Genetic polymorphism and natural selection of circumsporozoite protein in Myanmar Plasmodium vivax

Tuấn Cường Võ1,2, Hoàng Giang Lê1,2, Jung-Mi Kang1,2, Mya Moe3, Haung Naw1,2, Moe Kyaw Myint3, Jinyoung Lee4, Woon-Mok Sohn1, Tong-Soo Kim4 and Byoung-Kuk Na1,2*

Abstract

Background: Circumsporozoite surface protein (CSP) of malaria parasites has been recognized as one of the leading vaccine candidates. Clinical trials of vaccines for vivax malaria incorporating Plasmodium vivax CSP (PvCSP) have demonstrated their effectiveness in preventing malaria, at least in part. However, genetic diversity of pvcspp in the natural population remains a major concern.

Methods: A total of 171 blood samples collected from patients infected with Plasmodium vivax in Myanmar were analysed in this study. The pvcspp was amplified by polymerase chain reaction, followed by cloning and sequencing. Polymorphic characteristics and natural selection of pvcspp population in Myanmar were analysed using DNASTAR, MEGA6 and DnaSP programs. The polymorphic pattern and natural selection of publicly accessible global pvcspp sequences were also comparatively analysed.

Results: Myanmar pvcspp sequences were divided into two subtypes VK210 and VK247 comprising 143 and 28 sequences, respectively. The VK210 subtypes showed higher levels of genetic diversity and polymorphism than the VK247 subtypes. The N-terminal non-repeat region of pvcspp displayed limited genetic variations in the global population. Different patterns of octapeptide insertion (ANKKAEDA in VK210 and ANKKAGDA in VK247) and tetrapeptide repeat motif (GGNA) were identified in the C-terminal region of global pvcspp population. Meanwhile, the central repeat region (CRR) of Myanmar and global pvcspp, both in VK210 and VK247 variants, was highly polymorphic. The high level of genetic diversity in the CRR has been attributed to the different numbers, types and combinations of peptide repeat motifs (PRMs). Interestingly, 27 and 5 novel PRMs were found in Myanmar VK210 and VK247 variants, respectively.

Conclusion: Comparative analysis of the global pvcspp population suggests a complex genetic profile of pvcspp in the global population. These results widen understanding of the genetic make-up of pvcspp in the global Plasmodium vivax population and provide valuable information for the development of a vaccine based on PvCSP.

Keywords: Plasmodium vivax, Circumsporozoite protein, Genetic polymorphism, Natural selection, Myanmar

Background

Malaria caused by Plasmodium species has threatened human health since ancient time [1]. The mortality and morbidity of malaria has greatly decreased in recent years; however, an estimated 219 million cases and 435,000 deaths due to malaria were reported globally in 2017 [2]. Among five human malaria parasites,
Plasmodium vivax is the most prevalent species outside of Africa. More than 7.5 million cases of malaria were caused by the parasite, which accounted for 56% of total malaria cases in South East Asia [2]. Plasmodium vivax has been linked to benign malarial infection due to its mild clinical manifestations compared with Plasmodium falciparum; however, concerns that P. vivax also causes serious clinical illnesses and even death have increased [3, 4]. The emergence and spread of drug-resistant strains also increases the burden of the parasite [5, 6]. Furthermore, the liver stages in the life cycle of P. vivax, known as hypnozoites, can remain dormant and survive for weeks to months in liver cells, and be reactivated [7]. This unique biological characteristic is a challenge in the control and elimination of this parasite. Therefore, the development of an effective vaccine is imperative for effective control and elimination of the parasite.

Circumsporozoite protein (CSP) is the most abundantly expressed protein on the surface of sporozoites. CSP plays multiple and crucial roles in the development, migration and invasion of sporozoites into hepatocytes [8]. Thus, this protein has been studied extensively as one of the most promising vaccine candidates. The gene encoding CSP consists of three distinct regions: a conserved non-repeat N-terminal region, a highly polymorphic central repeat region (CRR), and a conserved non-repeat C-terminal region (Additional file 1: Figure S1). The CRR of P. vivax CSP (PvCSP) consists of peptide repeat motifs (PRMs). Based on the composition of one of the three major PRMs in the CRR, pvcsP is classified into three allelic variants: VK210, VK247 and P. vivax-like. The two most abundant alleles include VK210 and VK247, which carry nonapeptide repeat motifs GDRA(D/A)GQPA and ANGAG(N/D)QPG, respectively [9]. Meanwhile, the P. vivax-like variant contains APGANQ(E/G)GAA motifs in the CRR [10].

Although no licensed vaccine against vivax malaria is currently available, a few notable advances in the development of a potential vaccine have been reported. A vivax malaria subunit vaccine named VMP001 has been clinically tested. This vaccine uses a chimeric recombinant protein containing repeat sequences of two major alleles of pvcsP, including VK210 and VK247 [11]. The phase 1 trial with VMP001 showed a significant delay in parasitaemia, even though vaccination did not induce fully sterilizing protective immunity [12]. However, the geographical variation in the genetic make-up of pvcsP population may influence the effectiveness of PvCSP-based vaccine, which may be a barrier for the development of a universal vaccine. Therefore, a comprehensive analysis of genetic diversity and structure of the global pvcsP population is necessary. In this study, genetic polymorphism and natural selection of Myanmar pvcsP has been examined. A comparative analysis of global pvcsP was also conducted to obtain a deeper insight into the genetic nature of pvcsP in the global P. vivax population.

Methods

Blood samples

One hundred seventy-one blood samples from P. vivax-infected Myanmar patients were used in this study. The blood samples were collected from the patients in field surveys in towns and villages in Naung Cho, Pyin Oo Lwin, and Tha Beik Kyin in Upper Myanmar during 2013 to 2015 (Fig. 1). The age range of patients was 13–62 years, with median age of 28.4 years. Initial screening for malaria infection was done by microscopic examination of thin and thick blood smears. Finger-prick blood samples were taken from the P. vivax-infected patients before drug treatment and spotted on Whatman 3 MM filter paper (GE Healthcare, Maidstone, UK) for confirmation by species-specific polymerase chain reaction (PCR) targeting 18S ribosomal RNA (rRNA) gene [13, 14]. Informed consent was obtained from all of the patients before blood collection. The study protocol was reviewed and approved by either the Ethics committee of the Ministry of Health, Myanmar (97/Ethics 2015) and the Biomedical Research Ethics Review Board of Inha University School of Medicine, Republic of Korea (INHA 15-013).

Genomic DNA extraction and amplification of pvcsP

Genomic DNA was extracted from dried blood spots using QIAamp DNA Blood Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. Amplification of pvcsP gene was performed with primers by using nested PCR. The primers for first round PCR were 5′-ATGTAATCTGTCGAGCCAAGGCCATAAA-3′ and 5′-AATTTGATAATGTAGGACTAACAATATG-3′. The thermal cycling parameters for primary PCR were as follows: one cycle of initial denaturation at 95 °C for 5 min, 25 cycles of 94 °C for 1 min, annealing at 58 °C for 2 min and extension at 72 °C for 2 min, followed by a final extension at 72 °C for 5 min. The nested PCR was performed with primers 5′-GCAGAACCAAAAT AATCCAGTGAATTAAG-3′ and 5′-GAGGCGGTTAGCT CTAACCTTATCTTAGGTAT-3′, and similar amplification condition except the annealing temperature was 68 °C. Ex Taq DNA polymerase (Takara, Otsu, Japan) with proof-reading activity was used in all PCR steps to minimize the nucleotide mismatching during the amplification. Each PCR product was analysed by electrophoresis on 2% agarose gel. The resulting PCR product was extracted from the gel and was cloned into T&A cloning vector (Real Biotech Corporation, Banqiao City, Taiwan). Each ligation mixture was transformed into Escherichia
coli DH5α competent cells. To identify positive clones with appropriate insert, colony PCR with nested PCR primers was performed. The nucleotide sequences of the cloned pvcsp were analysed by the Sanger method with M13 forward and reverse primers. Plasmids from at least two independent clones from each transformation mixture were analysed to confirm the sequence accuracy. These nucleotide sequences analysed in this study were deposited at GenBank under the accession numbers MN821829–MN821999.

Analyses of genetic diversity and natural selection in Myanmar pvcsp
The nucleotide and deduced amino acid sequences of Myanmar pvcsp were analysed using Editseq and Seqman in the DNASTAR package (DNASTAR, Madison, WI, USA). Two major variants of pvcsp sequences, Salvador I (Sal I; GU339059) and Papua New Guinea (PNG; M69059), were used as reference sequences to analyse Myanmar pvcsp sequences. The values of number of segregating sites (S), haplotypes (H), haplotype diversity (Hd), nucleotide diversity (π), and average number of pair-wise nucleotide differences within a population (K) were calculated with DnaSP ver. 5.10.00 [15]. The rate of synonymous (dS) and nonsynonymous (dN) substitutions were calculated and compared using the Z-test (P < 0.05) with MEGA6 program [16] using Nei and Gojobori’s method [17] with the Juke and Cantor (JC) correction of 1000 bootstrap replications. Based on the acquired values, the dN–dS value was calculated. Positive value for dN–dS imply to positive natural selection whereas negative value correspond to negative or purifying natural selection [18]. Tajima’s D test, Fu and Li’s D and F statistics analysis was performed using DnaSP ver. 5.10.00 [15] to evaluate the neutral theory of natural selection. An excess of high-frequency variation is consistent with balancing selection and is indicated by a positive Tajima’s D and/or Fu and Li’s D [19, 20]. A negative value of Tajima’s D and/or Fu and Li’s D indicates an excess of rare alleles, which may result from a recent selective sweep or purifying selection.
Genetic diversity and natural of pvcs p among the global P. vivax population

The genetic diversity of pvcs p among the global P. vivax population was also analysed. The pvcs p sequences deposited in public database were used in this study; Cambodia (n = 41), India (n = 79), Iran (n = 50), South Korea (n = 39), Brazil (n = 41), Mexico (n = 19), Colombia (n = 25), Sudan (n = 30), and Vanuatu (n = 21) (Additional file 2: Table S1). Genetic polymorphism and test of neutrality were examined for each pvcs p population with DnaSP ver 5.10.00 [15] and MEGA6 [16] as described above. To analyse the polymorphic patterns of the N- and C-terminal non-repeat regions in global pvcs p, a logo plot was constructed for each population using the WebLogo program (https://weblogo.berkeley.edu/logo.cgi).

Results

Amplification and sequence analysis of Myanmar pvcs p

A total of 171 Myanmar pvcs p genes were successfully amplified form the genomic DNA samples used in this study. The size of the amplified pvcs p genes ranged from 0.5 to 1.3 kb. Sequence analysis of the amplified pvcs p genes revealed only two variants of pvcs p, VK210 and VK247, in Myanmar pvcs p, but not the P. vivax-like variant. The VK210 variants were prevalent (n = 143, 83.6%) and the frequency of VK247 variants was 16.4% (n = 28). No mixed infection with the two different variants was detected.

Genetic diversity of the N-terminal non-repeat region of Myanmar pvcs p

The N-terminal non-repeat region of Myanmar pvcs p showed a limited range of genetic diversity. Alignment of the deduced amino acid sequences of Myanmar pvcs p revealed 7 distinct haplotypes of VK210 variants and 7 haplotypes of VK247 variants (Fig. 2). The N-terminal non-repeat region of Myanmar VK210 variants was highly conserved. Compared with Sal I (GU339059) sequence, only few amino acid substitutions was found in the latter portion of the N-terminal non-repeat region. Haplotype 1, which was identical to Sal I sequence, was predominant (n = 108, 75.5%). An alanine insertion at the end of the RI conserved motif (KLKQP) was identified in haplotypes 2, 3 and 4. The N86I was found in haplotype 3. Two dimorphic (K91R and P95S) and one trimorphic (K93E/N) amino acid changes were observed in the RI motif of haplotypes 4, 5, 6, and 7 (Fig. 2a). Changes in the amino acid sequences were also identified in VK247 variants of Myanmar pvcs p. Haplotype 1, which shared the same sequence with the PNG (M69059) sequence, was the most prevalent, accounting for 57.1% of 28 Myanmar VK247 variants. All amino acid changes identified in Myanmar VK247 variants were all dimorphic (E96G/A, G99R, and N100D). Furthermore, eight amino acids (E96G/DGAGNQPG104) were not detected in haplotypes 6 and 7 (Fig. 2b).

Genetic polymorphisms of the N-terminal non-repeat region in global pvcs p

Overall genetic polymorphisms of the N-terminal non-repeat region in the global pvcs p population were analysed. A comparative analysis of the region revealed that the region is relatively well-conserved in the global pvcs p. Alanine insertion at the end of the RI in the VK210 variants was the major variation identified in the global pvcs p, but the prevalence of the insertion...
differed by geographically (Fig. 3a). The pvcsp from Sudan showed 100% alanine insertion followed by pvcsp from Cambodia (67.7%), Vanuatu (47.6%), Myanmar (21.7%), Brazil (9.8%), and India (7.6%). No alanine insertion was found in the VK210 sequences identified in Iran, South Korea, and Mexico. Indian VK210 variants showed the highest genetic diversity with amino acid substitutions at 10 positions including E83K/G, K85T/Q, N86K/Y/I, P87A, R88G, N90I, L92V, K93N, Q94H/P and P95G, even though their frequencies were low, less than 15%. Meanwhile, A82T, N86I, N86S, K91R, P95S, and K93E/N showed uneven geographic distribution in the global VK210 variants with very low frequencies. The N-terminal non-repeat region of global VK247 variants were also well-conserved, although low frequencies of uneven amino acid changes were identified (Fig. 3b). The most remarkable variation involved N100D, which was observed in VK247 variants from Colombia (100%), Mexico (100%), Iran (27.3%), and Myanmar (17.9%). The amino acid changes such as E96G/A, A99E, G100R, and N101D showed uneven geographic distribution with low frequencies.

Polymorphic pattern of the CRR in Myanmar pvcsp

The CRR of Myanmar pvcsp showed extreme diversity in both VK210 and VK247 variants. A total of 118 and 23 haplotypes were identified in VK210 and VK247 variants, respectively. As expected, the greatest diversity of Myanmar pvcsp CRR was mainly attributed to differences in numbers, types, and arrangements of PRMs in each haplotype. A total of 47 different types of PRMs have been identified in the CRR of Myanmar VK210 variants (Fig. 4). Among these PRMs, two major types GDRADGQPA and GDRAAGQQA were the dominant ones for VK210 variants. Twenty-seven novel PRMs including GDRVAGQQA, GDRAGQQA, GDRADGKPQA, GDRAADGQQA, GDGAGQQA, EDRAAGQQA, GDKAAGQQA, GDRAAGQPA, GDRAVQPA, GDRADGQPG, GDRADGQRA, GDRADGLPA, GDRADGQQT, GDRAARQPA, GDRAAGQQA, GDGAGQQA, GDRAAGQQA, GDRAGQAP, GDRADRGPA, GDRADGQQA, GDRADGQPA, and GNGAGQQA, which were not previously reported, were found in Myanmar VK210 variants. Interestingly, 109 haplotypes out of 118 VK210 variants were terminated with GNGAGGQA motif. The number of PRMs consisting CRR of Myanmar VK210 haplotypes varied from 1 to 29. Sequences with 18 PRMs were the most prevalent accounting for 18.9% of 143 Myanmar VK210 sequences (Fig. 5).

Compared with global VK210 variants, the CRR of Myanmar VK210 variants showed a high level of length polymorphisms. The VK210 variants from other countries analysed in this study showed only a few (2 to 5)
variations in length of polymorphisms in CRR; however, the CRR of Myanmar VK210 variants had 24 different length polymorphisms consistent with various types and different compositions of PRMs. The overall genetic diversity in CRR of Myanmar VK247 variants was much lower than that of Myanmar VK210 variants. A total of 23 VK247 haplotypes, each CRR comprising different numbers and combinations of 8 types of PRMs, were identified (Fig. 6). Five of 8 PRMs, ANGAGNQSG, AYGAGNQPG, VNGAGNQPG, ANGVGNQPG and AYGAGNQPG, identified in Myanmar VK247 variants were novel ones that have not reported previously. The CRR of Myanmar VK210 variants carried a sequence identical to that of the reference type with a frequency of 46.4%. The most noteworthy diversity of the CRR in Myanmar VK210 variants was under positive natural selection. Meanwhile, the CRR of Myanmar VK247 variants also differed in the C-terminal non-repeat region of global VK210 variants, the presence of ANKKAEDA insertion differed by country (Fig. 9a). All sequences from Iran and South Korea VK210 variants contained an octapeptide insertion, but the frequencies in VK210 variants from Sudan, India, Mexico and Cambodia were 96.7, 89.9, 63.6 and 9.7%, respectively. Interestingly, no insertion of the octapeptide was identified in VK210 variants from Brazil and Vanuatu. The numbers of GGNA motifs in the C-terminal non-repeat region of global VK210 variants ranged from 0 to 6. Similar to VK210 variants, the presence of ANKKAEDA octapeptide insertion and the number of GGNA motifs also differed in the C-terminal non-repeat region of global VK247 variants. The frequency of ANKKAEDA octapeptide insertion was high in VK247 variants isolated from Cambodia, Iran, Mexico, and Colombia, but was low in Myanmar VK247 variants (Fig. 9c). The number of GGNA motifs found in the C-terminal non-repeat region of global VK247 variants ranged from 0 to 3 (Fig. 9d). The number of GGNA motifs in global VK247 also differed by country.

Genetic diversity in the C-terminal non-repeat region of Myanmar and global *pvcsp*

Sequence analysis of the C-terminal non-repeat region of Myanmar VK210 variants revealed 27 distinct haplotypes (Fig. 8a). These sequence diversities were attributed to differences in the arrangement of ANKKAEDA octapeptide insertion and GGNA tetrapeptide repeat motifs with different amino acid substitutions throughout the region. The sequence of haplotype 22 was identical with Sal I (GU339059), and accounted for 9.8% of all the VK210 sequences. The octapeptide insertions were observed in haplotypes 1 to 16. All the inserted sequences in these 16 haplotypes were ANKKAEDA except for haplotypes 8 and 13, which contained ANKKAENA and ANKE-AENA, respectively. The C-terminal non-repeat region of Myanmar VK247 variants showed a lower level of genetic diversity than that of Myanmar VK210 variants (Fig. 8b). A total of 10 haplotypes were identified, and haplotype 1, which carried a sequence identical to that of the reference sequence of PNG (M69059), was the most prevalent haplotype with a frequency of 46.4%. The most noteworthy polymorphic characteristics identified in the C-terminal non-repeat region of Myanmar VK247 variants were the deletions of GGQAAGGNAANKKAGDAG in haplotype 7 and ANKKAGDAG in haplotypes 8, 9 and 10. Analysis of sequence polymorphisms in the C-terminal non-repeat region of the global *pvcsp* suggested a high level of genetic diversity. Among VK210 variants, the frequency of ANKKAEDA insertion differed by country (Fig. 9a). All sequences from Iran and South Korea VK210 variants contained an octapeptide insertion, but the frequencies in VK210 variants from Sudan, India, Mexico and Cambodia were 96.7, 89.9, 63.6 and 9.7%, respectively. Interestingly, no insertion of the octapeptide was identified in VK210 variants from Brazil and Vanuatu. The numbers of GGNA motifs in the C-terminal non-repeat region of global VK210 variants ranged from 0 to 6. Similar to VK210 variants, the presence of ANKKAEDA octapeptide insertion and the number of GGNA motifs also differed in the C-terminal non-repeat region of global VK247 variants. The frequency of ANKKAEDA octapeptide insertion was high in VK247 variants isolated from Cambodia, Iran, Mexico, and Colombia, but was low in Myanmar VK247 variants (Fig. 9c). The number of GGNA motifs found in the C-terminal non-repeat region of global VK247 variants ranged from 0 to 3 (Fig. 9d). The number of GGNA motifs in global VK247 also differed by country.

Nucleotide diversity and natural selection in the N- and C-terminal non-repeat regions of Myanmar *pvcsp*

Since the CRR of *Myanmar* *pvcsp* sequences showed a high degree of length polymorphisms, the nucleotide diversity and genetic differentiation of the N- and C-terminal non-repeat regions were analysed separately by omitting the CRR. In the N-terminal non-repeat region of Myanmar VK210 variants, the average number of nucleotide differences (K), overall haplotype diversity (Hd), and nucleotide diversity (π) were 0.098, 0.096±0.034, and 0.0024±0.0009, respectively (Table 1). The estimated dN–dS value in the N-terminal non-repeat regions was 0.0008. These results suggested that the N-terminal non-repeat region of Myanmar VK210 variants was under positive natural selection. Meanwhile, the average number of nucleotide differences (K), the overall haplotype diversity (Hd), and the nucleotide diversity (π) for the C-terminal non-repeat region of Myanmar VK210
Fig. 5 Frequency comparison of peptide repeat motifs (PRMs) in the central repeat region (CRR) of global VK210 variants. The numbers of PRMs differ in the global VK210 variants.

Fig. 6 Genetic polymorphism in the central repeat region (CRR) of Myanmar VK247 variants. Sequence alignment revealed that the CRR of Myanmar VK247 variants showed polymorphic characters with 23 distinct haplotypes. A total of 8 different types of peptide repeat motifs (PRMs) were identified in CRR of Myanmar VK247 variants. Differences in numbers, types, and combinations of PRMs produced the high levels of genetic diversity of the CRR in Myanmar VK247 variants.
Fig. 7 Frequency comparison of peptide repeat motifs (PRMs) in the central repeat region of global VK247 variants. The numbers of PRMs differed in the global VK210 variants.

Country	No. of PRMs
Myanmar (n=28)	1 - 22
Cambodia (n=10)	0 - 20
Iran (n=11)	0 - 90
Mexico (n=8)	0 - 100
Colombia (n=25)	0 - 100

Fig. 8 Genetic polymorphism of the C-terminal non-repeat region of Myanmar pvcsP sequences. a) VK210 variants. A total of 27 distinct haplotypes of the C-terminal non-repeat region was identified in 143 Myanmar VK210 sequences. The dots represent residues identical to the reference sequence of Sal I (GU339059). Amino acid changes at particular amino acid positions are indicated as red. The dashes represent gaps to maximize the alignment. b) VK247 variants. Ten distinct haplotypes of the C-terminal non-repeat region was identified in 28 Myanmar VK247 sequences. The dots represent residues identical to the reference sequence of PNG (M69059). Amino acid changes at particular amino acid positions are indicated as red. The dashes represent gaps to maximize the alignment. The total number of sequences for each haplotype is listed in the right panel.
variants were 0.209, 0.186 ± 0.044, and 0.0035 ± 0.0009, respectively (Table 1). The dN–dS value was –0.0035. These findings indicated that the C-terminal region was influenced by negative natural selection. The Tajima’s D test was also performed to further elucidate the effect of natural selection on the N- and C-terminal non-repeat regions in Myanmar VK210 variants. Tajima’s D values for the N- and C-terminal non-repeat regions were –1.9359 (P < 0.05) and –2.2251 (P < 0.01), respectively (Table 1). The Fu and Li’s D and F values of these regions also showed negative values. In the Myanmar VK247 variants, the average number of nucleotide differences (K), overall haplotype diversity (Hd) and nucleotide diversity (π) of the N-terminal non-repeat region were 0.405, 0.405 ± 0.094 and 0.0090 ± 0.0021, respectively (Table 1). These values for the C-terminal non-repeat region were 0.495, 0.331 ± 0.114 and 0.0067 ± 0.0027, respectively. The dN–dS values of the N- and C-terminal non-repeat regions of Myanmar VK247 variants were 0.0117 and –0.0150, respectively (Table 1). The Tajima’s D values were –0.4445 (P > 0.1) and –1.9719 (P < 0.05) for the N- and C-terminal non-repeat regions, respectively (Table 1). The Fu and Li’s D and F values for both regions were all negative.

Nucleotide diversity and natural selection in the N- and C-terminal non-repeat regions of global VK210 variants
To further examine the nucleotide diversity and natural selection in the global pvcsp population, the nucleotide diversity of the N- and C-terminal non-repeat regions of global pvcsp was analysed. For the N-terminal non-repeat region of VK210 variants, nucleotide diversity and pattern of natural selection were differed by country (Table 2). VK210 variants from India showed the highest nucleotide diversity; the values of K, Hd, and π were
Table 1 Genetic polymorphism and tests of neutrality in the N-terminal and C-terminal regions of Myanmar pvcs

Variant	Region	n	K	S	Eta	H	Hd±SD	π±SD	dN-dS	Tajima’s D^p value	Fu and Li’s D^p value	Fu and Li’s F^p value
VK210	N-terminal	143	0.098	5	6	7	0.096±0.034	0.0024±0.0009	0.0008	−1.9359^c	−3.9086^b	−3.8409^b
	C-terminal	143	0.209	10	11	11	0.186±0.044	0.0035±0.0009	−0.0035	−2.2251^d	−3.5089^b	−3.6329^b
VK247	N-terminal	28	0.405	1	2	3	0.405±0.094	0.0090±0.0021	0.0117	−0.4445^a	−0.7114^a	−0.7369^a
	C-terminal	28	0.495	6	6	6	0.331±0.114	0.0067±0.0027	−0.0150	−1.9719^c	−2.5946^c	−2.8039^c

n number of analysed sequences, K average number of nucleotide differences, S number of segregating sites, Eta total number of mutations, H number of haplotypes, Hd haplotype diversity, π observed average pairwise nucleotide diversity, SD standard deviation, dN rate of non-synonymous mutations, dS rate of synonymous mutations

^a $P<0.1$

^b $P<0.02$

^c $P<0.05$

^d $P<0.01$
Table 2 Genetic polymorphism and tests of neutrality in the N-terminal and C-terminal non-repeat regions of global VK210 variants

Region	Country	n	K	S	Eta	H	Hd ± SD	n ± SD	dN-dS	Tajima's D⁺ value	Fu and Li's D⁺ value	Fu and Li's F⁺ value
N-terminal	Myanmar	143	0.098	5	6	7	0.096 ± 0.034	0.0024 ± 0.0009	0.0008	−1.935^b	−3.9086^b	−3.8409^b
	Cambodia	31	0.125	1	1	2	0.125 ± 0.077	0.0030 ± 0.0018	0.0039	−0.773^a	0.5907^a	0.2450^a
	India	79	1.972	23	28	28	0.661 ± 0.063	0.0470 ± 0.0074	−0.0909	−2.026^c	−1.3952^a	−1.9514^a
	Iran	39	0	0	0	1	0	0	0	0	0	0
	South Korea	39	0.051	1	1	2	0.051 ± 0.048	0.0012 ± 0.0011	0.0016	−1.1264^b	−1.7662^a	−1.8293^a
	Brazil	41	0.049	1	1	2	0.049 ± 0.046	0.0012 ± 0.0011	−0.0059	−1.1219^a	−1.7816^a	−1.8406^a
	Mexico	11	0	0	0	1	0	0	0	0	0	0
	Sudan	30	0	0	0	1	0	0	0	0	0	0
	Vanuatu	21	0	0	0	1	0	0	0	0	0	0
C-terminal	Myanmar	143	0.209	10	11	11	0.186 ± 0.044	0.0035 ± 0.0009	−0.0035	−2.2251^d	−3.5089^b	−3.6329^b
	Cambodia	31	0	0	0	1	0	0	0	0	0	0
	India	79	0.276	8	9	6	0.123 ± 0.051	0.0043 ± 0.0020	−0.0149	−2.1953^d	−4.4419^b	−4.3524^b
	Iran	39	0	0	0	1	0	0	0	0	0	0
	South Korea	39	0.103	2	2	3	0.101 ± 0.065	0.0008 ± 0.0005	−0.0037	−1.4889^a	−2.4148^e	−2.4864^e
	Brazil	41	0	0	0	1	0	0	0	0	0	0
	Mexico	11	0	0	0	1	0	0	0	0	0	0
	Sudan	30	0.067	1	1	2	0.067 ± 0.061	0.0009 ± 0.0008	−0.0041	−1.1470^a	−1.6821^a	−1.7653^a
	Vanuatu	21	0	0	0	1	0	0	0	0	0	0

- ^a P > 0.1
- ^b P < 0.02
- ^c P < 0.05
- ^d P < 0.01
- ^e 0.05 < P < 0.1

n number of analysed sequences, **K** average number of nucleotide differences, **S** number of segregating sites, **Eta** total number of mutations, **H** number of haplotypes, **Hd** haplotype diversity, **n** observed average pairwise nucleotide diversity, **SD** standard deviation, **dN** rate of non-synonymous mutations, **dS** rate of synonymous mutations
and 0.0043 with VK210 variants showed the greatest nucleotide diversity from Iran, Mexico, Sudan, and Vanuatu were genetically nucleotide diversity was found in the VK210 variants comparable to Myanmar VK210 variants. Substantial variants also showed relatively high nucleotide diversity. The N-terminal non-repeat region of Cambodia VK210 variants showed different patterns of natural selection (Table 2). Indian VK210 variants showed the greatest nucleotide diversity with K, Hd, and π values of were 0.276, 0.123 ± 0.051, and 0.0043 ± 0.0020, respectively. Meanwhile, no nucleotide diversity was detected in VK210 variants from Cambodia, Iran, Brazil, Mexico, and Vanuatu. Similar to the N-terminal non-repeat region, the C-terminal non-repeat region of global VK210 was also under the effect of purifying selection based on the negative values of Tajima’s D. The values of Fu and Li’s D and Fu and Li’s F were also negative for the C-terminal region of VK210 variants from Myanmar, India, South Korea, and Sudan.

Nucleotide diversity and natural selection
in the N-terminal and C-terminal non-repeat regions
of global VK247 variants

The nucleotide diversity and natural selection in the global VK247 variants were analysed (Table 3). Analysis of the N-terminal non-repeat region of VK247 variants revealed the greatest nucleotide diversity in VK247 variants from Iran, with the values of K, Hd, and π of 1.309, 0.436 ± 0.133, and 0.0190 ± 0.0058, respectively, VK247 variants from Cambodia also revealed nucleotide diversity in the region. However, no nucleotide diversity was found in VK247 variants from Mexico and Colombia. The N-terminal non-repeat region of VK247 variants from Iran showed negative dN–dS (–0.0543) and positive Tajima’s D (0.9518), Fu and Li’s D (1.1271), and Fu and Li’s F (1.2185). However, Myanmar and Cambodia VK247 variants revealed positive values for dN–dS and negative values for Tajima’s D, Fu and Li’s D, and Fu and Li’s F. The C-terminal non-repeat region of VK267 variants from Cambodia and Colombia also showed nucleotide diversity, which was lower than that of Myanmar VK247 variants. Similar to Myanmar VK247 variants, the C-terminal non-repeat region of Cambodia VK247 variants showed a negative values of dN–dS (−0.0172), Tajima’s D (−1.4009), Fu and Li’s D (−1.5866), and Fu and Li’s F (−1.7190). However, the dN–dS of Colombia variants was

Region	Country	n	K	S	Eta	Hd ± SD	π ± SD	dN–dS	Tajima’s D	Fu and Li’s D	Fu and Li’s F
N-terminal	Myanmar	28	0.405	1.2	3	0.405 ± 0.094	0.0090 ± 0.0021	0.0117	−0.4445a	−0.7114a	−0.7369a
	Cambodia	10	0.2	1.1	2	0.200 ± 0.154	0.0029 ± 0.0022	0.0038	−1.1117a	−1.2343a	−1.3467a
	Iran	11	1.309	3.3	2	0.436 ± 0.133	0.0190 ± 0.0058	−0.0543	0.9518a	1.1271a	1.2185a
	Mexico	8	0	0	1	0	0	0	0	0	0
	Colombia	25	0	0	1	0	0	0	0	0	0
C-terminal	Myanmar	28	0.495	6.6	6	0.331 ± 0.114	0.0067 ± 0.0027	−0.0150	−1.9719a	−2.5946a	−2.8039a
	Cambodia	10	0.400	2.2	2	0.200 ± 0.154	0.0039 ± 0.0030	−0.0172	−1.4009a	−1.5866a	−1.7190a
	Iran	11	0	0	1	0	0	0	0	0	0
	Mexico	8	0	0	1	0	0	0	0	0	0
	Colombia	25	0.500	2.2	3	0.44 ± 0.095	0.0039 ± 0.0010	0.0017	−0.1215a	−0.6754a	−0.6012a

n number of analysed sequences, K average number of nucleotide differences, S number of segregating sites, Eta total number of mutations, H number of haplotypes, Hd haplotype diversity, π observed average pairwise nucleotide diversity, SD standard deviation, dN rate of non-synonymous mutations, dS rate of synonymous mutations

a P < 0.1
b P < 0.05
c P < 0.01
d 0.05 < P < 0.1

Table 3 Genetic polymorphism and tests of neutrality in N-terminal and C-terminal regions of global pvcsnp VK247 variants
Discussion

PvCSP is one of the leading candidates for vivax malaria vaccine. Several recent PvCSP-derived vaccines were designed as multivalent formulations or chimeric molecules in an attempt to induce protective immunity against *P. vivax* [11, 21, 22]. However, the impact of natural genetic variations in the global pvcsp population on vaccine efficacy remains unclear. In this study, genetic polymorphism and natural selection in Myanmar pvcsp and global pvcsp populations were comprehensively analysed. Among the three pvcsp allelic variants, only two allelic variants, VK210 and VK247, were identified in *P. vivax* isolates from Myanmar analysed in this study. The VK210 was the dominant allelic occurring in 83.6% of Myanmar pvcsp population, which is consistent with previous studies reporting that VK210 is the most common allelic variant in the pvcsp populations from Iran, India, China, Brazil, Thailand, Bangladesh, and Azerbaijan [23–31]. Meanwhile, VK247 was more prevalent in certain regions of Colombia [32]. It has been suggested that the distribution of *Anopheles* mosquito species may affect the prevalence of VK210 and VK247 variants in endemic areas [32, 33]. In Myanmar, diverse species of *Anopheles* are distributed throughout the country, and at least 10 species including *Anopheles dirus*, *Anopheles minimus*, and *Anopheles aconitus* may transmit malaria [34]. Differences in infectivity of VK210 and VK247 variants in certain *Anopheles* species is not clear; however, the differences in adaptability of each allelic variant to mosquito vectors affects the prevalence of VK210 in Myanmar. The predominance of VK210 may also be associated with its genetic diversity. VK247 showed a lower level of genetic diversity than VK210 in the Myanmar pvcsp population, suggesting different polymorphisms may increase the adaptability of VK210 to different mosquito vectors.

The N-terminal non-repeat region of Myanmar pvcsp was relatively well-conserved. Only a few amino acid changes were identified in the latter portion of the N-terminal non-repeat region of Myanmar pvcsp. The RI motif (KLKQPL), a cell adhesive motif exposed by proteolytic cleavage after the interaction between sporozoite and hepatocyte [8], was well conserved in both Myanmar VK210 and VK247 variants. Global VK210 variants also displayed limited polymorphism in the N-terminal non-repeat region. An alanine insertion at the end of the RI was the major variation identified in global pvcsp, although the prevalence of the insertion differed by geographically. Amino acid changes were also identified in global VK210 variants, but they showed uneven geographic distribution with low frequencies. The N-terminal non-repeat region of global VK247 variants was also relatively well-conserved, although uneven and minor amino acid changes were also identified. It has been shown that the invasion of malaria parasite is inhibited by antibodies directed against RI motif [35]. The highly conserved genetic characteristic of the N-terminal region of global pvcsp suggest that this region including RI motif may represent an attractive candidate for formulation of a PvCSP-based vaccine.

As expected, high level of genetic diversity was identified in the CRR of Myanmar pvcsp. Both VK210 and VK247 variants showed great genetic diversity in CRR resulting in 118 and 23 different haplotypes for VK210 and VK247, respectively. Insertions and deletions of nonapeptide sequences probably resulted from either sexual recombination during meiosis or intrahelical strand slippage during mitotic DNA replication [24], which may generate novel haplotypes in Myanmar pvcsp. Interestingly, 47 different types of PRMs including 27 novel types were identified in the CRR of Myanmar VK210 variants. In the case of VK247 variants, a total of 8 distinct PRMs were identified, in which 5 were novel ones. These findings also suggest point mutations as one of the major factors increasing the genetic complexity of Myanmar pvcsp. Similar patterns of high genetic polymorphisms were also identified in the CRR of global pvcsp population; however, the overall diversity due to different types and repeats of PRMs was greater in the pvcsp from Myanmar compared with other countries. Especially, the repeated numbers of PRMs varied widely in both Myanmar VK210 and VK247 variants compared with those from other countries.

The C-terminal regions of Myanmar and global pvcsp also showed genetic polymorphisms. Differences in ANKKAEDA octapeptide insertion and GGNA tetrapeptide repeat motifs and amino acid substitutions throughout the region contributed to genetic diversity in Myanmar and global VK210 variants. Despite the unclear biological functions of ANKKAEDA octapeptide and GGNA tetrapeptide in VK210 variants, they may also be generated via intrahelical recombination, and parasites carrying the ANKKAEDA octapeptide show a high degree of delayed infections [11]. Similar to VK210 variants, ANKKADAG octapeptide and GGNA motifs were important factors contributing to genetic diversity in Myanmar and global VK247 variants. Although the frequency of octapeptide insertion and number of GGNA motifs in global pvcsp, both in VK210 and VK247 variants, were differed by country, no clear geographic clustering was identified. Considering the limited genetic information of the C-terminal region in global pvcsp in current, a further study employing larger numbers of pvcsp sequences in diverse geographical origins.
is necessary to understand the genetic nature and evolutionary aspects of the C-terminal region in global \textit{pvcsp} population.

Analysis of the two non-repeat regions in global \textit{pvcsp} suggests that these regions are likely to be under natural selection, which may maintain or generate genetic diversity in the global \textit{pvcsp} population. The \(dN/dS\) values for Myanmar and Cambodia VK210 and VK247 variants were positive, implying that balancing selection might act in these regions. However, the values were 0 or negative for both VK210 and VK247 variants from other countries except the N-terminal region of South Korea VK210 and the C-terminal region of Colombia VK247. Tajima’s \(D\) and Fu and Li’s \(D\) and \(F\) values also revealed complex patterns of natural selection that were unique to \textit{pvcsp} from each country. While \textit{pvcsp} populations from a few countries showed no genetic diversity involving the N- and C-terminal regions, a few \textit{pvcsp} populations showed negative Tajima’s \(D\) values, suggesting purifying natural selection. The overall trend indicated that the global \textit{pvcsp} population decreased the genetic diversity in the two terminal non-repeat regions. Due to size polymorphisms induced by different numbers and arrangements of PRMs in CRR, a direct analysis of natural selection in CRR was not possible in this study. However, evidence supporting natural selection in the CRR have been reported [36–38]. These findings collectively suggest that complex natural selection phenomena may act on the global \textit{pvcsp}.

Despite the remarkable reduction in malaria transmission in Myanmar during the last decades [2, 38], the high levels of genetic diversity among malaria parasites appears to persist in the country. As demonstrated in this study, the overall genetic polymorphisms of Myanmar \textit{pvcsp} were greater than those reported from other countries analysed. Similar patterns of high genetic diversity in several polymorphic genetic markers including apical membrane antigen-1, merozoite surface protein-1 and -2, and CSP of \textit{P. falciparum} population on the efficacy of \textit{PvCSP}-based vaccine remains unclear. This study highlights an additional level of complexity in the application of this antigen for the development of a vivax vaccine. Global \textit{pvcsp} population revealed polymorphic characters, especially in the CRR. The size polymorphisms and the appearance of novel PRMs as well as new CRR arrays primarily contribute to the genetic diversity of global \textit{pvcsp}. Natural selection may also be a major force affecting the genetic diversity of global \textit{pvcsp}. The results of this study provide not only an insight into the genetic nature of global \textit{pvcsp} but also valuable information for the development of a universal vaccine based on \textit{PvCSP}. Continuous monitoring of genetic diversity of global \textit{pvcsp} population is necessary to elucidate the polymorphic nature and evolutionary aspect of \textit{pvcsp} in global \textit{P. vivax} population.

Conclusions

\textit{PvCSP} is a leading candidate for vivax vaccine; however, the impact of natural genetic variations in the global \textit{pvcsp} population on the efficacy of \textit{PvCSP}-based vaccine remains unclear. This study highlights an additional level of complexity in the application of this antigen for the development of a vivax vaccine. Global \textit{pvcsp} population revealed polymorphic characters, especially in the CRR. The size polymorphisms and the appearance of novel PRMs as well as new CRR arrays primarily contribute to the genetic diversity of global \textit{pvcsp}. Natural selection may also be a major force affecting the genetic diversity of global \textit{pvcsp}. The results of this study provide not only an insight into the genetic nature of global \textit{pvcsp} but also valuable information for the development of a universal vaccine based on \textit{PvCSP}. Continuous monitoring of genetic diversity of global \textit{pvcsp} population is necessary to elucidate the polymorphic nature and evolutionary aspect of \textit{pvcsp} in global \textit{P. vivax} population.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12936-020-03366-7.

Abbreviations

CRR: Central repeat region; CSP: Circumsporozoite surface protein; \(dN\): Rate of non-synonymous mutations; \(dS\): Rate of synonymous mutations; \(H\): Number of haplotypes; \(Hd\): Haplotype diversity; \(K\): Average number of nucleotide differences; PCR: Polymerase chain reaction; PRM: Peptide repeat motif; \textit{PvCSP}: \textit{Plasmodium vivax} circumsporozoite surface protein; \textit{rRNA}: 18S ribosomal RNA; \(S\): Number of segregating sites; \(\pi\): Observed average pairwise nucleotide diversity.

Acknowledgements

We thank the staffs in the Department of Medical Research Pyin Oo Lwin Branch and the health professionals in Naung Cho and Pyn Oo Lwin townships for their contribution and technical support during blood collection.

Authors’ contributions

TCV, HGL and JMK performed the genetic analysis of \textit{pvcsp}. MM, HN, MKM, JL and KL contributed to blood sample collection. TCV, GHL, JMK, JL, WMS and BKN analysed and interpreted the data. BKN designed and supervised the experiments. TCV and BKN drafted the manuscript. All authors read and approved the final manuscript.

Funding

This research was supported by the National Research Foundation of Korea (NRF) Grants funded by the Korean Government (NRF-2019R1A3A9A01000005).

Availability of data and materials

The data supporting the conclusions of this article are provided within the article and its additional files. The original datasets analysed in this current study are available from the corresponding author upon request.
nucleotide sequences reported in this study have been deposited in the GenBank database under the Accession Numbers MN821829–MN821999.

Ethics approval and consent to participate

This study was approved by the Ethics Review Committee, Department of Medical Research, Myanmar (97/Ethics 2015) and by the Ethical Review Committee of Inha University School of Medicine, Korea (INHA 15-013). Informed consent for publication

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea. 2 BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Commerce Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea. 3 Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar. 4 Department of Tropical Medicine, Inha University College of Medicine, Incheon 22212, Republic of Korea.

Received: 13 March 2020 Accepted: 10 August 2020
Published online: 04 September 2020

References

1. Cox FE. History of human parasitology. Clin Microbiol Rev. 2002;15:595–612.
2. WHO. World Malaria report 2018. Geneva, World Health Organization, 2018.
3. Rogerson SJ, Carter R. Severe vivax malaria: newly recognised or rediscovered. PLoS Med. 2008;5:e136.
4. Anstey NM, Russell B, Yeo TW, Price RN. The pathophysiology of vivax malaria. Trends Parasitol. 2009;25:220–7.
5. Baird JK. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother. 2004;48:4075–83.
6. Price RN, Tjjtra E, Guerra CA, Yeung S, White NJ, Anstey NM. Vivax malaria: neglected and not benign. Am J Trop Med Hyg. 2007;77:79–87.
7. Miller LH, Baruch DI, Marsh K, Dourouko OK. The pathogenic basis of malaria. Nature. 2002;415:673–9.
8. Coppa A, Natarajan R, Pradel G, Bennett BL, James ER, Roggoero MA, et al. The malaria circumsporozoite protein has two functional domains, each with distinct roles as sporozoites journey from mosquito to mammalian host. J Exp Med. 2011;210:341–36.
9. Rosenberg R, Wirtz RA, Larue DE, Sattabongkot J, Hall T, Waters AP, et al. Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodium vivax. Science. 1989;245:973–7.
10. Qari SH, Shi YP, Goldman IF, Udhayakumar V, Alpers MP, Collins WE, et al. Immunogenicity of a prime-boost vaccine containing the circumsporozoite proteins of Plasmodium vivax in rodents. Infect Immun. 2014;82:793–807.
11. Shabani SH, Zakeri S, Mehrizi AA, Mortazavi Y, Djadid ND. Population genetics structure of Plasmodium vivax circumsporozoite protein during the elimination process in low and unstable malaria transmission areas, southeast of Iran. Acta Trop. 2016;160:23–34.
12. Kim JR, Imwong M, Nandy A, Chotivanich K, Nontprasert K, Tonsomsri N, et al. Genetic diversity of Plasmodium vivax in Kolkata, India. Malar J. 2006;5:71.
13. Machado RL, Povea MM. Distribution of Plasmodium vivax variants (VK210, VK247 and P vivax-like) in three endemic areas of the Amazon region of Brazil and their correlation with chloroquine treatment. Trans R Soc Trop Med Hyg. 2000;94:377–81.
14. Cui L, Mascorro CN, Fan Q, Reomp KA, Khunthirat B, Zhou G, et al. Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg. 2003;68:613–9.
15. Leclerc MC, Menegon M, Cigny A, Noyer JL, Mammodov S, Aliev N, et al. Genetic diversity of Plasmodium vivax isolates from Azerbaijan. Malar J. 2004;3:40.
16. Pratt-Riccio LR, Baptista BO, Torres VR, Bianco-Junior C, Perce-Da-Silva DS, Riccio ERP, et al. Chloroquine and mefloquine resistance profiles are not related to the circumsporozoite protein (CSP) VK210 subtypes in field isolates of Plasmodium vivax from Manaus. Brazilian Amazon. Mem Inst Oswaldo Cruz. 2019;114:e190054.
17. Nolla EK, Elahi R, Mohon AN, Khan WA, Haque R, Alam MS. Genetic diversity of Plasmodium vivax in clinical isolates from Bangladesh. Malar J. 2015;14:267.
18. Li YC, Wang GZ, Meng F, Zeng W, He CH, Hu XM, et al. Genetic diversity of Plasmodium vivax population before elimination of malaria in Hainan Province China. Malar J. 2015;14:78.
19. Kaur H, Sehgal R, Kumar A, Sehgal A, Bharti PK, Bansal D, et al. Examination of genetic diversity of Plasmodium vivax circumsporozoite protein (Pvs25) among North Indian isolates. Malar J. 2019;18:308.
20. Rodriguez MH, Gonzalez-Ceron L, Hernandez JE, Nettel JA, Villarreal C, Kain KC, et al. Different prevalences of Plasmodium vivax phenotype VK210 and VK247 associated with the distribution of Anopheles albimanus and Anopheles pseudopunctipennis in Mexico. Am J Trop Med Hyg. 2000;62:122–7.
21. Oel TT, Storch V, Becker N. Review of the anopheline mosquitoes of Myanmar. J Vector Ecol. 2004;29:21–40.
22. Yang P, Shakibaei M, Patankar MS, Clavijo P, Beavis RC, Clark GF, et al. The malaria circumsporozoite protein: interaction of the conserved regions I and II plus with heparin-like oligosaccharides in heparin sulfate. Exp Parasitol. 1997;85:168–82.
23. Hughes AL. The evolution of amino acid repeat arrays in Plasmodium and other organisms. J Mol Evol. 2004;59:528–35.
37. Patil A, Orjuela-Sanchez P, da Silva-Nunes M, Ferreira MU. Evolutionary dynamics of the immunodominant repeats of the *Plasmodium vivax* malaria-vaccine candidate circumsporozoite protein (CSP). Infect Genet Evol. 2010;10:298–303.

38. Parobek CM, Bailey JA, Hathaway NJ, Socheat D, Rogers WO, Juliano JI. Differing patterns of selection and geospatial genetic diversity within two leading *Plasmodium vivax* candidate vaccine antigens. PLoS Negl Trop Dis. 2014;8:e2796.

39. WHO. Malaria in the Greater Mekong Subregion: regional and country profiles. Geneva, World Health Organization, 2010.

40. Kang JM, Lee J, Moe M, Jun H, Le HG, Kim TI, et al. Population genetic structure and natural selection of *Plasmodium falciparum* apical membrane antigen-1 in Myanmar isolates. Malar J. 2018;17:71.

41. Le HG, Kang JM, Moe M, Jun H, Thai TL, Lee J, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in *Plasmodium falciparum* field isolates from Myanmar. Malar J. 2018;17:361.

42. Le HG, Kang JM, Jun H, Lee J, Thai TL, Myint MK, et al. Changing pattern of the genetic diversities of *Plasmodium falciparum* merozoite surface protein-1 and merozoite surface protein-2 in Myanmar isolates. Malar J. 2019;18:241.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.