A PROOF OF THE ERGODIC THEOREM USING
NONSTANDARD ANALYSIS

TRISTRAM DE PIRO

Abstract. The following paper follows on from [2] and gives a
rigorous proof of the Ergodic Theorem, using nonstandard analysis.

1. The Ergodic Theorem

There are many versions of the ergodic theorem, but the one we will
prove in this paper, using nonstandard analysis, is the following;

Theorem 1.1. Ergodic Theorem
Let \((\Omega, \mathcal{C}, \mu)\) be a probability space, and let \(T\) be a measure preserving
transformation, then, if \(g \in L^1(\Omega, \mathcal{C}, \mu)\);

\[\diamondsuit g(\omega) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} g(T^i \omega) \]

exists for almost all \(\omega \in \Omega\), with respect to \(\mu\), and, \(\diamondsuit g \in L^1(\Omega, \mathcal{C}, \mu)\),
with;

\[\int_\Omega \diamondsuit g d\mu = \int_\Omega g d\mu \]

Remarks 1.2. There are a number of good standard proofs of this re-
sult. A particular good reference is [3]. However, the reader should be
aware that it is assumed there that \(\mathcal{C}\) is complete and \(T\) isinver-
tible, in the sense that \(T\) is one-one and onto, and both \(T\) and \(T^{-1}\) are mea-
surable. A m.p.t is then required to satisfy \(\mu(C) = \mu(T^{-1}C)\) for all
\(C \in \mathcal{C}\). We will not require these assumption in the proofs of this sec-
tion, in the sense that we only require a m.p.t to be a measurable \(T
with \(\mu(C) = \mu(T^{-1}C)\) for all \(C \in \mathcal{C}\). In [3], a seemingly stronger result
is shown, (under the above assumptions), namely that if \(C \in \mathcal{C}\), with
\(T^{-1}(C) = C\), then;
\[\int_C \circ g d\mu = \int_C g d\mu \] (\(*\))

from which it easily follows that if \(C' \) is the sub \(\sigma \)-algebra of all \(T \)-invariant sets, where a set \(C \) is \(T \) invariant in \([3] \), if \(T^{-1}C = C \) a.e. \(d\mu \), then \(\circ g = E(g|C') \) (\(** \)). In the particular case when \(T \) is ergodic, that is every \(T \)-invariant set has measure 0 or 1, we obtain the well known result that \(\circ g = E(g) \) a.e \(d\mu \) (\(*** \)). However, this result (\(* \)) follows easily from our Theorem 1.1 as we can, wlog, assume that \(\mu(C) > 0 \), and then restrict and rescale the measure. Of course, we even obtain a slight strengthening of (\(** \)), by our weaker assumption on a m.p.t, and obtain similar strengthenings of (\(** \)) and (\(*** \)). (It is not necessary to restrict attention to real valued functions, in the statement of the theorem, the complex version follows immediately from the real case).

As usual, we work in an \(\aleph_1 \)-saturated model. Let \(k \in \ast \mathbb{N}_{>0} \) be infinite, and let \(K = \{ x \in \ast \mathbb{N} : 0 \leq x < k \} \). We let \(\mathcal{K} \) be the algebra of all internal subsets of \(K \). Observe that as \(K \) is hyperfinite, \(\mathcal{K} \) is a hyperfinite \(\ast \sigma \)-algebra. We let \(\nu \) denote the counting measure, defined by setting \(\nu(A) = \frac{\text{Card}(A)}{k} \), for \(A \in \mathcal{K} \). We adopt some of the notation of Section 3 in \cite{4}, and let \(P = \nu^\circ \). By Theorem 3.4, and remarks before Lemma 3.15 of \cite{4}, \(P \) extends uniquely to the completion \(\mathcal{B} \) of the \(\sigma \)-algebra, \(\sigma(\mathcal{K}) \), generated by \(\mathcal{K} \). It is clear that \((K, \mathcal{B}, P) \) is a probability space, it is also the Loeb space associated to \((K, \mathcal{K}, \nu) \). We let \(\phi : K \to K \) denote the map defined by:

\[
\phi(x) = x + 1, \text{ if } 0 \leq x < k - 1 \\
\phi(x) = 0, \text{ if } x = k - 1
\]

Clearly, \(\phi \) is invertible, internal, preserves the counting measure \(\nu \), and \(\phi^{-1}(\sigma(\mathcal{K})) = \sigma(\mathcal{K}) \). Then \(P \circ \phi^{-1} \) defines a measure on \((K, \sigma(\mathcal{K}), P) \), extending \(\nu \). By Theorem 3.4(ii) of \cite{4}, it agrees with \(P \). By definition of the completion, \(P \circ \phi^{-1} \) agrees with \(P \) on \((K, \mathcal{B}, P) \), so \(\phi \), and similarly \(\phi^{-1} \) are m.p.t’s. We will first prove the following;

Theorem 1.3. The ergodic theorem, as stated in Theorem 1.1, holds for \((K, \mathcal{B}, P, \phi) \).

Proof. Let \(g \in L^1(K, \mathcal{B}, P) \), without loss of generality, we can assume that \(g \geq 0 \). For \(x \in K \), we let;

\[
\overline{g}(x) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} g(\phi^i x)
\]
A PROOF OF THE ERGODIC THEOREM USING NONSTANDARD ANALYSIS

\[g(x) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} g(\phi^i x) \]

In order to prove the theorem, it is sufficient to show that \(g\) is integrable and:

\[\int_K g dP \leq \int_K g \delta dP \leq \int_K g dP \tag{\dagger} \]

Then, as \(g \leq g\), we must have equality in (\dagger), so \(g\) exists a.e d\(P\), that is \(g\) exists a.e d\(P\), and:

\[\int_K g dP = \int_K g dP \]

as required.

Now let \(M \in \mathcal{N}_{>0}\), then, as \(g\) is \(\mathcal{B}\)-measurable, see [6], \(\min(g, M)\) is integrable with respect to \(P\). Let \(\epsilon > 0\) be standard, then we can apply Theorem 2.1 in the Appendix to this paper, and Definition 3.9 and Remarks 3.10 of [4], to obtain internal functions \(F, G : K \to \ast \mathbb{R}\), with \(g \leq F\) and \(G \leq \min(g, M)\), such that:

\[|\int_A g dP - \frac{1}{k} \sum_{x \in A} F(x)| < \epsilon \]

\[|\int_A \min(g, M) dP - \frac{1}{k} \sum_{x \in A} G(x)| < \epsilon, \text{ for all internal } A \subset K, \ (\dagger\dagger) \]

Now observe that \(g\) is \(\phi\)-invariant, [\(\dagger\dagger\)]. Fixing \(x \in K\), by the definition of \(g\), we can find \(n \in \mathcal{N}_{>0}\) such that:

\[\min(g(x), M) \leq \frac{1}{n} \sum_{i=0}^{n-1} g(\phi^i x) + \epsilon \ (*) \]

Then, if \(0 \leq m \leq n - 1\), we have:

\[G(\phi^m x) \leq \min(g(\phi^m x), M), \text{ by definition of } G \]

1. There is a probably a proof of this result in the literature, but we supply one here. Fix \(x \in K\). Let \(A_m = \frac{1}{m} \sum_{i=0}^{m-1} g(\phi^i x)\) and let \(B_m = \frac{1}{m} \sum_{i=0}^{m-1} g(\phi^{i+1} x)\). Then a simple calculation shows that \(\frac{mB_m + g(x)}{m+1} = A_{m+1}\). Hence, \(|B_m - A_{m+1}| = |\frac{A_{m+1} - g(x)}{m+1}|\), \((*)\). Suppose that \(g(x) = t < \infty\), \((**),\) (the case when \(g(x) = \infty\) is similar), and \(g(\phi x) < t\), \((***)\), (the case \(\phi(\phi x) > t\) is again similar). Then, by \((***)\), there exists \(\delta > 0\), such that, for \(m \geq m_0\), \(B_m < t - \delta\). By \((*)\) and \((***)\), we can find \(m_1 \geq m_0\), such that \(|B_m - A_{m+1}| < \frac{\delta}{2}\), for \(m \geq m_1\). Again, by \((*)\), we can find \(m_2 \geq m_1 \geq m_0\), such that \(A_{m+2} > t - \frac{\delta}{2}\). This clearly gives a contradiction.
Then, as \(T \) otherwise \(T \) empty. Therefore, by transfer, it contains a first element

\[\exists (f) \]

Applying Lemma 2.12 of [4], \(I \) fibres of \(\ast \). Then, the relation \((\ast) \) becomes the internal relation on \([1, k] \times K \), given by \(R(n, x) \) iff \(S_G(n, x) \leq S_F(n, x) + n \epsilon \). Using the fact above, that the fibres of \(R \) over \(K \) are non-empty, by transfer of the corresponding standard result, we can find an internal function \(T : K \rightarrow [1, k] \), which assigns to \(x \in K \), the least \(n \in [1, k) \), for which \((\ast) \) holds. Moreover, as we have observed in (\ast), \(T(x) \) is standard, for all \(x \in K \). By Lemma 3.11, \(r = \max_{x \in K} T(x) \) exists and is standard. Now, define \(T_j \) hyper inductively by:

\[T_0 = 0 \text{ and } T_j = T_{j-1} + T(T_{j-1}) \]

and let \(J \) be the first \(j \) such that \(k - r \leq T_j < k \).

Observe that \(T_j \) defines an internal partition of the interval \([0, T_{j-1}] \subset [0, k) \), into \(J - 1 \) blocks of step size \(T_j - T_{j-1} = T((T_{j-1}) \). Hence, we can write;

\(= \min(\overline{f}(x), M) \), by \(\phi \) invariance of \(\overline{f} \)

\[\leq \frac{1}{n} \sum_{i=0}^{n-1} g(\phi^i x) + \epsilon, \text{ by } (\ast) \]

\[\leq \frac{1}{n} \sum_{i=0}^{n-1} F(\phi^i x) + \epsilon, \text{ by definition of } F \]

Therefore,

\[\sum_{i=0}^{n-1} G(\phi^i x) \leq n(\frac{1}{n} \sum_{i=0}^{n-1} F(\phi^i x) + \epsilon) = \sum_{i=0}^{n-1} F(\phi^i x) + n \epsilon \ (\ast\ast) \]

Now let \(S_G : [1, k) \times K \rightarrow \ast \mathcal{R} \) be defined by;

\[S_G(n, x) = \ast \sum_{i=0}^{n-1} G(\phi^i x) \]

and, similarly, define \(S_F \). By Definition 2.19 of [4], and using the facts that \(K \) is \(\ast \)-finite, and \(G, F \) are internal, \(S_G \) and \(S_F \) are internal. Then, the relation \((\ast\ast) \) becomes the internal relation on \([1, k) \times K \), given by \(R(n, x) \) iff \(S_G(n, x) \leq S_F(n, x) + n \epsilon \). Using the fact above, that the fibres of \(R \) over \(K \) are non-empty, by transfer of the corresponding standard result, we can find an internal function \(T : K \rightarrow [1, k] \), which assigns to \(x \in K \), the least \(n \in [1, k) \), for which \((\ast\ast) \) holds. Moreover, as we have observed in (\ast), \(T(x) \) is standard, for all \(x \in K \). By Lemma 3.11, \(r = \max_{x \in K} T(x) \) exists and is standard. Now, define \(T_j \) hyper inductively by:

\[T_0 = 0 \text{ and } T_j = T_{j-1} + T(T_{j-1}) \]

and let \(J \) be the first \(j \) such that \(k - r \leq T_j < k \).

Observe that \(T_j \) defines an internal partition of the interval \([0, T_{j-1}] \subset [0, k) \), into \(J - 1 \) blocks of step size \(T_j - T_{j-1} = T((T_{j-1}) \). Hence, we can write;

\[\text{This perhaps requires some explanation. Define } I = \{ m \in \ast \mathcal{N}_{>0} : \exists S(dom(S) = [0, m] \land S(0) = 0 \land (\forall \ 1 \leq j \leq m)S(j) = S(j-1) + T(S(j-1)_{modk})) \}, \ (\ast) \text{, then it is easy to see that } I \text{ is internal, } I(1) \text{ holds, and } I(m) \text{ implies } I(m+1). \]

Applying Lemma 2.12 of [4], \(I = \ast \mathcal{N}_{>0} \). Hence there exists an internal function \(f \), defined on \(\ast \mathcal{N}_{>0} \), such that \(f(m) \) is the unique \(S \) satisfying (\ast). We can then define \(T_j = f(j)(j) \), and clearly \(T_j - T_{j-1} \leq r \). Let \(V = \{ j \in \ast \mathcal{N}_{>0} : T_j < k \} \). Then, as \(T \geq 1 \), \(V \) is the interval \([1, t] \) for some infinite \(t \leq k \). Then \(k - r \leq T_i < k \), otherwise \(T_i+1 < k \). Then \(U = \{ j \in \ast \mathcal{N}_{>0} : k - r \leq T_j < k \} \) is internal and non empty. Therefore, by transfer, it contains a first element \(J \).
A PROOF OF THE ERGODIC THEOREM USING NONSTANDARD ANALYSIS

\[
\frac{1}{k} \sum_{x=0}^{T_j-1} G(x) = \frac{1}{k} \sum_{j=0}^{J-1} \sum_{i=0}^{T(T_j)-1} G(\phi^i T_j)
\]

\[
\leq \frac{1}{k} \sum_{j=0}^{J-1} \sum_{i=0}^{T(T_j)-1} F(\phi^i T_j) + T(T_j)\epsilon ,\text{by definition of } T \text{ and } (**).
\]

Now we can rearrange this last sum as;

\[
\frac{1}{k} \sum_{x=0}^{T_j-1} F(x) + \frac{\epsilon}{k} \sum_{j=0}^{J-1} T(T_j)
\]

\[
= \frac{1}{k} \sum_{x=0}^{T_j-1} F(x) + \frac{T_j \epsilon}{k}
\]

\[
< \frac{1}{k} \sum_{x=0}^{T_j-1} F(x) + \epsilon
\]

using the facts that \(* \sum_{j=0}^{J-1} T(T_j) = * \sum_{j=0}^{J-1} (T_{j+1} - T_j) = T_J, \text{ and } T_J < k. \text{ Therefore, we have that;}

\[
\frac{1}{k} \sum_{x=0}^{T_j-1} G(x) < \frac{1}{k} \sum_{x=0}^{T_j-1} F(x) + \epsilon (***)
\]

Now, observing that \(\nu([T_J, k)) \leq \frac{\epsilon}{k} \simeq 0,\) as \(r\) is standard, we have \(P([T_J, k)) = 0.\) Hence, using \((\dagger\dagger), (***)\):

\[
\int_X \min(\overline{g}, M) dP = \int_{[0,T_J]} \min(\overline{g}, M) dP < \frac{1}{k} * \sum_{x=0}^{T_j-1} G(x) + \epsilon
\]

\[
< \frac{1}{k} \sum_{x=0}^{T_j-1} F(x) + 2\epsilon < \int_{[0,T_J]} g dP + 3\epsilon = \int_X g dP + 3\epsilon
\]

Now, letting \(M \to \infty\) and \(\epsilon \to 0,\) we can apply the MCT, to obtain;

\[
\int_X \overline{g} dP \leq \int_X g dP
\]

As \(g\) is integrable with respect to \(P,\) so is \(\overline{g},\) and a similar argument to the above demonstrates that \(\int_X g dP \leq \int_X \overline{g} dP.\) Therefore, \((\dagger)\) is shown and the theorem is proved.

\(\square\)

We now generalise Theorem 1.3 to obtain Theorem 1.1. We let \(\mathcal{P}\) consist of spaces of the form \((\mathcal{R}^N, \mathcal{D}, \lambda, \sigma),\) where \(\mathcal{D}\) is the Borel field on \(\mathcal{R}^N, \sigma\) is the left shift on \(\mathcal{R}^N,\) and \(\lambda\) is a shift invariant probability measure. Note that \(\sigma\) is not invertible, but we require that \(\lambda = \sigma * \lambda,\) so \(\sigma\) is a m.p.t, with respect to \(\lambda.\) Similarly, we let \(\mathcal{Q}\) consist of spaces of the form \(([0, 1]^N, \mathcal{E}, \rho, \sigma),\) where \(\mathcal{E}\) is the Borel field on \([0, 1]^N, \sigma\) is again the left shift, and \(\rho\) is a shift invariant probability measure.
We first require the following simple lemma;

Lemma 1.4. Theorem 1.1 is true iff the Ergodic Theorem holds for all spaces in \(\mathcal{P} \).

Proof. One direction is obvious. For the other direction, let \((\Omega, \mathcal{C}, \mu, T)\) and \(g \in L^1(\Omega, \mathcal{C}, \mu)\) be given. Define a map \(\tau : \Omega \to \mathcal{R}^N\) by \(\tau(\omega)(n) = g(T^n\omega)\). Clearly, as \(g\) is measurable with respect to \(\mathcal{C}\) and \(T\) is a m.p.t, using the definition of the Borel field on \(\mathcal{R}^m\), for finite \(m\), we have that for a cylinder set \(U \in \mathcal{D}\), \(\tau^{-1}(U) \in \mathcal{C}\). By the definition of the Borel field on \(\mathcal{R}^N\), \(\tau^{-1}(\mathcal{D}) \subset \mathcal{C}\). Let \(\lambda\) be the probability measure \(\tau^*\mu\). Then \(\lambda\) is \(\sigma\) invariant, as clearly, using the fact that \(T\) is a m.p.t, \(\lambda = \sigma^*\lambda\) on the cylinder sets in \(\mathcal{D}\). Using the definition of the Borel field and Caratheodory’s Theorem, we obtain that \(\lambda = \sigma^*\lambda\).

Let \(\pi : \mathcal{R}^N \to \mathcal{R}\) be the projection onto the 0th coordinate. Then \(g = \pi \circ \tau\), and, so \(\pi \in L^1(\mathcal{R}^N, \mathcal{D}, \lambda)\) by the change of variables formula, \([\ref{footnote}3]\). Moreover, \(g(T\omega) = \pi(\sigma^i\tau(\omega))\), so applying the Ergodic Theorem for \((\mathcal{R}^N, \mathcal{D}, \lambda, \sigma)\), with the change of variables formula, we have that \(\diamond g\) exists and \(\diamond g = \phi \circ \tau\) a.e \(d\mu\), and \(\int_{\Omega} \diamond g d\mu = \int_{\mathcal{R}^N} \diamond \pi d\lambda = \int_{\mathcal{R}^N} \pi d\lambda = \int_{\Omega} g d\mu\) as required. \(\square\)

We make the following definition;

Definition 1.5. We say that \((\mathcal{R}^N, \mathcal{D}, \lambda, \sigma) \in \mathcal{P}\) is a factor of \((K, \mathcal{B}, P, \phi)\) if there exists;

\[\Gamma : (K, \mathcal{B}, P) \to (\mathcal{R}^N, \mathcal{D}, \lambda)\]

which is measurable and measure preserving, such that;

\[\Gamma(\phi x) = \sigma(\Gamma x) \text{ a.e } (x \in K) \text{ dP}.\]

We make the same definition if \(((0, 1)^N, \mathcal{E}, \rho, \sigma) \in \mathcal{Q}\).

Lemma 1.6. Suppose that \((\mathcal{R}^N, \mathcal{D}, \lambda, \sigma) \in \mathcal{P}\) is a factor of \((K, \mathcal{B}, P, \phi)\), then, if the Ergodic Theorem holds for \((K, \mathcal{B}, P, \phi)\), it holds for \((\mathcal{R}^N, \mathcal{D}, \lambda, \sigma)\).

\(3\) As \(\{V \in \mathcal{D} : \tau^{-1}(V) \in \mathcal{C}\}\) is a \(\sigma\)-algebra containing the cylinder sets.

\(4\) This states that if \(\tau : (X_1, \mathcal{C}_1, \mu_1) \to (X_2, \mathcal{C}_2, \mu_2)\) is measurable and measure preserving, so \(\mu_2 = \tau_*\mu_1\), then a function \(\theta \in L^1(X_2, \mathcal{C}_2, \mu_2)\) iff \(\tau^*\theta \in L^1(X_1, \mathcal{C}_1, \mu_1)\) and \(\int_{\mathcal{C}} \theta d\tau_*\mu_1 = \int_{\tau^{-1}(\mathcal{C})} \tau^*\theta d\mu_1\).
Definition 1.8. □

 obt. (Note that the map

This clearly shows that

Lemma 1.7. Every space in \(P \) is isomorphic, in the sense of dynamical systems, \(R \), to a space in \(Q \).

Proof. There exists an isomorphism, in the sense of measure spaces, \(\Phi : (\mathcal{R}^N, \mathcal{D}, \lambda) \rightarrow ([0,1], \mathcal{E}', \rho') \), where \(\mathcal{E}' \) is the Borel field and \(\rho' \) is a probability measure, see [3], Theorem 1.4.4. Now define \(\rho : [0,1]^N \rightarrow [0,1]^N \) by \(r(\omega)(n) = \Phi(\sigma^n \omega) \). Again, using the argument above and the fact that \(\Phi \) and \(\sigma \) are measurable, \(r^{-1}(\mathcal{E}) \subset \mathcal{D} \), where is the Borel field on \([0,1]^N\). Let \(\rho \) be the probability measure \(r_* \lambda \), so \(r : (\mathcal{R}^N, \mathcal{D}, \lambda) \rightarrow ([0,1]^N, \mathcal{E}, \rho) \) is also measure preserving. We have that \(r(\sigma \omega)(n) = \Phi(\sigma^{n+1} \omega) = (r \omega)(n+1) = \sigma(r \omega)(n) \), so \(r \circ \sigma = \sigma \circ r \), for all \(\omega \in \mathcal{R}^N \). This also shows that \(\rho \) is \(\sigma \) invariant, as \(\lambda \) is \(\sigma \) invariant. Hence, ([0,1]^N, \mathcal{E}, \rho, \sigma) belongs to \(Q \). Define \(s : ([0,1]^N, \mathcal{E}, \rho) \rightarrow (\mathcal{R}^N, \mathcal{D}, \lambda) \), by, \(s(\omega') = \Phi^{-1}(\pi(\omega')) \), where again \(\pi \) is the 0'th coordinate projection, clearly \(s \) is measurable. Then \((s \circ r)(\omega) = \Phi^{-1} \circ \pi \circ r(\omega) \), and \(\pi \circ r(\omega) = r(\omega)(0) = \Phi(\omega) \), so \(s \circ r = I \) a.e, and, similarly \(r \circ \sigma = \sigma \circ r \) a.e \(d\lambda \). This clearly shows that \(s \) is measure preserving, and that \(r \circ s = I \), \(s \circ \sigma = \sigma \circ s \), hold, restricted to \(r(U) \), where \(\lambda(U) = 1 \). As, by definition, \(\rho(\lambda(U)) = 1 \), and the conditions in (*) are measurable, we obtain the result. (Note that the map \(s \) need not be invertible in the ordinary sense.) □

We now make the following;

Definition 1.8. Let ([0,1]^N, \mathcal{E}, \rho, \sigma) belong to \(Q \), then we say that \(\alpha \) is typical for \(\rho \) if:

\[\int_{\mathcal{R}^N} \phi \ d\lambda = \int_{\mathcal{K}} \Gamma^* \phi \ d\rho = \int_{\mathcal{K}} \Gamma^* \phi = \int_{\mathcal{R}^N} \phi \ d\lambda \]

\(\square\)
\[
\lim_{n \to \infty} \sum_{i=0}^{n-1} g(\sigma^i \alpha) = \int_{[0,1]^N} g \, d\rho
\]

for any \(g \in C([0,1]^N) \).

We now show;

Theorem 1.9. Let \(([0,1]^N, \mathfrak{E}, \rho, \sigma) \) belong to \(\mathcal{Q} \), possessing a typical element \(\alpha \). Then \(([0,1]^N, \mathfrak{E}, \rho, \sigma) \) is a factor of \((K, \mathfrak{B}, P, \phi) \) in the sense of Definition 1.5.

Proof. Define \(\Gamma : K \to [0,1]^N \) by \(\Gamma(x) = \sigma^x \alpha \). Now suppose that \(g \in C([0,1]^N) \), so, as \([0,1]^N\) is compact, \(g \) is bounded, then;

\[g(\sigma^x \alpha) = g(\Gamma(x)) \quad \text{for all} \quad x \in K, \quad (***) \quad (7). \]

This implies that \(\Gamma \) is measurable, as if \(B \) is an open set for the product topology on \([0,1]^N\), then, taking \(g \) to be a continuous function with support \(B \), \(\Gamma^* g \) is measurable with respect to \(P \), by Theorem 3.8 (Lemma 3.15) of [4]. This clearly implies that \(\Gamma^{-1}(B) \) is measurable. By previous arguments, we obtain the result. Moreover;

\[
\int_{[0,1]^N} g \, d\rho = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} g(\sigma^i \alpha), \quad \text{(by definition of a typical element} \ \alpha) \quad (8). \]

\[= \int_K g(\sigma^x \alpha) \, d\nu \quad \text{(using Definition 3.9 of [4] and Remarks 3.10 of [4])} \]

6Here, \((\sigma^x \alpha) = ^*H(x) \) for the internal function \(^*H : ^*[0,1]^N = (^*[0,1])^N \), obtained by transferring the standard function \(H : \mathcal{N} \to [0,1]^N \), defined by \(H(n) = \sigma^n(\alpha) \). Observe that \([0,1]^N\) is compact and Hausdorff in the product topology, so, by Theorem 2.34 of [4], there exists a unique standard part mapping \(\circ : ^*([0,1]^N) \to [0,1]^N \). In fact, see [4], this mapping is defined by setting \(\circ s = (\circ s(n))_{n \in \mathcal{N}} \) where \(s : ^*\mathcal{N} \to ^*[0,1] \) is internal.

7I have also denoted by \(g \), the transfer of \(g \) to \(^*C(\mathfrak{E}) \). Observe that \(\sigma^x(\alpha) \simeq \Gamma(x) \) by definition of \(\Gamma \), it is then straightforward to adapt Theorem 2.25 of [4], using the fact that \(g \) is continuous, to show that \(g(\sigma^x \alpha) \simeq g(\Gamma(x)) \).

8Observe that \(s(n) = \frac{1}{n} \sum_{i=0}^{n-1} g(\sigma^i \alpha) \) is a standard sequence, with limit \(s = \int_{[0,1]^N} g \, d\rho \). By Theorem 2.22 of [4], using the fact that \(k \) is infinite, \(s \simeq s(k) \). Using Definition 2.19 of [4], it is clear that \(s(k) \) is the hyperfinite sum \(\frac{1}{k} \sum_{x=0}^{k-1} g(\sigma^x \alpha) \).
\[= \int_{K} g(\Gamma(x))dP, \text{ (using (*)}, \text{ (**) and Theorem 3.12 of [4] (Lemma 3.15 of [4]))} \]

\((***)\)

The result of \((***)\) implies that \(\Gamma\) is measure preserving. The probability measure \(\Gamma*P\) defines a bounded linear functional on \(C([0,1]^N)\), which agrees with \(\rho\). Using the fact that \([0,1]^N\) is a compact Hausdorff space, and \(\rho, \Gamma*P\) are regular, see [6] Theorem 2.18, \((9)\), we can apply the uniqueness part of the Riesz Representation Theorem, see [6] Theorem 6.19, to conclude that \(\Gamma*P = \rho\), we will discuss this further below. Now, as \(\sigma\) is continuous with respect to \(E\), \((10)\); \(\sigma(\Gamma x) = \sigma(\sigma^x\alpha) = \sigma(\sigma^{x+1}\alpha) = \Gamma(x+1) = \Gamma(\phi(x))\)

except for \(x = k - 1\), so a.e \(dP\). Hence, the result follows.

We now address the problem of finding a typical element for a space \(([0,1]^N, \mathcal{E}, \rho, \sigma) \in Q\). By Theorem 1.3, Lemma 1.4, Lemma 1.6, Lemma 1.7 and Theorem 1.9, we then obtain the Ergodic Theorem 1.1. The proof of this result does not require the Ergodic Theorem, and is originally due to de Ville, see [2].

Definition 1.10. We say that a sequence of measures \((\rho_n)_{n \in \mathbb{N}}\) converges weakly to \(\rho\) if, for all \(g \in C([0,1]^N)\);

\[
\lim_{n \to \infty} (\int_{[0,1]^N} gd\rho_n) = \int_{[0,1]^N} gd\rho.
\]

We require the following lemma;

Lemma 1.11. Let \((\alpha_n)_{n \in \mathbb{N}}\) be a sequence of periodic, with respect to \(\sigma\), elements in \([0,1]^N\), such that the sequence of probability measures \((\rho_{\alpha_n})_{n \in \mathbb{N}}\) converges weakly to \(\rho\), where;

\(9\) It is easy to see that \([0,1]^N\) is \(\sigma\)-compact. This follows from the fact that finite intersections of cylinder sets form a basis for the topology on \([0,1]^N\). Any open set in \(U\) in \([0,1]^m\) is a countable union of closed sets, as every \(x \in U\) lies inside a closed box \(B\) with rational corners, such that \(B \subset U\). Hence, any cylinder set is a countable union of such closed sets \(\pi_m^{-1}(B)\).

\(10\) Again I have denoted by \(\sigma\) the transfer of the standard shift \(\sigma\) to \(*([0,1]^N)\). The fact that \(\sigma(\sigma^x\alpha) = \sigma^{x+1}(\alpha)\) follows immediately by transferring the standard fact that \(\sigma(\sigma^n(\alpha)) = \sigma^{n+1}(\alpha)\) for \(n \in \mathbb{N}\).
\[\rho_{\alpha_n} = \frac{1}{c_n} (\delta_{\alpha_n} + \delta_{\sigma \alpha_n} + \ldots + \delta_{\sigma^{c_n-1} \alpha_n}) \]

\(\delta_{\alpha_n} \) denotes the probability measure supported on \(\alpha_n \) and \(c_n \) denotes the period of \(\alpha_n \). Then there exists a sequence \((r_n)_{n \in \mathbb{N}}\) of positive integers, such that if \((T_n)_{n \in \mathbb{N}}\) is defined by \(T_0 = 0 \) and \(T_{n+1} - T_n = c_n r_n \), the element \(\alpha \in [0, 1]^N \), defined by \(\alpha(m) = \alpha_n(m-T_n) \), for \(T_n \leq m < T_{n+1} \), is typical for \(\rho \).

Proof. The proof is intuitively clear, but hard to write down rigorously. As \(\rho_{\alpha_n} \) converges weakly to \(\rho \), we have that;

\[
\lim_{n \to \infty} (\int_X f d\rho_{\alpha_n}) = \int_X f d\rho
\]

By definition of \(\rho_{\alpha_n} \);

\[
\int_X f d\rho_{\alpha_n} = \frac{1}{c_n} (f(\alpha_n) + \ldots + f(\sigma^{c_n-1} \alpha_n))
\]

So it is sufficient to prove that;

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(\sigma^i \alpha) = \lim_{n \to \infty} \frac{1}{c_n} (f(\alpha_n) + \ldots + f(\sigma^{c_n-1} \alpha_n)) \quad (*)
\]

We first claim that, if \(f \in C([0,1]^N) \), there exists an increasing sequence \(\{m_n\}_{n \in \mathbb{N}} \) of positive integers, such that if \(b, c \in [0,1]^N \), and agree up to the \(m_n \)'th coordinate, then \(|f(b) - f(c)| < \frac{1}{n^1} \), \((**)\). In order to see this, for \(x \in [0,1]^N \), let \(U_x = \{ y : |f(x) - f(y)| < \frac{1}{n^1} \} \).

As \(f \) is continuous, \(U_x \) is open in the Borel field, hence there exists \(V_x \subset U_x \), containing \(x \), of the form \(\pi^{-1}(W_x) \), where \(W_x \subset \mathcal{R}^{n_x} \) is open, and \(\pi \) is the projection onto the first \(n_x \) coordinates. Then, if \(y, z \in U_x \), \(|f(y) - f(z)| \leq |f(y) - f(x)| + |f(z) - f(x)| < \frac{1}{n} \). The sets \(\{V_x : x \in X\} \) form an open cover of \([0,1]^N\), which is compact in the product topology. Hence, there exists a finite subcover \(V_{x_1} \cup \ldots \cup V_{x_r} \).

We can choose \(m_n \) such that each \(V_{x_j} \) is of the form \(\pi^{-1}(W_{x_j}) \), for \(W_{x_j} \subset \mathcal{R}^{m_n} \). Then, if \(b \) and \(c \) agree up to the \(m_n \)'th coordinate, we have that \(b \in V_{x_j} \) iff \(c \in V_{x_j} \), so \(|f(b) - f(c)| < \frac{1}{n} \), showing \((**)\). Now let \(\{g_n\}_{n \in \mathbb{N}} \) be any increasing sequence of positive integers, such that if \(Q_n = \sup \{|f(b) - f(c)| : \pi_{g_n}(b) = \pi_{g_n}(c)\} \), then \(\{Q_n\}_{n \in \mathbb{N}} \) is decreasing and \(\lim_{n \to \infty} Q_n = 0 \). Clearly such a sequence exists by \((**)\). Without loss of generality, we can choose \(\{g_n\}_{n \in \mathbb{N}} \), such that the periods \(c_n g_n \), \((\#)\). Now choose \(\{T_i\}_{i \in \mathbb{N}} \) as follows;

(i). \(T_{i+1} \geq 2^i T_i \)
A PROOF OF THE ERGODIC THEOREM USING NONSTANDARD ANALYSIS

(ii). \(g_i |T_{i+1} - T_i \) (so \(c_i |T_{i+1} - T_i \))

(iii). \(C_i = \frac{T_{i+1} - T_i}{g_i} \geq C_{i-1} = \frac{T_i - T_{i-1}}{g_{i-1}} \) (\(i \geq 1 \)).

(iv). \(T_i \geq 2^i c_i \) (\(i \geq 1 \)).

We now claim there exists a decreasing sequence \(\{b_n\}_{n \in \mathbb{N} > 0} \) of positive reals, such that;

\[
|\frac{1}{T_n} \sum_{i=0}^{T_n-1} f(\sigma^i \alpha) - t_n| \leq b_n \quad (**)
\]

where \(\lim_{n \to \infty} b_n = 0 \), and \(t_n = \frac{1}{c_n} (f(\alpha_n) + \ldots + f(\sigma^{c_n-1}\alpha_n)) \), for \(n \geq 1 \). For ease of notation, we let;

\[
A_n = \frac{1}{n} \sum_{i=0}^{n-1} f(\sigma^i \alpha)
\]

\[
A_{m,n} = \frac{1}{n-m} \sum_{i=m}^{n-1} f(\sigma^i \alpha)
\]

Recall the law of weighted averages, \(A_n = \frac{mA_m + (n-m)A_{m,n}}{n} \). We first estimate \(|A_{T_n} - A_{T_{n-1}, T_n}| \). We have;

\[
A_{T_n} = \frac{T_{n-1}A_{T_{n-1}} + (T_n - T_{n-1})A_{T_{n-1}, T_n}}{T_n}
\]

\[
|A_{T_n} - A_{T_{n-1}, T_n}|
\]

\[
= \left| \frac{T_{n-1}}{T_n} A_{T_{n-1}} + \frac{T_n - T_{n-1}}{T_n} A_{T_{n-1}, T_n} - A_{T_{n-1}, T_n} \right|
\]

\[
\leq \frac{|A_{T_{n-1}}|}{2^{n-1}} + \frac{|A_{T_{n-1}, T_n}|}{2^{n-1}} \quad \text{by (i)}
\]

\[
\leq \frac{M}{2^n}, \quad \text{where} \quad |f| \leq M, \quad (A)
\]

We now estimate the average \(A_{T_{n-1}, T_n} \). The idea is to divide the interval between \(T_{n-1} \) and \(T_n \) into \(C_{n-1} \) blocks of length \(g_{n-1} \), where the period \(c_{n-1} |g_{n-1} \), using (ii) and (ii). We estimate \(|A_{T_{n-1}, T_n} - A_{T_{n-1}, T_n - g_n}| \);

\[
A_{T_{n-1}, T_n} = \frac{C_{n-1} - 1}{C_{n-1}} A_{T_{n-1}, T_n - g_{n-1}} + \frac{1}{C_{n-1}} A_{T_{n-1}, T_n - g_{n-1}, T_n}
\]

\[
|A_{T_{n-1}, T_n} - A_{T_{n-1}, T_n - g_{n-1}}|
\]

\[
= \left| \frac{A_{T_{n-1}, T_n - g_{n-1}}}{C_{n-1}} - \frac{A_{T_{n-1}, T_n - g_{n-1}, T_n}}{C_{n-1}} \right| \leq \frac{2M}{C_{n-1}} \quad (B)
\]
We now let;

\[B_{T_{n-1},m} = \frac{1}{m-T_{n-1}} \sum_{i=0}^{m-T_{n-1}-1} f(\sigma^i \alpha_{n-1}), \text{ for } m \leq n. \]

We estimate \(|A_{T_{n-1},T_{n-1}-g_{n-1}} - B_{T_{n-1},T_{n-1}-g_{n-1}}| \). We have that \(\sigma^{T_{n-1}+i} \alpha \) and \(\sigma^i \alpha_{n-1} \) agree up to the \(g_{n-1} \)th coordinate, for \(0 \leq i < T_n - T_{n-1} - g_{n-1} \). Therefore, for such \(i \),

\[|f(\sigma^i \alpha_{n-1}) - f(\sigma^{T_{n-1}+i} \alpha)| \leq Q_{n-1}, \text{ and so;} \]

\[|A_{T_{n-1},T_{n-1}-g_{n-1}} - B_{T_{n-1},T_{n-1}-g_{n-1}}| \leq Q_{n-1} \tag{C} \]

Now, by the same argument as in \((B) \);

\[|B_{T_{n-1},T_{n-1}-g_{n-1}} - B_{T_{n-1},T_{n-1}-g_{n-1}}| \leq \frac{2M}{C_{n-1}} \tag{D} \]

Finally, by periodicity;

\[B_{T_{n-1},T_{n}} = \frac{1}{T_{n}-T_{n-1}} \left(f(\alpha_{n-1}) + \ldots + f(\sigma^{T_{n-1}-1} \alpha_{n-1}) \right) = t_n \tag{E} \]

Now, combining the estimates \((A), (B), (C), (D), (E) \), we have;

\[|A_{T_{n}} - t_n| \leq \frac{M}{2^{n-2}} + \frac{2M}{2^{n-1}} + Q_{n-1} + \frac{2M}{C_{n-1}} = b_n \]

Clearly \(\{b_n\}_{n \in \mathbb{N}} \) is decreasing. Moreover, \(\lim_{n \to \infty} b_n = 0 \), as \(\lim_{n \to \infty} C_n = \infty \), \((iii) \), and by the choice of \(\{Q_n\}_{n \in \mathbb{N}} \). This shows \((*** \) \). We now have to estimate the averages up to place between the critical points \(T_n \) and \(T_{n+1} \).

Case 1. The place \(v \) is a periodic point of the form;

\[T_n + mg_n, \text{ where } 0 \leq m \leq C_n - 1 \]

We have \(A_v = \lambda A_{T_n} + (1-\lambda)A_{T_{n-1}} \), where \(|A_{T_{n-1},v} - t_{n+1}| \leq Q_n \), by \((C), (E) \), and \(|A_{T_{n},n} - t_n| \leq b_n \), by \((*** \) \). Now, let \(t = \lim_{n \to \infty} t_n \).

Given \(\epsilon > 0 \), choose \(N(\epsilon) \), such that \(|t_n - t| < \epsilon \), for all \(n \geq N(\epsilon) \). Then;

\[|A_v - t| \leq \max\{ |A_{T_n} - t|, |A_{T_{n-1},v} - t| \} \]

\[\leq \max\{ b_n + \frac{\epsilon}{2}, Q_n + \frac{\epsilon}{2} \} \]
Choose \(N_1(\epsilon) \geq N(\epsilon) \), such that \(\max\{b_n, Q_n\} < \frac{\epsilon}{2} \), for all \(n \geq N_1(\epsilon) \), then \(|A_v - t| < \epsilon \), for all \(n \geq N_1(\epsilon) \).

Case 2. The place \(v \) is a possibly non-periodic point of the form:

\(T_n + w \), where \(0 \leq w \leq T_{n+1} - T_n - g_n \).

Choose periodic points \(v_1 \) and \(v_2 \), with \(T_n \leq v_1 \leq v \leq v_2 \leq T_{n+1} - g_n \), and \(v_2 - v_1 = c_n \), so \(0 \leq v - v_1 = e \leq c_n \). Then \(A_v = \frac{v_1}{v_1 + e} A_{v_1} + \frac{e}{v_1 + e} A_{v_1, v} \).

As \(v_1 \geq T_n \), we have:

\[
\frac{e}{v_1 + e} \leq \frac{e}{T_n + e} \leq \frac{c_n}{T_n} \leq \frac{1}{2^n} \text{ by } (iv).
\]

Therefore;

\[
|A_v - A_{v_1}| = |(1 - \delta)A_{v_1} + \delta A_{v_1, v} - A_{v_1}|, (\delta \leq \frac{1}{2^n})
\]

\[
\leq \delta(|A_{v_1}| + |A_{v_1, v}|) \leq \frac{M}{2^n - 1}
\]

For \(n \geq N_1(\frac{\epsilon}{2}) \), \(|A_{v_1} - t| < \frac{\epsilon}{2} \), by Case 1, so \(|A_v - t| < \epsilon \), for \(n \geq N_2(\epsilon) \), where \(N_2(\epsilon) = \max\{N_1(\frac{\epsilon}{2}), \log(\frac{2M}{\epsilon}) + 2\} \).

Case 3. The place \(v \) is of the form:

\(T_n + w \), where \(T_{n+1} - T_n - g_n \leq w \leq T_{n+1} - T_n \).

We have;

\[
A_v = \lambda A_{T_n} + (1 - \lambda) A_{T_n, v}, (0 \leq \lambda \leq 1), (\dagger),
\]

\[
A_{T_n, T_{n+1}} = \mu A_{T_n, v} + (1 - \mu) A_{v, T_{n+1}}, \frac{C_{n-1}}{C_n} \leq \mu \leq 1
\]

Therefore;

\[
|A_{T_n, T_{n+1}} - A_{T_n, v}| \leq \frac{2M}{C_n}
\]

\[
|A_{T_n, T_{n+1}} - t_{n+1}| \leq b_{n+1}, \text{ by } (B), (C), (D), (E)
\]

\[
|A_{T_n, v} - t_{n+1}| \leq \frac{2M}{C_n} + b_{n+1}
\]
\[|A_{T_n} - t_n| \leq b_n \text{ by } (***) \]

\[|A_v - t| \leq \max\{|A_{T_n} - t|, |A_{T_n,v} - t|\} \text{ by } (\dagger) \]

\[\leq \max\{b_n + |t_n - t|, \frac{2M}{c_n} + b_{n+1} + |t_{n+1} - t|\}, (\dagger\dagger) \]

We have, for \(n \geq N(\frac{\epsilon}{2}) \), \(\max\{|t_n - t|, |t_{n+1} - t|\} < \frac{\epsilon}{2} \). Choose \(N_3(\epsilon) \), such that \(\max\{b_n + \frac{2M}{c_n} + b_{n+1}\} < \frac{\epsilon}{2} \), for all \(n \geq N_3(\epsilon) \). Then, for \(n \geq N_3(\epsilon) \), \(|A_v - t| < \epsilon \).

To complete the proof, let \(N_4(\epsilon) = \max\{N_1(\epsilon), N_2(\epsilon), N_3(\epsilon)\} \). Then, for \(n \geq N_4(\epsilon) \), \(|A_m - t| < \epsilon \), for all \(m \geq T_n \), by Cases 1, 2 and 3. Therefore;

\[\lim_{m \to \infty} \frac{1}{m} \sum_{i=0}^{m-1} f(\sigma^i\alpha) = \int_X f d\rho \]

so \(\alpha \) is typical, as required.

We now formulate the following criteria.

Lemma 1.12. Suppose that for every \(g \in C([0,1]^N) \), and \(\epsilon > 0 \), there exists a periodic element \(\beta \in [0,1]^N \), with;

\[|\int_{[0,1]^N} g d\rho_{\beta} - \int_{[0,1]^N} g d\rho| < \epsilon \]

then there exists a sequence of periodic elements \((\alpha_n)_{n \in \mathbb{N}} \), with \((\rho_{\alpha_n})_{n \in \mathbb{N}} \) converging weakly to \(\rho \).

Proof. We abbreviate \([0,1]^N\) to \(X \). Let \(M \) denote the vector space of real valued regular measures on \((X, \mathcal{E})\). As we observed every probability measure belongs to \(M \). \(M \) is a Banach space, with norm defined by total variation, see [6]. Using the Riesz Representation Theorem, \(M \) can be identified with the dual space \(C(X)^* \). It is easy to see that then \(M \cong C(X)^* \), as Banach spaces, however, we will not require this fact. The weak *-topology, see [1], on \(M \), is the coarsest topology for which all the elements \(\hat{g} \in C(X)^{**} \), where \(g \in C(X) \), are continuous. Formally, we define a set \(U \subset M \) to be open if for all \(\rho \in U \), there exist \(\{g_1, \ldots, g_n\} \subset C(X) \), and positive reals \(\{\epsilon_1, \ldots, \epsilon_n\} \) such that;

\[\{\rho' \in M : |\rho'(g_i) - \rho(g_i)| < \epsilon_i\} \subset U \]
Fixing ρ, let Ω_ρ denote the open sets containing ρ. We show that Ω_ρ has a countable base, (\ast). Using the compactness argument, given in Lemma 1.11, and the Stone-Weierstrass Theorem, see [1], it is easy to show that the space V of pullbacks of polynomial functions on $[0,1]^n$, for some n, is dense in $C(X)$. Clearly V has a countable basis, which shows that $C(X)$ is separable, that is, contains a countable dense subset Y. Now suppose that $g \in C(X)$, $\epsilon > 0$. Let $U_{g,\epsilon} = \{\rho' : |\rho'(g) - \rho(g)| < \epsilon\}$, and $D \in \mathbb{Q}$. Choose $\delta \in \mathbb{Q}$ with $\delta < \frac{\epsilon}{2(D + 2|\rho(X)|)}$, and $\gamma \in \mathbb{Q}$ with $\gamma < \frac{\epsilon}{2}$. Choose $h \in Y$ with $||g - h||_{C(X)} < \delta$. Then $U_{h,\gamma} \cap U_{1,D} \subset U_{g,\epsilon}$, $(\ast\ast)$, as if $|\rho'(h) - \rho(h)| < \gamma$, then:

$$|\rho'(g) - \rho(g)| = |\rho'(g - h) + \rho'(h) - \rho(g - h) - \rho(h)| \leq \delta(|\rho'(X)| + |\rho(X)|) + \gamma$$

and, if $|\rho'(1) - \rho(1)| < D$, then $|\rho'(X)| + |\rho(X)| < D + 2|\rho(X)|$, so $|\rho'(g) - \rho(g)| < \epsilon$. This clearly shows $(\ast\ast)$. As sets of the form $U_{h,q} \in \Omega_\rho$, for $h \in Y$, and $q \in \mathbb{Q}$, are countable, we clearly have (\ast). Let $I : \mathcal{N} \rightarrow \Omega_\rho$ be an enumeration of the sets $U_{h,q}$, and let $J : \mathcal{N} \rightarrow \Omega_\rho$ define the intersection of the first n elements in I. If the assumption in the lemma is satisfied, we can define a sequence of probability measures $(\rho_{\alpha_n})_{n \in \mathcal{N}}$, by taking ρ_{α_n} to lie inside the open set $J(n)$. Then clearly such a sequence converges to ρ in the weak \ast-topology, hence, for any $g \in C(X)$, as g is continuous for this topology $\lim_{n \rightarrow \infty} \rho_{\alpha_n}(g) = \rho(g)$.

Therefore, the sequence $(\rho_{\alpha_n})_{n \in \mathcal{N}}$ converges weakly to ρ. \hfill \Box

We refine this criteria further;

Definition 1.13. Given a positive integer m, we define the partition E_m of $[0,1]$ to consist of the sets;

$$E_{j,m} = \left[\frac{j}{m}, \frac{j+1}{m}\right)$$

for j an integer between 0 and $m - 2$

$$E_{m-1,m} = \left[\frac{m-1}{m}, 1\right]$$

Given positive integers m, n, we define the partition $B_{m,n}$ of $[0,1]^n$ to consist of the sets;

$$B_{j,m,n} = E_{j_0,m} \times E_{j_1,m} \times \ldots \times E_{j_{n-1},m}$$
where \(\bar{j} = (j_0, j_1, \ldots, j_{n-1}) \) and \{j_0, \ldots, j_{n-1}\} are integers between 0 and \(m-1 \).

We define the partition \(C_{m,n} \) of \([0,1]^N\) to consist of the sets:

\[
C_{j,m,n} = \pi_n^{-1}(B_{j,m,n})
\]

where \(\pi_n \) is the projection onto the first \(n \) coordinates.

Lemma 1.14. Let \(\epsilon > 0, g \in C(X) \) be given as in Lemma 1.12, and let \(\rho' \) be a regular Borel measure, then there exist positive integers \(m, n \), and \(\delta > 0 \), such that, if:

\[
|\rho'(C_{j,m,n}) - \rho(C_{j,m,n})| < \delta
\]

for all sets \(C_{j,m,n} \) belonging to \(C_{m,n} \), then;

\[
|\int_{[0,1]^N} gd\rho' - \int_{[0,1]^N} gd\rho| < \epsilon
\]

Proof. For a positive integer \(n \), let \(W_n \) consist of the inverse images in \(X \) (from the projection \(\pi_n \)) of open boxes in \([0,1]^n\), with rational corners. Let \(W = \bigcup_{n \in \mathbb{N}} W_n \). It is clear that \(W \) forms a countable basis for the topology on \([0,1]^N\). Adapting the compactness argument, given above in Lemma 1.11 for any \(\gamma > 0 \) and \(g \in C(X) \), we can find a positive integer \(n \), and finitely many sets \(\{W_{1,n}, \ldots, W_{r,n}\} \) in \(W_n \), covering \(X \), such that \(|g(x) - g(y)| < \gamma \) for all \(x, y \) in \(W_{j,n}, 1 \leq j \leq r \). Now choose \(m \) such that each set of the partition \(C_{m,n} \) lies inside one of the \(W_{j,n} \). Then \(|g(x) - g(y)| < \gamma \) on each \(C_{j,m,n} \), belonging to \(C_{m,n} \). Now, for given \(\delta > 0 \), suppose we choose \(\rho' \) such that \(|\rho'(C_{j,m,n}) - \rho(C_{j,m,n})| < \delta \), (\(*\)). Then;

\[
|\int_X gd\rho' - \int_X gd\rho| = |\sum_{j} \int_{C_{j,m,n}} gd\rho' - \sum_{j} \int_{C_{j,m,n}} gd\rho|
\leq \sum_{j} |\int_{C_{j,m,n}} gd\rho' - \int_{C_{j,m,n}} gd\rho|,
\]

\[\text{(**)}\]

Without loss of generality, assuming \(\rho' \) is positive, by definition of the integral, see \([6]\), we have that;

\[
c_j \rho'(C_{j,m,n}) \leq \int_{C_{j,m,n}} gd\rho' \leq d_j \rho'(C_{j,m,n})
\]

\[
c_j \rho(C_{j,m,n}) \leq \int_{C_{j,m,n}} gd\rho \leq d_j \rho(C_{j,m,n})
\]
where $c_j = \inf_{C_{j,m,n}} g$ and $d_j = \sup_{C_{j,m,n}} g$. Then;

$$c_j \rho'(C_{j,m,n}) - d_j \rho(C_{j,m,n}) \leq \int_{C_{j,m,n}} g d\rho' - \int_{C_{j,m,n}} g d\rho$$

$$\leq d_j \rho'(C_{j,m,n}) - c_j \rho(C_{j,m,n})$$

Therefore, again, without loss of generality;

$$|\int_{C_{j,m,n}} g d\rho' - \int_{C_{j,m,n}} g d\rho| \leq (d_j - c_j) \rho'(C_{j,m,n}) + |c_j| \rho'(C_{j,m,n}) - \rho(C_{j,m,n})| \leq \gamma \rho'(C_{j,m,n}) + |c_j| \delta$$

(***)

By (*), $\rho'(X) = \sum_j \rho'(C_{j,m,n}) \leq \sum_j \rho(C_{j,m,n}) + \delta m^n = 1 + \delta m^n$, so using (**), (***) and the fact that $|g| \leq M$;

$$|\int_X g d\rho' - \int_X g d\rho| \leq \gamma (1 + \delta m^n) + \delta M m^n$$

So if we choose $0 < \gamma < \frac{\epsilon}{2}$ and $0 < \delta < \frac{\epsilon}{2(\gamma + M)m^n}$, we obtain;

$$|\int_X g d\rho' - \int_X g d\rho| < \epsilon$$

as required.

We finally claim;

Theorem 1.15. If $C_{m,n}$ is a partition, as in Definition 1.13 and $\delta > 0$, then there exists a periodic element β, such that;

$$|\rho_{C_{j,m,n}} - \rho(C_{j,m,n})| < \delta$$

for all sets $C_{j,m,n}$ belonging to $C_{m,n}$.

Proof. Let $\Sigma = \{ \frac{1}{2m}, \frac{2}{2m}, \ldots, \frac{2m-1}{2m} \}$. Define $\kappa : \Sigma^n \rightarrow \mathcal{R}$ by;

$$\kappa((\frac{2j_1+1}{2m}, \ldots, \frac{2j_{n-1}+1}{2m})) = \rho(C_{j,m,n})$$

As $C_{m,n}$ is a partition of X and ρ is a probability measure, κ is a probability measure on Σ^n. Moreover, using the partition property and
the fact that \(\rho \) is \(\sigma \)-invariant;

\[
\sum_{\xi_0 \in \Sigma} \kappa((\xi_0, \ldots, \xi_{n-1})) = \rho(\pi_n^{-1}([0, 1] \times E_{j_1, m} \times \ldots \times E_{j_{n-1}, m}))
\]

\[
= \rho(\pi_n^{-1}(E_{j_1, m} \times \ldots \times E_{j_{n-1}, m} \times [0, 1]))
\]

\[
= \sum_{\xi_0 \in \Sigma} \kappa((\xi_1, \ldots, \xi_{n-1}, \xi_0)) (*)
\]

Now let \(N > 0 \) be a sufficiently large positive integer, then we claim that we can find a probability measure \(\kappa' \) on \(\Sigma^n \) such that;

(i). \(|\kappa'(\bar{\xi}) - \kappa(\bar{\xi})| < \delta \)

(ii). The condition (*) still holds.

(iii). \(N\kappa'(\bar{\xi}) \) is a non-negative integer, for all \(\bar{\xi} \in \Sigma^n \)

This follows from a simple linear algebra argument. We can identify the set of real measures on \(\Sigma^n \) with the real vector space \(V \) of dimension \(m^n \). The condition (*) then defines a subspace \(W \subset V \). The condition of being a probability measure requires that;

\[
\sum_{\xi_0, \ldots, \xi_{n-1} \in \Sigma^n} \kappa((\xi_1, \ldots, \xi_{n-1}, \xi_0)) = 1, (**)
\]

which defines an affine space \(S_{aff} \subset V \). \(S_{aff} \cap W \) contains a rational point \(q \), corresponding to the probability measure with coordinates \(m^{-n} \). It is straightforward to see that \((S_{aff} \cap W) = [(S_{aff} - q) \cap W] + q \). Moreover, \((S_{aff} - q) \cap W \) is a vector space defined by rational coefficients, so it has a rational basis. This shows that rational points are dense in \(S_{aff} \cap W \). We can, without loss of generality, assume that all the coordinates of \(\kappa \) are strictly greater than zero. If not, consider instead the space \(S_{aff} \cap W \cap W' \), where \(W' = Ker(\pi) \) is the kernel of the projection onto the non-zero coordinates of \(\kappa \). The same argument shows that rational points are dense in \(S_{aff} \cap W \cap W' \). We can now obtain a probability measure \(\kappa' \), satisfying conditions (i) – (iii), by finding a rational vector sufficiently close to \(\kappa \) in \(S_{aff} \cap W \), and choosing \(N \) large enough.

Now take a longest sequence \(\{\xi^0, \ldots, \xi^{r-1}\} \) of elements in \(\Sigma^n \), such that;
(1). \((\xi_1^i, \ldots, \xi_{n-1}^i) = (\xi_{i+1}^i, \ldots, \xi_{n-2}^i)\).

(2). \(\text{Card}(\{i : 0 \leq i < r, \xi^i = \xi\}) \leq N\kappa'(\xi)\) for any \(\xi \in \Sigma^n\)

where \(\xi^i = (\xi^i_0, \ldots, \xi^i_{n-1})\), for \(0 \leq i \leq r\), and \(\xi^r = \xi^0\).
Then, by graph theoretical considerations, 11 one can show that equality holds in the above inequality in (2), for any $\xi \in \Sigma^n$, (***)

11 The graph theory argument proceeds as follows. We construct a tree. For every $\xi' \in \Sigma^{n-1}$, where $\xi' = (\xi_1, \ldots, \xi_{n-1})$, associate a vertex $v_{\xi'}$ (the trunk). Similarly, for every $\xi \in \Sigma^n$, where $\xi = (\xi_0, \ldots, \xi_{n-1})$, associate two vertices l_ξ (left) and r_ξ (right). Attach the vertex l_ξ to $v_{\xi'}$ iff $\pi(\xi) = \xi'$, where π is the projection onto the last $n-1$ coordinates, and, attach l_ξ to $v_{\xi'}$ iff $\pi'(\xi) = \xi'$, where π' is the projection onto the first $n-1$ coordinates. In this way, we obtain a tree, having $m^{n-1}(2m+1)$ vertices, $m^{n-1}(2m)$ branches, and m_{n-1} components. Each element $\xi \in \Sigma^n$ corresponds to two vertices, one on the left and one on the right of the tree. Now attach weights $m_\xi = n_\xi$ to the left vertices and right vertices respectively, by assigning the vertices l_ξ and r_ξ, the weights $\pi_\xi = N\kappa'(\xi)$ and $n_\xi = N\kappa'(\xi)$ respectively. Observe that, by the condition (*) in the main text, for any given ξ':

$$m_{\xi'} = \sum_{\xi \in \Sigma^n : \pi(\xi) = \xi'} m_\xi = n_{\xi'} = \sum_{\xi \in \Sigma^n : \pi(\xi) = \xi'} n_\xi$$

Now, given a sequence $\{\xi^0, \xi^1, \ldots, \xi^k\}$ of elements in Σ^n, where $\xi^i = (\xi^0_i, \ldots, \xi^i_{n-1})$, for $0 \leq i \leq k$, we attach sets L_ξ to each vertex l_ξ, by requiring that, $\xi^i \in L_\xi$ iff $\xi^i = \xi$, and, similarly, we attach sets R_ξ to each vertex r_ξ. We call a sequence allowed if (i). For each $\xi \in \Sigma^n$, $Card(L_\xi) = Card(R_\xi) \leq m_\xi = n_\xi$ and (ii). For each $1 \leq i \leq k$, if ξ^i appears in the set R_ξ, then ξ^{i-1} appears in a set L_ξ', where $\xi^{i'}$ and r_ξ are attached to the same vertex $v_{\xi'}$, so that $\pi(\xi^n) = \pi'(\xi) = \xi'$. Clearly, all allowed sequences are bounded in length by $N\kappa'(X)$, so there exists a longest allowed sequence $s = (\xi^0_0, \ldots, \xi^0_l)$. Let ξ^l be the final element in the sequence, and suppose that $\xi^l \in L_{\xi'}$, then, we claim that $\xi^0 \in L_{\xi'}$, with $\pi'(\xi) = \pi(\xi')$. If not, for all such sets R_ξ, with $\pi'(\xi) = \pi(\xi')$, consists of elements ξ^l with $l \geq 1$. If, for one of these sets R_ξ, $Card(R_\xi) \leq n_\xi$, then we can extend the sequence by setting $\xi^{l+1} = \xi$, clearly such a sequence is allowed, contradicting maximality. So we can assume that $Card(R_\xi) = n_\xi$. By condition (ii), for every element ξ^i, $i \geq 1$, appearing in R_ξ, there exists an element ξ^{i-1} appearing in an $L_{\xi'}$, with $\pi(\xi^{i-1}) = \pi(\xi^i)$. This provides a total of $w+1$ elements appearing in such $L_{\xi'}$, where $w = \sum_{\xi \in \Sigma^n : \pi(\xi) = \xi'} n_\xi$. By (i), this is greater than $\sum_{\xi \in \Sigma^n : \pi(\xi) = \xi'} m_\xi$. Clearly, this contradicts condition (i) of an allowed path. Hence, (|||) is shown. Observe also that if $\xi^l \in \Sigma^{n-1}$, and $s_{\xi', \xi}$ denotes the total number of elements from the sequence s, appearing in sets of the right of ξ^l, $s_{\xi', \xi}$, to the left, then $s_{\xi', \xi} = s_{r, \xi'}$. In particular, by (i), $m_{\xi'} - s_{l, \xi'} = n_{\xi'} - s_{r, \xi'} \geq 0$, so the number of "vacant slots" (if there are any), is the same on both sides of a given ξ', (|||). In order to see this, we can, without loss of generality, assume that $\pi'(\xi^0) \neq \xi'$, then just note that an element ξ^{i+1} belongs to a set on the right of ξ' iff ξ^i belongs to a set on the left of ξ', by condition (ii) of an allowed path. We now claim that for all $\xi \in \Sigma^n$, $Card(R_\xi) = n_\xi$, (||||), (so there are no vacant slots). We have already shown this in the particular case when $\pi'(\xi) = \pi(\xi^0)$. We define an element ξ to be cyclic if $\pi(\xi) = \pi'(\xi)$, so cyclic elements are just constant sequences. We define an element ξ to be free if $Card(R_\xi) \leq n_\xi$. No free cyclic element ξ_{cycles} can encounter the sequence s, for suppose that there exists a ξ', for some $0 \leq i \leq t$, with $\pi(\xi^i) = \pi'(\xi_{cycles})$, then we can extend the sequence s to $s' = (\xi^0, \ldots, \xi^i, \xi_{cycles}, \xi^{i+1}, \ldots, \xi^t)$, and still obtain an allowed path, contradicting maximality. So we have that, if ξ is free cyclic, with $\pi(\xi) = \xi'$, then $s_{l, \xi'} = s_{r, \xi'} = 0$, (||||). Now suppose there exists a
Now let β be the periodic element in $[0,1]^N$, with period $n+r-1$, defined by:

$$(\beta(0), \beta(1), \ldots, \beta(n+r-2)) = (\xi_0^0, \xi_1^0, \ldots, \xi_{n-1}^0, \xi_{n-1}^1, \xi_{n-1}^2, \ldots, \xi_{n-1}^{r-1})$$

By (i), it is sufficient to prove that, for each $\bar{j} \in m^n$;

$$|\rho_\beta(C_{j,m,n}) - \kappa'(\xi_\bar{j})| < \epsilon, (***),$$

where $\epsilon = \min_i (\delta - |\kappa'(\xi_i) - \kappa(\xi_i)|)$, and ξ_j is the unique element of Σ^n lying inside $C_{j,m,n}$. By definition of ρ_β, $\rho_\beta(C_{j,m,n}) = \frac{c_j}{n+r-1}$, where;

$$c_j = \text{Card}(\{k : 0 < k < n - r - 1, \pi_n(\sigma^k(\beta)) = \xi_j\}).$$

By definition of β, and $(***)$, $c_j = \frac{n\kappa'(\xi_j) + y}{n+r-1}$, where $0 \leq y \leq n$. As κ' is a probability measure, again by $(***)$, we have that $r - 1 = N$. Hence;

$$\frac{c_j}{n+r-1} = \frac{n\kappa'(\xi_j) + y}{N+n} = \kappa'(\xi_j) + \frac{y - n\kappa'(\xi_j)}{N+n}.$$

Therefore,

$$|\rho_\beta(C_{j,m,n}) - \kappa'(\xi_j)| \leq \frac{n}{N+n} < \epsilon.$$
if we choose N sufficiently large. Hence, (***) and the theorem are shown.

We summarise what we have done;

Theorem 1.16. The Ergodic Theorem 1.1 holds and admits a non-standard proof.

Proof. Combine Theorems 1.3, 1.9, 1.15 and Lemmas 1.4, 1.6, 1.7, 1.11, 1.12, 1.14.

Remarks 1.17. There are some outstanding questions in Ergodic Theory, which one might hope to solve using nonstandard methods, similar to the above. One of these is Ornstein’s Isomorphism Theorem, I hope to investigate this direction further.

2. Appendix

Theorem 2.1. Suppose $g : X \to \mathbb{R}$ is integrable with respect to μ_L, $\mu_L(X) < \infty$, and $\epsilon > 0$ is standard, then there exist $F, G : X \to ^* \mathbb{R}$, which are \mathcal{A}-measurable, such that;

(i). $G \leq g \leq F$.

(ii). $|\int_A gd\mu - \int_A Gd\nu| < \epsilon$, $|\int_A gd\mu - \int_A Fd\nu| < \epsilon$

for all $A \in \mathcal{A}$.

Proof. Consider, first, the case when $g \geq 0$.

Upper Bound. As g is integrable, by Theorem 3.31 of [1], it has an S-integrable lifting F', such that $\circ F' = g$ a.e μ_L, and;

$\circ \int_X F'd\nu = \int_X gd\mu_L$

Without loss of generality, we can assume that $F' \geq 0$. Now let $\epsilon > 0$ be given and choose $\delta > 0$ such that $\mu_L(X)\delta < \frac{\epsilon}{2}$. Then $F' + \delta$ is S-integrable and $F' + \delta \geq f$ a.e μ_L, (\ast), $F' + \delta > 0$. Moreover;

$\circ \int_X (F' + \delta)d\nu = \int_X gd\mu_L + \delta \mu_L(X) < C + \frac{\epsilon}{2}$, ($\ast\ast$)
where $C = \int_X g d\mu_L$. Let $N \in \mathfrak{M}_L$, with $\mu_L(N) = 0$, such that (*) holds on N^c. Let $N_n = N \cap g^{-1}((n - 1, n])$, for $n \in \mathcal{N}_{\geq 0}$, $N_0 = N \cap g^{-1}(0)$. Then $N = \bigcup_{n \geq 0} N_n$, and $\mu_L(N_n) = 0$. By Lemma 3.15 (3.4(i)) of [4], we can choose $U_n \supset N_n$, with $U_n \in \mathfrak{A}$, such that

$$\mu_L(U_n) < \frac{\epsilon}{4(n+1)^2}.$$

Inductively, define $F_0 = F' + \delta$, and, having defined F_n, let $F_{n+1} = F_n$ on U_{n+1}^c, and $F_{n+1} = F_n + n + 1$ on U_{n+1}. Then $\{F_n\}$ is an increasing sequence of \mathfrak{A}-measurable functions. Moreover;

$$\int_X F_{n+1} d\nu$$

$$= \int_{U_{n+1}} F_n d\nu + \int_{U_{n+1}} (F_n + (n + 1)) d\nu$$

$$\simeq \int_X F_n d\nu + (n + 1)\mu_L(U_{n+1})$$

$$< \int_X F_n d\nu + \frac{\epsilon}{4(n+1)^2}$$

$$\int_X F_n d\nu < C + \frac{\epsilon}{2} + \sum_{m=1}^{n} \frac{\epsilon}{4m^2} < C + \epsilon \text{ (using (**))}$$

We clearly have that for all $x \in N_n$, $g(x) \leq F_n$. Now, by countable comprehension, we can find an internal sequence $\{F_n\}_{n \in \mathcal{N}}$ extending the sequence $\{F_n\}_{n \in \mathcal{N}}$. By overflow, there exists an infinite ω, such that $F_n \leq F_\omega$, for all $n \in \mathcal{N}$, $F_\omega > 0$, and;

$$\int_X F_\omega d\nu < C + \epsilon, \quad (\dagger)$$

Clearly $g(x) \leq F_\omega(x)$, for all $x \in X$. Now, if $A \in \mathfrak{A}$, with;

$$\int_A F_\omega d\nu - \int_A g d\mu_L > \epsilon$$

then, using Theorem 3.16 of [4];

$$\int_X F_\omega d\nu$$

$$= \int_A F_\omega d\nu + \int_{A^c} F_\omega d\nu$$

$$> \epsilon + \int_A g d\mu_L + \int_{A^c} g d\mu_L = C + \epsilon$$

contradicting (\dagger). Setting $F = F_\omega$ gives an upper bound.
Lower Bound. Again choose $\delta > 0$, with $\mu_L(X)\delta < \frac{\epsilon}{2}$. Let F' be as before, then $F' - \delta$ is S-integrable, $F' - \delta \leq g$ a.e μ_L, and:

$$\int_X (F' - \delta) d\nu > C - \frac{\epsilon}{2}$$

Again choose N, with $\mu_L(N) = 0$, such that $F' - \delta \leq g$ on N^c. Using Lemma 3.15(3.4(i)) of [4] again, we can choose a decreasing sequence of sets $\{U_n\}_{n \in \mathbb{N}}$, belonging to A, with $U_n \supset N$, and $\mu_L(U_n) < \frac{1}{n}$. By S-integrability:

$$\circ \int_{U_n} (F' - \delta) d\nu = \int_{U_n} \circ (F' - \delta) d\mu_L$$

and;

$$\lim_{n \to \infty} (\int_{U_n} \circ (F' - \delta) d\mu_L) = 0$$

by the DCT, as $\circ (F' - \delta) \chi_{U_n}$ converges to 0 a.e μ_L. Hence, for sufficiently large n, we can assume that;

$$\int_{U_n} (F' - \delta) d\nu < \frac{\epsilon}{2}$$

Now let $G = (F' - \delta)$ on U_n^c, and $G = 0$ on U_n. Clearly $G(x) \leq g(x)$, for all $x \in X$. Moreover;

$$\int_X G d\nu$$

$$= \int_{U_n^c} (F' - \delta) d\nu$$

$$= \int_X (F' - \delta) d\nu - \int_{U_n} (F' - \delta) d\nu > C - \epsilon$$

The same argument as above shows that, for all $A \in \mathcal{A}$;

$$\int_A g d\mu_L - \int_A G d\nu \leq \epsilon$$

Hence, G is a lower bound.

Now, if g is integrable μ_L, we can write $g = g^+ - g^-$, with $\{g^+, g^-\}$ integrable μ_L. Choosing $G \geq g^+$ and $H \leq g^-$, $G - H \geq (g^+ - g^-) = g$, choosing $G' \leq g^+$ and $H' \geq g^-$, $G' - H' \leq (g^+ - g^-) = g$, and, clearly, we can obtain the integral condition, using $\frac{\epsilon}{2}$.

\Box
REFERENCES

[1] Linear Analysis, Bela Bollobas, Cambridge Mathematical Textbooks, (1990).

[2] A Simple Proof of the Ergodic Theorem Using Nonstandard Analysis, Teturo Kamae, Isreal Journal of Mathematics, (1982).

[3] Ergodic Theory, Karl Petersen, Cambridge Studies in Advanced Mathematics, (1983).

[4] Applications of Nonstandard Analysis to Probability Theory, Tristram de Piro, Msc Thesis, University of Exeter, available at http://www.magneticstrix.net (2013).

[5] Non-Standard Analysis, Abraham Robinson, Studies in Logic and the Foundation of Mathematics, North-Holland, (1974).

[6] Real and Complex Analysis, Walter Rudin, McGraw Hill Third Edition, (1987).

MATHematICS DEPARTMENT, THE UNIVERSITY OF EXETER, EXETER
E-mail address: t.de-piro@exeter.ac.uk