Introduction

A new generation of spintronic devices, which rely only on the electron spin degree of freedom, are envisioned for a future integration of logic and memory [1]. Creation, transport and detection of a pure spin current, i.e. a flow of spin angular momentum without being accompanied by a charge current, are thus essential ingredients for a successful device. Lateral spin valves (LSVs) are basic spintronic devices that offer an attractive means to study the spin transport as well as the spin injection properties in different materials. After the pioneering studies, first by Johnson and Silsbee [2, 3] and more recently by Jedema et al [4, 5], a large number of spin injection experiments have been reported in metals [6–23], semiconductors [24–26] or carbon-based materials [27, 28]. LSVs consist of two ferromagnetic (FM) electrodes, used to inject and detect pure spin currents, bridged by a non-magnetic (NM) channel, which transports the injected spin current (see figure 1(a)). For the optimum performance of a LSV, it is crucial to choose a NM material in which the spin information can travel over long distances, i.e. with long spin diffusion length λ_{NM}, with Cu [4–12], Al [2, 5, 9, 13, 14] or Ag [15–22] being the most commonly selected metals. In order to enhance λ_{NM}, it is crucial to understand which are the spin relaxation processes that lead to the loss of spin information. It is known that, in NM metals, the spin relaxation is governed by the Elliott–Yafet (EY) mechanism [29, 30], with phonons, grain boundaries, impurities or the surface being common sources for the associated spin-flip scattering [5, 7, 12, 18, 19]. A proper control of these contributions could thus help obtaining larger λ_{NM} values.

In this work, we explore a way of diminishing the grain boundary contribution to the spin relaxation by controlling the Ag growth in lateral spin valves.

Abstract

The role of the growth conditions onto the spin transport properties of silver (Ag) have been studied by using lateral spin valve structures. By changing the deposition conditions of Ag from polycrystalline to epitaxial growth, we have observed a considerable enhancement of the spin diffusion length, from $\lambda_{\text{pol}} = 449 \pm 30$ to 823 ± 59 nm. This enhancement in the spin diffusion length is closely related to the grain size of the Ag channel, which is 19 ± 6 nm for polycrystalline Ag and 41 ± 4 nm for epitaxial Ag. This study shows that diminishing the grain boundary contribution to the spin relaxation mechanism is an effective way to improve the spin diffusion length in metallic nanostructures.

Keywords: spintronics, lateral spin valves, epitaxial silver, spin diffusion length
In the polycrystalline case, the characteristic peak, which corresponds to Ag (1 1 1), respectively. Note that the Ag (2 2 0) peak in the epitaxial case, the characteristic peak of Si (2 2 0) appears at 2θ = 44.2°, and the peaks of Ag (2 0 0) and Ag (2 2 0) appear at 2θ = 38.1°, 2θ = 44.2° and 2θ = 44.5°, respectively. In the epitaxial case, the characteristic peak of Si (2 2 0) appears at 2θ = 47.30° and the peak of epitaxial Ag (2 2 0) appears at 2θ = 64.45°. The polycrystalline case is not as pronounced as in the epitaxial case. (c) XRD θ−2θ scans at the 2θ peaks of the (1 1 1) poles of the Si substrate (top panel) and Ag thin films (bottom panel) for the epitaxial (red solid line) and polycrystalline (blue dashed line) cases.

Figure 1. (a) SEM image of a Py/Ag LSV (left side) and a vertical Py bar on top of the Ag channel (right side), which was used to measure the interface resistance of Py/Ag. The FM and NM materials, the applied magnetic field (H) direction and the non-local (black, left side) and interface resistance (orange, right side) measurement configurations are schematically depicted. (b) XRD θ−2θ scan for the epitaxial Ag (red solid line) and polycrystalline Ag (blue dashed line). In the epitaxial case, the characteristic peak of Si (2 2 0) appears at 2θ = 47.30° and the peak of epitaxial Ag (2 2 0) appears at 2θ = 64.45°. In the polycrystalline case, the characteristic peak of Si (2 2 0) appears at 2θ = 47.30° and the peaks of Ag (1 1 1), Ag (2 0 0) and Ag (2 2 0) appear at 2θ = 38.1°, 2θ = 44.2° and 2θ = 44.5°, respectively. Note that the Ag (2 2 0) peak in the polycrystalline case is not as pronounced as in the epitaxial case. (c) XRD ϕ-scans at the 2θ poles of the (100) planes of the Si substrate (top panel) and Ag thin films (bottom panel) for the epitaxial (red solid line) and polycrystalline (blue dashed line) cases.

The fabrication of LSVs involves two metallization processes, one for the FM and the other for the NM metal. There are two common techniques for the fabrication process, namely: (i) a two-step electron-beam lithography (eBL) followed by metal deposition and lift off [4, 6, 16] and (ii) a two-angle shadow evaporation technique, where a single eBL step is required [8, 9, 13]. The only difference between them is that the two-step eBL process needs an extra milling step to obtain a clean FM/NM interface. In this article, we will use the eBL technique, for which the Ag channel will be defined in the first step and the FM electrodes will be patterned afterwards.

Experimental details

Thin films with 40 nm of epitaxial Ag were grown at room temperature by sputtering on a (1 1 0) Si substrate, after first removing the native Si-oxide by etching the Si-substrate with hydrofluoric (HF) acid [31, 32]. For comparison, a control sample was fabricated following the same process, except that Ag was deposited without pretreating the Si substrate with HF acid, thus leaving the native oxide and leading to a polycrystalline Ag channel structure [33]. The structural analysis of the Ag films was performed via x-ray diffraction (XRD) measurements, utilizing a PANalytical X’Pert Pro diffractometer with Cu-Kα radiation. The crystal structure was checked by coplanar θ−2θ XRD measurements and ϕ scans (figures 1(b) and (c)). For the case of epitaxial Ag, from the θ−2θ scans only one diffraction peak at 2θ = 64.45°, corresponding to the Ag (2 2 0) atomic planes, was observed together with the (2 2 0) Si substrate diffraction (figure 1(b), red line). On the contrary, for the polycrystalline Ag case (figure 1(b), blue line), three different diffractions peaks were measured, being 2θ = 38.10°, which corresponds to Ag (1 1 1) atomic planes, the most pronounced peak. The in-plane orientation relationship between Si substrates and Ag thin films were investigated by means of XRD ϕ-scans at the (400) poles for Si and at the (2 0 0) for Ag. These ϕ scans clearly confirmed the epitaxial growth of Ag onto HF etched Si. As it can be clearly seen in figure 1(c), both the Ag (red solid line, bottom panel) and the Si substrate (black line, top panel) show two diffraction peaks, corresponding to the two (100) poles, which are 180° apart and appear at the same absolute ϕ positions [31]. Regarding the ϕ scans for the polycrystalline Ag (figure 1(c), blue dashed line, bottom panel) only a more or less uniform background signal can be measured, as expected from a non-epitaxial structure. Furthermore, the average grain size for each sample can be extracted from the diffraction peaks by applying the Scherrer equation. From the (2 2 0) diffraction peak of the epitaxial Ag (figure 1(b)), a grain size of 41 ± 4 nm is obtained. On the other hand, using the same equation for the diffraction peaks of polycrystalline Ag, grain sizes of 15 ± 1 nm, 16 ± 2 nm and 26 ± 3 nm are obtained from the (1 1 1), (2 0 0) and (2 2 0) peaks, respectively, yielding an average value of 19 ± 6 nm.

After the structural characterization, the Ag films were coated with negative resist and, in an initial eBL step, a ~200 nm-wide channel was patterned. Ag was removed with two consecutive Ar-ion etchings (figure 2(a)). In the first etching, Ar ions were accelerated almost perpendicularly (80° from in-plane orientation) to the Ag surface in order to remove the Ag that was not protected by the negative resist. In this first step, some etched Ag was redeposited at the edges of the channel, forming vertical walls of Ag that needed to be removed. Therefore, a second etching was performed without breaking the vacuum by accelerating Ar ions almost perpendicular to these Ag walls (10° from in-plane orientation). The suppression of the redeposited metal was confirmed by observing cross-sectional cuts, produced by means of focused ion beam (FIB) irradiation after the first (figure 2(b)) and the second etching (figure 2(c)). After these etching processes, the samples were immersed in acetone, so that all the resist was removed. In a second eBL step, the FM electrodes were patterned using a positive resist in this case. 45 nm-thick Py was e-beam evaporated at a pressure of ≤1 × 10⁻⁵ mbar and the samples were immersed in acetone for lift-off. Different Py electrode widths, ~110 nm and ~150 nm, were chosen in order to obtain different magnetic switching fields. Each sample contains several LSVs where the edge-to-edge distance L between the Py electrodes varied between 150 and 5500 nm.

Results and discussion

All measurements described in the following were carried out in a liquid-He cryostat (applying an external magnetic field H
and varying the temperature T) using a ‘dc reversal’ technique [9]. When a spin-polarized charge current is injected through the Py electrode, due to the net spin polarization of FM materials, a spin accumulation will be created at the Py/Ag interface and will diffuse to both sides of the Ag channel. The second Py electrode will detect the spin accumulation by measuring the voltage between the Py detector and the Ag channel. The measured voltage, V, normalized to the injected current, I, is defined as the non-local resistance $R_{NL} = V/I$ (see figure 1(a) for the measurement scheme). R_{NL} changes sign from positive to negative when the magnetization of the electrodes switches from parallel to antiparallel. We will call this change in resistance the spin signal ΔR_{NL} (figure 3(a)). ΔR_{NL} is proportional to the spin accumulation at the detector, R_{NL} will decay upon increasing the distance L at which the spin signal is detected (figure 3(b)). Solving the corresponding 1D spin-diffusion equation, the following expression is obtained for ΔR_{NL} [15, 34]:

$$\Delta R_{NL} = \frac{4 R_{Ag} \left[\alpha_1 \left(\frac{R_{Py}}{R_{Ag}} \right) + \alpha_{Py} \left(\frac{R_{Py}}{R_{Ag}} \right)^2 \right] e^{-L/\lambda_{Ag}}}{1 + 2 \left(\frac{R_{Py}}{R_{Ag}} \right) + 2 \left(\frac{R_{Py}}{R_{Ag}} \right)^2} - \frac{e^{-2L/\lambda_{Ag}}}{e^{-L/\lambda_{Ag}}}$$

where R_{i} is the interface resistance, $R_{Ag} = \lambda_{Ag} \rho_{Ag} w_{Ag} l_{Ag}$ and $R_{Py} = \lambda_{Py} \rho_{Py} (1 - \alpha_{Py}^2) w_{Ag} w_{Py}$ are the spin resistances, $\lambda_{Ag,Py}$ are the spin diffusion lengths, $\rho_{Ag,Py}$ are the resistivities and $w_{Ag,Py}$ and l_{Ag} are the geometrical parameters (width and thickness) of Ag and Py, respectively. α_{Py} and α_1 are the spin polarizations of the Py and the interface, respectively.

A R_{i} of 60 mΩ is measured in the same device, in which the spin signal is obtained by using a cross-configuration that suppresses the contribution of the contacts, as shown figure 1(a). This measured value is in agreement with a non-transparent interface present in Py/Ag as previously observed [16, 20, 22]. The resistivity of Ag is measured using a 4-point configuration, in which a current is sent through the Ag channel and a voltage is measured using the Py electrodes. Varying the distance L in between the electrodes, the resistance of Ag for every L is measured and performing a linear regression, $\rho_{Ag} (= 1.06 \mu \Omega \text{cm})$ is obtained. The resistivity of Py, $\rho_{Py} (= 22.4 \mu \Omega \text{cm})$, is measured separately in a device for which Py was grown under the same evaporation conditions. By setting $\lambda_{Py} = 5 \text{ nm}$ [35] and $\alpha_{Py} = 0.33 = 0.33$ [6, 7, 9] we fit our experimental data to equation (1) and we obtain the fitting parameters $\alpha_1 = 0.47 \pm 0.04$ and $\lambda_{Ag} = 823 \pm 59 \text{ nm}$ at 10 K for epitaxially grown Ag. For comparison, the control sample with polycrystalline growth yields a higher Ag resistivity, $\rho_{Ag} (= 2.22 \mu \Omega \text{cm})$, a lower spin diffusion length, $\lambda_{Ag} = 449 \pm 30 \text{ nm}$ and a lower interface spin polarization $\alpha_1 = 0.25 \pm 0.03$ at 10 K. These values are comparable to other polycrystalline Ag samples reported in the literature [17, 18, 21].

This substantial improvement in the spin diffusion length, by a factor of two, can be related to the decrease of the spin relaxation via grain boundary scattering [7, 15]. As it has been previously observed, the polycrystalline sample shows a
considerably smaller grain size in comparison to the epitaxial Ag. The smaller grain size implies having more grain boundaries, and consequently a higher resistivity and a shorter λ_{Ag}. Moreover, grains do not have a preferred crystalllographic orientation for the polycrystalline Ag case, so that the existing grain boundaries are high angle grain boundaries, which also contributes to a higher resistivity. In contrast, the epitaxial growth of Ag strongly reduces the grain boundaries in the channel, which lowers the resistivity to $\rho_{Ag} \sim 1.07 \mu \Omega cm$ and increases λ_{Ag}. This dependence is in good agreement with the EY mechanism, which predicts $\lambda_{Ag} \propto 1/\rho_{Ag}$. This mechanism is probably similar to what a thermal annealing might do to polycrystalline Ag. For LSVs where Ag has not been treated, $\lambda_{Ag} \sim 550 nm$ [17, 18] is obtained, whereas values of $\lambda_{Ag} \sim 1000 nm$ have been reported after thermally treating the devices [15, 21]. However, the advantage of controlling the Ag growth by means of epitaxy is that there is no need for additional thermal treatment, and given that the growth is done at room temperature, possible thermal diffusion between metals is avoided.

Conclusion

In conclusion, we have shown that the spin diffusion length in Ag can be substantially increased by controlling the growth process. When epitaxial Ag is grown, the grain boundary scattering is largely suppressed leading to lower resistivity values and higher spin diffusion lengths. The main advantage that this approach offers compared to an annealing treatment is that the growth process is done at room temperature. This avoids a possible diffusion of metals when the device is being heated. Proper engineering of the material used as a spin channel can thus improve the spin transport properties, and hereby help towards the development of devices based on pure spin currents.

Acknowledgments

This work is supported by the European Union 7th Framework Program under the Marie Curie Actions (256470-ITAMOSCI-NOM) and the European Research Council (257654-SPIN-TROS), by the Spanish MINECO (MAT2012-36844) and by the Basque Government (PI2011-1 and PI2012-47). MI, EV, LF and OI thank the Basque Government for a PhD fellowship (BFI-2011-106, BFI-2010-163, PRE-2013-1-974 and BFI-2009–284).

References

[1] Behin-Aein B, Datta D, Salahuddin S and Datta S 2010 *Nat. Nanotechnol.* **5** 266

[2] Johnson M and Silsbee R H 1985 *Phys. Rev. Lett.* **55** 1790

[3] Johnson M and Silsbee R H 1988 *Phys. Rev. B* **37** 5312

[4] Jedema F J, Filip A T and van Wees B J 2001 *Nature* **410** 345

[5] Jedema F J, Nijboer M S, Filip A T and van Wees B J 2003 *Phys. Rev. B* **67** 085319

[6] Villamor E, Isasa M, Hueso L E and Casanova F 2013 *Phys. Rev. B* **88** 184411

[7] Villamor E, Isasa M, Hueso L E and Casanova F 2013 *Phys. Rev. B* **87** 094417

[8] Ji Y, Hoffmann A, Pearson J E and Bader S D 2006 *Appl. Phys. Lett.* **88** 052509

[9] Casanova F, Sharoni A, Erekhinsky M and Schuller I K 2009 *Phys. Rev. B* **79** 184415

[10] Kimura T, Otani Y and Harmle J 2006 *Phys. Rev. B* **73** 132405

[11] Wang X J, Zou H, Ocola L E, Dican R and Ji Y 2009 *Appl. Phys. Phys. Rev.* **105** 093907

[12] Erekhinsky M, Sharoni A, Casanova F and Schuller I K 2010 *Appl. Phys. Lett.* **96** 022513

[13] Valenzuela S O and Tinkham M 2004 *Appl. Phys. Lett.* **85**, 24 5914

[14] Rojas Sánchez J C et al 2013 *Appl. Phys. Lett.* **102** 132408

[15] Wang L, Fukuma Y, Izduchi H, Yu G, Jiang Y and Otani Y 2011 *Appl. Phys. Express* **4** 093004

[16] Kimura T and Otani T 2007 *Phys. Rev. Lett.* **99** 196604

[17] Fukuma Y, Wang L, Izduchi H and Otani Y 2010 *Appl. Phys. Lett.* **97** 012507

[18] Mihajlovic G, Pearson J E, Bader S D and Hoffmann A 2010 *Phys. Rev. Lett.* **104** 237202

[19] Izduchi H, Fukuma Y, Wang L and Otani Y 2012 *Appl. Phys. Lett.* **101** 022415

[20] Mihajlovic G, Schreiber D K, Liu Y, Pearson J E, Bader S D, Pettford-Long A K and Hoffmann A 2010 *Appl. Phys. Lett.* **97** 112502

[21] Fukuma Y, Wang L, Izduchi H, Takahashi S, Maekawa S and Otani Y 2011 *Nat. Mater.* **10** 527

[22] Godfrey R and Johnson M 2006 *Phys. Rev. Lett.* **96** 136601

[23] Isasa M, Villamor E, Hueso L E, Gradhand M and Casanova F 2015 *Phys. Rev. B* **91** 024402

[24] Lou X, Adelmann C, Crooker S A, Garrid E S, Zhang J, Reddy K S M, Flexner S D, Palmstrom C J and Crowell P A 2007 *Nat. Phys.* **3** 197

[25] van t Erve O M J, Hanibicki A T, Holub M, Li C H, Awo-Affouda C, Thompson P E and Jonker B T 2007 *Appl. Phys. Lett.* **91** 212109

[26] Li J and Appelbaum I 2011 *Phys. Rev. B* **84** 165318

[27] Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Ert A and Mathur N D 2007 *Nature* **445** 410

[28] Tombrons N, Joza C, Popinciuc M, Jonkman H T and van Wees B J 2007 *Nature* **448** 571

[29] Elliott R J 1954 *Phys. Rev.* **96** 266

[30] Yafet Y 1963 *Solid State Physics* ed F Seitz and D Turnbull (New York: Academic) pp 1–98

[31] Yang W, Lambeth D and Laughlin D E 1999 *J. Appl. Phys.* **85** 4723

[32] Idigoras O, Suszka A K, Vavassori P, Landeros P, Porro J M and Berger A 2011 *Phys. Rev. B* **84** 132403

[33] Idigoras O, Suszka A K, Vavassori P, Obry B, Hillebrands B, Landeros P and Berger A 2014 *J. Appl. Phys.* **115** 083912

[34] Takahashi S and Maekawa S 2003 *Phys. Rev. B* **67** 052409

[35] Dubois S, Piraux L, George J M, Oumadjela K, Duvial J L and Fert A 1999 *Phys. Rev. B* **60** 477