A Reappraisal on the Associations between Sleep-disordered Breathing, Insomnia, and Cardiometabolic Risk

To the Editor:

Sleep-disordered breathing (SDB) and insomnia are highly prevalent conditions in general population and exhibit significant and independent associations with cardiometabolic risk (e.g., hypertension [HT] and diabetes [DM]) (1, 2). The major effort to define the incremental risk has been directed to SDB or insomnia as isolated conditions, even though both can frequently cooccur. Indeed, comorbid insomnia and sleep apnea (COMISA) has recently emerged as a topic of significant interest (3), whereby despite the obvious clinical divergence of the cardinal symptoms and signs of each of these entities, the two sleep disorders share many common symptoms, which may hinder recognition, diagnosis, and treatment, and hamper the adequate management of patients with COMISA (4).

The hypothesis has been put forth of mutually interactive, bidirectional effects between insomnia and SDB, in which the adverse consequences of COMISA will be enhanced, particularly regarding the cardiovascular system (5, 6). In addition, alterations in the circadian timing system may also interfere with the mechanisms underlying COMISA-associated end-organ morbidities and ultimately potentiate such risks (7–9).

In this context, we eagerly read the recent paper by Li and colleagues (10), which prospectively confirmed the associations between SDB and insomnia with incident HT and DM in U.S. Hispanic/Latino subjects. Because this particular sector of the U.S. population has been recognized as carrying a higher risk of SDB (41.9% and 10.1%) or the isolated insomnia group (10.1% and 1.8%) (P < 0.001). Excessive diurnal sleepiness scores were higher in the COMISA and SDB groups when compared with the insomnia group (Table 1). Significant reductions in daily total sleep duration emerged in the COMISA group compared with the SDB and insomnia groups (P = 0.001), which could independently, or via interactions with the circadian timing system, influence several cardiometabolic outcomes (8, 9). Also, the trend toward later sleep-onset times in the COMISA group may also operate as an important cardiometabolic risk factor (11).

Thus, our findings not only corroborate those of Li and collaborators (10) in another cohort, whereby SDB and insomnia appear to contribute to cardiovascular and metabolic risk, but also expand on such findings and reveal the potentiation of these adverse consequences when both are concurrently present as in patients with COMISA. Further studies examining the underlying mechanisms contributing to this enhanced risk appear warranted.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Miguel Meira e Cruz, M.Sc., D.D.S.*
Lisbon School of Medicine
Lisbon, Portugal

Faculdade São Leopoldo Mandic
Campinas, Brazil

and

Bahiana School of Medicine and Public Health
Salvador, Brazil

Cristina Salles, M.D., Ph.D.
Bahiana School of Medicine and Public Health
Salvador, Brazil

David Gozal, Ph.D. (Hon.)
University of Missouri
Columbia, Missouri

1. Lu Z, Feng H, Shen X, He R, Meng H, Lin W, et al. MiR-122-5p protects against acute lung injury via regulation of DUSP4/ERK signaling in pulmonary microvascular endothelial cells. Life Sci 2020;256:117851.

Copyright © 2021 by the American Thoracic Society
Table 1. Comparison of Characteristics among the Moderate/High Risk Groups for COMISA, OSA, and Insomnia

Variable	COMISA (n = 173)	OSA (n = 322)	Insomnia (n = 168)	P Value
Sex, M, n (%)†	98 (54.7)	210 (65.2)	49 (26.6)	<0.0001
Age, yr†				
Median (interquartile range)	51 (39–60)	50 (37–60)‡	36 (31–52)§	<0.0001
Mean ± SD	49.8 ± 13.8	48.5 ± 14.8‡	41 ± 13.8§	
BMI, kg/m²†				
Median (interquartile range)	30 (25–35)	29 (26–34)‡	25 (23–27)§	<0.0001
Mean ± SD	31 ± 6.3	30.8 ± 6.5‡	25.3 ± 3.8§	
Neck circumference, cm†				
Median (interquartile range)	44 (37–50)	42 (37–48)‡	34 (31–38)§	<0.0001
Mean ± SD	44.2 ± 8.9	44.2 ± 9.1‡	35.2 ± 5.5§	
Epworth scale score†				
Median (interquartile range)	10 (5–14)‡	11 (7–16)‡	8 (5–13)	<0.0001
Mean ± SD	10.4 ± 6.8‡	11.9 ± 6.2‡	10.2 ± 6.6	
SAH, n %*	94 (54.3)	135 (41.9)	17 (10.1)	<0.0001
Diabetes, n (%)†	23 (13.3)	35 (10.9)	3 (1.8)	<0.0001
Uses caffeine, n (%)*	113 (63.1)	212 (65.8)	96 (52.2)	0.009
Smoker, n (%)†	15 (8.4)	15 (4.7)	4 (2.2)	0.023
Uses alcoholic beverages, n (%)*	84 (46.9)	170 (52.8)	75 (40.8)	0.032
Practices physical activity, n (%)*	71 (39.7)	137 (42.5)	78 (42.4)	0.804
Time to go to bed, median (interquartile range), h†	23:00 (22:30–00:00)	23:00 (22:00–23:30)	23:00 (22:00–23:30)	<0.0001
Wake-up time, median (interquartile range), h†	6:00 (5:00–7:00)	6:00 (5:30–6:30)	6:00 (5:30–7:00)	0.009
Total sleep time, median (interquartile range), h†	7:00 (6:00–8:00)	7:10 (6:30–8:00)	7:15 (6:30–8:00)§	0.001

Definition of abbreviations: BMI = body mass index; COMISA = comorbid insomnia and sleep apnea; OSA = obstructive sleep apnea; SAH = systemic arterial hypertension.

*Simple and relative frequencies.
†ANCOVA or Kruskal-Wallis (Bonferroni) tests.
‡OSA versus insomnia: P < 0.005.
§COMISA versus insomnia: P < 0.005.
¶COMISA versus OSA: P < 0.005.

ORCID IDs: 0000-0001-6076-0878 (M.M.e.C.); 0000-0001-8514-7631 (C.S.); 0000-0001-8195-6036 (D.G.).

*Corresponding author (e-mail: mcruz@medicina.ulisboa.pt).

References
1. Ayas NT, Hirsch AAJ, Laher I, Bradley TD, Malhotra A, Polotsky VY, et al. New frontiers in obstructive sleep apnoea. Clin Sci (Lond) 2014;127:209–216.
2. Shaw JE, Punjabi NM, Naughton MT, Willes L, Bergenstal RM, Cistulli PA, et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. Am J Respir Crit Care Med 2016;194:486–492.
3. Sweetman A, Lack L, Bastien C. Co-Morbid Insomnia and Sleep Apnea (COMISA): prevalence, consequences, methodological considerations, and recent randomized controlled trials. Brain Sci 2019;9:371.
4. Sweetman AM, Lack LC, Catcheside PG, Antic NA, Chai-Coetzter CL, Smith SS, et al. Developing a successful treatment for co-morbid insomnia and sleep apnea. Sleep Med Rev 2017;33:28–38.
5. Luyster FS, Buyse DJ, Strollo PJ Jr. Comorbid insomnia and obstructive sleep apnea: challenges for clinical practice and research. J Clin Sleep Med 2010;6:196–204.
6. Chung KF. Insomnia subtypes and their relationships to daytime sleepiness in patients with obstructive sleep apnea. Respiration 2005;72:460–465.
7. Meira E Cruz M, Gozal D. Sleepiness and cardiometabolic impact of short sleep duration and OSA: what about the clock? Chest 2019;156:1273–1274.
8. Nobre B, Morin C, Rocha I, Meira e Cruz M. Insomnia and circadian misalignment: an under-explored interaction towards cardiometabolic risk. Sleep Sci 2020;1–9.
9. Santos I, Rocha I, Gozal D, Meira E Cruz M. Obstructive sleep apnea, shift work and cardiometabolic risk. Sleep Med 2020;74:132–140.
10. Li X, Sotres-Alvarez D, Gallo LC, Ramos AR, Aviles-Santa L, Pereira KM, et al.; The Hispanic Community Health Study/Study of Latinos. Associations of sleep-disordered breathing and insomnia with incident hypertension and diabetes. Am J Respir Crit Care Med 2021;203:356–365.
11. Wang L, Li J, Du Y, Sun T, Na L, Wang Z. The relationship between sleep onset time and cardiometabolic biomarkers in Chinese communities: a cross-sectional study. BMC Public Health 2020;20:374.