Ribbon tableaux, ribbon rigged configurations and Hall-Littlewood functions at roots of unity

Francois Descouens
Université de Marne-la-Vallée, France

Abstract: Hall-Littlewood functions indexed by rectangular partitions, specialized at primitive roots of unity, can be expressed as plethysms. We propose a combinatorial proof of this formula using Schilling’s bijection between ribbon tableaux and ribbon rigged configurations.

1 Introduction

In [11, 12], Lascoux, Leclerc and Thibon proved several formulas for Hall-Littlewood functions $Q'_\lambda(X; q)$ with the parameter q specialized at primitive roots of unity. This formula implies a combinatorial interpretation of the plethysms $l^{(j)}_k[h_\lambda]$ and $l^{(j)}_k[e_\lambda]$, where h_λ and e_λ are respectively products of complete and elementary symmetric functions, and $l^{(j)}_k$ the Frobenius characteristics of representations of the symmetric group \mathfrak{S}_k induced by a transitive cyclic subgroup of \mathfrak{S}_k. However, the combinatorial interpretation of the plethysms of Schur functions $l^{(j)}_k[s_\lambda]$ would be far more interesting. This question led the same authors to introduce a new basis $H^{(k)}_\lambda(X; q)$ of symmetric functions, depending on an integer $k \geq 1$ and a parameter q, which interpolate between Schur functions, for $k = 1$, and Hall-Littlewood functions $Q'_\lambda(X; q)$, for $k \geq l(\lambda)$. These functions were conjectured to behave similarly under specialization at root of unity, and to provide a combinatorial expression of the expansion of the plethysm $l^{(j)}_k[s_\lambda]$ in the Schur basis for suitable values of the parameters. This conjecture has been proved only for the stable case $k = l(\lambda)$, which reduces to the previous result on Hall-Littlewood functions, and $k = 2$, which gives the symmetric and antisymmetric squares $h_2[s_\lambda]$ and $e_2[s_\lambda]$. The proof given in [1] relies upon the study of diagonal classes of domino tableaux, i.e. sets of domino tableaux having the same diagonals. Carré and Leclerc proved that the cospin polynomial of such a class has the form $(1 + q)^a q^b$, and from this obtained the specialization $H^{(2)}_{\lambda \cup \lambda}(X; -1)$.

In [17], Schilling defines ribbon rigged configurations and gives a statistic preserving bijection between this kind of rigged configurations and ribbon tableaux corresponding to a product of row partitions. The aim of this note is to show that the result on Hall-Littlewood functions at roots of unity follows from an explicit formula for the cospin polynomials of certain diagonal classes of ribbon tableaux, which turn out to have a very simple characterization through Schilling’s bijection.

Acknowledgment All the computations on ribbon rigged configurations, ribbon tableaux and Hall-Littlewood functions have been implemented by using MuPAD-Combinat (see [6] for details on this package and more especially [4] for implementation of symmetric functions).
2 Basic definitions

Consider $\lambda = (\lambda_1, \ldots, \lambda_p)$ a partition. We denote by $l(\lambda)$ its length p, $|\lambda|$ its weight $\sum_i \lambda_i$, and λ' its conjugate partition. A k-ribbon is a connected skew diagram of weight k which does not contain a 2×2 square. The first (northwest) cell of a k-ribbon is called the head and the last one (southeast) the tail. By removing successively k-ribbons from λ such that, at each step, the remaining shape is still a partition, we obtain a partition $\lambda_{(k)}$ independant of the removing procedure. This partition is called the k-core of λ. The k-quotient is a sequence of k partitions derived from λ (in [7] this sequence is computed using a system of abacus). Denote by \mathcal{P} the set of all partitions, $\mathcal{P}(k)$ the set of all k-cores (i.e all partitions from which we cannot remove any k-ribbon) and $\mathcal{P}(k)$ the cartesian product $\mathcal{P} \times \ldots \times \mathcal{P}$ of length k. The quotient bijection Φ_k is defined by

$$\Phi_k : \mathcal{P} \longrightarrow \mathcal{P}(k) \times \mathcal{P}(k) \quad \lambda \longmapsto (\lambda_{(k)}, \lambda^{(k)}). \quad (1)$$

Remark 1 For any partition λ, we denote by $l(\lambda)\lambda$ the partition $(l(\lambda)\lambda_1, \ldots, l(\lambda)\lambda_l(\lambda))$. The $l(\lambda)$-core of $l(\lambda)\lambda$ is empty and the $l(\lambda)$-quotient of $l(\lambda)\lambda$ is the following product of single row partitions

$$l(\lambda)l(\lambda) = (\lambda l(\lambda), \ldots, (\lambda_1)) \quad (2)$$

2.1 Preliminaries on k-ribbon tableaux

A k-ribbon tableau of shape λ and weight μ is a tiling of the skew diagram $\lambda/\lambda_{(k)}$ by labelled k-ribbons such that

1- the head of a ribbon labelled i must not be on the right of a ribbon labelled $j > i$,

2- the tail of a ribbon labelled i must not be on the top of a ribbon labelled $j \geq i$.

We denote by $\text{Tab}^{(k)}_{\lambda\mu}$ the set of all k-ribbon tableaux of shape λ and weight μ, and by $\text{Tab}^{(k)}_{\lambda}$ the set of all k-ribbon tableaux of shape λ and evaluation any composition of $|\lambda|/k$.

![Figure 1: A 3-ribbon tableau of shape (87651) and weight (3321)](image)

The spin of a k-ribbon R is defined by

$$\text{sp}(R) = \frac{h(R) - 1}{2}, \quad (3)$$
where \(h(R) \) is the height of \(R \). The spin of a \(k \)-ribbon tableau \(T \) of \(\text{Tab}^{(k)}_{\lambda,\mu} \) is the sum of the spins of all its \(k \)-ribbons. The cospin of \(T \) is the associated co-statistic into \(\text{Tab}^{(k)}_{\lambda,\mu} \), i.e.

\[
\text{cosp}(T) = \max \left(\text{sp}(T'), \ T' \in \text{Tab}^{(k)}_{\lambda,\mu} \right) - \text{sp}(T) .
\]

(4)

We define the cospin polynomial \(\tilde{G}^{(k)}_{\lambda,\mu}(q) \) as the generating polynomial of \(\text{Tab}^{(k)}_{\lambda,\mu} \) with respect to the cospin statistic

\[
\tilde{G}^{(k)}_{\lambda,\mu}(q) = \sum_{T \in \text{Tab}^{(k)}_{\lambda,\mu}} q^{\text{cosp}(T)}.
\]

Example 1 The cospin polynomial for \(\text{Tab}^{(3)}_{(87651),(3321)} \) is

\[
\tilde{G}^{(3)}_{(87651),(3321)}(q) = 3q^5 + 17q^4 + 33q^3 + 31q^2 + 18q + 5 .
\]

2.2 \(k \)-tuples of semi-standard Young tableaux

Let \(T^o = (T^{o_1}, \ldots, T^{o_k}) \) be a \(k \)-tuple of semi-standard Young tableaux \(T^{o_i} \) of shape \(\lambda^{o_i} \) and evaluation \(\mu^{o_i} \). We call shape of \(T^o \) the sequence of partitions \(\lambda^o = (\lambda^{o_1}, \ldots, \lambda^{o_k}) \) and weight of \(T^o \), the composition \(\mu = (\mu_1, \ldots, \mu_p) \) where \(\mu_i = \sum_{j=1}^{k} \mu^{o_j}_i \).

Definition 1 Let \(s \) be any cell in \(T^o \)

- \(\text{pos}(s) \) is the integer such that the cell \(s \) is in the tableau \(T^o_{\text{pos}(s)} \),
- \(T^o(s) \) is the label of the cell \(s \),
- \(\text{row}(s) \) (resp. \(\text{col}(s) \)) represents the row (resp. the column) of \(s \) in \(T^o_{\text{pos}(s)} \),
- \(\text{diag}(s) \) is the content of \(s \), i.e. \(\text{diag}(s) = \text{col}(s) - \text{row}(s) \).

Denote by \(\text{Tab}_{\lambda,\mu} \) the set of all \(k \)-tuples of Young tableaux \(T^o \) of shape \(\lambda^o = (\lambda^{o_1}, \ldots, \lambda^{o_k}) \) and weight \(\mu \). In [19], Stanton and White extend the bijection \(\Phi_k \) to a correspondence \(\Psi_k \) between the set of \(k \)-ribbon tableaux of shape \(\lambda \) and weight \(\mu \), and the set of \(k \)-tuples of semi-standard Young tableaux of shape \(\lambda^{(k)} \) and weight \(\mu \).

Example 2 The bijection \(\Psi_3 \) sends the 3-ribbon tableau of Figure 1 to the 3-tuple of tableaux

\[
\left(\begin{array}{c}
2 & 2 \\
3 & 1 \\
1 & 4
\end{array} \right) \quad \text{or} \quad \left(\begin{array}{c}
2 & 2 \\
3 & 1 \\
1 & 3
\end{array} \right).
\]

Definition 2 (16) Let \(T^o = (T^{o_1}, \ldots, T^{o_k}) \) be a \(k \)-tuple of semi-standard Young tableaux and consider \(s, t \) two cells of \(T^o \). The couple \((s, t) \) is an inversion in \(T^o \) if the following conditions hold

1- \(\text{diag}(s) = \text{diag}(t) \) and \(\text{pos}(s) < \text{pos}(t) \)

or

\(\text{diag}(s) = \text{diag}(t) - 1 \) and \(\text{pos}(s) > \text{pos}(t) \),
2. row(s) \leq \text{row}(t),

3. $T(t) < T(s) < T(t^\uparrow)$, where t^\uparrow is the cell directly above t and $T(t^\uparrow) = \infty$ if $t^\uparrow \not\in \lambda^\circ$.

The inversion statistic on T°, denoted by $\text{Inv}(T^\circ)$, is the number of couples in T° which form an inversion in T°. This statistic permits to extend the correspondence Ψ_k to a bijection compatible with the inversion statistic and cospin (10), i.e.

$$\forall T \in \text{Tab}_{\lambda^\circ,\mu}^{(k)}, \text{Inv}(\Psi_k(T)) = \text{cosp}(T).$$ (5)

The inversion polynomial $\tilde{I}_{\lambda^\circ,\mu}(q)$ is the generating polynomial of $\text{Tab}_{\lambda^\circ,\mu}$ with respect to the inversion statistic

$$\tilde{I}_{\lambda^\circ,\mu}(q) = \sum_{T^\circ \in \text{Tab}_{\lambda^\circ,\mu}} q^{\text{Inv}(T^\circ)}.$$ (6)

Proposition 1 The compatibility of the bijection Ψ_k with the inversion statistic and cospin implies the following property

$$\tilde{G}_{\lambda,\mu}(q) = \tilde{I}_{\lambda^{(k)},\mu}(q).$$ (7)

In [5], Haglund, Haiman, Loehr, Remmel and Ulyanov use another notion of inversion statistic. Their statistic coincides with $\text{Inv}(T^\circ)$ up to a constant and gives a combinatorial interpretation of the powers of q appearing in the decomposition of Macdonald polynomials $\tilde{H}_\lambda(X; q, t)$ on monomials.

3 Specializations of Hall-Littlewood functions

3.1 Basic definitions

Let i, j be two nonnegative integers. The raising operator R_{ij} acts on partitions by

$$\forall \lambda \in \mathcal{P}, \quad R_{ij}(\lambda) = (\lambda_1, \ldots, \lambda_i + 1, \ldots, \lambda_j - 1, \ldots, \lambda_p).$$ (8)

This action can be extended on elementary functions as follows

$$R_{ij} \cdot h_\lambda = h_{R_{ij}(\lambda)}.$$ (9)

Hall-Littlewood functions $Q'_{\lambda}(X; q)$ are the symmetric functions defined by

$$Q'_{\lambda}(X; q) = \prod_{i<j}(1 - qR_{ij})^{-1}s_\lambda(X).$$ (10)

We shall need the $\tilde{Q}'_{\lambda}(X; q)$ version of Hall-Littlewood functions defined by

$$\tilde{Q}'_{\lambda}(X; q) = q^{\eta(\lambda)}Q'_{\lambda}(X; q^{-1}),$$

where $\eta(\lambda) = \sum_{i \geq 1}(i - 1)\lambda_i$.

Example 3 The expansion of the Hall-Littlewood function $\tilde{Q}'_{222}(X; q)$ on Schur basis is

$$\tilde{Q}'_{222}(X; q) = q^6 s_{222} + (q^5 + q^4)s_{321} + q^3 s_{33} + q^3 s_{411} + (q^4 + q^3 + q^2)s_{42} + (q^2 + q)s_{51} + s_6 .$$

In [13], Lascoux, Leclerc and Thibon have shown that for any partition λ, the Hall-Littlewood function $\tilde{Q}_\lambda(X; q)$ can be expressed in terms of $l(\lambda)$-ribbon tableaux

$$\tilde{Q}_\lambda(X; q) = \sum_{\mu \vdash |\lambda|} \sum_{T \in \text{Tab}(l(\lambda))_{l(\lambda), \mu}} q^{\cos(T)} X^T = \sum_{\mu \vdash |\lambda|} G_{l(\lambda), \mu}(q) m_\mu ,$$

where X^T is $x_1^{\mu_1} \cdots x_p^{\mu_p}$ with μ the weight of T.

Proposition 2 Hall-Littlewood functions $\tilde{Q}_\lambda(X; q)$ can be expressed in terms of inversion polynomials using Proposition 1

$$\tilde{Q}_\lambda(X; q) = \sum_{\mu \vdash |\lambda|} \tilde{I}_{l(\lambda), \lambda \mu}(q) m_\mu .$$

Using Remark 1, this proposition means that the Hall-Littlewood function $\tilde{Q}_\lambda(X; q)$ can be expressed in terms of $l(\lambda)$-tuples of Young tableaux with shape the product of single row partitions $((\lambda_1(\lambda)), \ldots, (\lambda_1))$.

Example 4 The expansion of the Hall-Littlewood function $\tilde{Q}'_{221}(X; q)$ on monomials is

$$\tilde{Q}'_{221}(X; q) = (t^3 + 3t^2 + 5t + 3)m_{1111} + (t^3 + t^2 + 2t)m_{22} + (t^3 + 2t^2 + 3t + 1)m_{211} + (t^3 + t^2 + t)m_{31} + t^3 m_4 .$$

3.2 Specialization at roots of unity

Denote by Λ_q the vector space of symmetric functions over the field $\mathbb{C}(q)$. Let k be a positive integer and λ be a partition. The plethysm of the powersum p_λ by the powersum p_k is defined by

$$p_k \circ p_\lambda = p_{k\lambda} . \quad (11)$$

Since powersums $(p_\lambda)_{\lambda \in \mathcal{P}}$ form a basis of the vector space Λ_q, the plethysm by a powersum p_k is defined on any symmetric function f.

Theorem 1 (11) Let n, k be two positive integers and ζ be a primitive k-th root of unity. The specialization of the parameter q at ζ in $Q_<^{n,k}(X; q)$ and $Q_<^{n,\kappa}(X; q)$ yields the following identities

$$Q_<^{n,k}(X; \zeta) = (-1)^{(k-1)n} p_k \circ h_n(X) \quad \text{and} \quad Q_<^{n,\kappa}(X; \zeta) = p_k \circ h_n(X) . \quad (12)$$

Example 5 The Hall-Littlewood function $\tilde{Q}'_{222}(X; q)$ with q specialized at $j = e^{2\pi i n}$ is

$$\tilde{Q}'_{222}(X; j) = s_{222} - s_{321} + s_{33} + s_{411} - s_{51} + s_6 \quad (13)$$

$$= \frac{1}{2} (p_3 \circ p_6) = p_3 \circ \left(\frac{1}{2} p_{11} + \frac{1}{2} p_2 \right) \quad (14)$$

$$= p_3 \circ h_2(X) . \quad (15)$$

In [13], Lascoux, Leclerc and Thibon have given an algebraic proof of this theorem.
4 Combinatorial proof of the specialization

We give a combinatorial proof of (12) for Hall-Littlewood functions specialized at primitive roots of unity. The sketch of the proof is to separate the set of k-tuples of single row Young tableaux into subsets called diagonal classes. The specialization at primitive roots of unity of the restriction of inversion polynomials on these classes are 0 or 1. In order to have an explicit expression for these restricted polynomials, we translate the problem into sets of ribbon rigged configurations according to [17]. These sets of configurations are interesting because the image of diagonal classes can be easily characterized and inversion polynomials have a nice expression in terms of fermionic formulas which behave well at primitive roots of unity. Due to Remark 1 and Proposition 2, we only consider in the following, k-tuples of Young tableaux with shape increasing sequences of row partitions $((\lambda_1^0), \ldots, (\lambda_k^0))$, i.e.,

$$\lambda_1^0 \leq \ldots \leq \lambda_k^0 \ .$$

4.1 Diagonal classes of k-tuples of Young tableaux

Let $T^o = (T^o_1, \ldots, T^o_k)$ be a sequence of Young tableaux with shape $\lambda^o = (\lambda^o_1, \ldots, \lambda^o_k)$ an increasing sequence of single row partitions. Define the maximal content m of cells of λ^o by

$$m = \max (\lambda^o_i - 1, \ i = 1 \ldots k) \ .$$

For all $i \in \{0, \ldots, m\}$, we call d_i the i-th diagonal of T^o defined by

$$d_i = \{T^o(s) \text{ such that } \text{diag}(s) = i\} \ .$$

We call diagonal vector of T^o the vector $d_{T^o} = (d_0, \ldots, d_m)$.

Example 6 The diagonal vector of the following 3-tuple of Young tableaux

$$\begin{pmatrix} 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 3 \end{pmatrix}$$

is given by $d_0 = \{1, 1\}$, $d_1 = \{2, 2, 4\}$, $d_2 = \{3\}$ and $d_3 = \{3\}$.

Two k-tuples of Young tableaux T^o and $T^{o'}$ in $\text{Tab}_{\lambda^o,\mu}$ are equivalent if and only if, for all i in $\{0, \ldots, m\}$, the i-th set in d_{T^o} and $d_{T^{o'}}$ are the same. A diagonal class in $\text{Tab}_{\lambda^o,\mu}$ is a set $D_{\lambda^o,\mu}(d)$ of all equivalent k-tuples of tableaux with diagonal vector d. We denoted by $\Delta_{\lambda^o,\mu}$ the set of all diagonal vectors. Thus, we can write the following decomposition

$$\text{Tab}_{\lambda^o,\mu} = \bigsqcup_{d \in \Delta_{\lambda^o,\mu}} D_{\lambda^o,\mu}(d) \ .$$

The restriction of the inversion polynomial $\tilde{I}_{\lambda^o,\mu}(q)$ to a diagonal class $D_{\lambda^o,\mu}(d)$ is defined by

$$\tilde{I}_{\lambda^o,\mu}(q; d) = \sum_{T^o \in D_{\lambda^o,\mu}(d)} q^\text{Inv}(T^o) \ .$$

Hence, by (18) the inversion polynomial $\tilde{I}_{\lambda^o,\mu}(q)$ can be split into

$$\tilde{I}_{\lambda^o,\mu}(q) = \sum_{d \in \Delta_{\lambda^o,\mu}} \tilde{I}_{\lambda^o,\mu}(q; d) \ .$$
Example 7 The diagonal vector of the 3-tuple of Young tableaux of Example 6 is

\[d = (\{1, 1, 1\}, \{2, 2, 4\}, \{3\}, \{3\}) \, . \]

The diagonal class \(D_{((2),(2),(4)),(3221)}(d) \) has 12 elements and the restriction of the inversion polynomial is

\[
\tilde{I}_{((2),(2),(4)),(3221)}(q; d) = q^5 + 3q^4 + 4q^3 + 3q^2 + q
\]

Since we are only interesting in Hall-Littlewood functions indexed by partitions of the form \(kn^k \), we will now restrict to the special case of \(k \)-tuples of partitions \(\lambda^0 = ((n), \ldots , (n)) \) for some \(n \geq 1 \). We describe in the following corollary the diagonal classes with only one element depending on the weight \(\mu \).

Proposition 3 Let \(n \) be a positive integer, \(\lambda^0 \) be the \(k \)-tuple of partitions \(((n), \ldots , (n)) \) and \(\mu \) a partition of weight \(kn \).

- If each part of \(\mu \) is divisible by \(k \)
 1. there is a unique diagonal class \(D_{\lambda^0, \mu}(d) \) with only one element \(T^o = (T^{o_1}, \ldots , T^{o_k}) \),
 2. the \(i \)-th cell of each single row tableau \(T^{o_i} \) is filled with the same value,
 3. \(\text{Inv}(T^o) = 0 \) and \(\tilde{I}_{\lambda^0, \mu}(q; d) = 1 \).

- If one part of \(\mu \) is not divisible by \(k \), there is no diagonal class with only one element.

Proof: If each part of \(\mu \) is divisible by \(k \), we can construct a diagonal vector \(d \) such that for all \(i \) in \(\{0, \ldots , n - 1\} \), all letters of \(d_i \) are the same. And there is a unique way \(T^o \) to fill \(\lambda^0 \) according to \(d \). Thus, the diagonal class \(D_{\lambda^0, \mu}(d) \) has only one element. Since each filling of \(\lambda^0 \) must be increasing, this diagonal class is unique. This prove statement 1 and 2.

The inverse image of \(T^o \) by Stanton-White map \(\Psi_k \) is the \(k \)-ribbon tableau of shape \(nk^k \) containing \(n \) blocks of size \(k \times k \) of the form

![k-ribbon tableau](image)

Such a \(k \)-ribbon tableau has maximal spin in \(\text{Tab}^{(k)}_{\lambda, \mu} \). Thus, cospin of \(T \) is equal to zero. Since \(\Psi_k \) is compatible with the inversion statistic and cospin, we conclude that

\[\text{Inv}(T^o) = 0 \, . \]

On the other hand, if one part of \(\mu \) is not divisible by \(k \), this implies that for any filling \(T^o \) of \(\lambda^0 \), there exist two tableaux \(T^{o_a} \) and \(T^{o_b} \) in \(T^o \) which have two different values in one position. By transposition of these two cells, we obtain another filling \(T^{o'} \) which belongs to the same diagonal class than \(T^o \). Thus, for this kind of weight, all diagonal classes have more than 2 elements. \(\square \)
Proposition 4 Let \(n \) be a positive integer, \(\lambda^0 \) be the \(k \)-uplet of partitions \(((n), \ldots, (n))\) and \(d \) be a diagonal vector such that \(\#D_{\lambda^0, \mu}(d) \geq 2 \). For any primitive \(k \)-th root of unity \(\zeta \), the restriction of the inversion polynomial on \(D_{\lambda^0, \mu}(d) \) satisfies the following specialization

\[
\tilde{I}_{\lambda^0, \mu}(\zeta; d) = 0 .
\] (21)

In order to prove this proposition we need an explicit formula for the polynomial \(\tilde{I}_{\lambda^0, \mu}(q; d) \). In [17], using a bijection between ribbon tableaux and ribbon rigged configurations, Schilling gives a fermionic expression of the polynomial \(\tilde{I}_{\lambda^0, \mu}(q) \) in terms of \(q \)-binomial coefficients. This formula decomposes well on the image of diagonal classes on ribbon rigged configurations.

One can define similarly diagonal classes on \(k \)-ribbon tableaux through the bijection \(\Psi_k^{-1} \). The combinatorial interpretation of cospin polynomials on diagonal classes is still an open problem for length of ribbons \(k > 2 \). For \(k = 2 \) (case of domino tableaux), Carre and Leclerc have found in [1] a combinatorial construction of these classes using a notion of labyrinths and proved that cospin polynomials of diagonal classes are of the form \(q^a(1 + q)^b \) with \(a \) and \(b \) two positive integers.

This paper give a solution for the stable case \(k = l(\lambda) \) using ribbon rigged configurations. We will come back to the proof of Proposition 4 in section 4.2.4 after finishing the general proof of the specialization of Hall-Littlewood functions.

Corollary 1 Let \(\lambda^0 \) be the \(k \)-tuple of single row partitions \(((n), \ldots, (n))\), \(\mu \) a partition of weight \(nk \) and \(\zeta \) be a \(k \)-th primitive root of unity. The specialization of the inversion polynomial at \(q = \zeta \) yields

- if all parts of \(\mu \) are divisible by \(k \)
 \[
 \tilde{I}_{\lambda^0, \mu}(\zeta) = 1 ,
 \]

- if there exists a part of \(\mu \) which is not divisible by \(k \)
 \[
 \tilde{I}_{\lambda^0, \mu}(\zeta) = 0 .
 \]

Proof: By splitting the set \(\Delta_{\lambda^0, \mu} \) with respect to the cardinality of diagonal classes, (20) can be decomposed into

\[
\tilde{I}_{\lambda^0, \mu}(q) = \sum_{d/\#D_{\lambda^0, \mu}(d) = 1} \tilde{I}_{\lambda^0, \mu}(q; d) + \sum_{d/\#D_{\lambda^0, \mu}(d) > 1} \tilde{I}_{\lambda^0, \mu}(q; d) .
\] (22)

By specializing \(q \) at \(\zeta \), the previous expression becomes

\[
\tilde{I}_{\lambda^0, \mu}(\zeta) = \sum_{d/\#D_{\lambda^0, \mu}(d) = 1} \tilde{I}_{\lambda^0, \mu}(\zeta; d) + \sum_{d/\#D_{\lambda^0, \mu}(d) > 1} \tilde{I}_{\lambda^0, \mu}(\zeta; d) .
\] (23)

Using the result of Proposion 3, we conclude that the first term gives 1 if all the parts of \(\mu \) are divisible by \(k \) and 0 otherwise. By Proposition 4 the second term always gives 0, which proves the corollary. \(\square \)

We are able to give a combinatorial proof of the specialization of Hall-Littlewood functions given
in Theorem 1. Let \(n, k \) be two positive integers, denote by \(\Lambda_k \) the set of all partitions of weight \(p \) with all parts divisible by \(k \). Using Corollary 1,

\[
\tilde{Q}'_{nk}(X; \zeta) = \sum_{\mu \in \Lambda_k} m_\mu \left(\sum_{\mu \in \Lambda_k} m_{\mu/k} \right).
\]

(25)

where \(\mu/k \) denote the partition \((\mu_1/k, \ldots, \mu_p/k)\). The linearity of the plethysm by \(p_k \) implies

\[
\tilde{Q}'_{nk}(X; \zeta) = p_k \circ \left(\sum_{\mu \in \Lambda_k} m_{\mu/k} \right).
\]

(26)

By definition of complete functions, we conclude that

\[
\tilde{Q}'_{nk}(X; \zeta) = p_k \circ h_n(X).
\]

In rectangular case, the constant \(\eta(n^k) \) is equal to

\[
\eta(n^k) = n \sum_{i=1}^{k} (i-1) = \frac{nk(k-1)}{2}.
\]

Hence, \(\zeta^{\eta(n^k)} = (-1)^{(k-1)n} \) and (12) is proved.

Remark 2 In the case of \(\lambda = n^k \) which corresponds to \(\lambda^{(k)} = ((1^n), \ldots, (1^n)) \), it exists a similar factorization formula than (12) for Hall-Littlewood functions \(Q'_\lambda(X; q) \) and \(\tilde{Q}'_\lambda(X; q) \)

\[
Q'_\lambda(X; \zeta) = (-1)^{(k-1)n} p_k \circ e_n(X) \quad \text{and} \quad \tilde{Q}'_\lambda(X; \zeta) = p_k \circ e_n(X).
\]

(27)

The proof is the same than for the product of single row partitions but using ribbon rigged configurations defined for products of single column partitions ([17]).

4.2 Ribbon rigged configurations and diagonal classes

The aim of this section is to prove Proposition 4 using ribbon rigged configurations introduced by Schilling in [17].

Let \(n \) be a positive integer, we define the \(q \)-factorial \((q)_n \) by

\[
(q)_n = \prod_{i=1}^{n} (1 + q + \ldots + q^{i-1}).
\]

(28)

Let \(a \) and \(b \) be two positive integers. The \(q \)-binomial coefficient is defined by

\[
\left[\begin{array}{c} a+b \\ a, b \end{array} \right] = \frac{(q)_{a+b}}{(q)_a (q)_b}.
\]

(29)
4.2.1 Definition of ribbon rigged configurations

Let \(\lambda, \mu \) be two partitions and \(\nu^o = (\nu^o_1, \ldots, \nu^o_p) \) be a sequence of partitions. The sequence \(\nu^o \) is a \((\lambda, \mu)\)-configuration if the following conditions hold

1. \(\emptyset \subset \nu^o_1 \subset \ldots \subset \nu^o_{p-1} \subset \nu^o_p = \tilde{\mu} \) the conjugate partition of \(\mu \),
2. \(\forall 1 \leq a < p, \ |\nu^o_a| = \lambda_1 + \ldots + \lambda_a \).

We denote by \(C_{\lambda, \mu} \) the set of all \((\lambda, \mu)\)-configurations. We associate to each element \(\nu^o \) in \(C_{\lambda, \mu} \) a constant \(\alpha(\nu^o) \) defined by

\[
\alpha(\nu^o) = \sum_{1 \leq a \leq p-1 \atop 1 \leq i \leq \mu_1} \nu^o_{i+1}(\nu^o_{i+1} - \nu^o_{i+1}).
\] (30)

For any \((\lambda, \mu)\)-configuration \(\nu^o = (\nu^o_1, \ldots, \nu^o_p) \), the vacancy numbers \(p_i^{(a)} \) and the constant \(m_i^{(a)} \) are defined for all \(1 \leq a < p \) and \(1 \leq i \leq \mu_1 \) by

\[
p_i^{(a)} = \nu^o_{i+1} - \nu^o_{i+1} \quad \text{and} \quad m_i^{(a)} = \nu^o_{i+1} - \nu^o_{i+1}.
\] (31)

One can fill top cells of the \(i \)-th column of \(\nu^o_a \) by a number \(j \) satisfying

\[
\forall 1 \leq a < p, \ \forall 1 \leq i \leq \mu_1, \quad 0 \leq j \leq p_i^{(a)}.
\] (32)

Such a filling is called a rigging of \(\nu^o_a \) and numbers \(j \) are called quantum numbers. In the special case of \(j = p_i^{(a)} \), \(j \) is called a singular quantum number.

For each partition \(\nu^o_a \) and height \(i \), we can view a rigging as a partition \(J_i^{(a)} \) in a box of width \(m_i^{(a)} \) and height \(p_i^{(a)} \). We denote by \(J^{(a)}_i \) the \(l(\nu^o_a) \)-tuple of partitions \(J^{(a)}_i = (J^{(a)}_1, \ldots, J^{(a)}_{l(\nu^o_a)}) \) and by \(J \) the \((p-1)\)-tuple \(J = (J^{(a)}_1, \ldots, J^{(a)}_{p-1}) \).

Any riggings of \(\nu^o \) by \(J \) is called a rigged configuration \((\nu^o, J)\) of shape \(\nu^o \) and weight \(J \). The set of all rigged configurations \((\nu^o, J)\) with \(\nu^o \in C_{\lambda, \mu} \) is denoted by \(RC_{\lambda, \mu} \).

The graphical representation of a ribbon rigged configuration \((\nu^o, J)\) is

1. the filling of top cells of columns which are in the \(i \)-th row of \(\nu^o_a \) with numbers of \(J_i^{(a)} \) (riggings which differ only by reordering of quantum numbers corresponding to columns of the same height in a partition are identified),
2. the filling of the \(i \)-th row of the frontier of \(\nu^o_a \) with the vacancy numbers \(p_i^{(a)} \).

Example 8 The graphical representation of the ribbon rigged configuration in \(RC_{(3111),(322)} \) given by \(\nu^o = ((21), (31), (32), (331)) \) and \(J = (((1), (\emptyset), (\emptyset)), (\emptyset), (\emptyset), (\emptyset), (\emptyset))) \) is

```
  0 0 1
  1 1 0 1
  0 1 1 0
```
Denote by $RC_{\lambda,\mu}(\nu^o)$ the set of all rigged configurations in $RC(\lambda, \mu)$ with shape ν^o in $C_{\lambda,\mu}$. Hence
\[
RC_{\lambda,\mu} = \bigsqcup_{\nu \in C_{\lambda,\mu}} RC_{\lambda,\mu}(\nu^o).
\] (33)

There exists a cocharge statistic on ribbon rigged configurations defined by
\[
cc(\nu^o, J) = \alpha(\nu^o) + \sum_{1 \leq a \leq p-1} \sum_{1 \leq i \leq \mu} |J_{i}^{a}|.
\] (34)

We denote by $\tilde{S}_{\lambda,\mu}(q)$ the generating polynomial of $RC_{\lambda,\mu}$ with respect to the cocharge, i.e.
\[
\tilde{S}_{\mu,\delta}(q) = \sum_{(\nu, J) \in RC(\lambda, \mu)} q^{cc(\nu^o, J)}.
\] (35)

In [17], Schilling has given the following explicit expression for $\tilde{S}_{\lambda,\mu}(q)$,
\[
\tilde{S}_{\lambda,\mu}(q) = \sum_{\nu \in C_{\lambda,\mu}} q^{\alpha(\nu^o)} \prod_{1 \leq a \leq p-1} \prod_{1 \leq i \leq \mu} \left[\begin{array}{c} \nu_{i}^{a+1} - \nu_{i+1}^{a+1} \\ \nu_{i}^{a} - \nu_{i+1}^{a} \end{array} \right].
\] (36)

This expression of $\tilde{S}_{\lambda,\mu}(q)$ is called fermionic formula. Denote by $\tilde{S}_{\lambda,\mu}(q; \nu^o)$ the cocharge polynomial $\tilde{S}_{\lambda,\mu}(q)$ restricted to the subset $RC_{\lambda,\mu}(\nu^o)$, i.e.
\[
\tilde{S}_{\lambda,\mu}(q; \nu^o) = q^{\alpha(\nu^o)} \prod_{1 \leq a \leq p-1} \prod_{1 \leq i \leq \mu} \left[\begin{array}{c} \nu_{i}^{a+1} - \nu_{i+1}^{a+1} \\ \nu_{i}^{a} - \nu_{i+1}^{a} \end{array} \right].
\] (37)

4.2.2 Bijection with k-tuples of tableaux

Theorem 2 ([17]) Let $\lambda^o = (\lambda^{o1}, \ldots, \lambda^{o_k})$ be a k-tuple of single row partitions, μ be a partition of weight $|\lambda^o|$ and δ be the partition such that $\delta_i = |\lambda^{o_i}|$. There exists a bijection Θ_k between $\text{Tab}_{\lambda^o,\mu}$ and $RC(\mu, \delta)$ which is compatible with the cocharge and inversion statistic, i.e.
\[
\forall \ T^o \in \text{Tab}_{\lambda^o,\mu}, \ cc(\Theta_k(T^o)) = \text{Inv}(T^o).
\] (38)

We recall the steps of the algorithm permitting to compute $\Theta_k(T^o)$. This algorithm is implemented in the package MuPAD-Combinat.

Algorithm 1 ([17])

Input: $T^o = (T^{o1}, \ldots, T^{o_k})$ a k-tuple of Young tableaux of $\text{Tab}_{\lambda^o,\mu}$.

Initialization: $\nu^o \leftarrow$ a sequence of p empty partitions.

For i from k down to 1 do
 For j from 1 to $l(\lambda^{o_i})$ do
 1- For k from $T^{o_i}_{j}$ to p do
 Add a box in the j-th row in the partition ν^{o_k}
EndFor
2- Recompute all vacancy numbers,
3- Fill the new cells coming from step 1
 with the vacancy number of their row,
4- Remove a maximal number in the (j-1)-th row
 of the partitions which have a new box from step 1 in the j-th row.
EndFor

For a from 1 to p-1 do
 For i from 1 to μ_1 do
 Replace each number β in the row ν^a_i by $\nu^{a+1}_i - \nu^a_i - \beta$
 EndFor
EndFor

Proposition 5 Let k be a positive integer and λ, μ be two partitions such that $k|\mu| = |\lambda|$. Let $\lambda^{(k)} = (\lambda^{o_1}, \ldots, \lambda^{o_k})$ be the k-quotient of λ and δ be the partition $(|\lambda^{o_1}|, \ldots, |\lambda^{o_k}|)$. Combining the bijection Θ_k and Ψ_k, we have

$$\tilde{G}^{(k)}_{\lambda, \mu}(q) = \tilde{I}_{\lambda^{(k)}, \mu}(q) = \sum_{\nu^c \in C_{\mu, \delta}} q^{\alpha(\nu^c)} \prod_{1 \leq a \leq p-1} \left[\nu^{o_{a+1}} - \nu^{o_a} \right]_{1 \leq i \leq \mu_1} \left[\nu^{o_a} - \nu^{o_{a+1}} \right]_{1 \leq i \leq \mu_1}.$$

(39)

This proposition gives an explicit formula for the transition matrix between Hall-Littlewood functions and monomials in terms of q-binomial coefficients.

Corollary 2 Let λ^l be the $l(\lambda)$-quotient of the partition $l(\lambda)\lambda$ and δ be the partition defined by $\delta_i = |\lambda^{o_i}|$. Hall-Littlewood function can be expressed as

$$\tilde{Q}_{\lambda}(X; q) = \sum_{\mu \vdash |\lambda|} \tilde{S}_{\mu, \delta}(q) m_{\mu}.$$

(40)

4.2.3 A matricial recoding of the bijection

We shall therefore propose a simpler but similar algorithm for finding the shape of ribbon rigged configurations. Let p and q be two integers and $M_{p,q}$ the set of all $(p \times q)$-matrices with integer coefficients. We define the operator A_E on $M_{p,q}$ by

$$A_E : M_{p,q} \rightarrow M_{p,q} \quad \quad M = (m_{i,j})_{i,j} \rightarrow N = \left\{ \begin{array}{l} n_{i,1} = m_{i,1} \\ n_{i,j} = \sum_{1 \leq k \leq j} m_{i,k}, \text{ for } 2 \leq j \leq q \end{array} \right..$$

(41)

Let T° be a k-tuple of Young tableaux of shape λ^o, weight μ and diagonal vector d. Let $\Theta_k(T^\circ) = (\nu_{T^\circ}, J_{T^\circ})$ be the ribbon rigged configuration corresponding to T° by Θ_k. We construct a $(m_2 \times l(\mu))$-matrix M^{T° using the following rule

$$M^{T^\circ}_{i,j} = \text{number of cells labelled } j \text{ in diagonal } d_{i+1}.$$
Proposition 6 The j-th column of $A_E(M^{T^0})$ is equal to the j-th partition of ν_{T^0}.

Proof: Let T^0 be a k-tuple of single row tableaux and $\Theta_k(T^0) = (\nu_{T^0}, J_{T^0})$. In the algorithm we observe that boxes which appear in the i-th line of a partition $\nu_{T^0}^{(j)}$ only come from elements of the i-th diagonal of T^0 which are smaller than j. And by definition of the operator A_E, the entry (i, j) of the matrix $A_E(M^{T^0})$ corresponds to the number of cells less than j in the i-th diagonal. □

Example 9 Consider the following 3-tuple of single row tableaux T^0

\[
\left(\begin{array}{l}
1 & 4 \\
1 & 2 \\
1 & 2 & 3 & 3
\end{array} \right)
\]

In this case, the matrices M^{T^0} and $A_E(M^{T^0})$ are

\[
M^{T^0} = \begin{pmatrix}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\quad \text{and} \quad
A_E(M^{T^0}) = \begin{pmatrix}
3 & 3 & 3 & 3 \\
0 & 2 & 2 & 3 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}.
\]

The shape of the rigged configuration $\Theta_k(T^0)$ is

\[
\begin{array}{|c|c|c|c|}
\hline
& & & \\
& & & \\
& & & \\
\hline
\end{array}
\begin{array}{|c|c|c|c|}
\hline
& & & \\
& & & \\
& & & \\
\hline
\end{array}
\begin{array}{|c|c|c|c|}
\hline
& & & \\
& & & \\
& & & \\
\hline
\end{array}
\begin{array}{|c|c|c|c|}
\hline
& & & \\
& & & \\
& & & \\
\hline
\end{array}
\]

and can be read from $A_E(M^{T^0})$.

4.2.4 Diagonal classes on ribbon rigged configurations

We give an explicit formula for inversions polynomials restricted to diagonal classes. This formula permits to prove the Proposition 4.

Proposition 7 Let λ^o be a sequence of single row partitions $(\lambda^0, \ldots, \lambda^k)$, μ be a partition of weight $\sum_i |\lambda^0_i|$ and δ be the partition $(|\lambda^0_1|, \ldots, |\lambda^k_1|)$. For each diagonal vector in $\Delta_{\lambda^0, \mu}$, there exists a unique (μ, δ)-configuration ν^o in $C_{\mu, \delta}$ such that

\[
\Theta_k(D_{\lambda^0, \mu}(d)) = RC_{\mu, \delta}(\nu^o).
\]

The explicit expression for the inversion polynomial restricted to the diagonal class $D_{\lambda^0, \mu}(d)$ is

\[
\tilde{I}_{\lambda^0, \mu}(q; d) = \tilde{S}_{\mu, \delta}(q; \nu^o) = q^{\alpha(\nu^o)} \prod_{1 \leq n \leq p-1} \left[\nu_{i_n + 1}^{(o)} - \nu_{i_n}^{(o)}, \nu_{i_n + 1}^{(o)} - \nu_{i_n}^{(o)} \right].
\]

Proof: Let d be a diagonal vector and T^0, T'_{T^0} two elements in the diagonal class $D_{\lambda^0, \mu}(d)$. These two k-tuples of tableaux differ only by a permutation of cells which are in a same diagonal i_d. By construction, this property implies $M^{T^0} = M^{T'_{T^0}}$ and by Proposition the ribbon rigged
configuration $\Theta_k(T^\circ)$ has the same shape ν° than $\Theta_k(T'^\circ)$. Hence, since Θ_k is a bijection, $D_{\lambda^\circ, \mu}(d)$ is embedded into $RC_{\mu, \delta}(\nu^\circ)$.

Conversely, let T° and T'° be two k-tuples of tableaux in $\text{Tab}_{\lambda^\circ, \mu}$ which are not in the same diagonal class. This implies that $M_{T^\circ} \neq M_{T'^\circ}$ and the shape of their corresponding ribbon rigged configurations are not the same. Finally, we conclude that

$$\Theta_k(D_{\lambda^\circ, \mu}(d)) = RC_{\mu, \delta}(\nu).$$

The expression of inversion polynomials of diagonal classes in terms of q-supernomial coefficients follows immediately from the invariance of the statistics under Θ_k and (37).

\[\square \]

Corollary 3 Let n be a positive integer, λ° be the k-tuple of row partitions $((n), \ldots, (n))$ and μ a partition of weight nk satisfying the condition $\mu = (ks_1, \ldots, ks_p)$ for some positive integers s_1, \ldots, s_p such that $s_1 + \ldots + s_p = n$. Let $D_{\lambda^\circ, \mu}(d)$ be a diagonal class with only one element T° and $\Theta_k(T^\circ)$ its corresponding ribbon rigged configuration. The i-th partition of the shape ν_{T° is the rectangular shape $(k s_1 + \ldots + s_i)$.

Proof: By Proposition 3, since T° is alone in its diagonal class, T° is a k-tuple of tableaux of shape λ° with the same values at the same positions of each single row tableau. The corresponding matrix M_{T° is

$$M_{T^\circ} = \begin{pmatrix} k & 0 & \ldots & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ k & 0 & \ldots & \ldots & 0 \\ 0 & k & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & \ldots & 0 \\ 0 & \ldots & \ldots & \ldots & 0 \end{pmatrix},$$

where k occurs s_i times in the i-th column. This implies that the shape is given by the matrix

$$A_E(M_{T^\circ}) = \begin{pmatrix} k & k & \ldots & \ldots & k \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ k & k & \ldots & \ldots & k \\ 0 & k & k & \ldots & k \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & 0 & k \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & \ldots & 0 & k \end{pmatrix}.$$
Then, the \(i \)-th partition in the shape \(\nu_{T^o} \) is the rectangular partition \((k^{s_1+...+s_i}) \).

Now, we are able to give a combinatorial proof of Proposition 4. Let \(T^o \) be a \(k \)-tuple of tableaux of shape \(((n), \ldots, (n)) \) in a diagonal class \(D_{\lambda^o, \mu}(d) \) with strictly more than one element. Write \(\nu^o = (\nu^{o_1}, \ldots, \nu^{o_p}) \) the shape of the corresponding ribbon rigged configuration \(\Theta_k(T^o) \). By Proposition 7, this shape is the same for all \(k \)-tuples of tableaux in \(D_{\lambda^o, \mu}(d) \). Let \(h \) be the last position such that the \(h \)-th diagonal \(d_h \) has at least two different elements. Then, the \((h+1)\)-th partition in \(\nu_{T^o} \) is a rectangular partition of width \(k \) and height \(s \leq r \). Since the last part of \(\nu^{o_h} = (\nu^{o_h}_1, \ldots, \nu^{o_h}_l) \) is equal to \(a \) with \(a < h \), the following coefficient appears in the inversion polynomial \(\tilde{I}_{\lambda^o, \mu}(q; d) \)

\[
\begin{bmatrix}
\nu^{o_{h+1}}_l - \nu^{o_h}_l & \nu^{o_{h+1}}_l - \nu^{o_h}_l \\
\nu^{o_h}_l - \nu^{o_h}_l & \nu^{o_{h+1}}_l - \nu^{o_h}_l
\end{bmatrix} = \begin{bmatrix}
 a-0, k-a
\end{bmatrix}.
\]

By definition, all \(k \)-th primitive roots of unity \(\zeta \) are roots of the \(q \)-binomial coefficient \(\begin{bmatrix}
 a, k-a
\end{bmatrix} \). Finally

\[
\tilde{I}_{\lambda^o, \mu}(\zeta; d) = 0.
\]

5 Conclusion

The main tool of our combinatorial proof is the explicit expression of inversion polynomials on diagonal classes in terms of \(q \)-binomial coefficients. In this approach, we have used ribbon rigged configurations and fermionic formulas given in [17] which only exist in the case of products of row partitions or column partitions. The unrestricted rigged configurations ([2]) are another kind of configurations defined in the case of products of rectangles. Unfortunately, in the special case of product of rows, the number of shapes and the number of diagonal classes are not the same. Hence, the corresponding fermionic formula \(M \) cannot be used. We can mentionned [18] for a survey of the zoology of rigged configurations.

References

[1] C. Carré, B. Leclerc, Splitting the square of a Schur function into its symmetric and antisymmetric parts, Journal of Algebraic Combinatorics 4 (1995), 201–231.

[2] L. Deka, A. Schilling, New fermionic formula for unrestricted Kostka polynomials Journal of Combinatorial Theory - Series A 113 (2005), 1435–1461.

[3] J. Désarménien, B. Leclerc, J.-Y. Thibon, Hall-Littlewood functions and Kotska-Foulkes polynomials in representation theory, Séminaire Lotharingien de Combinatoire (1992).

[4] F. Descouens, Making Research on Symmetric Functions with MuPAD-Combinat, Lectures Notes in Computer Science 4151 (2006), 407–418.

[5] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, A. Ulyanov A combinatorial formula for the diagonal of the diagonal coinvariants, Duke Math. J (to appear).
[6] F. Hivert and N. Thiéry, *MuPAD-Combinat, an Open Source Package for Research in Algebraic Combinatorics* Séminaire Lotharingien de Combinatoire **51** (2004). http://mupad-combinat.sourceforge.net/

[7] G. D. James, A. Kerber, *The representation theory of the symmetric group*, Addison-Wesley, 1981.

[8] S.V. Kerov, A.N. Kirillov, N.Y. Reshetikhin, *Combinatorics, the Bethe ansatz and representations of symmetric group*, J. Soviet Math **41** (1988), 916-924.

[9] A.N. Kirillov, N.Y. Reshetikhin, *The Bethe ansatz and the combinatorics of Young tableaux*, J. Soviet Math **41** (1988), 925-955.

[10] A.N. Kirillov, N.Y. Reshetikhin, *Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras*, J. Soviet Math **52** (1990), 3156-3164.

[11] A. Lascoux, B. Leclerc, J.-Y. Thibon, *Fonctions de Hall-Littlewood et polynomes de Kostka-Foulkes aux racines de l’unité* C.R. Académie des sciences de Paris **316** (1993), 1-6.

[12] A. Lascoux, B. Leclerc, J.-Y. Thibon, *Green polynomials and Hall-Littlewood functions at roots of unity* Europ. J. Combinatorics **15** (1994), 173-180.

[13] A. Lascoux, B. Leclerc, J.-Y. Thibon, *Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras and unipotent varieties*, Journal of Mathematical Physics **38** (1997), 1041–1068.

[14] M. Lothaire, *Algebraic Combinatorics on Words*, Vol. 90 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press (2002)

[15] I.G. Macdonald *Symmetric Functions and Hall Polynomials*, second edition, Oxford University Press (1998)

[16] A. Schilling, M. Shimozono, D.E. White, *Branching formula for q-Littlewood-Richardson coefficients*, Advances in Applied Mathematics **30**, Issues 1-2 (2003), 258–272.

[17] A. Schilling, *q-Supernomial Coefficients: From Riggings to Ribbons*, MathPhys Odyssey 2001, Birkaeuser Boston, Cambridge, MA 2002, 437-454.

[18] A. Schilling, *X=M theorem: Fermionic formulas and rigged configurations under review*, MSJ Memoirs **17** (2007), 75–104.

[19] D. Stanton and D. White, *A Schensted algorithm for rim-hook tableaux*, J. Comb. Theory A **40**, (1985), 211-247.
\[
\begin{pmatrix}
1 & 2 & 3 & 3 \\
1 & 4 \\
1 & 2
\end{pmatrix}
\]
(2 2, 2 3, 1 1 3, 1 4)