Synthesis, antibacterial and antifungal activity of 5-aryl amido-6-isopropyl-2-(mercapto/hydroxy)-4-[(4′-difluoro methoxy) (3′-hydroxy) phenyl]-1,4-dihydro pyrimidine

Vijay N. Bhadani, Piyush A. Patel, Heta D. Purohit, Dipak M. Purohit*
Shree M. & N. Virani Science College, Kalawad Road, Rajkot-360 005, Gujarat, India.

*E-mail address: purohitdm@yahoo.com

Keywords: Biginelli reaction, 1,4-dihydropyrimidine, Antibacterial activity, antifungal activity

ABSTRACT. Various isopropylacetooctetanilides were treated with 4-(difluoromethoxy)-3-hydroxy benzaldehyde and thiourea/urea in the presence of acid catalyst to produce the 1,4-dihydropyrimidine derivatives (4a-5i and 5a-5i) with good yields. All the synthesized compounds were characterized by mass, 1H-NMR and IR spectrum, also evaluated for antibacterial and antifungal activity against two Gram +ve and two Gram -ve bacterial and fungi strains. The compounds 4c, 4g and 5d were found comparatively promising active against all the bacterial and fungal strains.

1. INTRODUCTION

Multi-component coupling reactions (MCR’s), involving the inherent formation of several bonds in one step, have proven to be efficient and powerful tool for the rapid formation of complex heterocyclic compounds in recent years [1]. The unique features of these reactions are their operational simplicity, structural diversity, versatility, high synthetic efficiency, atom-economy, and single step synthesis without isolating the intermediates. The synthesis of 1,3-dihydropyrimidines via one-pot condensation of aldehyde, β-dicarbonyl compound, and thiourea/urea known as Biginelli reaction [2] is one of the most recognized and often used MCR’s for the synthesis of these valuable heterocyclic compounds.

Microbial infections are a growing problem in contemporary medicine. According to statistical evidence provided by WHO, many of the drugs treatment breakthroughs of the last century could be lost through the spread of antimicrobial resistance [3]. For instance, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae are important pathogens causing invasive diseases such as sepsis, meningitis, necrotizing fasciitis, pneumonia [4], nosocomial pneumonia [5], cystic fibrosis, acute leukemia, organ transplants, and intravenous-drug addiction [6]. Some of these pathogens have been reported to develop resistance [7] to the well-known commercially available drugs. As a result, many infectious diseases may one day become uncontrollable and could rapidly spread throughout the world. Consequently, the discovery of potent antibiotic drugs is considered to be one of the greatest scientific and medical goals.

There is a growing interest pertaining to the synthesis of bioactive heterocyclic compounds in pharmacy. Among various heterocyclic compounds, pyrimidine derivatives have apparently gained considerable importance owing to their varied biological activities such as adenosine receptor antagonist [8], anti-inflammatory [9], CDK inhibitor [10], calcium channel antagonist [11] and anti-tumor [12] activities. On the other hand, a promising diverse pharmacological activity is shown by the pyrimidine nucleus such as anti-biotic, anti-fungal [13], anti-cancer [14], HIV protease inhibitor [15] and chemotherapeutic activities [16].

In the present work, we synthesized new several compounds via a one-pot, multi-component reaction of 4-(difluoromethoxy)-3-hydroxy benzaldehyde with various 1-Aryl amino-4-methylpentane-1:3-dione and thiourea/urea (Scheme 2). The biological activities (MIC) of the synthesized compounds were compared with known standard drugs.
2. EXPERIMENTAL

Thin layer chromatography was accomplished on 0.2-mm precoated plates of silica gel G60 F254 (Merck). Visualization was made with UV light (254 and 365 nm). IR spectra were recorded on a FT-IR-8400 spectrophotometer using DRS prob. 1H-NMR (400 MHz) spectra were recorded on a Bruker AVANCE II spectrometer in DMSO-d6. Chemical shifts are expressed in δ ppm downfield from TMS as an internal standard. Mass spectra were determined using direct inlet probe on a GCMS-QP 2010 mass spectrometer (Shimadzu). Melting points were measured in open glass capillaries and are uncorrected. Elemental analysis of the all the synthesized compounds were carried out on Elementar Vario EL III Carlo Erba 1108 model, and the results are in agreements with the structures assigned.

Reaction Scheme

Reagents & Conditions: (a) Dioxane, KOH, 14-20 hrs, 120°C, reflux

Scheme 1: Synthesis of 1-Arylamino-4-methylpantane-1,3-dione

Reagents & Conditions: (a) Methanol, conc. HCl, 14hrs, 65°C, reflux

Scheme 2: Synthesis of 1,4-dihydropyrimidine derivatives
Procedure for synthesis of substituted 1-Aryl amino-4-methylpantane-1:3-dione (2a-2i)

A mixture of Aniline (0.5gm, 5.37 mol) and 4-methyl-3-oxopentanoate (0.83, 6.4 mol) in 1,4-dioxane was refluxed in the presence of KOH for 14 hrs. The reaction mixture is monitored by TLC. After the completion of reaction, the product was poured into crushed ice, neutralize with dil. HCl make pH 4-5 and the separated solid was filtered out and crystallized from ethanol, m.p. 127°C.

Similarly, other 1-Arylamino-4-methylpantane-1;3-dione (2a-2i) have been synthesized.

Procedure for synthesis of 5-phenyl amido-6-isopropyl-2-mercapto-4-[(4′-difluoro methoxy) (3′-hydroxy) phenyl]-1,4-dihydropyrimidine (4a)

A mixture of 4-(difluoromethoxy)-3-hydroxybenzaldehyde (0.5gm, 2.65 mol), 4-methyl-3-oxo-N-phenylpentanamide (0.5gm, 5.45 mol) and thiourea (0.20 gm, 2.04 mol) with 2-3 drops of Conc. HCl in methanol (15 ml) was refluxed at 65°C for 14 hrs. The reaction mixture is monitored by TLC. After the completion of reaction, cool the reaction mixture at room temperature. The excess of solvent was distilled out and solid was filtered out and crystallized from ethanol. Yield 61 %, m.p. 160°C. (C₂₁H₂₂F₂N₃O₅S; Required: C, 58.19; H, 4.88; N, 9.96; found: C, 58.12; H, 4.50; N, 9.63 %).

5-(4-chlorophenyl amido)-6-isopropyl-2-mercapto-4-[(4′-difluoro methoxy) (3′-hydroxy) phenyl]-1,4-dihydropyrimidin(4f); The physical and spectral data of compound is as following. Obtained as pale yellow colour in 7% Yield; m.p. 182 0°C; IR (KBr, cm⁻¹): 3294 (C-N-H str.), 3331 (-OH), 2931(C-H str.)(asym), 2620 (C-S-H str.), 1621 (C= N str.), 1323 (C-N str.), 1107 (C-F) ; 1H-NMR (DMSO-d₆, δ ppm): 1.50 (s, 3H, -CH₃), 1.67 (s, 3H, -CH₃), 3.84 (s, 1H, -CH, isopropyl),4.72 (s, 1H, -CH, chiral), 6.73-6.75 (dd, 1H, -CH, aromatic), 6.80-6.83 (d, 1H, -CH, aromatic), 7.02 (s, 1H, -CH -CHF₂), 7.07-7.09 (d, 1H, -CH, aromatic), 7.20 (s, 1H, -NH, pyrimidine ring), 7.31-7.40 (dd, 2H, -CH, aromatic),7.46-7.64 (dd, 2H, -CH, aromatic), 9.07 (s, 1H, -SH), 10.01 (s, 1H, -NH, amide), 10.03 (s, 1H, -OH). Maas : (m/z) 467 ; Anal. Calcd. for C₂₁H₂₀ClF₂N₃O₅S: C: 53.90%, H: 4.31%, N: 8.98%; Found: C: 53.79%, H: 4.12%, N: 8.86%.

5-Arylamido-6-isopropyl-2-mercapto-4-[(4′-difluoro methoxy) (3′-hydroxy) phenyl]-1,4-dihydro pyrimidine (4a-4i) were synthesized. The physical data are recorded in Table no.I.

Procedure for synthesis of 5-phenyl amido-6-isopropyl-2-hydroxy-4-[(4′-difluoro methoxy) (3′-hydroxy) phenyl]-1,4-dihydropyrimidine (5a)

A mixture of 4-(difluoromethoxy)-3-hydroxybenzaldehyde (0.5gm, 2.65 mol), 4-methyl-3-oxo-N-phenylpentanamide (0.5gm, 5.45 mol) with 2-3 drops of Conc. HCl in methanol (15 ml) was refluxed for 12-14 hrs. The reaction mixture is monitored by TLC. After the completion of reaction, cool the reaction mixture at room temperature. The excess of solvent was distilled out and solid was filtered out and crystallized from ethanol. Yield 61 %, m.p. 1580°C. (C₂₁H₂₁F₂N₃O₄; Required: C, 60.43; H, 5.07; N, 10.07; found: C, 60.12; H, 5.10; N, 10.02%)

5-(4′-chlorophenylamido)-6- isopropyl -2-hydroxy-4-[(4′-difluoromethoxy) (3′-hydroxy) phenyl]-1, 4-dihydro pyrimidine (5f); the physical and spectral data of compound is as following. Obtained as pale yellow colour in 77% Yield; m.p 182 0°C; IR (KBr, cm⁻¹): 3298 (N-H str.), 3293 (-OH), 3026 (C-H str.)(sym), 1583 (C≡N str.), 1309 (C-N str.), 1143 (C-F) ; 1H-NMR (DMSO-d₆, δ ppm): 1.48 (s, 3H, -CH₃), 1.58 (s, 3H, -CH₃), 3.82 (s, 1H, -CH, isopropyl),4.64-4.65 (d, 1H, -CH, chiral), 6.51-6.83 (d, 1H, -NH, aromatic), 6.91 (s, 1H, -CHF₂), 7.02-7.09 (t, 1H, -CH, aromatic), 7.16-7.17 (d, 1H, -CH, aromatic), 7.20 (s, 1H, -NH, pyrimidine ring), 7.37-7.40 (d, 2H, -CH, aromatic),7.63-7.66 (d, 2H, -CH, aromatic), 7.90 (s, 1H, -OH), 9.96 (s, 1H, -NH, amide), 10.05 (s, 1H, -OH, aromatic). Maas: (m/z) 451; Anal. Calcd. for C₂₁H₂₅ClF₂N₃O₄: C: 55.82%, H: 4.46%, N: 9.30%; Found: C: 53.79%, H: 4.12%, N: 9.26%.

5-Arylamido-6-isopropyl-2-hydroxy-4-[(4′-difluoromethoxy)(3′-hydroxy) phenyl]-1, 4-dihydro pyrimidine (5a–5i) were synthesized. The physical data are recorded in Table no.I.
Table no. I

Sr. No.	Ar	Molecular Formula	M.W.	M.P. °C	Yield %	% Nitrogen
4a	C₆H₅ -	C₂₁H₂₅F₂N₃O₅S	434	160	61	9.69
4b	4-CH₃-C₆H₅-	C₂₂H₂₅F₂N₃O₅S	448	151	88	9.39
4c	4-OCH₃-C₆H₅-	C₂₂H₂₅F₂N₃O₅S	464	163	86	9.07
4d	2- OCH₃-C₆H₅-	C₂₂H₂₅BrF₂N₃O₅S	513	159	81	9.07
4e	4-F- C₆H₅-	C₂₁H₂₄F₂N₃O₅S	452	137	75	9.31
4f	4-Cl- C₆H₅-	C₂₁H₂₅ClF₂N₃O₅S	467	182	79	8.98
4g	2- Cl- C₆H₅-	C₂₁H₂₅ClF₂N₃O₅S	452	174	65	8.98
4h	2,4-(Cl)₂- C₆H₅-	C₂₁H₁₉C₂F₂N₃O₅S	503	169	74	8.34
4i	4-Br- C₆H₅-	C₂₁H₂₅BrF₂N₃O₅S	479	134	77	8.20
5a	C₆H₅ -	C₂₁H₂₅F₂N₃O₄	418	158	86	10.07
5b	4-CH₃-C₆H₅-	C₂₂H₂₅F₂N₃O₄	432	151	88	9.74
5c	4-OCH₃-C₆H₅-	C₂₂H₂₅F₂N₃O₅	447	163	83	9.39
5d	2- OCH₃-C₆H₅-	C₂₁H₂₅BrF₂N₃O₄	447	159	79	9.39
5e	4-F- C₆H₅-	C₂₁H₂₄F₂N₃O₄	436	137	74	9.65
5f	4-Cl- C₆H₅-	C₂₁H₂₅ClF₂N₃O₄	451	182	77	9.30
5g	2- Cl- C₆H₅-	C₂₁H₂₅ClF₂N₃O₄	451	174	65	9.30
5h	2,4-(Cl)₂- C₆H₅-	C₂₁H₁₉C₂F₂N₃O₄	503	169	74	8.64
5i	4-Br- C₆H₅-	C₂₁H₂₅BrF₂N₃O₄	496	134	76	8.47

Antibacterial and antifungal activity

The newly synthesized compounds were screened for their antibacterial activity against Gram-positive (*S. aureus* ATCC 6538, *M. luteus* ATCC 9345), Gram negative (*E. coli* ATCC 4230, *S. thyphii* ATCC 14028) bacteria, as described by the guidelines in NCCLS-approved standard document M7-A4, using the micro dilution broth procedure [17]. Ampicillin trihydrate was used as the reference antibacterial agent. The antifungal activities of the newly synthesized chemical compounds were tested against yeast strain (*C. albicans* ATCC 14053) according to the guidelines in NCCLS-approved standard document M27-A2, using the micro dilution broth procedure [18]. Fluconazole was used as the reference antifungal agent. The solutions of test compounds and reference drug were prepared by dissolving in DMSO at a concentration of 2560 μg/mL. The 2-fold dilutions of the compounds and the reference drug were prepared (1280, 640, 320, 160, 80, 40, 20,
10 μg/mL). Antibacterial activities of the newly synthesized chemical compounds were performed in Mueller-Hinton broth medium at a pH of 7.2 with an inoculum of (1–2) × 10^3 cells/mL by the spectrophotometric method, and an aliquot of 100μL solution was added to each tube of serial dilution. The chemical compounds-broth medium serial tube dilutions inoculated with each bacterium were incubated on a rotary shaker at 37°C for 18 hrs at 150 rpm. The minimum inhibitory concentration (MIC) of each chemical compound was recorded as the lowest concentration of each chemical compound in the tubes with no growth (i.e., no turbidity) of inoculated bacteria. Minimum inhibitory concentration (MIC, μg/mL) was measured and compared with control; the MIC values of the compounds (4a-4i and 5a-5i) are represented in table no. II.

Antibacterial and antifungal activity of compounds 4a-4i and 5a-5i in MIC (μg/mL).

From the result of biological evaluation, it has been observed that the compounds exhibited interesting biological activity, however with a degree of variation. Most of the compounds tested were found to have comparable antibacterial and exhibit low antifungal activity. From the Table-II, it can be observed that compounds 4a, 4i and 5c were moderate active against S. aureus, M. luteus, Escherichia coli, S. thyphi., C. albicans. Compounds 4e, 4g, 5a, 5d, 5e and 5i were give promising activity against S. aureus, M. luteus, Escherichia coli, S. thyphi., C. albicans.
3. CONCLUSION

In summary, we have synthesized a series of new 1,4-dihydropyrimidine derivatives. All the newly synthesized compounds were confirmed with spectroscopic data like 1H-NMR, Mass, IR Spectra, elemental analysis and evaluated antibacterial and antifungal activity. The antibacterial and antifungal study shows that the compounds $4e$, $4g$, $4e$, $5a$, $5d$, $5e$ and $5i$ have promising activity with MICs between 40 and 80 µg/mL. The importance of such work lies in the possibility that the new compounds might be more efficacious drugs against bacteria, which could be helpful in designing more potent antibacterial agent for therapeutic use.

Acknowledgments

The authors are thankful to Shree M. & N. Virani Science College, Saurashtra University, Rajkot, India for providing the research laboratory facility and also thankful t, Department of Microbiology, School of Science, R.K. University, Rajkot, India for antimicrobial and antifungal activity.

References

[1] (a) Jiang, B.; Rajale, T.; Wever, W.; Tu, S.-J.; Li, G. Chem.: Asian J. 2010. doi:10.1002/asia.201000310.; (b) Maiti, S.; Biswas, S.; Jana, U. J. Org. Chem. 2010, 75, 1674; (c) Tietze, L. F.; Brasche, G.; Gercke, K. M. Domino Reactions in Organic Synthesis; Wiely-VCH: Weinhein, 2006; (d) de Meijere, A.; von Zezschwitz, P.; Brase, S. Acc. Chem. Res. 2005, 38, 413.

[2] (a) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360; Synthesis and Reactions of Biginelli compounds, 24. Part 23: (b) Schnell, B.; Krenn, W.; Faber, K.; Kappe, C. O. J. Chem. Soc., Perkin Trans. 1 2000, 4382.

[3] R.P. Mishra, E. Oviedo-Orta, P. Prachi, R. Rappuoli, F. Bagnoli, Vaccines and antibiotic resistance, Curr. Opin. Microbiol. 15 (2012) 596–602.

[4] L.K. Siu, K.M. Yeh, J.C. Lin, C.P. Fung, F.Y. Chang, Klebsiella pneumoniae liver abscess: a new invasive syndrome, Lancet Infect. Dis. 12 (2012) 881–887.

[5] A.R. Marra, S.B. Wey, A. Castelo, et al., Nosocomial bloodstream infections caused by Klebsiella pneumoniae: impact of extended-spectrum beta-lactamase (ESBL) produciton on clinical outcome in a hospital with high ESBL prevalence, BMC Infect. Dis. 6 (2006) 24, http://dx.doi.org/10.1186/1471-2334-6-24.

[6] (a) H. Harikrishnan, A. Naif Abdullah, K. Ponmurugan, R. Shyam Kumar, Nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial, Chalcogenide Lett. 9 (2012) 509–515; (b) G.P. Bodey, R. Bolivar, V. Fainstein, L. Jadeja, Infections Caused by Pseudomonas aeruginosa, Rev. Infect. Dis. 5 (1983) 279–313.

[7] I. Chopra, M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev. 65 (2001) 232–260.

[8] V. Yaziji, D. Rodríguez, H. Gutie´rrez-de-Tera´n, et al., Pyrimidine derivatives as potent and selective A3 adenosine receptor antagonists, J. Med. Chem. 54 (2011) 457–471.

[9] M.S. Mohamed, S.M. Awad, A.I. Sayed, Synthesis of certain pyrimidine derivatives as antimicrobial agents and anti-inflammatory agents, Molecules 15 (2010) 1882–1890.

[10] X. Chu, W. Depinto, D. Bartkovitz, et al., Discovery of [4-amino-2-(1-methanesulfonylpiperidin-4-ylamino)pyrimidin-5-yl](2,3-difluoro-6-methoxyphenyl) methanone (R547) A potent and selective cyclin-dependent kinase inhibitor with significant in vivo antitumor activity, J. Med. Chem. 49 (2006) 6549–6560.
[11] K.S. Atwal, G.C. Rovnyak, S.D. Kimball, et al., Dihydropyrimidine calcium channel blockers. II. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines, J. Med. Chem. 33 (1990) 2629–2635.

[12] (a) N. Singh, S.K. Pandey, N. Anand, et al., Synthesis, molecular modeling and bioevaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents, Bioorg. Med. Chem. 21 (2011) 4404–4408; (b) Y.F. Zhao, Z.J. Liu, X. Zhai, et al., Synthesis and in vitro antitumor activity of novel diaryl urea derivatives, Chin. Chem. Lett. 24 (2013) 386–388.

[13] X.L. Wang, K. Wan, C.H. Zhou, Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities, Eur. J. Med. Chem. 45 (2010) 4631–4639.

[14] S.R. Wang, Q.L. Wang, Y. Wang, et al., Novel anthraquinone derivatives: synthesis via click chemistry approach and their induction of apoptosis in BGC gastric cancer cells via reactive oxygen species (ROS)-dependent mitochondrial pathway, Bioorg. Med. Chem. 18 (2008) 6505–6508.

[15] M. Whiting, J.C. Tripp, Y.C. Lin, et al., Rapid discovery and structure–activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization, J. Med. Chem. 49 (2006) 7697–7710.

[16] P. Pramitha, D. Bahulayan, Stereoselective synthesis of bio-hybrid amphiphiles of coumarin derivatives by Ugi-Mannich triazole randomization using copper catalyzed alkyne azide click chemistry, Bioorg. Med. Chem. Lett. 22 (2012) 2598–2603.

[17] Clause, G. W. Understanding Microbes: A Laboratory Textbook for Microbiology, W.H. Freeman and Company, New York, USA, 1989.

[18] National Committee for Clinical Laboratory Standards. Performance Standards for antimicrobial disk susceptibility test, NCCLS, Villanova, PA, 1997.