Ulcerative colitis: Recent advances in the understanding of disease pathogenesis

Citation for published version:
Porter, RJ, Kalla, R & Ho, G 2020, 'Ulcerative colitis: Recent advances in the understanding of disease pathogenesis', F1000Research, vol. 9, pp. 294. https://doi.org/10.12688/f1000research.20805.1

Digital Object Identifier (DOI):
10.12688/f1000research.20805.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
F1000Research

Publisher Rights Statement:
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
REVIEW

Ulcerative colitis: Recent advances in the understanding of disease pathogenesis [version 1; peer review: 2 approved]

Ross J Porter, Rahul Kalla, Gwo-Tzer Ho

Edinburgh IBD Science Unit, Centre for Inflammation Research, Queens Medical Research Unit, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK

Abstract

Inflammatory bowel diseases are common, complex, immune-mediated conditions with a sharply rising global prevalence. While major advances since 2000 have provided strong mechanistic clues implicating a de-regulation in the normal interaction among host genetics, immunity, microbiome, and the environment, more recent progress has generated entirely new hypotheses and also further refined older disease concepts. In this review, we focus specifically on these novel developments in the pathogenesis of ulcerative colitis.

Keywords

Ulcerative colitis, Inflammatory Bowel Disease, Inflammation, Mucosal Immunology, Pathogenesis

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1 Jonathan Rhodes, University of Liverpool, Liverpool, UK
2 Barney Hawthorne, University Hospital of Wales, Cardiff, UK

Any comments on the article can be found at the end of the article.
Corresponding author: Gwo-Tzer Ho (gho@ed.ac.uk)

Author roles: Porter RJ: Writing – Review & Editing; Kalla R: Writing – Review & Editing; Ho GT: Writing – Original Draft Preparation

Competing interests: No competing interests were disclosed.

Grant information: GTH is supported by the Leona M. and Harry B. Helmsley Charitable Trust, the Jon Moulton Foundation, Crohn's Colitis UK and Guts UK Charity.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Porter RJ et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Porter RJ, Kalla R and Ho GT. Ulcerative colitis: Recent advances in the understanding of disease pathogenesis [version 1; peer review: 2 approved] F1000Research 2020, 9(F1000 Faculty Rev):294 https://doi.org/10.12688/f1000research.20805.1

First published: 24 Apr 2020, 9(F1000 Faculty Rev):294 https://doi.org/10.12688/f1000research.20805.1
Introduction
The Inflammatory Bowel Diseases (IBDs), namely Ulcerative Colitis (UC) and Crohn’s disease (CD) (Table 1), are chronic immune-mediated conditions with a high prevalence in developed countries (>0.3%) and rapidly increasing incidence in newly industrialised countries (annual percentage change +14.9%)\(^2\). Global prevalence is projected to affect up to 30 million individuals by 2025\(^3\). Since its original description by Samuel Wilks in Morbid appearances in the intestine of Miss Bankes in 1859, the notably consistent features of UC that at once appear to be such strong clues have not yet led to a clear understanding of disease pathogenesis\(^4\). These clinical features include the almost-universal involvement of the rectum (the lowest part of the colon) as the first site where inflammation starts and the distinctively confluent nature of inflammation that ends with an abrupt demarcation and transition into normal colonic mucosa. Smoking is protective, and UC often presents after smoking cessation\(^5\). Furthermore, the development of appendicitis is protective against UC. On the other hand, UC (like CD) is clinically heterogeneous: only 30% and 15% of patients have extensive (affecting more than half of the colon) or aggressive (patients rapidly become unwell with features of systemic upset) colitis, respectively\(^6\). Approximately half of patients may develop a more complicated disease course, some by virtue of not responding to drug treatments\(^7,8\). Hence, like many complex diseases, diverse aetiological factors shape the initiation of UC and impact subsequent disease course and severity (Table 2).

The current platform of UC pathogenesis
A widely accepted framework suggests a complex contribution of environmental and host factors that increase the susceptibility of developing UC, and disease onset is triggered by events that perturb the mucosal barrier, alter the healthy balance of the gut microbiota, and abnormally stimulate gut immune responses. Here, we discuss the general aetiological factors that increase the risk of developing UC (Figure 1) and review the molecular underpinnings of the abnormal inflammatory process in this disease (Figure 2). We briefly cover the genetic, environmental, immune, and microbiome factors that currently frame our understanding of UC pathogenesis.

Genetics
Genetic studies (including genome-wide association [GWA], whole genome sequencing [WGS], and fine mapping studies) have been particularly successful in identifying 260 susceptibility

| Table 1. Summary of clinical features of Crohn’s disease and ulcerative colitis. |
|------------------------------------|---------------------------------|---------------------------------|
| | Crohn’s disease (CD) | Ulcerative colitis (UC) |
| Incidence of inflammatory bowel disease (IBD) | | |
| Sex | Higher incidence in females than in males | Equal incidence in males and females |
| Global prevalence | High incidence of CD in developed countries with high prevalence | UC emerged before CD in developed countries; UC is more prevalent in newly industrialised countries |
| Clinical presentation | | |
| Symptomology | Chronic diarrhoea, abdominal pain, fever, malnourishment, fatigue, and weight loss | Most commonly bloody diarrhoea with abdominal pain, urgency, and tenesmus; haematochezia is more common in UC |
| Serological markers | Antibodies to microbiota including anti-*Saccharomyces cerevisiae* antibodies; also, anti-OmpC, anti-I2, and anti-Cbir1 antibodies and antibodies against exocrine pancreas | Anti-neutrophil cytoplasmic antibodies; also, antibodies to goblet cells |
| Gross pathology and histopathology | | |
| Affected areas | Can affect the entire gastrointestinal tract (from mouth to anus); terminal ileum is often implicated | Affects the colon with potential backwash ileitis or rectal sparing in longstanding disease |
| Pattern of inflammation | Often patchy and discontinuous cobblestone pattern of inflammation with skip lesions | Continuous inflammation extending from the rectum proximally, often with a separate caecal patch |
| Penetration | Transmural inflammation of the entire bowel wall | Inflammation restricted to the mucosal and submucosal layers (except in fulminant colitis) |
| Histopathology | Thickened colon wall with non-caseating granulomas and deep fissures; Fibrosis, lymphangiectasia, mural nerve hypertrophy, and Paneth cell metaplasia can sometimes be observed; Granulomas are present in about half of Crohn’s patients | Distorted crypt architecture with shallow erosions and ulcers; Goblet cell depletion, pseudopolyps, submucosal fibrosis, and mucosal atrophy can sometimes be observed |
| Complications | Fistulas, strictures, perianal abscesses, and colonic and small bowel obstruction (from strictures, adhesions, or carcinoma) | Fulminant colitis, toxic megacolon perforation, and haemorrhage; Colorectal cancer is more common in UC |
Table 2. Overview of recent advances in ulcerative colitis (UC).

The current platform of UC pathogenesis
Genetics
• Most genetic factors (67% of susceptibility loci) are shared between UC and Crohn’s disease (CD)
• Sixteen human leukocyte antigen (HLA) allelic associations (mostly class II) are described for UC
• Outwith the HLA region, the \(\text{ADCY7} \) gene has the strongest association with UC
• UC-specific genes implicate epithelial dysfunction
• There is low disease hereditability in UC (6.3% in monozygotic twins)
Environment
• UC incidence rises before CD and this is associated with Westernisation
• Westernisation factors—urban lifestyle, pollution, diet, antibiotics, better hygiene, and fewer infections—are associated with UC
• Appendicitis and smoking are protective in UC; smoking cessation can precede UC
• Patients with UC have a 30% increased risk of developing Parkinson’s disease
Microbiota
• The UC gut microbiome, virome, and mycobiome is less diverse over time
• Faecal microbial transplantation is effective in UC
• It is not known if dysbiosis is a consequence, or initiator, of inflammation
• There is depletion of protective (Ruminococcaceae and Lachnospiraceae) and enrichment of inflammatory (Enterobacteriaceae and Fusobacteriaceae) microbes
Epithelial barrier
• An impaired epithelial barrier is a pathogenic factor for UC
• An innate “at risk” barrier-specific genetic phenotype where exposure to additional injurious stimuli, such as non-steroidal anti-inflammatories and dietary components such as emulsifiers, may be the second trigger that precipitates colitis
Immune response
• Neutrophils are “first responder” cells and undergo inflammatory cell death, which drives inflammation
• Innate immune responses (neutrophils/macrophages) may promote a pathogenic adaptive (likely T-cell driven) response
• How HLA allelic associations influence antigen presentation is not fully understood
• UC immunity is more complex than simply a non-classical Th2 response given newly discovered Th19 and Th17 responses and effective interleukin (IL)-23 blockade therapy
New progress in the pathogenesis of UC
Mitochondria
• Mitochondriopathy is a pathogenic process in UC
• Loss of mitochondrial homeostasis leads to defective energy production, increased oxidative stress, and the release of pro-inflammatory damage-associated molecular patterns
Single-cell data
• New colonic epithelial cell subsets have been identified that sense colonic luminal pH and set the epithelial cGMP tone in response; goblet cell remodelling also has important implications
• Strong compartmentalisation around inflammatory monocytes and novel network hubs around the poorly characterised \(\text{CDB1/IL17}^+ \) T cells and microfold-like (M) cells are observed in UC
• In some patients, inflammation-associated fibroblasts (IAFs) are expanded, enriched with many genes associated with colitis, fibrosis, and cancer
• One of the most enriched genes in IAFs is oncostatin M (OSM); high mucosal OSM is associated with poor response to anti-tumour necrosis factor

loci (both common and rare genetic variants) associated with IBD\(^{10-14}\). There are several key findings. Firstly, most genetic factors are shared between UC and CD. In an initial analysis of 15 GW A datasets, Jostins et al. showed that 110 out of 163 (67%) susceptibility loci were associated with both UC and CD\(^{11}\). These shared genes encode both innate and adaptive immune pathways, cytokine signalling, and immune sensing (e.g. \(\text{IL23-R, IL-12, JAK2, CARD9, TNFSF18, and IL-10} \)). Many of these genes (70%) are also shared with other autoimmune diseases such as ankylosing spondylitis and psoriasis. Secondly, the strongest genetic signals within UC-specific loci are associated with the human leukocyte antigen (HLA) region in chromosome 6. Sixteen HLA allelic associations (mostly class II) are described for UC, including HLA DRB1*01*03 for IBD colonic involvement on deeper fine mapping genetic analysis\(^8\). Further analyses show that these are associated with colonic involvement for UC and CD\(^9\). It is of interest to note that HLA allelic associations with extensive and aggressive UC have been noted even prior to GW A studies\(^7\). Recent WGS of nearly 2,000 UC patients identified a new but rare missense variant (present in 0.6% of cases) in the adenylate cyclase 7 gene (\(\text{ADCY7} \)) that doubles the risk of UC\(^{12}\). Outwith the HLA region, the \(\text{ADCY7} \) gene has the strongest genetic association observed with UC. \(\text{ADCY7} \) is one of a family
Figure 1. General factors associated with increased susceptibility of UC. CD, Crohn's disease; UC, ulcerative colitis.

Figure 2. Molecular mechanisms involved in the development of mucosal inflammation in UC. DAMPs, damage-associated molecular patterns; ER, endoplasmic reticulum; HLA, human leukocyte antigen; IL, interleukin; Mφ, macrophage; NSAID, non-steroidal anti-inflammatory drug; OSM, oncostatin M; ROS, reactive oxygen species; SCFA, short-chain fatty acid; TNF, tumour necrosis factor; UC, ulcerative colitis.
of 10 enzymes that convert ATP to the ubiquitous second messenger cAMP. In addition to this, many UC-specific genes are involved in the regulation of epithelial barrier function (further discussed below). Thirdly, despite the identification of many susceptibility loci, genetics explain only 19% of disease heritability in UC. The concordance rate amongst monozygotic twins for UC is only 6.3% (compared to nearly 60% in CD). Collectively, genetic factors confer a small but definite increase in susceptibility for UC. Many individuals, however, have no genetic predisposition when assessed by a polygenic risk score that accounts for all of the susceptibility loci. This suggests a key role for aberrant adaptive immune responses and epithelial barrier dysfunction in UC disease pathogenesis. Non-genetic factors (notably epigenetics) may also play an important role.

Environmental factors
The rapid rise of UC incidence in newly industrialised countries suggests that environmental factors are important. This parallels the patterns observed in the Western world during the early 20th century. Specifically, UC appears first in urban areas, its incidence rising rapidly then slowing; subsequently, CD incidence rises and eventually approaches that of UC. Westernisation is accompanied by new urban lifestyle, exposure to pollution, change in diet, access to antibiotics, better hygiene, and fewer infections, all considered as general contributory factors. Notwithstanding this, more specific environmental factors associated with UC have been known for some time. The strongest example is seen in the protective effect of cigarette smoking and the notable observation of new-onset UC in individuals who stop smoking. The global patterns of smoking and IBD are changing; an increasingly large former smoker population with UC in China is suggestive of a rapid expansion of the at-risk population. The anti-inflammatory effect conferred by cigarette smoking in UC is intriguing and may be mediated by carbon monoxide. Further examples include the protective effect of appendicitis against future development of UC, the bimodal incidence with a second peak associated with older age in men, and, more recently, the curious association with Parkinson’s disease (another condition associated with non-smoking and old age). These all provide more specific aetiological insights into the development of UC. Epidemiologic data have shown a potential protective effect of oily fish, present in oily fish, and a diet high in red meat in the development of UC.

Gut microbiota
The IBD gut microbiome is significantly less diverse and stable over time, as recently extensively characterised in the Integrative Human Microbiome Project (iHMP), where 132 IBD and healthy individuals were followed up longitudinally for 1 year and demonstrated in a case-control study involving 1,800 IBD and irritable bowel syndrome patients. A depletion of protective bacteria such as short-chain fatty acid (SCFA)-producing Ruminococcaceae and Lachnospiraceae that coincides with an expansion of pro-inflammatory microbes such as Enterobacteriaceae, including Escherichia coli, and Fusobacteriaceae has been noted. These changes, however, are less obvious in UC compared to CD. It is not known if dysbiosis is a consequence of, or plays a causal role in, gut inflammation in UC. In this regard, the virome and mycobiome are also less diverse in UC. In the longitudinal iHMP, microbiome patterns did not predict the likelihood of a disease flare. To add to the complexity, further studies in UC showed that microbial abundance did not necessarily correlate with transcriptional activity. Therapeutically, however, faecal microbial transplantation (FMT) from healthy donors can treat UC. There are four controlled positive FMT clinical studies. The restoration of microbial diversity, including bacterial species responsible for SCFA production in donor stool, has been suggested as an important contributor.

Epithelial dysfunction
With the histologic observation of subepithelial inflammation, many studies implicate an impaired epithelial barrier as a pathogenic factor for UC. This is through either altered or impaired secretion (e.g. of antimicrobial peptides, damage-associated molecular patterns, or mucus) or physical defects (e.g. from disruption of epithelial tight junctions or defective regeneration or detoxification). UC-specific genes that regulate epithelial barrier maintenance with major intestinal tissue stromal cell types that contribute to the regulation of innate immunity and epithelial barrier maintenance with major intestinal tissue stromal cell subsets such as fibroblasts, smooth muscle actin (α-SMA)-expressing myofibroblasts, and perivascular pericytes.
nucleotide binding protein alpha 12, GNA12), ion transport (solute carrier family-26, SLC26A3), and epithelial health via endoplasmic reticulum stress (orsomucoid-1-like gene 3, ORMDL3). Of interest, a protein truncating genetic variant in RNF186, a single-exon ring finger E3 ligase with strong colonic epithelial expression, protects against UC; however, the underlying mechanism is not yet clear. Hence, there is a potentially innate “at risk” phenotype where exposure to additional injurious stimuli such as non-steroidal anti-inflammatories (that reduce the synthesis of protective prostaglandins) and dietary components such as emulsifiers (that reduce the thickness of the mucus layer) may be the second trigger that precipitates colitis. As discussed earlier, dysbiosis results in loss of SCFA production, which is essential for epithelial energy provision, mucus production, and proliferation in the colon. Hence, clinical trials involving butyrate, propionic acid, prebiotics, and L-carnitine, which facilitate SCFA transport, have demonstrated some efficacy in treating UC.

During active UC, key pro-inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α), interferon (IFN)-γ, and interleukin (IL)-13 have direct deleterious effects on epithelial barrier integrity. Drugs that maintain remission in UC, such as mesalazine, may exert some of their therapeutic effect by maintaining epithelial health. Hence, protecting the “at risk” or restoring colonic epithelial health may be a viable strategy to maintain long-term remission in UC.

Abnormal immune response: innate
In active UC, there is a complex inflammatory milieu of innate and adaptive immune cells infiltrating the lamina propria. Neutrophils, the short-lived “first responder” cells, are recruited in abundance with characteristic histology of “crypt abscesses” in UC, where neutrophils transmigrate across the colonic epithelium and die within the colonic crypts. The UC inflammatory environment promotes neutrophil survival (potentially via HIF-1 and hypoxia). This increased survival escalates its inflammatory action and tissue damage (via many means, including the release of serine and matrix metalloproteases, reactive oxygen species, and pro-inflammatory cytokines). The high number of neutrophils undergo uncontrolled pro-inflammatory cell death (necrosis, necroptosis, and NETosis), which potentiates and amplifies the pro-inflammatory environment. This is supported by high levels of s100a8a9 proteins (or calprotectin), usually found in neutrophils, that are released in blood and stool and a prominent serological response to self perinuclear anti p-neutrophil cytoplasmic antibodies (pANCA) in UC, both likely indirect indicators of uncontrolled neutrophil cell death. Neutrophil extracellular traps (NETs) can act as a sump for immunogenic molecules that sustain the inflammatory response. Hence, there is a rational paradigm that, following disease initiation, the preceding wave of innate inflammatory neutrophils and monocytes (with their pro-inflammatory cytokine repertoire, e.g. IL-1 family, IL-6, and TNF-α) creates an inflammatory milieu (nutritional, metabolic, and cytokine) that promotes a pathologic adaptive (likely T-cell) immune response.

Such a milieu can also shape newly arriving inflammatory monocytes, monocyte–macrophage function, their survival, and their phenotype, and further factors that influence the host’s ability to resolve inflammation, restore homeostasis, and repair the UC mucosa.

Abnormal immune response: adaptive
UC’s strong genetic associations with HLA (mostly class II) suggest that abnormal antigen(s) driving the aberrant T-cell response, which then further shape the pathologic cytokine milieu, are likely to be a crucial causative factor. How HLA influences commensal and/or self antigen presentation (and the identities of these) to T cells and thereafter downstream pathogenic T-cell response remains unclear and challenging. Approaches to study, screen, and define T-cell epitopes have improved considerably and progress is likely. Traditionally, UC is associated with a Th2 response with high IL-4, IL-5, and IL-13, whereas CD has a more dominant Th1/Th17 response.

Earlier studies that show less IL-4 in UC, with CD1d-restricted natural killer T-cells producing IL-13, point to a non-classical Th2 response. Some recent developments have overtaken this area. These include the identification of IL-23 as a key driver of Th17 responses, genetic associations with IL-23 and its related genes, and the presence of Th17 and (Th0) cells in UC. The Th2 angle becomes less clear where anakinra (a drug that blocks IL-13 by binding with IL-4Ra, a shared subunit for IL-13 and IL-4 receptors) and tralokinumab (a drug that blocks binding to both IL-13Ra and IL-13Ra2) are not effective in UC. Blocking IL-23, however, is effective in UC, e.g. minkizumab (anti-p19 subunit of IL-23) and ustekinumab (anti-p40 subunit of IL-23). The example of anti-TNF treatment first used in CD and then shown to be equally effective in UC demonstrates that basing a translational approach on pure Th-cytokine profile may be oversimplified. Furthermore, although CD4 T cells are considered to be more important in IBD pathogenesis, it is CD8 T cell transcriptomic signatures that have been found to influence whether UC and CD adopt a more aggressive disease course (in this study, CD4 T signatures were not useful). New data characterising the adaptive immune populations at a transcriptomic (and at a single cell) level will yield many more new insights. The recent discovery of innate lymphoid cells (ILCs) as a further mediator of IL-23-driven inflammatory response in the colon is a further new dimension in UC.

New progress in the pathogenesis of UC

The mitochondria and UC
Recent progress has been driven by a strong focus on direct studies on the inflamed mucosa specifically in newly diagnosed or drug-naïve individuals. Of interest, using a bulk RNAseq approach in 206 newly diagnosed paediatric UC individuals (PROTECT study), Haberman et al. showed a significant reduction in the expression of mitochondrial genes that encode the oxidative phosphorylation chain (responsible for energy production) and nuclear encoded genes such as PPARGC1A (responsible for mitochondrial biogenesis), implicating mitochondriopathy as a pathogenic process in UC. Mitochondria are intracellular double-membrane-bound organelles with many essential physiological roles such as in energy production and the regulation of cell death and immune responses. In the last 10 years, many seminal studies have
highlighted the mitochondria as the major previously unknown “jigsaw piece” in inflammation\textsuperscript{[15]. Mitochondrial dysfunction has long been implicated in UC, as far back as 1980[104,105] (reviewed by Novak et al.[16]), but new data from the last 3 years have re-focused this concept[106,107,108]. Such dysregulation of genes that control mitochondrial function have been shown in earlier colonic microarray studies in UC[109].

Functional studies show that mitochondria are sited in a uniquely damaging environment (in the colon, more so than other tissue sites)[107,108]. Loss of mitochondrial homeostasis (including mitophagy and the autophagic removal of damaged mitochondria—IBD GWAS susceptibility genes PARK7 and LRRK2) can lead to defective energy production[111], increased mitochondrial oxidative stress[112], and even the release of mitochondrial products (mitochondrial DNA) as pro-inflammatory DAMPs[106,112]. These lines of evidence contribute to key UC themes such as epithelial dysfunction, the pro-inflammatory mucosal milieu, and direct triggers of the inflammatory response. Such convergence of data has culminated in new approaches in targeting the pro-inflammatory mitochondria, for example mitochondrial anti-oxidant therapy in active UC.

Single cell profiling of the inflamed UC mucosa

Single cell RNA sequencing (scRNA) technology was developed in 2009 before becoming more widely available in 2014. It provides a comprehensive analysis and census of the cell populations (“who is all there?”) in a complex inflamed UC mucosal milieu[109]. In UC, three recent scRNA studies (Parikh et al.[114], Smillie et al.[115], and Kinchen et al.[116])—scRNA analyses on colonic epithelium, whole layer, and mesenchyme, respectively—have provided some compelling insights[109,114]. These studies have identified new and rare cell types, unique cell-type-specific expression, and deep cell–cell interaction and cell lineage relationships. Secondly, mucosal compartments that have previously received less attention—notably, the colonic mesenchyme—are now implicated as key mediators of inflammation[116]. Thirdly, they show entirely new disease angles and have unexpectedly reinvigorated some older mechanistic theories. We highlight the key findings below.

Colonic epithelium: novel cell population and cell-specific changes. A main question is whether there are specific subsets of colonic epithelial cells that display intrinsic molecular pathology that can be pathogenic drivers in UC. Both scRNA studies identified a previously unknown epithelial cell population characterised by distinct expression of the calcium-sensitive chloride channel bestrophin-4 (BEST4), the protease cathepsin E, and the OTOP2 gene. Intriguingly, this colonocyte likely has the ability to sense pH in the luminal environment and to set the epithelial cGMP tone in response. Smillie et al. showed that BEST4+ enterocytes are distinct from epithelial cells and they are also enriched in genes including otopetins 2 and 3 (OTOP2/3), proton channels that detect pH and underlie sour taste perception, and carbonic anhydrase VII (CA7). In another novel finding, Parikh et al. demonstrated a positional remodelling of goblet cells that coincides with downregulation of WFDC2, an anti-protease molecule that is expressed by goblet cells and inhibits bacterial growth. In vivo, WFDC2 preserves the integrity of tight junctions between epithelial cells and prevents invasion by commensal bacteria and mucosal inflammation. WFDC2 has been proposed as a regulator of innate immunity through inhibition of serine and cysteine proteases[117].

Colonic epithelium: intrinsic changes associated with UC inflamed and non-inflamed mucosa. The sharp demarcation between inflamed and non-inflamed UC mucosa in the colon provides the unique opportunity for scRNA approaches to find distinct changes that may explain this transition from normal to affected mucosa. Interestingly, both areas exhibit many similar dysregulated gene expressions. This suggests a role for mucosal epigenetics: the transcriptional signature of UC precedes inflammation, arises as the result of a dominance of regenerative over damage cues or even as a protective mechanism in anticipation of damage, and persists after resolution. All epithelial subtypes in the inflamed UC mucosa showed upregulation of several inflammatory pathways, notably IFN-\gamma signalling and cytokine production. Epithelial cells downregulated metabolic processes and induced genes that are needed to produce reactive oxygen species and for microbial killing. Absorptive and secretory progenitor cells upregulated differentiation and cell migration pathways, which suggests an active attempt to repair colitis-induced damage.

Colonic immune cell population: dominant functional cellular hubs. In Smillie et al.’s study that explored the overall colonic immune cell population, cell–cell interaction analyses in the inflamed UC mucosa showed strong compartmentalisation around inflammatory monocytes and novel network hubs around the poorly characterised CD8+IL17+ T cells and microfold-like (M) cells that are usually rarely found in the healthy colon. CD8+IL17+ T cells induce IL17A/F, IL23R, and cytotoxic, co-stimulatory, and co-inhibitory programs in UC. M cells are typically associated with lymphoid tissue in the human small intestine, where they are important for recognition of the gut microbiota but are rarely found in the healthy colon[109]. A further striking cell–cell interaction hub is centred on a mesenchymal subset of inflammation-associated fibroblasts (IAFs)[109]. In some UC patients, IAFs are expanded nearly 190-fold and enriched with many genes associated with colitis, fibrosis, and cancer (including IL13RA2).

Colonic mesenchyme: a newly identified inflammatory component contributing to an anti-tumour necrosis factor response. In the mesenchyme-focused scRNA study, Kinchen et al. identified a distinct activated mesenchymal cell population that expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, CCL19, and lysyl oxidases[115]. One of the most enriched genes in IAFs is oncostatin M (OSM), a putative risk gene, and its receptor OSMR[109]. In an earlier study[108,116], West and colleagues identified significant overexpression of OSM in inflamed IBD mucosa[106]. OSM is part of the IL-6 cytokine family that can induce JAK-STAT, phosphatidylinositol-3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) downstream signalling pathways. Further characterisation showed that OSMR is highly
expressed in the mesenchyme (as later also shown to be the case). Using UC clinical trial datasets on anti-TNF treatment (infliximab and golimumab), high mucosal OSM expression is associated with poor response to anti-TNF.\(^\text{[20,12]}\)

Future insights from scRNA studies. These recent studies provide a vast “library reference” level amount of data that the IBD research community is only beginning to assimilate and understand. Tantalising new discoveries such as epithelial pH sensing, the roles of new enterocytes marked by BEST4, and colonic anti-bacterial responses mediated by WFDC2 and CD8^IL17^ T cells will require more detailed studies. These are early days of moving from census to understanding function and biology. Other leads such as OSMR blockade and CCL9 inibition are nearer to translation as potential therapeutic targets. The International Human Gut Atlas Project (https://helmsleytrust.org/rfa/gut-cell-atlas) will generate an even larger compendium of scRNA data in the next 5 years. Rationalising these enormous datasets (with other -omics datasets, e.g. genetics and microbiome), or, in lay-terms, how we combine the knowledge of “what and where are the cells?” with “what genes?” and “what bacteria?”, will be both challenging and exciting.\(^\text{[12]}\).

Concluding remarks

The rise of deep data encompassing all aspects of molecular and clinical phenotypes in increasingly larger human cohorts, allied with the rapid development of powerful computational analytical approaches, provides a platform to prioritise the directions of mechanistic studies. Original clinical questions\(^\text{[13]}\) such as “why is there a near-universal involvement of the rectum?”, “why is mucosal inflammation different to CD?”, and “how does smoking protect?” and scientific ones such as “is there a specific antigenic trigger?”, “what is the relative importance of adaptive vs. innate immunity?”, and “what are the main mucosal factors that maintain the state of non-resolving inflammation in UC?” will emerge again and hopefully lead to better informed deductive (top-down logic) alongside the inductive (bottom-up logic) processes derived from these big datasets to fully understand the pathogenesis of UC.

References

1. Ng SC, Shi HY, Hamidi N, et al.: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018; 390(10114): 2769–78. Published Abstract | Publisher Full Text | F1000 Recommendation

2. Jones GR, Lyons M, Plevris N, et al.: IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut. 2019; 68(11): 1953–60. Published Abstract | Publisher Full Text | Free Full Text

3. Kaplan GG: The global burden of IBD: from 2015 to 2025. Rationalising datasets to fully understand the pathogenesis of UC. Published Abstract | Publisher Full Text | F1000 Recommendation

4. Beaudoin M, Goyette P, Boucher G, et al.: Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and NRF16 that are associated with ulcerative colitis. PLoS Genet. 2013; 9(9): e1003723. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

5. Yue Z, Bao L, Wu Z, et al.: High-density mapping of the MHC identifies a shared role for HLA-ORB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015; 47(2): 172–9. Published Abstract | Publisher Full Text | F1000 Recommendation

6. Cleynen I, Boucher G, Josits L, et al.: Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016; 387(10014): 156–7. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

7. Solberg IC, Lygren I, Jahnson J, et al.: Clinical course during the first 10 years of ulcerative colitis: results from a population-based inception cohort (IBSEN Study). Scand J Gastroenterol. 2009; 44(4): 431–40. Published Abstract | Publisher Full Text | F1000 Recommendation

8. Farrell RJ: Biologics beyond Anti-TNF Agents for Ulcerative Colitis - Efficacy, Safety, and Cost?: N Engl J Med. 2019; 381(13): 1279–81. Published Abstract | Publisher Full Text | F1000 Recommendation

9. Singh S, George J, Boland BS, et al.: Primary Non-Response to Tumor Necrosis Factor Antagonists is Associated with Inherent Response to Second-line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. J Crohns Colitis. 2018; 12(6): 635–43. Published Abstract | Publisher Full Text | F1000 Recommendation

10. Liu JZ, van Someren S, Huang H, et al.: Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015; 47(9): 973–80. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

11. Josits L, Ripek S, Weerams RK, et al.: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012; 491(7422): 119–24. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

12. Luo Y, de Lange KM, Josits L, et al.: Exploring the genetic architecture of inflammatory bowel disease by whole-genome sequencing identifies association at ADOY7. Nat Genet. 2017; 49(2): 186–92. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

13. Huang H, Fang M, Josits L, et al.: Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017; 547(7662): 173–8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

14. Beaudoin M, Goyette P, Boucher G, et al.: Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and NRF16 that are associated with ulcerative colitis. PLoS Genet. 2013; 9(9): e1003723. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

15. Vellenga E, Borsato E, Muller M, et al.: High-density mapping of the MHC identifies a shared role for HLA-ORB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015; 47(2): 172–9. Published Abstract | Publisher Full Text | F1000 Recommendation

16. Cleynen I, Boucher G, Josits L, et al.: Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016; 387(10014): 156–7. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

17. Saltsangj J, Farrant JM, Jewell DP, et al.: Contribution of genes of the major histocompatibility complex to susceptibility and disease phenotype in inflammatory bowel disease. Lancet. 1996; 347(9010): 1212–7. Published Abstract | Publisher Full Text | F1000 Recommendation

18. Chen GB, Lee SH, Brion MJ, et al.: Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum Mol Genet. 2014; 23(17): 4710–20. Published Abstract | Publisher Full Text | Free Full Text

19. Vellenga E, Borsato E, Muller M, et al.: High-density mapping of the MHC identifies a shared role for HLA-ORB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015; 47(2): 172–9. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20. Lee HS, Cleynen I: Molecular Profiling of Inflammatory Bowel Disease: Is It Ready for Use in Clinical Decision-Making? Cells. 2019; 8(6): pii: E530. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

21. Vellenga E, Borsato E, Muller M, et al.: High-density mapping of the MHC identifies a shared role for HLA-ORB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet. 2015; 47(2): 172–9. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

22. Kusnner JB: Historical aspects of inflammatory bowel disease. J Clin Gastroenterol. 1988; 10(3): 286–97. Published Abstract | Publisher Full Text | F1000 Recommendation

23. Kaplan GG, Ng SC: Understanding and Preventing the Global Increase of...
Inflammatory Bowel Disease. Gastroenterology. 2017; 152(2): 313–321.e2.

24. Thomas T, Chandan JS, Li GS, et al.: Global smoking trends in inflammatory bowel disease: A systematic review of inception cohorts. PLoS One. 2019; 14(9): e0221961. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

25. Sheikh SZ, Hegayi RA, Kobayashi T, et al.: An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. J Immunol. 2011; 186(9): 5506–13. Published Abstract | Publisher Full Text | Free Full Text

26. Bastida G, Beltrán B: Ulcerative colitis in smokers, non-smokers and ex-smokers. World J Gastroenterol. 2011; 17(22): 2740–7.

27. Nylbøe Andersen N, Garto S, Frisch M, et al.: Reduced risk of UC in families affected by appendicitis: a Danish national cohort study. Gut. 2017; 66(8): 1398–402. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

28. Wilumsen M, Aazur S, Pakkenberg B, et al.: Inflammatory bowel disease increases the risk of Parkinson’s disease: a Danish nationwide cohort study 1977–2014. Gut. 2018; 67(1): 18–24. Published Abstract | Publisher Full Text | F1000 Recommendation

29. Zhu F, Li C, Gong J, et al.: The risk of Parkinson’s disease in inflammatory bowel disease: A systematic review and meta-analysis. Dig Liver Dis. 2019; 51(1): 38–42.

30. Amanpurkar AD, Amanpurkar DN, Rathil P, et al.: Risk factors for inflammatory bowel disease: A prospective multi-center study. Indian J Gastroenterol. 2018; 37(3): 189–95. Published Abstract | Publisher Full Text | F1000 Recommendation

31. John S, Luben R, Shrestha SB, et al.: Dietary n-3 polyunsaturated fatty acids and the aetiology of ulcerative colitis: a UK prospective cohort study. Eur J Gastroenterol Hepatol. 2010; 22(6): 602–6.

32. Amorio A, Suyama K, Yamada K, et al.: Alterations in the mucosa-associated fungal microbiota translation therapy for digestive and nondigestive disorders in adults and children. Aliment Pharmacol Ther. 2014; 39(10): 1003–32. Published Abstract | Publisher Full Text | F1000 Recommendation

33. Moayeri P, Surette MG, Kim PT, et al.: Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015; 149(1): 102–109.e6. Published Abstract | Publisher Full Text | F1000 Recommendation

34. Rossen NG, Fuentes S, van der Spek MJ, et al.: Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology. 2015; 149(1): 110–118.e4. Published Abstract | Publisher Full Text | Free Full Text

35. Costello SP, Hughes PA, Waters C, et al.: Effect of Fecal Microbiota Transplantation on 6-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA. 2019; 321(2): 156–164. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

36. Paramsothy S, Kamm MA, Kaakoush NO, et al.: Multidonor intense faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017; 389(10075): 1218–26. Published Abstract | Publisher Full Text | F1000 Recommendation

37. Turner JR: Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009; 9(11): 799–809. Published Abstract | Publisher Full Text | Free Full Text

38. McCartney HA, Gussach G: Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. Trends Mol Med. 2015; 21(8): 492–503. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

39. Luo Y, Dou Y, Meng J, et al.: Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol Cell Biol. 2009; 29(23): 6294–308. Published Abstract | Publisher Full Text | Free Full Text

40. Atwill AL, Le Beye J, Barnouw F, et al.: A protein-truncanom R179X variant in RNF186 confers protection against ulcerative colitis. Nat Commun. 2016; 7: 12342.

41. Klein A, Eliakim R: Anti-Inflammatory Drugs and Inflammatory Bowel Disease. Pharmaceuticals (Basel). 2010; 3(4): 1084–92. Published Abstract | Publisher Full Text | Free Full Text

42. Chassaing B, Koren O, Goodrich JK, et al.: Dietary emulsifier impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015; 519(7541): 92–6. Published Abstract | Publisher Full Text | F1000 Recommendation

43. Patz J, Jacobsohn WZ, Gottschalk-Sagag S, et al.: Treatment of refractory distal ulcerative colitis with short chain fatty acid enemas. Am J Gastroenterol. 1996; 91(4): 731–4. Published Abstract

44. Mikhaylova TL, Slishkova E, Poriewskia E, et al.: Randomised clinical trial: the efficacy and safety of propionyl-L-carnitine therapy in patients with ulcerative colitis receiving stable oral treatment. Aliment Pharmacol Ther. 2011; 34(9): 1088–97. Published Abstract | Publisher Full Text

45. Nam VN, Reysen EA, et al.: Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut. 2011; 60(7): 903–9. Published Abstract | Publisher Full Text

46. Nakano O, Suga T, Tsuchiha M, et al.: Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol. 2002; 37 Suppl 14: 67–72. Published Abstract | Publisher Full Text

47. Scheppach W: Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group. Dtsch Med Wochenschr. 1996; 121(11): 2254–9. Published Abstract | Publisher Full Text

48. Breuer RI, Butko SK, Christ ML, et al.: Rectal irrigation with short-chain fatty

Page 10 of 13
acids for distal ulcerative colitis. Preliminary report. Dig Dis Sci. 1991; 36(2): 186–7.

66. Verma P, Marchegiano A, Caprilli R, et al.: Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment Pharmacol Ther. 1995; 9(3): 309–13.

67. Hailer C, Bjökck I, Nyman M, et al.: Increasing Fecal Butyrate in Ulcerative Colitis Patients by Diet: Controlled Pilot Study. Inflamm Bowel Dis. 2003; 9(2): 116–21.

68. Heller F, Fromm A, Gitter AH, et al.: Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: Effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol. 2008; 1 Suppl 1: S24–61.

69. Watson CJ, Hoare CJ, Garrod DR, et al.: Interferon-selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J Cell Sci. 2005; 118(Pt 22): 5221–30.

70. Park S, Abdi T, Gentry M, et al.: Histological Disease Activity as a Predictor of Clinical Relapse Among Patients With Ulcerative Colitis: Systematic Review and Meta-Analysis. Am J Gastroenterol. 2016; 111(2): 1692–701.

71. Taylor CT, Colgan SP: Regulation of immunity and inflammation by hypoxia in immunological settings. Nat Rev Immunol. 2017; 17(12): 774–85.

72. Lin N, Simon MC: Hypoxia-inducible factors: Key regulators of myeloid cells during inflammation. J Clin Invest. 2016; 126(10): 3651–71.

73. Phillipsen P, Kubes P: The neutrophil in vascular inflammation. Nat Med. 2011; 17(11): 1381–90.

74. Angelidou I, Chrysanthopoulou A, Mitsios A, et al.: REDI/Autophagy Pathway Is Associated with Neutrophil-Driven IL-1β Inflammatory Response in Active Ulcerative Colitis. J Immunol. 2018; 200(12): 3950–61.

75. Dinoia V, Marafini I, Di Fusco D, et al.: Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis. J Crohns Colitis. 2019; 13(6): 772–84.

76. Heezen G, Ferrante M, Vermeers S, et al.: Fecal calprotectin is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm Bowel Dis. 2012; 18(12): 2218–24.

77. Kalra R, Kennedy NA, Venham NT, et al.: Serum Calprotectin: A Novel Diagnostic and Prognostic Marker in Inflammatory Bowel Diseases. Am J Gastroenterol. 2016; 111(12): 1796–800.

78. Ho GT, Lee HM, Brydon G, et al.: Fecal Calprotectin Predicts the Clinical Course of Acute Severe Ulcerative Colitis. Am J Gastroenterol. 2009; 104(3): 673–8.

79. Katastny J, Landers CJ, Welch KJ, et al.: The presence of anti-neutrophil antibodies reflects clinical and genetic heterogeneity within inflammatory bowel disease. Inflamm Bowel Dis. 1998; 4(1): 18–26.

80. Friedrich M, Pohin M, Powrie F: Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunobiology. 2019; 50(4): 992–1006.

81. Fowat AM, Scott CL, Bain CC: Barrier-tissue macrophages: Functional adaptation to environmental challenges. Nat Med. 2017; 23(11): 1258–70.

82. Na VR, Stakenborg M, Seok SH, et al.: Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019; 16(9): 531–43.

83. Graham DB, Luo C, O’Connell DJ, et al.: Antigen discovery and specification of immune tolerance hierarchies for MHCI-restricted epitopes. Nat Med. 2018; 24(11): 1762–72.

84. Na VR, Stakenborg M, Seok SH, et al.: Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019; 16(9): 531–43.

85. Fuss U, Heller F, Boirivant M, et al.: Nonclassical CD1ε-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest. 2004; 113(10): 1490–7.

86. Teng MHL, Bowman EP, McElwee JJ, et al.: IL-12 and IL-23 cytokines: From discovery to targeted therapies for immune-mediated inflammatory diseases. Nat Med. 2015; 21(7): 719–29.

87. Duerr RH, Taylor KD, Brant SR, et al.: A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science. 2006; 314(5804): 1461–3.

88. Kobayashi T, Okamoto S, Hisamatsu T, et al.: IL-23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn’s disease. Gut. 2008; 57(12): 1682–9.

89. Nallewe N, Chiara MT, Podstawa E, et al.: IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut. 2015; 64(3): 743–55.

90. Reinisch W, Panis J, Khurana S, et al.: Anakinra, an anti-interleukin 13 monoclonal antibody, in active UC: Efficacy and safety from a phase IIa randomised multicentre study. Gut. 2015; 64(6): 694–900.

91. Danese S, Rudzki J, Brandt W, et al.: Trolakimub for moderate-to-severe UC: A randomised, double-blind, placebo-controlled, phase IIa study. Gut. 2015; 64(2): 243–9.

92. Sandborn WJ, Ferrante M, Bhandari BR, et al.: Efficacy and Safety of Mirkinuzumab in a Randomized Phase 2 Study of Patients With Ulcerative Colitis. Gastroenterology. 2020; 158(3): 537–549.e10.

93. Sandis BE, Sandborn WJ, Panaccione R, et al.: Ustekinumab as Induction and Maintenance Therapy for Ulcerative Colitis. N Engl J Med. 2019; 381(13): 1201–14.

94. Rutgeerts P, Sandborn WJ, Feagan BG, et al.: Infliximab for induction and maintenance therapy for ulcerative colitis, N Engl J Med. 2005; 353(23): 2462–76.

95. Lee JC, Lyons PA, McKinney EF, et al.: Gene expression profiling of CD4+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest. 2011; 121(10): 4170–7.

96. Smillie CS, Biton M, Ordovas-Montanes J, et al.: Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. Cell. 2019; 178(3): 714–730.e22.

97. Hegworth MR, Monticelli LA, Fung TC, et al.: Innate lymphoid cells regulate CD4+ T cell responses to intestinal commensal bacteria. Nature. 2013; 498(7452): 113–7.

98. Haberman Y, Korns R, Desheimer PJ, et al.: Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat Commun. 2015; 10(1): 38.

99. Geremia A, Arancibia-Cárcamo CV, Fleming MMP, et al.: IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011; 208(6): 1127–33.

100. Fong AC, Soter NA, Blake G, et al.: Mitochondrial dysfunction in patients with IBD. Gut. 2014; 63(1): 66–76.

101. Pantoja E, Powell N: Group 3 ILCs: Peacekeepers or Troublemakers? What’s Your Gut Telling You?! Front Immunol. 2019; 10: 676.

102. Haberman Y, Korns R, Desheimer PJ, et al.: Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat Commun. 2015; 10(1): 38.

103. Feldman M, McEvoy DP, et al.: Challenges in IBD Research: Precision Medicine. Inflamm Bowel Dis. 2019; 25(Suppl 2): S31–S39.

104. West AP, Shadel GS: Mitochondrial dysfunction in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2018; 15(2): 104–15.

105. Roderer WE: The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet. 1980; 316(7987): 712–5.

106. Pedret G, Avider I, Steinerh R, et al.: Ultrastructural abnormalities in endoscopically and histologically normal and involved colon in ulcerative colitis. Am J Gastroenterol. 1989; 84(1): 1038–46.

107. Novak EA, Mollen KP: Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol. 2015; 3: 62.

108. West AP, Shadel GS: Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 2017; 17(6): 363–75.

109. D'Haenens L, Goossens C, et al.: Ultrastructural abnormalities in endoscopically and histologically normal and involved colon in ulcerative colitis. Am J Gastroenterol. 1998; 93(10): 1038–46.
109. Noble CL, Abbas AR, Cornelius J, et al.: Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis. Gut. 2008; 57(10): 1398–405. PubMed Abstract | Publisher Full Text

110. Pagliarini DJ, Calvo SE, Chang B, et al.: A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008; 134(1): 112–23. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

111. Bär F, Bochmann W, Wick A, et al.: Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology. 2013; 145(5): 1055–1063.e3. PubMed Abstract | Publisher Full Text

112. Boyapati RK, Tamborska A, Dorward DA, et al.: Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res. 2017; 6: 169. PubMed Abstract | Publisher Full Text | Free Full Text

113. Papalexi E, Satija R: Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018; 18(1): 35–45. PubMed Abstract | Publisher Full Text

114. Parikh K, Antanaviciute A, Fawkner-Corbett D, et al.: Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 2019; 567(7746): 49–55. PubMed Abstract | Publisher Full Text

115. Kinchen J, Chen HH, Parikh K, et al.: Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell. 2018; 175(2): 372–386.e17. PubMed Abstract | Publisher Full Text | Free Full Text

116. West NR, Hegazy AN, Owens BM, et al.: Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med. 2017; 23(5): 579–85. PubMed Abstract | Publisher Full Text | Free Full Text

117. Chhikara N, Saraswat M, Tomar AK, et al.: Human epididymis protein-4 (HE-4): a novel cross-class protease inhibitor. PLoS One. 2012; 7(11): e47672. PubMed Abstract | Publisher Full Text | Free Full Text

118. Mabbott NA, Donaldson DS, Ohno H, et al.: Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013; 6(4): 666–77. PubMed Abstract | Publisher Full Text | Free Full Text

119. Vanhove W, Peeters PM, Staels D, et al.: Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease. Inflamm Bowel Dis. 2015; 21(11): 2673–82. PubMed Abstract | Publisher Full Text

120. Sandborn WJ, Rutgeerts P, Feagan BG, et al.: Colectomy rate comparison after treatment of ulcerative colitis with placebo or infliximab. Gastroenterology. 2009; 137(4): 1250–60. PubMed Abstract | Publisher Full Text

121. Sandborn WJ, Feagan BG, Marano C, et al.: Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014; 148(1): 85–95; quiz e14–5. PubMed Abstract | Publisher Full Text

122. Plichta DR, Graham DB, Subramanian S, et al.: Therapeutic Opportunities in Inflammatory Bowel Disease: Mechanistic Dissection of Host-Microbiome Relationships. Cell. 2019; 178(3): 1041–56. PubMed Abstract | Publisher Full Text | Free Full Text

123. Colombel JF, Watson AJ, Neurath MF: The 10 remaining mysteries of inflammatory bowel disease. Gut. 2008; 57(4): 429–33. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Editorial Note on the Review Process

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. **Barney Hawthorne**
 University Hospital of Wales, Cardiff, UK
 Competing Interests: No competing interests were disclosed.

2. **Jonathan Rhodes**
 Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com