Supporting information

Discovery of potent inhibitors for the large neutral amino acid transporter 1 (LAT1) by structure-based methods

Natesh Singh,1 Mariafrancesca Scalise,2 Michele Galluccio,2 Marcus Wieder,1 Thomas Seidel,1 Thierry Langer,1 Cesare Indiveri,2 Gerhard F. Ecker1, *

1University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Wien, Austria
2Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy

Table of contents
Homology modeling of LAT1 ... 2
Model evaluation .. 2
Network visualization of the poses .. 2-3
Binding free energy calculations ... 3 - 4
References .. 4-5
Table S1 ... 6
Figure S1 ... 7
Figure S2 ... 8
Table S2 and Figure S3 .. 9
Figure S4 ... 10
Figure S5 ... 11
Table S3 ... 12
Figure S6 ... 13
Figure S7 and S8 .. 14
Figure S9 and S10 ... 15
Figure S11 and S12 .. 16
Figure S13 and S14 .. 17
Figure S15 and S16 .. 18
Figure S17 and S18 .. 19
Figure S19 .. 20
Figure S20 .. 22
Figure S21 .. 23
Figure S22 .. 24
Figure S23 .. 25-29
Figure S24 .. 30
Figure S25 .. 31
Table S4 ... 32
Table S5 ... 33
Table S6 ... 34
Table S7 ... 35
Table S8 ... 36
Table S1 and Figure S2 ... 37-78
LC-MS and 1H-NMR spectrum of compounds ... 37-78
Homology modeling of LAT1
The homology model of human LAT1 was constructed against two templates: (i) the crystal structure of outward-occluded conformation of arginine/agmatine transporter AdiC from *E. coli* (PDB ID: 3L1L), [1] (ii) the crystal structure of inward-open conformation of ApcT from *M. jannaschii* (PDB ID: 3GIA) [2]. The sequence identity and the sequence similarity of LAT1 with AdiC is ~20% and ~40%, and the sequence identity and the sequence similarity of LAT1 with ApcT is ~23% and ~41%. The amino acid residues 1–50 and 480–507 of LAT1 were not considered in the model building because these residues are predicted to form long intracellular N- and C-terminus domains [3]. In our final alignment, short insertions of one and two amino acids were observed in the TM3 and TM11 of LAT1 (Figure S1). Gaps with deletions of four and one amino acids were found in the TM9 and TM10. Long insertions and deletions were observed in the extracellular loop 3 (EL3) between TM5 and TM6, undoubtedly implying ambiguity in the loop prediction. Additionally, the amino acid residue differences were observed in the TMs of LAT1 of human, mouse, rabbit, and dog (Table S1). However, the residues enclosing the binding site of LAT1 were identical in all species.

Model evaluation
The final model of LAT1 was evaluated using the PROCHECK [4] and QMEAN [5]. The Ramachandran analysis showed that 88.4% of all residues were present in most favored regions, 9.5% in additionally allowed, 1.6% in generously allowed and 0.5% in disallowed areas (Table S2, Figure S3). Most of the residues located in generously and disallowed regions were found on the outer surface and in the intra- and extra-cellular loops of the model. Only two residues G65 and G256 found in the forbidden areas were within 5Å of the binding site (Figure S4). Both residues were optimized *via* energy-based refinement using the variable dielectric surface generalized Born solvation model [6]. The model showed decent quality in all regions including the binding site according to QMEAN analysis (Table S2, Figure S5).

Network visualization of the docking poses
The network projection of the docking poses of 8–12 was generated to visualize the global pose space, where a connection between the two nodes (or poses) indicates a root mean square deviation (rmsd) of ≤ 0.75Å (Figure S16A). The network can be interactively explored to see how different poses coalesce into clusters trends (or don't) when viewed in the context of pose similarity on the basis of rmsd. The connections between the nodes and the size of nodes inform our understanding of the binding mode by helping us to identify which unique poses of 8–12
are involved in the common binding mode (CBM). The network shows one large cluster 1 enclosed within the black boundary and other moderate to small clusters 2-10 consisting of poses of at least four out of the five ligands docked. The residual poses can be observed in the form of small clusters inside and around the periphery of the plot. Docking poses of 8–12 considered for the elucidation of a CBM were identified within cluster 1 (cyan circle) and exhibited shortest-path distance among themselves (Figure S16A). The clustering of interactive pharmacophore models generated from the poses of 1 (Figure S16B) revealed clusters of hydrogen bond donors (HBDs), hydrogen bond acceptors (HBAs) and hydrophobic features (Figure S16C) indicating that the majority of poses showed overlapping features that were developed as a result of common interaction partners in the binding site.

Binding free energy calculations

The free energy of binding (ΔGbind) of the complexes obtained from the MD simulation was calculated by using the Molecular Mechanics–Poisson Boltzmann Surface Area (MM-PBSA) approach [7–9]. The results indicated that 9–12 possessed significantly high negative ΔGbind as compared to 8 (Table S3, Figure S21). Based on the binding energy calculations, the estimated sensitivity of LAT1 to ligands may be expressed in the order 11 > 9 ~ 10 > 12 > 8, which is qualitatively reliable with in vivo data of the NMs. Nevertheless, 8 was poorly predicted by MM-PBSA, though it is equipotent to 9 and ~ 9 times more potent than 10. This deviation between the predicted and experimental value may be ascribed to the shortcomings of MM-PBSA in contrast to more precise methods of ΔG calculations, such as thermodynamic integration (TI) and free energy perturbation (FEP). The van der Waals (ΔGvdw), electrostatic interactions (ΔGelect) and non-polar solvation energy (ΔGnon-polar) contributed negatively, while polar solvation energy (ΔGpolar) added positively to the total free binding energy of the ligands. The r² between ΔGvdw and ΔGbind is 0.82, and r² between ΔGelect and ΔGbind is 0.64. In terms of negative contribution, ΔGvdw gives more significant contribution than ΔGelect for all ligands except 8 suggesting significant hydrophobic interactions of the side chain. The lack of extended side chain in 8 may explain the low ΔGvdw as compared to the NMs, and thus a smaller ΔGbind. Moreover, in 8 and 12, the contribution from the electrostatic and van der Waals energy was compensated mainly by the high polar solvation free energy resulting in reduced ΔGbind. Overall, ΔGelect and ΔGvdw seems to be dominant forces contributing to the stability of complexes 8–12. To identify the critical molecular determinants involved in the binding, per-residue energy contribution was computed. The binding of the ligands was mostly influenced
favorably by residues I139, I140, I147, V148, F252, W257, V339 and W405 via van der Waals interactions, while residues T62, I63, G65, S66, G67, F252, and S338 contributed via electrostatic interactions (Figure S22).

References
1. Gao, X. et al. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463, 828–832 (2010).
2. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).
3. Fotiadis, D., Kanai, Y. & Palacín, M. The SLC3 and SLC7 families of amino acid transporters. Mol. Aspects Med. 34, 139–158 (2013).
4. Laskowski, R. A., Moss, D. S. & Thornton, J. M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993).
5. Benkert, P., Tosatto, S. C. E. & Schomburg, D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins 71, 261–277 (2008).
6. Zhu, K. et al. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins 82, 1646–1655 (2014).
7. Kumari, R., Kumar, R., Open Source Drug Discovery Consortium & Lynn, A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951–1962 (2014).
8. Lee, M. R., Duan, Y. & Kollman, P. A. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins 39, 309–316 (2000).
9. Konecny, R., Baker, N. A. & McCammon, J. A. iAPBS: a programming interface to Adaptive Poisson-Boltzmann Solver (APBS). Comput. Sci. Discov. 5, (2012).
10. Clamp, M., Cuff, J., Searle, S. M. & Barton, G. J. The Jalview Java alignment editor. Bioinforma. Oxf. Engl. 20, 426–427 (2004).
11. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. *Nucleic Acids Res.* **40**, D370-376 (2012).

12. Deléage, G., Clerc, F. F., Roux, B. & Gautheron, D. C. ANTHEPROT: a package for protein sequence analysis using a microcomputer. *Comput. Appl. Biosci. CABIOS* **4**, 351–356 (1988).

13. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. *Softw Pract Exper* **21**:1129–1164.
| | Human | Mouse | Rabbit | Dog |
|----|-------|-------|--------|------|
| TM2 | A85 | S86 | S81 | A63 |
| TM3 | K132 | K133 | K128 | R110 |
| TM4 | E169 | E170 | E165 | S147 |
| TM8 | I326 | I331 | V322 | I304 |
| TM9 | V374 | V379 | V370 | M352 |
| | V382 | I387 | A378 | I360 |
| | L386 | M391 | L382 | L364 |
| | K391 | R396 | R387 | R369 |
| TM10| V396 | I401 | V392 | V374 |
| | I413 | I418 | I409 | A391 |
| | I416 | M421 | M412 | L394 |
| TM12| V456 | M461 | V452 | V434 |
| | T463 | A468 | T459 | T441 |
| | F474 | F479 | F470 | L452 |

Table S1. The amino acid residue differences in the TMs of LAT1 of mouse, rabbit, and dog with respect to the human sequence. The corresponding substitutions are indicated in red.
Figure S1. LAT1–AdiC alignment as visualized using Jalview [10]. The residues are colored according to their type using the Clustalx color scheme. The TMs are indicated as brown boxes. The TMs of AdiC were defined using the PPM server [11]. The residues of LAT1 involved in direct interactions with the docking poses of 8–12 are highlighted with a black asterisk.
Figure S2. LAT1–ApcT alignment.
Template	AdiC (PDB ID: 3L1L)
Sequence Identity	20.33%
Residues in most favored regions	88.4%
Residues in additionally allowed regions	9.5%
Generously allowed regions	1.6%
Residues in disallowed regions	0.5%
Normalized DOPE score	-0.39
G factor	0.40
Q mean	0.47
Z Score	-3.49
Errat (Overall quality factor)	93.57

Table S2. Assessment of LAT1 model built on the AdiC structure (PDB ID: 3L1L).

Figure S3. The Ramachandran plot of LAT1 model based on the AdiC structure.
Figure S4. Outliers defined by PROCHECK analysis. Residues in generously allowed regions are shown in yellow and in disallowed areas as red.
Figure S5. The QMEAN analysis of LAT1 model (blue: high quality and more reliable regions, red: low-quality regions and potentially unreliable regions; estimated error above 3.5Å).
Ligand	ΔG_{vdw}	ΔG_{elect}	ΔG_{polar}	$\Delta G_{non-polar}$	ΔG_{bind}
8	-26.26 ± 2.73	-34.47 ± 3.12	59.47 ± 2.79	-3.04 ± 0.14	-4.30 ± 2.84
9	-43.92 ± 2.83	-19.44 ± 3.89	50.73 ± 3.82	-4.53 ± 0.18	-17.16 ± 3.20
10	-43.71 ± 2.98	-24.26 ± 2.68	55.46 ± 2.85	-4.56 ± 0.18	-17.07 ± 2.95
11	-40.68 ± 2.74	-21.83 ± 2.85	47.61 ± 3.13	-4.27 ± 0.17	-19.17 ± 3.08
12	-42.14 ± 3.61	-34.70 ± 3.62	67.84 ± 3.03	-4.27 ± 0.19	-13.27 ± 3.21

Table S3. Average MM-PBSA free energies of 8–12 calculated from the 20 ns MD simulations. ΔG_{bind} (free energy of binding), ΔG_{elect} (electrostatic energy), ΔG_{vdw} (van der Waals energy), ΔG_{polar} (polar solvation free energy) and $\Delta G_{non-polar}$ (non-polar solvation free energy). All energies are in kcal mol$^{-1}$.
Figure S6. Helical projection diagram [12] of the TMs (1, 3, 6, 8, and 10) enclosing the binding site of LAT1. Hydrophobic residues are indicated in blue, hydrophilic residues in orange, cysteine residues in green and others in grey.
Figure S7. The putative gate residues of LAT1 (Doorway residue: F394, Proximal gate: S66 and F252, Middle gate: S342, Distal gate: N258, E136, and A409). The residues (green) are shown in stick representation. The hydrogen bond interaction between N258 and E136 possibly indicates a closed distal gate.

Figure S8. The plot of hydrogen bond interaction counts between N258 and E136 of LAT1 complexed with 11 as a function of simulation time.
Figure S9. The surface landscape of 500 docking poses based on the rmsd matrix.

Figure S10. The cluster statistics of docking showing the distribution of poses of 8–12 in clusters 1–30. Clusters marked with an asterisk are common scaffold cluster (CSC), while the rest are residual clusters.
Figure S11. Distribution of 282 poses corresponding to 12 CSCs. The lipid bilayer of LAT1 model was defined using the PPM server [11]. It is observed from the distribution that the length of the poses is inclined with respect to the lipid bilayer. The α–amino and the α–carboxyl groups are pointing towards the periplasmic side, while the tetrahydronaphthalene moieties are occupying the center of the binding site. The NM side chains are directed intra- and extra-cellular.

Figure S12. Distribution of 218 poses corresponding to 18 residual clusters. It is observed from the distribution that the α–amino, the α–carboxyl and the NM moieties are spread over a wide area in the binding site. In some poses, the α–amino and the α–carboxyl groups are directed intra-cellular.
Figure S13. SIFt represented on schematic helices aligned according to the relative amino acid positions and their interaction type in 500 docking poses.

Figure S14. Structural interaction fingerprint (SIFt) showing the involvement rate of residues in hydrogen bond interactions (excluding hydrogen bond interactions of chlorine) in all 500 poses (blue) and 282 CSC poses (red).
Figure S15. SIFt showing the polar interactions of the chlorine atom with the residues in 500 docking poses. The blue vertical bars indicate the poses where chlorine is acting as a hydrogen bond acceptor from the residue, and the red vertical bars indicate poses where chlorine is donating a halogen bond to the residue.

Figure S16. A, The network map of 500 docking poses as visualized using the Fruchterman–Reingold algorithm [13]. In the graph, each node corresponds to a distinct pose of 8 (green), 9 (red), 10 (orange), 11 (blue), and 12 (purple). A link between the two nodes (or poses) corresponds to a rmsd of $\leq 0.75\text{Å}$. The size of each node is proportional to the docking score, i.e., a more prominent node indicates a high negative docking score, while a small node indicates a low negative docking score. The densely populated cluster 1 is indicated with a black boundary. Docking poses within the cyan circle of cluster 1 were considered for the elucidation of CBM. B, distribution of the poses of 8–12 corresponding to cluster 1. C, interactive pharmacophore clusters generated from the poses of 1.
Figure S17. Per-residue energy contribution to the docking pose of 8–12.

Figure S18. The last snapshot of the molecular dynamics (MD) simulation of complex 11 depicting the Side chain Binding Site (SBS) or hydrophobic sub-pocket (HSP). The ligand and the interacting residues are shown in space-filling and stick style, respectively. A violet dashed circle indicates the HSP comprising residues I139, F252, Y254, F402, and W405.
Figure S19. The predicted binding mode of 8 (A), 9 (B), 10 (C), 11 (D), and 12 (E) in LAT1. The ligands are shown in stick representation, and their carbon atoms are colored purple. The interacting residues are shown in stick representation, and their carbon atoms are colored according to the color of the corresponding TM helix. The figure adjacent to the interactive binding mode shows occupancy of the ligand atoms in the binding site. The ligands are depicted in space-filling style, and their carbon atoms are colored yellow. The chloroethyl moieties are numbered 1 and 2. The binding site surface is colored according to the residue type, i.e., the green areas are hydrophobic, while the red and purple regions are hydrophilic.
Figure S20. The rmsd plots as a function of simulation time.
Figure S21. The plot of binding energy as a function of simulation time of complex 8 (A), 9 (B), 10 (C), 11 (D) and 12 (E). ΔG_{bind} represents the average binding energy of the ligand.
Figure S22. The average per-residue contribution to the binding energy (ΔG_{bind}) of each complex. The residues that contributed ≤ -0.5 kcal mol$^{-1}$ in the binding are indicated, whereas the residues that impaired the binding with ≥ 0.5 kcal mol$^{-1}$ are underlined.
Figure S23. Plots showing the evolution of different pharmacophoric features as a function of simulation time of 8 (A), 9 (B), 10 (C), 11 (D) and 12 (E) bound to LAT1.

RPM	A	B	C	D	E
1	![Image]	![Image]	![Image]	![Image]	![Image]
2	![Image]	![Image]	![Image]	![Image]	![Image]
3	![Image]	![Image]	![Image]	![Image]	![Image]
4	![Image]	![Image]	![Image]	![Image]	![Image]
5	![Image]	![Image]	![Image]	![Image]	![Image]
6	![Image]	![Image]	![Image]	![Image]	![Image]
7	![Image]	![Image]	![Image]	![Image]	![Image]
8	![Image]	![Image]	![Image]	![Image]	![Image]
9	![Image]	![Image]	![Image]	![Image]	![Image]
10	![Image]	![Image]	![Image]	![Image]	![Image]

Figure S24. The representative pharmacophore models (RPMs) of 10 most populated clusters of dynamic pharmacophores of 8 (A), 9 (B), 10 (C), 11 (D), and 12 (E).
Figure S25. The receiver operating characteristic (ROC) curve validation of the RPMs of 10 most populated clusters of dynamic pharmacophores of 8 (A), 9 (B), 10 (C), 11 (D) and 12 (E). The true positive rate (Sensitivity) is shown on the Y-axis, and the false positive rate (1-Specificity) is on the X-axis.
Cpd.	RPM	ROC	AUC	RIE	EF 1%	EF 2%	EF 5%	EF 10%	EF 20%
8	0.605	0.612	4.31	23	11	4.5	2.3	1.1	
	0.591	0.598	3.78	20	9.8	3.9	2	0.98	
	0.595	0.602	4.15	22	11	4.3	2.2	1.1	
	0.611	0.618	4.53	24	12	4.7	2.4	1.2	
	0.622	0.628	4.91	26	13	5.2	2.6	1.3	
	0.627	0.633	5.07	27	13	5.4	2.7	1.3	
	0.611	0.618	4.71	25	12	4.9	2.5	1.2	
	0.663	0.669	6.34	34	17	6.8	3.4	1.7	
	0.638	0.644	5.47	29	14	5.8	2.9	1.4	
	0.611	0.618	4.52	24	12	4.7	2.4	1.2	
9	0.736	0.74	6.29	15	10	8.2	4.7	3	
	0.777	0.781	7.19	25	14	8.2	5.2	3.4	
	0.762	0.766	6.1	10	8.2	5.2	3.4		
	0.766	0.77	7.92	25	16	8.9	6	3	
	0.766	0.77	7	14	13	8.9	5.4	3.2	
	0.781	0.785	7.31	24	14	7.4	5.8	3.3	
	0.746	0.75	6.58	22	12	7.4	4.9	3.1	
	0.746	0.75	7.02	21	14	8.7	4.7	3.2	
	0.730	0.735	6.42	19	12	7.4	4.8	2.9	
	0.770	0.774	7.28	18	14	9.3	5.2	3.2	
10	0.784	0.788	6.92	20	12	8	5.6	3.4	
	0.763	0.767	7.46	15	12	9.7	5.9	2.9	
	0.773	0.777	7.75	14	13	11	6.1	3	
	0.775	0.779	7.97	19	14	10	6.1	3	
	0.766	0.77	7.2	19	14	9.1	6	3	
	0.778	0.782	7.23	20	13	7.6	6.3	3.1	
	0.767	0.771	6.86	15	12	7.8	6.1	3.1	
	0.767	0.771	7.94	22	12	7.4	6.1	3	
	0.772	0.776	8.11	23	16	10	6	3	
	0.766	0.77	6.59	12	9.8	8.4	6.1	3.1	
11	0.733	0.737	5.85	14	9.3	6.8	5.2	3.4	
	0.778	0.782	6.65	19	12	7.4	5.6	3	
	0.758	0.762	8.06	23	16	10	6.1	3	
	0.771	0.775	7.01	20	14	8.7	5.5	2.7	
	0.753	0.757	8.05	25	20	9.9	4.9	2.5	
	0.735	**0.739**	**9.41**	**35**	**22**	**12**	**5.9**	**2.9**	
	0.738	0.742	6.9	16	12	8	5.7	3	
	0.770	0.774	8.12	21	18	9.9	6	3	
	0.768	0.772	7.55	20	12	9.5	6.2	3.1	
	0.776	0.78	7.16	19	13	9.1	5.4	2.7	
12	0.649	0.655	4.75	12	7.7	5.8	4	2.2	
	0.684	0.689	5.62	18	9.8	6.6	4.5	2.4	
	0.671	0.677	4.72	14	8.2	5.4	4.2	2.7	
	0.706	0.711	5.68	20	11	6.2	4.2	2.7	
	0.671	0.677	5.2	18	9.8	5.4	4	2.4	
	0.744	0.748	5.68	20	12	5.8	3.9	3.2	
	0.693	0.698	5.23	15	10	5.8	3.7	2.6	
	0.748	0.752	6.37	22	12	6.8	5.6	3	
	0.731	0.736	5.84	16	9.8	6.2	4.7	2.9	
	0.748	0.752	6.42	20	12	7.4	5.5	3.1	

Table S4. The performance metrics in the validation of the RPMs of 10 most populated clusters of dynamic pharmacophores of 8–12.
Table S5. Pharmacophore fit score, docking scores, consensus score, and rank of the hit compounds selected for experimental testing; Total number of compounds screened (pharmacophore-based): 1148189 → Total number of compounds docked to LAT1: 1202 → Consensus scoring: 1202 → top-ranked 200 out of 1202 compounds were considered for the final selection of compounds for experimental testing

Cpd.	Pharmacophore fit score	GoldScore	ChemPLP Score	Consensus score	Rank
13	47.16	44.092	55.296	2.407	18
14	47.36	57.462	83.935	2.715	2
15	46.95	48.946	59.047	2.365	24
16	47.30	49.573	64.883	2.543	7
17	47.42	54.544	61.855	2.590	4
18	47.77	12.136	58.808	2.551	6
19	47.16	35.507	71.039	2.473	9
20	47.24	19.651	69.415	2.436	13
21	47.21	46.581	52.957	2.421	14
22	47.00	49.761	64.243	2.420	15
23	46.37	47.776	65.138	2.169	57
24	46.54	30.320	63.625	2.161	61
25	46.33	46.032	67.491	2.161	62
26	46.15	53.853	61.094	2.079	85
27	46.49	48.416	67.036	2.230	46
28	46.32	49.358	57.450	2.107	77
29	46.88	47.373	62.115	2.351	27
30	46.63	44.046	68.114	2.276	41
31	46.52	52.367	59.661	2.211	50
32	46.49	48.416	67.036	2.230	36
33	46.63	44.046	68.114	2.276	41
34	45.49	41.986	58.335	1.755	128
35	46.33	50.264	66.138	2.168	59
36	46.26	41.761	62.653	2.087	83
37	45.48	33.423	37.754	1.591	131
38	46.00	56.208	65.327	2.054	94
39	46.68	43.655	72.470	2.322	32
40	46.14	35.799	54.006	1.963	112
41	45.64	30.245	71.869	1.856	124
42	46.53	40.617	59.520	2.170	56
Cpd.	% Residual Activity	Standard Deviation (n = 3)	MACCS	Radial ECFP	FP2
------	----------------------	---------------------------	--------	-------------	------
			1	2	11
			1	2	11
			1	2	11
DMSO	100	0			
1	61.1	0.3			
13	74.23	16.4	0.27	0.5	0.28
14	95.87	16.7	0.13	0.33	0.19
15	92.21	1.8	0.27	0.46	0.46
16	95.1	5.1	0.22	0.44	0.26
17	94.75	10.7	0.28	0.3	0.42
18	90.14	7.9	0.27	0.62	0.4
19	93.06	2	0.32	0.44	0.47
20	90.07	7.1	0.25	0.5	0.34
21	85.14	7.8	0.29	0.37	0.39
22	93.36	4.7	0.26	0.42	0.4
23	96.22	5.5	0.26	0.44	0.37
24	100.72	10.6	0.23	0.55	0.42
25	94.12	3.3	0.37	0.5	0.37
26	89.37	11.8	0.25	0.44	0.37
27	67.96	1.97	0.35	0.47	0.39
28	12.93	5.35	0.38	0.58	0.46
29	98.42	11	0.32	0.37	0.5
30	94.08	8.1	0.26	0.41	0.44
31	91.83	16.6	0.27	0.56	0.42
32	53.11	4.67	0.75	0.52	0.68
33	17.86	1.94	0.53	0.48	0.53
34	77.12	3.64	0.37	0.51	0.37
35	11.78	0.11	0.44	0.56	0.46
36	0	0	0.56	0.47	0.6
37	65.31	10.53	0.47	0.54	0.45
38	13.17	10.48	0.38	0.68	0.51
39	11.76	2.99	0.53	0.42	0.53
40	11.34	2.78	0.44	0.55	0.46
41	15.21	10.2	0.5	0.43	0.51
42	7.83	0.4	0.5	0.71	0.44

Table S6. The percent residual activity of compounds measured at 100 μM concentration and Tanimoto coefficients, derived from substructure-based fingerprint (MACCS), circular fingerprint (ECFP) and path-based fingerprint (FP2), of the tested compounds to 1 (BCH), 2 (KYT-0353) and 11 (DL-2-NAM-7).
µM	Cpd. 28		Cpd. 42		Cpd. 36						
	Exp. 1	Exp. 2	Exp. 3		Exp. 1	Exp. 2	Exp. 3		Exp. 1	Exp. 2	Exp. 3
0	100.00	100.00	100.00		100.00	100.00	100.00		100.00	100.00	100.00
0.1	98.56	118.69	87.20		91.01	109.97	91.55		81.30	100.31	62.08
0.2	109.35	122.43	93.48		77.34	82.24	73.67		69.42	119.31	58.21
0.5	112.59	110.90	85.27		72.30	76.32	64.01		54.32	77.26	5.56
1	120.86	119.63	97.34		64.39	51.09	41.55		38.13	55.14	40.82
2.5	84.89	85.98	94.20		42.45	36.45	24.15		39.93	44.24	0.97
5	79.14	103.43	83.33		33.81	36.14	17.39		16.55	0.00	1.21
10	96.40	89.72	73.19		38.49	10.90	5.31		0.00	0.00	0.00
25	57.91	52.02	47.58		39.21	14.33	9.66		21.94	17.45	1.21
50	46.76	49.53	20.29		12.95	13.71	13.30		0.00	6.23	0.00
100	44.24	13.08	16.18		20.14	19.31	4.11		28.42	14.02	0.00

	Mean	Standard Deviation
Cpd. 28	100.00	0.00
Cpd. 42	100.00	0.00
Cpd. 36	100.00	0.00
	101.48	15.95
	108.42	14.50
	102.92	15.31
	112.61	13.24
	88.63	5.09
	88.63	5.92
	86.44	11.95
	52.51	13.53
	38.86	2.08
	24.50	14.15

Table S7. Dose-response analysis of compounds 28, 42 and 36.
Cpd.	Screening database	Vendor	Catalog number	Purity (%)	Purity data	Identity data
13	Chembridge	Chembridge	90864634	> 90%	LC-MS	1H-NMR
14	Chembridge	Chembridge	17592342	> 90%	LC-MS	1H-NMR
15	Chembridge	Chembridge	75729207	> 90%	LC-MS	1H-NMR
16	Chembridge	Chembridge	69089454	> 90%	LC-MS	1H-NMR
17	Chembridge	Chembridge	42920737	> 90%	LC-MS	1H-NMR
18	Chembridge	Chembridge	59415756	> 90%	LC-MS	1H-NMR
19	Chembridge	Chembridge	96309693	> 90%	LC-MS	1H-NMR
20	Chembridge	Chembridge	93476697	> 90%	LC-MS	1H-NMR
21	Chembridge	Chembridge	61429699	> 90%	LC-MS	1H-NMR
22	Chembridge	Chembridge	56805360	> 90%	LC-MS	1H-NMR
23	Chembridge	Chembridge	55119706	> 90%	LC-MS	1H-NMR
24	Chembridge	Chembridge	73911779	> 90%	LC-MS	1H-NMR
25	Chembridge	Chembridge	45983641	> 90%	LC-MS	1H-NMR
26	Chembridge	Chembridge	93025608	> 90%	LC-MS	1H-NMR
27	Chembridge	Chembridge	5788646	> 90%	LC-MS	1H-NMR
28	Chembridge	Chembridge	6407567	> 90%	LC-MS	1H-NMR
29	DrugBank	Sigma-Aldrich	17343	≥ 98%	CoA	CoA
30	DrugBank	Sigma-Aldrich	A7611	≥ 98%	CoA	CoA
31	DrugBank	Sigma-Aldrich	SML1811	≥ 98%	CoA	CoA
32	Enamine	Enamine	EN300-250911	95%	LC-MS	1H-NMR
33	Enamine	Enamine	Z1336457514	90%	LC-MS	1H-NMR
34	Enamine	Enamine	Z1622825787	90%	LC-MS	1H-NMR
35	Enamine	Amatek Chemical	A-0615	≥ 98%	CoA	1H-NMR
36	Enamine	Amatek Chemical	A-5185	≥ 98%	CoA	1H-NMR
37	Sigma-Aldrich	Chem-Impex	07083	> 98%	CoA	1H-NMR
38	Sigma-Aldrich	Chem-Impex	04721	> 99%	CoA	1H-NMR
39	Sigma-Aldrich	Chem-Impex	01404	≥ 98%	CoA	1H-NMR
40	Sigma-Aldrich	Chem-Impex	06071	≥ 98%	CoA	1H-NMR
41	Sigma-Aldrich	Chem-Impex	07382	≥ 99%	CoA	1H-NMR
42	Sigma-Aldrich	Amatek Chemical	A-3072	≥ 98%	CoA	1H-NMR

Table S8. Specifications of screening compounds and method of verification, as provided by vendors. Purity stated by coupled liquid chromatography-mass spectrometry (LC-MS) or certificate of analysis (CoA). Identity confirmed by proton nuclear magnetic resonance (1H-NMR) spectra or CoA.
Figure S26. LC-MS spectrum of compound 13.
Figure S27. 1H-NMR spectrum of compound 13.
Figure S28. LC-MS spectrum of compound 14.
Figure S29. 1H-NMR spectrum of compound 14.
Figure S30. LC-MS spectrum of compound 15.
Figure S31. 1H-NMR spectrum of compound 15.
Figure S32. LC-MS spectrum of compound 16.
Figure S33. 1H-NMR spectrum of compound 16.
Figure S34. LC-MS spectrum of compound 17.
Figure S35. ^1H-NMR spectrum of compound 17.
Figure S36. LC-MS spectrum of compound 18.
Figure S37. 1H-NMR spectrum of compound 18.
Figure S38. LC-MS spectrum of compound 19.
Figure S39. 1H-NMR spectrum of compound 19.
Figure S40. LC-MS spectrum of compound 20.
Figure S41. 1H-NMR spectrum of compound 20.
Figure S42. LC-MS spectrum of compound 21.
Figure S43. 1H-NMR spectrum of compound 21.
Figure S44. LC-MS spectrum of compound 22.
Figure S45. 1H-NMR spectrum of compound 22.
Figure S46. LC-MS spectrum of compound 23.
Figure S47. 1H-NMR spectrum of compound 23.
Figure S48. LC-MS spectrum of compound 24.
Figure S49. 1H-NMR spectrum of compound 24.
Figure S50. LC-MS spectrum of compound 25.
Figure S51. 1H-NMR spectrum of compound 25.
Figure S52. LC-MS spectrum of compound 26.
Figure S53. 1H-NMR spectrum of compound 26.

Figure S54. 1H-NMR spectrum of compound 27.
Figure S55. 1H-NMR spectrum of compound 28.
Figure S56. LC-MS spectrum of compound 32.
Figure S57. 1H-NMR spectrum of compound 32.
Figure S58. LC-MS spectrum of compound 33.
Figure S59. 1H-NMR spectrum of compound 33.
Figure S60. LC-MS spectrum of compound 34.
Figure S61. 1H-NMR spectrum of compound 34.

Figure S62. 1H-NMR spectrum of compound 35.
Figure S63. 1H-NMR spectrum of compound 36.
Figure S64. 1H-NMR spectrum of compound 37.
Figure S65. 1H-NMR spectrum of compound 38.
Figure S66. 1H-NMR spectrum of compound 39.
Figure S67. 1H-NMR spectrum of compound 40.
Figure S68. 1H-NMR spectrum of compound 41.
Figure S69. 1H-NMR spectrum of compound 42.