Viral hemorrhagic fevers due to endotheliopathy-associated disseminated intravascular microthrombosis and hepatic coagulopathy: pathogenesis based on “two activation theory of the endothelium”

Jae C. Chang*
1Department of Medicine, University of California Irvine School of Medicine, Irvine, California, USA

Abstract

Viral hemorrhagic fevers are rare but the life-threatening hemorrhagic disorder associated with viral sepsis. The demise of the patient occurs due to severe inflammation, multi-organ dysfunction syndrome and hemorrhage associated with poorly-defined coagulopathy. Sepsis of several families of RNA viruses causes endothelial injury that orchestrates inflammation and multi-organ dysfunction including the liver. To address additional clinical and hematological features, a novel pathogenesis based on “two-activation theory of the endothelium” is proposed. Endothelial injury activates endothelial cells that promote various clinical syndromes such as consumptive thrombocytopenia, multi-organ dysfunction and thrombotic microangiopathy. Endotheliopathy initiates two independent molecular events at endothelial cells: 1) release of inflammatory cytokines and 2) activation of the platelet and exocytosis of unusually large von Willebrand factor multimers. The former triggers activation of inflammatory pathway and the latter mediates activation of microthrombotic pathway. In viral sepsis, the activation of inflammatory pathway causes inflammation, but the activation of microthrombotic pathway manifests as disseminated intravascular microthrombosis (DIT). The pathogenesis of viral hemorrhagic fevers is hepatic coagulopathy triggered by acute hepatic necrosis as a result of endotheliopathy-associated DIT, which also could manifest as TTP-like syndrome.

New terminology: Microthrombogenesis; Disseminated intravascular microthrombosis (DIT); Vascular microthrombotic disease (VMTD)

Introduction

Viral hemorrhagic fevers commonly occur in several families of RNA viruses: Arenaviridae (e.g., Lassa), Bunyaviridae (e.g., Hanta), Filoviridae (e.g., Ebola and Marburg) and Flaviviridae (e.g., yellow fever and dengue). It is a life-threatening hemorrhagic disorder, but the pathogenesis of hemorrhagic disorder is poorly understood [1].

Clinical features of viral hemorrhagic fevers include inflammatory symptoms such as fever, myalgia, arthralgia, malaise and weakness. Hemorrhagic signs are petechiae, bleeding in internal organs and external bleeding from bodily orifices like the mouth, eyes, or ears. Some patients develop bloody diarrhea. Eventually critically ill patients could progress to more serious conditions including seizures, delirium, shock, renal failure, acute respiratory distress and multi-organ dysfunction.

Thrombocytopenia in viral hemorrhagic fevers (TCIP)

Potential causes of the hemorrhagic disease include: 1) thrombocytopenia related to bone marrow suppression or platelet destruction secondary to endothelial activation from viral sepsis [2,3], 2) disseminated intravascular coagulation (DIC) [1,3-5], and 3) hepatic coagulopathy associated with virus-induced hepatitis/hepatic necrosis [1,6,7]. However, no credible clinical and laboratory data have been documented to explain the underlying coagulopathy.

Although viral hemorrhagic fevers commonly occur with etiology-undetermined thrombocytopenia in critically ill patients (TCIP) [1-3,6-9], its relationship to bleeding is not clearly determined because thrombocytopenia is typically mild to moderately severe and it alone can’t be accountable for the severe hemorrhagic disorder. Thus, thrombocytopenia has not entered as a serious issue in caring of viral hemorrhagic fevers other than platelet transfusion to maintain it at a safe level.

It is well known that the critical illnesses due to pathogens from bacterial, viral, fungal or parasitic sepsis are oftentimes associated with TCIP [10]. This term has been applied to etiology-undetermined thrombocytopenia after exclusion of known causes of acute thrombocytopenia (e.g., heparin-induced, drug or transfusion-associated, DIC-associated, hypersplenism-related, etc.). An interesting finding is TCIP not only occurs in sepsis/septic shock, but also occurs in other critical illnesses (e.g., severe trauma, complications of surgery, pregnancy and transplant, and immunologic and collagen vascular diseases) [10-13]. Recently, significant correlation was noted between the degree of thrombocytopenia and severity of the disease, and TCIP influenced the prognosis and likelihood of recovery [14,15]. Severer thrombocytopenia has been associated with systemic inflammatory

Correspondence to: Jae C. Chang, Department of Medicine, University of California Irvine School of Medicine, Irvine, California, USA, Tel: 949-387-2207; E-mail: jaec@uci.edu

Key words: viral hemorrhagic fevers, disseminated intravascular coagulation (DIC), endotheliopathy, thrombocytopenia, multi-organ dysfunction syndrome (MODS), thrombotic thrombocytopenic purpura (TTP), TTP-like syndrome

Received: April 10, 2017; Accepted: May 25, 2017; Published: May 29, 2017
response syndrome (SIRS) and multi-organ dysfunction syndrome (MODS) [16,17]. These observations support TCIP as an important participant in the pathogenesis of the critical illness including viral hemorrhagic fevers.

Endotheliopathy and the “two-activation theory of the endothelium”

Viral hemorrhagic fevers are known to cause the injury to endothelial cells (ECs) leading to endotheliopathy and endothelial dysfunction, and endotheliopathy triggers multiple molecular events [18-20]. According to novel thesis of the "two-activation theory of the endothelium" (Figure 1) [6], endotheliopathy promotes the activation of two independent endothelial pathways (i.e., inflammatory and microthrombotic). In short, two important molecular events are: 1) release of inflammatory cytokines (e.g., interleukin (IL)-1, IL-6, tumor necrosis factor-a, and others) [20-22], and 2) activation of the platelet and exocytosis of unusually large von Willebrand factor multimers (ULVWF) [23-25]. The former triggers inflammation through "activation of inflammatory pathway", and the latter mediates microthrombogenesis via "activation of microthrombotic pathway" as illustrated in Figure 1. In endotheliopathy, microthrombogenesis is the process in which long elongated ULVWF strings are anchored to ECs to recruit activated platelets, and to assemble and decorate platelet-ULVWF complexes as microthrombosis [25-27]. This results in disseminated intravascular microthrombosis (DIT) triggering thrombotic thrombocytopenic purpura (TTP)-like syndrome.

Endotheliopathy-associated DIT is TTP-like syndrome

DIT is the underlying pathological condition leading to vascular microthrombotic disease (VMTD). Systemic VMTD includes two clinical disorders: thrombotic thrombocytopenic purpura (TTP) and TTP-like syndrome. In TTP, microthrombogenesis occurs in circulation due to hyperactivity of ULVWF in both hereditary and antibody-associated type, but in TTP-like syndrome developing in viral hemorrhagic fevers and other critical illnesses, it occurs at the intravascular surface of ECs. The different pathogenesis and clinical characteristics of TTP and TTP-like syndrome are summarized in Table 1. In the critical illness DIT is made of microthrombi that consist of platelet-ULVWF complexes and is anchored to ECs. DIT as a result of endotheliopathy in viral hemorrhagic fevers can be called endotheliopathy-associated DIT/VMTD.

In viral hemorrhagic fevers, endotheliopathy-associated DIT/VMTD could trigger TTP-like syndrome [6,28-31], which is characterized by consumptive thrombocytopenia, microangiopathic hemolytic anemia (MAHA)/atypical MAHA (aMAHA) (if schistocytes are fewer) and hypoxic organ dysfunction syndromes. Unlike true DIC in which hemostatic (coagulation) disorder occurs following tissue factor (TF) pathway activation, endotheliopathy-associated DIT/VMTD is the microthrombotic disorder occurring as a result of microthrombogenesis. In endotheliopathy-associated DIT/VMTD, TF pathway activation is not involved and thus coagulation factors are not consumed and depleted.

Are viral hemorrhagic fevers due to “DIC”?

The simple answer is no. Viral hemorrhagic fevers have been attributed to "DIC" [3-5,32], mainly utilizing the International Society on Thrombosis and Haemostasis (ISTH) DIC-scoring system and accepting the microthrombosis in the critically ill patient as the marker for hemostatic (coagulation) disorder. This diagnosis hasn’t been based on more reliable coagulation factor assay of FVIII and FV, which are typically depleted in true DIC as seen in acute promyelocytic leukemia [33].

Figure 1. Pathogenesis of endotheliopathy-associated DIT/TTP-like syndrome in viral hemorrhagic fevers.

AHNS, acute hepatic necrosis syndrome; aMAHA/MAHA, atypical microangiopathic hemolytic anemia/microangiopathic hemolytic anemia; ARDS, acute respiratory distress syndrome; DIT, disseminated intravascular microthrombosis; ECs, endothelial cells; MODS, multi-organ dysfunction syndrome; MTA, microthrombotic angiopathy; SIRS, systemic inflammatory response syndrome; TTP, thrombotic thrombocytopenic purpura; VMTD, vascular microthrombotic disease; ULVWF, unusually large von Willebrand factor multimers;
Donald McKay in early 1950s coined the term "DIC" [34] for a microthrombotic disorder, which he interpreted as a coagulation disorder. He and his followers have believed intravascular hyaline microthrombi in the luminal arterioles and capillaries in the pathologic tissue examination consist of micro-clots of platelets, coagulation factors and fibrins. In coagulation profile, the supporting evidence is prolonged prothrombin time, prolonged activated partial thromboplastin time, hypofibrinogenemia, and increased fibrin degradation products. In most cases the diagnosis is based on the combination of results more than 60 years, this unfortunate misconception of "DIC" has more specific laboratory test results in the patient with a clinical condition known to be associated with "DIC" [41].

It should be emphasized that no single laboratory test or set of tests is sensitive or specific enough to allow a definite diagnosis of "DIC" [39]. In most cases the diagnosis is based on the combination of results of non-specific laboratory test results in the patient with a clinical condition known to be associated with "DIC" [41].

If one understands and accepts the fact that "DIC" is a misnomer but one accepts it as endotheliopathy-associated DIT/VMTD, viral hemorrhagic fevers can be explained perfectly well by the concept of DIT. The next question is how viral hemorrhagic fevers get the hemorrhagic disorder. Another word, What is the correct diagnosis for hemorrhagic fevers, acute fulminating hepatitis/acute hepatic necrosis, AHNS, acute fulminating hepatitis/acute hepatic necrosis syndrome; ARF, acute renal failure; HUS, hemolytic-uremic syndrome; TPE, therapeutic plasma exchange; mULVWF, megakaryocytic unusually large von Willebrand factor multimers; eULVWF, endothelial ULVWF; TMA, thrombotic microangiopathy; MAHA, microangiopathic hemolytic anemia; aMAHA, atypical MAHA; ECs, endothelial cells
Chang JC (2017) Viral hemorrhagic fevers due to endotheliopathy-associated disseminated intravascular microthrombosis and hepatic coagulopathy: pathogenesis based on "two activation theory of the endothelium"

Table 2. Hematological and clinical characteristics of endotheliopathy-associated DIT/VMTD and true DIC

Endotheliopathy-associated DIT (including “DIC” of McKay)	True DIC
Examples	DIC associated with APL
TTP-like syndrome	DIC associated with APL
Nature of the disorder	Coagulation activated by TF-FVIIa complexes
Microthrombosis made of platelet-ULVWF complexes	Intravascular coagulation
Mechanism of the genesis	APL and drugs (?) leading to TF expression
Intravascular microthrombogenesis	Hemorrhagic disorder of APL
Inciting events	Hemorrhagic disorder of APL
Sepsis, complications of surgery, pregnancy, cancer, and transplant, and drugs/toxins leading to endotheliopathy	Hemorrhagic disorder of APL
Hematological manifestations	Hemorrhagic disorder of APL
TTP-like syndrome	DIC associated with APL
Pathogenesis	DIC associated with APL
Activation of microthrombotic pathway	DIC associated with APL
Intravascular surface of the endothelium	DIC associated with APL
Endothelial activation dysfunction → endotheliopathy	DIC associated with APL
Formation of platelet-ULWVF microthrombi	DIC associated with APL
Essence of pathology	DIC associated with APL
Arteriolar and capillary luminal hyaline microthrombi	DIC associated with APL
Incoagulable blood/unstable blood clots	DIC associated with APL
Effect on the involved organs	DIC associated with APL
Vascular microthrombosis leading to organ hypoxia	DIC associated with APL
Hemorrhage leading to organ damage	DIC associated with APL
Coagulation tests	DIC associated with APL
Fibrinogen; PT; aPTT; TT FDP	DIC associated with APL
Vascular microthrombosis leading to organ hypoxia	DIC associated with APL
Hemorrhage leading to organ damage	DIC associated with APL
Thrombocytopenia	DIC associated with APL
Normal	DIC associated with APL
Normal	DIC associated with APL
Normal or increased	DIC associated with APL
Moderately severe	DIC associated with APL
Prothrombin time; MODS SIRS	DIC associated with APL
Associated clinical syndromes	DIC associated with APL
TTP-like syndrome with hepatic coagulopathy	DIC associated with APL
AHNS	DIC associated with APL
MODS	DIC associated with APL
SIRS	DIC associated with APL
Associated hematologic features	DIC associated with APL
Schistocytes	DIC associated with APL
MAHA/aMAHA	DIC associated with APL
Consumptive thrombocytopenia	DIC associated with APL
Hepatic coagulopathy	DIC associated with APL
0 - +++	DIC associated with APL
Absent	DIC associated with APL
Present (?)	DIC associated with APL
Unusual	DIC associated with APL
Incidence in clinical practice	DIC associated with APL
Very common	DIC associated with APL
Extremely rare	DIC associated with APL
Therapy	DIC associated with APL
Platelet transfusion	DIC associated with APL
Treatment	DIC associated with APL
Contraindicated	DIC associated with APL
TPE; rADAMTS13 (expected to be very effective)	DIC associated with APL
May be needed for APL	DIC associated with APL
Treat underlying pathology (e.g., ATRA in APL)	DIC associated with APL

AFL, acute promyelocytic leukemia; aPTT, activated partial thromboplastin time; aMAHA/MAHA, microangiopathic hemolytic anemia/MAHA; ATRA, All-trans retinoic acid; DIC disseminated intravascular coagulation; DIT, disseminated intravascular microthrombosis; ULWVF, endothelial unusually large von Willebrand factor multimers; FV, factor V; FVIIa, activated factor VII; FVIII, factor VIII; FDP, fibrin degradation products; MTA, microthromboticangiopathy; PT, prothrombin time; TF, tissue factor; TPE, therapeutic plasma exchange; TT, thrombin time; MODS, multi-organ dysfunction syndrome; rADAMTS13, recombinant ADAMTS13; SIRS, systemic inflammatory response syndrome; VMTD, vascular microthrombotic disease

Table 3. Differential characteristic hematologic features among thrombopathies and coagulopathies (Adapted from Chang JC (6) with permission).

TTP & TTP-like syndrome (DIT)	TTP-like syndrome (DIT) associated with HC (e.g., Ebola)	DIC (e.g., acute promyelocytic leukemia)	PF (e.g., amyloidosis)
Thrombocytopenia	Always present	Always present	Not present
MAHA/MAHA	Almost always present	Very unlikely to be present	Not present
Fibrinogen	Normal	Always decreased	Always decreased
Factor VIII	Normal	Markedly decreased	Decreased
Factor V	Normal	Decreased	Decreased
Factor X	Normal	Decreased	Normal
Factor VII	Normal	Markedly decreased	Normal
FDP	Normal	Positive	Strongly positive
Thrombin time	Normal	Prolonged	Prolonged
Thrombosis form	Microthrombi	Microthrombi	Absent
Bleeding: Character	Rare, mild petechiae	May cause serious bleeding	Common, serious bleeding
Treatment	Usually no need of treatment	Controllable with FFP	Abrogated with ATRA & chemotherapy
Platelet transfusion	Contraindicated	May be used with ATRA	Not needed

TTP, thrombotic thrombocytopenic purpura; HC, hepatic coagulopathy; DIT, disseminated intravascular microthrombosis; DIC, disseminated intravascular coagulation; PF, primary fibrinolysis; MAHA, microangiopathic hemolytic anemia; aMAHA, atypical MAHA; FFP, fresh frozen plasma; AFA, anti-fibrinolytic agents; ATRA, All-trans retinoic acid

As illustrated in Table 2, the predominant feature of true DIC is hemorrhage without MAHA/aMAHA and hypoxic organ dysfunction [33,47,48]. This supports that MAHA/aMAHA, MODS and TTP-like syndrome are the manifestations of endotheliopathy-associated DIT. In differentiating true DIC from hepatic coagulopathy, the most important test is the assay of coagulation factors especially for depleted FVIII and FV in true DIC, and increased FVIII and markedly decreased liver dependent FVII in hepatic coagulopathy. A suggested guideline for
laboratory tests is presented in Table 3 to aid in differential diagnosis among complicated thrombopathies and coagulopathies [6].

In viral hemorrhagic fevers, TCIP is the earliest indicator suggesting that microthrombogenesis is in progress. If the hemorrhagic disorder occurs, it is not due to true DIC nor is likely due to thrombocytopenia, but most likely is due to hepatic coagulopathy. The “two activation theory” not only explains concomitant inflammation, TCIP and progressive hypoxic organ dysfunction, but also would help to unmask unrecognized syndromes such as impending cytokine “storm”, TTP-like syndrome, MAHA/aMAHA, MODS and SIRS in viral hemorrhagic fevers.

Conclusion
Viral hemorrhagic fevers are not due to “DIC” but are due to endotheliopathy-associated DIT/VMTD, which hematologic manifestation could lead to TTP-like syndrome. The treatments for viral hemorrhagic fevers are fresh frozen plasma for hepatic coagulopathy and therapeutic plasma exchange for TTP-like syndrome if the diagnosis is confirmed [6]. If therapeutic plasma exchange is not available, clinical trials using anti-microthrombotic agents such as recombinant ADAMTS13 and N-acetyl cysteine may be considered. Platelet transfusion and anticoagulation therapy are contraindicated.

Financial support
None

Author disclosures
The author Jae C. Chang, M.D. has neither actual nor potential personal or financial conflicts of interest in regard to this article.

References
1. Paesler S, Walker DH (2013) Pathogenesis of the viral hemorrhagic fevers. Annu Rev Pathol 8: 411-440. [Crossref]
2. Perng GC (2012) Role of Bone Marrow in Pathogenesis of Viral Infections. J Bone Marrow Res 1. [Crossref]
3. Zapata JC, Cox D, Salvato MS (2014) The role of platelets in the pathogenesis of viral hemorrhagic fevers. PLoS Neg Trop Dis 8: e2858. [Crossref]
4. Sundberg E, Hultdin J, Nilsson S, Ahlm C (2011) Evidence of disseminated intravascular coagulation in a hemorrhagic fever with renal syndrome-scoring models and severe illness. PLoS One 6: e21134.
5. Geisbirt TW, Young HA, Jahrling PB (2003) Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 163: 2371-2382.
6. Chang JC (2016) A Thought on Possible Pathogenesis of Ebola Viral Hemorrhagic Disease and Potential Treatments: Could it be Thrombotic Thrombocytopenic Purpura-like Syndrome? J Ther Apher Dialysis 20: 93-98.
7. CDC: Ebola Virus Disease (EVD) Information for Clinicians in U.S. Healthcare Settings.
8. Rashmi MV, Hamsaveena (2015) Haematological and biochemical markers as predictors of dengue infection. Malays J Pathol 37: 247-251.
9. Hu JL, Li ZF, Wang XC (2016) Risk Factors for Bunyavirus-Associated Severe Fever with Thrombocytopenia Syndrome: A Community-Based Case-Control Study. PLoS One 11: e0166611.
10. Williamson DR, Albert M, Heels-Ansdell D (2013) PROTECT collaborators,; Canadian Critical Care Trials Group,; Australian and New Zealand Intensive Care Society Clinical Trials Group. Thrombocytopenia in critically ill patients receiving thromboprophylaxis: frequency, risk factors, and outcomes. Chest 144: 1207-1215.
11. Carrick MM, Tyroch AH, Youens CA, Handley T (2005) Subsequent development of thrombocytopenia and coagulopathy in moderate and severe head injury: support for serial laboratory examination. J Trauma 58: 725-729.
12. Chen Z, Liang MY, Wang JL (2011) [Etiology and clinical characteristics of pregnancy-emerged thrombocytopenia]. Zhonghua Fu Chan Ke Za Zhi 46: 834-839. [Crossref]
13. Naci T, Baumann MA, Chang JC (2004) Post-operative thrombotic thrombocytopenic purpura: a review. Int J Clin Pract 58: 169-172.
14. Levi M (2016) Platelets in Critical Illness. Semin Thromb Hemost 42: 252-257. [Crossref]
15. Venkata C, Kashyap R, Farmer JC, Afessa B (2013) Thrombocytopenia in adult patients with sepsis: incidence, risk factors, and its association with clinical outcome. J Intensive Care 1: 9.
16. Ogura H, Gando S, Ibu T (2007) Japanese Association for Acute Medicine Disseminated Intravascular Coagulation Study Group. SIRS-associated coagulopathy and organ dysfunction in critically ill patients with thrombocytopenia. Shock 28: 411-417.
17. Stravitz RT, Ellerbe C, Durkaliski V, Reuben A, Lisman T, et al. (2016) Acute Liver Failure Study Group. Thrombocytopenia Is Associated With Multi-organ System Failure in Patients With Acute Liver Failure. Clin Gastroenterol Hepatol 14: 613-620.e4.
18. Peters CJ, Zaki SR (2002) Role of the endothelium in viral hemorrhagic fevers. Crit Care Med 30: S268-273. [Crossref]
19. Bodur H, Akinci E, Ongulri P (2010) Evidence of vascular endothelial damage in Crimean-Congo hemorrhagic fever. Int J Infect Dis 14: e704-7.
20. Srikankhachorn A, Sripouplou CF (2014) Vascular events in viral hemorrhagic fevers: a comparative study of dengue and hantaviruses. Cell Tissue Res 355: 621-633. [Crossref]
21. Aird WC (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101: 3765-3777. [Crossref]
22. Xing K, Murthy S, Liles WC, Singh JM (2012) Clinical utility of biomarkers of endothelial activation in sepsis--a systematic review. Crit Care 16: R7.
23. Janicek MJ, Van den Abbeele AD, Hollenberg NK, Kassis AI, Holman BL, et al. (1990) Platelet activation and aggregation after endothelial injury. Assessment with indium-111-labeled platelets and angiography. Invest Radiol 25: 988-993.
24. Bockmeyer CL, Claus RA, Budde U, Kentouche K, Schneppenheim R, et al. (2008) Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haemostasiologie 93: 137-140. [Crossref]
25. Valentinj KM, van Driel LF, Mourik MJ, Hendriks GJ, Arends TJ, et al. (2010) Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells. Blood 116: 1807-1816. [Crossref]
26. De Ceunynck K, De Meyer SF, Vanhoorebeke K (2013) Unwinding the von Willebrand factor strings puzzle. Blood 121: 270-277. [Crossref]
27. Padilla A, Moake JL, Bernardo A (2004) P-selectin anchors newly released ultra large von Willebrand factor multimers to the endothelial cell surface. Blood 103: 2150-2156.
28. Vaziri S, Navabi J, Afsharian M (2008) Crimean congo hemorrhagic fever infection simulating thrombotic thrombocytopenic purpura. Indian J Hematol Blood Transfus 24: 35-38.
29. Deepanjali S, Naik RR, Mailankody S, Kalamani S, Kadhiran V (2015) Dengue Virus Infection Triggering Thrombotic Thrombocytopenic Purpura in Pregnancy. Am J Trop Med Hyg 93: 1028-1030. [Crossref]
30. Ardalan MR, Tabbs RS, Chinikar S, Shoja MM (2006) Crimean-Congo haemorrhagic fever presenting as thrombotic microangiopathy and acute renal failure. Nephrol Dial Transplant 21: 2304-2307.
31. Lopes da Silva R (2011) Viral-associated thrombotic microangiopathies. Hematol Oncol Stem Cell Ther 4: 51-59.
32. Peters CJ, Liu CT, Anderson GW Jr, Mollin JC, Jahrling PB (1989) Pathogenesis of viral hemorrhagic fevers: Rift Valley fever and Lassa fever contrasted. Rev Infect Dis 4: S743-S749.
33. Cooperberg AA (1967) Acute promyelocytic leukemia. Can Med Assoc J 97: 57-63. [Crossref]
34. ISTH International Society on Thrombosis and Haemostasis [Cited from: http://slidedeplayer.com/slide/3080693/]
35. Franchini M, Lippi G, Manzato F (2006) Recent acquisitions in the pathophysiology, diagnosis and treatment of disseminated intravascular coagulation. Thromb J 4: 4. [Crossref]
Chang JC (2017) Viral hemorrhagic fevers due to endotheliopathy-associated disseminated intravascular microthrombosis and hepatic coagulopathy: pathogenesis based on "two activation theory of the endothelium"