Characterization of a major QTL and Genome-Wide Epistatic Interactions for the Transformation of Single Spikelet in Teosinte Ears into Paired Spikelets in Maize Ears During Maize Domestication

Zhengjie Chen
Sichuan Agricultural University - Chengdu Campus

Kun Hu
Sichuan Agricultural University - Chengdu Campus

Yong Yin
Sichuan Agricultural University - Chengdu Campus

Dengguo Tang
Sichuan Agricultural University - Chengdu Campus

Jixing Ni
Sichuan Agricultural University - Chengdu Campus

Peng Li
Sichuan Agricultural University - Chengdu Campus

Le Wang
Sichuan Agricultural University - Chengdu Campus

Tingzhao Rong
Sichuan Agricultural University - Chengdu Campus

jian liu (liujian@sicau.edu.cn)
Sichuan Agricultural University - Chengdu Campus
https://orcid.org/0000-0003-4192-8721

Research Article

Keywords: maize, teosinte, single spikelet, paired spikelets, major QTL, epistasis, segregation distortion region

DOI: https://doi.org/10.21203/rs.3.rs-408462/v1

License: ☑️ ☐ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Maize ear carries paired spikelets, whereas the ear of its wild ancestor, teosinte, bears single spikelets. However, little is known about the genetic basis of the processes of transformation of single spikelets in teosinte ear to paired spikelets in maize ear. In this study, a two-ranked, paired-spikelets primitive maize and a two-ranked, single-spikelet teosinte were utilized to develop an F₂ population, and QTL mapping for single vs. paired spikelets (PEDS) was performed. Two QTL (qPEDS1.1 and qPEDS3.1) for PEDS located on chromosomes 1L and 3S were identified in the 162 F₂ plants using the inclusive composite interval mapping of additive (ICIM-ADD) module, explaining 1.93% and 23.79% of the phenotypic variance, respectively. Out of the 409 F₂ plants, 43 plants with PEDS = 0% and 43 plants with PEDS > 20% were selected for genetic typing; the QTL (qPEDS3.1) accounting for 64.01% of the phenotypic variance for PEDS was also detected. Moreover, the QTL (qPEDS3.1) was validated in three environments, which explained 31.05%, 38.94% and 23.16% of the phenotypic variance, respectively. In addition, 50 epistatic QTLs were detected in 162 F₂ plants using the two-locus epistatic QTL (ICIM-EPI) module; they were distributed on all 10 chromosomes and explained 94.40% of the total phenotypic variance. The results contribute to a better understanding of the genetic basis of domestication of paired spikelets and provide a genetic resource for future map-based cloning; in addition, the systematic dissection of epistatic interactions underlies a theoretical framework for overcoming epistatic effects on QTL fine mapping.

Introduction

During maize domestication, the main goals were to improve the yield and ease of harvesting (Wang et al. 2005; Doebley 2004). The morphology of maize ear and that of its ancestral teosinte exhibit extreme differences, with taxonomists classifying them in different genera initially (Doebley 2004). There are four major traits distinguishing teosinte ear from maize ear (Doebley 1992, 2004). First, compared to the teosinte kernels protected by a hard outer glume, the maize kernels are naked, enabling the kernels to be easily harvested and digested. Second, the teosinte ear has two ranks with one rank on each side, whereas the maize ear has two or more ranks, resulting in maize ear bearing hundreds of kernels. Third, teosinte has a shattering rachis and maize has a non-shattering one; loss of shattering facilitates easy collection of kernels, and has been selected for in domestication of all cereals. Fourth, each cupulate fruitcase of the teosinte ear has single mature spikelet (one kernel per spikelet), whereas paired mature spikelets are in each cupulate fruitcase of the maize ear, which could double the kernel number. In addition to the single vs. paired spikelets, the key genes affecting the other three traits have been cloned, including Teosinte glume architecture 1 (tga1) involved in the origin of naked kernels (Dorweiler et al. 1993; Wang et al. 2005); ZmSh1-1, ZmSh1-5.1 and ZmSh1-5.2 related to seed shattering (Lin et al. 2012); and FLORICAULA/LEAFY homologs zfl1 and zfl2, unbranched2 (ub2) and unbranched3 (ub3) and its regulatory locus KRN4 responsible for rank number of ear determining number of kernel rows (Bomblies et al. 2003; Bomblies and Doebley 2006).

Observing the development of the female inflorescence by scanning electron microscopy, it was found that the transformation of the spikelet pair meristems (SPM) to the spikelet meristems (SM) was the crucial step involved in single vs. paired spikelets. In maize, the SPM produced two morphologically distinct spikelet meristems, one sessile and one pedicellate. Both of them developed into floral meristems (FM) that ultimately produced the floral organs (Upadayya et al. 2006). In contrast, the pedicellate SM was aborted in teosinte (Doebley et al. 1995b). In the past 100 years, few studies were conducted to dissect the genetic basis of single vs. paired spikelets through analysis of Mendelian inheritance and linkages with a known gene or molecular marker loci. Collins and Kempton (1920) first reported that a ratio of paired:single spikelets approaching 3:1 was obtained in teosinte-maize hybrid populations, but the inheritance of single vs. paired spikelets deviated from the Mendelian pattern due to continuous phenotypic variation. Conversely, Langham (1940) inferred that single spikelet (named pd) was controlled by a single Mendelian factor. Mangelsdorf (1947) and Szabó et al. (1996) suggested that the segregation of single vs. paired spikelets fitted a model with two independent genes. Nevertheless, Rogers (1950) found that unifactorial inheritance did not control the single vs. paired spikelets, and the genetic control of the trait was more complex. Mangelsdorf (1947) showed the molecular marker loci on chromosomes 1L, 2S, 3L, and 4S with link with single vs. paired spikelets. Subsequently, with the development of molecular marker technology, a RFLP marker was used for mapping QTL for single vs. paired spikelets. A total of 18 QTL for single vs. paired spikelets were identified, being located on all 10 chromosomes. The phenotypic variation explained by individual QTL ranged from 4.9–46.1% (Doebley et al. 1990; Doebley and Stec 1991, 1993; Lauter and Doebley 2002b). Two major QTL located on chromosomes 1L (QTL-1L) and 3L (QTL-3L) were detected in three different genetic backgrounds and the effect of these two QTL was confirmed by analyzing of near-isogenic lines (NILs) (Doebley et al. 1995a).

Epistasis is used to denote the interaction between alleles from different loci and plays an important role in quantitative genetics analysis (Mackay 2014; Vazquez et al. 2015; Shang et al. 2016). Recently, epistasis was reliably detected to have an effect on complex trait variation, including disease resistance (Roncallo et al. 2012; Singh. et al, 2013; Vazquez et al. 2015) and yield-related traits (Jiang et al. 2017; Soyk et al. 2017; Sundaram et al. 2018). Based on several experiments in which the total phenotypic variance of epistasis ranged
from 16–81%, Carlborg and Haley argued that epistasis should be accounted for in order to understand the genetic basis of complex traits (Carlborg and Haley 2004). In previous studies, the significant epistasis between loci umc107 (QTL-1L) and umc92 (QTL-3L) for single vs. paired spikelets was detected in the maize × teosinte (Zea mays ssp. mexicana) F₂ population (Doebley and Stec 1991). In the maize × teosinte (Zea mays ssp. parviglumis) F₂ population, the proportion of paired spikelets increased from 0–60% due to the combined effect of these two QTL (Doebley et al. 1995a). Then, the near-isogenic lines (NILs) of QTL-1L and QTL-3L were constructed in the maize and teosinte genetic backgrounds, respectively. The mean trait values of maize allele of QTL-1L and QTL-3L in the teosinte genetic background were 0.8% and 1.9%, respectively; the value was 7.3% when these two QTL were combined, which was 4.6% higher than the sum of two individual QTL. In addition, compared with the combined effect of these two QTL in the F₂ population (60%), about 52.7% reduction was observed in the teosinte genetic background, suggesting that the higher-order epistatic interactions may be responsible for PEDS (Doebley et al. 1995a).

In this study, a two-ranked (four rows) primitive maize was chosen to develop an F₂ population by crossing it with two-ranked, two-rows teosinte (Z. mays ssp. mexicana). The oligonucleotides pool assay (OPA) with 3072 well-distributed and high-quality SNPs was used for genotyping F₂ plants. QTL mapping for PEDS was performed, identifying one minor QTL explaining 1.93% of the phenotypic variance, one major QTL explaining 23.79% of the phenotypic variance and 50 epistatic QTL explaining 94.40% of the total phenotypic variance. The major QTL was validated in three environments. These results suggested the importance of not only major and minor QTL, but the genome-wide epistasis as well, in influencing the variation of PEDS.

Materials And Methods

Plant materials

An F₂ population was developed through a cross between waxy maize inbred line SICAU1212 and teosinte MT1 (Z. mays ssp. mexicana). SICAU1212 ear has two ranks with two spikelets per cupule (paired spikelets), whereas MT1 ear has two ranks with one spikelet per cupule (single spikelet), thus excluding the effect of number of ranks, which is essential for investigation of single vs. paired spikelets. SICAU1212 was derived from a waxy maize landrace Silunuo by 10 consecutive generations of self-pollination, and had multiple primordial traits of maize, including small stature, ramification, stooling, narrow leaves, and small spike. The history of Silunuo cultivation in Yunnan Province of China can be traced back to at least 1890 (Zeng and Pu 1981; Tian et al. 2009).

Field trials and trait measurements

The F₂ population with 409 plants and their parents were grown at Ya’an city in Sichuan Province, China (11YA, 30°'N, 104°'02’E, altitude 580 m) in April 2011. To validate the major QTL identified in the 11YA environment, the F₂ population was grown in three environments as follows: 108 plants at Wenjiang district in Sichuan Province, China (17WJ, 30°'40’N, 104°'04’E, altitude 750 m) in April 2017, 115 plants at Ya’an city in Sichuan Province, China (17YA, 30°'N, 103°'02’E, altitude 580 m) in April 2017, and 96 plants at Jinghong city in Yunnan Province, China (17JH, 22°'01’N, 100°'58’E, altitude 551 m) in August 2017.

PEDS was defined by Doebley et al. (1990) as the percentage of cupules lacking the pediculate spikelet, and we followed it. In order to easily and accurately investigate the phenotype, the single and paired spikelets on the basal-most secondary lateral inflorescence were counted as soon as the silks of plant were visible, avoiding the interference of oral organs with developmental failure. The phenotypic data were cubic root transformed to reduce skewness and kurtosis (Doebley et al. 1990). Basic statistical analysis of PEDS was performed using SPSS19.0 software (http://www.spss.com).

Genotyping and construction of genetic linkage map

Genomic DNA was extracted from young leaves of F₂ population (162 randomly selected plants from the 409-plant population, and 43 plants with PEDS >20% selected from the rest of population), their F₁ and parents in the 11YA environment using the cetyl trimethyl ammonium bromide (CTAB) method (Saghai-Maroof et al. 1984). The oligonucleotides pool assay (OPA) consisting of 3072 well-distributed and high-quality SNPs was used to genotype the plants mentioned above using the procedure described by Fan et al (2006) and Hou et al (2015). The SNP markers showed polymorphism between the parents SICAU1212 and MT1 and heterozygotes allele in the 162 F₂ plants, excluding obviously segregation distortion markers in SICAU1212 or MT1 allele less than 21, or heterozygotes allele less than 41. The chi-square analysis was conducted for the segregation ratio of the remaining SNP markers. The genetic linkage map was constructed by using MAPMAKER/EXP 3.0 with LOD threshold >3.0, and the genetic distances were calculated by the Kosambi mapping function (Lander et al. 1987; Kosambi 2016).
QTL analysis

QTL for PEDS were identified using two approaches: one was QTL mapping in 162 randomly selected plants, and another was selective genotyping in 86 plants with extreme traits. Combined with the SNP-based linkage genetic map and phenotyping of 162 F_2 plants, the main QTL and epistatic effects for PEDS were identified in the QTL IciMapping 4.1 (http://www.isbreeding.net/) using the inclusive composite interval mapping of additive (ICIM-ADD) and two epistatic QTL (ICIM-EPI) modules (Li et al. 2015). Before QTL mapping, the missing phenotypes were removed; to detect additive QTL, walking speed was set at 1.0 cM, probability in the stepwise regression was 0.001, and threshold LOD scores were calculated using 1000 permutations with a type 1 error of 0.05. Epistatic QTL were identified by using walking speed of 5 cM, probability of 0.0001 in stepwise regression, and threshold LOD of 5.0.

A subset of 86 plants, namely 43 plants with PEDS = 0 chosen from the 162 F_2 plants and 43 plants with PEDS >20% selected from 409 plants representing the most extreme phenotypes, were used for selective genotyping to identify QTL for PEDS. The detection of QTL for PEDS was performed in the QTL IciMapping 4.1 using the selective genotyping mapping (SGM) and the inclusive composite interval mapping of additive (ICIM-ADD) modules. The parameters of threshold LOD were the same as that for additive QTL detection described above. QTL designations followed the standard nomenclature of McCouch et al. (1997). For example, for QTL qPEDS3.1, q represents a QTL, peds is the abbreviation for “Percentage of cupules lacking the pedicellate spikelet”, 3 indicates that the QTL was located on the chromosome 3, and 1 is the serial number of that QTL; the QTL had the same serial number when mapped within the same marker interval or when sharing a common marker.

Validation of QTL regions

The two QTL on chromosomes 1L and 3S identified in the 11YA environment were validated in three environments. First, a total of 36 InDel markers (Liu et al. 2015) located in the QTL regions were chosen to detect polymorphism between SICAU1212 and MT1. The procedure of PCR amplification was conducted as described in our previous reports (CHEN et al. 2017), and denatured amplified products were separated on 6% polyacrylamide gels and visualized by silver staining (Sanguinetti et al. 1994). Then, the co-dominant and non-segregation distortion markers were utilized to construct the local genetic linkage map. With the phenotypic data, QTL mapping was performed following the procedures described above.

Results

Phenotypic variation in the trait

The ear of maize SICAU1212 is about 12 cm, presenting two ranks with 21–24 cupules per rank and two spikelets per cupule (paired spikelets); in contrast, the ear of teosinte MT1 is about 7 cm, presenting two ranks with six cupules per rank and one spikelet per cupule (Fig. 1). The differences in PEDS between SICAU1212 and MT1 were distinct, namely PEDS = 0% in SICAU1212 versus PEDS = 100% in MT1; the PEDS of F_1 plants equaled 0%, indicating that maize was completely dominant to teosinte (Table 1). The mean values of PEDS were 7.63%, 8.77%, 8.32%, and 13.35% in the F_2 populations, with a range from 0–100%, in the four environments, respectively. The ratio of individuals with PEDS >0% in the F_2 population ranged from 1/6 (17WJ) to 1/4 (17JH). In addition, at least one plant with all single spikelets (PEDS = 100%) was observed in each environment. However, the phenotypes of F_2 populations did not follow a normal distribution, which was instead significantly skewed toward the maize phenotype (Fig. 2).
Table 1
Phenotypic performance of the PEDS in parents and F₂ populations under four environments

Env. a	population size	MT1 (%) b	SICAU1212 (%) c	Mean (%) d	Min (%)	Max (%)	Skewness	Kurtosis
11YA	163	100	0	7.63	0	100	3.13	9.16
17WJ	108	100	0	8.77	0	100	2.83	7.14
17YA	115	100	0	8.32	0	100	2.96	8.45
17JH	96	100	0	13.35	0	100	2.15	3.31

a Env. represents environments. 11YA, 17WJ, 17YA and 17JH represent Ya'an 2011, Wenjiang 2017, Ya'an 2017 and Jinghong 2017, respectively.

b All cupules of the ear are single spikelet.

c All cupules of the ear are paired spikelet.

Linkage Map And Segregation Distortion Regions

The oligonucleotides pool assay (OPA) with 3072 SNPs was utilized to genotype the F₂ plants, including 162 randomly selected plants, 43 plants with PEDS > 20%, the parents, and F₁. As a result, 839 SNPs showed polymorphisms between the parents and heterozygote in the F₁, with the ratio of 27.31%. To exclude the obviously segregation distortion markers, 586 SNPs were used to construct the genetic linkage map. The linkage map covered all 10 maize chromosomes, and the number of markers ranged from 36 on chromosome 10 to 81 on chromosome 8. It spanned a total length of 1758.29 cM, with an average marker interval of 3.00 cM; the biggest linkage distance between two adjacent markers was 32.12 cM, located on chromosome 3 between PZE-103118170 and PZE-103150482 (Fig. 3).

Fifteen strong segregation distortion regions (SDRs), including 220 of 586 SNPs (37.54%), were detected in the linkage map, and were located on chromosomes 1 to 9 (Table 2, Fig. 3). The number of markers contained in each SDR ranged from 3 (SDR8-2) to 32 (SDR8-1). The markers in SDR1, SDR5-1, SDR8-1, and SDR9-1 were skewed towards SICAU1212, whereas those in SDR2-1, SDR3-1, SDR3-2, SDR6-1, SDR6-2, SDR6-3, SDR6-4, SDR8-2, and SDR8-3 deviated towards heterozygote. Additionally, SDR4-1 deviated towards SICAU1212 and heterozygote, whereas SDR7-1 deviated towards MT1 and heterozygote.
Table 2
Summary of segregation distortion regions (SDRs) in the F$_2$ population of SICAU1212 × MT1

SDRs	Chromosome	marker interval	Physical position (Mb)a	Number of SICAU1212 alleleb	Number of MT1 alleleb	Number of heterozygotes alleleb	Direction of skewness
SDR1-1	1	SYN35048-PZE-101229195	192.40–278.91	56.8	21.3	84.1	SICAU1212
SDR2-1	2	PZE-102060224-PZE-102142740	38.54–189.63	43.9	22.1	96.2	Heterozygote
SDR3-1	3	PZE-103032109-PZE-103035540	24.73–28.84	43.5	23.5	94	Heterozygote
SDR3-2	3	PZE-103059411-SYN30483	113.07–225.91	44.4	24.4	93.4	Heterozygote
SDR4-1	4	PZE-104005482-PZE-104072386	1.45-143.51	49.7	21.2	90.7	SICAU1212, Heterozygote
SDR5-1	5	PZE-105150391-SYN36222	201.87–212.37	54.1	23.4	84.6	SICAU1212
SDR6-1	6	PZE-10603961-SYN36222	79.46–82.61	45.5	22.5	94.3	Heterozygote
SDR6-2	6	PZE-106058198-SYN38352	107.09–123.61	40.7	23.1	98	Heterozygote
SDR6-3	6	PZE-106078419-PZE-106081334	133.83–138.43	39.2	23.7	99.5	Heterozygote
SDR6-4	6	SYN4807-PZE-106104150	150.68–155.45	33.8	27.1	101.8	Heterozygote
SDR7-1	7	SYN36193-PUT-163a-71300000-3068	1.97-133.94	23.2	49.7	89.2	MT1, Heterozygote
SDR8-1	8	SYN3483-PZE-108052803	22.68–93.92	56.9	28.2	76.5	SICAU1212
SDR8-2	8	PZE-108056925-PZE-108060445	101.96–108.03	45.6	22.7	94.3	Heterozygote
SDR8-3	8	PZE-108096732-PZE-108110152	152.76–162.99	26.6	40.4	95.8	Heterozygote
SDR9-1	9	PZE-109038289-PZE-109047418	56.59–62.25	53.5	38.8	68.8	SICAU1212

a Physical position is based on B73 RefGen V2 sequence.

b The number is the average value.

Main And Epistatic Effect Qtl For Peds

Taking advantage of the SNP-based linkage map and precise phenotypic data, two QTL for PEDS were identified (Table 3, Fig. 3) in the F$_2$ population with 162 randomly selected plants in the 11YA environment; they were located on chromosomes 1L ($qPEDS1.1$) and 3S ($qPEDS3.1$), were flanked by markers PZE-101196838-PUT-163a-71300000-3068 and PZE-103018221-SYN28119, and accounted for 1.93% and 23.79% of the phenotypic variance, respectively. In addition, the SNP marker with the highest LOD score of 4.485 was located at SYN28119, as identified using the SGM module in the population of 86 extreme phenotypes. Moreover, the major QTL ($qPEDS3.1$) was also detected in the same population using the ICIM-ADD module; it was located between markers PZE-103018221 and SYN28119, and explained 64.01% of the phenotypic variance. The additive effect of all QTL was negative, indicating that the alleles that increased the expression of PEDS were from MT1. The $qPEDS1.1$ showed the additive effect due to the dominance/additive ratio being 0.17, whereas $qPEDS3.1$ showed the dominance effect due to the dominance/additive ratio being 0.84 (Edwards et al. 1987).
Table 3
Summary of significant QTL for PEDS identified in the F$_2$ populations under four environments

ENV.a	QTL.b	Chromosome	Marker interval	Physical position (Mb)c	position (cM)	Range (cM)	LODd	PVE (%)e	Addf	Domg	Gene actionh
11YA	qPEDS1.1R	1	PZE-101196838-PUT-163a-76013247-3735	245.03-270.98	229	221.5-229.5	1.31	1.93	-0.06	-0.01	A
	qPEDS3.1R	3	PZE-103018221-SYN28119	10.52-20.40	43	41.5-44.5	49.95	23.79	-0.37	-0.38	D
	qPEDS3.1S	3	PZE-103018221-SYN28119	10.52-20.40	43	40.5-45.5	29.41	64.01	-0.39	-0.33	D
17WJ	qPEDS3.1	3	chr3-14843386-chr3-19759100	14.84-19.75	24	22.5-26.5	9.60	31.05	-0.25	-0.24	D
17YA	qPEDS3.1	3	chr3-14843386-chr3-19759100	14.84-19.75	31	27.5-33.5	12.53	38.94	-0.23	-0.19	D
17JH	qPEDS3.1	3	chr3-11534053-chr3-14843386	11.53-14.84	16	15.5-19.5	4.68	23.16	-0.15	-0.27	OD

a Env. represents environments. 11YA, 17WJ, 17YA and 17JH represent Ya’an 2011, Wenjiang 2017, Ya’an 2017 and Jinghong 2017, respectively.

b The QTL with R in the upper right corner indicates that this QTL was detected in the F$_2$ population with 162 random plants; while the QTL with S in the upper right corner indicates that this QTL was detected in the 86 extreme phenotype plants.

c LOD score

d Physical position is based on B73 RefGen V2 sequence.

e Phenotypic variation explained by each QTL.

f A negative additive effect indicates that the MT1 allele increased the phenotypic value.

g A, D, and OD represent additive, dominance, and over-dominance effect, respectively, based on EDWARDS et al. (1987)

In addition to the main effect QTL for PEDS, 50 pairs of epistatic QTL (named as EPqped$^{-1}$ to EPqped$^{-50}$) were identified, being distributed on all 10 chromosomes (Table 4, Fig. 4). The total phenotypic variance explained (PVE) by these 50 epistatic QTL was 94.40%, and the phenotypic variance explained by each epistatic QTL ranged from 0.68–4.12%. However, these 50 epistatic QTL were divided into two categories based on the additive-by-additive effect (Li et al. 2015). One category, including 29 epistatic QTL, had a negative effect that decreased the expression of PEDS, and accounted for 55.59% of the phenotypic variance; another category consisting of 21 epistatic QTL had a positive effect that increased the expression of PEDS, and accounted for 38.81% of the phenotypic variance. Among them, five epistatic QTL (EPqped$^{-6}$ to EPqped$^{-10}$) were located in the region of qPEDS1.1, and nine epistatic QTL (EPqped$^{-1}$, EPqped$^{-13}$, and EPqped$^{-17}$ to EPqped$^{-23}$) were in the region of qPEDS3.1.
Table 4
Epistatic QTL for PEDS identified in the F$_2$ population in the 11YA environment

Epistatic QTL	Chromosome1	Position (cM)a	Marker interval1	Chromosome2	Position (cM)a	Marker interval2	LODb	PVE (%)c	AAd
EPqeds-1	1	15	PZE-101003135-SYN14143	3	40	PZE-103018221-SYN28119	46.52	4.12	-0.019
EPqeds-2	1	20	PZE-101003135-SYN14143	5	55	PZE-105054212-PZE-105056823	8.49	1.71	0.167
EPqeds-3	1	25	PZE-101003135-SYN14143	4	30	PZE-104026267-PZE-104031374	11.72	1.07	-0.349
EPqeds-4	1	25	PZE-101003135-SYN14143	8	175	PZE-108118826-PZE-108131283	7.35	0.99	-0.190
EPqeds-5	1	195	PZE-101150513-PZE-101161892	9	110	PZE-109086476-PZE-109094249	8.79	1.75	0.001
EPqeds-6	1	225	PZE-101196838-PUT-163a-76013247-3735	2	35	SYN7604-PZE-102040682	8.61	1.24	-0.193
EPqeds-7	1	225	PZE-101196838-PUT-163a-76013247-3735	6	15	PZE-106005121-PZE-106020499	7.14	1.08	-0.323
EPqeds-8	1	225	PZE-101196838-PUT-163a-76013247-3735	7	95	PZE-107052459-PZE-107074405	6.32	0.86	0.123
EPqeds-9	1	225	PZE-101196838-PUT-163a-76013247-3735	10	40	PZE-110009618-PZE-110013181	7.98	0.77	-0.134
EPqeds-10	1	235	PZE-101222419-PZE-101229195	1	240	PZE-101222419-PZE-101229195	21.19	2.08	0.025
EPqeds-11	2	10	SYN10369-PZE-102017883	10	65	PZE-110028531-PZE-110036318	5.89	0.70	0.202
EPqeds-12	2	30	SYN7604-PZE-102040682	2	35	SYN7604-PZE-102040682	35.32	2.13	-0.331

a The numbers represent the genetic position on the genetic linkage map.

b LOD score.

c Phenotypic variation explained by epistatic QTL.

d Additive by additive effect of QTL at the two scanning positions. The positive and negative values indicate the epistatic QTL increased and decreased the phenotypic value, respectively.
Epistatic QTL	Chromosome	Position (cM)	Marker interval	Chromosome	Position (cM)	Marker interval	LOD	PVE (%)	AA
EPqpeds-13	2	35	SYN7604-PZE-102040682	3	40	PZE-103018221-SYN28119	46.38	4.10	0.067
EPqpeds-14	2	35	SYN7604-PZE-102040682	4	30	PZE-104026267-PZE-104031374	8.95	0.90	0.051
EPqpeds-15	2	40	SYN7604-PZE-102040682	9	110	PZE-109086476-PZE-109094249	7.68	0.91	-0.239
EPqpeds-16	2	120	PZE-102137972-PZE-102139681	7	30	SYN4762-SYN20419	5.28	0.68	0.214
EPqpeds-17	3	40	PZE-103018221-SYN28119	3	70	PZE-103037508-PZE-103040868	50.31	4.12	-0.006
EPqpeds-18	3	40	PZE-103018221-SYN28119	4	80	SYN26775-PZE-104088242	25.66	4.10	0.153
EPqpeds-19	3	40	PZE-103018221-SYN28119	5	110	SYN34468-SYN7361	38.02	4.10	-0.138
EPqpeds-20	3	40	PZE-103018221-SYN28119	6	20	PZE-106005121-PZE-106020499	43.81	4.10	-0.087
EPqpeds-21	3	40	PZE-103018221-SYN28119	8	15	PZA00058.6-PZE-108016906	42.17	4.10	-0.082
EPqpeds-22	3	40	PZE-103018221-SYN28119	9	85	PZE-109066773-PZE-109086476	52.46	4.10	-0.253
EPqpeds-23	3	40	PZE-103018221-SYN28119	10	10	SYN17609-SYN17100	42.71	4.10	0.149
EPqpeds-24	3	50	SYN28119-PZE-103032109	7	100	PZE-107052459-PZE-107074405	48.65	4.10	0.067
EPqpeds-25	4	10	SYN5712-PZE-104021281	5	80	PZE-105061606-PZA02676.2	7.23	1.00	-0.308
EPqpeds-26	4	25	PZE-104024382-PZE-104024520	10	30	SYN17100-PZE-11009618	11.84	0.95	-0.181

a The numbers represent the genetic position on the genetic linkage map.

b LOD score.

c Phenotypic variation explained by epistatic QTL.

d Additive by additive effect of QTL at the two scanning positions. The positive and negative values indicate the epistatic QTL increased and decreased the phenotypic value, respectively.
Epistatic QTL	Chromosome1	Position (cM)1	Marker interval1	Chromosome2	Position(cM)2	Marker interval2	LODb	PVE (%)c	AA^d
EPqeds-27	4	30	PZE-104026267-PZE-104031374	4	35	PZE-104031374-PZE-104039411	12.22	1.39	0.030
EPqeds-28	4	30	PZE-104026267-PZE-104031374	6	5	PZE-106005121-PZE-106020499	8.99	1.62	0.270
EPqeds-29	4	30	PZE-104026267-PZE-104031374	7	190	PZE-107130789-PZE-107137037	10.51	0.90	-0.285
EPqeds-30	4	30	PZE-104026267-PZE-104031374	8	155	PZE-108112111-PZE-108118826	12.00	0.85	-0.243
EPqeds-31	4	30	PZE-104026267-PZE-104031374	9	85	PZE-109066773-PZE-109086476	8.36	0.84	-0.035
EPqeds-32	5	65	PZE-105056823-PUT-163a-16920212-1046	7	190	PZE-107130789-PZE-107137037	14.23	1.75	0.361
EPqeds-33	5	75	ZM013514-0174-PZE-105061606	10	15	SYN17609-SYN17100	9.85	1.30	0.040
EPqeds-34	5	100	PZE-105103973-SYN35495	5	110	SYN34468-SYN7361	29.71	2.08	-0.110
EPqeds-35	5	160	PZE-105163590-PZE-105167452	9	110	PZE-109086476-PZE-109094249	5.70	0.84	0.241
EPqeds-36	5	165	PZE-105167452-PZE-105171774	8	25	PZA00058.6-PZE-108016906	12.51	1.37	-0.156
EPqeds-37	6	5	PZE-106005121-PZE-106020499	7	185	PZE-107130789-PZE-107137037	5.47	0.80	0.208
EPqeds-38	6	15	PZE-106005121-PZE-106020499	6	25	PZE-106005121-PZE-106020499	44.37	2.13	-0.225
EPqeds-39	6	80	PZE-106053643-PZE-106058198	10	15	SYN17609-SYN17100	8.00	0.82	-0.255

^a The numbers represent the genetic position on the genetic linkage map.

^b LOD score.

^c Phenotypic variation explained by epistatic QTL.

^d Additive by additive effect of QTL at the two scanning positions. The positive and negative values indicate the epistatic QTL increased and decreased the phenotypic value, respectively.
Epistatic QTL	Chromosome1 Position (cM) 1	Marker interval 1	Chromosome2 Position (cM) 2	Marker interval 2	LOD b	PVE (%) c	AA d
EPqpeds-40	6 135	PZE-106083588-PZE-106083873	8 25	PZA00058.6-PZE-108016906	7.98	1.36	0.130
EPqpeds-41	7 10	SYN36193-SYN4760	8 170	PZE-108118826-PZE-108131283	16.51	1.81	-0.125
EPqpeds-42	7 10	SYN36193-SYN4760	9 110	PZE-109086476-PZE-109094249	5.93	1.61	0.134
EPqpeds-43	7 15	SYN36193-SYN4760	10 65	PZE-110028531-PZE-110036318	6.68	0.96	-0.121
EPqpeds-44	7 170	SYN12246-PZE-107130514	7 185	PZE-107130789-PZE-107137037	42.18	2.08	0.000
EPqpeds-45	8 20	PZA00058.6-PZE-108016906	8 35	PZA00058.6-PZE-108016906	47.70	2.13	-0.287
EPqpeds-46	8 170	PZE-109118826-PZE-108131283	9 85	PZE-109066773-PZE-109086476	16.94	1.79	-0.004
EPqpeds-47	8 170	PZE-108118826-PZE-108131283	10 55	PZE-110017983-PZE-110028531	7.80	0.93	-0.148
EPqpeds-48	9 85	PZE-109066773-PZE-109086476	10 55	PZE-110017983-PZE-110028531	5.18	0.99	0.008
EPqpeds-49	9 110	PZE-109086476-PZE-109094249	9 125	ZM013385-0395-PZE-109099670	48.48	2.13	-0.289
EPqpeds-50	10 10	SYN17609-SYN17100	10 30	SYN17100-PZE-110009618	35.58	2.08	0.123

a The numbers represent the genetic position on the genetic linkage map.

b LOD score.

c Phenotypic variation explained by epistatic QTL.

d Additive by additive effect of QTL at the two scanning positions. The positive and negative values indicate the epistatic QTL increased and decreased the phenotypic value, respectively.

Validation Of The Main Qtl

To validate the main QTL (qPEDS1.1 and qPEDS3.1), 11 polymorphic InDel markers were selected from 36 InDel markers, and were utilized to construct the local genetic linkage map in the qPEDS1.1 and qPEDS3.1 regions. No significant QTL was detected in the qPEDS1.1 region, whereas one major QTL (named qPEDS3.1) was identified in the qPEDS3.1 region in the three environments (Table 3, Fig. 5). The QTL was flanked by markers chr3-14843386 and chr3-19759100, accounting for 31.05% and 38.94% of phenotypic variance in the 17WJ and 17YA.
environments, respectively. In addition, the QTL located between chr3-11534053 and chr3-14843386 explained 23.16% of phenotypic variance in the 17YA environment. All QTLs had a negative additive effect, indicating that alleles from MT1 contributed predominantly to the phenotype.

Discussion

The advantage of four-row waxy maize landrace with relatively primitive morphology in studying PEDS

In order to dissect the genetic basis of single vs. paired spikelets (PEDS), the two-ranked (four rows) maize SICAU1212 (derived from four-row waxy maize landrace Silunuo) was crossed to the two-ranked (two rows) teosinte MT1 to develop an F2 population. The SNP array was used for genotyping of the F2 plants, resulted in one major, one minor and 50 epistatic QTL for PEDS were identified. There are several advantages in using SICAU1212 as a parent in the study of the origin of paired spikelets during maize domestication. Firstly, the ears of both SICAU1212 and teosinte MT1 had two ranks, avoiding the confusion potentially arising from the segregation of ranks (rows) in a multi-ranked maize-teosinte F2 population; notably, the fact all plants of the F2 population of SICAU1212 × MT1 had only two ranks meant the only difference was paired spikelets in SICAU1212 ear versus single spikelets in MT1, making it easy to investigate the PEDS phenotype, as shown in Fig. 1. For instance, the SICAU1212 ear has an average ear length of 12 cm and approximately 80 kernels in four rows, whereas the earliest maize ear was 6 cm in length with 28 kernels in four to eight rows. According to the records, the maize landrace Silunuo (SICAU1212) has been cultivated in Yunnan Province, China, since 1890 (Zeng and Pu 1981). In addition, the cluster analysis of SICAU1212, 368 maize inbred lines and eight teosintes resulted in classifying SICAU1212 and eight teosintes into the same sub-group (Figure S1, unpublished data). In other words, SICAU1212 is a relatively primitive maize in both phenotypic and genetic relationship analyses. The other advantage was that the differences in the genetic background between SICAU1212 and teosinte was small, which reduced the effect of complex genetic background on QTL mapping; the QTL for PEDS identified in this study were probably related to the transformation of spikelets from single to paired during maize domestication rather than due to maize improvement.

The Qtl (qPeds3.1) Was A Novel Major Qtl

In this study, two QTL for PEDS were identified, one major stable QTL (qPeds3.1) located on the short arm of chromosome 3 (3S) and one minor QTL (qPeds1.1) located on the long arm of chromosome 1 (1L). In previous studies, the highest frequency of QTL for PEDS was located on chromosomes 1L and 3L (Doebly et al. 1990; Doebly and Stec 1991, 1993). The QTL qPeds1.1 was consistent with the QTL-1L detected by Doebly et al., but the phenotypic variance (1.93%) of qPeds1.1 was much lower than that of QTL-1L (~ 19.5%); the reason may be that the mapping populations and the method of QTL mapping were different. The QTL qPeds3.1 was mapped on chromosome 3S, accounting for 23.16~38.94% of the phenotypic variance in the four environments tested in this study, whereas the QTL-3L located on chromosome 3L explained 13.0-46.1% of the phenotypic variance as reported by Doebly et al (Doebly and Stec 1993; Doebly et al. 1990; Doebly and Stec 1991). Similarly, one QTL explaining 5.8% of the phenotypic variance and located on chromosome 3S was also identified by Lauter and Doebly (2002a); that QTL was approximately 4 Mb away from the QTL qPeds3.1 based on the physical position of markers, and further verification is needed to ascertain whether they are the same. Notably, the phenotypic variance associated with qPeds3.1 was 64.01% (detected using selective genotyping), which was 2-fold higher than that of QTL detected in the 162 randomly selected F2 plants. One reason may be that the selective genotyping eliminated the effect of the high segregation distortion in the maize-teosinte population. Another reason may be that the obstacles in QTL mapping arising from epistatic effects can be overcome using selective genotyping analysis (Lee et al. 2014).

Using the high-density linkage map detected more segregation distortion regions potentially related to maize domestication

Different types of molecular markers have been used for constructing the linkage maps in the maize × teosinte F2 or BC populations, including RFLP, AFLP, SSR and SNP, with the number of markers ranging from 58 (RFLP) to 338 (AFLP) (Mano et al. 2005; Briggs et al. 2007; Jun-qing et al. 2011; Wang et al. 2012). Comparatively, the SNP array with 3072 SNPs was used to genotype the F2 plants in this study, and 586 SNPs were used to construct the linkage map. The total length of the linkage map was 1758.29 cM, which was shorter than that of a B73 × parviglumis F2 population (2210.8 cM) (Wang et al. 2012) and a B73 × mexicana F2 population (2002.4 cM) (Jun-qing et al. 2011), but longer than that of a B73 × diploperennis BC population (1357.7 cM) (Wang et al. 2012), a B64 × huehuetenangensis F2 population (1402.4 cM) (Mano et al. 2005) and a W22 × parviglumis F2 population (1474.9 cM) (Briggs et al. 2007). In addition, the SNP array was also utilized to genotype the F2-3 population derived from a maize × maize (R08 × Ye478) cross, and the total length of the
linkage map was 2007.9 cM, which was longer than in this study (Hou et al. 2015). The linkage map constructed in this study was a relatively high-density linkage map, which was helpful in detection of QTL and the segregation distortion regions.

Segregation distortion is a common phenomenon generally observed in the interspecies F$_2$ populations, and is considered to be a powerful evolutionary force (Kim et al. 2014). By integrating the results of 13 different studies (Wendel et al. 1987; Doebley and Stec 1991, 1993; Dufour et al. 2001; Lu et al. 2002; Sharopova et al. 2002; Yan et al. 2003; Mano et al. 2005; Mano and Omori 2008; Jun-qing et al. 2011; Wang et al. 2012; Cai et al. 2014), a total of 25 segregation distortion regions SDRs) were identified on all 10 chromosomes (Table S1). Of these, SDR1-2, SDR2-1 and SDR8-3 were detected only in the linkage map of maize × maize population, whereas SDR6-4 and SDR8-2 were detected only in the maize × teosinte population. Notably, 17 SDRs were identified three or more times in different studies, regarded as “SDR hotspot” regions, of which, six SDRs harbored the locations of six known gametophytic factors, including gams1 (Bin2.04), ga7 (Bin3.09), ga1 (Bin4.02), ga10 (Bin5.00-5.09), ga2 (Bin5.04-5.05), and ga8 (Bin9.02). In addition, four of five regions located on chromosomes 1L, 2S, 3, and 4S that affected most of the differences between maize and teosinte (Doebley 1992) overlapped with the SDR hotspot regions (SDR1-1, SDR2-1, SDR3-2, and SDR4-1) identified in this study.

Epistasis Contributed Significantly To The Variation Of Peds

In this study, 50 epistatic QTL were identified, explaining 94.40% of the total phenotypic variance, which was much larger than that of the main effect QTL (~ 25.72%), suggesting that epistasis played an important role in the variation of PEDS as also described in previous studies (Doebley and Stec 1991; Doebley et al. 1995a). Doebley and Stec (1991) detected significant epistasis between loci umc107 and umc92 in the F$_2$ population derived from maize Sin2 × teosinte Doebley643, which increased the expression of PEDS; and epistasis was confirmed in the later study (Doebley et al. 1995a). In contrast, no significant epistasis was identified in the F$_2$ population derived from maize Nay15 × teosinte Ilitis&Cochrane 81 (Doebley and Stec 1993; Doebley et al. 1995a). We also did not detect epistasis between these two loci, but the locus umc107 was close to the marker PZE-101196838 that interacted with loci on chromosomes 2, 6, 7, and 10 (EPqpeds-6 to EPqpeds-9). In addition, the QTL flanked by bnl5.46-umc42a and bnl8.32-umc151 detected by Doebley et al (Doebley et al. 1990; Doebley and Stec 1991) overlapped with the epistatic QTL EPqpeds-27 and EPqpeds-44 based on the physical position, respectively. However, no significant epistasis was identified in these two QTL regions in previous studies. The possible reason was that epistasis was affected by the genetic background (Doebley and Stec 1991). Epistasis for PEDS was detected in the teosinte genetic background and significantly increased the expression of PEDS, whereas PEDS were invariant in the maize genetic background (Doebley et al. 1995a; Lukens and Doebley 1999).

The main force of crop domestication probably came from mutations, recombination and genetic drift. In conditions where epistasis is common; mutation may be neutral or beneficial in one genetic background but deleterious in other genetic backgrounds (De Visser et al. 2011; Lehner 2011; Breen et al. 2012). In other words, epistasis could determine a consequence of mutation effect, resulting in different phenotypes of the trait (Wagner et al. 1997; Rice 1998; Nijhout 2002; Azevedo et al. 2006). Epistasis is regarded as a byproduct of the evolutionary process (Hurst 2000). In contrast, some researchers think it can determine the outcome of many evolutionary processes (Kondrashov 1988; Azevedo et al. 2006). The single spikelet in teosinte ear was completely tranformed into paired spikelets in maize ear during maize domestication. The paired spikelets are dominant to single spikelet and are invariant in modern maize after stabilizing selection by breeders, suggesting that the process of selection led to the genetic robustness of paired spikelets as the beneficial trait (Waddington 1953; Azevedo et al. 2006). In the present study, 50 epistatic QTL for PEDS were identified, suggesting that epistasis may be a remnant of evolution that played an important role in selection for the genetic robustness of paired spikelets; therefore, PEDS have had a complex evolutionary process.

Abbreviations

DISA Tendency of ear to shatter

FM floral meristems

GLUM Hardness and angle of outer glume

Indel insertion-deletion

LIBN Number of branches in primary lateral inflorescence

NILs near isogenic lines
RANK Number of rows of cupules
SDRs segregation distortion regions
SM spikelet meristems
SPM spikelet pair meristems
OPA oligonucleotides pool assay
PEDS Percentage of cupules lacking the pedicellate spikelet
QTL quantitative trait locus (loci)

Declarations

Acknowledgements

Not Applicable.

Funding

This research was provided by the National Basic Research Program of China (the "973" project, 2014CB138203), the State Key Laboratory of Grassland Agro-ecosystems (SKLGAE201509) and the National Natural Science Foundation of China (31101161).

Author contributions

J. L. and T. R. Conceived and designed the experiments. Z. C., K. H., Y. Y., D. T., J. N., P. L., and L. W. conducted phenotyping measurement in the field trial and Performed the experiments. Z. C. analyzed the data. Z. C. and J. L Wrote and revised the manuscript.

Availability of data and materials

The data are provided in the Supplement information and the materials available on request from the authors.

Ethics approval and consent to participate

All of the authors have read and have abided by the statement of ethical standards for manuscripts submitted to Molecular Breeding.

Consent for publication

All of the authors approved the manuscript published in Molecular Breeding.

Conflict of interest

The authors declare no competing interests.

References

Azevedo RB, Lohaus R, Srinivasan S, Dang KK, Burch CL (2006) Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440 (7080):87-90

Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172 (1):519-531

Bomblies K, Wang R-L, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130 (11):2385-2395

Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA (2012) Epistasis as the primary factor in molecular evolution. Nature 490 (7421):535-538
Briggs WH, McMullen MD, Gaut BS, Doebley J (2007) Linkage mapping of domestication loci in a large maize–teosinte backcross resource. Genetics 177 (3):1915-1928

Cai L, Li K, Yang X, Li J (2014) Identification of large-effect QTL for kernel row number has potential for maize yield improvement. Mol breeding 34 (3):1087-1096

Carlberg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5 (8):618

CHEN Z-j, Cong Y, TANG D-g, Zhang L, Zhang L, QU J-t, Jian L (2017) Dissection of the genetic architecture for tassel branch number by QTL analysis in two related populations in maize. J Integr Agr 16 (7):1432-1442

Collins G, Kempton J (1920) A teosinte-maize hybrid. J agric Res 19:1-37

De Visser JAG, Cooper TF, Elena SF (2011) The causes of epistasis. Proceedings of the Royal Society B: Biological Sciences 278 (1725):3617-3624

Doebley J (1992) Mapping the genes that made maize. Trends Genet 8 (9):302-307

Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37-59

Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129 (1):285-295

Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134 (2):559-570

Doebley J, Stec A, Gustus C (1995a) teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141 (1):333-346

Doebley J, Stec A, Kent B (1995b) Suppressor of sessile spikelets1 (Sosl): a dominant mutant affecting inflorescence development in maize. Am J Bot 82 (5):571-577

Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci U.S.A 87 (24):9888-9892

Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262 (5131):233-235

Dufour P, Johnsson C, Antoine-Michard S, Cheng R, Murigneux A, Beckert M (2001) Segregation distortion at marker loci: variation during microspore embryogenesis in maize. Theor Appl Genet 102 (6-7):993-1001

Edwards M, Stuber C, Wendel J (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116 (1):113-125

Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Garcia EW, Lebruska LL, Laurent M, Shen R, Barker D (2006) [3] Illumina universal bead arrays. Method Enzymol 410:57-73

Hou X, Liu Y, Xiao Q, Wei B, Zhang X, Gu Y, Wang Y, Chen J, Hu Y, Liu H (2015) Genetic analysis for canopy architecture in an F2:3 population derived from two-type foundation parents across multi-environments. Euphytica 205 (2):421-440

Hurst LD (2000) Epistasis and the Evolutionary Process. Heredity 85 (6):625–626

Jiang Y, Schmidt RH, Zhao Y, Reif JC (2017) A quantitative genetic framework highlights the role of epistatic effects for grain-yield heterosis in bread wheat. Nat Genet 49 (12):1741

Jun-qing, ZHOU, and, Yu-qiu, GUO, and, Yu-feng, GAO, and, Jian-sheng (2011) A SSR Linkage Map of Maize×Teosinte F2 Population and Analysis of Segregation Distortion. Agr Sci China 10(2): 166-174.

Kim B, Jang SM, Chu S-H, Bordiya Y, Akter MB, Lee J, Chin JH, Koh H-J (2014) Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 7 (1):3
Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336 (6198):435-440

Kosambi DD (2016) The estimation of map distances from recombination values. In: DD Kosambi. Springer, pp 125-130

Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1 (2):174-181

Langham DG (1940) The inheritance of intergeneric differences in Zea-Euchlaena hybrids. Genetics 25 (1):88

Lauer N, Doebley J (2002a) Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 160 (1):333-342

Lauer N, Doebley J (2002b) Genetic Variation for Phenotypically Invariant Traits Detected in Teosinte: Implications for the Evolution of Novel Forms. Genetics 160 (1):333-342

Lee H-I, Ho H-A, Kao C-H (2014) A new simple method for improving QTL mapping under selective genotyping. Genetics 198 (4):1685-1698

Lehner B (2011) Molecular mechanisms of epistasis within and between genes. Trends Genet 27 (8):323-331

Li C, Bai G, Carver BF, Chao S, Wang Z (2015) Single nucleotide polymorphism markers linked to QTL for wheat yield traits. Euphytica 206 (1):89-101

Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44 (6):720

Liu J, Qu J, Yang C, Tang D, Li J, Lan H, Rong T (2015) Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data. BMC genomics 16 (1):1-9

Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105 (3):291-302

Lukens LN, Doebley J (1999) Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genet Res 74 (3):291-302

Mackay TF (2014) Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat Rev Genet 15 (1):22

Mangelsdorf PC (1947) The origin and evolution of maize. In: Advances in genetics, vol 1. Elsevier, pp 161-207

Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) AFLP-SSR maps of maize× teosinte and maize× maize: comparison of map length and segregation distortion. Plant Breeding 124 (5):432-439

Mano Y, Omori F (2008) Verification of QTL controlling root aerenchyma formation in a maize× teosinte “Zea nicaraguensis” advanced backcross population. Breeding Sci 58 (3):217-223

McCouch S (1997) Report on QTL nomenclature. Rice Genet News 14:11-13

Nijhout HF (2002) The nature of robustness in development. Wiley Subscription Services, Inc, A Wiley Company 24 (6):553-563

Rice SH (1998) The evolution of canalization and the breaking of von Baer's laws: Modeling the evolution of development with epistasis. Evolution 52 (3):647-656

Rogers JS (1950) The inheritance of inflorescence characters in maize-teosinte hybrids. Genetics 35 (5):541

Roncallo PF, Cervigni GL, Jensen C, Miranda R, Carrera AD, Helguera M, Echenique V (2012) QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica 185 (1):77-92

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U.S.A 81 (24):8014-8018

Sanguinetti CJ, Neto ED, Simpson A (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17 (5):914-921
Shang L, Liang Q, Wang Y, Zhao Y, Wang K, Hua J (2016) Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theor Appl Genet 129 (7):1429-1446

Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48 (5):463-481

Singh, A., Knox, R. E., DePauw, R. M., Singh, A. K., Cuthbert, R. D., Campbell, H. L., Singh, D., Bhavani, S., Fetch, T., Clarke, F. (2013) Identification and mapping in spring wheat of genetic factors controlling stem rust resistance and the study of their epistatic interactions across multiple environments. Theor Appl Genet 126 (8):1951-1964

Soyk S, Lemmon ZH, Oved M, Fisher J, Libera 10re KL, Park SJ, Goren A, Jiang K, Ramos A, Esther V (2017) Bypassing Negative Epistasis on Yield in Tomato Imposed by a Domestication Gene. Cell:S0092867417304865

Vazquez M, Zemetra R, Peterson CJ, Chen XM, Mundt CC (2015) Multi-location wheat stripe rust QTL analysis: genetic background and epistatic interactions. Theor Appl Genet 128 (7):1307-1318

Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7 (2):118-126

Wagner GP, Booth G, Bagheri-Chaichian H (1997) A population genetic theory of canalization. Evolution 51 (2):329-347

Wang G, He QQ, Xu ZK, Song RT (2012) High segregation distortion in maize B73 × teosinte crosses. Genet Mol Res (1):693-706

Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436 (7051):714-719

Wendel JF, Edwards M, Stuber CW (1987) Evidence for multilocus genetic control of preferential fertilisation in maize. Heredity 58 (Pt 2) (2):297-301

Yan JB, Tang H, Huang YQ, Zheng YL, Li JS (2003) Genetic analysis of segregation distortion of molecular markers in maize F2 population. Act Agr Sinica 30 (10):913-918 (In chinese)

Zeng M, Pu W (1981) The Relative Analyses on Maize Cultivar Menghai Four-row Wax. J Genet Genomics 8 (1):91-96 (In chinese)

Figures
Figure 1

Ears of MT1, SICAU1212 and individual of the F2 population. (A) The teosinte (MT1) ear bears single spikelet. (B) The maize (SICAU1212) ear carries paired spikelet, and it has two ranks, that is same as that of teosinte. (C) There are both single spikelet and paired spikelet on the ear of the plant in the F2 segregating populations. The red arrows point to single spikelet and black arrows point to paired spikelet. All white bars represent 1 cm.
Figure 2

Frequency distribution of Peds in the F2 populations in four environments. (A) 11YA environment, (B) 17WJ environment, (C) 17YA environment, (D) 17JH environment.

Figure 3
Molecular linkage map of the F2 population derived from SICAU1212 × MT1 in the 11YA environment. Genetic distances (cM) are shown on the left and SNP markers are indicated on the right. The triangles represent QTL for PEDS. The brackets represent segregation distortion regions (SDRs).

Figure 4

Genome-wide distribution of epistatic QTL for PEDS identified by ICIM-EPI in the F2 population in the 11YA environment. The linkage groups with different colors arranged in order from chromosome 1 to 10 in a colorized circle. The red long dashed lines attached to the two loci involved in epistatic interaction for PEDS, the numerical values in the colorized circle represent the genetic position on the linkage group, while the numbers on the dashed lines show the LOD values of the corresponding epistatic interactions.
Figure 5

Validation of the major QTL (qPEDS3.1) for PEDS under three environments. The green curve, red curve and blue curve represent the LOD scores were plotted in the 17WJ, 17YA and 17JH environments, respectively. The triangle represents the major QTL for PEDS detected in the 11YA environment.