Laparoendoscopic Single Site Myomectomy: Without the Use of a Single Port Access Device

Jing-Xin Ding*, Xu-Yin Zhang*, Chang-Dong Hu and Ke-Qin Hua*

Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P.R. China
*These two authors equally contributed to the work

Abstract

Objective: Herein we described our experience with laparoendoscopic single site myomectomy (LESS-M) without the use of a single port access device and compared the clinical outcomes between LESS-M and conventional laparoscopic myomectomy (LM).

Methods: From January 2012 to December 2014, 32 patients with leiomyomas underwent LESS-M in our hospital were enrolled in this prospective observational case-control study, and were 1:1 matched and compared with 32 patients who underwent LM by the same operative team for leiomyomas of similar size and location. Patients and surgical data, and follow-up information were analyzed.

Results: The operating time in the LESS-M group was significantly longer than that in the LM group (98 ± 9 min vs 56 ± 7 min, P<0.001), but the patients returned to work significantly earlier (2.9 ± 0.5 week vs 3.7 ± 1.1, P=0.001), and the cosmetic satisfaction score was significantly higher (9.3 ± 0.6 vs 8.4 ± 0.7, P=0.000). There was no significant difference of the mean intraoperative blood loss, hemoglobin change, return of bowel activity, postoperative fever, operation cost and total cost between the two groups.

Conclusion: LESS-M is a feasible, safe, and efficacious procedure with shorter recovery and increased cosmetic satisfaction in selected patients with leiomyoma, and it can be cost-effectively performed without the need for a single port access device.

Keywords: Myomectomy; Laparoendoscopic single-site surgery; Uterine leiomyomas; Laparoscopic surgery

Introduction

Leiomyomas are the most frequent benign tumors of the uterus and affect approximately 25-40% of women of reproductive age. Laparoscopic myomectomy (LM) is a surgical procedure that has been performed frequently in the gynecological field.

Laparoendoscopic single site surgery (LESS) has been used for hysterectomy, adnexal surgery, myomectomy, and gynecologic cancer surgery [1]. Some reports have demonstrated the feasibility and safety of SPLS and the improvement in outcomes over conventional laparoscopy in terms of pain, recovery time, cosmesis, and duration of hospital stay [2-5].

Laparoscopic myomectomy (LM) is a surgical procedure that has been performed frequently in the gynecological field. In an attempt for further improvement, laparoendoscopic single site myomectomy (LESS-M) has been recently introduced. This surgical approach is still in evolution, as only a small number of patients have been reported so far [6-13]. This technique is evolving quickly, nevertheless, there is insufficient data regarding whether it has advantages over conventional LM.

The technique for laparoendoscopic single-site myomectomy reported before described the use of disposable transumbilical single port access devices or a glove- disposable wound retractor system [6-13], a flexible tip laparoscope along with curved and articulating working instruments. Utilization of such instruments and disposable access ports or disposable wound retractors can impose a significant cost burden on patients in developing countries.

We recently performed LESS-M using conventional laparoscopy instruments and a flexible tip laparoscope, without the need for single port laparoscopy access devices. We herein report our modifications and feasibility of this cost-effective technique of LESS-M, and present a matched case-control retrospective study comparing LESS-M and LM with respect to perioperative outcomes and cosmetic satisfaction.

We recently performed LESS-M using conventional laparoscopy instruments and a flexible tip laparoscope, without the need for single port laparoscopy access devices. We herein report our modifications and feasibility of this cost-effective technique of LESS-M, and present a prospective observational matched case-control study comparing LESS-M and LM with respect to perioperative outcomes and cosmetic satisfaction.

Materials and Methods

Patients

Between January 2012 and December 2014, 32 patients with leiomyoma were selected to undergo LESS-M in the Obstetrics and Gynecology Hospital of Fudan University. The patients were selected consecutively, based on their ultrasonographic characteristics, and the data were collected.

The inclusion criteria included the presence of a symptomatic leiomyoma measuring 8 cm or less on ultrasonographic examination, and intramural or subserosal type of myoma. Patients whose myomas...
measured > 8 cm on ultrasonographic examination or with a submucosal type were excluded from this study. LESS-M was suggested to all the patients who fulfilled the inclusion criteria, and was performed with the consent of the 32 patients.

The LESS-M group was matched to a control group (n=32) who underwent LM by the same operative team during the same period. The patients were 1:1 matched prospectively on the basis of size, location and type of leiomyomas. This study was approved by the Obstetrics and Gynecology Hospital of Fudan University Institutional Review Board.

Operative technique

The patients were placed in a dorsal lithotomy position under general anesthesia with endotracheal intubation. A 3 cm long vertical transumbilical incision is made. The rectus sheath is laterally dissected underneath the skin flaps, as described by Dubey et al. in laparoscopic single-site radical nephrectomy [14]. Carbon dioxide was insufflated to maintain the intra-abdominal pressure at 14 mmHg. 3 separate home-made metallic 5mm trocar are inserted through this single incision (Figure 1). The metallic trocars are different in length, so that the interference between different trocars during operation is minimized. A LTF-VP deflectable tip video laparoscope (Olympus, Center Valley, Pennsylvania) is used through one of the 5mm ports.

The dilute solution of pituitrin (6 IU/20 ml normal saline) was injected into the uterine muscle. The serosa and myometrium covering the myoma was opened with a monopolar hook. Conventional laparoscopic claw forceps were used to grasp the myoma and create countertraction. The cleavage plane between the fibroid and the uterus was identified, and the myoma was dissected out of the uterus. Rhoticator for manipulation of the uterus was not needed in our procedure.

A running suture using 1/0 PDS II delayed absorbable material (Ethicon, Somerville, NJ, U.S.A) and conventional needle holder repaired the defect in the myometrial and serosal layers. An additional mattress suture following running suture completed the closure of the uterine wall. The needle was directly inserted into the pelvic cavity using a needle holder and was returned outside the body using a laparoscopic needle holder at the left lower quadrants of the abdomen. Prior to myoma morcellation, one of the 5mm ports is enlarged to a 15 mm port, and the myoma was morcellated by conventional laparoscopic morcellation (Figure 2). Finally, the skin incision is closed with interrupted 1/0 vicryl sutures.

Clinical outcome measurement

Patients’ perioperative data, including operative time, estimated blood loss, hemoglobin decreases, the return of bowel activity, postoperative fever, operation cost and total cost between the two group (Table 2). The patients underwent LESS-M return to work significantly earlier than those underwent LM (2.9 ± 0.5 week vs 3.7 ± 1.1, P=0.001). There were no surgical or wound complications and no transfusion in any patient, and the histopathological result was leiomyoma in all the cases.

Results

Thirty two patients who underwent LESS-M were 1:1 matched and compared with 32 patients who underwent LM by the same operative team for leiomyomas of similar size, location and type. The detailed patient characteristics of the two groups are shown in (Table 1). No statistically significant (P>0.05) differences in age, parity, body mass index (BMI) were noted between the two groups.

LESS-M was successfully completed in all 32 patients. The final length of the skin incision was 3 cm in all cases. None of the patients required extension of the skin incision during surgery.

Compared with control group, the operating time was significantly longer (98 ± 9 min vs. 56 ± 7, P=0.000). There was no significant difference of the mean intraoperative blood loss, hemoglobin change, return of bowel activity, postoperative fever, operation cost and total cost between the two group (Table 2). The patients underwent LESS-M return to work significantly earlier than those underwent LM (2.9 ± 0.5 week vs 3.7 ± 1.1, P=0.001). There were no surgical or wound complications and no transfusion in any patient, and the histopathological result was leiomyoma in all the cases.

Statistical analysis

Statistical analyses were performed using SPSS 16.0 software (SPSS, Inc, Chicago, IL). Data are expressed as the mean ± standard deviation (SD). Student’s t-test or chi-square tests were used, as appropriate. Differences were considered to be significant at P<0.05
Discussion

This prospective case-control study described our experience with LESS-M without the use of a single port access device and compared the clinical outcomes between LESS-M and conventional LM. Our matched pair study showed that the operating time in the LESS-M group was significantly longer than that in the LM group, but the patients returned to work significantly earlier. The mean cosmetic satisfaction score was significantly higher in the LESS-M group than that in the LM group (9.3 ± 0.6 vs. 8.4 ± 0.8, P=0.000).

For the cosmetic satisfaction investigation by VAS scoring 0-10, 10 patients in the LESS-M group and 1 patients in the LM group expressed "negligible attention to the cosmetic influence of the skin scar", and gave the full score 10. The mean cosmetic satisfaction score was significantly higher in the LESS-M group than that in the LM group (9.3 ± 0.6 vs. 8.4 ± 0.8, P=0.000).

Table 1: Clinical characteristics of the two groups.

Parameter	LESS-M (n=12)	LM (n=24)	P value
Age (y)	30.5 ± 3.5	32.9 ± 5.0	0.000
Parity (n)	0.3 ± 0.5	0.5 ± 0.6	>0.05
BMI (kg/m2)	21.4 ± 1.4	21.6 ± 1.5	>0.05
Size of myomas (cm)	5.5 ± 0.7	5.5 ± 0.7	>0.05
Location of myomas (n)	Anterior: 5	10	
	Posterior: 3	6	
	Fundal: 3	6	
	Lateral: 1	2	
Type of myomas (n)	Subserosal: 3	6	
	Intramural: 9	18	
Previous abdominal surgery: 2		5	

Abbreviations: SD, standard deviation; LESS-M, laparoendoscopic single site myomectomy; LM, laparoscopic myomectomy; BMI, body mass index

Table 2: Perioperative data of the two groups.

Parameter	LESS-M (n=12)	LM (n=24)	P value
Operating time (min)	103 ± 12	56 ± 7	>0.05
Estimated blood loss (ml)	48.3 ± 18.5	(30-100)	>0.05
Hemoglobin change (g/dL)	45 ± 19.3	(30-100)	>0.05
Return of bowel activity (h)	24.8 ± 4.8	(14-32)	>0.05
return to work (week)	3.0 ± 0.5	(2-4)	>0.05
Hospital stay post surgery (d)	3.1 ± 0.3	(3-4)	>0.05
Complications (n)	0	1	>0.05
Transfusion (n)	0	0	>0.05
Cosmetic satisfaction score	9.4 ± 0.5	(9-10)	>0.05
Operation Cost ($)	1,043 ± 39	1,037 ± 34	>0.05
Total Cost ($)	1,774 ± 150	1,751 ± 108	>0.05

Abbreviations: SD, standard deviation; LESS-M, laparoendoscopic single site myomectomy; LM, laparoscopic myomectomy; BMI, body mass index
The limitation of this study is the limited sample size, and that the grouping of the patients was based on their choice. Therefore, a large, prospective, randomized study is needed to achieve solid conclusions on the benefits and disadvantages of LESS surgery.

Conclusion

This study demonstrated the feasibility of LESS-M with conventional laparoscopic instrumentation, and suggested shorter recovery of the patients and a definitive cosmetic advantage. We believe that LESS-M is potentially applicable to selected patients with myoma. Further large-sized randomized prospective trials will be required to confirm the true place of LESS-M.

Acknowledgments

The work was supported by National Key Clinical Faculty Construction Program of China.

References

1. Bradford LS, Boruta DM (2013) Laparoendoscopic single-site surgery in gynecology: a review of the literature, tools, and techniques. Obstet Gynecol Surv 68: 295-304.
2. Jung YW, Choi YM, Chung CK, Yim GW, Lee M, et al. (2011) Single port transumbilical laparoscopic surgery for adnexal lesions: a single center experience in Korea. Eur J Obstet Gynecol Reprod Biol 155: 221-224.
3. Yim GW, Jung YW, Paek J, Lee SH, Kwon HY, et al. (2010) Transumbilical single-port access versus conventional total laparoscopic hysterectomy: surgical outcomes. Am J Obstet Gynecol 203: 26.
4. Escobar PF, Bedaiwy MA, Fader AN, Falcone T (2010) Laparoendoscopic single-site (LESS) surgery in patients with benign adnexal disease. Fertil Steril 93: 2074.
5. Huang CY, Wu KY, Su H, Han CM, Wu PJ, et al. (2014) Accessibility and surgical outcomes of transumbilical single-port laparoscopy using straight instruments for hysterectomy in difficult conditions. Taiwan J Obstet Gynecol 53: 471-475.
6. Einarssson JI (2010) Single-incision laparoscopic myomectomy. J Minim Invasive Gynecol 17: 371-373.
7. Lim MC, Song YJ, Seo SS, Ryu J, Park SY (2010) Embryonic-natural orifice transumbilical endoscopic surgery for myomectomy with traction of multidirectional sutures: a new surgical approach. Journal of Laparoendoscopic and Advanced Surgical Techniques-part A 21: 35-37.
8. Lee JH, Choi JS, Jeon SW, Son CE, Lee SJ, et al. (2010) Single-port laparoscopic myomectomy using transumbilical GelPort access. Eur J Obstet Gynecol Reprod Biol 153: 81-84.
9. Kim Y, Park B, Ro D, Kim T (2010) Single-port laparoscopic myomectomy using a new single-port transumbilical morcellation system: initial clinical study. Journal of Minimally Invasive Gynecology 17: 587-592.
10. Jackson TR, Einarssson JI (2011) Single-incision laparoscopic myomectomy. J Minim Access Surg 7: 83-86.
11. Yoshiki N, Okawa T, Kubota T (2011) Single-incision laparoscopic myomectomy with intracorporeal suturing. Fertil Steril 95: 2426-2428.
12. Ramesh B, Vidyashankar M, Bharathi B (2011) Single incision laparoscopic myomectomy. J Gynecol Endosc Surg 2: 61-63.
13. Han CM, Lee CL, Su H, Wu PJ, Wang CJ, et al. (2013) Single-port laparoscopic myomectomy: initial operative experience and comparative outcome. Arch Gynecol Obstet 287: 295-300.
14. Dubey D, Shrinivas RP, Srikanth G (2011) Transumbilical laparoendoscopic single-site donor nephrectomy: Without the use of a single port access device. Indian J Urol 27: 180-184.
15. Wang L, Liu B, Wu Z, Yang Q, Chen W, et al. (2012) A matched-pair comparison of laparoendoscopic single-site surgery and standard laparoscopic radical nephrectomy by a single urologist. J Endourol 26: 676-681.
16. Zhu JF (2011) Transumbilical endoscopic surgery. History, present situation and perspectives. World J Gastrointest Endosc 3: 107-109.
17. Paek J, Kim S, Lee S, Lee M, Yim G, Nam E, Kim Y (2011) Learning curve and surgical outcome for single-port access total laparoscopic Hysterectomy in 100 consecutive cases. Gynecologic and Obstetric Investigation 72: 227-233.
18. Bedaiwy MA, Starks D, Hurd W, Escobar PF (2012) Laparoendoscopic single-site surgery in patients with benign adnexal disease: a comparative study. Gynecol Oncol Invest 73: 294-298.
19. Lim MC, Park SY, Seo SS (2009) E-NOTES: Promising minimal surgical approach for gynecologic disease. Gynecol Oncol 115: 320-321.
20. Langebrekke A, Oqvistad E (2009) Total laparoscopic hysterectomy with single-port access without vaginal surgery. J Minim Invasive Gynecol 16: 609-611.
21. Rettenmaier MA, Abaid LN, Erwin MR, John CR, Micha JP, et al. (2009) A retrospective review of the GelPort system in single-port access pelvic surgery. J Minim Invasive Gynecol 16: 743-747.