The effect of milrinone on mortality in adult patients: A systematic review of randomized clinical trials with meta-analysis and trial sequential analysis

CURRENT STATUS: UNDER REVIEW

Yu-shan Ren
Lunan Pharmaceutical Group Co., Ltd.

Lan-fang Li
Lunan Pharmaceutical Group Co., Ltd.

Tao Peng
Lunan Pharmaceutical Group Co., Ltd.

Yu-jun Tan
Lunan Pharmaceutical Group Co., Ltd.

Ying Sun
Lunan Pharmaceutical Group Co., Ltd.

Guo-liang Cheng
Lunan Pharmaceutical Group Co., Ltd.

Gui-min Zhang
Lunan Pharmaceutical Group Co., Ltd.

Jie Li lijie5767@126.com
Lunan Pharmaceutical Group Co., Ltd.

Corresponding Author
ORCiD: 0000-0002-4194-4986

DOI: 10.21203/rs.2.15406/v1

SUBJECT AREAS
Cardiac & Cardiovascular Systems

KEYWORDS
Milrinone; meta-analysis; mortality; postoperative outcomes.
Abstract

OBJECTIVE: Milrinone is commonly used for patients performed coronary artery bypass graft surgery (CABG) because of its effectiveness in decreasing cardiac index and mitral regurgitation. This study was to perform a systematic meta-analysis of existing studies in the past 20 years to evaluate the impact of milrinone on mortality in patients undergoing CABG surgery. EASUREMENTS AND MAIN RESULTS: The network meta-analysis included 723 patients from 16 randomized clinical trials. Overall, there was no significantly difference in mortality between the milrinone group and the placebo/standard care group 11/352 (3.13%) vs. 9/346 (2.60%), risk ratio = 1.18 (0.53–2.62), p for effect = 0.69, I² = 0 % when patients underwent CABG surgery. Besides that, 9 trials (with 440 randomized patients), 4 trials (with 212 randomized patients), and 10 trials (with 470 randomized patients) reported that the occurrence of myocardial infarction (MI), myocardial ischemia, and arrhythmias in the milrinone group were decreased in comparison with the placebo/standard care group, respectively. Between the milrinone treatment and placebo/standard care groups, the occurrence of myocardial infarction was 5/219 (2.28 %) vs. 25/212 (17.79 %), odds ratio(OR) = 0.19 (0.08–0.49), p value = 0.0005, I² = 5%, the occurrence of myocardial ischemia was 12/106 (11.32 %) vs. 41/106 (36.68 %), OR = 0.20 (0.10–0.42), p value <0.0001, I² = 0 % and the occurrence of arrhythmias was 16/234 (6.84 %) vs. 31/236 (13.14 %), OR= 0.46 (0.24–0.88), p value = 0.02, I² =0 %. However, the occurrence of stroke and renal failure, duration of inotropic support (h), need for intra-aortic balloon pump (IABP), and mechanical ventilation (h) between these two groups showed no differences. CONCLUSION: Based on the current results, milrinone might be unable to decrease the mortality in adult CABG surgical patients, but can significantly ameliorate the occurrence of MI, myocardial ischemia, and arrhythmias compared with placebo-treated patients. These results provide evidence for further clinical application of
milrinone and therapy strategies for CABG surgery. However, along with milrinone application in clinical use, sufficient randomized clinical trials need to be collected, and the potential benefit and adverse effects should be analyzed and reevaluated.

Background

In 2017, the World Health Organization (WHO) reported that nearly 17.7 million people death from cardiovascular diseases (CVDs) every year, accounting for 31% of all global deaths. Coronary artery disease (CAD) refers to the class of diseases of vascular stenosis or obstruction caused by coronary artery atherosclerotic lesions, resulting in myocardial ischemia, hypoxia or necrosis, including stable and unstable angina, myocardial infarction (MI), and sudden cardiac death. Meanwhile, CAD can cause serious complications from multiple risk factors such as heart attack, damaged heart muscle, and irregular heartbeats and result in sudden death. At present, coronary artery bypass grafting (CABG) surgery, are primary strategies for CAD treatment. CABG surgery is a surgical procedure, which the grafted vein was used to establish a vascular access between the root of ascending aorta and the distal end of the lesion site, so that blood can bypass the coronary artery lesion site, flow to the distal end of coronary artery stenosis or obstruction, and reach the ischemic myocardium, improving coronary perfusion and increasing myocardial oxygen supply. Although CABG surgery has been reported with respect to low costs, superior outcomes, and particularly to short-term mortality, multiple complications such as myocardial infarction (MI), myocardial ischemia, arrhythmias, stroke, and acute renal failure (ARF) are impossible to ignore and still perplex researchers and clinical doctors. 8, 18-21 To minimize the occurrence of postoperative complications, pre- and/or postoperative medicinal applications, such as phosphodiesterase (PDE) III inhibitors, have
been primary strategies until now.22-24

By reducing the inactivation of cyclic adenosine phosphate (cAMP) in cardiomyocytes, PDE III inhibitors enhance myocardial contractility and produce positive inotropic effects;25, 26 a higher concentration of cAMP results in contractility, increasing myocardial tissue and the vasodilatory effect on vascular smooth muscle.27, 28 Milrinone, one of the PDE III inhibitors, primarily used after open-heart surgery because it can avoid cardiopulmonary bypass,29 enhances cardiac contractility,30 prevents vasospasm,31 and ameliorates low output syndrome (LOS).(32) However, recent studies have demonstrated that the efficacy and safety profile of milrinone remain controversial, although it is implemented in several guidelines.33, 34 In some cardiac surgeries, the tendency of increasing mortality and incidence of arrhythmia was found in milrinone group, comparing with control agents.35, 36 However, another study evaluating milrinone for acute heart failure treatment revealed that milrinone might be safe and effective.37 All contradictory outcomes result from a limited number of included patients35 and lack of key methodological criteria38 not based on previously published protocol.36 No study has assessed the incidence of postoperative complications.

To avoid bias results best from any unclear risk of bias that were included, our objective was to conduct a systematic review and meta-analysis of existing randomized controlled trials (RCTs) and assessed the mortality between milrinone-treated cases and placebo/standard care. Postoperative complications, such as MI, myocardial ischemia, arrhythmias, stroke, and AKI incidences, were estimated simultaneously.

\textbf{Methods}

\textbf{Search strategy}
The search strategy aimed to include any RCTs conducted among adult patients undergoing CABG surgery and treated with milrinone, compared to those treated only with placebo/standard care. A pertinent study search was independently conducted in BioMed Central, PubMed, Embase, and the Cochrane Central Register (all searches updated in November, 2017) by 3 trained investigators [Lan-fang Li, Guo-liang Cheng, and Ying Sun]. No language restrictions were imposed, and non-English-language articles were translated before analysis.

Study Selection

References retrieved using the literature searches and databases were screened. When potentially pertinent studies were found, complete articles were retrieved. The inclusion criteria comprised: random allocation to treatment, group receiving milrinone compared with group receiving placebo/standard care with no restriction in dose and time of administration, CABG surgery performed in adult patients, and information provided on primary outcome (endpoint). The exclusion criteria were as follows: lack of outcome (mortality) data, duplicate publication, animal experimental studies, article published as abstract only, pediatric population. Three investigators independently assessed compliance to selection criteria and selected studies for the final analysis and divergences resolved by consensus, and if issues persisted, the reference evaluated by 4 investigators, independently.

Data extraction and study characteristics

The following details were extract from retrieved studies: number of patients, surgical type, clinical setting, milrinone dosage, treatment duration, follow-up, mortality, and operative complications (such as MI, myocardial ischemia, arrhythmias, stroke, and AKI incidences) were independently extracted by 4 trained investigators. The primary endpoint of current analysis was mortality. And MI (per author definition), acute renal failure (per
author definition), myocardial ischemia, arrhythmias, stroke, AKI, mechanical ventilation, and length of intensive care unit and hospital stay were subsequent endpoint.

Quality assessment

We assessed the included trials according to the Cochrane Collaboration methods for evaluating risk of bias and the internal validity by 3 independent reviewers.

Data analysis and synthesis

RevMan (Review Manager, version 5.2, Nordic Cochrane Center, Cochrane Collaboration, Copenhagen, 2012) and Stata (Stata Statistical Software: release 13, StataCorp LP, College Station, Texas) will be utilized to deal with data extracted from selected articles. Q-test was applied to measure statistical heterogeneity and I^2 as a quantitative measure of the degree of heterogeneity. Date on mortality was estimated to compute the individual and pooled relative risks (RR) with 95% confidence interval (CI), by means of Mantel-Haenszel method. The presence of heterogeneity across trials was also evaluated, with $I^2 <$ 25% indicating no significant heterogeneity, where the fixed-effects model was used. In contrast, in case of a moderate or substantial heterogeneity ($I^2 > 25$%), a random-effects model was used. Funnel plots were used to explore small study risk bias and by analytic appraisal based on the Peters’ regression asymmetry test.

The Cochrane Collaboration principal and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were complied as standard for the current study. The two-tailed 0.05 and 0.1 level were set for statistical significance limit of hypothesis and heterogeneity analysis, respectively. The p values are not revised throughout assess.

Results

A total of 1,463 articles were identified and screened. After exclusion by 1,301 irrelevant
titles or abstracts, 162 studies were eligible in full-text and assessed according to the selection criteria (Figure 1). Of these, the most common reasons for exclusion were: valid date could not be obtained by the authors (87 studies), comparison of milrinone with other drugs (17 studies), pediatric population (11 studies), nonrandomized controlled trails (9 studies), crossover studies (5 studies), published as abstract only (4 studies), mechanical devices as control (4 studies), inhaled milrinone (3 studies), randomizing brain-dead organ donors (3 studies), animal studies (2 studies) and healthy volunteers (1 study). Ultimately, sixteen randomized clinical trials were assessed in compliance with inclusion (Table 1).

32, 39-52

Study characteristics

The total number of patients in 16 included trials was 698, undergoing CABG surgery (346 treated with placebo/standard care and 352 treated with milrinone) (Table 2 and Table 3). Five of these studies performed off-pump CABG32, 42, 46, 47, 50 and 11 performed on-pump CABG surgery. (39-45, 48, 49, 51, 52) Mode of administration included bolus (39-43, 45, 48, 49), continuous infusion (40-42, 44-60), preceded in 7 studies by an initial bolus, (40-42, 45, 48, 49) which dose varied from 30 to 75 μg/kg in the way of bolus or from 0.25 to 0.75 μg/kg/min as a continuous infusion. The quality of current results presented variable. Although 3 RCTs were considered as high quality, there were a large number of studies lacked important details which to evaluate the risk of selection, performance, attrition, or detection biases (Figure 2).

Quantitative data synthesis

The overall analysis demonstrated that the mortality in patients receiving milrinone was not increased when compared to placebo/standard care [11/352 (3.13 %): death in the milrinone treatment group 9/346 (2.60 %) versus death in the control group, RR = 1.18
(0.53–2.62), p value = 0.69, p for heterogeneity = 0.91, $I^2 = 0 \%$] (Figure 3).

Sensitivity analysis and funnel plot inspection confirmed the overall robustness of the present findings and the lack of evidence for small study bias, respectively (Figure 5A).

The sub-analysis in different postoperative outcomes (Figure 4, Table 4) showed that a statistically significant effect of milrinone reduced the occurrence of MI [5/219 (2.28 %) in the milrinone treatment group versus 25/221 (11.31 %) in the control group, RR = 0.23 (0.10–0.54), p value = 0.0008, p for heterogeneity = 0.35, $I^2 = 9 \%$, with 9 studies included], myocardial ischemia [12/106 (11.32 %) in the milrinone treatment group vs. 41/106 (36.68 %) in the control group, RR = 0.29 (0.16–0.52), p value <0.0001, p for heterogeneity = 0.55, $I^2 = 0 \%$, with 3 studies included], and arrhythmias [16/234 (6.84 %) in the milrinone treatment group vs. 31/236 (13.14 %) in the control group, RR = 0.53 (0.31–0.91), p value= 0.02, p for heterogeneity = 0.55, $I^2 = 0 \%$, with 10 studies included].

Another sub-analysis showed a difference in the risk of stroke [2/86 (2.33 %) in the milrinone treatment group vs. 0/86 (0 %) in the control group, RR = 3.00 (0.32–27.88), p value = 0.33, p for heterogeneity = 1.00, $I^2 = 0 \%$, with 3 studies included], renal failure [9/151 (5.96 %) in the milrinone treatment group vs. 8/151 (5.30 %) in the control group, RR = 1.25 (0.45–2.81), p for effect = 0.80, p for heterogeneity = 0.64, $I^2 = 0 \%$, with 5 studies included]. Sensitivity analysis and funnel plot inspection confirmed the overall robustness of the present findings and the lack of evidence for small-study bias, respectively (Figure 5B).

Discussion

In this study, we conducted a systematic meta-analysis of all existed, enrolled and randomized studies, comparing treatment with milrinone to placebo/standard care in
patients who underwent CABG surgery. The result showed that compared with placebo treatment, milrinone has no contribution to mortality. Although milrinone failed to reduce the mortality, the risk of postoperative complications, such as MI, myocardial ischemia, and arrhythmias were significantly decreased when patients underwent CABG surgery. About 110 million people were affected by CAD, which resulted in 8.9 million deaths in 2015. 53 CAD is considered the most common cause of death globally because of its high mortality risk (15.9 %). 54 From 1980 to 2010, the number of cases and risk of death from CAD for a given age both declined, especially in developed countries. 55, 56 Some well-determined risk factors, including high blood pressure, smoking, diabetes, obesity, family history, and excessive alcohol were controlled. About half of the cases result from genetics among all these factors. 57-59 Obesity and smoking are associated about 20 % and 36 % of cases, respectively. 60 The typical pathophysiological character of CAD is limited blood flow to the heart, which may result in ischemia and long-term oxygen deficit of the heart muscle, leading to cell death and, finally, causing myocardial infarction (MI). Besides that, transient ischemia resulting from coronary artery stenosis may lead to ventricular arrhythmia, devolve into a dangerous heart rhythm, and lead to death, which is known as ventricular fibrillation. 61 Although a Cochrane review in 2015 suggests that combining preventive strategies such as persisting appropriate physical exercise, maintaining a healthy diet, treating hypertension, reducing cholesterol and quit smoking could effectively prevent the risk of CAD; 62-66 there was insufficient evidence to prove an impact on mortality or actual cardiovascular events. 67 Until now, the most effective treatment options for moderate to severe CAD are medications (such as statins, nitroglycerin, calcium channel blockers, and/or beta-blockers, and aspirin) 68-70 and
surgery (such as CABG).71-73 CABG surgery is performed to treat coronary artery disease (CAD) by using a grafted vein to establish a vascular access between the root of ascending aorta and the distal end of the lesion site, so that blood can bypass the coronary artery lesion site, and reach the ischemic myocardium, improving coronary perfusion and increasing myocardial oxygen supply, which the process also called as myocardial revascularization.74, 75 Numerous studies in the reference have demonstrated that CABG surgery is associated with low mortality (in both the short term and the long-term) and cognitive and renal function benefits.76, 77 However, multiple complications (involving MI, myocardial ischemia, arrhythmias, stroke, and renal kidney) are common postoperative syndromes.8, 18, 20, 21, 78 Surgery, combined with medication pre- and/or post-operatively, such as inotropic agents, which could increase myocardial contractility that in most cases results in increasing intracellular cAMP levels, could effectively avoid or ameliorate these unwanted outcomes.79-81 Increased cAMP subsequently stimulates adenylate cyclase and inhibits PDE III simultaneously.82 Despite (or because of) their effectiveness, inotropic agents face various substantial limitations, such as acute myocardial β-adrenergic receptor desensitization, limiting the function for post-bypass cardiac failure,83 and more observational data suggest that inotropic agents are contributed to worse clinical outcomes, due to higher incidence of renal dysfunction and death ratio.84-87

PDE III inhibitors such as milrinone provide an alternative option to inotropic support83 because it not only has positive inotropic effect but also vasodilatory effects.82, 88 Pre-emptive use of milrinone was beneficial to renal tubular injury.84 Unlike dobutamine, milrinone does not increase heart rate and myocardial oxygen consumption,89 and some
studies reported that milrinone could significantly reduce the risk of postoperative myocardial ischemia and infarction in patients undergoing CABG surgery. However, one of the current controversies or open questions in milrinone application is whether it is associated with mortality. A recent meta-analysis by Zangrillo A et al. has shown that milrinone had tendency to increase mortality and incidence of arrhythmia in patients underwent cardiac surgery, comparing with control agents [13/249 (5.2 %) in milrinone vs. 6/269 (2.2 %) in the control arm, OR = 2.67 (1.05–6.79), p for effect = 0.04, p for heterogeneity = 0.23, I² = 25 %]. However, in their study, 13 trials were included and involved different control agents (3 with levosimendan, 2 with nesiritide, 7 with placebo, and 1 with nothing). These factors may induce bias risk. For instance, a sub-analysis with placebo or nothing as control demonstrated no difference in the risk of mortality [4/165 (2.4 %) with milrinone vs. 3/164 (1.8 %) in the control arm, OR = 1.27 (0.28–5.84), p for effect = 0.76, p for heterogeneity = 0.45, I² = 0 %, 329 patients and 8 studies included]. Besides that, an updated meta-analysis (35) showed that neither the overall nor the subgroup (adult patients) mortality in the milrinone-treated group was significantly different from the control group (mortality, 2.2 % vs. 2.1 %, p = 0.70 overall, 3 % vs. 2.4%, p = 0.70 in adult patients). However, the sensitivity analysis with a low risk of bias showed a trend, but not statistical significance, toward an increase in mortality with milrinone [8/153 (5.2 %) in the milrinone arm vs. 2/152 (1.3 %) in the control arm, RR = 2.71 (0.82–9), p for effect = 0.10]. Meanwhile, the most recent studies, respectively published in 2015(90) and 2016, demonstrated that there were no differences in mortality of patients administrated milrinone compared to control groups. All these reasons may induce bias risk.

To avoid these interference factors, we enrolled 16 trials with a randomized total of 698
patients undergoing CABG surgery (346 treated with placebo or standard care and 352 treated with milrinone); the results showed that there was no difference in mortality between the group receiving milrinone and the placebo/standard care group. Nevertheless, the sub-analysis demonstrated that the occurrence of myocardial infarction, myocardial ischemia, and arrhythmias decreased significantly with milrinone treatment compared to the placebo or standard care group. However, the occurrence of stroke and renal failure, need for IABP, and duration of inotropic support (h) and mechanical ventilation (h) between these two groups showed no differences. Although the evidence in the present study demonstrated that milrinone failed to show an advantage in mortality in adult CABG patients, it significantly reduced the occurrence of MI, myocardial ischemia, and arrhythmias compared to placebo-treated patients. All these findings may be helpful for clinical application of milrinone and provide therapy strategies for CABG surgery. Meanwhile, along with clinical milrinone application, sufficient randomized clinical trials need to be collected and the potential benefit or adverse effects should be analyzed and reevaluated.

Limitations
Our study has several limitations. First, the authors acknowledge that only 4 of the 16 studies included in this meta-analysis were of high quality. Second, in enrolled RCTs, the doses of milrinone were between 30 and 75 μg/kg (as an intravenous bolus) and between 0.5 and 0.75 μg/kg/min (as continuous infusion). This fact suggested that the current reference lacks generalizability of milrinone at doses beyond the range of 0.3 - 0.75 μg/kg/min. Third, our study on the incidence of myocardial ischemia, stroke, and renal failure were performed using a small number of studies and patients. Therefore, the current result should not be conclusive due to possibility of inducing error. Finally, only one trial evaluated with a 1-year follow-up, so defection in short follow-up could
potentially impact on our mortality analyses.

Conclusions

This meta-analysis suggests that, compared to placebo or standard care, milrinone neither significantly increases nor decreases the risk of dying in adult patients undergoing CABG surgery, but milrinone could efficiently ameliorate the incidence of postoperative complications, including MI, myocardial ischemia, and arrhythmias.

Abbreviations

AKI, Acute Kidney Injury; ARF, Acute Renal Failure; CABG, Coronary Artery Bypass Graft surgery; CAD, Coronary Artery Disease; cAMP, cyclic Adenosine Phosphate; CVDs, Cardiovascular Diseases; LOS, Low Output Syndrome; MI, Myocardial Infarction; WHO, World Health Organization; PDE, Phosphodiesterase; RCTs, Randomized Controlled Trials; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data and materials are available.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the grants from the Shandong Province Science and Technology Major Project (grant no. 2015ZDJQ05004) and National Science and
Technology Support Program (grant no. 2012CB724001). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Authors' contributions

YS R, GM Z, and J L designed the study. LF L, GL C, and Y S performed and collected the data. YJ T, T P, and GL C analyzed the data. YS R, GM Z, and J L wrote the manuscript. All authors approved the contents of the manuscript.

Acknowledgements

Not applicable

References

1 Siscovick DS, Barringer TA, Fretts AM, et al. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2017;135:e867-e84.

2 Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol 2014;11:276-89.

3 Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006;113:898-918.

4 Borghi C, Omboni S, Reggiardo G, et al. Efficacy of Zofenopril Compared With Placebo and Other Angiotensin-converting Enzyme Inhibitors in Patients With Acute Myocardial Infarction and Previous Cardiovascular Risk Factors: A Pooled Individual Data Analysis of 4 Randomized, Double-blind, Controlled, Prospective Studies. J Cardiovasc Pharmacol 2017;69:48-54.

5 Menendez ME, Memtsoudis SG, Opperer M, et al. A nationwide analysis of risk factors for in-hospital myocardial infarction after total joint arthroplasty. Int Orthop 2015;39:777-
6 Braunwald E. Treatment of Left Main Coronary Artery Disease. N Engl J Med 2016;375:2284-5.

7 Bangalore S, Guo Y, Samadashvili Z, et al. Everolimus-eluting stents or bypass surgery for multivessel coronary disease. N Engl J Med 2015;372:1213-22.

8 Hausenloy DJ, Candilio L, Evans R, et al. Remote Ischemic Preconditioning and Outcomes of Cardiac Surgery. N Engl J Med 2015;373:1408-17.

9 Guo Y, Cao S, Hu S, et al. Effect of milrinone on short-term outcome of patients with myocardial dysfunction undergoing coronary artery bypass graft. Chin Heart J 2014; 26: 572-4.

10 Aldea GS, Bakaeen FG, Pal J, et al. The Society of Thoracic Surgeons Clinical Practice Guidelines on Arterial Conduits for Coronary Artery Bypass Grafting. Ann Thorac Surg 2016;101:801-09.

11 Shafarenko MS, Catapano J, Luo S, et al. Outcomes following coronary artery bypass grafting with microsurgery in paediatric patients. Interact Cardiovasc Thorac Surg 2018;27:27-33.

12 Amin S, Werner RS, Madsen PL, et al. Influence of external stenting on venous graft flow parameters in coronary artery bypass grafting: a randomized study. Interact Cardiovasc Thorac Surg 2018;26:926-31.

13 Gordon JB, Daniels LB, Kahn AM, et al. The Spectrum of Cardiovascular Lesions Requiring Intervention in Adults After Kawasaki Disease. JACC Cardiovasc Interv 2016;9:687-96.

14 Laukkanen JA, Kunutsor SK, Niemela M, et al. All-cause mortality and major cardiovascular outcomes comparing percutaneous coronary angioplasty versus coronary artery bypass grafting in the treatment of unprotected left main stenosis: a meta-analysis
of short-term and long-term randomised trials. Open Heart 2017;4:e000638.

15 Badheka AO, Panaich SS, Arora S, et al. Percutaneous Coronary Intervention: Relationship Between Procedural Volume and Outcomes. Curr Cardiol Rep 2016;18:39.

16 Hannan EL, Farrell LS, Walford G, et al. Utilization of radial artery access for percutaneous coronary intervention for ST-segment elevation myocardial infarction in New York. JACC Cardiovasc Interv 2014;7:276-83.

17 Hye RJ, Voeks JH, Malas MB, et al. Anesthetic type and risk of myocardial infarction after carotid endarterectomy in the Carotid Revascularization Endarterectomy versus Stenting Trial (CREST). J Vasc Surg 2016;64:3-8 e1.

18 Yamanaka T, Kawai Y, Miyoshi T, et al. Remote ischemic preconditioning reduces contrast-induced acute kidney injury in patients with ST-elevation myocardial infarction: a randomized controlled trial. Int J Cardiol 2015;178:136-41.

19 Nishizawa K, Yano T, Tanno M, et al. Chronic Treatment With an Erythropoietin Receptor Ligand Prevents Chronic Kidney Disease-Induced Enlargement of Myocardial Infarct Size. Hypertension 2016;68:697-706.

20 Lee WC, Fang HY, Chen HC, et al. Anemia: A significant cardiovascular mortality risk after ST-segment elevation myocardial infarction complicated by the comorbidities of hypertension and kidney disease. PLoS One 2017;12:e0180165.

21 Hansen MK, Gammelager H, Jacobsen CJ, et al. Acute Kidney Injury and Long-term Risk of Cardiovascular Events After Cardiac Surgery: A Population-Based Cohort Study. J Cardiothorac Vasc Anesth 2015;29:617-25.

22 Nojiri T, Yamamoto K, Maeda H, et al. A Double-Blind Placebo-Controlled Study of the Effects of Olprinone, a Specific Phosphodiesterase III Inhibitor, for Preventing Postoperative Atrial Fibrillation in Patients Undergoing Pulmonary Resection for Lung Cancer. Chest 2015;148:1285-92.
23 Brown DG, Wilkerson EC, Love WE. A review of traditional and novel oral anticoagulant and antiplatelet therapy for dermatologists and dermatologic surgeons. J Am Acad Dermatol 2015;72:524-34.

24 Karibe H, Hayashi T, Narisawa A, et al. Clinical Characteristics and Outcome in Elderly Patients with Traumatic Brain Injury: For Establishment of Management Strategy. Neurol Med Chir (Tokyo) 2017;57:418-25.

25 Harrison SA, Chang ML, Beavo JA. Differential inhibition of cardiac cyclic nucleotide phosphodiesterase isozymes by cardiotonic drugs. Circulation 1986;73:III109-16.

26 Shipley JB, Tolman D, Hastillo A, et al. Milrinone: basic and clinical pharmacology and acute and chronic management. Am J Med Sci 1996;311:286-91.

27 Endoh M, Yamashita S, Taira N. Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in the canine ventricular muscle. J Pharmacol Exp Ther 1982;221:775-83.

28 Endoh M, Yanagisawa T, Taira N, et al. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 1986;73:III117-33.

29 Levy JH, Bailey JM, Deeb GM. Intravenous milrinone in cardiac surgery. Ann Thorac Surg 2002;73:325-30.

30 Chen EP, Bittner HB, Davis RD, Jr., Van Trigt P, 3rd. Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann Thorac Surg 1997;63:814-21.

31 Kwak YL, Oh YJ, Shinn HK, et al. Haemodynamic effects of a milrinone infusion without a bolus in patients undergoing off-pump coronary artery bypass graft surgery. Anaesthesia 2004;59:324-31.

32 Lee JH, Oh YJ, Shim YH, et al. The effect of milrinone on the right ventricular function
in patients with reduced right ventricular function undergoing off-pump coronary artery bypass graft surgery. J Korean Med Sci 2006;21:854-58.

33 McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012;14:803-69.

34 Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013;128:1810-52.

35 Zangrillo A, Biondi-Zoccai G, Ponschab M, et al. Milrinone and mortality in adult cardiac surgery: a meta-analysis. J Cardiothorac Vasc Anesth 2012;26:70-7.

36 Majure DT, Greco T, Greco M, et al. Meta-analysis of randomized trials of effect of milrinone on mortality in cardiac surgery: an update. J Cardiothorac Vasc Anesth 2013;27:220-9.

37 Tang X, Liu P, Li R, et al. Milrinone for the Treatment of Acute Heart Failure After Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Basic Clin Pharmacol Toxicol 2015;117:186-94.

38 Koperny M, Lesniak W, Jankowski M, et al. The Cochrane collaboration - the role in the evolution of evidence-based medicine and development of cooperation in Poland. Przegl Epidemiol 2016;70:508-20.

39 Arbeus M, Axelsson B, Friberg O, et al. Milrinone increases flow in coronary artery bypass grafts after cardiopulmonary bypass: a prospective, randomized, double-blind, placebo-controlled study. J Cardiothorac Vasc Anesth 2009;23:48-53.
40 Couture P, Denault AY, Pellerin M, et al. Milrinone enhances systolic, but not diastolic function during coronary artery bypass grafting surgery. Can J Anaesth 2007;54:509-22.
41 Doolan LA, Jones EF, Kalman J, et al. A placebo-controlled trial verifying the efficacy of milrinone in weaning high-risk patients from cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1997;11:37-41.
42 Hadadzadeh M, Hosseini SH, Mostafavi Pour Manshadi SM, et al. Effect of milrinone on short term outcome of patients with myocardial dysfunction undergoing off-pump coronary artery bypass graft: a randomized clinical trial. Acta Med Iran 2013;51:681-6.
43 Hamada Y, Kawachi K, Yamamoto T, Nakata T, Kashu Y, Sato M, Watanabe Y. Effects of single administration of a phosphodiesterase III inhibitor during cardiopulmonary bypass: comparison of milrinone and amrinone. Jpn Circ J 1999;63:605-609.
44 Hayashida N, Tomoeda H, Oda T, et al. Inhibitory effect of milrinone on cytokine production after cardiopulmonary bypass. Ann Thorac Surg 1999;68:1661-7.
45 Jebel M, Ghazinoor M, Mandegar MH, et al. Effect of milrinone on short-term outcome of patients with myocardial dysfunction undergoing coronary artery bypass graft: A randomized controlled trial. Cardiol J 2010;17:73-8.
46 Jo HR, Lee WK, Kim YH, et al. The effect of milrinone infusion on right ventricular function during coronary anastomosis and early outcomes in patients undergoing off-pump coronary artery bypass surgery. Korean J Anesthesiol 2010;59:92-8.
47 Kwak YL, Oh YJ, Kim SH, et al. Efficacy of pre-emptive milrinone in off-pump coronary artery bypass surgery: comparison between patients with a low and normal pre-graft cardiac index. Eur J Cardiothorac Surg 2004;26:687-93.
48 Mollhoff T, Loick HM, Van Aken H, et al. Milrinone modulates endotoxemia, systemic inflammation, and subsequent acute phase response after cardiopulmonary bypass (CPB). Anesthesiology 1999;90:72-80.
49 Shi Y, Denault AY, Couture P, et al. Biventricular diastolic filling patterns after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 2006;131:1080-6.

50 Song JW, Jo YY, Jun NH, et al. The effect of milrinone on the intraoperative hemodynamics during off-pump coronary bypass surgery in patients with an elevated echocardiographic index of the ventricular filling pressure. Korean J Anesthesiol 2011;60:185-91.

51 Yamaguchi A, Tanaka M, Naito K, et al. The efficacy of intravenous milrinone in left ventricular restoration. Ann Thorac Cardiovasc Surg 2009;15:233-8.

52 Yamaura K, Okamoto H, Akiyoshi K, et al. Effect of low-dose milrinone on gastric intramucosal pH and systemic inflammation after hypothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2001;15:197-203.

53 Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1545-1602.

54 Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1459-544.

55 Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation 2014;129:1483-92.

56 Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation 2014;129:1493-501.

57 Aguilar-Palacio I, Malo S, Feja C, et al. Risk factors control for primary prevention of cardiovascular disease in men: Evidence from the Aragon Workers Health Study (AWHS).
PLoS One 2018;13:e0193541.

58 Mehta PK, Wei J, Wenger NK. Ischemic heart disease in women: a focus on risk factors. Trends Cardiovasc Med 2015;25:140-51.

59 Charlson FJ, Moran AE, Freedman G, et al. The contribution of major depression to the global burden of ischemic heart disease: a comparative risk assessment. BMC Med 2013;11:250.

60 Kivimaki M, Nyberg ST, Batty GD, et al. Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. Lancet 2012;380:1491-97.

61 Ambrose JA, Singh M. Pathophysiology of coronary artery disease leading to acute coronary syndromes. F1000Prime Rep 2015;7:08.

62 Fihn SD, Blankenship JC, Alexander KP, et al. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Thorac Cardiovasc Surg 2015;149:e5-23.

63 Anguita M, Comin J, Almenar L, et al. Comments on the ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. A report of the Task Force of the Clinical Practice Guidelines Committee of the Spanish Society of Cardiology. Rev Esp Cardiol (Engl Ed) 2012;65:874-8.

64 McGill HC, Jr., McMahan CA, Gidding SS. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation 2008;117:1216-27.
65 McNeal CJ, Dajani T, Wilson D, et al. Hypercholesterolemia in youth: opportunities and obstacles to prevent premature atherosclerotic cardiovascular disease. Curr Atheroscler Rep 2010;12:20-8.

66 Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ 2013;347:f5577.

67 Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016;354:i3857.

68 Thompson PD, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation 2003;107:3109-16.

69 Gutierrez J, Ramirez G, Rundek T, et al. Statin therapy in the prevention of recurrent cardiovascular events: a sex-based meta-analysis. Arch Intern Med 2012;172:909-19.

70 Ohman EM. CLINICAL PRACTICE. Chronic Stable Angina. N Engl J Med 2016;374:1167-76.

71 Sipahi I, Akay MH, Dagdelen S, et al. Coronary artery bypass grafting vs percutaneous coronary intervention and long-term mortality and morbidity in multivessel disease: meta-analysis of randomized clinical trials of the arterial grafting and stenting era. JAMA Intern Med 2014;174:223-230.

72 Stergiopoulos K, Boden WE, Hartigan P, et al. Percutaneous coronary intervention outcomes in patients with stable obstructive coronary artery disease and myocardial ischemia: a collaborative meta-analysis of contemporary randomized clinical trials. JAMA
73 Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction--summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With Unstable Angina). J Am Coll Cardiol 2002;40:1366-74.

74 Head SJ, da Costa BR, Beumer B, et al. Adverse events while awaiting myocardial revascularization: a systematic review and meta-analysis. Eur J Cardiothorac Surg 2017;52:206-17.

75 Gasz B. The influence of healthcare policy on the outcome parameters of myocardial revascularization procedures as opposed to geographical differences. Eur J Cardiothorac Surg 2018;54:196.

76 Byrne JG, Leacche M. Off-Pump CABG Surgery "No-Touch" Technique to Reduce Adverse Neurological Outcomes. J Am Coll Cardiol 2017;69:937-8.

77 Karkhanis R, Tam DY, Fremes SE. Management of patients with end-stage renal disease: coronary artery bypass graft surgery versus percutaneous coronary intervention. Curr Opin Cardiol 2018;33:546-50.

78 Ohno K, Kuno A, Murase H, et al. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats. Am J Physiol Heart Circ Physiol 2017;313:H1130-42.

79 Movsesian M, Ahmad F, Hirsch E. Functions of PDE3 Isoforms in Cardiac Muscle. J Cardiovasc Dev Dis 2018;5.

80 Madeira M, Caetano F, Almeida I, et al. Inotropes and cardiorenal syndrome in acute heart failure - A retrospective comparative analysis. Rev Port Cardiol 2017;36:619-25.

81 Gao B, Qu Y, Sutherland W, et al. Decreased contractility and altered responses to
inotropic agents in myocytes from tachypacing-induced heart failure canines. J Pharmacol Toxicol Methods 2018;93:98-107.

82 Parissis JT, Farmakis D, Nieminen M. Classical inotropes and new cardiac enhancers. Heart Fail Rev 2007;12:149-56.

83 Kikura M, Sato S. Effects of preemptive therapy with milrinone or amrinone on perioperative platelet function and haemostasis in patients undergoing coronary bypass grafting. Platelets 2003;14:277-82.

84 Heringlake M, Wernerus M, Grunefeld J, et al. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care 2007;11:R51.

85 Metra M, Eichhorn E, Abraham WT, et al. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials. Eur Heart J 2009;30:3015-26.

86 Bayram M, De Luca L, Massie MB, et al. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes. Am J Cardiol 2005;96:47G-58G.

87 Mebazaa A, Parissis J, Porcher R, et al. Short-term survival by treatment among patients hospitalized with acute heart failure: the global ALARM-HF registry using propensity scoring methods. Intensive Care Med 2011;37:290-301.

88 Lee J, Kim WH, Ryu HG, et al. Stroke Volume Variation-Guided Versus Central Venous Pressure-Guided Low Central Venous Pressure With Milrinone During Living Donor Hepatectomy: A Randomized Double-Blinded Clinical Trial. Anesth Analg 2017;125:423-30.

89 Movsesian M, Stehlik J, Vandeput F, et al. Phosphodiesterase inhibition in heart failure. Heart Fail Rev 2009;14:255-63.
90 Belletti A, Castro ML, Silvetti S, et al. The Effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials. Br J Anaesth 2015;115:656-75.

91 Koster G, Bekema HJ, Wetterslev J, et al. Milrinone for cardiac dysfunction in critically ill adult patients: a systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med 2016;42:1322-35.

Tables

Table 1. A Description of the Studies Included in the Meta-Analysis.
First Author	Journal	Year	Procedures	Control	Inclusion Criteria
Arbeus M	Journal of Cardiothoracic and Vascular	2009	Elective CABG	Placebo	Stable angina, LVEF (%) > 30 %, Sinus rhythm.
	Anesthesia				
Couture P	Canadian Journal of Anaesthesia	2007	Elective CABG	Placebo	Ischemic heart disease, LV diastolic dysfunction.
Doolan LA	Journal of Cardiothoracic and Vascular	1997	Elective CABG and valvular surgery	Placebo	LVEF (%) ≤ 35 %, Mean PAP ≥ 20 mmHg.
Guo Yj	Chinese Heart Journal	2014	Elective CABG	Placebo	CABG surgery, LVEF (%) < 35 %,
Hadadzadeh M	Acta medica Iranica	2013	Elective CABG (off-pump)	Placebo	Severe myocardium dysfunction (LVEF (%) < 35 %)
Hamada Y	Japanese circulation journal	1999	Elective CABG and valvular surgery	Standard treatment	Unspecified
Hayashida N	Annals of Thoracic Surgery	1999	Elective CABG	Standard treatment	Isolated CABG surgery
Jebeli M	Cardiology Journal	2010	Elective CABG	Placebo	LVEF (%) < 35 %,
Jo HR	Korean Journal of Anesthesiology	2010	Elective CABG (off-pump)	Placebo	CABG surgery, Normal LV function.
Kwak YL	European journal of cardio-thoracic surgery	2004	Elective CABG (off-pump)	Placebo	Unspecified
Lee JH	Journal of korean medical science	2006	Elective CABG (off-pump)	Placebo	RVEF (%) < 35 %,
Möllhoff T	Anesthesiology	1999	Elective CABG	Placebo	Elective CABG
Shi YF	Journal of Thoracic and Cardiovascular Surgery	2006	Elective CABG	Placebo	Elective CABG
Song JW	Korean Journal of Anesthesiology	2011	Elective CABG (off-pump)	Placebo	E/e’ value > 15
Yamaguchi A	Annals Of Thoracic And Cardiovascular Surgery	2009	Elective CABG and valvular surgery	Standard treatment	Elective CABG concomitant LVR, LV dysfunction (LVEF (%) < 30 %), LVESVI > 100 ml/m²
Yamaura K	Journal of Cardiothoracic and Vascular	2001	Elective CABG	Standard treatment	Cardiac Surgery
	Anesthesia				

Abbreviations: CABG, coronary artery bypass grafting; LVEF, left ventricular ejection fraction; TEE, transesophageal echocardiography; PAP, pulmonary arterial pressure; AF, atrial fibrillation; MI, myocardial infarction; E/e’, the ratio of the early transmitral flow velocity to the early diastolic velocity of the mitral annulus; LVR, left ventricular restoration; LVESVI, left ventricular end-systolic volume index.
Author	Group	Patients	Age	Sex	Time of administration
Arbeus M	MIL	22	63 ± 10	20/2	After release of aortic clamp
	Ctrl	22	62 ± 9	17/5	
Couture P	MIL	25	67 ± 8	19/6	After anesthesia induction
	Ctrl	25	70 ± 7	19/6	
Doolan LA	MIL	15	65 ± 10.4	14/1	15 min before weaning from CPB
	Ctrl	15	67 ± 8.6	14/1	
Guo YJ	MIL	31	56 ± 6	21/10	After release of aortic clamp
	Ctrl	31	54 ± 6	20/11	
Hadadzadeh M	MIL	40	62 ± 10.7	31/9	After anesthesia induction
	Ctrl	40	63 ± 9.6	26/14	
Hamada Y	MIL	10	66.2 ± 8.1	6/4	After release of aortic clamp
	Ctrl	10	62.4 ± 6.5	6/4	
Hayashida N	MIL	12	63.3 ± 2.8	7/5	After anesthesia induction
	Ctrl	12	62.7 ± 2.8	9/3	
Jebeli M	MIL	35	56.9 ± 9.7	25/10	After release of aortic clamp
	Ctrl	35	58.2 ± 8.4	28/7	
Jo HR	MIL	20	67.0 ± 9.2	12/8	After sternotomy
	Ctrl	20	64.1 ± 9.9	11/9	
Kwak YL	MIL	29	61.5 ± 8.2	21/8	After IMA harvest
	Ctrl	33	60.4 ± 8.4	26/7	
Lee JH	MIL	24	63 ± 8	20/4	After sternotomy
	Ctrl	26	62 ± 8	20/6	
Möllhoff T	MIL	11	60 ± 8	Not specified	After anesthesia induction
	Ctrl	11	61 ± 6	Not specified	
Shi Y	MIL	25	Not specified	Not specified	After anesthesia induction
	Ctrl	24	Not specified	Not specified	
Song JW	MIL	31	67.2 ± 7.6	14/17	After harvesting the left internal mammary artery
	Ctrl	31	65.7 ± 7.9	21/10	
Yamaguchi A	MIL	14	64.1 ± 8	13/1	After induction of CPB
	Ctrl	14	65.2 ± 8.5	13/1	
Yamaura K	MIL	10	66 ± 6	7/3	After induction of CPB
	Ctrl	10	57 ± 16	6/4	
Table 3. Preoperative Ejection Fraction and Postoperative Causes of Death in the 2 Groups

First Author	Preoperative EF (MIL Group)	Preoperative EF (Ctrl Group)	No. of Death (Death/Total, MIL Group)	No. of Death (Death/Total, Ctrl Group)	Cause
Arbeus 39	59 ± 12	63 ± 9	1	22	0
Couture 40	51 ± 15	50 ± 13	2	25	0
Doolan 41	Not specified	Not specified	0	15	0
Guo 9	35 ± 4	35 ± 5	1	31	1
Hadadzadeh 42	29 ± 5.5	28.6 ± 5.6	1	40	1
Hamada 43	Not specified	Not specified	0	20	0
Hayashida 44	Not specified	Not specified	0	12	0
Jebeli 45	31.8 ± 3.2	34.5 ± 1.4	0	35	2
Jo 46	45 ± 14	51 ± 13	0	20	0
Kwak 47	Not specified	Not specified	0	29	0
Lee 32	50 ± 17	57 ± 8	0	24	0
Möllhoff 48	Not specified	Not specified	0	11	0
Shi 49	Not specified	Not specified	1	25	1
Song 50	55.3 ± 15.3	51.5 ± 16.7	1	31	1
Yamaguchi 51	64.1 ± 8	65.2 ± 8.5	0	14	0
Yamaura 52	Not specified	Not specified	0	10	0

Table 4. A Summary of the Global Effect of Different Outcomes.

Patients (Studies) Included	Milrinone: Events (%)	Control: Events (%)	RR	95 % CI	
Myocardial Infarction	440 (30)	5 (2.28 %)	25 (11.31 %)	0.23	0.10-0.54
Myocardial Ischemia	212 (53)	12 (11.32)	41 (36.68)	0.29	0.16-0.52
Arrhythmias	470 (47)	16 (6.84)	31 (13.14)	0.53	0.31-0.91
Stroke	172 (2)	2 (2.33)	0 (0)	3.00	0.32-27.88
Renal Failure	302 (17)	9 (5.96)	8 (5.30)	1.25	0.45-2.81

Figures
Figure 1

The flow diagram of study selection.

Figure 2
Study	Random sequence generation	Allocation concealment (selective)	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data (attrition)	Selective reporting (reporting bias)	Other bias
Arbeus M 2009	?	+	+	+	?	+	+
Couture P 2007	+	+	+	+	?	+	+
Doolan LA 1997	?	?	+	+	?	?	?
Guo YJ 2014	+	-	+	?	?	+	+
Hadadzadeh M 2013	?	?	+	+	?	+	?
Hamada Y 1999	?	?	?	?	+	+	+
Hayashida N 1999	+	?	?	?	?	?	+
Jebeli M 2010	?	?	+	?	?	+	+
Jo HR 2010	?	?	+	?	?	+	+
Kwak YL 2004	?	?	?	?	+	?	+
Lee JH 2006	?	?	+	?	?	+	+
Mollhoff T 1999	?	?	?	?	+	?	+
Shi Y 2006	?	?	?	?	+	?	+
Song JW 2011	+	+	+	+	?	+	+
Yenamooli LA 2007	?	?	?	?	?	?	?
Figure 2
Risk of bias assessment. Review of authors’ judgements about each risk of bias domain for each included study. Red high risk, green low risk, yellow unclear.

Figure 3
A forest plot for the risk of mortality. CI, confidence interval; df, degrees of freedom.
Figure 4

Forest plot of all-cause mortality in trials stratified by intervention.

Table 4.2.1: Myocardial infarction

Study or Subgroup	Events	Total	Risk Ratio	Risk Ratio			
			M-H Fixed, 95% CI	M-H Fixed, 95% CI			
Myocardial infarction							
Couture P 2007	0	25	0	Not estimable			
Guo YJ 2014	31	6	31	6.0%	0.0769	[0.0045, 1.3092]	
Hadadazadeh M 2013	40	9	40	8.3%	0.4444	[0.1489, 1.3262]	
Hamada Y 1999	0	10	0	Not estimable			
Hayashida N 1999	0	12	0	Not estimable			
Jebel M 2010	0	35	0	35	7.9%	0.0588	[0.0035, 0.9815]
Lee HJ 2006	0	24	0	26	Not estimable		
Möhlhoff T 1999	0	11	0	Not estimable			
Song JW 2011	1	31	2	31	1.9%	0.5000	[0.0478, 5.2337]
Subtotal (95% CI)	219	221	24.1%	0.2308	[0.0982, 0.5422]		
Total events	5	25					

Heterogeneity: Chi^2 = 3.28, df = 3 (P = 0.35); I^2 = 9%

Test for overall effect: Z = 3.38 (P = 0.0006)

Table 4.2.2: Myocardial ischemia

Study or Subgroup	Events	Total	Risk Ratio	Risk Ratio			
			M-H Fixed, 95% CI	M-H Fixed, 95% CI			
Myocardial ischemia							
Guo YJ 2014	3	31	14	31	13.0%	0.2143	[0.0683, 0.6722]
Hayashida N 1999	5	40	11	40	10.2%	0.4546	[0.1737, 1.1695]
Jebel M 2010	4	35	16	35	14.8%	0.2500	[0.0892, 0.6731]
Subtotal (95% CI)	106	106	38.0%	0.2927	[0.1630, 0.5255]		
Total events	12	41					

Heterogeneity: Chi^2 = 1.19, df = 2 (P = 0.55); I^2 = 0%

Test for overall effect: Z = 4.11 (P < 0.0001)

Table 4.2.3: Arrhythmias

Study or Subgroup	Events	Total	Risk Ratio	Risk Ratio			
			M-H Fixed, 95% CI	M-H Fixed, 95% CI			
Arrhythmias							
Couture P 2007	0	25	0	Not estimable			
Doolan LA	1	15	0	15	0.5%	3.0000	[0.1319, 68.2587]
Guo YJ 2014	4	31	7	31	6.5%	0.5714	[0.1859, 1.7867]
Hadadazadeh M 2013	5	40	14	40	13.0%	0.3571	[0.1420, 0.8962]
Hamada Y 1999	0	10	0	10	Not estimable		
Hayashida N 1999	0	12	0	12	Not estimable		
Jebel M 2010	5	35	10	35	9.3%	0.5000	[0.1903, 1.3136]
Lee HJ 2006	0	24	0	26	Not estimable		
Möhlhoff T 1999	0	11	0	11	Not estimable		
Song JW 2011	1	31	0	31	0.5%	3.0000	[0.1269, 70.9156]
Subtotal (95% CI)	234	236	29.6%	0.5313	[0.3108, 0.9081]		
Total events	16	31					

Heterogeneity: Chi^2 = 3.07, df = 4 (P = 0.55); I^2 = 0%

Test for overall effect: Z = 2.31 (P = 0.02)

Table 4.2.4: Stroke

Study or Subgroup	Events	Total	Risk Ratio	Risk Ratio			
			M-H Fixed, 95% CI	M-H Fixed, 95% CI			
Stroke							
Jebel M 2010	0	35	0	35	Not estimable		
Jo HR 2010	1	20	0	20	0.5%	3.0000	[0.1295, 69.5153]
Song JW 2011	1	31	0	31	0.5%	3.0000	[0.1269, 70.9156]
Subtotal (95% CI)	86	86	0.9%	3.0000	[0.3228, 27.8443]		
Total events	2	0					

Heterogeneity: Chi^2 = 0.00, df = 1 (P = 1.00); I^2 = 0%

Test for overall effect: Z = 0.97 (P = 0.33)

Table 4.2.5: Renal failure

Study or Subgroup	Events	Total	Risk Ratio	Risk Ratio			
			M-H Fixed, 95% CI	M-H Fixed, 95% CI			
Renal failure							
Couture P 2007	2	25	1	25	0.9%	2.0000	[0.1935, 20.6706]
Hadadazadeh M 2013	1	40	3	40	2.8%	0.3333	[0.0362, 3.0701]
Jebel M 2010	0	35	0	35	Not estimable		
Jo HR 2010	2	20	1	20	0.9%	2.0000	[0.1967, 20.3322]
Song JW 2011	4	31	3	31	2.8%	1.3333	[0.3250, 5.4708]
Subtotal (95% CI)	151	151	7.4%	1.1290	[0.4503, 2.8168]		
Total events	9	8					

Heterogeneity: Chi^2 = 1.6, df = 3 (P = 0.64); I^2 = 0%

Test for overall effect: Z = 0.25 (P = 0.80)

Total (95% CI): 796 | 800 | 100.0% | 0.4352 | [0.3166, 0.5982]

Total events: 44 | 105

Heterogeneity: Chi^2 = 18.11, df = 17 (P = 0.38); I^2 = 6%

Test for overall effect: Z = 5.12 (P < 0.00001)

Test for subgroups differences: Chi^2 = 11.41, df = 4 (P = 0.02). I^2 = 65.0%
Figure 5

A funnel plot for the risk of mortality. SE, standard error. A. B.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

PRISMA 2009 checklist-20190910.doc