$N = 4$ near-horizon geometries in $D = 11$ supergravity

D. Farotti and J. Gutowski

Department of Mathematics, University of Surrey, Guildford, GU2 7XH, U.K.

E-mail: d.farotti@surrey.ac.uk, j.gutowski@surrey.ac.uk

Abstract: Extreme near-horizon geometries in $D = 11$ supergravity preserving four supersymmetries are classified. It is shown that the Killing spinors fall into three possible orbits, corresponding to pairs of spinors defined on the spatial cross-sections of the horizon which have isotropy groups $SU(3)$, G_2, or $SU(4)$. In each case, the conditions on the geometry and the 4-form flux are determined. The integrability conditions obtained from the Killing spinor equations are also investigated.

Keywords: Black Holes in String Theory, Supergravity Models

ArXiv ePrint: 2104.05478

Open Access, © The Authors. Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2021)155
1 Introduction

Black hole uniqueness is of particular interest in the context of string theory. The strongest black hole uniqueness theorems are formulated for asymptotically flat solutions in four dimensions [1–6]. However, it is notable that the inclusion of a (negative) cosmological constant weakens these types of uniqueness theorems, even in four dimensions [7, 8]. The situation is furthermore complicated in relation to black holes in string theory, which frequently arise in higher dimensional supergravities. In this case the notion of black hole uniqueness is also weaker. The first signal of this was the discovery of asymptotically flat black rings (both with, and without, supersymmetry) [9–11], for which the event horizon spatial topology is $S^2 \times S^1$. Examples of black rings can be constructed in such a way as to have the same asymptotic charges as black holes with S^3 event horizon topology. Additional evidence of non-uniqueness has also been more recently discovered in [12, 13],

| Contents |
|-----------------|-----|
| 1 Introduction | 1 |
| 2 Supersymmetric near-horizon geometries | 4 |
| 2.1 Bianchi identities and field equations | 5 |
| 2.2 Independent Killing spinor equations | 6 |
| 2.3 Global and superalgebra analysis of supersymmetry | 6 |
| 3 N = 2 solutions | 8 |
| 4 N = 4 solutions | 12 |
| 4.1 SU(3) isotropy group | 13 |
| 4.2 G_2 isotropy group | 16 |
| 4.3 SU(4) isotropy group | 17 |
| 5 Integrability conditions | 19 |
| 6 Conclusion | 20 |
| A N = 2 SU(4) KSE: linear system | 22 |
| B N = 4 SU(3) KSE: linear system | 22 |
| C N = 4 SU(3) KSE: 4-form X | 25 |
| D Useful Spin(7) and G_2 identities | 27 |
where a very large class of extreme, supersymmetric, black hole solutions has been found. These are both asymptotically flat, and have near-horizon geometries which include the geometry of the near-horizon BMPV solution [14] as a possibility, but which in addition have non-trivial topology located outside of the horizon. The charges associated with such solutions include the mass, angular momenta and electric charge which are evaluated at infinity; but in addition to these, there are also magnetic charges supported on certain, but arbitrarily many, 2-cycles. The thermodynamic properties of such solutions have also been considered in [15]. So, there is a large family of black hole geometries in five dimensions, which includes the BMPV black hole as a special case, but for which there is, a priori, no upper bound on the number of independent parameters which can be used to construct the geometries in this family. This is in marked contrast to the classical uniqueness theorems in four dimensions.

Nevertheless, in spite of this increased complexity, there are uniqueness results established when there are sufficiently many commuting rotational isometries [16–19]. Uniqueness theorems for static and asymptotically flat higher dimensional black hole solutions have also been established [20]. It is however notable that, even given such a rich structure of higher dimensional black hole solutions, there are currently no known analytic examples of asymptotically de-Sitter, or anti-de-Sitter, black rings in higher dimensions with regular horizons, and there are also non-existence theorems for such objects in certain theories [21–24]. It would appear that additional matter fields are required to be included for such solutions to exist.

Motivated by this, it is natural to investigate the issue of black hole uniqueness for extreme and supersymmetric black holes in eleven-dimensional supergravity. We remark that, in contrast to a large number of four and five-dimensional supergravity theories, black hole solutions in D=11 supergravity need not be extreme even if supersymmetry is imposed. This is because the algebraic identities satisfied by the gauge-invariant spinor bilinears differ between D=11 supergravity and four and five-dimensional theories. Hence, in this work, extremality will be imposed as an extra assumption in addition to supersymmetry, which enables the near-horizon limit of the black hole to be considered.

Although higher dimensional black holes are not determined uniquely by their near-horizon geometry, investigating the geometric structures associated with such near-horizon solutions is a necessary first step in establishing a systematic classification of these types of black holes. As we have mentioned above, even in the presence of supersymmetry, black hole uniqueness breaks down in higher dimensions. However, the conditions on the geometry following from supersymmetry can be used to put constraints on the possible solutions, and in some cases to eliminate certain geometries entirely [21]. More generally near-horizon geometries typically admit additional symmetries when compared to the bulk black hole geometry, and this makes the analysis more tractable.

In terms of D=11 supergravity, there has been some significant progress in understanding the properties of supersymmetric near-horizon geometries. In particular, in [25], it was proven that all supersymmetric near-horizon geometries in D=11 supergravity must admit an even number of supersymmetries, and furthermore all such solutions admit a $\text{SL}(2,\mathbb{R})$ symmetry algebra. The geometric structure of near-horizon solutions admitting $N = 2$
supersymmetry was classified in [25, 26]. Following on from this, analysis of the superalgebras associated with supersymmetric near-horizon geometries [27, 28] was used to further elucidate the nature of the symmetry algebras of solutions with $N > 2$ supersymmetry. In conjunction with the homogeneity theorem in [29], together with a classification of all compact homogeneous 9-dimensional Riemannian manifolds in [30], it was shown that there are no supersymmetric near horizon geometries with $16 < N < 32$ supersymmetries. Any maximally supersymmetric $N = 32$ near-horizon geometry must furthermore be one of the maximally supersymmetric geometries determined in [31].

It therefore remains to consider supersymmetric near horizon geometries with an even number $4 \leq N \leq 16$ of supersymmetries, and in this work we shall consider the case of $N = 4$. We remark that the cases of $6 \leq N \leq 16$ supersymmetries are not readily amenable to analysis via the techniques used in this paper. This is because, in order to determine the conditions obtained from the Killing spinor equations, we first explicitly integrate these equations along two of the light-cone directions which are generic to all near-horizon solutions. The remaining content of the Killing spinor equations reduces to finding spinors whose components depend only on the 9 remaining co-ordinates associated with the 9-dimensional spatial cross-section of the event horizon, which are parallel with respect to certain 9-dimensional supercovariant derivatives including contributions from the 4-form flux. To extract conditions on the geometry and fluxes from requiring the existence of such parallel spinors, Spin(9) gauge transformations are used to simplify the form of these spinors. Such simplifications can be implemented in the cases of $N = 2$ and $N = 4$ supersymmetry. However, the majority of this gauge freedom is used up in simplifying the spinors for the $N = 4$ case, and little further useful simplification can be made to the extra spinors for $N = 6$ solutions. Nevertheless, it is clear that for $6 \leq N \leq 16$, the additional supersymmetry will impose further conditions on the geometry, and it would be interesting to consider these cases in more detail in future work.

In this paper we determine the conditions on the geometry of the 9-dimensional spatial horizon section, and also the 4-form flux, of extreme supersymmetric black hole near-horizon geometries preserving $N = 4$ supersymmetry in $D = 11$ supergravity. To this end, we shall solve the horizon Killing spinor equations (KSE) using spinorial geometry techniques [32, 33]. This method has been used extensively to construct classifications of supergravity solutions (e.g. [34]), as well as to investigate properties of highly supersymmetric solutions [35] and black hole solutions [26]; see also [36] and references therein for a comprehensive list of applications. The key features of the spinorial geometry approach are firstly that appropriate gauge transformations are utilized to write explicitly the spinors in the simplest possible canonical form. Using this, the conditions obtained from the KSE can then be evaluated directly. This approach to analysing the KSE is particularly useful when investigating the properties of solutions with more than the minimal possible amount of supersymmetry, as it is not necessary to consider the rather detailed analysis of Fierz identities which would otherwise be required.

We apply these techniques to the $N = 4$ near-horizon geometries by determining explicitly the simple canonical forms for the spinors. In particular, the conditions required for $N = 4$ supersymmetry are equivalent to requiring the existence of two Majorana spinors
whose components depend only on the horizon section co-ordinates. These two spinors must be positive chirality, with respect to a certain light-cone chirality projection, and can be chosen to be orthonormal as a consequence of the global analysis of [25]. Using appropriate gauge transformations, we find that there are three different stabilizers, namely SU(3), G_2 or SU(4), for the two positive chirality spinors. The three cases are treated separately. In each case, using the spinorial geometry techniques, we find the constraints on the geometry and we express the fluxes in terms of the geometry in a covariant fashion using the gauge-invariant bilinears which are constructed from the spinors.

The paper is organized as follows. In section 2 we present the near-horizon fields of $D = 11$ supergravity and write the field equations, the Bianchi identities and the Killing spinor equations in terms of these near-horizon fields. In particular, the conditions required for supersymmetry reduce to finding spinors which depend only on the co-ordinates of the spatial horizon section, and are parallel with respect to certain supercovariant derivatives defined on the horizon sections. We also review some global and Killing superalgebra analysis. In section 3 we present the solution of the Killing spinor equations of near-horizon geometries preserving $N = 2$ supersymmetries, fully expressing it in terms of the Spin(7) gauge-invariant bilinears constructed out of the spinors. In section 4 we solve the Killing spinor equations of near-horizon geometries preserving $N = 4$ supersymmetries, splitting the analysis in three distinct cases, SU(3), G_2 or SU(4), corresponding to the isotropy groups of the spinors associated with the $N = 4$ solutions. In section 5 we analyse the integrability conditions of near-horizon geometries in $D = 11$ supergravity. Using a purely local argument, we shall show that all the components of the Einstein equations are implied by the 11-dimensional KSE, the 4-form field equations and the Bianchi identities. The paper concludes with four appendices, where we have gathered some of the lengthier formulae, namely the $N = 4$ linear systems associated to the KSE, the expression of the 4-form in terms of the SU(3) gauge-invariant bilinears, and various G_2 and Spin(7) identities.

2 Supersymmetric near-horizon geometries

In this section, we collate and summarize the key results obtained from [25–28, 37], which we shall utilize in considering the analysis of near-horizon geometries.

Using Gaussian null coordinates [38, 39], the near horizon metric and the 4-form flux
\footnote{Let ω be a k-form, then $d_h \omega := d \omega - h \wedge \omega$.} of $D = 11$ supergravity can be written [25, 26, 37] in the following form

\[
\begin{align*}
 ds^2 &= 2e^+ e^- + \delta_{ij} e^i e^j = 2 du \left(dr + rh - \frac{1}{2} r^2 \Delta du \right) + \delta_{ij} e^i e^j + ds^2(S), \\
 F &= e^+ \wedge e^- \wedge Y + re^+ \wedge d_h Y + X, \\
\end{align*}
\]

(2.1)

where the vielbein $\{e^+, e^-, e^i\}$, with $i = 1, 2, 3, 4, 6, 7, 8, 9, 10$, 11 is given by

\[
\begin{align*}
 e^+ &= du, & e^- &= dr + rh - \frac{1}{2} r^2 \Delta du, & e^i &= e^i J dy^J, & g_{IJ} &= \delta_{ij} e^i e^j , \\
\end{align*}
\]

(2.2)

and

\[
 ds^2(S) = \delta_{ij} e^i e^j, \\
\]

(2.3)
is the metric of the horizon spatial cross-section S given by $r = u = 0$. In these expressions, $h = h_i e^i$, Δ, e^i, Y and X depend only on the co-ordinates y of S. Furthermore, we assume that S is a compact 9-dimensional manifold without boundary, and that Δ, h, Y and X are globally defined and smooth 0-, 1-, 2- and 4-forms on S, respectively.

2.1 Bianchi identities and field equations

The Bianchi identities and field equations of $D = 11$ supergravity \cite{40} can be decomposed along the lightcone directions and those of the horizon section S. For the Bianchi identities $dF = 0$, such a decomposition yields

\[
d X = 0. \tag{2.4}
\]

The field equation of the 4-form flux F reads

\[
d \ast_11 F - \frac{1}{2} F \wedge F = 0, \tag{2.5}
\]

where \ast_{11} is the Hodge star on 11-dimensional spacetime. Equation (2.5) can be written as

\[
- \ast_9 d_h Y - h \wedge \ast_9 X + d \ast_9 X = Y \wedge X, \tag{2.6}
\]

and

\[
- d \ast_9 Y = \frac{1}{2} X \wedge X, \tag{2.7}
\]

where \ast_9 denotes the Hodge dual on S. The volume form is chosen as $\epsilon_{11} = e^+ \wedge e^- \wedge \epsilon_S$, where ϵ_S is the volume form of S.

The Einstein equation is

\[
R_{MN} = \frac{1}{12} F_{ML_1L_2L_3} F_N^{L_1L_2L_3} - \frac{1}{144} g_{MN} F_{L_1L_2L_3L_4} F^{L_1L_2L_3L_4}, \tag{2.8}
\]

for which the independent components are the ij components

\[
\tilde{R}_{ij} + \tilde{\nabla}_i (h_{ij}) - \frac{1}{2} h_i h_j = -\frac{1}{2} Y_i Y_j \ell + \frac{1}{12} X_{\ell_1 \ell_2 \ell_3} X_j \ell_1 \ell_2 \ell_3
\]

\[
+ \delta_{ij} \left(\frac{1}{12} Y_{\ell_1 \ell_2} Y_{\ell_1 \ell_2} - \frac{1}{144} X_{\ell_1 \ell_2 \ell_3 \ell_4} X^{\ell_1 \ell_2 \ell_3 \ell_4} \right), \tag{2.9}
\]

and the $++$ component

\[
\tilde{\nabla}_i h_i = 2\Delta + h^2 - \frac{1}{3} Y_{\ell_1 \ell_2} Y_{\ell_1 \ell_2} - \frac{1}{72} X_{\ell_1 \ell_2 \ell_3 \ell_4} X^{\ell_1 \ell_2 \ell_3 \ell_4}. \tag{2.10}
\]

Here $\tilde{\nabla}$ is the Levi-Civita connection of the metric $ds^2(S)$ and \tilde{R}_{ij} is the Ricci tensor of S. The $++$ and $+i$ components of the Einstein equation hold as a consequence of (2.4), the 3-form field equations (2.6) and (2.7) and the components of the Einstein equation in (2.9) and (2.10). The $--$ and the $-i$ components of the Einstein equations are also satisfied automatically for all near-horizon solutions (2.1). Thus, the conditions on $ds^2(S)$, Δ, h, Y and X simplify to (2.4), (2.6), (2.7), (2.9) and (2.10).
2.2 Independent Killing spinor equations

The Killing spinor equations (KSE) of 11-dimensional supergravity [40] are
\[
\nabla_M \epsilon + \left(- \frac{1}{288} \Gamma_M L_1 L_2 L_3 L_4 F_{L_1 L_2 L_3 L_4} + \frac{1}{36} F_{M L_1 L_2 L_3} \Gamma^{L_1 L_2 L_3} \right) \epsilon = 0, \tag{2.11}
\]
where \(\nabla \) is the Levi-Civita connection. The KSE can be integrated along the two lightcone directions, as all the bosonic fields are independent of the \(u \) co-ordinate, and the dependence on the \(r \) co-ordinate is known explicitly. The remaining content of the KSE can then be further decomposed along the directions corresponding to the spatial horizon section \(S \).

To begin, we write the Killing spinor \(\epsilon \) as [26]
\[
\epsilon = \epsilon_+ + \epsilon_-, \quad \Gamma \epsilon_\pm = 0. \tag{2.12}
\]
Then after some computation, see [25, 26, 37], we find that
\[
\epsilon_+ = \eta_+, \quad \epsilon_- = \eta_- + r \Gamma_- \Theta_+ \eta_+, \tag{2.13}
\]
and
\[
\eta_+ = \phi_+ + u \Gamma_+ \Theta_- \phi_-, \quad \eta_- = \phi_-, \tag{2.14}
\]
where \(\phi_\pm = \phi_\pm (y) \) do not depend on \(r \) or \(u \) and
\[
\Theta_\pm = \left(\frac{1}{4} h_i \Gamma^i + \frac{1}{288} X_{\ell_1 \ell_2 \ell_3 \ell_4} \Gamma^{\ell_1 \ell_2 \ell_3} \pm \frac{1}{12} Y_{\ell_1 \ell_2} \Gamma^{\ell_1 \ell_2} \right). \tag{2.15}
\]

Using the field equations and Bianchi identities, the independent KSE are
\[
\nabla_i^{(\pm)} \phi_\pm \equiv \Gamma^i \nabla_i^{(\pm)} \phi_\pm + \Psi^{(\pm)}_i \phi_\pm = 0, \tag{2.16}
\]
where
\[
\Psi^{(\pm)}_i = \mp \frac{1}{4} h_i - \frac{1}{288} X_{\ell_1 \ell_2 \ell_3 \ell_4} \Gamma^{\ell_1 \ell_2 \ell_3 \ell_4} + \frac{1}{36} X_{\ell_1 \ell_2 \ell_3} \Gamma^{\ell_1 \ell_2 \ell_3} \pm \frac{1}{24} \Gamma^{\ell_1 \ell_2} Y_{\ell_1 \ell_2} + \frac{1}{6} Y_{ij} \Gamma^j. \tag{2.17}
\]

2.3 Global and superalgebra analysis of supersymmetry

For each of the “horizon gravitino KSEs” on \(S \) given in (2.16), one can associate a “horizon Dirac equation” as
\[
\mathcal{D}^{(\pm)} \phi_\pm \equiv \Gamma^i \nabla_i^{(\pm)} \phi_\pm = \Gamma^i \nabla_i^{(\pm)} \phi_\pm + \Psi^{(\pm)}_i \phi_\pm = 0, \tag{2.18}
\]
where
\[
\Psi^{(\pm)}_i = \Gamma^i \Psi^{(\pm)}_i = \mp \frac{1}{4} h_i \Gamma^\ell + \frac{1}{96} X_{\ell_1 \ell_2 \ell_3 \ell_4} \Gamma^{\ell_1 \ell_2 \ell_3 \ell_4} \pm \frac{1}{8} Y_{\ell_1 \ell_2} \Gamma^{\ell_1 \ell_2}. \tag{2.19}
\]
These Dirac equations, in addition to the Levi-Civita connection, also depend on the fluxes of the supergravity theory restricted on the horizon section \(S \), and the properties of the horizon Dirac equations play an important role in counting the number of supersymmetries.
preserved by the solutions. In particular, generalized Lichnerowicz Theorems established in [25] (see also analogous results for type II supergravity theories in [36, 41–43]) imply that
\[\nabla_i^{(\pm)} \phi_\pm = 0 \iff D^{(\pm)} \phi_\pm = 0, \tag{2.20} \]
and furthermore, via an index theory argument, we have
\[\dim \ker D^{(+)} = \dim \ker D^{(-)}. \tag{2.21} \]

The global analysis which is used to establish the generalized Lichnerowicz theorems, also implies, by a maximum principle argument, that \(\| \phi_+ \|^2 \) is constant, and henceforth we shall take all such positive chirality spinors to satisfy \(\| \phi_+ \|^2 = 1 \). The number of positive chirality spinors which are parallel with respect to \(\nabla_i^{(+)} \) is equal to the number of negative chirality spinors which are parallel with respect to \(\nabla_i^{(-)} \), and for a supersymmetric near-horizon geometry preserving \(2k \) supersymmetries, we take \(\phi_{r}^{\pm} \) spinors for \(r = 1, \ldots k \) with, without loss of generality, \(\langle \phi_{r}^{+}, \phi_{s}^{+} \rangle = \delta_{rs} \), where \(\langle , \rangle \) is a Spin(9)-invariant Dirac inner product.

There is furthermore an algebraic relation which can be used to construct \(\phi_{r}^{+} \) spinors from \(\phi_{r}^{-} \) spinors which are parallel with respect to \(\nabla_i^{(\pm)} \) via
\[\phi_{r}^{+} = \Gamma_{+} \Theta_{-} \phi_{r}^{-} \tag{2.22} \]
and in particular, it has been shown that if \(\phi_{r}^{-} \neq 0 \) then \(\phi_{r}^{+} \) defined as above is non-vanishing. A further algebraic relation, based on a superalgebra computation [27, 28], has also been constructed which relates \(\phi_{r}^{-} \) to \(\phi_{r}^{+} \) via
\[2\phi_{r}^{-} - 2 \| \phi_{r}^{-} \|^2 \Gamma_{-} \Theta_{+} \phi_{s}^{+} + \hat{V} \Gamma_{-} \phi_{r}^{+} = 0, \tag{2.23} \]
where \(\hat{V} \) is obtained from the horizon section isometries
\[V_{r}^{rs} = \langle \Gamma_{+} \phi_{r}^{-}, \Gamma_{+} \phi_{s}^{+} \rangle \tag{2.24} \]
via
\[V^{rs} = \delta^{rs} \hat{V} + Z^{rs}, \tag{2.25} \]
where \(Z^{rs} \) is antisymmetric in the indices \(r, s \). Moreover, the negative chirality spinors \(\phi_{r}^{-} \) satisfy
\[\langle \phi_{r}^{-}, \phi_{s}^{-} \rangle = \delta^{rs} \| \phi_{r}^{-} \|^2, \tag{2.26} \]
and the positive chirality spinors \(\phi_{r}^{+} \) satisfy
\[4(\Theta_{+} \phi_{r}^{+}, \Theta_{+} \phi_{s}^{+}) = \delta^{rs} \Delta, \quad \langle \phi_{r}^{(r)}, \Gamma_{+} \phi_{s}^{(s)} \rangle = 0. \tag{2.27} \]
The isometries \(V_{r}^{rs} \) on \(S \) are obtained from \(D = 11 \) spacetime isometries as set out in [27, 28], and both the \(D = 11 \) metric and 4-form \(F \) are invariant with respect to these isometries [44]. Consequently, the isometries \(\hat{V} \) and \(Z^{rs} \) leave invariant all of the near-horizon data:
\[\hat{V}_{(i} V_{j)} = 0, \quad \hat{L}_{\hat{V}} h = 0, \quad \hat{L}_{\hat{V}} \Delta = 0, \quad \hat{L}_{\hat{V}} Y = 0, \quad \hat{L}_{\hat{V}} X = 0, \tag{2.28} \]

\[-7\]
and similarly
\[\tilde{\nabla}_{(i}Z^s_{j)} = 0, \quad \tilde{\mathcal{L}}_{Z^s}h = 0, \quad \tilde{\mathcal{L}}_{Z^s}\Delta = 0, \quad \tilde{\mathcal{L}}_{Z^s}Y = 0, \quad \tilde{\mathcal{L}}_{Z^s}X = 0. \tag{2.29} \]
Furthermore, \(\tilde{V} \) and \(Z^s \) commute
\[[\tilde{V}, Z^s] = 0. \tag{2.30} \]

The condition (2.23) does not however determine the \(\phi^r_- \) spinors directly from the \(\phi^r_+ \) spinors because \(\tilde{V} \) depends implicitly on \(\phi^r_- \) via (2.25). The vector field \(\tilde{V} \) may vanish, in such a case the near-horizon geometry is static, and is a warped product \(AdS_2 \times_w S \) [25]. Generically, a non-static \(N = 4 \) solution has non-vanishing commuting isometries \(\tilde{V} \) and \(Z = Z^{12} \), and therefore admits a \(U(1) \times U(1) \) symmetry on the horizon spatial section \(S \). However, there are also special cases when this symmetry is reduced. Additional geometric conditions can be obtained from a detailed analysis of the Killing spinor equations, which we shall undertake in the following sections. We remark that it will be most straightforward to consider the conditions obtained by solving
\[\nabla_i^{(+)} \phi^r_+ = 0, \tag{2.31} \]
where \(r = 1 \) for \(N = 2 \) solutions, and \(r = 1, 2 \) for \(N = 4 \) solutions.

This is because the constant norm condition \(\langle \phi^r_+, \phi^s_+ \rangle = \delta^r_s \), combined with a judicious application of Spin(9) gauge transformations, allows one to find very simple canonical forms for the \(\phi^r_+ \) spinors, and consequently the linear systems obtained from the KSE are rendered more tractable. Having solved the KSE for the positive chirality spinors, the global analysis guarantees that there must exist negative chirality spinors \(\phi^r_- \) which are parallel with respect to \(\nabla^{(-)} \).

3 \(N = 2 \) solutions

In this section we revisit near-horizon geometries preserving exactly \(N = 2 \) supersymmetries. This has already been discussed in [26] working in a particular gauge for the \(\phi^1_- \) spinor. However, our analysis here does not involve that gauge fixing procedure, as we wish to retain sufficient gauge freedom to simplify the additional positive chirality spinor which we will consider in the later analysis of \(N = 4 \) solutions. It is convenient to solve the KSE in the positive chirality sector
\[\nabla_i^{(+)} \phi^1_+ = 0, \tag{3.1} \]
since, as we have mentioned in the previous section, \(\phi^1_+ \) has constant norm, which enables us to write this spinor in a particularly simple canonical form. In particular, using the Spin(9) gauge invariance of the KSEs (3.1), namely
\[\phi^1_+ \rightarrow e^{\rho i\Gamma_{ij}}\phi^1_+, \tag{3.2} \]
where Γ_{ij} are the generators of Spin(9), the spinor ϕ_+^1 can be written in the following particularly simple canonical form

$$\phi_+^1 = \frac{1}{\sqrt{2}}(1 + e_{1234}), \quad (3.3)$$

which is stabilized by a Spin(7) isotropy subgroup of Spin(9) [37].

It will be particularly useful to demonstrate explicitly how this can be achieved, as it will illustrate how a similar analysis can be done to determine the common isotropy group of two spinors $\{\phi_+^1, \phi_+^2\}$ in the next section, which is the primary focus of this work. So, in order to show (3.3), let us start by writing down the general expression for a positive (lightcone) chirality Majorana spinor [45]

$$\phi_+^1 = w_1 + \bar{w}e_{1234} + \psi^a e_a - \frac{1}{3!}(\star \bar{\psi})^{a_1 a_2 a_3} e_{a_1 a_2 a_3} + \frac{1}{2}(B^{a_1 a_2} - (\star \bar{B})^{a_2 a_3}) e_{a_1 a_2}, \quad (3.4)$$

where in (3.4) $\alpha, \beta = 1, 2, 3, 4$, \star is the Hodge dual on \mathbb{R}^4 and w, ψ and B are functions of the horizon coordinates y. Defining $A^{\alpha \beta} := B^{\alpha \beta} - (\star \bar{B})^{\alpha \beta}$, we can rewrite (3.4) as follows

$$\phi_+^1 = w_1 + \bar{w}e_{1234} + \psi^a e_a - \frac{1}{3!}(\star \bar{\psi})^{a_1 a_2 a_3} e_{a_1 a_2 a_3} + \chi e_{1p} - \frac{1}{2}\chi^r e_{mn} e_{mn}, \quad (3.5)$$

where $\chi^p := A^{1p}$, with $p = 2, 3, 4$. Consider first the $su(3)$ transformation $S^{pq} \Gamma_{pq}$. Then

$$(S^{pq} \Gamma_{pq})e_{1r} = 2S^{pr} e_{1p}. \quad (3.6)$$

Since the action of SU(3) on $S^5 \subset \mathbb{C}^3$ is simply transitive, without loss of generality we can impose $\chi^3 = \chi^4 = 0$. Thus (3.5) simplifies to

$$\phi_+^1 = w_1 + \bar{w}e_{1234} + \psi^a e_a - \frac{1}{3!}(\star \bar{\psi})^{a_1 a_2 a_3} e_{a_1 a_2 a_3} + \chi e_{12} - \bar{\chi} e_{34}, \quad (3.7)$$

with $\chi := \chi^1$. Next, let us consider the gauge transformations

$$T_1 := \Gamma_{12} + \Gamma_{12}, \quad T_2 := i(\Gamma_{12} - \Gamma_{12}), \quad T_3 := \Gamma_{34} + \Gamma_{34}, \quad T_4 := i(\Gamma_{34} - \Gamma_{34}), \quad (3.8)$$

acting on

$$v_1 := 1 + e_{1234}, \quad v_2 := i(1 - e_{1234}), \quad v_3 := e_{12} - e_{34}, \quad v_4 := i(e_{12} + e_{34}). \quad (3.9)$$

It is easy to show that the representative matrices $M^{(a)}$ ($a = 1, \ldots, 4$) of T_a with respect to v_a are elements of $so(4)$. In particular

$$M^{(1)} - M^{(3)} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad (3.10)$$

and

$$M^{(1)} + M^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \quad (3.11)$$

– 9 –
are two copies of $so(2)$ acting on $\{v_1, v_3\}$ and $\{v_2, v_4\}$ respectively. The transitivity of $SO(2)$ on $S^1 \subset \mathbb{R}^2$ allows us to set $\Re(\chi) = \Im(\chi) = 0$, that is, $\chi = 0$. Also, $i\Gamma_{11}$ is a $so(2)$ transformation acting on $\{v_1, v_2\}$. Thus, we can set $\Im(w) = 0$, that is $w \in \mathbb{R}$. Combining the previous results, (3.7) simplifies to
\begin{equation}
\phi_+^1 = w(1 + e_{1234}) + \psi^\alpha e_\alpha - \frac{1}{3!}(\star \psi)^{\alpha_1 \alpha_2 \alpha_3} e_{\alpha_1 \alpha_2 \alpha_3}. \tag{3.12}
\end{equation}
Next, consider a $su(4)$ transformation $\Lambda^{\alpha \beta} \Gamma_{\alpha \beta}$, where $\alpha = 1, 2, 3, 4$. We have that
\begin{equation}
(\Lambda^{\alpha \beta} \Gamma_{\alpha \beta}) e_\lambda = 2 \Lambda^\alpha e_\alpha. \tag{3.13}
\end{equation}
Using the transitivity of $SU(4)$ on $S^7 \subset \mathbb{C}^4$, we can set $\psi^2 = \psi^3 = \psi^4 = 0$, $\psi := \psi^1 \in \mathbb{R}$. Thus (3.12) boils down to
\begin{equation}
\phi_+^1 = w(1 + e_{1234}) + \psi(e_1 + e_{234}). \tag{3.14}
\end{equation}
Moreover, $\Gamma_{\underline{1}} + \Gamma_{\underline{3}}$ is a $so(2)$ transformation on $1 + e_{1234}$ and $e_1 + e_{234}$, thus, using the transitivity of $SO(2)$, we can set $\psi = 0$ in (3.14), obtaining
\begin{equation}
\phi_+^1 = w(1 + e_{1234}). \tag{3.15}
\end{equation}
Eventually, using $\| \phi_+^1 \|^2 = 1$, we can set $w = \frac{1}{\sqrt{2}}$ in (3.15), obtaining (3.3).

The stabilizer, or isotropy group, of ϕ_+^1, with ϕ_+^1 given by (3.3), is $Spin(7)$. To see this, note that the stabilizer of ϕ_+^1 is the subgroup of $Spin(9)$ whose generators satisfy
\begin{equation}
f^{ij} \Gamma_{ij} \phi_+^1 = 0. \tag{3.16}
\end{equation}
Using the oscillatory basis for the Gamma matrices
\begin{equation}
\Gamma_\alpha := \frac{1}{\sqrt{2}}(\Gamma_\alpha - i \Gamma_{\alpha+5}), \quad \Gamma_\bar{\alpha} := \frac{1}{\sqrt{2}}(\Gamma_\alpha + i \Gamma_{\alpha+5}), \tag{3.17}
\end{equation}
equation (3.16) boils down to
\begin{equation}
2 f_\alpha^\alpha (e_{1234} - 1) + (2 f^{\alpha \beta} - e^{\alpha \beta \gamma \delta} f_{\gamma \delta}) e_{\alpha \beta} + 2 \sqrt{2} f_\beta^\alpha e_\alpha = 0, \tag{3.18}
\end{equation}
which, using the linear independence of the basis elements e_I, implies that
\begin{equation}
f_\alpha^\alpha = 0, \quad f_2^\alpha = 0, \quad f_{\bar{\alpha} \bar{\beta}} = \frac{1}{2} e_{\bar{\alpha} \bar{\beta}}^{\gamma \delta} f_{\gamma \delta}, \tag{3.19}
\end{equation}
which is indeed the Lie algebra $spin(7)$ in a Hermitian basis [46].

Using the oscillator basis (3.17), we have computed the $N = 2$ linear system associated to the KSE (3.1), with ϕ_+^1 given by (3.3). The linear system is presented in appendix A, and its solution is the following
\begin{equation}
\frac{1}{18} X_{\mu_1 \mu_2 \mu_3 \mu_4} e^{\mu_1 \mu_2 \mu_3 \mu_4} - \frac{1}{6} X_{\mu_1 \mu_2} e^{\mu_1 \mu_2} - \frac{1}{6} \Omega^\mu \mu - \frac{5}{6} \Omega_{\mu \xi} \mu - \frac{2}{3} \Omega_{\mu \nu} \mu = 0, \tag{3.20}
\end{equation}
\begin{equation}
X_{\alpha \beta \mu} + \frac{1}{4} \delta_{\alpha \beta} X_{\mu_1 \mu_2} e^{\mu_1 \mu_2} = -2 \Omega_{\alpha, [\beta] \bar{\mu}} + \frac{1}{4} \delta_{\alpha \beta} (\Omega_{\mu \xi, \bar{\mu}} + \Omega_{\mu \nu, \bar{\mu}}), \tag{3.21}
\end{equation}
\begin{equation}
X_{(\alpha | \beta, \tilde{\mu} \tilde{\nu})} e^{\tilde{\mu} \tilde{\nu}} = 6 \Omega_{(\alpha, | \beta)}, \tag{3.22}
\end{equation}
\begin{equation}
X_{\alpha \beta \mu} + \frac{1}{2} X_{\mu_1 \mu_2} e^{\mu_1 \mu_2} e_{\alpha \beta} = 2 \Omega_{(\alpha, | \beta)} + 2 \Omega_{\alpha, \beta} - (\Omega_{\alpha, \mu_1 \mu_2} + \Omega_{\beta, \mu_1 \mu_2}) e^{\mu_1 \mu_2}, \tag{3.23}
\end{equation}
\[X_{\alpha \beta \gamma} = -2\Omega_{[\alpha, \beta \gamma]} + \frac{2}{3} \left(-\Omega_{\nu, \mu} + \Omega_{\mu \nu} - \Omega_{\nu \mu} \right) \epsilon_{\alpha \beta \gamma}^\mu, \quad \text{(3.24)} \]
\[X_{\alpha \beta \gamma} = \frac{2}{3} \left(\Omega_{\alpha, \mu_1 \mu_2} + \Omega_{\mu_1, \alpha \mu_2} \right) \epsilon^{\mu_1 \mu_2 \beta \gamma} - 2\Omega_{\alpha, \beta \gamma} \]
\[+ \frac{4}{3} \left(-\Omega_{\nu, [\beta \mu \nu]} + \Omega_{[\beta, [\nu \nu]} + \frac{1}{2} \Omega_{[\beta \nu]} \right) \delta_{3}[\alpha], \quad \text{(3.25)} \]
\[Y_{\alpha \beta} = 2\Omega_{[\alpha, [\beta \beta]} + \delta_{\alpha \beta} \left(\Omega_{\alpha \nu} + \frac{1}{2} \Omega_{\nu \nu} - \frac{1}{2} \Omega_{[\nu \nu]} \right), \quad \text{(3.26)} \]
\[Y_{\mu} = \frac{2}{3} \left(\Omega^\mu_{\tau, [\mu \alpha]} + \frac{2}{3} \Omega_{\alpha \nu} + \frac{3}{3} \Omega_{[\mu_1 \mu_2 \beta \gamma}] \epsilon^{\mu_1 \mu_2 \beta \gamma} - \frac{4}{3} \Omega_{\alpha \mu} \right), \quad \text{(3.27)} \]
\[Y_{\alpha \beta} = \left(\Omega_{\tau_1 \tau_2 \mu} - \Omega_{\mu} \tau_1 \tau_2 \right) \epsilon^{\mu_1 \mu_2 \beta \gamma} + 2\Omega_{\tau_1 \tau_2 \mu}, \quad \text{(3.28)} \]
\[h^i = \frac{1}{2} \left(\Omega^{\mu}_{\tau_1 \tau_2} + \Omega^{\mu}_{\tau_1 \tau_2} \right), \quad \text{(3.29)} \]
\[h^\alpha = \frac{1}{3} \left(\Omega^\alpha_{\tau_1 \tau_2} - \frac{2}{3} \Omega_{\alpha \nu} - \frac{2}{3} \Omega_{[\mu_1 \mu_2 \beta \gamma]} \epsilon^{\mu_1 \mu_2 \beta \gamma} + \frac{4}{3} \Omega_{\alpha \mu} \right). \quad \text{(3.30)} \]

After an extensive computation, the solution of the linear system, written in equations (3.20)–(3.30) in a SU(4) representation, can be repackaged in a compact Spin(7) covariant form, using the Spin(7) invariant differential forms
\[e^\tau, \quad \tau := \Re(\chi) - \frac{1}{2} \omega \wedge \omega, \quad \text{(3.31)} \]
where \(\tau \) is the Spin(7) fundamental 4-form, \(\chi \) and \(\omega \) are a 4-form and a 2-form respectively, which in a local frame \(e^\alpha \) read
\[\chi := 4 e^{1234}, \quad \omega := -i \delta_{\alpha \beta} e^{\alpha \beta}. \quad \text{(3.32)} \]

The Spin(7) invariant forms (3.31) can be computed via the Spin(7) gauge-invariant bilinears
\[\langle \phi_1^1, \Gamma_{\gamma_1 \gamma_2 \gamma_3} \phi_2^1 \rangle. \quad \text{(3.33)} \]

The Spin(7) covariant solution of near-horizon geometries in \(D = 11 \) supergravity preserving \(N = 2 \) supersymmetries is given by
\[h = -\frac{1}{3} \left(\mathcal{L}_{e^\tau} e^\tau + \frac{1}{6} \theta_\tau^{(9)} \right) - \frac{2}{3} \left(*g \ast g \ast e^\tau \right) e^\tau, \quad \text{(3.34)} \]
\[Y = -d_\tau e^\tau - \frac{1}{48} \left(\mathcal{L}_{e^\tau} \tau_{ijj_j} e^i e^{i+j} \right), \quad \text{(3.35)} \]
\[X = -\frac{1}{7} \left(*g \ast g \ast e^\tau \right) \tau - \frac{1}{4} \mathcal{L}_{e^\tau} \tau + \frac{1}{4!} \left(\left(\Delta e^\tau \right)_{ij} - \frac{3}{2} \left(\mathcal{L}_{e^\tau} \tau \right)_{ij} \right) \tau_{i+j} e^i e^{i+j} \]
\[- e^\tau \wedge \left(*g \ast g \ast \tau + \frac{1}{3!} \left(\left(\Delta e^\tau \right)_{ij} + \frac{1}{6} \theta_\tau^{(9)} \right) \tau_{i+j} e^{i+j} \right) + X^{27}, \quad \text{(3.36)} \]

where \(\theta_\tau^{(9)} \) is the Lee form of \(\tau \) on \(S \), i.e.
\[\theta_\tau^{(9)} := *g \left(\tau \wedge *g d \tau \right), \quad \text{(3.37)} \]
and \(X^{27} \in 27 \) of Spin(7) is projected out by the KSEs. The definition of the 27 component of a 4-form on a 8-dimensional Spin(7) manifold is given in (D.8). Furthermore, no geometric conditions arise.
In this section we study near-horizon geometries preserving exactly \(N = 4 \) supersymmetries, by obtaining the additional conditions on the geometry and the 4-form flux obtained by solving the KSE

\[\nabla_i^{(+)} \phi_+^2 = 0. \]

The first step is to write the second (positive chirality) spinor \(\phi_+^2 \) in the simplest possible canonical form. Using the residual \(\text{Spin}(7) \) gauge invariance, which preserves the canonical form of the first spinor \(\phi_+^1 \), the second spinor \(\phi_+^2 \) can be put in the following form

\[\phi_+^2 = \frac{i}{\sqrt{2}} \cos \theta (1 - e_{1234}) + \frac{1}{\sqrt{2}} \sin \theta (e_1 + e_{234}), \]

where \(\theta \) is a real function on \(S \). In order to show (4.2), we proceed similarly as for \(\phi_+^1 \). In particular, since \(su(3) \subset \text{spin}(7) \), we can still simplify \(\phi_+^2 \) to

\[\phi_+^2 = w_1 + \bar{w} e_{1234} + \psi^a e_a - \frac{1}{3!} (\bar{\psi} \gamma^{a_1 a_2 a_3} e_{a_1 a_2 a_3}) + \chi e_{12} - \bar{\chi} e_{34}. \]

In order to simplify the spinor further, notice that \(M^{(1)} + M^{(3)} \in \text{spin}(7) \), while \(M^{(1)} - M^{(3)} \notin \text{spin}(7) \) (the matrices \(M^{(a)} \) are defined in the previous section). Thus we can only use \(M^{(1)} + M^{(3)} \) to set \(\Re(\chi) = 0 \). However

\[-M^{(2)} + M^{(4)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

is a \(so(2) \) transformation acting on \(\{v_2, v_3\} \), thus we can still set \(\Re(\chi) = 0 \) and then \(\chi = 0 \). However, differently from the first spinor, we cannot use \(i\Gamma_{11} \) to set \(w \in \mathbb{R} \) since \(i\Gamma_{11} \notin \text{spin}(7) \), Thus

\[\phi_+^2 = w_1 + \bar{w} e_{1234} + \psi^a e_a - \frac{1}{3!} (\bar{\psi} \gamma^{a_1 a_2 a_3} e_{a_1 a_2 a_3}). \]

Using the \(su(4) \subset \text{spin}(7) \) gauge invariance, equation (4.5) reduces to

\[\phi_+^2 = w_1 (1 + e_{1234}) + i w_2 (1 - e_{1234}) + \psi (e_1 + e_{234}). \]

Eventually, using the orthonormality relation \(\langle \phi_+^r, \phi_+^s \rangle = \delta^{rs} \), we can set \(w_1 = 0, w_2 = \frac{1}{\sqrt{2}} \cos \theta \) and \(\psi = \frac{1}{\sqrt{2}} \sin \theta \) in (4.6), with \(\theta \) an arbitrary function of the horizon coordinates, obtaining (4.2).

The stabilizer of the two spinors \(\phi_+^r \ (r = 1, 2) \), with \(\phi_+^1 \) given by (3.3) and \(\phi_+^2 \) given by (4.2) is

- \(SU(3) \) if \(\cos \theta, \sin \theta \neq 0 \),
- \(G_2 \) if \(\cos \theta = 0 \),
- \(SU(4) \) if \(\sin \theta = 0 \),
as we shall show now. The stabilizer of the two spinors is the subgroup of Spin(7) whose
generators satisfy
\begin{equation}
 f^{ij} \Gamma_{ij} \phi_+^2 = 0, \tag{4.7}
\end{equation}
with \(f^{ij} \in \text{spin}(7) \). The direct computation shows that \((p, q, r = 2, 3, 4) \)
\begin{equation}
 f^{ij} \Gamma_{ij} \phi_+^2 = \frac{i}{\sqrt{2}} \cos \theta \left(-2 \epsilon^{pq} (f_{1p} e_{pq} + f_{q1p}) \right) \\
 + \frac{1}{\sqrt{2}} \sin \theta \left(2 \epsilon^{pq} e_{1pq} (f_{1r} + f_{1r}) - 4 \epsilon_p (f_{1p}^P + f_{1p}^P) + 4 f_{p}^P (e_1 - e_{234}) \right) = 0, \tag{4.8}
\end{equation}
where we used (3.19). Let us assume now that both \(\cos \theta \) and \(\sin \theta \) are non-vanishing.
Then, using the linear independence of the basis elements \(e_I \), (4.8) imply
\begin{equation}
 f_{1p} = f_{1p} = f_{p}^P = f_{11} = f_{p}^P = 0, \tag{4.9}
\end{equation}
that is \(f \in \text{su}(3) \). Now consider \(\cos \theta = 0 \). Equations (3.19) and (4.8) imply
\begin{equation}
 f_{11} = f_{p}^P = 0, \quad f_{1p} + f_{1p} = 0, \quad f_{1p} - f_{1p} = \epsilon^P_{p} f_{qP}, \tag{4.10}
\end{equation}
that is \(f \in \mathfrak{g}_2 \), where \(\mathfrak{g}_2 \) is the Lie algebra of \(G_2 \). Eventually, let us consider \(\sin \theta = 0 \).
Equations (3.19) and (4.8) yield
\begin{equation}
 f_{\alpha \beta} = 0, \quad f_\alpha^\alpha = 0, \tag{4.11}
\end{equation}
that is \(f \in \text{su}(4) \).

In solving the KSE (4.1), the three cases outlined above must be treated separately.

4.1 SU(3) isotropy group

In the SU(3) case, the second spinor is given by (4.2), with both \(\cos \theta \) and \(\sin \theta \) non-vanishing. The linear system associated to the second spinor is presented in appendix B. After an extensive computation, the solution of the linear system can be expressed in terms of the SU(3) gauge-invariant bilinears
\begin{equation}
 \langle \phi_+^r, \Gamma_{i_1 \ldots i_n} \phi_+^s \rangle. \tag{4.12}
\end{equation}
The non-trivial bilinears (4.12) are the following
\begin{equation}
 e^1, \quad e^\sharp, \quad \hat{\omega}, \quad \hat{\chi}, \tag{4.13}
\end{equation}
where \(e^1 \) is complex and
\begin{equation}
 \hat{\omega} := -i \delta_{pq} e^{pq}, \quad \hat{\chi} := 2 \sqrt{2} e^{234} \tag{4.14}
\end{equation}
are the usual SU(3)-invariant forms of 6-dimensional SU(3)-structures. Investigating the linear system (B.1)–(B.20), it turns out that it is convenient to choose as 1-form bilinears the following orthonormal set
\begin{align}
 K &:= \frac{1}{\sqrt{2}} (e^1 + e^1) \\
 U &:= \frac{i}{\sqrt{2}} \sin \theta (e^1 - e^1) + \cos \theta e^\sharp \\
 W &:= \frac{i}{\sqrt{2}} \cos \theta (e^1 - e^1) - \sin \theta e^\sharp, \tag{4.15}
\end{align}
rather than \(e^1, e^1 \) and \(e^\sharp \).
We have found the following (covariant) geometric conditions (hatted indices are real 6-dimensional SU(3)-indices)

\[(dK)_{ij} = 0, \quad (4.16) \]
\[(dW)_{ij} = 0, \quad (4.17) \]
\[\sin \theta (dU)_{ij} - \frac{1}{2} \partial_{i} \partial_{j} \nabla_{\hat{g}} \mathcal{R}(\hat{\chi})_{j|i} + \cos \theta \mathcal{R}(\hat{\chi})_{j|i}^{f} ((\mathcal{L}_{W} K)_{ij} + [K, W]_{ij}) = 0, \quad (4.18) \]
\[+ \Im (\hat{\chi})_{ij}^{f} \left[\frac{1}{2} (\theta_{\hat{g}(\hat{\chi})})_{i}^{l} + \cos^{2} \theta ((\mathcal{L}_{U} U)_{ij} + (\mathcal{L}_{K} K)_{ij}) - \left(\cos^{2} \theta + \frac{1}{2} \right) (\theta_{\hat{g}(\hat{\omega})})_{i}^{l} \right] = 0, \quad (4.19) \]
\[J_{i}^{f}((\mathcal{L}_{U} g)_{j})_{l} + \frac{1}{2} \sin \theta J_{i}^{f} M_{j} = 0, \quad (4.20) \]
\[(\mathcal{L}_{U} K)_{i} = 0, \quad (4.21) \]
\[(\mathcal{L}_{U} W)_{i} = 0, \quad (4.22) \]
\[(\mathcal{L}_{W} W)_{i} = 0, \quad (4.23) \]
\[(\mathcal{L}_{K} W)_{i} = 0, \quad (4.24) \]
\[-\frac{1}{2} \sin \theta \mathcal{R}(\hat{\chi})_{j|i} + \sin^{2} \theta (\mathcal{L}_{W} U)_{ij} + \cos \theta (\mathcal{L}_{K} K)_{ij} = 0, \quad (4.25) \]
\[-\frac{1}{2} \sin \theta \mathcal{R}(\hat{\chi})_{j|i} + \sin^{2} \theta (\mathcal{L}_{U} U)_{ij} + \cos \theta \mathcal{R}(\hat{\chi})_{j|i}^{f} = 0, \quad (4.26) \]
\[\frac{1}{4} \mathcal{R}(\hat{\chi})_{j|i} + \sin \theta (\mathcal{L}_{W} U)_{ij} + \frac{1}{2} \left(\theta_{\hat{g}(\hat{\omega})})_{i}^{l} \right) = 0, \quad (4.27) \]
\[2 \cot \theta \partial_{i} \theta - \left(\theta_{\hat{g}(\hat{\omega})})_{i}^{l} \right) + \frac{1}{2} \sin \theta (dU)_{j|i} \Im (\hat{\chi})_{j|i}^{f} = 0, \quad (4.28) \]
\[\sin \theta *_{9} (\mathcal{R}(\hat{\chi}) \wedge *_{9} d\hat{\omega}) - i_{U} \Theta = 0, \quad (4.29) \]
\[(1 + \cos^2 \theta) *_{9} (\Im (\hat{\chi}) \wedge *_{9} d\hat{\omega}) + \sin \theta_{U} \Theta_{\hat{g}(\hat{\omega})} = 0, \quad (4.30) \]
\[i_{U} (\mathcal{L}_{W} W - \mathcal{L}_{K} K) = 0, \quad (4.31) \]
\[i_{U} (\mathcal{L}_{K} W + \mathcal{L}_{W} K) = 0, \quad (4.32) \]
\[(1 + \cos^2 \theta) \left(i_{K} \mathcal{L}_{W} K - \frac{1}{2} *_{9} d *_{9} W \right) + \frac{1}{4} \cos \theta \left(\Theta_{i_{K} \mathcal{L}_{W} \theta_{\hat{g}(\hat{\omega})}} - i_{K} \Theta \right) = 0, \quad (4.33) \]
\[(1 + \cos^2 \theta) \left(i_{W} \mathcal{L}_{K} W - \frac{1}{2} *_{9} d *_{9} K \right) + \frac{1}{4} \cos \theta \left(\Theta_{i_{K} \mathcal{L}_{W} \theta_{\hat{g}(\hat{\omega})}} + i_{W} \Theta \right) = 0, \quad (4.34) \]
\[(1 + \cos^2 \theta) i_{K} (- \mathcal{L}_{W} W + \mathcal{L}_{U} U) + \frac{1}{2} \cos \theta i_{W} \Theta - \frac{1}{2} i_{K} \theta_{\hat{g}(\hat{\omega})} = 0, \quad (4.35) \]
\[(1 + \cos^2 \theta) \mathcal{L}_{W} \theta - \frac{1}{4} \sin (2\theta) i_{W} \theta_{\hat{g}(\hat{\omega})} + \frac{1}{2} \sin \theta_{I} \Theta = 0, \quad (4.36) \]
\[(1 + \cos^2 \theta) \mathcal{L}_{K} \theta - \frac{1}{4} \sin (2\theta) i_{K} \theta_{\hat{g}(\hat{\omega})} - \frac{1}{2} \sin \theta_{I} \Theta = 0, \quad (4.37) \]
\[(1 + \cos^2 \theta) \mathcal{L}_{U} \theta - \frac{1}{4} \sin (2\theta) i_{U} \theta_{\hat{g}(\hat{\omega})} = 0, \quad (4.38) \]

where

\[\theta_{\hat{g}(\hat{\omega})} := *_{9} (\hat{\omega} \wedge *_{9} d\hat{\omega}), \quad (4.39) \]
\[\theta_{\hat{g}(\hat{\omega})} := *_{9} (\mathcal{R}(\hat{\chi}) \wedge *_{9} d\mathcal{R}(\hat{\chi})), \quad (4.40) \]
are the Lee forms of $\tilde{\omega}$ and $\Re(\tilde{\chi})$ on S respectively, $J^i_j := g^j_l \tilde{\omega}^i_l$ and

$$
\Theta := *_{g}(\Re(\tilde{\chi}) \wedge *_{g}d\Im(\tilde{\chi})) , \quad \text{(4.41)}
$$

$$
M_{ij} := -\tilde{\omega}^{lj_1} \nabla_{(i} \Re(\tilde{\chi})_{j)lj_2} , \quad \text{(4.42)}
$$

Also, we have found a fully 9-dimensional covariant expression for $d\theta$, which expresses in a compact way the conditions (4.28), (4.36)–(4.38):

$$
\left(1 + \cos^2 \theta \right) \partial_i \theta = \frac{1}{4} \sin(2\theta) \left(\theta^{(0)}_{\Re(\tilde{\chi})} \right)^i + \frac{1}{2} \tan \theta J^j_i \Theta_j \\
- \frac{1}{4} \sin^2 \theta \left(1 + \cos^2 \theta \right) (dU)_{j_1j_2} \Im(\tilde{\chi})^{j_1j_2} \\
+ \frac{1}{2} \sin \theta \left((-iK \Theta) W_i + (iW \Theta) K_i \right) , \quad \text{(4.43)}
$$

where $J^i_j \equiv g^j_l \tilde{\omega}_i_l$. After having dealt with the geometric conditions, let us consider the fluxes. h and Y are already fixed by the $N = 2$ solution, see (3.34) and (3.35), thus we have to analyse only X. It turns out that all of X is fixed but the totally traceless $(2,2)$ part, that is

$$
X^{(2,2)\text{TT}}_{pqr} := X_{pqr} - 2X_{rt} \delta^{[p}_{[q} \delta^{s]}_{r]} + 2X_{st} \delta^{[p}_{[q} \delta^{r]}_{s]} + X_{s_1s_2} \delta^{[p}_{[q} \delta^{r]}_{s_1s_2} .
$$

The 4-form X can be expressed in terms of the SU(3)-gauge invariant bilinears (4.12) as follows

$$
X = K \wedge U \wedge W \wedge C_1 + K \wedge U \wedge C_2 + K \wedge W \wedge C_3 + U \wedge W \wedge C_4 + K \wedge C_5 + U \wedge C_6 + W \wedge C_7 + C_8 ,
$$

(4.45)

where K, U and W are defined in (4.15), $C_1 \in \Omega^1(S)$, $C_2, C_3, C_4 \in \Omega^2(S)$, $C_5, C_6, C_7 \in \Omega^3(S)$ and $C_8 \in \Omega^4(S)$ are fully expressed in terms of the bilinears (4.12), with the exception of C_8, which contains the unfixed $X^{(2,2)\text{TT}}$. The explicit expression of the C_i ($i = 1, 2, ..8$) is quite involved and we have preferred to list it in appendix C.

To sum up, the full SU(3)-solution is given by

- Geometric conditions: equations (4.16)–(4.38),
- X: equations (C.1)–(C.15),
- Y: equation (3.35),
- h: equation (3.34).

Equations (3.35) and (3.34) are written in Spin(7) notation, but they can be broken down to SU(3) straightforwardly; however, we did not perform explicitly this computation, since it does not add any particular further insight.
4.2 G_2 isotropy group

In this section we solve the KSE (4.1) assuming $\cos \theta = 0$ (thus $\sin \theta = 1$), that is the second spinor (4.2) boils down to

$$\phi^2_+ = \frac{1}{\sqrt{2}} (e_1 + e_{234}).$$

(4.46)

The linear system associated to the second spinor is presented in appendix B (set $\cos \theta = 0$, $\sin \theta = 1$ in equations (B.1)–(B.20)). The solution of the linear system, initially expressed in SU(3) representations, after an extensive computation, can be written in terms of the G_2 gauge-invariant bilinears (4.12), which are given by

$$e^\sharp, \quad K, \quad \phi,$$

(4.47)

where K is given by the first equation in (4.15) and ϕ is the fundamental G_2 3-form, that is

$$\phi := \Re(\hat{\chi}) + e^7 \wedge \hat{\omega},$$

(4.48)

where $\Re(\hat{\chi})$ and $\hat{\omega}$ are defined by (4.14) and $e^7 \equiv \sqrt{2} \Im(e^1)$ is the seventh direction of the G_2 manifold. We can also construct the 4-form

$$\ast_7 \phi = -e^7 \wedge \Im(\hat{\chi}) - \frac{1}{2} \hat{\omega} \wedge \hat{\omega}.$$

(4.49)

We have found the following (covariant) geometric conditions (i, j, \ldots are 7-dimensional real G_2 indices)

$$(dK)_{ij} = 0,$$

(4.50)

$$\ast_7 \phi = -e^7 \wedge \Im(\hat{\chi}) - \frac{1}{2} \hat{\omega} \wedge \hat{\omega}.$$

(4.49)

$$(de^\sharp)_{ij} = 0,$$

(4.51)

$$\phi^i_{jkl} \nabla_i (\ast_7 \phi)^j_{kl} = 0,$$

(4.52)

$$(\mathcal{L}_e e^\sharp)^i_{ij} - (\mathcal{L}_K K)^i_{ij} = 0,$$

(4.53)

$$(\mathcal{L}_K e^\sharp)^i_{ij} + (\mathcal{L}_e \ast e^\sharp)^i_{ij} = 0,$$

(4.54)

$$\phi^{i_1 i_2 i_3} (\mathcal{L}_e \ast_7 \phi)^{i_1 i_2 i_3 i_4} = 0,$$

(4.55)

$$\phi^{i_1 i_2 i_3} (\mathcal{L}_K \ast_7 \phi)^{i_1 i_2 i_3 i_4} = 0,$$

(4.56)

$$\theta^{(9)}_\phi = 0,$$

(4.57)

$$[K, e^3]^i_{ij} - (\mathcal{L}_K e^3)^i_{ij} = 0,$$

(4.58)

$$(\ast_7 \phi)^{i_1 i_2 i_3} (d\phi)^{i_4}_{i_1 i_2 i_3} = 0,$$

(4.59)

$$3i_K \mathcal{L}_e e^\sharp + i_K \theta^{(9)}_\phi = 0,$$

(4.60)

$$3i_{\ast e} \mathcal{L}_K K + i_{\ast e} \theta^{(9)}_\phi = 0,$$

(4.61)

where

$$\theta^{(9)}_\phi := \ast_9 (\phi \wedge \ast_9 d\phi)$$

(4.62)

is the Lee form of ϕ on \mathcal{S}.
The linear system associated to the second spinor is given by
\[dK = \left(-\frac{1}{3} i e \theta^{(0)}_\phi \right) K \wedge e^\phi + K \wedge \mathcal{L}_K K + e^\phi \wedge \mathcal{L}_{e^\phi} K, \] (4.63)
\[de^\phi = \left(\frac{1}{3} i K \theta^{(0)}_\phi \right) K \wedge e^\phi - K \wedge \mathcal{L}_{e^\phi} K + e^\phi \wedge \mathcal{L}_K K. \] (4.64)

We can use (4.63) and (4.64) to introduce local coordinates on \(S \). In fact, equations (4.63) and (4.64) imply that \(K \) and \(e^\phi \) form a 2-dimensional differential ideal on \(S \). Frobenius’ theorem then ensures that locally we can choose a coordinate system \[y^1, \quad y^8 := v_1, \quad y^9 := v_2 \] (4.65) such that
\[K = g_1 dv_1 + g_2 dv_2, \quad e^\phi = f_1 dv_1 + f_2 dv_2, \] (4.66)
for some functions \(f_1, f_2, g_1 \) and \(g_2 \). The slices \(v_1 = \text{const} \) and \(v_2 = \text{const} \) are 2-dimensional integral manifolds, and every slice can be equipped with a \(G_2 \) structure with fundamental form given by
\[\phi = \frac{1}{3} \phi_{i_1 i_2 i_3} (v_1, v_2, y^i) dy^{i_1} \wedge dy^{i_2} \wedge dy^{i_3}. \] (4.67)

It is worth noticing that the \((2+7)\)-splitting of \(S \) which emerges in the \(G_2 \) case, there exists also in the SU(3) case, although it is less transparent. In fact, the conditions (4.16), (4.17), (4.21) and (4.22) imply that \(K \) and \(W \) form a 2-dimensional ideal on \(S \). However, in the SU(3) case we also have the 1-form bilinear \(U \), but there are no simple conditions on \(dU \), the only condition on it being (4.19).

After having covariantized the geometric conditions, we are left to covariantize \(X \). A somewhat long computation allows to express \(X \) in terms of the \(G_2 \) gauge invariant bilinears (4.47) as follows
\[X = K \wedge e^\phi \wedge \left(\frac{1}{4!} \phi^{i_1 j_2 j_3} \nabla_{i_1} \star_7 \phi_{i_2 j_2 j_3} e^{i_1 i_2} \right) + \frac{1}{4} \left(K \wedge (\mathcal{L}_{e^\phi} g)_{i_1 j} - e^\phi \wedge (\mathcal{L}_K g)_{i_1 j} \right) \phi_{i_2 i_3} e^{i_1 i_2 i_3} + X^{27}, \] (4.68)
where \(X^{27} \in 27 \) of \(G_2 \) is projected out by the KSEs. The definition of the 27 component of a 4-form on a 7-dimensional \(G_2 \) manifold is given in (D.24).

4.3 SU(4) isotropy group

In this section we solve the KSE (4.1) assuming \(\sin \theta = 0 \), i.e. the second spinor (4.2) boils down to
\[\phi^2_+ = \frac{i}{\sqrt{2}} (1 - e_{1234}). \] (4.69)

The linear system associated to the second spinor is given by
\[-\frac{1}{4} h_\alpha - \frac{1}{4} Y_\alpha + \frac{1}{2} \Omega_{\alpha, \mu} \mu + \frac{1}{4} X_{\alpha, \mu} \mu = 0, \] (4.70)
\[X_{\mu_1 \mu_2 \mu_3 \mu_4} - \frac{1}{2} \mu_1 \mu_2 \mu_3 \mu_4 = 0, \] (4.71)
\[\frac{1}{4} Y_\alpha \beta - \frac{1}{2} \Omega_{\alpha, \beta} - \frac{1}{4} X_{\alpha, \mu} \beta + \frac{1}{12} \delta_\alpha^\beta \left(-Y_{\mu}^\beta - \frac{1}{2} X_{\mu_1, \mu_2} \right) = 0, \] (4.72)
where \(\omega \) and \(\chi \) are defined by (3.32). We have found the following geometric conditions

\[(d\omega)^{\tilde{i}_1\tilde{j}_2\tilde{j}_3}\mathcal{R}(\chi)_{\tilde{i}_1\tilde{j}_2\tilde{j}_3} = 0, \]

\[\frac{1}{2}(\ast g d \ast g d\mathcal{R}(\chi))_{\tilde{i}_1\tilde{i}_2\tilde{i}_3} + \left(\frac{1}{2}(\theta_{\omega}^{(9)})_{\tilde{j}} - (\mathcal{L}_c e^\tilde{j})_{\tilde{j}} \right) \mathcal{R}(\chi)_{\tilde{i}_1\tilde{i}_2\tilde{i}_3} = 0, \]

\[\frac{1}{12}\mathcal{L}_c \mathcal{R}(\chi)_{\tilde{i}_1\tilde{i}_2\tilde{i}_3}[\tilde{i}_4] \mathcal{R}(\chi)_{\tilde{i}_2} \mathcal{R}(\chi)_{\tilde{i}_1} + \omega_{\tilde{i}_1\tilde{i}_2} (de^\tilde{i})_{\tilde{i}_1\tilde{j}_2} \omega_{\tilde{j}_1\tilde{j}_2} = 0, \]

\[J_{(\tilde{i}_1} (\mathcal{L}_c g)_{\tilde{i}_2\tilde{i}_3})_{\tilde{j})} = 0. \]

Moreover, the fluxes can be covariantized as follows

\[h = \frac{1}{2}(\ast g d \ast g e^\tilde{j}) e^\tilde{j} - \mathcal{L}_c e^\tilde{j} + \theta_{\omega}^{(9)}, \]

\[Y = -d_h e^\tilde{j} + \frac{1}{2} (de^\tilde{j})_{\tilde{i}_1\tilde{j}_2} \omega_{\tilde{i}_1\tilde{j}_2} \omega, \]

\[X = \frac{1}{2} e^\tilde{j} \wedge \left\{ \ast g d \ast g (\omega \wedge \omega) + \frac{1}{3!} \left((\theta_{\omega}^{(9)})_{\tilde{j}} - \frac{5}{4} (\mathcal{L}_c e^\tilde{j})_{\tilde{j}} \right) (\omega \wedge \omega)_{\tilde{i}_1\tilde{i}_2\tilde{i}_3} e^{\tilde{i}_1\tilde{i}_2\tilde{i}_3} \right\}, \]

\[- S \wedge \omega + X^{TT(2,2)}, \]

where

\[\theta_{\mathcal{R}(\chi)}^{(9)} := \ast g (\mathcal{R}(\chi) \wedge \ast g d\mathcal{R}(\chi)), \]

\[\theta_{\omega}^{(9)} := \ast g (\omega \wedge \ast g d\omega), \]
are the Lee forms of $\Re(\chi)$ and ω on S respectively,

$$
S_{ij} := J^i_{[j} \left((de^2)_{j]} + \frac{1}{2} (C_{\alpha \beta} g)_{j]} \right),
$$

and $X^{TT}_{a\beta\gamma\delta}$ is the SU(4)-traceless (2,2) part of X, that is

$$
X^{TT}_{a\beta\gamma\delta} := X_{a\beta\gamma\delta} - X_{\gamma\lambda}^{\lambda \beta} \delta_{\alpha\delta} + X_{\delta\lambda}^{\lambda \beta} \delta_{\alpha\gamma} + \frac{1}{3} X_{\mu\nu}^{\mu\nu} \delta_{\alpha\delta}. \tag{4.94}
$$

5 Integrability conditions

In this section we shall show that all the components of the Einstein equation (2.8) are implied by the 11-dimensional KSE (2.11), the gauge field equation (2.5) and the Bianchi identities $dF = 0$. For a generic supersymmetric solution of $D = 11$ supergravity, this is not always true. In particular, as shown in [44], for a $N = 1$ supersymmetric solution which generates a null gauge-invariant isometry, it is known that not all of the components of the Einstein equation are implied — one component along the null-direction of the isometry must be imposed by hand.

However, for near-horizon solutions, we shall demonstrate that all the components of the Einstein equation are implied, irrespective of whether or not Δ vanishes. This analysis is purely local, and does not require any assumptions on global properties of the solution. To investigate the integrability conditions, we assume that the KSE (2.11) are satisfied. Then the integrability conditions

$$
[D_M, D_N] \epsilon = 0
$$

yield [49]

$$
0 = E_{MN} \Gamma^N \epsilon - \frac{1}{36} \left(d F + \frac{1}{2} F \wedge F \right)_{N_1 N_2 N_3} \left(\Gamma^M_{N_1 N_2 N_3} - 6 \delta^M_{N_1} \Gamma^{N_2 N_3} \right) \epsilon
$$

$$
- \frac{1}{6!} (dF)_{N_1 N_2 N_3 N_4 N_5} \left(\Gamma^M_{N_1 N_2 N_3 N_4 N_5} - 10 \delta^M_{N_1} \Gamma^{N_2 N_3 N_4 N_5} \right) \epsilon, \tag{5.2}
$$

where we have denoted

$$
E_{MN} := R_{MN} - \frac{1}{12} F_{ML_1 L_2 L_3} F_N^{L_1 L_2 L_3} + \frac{1}{144} g_{MN} F^2. \tag{5.3}
$$

Enforcing the gauge field equation (2.5) and the Bianchi identities, (5.2) boils down to

$$
E_{MN} \Gamma^N \epsilon = 0. \tag{5.4}
$$

In the analysis of the integrability conditions, we shall not assume any of the results which follow from the global assumptions made in the previous sections. In particular, on integrating up the KSE along the lightcone directions, we find the following Killing spinors

$$
\epsilon_1 = \phi_- + u \Gamma_+ \Theta_+ \phi_- + w \Gamma_- \Theta_+ \Gamma_+ \Theta_- \phi_-, \quad \epsilon_2 = \phi_+ + r \Gamma_- \Theta_+ \phi_+. \tag{5.5}
$$

Two separate cases must be considered. The first case corresponds to $\phi_- \neq 0$. Consider

$$
E_{MN} \Gamma^N \epsilon_1 = 0, \tag{5.6}
$$
where $M, N = +, -, i$. Setting $u = 0$ in (5.6), we obtain
\[E_{MN} \Gamma^N \phi_- = 0, \] (5.7)
which is equivalent to
\[E_{M-} \Gamma_+ \phi_- + E_{Mi} \Gamma^i \phi_- = 0. \] (5.8)
The first term in (5.8) has positive (lightcone) chirality, while the second has negative (lightcone) chirality, thus (5.8) holds iff both terms vanish independently, which in turn imply that
\[E_{M-} = E_{Mi} = 0. \] (5.9)
This means that all the components of E_{MN} must vanish, apart from E_{++}. However, as is shown in [26], in the near-horizon limit, $E_{++} = 0$ is a consequence of the other bosonic field equations, thus indeed $E_{MN} = 0$ for all M, N.

The second case corresponds to $\phi_- = 0$ and $\phi_+ \neq 0$. Consider
\[E_{MN} \Gamma^N \epsilon_2 = 0. \] (5.10)
This equation boils down to
\[E_{M+} \Gamma_- \phi_+ + 2r E_{M-} \Theta_+ \phi_+ + E_{Mi} \Gamma^i (\phi_+ + r \Gamma_- \Theta_+ \phi_+) = 0. \] (5.11)
The first and the fourth terms in (5.11) have negative (lightcone) chirality, while the second and the third ones have positive (lightcone) chirality, thus (5.8) holds iff both terms vanish independently, which in turn imply that
\[E_{M+} + \phi_+ - r E_{Mi} \Gamma^i \Theta_+ \phi_+ = 0 \] (5.12)
and
\[2r E_{M-} \Theta_+ \phi_+ + E_{Mi} \Gamma^i \phi_+ = 0. \] (5.13)
Taking the component $M = -$ of (5.12), and exploiting the identities $E_{--} = 0, E_{-i} = 0$ (these expressions hold automatically for all near-horizon metrics), we get $E_{++} = 0$. Taking the component $M = j$ of (5.13), we obtain $E_{ij} = 0$. Taking the component $M = +$ of (5.13), using $E_{+-} = 0$, we get $E_{++} = 0$. Eventually, taking the $M = +$ component of (5.12), we get $E_{MN} = 0$ for all M, N.

Thus, we have shown that for near-horizon geometries all the components of the Einstein equation (2.8) are implied by the 11-dimensional KSE (2.11), the gauge field equation (2.5) and the Bianchi identities $dF = 0$.

6 Conclusion

We have classified the conditions imposed on the geometry and 4-form flux obtained from requiring that an extreme near-horizon geometry in $D = 11$ supergravity preserves $N = 4$ supersymmetry. This analysis is tractable because previous global analysis in [25] has been used to reduce the calculation to that of solving
\[\nabla_i^{(+)} \phi_+^r = 0, \quad r = 1, 2 \] (6.1)
and for $N = 4$ solutions, there is sufficient Spin(9) gauge freedom present to enable one to write $\{\phi^+_1, \phi^+_2\}$ in one of three simple canonical forms, on exploiting the condition $\langle \phi^+_r, \phi^+_s \rangle = \delta^{rs}$. In particular, the common isotropy group of $\{\phi^+_1, \phi^+_2\}$ is one of three classes; SU(3), G_2 or SU(4). For each class, the conditions on the geometry and fluxes have been expressed in a fully gauge-invariant fashion, in terms of the gauge-invariant spinor bilinears corresponding to each of these cases.

There are a number of additional issues relevant to these $N = 4$ solutions which would be interesting to explore further. First, although we have mentioned in section 2.3 that a generic $N = 4$ near-horizon solution admits two commuting rotational isometries on S, \tilde{V} and $Z = Z^{12}$, it remains to determine how these isometries relate to the geometric structures on S which we have derived in section 4. In practice, it is rather difficult to do this, because the isometries \tilde{V} and Z are constructed from both ϕ^+ and ϕ^- spinors. We have used the majority of the gauge freedom to simplify the canonical forms of the ϕ^+ spinors. In general, the ϕ^- spinors are rather complicated in form, as in the absence of useful gauge transformations to simplify these, one must instead utilize (2.22) and (2.23) to relate ϕ^+ to ϕ^-, and as a result there is a non-trivial appearance of various flux terms in the explicit expressions for the isometries. Furthermore, it would be useful to see if there are any further conditions on the $N = 4$ spinors from global analysis. In particular, we have seen that for the SU(3) isotropy group case, there is a function θ which appears in the spinor ϕ^+_2. Although the manner in which this function appears explicitly is dependent on the gauge choice we have made, one can straightforwardly write $\cos 2\theta$ in terms of gauge-invariant bilinears, and hence $\cos 2\theta$ is a globally well-defined and smooth function on S. In addition, the analysis of the KSE produces an expression for $d(\cos 2\theta)$ in terms of various SU(3) invariant bilinears (4.43). As we already have a constant norm condition, $\langle \phi^+_r, \phi^+_s \rangle = \delta^{rs}$ which is obtained via a (global) maximum principle argument, [25], it is natural to enquire if θ can be shown to be constant via an analogous analysis. However, on computing the Laplacian of $\cos 2\theta$, there does not appear, a priori, to be any way of controlling the sign of the resulting terms in a way which is compatible with a maximum principle argument. We remark that there is also no immediate contradiction obtained if one assumes that θ is constant, with $\sin \theta \neq 0$, $\cos \theta \neq 0$; this would appear to be simply a special case of the more general analysis. It may also be the case that other properties of the geometry in the $N = 4$ solutions could in principle be further constrained via similar global analysis, and it would be interesting to explore this further.

Acknowledgments

DF is partially supported by the STFC DTP Grant ST/S505742. JG is supported by the STFC Consolidated Grant ST/L000490/1. The authors would like to thank Martin Wolf for useful conversations.
A \quad N = 2 \text{ SU}(4) \text{ KSE: linear system}

The linear system obtained from the spinorial geometry analysis of the KSE of the $N = 2$ supersymmetric near-horizon geometries is:

\begin{align}
-\frac{1}{4} \hbar_\alpha - \frac{1}{4} Y_\alpha + \frac{1}{2} \Omega_\alpha \mu + \frac{1}{4} X_\alpha \phi = 0, \quad (A.1) \\
Y_\alpha^{\beta} - 2 \Omega_{\alpha \beta} - X_\alpha \mu \beta + \frac{1}{3} \delta \alpha \beta \left(-Y_\mu - \frac{1}{2} X_\mu \phi_{\mu \mu \phi} - \frac{1}{12} X_\mu \phi_{\mu \mu \phi} \phi_{\mu \mu \phi} \right) = 0, \quad (A.2) \\
\frac{1}{2} \Omega_{\alpha \beta \gamma} - \frac{1}{8} X_{\gamma} \phi_{\beta} \phi_{\beta} + \frac{1}{12} X_{\alpha \beta}, \phi = 0, \quad (A.3) \\
Y_{\alpha \beta} + \Omega_{\alpha \beta} + X_{\alpha \beta} \phi_{\phi} + X_{\alpha \beta} \phi_{\phi} + X_{\alpha \beta} \phi_{\phi} = 0, \quad (A.4) \\
-\frac{1}{4} \hbar_\phi - \frac{1}{4} Y_{\phi} + \frac{1}{12} X_{\phi} \phi_{\phi} + \frac{1}{18} X_{\phi} \phi_{\phi} \phi_{\phi} = 0, \quad (A.5) \\
\frac{1}{6} Y_{\alpha} + \frac{1}{2} \Omega_{\phi \alpha} + \frac{1}{12} X_{\phi} \phi_{\phi} + \frac{1}{18} X_{\phi} \phi_{\phi} \phi_{\phi} = 0, \quad (A.6) \\
\frac{1}{2} \Omega_{\phi \alpha \beta} - \frac{1}{2} \Omega_{\phi \phi} \phi_{\phi} + \frac{1}{4} X_{\phi \phi} \phi_{\phi} = 0. \quad (A.7)
\end{align}

B \quad N = 4 \text{ SU}(3) \text{ KSE: linear system}

The $N = 4$ linear system associated to the KSE (4.1), with ϕ_ϕ^2 given by (4.2), for both $\cos \theta$ and $\sin \theta$ non-vanishing, is given by ($p = 2, 3, 4$)

\begin{align}
\frac{i}{\sqrt{2}} \partial_4 \cos \theta + \frac{i}{\sqrt{2}} \cos \theta \left(-\frac{1}{4} \hbar_1 - \frac{1}{4} Y_1 + \frac{1}{2} \Omega_{1,1} + \frac{1}{2} \Omega_{1,p} + \frac{1}{4} X_{1,p}^p \right) \\
+ \sin \theta \left(\frac{1}{2} \Omega_{1,1} + \frac{1}{12} X_{1,p}^{e,p} e^{e,p} \right) = 0, \quad (B.1) \\
\frac{i}{\sqrt{2}} \cos \theta \left(\frac{1}{6} Y_{2} - \frac{1}{2} \Omega_{2,2} - \frac{1}{12} Y_{2}^p - \frac{1}{6} X_{2,p}^p - \frac{1}{24} X_{2,q}^{p,q} + \frac{1}{18} X_{2,q}^{p,q} e^{p,q} \right) \\
+ \frac{1}{\sqrt{2}} \Omega_1 \sin \theta + \frac{1}{\sqrt{2}} \sin \theta \left(-\frac{1}{4} \hbar_1 + \frac{1}{12} Y_1 + \frac{1}{2} \Omega_{1,p}^p \\
- \frac{1}{2} \Omega_{1,1} - \frac{1}{12} X_{2,p}^p - \frac{1}{18} X_{2,q}^{p,q} e^{p,q} \right) = 0, \quad (B.2) \\
\frac{i}{\sqrt{2}} \cos \theta \left(\frac{1}{4} Y_{1}^p - \frac{1}{2} \Omega_{1,4}^p - \frac{1}{4} X_{1,1}^{t,1p} \right) + \frac{1}{\sqrt{2}} \sin \theta \left(-\Omega_{1,4}^p \\
- \frac{1}{2} \Omega_{1,4} e^{p,q} + \frac{1}{4} X_{1,1}^{e,p} e^{p,q} \right) = 0, \quad (B.3)
\end{align}
\[\frac{i}{\sqrt{2}} \cos \theta \left(\frac{1}{2} \Omega_{q,r}^{q,r} + \frac{1}{4} X_{q1}^{\epsilon_{pqr}} + \Omega_{1ip} \right) + \sin \theta \left(\frac{1}{4} Y_{ip} + \frac{1}{2} \Omega_{1ip} + \frac{1}{4} X_{ipq}^{q} \right) = 0, \quad (B.4)\]

\[i \cos \left(\left(- \frac{1}{6} X_{11}^{qr} \epsilon_{pqr} - \frac{1}{12} Y_{ip}^{rq} \epsilon_{pqr} + \frac{1}{12} X_{s}^{qr} \epsilon_{pqr} + + \frac{1}{12} Y_{ip} \right) \cos \left(\frac{1}{2} \Omega_{1ip} + \frac{1}{4} X_{ipq}^{q} \right) = 0, \quad (B.5)\]

\[-\frac{1}{2} \Omega_{1ip} + \frac{1}{12} X_{1pq}^{q} \right) + \frac{1}{\sqrt{2}} \sin \left(\frac{1}{2} \Omega_{1ip} + \frac{1}{4} X_{ipq}^{q} \right) = 0. \quad (B.6)\]

\[i \cos \left(\left(- \frac{1}{4} h_{1} + \frac{1}{4} Y_{ip} + \frac{1}{6} \Omega_{1ip} \right) + \frac{1}{\sqrt{2}} \sin \theta \left(- \frac{1}{4} h_{1} + \frac{1}{4} Y_{ip} + \frac{1}{6} \Omega_{1ip} \right) \right) = 0, \quad (B.7)\]

\[-i \sqrt{2} \Omega_{1ip} + \frac{1}{12} X_{ipq}^{q} \right) + \sin \theta \left(\frac{1}{2} \Omega_{1ip} + \frac{1}{4} X_{ipq}^{q} \right) = 0. \quad (B.8)\]

\[i \sqrt{2} \sin \left(\frac{1}{4} Y_{ip} + \frac{1}{2} \Omega_{1ip} + \frac{1}{4} X_{ipq}^{q} \right) = 0, \quad (B.9)\]

\[i \cos \left(\frac{1}{4} Y_{ip} + \frac{1}{4} X_{ipq}^{q} \right) + \frac{1}{\sqrt{2}} \sin \theta \left(- \frac{1}{4} h_{1} + \frac{1}{4} Y_{ip} + \frac{1}{6} \Omega_{1ip} \right) = 0, \quad (B.10)\]

\[i \cos \left(\frac{1}{4} Y_{ip} + \frac{1}{4} X_{ipq}^{q} \right) = 0, \quad (B.11)\]
\[+ \frac{1}{12} \delta_p^t Y_{s}^{q} - \frac{1}{12} \delta_p^t Y_{t}^{q} - \frac{1}{4} X_{11t}^p - \frac{1}{4} X_{pq} - \frac{1}{4} X_{ipqr}^{pq} = 0, \quad \text{(B.12)} \]

\[\frac{i}{\sqrt{2}} \cos \left(\frac{1}{2} \Omega_{pq}^{qr} \epsilon_{pqrs} + \frac{1}{4} X_{ip}^{qr} \epsilon_{pqrs} + \frac{1}{6} \epsilon_{pqrs} Y_{p}^{q} - \frac{1}{6} \epsilon_{pqrs} X_{p11}^r - \frac{1}{6} \epsilon_{pqrs} X_{t1}^{tr} \right) \]

\[-\Omega_{pq,11} - \frac{1}{6} X_{11ps} + \frac{1}{2} \Omega_{p,2s} + \frac{1}{6} \epsilon_{pqrs} Y_{1}^{r} - \frac{1}{4} X_{p1}^{qr} \epsilon_{pqrs} \]

\[-\frac{1}{12} X_{11ps} + \frac{1}{12} X_{psr} - \frac{1}{6} \epsilon_{pqrs} X_{t1}^{tr} = 0, \quad \text{(B.13)} \]

\[i \cos \theta \left(- \frac{1}{4} X_{ip}^{qr} \epsilon_{pqrs} + \frac{1}{6} \epsilon_{pqrs} X_{p11}^r - \frac{1}{6} \epsilon_{pqrs} Y_{1}^{r} + \frac{1}{12} Y_{ps} - \frac{1}{2} \Omega_{pq,11} \right) \]

\[+ \frac{1}{12} X_{psr}^r + \frac{1}{12} X_{11ps} + \frac{1}{\sqrt{2}} \sin \theta \left(\frac{1}{2} \Omega_{pq}^{qr} \epsilon_{pqrs} - \Omega_{pq,11} - \frac{1}{4} Y_{p}^{q} \epsilon_{pqrs} \right) \]

\[- \frac{1}{4} X_{ip}^{qr} \epsilon_{pqrs} + \frac{1}{6} X_{11ps} - \frac{1}{6} X_{p11}^q \epsilon_{pqrs} + \frac{1}{6} \epsilon_{pqrs} X_{p2p}^{pq} = 0, \quad \text{(B.14)} \]

\[\frac{i}{\sqrt{2}} \partial_p \cos \theta + \frac{i}{\sqrt{2}} \cos \theta \left(\frac{1}{6} X_{p}^{qr} \epsilon_{pqrs} + \frac{1}{4} h_p + \frac{1}{12} Y_{p} + \frac{1}{2} \Omega_{pq,11} \right) \]

\[+ \frac{1}{12} \Omega_{pq,11} + \frac{1}{12} X_{ipq}^q + \frac{1}{12} X_{p2p}^{pq} + \sin \theta \left(- \frac{1}{12} X_{ip}^{q} + \frac{1}{2} \Omega_{pq,11} + Y_{p}^{q} \epsilon_{pqrs} \right) \]

\[- \frac{1}{12} X_{ipq}^q + \frac{1}{12} X_{p}^{qr} \epsilon_{pqrs} + \frac{1}{12} X_{p11}^{q} \epsilon_{pqrs} - \frac{1}{12} X_{p11}^{q} \epsilon_{pqrs} = 0, \quad \text{(B.15)} \]

\[\frac{i}{\sqrt{2}} \partial_q \cos \theta + \frac{i}{\sqrt{2}} \cos \theta \left(\frac{1}{4} h_q + \frac{1}{2} \Omega_{q1,11} + \frac{1}{2} \Omega_{pq,11} - \frac{1}{12} Y_{11} \right) \]

\[- \frac{1}{12} Y_{p}^{p} + \frac{1}{12} X_{11p}^{p} - \frac{1}{24} X_{pq}^{pq} - \frac{1}{18} X_{ipqr}^{pq} \]

\[+ \sin \theta \left(\frac{1}{6} Y_{p}^{q} + \frac{1}{2} \Omega_{q1,11} - \frac{1}{6} X_{11p}^{q} + \frac{1}{18} X_{ipqr}^{pq} \right) = 0, \quad \text{(B.16)} \]

\[i \cos \theta \left(\frac{1}{6} Y_{p}^{q} + \frac{1}{2} \Omega_{q1,11} - \frac{1}{6} X_{11p}^{q} + \frac{1}{18} X_{ipqr}^{pq} \right) + \frac{1}{\sqrt{2}} \partial_q \sin \theta \]

\[+ \frac{1}{\sqrt{2}} \cos \theta \left(- \frac{1}{4} h_q + \frac{1}{2} \Omega_{q1,11} + \frac{1}{2} \Omega_{pq,11} + \frac{1}{12} Y_{p}^{p} - \frac{1}{12} Y_{11} + \frac{1}{12} X_{11q}^{q} \right) \]

\[+ \frac{1}{24} X_{pq}^{pq} + \frac{1}{18} X_{ipqr}^{pq} = 0, \quad \text{(B.17)} \]

\[i \cos \theta \left(\frac{1}{6} Y_{p}^{q} + \frac{1}{2} \Omega_{q1,11} - \frac{1}{6} X_{11p}^{q} + \frac{1}{18} X_{ipqr}^{pq} \right) + \frac{1}{\sqrt{2}} \partial_q \sin \theta \]

\[+ \frac{1}{\sqrt{2}} \cos \theta \left(- \frac{1}{4} h_q + \frac{1}{2} \Omega_{q1,11} + \frac{1}{2} \Omega_{pq,11} + \frac{1}{12} Y_{p}^{p} - \frac{1}{12} Y_{11} + \frac{1}{12} X_{11q}^{q} \right) \]

\[+ \frac{1}{24} X_{pq}^{pq} + \frac{1}{18} X_{ipqr}^{pq} = 0. \quad \text{(B.18)} \]
expressed in terms of the C

The covariantized expression of the 4-form C is

$$X = K \wedge U \wedge W \wedge C_1 + K \wedge U \wedge C_2 + K \wedge W \wedge C_3 + U \wedge W \wedge C_4 + K \wedge C_5$$

where $C_1 \in \Omega^1(S)$, $C_2, C_3, C_4 \in \Omega^2(S)$, $C_5, C_6, C_7 \in \Omega^3(S)$ and $C_8 \in \Omega^4(S)$ can be expressed in terms of the SU(3) gauge-invariant bilinears as follows

- C_8

$$C_8 = F_8 \wedge \Re(\overline{\chi}) + G \wedge \bar{\omega} + X^{(2,2)TT},$$

where $X^{(2,2)TT}$ is the traceless $(2, 2)$ part of X, given by (4.44),

$$\left(F_8 \right)_i := -\frac{1}{2} \tan \theta \Theta_i + \frac{1}{4 \cos \theta} (dU)_{i12} \Re(\overline{\chi})^{i1i2}_{1},$$

$$G_{ij} := \frac{1}{2} \cot \theta J_{i1} J_{j1},$$

$$M_{ij} := -\bar{\omega}^{i1} \nabla_i (\Re(\overline{\chi}))_{j1i2},$$

- C_7

$$C_7 = \frac{1}{2(1 + \cos \theta)} \left\{ \Re(\overline{\chi}) \left(\frac{\cos^2 \theta + 2}{2} \tan \theta \Theta + \frac{\cos^2 \theta}{\sin \theta} i K \theta^{(0)} \right) + \Im(\overline{\chi}) \left(-\cot \theta i \theta^{(0)} \right) \right\} + F_7 \wedge \bar{\omega}$$

$$\left(F_7 \right)_i := -\frac{1}{4 \sin \theta} (\mathcal{L}_K \bar{\omega})_{j1j2} \Re(\overline{\chi})^{j1j2}_{i} - (\mathcal{L}_K U)_i$$

$$- \frac{1}{8} \cot \theta (\mathcal{L}_W \bar{\omega})_{j1j2} \Im(\overline{\chi})^{j1j2}_{i},$$

$$\left(F_7 \right)_i := -\frac{1}{4 \sin \theta} (\mathcal{L}_K \bar{\omega})_{j1j2} \Re(\overline{\chi})^{j1j2}_{i} - (\mathcal{L}_K U)_i$$

$$- \frac{1}{8} \cot \theta (\mathcal{L}_W \bar{\omega})_{j1j2} \Im(\overline{\chi})^{j1j2}_{i},$$

$$+ \frac{1}{4} \left(\cot \theta (\mathcal{L}_W g)_{i1j3} \Im(\overline{\chi})^{j1i3} + \frac{1}{8} \sin \theta (\mathcal{L}_K g)_{i1j3} \Re(\overline{\chi})^{j1i3}_{i} \right) e^{i1i3},$$

$$- \frac{1}{8} \cot \theta (\mathcal{L}_W \bar{\omega})_{j1j2} \Im(\overline{\chi})^{j1j2}_{i}.$$
\[C_6 = \Re(\chi) \left(\frac{1 + \sin^2 \theta}{2(1 + \cos^2 \theta)} i_U \Theta \right) + \Im(\chi) \left(- \frac{\cot \theta}{2(1 + \cos^2 \theta)} i_U \theta^{(9)}_{\Re(\chi)} \right) + \mathcal{F}_6 \wedge \tilde{\omega} + \frac{1}{4} \cot \theta (\mathcal{L}_U g)_{ij} \Im(\chi)^j_{i23} e^{i123i}, \]
\[(\mathcal{F}_6)_i := \frac{1}{8} \cot \theta \left((dU)_{ij} \Re(\chi)^{j\bar{j}i} - (\mathcal{L}_U \tilde{\omega})_{ij} \Im(\chi)^{j\bar{i}j} \right), \tag{C.8} \]

\[C_5 = \frac{1}{2(1 + \cos^2 \theta)} \left\{ \Re(\chi) \left(\frac{\cos^2 \theta + 2}{2} \frac{\tan \theta i_K \Theta + \frac{\cos^2 \theta}{\sin \theta} i_W \theta^{(9)}_{\Re(\chi)} \right) + \Im(\chi) \left(- \cot \theta i_K \theta^{(9)}_{\Re(\chi)} - \frac{\sin \theta}{2} i_W \Theta \right) \right\} + \mathcal{F}_5 \wedge \tilde{\omega} + \frac{1}{4} \cot \theta (\mathcal{L}_K g)_{ij} \Im(\chi)^j_{i23} - \frac{1}{8} \sin \theta (\mathcal{L}_W g)_{ij} \Re(\chi)^{j\bar{j}i} e^{i123i}, \]
\[(\mathcal{F}_5)_i := \frac{1}{8} \cot \theta \left((dU)_{ij} \Re(\chi)^{j\bar{j}i} + (\mathcal{L}_W U)_i - \frac{\cot \theta}{8} (\mathcal{L}_K \tilde{\omega})_{ij} \Im(\chi)^{j\bar{i}j} \right), \tag{C.10} \]

\[C_4 = -\mathcal{L}_K \tilde{\omega} + \frac{1}{2} \left\{ 2J_{ij} (\mathcal{L}_K g)_{ij} + \left(\frac{4 \cos^2 \theta - 3}{4 \sin \theta} (\mathcal{L}_K U)_j + \frac{1}{4 \sin \theta} [K, U]_j \right) + \frac{1}{2} \cot \theta J_{ij} [W, U]_i \right\} \Re(\chi)^{j\bar{j}i} e^{i12}, \tag{C.12} \]

\[C_3 = \mathcal{L}_U \tilde{\omega} + \frac{1}{2} \left\{ -J_{ij} \left(2(\mathcal{L}_U g)_{ij} + (dU)_{ij} + \frac{1}{2} \frac{\theta^{(9)}_{\Re(\chi)}}{2 \sin \theta} M_{ij} \right) + \left(\frac{\cos^2 \theta}{\sin \theta} (\mathcal{L}_K K)_j - \frac{1}{2} \cot \theta J_{ij} [K, W]_i \right) \Re(\chi)^{j\bar{j}i} \right\} e^{i12} + \frac{1}{2} \tilde{\omega} \left(2 i_U \theta^{(9)}_{\Re(\chi)} - * g d * g U \right), \tag{C.13} \]

\[C_2 = -\mathcal{L}_W \tilde{\omega} + \frac{1}{2} \left\{ 2J_{ij} (\mathcal{L}_W g)_{ij} + \left(\frac{4 \cos^2 \theta - 3}{4 \sin \theta} (\mathcal{L}_W U)_j - \frac{1}{4 \sin \theta} [W, U]_j \right) - \frac{1}{2} \cot \theta J_{ij} [K, U]_i \right\} \Re(\chi)^{j\bar{j}i} e^{i12}, \tag{C.14} \]

\[C_1 = \left\{ J_{ij} \left(\frac{1}{2} (\theta^{(9)}_{\Re(\chi)})_j - \frac{3}{4} (\theta^{(9)}_{\omega})_j + (\mathcal{L}_K K)_j - \frac{1}{2} (\mathcal{L}_U U)_j \right) - \frac{1}{8} \sin \theta (dU)_{ij} \Re(\chi)^{i12} \right\} e^i - \cos \theta \mathcal{L}_K W. \tag{C.15} \]
D Useful Spin(7) and G_2 identities

In this appendix we list some useful identities we have used extensively during our work.

The fundamental Spin(7) 4-form τ, defined by (3.31) satisfies the following identities

\[
\tau_{i1i2i3i4} \tau^{i1i2i3} = 42 \delta_i^j,
\]
\[
\tau_{i1i2i3i4} \tau^{j1i2i3i4} = -4 \tau_{i1i2} \tau^{j1i2} + 12 \delta_i^{[j1} \delta_{i2]} - 9 \delta_i^{[j1} \tau_{i2i3} \tau^{j2i3} + 6 \delta_i^{[j1} \delta_{i2} \delta_{i3]} - 15 \delta_i^{[j1} \delta_{i2} \delta_{i3]},
\]

where i, j, \ldots are 8-dimensional. The existence of a Spin(7)-structure on an 8-dimensional manifold M^8 determines a decomposition of the space Ω^k of the k-differential forms on M^8 into irreducible Spin(7)-representations Ω^k_n of dimension n, see [46] and also [50]. Ω^1 is irreducible; also, for $k > 4$, $\Omega^k = \ast_8 \Omega^{8-k}$, thus we are left to decompose

- 2-forms

\[
\Omega^2 = \Omega^2_8 \oplus \Omega^2_{21},
\]

where, given a 2-form θ

\[
\theta^7_{ij} = \frac{1}{4} \left(\theta_{ij} - \frac{1}{2} \tau_{ij} \theta_{kl} \right),
\]
\[
\theta^2_{i1} = \frac{3}{4} \left(\theta_{ij} + \frac{1}{2} \tau_{ij} \theta_{kl} \right).
\]

- 3-forms

\[
\Omega^3 = \Omega^3_8 \oplus \Omega^3_{48},
\]

where, given a 3-form λ

\[
\lambda^8_{ijk} = \frac{1}{7} \left(\lambda_{ijk} - \frac{3}{2} \tau^m_{[ij} \lambda_{k]mn} \right),
\]
\[
\lambda^{48}_{ijk} = \frac{6}{7} \left(\lambda_{ijk} + \frac{1}{4} \tau^m_{[ij} \lambda_{k]mn} \right).
\]

Notice that

\[
\lambda_{j1j2j3} \tau^{j1j2j3} = \lambda^8_{j1j2j3} \tau^{j1j2j3}_i.
\]

- 4-forms

\[
\Omega^4 = \Omega^4_1 \oplus \Omega^4_7 \oplus \Omega^4_{27} \oplus \Omega^4_{35},
\]

where, given a 4-form ξ

\[
\xi^1_{i1i2i3i4} = \frac{1}{336} (\Pi^1 \xi)_{i1i2i3i4},
\]
\[
\xi^7_{i1i2i3i4} = \frac{1}{8} \xi_{i1i2i3i4} + \frac{1}{224} (\Pi^1 \xi)_{i1i2i3i4} - \frac{3}{224} (\Pi^2 \xi)_{i1i2i3i4} - \frac{5}{108} (\Pi^3 \xi)_{i1i2i3i4},
\]
\[
\xi^{27}_{i1i2i3i4} = \frac{3}{8} \xi_{i1i2i3i4} - \frac{1}{224} (\Pi^1 \xi)_{i1i2i3i4} + \frac{15}{224} (\Pi^2 \xi)_{i1i2i3i4} + \frac{1}{56} (\Pi^3 \xi)_{i1i2i3i4},
\]
\[
\xi^{35}_{i1i2i3i4} = \frac{1}{2} \xi_{i1i2i3i4} - \frac{1}{336} (\Pi^1 \xi)_{i1i2i3i4} - \frac{3}{56} (\Pi^2 \xi)_{i1i2i3i4} - \frac{1}{21} (\Pi^3 \xi)_{i1i2i3i4}.
\]
with

\[
\begin{align*}
\Pi^1_\xi &:= \tau_{i_1i_2i_3i_4} \tau^{j_1j_2j_3j_4} \xi_{j_1j_2j_3j_4}, \\
\Pi^2_\xi &:= \tau_{j_1j_2} \tau_{i_3i_4} \tau^{j_3j_4} \xi_{j_1j_2j_3j_4}, \\
\Pi^3_\xi &:= \tau_{i_1i_2i_3} \tau^{j_1j_2j_3j_4} \xi_{j_1j_2j_3j_4}.
\end{align*}
\tag{D.9}
\]

The fundamental G_2 3-form ϕ, defined by (4.48), and its Hodge dual $\star_7 \phi$ satisfy the following identities (i, j, \ldots are 7-dimensional real G_2 indices)

\begin{align}
\phi_{i_1i_2} \phi^{j_1j_2} &= 6 \delta^j_i, \tag{D.10} \\
\phi_{i_1i_2} \phi^{j_1j_2} &= 2 \delta^{[j_1} \delta^{j_2]} - \star_7 \phi_{i_1i_2}^{j_1j_2}, \tag{D.11} \\
\phi_{i_1i_2} (\star_7 \phi)_{j_1j_2i_1i_2} &= -4 \phi_{j_1j_2}, \tag{D.12} \\
\phi_{i_1i_2} (\star_7 \phi)_{j_1j_2i_1i_2} &= 6 \delta^{[j_1} \phi_{j_2]}^{i_1i_2}, \tag{D.13} \\
(\star_7 \phi)_{i_1i_2i_3} (\star_7 \phi)_{j_1j_2i_1i_2} &= 24 \delta^j_i, \tag{D.14} \\
(\star_7 \phi)_{i_1i_2i_3} (\star_7 \phi)_{j_1j_2i_1i_2} &= 8 \delta^{[j_1} \delta^{j_2]} - 2 (\star_7 \phi)_{i_1i_2}^{j_1j_2}, \tag{D.15} \\
(\star_7 \phi)_{i_1i_2i_3} (\star_7 \phi)_{j_1j_2i_1i_2} &= 6 \delta^{[j_1} \delta^{j_2]} - 3 (\star_7 \phi)_{i_1i_2}^{j_1j_2}, \tag{D.16}
\end{align}

The existence of a G_2-structure on a 7-dimensional manifold M^7 determines a decomposition of the space Ω^k of the k-differential forms on M^7 into irreducible G_2-representations Ω^k_n of dimension n. The space Ω^k is irreducible if $k = 1, 6, 7$ and $\Omega^k = \star_7 \Omega^{7-k}$, thus we are left to decompose (see [51]):

- **2-forms**

\[\Omega^2 = \Omega^2_2 \oplus \Omega^2_{14}, \tag{D.17}\]

where, given a 2-form θ

\begin{align}
\theta_{i_1i_2}^7 &= \frac{1}{3} \theta_{i_1i_2} - \frac{1}{6} \star_7 \phi_{i_1i_2}^{j_1j_2} \theta_{j_1j_2}, \\
\theta_{i_1i_2}^{14} &= \frac{2}{3} \theta_{i_1i_2} + \frac{1}{6} \star_7 \phi_{i_1i_2}^{j_1j_2} \theta_{j_1j_2}. \tag{D.18}
\end{align}

Notice that

\[\theta_{j_1j_2} \phi^{j_1j_2} i = \theta_{j_1j_2}^7 \phi^{j_1j_2} i. \tag{D.19}\]

- **3-forms**

\[\Omega^3 = \Omega^3_1 \oplus \Omega^3_2 \oplus \Omega^3_27, \tag{D.20}\]

where, given a 3-form λ

\begin{align}
\lambda_{i_1i_2i_3}^1 &= \frac{1}{42} \phi^{j_1j_2j_3} \lambda_{j_1j_2j_3} \phi_{i_1i_2i_3}, \\
\lambda_{i_1i_2i_3}^7 &= \frac{1}{4} \lambda_{i_1i_2i_3} - \frac{1}{24} \phi^{j_1j_2j_3} \lambda_{j_1j_2j_3} \phi_{i_1i_2i_3} - \frac{3}{8} \lambda_{j_1j_2} \star_7 \phi_{i_2i_3}^{j_1j_2}, \\
\lambda_{i_1i_2i_3}^{27} &= \frac{3}{4} \lambda_{i_1i_2i_3} + \frac{1}{56} \phi^{j_1j_2j_3} \lambda_{j_1j_2j_3} \phi_{i_1i_2i_3} + \frac{3}{8} \lambda_{j_1j_2} \star_7 \phi_{i_2i_3}^{j_1j_2}. \tag{D.21}
\end{align}
Notice that
\[
\lambda_{j_1j_2j_3} \ast \phi^{i_1j_2j_3}_i = \lambda^{7}_{j_1j_2j_3} \ast \phi^{i_1j_2j_3}_i , \tag{D.22}
\]
The 4-forms are dual to the 3-forms; nonetheless, let us state explicitly the decomposition of the 4-forms
\[
\Omega^4 = \Omega^1_4 \oplus \Omega^2_4 \oplus \Omega^3_4 , \tag{D.23}
\]
where, given a 4-form \(\xi \)
\[
\xi^{1}_{i_1i_2i_3i_4} = \frac{1}{168} \ast \phi^{j_1j_2j_3j_4}_j \xi_{j_1j_2j_3j_4} \ast \phi^{i_1i_2i_3i_4}_i ,
\]
\[
\xi^{7}_{i_1i_2i_3i_4} = \frac{1}{4} \xi^{1}_{i_1i_2i_3i_4} - \frac{1}{96} \ast \phi^{i_1i_2i_3i_4}_i \xi_{j_1j_2j_3j_4} \ast \phi^{j_1j_2j_3j_4}_j - \frac{3}{4} \ast \phi^{j_1j_2}_j [i_1i_2] \xi^{1}_{i_3i_4} \xi_{j_1j_2} ,
\]
\[
\xi^{27}_{i_1i_2i_3} = \frac{3}{4} \xi^{1}_{i_1i_2i_3i_4} + \frac{1}{224} \ast \phi^{i_1i_2i_3i_4}_i \xi_{j_1j_2j_3j_4} \ast \phi^{j_1j_2j_3j_4}_j + \frac{3}{4} \ast \phi^{j_1j_2}_j [i_1i_2] \xi^{1}_{i_3i_4} \xi_{j_1j_2} . \tag{D.24}
\]
Notice that
\[
\xi_{i_1j_1j_2j_3} \phi^{i_1j_2j_3} = \xi^{7}_{i_1j_1j_2j_3} \phi^{i_1j_2j_3} . \tag{D.25}
\]

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [inSPIRE].
[2] B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26 (1971) 331 [inSPIRE].
[3] S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [inSPIRE].
[4] D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [inSPIRE].
[5] W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8 (1968) 245 [inSPIRE].
[6] P.O. Mazur, Proof of Uniqueness of the Kerr-Newman Black Hole Solution, J. Phys. A 15 (1982) 3173 [inSPIRE].
[7] A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4d gauged supergravity, JHEP 01 (2014) 127 [arXiv:1311.1796] [inSPIRE].
[8] L. Vanzo, Black holes with unusual topology, Phys. Rev. D 56 (1997) 6475 [gr-qc/9705004] [inSPIRE].
[9] R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [inSPIRE].
[10] H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [inSPIRE].
[11] H. Elvang, R. Emparan, D. Mateos and H.S. Reall, Supersymmetric black rings and three-charge supertubes, Phys. Rev. D 71 (2005) 024033 [hep-th/0408120] [inSPIRE].
[12] V. Breunhölder and J. Lucietti, Supersymmetric black hole non-uniqueness in five dimensions, JHEP 03 (2019) 105 [arXiv:1812.07329] [INSPIRE].

[13] V. Breunhölder and J. Lucietti, Moduli space of supersymmetric solitons and black holes in five dimensions, Commun. Math. Phys. 365 (2019) 471 [arXiv:1712.07092] [INSPIRE].

[14] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].

[15] H.K. Kunduri and J. Lucietti, New thermodynamic identities for five-dimensional black holes, Class. Quant. Grav. 36 (2019) 07LT02.

[16] T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D 70 (2004) 124002 [hep-th/0408141] [INSPIRE].

[17] S. Hollands and S. Yazadjiev, A uniqueness theorem for stationary Kaluza-Klein black holes, Commun. Math. Phys. 302 (2011) 631 [arXiv:0812.3036] [INSPIRE].

[18] A. Alaee, M. Khuri and H. Kunduri, Existence and Uniqueness of Stationary Solutions in 5-Dimensional Minimal Supergravity, arXiv:1904.12425 [INSPIRE].

[19] S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775] [INSPIRE].

[20] G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and nonuniqueness of static vacuum black holes in higher dimensions, Prog. Theor. Phys. Suppl. 148 (2003) 284 [gr-qc/0203004] [INSPIRE].

[21] J. Grover, J.B. Gutowski and W.A. Sabra, Non-existence of supersymmetric AdS$_5$ black rings, JHEP 11 (2014) 027 [arXiv:1306.0017] [INSPIRE].

[22] H.K. Kunduri, J. Lucietti and H.S. Reall, Do supersymmetric anti-de Sitter black rings exist?, JHEP 02 (2007) 026 [hep-th/0611351] [INSPIRE].

[23] J. Lucietti, On the nonexistence of extreme anti-de Sitter black rings, Class. Quant. Grav. 35 (2018) 21LT01.

[24] M. Khuri and E. Woolgar, Nonexistence of Extremal de Sitter Black Rings, Class. Quant. Grav. 34 (2017) 22LT01.

[25] J. Gutowski and G. Papadopoulos, Index theory and dynamical symmetry enhancement of M-horizons, JHEP 05 (2013) 088 [arXiv:1303.0869] [INSPIRE].

[26] J. Gutowski and G. Papadopoulos, M-Horizons, JHEP 12 (2012) 100 [arXiv:1207.7086] [INSPIRE].

[27] S. Beck, U. Gran, J. Gutowski and G. Papadopoulos, All Killing Superalgebras forWarped AdS Backgrounds, JHEP 12 (2018) 047 [arXiv:1710.03713] [INSPIRE].

[28] U. Gran, J. Gutowski and G. Papadopoulos, All superalgebras for warped AdS$_2$ and black hole near horizon geometries, Class. Quant. Grav. 36 (2019) 235009.

[29] J. Figueroa-O’Farrill and N. Hustler, The homogeneity theorem for supergravity backgrounds, JHEP 10 (2012) 014 [arXiv:1208.0553] [INSPIRE].

[30] S. Klaus, Einfachzusammenhängende kompakte homogene Räume bis zur Dimension 9, Diploma Thesis, University of Mainz, Germany (1988).

[31] J.M. Figueroa-O’Farrill and G. Papadopoulos, Maximally supersymmetric solutions of ten-dimensional and eleven-dimensional supergravities, JHEP 03 (2003) 048 [hep-th/0211089] [INSPIRE].
[32] J. Gillard, U. Gran and G. Papadopoulos, *The spinorial geometry of supersymmetric backgrounds*, *Class. Quant. Grav.* **22** (2005) 1033 [hep-th/0410155] [insPIRE].

[33] H. Blaine Lawson and M.-L. Michelsohn, *Spin Geometry*, Princeton University Press, U.S.A. (1989).

[34] U. Gran, J. Gutowski and G. Papadopoulos, *The spinorial geometry of supersymmetric IIB backgrounds*, *Class. Quant. Grav.* **22** (2005) 2453 [hep-th/0501177] [insPIRE].

[35] U. Gran, J. Gutowski, G. Papadopoulos and D. Roest, $N = 31$, $D = 11$, *JHEP* **02** (2007) 043 [hep-th/0610331] [insPIRE].

[36] U. Gran, J. Gutowski and G. Papadopoulos, *Classification, geometry and applications of supersymmetric backgrounds*, *Phys. Rept.* **794** (2019) 1 [arXiv:1808.07879] [insPIRE].

[37] J. Gutowski and G. Papadopoulos, *Static M-horizons*, *JHEP* **01** (2012) 005 [arXiv:1106.3085] [insPIRE].

[38] V. Moncrief and J. Isenberg, *Symmetries of cosmological Cauchy horizons*, *Commun. Math. Phys.* **89** (1983) 387 [insPIRE].

[39] H. Friedrich, I. Racz and R.M. Wald, *On the rigidity theorem for space-times with a stationary event horizon or a compact Cauchy horizon*, *Commun. Math. Phys.* **204** (1999) 691 [gr-qc/9811021] [insPIRE].

[40] E. Cremmer, B. Julia and J. Scherk, *Supergravity Theory in Eleven-Dimensions*, *Phys. Lett. B* **76** (1978) 409 [insPIRE].

[41] U. Gran, J. Gutowski and G. Papadopoulos, *Index theory and dynamical symmetry enhancement near IIB horizons*, *JHEP* **11** (2013) 104 [arXiv:1306.5765] [insPIRE].

[42] U. Gran, J. Gutowski, U. Kayani and G. Papadopoulos, *Dynamical symmetry enhancement near IIA horizons*, *JHEP* **06** (2015) 139 [arXiv:1409.6303] [insPIRE].

[43] U. Gran, J. Gutowski, U. Kayani and G. Papadopoulos, *Dynamical symmetry enhancement near massive IIA horizons*, *Class. Quant. Grav.* **32** (2015) 235004 [arXiv:1411.5286] [insPIRE].

[44] J.P. Gauntlett and S. Pakis, *The geometry of $D = 11$ Killing spinors*, *JHEP* **04** (2003) 039 [hep-th/0212008] [insPIRE].

[45] U. Gran, G. Papadopoulos and D. Roest, *Systematics of M-theory spinorial geometry*, *Class. Quant. Grav.* **22** (2005) 2701 [hep-th/0503046] [insPIRE].

[46] M. Fernández, *A classification of Riemannian manifolds with structure group $Spin(7)$*, *Annali Mat. Pura Appl.* **143** (1986) 101.

[47] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt and P.A. Griffiths *Exterior Differential Systems*, Springer New York (1991), pp. 27–30.

[48] G. Frobenius, *Über das Pfaffsche Problem*, *J. für Reine und Agnew. Math.* **82** (1877) 230.

[49] B. Biran, F. Englert, B. de Wit and H. Nicolai, *Gauged $N = 8$ Supergravity and Its Breaking From Spontaneous Compactification*, *Phys. Lett. B* **124** (1983) 45 [Erratum ibid. **128** (1983) 461] [insPIRE].

[50] D.A. Salamon and T. Walpuski, *Notes on the octonions*, proceedings of the 23rd Gokola Geometry-Topology Conference, (2017) 1–85.

[51] M. Fernández and A. Gray, *Riemannian manifolds with structure group G_2*, *Annali Mat. Pura Appl.* **132** (1982) 19.