INTRODUCTION

Cardiovascular diseases (CVDs) are the biggest causes of mortality worldwide, and according to the World Health Organization (WHO), they were responsible for 15.2 million global deaths (26.7%) in 2016 (retrieved from http://www.who.int). Even when CVDs are not fatal, they often result in permanent damage to critical organs, which in turn causes activity restriction, nursing care, and reduced life expectancy. The main pathophysiological cause of CVDs is atherosclerosis, which is a chronic inflammatory reaction that begins as a response to injury of the arterial intima (Ross, 1999). This type of endothelial injury is induced by several factors, such as...
as endotoxins, viruses, homocysteine, and cigarette smoke (Widlansky, Gokce, Keaney, & Vita, 2003). Chronic endothelial injury in hypertension, dyslipidemia, and diabetes are also important contributors of atherosclerosis progression (National Heart, Lung, & Blood Institute, 2013 retrieved from https://www.nhlbi.nih.gov/health-topics/assessing-cardiovascular-risk, Beckman, Creager, & Libby, 2002; Libby, Alkawa, & Schönbeck, 2000; Sander, Kukla, Klingelhöfer, Winbeck, & Conrad, 2000). Therefore, it is crucial to regulate blood pressure (BP), and lipid and glucose metabolism, to prevent the development of CVDs.

Tomato contains a variety of bioactive compounds, such as carotenoid, vitamin A, calcium, and gamma-aminobutyric acid, which may play a role in maintaining physical and psychological health, including the prevention of CVD (Hak et al., 2004; Yanai et al., 2017; Zorumski, Paul, Izumi, Covey, & Mennerick, 2013). For example, the intake of lycopene, a carotenoid rich in tomatoes and known to have strong antioxidant activity (Oshima, Ojima, Sakamoto, Ishiguro, & Terao, 1996), has been reported to be inversely associated with the risk of CVDs (Agrawal & Rao, 2000; Hak et al., 2004; Rissanen et al., 2001); the mechanism underlying this effect may be an improvement in the serum lipid profile (Ried & Falker, 2011; Sesso, Wang, Ridker, & Buring, 2012; Yanai et al., 2017). There are also reports about the beneficial effects of lycopene on BP (Engelhard, Gazer, & Paran, 2006; Paran, Novack, Engelhard, & Hazan-Halevy, 2009; Ried & Falker, 2011; Yanai et al., 2017). Esculeoside A, a saponin found in tomatoes, has also been reported to suppress the activity of acyl-CoA: cholesterol acyltransferase (ACAT), leading to an improvement in dyslipidemia (Nohara, 2010). Furthermore, 13-oxo-9, 11-octadecadienoic acid (13-oxo-ODA), a conjugated linoleic acid newly identified in tomato juice, was shown to have antidyslipidemic effects (Kim et al., 2012). Recently, we reported that unsalted tomato juice intake for 8 weeks improved hypertriglyceridemia (Hirose et al., 2015), which prompted us to investigate the effects of tomato juice on cardiovascular risk markers, such as BP, and lipid and glucose metabolism, in local Japanese male and female residents over a wider age range in this study.

2 | MATERIALS AND METHODS

2.1 | Study population

The participants of the present study were recruited from among the local residents in Kuriyama, Hokkaido, Japan. We sent flyers of this study to the local residents aged 20–74 years and held several briefing sessions to the candidates to recruit as many participants as possible. The participants received as much unsalted tomato juice (Nippon Del Monte) as they wanted throughout the year of the study. The nutritional composition of the tomato juice used in the present study, which was the same product as that was used in the previous study, is shown in Table 1 (Hirose et al., 2015). Participants kept records of daily tomato juice consumption, as well as any medical treatment and changes therein. We collected the participants’ diaries every 3 months and calculated overall tomato juice consumption and total days of tomato juice intake throughout the study period based on the diaries, and then calculated the frequency of tomato juice intake and the average tomato juice consumption per day across the entire cohort. Five hundred and forty-one residents, who accounted for 4.3% of the population of Kuriyama, were enrolled, and 481 (88.9%) completed this study (Figure 1).

The study protocol was reviewed and approved by the Tokyo Medical and Dental University Review Board, and written informed consent was obtained from all participants. The study was conducted in accordance with the Declaration of Helsinki.

2.2 | Measurement

The participants underwent an annual medical checkup, which was conducted according to the public policy of the Japanese government to prevent lifestyle-related diseases, before and after the study.

TABLE 1	The nutritional composition of the unsalted tomato juice used in the present study
Nutrient	Value per 200 ml (1 bottle)
Energy (kilocalories)	41
Protein (g)	2.2
Fat (g)	0
Sugars (g)	7.2
Dietary fiber (g)	1.8
Sodium (mg)	16
Calcium (mg)	23
Potassium (mg)	630
Vitamin A (μg)	46
GABA (μg)	99
Lycopene (μg)	22
13-oxo-ODA (μg)	39.2
Esculeoside A	Unknown

541 residents were enrolled

- 60 residents were excluded
 - who did not undergo the second medical examination
 - who did not keep the records of daily tomato juice intake
 - who were lost to follow-up

481 residents completed this study

FIGURE 1 Study flowchart
period. Physical(113,349),(854,983)
3.2 | Participants at risks of CVDs

Next, we compared BP before and after the study period in 94 participants with untreated prehypertension or hypertension. The mean SBP and DBP were significantly lowered after a year of tomato juice intake (SBP, 141.2 ± 12.1–137.0 ± 16.3 mmHg, \(p = 0.003 \); DBP, 83.3 ± 10.1–80.9 ± 11.1 mmHg, \(p = 0.012 \), paired \(t \) test) (Figure 3a,b).

In 127 participants with untreated dyslipidemia, the mean serum TG and HDL-C level did not change significantly after a year of tomato juice consumption (TG, 130.3 ± 69.6–136.8 ± 84.2 mg/dl, \(p = 0.255 \); HDL-C, 63.0 ± 17.3–61.6 ± 16.6 mg/dl, \(p = 0.051 \)), whereas the mean serum LDL-C level was significantly decreased (155.0 ± 23.2–149.9 ± 25.0 mg/dl, \(p = 0.005 \), paired \(t \) test) (Figure 3c). We also evaluated glucose metabolism in 62 participants with untreated impaired glucose tolerance. No statistically significant change in FPG level and HbA1c was observed after the study period (FPG, 107.8 ± 11.6–107.2 ± 11.7 mg/dl, \(p = 0.686 \); HbA1c, 6.1 ± 0.4–6.1 ± 0.4%, \(p = 0.385 \)).

3.3 | Difference between sexes

Next, we compared the effects of unsalted tomato juice intake on SBP, DBP, and serum LDL-C level between men and women. The 94 participants with untreated prehypertension or hypertension included 43 men and 51 women aged 23–74 years, and the 127 participants with untreated dyslipidemia included 52 men and 73 women, ranging from 25 to 74 years. There were no significant differences in the mean changes in SBP, DBP, and serum LDL-C level between the sexes (SBP: young, −0.2 ± 13.2; middle-aged, −5.4 ± 15.1; old, −6.6 ± 11.7 mmHg; \(p = 0.155 \), one-way ANOVA, and DBP: young, −0.8 ± 9.4; middle-aged, −1.7 ± 9.6; old, −4.3 ± 7.8 mmHg; \(p = 0.281 \), respectively).

3.4 | Difference among age groups

We also compared the changes in SBP, DBP, and the serum level of LDL-C before and after the intervention among different age groups. The 94 participants with untreated prehypertension or hypertension were divided into three age groups, namely young (23–54 years, \(n = 28 \)), middle-aged (55–64 years, \(n = 33 \)), and old (65–74 years, \(n = 33 \)). No statistically significant differences in the mean changes in SBP and DBP were observed among the groups (SBP: young, −0.2 ± 13.2; middle-aged, −5.4 ± 15.1; old, −6.6 ± 11.7 mmHg; \(p = 0.155 \), one-way ANOVA, and DBP: young, −0.8 ± 9.4; middle-aged, −1.7 ± 9.6; old, −4.3 ± 7.8 mmHg; \(p = 0.281 \), respectively).
DIVIDING the 127 participants with untreated dyslipidemia into young (n = 39), middle-aged (n = 43), and old (n = 43) in the same way, the mean changes in serum LDL-C level were not different significantly among the groups (young, −5.0 ± 21.4; middle-aged, −3.9 ± 18.6; old, −6.3 ± 20.5 mg/dl; p = 0.854, one-way ANOVA).

3.5 | Change in lifestyle factors

Finally, we investigated whether or not the improvements in cardiovascular markers in participants at risk could be attributable to changes in lifestyle during the study period. Among the 260 residents who participated in the detailed lifestyle study, 40 had untreated prehypertension or hypertension, and 69 had untreated dyslipidemia. The lifestyle factors did not differ significantly between the groups either before or after the study period (chi-square test) (Table 4).

4 | DISCUSSION

The present study showed that unsalted tomato juice intake may have contribution to lower SBP and DBP in local Japanese residents who had untreated prehypertension or hypertension, and improve serum LDL-C level in those who had untreated dyslipidemia. These ameliorative effects were not different between sexes and different age groups and could not be attributable to the alteration in lifestyle. To the best of our knowledge, the current study is the first to investigate the effects of tomato or tomato product intake on CVD risk markers over the course of a year and over a wide age range.

Tomatoes contain a variety of bioactive components that make them and their products, including tomato juice, beneficial for health (Engelhard et al., 2006; Hsu et al., 2008; Oshima et al., 1996; Paran et al., 2009; Ried & Falkner, 2011; Sesso et al., 2012). Above all, lycopene is well known for its strong antioxidant activity and the inhibition of LDL oxidation, which plays a key role in the initiation and development of atherosclerosis. Several epidemiological studies have suggested that lycopene could contribute to the prevention

TABLE 3 Results of physical and blood examination in 481 participants before and after the study period

	Before the intervention	After the intervention	
	Mean SD	Mean SD	n
Body mass index, kg/m²	23.3 3.5	23.4 3.5	481
Abdominal circumference, cm	81.5 9.5	81.3 9.6	469
Systolic blood pressure, mmHg	125.1 17.3	124.9 16.8	480
Diastolic blood pressure, mmHg	74.7 11.0	74.4 10.8	480
Triglyceride, mg/dl	102.3 56.8	106.1 64.9	481
High-density lipoprotein cholesterol, mg/dl	65.3 16.8	65.4 16.4	481
Low-density lipoprotein cholesterol, mg/dl	123.6 29.6	123.2 29.3	474
Fasting plasma glucose, mg/dl	95.8 16.6	95.3 13.8	430
Hemoglobin A1c, %	5.6 0.5	5.7 0.5	407

Note: Data are presented as the mean and SD. There were no significant differences in any factor before and after the intervention.

FIGURE 3 Systolic and diastolic blood pressure, and the serum LDL-C level before and after the intervention: (a) systolic and (b) diastolic blood pressure in 94 participants with untreated prehypertension or hypertension; (c) the serum levels of LDL-C in 125 participants with untreated dyslipidemia. Data are presented as the standard error of the mean. *p < 0.05, ** < 0.01, versus before the intervention, paired t test.
of atherosclerosis and CVDs (Hak et al., 2004; Klipstein-Grobusch et al., 2000; Kohlmeier et al., 1997; Rissanen et al., 2003). For example, the serum lycopene concentration was inversely associated with calcified deposits in the abdominal aorta (Klipstein-Grobusch et al., 2000) and the intima-media thickness of the common carotid artery (Rissanen et al., 2003). Recently, novel molecular mechanisms underlying lycopene’s ability to prevent atherosclerosis have been identified: These include the regulation of cholesterol metabolism by lycopene through the suppression of cholesterol synthesis and efflux in macrophages (Palozza, Simone, Catalano, Parrone, et al., 2011). The anti-inflammatory effects of lycopene in the atherosclerosis process have also been shown (Palozza et al., 2010; Palozza, Simone, Catalano, Monego, et al., 2011). Studies suggested that lycopene could reduce the production of proinflammatory cytokines through activation of peroxisome proliferator-activated receptor γ and inhibition of nuclear factor-κB. Furthermore, the beneficial effects on BP (Engelhard et al., 2006; Palozza, Simone, Catalano, Monego, et al., 2011; Palozza, Simone, Catalano, Parrone, et al., 2011; Paran et al., 2009) and the ameliorative effects of endothelial function by the antioxidant activity of

Exercise	Untreated prehypertension or hypertension Before (n)	After (n)	p value	Untreated dyslipidemia Before (n)	After (n)	p value
Yes	8	32	0.439	18	13	0.415
No	12	28		51	56	
Physical activity						
Yes	17	23	1.000	25	32	0.300
No	16	24		44	37	
Speed of walking						
Fast	22	15	0.178	33	32	1.000
Normal	18	24		35	36	
Speed of eating						
Fast	14	14	1.000	20	18	0.706
Normal/Slow				48	51	
Eating before bedtime						
Yes	2	4	0.675	9	7	0.791
No	38	36		60	62	
Snack between meals						
Yes	4	5	1.000	8	4	0.366
No	36	35		61	65	
Skip breakfast						
Yes	1	2	1.000	4	7	0.532
No	39	38		64	62	
Change in body weight						
Yes	6	6	1.000	14	15	1.000
No	33	34		55	54	
Sleeping						
Good	33	36	0.518	55	54	0.833
Bad	7	4		13	15	
Smoking						
Yes	7	4	1.000	13	15	0.833
No	33	36		55	54	

Note: Data show the change of lifestyle factors in 40 participants with untreated prehypertension or hypertension and in 69 with untreated dyslipidemia before and after the study period. No significant differences in lifestyle factors were found between the groups (chi-square test).
lycopene have been reported (Gajendragadkar et al., 2014; Kim, Paik, et al., 2011; Zhu, Wang, & Xu, 2011). Although the mechanism is yet to be elucidated, our study showed the beneficial effects of unsalted tomato juice intake on SBP, DBP, and LDL-C; thus, our findings may support these reports of the beneficial properties of lycopene.

Esculeoside A, a tomato saponin, has also been suggested to have protective effects on dyslipidemia and atherosclerosis development by inhibiting ACAT (Fujinawa et al., 2007; Nohara, Ono, Ikeda, Fujinawa, & El-Asar, 2010). Inhibition of ACAT decreases the absorption of diet-derived cholesterol in the small intestine, macrophage foam cell formation, and cholesterol synthesis in the liver. In 2007, Fujinawa et al. demonstrated that esculeoside A suppressed the activity of ACAT, reduced the serum levels of TG, LDL-C, and total cholesterol, and improved atherosclerotic lesions in apolipoprotein E-deficient mice (Fujinawa et al., 2007). Esculeoside A could have played a role in improving serum LDL-C level in our study participants although its amount in the tomato juice used in the current study was unknown.

Peroxisome proliferator-activated receptors (PPARs), of which three subtypes have been identified (α, β, γ), regulate energy homeostasis, including lipid and glucose metabolism (Braissant, Foufelle, Scotto, Daucà, & Wahli, 1996; Varga, Czimmerer, & Nagy, 2011; Wahli, Braissant, & Desvergne, 1995). PPARα is strongly expressed in tissues with a high mitochondrial and peroxisomal β-oxidation activity, such as the heart, liver, kidney, and intestine (Braissant et al., 1996), and activation of PPARα results in enhancement of fatty acid oxidation and improvement of dyslipidemia (Wahli et al., 1995). Oxo-octadecadienoic acid (oxo-ODA) found in tomato was recently reported to act as a PPARα agonist (Kim, Hirai, et al., 2011; Kim et al., 2012; Takahashi et al., 2011). Although four structural isomers of oxo-ODA were identified that activate PPARα equally (Braissant et al., 1996; Kim et al., 2012), 9-oxo-10(E),12(E)-ODA and 13-oxo-ODA were the only ones detected in tomato juice (Takahashi et al., 2011). Kim et al. (2012) showed that 9-oxo-10(E),12(E)-ODA decreased cellular accumulation of TG in mice hepatocytes, and 13-oxo-ODA reduced plasma and hepatic TG level and plasma glucose level in obese diabetic mice. PPARα activation also plays a role in antioxidant and anti-inflammatory effects (Delérive, Gervois, Fruchart, & Staels, 2000; Deplanque et al., 2003; Ibarra-Lara et al., 2010, 2012; Varga et al., 2011). It has been suggested that PPARα stimulation induces antioxidant activity, leading to improvement in the activity of endothelial factors that control blood pressure (Ibarra-Lara et al., 2010) and cardiac function (Ibarra-Lara et al., 2012), and neuroprotective effects against cerebral injury (Deplanque et al., 2003). Furthermore, the atherosclerosis protective effects of PPARα activation are also thought to occur through enhancement of anti-inflammatory response (Cao, Wen, & Li, 2014). The regulation of energy metabolism, oxidative stress, and the inflammatory response by activation of PPARα is expected to lead to the prevention of atherosclerosis and CVDs. In our study, oxo-ODAs in tomato juice could have contributed to the ameliorative effects on the serum LDL-C level and blood pressure.

The present study has some limitations. Firstly, as most of the study participants consumed about one bottle of tomato juice (200 ml) every day, we could not evaluate whether the effects of tomato juice on CVD risk markers depended on the level of consumption. Secondly, the detailed information of the diet each participant followed during the study period is lacking. We also did not assess the intake of other juices and nutritional supplements. Finally, the study on lifestyle factors was conducted in only about half of the participants and the findings may not be applicable to the whole study population.

In conclusion, our study shows that unsalted tomato juice intake could have improved systolic and diastolic blood pressure in Japanese residents who had untreated prehypertension or hypertension, and also decreased the serum LDL-C level in those who had untreated dyslipidemia. As tomato juice is an affordable and readily product, it could be practical as applied a nutritional intervention to prevent CVDs in people at risk.

ACKNOWLEDGMENTS

We appreciate the contribution of Ms. Mayumi Sogawa of the local government of Kuriyama in recruiting the study participants and collecting the data. Authors are thankful to Kikkoman Corporation for financial support.

CONFLICT OF INTEREST

MT received an unrestricted research grant from Kikkoman Corporation.

ETHICAL REVIEW

This study was conducted in accordance with the Declaration of Helsinki. This study protocol was reviewed and approved by the Tokyo Medical and Dental University Review Board.

INFORMED CONSENT

Written informed consent was obtained from all study participants.

ORCID

Masakazu Terauchi https://orcid.org/0000-0001-5577-0094

REFERENCES

Agarwal, S., & Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Canadian Medical Association Journal, 163, 739–744.

Beckman, J. A., Creager, M. A., & Libby, P. (2002). Diabetes and atherosclerosis epidemiology, pathophysiology, and management. Journal of the American Medical Association, 287, 2570–2581. https://doi.org/10.1001/jama.287.19.2570
and stroke: The Kuopio Ischaemic Heart Disease Risk Factor Study, British Journal of Nutrition, 85, 749–754. https://doi.org/10.1079/BJN2001357

Rissanen, T. H., Voutilainen, S., Nyyssönen, K., Salonen, R., Kaplan, G. A., & Salonen, J. T. (2003). Serum lycopene concentrations and carotid atherosclerosis: The Kuopio Ischaemic Heart Disease Risk Factor Study. American Journal of Clinical Nutrition, 77, 133–138. https://doi.org/10.1093/ajcn/77.1.133

Ross, R. (1999). Atherosclerosis—an inflammatory disease. The New England Journal of Medicine, 340, 115–126. https://doi.org/10.1056/NEJM199901143400207

Sander, D., Kukla, C., Klingelhöfer, J., Winbeck, K., & Conrad, B. (2000). Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: A 3-year follow-up study. Circulation, 102, 1536–1541. https://doi.org/10.1161/01.CIR.102.13.1536

Sesso, H. D., Wang, L., Ridker, P. M., & Buring, J. E. (2012). Tomato-based food products are related to clinically modest improvements in selected coronary biomarkers in women. Journal of Nutrition, 142, 326–333. https://doi.org/10.3945/jn.111.150631

Takahashi, H., Kim, Y. I., Hirai, S., Goto, T., Ohayane, C., Tsugane, T., ... Kawada, T. (2011). Comparative and stability analyses of 9- and 13-oxo octadecadienoic acids in various species of tomato. Bioscience, Biotechnology, and Biochemistry, 75, 1621–1624. https://doi.org/10.1271/bbb.110254

Varga, T., Czimmerer, Z., & Nagy, L. (2011). PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochimica et Biophysica Acta, 1812, 1007–1022. https://doi.org/10.1016/j.bbadis.2011.02.014

Wahl, W., Braissant, O., & Desvergne, B. (1995). Peroxisome proliferator activated receptors: Transcriptional regulates of adipogenesis, lipid metabolism and more…. Chemistry & Biology, 2, 261–266. https://doi.org/10.1016/1074-5521(95)90045-4

Widlansky, M. E., Goke, N., Keaney, J. F., & Vita, J. A. (2003). The clinical implications of endothelial dysfunction. Journal of the American College of Cardiology, 42, 1149–1160. https://doi.org/10.1016/S0735-1097(03)00994-X

World Health Organization. (2016). The top 10 causes of death. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/

Yanai, H., Adachi, H., Kawaguchi, A., Hakoshima, M., Waragai, Y., Harigae, T., ... Sako, A. (2017). The anti-atherosclerotic effects of tomatoes. Functional Foods in Health and Disease, 7, 411–428. https://doi.org/10.31989/ffhd.v7i6.351

Zhu, J., Wang, C. G., & Xu, Y. G. (2011). Lycopene attenuates endothelial dysfunction in streptozotocin-induced diabetic rats by reducing oxidative stress. Pharmaceutical Biology, 49, 1144–1149. https://doi.org/10.3109/13880209.2011.574707

Zorumski, C. F., Paul, S. M., Izumi, Y., Covey, D. F., & Mennerick, S. (2013). Neurosteroids stress and depression: Potential therapeutic opportunities. Neuroscience & Biobehavioral Reviews, 37, 109–122. https://doi.org/10.1016/j.neubiorev.2012.10.005

How to cite this article: Odai T, Terauchi M, Okamoto D, Hirose A, Miyasaka N. Unsalted tomato juice intake improves blood pressure and serum low-density lipoprotein cholesterol level in local Japanese residents at risk of cardiovascular disease. Food Sci Nutr. 2019;7:2271–2279. https://doi.org/10.1002/fsn3.1066