The Role of Adherence and Retreatment in De Novo Emergence of MDR-TB

Dominique Cadosch¹, Pia Abel zur Wiesch²³, Roger Kouyos⁴, Sebastian Bonhoeffer¹*

¹ Institute for Integrative Biology, ETH Zurich, Switzerland, ² Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America, ³ Department of Pharmacy, Faculty of Health Sciences, Norwegian Arctic University (UiT), Tromsø, Norway, ⁴ Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland & Institute of Medical Virology, Swiss National Center for Retroviruses, University of Zurich, Zurich, Switzerland

* sebastian.bonhoeffer@env.ethz.ch

Abstract

Treatment failure after therapy of pulmonary tuberculosis (TB) infections is an important challenge, especially when it coincides with de novo emergence of multi-drug-resistant TB (MDR-TB). We seek to explore possible causes why MDR-TB has been found to occur much more often in patients with a history of previous treatment. We develop a mathematical model of the replication of Mycobacterium tuberculosis within a patient reflecting the compartments of macrophages, granulomas, and open cavities as well as parameterizing the effects of drugs on the pathogen dynamics in these compartments. We use this model to study the influence of patient adherence to therapy and of common retreatment regimens on treatment outcome. As expected, the simulations show that treatment success increases with increasing adherence. However, treatment occasionally fails even under perfect adherence due to interpatient variability in pharmacological parameters. The risk of generating MDR de novo is highest between 40% and 80% adherence. Importantly, our simulations highlight the double-edged effect of retreatment: On the one hand, the recommended retreatment regimen increases the overall success rate compared to re-treating with the initial regimen. On the other hand, it increases the probability to accumulate more resistant genotypes. We conclude that treatment adherence is a key factor for a positive outcome, and that screening for resistant strains is advisable after treatment failure or relapse.

Author Summary

Our ability to treat and control acute pulmonary tuberculosis (TB) is threatened by the increasing occurrence of multi-drug-resistant tuberculosis (MDR-TB) in many countries around the globe. It is not clear whether MDR-TB occurs predominantly due to transmission, or whether there is a substantial contribution due to de novo emergence during treatment. Understanding the underlying mechanisms that are involved in the emergence of MDR-TB is important to develop countermeasures. We use a computational model of within-host TB infection and its subsequent treatment to qualitatively assess the risks of
treatment failure and resistance emergence under various standard therapy regimes. The results show that especially patients with a history of previous TB treatment are at risk of developing MDR-TB. We conclude that de novo emergence of MDR-TB is a considerable risk during treatment. Based on our findings, we strongly recommend widespread implementation of drug sensitivity tests prior to the initiation of TB treatment.

Sebastian Bonhoeffer is a Deputy-Editor-in-Chief for PLOS Computational Biology.

Introduction

Tuberculosis (TB) is a key challenge for global health [1,2]. At present about one third of the global population is latently infected [3] and every year about 1.7 million people die of tuberculosis. A large number of patients live in resource-limited settings with restricted access to health-care. It is imperative that standard treatment measures are assessed for their efficacy and reliability.

Understanding the driving forces behind therapy failures is challenging. This is to a large extent the case because of the complex life cycle and population structure of TB: The typical sequence of events leading to acute pulmonary tuberculosis occurs as follows [1,4–7]. Upon inhalation, TB bacilli reach the pulmonary alveoli of the lung. There they are assimilated by phagocytic macrophages. In most cases the bacteria are being killed continuously by phagocytosis while the cell-mediated immunity develops. More rarely, they may persist in an inactive state, which is considered a latent infection. Infected macrophages may aggregate and form granulomas by recruiting more macrophages and other cell types. Inside granulomas, increased necrosis of macrophages can lead to the formation of a caseous core. In latently infected hosts, an equilibrium establishes where the immune system prevents further growth but the bacteria persist in a dormant state [8,9]. However, especially in patients with a compromised immune system, the bacteria may continue or resume growth [4,6]. In this case, the bacterial population steadily increases until the granuloma bursts into the bronchus forming an open cavity. Mycobacterium tuberculosis is an aerobic organism and depends on the availability of oxygen to promote its growth. Because the oxygen levels inside macrophages and granulomas are low, the growth rate is reduced [6,9–13]. In open cavities, oxygen supply is not limiting anymore and the population size increases rapidly. The extracellular bacteria in the cavities may also spread to other locations in the lung where they are again combated by the dendritic cells of the immune system. Some bacteria can be expelled with sputum and be transmitted to other individuals or they may enter a blood vessel and cause lesions in other organs.

The standard treatment is a six-month short-course regimen [1,14–17], consisting of two months of combination therapy with isoniazid, rifampicin, pyrazinamide and ethambutol followed by a continuation phase of four months with isoniazid and rifampicin only [18]. According to tuberculosis treatment guidelines all drugs are taken daily during the first two months. During the following four months isoniazid and rifampicin are administered three times a week with a 3-fold increased isoniazid dose [15]. For patients with previous TB treatments the WHO recommends a 8-month retreatment regimen containing additionally streptomycin [17].

In recent years, the problem of drug resistance has increased in severity due to the emergence and spread of multi-drug-resistant tuberculosis (MDR-TB) [19–21], where MDR-TB is...
defined as infection by *M. tuberculosis* strains conferring resistance to at least isoniazid and rifampicin. Resistant TB is assumed to emerge at least in part due to inappropriate treatment or suboptimal adherence to the treatment regimen [22]. Poor compliance has been associated with treatment failure and the emergence of resistance in previous studies [23–27]. Multi-drug-resistance usually develops in a step-wise manner. These steps are thought to include functional monotherapy; either due to different drug efficacies among certain bacterial populations or due to different pharmacokinetics [28,29]. Prevalence data of MDR-TB in Europe (see Fig 1) show that patients who have previously received treatment are on average six times more likely to suffer from MDR-TB than patients who are newly diagnosed. There are several possible explanations for this observation. Individuals who are infected with MDR-TB are more likely to have a treatment failure or a later relapse [30–33], especially if they are not

![Fig 1. The prevalence of multidrug-resistant tuberculosis (MDR-TB) in most European countries is higher among previously treated patients than among newly diagnosed patients. The data on the percentage of newly diagnosed and previously treated patients with MDR-TB where taken from reference [35] for 2009 and from reference [36] for 2010. Countries with incomplete data were omitted.](image-url)

doi:10.1371/journal.pcbi.1004749.g001
properly diagnosed. These patients could then come under more accurate scrutiny and eventually be reported as MDR-TB patients with previous treatment history. Another more direct possibility is that a considerable fraction of patients who have contracted susceptible TB develop de novo MDR-TB during the first therapy [34].

The goal of this study is to assess the factors that determine the de novo acquisition of drug resistance and to get a better insight in the underlying dynamics. Specifically, we want to study the contribution of imperfect compliance and retreatment regimens. In some areas, second-line drugs are not easily accessible. Moreover, drug-susceptibility tests may not be performed due to the lack of required infrastructure or questionable reliability of patient treatment history [37]. Hence, we assess the impact of a retreatment that is identical to the first therapy as well as a retreatment that follows the WHO recommendation [17]. To achieve this goal we develop a computational model of a within-host TB infection and its consecutive treatment with currently recommended first-line regimens. The model framework encompasses the population dynamics of various \textit{M. tuberculosis} genotypes with different resistance patterns in three pulmonary compartments as well as the pharmacodynamics and the pharmacokinetics of the drugs that are used for treatment. The aim is to provide qualitative insights into the infection dynamics of tuberculosis. The parameterization is based on the most recent concepts and individual experimental results found in the literature. Given the current lack of a good animal or in vitro model for TB, a computational model, may help to bridge the gaps arising from the inaccessibility of TB in experimental model systems and allow the hypothetical assessment of treatment scenarios, which would be otherwise ethically inadmissible in patient trials. In particular, problems resulting from imperfect therapy adherence can be usefully addressed with a computational model.

Methods

In the following section we present the basic framework of the computational model, the parameterization and key aspects of our simulations. In essence, our model consists of coupled logistic-growth models that are connected such that they capture the basic population structure (compartments) of TB (see Fig 2). The action of TB-drugs is included in this model via realistic pharmacokinetics/pharmacodynamics functions. Resistance to these drugs is modeled by distinguishing between up to 32 genotypes (all combinations of 5 mutations) with varying resistance patterns. Since mutations are generated at low frequencies and numbers (due to the low bacterial mutation rate), chance events are essential in the dynamics of this system and hence we consider a stochastic version of the model. In the following we provide a detailed description of the model; the model equations and further details can be found in S1 Text.

Model

Our model describes pulmonary tuberculosis and assesses the emergence of resistance during multi-drug therapy. A graphical illustration of the model is provided in Fig 2. The model reflects the compartmentalization of the bacteria into three distinct subpopulations as described by Grosset [5]: intracellular bacteria within macrophages (M), bacteria within the caseating tissue of granulomas (G) and extracellular bacteria which mostly reside in open cavities (OC). The compartments differ in their maximum population sizes as well as the bacterial replication rates that they allow. The base replication rate \(r \) is modified by a factor \(\gamma \), which reflects the compartment specific conditions that influence the replication rate. Bacteria have a natural density-dependent death rate in each compartment. The constant replication rate and the density-dependent death rate constitute a logistic growth model that was assumed to describe the basic population dynamics. Bacteria also migrate unidirectionally at a rate \(m \) from one compartment to another. Offspring bacteria have a certain chance to acquire or lose a
mutation that confers resistance to one out of up to five drugs that may be administered during treatment. Every resistance mutation confers a fitness cost which affects the reproductive success of its carrier. This means that the bacterial population inside a compartment comprises of up to 32 genotypes, which differ in their drug resistance pattern as well as their relative fitness.

To outline the population dynamics within a single compartment we describe them first in the form of a deterministic differential equation. The dynamical equation is given by

\[
\frac{dN_{c}}{dt} = r \cdot \gamma \cdot N_{c} - m \cdot N_{c} - \frac{N}{K} \cdot N_{c} \cdot N_{c} + m \cdot \frac{N}{K} \cdot N_{c} - (d + k) \cdot N_{c}
\]

Fig 2. Diagram of model for the pathogenesis during acute pulmonary tuberculosis infection. We consider three different physiological compartments for the location of TB bacteria: host macrophages (M), granulomas (G) and open cavities (OC). The base replication rate \(r \) of the bacteria is modified by a compartment specific parameter \(\gamma \). The bacteria die with a density-dependent rate \(d \) and migrate from one compartment to another at a rate \(m \).
Here N_{cg} is the number of bacteria of a specific genotype g in a specific compartment c. The parameter r is the base replication rate of $M. tuberculosis$ and γ_c is a factor, which modifies the replication rate according to the different metabolic activities in each compartment. ω_g represents the relative fitness of the specific genotype. m_c is the rate with which bacteria migrate to the subsequent compartment. The migration rate is multiplied by the ratio between the total population size N_c and the carrying capacity K_c. This reflects the increased migratory activity that takes place during an acute infection. N_c, K_c and m_c correspond to the overall bacterial population including all genotypes of the supplying compartment, its carrying capacity and its migration rate, respectively. The last term reflects the density-dependent death rate d_c and the drug induced genotype specific killing rate κ_{cg}. The bactericidal effects of the drugs contribute additively to the killing rate κ_{cg} (see S1 Text for further details).

The dynamics of the bacterial population in the model are actually simulated as stochastic processes. For this reason we translated the underlying deterministic differential equations into a corresponding stochastic framework by applying Gillespie’s τ-leap method [38].

Parameterization

The parameter estimates used in this model are whenever possible drawn or derived from experimental results in the literature. To account for the diversity of infection and treatment courses in different patients we allow some parameters to vary within a certain range. Parameters are summarized in Table 1.

The basic growth dynamics rest upon the replication rate and the carrying capacity of the compartments. Based on recent studies [39–41] we assume a maximum bacterial load between 10^5 and 10^7 bacteria each for the macrophage and the granuloma compartment and 10^8 to 10^{10} bacteria for the extracellular compartment. Under optimal conditions $M. tuberculosis$ has a replication time of $20h$, hence we set the maximum replication rate in the model to $0.8 d^{-1} [5]$. Every new bacteria cell has at birth the chance to acquire or lose one or multiple resistance mutations and therefore get a genotype, which is different from the mother cell. The frequency of specific resistance mutations and therefore the mutation rate for the main first-line drugs have been first estimated by David in 1970 [42] to be around 10^{-7}–10^{-10}. However, more recent observations suggest considerably higher frequencies in the order of 10^{-6} to 10^{-8} [5,43]. A possible reason for this discrepancy between these estimates are varying mutation rates in in vitro experiments compared to the conditions encountered in vivo due to stress-induced

Table 1. Compartment characteristics.

Compartmental characteristics	Macrophages	Granulomas	Open cavities
Carrying capacity (K_c)	10^6–10^7 [5]	10^5–10^7 [5,83]	10^8–10^{10} [4,5,39,83]
Growth modifier (γ_c)	0.5 [84,85]	0.1 [5]	1
Migration rate (m_c, m', d^{-1})	0–0.1*	0–0.1*	0–0.1*
Relative drug efficacies			
Isoniazid	0–1 [57,59,68]	0.01 [69]	1
Rifampicin	0.01 [59]	0.01 [6]	1
Pyrazinamide	0 [58,66]	1 [6]	0 [87]
Ethambutol	1 [59]	0–1 [6,65,70]	1
Streptomycin	0.1 [56,57]	0.01 [6]	1

The provided references support the order of magnitude of the parameters, not the exact value.

* estimation

doi:10.1371/journal.pcbi.1004749.t001
mutagenesis mechanisms or variations among strains [44–46]. Furthermore, we assume that mutations only occur during proliferation while mutations during the stationary phase could serve as an additional source of resistance mutations [47]. Therefore, we choose to allow for patients with the more recent higher mutation rates because this will yield more conservative estimates (see Table 2). Our model incorporates backwards mutations from the resistant to the sensitive phenotype, which also restore the reproductive fitness. However, we consider a reversion to be ten times less likely than the original forward mutation because the occurrence of any additional mutation within a gene to be an exact reversion is more infrequent.

When assessing the prevalence of certain genotypes, fitness costs that come with resistance mutations have to be considered. The cost of resistance against anti-tuberculosis drugs appears generally to be low [48–51]. Drug-resistant mutants isolated in patients have even been found to be on par with susceptible wild type strains regarding their infectivity and replicative potential. Since cost-free resistance mutations are rather rare, the high fitness of resistant strains that have been found in clinical isolates [48,49] is assumed to arise due to the acquisition of secondary site mutations which minimize the fitness costs (so-called compensatory mutations) [50]. However, there is evidence that at least initially newly acquired drug resistance confers some physiological cost [52]. Because our model simulates the de novo acquisition of resistance mutations and because the time frame of a single patient treatment is rather short we assign a small fitness cost to every possible mutation and neglect the counterbalance of fitness costs by compensatory mutations.

The effect of administered drugs depends on the pharmacokinetics and pharmacodynamics of these drugs (see Table 1). Both influence the killing rate κ_{cg} at any given time point during treatment. While pharmacokinetic parameters describe the course of the drug concentration in the target tissue, pharmacodynamic parameters characterize the effect the drugs have at a given concentration. The minimal inhibitory concentration (MIC) describes the minimal drug concentration at which bacterial growth is reduced by at least 99%. Additionally, the EC_{50} describes at which drug concentration the half-maximal effect (commonly, bacterial killing) is observed.

Table 2. Model parameters.
Isoniazid
Half-Life (h^{-1})
Dose (mg/L)
MIC (mg/L)
EC_{50} (mg/L)
E_{max}
$C_{ELF/C_{Serum}} (\rho)$
Resistance frequency
Resistance cost

Some of the provided references support the order of magnitude of the parameters, not the exact value.

- **A FA** = fast acetylators, **SA** = slow acetylators
- **If isoniazid is administered three times a week instead of daily the dosage is three times higher [14,91]**
- **c estimation**
- **d see text**
- **e ELF = epithelial lining fluid**

DOI:10.1371/journal.pcbi.1004749.T002
while the E_{max} indicates the maximal effect of the drug. These pharmacodynamic parameters are obtained by fitting the drug action model to killing curves found in the literature [53,54] (see S1 Text). The specific efficacy of most drugs in the different compartments is typically not quantified. There are several studies that tried to assess the bactericidal activity inside macrophages [55–59]. Unfortunately, these estimates are highly variable and sometimes even contradictory [55,58]. In addition to these experimental difficulties, it is possible that the pharmacodynamics of anti-tuberculosis drugs are again different in the human body [60–64]. To reflect this uncertainty we assign compartment efficacies from a range of values which corresponds to the most recent estimates [56–59,65–70].

Simulations

To investigate the role of treatment adherence on patient outcome, we followed disease progression starting with the infection of macrophages until all compartments approximately reached their maximum bacterial load. For each parameter set, we simulate the outcome of 10'000 patients who vary both in their pharmacokinetic and–dynamic characteristics as well as compartmental attributes. Parameters are generally picked from a normal distribution. If only a range is known the parameters are chosen from a uniform distribution. To measure the actual treatment efficacy we let every patient develop an acute tuberculosis infection during 360 days. This allows for the emergence of mutants prior to treatment initiation and provides enough time for the establishment of an equilibrium in the bacterial population composition. After this period we start the standard short course therapy regimen with four drugs being taken daily for two months followed by four months in which just isoniazid and rifampicin are taken three times per week. If the infection is not completely sterilized after the first treatment we schedule a retreatment. Since the model does not cover the possibility of dormant bacteria the population recovers rather quickly after an unsuccessful treatment. Hence, we begin the retreatment 30 days after completion of the previous treatment. After such a time span the population reaches a bacterial load where acute symptoms would be again suspected. If not stated otherwise the retreatment corresponds to the WHO recommendation for retreatments [31,71]. The WHO recommendations include streptomycin, which is used together with the original four first-line drugs during the first two months. Afterwards the therapy is being continued for another month without streptomycin and during the last five months only isoniazid, rifampicin and ethambutol are administered. All drugs are being taken daily during the whole retreatment.

The 95% confidence intervals (CI) of patient outcomes in the figures is calculated by picking the value for a two-sided 95% confidence limit with $n-1$ degrees of freedom from a t-distribution table where n is the number of patients. This value is then multiplied with the standard deviation σ and divided by the square root of n. The resulting value is then added and subtracted from the mean to get the actual confidence interval.

$$CI = t_{n-1} \cdot \frac{\sigma}{\sqrt{n}}$$

Results

Treatment efficacy in single compartments against wild-type TB and MDR-TB

The impact of treatment on the net growth rate of wild-type or MDR bacteria differs strongly between compartments (Fig 3). Before treatment starts, the growth rates in macrophages and granulomas are lower than in the open lung cavities due to hypoxia and a generally adverse
Fig 3. Net growth rates and population dynamics of wild-type and MDR bacteria in the modeled compartments after two days of treatment with the four first line drugs. All parameters for which a range of values exist have been set to the median value. On day 1 and day 2 all four drugs are applied simultaneously.

doi:10.1371/journal.pcbi.1004749.g003
environment for bacterial growth in these compartments. Since we assume that the drug concentration immediately reaches the maximum the impact of combination therapy on growth rate is immediately apparent after the administration of the first dose of drugs. In all compartments the drugs are able to keep the wild-type populations from regrowth during the following days. Especially in granulomas pyrazinamide is able to diminish the population over a long period due to its relatively long half-life. MDR-TB is substantially less affected by the combination therapy because only pyrazinamide and ethambutol are effective. This means that in macrophages or open lung cavities the multi-drug-resistant population remains constant at best or is even able to slowly grow. Only in the granulomas where mostly pyrazinamide is active (see Table 1) the loss of effectiveness of isoniazid and rifampicin is less prominent.

The role of adherence
The compliance of a patient with the prescribed drug regimen is a key factor for a successful treatment outcome. For the assessment of treatment success we monitor for every patient three different nested treatment outcomes. Firstly, we define treatment failure as the incomplete sterilization of the lung at the end of the therapy. Secondly, the emergence of MDR-TB is defined in our simulations as 10% or more [72] of the remaining bacterial population after treatment failure being resistant against at least isoniazid and rifampicin. Finally, emergence of full resistance (FR) is defined as 10% or more of the population being resistant against all drugs that were used in the treatment regimen (either 4 drugs for first treatment or up to 5 drugs for retreatment).

Adherence in our simulations refers to the probability with which the patient takes the prescribed drugs at any given day. We assume that failure to take drugs on a given day always affects all drugs of the prescribed regimen.

In our simulations, the level of adherence has a strong but complex impact on treatment success (Fig 4A). Under perfect adherence the model shows a very low failure rate. However, if adherence decreases the probability for treatment failure increases rapidly. Between 40% and 80% adherence there is also a small fraction of patients that fail treatment due to the emergence of MDR-TB. Furthermore, at these adherence levels the model also shows only limited treatment success. Thus, failure decreases monotonically with adherence while MDR is maximized at intermediate levels. Patients who fail on the first treatment and who undergo retreatment (Fig 4B) have a failure rate of 20% at 80% adherence. However, the probability for treatment failure increases to about 50% under perfect adherence. Patients who fail the first treatment despite high adherence may often have disadvantageous combinations of PK/PD parameters, which also decrease their success probabilities during the retreatment. In Fig 4B, 4C and 4D the number of patients per adherence level undergoing retreatment decreases strongly as can be seen from the frequency of treatment failure in Fig 4A. When comparing Fig 4A and 4E, which shows the combined outcome probabilities for both treatments, we see that the retreatment reduces the probability of failure over the upper half of the adherence spectrum.

The role of retreatment
The additional treatment success of retreatment regimens depends on adherence and the addition of streptomycin to the regimen (Fig 4B). In our model, even under perfect adherence the chance of treatment failure remains substantial, and in the majority of patients who fail under retreatment MDR-TB emerged de novo. Furthermore, at suboptimal adherence levels a considerable proportion of patients even carry strains that are not susceptible to any of the five administered drugs. The outcome of retreatment depends crucially on whether MDR was acquired during initial treatment: Because the majority of patients who fail the first treatment
Fig 4. Probabilities for treatment failure (blue), emergence of MDR-TB (green) and the emergence of a fully resistant strain (FR, red). (A) Treatment outcome probabilities based on the assessment of 10,000 simulated patients undergoing six month short course therapy at different levels of adherence. (B) Outcome probabilities of the standard retreatment regimen containing streptomycin for patients failing the previous treatment. (C and D) Retreatment outcome probabilities for patients failing the first treatment without or with MDR-TB respectively. (E) The overall probabilities for treatment outcome when both treatment regimens are considered. The width of the dark colored areas indicate the 95% confidence interval. Please note that the colored areas overlap and share a common baseline. Therefore, FR is a subcategory of MDR and FR and MDR are subcategories of treatment failure. The confidence intervals for the retreatment tend to widen at higher adherence levels due to the lower number of patients failing the previous treatment. The area with no data in panel (D) arises because patients with low adherence do not harbor MDR-TB after the first treatment.

doi:10.1371/journal.pcbi.1004749.g004
do not carry MDR-TB their outcome probabilities for the retreatment are almost identical to the overall cohort of failed patients (Fig 4C). Even though the vast majority of patients who failed the first treatment did not develop MDR-TB, a substantial fraction of patients who also failed the second treatment harbor MDR or FR strains. This occurs due to increased subpopulations of monoresistant bacteria that accumulate during the first treatment and that are by itself not sufficient to be diagnosed as MDR-TB. When comparing patients who are diagnosed with MDR-TB after the first treatment (Fig 4D) and those who are not (Fig 4C) we see that patients who develop MDR-TB are very likely to fail the retreatment as well. At higher adherence levels the majority of those patients develops full resistance against all five drugs (Fig 4D). When considering the outcome for both treatments combined (Fig 4E) it becomes more evident that the addition of streptomycin and the more intense retreatment has a beneficial effect on the overall success rate but patients who also fail the retreatment are more likely to carry multidrug-resistant TB strains.

When second-line drugs are not available or susceptibility test are not performed, it may occur frequently that a previously treated patient is retreated with the first line treatment. Our results in Fig 5 show that such a retreatment with the first line drugs has almost no additional treatment success beyond the initial treatment. Patients all across the spectrum of adherence experience treatment failure. The identical first-line retreatment only increases the chances for the bacteria to accumulate resistance mutations and leads between 50% to 100% adherence to nearly all uncleared patients harboring MDR-TB or worse. This outcome is standing out when comparing the cumulative treatment success in Fig 5D with the results after the first treatment. While the overall success curve did not change the fraction of MDR-TB patients over a large adherence range increased substantially.

Discussion

The aim of this study is to elucidate the effects of treatment adherence and retreatment on the emergence of resistance in TB. The model explicitly incorporates the pharmacodynamics and pharmacokinetics of all drugs that are used for standard therapy and the WHO retreatment recommendation. Depending on the compartment in the lung in which the bacteria reside (macrophages, caseous centers of granulomas or open cavities), *M. tuberculosis* has different stages of infection and drug-susceptibilities. Therefore, we explicitly include these different compartments to be able capture the effect of heterogeneous selection pressure. Because not all of the parameters used in our model have been quantified with high accuracy, we do not claim that the model has quantitative predictive power. Rather, it aims to qualitatively demonstrate the underlying dynamics of a tuberculosis infection.

Our results suggest that poor adherence is a major cause for treatment failure. When considering the predicted rates of treatment failure one also has to take into account that our definition of treatment failure is probably rather conservative. We do not include the possibility of remaining dormant bacteria, which might increase the likelihood of treatment failure or relapse. On the other hand, we also neglect the possibility of the infection being contained at a later time point by the immune system, thus probably underestimating the chance of success. It is also noteworthy that even at perfect adherence some patients may have a negative treatment outcome. This is most likely due to a random aggregation of very adverse pharmacokinetic parameters and unfavorable infection attributes in some patients. Such outcomes due to pharmacokinetic variability and despite good adherence have been predicted in an in vitro study [73]. Furthermore, our results show that over a certain range of adherence a small fraction of patients develop MDR-TB. At intermediate adherence these patients also have a low likelihood of being treated successfully. Thus, good adherence to therapy is crucial: Not
only does it increase treatment success, it also decreases the probability for the emergence of MDR-TB.

According to our model, the WHO recommendation for retreatment is somewhat of a double-edged sword. While at high adherence levels the recommended treatment is able to cure the majority of patients who failed the first line therapy, it also increases the fraction of patients harboring drug resistant strains across almost the whole spectrum of adherence. Previous studies already raised concerns about the possible amplification of resistance [71,74–77]. In the WHO treatment guidelines it is recommended that drug susceptibility test results should be taken into account when deciding upon the retreatment regimen [17]. However, the vast majority of patients in our model would probably not have been diagnosed with MDR-TB after the first regimen even though they may still harbor increased subpopulations of monoresistant bacteria. Therefore it is conceivable that many would have been treated with the WHO recommended regimen. A large fraction of patients who failed this retreatment eventually developed MDR-TB. Considering the results from our model further clinical studies are needed which analyze the treatment success rates and the accompanying risks of the standard retreatment regimen.

Fig 5. Corresponding treatment outcomes after two rounds of identical six-month short course therapy. (A) Treatment outcome probabilities after two rounds of identical first line therapy for treatment failure (blue), the emergence of MDR-TB (green) and the emergence of a fully resistant strain (FR, red). (B) Probabilities for patients who did not complete the first therapy successfully but who also did not harbor MDR-TB. (C) Treatment outcome probabilities for patients who failed the first treatment with MDR-TB. (D) The overall probabilities for treatment outcome when both treatment regimens are considered. There is no data available in panel (C) for patients with a lower adherence than 25% because such patients did not harbor MDR-TB after the first treatment.

doi:10.1371/journal.pcbi.1004749.g005
Retreating failed patients with an identical short course therapy leads to poor outcome in our simulations. A lower success rate for MDR-TB patients treated with the standard short-course therapy has been confirmed in a large cohort study [37]. In our simulations it is rare that patients who failed the previous treatment are cured after undergoing the same therapy again provided that adherence remains unchanged. Retreatment with the same regimen only generates more opportunities for single resistant mutants that emerged during the first treatment to accumulate further mutations, thus minimizing the number of future treatment options.

These findings are in accordance with previous studies which found a positive correlation between previous treatment and the occurrence of resistance [78–81]. This might be an indicator that de novo resistance on an epidemiological scale occurs at a significant frequency and that the main contributor to the frequency of MDR-TB is not necessarily the mere transmission of such strains.

In summary our data show that patient adherence is a crucial component of treatment success. The probably cheapest and most effective way to ensure a positive treatment outcome while also minimizing the risk for the emergence of MDR-TB is to maintain proper patient compliance with the treatment. This supports the Directly Observed Treatment, Short-Course (DOTS) strategy of the WHO, which includes healthcare workers or community health workers who directly monitor patient medication. If treatment fails, thorough tests of drug susceptibility of the remaining infecting population, would be of considerable value. According to our results a retreatment regimen including streptomycin has the potential to increase the overall cure rate, but also increases the fraction of patients who carry drug-resistant strains. A common principle of physicians is to “never add a single drug to a failing regimen” [82] this principle is often not followed in retreatment. A preceding drug sensitivity test might show existing drug resistances and the retreatment regimen could be adapted accordingly. Nonetheless the standard retreatment regimen is still superior to a retreatment with the identical first-line drugs. Such a retreatment is unlikely to achieve a higher overall cure rate and dramatically increases the probability for the emergence of MDR-TB, which reduces further treatment options. This shows that a dependable patient treatment history that is available to the responsible health professional is also important before initiating a treatment regimen.

Supporting Information

S1 Text. Supplementary information.
(DOC)

Acknowledgments
We thank Florian Marx and Ted Cohen for reviewing the manuscript and stimulating discussions.

Author Contributions
Conceived and designed the experiments: DC PAzW RK SB. Performed the experiments: DC. Analyzed the data: DC PAzW. Contributed reagents/materials/analysis tools: SB. Wrote the paper: DC PAzW RK SB.

References
1. Lawn SD, Zumla AI. Tuberculosis. Lancet. 2011; 378: 57–72. doi:10.1016/S0140-6736(10)62173-3 PMID: 21420161
2. WHO. Global Tuberculosis Report 2014. Geneva; 2014. WHO/HTM/TB/2014.08
3. WHO. Tuberculosis Fact Sheet (No. 104) [Internet]. 2007. Available: http://www.who.int/mediacentre/factsheets/fs104/en/index.html
4. Bloom BR, Murray CJ. Tuberculosis: commentary on a reemergent killer. Science (80-). 1992; 257: 1055–1064. Available: http://www.ncbi.nlm.nih.gov/pubmed/1509256
5. Grosset J. Bacteriologic Basis of Short-Course Chemotherapy for Tuberculosis. Clin Clin Med. 1980; 1: 231–241. PMID: 6794796
6. Grosset J. Mycobacterium tuberculosis in the Extracellular Compartment: an Underestimated Adversary. Antimicrob Agents Chemother. American Society for Microbiology; 2003; 47: 833–836.
7. Young DB, Stark J, Kirschner DE. Systems biology of persistent infection: tuberculosis as a case study. Nat Rev Microbiol. 2006; 8: 520–528. doi: 10.1038/nrmicro1919 PMID: 16536727
8. Barry CE III, Boshoff HIM, Dardois V, Dick T, Ehrt S, Flynn JL, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. Nature Publishing Group; 2009; 7: 845–855. doi: 10.1038/nrmicro2236
9. Gengenbacher M, Kaufmann SHE. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012; 36: 514–32. doi: 10.1111/j.1574-6976.2012.00331.x PMID: 22320122
10. Mitchell DA. Basic Mechanisms of Chemotherapy. Chest. 1979; 76: 771–781. PMID: 92392
11. Wayne LG, Hayes LG. An In Vitro Model for Sequential Study of Shiftdown of Mycobacterium tuberculosis through Two Stages of Nonreplicating Persistence. Infect Immun. 1996; 64: 2062–2069. PMID: 8675308
12. Wayne LG, Sohaskey CD. Nonreplicating Persistence of Mycobacterium Tuberculosis. Annu Rev Microbiol. 2001; 55: 139–163. PMID: 11544352
13. Rustad TR, Sherrid AM, Minch KJ, Sherman DR. Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol. 2009; 11: 1151–1159. doi: 10.1111/j.1462-5822.2009.01325.x PMID: 19388905
14. Bass JB Jr, Farer LS, Hopewell PC, O’Brien R, Jacobs RF, Ruben F, et al. Treatment of Tuberculosis and Tuberculosis Infection in Adults and Children. Am J Respir Crit Care Med. 1994; 149: 1359–1374. Available: http://www.ncbi.nlm.nih.gov/pubmed/19643501 PMID: 8173779
15. Gerberding JL, Fleming DW, Snider DE Jr, Thacker SB, Ward JW, Hewitt SM, et al. Treatment of Tuberculosis. Am Thorac Soc CDC, Infect Dis Soc Am MMWR. 2003; 52: 1–84.
16. WHO. Toman’s Tuberculosis—Case Detection, Treatment, and Monitoring. 2nd ed. Frieden T, editor. Geneva; 2004.
17. WHO. Treatment of Tuberculosis: Guidelines, Fourth Edition. 4th ed. 2010.
18. Inge LD, Wilson JW. Update on the Treatment of Tuberculosis. Am Fam Physician. 2008; 78: 457–465. Available: http://www.ncbi.nlm.nih.gov/pubmed/20949734 PMID: 18766652
19. Zignol M, Hosseini MS, Wright A, Weezenbeek CL, Nunn P, Watt CJ, et al. Global incidence of multi-drug-resistant tuberculosis. J Infect Dis. 2006; 194: 479–485. doi: 10.1086/505877 PMID: 16845631
20. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006; 368: 1575–1580. doi: 10.1016/S0140-6736(06)69573-1 PMID: 17084757
21. WHO. Global Tuberculosis Report 2013. Geneva: World Health Organization; 2013.
22. Jain A, Dixit P. Multidrug-resistant to extensively drug resistant tuberculosis: what is next? J Biosci. 2008; 33: 605–16. Available: http://www.ncbi.nlm.nih.gov/pubmed/19208985 PMID: 19208985
23. Pablos-Méndez A, Knirsch CA, Barr RG, Lerner BH, Frieden TR. Nonadherence in tuberculosis treatment: Predictors and consequences in New York City. Am J Med. 1997; 102: 164–170. doi: 10.1016/S0002-9343(96)00402-0 PMID: 92392
24. Zellweger JP, Coulon P. Outcome of patients treated for tuberculosis in Vaud County, Switzerland. Int J Tuberc Lung Dis. 1998; 2: 372–377. Available: http://www.ncbi.nlm.nih.gov/pubmed/9613632 PMID: 9613632
25. Sharma SK, Turaga KK, Balamurugan A, Saha PK, Pandey RM, Jain NK, et al. Clinical and genetic risk factors for the development of multi-drug resistant tuberculosis in non-HIV infected patients at a tertiary care center in India: A case-control study. Infect Genet Evol. 2003; 3: 183–188. doi: 10.1016/S1567-1348(03)00086-8 PMID: 14522182
26. Gelmanova IY, Keshavjee S, Golubchikova VT, Berezina VI, Streliks AK, Yanova G V, et al. Barriers to successful tuberculosis treatment in Tomsk, Russian Federation: non-adherence, default and the acquisition of multidrug resistance. Bull World Heal Organ. 2007; 85: 703–711. doi: 10.2471/BLT.06.038331
27. Saunders NJ, Trivedi UH, Thomson ML, Doig C, Laurenson IF, Blaxter ML. Deep resequencing of serial sputum isolates of Mycobacterium tuberculosis during therapeutic failure due to poor compliance reveals stepwise mutation of key resistance genes on an otherwise stable genetic background. J Infect. Elsevier Ltd; 2011; 62: 212–217. doi: 10.1016/j.jinf.2011.01.003

28. Mitchison DA. How drug resistance emerges as a result of poor compliance during short course chemotherapy for tuberculosis. Int J Tuberc Lung Dis. 1998; 2: 10–15. Available: http://www.ncbi.nlm.nih.gov/pubmed/9562106 PMID: 9562106

29. Lipsitch M, Levin BR. Population dynamics of tuberculosis treatment: mathematical models of the roles of non-compliance and bacterial heterogeneity in the evolution of drug resistance. Int J Tuberc Lung Dis. 1998; 2: 187–199. Available: http://www.ncbi.nlm.nih.gov/pubmed/9526190 PMID: 9526190

30. Quy HTW, Cobelens FGJ, Lan NTN, Bui TN, Lambregts CSB, Borgdorff MW. Treatment outcomes by drug resistance and HIV status among tuberculosis patients in Ho Chi Minh City, Vietnam. Int J Tuberc Lung Dis. 2006; 10: 45–51. PMID: 16466036

31. Jones-López EC, Ayakaka I, Levin J, Reilly N, Mumbowa F, Dryden-Peterson S, et al. Effectiveness of the standard WHO recommended retreatment regimen (category II) for tuberculosis in Kampaia, Uganda: a prospective cohort study. PLoS Med. 2011; 8: e1000427. doi: 10.1371/journal.pmed.1000427 PMID: 21423586

32. Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN, et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012; 9: e1001300. doi: 10.1371/journal.pmed.1001300 PMID: 22952439

33. Huyen MNT, Cobelens FGJ, Bui TN, Lan NTN, Dung NH, Kremer K, et al. Epidemiology of Isoniazid Resistance Mutations and Their Effect on Tuberculosis Treatment Outcomes. Antimicrob Agents Chemother. 2013; 57: 3620–3627. doi: 10.1128/AAC.00777-13 PMID: 23989727

34. Han LL, Sloutsky A, Canales R, Naroditskaya V, Shin SS, Seung KJ, et al. Acquisition of drug resistance in multidrug-resistant Mycobacterium tuberculosis during directly observed empiric retreatment with standardized regimens. Int J Tuberc Lung Dis. 2005; 9: 818–821. Available: http://www.ncbi.nlm.nih.gov/pubmed/16013781 PMID: 16013781

35. European Centre for Disease Prevention and Control/WHO Regional Office for Europe. Tuberculosis surveillance in Europe 2009 [Internet]. Stockholm; 2009. Available: http://www.ecdc.europa.eu/en/publications/Publications/1103_TB_SUR_2009.pdf

36. European Centre for Disease Prevention and Control/WHO Regional Office for Europe. Tuberculosis surveillance and monitoring in Europe 2012. Stockholm; 2012.

37. Espinal MA, Kim SJ, Suarez PG, Kam KM, Khomenko AG, Migliori GB, et al. Standard Short-Course Chemotherapy for Drug-Resistant Tuberculosis Treatment: Treatment Outcomes in 6 Countries. JAMA J Am Med Assoc. 2000; 283: 2537–2545. Available: http://www.ncbi.nlm.nih.gov/pubmed/10815117

38. Gillespie DT. Exact Stochastic Simulation of Coupled Chemical Reactions. J Phys Chem. 1977; 81: 2340–2361.

39. Urichts T, Kosmiadi GA, Trusov V, Jörg S, Pradl L, Titukhina M, et al. Human tuberculosis granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol. 2004; 204: 217–228. doi: 10.1002/path.15376257

40. Alavez-Ramirez J, Castellanos JRA, Esteva L, Flores JA, Fuentes-Allen JL, Garcia-Ramos G, et al. Within-host population dynamics of antibiotic-resistant M. tuberculosis. Math Med Biol. 2007; 24: 35–56. doi: 10.1093/imammb/dql026 PMID: 17060491

41. de Steenwinkel JEM, ten Kate MT, de Knecht GJ, Verbrugh HA, Aarnoutse RE, Boeree MJ, et al. Consequences of noncompliance for therapy efficacy and emergence of resistance in murine tuberculosis caused by the Beijing genotype of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012; 56: 4937–4944. doi: 10.1128/AAC.00124-12 PMID: 22802244

42. David HL. Probability distribution of drug-resistant mutants in unselected populations of Mycobacterium tuberculosis. Appl Microbiol. 1970; 20: 810–814. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=377053&tool=pmcentrez&rendertype=abstract PMID: 4991927

43. Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis. 2000; 4: 796–806. Available: http://www.ncbi.nlm.nih.gov/pubmed/10985648 PMID: 10985648

44. Boshoff HIM, Reed MB, Barry CE III, Mizrahi V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell. 2003; 113: 183–193. Available: http://www.ncbi.nlm.nih.gov/pubmed/12705867 PMID: 12705867

45. Bergval IL, Schuitema ARJ, Klatser PR, Anthony RM. Resistant mutants of Mycobacterium tuberculosis selected in vitro do not reflect the in vivo mechanism of isoniazid resistance. J Antimicrob Chemother. 2009; 64: 515–523. doi: 10.1093/jac/dkp237 PMID: 19578178
46. Ford CB, Shah RR, Maeda MK, Gagneux S, Murray MB, Cohen T, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet. 2013; doi: 10.1038/ng.2656
47. Kanunakaran P, Davies J. Genetic Antagonism and Hypermutability in Mycobacterium smegmatis. J Bacteriol. 2000; 182: 3331–3335. PMID: 10852861
48. Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the Virulence of Mycobacterium tuberculosis and the Implication for Transmission in Humans. Infect Immun. 2002; 70: 4955–4960. PMID: 12183541
49. Cohen T, Sommers B, Murray MB. The effect of drug resistance on the fitness of Mycobacterium tuberculosis. Lancet— Infect Dis. 2003; 3: 13–21. Available: http://www.ncbi.nlm.nih.gov/pubmed/12505028 PMID: 12505028
50. Andersson DI. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol. 2006; 9: 461–465. doi: 10.1016/j.mib.2006.07.002 PMID: 16890008
51. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM. The Competitive Cost of Antibiotic Resistance in Mycobacterium tuberculosis. Science (80-). 2010; 65: 2582–2589. doi: 10.1093/jac/dkq374 PMID: 20947621
52. Davies AP, Billington OJ, Bannister BA, Weir WR, McHugh TD, Gillespie SH. Comparison of Fitness of Two Isolates of Mycobacterium tuberculosis, one of Which had Developed Multi-drug Resistance During the Course of Treatment. Br Infect Soc. 2000; 41: 184–187. doi: 10.1053/jinf.2000.0711
53. de Steenwinkel JEM, de Knecht GJ, ten Kate MT, van Belkum A, Verbrugh HA, Kremer K, et al. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J Antimicrob Chemother. 2010; 65: 2582–2589. doi: 10.1093/jac/dkq374 PMID: 20947621
54. Marcel N, Nahta A, Balganesh M. Evaluation of Killing Kinetics of Anti-Tuberculosis Drugs on Mycobacterium tuberculosis Using a Bacteriophage-Based Assay. Chemotherapy. 2008; 54: 404–411. doi: 10.1159/000153314 PMID: 18772589
55. Crowle AJ, Sbarbaro JA, May MH. Inhibition by Pyrazinamide of Tubercle Bacilli within Cultured Human Macrophages. Am Rev Respir Dis. 1986; 134: 1052–1055. PMID: 355593
56. Dhillon J, Mitchion DA. Activity and Penetration of Antituberculosis Drugs in Mouse Peritoneal Macrophages Infected with Mycobacterium microti OV254. Antimicrob Agents Chemother. 1989; 33: 1255–1259. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=172638&tool=pmcentrez&rendertype=abstract PMID: 2802553
57. Rastogi N, Labrousse V, Goh KS. In Vitro Activities of Fourteen Antimicrobial Agents Against Drug Susceptible and Resistant Clinical Isolates of Mycobacterium tuberculosis and Comparative Intracellular Activities Against the Virulent H37Rv Strain in Human Macrophages. Curr Microbiol. 1996; 33: 167–175. Available: http://www.ncbi.nlm.nih.gov/pubmed/8672093 PMID: 8672093
58. Heifets LB, Higgins M, Simon B. Pyrazinamide is not active against Mycobacterium tuberculosis residing in cultured human monocyte-derived macrophages. Int J Tuberc Lung Dis. 2000; 4: 491–495. PMID: 10864178
59. Hartkoom RC, Chandler B, Owen A, Ward SA, Bertel Squire S, Back DJ, et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis. 2007; 87: 248–255. doi: 10.1016/j.tube.2006.12.001 PMID: 17258938
60. Burman WJ, Gallicano K, Peloquin CA. Comparative Pharmacokinetics and Pharmacodynamics of the Rifamycin Antibacterials. Clin Pharmacokinet. 2001; 40: 327–341. PMID: 11432536
61. Gumbo T, Louie A, Liu W, Brown D, Ambrose PG, Bhavnani SM, et al. Isoniazid Bactericidal Activity on the Virulence of Mycobacterium tuberculosis and the Implication for Transmission in Humans. Infect Immun. 2002; 70: 4955–4960. PMID: 12183541
62. Davies GR, Nuernberger EL. Pharmacokinetics and pharmacodynamics in the development of anti-tuberculosis drugs. Tuberculosis. 2008; 88 Suppl 1: S65–S74. doi: 10.1016/S1472-9792(08)70037-4 PMID: 18762154
63. Gumbo T, Dona CSWS, Meek C, Leff RE. Pharmacokinetics-Pharmacodynamics of Pyrazinamide in a Novel In Vitro Model of Tuberculosis for Sterilizing Effect: a Paradigm for Faster Assessment of New Antituberculosis Drugs. Antimicrob Agents Chemother. 2009; 53: 3197–3204. doi: 10.1128/AAC.01681-08 PMID: 19451303
64. Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, et al. Drug Tolerance in Replicating Mycobacteria Mediated by a Macrophage-Induced Efflux Mechanism. Cell. 2011; 145: 39–53. doi: 10.1016/j.cell.2011.02.022 PMID: 21376383
86. Grosset J, Ji B. Experimental Chemotherapy of Mycobacterial Diseases. In: Gangadharam PRJ, Jenkins PA, editors. Mycobacteria: II Chemotherapy. New York: Chapman & Hall; 1998. pp. 51–97.

87. McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of Rifampin, Isoniazid, Pyrazinamide, and Ethambutol Pharmacokinetics in a Cohort of Tuberculosis Patients. Antimicrob Agents Chemother. 2006; 50: 1170–1177. PMID: 16569826

88. Douglas JG, McLeod M-J. Pharmacokinetic Factors in the Modern Drug Treatment of Tuberculosis. Clin Pharmacokinet. 1999; 37: 127–146. Available: http://www.ncbi.nlm.nih.gov/pubmed/10496301 PMID: 10496301

89. Peloquin CA. Therapeutic Drug Monitoring in the Treatment of Tuberculosis. Drugs. 2002; 62: 2169–2183. Available: http://www.ncbi.nlm.nih.gov/pubmed/12381217 PMID: 12381217

90. Kiem S, Schentag JJ. Interpretation of Antibiotic Concentration Ratios Measured in Epithelial Lining Fluid. Antimicrob Agents Chemother. 2008; 52: 24–36. doi: 10.1128/AAC.00133-06 PMID: 17846133

91. Hall RG II, Leff RE, Gumbo T. Treatment of Active Pulmonary Tuberculosis in Adults: Current Standards and Recent Advances. Pharmacotherapy. 2010; 29: 1468–1481. doi: 10.1592/phco.29.12.1468

Treatment