Scaling relation found in anomalous electrical transport and superconductivity of heavy fermion superconductor URu$_2$Si$_2$

Naoyuki Tateiwa1, Tatsuma D. Matsuda1, Yoshinori Haga1, Zachary Fisk1,2 and Yoshichika Ōnuki1,3

1A. S. R. C, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
2University of California, Irvine, California 92697, USA
3Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail: tateiwa.naoyuki@jaea.go.jp

Abstract. The pressure dependent electrical resistivity of URu$_2$Si$_2$ has been studied at high pressure across the first order phase boundary of P_x where the ground state switches under pressure from “hidden order” (HO) to large moment antiferromagnetic (LAFM) states. We have measured an ultra-clean single crystal whose quality is the highest among those used in previous studies. We have previously analyzed the resistivity data with the generalized power law $\rho = \rho_0 + A T^n$. It was found that the electric transport property deviates from Fermi liquid theory in the HO phase but obeys the theory well above P_x. In this paper, we re-analyze the data using the polynomial in T expression $\rho = \rho_0 + \alpha_1 T + \alpha_2 T^2$. The analysis finds the relation $\alpha_1/\alpha_2 \propto T_{sc}$ in the HO phase. While the pressure dependence of α_2 is very weak, α_1 is roughly proportional to T_{sc}. This suggests a strong correlation between the anomalous quasiparticle scattering and the superconductivity and that both have a common origin. The present study clarifies a universality of the HO phase inherent in strongly correlated electron superconductors near quantum criticality.

1. Introduction

URu$_2$Si$_2$ is a heavy-fermion superconductor that shows a superconducting (SC) transition temperature $T_{sc} = 1.5$ K at ambient pressure [1]. A second order phase transition takes place at $T_0 = 17.5$ K, and the ordered state coexists with the unconventional superconductivity. Although many studies have been done for the ordered state [2, 3, 4, 5], the nature of the state is still not understood and is known as “hidden order” (HO). The application of the pressure changes the ground state of URu$_2$Si$_2$ from the HO to a large moment antiferromagnetic (LAFM) state at $P_x = 0.5 \sim 0.9$ GPa [6, 7, 8]. The bulk-SC state exists only below P_x[7, 8].

The electrical transport in URu$_2$Si$_2$ shows a strong sample dependence that has been carefully studied using high quality single crystals by us [9, 10]. The electrical resistivity of samples with different quality have been analyzed with a general power law $\rho_0 + AT^n$ just above T_{sc} at ambient pressure. It was revealed that the values of the power law exponent n are 1.5 ± 0.1 and 1.6 ± 0.1 for the electrical resistivity for the current along the a and c-axes, respectively in samples with higher quality at ambient pressure [10]. We have previously studied the electrical transport of URu$_2$Si$_2$ under high pressure[11]. The resistivity data were analyzed with the power law.
The values of the exponent n are generally about 1.5 ± 0.1 in the HO phase below P_x. Above the critical pressure, n increases with increasing pressure and the value is about 2.0 at 1.51 GPa, expected from the Fermi liquid theory. The derivation of the electrical transport from the theory seems to be intrinsic to the HO state. In this study, we re-analyze the data with a new expression and find an interesting scaling relation between the anomalous electrical transport and the unconventional superconductivity in URu$_2$Si$_2$.

2. Experimental

The details of the experimental methods are given in the ref. 11. In this study, we have used the high quality single crystal of URu$_2$Si$_2$. It is difficult to estimate the residual resistivity ratio $\text{RRR} \ (= \rho_{RT}/\rho_0)$, where ρ_0 and ρ_{RT} are a residual resistivity and the value of the resistivity at room temperature, respectively, because ρ_0 is negative if the resistivity just above T_{sc} is simply extrapolated to 0 K. Therefore, the value of RRR was estimated as 300 using the resistivity value ($\rho_{T_{sc}}$) just above T_{sc} ($\text{RRR} = \rho_{RT}/\rho_{T_{sc}}$). The residual resistivity is very small and the real RRR value exceeds 1000, indicating ultra-cleaness of the single crystal [9]. The resistivity data under high pressure are analyzed with a polynomial in T expression $\rho = \rho_0 + \alpha_1 T + \alpha_2 T^2$ that has been used in the analysis of the anomalous electrical transport in the organic superconductors, the iron pnictide superconductors, and the high-T_c cuprate superconductors [12, 13, 14].

![Figure 1](image1.png)

Figure 1. Temperature dependence of the electrical resistivity in URu$_2$Si$_2$ at (a) 1 bar, 0.31, and 0.67 GPa below P_x and (b) 1.03 and 1.35 GPa above P_x. The dotted lines represent the fit of a expression $\rho = \rho_0 + \alpha_1 T + \alpha_2 T^2$ to the resistivity.

![Figure 2](image2.png)

Figure 2. Pressure dependences of (a) the coefficient α_1 and (b) α_2 obtained by fitting the expression to the resistivity in URu$_2$Si$_2$.
3. Results and Discussions

Figure 1 shows the low temperature electrical resistivity ρ_0 at (a) 1 bar, 0.31, and 0.67 GPa below P_x, and (b) 1.03 and 1.35 GPa above P_x. The readers refer to the ref. 11 for the pressure phase diagram in URu$_2$Si$_2$. P_x is located between 0.75 and 0.94 GPa in the present study. At 1 bar, the clear SC transition was observed at $T_{sc}=1.43$ K. The transition temperature decreases with increasing pressure. The previous studies clarified that the bulk-SC state exists only below P_x and that the broad SC transition in the resistivity seen in the pressure region above P_x seems to be related to residual HO phase well above P_x [7, 8]. In the present study, the SC transition temperature depends on the applied electrical current above 0.94 GPa. Zero resistivity was not observed at 1.35 and 1.51 GPa (data not shown). These results reflects the filamentary SC above P_x.

The data in the temperature regions from T_l = T_{sc} (onset) + 70 mK to 3.0 K have been analyzed using the expression $\rho = \rho_0 + \alpha_1 T + \alpha_2 T^2$ used in the analysis of the anomalous electrical transport in the strongly correlated electron superconductors [12, 13, 14]. Figure 2 (a) and (b) show the pressure dependences of α_1 and α_2. The contribution to the resistivity from the term $\alpha_1 T$ is far larger than that from $\alpha_2 T^2$ in the HO phase below P_x. With increasing pressure, the value of α_1 decreases monotonously and shows a discontinuous decrease at P_x.

![Graph](image1)

Figure 3. Temperature dependences of (a) $\alpha_1 T/(\alpha_1 T + \alpha_2 T^2)$ and (b) $\alpha_2 T^2/(\alpha_1 T + \alpha_2 T^2)$ calculated using the values of the coefficients α_1 and α_2 obtained from the fits of the data. (c) Pressure dependences of $\alpha_1 T_{sc}/(\alpha_1 T_{sc} + \alpha_2 T_{sc}^2)$ and $\alpha_2 T_{sc}^2/(\alpha_1 T_{sc} + \alpha_2 T_{sc}^2)$ in URu$_2$Si$_2$.

![Graph](image2)

Figure 4. Relations between (a) the superconducting transition temperature T_{sc} and α_1/α_2, and (b) T_{sc} and α_1 in URu$_2$Si$_2$.
The value of α_1 remains finite up to 1.35 GPa even though the ground state changes to the LAFM phase. This may be due to the residual HO phase in the LAFM phase as mentioned above. The coefficient α_2 shows only weak pressure dependence, indicating that the Fermi liquid contribution to the electrical resistivity does not change greatly across P_x. This is consistent with recent Fermi surface studies by the de Haas-van Alphen experiments which showed no substantial change in the topology of the Fermi surfaces across P_x [15, 16]. It is suggested that the scattering process of the quasiparticles in specific regions of the Fermi surfaces deviates from the Fermi liquid theory in the HO phase and anomalous quasiparticle scattering around the “hot area” gives the anomalous electrical transport.

Next, we show the temperature dependences of $\alpha_1 T / (\alpha_1 T + \alpha_2 T^2)$ and $\alpha_2 T^2 / (\alpha_1 T + \alpha_2 T^2)$ in Fig. 3 (a) and (b). Those correspond to the ratios of the terms $\alpha_1 T$ and $\alpha_2 T^2$ to the resistivity due to the electron correlations $\Delta \rho (= \rho - \rho_0)$. The contribution from $\alpha_1 T$ to $\Delta \rho$ increases with decreasing pressure and becomes dominant just above T_{sc}. It is interesting to note that $\alpha_1 T / (\alpha_1 T + \alpha_2 T^2)$ and $\alpha_2 T^2 / (\alpha_1 T + \alpha_2 T^2)$ show almost pressure-independent values of 0.74 ± 0.05 and 0.25 ± 0.05, respectively, at just above T_{sc} as shown in Fig. 3 (c). This suggests the relation $\alpha_1/\alpha_2 \propto T_{sc}$. The relation between T_{sc} and α_1/α_2 is shown in Fig. 4 (a). The line is a fit with the relation $\alpha_1/\alpha_2 = a T_{sc}^{-\delta_1}$, where the values of a and δ_1 are determined as 3.10 ± 0.12 and 1.04 ± 0.17, respectively. This suggests a linearity between T_{sc} and α_1/α_2. Since the pressure dependence of the coefficient α_2 is very weak as shown in Fig. 2 (b), the value of T_{sc} depends primarily on the coefficient α_1 as shown in Fig. 4 (b). The relation $\alpha_1 = \alpha T_{sc}^{-\delta_1}$ is obtained, where c and δ_1 are determined to be 0.22 ± 0.01 and 1.11 ± 0.15, respectively, suggesting an almost linear relation between α_1 and T_{sc}. These results suggest the strong correlation between anomalous quasiparticle scattering and unconventional superconductivity in the HO phase of URu$_2$Si$_2$. The almost same results are obtained when the the resistivity data between T_1 to 3.4 K are analyzed.

As summarized in the ref. 14, similar correlation between the T-linear resistivity and T_{sc} has been found in the organic superconductors, the iron pnictide superconductors and the high-T_c cuprate superconductors [14]. The correlation may be universal in the unconventional superconductors.

References
[1] Palstra T T M, Monovskiy A A, Berg J can den, Dirkmaat A J, Kes P H, Nieuwenhuys G J, and Mydosh J A, 1985 Phys. Rev. Lett. 55 2727
[2] Santini P, and Amoretti G, 1994 Phys. Rev. Lett. 73 1027
[3] Haule K, and Kotliar G, 2009 Nature letters 5 796
[4] Cricchio F, Bultmark F, Grénäs O, and Lars Nordström, 2009 Phys. Rev. Lett. 107202
[5] Elgazzar S, Rusz J, Amft M, Oppeneer P M, and Mydosh J A, 2009 Nature Mater. 8 337
[6] Motoyama G, Nishioka T, and Sato N K, 2003 Phys. Rev. Lett. 90 166402
[7] Amitsuka H, Matsuda K, Kawasaki I, Tenya K, Yokoyama M, Sekine C, Tateiwa N, Kobayashi T C, Kawarazaki S, and Yoshizawa H, 2007 J. Magn. Magn. Mater. 310 214
[8] Hassinger E, Knebel G, Izawa K, Lejay P, Salce B, and Flouquet J, 2008 Phys. Rev. B 77 115117
[9] Matsuda T D, Aoki D, Ikeda S, Yamamoto E, Haga Y, Ohkuni H, Settai R and Ōnuki Y, 2008 J. Phys. Soc. Jpn. 77 362
[10] Matsuda T D, Haga Y, Aoki D, and Flouquet J. submitted
[11] Tateiwa N, Matsuda T, Haga Y, Yamamoto E, and Ōnuki, 2011 J. Phys.: Conf. Ser. 273 012087
[12] Doiron-Leyraud N, Anban-Senzier P, Cotret S R, Bourbonnais C, Jérome D, Bechgaard K, and Taillefer L, 2010 Phys. Rev. B 80 214531
[13] Cooper R A, Wang Y, Vignolle B, Lipscombe O J, Hayden S M, Tanabe Y, Adachi T, Koike Y, Nohara M, Takagi H,Proust C, and Hussey N. E, 2009 Science 323 603
[14] Taillefer L, 2010 Annual Review of Condensed Matter Physics 1 51
[15] Nakashima M, Ohkuni H, Inada Y, Settai R, Haga Y, Yamamoto E, and Y. Ōnuki, 2003 J. Phys.: Condens. Matter 15 S2011
[16] Hassinger E, Knebel G, Matsuda T D, Aoki D, Tanfoul V, and Flouquet J, 2010 Phys. Rev. Lett. 105 216409