Influence of the 2004 Indian Ocean Tsunami Recovery Process on Land Use and Land Cover in Banda Aceh, Indonesia

Mochamad Candra Wirawan Arief*1 and Akemi Itaya*1

ABSTRACT

Unchecked development and land occupation tend to occur during disaster recovery efforts, leading to land degradation. To investigate the influence of the 2004 Indian Ocean tsunami recovery process on land use and land cover (LULC) in Banda Aceh, Indonesia, a time-series of LULC changes was analyzed using Google Earth images from 2004 to 2013. During the first post-disaster recovery period (2004–2009), inland bare land and green spaces changed to built-up land because temporary shelters had been built in safer areas farther from the coast. Conversely, in coastal areas, the change from bare land to built-up land was greater during the second period (2009–2013) than the first period, possibly because evacuees had returned and rebuilt their houses. The increase in patch density in 2009 might have resulted from the evacuation and construction of temporary shelters in the inland area, forming an urban sprawl-like pattern. The Shannon Diversity Index of the inland area was smaller than that of the coastal area in all monitored years, although it decreased over time in both areas; this indicated that the coastal area was more homogeneous than the inland area, but the homogeneity increased over time in both areas. We observed LULC changes not only in the area affected directly by the tsunami, but also in the evacuation area. Although recovery efforts typically focus on LULC changes in areas directly affected by disasters, they should also consider evacuation areas.

Keyword: evacuated area, Google Earth, monitoring, rural landscape, Shannon diversity index

INTRODUCTION

Urbanization is a global phenomenon that has major social and economic implications (Cohen, 2006); however, rapid urbanization and population growth have driven land use and land cover (LULC) changes. In particular, urban areas have expanded into forests and agricultural lands in developing countries with high population growth rates (e.g., Kusimi, 2008; Dewan and Yamaguchi, 2009; Tsegaye et al., 2010). Rural landscapes composed of forests and agricultural lands provide valuable ecosystem services (Reyers et al., 2009). LULC change is the most important factor driving habitat and biodiversity loss (Falucci et al., 2007), and may even cause disasters (Glade, 2003). Therefore, it is important to appropriately manage and conserve rural landscapes to ensure optimal performance of ecosystem services.

Damage from natural disasters has increased exponentially over the last several decades (Millennium Ecosystem Assessment, 2005). Large-scale disasters such as earthquakes, tsunamis, and hurricanes have caused significant LULC changes, and can sometimes completely raze land cover (Costanza and Farley, 2007; Wang and Xu, 2009; Guo et al., 2011; Villa et al., 2012). During reconstruction processes, unchecked development can occur in devastated areas due to the mass confusion following disasters. Moreover, immediately after disasters, many people temporarily evacuate devastated areas. Although evacuation is important from a safety perspective, it could lead to uncontrolled LULC changes that persist even after evacuees return to their homes. Therefore, it is necessary to monitor LULC changes not only in areas directly affected by a disaster, but also in areas surrounding affected areas.

Remote sensing data, such as aerial photographs and satellite images, are useful for monitoring land cover changes after a disaster (Joyce et al., 2009; Bello and Aina, 2014). Although LULC monitoring has been conducted in areas directly affected by disasters (e.g., Suppasri et al., 2011; Liou...
et al., 2012), no reports have examined the effects of evacuation on surrounding areas.

In this study, we investigated the influence of the 2004 Indian Ocean tsunami recovery process on LULC changes in the area surrounding the directly damaged area in Banda Aceh, Indonesia. Although remote sensing data are useful for large-scale LULC monitoring efforts after disasters (Joyce et al., 2009), data collection is expensive; therefore, we used free images downloaded from Google Earth.

MATERIAL AND METHODS

Study Site

Banda Aceh, the capital of Aceh Province, Sumatra, Indonesia, was used as the study site (Fig. 1; 5°33′N, 95°19′E, 78.69 km²). Banda Aceh is located in a low-lying flat area along the northern coast of Sumatra (BAPPEDA Banda Aceh, 2009). Triggered by an earthquake, the 2004 Indian Ocean tsunami occurred on 26 December and completely destroyed coastal ecosystems, structures, public facilities and infrastructure. The land cover within approximately 4 km inland of the coast was swept away (Borrero, 2005; Tobita et al., 2006; Takahashi et al., 2007; Lavigne et al., 2009; Suppasri et al., 2012). In 2004, before the tsunami, the population of Banda Aceh was 265,098. Although the population decreased to 177,881 in 2005 (BPS Banda Aceh, 2006) because of the tsunami, it recovered to 250,303 in 2015 (BPS Banda Aceh, 2016). For the analysis, the study site was divided into two areas within and beyond 4 km of the coast. The area near the coast (hereafter, coastal area; 50.45 km²) was directly damaged by the tsunami, while the area farther from the coast (hereafter, inland area; 28.23 km²) experienced little direct damage.

Images and LULC Detection

LULC time-series monitoring was conducted using satellite images obtained from Google Earth, which is a standalone software program that provides satellite and aerial images of the Earth. Images were downloaded from Google Earth Pro (4,800 × 3,318 pixels per image, the highest available resolution for download) as RGB images, which had been taken on June 6, 2004, June 16, 2009 and May 8, 2013. In total, 39 images were collected for each year and combined into one mosaic image using Adobe Photoshop CS4 (Adobe, San Jose, CA, USA). This image was georeferenced using ArcGIS ver. 10 (ESRI, Redlands, CA, USA) with a spatial resolution of 0.5 m. The images in 2004 were taken before the tsunami, and the other images were taken after the tsunami.

The areas in the mosaic images were classified into nine LULC types (bare land, beach, building, grassland, paddy field, pond, road, trees, and water) based on an object-based image analysis using Feature Analyst software (Blundell and Opitz, 2006), which is an extension of ERDAS IMAGINE 9.3 (ERDAS). Object-based image analysis consists of image segmentation, which divides an image into homogeneous, continuous, and contiguous objects, and classification, which is based on a variety of features including pixel value, texture, and form (Gao and Mas, 2008). The classification results of an object-based image analysis were output as a polygon. In this study, a polygon was defined as a patch. For the nine LULC types, 71 training data points for classification and 164 testing data points for the accuracy assessment were specified based on a visual interpretation of Google Earth images. The accuracy assessment was conducted based on an error matrix and kappa values (Congalton, 1991).

Derivation of Spatial Metrics

To identify the LULC distribution characteristics, the number, density, and mean size of the patches, and the Shannon Diversity Index were calculated based on patches. The Shannon Diversity Index, which indexes patch diversity according to the number of patch types and the proportional distribution of the area of each patch type (1), is the most commonly used metric of landscape spatiotemporal diversity (O’Neill et al., 1988; Li and Reynolds, 1993; Ritters et al., 1995; Ricotta and Avena, 2003; Ricotta et al., 2003; Bogaert et al., 2005).
LULC Conversion

The land cover pattern in the coastal area was relatively consistent from 2004 to 2013 (Fig. 3). In all studied years, the coastal area was composed of approximately equal proportions of water, green space, and built-up land, whereas the inland area was dominated by green space. In both areas, the proportion of bare land decreased over time.

Table 1 presents a matrix of the changes in the LULC. In the coastal area, bare land showed the greatest changes. For example, 80% of bare land changed to other LULC types from 2004 to 2009, and 90% of bare land changed to other LULC types from 2009 to 2013. Specifically, 63.8% (366.34 ha) of bare land became built-up land between 2009 and 2013. In addition, other LULC types tended to become built-up land. Although green space was replaced by built-up land over time, some built-up land became green space.

Table 2 indicates the patch characteristics. The number of patches and patch density tended to decrease in the coastal area. Mean patch size became smaller, and standard deviation of spatial metrics also became smaller.

Derivation of Spatial Metrics

Table 2 presents the patch characteristics. The number of patches and patch density tended to decrease in the coastal area. Mean patch size became smaller, and standard deviation of spatial metrics also became smaller.
Candra and Itaya

Small in 2009, and it became larger in 2013. Standard deviation became smaller in 2009, and it became larger in 2013.

The number of patches in inland area was lower than the

tion became larger over time. On the other hand, in the inland area, the number of patches and patches density increased in 2009, and they decreased in 2013. Mean patch size became smaller in 2009, and it became larger in 2013. Standard deviation became smaller in 2009, and it became larger in 2013.

The number of patches in inland area was lower than the

Table 1 LULC changes from 2004 to 2013 in the (A, B) coastal area and (C, D) inland area

A

Land Cover/Use 2009 (ha)	Built-up Land	Bare Land	Green Space	Water	Total
Land Cover/Use 2004 (ha)					
Built-up Land	782.61	213.28	285.84	109.98	1391.70
Bare Land	246.11	160.55	137.37	189.73	733.76
Green Space	334.67	128.48	867.93	268.93	1600.01
Water	94.92	71.49	340.59	813.22	1320.21
Total	1458.31	573.80	1631.73	1381.85	5045.69

B

Land Cover/Use 2013 (ha)	Built-up Land	Bare Land	Green Space	Water	Total
Land Cover/Use 2009 (ha)					
Built-up Land	940.92	35.15	299.90	182.35	1458.32
Bare Land	366.34	50.94	93.33	63.20	573.80
Green Space	507.68	48.44	886.20	189.41	1631.73
Water	256.90	72.71	255.49	796.76	1381.86
Total	2071.84	207.23	1534.92	1231.72	5045.70

C

Land Cover/Use 2009 (ha)	Built-up Land	Bare Land	Green Space	Water	Total
Land Cover/Use 2004 (ha)					
Built-up Land	325.06	66.81	156.06	9.69	557.61
Bare Land	89.63	41.86	75.91	4.18	211.58
Green Space	370.07	120.12	1282.44	51.83	1824.46
Water	54.13	21.20	140.42	13.72	229.48
Total	838.88	249.99	1654.83	79.42	2823.13

D

Land Cover/Use 2013 (ha)	Built-up Land	Bare Land	Green Space	Water	Total
Land Cover/Use 2009 (ha)					
Built-up Land	445.53	7.98	350.95	34.43	838.88
Bare Land	141.25	13.99	83.33	11.41	249.99
Green Space	228.79	35.64	1382.01	8.40	1654.83
Water	9.02	1.42	68.07	0.91	79.42
Total	824.58	59.03	1884.36	55.15	2823.13

Fig. 3 Land cover pattern in the coastal and inland areas.
Meanwhile, the coastal area had a higher proportion of water area due to the presence of rural areas close to the mountains.

In this study, nine LULC types were identified, whereas previous studies have used four. Moreover, Li and Shao (2013) used the near-infrared band for LULC classification. To minimize misclassification, we combined the nine LULC types into four groups.

In the early phase of recovery (2004–2009), temporary shelters were built in safer locations farther from the coast (Achmad et al., 2014; Vale et al., 2014; Syamsidik, 2017). Therefore, in the inland area, bare land and green spaces changed to built-up land between 2004 and 2009, a process that continued after 2009. However, some bare land and built-up land became green spaces. Tree planting along roads and in home gardens has become increasingly prevalent in Indonesian towns, both to benefit the environment and create a relaxing atmosphere (Fuady, 2016; Irham et al., 2017). Awareness of green cities and eco-villages has grown in recent years (Steinberg, 2007; Fuady and Darjosanjoto, 2012; Fuady, 2015; Arif, 2017), which might also have encouraged such tree-planting activities. In the coastal area, more bare land changed to built-up land in the second period (2009–2013) than in the first period. This was likely driven by the return of evacuees from the inland area to the coastal area, and to the rebuilding of houses on bare land (Achmad et al., 2014; Vale et al., 2014; Syamsidik, 2017). Most of the water area that was subject to change became green space, possibly due to tree planting or the growth of trees crowns.

Patch density represents landscape fragmentation, which is often caused by urbanization (Jaeger, 2000). Since patch density was gradually decreasing in the coastal area, fragmentation might have been subsided. On the other hand, it increased in 2009 and decreased thereafter in the inland area; the increase in 2009 might have resulted from evacuation to the inland area, since temporary shelters could have constituted an urban sprawl-like pattern.

The LULC heterogeneity of inland and coastal areas was expressed as the Shannon Diversity Index, the values of which are influenced by the richness and evenness of LULC types, where richness represents the number of land cover types present in an area and evenness describes the relative proportion of each type. A Shannon Diversity Index of zero corresponds an area with only one LULC type, and areas that have one dominant LULC type have low Shannon Diversity Index values. The Shannon Diversity Index increases as the number of LULC types increases and/or the evenness becomes greater. In this study, since both inland and coastal areas had the same number of LULC types, in all years, the Shannon Diversity Index was influenced only by the evenness. The inland area had smaller Shannon Diversity Index values than the coastal area in all monitored years, although the values of both areas decreased over time. This indicated that the coastal area was more homogeneous than the inland area, and that

Table 2 Patch characteristics from 2004 to 2013 in the (A) coastal area and (B) inland area

	Number of Patches	Patches density (/100 ha)	Mean patch size (S.d)
A			
2004	40,939	812.84	0.12 (1.94)
2009	38,465	762.32	0.13 (2.76)
2013	32,673	648.72	0.15 (4.20)
B			
2004	21,540	762.98	0.13 (3.05)
2009	28,138	996.68	0.10 (0.92)
2013	20,927	741.27	0.13 (3.96)

DISCUSSION

High-resolution time-series remote sensing data can be difficult to obtain due to the high cost. Although images downloaded from Google Earth do not contain multispectral information, they are free. The accuracy of the results, which can be influenced by the number of LULC categories and available wavelength bands, was slightly lower in this study than in similar studies using color aerial photographs and object-based image analysis (Cleve et al., 2008; Li and Shao, 2013). In this study, nine LULC types were identified, whereas previous studies have used four. Moreover, Li and Shao (2013) used the near-infrared band for LULC classification. To minimize misclassification, we combined the nine LULC types into four groups.

The inland area had more green space than the coastal area due to the presence of rural areas close to the mountains. Meanwhile, the coastal area had a higher proportion of water than the inland area due to the presence of aquaculture ponds.

In Indonesia, the tiger prawn (Penaeus monodon) industry greatly expanded in the 1980s and 1990s, and shrimp pond development has since continued in the coastal area of Banda Aceh (Zainun et al., 2007; Giri et al., 2008). Although the 2004 Indian Ocean tsunami destroyed the coastal area, thus affecting the LULC types, the LULC composition did not change substantially in either inland or coastal areas after the tsunami.

In Indonesia, the tiger prawn (Penaeus monodon) industry greatly expanded in the 1980s and 1990s, and shrimp pond development has since continued in the coastal area of Banda Aceh (Zainun et al., 2007; Giri et al., 2008). Although the 2004 Indian Ocean tsunami destroyed the coastal area, thus affecting the LULC types, the LULC composition did not change substantially in either inland or coastal areas after the tsunami.

Fig. 4 Shannon Diversity Index values from 2004 to 2013 in the coastal and inland areas.
homogeneity increased over time in both areas.

CONCLUSIONS

In this study, we investigated the influence of the 2004 Indian Ocean tsunami recovery process on LULC in Banda Aceh, Indonesia. Evacuation areas are often built on unused land, such as bare land and forests. After evacuees return to their homes, these areas are either left as-is or developed further. In the inland area, large areas of bare land and green space became built-up land in the first post-disaster period (2004–2009), increasing landscape fragmentation. In the coastal area, more bare land became built-up land in the second period (2009–2013) than the first period. LULC homogeneity increased in both the coastal and inland areas. We observed LULC changes not only in the area directly affected by the tsunami, but also in the evacuation area. Although recovery efforts typically focus on LULC changes in areas affected directly by disasters, they should also consider evacuation areas.

ACKNOWLEDGEMENTS

We would like to express our great appreciation to Prof. Ishikawa who provided helpful comments and suggestions. We are also indebted to Prof. Matsumura whose opinions and information have greatly helped us throughout the production of this study. Finally, we would like to acknowledge the MEXT for a scholarship grant that made it possible to complete this study.

LITERATURE CITED

Achmad, A., Sirojuzzilam, Badaruddin and Aulia, D.N. (2014) Analysis of urban growth pattern and socioecomic aspect after the tsunami disaster: The case of Banda Aceh, Aceh, Indonesia. IJLRET 3(1): 428–435
Arif, A.A. (2017) Green city Banda Aceh: city planning approach and environmental aspects. I IOP Conf. Ser.: Earth Environ. Sci. 56: 012004
BAPPEDA Banda Aceh (2009) Spatial planning of Banda Aceh 2009–2029. Banda Aceh, 209 pp
Bello, O.M. and Aina, Y.A. (2014) Satellite remote sensing as a tool in disaster management and sustainable development: Towards a synergistic approach. Procedia Soc. Behav. Sci. 120: 365–373
Blundell, J.S. and Opitz, D.W. (2006) Object recognition and feature extraction from imagery: The Feature Analyst® approach. Proceeding of the 1st International Conference on Object-based Image Analysis (OBIA 2006), Austria. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XXXVI-4/C42: 1–6
Bogaert, J., Farina, A. and Ceulemans, R. (2005). Entropy increase of fragmented habitats: A sign of human impact? Ecol. Indic. 5: 207–212
Borrero, J.C. (2005) Field data and satellite imagery of tsunami affect in Banda Aceh. Science 308: 1596
BPS Banda Aceh (2016) Banda Aceh in figure 2016. Badan Pusat Statistik Kota Banda Aceh. 364 pp
Cleve, C., Kelly, M., Kearns, F.R. and Moritz, M. (2008) Classification of the wildland–urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban Syst. 32: 317–326
Cohen, B. (2006) Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technol. Soc. 28(1–2): 63–80
Congalton, R.G. (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37: 35–46
Costanza, R. and Farley, J. (2007) Ecological economics of coastal disasters: Introduction to the special issue. Ecol. Econ. 63: 249–253
Devan, A.M. and Yamaguchi, Y. (2009) Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 29(3): 390–401
Falcucci, A., Maiorano, L. and Boitani, L. (2007) Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecol. 22: 617–631
Fuady, M. (2015) Disaster mitigation approach of urban green structure concept in coastal settlement. Dimensi, J. Archit. Built Environ. 42(2): 51–58
Fuady, M. (2016) The needs of public green structure in the city of Banda Aceh. In: Nasrul Arahman, ST., MT. (ed) International Conference on Engineering and Science for Research and Development (ICESReD). Syiah Kuala University: 109–116
Fuady, M. and Darjosanjoto, E.T.S. (2012) Tropical ecologically city concept for Banda Aceh to become sustainable after tsunami disaster. J. Appl. Environ. Biol. Sci. 2(8): 428–433
Gao, Y. and Mas, J.F. (2008) A comparison of the performance of pixel based and object based classifications over images with various spatial resolutions. Online J. Earth Sci. 2(1): 27–35
Giri, C., Zhu, Z., Tieszen, L.L., Singh, A., Gillette, S. and Kelmelis, J.A. (2008) Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia. J. Biogeogr. 35: 519–528
Glade, T. (2003) Landslide occurrence as a response to land use change: a review of evidence from New Zealand. Catena 51: 297–314
Guo, H., Chen, Y., Feng, Q., Lin, Q. and Wang, F. (2011) Assessment of damage to buildings and farms during the 2011 M 9.0 earthquake and tsunami in Japan from remote sensing data. Chin. Sci. Bull. 56(20): 2138–2144
Analysis on green open spaces availability base on oxygen needs in Banda Aceh. Serambi Eng. 2(4): 188–196

Jaeger, J.A.G. (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecol. 15: 115–130

Joyce, K.E., Bellis, S.E., Samsonov, S.V., McNeill, S.J. and Glassey, P.J. (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 33(2): 1–25

Kusimi, J.M. (2008) Assessing land use and land cover change in the Wassa West District of Ghana using remote sensing. GeoJournal 71(4): 249–259

Lavigne, F., Paris, R., Grancher, D., Wassmer, P., Brunstein, D., Vautier, F., Leone, F., Flohic, F., De Coster, B., Gunawan, T., Gomez, C., Setiawan, A., Cahyadi, R., Fachrizal. (2009) Reconstruction of tsunami inland propagation on December 26, 2004 in Banda Aceh, Indonesia, through Field Investigations. Pure Appl. Geophys. 166: 259–281

Li, H. and Reynolds, J.F. (1993) A new contagion index to quantify spatial pattern of landscapes. Landscape Ecol. 8: 155–162

Li, X. and Shao, G. (2013) Object-based urban vegetation mapping with high-resolution aerial photography as a single data source. Int. J. Remote Sens. 34(3): 771–789

Liou, Y.A., Sha, H.C., Chen, T.M., Wang, T.S., Li, Y.T., Lai, Y.C., Chiang, M.H. and Lu, L.T. (2012) Assessment of disaster losses in rice paddy field and yield after tsunami induced by the 2011 Great East Japan Earthquake. J. Mar. Sci. Technol. 20(6): 618–623

Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: Synthesis. Island Press, Washington, DC, 137 pp

O’Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.A., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H. and Graham, R.L. (1988) Indices of landscape pattern. Landscape Ecol. 1: 153–162

Reyers, B., O’Farrell, P., Cowling, R.M., Egoh, B.N., Le Maître, D.C. and Vlok, J.H.J. (2009) Ecosystem services, land-cover change, and stakeholders: finding a sustainable foothold for a semi-arid biodiversity hotspot. Ecol. Soc. 14(1): 38

Ricotta, C. and Avena, G.C. (2003) On the relationship between Pielou’s evenness and landscape dominance within the context of Hill’s diversity profiles. Ecol. Indic. 2: 361–365

Ritters, K.H., O’Neill, R.V., Hunsaker, C.T., Wickham, J.D., Yankee, D.H., Timmins, S.P., Jones, K.B. and Jackson, B.L. (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecol. 10: 23–40

Steinberg, F. (2007) Housing reconstruction and rehabilitation in Aceh and Nias, Indonesia—rebuilding lives. J. Habitat Int. 31(1): 150–166

Suppasri, A., Koshimura, S. and Imamura, F. (2011) Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand. Nat. Hazards Earth Syst. Sci. 11: 173–189

Suppasri, A., Muhari, A., Ranasinghe, P., Mas, E., Shuto, N., Imamura, F. and Koshimura, S. (2012) Damage and reconstruction after the 2004 Indian Ocean Tsunami and the 2011 Great East Japan Tsunami. J. Nat. Disaster Sci. 34(1): 19–39

Syamsidik, Fahmi, M., Fatimah, E. and Fitrayansyah, A. (2017) Coastal land use changes around the Ulee Lheue Bay of Aceh during the 10-year 2004 Indian Ocean tsunami recovery process. International Journal of Disaster Risk Reduction 29: 24–36

Takahashi, M., Tanaka, S., Kimura, R., Umitsu, M., Tabuchi, R., Kuroda, T., Ando, M. and Kimata, F. (2007) Restoration after Sumatra earthquake tsunami in Banda Aceh: based on the results of interdisciplinary researches by Nagoya University. J. Nat. Disaster Sci. 29(2): 53–61

Tobita, T., Iai, S., Chairullah, B. and Asper W. (2006) Reconnaissance report of the 2004 Great Sumatra—Andaman, Indonesia, Earthquake—Damage to geotechnical works in Banda Aceh and Meulaboh. J. Nat. Disaster Sci. 28(1): 35–41

Tsegaye, D., Moe, S.R., Velded, P. and Aynekulu, E. (2010) Land-use/cover dynamics in Northern Afar rangelands, Ethiopia. Agriculture, Ecosystems & Environment 139(1–2): 174–180

Vale, L., Shamsuddin, S. and Goh, K. (2014) Tsunami + 10: Housing Banda Aceh after disaster. Places Journal, December 2014. https://doi.org/10.22269/141215

Villa, P., Boscetti, M., Morse, J.L. and Pollite, N. (2012) A multitemporal analysis of tsunami impact on coastal vegetation using remote sensing: a case study on Koh Phra Thong Island, Thailand. Nat. Hazards 64: 667–689

Wang, F. and Xu, Y.J. (2009) Hurricane Katrina-induced forest damage in relation to ecological factors at landscape scale. Environ. Monit. Assess. 156: 491–507

Zainun, I., Budidarsono, S., Rinaldi, Y. and Cut Adek, M. (2007) Socio-economic aspect of brackish water aquaculture (tambak) production in Nanggroe Aceh Darussalam: Integrated natural resources management and livelihood paradigms in recovery from the tsunami in Aceh. ICRF Southeast Asia Working Paper 46. 71 pp

(Received 14 November 2017)

(Accepted 20 December 2017)