TMT group decision method based on system dynamics and game control theory

Yilei Jiao¹ · Yuhui Ge¹ · Meng Chenli²

Accepted: 13 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The game of group decision-making of top management team is the difficulty of research. It will provide new ideas for the breakthrough of this research to study the evolution process of internal conflict of top management team by using game theory method, to study the model of solving internal behavior conflict of top management team by using cybernetics method, and to analyze the game and control of group decision-making of top management team by using system dynamics method. In this paper, the interaction, decision-making process and control methods of TMT group decision-making are described in detail from the perspective of random game and control. Based on the combination of game and control, TMT group decision-making is studied, and a new theoretical model of TMT group decision-making is proposed.

Keywords Top management team (TMT) · Game control theory · Group decision making

1 Introduction
On March 11, 2020, Director-General Tam Desai of the World Health Organization announced a global alert that the COVID-19 pneumonia epidemic had evolved into a pandemic, known as the coronavirus disease 2019 (COVID-19). The COVID-19 pandemic has had a strong negative impact on both the global economy and society, causing financial markets to fluctuate. There are signs of a recession owing to the global economy’s volatility in the face of an “economic depression,” and the COVID-19 pandemic could cost the world economy trillions of dollars in the next five years. The pandemic has directly impacted the real economy, especially tourism, air transport, retail, and other service and manufacturing...
industries, triggering financial market turmoil and shutting down small and medium-sized enterprises. With the global pandemic of COVID-2019 and the needs of economic development after the epidemic, the increasingly fierce external environment and rapidly changing internal environment bring about dramatic changes in the organizational ecological environment, which requires the top management team to continuously gather core competitiveness and improve performance. There is a high degree of uncertainty in the internal and external environment of the top management team, which makes the complexity, variability and risk of the decision-making environment far beyond the ability of the top management team and its individuals. It is difficult to make a satisfactory decision only by the wisdom and experience of the top management team, so we need to use the advantages of the top management team group decision-making to achieve the decision-making goals. The real economy refers to all the economic factors, whether real or non-financial. An economy can be described only by means of real variables. A barter economy is an example of a non-financial economy. All goods and services are purely in actual fact represented. The non-cooperative theory of games addresses how rational economic players work together in order to achieve their own objectives. A strategic game that lists only the available strategies, and the result of a combination of options, is the most common non-cooperative game. Although many types of game theories, cooperative and non-cooperative game theories are most frequently used, such as symmetric/asymmetric, simultaneous/sequential and others. Cooperative theory of games deals with the interaction of coalitions or cooperation groups when payoffs are known. For example, flocculation, education, herding and cooperative behavior like hunting, migration and swarming could also be considered for groups.

2 Research status

The common point of game theory and cybernetics is to manipulate or optimize decisions. The difference is that the object of cybernetics is non intelligent individuals or systems, and the object of game theory is “people” or agents. In the complex system of the top management team, in the use of game theory modeling, the application of cybernetics to achieve the optimization goal, the strategy optimization and overall emergence of the individual decision-making of the multi-agent of the top management team, realize the behavior integration and cooperation in the non-cooperative game. Group decision-making is to take the group as the main body of decision-making, make the best or satisfactory choice on the basis of comprehensive analysis of decision-making problems, according to various rules and standards, using various technical means.

Because the individual in the group decision-making of the top management team is not only the decision-maker but also the executor, cooperative game and non-cooperative game are the main forms of decision-making strategies. Cooperative game is the existence of cooperation, transaction mechanism and benefit distribution in decision-making, which encourages executives to form behavior integration (Alliance), and then improves the individual income of the executive team in decision-making game. Non-cooperative game can analyze the strategic decision-making process of multiple executives. Aiming at the problem of group decision-making of TMT, TMT as a game participant, will have a strategy set of behavior conflict and behavior integration. Considering the situation of non-cooperative game (conflict) decision-making, it may lead to decision deviation between TMT group decision-making behavior and its expected equilibrium point. The game control method is used to compensate the decision-making behavior deviation of the top management team group, so
that the top management team can still reach the expected equilibrium point in the conflict situation, and obtain the ideal decision-making performance benefits. A person makes prompt choices generally. Although different people dominate a group, decision-making takes a lot of time. In addition, assembling members take a lot of time. Puzzle games such as Tetris and Bejeweled have demonstrated that depression, stress and even flashing after a traumatic occurrence have been reduced. Games may have unique structural characteristics that do not offer traditional therapies. Recent experience suggests that video games can facilitate therapeutic connections, supplement the psychological evaluation of young people through the assessment of cognitive skills, and develop and clarify conflicts during treatment.

Top management cooperation game is divided into static game and dynamic game. In the static game, executives only take one action, time or information does not affect executives’ decision-making strategy choice. In the dynamic game, executives can obtain the decision information of other participants or external brain, and can take more than one decision-making action. The main factor of decision-making is time. The decision-making process of TMT group is influenced by environment, interests and other factors. In fact, the non cooperative game of executives is a distributed decision-making. The non cooperative game does not always mean that there is no cooperation between executives, but that there is no communication or strategic coordination between executives when they cooperate. Using non cooperative game to analyze the complex communication between executives, constructing the communication mechanism between multiple executives, and realizing the two-way communication between executives can achieve the best demand response of the decision-making performance of the top management team. Excessive video games are found to be linked to positive emotions and social ties. However, problem and excessive video gaming also involves maladaptive coping, negative feelings and behaviour, low personal self-esteem, loneliness and poor academic performance. According to a new report, gambling could help to reduce depression and anxiety symptoms, which may well take time. These games help to foster a sense of social connectivity, achievement and emotional control skills.

Group behavior, also known as cluster behavior, is herding behavior, which originates from the concept of human socialized consistent behavior. Herd behavior is when most people collectively have the same thoughts, feelings, and actions. Under the emergency epidemic scenario, the decision-making subject of “herding behavior” means that the decision-making individual adopts a strategy because of the influence of other decision-makers’ behavior strategies. The decision-making subject’s behavior choice is to imitate the public or heavily rely on public opinion. The decision of the group is Determine the decision to be taken, Set out criteria to analyse the matter under discussion. A game controller, a game controller or just a controller is an input device that is used to control the object or character of the games with video games or entertaining systems. Summarizing the mission, aims and strategies of their companies, as well as the selection of structural options over other projects, top management can indirectly influence new product development projects. The main variable here is the quality of the input materials document, assess and monitor process variation.

Behavior has a great impact on group decision-making. For the decision-making process of the decision-making individual, its psychological characteristics play an important role in individual decision-making. The prospect theory assumes that the person is finite and rational and shows the thinking process and psychological activities in the decision-making process. It can better depict the decision-making performance of high-tech enterprise high-level echelon individuals in the face of uncertainty and complexity. Parameter to select a desired metric to display the corresponding metric in a calculated field The heterogeneity of a distributed organization network forms the decision model of high-tech enterprise echelon cooperation and conflict behavior. The research model based on empirical research lacks dynamism.
because it ignores the influence of time and environment on decision-making and the dynamic influence of environment on the integration and conflict behavior of decision makers. We thus conduct an in-depth analysis of the decision-making process based on this. This study uses a dynamic simulation method to solve the problems caused by the empirical method. Its automatic operation is the key feature of the cybernetic control. A number of important factors affect decision-making. Important factors include past experiences, a wide range of cognitive impediments, an escalation of commitment and drowning outcomes, individual differences, and age and socio-economic status. Take into consideration the diagrammatical model of a cybernetic control system shown in the figure, which uses inputs to a process which transforms them into outputs. Differential games in game theory constitute a group of issues relating to conflict modelling and analyses within a dynamic system.

2.1 The cybernetic explanation of top management team behavior conflict

1. In the model of cybernetics, decision maker, environment and conflict are the three main factors. Neumann J V and morgensterno’s the theory of games and economic behavior (Neumann & Morgenstein, 1944) pointed out that there are three elements in a game: players, strategy sets, and the utility or income corresponding to the selected strategy. Nash J F (Pham et al., 2020) put forward the concept of Nash equilibrium (also known as strategic equilibrium) in 1950. No individual can increase his income by unilaterally changing his own strategy. Top management team (TMT) is a decision maker who participates in group decision-making. Environment is a variety of factors that affect the behavior of TMT, and conflict is the behavior strategy set of TMT decision-makers (Nguyen et al., 2020). In the control process of individual decision-making of executives, executives choose decision-making strategies and control variables according to their personal decision-making knowledge structure, environment and input variables. Due to the role of decision-making and experience feedback, the control process of decision-making becomes a closed loop to realize cyclic iterative control (Lopez et al., 2018 and Gao et al., 2020a, b).

2. Influencing factors of group decision making. Guo (2014) pointed out that TMT decision-making is mainly affected by three kinds of factors: first, team factors, including TMT personnel characteristics, TMT structural factors and TMT team operation factors, including decision-making behavior, decision-making process and decision-making process; Third, other factors, including resources, environment, information, demand and non decision-making participation; The factors of TMT personnel characteristics not only affect the average level and consistency of TMT characteristics, but also the factors of TMT decision-making behavior and TMT decision-making process are directly affected by the average level and heterogeneity of TMT characteristics. In addition, the average level and heterogeneity of TMT personnel characteristics also indirectly affect the decision-making process through other factors. Other factors seem to be some external factors, but TMT heterogeneity will also have an effect on information screening and demand aggregation, thus affecting the decision-making effect. It can be seen that the average level and heterogeneity of TMT personnel characteristics are the root of TMT decision-making differences. It is found that decision-making behavior, decision-making process and decision-making process are the key factors influencing the strategic decision-making of top management team (Failed, 2014). Most people attempt, as mentioned, to avoid conflict, but in the case of a dispute, most people approach conflict in one of three fundamental behavioural styles: passive or unassertive conduct, aggressive
conduct, or assertive conduct (Sommer et al., 2015). A multilateral bargaining involves a group of 3 or more people, all of them representing their own interests, trying to settle perceived interest differences or working together to achieve a collective goal. Two main features of small world networks are: shorter average distance and high clustering (measured by the local clustering coefficient).

At the micro-level, social network research typically starts with an individual, snowballing as social relationships are traced or may start in a particular social context with a small group of individuals. Dyadic level: a dyad is the social connection of two people. Persons with a moderate income are those earning 80–120% of median income from NSW or Sydney.

2.2 Game theory explanation of behavior conflict of top management team

In cybernetics, we can define the feasible strategy set of behavior conflict as \mathcal{U}. We can use the function $u = f(I, s, c)$, where the decision-making environment of executive group is variable I; The strategy set variable s of executive behavior conflict; The personal characteristic variable C of executives. The personal characteristics of executives, such as personality, habits, knowledge and experience, are the variables of executives, which determine which strategies decision makers will choose when facing specific conflicts. When the game of top management team produces behavior conflict, when there are two or more top management decisions, the decision will be affected by several control variables, and the uncertainty of the decision variables of top management team will be enhanced. In this case, it needs to use the method of game theory to study. Through several or more games, executives can solve behavior conflicts, achieve behavior integration, and form a balance of interests (Nash equilibrium).

The reason for the game of TMT is that the power among executives is unbalanced. In order to obtain the maximum benefit in the game, executives may take the decision-making strategy of alliance with other executives. There are two conditions for the formation of executive Alliance: first, the formation of executive alliance can obtain more benefits than non alliance; Second, the alliance executives have common goals or interests. As the game between executives is constantly changing, the state of alliance among executives is also unstable. It is the interests that determine the state of executive alliance, and the result of executive game is the contrast of executive alliance power. We need to control the interests of executives to achieve the balance of decision-making game.

The concept of group decision making was put forward by black. D in 1948. Hwang defined group decision making as a kind of group preference order in which the preferences of different members about each scheme in the scheme set are aggregated into a consistent or compromised group preference order of the decision group according to some rules. To study the group decision-making of the top management team, we should construct a five stage decision-making process of the top management team, including the decision preparation stage, the scheme formation stage, the scheme selection stage, the communication reflection and feedback stage, and the decision implementation stage. The game and control of the top management team in the group decision-making can provide a scheme for opening the “black box” of the group decision-making of the top management team.
3 Game control model for group decision making of top management team

Influenced by the network topology, individual quality and decision preference strategy of TMT, a large amount of random information will be generated in the process of group decision-making of TMT. Through the analysis and induction of these random information, the dynamic evolution characteristics and population interaction characteristics are analyzed. According to the graph theory model, the topology of TMT network can be star, ring, tree and cobweb, as shown in the figure.

According to the small world network model, if random connections are added to the small world network, a small path network and a micro complex network will be formed. In complex network topology, top management team can be expressed as $G = (V, E, W)$. Where $V = \{V_1, \ldots, V_N\}$ is an individual set with n executives, e is an edge set, and $w = (W_{ij})_{n \times N}$ is the weight matrix of the network, which is used to describe the interaction strength between executives. In the complex network of TMT, the clustering coefficient can describe the aggregation degree of executives, and the degree distribution indicates that each executive has the same proportion of neighbors or preferences, and the close executives usually have closer ties. In order to simplify the individual high complexity and high dynamic problems of top management decision-making and characterize the characteristics of the micro complex network of top management team (TMT), we can use the stochastic game optimization strategy and its control method architecture to provide solutions for group decision-making, complex behavior evolution and stochastic optimization problems in the micro complex network of TMT.

(1) Stochastic game network graph model

In the random game network model, there is uncertainty in the random behavior of executives, so the number of executives n fluctuates accordingly. Through the utility function of individual executives, the objective function of group decision-making of top management team is used to simulate the objective function of random group decision-making of top management team. The probability property of individual executives’ behavior can be described by robust stochastic model, and then solved by Pareto optimization method. In order to study the controllable random load of the group decision-making dynamic system of executives and TMT, we can build a stochastic differential game framework model about a single executive and multiple executives, and use the way of meeting or voting to interconnect strategies and information.

(2) Behavior deduction of micro complex network

At the top level, record and analyze the meeting or voting process in detail; At the bottom, executives participate in group decision-making through information sharing. By solving the stochastic Hamilton Jacobi Bellman equation, the optimal closed-loop control strategy and Nash equilibrium solution can be obtained.

(3) Research on game control method

The knowledge and ability that executives need for their own knowledge structure and random decision-making is modeled as a Markov decision-making process to study the long-term interaction and state evolution between executives and TMT. In incomplete information stochastic game, Markov perfect equilibrium (MPE) is used to approximate the optimal decision-making strategy of executives. Executives can expect the knowledge structure needed for decision-making, learn relevant professional knowledge from the past
decision-making process and results, improve relevant professional ability, and realize droop robustness, MAS collaboration, $H \infty$ control and timely adjustment of executives’ group decision-making.

The optimization strategy and control strategy of top management team random game are shown in the figure. Under the complex random network graph model, the multi decision group model of top management team is constructed, the complex network behavior between the interactive agents in the decision network of top management team group is deduced, the individual function of top management is constructed, and the existence of Nash equilibrium is proved. The strategy describes the optimal scheduling of TMT random decision, the collaborative management scheme including TMT, behavior conflict and behavior integration mode, and studies the regulation frequency control method of TMT individual group decision-making demand side participation in group decision-making, as shown in the table below.

In the more complex social or economic system composed of artificial intelligence and fickle people, it is difficult to simulate the conventional control or game model because of the “potential game” game behavior of the regulated objects in this kind of system, but the behavior integration of top management team can be regarded as the emergence of the game system after simplification. The main idea of liut (Zhang et al., 2021) is to design the payoff function to make the optimization objective of the system become the potential function, and then determine the algorithm to make the system reach the extreme point of the potential function.

(1) Suppose that the group decision-making of TMT can be assumed as a linear system:

$$Y = Ax + Bu,$$ \hspace{1cm} (1)

The optimization goal of cybernetics, Min here

$$J = \int_0^\infty \left[y^T Q x + u^T R u \right] dt$$ \hspace{1cm} (2)

The optimal solution of the above equation is

$$u^* = -R^{-1}B^TPY,$$ \hspace{1cm} (3)

When $p \geq 0$, the algebraic Riccati equation is satisfied

$$PA + A^TP = Q - PBR^{-1}B^TP = 0,$$ \hspace{1cm} (4)

Considering that the decision-making of TMT is multi-objective control, set the system as

$$Y = Ax + B_1u_1 + B_2u_2$$ \hspace{1cm} (5)

The optimal solution J_i, $i = 1, 2$ can be obtained

$$\min_{j_i} := \min_{j_i} \int_0^\infty [x^T Q_i x + u^T R_i u] dt \quad i = 1, 2 \ldots$$ \hspace{1cm} (6)
In this way, the control optimization problem can be combined with the game problem, and the Nash equilibrium solution of the above formula is

\[
\begin{align*}
\mathbf{u}_1^* &= -R_1^{-1} \mathbf{B} \mathbf{T}_1 \mathbf{P}_1 \mathbf{x}, \\
\mathbf{u}_2^* &= -R_2^{-1} \mathbf{B} \mathbf{T}_2 \mathbf{P}_1 \mathbf{x}.
\end{align*}
\]

(7)

\(\pi > 0, \mathbf{I} = 1,2 \), coupled algebraic Riccati equation:

Referring to Jiao Yilei’s (2021) particle swarm dynamics model for group decision making of top management team (Jiao et al., 2021): referring to the system dynamics model, this paper designs and establishes the system dynamics model for group decision making of top management team, assuming that the total number of top echelons of a mixed ownership reform enterprise is 160, the income parameter is 22, the initial communication probability is 0.05, and the initial integration number is 10. Anylogic software is used for simulation and simulation. To ensure the scientificity and effectiveness of the model, the following assumptions are made.

Hypothesis 1: to achieve the goal of group decision-making, the TMT needs stable team structure and reconfiguration. There are two stages in the restructuring of TMT: behavior conflict and behavior integration.

Hypothesis 2: the improvement of decision-making performance is positively related to the evolution of TMT behavior conflict and integration, so group decision-making performance is used to measure behavior conflict and integration performance.

Hypothesis 3: influenced by the internal and external factors of TMT, the knowledge and experience of TMT will be positively correlated with the change of time and project experience, and after reaching a certain critical value, it will begin to decline with the increase of time and the number of projects not increasing with time.
Based on the Stackelberg game theory, the leader of the top management team (General Manager) is regarded as the leader of the game, and the other executives are regarded as the followers of the game. In the traditional Stackelberg game model, the game followers maximize their own interests through non cooperative game. Therefore, the overall effectiveness of the top management team can not achieve the optimal. Usually, the game follows the executives through cooperative game, and uses the person in charge of the top management team or other ways to compromise and bargain with the executives to improve the overall efficiency of the decision-making of the top management team group. The game control algorithm of TMT group decision-making is: firstly, based on the Stackelberg game theory, the person in charge of TMT is regarded as the leader of the game, and the other executives are regarded as the followers of the game. Secondly, the non responsible executives are constrained by the unified group decision-making mechanism of the TMT, while the TMT leaders control the group decision-making probability of the whole TMT by adjusting the probability of their communication with other executives or other executives, so as to maximize the group decision-making benefits of the TMT. Then, the game utility function of TMT leader and other executives is designed, and the control optimization model of TMT based on Stackelberg game is established. The optimization model can minimize the internal communication probability of executives and realize the fairness of other executives participating in group decision-making under the conditions of meeting certain group decision-making performance objectives and communication resource constraints. Finally, the game control problem of top management team group decision-making based on Stackelberg game is transformed into a classical optimization problem. Newton iteration method is used to obtain the iterative formula of the optimal information communication probability of each top management, and the existence and uniqueness of Nash equilibrium optimization solution can be proved. The computer simulation shows that the Stackelberg game based group decision-making game control algorithm can effectively reduce the invalid communication probability of the remaining executives under the conditions of meeting certain group decision-making objectives and communication probability resource constraints, not only reduce the interference to the remaining executives, but also effectively improve the group decision-making efficiency.
A good optimization between communication probability and decision performance is achieved.

The top management team is simplified as multi-agent (agent), and then by using the Anylogic software, the simulation is shown in the figure below: the agent movement diagram of the group decision of the top management team is obtained through the simulation.

For the convenience of measurement, the main parameters are measured and calculated according to the dominant quality of Ge Yuhui’s high echelon competency model. The integration kinetic energy of the i-th executive can be expressed as follows:

$$E_i = \frac{(M_i V_i^2)}{2}$$ (8)

Among them, M_i is the dominant quality set of executive I, and V_i is the promotion speed of the dominant quality set of executive I. The integration potential energy of the i-th executive can be expressed as:

$$E_i = M_i H_i G$$ (9)

Among them, M_i is the explicit quality set of executive I, H_i is the gap from the average value of the dominant quality of the top management team, and G is the acceleration of the improvement of the dominant quality. Using Anylogic software to calculate the kinetic energy and potential energy evolution diagram of TMT group decision-making as shown in the figure below.

4 Conclusion

From the analysis of Figs. 1 and 2, we can see that the kinetic energy and potential energy of group decision-making of TMT are not the simple summation calculation of kinetic energy and potential energy of individual decision-making of TMT, but there are complex conflicts and internal relations of integration, which need further research. The overall decision-making kinetic energy of TMT group decision-making gradually increases with the advance of group decision-making time, while the decision-making potential energy gradually decreases with the advance of group decision-making time, which indicates that with the increase of behavior integration, the behavior conflict within TMT decreases, the small alliance among executives gradually forms a larger alliance, and the gap of internal dominant quality h is gradually narrowing.

Through the analysis of the control and game behavior of behavior conflict and behavior integration, in order to achieve the expected decision-making performance, we should pay attention to the following aspects:

1. Pay attention to the role of executive decision-making environment. In order to prevent the further expansion of decision-making behavior conflict, we should formulate the group decision-making mechanism of the top management team, implement the standardized rules, regulations and rules to standardize the measures taken by the top management when dealing with the decision-making behavior conflict, and create a harmonious atmosphere and mechanism in the group decision-making process.

2. Guide the direction of multi-party game. In the game process of senior management decision-making, it is very important to let as many senior managers as possible clearly know the team’s decision-making objectives. Therefore, the “top leader” of the senior
management team is an “invisible hand”, which not only participates in the decision-making game, but also controls the decision-making process and direction, so that the behavior conflict of senior managers can be reasonably intervened and guided.

(3) Pay attention to the art of multi-party negotiation. Negotiation is the only way to solve decision-making conflicts among executives. When dealing with decision-making behavior conflicts, TMT should reduce order intervention and create more conditions for executives to solve behavior conflicts through negotiation. When it is difficult to form behavior integration due to behavior conflict, the “top leader” of the top management team can form a new game balance among the interests of all parties of the top management team under the situation of behavior integration by forming alliances, stopping malicious alliances, supervising negotiations, hosting negotiations, communicating views, conveying information and coordinating the interests of all parties.

5 Discussion and prospect

In this paper, we use the method of system dynamics to study the game interaction and control method in group decision-making of top management team from the perspective of random game and control. By analyzing the system architecture of group decision-making, the interaction form of multi group game and the random model of individual executives, a random game optimization strategy and its control method architecture of group decision-making of top management team are proposed. At present, this paper only discusses the stochastic game control and optimization problem under the micro complex network of the top management team, and mostly focuses on the static model, which may not reflect the actual situation. However, with the support of intelligent decision-making system in the future, through the gradual introduction of dynamic game model, this paper makes an in-depth study on the randomness of distributed group decision-making of top management team, the dynamic schedulable method of individual quality, and various random factors such as external think tanks.

Acknowledgements This research was funded by National Soft Science Research Project: Research on the influence mechanism of executive team reflexive behavior on enterprise performance in complex and changeable environment; Project Number: 2013 GXQ4D165; Ministry of Education Humanities and Social Sciences Fund Project “Research on the impact of cognitive evolution of senior echelons based on team life cycle on decision performance”; Item Number :17 YJA630020.

References

Gao, J., Wang, H., & Shen, H. (2020a). Task failure prediction in cloud data centers using deep learning. In IEEE transactions on services computing (pp. 1111–1116).
Gao, J., Wang, H., & Shen, H. (2020b). Smartly handling renewable energy instability in supporting a cloud datacenter. In 2020 IEEE international parallel and distributed processing symposium (IPDPS) (pp. 769–778). IEEE.
Guo, R. (2014). Analysis and optimization of decision-making factors of enterprise top management team. Hebei: Hebei University of Technology.
Jiao, Y., Ge, Y., & Liu, H. (2021). The impact of mixed ownership reform on the decision-making behavior of top echelons based on prospect theory. Economic Research Guide, 2021(13), 8–11.
Lopez, D., Manogaran, G., Varatharajan, R., & Abbas, K. M. (2018). An intelligent decision support system to prevent and control of dengue. Journal of Ambient Intelligence and Humanized Computing, 188, 1–17.
Nguyen, T. N., Liu, B. H., Nguyen, N. P., & Chou, J. T. (2020). Cyber security of smart grid: attacks and defenses. In ICC 2020–2020 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.
Pham, D. V., Nguyen, G. L., Nguyen, T. N., Pham, C. V., & Nguyen, A. V. (2020). Multi-topic misinformation blocking with budget constraint on online social networks. *IEEE Access, 8*, 78879–78889.

Sommer, S., Howell, J., & Hadley, C. (2015). Keeping positive and building strength. *Group and Organization Management, 41*(2), 172–202.

Von Neumann, J., & Morgenstein, O. (1944). *Theory of games and economic behaviour*. Princeton University Press.

Zhang, X., Manogaran, G., & Muthu, B. (2021). IoT enabled integrated system for green energy into smart cities. *Sustainable Energy Technologies and Assessments, 46*, 101208.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.