Effect of short-term fluctuations in outdoor air pollution on the number of hospital admissions due to acute myocardial infarction among inhabitants of Kraków, Poland

Ewa Konduracka1, Łukasz Niewiara2, Bartosz Guzik2, Maksymilian Kotynia1, Piotr Szolc2, Grzegorz Gajos1, Jadwiga Nessler1, Piotr Podolec3, Krzysztof Żmudka2

1 Department of Coronary Disease and Heart Failure, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
2 Department of Interventional Cardiology, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland
3 Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Kraków, Poland

Introduction

Both indoor and outdoor air pollution is a serious threat to public health, as it is associated with approximately 8 million premature deaths each year.1 There are significant regional variations in terms of the degree of air pollution as well as its chemical composition, sources of emission, and geographical location, which also affects the concentrations of pollutants and determines their effect on human health.

In Poland, the limits set by the World Health Organization (WHO) for the levels of particulate matter (PM) are far exceeded, which constitutes a major problem. The main source of PM is low-stack emission (ie, emission from residential and small-industry chimneys below the level of 40 m above ground), and to a lesser extent, transport and other sources.2 The highest PM concentrations are observed during the heating season, especially when people use low-quality coal and
harmful waste for heating purposes or use old coal-fired furnaces. According to a WHO report, Kraków, otherwise known for its rich cultural and architectural heritage, is also one of the most polluted European cities in terms of PM concentrations in the air. Air pollution has been present in Kraków for many years. The fight against pollution is hindered by the fact that the city is located in a valley, there is a small number of windy days per year, and there is a high density of buildings. Therefore, PM concentrations, especially daily values, far exceed the permissible levels, which results in more than 100 days of exposure to highly polluted air per year.

Previous studies indicated that air pollution not only aggravates the symptoms of cardiovascular diseases but is now also considered one of cardiovascular risk factors. The effect of short-term exposure to air pollution on the risk of hospitalization for acute myocardial infarction (MI) has already been studied, with variable, and sometimes conflicting, results. These discrepancies result from regional differences in pollutant concentrations, studied populations, individual susceptibilities, methods of measuring exposure to air pollution, or methods of statistical analysis. Additional factors affecting the incidence of MI are weather conditions. Thus, the impact of these environmental factors on human health should always be analyzed on a local basis, with consideration for regional differences.

We aimed to assess the impact of short-term fluctuations in outdoor PM (PM$_{10}$ and PM$_{2.5}$) and the gaseous pollutant nitrogen dioxide (NO$_2$) on the number of hospitalizations due to MI among the inhabitants of Kraków (Poland), who are chronically exposed to air pollution.

PATIENTS AND METHODS From a database of John Paul II Hospital in Kraków (one of the 2 largest hospitals in Lesser Poland Voivodeship), 5592 patients hospitalized between December 2012 and September 2015 with a final diagnosis of ST-segment elevation MI or non-ST-segment elevation MI were selected. Patients with MI who died in the hospital or who were also included, while those with unstable angina were excluded from the study. After an analysis of confounding factors (different methods of measuring pollutant concentrations, lack of air pollution monitoring stations), the study population was limited to include only those inhabitants who had lived in Kraków for at least 30 years and resided there at the time of MI onset. The final study sample included 3545 participants.

The clinical diagnosis of ST-segment or non-ST-segment elevation MI was made by cardiologists on the basis of the presence of symptoms, elevation of troponin or creatine kinase-MB levels, as well as the presence or absence of ST-segment elevation on electrocardiography.

In all participants, coronary angiography was performed to confirm coronary artery disease (CAD). Normal coronary arteries were defined as a stenosis of less than 20%. Hypertension was defined as a blood pressure of 140/90 mm Hg or higher on at least 2 separate measurements or the use of antihypertensive agents. Hyperlipidemia was defined as hypercholesterolemia, mixed hyperlipidemia, or hypertriglyceridaemia according to current guidelines. Diabetes was diagnosed according to the guidelines developed by Diabetes Poland.

Data collection Data on air quality were obtained from the Regional Inspectorate for Environmental Protection in Kraków for the period from December 2012 to September 2015. Hourly data on PM$_{10}$, PM$_{2.5}$, and NO$_2$ concentrations were collected from monitoring stations located in the following streets: Krasieński, Bujaka, and Bulwarowa. Pollutant concentrations were measured with automatic and manual methods. Daily city-level exposure to pollutants was estimated using hourly data obtained from the above stations. A 78% completeness criterion was applied for aggregate data calculation. If the daily average concentration of any parameter was not available in any station, the daily city-level concentration for that day was classified as “missing.” About 5% to 22% of the observations were missing during the study, and the missing data were excluded from the analysis.

Daily meteorological data were obtained from the Kraków branch of the Institute of Meteorology and Water Management for the same period. A retrospective study protocol was approved by the ethics committees in Kraków (153/KBL/OIL/2016, to BG; KBET 1072.61.20.283, to EK).

Statistical analysis A time-series regression analysis was used to examine the association between short-term fluctuations in air pollutants (PM$_{2.5}$, PM$_{10}$, NO$_2$) and hospital admissions for MI, using a generalized linear model and distributed lag model with the Poisson distribution. We used a previously verified generalized linear model to evaluate the relationship between air pollutants and hospital admissions, with the number of hospital admissions as the dependent variable and the daily mean level of each individual air pollutant as the main exposure variable. To examine the delayed effect of air pollutants, weather conditions, and infections, we used a distributed lag model with a family of the Poisson distribution for a lag of 0 up to 6 days. A flexible spline function of time with 8 knots per year was used to control for the long-term trend and seasonal effects, and natural cubic spline functions with 4 degrees of freedom were used to adjust for the effects of temperature changes, relative humidity, and atmospheric pressure. Infections were also added to the model as a potential confounder. The analysis was performed separately for patients younger than 70 years and those aged 70 years or older.
Demographic and clinical characteristics of the study population (n = 3545)

Parameter	Value
Age, y, mean (SD)	72.9 (11.6)
Male sex, n (%)	1602 (45.1)
NSTEMI, n (%)	2127 (62)
STEMI, n (%)	1347 (38)
NSTEMI with normal coronary arteries, n (%)	149 (4.2)
STEMI with normal coronary arteries, n (%)	21 (0.6)
Arterial hypertension, n (%)	2079 (58.6)
Diabetes, n (%)	907 (25.6)
Obesity, n (%)	418 (11.7)
Hyperlipidemia, n (%)	1994 (56.2)
Smoking, n (%)	356 (10.0)
Infections before hospital admission, n (%)	56 (1.5)
Primary PCI, n (%)	3220 (90.8)
Previous MI, n (%)	425 (12)
Heart failure, n (%)	496 (14)
In-hospital deaths, n (%)	194.9 (5.5)

Abbreviations: MI, myocardial infarction; NSTEMI, non–ST-segment elevation myocardial infarction; PCI, percutaneous coronary intervention; STEMI, ST-segment elevation myocardial infarction

Descriptive statistics for daily air pollutant concentrations, weather conditions, and hospitalizations in the years from 2012 to 2015

Parameter	Percentile	Minimum	Maximum	Mean (SD)
Air pollutants				
\(\text{NO}_x\), µg/m³	53.0	64.0	75.0	22.0
\(\text{PM}_{2.5}\), µg/m³	35.0	53.0	75.0	1.0
\(\text{PM}_{10}\), µg/m³	24.0	37.0	64.0	11.0
Weather conditions				
Average temperature, °C	1.5	10.3	14.8	13.5
Average relative humidity, %	74.0	83.2	89.4	48.1
Average barometric pressure, hPa	1011.8	1016.7	1020.8	980.7
Number of hospitalizations				
Total	1	1	2	0
STEMI	1	1	2	1
NSTEMI	1	1	2	1

Abbreviations: \(\text{NO}_x\), nitric dioxide; PM, particulate matter; others, see TABLE 1

RESULTS

The demographic and clinical data of Kraków inhabitants hospitalized due to MI between December 2012 and September 2015 are presented in TABLE 1. The daily concentrations of the main air pollutants (\(\text{PM}_{10}\), \(\text{PM}_{2.5}\), \(\text{NO}_x\)), weather conditions (humidity, atmospheric pressure, and temperature), and number of hospitalizations due to MI are presented in TABLE 2.

During the study, the average annual concentrations of pollutants were 54.2 µg/m³ for \(\text{PM}_{10}\), 37.6 µg/m³ for \(\text{PM}_{2.5}\), and 42.3 µg/m³ for \(\text{NO}_x\). The average daily concentrations of PM were higher in the autumn–winter months (heating season due to lower temperatures), compared with the spring–summer months (PM\(_{10}\), 75.2 µg/m³ and 34 µg/m³, respectively, \(P < 0.0001\) and \(\text{PM}_{2.5}\), 55 µg/m³ and 21.3 µg/m³, respectively).

To minimize the collinearity effect, each air pollutant was modelled individually.

Continuous variables were expressed as mean values with standard deviation and quartile distribution, whereas categorical variables, as numbers and percentages. When appropriate, medians with interquartile ranges were used. Non-normally distributed data were compared with the Mann–Whitney test.

The pollutant concentrations obtained at the 4 monitoring stations were combined to present average values. Moreover, because patients served as their own controls, there was a near-perfect matching for participant-specific characteristics that did not vary over time (eg, age, smoking status, other risk factors for CAD). All statistical tests were 2-sided with an \(\alpha\) value of 0.05. All analyses were performed with the StatSoft Statistica 12 software (StatSoft, 2017, Poland). Forest plots were developed with the MedCalc software (Poland).

FIGURE 1

The daily hospitalizations for MI during the study periods are presented in FIGURE 1. Changes in NO\(_x\) concentrations were observed between the seasons (38.4 µg/m³ and 37.5 µg/m³, respectively, \(P = 0.70\)).

The median number of daily hospitalizations for MI in the periods of elevated \(\text{PM}_{2.5}\) levels was higher compared with the months when no additional heating was needed (\(P = 0.007\)). Changes in the number of daily hospitalizations and levels of pollutants according to seasons are presented in FIGURE 1. As the study was completed in September 2015, data for winter 2015 are not shown.

After adjustment for the effect of temperature changes, relative humidity, barometric pressure,
and infections, an increase in the PM$_{2.5}$ level of 10 µg/m3 was associated with an increase in the number of daily hospitalizations in both age groups (odds ratio [OR], 1.32; 95% CI, 1.01–1.40; $P = 0.0002$; **FIGURE 2**). A significant effect was observed only after a few days since exposure (lag, 5 to 6 days). On the other hand, the effect of PM$_{10}$ was significant only with a simultaneous decrease in the mean daily temperature of 1ºC (OR, 1.08; 95% CI, 1.01–1.17; $P = 0.03$; **FIGURE 3**). The effect was also delayed until 5 to 6 days after exposure. When the mean daily temperature increased by 1ºC, the effect of PM$_{10}$ lost significance (OR, 1.00; 95% CI, 1.00–1.01; $P = 0.07$ in both age groups).

Regardless of the confounders such as weather conditions or infections, the significant effect of NO$_2$ was observed at lags 0 and 1, but only in patients aged 70 years or older (OR, 1.13; 95% CI, 1.01–1.23; $P = 0.007$; **FIGURE 4A**) and in patients with pulmonary disorders including chronic obstructive lung disease and asthma (OR, 1.12; 95% CI, 1.01–1.31; $P = 0.01$; **FIGURE 4B**). In the remaining population, the association between NO$_2$ concentrations and daily hospital admissions for MI was nonsignificant.

DISCUSSION To our knowledge, this is the first Polish study to indicate that even after adjustment for other potential confounders such as changes in temperature or barometric pressure, relative humidity, and infections, a short-term elevation of the PM$_{2.5}$ level is associated with
FIGURE 2 Effect of a 10-µg/m³ increase in PM$_{2.5}$ levels on hospital admissions due to myocardial infarction. Data are presented as odds ratios (95% CIs).

FIGURE 3 Effect of a 10-µg/m³ increase in PM$_{10}$ levels on hospital admissions due to myocardial infarction. Data are presented as odds ratios (95% CIs).
FIGURE 4 A – effect of a 10-µg/m³ increase in NO₂ levels on hospital admissions due to myocardial infarction in patients aged 70 years or older; B – effect of a 10-µg/m³ increase in NO₂ levels on hospital admissions due to myocardial infarction in patients with pulmonary disorders. Data are presented as odds ratios (95% CIs).
an increased number of hospital admissions due to MI. The effect of PM$_{2.5}$ on the hospitalization rate was observed in all age groups and regardless of coexistent disorders. Although in our study the effect of PM$_{2.5}$ was independent of climate changes and infections, it should be emphasized that in Poland the highest PM$_{2.5}$ concentrations are observed in the heating season (autumn–spring months) and usually overlap with periods of lower temperature or temperature inversion. An inversion is responsible for trapping pollutants and their accumulation at ground level. Low temperature was previously shown to be an independent risk factor for MI4,5; however, the mean outdoor temperatures are now higher than in the past. Moreover, global warming effects are observed also in the autumn–spring months, which can lessen the effect of low temperature on MI risk.

Several other studies have investigated the relationship between the PM$_{2.5}$ concentration and MI onset, but the results are inconsistent.$^{5,6,13-16}$ In a case-crossover study, Barnett et al.14 reported a significant relationship between PM$_{2.5}$ and the risk of hospital admissions for cardiovascular causes (including MI) in older patients.14 Also Zanobetti et al.15 reported that PM$_{2.5}$ significantly increased the risk of MI. In contrast, Sullivan et al.16 did not observe a significant relationship between PM$_{2.5}$ levels and MI. A more complex relationship between air pollutants and weather changes was observed by Huang et al.4 They reported a combined effect of PM (both PM$_{2.5}$ and PM$_{10}$), carbon monoxide, and climatic changes on the risk of hospitalizations for MI in Taiwan. High temperatures ($>26^\circ$C) and low barometric pressure (<1009 hPa) on the previous day were shown to be associated with an increase in the incidence of MI. An association between increased MI incidence and the combination of high PM concentrations or carbon monoxide with low temperatures ($<21^\circ$C) and of high humidity levels with low temperatures was also described.4

Another important issue in studies on the effect of air pollution on MI incidence is the time between exposure to air pollutants and development of MI. Our study revealed that in chronically exposed inhabitants of Kraków (average annual PM$_{10}$ levels of about 38 μg/m2; the limit recommended by the WHO, 10 μg/m3), the effect of short-term fluctuations in PM$_{10}$ levels on the risk of MI admissions was delayed, with significant effects observed at lags 4 and 6. We believe that in the case of exposition to PM$_{10}$, the time necessary for atherosclerotic plaque destabilization and rupture to occur as a result of oxidative stress, inflammation, and endothelial dysfunction$^{17-21}$ is longer than in the case of exposition to gaseous pollutants, and it takes a few days since acute exposition. In contrast to our results, other studies reported the negative effects of PM$_{2.5}$ on the cardiovascular system between 0 and 2 days since exposure to the elevated levels of pollutants.5,10

The effect of PM$_{10}$ on MI risk was also investigated in a number of studies, with some showing a positive association but most showing a minor or no effect of exposure to PM$_{10}$ on the onset of MI.$^{5,7-20}$ In our study, the effect of exposure to PM$_{10}$ on the risk of hospital admission was significant but only with a simultaneous decrease in temperature, which was shown to be an independent environmental risk factor for MI in previous studies.7 The effect lost significance with an increase in temperature. Although PM$_{10}$ includes also smaller particles (PM$_{2.5}$ and ultrafine particles), the correlations between exposure to PM$_{10}$ (as compared with PM$_{2.5}$) and negative cardiovascular outcomes are weaker because, depending on the sources of PM$_{10}$ (in Poland, seasonal differences in PM$_{10}$ concentrations are observed), there may be considerable differences in the proportion of PM$_{2.5}$ found in PM$_{10}$. Unlike PM$_{2.5}$, PM$_{10}$ and ultrafine particles, with their small aerodynamic diameter, may penetrate the lung alveoli directly into the bloodstream and thus result in more serious adverse cardiovascular effects because of a higher potential to generate oxidative stress.$^{4,21-29}$

We also investigated the relationship between NO$_2$ concentrations and the number of hospitalizations due to MI. In Poland, NO$_2$ concentrations that exceed WHO standards are observed only in some cities and close to main arteries. On the other hand, excessive PM$_{10}$ and PM$_{2.5}$ levels are observed in most Polish cities and villages, and their mean annual concentrations are much higher than in other European countries. In our study, a short-term elevation in NO$_2$ concentrations resulted in hospital admissions only in patients older than 70 years and in those with pulmonary disorders. This result is in line with other reports.$^{4,22-24}$ In contrast, in the HEAPSS study (Health Effects of Air Pollution among Susceptible Sub-populations), a significant effect of NO$_2$ on the risk of hospitalization due to a first MI event was observed also in younger persons.25 Similarly to other investigators, we also observed the effect of NO$_2$ on the same or the next day of exposure. NO$_2$ affects mainly the lungs but may also exert a secondary effect on the systemic circulation more rapidly than PM$_{2.5}$, mainly by inducing increased vasomotor tone, heart overload, oxidative stress, sudden blood thrombogenicity, and hypoxia.$^{4,22-28}$ Older patients and those with pulmonary disorders are more prone to negative effects of NO$_2$.

In our study, most patients with MI (90%) suffered from significant CAD confirmed by angiography. This observation is in line with the results of previous studies showing that patients with established CAD are especially prone to different environmental factors, such as air pollutants and temperature lowering, which trigger MI by destabilization of the atherosclerotic plaque or an increase in heart overload.$^{31-35}$

Our study has several limitations. First, pollution measured by outdoor monitors does not reflect personal exposure. For example, we did not
consider individual exposure to indoor pollution sources related to cooking, heating, or smoking. Solid fuels used for household heating or cooking may produce PM and carbon monoxide, and such indoor PM concentrations may be much larger than those in ambient air, resulting in a considerable individual exposure. Second, the exposure values were averaged for the whole city, while the actual levels of pollutants and their chemical composition may vary between different city areas. However, in practice, exposure values have to be averaged, given the limited number of pollution monitors available.

It should be also emphasized that the effect of ambient air pollution on human health results from interactions between its many different chemical components. Despite the norms adopted by the WHO and European Union for specific air pollutants, it is not possible to determine the threshold levels below which pollutants have no harmful effects on health. This is because the range of individual susceptibility in a population is so wide that some individuals may be susceptible event at the lowest level.

In conclusion, this study demonstrates that regardless of weather conditions and infections, the short-term fluctuations in outdoor PM_{2.5} levels were positively associated with the number of daily hospital admissions for MI among chronically exposed inhabitants of Kraków. However, for PM_{10}, the effect was significant only with a simultaneous decrease in average air temperature. Regardless of weather conditions, the significant effect of NO_2 was observed only in patients aged 70 years or older and those with pulmonary disorders. The effects of PM_{2.5} and PM_{10} were delayed until a few days after exposure, whereas those of NO_2 were observed on the same or the next day after exposure. It is possible that fluctuations in air pollutant levels in combination with weather changes trigger MI by destabilization of the atherosclerotic plaque in individuals with established CAD.

ACKNOWLEDGMENTS We are greatly indebted to R. Listwan, MSc, from the Regional Inspectorate for Environmental Protection, Kraków, for providing data on pollutant concentrations. The study was supported by a grant from the National Science Centre Poland (2016/21/B/NN7/01747, to EK) as well as 2 grants from Jagiellonian University Medical College (K/ZDS/007982, to GG and K/ZDS/006256, to EK).

CONTRIBUTION STATEMENT EK conceived the concept of the study, contributed to study design, analyzed the data, edited the paper, and obtained funding for the project. GG analyzed the data, edited the paper, and obtained funding for the project. LN performed statistical analysis, analyzed the data, and edited the paper. MK, BG, and PS collected and analyzed the data and edited the paper. PP, JN, and KZ contributed to study design.

OPEN ACCESS This is an Open Access article distributed under the terms of the Creative Commons Attribution NonCommercial ShareAlike 4.0 International License (CC BY-NC-SA 4.0), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material, provided the original work is properly cited, distributed under the same license, and used for non-commercial purposes only. For commercial use, please contact the journal office at pamw@mp.pl.

REFERENCES
1. Air pollution and health. World Health Organization website. http://www.who.int/airpollution/en/. Accessed February 6, 2019.
2. Air pollutants. The National Centre for Emissions Management website. http://www.kobize.pl/pl/article/krajowa-inwentaryzacja-emisji/id/385/ zanieczyszczenia-powietrza. Accessed February 6, 2019.
3. WHG Global Ambient Air Quality Database (update 2018). World Health Organization website. http://www.who.int/airpollution/data/cities/en/. Accessed February 6, 2019.
4. Newby DE, Mannucci PM, Tell GS, et al; on behalf of ESC Working Group on Thrombosis, European Association for Cardiovascular Prevention and Rehabilitation and ESC Heart Failure Association. Expert position paper on air pollution and cardiovascular disease. Eur Heart J. 2015; 36: 83‑93b.
5. Bhaskaran K, Hajat S, Haines A, et al. Effects of air pollution on the incidence of myocardial infarction. Heart. 2009; 95: 1746‑1759.
6. Huang CH, Lin HC, Tsai CD, et al. The interaction effects of meteorological factors and air pollution on the development of acute coronary syndromes. Sci Rep. 2017; 7: 44004.
7. Zandomeni A, Petters A. Disentangling interactions between atmospheric pollution and weather. J Epidemiol Community Health. 2015; 69: 613‑615.
8. European Association for Cardiovascular Prevention & Rehabilitation, Reiner Z, Catapano AL, De Backer G, et al; ESC Committee for Practice Guidelines (CPG) 2008‑2010 and 2010 ‑2012 Committees. ESC/ESC Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011; 32: 1769‑1818.
9. AarskogIEW A, Bandurska-Stankiewicz E, Budziński A, et al. 2017 Guidelines on the management of diabetic patients. A position of Diabetes Poland. Clinical Diabetology. 2017; 6 (suppl A): A1‑A10.
10. Bhaskaran K, Gasparini A, Hajat S, et al. Time series regression studies in environmental epidemiology. Int J Epidemiol. 2013; 42: 1187‑1195.
11. Phung D, Hien TT, Linh HH, et al. Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam. Sci Total Environ. 2016; 557‑558: 322‑330.
12. Cheng M, Chiu H, Yang C. Coarse particulate air pollution associated with increased risk of hospital admissions for respiratory diseases in a Tropical City, Kaohsiung, Taiwan. Int J Environ Res Public Health. 2015; 12: 13053‑13068.
13. Pope CA, Mulhsteen JB, Anderson JL, et al. Short‑term exposure to fine particulate matter air pollution is preferentially associated with the risk of ST‑segment elevation acute coronary events. J Am Heart Assoc. 2015; 4: 1‑10.
14. Barnett AG, Williams GM, Schwartz J, et al. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australia and New Zealand cities. Environ Health Perspect. 2006; 114: 1018‑1023.
15. Zanobetti A, Schwartz J. Air pollution and emergency admissions in Boston, MA. J Epidemiol Community Health. 2006; 60: 839‑836.
16. Sullivan J, Sheppard L, Schreuder A, et al. Relation between short‑term fine particulate matter exposure and onset of myocardial infection. Epidemiology. 2005; 16: 41‑48.
17. Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001; 103: 2810‑2815.
18. Chen LC, Nadziejko C. Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice. V. CAPs exacerbate aortic plaque development in hyperlipidemic mice. Inhal Toxicol. 2005; 17: 217‑224.
19. Donaldson K, Tran CL. Inflammation caused by particles and fibers. In: Donaldson K, Tran CL, editors. Inhalation toxicology. New York: Springer; 2001: 1‑27.
20. Sun Q, Wang A, Jin X, et al. Long‑term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA. 2005; 294: 3003‑3010.
21. Suwa T, Hogg JC, Quinlan KB, et al. Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol. 2002; 39: 935‑942.
Mills NL, Tornqvist H, Gonzalez MC, et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med. 2007; 357: 1075-1082.

Peters A, von Klot S, Heier M, et al. Particulate air pollution and non-fatal cardiac events. Part I. Air pollution, personal activities, and onset of myocardial infarction in a case-crossover study. Res Rep Health Eff Inst. 2005; 124: 1-66.

Lamki T, Pekkanen J, Aalto P, et al. Associations of traffic-related air pollutants with hospitalisation for first acute myocardial infarction: the HEAFLS study. Occup Environ Med. 2006; 63: 844-851.

Zanobetti A, Schwartz J. The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environ Health Perspect. 2005; 113: 979-982.

Ye F, Piver WT, Ando M, Porter CJ. Effects of temperature and air pollutants on cardiovascular and respiratory diseases for males and females older than 65 years of age in Tokyo, July and August 1980-1995. Environ Health Perspect. 2001; 109: 355-359.

Delfino RJ, Sioutas C, Malik S. Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspect. 2005; 113: 934-946.

Araujo JA, Banajas B, Kleinman M, et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res. 2008; 102: 589-596.

Luo C, Zhu X, Yao C, et al. Short-term exposure to particulate air pollution and risk of myocardial infarction: a systematic review and metanalysis. Environ Sci Pollut Res Int. 2015; 22: 14691-14662.

Ruidavets JB, Gouriet M, Cassadou S, et al. Ozone air pollution is associated with acute myocardial infarction. Circulation. 2005, 8; 111: 563-569.

Abbey DE, Colome SD, Mills PK, et al. Chronic disease associated with long-term concentrations of nitrogen dioxide. J Expo Anal Environ Epidemiol 1999; 3: 181-202.

Trzeciak P, Gierlońska M, Polóński L, Gąsior M. Treatment and outcomes of patients under 40 years of age with acute myocardial infarction in Poland in 2009-2013: an analysis from the PL-ACS registry Pol Arch Intern Med. 2017; 127: 10-14.

Stodolíkiewicz E, Reverska B, Rasszukta M, et al. Leukotriene biosynthesis in coronary artery disease. Pol Arch Intern Med. 2018; 128: 43-51.

Desperak P, Havranek M, Hapkovic T, et al. Comparison of multivessel percutaneous coronary intervention and coronary artery bypass grafting in patients with severe coronary artery disease presenting with non-ST-segment elevation acute coronary syndromes. Kardiol Pol. 2018; 76, 10: 1474-1481.

Januszek R, Sidak Z, Ziembierz A, et al. Chronic obstructive pulmonary disease affects the angiographic presentation and outcomes of patients with coronary artery disease treated with percutaneous coronary interventions. Pol Arch Intern Med. 2018; 128: 24-34.