Sn/Cu 2層めっきの熱処理による Sn ワイスクの抑制機構に関する研究

坂本 佳紀1 山崎 中2 志村 将臣2 石原 外美1

1富山高等専門学校 2ファインネス株式会社

J. Japan Inst. Met. Mater. © 2018 The Japan Institute of Metals and Materials

On Sn Whisker Suppressing Mechanism by Heat Treatment to the Double Layrer Plating System (Sn/Cu)

Yoshinori Sakamoto1, Wataru Yamazaki2, Masaomi Shimura2 and Sotomi Ishihara1

1National Institute of Technology, Toyama College, Toyama 939–8630
2FINECS CO.,LTD., Nakaniikawa–gun, Toyama 930–0281

Many studies have been done so far about the occurrence of whiskers in Sn-plating. However, very few study has been conducted on the suppression method of whiskers, how to prevent occurrence of whiskers. It is empirically known that whiskers are suppressed by heat treatment. However, its suppression mechanism is still unknown.

In the present study, we investigated that how the amount and form of the intermetallic compounds, generated by heat treatment, change with an elapsed time. Then, effect of the amount and form of the intermetallic compounds on the occurrence of Sn whiskers was studied in detail. As a result, it was clarified that, in order to suppress the whiskers, the amount of the intermetallic compounds should be above 15%. The parameter, named as contour-length ratio, was introduced for expressing the uniformity of occurrence of the intermetallic compounds. This value should be above 1.2 to suppress the whiskers.

Keywords: tin–whisker, intermetallic compound, tin plating, focused ion beam, heat treatment, suppressing mechanism

1. 緒 言

電気機器のコネクタ部のビンなどには、耐食性、耐久性、表面の適度な細さ、並びに優れたばん付け性などが求められている。これらの諸条件を満たすビンとして、現在 Cu 合金線材に Sn めっきをほどこしたビンが使用されている。しかし、Cu 合金に Sn めっきを採用すると、鉄状の Sn 直結晶（ウィスカ）が発生する。このウィスカが発生すると、電気回路がウィスカにより短絡し絶縁不良が生じるなど、問題となっており、これを改善策が求められている。これまで、Sn により Pb を添加することにより、ウィスカの発生を抑制する方法が採用されてきた。しかし、近年、Pb は特定有害物質として使用が制限されている。また、電子デバイスのダウンサイジングによりビンのピッチ間隔が小さくなり、短いウィスカの発生でも電気回路の短絡の原因となりやすくなり、現在、Sn めっきのウィスカ発生が再び問題視されるようになった。Cu 合金に Sn めっきをほどこしためっき材に発生するウィスカに関し、これまでに多くの研究報告11)がなされている。

著者は、既報において、7-3黄銅基板に Sn/Cu の 2 層めっきをほどこした試料では、時間の経過に伴って Sn めっき中に Cu の拡散すること、そして、めっき膜中に Cu-Sn 金属間化合物が生成されることによって Sn ウィスカが発生することを明らかにした。また、Sn ウィスカの生成挙動を詳細に調査し、ウィスカの生成機構を明らかにした。

Sn ウィスカの抑制方法として種々の方法が検討されているが、その中にはリフローと呼ばれる熱処理を用いる方法がある。熱処理をもいたウィスカの抑制機構に関して、生成する Cu-Sn 金属間化合物が、Cu の Sn への拡散を抑制するという報告11)があるものの詳細な研究は少ない。

本研究では、7-3黄銅基板に Sn/Cu の 2 層めっきを行い、その後めっき試料に種々熱処理をほどこした。熱処理条件によって、生成する金属間化合物の量と形状がどのように変化するかを詳細に調査した。そして、これらの金属間化合物の量や形状が、Sn ウィスカ発生におよぼす影響について検討した。

2. 試験片および実験方法

2.1 めっき方法

試料の模式図を Fig. 1(a)に、めっき部断面の模式図を Fig. 1(b)に示す。めっき基板として、幅 20 mm、厚さ 1 mm、長さ 40 mm の市販の7-3黄銅(C2680R-H)を用いた。めっき処理は、Fig. 1(a)に示す箇所に、Cu めっき、Sn めっきの順に処理を行った。作製条件を Table 1に示す。まず、Fig. 1(a)の試料表面、10×10 mm2の範囲を除いて、他の箇所をマスキングめっきを行った。下地 Cu めっきにはシアノ化鋼浴を
使用し、Snめっきにはメタンスルホン酸スズ溶を用いた。めっきは片面のみとし、めっき時に流す電流と電流密度を変化させて、めっき厚さを調整した。本研究では、Cuめっき厚さが1μm、Snめっき厚さが2μmの試料を用いて実験を行った。各試料は微細構造を観察するために、FIBによる試料表面の観察を行い、線分法にて測定した。

FIBの観察ビームからめっき表面を保護するために、めっき処理後、もしくは熱処理後にFig.1(a)に示す。3mm×3mmの箇所に油性塗料を用いて保護膜を形成した。

2.2 熱処理方法

熱処理はめっき直後に行った。Fig.2に熱処理に用いいた電気炉の模式図を、Table2に熱処理条件を示す。熱処理には均熱帯の長さが90mmの管状電気炉を用い、均熱帯の温度を333〜573Kに設定した。試料をめっきしたワイヤーに固定し、電気炉下に設置した。モータ制御により、18mm/sの一定速度で試料を炉内の均熱帯に送り、所定時間保持した後、電気炉へ排出した。このときの保持時間を熱処理時間とした。熱処理条件として、333Kから573Kまで6種類の熱処理温度を用い実験を行った。また、熱処理時間は、473〜573Kの高温熱処理では15〜300s、333〜393Kの低温熱処理では600〜14400sの範囲で変化させた。

2.3 試料保管

めっき処理または熱処理後の試料をエアコン設置の室温環境下で保管した。
2.4 Sn めっき膜断面の金属間化合物の生成挙動と Sn めっき表面のウィスカ観察

金属間化合物の生成とウィスカの発生挙動を観察するため、集束イオンビーム加工観察装置 (FIB: 日本電子製 JIB-4000) を用いて、集束イオンビーム (Focused Ion Beam (FIB)) 加工と、Scanning Ion Microscope (SIM) 像の観察を行った。FIB の観察ビームからめっき表面を保護するために、油性塗料を用いて、Fig. 1(a) に示す、3 mm × 3 mm の箇所に保護膜を形成した。

2.4.1 金属間化合物の生成挙動

Sn めっき膜断面における金属間化合物の生成挙動を以下の手順で観察した。まず、測定時間ごとに上記の保護膜範囲内の横 65 μm、縦 20 μm の箇所を、深さ 10 μm までミリング加工した。その後、試験片を 60° 傾けて、現れた Sn めっき断面の金属間化合物の生成挙動を SIM により調査した。

2.4.2 ウィスカの発生数、長さの経時変化

次に、Sn めっき表面のウィスカの発生数の経時変化を調べるために、Fig. 1(a) の保護膜の無い部分に、450 μm × 1200 μm の範囲を設定し、SIM 像に観察した。ウィスカ密度は多少の粗雑があるため、その影響を受けないように十分に広い範囲を観察範囲と設定し、この範囲に含まれるウィスカ数からウィスカ密度を算出した。この際、観察箇所に FIB で打印を付け、同一箇所の変化を連続的に観察した。観察日数は 200日目とした。

2.5 金属間化合物の組成分析

走査型電子顕微鏡 (Scanning Electron Microscope (SEM))：日本電子製、JSM-6301 と、付属のエネルギー分散型 X 線分析装置 (Energy Dispersive X-ray Spectrometer (EDS)) を用いて、Sn めっき膜断面において生成した金属間化合物の組成を分析した。まず、Sn めっき断面より、幅 60 μm、深さ 10 μm、厚さ 3 μm の分析用の試験片を、FIB で打印し、SEM/EDS を用いて、Sn めっき断面の金属間化合物の点分析を行うことにより、金属間化合物を同定した。

3. 実験結果

3.1 Sn めっき膜断面の金属間化合物の生成挙動

3.1.1 未熱処理材

未熱処理試料を室温で保管した場合の、金属間化合物の生成挙動については前報①にて報告した。Fig. 3 にめっき処理後 9 日目のめっき断面のSIM 像を示す。Cu 下地めっきと Sn めっきの界面の Sn めっき側に、灰色の Cu₆Sn₅が多く形成されている。この Cu₆Sn₅の領域は時間の経過に伴って Sn 結晶粒界に沿ってくさび状に成長していることを確認した。Fig. 4 は熱処理実験結果のめっき直後から200日経過までのめっき断面のSIM像の経時変化を示す。Fig. 4(a)のめっき作製後の断面を見ると、基材、Cu 下地めっき、Sn めっきが明確に分かれていることがわかる。しかし時間経過とともに、例えば、Fig. 4(c) と Fig. 4(d) 中の矢印が示すように、Cu 下地めっきと Sn めっきの界面の Sn めっき側に、灰色の Cu₆Sn₅が多数形成されている。この Cu₆Sn₅の領域は時間の経過に伴って増加していることを確認した。

Fig. 3 SIM image of the cross section of the plating system. Elapsed time is 9 days after the plating processing.

Fig. 4 SIM images of the cross sections of the plating system. Elapsed times are (a) immediately, (b) 3 days, (c) 50 days and (d) 200 days after the plating processing.
3.1.2 熱処理材
Fig. 5 は熱処理を行った試料表面の SIM 像を示したもので ある。Fig 5(a) は未処理の試料表面、(b) 並びに (c) は 393 K で それぞれ 1800 s、3600 s 間低温熱処理を行った試料、(d) ～ (f) は 473 ～ 573 K で 25 s 間高温熱処理を行った試料である。 (a) の未処理試料では柱状に成長した Sn めっきの結晶粒を観 察することができる。この試料に低温熱処理をほどこした試 料(b) 並びに (c) では、処理時間を長くしても結晶粒そのもの には変化が見られない。一方、高温熱処理試料をほどこした (d) ～ (f) では、柱状の凹凸が一部消失している。高温により 結晶粗大化。Sn 結晶粒界が消失し、結晶粒界が曖昧になって いることがわかる。

Fig. 6 は試料断面の SIM 像を示したものである。Fig 6(a) 並び に (b) は 393 K において熱処理した試料を、(c) 並びに (d) は、 523 K において熱処理した試料の断面観察結果を示したもの である。図中の矢印で示すように、熱処理後の試料で生成す る金属間化合物は熱処理温度の影響を受け、形態が異なるこ とがわかる。

Fig. 6(a) 並びに(b) の 393 K の低温で熱処理を行った場合、 Sn 結晶粒界が写真では明確に表れていないが、Fig. 3 に示す 未処理材と同様に、金属間化合物は結晶粒界に沿ってくさ び状に生成していることを顕微鏡写真で確認した。熱処理時 間が長くなると、(b) の (1) に示すように、結晶粒界以外の 部分にも金属間化合物が膜状に生成していることが確認でき る。一方、523 K の高温で熱処理を行った場合、Fig. 6(c) 並 びに (d) に示すように、金属間化合物は膜状に生成し、その 断面形状はドーム状を呈し、厚みを増していることがわかる。 また Sn めっきの断面観察では結晶粒界が曖昧になっている のが観察できた。

熱処理によって生成された金属間化合物を詳細に検討するため、 試料を FIB 加工し、幅 60 μm、深さ 10 μm、厚さ 3 μm の試 料片を取り出した。この試料片を、SEM を用いて EDS 分析 を行った。Fig. 7 に 393 K で 3600 s 間熱処理を行った試料片 の反射電子像を示す。反射電子像では SIM 像と組成コントラ ストが逆になるが、図に矢印で示すように、反射電子像にお いても Sn めっき内に灰色の相が多数観察される。このよう
な結果はSIM像の観察結果と共通している。Cu–Sn系状態図より700 K以下における安定相としてはCu₅Sn₃とCu₃Snが存在するため、EDSを用いて、これらの灰色の相の点分析を行った。同相の元素の平均組成はCuが69.30 mol%、Snが25.70 mol%であり、CuとSnの比率が約3:1であった。以上より、灰色の相はCu₅Sn金属間化合物であると考えられる。いずれの熱処理温度においても同様の結果であった。熱処理によって生成した金属間化合物に関する研究において、本研究と同様に熱処理によってCu₅Sn金属間化合物が生成されることが報告されている9)。

3.2 ウィスカ発生の経時変化

Fig. 8は、未熱処理材(a)と熱処理温度393 Kの各処理時間の試料(b)～(d)の200日保管後の試料表面の観察結果を示したものである。これらの図中の矢印はウィスカ長さが10 μm以上である主要ウィスカを示している。

Fig. 8(a)の未熱処理材では、図中に矢印で示すように、試料表面に長短の大量のウィスカが発生している。一方、(b)の393 K、600 sの熱処理材では、ウィスカの発生数において、未熱処理材とはほとんど見られないが、(c)の1200 sの熱処理試料では、未熱処理材と比較し、ウィスカの発生が減少している。さらに熱処理時間が長い(d)の3600 sでは、ウィスカの発生が見られない。従って、熱処理温度が低温の393 Kでは、熱処理時間が3600 sより長くなるとウィスカは発生しない。

Fig. 9は、未熱処理試料と熱処理試料を対象に、ウィスカ密度の経時変化を両対数グラフ上に示したものである。図より、未熱処理試料ではウィスカは時間初期において急増し、時間の経過に伴って増加速度が低下する。一方、熱処理温度393 Kの低温熱処理試料では、熱処理時間600 sの短時間熱処理試料では、未処理試料と同様にウィスカは時間初期にお
いて急増している。しかし、熱処理温度 393 K、1200 s の長時間熱処理試料では、ウィスカ密度は減少している。さらに、熱処理時間を 3600 s とより長時間にした試料では、ウィスカが発生しなかった。

熱処理温度を 473 K、523 K とより高温にすると、上記の Sn ウィスカの発生は認められず、顕著なウィスカ発生抑制効果が認められた。高温熱処理では、ウィスカ発生密度が 0 であった。Fig. 5 の横軸が対数である関係から、ウィスカ発生密度 0 を、便宜上発生密度 1 として示した。

前報 1) においても、未熱処理材の金属間化合物の生成挙動とウィスカ発生の時間変化について調査し、未熱処理材では、試料作製直後の金属間化合物の増加によりウィスカが発生することを明らかにした。本報の熱処理材についても、金属間化合物の生成について注目し、ウィスカ発生との関係について検討した。実験結果を次節以降で報告する。

3.3 金属間化合物量と熱処理の関係

金属間化合物生成量に及ぼす熱処理温度、熱処理時間、熱処理後の冷却時間の影響を定量的に検討するために、熱処理後の試料断面を SIM 観察した。得られた SIM 写真より、灰色の金属間化合物部並びに Sn ウィスカ部分のビクセル数をカウントし、これらを式 (1) に代入することで、Sn ウィスカ中部の金属間化合物の面積率を算出した。

金属間化合物面積率 = 未熱処理の金属間化合物ビクセル数 / 金属間化合物ビクセル数

Fig. 10 は、試料作製後の試料の熱処理時間の対数と生成した金属間化合物面積率の関係を示したものである。図中○で囲まれた試料は、試料作製後50日までにウィスカの発生が観察された試料であり、また、○のない実験データは、試料作製後200日まで、ウィスカ発生が観察されなかった。

図よりわからように、熱処理温度が 473～573 K の高温熱処理では、金属間化合物の面積率（生成量）は処理時間の対数に対してほぼ直線的に増加する。この傾向は処理温度に依らず共通している。

一方、熱処理温度が 333～393 K の低温熱処理では、金属間化合物の面積率（生成量）は処理時間とともに急激に増加する傾向が認められるが、高温熱処理温度、473～573 K と比較し、その増加度合いは低い。

3.4 金属間化合物の生成量の経時変化

めっき試料を室温で保管した場合、金属間化合物生成量がどのように変化するか、その経時変化を調査した。

Fig. 11 は、試料作製後室温で保管した場合、金属間化合物の面積率を保持時間の関係対数グラフに示したのである。図中には既報 2) の未熱処理材に関する結果も未熱処理材として併せて示されている。

図よりわかるように、未熱処理材では、めっき作製後最初の3日間後で、金属間化合物の面積率は 0 % から 10 % 程度まで急激に増加し、その後200日経過まで、面積率が約20%程度まで徐々に増加する。

一方、熱処理材では、熱処理によって金属間化合物が面積率で10～20%程度まで生成している。また、未熱処理材と比較して、明らかに金属間化合物の生成量は多いことがわかる。しかし、試料を室温保管した場合、熱処理材では、金属間化合物面積率の経時変化は、未熱処理材のそれと比較し少ない。多くの金属間化合物が生成する低温熱処理試料では、ウィスカ発生が認められない。一方、低温熱処理や高温短時間熱処理試料では、未熱処理材と同様にウィスカが発生した。例えば、393 K、処理時間の短い 600 s (○) や 1200 s (△) の試料、あるいは対数温度が大きく高い 473 K、処理時間が短い 25 s (●) の試料では、保存10日までにわずかに金属間化合物が増加している。これらの試料で増加した金属間化合物につい、未熱処理材同様に CuSn であると考えられるが、本実験においては金属化合物の生成量が少なく同定できなかった。

4. 熱処理による生成金属間化合物とウィスカ発生に

4.1 金属間化合物の生成形態に及ぼす熱処理の影響

Fig. 10 の熱処理後の金属間化合物の面積比とウィスカ発生の関係が示すように、低温熱処理と高温熱処理試料では、金属間化合物の生成量が 10～20% と同程度であっても、前者で
は、熱処理後50日までにウィスカが発生するが、後にウィスカが発生しないよう変化が生じた。従って、ウィスカが発生するか否かは、単に金属間化合物の生成量のみによって決まるわけではないことがある。

低温熱処理で、熱処理時間を短くした試料では、Fig. 6(a)に示すように、金属間化合物がSnめっきの結晶粒界にくさび状に、生成場所が不均一に成長している。一方、低温熱処理でも処理時間が短い(b)では、金属間化合物の生成はSnめっきの結晶粒界に限定され、全面に薄く均一に成長している。

一方(c)並びに(d)に示す高温熱処理試料では、金属間化合物はSn結晶粒界に限定されず、Sn/Cu界面全面に均一に成長している。

そこで金属間化合物の生成が、Sn結晶粒界に限定されず均一に生成するのか、あるいはSn結晶粒界に不均一に生成するのか、その形態について注目した。

金属間化合物の生成状態をFig. 12の模式図に示す。この模式図を参照し、(2)式で示される金属間化合物厚部長さ比（以下：輪郭長さ比）を定義した。これを、金属間化合物の均一、不均一の度合いを表す尺度とした。輪郭長さ比の値が1を越えることは、生成する金属間化合物が全面を覆うように均一に成長していることになる。輪郭長さ比が1より大きくなると、生成する金属間化合物が局所的に成長し、凹凸した不均一な形状をしていることを示す。

\[
\text{金属間化合物厚部長さ比} = \frac{\text{金属間化合物 - Snめっき界面長}}{\text{Cuめっき - 金属間化合物界面長}}
\]

Fig. 13 では、温度を変化させ、各温度に熱処理時間の対数をとり、両者の関係を整理したものをある。図からわかるように、金属間化合物の形状は、熱処理温度が333～393 Kの低温熱処理のグループと、473～573 Kの高温熱処理の2つのグループに分けることができる。低温熱処理では、金属間化合物の輪郭長さ比は1.2以上と比較的大きい。一方、473～573 Kの高温熱処理では、金属間化合物の輪郭長さ比は1.3以下となる。

以上の結果から、低温熱処理では、金属間化合物は、Sn-Cu界面でSn粒界を優先路として発生した。そのため、凹凸が多い不均一な生成形態を示す。一方、高温熱処理では、拡散現象の活性化により金属間化合物は多く生じる。そのため、金属間化合物はSn-Cu界面全体を均一に被るように生成する。

Fig. 14 は、実験結果を示すために製作した試料の成長モデルを、低温・高温熱処理、並びに熱処理時間の関係について、模式的に示したものである。

低温熱処理では、Sn粒界はCuの拡散速度が遅いので、粒界にくさび状の金属間化合物が選択的に生成する。一方、Sn粒界を除く場所では粒内の拡散となるが、この経路は、粒界拡散に比べ拡散速度が遅いため金属間化合物が生成されない。従って低温熱処理では、金属間化合物は不均一な生成形態を示す。

高温熱処理では、熱処理によって結晶粒内拡散の速度が向上すること、また、熱処理温度がSnの液点504.9 K近く、もしくはそれ以上であるため、Fig. 5に示すように再結晶もしくは部分的な融解による結晶粒界的消失がおこっていると考えられる。そのため、高温熱処理では、結晶粒界での金属間化合物の優先的な成長の割合が低下し、金属間化合物は空間全体を均一に被うように生成する。

4.2 ウィスカ発生に及ぼす熱処理の影響

金属間化合物の生成面積比、輪郭長さ比がウィスカの発生にどのような影響を及ぼすかについて検討した。Fig. 10の金属間化合物の面積比と熱処理時間の関係、並びにFig. 13の輪
図中の点線はウィスカの発生領域と発生しない領域の境界を示したものである。点線より左上側領域では、熟処理後50日までにウィスカが発生している。この領域は、金属間化合物の生成量が10％以下と少ない。15～20％と多い場合でも、金属間化合物の生成量が12以上の金属間化合物が不均一に生成する領域である。金属間化合物が15～20％と多く生成する領域では、金属間化合物が一部のSn結晶粒界に多く生成し、ほとんど、または、わずかしか生成しないSn結晶粒界が存在することを示している。一方、点線の右下のウィスカが発生しない領域は、金属間化合物の生成量が10％以上と多く、かつ、輪郭長さが1.2以下の金属間化合物が均一に生成する領域である。

以上、まとめると、金属間化合物が均一に多く生成する領域、すなわち高温熱処理かつ長時間熱処理ではウィスカの発生が抑制される。

面積の未処理材では、CuのSn粒界への優先的な拡散によりSn結晶粒界近傍に金属間化合物が生成し圧縮残留応力が発生する。この残留応力を解消するために、Sn結晶粒界直上のSnがウィスカとしてSn面に発生することを報告した。

本報の低温熱処理、短時間熱処理試料におけるSnウィスカ生成機構は、既報の未処理材におけるものと同一であると推察される。

一方、高温熱処理、長時間熱処理ではSnウィスカ生成は認められなかった。これは、金属間化合物がSn粒界近傍だけではなく、Cu-Sn界面全体を均一に被るように生成することに関係すると考えられる。金属間化合物の生成によりSnめっき膜に生じる圧縮残留応力は、CuとSnの界面全体に生じ、特定の箇所に大きな圧縮残留応力が生じない。従って、未処理材におけるような、Sn粒界近傍限界型のウィスカが生成しない。

高温熱処理、長時間熱処理において、Snウィスカ生成が生じにくいもう一つの理由は、高温による結晶粒粗大化、結晶粒界の消滅によるSn結晶粒数の減少によって、Sn粒界近傍限界型のウィスカが生じにくくなることが考えられる。

Fig. 16 未処理材、高温熱処理材（573 K）の保護膜が無い部分、めっき表面とめっき断面の同じ場所を撮影したものである。上段と下段の図は、それぞれめっき表面、めっき断面にコントラストを調整し、撮影した写真を示している。図中の矢印は同一場所を示している。未処理材に対する。Fig(a)と(a')から、(1)Sn結晶粒界に沿って、金属間化合物がくさび状に生成している。Sn結晶粒界のめつき表面の盛り上がった一つの一つの柱状の山に対応している。と(3)谷部がSnの結晶粒界に対応していることがわかる。一方、Sn結晶粒界のめつき表面は熱処理により一部が溶融し平滑になっている。また、めっき断面には、未処理材と異なり、粒界が認められない。金属間化合物はCuとSnの界面全体に生じている。以上のFig.16の観察結果は、前述の推論と対応している。

以上の結果により、高温でかつ長時間熱処理を施すことによって、
均一な膜厚で多量の金属間化合物を生成させることで、くさび状の金属間化合物の発生を抑制し、ウィスカ発生を抑制することができる。既報の未熱処理材の結果と比較しても、熱処理による有効性が確認できた。

5. 結 言

Sn/Cu 2層めっき界面に熱処理により生じる金属間化合物の形態とウィスカ抑制の関係について、Sn めっき断面の金属間化合物の生成量、形態とウィスカの発生の関係を調査し、以下の結論を得た。

(1) 熱処理により生成する金属間化合物は Cu$_3$Sn である。熱処理温度、並びに熱処理時間の増加に伴って生成する金属間化合物の量は増加する。また、低温熱処理では、金属間化合物は結晶粒子にくさび状に不均一に成長した。一方、高温熱処理では、金属間化合物は膜状に生成し、その断面形状はドーム状を呈している。

(2) 熱処理によりウィスカの発生を抑制できた。ただし、金属間化合物の生成量の少ない低温熱処理や短時間の熱処理では十分にウィスカ発生を抑制できなかった。

(3) 高温熱処理、長時間熱処理では Sn ウィスカ生成は認められなかった。金属間化合物は、Sn 粒界近傍ではなく、生成場所全体を均一に被うように生成した。金属間化合物の生成により生じる圧縮残留応力は、Cu と Sn 結晶粒の界面全体に生じる。そのため、非熱処理材におけるような Sn 粒界近傍限定型のウィスカが生成しない。

(4) 低温、短時間熱処理では、Cu は Sn 結晶粒界に優先的に拡散し Cu$_3$Sn 金属間化合物を形成する。しかし金属間化合物は Sn 粒界に優先的に成長するため、Sn 結晶粒界近傍に圧縮残留応力が生成する。この残留応力を解消するために、Sn 結晶粒界上の Sn がウィスカとして Sn 面に発生した。

ウィスカの生成を少なくするためには、金属間化合物量とその形状が重要である。本実験におけるめっき条件 Cu 1 μm，Sn 2 μm のめっきでは、金属間化合物の量として面積比が 15%程度以上、生成形状として輪郭長さ比を 1.3以下にすることでウィスカの発生を抑制できる。

文 献

1) Y. Kadota: J. Reliab. Eng. Assoc. Jpn. 34(2012) 474-479.
2) S. M. Arnold: Plating 53(1996) 96-99.
3) M. Hino, K. Murakami, Y. Mitooka, K. Muraoka and M. Takamizawa: J. Surf. Finish. Soc. Jpn. 62(2011) 41-46.
4) K. Murakami, M. Hino, M. Takamizawa and K. Nakai: J. Japan Inst. Metals 72(2008) 169-175.
5) Y. Sakamoto, S. Takehara, W. Yamaaki, M. Shimura and S. Isihara: J. Japan Inst. Met. Mater. 81(2017) 226-233.
6) A. Nishimura and M. Nakamura: J. Jpn. Inst. Electrom. Packag. 13(2012) 357-364.
7) A. Nishimura: J. Jpn. Inst. Electrom. Packaging 11(2008) 348-355.
8) K. Suganuma: J. Surf. Finish. Soc. Jpn. 59(2008) 210-217.
9) N. Okamoto, Y. Fujii, H. Kurihara and K. Kondo: J. Japan Inst. Metals 72(2008) 413-419.
10) G. T. Galyon: IEEE Trans. Electron. Packag. Manuf. 28(2005) 94-122.
11) B. Z. Lee and D. N. Lee: Acta Mater. 46(1998) 3701-3714.