Abstract. After reviewing how the Borel-Weil-Bott theorem can be interpreted as an index theorem, we present a proof using Kostant’s cubic Dirac operator and the equivariant McKean-Singer formula.

The Borel-Weil-Bott theorem “completes” the representation theory of compact Lie groups by providing a cohomological method to construct each and every irreducible representation of a compact Lie group. The main constituents of this construction are the harmonic forms, that is, the homogeneous solutions to the Hodge-Dolbeault operator. Thus the Borel-Weil-Bott method is essentially an index theorem. This viewpoint underlies the work of Bott [2] and is manifest in Slebarski’s theorem [8, Thm. 1, p. 296]. In this article, we give a brief review on the interpretation of the Borel-Weil-Bott theorem as an index theorem, and prove it using Kostant’s cubic Dirac operator and the equivariant McKean-Singer formula.

1. Preliminaries

Throughout the article we write $X = G/T$, where G is a compact connected Lie group and T is a maximal torus of G. The Lie algebra of G, that is, the tangent space of G at the identity e, shall be denoted by the lowercase black letter \mathfrak{g}. We endow \mathfrak{g} with an inner product $\langle \cdot, \cdot \rangle$ by taking the negative of the Killing form. This inner product is invariant under the adjoint action of G on \mathfrak{g}.

1.1. Some Basic Facts and Notations Surrounding the Representation Theory of Compact Lie Groups. Consider the conjugation action of G on itself. The elements among G that preserve T constitute the normalizer $N_G(T)$ of T relative to G. The quotient $W = N_G(T)/T$ is known as the Weyl group of G.

The action of W on T induces a W-action on functions on T; in particular, the irreducible characters of T. The irreducible characters of T constitute the unitary dual \hat{T} of T. So the orbit space \hat{T}/W makes sense. A consequence of the Weyl character formula is that there is a one-to-one correspondence between \hat{T}/W and the unitary dual \hat{G} of G.

2010 Mathematics Subject Classification. Primary 19K56, 58J35, 43A77; Secondary 43A85, 22E45, 58A14.

Key words and phrases. Borel-Weil-Bott theorem, cubic Dirac operator, equivariant index theorem, equivariant McKean-Singer formula.

This research was partially supported under NSF grant DMS-1101382.
Let $\theta: T \to \mathbb{C}^\times$ be an irreducible character of T. Its derivative $\theta_*: t \to \mathbb{C}$ is a Lie algebra representation. The function $-i\theta_*$ is a linear functional on the real vector space t. The image of the map $\hat{T} \to t^*$, $\theta \mapsto -i\theta_*$, forms a lattice Λ_T in t^*. We have:

$$\Lambda_T = \{ \lambda \in t^* | \lambda(H) \in 2\pi\mathbb{Z} \text{ for all } H \in t \cap \exp^{-1}\{e\} \},$$

where exp denotes the exponential map. The constituents of Λ_T are known as the \textit{analytically integral weights} of G.

Let K denote the fundamental Weyl chamber of our choice for the W-action on t^*. Then the one-to-one correspondence between \hat{G} and \hat{T}/W implies a one-to-one correspondence between \hat{G} and $\Lambda_T \cap K$. More precisely:

$$\hat{G} \leftrightarrow \Lambda_T \cap K,$$

$$[V] \mapsto \text{highest weight of } V.$$

For each $\lambda \in \Lambda_T \cap K$, we denote by V_λ an irreducible G-representation space according to the above correspondence.

Let $w \cdot \lambda$ denote the action of $w \in W$ on $\lambda \in \Lambda_T$. The \textit{shifted action} of w on λ is:

$$w \circ \lambda := w \cdot (\lambda + \rho) - \rho,$$

where ρ is the Weyl vector, that is, half the sum of the positive roots. (The positive roots are determined by the Weyl chamber K.) Then $\Lambda_T \cap K$ consists of all elements of Λ_T that has free W-orbit with respect to the shifted W-action. In summary, the Weyl character formula implies the following one-to-one correspondence:

$$\hat{G} \leftrightarrow \{ \text{free shifted } W\text{-orbits in } \Lambda_T \},$$

$$[V] \mapsto W \circ \lambda.$$ \hfill (1)

1.2. Borel-Weil-Bott Theorem

Let $\mu \in \Lambda_T \cap K$, and let U_μ denote the complex vector space \mathbb{C} on which T acts by the irreducible character of weight μ. We denote by $\ell(\mu)$ the word length of μ relative to the fundamental Weyl chamber K; it satisfies:

$$\ell(\mu) = \# \{ \alpha \in \Phi_+ | \langle \mu, \alpha \rangle < 0 \}.$$

Here Φ_+ denotes the set of positive roots of G, and $\langle \cdot, \cdot \rangle$ is the inner product on \mathfrak{g}.

Let $G \times_T U_\mu$ denote the space of equivalence classes in $G \times U_\mu$ with respect to the relation $(g, z) \sim (gx^{-1}, x \cdot z)$ for $x \in T$. This is a complex line bundle over X. It is diffeomorphic to

$$\mathcal{L}_\mu := G^C \times_B U_\mu,$$

which is a complex line bundle over G^C/B, where G^C is the complexification of G, and B is a Borel subgroup of G^C.

The statement of the Borel-Weil-Bott theorem depends on the selected Borel subgroup B. Our convention is as follows. Let \mathfrak{g}_C be the complexification of \mathfrak{g}, and take the root space decomposition:

$$\mathfrak{g}_C = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+,$$

where \mathfrak{n}_\pm denotes the positive and negative root spaces, and \mathfrak{h} is the complexification of \mathfrak{t}. We set

$$\mathfrak{b} := \mathfrak{h} \oplus \mathfrak{n}_+.$$
Then B is the connected subgroup in G^C with Lie algebra b.

Let $\mathcal{O}(\mathcal{L}_\mu)$ be the sheaf of germs of holomorphic sections of \mathcal{L}_μ. The celebrated Borel-Weil-Bott theorem states that the sheaf cohomology $H^*(X; \mathcal{O}(\mathcal{L}_\mu))$ is nontrivial only if μ has free shifted W-orbit, and if that is the case then

$$H^q(X; \mathcal{O}(\mathcal{L}_\mu)) \cong \begin{cases} V_{W \circlearrowleft \mu}, & q = \ell(\mu); \\ 0, & \text{otherwise} \end{cases}$$

Here $V_{W \circlearrowleft \mu}$ denotes the irreducible representation space of G corresponding to the shifted orbit of μ according to the correspondence (1).

Now consider the twisted Hodge-Dolbeault complex

$$A^p_\mu := \Omega^{0,p}(X) \otimes U_\mu,$$

whose differential is given by the Dolbeault operator

$$\bar{\partial} := d_{0,1} \otimes 1.$$

Owing to the Dolbeault theorem (see [10, Thm. 3.20, p. 63]), the complex $(A^*_\mu, \bar{\partial})$ computes the sheaf cohomology of $\mathcal{O}(\mathcal{L}_\mu)$:

$$H^*(X; \mathcal{O}(\mathcal{L}_\mu)) \cong H^*(\{ (A^*_\mu, \bar{\partial}) \}).$$

Meanwhile, by the Hodge theorem, $H^*\{ (A^*_\mu, \bar{\partial}) \}$ is isomorphic to the kernel of the Dirac operator

$$D := (\bar{\partial} + \bar{\partial}^\dagger)/\sqrt{2},$$

where $\bar{\partial}^\dagger$ is the formal adjoint of $\bar{\partial}$. Since D is G-equivariant, the kernel of D is a G-representation space; we denote the corresponding virtual representation as $[\ker D]$. Then Borel-Weil-Bott theorem is equivalent to saying:

$$[\ker D] = \begin{cases} [V_{W \circlearrowleft \mu}], & \text{if } W \circlearrowleft \mu \text{ is a free orbit}; \\ 0, & \text{otherwise}; \end{cases}$$

and $\ker D$ is homogeneous in degree equal to $\ell(\mu)$. This form of the Borel-Weil-Bott theorem first appeared in Slebarski [8].

1.3. Borel-Weil-Bott Theorem as an Equivariant Index Theorem.

The complex A^*_μ is naturally bi-graded by the even and odd forms. Let D_+ and D_- denote the restrictions of D onto the even and odd subspaces. We have

$$[\ker D] = [\ker D_+] + [\ker D_-].$$

Since $V_{W \circlearrowleft \mu}$ is irreducible (when $W \circlearrowleft \mu$ is free), Equation (3) can be refined as follows. If $W \circlearrowleft \mu$ is free then:

$$[\ker D] = [\ker D_+] \text{ or } [\ker D] = [\ker D_-].$$

If $W \circlearrowleft \mu$ is not free then:

$$[\ker D] = [\ker D_+] = [\ker D_-] = 0.$$

Now the equivariant index of D is by definition the virtual representation

$$[\text{Ind } D] := [\ker D_+] - [\ker D_-].$$

Owing to what we have just seen above, we have:

$$[\text{Ind } D] = [\ker D_+] = [\ker D] \text{ or } [\text{Ind } D] = -[\ker D_-] = -[\ker D].$$
provided that \(W \odot \mu \) is free; otherwise we have:

\[
[\text{Ind } D] = [\ker D_{\pm}] = [\ker D] = 0.
\]

Thus, the Borel-Weil-Bott theorem implies that \([\text{Ind } D]\) is nontrivial if and only if \(\mu \) has free shifted \(W \)-orbit, and if that is the case then \([\text{Ind } D]\) is equal to \([V_{W \odot \mu}] \) up to sign. In fact, in our proof of the Borel-Weil-Bott theorem, we shall show that:

\[
[\text{Ind } D] = \begin{cases}
(-1)^{\ell(\mu)}[V_{W \odot \mu}], & \text{if } W \odot \mu \text{ is a free orbit;} \\
0, & \text{otherwise.}
\end{cases}
\]

(4)

Equation (3) then follows with the aid of Equation (16). This index theorem is a refinement of Bott’s result [2, Thm. III, p. 170]. It was first shown by Landweber [7] (for the general case of compact homogeneous space \(G/H \) where \(H \) is a closed subgroup of maximal rank in \(G \)).

1.4. Equivariant McKean-Singer Formula and Kostant’s Cubic Dirac Operator. In obtaining Equation (4), Landweber uses Bott’s equation:

\[
[\text{Ind } D] = i_*([E] - [F]),
\]

where \(E \) and \(F \) denotes \(T \)-spaces, and \(i_* \) is the induction map \(R(T) \to \hat{R}(G), [E] \to [\Gamma^2(G \times_T E)] \). Our method is to use, in place of Bott’s equation, the equivariant McKean-Singer formula. What we have in mind more precisely is this: A virtual representation can be identified with its image under the character map

\[
\chi: R(G) \to C(G),
\]

which maps an irreducible element \([V]\) to its character \(\chi_V \). For the value of \(\chi_V \) at \(g \in G \), we write

\[
[V]_g := \chi_V(g).
\]

The equivariant McKean-Singer formula then states that \([\text{Ind } D]_g\) is equal to the super trace of the operator \(ge^{t D^2} \) where \(t \) is a positive real number (see Berline, Getzler, and Vergne [1, Prop. 6.3, p. 185]):

\[
[\text{Ind } D]_g = \text{Str}(ge^{t D^2}) = \text{tr}(ge^{t D_- D_+}) - \text{tr}(ge^{t D_+ D_-}).
\]

(5)

(Although the right-hand side seems at first to be an infinite linear combination of irreducible characters, it is actually a finite combination due to the symmetry between the eigenvalues of \(D_+ \) and \(D_- \).)

Instead of directly working with the complex \(\mathcal{A}_\mu^* \) in calculating the super trace, we shall use the isomorphism:

\[
\mathcal{A}_\mu^* \cong (C^\infty(G) \otimes \wedge^*(n_+) \otimes U_\mu)^T.
\]

Here the action of \(T \) is as follows: On \(U_\mu \) it is by the irreducible character of weight \(\mu \); on \(C^\infty(G) \) it is the one induced by right-translations; and on \(\wedge^*(n_+) \) it is that induced by the adjoint action. The \(T \)-action on \(\wedge^*(n_+) \) is related to the spinors constructed out of the orthogonal complement \(p \) of \(t \) in \(g \) by:

\[
[\wedge^*(n_+)] = [S^* \otimes U_\mu] \in R(T).
\]

(7)

Here \(S^* \) is dual of the spinor space \(S \) associated to the Clifford algebra \(\text{Cl}(p) \) generated by \(p \) (see Kostant [6, Prop. 3.6, p. 76]). The action of \(T \) on \(S \) is
provided by taking the homomorphism $T \to \text{SO}(p)$, coming from the adjoint representation of G, and lifting it to $T \to \text{Spin}(p)$:

\[
\begin{array}{ccc}
\text{Spin}(p) & \xrightarrow{\text{Ad}} & \text{SO}(p) \\
\text{T} & \xrightarrow{\text{Ad}} & \text{SO}(p)
\end{array}
\]

This lift always exists [3, Cor.1.12, p. 91]. In short, we have:

\[
\mathcal{A}^*_\mu \cong (C^\infty(G) \otimes S^* \otimes U_{\mu+\rho})^T.
\] (8)

Finally, because the equivariant index of a Dirac operator depends only on its symbol (this is easy to check directly, but there is a general theorem by Bott [2, Thm. I, p. 169]), we may use, in place of the Dirac operator (2), Kostant’s cubic Dirac operator:

\[
D := \dim p \sum_{i=1}^{\dim p} Y_i \otimes Y_i + 1 \otimes \frac{1}{3} \sum_{i=1}^{\dim p} Y_i \gamma(Y_i) \in \mathcal{U}(\mathfrak{g}) \otimes \text{Cl}(\mathfrak{p}).
\] (9)

Here $\mathcal{U}(\mathfrak{g})$ is the universal enveloping algebra of \mathfrak{g}; $\{Y_i\}_{i=1}^{\dim p}$ is any orthonormal basis for \mathfrak{p}; and γ is the map $\mathfrak{g} \rightarrow \text{spin}(\mathfrak{p})$ defined by:

\[
\gamma(Z) := -\frac{1}{2} \sum_{i,j=1}^{\dim \mathfrak{p}} \langle Z, [Y_i, Y_j]_{\mathfrak{g}} \rangle Y_i Y_j.
\] (10)

The action of the algebra $\mathcal{U}(\mathfrak{g}) \otimes \text{Cl}(\mathfrak{p})$ on the right-hand side of (8) is trivial on $U_{\mu+\rho}$; the action on S^* comes from the canonical action of $\text{Cl}(\mathfrak{p})$; and the action on $C^\infty(G)$ is solely from $\mathcal{U}(\mathfrak{g})$, which arises from identifying $Z \in \mathfrak{g}$ with the left-invariant vector field it generates on G.

The advantage of using the cubic Dirac operator lies in the simple form of its square:

\[
D^2 = -\Omega_{\mathfrak{g}} + \text{diag} \Omega_t + \|\rho\|^2.
\] (11)

Here $\Omega_{\mathfrak{g}}$ denotes the Casimir element in $\mathcal{U}(\mathfrak{g})$, and diag denotes the algebra homomorphism $\mathcal{U}(t) \rightarrow \mathcal{U}(\mathfrak{g}) \otimes \text{Cl}(\mathfrak{p})$ induced by the map $t \rightarrow \mathcal{U}(\mathfrak{g}) \otimes \text{Cl}(\mathfrak{p})$, $X \mapsto X \otimes 1 + 1 \otimes \gamma(X)$.

To see the effectiveness of Equation (11), decompose the right-hand side of (8) using the Peter-Weyl theorem:

\[
(C^\infty(G) \otimes S^* \otimes U_{\mu+\rho})^T \cong \bigoplus_{[\lambda] \in \hat{G}} V_{\lambda} \otimes (V_{\lambda}^* \otimes S^* \otimes U_{\mu+\rho})^T.
\] (12)

(This is not entirely correct; the isomorphism is true upon taking the norm closures on both sides.) This isomorphism is obtained by identifying $|v\rangle \otimes |w\rangle \in V_{\lambda} \otimes V_{\lambda}^*$ with the function $G \rightarrow \mathbb{C}$, $g \mapsto \langle g \cdot w | v \rangle$. The action of $\mathcal{U}(\mathfrak{g})$ on the right-hand side is the one induced by the Lie algebra representation on each V_{λ}^*. Now take a summand

\[
H_{\lambda} := V_{\lambda} \otimes (V_{\lambda}^* \otimes S^* \otimes U_{\mu+\rho})^T.
\]

Owing to Schur’s lemma, the action of $\Omega_{\mathfrak{g}}$ on V_{λ}^* is constant with the value $- \|\lambda + \rho\|^2 + \|\rho\|^2$. For similar reasons, the action of $\text{diag} \Omega_t$ on $V_{\lambda}^* \otimes S^*$ is
again constant with the value $-\|\mu + \rho\|^2$. In summary, the restriction of D^2 on the summand H_λ is simply the constant operator

$$D^2_\lambda := \|\lambda + \rho\|^2 - \|\mu + \rho\|^2.$$

So the super trace of the operator ge^{-tD^2} restricted to H_λ is:

$$\text{Str}(ge^{-tD^2}) = [V_\lambda]_g \langle [V_\lambda \otimes S_+] - [V_\lambda \otimes S_-], [U_{\mu + \rho}] \rangle_T e^{-t(\|\lambda + \rho\|^2 - \|\mu + \rho\|^2)},$$

where $\langle \cdot, \cdot \rangle_T$ denotes the nondegenerate paring on $R(T)$ defined by:

$$\langle E, F \rangle_T = \dim \text{Hom}_T(E, F).$$

2. A Proof of the Borel-Weil-Bott Theorem via the Equivariant McKean-Singer Formula

We now derive the Borel-Weil-Bott theorem using the equivariant McKean-Singer formula. As we have explained in Section 1, the Borel-Weil-Bott theorem is equivalent to the following:

Theorem 1. Let D be Kostant’s cubic Dirac operator acting on the smooth sections of the twisted vector bundle $G \times_T (S \otimes U_{\mu + \rho})$ over $X = G/T$. The equivariant index of D satisfies:

$$[\text{Ind } D] = \begin{cases} (-1)^{\ell(\mu)} [W]_g, & \text{if } W \otimes \mu \text{ is free;} \\ 0, & \text{otherwise.} \end{cases}$$

Moreover,

$$[\text{Ind } D] = \begin{cases} [\ker D_+], & \text{if } \ell(\mu) \text{ is even;} \\ -[\ker D_-], & \text{if } \ell(\mu) \text{ is odd.} \end{cases}$$

In each case, contributions to $\ker D_\pm$ come from sections whose degree is equal to $\ell(\mu)$.

Proof. We begin by invoking the equivariant McKean-Singer formula:

$$[\text{Ind } D]_g = \sum_{[V_\lambda] \in G} \text{Str}(ge^{tD^2_\lambda}).$$

By Equation (14), we have:

$$[\text{Ind } D]_g = \sum_{[V_\lambda] \in G} [V_\lambda]_g \langle [V_\lambda \otimes S_+] - [V_\lambda \otimes S_-], [U_{\mu + \rho}] \rangle_T e^{-t(\|\lambda + \rho\|^2 - \|\mu + \rho\|^2)}.$$

But the left-hand side is independent of the parameter t; hence, the only contribution in the sum occurs from the terms with the exponential factor equal to 1, that is, when $\|\lambda + \rho\| = \|\mu + \rho\|$. Thus we have:

$$[\text{Ind } D] = \sum_{[V_\lambda] \in G, \|\lambda + \rho\| = \|\mu + \rho\|} [V_\lambda] \langle [V_\lambda \otimes S_+] - [V_\lambda \otimes S_-], [U_{\mu + \rho}] \rangle_T.$$

According to the multiplicity result of Kostant [5, Thm. 4.17, p. 486], we have:

$$\begin{cases} \langle [V_\lambda \otimes S_+], [U_{\mu + \rho}] \rangle_T, \langle [V_\lambda \otimes S_-], [U_{\mu + \rho}] \rangle_T \rangle = \begin{cases} (1, 0), & \text{if } \ell(\mu) \text{ is even;} \\ (0, 1), & \text{if } \ell(\mu) \text{ is odd,} \end{cases} \end{cases}$$

(17)
provided that $\mu \in W \odot \lambda$; this last condition can be satisfied by some $[V_\lambda] \in \hat{G}$ if and only if $W \odot \mu$ is free. As a consequence we have Equation (15). We also find from Equation (17) that a nontrivial contribution to $[\text{Ind} D]$ comes solely from the even or the odd domain according to the parity of $\ell(\mu)$; hence Equation (16) holds. The same multiplicity result of Kostant also implies that such contribution to $[\text{Ind} D]$ comes from elements whose degree is $\ell(\mu)$. This completes the proof. □

Remark. Theorem 1 can be modified so that it holds for more general cases where T may be any closed subgroup H of G that is of maximal rank; the only change necessary is that we replace $U_{\mu+\rho}$ with $U_{\mu+\rho'}$, where

$$\rho' := \frac{1}{2} \sum_{\alpha \in \Phi_+ \setminus \Phi_+} \alpha.$$

Here $\Phi_+ (\mathfrak{h})$ denotes the set of positive roots of the Lie algebra \mathfrak{h} of H (the roots are calculated with respect to a common maximal toral subalgebra of \mathfrak{g} and \mathfrak{h}). This change is necessary because Equation (7) now takes the form:

$$[\wedge \bullet (n_+)] = [S^* \otimes U_{\rho'}].$$

The formula for D^2 also changes to:

$$D^2 = -\Omega_g + \text{diag} \Omega_h + \| \rho \|^2 - \| \rho_h \|^2,$$

where ρ_h is the Weyl vector of \mathfrak{h}. But Equation (13) remains unmodified; so the argument we gave for G/T can be repeated word-for-word for G/H, and we have the full results of Landweber [7, Thm. 3, p. 471] and Slebarski [9, Thm. 2, p. 509].

References

[1] N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original. MR2273508 (2007m:58033)

[2] R. Bott, The index theorem for homogeneous differential operators, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 167–186. MR0182022 (31 #6246)

[3] D. S. Freed, Flag manifolds and infinite-dimensional Kähler geometry, Infinite-dimensional groups with applications (Berkeley, Calif., 1984), Math. Sci. Res. Inst. Publ., vol. 4, Springer, New York, 1985, pp. 83–124. MR823316 (87k:58020)

[4] B. Gross, B. Kostant, P. Ramond, and S. Sternberg, The Weyl character formula, the half-spin representations, and equal rank subgroups, Proc. Natl. Acad. Sci. USA 95 (1998), no. 15, 8441–8442 (electronic), DOI 10.1073/pnas.95.15.8441. MR1639139 (99f:17007)

[5] B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), no. 3, 447–501, DOI 10.1215/S0012-7094-99-10016-0. MR1719734 (2001k:22032)

[6] ———, A generalization of the Bott-Borel-Weil theorem and Euler number multiplets of representations, Lett. Math. Phys. 52 (2000), no. 1, 61–78, DOI 10.1023/A:1007653819322. Conference Moshé Flato 1999 (Dijon). MR1800491 (2001m:22028)

[7] G. D. Landweber, Harmonic spinors on homogeneous spaces, Represent. Theory 4 (2000), 466–473 (electronic), DOI 10.1090/S1088-4165-00-00102-3. MR1780719 (2001i:22016)
[8] S. Slebarski, The Dirac operator on homogeneous spaces and representations of reductive Lie groups. I, Amer. J. Math. 109 (1987), no. 2, 283–301, DOI 10.2307/2374575. MR882424 (89a:22028)

[9] ———, The Dirac operator on homogeneous spaces and representations of reductive Lie groups. II, Amer. J. Math. 109 (1987), no. 3, 499–520, DOI 10.2307/2374565. MR892596 (88g:22015)

[10] R. O. Wells Jr., Differential analysis on complex manifolds, 3rd ed., Graduate Texts in Mathematics, vol. 65, Springer, New York, 2008. With a new appendix by Oscar Garcia-Prada. MR2359489 (2008g:32001)

Mathematisches Institut, Busenstrasse 3–5, D-37073 Göttingen, Germany
E-mail address: shong@uni-goettingen.de
URL: diracoprerat.org