Brief Report

Hypsugopoxvirus: A Novel Poxvirus Isolated from Hypsugo savii in Italy

Davide Lelli 1,* , Antonio Lavazza 1, Alice Prosperi 1, Enrica Sozzi 1, Francesca Faccin 1, Laura Baioni 1, Tiziana Trogu 1, Gian Luca Cavallari 2, Matteo Mauri 2, Anna Maria Gibellini 2, Chiara Chiapponi 1 and Ana Moreno 1,2

1 Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via Bianchi 9, 25124 Brescia, Italy; antonio.lavazza@izsler.it (A.L.); alice.prosperi@izsler.it (A.P.); enrica.sozzi@izsler.it (E.S.); francesca.faccin@izsler.it (F.F.); laura.baioni@izsler.it (L.B.); tiziana.trogu@izsler.it (T.T.); chiara.chiapponi@izsler.it (C.C.); anamaria.morenomartin@izsler.it (A.M.)
2 Wildlife Rehabilitation Center WWF of Valpredina via Pioda n.1, 24060 Cenate Sopra (BG), Italy; clivetorzi@gmail.com (G.L.C.); info@oasivalpredina.it (M.M.); pipistrelli@valpredina.eu (A.M.G.)
* Correspondence: davide.elli@izsler.it; Tel.: +39-030-2290361

Received: 2 May 2019; Accepted: 17 June 2019; Published: 19 June 2019

Abstract: Interest in bat-related viruses has increased considerably during the last decade, leading to the discovery of a rising number of new viruses in several bat species. Poxviridae are a large, diverse family of DNA viruses that can infect a wide range of vertebrates and invertebrates. To date, only a few documented detections of poxviruses have been described in bat populations on three different continents (America, Africa, and Australia). These viruses are phylogenetically dissimilar and have diverse clinical impacts on their hosts. Herein, we report the isolation, nearly complete genome sequencing, and annotation of a novel poxvirus detected from an insectivorous bat (Hypsugo savii) in Northern Italy. The virus is tentatively named Hypsugopoxvirus (HYPV) after the bat species from which it was isolated. The nearly complete genome size is 166,600 nt and it encodes 161 genes. Genome analyses suggest that HYPV belongs to the Chordopoxvirinae subfamily, with the highest nucleotide identity (85%) to Eptesipoxvirus (EPTV) detected from a microbat Eptesicus fuscus in WA, USA, in 2011. To date, HYPV represents the first poxvirus detected in bats in Europe; thus, its viral ecology and disease associations should be investigated further.

Keywords: bats; poxvirus; Italy

1. Introduction

Poxviruses are dsDNA viruses with large genomes (130 to 360 kb) that belong to the family Poxviridae. The family is divided into the Entomopoxvirinae and the Chordopoxvirinae subfamilies of viruses, which infect insects and vertebrates, respectively. According to the International Committee on Taxonomy of Viruses (ICTV) 2017 Release [1], 11 genera have been created to classify Chordopoxviruses (Avipoxvirus, Capripoxvirus, Centapoxvirus, Cervidpoxvirus, Crocodylidpoxvirus, Leporipoxvirus, Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, Suipoxvirus, and Yatapoxvirus), but other viruses remain unclassified and new genera are likely to be recognized in the future. Poxviruses show a diverse host range, with some viruses having wide host tropism (e.g., Orthopoxviruses) and thus being consequently associated with greater zoonotic risks [2], and others having strict host specificity.

In recent decades, bats have been increasingly recognized as reservoirs of emerging viral infections, which have important ramifications for animal and public health [3]. However, the majority of bat-borne viruses that can cause severe diseases in humans and other mammals, do not cause apparent clinical signs in bats. Consequently, it has been assumed that bats may have a “special” relationship with
viruses based on physiological, ecological, evolutionary, and/or immunological aspects, which allow them to act as special viral reservoirs with exaggerated viral richness [4–7].

Currently, four poxviruses from the Microchiroptera and Macrochiroptera suborders have been detected in bat populations on three continents (America, Africa, and Australia) [8]. Specifically, Eptesipoxivirus (EPTV) was isolated in North America in 2011 from Eptesicus fuscus [9,10]; Eidolon helvum poxvirus 1 (EHPV1) was detected in West Africa in 2009 from Eidolon helvum [11]; the Pteropox virus (PTPV) was identified in Northwestern Australia in 2015 from Pteropus scapulatus [12]; and a fourth poxvirus was also identified in South Australia from Miniopterus schreibersii bassanii in 2009 [13]. It is remarkable that these viruses are phylogenetically divergent and are associated with variable clinical manifestations.

Virological investigations focused on poxviruses in bat populations may have a positive impact for future ecological studies of bat–pathogen interactions. Moreover, from the perspective of the One Health approach, bats could benefit from these studies, since European bat populations are currently undergoing a global decline that could be linked with so far overlooked viral infections.

In this study, we report the isolation, nearly complete genomic sequencing, and annotation of a novel poxvirus detected from an insectivorous bat (Hypsugo savii) in Northern Italy. The virus was tentatively named Hypsugopoxvirus (HYPV), according to the bat species from which it was isolated. Phylogenetic analyses suggest that HYPV belongs to the Chordopoxvirinae subfamily, revealing the highest similarity (85%) with Eptesipoxivirus (EPTV) detected from the microbat Eptesicus fuscus in WA, USA in 2011, which is associated with bat necrosuppurative osteomyelitis in multiple joints. HYPV is the first poxvirus detected in bats in Europe and its viral ecology and disease associations should be investigated further.

2. Materials and Methods

2.1. Sampling

Dead bats from different species were collected for virological investigations from wild animal rescue/rehabilitation centers in the context of a general surveillance project that has been implemented in Northern Italy since 2009–2010, which focuses on the detection of emerging bat viruses [14–16]. The bats were taxonomically identified based on their morphologic characteristics, according to the European bat identification keys [15]. The carcasses were necropsied, and tissue samples were collected for further laboratory exams, particularly for viral detection and isolation.

2.2. Virological Analysis

After necropsy, organ samples (lungs, heart, kidney, brain, and intestines) were mechanically homogenized in minimal essential medium (1 g/10 mL), which contained antibiotics. They were then centrifuged at 3000 g for 15 min. Samples were inoculated in confluent monolayers of VERO and MARC 145 cells (African green monkey), incubated at 37 °C with 5% CO₂ and observed daily for seven days to assess their cytopathic effects (CPEs). In the absence of CPEs, the cryolysates were sub-cultured twice onto fresh monolayers. Cell culture supernatants showing CPE were partially purified by ultracentrifugation at 35,000 rpm for 2 h (rotor TST41 Kontron) through a 25% (w/w) sucrose cushion, and the pellet was re-suspended in PBS. This antigen was kept at −70 °C and then submitted for viral identification with the NGS approach and negative-staining electron microscopy (nsEM) by using the Airfuge (Beckman Instruments, Palo Alto, CA, USA) method [17].

2.3. Molecular Analysis

Viral DNA was extracted from 200 µL of positive cell culture supernatants using a BioSprint 96 One-For-All Vet Kit (Qiagen S.p.A., Milan, Italy). Sequencing libraries were made with a Nextera Flex kit (Illumina Inc. San Diego, CA, USA) in accordance with the manufacturer’s instructions. Libraries were sequenced on a MiSeq Instrument (Illumina Inc. San Diego, CA, USA) by using a MiSeq Reagent
Kit v2 in a 250 cycle paired-end run. Data were assembled de novo by the CLC Genomic workbench v.11 (Qiagen S.p.A., Milan, Italy).

Genome annotation and analysis was performed with tools from the bioinformatics suite developed at the Viral Bioinformatics Resource Centre [18]. The Genome Annotation Transfer Utility (GATU) [19] uses a reference genome to automatically annotate poxvirus genes with clear orthologs in the reference. Other possible genes were presented to the annotator for further characterization and to make final annotation decisions.

3. Results

3.1. Clinical Case

The case specifically concerned a juvenile Hypsugo savii male that spontaneously died in a wildlife recovery center in Valpredina, Cenate Sopra (BG), Northern Italy after several weeks of hospitalization. The sick bat was originally found alive on July 17, 2017 in Telgate (Bergamo Province, Northern Italy) by a private citizen who brought it to the center. Clinically, the bat had a humerus fracture, sensory depression and a lack of appetite but normal body mass. The death occurred 54 days after admission to the center on September 9, 2017; then, the carcass was sent to the lab for necroscopy and further analyses. Pathological lesions in the internal organs indicative of infectious diseases were not observed, but a soft bone callus due to pathological healing of the humerus fracture associated with osteomalacia and calcium deficiency was detected.

3.2. Virus Isolation and Identification

A virus was isolated on MARC 145 cells inoculated with the organ pool composed of the bat’s heart and lungs. The CPE occurred on the third day post-inoculation during the second passage and was characterized by a diffused degeneration of a monolayer with rounded cells floating in the culture medium (Figure 1A,B). The cell culture supernatant showing CPE was submitted to the NGS in order to identify and characterize the unknown isolate. Furthermore, nsEM performed on the purified and concentrated antigen revealed the presence of viral particles that unequivocally morphologically resembled those belonging to the genus Orthopoxvirus (Figure 1C). The virus was tentatively named Hypsugopoxvirus (HYPV), according to the bat species from which it was isolated. Table 1 summarizes the basic information on the HYPV identified in this study in comparison with all known poxviruses detected to date in bats worldwide.

Figure 1. (A) Cytopathic effects (CPEs) of rounded cells floating in the culture medium of MARC 145 cells infected with the pool of bat organs (heart and lungs) at three days after inoculation (original magnification × 100); (B) mock cells (original magnification ×100); (C) negative-staining electron microscopy showing the presence of a virion morphologically related to the Orthopoxvirus genus from the MARC 145 cell culture.
Table 1. Basic data on Hypsugopoxvirus (HYPV) in comparison with all known poxviruses detected to date in bats worldwide.

Poxvirus Strain	Host	Sample Source	Origin	Collection Date	Clinical/Post-Mortem Findings	Laboratory Outcomes	Ref.
Hypsugopox virus (HYPV)	Hypsugo savii	Pool of viscera (heart and lungs)	Europe (Italy)	2017	Humerus fracture and osteomalacia, calcium deficiency	CC, EM, nFGS (166,600 nt), GA (161 genes)	This study
Pteropox virus (PTPV)	Pteropus scapulatus	Wing membrane	North Western Australia (Kimberley region)	2015	Multiple nodules on the wing membranes	PGS (133,492 nt), GA (143 genes)	[12]
Eptesipox virus (EPTV) strain “Washington”	Eptesicus fuscus	Elbow joint	America (WA, USA)	2011	Necro-suppurative osteomyelitis in multiple joints	CC, EM, FGS (176,688 nt), GA (191 genes)	[9,10]
Eidolon helvum poxvirus 1 (EHPV1)	Eidolon helvum	Throat swabs	Africa (Ghana)	2009	Apparently healthy bats	PGS	[11]

NA: not available; CC: cell culture isolation; EM: electron microscopy identification; FGS: full-genome sequence; nFGS: nearly full-genome sequence; PGS: partial genome sequence; GA: genome annotation.

3.3. Genome Characterization

After NGS sequencing, the nearly complete viral genome of a poxvirus was obtained from one contig of 166,600 nucleotides originating from 85,678 reads with an average coverage of 118.53. The nearly full genome sequence of the viral strain was determined and compared with those of other members of the Poxviridae family available on GenBank. For the nearly complete viral genome sequencing, BLAST analysis revealed the highest nucleotide identity (85%) to the Eptesipoxvirus (EPTV) strain “Washington”, a member of the Chordopoxvirinae subfamily identified in microbats in the USA (Table 2). The nearly complete genome sequence for HYPV was submitted to GenBank under accession number MK860688.

Table 2. Highest nucleotide sequence identities for the nearly complete genome of HYPV.

% Similarity	Query Cover %	Poxvirus Strain	GenBank Accession No.	Host	Ref.
85	75	Eptesipoxvirus strain “Washington”	KY747497	Eptesicus fuscus	[3,4]

A conservative approach was taken for genome annotation to avoid over-annotating open reading frames (ORFs) that were unlikely to represent functional genes. ORFs less than 50 codons or overlapping by more than 25% with well-characterized genes were not considered for annotation unless supported by other evidence. A total of 161 genes were annotated for HYPV, showing a percentage value of nt identity with its closest related virus EPTV ranging from 42.5% for the HYPV-2 gene (serpin 2) to 100% for the HYPV-90 gene (VLTF-3) (Table 3).

When the seven conserved genes—RPO147, RAP94, mRNA capping enzyme large subunit, P4a precursor, RPO132, VETF-L, and DNA primase—were considered individually, the value of nt similarity with EPTV ranged from 90.5% to 98.5%. The above conserved genes that have been used for phylogenetic analysis in previous studies [10,12] are presented in bold in Table 3.

HYPV showed nucleotide divergence from its closest relative, EPTV. The smaller genome size with 166,600 nt encoding 161 genes for HYPV in comparison to 176,688 nt and 191 genes for EPTV, is likely due to the omission of the ITRs from the analysis and therefore, is not possible to establish the exact length of its the viral genome. Two ORFs (HYPV-24 and HYPV-25, Table 3), whose function is still unknown, appear to be unique to HYPV.
Gene Name	Putative Product Identity	Start	Stop	% Id. to EPTV Orthologs				
HYPV-1	Hypothetical protein	87	557	471 58				
HYPV-2	Serpin 2	1037	1592	516 42.5				
HYPV-3	Hypothetical protein	1581	2261	681 82.4				
HYPV-4	IL-1 receptor-like protein	2309	3316	1008 65.1				
HYPV-5	Hypothetical protein	3356	3835	480 88.8				
HYPV-6	Tyrosine protein kinase-like protein	3872	4774	903 91.7				
HYPV-7	ER-localized apoptosis regulator	4842	5522	681 63.6				
HYPV-8	Hypothetical protein	8141	9826	1686 63.0				
HYPV-9	Ankyrin repeat-containing protein, host range	11,053	11,913	861 93.1				
HYPV-10	Monoglyceride lipase	12,340	12,588	249 62.4				
HYPV-11	Secreted EGF-like growth factor	12,594	13,100	507 65.7				
HYPV-12	dUTPase	13,144	13,569	426 87.2				
HYPV-13	IFN-inducible protein	13,597	14,004	408 83.7				
HYPV-14	Ribonucleotide reductase small subunit	14,060	15,034	975 93.8				
HYPV-15	FSL membrane protein	15,073	16,139	1065 68.4				
HYPV-16	Cytoplasmic protein	16,687	18,028	183 71.4				
HYPV-17	S-S bond formation pathway protein	17,361	18,008	648 92.6				
HYPV-18	Ser/Thr protein kinase	17,998	19,314	1317 94.7				
HYPV-19	RhoA signaling inhibitor, virus release protein	19,334	20,626	1293 88.0				
HYPV-20	EEV maturation protein	20,659	22,602	1944 89.0				
HYPV-21	Palmitylated EEV membrane glycoprotein	22,640	23,755	1116 98.9				
HYPV-22	Hypothetical protein	23,781	24,008	228 67.1				
HYPV-23	Hypothetical protein	24,050	24,250	201 97.0				
HYPV-24	Hypothetical protein	24,471	24,917	447 92.6				
HYPV-25	Conserved non-functional serine recombinase	24,992	25,654	663 78.8				
HYPV-26	DNA-binding phosphoprotein	25,714	26,052	339 86.7				
HYPV-27	Poly (A) polymerase catalytic subunit	26,046	27,461	1416 92.6				
HYPV-28	IEV morphogenesis	27,478	29,676	2199 93.3				
HYPV-29	RNA polymerase subunit	29,733	30,455	723 93.8				
HYPV-30	IMV protein, virion morphogenesis	30,760	32,463	1704 95.8				
HYPV-31	ER-localized membrane protein, virion core protein	32,490	33,302	813 95.6				
HYPV-32	DNA polymerase	33,299	36,319	3021 93.8				
HYPV-33	Sulphydryl oxidase (FAD-linked)	36,352	36,642	291 96.9				
HYPV-34	Virion core protein	36,645	37,055	411 87.9				
HYPV-35	Virulence, modulates Raf/MEK/ERK pathway	37,039	39,117	2079 91.9				
HYPV-36	Nonessential glutaredoxin	39,173	39,487	315 91.3				
HYPV-37	DNA-binding core protein	39,613	40,545	933 90.3				
HYPV-38	ssDNA-binding phosphoprotein	40,546	40,767	222 83.6				
HYPV-39	ssDNA-binding phosphoprotein	40,768	41,577	810 87.5				
HYPV-40	IMV protein (VP13)	43,966	44,202	237 88.5				
HYPV-41	Telomere-binding protein	44,220	45,371	1152 90.9				
HYPV-42	Viral core cysteine proteinase	45,364	46,650	1287 94.6				
HYPV-43	RNA helicase, DExH-NPH-II	46,656	48,686	2031 94.3				
Gene Name	Putative Product Identity	Start	Stop	+/-	Size	% Id. to EPTV	Orthologs	
-----------	--------------------------	-------	------	-----	------	--------------	-----------	
HYPV-46	Insulin metalloproteinase-like protein	48,678	50,465	−	1788	92.3	EPTV-054	
HYPV-47	Entry/fusion complex component	50,462	50,794	−	333	97.3	EPTV-055	
HYPV-48	Late transcription elongation factor (VLTF)	50,788	51,456	+	669	90.5	EPTV-056	
HYPV-49	Thioredoxin-like protein	51,423	51,800	−	378	89.6	EPTV-057	
HYPV-50	FEN1-like nuclease	51,803	53,140	+	1338	87.0	EPTV-058	
HYPV-51	RNA polymerase subunit	53,142	53,333	+	192	96.8	EPTV-059	
HYPV-52	NLPc	Protein	53,337	53,870	+	534	87.7	EPTV-060
HYPV-53	Virion structural phosphoprotein, early morphogenesis	53,836	54,933	−	1098	91.3	EPTV-061	
HYPV-54	Late transcription factor	54,962	55,744	+	783	98.5	EPTV-062	
HYPV-55	Myristylated entry/fusion protein	55,760	56,782	+	1023	93.8	EPTV-063	
HYPV-56	Myristylated IMV envelope protein	56,783	57,532	+	750	96.4	EPTV-064	
HYPV-57	Crescent membrane immature virion protein	57,558	57,833	+	276	84.6	EPTV-065	
HYPV-58	Internal virion protein	57,825	58,790	−	966	92.1	EPTV-066	
HYPV-59	DNA-binding virion protein	58,815	59,573	+	759	98.4	EPTV-067	
HYPV-60	IMV protein, entry/fusion	60,402	60,932	+	531	93.8	EPTV-068	
HYPV-61	IMV membrane protein, virion morphogenesis	61,026	61,625	+	600	73.6	EPTV-069	
HYPV-62	Tyrosine kinase	61,555	62,693	+	1138	94.6	EPTV-070	
HYPV-63	Type I IFN inhibitor	62,608	63,165	+	558	96.8	EPTV-071	
HYPV-64	mRNA capping enzyme large subunit	63,170	63,580	+	411	94.1	EPTV-072	
HYPV-65	RNA polymerase subunit (RPO147)	63,688	67,545	+	3858	98.5	EPTV-073	
HYPV-66	RNA polymerase subunit (RPO19)	67,542	68,060	−	519	97.7	EPTV-074	
HYPV-67	RNA polymerase subunit (RPO22)	68,074	68,646	+	573	98.9	EPTV-075	
HYPV-68	Entry/fusion IMV protein	68,654	69,667	−	1014	90.6	EPTV-076	
HYPV-69	Late transcription elongation factor	69,671	70,058	+	388	97.5	EPTV-077	
HYPV-70	DNA topoisomerase type I	70,722	71,322	+	600	93.9	EPTV-078	
HYPV-71	mRNA capping enzyme small subunit	71,322	71,822	+	500	96.8	EPTV-079	
HYPV-72	Crecent membrane immature virion protein	71,822	72,322	+	400	94.6	EPTV-080	
HYPV-73	RNA polymerase-associated protein (RAP94)	72,322	72,822	+	500	96.8	EPTV-081	
HYPV-74	mRNA capping enzyme large subunit	72,822	73,322	+	500	96.8	EPTV-082	
HYPV-75	mRNA capping enzyme small subunit	73,322	73,822	+	500	96.8	EPTV-083	
HYPV-76	Virion core protein	73,822	74,322	+	500	96.8	EPTV-084	
HYPV-77	Virion core protein	74,322	74,822	+	500	96.8	EPTV-085	
HYPV-78	NTPase, DNA primase	74,822	75,322	+	500	96.8	EPTV-086	
HYPV-79	P4b precursor	75,322	75,822	+	500	96.8	EPTV-087	
HYPV-80	Carbonic anhydrase, GAG-binding MV membrane protein	75,822	76,322	+	500	96.8	EPTV-088	
HYPV-81	ATPase, NPH1	76,322	76,822	+	500	96.8	EPTV-089	
HYPV-82	mRNA capping enzyme small subunit	76,822	77,322	+	500	96.8	EPTV-090	
HYPV-83	DNA pol processivity factor	77,322	77,822	+	500	96.8	EPTV-091	
HYPV-84	S-S bond formation pathway protein	77,822	78,322	+	500	96.8	EPTV-092	
HYPV-85	mRNA capping enzyme large subunit	78,322	78,822	+	500	96.8	EPTV-093	
HYPV-86	mRNA capping enzyme small subunit	78,822	79,322	+	500	96.8	EPTV-094	
HYPV-87	Trimeric virion coat protein	79,322	79,822	+	500	96.8	EPTV-095	
HYPV-88	Late transcription elongation factor (VLTF-3)	79,822	80,322	+	500	96.8	EPTV-096	
HYPV-89	Late transcription elongation factor (VLTF-2)	80,322	80,822	+	500	96.8	EPTV-097	
HYPV-90	NTPase, DNA primase	80,822	81,322	+	500	96.8	EPTV-098	
HYPV-91	F4b precursor	81,322	81,822	+	500	96.8	EPTV-099	
HYPV-92	RNA polymerase subunit (RPO19)	81,822	82,322	+	500	96.8	EPTV-100	
Table 3. Cont.

Gene Name	Putative Product Identity	Start	Stop	+/-	Size	% Id. to EPTV	Orthologs
HYPV-93	Virion morphogenesis core protein	94,989	96,107	−	1119	94.1	EPTV-102
HYPV-94	Early transcription factor large subunit (VETF-L)	96,131	98,275	−	2145	97.8	EPTV-103
HYPV-95	Intermediate transcription factor (VITF-3s)	98,338	99,213	+	876	94.2	EPTV-104
HYPV-96	IMV membrane protein, early morphogenesis	99,223	99,459	−	237	92.5	EPTV-105
HYPV-97	P4a precursor	99,460	102,192	−	2733	90.5	EPTV-106
HYPV-98	Viral membrane formation	102,207	103,142	+	936	96.1	EPTV-107
HYPV-99	Virion core and cleavage processing protein	103,139	103,705	−	567	76.7	EPTV-108
HYPV-100	IMV membrane protein, virion maturation	103,799	104,002	−	204	71.6	EPTV-109
HYPV-101	IMV membrane protein, essential	104,067	104,348	−	282	96.8	EPTV-110
HYPV-102	IMV membrane protein, non-essential	104,365	104,526	−	162	98.1	EPTV-111
HYPV-103	Core protein	104,516	104,809	−	294	95.9	EPTV-112
HYPV-104	Myristylated protein, essential for entry	104,793	105,935	−	1143	91.8	EPTV-113
HYPV-105	DNA helicase, transcript release factor	105,936	107,995	+	1455	90.1	EPTV-115
HYPV-106	DNA polymerase processivity factor	108,532	109,809	+	1278	95.6	EPTV-117
HYPV-107	Holliday junction resolvase	109,793	110,338	+	546	91.3	EPTV-118
HYPV-108	Intermediate transcription factor (VITF-3L)	110,335	111,495	+	1161	91.5	EPTV-119
HYPV-109	RNA polymerase subunit (RPO132)	111,492	115,010	+	3519	97.7	EPTV-120
HYPV-110	RNA polymerase subunit (RPO35)	112,207	120,623	−	417	94.2	EPTV-121
HYPV-111	Intermediate transcription factor (VITF-3L)	110,335	114,995	+	1161	91.5	EPTV-122
HYPV-112	A-type inclusion protein	114,996	117,869	−	2874	77.4	EPTV-123
HYPV-113	InvL cap precursor	117,926	119,800	−	1875	82.1	EPTV-124
HYPV-114	DNA polymerase subunit, fusion	119,856	120,206	−	351	86.2	EPTV-125
HYPV-115	IMV membrane protein, entry	120,207	120,623	−	417	94.2	EPTV-126
HYPV-116	IMV membrane protein, fusion	120,637	121,750	−	228	92.0	EPTV-127
HYPV-117	Hypothetical protein	121,953	127,554	+	831	79.4	EPTV-128
HYPV-118	AIAT-like protein, integral membrane protein	127,814	128,404	−	591	80.3	EPTV-129
HYPV-119	Myristylated protein	128,422	128,829	+	408	73.3	EPTV-130
HYPV-120	DNA ligase-like protein	128,826	129,587	+	762	78.3	EPTV-131
HYPV-121	Chemokine binding protein	129,575	130,438	−	864	69.0	EPTV-132
HYPV-122	Hypothetical protein	130,558	130,959	+	402	98.5	EPTV-133
HYPV-123	Hypothetical protein	130,956	131,339	−	384	76.9	EPTV-134
HYPV-124	3 beta-hydroxysteroid dehydrogenase/delta 5→4 isomerase	131,948	133,015	+	1068	84.2	EPTV-135
HYPV-125	Myristylate kinase	133,646	134,233	+	588	85.2	EPTV-136
HYPV-126	DNA ligase-like protein	134,265	135,944	+	680	87.2	EPTV-137
HYPV-127	DNA ligase-like family protein	137,441	138,046	+	606	77.9	EPTV-138
HYPV-128	Hypothetical protein	138,641	139,717	+	1077	65.2	EPTV-139
HYPV-129	Toll-like receptor-like protein, IL-1, NFκB signaling inhibitor	139,781	140,428	+	648	89.8	EPTV-140
4. Discussion

The potential zoonotic risks associated with bats and their fascinating and special relationship with viruses have attracted the attention of many researchers worldwide. Consequently, general and target surveillance on bat populations has increased in the last decade with the purpose of clarifying the genetic diversity of bat-associated viruses as well as acquiring comprehensive information on bat–pathogen interactions. In fact, viral disease prevention and biological conservation issues could both benefit from such research.

Virological surveillance of bat populations in Italy is a relative novelty and has only recently been extensively applied, but almost immediately, a great heterogeneity of virus identifications has been observed. Viruses belonging to several viral families, such as Reoviridae [14], Coronaviridae [15,20–24], Paramyxoviridae [24], Rhabdoviridae [16,25], and Astroviridae [26], have been detected, allowing the identification of some novel/previously unknown viral agents. The results of the general surveillance of bats, which have been randomly applied so far as pilot virus discovery studies, may drive future activity to more specific longitudinal and target studies aimed at understanding the epidemiology of potential new pathogens.

In this study, a novel poxvirus, HYPV, was detected from the microbat *Hypsugo savii* in Italy. This likely represents the first poxvirus detection in bats in Europe. In fact, only four poxviruses have been documented to date in bat populations worldwide, and these and these have diverse and somehow incomplete descriptions, with just some common aspects. Firstly, EHPV1 was detected in 2009 with a high-prevalence in throat swabs from apparently healthy African megabats (*Eidolon helvum*), and metagenomic analysis identified poxvirus sequences that were most closely related with Molluscum contagiosum (MOCV), a human-only pathogen [11]. In the same year of 2009, another bat poxvirus was incidentally detected in South Australia during the investigation of an outbreak of parasitic skin disease in a population of the microbat species, *Miniopterus schreibersii*
bassanii. In one of the twenty-one bats examined, an independent (non-nematode-associated) lesion containing intracytoplasmic inclusion bodies indicative of poxvirus infection was observed, and this was confirmed with electron microscopy [13]. Between 2009 and 2011, EPTV was detected in adult big brown bats (Eptesicus fuscus) with severe joint disease (tenosynovitis and osteoarthritis) at a wildlife center in Northwestern United States. Phylogenetic analysis revealed that Eptesipoxivirus is most closely related to the Cotia virus, a virus detected in sentinel suckling mice in Sao Paulo, Brazil in 1961 [27,28]. PTPV was detected from an Australian little red flying fox (Pteropus scapulatus) that died following entrapment on a fence. Post-mortem examination revealed multiple nodules on the wing membranes. Phylogenetic analysis indicated that PTPV is not closely related to any other poxvirus isolated from bats or other species, and that it likely should be placed in a new genus [12].

It is noteworthy that PTPV and EHPV were isolated from megabat hosts (Pteropus scapulatus and Eidolon helvum, respectively), whereas EPTV and HYPV were isolated from microbats (Eptesicus fuscus and Hypsugo savii, respectively). While EHPV was detected in apparently healthy bats, the other viruses were identified in sick bats and their association with the pathological condition was assumed. Specifically, clinical symptoms of EPTV in Eptesicus fuscus manifested in the form of joint swelling and increased lethargy [10]. PTPV-infected Pteropus scapulatus presented vesicular to nodular skin lesions on the wing membranes that are typical of poxvirus infections [13]. HYPV was detected in a bat showing pathological healing of the humerus fracture associated with osteomalacia and calcium deficiency. Neither symptom was directly linked to fatality and thus the capability of these viruses still needs to be ascertained, including the role of HYPV in causing deadly disease in bats.

The results of our study indicate that HYPV presents the typical morphology of the Orthopoxvirus genus and that it could be isolated in cell culture. Indeed, its final identification was obtained by genomic characterization. The nearly complete genomic sequencing clearly demonstrated that HYPV is a new virus that is distantly related to its closest known relative EPTV (WA, USA, 2011) with a nucleotide identity of 85% (almost whole genome). Indeed, the percentage value of the nt identity of HYPV with EPTV ranged from 42.5% for the HYPV-2 gene (serpin 2) to 100% for the HYPV-90 gene (VLTF-3). Regarding ORFs annotation the HYPV was shown to be defective in particular in the ITR genes i.e., 12 out of 13 described in EPTV, but this should be not a real structural defect but more likely due to the omission of the ITRs from the analysis. On the contrary, two ORFs, whose function is still unknown, appear to be unique to HYPV.

To conclude, a new poxvirus, HYPV, was detected in bats in Europe and its viral ecology and disease associations should be investigated further.

Author Contributions: D.L. designed the study and wrote the manuscript; A.L. performed electron microscopy, participated in study coordination, and helped to draft the manuscript; C.C. and L.B. performed the next-generation sequencing and data analysis; A.M.G. and M.M. performed the sampling and data collection; G.L.C. performed the clinical investigations; A.P. and F.F. performed the necropsies and molecular tests; E.S. and T.T. were involved in the virological analysis and interpretation of the results; A.M. performed the molecular genetic studies and helped to draft the manuscript. All of the authors have read and approved the final manuscript.

Funding: This research was funded by the Italian Ministry of Health (WFR GR-2011-023505919).

Acknowledgments: Special thanks to Anna Tirelli, Loredana Zingarello, Giovanni Bozzoni and all technicians in the IZSLER virology section for their valuable technical work and support in virological analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Adams, M.J.; Lefkowitz, E.J.; King, A.M.Q.; Harrach, B.; Harrison, R.L.; Knowles, N.J.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.; Mushegian, A.R.; et al. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Arch. Virol. 2016, 161, 2921–2949. [CrossRef] [PubMed]
2. Shchelkunov, S.N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013, 9, e1003756. [CrossRef] [PubMed]
3. Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important reservoir hosts of emerging virus. Clin. Microbiol. 2006, 19, 531–545. [CrossRef] [PubMed]
4. Wang, L.F.; Walker, P.J.; Poon, L.L. Mass extinctions, biodiversity and mitochondrial function: Are bats “special” as reservoirs for emerging viruses? Curr. Opin. Virol. 2011, 1, 649–657. [CrossRef] [PubMed]
5. Baker, M.L.; Schountz, T.; Wang, L.F. Antiviral immune responses of bats: A review. Zoonoses Public Health 2013, 60, 104–116. [CrossRef] [PubMed]
6. Luis, A.D.; Hayman, D.T.; O’Shea, T.J.; Cryan, P.M.; Gilbert, A.T.; Pulliam, J.R.; Mills, J.N.; Timonin, M.E.; Willis, C.K.; Cunningham, A.A.; et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. Biol. Sci. 2013, 280, 20122753. [CrossRef] [PubMed]
7. Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [CrossRef] [PubMed]
8. Baker, K.S.; Murcia, P.R. Poxviruses in bats . . . so what? Viruses 2014, 6, 1564–1577. [CrossRef] [PubMed]
9. Emerson, G.L.; Nordhausen, R.; Garner, M.M.; Huckabee, J.R.; Johnson, S.; Wohrle, R.D.; Davidson, W.B.; Wilkins, K.; Li, Y.; Doty, J.B.; et al. Novel poxvirus in big brown bats, northwestern United States. Emerg. Infect. Dis. 2013, 19, 1002–1004. [CrossRef]
10. Tu, S.L.; Nakazawa, Y.; Gao, J.; Wilkins, K.; Gallardo-Romero, N.; Li, Y.; Emerson, G.L.; Carroll, D.S.; Upton, C. Characterization of Eptesipoxivirus, a novel poxvirus from a microchiropteran bat. Virus Genes 2017, 53, 856–867. [CrossRef]
11. Baker, K.S.; Leggett, R.M.; Bexfield, N.H.; Alston, M.; Daly, G.; Todd, S.; Tachedjian, M.; Holmes, C.E.; Crameri, S.; Wang, L.F.; et al. Metagenomic study of the viruses of African straw-coloured fruit bats: Detection of a chiropteran poxvirus and isolation of a novel adenovirus. Virology 2013, 441, 95–106. [CrossRef] [PubMed]
12. O’Dea, M.A.; Tu, S.L.; Pang, S.; de Ridder, T.; Jackson, B.; Upton, C. Genomic characterization of a novel poxvirus from a flying fox: Evidence for a new genus? J. Gen. Virol. 2016, 97, 2363–2375. [CrossRef] [PubMed]
13. McLellan, D.J.; Reardon, T.; Bourne, S.; Dickason, C.; Kessell, A.; Boardman, W. Outbreak of Skin Nodules associated with Riausgolania beveridgei (Nematoda: Muspiceida) in the Southern Bentwing Bat (Miniopterus schreibersi bassanii), South Australia. J. Wildl. Dis. 2013, 49, 1009–1013. [CrossRef] [PubMed]
14. Lelli, D.; Moreno, A.; Lavazza, A.; Bresola, M.; Canelli, E.; Boniotti, M.B.; Cordioli, P. Identification of Mammalian Orthoreovirus type 3 in Italian bats. Zoonosis Public Health 2013, 60, 84–92. [CrossRef] [PubMed]
15. Lelli, D.; Papetti, A.; Sabelli, C.; Rosti, E.; Moreno, A.; Boniotti, M.B. Detection of coronaviruses in bats of various species in Italy. Viruses 2013, 5, 2679–2689. [CrossRef] [PubMed]
16. Lelli, D.; Prosperi, A.; Moreno, A.; Chiapponi, C.; Riboli, P.; Crameri, S.; Wang, L.F.; et al. Metagenomic study of the viruses of African straw-coloured fruit bats: Detection of a chiropteran poxvirus and isolation of a novel adenovirus. Virology 2013, 441, 95–106. [CrossRef] [PubMed]
17. Lavazza, A.; Pascucci, S.; Gelmetti, D. Rod-shaped virus-like particles in intestinal contents of three avian species. Vet. Rev. 1990, 126, 581.
18. Da Silva, M.; Upton, C. Bioinformatic analysis of poxvirus genomes. Methods Mol. Biol. 2012, 890, 233–258.
19. Therepanov, V.; Ehlers, A.; Upton, C. Genome Annotation Transfer Utility (GATU): Rapid annotation of viral genomes using a closely related reference genome. BMC Genom. 2006, 7, 150. [CrossRef]
20. Balboni, A.; Gallina, L.; Palladini, A.; Prosperi, S.; Battilani, M. A real-time PCR assay for bat SARS-like coronavirus detection and its application to Italian greater horseshoe bat faecal sample surveys. Sci. World J. 2012, 2012, 989514. [CrossRef]
21. De Benedictis, P.; Marciano, S.; Scaravelli, D.; Priori, P.; Zecchin, C.; Capua, I.; Monne, I.; Cattoli, G. Alpha and lineage C betaCoV infections in Italian bats. Virus Genes 2014, 48, 366–371. [CrossRef] [PubMed]
22. Moreno, A.; Lelli, D.; de Sabato, L.; Zaccaria, G.; Boni, A.; Sozzi, E.; Prosperi, A.; Lavazza, A.; Cella, E.; Castrucci, M.R.; et al. Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy. Virol. J. 2017, 14, 239. [CrossRef] [PubMed]
23. De Sabato, L.; Lelli, D.; Faccin, F.; Canziani, S.; Di Bartolo, I.; Vaccari, G.; Moreno, A. Full genome characterization of two novel Alpha-coronavirus species from Italian bats. Virus Res. 2018, 260, 60–66. [CrossRef] [PubMed]
24. Rizzo, F.; Edenborough, K.M.; Toffoli, R.; Culasso, P.; Zoppi, S.; Dondo, A.; Robetto, S.; Rosati, S.; Lander, A.; Kurth, A.; et al. Coronavirus and paramyxovirus in bats from Northwest Italy. *BMC Vet. Res.* 2017, 13, 396. [CrossRef]

25. Leopardi, S.; Priori, P.; Zecchin, B.; Poglayen, G.; Trevisiol, K.; Lelli, D.; Zoppi, S.; Scicluna, M.T.; D’Avino, N.; Schiavon, E.; et al. Active and passive surveillance for bat lyssaviruses in Italy revealed serological evidence for their circulation in three bat species. *Epidemiol. Infect.* 2018, 4, 1–6. [CrossRef] [PubMed]

26. Amoroso, M.G.; Russo, D.; Lanave, G.; Cistrome, L.; Pratelli, A.; Martella, V.; Galiero, G.; Decaro, N.; Fusco, G. Detection and phylogenetic characterization of astroviruses in insectivorous bats from Central-Southern Italy. *Zoonoses Public Health* 2018, 65, 702–710. [CrossRef] [PubMed]

27. Lopesode, S.; Lacerda, J.P.; Fonseca, I.E.; Castro, D.P.; Forattini, O.P.; Rabello, E.X. Cotia virus: A new agent isolated from sentinel mice in Sao Paulo, Brazil. *Am. J. Trop. Med. Hyg.* 1965, 14, 156–157. [CrossRef] [PubMed]

28. Afonso, P.P.; Silva, P.M.; Schnellrath, L.C.; Jesus, D.M.; Hu, J.; Yang, Y.; Renne, R.; Attias, M.; Condit, R.C.; Moussatche, N.; et al. Biological characterization and next-generation genome sequencing of the unclassified Cotia virus SPAn232 (*Poxviridae*). *J. Virol.* 2012, 86, 5039–5054. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).