Title
Low temperature magnetoresistivity of UBe13

Permalink
https://escholarship.org/uc/item/22m50021

Journal
Journal de Physique, 47(3)

ISSN
0302-0738

Authors
Remenyi, G
Jaccard, D
Fiouquet, J
et al.

Publication Date
1986

DOI
10.1051/jphys:01986004703036700

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Résumé.- Des expériences de magnétorésistance montrent une relation simple quadratique \(T_c \) de la résistivité de la phase normale juste au-dessus de la température superconductive \(T_c \). La résistivité résiduelle dépend, elle, fortement du champ magnétique. Pour \(12 \, \text{T} \leq H \leq 4 \, \text{T} \), la magnétorésistivité peut être décomposée en :

\[
\rho(T, H) = \rho_0(H) + A(H)T^2
\]

\(\rho_0 \) et A suivant des variations respectives en \(\sqrt{H} \) et \(H \). L'accent est mis sur la dualité particules légères et lourdes.

Abstract.- Very low temperature magnetoresistivity experiments exhibit a simple quadratic \(T_c \) dependence of the resistivity just above the superconducting transition temperature \(T_c \). Extrapolated residual resistivity depends strongly on the magnetic field. For \(12 \, \text{T} \leq H \leq 4 \, \text{T} \), the magnetoresistivity can be fitted by :

\[
\rho(T, H) = \rho_0(H) + A(H)T^2
\]

\(\rho_0 \) and A following respectively \(\sqrt{H} \) and \(H \) variations. Emphasis has been given on the duality between light and heavy particles.
its magnetization. The latter is linear up to \(H = 10 \) T and quasi independent of temperature below \(T = 4.2 \) K \([5]\). A large negative magnetoresistivity has been already observed for \(\text{UBe}_13 \) \([6]\). New experiments performed down to \(56 \, \text{mK} \) at fields up to \(12 \) T, and down to \(0.42 \) K at fields up to \(24 \) T will be reported. The aim is to determine when simple laws, such as \(T^2 \) dependence, can be recovered in the resistivity of the normal phase. Data on the upper critical fields \(H_c(T) \) will be briefly given for comparison with published results \([6]\). Previous experiments \([6]\) were limited to fields up to \(10 \) T and the data analysis were almost restricted to the superconducting transition. Finally magnetization measurements up to \(24 \) T down to \(1.3 \) K will be also reported.

Experimental conditions.

The sample was cut from the same batch as that sample recently used for performing thermal conductivity and thermoelectric power (TEP) measurements \([7]\). Four leads were soldered using indium and the resistivity was measured by an ac cryogenics bridge with a low power dissipation. The linear voltage output allows a continuous field sweep of the resistor at a constant temperature. The error bar on the resistivity data is less than \(0.1 \, \mu\Omega \, \text{cm} \). For \(H < 12.5 \) T the magnetic field was produced by a superconducting coil and the sample immersed in the mixing chamber of a dilution refrigerator (which reaches \(56 \) MK). Between \(12.5 \) T and \(24.6 \) T the field was produced by a polyhelix type resistive magnet and temperatures were achieved in a \(^3\)He cryostat down to \(0.42 \) K. In zero field, the temperature was measured with a Ge thermometer, which was calibrated on \(^3\)He vapour pressure, and was controlled with a capacitance under magnetic fields. DC magnetization \((M)\) measurements show the strong linearity of \(M \) with \(H \) up to the highest applied field of \(24 \) T at the lowest measured temperature of \(1.3 \) K and the quasi independence of \(M \) with the temperature below \(4.2 \) K (Fig. 1).

Magnetoresistivity.

Figure 2 represents the magnetoresistivity for different temperatures and figure 3, at constant field, the temperature variation of the resistivity, measured up to \(12.5 \) T, while figure 4 shows results obtained in resistive magnets. As was observed previously, the magnetoresistivity is large and negative \([6,7]\). The weak maximum in the temperature variation of \(\rho \) at \(T \approx 2.4 \) K for \(H = 0 \) clearly disappears for \(H > 2 \) T (for \(H = 2 \) T, \(\rho \) is quasi constant for \(2.4 < T < 3 \) K). The drop of \(\rho \) at \(H = 21 \) T has been observed with field increasing or decreasing; unfortunately, due to the failure of the magnet, it was not possible to repeat these high field experiments.

![Fig. 1.- Magnetization of \(\text{UBe}_13 \) up to 24 T, down to 1.5 K.](image)

![Fig. 2.- Magnetoresistivity of \(\text{UBe}_13 \) at different temperatures.](image)
-102 kOe/K, in excellent agreement with published data [1,6,7]. Contrary to other recent reported work [8], no departure from a field linearity of $H_{c_2} (T)$ is observed at $T \rightarrow 0$ K; an extrapolation to $T \rightarrow 0$ K gives $H_{c_2} (0) = 10.2$ T.

The main interesting feature is, that over all the field range $H < H_{c_2} (0)$, $\rho (T_{c})$ follows a T^2 dependence i.e. for $H < H_{c_2} (0)$, $\rho (T_{c})$ obeys the relation:

$$\rho (T_{c}) = \rho_0 + \alpha T^2$$

with $\alpha = 180 \mu \Omega \text{cm}K^{-2}$ and $\rho_0 = 38 \mu \Omega \text{cm}$ as shown in figure 6.

This relation between $\rho (T_{c})$ and T_{c} is especially relevant taking into account the apparent enormous disorder scattering of the normal phase.

Figure 3 clearly shows that extrapolations to 0 K lead to residual resistivities which are strongly field dependent. For $H > 4$ T, $\rho (H)$ can be represented at very low temperature by the relation:

$$\rho (H) = \rho_0 (H) + A (H) T^2$$

The striking results are: a) below $H_{c_2} (0)$, dependences of ρ_0 and A in \sqrt{H} and H respectively and b) above H_{c_2}, the linear extrapolation to zero of A for $H \sim 20$ T, i.e. near the field, where a drop in the resistivity has been observed (Fig.7). The $\rho_0 (H)$ and $A (H)$ curves intersect at low field for $H \sim 2$ T and in high field for $H \sim H_{c_2} (0)$.

It is worthwhile mentioning that ρ_0 and T_{c} vary linearly with H in the same field high regime II. If a connection exists with the regimes I and II of the phase diagram, the crossing of $\rho_0 (H)$ and $A (H)$ must imply a characteristic temperature $T^* \sim 1$ K by homogeneity arguments (ρ_0 in $\mu \Omega \text{cm}$, A in $\mu \Omega \text{cm}K^{-2}$). A similar temperature $T^* \sim 1$ K corresponds also to the mapping of the temperature dependence of the normalized magnetoresistivity by H above 1 K in $T^* T^\prime$ agreement with previous results (see ref. [4]).

Discussion.

Before discussing in more detail the experiments, let us underline, that the valence i.e. the nature of the magnetism carried by the U centres is not so well known [9], as for trivalent cerium ions in HFC. For example, in a cubic symmetry, a trivalent cerium ion (Kramers' ion) can only be in a non magnetic ground state via a Kondo like coupling while an U's' ion can be in a singlet ground state by the sole mechanism of the crystal field effect like the Pr's' ions. This leads to basic difficulties for decomposing (in a single impurity scheme) crystal field and Kondo effects and also for understanding the nature of the ground state of the lattice notably the occurrence of a non magnetic ground state. In the discussion, the terminology "Kondo temperature", applied to the magnetization, is related to the quenching of the angular momentum even if one of its mechanism is the formation of a singlet crystal field ground state. The presence of a Kondo like mechanism is obvious at high temperature as ρ increase on cooling down to 2.3 K.

At 4.2 K, the magnetoresistivity $\Delta \rho$ is negative but not yet quadratic in H i.e. in M over all the field range as it is the
case for paramagnetic impurities (Fig. 8). The strong temperature dependence of the magnetoresistivity contrasts with the independence of the magnetization with the temperature. That implies different characteristic energies in transport ($T^* \lesssim 1$ K) and in magnetization measurements ($T_K \approx 8$ K). On cooling, departure from the single ion behaviour increases since lattice effects become important below $T_m \approx 2.4$ K. However, the magnetoresistivity remains negative contrary to other HFC like Upt_3 [10,11], CeAl_3 [12], CeRu_2Si_2 [13] and CeCu_2Si_2 [14], where a positive contribution appears on cooling when the coherent lattice regime is approached.

In UBe_3, a strong scattering of the itinerant electron by the U centres is observed almost down T_m. This behaviour must be correlated with the weak value of $T^* \sim 2.4$ K as compared to the Kondo temperature $T_K \approx 8$ K necessary to explain the weak temperature dependence of its magnetization (Fig. 1). Further evidence is the strong scattering disorder found in TEP experiments, since a negative minimum of Q is not achieved for UBe_3 at T_c ($H = 0$) [7]. Clearly, the band-width suitable to describe an ordering of the f electrons in the k space must be lower than 8 K. In contrast, as previously emphasized, in CeCu_2Si_2, $T_K \approx 24$ K > $T_m \approx 5$ K and in Upt_3, $T_K \approx 300$ K > T_m or T^*, the spin fluctuation temperature [15-17]; a negative minimum of the TEP occurs at 20 K for CeCu_2Si_2 [18] and a positive maximum at $T \approx 8$ K for Upt_3 [15]. The almost single ion behaviour of the U atoms in UBe_3 may be due to the fact that the U ions are strongly isolated from each other by the surrounding 13 Be atoms. Furthermore, the quasi independence of the U atom may be reinforced also from the large number (n_s ~ 28) of s electrons per unit cell [19]. However, the relation between the number of f centres and the number of itinerant conduction electrons in the lattice properties is still an open question.

Basically, there are two types of particles involved in the problem: light electrons, given mainly by the Be atoms, and heavy f electrons of the U atoms. These last particles correspond to a weak delocalization of the f electrons by their Kondo like coupling with the itinerant electrons.

Fig. 5.- Upper critical field phase diagram.

Fig. 6.- Quadratic dependence of $\rho(T_c^*)$ with the superconducting transition and representation of $\rho(H)$ in T^2.

[20,21]. A two component picture of the normal phase has been already considered above T_c in thermal conductivity [21] and Hall effects experiments [22]. Here, it seems supported by a better linearity of the magnetoresistivity ($\Delta \rho = \rho(H) - \rho(H=0)$) than that of the magnetoresistivity in a plot log $\Delta \rho$ versus log H. Such a decomposition must fail when the phase of the two components must be mutually adjusted below T_c or when, in the normal phase, any auxiliary energy reservoir has collapsed. Clearly at $H \rightarrow 0$ from resistivity and TEP data [7] the temperature range of the coherent phase in the normal phase is very small, i.e. $\ll T_m$. It has been observed that the A coefficient of the T^2 term of the resistivity can be scaled with the square of...
the coefficient γ of the specific heat [31]. The linear decrease of A with the magnetic field suggests a ΔH field decrease of γ.

The quadratic T_c dependence of $\rho(T_c)$ shows that in the vicinity of the superconducting transition one has the temperature dependence usually observed for electron-electron interactions [23, 24], the magnitude $\alpha = 180 \mu \Omega \text{cm} K^{-2}$ of the T_c^2 term is still larger than that found in the normal phases of HFC (for CeAl$_3$, $A = 35 \mu \Omega \text{cm} K^{-2}$ [25] and for CeCu$_6$, $A = 120 \mu \Omega \text{cm} K^{-2}$ [26, 27]). The superconductivity may follow some precursor coherence among the f electrons in the normal phase. Thus, at T_c, the T_c^2 law of the resistivity appears to correspond to coherence effects driven by the inset of the superconductivity. There is a mutual push-pull between superconductivity and interactions among particles. Correlatively, the disorder scattering enhances the upper critical fields. In regime I the large disorder observed in resistivity and TEP is associated with an enhancement of $H_{c2}(T)$ in agreement with the idea that the disorder enhances the paramagnon strength and weakens the pair breaking parameter [28]. Qualitatively, the important of localization effects agree also with the \sqrt{H} dependence of the residual resistivity ρ_0 found for $4 T < H < H_{c2}(0)$ as a similar negative magnetoresistivity is observed for weak 3d localization [29]. Quantitatively, the variation of the residual magnetoresistivity is not a weak perturbation and it is necessary to convert resistivity in conductivity. The negative magnetoresistivity is lower by a factor 3 from that predicted by the theory of a weak localization. Interaction effects in disordered systems must also be considered.

![Fig. 8.- Dependence $\Delta \rho = \rho(0) - \rho(H)$ at different temperature as a function of H^2](image)

The regime change in $\rho(H)$ for $H \sim H_{c2}(0)$ corresponds to a domain, where a T^2 law is obeyed up to $0.8 K \approx T_{c1}(H=0)$ and where a change in the sign of TEP seems to occur from negative to positive [7]. For $H = 0$, the electronic mean free path ($l_e = 13 \AA$ for $\rho \sim 130 \mu \Omega \text{cm}$) is smaller than the superconducting coherence length $\phi_c \sim 65 \AA$. The interesting feature is that the large negative magnetoresistivity leads to an increase of the mean free path such that it becomes comparable to ϕ_c for $H \sim H_{c2}(0)$.

The applicability of the dirty limit approximation is doubtful for UBe$_{13}$ since a decrease of $\rho(T_c)$ by 30 $\%$ [6] gives results similar to those reported here. Experiments on samples of different purities performed in the same apparatus to minimize experimental errors must be performed to clarify this point and also the interplay between localization, interaction and disorder. Finally up to $H < 24 T$ and $T > 0.46 K$ no re-entrant superconductivity has been found as recently proposed [30].

Conclusion.

The interplay between coherence effects of a lattice, localization and interaction effects is obvious for the specific case of UBe$_{13}$. The main interesting feature is the connection between superconductivity and the properties of the normal phase. Re-
ducing the physics of HFC to the sole f particles neglects the interesting problem of coupling between two interacting systems. Finally, the diversity of the hierarchy between basic parameters (T, T, anisotropy and crystal field effects) leads to drastic differences between HFS which needs to be understood via their normal phases.

Acknowledgments. - Work at Los Alamos was performed under the auspices of the US Department of Energy. A major part of these results was presented orally at the Meeting of Baltimore (1984) of the American Physical Society [32].

References

[1] H.R. Ott, H. Rudigier, Z. Fisk and J.L. Smith, Phys. Rev. Lett. 50 (1983) 1595.
[2] F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschade, W. Franz and H. Schäfer, Phys. Rev. Lett. 43 (1979) 1892.
[3] G.R. Stewart, Z. Fisk, J.O. Willis and J.L. Smith, Phys. Rev. Lett. 52 (1984) 679.
[4] G.R. Stewart, J. Appl. Phys. 57 (1985) 3049.
[5] H.R. Ott, H. Rudigier, Z. Fisk, J.L. Smith, Moment Formation in Solids, ed. by W.J.L. Buyers (Plenum Press, New-York) 1984, p. 308.
[6] M.B. Maple, J.W. Chen, S.E. Lambert, Z. Fisk, J.L. Smith, H.R. Ott, J.S. Brooks and M.J. Naughton, Phys. Rev. Lett. 54 (1985) 477.
[7] D. Jaccard, J. Flouquet, Z. Fisk, J.L. Smith and H.R. Ott, J. Physique Lett. 45 (1985) L-811.
[8] J.W. Chen, S.E. Lambert, M.B. Maple, M.J. Naughton, J.S. Brooks, Z. Fisk, J.L. Smith, H.R. Ott, J. Appl. Phys. 57 (1985) 3076.
[9] Y. Baer, H.R. Ott, J.C. Fuggle, L.E. DeLong, Phys. Rev. B 24 (1981) 5384.
[10] J.J.M. Franse, P.H. Frings, A. de Visser, A. Menovsky, T.T.M. Palstra, P.H. Kes, J.A. Mydosh, Physica 126 B (1984) 116.
[11] D. Jaccard, J. Flouquet, P. Lejay and J.L. Tholence, J. Appl. Phys. 57 (1985) 3082.
[12] G. Remenyi, A. Briggs, J. Flouquet, O. Laborde and F. Lapierre, J. Magn. Magn. Mat. 31-34 (1983) 407.
[13] J. Flouquet, P. Haen, D. Jaccard, F. Lapierre and G. Remenyi, Proceedings of I.C.M. '85, J. Magn. Magn. Mat., to be published.
[14] Y. Onuki, T. Hirai, T. Kanatsubara, S. Takayangi, A. Sumiyama, A. Furukawa, Y. Oda and H. Nagano, to be published 5th International Conference on Crystalline Field and Anomalous Mixing Effects in f-Electron Systems, in J. Magn. Magn. Mat. to be published.
[15] F. Steglich, U. Rauchswalbe, U. Gottowick, H.M. Mayer, G. Spa, N. Grewe, U. Poppe and J.J.M. Franse, J. Appl. Phys. 57 (1985) 3055.
[16] J.J.M. Franse, A. de Visser, A. Menovsky and P.H. Frings, Intern. Conference of Crystal Field Effects, Sendai (Japan) in 14, to be published in J. Magn. Magn. Mat.
[17] G.E. Brodale, R.A. Fischer, E. Phillips and G.R. Stewart, to be published, I.C.M. '85.
[18] D. Jaccard, J. Flouquet and J. Sierro, J. Appl. Phys. 57 (1985) 3084.
[19] A.W. Overhauser and J. Appel, Phys. Rev. B 31 (1985) 193.
[20] J. Flouquet, Congrès de la Société Française de Physique 1983, A Travers la Physique (Les Editions de Physique) P. 293.
[21] D. Jaccard and J. Flouquet, J. Magn. Magn. Mat. 47-48 (1985) 45.
[22] N.E. Alexeevskii, X.N. Narozhuyi, Y.T. Nizhankovskii, E.G. Nikolaev and E.P. Khlybov, JETP Lett. 40 (1984) 421.
[23] W.G. Baber, Proc. Roy. Soc. Ser. A 256 (1937) 383.
[24] L. Colquitt, H.R. Frankhauser and F.J. Blatt, Phys. Rev. B 4 (1971) 292.
[25] K. Andres, J.E. Graebner and H.R. Ott, Phys. Rev. Lett. 35 (1985) 1779.
[26] H.R. Ott, H. Rudigier, Z. Fisk, J.O. Willis and G.R. Stewart, Solid State Commun. 53 (1985) 235.
[27] A. Amato, D. Jaccard, E. Walker and J. Flouquet, to be published in Solid State Commun.
[28] M.T. Béal-Monod, Phys. Rev. B 31 (1985) 1647.
[29] A. Kawabata, Solid State Commun. 34 (1980) 431.
[30] M. Tashiki, T. Koyama and S. Takahashi, Proceedings of International Conference on the Materials and Mechanisms of Superconductivity, Ames (1985), to be published in Physica, B.
[31] B. Bellarbi, A. Benoit, D. Jaccard, J.M. Mignot and H.F. Braun, Phys. Rev. B 30 (1984) 1182.
[32] J. Flouquet, D. Jaccard and J.M. Mignot, Bull. Am. Phys. Soc. 30 (1985) 503.