Supplemental Information

Improving adenine base editing efficiency in rice by simplifying base editors

Contents
Supplemental sequence The DNA sequences of key components in the different adenine base editors
Supplemental Figure 1 Off-target editing at *OsSPL17* by ABE-P1S.
Supplemental Table 1 The base editing windows of ABE-P1 and ABE-P1S at different target sites.
Supplemental Table 2 The base editing windows of ABE-P2, ABE-P2S, ABE-P5 and ABE-P5S at different target sites.
Supplemental Table 3 The base editing frequencies of ABE-P1 and ABE-P1S at potential off-target sites of sgRNA1.
Supplemental Table 4 The base editing frequencies of ABE-P1 and ABE-P1S at potential off-target sites of sgRNA6.
Supplemental Table 5 The base editing frequencies of ABE-P2S at potential off-target sites of sgRNA9.
Supplemental Table 6 The target sites and primers for all sgRNAs used in this study.
Supplemental Table 7 Primers for on-target site amplification and sequencing.
Supplemental Table 8 Primers for potential off-target site amplification and sequencing.
Supplemental sequence The DNA sequences of key components in the different adenine base editors.

Wild type ecTadA-32aa linker

ATGTCCGAAGTCGAGTTTTCCCCATGAGTAATTCGAGATGACACGCATTGACT
CTCGCAAGAGGAGCCGTTGGAAGTACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
CGTGCATAAACATCGGTAATCGGCGAGGCTTTGGAAGTACGCGAGGTCGCT
CCACGACCCCAATCCGCAATACGCCAGGCTTCTGCGACAGGTCGCT
TGATATCGGTTCGCCGACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
ACGTGCTGCACTACCCAGCAGTGAACCACCAGGCTTCTGCGACAGGTCGCT
ATATGGCGGAGCAAGTCGCGAGGTCGCGCCGTCGGGGGAGTCGCT
AGGCAAGCGGAGATGACAGGTCGCGCCGTCGGGGGAGTCGCT
ecTadA*7.10-32aa linker

ATGTCCGAAGTCGAGTTTTCCCCATGAGTAATTCGAGATGACACGCATTGACT
CTCGCAAGAGGAGCCGTTGGAAGTACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
CGTGCTTAACAATCGGTAATCGGCGAGGCTTTGGAAGTACGCGAGGTCGCT
CCACGACCCCAATCCGCAATACGCCAGGCTTCTGCGACAGGTCGCT
TGATATCGGTTCGCCGACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
ACGTGCTGCACTACCCAGCAGTGAACCACCAGGCTTCTGCGACAGGTCGCT
ATATGGCGGAGCAAGTCGCGAGGTCGCGCCGTCGGGGGAGTCGCT
AGGCAAGCGGAGATGACAGGTCGCGCCGTCGGGGGAGTCGCT
nSpCas9 (D10A)-NLS

GACAAGAAGTACAGCATCGGCAAGGCTGGCCCTGGCCATTGAGAGAAGACGCATTGACT
CTCGCAAGAGGAGCCGTTGGAAGTACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
CGTGCTTAACAATCGGTAATCGGCGAGGCTTTGGAAGTACGCGAGGTCGCT
CCACGACCCCAATCCGCAATACGCCAGGCTTCTGCGACAGGTCGCT
TGATATCGGTTCGCCGACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
ACGTGCTGCACTACCCAGCAGTGAACCACCAGGCTTCTGCGACAGGTCGCT
ATATGGCGGAGCAAGTCGCGAGGTCGCGCCGTCGGGGGAGTCGCT
AGGCAAGCGGAGATGACAGGTCGCGCCGTCGGGGGAGTCGCT
GCTACGCCCCCCATCTCGAGGAGGTCGCTCGCGCCGTCGGGGGAGTCGCT
GCCTACGCCGACCCATCTCGAGGAGGTCGCTCGCGCCGTCGGGGGAGTCGCT
nSpCas9 (D10A)-NLS

GACAAGAAGTACAGCATCGGCAAGGCTGGCCCTGGCCATTGAGAGAAGACGCATTGACT
CTCGCAAGAGGAGCCGTTGGAAGTACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
CGTGCTTAACAATCGGTAATCGGCGAGGCTTTGGAAGTACGCGAGGTCGCT
CCACGACCCCAATCCGCAATACGCCAGGCTTCTGCGACAGGTCGCT
TGATATCGGTTCGCCGACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
ACGTGCTGCACTACCCAGCAGTGAACCACCAGGCTTCTGCGACAGGTCGCT
ATATGGCGGAGCAAGTCGCGAGGTCGCGCCGTCGGGGGAGTCGCT
AGGCAAGCGGAGATGACAGGTCGCGCCGTCGGGGGAGTCGCT
GCTACGCCCCCCATCTCGAGGAGGTCGCTCGCGCCGTCGGGGGAGTCGCT
GCCTACGCCGACCCATCTCGAGGAGGTCGCTCGCGCCGTCGGGGGAGTCGCT
nSpCas9 (D10A)-NLS

GACAAGAAGTACAGCATCGGCAAGGCTGGCCCTGGCCATTGAGAGAAGACGCATTGACT
CTCGCAAGAGGAGCCGTTGGAAGTACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
CGTGCTTAACAATCGGTAATCGGCGAGGCTTTGGAAGTACGCGAGGTCGCT
CCACGACCCCAATCCGCAATACGCCAGGCTTCTGCGACAGGTCGCT
TGATATCGGTTCGCCGACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
ACGTGCTGCACTACCCAGCAGTGAACCACCAGGCTTCTGCGACAGGTCGCT
ATATGGCGGAGCAAGTCGCGAGGTCGCGCCGTCGGGGGAGTCGCT
AGGCAAGCGGAGATGACAGGTCGCGCCGTCGGGGGAGTCGCT
GCTACGCCCCCCATCTCGAGGAGGTCGCTCGCGCCGTCGGGGGAGTCGCT
GCCTACGCCGACCCATCTCGAGGAGGTCGCTCGCGCCGTCGGGGGAGTCGCT
nSpCas9 (D10A)-NLS

GACAAGAAGTACAGCATCGGCAAGGCTGGCCCTGGCCATTGAGAGAAGACGCATTGACT
CTCGCAAGAGGAGCCGTTGGAAGTACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
CGTGCTTAACAATCGGTAATCGGCGAGGCTTTGGAAGTACGCGAGGTCGCT
CCACGACCCCAATCCGCAATACGCCAGGCTTCTGCGACAGGTCGCT
TGATATCGGTTCGCCGACGCGAGGTCGCGCCGTCGGGGGAGTCGCT
ACGTGCTGCACTACCCAGCAGTGAACCACCAGGCTTCTGCGACAGGTCGCT
ATATGGCGGAGCAAGTCGCGAGGTCGCGCCGTCGGGGGAGTCGCT
AGGCAAGCGGAGATGACAGGTCGCGCCGTCGGGGGAGTCGCT
GCTACGCCCCCCATCTCGAGGAGGTCGCTCGCGCCGTCGGGGGAGTCGCT
TCAAGACCGAGATTACCGCTGCGCAACGGCGAGATCCGGAAGCGGCCTCTGATCG

AGACAAACGCGCAGAACCCGACGCAGACTGCTGTGGAATAGGGCGCCGAGTTGTC

CCGTCGCGAAAAAGTGTCTGAGACATGCCCAAGGTGAAATCGTGAGAAAAAGACGAG

TCGACAGACGGGCCTTCAGCAAAGAGATCTATCTTCGTCCCAAGAGGAACAGCAGTA

AGCTGATCCAGAAGATCCAGATCGGACCCATTAGTCTCGTGAAAAAGACGAG

GCCCAACCGGTGCTCTTCTGCTGTGGTGGGACCAAAGTGGAAGGGCAAGT

CCAGAAGAACTGAGAGGTGGAAAGAACGCTCGCTGGGGCCAGTACGAGAAGGAGAAC

TGGCCCTGGCCCTCCCAATATCGTCTCTGACCTACTCCAGCCAGACTTAA

GCTGAAGGGGTCCGCCAGATGAGAAGACTGCTGTGTTTGAGGAACAGCA

CAAGCAGAATGTTAGATGAAACAGCTGCTGTTTACCTGAGAAAGT

nSacCas9 (D10A)-NLS

AAGCGGAAACTCATCTCTGGGCTGCGCATCAGACGAGTTGGCTACCGGC

ATCATGCAGAGATCGAGATGCTGAGTAGCCGGCTGCTGCTGTCTCAA

GAGGCCAACCTGGGAAAATACGAGAGGCAGAGCCGAGGGGAAGAGAGCCCAAGG

GCTGAAAGCGGAGACGGGCATACGCTACGAGACGGGACGTGATCGATGCCGGCGTGCGGCTGTTCAAA

AGGTTACAGCACAGCAACAAAGGGGATGCGTTGAGACGCCAAGCGCTGAGGACTAC

ACCAGCCTGACATCATAGACAGGCAAGGCAAGGAAGGCGCCAGTCAAAAGCCAGAC

CATGGAAGGGCCTGCAATGACGAGAGTGAAGAAGCTGCTGTTCGAA

CTACAACCTTGCAGTGAAGGAGCCAGAAGGCGTACGCTGCAAAGGAAAG

AAGCTGCAAGCTAGGTCTCCCAATCCGGCGGATTTCAGCGTACCCAGAAATG

GCTGACCTGGCCCAAGAGAAGAGGCGTGCACAACGTGAACGAGGTGGAAGAG

CAGACCGAGATGCTGAGATGTTCTGTGCTGACGTGGCAAAATTGGAGT

AAGCGCAAACGTGCAAGAGGTATA

GGATTACCATATTTAAAAGCGGCTTCTCCAAAGCGTCCGCGTGACCGTCACGATGGAGAATTGGGTG
TGCTGCACCTGGCCAAGAGAAGAGGCGTGCACAACGTGAACGAGGTGGAAGAG
203
GACACCGGCAACACGAGCTGTCAGACCAACAGAGCAGATCAGCCGGAACAGCAAGGC
204
CCTGGAAGAGAAAACTGCGGCAACTGCAGCTGGAACGGCTGAAGAAAGACG
205
GCGAAGTGCGGGGACGACATCAACAGATTTCAAGACAGCAGACTACGTGAAAGAG
206
CCCAACAGCTCAGTCAGACCTGGAAGGCCTACCAACAGCTGGAACAGCTGGAAGTCTCA
207
TGACACCTACATCGACCTGCTGGAAACCCGGCGGACCTACTATGAGGGACCTG
208
GCGAGGGCAGCCCCTTCGGCTGGAAGGACATCAAAGAATGGTACGAGATGCTGA
209
TGGGCCACTGCACCTACTTCCCCGAGGAACTGCGGAGCGTGAAG
210
ACGCCGACCTGTACAACGCCCTGAACGACCTGAACAATCTCGTGATCACCAGGG
211
ACGAGAACGAGAAGCTGGAATATTACGAGAAGTTCCAGATCATCGAGAACGTGTT
212
CAAGAAGAAGAAGAAGCCCACCCTGAAGCAGATCGCCAAAGAAATCCTCGTGAA
213
CGAAGAGGATATTAAGGGCTACAGAGTGACCAGCACCGGCAAGCCCGAGTTCAC
214
CAACCTGAAGGTGTACCACGACATCAAGGACATTACCGCCCGGAAAGAGATTATT
215
GAGAACGCCGAGCTGCTGGATCAGATTGCCAAGATCCTGACCATCTACCAGAGC
216
AGCGAGGACATCCAGGAAGAATCGCAACTCCTGAACTCCGAGCTGACCCAGGAA
217
GAGATCGAGCAGATCTCTAATCTGAAGGGCTATACCGGCACCCACAACCTGAGCC
218
TGAAGGCCATCAACCTGATCCTGGACGAGCTGTGGCACACCAACGACAACAGG
219
TCGCTATCTTCCAACGGCGTGAACGTCGTGGAACGGCTGCAAGGAAATCTCCATCGTCCAGC
220
AGAAAGAGATCCCCACCACCCTGGTGGACGACTTCATCCTGAGCCCCGTCGTGA
221
AGAGAAGGCTTATCCAGAGCATCAAAGTGATCAACGCCCATCATCAAGAAGTACGG
222
CCTGCCCAACGACATCATTATCGAGCTGGCCCGCGAGAAGAACTCCAAGGACGC
223
CCAGAAAATGATCAACAGGACGAAAGCGGGAACCCGCGAGCAACACGGGAGGAT
224
CGAGGAATCATCCCGGAACCACCGGCACCAAGAAGGCACAAGTACCTGACGAGA
225
GATCGACGTGCAAGACATGCAAGGCAAGGCAAAGTGCCTGTACAGCCTGGAAGCCAT
226
CCCTCTGGAAGATCTGCTGAACAACCCCTTCAACTATGAGGTGGACACATCATC
227
CCCAAGGGCTGTCTCTTGCACAAACAAGCTTCAACAAACAAAGTCTCGTGAAGACG
228
GAAGAAAACACGCAAGAAGAGCCAAGGGCAACCCCATCCATCGATCAGCGACGC
229
GACAGCAAGATCGCTACGAAAACCTTCAAGAAGGCAACATCTCGGAAATCTGGGCAAG
230
GGCAAGGCCAATGCAAGCAAGACAAAGAAAGATGACTCTGGAACAGAACGGGAC
231
ATCAACAGGTTTCTCCGTGCAGAAAGACTTCTATCAACCCGAACCTGTGTGATACCA
232
GATAGGCCACCCAGAGGCGCTGTGAAACCTGCTGCGGAGCTACTTCATCTAGGTGAACA
233
ACCTGGAAGTGCCACTCATCAATGCGGCGCTTCAACGGCTTCCTCTGCGGC
234
GGAACTGGAAGTTAAAGAAAGCGCAAAACAGGGTATCAGAAGCACAGCACCCCGG
235
GACCCTCATGTACTGCAAAACGGCCACAGATCTTTCATCAAAGGACCCCGCGAG
236
GACGCCCTGATCCAGCAACTAGCAAGATTACGAGAAGTTCCAGATCATCGAGAACGTGTT
237
ACAAGGCAAAAGTTGCTGGAAGAAGCCGCAAAGATGCGTTCGGAAGAAGATCTGG
238
GCTGATCAGACGTGAAACCTCCGCAGATCGAGAAGGCTGGAACGCTACGACCCGGAA
239
GACCAGAAGAAGTCCCGTTCGCAGATCAGACGTGAAACCTCCGCAGATCGAGAAGGCTGGAACGCTACGACCCGGAA
240
CGACAAAGGCAACCCCTGATCGTGAACAACTCTGGAACGCGCGCTTGACGACAAGGA
241
CAATGCAAGCTGAAAGCTGAAAGACTGATCATCAACAGGACAGCCGGAAAGGGCTGGAACGCTACGACCCGGAA
242
CCACACCAAGCCCCAGACCTACAGAAGAATCGGATATTAGGAAACGATCCACG
243
CGACAGAAGAAGTCCCGTTCGCAGATCAGACGTGAAACCTCCGCAGATCGAGAAGGCTGGAACGCTACGACCCGGAA
244
CAAGTCATCCAAAAAGGAAACACCGGCGCCCGTCTCATGCAAGATGATTAAAGTATGACG
245
AACAAAAGTTCAGACCCCATCTGGAACATCAGCGACACCTCACCACGCAACAGAAAC
AAGGTCGTGAAGCTGTCCCTGAAGCCCTACAGATTCGACGTGTACCTGGACAAT
GGCGTGTACAAGTTCGTGACCGTGAAGAATCTGGATGTGATCAAAAAAGAAAACT
ACTACGAAAGTGATAGCAAGTGCTATGAGGAAGCTAAGAAG
CTGAAGAAGATCA
GCAACCAGGCCAGTTTATCGCCTCCTCTCTCAAAAGAGATCTGATCAAGATCAA
CGGCGAGCTGTATAGATCGATCGCCTCAACATCTGAGAACAACCGACTTGCTGAAACCGGATCGA
AGTGAACATGATCGACATCAMCTACCACCAGGTACCTGAGAAAACATGAACGACAG
AGCCCCCCCCATCATCATTAAAGCAATCGCCTCATAAGACACAGACATTAAGAAGT
ACAGCACAGACATTCTGGGCAACCTGTATGAAGTGAAATCTAAGAAGCACCCTCA
GATCATCAAAAAGGGACTAGTTCCGCGCGGCAGCGCTTCTCCAAAGCGTCCCGCGTGAC
CGTCACGATGAAGATGTTGGTGAGGACGCAAAACGTGCAAAGGTGTTAA

Supplemental Figure 1. Off-target editing at *OsSPL17* by ABE-P1S. **a,** Schematic view of the potential off-target site 1 of sgRNA1 in *OsSPL17*. The mismatch base in *OsSPL17* is shown in lowercase. The OsmiR156 binding site in *OsSPL17* is highlighted in red. **b,** Sequencing chromatogram of Line 3 at the potential off-target site 1 in *OsSPL17*. Arrow points to the position with an edited base.
Supplemental Table 1 The base editing windows of ABE-P1 and ABE-P1S at different target sites.

sgRNA	Target gene	Base editor	Genotype of mutations	Base editing positions
sgRNA1	OsSPL14	ABE-P1	T_{r-C}(6), T_{r-C}C_{6}(4), T_{r-T-C}C_{6}(6), T_{r-T-T-C}C_{6}(2)	5, 7, 10
		ABE-P1S	T_{r-C}(1), T_{r-T-C}C_{5}(5), T_{r-T-T-C}C_{5}(1), T_{r-T-T-T-C}C_{5}(6)	1, 3, 5, 7, 10, 12
			T_{r-T-T-T-T-C}C_{5}(1), T_{r-T-T-T-T-T-C}C_{5}(1)	
sgRNA2	SLR1	ABE-P1	T_{r-C}(7)	6
		ABE-P1S	T_{r-C}(7)	6
sgRNA3	OsSerk2	ABE-P1	T_{r-C}(21), T_{r-T-C}C_{15}(5)	6, 8
		ABE-P1S	T_{r-C}(11), T_{r-T-C}C_{10}(10)	6, 8
sgRNA4	Tms9.1	ABE-P1	T_{r-C}(1)	5
		ABE-P1S	T_{r-C}(4)	5
sgRNA5	OsNRT1.1B	ABE-P1	A_{r-G}(1), A_{r-G}(2), A_{r-G}(6), A_{A-A-G-G-G-G}(1), A_{A-A-G-G-G-G}(15), A_{A-A-A-A-G-G-G-G-G-G}(1)	4, 6, 8, 12
		ABE-P1S	A_{r-G}(4), A_{r-G}(2), A_{A-A-G-G-G-G}(1), A_{A-A-G-G-G-G}(3), A_{A-A-G-G-G-G}(9), A_{A-A-A-G-G-G-G-G-G-G-G}(1)	4, 6, 8, 12
sgRNA6	OsACC1	ABE-P1	T_{r-C}(6), T_{r-C}(5), T_{r-T-C}C_{14}(14)	4, 7
		ABE-P1S	T_{r-C}(1), T_{r-C}(20), T_{r-T-C}C_{1}(1), T_{r-T-T-C}C_{9}(1), T_{r-T-T-T-C}C_{9}(1)	2, 4, 7
sgRNA7	OsDEP1	ABE-P1	A_{r-G}(1), A_{r-G}(1), A_{A-A-G-G-G-G-G-G}(30), A_{A-A-A-G-G-G-G-G-G}(8)	3, 5, 6
		ABE-P1S	A_{A-A-G-G-G-G-G-G}(21), A_{A-A-A-G-G-G-G-G-G-G-G-G}(4)	3, 5, 6

Note: For the base editors ABE-P1 and ABE-P1S, the base editing position was counted from the PAM-distal end, scoring the PAM sequence as positions 21-23.
Supplemental Table 2

The base editing windows of ABE-P2, ABE-P2S, ABE-P5 and ABE-P5S at different target sites.

sgRNA	Target gene	Base editor	Genotype of mutations	Base editing positions
sgRNA8	SPR-MSF2	ABE-P2	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}	1, 9, 15
		ABE-P2S	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}, T_{C}C_{5}, T_{C}C_{6}C_{7}C_{8}	3, 6, 9, 12, 15
sgRNA9	OsSPL14	ABE-P2	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}, T_{C}C_{5}, T_{C}C_{6}C_{7}C_{8}	6, 8, 10, 14
			T_{C}C_{9}C_{10}C_{11}	
	OsSPL17	ABE-P2	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}, T_{C}C_{5}, T_{C}C_{6}C_{7}C_{8}	6, 8, 10, 12, 14
			T_{C}C_{9}C_{10}C_{11}	
	OsSPL14	ABE-P2S	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}, T_{C}C_{5}, T_{C}C_{6}C_{7}C_{8}	6, 8, 10, 12, 14, 17
			T_{C}C_{9}C_{10}C_{11}	
	OsSPL17	ABE-P2	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}, T_{C}C_{5}, T_{C}C_{6}C_{7}C_{8}	8, 10, 12, 14
			T_{C}C_{9}C_{10}C_{11}	
	OsSPL16	ABE-P2S	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}, T_{C}C_{5}, T_{C}C_{6}C_{7}C_{8}	6, 8, 10, 12, 14
			T_{C}C_{9}C_{10}C_{11}	
	OsSPL18	ABE-P2	T_{C}C_{1}, T_{C}C_{2}, T_{C}C_{3}, T_{C}C_{4}, T_{C}C_{5}, T_{C}C_{6}C_{7}C_{8}	8, 10, 12, 14, 17
			T_{C}C_{9}C_{10}C_{11}	
	OsSPL13	ABE-P5	T_{C}C_{1}	11
		ABE-P5S	T_{C}C_{1}, T_{C}C_{1}	7, 9
sgRNA12	SNB	ABE-P5	A_{G}G_{1}	4
		ABE-P5S	A_{G}G_{1}, A_{G}G_{2}, A_{G}G_{3}	4, 8, 9

Note: For the base editors ABE-P2, ABE-P2S, ABE-P5 and ABE-P5S, the base editing position was counted from the PAM-distal end, scoring the PAM sequence as positions 22-27.
Supplemental Table 3 The base editing frequencies of ABE-P1 and ABE-P1S at potential off-target sites of sgRNA1.

Site	Chr	Position	Guide-PAM sequence	Base editor	Mismatch numbers	Number of genotyped lines	Number of edited lines	Editing efficiency
On-target	8	25275163	AGAGAGAGCACAGCTCAGTGG	ABE-P1	0	48	18	37.5%
				ABE-P1S	0	17	12	70.6%
Off-target 1	9	19910318	AGAGAGAGCACAGCTCAGTGG	ABE-P1	1	8	0	0
				ABE-P1S	1	8	1	12.5%
Off-target 2	1	24179644	sGAsGpGCACAGCTCAGTGG	ABE-P1	5	8	0	0
				ABE-P1S	5	8	0	0
Off-target 3	3	36157080	AGAsAGAGCAGpGTCAGTGG	ABE-P1	4	8	0	0
				ABE-P1S	4	8	0	0
Off-target 4	3	8596704	AGAGAGAGCACAGCGpGAGpGCG	ABE-P1	4	8	0	0
				ABE-P1S	4	8	0	0
Off-target 5	4	23025825	sGAsGpGCpGpGTCCTAGpGCG	ABE-P1	5	8	0	0
				ABE-P1S	5	8	0	0
Off-target 6	5	10284901	AGAGGCAGpGTCAGTGG	ABE-P1	4	8	0	0
				ABE-P1S	4	8	0	0
Off-target 7	7	19030423	AGAGAGAGCAGpGTCAGTGG	ABE-P1	4	8	0	0
				ABE-P1S	4	8	0	0
Off-target 8	10	1012640	AGAGAGAGCAGpGTCAGpGCG	ABE-P1	4	8	0	0
				ABE-P1S	4	8	0	0
Off-target 9	7	20160420	AGAsAGAGCAGCAGpGAGpGCG	ABE-P1	4	8	0	0
				ABE-P1S	4	8	0	0

Note: Nucleotides of PAM sequence are written in bold, and the mismatch bases in potential off-targets are shown in lowercase.
Supplemental Table 4 The base editing frequencies of ABE-P1 and ABE-P1S at potential off-target sites of sgRNA6.

Site	Chr	Position	Guide-PAM sequence	Base editor	Mismatch numbers	Number of genotyped lines	Number of edited lines	Editing efficiency
On target	5	13065463	CCCAGAACCATTAGTTGCTATG	ABE-P1	0	36	25	69.4%
On target	5	13065463	CCCAGAACCATTAGTTGCTATG	ABE-P1S	0	42	31	73.8%
Off-target 1	8	22061977	CATAGCACTCAAtCAGTTGGG	ABE-P1	4	8	0	0
Off-target 1	8	22061977	CATAGCACTCAAtCAGTTGGG	ABE-P1S	4	8	0	0
Off-target 2	5	17365477	aTAGCACTCAaTGGTGCTG	ABE-P1	4	8	0	0
Off-target 2	5	17365477	aTAGCACTCAaTGGTGCTG	ABE-P1S	4	8	0	0
Off-target 3	3	26476439	CATAGCACTAAGGGGCTGAG	ABE-P1	4	8	0	0
Off-target 3	3	26476439	CATAGCACTAAGGGGCTGAG	ABE-P1S	4	8	0	0

Note: Nucleotides of PAM sequence are written in bold, and the mismatch bases in potential off-targets are shown in lowercase.

Supplemental Table 5 The base editing frequencies of ABE-P2S at potential off-target sites of sgRNA9.

Site	Chr	Position	Guide-PAM sequence	Mismatch numbers	Number of genotyped lines	Number of edited lines	Editing efficiency
On target 1	8	25275156	ACAGAAGAGAGAGACACGCTCGAGT	0	36	20	55.6%
On target 2	9	18918911	ACAGAAGAGAGAGACACGCTCGAGT	0	36	22	61.1%
Off-target 1	9	19647839	ACAGAAGAGAGAGACACGCTCGAGT	2	8	0	0
Off-target 2	11	17631827	ACAGAAGAGAGAGACACGCTCGAGT	2	8	0	0
Off-target 3	8	26505555	ACAGAAGAGAGAGACACGCTCGAGT	2	8	0	0
Off-target 4	3	36137083	ACgGAAGAGAaAGAGCAagTGGAGT	5	8	0	0

Note: Nucleotides of PAM sequence are written in bold, and the mismatch bases in potential off-targets are shown in lowercase.
Supplemental Table 6
The target sites and primers for all sgRNAs used in this study.

sgRNA	Target site	Forward primer 5'-3'	Reverse Primer 5'-3'
sgRNA1	AGAGAGAGACACAGCTCAGT	TGTGAGAGAGACACAGCTCAGT	AACAACCTGAGCTGTCCTCCTCTCTCT
sgRNA2	AGTGCACGGTGTCCGTGGCC	TGTGAGTGCACGGTGTCCGTGGCC	AAACGCGACAGACCCGAGCGACTGACTG
sgRNA3	GGGGCAGCAGCTCATTGCC	TGTGGGGCAGCAGCTCATTGCC	AAACCGACAGAGACCCGAGCGACTGAG
sgRNA4	AGGAGAGGCTGACAGCTTG	TGTGAGAGGCTGACAGCTTG	AACAACAGGACTGCTCCTCTGAGGCG
sgRNA5	ACTAGATATCTAACAACCTTA	TGTGACTAGATATCTAACAACCTTA	AACAATGTTAGAATCTACAGGACTGAG
sgRNA6	CATAGCACATCAATGGCAGTCT	TGTGACTAGACATCAATTGGGTCTCTTCT	AAACAGAGAAGCTGATAGCTACTGACT
sgRNA7	AGACAGACGCTGGCCCTTTT	TGTGAGACAGACGCTGGCCCTTTT	AAACAAAGAGGGCCAAGCTTGTCTCA
sgRNA8	AGATGACCATCAACAAATCCA	TGTGAGATGACCATCAACAAATCCA	AAACATGGATTGTAGTGTGTCACTTCA
sgRNA9	ACAGAAGAGAGAGACACAGG	TGTGAGACAGACGAGAGACACAGG	AAACACCGTGGTTCCTCTCTGAGGAC
sgRNA10	AGTGGCCCTCTTTTGTGACTGAGGGCAGT	TGTGAGTGGCCCTCTTTTGTGACTGAGGGCAGT	AAACAAATGGTTAGAATCTACAGGACTG
sgRNA11	AGGAGCTGAGAGACAGATGCC	TGTGAGAGCTGAGAGACAGATGCC	AAACAGAGAAGCTGATAGCTACTGACT
sgRNA12	CGTAGAGAATCTCAGATAGT	TGTGAGCTAGAGAATCTCAGATAGT	AAACAGACAGACGAGAGACAGGACTGAG

Supplemental Table 7
Primers for on-target site amplification and sequencing.

Primer name	Primer sequence 5'-3'	Purpose
OsSPL14-F	AGGGTTCCAACAGCAGCGTAAGGA	Amplify all the OsSPL14 target sites
OsSPL14-R	TGGTGCTGGGCCAGCGTGGCTCTCT	
OsSPL14seq-F	TCTCCGCTGGTATCCAGTGGCAG	Sanger sequencing primer
SLR1-F	GCGCAATTTATACGTGTACAGG	
SLR1-R	AGCGGAGCGCTCAGCAGGTCAGG	Amplify the SLR1 target site
SLR1seq-F	CGTCGAGACCTGCTGTGAGGCC	Sanger sequencing primer
OsSERK2-F	CCATCTGCAATAGCTAGTCTTTT	Amplify the OsSERK2 target site
OsSERK2-R	AGAGTGTACGTACATACAGCAG	
OsSERK2seq-F	GCTTCGGTGAGCAGTAAGG	Sanger sequencing primer
Tms9-1-F	TGCCGGTCTGGACCGTGGCGC	Amplify the Tms9-1 target site
Tms9-1-R	CACGAGGCTCAGCAGAATGTGC	
Tms9-1seq-F	CTCCATGGCCGTCTGGTCTGGT	Sanger sequencing primer
OsNRT1.1B-F	GGGAGTTCATAGTGTGGAACGAGC	Amplify the OsNRT1.1B target site
OsNRT1.1B-R	GTGCTATGCGCCAGCGATGATCC	
OsNRT1.1Bseq-F	CTGTGACACTTGAGCAGCATGAC	Sanger sequencing primer
OsACC1-F	GCAATCTGTTCCTGTGCTGGAGC	Amplify the OsACC1 target site
OsACC1-R	CTTGAAAGCGATTTTGTGTCAGAC	
OsACC1seq-F	GGCAATCTGTTCCTGTGCTGGAGC	Sanger sequencing primer
OsDEP1-F	CTCTTTCACATTGCTGCTGCTGCT	Amplify the OsDEP1 target site
OsDEP1-R	AGCAGACAGACAGATGTGCAAGAC	
OsDEP1seq-F	AGGAGATGCCCATAGCTGGGCGGC	Sanger sequencing primer
SPX-MSF2-F	AGCACACACACAGACAGTGTGTC	Amplify the SPX-MSF2 target site
SPX-MSF2-R	GCGCAACTTAGGTTGGCATTGCC	
SPX-MSF2seq-F	CGTCTGACATGCGAGCCGCGT	Sanger sequencing primer
OsSPL17-F	GGTTTCACAGCGATGTGAGAGGA	Amplify the OsSPL17 target site
OsSPL17-R	GGACCTGCAGACGACAACC	
Table 8 Primers for off-target site amplification and sequencing.

Primer name	Primer sequence 5'-3'	Purpose
sgRNA1M1-F	GGGACCTCGTTGTCAGCAACAACCC	Amplify the off target site 1 for sgRNA1
sgRNA1M1-R	GCAGGTCCAGAAGCTTTGTGGA	
sgRNA1M1seq-F	CTCGCCGCAATGTTATTGCT	Sanger sequencing primer
sgRNA1M2-F	TTGTCTCCTGAAACAATCCCGAG	Amplify the off target site 2 for sgRNA1
sgRNA1M2-R	CCTGTTGTCAGAGTACAAATTG	
sgRNA1M2seq-F	GTCAACCCTGACAGGGACAG	Sanger sequencing primer
sgRNA1M3-F	TGCAATGCTTACCTCTGCTAG	Amplify the off target site 3 for sgRNA1
sgRNA1M3-R	GATCACACTAGCGACAGCGAGC	
sgRNA1M3seq-F	TTGGACGGAGCAAAATATAAG	Sanger sequencing primer
sgRNA1M4-F	ACGAGAGCTTCAGCTGACAGCA	Amplify the off target site 4 for sgRNA1
sgRNA1M4-R	AATCTGCCGCGTGCTGACAGAG	
sgRNA1M4seq-F	CGCCTCGGGATACAGCAGAT	Sanger sequencing primer
sgRNA1M5-F	TGCAGGTGGTCGGCGATCGCG	Amplify the off target site 5 for sgRNA1
sgRNA1M5-R	ACGCGGCACGGTCTGAGCTTCTGCTTCT	Sanger sequencing primer
sgRNA1M5seq-F	ACTACTGGAAACAGCACCTA	
sgRNA1M6-F	GATCACAACTGCTCGTGAAGCTA	Amplify the off target site 6 for sgRNA1
sgRNA1M6-R	ATATGTCTTATCCGAGACGAC	
sgRNA1M6seq-F	AGACGCAAGAGACAGACAAGC	Sanger sequencing primer
sgRNA1M7-F	CCAGACCTACATTCTAGGCTTCTC	Amplify the off target site 7 for sgRNA1
sgRNA1M7-R	GAGTTGACAGAGGGAGAGAGA	
sgRNA1M7seq-F	CCAAAACCCCTAAATCGGGAATCT	Sanger sequencing primer
sgRNA1M8-F	ATATGGTCAATCCCTGGTGAAGAGAGA	Amplify the off target site 8 for sgRNA1
sgRNA1M8-R	CCCCAACGCTCGGAACTCGGCA	
sgRNA1M8seq-F	GAGGGGAATACACAGGCTTCTC	Sanger sequencing primer
sgRNA1M9-F	CAGAGCCTGGAGCGGTCTTCTAC	Amplify the off target site 9 for sgRNA1
sgRNA1M9-R	ACAGTGACAAAATCGACAGAGAGA	
sgRNA1M9seq-F	GAGTGGCAACCGCAGTGCTTCTC	Sanger sequencing primer
sgRNA	Primer	Function
---------	--------	---------------------------
6M1-F	CTCAACTCTTGGGATTGCAGTTGC	Amplify the off target site 1 for sgRNA6
6M1-R	CCGATAAGGTTTGCTATTCACAGG	Sanger sequencing primer
6M1seq-F	GTAGCTAATGGTATTGTATAC	
6M2-F	GGCACATGTTTTGTTCTCTCTGC	Amplify the off target site 2 for sgRNA6
6M2-R	TTCCACTGAGATGGCTTGTGAC	Sanger sequencing primer
6M2seq-F	ATGCAATGAGAGGCATCAAGAG	
6M3-F	CGAGAGAGTACAGCAGCAGCTG	Amplify the off target site 3 for sgRNA6
6M3-R	CTCCGCACGCCCTCGAGTTCTGCC	Sanger sequencing primer
6M3seq-F	CCGGCACCATCTCAACCG	

sgRNA	Primer	Function
9M1-F	GCAACAAGATGTCTTCTCCCG	Amplify the off target site 1 for sgRNA9
9M1-R	CTGCCGCCGAACTGCTGCTGC	Sanger sequencing primer
9M1seq-F	TGAACGAGCGAGCGACGAC	
9M2-F	ACACCTGCCAAGAGAATGGCA	Amplify the off target site 2 for sgRNA9
9M2-R	CCGATAAGCTGATCAGAACGC	Sanger sequencing primer
9M2seq-F	GTGACAGCGGAAACCAAGAC	
9M3-F	AGACCAGCTGAGCTGCGGCG	Amplify the off target site 3 for sgRNA9
9M3-R	GAGACGGTACGTCCTCTCTC	Sanger sequencing primer
9M3seq-F	GAAGACGGTAGCTCCTCC	
9M4-F	TATATTCGTCGAAATGCATCTA	Amplify the off target site 4 for sgRNA9
9M4-R	ATGCCAGCGGTTCTAACCAGCA	
9M4seq-F	CATTCTCACTCTCCACTATTTCC	Sanger sequencing primer