Fraction of nitrous oxide production in nitrification and its effect on total soil emission: A meta-analysis and global-scale sensitivity analysis using a process-based model

Motoko Inatomi\(^1\*\), Tomohiro Hajima\(^2\), Akihiko Ito\(^2,3\)\(^*\)

\(^1\) Research Center for Agricultural Information Technology, NARO, Tsukuba, Japan, \(^2\) Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan, \(^3\) National Institute for Environmental Studies, Tsukuba, Japan

\(*\) These authors contributed equally to this work.
\(*\) itoh@nies.go.jp

Abstract

Nitrification in terrestrial soils is one of the major processes of emission of nitrous oxide (N\(_2\)O), a potent greenhouse gas and stratospheric-ozone-depleting substance. We assessed the fraction of N\(_2\)O emission associated with nitrification in soil through a meta-analysis and sensitivity analysis using a process-based model. We corrected observational values of gross nitrification and associated N\(_2\)O emission rates from 71 records for various soils in the world spanning from 0.006% to 29.5%. We obtained a median value of 0.14%, and then assessed how the nitrification-associated N\(_2\)O emission fraction has been considered in terrestrial nitrogen cycle models. Using a process-based biogeochemical model, we conducted a series of sensitivity analyses for the effects of different values of nitrification-associated N\(_2\)O emission fraction on soil N\(_2\)O emission. Using an empirical relationship between soil pH and nitrification-associated N\(_2\)O emission fraction, the model well simulated global emission patterns (global total in the 2000s, 16.8 Tg N\(_2\)O yr\(^{-1}\)). Differences in the nitrification-associated N\(_2\)O emission fraction caused differences in total N\(_2\)O emission of as much as 2.5 Tg N\(_2\)O yr\(^{-1}\). Therefore, to obtain reliable estimation of soil N\(_2\)O emission for nitrogen and climate management, it is important to constrain the parameterization in models by ensuring extensive and accurate observations.

Introduction

Nitrous oxide (N\(_2\)O) is the third important long-lived greenhouse gas next to carbon dioxide (CO\(_2\)) and methane (CH\(_4\)) [1] and is the most important substance depleting stratospheric ozone [2]. To reach the overarching mitigation targets of the Paris Agreement [3] we need to suppress the growth of atmospheric N\(_2\)O concentration, to which anthropogenic emissions
Contribute at a level comparable to that from natural sources [4, 5]. Also, assessment and regulation of N₂O emission contribute to management of nitrogen cycle, which is closely related to many issues of human sustainability, such as food production and sanitation [6]. Nevertheless, there remain serious uncertainties in our understanding and predictability of N₂O dynamics.

Terrestrial soils—both natural and agricultural—are a prevailing source of N₂O in the atmosphere [7, 8], but spatial heterogeneity and temporal variability of the N₂O flux make it difficult to quantify broad-scale budgets. Most of the N₂O released from the soil surface is produced by two separate microbial processes, nitrification and denitrification, which differ in terms of active microbes, substrates, and environmental responsiveness [9, 10]. There are still serious knowledge gaps and difficulties in using models to predict soil N₂O emissions in a quantitative manner.

Nitrification by ammonia oxidizers is the primary process of N₂O production in oxic (aerobic) soils and is thought to be more ubiquitous than denitrification, which occurs in anaerobic wet soils. Recent studies have revealed the contributions of different soil microbes, such as ammonia-oxidizing archaea and bacteria, to nitrification [11, 12]. In nitrification, most of the oxidized ammonia is turned into nitrate (NO₃⁻) via nitrite (NO₂⁻), and a certain (usually small) fraction of nitrogen is released as N₂O. The fraction of nitrification-associated N₂O emission (fN₂O_nitr) and its regulation mechanism are important but barely understood. Although fN₂O_nitr is critically important to predict soil N₂O emission, a few studies have investigated the responses of fN₂O_nitr and the corresponding nitric oxide (NO) emission fraction to soil temperature and moisture conditions [13, 14]. However, observational data and knowledge are still insufficient to evaluate broad-scale emissions, including from a variety of soils. Farquharson (2016) [15] conducted a systematic analysis of fN₂O_nitr from agricultural soils in Australia. He found that 0.03% to 1% of nitrogen is released as N₂O associated with nitrification in soils and found no strong relationship with environmental factors such as soil moisture. For a broad range of natural soils, and in other regions, we have found no systematic analysis on fN₂O_nitr.

fN₂O_nitr should be an important parameter in biogeochemical models that aim to simulate nitrogen cycles and predict N₂O emissions from land. Many terrestrial nitrogen cycle and N₂O emission models have been developed, from simple box-flow models (e.g., the Terrestrial Ecosystem Model [16]) to more mechanistic ones (e.g., the Denitrification Decomposition [DNDC] model [17]). In these models, fN₂O_nitr, or a similar parameter (i.e., the total N₂O and NO emission fraction) has been determined in a simplified empirical manner. In the well-recognized “hole in the pipe” or “leaky pipe” concept of soil nitrogenous gas emission [18, 19], fN₂O_nitr represents the size of the N₂O hole in the nitrification pipe (Fig 1). Note that the nitrification rate (as defined by pipe diameter and flow velocity) varies also with the environmental conditions, so it is possible to regard fN₂O_nitr as a constant or as an independent variable that changes with environmental condition. In the latter case, empirical parameterizations have been adopted to determine the N₂O emission fraction, using a limited amount of observational data. As a consequence, these emissions could have a considerable range of bias and error due to the uncertainty of fN₂O_nitr values.

Here, we focused on fN₂O_nitr from the perspective of the global N₂O budget, aiming at better predictability of emission by biogeochemical models. Our focal research questions are as follows. (1) What is the feasible range of fN₂O_nitr in the terrestrial ecosystems? (2) How does fN₂O_nitr vary in the field in response to environmental conditions? (3) Can we attain a better parameterization of fN₂O_nitr, applicable to global scale, on the basis of present data? First, to clarify the range of variability and the broad-scale trends in these values, we conducted a meta-analysis of the observed values of fN₂O_nitr for both natural and agricultural soils. Second, we surveyed how fN₂O_nitr was included in current terrestrial N₂O estimation models. Third, we used the results of the meta-analysis and model survey to conduct a series of sensitivity...
analyses of fN$_2$O$_{nit}$ and N$_2$O emissions by using our biogeochemical model. Finally, we discuss how we can reduce the range of estimation uncertainty in both experimental and modeling studies. Note that this study focuses on nitrification as the first step and that other important processes such as denitrification, nitrifier denitrification, and abiotic production [20] are not explicitly addressed here. We intend to address these other processes in a forthcoming study using a similar approach.

Methods

Meta-analysis

Overview. A meta-analysis was conducted to reveal the range, frequency, and tendencies of soil fN$_2$O$_{nit}$ reported in the literature. The results were reported following the Preferred Reporting Items for Systematic Review and Meta-Analyses protocols (PRISMA) [21] protocol (S1 Table). To obtain information on the general properties of the parameter, we gathered observational values reported from a wide range of studies. By using Web of Science (Thomson Reuters, New York, NY, USA) and Google Scholar (Alphabet, Mountain View, CA, USA), we searched papers and reports that included data on nitrogenous gas exchange and soil biogeochemistry. We used combinations of three terms (each from #1 to #3) in S2 Table to search candidate papers; for example, “nitrous oxide flux” and “nitrification rate” and “soil surface”. No date and time limitations were applied to harvest from the maximum extent of the literature. Also, we examined the reference lists in each paper to find additional literature that did not appear in the web searches.

Study selection. We carefully selected source data of fN$_2$O$_{nit}$ for the meta-analysis, particularly taking into account the consistency between N$_2$O emission and nitrification rates. First, we removed papers that addressed non-soil N$_2$O emissions (i.e., from ponds, landfills, animal slurry, etc.). For quantitative consistency, we selected papers including data on gross nitrification (i.e., NH$_4^+$ consumption) and associated N$_2$O emission. Therefore, several papers that reported only net nitrification (i.e., NO$_3^-$ production) rates, potential emission rates, and data under oxygen-free condition, were carefully removed from the meta-analysis. Also, we focused on daily or longer phenomena, so that rates of N$_2$O emission from the soil surface to the atmosphere could be adequately approximated to N$_2$O production rates within the soil (i.e., the vertical diffusion time lag was negligible). As a result, papers reporting only instantaneous (i.e., for seconds to minutes) measurements were excluded; in general, these instantaneous measurement data show extremely wide ranges of variability, making a robust analysis difficult.
Finally, we selected the source papers by measurement method used in each study, because several methods could give biased values under certain conditions (e.g., DMPP inhibition slows greatly at >25°C [22]). We confirmed that the method-based selection had a small impact on the analysis results. The paper selection was made by two authors and discrepancies were resolved by discussion.

Data extraction. Data on \( fN_2O_{nit} \) values and associated properties were extracted: soil pH, solvent of pH, soil temperature, soil moisture content with units, soil texture, clay / silt / sand composition, latitude, longitude, land-cover type, and soil-type classification. Few papers provide values of \( fN_2O_{nit} \) directly, and therefore, if applicable, we calculated the values from gross nitrification and associated \( N_2O \) emission rates measured under the same condition.

Data analyses. A statistical software R [23] was used to calculate the statistical metrics for the records: i.e., mean, median, maximum, minimum, standard deviation \([\sigma]\), kurtosis, skewness, and quartiles. A few extreme values can, in most cases harmfully, affect the results of statistical metrics. To assess the influences of outliers, these statistical metrics were also calculated after removing top and bottom outliers (10% from all the records). Note that we used both datasets with and without outlier values in the following analyses and model simulations. Furthermore, to reduce the size effect of different sample numbers (i.e., weights) among papers, these metrics were also calculated using the mean values for each paper.

Parameterization of \( fN_2O_{nit} \) in other models

We then assessed how \( fN_2O_{nit} \) has been parameterized in other terrestrial nitrogen models and evaluated the influence on \( N_2O \) emission estimation. According to a review by Frolking et al. (1998) [24], former models have adopted different constant \( fN_2O_{nit} \) values, namely 0.5% in the ExpertN model and 2% in the CENTURY model. These values were examined in the sensitivity simulations mentioned below. In later models, \( fN_2O_{nit} \) was parameterized as a function of environmental conditions in different manners. The modified DNDC model [25] (their Table 3, Eq 8) adopted the following parameterization:

\[
fN_2O_{nit} = 0.06 \cdot Ft \cdot WFPS, \tag{1}
\]

\[
Ft = \left((60 - Ts)/25.78\right)^{1.503} \exp\left(3.503(Ts - 34.22)/25.78\right), \tag{2}
\]

where \( Ft \) is a scholar function of soil temperature (\( Ts \), °C) and \( WFPS \) is water-filled pore space (fraction). This parameterization gives a peak value, about 0.06%, at about 35 °C under saturated soil water conditions (Fig 2A). The Dynamic Land Ecosystem Model [26] (DLEM) parameterizes \( fN_2O_{nit} \) as a function of WFPS (%):

\[
fN_2O_{nit} = 0.1 \cdot 10^{0.026 \cdot WFPS - 1.66}/(1 + 10^{0.026 \cdot WFPS - 1.66}), \tag{3}
\]

In this parameterization, the \( fN_2O_{nit} \) value increases with increasing soil water content (Fig 2B) and does not exceed 0.1%. The Community Land Model [27] and O-CN model [28] adopted a version of the DNDC parameterization. In the recent paper on \( N_2O \) model intercomparison [29], an elaborate table summarizes how nitrification and \( N_2O \) emission are formulated in contemporary land nitrogen models.

Description of the \( N_2O \) simulation model

To assess the range of estimations associated with variations in \( fN_2O_{nit} \), we conducted a series of simulations using a process-based model, namely, Vegetation Integrative Simulator for
Trace gases (VISIT [30, 31]). This model was selected, because it has an intermediate complexity among the global N$_2$O models and gave moderate results in the model intercomparison project [29]. Also, the model was used for a regional evaluation of soil N$_2$O emission in East Asia, one of the highly human-influenced regions, demonstrating the credibility for broad-scale applications [32]. Briefly, the model consists of water, carbon, and nitrogen cycling schemes for terrestrial ecosystems and is aimed at assessing atmosphere–ecosystem exchange of greenhouse gases and trace gases. The nitrogen cycle is fully included, from inputs (atmospheric deposition, biological fixation, and fertilizer input) to outputs (leaching, ammonia volatilization, and nitrogenous gas emissions through nitrification and denitrification). Intra-ecosystem dynamics of nitrogen among plant, soil, and microbe is simulated in an explicit manner. The model was validated by comparing various biogeochemical aspects with

![Graph showing the relationship between the fraction of nitrification-associated N$_2$O emission ($f_{N_2O_{nit}}$) assumed in the models.](https://doi.org/10.1371/journal.pone.0219159.g002)

Fig 2. Relationship between the fraction of nitrification-associated N$_2$O emission ($f_{N_2O_{nit}}$) assumed in the models. (a) DNDC and (b) DLEM. WFPS, water-filled pore space.
observational data [33–35]. In the VISIT model, fN\textsubscript{2}O\textsubscript{nit} is assumed to be a universal, constant value (1% of gross nitrification).

A brief description of the method used to estimate fN\textsubscript{2}O\textsubscript{nit} is given below. In the VISIT model, soil N\textsubscript{2}O production through the nitrogen cycle is conceptualized by using the “hole in the pipe” scheme (see Fig 1). Gross nitrification (R\textsubscript{nit}) and associated N\textsubscript{2}O emission (N\textsubscript{2}O\textsubscript{nit}) are related as follows:

\[
\text{N}_2\text{O}_{\text{nit}} = f\text{N}_2\text{O}_{\text{nit}} \cdot R_{\text{nit}},
\]

(4)

Nitrification rate and its environmental dependencies were derived from the NGAS scheme developed by Parton et al. (1996) [36], as follows:

\[
R_{\text{nit}} = p_{\text{WFPS-nit}} \cdot p_{\text{pH}} \cdot p_{\text{Ts}} (K + F_{\text{max}} \cdot \text{NH}_4^+)/f\text{N}_\text{2}O_{\text{nit}},
\]

(5)

where \(p_{\text{WFPS-nit}}, p_{\text{pH}}, \) and \(p_{\text{Ts}}\) denote the environmental scalar functions derived from observations (see ref. [36]) of water-filled pore space (WFPS), soil pH, and soil temperature (Ts), respectively. \(K\) denotes the coefficient of N turnover, taking values from 3.5 of natural soils to 12.0 of agricultural soils. \(F_{\text{max}}\) is the maximum nitrification-associated gas flux coefficient and \(\text{NH}_4^+\) is the soil ammonium content. WFPS and \(\text{NH}_4^+\) were simulated by VISIT and so varies temporally and spatially.

Global simulations by using the VISIT model were conducted with the common protocol and initial and boundary conditions. Namely, they were conducted at a spatial resolution of 0.5° x 0.5° for latitude and longitude, during the period from January 1901 to December 2016. Historical climate data from CRU TS3.25 [37] (temperature, precipitation, vapor pressure, and cloudiness) and land-use data [38] were used to drive the model. Historical changes in atmospheric nitrogen deposition were derived from Galloway et al. (2004) [39], and in croplands, input of nitrogen fertilizer was determined on a country-basis by using FAOSTAT (http://www.fao.org/faostat). The amount of national fertilizer use was divided by total cropland area and allocated to each grid cell. For each grid, a spin-up calculation was conducted for 300 to 2000 years, depending on case, under stationary conditions until a stable-state carbon budget was reached, before starting the historical experiment.

**Sensitivity simulations**

All sensitivity simulations were conducted by VISIT using the common forcing dataset and protocols; only the fN\textsubscript{2}O\textsubscript{nit} value was changed. First, to simply assess the sensitivity of N\textsubscript{2}O emission estimation to fN\textsubscript{2}O\textsubscript{nit}, we halved (i.e., 0.5%) and doubled (2%) the parameter value (originally 1% in VISIT) and compared the results. We then changed the fN\textsubscript{2}O\textsubscript{nit} values to those obtained by the meta-analysis mentioned above, that is, mean and median values for all data and several subsets. In these simulations, constant fN\textsubscript{2}O\textsubscript{nit} values were applied to all grids. Second, the fN\textsubscript{2}O\textsubscript{nit} value was replaced by those of DNDC and DLEM described above, using the same temperature and moisture conditions. Third, finally, we derived an empirical relationship between soil pH and fN\textsubscript{2}O\textsubscript{nit} value from the meta-analysis data. Such a relationship was shown in laboratory studies [40] and previous meta-analysis [15], but has not been examined by models at the global scale. Here, we used the global soil pH map (S1 Fig) produced by the Global Soil Data Task of the International Geosphere-Biosphere Programme [41].

**Results and discussion**

We obtained 71 records from 13 studies in the published literature (Table 1; Fig 3), covering a wide range of different ecosystems and soil texture types; see S3 Table for the data extracted. Although no date and time limitation were applied, the data were obtained from 1985 to 2013.
Although a large number of papers addressed the nitrification and N₂O emission (2184 papers), we found that only a small number of papers (35 papers) contain the data on gross nitrification rate for a sufficiently long period. Other 2149 papers were rejected, although they contained partial data on nitrification-associated N₂O emission. Furthermore, many of the measurements (22 out of 35) were made using problematic methods or conditions and so removed. As a result of data selection, measurements in the literature used in this study were made mainly by using two methods of soil incubation: the inhibitor (C₂H₂, N-serve, and NaClO₃) treatment and the stable carbon isotope (¹⁵N labelling) method [10, 42]. Most of the measurements were conducted in the laboratory: only one study was done in the field. The record number is not so abundant, but the dataset covers a wide variety of ecosystems and soils such as forest, grassland, and cropland. Therefore, we used this dataset for following analyses and model assessments.

The observational fN₂Oₙᵣᵦ values (n = 71) were distributed widely from 0.006% to 29.4%, with a mean of 1.92% and a median of 0.19% (first column of Table 2). The high mean value was likely attributable to the presence of a few anomalous values in the dataset. A histogram of the observed fN₂Oₙᵣᵦ values (Fig 4) showed a concentrated and skewed distribution with a clear peak around the median value. Additionally, with removal of 10% outliers (top 4 and bottom 3 records, second column of Table 2) the mean (0.43%) and median (0.14%) values became lower. Notably, standard deviation narrowed greatly after the removal of outliers, and both the maximum value and minimum value were obtained when the C₂H₂ inhibition method was used. When publication-based data (i.e., the means of the values reported in each

Table 1. List derived from literature search of methods to measure nitrification-associated N₂O flux.

| References            | Method                          | fN₂Oₙᵦ Note                          | Mean (max – min), % |
|-----------------------|---------------------------------|--------------------------------------|---------------------|
| Ambus (2005) ref. [43] | ¹⁵N labelling                    |                                       | 0.046 (0.046 – 0.046) |
| Bateman and Baggs (2005) ref. [14] | ¹⁵N labelling, C₂H₂ inhibition |                                       | 0.011 (0.006 – 0.014) |
| Carter (2007) ref. [44] | C₂H₂ inhibition, field measurement (¹⁵N) |                                       | 0.020 (0.01 – 0.029) |
| Garrido et al. (2002) ref. [45] | C₂H₂ inhibition |                                       | 0.30 (0.028 – 0.48) |
| Khalil et al. (2004) ref. [46] | ¹⁵N labelling                    |                                       | 0.77 (0 – 1.57) |
| Klemedtsson et al. (1988) ref. [47] | C₂H₂ inhibition |                                       | -0.49 (-9.62 – 7.5) |
| Maag and Vinther (1996) ref. [48] | C₂H₂ inhibition |                                       | 0.36 (0.28 – 0.48) |
| Martikainen (1985) ref. [40] | C₂H₂ inhibition, N-serve inhibition |                                       | 28.3 (27.0 – 29.4) |
| Mathieu et al. (2006) ref. [49] | ¹⁵N labelling                    |                                       | 1.23 (0.13 – 2.32) |
| Markved et al. (2007) ref. [50] | ¹⁵N labelling, C₂H₂ inhibition |                                       | 0.79 (0.018 – 7.62) |
| Markved et al. (2006) ref. [51] | ¹⁵N labelling, C₂H₂ inhibition |                                       | 27 (27 – 27) |
| Tortoso and Hutchinson (1990) ref. [52] | N-serve inhibition, NaClO₃ inhibition |                                       | 0.068 (0.068 – 0.068) |
| Zhu et al. (2013) ref. [20] | ¹⁵N labelling, ¹⁸O, C₂H₂ inhibition |                                       | 2.35 (0 – 8.3) |

N-Serve, 2-Chloro-6-(trichloromethyl)-pyridine

https://doi.org/10.1371/journal.pone.0219159.t001
paper) were used, the mean and median value became higher (5.17% and 0.57%, respectively; third column of Table 2).

In comparison with the study of Australian agricultural soils by Farquharson (2016), typical values of $f_{\text{N}_2\text{O}}$ obtained by our meta-analysis seem comparable. That study found that $f_{\text{N}_2\text{O}}$ values varied from 0.03% to 1%, with a typical value of 0.2%, that falls between the mean and median values obtained in the present study for all data. When removing outlier values, our results of mean and median became even closer to the result of Farquharson (2016).
Namely, we examined anomalous values removed from the present meta-analysis, such as zero to negative and extremely high, 100% values. Several these values were obtained by Ambus (1998) [53] in the only study that conducted C2H2 treatment in the field; this probably led to a larger fluctuation in values than in the laboratory studies. Negative values of fN2O are attributable to net N2O uptakes, which are sometimes observed but are usually small [54]. The fN2O values used by emission models assuming a constant N2O emission fraction (0.5% to 2.0%) fell within the range of observed values. For example, the constant fN2O value used in the original VISIT model, 1%, did not differ significantly from the mean value of the observed dataset (Student’s t-test, t = 1.36, p = 0.177). However, it should be noted that the median observed value (0.19%) was much lower than the model-assumed value.

The fN2O values used in the DNDC and DLEM models including the environmental variability of the N2O emission fraction were generally lower than those used in the models assuming constant values. As shown in Fig 2, these models assume the maximum fN2O values of 0.06 to 0.1%. However, these fN2O values were still within the range of observed values. We examined the spatial distribution of mean fN2O values estimated by the DNDC (Fig 5A) and DLEM (Fig 5B). When the DNDC parameterization was used, higher fN2O values were estimated mainly in the humid tropics. In contrast, when the DLEM parameterization was used, higher fN2O values were obtained in humid temperate to boreal regions such as Europe, eastern and western North America, and the Tibetan Plateau. Note again that a common soil temperature and moisture (after the VISIT simulation) were used in this comparison, and the differences among the results were caused exclusively by differences in the fN2O parameterizations. The difference of fN2O indicated here may account for a part of outcomes of the N2O model intercomparison project [29]. The project showed that the existing models differ in global soil N2O emission by about 20%, and our study implies that fN2O is one of the key parameters to reduce the estimation uncertainty.

### Sensitivity of N2O flux to fN2O

The default VISIT model with a constant fN2O of 1% estimated total N2O emission from terrestrial soils as 15.47 ± 0.52, 16.32 ± 0.98, and 17.03 ± 0.73 Tg N yr⁻¹ (average ± s.d. of inter-annual variability) in the 1980s, 1990s, and 2000s, respectively (Fig 6). When converted into nitrogen weight (multiplied by 28/44), these values correspond to 9.85 to 10.84 Tg N yr⁻¹. These estimates are close to previous estimations: e.g., 11.1 Tg N yr⁻¹ by IPCC (2013) [1] and 11.4 Tg N yr⁻¹ by Syakila and Kroeze (2011) [55] for emissions from natural vegetation, agriculture, and deposition on land. In the 2000s simulation, 16.5% of total N2O emission was

| Sample no. | All data | Excluding outlier | Aggregated by paper |
|------------|----------|-------------------|---------------------|
|            | 71       | 64                | 12                  |
| Mean (%)   | 1.922    | 0.426             | 5.167               |
| Standard deviation (%) | 5.702    | 0.526             | 10.526              |
| Kurtosis (-) | 15.255   | 1.191             | 0.498               |
| Skewness (-) | 4.006    | 1.369             | 1.549               |
| Maximum (%) | 29.445   | 2.320             | 28.234              |
| 75% quartile (%) | 1.084    | 0.605             | 1.703               |
| Median (%) | 0.192    | 0.139             | 0.573               |
| 25% quartile (%) | 0.053    | 0.048             | 0.063               |
| Minimum (%) | 0.006    | 0.006             | 0.011               |

https://doi.org/10.1371/journal.pone.0219159.t002
Fig 4. Histogram of the $\text{N}_2\text{O}$ emission associated with nitrification, obtained by a meta-analysis of 71 observations. (a) All data, (b) data of 0–1%, and (c) data of 1–10%.

https://doi.org/10.1371/journal.pone.0219159.g004
from nitrification and 84% was from denitrification. About 32% and 68% of N$_2$O emission occurred in agricultural and natural ecosystem soils, respectively. During the simulation period, total N$_2$O emission increased from 12.11 Tg N$_2$O yr$^{-1}$ in 1901 to 18.60 Tg N$_2$O yr$^{-1}$ in

Fig 5. Distributions of estimated fraction of nitrification-associated N$_2$O emission, fN$_2$O$_{nit}$. (a) DNDC and (b) DLEM parameterizations.

https://doi.org/10.1371/journal.pone.0219159.g005
2016 as a result of the increase of fertilizer and deposition inputs. See our resent study [32] on the temporal change and its driver of the regional N\textsubscript{2}O emissions.

The sensitivity analysis using different values of fN\textsubscript{2}O\textsubscript{nit} (constant) indicated that the simulated total N\textsubscript{2}O emission was sensitive to the assumed emission fraction. When fN\textsubscript{2}O\textsubscript{nit} = 0.5% was used, the total nitrification-associated N\textsubscript{2}O emission was reduced to 1.59 Tg N\textsubscript{2}O yr\textsuperscript{-1} (=43% in comparison with fN\textsubscript{2}O\textsubscript{nit} = 1% case) in the 2000s. Because of the smaller nitrogen loss by nitrification in these cases, N\textsubscript{2}O emission from denitrification increased slightly because of the use of excess inorganic nitrogen in the soils. As a result of compensation, total N\textsubscript{2}O emission was only slightly affected (−4.3%) by the halved fN\textsubscript{2}O\textsubscript{nit} value. When fN\textsubscript{2}O\textsubscript{nit} = 2% was used, total nitrification-associated N\textsubscript{2}O emission increased to 4.4 Tg N\textsubscript{2}O yr\textsuperscript{-1} (+56.6%). The asymmetric sensitivity of nitrification-associated N\textsubscript{2}O emission to the change in fN\textsubscript{2}O\textsubscript{nit} value is attributable to alteration of the nitrogen stock in the soils and the non-linear response of N\textsubscript{2}O emission to nitrogen availability [36]. Finally, when using the parameterizations of

Fig 6. Sensitivity analysis of global N\textsubscript{2}O emission to the fraction of nitrification-associated N\textsubscript{2}O emission, fN\textsubscript{2}O\textsubscript{nit}. (a) Fixed 1%, (b) soil pH-based parameterization, and (c) median of meta-analysis records (0.139%, outliers removed). Each N\textsubscript{2}O flux was estimated by using the VISIT model. Decadal mean values for the 1980s, 1990s, and 2000s are shown.

https://doi.org/10.1371/journal.pone.0219159.g006
DNDC and DLEM models, lower total N$_2$O emissions were estimated (15.0 Tg N$_2$O yr$^{-1}$) with lower contribution of nitrification-associated emission due to the generally low value of fN$_2$O-nit (data not shown).

When the median fN$_2$O-nit value of the meta-analysis (0.14%) was used in the VISIT simulation, the total N$_2$O emission was estimated as 15.4 Tg N$_2$O yr$^{-1}$ in the 2000s; nitrification-associated N$_2$O emission was largely reduced to 0.50 Tg N$_2$O yr$^{-1}$. In contrast, when the mean value of all data (fN$_2$O-nit = 1.92%) was used, higher rates of total and nitrification-associated N$_2$O emission (17.5 and 4.3 Tg N$_2$O yr$^{-1}$) were estimated. Therefore, selection of representative fN$_2$O-nit value can affect the simulation result by as much as 2.1 Tg N$_2$O yr$^{-1}$ at the global scale. When including the difference in model parameterizations, the uncertainty becomes even larger to 2.5 Tg N$_2$O yr$^{-1}$.

These results confirmed that the estimated N$_2$O emission was sensitive to the assumed fN$_2$O-nit value, which was poorly constrained in the present models and varied with selection of the metric from the observational data. Although observations implied that the fN$_2$O-nit can be variable in response to environmental conditions such as temperature and moisture, the scarcity of observational evidence has prevented us to use a standard parameterization and permitted us to assume constant values. Apparently, additional constraints and new parameterizations are required to obtain a reliable N$_2$O budget and its flow components. Observational data and insights are accumulating with support of technical developments such as isotopic tracers, but it would take decades to obtain a comprehensive dataset with enough coverage. Next, we made an attempt to develop a new parameterization of fN$_2$O-nit applicable at the global scale.

**Application of pH-based parameterization**

In 54 records of the meta-analysis data, soil pH condition was included, allowing us to relate with fN$_2$O-nit (Fig 7A). It was found that fN$_2$O-nit takes higher values at acidic soil conditions with pH below 5 and lower values under neutral to alkaline soil conditions. We obtained a regression curve using exponential function, which gives slightly higher fN$_2$O-nit values in comparison with the equation of Martikainen (1985) [40]. Using the soil pH map and the regression curve, global distribution of pH-based fN$_2$O-nit was obtained (Fig 7B). As expected from the pH pattern, boreal conifer forest soils and humid tropical soils show higher fN$_2$O-nit values. High fN$_2$O-nit in humid tropics estimated by the present study is consistent with those by DNDC and DLEM parameterizations, while the three maps differ largely in temperate regions. When using the pH-based parameterization, total N$_2$O emission in the 2000s was estimated as 16.8 Tg N$_2$O yr$^{-1}$ (25.2% by nitrification and 74.8% by denitrification). Global distribution of soil N$_2$O emission was reasonably simulated (Fig 8; see S2 Fig for seasonal change), in comparison with those obtained by atmospheric inversion studies [56]. For example, high emissions from temperate croplands and tropical forests were well captured.

**Impacts on global N$_2$O budget**

The simulated N$_2$O emission account for important features of the global budget. For example, interannual variability in the total N$_2$O emission was comparable with the atmospheric growth rate especially after 1990, i.e. the period when ample observational data became available (Fig 9). The decline after the Mt. Pinatubo eruption in 1991 and following increase were well captured, implying the major impact of soil emission on the atmospheric N$_2$O variability in recent decades. As clearly shown in the relationship between nitrogen input and N$_2$O emission (Fig 10A), the historical increase of N$_2$O emission in recent decades is mainly attributable to increased land N inputs by atmospheric deposition and fertilizer use. The slope, so-called
emission factor, was estimated as 1.75%. This is a bit higher than the typical emission factor value of IPCC guideline [57], 1%, but note that the present estimate includes the effects of climate and land-use changes. In the model simulation, N₂O emissions from nitrification and

![Diagram showing parameterization of nitrification-associated N₂O emission fraction, fN₂O nit as a function of soil pH.](https://doi.org/10.1371/journal.pone.0219159.g007)
denitrification increased in parallel, as shown by the linear relationship between the two emissions (Fig 10B). Validating the N\textsubscript{2}O production scheme at broad scales is difficult even by comparing with inversion studies. In forthcoming studies, appropriate observations of N\textsubscript{2}O isotopomers may provide supporting evidences [58, 59].
Our meta-analysis and model simulations suggest the importance and uncertainty of fN$_2$O$_{nit}$ values in the evaluation of global N$_2$O budget. Variability in a single parameter could cause a difference in total N$_2$O emission of as much as 2.5 Tg N$_2$O yr$^{-1}$ (in the 2000s, 15.0 to 17.5 Tg N$_2$O yr$^{-1}$)—equivalent to the variability of 0.2 Pg CO$_2$-C yr$^{-1}$ (based on a global warming potential of 298 for N$_2$O with 100-yr horizon [1]). The magnitude of the estimated N$_2$O emission increase from the beginning to the end of the simulation was about 3.9 Tg N$_2$O yr$^{-1}$ in the simulations with different fN$_2$O$_{nit}$ values (comparable with a simulation by O-CN model [60] and a global synthesis [55]). Because the global nitrogen cycle would be further perturbed by human activities and climate change [5], the uncertainty in the present models can be a critical limiting factor for environmental management. Although global N$_2$O budget may be constrained by using atmospheric observational data to some extent, in-depth understanding of flow components and their environmental regulations is essential to conduct effective nitrogen and climate managements.

**Concluding remarks**

To our knowledge, this is the first study to have focused on fN$_2$O$_{nit}$ in a comprehensive manner. We should pay attention to the fact that this study used a limited number of observational data and extrapolated them to the global scale. Nevertheless, the dataset covering a variety of ecosystems and soils and the process-based model assessment gave us clues to better
understanding of N$_2$O cycle. Our findings gives an explanation for the results of the N$_2$O model intercomparison project, which shows 20% of global soil N$_2$O emission difference among terrestrial models [61]. In our analysis, selection of fN$_2$O$_{nit}$ affected the estimation of global N$_2$O emission by about 15% (2.5/16 Tg N$_2$O yr$^{-1}$). Because of the scarcity of reliable observational data, our meta-analysis did not give a conclusive value or equation for N$_2$O$_{nit}$. Most of observed values were low (<1%) but neglecting high values may result in underestimation of nitrification-associated N$_2$O emission at broad scales. We found a potential and representative range of fN$_2$O$_{nit}$ values and a useful pH-based empirical model covering both natural and agricultural soils. This result should encourage extensive observations of nitrification-associated N$_2$O emission and fN$_2$O$_{nit}$ by using a standardized protocol especially in the field. Although the present meta-analysis showed that the majority of empirical data were obtained by the C$_2$H$_2$ inhibition or isotopic tracer methods, further discussions on effective measurement strategy (e.g., spatial and temporal coverage and representativeness) are required for field and model researchers to improve model accuracy. Because of extreme complexity of the soil biogeochemical processes, it is inevitable to use simplified schemes like the 'hole-in-a-pipe' concept and bulk parameters like fN$_2$O$_{nit}$ to conduct simulations at broad scales. Because N$_2$O has a high global warming potential, a small difference in estimated N$_2$O emission can considerably influence the total greenhouse gas budget, as shown by our sensitivity simulations. To develop a better parameterization of N$_2$O$_{nit}$ and other, related properties, further observations—especially in the field—and process studies of the nitrogen cycle and greenhouse gas emissions are critically important.

Supporting information

S1 Table. PRISMA 2009 check list.
(DOC)

S2 Table. List of search terms.
(XLSX)

S3 Table. Data extracted from the literature and used by the meta-analysis.
(XLSX)

S1 Fig. Map of soil pH (Global Soil Data Task, International Geosphere-Biosphere Program).
(TIF)

S2 Fig. Seasonal change in total N$_2$O emission simulated by the VISIT model. (a) Northern winter (DJF: December, January, and February), (b) northern spring (MAM: March, April, and May), (c) northern summer (JJA: June, July, and August), and (d) northern autumn (SON: September, October, and November).
(TIF)

Author Contributions

Conceptualization: Tomohiro Hajima, Akihiko Ito.
Data curation: Motoko Inatomi.
Funding acquisition: Akihiko Ito.
Investigation: Motoko Inatomi, Akihiko Ito.
Methodology: Tomohiro Hajima.
Project administration: Akihiko Ito.
Visualization: Motoko Inatomi.
Writing – original draft: Motoko Inatomi, Akihiko Ito.
Writing – review & editing: Tomohiro Hajima.

References
1. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. 2013: 996.
2. Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009; 326:123–5. https://doi.org/10.1126/science.1176985 PMID: 19713491
3. Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature 2016; 534:631–9. https://doi.org/10.1038/nature18307 PMID: 27357792
4. Bouwman AF, Fung I, Matthews E, John J. Global analysis of the potential for N2O production in natural soils. Global Biogeochem Cycles 1993; 7(3):557–97.
5. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 2008; 320:889–92. https://doi.org/10.1126/science.1136674. PMID: 18487183
6. Davidson EA. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience 2009; 2:659–62. https://doi.org/10.1038/NGEO698
7. Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature 2008; 451:293–6. https://doi.org/10.1038/nature06592 PMID: 18202647
8. Tian H, Lu C, Ciais P, Michalak AM, Canadell JG, Saikawa E, et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016; 531:225–8. https://doi.org/10.1038/nature16946 PMID: 26961656
9. Barnard R, Leadley PW, Hungate BA. Global change, nitrification, and denitrification: A review. Global Biogeochem Cycles 2005; 19(GB1007). https://doi.org/10.1029/2004GB002282GB1007
10. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zeche mister-Boltenstern S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls. Phil Trans Royal Soc 2013; 2013(20130122). https://doi.org/10.1098/rstb.2013.0122
11. Bollmann A, Conrad R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biol 1998; 4:387–96.
12. Hink L, Nocol GW, Prosser JI. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environmental Microbiology 2017; 19(12):4829–37. https://doi.org/10.1111/1462-2920.13262 PMID: 26971439
13. Stark JM. Modeling the temperature response of nitrification. Biogeochemistry 1996; 35:433–45.
14. Bateman EJ, Baggs EM. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol Fertil Soils 2005; 41:379–88.
15. Farquharson R. Nitrification rates and associated nitrous oxide emissions from agricultural soils—a synopsis, Soil Research 2016; 54:469–80. https://doi.org/10.1071/SR15304
16. Raich JW, Rastetter EB, Melillo JM, Kicklighter DW, Grace AL, Moore III B, et al. Potential net primary productivity in South America: application of a global model. Ecol Appl 1991; 1:399–429. https://doi.org/10.2307/1941899 PMID: 2775669
17. Li C, Froliking S, Froliking TA. A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity. J Geophys Res 1992; 97:9759–76.
18. Firestone MK, Davidson EA. Microbiological basis of NO and N₂O production and consumption in soil. In: Andreade MO, Schimel DS, editors. Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere: John Wiley and Sons Ltd; 1989. p. 7–21.

19. Davidson EA, Keller M, Erickson HE, Vershot LV, Veldkamp E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 2000; 50(8): 667–80.

20. Zhu X, Burger M, Doane TA, Horwath WR. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N₂O and NO under low oxygen availability. Proc Natl Acad Sci USA 2013; 110 (16): 6328–33. https://doi.org/10.1073/pnas.1219993110 PMID: 23576736

21. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic review and meta-analyses: PRISMA statement. BMJ 2009; 339: b2535. https://doi.org/10.1136/bmj.b2535 PMID: 19622551

22. Chen D, Suter HC, Islam A, Edis R. Influence of nitrification inhibitors on nitrification and nitrous oxide (N₂O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem 2010; 42: 660–4. https://doi.org/10.1016/j.soilbio.2009.12.014

23. R-Core-Team. R version 3.4.2. 2017.

24. Frolking SE, Mosier AR, Ojima DS, Li C, Parton WJ, Potter CS, et al. Comparison of N₂O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutr Cycl Agroecosys 1998; 52: 77–105.

25. Li C, Aber J, Stange F, Butterbach-Bahl K, Papen H. A process-oriented model of N₂O and NO emissions from forest soils: 1. model development. J Geophys Res 2000; 105: 4369–84.

26. Tian H, Xu X, Liu M, Ren W, Zhang C, Chen G, et al. Spatial and temporal patterns of CH₄, N₂O, and NO emissions in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosci. 2010; 7: 2673–94. https://doi.org/10.5194/bg-7-2673-2010

27. Saikawa E, Schlosser CA, Prinn RG. Global modeling of soil nitrous oxide emissions from natural processes. Global Biogeochem Cycles 2013; 27: 972–89. https://doi.org/10.1002/gbc.20087

28. Zaehle S, Friend AD. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Global Biogeochem Cycles 2010; 24 (GB1005). https://doi.org/10.1029/2009GB003521.

29. Tian H, Yang J, Lu C, Xu R, Canadell JG, Jackson RB, et al. The global N₂O Model Intercomparison Project. Bull Am Meteorol Soc 2018; 99(6): 1231–51. https://doi.org/10.1175/BAMS-D-17-0212.1

30. Inatomi M, Ito A, Ishijima K, Murayama S. Greenhouse gas budget of a cool temperate deciduous broadleaved forest in Japan estimated using a process-based model. Ecosystems 2010; 13: 472–83. https://doi.org/10.1007/s10021-010-9332-7

31. Ito A, Inatomi M. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosci. 2012; 9: 759–73. https://doi.org/10.5194/bg-9-759-2012

32. Ito A, Nishina K, Ishijima K, Hashimoto S, Inatomi M. Emissions of nitrous oxide (N₂O) from soil surfaces and their historical changes in East Asia: a model-based assessment. Prog Earth Planet Sci 2018; 5(55): https://doi.org/10.1186/s40645-018-0215-4

33. Ito A, Oikawa T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): A description based on dry-matter production theory and plot-scale validation. Ecol Model 2002; 151: 147–79.

34. Ito A. The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agr For Meteorol 2008; 148: 738–47. https://doi.org/10.1016/j.agrformet.2007.12.007

35. Ito A, Nishina K, Reyer CPO, François L, Henrot A-J, Munhoven G, et al. Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Env Res Lett 2017; 12 (085001). https://doi.org/10.1088/1748-9326/aa7a19

36. Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K, et al. Generalized model for N₂ and N₂O production from nitrification and denitrification. Global Biogeochem Cycles 1996; 10: 401–12.

37. Harris I, Jones PD, Osborn TJ, Lister DH. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 2013; 34: 623–42. https://doi.org/10.1002/joc.3711

38. Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Chan 2011; 109: 117–61. https://doi.org/10.1016/j.solidrose.153-2

39. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, et al. Nitrogen cycles: past, present, and future. Biogeochem 2004; 70: 153–226.
40. Martikainen PJ. Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil. Appl Env Microbiol 1985; 50(6): 1519–25.
41. IGEP-DIS. Global Soil Data Products CD-ROM. Oak Ridge, Tennessee, U.S.A.: Oak Ridge National Laboratory, 2000.
42. Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K. Nitrous oxide emissions from agricultural fields: Assessment, measurement and mitigation. Plant Soil 1996; 181: 95–108.
43. Ambus P. Relationship between gross nitrogen cycling and nitrous oxide emission in grass-clover pasture. Nutr Cycl Agroecosys 2005; 72: 189–99. https://doi.org/10.1007/s10705-005-1269-4
44. Carter MS. Contribution of nitrification and denitrification to N₂O emissions from urine patches. Soil Biol Biochem 2007; 39: 2091–102. https://doi.org/10.1016/j.soilbio.2007.03.013
45. Garrido F, Hénault C, Gaillard H, Pérez S, Germon JC. N₂O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biol Biochem 2002; 34: 559–75.
46. Khalil K, Mary B, Renault P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O₂ concentration. Soil Biol Biochem 2004; 36: 687–99.
47. Klemmedson L, Svensson BH, Rosswall T. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biol Fertil Soils 1988; 6: 112–9.
48. Maag M, Vínter FP. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl Soil Ecol 1996; 4: 5–14.
49. Mathieu O, Hénault C, Lévêque J, Baujard E, Milloux M-J, Andreux MF. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using¹⁵N tracers. Environ Pollut 2006; 144: 933–40. https://doi.org/10.1016/j.envpol.2006.02.005
50. Mørkved PT, Dörsch P, Bakken LR. The N₂O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol Biochem 2007; 39: 2048–57.
51. Mørkved PT, Dörsch P, Henriksen TM, Bakken LR. N₂O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biol Biochem 2006; 38: 3411–20. https://doi.org/10.1016/j.soilbio.2006.05.015
52. Tortoso AC, Hutchinson GL. Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N₂O emissions. Appl Env Microbiol 1990; 56(6): 1799–805.
53. Ambus P. Nitrous oxide production by denitrification and nitrification in temperate forest, grassland and agricultural soils. Eur J Soil Sci 1998; 49: 495–502.
54. Chapuis-Lardy L, Wrage N, Metay A, Chotte J-L, Bernoux M. Soils, a sink for N₂O? A review. Global Change Biol 2007; 13: 1–17.
55. Syakila A, Kroeze C. The global nitrous oxide budget revisited. Greenhouse Gas Measur Manag 2010; 1: 17–26. https://doi.org/10.3763/ghgmm.2010.0007
56. Thompson RL, Patra PK, Ishijima K, Saikawa E, Corazza M, Karstens U, et al. TransCom N₂O model inter-comparison–Part 1: Assessing the influence of transport and surface fluxes on tropospheric N₂O variability. Atmos Chem Phys 2014; 14: 4349–68. https://doi.org/10.5194/acp-14-4349-2014
57. Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidance for National Greenhouse Gas Inventories: Cambridge University Press; 2006.
58. Yoshida N, Toyoda S. Constraining the atmospheric N₂O budget from intramolecular site preference in N₂O isotopomers. Nature 2000; 405: 330–4. https://doi.org/10.1038/35012558 PMID: 10830958
59. Park S, Pérez T, Boering KA, Trumbore SE, Gil J, Marquina S, et al. Can N₂O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N₂O production and consumption in tropical soils? Global Biogeochem Cycles 2011; 25(GB1001). https://doi.org/10.1029/2009GB003615
60. Zaehe S, Ciais P, Friend AD, Prieur V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geosci. 2011; 4: 601–5. https://doi.org/10.1038/NGEO1207
61. Tian H, Yang J, Xu R, Lu C, Canadell JG, Davidson EA, et al. Global soil nitrous oxide emissions since the pre-industrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution and uncertainty. Global Change Biol 2019; 25: 640–59. https://doi.org/10.1111/gcb.14514