Supervised Chaotic Source Separation by a Tank of Water

Zhixin Lu, Jason Z. Kim, and Danielle S. Bassett

Department of Bioengineering, School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104

(Dated: 17 December 2019)

Whether listening to overlapping conversations in a crowded room or recording the simultaneous electrical activity of millions of neurons, the natural world abounds with sparse measurements of complex overlapping signals that arise from dynamical processes. While tools that separate mixed signals into linear sources have proven necessary and useful, the underlying equational forms of most natural signals are unknown and nonlinear. Hence, there is a need for a framework that is general enough to extract sources without knowledge of their generating equations, and flexible enough to accommodate nonlinear, even chaotic, sources. Here we provide such a framework, where the sources are chaotic trajectories from independently evolving dynamical systems. We consider the mixture signal as the sum of two chaotic trajectories, and propose a supervised learning scheme that extracts the chaotic trajectories from their mixture. Specifically, we recruit a complex dynamical system as an intermediate processor that is constantly driven by the mixture. We then obtain the separated chaotic trajectories based on this intermediate system by training the proper output functions. To demonstrate the generalizability of this framework in silico, we employ a tank of water as the intermediate system, and show its success in separating two-part mixtures of chaotic trajectories from a set of 6 chaotic systems. Finally, we relate the underlying mechanism of this method to the state-observer problem. This relation provides a quantitative theory that explains the performance of our method, such as why separation is difficult when two source signals are trajectories from the same chaotic system.

Experimentally measured signals from the natural world are often mixtures of dynamical signals that are generated by independently evolving sources systems. The chaotic source separation (CSS) problem is to infer the separated signals, each of which is generated by a chaotic system, given the measured signal comprised of their mixture. In this paper, we show that the chaotic source separation problem can be considered as a nonlinear state-observer problem, and we propose a dynamical framework with notable generalizability to solve the CSS problem without knowing the governing dynamical equations of the source systems. As a demonstration, we recruit a tank of water as an intermediate processor that is driven by the mixture signal. We show that through supervised training, the separated signal can be obtained from the states of the tank of water. By relating chaotic source separation to the nonlinear state-observer problem, we also explain why separation is difficult when the two source signals are trajectories from the same chaotic system. More broadly, our study provides a foundation for the principled examination of source separation in nonlinear dynamical data.

I. INTRODUCTION

Blind source separation (BSS) is the separation of source signals from a mixed signal with little or no information regarding the source signals or the mixing process. A classical example is the cocktail party problem, where a listener follows any one of many simultaneously occurring conversations at a cocktail party. BSS also has many notable applications in digital signal processing, such as removing artifacts from electroencephalography (EEG) and magnetoencephalography (MEG) recordings1–5. When the mixed signal has a lower dimension than the total dimension of the sources, the BSS is called under-determined.

Many methods have been proposed to solve BSS in various scenarios. For example, by assuming various types of statistical independencies or mixing properties of the source signals, unsupervised classical methods such as principal component analysis (PCA)6–9, independent component analysis (ICA)10,11, and non-negative matrix factorization (NMF)12–14 have been proposed. While these methods have dramatically enhanced our ability to parse data from linear and static statistical distributions, it has been shown that adaptations of the above methods15–19 as well as many other unsupervised learning methods, such as the Wiener filter20, support vector machines21, deep learning networks22–24, and recurrent neural networks25–27, outperform classical methods when the signals are generated from complex dynamical sources.

In this paper, we focus on a particular type of separation problem: chaotic source separation (CSS). Specifically, we consider the d-dimensional mixed signal to be a superposition of two d-dimensional trajectories, each

1Electronic mail: dsb@seas.upenn.edu Also at Also Departments of Physics & Astronomy, Electrical & Systems Engineering, Neurology, and Psychiatry at the University of Pennsylvania, Philadelphia, PA 19104; and the Santa Fe Institute, Santa Fe NM 87501
of which is generated by an autonomous d-dimensional chaotic system. This problem is of particular relevance in high-dimensional biological signals such as those from chaotic neural systems, as experimental measurements involve a mixture of electrical activity, correlated artifacts, and hemodynamic responses. Hence, it is of interest to study how one can extract a chaotic trajectory of interest from the mixed signal.

Here, we propose to solve this problem with an intermediate dynamical system that is trained by a supervised learning method. Although the dimension of the mixed signal d is only half of the total dimension $2d$, the problem can still be solved by a supervised learning framework, where the exact separated trajectories are known during a training period. As a significant extension from previous works[21][22] that require knowledge of the governing equation of the source chaotic systems, we build on a prior demonstration from the present authors that a recurrent neural network (RNN) can solve the CSS problem in the absence of these equations[20] (a more recent work by Krishnagopal et al. also demonstrated that a reservoir computer can solve the CSS problem[23]). In this paper, we extend the demonstration by enacting this separation through a dynamically simple intermediary system that is a simulated tank of water, and provide a quantitative theory explaining why and how such chaotic source separation is solvable. Our theory accurately predicts that separation is harder when the two source signals are generated by the same chaotic system, and provides a foundation for the principled study of source separation in nonlinear dynamical data.

II. SUPERVISED LEARNING MODEL FOR CHAOTIC SOURCE SEPARATION

A. General scheme

We begin with a simple description of a general scheme of our supervised CSS (Fig. 1). We consider extracting trajectories of two autonomously evolving chaotic systems, $s_a(t)$ and $s_b(t)$, from their mixture, $s_+(t) = s_a(t) + s_b(t) \in \mathbb{R}^d$, where

$$s_a(t) = f_a(s_a), \quad (1a)$$
$$s_b(t) = f_b(s_b). \quad (1b)$$

CSS is similar to an underdetermined BSS problem in the sense that the dimension of the mixture d is less than the total dimension of the sources, i.e., $2d$. As a result, there exist mixed states s_+ that correspond to multiple distinct pairs of sources. Thus, without utilizing the temporal structure, one cannot find a function that maps the simultaneous state $s_+(t)$ to the separated states $s_a(t)$ and $s_b(t)$.

The essential idea of our method is to implement a high-dimensional dynamical system as an intermediate system

$$\frac{d}{dt} r = f_r(r, s_+), \quad (2)$$

that is continuously driven by $s_+(t)$. Since the state of the intermediate system, r, incorporates both the immediate value and the history of the mixed signal $s_+(t)$, one may obtain the full states of the two sources by training the output functions $\phi_a(\cdot)$ and $\phi_b(\cdot)$, as shown in Fig. 1. We assume that the governing equations of the source systems are unknown. However, different from the BSS problem, we do assume that the separated trajectories $s_a(t)$ and $s_b(t)$ are known for a finite time window. During this time window, we match the recorded state of the intermediate system $r(t)$ with the two separated signals $s_a(t)$ and $s_b(t)$, and we look for two functions, $\phi_a(\cdot)$ and $\phi_b(\cdot)$, which can estimate the separated signals based on the state of the intermediate system, i.e., $\phi_a(r(t)) \approx s_a(t)$ and $\phi_b(r(t)) \approx s_b(t)$ where t is in the time window.

B. Intermediate system instantiated by a tank of water

To demonstrate the generalizability of this scheme beyond the RNN used in prior work[20], we instantiate the intermediate system in silico as a tank of water (Fig. 2). We test the performance of this intermediate system on the CSS problem given the mixed signals of different pairwise sums from 6 distinct chaotic systems. We show their governing equations shown in Tab. II and their attractors in Fig. 3.

We construct the intermediate system as a square tank of water that is constantly perturbed by the mixed signal $s_+(t)$. The perturbed water evolves following the nonlinear partial differential equations

$$\frac{\partial h}{\partial t} + \frac{\partial uh}{\partial x} + \frac{\partial vh}{\partial y} = p, \quad (3a)$$
$$\frac{\partial(u^2 h + \frac{1}{2} gh^2)}{\partial t} + \frac{\partial(wh)}{\partial x} + \frac{\partial(wh)}{\partial y} + buh = 0, \quad (3b)$$
$$\frac{\partial(vh)}{\partial t} + \frac{\partial(wh)}{\partial x} + \frac{\partial(u^2 h + \frac{1}{2} gh^2)}{\partial y} + bv h = 0. \quad (3c)$$
where \(h(x, y, t) \) is the height of the wave surface, \(u(x, y, t) \) and \(v(x, y, t) \) are the zonal and meridional speeds, respectively; \(g = 9.8 \) is the gravity constant, and \(b > 0 \) is the viscous drag coefficient. The tank has a flat 1-1 bottom and four vertical hard walls with reflective boundary condition. When the perturbing term \(p = 0 \), Eqs. (3a)-(3c) become the traditional shallow water equations with the presence of a viscous dragging force.\(^{22}\)

Although other forms of perturbation exist, for example a time-varying bottom which requires the modification of all three equations, for the simplicity of the demonstration, we drive the water by artificially defining the perturbing term

\[
p(x, y, t) = \sum_{i=1}^{d} D_i(x, y) [s_+(t)]_i, \tag{4}
\]

on the right hand side of Eq. (3b) only. The perturbation term \(p(x, y, t) \) can be considered to reflect the speed of which one vertically and inhomogeneously adds or removes water from right above the wave surface. Each component of the \(d \)-dimensional mixed signal \([s_+(t)]_i\) is propagated onto the wave surface through randomly constructed input filters, \(D_i(x, y) \), as shown in Fig. 2. To guarantee the conservation of the water volume, we renormalize each filter such that

\[
\int_V D_i(x, y) \, dx \, dy = 0, \tag{5}
\]

where \(V = [0,1] \times [0,1] \subset \mathbb{R}^2 \) for each \(i = 1,2,...,d \). Thus we now have a tank of water that is constantly being perturbed by input signal \(s_+ \) while preserving its total volume.

![FIG. 2. A schematic demonstration of chaotic source separation performed by a tank of water. The mixture signal is the sum of two chaotic trajectories, one from the Lorenz system and the other from the Rössler system. This 3-dimensional mixture signal is then propagated onto the surface of the water wave through three randomly generated filters: \(D_i(x, y) \) with \(i = 1, 2, 3 \). The output function is then trained to estimate the separated signals \(s_a \) and \(s_b \) by measuring the shape of the wave surface.](image)

Although other forms of perturbation exist, for example a time-varying bottom which requires the modification of all three equations, for the simplicity of the demonstration, we drive the water by artificially defining the perturbing term

\[
p(x, y, t) = \sum_{i=1}^{d} D_i(x, y) [s_+(t)]_i, \tag{4}
\]

on the right hand side of Eq. (3b) only. The perturbation term \(p(x, y, t) \) can be considered to reflect the speed of which one vertically and inhomogeneously adds or removes water from right above the wave surface. Each component of the \(d \)-dimensional mixed signal \([s_+(t)]_i\) is propagated onto the wave surface through randomly constructed input filters, \(D_i(x, y) \), as shown in Fig. 2. To guarantee the conservation of the water volume, we renormalize each filter such that

\[
\int_V D_i(x, y) \, dx \, dy = 0, \tag{5}
\]

where \(V = [0,1] \times [0,1] \subset \mathbb{R}^2 \) for each \(i = 1,2,...,d \). Thus we now have a tank of water that is constantly being perturbed by input signal \(s_+ \) while preserving its total volume.

![FIG. 2. A schematic demonstration of chaotic source separation performed by a tank of water. The mixture signal is the sum of two chaotic trajectories, one from the Lorenz system and the other from the Rössler system. This 3-dimensional mixture signal is then propagated onto the surface of the water wave through three randomly generated filters: \(D_i(x, y) \) with \(i = 1, 2, 3 \). The output function is then trained to estimate the separated signals \(s_a \) and \(s_b \) by measuring the shape of the wave surface.](image)

The simulation of this perturbed shallow water system is done by a modified Lax-Wendroff method\(^{23}\). The method preserves the second order spatial and temporal accuracy even with the presence of the three source terms in the partial differential equations (p., bh., and bvh.). The viscous coefficient \(b \) is empirically set to 0.3.

In this finite difference method, we discretize the wave surface into a 128 \(\times \) 128 grid, and integrate it with time step \(\Delta t = 0.03 \).

Starting from the initial quiescent wave surface \(h(x, y, 0) = 1 \), we drive this dissipative water wave system by the \(d \)-dimensional mixed trajectory \(s_+(t) \). After a transient period (\(T_{\text{hump}} = 600 \)) that is long enough to wash out the effect of the initial condition, we record the water’s reaction to the mixed signal. To reduce the amount of data recorded, we sparsely measure the deviation of water elevation from the equilibrium height \(h = 1 \) at 2000 randomly selected locations, denoted as \(h(t) \in \mathbb{R}^{2000} \). Then, with the available separated trajectories during the training period, we construct output functions that map \(h(t) \) into separated signals \([s_a(t), s_b(t)]\).

Although many other forms of output functions may also work, we adopt the following nonlinear form with a tanh-type saturation on the quadratic and cubic terms,

\[
\begin{bmatrix}
 s_a(t) \\
 s_b(t)
\end{bmatrix} = W \begin{bmatrix}
 h(t) - 1 \\
 \tanh((h(t) - 1)^2) \\
 \tanh((h(t) - 1)^3)
\end{bmatrix} \tag{6}
\]

where \(W \in \mathbb{R}^{6 \times 6000} \) is the coefficient matrix of the non-
Chaotic System of $s_i(t)$:

	Sprott N	Rossler	Halvorsen	Lorenz	Sprott B	Thomas
Sprott N						
Rossler						
Halvorsen						
Lorenz						
Sprott B						
Thomas						

FIG. 3. Example trajectories of the chaotic attractors studied in this work. Here we show six exemplary trajectories with duration 5000 time units on the 6 chaotic attractors, whose equations are shown in Tab. [II][B]. We integrate these chaotic attractors using a 4-th order Runge-Kutta method with a time step of 0.0001 units.

FIG. 4. Signal separation. Here we show the signal s_a separated by a post-training water tank from the mixed signal $s_+ = s_a + s_b$, where s_a and s_b are the distinct trajectories generated by two of the six chaotic systems listed in Tab. [II][B] respectively.

FIG. 5. The mean squared errors (MSEs) of the water-tank separated s_a signals as shown in Fig. [4]. Each (i, j)-th element represents the MSE of reconstruction of the signal from system i from a mixed signal of attractors i and j.

linear output function. With the recorded h and the available s_a and s_b during the training phase ($T_{\text{tran}} = 600$ with 20000 time points), the output weight matrix W is calculated by the least squares method with the Tikhonov regularization, $\alpha = 0.001$. We note that other output functions that outperform this one should exist. However, the purpose of this simulation is to demonstrate that CSS is indeed solvable by such an intermediate system, rather than to develop an optimal design.

In Fig. 2, we show a schematic of the intermediate system separating a mixed signal that is a summation of a Lorenz trajectory and a Rössler trajectory. Given the 6 distinct chaotic systems listed in Tab. [II][B], we train and test the separation performance of a shallow water system driven by $6^2 - 6 = (6 - 1)/2 = 21$ mixed signals. Each mixed signal is the sum of two chaotic trajectories, $s_a(t)$ and $s_b(t)$, that are from the ith and the jth chaotic system, respectively, for $1 \leq i \leq j \leq 6$. To test the system’s performance in separating each mixed signal, we reinitialize the water at quiescence, and drive it with a new mixed signal. The separated signal s_a from the post-training water system, after a transient period ($T = 600$), are plotted in Fig. [4]. Specifically, the trajectory on row i and column j is the separated s_a, where the mixed signal is a summation $s_+ = s_a + s_b$ with s_a and s_b from system i and system j. For cases where $i = j$, we ensure that the two trajectories being mixed are distinct, i.e., $s_a(t) \neq s_b(t)$, by initializing their initial conditions differently.

By visually collating the separated signals in Fig. [4] and the 6 chaotic attractors in Fig. [3], we note that the performance of the separation varies across chaotic systems. Specifically, the Sprott N trajectories and the Rössler trajectories separated from a mixture with other systems seem to have much higher quality compared with others (see the first and the second rows in Fig. [4]). To quantify performance, we calculate the mean squared error (MSE) between the actual trajectory and the separated one during the post-training period following $T = 600$ (see Fig. [5]). We do not find a concrete relationship between the separation performances and the Lyapunov dimensions of the chaotic attractors. However, we note that the quality of the separation appears particularly poor when the two source signals are trajectories from the same chaotic system (see the diagonal line in Fig. [4]). In the next section, we explain the underlying mechanism behind this supervised CSS, and give an explanation for the diminished performance when signals are taken from the same attractor.
III. UNDERLYING MECHANISM OF SUPERVISED CHAOTIC SOURCE SEPARATION

We notice that the chaotic source separation (CSS) problem is essentially a nonlinear state-observer problem, and the intermediate system plays the role of the state-observer. To explicitly state this role, we rewrite the dynamical equations of the two source systems by combining them into a single 2d-dimensional autonomous dynamical system, denoted by

\[\dot{x} = f_{ab}(x) = \begin{bmatrix} f_s(s_a) \\ f_b(s_b) \end{bmatrix}, \]

(7)

where

\[x(t) = \begin{bmatrix} s_a(t) \\ s_b(t) \end{bmatrix}, \]

(8)

is the direct sum of the states of the two source systems. Thus, the simultaneous mixed signal \(s_+(t) \), a summation of the two source systems, can be considered as an output from the combined system depicted in Eq. (7), i.e.,

\[y = g(x), \]

(9)

where \(g(s_a \times s_b) \equiv s_a + s_b = s_+ \in \mathbb{R}^d \). The CSS problem can then be considered as the problem of uncovering \(x \) in Eq. (7) through \(y \) in Eq. (9), which is the measurement of the combined system.

More precisely, a state-observer is a system that estimates the full state variable of the combined system, \(x \), by considering the measured \(y \) from the combined system. In our method, the state-observer is the intermediate system driven by \(y \), i.e., the perturbed water tank. Such a dynamical state-observer solves the CSS problem by capitalizing on the power of invertible generalized synchronization [10][25][26].

Specifically, as the intermediate system is driven by the measured \(y \), it evolves nonautonomously according to

\[\frac{d}{dt} r = f_r(r, y). \]

(10)

After a transient period, if the state-observer and the combined system exhibit invertible generalized synchronization, the state of the intermediate system is then uniquely determined by the concurrent state of the combined system \(x \) through an invertible map, i.e., \(r(t) = \phi(x(t)) \). Thus, to estimate the full state of the combined system, one simply needs to train a readout function \(\phi^{-1}(\cdot) \) that approximates the inverse of the generalized synchronization function based on the state of the intermediate system \(r \). Notice that invertible generalized synchronization is a property that emerges from particular choices of both the intermediate system and the combined system. As such, we do not find a general principle of designing an intermediate system that guarantees invertible generalized synchronization with any combined chaotic system.

After elucidating the connection between the CSS problem and the state-observer problem, we emphasize that it is only when the full state is observable that such an invertible generalized synchronization function \(\phi(\cdot) \) can exist. In other words, the combined system (Eq. [7]) has to be observable through the output function (Eq. [9]). The classical work of Kalman has discussed the observability of linear dynamical systems (see[27]). In our case, however, the combined dynamical system is nonlinear and autonomous. The necessary and sufficient condition for such a combined system (Eq. [7]) to be observable through the measured output \(y \) is discussed by Inouye in[28].

Specifically, the system is observable if and only if the observability mapping

\[G_k(x) = \begin{bmatrix} g_0(x) \\ \vdots \\ g_{k-1}(x) \end{bmatrix} \]

(11)

is univalent[28], where the entries are defined as

\[y(t) = g(x(t)) = g_0(x), \]

(12a)

\[\frac{d}{dt} y(t) = \frac{\partial g_0}{\partial x} f_{ab}(x(t)) = g_1(x), \]

(12b)

\[\frac{d^2}{dt^2} y(t) = \frac{\partial g_1}{\partial x} f_{ab}(x(t)) = g_2(x), \]

(12c)

\[\vdots \]

\[\frac{d^k}{dt^k} y(t) = \frac{\partial g_{k-1}}{\partial x} f_{ab}(x(t)) = g_k(x). \]

(12d)

When both \(f_{ab}(\cdot) \) and \(g(\cdot) \) are analytic functions on \(\mathbb{R}^d \), the system (Eq. [7]) is observable if and only if the equations \(G_k(x) = G_k(x') \) with \(k = 1, 2, \ldots \) imply only the trivial solution \(x = x' \).

With the necessary and sufficient condition for observability, we can now investigate whether the CSS problem can be solved providing the measured \(s_+ \) when the two source chaotic systems share the same dynamical equation, such that \(f_s(\cdot) = f_b(\cdot) = f(\cdot) \). To answer this question, we define

\[x = \begin{bmatrix} s \\ s' \end{bmatrix}, \]

(13a)

\[x' = \begin{bmatrix} s' \\ s \end{bmatrix}, \]

(13b)

where \(s \neq s' \) are distinct trajectories generated by \(\dot{s} = f(s) \). We then rewrite Eq. (7) as

\[\frac{d}{dt} \begin{bmatrix} s \\ s' \end{bmatrix} = f_{ab} \left(\begin{bmatrix} s \\ s' \end{bmatrix} \right) = \begin{bmatrix} f(s) \\ f(s') \end{bmatrix}, \]

(14)

and rewrite Eq. (9) as

\[s_+ = g \left(\begin{bmatrix} s \\ s' \end{bmatrix} \right) = s + s'. \]

(15)
By substituting Eqs. \[13\] into Eqs. \[11\], we observe that for any \(k\), \(g_k(x) = g_k(x')\) even if \(x \neq x'\), suggesting that the observability mapping is not univalent. Hence, we explain why the CSS performance along the diagonal in Figs. 3 and 4 tends to be worse compared to the off-diagonal counterparts in the same row.

IV. DISCUSSION

Complementing previous studies on source separation problems,\[19\] we show that separation of signals from a mixture of chaotic trajectories can be considered as a nonlinear state observer problem. With this realization, we propose to solve the problem by employing and training an intermediate system that is continuously driven by the mixed signal. We extend earlier studies where CSS is solved by recurrent neural networks\[11\] and we show that even a tank of water under this proposed framework can solve the CSS problem. By making the connection between the CSS problem and the nonlinear state-observer problem, we explain the reason why separating two signals generated from the same chaotic system tends to be difficult.

We note that in this paper, we only consider mixed signals that are sums of two chaotic trajectories. Yet, our method can be applied to other mixing equations, or mixtures of more than two chaotic trajectories. However, we do expect the method to perform less well when the mixture is more complicated or contains more than two source systems. Future studies could seek principles that guarantee the design of a better intermediate system for different chaotic signals.

ACKNOWLEDGEMENTS

We acknowledge support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the ISI Foundation, the Paul Allen Foundation, the Army Research Laboratory (W911NF-10-2-0022), the Army Research Office (Bassett-W911NF-14-1-0679, Grafton-W911NF-16-1-0474, DCIST-W911NF-17-2-0181), the Office of Naval Research, the National Institute of Mental Health (2-R01-DC-009209-11, R01-MH112847, R01-MH107235, R21-M-H-106799), the National Institute of Child Health and Human Development (1R01HD086888-01), National Institute of Neurological Disorders and Stroke (R01 NS099348), and the National Science Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and BCS-1631550). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.

1R. Vigário, J. Sarela, V. Jousmiki, M. Hamalainen, and E. Oja, IEEE transactions on biomedical engineering 47, 589 (2000).

2P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. McKeown, V. Iragui, and T. J. Sejnowski, Psychophysiology 37, 163 (2000).

3W. Zhou and J. Gotman, in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 1 (IEEE, 2004) pp. 392–395.

4S. P. Fitzgibbon, D. M. Powers, K. J. Pope, and C. R. Clark, Journal of Clinical Neurophysiology 24, 232 (2007).

5R. R. Vásquez, H. Velez-Perez, R. Ranta, V. L. Dorr, D. Maquin, and L. Maillard, Biomedical Signal Processing and Control 7, 389 (2012).

6I. Karhunen, L. Wang, and R. Vigario, in Proceedings of ICON’95-International Conference on Neural Networks, Vol. 2 (IEEE, 1995) pp. 995–1000.

7M. Stetter, I. Schiessl, T. Otto, F. Sengpiel, M. Hübener, T. Bouhoefler, and K. Obermayer, NeuroImage 11, 482 (2000).

8P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent component analysis and applications (Academic press, 2010).

9D. T. Pham, IEEE Transactions on Signal Processing 44, 2768 (1996).

10A. Cichocki, R. Zdunek, and S.-i. Amari, in 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Vol. 5 (IEEE, 2006) pp. V–V.

11B. Wang and M. D. Plumbley, in Proc. DMRN summer conf (2005) pp. 23–24.

12Ph. Pham-Aumuaisuk, in 2013 Conference on Technologies and Applications of Artificial Intelligence (IEEE, 2013) pp. 211–216.

13P. He, T. She, W. Li, and W. Yuan, Mechanical Systems and Signal Processing 113, 22 (2018).

14H. Sawada, N. Ono, H. Kameoka, D. Kitamura, and H. Saruwatari, APSIPA Transactions on Signal and Information Processing 8 (2019).

15P. Sharma, R. Mehta, and N. Dubey, in 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO)/(Trends and Future Directions) (IEEE, 2015) pp. 1–6.

16K. Han and D. Wang, The Journal of the Acoustical Society of America 132, 3475 (2012).

17S. Mogami, H. Sumino, D. Kitamura, N. Takamune, S. Takamichi, H. Saruwatari, and N. Ono, in 2018 26th European Signal Processing Conference (EUSIPCO) (IEEE, 2018) pp. 1557–1561.

18D. Wang and J. Chen, IEEE/ACM Transactions on Audio, Speech, and Language Processing 26, 1702 (2018).

19Z. Lu and D. S. Bassett, arXiv preprint arXiv:1807.05214 (2018).

20R. Krishnagopal, M. Girvan, E. Ott, and B. Hunt, arXiv preprint arXiv:1910.10080 (2019).

21Y. V. Andreychuk, A. S. Dmitriev, E. V. Efremova, and A. N. Anagnostopoulos, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 50, 613 (2003).

22S. Tsimring and M. M. Sushchik, Physics Letters A 213, 155 (1996).

23C. B. Vreugdenhil, Numerical methods for shallow-water flow, Vol. 13 (Springer Science & Business Media, 2013).

24I. Machalis-Murawska and M. Szydlowski, Archives of Hydro-Engineering and Environmental Mechanics 60, 51 (2014).

25Z. Lu, B. R. Hunt, and E. Ott, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 061104 (2018).

26Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 041102 (2017).

27K. Ogata and Y. Yang, Modern control engineering, Vol. 4 (London, 2002).

28Y. Inouye, Journal of Mathematical Analysis and Applications 60, 236 (1977).