LOGARITHMIC COEFFICIENTS AND A COEFFICIENT CONJECTURE FOR UNIVALENT FUNCTIONS

MILUTIN OBRADOVIĆ, SAMINATHAN PONNUSAMY, AND KARL-JOACHIM WIRTHS

Abstract. Let \(U(\lambda) \) denote the family of analytic functions \(f(z), f(0) = 0 = f'(0) - 1 \), in the unit disk \(D \), which satisfy the condition \(\left| (z/f(z))^2 f'(z) - 1 \right| < \lambda \) for some \(0 < \lambda \leq 1 \). The logarithmic coefficients \(\gamma_n \) of \(f \) are defined by the formula \(\log(f(z)/z) = 2 \sum_{n=1}^{\infty} \gamma_n z^n \). In a recent paper, the present authors proposed a conjecture that if \(f \in U(\lambda) \) for some \(0 < \lambda \leq 1 \), then
\[
|a_n| \leq \sum_{k=0}^{n-1} \lambda^k \quad \text{for } n \geq 2
\]
and provided a new proof for the case \(n = 2 \). One of the aims of this article is to present a proof of this conjecture for \(n = 3, 4 \) and an elegant proof of the inequality for \(n = 2 \), with equality for \(f(z) = z/(1 + z)(1 + \lambda z) \). In addition, the authors prove the following sharp inequality for \(f \in U(\lambda) \):
\[
\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{1}{4} \left(\frac{n^2}{6} + 2 \text{Li}_2(\lambda) + \text{Li}_2(\lambda^2) \right),
\]
where \(\text{Li}_2 \) denotes the dilogarithm function. Furthermore, the authors prove two such new inequalities satisfied by the corresponding logarithmic coefficients of some other subfamilies of \(S \).

1. Introduction

Let \(A \) be the class of functions \(f \) analytic in the unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \) with the normalization \(f(0) = 0 = f'(0) - 1 \). Let \(S \) denote the class of functions \(f \) from \(A \) that are univalent in \(\mathbb{D} \). Then the logarithmic coefficients \(\gamma_n \) of \(f \in S \) are defined by the formula
\[
\frac{1}{2} \log \left(\frac{f(z)}{z} \right) = \sum_{n=1}^{\infty} \gamma_n z^n, \quad z \in \mathbb{D}.
\]
These coefficients play an important role for various estimates in the theory of univalent functions. When we require a distinction, we use the notation \(\gamma_n(f) \) instead of \(\gamma_n \). For example, the Koebe function \(k(z) = z(1 - e^{\theta} z)^{-2} \) for each \(\theta \) has logarithmic coefficients \(\gamma_n(k) = e^{\theta n}/n, n \geq 1 \). If \(f \in S \) and \(f(z) = z + \sum_{n=2}^{\infty} a_n z^n \), then by (1) it follows that \(2 \gamma_1 = a_2 \) and hence, by the Bieberbach inequality, \(|\gamma_1| \leq 1 \). Let \(S^* \) denote the class of functions \(f \in S \) such that \(f(\mathbb{D}) \) is starlike with respect to the origin. Functions \(f \in S^* \) are characterized by the condition \(\text{Re} \left(z f'(z)/f(z) \right) > 0 \) in \(\mathbb{D} \). The inequality \(|\gamma_n| \leq 1/n \) holds for starlike functions \(f \in S \), but is false for the full class \(S \), even in order of magnitude. See [3, Theorem 8.4 on page 242]. In [2],

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Univalent, starlike, convex and close-to-convex functions, subordination, logarithmic coefficients and coefficient estimates.

File: Ob-S-Wirths4 LogCoef2016’1’arXiv.tex, printed: 7-4-2017, 0.57.
Girela pointed out that this bound is actually false for the class of close-to-convex functions in \mathbb{D} which is defined as follows: A function $f \in \mathcal{A}$ is called close-to-convex, denoted by $f \in \mathcal{K}$, if there exists a real α and a $g \in \mathcal{S}^*$ such that

$$\Re \left(e^{i\alpha} \frac{zf'(z)}{g(z)} \right) > 0, \quad z \in \mathbb{D}. $$

For $0 \leq \beta < 1$, a function $f \in \mathcal{S}$ is said to belong to the class of starlike functions of order β, denoted by $f \in \mathcal{S}^*(\beta)$, if $\Re \left(\frac{zf'(z)}{f(z)} \right) > \beta$ for $z \in \mathbb{D}$. Note that $\mathcal{S}(0) =: \mathcal{S}$ and $\mathcal{C}^*(\beta) = \mathcal{C}^*$. The class of all convex functions of order β, denoted by $\mathcal{C}(\beta)$, is then defined by $\mathcal{C}(\beta) = \{ f \in \mathcal{S} : zf''(z)/f'(z) \}$. The class $\mathcal{C}(0) =: \mathcal{C}$ is usually referred to as the class of convex functions in \mathbb{D}. With the class \mathcal{S} being of the first priority, its subclasses such as \mathcal{S}^*, \mathcal{K}, and \mathcal{C}, respectively, have been extensively studied in the literature and they appear in different contexts. We refer to [4, 7, 10, 12] for a general reference related to the present study. In [5, Theorem 4], it was shown that the logarithmic coefficients γ_n of every function $f \in \mathcal{S}$ satisfy

$$ \sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{\pi^2}{6}, $$

and the equality is attained for the Koebe function. The proof uses ideas from the work of Baernstein [3] on integral means. However, this result is easy to prove (see Theorem 1) in the case of functions in the class $\mathcal{U} := \mathcal{U}(1)$ which is defined as follows:

$$ \mathcal{U}(\lambda) = \left\{ f \in \mathcal{A} : \left| \left(\frac{z}{f(z)} \right)^2 \frac{f'(z)}{f(z)} - 1 \right| < \lambda, \quad z \in \mathbb{D} \right\}, $$

where $\lambda \in (0, 1]$. It is known that [11] every $f \in \mathcal{U}$ is univalent in \mathbb{D} and hence, $\mathcal{U}(\lambda) \subset \mathcal{U} \subset \mathcal{S}$ for $\lambda \in (0, 1]$. The present authors have established many interesting properties of the family $\mathcal{U}(\lambda)$. See [10] and the references therein. For example, if $f \in \mathcal{U}(\lambda)$ for some $0 < \lambda \leq 1$ and $a_2 = f''(0)/2$, then we have the subordination relations

$$ \frac{f(z)}{z} < \frac{1}{1 + (1 + \lambda)z + \lambda z^2} = \frac{1}{(1 + z)(1 + \lambda z)}, \quad z \in \mathbb{D}, $$

and

$$ \frac{z}{f(z)} + a_2 z < 1 + 2\lambda z + \lambda z^2, \quad z \in \mathbb{D}. $$

Here $<$ denotes the usual subordination [4, 7, 12]. In addition, the following conjecture was proposed in [10].

Conjecture 1. Suppose that $f \in \mathcal{U}(\lambda)$ for some $0 < \lambda \leq 1$. Then $|a_n| \leq \sum_{k=0}^{n-1} \lambda^k$ for $n \geq 2$.

In Theorem 4 we present a direct proof of an inequality analogous to (2) for functions in $\mathcal{U}(\lambda)$ and in Corollary 1 we obtain the inequality (2) as a special case for \mathcal{U}. At the end of Section 2, we also consider estimates of the type (2) for some interesting subclasses of univalent functions. However, Conjecture 4 remains open for $n \geq 5$. On the other hand, the proof for the case $n = 2$ of this conjecture is due to [17] and an alternate proof was obtained recently by the present authors in [10].
Theorem 1]. In this paper, we show that Conjecture 1 is true for $n = 3, 4$. and our proof includes an elegant proof of the case $n = 2$. The main results and their proofs are presented in Sections 2 and 3.

2. LOGARITHMIC COEFFICIENTS OF FUNCTIONS IN $U(\lambda)$

Theorem 1. For $0 < \lambda \leq 1$, the logarithmic coefficients of $f \in U(\lambda)$ satisfy the inequality

$$\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{1}{4} \left(\frac{\pi^2}{6} + 2\text{Li}_2(\lambda) + \text{Li}_2(\lambda^2) \right),$$

where Li_2 denotes the dilogarithm function given by

$$\text{Li}_2(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^2} = z \int_{0}^{1} \frac{\log(1/t)}{1 - tz} dt.$$

The inequality (4) is sharp. Further, there exists a function $f \in U$ such that $|\gamma_n| > (1 + \lambda^n)/(2n)$ for some n.

Proof. Let $f \in U(\lambda)$. Then, by (3), we have

$$\frac{z}{f(z)} < (1 - z)(1 - \lambda z)$$

which clearly gives

$$\sum_{n=1}^{\infty} \gamma_n z^n = \log \sqrt{\frac{f(z)}{z}} < -\log(1 - z) - \log(1 - \lambda z) = \sum_{n=1}^{\infty} \frac{1}{2n} (1 + \lambda^n) z^n.$$

Again, by Rogosinski’s theorem (see [4, 6.2]), we obtain

$$\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \sum_{n=1}^{\infty} \frac{1}{4n^2} (1 + \lambda^n)^2 = \frac{1}{4} \left(\sum_{n=1}^{\infty} \frac{1}{n^2} + 2 \sum_{n=1}^{\infty} \frac{\lambda^n}{n^2} + \sum_{n=1}^{\infty} \frac{\lambda^{2n}}{n^2} \right),$$

and the desired inequality (4) follows. For the function $g_\lambda(z) = \frac{z}{(1 - z)(1 - \lambda z)}$, we find that $\gamma_n(g_\lambda) = (1 + \lambda^n)/(2n)$ for $n \geq 1$ and therefore, we have the equality in (4). Note that $g_1(z)$ is the Koebe function $z/(1 - z)^2$.

From the relation (5), we cannot conclude that $|\gamma_n(f)| \leq |\gamma_n(g_\lambda)| = \frac{1 + \lambda^n}{2n}$ for $f \in U(\lambda)$.

Indeed for the function f_λ defined by

$$f_\lambda(z) = \frac{z}{(1 - z)(1 - \lambda z)(1 + (\lambda/(1 + \lambda))z)},$$

we find that

$$\frac{z}{f_\lambda(z)} = 1 + \frac{\lambda - (1 + \lambda)^2}{1 + \lambda} z + \frac{\lambda^2}{1 + \lambda} z^3.$$
Figure 1. The image of \(f_\lambda(z) = \frac{z}{(1-z)(1-\lambda z)(1+\lambda/(1+\lambda))z} \) under \(\mathbb{D} \) for certain values of \(\lambda \)

and

\[
\left(\frac{z}{f_\lambda(z)} \right)^2 f_\lambda'(z) - 1 = -\frac{2\lambda^2}{1+\lambda} z^3 = -\left(1 - \frac{(1+2\lambda)(1-\lambda)}{1+\lambda} z^3 \right)
\]

which clearly shows that \(f_\lambda \in \mathcal{U}(\lambda) \). The images of \(f_\lambda(z) \) under \(\mathbb{D} \) for certain values of \(\lambda \) are shown in Figures 1(a)-(d). Moreover, for this function, we have

\[
\log \left(\frac{f_\lambda(z)}{z} \right) = -\log(1-z) - \log(1-\lambda z) - \log \left(1 + \frac{\lambda}{1+\lambda} z \right)
\]

\[
= 2 \sum_{n=1}^{\infty} \gamma_n(f_\lambda) z^n,
\]

where

\[
\gamma_n(f_\lambda) = \frac{1}{2} \left(\frac{1+\lambda^n}{n} + (-1)^n \frac{\lambda^n}{n(1+\lambda)^n} \right).
\]
This contradicts the above inequality at least for even integer values of \(n \geq 2 \). Moreover, with these \(\gamma_n(f_\lambda) \) for \(n \geq 1 \), we obtain
\[
\sum_{n=1}^{\infty} |\gamma_n(f_\lambda)|^2 = \frac{1}{4} \sum_{n=1}^{\infty} \left\{ \frac{(1+\lambda^2)^2}{n^2} + 2\frac{(-1)^n}{n^2} \left[\left(\frac{\lambda}{1+\lambda} \right)^n + \frac{1}{n^2} \left(\frac{\lambda}{1+\lambda} \right)^{2n} \right] \right\}
\]
and by a computation, it follows easily that
\[
\sum_{n=1}^{\infty} |\gamma_n(f_\lambda)|^2 = \frac{1}{4} \left(\frac{\pi^2}{6} + 2\text{Li}_2(\lambda) + \text{Li}_2(\lambda^2) \right)
\]
\[
+ \frac{1}{2} \left[\text{Li}_2 \left(\frac{-\lambda^2}{1+\lambda} \right) + \text{Li}_2 \left(\frac{-\lambda}{1+\lambda} \right) \right] + \frac{1}{4} \text{Li}_2 \left(\frac{\lambda^2}{(1+\lambda)^2} \right)
\]
\[
= \frac{1}{4} \left(\frac{\pi^2}{6} + 2\text{Li}_2(\lambda) + \text{Li}_2(\lambda^2) \right) + \frac{1}{4} A(\lambda)
\]
\[
< \frac{1}{4} \left(\frac{\pi^2}{6} + 2\text{Li}_2(\lambda) + \text{Li}_2(\lambda^2) \right) \quad \text{for } 0 < \lambda \leq 1,
\]
and we complete the proof, provided \(A(\lambda) > 0 \) for \(0 < \lambda \leq 1 \). Now, we claim that
\[
A(\lambda) := 2 \left[\text{Li}_2 \left(\frac{-\lambda^2}{1+\lambda} \right) + \text{Li}_2 \left(\frac{-\lambda}{1+\lambda} \right) \right] + \text{Li}_2 \left(\frac{\lambda^2}{(1+\lambda)^2} \right) < 0.
\]
Because \(\text{Li}_2(z^2) = 2(\text{Li}_2(z) + \text{Li}_2(-z)) \), the last claim is equivalent to
\[
\frac{A(\lambda)}{2} = 2 \text{Li}_2 \left(\frac{-\lambda}{1+\lambda} \right) + \left[\text{Li}_2 \left(\frac{\lambda}{1+\lambda} \right) + \text{Li}_2 \left(\frac{-\lambda^2}{1+\lambda} \right) \right] < 0
\]
for \(0 < \lambda \leq 1 \). According to the integral representation of \(\text{Li}_2(z) \) given in the statement of Theorem 1, we can write
\[
A(\lambda) = -2\lambda \int_0^1 B(\lambda, t) \log(1/t) \, dt,
\]
where
\[
B(\lambda, t) = \frac{2}{1+\lambda + t\lambda} - \frac{1}{1+\lambda - t\lambda} + \frac{\lambda}{1+\lambda + t\lambda^2}
\]
\[
= \frac{(1+\lambda) - 3t\lambda}{(1+\lambda)^2 - t^2\lambda^2} + \frac{\lambda}{1+\lambda + t\lambda^2}
\]
\[
= \frac{N(\lambda, t)}{(1+\lambda)^2 - t^2\lambda^2}[1+\lambda + t\lambda^2]
\]
with
\[
N(\lambda, t) = (1+\lambda)^3 - (3-\lambda)(1+\lambda)\lambda t - 4\lambda^3 t^2.
\]
Clearly, \(B(1, t) > 0 \) for \(t \in [0, 1) \) and it follows that, \(A(1) < 0 \). On the other hand, since \(N(\lambda, t) \) is a decreasing function of \(t \) for \(t \in [0, 1] \), we obtain that
\[
N(\lambda, t) \geq N(\lambda, 1) = (1+\lambda)^3 - (3-\lambda)(1+\lambda) - 4\lambda^3 = 1 - \lambda^3 + \lambda^2(1-\lambda) > 0
\]
for $0 < \lambda < 1$. Consequently, $B(\lambda, t) > 0$ for all $t \in [0, 1]$ and for $0 < \lambda < 1$. This observation shows that $A(\lambda) < 0$ for $0 < \lambda \leq 1$. This proves the claim and thus, the proof is complete. □

Corollary 1. The logarithmic coefficients of $f \in \mathcal{U}$ satisfy the inequality

$$
\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.
$$

We have equality in the last inequality for the Koebe function $k(z) = z(1 - e^{i\theta}z)^{-2}$. Further there exists a function $f \in \mathcal{U}$ such that $|\gamma_n| > 1/n$ for some n.

Remark 1. From the analytic characterization of starlike functions, it is easy to see that for $f \in \mathcal{S}^*$,

$$
\frac{zf'(z)}{f(z)} - 1 = z \left(\log \left(\frac{f(z)}{z} \right) \right)' = 2 \sum_{n=1}^{\infty} n\gamma_n z^n < \frac{2z}{1 - z},
$$

and thus, by Rogosinski’s result, we obtain that $|\gamma_n| \leq 1/n$ for $n \geq 1$. In fact for starlike functions of order α, $\alpha \in [0, 1)$, the corresponding logarithmic coefficients satisfy the inequality $|\gamma_n| \leq (1 - \alpha)/n$ for $n \geq 1$. Moreover, one can quickly obtain that

$$
\sum_{n=1}^{\infty} |\gamma_n|^2 \leq (1 - \alpha)^2 \frac{\pi^2}{6}
$$

if $f \in \mathcal{S}^*(\alpha)$, $\alpha \in [0, 1)$ (See also the proof of Theorem 2 and Remark 3). As remarked in the proof of Theorem 4 from the relation (7), we cannot conclude the same fact, namely, $|\gamma_n| \leq 1/n$ for $n \geq 1$, for the class \mathcal{U} although the Koebe function $k(z) = z/(1 - z)^2$ belongs to $\mathcal{U} \cap \mathcal{S}^*$. For example, if we set $\lambda = 1$ in (6), then we have

$$
\frac{z}{f_1(z)} = (1 - z)^2\left(1 + \frac{z}{2}\right) = 1 - \frac{3}{2}z + \frac{z^3}{2},
$$

where $f_1 \in \mathcal{U}$ and for this function, we obtain

$$
\sum_{n=1}^{\infty} |\gamma_n(f_1)|^2 = \sum_{n=1}^{\infty} \left(\frac{1}{n} + (-1)^n \frac{1}{n2^{n+1}} \right)^2
= \frac{\pi^2}{6} + \frac{1}{4} \text{Li}_2 \left(\frac{1}{4} \right) + \text{Li}_2 \left(\frac{-1}{2} \right)
= \frac{\pi^2}{6} + \frac{1}{2} \left[\text{Li}_2 \left(\frac{1}{2} \right) + 3\text{Li}_2 \left(\frac{-1}{2} \right) \right],
$$

where we have used the fact that $\text{Li}_2(z^2) = 2(\text{Li}_2(z) + \text{Li}_2(-z))$. From the proof of Theorem 7, we conclude that

$$
\sum_{n=1}^{\infty} |\gamma_n(f_1)|^2 < \frac{\pi^2}{6},
$$
because
\[\text{Li}_2 \left(\frac{1}{2} \right) + 3 \text{Li}_2 \left(-\frac{1}{2} \right) < 0. \]

As a direct approach, it is easy to see that
\[\text{Li}_2(z) + 3 \text{Li}_2(-z) = \sum_{n=1}^{\infty} \frac{1}{n^2} (1 + 3(-1)^n)z^n = \sum_{k=1}^{\infty} \frac{z^{2k}}{k^2} - 2 \sum_{k=1}^{\infty} \frac{z^{2k-1}}{(2k-1)^2} \]
and thus, we obtain that
\[\sum_{n=1}^{\infty} n^2 |\gamma_n(f_1)|^2 = \frac{\pi^2}{6} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{4^k} \left(\frac{1}{k^2} - \frac{1}{(k-1/2)^2} \right) = \frac{\pi^2}{6} - \sum_{k=1}^{\infty} \frac{1}{4^k} \left(\frac{4k-1}{k^2(2k-1)^2} \right) \]
and thus,
\[\sum_{n=1}^{\infty} |\gamma_n(f_1)|^2 < \frac{\pi^2}{6}. \]

On the other hand, it is a simple exercise to verify that \(f_1 \notin S^* \). The graph of this function is shown in Figure 1(d).

Let \(G(\alpha) \) denote the class of locally univalent normalized analytic functions \(f \) in the unit disk \(|z| < 1\) satisfying the condition
\[\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) < 1 + \frac{\alpha}{2} \quad \text{for } |z| < 1, \]
and for some \(0 < \alpha \leq 1 \). Set \(G(1) =: G \). It is known (see [13, Equation (16)]) that \(G \subset S^* \) and thus, functions in \(G(\alpha) \) are starlike. This class has been studied extensively in the recent past, see for instance [9] and the references therein. We now consider the estimate of the type \((2) \) for the subclass \(G(\alpha) \).

Theorem 2. Let \(0 < \alpha \leq 1 \) and \(G(\alpha) \) be defined as above. Then the logarithmic coefficients \(\gamma_n \) of \(f \in G(\alpha) \) satisfy the inequalities
\[\sum_{n=1}^{\infty} n^2 |\gamma_n|^2 \leq \frac{\alpha}{4(\alpha + 2)} \]
and
\[\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{\alpha^2}{4} \text{Li}_2 \left(\frac{1}{(1+\alpha)^2} \right). \]
Also we have
\[|\gamma_n| \leq \frac{\alpha}{2(\alpha + 1)n} \quad \text{for } n \geq 1. \]

Proof. If \(f \in G(\alpha) \), then we have (see eg. [8, Theorem 1] and [13])
\[\frac{zf'(z)}{f(z)} - 1 \prec \frac{(1+\alpha)(1-z)}{1+\alpha-z} - 1 = -\alpha \left(\frac{z/(1+\alpha)}{1-(z/(1+\alpha))} \right), \quad z \in \mathbb{D}, \]
which, in terms of the logarithmic coefficients γ_n of f defined by (1), is equivalent to

\[(12) \quad \sum_{n=1}^{\infty} (-2n\gamma_n)z^n < \alpha \sum_{n=1}^{\infty} \frac{z^n}{(1+\alpha)^n}.\]

Again, by Rogosinski’s result, we obtain that

\[\sum_{n=1}^{\infty} 4n^2|\gamma_n|^2 \leq \alpha^2 \sum_{n=1}^{\infty} \frac{1}{(1+\alpha)^{2n}} = \frac{\alpha}{\alpha + 2}\]

which is (5).

Now, since the sequence $A_n = \frac{1}{(1+\alpha)^n}$ is convex decreasing, we obtain from (12) and [15, Theorem VII, p.64] that

\[| -2n\gamma_n | \leq \alpha A_n = \frac{\alpha}{1 + \alpha},\]

which implies the desired inequality (10). As an alternate approach to prove this inequality, we may rewrite (11) as

\[\sum_{n=1}^{\infty} (2n\gamma_n)z^n = z \left(\log \left(\frac{f(z)}{z} \right) \right)' \prec \phi(z) = -\alpha \left(\frac{z/(1+\alpha)}{1 - (z/(1+\alpha))} \right)\]

and, since $\phi(z)$ is convex in \mathbb{D} with $\phi'(0) = -\alpha/(1 + \alpha)$, it follows from Rogosinski’s result (see also [4, Theorem 6.4(i), p.195]) that $|2n\gamma_n| \leq \alpha/(1 + \alpha)$. Again, this proves the inequality (10).

Finally, we prove the inequality (9). From the formula (12) and the result of Rogosinski (see also [12, Theorem 2.2] and [4, Theorem 6.2]), it follows that for $k \in \mathbb{N}$ the inequalities

\[\sum_{n=1}^{k} n^2 |\gamma_n|^2 \leq \frac{\alpha^2}{4} \sum_{n=1}^{k} \frac{1}{(1+\alpha)^{2n}}\]

are valid. Clearly, this implies the inequality (8) as well. On the other hand, consider these inequalities for $k = 1, \ldots, N$, and multiply the k-th inequality by the factor $\frac{1}{k^2} - \frac{1}{(k+1)^2}$, if $k = 1, \ldots, N - 1$ and by $\frac{1}{N^2}$ for $k = N$. Then the summation of the multiplied inequalities yields

\[\sum_{k=1}^{N} |\gamma_k|^2 \leq \frac{\alpha^2}{4} \sum_{k=1}^{N} \frac{1}{k^2(1+\alpha)^{2k}} \leq \frac{\alpha^2}{4} \sum_{k=1}^{\infty} \frac{1}{k^2(1+\alpha)^{2k}} = \frac{\alpha^2}{4} \text{Li}_2 \left(\frac{1}{(1+\alpha)^2} \right) \text{ for } N = 1, 2, \ldots,\]

which proves the desired assertion (9) if we allow $N \to \infty$. \hfill \square
Corollary 2. The logarithmic coefficients γ_n of $f \in \mathcal{G} := \mathcal{G}(1)$ satisfy the inequalities
\[\sum_{n=1}^{\infty} n^2 |\gamma_n|^2 \leq \frac{1}{12} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{|\gamma_n|^2}{n^2} \leq \frac{1}{4} \text{Li}_2 \left(\frac{1}{4} \right). \]
The results are the best possible as the function $f_0(z) = z - \frac{1}{2}z^2$ shows. Also we have $|\gamma_n| \leq 1/(4n)$ for $n \geq 1$.

Remark 2. For the function $f_0(z) = z - \frac{1}{2}z^2$, we have that $\gamma_n(f_0) = -\frac{1}{n2^{n+1}}$ for $n = 1, 2, \ldots$ and thus, it is reasonable to expect that the inequality $|\gamma_n| \leq \frac{1}{n2^{n+1}}$ is valid for the logarithmic coefficients γ_n of each $f \in \mathcal{G}$. But that is not the case as the function f_n defined by $f_n(z) = (1 - z^n)^{\frac{1}{2}}$ shows. Indeed for this function we have
\[1 + \frac{zf''_n(z)}{f'_n(z)} = \frac{1 - 2z^n}{1 - z^n} \]
showing that $f_n \in \mathcal{G}$. Moreover,
\[\log \frac{f_n(z)}{z} = -\frac{1}{n(n+1)}z^n + \cdots, \]
which implies that $|\gamma_n(f_n)| = \frac{1}{2n(n+1)}$ for $n = 1, 2, \ldots$, and observe that $\frac{1}{2n(n+1)} > \frac{1}{n2^{n+1}}$ for $n = 2, 3, \ldots$. Thus, we conjecture that the logarithmic coefficients γ_n of each $f \in \mathcal{G}$ satisfy the inequality $|\gamma_n| \leq \frac{1}{2n(n+1)}$ for $n = 1, 2, \ldots$ Clearly, Corollary 2 shows that the conjecture is true for $n = 1$.

Remark 3. Let $f \in \mathcal{C}(\alpha)$, where $0 \leq \alpha < 1$. Then we have [15]
\[(13) \quad \frac{zf'(z)}{f(z)} - 1 < G_\alpha(z) - 1 = \sum_{n=1}^{\infty} \delta_n z^n, \]
where δ_n is real for each n,
\[G_\alpha(z) = \begin{cases}
\frac{(2\alpha - 1)z}{(1-z)[(1-z)^{1-2\alpha} - 1]} & \text{if } \alpha \neq 1/2, \\
\frac{-z}{(1-z)\log(1-z)} & \text{if } \alpha = 1/2,
\end{cases} \]
and
\[\beta(\alpha) = G_\alpha(-1) = \inf_{|z|<1} G_\alpha(z) = \begin{cases}
\frac{1 - 2\alpha}{2[1 - 2\alpha - 1]} & \text{if } 0 \leq \alpha \neq 1/2 < 1, \\
\frac{1}{2\log 2} & \text{if } \alpha = 1/2
\end{cases} \]
so that $f \in \mathcal{S}^*(\beta(\alpha))$. Also, we have [10]
\[\frac{f(z)}{z} < K_\alpha(z) = \begin{cases}
\frac{(1-z)^{2\alpha-1} - 1}{(1-2\alpha)z} & \text{if } 0 \leq \alpha \neq 1/2 < 1, \\
\frac{1 - \log(1-z)}{z} & \text{if } \alpha = 1/2,
\end{cases} \]
and $K_\alpha(z)/z$ is univalent and convex (not normalized in the usual sense) in \mathbb{D}.

Logarithmic Coefficients for Univalent Functions 9
Now, the subordination relation \[(13) \], in terms of the logarithmic coefficients \(\gamma_n \) of \(f \) defined by \[(1) \], is equivalent to
\[
2 \sum_{n=1}^{\infty} n \gamma_n z^n < G_{\alpha}(z) - 1 = \sum_{n=1}^{\infty} \delta_n z^n, \quad z \in \mathbb{D},
\]
and thus,
\[
(14) \quad \sum_{n=1}^{k} n^2 |\gamma_n|^2 \leq \frac{1}{4} \sum_{n=1}^{k} \delta_n^2 \quad \text{for each } k \in \mathbb{N}.
\]
Since \(f \) is starlike of order \(\beta \), it follows that
\[
\frac{z K_{\alpha}'(z)}{K_{\alpha}(z)} - 1 = G_{\alpha}(z) - 1 < 2(1 - \beta) \frac{z}{1 - z}
\]
and therefore, \(|\delta_n| \leq 2(1 - \beta) \) for each \(n \geq 1 \). Again, the relation \[(14) \] by the previous approach gives
\[
\sum_{k=1}^{N} |\gamma_k|^2 \leq \frac{1}{4} \sum_{k=1}^{N} \delta_k^2 \leq (1 - \beta)^2 \sum_{k=1}^{N} \frac{1}{k^2}
\]
for \(N = 1, 2, \ldots, \) and hence, we have
\[
\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{1}{4} \sum_{n=1}^{\infty} \frac{\delta_n^2}{n^2} \leq (1 - \beta)^2 \sum_{n=1}^{\infty} \frac{1}{n^2} = (1 - \beta)^2 \pi^2/6
\]
and equality holds in the first inequality for \(K_{\alpha}(z) \). In particular, if \(f \) is convex then \(\beta(0) = 1/2 \) and hence, the last inequality reduces to
\[
\sum_{n=1}^{\infty} |\gamma_n|^2 \leq \frac{\pi^2}{24}
\]
which is sharp as the convex function \(z/(1 - z) \) shows.

3. Proof of Conjecture \[\text{for } n = 2, 3, 4 \]

Theorem 3. Let \(f \in \mathcal{U}(\lambda) \) for \(0 < \lambda \leq 1 \) and let \(f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \). Then
\[
|a_n| \leq \frac{1 - \lambda^n}{1 - \lambda} \quad \text{for } 0 < \lambda < 1 \text{ and } n = 2, 3, 4,
\]
and \(|a_n| \leq n \) for \(\lambda = 1 \) and \(n \geq 2 \). The results are the best possible.

Proof. The case \(\lambda = 1 \) is well-known because \(\mathcal{U} = \mathcal{U}(1) \subset \mathcal{S} \) and hence, by the de Branges theorem, we have \(|a_n| \leq n \) for \(f \in \mathcal{U} \) and \(n \geq 2 \). Here is an alternate proof without using the de Branges theorem. From the subordination result \[(3) \] with \(\lambda = 1 \), one has
\[
\frac{f(z)}{z} \prec \frac{1}{(1 - z)^2} = \sum_{n=1}^{\infty} n z^{n-1}
\]
and thus, by Rogosinski’s theorem [4, Theorem 6.4(ii), p. 195], it follows that \(|a_n| \leq n \) for \(n \geq 2 \).
So, we may consider \(f \in \mathcal{U}(\lambda) \) with \(0 < \lambda < 1 \). The result for \(n = 2 \), namely, \(|a_2| \leq 1 + \lambda\) is proved in \([10, 17]\) and thus, it suffices to prove (15) for \(n = 3, 4 \) although our proof below is elegant and simple for the case \(n = 2 \) as well. To do this, we begin to recall from (3) that

\[
\frac{f(z)}{z} < \frac{1}{(1 - z)(1 - \lambda z)} = 1 + \sum_{n=1}^{\infty} \frac{1 - \lambda^{n+1}}{1 - \lambda} z^n
\]

and thus

\[
\frac{f(z)}{z} = \frac{1}{(1 - z \omega(z))(1 - \lambda z \omega(z))},
\]

where \(\omega \) is analytic in \(\mathbb{D} \) and \(|\omega(z)| \leq 1\) for \(z \in \mathbb{D} \). In terms of series formulation, we have

\[
\sum_{n=1}^{\infty} a_{n+1} z^n = \sum_{n=1}^{\infty} \frac{1 - \lambda^{n+1}}{1 - \lambda} \omega^n(z) z^n.
\]

We now set \(\omega(z) = c_1 + c_2 z + \cdots \) and rewrite the last relation as

(16) \[
\sum_{n=1}^{\infty} (1 - \lambda) a_{n+1} z^n = \sum_{n=1}^{\infty} (1 - \lambda^{n+1})(c_1 + c_2 z + \cdots) z^n.
\]

By comparing the coefficients of \(z^n \) for \(n = 1, 2, 3 \) on both sides of (16), we obtain

(17) \[
\begin{align*}
(1 - \lambda) a_2 &= (1 - \lambda^2) c_1 \\
(1 - \lambda) a_3 &= (1 - \lambda^2) c_2 + (1 - \lambda^3) c_1^2 \\
(1 - \lambda) a_4 &= (1 - \lambda^2) (c_3 + \mu c_1 c_2 + \nu c_1^3),
\end{align*}
\]

where

\[
\mu = 2 \frac{1 - \lambda^3}{1 - \lambda^2} \quad \text{and} \quad \nu = \frac{1 - \lambda^4}{1 - \lambda^2}.
\]

It is well-known that \(|c_1| \leq 1\) and \(|c_2| \leq 1 - |c_1|^2\). From the first relation in (17) and the fact that \(|c_1| \leq 1\), we obtain

\[
(1 - \lambda)|a_2| = (1 - \lambda^2)|c_1| \leq 1 - \lambda^2,
\]

which gives a new proof for the inequality \(|a_2| \leq 1 + \lambda\).

Next we present a proof of (15) for \(n = 3 \). Using the second relation in (17), \(|c_1| \leq 1\) and the inequality \(|c_2| \leq 1 - |c_1|^2\), we get

\[
(1 - \lambda)|a_3| \leq (1 - \lambda^2)|c_2| + (1 - \lambda^3)|c_1|^2 \leq (1 - \lambda^2)(1 - |c_1|^2) + (1 - \lambda^3)|c_1|^2 = 1 - \lambda^2 + (\lambda^2 - \lambda^3)|c_1|^2 \leq 1 - \lambda^3,
\]

which implies \(|a_3| \leq 1 + \lambda + \lambda^2\).

Finally, we present a proof of (15) for \(n = 4 \). To do this, we recall the sharp upper bounds for the functionals \(|c_3 + \mu c_1 c_2 + \nu c_1^3|\) when \(\mu \) and \(\nu \) are real. In \([14]\), Prokhorov and Szynal proved among other results that

\[
|c_3 + \mu c_1 c_2 + \nu c_1^3| \leq |\nu|
\]
if $2 \leq |\mu| \leq 4$ and $\nu \geq (1/12)(\mu^2 + 8)$. From the third relation in (17), this condition is fulfilled and thus, we find that

$$(1 - \lambda)|a_4| = (1 - \lambda^2)|c_3 + \mu c_1 c_2 + \nu c_3^2| \leq (1 - \lambda^2) \left(\frac{1 - \lambda^4}{1 - \lambda^2}\right) = 1 - \lambda^4$$

which proves the desired inequality $|a_4| \leq 1 + \lambda + \lambda^2 + \lambda^3$. □

Acknowledgements. The work of the first author was supported by MNZZS Grant, No. ON174017, Serbia. The second author is on leave from the IIT Madras.

REFERENCES

1. L. A. Aksent’ev, Sufficient conditions for univalence of regular functions (Russian), Izv. Vyssh. Učebn. Zaved. Matematika 1958(4) (1958), 3–7.
2. L. A. Aksent’ev and F. G. Avhadiev, A certain class of univalent functions (Russian), Izv. Vyssh. Učebn. Zaved. Matematika 1970(10) (1970), 12–20.
3. A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math., 133 (1974), 139–169.
4. P. Duren, Univalent functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Springer-Verlag, 1983).
5. P. L. Duren and Y. J. Leung, Logarithmic coefficients of univalent functions, J. Anal. Math. 36 (1979), 36–43.
6. D. Girela, Logarithmic coefficients of univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I. 25 (2000), 337–350.
7. A. W. Goodman, Univalent functions, Vols. 1-2, Mariner, Tampa, Florida, 1983.
8. I. Jovanović and M. Obradović, A note on certain classes of univalent functions, Filomat No. 9, part 1 (1995), 69–72.
9. M. Obradović, S. Ponnusamy, and K.-J. Wirths, Coefficient characterizations and sections for some univalent functions, Siberian Mathematical Journal 54(1) (2013), 679–696.
10. M. Obradović, S. Ponnusamy, and K.-J. Wirths, Geometric studies on the class $U(\lambda)$, Bull. Malaysian Math. Soc. 39(3) (2016), 1259–1284.
11. S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392–394.
12. Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
13. S. Ponnusamy and S. Rajasekaran, New sufficient conditions for starlike and univalent functions, Soochow J. Math. 21 (1995), 193–201.
14. D. V. Prokhorov and J. Szynal, Inverse coefficients for (α, β)-convex functions, Ann. Univ. Mariae Curie-Skłodowska, 35 (1981), 125–143.
15. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48(2) (1943), 48–82.
16. E. M. Silvia, The quotient of a univalent function with its partial sum, in “Topics in Complex Analysis” (Fairfield, Conn., 1983), 105–111, Contemp. Math., 38, Amer. Math. Soc., Providence, RI, 1985.
17. A. Vasudevarao and H. Yanagihara, On the growth of analytic functions in the class $U(\lambda)$, Comput. Methods Funct. Theory 13 (2013), 613–634.
18. D. R. Wilken and J. A. Feng, A remark on convex and starlike functions, J. London Math. Soc. 21(2) (1980), 287–290.
M. Obradović, Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia.
E-mail address: obrad@grf.bg.ac.rs

S. Ponnusamy, Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600 113, India.
E-mail address: samy@isichennai.res.in, samy@iitm.ac.in

K.-J. Wirths, Institut für Analysis und Algebra, TU Braunschweig, 38106 Braunschweig, Germany.
E-mail address: kjwirths@tu-bs.de