CASE REVIEW

Imaging findings of lower limb involvement following COVID-19

SUMMARY

There have been recent reports of musculoskeletal complications related to COVID-19 including myositis; neuropathy; arthropathy including osteonecrosis, joint effusion and synovitis; vascular thrombosis and other soft tissue abnormalities such as heterotopic ossification. Imaging studies are important to evaluate extrapulmonary involvement in COVID-19 patients. We describe imaging findings in a series of patients with lower limb musculoskeletal manifestations after COVID-19.

Imaging findings suspicious for musculoskeletal involvement related to COVID-19 are being increasingly reported. Numerous patients presented with muscle edema in case reports due to myositis and rhabdomyolysis as a presenting symptom or late complication. Effects of COVID-19 in the musculoskeletal system are not completely comprehended and may be due to hematogenous spread and muscle cell viral invasion through the ACE2 receptor have recently been suggested. Cytokine storm and activation of immune-mediated mechanisms are also an alternate concept of muscle involvement of SARS-CoV-2.

MYOSITIS

Ankle and foot myopathy

A 43-year-old male previously hospitalized for COVID-19 with mechanical ventilation and treated with injectable corticosteroids, with foot and ankle pain and edema 4 months after the COVID-19 diagnosis. Magnetic resonance (MR) imaging of the ankle and foot demonstrated plantar and interosseus muscle edema, without significant fatty atrophy (Figure 1).

Leg myopathy

A 75-year-old male previously hospitalized for COVID-19 without mechanical ventilation, with leg pain and weakness 3 months after COVID-19 diagnosis. Leg MR imaging demonstrated diffuse muscle edema, involving the anterolateral muscular compartment of the leg (Figure 2).

Pelvis myopathy

A 48-year-old male previously hospitalized for COVID-19 with mechanical ventilation and treated with injectable corticosteroids, with pelvis pain, weakness and edema 4 months after the COVID-19 diagnosis. MR imaging demonstrated diffuse muscle edema involving bilateral adductor and gluteus muscles (Figure 3).

DISCUSSION

Numerous patients presented with muscle edema in case reports due to myositis and rhabdomyolysis as a presenting symptom or late complication. Recent reports have proposed theories to understand muscular involvement in COVID-19 such as hematogenous spread and direct viral invasion of skeletal muscle cells through the ACE2 receptor.
receptors.7,8 Also, it has been suggested that COVID-19 infection may provoke an immune-mediated muscle injury due to an inflammatory response with cytokine storm, immune cells activation and deposition of immune complex with myotoxic effect.7,8 Muscular edema on MRI also be observed in COVID-19 patients with critical illness myopathy, that is usually associated in intensive care unit patients and also with corticosteroid use and are distinctive from other causes of myositis in imaging. Myonecrosis and rhabdomyolysis are not present in critical illness myopathy, and may be helpful for diagnosis.4

Learning points

1. Myositis may be a complication following COVID-19 infection, MR imaging is the preferred method to identify and evaluate the extension of muscle edema.
Case Review: Imaging findings of lower limb involvement following COVID-19

OSTEONECROSIS

Knee osteonecrosis

A 57-year-old male previously hospitalized for COVID-19 with mechanical ventilation and treated with injectable corticosteroids, with knee pain and edema for 6 months after the COVID-19 diagnosis. MR imaging demonstrating osteonecrosis in distal femur and proximal tibia (Figure 4).

Ankle osteonecrosis

A 28-year-old male previously hospitalized for COVID-19 without mechanical ventilation and treated with injectable corticosteroids, with ankle pain and edema for 2 months after the COVID-19 diagnosis. Ankle MR imaging demonstrates osteonecrosis in distal tibia, talus, calcaneus and cuboid (Figure 5).

2. Follow-up imaging may be performed to evaluate muscle edema resolution or fatty atrophy.
3. Extensive and multicompartmental muscle edema should be concerned for rhabdomyolysis.

DISCUSSION

Currently, there are few reports of osseous complications of COVID-19 and it is still unclear if the development of osteoporosis and osteonecrosis is mainly caused by virus-induced coagulopathy or by effects of critical illness and corticosteroid use.9,10 Imaging studies may demonstrate serpiginous sclerosis on CT and radiography, and irregular line with adjacent bone marrow edema on MR imaging. In late stages of osteonecrosis, articular surface collapse and joint effusion may be present.

LEARNING POINTS

1. MR imaging is helpful to identify bone abnormalities related to COVID-19 infection. Post-treatment changes such as corticosteroid use also should be considered as cause of osteonecrosis in COVID-19 patients.
2. CT and radiography may be normal in early stages of osteonecrosis.

HETEROTOPIC OSSIFICATION

Hip heterotopic ossification

A 68-year-old male previously hospitalized for COVID-19 with mechanical ventilation and treated with injectable corticosteroids, with hip pain, edema and movement deficit 2 months after Figure 6. Hip MR. (A) Coronal T2 fat-saturated, and (B) axial T1 and (C) sagittal GRE imaging demonstrated anterior periarticular heterotopic ossification. Left hip CT coronal (D) axial (E) and axial soft-tissue window (F) images showing a large anterior periarticular heterotopic ossification. GRE, gradient-echo.
the COVID-19 diagnosis. MR imaging demonstrated anterior periarticular heterotopic ossification (Figure 6).

DISCUSSION
Recent reports described heterotopic ossification following severe COVID-19 infection, and may be related to long-lasting hospitalization with immobilization and hypoxia. The prevalence of heterotopic ossification in COVID-19 patients was reported as four times higher than in patients with other causes of acute respiratory distress syndrome, and could be related to other factors such as altered calcium metabolism in critical illness and myositis secondary to the viral infection.

LEARNING POINTS
1. Periarticular heterotopic ossification should be suspected in a patient with reduced range of movement with history of immobilization and long-term hospitalization.

THROMBOSIS
Arterial thrombosis
A 59-year-old male previously hospitalized for COVID-19 with mechanical ventilation and treated with injectable corticosteroids, with intense leg pain 2 months after the COVID-19 diagnosis. Post-contrast CT images showing absence of the intravascular contrast in the left arterial femoral-popliteal segment compatible with thrombosis. Coronal CT image showing post-treatment changes after amputation (Figure 7).

DISCUSSION
COVID-19 is also known for coagulopathy due to viral infection and may induce thrombosis and thromboembolic events. Also, there are reports of disseminated intravascular coagulation and gangrene, due to thromboembolic events and also therapy with vasopressors for hemodynamic support in severe COVID-19 cases.

LEARNING POINTS
1. Thrombotic events are common in COVID-19 infection and imaging studies such as ultrasound and post-contrast CT or MR imaging may be used for diagnosis and follow-up.

CONCLUSIONS
In conclusion, COVID-19-related lower limb conditions may require a multimodality imaging approach using radiography, CT, ultrasound and MR imaging for diagnosis and therapy guidance. Awareness of lower limb musculoskeletal involvement may help minimize functional impairment, especially after severe cases that needed ICU with mechanical ventilation, long period of sedation and immobilization due to neuromuscular blockade and also with corticosteroid use.

REFERENCES
1. Johns Hopkins University & Medicine Coronavirus Resource Center. Available from: https://coronavirus.jhu.edu/map.html
2. Rezvini MV, Raza S, Warshawsky R, D’Agostino C, Srivastava NC, Bader AS, et al. Multisystem imaging manifestations of COVID-19, part 1: viral pathogenesis and pulmonary and vascular system complications. Radiographics 2020; 40: 1574–99. https://doi.org/10.1148/rg.202000149
3. Rezvini MV, Raza S, Srivastava NC, Warshawsky R, D’Agostino C, Malhotra A, et al. Multisystem imaging manifestations of COVID-19, part 2: from cardiac complications to pediatric manifestations. Radiographics 2020; 40: 1866–92. https://doi.org/10.1148/rg.202000195
4. Ramani SL, Samej J, Franz CK, Hsieh C, Nguyen CV, Horbinski C, et al. Musculoskeletal involvement of COVID-19: review of imaging. Skeletal Radiol 2021; 50: 1763–73. https://doi.org/10.1007/s00256-021-03734-7
5. Bahouth S, Chuang K, Olson L, Rosenthal D. COVID-19 related muscle denervation atrophy. Skeletal Radiol 2021; 50: 1717–21. https://doi.org/10.1007/s00256-021-03721-y
6. Beydon M, Chevalier K, Al Tabaa O, Hamroun S, Delette A-S, Thomas M, et al. Myositis as a manifestation of SARS-cov-2. Ann Rheum Dis 2020: annrheumdis-2020-217573. https://doi.org/10.1136/annrheumdis-2020-217573
7. Paliwal VK, Garg RK, Gupta A, Tejan N. Neuromuscular presentations in patients with COVID-19. Neuro Sci 2020; 41: 3039–56. https://doi.org/10.1007/s10072-020-04708-8
8. Keyhanian K, Umeton RP, Mohit B, Davoudi V, Hajighasemi F, Ghaseimi M. SARS-cov-2 and nervous system: from pathogenesis to clinical manifestation. J Neuroimmunol 2020; 356: S0165-5728(20)30697-4: 577436: . https://doi.org/10.1016/j.jneuroim.2020.577436
9. Disser NR, De Micheli AJ, Schonk MM, Konnaris MA, Piacentini AN, Edon DL, et al. Musculoskeletal consequences of COVID-19. J Bone Joint Surg Am 2020; 102: 1197–1204. https://doi.org/10.2106/JBJS.20.00847
10. Zhang B, Zhang S. Corticosteroid-induced osteonecrosis in COVID-19: a call for caution. J Bone Miner Res 2020; 35: 1828–29. https://doi.org/10.1002/jbmr.4136
11. Aziz A, Choudhari R, Alexander AJ, Allam E. Heterotopic ossification post COVID-19: report of two cases. Radiol Case Rep 2021; 16: 404–9. https://doi.org/10.1016/j.radcr.2020.12.002
12. Stoira E, Elzi L, Puligheddu C, Garibaldi R, Voinea C, Chiesa AE, et al. High prevalence of heterotopic ossification in critically ill patients with severe COVID-19. Clin Microbiol Infect 2021; 27: S1198-743X(21)00029-X: 1049–50: . https://doi.org/10.1016/j.cmi.2020.12.037
13. Zhang Y, Cao W, Xiao M, et al. Clinical and coagulation characteristics of 7 patients with critical COVID-2019 pneumonia and acrocyanosis. Zhonghua Xue Ye Xue Za Zhi 2020; 41.