Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Article history:
Received 20 May 2022
Received in revised form 26 July 2022
Accepted 27 July 2022
Available online 5 August 2022

Keywords:
glucocorticoid
hyperglycemia
COVID-19

Introduction

The medical literature contains a wealth of writing about glucocorticoid (GC)-induced hyperglycemia (GCIH), which demonstrates the pronounced interest and need for practical information. Several challenges remain, including the lack of uniform terminology, standardized screening recommendations, or randomized controlled trials (RCTs) regarding management. This manuscript consists of a systematic review of literature published since 2011 on GCIH management and extends to publications regarding dexamethasone-associated hyperglycemia in patients with respiratory dysfunction from SARS-CoV-2 infection (COVID-19). For the former, higher-quality studies were included. For the latter, given the paucity of publications, relevant studies involving dexamethasone-associated hyperglycemia management in COVID-19 infection were included regardless of quality.

Objective: Optimal glucocorticoid-induced hyperglycemia (GCIH) management is unclear. The COVID-19 pandemic has made this issue more prominent because dexamethasone became the standard of care in patients needing respiratory support. This systematic review aimed to describe the management of GCIH and summarize available management strategies for dexamethasone-associated hyperglycemia in patients with COVID-19.

Methods: A systematic review was conducted using the PubMed/MEDLINE, Cochrane Library, Embase, and Web of Science databases with results from 2011 through January 2022. Key words included synonyms for “steroid-induced diabetes” or “steroid-induced hyperglycemia.” Randomized controlled trials (RCTs) were included for review of GCIH management. All studies focusing on dexamethasone-associated hyperglycemia in COVID-19 were included regardless of study quality.

Results: Initial search for non-COVID GCIH identified 1230 references. After screening and review, 33 articles were included in the non-COVID section of this systematic review. Initial search for COVID-19-related management of dexamethasone-associated hyperglycemia in COVID-19 identified 63 references, whereas 7 of these were included in the COVID-19 section. RCTs of management strategies were scarce, did not use standard definitions for hyperglycemia, evaluated a variety of treatment strategies with varying primary end points, and were generally not found to be effective except for Neutral Protamine Hagedorn insulin added to basal-bolus regimens.

Conclusion: Few RCTs are available evaluating GCIH management. Further studies are needed to support the formulation of clinical guidelines for GCIH especially given the widespread use of dexamethasone during the COVID-19 pandemic.

© 2022 AACE. Published by Elsevier Inc. All rights reserved.
This review aimed to provide practical management strategies in patients who develop GCIH and summarize the available studies of dexamethasone-associated hyperglycemia management in patients with COVID-19.

Epidemiology and Impact

The incidence of GCIH varies depending on the population, GC dose, and duration, ranging from 15% to 70% in those without pre-existing diabetes mellitus (DM). The risk of developing DM in individuals with GCIH has been studied in various populations. A nested case-control study involving almost 8000 subjects demonstrated that the adjusted odds ratio for DM with ≥3 prescriptions for oral GC was 1.36 (95% confidence interval [CI], 1.10–1.69). A cohort study of patients with rheumatoid arthritis revealed hazard ratios of 1.30 (95% CI, 1.17–1.45) and 1.61 (95% CI, 1.37–1.89) for incident DM in GC users versus nonusers, respectively, within the previous 6 months. The risk of incident DM with chronic GC use is significant.

Pathophysiology

GCs are nuclear hormones that affect glucose metabolism by influencing β-cell function and inducing insulin resistance at the levels of the skeletal muscle, liver, and adipose tissue through postreceptor defects in insulin signaling, including impaired phosphorylation of insulin signaling proteins. GCs decrease insulin-stimulated insulin receptor substrate 1-associated phosphoinositide 3-kinase activity, phosphorylation of protein kinase B/Akt and glycogen synthase kinase-3, insulin-stimulated glucose uptake, and glucose transporter type 4 translocation and inhibit insulin-stimulated glycogen synthase activation. Glucose production is increased in the presence of GC, and hyperglycemia results in predisposed individuals.

Methods

A systematic review was performed using the PubMed/MEDLINE, Cochrane Library, Embase, and Web of Science databases from 2011 to January 2022. Initial search identified 1230 studies representing 818 unique studies. Thirty-seven studies were assessed for eligibility between 2011 and 2022; 4 were excluded: 2 were duplicates; and 2 were ineligible by study design. A total of 33 studies were included in the non–COVID-19 section with an emphasis on RCT (Fig. 1A). For the COVID-19 section, 63 studies were identified between 2020 and 2022, 8 duplicates were removed, and 55 studies were screened. Of these, 48 references were removed based on ineligible article type or irrelevant topic. A total of 7 studies were included in the COVID-19 section (Fig. 1B). All article types involving dexamethasone-associated hyperglycemia management, including case reports of ≥2 patients, were included. Additional articles were obtained via manual review of included references. We limited the search to peer-reviewed, English language articles and human studies of adults aged ≥18 years, all of which focused on management. Preprint articles, epidemiology studies, and quality improvement studies were excluded in both sections.

Terminology

The estimates of the prevalence and incidence of GCIH vary depending on the population studied and because there are no universal definitions. “Steroid- or glucocorticoid-induced hyperglycemia” is used to describe exacerbation of hyperglycemia resulting from GC use in individuals with or without pre-existing DM, whereas “steroid- or glucocorticoid-associated diabetes” is used to describe hyperglycemia resulting from GC use in individuals without known DM. The term “induced” suggests that the etiology is known, whereas “associated” indicates the timing of onset after GC initiation but acknowledges that the etiology may be uncertain. GCIH is anticipated to resolve after GC are discontinued, whereas GC-associated diabetes describes hyperglycemia that persists while on chronic GC therapy or after GC discontinuation.

There are no standard diagnostic criteria for GCIH, with clinicians using various thresholds, such as fasting glucose levels of ≥126 or ≥140 mg/dL and random glucose levels of ≥180 or ≥200 mg/dL. The majority of studies included in this review were in an inpatient setting.

Results

Management Strategies: GCIH

There are no standardized treatment protocols for GCIH. Although practice guidelines highlight the importance of achieving euglycemia during GC treatment, guidance on optimal therapy is limited. Studies have incorporated different GC pharmacokinetics, treatment indications, and dosing schedules to determine adequate management strategies for GCIH. In this review, all GC types were included (Table 1).

Neutral Protamine Hagedorn Insulin With Steroid Administration Added to Basal-Bolus Insulin

Three RCTs have investigated Neutral Protamine Hagedorn (NPH) insulin added to basal-bolus insulin (BBI) in the treatment of GCIH (Table 1). Khowaja et al. evaluated a supplementary NPH-based regimen compared with BBI in hospitalized patients with DM (N = 60) receiving steroids where the primary outcome was the mean premeal and bedtime glucose for days 1 to 5 after GC initiation. NPH was added to the home insulin regimen and

Highlights

- Various antihyperglycemic regimens have been studied for glucocorticoid-induced hyperglycemia (GCIH).
- No standardized treatment guidelines exist for GCIH.
- Effective insulin protocols for dexamethasone-associated COVID-19 hyperglycemia are needed.

Clinical Relevance

Glucocorticoid-induced hyperglycemia (GCIH) is commonly encountered; however, most evidence is from trials conducted in hospitalized patients, and little information exists for dexamethasone-associated hyperglycemia in COVID-19 infection. This is a systematic review of recent controlled trials plus a summary of published literature on GCIH in COVID-19 infection, with practical management recommendations.

Terminology

- Steroid- or glucocorticoid-induced hyperglycemia refers to exacerbation of hyperglycemia resulting from GC use in individuals with or without pre-existing DM.
- Steroid- or glucocorticoid-associated diabetes refers to hyperglycemia resulting from GC use in individuals without known DM.
- Induced hyperglycemia suggests that the etiology is known.
- Associated hyperglycemia indicates the timing of onset after GC initiation but acknowledges that the etiology may be uncertain.
- GCIH is anticipated to resolve after GC are discontinued.
- GC-associated diabetes describes hyperglycemia that persists while on chronic GC therapy or after GC discontinuation.

Methods

A systematic review was performed using the PubMed/MEDLINE, Cochrane Library, Embase, and Web of Science databases from 2011 to January 2022. Initial search identified 1230 studies representing 818 unique studies. Thirty-seven studies were assessed for eligibility between 2011 and 2022; 4 were excluded: 2 were duplicates; and 2 were ineligible by study design. A total of 33 studies were included in the non–COVID-19 section with an emphasis on RCT (Fig. 1A). For the COVID-19 section, 63 studies were identified between 2020 and 2022, 8 duplicates were removed, and 55 studies were screened. Of these, 48 references were removed based on ineligible article type or irrelevant topic. A total of 7 studies were included in the COVID-19 section (Fig. 1B). All article types involving dexamethasone-associated hyperglycemia management, including case reports of ≥2 patients, were included. Additional articles were obtained via manual review of included references. We limited the search to peer-reviewed, English language articles and human studies of adults aged ≥18 years, all of which focused on management. Preprint articles, epidemiology studies, and quality improvement studies were excluded in both sections.

Terminology

- Steroid- or glucocorticoid-induced hyperglycemia refers to exacerbation of hyperglycemia resulting from GC use in individuals with or without pre-existing DM.
- Steroid- or glucocorticoid-associated diabetes refers to hyperglycemia resulting from GC use in individuals without known DM.
- Induced hyperglycemia suggests that the etiology is known.
- Associated hyperglycemia indicates the timing of onset after GC initiation but acknowledges that the etiology may be uncertain.
- GCIH is anticipated to resolve after GC are discontinued.
- GC-associated diabetes describes hyperglycemia that persists while on chronic GC therapy or after GC discontinuation.

Results

Management Strategies: GCIH

There are no standardized treatment protocols for GCIH. Although practice guidelines highlight the importance of achieving euglycemia during GC treatment, guidance on optimal therapy is limited. Studies have incorporated different GC pharmacokinetics, treatment indications, and dosing schedules to determine adequate management strategies for GCIH. In this review, all GC types were included (Table 1).

Neutral Protamine Hagedorn Insulin With Steroid Administration Added to Basal-Bolus Insulin

Three RCTs have investigated Neutral Protamine Hagedorn (NPH) insulin added to basal-bolus insulin (BBI) in the treatment of GCIH (Table 1). Khowaja et al. evaluated a supplementary NPH-based regimen compared with BBI in hospitalized patients with DM (N = 60) receiving steroids where the primary outcome was the mean premeal and bedtime glucose for days 1 to 5 after GC initiation. NPH was added to the home insulin regimen and
administered concurrently with steroids (1–3 times daily). The mean overall, fasting, and prelunch glucose levels were lower, more glucose levels were within the target range (70–180 mg/dL), and hyperglycemia of >300 mg/dL occurred less often in the NPH group over 5 days (Table 2). The NPH group used a higher mean insulin dose added to the usual daily regimen than BBI (46.6 vs 17.4 units/d, \(P<0.0001\)). After randomization, 3 hypoglycemic episodes (<70 mg/dL) occurred in the NPH group, whereas none occurred in the control group.13

Grommeh et al14 compared BBI versus NPH added to BBI in hospitalized patients with and without DM (N = 61) who received GC within 1 day prior to randomization with hyperglycemia of >180 mg/dL (Table 1). The primary outcome was the mean glucose level. NPH dosing (5–20 units) was determined using DM history and steroid doses; it was administered at the same time as the steroid except for methylprednisolone or hydrocortisone (every 4–6 hours) or dexamethasone where it was dosed 3 times daily. The glycemic control and rates of hypoglycemia were similar between the groups over the study period’s 5 days, with day 3 time in range (70–180 mg/dL) trending toward significance in the NPH group (Table 2).15 Seggelke et al15 reported significantly lower premeal glucose levels over 3 days in posttransplant patients with cystic fibrosis-related diabetes (N = 20) receiving BBI with NPH given once daily with methylprednisolone than those in patients receiving BBI (Table 2). The latter 2 studies demonstrated a trend toward improved glycemic control with the addition of NPH to BBI despite similar total daily insulin doses (TDDs) between the control and experimental groups.

NPH Insulin 3 Times Daily With Bolus Insulin

Ruiz de Adana et al16 investigated NPH compared with glargine in hospitalized patients with type 2 DM (N = 53) receiving GC for pulmonary disease (Table 1). Continuous glucose monitoring (CGM) was used, and the primary end point was the mean blood glucose level. Glargine was dosed once each morning, whereas NPH was given in 3 doses with meals. Insulin doses were calculated in the same way for each group. The mean TDD, blood glucose level, time in range (80–180 mg/dL), and glycemic variability were similar over 6 days (Table 2). Three severe hypoglycemic episodes (<40 mg/dL) occurred in the NPH group, whereas none occurred in the glargine group.16

NPH Insulin Once Daily With Bolus Insulin

Radhakutty et al17 compared an NPH-based regimen with BBI in hospitalized patients with and without DM receiving prednisolone (N = 50) with 2 finger-stick glucose (FSG) levels of >180 mg/dL or 1 FSG level of >270 mg/dL in the 24 hours prior to randomization (Table 1). CGM was used, and the primary outcome was the mean glucose on day 1 after steroid initiation. The starting doses of insulin were the same in each group, and both received premeal insulin aspart; however, the NPH group received a higher proportion of aspart with lunch and dinner (Table 2). The glycemic control by CGM, mean glucose, and rates of hypoglycemia were similar between the groups on day 1 after steroid initiation. Day 1 prednisolone doses and TDD were similar. Despite receiving 130% of TDD, patients with prior insulin use experienced more time outside the target range (72–180 mg/dL) and higher mean glucose levels, suggesting the need for higher starting doses (Table 3).17

Correctional Insulin According to GC Type

Lakhani et al18 evaluated BBI compared with BBI combined with a correctional insulin whose pharmacokinetics matched the GC’s glycemic profile in hospitalized patients with and without DM (N = 92) who received GC within 24 hours prior to randomization with 2-hour postprandial hyperglycemia of >200 mg/dL (Tables 2 and 3). The primary outcome was the mean blood glucose level. BBI was added to correctional insulin for patients with DM history. Patients receiving GC-matched correctional insulin experienced improved glycemic control and had a significantly lower overall mean blood glucose level than patients on BBI, without increasing hyperglycemia (Table 2). Hyperglycemia of >300 mg/dL was also less frequent with correctional insulin.18

Add-on Short-Acting Versus Intermediate-Acting Insulin

Gerards et al19 compared supplemental short-acting versus intermediate-acting insulin (IMI) combined with standard regimens in patients treated with GC-based chemotherapy (N = 26) in a randomized cross-over study of patients with type 2 DM or prior
First author (year)	Country	Study population	Mean HbA1c % (mmol/mol) (control vs intervention)	Definition of hyperglycemia (mg/dL)	Target blood glucose (mg/dL)	Glucocorticoid (duration)	n (control vs intervention)	Glycemic management protocol
Randomized pilot study								
Seggelke (2011)	United States Inpatients with CFRD after bone marrow or solid organ transplant.	7.8 (62) vs 7.5 (58) n/a n/a	Methylprednisolone 10-60 mg (3 d)	20 (10/10)	NPH with steroid + BBI vs BBI			
Randomized controlled trials: inpatient								
Grommesh (2016)	United States Inpatients with and without T2DM in non-ICU at a single institution given steroids in the last 24 h with ≥1 capillary BG level of >180 mg/dL. If no history of DM, a second elevated BG level was needed. 58% patients had DM in the control group compared with 40% in the experimental group (P = .16).	6.4 (46) vs 6.5 (48) ≥180 mg/dL	Prednisone ≥10 mg daily or equivalent (≥5 d)	61 (30/31)	NPH with steroid + BBI vs BBI			
Khowaja (2018)	United States Inpatients with DM on steroids for cancer-related, autoimmune, MSK, or pulmonary disease. 49.1% of patients were treated for COPD.	8.85 (73) vs 8.11 (65) ≥180 mg/dL	Prednisone >10 mg daily or equivalent (≥48 h)	60 (31/29)	NPH with steroid + BBI vs BBI			
Ruiz de Adana (2015)	Spain	Inpatients with T2DM in the pulmonology ward at a single center. 49.1% of patients were treated for COPD.	7.5 (58) vs 7.4 (57) Premeal ≥140.4 mg/dL	Premeal BG target level of 100.8-140.4 mg/dL	70-180 mg/dL	Methylprednisolone >40 mg daily or defazacort >60 mg daily (6 d or until discharge if earlier)	53 (26/27 with FSG monitoring; 20/11 with CGM)	NPH 3 times daily + premeal bolus insulin vs BBI
Radhakutty (2017)	Australia	CGM was used. Inpatients in a general medical ward on prednisolone at 3 hospitals. Excluded patients with T1DM. 70% of patients had diabetes. 70% of patients were treated for COPD.	7.9 (63) vs 7.2 (55) ≥180 mg/dL	Two FSG levels of >180 mg/dL or 1 FSG level of >270 mg/dL in the last 24 h	72-180 mg/dL	Prednisolone ≥20 mg daily (≥3 d)	50 (23/25)	NPH once daily + premeal bolus insulin vs BBI
Lakhani (2017)	India	CGM was used. Inpatients with and without DM who received GC within 24 h at a single center. The included patients had a 2-h postprandial BG level of >200 mg/dL.	7.17 (55) vs 6.59 (49) ≥200 mg/dL	n/a	Prednisolone ≥10 mg or equivalent daily (≥2 d)	92 (46/46)	Correctional insulin according to steroid type	
Gerards (2018)	Netherlands	Inpatients with T2DM or prior inpatient hyperglycemia of >180 mg/dL. 85% of patients had DM.	7 (53) in both groups ≥180 mg/dL	70.2-180 mg/dL	Prednisolone ≥30 mg daily (5-14 d)	46 (23/23)	Dapagliflozin	

(continued on next page)
hyperglycemia of >216 mg/dL (Table 1). Only 4 patients in the study were hospitalized, and the insulin types were not specified. The supplemental short-acting protocol dosed insulin according to the glucose level, whereas the IMI regimen was administered according to the steroid dose and body weight. The IMI protocol involved higher TDD and resulted in a higher proportion of time in range (70–180 mg/dL) (Table 2). CGM-detected asymptomatic hypoglycemia was similar between groups. The mean glucose level was lower with IMI, but glycemic control was not achieved (223.2 ± 52.2 vs 243 ± 50.4 mg/dL, P < .05).

Basal-Bolus Insulin

A prospective nonrandomized study by Agudo-Tabuenca et al evaluated a BBI protocol in hospitalized patients with type 2 DM treated with methylprednisolone for pulmonary disease (Table 1). Both groups were treated with BBI, but the intervention group received higher starting doses. For the experimental group, half of the TDD was given as basal insulin twice daily (glargine or detemir), whereas the remaining insulin was divided prandially (aspart). The overall mean glucose level was lower in the intervention group, which had a higher mean TDD. There was no difference in hypoglycemia (Table 2). Euglycemia was achieved in half the time in the experimental group compared with that in the control (5 vs 10 days).

Noninsulin Antihyperglycemic Therapy and Decision Support Tools

Sitagliptin improves pancreatic islet cell function, but not GC-induced glucose intolerance, in men with metabolic syndrome without DM receiving prednisolone. Metformin has been shown to reduce 2-hour postprandial hyperglycemia in oncology patients without DM receiving prednisone. Metformin significantly reduces postprandial hyperglycemia after 2 weeks of prednisone and has additionally been shown to prevent impaired glucose tolerance and improve insulin resistance in patients without DM receiving supraphysiologic GC. Similar findings have been described with exenatide.

Sitedgliptin improves pancreatic islet cell function, but not GC-induced glucose intolerance, in men with metabolic syndrome without DM receiving prednisolone. A study of 5 patients without DM treated with prednisolone for rheumatologic disorders demonstrated that linagliptin did not prevent GCIH; however, it may have reduced the need for insulin. Fasting hypoglycemia occurred during the first 2 weeks of GC administration, which may have been exacerbated by the concomitant use of insulin secretagogues.

Automated decision support tools, such as GlucoTab, a software that recommends BBI dosing (ie, 50% basal and 50% bolus), show promise in GCIH management. Aberer et al demonstrated that GlucoTab use led to a higher mean TDD (38 vs 11 units, P < .001) with lower median fasting, and bedtime glucose levels and higher time in range (70–180 mg/dL; 67.2% vs 60.2%, P < .001).

COVID-19 and Diabetes

The COVID-19 pandemic presented a new and challenging entity for clinicians beginning in 2020. DM was soon identified as a notable risk factor for severe disease and mortality. The bidirectional relationship of COVID-19 and DM has been described; hyperglycemia can occur in patients with and without pre-existing...
Table 2
Study Designs, Summary of Results, and Limitations of the Studies of Glucocorticoid-Induced Hyperglycemia Management

Study Authors (year)	Glycemic management protocol/ study design	Primary outcomes	Results	Study limitations
Seggelke (2011)	All patients received basal (glargine) and premeal bolus (lispro) insulin.	Mean fasting capillary and premeal BG levels	The mean TDDs were similar for both groups on day 3 (90 units in the intervention group vs 90 units in control).	Small sample size; short follow-up duration
	Intervention group: additional NPH was dosed at the same time as methylprednisolone once daily where 1 unit was given for every 1 mg of methylprednisolone up to 20 mg; 0.5 units for every 1 mg up to 20-40 mg; 0.25 units for every additional milligram up to >40 mg.		The mean dose of NPH was 23 ± 5 units.	
	Control group: glargine and premeal lispro, titrated per hospital protocol		There was no difference in the fasting BG levels between the groups.	
Grommesh (2016)	Patients were randomized to the control group with complete insulin orders (“CIO,” glargine, mealtime, and correction lispro) or the experimental group with NPH with CIO (“NPH-CIO”).	Mean BG level	The secondary outcomes included % in target range and hypoglycemia	The control group insulin doses did not have to be titrated according to a protocol; however, the experimental group was titrated by the research team. Controlled baseline HbA1c does not reflect real-life practice.
	Intervention group: starting doses of NPH were based on GC dose and DM history (5-20 units NPH per GC dose). Added to CIO.		The mean BG level was not different between the groups (178.3 in CIO vs 169.2 mg/dl in NPH-CIO [P = .17]). There was no difference in hypoglycemia.	
	Control (CIO) group: starting doses of insulin were based on home DM medications, HbA1c, and prior diet/exercise plans (correction only or 0.2-0.6 units/kg). TDD was divided into 50% basal and 50% prandial.		Day 3 prelunch and predinner glucose levels in the NPH group were lower than BBI (194 ± 25 and 193 ± 22 vs 292 ± 23 and 319 ± 32 mg/dl, respectively; all P <.001).	
	Insulin titration schedule was provided for both groups. Both groups received their outpatient insulin regimen to start. If the HbA1c level was >9%, patients in both groups received 0.3 units/kg of insulin glargine. Correction aspart was given in both groups.		Day 3 time in range was slightly better in NPH-CIO (66% vs 48.4% in CIO, P =.07).	
	Intervention group: High-dose steroids (prednisone >40 mg/day or equivalent): NPH 0.3 units/kg dosed between 0600 and 2000 h (or 0.2 units/kg between 2000 and 0600 h if not eating). Low-dose steroids (prednisone 10-40 mg/day or equivalent): NPH 0.15 units/kg dosed between 0600 and 2000 h (or 0.1 units/kg between 2000 and 0600 h if not eating). NPH was administered at the same time as the steroid doses (daily, BID, and TID).	Mean premeal capillary and bedtime BG levels for days 1-5	The overall mean BG level was lower in the NPH group (226.12 vs 268.57 mg/dl, P <.0001).	
	Control group: usual care. BBI with correction aspart as needed.		The mean fasting and prelunch BG levels were lower in the NPH group (fasting BG, 170.96 vs 221.13 mg/dl, P <.0001; prelunch BG, 208 vs 266.48 mg/dl, P <.0001). There was no difference in the mean prelunch and predinner BG levels.	
Khowaja (2018)	Patients were randomized to receive either glargine (control) or NPH (intervention) as basal insulin. All received insulin glulisine.	Mean premeal capillary and bedtime BG levels	The NPH group had more BG levels measured in the range of 70-180 mg/dl (33.1% vs 19.2%, P <.0001).	
	DM treated with diet/oral agents: TDD 0.3-0.5 units/kg based on admission BG. DM treated with insulin: home TDD.		The NPH group experienced less hyperglycemia between 300 and 400 mg/dl (16.9% vs 27%, P <.01).	
Ruiz de Adana (2015)	Mean capillary BG level	The mean capillary BG level was similar in each group for days 1-6 (205.7 ± 61.9 mg/dl for glargine vs 213.8 ± 52.9 mg/dl for NPH, P =.624).	Starting patients on home insulin regimens that may not be optimized may have impacted BG control at the onset of study as well as hypoglycemia risk.	
			Small sample size; single center. The number of injections required for NPH group daily may not be realistic or preferred by patients.	
Table 2 (continued)

First author (year)	Glycemic management protocol/ study design	Primary outcomes	Results	Study limitations
Radhakutty (2017)	Patients were randomized to NPH and aspart (intervention) versus insulin glargine and aspart (control). Patients were stratified according to prior insulin use. Patients received TDD 0.5 units/kg or 130% of current TDD where the higher dose was chosen. **Intervention group:** 50% TDD NPH at 7AM; 50% TDD insulin aspart (20% breakfast, 40% lunch, 40% dinner). **Control group:** 50% TDD glargine at 7AM; 50% TDD aspart given as 3 divided premeal doses. Correctional aspart was given in both groups according to a hospital protocol.	Mean BG; time outside target range on day 1	Day 1 TDD was similar between the groups (P = .57).	Focusing on day 1 glycemic parameters excludes GC impact on glycemic trends over time. Small sample size.
Gerards (2018)	Patients were randomized to receive dapagliflozin vs placebo as add-on treatment to routine DM medications. Difference in glycemic control according to time in range and hypoglycemic events.	54% ± 27.7% time in range in the dapagliflozin group vs 53.6% ± 23.4% in the placebo group (P = .95). The mean glucose level was also not different between the groups.	The mean TDD was similar in both groups (18.3 units in the dapagliflozin group vs 19.3 units in the placebo group, P = .92).	Routine DM care and regimen adjustments were at discretion of the treating physician rather than standardized to assess the impact of dapagliflozin alone.
DM and is an independent risk factor for worse outcomes in COVID-19. Potential mechanisms of COVID-19–induced hyperglycemia include stress hyperglycemia from marked inflammation and beta-cell dysfunction.

Cases of newly diagnosed DM have been reported with COVID-19 and may reflect varying mechanisms, including stress hyperglycemia, previously unrecognized type 2 DM, or COVID-induced DM. Remission has been noted for 40.6% of new DM cases. Worse outcomes have been reported for new versus pre-existing DM with COVID-19. SARS-CoV-2 has been associated with an increased occurrence of diabetic ketoacidosis (DKA) primarily in patients with type 2 DM. Although higher rates of pediatric type 1 DM diagnoses have been reported, a definite causal relationship between COVID-19 and type 1 DM has not been established.

Early in the pandemic, optimal treatment was uncertain. This changed with the Randomized Evaluation of COVID-19 Therapy trial, which demonstrated that dexamethasone 6 mg daily for 10 days significantly reduced 28-day mortality in patients requiring oxygen or mechanical ventilation. Dexamethasone became standard of care, and GCIH became more common with a need for evidence and expertise in GCIH management. Although studies report the high prevalence of DM and hyperglycemia in COVID-19, accurate data on the frequency of dexamethasone-induced hyperglycemia are not available. Hyperglycemia of COVID-19 coupled with dexamethasone therapy has been termed a “triple insult” with COVID-19–induced insulin resistance, COVID-19 effects on pancreatic islets to cause impairment of insulin production, and GC-induced metabolic derangements.

Management Strategies: Dexamethasone-Induced Hyperglycemia in COVID-19

Management of severe hyperglycemia is important in COVID-19. Few studies have assessed the management of dexamethasone-induced hyperglycemia in COVID-19 although several guidance documents have been published. The lack of personal protective equipment at the beginning of the pandemic led to a need to minimize direct patient contact while maintaining adequate glycemic control. Recommendations were made to reduce glucose monitoring when feasible and manage insulin therapy with more emphasis on lunch and dinner; 10%, afternoon snack; and 50% TDD basal in 2 doses, 50% TDD BBI at higher doses. Interventions: BBI at higher doses. 50% TDD basal in 2 doses, 50% TDD premeal (15%, breakfast; 15%, lunch; 10%, afternoon snack; and 10%, dinner); if a single dose of steroid, prandial aspart was shifted to routine DM medications. SSI or IMI doses were adjusted by 10% daily if above target.

First author (year)	Glycemic management protocol/ study design	Primary outcomes	Results	Study limitations
Ochola (2020)	Patients were randomized 1:1 to the control group (standard of care) or intervention group (standard of care with metformin 850 mg daily × 2 wk, followed by 850 mg BID × 2 wk).	Presence of GC-induced hyperglycemia	% of time > 270 and 360 mg/dL was higher in the placebo group but this was not statistically significant.	Small sample size
Gerards (2016)	Patients were randomized to either SSI or IMI first as add-on treatment to routine DM medications.	% time in target range and hypoglycemic events	% time in target range: 34.4% for IMI vs 20.9% for SSI (P < .001).	Specific insulin types used were not described.
Agudo-Tabuenca (2019)	SSI was dosed according to the blood glucose level based on a scale.	Mean BG level	The mean BG level was lower with IMI (223.2 ± 52.2 vs 243 ± 50.4 mg/dL, P < .05).	No patient randomization.
	IMI was dosed based on: 0.01 IU/mg prednisone-equivalent GC per kg body weight (capped at 0.5 IU per kg).	Mean 2-hour postprandial BG were significantly lower in the metformin group at weeks 2-4.	The median TDD was higher for IMI cycle than for SSI (40.3 vs 26.0 IU, P < .01).	
	IMI doses were adjusted by 10% daily if above target.		Two participants in each cycle had asymptomatic hyperglycemia, all of which occurred during days 3-5.	
	Study team managed insulin.	Mean BG level	The mean TDD was lower in the control group than in the intervention group (29.4 ± 21 vs 57.4 ± 24 units, P < .0001).	
	Control group: basal (glargine or detemir) plus correction insulin (aspart) vs BBI (glargine/detemir and aspart) insulin per hospital protocol.		The mean BG level was lower in the intervention group (191.8 vs 205.2 mg/dL, P < .030).	
	Intervention: BBI at higher doses. 50% TDD basal in 2 doses, 50% TDD premeal (15%, breakfast; 15%, lunch; 10%, afternoon snack; and 10%, dinner); if a single dose of steroid, prandial aspart was shifted with more emphasis on lunch and snack).	Mean 2-hour postprandial BG levels were lower in the intervention group (lunch, 200.8 ± 43.1 vs 229.5 ± 41.5 mg/dL, P < .0001; dinner, 176.1 ± 37.3 vs 210.6 ± 54.6 mg/dL, P < .0001).	The mean lunch and dinner BG levels were lower in the intervention group (lunch, 200.8 ± 43.1 vs 229.5 ± 41.5 mg/dL, P < .0001; dinner, 176.1 ± 37.3 vs 210.6 ± 54.6 mg/dL, P < .0001).	

Abbreviations: BBI – basal-bolus insulin; BG – blood glucose; BID – twice daily; CGM – continuous glucose monitoring; DM – diabetes mellitus; GC – glucocorticoid; HbA1c – hemoglobin A1C; IMI – intermediate-acting insulin; NPH – Neutral Protamine Hagedorn; SSI – sliding scale insulin; TDD – total daily insulin dose; TID – 3 times daily.

Table 2 shows the details.
The Food and Drug Administration lifted its restriction on the inpatient use of CGM in April 2020, and CGM has been shown to be feasible in small numbers of patients. The Dapaglifl ozin in Respiratory Failure in Patients With COVID-19 trial, a multicenter RCT of noncritically ill patients hospitalized with COVID-19 and at least 1 cardiometabolic risk factor examined the effect of dapaglifl ozin 10 mg daily versus placebo (N = 1250) on the prevention of severe disease or death. The study population included 50.9% of participants with type 2 DM, and 21.5% received dexamethasone. The primary end point was not met; however, dapaglifl ozin was well tolerated, and only 2 nonsevere cases of DKA were reported in the treatment group. It is important to note that while potentially beneficial in GCIH, intravenous insulin infusion is preferred in the intensive care unit, and BBI is recommended for critically ill patients hospitalized with COVID-19, managed with an insulin protocol compared with routine treatment. The insulin starting dose included glargine 0.1 units/kg/day (or home basal insulin dose) and rapid-acting insulin 0.1 units/kg meal. The protocol group had a higher proportion of patients with glucose levels in the target range (70–180 mg/dL) as well as reduced in-hospital mortality. The authors comment that their starting dose of glargin may have been too low out of concern for reduced patient contact and to consider using 0.2 units/kg/day. In our experience, weight-based insulin requirements for dexamethasone hyperglycemia in COVID-19 can be considerably higher than traditional dosing formulas and may be positively correlated with hemoglobin A1c. A retrospective study performed in the first pandemic wave found that patients with type 2 DM with DKA and COVID-19 required a significantly larger cumulative insulin dose, longer time, and higher weight-based insulin infusion dose to achieve DKA resolution than patients without COVID-19.

CRITICaI, an RCT examining whether NPH combined with BBI compared with BBI alone improves the mean daily glucose levels for dexamethasone-induced hyperglycemia in patients with DM with COVID-19, is in progress in Australia (Table 3). At this time, there are no completed RCT to assess the insulin management of GCIH in COVID-19.

Observational studies support a correlation between metformin use and reduced mortality from COVID-19; however, inpatient use is not recommended. Further studies regarding the potential role of other noninsulin agents in COVID-19 treatment are needed. Research in the area of dexamethasone-induced hyperglycemia in...
COVID-19 remains limited, and as COVID-19 continues with new variants, clarifying ideal treatment for this challenging population is urgently needed.

Discussion

GCIH management studies have assessed varying combinations of insulin formulations. Few RCTs have been completed, and in the limited group of studies available, the treatment protocols are vastly different. Furthermore, terminology used to define GC-associated hyperglycemia is inconsistent and confusing. Evidence-based guidelines do not exist for GCIH management, and clinical practice varies widely.11,12

The insulin regimen with the greatest likelihood of effectiveness was demonstrated in studies using BBI with NPH.13-15,18 The late peak and prolonged duration of action of NPH more closely matches the insulin resistance and hyperglycemia observed with GC use. However, adequate NPH dosing has not been identified because the insulin regimens assessed thus far have been suboptimal in achieving glycemic control. All of the studies involve small sample sizes, short study duration, and patients with either well-controlled or moderately controlled DM, factors which limit generalizability.

The studies assessed in this review demonstrate a need for higher initial doses of insulin in GCIH management. However, the more physiologic approach using multiple doses of NPH may limit broad applicability due to dosing complexity and administration of multiple insulins. Figure 2 summarizes the treatment protocols assessed in this review. Figure 3 shows 3 practical approaches favored by the authors. We recommend initiating BBI at 0.5 units/kg; NPH can be added using either 0.5 units/mg of prednisone equivalent or 0.1 units/kg per prednisone 10-mg dose increments. NPH may be helpful to use concomitantly with prednisone given their similar pharmacokinetic profiles.70 An alternative approach without NPH involves starting BBI at 0.5 to 0.6 units/kg with 30% to 40% of TDD as basal insulin and 60% to 70% of TDD as prandial insulin. The authors acknowledge the heterogeneity in GC studied in this review and summarized our preferred approaches for patients receiving supraphysiologic steroids.

Noninsulin agents offer a simpler treatment option for GCIH, particularly for patients without pre-existing DM who require extended GC courses. Unsurprisingly, agents such as dipetidyl
peptidase-4 inhibitors are not sufficient to manage GCH in patients with DM; however, metformin and exenatide may have a role in ameliorating hyperglycemia in patients without DM receiving GC. Additional research is needed to determine whether non-insulin agents can be used in GCH prevention or treatment.

The COVID-19 pandemic has dramatically increased the number of patients requiring hyperglycemia treatment, particularly in the setting of dexamethasone use for patients requiring supplemental oxygen or mechanical ventilation. Insulin is the standard of care with DM; however, metformin and exenatide may have a role in D. Brooks, R. Schulman-Rosenbaum, M. Griff et al. Endocrine Practice 28 (2022) 1166–1177.

Conclusion

With variable study designs, small sample sizes, and differing treatment protocols in GCH studies, it is not surprising that management guidelines are not well established. Larger studies, pragmatic trials, and real-world data are needed to inform the development of guidelines for effective GCH treatment because GCs continue to be used extensively, the risk of GCH is increasing as the prevalence of prediabetes and DM increase steeply, and the prevalence of GCH increases during the COVID-19 pandemic.

Disclosure

The authors have no multiplicity of interest to disclose.

References

1. Burt MG, Willemen VM, Petersson C Jr, Smith MD, Abem RN, Stranks SN. Screening for diabetes in patients with inflammatory rheumatological disease administered long-term prednisone: a cross-sectional study. Rheumatology (Oxford). 2012;51(6):1112–1119.

2. Liu XX, Zhu YM, Mao Q, Ye HY, Zhang ZY, Li YM. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab 2014;65(4):324–332.

3. Kwon S, Hermayer KL, Hermayer K. Glucocorticoid-induced hyperglycemia. Am J Med 2013;125(4):274–277.

4. Stauber MN, Aberer F, UhlaF, A et al. Early hyperglycemia after initiation of glucocorticoid therapy predicts adverse outcome in patients with acute graft-versus-host disease. Blood Marrow Transplantation. 2017;23(7):1186–1192.

5. Guilford MC, Charlton J, Latovnic R. Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care. 2006;29(12):2728–2729.

6. Movahedi M, Beauchamp ME, Abrahamovitz M, et al. Risk of incident diabetes mellitus associated with the dosage and duration of oral glucocorticoid therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2016;68(5):1089–1098.

7. Roberts A, James D, Bhatnayka K. Management of hyperglycaemia and steroid (glucocorticoid) therapy: a guideline from the Joint British Diabetes Societies (JBDS) for Inpatient Care group. Diabet Med. 2018;35(8):1011–1017.

8. Pagano G, Cavallo-Perin P, Cassader M, et al. An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J Clin Invest. 1983;72(5):1814–1820.

9. Ruzin J, Wagman AS, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glucocorticoid receptor antagonist in healthy subjects. J Clin Endocrinol Metab. 2012;97(1):36–38.

10. Khawaja A, Alkhattad JB, Rana Z, Fish L. Glycemic control in hospitalized patients with diabetes receiving corticosteroids using a neutral Protamine Hagedorn insulin protocol: a randomized clinical trial. Diabetes Ther. 2018;9(4):1667–1675.

11. Grommeh B, Lausch MJ, Vannelli AJ, et al. Hospital insulin protocol aims for glucose control in glucocorticoid-induced hyperglycemia. Endocr Pract. 2018;24(2):180–189.

12. Seggelke SA, Gibbs J, Draznin B. Pilot study of using neutral protamine Hagedorn insulin to counteract the effect of methylprednisolone in hospitalized patients with diabetes. J Hosp Med. 2011;6(3):175–176.

13. Ruiz de Adana MS, Colomo N, Maldonado-Araque C, et al. Randomized clinical trial of the efficacy and safety of insulin glargine vs. NPH insulin as basal insulin for the treatment of glucocorticoid-induced hyperglycemia using continuous glucose monitoring in hospitalized patients with type 2 diabetes and respiratory disease. Diabetes Res Clin Pract. 2015;110(2):158–165.

14. Radhaikutty A, Stranks JL, Mangelsdorf BL, et al. Treatment of prednisolone-induced hyperglycemia in hospitalized patients: insights from a randomized, controlled study. Diabetes Obes Metab. 2017;19(4):571–578.

15. Lakhani OJ, Kumar S, Tripathi S, Desai M, Seth C. Comparison of two protocols in the management of glucocorticoid-induced hyperglycemia among hospitalised patients. Indian J Endocrinol Metab. 2017;21(6):836–844.

16. Gerards MC, de Maar JS, Steenbruggen TG, Hoekstra JR, Vriesendorp TM, Gerdes VE. Add-on treatment with intermediate-acting insulin versus sliding-scale insulin for patients with type 2 diabetes or insulin resistance during cyclic glucocorticoid-containing anti-neoplastic chemotherapy: a randomized cross-over study. Diabetes Obes Metab. 2016;18(10):1041–1044.

17. Agudo-Tabuenca A, Gimeno-Orna JA, Sáenz-Abad D. Assessment of the efficacy and safety of a protocol to manage glucocorticoid-induced hyperglycemia in diabetic patients during hospital stay. Endocrinol Diabetes Nutr (Engl Ed). 2019;56(6):353–360.

18. Ito S, Ogishima H, Kondo Y, et al. Early diagnosis and treatment of steroid-induced diabetes mellitus in patients with rheumatoid arthritis and other connective tissue diseases. Mod Rheumatol. 2013;24(4):513–520.

19. Gerards MC, Venema GE, Patberg KW, et al. Dapagliflozin for prednisone-induced hyperglycaemia in acute exacerbation of chronic obstructive pulmonary disease. Diabetes Obes Metab. 2018;20(5):1306–1310.

20. Klarskov CK, Holm Schultz H, Persson F, et al. Study rationale and design of the EANITATE study (Empagliflozin compared to NPH insulin for steroid diabe-Tes) - a randomized, controlled, multicenter trial of safety and efficacy of treatment with empagliflozin compared with NPH-insulin in patients with newly onset diabetes following initiation of glucocorticoid treatment. BMJ Endocid Disord. 2020;2020;1:86.

21. Ochola LA, Nyanwu DM, Guantai EM, Weru IW. Metformin’s effectiveness in preventing prednisone-induced hyperglycemia in hematological cancers. J Oncol Pharm Pract. 2020;26(4):823–834.

22. Seelig E, Meyer S, Tipper K, et al. Metformin prevents metabolic side effects during systemic glucocorticoid treatment. Eur J Endocrinol. 2017;176(3):349–355.

23. van Raalte DH, van Genugten RE, Linssen MM, Ouwens DM, Diamant M. Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care. 2011;34(2):412–417.

24. van Genugten RE, van Raalte DH, Miskuit MH, et al. Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome? A randomized controlled trial. Eur J Endocrinol. 2011;157(1):429–432.

25. Miyazawa Y, Sada KE, Asano Y, et al. An open-label pilot study on preventing glucocorticoid-induced diabetes mellitus with linsinaglit. J Med Case Rep. 2018;12(1):288.

26. Abem RN, van Raalte DH, Miskuit MH, et al. Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome? A randomized controlled trial. Eur J Endocrinol. 2011;157(1):429–432.

27. Zhu L, She ZG, Cheng X, et al. Association of blood glucose control and outcome in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31(6):1068–1077.e3.

28. Mendes TB, Camara-de-Souza AB, Halpern B. Hospital management of hyperglycaemia in the context of COVID-19: evidence-based clinical considerations. Diabetes Metab Syndr. 2022;14(1):37.

29. Scheen AJ, Marre M, Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: findings from the CORONADO study and other recent reports. Diabetes Obes Metab. 2020;26(4):265–271.

30. Fadini GP, Morieri ML, Boscari F, et al. Newly-diagnosed diabetes and respiratory disease. Diabetes Care. 2020;43(9):e1655.

31. Chalvath SI, Suvarna MP, Nithyanand P, et al. Assessment of the efficacy and safety of insulin glargine vs. NPH insulin as medical care in 2022. Diabetes Care. 2022;45(suppl 1):S244–S253.

32. Umpierrez GE, Hellman R, Korytkowski MT, et al. Management of hyperglycemia in hospitalized patients in non-critical care setting: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(1):36–38.

33. Khawaja A, Alkhattad JB, Rana Z, Fish L. Glycemic control in hospitalized patients with diabetes receiving corticosteroids using a neutral Protamine Hagedorn insulin protocol: a randomized clinical trial. Diabetes Ther. 2018;9(4):1667–1675.

34. Burt MG, Willemen VM, Petersson C, Smith MD, Abem RN, Stranks SN. Screening for diabetes in patients with inflammatory rheumatological disease administered long-term prednisone: a cross-sectional study. Rheumatology (Oxford). 2012;51(6):1112–1119.
39. Rayman G, Lumb AN, Kennon B, et al. Dexemethasone therapy in COVID-19 patients: implications and guidance for the management of blood glucose in people with and without diabetes. Diabet Med. 2021;38(1):e14378.

40. Reiterer M, Rajan M, Gómez-Banyo N, et al. Hyperglycemia in acute COVID-19 is characterized by adipose tissue dysfunction and insulin resistance. Preprint. Posted online March 26, 2021. https://doi.org/10.1101/2021.03.21.21254072

41. Sardu C, D’Onofrio N, Balestrieri ML, et al. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control? Diabetes Care. 2020;43(7):1408–1415.

42. Metwally AA, Mehta P, Johnson BS, Nagarjuna A, Snyder MP. COVID-19 induced new-onset diabetes: trends and technologies. Diabetes. 2021;70(12):2737–2744.

43. Cromer SJ, Colling C, Schatoff D, et al. Newly diagnosed diabetes vs. pre-existing diabetes upon admission for COVID-19: associated factors, short-term outcomes, and long-term glycemic phenotypes. J Diabetes Complications. 2022;36(4):108145.

44. Pal R, Banerjee M, Yadav U, Bhattacharjee S. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: a systematic review of literature. Diabetes Metab Syndr. 2020;14(6):1563–1569.

45. Gottesman BL, Yu J, Tanaka C, Longhurst CA, Kim JJ. Incidence of new-onset type 1 diabetes among US children during the COVID-19 global pandemic. JAMA Pediatr. 2022;176(4):414–415.

46. Boddu SK, Aurangabadkar G, Kuchay MS. New onset diabetes and COVID-19. Diabetes Metab Syndr. 2020;14(6):2211–2217.

47. Horby P, Lim WS, Emberson JR, et al. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.

48. Klonoff DC, Messler JC, Umpierrez GE, et al. Association between achieving inpatient glycomic control and clinical outcomes in hospitalized patients with COVID-19: a multicenter, retrospective hospital-based analysis. Diabetes Care. 2021;44(2):578–585.

49. Bellido V, Pérez A. Inpatient hyperglycemia management and COVID-19. Diabetes Ther. 2021;12(1):121–132.

50. Pasquel FJ, Umpierrez GE. Individualizing inpatient diabetes management during the coronavirus disease 2019 pandemic. J Diabetes Sci Technol. 2020;14(4):705–707.

51. Gianchandani R, Esfandiari NH, Ang L, et al. Managing hyperglycemia in the COVID-19 inflammatory storm. Diabetes. 2020;69(10):2048–2053.

52. Korytkowski M, Antinori-Lent K, Drinic A, et al. A pragmatic approach to inpatient diabetes management during the COVID-19 pandemic. J Clin Endocrinol Metab. 2020;99(9):105, dgaa342.

53. Zhou K, Al-Jagheeer MJ, Lansang MC. Hyperglycemia management in hospitalized patients with COVID-19. Cleve Clin J Med. 2020.

54. Brooks D, Levy C. Overview and management of glucocorticoid-induced hyperglycemia in pulmonary diseases: insight into the COVID-19 pandemic. Int J Diabetes Metab Syndr. 2021;1(1):1–13.

55. Issac A, Kochuparambil J, Vayalikunnel JDS. Steroid stewardship as a tool to tackle glucocorticoid induced hyperglycemia in COVID-19 patients: an international journal of medical toxicology and drug experience. Drug Safety. 2021;44(12):1411.

56. Li A, Mustafa O, Harris SJDM. The need for a steroid de-escalation pathway during the COVID-19 pandemic. Diabet Med. 2021;38(suppl 1):49.

57. Mason H, Roberts R, Raj A. Management of hyperglycaemia in patients with COVID-19 treated with high-dose steroids. Anaesthesia. 2021;76:62.

58. Penswick SJ, Quire C, Wright RJ, Adamson KA. Improving monitoring and treatment of dexamethasone induced hyperglycaemia in patients with COVID-19. Diabet Med. 2021;38(suppl 1):46.

59. Shehav-Zaltzman G, Segal G, Konvalina N, Tirosi A. Remote glucose monitoring of hospitalized, quarantined patients with diabetes and COVID-19. Diabetes Care. 2020;43(7):e75–e76.

60. Agarwal S, Mathew J, Davis GM, et al. Continuous glucose monitoring in the intensive care unit during the COVID-19 pandemic. Diabetes Care. 2021;44(3):847–849.

61. Davis CM, Faulds E, Walker T, et al. Remote continuous glucose monitoring with a computerized insulin infusion protocol for critically ill patients in a COVID-19 medical ICU: proof of concept. Diabetes Care. 2021;44(4):1055–1058.

62. Asiri AA, Alguwailsh AM, Jamnah AA, Alfaadda AA, Al-Sofiani ME. Assessment of the effectiveness of a protocol to manage dexamethasone-induced hyperglycemia among hospitalized patients with COVID-19. Endocr Pract. 2021;27(12):1237–1241.

63. Barsoum B, Cummings C, Doan TL, McKeon L, Brooks D, Schulman-Rosenbaum R. Abstract #1153925: dexamethasone use and insulin requirements in coronavirus disease-19 (COVID-19) infection. Endocr Pract. 2022;28(5):526.

64. Farzadfar D, Gordon CA, Falsetta KP, et al. Assessment of insulin infusion requirements in COVID-19-infected patients with diabetic ketoacidosis. Endocr Pract. 2022;28(8):787–794.

65. Cheung N. A clinical trial of insulin therapy for dexamethasone induced hyperglycaemia amongst diabetes patients with COVID-19. 2021. Accessed August 25, 2022. https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/ictrp-ACTRN12621001340820

66. Kosiborod MN, Esterline R, Furtado RHM, et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021;9(5):586–594.

67. Lupsa BC, Inuzuchi SE. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia. 2018;61(10):2118–2125.

68. Crouse AB, Grimes T, Li P, Might M, Ovalle F, Shalev A. Metformin use is associated with reduced mortality in a diverse population with COVID-19 and diabetes. Front Endocrinol (Lausanne). 2021;11:600439.

69. Bramante CT, Buse J, Tamaritz L, et al. Outpatient metformin use is associated with reduced severity of COVID-19 disease in adults with overweight or obesity. J Med Virol. 2021;93(7):4273–4275.

70. Wallace MD, Metzger NL. Optimizing the treatment of steroid-induced hyperglycemia. Ann Pharmacother. 2018;52(1):86–90.