Effects of ciprofloxacin on turion germination and seedling development in two submerged aquatic plants

Pei Fan
Wuhan University

Chunhua Liu
Wuhan University

Zhen Ke
Wuhan University

Wei Zhou
Wuhan University

Zhonghua Wu
wuzhonghua@whu.edu.cn
Wuhan University

Research Article

Keywords: antibiotic, turions, germination, seedling growth, antioxidants

Posted Date: January 28th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1273334/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Germination and seedling development are crucial processes for plant growth and survival, and asexual propagules are predominant reproduction organs for aquatic plants. Ciprofloxacin is widely detected in both terrestrial and aquatic ecosystems, while studies on its effects on germination and seedling development mainly focused on terrestrial plants. We evaluated effects of ciprofloxacin (0.1, 1, 5 and 10 mg/L) on turion germination and early establishment of two submerged plants species (*Potamogeton crispus* L and *Hydrilla verticillata* Royle). Results showed that ciprofloxacin did not impact germination rate and rooting rate of both species. However, 0.1 mg/L ciprofloxacin significantly accelerated germination of *H. verticillata* while 5-10 mg/L ciprofloxacin significantly delayed rooting process of both species. With rising ciprofloxacin concentrations and prolonging exposure time, seedling tolerance index and root number of both species decreased significantly, and shoot number decreased slightly in *P. crispus* but kept increasing in *H. verticillata*, suggesting better tolerance of the later under ciprofloxacin exposure. Root and shoot biomass accumulation of both species was significantly inhibited, which was partially due to ciprofloxacin toxicity on photosynthetic pigments. By integrating the biomarkers including plant antioxidants, lipid peroxidation degree and hydrogen peroxide contents, we found that the holistically toxicological effects of ciprofloxacin on seedlings of both species were enhanced with increasing ciprofloxacin concentrations. Overall, ciprofloxacin impacted turion germination process and harmed early establishment of these two submerged plants, which might suggest adverse effects of ciprofloxacin on the survival and expansion of submerged aquatic plant populations and their restoration effectiveness for degraded aquatic vegetations.

1. Introduction

Submerged plants, the main primary producers in shallow fresh waters, could provide habitats, shelters and food sources for fishes, aquatic macroinvertebrates and waterbirds, contributing to their important roles in the maintenance of structure and function of shallow-water ecosystems (Yuan et al. 2018; Özgencil et al. 2020). However, in recent years, because of factors such as climate changes (Yan et al. 2021), fishery impacts (Ren et al. 2022) and water pollutions (Wu et al. 2021; Hua et al. 2022; Zhang et al. 2021), submerged vegetations are experiencing serious deterioration (Phillips et al. 2016). For instance, in eutrophic water bodies, toxic microcystins produced by massive cyanobacterial blooms would deteriorate water quality and seriously threaten the growth and survival of submerged plants (Ha and Pflugmacher 2013). Additionally, as emerging pollutants, fluoroquinolone antibiotics have become one of the most common categories of harmful pollutants in lakes (Chen et al. 2020), rivers (Pan et al. 2020) and even seawaters (Wu et al. 2022). Polluted waters containing fluoroquinolone antibiotics could impact aquatic community structure and might act as possible causes of the decline and disappearance of aquatic plants (Robinson et al. 2005).

Ciprofloxacin is a fluoroquinolone antibiotic that has been widely used in aquaculture, treatments of human ailments and pharmaceutical industries. Consequently, agricultural wastewater, hospital effluent, domestic sewage and industrial emissions are the main sources of ciprofloxacin pollution in natural
water bodies (Adeleye et al. 2022). For example, ciprofloxacin (mean concentration, detected frequency) was detected in drinking water (169.2 ng/L, 94.9%), surface water (28 ng/L, 100%) and ground water (77.2 ng/L, 45%) (Boy-Roura et al. 2018; Pan et al. 2020; Chen et al. 2018). Enormously high concentrations of ciprofloxacin in effluents of wastewater treatment plants (14 mg/L) and lakes (6.5 mg/L) have also been reported by Fick et al (2009). In estuarine water and seawater of Laizhou Bay in northern China, ciprofloxacin was one of the most dominant antibiotics which contributed to over 70% of the total antibiotic burden (Lu et al. 2022). Moreover, by inducing antibiotic resistance (Yang et al. 2020), ciprofloxacin could cause adverse effects on human health at even low concentrations (ng/L) (Koczura et al. 2012; Marchant 2018). Therefore, ciprofloxacin has been proposed to be prioritized and strictly controlled to reduce its negative effects on food chains and ecological systems (Han et al. 2020).

Generally, environmental stresses could impact vegetative growth and physiological stability of aquatic plants (Bornette and Pujialon 2010; Yu et al. 2022). For example, ciprofloxacin (0.01-1 mg/L) significantly decreased the photosynthetic pigment contents, disrupted PSII integrity, affected leave growth and triggered ROS accumulations and oxidative stress in a floating plant *Eichhornia crassipes* (Yan et al. 2019). Root developments, chlorophyll contents, SOD and POD activities and root activity of the emergent plant species *Phragmites australis* were all evidently inhibited by a mixture of ciprofloxacin, oxytetracycline and sulfamethazine (Liu et al. 2013). As for submerged plants, Ebert et al (2011) found the 7-day NOEC (the no-observed-effect concentration) of ciprofloxacin based on root elongation of *Myriophyllum spicatum* L was higher than 0.98 mg/L. These studies mainly focused on vegetative growth stage. However, researches on other life history stages such as germination and reproduction are limited. As an example, it has been reported that ciprofloxacin at 0.2-2 mg/L did not affect the germination rate of maize seeds but significantly reduced the germination time (Gomes et al. 2019). But no investigations on the effects of ciprofloxacin on germination phase of aquatic species have been reported.

Vegetative propagation is one of the main modes of reproduction for submerged plants, and turions of submerged plants are modified vegetative organs produced via asexual processes (Adamec 2018). With functional similarity to seeds, turions also have the ability to generate progeny plants (Song et al. 2017). What is more, due to their tolerance to extreme conditions such as coldness, darkness and hypoxiation of the underwater environments, turions play key roles in maintaining submerged plant community (Adamec 2008). Nowadays, in China, sowing turions of submerged plants have become one of the most common practices for restoration of damaged submerged vegetation in lakes and ponds (Jian et al. 2003; Song et al. 2017). Undoubtedly, germination of turions and early establishment are crucial stages that could directly influence the biomass accumulations and population expansion of submerged plants. However, ecotoxicological effects of ciprofloxacin on turion germination and seedling development of submerged plants have not been reported. *Hydilla verticillata* is a dominant submerged species in many freshwater lakes, while *Potamogeton crispus* could be widely found in shallow lakes, ponds, rice paddies and rivers (Jian et al. 2003; Li et al. 2021). Additionally, due to their good performances in purifying water, these two submerged plants have been widely used as pioneer species in restoration of submerged plants for governing eutrophication (Li et al. 2021; Wang et al. 2017). In the present study, we investigate effects of
ciprofloxacin on turions germination, root development, seedling tolerance, and photosynthetic pigment contents, \(\text{H}_2\text{O}_2\) content, lipid peroxidation degree, seven antioxidants of \(P.\ crispus\) and \(H.\ verticillata\). Our aims were to determine how the germination and early establishment of these two species were impacted by ciprofloxacin, which might help to predict population dynamics and provide theoretical guidance for restoration of degraded shallow waters polluted by ciprofloxacin.

2. Materials And Methods

2.1 Plant materials and experimental design

\(P.\ crispus\) turions (green turions, weighing \(0.68 \pm 0.12\) g, \(n=250\)) were hand collected in September 2020 from Lake Diaocha (30°69'N; 113°72'E) in Hubei Province, PR China. After cleaning thoroughly, the turions were transported into a climate chamber on 20 September. Turions of \(H.\ verticillata\) (weighing \(0.15 \pm 0.01\) g, \(n=250\)) were hand collected in January 2021 from Lake Diaocha. After cleaning thoroughly, the turions were transported into a climate chamber on 5 January.

During the whole experiment, the turions/seedlings of \(P.\ crispus\) or \(H.\ verticillata\) were cultivated in 10% Hoagland's solution in a transparent container (Hoagland and Arnon 1950) at \(15 \pm 2\)°C or \(25 \pm 2\)°C with a 12/12 light/dark cycle and a photon flux density of 30-40 \(\mu\text{mol photons m}^{-2}\text{s}^{-1}\). The turions/seedlings were exposed to various concentrations of ciprofloxacin (0, 0.1, 1, 5 and 10 mg/L) and turions (seedlings) and nutrient solution without ciprofloxacin was set as the control group. The whole observation lasted for 35 days (d), where turions were kept in a solution volume of 2 L during germination (0-7d), and seedlings (8-35d) were kept in 5 L solution to meet enough space for their growth. Germination experiment was performed in five replicates with each replicate containing 10 uniform turions. At 8d, uniform seedlings from different treatments were respectively selected for further investigation, where each treatment had five replicates and each replicate contained five seedlings. To maintain approximately constant concentrations of ciprofloxacin and nutrients, they were changed every 48 hours during the whole observation. Germination parameters were investigated in the first 7d, and rooting parameters were investigated at 6-14d. Seedling growth and tolerance indicators of seedlings were investigated at 7, 14, 21, 28 and 35d respectively. Plant biomass and physiological responses of seedlings were analyzed at 35d.

Ciprofloxacin used in the experiments was ciprofloxacin monohydrochloride monohydrate (Purity \(\geq\) 98%; CAS NO. 86393-32-0), and was purchased from Aladdin Reagent Co., Ltd. (Shanghai, China).

2.2 Ciprofloxacin concentrations analysis

The actual concentrations of ciprofloxacin were determined 1h after being added into the experimental containers, which were \(0.1135 \pm 0.0022, 1.0483 \pm 0.0047, 4.5034 \pm 0.0484\) and \(9.7506 \pm 0.0868\) mg/L \((n=3)\) for the nominal concentrations of 0.1, 1, 5 and 10 mg/L, respectively. Ciprofloxacin concentrations
were analyzed by high performance liquid chromatography (HPLC, Agilent1100, USA). The mobile phase was 0.025 mol/L phosphoric acid (pH=2.5, regulated by triethylamine) and acetonitrile, where the volume ratio of phosphoric acid and acetonitrile was 83:17, using C18 column (Agilent, 20RBAX SB-C18, 4.6 mm×250 mm, 5 µm particle size), with a flow rate of 1.0 ml/min and excitation/emission wavelength at 278/453 nm. The limit of detection was 0.1 µg/L. External standards were used for quantitative determination. The calibration curves showed good linearity for the analyte, with correlation coefficients of 0.9994.

2.3 Estimation of germination and rooting

P. crispus turions were considered germinated when 5 mm of shoot had emerged, and the turions of *H. verticillata* were considered germinated once evident elongation (≥ 1 cm) of the buds (internodes) had emerged. Germination rate (percentage) and germination time were documented in the first 7 d. For both species, rooting rate (percentage) and rooting time were recorded when 5 mm of radicle (root) had emerged. Both germination rate and rooting rate were displayed as x percentage (%) of the control. Germination time and rooting time were calculated according to Ellis and Roberts (1981):

\[
\text{Germination time (days)} = \frac{\sum D_n}{\sum n},
\]

\[
\text{rooting time (days)} = \frac{\sum D_n}{\sum n}.
\]

Where D was the number of days since the beginning of the experiment, n was the number of germinated/rooted turions on day D.

2.4 Seedling growth, tolerance indicators and IC50 assessment

Shoot number and root number were used to assess growth status of both *P. crispus* and *H. verticillata* seedlings under ciprofloxacin treatment. Due to the structural differences between these two species, the shoot of *H. verticillata* referred to the stolon branch in this study. Root tolerance index (RTI) and shoot tolerance index (STI) were used to assess seedling tolerance to ciprofloxacin exposure. RTI and STI were calculated according to Rossato et al (2011):

\[
\text{RTI} (%) = \frac{\text{Length of the longest root in ciprofloxacin treatment}}{\text{Length of the longest root in the control}} \times 100,
\]

\[
\text{STI} (%) = \frac{\text{Length of the longest shoot in ciprofloxacin treatment}}{\text{Length of the longest shoot in the control}} \times 100.
\]

Inhibition rate (IR, %) based on RTI and STI was calculated according to the following equation:
IR = (µ₀ - µₜ) / µ₀ × 100,

Where µ₀ was the value of the control and µₜ was the corresponding value of treatment groups at the same sampling date. To acquire ciprofloxacin effect on seedling tolerance as time elapsed, regression models between the IR values and ciprofloxacin concentrations were built at 7, 14, 21, 28 and 35d using liner regression techniques performed in R software (version 4.0.4), and the inhibitory concentrations (IC50, inhibitory concentration causing 50% of an endpoint) with a 95% confidence interval (95% CI) were calculated. Regression models and details were shown in supplementary information.

2.5 Plant biomass

At 35d, after blotting water with filter paper, the shoot biomass and root biomass of both *P. crispus* and *H. verticillata* seedlings were estimated by an electronic analytical balance (accuracy 0.1 mg), where the biomasses were fresh weights (FW).

2.6 Photosynthetic pigment measurement

The contents (mg/g FW) of photosynthetic pigment were determined based on the method of Jampeetong and Brix (2009) with some modifications. Fresh plant leaves (0.1g, FW) were cut into pieces and placed in 5-ml flasks. Then, 5 ml 95% ethanol was added into the flasks to extract the photosynthetic pigment in the dark for 24 h. Plant pigment contents were determined with a spectrophotometer at 470, 649 and 645 nm for chlorophyll a, chlorophyll b and carotenoids, respectively. Values were calculated according to Lichtenthaler and Wellburn (1983). All spectrophotometric analyses involved in this experiment were accomplished with a MAPADA UV-1200 spectrophotometer (Shanghai Meipuda Instrument Co. Ltd., Shanghai, China).

2.7 Lipid peroxidation measurement

Malondialdehyde (MDA) content (µmol/g FW) was used as a proxy of lipid peroxidation level. Plant leaves (0.1g, FW) were homogenized using 3 ml 10% (w/v) trichloroacetic acid (TCA), and then the homogenate was centrifugated at 4000 rpm for 10 min at 4°C. For every 1mL of supernatant, 1 mL 0.6% (w/v) thiobarbituric acid (TBA) was added. The reaction mixture was heated at 95°C for 25 min and centrifugated at 4000 rpm for 10 min at 4°C after being cooled quickly. The resulting supernatant was analyzed at 450, 532 and 600 nm, respectively (Cang and Zhao 2013).

2.8 Measurements of enzyme activity, soluble protein and H₂O₂ content
Plant leaves (0.1g, FW) were homogenized using 50 mM phosphate buffer solution (pH 7.8) containing 1% (w/v) polyvinyl pyrrolidone (PVPP) and 0.1 mM ethylenediaminetetraacetic acid (EDTA) at 4°C. Then, the homogenate was centrifuged at 8000×g for 15 min at 4°C. The resulting supernatant was used for SOD, CAT, POD, PPO and APX activity, soluble protein and H$_2$O$_2$ content assays.

SOD activity was measured at 560 nm according to Cang and Zhao (2013). The reaction mixture was 50 mM phosphate buffer solution (pH 7.8) containing 13 mM methionine, 0,075 mM NBT (nitro blue tetrazolium), 0.1 mM EDTA (ethylene diamine tetraacetic acid), 0.002 mM riboflavin and enzyme extract. The unit (U) of SOD activity (U/mg protein) was defined as the amount that resulted in a 50% inhibition of the initial rate of the reaction in the absence of the enzyme.

CAT activity was determined spectrophotometrically at 240 nm based on the method of Cang and Zhao (2013). The reaction mixture contained 200 mM phosphate buffer solution (pH 7.8), 100 mM H$_2$O$_2$ and enzyme extract. The unit of CAT activity (U/min • mg protein) was defined as a decrease of 0.1 in absorbance at 240 nm in 1 min.

POD activity was measured based on the guaiacol method (Zhang et al. 2009), and the reaction mixture comprised 100 mM potassium phosphate buffer, 20 mM guaiacol, 65mM H$_2$O$_2$ and enzyme extract. One unit of POD activity (U/min • mg protein) was defined as an absorbance change of 0.01 at 470 nm in 1 min.

PPO activity was determined according to Shi (2016), the reaction mixture was 50 mM phosphate buffer solution (pH 6.4) containing 100 µM catechol and enzyme extract, with a per-minute absorbance change of 0.01 at 398nm as one unit of PPO activity (U/min • mg protein).

APX activity was measured using the method of Chen et al. (2017), and the reaction solution was 50 mM phosphate buffer (pH 7.8) containing 2 mM EDTA, 5 mM AsA (ascorbic acid), 20 mM H$_2$O$_2$ and enzyme extract. One unit of APX activity (U/min • mg protein) corresponded to a per-minute absorbance change of 0.01 at 290 nm.

H$_2$O$_2$ content (µmol/g FW) was determined according to Shi (2016). Briefly, for every 1 mL enzyme extract, 1 mL 5% (w/v) titanium sulfate was added. After 10 min, the reaction solution was centrifuged at 12000 rpm for 10 min at 4°C and the supernatant was then analyzed at 410 nm.

Soluble protein content was determined according to Bradford (1976) and the bovine serum albumin was used as standard. Briefly, the rection mixture contained 5 mL Coomassie brilliant blue G-250 solution and 0.1 mL crude extract. After 2 min of reaction, the soluble protein content (mg/g FW) was calculated by recording the absorbance at 595 nm.

2.9 Measurement of non-enzymatic antioxidants
Reduced ascorbic acid (AsA) was determined according to Cang and Zhao (2013) with some modifications. Plant leaves (0.1 g, FW) were ground by 4 mL 5% (w/v) TCA and then centrifuged at 4000 rpm for 10 min at 4°C. Then 1 mL supernatant was mixed with 1 mL 5% (w/v) TCA, 1 mL absolute ethanol, 0.5 mL 0.4% (w/v) H₃PO₄ in absolute ethanol, 1 mL 0.5% (w/v) red phenanthroline (BP) in absolute ethanol and 0.5 mL 0.03% (w/v) FeCl₃. The reaction mixture was then incubated at 30°C for 40 min, and the absorbance at 534 nm was recorded. And a standard curve with AsA was used.

Reduced glutathione (GSH) was determined according to Cang and Zhao (2013) with some modifications. Plant leaves (0.1 g, FW) were ground by 3 mL 5% (w/v) TCA and then centrifuged at 12000 rpm for 20 min at 4°C. The reaction mixture contained 1 mL supernatant, 1 mL 100 mM phosphate buffer (pH 7.7) and 0.5 mL 4 mM DTNB (5,5′-dithio (2,2′-dinitro) benzoate) in 100 mM phosphate buffer (pH 6.8). After being incubated at 25°C for 10 min, the absorbance of the reaction mixture was recorded at 412 nm.

2.10 Integrated biomarker response

To visualize and compare the stress degree among different treatment groups, the integrated biomarker response (IBR) including MDA, H₂O₂, SOD, CAT, POD, PPO, APX, AsA and GSH were computed according to Kim et al. (2010). The detailed analysis process was shown in supplementary information. Spearman correlation coefficients were calculated between the IBR levels in both species and ciprofloxacin concentrations.

2.11 Statistical analyses

All values were expressed as the mean ± standard deviation (SD). The Levene and Kolmogorov-Smirnov tests were used to verify homoscedasticity and normality criteria, respectively. One-way analysis of variance (ANOVA) was used for the statistical analysis. And a least significant difference (LSD) test was used to separate differences between pairs of treatments, where all the differences were considered significant at $p < 0.05$ (SPSS 23.0, IBM Inc., Chicago, IL, USA). Graphs were produced using Sigma-Plot 12.5 (Systat Software, Inc., USA). No shoots and roots of *H. verticillata* formed at 7d and thus no relevant analysis was performed then.

3. Results

3.1 Germination and rooting

Germination rates of both *P. crispus* and *H. verticillata* were not affected by ciprofloxacin exposure ($p > 0.05$; Fig. 1A). Rooting rate of *P. crispus* decreased slightly but not significantly with rising ciprofloxacin concentrations ($p > 0.05$; Fig. 1B) while it showed no significant changes in *H. verticillata* ($p > 0.05$; Fig. 1B)
Ciprofloxacin did not affect the germination time of *P. crispus* (*p* > 0.05; Fig. 1C), while 0.1 mg/L treatment significantly decreased the germination time of *H. verticillata* (*p* < 0.05; Fig. 1C). 10 mg/L ciprofloxacin significantly increased the rooting time of *P. crispus* (by 42.5%) when compared with the control (*p* < 0.05; Fig. 1D). Rooting time of *H. verticillata* also showed slight increases with increasing ciprofloxacin concentrations, reaching levels significantly higher than the control in 5 mg/L treatment (*p* < 0.05; Fig. 1D).

3.2 Tolerance indicators and seedling growth

When compared with the control, ciprofloxacin at 1-10 mg/L and 0.1-10 mg/L significantly decreased RTI of *P. crispus* at 7-21d and 28-35d, respectively (*p* < 0.05; Fig. 2A). Moreover, RTI of *P. crispus* treated with 1-5 mg/L decreased significantly over time. *H. verticillata* treated with ciprofloxacin concentrations of 1-10 mg/L and 0.1-10 mg/L showed significantly lower RTI compared to the controls at 14d and 21-35d, respectively (*p* < 0.05; Fig. 2B). Regardless of ciprofloxacin concentrations, RTI of *H. verticillata* decreased significantly over time (*p* < 0.05).

The STI of *P. crispus* was not affected by ciprofloxacin at 7d (*p* > 0.05; Fig. 2C), but decreased significantly at ciprofloxacin concentrations of 5-10 mg/L and 1-10 mg/L after 14d and 21-35d, respectively (*p* < 0.05). At 14d, ciprofloxacin at all concentrations slightly increased the STI of *H. verticillata* (*p* > 0.05; Fig. 2D). At 21d, the STI of *H. verticillata* increased significantly at 0.1 mg/L ciprofloxacin but decreased significantly at 10 mg/L (*p* < 0.05). At 28 and 35d, it was significantly lowered by ciprofloxacin at 0.1-10 mg/L and 1-10 mg/L, respectively (*p* < 0.05). Additionally, STI of both *P. crispus* and *H. verticillata* treated with 1-5 mg/L ciprofloxacin decreased significantly over time (*p* < 0.05).

When compared to the controls, root number of *P. crispus* showed no significance at 7-14d but significant decreases in 1-10 mg/L treatments at 21-35d (*p* < 0.05, Fig. 2E). Additionally, root number of *P. crispus* under 1 mg/L ciprofloxacin showed significant increases over time (*p* < 0.05), while plants treated with 5 and 10 mg/L showed no changes (*p* > 0.05) from 21d to 35d, and from 7d to 35d, respectively. At 14-21d and 28-35d, root number of *H. verticillata* decreased significantly with ciprofloxacin concentrations of 1-10 mg/L and 0.1-10 mg/L, respectively (*p* < 0.05; Fig. 2F). Under 0.1 mg/L ciprofloxacin, root number of *H. verticillata* increased significantly over time (*p* < 0.05), without such increases observed at higher ciprofloxacin concentrations during 21-35d (*p* > 0.05). These results indicated inhibition effect of ciprofloxacin at higher concentrations on the root development of both *P. crispus* and *H. verticillata* seedlings especially at later stages of exposure.

Regardless of time points, shoot number of *P. crispus* decreased slightly with rising ciprofloxacin concentrations while *H. verticillata* showed no alterations compared with their corresponding controls (*p* > 0.05; Fig. 2G-H). Additionally, with time prolonging, shoot number of *P. crispus* did not change significantly (*p* > 0.05), while it increased significantly in *H. verticillata* regardless of ciprofloxacin concentrations (*p* < 0.05).

3.3 Time-dependent IC50 based on STI and RTI
IC50 values of ciprofloxacin based on RTI and STI of both species decreased over time (Tab. 1), indicating tolerance of these two plant species was attenuated with prolonged exposure of ciprofloxacin. What’s more, regardless of time and species, IC50 values based on RTI were respectively lower than those based on STI, suggesting RTI was more sensitive to ciprofloxacin exposure.

Table 1

Time (day)	**P. crispus**		**H. verticillata**	
	RTI	STI	RTI	STI
7	3.405 (2.458, 4.352)	NA^a	NA	NA
14	3.308 (2.260, 4.356)	5.566 (4.143, 6.989)	5.896 (4.388, 7.404)	NA
21	3.133 (2.392, 3.874)	4.487 (3.661, 5.313)	3.492 (2.811, 5.074)	10.227 (6.661, 13.792)
28	2.302 (1.246, 3.357)	3.876 (3.016, 4.735)	2.939 (1.970, 3.908)	6.367 (4.930, 7.803)
35	2.203 (1.139, 3.267)	3.453 (2.582, 4.324)	2.635 (1.336, 3.934)	5.636 (4.405, 6.867)

NA^a referred to “not available” due to lack of significance of the models (no calculation of the IC50 values), or because no radicle or shoot emerged then.

3.4 Plant biomass

As shown in Fig. 3A, B, ciprofloxacin at 1-10 mg/L significantly decreased both the shoot biomass and root biomass of *P. crispus* (*p* < 0.05). Significant decreases of the biomasses in *H. verticillata* were observed at ciprofloxacin concentrations of 0.1-10 mg/L (*p* < 0.05).

3.5 Photosynthetic pigment contents

For *P. crispus*, when compared with the corresponding controls, ciprofloxacin at concentrations of 0.1-10 mg/L, 0.1-10 mg/L and 5-10 mg/L significantly decreased the contents of chlorophyll a (by 16.53%-92.71%), chlorophyll b (by 19.71%-92.84%) and carotenoid (by 71.24%-78.29%), respectively (*p* < 0.05; Fig. 4A). Contents of chlorophyll a, chlorophyll b and carotenoid of *H. verticillata* decreased significantly by 58.97%-88.54%, 51.63%-83.91% and 71.24%-78.29% with ciprofloxacin concentrations of 1-10 mg/L when compared with their controls (*p* < 0.05; Fig. 4B).

3.6 Physiological responses

Ciprofloxacin had no significant effects on MDA content of both *P. crispus* and *H. verticillata* (Fig. 5, 6A; *p* > 0.05). H₂O₂ content of *P. crispus* and *H. verticillata* was significantly elevated (by 16.02%-27.08% and
29.82%-42.06%, respectively) by ciprofloxacin concentrations of 1-10 mg/L compared to the controls (Fig. 5, 6B; p < 0.05).

As shown in Fig. 5C, ciprofloxacin sharply elevated SOD activity of *P. crispus* (*p* < 0.05), reaching levels 1.6-5.0 times higher than the control. However, SOD activity of *H. verticillata* showed no significant differences when compared with the control (Fig. 6C; *p* > 0.05). CAT activity of *P. crispus* was significantly inhibited, which declined by up to 22.9%, 40.4% and 59.1% at 1, 5 and 10 mg/L ciprofloxacin compared with the control, respectively (Fig. 5D; *p* < 0.05). Similarly, CAT activity of *H. verticillata* was declined by up to 17.2%, 45.1% and 36.6% at 1, 5 and 10 mg/L ciprofloxacin compared with the control, respectively (Fig. 6D; *p* < 0.05). No significance was found in POD activity of *P. crispus* at lower concentrations of ciprofloxacin (0.1-1.0 mg/L; *p* > 0.05), while it was 17.8-26.1 times higher than the control at 5-10 mg/L ciprofloxacin (Fig. 5E; *p* < 0.05). POD activity of *H. verticillata* showed no changes in 0.1 mg treatment but was increased by up to 66.7%-87.6% in 1-10 mg/L treatments in relative to the control (Fig. 6E; *p* < 0.05). PPO activity of *P. crispus* was significantly inhibited by ciprofloxacin (Fig. 5F; *p* < 0.05), representing decreases of 40.3%-52.3% compared to the control. However, PPO activity of *H. verticillata* was significantly induced by ciprofloxacin (Fig. 6F; *p* < 0.05), representing increases of 28.4%-53.1% compared to the control. APX activity of *P. crispus* was significantly induced by ciprofloxacin concentrations of 1-5 mg/L (Fig. 5G; *p* < 0.05), without any significant differences in other treatments. In *H. verticillata*, APX activity represented an increase of 101.7% at 10 mg/L ciprofloxacin compared to the control (Fig. 6G; *p* < 0.05), without significant increases at lower ciprofloxacin concentrations.

AsA content of *P. crispus* was significantly elevated by ciprofloxacin, reaching levels 0.3-4.9 times higher than the control (Fig. 5H; *p* < 0.05). AsA content of *H. verticillata* displayed an increasing tendency with increasing ciprofloxacin concentrations, reaching levels 1.3, 2.0 and 3.4 times higher than the control at 1, 5 and 10 mg/L ciprofloxacin, respectively (Fig. 6H; *p* < 0.05). When compared to the control, no difference was found in GSH content of *P. crispus* at lower ciprofloxacin concentrations (0.1-1.0 mg/L; *p* > 0.05), while it was increased by up to 96.4%-414.6% at 5-10 mg/L ciprofloxacin (Fig. 5I; *p* < 0.05). Similarly, GSH content of *H. verticillata* showed no significant changes at ciprofloxacin concentrations of 0.1-5 mg/L (Fig. 6I; *p* > 0.05), while it was elevated by 94.2% at the highest ciprofloxacin concentration (*p* < 0.05).

3.7 Integration of biomarker responses

As shown in Fig. 5-6, physiological biomarkers in both species responded differently to varying ciprofloxacin concentrations. Therefore, for comparison, nine physiological biomarkers were integrated and displayed as star plots (Fig. 7). The IBR values of both *P. crispus* and *H. verticillata* showed good positive correlations with ciprofloxacin concentrations (*r* = 0.991, *p* < 0.05; *r* = 0.943, *p* < 0.05, respectively), indicating that higher concentrations of ciprofloxacin caused higher degree of stress on these two species.

4. Discussion
Many studies reported that seed germination of crops was insensitive to various antibiotics such as fluoroquinolones, lincosamides, macrolides, sulfonamides, tetracyclines (Hillis et al. 2011; Bellino et al. 2018; Pan and Chu 2016). In our study, ciprofloxacin employed did not influence both the germination rate and rooting rate of P. crispus and H. verticillata, which suggested that the effects of antibiotics on turion germination were nearly not available. Some cellular processes might be negatively affected by antibiotics (Gammonnet et al. 2001), but germination was considered as a highly conserved process during which sufficient nutrients, carbohydrates, and proteins were stored and available for the appearance of germ or radicle (Hillis et al. 2011). Turions functionally resemble seeds, serving multiple functions including carbohydrate storage, propagation, and dispersal (Jian et al. 2003). In this light, germination and rooting of turions of P. crispus and H. verticillata could be considered tolerant to ciprofloxacin exposure. Notably, without impacts on germination and rooting rates, ciprofloxacin could accelerate or delay the germination and rooting process, which were assessed by germination time and rooting time. Indeed, we found ciprofloxacin at 0.1 mg/L significantly accelerated turion germination of H. verticillata, with slight accelerations at higher concentrations. Similar results have also been found in maize seeds, where ciprofloxacin was proved to induced H₂O₂ production by inhibiting the activity of mitochondrial Complex III (Gomes et al. 2019). Consequently, elevated H₂O₂ promoted the signaling for germination and accelerate seed germination of maize (Gomes et al. 2019; Wojtyla et al. 2016). However, though phytochrome-induced transmissible signals, low molecular mass carbohydrates and phytohormones were proposed to be the possible signals regulating turion germination (Tirlapur et al. 1999; Ley et al. 1997), no specific metabolic changes during the breaking period could be served as metabolic signals (Adamec, 2018). Taken ciprofloxacin as an inhibitor of mitochondrial Complex III (Gomes et al. 2019), further studies on energy metabolism, together with saccharides contents might help to explain beneficial effects of ciprofloxacin on turion germination. Rooting, as the first step of development of the root system, plays an essential role for plant life. Initiation of roots of higher plants were mediated by phytohormones and many external factors such as light, temperature, nutrients and cutting (Xuan et al. 2012). For example, as an important signal for cell division, elongation and differentiation, auxin was highly involved in root primordia formation (Pagnussat et al. 2004). Additionally, nitric oxide was a main factor that mediated the auxin response during rooting process (Pagnussat et al. 2004). Ciprofloxacin has been proved to disturb cellular nitric oxide production (Aiassa et al. 2006; Kolios et al. 2006; Adedara et al. 2021), resulting in lipid, protein, and nucleic acids modification and cellular chaos. Our results showed that ciprofloxacin especially at higher concentrations (5-10 mg/L) had retarding effects on the rooting process of H. verticillata and P. crispus, and these might because ciprofloxacin disturbed the cellular nitric oxide level, which could further impact auxin response as well as rooting performance of turions.

Regardless of exposure time, RTI of both species decreased significantly with increasing ciprofloxacin concentrations, indicating toxicity of ciprofloxacin on RTI was concentration-dependent. Unlike RTI, STI of P. crispus at 7d was not influenced by ciprofloxacin treatment. What’s more, ciprofloxacin promoted STI of H. verticillata at 14-21d. This might because ciprofloxacin addition provided more carbon and nitrogen sources for plant growth (Mao et al. 2021), resulting in but better growth performance and higher STI over
these short exposures. However, after longer exposures, STI of both species also decreased with increasing ciprofloxacin concentrations, indicating hysteresis effects of ciprofloxacin toxicity on STI. RTI of *P. crispus* treated with 1-5 mg/L ciprofloxacin and *H. verticillata* treated with 0.1-5 mg/L ciprofloxacin decreased significantly over exposure time, with STI of both species in 1-5 mg/L treatments decreasing significantly with time prolonging. These results suggested seedling tolerance of *H. verticillata* and *P. crispus* to ciprofloxacin decreased over time, and both RTI and STI were reliable and sensitive indicators for ciprofloxacin toxicity on plant early establishment. Moreover, considering that IC50 values for RTI were lower than those for STI, we concluded that RTI was more sensitive than STI, regardless of species and exposure time. Previous studies also demonstrated high sensitivity of root elongation to antibiotics including tetracycline, sulfamethazine, norfloxacin, erythromycin and chloramphenicol compared to shoot elongation (Pan and Chu 2016). Root number and shoot number could reflect seedling growth status directly. Regardless of exposure time, root number of both species decreased significantly with increasing ciprofloxacin concentrations, while shoot number was less affected. Roots are the main organ for absorbing antibiotics and growth of roots was more severely inhibited than that of shoots (Guo et al. 2020), presumably because seedlings of *H. verticillata* and *P. crispus* mainly relied on their roots to absorb ciprofloxacin. Accordingly, reductions in root number and root biomass might help to avoid the absorption of larger quantities of toxicants and thus reducing damages to seedling growth. Regardless of ciprofloxacin concentration, shoot number of *H. verticillata* increased over time, while *P. crispus* showed no such growth in its shoot. These results indicated better adaptability of *H. verticillata* than *P. crispus* under ciprofloxacin exposure.

With RTI, STI and root number decreasing with rising ciprofloxacin concentrations and time prolonging, shoot and root biomass accumulations of both *H. verticillata* and *P. crispus* were evidently inhibited. On one hand, this may be explained by toxicity effect of ciprofloxacin on photosynthetic pigments. Fluoroquinolone antibiotics were reported to disrupt chloroplast structure and eventually resulted in reductions of pigment contents as well as etiolation of plant leaves (Liu et al. 2021; Yan et al. 2019). Furthermore, damaged leaf functional traits would inevitably impact plant photosynthesis and subsequent growth processes. On the other hand, plants tend to defense against stress but actively inhibit growth related metabolisms to respond to adverse environmental conditions (Zhang et al. 2020). And worse growth performance of *P. crispus* and *H. verticillata* might be related to plant defense against oxidative stress induced by ciprofloxacin, during which cellular energy was highly consumed and thus energy available for growth process might be limited.

Ciprofloxacin could cause oxidative stress by inhibiting mitochondria electron transport chain, leading to cellular ROS accumulation and oxidative damages (Gomes et al. 2019). For example, ROS could attack and degrade the cell membrane to produce MDA, which functioned as a proxy of lipid peroxidation. No lipid peroxidation was observed in both species under ciprofloxacin exposure. However, H$_2$O$_2$ contents of *P. crispus* and *H. verticillata* were elevated by 16.02%-27.08% and by 29.82%-42.06%, respectively. Antibiotics like fluoroquinolones could induce hormesis in various plant species and cause promotions of several physiological, cellular and growth traits of plants, where the observed stimulatory responses were
generally lower than 1.5 times of the control (Agathokleous et al. 2018). Thus, the H$_2$O$_2$ levels in *P. crispus* and *H. verticillata* were probably below those at which H$_2$O$_2$ would become phytotoxic. Though with oxidative cellular toxicity, H$_2$O$_2$ is an important signal molecule in modulating signaling networks that regulates plant growth, development and stress responses (Mittler et al. 2004).

To cope with oxidative event, plants are capable of activating their ROS detoxification systems, the enzymatic and non-enzymatic antioxidants. Firstly, superoxide anions were transferred into H$_2$O$_2$ by SOD, and then H$_2$O$_2$ could be further transferred into O$_2$ by CAT, POD and APX (Yan et al. 2019). PPO could protect plant from photo-oxidative damages by catalyzing the oxidation of phenols (Boeckx et al. 2015). Both AsA and GSH are powerful antioxidant compounds in scavenging cellular ROS directly, by which plants could enhance their antioxidant capacity (Mittler et al. 2004). In *P. crispus*, activated SOD activity produced large quantities of H$_2$O$_2$. Meanwhile, POD and APX activities, AsA and GSH contents were significantly elevated. These antioxidants worked well in removing ROS induced by ciprofloxacin, thereby controlling H$_2$O$_2$ levels tightly and maintaining stability of cell membranes in *P. crispus*. However, CAT and PPO activities responded negatively under ciprofloxacin exposure. As a photosensitizer, CAT would be likely inactive once photosynthetic pigment contents were reduced (Smirnoff 1995), which was in line with the observed reductions in pigments contents. Decreased activity of PPO has been considered as one of the outcomes of plant enhanced antioxidant capacity (Boeckx et al. 2015), indicating the local oxygen was maintained at levels that could not cause photoinhibition or oxidative damages. For *H. verticillata*, SOD activity increased slightly but not significantly in 5-10 mg/L treatments. At the same time, activated POD and APX could remove H$_2$O$_2$ catalyzed by SOD activity. Compared with *P. crispus*, the effects of SOD in detoxifying ROS in *H. verticillata* was relatively weaker. This might because the quantities of superoxide anions were beyond the capacity of SOD, which would inhibit the outputs of this enzyme. Likely, as a compensative response, PPO activity was significantly activated, indicating high amounts of oxygen were removed by the oxidation of phenolic compounds. Additionally, AsA and GSH contents increased markedly especially at high ciprofloxacin concentrations, indicating their vital roles in quenching ROS and protecting cells from oxidative damages. To conclude, firstly, though *P. crispus* and *H. verticillata* seemingly employed different antioxidants to prevent oxidative damages, AsA and GSH played key roles in both species. Both AsA and GSH are water soluble and easily accessible with potent antioxidant properties, and our results might provide some research ideas for alleviation of phytotoxicity of ciprofloxacin. Secondly, the POD-H$_2$O$_2$ decomposition system was involved in the degradation of chlorophylls (Kar and Choudhuri 1987), and the observed elevations of POD activity could be invoked to account for the reductions of chlorophylls contents in both species. Thirdly, under exposure to antibiotics like ciprofloxacin, defense against oxidative stress could elevate cellular energy consumption, causing lower amounts of energy available for growth (Aderemi et al. 2018). To speculate, under ciprofloxacin exposure, *P. crispus* and *H. verticillata* might allocate much more cellular energy to detoxify ROS and maintain physiological stability, resulting in growth inhibitions related to insufficient energy supply.

By integrating different biomarkers, IBR levels were employed to compare stress degree related to various environmental conditions, where a higher IBR level indicated more serious impact in an organism (Kim et
al. 2010). We found IBR values increased with rising ciprofloxacin concentrations. That was, the higher the ciprofloxacin concentrations were, the more serious the damage to both submerged plants. These results were consistent with those of plant tolerance index, photosynthetic pigment contents and plant biomass accumulations, suggesting toxicity effects of ciprofloxacin on these two species were concentration-dependent. On the other hand, the selected biomarkers responded efficiently to ciprofloxacin pollution, and the IBR could serve as a reliable parameter for quantitative evaluation of the toxicological effects of ciprofloxacin toward aquatic plants.

5. Conclusion

Germination and rooting of turions of *P. crispus* and *H. verticillata* were tolerant to ciprofloxacin employed in this study. However, ciprofloxacin could delay rooting process by increasing rooting time. During plant early establishment, both RTI and STI were reliable and sensitive endpoints to assess ciprofloxacin toxicity on seedling development. Additionally, roots came to be more sensitive than shoots under ciprofloxacin treatment. With better growth performance of shoots, *H. verticillata* appeared to be more tolerant to ciprofloxacin exposure than *P. crispus*. Plant biomass accumulations of both species were inhibited by ciprofloxacin, which could be partially contributed from phytotoxicity on photosynthetic pigment. Ciprofloxacin induced oxidative stress and activated the antioxidant system of both species. Key antioxidant enzymes for ROS detoxication differed between *P. crispus* and *H. verticillata*, while non-enzymatic antioxidants (AsA and GSH) functioned well in both species, which might provide valuable research ideas for alleviation of phytotoxicity of ciprofloxacin. As the first study that investigated toxicity ciprofloxacin on germination and seedling development of submerged turions, this research might provide a new perspective to reveal the aquatic environments risks of antibiotics pollution. Toxicity effects of ciprofloxacin on plants were enhanced with rising drug concentrations, suggesting IBR could serve as a reliable parameter for quantitative evaluation of the toxicological effects of ciprofloxacin toward aquatic plants. Lastly, turion germination and seedling development are crucial stages that could influence further survival and expansion of submerged aquatic plant populations. To better predict population dynamics and improve effectiveness of vegetation restoration, studies on the combined effects of antibiotics and other pollutants on propagule germination and early establishment of aquatic plants are needed to be taken.

Declarations

Funding

This research was funded by the National Natural Science Foundation of China (No. 31270410 and No. 30970303).

Competing interests

All authors declared that there were no competing interests.
Author contributions

Pei Fan performed the study, analyzed the data and wrote the paper. Chunhua Liu reviewed and edited the paper. Zhen Ke and Wei Zhou performed the sample collection and sample processing. Zhonghua Wu provided experimental supervision.

Data availability

All the Data for this study are available from Zhonghua Wu (wuzhonghua@whu.edu.cn) and Pei Fan (fanpei@whu.edu.cn).

Ethics approval

Not applicable.

Animal research

Not applicable.

Consent to participate

Informed consent was obtained from all the authors included in this study.

Consent to publish

All authors approved the publication of the manuscript.

Clinical trials registration

Not applicable.

References

1. Adamec L (2008) Respiration of turions and winter apices in aquatic carnivorous plants. Biologia 63:515–520. https://doi.org/10.2478/s11756-008-0073-4

2. Adamec L (2018) Ecophysiological characteristics of turions of aquatic plants: A review. Aquat Bot 148:64–77. https://doi.org/10.1016/j.aquabot.2018.04.011

3. Adedara IA, Godswill US, Mike MA, Afolabi BA, Amorha CC, Sule J, Rocha JBT, Farombi EO (2021) Chronic ciprofloxacin and atrazine co-exposure aggravates locomotor and exploratory deficits in non-target detritivore speckled cockroach (Nauphoeta cinerea). Environ Sci Pollut R 28:25680–25691. https://doi.org/10.1007/s11356-021-12460-5

4. Adeleye AS, Xue J, Zhao Y, Taylor AA, Zenobio JE, Sun Y, Han Z, Salawu OA, Zhu Y (2022) Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J Hazard Mater 424:127284. https://doi.org/10.1016/j.jhazmat.2021.127284
5. Aderemi AO, Novais SC, Lemos MFL, Alves LM, Hunter C, Pahl O (2018) Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics. Aquat Toxicol 203:130–139. https://doi.org/10.1016/j.aquatox.2018.08.008

6. Agathokleous E, Kitao M, Calabrese EJ (2018) Human and veterinary antibiotics induce hormesis in plants: Scientific and regulatory issues and an environmental perspective. Environ Int 120:489–495. https://doi.org/10.1016/j.envint.2018.08.035

7. Aiassa V, Barnes Al, Albesa I (2006) Action of ciprofloxacin on planktonic bacteria and biofilm of Proteus mirabilis. Biofilms 3:11–17. https://doi.org/10.1017/S1479050507002086

8. Bellino A, Lofrano G, Carotenuto M, Libralato G, Baldantoni D (2018) Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L.). Ecotox Environ Safe 148:135–141. https://doi.org/10.1016/j.ecoenv.2017.10.006

9. Boeckx T, Winters AL, Webb KJ, Kingston-Smith AH (2015) Polyphenol oxidase in leaves: is there any significance to the chloroplastic localization? J Exp Bot 66:3571–3579. https://doi.org/10.1093/jxb/erv141

10. Bornette G, Puijalon S (2010) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14. https://doi.org/10.1007/s00027-010-0162-7

11. Boy-Roura M, Mas-Pla J, Petrovic M, Gros M, Soler D, Brusi D, Menció A (2018) Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvia alluvial aquifer (NE Catalonia, Spain). Sci Total Environ 612:1387–1406. https://doi.org/10.1016/j.scitotenv.2017.09.012

12. Bradford MM (1976) A rapid and sensitive method for the quantitation quantities microgram principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

13. Cang J, Zhao HJ (2013) Experimental Course of Plant Physiology. Higher Education press, Peking

14. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264. https://doi.org/10.1007/s10725-016-0202-y

15. Chen Y, Chen H, Zhang L, Jiang Y, Gin K, He Y (2018) Occurrence, distribution, and risk assessment of antibiotics in a subtropical river-reservoir system. Water-Sui 10:104. https://doi.org/10.3390/w10020104

16. Chen Y, Xie Q, Wan J, Yang S, Wang Y, Fan H (2020) Occurrence and risk assessment of antibiotics in multifunctional reservoirs in Dongguan, China. Environ Sci Pollut R 27:13565–13574. https://doi.org/10.1007/s11356-019-07436-5

17. Ebert I, Bachmann J, Kühnen U, Küster A, Kussatz C, Maletzki D, Schlüter C (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30:2786–2792. https://doi.org/10.1002/etc.678
18. Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373–409

19. Fick J, Soderstrom H, Lindberg RH, Phan C, Tysklind M, Larsson DG (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527. https://doi.org/10.1897/09-073.1

20. Gambonnet B, Jabrin S, Ravanel S, Karan M, Douce R, Rébeillé F (2001) Folate distribution during higher plant development. J Sci Food Agr 81:835–841. https://doi.org/10.1002/jsfa.870

21. Gomes MP, Richardi VS, Bicalho EM, Da Rocha DC, Navarro-Silva MA, Soffiatti P, Garcia QS, Sant'Anna-Santos BF (2019) Effects of ciprofloxacin and roundup on seed germination and root development of maize. Sci Total Environ 651:2671–2678. https://doi.org/10.1016/j.scitotenv.2018.09.365

22. Guo X, Liu M, Zhong H, Li P, Zhang C, Wei D, Zhao T (2020) Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms. Environ Pollut 261:114204. https://doi.org/10.1016/j.envpol.2020.114204

23. Ha M, Pflugmacher S (2013) Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a. Aquat Toxicol 138–139:26–34. https://doi.org/10.1016/j.aquatox.2013.04.007

24. Han QF, Zhao S, Zhang XR, Wang XL, Song C, Wang SG (2020) Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ Int 138:105551. https://doi.org/10.1016/j.envint.2020.105551

25. Hillis DG, Fletcher J, Solomon KR, Sibley PK (2011) Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch Environ Con Tox 60:220–232. https://doi.org/10.1007/s00244-010-9624-0

26. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–32

27. Hua Z, Li X, Zhang J, Gu L (2022) Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. J Hazard Mater 424:127695. https://doi.org/10.1016/j.jhazmat.2021.127695

28. Jampeetong A, Brix H (2009) Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. Aquat Bot 91:181–186. https://doi.org/10.1016/j.aquabot.2009.05.003

29. Jian Y, Li B, Wang J, Chen J (2003) Control of turion germination in Potamogeton crispus. Aquat Bot 75:59–69. https://doi.org/10.1016/S0304-3770(02)00165-1

30. Kar RK, Choudhuri MABU (1987) Possible mechanisms of light induced chlorophyll degradation in senescing leaves of Hydrilla verticillata. Physiol Plantarum 70:729–734.
31. Kim WK, Lee SK, Jung J (2010) Integrated assessment of biomarker responses in common carp (*Cyprinus carpio*) exposed to perfluorinated organic compounds. J Hazard Mater 180:395e400. https://doi.org/10.1016/j.jhazmat.2010.04.044

32. Koczura R, Mokracka J, Jabłońska L, Gozdecka E, Kubek M, Kaznowski A (2012) Antimicrobial resistance of integron-harboring *Escherichia coli* isolates from clinical samples, wastewater treatment plant and river water. Sci Total Environ 414:680–685. https://doi.org/10.1016/j.scitotenv.2011.10.036

33. Kolios G, Manousou P, Bourikas L, Notas G, Tsagarakis N, Mouzas I, Kouroumalis E (2006) Ciprofloxacin inhibits cytokine-induced nitric oxide production in human colonic epithelium. Eur J Clin Invest 36:720–729. https://doi.org/10.1111/j.1365-2362.2006.01710.x

34. Ley S, Dölger K, Appenroth KJ (1997) Carbohydrate metabolism as a possible physiological modulator of dormancy in turions of *Spirodela polyrhiza* (L.) Schleiden. Plant Sci 129:1–7. https://doi.org/10.1016/S0168-9452(97)00151-9

35. Li H, Li Y, Huang D, Zhang L, Lu J, Zhang J (2021) The response mechanism of *Hydrilla verticillata* and leaf epiphytic biofilms to depth and nutrient removal. Environ Sci Pollut R 28:49032–49041. https://doi.org/10.1007/s11356-021-14131-x

36. Lichtenhaller H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc T 11:591–592. https://doi.org/10.1042/bst0110591

37. Liu L, Liu Y, Liu C, Wang Z, Dong J, Zhu G, Huang X (2013) Potential effect and accumulation of veterinary antibiotics in *Phragmites australis* under hydroponic conditions. Ecol Eng 53:138–143. https://doi.org/10.1016/j.ecoleng.2012.12.033

38. Liu X, Lv Y, Gao S, Xu K (2021) Ofloxac in induces etiolation in Welsh onion leaves. Chemosphere 267:128918. https://doi.org/10.1016/j.chemosphere.2020.128918

39. Lu S, Lin C, Lei K, Xin M, Gu X, Lian M, Wang B, Liu X, Ouyang W, He M (2022) Profiling of the spatiotemporal distribution, risks, and prioritization of antibiotics in the waters of Laizhou Bay, northern China. J Hazard Mater 424:127487. https://doi.org/10.1016/j.jhazmat.2021.127487

40. Mao Y, Yu Y, Ma Z, Li H, Yu W, Cao L, He Q (2021) Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress. Ecotox Environ Safe 222:112496. https://doi.org/10.1016/j.ecoenv.2021.112496

41. Marchant J (2018) When antibiotics turn toxic. Nature 55:431–433. https://doi.org/10.1038/d41586-018-03267-5

42. Mittler R, Vander Auwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. https://doi.org/10.1016/j.tplants.2004.08.009

43. Özgencil OK, Beklioğlu M, Özkan K, Tavşanoğlu Ç, Fattorini N (2020) Changes in functional composition and diversity of waterbirds: The roles of water level and submerged macrophytes. Freshwater Biol 65:1845–1857. https://doi.org/10.1111/fwb.13531
44. Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286. https://doi.org/10.1104/pp.103.038554

45. Pan C, Bao Y, Xu B (2020) Seasonal variation of antibiotics in surface water of Pudong New Area of Shanghai, China and the occurrence in typical wastewater sources. Chemosphere 239:124816. https://doi.org/10.1016/j.chemosphere.2019.124816

46. Pan M, Chu LM (2016) Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotox Environ Safe 126:228–237. https://doi.org/10.1016/j.ecoenv.2015.12.027

47. Phillips G, Willby N, Moss B (2016) Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquat Bot 135:37–45. https://doi.org/10.1016/j.aquabot.2016.04.004

48. Ren W, Wen Z, Cao Y, Wang H, Yuan C, Zhang X, Ni L, Xie P, Cao T, Li K, Jeppesen E (2022) Cascading effects of benthic fish impede reinstatement of clear water conditions in lakes: A mesocosm study. J Environ Manage 301:113898. https://doi.org/10.1016/j.jenvman.2021.113898

49. Robinson AA, Belden JB, Lydy MJ (2005) Toxicity of fluoroquinolone antibiotics to aquatic organisms. Environ Toxicol Chem 24:423–430. https://doi.org/10.1897/04-210R.1

50. Rossato L, MacFarlane J, Whittaker M, Pudmenzky A, Doley D, Schmidt S, Monteiro MJ (2011) Metal-binding particles alleviate lead and zinc toxicity during seed germination of metallophyte grass Astrebla lappacea. J Hazard Mater 190:772–779. https://doi.org/10.1016/j.jhazmat.2011.03.116

51. Shi HT (2016) Experimental Guidance of Plant Stress Physiology. Science Press, Peking

52. Smirnoff N (1995) Antioxidant systems and plant response to the environment. BIOS Scientific Publishers, Oxford

53. Song X, Wang Z, Xiao B, Li E, Wang X (2017) Growth of Potamogeton crispus L. from turions in darkness: Implications for restoring submerged plants in eutrophic lakes. Ecol Eng 101:255–260. https://doi.org/10.1016/j.ecoleng.2017.01.035

54. Tirlapur UK, Dahse I, Probandt R, Fischer W, Appenroth KJJU (1999) Phytochrome-induced transmissible signal elicits germination response in turions of Spirodela polyrhiza. Physiol Plantarum 105:539–545. https://doi.org/10.1034/j.1399-3054.1999.105320.x

55. Wang J, Song Y, Wang G (2017) Causes of large Potamogeton crispus L. population increase in Xuanwu Lake. Environ Sci Pollut R 24:5144–5151. https://doi.org/10.1007/s11356-016-6514-7

56. Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66. https://doi.org/10.3389/fpls.2016.00066

57. Wu H, Hao B, Jo H, Cai Y (2021) Seasonality and species specificity of submerged macrophyte biomass in shallow lakes under the influence of climate warming and eutrophication. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.678259

58. Wu Q, Xiao S, Pan C, Yin C, Wang Y, Yu K (2022) Occurrence, source apportionment and risk assessment of antibiotics in water and sediment from the subtropical Beibu Gulf, South China. Sci Total Environ 806:150439. https://doi.org/10.1016/j.scitotenv.2021.150439
59. Xuan W, Xu S, Li M, Han B, Zhang B, Zhang J, Lin Y, Huang J, Shen W, Cui J (2012) Nitric oxide is involved in hemin-induced cucumber adventitious rooting process. J Plant Physiol 169:1032–1039. https://doi.org/10.1016/j.jplph.2012.02.021

60. Yan Y, Xu X, Shi C, Yan W, Zhang L, Wang G (2019) Ecotoxicological effects and accumulation of ciprofloxacin in *Eichhornia crassipes* under hydroponic conditions. Environ Sci Pollut Res Int 26:30348–30355. https://doi.org/10.1007/s11356-019-06232-5

61. Yan Z, Wang Q, Li Y, Wu L, Wang J, Xing B, Yu D, Wang L, Liu C (2021) Combined effects of warming and nutrient enrichment on water properties, growth, reproductive strategies and nutrient stoichiometry of *Potamogeton crispus*. Environ Exp Bot 190:104572. https://doi.org/10.1016/j.envexpbot.2021.104572

62. Yang Y, Wan K, Yang Z, Li D, Li G, Zhang S, Wang L, Yu X (2020) Inactivation of antibiotic resistant *Escherichia coli* and degradation of its resistance genes by glow discharge plasma in an aqueous solution. Chemosphere 252:126476. https://doi.org/10.1016/j.chemosphere.2020.126476

63. Yu H, Qi W, Cao X, Wang Y, Li Y, Xu Y, Zhang X, Peng J, Qu J (2022) Impact of microplastics on the foraging, photosynthesis and digestive systems of submerged carnivorous macrophytes under low and high nutrient concentrations. Environ Pollut 292:118220. https://doi.org/10.1016/j.envpol.2021.118220

64. Yuan DY, Meng X, Duan CQ, Wei ZH, Gao W, Chang JJ, Lv XJ, Pan Y (2018) Effects of water exchange rate on morphological and physiological characteristics of two submerged macrophytes from Erhai Lake. Ecol Evol 8:12750–12760. https://doi.org/10.1002/ece3.4703

65. Zhang H, Zhao Y, Zhu JK (2020) Thriving under stress: How plants balance growth and the stress response. Dev Cecc 55:529–543. https://doi.org/10.1016/j.devcel.2020.10.012

66. Zhang J, Huang D, Deng H, Zhang J (2021) Responses of submerged plant *Vallisneria natans* growth and leaf biofilms to water contaminated with microplastics. Sci Total Environ 151750. https://doi.org/10.1016/j.scitotenv.2021.151750

67. Zhang YS, Huang X, Chen YF (2009) Experimental Course of Plant Physiology. Higher Education press, Peking

Figures
Figure 1

Germination rate (A), rooting rate (B), germination time (C) and rooting time (D) of *P. crispus* and *H. verticillata* under ciprofloxacin exposure. Bars represent the mean of five replicates ± standard deviation. Different letters indicate significant differences among different treatments for a specific plant species (*p* < 0.05, LSD test).
Figure 2

Root tolerance index (A, B), shoot tolerance index (C, D), root number (E, F) and shoot number (G, H) of *P. crispus* and *H. verticillata* after 7, 14, 21, 28 and 35d of ciprofloxacin exposure. Bars represent the mean of five replicates ± standard deviation. Stars indicate significant differences among different time points at the same ciprofloxacin concentration ($p < 0.05$, LSD test).
Figure 3

Biomass of *P. crispus* (A) and *H. verticillata* (B) after 35d of ciprofloxacin exposure. All values represent the mean of five replicates ± standard deviation. Different letters represent statistically significant differences among different treatments (\(p < 0.05 \), LSD test).

Figure 4

Pigment contents of *P. crispus* (A) and *H. verticillata* (B) after 35d of ciprofloxacin exposure. All values represent the mean of five replicates ± standard deviation. Different letters represent statistically significant differences among different treatments (\(p < 0.05 \), LSD test).
Figure 5

MDA content (A), H$_2$O$_2$ content (B), SOD (C), CAT (D), POD (E), PPO (F) and APX (G) activity, AsA content (H) and GSH content (I) of *P. crispus* exposed to ciprofloxacin. Bars represent the mean of five replicates ± standard deviation. Different letters represent statistically significant differences among different treatments ($p < 0.05$, LSD test).
Figure 6

MDA content (A), H$_2$O$_2$ content (B), SOD (C), CAT (D), POD (E), PPO (F) and APX (G) activity, AsA content (H) and GSH content (I) of _H. verticillata_ exposed to ciprofloxacin. Bars represent the mean of five replicates ± standard deviation. Different letters represent statistically significant differences among different treatments ($p < 0.05$, LSD test).
Figure 7

Star plots for biomarker responses in *P. crispus* (A, B) and *H. verticillata* (C, D) exposed to different concentrations of ciprofloxacin.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx