Retrospective study of prognosis of patients with multiple colorectal carcinomas: synchronous versus metachronous makes the difference

Christoph Barz · Christian Stöss · Philipp-Alexander Neumann · Dirk Wilhelm · Klaus-Peter Janssen · Helmut Friess · Ulrich Nitsche

Accepted: 6 April 2021 / Published online: 14 April 2021
© The Author(s) 2021

Abstract
Purpose Little is known about difference between synchronous colorectal cancer (SCRC) and metachronous colorectal cancer (MCRC) despite the relevance for this selected patient group. The aim of this retrospective review was to analyze patients with SCRC and MCRC.

Methods All patients who underwent surgery for SCRC and MCRC between 1982 and 2019 were included in this retrospective analysis of our tertiary referral center. Clinical, histological, and molecular genetic characteristics were analyzed. The primary endpoint was cause-specific survival, evaluated by the Kaplan-Meier method. Secondary endpoints were recurrence-free survival and the identification of prognostic factors.

Results Overall, 3714 patients were included in this analysis. Of those, 3506 (94.4%) had a primary unifocal colorectal cancer (PCRC), 103 (2.7%) had SCRC, and 105 (2.8%) had MCRC. SCRC occurred more frequently in elderly (p=0.009) and in male patients (p=0.027). There were no differences concerning tumor stages or grading. Patients with SCRC did not show altered recurrence or survival rates, as compared to unifocal tumors. However, MCRC had a lower rate of recurrence, compared to PCRC (24% vs. 41%, p=0.002) and a lower rate of cause-specific death (13% vs. 37%, p<0.001). Five-year cause-specific survival rates were 63±1% for PCRC, 62±6% for SCRC (p=0.588), and 88±4% for MCRC (p<0.001). Multivariable analysis revealed that MCRC were an independent favorable prognostic parameter regarding case-specific survival.

Conclusion Patients with SCRC seem to not have a worse prognosis compared to patients with PCRC. Noteworthy, patients with MCRC showed better survival rates in this retrospective analysis.

Keywords Colorectal cancer · Multiple cancers · Synchronous cancers · Prognosis

Introduction
Colorectal cancer (CRC) is the third most common cancer in the western world [1]. By far most of these patients present with a primary unifocal adenocarcinoma of the colorectum (PCRC), which enables treatment according to established and validated guidelines [2]. However, in about 2–8% of all patients, synchronous multiple CRC (SCRC) are diagnosed at the time of diagnosis or during postoperative pathologic examination [3–5]. Further, albeit it may be sometimes difficult to discriminate from a recurrence of the initial tumor, about 1.6–2.4% of patients who undergo a complete resection (R0) of their primary colorectal cancer will develop a second, metachronous colorectal cancer (MCRC) during follow-up. MCRC was described to have a higher age-corrected incidence than compared to healthy controls who did not have colorectal cancer before [6–9]. Due to their relative rare occurrence, available clinical data on SCRC and MCRC is limited. Some authors postulated that sporadic (non-HNPCC and non-APC) SCRCs have a high molecular inter-tumoral heterogeneity and may be associated with the MSI-/BRAF-pathway, leading to reduced overall survival [3, 10]. Others describe SCRC to have essentially different driver mutations in the tumor-associated genes KRAS, BRAF, and p53—and a comparable or even slightly better prognosis than classical unifocal tumors [5, 11]. For MCRC, in the limited literature

© Springer
available, the mean time to occurrence is estimated approximately 4 years after the initial colorectal cancer [2]. This is considerably later compared to the “classical” local/regional tumor recurrence, of which 80% of all cases occur within the first 2 years after initial treatment [2]. Finally, patients with SCRC seem to have a 3- to 6-fold higher chance for developing MCRC [6, 7, 12].

Still many uncertainties exist for SCRC or MCRC. It is not clear whether these patients bear specific histological characteristics, accompanied by a distinct recurrence and survival profile. Here, we sought to analyze the impact on multiple cancers within identical patients on oncological outcomes and disease progression.

Materials and methods

Study population

Since 1982, all patients undergoing surgery for colorectal cancer at the Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany, are scheduled for periodic follow-up either at our interdisciplinary outpatient tumor center or outside of the hospital and according to the recommendations of the German Cancer Society. All patient data are prospectively entered to a data base. The ethics committee of the Klinikum rechts der Isar approved the study (no. 1926/7). Informed written consent was obtained from all patients prior to the collection of data. This observational cohort study was drafted in accordance with the STROBE statement (http://www.strobe-statement.org).

For the present analysis, consecutive complete datasets of patients with surgery for PCRC, SCRC, or MCRC were extracted. In order to report on consecutive data sets and to avoid selection bias, patients with missing follow-up data (Table 1) were not excluded. Patients with proven or suspected familial adenomatous polyposis (FAP) or hereditary nonpolyposis colorectal cancer (HNPPC), patients with proven or suspected tumor recurrence (see definitions below), and patients with an uncertain past medical history regarding prior malignancies were not included. The latest date of inclusion and follow-up was July 2019. Clinical histopathological, molecular genetic, and follow-up data (recurrence/survival) of patients with PCRC were compared to those of patients with SCRC and MCRC.

Definitions of synchronous and metachronous cancer

In the absence of generally accepted definitions, we considered patients to have SCRC if more than one histologically proven malignant lesion was present within the colon and/or rectum at the index assessment, clearly separated by healthy mucosa [4, 5]. The exact time point of diagnosis might vary between the preoperative (colonoscopy), intraoperative, or postoperative (histological workup of the resected specimen) time point. A complete colonoscopy was sought for all patients, which may have included a postoperative investigation of the remaining colon after resection of an obstructing tumor of the rectum or left colon. We considered patients to have MCRC, if they were diagnosed free of tumor for at least 12 months after initial treatment for colorectal cancer, and then during follow-up had a new, histological proven malignant lesion within the colon and/or rectum. The new lesion had to be divided from any anastomotic region of prior treatments by healthy mucosa and had to be unambiguously an exulcerating epithelial carcinoma. By this, the risk of overestimating the MCRC rate due to local or regional (nodal, etc.) tumor recurrences of prior occurrences was reduced to the minimum.

Statistical analysis

Statistical evaluation was performed using IBM® SPSS® statistics Version 24 (SPSS Inc., IBM Corporation Software Group, Somers, NY, USA). The distribution of nominal or ordinal scaled variables was compared using Pearson’s chi-square test. Cardinal variables were tested for normal distribution by the Kolmogorov-Smirnov test. Explorative comparison of independent groups was performed by the t test for normal distribution and the Mann-Whitney U test (two groups) or the Kruskal-Wallis test (more than two groups) for non-normal distribution. All statistical tests were performed two-sided, and p-values less than 0.05 were considered statistically significant. No correction of p-values was applied to adjust for multiple testing. However, results of all statistical tests being conducted were thoroughly reported, so that an informal adjustment of p-values can be performed while reviewing the data [13]. Multivariable analysis of binary outcome data was assessed by logistic regression. Time-dependent survival probabilities were estimated with the Kaplan-Meier method, and the log rank (Mantel-Cox) test was used to compare independent subgroups. Cause-specific survival was used as the primary outcome parameter. Cause-specific survival is equivalent to disease-specific survival in relation to the initial malignant disease and considers only tumor-related deaths of the reported malignancy as events. It reflects the intrinsic biology of the colorectal cancer under investigation more precisely than, e.g., cancer-specific survival, which includes deaths due to any kind of cancer [14]. To investigate the effect on survival of multivariable relationships among covariates, Cox proportional hazard models were applied. Cause-specific survival times as well as estimated hazard ratios (HRs) were calculated and reported as 95% confidence intervals (95% CIs) [15].
Table 1 Characteristics of the complete patient cohort

Characteristic	n=3714	%	Effect on cause-specific survival
Tumor type			
Primary unifocal CRC (PCRC)	3506	94	HR 1
Synchronous multiple CRCs (SCRC)	103	3	*p*<0.05 (HR 1.38; 95% CI 0.99–1.91)
Metachronous CRC (MCRC)	105	3	*p*<0.001 (HR 0.27; 95% CI 0.14–0.52)
Patient age			
Years (median)	65	100	*p*<0.063 (HR 1.00; 95% CI 0.99–1.00)
Gender			
Men	2135	57	HR 1
Women	1579	43	*p*<0.088 (HR 1.11; 95% CI 0.99–1.25)
Colon versus Rectum (main tumor)			
Colon	2203	59	HR 1
Rectum	1511	41	*p*<0.320 (HR 1.06; 95% CI 0.94–1.20)
Localization (all tumors)			
Multiple Segments	30	1	HR 1
Right hemicolon	1134	31	*p*<0.081 (HR 0.59; 95% CI 0.32–1.07)
Left hemicolon	1013	27	*p*<0.049 (HR 0.55; 95% CI 0.30–0.99)
Rectum	1491	41	*p*<0.101 (HR 0.61; 95% CI 0.33–1.10)
Missing	46		
Preoperative ileus			
No ileus	3175	89	HR 1
Subileus	200	6	*p*<0.001 (HR 2.16; 95% CI 1.72–2.70)
Manifest ileus	178	5	*p*<0.001 (HR 2.40; 95% CI 1.91–3.03)
Missing	161		
Concomitant diseases			
No	1547	45	HR 1
Yes	1891	55	*p*<0.353 (HR 1.14; 95% CI 0.87–1.50)
Missing	276		
Tumor size			
Centimeter (median)	4.0	100	*p*<0.001 (HR 1.14; 95% CI 1.11–1.16)
Missing	286		
Multivisceral surgery			
No	2814	80	HR 1
Yes	691	20	*p*<0.001 (HR 1.65; 95% CI 1.44–1.90)
Missing	209		
Tumor status			
T0	65	2	HR 1
Tis	23	1	*p*<0.001 (HR 0.89; 95% CI 0.04–0.20)
T1	349	10	*p*<0.003 (HR 0.05; 95% CI 0.01–0.45)
T2	623	18	*p*<0.001 (HR 0.05; 95% CI 0.03–0.08)
T3	1849	52	*p*<0.001 (HR 0.12; 95% CI 0.10–0.16)
T4	616	17	*p*<0.001 (HR 0.43; 95% CI 0.38–0.49)
Missing	189		
Nodal status			
N0	1943	56	HR 1
N1	786	22	*p*<0.001 (HR 3.26; 95% CI 2.77–3.85)
N2	763	22	*p*<0.001 (HR 9.15; 95% CI 7.88–10.64)
Missing	222		
Metastasis status			
M0	2605	76	HR 1
Table 1 (continued)

	n=3714	%	Effect on cause-specific survival
M1	834	24%	$p<0.001$ (HR 10.7; 95% CI 9.47–12.16)
Missing	275		
Stage			
0/Tis	71	2%	$p=0.596$ (HR 0.78; 95% CI 0.31–1.96)
I	753	22%	$p=0.066$ (HR 2.31; 95% CI 0.95–5.63)
II	900	26%	$p<0.001$ (HR 5.99; 95% CI 2.48–14.50)
III	860	25%	$p<0.001$ (HR 31.09; 95% CI 12.88–75.06)
IV	834	25%	$p<0.001$ (HR 31.09; 95% CI 12.88–75.06)
Missing	296		
Grading			
G1/2	2381	69%	HR 1
G3/4	1064	31%	$p<0.001$ (HR 2.20; 95% CI 1.95–2.48)
Missing	269		
Lymphatic invasion			
L0	2599	74%	HR 1
L1	896	26%	$p<0.001$ (HR 3.28; 95% CI 2.90–3.70)
Missing	219		
Vascular invasion			
V0	3187	91%	HR 1
V1	304	9%	$p<0.001$ (HR 3.96; 95% CI 3.36–4.67)
Missing	223		
R status			
R0	2781	79%	HR 1
R1	107	3%	$p<0.001$ (HR 5.94; 95% CI 4.53–7.79)
R2	627	18%	$p<0.001$ (HR 15.27; 95% CI 13.33–17.50)
Missing/Rx	199		
Microsatellite status			
MSS	270	75%	HR 1
MSI-H	91	25%	$p=0.011$ (HR 0.34; 95% CI 0.15–0.78)
Not performed	3353		
KRAS status			
Wildtype	206	65%	HR 1
Mutated	111	35%	$p=0.011$ (HR 1.93; 95% CI 1.17–3.19)
Not performed	3397		
BRAF status			
Wild type	243	86%	HR 1
Mutated	41	14%	$p=0.110$ (HR 0.44; 95% CI 0.16–1.21)
Not performed	3430		
Tumor perforation			
No	2544	94%	HR 1
Yes	171	6%	$p<0.001$ (HR 2.61; 95% CI 2.02–3.38)
Missing	999		
Tumor histology			
Classical adenocarcinoma	3079	86%	HR 1
Mucinous adenocarcinoma	382	11%	$p=0.011$ (HR 1.27; 95% CI 1.06–1.53)
Signet-ring cell carcinoma	32	1%	$p<0.001$ (HR 3.23; 95% CI 2.07–5.03)
Other types	65	2%	$p<0.001$ (HR 2.34; 95% CI 1.62–3.39)
Missing	156		
CEA (ng/ml, median)			
Results

Study population

Between January 1982 and July 2019, 4367 consecutive patients underwent oncological resection of their histologically proven colorectal cancer(s). Of those, 619 patients had to be excluded because of another, non-colorectal carcinoma before the index operation or during follow-up, in order to minimize bias. Another 32 patients with histologically not further specified colorectal cancer were excluded. Finally, two patients who each had both, SCRC and MCRC, were omitted from the overall analysis, but are described in more detail in the results section. Thus, 3714 resected patients were finally analyzed. Of those 3714 patients, 3506 patients had PCRC (94.4%), 103 had SCRC (2.8%), and 105 had MCRC (2.8%). The median age of all patients was 65 years (range: 15 to 97 years). There were more men (n=2135) than women (n=1579) in the cohort. The tumors were located within the right hemicolon between cecum and transverse colon in 1134 patients (31%), within the left hemicolon between descending colon and sigmoid in 1013 patients (27%), within the rectum in 1491 patients (41%), and in more than one of the above mentioned colorectal segments in 30 patients (in the case of SCRC; 1% of all patients). For 46 patients, the exact allocation of the tumors to an anatomical segment was not possible. All patients underwent resection of their colorectal tumors. For all 2584 patients without metastasis (stage 0/Tis to III), R0 resection was achieved in 96% (n=2481). For the 834 patients who presented with distant organ metastasis or peritoneal carcinomatosis (stage IV), an R0 resection was achieved in 19% (n=160). The median follow-up was 97 months, with no differences for PCRC, SCRC, and MCRC. See Table 1 for further characteristics of the patient cohort.

Comparison of SCRC and MCRC to PCRC

Age did not differ significantly between patients with PCRC, SCRC, and MCRC. There was a higher proportion of men in the SCRC group (68% vs. 57% for PCRC; p=0.027). In addition, complete tumor obstruction (manifest ileus) was found to be more frequent in patients with SCRC (9% vs. 5% in PCRC; p=0.017). Rectal cancer was present in 41% of the patients with PCRC, compared to only 28% (p<0.001) for SCRC and 33% for MCRC (p<0.001). In 29% of the patients with SCRC, the synchronous multiple tumors were not in the same segment, while in 71% of patients with SCRC, all tumors were located within the same segment (proximal colon/distal colon/rectum). The maximum tumor size of MCRC was significantly smaller (3.6cm vs. 4.0cm for PCRC; p<0.001). Patients with MCRC more frequently underwent multivisceral resection of the omentum, small bowel, abdominal wall, bladder, ureter, ovary/adnexes, prostate, pancreas, and others (31% vs. 19% for PCRC; p=0.002). Regarding histopathology, the R0 rate was significantly higher in MCRC patients (86% vs. 79% in PCRC; p=0.030). High-grade tumors (G3 or G4) occurred more frequently in SCRC (43% vs. 31% for PCRC; p=0.008). Although only available in a very limited number of patients, no significant differences occurred in microsatellite instability, KRAS mutations, or BRAF mutations. Of the patients with MCRC, most initial resections were performed at another institution. Thus, only limited information was available regarding the time period between both tumor occurrences, staging, and treatment of the initial tumor. There was no evidence for

Table 1

	n=3714	%	Effect on cause-specific survival
Tumor recurrence			
No	1874	59	HR 1
Yes	1304	41	p<0.001 (HR 299.67; 95% CI 169.42–530.03)
Lost of follow-up	536		
Survival status			
Alive	1457	47	n.a.
Death cancer-related	1137	37	n.a.
Death postoperative	112	3	n.a.
Death other causes	397	13	n.a.
Lost of follow-up	611		

Absolute numbers of patients together with percentages are displayed, if not indicated otherwise. The right column shows the prognostic relevance for each parameter, regarding case-specific survival upon univariable analysis. Concomitant diseases included any kind of cardiovascular, renal, pulmonary, or other relevant underlying medical conditions. HR hazard ratio, 95% CI 95% confidence interval
Characteristics	Primary unifocal CRCs (PCRC)	Multiple synchron. CRCs (SCRC)	p (PCRC vs SCRC)	Metachr. CRC (MCRC)	p (PCRC vs MCRC)
Patient age					
Years (median)	64 100	68 100	0.009	68 100	0.062
Gender					
Men	1999 57	70 68	0.027	66 63	0.233
Women	1507 43	33 32		39 37	
Colon versus rectum (main tumor)					
Colon	2060 59	70 68	0.061	73 70	0.027
Rectum	1446 41	33 32		32 30	
Localization					
Multiple segments	0 0 30 29	<0.001	0 0	<0.001	
Right hemicolon	1069 31	29 28		36 37	
Left hemicolon	968 28	15 15		30 30	
Rectum	1429 41	29 28		33 33	
Missing	40 0			6	
Preoperative ileus					
No ileus	2995 89	92 90	0.017	88 88	0.956
Subileus	192 6	1 1		7 7	
Manifest ileus	164 5	9 9		5 5	
Missing	155 8			5	
Concomitant diseases					
No	1497 46	27 28	0.003	23 23	<0.001
Yes	1747 54	68 72		76 77	
Missing	262 8			6	
Tumor size					
Centimeter (median)	4.0 100	4.5 100	0.054	3.6 100	<0.001
Missing	273 5			8	
Multivisceral surgery					
No	2666 81	79 81	0.979	69 68	0.002
Yes	640 19	18 19		33 32	
Missing	200 6			3	
Tumor status					
T0	62 2	2 2	0.173	1 1	0.687
Tis	21 1	0 0		2 2	
T1	334 10	5 5		10 10	
T2	591 18	11 11		21 21	
T3	1737 52	62 62		50 50	
T4	580 17	20 20		16 16	
Missing	181 3			5	
Nodal status					
N0	1832 56	47 47	0.301	64 65	0.126
N1	740 22	24 24		22 23	
N2	722 22	29 29		12 12	
Missing	212 3			7	
Metastasis status					
M0	2455 76	73 74	0.670	77 83	0.111
M1	792 24	26 26		16 17	
Missing	259 4			12	
Stage					

Int J Colorectal Dis (2021) 36:1487–1498
	Primary unifocal CRCs (PCRC)	Multiple synchr. CRCs (SCRC)	p (PCRC vs SCRC)	Metachr. CRC (MCRC)	p (PCRC vs MCRC)
	n=3506 %	n=103 %		n=105 %	
0/Tis	68 2	2 2	0.262	1 1	0.153
I	716 22	14 14		23 25	
II	843 26	27 27		30 33	
III	809 25	30 31		21 23	
IV	792 25	26 26		16 18	
Missing	278 4			14	
Grading					
G1/2	2254 69	57 57	0.008	70 71	0.787
G3/4	992 31	43 43		29 29	
Missing	260 3			6	
Lymphatic invasion					
L0	2451 74	67 68	0.206	81 79	0.202
L1	843 26	32 32		21 21	
Missing	212 4			3	
Vascular invasion					
V0	3002 91	91 92	0.622	94 93	0.497
V1	289 9	8 8		7 7	
Missing	215 4			4	
R status					
R0	2621 79	75 77	0.875	85 86	0.030
R1	99 3	2 2		6 6	
R2	599 18	20 21		8 8	
Missing/Rx	187 6			6	
Microsatellite status					
MSS	257 75	5 62	0.617	8 89	0.604
MSI-H	87 25	3 38		1 11	
Not performed	3162 95			96	
KRAS status					
Wildtype	196 66	5 62	0.949	5 50	0.530
Mutated	103 34	3 38		5 50	
Not performed	3207 95			95	
BRAF status					
Wildtype	228 85	8 100	0.485	7 100	0.537
Mutated	41 15	0 0		0 0	
Not performed	3237 95			98	
Tumor perforation					
No	2381 94	82 98	0.037	81 94	0.104
Yes	164 6	2 2		5 6	
Missing	961 19			19	
Tumor histology					
Classical adenocarcinoma	2899 86	92 91	0.414	88 85	0.508
Mucinous adenocarcinoma	364 11	6 6		12 12	
Signet-ring cell carcinoma	29 1	1 1		2 2	
Others	62 2	2 2		1 1	
Missing	152 2			2	
CEA (ng/ml, median)					
ng/ml (Median)	4.0 100	5.0 100	0.319	3.0 100	0.166
Not performed	2332 77			82	
Tumor recurrence					
hereditary forms of SCRC and MCRC in the analyzed cohort, respectively. See Table 2 for characteristics of patients stratified for PCRC, SCRC, and MCRC.

Survival

While tumor recurrence rates during follow-up was comparable for PCRC (41%) and SCRC (51%; \(p=0.476 \)), MCRC had a significantly lower rate of recurrence (24%, \(p=0.002 \)). These results are in line with the Kaplan-Meier analyses, where MCRC had a significantly better cause-specific survival compared to PCRC and SCRC. Interestingly, no significant differences were observed between the groups for recurrence-free survival (see Fig. 1 for survival rates stratified for PCRC, SCRC, and MCRC). Five-year cause-specific survival rates were 63±1% for PCRC, 62±6% for SCRC (\(p=0.588 \)), and 88±4% for MCRC (\(p<0.001 \)). Median cause-specific survival was not reached for PCRC and MCRC. For SCRC, median cause-specific survival was 63.9 months (95% CI 10 to 118). No significant differences in survival between patients with colon cancer and rectal cancer were observed among the PCRC (\(p=0.260 \)), SCRC (\(p=0.903 \)), and MCRC groups (\(p=0.130 \)). Figure 2 shows the cause-specific survival of patients with PCRC, SCRC, and MCRC, stratified by colon cancer versus rectal cancer.

Prognosis of SCRC and MCRC

Compared to PCRC, patients with SCRC had a slightly, but not significantly, increased hazard ratio for cause-specific death (\(p=0.057 \); HR 1.38; 95% CI 0.99–1.91). In contrast, patients with MCRC had a significantly better prognosis (\(p<0.001 \); HR 0.27; 95% CI 0.14–0.52). Further, factors
associated with a reduced prognosis upon univariable analysis are listed below: preoperative manifest ileus (\(p<0.001\); \(HR\) 2.40; 95% CI 1.91–3.03), extensive tumor size (\(p<0.001\); per centimeter: \(HR\) 1.14; 95% CI 1.11–1.16), multivisceral surgery (\(p<0.001\); \(HR\) 1.65; 95% CI 1.44–1.90), high T, N, M, and UICC stage (\(p<0.001\) for each), G3/4 vs. G1/2 (\(p<0.001\); \(HR\) 2.20; 95% CI 1.95–2.48), L1 (lymphatic

![Fig. 2. Cause-specific survival of patients with (a) PCRC, (b) SCRC, and (c) MCRC, stratified by colon cancer versus rectal cancer. No difference was observed between colon and rectal cancer for each spatial tumor manifestation.]

Table 3 Multivariable analysis as described in the text

	\(p\)	HR	95% CI	
			Lower	Upper
Tumor type				
Primary unifocal CRC (PCRC)	0.010	1		
Multiple synchronous CRC (SCRC)	0.264	1.28	0.83	1.98
Metachronous CRC (MCRC)	0.005	0.25	0.09	0.66
Tumor size				
Centimeter (continuously)	0.016	1.05	1.01	1.09
Stage				
0/Tis	\(<0.001\)	1		
I	0.787	0.82	0.20	3.45
II	0.315	2.06	0.51	8.37
III	0.019	5.34	1.32	21.55
IV	0.002	9.23	2.25	37.90
Grading				
G1/2				
G3/4	0.096	1.15	0.98	1.35
R status				
R0	\(<0.001\)	1		
R1	\(<0.001\)	3.04	2.10	4.41
R2	\(<0.001\)	4.45	3.33	5.94
Tumor histology				
Classical adenocarcinoma	\(<0.001\)	1		
Mucinous adenocarcinoma	0.040	1.28	1.01	1.63
Signet-ring cell carcinoma	\(<0.001\)	4.04	2.41	6.77
Other rare types	\(<0.001\)	2.48	1.51	4.09
CEA (ng/ml, median)	\(<0.001\)	>1.00	1.00	>1.00

After correction for tumor stage, R status, histology, and CEA, the tumor type was still an independent predictor of case-specific survival, with better prognosis for MCRC. **HR** hazard ratio, 95% CI 95% confidence interval

\(p\)-values in the heading line of each category indicate, if there is an overall difference between the groups when more than two specifications are possible. \(p\)-values in the same line with the respective specification compare the latter to the specification above.
Subgroups of special interest

Of all documented patients, only twelve underwent resection at our department for both, the initial PCRC as well as for the MCRC at a later time point, without a clear risk profile regarding comorbidities or other factors. Eight of these were male, and four were female. The median age at the time of the first tumor manifestation was 68 years. Notably, the MCRC occurred after a median time of 9 years (range 3 to 19 years) after the PCRC. Regarding TNM classification and tumor grading, no correlation was identified between the PCRC and the corresponding MCRC. See Fig. 3 for trend analysis of patients resected for PCRC, followed by MCRC resection. All patients underwent another tumor resection, and none of these patients developed a third tumor manifestation during follow-up.

In total, only two patients were detected, who had a manifestation of metachronous colorectal cancer (MCRC) that presented as synchronous multiple colorectal cancer (SCRC). In specific, a 77-year-old male patient with rectal cancer diagnosed and resected about 35 years ago had now two tumor manifestations within the ascending colon. Additionally, a 91-year-old female patient who had a T3N0M0 rectal cancer 5 years ago presented now with a tumor manifestation in the transverse colon, and another tumor manifestation in the rectum, which were not classified as a local recurrence. The first
patient did not have recurrence of the disease after the second tumor resection until the last follow-up 90 months after surgery. However, the second patient with rectal cancer developed a tumor recurrence and finally died from systemic metastasis. For clarity and to avoid interference with the results, those two patients who could not clearly classifiable to MCRC or SCRC were not included in the further analysis, apart from their description in this paragraph.

Discussion

This study considerably enlarges the current knowledge of rare types of multiple colorectal cancers by providing a comprehensive analysis of more than 3500 patients with PCRC, SCRC, or MCRC, including clinical, histopathological, molecular genetics, and follow-up data. By analyzing a large collective over a period of 37 years, we did not detect any survival difference for patients with multiple synchronous colorectal cancers (SCRC) compared to patients with classical primary unifocal colorectal cancer (PCRC). However, patients with metachronous colorectal cancer (MCRC) had an improved prognosis, which was an independent factor in multivariable analysis.

Of all analyzed CRC patients, 2.8% had SCRC and MCRC. These findings as well as other baseline characteristics are in line with previously reported results, underlining the general validity of our data [3, 5, 7, 16]. Of course, a limitation of the analysis is the retrospective and unicentric study design over a very long time, potentially leading to selection or treatment bias since the majority of initial cancers were not treated at the study institution. However, as no study intervention was performed and considering the high number of included patients, observational approach is deemed most appropriate in this context. Further, patients with HNPCC or APC may have been misinterpreted as sporadic SCRC or MCRC in this analysis. However, as determined by patient history, clinical assessment, genetic analysis in a part of the patients, and thorough follow-up, hereditary forms of colorectal cancer were excluded as far as possible in this study.

The improved survival for patients with MCRC compared to PCRC was the most relevant finding of our study and remains an object of discussion. This is the most comprehensive analysis hitherto existing, which reports not only on the incidence but also long-term survival of patients with sporadic metachronous colorectal cancer [6, 17]. Possible explanations for an improved survival of MCRC patients are a positive selection of patients in this surgical cohort with locally restricted and resectable manifestations of the metachronous carcinoma. Also, stricter adherence to follow-up regimens after the second tumor manifestation could have improved early detection and treatment of secondary colorectal cancers and a higher patient compliance. Accordingly, lower T stages were found in the MCRC group, although not reaching a significant range. However, MCRC remained an independent favorable prognostic factor in the multivariable analysis (Table 3). Compared to the rectum, the tumors were more frequently located in the colon in patients with MCRC (70%) than in patients with PCRC (59%; see Table 2); however, tumor location (colon vs. rectum) was not a prognostic factor in this patient cohort ($p=0.320$; Table 1). This would indicate other, potentially molecular genetic factors responsible for the improved prognosis of MCRC.

Observational studies report an elevated risk for MCRC after initial SCRC (HR 3-6) [6, 7]. Of note, two patients with SCRC were identified during data collection for this study, who developed a MCRC during follow-up. As reported above, these patients were not included within the analysis in order to prevent any possible selection bias. However, the estimated number of unreported cases is considerably higher due to admission to another hospital or misinterpretation as tumor recurrence.

In the subgroup of patients who were documented for both, resection of their PCRC and SCRC, a median interval of 9 years between the two tumor manifestations was observed. Earlier, Jayasekara et al. reported a mean interval of 4 years; however, the mean follow-up of our study was longer than the mean follow-up by Jayasekara et al. Thus, metachronous tumors after a longer interval may have been missed in the latter study. This finding raises the question for longer follow-up intervals than the usually performed 5 years, at least for selected patients at high risk for a MCRC (see Table 2).

Conclusion

Development and survival differences for PCRC, SCRC, and MCRC still cannot be fully explained. Current studies address factors arising from genetics (HNPCC, APC, IBD) [3, 5], environment (hypertension, hypoalbuminemia) [4, 6], and iatrogenic issues (tumor seeding during colonoscopy) [18].

Since this study identified metachronous colorectal cancers to develop even many years after the initial tumor, this exploratory study suggests that a programmed long-term follow-up may be the only pragmatic recommendation for patients with sporadic multiple colorectal cancers at present.

There are no large studies with validated prognostic or predictive factors available up to now. The retrospective study reported here may be prone to bias; thus further genetic and multicenter long-term studies are required.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00384-021-03926-6.
Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the Technical University of Munich, as stated in the methods part. The study report follows the STROBE statement for observational studies.

Conflicts of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Siegel R, Desantis C, Jemal A (2014) Colorectal cancer statistics, 2014. CA Cancer J Clin 64(2):104–117. https://doi.org/10.3322/caac.21220

2. Schmiegel W, Reinacher-Schick A, Arnold D, Graeven U, Heinemann V, Porschen R, Riemann J, Rodel C, Sauer R, Wieser M, Schmitt W, Schnoll HJ, Seufferlein T, Kopf I, Pox C (2008) Update S3-guideline “colorectal cancer” 2008. Z Gastroenterol 46(8):799–840. https://doi.org/10.1055/s-2008-1027726

3. Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. Lancet 383(9927):1490–1502. https://doi.org/10.1016/S0140-6736(13)61649-9

4. Chin CC, Kuo YH, Chang JM (2019) Synchronous colorectal carcinoma: predisposing factors and characteristics. Color Dis 21(4):432–440. https://doi.org/10.1111/codi.14539

5. Lam AK, Chan SS, Leung M (2014) Synchronous colorectal cancer: clinical, pathological and molecular implications. World J Gastroenterol 20(22):6815–6820. https://doi.org/10.3748/wjg.v20.i22.6815

6. Jayasekara H, Reece JC, Buchanan DD, Rosty C, Dashi SG, Ait Nitsche U, Maak M, Schuster T, Kunzli B, Langer R, Slotta-Huspenina J, Janssen KP, Friess H, Rosenberg R (2011) Prediction of prognosis is not improved by the seventh and latest edition of the TNM classification for colorectal cancer in a single-center collective. Ann Surg 254(5):793–800; discussion 800-791. https://doi.org/10.1097/SLA.0b013e31823f9101

7. Nitsche U, Zimmerman A, Spath C, Muller T, Maak M, Schuster T, Slotta-Huspenina J, Kaser SA, Michalski CW, Janssen KP, Friess H, Rosenberg R, Bader FG (2013) Mucinous and signet-ring cell colorectal cancers differ from classical adenocarcinomas in tumor biology and prognosis. Ann Surg 258(5):775–782; discussion 782-773. https://doi.org/10.1097/SLA.0b013e3182a6917e

8. Jayasekara H, Reece JC, Buchanan DD, Rosty C, Dashi SG, Ait Nitsche U, Maak M, Schuster T, Kunzli B, Langer R, Slotta-Huspenina J, Janssen KP, Friess H, Rosenberg R, Bader FG (2013) Mucinous and signet-ring cell colorectal cancers differ from classical adenocarcinomas in tumor biology and prognosis. Ann Surg 258(5):775–782; discussion 782-773. https://doi.org/10.1097/SLA.0b013e3182a6917e

9. Jaysekeara H, Reece JC, Buchanan DD, Ahnen DJ, Parsy S, Jenkins MA, Win AK (2017) Risk factors for metachronous colorectal cancer or polyp: a systematic review and meta-analysis. J Gastroenterol Hepatol 32(2):301–326. https://doi.org/10.1111/jgh.13476

10. Saville DJ (1990) Multiple comparison procedures - the practical solution. Ann Stat 44(2):174–180

11. Nitsche U, Maak M, Schuster T, Kunzli B, Langer R, Slotta-Huspenina J, Janssen KP, Friess H, Rosenberg R (2011) Prediction of prognosis is not improved by the seventh and latest edition of the TNM classification for colorectal cancer in a single-center collective. Ann Surg 254(5):793–800; discussion 800-791. https://doi.org/10.1097/SLA.0b013e31823f9101

12. Jaysekeara H, Reece JC, Buchanan DD, Ahnen DJ, Parsy S, Jenkins MA, Win AK (2017) Risk factors for metachronous colorectal cancer or polyp: a systematic review and meta-analysis. J Gastroenterol Hepatol 32(2):301–326. https://doi.org/10.1111/jgh.13476

13. Saville DJ (1990) Multiple comparison procedures - the practical solution. Ann Stat 44(2):174–180

14. Nitsche U, Maak M, Schuster T, Kunzli B, Langer R, Slotta-Huspenina J, Janssen KP, Friess H, Rosenberg R (2011) Prediction of prognosis is not improved by the seventh and latest edition of the TNM classification for colorectal cancer in a single-center collective. Ann Surg 254(5):793–800; discussion 800-791. https://doi.org/10.1097/SLA.0b013e31823f9101

15. Nitsche U, Zimmerman A, Spath C, Muller T, Maak M, Schuster T, Slotta-Huspenina J, Kaser SA, Michalski CW, Janssen KP, Friess H, Rosenberg R, Bader FG (2013) Mucinous and signet-ring cell colorectal cancers differ from classical adenocarcinomas in tumor biology and prognosis. Ann Surg 258(5):775–782; discussion 782-773. https://doi.org/10.1097/SLA.0b013e3182a6917e

16. Park SH, Lee JH, Lee SS, Kim JC, Yu CS, Kim HC, Ye BD, Kim MJ, Kim AM, Ha HK (2012) CT colonoigraphy for detection and characterisation of synchronous proximal colonic lesions in patients with stenosing colorectal cancer. Gut 61(12):1716–1722. https://doi.org/10.1136/gutjnl-2011-301135

17. Chen TA, Horng JT, Lin WC (2013) Metachronous colorectal cancer in Taiwan: analyzing 20 years of data from Taiwan Cancer Registry. Int J Oncol 18(2):267–272. https://doi.org/10.1007/s10147-011-0373-5

18. Backes Y, Seerden TCJ, van Gestel R, Kraneburg O, Ubbink I, Schifferlers RM, van Straten D, van der Capellen MS, van de Weerd S, de Leng WJ, Siensema PD, Offerhus GAJ, Morsink FH, Rampal W, Terhaar Sive Drost J, van Lent AUG, Geesing MJM, Vleggaar FP, Elias SG, Lacle MM, Moons LMG (2019) Tumor seeding during colonoscopy as a possible cause for metachronous colorectal cancer. Gastroenterology 157(5):1609–1620 e1601-1603. https://doi.org/10.1053/j.gastro.2019.08.002

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.