m=1}^n a_{i_1i_2\ldots i_m} x_{i_2} \cdots x_{i_m}, \quad \forall i \in \{1, 2, \ldots, n\}.
\]

In Corollary 2, if both weakly homogeneous mappings f and g are polynomials, which are defined by

\[
f(x) = \sum_{k=1}^{m-1} A^{(k)} x^{m-k} + a \quad \text{and} \quad g(x) = \sum_{p=1}^{l-1} B^{(p)} x^{l-p} + b
\]

where $(A^{(1)}, \ldots, A^{(m-1)}) \in R^{[m,n]} \times \cdots \times R^{[2,n]}$, $(B^{(1)}, \ldots, B^{(l-1)}) \in R^{[l,n]} \times \cdots \times R^{[2,n]}$, $a \in R^n$, and $b \in R^n$, then, Corollary 2 reduces to Proposition 1 in [27].

Just as the strong monotonicity of the mapping plays a role in the study of VIs, the uniform P-property of the mapping is one of the important conditions to guarantee that the complementarity problem has a unique solution. At the end of this section, we give some observations on the concept of the uniform P-mapping.

Definition 4 The mapping $f : R^n_+ \to R^n$ is said to be a uniform P-mapping with respect to $g : R^n \to R^n$ on R^n_+, if there exists some $\rho > 0$ such that

\[
\max_{i \in \{1, 2, \ldots, n\}} [f_i(x) - f_i(y)][g_i(x) - g_i(y)] \geq \rho \|x - y\|^2, \quad \forall g(x), g(y) \in R^n_+.
\]

If R^n_+ is replaced by R^n, we simple call that f is a uniform P-mapping with respect to g.

Consider a class of generalized complementarity problems, that is GVI(f, g, K) with $H := R^n$ and $K := R^n_+$. Similar to the one in [14], one can show that this problem has a unique solution under the assumption that f is a uniform P-mapping with respect to g on R^n_+ and some additional conditions.

When g is the identity mapping, the uniform P-property of mapping pair (f, g) reduces to the uniform P-property of mapping f which is called that f is a uniform P-mapping on R^n_+. Such a property is one of the key conditions to ensure the unique solvability of CPs (see [2,3,9] for example).

Remark 5 In a similar way as those in Propositions 2 and 3, it is easy to verify that lots of weakly homogeneous mapping pairs $f : R^n_+ \to R^n$ and $g : R^n \to R^n$ do not possess the uniform P-property described in Definition 4.

4 Uniqueness derived by using the exceptionally family of elements

From Propositions 2 and 3, we can see that many pairs of weakly homogeneous mappings do not satisfy the strongly monotonic property. Thus, Theorem 2 cannot be directly applied to the WHGVI in many cases. In the following, we investigate the unique solvability of the WHGVI under the strict monotonicity and some additional assumptions. We also construct
an example to compare our result with the famous uniqueness result stated in Theorem 2 in the case of the both involved mappings being weakly homogeneous.

Before showing the main result, we first define

\[B := \{x \in H \mid \|x\| = 1\} \quad \text{and} \quad R := \{x \in H \mid g^\infty(x) \in K^\infty\}. \]

It is easy to see that for a weakly homogeneous mapping \(g : H \to H \) defined by (3) with degree \(\delta_2 > 0 \), we have that

\[g(\lambda x) = \lambda^\delta_2 g^\infty(x) + \tilde{g}(\lambda x) + q \]

holds for all \(\lambda > 0 \). Let \(\lambda \to \infty \) and \(x \neq 0 \), we have \(\|\lambda x\| \to \infty \) and \(\|g(\lambda x)\| \to \infty \) under the assumption that \(g^\infty(x) = 0 \) if and only if \(x = 0 \). Hence, in this case, the boundedness of \(\|g(x)\| \) implies the boundedness of \(\|x\| \), which means that the condition (a) in Corollary 1 holds trivially.

Theorem 3 Given a nonempty closed convex subset \(K \) of \(H \), and two weakly homogeneous mappings \(f : C \to H \) and \(g : H \to H \) defined by (3) with degrees \(\delta_1 > 0 \) and \(\delta_2 > 0 \), respectively. Let \(g^-(K) \subseteq C \), \(g^\infty(x) = 0 \) if and only if \(x = 0 \), and \(\Omega_{\delta}^r := \{x \in H \mid \|g(x)\| < r\} \) where \(r > \|\Pi_K(\hat{x})\| \) for any given \(\hat{x} \in H \). Suppose that \(\deg(g(\cdot), \Omega_{\delta}^r, \Pi_K(\hat{x})) \) is defined and nonzero, and the following conditions hold:

1. \(f \) is strictly monotone with respect to \(g \) on \(K \); and
2. \(\langle f^\infty(x), g^\infty(x) \rangle \neq 0 \) for any \(x \in B \cap R \).

Then, WHGVI \((f, g, K) \) has a unique solution.

Proof First, we show that the solution set of WHGVI \((f, g, K) \) is nonempty. Here, we use the proof by contradiction. Suppose on the contrary that WHGVI \((f, g, K) \) has no solution. Then, from Corollary 1 we know that there exists an exceptional family of elements \(\{x^r\} \) for the pair \((f, g) \) with respect to any \(\hat{x} \in H \), which satisfies \(g(x^r) \in K \) and \(\|x^r\| \to \infty \) as \(r \to \infty \). Let \(\hat{x} = 0 \), then from (7) we obtain that for any \(r > \|\Pi_K(0)\| \), there exists a scalar \(a_r > 0 \) such that

\[-[f(x^r) + a_r g(x^r)] \in N_K(g(x^r)). \]

According to the definition of normal cone, we have that for any \(r > \|\Pi_K(0)\| \),

\[\langle y - g(x^r), f(x^r) + a_r g(x^r) \rangle \geq 0, \quad \forall y \in K. \quad (15) \]

Dividing both sides of (15) by \(\|x^r\|^{\delta_1 + \delta_2} \), we obtain that for any \(r > \|\Pi_K(0)\| \),

\[\left(\frac{y - g(x^r)}{\|x^r\|^{\delta_1}} \cdot \frac{f(x^r)}{\|x^r\|^{\delta_2}} \right) + a_r \|x^r\|^{\delta_2 - \delta_1} \left(\frac{y - g(x^r)}{\|x^r\|^{\delta_2}}, \frac{g(x^r)}{\|x^r\|^{\delta_2}} \right) \geq 0, \quad \forall y \in K. \quad (16) \]

From condition (i) and \(g(x^r) \in K \) we know that for any given \(g(\theta) \in K \) with \(\theta \neq x^r \) and any \(r > \|\Pi_K(0)\| \),

\[\langle f(x^r) - f(\theta), g(x^r) - g(\theta) \rangle > 0. \quad (17) \]

Let \(\tilde{x}^r = \frac{x^r}{\|x^r\|^{\delta_1}} \) for any \(r > \|\Pi_K(0)\| \). Subsequencing if necessary, we assume that \(\tilde{x}^r \to \tilde{x} \) as \(r \to \infty \). Then,

\[\lim_{r \to \infty} \frac{f(x^r)}{\|x^r\|^{\delta_1}} = f^\infty(\tilde{x}) \quad \text{and} \quad \lim_{r \to \infty} \frac{g(x^r)}{\|x^r\|^{\delta_2}} = g^\infty(\tilde{x}) \in K^\infty. \]
Obviously, \(\tilde{x} \in B \cap R \). Dividing both sides of (17) by \(\|x^r\|^{\delta_1+\delta_2} \) and let \(r \to \infty \), we have \(\langle f^\infty(\tilde{x}), g^\infty(\tilde{x}) \rangle \geq 0 \). This, together with condition (ii), implies that \(\langle f^\infty(\tilde{x}), g^\infty(\tilde{x}) \rangle > 0 \). Thus, for any fixed \(y \in K \),
\[
\lim_{r \to \infty} \left(\frac{y - g(x^r)}{\|x^r\|^{\delta_2}}, \frac{f(x^r)}{\|x^r\|^{\delta_1}} \right) = -\langle f^\infty(\tilde{x}), g^\infty(\tilde{x}) \rangle < 0. \tag{18}
\]
Besides, from condition (ii) we can also obtain that \(g^\infty(\tilde{x}) \neq 0 \), which leads to
\[
\lim_{r \to \infty} \left(\frac{y - g(x^r)}{\|x^r\|^{\delta_2}}, \frac{g(x^r)}{\|x^r\|^{\delta_2}} \right) = -\|g^\infty(\tilde{x})\|^2 < 0
\]
for any fixed \(y \in K \). Hence, for all sufficiently large \(r \), we have that for any fixed \(y \in K \),
\[
\left(\frac{y - g(x^r)}{\|x^r\|^{\delta_2}}, \frac{g(x^r)}{\|x^r\|^{\delta_2}} \right) < 0.
\]
Thus, it follows from (16) that for all sufficiently large \(r \),
\[
\left(\frac{y - g(x^r)}{\|x^r\|^{\delta_2}}, \frac{f(x^r)}{\|x^r\|^{\delta_2}} \right) \geq 0
\]
holds for any fixed \(y \in K \), which implies that
\[
\lim_{r \to \infty} \left(\frac{y - g(x^r)}{\|x^r\|^{\delta_2}}, \frac{f(x^r)}{\|x^r\|^{\delta_2}} \right) \geq 0.
\]
This contradicts (18)! Thus, WHGVI(\(f, g, K \)) has a nonempty solution set.

From Lemma 4, under the assumption of strict monotonicity, WHGVI(\(f, g, K \)) has no more than one solution. Thus, WHGVI(\(f, g, K \)) has a unique solution. \(\Box \)

Now, we use other restrictions on the mapping \(g \) to replace the degree condition used in Theorem 3, and get the following result.

Theorem 4 Given a nonempty closed convex subset \(K \) of \(H \), and two weakly homogeneous mappings \(f : C \to H \) and \(g : H \to H \) defined by (3) with degrees \(\delta_1 > 0 \) and \(\delta_2 > 0 \), respectively. Suppose that \(g \) is an injective mapping, \(g^{-1}(K) \subseteq C \), \(g^\infty(x) = 0 \) if and only if \(x = 0 \), and for any \(y \in K \), there exists an \(x \in H \) such that \(g(x) = y \). If the following conditions hold:

(i) \(f \) is strictly monotone with respect to \(g \) on \(K \); and

(ii) \(\langle f^\infty(x), g^\infty(x) \rangle \neq 0 \) for any \(x \in B \cap R \),

then, WHGVI(\(f, g, K \)) has a unique solution.

Now, we construct an example in which all the conditions in Theorem 4 are satisfied, but the conditions in Theorem 2 are not satisfied.

Example 3 Let \(C = \{(c, 0)^\top | c \geq 0\} \subseteq H = R^2 \) and \(K = \{(s, 0)^\top | s \geq 2\} \). Consider WHGVI(\(f, g, K \)), where \(f : C \to H \) and \(g : H \to H \) are defined as follows:
\[
f(x) = \begin{pmatrix} x_1^{17/3} + x_1^{8/3}x_2^{5/3} + 2 \\ x_2^{17/3} + x_1^{4/3}x_2 + 1 \end{pmatrix} \quad \text{and} \quad g(x) = \begin{pmatrix} x_1^3 + \frac{1+x_2^3}{x_2^3} + 1 \end{pmatrix}.
\]
From Example 3, obviously, \(g \) is a continuous injection on \(H \) and satisfies \(g^{-1}(K) \subseteq C \). Besides, it is also easy to see that

\[
\begin{align*}
\tilde{f}(x) &= \left(x_1^{17/3}, x_2^{1/3} \right), & \tilde{g}(x) &= \left(x_1^{4/3}, x_2^{1/3} \right), & p &= \left(\begin{array}{c} 2 \\ 1 \end{array} \right), \\
g(x) &= \left(x_1^{3}, x_2^{2} \right), & q &= \left(\begin{array}{c} 1 \\ 0 \end{array} \right),
\end{align*}
\]

and

\[
g^{-1}(K) = \{ (x_1, x_2) \top | x_1 \geq 0, x_2 = 0 \}.
\]

First, for any \(g(x), g(y) \in K \), where \(x_2 = y_2 = 0 \) and \(x_1 \geq 0, y_1 \geq 0 \) with \(x_1 \neq y_1 \), we have

\[
[f(x) - f(y)]\top [g(x) - g(y)] = (x_1^{17} - y_1^{17})(x_1^3 - y_1^3) > 0,
\]

which means that \(f \) is strictly monotone with respect to \(g \) on \(K \). Besides, for any \(x \in B \cap R \), we have

\[
\langle f(x), g(x) \rangle = x_1^{26} + x_2^{26} \neq 0.
\]

Thus, all the conditions of Theorem 4 hold.

Second, we show that the conditions in Theorem 2 are not satisfied. Obviously, from Proposition 3, \(f \) is not strongly monotone with respect to \(g \) on \(K \). Moreover, suppose there exist positive scalars \(\alpha > 0 \) and \(L > 0 \) and a vector \(z \in g^{-1}(K) \) such that for all \(x \in g^{-1}(K) \) with \(\|x\| \geq \alpha \),

\[
\|g(x) - g(z)\| \leq L\|x - z\|.
\]

Since \(x, z \in g^{-1}(K) \), we know that \(x_2 = z_2 = 0 \) and \(x_1 \geq 0, z_1 \geq 0 \). Thus,

\[
\|g(x) - g(z)\| = |x_1^3 - z_1^3| \leq L|x_1 - z_1|,
\]

which implies that

\[
|x_1^2 + x_1z_1 + z_1^2| \leq L.
\]

Let \(x_1 \rightarrow +\infty \), then the left-hand side of the above inequality tends to positive infinity, which is a contradiction! Hence, for WHGVI(\(f, g, K \)) in Example 3, the conditions in Theorem 2 are not satisfied.

Last, we show that WHGVI(\(f, g, K \)) does have a unique solution. For this problem, our purpose is to find \(x = (x_1, x_2) \top \), with \(x_1 \geq 0 \) and \(x_2 = 0 \), such that

\[
\begin{pmatrix}
\begin{pmatrix} x_1^{17/3} + x_1^{8/3}x_2^{5/3} + 2 \\ x_2^{17/3} + x_2^{4/3}x_2 + 1 \end{pmatrix} \\
\begin{pmatrix} y_1 - x_1^3 - \frac{1}{1 + x_2^2} - 1 \\ y_2 - x_2^3 \end{pmatrix}
\end{pmatrix} \geq 0, \quad \forall y_1 \geq 2, y_2 = 0,
\]

that is,

\[
\begin{pmatrix} x_1^{17/3} + 2 \\ y_1 - x_1^3 - 2 \end{pmatrix} \geq 0, \quad \forall y_1 \geq 2.
\]

Obviously, \(x^* = (0, 0) \top \) is the unique solution of WHGVI(\(f, g, K \)) in Example 3.

Since the formulation of the problem we consider is on a general real Hilbert space, here, we construct an example on the space of matrices to show the validity of the result we obtained.
Consider WHGVI \((f, g, K)\) and \(f : C \rightarrow H\) and \(g : H \rightarrow H\) are defined as follows:

\[
f(X) = XAX\quad \text{and}\quad g(X) = BXBXBX + X,
\]

in which

\[
A = \begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix} \in R^{2 \times 2} \quad \text{and} \quad B = \begin{pmatrix}
b_1 & 0 \\
0 & 0
\end{pmatrix} \in R^{2 \times 2}
\]

with \(a_i > 0\) for all \(i \in [4]\) and \(b_1 > 0\).

From Example 4, it is easy to see that for any \(X \in R^{2 \times 2}\) which is denoted by

\[
X = \begin{pmatrix}
x_1 & x_2 \\
x_3 & x_4
\end{pmatrix},
\]

we have

\[
g(X) = \begin{pmatrix}
(b_1^3x_1^3 + x_1) & b_1^3x_1^2x_2 + x_2 \\
x_3 & x_4
\end{pmatrix}.
\]

Obviously, \(g(X)\) is a continuous injection on \(H\), \(g^\infty(X) = BXBXBX\) and

\[
g^{-1}(K) = \left\{ \begin{pmatrix} x_1 & 0 \\ 0 & 0 \end{pmatrix} \mid x_1 \geq 0 \right\}.
\]

Recall that for any \(M, N \in R^{n \times n}\), \((M, N) = \text{tr}(M^TN)\). Then, for any \(g(X), g(Y) \in K\), where \(x_i = y_i = 0\) for all \(i \in \{2, 3, 4\}\) and \(x_1 \geq 0, y_1 \geq 0\) with \(x_1 \neq y_1\), we have

\[
\langle f(X) - f(Y), g(X) - g(Y) \rangle = (x_1 - y_1)^2(a_1(x_1 + y_1))(b_1^3(x_1^2 + y_1^2) + x_1y_1) + 1) > 0.
\]

Thus, \(f\) is strictly monotone with respect to \(g\) on \(K\). In addition, for any \(X \in B \cap R\),

\[
\langle f^\infty(X), g^\infty(X) \rangle = a_1x_1^2(b_1^3x_1^3 + x_1) \neq 0.
\]

Hence, all the conditions in Theorem 4 are satisfied. However, from the analysis in Sect. 3, it is not difficult to see that \(f\) is not strongly monotone with respect to \(g\) on \(K\).

In the end, we show that this WHGVI \((f, g, K)\) has a unique solution. For this problem, we aim at finding \(X \in R^{2 \times 2}\) with \(x_1 \geq 0\) and all the other elements are 0, such that

\[
\langle f(X), Y - g(X) \rangle = a_1x_1^2(y_1 - b_1^3x_1^3 - x_1) \geq 0, \quad \forall y_1 \geq 0.
\]

Obviously, \(x_1^* = 0\) is the only solution of the above system. Therefore, we have \(X^* = 0\) is the unique solution to WHGVI \((f, g, K)\) in Example 4.

If the strict monotonicity assumption in Theorem 3 is replaced by a weaker one (i.e., the mapping \(f\) is monotone with respect to some fixed vector \(g(\theta) \in K\)), we can still get the existence of solutions to WHGVI \((f, g, K)\). Furthermore, combining with other conditions in Theorem 3, we can obtain the compactness of solution sets. This is given as follows.

Theorem 5 Given a nonempty closed convex subset \(K \subset H\), and two weakly homogeneous mappings \(f : C \rightarrow H\) and \(g : H \rightarrow H\) defined by (3) with degrees \(\delta_1 > 0\) and \(\delta_2 > 0\), respectively. Let \(g^{-1}(K) \subseteq C\), \(g^\infty(x) = 0\) if and only if \(x = 0\), and \(\Omega_r^\delta := \{x \in H \mid \|g(x)\| < r\}\) where \(r > \|\Pi_K(\hat{x})\|\) for any given \(\hat{x} \in H\). Suppose that \(\text{deg}(g(\cdot), \Omega_r^\delta, \Pi_K(\hat{x}))\) is defined and nonzero, and the following conditions hold:
(i) there exists some \(g(\theta) \in K \) such that \(\langle f(x) - f(\theta), g(x) - g(\theta) \rangle \geq 0 \) holds for any \(g(x) \in K \);
(ii) \(\langle f^\infty(x), g^\infty(x) \rangle \neq 0 \) for any \(x \in B \cap R \).

Then, WHGVI\((f, g, K)\) has a nonempty compact solution set SOL\((f, g, K)\).

Proof Following the steps in Theorem 3, we can easily get that SOL\((f, g, K)\) is nonempty. Now we show the boundedness of SOL\((f, g, K)\). Suppose on the contrary that SOL\((f, g, K)\) is unbounded, then, there exists an unbounded sequence \(\{x^k\} \subseteq SOL(f, g, K) \). Thus, we have

\[
\forall y \in K , \quad g(x^k) \in K \quad \text{and} \quad \langle f(x^k), y - g(x^k) \rangle \geq 0 , \quad \forall y \in K .
\]

For any \(u \in K^\infty \) and fixed \(g(x^0) \in K \), we have \(g(x^0) + \|x^k\| \delta_2 u \in K \). By dividing both sides of the above inequality by \(\|x^k\| \delta_1 + \delta_2 \) and taking \(y := g(x^0) + \|x^k\| \delta_2 u \), we obtain that

\[
\left\{ \frac{f(x^k)}{\|x^k\| \delta_1} , u + \frac{g(x^0) - g(x^k)}{\|x^k\| \delta_2} \right\} \geq 0 , \quad \forall u \in K^\infty .
\]

Subsequencing if necessary, we assume that \(x^k \rightarrow \bar{x} \) as \(k \rightarrow \infty \). Then, by letting \(k \rightarrow \infty \) in the above inequality, we obtain that

\[
\langle f^\infty(\bar{x}), u - g^\infty(\bar{x}) \rangle \geq 0 , \quad \forall u \in K^\infty . \quad (19)
\]

According to the definition of the recession cone, we know that

\[
g^\infty(\bar{x}) = \lim_{k \rightarrow \infty} \frac{g(x^k)}{\|x^k\| \delta_2} \in K^\infty . \quad (20)
\]

Since \(K^\infty \) is a cone, it is easy to obtain from (19) and (20) that \(\langle f^\infty(\bar{x}), g^\infty(\bar{x}) \rangle = 0 \), which is a contradiction to condition (ii)! Therefore, SOL\((f, g, K)\) is bounded. In addition, the closedness of SOL\((f, g, K)\) can be obtained by the continuity of the involved mappings.

Thus, WHGVI\((f, g, K)\) has a nonempty compact solution set. \(\Box \)

Remark 6 Just as Theorem 4 is a weaker version of Theorem 3 which is obtained by replacing the degree condition, we can also get a weaker version of Theorem 5 by replacing the degree condition with the same restriction on the mapping \(g \) in Theorem 4. Thus, we omit the weaker version here.

By weakening the strict monotonicity assumption in Theorem 3, we obtained a result on the nonemptiness and compactness of the solution set of WHGVI\((f, g, K)\) in Theorem 5. However, the conditions of Theorem 5 cannot guarantee the uniqueness of solutions to WHGVI\((f, g, K)\), which can be seen from the following example.

Example 5 Let \(H = C = R^2 \) and \(K = \{ (s, 0)^T \mid s \geq -1 \} \). Here, we consider WHGVI\((f, g, K)\), where \(f : C \rightarrow H \) and \(g : H \rightarrow H \) are defined as follows:

\[
f(x) = \begin{pmatrix} x_1^3 - x_1^2 \\ x_2^3 + x_2 \end{pmatrix} \quad \text{and} \quad g(x) = \begin{pmatrix} x_1^3 \\ x_2^3 \end{pmatrix} .
\]

In Example 5, take \(y := (1, 0)^T \) and \(z := (0, 0)^T \), then \(\langle f(y) - f(z), g(y) - g(z) \rangle = 0 \), which indicates that \(f \) is not strictly monotone with respect to \(g \) on \(K \). However, it is easy to see that

- the degree condition of \(g \) in Theorem 5 holds;
More recently, [21] investigated the nonemptiness and compactness of the solution set of WHVI. Thus, all the conditions in Theorem 5 are satisfied. By Theorem 5, we obtain that the solution to WHGVI (i.e., weakly homogeneous variational inequalities), and PVIs (i.e., polynomial variational inequalities). Let I denote WHVIs (i.e., polynomial variational inequalities), and GPVIs (i.e., generalized polynomial variational inequalities).

5 Subcases of WHGVIs

The WHGVI is a wide class of problems. When we restrict the set K and/or mappings g and f to some special cases, we can obtain the corresponding uniquely solvable results of these problems. Actually, the results we obtain in Sect. 4 can all reduce to the following subcases and yield some nice results. In the following, we will not list all of these results, and only compare some of these results with the existing results.

5.1 Reducing to special VIs

In this subsection, we consider several VIs which are subclasses of WHGVIs, including WHVIs (i.e., weakly homogeneous variational inequalities), GPVIs (i.e., generalized polynomial variational inequalities), and PVIs (i.e., polynomial variational inequalities).

I. WHVIs. Let $g(x) = x$, then, WHGVI(f, g, K) reduces to the WHVI, denoted by WHVI(f, K), which was studied by Gowda and Sossa [7] and Ma et al. [21]. When reducing from WHGVIs to WHVIs, we know that a relevant result about the nonemptiness and compactness of the solution sets is Theorem 5.1 in [7], which requires that K^{∞} is pointed. By reducing Theorem 5, we can easily obtain the following result:

Corollary 3 Let K be a nonempty closed convex set in C. Suppose that f is a weakly homogeneous mapping defined by (3). If there exists some $\theta \in K$ such that $\langle f(x) - f(\theta), x - \theta \rangle \geq 0$ holds for any $x \in K$ and $(f^{\infty}(x), x) \neq 0$ for any $x \in B \cap K^{\infty}$, then, WHVI(f, K) has a nonempty compact solution set.

Though many results on the nonemptiness and compactness of solution sets of WHVIs have been obtained by [7] and [21], we claim that Corollary 3 is given by another train of thought. Next, we only compare Corollary 3 with the main result in [21].

From (3) we know that a weakly homogeneous mapping f can be expressed as the following:

$$f(x) = f^{\infty}(x) + \bar{f}(x) + p = f^{\infty}(x) + \bar{f}(x) - \bar{f}(0) + p + \bar{f}(0).$$

Denote $\bar{f}(x) := f^{\infty}(x) + \bar{f}(x) - \bar{f}(0)$ and $\bar{p} := p + \bar{f}(0)$, then $\bar{f}^{\infty} = f^{\infty}$ and $\bar{f}(0) = 0$. More recently, [21] investigated the nonemptiness and compactness of the solution set of WHVI(\bar{f}, K, \bar{p}). Although the expressions of WHVI(\bar{f}, K, \bar{p}) in [21] and WHVI(f, K) in this paper are different, there is a one-to-one correspondence between their solutions. The following is the main result in [21].
Theorem 6 ([21]) Let K be a nonempty closed convex set in C, $\tilde{f} : C \to H$ be a weakly homogeneous mapping with degree γ, and $\tilde{p} \in H$. Suppose that the following conditions hold:

(i) \tilde{f} is η-copositive on K, that is, there exists a vector $\eta \in H$ such that $\langle \tilde{f}(x) - \eta, x \rangle \geq 0$ holds for all $x \in K$; and

(ii) there exists a vector $\hat{x} \in K$ such that $\langle f(x), \hat{x} \rangle \leq 0$ for all $x \in K$; and

(iii) $\tilde{p} + \eta \in \text{int}(S^*)$, where $S := \text{SOL}(\tilde{f}^\infty, K^\infty, 0)$ with $\text{SOL}(\tilde{f}^\infty, K^\infty, 0)$ denoting the solution set of the WHVI($\tilde{f}^\infty, K^\infty, 0$).

Then, WHVI(\tilde{f}, K, \tilde{p}) has a nonempty compact solution set.

In the following, we use two examples to illustrate that the conditions in Corollary 3 are different from the conditions in Theorem 6.

Example 6 Let $H = C = R^2$ and $K = \{(s, t)^T | s \geq -1, t \geq 0\}$. We consider WHVI($f, K$), where $f(x) = (x_1^3 - x_1^2, x_1^3 + x_2^2)^T$ is a weakly homogeneous mapping with degree 3 from R^2 to R^2.

We show that, for Example 6, all the conditions in Corollary 3 are satisfied, but at least one of the conditions in Theorem 6 is not satisfied.

From Example 6, it is easy to see that $\theta = (1, 0)^T \in K$ and for any $x \in K$,

$$\langle f(x) - f(\theta), x - \theta \rangle = x_1^2(x_1 - 1)^2 + x_2^2(x_2^2 + 1) \geq 0.$$

Besides, it is also obvious that $f(x) = x_1^3 + x_2^4 \neq 0$ for any $x \neq 0$. Thus, f satisfies all the conditions in Corollary 3. However, $f = \tilde{f}$ is not η-copositive on K. Suppose on the contrary that there exists a vector $\eta = (\eta_1, \eta_2)$ such that $\langle f(x) - \eta, x \rangle \geq 0$ holds for all $x \in K$. Then,

$$\begin{pmatrix} x_1^3 - x_1^2 - \eta_1 \\ x_2^3 + x_2^2 - \eta_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \geq 0, \quad \forall x_1 \geq -1, x_2 \geq 0.$$

Let $x_2 = 0$, then, we have $(x_1^3 - x_1^2 - \eta_1)x_1 \geq 0$. Now we consider three cases:

- if $\eta_1 \geq 0$, for $x_1 \in (0, 1)$ we have $x_1^3 - x_1^2 - \eta_1 < 0$, thus $(x_1^3 - x_1^2 - \eta_1)x_1 < 0$;
- if $\eta_1 \in (-1, 0)$, let $x_1 = \eta_1/10 < 0$, then we have
 $$x_1^3 - x_1^2 - \eta_1 = \frac{\eta_1^3}{1000} - \frac{\eta_1^2}{100} - \eta_1 = \frac{\eta_1}{1000}(\eta_1^2 - 10\eta_1 - 1000) > 0,$$
 thus $(x_1^3 - x_1^2 - q_1)x_1 < 0$;
- if $\eta_1 \leq -1$, for $x_1 \in (-1/2, 0)$ we have $x_1^3 - x_1^2 - \eta_1 > 0$, thus $(x_1^3 - x_1^2 - \eta_1)x_1 < 0$.

Therefore, f is not η-copositive on K. This indicates that at least one of the conditions in Theorem 6 is not satisfied.

Example 7 Let $H = R^2$, $C = R^2_+$ and $K = \{(s', t')^T | s' \geq 0, t' \in [0, 2\pi]\}$. We consider WHVI($f, K$), where $f(x) = (x_1 + \sin x_1 + 1, \sin x_2 + 2)^T$ is a weakly homogeneous mapping with degree 1 from R^2_+ to R^2.

We show that, for Example 7, all the conditions in Theorem 6 are satisfied, but at least one of the conditions in Corollary 3 is not satisfied.

From Example 7 it is easy to see that $\tilde{f}(x) = (x_1 + \sin x_1, \sin x_2)^T$ and $\tilde{p} = p = (1, 2)^T$. Let $\eta = (-1, -1)^T$, then for any $x \in K$ we have

$$\langle \tilde{f}(x) - \eta, x \rangle = x_1^2 + x_1(1 + \sin x_1) + x_2(1 + \sin x_2) \geq 0.$$

 Springer
Thus, \tilde{f} is η-copositive on K. Let $\hat{x} = (0, 0)^\top \in K$, then, $\langle f(x), \hat{x} \rangle \leq 0$ holds for any $x \in K$. Besides, since $\tilde{f}^{\infty}(x) = (x_1, 0)^\top$, we have $S := \text{SOL}(\tilde{f}^{\infty}, K^{\infty}, 0) = \{(0, 0)^\top\}$ and $S^* = R^2$. Furthermore, we have $\hat{p} + \eta = (1, 2)^\top + (-1, -1)^\top = (0, 1)^\top \in \text{int}(S^*)$. Thus, the three conditions in Theorem 6 hold. However, we cannot find a vector $\theta \in K$ such that $\langle f(x) - f(\theta), x - \theta \rangle \geq 0$ holds for any $x \in K$. Suppose on the contrary there exists such a vector $\theta = (\theta_1, \theta_2)^\top \in K$. Here, we consider two cases:

- Suppose that $\theta_1 \geq 0$ and $\theta_2 \in [0, \pi]$. Let $x_1 = \theta_1$, then, there exists $x_2 > \theta_2$ which satisfies $\sin x_2 < \sin \theta_2$, and hence,
 $$\langle f(x) - f(\theta), x - \theta \rangle = (\sin x_2 - \sin \theta_2)(x_2 - \theta_2) < 0;$$

- Suppose that $\theta_1 \geq 0$ and $\theta_2 \in (\pi, 2\pi]$. Let $x_1 = \theta_1$, then, there exists $x_2 < \theta_2$ which satisfies $\sin x_2 > \sin \theta_2$, and hence,
 $$\langle f(x) - f(\theta), x - \theta \rangle = (\sin x_2 - \sin \theta_2)(x_2 - \theta_2) < 0.$$

Thus, there does not exist a vector $\theta \in K$ such that $\langle f(x) - f(\theta), x - \theta \rangle \geq 0$ holds for any $x \in K$. Suppose on the contrary there exists such a vector $\theta = (\theta_1, \theta_2)^\top \in K$. Here, we consider two cases:

Remark 7 It should be noted that, in both [7] and [21], the authors do not investigate the uniqueness of solutions to WHVI(f, K). However, the uniqueness result in Sect. 4 can reduce to WHVIs. Thus, our uniqueness results in effect enrich the diversity of the results in WHVIs.

II. GPVIs. Let $H = R^n$, and f and g be two polynomials defined by (14) from R^n to R^n, then, the WHGVI reduces to the GPVI studied by Wang et al. [27], which is denoted by GPVI(f, g, K).

Reducing from WHGVIs to GPVIs, by Theorem 3, we immediately obtain the following result.

Corollary 4 Let K be a nonempty closed convex set in R^n, f, $g : R^n \to R^n$ be two polynomials defined by (14), $g^{\infty}(x) = 0$ if and only if $x = 0$, and $\Omega^x_r := \{x \in H \mid \|g(x)\| < r\}$ where $r > \|\Pi_K(\hat{x})\|$ for any given $\hat{x} \in H$. Suppose that $\text{deg}(g(\cdot), \Omega^x_r, \Pi_K(\hat{x}))$ is defined and nonzero, and the following conditions hold:

(i) f is strictly monotone with respect to g on K; and
(ii) $\langle f^{\infty}(x), g^{\infty}(x) \rangle \neq 0$ for any $x \in B \bigcap R$.

Then, GPVI(f, g, K) has a unique solution.

Corollary 4 is a corrected version of Theorem 2 in [27], since a restricted condition for the mapping g (such as the degree condition in Theorem 3) was unnoticed in Theorem 2 in [27].

III. PVIs. Let $H = R^n$, $g(x) = x$ and f be a polynomial defined by (14), then, WHGVI(f, g, K) reduces to the PVI studied by Hieu [10]. We denote it by PVI(f, K). From Theorem 3, we can obtain a result for PVIs.

Corollary 5 Given a nonempty closed convex subset K of R^n and a polynomial f defined by (14). Suppose that f is strictly monotone on K and $\langle f^{\infty}(x), x \rangle \neq 0$ for any $x \in B \bigcap K^{\infty}$. Then, PVI($f$, K) has a unique solution.
Remark 8 In [10], the author gives a result on the existence and uniqueness of solutions to PVI\((f, K)\) under the condition that \(0 \in K\) and some additional conditions. However, Corollary 5 does not require such a condition. Thus, when reducing from WHGVIs to PVIs, this corollary enriches the theoretical results of the existence and uniqueness of solutions to PVIs.

When \(f(x) = Ax^{m-1} + q\), where \(A \in R^{[m,n]}\) and \(q \in R^n\), PVI\((f, K)\) further becomes the tensor variational inequality, denoted by TVI\((A, K, q)\), investigated in [28]. For TVI\((A, K, q)\) we have the following result from Theorem 3.

Corollary 6 Given a nonempty closed convex subset \(K\) of \(R^n\) and \(A \in R^{[m,n]}\). Suppose that \(Ax^{m-1}\) is strictly monotone on \(K\), and \(\langle Ax^{m-1}, x \rangle \neq 0\) for any \(x \in B \cap K^\infty\). Then, TVI\((A, K, q)\) has a unique solution for any given \(q \in R^n\).

If we further require that \(0 \in K\), then, it is easy to see that under the assumption that \(Ax^{m-1}\) is strictly monotone on \(K\), \(\langle Ax^{m-1}, x \rangle \neq 0\) for any \(x \in B \cap K^\infty\) is of course true. It is worth noting that this result is exactly Theorem 4.3 in [28].

5.2 Reducing to CPs

It is well-known that the CP is a subcase of the VI. Thus, in this subsection, we consider some cases of CPs which are subclasses of WHGVIs, including WHCPs (i.e., weakly homogeneous complementarity problems), GPCPs (i.e., generalized polynomial complementarity problems), and PCPs (i.e., polynomial complementarity problems).

I. WHCPs. Let \(C\) be a cone in \(R^n\) and \(g(x) = x\), then, the WHGVI reduces to the WHCP, denoted by WHCP\((f, C)\). It is well-known that there is a uniqueness result in [15] for the conic complementarity problem. In the case of WHCPs, such a result states the uniqueness of solutions to WHCP\((f, C)\) with the involved mapping \(f : C \rightarrow H\) being strongly C-copositive on \(C\), i.e., there exists a scalar \(k > 0\) such that, for all \(x \in C\), we have \(\langle x, f(x) - f(0) \rangle \geq k\|x\|^2\). According to the similar analysis in Propositions 2 and 3, obviously, many weakly homogeneous mappings do not satisfy the strongly C-copositive property. Therefore, the uniqueness result in [15] cannot be directly applied to WHCPs in many cases. Thus, similarly, by reducing the relevant result from WHGVIs to WHCPs, we can obtain the following uniqueness conclusion.

Corollary 7 Given a weakly homogeneous mapping \(f : C \rightarrow H\) defined by (3). Suppose that \(f\) is strictly monotone on \(C\), and \(\langle f^\infty(x), x \rangle \neq 0\) for any \(x \in B \cap C\), then, WHCP\((f, K)\) has a unique solution.

Besides, in [21], the authors also studied the properties of solution sets of WHCPs and obtained a nonemptiness and compactness result in [21, Corollary 6.1] by reducing [21, Theorem 3.1] (see Theorem 6 in this paper) from WHVIs to WHCPs. To obtain the nonemptiness and compactness of solution sets to WHCPs, we can also reduce the relevant result in Corollary 3 from WHVIs to WHCPs and get a nonemptiness and compactness result for WHCPs. Thus, we omit this result here. In addition, similar to Examples 6 and 7, it is easy to construct examples to show that the result we obtain here is a different result from the one given by [21].

II. GPCPs. Let \(H = R^n\), \(C\) be a cone in \(R^n\), and \(f, g\) be two polynomials defined by (14), then, the WHGVI reduces to the GPCP studied by Ling et al [18]. We denote it by GPCP\((f, g, C)\). From Theorem 3 we can directly obtain the uniqueness result:
Corollary 8 Let C be a nonempty closed convex cone in \mathbb{R}^n, $f, g : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be two polynomials defined by (14), $g^\infty(x) = 0$ if and only if $x = 0$, and $\Omega_+^g := \{x \in H \mid \|g(x)\| < r\}$ where $r > \|\Pi_C(\hat{x})\|$ for any given $\hat{x} \in H$. Suppose that $\deg(g(\cdot), \Omega_+^g, \Pi_C(\hat{x}))$ is defined and nonzero, and the following conditions hold:

(i) f is strictly monotone with respect to g on C; and
(ii) $\langle f^\infty(x), g^\infty(x) \rangle \neq 0$ for any $x \in B \bigcap R$.

Then, $\text{GPCP}(f, g, C)$ has a unique solution.

More recently, in [30], the authors also considered the GPCP and discussed the uniqueness of solutions to such a class of problems. One of the main result about the uniqueness of solutions given by [30, Theorem 4.8] needs to find a vector $d \in \text{int}(C) \bigcap \text{int}(C^*)$. The following example shows that all the conditions of Corollary 8 are true, however, we may not find such a vector d.

Example 8 Let $H = \mathbb{R}^n$ and $C = \{(t, 2t)^\top \mid t \in \mathbb{R}\}$ be a cone. Here, we consider $\text{GPCP}(f, g, C)$, where $f, g : \mathbb{R}^n \rightarrow \mathbb{R}^n$ are defined as follows: $f(x) = (x_1^2 + 1, x_2^2 + 1)^\top$ and $g(x) = (x_1 + 1, x_2)^\top$.

From Example 8 it is easy to see that:

- g is a bijective mapping on \mathbb{R}^2, thus, the degree condition about g in Corollary 8 holds;
- $(f^\infty, g^\infty) = x_1^4 + x_2^4 \neq 0$ whenever $x \neq 0$;
- for any $x = (x_1, 2x_1)^\top \in C$ and $y = (y_1, 2y_1)^\top \in C$ with $x \neq y$, we have

$$\langle f(x) - f(y), g(x) - g(y) \rangle = 17(x_1^3 - y_1^3)(x_1 - y_1) > 0.$$

Thus, all the conditions in Corollary 8 hold. However, $C^* = \{(0, 0)^\top\}$ leads to the fact that $\text{int}(C^*)$ is empty. Then, at least one condition of Theorem 4.8 in [30] is not satisfied.

III. PCPs. Let $H = \mathbb{R}^n$, $C = \mathbb{R}^n_+$, $g(x) = x$, and f be a polynomial defined by (14), then, WHGVIs reduce to PCPs studied by [6]. We denote it by $\text{PCP}(f)$. In [6], the author obtained a series of good results about the nonemptiness and compactness of solution sets to PCPs. A uniqueness result was also obtained in [6, Theorem 6.1]. Besides, [17] investigated the nonemptiness and compactness of the solution set, the uniqueness of solutions, and the error bounds of PCPs with the help of the structured tensors, where they gave a uniqueness result under the assumption that the involved mapping f is an m-uniform P-function (i.e., there exists a constant $c > 0$ such that $\max_{1 \leq i \leq n}[x_i - y_i][f_i(x) - f_i(y)] \geq c||x - y||^m$ holds for any $x, y \in \mathbb{R}^n_+$).

Here, let f be defined by (14), by reducing from the WHCP to the PCP, we can obtain the uniqueness of the solutions to PCPs in another way, by using the strictly monotonicity and other properties of f. Actually, strictly monotonicity guarantees that the VI has no more than one solution. When reducing to the CP, we can use a weaker condition, which is P-property (i.e., $\max_{1 \leq i \leq n}[g_i(x) - g_i(y)][f_i(x) - f_i(y)] > 0$ holds for any $g(x), g(y) \in \mathbb{R}^n_+$ and $x \neq y$), to ensure the CP has no more than one solution.

If $f(x) = Ax^{m-1} + q$ for all $x \in \mathbb{R}^n$, where $A \in \mathbb{R}^{m,n}$ and $q \in \mathbb{R}^n$, then, $\text{PCP}(f)$ reduces to the TCP. As the TVI is an important subclass of the VI, the TCP is a vital subcase of the PCP, which has attracted wide attention in recent years, and many papers consider the uniqueness of solutions to TCPs (for example, [1,19]). When reducing Theorem 5 from WHGVIs to TCPs, we can obtain the nonemptiness and compactness of solution sets to TCPs. Then, by replacing the strictly monotonicity with P-property, we can further obtain the uniqueness of solutions to TCPs.
6 Conclusion

In this paper, with the help of the degree theory and the properties of weakly homogeneous mappings, we obtained several results on the unique solvability of WHGVIs, which were derived by making use of the exceptional family of elements for a pair of mappings. In our main results, one of the main conditions is the strict monotonicity, which is weaker than the classical condition of strong monotonicity. Since the WHGVI provides a unified model for several classes of special VIs and CPs studied in recent years, this paper can be regarded as a unified treatment of the unique solvability of these subclasses in the sense that our conclusions can either reduce to known conclusions or give some new conclusions for these problems.

Up to now, the research on VIs and CPs with weakly homogeneous mappings mainly focuses on the nonemptiness and compactness of solution sets, and the unique solvability. One of the future issues is to study the theory of error bounds and the stability of solutions. Another future research topic is how to design efficient algorithms to solve these problems. In particular, finding suitable practical applications of the WHGVI will be a significant and meaningful work.

Acknowledgements This work is partially supported by the National Natural Science Foundation of China (Grant No. 11871051).

References

1. Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)
2. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992)
3. Facchinei, F., Pang, J.S.: Finite Dimensional Variational Inequalities and Complementarity Problems, vol. I. Spinger, New York (2003)
4. Facchinei, F., Pang, J.S.: Finite Dimensional Variational Inequalities and Complementarity Problems, vol. II. Spinger, New York (2003)
5. Gowda, M.S.: Applications of degree theory to linear complementarity problems. Math. Oper. Res. 18(4), 868–879 (1993)
6. Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13(2), 227–241 (2017)
7. Gowda, M.S., Sossa, D.: Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones. Math. Program. 177, 149–171 (2019)
8. Han, J.Y., Huang, Z.H., Fang, S.C.: Solvability of variational inequality problems. J. Optim. Theory Appl. 122(3), 501–520 (2004)
9. Han, J.Y., Xiu, N.H., Qi, H.D.: Nonlinear Complementarity Theory and Algorithms. Shanghai Science and Technology Press, Shanghai (2006). (in Chinese)
10. Hieu, V.T.: Solution maps of polynomial variational inequalities. J. Global Optim. 77, 807–824 (2020)
11. Huang, Z.H., Qi, L.Q.: Tensor complementarity problems part I: basic theory. J. Optim. Theory Appl. 183(1), 1–23 (2019)
12. Huang, Z.H., Qi, L.Q.: Tensor complementarity problems part III: applications. J. Optim. Theory Appl. 183(3), 771–791 (2019)
13. Issac, G., Bulavski, V., Kalashnikov, V.: Exceptional families, topological degree and complementarity problems. J. Global Optim. 10, 207–225 (1997)
14. Kanzow, C., Fukushima, M.: Equivalence of the generalized complementarity problem to differentiable unconstrained minimization. J. Optim. Theory Appl. 90, 581–603 (1996)
15. Karamardian, S.: Generalized complementarity problem. J. Optim. Theory Appl. 8(3), 161–168 (1971)
16. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)
17. Ling, L.Y., He, H.J., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67(2), 341–358 (2018)
18. Ling, L.Y., Ling, C., He, H.J.: Properties of the solution set of generalized polynomial complementarity problems. Pac. J. Optim. 16(1), 155–174 (2020)
19. Liu, D.D., Li, W., Vong, S.W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear A. 66(9), 1726–1749 (2018)
20. Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)
21. Ma, X.X., Zheng, M.M., Huang, Z.H.: A note on the nonemptiness and compactness of solution sets of weakly homogeneous variational inequalities. SIAM J. Optim. 30(1), 132–148 (2020)
22. Megiddo, N., Kojima, M.: On the existence and uniqueness of solutions in nonlinear complementarity problems. Math. Program. 12, 110–130 (1977)
23. Moré, J.J.: Classes of functions and feasibility conditions in nonlinear complementarity problems. Math. Program. 6, 327–338 (1974)
24. Noor, M.A.: Quasi variational inequalities. Appl. Math. Lett. 1(4), 367–370 (1988)
25. Ortega, J.M., Rheinholdt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
26. Pang, J.S., Yao, J.C.: On a generalization of a normal map and equation. SIAM J. Control Optim. 33, 168–184 (1995)
27. Wang, J., Huang, Z.H., Xu, Y.: Existence and uniqueness of solutions of the generalized polynomial variational inequality. Optim. Lett. 14, 1571–1582 (2020)
28. Wang, Y., Huang, Z.H., Qi, L.Q.: Global uniqueness and solvability of tensor variational inequalities. J. Optim. Theory Appl. 177(1), 137–152 (2018)
29. Zhao, Y.B., Isac, G.: Quasi-P∗-maps, P(r, α, β)-maps, exceptional family of elements and complementarity problem. J. Optim. Theory Appl. 105, 213–231 (2000)
30. Zheng, M.M., Huang, Z.H., Ma, X.X.: Nonemptiness and compactness of solution sets to generalized polynomial complementarity problems. J. Optim. Theory Appl. 185, 80–98 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.