Variation in routine follow-up care after curative treatment for head-and-neck cancer: a population-based study in Ontario

K.E. Brennan MSc,* S.F. Hall MD,† T.E. Owen MD,‡ R.J. Griffiths BSc,§ and Y. Peng PhD||

ABSTRACT

Background The actual practices of routine follow-up after curative treatment for head-and-neck cancer are unknown, and existing guidelines are not evidence-based.

Methods This retrospective population-based study used administrative data to describe 5 years of routine follow-up care in 3975 head-and-neck cancer patients diagnosed between 2007 and 2012 in Ontario.

Results The mean number of visits per year declined during the follow-up period (from 7.8 to 1.9, \(p < 0.001 \)). The proportion of patients receiving visits in concordance with guidelines ranged from 80% to 45% depending on the follow-up year. In at least 50% of patients, 1 head, neck, or chest imaging test was performed in the first follow-up year; that proportion subsequently declined (\(p < 0.001 \)). Factors associated with follow-up practices included comorbidity, tumour site, treatment, geographic region, and physician specialty (\(p < 0.05 \)).

Conclusions Given current practice variation and the absence of an evidence-based standard, the challenge in identifying a single optimal follow-up strategy might be better addressed with a harmonized approach to providing individualized follow-up care.

Key Words Head-and-neck cancer, routine follow-up, practice variation, imaging

INTRODUCTION

The population of cancer survivors is growing because of an increasing incidence of cancer in an aging population and progress in medical therapies.1 Providing optimal follow-up care to cancer survivors has subsequently become a prominent research area. Much of the existing literature has focused on the high-incidence cancers of breast,2 prostate,3 and colon.4 Evidence about the characteristics of effective follow-up care for patients with less-common malignancies such as head-and-neck cancer is lacking.5

Research into follow-up strategies for head-and-neck cancer has not shown an advantage in overall survival with routine cancer surveillance for timely detection of recurrence6–10, and no randomized clinical trials have compared follow-up strategies with no follow-up.11 The literature pertaining to how follow-up care can most effectively manage morbidity and address other health needs in head-and-neck cancer patients is limited.12,13 Consequently, guidelines—from the British Association of Head and Neck Oncologists14, the American Head and Neck Society15, the U.S. National Comprehensive Cancer Network (nccn)16, the American Cancer Society17, Cancer Care Ontario18, and the BC Cancer Agency19—are based on consensus only and vary with the organization (Tables i and ii). Without evidence to support an optimal follow-up schedule, widespread variation in practice has been reported by physicians20, and guidelines are likely not informing improvements in patient outcomes or assisting in the allocation of health care resources.

Population-based studies have depicted real-world practices21 and examined follow-up care for many cancer sites.22–25 The objectives of the present study were to describe the follow-up care delivered to head-and-neck cancer patients, to compare practices with guideline recommendations, and to assess patient, disease, and system factors associated with the follow-up care delivered.
METHODS

Study Design and Population

This population-based study used administrative health care data to describe follow-up care for head-and-neck cancer patients in the province of Ontario. The study population included patients 35–75 years of age who were diagnosed with squamous cell carcinoma of the head and neck (oral cavity, oropharynx, nasopharynx, hypopharynx, larynx) during 2007–2012, who were treated with curative intent, and who were well enough to be receiving routine follow-up. Patients were excluded if they had received a prior diagnosis of head-and-neck cancer, if they had died before completing curative treatment, or if they had received palliative treatment. Patients with incomplete treatment records were excluded because of uncertainty about treatment intent.

The follow-up period was defined as beginning on the end-of-treatment date and continuing for 5 years unless censored earlier. Patients were censored within each year of follow-up if they had died, experienced a recurrence (receipt of additional treatment), developed a second primary, moved out of the province (becoming ineligible for provincial health insurance), or if the study end date (31 December 2015) preceded completion of follow-up. Patients were censored at 90 days before a recurrence or second primary diagnosis in case additional and non-routine visits or tests had been ordered. To allow for differentiation between residual disease and recurrence, “end of treatment” was defined as the passage of at least 120 days with no further treatment.

Data Sources and Linkage

The Ontario Cancer Registry is a population-based cancer registry that houses diagnostic information and patient demographics for at least 98% of all incident cancer cases in Ontario. Additional demographic data were captured from the Registered Persons Database. Hospitalization records in databases held by the Canadian Institute for Health Information were used to obtain information about surgical procedures. Radiation and chemotherapy treatment details were obtained from physician billing records in the ohip (Ontario Health Insurance Plan) database and in treatment records from the 8 regional cancer centres across Ontario where all patients with head-and-neck diagnoses are treated. The Ontario Registrar General provides vital status on all residents, and Statistics Canada supplies information about neighborhood incomes based on census data. Data linkages were performed using unique encoded identifiers, and data analyses were conducted at the Institute for Clinical Evaluative Sciences.
Measures and Outcomes
“Physician visits” were defined as outpatient appointments with surgical, radiation, and medical oncologists. Physician type was determined by the fee codes in Ontario billing records. The numbers of follow-up visits were classified as “fewer than recommended,” “recommended,” and “more than recommended” based on recent guidelines published by the NCCN.18 Canada-specific guidelines were not used because reported Canadian practices were more comparable with the NCCN guidelines and more intensive than those recommended in the Cancer Care Ontario guidelines. The Cancer Care Ontario guidelines (published in 2009)18 are based on consensus and are adapted from a clinical practice guideline published in 2006 by the Scottish Intercollegiate Guidelines Network.27 The number of follow-up visits recommended are 4–12 in year 1, 2–6 in year 2, 2–3 in years 3 and 4, and 1–3 in year 5.

Nasopharyngoscopies and imaging tests were identified using fee codes. Head-and-neck imaging tests included radiography (facial bones, nose, mandible, sinuses, mastoids, neck), computed tomography (CT) of the head and neck, magnetic resonance imaging of head and neck, and neck ultrasonography. Chest imaging tests included radiography, CT, and magnetic resonance imaging.

To allow for treatment groups that were homogenous and large enough for analysis, initial treatment was classified into surgery, radiotherapy, chemoradiotherapy, and surgery followed by radiotherapy or chemoradiotherapy. Treatment groups included patients who received salvage surgery for residual disease within 120 days of the initial treatment modality.

The Elixhauser method28 with the Quan modification29 was used to obtain a measure of the number of comorbidities for each patient. This method considers 31 disease categories excluding head-and-neck malignancy and creates a single comorbidity score based on an algorithm that uses the International Classification of Diseases (9th and 10th revisions) diagnosis codes that appear in the records of hospital admissions maintained by the Canadian Institute for Health Information.

Based on 2006 census data, patient postal codes were matched to neighborhood income quintiles as an indicator for socioeconomic status. “Rural” status was assigned if a patient resided in a community of less than 10,000 population.

Ontario is divided into 14 health care regions called Local Health Integration Networks (LHINs). The LHIN of treatment delivery was used to study geographic variation and institutional policies for follow-up care. Designated multidisciplinary clinics for head-and-neck cancer are located in 8 cancer centres found in 6 LHINs. Additional LHINs were included to account for treatment delivered to the occasional patient outside the designated centres.

Statistical Analysis
Descriptive statistics are used to describe follow-up visits and imaging tests. Poisson and logistic regression were used to compare, respectively, counts and proportions of visits and tests by subgroup. Modified Poisson regression was used to identify factors associated with follow-up care frequencies falling below and above the recommended frequencies. Imaging tests were investigated based on a dichotomous outcome: at least 1 imaging test performed. Generalized estimating equations accounted for the correlations within subjects in all regression models. Results were considered statistically significant at \(p < 0.05 \).

RESULTS

Study Population
In Ontario from 2007 to 2012, 10,135 patients were diagnosed with head-and-neck cancer (Figure 1). Of the 5951 patients who received curative treatment, the 3-year mortality, recurrence, and new primary diagnosis rates were 22% (n = 1298), 27% (n = 1602), and 8% (n = 492) respectively. The final study population included 3975 patients; Table vi shows their characteristics. Mean age at diagnosis in this cohort was 59 years, with 75% being men, 29% having 1 or more comorbidities, and 44% having an oral cavity cancer.

Physician Visits, Nasopharyngoscopies, and Imaging Tests
Tables iv and v show the mean numbers and proportions of patients having at least 1 physician visit, nasopharyngoscopy, and imaging test during follow-up. The mean number of visits to oncologists ranged from 8 (in follow-up year 1) to 2 (in follow-up year 5) and were most often made to surgeons and radiation oncologists. The proportion of patients having at least 1 visit declined to 79% in follow-up year 5 from 99% in follow-up year 1 (p < 0.001). In follow-up year 1, 74% of patients underwent at least 1 nasopharyngoscopy; the proportion declined thereafter (p < 0.001). Imaging of head and neck was performed primarily using CT or magnetic resonance imaging, with a mean of 2 imaging tests in follow-up year 1, declining to 0.4 imaging tests in follow-up year 5 (p < 0.001). The proportion of patients undergoing at least 1 head-and-neck imaging test showed a downward trend to 19% in follow-up year 5 from 64% in follow-up year 1 (p < 0.001). Imaging of chest was performed predominately by radiography, followed by CT. Patients underwent a mean of 1.4 chest imaging exams in follow-up year 1, with 56% of patients undergoing at least 1 such exam—a proportion that declined throughout the follow-up period (p < 0.001).

Visits and Tests by Site, Treatment, and Specialty
Tables vi and vii present patient visits and imaging tests throughout follow-up by tumour site, treatment group, and attending specialty. For all follow-up years, patients with nasopharyngeal cancers had the most intensive follow-up, including the greatest mean number of visits (10 in year 1 to 3 in year 5) and the highest proportions undergoing at least 1 head-and-neck imaging test (95% in year 1 to 54% in year 5). Patients with hypopharyngeal tumours underwent at least 1 chest imaging test in the highest proportion, ranging from 69% to 45% during follow-up. Early in the follow-up period, patients treated with concurrent chemoradiotherapy had a higher mean number of visits (9 in follow-up year 1). Patients treated with surgery alone had a lower mean number of follow-up visits (6 declining to 1) and underwent at least 1 imaging test in a lower proportion (53% declining to 29% for chest imaging, and 33% declining...
to 13% for head and neck imaging) in most follow-up years. The number of patients seen by each specialty changed as follow-up continued, with an increasing proportion of patients seeing a single specialty.

Comparing Follow-Up Care with Guideline Recommendations
More than 70% of patients received follow-up visits within the recommended guidelines in follow-up years 1 and 2, and at least 40% of patients received the guideline-recommended visits in years 3–5 (Figure 2). Almost 60% of patients received imaging of the chest, head, and neck in year 1 of follow-up, a proportion that steadily declined in each subsequent follow-up year.

Factors Associated with Delivered Follow-Up Care
Factors that were found to be associated with receipt of fewer than the recommended follow-up visits included male sex, surgery as treatment, and lower income quintile ($p < 0.05$, Table viii). Receiving more than the recommended follow-up visits was associated with tumours of the hypopharynx and nasopharynx, presence of 2 or more comorbidities, visits to multiple specialists, and later follow-up year ($p < 0.05$). Older age, the presence of comorbidities, female sex, and earlier follow-up years were associated with an increased likelihood of receiving imaging tests ($p < 0.01$). Patients with laryngeal tumours were less likely to undergo head and neck imaging (relative risk (rr): 0.73; 95% confidence interval (ci): 0.68 to 0.79), and patients treated with concurrent chemoradiotherapy were more likely to undergo chest imaging (rr: 1.21; 95% ci: 1.09 to 1.33). Seeing multiple specialists for follow-up was associated with an increased likelihood of undergoing imaging (head and neck rr: 1.33; 95% ci: 1.26 to 1.41; chest rr: 1.14; 95% ci: 1.09 to 1.19). Significant regional variation by LHIN was found for visits made and imaging tests performed ($p < 0.001$).

DISCUSSION
The objective of the present study was to establish a baseline of contemporary follow-up practices for head-and-neck cancer patients in Ontario. Follow-up care is regarded by physicians and patients alike as an indispensable component of cancer care for surveillance of disease and treatment of morbidity. Substantial variation in follow-up care was found, and practices did not consistently...
TABLE III Characteristics of 3975 head-and-neck cancer patients diagnosed in Ontario between 2007 and 2012 who were on routine follow-up after curative treatment

Characteristic	Value
Patient-related	
Sex [n (%)]	
Men	2984 (75.1)
Women	991 (24.9)
Mean age (years)	59.2±8.9
Age group [n (%)]	
<40 Years	68 (1.7)
40–49 Years	537 (13.5)
50–59 Years	1386 (34.9)
60–69 Years	1387 (34.9)
≥70 Years	597 (15.0)
Income quintile [n (%)]	
1 (low)	827 (20.8)
2	801 (20.2)
3	761 (19.1)
4	837 (21.1)
5 (high)	732 (18.4)
Unknown	17 (0.4)
Elixhauser comorbidity index [n (%)]	
0	2830 (71.2)
1	661 (16.6)
≥2	484 (12.2)
Residential locationa [n (%)]	
Urban	3343 (84.1)
Rural	630–635 (15.8–16.0)
Disease-related	
Tumour site [n (%)]	
Oral cavity	1754 (44.1)
Oropharynx	830 (20.9)
Nasopharynx	186 (4.7)
Hypopharynx	129 (3.2)
Larynx	987 (24.8)
Other or unspecified	89 (2.2)
Treatment [n (%)]	
Surgery alone	956 (24.1)
RT alone	684 (17.2)
CTx alone	1153 (29.0)
Surgery, then RT or CTx	1149 (28.9)
Other	33 (0.8)
Health system–related	
LHINb [n (%)]	
A	563 (14.2)
B	113 (2.8)
C	539 (13.6)
D	1773 (44.6)
E	52 (1.3)
F	136 (3.4)
G	387 (9.7)
H	218 (5.5)
Surgery alone (any other LHIN)	119 (3.0)
Unknown	75 (1.9)

* Data were unavailable for subgroups of less than 6 patients.
* Where patients received RT or surgery, or both. These LHINs are the only ones where RT for head-and-neck cancer is available.

RT = radiation therapy; CTx = chemotherapy; LHIN = Local Health Integration Network.

Align with NCCN guidelines. Evidence-based medicine was established to reduce unwarranted practice variation, to promote favourable patient outcomes, and to minimize unnecessary costs31. Thus, practice variation can raise concerns about effectiveness, quality, and access to care32. In the absence of evidence about survival outcomes on which to base head-and-neck cancer follow-up care, it is no surprise that variation ensues and was confirmed here in a Canadian setting.

Factors associated with delivered follow-up care can provide some rationale for the observed practice variations. In comparing the present study with the report by Eskander et al.33 about physician visits and imaging tests in year 1 of follow-up, the results are similar. Marked variation in practices was found, including by disease-related factors such as tumour site and by geographic region. Geographic variation is likely attributable to entrenched institutional policies, availability of health services, and differences in the presenting case mix34. Reasons for deviations by site might include variations in the rates of recurrence and of new primaries based on tumour site35–37 and varying accessibility for physical examinations38. Multiple treatment modalities were associated with a greater likelihood of receiving at least the recommended number of follow-up visits and 1 or more imaging tests. In the absence of tumour stage, multiple treatments are serving as a proxy for increased severity of disease. Schwartz et al.7 demonstrated that advanced stage, higher nodal status, and high-risk pathologic features are associated with more intensive follow-up care. Patients also received more visits and tests when additional physicians were involved in their care. Although some differences might be attributed to treatment sequelae or extent of disease, different values might also be placed on certain aspects of follow-up by individual physicians and specialties39.

As has been seen for other cancer sites22,23,25 and guideline recommendations for follow-up care4–6,16,18,19,27,40, the intensity of follow-up was found to decline over time. Most relapses of head-and-neck cancer occur during the first 3 years, with 80% occurring within 2 years of treatment completion and 95% within 3 years41, which supports the observed declining intensity trend. In a U.K. study37, data collected locally during a 10-year follow-up period were used to study time to first recurrence and to a new primary. The authors found that, of first cancer events, 95% occurred within the first 3 years for oropharyngeal and hypopharyngeal cancers and within 4.7 years for laryngeal cancer. Those observations prompted a reduction in the duration of follow-up care offered at a U.K. centre, with different regimens for each tumour site.

Follow-up care for head-and-neck cancer patients in the present study did not resemble any single recommended schedule of follow-up visits or imaging tests. Being non-evidence-based, consensus-driven, and designed elsewhere for a different health care culture, the existing guidelines are merely suggestions for physicians practicing in Canada; they have not been shown to maximize patient outcomes or to reflect the Canadian context in terms of the availability of health care resources. Furthermore, a “one size fits all” approach is not ideal to effectively provide follow-up care to the entire population of head-and-neck
cancer patients. In this heterogeneous patient population, malignancy affects a variety of anatomic locations and tissue types. Further contributors to the diversity of this patient population and their health needs in follow-up include the rising incidence of human papillomavirus–related oropharyngeal cancers in younger patients with fewer comorbidities and lifestyle risk factors, and diagnoses of cancers in older patients with more comorbidities and a history of smoking and alcohol consumption42.

The present work has several strengths. Our study is the first to evaluate routine follow-up care for head-and-neck cancer in Canada, and it is innovative in both its definition of follow-up (beginning at the end of treatment) and its selection of a study population without evidence of new cancer events. The use of administrative data and a population-based design reflect real-world practices and, with the inclusion of multiple institutions, minimize selection biases21. However, the study’s limitations also merit comment. Patient preferences, lifestyle factors, positron-emission tomography imaging, and laboratory tests for tumour markers are not collected in the administrative data sources and were therefore unavailable for study. Staging data in the Ontario Cancer Registry was in an early collection phase and was largely incomplete for head-and-neck cancer patients. With the stage being “unknown” for 76% of the study population (3025 of 3975 patients), an evaluation of the association between extent of disease and follow-up care could not be justified. Measurement error could have occurred if inaccurate dates of treatments, visits, or imaging tests were recorded, although

Table IV

Physician specialty	Year 1 (3975 pts)	Year 2 (3442 pts)	Year 3 (2959 pts)	Year 4 (2238 pts)	Year 5 (1614 pts)					
	Mean visits	At least 1 visit								
Oncology (any)	7.8	99.4	4.2	93.5	3.0	89.2	2.3	84.5	1.9	79.0
Radiation oncology	3.7	81.8	1.9	68.0	1.3	59.9	1.0	54.8	0.7	48.0
Surgical oncology	3.5	83.1	2.1	70.7	1.6	65.4	1.3	59.0	1.1	55.5
Medical oncology	0.5	25.6	0.1	6.7	0.1	4.8	0.1	4.6	0.0	3.2

- Multiple fee codes billed by the same physician on the same day were counted as 1 visit. Fee codes billed by different specialists on the same day were counted separately.
- Per patient per year for all patients.
- \(p < 0.001 \) for trend over follow-up period for numbers of visits.
- Pts = patients.

Table V

Test	Year 1 (3975 pts)	Year 2 (3442 pts)	Year 3 (2959 pts)	Year 4 (2238 pts)	Year 5 (1614 pts)					
	Mean images	At least 1 image								
Nasopharyngoscopy	2.62	73.96	1.74	66.41	1.29	60.63	1.00	55.94	0.82	51.55
Any imaging	2.03	63.67	0.93	35.94	0.67	26.83	0.51	22.92	0.39	18.59
Neck ultrasonography	0.07	5.38	0.05	4.33	0.04	3.55	0.05	4.42	0.04	3.66
Head and neck										
Radiography	0.04	3.45	0.03	2.03	0.02	1.72	0.02	1.47	0.02	1.61
CT	1.01	50.64	0.40	24.58	0.30	17.91	0.22	14.75	0.15	10.78
MRI	0.91	19.35	0.45	11.24	0.30	7.57	0.22	6.66	0.18	5.27
Chest										
Any imaging	1.45	56.08	0.86	45.26	0.71	41.06	0.67	39.01	0.66	32.96
Radiography	1.04	43.17	0.64	36.72	0.54	34.07	0.55	34.32	0.57	30.36
CT	0.40	26.26	0.20	15.17	0.16	12.61	0.12	9.47	0.09	6.88
MRI	0.00	0.20	0.01	0.32	0.01	0.30	0.01	0.27	0.00	NR

- Per patient per year for all patients.
- \(p < 0.001 \) for trend over follow-up period for numbers of imaging tests.
- Pts = patients; CT = computed tomography; MRI = magnetic resonance imaging; NR = not reportable because of small cell size.
TABLE VI Mean number of oncology physician visits and distribution of imaging tests by tumour site, treatment, and follow-up year

Variable	Year 1 (3975 patients)	Year 2 (3442 patients)	Year 3 (2959 patients)	Year 4 (2238 patients)	Year 5 (1614 patients)																
	Pts [n (%)]	Mean visits (n)^a	At least 1 image (%)^a	Pts [n (%)]	Mean visits (n)^a	At least 1 image (%)^a	Pts [n (%)]	Mean visits (n)^a	At least 1 image (%)^a	Pts [n (%)]	Mean visits (n)^a	At least 1 image (%)^a									
Tumour site	Chest	HN																			
Oral cavity^{b,c}	1754 (44.1)	7.2	55.9	57.2	1518 (44.1)	3.8	40.4	33.0	1298 (43.9)	2.7	37.1	23.8	977 (43.7)	2.2	36.8	21.2	707 (43.8)	1.8	30.1	15.0	
Oropharynx^{b,c}	830 (20.9)	8.7	58.7	84.2	753 (21.9)	4.4	49.7	45.6	655 (22.1)	3.1	45.2	33.3	488 (21.8)	2.4	38.5	27.7	352 (21.8)	2.0	34.7	23.0	
Nasopharynx^{b,c}	186 (4.7)	9.7	51.6	94.6	164 (4.8)	5.9	45.1	65.9	143 (4.8)	4.7	38.5	55.2	116 (5.2)	3.5	40.5	56.0	84 (5.2)	2.9	33.3	53.6	
Hypopharynx^{b,c}	129 (3.2)	9.6	69.0	81.4	96 (2.8)	4.7	59.4	44.8	77 (2.6)	3.5	59.7	37.7	51 (2.3)	2.6	45.1	23.5	33 (2.0)	2.2	45.5	18.2	
Larynx^{b,c}	987 (24.8)	7.5	52.2	49.0	842 (24.5)	4.2	47.4	24.8	729 (24.6)	2.9	42.1	19.1	568 (25.4)	2.3	42.6	15.3	416 (25.8)	1.8	36.1	14.7	
Other or unspecified^{b,c}	89 (2.2)	8.1	68.5	71.9	69 (2.0)	4.1	58.0	47.8	57 (1.9)	3.1	52.6	35.1	38 (1.7)	2.7	34.2	18.4	22 (1.4)	2.0	18.2	4.5	
Treatment	Surgery alone^{b,c}	956 (24.1)	5.8	53.2	33.2	815 (23.7)	3.0	33.9	19.5	722 (24.4)	2.1	31.2	14.4	546 (24.4)	1.6	31.1	14.5	396 (24.5)	1.3	28.5	12.9
RT alone^{b,c}	684 (17.2)	8.2	55.4	71.5	582 (16.9)	4.5	46.2	39.9	489 (16.5)	3.3	44.0	31.9	385 (17.2)	2.5	37.7	27.8	263 (16.3)	1.8	34.2	23.2	
CRT alone^{b,c}	1153 (29.0)	9.0	62.8	87.0	1018 (29.6)	4.6	49.7	49.9	866 (29.3)	3.3	47.5	37.3	636 (28.4)	2.5	42.5	29.2	477 (29.6)	2.2	34.6	23.7	
Surgery→RT or CRT^{b,c}	1149 (28.9)	8.0	51.9	60.9	995 (28.9)	4.5	49.1	32.9	854 (28.9)	3.2	41.3	23.9	649 (29.0)	2.6	42.7	20.6	466 (28.9)	2.1	34.1	15.9	
Other^{b,c}	33 (0.8)	8.1	63.6	66.7	32 (0.9)	4.0	56.3	34.4	28 (0.9)	2.8	39.3	25.0	22 (1.0)	2.3	50.0	31.8	12 (0.7)	1.9	41.7	8.3	

^a Per patient per year for each tumour site or treatment group.

^b p<0.0001 for trend during the follow-up period in numbers of visits and proportions of imaging tests.

^c p<0.0001 for differences between subgroups in numbers of visits and proportions of imaging tests.

Pts = patients; HN = head or neck; RT = radiotherapy; CRT = chemoradiotherapy.
Oncology specialty	Year 1 (3975 patients)	Year 2 (3442 patients)	Year 3 (2959 patients)	Year 4 (2238 patients)	Year 5 (1614 patients)															
	Pts [n (%)]	Mean visits \((n^a) \)	At least 1 image (%)\(^a\)	Pts [n (%)]	Mean visits \((n^a) \)	At least 1 image (%)\(^a\)	Pts [n (%)]	Mean visits \((n^a) \)	At least 1 image (%)\(^a\)	Pts [n (%)]	Mean visits \((n^a) \)	At least 1 image (%)\(^a\)								
Surgical only\(^bc\)	662 (16.7)	4.8	47.1	26.7	816 (23.7)	3.3	38.1	24.3	817 (27.6)	2.5	38.1	17.8	625 (27.9)	2.2	40.6	16.6	477 (29.6)	2.0	34.2	16.8
Radiation only\(^bc\)	414 (10.4)	4.7	41.1	58.2	705 (20.5)	2.9	44.7	34.2	633 (21.4)	2.2	41.6	27.6	516 (23.1)	1.8	39.2	24.2	348 (21.6)	1.5	36.5	17.2
Medical only\(^bc\)	7 (0.2)	2.9	71.4	71.4	25 (0.7)	3.0	40.0	28.0	29 (1.0)	2.0	41.4	27.6	27 (1.2)	1.9	55.6	29.6	16 (1.0)	1.5	31.3	25.0
Radiation and medical\(^bc\)	227 (5.7)	6.8	54.2	89.4	57 (1.7)	4.2	56.1	43.9	41 (1.4)	3.2	43.9	39.0	27 (1.2)	2.7	55.6	29.6	15 (0.9)	2.9	33.3	13.3
Radiation and surgical\(^bc\)	1856 (46.7)	8.4	58.5	64.9	1467 (42.6)	5.6	48.8	45.0	1046 (35.3)	4.5	45.7	36.5	647 (28.9)	4.0	41.7	33.2	399 (24.7)	3.6	34.8	28.8
Surgical and medical\(^bc\)	30 (0.8)	7.4	66.7	36.7	36 (1.0)	4.6	63.9	25.0	21 (0.7)	4.5	52.4	57.1	12 (0.5)	3.8	58.3	33.3	8 (0.5)	4.0	75.0	25.0
Radiation, medical, and surgical\(^bc\)	754 (19.0)	11.2	67.2	90.5	113 (3.3)	8.3	69.9	62.0	51 (1.7)	6.9	58.8	45.1	36 (1.6)	5.7	55.6	36.1	12 (0.7)	5.4	25.0	25.0
No oncologist\(^bc\)	25 (0.6)	0	28.0	32.0	223 (6.5)	0	32.3	12.1	321 (10.8)	0	28.7	11.5	348 (15.5)	0	25.9	10.3	339 (21.0)	0	24.8	10.0

\(^a\) Per patient per year in each oncology specialty subgroup.
\(^b\) \(p<0.01 \) for trend during the follow-up period for numbers of visits, and \(p<0.0001 \) for trend during the follow-up period for proportions of imaging tests.
\(^c\) \(p<0.0001 \) for differences between subgroups in numbers of visits and proportions of imaging tests.

Pts = patients; HN = head or neck.
good agreement has previously been reported for follow-up care in administrative data and in medical record reviews.\(^3\)

CONCLUSIONS

In the present study, we found that most head-and-neck cancer patients are receiving some form of follow-up care in Ontario, that variation in terms of physician visits and imaging tests performed is evident, and that practices during the period of observation varied from guideline recommendations. In the absence of an evidence-based standard, a harmonized approach to providing individualized follow-up care that makes use of evidence about patient preferences, risk of recurrence, and time to recurrence might be a more feasible option than identifying a single effective approach to follow-up care for head-and-neck cancer patients. Research is needed and is currently underway to determine patient outcomes and perspectives in follow-up care.

ACKNOWLEDGMENTS

KEB was funded by a Canadian Institutes for Health Research Frederick Banting and Charles Best Canada Graduate Scholarship Master’s Award. Ethics approval for the study was granted by the Research Ethics Board of Queen’s University, Kingston, ON (no. 6014821-501-15), and the Institutional Review Board at Sunnybrook Health Sciences Centre, Toronto, ON.

This project was approved by the Cancer Program at the Institute for Clinical Evaluative Sciences (ICES), which is funded by an annual grant from the Ontario Ministry of Health and Long-Term Care (MOHLTC). The opinions, results, and conclusions reported in the paper are those of the authors. No endorsement by ICES or the MOHLTC is intended or should be inferred.

TABLE VIII Factors associated with follow-up visits that did not meet recommended guidelines and receipt of at least one imaging test

Factor	Recommended follow-up visits	Multivariate analyses	At least 1 imaging test	
	Fewer	More	Head and neck	Chest
	RR 95% CI p Value	RR 95% CI p Value	RR 95% CI p Value	
Age group				
<40 Years	Reference	Reference	Reference	Reference
40–49 Years	0.88 0.74 to 1.04 0.551 0.810	0.81 0.62 to 1.06 0.800	0.62 to 1.06 0.990 0.84 to 1.18	1.00 0.81 to 1.25
50–59 Years	0.89 0.75 to 1.05 0.937 0.820	0.82 0.64 to 1.06 0.950	0.82 to 1.06 0.970 0.82 to 1.15	1.10 0.89 to 1.35
60–69 Years	0.86 0.72 to 1.01 0.856 0.800	0.80 0.62 to 1.04 0.870	0.80 0.62 to 1.04 0.880 0.75 to 1.05	1.17 0.95 to 1.44
≥70 Years	0.88 0.74 to 1.06 0.887 0.820	0.82 0.62 to 1.07 0.850	0.82 0.62 to 1.07 0.850 0.72 to 1.02	1.15 0.93 to 1.42
Sex				
Men	Reference	Reference	Reference	Reference
Women	0.89 0.83 to 0.96 0.001 0.500	1.01 0.93 to 1.10 0.005	1.01 0.93 to 1.10 1.080 1.02 to 1.13	1.04 0.99 to 1.10
Income quintile				
1 (low)	Reference	Reference	Reference	Reference
2	0.98 0.90 to 1.07 0.002 0.299	0.95 0.85 to 1.06 0.299	0.95 0.85 to 1.06 0.990 0.93 to 1.06	0.98 0.91 to 1.04
3	0.93 0.85 to 1.01 0.930 0.930	1.01 0.91 to 1.12 0.930	1.01 0.91 to 1.12 1.020 0.96 to 1.09	0.97 0.90 to 1.03
4	0.85 0.78 to 0.93 0.464 0.644	0.93 0.84 to 1.04 0.464	0.93 0.84 to 1.04 0.990 0.92 to 1.06	0.92 0.86 to 0.99
5 (high)	0.89 0.81 to 0.97 0.503 0.503	0.91 0.81 to 1.02 0.503	0.91 0.81 to 1.02 0.970 0.91 to 1.0a	0.94 0.88 to 1.01
Residential location				
Urban	Reference	Reference	Reference	Reference
Rural	0.363 0.975 0.464 0.503 0.363	0.98 0.88 to 1.08 0.464	0.98 0.88 to 1.08 1.010 1.01 0.95 to 1.08	1.01 0.95 to 1.08

FIGURE 2 Follow-up visits compared with recommended visits, and zero images compared with at least 1 head, neck, and chest image performed, by year of follow-up. Recommended visits were defined as 4–12 visits in follow-up year 1 (3975 patients), 2–6 visits in follow-up year 2 (3442 patients), 2–3 visits in follow-up years 3 (2959 patients) and 4 (2238 patients), and 1–3 visits in follow-up year 5 (1614 patients).
TABLE VIII Continued

Factor	Multivariate analyses	Recommended follow-up visits	At least 1 imaging test		
		Fewer RR 95% CI p Value	More RR 95% CI p Value	Head and neck RR 95% CI p Value	Chest RR 95% CI p Value
Patient-related continued					
Elixhauser comorbidity index	0.284 0.027 0.007 <0.001				
0	Reference				
1	1.04 0.95 to 1.13	1.01 0.91 to 1.13	1.09 1.03 to 1.15	1.17 1.10 to 1.24	
≥2	1.07 0.98 to 1.17	1.16 1.04 to 1.30	1.06 0.99 to 1.14	1.31 1.24 to 1.39	
Disease-related					
Tumour site	0.454 <0.001 <0.001 0.017				
Oral cavity	Reference Reference Reference Reference				
Oropharynx	0.99 0.91 to 1.09	1.05 0.95 to 1.16	1.02 0.96 to 1.07	1.02 0.95 to 1.08	
Nasopharynx	0.99 0.79 to 1.24	1.36 1.20 to 1.55	1.20 1.12 to 1.29	0.89 0.79 to 1.00	
Hypopharynx	0.96 0.74 to 1.24	1.41 1.16 to 1.71	1.05 0.95 to 1.17	1.16 1.04 to 1.30	
Larynx	1.07 0.99 to 1.16	1.10 0.98 to 1.23	0.73 0.68 to 0.79	1.01 0.95 to 1.08	
Treatment	0.008 0.148 <0.001 <0.001				
Surgery alone	Reference Reference Reference Reference				
RT alone	0.90 0.80 to 1.01	0.94 0.77 to 1.15	1.83 1.61 to 2.08	1.07 0.96 to 1.18	
CRT alone	0.81 0.73 to 0.91	1.05 0.87 to 1.27	2.09 1.85 to 2.37	1.21 1.09 to 1.33	
Surgery→RT or CRT	0.89 0.79 to 0.99	0.96 0.79 to 1.16	1.66 1.47 to 1.89	1.06 0.96 to 1.17	
Time from Dx date to treatment end	0.147 0.837 <0.001 <0.001 0.877				
<2 Months	Reference Reference Reference Reference				
2–3 Months	1.10 1.00 to 1.20	1.00 0.84 to 1.19	0.95 0.84 to 1.08	0.99 0.91 to 1.08	
3–4 Months	1.12 1.01 to 1.25	1.04 0.87 to 1.26	1.04 0.92 to 1.18	0.98 0.89 to 1.08	
>4 Months	1.15 1.01 to 1.30	1.04 0.86 to 1.26	0.93 0.82 to 1.06	0.97 0.87 to 1.07	
Follow-up year	<0.001 <0.001 <0.001 <0.001				
1	Reference Reference Reference Reference				
2	0.53 0.47 to 0.60	1.71 1.55 to 1.89	0.62 0.59 to 0.65	0.85 0.82 to 0.89	
3	0.88 0.78 to 0.99	4.32 3.93 to 4.74	0.48 0.45 to 0.51	0.80 0.76 to 0.84	
4	1.19 1.05 to 1.33	3.22 2.88 to 3.61	0.43 0.40 to 0.46	0.77 0.72 to 0.82	
5	0.56 0.51 to 0.63	2.36 2.05 to 2.72	0.37 0.33 to 0.41	0.66 0.61 to 0.71	
Health system–related					
Oncology specialties seen during visita	<0.001 <0.001 <0.001 <0.001				
Single	Reference Reference Reference Reference				
Multiple	0.06 0.04 to 0.08	4.94 4.40 to 5.56	1.33 1.26 to 1.41	1.14 1.09 to 1.19	
None	4.77 4.46 to 5.10	—	0.55 0.46 to 0.67	0.75 0.67 to 0.83	
LHIN	<0.001 <0.001 <0.001 <0.001				
A	1.05 0.96 to 1.16	0.63 0.54 to 0.73	0.71 0.66 to 0.77	0.89 0.82 to 0.95	
B	1.14 0.98 to 1.33	0.52 0.39 to 0.70	0.90 0.78 to 1.05	0.71 0.60 to 0.85	
C	1.27 1.18 to 1.37	0.76 0.65 to 0.89	0.84 0.79 to 0.90	1.09 1.02 to 1.16	
D	Reference Reference Reference Reference				
E	1.13 0.84 to 1.51	1.44 1.22 to 1.70	0.89 0.74 to 1.06	1.23 1.09 to 1.39	
F	0.70 0.54 to 0.91	1.00 0.79 to 1.27	0.97 0.88 to 1.06	0.94 0.83 to 1.07	
TABLE VIII Continued

Factor	Recommended follow-up visits	Multivariate analyses	At least 1 imaging test	
	Fewer RR 95% CI p Value	More RR 95% CI p Value	Head and neck RR 95% CI p Value	Chest RR 95% CI p Value
Health system–related continued				
LHIN continued				
	<0.001	<0.001	<0.001	<0.001
G	1.06 0.95 to 1.18	1.47 1.35 to 1.61	0.64 0.59 to 0.71	0.88 0.81 to 0.96
H	1.04 0.89 to 1.23	0.91 0.77 to 1.07	0.83 0.74 to 0.93	1.16 1.07 to 1.26

* In the model for patients receiving more than the recommended follow-up visits compared with patients receiving the recommended number of visits, all patients were seen by an oncology specialty—that is, no visits fell into the “none” category.

RR = relative risk; CI = confidence interval; RT = radiotherapy; CRT = chemoradiotherapy; Dx = diagnosis; LHIN = Local Health Integration Network.

Parts of this work are based on data and information provided by Cancer Care Ontario (cco). The opinions, results, views, and conclusions reported in the paper are those of the authors and do not necessarily reflect those of cco. No endorsement by cco is intended or should be inferred.

Parts of this work are based on data and information compiled and provided by the Canadian Institute for Health Information (cihi). The analyses, conclusions, opinions, and statements expressed herein are those of the authors and not necessarily those of cihi.

Parts of this manuscript were included in a poster presentation at the 2016 Canadian Society for Epidemiology and Biostatistics National Student Conference; Winnipeg, MB; 8–10 June 2016.

CONFLICT OF INTEREST DISCLOSURES

We have read and understood Current Oncology’s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS

*Department of Public Health Sciences, †Department of Otolaryngology, ‡Department of Oncology, §Institute for Clinical Evaluative Sciences, and ||Department of Public Health Sciences, Queen’s University, Kingston, ON.

REFERENCES

1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian Cancer Statistics 2015. Special Topic: Predictions of the Future Burden of Cancer in Canada. Toronto, ON: Canadian Cancer Society; 2015.

2. Rojas MP, Telaro E, Russo A, et al. Follow-up strategies for women treated for early breast cancer. Cochrane Database Syst Rev 2005:CD001768.

3. Hudson SV, O’Malley DM, Miller SM. Achieving optimal delivery of follow-up care for prostate cancer survivors: improving patient outcomes. Patient Relat Outcome Meas 2015;6:75–90.

4. Jeffery M, Hickey B, Hider P. Follow-up strategies for patients treated for non-metastatic colorectal cancer. Cochrane Database Syst Rev 2007;11:CD002200.

5. Roman BR, Goldenberg D, Givi B on behalf of the Education Committee of the American Head and Neck Society (AHNS). AHNS series—do you know your guidelines? Guideline recommended follow-up and surveillance of head and neck cancer survivors. Head Neck 2016;38:168–174.

6. Ritoe SC, Krabbe PF, Knaanders JH, van den Hoogen FJ, Verbeek AL, Marres HA. Value of routine follow-up for patients cured of laryngeal carcinoma. Cancer 2004;101:1382–9.

7. Schwartz DL, Barker J Jr, Chansky K, et al. Postradiotherapy surveillance practice for head and neck squamous cell carcinoma—too much for too little? Head Neck 2003;25:990–9.

8. Francis DO, Yueh B, Weymuller EA Jr, Merati AL. Impact of surveillance on survival after laryngeal cancer in the Medicare population. Laryngoscope 2009;119:2337–44.

9. Merkx MA, van Gulick JJ, Marres HA, et al. Effectiveness of routine follow-up of patients treated for T1–2N0 oral squamous cell carcinomas of the floor of mouth and tongue. Head Neck 2006;28:1–7.

10. Flynn CJ, Khaouam N, Gardner S, et al. The value of periodic follow-up in the detection of recurrences after radical treatment in locally advanced head and neck cancer. Clin Oncol 2010;22:868–73.

11. Manikanthan K, Khode S, Dwivedi RC, et al. Making sense of post-treatment surveillance in head and neck cancer: when and what of follow-up. Cancer Treat Rev 2009;35:744–53.

12. Kazi R, Manikanthan K, Pathak KA, Dwivedi RC. Head and neck squamous cell cancers: need for an organised time-bound surveillance plan. Eur Arch Otorhinolaryngol 2010;267:1969–71.

13. Haas I, Hauser U, Ganzer U. The dilemma of follow-up in head and neck cancer patients. Eur Arch Otorhinolaryngol 2001;258:177–83.

14. British Association of Head and Neck Oncologists. Practice care guidance for clinicians participating in the management of head and neck cancer patients in the UK. Drawn up by a consensus group of practising clinicians. Eur J Surg Oncol 2001;27(suppl A):S1–17.

15. American Society for Head and Neck Surgery and Society of Head and Neck Surgeons. Clinical Practice Guidelines for the Diagnosis and Management of Cancer of the Head and Neck. Pittsburgh, PA: American Society for Head and Neck Surgery; and Arlington, VA: Society of Head and Neck Surgeons; 1996. [Guideline was subsequently endorsed in 1998 by the American Head and Neck Society, formed in a merger of the two authoring societies]

16. U.S. National Comprehensive Cancer Network (nccn). NCCN Clinical Practice Guidelines in Oncology: Head and Neck Cancers. Ver. 1.2015. Fort Washington, PA: NCCN; 2015. [Current version available online at: http://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf (free registration required); cited 21 June 2016]

17. Cohen E, LaMonte S, Erb N, et al. American Cancer Society head and neck cancer survivorship care guideline. CA Cancer J Clin 2016;66:204–39.
18. Gilbert R, Devries-Aboud M, Winquist E, Waldron J, McQueen M, on behalf of the Head and Neck Disease Site Group. The Management of Head and Neck Cancer in Ontario. Evidence-based series 5–3. Toronto, ON: Cancer Care Ontario; 2009. [In review November 2015]

19. British Columbia, Provincial Health Services Authority, BC Cancer. Health Professionals > Clinical Resources > Cancer Management Guidelines > Head & Neck Cancer > Head & Neck [Web resource]. Vancouver, BC: BC Cancer; 2003. [Available at: http://www.bccancer.bc.ca/health-professionals/cancer-management-guidelines/head-neck/head-neck#follow-up; cited 25 March 2018]

20. Hall SF. Follow-up policies at Canadian head and neck cancer treatment centres. J Otolaryngol Head Neck Surg 2010;39:659–63.

21. Booth CM, Mackillop WJ. Translating new medical therapies into societal benefit: the role of population-based outcome studies. JAMA 2008;300:2177–9.

22. Hodgson DC, Grunfeld E, Gunraj N, Del Giudice L. A population-based study of follow-up care for Hodgkin lymphoma survivors: opportunities to improve surveillance for relapse and late effects. Cancer 2010;116:3417–25.

23. Grunfeld E, Hodgson DC, Del Giudice ME, Moineddin R. Population-based longitudinal study of follow-up care for breast cancer survivors. J Oncol Pract 2010;6:174–81.

24. Tan J, Muir J, Coburn N, et al. Surveillance patterns after curative-intent colorectal cancer surgery in Ontario. Can J Gastroenterol Hepatol 2014;28:427–33.

25. Urquhart R, Folkes A, Porter G, et al. Population-based longitudinal study of follow-up care for patients with colorectal cancer in Nova Scotia. J Oncol Pract 2012;8:246–52.

26. Clarke EA, Marrett LD, Kreiger N. Cancer registration in Ontario: a computer approach. IARC Sci Publ 1991;246–57.

27. Scottish Intercollegiate Guidelines Network (SIGN). Diagnosis and Management of Head and Neck Cancer. National clinical guideline 90. Edinburgh, U.K.: SIGN; 2006. [Available online at: https://www.uhb.nhs.uk/Downloads/pdf/CancerPbDiagnosisHeadAndNeckCancer.pdf; cited 7 March 2018]

28. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care 1998;36:8–27.

29. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in icd-9-cm and icd-10 administrative data. Med Care 2005;43:1130–9.

30. Lewis RA, Neal RD, Hendry M, et al. Patients’ and healthcare professionals’ views of cancer follow-up: systematic review. Br J Gen Pract 2009;59:e248–59.

31. Timmermans S, Mauck A. The promises and pitfalls of evidence-based medicine. Health Aff 2005;24:18–28.

32. Appleby J, Raleigh V, Frosini F, Bevan G, Gao H, Lyscom T. Variations in Health Care: The Good, the Bad and the Inexplicable. London, U.K.: King’s Fund; 2011.

33. Eskander A, Irish JC, Urbach DR, Goldstein DP. Head and Neck Cancer Surgery in Ontario, 2003–2010: An ICES Atlas. Toronto, ON: Institute for Clinical Evaluative Sciences; 2015. [Available online at: https://www.ices.on.ca/flipt/publication/Head-And-Neck-Cancer-Surgery-in-Ontario-2003%E2%80%922010-An-ICES-Atlas/files/assets/basic-html/page-1.html#: cited 5 March 2018]

34. Johnson FE, Johnson MH, Clemente MF, Paniello RC, Virgo KS. Geographical variation in surveillance strategies after curative-intent surgery for upper aerodigestive tract cancer. Ann Surg Oncol 2006;13:1063–71.

35. Cooney TR, Poulsen MG. Is routine follow-up useful after combined-modality therapy for advanced head and neck cancer? Arch Otolaryngol Head Neck Surg 1999;125:379–82.

36. de Visscher AV, Manni JF. Routine long-term follow-up in patients treated with curative intent for squamous cell carcinoma of the larynx, pharynx, and oral cavity. Does it make sense? Arch Otolaryngol Head Neck Surg 1994;120:934–9.

37. Lester SE, Wight RG. “When will I see you again?” Using local recurrence data to develop a regimen for routine surveillance in post-treatment head and neck cancer patients. Clin Otolaryngol 2009;34:546–51.

38. Delaere PR. Clinical and endoscopic examination of the head and neck. In: Hermans R, ed. Head and Neck Cancer Imaging. Berlin, Germany: Springer; 2011: 19–32.

39. De Felice F, Musio D, Tombolini V. Follow-up in head and neck cancer: a management dilemma. Adv Otolaryngol 2015;2015:1–4. [Available online at: https://www.hindawi.com/journals/anto/2015/703450/; cited 5 March 2018]

40. Associazione Italiana di Oncologia Cervico-Cefalica (AIoCC (Italian Head and Neck Oncologic Society)), Associazione Italiana Radioterapia Oncologica (AIRO (Italian Association of Oncologic Radiotherapy)), and Associazione Italiana Di Oncologia Medica [AIOM (Italian Association of Medical Oncology)]. Head and Neck Tumors: Diagnostic–Therapeutic Algorithm [Italian]. Ver. 2. Milan, Italy: AIOM, AIRO, and AIOM; 2012. [Available online at: http://www.aiocc.it/media/filer_public/33/42/33424838-5e40-4f4d-906d-8a047efca31d/linee_guida_aiocc_-_airo_-_aiom_maggio_2012.pdf; cited 5 March 2018]

41. Hall SF, Groome PA, Rothwell D. Time to first relapse as an outcome and a predictor of survival in patients with squamous cell carcinoma of the head and neck. Laryngoscope 2000;110:2041–6.

42. Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011;29:4294–301.

43. Cooper GS, Schulz L, Simpkins J, Lafata JE. The utility of administrative data for measuring adherence to cancer surveillance care guidelines. Med Care 2007;45:66–72.