ABSTRACT

Objective: To study the effect of decaffeinated tea extract (DTE) and decaffeinated coffee extract (DCE) and their respective fractions viz: chloroform fractions (DTCa and DCCA), ethyl acetate fractions (DTEa and DCEa), diethyl ether fractions (DTEd and DCEd) and acetone-water fractions (DTEw and DCEw) against clonidine-induced hypothermia in mice.

Methods: Clonidine (0.1 mg/kg, i.p.) administered to a group of mice pretreated 30 min before with the dose of DTE or DCE or their respective fractions. Rectal temperature was measured at the time of clonidine administration and thereafter at every 30 min up to 2 h post test period.

Results: DTE 200 DTE 300 has significantly inhibited clonidine-induced hypothermia. Among the fractions tested, DTE fraction-DTEa 100 and 200 and DCE fractions DCEa 200 and DCEw 200 significantly (p<0.0001) reversed clonidine-induced hypothermia; the effect of DTEa was found to be more sustained.

Conclusion: Both, the decaffeinated tea and coffee contain ingredients that reverse clonidine-induced hypothermia, but they are required to do so in very large doses which are not achievable with normally administered doses of decaffeinated tea or coffee.

Keywords: Polyphenol, Flavonoids, Hypothermia, Decaffeinated

INTRODUCTION

Animals have developed different methods of maintaining an ideal body temperature during the course of evolution. Cold-blooded (ectothermic) animals cannot regulate their body temperature internally so their body temperature varies according to their environment. In contrast, warm-blooded (endothermic) animals including humans, maintain a constant body temperature by adapting endogenous mechanisms specifically for heat production [1]. In humans, core body temperature is normally maintained within a tight range (36.5-37.5 °C). Thermoregulatory inputs are modulated in the spinal cord and brain stem; integrated in the preoptic region of the anterior hypothalamus. Fine balance between nor-adrenaline (NA) and serotonin (5-HT) controls the body temperature set point [2].

Clonidine is a non-selective α2 adrenergic agonist, clinically used in the management of surgical patients as it is known to possess sedative, analgesic, and anaesthetic sparing property [3]. Specifically, it stimulates α2A adrenergic receptor subtype that causes more direct vasoconstriction in peripheral vascular smooth muscles. However, activation of α2A adrenergic receptor subtype causes hypotension by inhibiting central sympathetic outflow as well as the release of NA from sympathetic nerves [3, 4]. Clonidine produces dose-dependent hypothermia. It has been suggested that clonidine has inhibitory actions on both 5-HT mediated responses in the spinal cord and its turnover as well [5].

There is an increased desire to drink tea or coffee when the body temperature falls down; because drinking tea or coffee produces a feeling of warmth. Decaffeinated tea and coffee are available in the market and it is not known what type of effect the decaffeinated tea or coffee will have on the patient and normal individual. In the present study, the effect of decaffeinated tea extract (DTE) and decaffeinated coffee extract (DCE) and their respective fractions in various solvents was evaluated on clonidine-induced hypothermia in mice. The decaffeinated tea and coffee contains a high amount of polyphenols. Polyphenols effectively elevates concentrations of 5-HT and NA in the brain areas which regulate body temperature [6]. In some reported studies, the decaffeinated tea and coffee extracts were successively fractionated with chloroform (to remove traces of caffeine and get αl, κa, λk, rich fraction) [7, 8]; ethyl acetate (to get flavonol from tea having antioxidant activity) [8]. The major flavonoid of tea and coffee is Epigallocatechin gallate (EGGC) which is poorly soluble in diethyl ether [9, 10]. Hence, the diethyl ether fraction will not reduce the amount of EGGG and the catechin fraction will therefore contain the highest amount of EGGG. Ingestion of coffee polyphenols improves skin permeability barrier function and hydration, with a concomitant improvement in microcirculatory function, leading to efficacy in the alleviation of mildly xerotic skin [11]. Decaffeinated coffee prevents scopolamine-induced memory impairment in rats [12]. Decaffeinated coffee polyphenols such as chlorogenic acid, ferulic acid, hydroxycinnamic acid, flavonoids, flavanones and anthocyanins are known to reduce the risk of cardiovascular diseases [13, 14]. Chlorogenic acid acts as an efficient neuroprotector in the management of neurodegenerative disorders [15] and caffeic acid possesses good antioxidant activity [16].

Decaffeinated green and black tea polyphenols decrease diet-induced weight gain in obese mice [17]. Therefore, four fractions of both, decaffeinated extracts of tea and coffee were used to study their effects on clonidine-induced hypothermia in mice.

MATERIALS AND METHODS

Animals

Albino mice were obtained from Global Bioresearch Solutions Pvt. Ltd., Tal. Bhor, Dist. Pune, Maharashtra. Mice weighing 22-25 g were housed in groups of five under standard laboratory conditions (ambient temperature of 25±1 °C and relative humidity 45-55%). Light/dark cycle of 12:12 h was strictly maintained during the experiment. The animals were fed ad libitum with standard feed and water. They were deprived of food 12 h before testing but had free access to water. All the experiments were carried out between 08:00 and 14:00 h.
The protocol of animal experiments was approved by Institutional Animal Ethical Committee (IAEC), approval no. SIOP/IAEC/2019/10. The animal house facility of STE'S Sinhgad Institute of Pharmacy, Narhe, Pune, (SIOP) is registered under the Committee for the Purpose of Control and Supervision on Experiments on Animals (PCSEA), Reg No. 1159/4/07/PCSEA.

Drugs and chemicals

The decaffeinated tea extract (DTE), decaffeinated coffee extract (DCE) and its respective fractions in various solvents were the test samples. Clonidine hydrochloride (Neon Laboratories, Mumbai, India), caffeine (Sigma, USA) and Antidep (imipramine) (Torrent Pharmaceuticals Ltd, Mumbai, India) were used for the study; imipramine was used as the reference standard. Solvents viz: chloroform, ethyl acetate, diethyl ether and acetone (Research-Lab Fine Chem Industries, Mumbai, India) were used for obtaining respective fractions.

Preparation of extract and fractions

Decaffeinated tea powder-“Tetley decaf” and decaffeinated coffee powder-“Nescafe decaf” were purchased from Dorabji, MG Road, Camp, Pune, Maharashtra. Each of the crude material was separately extracted using an acetonewater solvent system (80:20) by standard maceration method of extraction. The decaffeinated tea extract (DTE) and decaffeinated coffee extract (DCE) obtained were concentrated in a rotating evaporator under reduced pressure; kept in lyophilizer for 72 h until dry residue was obtained. The quantity, 80% of DTE and DCE obtained, was further fractionated using a various solvents with increasing polarity (diethyl ether, chloroform, ethyl acetate and acetone-water). DTE and DCE fractions obtained include chloroform fractions-DTCf and DCCf; ethyl acetate fractions- DTEa and DCEa; diethyl ether fractions-DTDe and DCDe and acetone-water fractions-DTAw and DCAw respectively [18].

Dose preparation

Mice were injected with clonidine (0.1 mg/Kg, i.p.), caffeine (25 mg/Kg, i.p.), DTE (100, 200 and 300 mg/kg, i.p.), DTE fractions (DTCf, DTEa, DTDe and DTAw, 100 and 200 mg/kg, i.p. each), DCE (100, 200 and 300 mg/kg, i.p.), DCE fractions (DCCf, DCEa, DCDe and DCAw, 100 and 200 mg/kg, i.p. each) and reference standard imipramine (20 mg/kg, i.p.). All drug solutions were prepared in pyrogen-free glassware, heated in a hot air oven (for 5 h at 180 °C) and DCE was further subjected to fractionation with mentioned solvents; the yield of respective fractions were noted viz: diethyl ether fraction (DCDe), 6.5 g; chloroform fraction (DCCf), 4 g; ethyl acetate fraction (DCEa), 10 g and acetone-water fraction (DCAw), 25 g.

Effect on clonidine-induced hypothermia

In the present study, DTE 200 and DTE 300 significantly (P<0.0001) inhibited clonidine-induced hypothermia at 60 and 90 min while DCE could not produce a pronounced effect on hypothermia as compared to control (fig. 1). Among the DTE fractions tested, the only fraction, DTEa at the doses 100 and 200 mg/kg significantly reversed hypothermia (P<0.0001) compared to control group. The effect was seen at 60 min that persisted for 1 h (i.e. up to 2 h test period) (fig. 2). The DCE fractions, DCDe 200 and DCAw could inhibit hypothermia; significant effect (P<0.0001) was noted only at 60 and 90 min compared to control group; indicating the said effect sustained for 30 min approx (fig. 3). In common, caffeine (25 mg/kg, i.p.) significantly (P<0.0001) reversed clonidine-induced hypothermia from 30 min onwards compared to control group; it explicates a prolonged duration of action. None of the extracts or fractions per se increased clonidine-induced hypothermia.

Measurement of hypothermia

In this experiment, hypothermia was assessed by measuring rectal temperature. The mouse was hand-restrained and placed on a horizontal surface (cage lid). The tail was lifted and the temperature. The mouse was hand-restrained and placed on a...
Data were expressed as mean±SEM, n= 5, statistical significance was determined by Two-way analysis of variance (ANOVA) followed by Tukey's multiple comparison test; *P<0.0001, **P<0.001, ***P<0.05 compared to vehicle-clonidine group. Only DTEa significantly inhibited hypothermia.

Dose: clonidine (0.1 mg/kg, i. p.), caffeine (25 mg/kg, i. p.), imipramine (20 mg/kg, i. p.) and DTE fractions-DTCl, DTEa, DTDe and DTAw (100 and 200 mg/kg, i. p.).

DISCUSSION

Clonidine-induced hypothermia has a complex phenomenon. Hypothermia is associated with clonidine overdose in humans [20]; overdose of another α2 receptor agonist guanabenz, a structural analogue of clonidine, also shares the same pharmacological properties [21]. In mice, clonidine-induced hypothermia has been related to its ability to cross the blood-brain barrier and interact with central α2 receptors which contribute to thermoregulation [22]. However, in rats, clonidine elicits hypothermia via activation of central 5-HT pathways which resulted in decreased metabolic heat production and/or increased heat loss through cutaneous vasodilatation [23].

Hypothermia is one of the adverse drug reactions of drugs like antipsychotics that commonly require hospitalization [24]. Both, conventional and atypical antipsychotics cause hypothermia but atypical antipsychotics have a lower risk [25]. Hypothermia particularly in advanced age, cerebrovascular accident, hypothyroidism, sepsis, benzodiazepine use, alcohol intoxication, kidney or liver failure could be life-threatening [26]. The effects of undesired hypothermia in trauma are more in numbers and complex too [27]. In humans, sustained hypothermia has been demonstrated to slow down enzyme activity [28]. Deep hypothermia (temperature<33 °C) inhibits platelet function and coagulation mechanism [29]. Hypothermia may induce arrhythmias, cause trauma-associated coagulopathy. From an immunological perspective, hypothermia may diminish the inflammatory response and increase the risk of pneumonia [30]. Hypothermic patients are also prone to surgical wound infections, delayed suture removal and extended hospitalization [31].

Imipramine is reported to inhibit reserpine-induced hypothermia [32]. Single administration of imipramine is known to activate 5-HT1A receptors and inhibit the hypothermia induced by the 5-HT1A receptor full agonist- 8-hydroxy-2-[di-n-propylamine] tetralin (8-OH-DPAT). However, this inhibitory effect was blocked by 5-HT2A receptor antagonist ketanserin [33]. It suggests that the inhibition of hypothermia by an acute dose of imipramine may be associated with activation of 5-HT2A receptor subtype of serotonin; however, if administered chronically, it has been found to cause hypothermia.

Clonidine-induced cutaneous vasodilatation may reduce the core-to-periphery temperature gradient and enhance body heat redistribution [34]. In hypothermia, onset and duration are important parameters ensuring therapeutic benefits and avoiding potential risks. One study reports that peak plasma concentration of clonidine and its effects occur within 30 min of its oral administration [35].

Warm tea or coffee provides a feeling of well-being to the patient having hypothermia. Caffeine promotes hyperthermia [36]. It is reported that plant-derived polyphenols have a remarkable antidepressant activity [37] and they inhibit hypothermia [38]. Though tea component, catechin raises body temperature [39], there is no literature available on the effect of decaffeinated tea/coffee on hypothermia.

Based on the hypothesis proposed by Lin et al. [40], clonidine may act on 5-HT1A/ACH pathway within preoptic anterior hypothalamus to exert the hypothermic action. Hypothalamus is richly innervated by both serotonergic and cholinergic nerve fibres. Clonidine increases brain 5-HT level and ACh level. In general, hypothermia can be reversed by depletion of 5-HT and/or antagonism of ACh action. It is achieved by 5-HT depletion by 5, 7-dihydroxytryptamine or blockade of 5-HT receptor with cyproheptadine or cholinceptors with atropine. Apart from this, another mechanism of hypothermia reversal came into sight; that was observed in case of imipramine. Despite of being 5-HT uptake inhibitor, it has caused reversal of hypothermia by activation of 5-HT2A receptor subtype of 5-HT on acute treatment [33].

Major Flavonol content was extracted from green tea by ethyl acetate, while most of the alkaloids were in the chloroform fraction. Flavanol showed very strong antioxidant activity and 6-oxogenase inhibition [8]. One of the major flavonoids obtained from green tea is Epigallocatechin gallate (EGCG). An optimized method of green tea extraction yielded EGCG 286.87 mg/g dry weight [41]. One of the studies mentioned that petroleum ether and chloroform fractions of ethanolic extract of tea when analyzed tested positive for terpenoids and steroids [42].

In our study, clonidine-induced hypothermia was reversed by DTE (200 and 300 mg/kg, i. p.). The activity is highly significant (P<0.0001) compared to the control group. This effect may be due to presence of active phenolic compounds present in the extract. Further, flavonoids/tannins content in its ethyl acetate fraction (DTEa) has resulted in a significant increase in the body temperature till the end of 2 h observation period. In comparison to the parent extract (DTE), the effect produced by DTEa lasted longer.

In hypothermia, onset and duration are important parameters ensuring therapeutic benefits and avoiding potential risks. One study reports that peak plasma concentration of clonidine and its effects occur within 30 min of its oral administration [35].

CONCLUSION

As compared to caffeine and imipramine, decaffeinated tea required very high doses (200 and 300 mg/kg i. p.) to reverse clonidine-induced hypothermia and decaffeinated coffee had no significant effect. The fractions of both decaffeinated tea and coffee also had very feeble effect on clonidine-induced hypothermia.

ACKNOWLEDGEMENT

Authors are thankful to STES's Sinhgad Institute of Pharmacy, Pune for providing the necessary infrastructure and lab facilities for the research work. The corresponding author-Mr. Bala Salve is Ph.D. Research Scholar at Jawaharlal Nehru Technological University (JNTUH), Hyderabad (TS), India.

FUNDING

Nil
AUTHORS CONTRIBUTIONS
BS and SK designed the protocol and prepared the manuscript. SK and CK interpreted the scientific data and all the author read and approved the manuscript.

CONFLICTS OF INTERESTS
All the listed authors do not have a conflict of interest.

REFERENCES
1. Thomas K, Ulf S. Effect of hyperthermia on haemostasis and bleeding. J Int Med Res 2019;47:355-60.
2. Feldberg W, Myers RD. A new concept of temperature regulation by amines in hypothermia. Nature 1963;200:1:325.
3. Mizobe T, Maze M. Alpha 2-adrenoceptor agonists and anaesthesia. Int Anesthesiol Clin 1995;33:81-102.
4. Mizobe T, Maze M. Molecular pharmacology of a2 adrenoceptors: relevance to anesthesia. Anesthesiol Clin North Am Anesth Pharmacol 1997;11:1-26.
5. Franz DN, Hare BD, Neumayr RJ. Depression of sympathetic preganglionic neurons by chloridone. Evidence for stimulation of 5-HT receptors. Clin Exp Hypertens 1978;1:1:15-40.
6. Liu Y, Jia G, Gou L, Sun L, Fu X, Lan N, et al. Antidepressant-like effects of tea polyphenols on a mouse model of chronic unpredictable mild stress. Pharmacol Biochem Behav 2013;104:27-32.
7. Row KH, Jin Y. Recovery of catechin compounds from Korean tea by solvent extraction. Bioresearch Technol 2006;97:790-3.
8. Xie B, Shi H, Chen Q, Ho CT. Antioxidantproperties of fractions and polyphenol constituents from green, oolong and black teas. Proc Natl Sci Counc Repub China B 1993;17:77-84.
9. Krol K, Gantner M, Tatarak A, Hallmann E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur Food Res Technol 2020;2:46:33-39.
10. Liu B, Kang ZW, Xue W. Synthesis, stability, and antidiabetic activity evaluation of (−)-Epigallocatechin gallate (EGCG) palmitate derived from natural tea polyphenols. Molecules 2021;26:393.
11. Fukagawa S, Haraizumi S, Sasaoka S, Yasuda Y, Tsujimura H, Murase T. Coffee polyphenols extracted from green coffee beans improve skin properties and microcirculatory function. Biotecnol Bioengineering 2017;114:22.
12. Jang YJ, Kim J, Shin J, Kim CY, Jang JH, Lee KW, et al. Decaffeinated coffee prevents scopoamine-induced memory impairment in rats. Behav Brain Res 2013;245;113:9.
13. Tresserra Rimbau A, Medina Remon A, Estruch R, Lamuela Raventos RM. Coffee polyphenols and high cardiovascular risk parameters. In: Presty VR, editor. Coffee in Health and Disease Prevention. 1st ed. London: Academic Press; 2015. p. 387-94.
14. Godos J, Castellano S, Ray S, Grosso F, Galvano F. Dietary polyphenol intake and depression: results from the Mediterranean healthy eating, lifestyle and aging (MEAL) study. Molecules 2018;23:999.
15. Budiman A, Luthfi A, Muchtaridi M. The stability of chlorogenic acid in syrup of Coffee arabica (Coffee arabica L) extract with decaffeination process. Asian J Pharm Clin Res 2017;10:1-4.
16. Zahran F, Al-Hussain AY, El-Shehabi ME. Antidiabetic activity of caffeic acid and 18β-glycyrrhetinic acid and its relationship with the antioxidant property. Asian J Pharm Clin Res 2015;8:229-35.
17. Henning SM, Yang J, Hsu M, Lee RP, Grojean EM, Ly L, et al. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr 2018;57:2759-69.
18. Babbar N, Oberoi HS, Sandhu XK, Bhargav VK. Influence of different solvents in the extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol 2014;51:2:568-75.
19. Kasture S, Pawar A, Kasture A, Foddis C, Frau MA, Macia A. Effect of ethanolic extract of Rubia perlgiona (Rubiacaceae) on monoamine-mediated behaviour. Nat Prod Res 2011;25:1950-4.
20. Anderson RJ, Hart GR, Crumpler CP, Lerman UT. Clonidine overdose: report of six cases and review of the literature. Ann Emerg Med 1981;1:107-12.
21. Jeanmariar P, Robert SH, Bruce J, Judd EH. Guanabenz induced hyperthermia in a poisoned elderly female. J Toxicol Clin Toxicol 1994;32:445-9.
22. McLenan PL. The hyperthermic effect of clonidine and other imidazolidines in relation to their ability to enter the central nervous system in mice. Eur J Pharmocol 1986;9:477-92.
23. Lin MT, Chandra A, KO WC, Chen YM. Serotonergic mechanisms of clonidine-induced hyperthermia in rats. Neuropharmacology 1981;20:10-21.
24. Van Marum RJ, Wegewits MA, Loonen AJ, Beers E. Hyperthermia following antipsychotic drug use. Eur J Clin Pharmacol 2007;63:627-31.
25. Zommerberg C, Bueno-de-Mesquita JM, Ramlal D, Blom JD. Hyperthermia due to antipsychotic medication: a systematic review. Front Psychiatry 2017;8:165.
26. Seeman MV, Emerita P. Antipsychotics, hyperthermia, undressing, and death. Glob Med Clin Case Rep 2017;4:1-13.
27. Vardon F, Mrozek S, Gerasets T, Fourcade O. Accidental hyperthermia in severe trauma. Anaesth Crit Care Pain Med 2016;35:355-61.
28. Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C, et al. Hypothermia coagulopathy in trauma: effect of varying levels of hyperthermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma 1998;43:846-54.
29. Livingston A, Low J, Morris B. Effects of clonidine and xylazine on body temperature in the rat. Br J Pharmacol 1984;81:139-93.
30. Thorsen K, Ringdal KG, Strand K, Soreide E, Hagemo J, Soreide K. Clinical and cellular effects of hyperthermia, acidosis and coagulopathy in major injury. Br J Surg 2011;98:894-907.
31. Nakajima Y, Mizobe T, Takamata A, Tanaka Y. Baroreflex modulation of peripheral vasocostriction during progressive hyperthermia in anesthetized humans. Am J Physiol Regul Integr Comp Physiol 2000;279:1430-6.
32. Frances H. Analysis of the nature of antagonism of the resepine-induced hyperthermia by imipramine. Naunyn Schmiedebergs Arch Pharmacol 1987;336:303-37.
33. Kitanura Y, Araki H, Shibata K, Gomita Y, Tanizaki Y. Modulation of B-OH-DPAT-induced hyperthermia by imipramine in rats. J Pharmacol Sci 2003;93:259-64.
34. Vassillev N, Rosenauer M, Sessler DI, Cresswell C, Liehmann A. Nifedipine and intraoperative core body temperature in humans. Anesthesiology 1994;80:123-8.
35. Bernard JM, Fulgencio JP, Delaunay L, Bonnet F. Clonidine does not impair redistribution hyperthermia after the induction of anesthesia. Anesth Analg 1999;88:157-72.
36. McNamara R, Kerans A, O’Neill B, Harkin A. Clinical and cellular effects of hypothermia, acidosis and coagulopathy in major injury. Br J Surg 2011;98:894-907.
37. Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R. Dietary polyphenols extracted from green coffee beans improve skin properties and microcirculatory function. Biotecnol Bioengineering 2017;114:22.
38. Jang YJ, Kim J, Shin J, Kim CY, Jang JH, Lee KW, et al. Decaffeinated coffee prevents scopoamine-induced memory impairment in rats. Behav Brain Res 2013;245:113-9.
39. Tresserra Rimbau A, Medina Remon A, Estruch R, Lamuela Raventos RM. Coffee polyphenols and high cardiovascular risk parameters. In: Presty VR, editor. Coffee in Health and Disease Prevention. 1st ed. London: Academic Press; 2015. p. 387-94.
40. Godos J, Castellano S, Ray S, Grosso F, Galvano F. Dietary polyphenol intake and depression: results from the Mediterranean healthy eating, lifestyle and aging (MEAL) study. Molecules 2018;23:999.