Dose and Time-Related Pathological and Genotoxic Studies on Thiamethoxam in Fresh Water Fish (Labeo rohita) in Pakistan

Abdul Ghaffar,1 Riaz Hussain2*, Sobia Noreen1, Gulham Abbas3, Iqra Rasheed Chodhary1, Ahrrah Khan4,5*, Zulfiqar Ahmed6, Muhammad Kasib Khan7, Kashfa Akram1, Mazhar Ulhaq7, Noman Ahmad1, Farah Ali2 and Maria Niaz1

1Department of Zoology; 2University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan; 3Centre of Excellence in Marine Biology, University of Karachi, Karachi-75270, Pakistan; 4Shandong Vocational Animal Science and Veterinary College, Weifang, 261061, China; 5Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan; 6Department of Food Science and Technology, College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan; 7Department of Veterinary Biomedicine, Faculty of Veterinary and Animal Sciences, PMAS Arid Agriculture University, Rawalpindi-46300, Pakistan

Corresponding authors: ahrar122@yahoo.com (AK); driazhussain@yahoo.com (RH)**

ARTICLE HISTORY (19-294)
Received: July 17, 2019
Accepted: December 02, 2019
Published online: January 07, 2020

Key words:
Genotoxicity
Hematology
Histopathology
Labeo rohita
Thiamethoxam

ABSTRACT
A total of 60 fresh-water fish were obtained from a local fish breeding center and carefully transported in plastic bags having adequate amount of oxygen and water. After 7 days of acclimatization, all the fish were randomly divided and kept in five equal groups (A-E). The experimental fish were exposed to various concentrations (0, 0.5, 1.0, 1.5 and 2.0 mg/L) of thiamethoxam for a period of 120 h. Blood and other tissue samples of each treated fish were collected after 72, 96 and 120 h. Various physical responses like operculum and bouncing movement, mucus secretion, darkening of fins, fin tremors, swimming in isolation on one side, surface breathing and erratic swimming were observed in fish treated with higher concentrations. Results indicated that the values of red blood cell counts (RBCs), packed cell volume (PCV) and hemoglobin (Hb) concentrations were significantly lower and white blood cell (WBCs) and neutrophil counts increased significantly in thiamethoxam treated fish as compared to unexposed fish. The frequency of various nuclear (micronuclei, erythrocytes with nuclear remnant, erythrocytes with condensed nuclei and erythrocytes without nucleus) and morphological changes (leptocytes, stomatocytes, dividing erythrocytes and tear shape erythrocyte) intreated fish was significantly higher as compared to control group. Microscopic analysis of gills tissues of various experimental fish exhibited atrophy of secondary lamellae, pyknosis of lamellar epithelial pillar cells, lamellar degeneration, congestion, aneurysm and curling of lamellae.

©2019 PVJ. All rights reserved

To Cite This Article: Ghaffar A, Hussain R, Noreen S, Abbas G, Chodhary IR, Khan A, Ahmed Z, Khan MK, Akram K, Ulhaq M, Ahmad N, Ali F and Niaz M, 2020. Dose and time-related pathological and genotoxic studies on thiamethoxam in fresh water fish (Labeo rohita) in Pakistan. Pak Vet J, 40(2): 151-156. http://dx.doi.org/10.29261/pakvetj/2020.002

INTRODUCTION

Contamination with poisonous compounds such as pesticides, trace metal, heavy metals, polycyclic aromatic hydrocarbons and polycyclic aliphatic hydrocarbons and numerous other effluents causes varieties of adverse impacts on living organisms leading to considerable population damage. The development and advancement in technology, industries and common use of numerous synthetic and natural compounds have led to contamination of aquatic ecosystems (Ghaffar et al., 2015a; Ghaffar et al., 2016; Ghaffar et al., 2018a). Among different synthetic compounds, pesticides are extensively and frequently used in modern agriculture, public health and veterinary practice to remove insects (Hussain et al., 2014; Ali et al., 2020). The pesticides cause harmful and deleterious effects on both terrestrial and aquatic ecosystems (Hussain et al., 2015; Gul et al., 2017; Hussain et al., 2019). Agricultural and industrial routes are continuously releasing their toxic chemicals as waste products which not only contaminate the aquatic biota but also cause numerous tissue changes in variety of exposed organisms (Witeska et al., 2014; Qureshi et al., 2016; Ghaffar et al., 2018b). Thiamethoxam being a
neonicotinoid insecticide is frequently used in agriculture to protect variety of food crops including cotton fields and paddy fields to control pests (whiteflies, aphids and leafhoppers (Gul et al., 2017). Neonicotinoid insecticides (thiamethoxam) obstruct the acetylcholine receptors, therefore disturbing the central nervous system activities leading to death of insects (Green et al., 2005; Shalabey et al., 2010). Recent studies have indicated that among different neonicotinoids, the thiamethoxam is widely used due to its selectivity (Al-Kherb, 2011) against different pests across the globe and affects development, reproductive system and immunity by causing morphological, pathological and physiological changes in non-target organisms (Mason et al., 2013; Thaker, 2014; Ugurlu et al., 2015). Different environmental pollutants particularly pesticides/heavy metal have been linked to cause adverse effects such as apoptosis, poor fertilization, abnormal spermatogenesis, DNA fragmentation, mitochondrial dysfunctions through ROS-scavenging antioxidants depletion in various target and non-target organisms ranging from aquatic life to humans (Khan et al., 2015; Ghaffar et al., 2017a). Aquatic ecosystems are the ultimate basins for agricultural residues as well industrial pollutants (Gupta et al., 2014). Among all aquatic animals, fish are sensitive to water pollution. In fish, different toxicants are mainly absorbed through the gills, skin or alimentary duct and diffuse into different tissues resulting to disruption of physiological and biochemical processes (Qureshi et al., 2016; Ghaffar et al., 2019). It is reported that the sub lethal concentrations of pesticides in aquatic environment induces abnormal metabolisms and changes in behavior and death of aquatic organisms. Monitoring and determination of different adverse effects particularly genotoxicity of pesticides in exposed and non-target species is sensitive and reliable end point (Khan et al., 2015; Ghaffar et al., 2016). Different important biomarkers attract huge attention in screenings of various compounds in environmental studies as a sensitive tool for evaluation and detection of effects of pollutants from natural and anthropogenic sources (Kostic et al., 2017). Therefore, this study aimed at to investigate the effects of thiamethoxam considering DNA damage and histopathological examination of gills as sensitive biomarkers in fresh-water fish.

MATERIALS AND METHODS

Experimental fish and management: The experimental research was planned and conducted at laboratories of Department of Life Sciences (Toxicology and aquaculture laboratory) and Veterinary Sciences (Pathology), Islamia University of Bahawalpur. A total of 60 fresh-water fish were purchased from local fish breeding center Hasilpur. All the experimental fish were carefully transported in plastic bags having adequate amount of oxygen and water. The fish were kept in glass aquaria and handled according to guidelines of Scientific Ethic Committee of Islamia University of Bahawalpur.

Apparent healthy and active fish (n=60) of same weight, age and size were kept in glass aquaria about 64x32x34 cm containing 100 L water capacity and equipped with oxygenators. All the fish were left to acclimatize for 7 days. After seven days of acclimatization the experimental fish were randomly separated into five groups A, B, C, D and E. Fish present in group served as control group. Different doses of thiamethoxam were given to all remaining groups. All the experimental test specimens in various groups were exposed to different concentrations (0.5, 1.0, 1.5 and 2.0 mg/L) of thiamethoxam to groups (B, C, D and E) respectively for a period of 120 h. Clinical signs, behavioral changes and mortality were monitored throughout the experiment.

Hematobiochemical parameters: Blood samples with and without anticoagulant were collected after 72, 96 and 120 h of treatments from caudal vein by using 26-gauge hypodermic needle. For morphological and nuclear changes in erythrocyte of exposed fish a fine thin blood smear on microscopic slide was prepared from fresh blood of each fish separately. All the blood smears were fixed with absolute alcohol and stained with Giemsa solution. After that they were examined under microscope and photographed. Blood with anticoagulant was processed for hematology. About 5 ml of blood was collected in the clean glass test tube with an anticoagulant. All the collected blood samples were used to determine total red blood cell counts, total and differential leukocyte counts and packed cell volume (Ghaffar et al., 2016).

Histopathology: For histopathological changes, gills were quickly removed from fish, rinsed in isotonic saline solution and fixed in 10% neutral buffered formaldehyde (pH 7.2) solution. After fixation, tissues were dehydrated in ascending series of alcohol and embedded in paraffin wax. Sections of 4-5µm thickness were cut on a rotary microtome (Shandon Finesse, Italy) and dried on a slide warmer at 37°C. The tissues were deparaffinized in xylene and dehydrated in ascending series of alcohol. Sections were stained with standard hematoxylin and eosin (H&E) method. Sections were finally cleared in xylene and mounted in DPX mountant medium. Multiple sections of each test specimen were observed under a light microscope (Leica, Germany).

Statistical analysis: Data obtained in this experiment were subjected to statistical analysis (SAS, 2004). Mean ± SE values for hematological and nuclear changes indifferent treatment groups were compared by Tukey’s test. Significant difference was accepted at P<0.05 in all cases.

RESULTS

Physical and blood biochemical responses: No mortality and behavioral abnormalities were recorded in untreated fish. Fish received higher concentrations of thiamethoxam showed different physical responses like bouncing movement, darkening of fins, fin tremors, swimming on one side, operculum movement, mucus secretion and surface breathing. Bouncing movement, swimming in isolation and erratic swimming were the characteristic clinical features examined in fish treated with higher concentrations pesticide (1.5, 2.0 mg/L). The results on different blood parameters indicate that the values of red blood cell counts (RBCs) were significantly decreased in pesticide treated fish after 96 and 120 h in groups D and F as compared to unexposed fish (Table 1). The packed cell volume (PCV) and hemoglobin (Hb)
concentrations decreased significantly in group F after 96 h while in groups D and F after 120 h when compared to non-treated fish. The white blood cell (WBCs) and neutrophil counts increased significantly in fish of group F after 72 h while in groups D-F after 96 and 120 h of treatment. The lymphocyte population decreased significantly in fish of group F after 72 and 96 h while in groups D-F after 120 h of treatment as compared to non-treated fish. The monocyte population decreased significantly after 96 h of treatment in fish of group F and in groups E-F after 120 h when compared to non-treated fish.

Genotoxic and morphological changes: The frequency of DNA damage (micronuclei) and different nuclear abnormalities in erythrocyte of pesticide-treated fish is presented in Table 2. Results indicate that the rate of micronuclei, erythrocytes with nuclear remnant and erythrocytes without nucleus increased significantly in group F after 72 and in groups E-F after 96 and 120 h of treatment (Fig.1). The rate of notched nuclei increased significantly in groups E-F throughout the experimental when compared to untreated fish. The rate of condensed nuclei was significantly higher in fish of groups E-F after 72 and 96 h while in groups D-F after 120 h of treatment. The frequency of vacuolated erythrocyte, leptocytes and tear shape erythrocyte was significantly higher in fish of group F after 72 h while in groups E-F after 120 h of treatment. The frequency of stomatocytes and dividing erythrocytes increased significantly in fish of group F after 72 h while in groups E-F after 96 and 120 h of treatment.

Histopathological changes in gills: Histological examination of gill tissue of control fish showed normal arrangements of primary and secondary lamellae (Fig. 2). Gill tissues in treated fish in groups (D and E) after 96 h of treatment presented prominent histopathological changes including atrophy of secondary lamellae, pyknosis of lamellar epithelial pillar cells, disruption and disorganization of primary and secondary lamellae, lamellar degeneration, congestion, aneurysm and curling of secondary lamellae. Moderate histopathological changes like degeneration, curling and sloughing of lamellar epithelium were observed in gill tissues of fish of group C after 120 h of exposure.

DISCUSSION

Although no mortality was recorded in treated fish in all experimental groups but exposure of thiamethoxam induced different behavioral changes viz., bouncing movement, erratic swimming, darkening of fins, fin tremors, swimming on side, operculum movement, increased mucus secretion and swimming in isolation. The clinical and behavioral changes in thiamethoxam treated fish might be due to toxic effects. Previous no report could be found in published literature about the clinical signs and behavioral changes in thiamethoxam treated fish. However, it is reported that neonicotinoid pesticides cause poor growth in both in fry in and adult fish (Hayasaka et al., 2012; Gibbons et al., 2014). Clinical signs like operculum and bouncing movement could be due to inhibition of acetylcholinesterase in treated fish. Previously it is well known that thiamethoxam lowers the activity of acetylcholinesterase and causes adverse consequences in fresh-water fish (Caslen et al., 2018). Moreover, different adverse effects including behavioral disorders in offspring of rats (Gu et al., 2013) and incoordination, reduced movement, cessation of feeding and chick developmental abnormalities in birds have also been reported due to neonicotinoid pesticides such as imidacloprid and fipronil pesticides (Gibbons et al., 2014). In current experimental study, all the hematological changes in treated fish occurred in dose dependent mode. Significant decrease in red blood cell counts, hematocrit, hemoglobin concentration, monocyte and lymphocyte while increased values of white blood cell count and neutrophil were observed treated fish. It is reported that the monitoring of functions of hematopoietic

Fig. 1: Blood smear of fresh-water fish (Labeo rohita) exposed to different concentrations of thiamethoxam (mg/L) 1.15 and 2.0) after 96 and 120 h of experiment exhibiting different nuclear and morphological changes in erythrocytes, i.e., microcytes (m), macrocytes (ma), pear shaped erythrocytes (p), spindle shaped erythrocytes (s), dividing erythrocytes (arrow-heads), erythrocytes with condensed nucleus (c), erythrocyte with micronucleus (arrows) and erythrocyte with fragmented/nuclear remnants (f). Giemsa Stain; X1000.
Fig. 2: Photomicrograph of fresh-water fish (Labeo rohita) exposed to different concentrations of thiamethoxam (mg/L) (1.15 and 2.0) after 96 and 120 h of experiment exhibiting different histopathological alterations in gills. a) showing disorganization and disruption of cartilaginous cores (dcc), necrosis of lamellar epithelial cells secondary lamellae (arrow heads), disorganization of primary lamellae (**), and sloughing of lamellar epithelium (arrows). b) uplifting of secondary lamellae (*), disruption and disorganization of primary lamellae (**), necrosis of lamellar epithelium (arrow heads). c) curling of secondary lamellae (*), necrosis and disruption of primary lamellae (**), necrosis of secondary lamellar epithelial cells (arrows) and disruption and disorganization of cartilaginous cores (dcc). d) uplifting of secondary lamellae (*), sloughing of secondary lamellar epithelium (arrows), disorganization and disruption of cartilaginous cores (dcc) and telangectasia of secondary lamellae (arrow heads). H & E Stain; X100.

Table 1: Effect of Thiamethoxam on some hematological parameters of fresh-water fish Labeo rohita

Parameters	Thiamethoxam (mg/L)	A (0.0)	B (0.5)	C (1.0)	D (1.5)	E (2.0)
Red blood cells count (10³/µL)						
72	3.98±0.05	4.01±0.01	3.97±0.02	3.93±0.01	3.79±0.14	
96	4.09±0.03	4.06±0.03	3.79±0.16	3.15±0.11*	3.14±0.01*	
120	4.11±0.04	4.01±0.04	3.68±0.04	3.04±0.01*	2.91±0.12*	
Hemoglobin (gm/dl)						
72	7.55±0.01	7.38±0.02	6.64±0.01	6.17±0.04	5.99±0.03	
96	7.55±0.01	7.38±0.01	6.64±0.11	6.17±0.03	5.33±0.10*	
120	7.55±0.02	7.17±0.04	6.17±0.03	5.42±0.07*	5.01±0.03*	
Pack cell volume (%)						
72	30.51±0.19	30.34±0.06	30.24±0.05	30.09±0.11	28.67±0.21	
96	30.46±0.22	30.27±0.04	29.23±0.01	28.67±0.21	24.22±0.12*	
120	33.08±2.31	29.23±0.01	28.67±0.21	24.61±0.20*	22.67±0.12*	
White Blood Cells counts (10³/µL)						
72	20.71±0.04	20.86±0.06	20.96±0.01	21.40±0.19	25.06±0.06*	
96	20.75±0.02	21.25±0.02	21.90±0.69	25.06±0.06*	28.62±0.20*	
120	20.65±0.06	21.23±0.03	25.06±0.06*	25.95±0.15*	29.52±0.06*	
Neutrophils (%)						
72	15.19±0.22	15.60±0.02	16.41±0.18	16.53±0.08	20.56±0.22*	
96	15.12±0.26	16.47±0.20	19.15±0.25	20.56±0.22*	25.10±0.80*	
120	14.99±0.19	16.44±0.20	20.36±0.22*	21.40±0.07*	25.06±0.16*	
Lymphocytes (%)						
72	22.19±0.08	22.03±0.02	21.45±0.42	20.24±0.15	16.25±0.08*	
96	22.16±0.07	21.85±0.22	20.47±0.07	19.30±0.23	16.25±0.08*	
120	22.10±0.08	21.61±0.21	19.30±0.23	16.27±0.08*	16.05±0.18*	
Monocytes (%)						
72	4.31±0.01	4.14±0.01	4.06±0.02	4.02±0.01	3.71±0.07	
96	4.30±0.01	4.09±0.03	4.00±0.01	3.92±0.02	3.03±0.06*	
120	4.28±0.01	4.10±0.04	4.03±0.02	3.09±0.05*	2.93±0.12*	

The values with asterisk (mean±SE) in the rows differ significantly (P<0.05) from control group.

organs and different blood parameters are important and considered as the biomarkers for screening of different toxicants and determination of pathophysiological status of organisms exposed organisms (Roy and Nath, 2011; Ghaffar et al., 2016). The significant decreased red blood cell counts and hemoglobin levels in thiamethoxam treated fish could be due to poor efficiency of fresh-water fish to deliver enough oxygen to blood forming tissues (Hussain et al., 2014; Ghaffar et al., 2017b). Furthermore, lower values of red blood cell and hemoglobin levels can also be due to fatigue metabolic activities and inefficiency of hemopoietic tissues in pesticide treated fish (Ghaffar et al., 2015b). Previously, significantly reduced hematological values in thiamethoxam treated birds (Gul
et al., 2017) and Oreochromis niloticus (Trewavas) have also been reported (Roy and Nath, 2011). The lower values of red blood cell count and hemoglobin concentrations might also be due to insufficient exchange of gasses by gills (Osman et al., 2009). The significant increased white blood cell counts and lower values of monocyte and lymphocyte population in treated fish could be due to injurious stimulation of thiamethoxam and the sensitivity of immune system.

Different nuclear (micro nuclei, erythrocytes with nuclear remnants, erythrocyte with blebbed nuclei, erythrocytes without nucleus, notched nucleus, condensed nuclei) and morphological (vacuolated erythrocytes, leptocytes, stomatocytes, dividing erythrocytes, tear shape erythrocyte) abnormalities in erythrocytes of thiamethoxam treated fish were observed. Previously, in published literature no report is available about the nuclear and morphological changes in fresh-water fish exposed to thiamethoxam. The nuclear changes in erythrocyte might be due to increased induction of oxidative stress and caspase-activated DNase activation leading to mitochondrial damage (Campos-Pereira et al., 2012; Yan et al., 2016; Ghaffar et al., 2018; Hussain et al., 2018). Previously, different studies have reported nuclear and morphological alterations like micronuclei, nuclear condensation, erythrocyte swelling, lobed nuclei, blebbed nuclei, lamellae, lamellar degeneration, congestion, pyknosis of lamellar epithelial pillar cells, disruption and disorganization of primary and secondary lamellae, lamellar degeneration, congestion, aneurysm

Table 2: Effect of Thiamethoxam on frequency of different nuclear changes (%) in erythrocytes of Labeo rohita

Parameter/HRS	A (0.0)	B (0.5)	C (1.0)	D (1.5)	E (2.0)
Micro nucleus (%)	0.32±0.03	0.33±0.02	0.35±0.01	0.37±0.01	1.31±0.02*
Erythrocytes with Nuclear Remnant (%)	0.34±0.01	0.36±0.02	0.37±0.03	1.33±0.04*	2.42±0.02*
Blabbed Nucleus in erythrocytes (%)	0.17±0.02	0.18±0.02	0.22±0.01	0.25±0.01	1.96±0.02*
Erythrocytes Without Nucleus (%)	0.18±0.01	0.21±0.02	0.21±0.02*	1.87±0.01*	
Notched Nucleus (%)	0.24±0.03	0.26±0.02	0.27±0.02	0.97±0.01*	1.32±0.01*
Condensed Nucleus (%)	0.13±0.01	0.13±0.02	0.14±0.01	0.72±0.02*	0.97±0.01*

The values with asterisk (mean ±SE) in the rows differ significantly (P<0.05) from control group. HRS=High Resolution Scenarios.

Table 3: Effect of Thiamethoxam on frequency of different morphological changes (%) in erythrocytes of Labeo rohita

Parameters/HRS	A (0.0)	B (0.5)	C (1.0)	D (1.5)	E (2.0)
Vacuolated nucleus in Erythrocytes (%)	0.42±0.03	0.44±0.01	0.45±0.01	0.96±0.02	1.12±0.01*
Leptocytes (%)	0.43±0.03	0.45±0.02	0.46±0.01	1.26±0.02*	1.71±0.01*
Stomatocytes (%)	0.15±0.01	0.15±0.01	0.15±0.01	0.16±0.02	0.30±0.01*
Dividing erythrocytes (%)	0.21±0.02	0.22±0.02	0.23±0.02	0.88±0.01*	1.40±0.02*
Tear shape erythrocyte (%)	0.26±0.03	0.27±0.02	0.29±0.01	0.59±0.03	0.84±0.02*

The values with asterisk (mean ±SE) in the rows differ significantly (P<0.05) from control group. HRS=High Resolution Scenarios.
and curling of secondary lamellae. The histological changes in gills of exposed fish could be due to increased lipid peroxidation, catalase activity and glutathione S-transferase levels gills (Yan et al., 2016). Previously, increased protein oxidation, vacuolization and hemostatic infiltration in gills of Gammarus kischineffensis and zebrafish exposed to thiamethoxam has been reported (Ugurlu et al., 2015; Clasen et al., 2018).

Conclusions: Based on results of current experimental study, it can be concluded that thiamethoxam even at relevant environmental concentrations causes hematological, genotoxic and histopathological changes in fresh-water fish in a time and dose related manner.

Authors contribution: RH, AG, SN, AK, MKK and IRC planned and executed the research. AG, RH, GA, FA and KA were involved in statistical analysis. RH, MU, ZA and NA prepared the manuscript.

REFERENCES
Ali A, Khatoon A, Abidin ZU, et al., 2020. The adverse effects of carboburan are efficiently counteracted by the supplementation of star anise (Illicium verum) in broiler chicks. Toxin Reviews DOI: 10.1080/15569543.2020.1749082
Campos-Pereira FD, Camila AO, Acacio AP, et al., 2012. Early cytotoxic and genotoxic effects of atrazine on Wistar rat liver: a morphological immunohistochemical, biochemical, and molecular study. Ecotoxicol Environ Saf 78:170-7.
Clasen B, Loro VL, Murussi CRH, et al., 2018. Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-ﬁsh system. Sci Total Environ 19:737-43.
Ghaffar A, Hussain R, Abbas G, et al., 2017a. Cumulative effects of sodium arsenate and diaminophosphate on growth performance, hemato-biochemistry and protoplast in commercial layer. Pak Vet J 37:257-62.
Ghaffar A, Hussain R, Abbas G, et al., 2017b. Arsenic and copper sulfate in combination causes testicular and serum biochemical changes in Japanese quails (Coturnix japonica). Pest Bioche 52:1143-7.
Hussain R, Ghaffar A, Ali HM, et al., 2018. Analysis of different toxic impacts of Fipronil on growth, hemato-biochemistry, protoplast and reproduction in adult cockerels. Toxin Rev 37:294-303.
Hussain R, Ali F, Javed MT, et al., 2019. Clinico-hematological, serum biochemical, genotoxic and histopathological effects of trichlorfon in adult cockerels. Toxin Rev DOI: 10.1080/15569543.2019.1673422.
Hayasaka D, Korenaga T, Suzuki K, et al., 2012. Cumulative ecological impacts of two successive annual treatments of imidaclopid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol Environ Saf 80:355-62.
Hussain R, Ghaffar A, Ali HM, et al., 2018. Analysis of different toxic impacts of Fipronil on growth, hemato-biochemistry, protoplast and reproduction in adult cockerels. Toxin Rev 37:294-303.
Hussain R, Ghaffar A, Ali HM, et al., 2018. Analysis of different toxic impacts of Fipronil on growth, hemato-biochemistry, protoplast and reproduction in adult cockerels. Toxin Rev 37:294-303.
Hussain R, Ali F, Javed MT, et al., 2019. Clinico-hematological, serum biochemical, genotoxic and histopathological effects of trichlorfon in adult cockerels. Toxin Rev DOI: 10.1080/15569543.2019.1673422.
Hussain R, Khan A, Mahmood F, et al., 2014. Clinico-hematological and tissue changes induced by butachlor in male Japanese quail (Coturnix japonica). Pest Bioche 109:58-63.
Hussain R, Mahmood F, Khan A, et al., 2015. Genotoxic and pathological effects of malathion in male Japanese quail (Coturnix japonica). Pak J Agri Sci 52:1143-9.
Hanan HAA, Akram W, Iqbal J, et al., 2015. Thiamethoxam resistance in the house fly, Musca domestica L.: Current status, resistance selection, cross-resistance potential and possible biochemical mechanisms. PLoS One 10:e0125850.
Kostić J, Kolarčević S, Kračun-Kolarčević M, et al., 2017. The impact of multiple stressors on the biomarkers response in gills and liver of freshwater breams during different seasons. Sci Total Environ 1260-21670-1.
Mason R, Tennekes H, Sanchez-Bayo F, et al., 2013. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J Environ Immunol Toxicol 13:1-12.
Osman MM, El-Fiky SA, Soheir YM, et al., 2009. Impact of water pollution on histopathological and electrophoretic characters of Atriochromis niloticus. Pesca Estructura 2018:10-6.
Qureshi IZ, Bibi A, Shahid S, et al., 2016. Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquat Toxicol 179:103-14.
Roy B and S Nath, 2011. Some haematological investigations on Oreocharis niloticus (Trewavas) following exposure to thiamethoxam. Acta Zool Lituanica 21:301-5.
Shalaby SEM, Farrag ARH and El-Saied GSM, et al., 2010. Toxicological potential of thiamethoxam insecticide on albino rats and its residues in some organs. J Arab Soc Med Res 5:165-72.
Strunjak-Perovic I, Lisicic D, Cez-Rakovac R, et al., 2010. Evaluation of micronucleus and erythrocytic nuclear abnormalities in Balkan whip snake Hierophis gemonensis. Ecotoxicology 19:1460-5.
Takumoto J, Danjo M, Kobayashi Y, et al., 2013. Effects of exposure to cloothainidin on the reproductive system of male quails. J Vet Med Sci 75:755-60.
Ugurlu P, Unlu E and Satar El, et al., 2015. The toxicological effects of thiamethoxam on Gammarus kischineffensi (Schellenberg 1937) (Crustacea: Amphipoda). Environ Toxicol Pharmacol 39:720-6.
Witekta M, Sarnowski P, Ługowska K, et al., 2014. The effects of cadmium and copper on embryonic and larval development of ide Leuciscusidus L. Fish Physiol Biochem 40:151-63.
Yan SH, Wang JH, Zhu LS, et al., 2016. Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio Rerio) livers. Environ Toxicol 31:206-15.