Outline

- Introduction to $SU(5)$ Model Building
- Towards Realistic $SU(5)$
- A Novel $SU(5)$ Proposal
- Summary
SU(5) Model Building

SU$_5$ irreps

The smallest group that contains SM Minimal choice (rank 4)

Dynkin label	Dimension	l (index)	Quintality	SU$_4$ singlets	SU$_2 \times$ SU$_3$ singlets
(1000)	5	1	1	1	0
(0100)	10	3	2	0	1
(2000)	15				
(1001)	24				
(0003)	35				
(0011)	40				
(0101)	45				
(0020)	50				
(2001)	70				
(0004)	70'				
(0110)	75				
(0012)	105				
(2010)	126				
(5000)	126'				

SU$_5 \supset$ SU$_2 \times$ SU$_3 \times$ U$_1$

- $5 = (2, 1)(3) + (1, 3)(-2)$
- $10 = (1, 1)(6) + (1, 3)(-4) + (2, 3)(1)$
- $15 = (3, 1)(6) + (2, 3)(1) + (1, 6)(-4)$
- $24 = (1, 1)(0) + (3, 1)(0) + (2, 3)(-5) + (2, 3)(5) + (1, 8)(0)$
- $35 = (4, 1)(-9) + (3, 3)(-4) + (2, 6)(1) + (1, 10)(6)$
- $40 = (2, 1)(-9) + (2, 3)(1) + (1, 3)(-4) + (3, 3)(-4) + (1, 8)(6) + (2, 6)(1)$
- $45 = (2, 1)(3) + (1, 3)(-2) + (3, 3)(-2) + (1, 3)(8) + (2, 3)(-7) + (1, 6)(-2) + (2, 8)(3)$
- $50 = (1, 1)(-12) + (1, 3)(-2) + (2, 3)(-7) + (3, 6)(-2) + (1, 6)(8) + (2, 8)(3)$
- $70 = (2, 1)(3) + (4, 1)(3) + (1, 3)(-2) + (3, 3)(-2) + (3, 3)(8) + (2, 6)(-7) + (2, 8)(3) + (1, 15)(-2)$
- $70' = (5, 1)(-12) + (4, 3)(-7) + (3, 6)(-2) + (2, 10)(3) + (1, 15)(8)$
- $75 = (1, 1)(0) + (1, 3)(10) + (2, 3)(-5) + (1, 3)(-10) + (2, 3)(5) + (2, 6)(-5) + (2, 8)(5) + (1, 8)(0) + (3, 8)(0)$
Georgi-Glashow Model

- **Fermions**

\[
\bar{5}_F = \begin{pmatrix}
d_1^c \\
d_2^c \\
d_3^c \\
e \\
-\nu
\end{pmatrix}, \quad 10_F = \frac{1}{\sqrt{2}} \begin{pmatrix}
0 & u_3^c & -u_2^c & u_1 & d_1 \\
-u_2^c & 0 & u_1^c & u_2 & d_2 \\
u_2^c & -u_1^c & 0 & u_3 & d_3 \\
-u_1 & -u_2 & -u_3 & 0 & e^c \\
-d_1 & -d_2 & -d_3 & -e^c & 0
\end{pmatrix}.
\]

- ** Scalars**

\[
24_H : \quad SU(5) \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y
\]

\[
5_H : \quad SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{em}
\]

Georgi, Glashow 1974
Georgi-Glashow Model

- GG model: $\bar{5}_{Fi} + 10_{Fi} + 5_H + 24_H$

- $M_d = M_e^T$ \hspace{1cm} [Georgi, Jarlskog 1979]

- $M_\nu = 0$

- Gauge coupling unification
In this talk

- Towards Realistic Models
 - Renormalizable models
 - Non-renormalizable models
Towards Realistic Models

- $\overline{5}_{Fi} + 10_{Fi} + 5_H + 24_H + 45_H$
 - Georgi, Jarlskog 1979

- Yukawa Lagrangian: Dorsner, Perez 2006

$$\mathcal{L}_Y = Y_{1,ij} \overline{5}_{Fi}^{\alpha} 10_{F\alpha\beta,j}^{\beta} 5^*_H + Y_{2,ij} \overline{5}_{Fi}^{\delta} 10_{F\alpha\beta,j} 45^*_H{}^{\alpha\beta} + \epsilon^{\alpha\beta\gamma\delta r} \left(Y_{3,ij} 10_{F\alpha\beta,i} 10_{F\gamma\delta,j} 5_H{}^r + Y_{4,ij} 10_{F\alpha\beta,i} 10_{Fm\gamma,j} 45^m_H{}^{H\delta r} \right)$$
Towards Realistic Models

- $\overline{5}_{Fi} + 10_{Fi} + 5_{H} + 24_{H} + 45_{H}$

- $M_d \neq M_e^T$

- $M_{\nu} = 0$

- Gauge coupling unification

- Proton decay (safe)
Neutrino Mass: Tree level

- **Type-I seesaw:** \(5_{F_i} + 10_{F_i} + 5_H + 24_H + 45_H + 1_{F_i} \)

- **Type-II seesaw:** \(5_{F_i} + 10_{F_i} + 5_H + 24_H + 45_H + 15_H \)

 Dorsner, Perez 2005; Dorsner, Mocioiu 2008

- **Type-I+III seesaw:** \(5_{F_i} + 10_{F_i} + 5_H + 24_H + 45_H + 24_{F_j} \)

 Bajc, Senjanovic 2007; Perez 2007

![Diagrams](image-url)
Neutrino Mass: 1-loop

- Zee-mechanism: $\bar{5}_{Fi} + 10_{Fi} + 5_{H} + 24_{H} + 45_{H} + 10_{H}$

 Wolfenstein 1980; Barbieri, Nanopoulos, Wyler 1981; Perez, Murgui 2016
Neutrino Mass: 2-loop

$\bar{5}_{F_i} + 10_{F_i} + 5_H + 24_H + 45_H + 40_H + 50_H$

Saad 2019
Minimal Renormalizable Model?

SU₅ irreps

Dynkin label (name)	Dimension (index)	l (index)	Quintality	SU₄ singlets	SU₂ × SU₃ singlets
(1000)	5	1	1	1	0
(0100)	10	3	2	0	1
(2000)	15	7	2	1	0
(1001)	24	10	0	1*	1*
(0003)	35	28	2	1	0
(0011)	40	22	2	0	0
(0101)	45	24	1	0	0
(0020)	50	35	1	0	1
(2001)	70	49	1	1	0
(0004)	70'	84	1	1	0
(0110)	75	50	0	0	1*
(0012)	105	91	1	0	0
(2010)	126	105	0	0	0
(5000)	126'	210	0	1	0

Slansky 1981
Minimality Criteria

- ✔ least number of parameters
- ✔ lowest dimensional representations
- ✖ non-renormalizable operators
- ✖ singlets
A Novel $SU(5)$ Proposal

Dynkin label	Dimension (name)	l (index)	Quintality	SU_4 singlets	$SU_2 \times SU_3$ singlets
(1000)	5	1	1	1	0
(0100)	10	3	2	0	1
(2000)	15	7	2	1	0
(1001)	24	10	0	1*	1*
(0003)	35	28	2	1	0
(0011)	40	22	2	0	0
(0101)	45	24	1	0	0
(0020)	50	35	1	0	1
(2001)	70	49	1	1	0
(0004)	70'	84	1	1	0
(0110)	75	50	0	0	1*
(0012)	105	91	1	0	0
(2010)	126	105	0	0	0
(5000)	126'	210	0	1	0
A Novel $SU(5)$ Proposal

- $\overline{5}_{Fi} + 10_{Fi} + 5_H + 24_H + 35_H + 15_F + \overline{15}_F$

- Decompositions

 $5_H \equiv \Lambda = \Lambda_1(1, 2, 1/2) + \Lambda_3(3, 1, -1/3)$

 $24_H \equiv \phi = \phi_0(1, 1, 0) + \phi_1(1, 3, 0) + \phi_3(3, 2, -5/6)$

 $ + \phi_3(\overline{3}, 2, 5/6) + \phi_8(8, 1, 0)$

 $35_H \equiv \Phi = \Phi_1(1, 4, -3/2) + \Phi_3(\overline{3}, 3, -2/3) + \Phi_6(\overline{6}, 2, 1/6)$

 $ + \Phi_{10}((1\overline{0}, 1, 1)$

 $15_F \equiv \Sigma = \Sigma_1(1, 3, 1) + \Sigma_3(3, 2, 1/6) + \Sigma_6(6, 1, -2/3)$
Gauge Coupling Unification

Highly non-trivial:

- \(M_{\Sigma_6} = 2M_{\Sigma_3} - M_{\Sigma_1} \)
- \(M_{\Phi_{10}}^2 = M_{\Phi_1}^2 - 3M_{\Phi_3}^2 + 3M_{\Phi_6}^2 \)
- \(M_{\Lambda_3} \geq 3 \times 10^{11} \text{ GeV} \) (proton decay)
- \(M_{\text{GUT}} \geq 5 \times 10^{15} \text{ GeV} \) (proton decay)
- \(M_k \geq 10 \text{ TeV} \) \((k = \text{any BSM state}) \)
- \(\nu \)-mass requires specific \(M_{\Sigma_1} \) and \(M_{\Phi_1} \)
 (rules out most of the parameter space consistent with unification)
Gauge Coupling Unification

\[\alpha^{-1}_1, \alpha^{-1}_2, \alpha^{-1}_3 \]

\[M_{\phi_6}, M_{\phi_3}, M_{\phi_1}, M_{\phi_8} \]

\[M_{\Sigma_6}, M_{\Sigma_3}, M_{\Lambda_3}, M_{\Phi_{10}} \]

\[\mu \text{ (GeV)} \]

\[10^2, 10^4, 10^6, 10^8, 10^{10}, 10^{12}, 10^{14}, 10^{16}, 10^{18} \]

\[7 \times 10^{15} \]
Neutrino Mass
Neutrino Mass

\[\mathcal{L} \supset \chi' 5_H 5_H 35_H + Y^a_i 15_F 5_{F_i} 5_{H}^* + Y^b_i 15_F 5_{F_i} 35_{H}^* \]

- **tree-level contribution**

\[
(M^{d=7}_{\nu})_{ij} = -\chi' \frac{v_H^4}{M_{\Sigma_1} M_{\Phi_1}^2} \left(Y^a_i Y^b_j + Y^b_i Y^a_j \right)
\]

\[
\sim 10^{-26} \text{ GeV}
\]

- **one-loop contribution**

\[
(M^{d=5}_{\nu})_{ij} = \frac{\chi' v_H^2}{16\pi^2} \frac{(Y^a_i Y^b_j + Y^b_i Y^a_j) M_{\Sigma_1}}{M_{\Phi_1}^2 - M_H^2} \left(\frac{M_{\Phi_1}^2}{M_{\Sigma_1}^2 - M_{\Phi_1}^2} \log \left(\frac{M_{\Sigma_1}^2}{M_{\Phi_1}^2} \right) - \frac{M_H^2}{M_{\Sigma_1}^2 - M_H^2} \log \left(\frac{M_{\Sigma_1}^2}{M_H^2} \right) \right)
\]

\[
\sim 4 \times 10^{-11} \text{ GeV}
\]

\[Y^a, Y^b, \chi' = 1 \]
Charged fermion masses

\[
\mathcal{L} \supset Y_{ij}^d 10_F i \bar{5}_F j 5^*_H + Y_{ij}^u 10_F i 10_F j 5_H + Y_i^c 10_F i \bar{15}_F 24_H \\
+ Y_i^a 15_F 5_F i 5^*_H + M_\Sigma 15_F 15_F + y 15_F 15_F 24_H
\]

- Quarks, charged leptons, neutrino masses- all connected!

- \(M_u = \left(\mathbb{I}_{3 \times 3} + \delta^2 \ Y^c Y^c \dagger \right)^{-\frac{1}{2}} v_H Y^u \)

- \(M_d = \left(\mathbb{I}_{3 \times 3} + \delta^2 \ Y^c Y^c \dagger \right)^{-\frac{1}{2}} v_H (Y^d + \delta \ Y^c Y^a) \)

- \(M_e = v_H Y^d^T \)

- \((M_\nu)_{ij} = m_0 (Y_i^a Y_j^b + Y_j^b Y_i^a) \)
Fit Parameters and Result

- $Y^d = (y_e, y_\mu, y_\tau)$
- $Y^a = (-0.0899, 0.551, 1)$
- $Y^b = (0.975, 2.381, 1)$
- $Y^c = -1.865 \times 10^{-7} (0.00137, 0.0942, 1)$
- $\lambda' = 0.239$

Down-type quark masses	Fit value (GeV)	ν masses	Fit value (eV)	ν mixing angles	Fit value (°)
$m_d/10^{-3}$	1.14	m_1	0	θ_{12}	34.57
$m_s/10^{-2}$	2.15	$m_2/10^{-3}$	8.70	θ_{23}	47.41
m_b	0.99	$m_3/10^{-2}$	4.99	θ_{13}	8.56
A Novel $SU(5)$ Proposal: Summary

☑ Gauge coupling unification (fixed by ν-mass)
☑ Safe from rapid proton decay
☑ Neutrino mass via 1-loop diagram ($m_1 = 0$)
☑ Correct charged fermion masses
☑ All fermion masses & mixings are correlated
☑ Only lowest dimensional representations
☑ Least number of Yukawa parameters
☑ $(1, 3, 0), (8, 1, 0), (3, 3, \frac{2}{3}), (6, 2, \frac{-1}{6}) \sim 1 - 10 \text{ TeV}$ (scalars)