CKI, there’s more than one: casein kinase I family members in Wnt and Hedgehog signaling

Mary Ann Price

Centre for Developmental and Biomedical Genetics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom

Multiple members of the casein kinase I family of serine/threonine protein kinases are involved in positive and negative roles in Wnt and Hedgehog signaling. Here I review these roles, including recent results on casein kinase I [CKI] phosphorylation and activation of LRP6, and CKI phosphorylation of Ci and mediation of Ci–Slimb/β–TrCP binding.

Introduction to casein kinase I [CKI]

The CKI family of serine/threonine protein kinases is involved in many diverse and important cellular functions, such as regulation of membrane transport, cell division, DNA repair, circadian rhythms, and nuclear localization [for review, see Gross and Anderson 1998; Knippschild et al. 2005]. Work in the last 7 years has shown a role for multiple CKI family members in both positively and negatively regulating Wnt and Hedgehog [Hh] signaling.

The CKI family of monomeric serine–threonine protein kinases is found in eukaryotic organisms from yeast to human. Mammals have seven family members (some-
Xenopus axis formation in vertebrates; Dsh in Drosophila). Dvl interacts with Fz and LRP (LDL receptor-related protein) 5/6 (Fig. 1A, B), the signal is transduced intracellularly by Dishevelled (Dvl-1, Dvl-2, and Dvl-3 in vertebrates, Dsh in Drosophila). Dvl interacts with Fz and through an unknown mechanism becomes activated and blocks the degradation of β-catenin, perhaps [although not solely] (van Amerongen et al. 2005) by bringing the cellular GSK3 inhibitor GBP/Frat into the degradation complex. Furthermore, upon Wnt signaling, axin is recruited to the membrane by interaction with LRP5/6, which contributes to β-catenin stabilization (He et al. 2004). β-Catenin accumulates in response to Wnt signal, and it migrates to the nucleus, where it complexes with LEF/TCF and activates expression of Wnt target genes.

Ffh signaling shares many features with Wnt signaling (Fig. 1B; Kalderon 2002). Again, the regulation of a transcriptional activator, in this case Cubitus interruptus (Ci, Gli proteins in vertebrates), is critical for signaling (for review, see Hooper and Scott 2005). In the absence of Hh (Fig. 1B), full-length Ci (Ci-155) is partially degraded, leaving the N-terminal half of the protein intact (Ci-75). Ci-75 translocates to the nucleus, where it represses transcription of some Hh target genes (Aza-Blanc et al. 1997; Methot and Basler 1999). The partial degradation of Ci is promoted by phosphorylation and by a cytoplasmic complex, which includes Costal-2 (Cos-2), a microtubule-binding protein thought to act as a scaffold, and Fused, a serine–threonine protein kinase. As with the degradation of β-catenin, phosphorylation of Ci targets it for binding by Supernumerary limbs (Slimb), the Drosophila homolog of β-TrCP [Dai et al. 2003; Jia et al. 2005], leading to ubiquitination by the SCF E3 ubiquitin ligase and partial proteolysis by the proteasome. The Hh signal is transduced by a seven-pass transmembrane protein, Smoothened (Smo). In the absence of Hh signaling, Patched (Ptc), a 12-pass transmembrane protein, inactivates Smo by keeping its protein levels low and by preventing it from reaching the cell surface. When Hh binds to its receptor Ptc, Smo becomes phosphorylated by PKA and CK1ε, Smo levels increase, and it accumulates on the cell surface. The three kinases are released from Cos-2 (which now binds Smo), and Ci-155 accumulates, translocates to the nucleus, and activates Hh-target genes.

is involved in cell–cell adhesion via its interaction with the cytoplasmic domain of classical cadherins. In the absence of Wnt signal [Fig. 1A], protein levels of β-catenin in the cytoplasmic pool are kept low by a degradation complex made up of the tumor suppressors axin and adenomatous polyposis coli [APC], and the enzymes glycogen synthase kinase 3β [GSK3β] and protein phosphatase 2A [PP2A]. GSK3β phosphorylates β-catenin, which is then recognized by the F-box protein β-TrCP, a component of an SCF [Skp1-Cullin-F-box] E3 ubiquitin ligase. β-Catenin is then polyubiquitinated and degraded by the proteasome. In the nucleus, Wnt target genes are kept inactive by a family of high mobility group [HMG] transcription factors, Lymphocyte enhancer factor/T-cell factor [LEF/TCF]. When a Wnt ligand binds to its cell surface receptor comprising the seven-pass transmembrane protein Frizzled [Fz] and LRP (LDL receptor-related protein) 5/6 [Fig. 1A′], the signal is transduced intracellularly by Dishevelled [Dvl-1, Dvl-2, and Dvl-3 in vertebrates, Dsh in Drosophila]. Dvl interacts with Fz and through an unknown mechanism becomes activated and blocks the degradation of β-catenin, perhaps [although not solely] (van Amerongen et al. 2005) by bringing the cellular GSK3 inhibitor GBP/Frat into the degradation complex. Furthermore, upon Wnt signaling, axin is recruited to the membrane by interaction with LRP5/6, which contributes to β-catenin stabilization (He et al. 2004). β-Catenin accumulates in response to Wnt signal, and it migrates to the nucleus, where it complexes with LEF/TCF and activates expression of Wnt target genes.

Positive regulation of Wnt signaling by CKI

The Wnt signaling pathway is required for dorsal–ventral axis formation in Xenopus embryos [Moon et al. 1997].
Injection of WntS, or positively acting components of the Wnt pathway, into the ventral side of the embryo leads to dorsalization and duplication of the axis. The first report of CKI involvement in Wnt signaling came in 1999 with the results of expression library screens for genes that cause axis duplication in *Xenopus* embryos. Injection of CKI mRNA led to axis duplication, rescue of primary axis formation in UV-irradiated embryos, and expression of the Wnt target genes *Siamois* and *Xnr3* in the ventral marginal zone and in animal caps [Peters et al. 1999, Sakana et al. 1999]. Some laboratories find that only CKI and the close relative CK8 have this activity [Sakana et al. 1999], while other laboratories find that CKIα and, to a lesser extent, CKIγ also cause secondary axis formation [Grammer et al. 2000; McKay et al. 2001a]. In the *Drosophila* Kc cell line, overexpression of double-time (dbt), the sole *Drosophila* CKI/e gene, but not CKIs, activated a Wingless (Wg, *Drosophila* Wnt) transcriptional reporter in the absence of ligand [Lum et al. 2003].

Consistent with a positive role for CKIs in Wnt signaling, expression of CKI stabilizes β-catenin in *Xenopus* embryos and HEK 293 cells and Arm in *Drosophila* S2 cells [Peters et al. 1999; Sakana et al. 1999]. Addition of CKIs blocked degradation of β-catenin in a *Xenopus* extract assay [Gao et al. 2002]. Furthermore, expression of CKIα led to stimulation of transcription from a Lef-1 reporter construct in 293 cells [Sakana et al. 1999].

These are overexpression, gain-of-function experiments. Does loss of CKI activity block Wnt signaling? In *Xenopus* and cell culture experiments, this question has been addressed extensively using kinase-dead, dominant-negative forms of the kinase and specific small molecule inhibitors of CKI, CKI-7 [Chijiwa et al. 1989] and IC261 [Mashhoon et al. 2000]. These studies find that, indeed, blocking CKI activity blocks Wnt-induced secondary axis formation and expression of target genes in Wnt-induced animal caps [Peters et al. 1999]. Support for a positive role for CKI in Wnt signaling also comes from the partial block of Wnt-induced β-catenin accumulation in NIH 3T3s by CKI-7 [McKay et al. 2001a] and the block of Wnt-induced activation of a Lef-1 reporter construct in 293 cells by kinase-dead CKIα [Sakana et al. 1999]. A role for CKI in primary axis formation is less clear. Neither kinase-dead forms of CKIα nor CKI-7 had an effect on primary axis formation when injected in one-cell-stage *Xenopus* embryos. Instead, injection of kinase-dead CKIα into early *Xenopus* embryos caused defects in convergent extension during gastrulation [McKay et al. 2001b], a process that requires some of the same components as canonical Wnt signaling. Although CKI is not the only Wnt component whose inhibition does not lead to defects in primary axis formation [Weaver and Kimelman 2004], it is possible that CKI does not play a central role in Wnt signaling in this context.

It is likely that kinase-dead CKIα mutants and the CKI inhibitors block other family members in addition to CKIα (although see Davidson et al. 2005); thus it remains possible that the positive effects on Wnt signaling are mediated by a CKI other than or in addition to CKIα. Antisense oligos and double-stranded RNA interference (RNAi) have also been used to knock down expression of specific CKI family members. CKI antisense oligonucleotides and RNAi against CKIα, but not CKIs, inhibited Wnt signaling, as indicated by transcriptional reporter assays and β-catenin levels [Sakana et al. 1999; Hino et al. 2003]. Similarly, Cong et al. (2004) found that dbt/CKIα RNAi in *Drosophila* S2 cells significantly reduced Wg/Dll2 induction of transcription of a Lef1–luciferase reporter construct. However, two groups found that dbt/CKIα double-stranded RNA (dsRNA) had no effect on Wg induction of transcription in *Drosophila* cells, and, in fact, RNAi of none of the CKI family members inhibited Wg-induced reporter activity [Lum et al. 2003; DasGupta et al. 2005; although see below and Davidson et al. 2005]. Recent results show that mouse embryo fibroblasts lacking CKIα exhibit normal Wnt signaling [Zeng et al. 2005], suggesting that in both *Drosophila* and vertebrates there may be redundancy between CKI family members in the activation of Wnt signaling.

Potential targets of CKI in the positive regulation of Wnt signaling

Dishevelled

A large body of evidence suggests that Dvl is an important target for positive regulation of Wnt signaling by CKI. Dvl interacts with CKIα via either the PDZ or DEP domain of Dvl [Fig. 2; Peters et al. 1999; Sakana et al. 1999; Kishida et al. 2001; Gao et al. 2002]. CKIα phosphorylates Dvl in vitro, in *Xenopus* oocytes, and in COS cells [Peters et al. 1999; Kishida et al. 2001; McKay et al. 2001a; Gao et al. 2002; Hino et al. 2003]. CKIα phosphorylation leads to a shift in mobility of Dvl on SDS-polyacrylamide gels, similar to that seen in response to Wnt signaling [Yanagawa et al. 1995; McKay et al. 2001a]. As with Wnt signaling, the shift caused by CKIα requires the PDZ domain of Dvl (McKay et al. 2001a). As with Wnt signaling, the shift caused by CKIα requires the PDZ domain of Dvl (McKay et al. 2001a). Importantly, CKI-7 and CKI RNAi block the mobility shift of Dsh caused by Wnt3a treatment in several cell lines [McKay et al. 2001a; Hino et al. 2003]. These results suggest that CKIα (and perhaps CKIα in *Drosophila*) [Matsubayashi et al. 2004] phosphorylates Dvl upon Wnt induction.

CKIα appears to phosphorylate Dvl on multiple sites. A fragment containing the region spanning the PDZ and DEP domains [amino acids 231–531] and smaller fragments [amino acids 221–360 and 371–500] are phosphorylated by CKIα in vitro [Peters et al. 1999; McKay et al. 2001a; Cong et al. 2004]. Which specific residues in Dvl are phosphorylated by CKIα? Results with mutants in which three sites in the DEP domain or one site in the PDZ domain are changed to D, a negatively charged phospho-mimetic residue, were consistent with these sites being phosphorylated by CKI; however, mutants in which these residues were changed to A, a residue which cannot be phosphorylated, were still responsive to Wnt signaling.
domains (LDLR), a transmembrane domain (TM), and five each followed by an EGF-like domain (E), three LDLR type-A discs-large-binding site (dlg BS).

/H9252-catenin), three axin-binding sites, a basic region (bas), and a binding domain (which binds Dvl). APC contains an oligomerization domain (o), a CKI-binding domain, and a DIX domain

Dishevelled contains a DIX domain (which binds Axin), a GBP/ Schematics of Dishevelled, LRP5/6, Axin, and APC.

LRP5/6 contains four YWTD-type β-propeller domains (β-pr), each followed by an EGF-like domain (E), three LDLR type-A domains [LDLR], a transmembrane domain (TM), and five PPPSP motifs. Axin contains the following domains: RGS (which binds APC), a GSK3-binding domain (G), a β-catenin-binding domain [β], a CKI-binding domain, and a DIX domain (which binds Dvl). APC contains an oligomerization domain [o], an armadillo repeat region [arm], four 15-mer repeats (which bind β-catenin), seven 20-mer repeats (which also bind β-catenin), three axin-binding sites, a basic region [bas], and a discs-large-binding site [dlg BS].

The degradation complex

CKI may also positively regulate Wnt signaling by destabilizing the β-catenin degradation complex [Gao et al. 2002]. Heterotrimeric PP2A, made up of A, B, and C subunits, binds to the degradation complex via axin and APC and negatively regulates Wnt signaling by dephosphorylating an unknown target [Hsu et al. 1999; Seeling et al. 1999]. In an in vitro assay, the amount of PP2A C and A subunits bound to either myc-axin or myc-β-catenin was reduced if the extract was first incubated with CKI7, while incubation with kinase-dead CKI and CKI-7 (or pretreatment of cells with CKI inhibitor IC261) resulted in increased PP2A C and A bound to axin and β-catenin [Gao et al. 2002]. These results suggest that CKI activity reduces inclusion of PP2A in the β-catenin degradation complex, resulting in β-catenin accumulation and in Wnt target gene expression. However, it is not clear which component of the degradation complex is directly phosphorylated by CKI to mediate this effect.

LRP6

Recently CKI has been shown to positively regulate Wnt signaling by phosphorylating LRP6 [Fig. 2; Davidson et al. 2005; Zeng et al. 2005]. CKIγ was identified in a small pool expression screen for proteins that covalently modify LRP6 as detected by mobility on SDS–polyacrylamide gels [Davidson et al. 2005]. CKIγ, but not CKIε, synergizes with LRP6 in Wnt transcriptional reporter assays. Similarly, in Drosophila SL2 cells, Gilgamesh (Gish; the sole Drosophila CKIγ) synergizes with Arrow (Drosophila LRP5/6) to activate a Wg transcriptional reporter. Furthermore, dominant-negative forms of CKIγ (K73R and D173N) inhibit Wnt signaling in a reporter assay in 293T cells, and gish RNAi partially blocks transcription induced by Wg in SL2 cells [Davidson et al. 2005]. Zeng et al. (2005) found that a combination of dominant-negative CKIε and CKIβ blocked phosphorylation of a CKI site in LRP6 in response to Wnt treatment; however, it is possible that these inhibitors affect CKIγ activity.

Unique among CKI family members, CKIγ is anchored in the membrane via a C-terminal palmitoylation site, and this site is required for interaction with LRP6 and for synergy between CKIγ and LRP6 in the transcription assay [Davidson et al. 2005].

LRP5, LRP6, and Arrow contain five P-P-P-S-P motifs, indicating [Lee et al. 2001]. CKIε binds to and phosphorylates TCF3; this phosphorylation increases the affinity of TCF3 for β-catenin and its ability to compete with axin and APC for β-catenin binding. In an assay in Xenopus extracts, CKIε enhances, and CKI7 reduces, the ability of TCF3 to stabilize β-catenin [Lee et al. 2001]. The generality of this result, however, has been brought into doubt by results that suggest that CKI phosphorylation of another family member, Lef-1, in fact, disrupts its binding to β-catenin [Hammerlein et al. 2005].

LEF/TCF

TCF3 has also been suggested to be the target of CKIε phosphorylation in the positive regulation of Wnt signal-
which mediate axin binding [Tamai et al. 2004] and have been recently shown to be phosphorylated by GSK3 [Zeng et al. 2005]. Each of these P-P-P-S-P motifs in LRP6 is followed by at least one potential GSK3-primed CKI site [Fig. 3; Zeng et al. 2005]. Phosphorylation of LRP6 by both GSK3 and CKI is required for axin binding in vitro [Zeng et al. 2005], and treatment of cells with kinase-dead CKI blocks coimmunoprecipitation of axin with LRP6 [Davidson et al. 2005]. In the context of a single motif, serines and threonines on both sides of the PPPSP motif are required for binding to axin and for activation of transcription from a Lef1-dependent reporter [Davidson et al. 2005; Zeng et al. 2005]. In the context of the full-length cytoplasmic domain, mutation of all five GSK3-primed CKI sites blocks the activity of LRP6 in TCF/β-catenin reporter assays and prevents axin binding [Zeng et al. 2005]. It is at present unclear if Wnt signaling induces GSK3 phosphorylation of PPPSP motifs [Tamai et al. 2004; Zeng et al. 2005] or if GSK3 phosphorylation is constitutive and Wnt induces CKI phosphorylation of LRP, including at sites like T1479, which is apparently not primed by GSK3 [Davidson et al. 2005]. Taken together, these results suggest that GSK3 and CKI phosphorylate LRP6 in response to Wnt signaling and that this phosphorylation is required for axin binding and the activation of Wnt target genes.

Negative regulation of Wnt signaling by CKI family members

β-Catenin

GSK3β phosphorylation of β-catenin creates an optimal β-TrCP-binding site encompassing S33 and S37 (Fig. 3).

![Figure 3: CKI phosphorylation sites in Wnt and Hh components. The underlined sequences in APC R1, R3, and R4 (the first, third, and fourth 20-mer repeats) β-catenin; and Arm indicate the unusual CKI consensus sequence (S-L-S followed by a C-terminal acidic cluster). The underlined sequence in LRP6 is the PPPSP motif. In each case, the numbers indicate the order of phosphorylation where priming is required. (Blue boxes) CKI phosphorylation sites; (green boxes) GSK3; (red boxes) PKA; (gray boxes) an unknown kinase. (The left cluster of phosphorylation sites in LRP6 is hypothetical, although it is known that T1479 is phosphorylated in response to Wnt-signaling.)](image-url)

leading to the ubiquitination and degradation of β-catenin by the proteasome [Winston et al. 1999]. In many targets, GSK3β phosphorylation is primed by a phspho-serine or phospho-threonine at the + 4 position (S/T-X-X-S/Tp), as in β-catenin sites T41, S37, and S33, once S45 is phosphorylated. While it was initially thought that GSK3β phosphorylates unprimed S45, in 2002 two laboratories showed that CKI phosphorylates β-catenin at S45, priming GSK3β phosphorylation [Amit et al. 2002; Liu et al. 2002]. Using antibodies specific for phosphorylation sites in the N-terminal tail of β-catenin, both groups found that overexpression or inhibition of GSK3 had the expected effect on phosphorylation of S33, S37, and T41, but neither had an effect on phosphorylation of S45. Both groups found that phosphorylation of S45 was induced by wild-type axin and an axin mutant that does not bind GSK3, suggesting that the S45 kinase is something other than GSK3. Using mass spectrometry, it was found that axin interacts with five kinases, GSK3α, GSK3β, CKIε, CKIβ, and CKIα [Amit et al. 2002], and that a purified S45 phosphorylating activity from rat brain extract is CKIε [Liu et al. 2002]. While both CKIα and CKIε interact with axin and the CKIε relative CKIβ can phosphorylate β-catenin in vitro [Amit et al. 2002], some results suggest that CKIα is the β-catenin kinase in vivo. Overexpression of CKIα, but not CKIε, leads to phosphorylation of S45 in vivo [Liu et al. 2002]. CKIα RNAi, but not CKIβ RNAi, inhibited S45 (and S33, S37, and T41) phosphorylation in 293T cells [Liu et al. 2002] and resulted in increased β-catenin/Arm levels in the absence of Wnt/Wg in vertebrate and Drosophila cells [Liu et al. 2002; Yanagawa et al. 2002; Hino et al. 2003; Matsubayashi et al. 2004]. Injection of double-stranded CKIα RNA in Drosophila embryos led to a naked cuticle phenotype and expansion of stripes of wg and engrailed expression [Liu et al. 2002; Yanagawa et al. 2002; Lum et al. 2003], the expected results for ligand-independent activation of Wg signaling. Consistent with this, an RNAi screen in Drosophila cultured cells identified CKIα [and a second CKIε-related kinase, CG2577], but not dbt/CKIα, as a regulator of Wg reporter activity in the absence of Wg [Lum et al. 2003; DasGupta et al. 2005].

Thus CKIα phosphorylates β-catenin, priming phosphorylation by GSK3β at three sites (Fig. 3) and leading to β-catenin degradation. But is CKIα phosphorylation of β-catenin primed? Apparently, the sequence S-L-S followed by a stretch of acidic residues can be phosphorylated by CKI without priming [Marin et al. 2003]. A mutant in which the six acidic residues C-terminal to the S-L-S motif in β-catenin were changed (ED to QN) was more stable than wild-type β-catenin, and was only weakly stabilized further by CKIα RNAi [Yanagawa et al. 2002]. Mutation of the three GSK3β sites, the CKIα site, and these acidic residues have been found in human cancers [Polakis 1999, 2002].

APC

APC [Fig. 2] is phosphorylated in vitro by CKIβ and CKIε [Kishida et al. 2001; Gao et al. 2002; Xing et al. 2003; Ha...
et al. 2004]. A proposed phosphorylation scheme for the seven 20-mer repeats in APC is shown in Figure 3 [Ha et al. 2004]. APC has been suggested as a target for negative regulation of Wnt signaling by CKI [Rubinfeld et al. 2001]. A fragment of APC containing two 15-amino-acid repeats, two 20-amino-acid repeats [which bind β-catenin], and an axin-binding site, undergoes axin-dependent phosphorylation in vivo, and this phosphorylation is blocked by kinase-dead CKIε or CKI-7. Expression of this fragment partially decreases the LEF-dependent transcriptional response in SW480 cells, and this activity is dependent on serines in the 20-amino-acid repeats [Rubinfeld et al. 2001]. Biochemical and X-ray crystallographic studies show that unphosphorylated 20-mer repeats from APC bind β-catenin, but CKI- and GSK3-phosphorylated 20-mer repeats bind with 300- to 500-fold greater affinity, with three phosphates per repeat making direct contact with β-catenin [Ha et al. 2004; Xing et al. 2004]. Phosphorylated APC 20-mer repeats compete with axin for binding to β-catenin in vitro, thus it is not clear how phosphorylation of APC enhances its down-regulation of β-catenin [Xing et al. 2003; Ha et al. 2004].

Axin as a scaffold

Axin (Fig. 2) has been suggested to act as a scaffold for all the components necessary for β-catenin degradation. CKIε and axin interact in a variety of assays via a region in axin C-terminal to the β-catenin-binding site [Sakaknaka et al. 1999; Kishida et al. 2001; McKay et al. 2001a; Rubinfeld et al. 2001; Gao et al. 2002]. Phosphorylation of β-catenin and APC by CKIε is greatly enhanced by the presence of an axin fragment containing the β-catenin- and CKI-binding sites in vitro [Ha et al. 2004] and in cultured cells [Rubinfeld et al. 2001; Liu et al. 2002]. Thus it appears that axin acts as a scaffold to allow efficient phosphorylation of β-catenin and APC by GSK3β and CKI in vivo, although this role for axin may not be conserved in *Drosophila* [Matsubayashi et al. 2004]. Axin appears to be a substrate for CKI phosphorylation [Kishida et al. 2001; Gao et al. 2002], but the significance of this for negative or positive effects on Wnt signaling is unclear.

Regulation of CKI by Wnt signaling

Is CKI activity regulated by Wnt signaling? Dvl is phosphorylated in response to Wnt signaling, and this is at least partially due to phosphorylation by CKIε [McKay et al. 2001a, Hino et al. 2003], suggesting that Wnt may activate CKIε. CKIε activity increases upon Wnt stimulation in many cell types, as measured by in vitro kinase assays with immunoprecipitated CKIε, and this increase in CKIε activity is due to Wnt activity relieving CKIε inhibitory autophosphorylation [Swiatek et al. 2004]. CKIε from untreated cells can be activated by phosphorylation during incubation with ATP, which allows inhibitory autophosphorylation [Swiatek et al. 2004]. Wnt coexpression with CKIε led to a more basic isoelectric point, consistent with the removal of phosphates from CKIε. In addition, a mutant CKIε lacking the autophosphorylation sites is more active than wild type in a transcriptional reporter assay and is unresponsive to Wnt induction. Finally, inhibitors of phosphatases PP1, PP2A, and PP2B blocked Wnt activation of wild-type, but not mutant, CKIε. These results are consistent with a model in which Wnt activates a phosphatase that dephosphorylates the C-terminal tail of CKIε, thereby activating it [Swiatek et al. 2004].

Wnt signaling may also activate CKIγ phosphorylation of LRP6: Wnt treatment increases CKIγ phosphorylation at T1479 [Davidson et al. 2005]. However, T1479 is constitutively phosphorylated when the extracellular domain of LRP6 is deleted, suggesting that this region normally prevents CKIγ phosphorylation of LRP in the absence of Wnt signaling and that Wnt changes the availability of LRP6 for phosphorylation rather than changing CKIγ activity [Davidson et al. 2005]. Results from Zeng et al. (2005) are also consistent with constitutive CKIγ activity.

Whether Wnt signaling inhibits CKIε phosphorylation of β-catenin is unclear, due to conflicting results from several laboratories [Amit et al. 2002; Liu et al. 2002; Matsubayashi et al. 2004], possibly resulting from different lengths of Wnt treatment [Matsubayashi et al. 2004]. It remains possible, therefore, that in addition to its well-known role in inhibiting GSK3β activity, Wnt signaling also reduces CKIε activity.

Negative regulation of the Hedgehog pathway by CKI

At the same time CKI was shown to have a role in β-catenin degradation, it was found that CKI plays a similar role in the partial proteolysis of Ci [Price and Kalderon 2002], the first example of an involvement of CKI in Hh signaling. Protein kinase A (PKA) phosphorylates Ci on five sites C-terminal to its cleavage site, and mutation of three of these sites (Fig. 3) blocks the cleavage of full-length Ci to Ci-75 [Chen et al. 1998; Y. Chen et al. 1999; Price and Kalderon 1999]. PKA phosphorylation of these three sites primes further phosphorylation of Ci by GSK3β (Jia et al. 2002; Price and Kalderon 2002) and CKI in vitro (Fig. 3; Price and Kalderon 2002). In fact, a recent paper shows that PKA-primed GSK3β phosphorylation at site 2 primes additional phosphorylation by CKI (Fig. 3; Jia et al. 2005). Mutation of either the three PKA sites or PKA-primed CKI sites prevents phosphorylation of Ci by CKI in vitro and blocks Ci cleavage in embryos and wing discs [Price and Kalderon 2002; Jia et al. 2005]. Mutation of the PKA-primed CKI sites at site 1 or the PKA- and GSK-primed CKI sites at site 2 also completely blocked cleavage of Ci in wing discs [Jia et al. 2005]. Thus, phosphorylation of Ci at multiple CKI sites is required for Ci processing in vivo.

How does phosphorylation of Ci target it for proteolysis? When the F-box protein Slimb/β-TrCP was discovered to be required for Ci proteolysis, it was suggested
that Slimb binds phosphorylated Ci, leading to its ubiquitination and partial proteolysis (Jiang and Struhl 1998). Direct evidence for Slimb binding to phosphorylated, but not unphosphorylated, Ci came from comparison of wild-type Ci and a PKA-site mutant in an in vitro binding assay [Dai et al. 2003]. PKA-primed CKI phosphorylation is specifically required for Slimb binding in vitro [Jia et al. 2005; Smelkinson and Kalderon 2006]. This mutation of single GSK3 or CKI sites leads to a partial or complete block of Ci proteolysis in vivo suggests that this ~60-amino-acid region of Ci must become highly phosphorylated in order to be bound by Slimb and processed by the proteasome [Jia et al. 2002, 2005]. This differs from β-catenin, in which a single optimal β-TrCP/Slimb-binding site [D-Sp-G-X-X-Sp] is sufficient for interaction, and is more reminiscent of F-box protein CDC4 binding of Sic1 [Nash et al. 2001]. In fact, introduction of an optimal Slimb-binding site in Ci at PKA site 2 is sufficient to promote Ci proteolysis in the absence of phosphorylation at the other two PKA sites [Jia et al. 2005; Smelkinson and Kalderon 2006].

Which of the eight Drosophila CKI family members is responsible for Ci proteolysis in vivo? Overexpression of dbt/CKIe enhanced PKA-induced degradation of Ci in wing discs [Price and Kalderon 2002], and overexpression of either CKIe or CKIe blocked reporter transcription in response to Hh in clone 8 cells [Lum et al. 2003], consistent with, but not proving, the involvement of these CKI family members in the negative regulation of Hh signaling. In a screen of 43% of the identified genes in Drosophila, RNAi against CKIe, but not CKIe, led to increased basal activity from a Hh transcriptional reporter construct in Drosophila clone 8 cells [Lum et al. 2003], the expected result for a component that negatively regulates Hh signaling. Furthermore, injection of double-stranded CKIe in Drosophila embryos led to a naked cuticle phenotype and broadened stripes of wg expression [Lum et al. 2003], phenotypes previously attributed to ectopic activation of Wg signaling [Liu et al. 2002, Yanagawa et al. 2002], but also consistent with activation of Hh signaling. In contrast, recent results show that in the wing disc, CKIa and CKIe act semiredundantly to promote Ci proteolysis [Jia et al. 2005]. These results appear to reflect a real difference between wing discs and clone 8 cells (a cell line derived from wing discs), since RNAi targeted to regions unique to CKIa is sufficient to strongly activate Hh target genes in the absence of ligand in clone 8 cells [Lum et al. 2003]. Whether this reflects a difference in CKI family members expressed in vivo and in cells or whether there is a difference in mechanism in these two cases is unclear. Because reagents that specifically knock out CKIa have not been used in experiments in Drosophila embryos, it is not clear if CKIa and CKIe act redundantly in this tissue. It is entirely possible that in other tissues where Hh signaling plays a role, a single CKI suffices or a different subset of CKI family members from the wing disc is involved.

Thus, Ci is phosphorylated by PKA at multiple sites priming phosphorylation by both GSK3 and CKI, leading to partial proteolysis. The PKA, GSK3, and CKI sites are conserved in Gli2 and Gli3, vertebrate homologs of Ci that are similarly processed (von Mering and Basler 1999; Aza-Blanc et al. 2000; B. Wang et al. 2000), in fact, both proteins have an additional potential PKA site with associated primed GSK3 and CKI sites. PKA plays a similar role in vertebrate Hh signaling and Gli3 processing as it does in Drosophila (Concordet et al. 1996; Hammerschmidt et al. 1996; B. Wang et al. 2000). While the role of the GSK3 and CKI sites in Gli3 has not yet been explored in vivo, it has recently been shown that Gli3 mutants lacking CKI or GSK3 phosphorylation sites are not processed to Gli3-83 [Wang and Li 2006].

Positive regulation of Hh signaling by CKI

CKI has also been implicated in positive regulation of Drosophila Hh signaling by phosphorylating Smo, the seven-pass transmembrane protein that transduces the Hh signal. In the absence of Hh signal, Smo levels are kept low and it is prevented from accumulating at the cell surface by Ptc, which is thought to regulate Smo trafficking. When Hh binds to Ptc, Smo becomes phosphorylated, its overall levels increase, and it accumulates at the cell surface [Denef et al. 2000]. Therefore, while smo mRNA is expressed evenly throughout the wing disc, Smo protein levels are high in cells lacking Ptc and low in cells expressing Ptc, except where Hh counters Ptc function. Smo has five PKA consensus sites in its C-terminal cytoplasmic domain; three of these are associated with potential primed CKI sites and one with a GSK3 site [Fig. 3; jia et al. 2004; Zhang et al. 2004; Apionishev et al. 2005]. PKA and CKI phosphorylate Smo in vitro and in vivo [Jia et al. 2004; Zhang et al. 2004; Apionishev et al. 2005] and, importantly, these sites in Smo, as well as many others, are phosphorylated in Hh-stimulated cells [Zhang et al. 2004]. Treatment of cells with PKA and CKI inhibitors blocks the mobility shift of Smo in response to Hh [Jia et al. 2004], suggesting that PKA and CKI are Smo kinases in vivo. Mutants lacking all three PKA sites or the associated CKI sites do not rescue smo function in smo mutant embryos, smo mutant clones in wing discs, or smo RNAi-treated clone 8 cells [Zhang et al. 2004; Apionishev et al. 2005; Jia et al. 2005]. A mutant lacking the GSK3 site, however, behaved similarly to wild-type Smo in embryos and discs [Apionishev et al. 2005], suggesting that phosphorylation of the CKI, but not GSK3, sites is required for Smo function. Expression of double-stranded CKIe RNA in wing discs resulted in reduced expression of Hh target genes collier, ptc, and engrailed [Jia et al. 2004; Apionishev et al. 2005], consistent with a loss of Smo function. It should be noted, however, that this CKIe construct affects levels of both CKIa and Dbt/CKIe [Jia et al. 2005], and therefore both family members may phosphorylate and activate Smo in vivo. Taken together, these results are consistent with a positive role for CKI phosphorylation of Smo in Drosophila Hh signaling.

The effects of loss of CKI phosphorylation on Smo accumulation were less clear: Apionishev et al. [2005] found that CKIe RNAi increased Smo levels in ptc-ex-
pressing cells, indicating a resistance to Ptc-dependent degradation, while Jia et al. [2004] found that CKIe RNAi reduced Smo levels in cells lacking Ptc and in cells expressing ptc but also receiving the Hh signal. Mutants of Smo in which PKA or CKI sites have been changed to alanine accumulate to similar levels in Smo in which PKA or CKI sites have been changed to D or E, phospho-mimetic residues, activating Hh target genes in the absence of ligand in wing discs and in cultured cells, localize constitutively to the cell surface, and promote phosphorylation of Fu, Su(Fu), and Cos-2, known Smo-mediated responses to Hh signaling, in the absence of signal [Jia et al. 2004; Zhang et al. 2004]. Hh further activates the mutants in these assays, suggesting that Smo is regulated in ways in addition to phosphorylation of these sites. Consistent with the model whereby Smo phosphorylation blocks its degradation, these mutants appear to be stabilized in the absence of Hh signaling [Jia et al. 2004; Zhang et al. 2004].

Thus, in Drosophila, CKI phosphorylation of Smo is required for Smo to transduce the Hh signal. While it is unclear how CKI phosphorylation affects Smo stability, it does appear to be necessary and sufficient for Smo localization to the plasma membrane. Vertebrate homologs of Smo do not contain these PKA and CKI sites, and therefore are presumably regulated by a different mechanism from Drosophila Smo.

Table 1. Demonstrated and proposed targets of CKI in Wnt signaling

Target	Result	References
A. Positive roles		
Dvl	CKIe binds and phosphorylates Dvl, and this phosphorylation is blocked by CKI-7 and CKIe RNAi. CKIe and Dvl synergize in activating Wnt signaling. CKI phosphorylation of Dvl increases its affinity to GBP/Frat, and the synergy between CKIe and Dvl is lost if the GBP-binding site in Dvl is deleted. CKI phosphorylation also appears to cause diffuse, as opposed to punctate, Dvl localization.	Peters et al. 1999, Sakanaka et al. 1999, Kishida et al. 2001, Lee et al. 2001; McKay et al. 2001a; Gao et al. 2002, Hino et al. 2003, Cong et al. 2004
TCF3	CKIe binds and phosphorylates TCF3, leading to an increase in TCF–β-catenin interaction and to an enhancement of β-catenin stabilization.	Lee et al. 2001
β-Catenin degradation complex	CKIe decreases PP2A IPed with axin and β-catenin, while IC261 increases PP2A IPed with β-catenin. CKIe destabilization of the degradation complex is thought to lead to increased cytoplasmic β-catenin.	Gao et al. 2002
LRP5/6	CKIe associates with and phosphorylates LRP6 on sites primed by GSK3; dnCKIe or dnCKIe + dnCKIe block in vivo phosphorylation of LRP6. Mutations in CKI sites in LRP6 prevent Wnt activation. CKI phosphorylation of LRP6 increases its interaction with axin, a key event in activation of Wnt signaling. Wnt signaling may regulate either GSK3 or CKI phosphorylation of LRP6.	Davidson et al. 2005, Zeng et al. 2005
B. Negative roles		
β-Catenin	CKIα/β/e phosphorylate β-catenin on S45; this phosphorylation is blocked by CKI-7, dkCKIe, and CKIα RNAi. S45 phosphorylation primes GSK3, leading to β-TrCP binding, and ultimately degradation. Wnt signaling inhibits GSK3 phosphorylation of β-catenin, and may inhibit CKI as well.	Amit et al. 2002; Liu et al. 2002; Yanagawa et al. 2002
APC	APC is phosphorylated by CKIβ/e; phosphorylated APC has increased β-catenin interaction and competes with axin for binding to β-catenin. Mutations in CKI sites impair APC stimulation of β-catenin degradation.	Kishida et al. 2001; Rubinfeld et al. 2001; Gao et al. 2002; Xing et al. 2003, 2004; Ha et al. 2004
Axin	CKIβ/e phosphorylate axin and CKIβ/e bind axin. Axin acts as a scaffold for CKI phosphorylation of β-catenin and APC.	Sakanaka et al. 1999, Kishida et al. 2001; McKay et al. 2001a; Rubinfeld et al. 2001; Gao et al. 2002, Amit et al. 2002; Liu et al. 2002
LEF-1	CKIβ/e binds and phosphorylates LEF-1, and this phosphorylation disrupts LEF-1–β-catenin interaction.	Hammerlein et al. 2005
increase in phosphatase activity) [Krishnan et al. 1997] or a decrease in phosphorylation of Ci by any of the kinases required for Ci proteolysis [e.g., a Hh-induced decrease in the activity of PKA, CKI, or GSK3]. Recent results suggest that Hh regulates the phosphorylation of Ci not by changing the activity of kinases, but by changing their subcellular localization [Zhang et al. 2005]. Cos-2 associates with PKA, CKI, and GSK3 and is necessary for PKA phosphorylation of Ci in vivo, explaining why Cos-2 is required for Ci proteolysis [G. Wang et al. 2000]. Upon Hh signaling, the association between Cos-2 and all three kinases is disrupted, resulting in reduced phosphorylation of Ci-155 and its stabilization [Zhang et al. 2005].

While it is clear that phosphorylation of Smo in response to Hh can be blocked with PKA and CKI inhibitors, it is not known if Hh activates CKI activity in this context or if there is a connection between decreased phosphorylation of Ci and increased phosphorylation of Smo upon Hh signaling. In fact, it is possible that CKI phosphorylation of Smo is constitutive. By this model [Apionishev et al. 2005], phosphorylated Smo is degraded in the absence of Hh (and thus is not detected), and it is the accumulation of Smo and its localization to the cell surface that the Hh pathway regulates.

Summary and future directions

Multiple CKI family members positively and negatively regulate Wnt and Hh signaling by associating with and/or phosphorylating multiple components of both pathways [Fig. 1; Tables 1, 2]. Targets for positive regulation of CKI include Wnt components Dvl, TCF, and LRP6 and the Hh component Smo. Negative regulation by CKI occurs via Wnt components APC and β-catenin and the Hh component Ci, where phosphorylation leads to complete or partial proteolysis of β-catenin and Ci, respectively, and inactivity of the pathway in the absence of ligand.

This raises major questions of how CKI regulates these pathways negatively and positively at the same time. There is some evidence that regulation of Wnt signaling is mediated by three distinct CKI family members; Wnt signaling may regulate these independently by different mechanisms. For example, Wnt activation of a phosopho-R acase will presumably only affect CKIβ, and not CKIγ and CKIα, since only CKIβ undergoes inhibitory autophosphorylation. In the case of negative regulation of the pathway, it is not necessary that CKIα is regulated at all by Wnt signaling to stabilize β-catenin, since blocking GSK3β activity is sufficient.

In the case of Hh signaling, which is potentially negatively and positively regulated by the same CKI family members, CKIα and CKIβ, the situation is less clear. There may be a switch in phosphorylation from Ci (the “negative” target) to Smo (the “positive” target) upon Hh signaling. Although Cos-2 binds to both Ci and Smo, it does not appear to mediate such a switch because the kinases are no longer associated with Cos-2 upon Hh signaling.

Another future question is the identification of specific phosphorylation sites in some CKI targets and a determination of whether these sites mediate changes upon Wnt signaling. This is not just a detail, but helps to firmly establish a protein as a direct target of a kinase. This will be difficult for full-length APC, where CKI potentially phosphorylates each of several repeated motifs on multiple sites, but may be possible in the case of Dvl. Loss-of-function data for a positive role of CKIβ in Wnt signaling in vivo is relatively weak, and further understanding of Dvl phosphorylation will help address this. Also, Dvl has been identified as a branch point between canonical Wnt signaling and the planar cell polarity pathway, which are both mediated by the Wnt receptor Fz, and CKI phosphorylation of Dvl has been implicated in both pathways [McKay et al. 2001b; Cong et al. 2004].

Finally, RNAi has been a powerful tool for doing previously difficult or impossible loss-of-function studies in cell lines and in Drosophila when a conventional mutant is not available. While there are limitations to this approach, including problems with specificity between highly homologous genes [e.g., see Matsubayashi et al. 2004; Jia et al. 2005], hopefully this technique will help

| Table 2. Demonstrated and proposed targets of CKI in Wnt signaling |
|---|---|---|
| **Target** | **Result** | **References** |
| **A. Positive roles** | | |
| Smo | CKIα/β phosphorylate Smo in vitro and in cultured cells. Phosphorylation of Smo by CKI is required for Smo transduction of Hh signal in Drosophila embryos, wing discs, and cultured cells. Effects of CKI phosphorylation on Smo stability is less clear; however, results with phosphomimetic mutations suggest that phosphorylation stabilizes Smo. These mutations lead to constitutive membrane localization of Smo and phosphorylation of Fu, Sufu, and Cos-2 in the absence of Hh signaling. | Jia et al. 2004; Zhang et al. 2004; Apionishev et al. 2005 |
| **B. Negative roles** | | |
| Ci | CKIβ phosphorylates Ci in vitro on sites primed by PKA and GSK3. Mutations in CKI sites prevent Ci repressor formation. CKIα and CKIβ cooperate in Ci processing in wing discs. CKI phosphorylation of Ci is required for Slimb binding, leading to ubiquitination and processing by the proteasome. | Price and Kalderon 2002; Lum et al. 2003; Jia et al. 2005; Smelkinson and Kalderon 2006 |
to clarify some of the outstanding questions about the role of CKI in Wnt and Hh signaling.

Acknowledgments

I thank Helen and David Strutt for helpful comments on the manuscript and the reviewers for many useful suggestions. I also thank Davidson et al. (2005) and Jia et al. (2005) for copies of their manuscripts prior to publication. M.A.P. is supported by a Wellcome Trust University Award.

References

Amit, S., Hatzubai, A., Birman, Y., Andersen, J.S., Ben-Shushan, E., Mann, M., Ben-Neria, Y., and Alkalay, I. 2002. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: A molecular switch for the Wnt pathway. Genes & Dev. 16: 1066–1076.

Apinsonishev, S., Katanayeva, N.M., Marks, S.A., Kalderon, D., and Tomlinson, A. 2005. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat. Cell Biol. 7: 86–92.

Aza-Blanc, P., Ramirez-Weber, F.A., Laget, M.P., Schwartz, C., and Kornberg, T.B. 1999. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 89: 1043–1053.

Aza-Blanc, P., Lin, H.Y., Ruiz i Altaba, A., and Kornberg, T.B. 2000. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 127: 4293–4301.

Chen, Y., Gallacher, N., Goodman, R.H., and Smolik, S.M. 1998. Protein kinase A directly regulates the activity and proteolysis of Cubitus interruptus. Proc. Natl. Acad. Sci. 95: 2349–2354.

Chen, C.H., von Kessler, D.P., Park, W., Wang, B., Ma, Y., and Beachy, P.A. 1999. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98: 305–316.

Chen, Y., Cardinaux, J.R., Goodman, R.H., and Smolik, S.M. 1999. Mutants of Cubitus interruptus that are independent of PKA regulation are independent of Hedgehog signaling. Development 126: 3607–3616.

Chijiwa, T., Hagiwara, M., and Hidaka, H. 1989. A newly synthesized selective casein kinase I inhibitor, N-[2-aminoethyl]-5-chloroisouquinoline-8-sulfonamide, and affinity purification of casein kinase I from bovine testis. J. Biol. Chem. 264: 4924–4927.

Concordet, J.P., Lewis, K.E., Moore, J.W., Goodrich, L.V., Johnson, R.L., Scott, M.P., and Ingham, P.W. 1996. Spatial regulation of a zebrafish patched homologue reflects the organization and positioning of a multifunctional protein kinase family. Cell Signal 10: 699–711.

Ha, N.C., Tonozuka, T., Stamos, J.L., Choi, H.J., and Weis, W.I. 2004. Mechanism of phosphorylation-dependent binding of APC to β-catenin and its role in β-catenin degradation. Mol. Cell 15: 511–521.

Hammerschmidt, M., Bitgood, M.J., and McMahon, A.P. 1996. Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes & Dev. 10: 647–658.

Hanks, S.K. and Hunter, T. 1995. Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J. 9: 576–596.

He, X., Semenov, M., Tamai, K., and Zeng, X. 2004. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: Arrows point the way. Development 131: 1663–1677.

Hino, S., Michiue, T., Asashima, M., and Kikuchi, A. 2003. Casein kinase-le enhances the binding of Dvl-1 to Frat-1 and is essential for Wnt-3a-induced accumulation of β-catenin. J. Biol. Chem. 278: 14066–14073.

Hooper, J.E. and Scott, M.P. 2005. Communicating with Hedgehogs. Nat. Rev. Mol. Cell. Biol. 6: 306–317.

Hsu, W., Zeng, L., and Costantini, F. 1999. Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain. J. Biol. Chem. 274: 3439–3445.

Ingham, P.W. and McMahon, A.P. 2001. Hedgehog signaling in animal development: Paradigms and principles. Genes & Dev. 15: 3059–3087.

Jia, J., Amanai, K., Wang, G., Tang, J., Wang, B., and Jiang, J. 2002. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 416: 548–552.

Jia, J., Tong, C., Wang, B., Luo, L., and Jiang, J. 2004. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 432: 1045–1050.
cell fate and behavior during vertebrate development. *Trends Genet.* 13: 157–162.

Morrison, D.K., Murakami, M.S., and Cleghon, V. 2000. Protein kinases and phosphatases in the *Drosophila* genome. *J. Cell Biol.* 150: F57–F62.

Nash, P., Tang, X., Orlicky, S., Chen, Q., Gertler, F.B., Mendenhall, M.D., Sichieri, F., Pawson, T., and Tyers, M. 2001. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. *Nature* 414: 514–521.

Pasca di Maglione, M. and Hebrok, M. 2003. Hedgehog signaling in cancer formation and maintenance. *Nat. Rev. Cancer* 3: 903–911.

Peters, J.M., McKay, R.M., McKay, J.P., and Graff, J.M. 1999. Casein kinase I transduces Wnt signals. *Nature* 401: 345–350.

Plowman, G.D., Sudarsanam, S., Bingham, J., Whyte, D., and Hunter, T. 1999. The protein kinases of *Caenorhabditis elegans*: A model for signal transduction in multicellular organisms. *Proc. Natl. Acad. Sci.* 96: 13603–13610.

Polakis, P. 1999. The oncogenic activation of β-catenin. *Curr. Opin. Genet. Dev.* 9: 15–21.

———. 2002. Casein kinase I: A Wnt ‘er of disconnect. *Curr. Biol.* 12: R499–R501.

Price, M.A. and Kalderon, D. 1999. Proteolysis of Cubitus interruptus in *Drosophila* requires phosphorylation by protein kinase A. *Development* 126: 4331–4339.

———. 2002. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by glycosyl synthase kinase 3 and casein kinase 1. *Cell* 108: 823–835.

Pulgar, V., Marin, O., Meggio, F., Allende, C.C., Allende, J.E., and Pinna, L.A. 1999. Optimal sequences for non-phosphate-directed phosphorylation by protein kinase CK1 [casein kinase-1]—A re-evaluation. *Eur. J. Biochem.* 260: 520–526.

Reya, T. and Clevers, H. 2005. Wnt signalling in stem cells and cancer. *Nature* 434: 843–850.

Rivers, A., Gietzen, K.F., Vielhaber, E., and Virshup, D.M. 1998. Regulation of casein kinase I ε and casein kinase I δ by an in vivo futile phosphorylation cycle. *J. Biol. Chem.* 273: 15980–15984.

Rubinfeld, B., Tice, D.A., and Polakis, P. 2001. Axin-dependent phosphorylation of the adenomatous polyposis coli protein mediated by casein kinase 1ε. *J. Biol. Chem.* 276: 39037–39045.

Sakamaka, C., Leong, P., Xu, L., Harrison, S.D., and Williams, L.T. 1999. Casein kinase Iε in the wnt pathway: Regulation of β-catenin function. *Proc. Natl. Acad. Sci.* 96: 12548–12552.

Seeling, J.M., Miller, J.R., Gil, R., Moon, R.T., White, R., and Virshup, D.M. 1999. Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A. *Science* 283: 2089–2091.

Smelkinson, M.G. and Kalderon, D. 2006. Processing of the *Drosophila* Hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb. *Curr. Biol.* 16: 110–116.

Swiatek, W., Tsai, I.C., Klimowski, L., Pepler, A., Barnette, J., Yost, H.J., and Virshup, D.M. 2004. Regulation of casein kinase Iε activity by Wnt signaling. *J. Biol. Chem.* 279: 13011–13017.

Taipale, J. and Beachy, P.A. 2001. The Hedgehog and Wnt signalling pathways in cancer. *Nature* 411: 349–354.

Tanim, K., Zeng, X., Liu, C., Zhang, X., Harada, Y., Chang, Z., and He, X. 2004. A mechanism for Wnt coreceptor activation. *Mol. Cell* 13: 149–156.

van Amerongen, R., Nawijn, M., Franca-Koh, J., Zevenhoven, J., van der Gulden, H., Jonkers, J., and Berns, A. 2005. Frat is
dispensable for canonical Wnt signaling in mammals. Genes & Dev. 19: 425–430.

von Mering, C. and Basler, K. 1999. Distinct and regulated activities of human Gli proteins in Drosophila. Curr. Biol. 9: 1319–1322.

Wang, B. and Li, Y. 2006. Evidence for the direct involvement of β-TrCP in Gli3 protein processing. Proc. Natl. Acad. Sci. 103: 33–38.

Wang, B., Fallon, J.F., and Beachy, P.A. 2000. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 100: 423–434.

Wang, G., Amanai, K., Wang, B., and Jiang, J. 2000. Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of Cubitus interruptus. Genes & Dev. 14: 2893–2905.

Weaver, C. and Kimelman, D. 2004. Move it or lose it: Axis specification in Xenopus. Development 131: 3491–3499.

Winston, J.T., Strack, P., Beer-Romero, P., Chu, C.Y., Elledge, S.J., and Harper, J.W. 1999. The SCFTrCP–ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in βκα and β-catenin and stimulates βκα ubiquitination in vitro. Genes & Dev. 13: 270–283.

Xing, Y., Clements, W.K., Kimelman, D., and Xu, W. 2003. Crystal structure of a β-catenin/axin complex suggests a mechanism for the β-catenin destruction complex. Genes & Dev. 17: 2753–2764.

Xing, Y., Clements, W.K., Le Trong, I., Hinds, T.R., Stenkamp, R., Kimelman, D., and Xu, W. 2004. Crystal structure of a β-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Mol. Cell 15: 523–533.

Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J., and Nusse, R. 1995. The dishevelled protein is modified by wingless signaling in Drosophila. Genes & Dev. 9: 1087–1097.

Yanagawa, S., Matsuda, Y., Lee, J.S., Matsubayashi, H., Sese, S., Kadowaki, T., and Ishimoto, A. 2002. Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO J. 21: 1733–1742.

Yost, C., Farr III, G.H., Pierce, S.B., Ferkey, D.M., Chen, M.M., and Kimelman, D. 1998. GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93: 1031–1041.

Zeng, X., Tamai, K., Doble, B., Li, S., Huang, H., Habas, R., Okamura, H., Woodgett, J., and He, X. 2005. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438: 873–877.

Zhang, C., Williams, E.H., Guo, Y., Lum, L., and Beachy, P.A. 2004. Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc. Natl. Acad. Sci. 101: 17900–17907.

Zhang, W., Zhao, Y., Tong, C., Wang, G., Wang, B., Jia, J., and Jiang, J. 2005. Hedgehog-regulated Costal2–kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev. Cell 8: 267–278.

Zhu, J., Shibasaki, F., Price, R., Guillemot, J.C., Yano, T., Dotsch, V., Wagner, G., Ferrara, P., and McKon, F. 1998. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93: 851–861.
CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling

Mary Ann Price

Genes Dev. 2006, 20:
Access the most recent version at doi:10.1101/gad.1394306

References

This article cites 85 articles, 43 of which can be accessed free at:
http://genesdev.cshlp.org/content/20/4/399.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.