The isotropy constant and boundary properties of convex bodies

Mathieu Meyer and Shlomo Reisner

Abstract

Let \mathcal{K}^n be the set of all convex bodies in \mathbb{R}^n endowed with the Hausdorff distance. We prove that if $K \in \mathcal{K}^n$ has positive generalized Gauss curvature at some point of its boundary, then K is not a local maximizer for the isotropy constant L_K.

1 Introduction and statement of the main result.

Let K be a convex body in \mathbb{R}^n endowed with its canonical scalar product and Euclidean norm denoted by $| \cdot |$. It is well known (as a standard reference to the subject we refer to [BGVV]; another, earlier, comprehensive reference is [MP]) that there exists a unique (up to orthogonal transformations) affine, volume preserving, mapping $A : \mathbb{R}^n \to \mathbb{R}^n$ such that for some constant $M_K > 0$, depending on K, one has for every $y \in \mathbb{R}^n$

$$\int_{AK} \langle x,y \rangle dx = 0 \quad \text{and} \quad \int_{AK} \langle x,y \rangle^2 dx = M_K^2 |y|^2.$$

We say that K is in isotropic position (or that K is isotropic) if A is the identity on \mathbb{R}^n. The isotropy constant L_K of K is defined by

$$L_K = \frac{M_K}{|K|^{\frac{1}{2n}}}.$$

where $|B|$ denotes the volume of a Borel subset B of \mathbb{R}^n. Note that it is customary to assume, as part of the definition of isotropic position, that $|AK| = 1$; for the sake of convenience in our proofs, we prefer not to include this assumption in the definition.

The famous Slicing Problem asks whether there exists a universal constant $C > 0$ such that, for any n, any convex body K in \mathbb{R}^n has a hyperplane section $K \cap H$ such that

$$\text{vol}_{n-1}(K \cap H) \geq C \text{vol}_n(K)^{\frac{n-1}{n}}.$$

This problem is equivalent to the existence of an upper bound $D > 0$ for L_K, independent of the dimension. J. Bourgain proved in [B] that $L_K \leq Cn^{1/4}\log(n)$, this bound was improved by B. Klartag in [K] to $L_K \leq Cn^{1/4}$, where C is an absolute constant. Note that

Keywords: convex bodies, isotropy. 2010 Mathematics Subject Classification: 46B20, 52A20, 53A05.
the minimum of L_K is obtained only for ellipsoids (for an interesting discussion of stability in that inequality, see [AB]).

Since the exact upper bound for L_K is still an open problem, it is interesting to investigate what are the properties of the maximizers for this quantity (a compactness argument shows that, for a fixed n, maximizers for L_K exist among convex bodies in \mathbb{R}^n). We say that a convex body K in \mathbb{R}^n is a local maximizer (resp. local minimizer) for L_K if for some $\varepsilon > 0$ one has $L_{K'} \leq L_K$ (resp. $L_{K'} \geq L_K$) for all convex bodies K' in \mathbb{R}^n such that $d(K', K) < \varepsilon$ (d may denote here the Hausdorff or the Banach–Mazur distance). L. Rademacher proved in [R] that if a simplicial polytope is a maximizer for L_K, then it must be a simplex. Campi, Colesanti and Gronchi showed in [CCG], using shadow movements, that if K has an open subset of its boundary which is C^2 with positive Gauss curvature, then K can not be a (local) maximizer of L_K in \mathbb{R}^n.

The main result of this paper is the following strong version of the result of [CCG]:

Theorem 1. If a convex body K in \mathbb{R}^n is a local maximizer for L_K, then it has no positive generalized Gauss curvature at any point of its boundary. The same is true for a centrally symmetric K which is a local maximizer for L_K among centrally symmetric convex bodies.

An open problem is whether a maximizer for L_K is necessarily a polytope. Our result is a step in this direction, because it shows that a maximizer has generalized Gauss curvature equal to 0 almost everywhere and never positive on its boundary. To prove theorem 1 we shall suppose that a convex body K has a positive generalized curvature at some point X_0 of its boundary (see Definition 2 below), modify slightly K in a neighborhood of X_0, from inside and from outside to get a body K' for which we shall estimate $L_{K'}$. The paper is organized as follows. In section 2, after presenting some notations, we study the effect of such modifications, that are described in the general case in Lemmas 1 and 3 and in the neighborhood of some special points of the boundary of K in Proposition 4 and Lemma 5. Corollary 6 is a generalization of [CCG]'s result, replacing positive curvature by strict convexity on an open subset of the boundary. To estimate carefully the asymptotic behavior of $L_{K'}$, we prove the geometric Lemma 7 and we get in Lemma 8 a special property of potential maximizers of L_K. Finally section 3 is devoted to the proof of theorem 1 which needs some technical and very precise computations of volumes.

In connection to Theorem 1 one should mention the paper [RSW], by Reisner, Schütt and Werner, where an analogous result is proved related to Mahler’s conjecture. Namely: a minimizer K of the volume-product can not have a point of positive generalized Gauss curvature on its boundary (see also [GM]).

2 Notations and preliminary results.

Let K be a convex body in \mathbb{R}^n. It is not hard to show, and is well known, that for any convex body K, denoting by $g(K)$ the centroid of K, one has

$$ M_{K}^{2n} = \frac{1}{n!} \int_{K-g(K)} \cdots \int_{K-g(K)} \left(\det(X_1, \ldots, X_n) \right)^2 dX_1 \cdots dX_n $$

$$ = \frac{1}{n!} \int_{K} \cdots \int_{K} \left(\det(X_1 - g(K), \ldots, X_n - g(K)) \right)^2 dX_1 \cdots dX_n. $$
Let $X_0 \in \partial K$. For $r > 0$, denote $B(X_0, r)$ the Euclidean ball of center X_0 and radius r.

Definition 1. We say that K has positive generalized (Gauss) curvature at X_0, if there exists an inner normal N of K at X_0 and a positive definite quadratic form q on $N^\perp = \{ x \in \mathbb{R}^n; \langle x, N \rangle = 0 \}$ such that for every $\varepsilon > 0$, there exists $a > 0$, such that whenever $Y \in N^\perp$ and $y \in \mathbb{R}$ satisfy

$$ X_0 + Y + yN \in \partial K \cap B(X_0, a), $$

then

$$ (1 - \varepsilon)q(Y) \leq y \leq (1 + \varepsilon)q(Y). $$

Of course, this normal N and the quadratic form q are then unique. Observe that if K is C^2 with positive curvature, then K has positive generalized curvature at any point X of its boundary, but that positive generalized curvature at some point X_0 does not imply any regularity at any point of ∂K other than X_0. We refer to [SW] for more details on positive generalized curvature.

The following two lemmas show the effect of local slight modifications of an isotropic body K on $\int_K \ldots \int_K (\det(X_1, \ldots, X_n))^2 dX_1 \ldots dX_n$.

Lemma 1. Let K be an isotropic convex body. Suppose that $C_m, m \geq 1$ is a sequence of Borel subsets of \mathbb{R}^n such that $C_m \cap \text{int}(K) = \emptyset$, $|C_m| > 0$, $|C_m| \to 0$ and $K_m := K \cup C_m$ is a convex body. Then, when $m \to +\infty$,

$$ \frac{1}{n!} \int_{K_m} \ldots \int_{K_m} (\det(X_1, \ldots, X_n))^2 dX_1 \ldots dX_n = M_{2n}^2 + M_{2(n-1)}^2 \int_{C_m} |X|^2 dX + O(|K_m \setminus K|^2). $$

Lemma 2. Let K be an isotropic convex body. Suppose that $D_m, m \geq 1$ is a sequence of Borel subsets of \mathbb{R}^n such that $D_m \subset K$, $|D_m| > 0$, $|D_m| \to 0$ and $K'_m := K \setminus D_m$ is a convex body. Then, when $m \to +\infty$,

$$ \frac{1}{n!} \int_{K'_m} \ldots \int_{K'_m} (\det(X_1, \ldots, X_n))^2 dX_1 \ldots dX_n = M_{2n}^2 - M_{2(n-1)}^2 \int_{D_m} |X|^2 dX + O(|K \setminus K'_m|^2). $$

Proof of Lemma 1 and Lemma 2:

One has

$$ \frac{1}{n!} \int_{K_m} \ldots \int_{K_m} (\det(X_1, \ldots, X_n))^2 dX_1 \ldots dX_n $$

$$ = \frac{1}{n!} \left(\int_K \ldots \int_K (\det(X_1, \ldots, X_n))^2 dX_1 \ldots dX_n \right) $$

$$ + n \int_{C_m} \int_K \ldots \int_K (\det(X_1, \ldots, X_n))^2 dX_1 \ldots dX_n + O(|K_m \setminus K|^2) \right). $$

Now

$$ \int_{C_m} \int_K \ldots \int_K (\det(X_1, \ldots, X_n))^2 dX_1 \ldots dX_n $$
\[
= \int_{C_m} \int_{K} \cdots \int_{K} \left(\sum_{\sigma \in S_n} \sum_{\tau \in S_n} (-1)^{\varepsilon(\sigma)\varepsilon(\tau)} \prod_{i=1}^{n} X_{\sigma(i)}X_{\tau(i)} \right) dX_1 \ldots dX_n.
\]

Since \(K \) is isotropic one has
\[
\int_{K} X_{\sigma(i)}X_{\tau(i)} dX_i = 0 \text{ if } \sigma(i) \neq \tau(i).
\]

It follows that
\[
\int_{C_m} \int_{K} \cdots \int_{K} \left(\det(X_1, \ldots, X_n) \right)^2 dX_1 \ldots dX_n = (n-1)! \ M_{K}^{2(n-1)} \sum_{m=1}^{n} X_{1m}^2 dX_1
\]
\[
= (n-1)! \ M_{K}^{2(n-1)} \int_{C_m} \sum_{m=1}^{n} \left| X \right|^2 dX.
\]

We can thus conclude. The proof of lemma 2 is analogous. \(\square \)

In the next lemma, we investigate, under the hypotheses of lemmas 1 and 2 how \(M_{K_m} \) differ from \(M_K \).

Lemma 3. Under the hypotheses of Lemma 1 or respectively of Lemma 2, one has
\[
M_{K_m}^{2n} = \frac{1}{n!} \int_{K_m} \cdots \int_{K_m} \left(\det(X_1, \ldots, X_n) \right)^2 dX_1 \ldots dX_n + O(\left| K_m \setminus K \right|^2)
\]

or respectively,
\[
M_{K_m}^{2n} = \frac{1}{n!} \int_{K_m'} \cdots \int_{K_m'} \left(\det(X_1, \ldots, X_n) \right)^2 dX_1 \ldots dX_n + O(\left| K \setminus K_m' \right|^2).
\]

Proof: We assume throughout the proof that \(K \) is isotropic but, a posteriori, the equalities stated in the lemma remain true under invertible linear transformations.

Let \(g_m \) be the centroid of \(K_m \). One has:
\[
M_{K_m}^{2n} = \frac{1}{n!} \int_{K_m - g_m} \cdots \int_{K_m - g_m} \left(\det(X_1, \ldots, X_n) \right)^2 dX_1 \ldots dX_n.
\]

Since the centroid of \(K \) is at 0. One has for every \(u \in S^{n-1}, \)
\[
\langle g_m, u \rangle = \frac{1}{|K| + |C_m|} \int_{K} \langle X, u \rangle dX + \int_{C_m} \langle X, u \rangle dX = \frac{1}{|K| + |C_m|} \int_{C_m} \langle X, u \rangle dX,
\]
and thus \(|g_m| = O(|C_m|) \) (observe that the hypotheses imply that the \(C_m, m \geq 1, \) are uniformly bounded).
We have
\[n! M_{K_m}^{2n} = \int_{K_m} \cdots \int_{K_m} (\det(Y_1 - g_m, \ldots, Y_n - g_m))^2 dY_1 \cdots dY_n \]
\[= \int_{K_m} \cdots \int_{K_m} (\det(Y_1, \ldots, Y_m) - \sum_{k=1}^{n} \det(Y_1, \ldots, Y_{k-1}, g_m, Y_{k+1}, \ldots, Y_n))^2 dY_1 \cdots dY_n \]
\[= A - B + C. \]

where
\[A := \int_{K_m} \cdots \int_{K_m} (\det(Y_1, \ldots, Y_n))^2 dY_1 \cdots dY_n \]
\[B := 2 \sum_{k=1}^{n} \int_{K_m} \cdots \int_{K_m} \det(Y_1, \ldots, Y_n) \det(Y_1, \ldots, Y_{k-1}, g_m, Y_{k+1}, \ldots, Y_n) dY_1 \cdots dY_n \]
\[C := \int_{K_m} \cdots \int_{K_m} (\sum_{k=1}^{n} \det(Y_1, \ldots, Y_{k-1}, g_m, Y_{k+1}, \ldots, Y_n))^2 dY_1 \cdots dY_n \]

The term \(A \) has been treated already:
\[\frac{A}{n!} = M_{K}^{2n} + M_{K}^{2(n-1)} \int_{C_{m}} |X|^2 dX + O(|C_m|^2). \]

Since \(|g_m| = O(|C_m|) \), it is clear that
\[C = O(|C_m|^2). \]

For \(B \) we write
\[\frac{B}{2} = D + E + O(|C_m|^2) \]

where
\[D := \sum_{k=1}^{n} \int_{K} \cdots \int_{K} \det(Y_1, \ldots, Y_n) \det(Y_1, \ldots, Y_{k-1}, g_m, Y_{k+1}, \ldots, Y_n) dY_1 \cdots dY_n \]

and
\[E := \sum_{k=1}^{n} \int_{K} \cdots \int_{C_{m}} \int_{K} \cdots \int_{K} \det(Y_1, \ldots, Y_n) \det(Y_1, \ldots, Y_{k-1}, g_m, Y_{k+1}, \ldots, Y_n) dY_1 \cdots dY_n. \]

It is easily seen that \(D = 0 \), because of the isotropicity of \(K \). Now, once again since \(g_m = O(|C_m|) \), one has \(E = O(|C_m|^2) \).

The corresponding result for \(K_m' \) is proved in the same way. □

Proposition 4. Under the assumptions of Lemma 1 or, respectively, Lemma 2 on \(K \) one has
\[L_{K_m}^{2n} = L_{K}^{2n} \left[1 + \frac{\int_{K} |X|^2 dX}{M_{K}^2} - (n + 2) \frac{|K_{m} \setminus K|}{|K|} + O(|K_{m} \setminus K|^2) \right] \tag{2} \]

or, respectively,
\[L_{K_m}^{2n} = L_{K}^{2n} \left[1 - \frac{\int_{K \setminus K_{m}'} |X|^2 dX}{M_{K}^2} + (n + 2) \frac{|K \setminus K_{m}'|}{|K|} + O(|K \setminus K_{m}'|^2) \right]. \tag{3} \]
Proof: By Lemma 1 and Lemma 3 we have
\[L_{K_m}^{2n} = M_{K_m}^{2n} + M_{K_m}^{2(n-1)} \int_{K_m \setminus K} |X|^2 dX + O(|K_m \setminus K|^2). \]
From this (2) follows. The equality (3) is proved in a similar way.

Lemma 5. Suppose that \(K \) is an isotropic convex body and that, in addition to the conditions of Proposition 4, there exists \(X_0 \in \partial K \) such that \(X_0 \) is in the closure of \(C_m \) for all \(m \) and \(\text{diam}(C_m) \rightarrow 0 \) and also, \(X_0 \) is in the closure of \(D_m \) for all \(m \) and \(\text{diam}(D_m) \rightarrow 0 \).

Then, if \(K \) is a local maximizer or a local minimizer for \(L_K \), we have
\[|X_0|^2 |K| = (n + 2) M_K^2. \]
(4)

Proof: The conditions of the lemma imply that, when \(m \rightarrow +\infty \), one has:
\[\int_{K_m \setminus K} |X|^2 dX \sim |X_0|^2 |K_m \setminus K| \]
and
\[\int_{K \setminus K_m} |X|^2 dX \sim |X_0|^2 |K \setminus K_m|. \]
(5)
thus the result follows from Proposition 4.

Remarks
1) A common example of a point \(X_0 \) that satisfies the assumptions of Lemma 5 is the following: Let \(X_0 \in \partial K \). We say that \(\partial K \) is locally strictly convex at \(X_0 \) or that \(X_0 \) is a point of local strict convexity of \(\partial K \), if there exists no non-degenerate line segment \(I \subset \partial K \) such that \(X_0 \in I \) (even as an end-point). The following claim is easy to prove:
Claim. Let \(X_0 \) be a point of local strict convexity of \(\partial K \) and let \(N \in S^{n-1} \) be an outer normal of \(K \) at \(X_0 \). Then the sets
\[C_m = \text{conv}(K \cup (X_0 + \frac{1}{m} N)) \setminus K \]
and
\[D_m = \{ X \in K; \langle X, N \rangle \geq \langle X_0, N \rangle - \frac{1}{m} \} \]
satisfy the conditions of Lemma 5.

2) If \(X_0 \in \partial K \) is a point of positive generalized curvature of \(\partial K \) then it is a point of local strict convexity and thus satisfies the conditions of Lemma 5.

As a corollary of Lemma 5 and of [CCC] (or of our Theorem 1) we get the following strengthening of a result of [CCC]:

Corollary 6. Suppose that there exists an open neighborhood \(U \) in \(\partial K \) which is strictly convex (that is, every point in \(U \) is a point of local strict convexity). Then \(K \) is not a local maximizer for \(L_K \).

Proof: We may assume that \(K \) is isotropic. By Lemma 5 and the Claim following it, all the points in \(U \) have the same Euclidean norm. Thus \(U \) is an open neighborhood on a Euclidean sphere. The result of [CCC] or Theorem 1 now complete the proof. □

We shall later need the following geometric lemma.
Lemma 7. Suppose that K is a convex body containing 0 in its interior and that ∂K has positive generalized curvature at some point X_0. Assume that the normal vector of K at X_0 is not parallel to the vector X_0. Then there exists $u \in S^{n-1}$ and $\alpha > 0$ such that if

$$K(\alpha, u) = \{X \in K; \langle X, u \rangle \geq \alpha \},$$

then $K(\alpha, u)$ is a cap of K with non-empty interior and

$$\max_{X \in K(\alpha, u)} |X| < |X_0|.$$

Proof: After an affine change of variables in \mathbb{R}^n, transforming 0 into X_0, we may suppose that for $|Z| \leq a$, the boundary of K is described by $z = g(Z)$ with $(Z, z) \in \mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R}$, and

$$(1 - \varepsilon)|Z|^2 \leq g(Z) \leq (1 + \varepsilon)|Z|^2.$$

This affine change of variables transforms $B(0, |X_0|)$ into an ellipsoid E with $0 \in \partial E$, whose inner normal N at 0 is not e_n. We may suppose that $N = \cos(\theta)e_1 + \sin(\theta)e_n$ for some angle $\theta \in [0, \frac{\pi}{2}]$. Also, since E has positive curvature at 0, one can find some positive constants b and C such that

$$B(0, b) \cap E \subset B(0, b) \cap E \quad (6)$$

where P is the paraboloid defined by

$$P = \{M := xe_1 + Y + ze_n; \langle OM, N \rangle \geq C(|OM|^2 - \langle OM, N \rangle^2)\}.$$

Let $0 < x_0 < a$. The hyperplane H tangent to the upper paraboloid ($z = (1 + \varepsilon)|Z|^2$) at $M_0 = x_0e_1 + (1 + \varepsilon)|x_0|^2e_n$ has the equation

$$z = (1 + \varepsilon)(2xx_0 - x_0^2),$$

where $M = xe_1 + Y + ze_n$ is a point in \mathbb{R}^n, with $Y \in \{e_1, e_n\}^\perp$. The zone A between the hyperplane H and the lower paraboloid ($z = (1 - \varepsilon)|Z|^2$) is described by

$$A = \{M : xe_1 + Y + ze_n; (1 - \varepsilon)(x^2 + |Y|^2) \leq z \leq (1 + \varepsilon)(2xx_0 - x_0^2)\}.$$

Thus for $M \in A$, one has

$$x^2 - 2\frac{1 + \varepsilon}{1 - \varepsilon}xx_0 + \frac{1 + \varepsilon}{1 - \varepsilon}x_0^2 \leq 0$$

which says that

$$\left(x - \frac{1 + \varepsilon}{1 - \varepsilon}x_0\right)^2 \leq \frac{1 + \varepsilon}{1 - \varepsilon}\left(\frac{1 + \varepsilon}{1 - \varepsilon} - 1\right)x_0^2$$

or

$$\left(\frac{1 + \varepsilon}{1 - \varepsilon} - \frac{\sqrt{2\varepsilon(1 + \varepsilon)}}{1 - \varepsilon}\right)x_0 \leq x \leq \left(\frac{1 + \varepsilon}{1 - \varepsilon} + \frac{\sqrt{2\varepsilon(1 + \varepsilon)}}{1 - \varepsilon}\right)x_0.$$

It follows that for ε small enough one has for $M = xe_1 + Y + ze_n \in A$: $x < 2x_0$ and $x^2 + |Y|^2 \leq 3x_0^2$. Thus, for x_0 small enough, $A \cap \{xe_1 + Y + ze_n; z \geq g(x, Y)\}$ is a cap of K, passing through 0, with normal $N = \cos(\theta)e_1 + \sin(\theta)e_n$.

By (6), it is sufficient to show that for x_0 small enough, one has

$$A \subset P \cap B(0, b).$$
First it is easy to choose \(x_0 \) small enough such that \(A \subset B(0, b) \). Observe then that
\[
P = \{ xe_1 + Y + ze_n; x \cos(\theta) + z \sin(\theta) \geq C(x^2 + |Y|^2 - (x \cos(\theta) + z \sin(\theta))^2) \}
\]
and that setting \(x = x_0 u, Y = x_0 V \) and \(z = x_0^2 w \), one gets
\[
A = \{ x_0(u + V + x_0 w); (1 - \varepsilon)(u^2 + |V|^2) \leq w \leq (1 + \varepsilon)(2u - 1) \}
\]

Thus we need only to prove that if \((1 - \varepsilon)(u^2 + |V|^2) \leq w \leq (1 + \varepsilon)(2u - 1) \) then
\[
\frac{u \cos(\theta) + x_0 w \sin(\theta)}{|V|^2 + (u \sin(\theta) + x_0 w \cos(\theta))^2} \geq Cx_0.
\]
which is clear when \(x_0 \to 0 \) because \(u \sim 1 \) and \(w \) is uniformly bounded.

Observe finally that if we have the singular case that the point of tangency \(M = x_0 e_1 + (1 + \varepsilon)|x_0|^2 \) of the upper paraboloid with the tangent hyperplane \(H \) is on \(\partial K \), then we get a cap of \(K \) by pushing \(H \) a small distance into the upper paraboloid in the direction of its inner normal. \(\square \)

Lemma 8. Under the assumptions of Lemma 5, if \(K \) is a local maximizer for \(L_K \) and \(\partial K \) has positive generalized curvature at \(X_0 \) then the outer normal \(N(K, X_0) \) of \(K \) at \(X_0 \) is parallel to the vector \(X_0 \).

Proof: We assume that \(L_K \) is maximal, \(\partial K \) has positive generalized curvature at \(X_0 \) and the normal vector of \(K \) at \(X_0 \) is not parallel to \(X_0 \).

Using Lemma 7 we continue as follows: Let \(u \in S^{n-1} \) and \(\alpha > 0 \) be taken from Lemma 7. Let \(H = \{ X; \langle X, u \rangle = \alpha \} \) and \(H^+ = \{ X; \langle X, u \rangle \geq \alpha \} \). Let \(M = \max \{|X|; X \in H^+ \cap K \} \). Then \(M < |X_0| \). Let \(d \) be the distance from 0 to \(H \), \(h = h_K(u) - d \) and, for \(m \geq 1 \), let
\[
D'_m = \{ X \in K; h_K(u) - \frac{h}{m} \leq \langle X, u \rangle \leq h_K(u) \}.
\]
Then the sequence \(D'_m \) satisfies the conditions of Lemma 2. We have
\[
\int_{D'_m} |X|^2 \leq M^2 |D'_m|.
\]
Now, since \(L_K \) is maximal, we have, combining the above with 3, for \(m \) big enough,
\[
-M^2 |D'_m| + (n + 2) \frac{|D'_m|}{|K|} \leq O(|D'_m|^2).
\]
Combining the last inequality with 4 we get, passing to the limit as \(m \to \infty \),
\[
|X_0|^2 = \frac{(n + 2)M^2}{|K|} \leq 2 M^2 < |X_0|^2,
\]
which is a contradiction. \(\square \)
3 Proof of Theorem 1

Assume that K is a local maximizer of L_K and $X_0 \in \partial K$ is a point of positive generalized curvature of ∂K. We may assume that K is in isotropic position.

By Lemma 8 we know that $u = \frac{X_0}{|X_0|}$ is the external normal of K at X_0. We choose for K_m and K'_m, $m \geq 1$, the following sets:

$$K_m = \text{conv}(X_0 + \frac{u}{m}, K)$$

and

$$K'_m = \{X \in K; \langle X, u \rangle \leq \langle X_0, u \rangle - \frac{1}{m}\}.$$

By Remark 2) following Lemma 5 the sets $K_m \setminus K$ and $K \setminus K'_m$ satisfy the conditions of Lemma 5 and, of course, of Proposition 4. In view of Lemma 5, it is essential to have an accurate estimation of

$$\int_{K_m \setminus K} |X|^2 dX - |X_0|^2 |K_m \setminus K| = \int_{K_m \setminus K} (|X|^2 - |X_0|^2) dX$$

and

$$\int_{K \setminus K'_m} |X|^2 dX - |X_0|^2 |K \setminus K'_m| = \int_{K \setminus K'_m} (|X|^2 - |X_0|^2) dX.$$

For having such estimation it would be convenient to assume that the standard approximating ellipsoid of K at X_0 is a Euclidean ball rather than just an ellipsoid.

Let u_1, \ldots, u_n be an orthonormal system in \mathbb{R}^n, with $u_n = \frac{X_0}{|X_0|}$ and such that u_1, \ldots, u_{n-1} are the directions of the principal radii of the quadratic form q associated with X_0 (see Definition 1). Let $T \in SL(n)$ be a volume preserving linear transformation of the form

$$T(\sum_{j=1}^n x_j u_j) = \sum_{j=1}^n \lambda_j x_j u_j; \quad \prod_{j=1}^n \lambda_j = 1$$

(we write in short $T(X) = \Lambda X$ and $T^{-1}(X) = \Lambda^{-1}X$ assuming X is written using the basis u_1, \ldots, u_n). Choose T so that the standard approximating ellipsoid of $\tilde{K} = T(K)$ at $T(X_0)$ is a Euclidean ball of radius R.

Denoting $\tilde{K}_m = T(K_m)$ and $\tilde{K}'_m = T(K'_m)$ we get

$$\int_{\tilde{K}_m \setminus \tilde{K}} (|X|^2 - |X_0|^2) dX = \int_{\tilde{K}_m \setminus \tilde{K}} (|\Lambda^{-1}Y|^2 - |\Lambda^{-1}Y_0|^2) dY$$

and

$$\int_{\tilde{K} \setminus \tilde{K}'_m} (|X|^2 - |X_0|^2) dX = \int_{\tilde{K} \setminus \tilde{K}'_m} (|\Lambda^{-1}Y|^2 - |\Lambda^{-1}Y_0|^2) dY.$$

We shall use a temporary coordinate system that satisfies:

1) $T(X_0) = 0$
2) The outer normal vector of \tilde{K} at 0 is $-e_n$ (e_n is the n-th coordinate vector), thus $\tilde{K} \subset \{ X \in \mathbb{R}^n ; \langle X, e_n \rangle \geq 0 \}$

We write $X = (Y, y) \in \mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R}$. Let $G = g(\tilde{K})$ be the centroid of \tilde{K}. In our temporary coordinates $G = (0, b)$ with $b > 0$ (in view of Lemma 8). For $a > 0$, small enough, define

$$C_a = \text{conv}(\tilde{K}, (-a, 0)) \setminus \tilde{K}$$

$$D_a = \{(Y, y) \in \tilde{K}; y \leq a\}.$$

By the above discussion, we have to estimate for $\tilde{K}_m \setminus \tilde{K} = C_a$ and $\tilde{K} \setminus \tilde{K}_m' = D_a$ ($a = \frac{1}{m}$), the following quantities in terms of $a > 0, a \to 0$:

$$\phi(a) = \int_{C_a} (|\Lambda^{-1}(X-G)|^2 - |\Lambda^{-1}G|^2) dX$$

$$\psi(a) = \int_{D_a} (|\Lambda^{-1}(X-G)|^2 - |\Lambda^{-1}G|^2) dX.$$

The equation of the boundary of the body, in a neighborhood of 0 can be written as

$$y = \frac{|Y|^2}{2R} + o(|Y|^2),$$

With these notations

$$\phi(a) = \int_{(Y,y) \in C_a} \left(\sum_{j=1}^{n-1} \left(\frac{Y_j}{\lambda_j} \right)^2 + \left(\frac{y}{\lambda_n} \right)^2 - 2 \frac{yb}{\lambda_n^2} \right) dYdy,$$

$$\psi(a) = \int_{(Y,y) \in D_a} \left(\sum_{j=1}^{n-1} \left(\frac{Y_j}{\lambda_j} \right)^2 + \left(\frac{y}{\lambda_n} \right)^2 - 2 \frac{yb}{\lambda_n^2} \right) dYdy.$$

We first estimate $\phi(a)$ and $\psi(a)$ under the hypothesis that in some neighborhood of 0 the equation of the boundary of K is actually

$$y = \frac{|Y|^2}{2R}.$$

Then we shall see that this approximation is actually good.

1) We suppose that $y = \frac{|Y|^2}{2R}$. One has

$$D_a = \{(Y,y) \in \mathbb{R}^n; |Y| \leq \sqrt{2Ra}, \frac{|Y|^2}{2R} \leq y \leq a\}.$$

Since D_a is circular with respect to Y, we have

$$\int_{(Y,y) \in D_a} Y_j^2 dY dy = \frac{1}{n-1} \int_{(Y,y) \in D_a} |Y|^2 dY dy.$$
Substituting \(\alpha_n = \frac{1}{n+1} \sum_{j=1}^{n-1} \lambda_j^{-1} \) we get with a change of variable to polar coordinates in \(\mathbb{R}^{n-1} \) and denoting by \(v_k \) the volume of the Euclidean ball in \(\mathbb{R}^k \),

\[
\psi(a) = (n-1)v_{n-1} \int_{S_{n-2}} \int_0^{2\pi a} \left(\int_0^a (\alpha_n r^2 + \lambda_n^{-1}(y^2 - 2y)) dy \right) r^{n-2} dr d\theta.
\]

Setting \(r = \sqrt{2Ra} \) and \(y = az \) we get

\[
\psi(a) = (n-1)v_{n-1}(2Ra)^{\frac{n-1}{2}} a^{\frac{n+1}{2}} \int_{S_{n-2}} \int_0^1 \left(\int_0^1 (2\alpha_n Ras^2 + \lambda_n^{-1}(a^2 z^2 - 2abz)) ds \right) s^{n-2} ds d\theta
\]

\[
= (n-1)v_{n-1}(2R)^{\frac{n-1}{2}} a^{\frac{n+1}{2}} \int_0^1 \left(2\alpha_n Ras^2 + \lambda_n^{-1}(a^2 s^2 - 2abz) \right) ds
\]

\[
= (n-1)v_{n-1}(2R)^{\frac{n-1}{2}} a^{\frac{n+1}{2}} \int_0^1 \left(2\alpha_n Ras^2 + \lambda_n^{-1}(a^2 s^2 - 2abz) \right) ds
\]

\[
= 4(n-1)v_{n-1}(2R)^{\frac{n-1}{2}} a^{\frac{n+1}{2}} \left(\frac{\alpha_n R}{n+1} - \frac{\lambda_n^{-1} b}{n+1} \right) + O(a)
\]

\[
= 4(n-1)v_{n-1}(2R)^{\frac{n-1}{2}} a^{\frac{n+1}{2}} \left(\frac{\alpha_n R}{n+1} - \frac{\lambda_n^{-1} b}{n+1} \right) + O(a)
\]

\[
\frac{\alpha_n R}{n+1} - \frac{\lambda_n^{-1} b}{n+1} + O(a).
\]

We shall need also to compute \(|D_a| \). One has

\[
|D_a| = (n-1)v_{n-1}a(2Ra)^{\frac{n-1}{2}} \int_{S_{n-2}} \int_0^1 (1 - s^2) s^{n-2} ds d\theta
\]

\[
= (n-1)v_{n-1}(2R)^{\frac{n-1}{2}} a^{\frac{n+1}{2}} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) = \frac{2v_{n-1}}{n+1} (2R)^{\frac{n-1}{2}} a^{\frac{n+1}{2}}.
\]

2) We still suppose that the boundary of \(\tilde{K} \) in a neighborhood of 0 is given by \(y = \frac{|Y|^2}{2R} \). Then the tangent hyperplanes to \(\tilde{K} \) through \((0, -a)\), indexed by \(\theta \in S^{n-2} \), the direction of the projection of their point of tangency with \(\tilde{K} \), are given by the equations

\[
y = -a + \sqrt{\frac{2a}{R}} \langle \theta, Y \rangle.
\]

It follows that

\[
C_a = \left\{(Y, y) \in \mathbb{R}^n; \ |Y| \leq \sqrt{2Ra}, \ -a + \sqrt{\frac{2a}{R}} |Y| \leq y \leq \frac{|Y|^2}{2R} \right\}
\]

\[
= \{ (\sqrt{2Ra} Z, az) \in \mathbb{R}^n; \ |Z| \leq 1, \ 2|Z| - 1 \leq z \leq |Z|^2 \}.
\]

Thus, using the same rotation invariance as in (1),

\[
\phi(a) = (n-1)v_{n-1}a(2Ra)^{\frac{n-1}{2}} \int_{S_{n-2}} \int_0^1 \left(\int_{2s-1}^{s^2} (2\alpha_n Ras^2 + \lambda_n^{-1}(a^2 z^2 - 2abz)) s^{n-2} ds \right)
\]
Remark. The importance of Lemma \([8]\) comes in step \(3\) above. Here, if the normal vector of \(K\) at 0 were not parallel to the \(y\)-axis, we would get an extra error term of order that could be estimated only by \(a^{\frac{n+1}{2}}o(a)\). For our proof of Theorem \([11]\) to work we would need an estimate of order \(a^{\frac{n+1}{2}}o(a)\) for this term.
To conclude, using Proposition 4 and Lemma 5 (including (5) in its proof) and replacing $K_m \setminus K$ by $T^{-1}(C_a)$ and $K \setminus K'_m$ by $T^{-1}(D_a)$, the above computations show that for some functions $c(n, R)$ and $d(n, R)$ depending only of n and R,

$$L_{K_m}^{2n} = L_{C_m}^{2n} \left(1 + c(n, R) a^\frac{n+1}{2} \left(\alpha_n R - \frac{(n+2)(n-3)}{n(n-1)} \lambda_n^{-1} b + O(a) \right) \right)$$

and

$$L_{K'_m}^{2n} = L_{D_m}^{2n} \left(1 - d(n, R) a^\frac{n+1}{2} \left(\alpha_n R - \frac{n+1}{n-1} \lambda_n^{-1} b + O(a) \right) \right).$$

Thus one has both

$$\alpha_n \lambda_n R \leq \frac{(n+2)(n-3)}{n(n-1)} b \quad \text{and} \quad \alpha_n \lambda_n R \geq \frac{n+1}{n-1} b,$$

So that

$$\frac{(n+2)(n-3)}{n(n-1)} \geq \frac{n+1}{n-1}$$

which gives a contradiction.

Note that in the case that K is centrally symmetric, a similar argument, using C_m and $-C_m$ together and D_m and $-D_m$ together will work in the same way, keeping K_m and K'_m centrally symmetric. This observation takes care of the centrally symmetric part of Theorem 1. There the use of lemma 3 is not needed, due to symmetry. □

Acknowledgements: Mathieu Meyer and Shlomo Reisner are grateful respectively to the University of Haifa and the Technion and to the LAMA at Univ. Paris-Est Marne-la-Vallée for their hospitality and support during part of the work on this paper. Both thank Yehoram Gordon for helpful discussions with him.

References

[AB] G. Ambrus and K. Böröczky: Stability results for the volume of random simplices, Amer. J. Math. 136, no. 4 (2014), 833–857.

[B] J. Bourgain : On the distribution of polynomials on high-dimensional convex sets. Geometric aspects of functional analysis (1989–90), 127–137, Lecture Notes in Math., 1469, Springer, Berlin, 1991.

[BGVV] S. Brazitikos, A. Giannopoulos, P. Valettas and B. H. Viritsiou: Geometry of Isotropic Convex Bodies. 2014, Providence R. I., A. M. S. Math. Surveys and Monographs.

[CCG] S. Campi, A. Colesanti and P. Gronchi: A note on Sylvester’s problem for random polytopes in a convex body. Rend. Inst. Mat. Univ. Trieste 31, no. 1-2 (1999), 79–94.

[GM] Y. Gordon and M. Meyer: On the minima of the functional Mahler produceut. Houston J. Math. 40, no. 2 (2014), 385–393.
[K] B. Klartag: On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16, no. 6, (2006), 1274–1290.

[MP] V. D. Milman and A. Pajor: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Lecture Notes in Mathematics 1376, Springer, Berlin (1989), 64–104.

[R] L. Rademacher: A simplicial polytope that maximizes the isotropic constant must be a simplex, http://arxiv.org/abs/1404.5662 Mathematika, to appear

[RSW] S. Reisner, C. Schütt and E. M. Werner: Mahler’s conjecture and curvature. Inter. Math. Res. Not. 2012, no. 1 (2012), 1–16.

[SW] C. Schütt and E. M. Werner: The convex floating body. Math. Scand. 66, no. 2 (1990), 275–290.

Mathieu Meyer
Université Paris-Est
Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050) UPEMLV
F-77454 Marne-la-Vallée Cedex 2, France
mathieu.meyer@u-pem.fr

Shlomo Reisner
Department of Mathematics
University of Haifa
Haifa, 31905, Israel
reisner@math.haifa.ac.il