Improved CMB anisotropy constraints on primordial magnetic fields from the post-recombination ionization history

D. Paoletti¹,²*, J. Chluba³†, F. Finelli¹,²‡ and J. A. Rubiño-Martín ⁴,⁵§

¹ INAF/OAS Bologna, Osservatorio di Astrofisica e Scienza dello Spazio, Area della ricerca CNR-INAF, via Gobetti 101, I-40129 Bologna, Italy
² INFN, Sezione di Bologna, Via Irnerio 46, I-40126, Bologna, Italy
³ Jodrell Bank Centre for Astrophysics, Alan Turing Building, University of Manchester, Oxford Road Manchester M13 9PL, UK
⁴ Instituto de Astrofísica de Canarias, C/Via Láctea s/n, La Laguna, Tenerife, Spain
⁵ Dpt. Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain

ABSTRACT

We investigate the impact of a stochastic background of Primordial Magnetic Fields (PMF) generated before recombination on the ionization history of the Universe and on the Cosmic Microwave Background radiation (CMB). Pre-recombination PMFs are dissipated during recombination and reionization via decaying MHD turbulence and ambipolar diffusion. This modifies the local matter and electron temperatures and thus affects the ionization history and Thomson visibility function. We use this effect to constrain PMFs described by a spectrum of power-law type, extending our previous study (based on a scale-invariant spectrum) to arbitrary spectral index. We derive upper bounds on the integrated amplitude of PMFs due to the separate effect of ambipolar diffusion and MHD decaying turbulence and their combination. We show that ambipolar diffusion is relevant for \(n_B > 0 \) whereas for \(n_B < 0 \) MHD turbulence is more important. The bound marginalized over the spectral index on the integrated amplitude of PMFs with a sharp cut-off is \(\sqrt{<B^2>} < 0.83 \) nG. We discuss the quantitative relevance of the assumptions on the damping mechanism and the comparison with previous bounds.

Key words: Cosmology: CMB – theory – observations

1 INTRODUCTION

Primordial magnetic fields (PMFs) generated prior to cosmological recombination provide an interesting window on the physics of the Early Universe and could have seeded the astrophysical large scale magnetic fields we observe in clusters and voids. These PMFs leave imprints on the Cosmic Microwave Background (CMB) through different mechanisms. PMF gravitate at the level of cosmological perturbations and source magnetically-induced perturbations. The comparison of theoretical predictions with different combinations of CMB data has been presented in several works (Paoletti & Finelli 2011; Shaw & Lewis 2012; Paoletti & Finelli 2013; Planck Collaboration XVI 2014; Planck Collaboration XIX 2016; Zucca et al. 2016), leading to constraints on the amplitude of PMFs smoothed at 1 Mpc of the order of few nG. PMFs also induce a Faraday rotation of CMB polarization, mixing E- and B-modes with an angle inversely proportional to the square of the frequency (Kosowsky & Loeb 1996; Kalmashvili et al. 2009; Fugosian et al. 2011). At present, Faraday rotation leads to constraints which are weaker than those obtained by considering the gravitational effect, but represents a good target for the future low-frequency polarization experiments (Kalmashvili et al. 2009; Fugosian et al. 2011; Planck Collaboration XIX 2016).

PMFs in the cosmological plasma prior to the recombination may also have an impact on the thermal and ionization history (Sethi & Subramanian 2005; Seshadri & Subramanian 2005; Sethi & Subramanian 2009). Around recombination the reduced ionization fraction induces an ambipolar diffusion effect, whereas the drop in radiation viscosity after recombination allows for the development of magneto-hydrodynamic (MHD) turbulence. Both these effects depend on the integrated magnetic energy and dissipate it into the plasma, producing spectral distortions in the CMB absolute spectrum (Jedamzik et al. 2000) and altering the ionization history. This latter effect modifies the CMB anisotropies angular power spectra in both temperature and polarization (Sethi & Subramanian 2005; Seshadri & Subramanian 2005). Recent works (Kunze & Komatsu 2014; 2015; Chluba et al. 2015; Planck Collaboration XIX 2016) have reconsidered these effects and derived an upper limit on the PMFs integrated amplitude for a nearly scale-invariant and negative indices (Kunze & Komatsu 2015) stochastic background at the nG level, tighter than those derived on the basis of the gravitational effects only. However, as stressed previously (Chluba et al. 2015; Planck Collaboration XIX 2016), significant uncertainties exist in the description of the heating rates and consequently the derived constraints.

The scope of this paper is to derive the CMB constraints on a stochastic background of PMFs by their impact on the modified ionization history and anisotropies angular power spectra beyond...
the nearly-scale invariant case previously reported (e.g., Planck Collaboration XIX 2016 Chluba et al. 2015). Constraints for PMF spectral indices $n_B = -1.5$ and -2.5 were already obtained by Kunze & Komatsu (2015). Here we extend the analysis to arbitrary spectral index and improve the treatment including subtle effects. We improved the numerical accuracy of the recombination code Recfast++ (Chluba & Thomas 2011), which includes the heating effect of PMFs by means of two different methods dedicated specifically to MHD turbulence and to ambipolar diffusion. In order to maximize the numerical stability of CAMB, following Hart et al. (2018), we also enhanced the time-step settings during recombination which hampered the precision of the obtained CMB power spectra at large scales, leading to a slower convergence of MCMC chains.

The paper is organized as follows. In section 2 we describe the details of a stochastic background of PMFs and of the induced modified ionization history. In section 3 we describe the impact of the MHD decaying turbulence and of the ambipolar diffusion on the CMB power spectra. We present the constraints from Planck 2015 data in section 4. In section 5 we discuss our results and we draw our conclusions in section 6. In appendix A we describe the implications of our results on the commonly adopted amplitude of PMF smoothed at 1 Mpc scale.

2 IMPACT OF PRIMORDIAL MAGNETIC FIELDS ON THE POST-RECOMBINATION IONIZATION HISTORY

We consider a fully inhomogeneous stochastic background of nonhelical PMFs scaling as $B(x, t) = B_{0}(t)\frac{r}{a(t)}$ described by:

$$\langle B_{i}(k)B_{j}(k') \rangle = (2\pi)^{3}\delta(k - k')\delta_{ij} \frac{P_{B}(k)}{2}$$

(1)

where the magnetic power spectrum is $P_{B}(k) = A_{B}k^{n_{B}}$. Radiation viscosity damps PMFs at a damping scale k_{D} (Fedamzik et al. 1998; Subramanian & Barrow 1998):

$$k_{D} = \frac{\sqrt{5.5 \times 10^{4}}}{\sqrt{\langle B^{2} \rangle n_{G} \sqrt{\Omega_{m} [\Omega_{b} + 5/2]}} \sqrt{2}} \frac{h}{0.022}z^{2/3}$$

(2)

In this paper, we choose to model this damping by imposing a sharp cut-off at the scale k_{D} to regularize ultraviolet divergencies in integrated quantities, as done in the study of the PMFs gravitational effects. We therefore define the root mean square as:

$$\langle B^{2} \rangle = \frac{A_{B}}{2\pi x} \int_{0}^{\infty} dk k^{2+\nu_{B}} = \frac{A_{B}}{2\pi^{2}(n_{B} + 3)} \frac{h^{2}}{0.022}z^{2/3}$$

(3)

Note that in our previous paper Chluba et al. (2015) we considered a Gaussian smoothing as in Kunze & Komatsu (2015) to regularize the integrated amplitude of the stochastic background. According to Sethi & Subramanian (2005), the heating due to PMFs to the electron temperature equation is modelled as:

$$\frac{dT_{e}}{dt} = -2HT_{e} + \frac{8\pi\gamma N_{e}\rho_{e}(T_{e} - T_{C})}{3m_{e}cN_{tot}} + \frac{\Gamma}{(3/2)kN_{tot}}$$

(4)

where $H(z)$ denotes Hubble rate, $N_{tot} = N_{H}(1 + f_{H} + X_{e})$ the number density of all ordinary matter particles that share the thermal energy, beginning tightly coupled by Coulomb interactions; N_{H} is the number density of hydrogen nuclei, $f_{H} \approx Y_{p}/(4(1 - Y_{p})) \approx 0.079$ for helium mass fraction $Y_{p} = 0.24$; $X_{e} = N_{e}/N_{H}$ denotes the free electron fraction and $\rho_{e} = a_{0}T_{e}^{4} \approx 0.26 eV(1 + z)^{4}$ the CMB energy density. The first term in Eq. (4) describes the adiabatic cooling of matter due to the Hubble expansion, while the second term is caused by Compton cooling and heating. The last term accounts for the PMF heating due to the sum of the decaying magnetic turbulence (Γ_{mfb}) and ambipolar (Γ_{amb}), respectively.

We review in the following the approach of the aforementioned heating terms and describe the regularization and numerical improvements we provide with respect to previous treatments Kunze & Komatsu (2015) Chluba et al. (2015).

2.1 Decaying MHD turbulence

On scales smaller than the magnetic Jeans scale, PMFs may be subject to non-linear effects and develop MHD turbulence. Before recombination the radiation viscosity over-damps the velocity fluctuations maintaining the Reynolds number small. After recombin-
Constraints on PMF from magnetic heating

3 CMB ANGULAR POWER SPECTRA

We now briefly present the impact of the PMF dissipation on the CMB angular power spectra in temperature and polarization. These are very similar to previous computations; however, the numerical noise which was present at large angular scales is eliminated thanks to the improved time-sampling inside CAMB.

3.1 The impact of MHD decaying turbulence

We start by describing the MHD decaying turbulence effect. In the left column of Fig. 3, we illustrate the effect of the temperature and E-mode polarization angular power spectra for \(\sqrt{(B^2)=4} \) nG, note that for this specific figure we have increased the amplitude of the fields with respect to the others of this section in order to visually enhance the effect. In the right column of Fig. 3, we present the relative differences of the angular power spectra which include and do not include the MHD turbulence effect, note that for these figures the amplitude of the fields is \(\sqrt{(B^2)=0.4} \) nG, which is closer to the value obtained in the data analysis. We note in particular a strong effect on the E-mode polarization at intermediate and small angular scales and a sub-percent effect in temperature on small angular scales. In contrast to previous computations (e.g. [Kunze & Komatsu 2014; Planck Collaboration XIX 2016]), the effect at large angular scales is less pronounced. This is because following [Hart & et al. 2018], we significantly increased the time-sampling in CAMB (≈ 100 times) to better resolve the onset of heating around \(z \approx 1088\). This improvement eliminates the dependence of the angular power spectrum on large scales on the accuracy parameters

2 This is controlled by the parameter \(\Delta t_{\text{aurac}}\).
Figure 3. In the left column we present the angular power spectra with MHD decaying turbulence effect. To illustrate the effect we increased the amplitude of the field with respect to the right column to \(\sqrt{\langle B^2 \rangle} = 4 \) nG. In the right column we present the relative differences with and without MHD decaying turbulence effect, \(\sqrt{\langle B^2 \rangle} = 0.4 \) nG, of the CMB anisotropy angular power spectra in temperature and polarization.

Figure 4. Relative difference of smoothed and unsmoothed power spectra for temperature anisotropies, the colors are in the legend.

making the Boltzmann code very stable as can be seen in Fig. 3, where large scales do not show any feature.

We have described the regularization function we apply in order to solve numerical issues of the MHD turbulence treatment for positive spectral indices (Sect. 2.1.1). In Fig. 4, we show the relative differences of the cases with and without the smoothing for \(\sqrt{\langle B^2 \rangle} = 0.4 \) nG. The effect of our regularization remains at the sub-perecent level in all considered cases, with the largest effect seen for \(n_B = 2 \). Please note that for \(n_B = 2 \) an amplitude \(\sqrt{\langle B^2 \rangle} = 0.4 \) for the root mean square of the PMFs is already ruled out by data. For indices smaller or equal zero the angular power spectra do not show any significant dependence on the chosen regularization scheme. We can therefore conclude that for the amplitudes we are able to constrain with this methodology the application of the regularization of the rate does not affect the results of the analysis.

3.2 Ambipolar diffusion

We now proceed by illustrating the effect of the ambipolar diffusion on the CMB angular power spectra. In the left column of Fig. 5 we show the angular power spectrum in temperature and E-mode polarization with the effect of ambipolar diffusion compared with the case without PMFs. We considered different spectral indices and PMFs with an amplitude of \(\sqrt{\langle B^2 \rangle} = 0.4 \) nG as in the previous case. For more clarity, in the right column of Fig. 5 we show the relative difference between the ambipolar diffusion case and the case without PMF contribution. The main effect of ambipolar diffusion heating is a reduction of the overall amplitude of the \(TT \) power spectra at intermediate and small scales (\(\ell \gtrsim 10 \)). In contrast, for
the EE power spectra, the effect is more pronounced at large angular scales around the reionization bump which for very blue indices of the order of \(n_B = 1 - 2 \) is strongly suppressed (cf., Fig. 5). This illustrates that the main effect of ambipolar diffusion heating is an increase of the total Thomson optical depth to last scattering. The overall features are consistent with previous studies (e.g., Kunze & Komatsu 2014).

3.3 Combining both effects

Having discussed the two dissipative effects separately we now analyse the combined effect of PMF heating on the CMB angular power spectra. In Fig. 6 we again show the \(TT \) and EE angular power spectra and their relative difference with respect to the case without PMFs, for fields of \(\sqrt{\langle B^2 \rangle} = 0.4 \) nG and different spectral indices. We note how the combination of the two effects results in an impact of both temperature and polarization both on small and large angular scales, with the effect increasing for positive spectral indices. In the next section we will derive the constraints with current CMB data, which are foreground and cosmic-variance limited in temperature, but strongly affected by systematics in polarization. Future CMB polarization dedicated observations will be therefore crucial to fully exploiting the potential of the impact of ambipolar diffusion on the E-mode polarization.

4 CMB CONSTRAINTS ON THE AMPLITUDE OF PMFS

In this section, we derive the constraints with the CMB anisotropy data from Planck 2015 release. We use the extension of the CosmoRec and Recfast++ codes developed in our previous work (Chluba et al. 2015) with the regularization of the MHD rate and the improved numerical treatment for the ambipolar diffusion discussed in the previous sections. We use the CosmoRec (Lewis & Bridle 2002) code with the inclusion of the modified recombination codes in order to compute the Bayesian probability distribution of cosmological and magnetic parameters. We vary the baryon density \(\omega_c = \Omega_c h^2 \), the cold dark matter density \(\omega_m = \Omega_m h^2 \) (with \(h \) being \(H_0/100 \) km s\(^{-1}\) Mpc\(^{-1}\)), the reionization optical depth \(\tau \) with a Gaussian prior, the ratio of the sound horizon to the angular diameter distance at decoupling \(\theta_s / D_{\text{AD}} \), \(n_s \) and the magnetic parameter \(\sqrt{\langle B^2 \rangle} \). We either fix \(n_B \) to the values \(-2.9, -2, -1, 0, 1, 2\) or we allow \(n_B \) to vary in the range \([-2.9, 2]\).

Together with cosmological and magnetic parameters we vary the parameters associated to calibration and beam uncertainties, astrophysical residuals, which are included in the Planck public likelihood (Planck Collaboration XI 2016). We assume a flat universe, a CMB temperature \(T_{\text{CMB}} = 2.725 \) K and a pivot scale \(k_0 = 0.05 \) Mpc\(^{-1}\). We sample the posterior using the Metropolis-Hastings algorithm (Hastings 1970) generating eight parallel chains.
and imposing a conservative Gelman-Rubin convergence criterion
\text{Gelman \& Rubin} [1992] of \(R < 1 < 0.02 \).

We use public Planck high-\(\ell \) likelihood temperature likelihood (Planck Collaboration XI 2016) combined with the Planck lensing likelihood (Planck Collaboration XV 2016). We use a conservative Gaussian prior for the optical depth \(\tau \) = 0.070 \(\pm \) 0.02 in combination with the low-\(\ell \) Gibbs Commander likelihood in the range \(\ell = [2, 29] \) for the low-\(\ell \) temperature.

Note that the likelihood code for the more recent analysis of large angular scales HFI polarisation data (Planck Collaboration Int. XLVI 2016; Planck Collaboration Int. XLVII 2016) has not been released and we therefore make use only of Planck 2015 data.

4.1 Constraints with MHD decaying turbulence

We first present the constraints on the amplitude of PMFs obtained by considering only the heating due to the MHD decaying turbulence term with the use of the regularized rate.

In Fig. 7 we plot the one-dimensional marginalized posterior probabilities for \((B^2)^{1/2} \) at different fixed values of the spectral index \(n_B \). We also plot the same quantity obtained when \(n_B \) is allowed to vary. In the first column of Table 1 we report the 95 % CL constraints on \((B^2)^{1/2} \) for all the cases considered. The constraints are

\(n_B \)	\((B^2)^{1/2} \) (nG)		
2	< 0.25	< 0.06	< 0.06
1	< 0.37	< 0.12	< 0.13
0	< 0.58	< 0.26	< 0.30
-1	< 0.90	< 0.63	< 0.74
-2	< 0.93	< 1.88	< 0.90
-2.9	< 1.04	< 7.29	< 1.06
[-2.9, 2]	< 0.87	< 2.52	< 0.83

Table 1. Comparison of the constraints from the separate effects and their combination.
4.2 Constraints with the ambipolar diffusion

In this subsection we present the constraints on the amplitude of PMFs considering only the heating due to the ambipolar diffusion. In Fig. 7, we plot the one-dimensional marginalized posterior probabilities for \(\langle B^2 \rangle^{1/2} \) at different fixed values of the spectral index \(n_B \). We also plot the same quantity obtained when \(n_B \) is allowed to vary. In the second column of Table 1 we report the 95% CL constraints on \(\langle B^2 \rangle^{1/2} \) for all the cases considered. We note how the ambipolar diffusion gives stronger constraints for growing spectral indices as it is expected from its impact on the CMB angular power spectra. The improvement of the constraint for \(n_B \approx 2 \) with respect to the quasi-scale invariant case is dramatic, reaching a factor \(\approx 100 \). This implies that a combination of turbulent MHD and ambipolar diffusion heating is expected to improve the constraints in particular for very blue spectra, as we will see below.

4.3 Constraints including both heating terms

In this subsection we present the constraints on the amplitude of PMFs considering both the effects of the ambipolar diffusion and MHD decaying turbulence. In Fig. 8 we plot the one-dimensional marginalized posterior probabilities for \(\langle B^2 \rangle^{1/2} \) at different fixed values of the spectral index \(n_B \). We also plot the same quantity obtained when \(n_B \) is allowed to vary. In the third column of Table 1 we report the 95% CL constraints on \(\langle B^2 \rangle^{1/2} \) for all the cases considered. For \(n_B \leq -1 \), MHD turbulent heating drives the constraint, while for \(n_B \geq -1 \), ambipolar diffusion become most relevant.

In Fig. 9 we present the comparison of the amplitude constraints marginalized over the spectral index. We note how the MHD turbulence has a much sharper posterior distribution compared with the long tail at high amplitudes of the ambipolar diffusion. This effect is mainly due to the strong dependence of the constraints of the ambipolar diffusion with the spectral index. While the MHD turbulence has similar constraining power for all the indices, the ambipolar diffusion is weaker for negative ones resulting in a longer tail. The combination of the two gives a sharp constraint as shown in Fig. 10 the lower amplitude part of the distribution is dominated by the ambipolar diffusion whereas the higher amplitude side is dominated by the MHD decaying turbulence.

Finally, in Fig. 11 we present the two dimensional posteriors of the amplitude of PMFs with the other cosmological parameters. We note the presence of a slight degeneracy with the angular diameter distance \(\theta \) especially for the varying spectral index case, this is expected considering the effect of the heating on the recombination.
We now discuss the dependence of the results presented in Table 1 on the physics at the damping scale. This is tricky and several approaches have been considered in the past. There is indeed a dependence of both the MHD decaying turbulence and ambipolar rates on k_0 and a dependence on the damping profile in the Lorentz force (compare Eq. (7) with Eqs. (A3-A4) of Appendix A of Chluba et al. (2015)). We therefore compare the results of Table 1 with the ones obtained by adopting an exponential damping profile as in Chluba et al. (2015) and Kunze & Komatsu (2015), with the following damping scale:

$$\bar{k}_D = \frac{299.66}{(B_0/1 \text{ nG})},$$

where B_0 denotes the integrated amplitude of the stochastic background of PMFs for this second approach to the damping. Note that \bar{k}_D does not depend on the spectral index as the one in Eq. (2) adopted in the previous discussion and has been also used in our previous work (Chluba et al. 2015) for the nearly scale-invariant case. See Fig. 12 for a difference between these two damping scales. We mention that in recent numerical simulations (Trivedi et al. 2018) a significantly larger damping scale (smaller \bar{k}_D) is found, but leave a more detailed discussion to future work.

We have repeated the previous analysis for this alternative model of damping. The qualitative aspects remain similar to the case discussed in Section 2: the MHD term is relevant for negative spectral indices, whereas the ambipolar term is for positive ones. Note however that whereas the MHD term leads to constraints similar in the two approaches because of the mild dependence on k_0 of the rate in Eq. (5), the ambipolar term leads to much looser constraints when this alternative modelling of the damping scale is adopted. The constraint with the ambipolar term are indeed of the rate in Eq. (5), the ambipolar term leads to much looser constraints when this alternative modelling of the damping scale is adopted.

The comparison of the constraints marginalized over the spectral index for the three heating cases is illustrated in Fig. 10. We note that whereas the MHD term leads to constraints similar in the two approaches because of the mild dependence on k_0 of the rate in Eq. (5), the ambipolar term leads to much looser constraints when this alternative modelling of the damping scale is adopted. The comparison of the constraints marginalized over the spectral index for the three heating cases is illustrated in Fig. 10. We note that whereas the MHD term leads to constraints similar in the two approaches because of the mild dependence on k_0 of the rate in Eq. (5), the ambipolar term leads to much looser constraints when this alternative modelling of the damping scale is adopted. The constraint with the ambipolar term are indeed of the rate in Eq. (5), the ambipolar term leads to much looser constraints when this alternative modelling of the damping scale is adopted.

Our analysis improves in several ways on Kunze & Komatsu (2015): i) the methodology as described in Section 2, ii) the range of considered PMF spectral indices, which in Kunze & Komatsu (2015) was limited to $n_B = -2.9$, -2.5,-1.5, iii) and the data combination: here we consider the most recent Planck 2015 data, whereas Kunze & Komatsu (2015) used Planck 2013 data. The numerical stability we have achieved removes the large scale instability which could have biased the results especially concerning the indices with a stronger heating. With these new settings, in contrast to Kunze & Komatsu (2015), there is almost no variation with the spectral index of the constraints and therefore we do not find tighter bounds for $n_B > -2.9$ as Kunze & Komatsu (2015) do and our 95% CL constraint $B_0 < 1.1$ nG for $n_B = -2.9$ is more conservative than their corresponding bound: $B_0 < 0.63$ nG. Note that for positive spec-

Figure 10. Comparison of the constraints marginalized over the spectral index for the three heating cases.

Figure 11. Two dimensional posteriors for the amplitude of the fields with the other cosmological parameters. The results are shown for three spectral indices, in blue $n_B = 2$, in red varying n_B in grey is the almost scale invariant $n_B = -2.9$.

© 0000 RAS, MNRAS 000, 000–000
Damping scales as function of the integrated PMF amplitude. The black line represents the damping scale in Eq. (9) vs $B_0 (nG)$. The other lines represent the damping scale as given by Eq. (3) vs $\sqrt{\langle B^2 \rangle}$ for different values of the spectral index: $n_B = 2$ in purple, 0 in cyan, -2 in yellow and -2.9 in red.

Figure 12.

Table 2. Constraints from the combined effects for the alternative model of the damping profile, B_0.

n_B	2	-2.9	[-2.9, 2]	
$B_0 (nG)	k_B)	< 0.95	< 1.10	< 0.91

With the lower limit derived from high-energy observations in the intergalactic medium.

6 CONCLUSIONS

We have obtained the constraints on the integrated amplitude of PMFs due to their dissipation around and after recombination caused by the MHD decaying turbulence and the ambipolar diffusion. We have improved our previous treatment by including a regularization of the heating rate due to the MHD decaying turbulence which is particularly important for stochastic background of PMFs with a positive spectral index. At the same time, we have also improved the numerical treatment of the ambipolar diffusion allowing for the stability of the numerical code, again for stochastic background of PMFs with positive spectral indices. These improvements have allowed to constrain the integrated amplitude of PMFs for different spectral indices, extending our previous studies restricted to the nearly scale-invariant case (Kunze & Komatsu 2015; Planck Collaboration XIX 2016; Chiubba et al. 2015).

The results of the three analyses which considered separately the heating by MHD decaying turbulence and ambipolar diffusion and their combination are summarized in Table 2 for a regularization of the integrated amplitude by a sharp cut-off. Our results show that both MHD decaying turbulent and ambipolar effects need to be taken into account, the first one being important for negative spectral index and the second for positive spectral index. For a sharp cut-off the combined constraint from MHD and ambipolar is of the order of nG for the scale-invariant case as in (Planck Collaboration XIX 2016), and becomes tighter with a larger spectral index reaching $\sqrt{\langle B^2 \rangle} < 0.06$ nG (95% CL) for $n_B = 2$. These constraints on PMFs from the ionization history are the tightest ones for any single spectral index. Thanks to our numerical improvements we have also been able to derive the constraints on the integrated amplitude when the spectral index is allowed to vary, obtaining $\sqrt{\langle B^2 \rangle} < 0.83$ nG (95% CL) [Fig. 10].

We have also investigated how the PMFs heating effects are sensitive to the physics at the damping scale. We have shown how two proposed damping scales, Eq. (4) and Eq. (9), usually adopted in the literature, lead to a different magnitude of the effect induced by the ambipolar term on the CMB anisotropy power spectra, in particular for positive spectral indices. As a consequence, the constraints obtained on the integrated amplitude of PMFs, and even more on the smoothed amplitude on 1 Mpc, depend on the physics at the damping scale, which deserve further investigation. In the future, some of these aspects can be clarified with detailed numerical MHD simulation that track the evolution of the PMF across the recombination era (Trivedi et al. 2018).

We also note that although recently refined computations of the magnetic heating rates due to MHD turbulence have become available (Trivedi et al. 2018), here we improved the treatment remaining within the framework first introduced by Sethi & Subramanian (2005). However, the improved heating rate computations show a direct dependence of the onset of heating on the magnetic field amplitude and spectral index. We anticipate this to affect the
overall constraints, but a more detailed study is left to future work. Finally, it will also be important to repeat the analysis with the next release of $Planck$ data, expected later this year. In particular, improvements of the polarization power spectra are expected to further tighten the constraints.

ACKNOWLEDGMENTS

We thank Luke Hart for useful discussions about numerical issues. DP and FF acknowledge support by the "AS/INAF Agreement 2014-024-R.0 for the Planck LFI Activity of Phase E2 and the financial support by ASI Grant 2016-24-H.0. JC is supported by the Royal Society as a Royal Society University Research Fellow at the University of Manchester, UK. JARM acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the projects AYA2014-60438-P and AYA2017-84185-P.

REFERENCES

Chluba J., Paoletti D., Finelli F., Rubiño-Martín J. A., 2015, MNRAS, 451, 2244
Chluba J., Thomas R. M., 2011, MNRAS, 412, 748
Gelman A., Rubin D., 1992, Statistical science, 7, 457
Hart L., et al., 2018, in prep.
Hastings W. K., 1970, Biometrika, 57, 97
Jedamzik K., Katalinić V., Olinto A. V., 1998, Phys. Rev., D57, 3264
Jedamzik K., Katalinić V., Olinto A. V., 2000, Physical Review Letters, 85, 700
Kahniashvili T., Maravin Y., Kosowsky A., 2009, PRD, 80, 023009
Kosowsky A., Loeb A., 1996, ApJ, 469, 1
Kunze K. E., Komatsu E., 2014, JCAP, 1, 9
Kunze K. E., Komatsu E., 2015, JCAP, 6, 027
Lewis A., Bridle S., 2002, Phys. Rev., D66, 103511
Paoletti D., Finelli F., 2011, Phys.Rev., D83, 123533
Paoletti D., Finelli F., 2013, Phys.Lett., B726, 45
Planck Collaboration Int. XLVI, 2016, A&A, 596, A107
Planck Collaboration Int. XLVII, 2016, A&A, 596, A108
Planck Collaboration XI, 2016, A&A, 594, A11
Planck Collaboration XIX, 2016, A&A, 594, A19
Planck Collaboration XV, 2016, A&A, 594, A15
Planck Collaboration XVI, 2014, A&A, 571, A16
Pogosian L., Yadav A. P. S., Ng Y.-F., Vachaspati T., 2011, PRD, 84, 043530
Schleicher D. R. G., Banerjee R., Klessen R. S., 2008, PRD, 78, 083005
Seshadri T. R., Subramanian K., 2005, PRD, 72, 023004
Sethi S. K., Subramanian K., 2005, MNRAS, 356, 778
Sethi S. K., Subramanian K., 2009, JCAP, 11, 21
Shaw J. R., Lewis A., 2012, Phys. Rev., D86, 043510
Subramanian K., Barrow J. D., 1998, PRD, 58, 083502
Trivedi P., Reppin J., Chluba J., Banerjee R., 2018, ArXiv:1805.05315
Zucca A., Li Y., Pogosian L., 2016

APPENDIX A: CONSTRAINTS ON SMOOTHED MAGNETIC FIELD AMPLITUDE

In most of the literature, constraints on a stochastic background of PMFs are reported on the amplitude smoothed at 1 Mpc scale, which is a quantity closer to astrophysical observations of large scale magnetic fields. It is therefore interesting to understand our results for the integrated amplitude in terms of the smoothed amplitude B_1, which is defined as:

$$B_1^2 = \int_0^\infty \frac{dk}{2\pi^2} k^2 e^{-k^2x^2} P_g(k).$$ \hspace{1cm} (A1)$$

The smoothed amplitude B_1 is related to the integrated amplitude by

$$\langle B^2 \rangle = \frac{2}{\sqrt{D}} \left(\frac{1}{3}\lambda^2 \frac{1}{\langle \lambda^2 \rangle} \right)^{1/2}.$$

for the first damping envelope and by

$$B_1^2 = B_0^2 \frac{2(\alpha + 3)}/(\langle \lambda^2 \rangle)$$

for the second damping envelope.

In Table A1 we report the implications for B_1 from our results on the integrated amplitude. A cautionary note must be considered when discussing these results. The derived constraints on the smoothed amplitude seems very sensitive to the model of damping, in particular for positive spectral index. Nevertheless, the resulting constraints are extremely tight for positive n_B compared to those obtained with the gravitational contribution only. As a comparison, we remind that the 95 % CL Planck 2015 upper bound on the smoothed amplitude is $B_1 < 0.011$ nG for $n_B = 2$ derived from gravitational effects [Planck Collaboration XIX 2016].

n_B	$B_1_{1\text{Mpc}}$ (nG)	$B_1_{1\text{Mpc}}$ (nG) [kG]
2	$< 5.22 \times 10^{-18}$	$< 1.13 \times 10^{-6}$
-2.9	< 0.76	< 0.84

Table A1. Constraints from the combined effect for different spectral indices with the $B_1_{1\text{Mpc}}$ parametrization.