The effects of genetic polymorphisms on benzene-exposed workers: A systematic review

Verónica Ramírez-Lopera1 | Daniel Uribe-Castro1 | Henry Bautista-Amorocho1,2 | Jorge Alexander Silva-Sayago2 | Enrique Mateus-Sánchez3 | Wilman Yesid Ardila-Barbosa2 | Tania Liseth Pérez-Cala1

1Bacterias & Cáncer Group, Microbiology and Parasitology, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
2Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa Administración en Salud Ocupacional, Centro Regional Bucaramanga, Corporación Universitaria Minuto de Dios, Bucaramanga, Colombia
3Grupo de Investigación en Desarrollo Humano, Tejido Social e Innovaciones Tecnológicas—GIDTI, Programa de Psicología, Centro Regional Bucaramanga, Corporación Universitaria Minuto de Dios, Bucaramanga, Colombia

Correspondence
Verónica Ramírez-Lopera, Cra. 51d #62-29, Medellín 050010, Antioquia, Colombia. Email: veronica.ramirezl@udea.edu.co

Funding Information
Ministerio de Ciencia, Tecnología e Innovación, Grant/Award Number: COL126780763345/Contract RC.847-2019

Abstract

Background and Aims: Benzene is a group I carcinogen, which has been associated with leukemia and myelodysplastic syndrome. Moreover, it has been proposed that polymorphisms in benzene metabolizing genes influence the outcomes of benzene exposure in the human body. This systematic review aims to elucidate the existent relationship between genetic polymorphisms and the risk of developing adverse health effects in benzene-exposed workers.

Methods: Three databases were systematically searched until April 2020. The preferred reporting items for systematic reviews and meta-analyses method was used to select articles published between 2005 and 2020. Quality assessment and risk of bias were evaluated by the Newcastle-Ottawa scale.

Results: After full-text evaluation, 36 articles remained out of 645 initially screened. The most studied health effects within the reviewed papers were chronic benzene poisoning, hematotoxicity, altered urinary biomarkers of exposure, micronucleus/chromosomal aberrations, and gene methylation. Furthermore, some polymorphisms on NQO1, GSTT1, GSTM1, MPO, and CYP2E1, among other genes, showed a statistically significant relationship with an increased risk of developing at least one of these effects on benzene-exposed workers. However, there was no consensus among the reviewed papers on which specific polymorphisms were the ones associated with the adverse health-related outcomes, except for the NQO1 rs1800566 and the GSTT1 null genotypes. Additionally, the smoking habit was identified as a confounder, demonstrating worse health outcomes in exposed workers that smoked.

Conclusion: Though there is a positive relationship between genetic polymorphisms and detrimental health outcomes for benzene-exposed workers, broader benzene-exposed cohorts that take into account the genetic diversity of the population are needed in order to determine which specific polymorphisms incur in health risks.
1 | INTRODUCTION

Benzene is an important chemical and ubiquitous environmental pollutant usually used as a solvent in industrial environments (e.g., petrochemical industry, steel plants, shoe manufacturing, etc.). Moreover, it is an important toxicant, given that it is the main component of cigarette smoke, gasoline, crude oil, and automotive emissions.\(^1\) Benzene is classified by the International Agency for Research on Cancer (IARC) as a group 1 human carcinogen\(^6\); furthermore, it is the cause of several hematological disorders, such as anemia, leukopenia, thrombocytopenia, acute myeloid and lymphocytic leukemia, myelodysplastic syndrome, and non-Hodgkin lymphoma.\(^6\)

The toxicity of benzene has been related to its metabolism, which is illustrated in Figure 1. After benzene inhalation, a number of reactions occur, which involve different enzymes such as NADPH quinone oxidoreductase-1 (NQO1), myeloperoxidase (MPO), glutathione S-transferases (GST), hydrolases and CYP enzymes (mainly CYP2E1).\(^2,6,7\) These metabolic pathways produce metabolites that are excreted in the urine, for instance trans,trans-muconic acid (t,t-MMA) and S-phenylmercapturic acid (S-PMA). Additionally, enzymes like NQO1 or GSTs catalyze detoxification reactions.\(^2,7\)

Even though the mechanisms by which benzene exerts its genotoxic and hematotoxic effects have not yet been fully elucidated,\(^8\) it is widely accepted that benzene reactive intermediates can bind covalently to macromolecules including DNA, tubulin, histones, and topoisomerase II in the tissue. Furthermore, the resultant metabolites are produced in conjunction with reactive oxygen species, and therefore, cause oxidative stress and subsequent genotoxicity. This results in cell damage and DNA double-strand breaks; thus, altering the normal cell cycle, generating carcinogenic effects on the bone marrow and the lymphohematopoietic system. It has also been proposed that this aromatic hydrocarbon can produce direct damage to hematopoietic progenitor cells, which could lead to apoptosis or altered responsiveness to cytokines and cellular adhesion molecules.\(^7,9\) Moreover, benzene toxicity to mature blood cells or stromal cells could disrupt the regulation of hematopoiesis, including maturation, hematopoietic commitment, or mobilization, through the network of chemokines, adhesion molecules, and cytokines.\(^8\)

As mentioned above, industrial environments are an important source of benzene exposure, with workers in major industry sectors (such as petrochemical plants, petroleum refineries, coke and coal chemicals or tire manufacturers) exposed to ranges that vary from 0 to 0.325 mg/m\(^3\) to more than 32.5 mg/m\(^3\) of benzene, contrasting the environmental exposure of the general population that varies from 0.0028 to 0.04 mg/m\(^3\).\(^12,13\) Consequently, international agencies have set occupational exposure limits in order to reduce the risk for adverse health outcomes in subjects exposed to this hydrocarbon at their workplace.\(^14,15\) Nonetheless, uniformity between these guidelines when establishing occupational exposure limits is lacking,\(^14-17\) especially considering that some individual factors such as genetic diversity predispose the population to benzene-related adverse health effects, even at low levels of exposure.\(^18\)

For example, several studies have reported a relationship between polymorphisms of benzene-metabolizing enzymes and higher susceptibility to benzene toxicity.\(^18-22\) Dougherty et al, De Palma et al, and Carbonari et al reviewed, in 2008, 2014, and 2016, respectively, the effect of genetic polymorphisms on biomarkers of exposure and biomonitoring, among benzene-exposed workers.\(^8,10,23\) However, since then, new studies have surfaced, and a review that includes benzene health-related effects other than biomarker excretion is in order. Consequently, in this systematic review, we aim to elucidate the existent relationship between genetic polymorphisms and the risk of developing adverse health outcomes in benzene-exposed workers.

2 | METHODS

2.1 | Search strategy

A systematic search, based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines,\(^24\) was conducted on Scielo, Pubmed, and Medline databases using Boolean operators, Medical Subjects Heading (MeSH), and non-MeSH terms: Benzene, occupational, mutations, and polymorphism. The full search strategy was adapted for each database and is listed on the Supporting Information.

2.2 | Study eligibility criteria

We only included studies that evaluated the effect of at least one polymorphism in different variables, with human subjects older than 18, whose main source of benzene exposure was occupational. We also exclusively added papers written in English or Spanish. Additionally, we filtered the results by only using articles published from 2005 to April 2020. Papers that only focused on environmental exposure were rejected, as were in-vitro studies. The accepted types of research were solely observational studies such as cross-sectional and case-control studies.

2.3 | Study selection

Article selection was conducted independently by two reviewers (VR-L and DU-C), and this process is illustrated in Figure 2.\(^24\) The first search retrieved 645 results, and after the application of two filters (year-of-publication and not-in-vitro-studies), followed by narrowing of the search strategy with the use of Boolean operators (see
Supporting Information), 549 papers were excluded. We added 21 cross-references to the remaining 96 articles, found either on the searched databases or on the remaining-papers references. Those articles were then screened by their titles, and 35 duplicates as well as nine titles that fulfilled the exclusion criteria were excluded. The results of the search were imported to the Zotero software, which was used as a reference manager. Afterward, two reviewers analyzed whether or not the abstracts met the inclusion criteria previously established, and then the same procedure was conducted with the full-text articles. If there was a disagreement, a third reviewer (TLP-C) resolved it. After that, 36 papers were included. To avoid the omission of articles relevant to the research, the references included in the reviewed articles were compared and checked.

2.4 | Data extraction

A table was created for summarizing the following characteristics from each paper: authors and year of publication, country of publication, sample size, age, gender, evaluated variable, evaluated genes and polymorphisms, quality assessment, and relevant results. The mean summary measures used in this review were odds ratios (OR), adjusted odds ratios (ORadj), P values (P), risk ratios (RR), and frequency ratios (FR).

2.5 | Protocol and study quality assessment

This systematic review was indexed in the prospective register of systematic reviews (PROSPERO). To assess the quality of these studies, the Newcastle-
Ottawa Scale (NOS) was modified to fit each study type, as stated on the Supporting Information. For case-control studies, three categories were evaluated: selection, comparability, and exposure; for cross-sectional studies, the exposure category was replaced with “outcome.” Points were assigned according to the study’s quality and bias risk, the maximum number of points each study could get was 9. The higher the number of points, the lower the bias risk was (see Supporting Information, Appxs. B-E).

3 | RESULTS

3.1 | Characteristics of eligible studies

A total of 36 articles were retrieved from the conducted systematic search, six were cross-sectional studies and 30 were case-control studies. All of them assessed occupationally benzene-exposed population and evaluated one or more of the following benzene effects: chronic benzene poisoning (CBP), hematotoxicity, altered urinary biomarkers, micronucleus/chromosomal aberrations (CA), and gene methylation. Regarding the NOS, both case-control and cross-sectional studies reached an average of 6 points out of 9, the former ranging from 5 to 8, and the latter from 5 to 7. These results are summarized in Table 1.

3.2 | Effects of polymorphisms on susceptibility to CBP

There were 10 studies that researched the relationship between polymorphisms and CBP (see Table 2).
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	Quality assessment score
Hosgood et al\(^{26}\) China 250 workers exposed to benzene	250 workers exposed to benzene	140 unexposed controls	21.5-39.03 y.o. 138 male 252 female	Exposed workers: 5.4 ppm (SD 12.1 ppm) Unexposed controls: <0.04 ppm	Total WBC count	VEGF rs3025030 rs633058 rs699946 ERCC3 rs4150441 rs6731176 Other genes: BLM, GPK3, IL8RB/IL8RA, RIK2, IL6, IL6R, IL10/IL19, IL12RB1, WRN, IFNAR2	Increased WBC count was evidenced in exposed workers with: • VEGF rs3025030 (variant allele C; \(P < 0.001\)) • VEGF rs633058 (variant allele C; \(P = 0.0011\)) • Homozygous variant alleles of rs3025030 - rs633058 • ERCC3 rs4150441 (variant allele T; \(P = 0.0086\)) • ERCC3 rs6731176 (variant allele C; \(P = 0.0087\))	8/9
Xiao et al\(^{27}\) China 102 patients with CBP 204 patients without CBP	102 patients with CBP 204 patients without CBP	18-63 y.o. 63 male 243 female	--	Risk of developing CBP	ERCC1 rs11615 rs3212986 ERCC2/ XPD rs13181 rs1799793 rs238406	Increased risk of CBP in non-smokers with: ERCC1 rs11615 (TT genotype) [OR = 3.21 (95% CI 1.36-7.60), \(P = 0.006\)]	6/9	
Sun et al\(^{28}\) China 303 benzene-poisoned patients 295 workers occupationally exposed to benzene (controls)	303 benzene-poisoned patients 295 workers occupationally exposed to benzene (controls)	18-68 y.o. 379 male 219 female	--	Risk of developing CBP	GADD45A rs581000 rs11544978 rs532446 MDM2 Del1518 rs2279744 p14ARF rs3731217 rs3731245 rs3088440	Increased risk of CBP in individuals with: • p14ARF TGA/TAG diplotype (\(P = 0.0006\)) • Decreased risk of CBP in individuals with: • p14ARF rs3731245 (GA + AA genotype) [ORadj = 0.57 (95% CI 0.36-0.89)] • p14ARF TGG/TA T diplotype (\(P < 0.001\)) • MDM2 Del1518 (WW genotype) plus p14ARF rs3731245 (GA + AA genotype) [ORadj = 0.25 (95% CI 0.10-0.62), \(P = 0.003\)]	6/9	
Sun et al\(^{29}\) China 345 benzene-poisoned patients 336 (controls) 37 non-exposed workers	345 benzene-poisoned patients 336 (controls) 37 non-exposed workers	18-68 y.o. 440 male 280 female	--	Risk of developing CBP	TP53 rs17878362 rs1042522 rs1625895 p21 rs1801270 rs1059234	Decreased risk of CBP in individuals with: • p21 rs1801270 (CA + AA genotype) [OR = 0.51 (95% CI 0.32-0.83)] rs1059234 (CT + TT genotype) [OR = 0.53 (95% CI 0.29-0.95)]	5/9	

(Continues)
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	
Pesatori et al25	Bulgaria	158	Petrochemical workers exposed to benzene 50 unexposed subjects	30.5-52.1 y. o. 171 male 32 female	1.71 ppm	Total blood cell count	NQO1 rs1800566 CYP2E1 rs2031920 (RsaI) rs6413432 (DraI)	None of the investigated polymorphisms was related with blood cell count
Torres et al30	Colombia	30	Directly exposed and 60 without occupational exposure	19-56 y.o. 65 male 25 female	--	DNA damage and urinary biomarker PH	CYP2E1 rs3813867/ rs203192 (PstI/RsaI) rs6413432 (DraI) GSTT1 Null and no null GSTM1 Null and no null	No significant differences were found between DNA damage, urinary phenol level and the polymorphisms evaluated
Chanvaivit et al31	Thailand	62 cases 34 controls	16-60 y.o. 87 male 9 female	Laboratory workers: 244 ppb Gasoline service attendants: 11241 ppb Controls: 1.39 ppb	DNA repair-capacity, blood biomarkers (blood benzene levels) and urine biomarkers (t,t-MA)	CYP2E1 CYP2E1*1/*5 CYP2E1*5/*5 CYP2E1*1/*1 NQO1 rs1800566 GSTT1 Null and no null XRCC1 rs25487	XRCC1 rs25487 (399Gln allele) had a lower DNA repair-capacity than those with 399Arg/Arg genotype (P< 0.01, in laboratory workers only); CYP2E1*1/*5 and CYP2E1*5/*5 genotypes had lower benzene levels in blood than those with the CYP2E1*1/*1 genotype (in laboratory workers only); NQO1 and GSTT1 genotypes: no effects on t,t-MA levels	
Gu et al32	China	152 benzene poisoning patients 152 control workers (occupationally exposed to benzene)	19-61 y.o. 118 male 186 female	Laboratory workers: 244 ppb Gasoline service attendants: 11241 ppb Controls: 1.39 ppb	DNA repair-capacity, blood biomarkers (blood benzene levels) and urine biomarkers (t,t-MA)	CYP1A1 rs4646903 CYP2D6 rs1065852 rs1135840 c.212 G > A UGT1A6 c.181 T > A UGT1A7 208Trp > Arg SULT1A1 c.638G > A	More susceptibility to CBP in subjects with: CYP1A1 rs4646903 (TT genotype) [ORadj = 1.21 (95% CI 1.03-1.42), P < 0.05] CYP2D6 rs1065852 (CC or CT genotype) [ORadj = 2.11 (95% CI 1.22-3.65), P < 0.05] CYP2D6 rs1135840 (CC genotype) [ORadj = 1.69 (95% CI 1.04-2.74), P > 0.05]	
Wu et al33	China	152 benzene poisoning patients 152 control workers (occupationally exposed to benzene)	19-61 y.o. 118 male 186 female	Laboratory workers: 244 ppb Gasoline service attendants: 11241 ppb Controls: 1.39 ppb	DNA repair-capacity, blood biomarkers (blood benzene levels) and urine biomarkers (t,t-MA)	CYP1A1 rs4646903 CYP2D6 rs1065852 rs1135840 c.212 G > A UGT1A6 c.181 T > A UGT1A7 208Trp > Arg SULT1A1 c.638G > A	More susceptibility to CBP in subjects with: CYP1A1 rs4646903 (TT genotype) [ORadj = 1.21 (95% CI 1.03-1.42), P < 0.05] CYP2D6 rs1065852 (CC or CT genotype) [ORadj = 2.11 (95% CI 1.22-3.65), P < 0.05] CYP2D6 rs1135840 (CC genotype) [ORadj = 1.69 (95% CI 1.04-2.74), P > 0.05]	Higher risk of CBP with: hMTH1 83Val/Met + Met/Met [ORadj = 2.47 (95% CI 1.10-5.92)] compared to Val/Val (only in non-smokers) hOGG1 326Cys/Cys [ORadj = 3.06 (95% CI 1.74-5.35)] compared to Ser/Ser + Ser/Cys (only in non-smokers)
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	
--------------------------------	----------	-------------	--	-----------------------	---------------------	------------------------	---------------------	
Zhang et al. 14	China	152 benzene poisoning patients	19–61 y.o. 118 male 186 female	40 mg/m3: Cases: 18.4% Controls: 21.7% 41-100 mg/m3: Cases: 61.2% Controls: 61.8% >100 mg/m3: Cases: 20.4% Controls: 16.5%	Risk of developing CBP	XRCC1 rs1799782 (Arg194Trp) rs25489 (Arg280His) rs25487 (Arg399Gln) APE1 rs1130409 (Asp148Glu)	Higher risk of CBP with: 6/9	
		152 control workers (occupationally exposed to benzene)				- XRCC1 rs25489 *Arg/His [ORadj = 1.67 (95% CI 1.02-2.74), P = 0.04] compared to Arg/Arg		
						- XRCC1 rs1799782 (AA genotype) [ORadj = 14.89 (95% CI 6.54-30.21), P < 0.001]		
						- XRCC1 rs1799782 (TT genotype): only in alcohol drinkers [OR = 8.0 (95% CI 1.32-48.64), P = 0.022], males [OR = 9.33 (95% CI 1.59-54.67), P = 0.019] and < 12 year exposure [OR = 2.61 (95% CI 1.05-6.51), P = 0.035]		
Xue et al. 15	China	102 CBP patients	18–63 y.o. 63 male 243 female		Risk of developing CBP	XRCC1 rs25487 rs25489 rs1799782 CDJ35AP rs6759 FPP1R13L rs1005165	Higher risk of CBP with: 6/9	
		204 controls					- XRCC1 rs25487 (AA genotype) [ORadj = 14.89 (95% CI 6.54-30.21), P < 0.001]	
						- XRCC1 rs1799782 (TT genotype): only in alcohol drinkers [OR = 8.0 (95% CI 1.32-48.64), P = 0.022], males [OR = 9.33 (95% CI 1.59-54.67), P = 0.019] and < 12 year exposure [OR = 2.61 (95% CI 1.05-6.51), P = 0.035]		
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	
--------------------------------	---------	-------------	---	-----------------------	---------------------	-------------------------	---------	
Mansi et al4	Italy	181	181 occupationally exposed petrochemical workers (cases) 134 administrative employees (controls)	23-65 y.o. 309 male 6 female	0.0368 mg/m³ (0.01 ppm)	Urinary biomarkers: S-PMA, t,t-MA and t,t-MA/S-PMA ratio	GSTP1 rs1695, GSTT1 null and no null	Lower risk of CBP in males with: XPB/ERCC3 rs4150441: GA [OR = 1.73 (95% CI 1.00-2.99), P = 0.049] and GA + AA genotypes [OR = 1.72 (95% CI 1.01-2.9), P = 0.043] compared to GG genotype
Mitri et al16	Brazil	114	114 gas-station attendants: 19-82 y.o. 87 male 27 female	–	–	Risk of developing CBP	CYP2E1 rs2031920, rs6413432, NQO1 rs1800566, MPO rs2331227	GSTM1 null genotype was associated with changes related to CBP (ie, symptoms, altered MCV and neutrophil %) [OR = 5.13 (95% CI 1.13-23.15)]
Xing et al37	China	77 benzene-exposed workers 25 unexposed controls	43-67 y.o. 38 male 64 female For 34 exposed workers: 324 ppm-years For 43 exposed workers: >100 ppm-years	Altered DNA methylation and total WBC count	CYP1A1 rs4646903, EPHX1 rs1051740, rs2234922, NQO1 rs1800566, Methylation levels of: BLM, CYP1A1, EPHX1, ERCC3, NQO1, NUDT1, p15, p16, RAD51, TP53, and WRAP53	ERCC3 showed an increased methylation level in exposed workers (P = 0.048) Increased number of C allele for EPHX1 rs1051740 was associated with decreased methylation level of the ERCC3 gene in exposed workers (P = 0.001) Reduced WBC count was associated with increasing number of G allele for EPHX1 rs2234922 in exposed workers (P = 0.044) Increased WBC count was related to increasing number of C allele for CYP1A1 rs4646903 in exposed workers (P = 0.001)		
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	Quality assessment score
--------------------------------	---------	-------------	---	-----------------------	---------------------	----------------------	---------	------------------------
Fustinoni et al\(^2\)	Italy	308 cases (urban policemen, gas station attendants and bus drivers) 107 controls	- 28.9-48.1 y. o. 352 male 63 female	- Gas station attendants: 61 μg/m³ Urban policemen: 22 μg/m³ Bus drivers: 21 μg/m³ Controls: 7.5 μg/m³	- Urinary biomarkers: S-PMA, t,t-MA, U-benzene and U-cotinine	- CYP2E1 rs2031920 (RsaI) rs6413432 (DraI) NQO1 *Polymorphism not specified	- Higher t,t-MA in exposed subjects with at least one variant allele in CYP2E1 rs6413432 (P = 0.03) Reduced U-benzene excretion in subjects with at least one mutant allele of CYP2E1 rs2031920 (P < 0.01) All the biomarkers were influenced by smoking	7/9
Manini et al\(^3\)	Italy	239 workers (taxi drivers, traffic policemen and gasoline pump attendants)	- 27.7-54.5 y. o. 170 male 69 female	- 38.3 μg/m³	- Urinary biomarkers: S-PMA, t,t-MA and biomarkers of nucleic acid oxidation: 8-oxodGuo, 8-oxoGuo and 8-oxoGua NQO1 rs1800566 NQO1*1*1 NQO1*1*2 GSTM1 Null and no null GSTT1 Null and no null GSTA1 GSTA1*A*A GSTA1*A*B GSTA1*B*B	- Subjects bearing the NQO1*1*1 (wild-type genotype) showed lower levels of oxidative damage to RNA compared to subjects with at least one variant allele (P < 0.05) Lower S-PMA excretion with GSTM1 null (P = 0.01), GSTT1 null (P = 0.023) and GSTA1*B*B (P = 0.048) genotypes compared to positive genotypes In subjects defective for one GST enzyme, the other one could effectively play a vicarious activity	7/9	
Sun et al\(^4\)	China	268 benzene-poisoned patients 268 workers occupationally exposed to benzene	- 17-68 y.o. 342 male 194 female	- 40 mg/m³: Cases: 53.7% Controls: 55.6% 41-100 mg/m³: Cases: 34.7% Controls: 35.1% >100 mg/m³: Cases: 11.6% Controls: 9.3%	- Risk of developing CBP CYP1A1 rs4646421 rs4646422 rs1048943 rs4646903 CYP1A2 rs2445618 rs762551 rs2472304 rs2470890 CYP1B1 rs1056836 ADH1B rs1229984 EPHX1 rs2854451 rs3738047 rs2234922 rs1051741 EPHX2 rs781141 NQO1 rs1800566 MPO rs7208693 GSTP1 rs1695 UGT1A6 rs6786892 rs1105879 rs4124874 rs3755319 rs887829 rs4148323 rs781141	- Higher risk of CBP in: -EPHX1 GG/GAC/GAGT (P = 0.00057) or AGAC/GAGT (P = 0.00086) diplootypes Decreased risk of CBP in GSTP1 rs1695 (AG + GG genotype) [OR = 0.44 (95% CI 0.24-0.81), P = 0.007] only in non-alcohol drinkers Higher risk of CBP in alcohol drinkers with: EPHX1 rs3738047 GA + AA genotype [OR = 5.0 (95% CI 0.89-30.52), P = 0.0073] compared to GG genotype Decreased risk of CBP in alcohol drinkers with: EPHX1 rs2234922 AG + GG compared to GG (P = 0.008) or rs1051741 CT + TT compared to CC (P = 0.043)	7/9	
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	
--------------------------------	---------	-------------	---	-----------------------	-------------------	--------------------------	---------	
Chen et al\(^\text{a}\) \(^\text{9}\)	China	100 workers with CBP 90 controls	37 male 63 female	—	Risk of developing CBP	NQO1 rs1800566 MPO rs2333227 CYP2E1 rs2031920 rs6413432 GSTM1 Null and no null GSTT1 Null and no null	Higher risk of CBP in: • NQO1 rs1800566 TT genotype \([\text{OR} = 2.82 (95\% \text{ CI} 1.42-5.58)]\) compared to CT + CC genotypes • GSTT1 null genotype \([\text{ORadj} = 1.91 (95\% \text{ CI} 1.05-3.43)]\) • NQO1 rs1800566 TT genotype plus GSTT1 null genotype \([\text{OR} = 4.59 (95\% \text{ CI} 1.73-12.20)]\) compared to CT + CC plus no null genotypes • NQO1 rs1800566 TT genotype plus GSTT1 null genotype plus GSTM1 null \([\text{OR} = 16.13 (95\% \text{ CI} 3.15-83.33)]\) • NQO1 rs1800566 CT + CC genotype plus GSTT1 null genotype \([\text{OR} = 2.21 (95\% \text{ CI} 1.09-4.46)]\) compared to CT + CC genotype plus no null genotype	
Lan et al\(^\text{a}\)	China	250 workers exposed to benzene 140 unexposed controls	21.5-39.03 yo 138 male 252 female	Exposed workers: 5.4 ppm (SD 12.1 ppm) Unexposed controls: <0.04 ppm	Total WBC count	ICAM1 rs5491 VCAM1 rs1041163 rs3176879 CSF2 rs1469149 CSF3 rs1042658 IL-1A rs1800578 IL-1B rs169444 IL-2 rs2069762 IL-4 rs2243248 IL-4R rs1805010 IL-5 rs2069812 IL-10 rs1800871 IL-12A rs568408 IL-12B rs3212227 IL-13 rs20541 IL-16 rs859 LTA rs909253 TNF rs1800629 CCR2 rs1799864 CCR5 rs2736468 IL-8 rs4073	Decreased WBC count in exposed workers with: • IL-1A rs1800578 CT + TT genotype \([P < 0.001]\) compared to CC • IL-4 rs2243248 TG genotype \([P = 0.0046]\) compared to TT • IL-10 rs1800871 CC genotype \([P = 0.0034]\) compared to TT • IL-12A rs568408 AA genotype \([P < 0.001]\) compared to GG • VCAM1 rs1041163 CC genotype \([P = 0.0022]\) compared to TT • Increased WBC count in exposed workers with: CSF3 rs1042658	8/9
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	Quality assessment score
--------------------------------	---------	-------------	---	-----------------------	--------------------	----------------------	---------	--------------------------
Shen et al⁴⁰	China	250 workers exposed to benzene 140 unexposed controls	Exposed workers: 5.4 ppm (SD 12.1 ppm) Unexposed controls: <0.01 ppm	Total WBC count	WRN rs4987226 rs2725349 rs1800392 rs2725362 rs4987036 rs1346404 TP53 rs1042522 NBS1 rs1805794 BRCA1 rs16940 rs799917 rs16941	Decreased WBC count in exposed workers with: WRN Homozygous variants in: rs4987236 (P = 0.0003), rs2725349 (P = 0.022), rs1800392 (P = 0.001), rs2725362 (P = 0.0002) TP53 rs1042522 (P = 0.001) BRCA2 Homozygous for uncommon allele of: rs1801406 (P = 0.045)	8/9	
Shen et al³	China	250 workers exposed to benzene 140 unexposed controls	0.36 ± 0.31 ppm	Total WBC count	MBP rs470261 VCAM1 rs1041163 rs3176867 ALOX5 rs4948671 rs7099684 MPO rs2071409 RAC2 rs2239773 CRP rs180094	Decreased granulocyte, lymphocyte, and monocyte population counts in: VCAM1 rs3176867 (P < 0.0001) ALOX5 rs7099684 (P = 0.001) MPO rs2071409 (P = 0.0001)	8/9	
Lan et al⁴¹	China	250 workers exposed to benzene 140 unexposed controls	Exposed workers: 5.4 ppm (SD 12.1 ppm) Unexposed controls: <0.01 ppm	Total WBC count	APOB rs3791981 IGF2R rs1570070 IL1A rs17561 GSK3B rs1719888 WRN rs2275362 TP53 rs12951053 GPX3 rs8177426	Decreased WBC count in exposed subjects with: BLM rs2270132 (P = 0.00021), rs1694489 (P = 0.0038) and rs414634 (P = 0.0077) RAD51 rs4924496 EFN1B3 rs3744262 IL10 rs1800871 MPO rs2071409 WRN rs1788503	8/9	
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	Quality assessment score
--------------------------------	---------	-------------	---	-----------------------	---------------------	----------------------	----------------	--------------------------
Ye et al7	China	Cases: 385 exposed workers Controls: 220 healthy subjects	19-57 y.o. 317 male 288 female	6.4 mg/m3	Total WBC count	GSTT1 Null and no null GSTM1 Null and no null GSTP1 rs1695 CYP2E1 rs3813867 rs2031920 rs6413432 mEH rs1051740 rs2234922	Decreased WBC counts in exposed subjects with:	
- GSTT null genotype \((P = 0.045) \) compared to no null genotype
- GSTM1 null genotype \((P = 0.03) \) compared to no null genotype
- CYP2E1 rs2031920 CT genotype compared to CC \((P = 0.020) \) and rs3813867 GC genotype compared to GG \((P = 0.014) \) | 7/9 |
| Kim et al12 | Korea | 108 workers directly exposed to benzene 33 office workers | 30-52 y.o. 0.51 ppm | MN and CA | NQO1 rs1800566 MPO rs2333227 XRCC1 rs25487 | Exposed workers with NQO1 TT genotype had increased MN
[RR = 1.9 (95% CI 1.5-2.3)] and CA
[RR = 2.6 (95% CI 1.7-3.9)] compared to those with CT or CC genotypes
A rise in CA on subjects with MPO GG genotype [RR = 2.3 (95% CI 1.3-4.0)] and XRCC1 AA genotype [RR = 2.2 (95% CI 1.5-3.1)] compared to those with MPO GA or AA and XRCC1 GG or AG respectively | 6/9 |
| Fang et al43 | China | 461 exposed workers 88 controls | 25.1-27.7 y. o. 484 male 65 female | Less than 0.6 mg/m3 | MN | NQO1 rs1800566 CYP2E1 rs3813867 | Lower MN frequencies in exposed subjects with NQO1 TT genotype
[FR = 0.79 (95% CI 0.66-0.95), \(P < 0.05 \)] compared to the CC genotype | 6/9 |
| Zhang et al44 | China | 294 benzene-exposed participants 102 controls indoor workers | 17-71 y.o. 174 male 222 female | 6.4 mg/m3 | MN and methylation | XRCCL1 rs25489 rs25487 APE1 rs1130409 XPA rs1800975 XPC rs2228000 rs2228002 ERCC2 rs13181 rs1799793 XPG rs17655 ERCC1 rs3212986 | Higher MN frequency on workers with
- XRCCL1 rs25487 AA genotype
[FR = 1.50 (95% CI 1.16-1.9), \(P = 0.002 \)] compared to GG; and GA genotype
[FR = 1.20 (95% CI 1.04-1.37), \(P = 0.006 \)]
- APE1 rs1130409 GG genotype
[FR = 1.28 (95% CI 1.05-1.55), \(P = 0.01 \)] compared to TT; and GT genotype
[FR = 1.20 (95% CI 1.04-1.37), \(P = 0.01 \)]
- XPG rs17655 GC genotype
[FR = 1.18 (95% CI 1.02-1.38), \(P = 0.038 \)] compared to GG | 6/9 |
| Authors and year of publication | Country | Sample size | Participants (age range or mean [in years], gender) | Mean benzene exposure | Evaluated variable* | Genes and polymorphisms studied | Results | |
|---|---|---|---|---|---|---|---|---|
| Nourozi et al⁶ | Iran | Cases: 124 petrochemical plant benzene-exposed workers Controls: 184 subjects with a similar exposure scenario | 27.62-40.9 y. o. All male | Cases: 0.10 ± 0.195 ppm Controls: 0.12 ± 0.284 ppm | Total WBC count | GSTP1 rs1695 | **ERCC1**: rs3212986 TT genotype [FR = 1.55 (95% CI 1.31-1.83), \(P < 0.001 \)] compared to GG Low global DNA methylation in subjects with APE1 rs1130409 GG + GT genotype (\(P = 0.045 \)) |
| Kim et al³ | China | 250 benzene-exposed workers 136 control workers | 21-43 y.o. 248 males 138 females | 0.512 ppm | Urinary biomarkers: t,t-MA, S-PMA, PH, CAT, and HQ | CYP2E1 rs203192 | NQO1 rs1800566 lowered t,t-MA, S-PMA (\(P = 0.001 \)), PH (\(P = 0.022 \)), CAT (\(P = 0.036 \)) and HQ (\(P = 0.036 \)) CYP2E1 rs2031920 affected t,t-MA (\(P < 0.001 \)), PH (\(P < 0.001 \)), CAT (\(P < 0.001 \)) and S-PMA | 8/9 |
| Carbonari et al⁴ | Italy | 301 oil refinery workers in Italy | 30.6-53.4 y. o. | 0.021 mg/m³ | Urinary biomarkers: S-PMA, t,t-MA | GSTA1 rs3957356 | NQO1 rs1800566 Lower median S-PMA urinary concentration and a consequently higher t,t-MA/S-PMA (R value) in smokers with GSTT1 null and GSTM1 null compared to no null genotypes (\(P < 0.05 \) for both genes) Higher R value in non-smokers with GSTT1 null compared to no null (\(P < 0.05 \)) | 7/9 |

(Continues)
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	Quality assessment score
Zhang et al46	China	410	236 male 276 female	6.4 mg/m³	MN and methylation	DNM3A rs36012910 rs1550117 R882	Increased MN frequency in subjects with DNM3A R882 variant allele (AG+ AA) [FR = 1.19 (95% CI 1.05-1.36), P = 0.003] Lower global DNA methylation (P = 0.094) and higher MN frequency [FR = 1.18 (95% CI 0.99-1.40), P = 0.054] in subjects with DNM3A R882 variant allele (R882C + R882H) compared to wild-type genotype Decreased global DNA methylation in subjects with DNM3B rs2424909 GG genotype (P = 0.031)	7/9
Lin et al47	Taiwan	105	33-57 y.o. all males			GSTT1	GSTT1 null is related to a reduced S-PMA excretion (P = 0.041), compared to GSTT1 no null	5/9
Qu et al48	China	130	Groups: GSTT1 null: 7.5 ± 9.1 ppm no null: 11.7 ± 20.6 ppm NQO1 rs1800566 Wild-type variant: 12.1 ± 23.6 ppm Heterozygous variant: 8.4 ± 11.8 ppm Heterozygous variant: 10.3 ± 11.8 ppm	Urinary biomarkers: S-PMA, PH and t,t-MA	CYP2E1 rs2031920 rs6413432 NQO1 rs1800566 GSTT1 null and no null MPO rs2 333 227 (not analyzed)	GSTT1 null is related to a reduced S-PMA excretion (P < 0.0001), compared to GSTT1 null no null	8/9	
Carrieri et al49	Italy	28	33.3-50.3 yo All males	34.5 μg/m³		GSTT1	GSTT1 null is related to a reduced S-PMA excretion (P = 0.0009) compared to GSTT1 null no null GSTM1 null did not influence biomarker excretion	6/9
Authors and year of publication	Country	Sample size	Participants (age range or mean [in years], gender)	Mean benzene exposure	Evaluated variable*	Genes and polymorphisms studied	Results	Quality assessment score
--------------------------------	---------	-------------	--	-----------------------	---------------------	----------------------	---------	-------------------------
Zhang et al 2014	China	582 cases: 385 benzene-exposed workers Controls: 197 non-exposed workers	289 male 293 female	6.4 mg/m2	MN	GSTM1 null and no null GSTT1 null and no null GSTP1 rs1695 CYP2E1 rs3813867 rs2031920 rs6413452 mEH exon 3 rs1051740 mEH exon 4 rs2234922	Higher MN frequency in subjects with CYP2E1 rs3813867 mutant allele (CC + GC) [FR = 1.15 (95% CI 1.02-1.29), P = 0.02] and rs2031920 variant allele (CT + TT) [FR = 1.23 (95% CI 1.09-1.37), P < 0.01] both SNPs compared with the wild type Higher MN frequency (adjusted for age, gender and cumulative exposure dose) in subjects with rs2031920 variant allele (CT + TT) [FR = 1.17 (95% CI 1.04-1.31), P < 0.01], compared to the wild type	7/9
Wan et al 50	China	120 workers	46 male 74 female	—	Risk of developing CBP	GSTM1 Null and no null GSTT1 Null and no null NQO1 rs1800566 CYP2E1 rs3813867	Increased risk of CBP in exposed workers with • GSTT1 null [OR = 4.45 (95% CI 1.13-17.54)] • NQO1 rs1800566 plus GSTT1 null at the same time [OR = 1.14 (95% CI 0.42-3.05)]	5/9
Carrieri et al 51	Italy	146 workers employed at an oil refinery 25 non-exposed participants as a control group	All males 20-72 y.o.	32.6 ± 50.6 (μg/m2) for exposed workers 11.5 ± 3.2 (μg/m2) for controls	Urinary biomarkers: S-PMA, urinary benzene and t,t-MA	GSTT1 Null and no null GSTM1 Null and no null	GSTT1 no null significantly increases the urinary levels of S-PMA (P < 0.0094), compared to GSTT1 null GSTM1 null and no null showed no effect on biomarker excretion	8/9

Abbreviations: CA, chromosomal aberrations; CAT, catechol; CBP, chronic benzene poisoning; FR, frequency ratio; HQ, hydroquinone; MN, micronucleus; OR, odds ratio; ORadj, adjusted odds ratio; PH, phenol; RR, risk ratio; S-PMA, S-phenylmercapturic acid; t,t-MA, trans,trans-muconic acid; WBC, white blood cell; y.o., years old.
*The evaluated variables were changed in risk of developing chronic benzene poisoning, excretion of urinary biomarkers, blood cell count or hematotoxicity; the presence of micronucleus, chromosomal aberrations, and methylation.
Table 2: Effect of different polymorphisms on the development of CBP

Group/gene	Genes and polymorphisms	Effect on CBP	Risk	References
NQO	NQO1	Possible^a	No change	38
	rs1800566			
	rs1800566 (T/T genotype)			
	rs1800566 (combined with null GSTT1)			
MPO	MPO	No^b	No change	38
	rs7208693			
	rs2333227			
CYP	CYP1A1	Conflicting^c	No change	38
	rs4646421			
	rs4646422			
	rs1048943			
	rs4646903	Increased		32
	rs4646903 (T/T genotype)			
	CYP1A2	No^b	No change	38
	rs2445618			
	rs762551			
	rs2472304			
	rs2470890			
	CYP2D6	Yes^d	Increased	32
	rs1065852 (C/C + C/T genotype)			
	rs1135840 (C/C genotype)			
	CYP1B1	No^b	No change	38
	rs1056836			
	CYP2E1	No^b	No change	39
	rs2031920			
GST	GSTT1	Yes^d	No change	39,50
	non-null			
	null			
	GSTM1	Conflicting^c	Increased	39
	null (in combination with NQO1 rs1800566 variation [T/T], GSTT1 null)			
	null and non-null			50
	GSTP1	Yes^d	Increased	38
	rs1695 (AA genotype, non-alcohol drinkers)			
XRCC	XRCC1	Yes^d	Increased	35
	rs25487 (AA genotype)			
	rs1799782 (TT genotype)			
	rs25489 (Arg/His+His/His genotype combination)			
	rs17997822[Arg/Trp + Trp/Trp genotype combination)			
	XRCC2⁺	-	-	34
	rs3218536			
	XRCC3	No^b	No change	34
	rs861539			
ERCC	ERCC1	Yes^d	Increased	27
	rs11615			
	rs3212986			
	ERCC2	No^b	No change	27
	rs13181			
	rs1799793			
	ERCC3	Yes^d	Increased	35
	rs4150441 (GA and GA + AA genotypes)			
Group/gene	Genes and polymorphisms	Effect on CBP	Risk	References
-----------	-------------------------	--------------	------	------------
CDKN2A	CDKN2A rs3731245 (GA + AA genotypes in combination with MDM2 rs3730485 WW)	Yes^d	Decreased	11
CDKN1A	CDKN1A rs1801270 (CA + AA genotype) rs1059234 (CT + TT genotypes)	Yes^d	Decreased	28
POLR1G	POLR1G rs967591 (GA and GA + AA genotypes)	Yes^d	Decreased	35
PPP1R13L	PPP1R13L rs1005165 (T genotype)	Yes^d	Increased	33
hMTH	hMTH rs4866	Yes^d	Increased	33
OGG1	OGG1 rs1052133	Yes^d	Increased	33
MUTYH	MUTYH rs3219489	No^b	No change	33
TP53	TP53 rs17878362 rs1042522 rs1625895	No^b	No change	28
UGT	UGT1A6 rs2070959 UGT1A7 rs11692021	No^b	No change	32
SULT1A1	SULT1A1 rs9282861	No^b	No change	32
ADH1B	ADH1B rs1229984	No^b	No change	38
EPH	EPHX1 rs3738047 (GA + AA genotypes) rs2854451 rs2234922 rs1051741	Yes^d	Increased	38
UGT1A6	UGT1A6 rs6786892 rs1105879 rs4124874 rs3755319 rs887829 rs4148323	No^b	No change	38
GADD45A	GADD45A rs581000 rs532446 rs11544978	Yes^d	Decreased	11
MDM2	MDM2 rs3730485 (in combination with CDKN2A rs3731245) rs2279744	Yes^d	Decreased	11
APE1	APE1 rs1130409	No^b	No change	34
ADPRT	ADPRT rs1136410	No^b	No change	34
XPB	XPB rs4150441 (GA and GA + AA genotypes)	Yes^d	Increase	35
The study did not detect any subjects with the desired allele. This effect was exclusively observed in males.

There were three articles that studied the different CYP gene polymorphisms. Two of them researched CYP1A1, one of which found no relation between the polymorphisms and the risk of CBP, while the other found that the exposed workers with polymorphisms in CYP1A1 rs4646903 are at a greater risk of CBP \(\text{OR} = 1.21 \) (95% CI 1.03-1.42). Two papers studied this relationship; however, \(\text{OR} = 1.69 \) (95% CI 1.04-2.74) for Chen et al and an \(\text{OR} = 1.14 \) (95% CI 0.42-3.05) for Xue et al, the workers who had the \(\text{CC} \) genotype had an increased risk of benzene poisoning, compared to those carrying the \(\text{TT} \) genotype. According to Xue et al, the workers who had the \(\text{XPF} \) rs25487 AA \(\text{OR} = 14.898 \) (95% CI 6.55-30.21) and the rs1799782 TT genotypes also had an increased risk of developing CBP; it is important to mention that the increased risk with rs1799782 was exclusive to male \(\text{OR} = 9.33 \) (95% CI 1.59-54.67), alcohol drinkers \(\text{OR} = 8.0 \) (95% CI 1.32-48.65), with an exposure lesser than 12 years \(\text{OR} = 2.61 \) (95% CI 1.05-6.51).

More information about other genes can be found in Table 2.11,28,32-35,38

3.3 Susceptibility to hematotoxicity and changes in blood cell count

Polymorphisms on certain genes could increase susceptibility to hematotoxicity, which could be reflected with an altered blood cell count.8

TABLE 2 (Continued)

Group/gene	Genes and polymorphisms	Effect on CBP	Risk	References
XPC	XPC rs2279017 rs2228001	No^b	No change	35
XPF	XPF rs4781560	No^b	No change	35

^aPossible: More than half of all the studies that researched that polymorphism has encountered a relationship between it and the development of CBP.

^bNo: None of the studies that researched the polymorphism encountered a relationship between it and CBP.

^cConflicting: Half of the studies that researched said polymorphism found a relationship between it and CBP, yet the other half did not.

^dYes: All of the studies that researched the polymorphism found a relationship between it and a higher risk of developing CBP.

^eThis effect was exclusively observed in males.

The study did not detect any subjects with the desired allele.

3.2.1 | NQO1 and MPO

Three publications evaluated the difference in susceptibility of developing CBP among patients with polymorphisms in the NQO1 and MPO genes; however, none of these studies found any relationship between the latter gene and the outcome.38,39,50 Conversely, only one article found no association between NQO1 polymorphisms and the risk of developing CBP,38 while the other two found to some degree a greater risk of benzene poisoning on individuals with a NQO1 polymorphism. Chen et al found that the NQO1 rs1800566 TT homozygous genotype was associated with an increased risk of CBP \(\text{OR} = 2.82 \) (95% CI 1.42-5.58),39 Wan et al found that the increase in the risk of CBP was only significant when the NQO1 rs1800566 genotype was present simultaneously as the null GSTT1 gene \(\text{OR} = 1.14 \) (95% CI 0.42-3.05).50

3.2.2 | Cytochrome P450 encoding polymorphisms

There were three articles that studied the different CYP gene polymorphisms. Two of them researched CYP1A1, one of which found no relation between the polymorphisms and the risk of CBP,38 while the other found that the exposed workers with polymorphisms in CYP1A1 rs4646903 are at a greater risk of CBP \(\text{OR} = 1.21 \) (95% CI 1.03-1.42). Gu et al also discovered that people with CYP2D6 polymorphisms are more susceptible to CBP: \(\text{OR} = 2.11 \) (95% CI 1.22-3.65) for rs1065852 (CC genotype) and \(\text{OR} = 1.69 \) (95% CI 1.04-2.74) for rs1135840 (CC genotype). Nevertheless, none of the articles found any correlation between the possibility of developing CBP and the CYP1A2, CYP1B1, and CYP2E1 polymorphisms.32,38,39

3.2.3 | GSTT1 and GSTM1

Three studies examined this correlation. Mitri et al found a relationship between the GSTM1 null genotype and a higher risk of developing CBP \(\text{OR} = 5.13 \) (95% CI 1.13-23.15) while Chen et al only found it when said polymorphism was combined with the NQO1 rs1800566 TT homozygous genotype and the GSTT1 null \(\text{OR} = 16.13 \) (95% CI 3.15-83.33). Two of the papers found that the GSTT1 null genotype was related to a higher CBP risk with an

[ORadj = 4.45 (95% CI 1.13-17.54)] for Chen et al and an [OR = 9.33 (95% CI 1.59-54.67), alcohol drinkers [OR = 8.0 (95% CI 1.32-48.65), with an exposure lesser than 12 years [OR = 2.61 (95% CI 1.05-6.51)].35

3.2.4 | XRCC1, XRCC2, and XRCC3

Two papers studied this relationship; however, XRCC2 could not be evaluated because the selected variant genotype was not detected. Additionally, they did not find any correlation between the XRCC3 rs861539 variant and variation in CBP risk.34,35 Regarding XRCC1, Zhang et al detected that individuals carrying XRCC1 rs1799782 and rs25489 alleles had a decreased \(\text{ORadj} = 0.60 \) (95% CI 0.37-0.98) and an increased \(\text{OR} = 1.67 \) (95% CI 1.02-2.74) risk of CBP, respectively.34 According to Xue et al, the workers who had the XPF rs25487 AA \(\text{ORadj} = 14.898 \) (95% CI 6.55-30.21) and the rs1799782 TT genotypes also had an increased risk of developing CBP; it is important to mention that the increased risk with rs1799782 was exclusive to male \(\text{OR} = 9.33 \) (95% CI 1.59-54.67), alcohol drinkers \(\text{OR} = 8.0 \) (95% CI 1.32-48.65), with an exposure lesser than 12 years \(\text{OR} = 2.61 \) (95% CI 1.05-6.51).35

3.2.5 | ERCC1 and ERCC2

One of the studies evaluated the effect of ERCC1 and ERCC2 and did not find any association between the latter gene and the risk of CBP; nonetheless, it found that individuals carrying the ERCC1 rs11615 TT genotype had an increased risk of benzene poisoning, compared to those carrying the CC genotype \(\text{OR} = 3.21 \) (95% CI 1.36-7.60), \(P = 0.006 \).27

3.2.6 Other genes

More information about other genes can be found in Table 2.11,28,32-35,38
3.3.1 | NQO1 and MPO

Two papers researched these two genes. One of them demonstrated that the MPO rs2071409 polymorphism decreases the white blood cell (WBC) count in exposed subjects, and possibly affects WBC subtypes \((P < 0.001)\).\(^1\) NQO1 rs1800566 polymorphism was studied by Pesatori et al, and they found no association between this SNP and blood cell count.\(^2\)

TABLE 3 Effect of different polymorphisms on the development of hematological changes

Gene/Group	Polymorphisms and/or genotypes	Hematological effect	Effects on blood cell count	References
NQO1	rs1800566	No\(^a\)	--	29
MPO	rs2071409	Yes\(^b\)	Decreased WBC count	1
CYP2E1	rs2031920 CT genotype	Yes\(^b\)	Decreased WBC count	7
	rs3813867	Conflicting\(^c\)	Decreased WBC count	6,7
	rs2031920 and rs6413432	No\(^a\)	-	29
GST	GSTP1 rs1695	No\(^a\)	-	7
	GSTM1 Null genotype	Conflicting\(^c\)	Decreased WBC count	6,7
	GSTT1 Null genotype	Conflicting\(^c\)	Decreased WBC count	6,7
IL-1A	rs1800587	Yes\(^b\)	Decreased WBC count	9
IL-4	rs22432484	Yes\(^b\)	Decreased WBC count	9
IL-10	rs1800871	Yes\(^b\)	Decreased WBC count	9, 41
IL-12A	rs568408	Yes\(^b\)	Decreased WBC count	9
VCAM1	rs1041163	Yes\(^b\)	Decreased WBC count	9
	rs3176867	Yes\(^b\)	Decreased WBC count	1
CSF3	rs1042658	Yes\(^b\)	Augmented CFU-GEMM and WBC count	9
ALOX5	rs7099684	Yes\(^b\)	Decreased WBC count	1
WRN	rs4987236	Yes\(^b\)	Decreased WBC count	40
	rs2725349	Yes\(^b\)	Decreased WBC count	40, 41
	rs1800392	Yes\(^b\)	Decreased WBC count	40, 41
	rs2725362	Yes\(^b\)	Decreased WBC count	40, 41
	rs2230009	Yes\(^b\)	Decreased WBC count	40, 41
TP53	rs1042522	Yes\(^b\)	Decreased WBC count	40, 41
	rs12951053	Yes\(^b\)	Decreased WBC count	40, 41
BRCA2	rs1801406	Yes\(^b\)	Decreased WBC count	40
BLM	rs2270132	Yes\(^b\)	Decreased WBC count	41
	rs414634	Yes\(^b\)	Decreased WBC count	41
	rs16944894	Yes\(^b\)	Decreased WBC count	41
RAD51	rs4924496	Yes\(^b\)	Decreased WBC count	41
WRAP53	rs2287499	Yes\(^b\)	Decreased WBC count	41
ERCC3	rs4150441	Yes\(^b\)	Increased WBC count	26
	rs6731176	Yes\(^b\)	Increased WBC count	26
VEGF	rs3025030	Yes\(^b\)	Increased WBC count	26
	rs833058	Yes\(^b\)	Increased WBC count	26

\(^a\)No: None of the studies investigated that the polymorphism encountered a relationship between it and hematological changes.
\(^b\)Yes: All of the studies investigated that the polymorphism encountered a relationship between it and hematological changes.
\(^c\)Conflicting: Half of the studies researched said that polymorphism found a relationship between it and CBP, yet the other half did not.

3.3.2 | CYP2E1

There were three studies that reported about CYP2E1. A research carried out by Ye et al found that WBC count was lower for individuals who possessed the CT genotype of the CYP2E1 rs2031920 polymorphism compared to the CC genotype \((P = 0.02)\). The GC genotype of the CYP2E1 rs3813867 polymorphism was associated with a significantly lower WBC count when compared to the GG genotype.
(P = 0.02),7 rs3813867 polymorphism was also researched by Nourozi et al; however, they did not find a statistically significant relationship between this CYP2E1 SNP and altered blood analysis values.6 Both CYP2E1 rs2031920 and rs6413432 polymorphisms were evaluated by Pesatori et al, again no significant relationship was found between those SNPs and blood cell count.29

3.3.3 | GST enzymes (GSTT1, GSTM1, and GSTP1)

Two of the papers analyzed all three enzymes,6,7 evaluating the GSTM1 null genotype, GSTP1 rs1695 polymorphism, and GSTT1 null genotype. None of them found a correlation between the GSTP1 polymorphism and anomalous hematological indices. However, regarding GSTM1 and GSTT1, the results disagreed: one of the studies found that WBC count in GSTT1 null (P = 0.045) and GSTM1 null (P = 0.03) genotypes decreased compared to the GSTT1/GSTM1 present group,7 while the other study found that individuals with GSTM1 null genotype had a significantly higher mean value of leukocytes (P = 0.026), and subjects with GSTT1 null genotype presented a lower platelet count (P = 0.015). Nonetheless, this same study observed that subjects with GSTT1 null genotype had a higher risk for hematological disorders compared to those with positive genotype [OR = 2.1 (95% CI 1.23-3.56)].6

3.3.4 | Other genes

More information about other genes can be found in Table 3.1,9,26,40,41

3.4 | Effect on urinary biomarker

Eleven studies researched the influence that several polymorphisms have on the production of different urinary excreted metabolites produced in the metabolism of benzene, commonly used as biomarkers of exposure.

3.4.1 | GST enzymes (GSTT1, GSTM1, and GSTP1)

Ten studies analyzed the relationship between the polymorphisms of GST enzymes and the urinary excretion of benzene metabolites. Four of them studied both the enzyme's GSTM1 null and no null genotypes, and they found no correlation between the genotypes and the biomarkers of benzene exposure.30,47,49,51 Conversely, four other studies found a significant correlation: both Mansi et al and Manini et al found that an expression of the GSTM1 null polymorphism was involved in a lower urinary excretion of S-PMA (P < 0.001 and P = 0.010 respectively); furthermore, Carbonari et al (P < 0.05) and Kim et al (P = 0.018) discovered similar results.3-5,45 Eight studies established an inverse relationship between the GSTT1 null polymorphism and the quantity of the S-PMA marker excreted, both in smokers and non-smokers (P values on Table 1).3-5,45,47,49,51 Also, according to Chanvaivit et al and these eight studies, there was no association between GSTT1 null and the t,t-MA metabolite.3-5,31,45,47-49,51 Three studies screened the influence of the GSTP1 polymorphism on urinary biomarkers; however, none found any interaction between these two factors.3,4,47

3.4.2 | CYP2E1

Six papers studied the effect of this polymorphism; four of them did not find any correlation.30,31,45,48 The other two found conflicting results: Kim et al concluded that the workers with an homozygous variant genotype for the CYP2E1 rs2031920 SNP, produced significantly lower levels of t,t-MA (P < 0.001), phenol (PH) (P < 0.001), and hydroquinone (HQ) (P < 0.001) than workers who had the wild-type variant allele.3 Fustinoni et al found a higher t,t-MA and a lower U-benzene on subjects with at least one variant allele in CYP2E1 rs6413432 (P = 0.03) and rs2031920 (P < 0.01), respectively.2

3.4.3 | NQO1

Two out of four studies researched the influence of the NQO1 rs1800566 polymorphism and the biomarkers excretion that did not find any significant relationship between these two variants.31,48 Instead, one found that patients with at least one variant allele of NQO1 rs1800566 affected five metabolites: t,t-MA, S-PMA (P = 0.001), PH (P = 0.022), catechol (CAT) (P = 0.036) and HQ (P = 0.036), as they found lower levels of them in these participants.3 The other study found that the NQO1 rs1800566 wild-type polymorphism decreased the t,t-MA/S-PMA fraction in non-smokers (P = 0.04).45

3.5 | Micronucleus and CAs

Four studies reported the existing relationship between polymorphisms on certain genes and the expression of cytokinesis-block micronucleus (MN) and/or the frequency of CA in benzene-exposed workers and non-exposed controls.

3.5.1 | NQO1 and MPO

Two papers studied either or both of these enzymes.42,43 One of them showed that exposed workers with NQO1 rs1800566 polymorphism (TT genotype) had significant increases in MN [RR = 1.9 (95% CI 1.5-2.3)] and CA [RR = 2.6 (95% CI 1.7-3.9)] frequencies when compared to controls with CC and CT genotypes; moreover, it suggested that the benzene-exposed population with the MPO rs2333227 polymorphism (GG wild-type genotype) had a significant rise in CA frequency [RR = 2.3 (95% CI 1.3-4.0)] compared to non-
exposed population with GA or AA genotypes. In contrast, the other paper evidenced that mutated homozygous genotype of NQO1 rs1800566 polymorphism (TT genotype) was related with lower MN frequencies [FR = 0.79 (95% CI 0.66-0.95)] when compared to the homozygous wild-type genotype (CC genotype).

3.5.2 | DNA repair genes

One study analyzed the relationship between polymorphisms on genes involved in the DNA repairing process and the frequency of MN. Both the base excision (XRCC1 and APE1) and nucleotide excision repair pathway genes (XPA, XPC, XPG, ERCC1, and ERCC2) were studied. They found that MN frequencies were higher in XRCC1 rs25487 GA [FR = 1.20 (95% CI 1.06-1.37), P = 0.006] and AA [FR = 1.50 (95% CI 1.16-1.90), P = 0.002] alleles, APE1 rs1130409 GT [FR = 1.20 (95% CI 1.04-1.37), P = 0.012] and GG [FR = 1.28 (95% CI 1.05-1.55), P = 0.01], XPG rs17655 GC [FR = 1.18 (95% CI 1.02-1.38), P = 0.038] and ERCC1 rs3212986 TT [FR = 1.55 (95% CI 1.31-1.83), P < 0.001] with a directly proportional relationship between the number of present mutant alleles of these polymorphisms and MN frequency.

Kim et al also studied XRCC1 rs25487 polymorphism, finding that, among exposed workers, subjects with AA variant type displayed a significantly higher CA frequency compared to its wild-type controls [RR = 2.2 (95% CI 1.5-3.1)].

3.5.3 | CYP2E1

One case-control study carried out by Zhang et al, showed significantly increased MN frequency for carriers of CYP2E1 rs3813867 (CC + GC genotypes) [FR = 1.15 (95% CI 1.02-1.29), P = 0.02] and rs2031930 (CT + TT genotypes) [FR = 1.23 (95% CI 1.09-1.37), P < 0.01]; while the opposite was found with the CYP2E1 rs6413432 polymorphism. Another paper also studied the relationship between rs3813867 polymorphism and MN expression in benzene-exposed workers without a statistically significant increase in MN frequencies for individuals carrying this SNP.

3.6 | Methylation

Two of the reviewed studies explored the association between genetic polymorphisms and DNA methylation, and whether this methylation was related to benzene exposure. One of them genotyped four commonly studied SNPs on three metabolic enzymes: CYP1A1 (rs4646903), EPHX1 (rs1051740 and rs2234922), and NQO1 (rs1800566); they also analyzed DNA methylation on 11 genes associated with benzene-induced hematotoxicity (BLM, CY1A1, EPHX1, ERCC3, NQO1, NUDT1, p15, p16, RAD51, TP53, and WRAP53). The authors found that ERCC3 methylation was higher on exposed individuals. Furthermore, they established that a larger number of C alleles on EPHX1 rs1051740 polymorphism was related to a reduction of ERCC3 methylation (P = 0.001), concluding that this SNP may be protective against benzene-induced hypermethylation. On the contrary, Zhang et al demonstrated that benzene-exposed workers experienced significant global DNA hypomethylation compared to non-exposed subjects. As factors that influenced this process, DNMT3A (R882) variant allele (R882C + R882H) (P = 0.094) and DNMT3B rs2424909 polymorphism (GG genotype) (P = 0.031) showed an association with decreased global DNA methylation.

3.7 | Results adjustment to smoking status

thirty-one out of 36 included studies incorporated in their analysis a multivariate adjustment for the population that smoked, some demonstrating worse outcomes for smokers compared to non-smokers. For instance, seven papers found that smoking was an important confounder for benzene biomarkers, as smokers excreted higher concentrations of benzene metabolites than non-smokers. In five studies, the health outcomes of benzene exposure were only statistically significant when they stratified the population in smokers and non-smokers. Moreover, two articles found evidence that smoking affects the prognosis of benzene poisoning and lowers the WBC count in exposed workers. On the other hand, six papers did not find a statistically significant association between the smoking habit and the researched health outcome. Furthermore, in two out of five studies that did not adjust for smoking habits, all of the participants were non-smokers.

4 | DISCUSSION

In this review, we aimed to evaluate the existent relationship between genetic polymorphisms and the risk of developing adverse health effects in benzene-exposed workers. Among the assessed studies, we encountered that the most researched outcomes of benzene exposure were the development of CBP, the increase or decrease on the excretion of urinary biomarkers and hematotoxic effects. The genes that showed some consistent associations in the effects of their polymorphisms in the human body were NQO1, GSTT1, GSTM1, XRCC1, MPO, and CYP2E1.

NQO1 is a key enzyme involved in benzene metabolism because it reduces benzoquinones to HQ and CAT, resulting in the detoxification of those metabolites. It has been theorized that polymorphisms that cause a decrease in this enzyme’s activity probably increase the risk of bone marrow toxicity and other adverse effects. In this review, regarding the polymorphisms on the NQO1 encoding gene, we found that they have a significant effect on the risk of developing CBP, further validating this hypothesis. Two of the evaluated studies found an increased frequency of CBP in individuals with NQO1 rs1800566. Those results are consistent with a modification in
NQO1’s detoxifying properties; thus, making the individual’s organism more permissive to long-term toxic effects.

On the other hand, only one study found no relationship between CBP and NQO1 polymorphisms, but it also stated that the sample of exposed workers with the studied polymorphism was probably not big enough to establish a statistically significant relationship in this variable.28 According to Pesatori et al, changes in the expression of NQO1 in combination with a MPO polymorphism did not show a correlation with altered WBC count29; however, this study did not have enough study subjects to be statistically significant; making it clear that more papers are necessary to reinforce these results.

Regarding biomarkers of exposure, theoretically, if you pare NQO1 activity, fewer benzoquinones will be reduced, subsequently producing less urinary biomarkers. Two studies found that the patients who had the variant NQO1 rs1800566 (C → T) polymorphism (which decreases NQO1’s activity) showed a lower excretion of biomarkers, which produced a lower t,t-MA/S-PMA fraction.3,4 Conversely, Chanavaivit et al and Qu et al did not find any significant change.21,46 This discrepancy is likely caused by the median level of benzene exposure, which was lower in the subjects of the studies that did not find any correlation between NQO1 polymorphisms and the excretion of urinary biomarkers, compared to the ones that did.

Both Kim et al and Fang et al studied NQO1 rs1800566 involvement in MN frequency and CA; however, their results were contradictory.42,43 This disagreement can be explained by the difference in the population size, as it was bigger in Fang et al’s study, which established that the NQO1 CC genotype had a higher MN frequency than the TT genotype.43 Nonetheless, there are few studies that explore this subject and research with a bigger population sample is needed to understand this phenomenon better.

Considering that GSTs help in the benzene oxide (BO) detoxification process and, by extension, reduce the carcinogenic potential of benzene,54 the two most studied enzymes of this family within the papers that we reviewed were GSTT1 and GSTM1. All of them considered the null and no null genotypes of these genes as modifying factors of biomarker excretion, CBP, and hematological changes. Regarding urinary biomarker excretion, almost all of the analyzed papers concluded that GSTT1 null genotype was related to lower excretion of S-PMA;3,5,45,47-49 while the results were very conflicting for GSTM1 null genotype, with four of the articles finding no correlation between this genotype and S-PMA excretion.30,47,49,51 However, this is consistent with in vitro studies, which have identified that GSTT1 is more important in the BO detoxification process than GSTM1 because the latter is affected by competing non-enzymatic product formation and lower enzymatic activity.54

Regarding CBP, the importance of GSTT1 was once again demonstrated as a toxicity-protector enzyme. Two studies associated the GSTT1 null genotype to an increased risk of benzene poisoning;39,50 moreover, it was found that GSTM1 null genotype has a strong relationship with CBP.54 The effects of GST enzymes on hematological abnormalities are related to their protective function against benzene, with the reviewed papers showing that GSTT1 null genotype is correlated with lower WBC and platelet count.6,7 It has been recently reported that GST appears to defend against benzene-induced DNA damage; therefore, with the loss of GSTT1 its DNA-defensive characteristic is also gone.7

CYP2E1 is a phase I enzyme, which plays a key role on the metabolic pathway of benzene, given that it is responsible for the first step of benzene breakdown, producing BO and then intermediate metabolites, which accumulate in the bone marrow and undergo autodestruction or activation by peroxidases to yield the corresponding quinones, which are believed to be among the ultimate toxic metabolites of benzene.7 Consequently, some of the articles we reviewed determined a relationship between CYP2E1 polymorphisms and effects on hematological abnormalities and biomarker excretion. Concerning hematological abnormalities, the rs2031920 and rs3813867 were two CYP2E1 of the polymorphisms that showed a statistically significant association with an altered WBC count.7

As for biomarker excretion, two studies reported a relationship between some of the CYP2E1 polymorphisms and different biomarkers levels.2-3 In accordance with the CYP2E1 function on benzene metabolism, one study showed that the rs2031920 polymorphism was related to lower levels of t,t-MA, PH, and HQ.3 Another study demonstrated a relationship between rs2031920 and rs6413432 variant allele polymorphisms with lower U-benzene and higher t,t-MA, respectively.2 Nonetheless, four of the reviewed works did not find a correspondence between CYP2E1 polymorphisms and biomarker excretion changes.30,31,45,48 This lack of consistency with the results among papers may be a consequence of the diversity of populations in the studies, as the family of cytochrome P450 (CYP450) enzymes might present several SNPs on different ethnical groups, which determines the toxicity of and response to a number of substrates, benzene included.55

Another relevant enzyme is MPO, which converts CAT, HQ and 1,2,4-benzenetriol to highly reactive intermediates: 1,2-benzoquinone, 1,4-benzoquinone, and 1,2,4-benzoquinone.56 Few studies correlated the MPO encoding gene polymorphisms and human physiological changes, and only one of them found statistically relevant results regarding the rs2071409 polymorphism and hematological changes.3 Another one suggested that the rs2333227 polymorphism had a significant rise in CA frequency, compared to the non-exposed population with the GA or AA genotype.42 All of this can be explained by CAT’s increased toxic effect in progenitor cells, which is caused by a decreased MPO metabolic activity.57,58

Though not directly involved in the benzene metabolic pathway, the polymorphisms in XRCC1 have shown consistent relationship with worsening adverse effects secondary to benzene exposition. Specifically, the rs25487 polymorphism was found to be associated with higher MN and CA frequencies,42,44 which are indicators of the extent of chromosomal damage in human populations exposed to genotoxic agents, such as benzene, and some studies have found a link between chromosomal damage and an increased cancer risk.42 Furthermore, rs25487, rs1799782, and rs25489 polymorphisms were found to have an increased risk of developing CBP.34,35 XRCC1 plays an important role in single-strand break repair and base-excision repair, acting as a scaffolding protein for other repair factors, including DNA ligase III.
DNA polymerase β or APE1.59 If this repairing function was impaired (which happens with the aforementioned polymorphisms), DNA lesions would accumulate; thus, configuring a threat to genetic stability and cell survival, accelerating mutation rates and increasing CA levels.

Concerning the relationship of the smoking habit and benzene health effects, several authors have found that it is an important source of environmental benzene contamination, and it is directly related to some adverse health outcomes.60,61 In this review, most studies predicted that smoking was a confounding factor and therefore adjusted their analysis to have more reliable results. For instance, some of the reviewed papers found that the smoking habit correlates with worse health outcomes and suggested that future research should take into account this factor while studying occupational exposure.2-5,7,27-29,33,34,45,49-51 Conversely, a minority of the included articles did not find a statistically significant interaction between those two variables; however, these results may be caused by the scarce quantity of smokers compared to non-smokers both in the group with exposed workers and the controls in most of these studies.28,35,38,43,44,52

These statistically relevant outcomes have established the link between genetic polymorphisms and the risk of developing adverse health effects in benzene-exposed workers with a different genetic background. These findings should enable occupational medicine specialists, local governments and policy makers to create and improve new evidence-based guidelines for benzene exposure limits that take into account the genetic diversity of the workforce. Those improved regulations will help workers to avoid health risks, thus lowering public health costs and overall making the population healthier while providing insight for future research.

4.1 Strengths and limitations

By using the PRISMA guidelines and the Newcastle-Ottawa quality assessment score, this review captures a significant number of studies, anticipating and working around bias; nevertheless, weak selection bias could be induced by limiting the language of the included studies to English and Spanish. In addition, publishing bias should not be ignored, because papers that found a correlation between polymorphisms and different benzene-exposure outcomes are more likely to be published than those with no significant findings. Additionally, some papers used the same study population, which can lead to more bias. Moreover, some polymorphisms did not have the same quantity of evidence as others, which may affect the results.

5 CONCLUSION

Overall, this review highlights the detrimental effects of occupational exposure to benzene. It also establishes a clear relationship between some polymorphisms and the extent of the consequences that come with the occupational exposure to this toxicant. While there are several studies investigating this topic, there are not enough papers to establish a consensus with statistically relevant results regarding some of the polymorphisms. Future research should focus on gathering broader cohorts with the desired polymorphism, given that the expression of genetic variants was not present in all of the participants, even when the cohort had a higher population. In conclusion, benzene is an important threat to occupational health worldwide; therefore, regulations should be adjusted to protect all the exposed workers, especially those with high-risk genetic variants.

ACKNOWLEDGEMENTS

We would like to thank Professor Claudia Ortiz at Universidad de San-tander for her valuable help to the development of this paper, especially as a source for resolving genetics-related questions that surged in the conceptualization and analysis of the review. We would also like to thank Mr. Cameron Hahn for revising the grammar of the manuscript.

FUNDING

Publication costs were supported by Ministerio de Ciencia, Tecnología e Innovación (Grant number: COL126780763345, contract RC.847-2019). However, the funding source did not have any involvement in the study design; collection, analysis, and interpretation of data; writing of the report or the decision to submit the report for publication.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Conceptualization: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Formal Analysis: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amorocho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Funding Acquisition: Tania Liseth Pérez-Cala and Henry Bautista-Amorocho
Investigation: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Methodology: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Project Administration: Verónica Ramírez-Lopera, Jorge Alexander Silva-Sayago
Supervision: Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa, Tania Liseth Pérez-Cala
Validation: Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Writing – Original Draft Preparation: Verónica Ramírez-Lopera, Daniel Uribe-Castro
Writing – Review & Editing: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Jorge Mateus-Sánchez, Wilman Yesid Ardila-Barbosa

AUTHOR CONTRIBUTIONS

Conceptualization: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Formal Analysis: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amorocho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Funding Acquisition: Tania Liseth Pérez-Cala and Henry Bautista-Amorocho
Investigation: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Methodology: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Project Administration: Verónica Ramírez-Lopera, Jorge Alexander Silva-Sayago
Supervision: Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa, Tania Liseth Pérez-Cala
Validation: Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Writing – Original Draft Preparation: Verónica Ramírez-Lopera, Daniel Uribe-Castro
Writing – Review & Editing: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Jorge Mateus-Sánchez, Wilman Yesid Ardila-Barbosa

AUTHOR CONTRIBUTIONS

Conceptualization: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Formal Analysis: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amorocho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Funding Acquisition: Tania Liseth Pérez-Cala and Henry Bautista-Amorocho
Investigation: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Methodology: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Project Administration: Verónica Ramírez-Lopera, Jorge Alexander Silva-Sayago
Supervision: Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa, Tania Liseth Pérez-Cala
Validation: Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Writing – Original Draft Preparation: Verónica Ramírez-Lopera, Daniel Uribe-Castro
Writing – Review & Editing: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Jorge Mateus-Sánchez, Wilman Yesid Ardila-Barbosa

AUTHOR CONTRIBUTIONS

Conceptualization: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Formal Analysis: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amorocho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Funding Acquisition: Tania Liseth Pérez-Cala and Henry Bautista-Amorocho
Investigation: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Methodology: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala
Project Administration: Verónica Ramírez-Lopera, Jorge Alexander Silva-Sayago
Supervision: Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa, Tania Liseth Pérez-Cala
Validation: Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Enrique Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
Writing – Original Draft Preparation: Verónica Ramírez-Lopera, Daniel Uribe-Castro
Writing – Review & Editing: Verónica Ramírez-Lopera, Daniel Uribe-Castro, Tania Liseth Pérez-Cala, Henry Bautista-Amoroccho, Jorge Alexander Silva-Sayago, Jorge Mateus-Sánchez, Wilman Yesid Ardila-Barbosa
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Verónica Ramírez-Lopera https://orcid.org/0000-0002-3609-8025
Daniel Uribe-Castro https://orcid.org/0000-0002-9222-5703
Jorge Alexander Silva-Sayago https://orcid.org/0000-0001-8147-6374
Tania Liseth Pérez-Cala https://orcid.org/0000-0001-5095-3289

REFERENCES
1. Shen M, Zhang L, Lee KM, et al. Polymorphisms in genes involved in innate immunity and susceptibility to benzene-induced hematotoxicity. Exp Mol Med. 2011;43(6):374-378.
2. Fusinoni S, Consolini D, Campo L, et al. Monitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14(9):2237-2244.
3. Kim S, Lan Q, Waidyanatha S, et al. Genetic polymorphisms and benzene metabolism in humans exposed to a wide range of air concentrations. Pharmacoogenet Genom. 2007;17(10):789-801.
4. Mansi A, Bruni R, Capone P, et al. Low occupational exposure to benzene in a petrochemical plant: modulating effect of genetic polymorphisms and smoking habit on the urinary t-t/MA/SPMA ratio. Toxicol Lett. 2012;213(1):57-62.
5. Manini P, De Palma G, Andreoli R, et al. Occupational exposure to low levels of benzene: biomarkers of exposure and nucleic acid oxidation and their modulation by polymorphic xenobiotic metabolizing enzymes. Toxicol Lett. 2010;193(3):229-235.
6. Nooroozi MA, Neghab M, Bazzaz JT, Nejat S, Mansoori Y, Shahtaheri SJ. Association between polymorphism of GSTP1, GSTT1, GSTM1 and CYP2E1 genes and susceptibility to benzene-induced hematotoxicity. Arch Toxicol. 2018;92(6):1983-1990.
7. Ye LL, Zhang GH, Huang JW, et al. Are polymorphisms in metabolism protective or a risk for reduced white blood cell counts in a Chinese population with low occupational benzene exposures? Int J Occup Environ Health. 2015;21(3):232-240.
8. De Palma G, Manno M. Metabolic polymorphisms and biomarkers of effect in the biomonitoring of occupational exposure to low-levels of benzene: state of the art. Toxicol Lett. 2014;231(2):194-204.
9. Lan Q, Zhang L, Shen M, et al. Polymorphisms in cytokine and cellular adhesion molecule gene and susceptibility to hematotoxicity among workers exposed to benzene. Cancer Res. 2005;65(20):9574-9581.
10. Carbonari D, Chiarella P, Mansi A, Pigini D, Iavicoli S, Tranfo G. Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects. Biomark Med. 2016;10(2):145-163.
11. Sun P, Zhang Z, Wang J, Zhao N, Jin X, Xia Z. Association of genetic polymorphisms in GADD45A, MDM2, and p14ARF with the risk of chronic benzene poisoning in a Chinese occupational population. Toxicol Appl Pharmacol. 2009;240(1):66-72.
12. World Health Organization. Regional office for Europe. Air Quality Guidelines for Europe. 2nd ed.; Copenhagen: World Health Organization. Regional Office for Europe; 2000:1-273. https://apps.who.int/iris/handle/10665/107335
13. Wilbur S, Keith S, Faroon O, et al. Toxicological profile for benzene. Agency Toxic Subst Dis Regist. 2007;438:266-280.
14. Safety and health legislation – safety and health at work – EU-OSHA [Internet]. [cited April 2021]. https://osha.europa.eu/en/safety-and-health-legislation.
15. Great Britain: Health and Safety Executive. Workplace exposure limits: containing the list of workplace exposure limits for use with the ... control of substances hazardous to health regulations. Place of publication not identified: HSE Books; 2020.
16. EUR-Lex – 31998L0024 – EN – EUR-Lex [Internet]. https://eur-lex.europa.eu/legal-content/EN/NLM/?uri=CELEX:31998L0024%20.
17. 1910.1450 – Occupational exposure to hazardous chemicals in laboratories. Occupational Safety and Health Administration [Internet]. [cited April 2021]. https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1450.
18. Lan Q, Zhang L, Li G, et al. Hematotoxicity in workers exposed to low levels of benzene. Science. 2004;306(5702):1774-1776.
19. Garte S, Taioli E, Popov T, Bolognesi C, Farmer P, Merlo F. Genetic susceptibility to benzene toxicity in humans. J Toxicol Environ Health A. 2008;71(22):1482-1489. doi.org/10.1080/1528739080239974.
20. Smith MT. Advances in understanding benzene health effects and susceptibility. Annu Rev Publ Health. 2010;31(1):133-148. http://doi.org/10.1146/annurev.publhealth.012809.103646.
21. Ross D. Functions and distribution of NQO1 in human bone marrow: potential clues to benzene toxicity. Chem Biol Interact. 2005;153-154:137-146.
22. Buthumrunrung N, Mahidol C, Navasumrit P, et al. Oxidative DNA damage and influence of genetic polymorphisms among urban and rural schoolchildren exposed to benzene. Chem Biol Interact. 2008;172(3):185-194.
23. Dougherty D, Garte S, Barchowsky A, Zmuda J, Taioli E. NQO1, MPO, CYP2E1, GSTT1 and GSTM1 polymorphisms and biological effects of benzene exposure—a literature review. Toxicol Lett. 2008;182(1):7-17.
24. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535-b2535. http://doi.org/10.1136/bmj.b2535.
25. Wells G, Shea B, Tetzlaff J. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. [Internet]. Ottawa Hospital Research Institute. 2014:1-4. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
26. Hosgood HD, Zhang L, Shen M, et al. Association between genetic variants in VEGF, ERCC3 and occupational benzene haematotoxicity. Occup Environ Med. 2009;66(12):848-853.
27. Xiao S, Gao L, Liu Y, et al. Association of genetic polymorphisms in ERCC1 and ERCC2/XPD with risk of chronic benzene poisoning in a Chinese occupational population. Mutat Res Genet Toxicol Environ Mutagen. 2013;751(1):52-58.
28. Sun P, Qiu Y, Zhang Z, et al. Association of genetic polymorphisms, mRNA expression of p53 and p21 with chronic benzene poisoning in...
61. Korte JE, Hertz-Picciotto I, Schulz MR, Ball LM, Duell EJ. The contribution of benzene to smoking-induced leukemia. *Environ Health Perspect.* 2000;108(4):333-339.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Ramírez-Lopera V, Uribe-Castro D, Bautista-Amorocho H, et al. The effects of genetic polymorphisms on benzene-exposed workers: A systematic review. *Health Sci Rep.* 2021;4:e327. https://doi.org/10.1002/hsr2.327