Short Communication

Environmental Control Biol. 58 (2), 49-50, 2020
DOI: 10.2525/ecb.58.49

Temperature Effects on the Photosynthesis by the Medicinal Plant Pinellia ternata Breit.

Toshihiko EGUCHI1, Hiroyuki TANAKA2, Daichi MORIUCHI3, Satoshi YOSHIDA1 and Ken MATSUOKA1
1 Biotron Application Center, Kyushu University, Fukuoka 819-0395, Japan
2 Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yanaguchi 756-0884, Japan
3 Daizen Co., Ltd., Saitama 343-0002, Japan

We investigated the effect of air temperature on the growth of the medicinal plant Pinellia ternata Breit. collected from the four prefectures, Fukushima, Kyoto, Nagasaki, and Okinawa prefectures. Plants were grown for 15 weeks in phytotrons controlled at air temperatures of 20, 25, and 30°C. In the Kyoto lines, the highest corm yield was observed at 25°C, whereas the corm yields in Fukushima, Nagasaki, and Okinawa lines did not differ significantly with respect to yield among the three growth temperature conditions. Therefore, in this study, the temperature effects on the photosynthesis by P. ternata collected from the three prefectures of Kyoto, Nagasaki, and Okinawa were investigated. Obvious effects of air temperatures were not observed in the plant photosynthesis for all regions. Thus, air temperature does not affect the yield through the photosynthesis in the P. ternata.

Keywords : growth temperature, photosynthesis, Pinellia ternata

Vol. 58, No. 2 (2020) 49-50, 2020
DOI: 10.2525/ecb.58.49

INTRODUCTION

In our previous report, we had shown that the Kyoto line of the medicinal plant Pinellia ternata Breit. had the highest yield and effective ingredient content at a growth temperature of 25°C (Eguchi et al., 2019). The Nagasaki line, however, did not show growth response at a temperature of 25°C. We also investigated the effects of temperature on the growth and quality of the Fukushima and Okinawa lines (Eguchi et al., 2016); there was no obvious response to the growth temperature. Higher leaf photosynthetic capacity has been reported to contribute to higher yields in some crops (Jiang et al., 1988; Fischer et al., 1998; Higashide and Heuvelink, 2009; Takai et al., 2013). Therefore, we examined the temperature effects on the photosynthetic rate of the Kyoto, Nagasaki, and Okinawa lines.

MATERIALS AND METHODS

Plant material
Bulbs of P. ternata collected from three regions, namely, the Kyoto, Nagasaki, and Okinawa prefectures, were used for this experiment.

Cultural conditions
A porous solid material PUMICE® (grain size, 0.5–2.4 mm; porosity, 0.58; OBE Chemicals Inc., Osaka) was used as root medium and a commercial nutrient solution (OAT Agrio Co., Ltd., Osaka) adjusted to pH 4.0 was used. A 1/5000a Wagner pot was filled with the root medium up to 150 mm depth. Three pots for each of the three regions were placed in a plastic tray in which the nutrient solution was maintained at a depth of 9 cm. Pots were installed in three phytotrons at Kyushu University controlled at air temperatures of 25 and 30 ± 1°C and relative humidity of 70 ± 5%. In each pot, three bulbils were planted with the bulbil base located 2 cm below the surface of the medium. Ground water levels were maintained at approximately 4 cm below the bulbil base, which is favorable for plant growth (Eguchi et al., 2014).

Measurement of photosynthetic rate
The photosynthetic rate of P. ternata was measured using a Li-6400XT portable photosynthesis system (Li-cor, Nebraska, USA) at air temperatures of 25 or 30°C and carbon dioxide at 400 ppm from 24 November 2015.

Statistical analysis
Data for photosynthetic rate and stomatal conductance were analyzed using the analysis of variance (n = 3). The significant differences between regions or seasons were tested by Tukey test at P<0.05.

RESULTS AND DISCUSSION

Figure 1 shows the photosynthetic rates of P. ternata at air temperatures of 25°C and 30°C under various light intensities. All the three lines did not show a significant
The photosynthetic rate of the P. ternata responds to the rise in CO₂ concentration from 400 ppm to 800 ppm (Moriuchi et al., 2014); however, the rate does not respond to different air temperatures. Thus, the photosynthetic rate does not relate to the yield of P. ternata.

ACKNOWLEDGEMENT

This study was supported by JSPS KAKENHI Grant Number 24580371.

REFERENCES

Eguchi, T., Tanaka, H., Yoshida, S., Matsuoka, K. 2014. Influence of ground water level on the growth of the medicinal plant Pinellia ternata Breit. in a solid substrate culture system. Proc. Int. Conf. Plant Factory 2014.

Eguchi, T., Tanaka, H., Yoshida, S., Matsuoka, K. 2016. Temperature effect on growth of the medicinal plant Pinellia ternata. (in Japanese) Kyushu J. Agric. Meteorol., II, 25: 16–17.

Eguchi, T., Tanaka, H., Yoshida, S., Matsuoka, K. 2019. Temperature effects on the yield and quality of the medicinal plant Pinellia ternata Breit. Environ. Control Biol. 57: 83–85.

Fischer, R. A., Rees, D., Sayre, K. D., Lu, Z. ‑M., Condon, A. G., Laque Saavedra, A. 1998. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci. 38: 1467–1475.

Higashide, T., Heuvelink, E. 2009. Physiological and morphological changes over the past 50 years in yield components in tomato. J. Am. Soc. Hortic. Sci. 134: 460–465.

Jiang, C. ‑Z., Hirazawa, T., Ishihara, K. 1988. Physiological and ecological characteristics of high yielding varieties in rice plants: II. Leaf photosynthetic rates. Jpn. J. Crop Sci. 57: 139–145.

Maki, T., Takahashi, K., Shibata, S. 1987. An anti-emetic principle of Pinellia ternata Tuber. PLANTA MED. 5: 410–414.

Moriuchi, D., Hidaka, K., Yoshida, S., Matsuoka, K., Eguchi, T. 2014. Photosynthetic property of a medicinal plant Pinellia ternata Breit. (in Japanese) Kyushu J. Agric. Meteorol., II, 23: 89–99.

Takai, T., Adachi, S., Taguchi ‑Shibaura, F., Sanoh ‑Arai, Y., Iwasawa, N., Yoshinaga, S., Hirose, T., Taniguchi, Y., Yamanouchi, U., Wu, J., Matsumoto, T., Sugimoto, K., Kondo, K., Ikka, T., Ando, T., Kono, I., Ito, S., Shimura, A., Oosawa, T., Hirazawa, T., Yano, M., Kondo, M., Yamamoto, T. 2013. A natural variant of NAL1, selected in high ‑yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3: 2149.