Rice straw biochar and different urea rates on rice yield and CH$_4$ and CO$_2$ gases emissions

Lai Lai1, Mohd Razi Ismail1,2,*, Martini Mohammad Yusof2, and Roslan Ismail2

1Universiti Putra Malaysia, Institute of Tropical Agriculture and Food Security, Serdang 43400, Selangor, Malaysia.
2Universiti Putra Malaysia, Faculty of Agriculture, Serdang 43400, Selangor, Malaysia. *Corresponding author (razi@upm.edu.my).

Received: 14 November 2020; Accepted: 16 December 2020; doi:10.4067/S0718-58392021000300448

ABSTRACT

The application of biochar using inorganic fertilizer has been reported as being more efficient for the effective growth of soil microbes. However, there is no evidence that rice straw biochar (9 t ha$^{-1}$) and different urea rates have had any effect on greenhouse gas (GHG) emissions of rice ($Oryza sativa$ L.) production in tropical soils. Therefore, this study was conducted to investigate the effects of urea and the application of rice straw biochar (9 t ha$^{-1}$) on yield and GHG emissions. Treatments were 150 kg N ha$^{-1}$ (T$_1$ control) and rice straw biochar (9 t ha$^{-1}$) combined with 30, 60, 90, 120, and 150 kg N ha$^{-1}$ (T$_2$, T$_3$, T$_4$, T$_5$, and T$_6$, respectively). The experiment had a randomized complete block design with four replicates. Grain yield increased 20.7% in plants grown in T$_3$, T$_4$, and T$_5$ compared with the control. Although all biochar treatments had increased cumulative CO$_2$-C emissions compared with the control (5.0% to 7.6%), the cumulative CH$_4$ emissions significantly decreased compared with the control (20% to 27%). Therefore, it could be suggested that T$_3$ and T$_4$ (9 t ha$^{-1}$ rice straw biochar with 60 and 90 kg N ha$^{-1}$) increase yield and reduce CH$_4$ emissions relative to the control. Although this study was limited to a pot experiment with no nutrient leaching, the synergetic effect of rice straw biochar (9 t ha$^{-1}$) and reduced urea rate is worth mentioning for acidic paddy soil; a field experiment is suggested to determine the long-term effect of biochar.

Key words: Combined effect, global warming, nitrogen fertilizer, $Oryza sativa$, rice productivity, rice straw-derived biochar.

INTRODUCTION

Flooded rice ($Oryza sativa$ L.) fields are the main source of methane (CH$_4$) from bacterial activity under anaerobic conditions and accounts for 20% of the global warming potential (Sass et al., 2017). Babu et al. (2005) estimated that global CH$_4$ emissions from paddies could range from 29 to 61 t yr$^{-1}$ by 2020 because global rice production must almost double due to the high demand, thus leading to an increase of up to 50% in CH$_4$ fluxes. Carbon dioxide (CO$_2$) is emitted through respiration of the rice plant and from soil microorganisms (Komiya et al., 2015). The high concentration of greenhouse gases (GHG) in the atmosphere produces global warming and climate change (Nguyen, 2002).

In 2020, one of the many objectives on food security of the Malaysian government was to achieve a self-sufficient level, especially for rice, with sustainable productivity (MOA, 2010). Therefore, the impact of global warming on rice production is a vital concern (Tao et al., 2008). Kedah is one of the eight foremost rice-producing areas in Malaysia where most rice straw is burned. Gupta et al. (2004) estimated that burning rice straw produces 70% CO$_2$, 7% CO, 0.66% CH$_4$, and 2.09% N$_2$O.

Rice straw contains higher Si (12% to 16% > 3% to 5%) and lower lignin (6% to 7% < 10% to 12%) contents than other straw (Singh and Sidhu, 2014). After pyrolysis of the rice material at a high temperature (600 °C), the combination of Si-C bond prevents C degradation (Guo and Chen, 2014). Therefore, to manage Malaysia’s sustainable rice productivity, the focus should be on improved fertilizer use efficiency through rice residue, which can possibly enhance air quality and be cost effective.
Sui et al. (2016) discovered that rice straw biochar (1.8 t ha\(^{-1}\)) and N fertilizer decreased CH\(_4\) emissions compared with straw. Zhao et al. (2014) also reported that rice straw biochar (9 t ha\(^{-1}\)), which has a synergetic effect on soil properties with standard NPK fertilizer, increased rice yield and reduced methane gas emissions. Kamara et al. (2015) also demonstrated that rice straw biochar could improve yield through an early increase in seedling growth. However, limited evidence has so far been available for tropical soils as to the effect of rice straw biochar and different rates of N fertilizer on CH\(_4\) and CO\(_2\) emissions in rice production. Thus, this study aimed to investigate the reduced rate of N fertilizer through the application of rice straw biochar (9 t ha\(^{-1}\)) that can enhance yield and reduce GHG emissions.

MATERIALS AND METHODS

This pot experiment was conducted in a greenhouse (Ladang 2) at the Universiti Putra Malaysia, Serdang (3.30° N, 101.50° E; 21 m a.s.l.), Selangor on the west coast of Peninsular Malaysia. The hot humid tropical climate has high humidity and abundant rainfall.

Soil was collected from the rice (*Oryza sativa* L.) field at Kampung Padang, Teluk Mukin Jeram, Tunjang, 06000 Jitra, Kedah (Peninsular Malaysia). The soil was silt loam with pH was 5.9. Soil was classified as Tropic Fluvaquent (USDA Soil Taxonomy) and Dystric Fluvisol (WRB classification) on a flat coastal plain. Parent material was likely river alluvium overlying marine alluvium.

Preparation of rice straw biochar and fertilizer

Dried rice straw was first chopped into 2.0 cm pieces and pyrolyzed in a stove under limited oxygen conditions. After filling the cylinder with pieces of rice straw, a piece of paper was placed on top of the rice straw and lit with a lighter. After burning the biomass at 500 to 700 °C for approximately 15 min and adjusting as needed, the hot biochar was immediately spread on the floor using a rolling device and cooled for approximately 1 h, providing an expected 20% granular biochar. The biochar was characterized by pH 10.08 and total C, N, and S of 24.09%, 0.60%, and 0.08%, respectively.

Fertilizer application followed the Muda Agricultural Development Authority (MADA), Malaysia, recommended rate (150 kg N ha\(^{-1}\), 42 kg P ha\(^{-1}\), 80 kg K ha\(^{-1}\)) for the Kedah area with split rates at 15, 35, 55, and 75 d after sowing. The N fertilizer source was a urea fertilizer and the recommended rate was reduced in the treatment at each application time, while P\(_2\)O\(_5\) was from triple super phosphate and K\(_2\)O from muriate of potash were applied each time.

Crop establishment

Rice seeds of ‘MR-288’, which is one of the farmers adopted local rice varieties, were germinated in a plastic box filled with paddy soil. Plastic buckets (20 L) were filled with 15 kg air-dried soil and mixed well with water and the recommended rate of rice straw biochar (9 t ha\(^{-1}\)) in a core surface area (0.078 m\(^2\) bucket surface area), except the control. After 14 d of incubation, 3 of the 2 wk-old seedlings were transplanted in each bucket in three different locations. Water was maintained as continuous flooding throughout the season.

Experimental design and treatments

The experiment was conducted using a randomized complete block design with four replicates. The detailed treatments were 150 kg N ha\(^{-1}\) (control, T\(_1\)), rice straw biochar (9 t ha\(^{-1}\)) + 30 kg N ha\(^{-1}\) (T\(_2\)), rice straw biochar (9 t ha\(^{-1}\)) + 60 kg N ha\(^{-1}\) (T\(_3\)), rice straw biochar (9 t ha\(^{-1}\)) + 90 kg N ha\(^{-1}\) (T\(_4\)), rice straw biochar (9 t ha\(^{-1}\)) + 120 kg N ha\(^{-1}\) (T\(_5\)), and rice straw biochar (9 t ha\(^{-1}\)) + 150 kg N ha\(^{-1}\) (T\(_6\))

Gas sampling and analysis

The CH\(_4\) and CO\(_2\) fluxes were collected with closed polyvinylchloride (PVC) chambers. The PVC chamber (20 cm diameter and 120 cm height) was inserted in the soil at an approximate 5 cm depth, leaving three plants as a hill in each pot. The soil and plant temperature was measured with a thermometer probe from the hole at the top of the gas chamber. Gas sampling was performed on a biweekly interval from three replicates of each treatment between 09:00 and 11:00 h from 3 d after rice transplanting until harvest. Two samples of chamber air were taken each time at 0 and 30 min after gas chamber deployment.
The CH₄ fluxes in parts per million and CO₂ (%) were analyzed with a portable gas analyzer, non-dispersive infrared detector (PG-350E, HORIBA, Kyoto, Japan) by joining the probe of the pipe to the hole in the chamber top. Chamber air was allowed 3 min to stabilize the gas concentration at each gas sampling time. The PG-350E detector was fully calibrated at the time of manufacturing with the standard 1000 ppm CH₄ and 5% (vol) CO₂.

Estimation of sample gases
Two samples of chamber air were estimated each time by the following equation (Yang et al., 2009):

\[F = \frac{V}{A} \frac{\Delta \text{Conc}}{\Delta t} \]

where \(F \) is the methane or CO₂ or nitrous oxide emission rate (mg m⁻² h⁻¹), \(V \) is the chamber volume above the soil (m³), \(A \) is the chamber cross section (m²), \(\Delta \text{Conc} \) is the concentration difference between time zero and time \(t \) (mg m⁻³), and \(\Delta t \) is the time duration between two sampling periods (h).

The gas concentration (mg m⁻³ h⁻¹) was also assumed based on the ideal gas law (\(PV = nRT \)) to provide a good gas estimate where \(P \) is pressure, \(V \) is volume, \(n \) is the number of moles, \(R \) is a gas constant, and \(T \) is temperature. Cumulative or seasonal gas emissions were estimated by the following formula (Xiang et al., 2015):

\[E = \sum_{i=1}^{n} \left(\frac{F_i + F_{i+1}}{2} \times (t_{i+1} - t_i) \right) \times 24 \]

where \(E \) is cumulative gas emissions (kg ha⁻¹) and \(F_i \) and \(F_{i+1} \) are the emission rates of gas flux at time \(t_i \) and \(t_{i+1} \) (mg m⁻² h⁻¹), respectively.

Yield and yield attributes
The panicles were hand-threshed and separated into filled and unfilled grain groupings to obtain the number of grains per panicle. Panicle length was measured with a 30 cm ruler and 1000 grains were weighed. Grain yield and straw yield were also recorded from each pot of the four replicates.

Statistical analysis
Data were analyzed by two-way ANOVA using the PROC ANOVA function of the SAS v9.4 software (SAS Institute, Cary, North Carolina, USA). Treatment mean differences were compared by the least significant difference (LSD) test.

RESULTS AND DISCUSSION

Effect of rice straw biochar and N fertilizer on greenhouse gases (GHG) emissions
Methane emission. A similar trend of CH₄ fluxes was found among the treatments and a gradually increasing trend was found from week 2 to week 10 after transplanting; the maximum peak was achieved at the late grain filling stage. At week 12, CH₄ emissions from all treatments substantially decreased due to completely dry soil caused by drainage after week 10 (Figure 1). Ma et al. (2014) stated that drainage enhances soil permeability and it can retard methane-producing bacterial activity and increased CH₄ oxidation. Cumulative CH₄ emissions were significantly higher in the control than in all plants treated with biochar (Table 1). This concurs with Han et al. (2016), who found rice straw biochar and NPK fertilizer reduced CH₄ under ambient and elevated temperatures and CO₂ conditions. Previous findings of decreased CH₄ emissions in rice by applying rice straw biochar with N fertilizer (Zhao et al., 2014; Sui et al., 2016) in 2-yr rice-wheat rotation systems were also related with the results of the present study. Liu et al. (2011) suggested that the involved mechanism occurs because the increased CO₂ concentration stimulated plant growth with oxygen diffusion, which can promote CH₄ oxidation by decreasing methanogenic activity and increasing methanotrophic activity. The decreasing percentage of cumulative CH₄ emissions compared with the control treatment had values of 26.5%, 24.0%, 22.0%, 20.5%, and 19.8% in T₂, T₃, T₄, T₅, and T₆, respectively (Figure 2). There were only slight differences in the decreased percentage of cumulative CH₄ emissions compared with the control among the treatments. Therefore, the limited effect of the N fertilizer rate provided by rice straw biochar (9 t ha⁻¹) on CH₄ emissions could be clearly seen, although previously reported studies on the influences of N fertilizer on CH₄ emissions were inconsistent (Xu et al., 2016).

Carbon dioxide emissions. The pattern of CO₂ emissions in each treatment showed fluctuations that were similar to CH₄ emissions, and the maximum peaks were reached at week 10 after transplanting (Figure 3). However, the CO₂ emission rates were higher than those for CH₄. This could be due to some degree of oxidation of CH₄ into CO₂.
Cumulative CO₂-C emissions had no marked differences among the biochar treatments, but T₄ and T₅ were significantly higher than the control (Table 1). Increased cumulative CO₂-C emissions compared with the control had values of 5.0%, 5.3%, 7.6%, 7.1%, and 6.2% in T₂, T₃, T₄, T₅, and T₆, respectively (Figure 4). In the present study, biochar treatments reduced cumulative CH₄ emissions from 19.8% to 26.5% compared with the control (Figure 2), but increased cumulative CO₂-C emissions from 5.0% to 7.6% compared with the control (Figure 4). The increased CO₂-C emissions in biochar treatments compared with the control were due to higher CH₄ oxidation to form CO₂. This was also reported by Karhu et al. (2011). This result concurred with Sui et al. (2016), who found that rice straw biochar at 14.8 t ha⁻¹ and 210 kg N ha⁻¹ had significantly higher total CO₂ emissions than other rice treatments. Our result was also supported by Luo et al. (2011) who estimated higher CO₂ emissions of the organic fertilizer treatment compared with other treatments and whether rice was aerobic or anaerobic. The increased CO₂-C emissions in biochar treatments compared with the control were probably due to a higher soil respiration rate with improved crop growth, which contributed to bacterial decomposition of labile C
from rice straw biochar. Zhang et al. (2012) also reported that the application of wheat straw biochar at 40 t ha$^{-1}$ increased CO$_2$ emissions by 12% in maize with respect to N fertilizer alone due to the labile C content of biochar. A number of researchers have reported that applying biochar activated CO$_2$ emissions from the soil (Kuzyakov et al., 2009; Smith et al., 2010; Wang et al., 2011), and that biochar C can be lost at the same time (Luo et al., 2011). Although biochar can initially increase CO$_2$ emissions, Lehmann et al. (2011) pointed out that it can sequester in the soil in the long term. Liu et al. (2011) found that decreased CO$_2$ emissions from applying rice straw biochar rather than bamboo biochar was due to the higher pH value of rice straw biochar and because it dissolved more CO$_2$ in water. Meanwhile, Zhang et al. (2012), Troy et al. (2013), and Mukome et al. (2013) concluded that there was no significant effect of biochar on CO$_2$ emissions because there was no priming effect of biochar C and a high resistance of organic C obtained during the pyrolysis process (Jones et al., 2011; Zimmerman et al., 2011).

Effect of rice straw biochar and N fertilizer on yield and yield attributes

Yield attributes such as panicle length, panicle per hill, 1000 grain weight, and grain yield per hill were significantly influenced by treatments conducted on the paddy plants in the present study (Table 2). There was a slight increase in grain yield when applying biochar at approximately 3% compared with the control, but the highest straw yield occurred in T_6. Similar findings were also observed by Gebrekidan and Seyoum (2006), who found that the lowest panicle in plants with higher N had an excessive number of tillers that were not effective in improving vegetative growth and a lesser amount of carbohydrates for the developing grains. These findings concurred with Zhao et al. (2014) who found increased biomass yield of rice in the first season by seasonally adding 9.0 t ha$^{-1}$ rice straw biochar with a standard fertilizer. There was a
significantly higher grain yield per hill and increased yield compared with the control, with values of 20.7%, 21.2%, 21.1%, and 3.3%, in T3, T4, T5, and T6, respectively (Table 2 and Figure 5). Increased grain yield could be attributed to improved soil quality (Asai et al., 2009) and increased uptake of nutrients and organic matter (Accardi-Dey and Gschwend, 2002).

Yield in T2 presumably decreased because of an inadequate amount of N fertilizer for plant uptake.

CONCLUSIONS

Although 9 t ha⁻¹ rice straw biochar + 60 kg N ha⁻¹ (treatment 3) and 9 t ha⁻¹ rice straw biochar + 90 kg N ha⁻¹ (treatment 4) had higher cumulative CO₂ (5% and 7%, respectively) in the present study, they reduced cumulative CH₄-C (24% and 22%) and increased yield (21%) compared with the control. Therefore, treatments 3 and 4 could become cultural practices to increase yield and reduce greenhouse gas emissions in the establishment of sustainable paddy production in the tropics. Although this study was limited to a pot experiment and N leaching did not occur, the application of rice straw biochar and reduced urea rates were encouraging.

ACKNOWLEDGEMENTS

The authors would like to thank the Malaysian Ministry of Higher Education for providing research funds from the Long term Research Grant Food Security Niche Area LRGS/1/2019/UPM/01/2 Development of climate ready rice for sustaining food security in Malaysia. We appreciate the grant received from the Organization for Women in Science for the Developing World (OWSD) supported by the Swedish International Development Association (SIDA) for Ms. Lai Lai to pursue her PhD in the field of Agronomy.
REFERENCES

Accardi-Dey, A.M., and Gschwend, P.M. 2002. Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental Science and Technology 36:21-29.

Asai, H., Samson, K.B., Stephan, M.H., Songyikhangsauthour, K., Homma, K., Kiyono, Y., et al. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research 111:81-84.

Babu, Y.J., Li, C., Froeling, S., Nayak, D.R., Datta, A., and Adhya, T.K. 2005. Modelling of methane emissions from rice-based production systems in India with the denitrification and decomposition model: Field validation and sensitivity analysis. Current Science 89(11):1904-1912.

Gebrekidan, H., and Seyoum, M. 2006. Effects of mineral N and P fertilizers on yield and yield components of flooded lowland rice on Vertisols of Fogera Plain, Ethiopia. Journal of Agriculture and Rural Development in the Tropics and Subtropics 107(2):161-176.

Guo, J., and Chen, B. 2014. Insights on the molecular mechanism for the recalcitrance of biochar: interactive effects of carbon and silicon components. Environmental Science and Technology 48:9103-9101.

Gupta, P.K., Sahai, S., Singh, N., Dixit, C.K., Singh, D.P., Sharma, C., et al. 2004. Residue burning in rice–wheat cropping system: causes and implications. Current Science 87:1713-1717.

Han, X., Sun, X., Wang, C., Wu, M., Dong, D., Zhong, T., et al. 2016. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Scientific Reports 6:24731.

Jones, D.L., Murphy, D.V., Khalid, M., Ahmad, W., Edward-Jones, G., and Deluca, T.H. 2011. Short-term biochar induced increase in soil CO₂ release is both biotically and abiotically mediated. Soil Biology and Biochemistry 43:1723-1731.

Kamara, A., Kamara, H.S., and Kamara, M.S. 2015. Effect of rice straw biochar on soil quality and the early growth and biomass yield of two rice varieties. Agricultural Sciences 6(8):798.

Karhu, K., Mattila, T., Bergstrom, I., and Regina, K. 2011. Biochar addition to agricultural soil increased CH₄ uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystem and Environment 140:309-313.

Komiya, S., Noborio, K., Katano, K., Pakoktom, T., Siangliw, M., and Toojinda, T. 2015. Contribution of ebullition to methane and carbon dioxide emission from water between plant rows in a tropical rice paddy field. International Scholarly Research Notices 2015: 623901.

Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., and Xu, X. 2009. Black carbon decomposition and incorporation into microbial biomass estimated by ¹⁴C labeling. Soil Biology and Biochemistry 41:210-219. doi:10.1016/j.soilbio.2008.10.016.

Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., and Crowley, D. 2011. Biochar effects on soil biota - A review. Soil Biology Biochemistry 43:1812-1836. doi:10.1016/j.soilbio.2011.04.022.

Liu, C., Shi, B., Zhou, J., and Tang, C. 2011. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: application on SEM images of clay material. Applied Clay Science 54:97-106.

Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., and Brookes, P.C. 2011. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry 43:2304-2314.

Ma, Y.H., Gu, D.J., Liu, L.J., Wang, Z.Q., Zhang, H., and Yang, J.C. 2014. Changes in grain yield of rice and emission of greenhouse gases from paddy fields after application of organic fertilizers made from maize straw. Rice Science 21(4):224-232.

MOA. 2010. Paddy statistics, paddy and rice section. Ministry of Agriculture and Agro-Based Industries (MOA), Putrajaya, Malaysia.

Mukome, F.N.D., Six, J., and Parikh, S.J. 2013. The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma 200-201:90-98. doi:10.1016/j.geoderma.2013.02.004.

Nguyen, N.V. 2002. Global climate changes and rice food security. p. 24-30. Global climate changes. The accumulation of greenhouse gases in the atmosphere has warmed the planet and caused changes in the global climate. FAO, Rome, Italy.

Sass, R.L., Janssen, L., Yagi, K., van der Gon, H.D., Lantin, R., Mosier, A., et al. 2017. CH₄ emissions from rice agriculture. p. 399-417. In Good practice guidance and uncertainty management in national greenhouse gas inventories. Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland. Available at http://www.ipcc-nggip.iges.or.jp/public/ogp/bgp/4_7_CH4_Rice_Agriculture.pdf (accessed 16 September 2017).

Singh, Y., and Sidhu, H.S. 2014. Management of cereal crop residues for sustainable rice-wheat production system in the Indo-Gangetic Plains of India. In Proceedings of the Indian National Science Academy 80(1):95-114.

Smith, J.L., Collins, H.P., and Bailey, V.L. 2010. The effect of young biochar on soil respiration. Soil Biology and Biochemistry 42:2345-2347.

Sui, Y., Gao, J., Liu, C., Zhang, W., Lan, Y., Li, S., et al. 2016. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China. Science of the Total Environment 544:203-210.

Tao, F., Hayashi, Y., Zhang, Z., Sakamoto, T., and Yokozawa, M. 2008. Global warming, rice production, and water use in China: developing a probabilistic assessment. Agricultural and Forest Meteorology 148(1):94-110.
Troy, S.M., Lawlor, P.G., O’Flynn, C.J., and Healy, M.G. 2013. Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biology and Biochemistry 60:173-181. doi:10.1016/j.soilbio.2013.01.019.

Wang, J.Y., Zhang, M., Xiong, Z.Q., Liu, P.L., and Pan, G.X. 2011. Effects of biochar addition on N₂O and CO₂ emissions from two paddy soils. Biology and Fertility of Soils 47:887-896.

Xu, X., Wu, Z., Dong, Y., Zhou, Z., and Xiong, Z. 2016. Effects of nitrogen and biochar amendment on soil methane concentration profiles and diffusion in a rice-wheat annual rotation system. Scientific Reports 6:38688.

Xiang, J., Liu, D., Ding, W., Yuan, J. and Lin, Y. 2015. Effects of biochar on nitrous oxide and nitric oxide emissions from paddy field during the wheat growth season. Journal of Cleaner Production 104:52-58.

Yang, S.S., Lai, C.M., Chang, H.L., Chang, E.H., and Wei, C.B. 2009. Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan. Renewable Energy 34:1916-1922.

Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., et al. 2012. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil 351(1-2):263-275.

Zhao, X., Wang, J., Wang, S., and Xing, G. 2014. Successive straw biochar application as a strategy to sequester carbon and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant and Soil 378(1-2):279-294.

Zimmerman, R.A., Gao, B., and Ahn, M.Y. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry 43:1169-1179.