Influence of fast proton irradiation with energies of 12.4 and 12.8 MeV on magnetic characteristics and microstructure changes of superconducting intermetallic compound Nb$_3$Sn

P N Degtyarenko1,5,6, A Ballarino2, L Bottura2, S Y Gavrilkin3, R Flükiger2, I A Karateev1, V S Kruglov1,4, S T Latushkin1, C Scheuerlein2, A I Ryazanov1,4, E V Semenov1, S V Shavkin1, T Spina2, V N Unezhev1, A L Vasiliev1

1 National Research Centre “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
2 CERN, CH-1211 Geneva 23, Switzerland
3 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij Prospekt 53, 119991 Moscow, Russia
4 National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow, Russia
5 Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya st. 13 Bd.2, 125412 Moscow, Russia

E-mail: degtyarenkopn@gmail.com

Abstract. Data on magnetization, magnetic susceptibility and microstructure modification of irradiated Nb$_3$Sn platelets are presented. The irradiation was produced at room temperature by fast protons with the energies of 12.4 and 12.8 MeV with fluencies of 5×10^{17} and 1×10^{18} cm$^{-2}$. Variation of the superconducting transition temperature versus irradiation dose was determined. Temperature dependence of magnetic susceptibility of Nb$_3$Sn platelet with 160 μm thickness demonstrates several steps corresponding to different superconducting transition temperatures. We supposed that there are layers inside the sample with significantly different radiation damage levels caused by particles movement termination (Bragg peak). It was found that after the irradiation a lot of randomly oriented platelet-like Nb-enriched particles of 0.1-0.5 μm size appear in volumes with maximal damages.

1. Introduction
Multiﬁlament wires of superconducting intermetallic compound Nb$_3$Sn are the main candidates for utilising in superconducting magnetic system of future large projects of accelerators at CERN and in future fusion reactors. So study of inﬂuence of fast particle irradiation on critical parameters of these materials is very important at least for estimation of magnetic system lifetime. It is well known, that irradiation of Nb$_3$Sn leads to strong changes of superconducting parameters [1-5] and the changes depend on both the initial state of material and irradiation parameters. Previous investigations of Nb$_3$Sn platelets irradiated by protons with energies of 65 MeV and 24 GeV up to fluence of 3×10^{17} cm$^{-2}$ revealed almost 100% increase of the critical current density J_c and ~ 5% increase of the upper critical field B_{c2} while at higher fluencies both J_c and B_{c2} decreased [3, 6]. It was found also that

6 To whom any correspondence should be addressed.
the critical temperature T_c decreases monotonically with the fluence increase [3, 6, 7]. Irradiation of Nb$_3$Sn multi-filamentary wires by 32 MeV protons demonstrated similar behavior [8]. However, the investigation of changes of Nb$_3$Sn microstructure in wires is quite difficult because of complicated design of modern commercial wires. In contrast, irradiation of bulk Nb$_3$Sn material is very helpful to understand the main physical mechanisms of radiation defects formation in these materials. Therefore, in this paper the results of study of T_c and microstructure changes in Nb$_3$Sn thin platelets after irradiation by fast protons are presented.

2. Platelets and experimental technique

Uniform and pure Nb$_3$Sn platelets were cut from a cylindrical ingot of Nb$_3$Sn produced by a reaction under HIP conditions, described in details in Refs. 3 and 6. The platelets parameters are presented in the Table 1. Typical area of platelets was 2x2 mm2. Thickness of the unirradiated platelet was 0.19 mm. In order to observe at the same fluence both the effects of steady loss and Bragg peak (see Figure 1), pairs platelets in a stack were subjected to the irradiation simultaneously. The first pair with platelets of 0.17 and 0.14 mm thicknesses was irradiated by 5x1017 cm$^{-2}$ fluence, while the second one with 0.22 and 0.16 mm thicknesses was irradiated by 1018 cm$^{-2}$ fluence.

The irradiations were done on the isochronous cyclotron in NRC “Kurchatov institute” at room temperature using water-cooled targets separated by an aluminum foil from vacuum. The energies and fluencies of protons were 12.4 and 12.8 MeV, 5x1017 and 1x1018 cm$^{-2}$, correspondingly. The scheme of irradiation is presented on Figure 1a. The proton energies were adjusted for different fluencies to make equal the penetration depth of protons and total thickness of two platelets. Numerical calculations of damage profiles were made with SRIM-2013 code [9] for Nb$_3$Sn density 8.9 g/cm3 and displacement energy 25 eV for both Nb and Sn atoms. According to calculations, the mean path for 12.8 MeV protons passing the front platelet exceeds 300 µm (see Fig. 1b). Thus, it was assumed that the stack of #1a and #2a platelets should be completely penetrated by protons and protons should be completely stopped in #1b and #2b stack, forming the peak of radiation damages in the last platelet.

![Figure 1](image1.png)

Figure 1. (a) The scheme of irradiation; (b) calculated radiation damage profile for Nb$_3$Sn.

Magnetic measurements were performed on the PPMS station in Lebedev Institute in magnetic fields up to 8 T and at temperatures up to 20 K. To estimate the critical current, the magnetization curves at $T = 7$ K in fields up to 6 T and temperature dependence of remanent magnetization were measured on Vibrating Sample Magnetometer (VSM). For detailed T_c characterization AC magnetic susceptibility was measured in field of 5 Oe at frequency of 37 Hz in the temperature range from 2 up to 20 K.

Detailed microstructural analysis was performed using scanning/transmission electron microscope TITAN 80-300 TEM/STEM (FEI, US) with Probe-Cs corrector and EDX spectrometer (EDAX, US) operated at 300 kV in NRC “Kurchatov Institute”. The high angle annular dark field (HAADF)
detector (Fischione, US) was used in STEM mode. Platelets were prepared by standard FIB procedure in a Helios (FEI, US) SEM/FIB dual beam microscope.

Table 1. The characteristics of Nb₃Sn platelets.

Type of platelets	Fluence, cm⁻²	Thickness, mm	Size, mm²	Mass, g
Reference platelet	unirradiated	0.19	2.53x2.47	0.00822
Platelet #1a	5x10¹⁷	0.17	2.5x1.9	0.00620
Platelet #2a	5x10¹⁷	0.14	2.5x2.1	0.00540
Platelet #1b	10¹⁸	0.22	1.1x2.3	0.00340
Platelet #2b	10¹⁸	0.16	1.5x1.6	0.00286

3. Results and discussion

The results of remanent magnetization measurements for unirradiated and irradiated Nb₃Sn platelets are presented on Figure 3. The curves normalized to magnetization at 7 K demonstrate the essentially different behavior for unirradiated and irradiated samples. For the unirradiated platelets the temperature dependence decreases abruptly and the magnetic moment completely vanishes at the critical temperature 17.9 K of Nb₃Sn [9]. The curves for irradiated platelets #1a, #2a and #1b are similar to the unirradiated one but they drop to zero at lower temperatures. On the contrary, the curve for irradiated sample #2b passes below other curves and drops to zero at 16.2 K. As we assumed, this is the manifestation of non-uniformity of radiation defect on depth in the sample #2b.

The HAADF STEM image of the platelet with the marks, pointed to the areas of the EDX microanalysis, is presented in Figure 3b. An uniform image contrast indicated the good homogeneous composition of the platelet. Some contrast variations appeared due to the difference in specimen thickness aroused during FIB platelet preparation. Additional confirmation of the homogeneity was obtained from the EDX microanalysis. The Nb:Sn ratio is very close to the Nb₃Sn stoichiometry.

The measured magnetic susceptibility is very sensitive to Tc variations. The superconducting transition for unirradiated platelets corresponds to the critical temperature of pure Nb₃Sn (see Fig. 3). The critical temperature for platelets #1a and #2a (at the fluence 5x10¹⁷ cm⁻²) is close to 15.3 K (Fig. 4). For platelet #1b (at the fluence 1x10¹⁸ cm⁻²) it decreases to 12.4 K (Fig. 5). For platelet #2b the χ_{AC} curve has several steps at temperatures – 16.2, 13.7, 9.9, 8.7 and 2.7 K, what also confirms our assumption.

Figure 2. Temperature dependence of remanent magnetization of platelets: 1 – 0.19 mm, unirradiated; 1a and 2a – 0.17 and 0.14 mm, irradiated by 12.4 MeV protons with 5x10¹⁷ cm⁻² fluence; 1b and 2b – 0.22 and 0.16 mm, irradiated by 12.8 MeV protons with 1x10¹⁸ cm⁻² fluence.
The bright field (BF) TEM image of platelet #2b presented in Figure 6a demonstrates appearance of randomly oriented particles of 0.1-0.5 µm size after irradiation of the sample. The contrast, similar to Moiré fringes, is clearly visible in vicinity of these particles. The selected area diffraction pattern...
(SADP) from the area with several similar defects is shown in Figure 6b. The SADP consists of both set of spot reflexes corresponding to A15 structure of Nb₃Sn in [120] zone axis and diffraction rings. Estimation of inter-planar distances, corresponding to these rings, unambiguously demonstrated that they originated from metallic Nb plane indexes (see Fig. 6b). The dark field (DF) TEM images of Nb particle was obtained by selecting part of the 110 Nb diffraction ring shown in Figure 6b and corresponding image is presented in Figure 6c. The particle exhibits bright contrast in these DF TEM images with dislocations, which are supposed to originate at the Nb particle – Nb₃Sn interface and arise from Nb-Nb₃Sn lattice mismatch. Surprisingly, the EDX microanalysis did not show noticeable presence of extra Nb (see Fig. 7). That means that Nb particle are very thin and do not impact to the EDXS signal. We suppose that these Nb particles adopted platelet morphology with the habit plane parallel to the specimen surface and perpendicular to e -beam.

![Image](image1)

Figure 6. BF TEM image of platelets #2b, the areas with typical radiation defects are arrowed (a); SADP from the sample with radiation defects (b) and DF TEM image of Nb precipitate (Note, that dislocations look like dark lines) (c).

![Image](image2)

Figure 7. HAADF STEM image of the platelet #2b. The small circles point to the areas of EDX microanalysis (1 – 68 at.% Nb and 32 at.% Sn; 2 – 73 at.% Nb and 27 at.% Sn; 3 – 75 at.% Nb and 25 at.% Sn; 4 – 75 at.% Nb and 25 at.% Sn; 5 – 73 at.% Nb and 27 at.% Sn; 6 – 74 at.% Nb and 26 at.% Sn).

4. Summary

The experimental investigations of the magnetic characteristics and microstructure analyses of thin Nb₃Sn platelets with different thickness after irradiation by fast protons with the fluencies 5x10¹⁷ (energy 12.4 MeV) and 10¹⁸ cm⁻² (energy 12.8 MeV) were performed. The curve of temperature dependence of remanent magnetization for irradiated platelet #2b at fluence of 10¹⁸ cm⁻² passes below the curve for unirradiated platelet. We supposed that an inhomogeneous structure was formed in this platelet under irradiation. This assumption is confirmed by data on magnetic susceptibility. The χᵥ transition curve demonstrated several steps at temperatures 16.2, 13.7, 9.8, 8.7 K (approximately to temperature of critical temperature of pure Nb) and 2.7 K. It was found that thin randomly oriented
Nb-enriched particles 0.1-0.5 µm in size are formed in platelet-like shape under irradiation. The observed structural transformations of sample lead to decrease of critical current density. The results will be extended in further investigations of irradiated Nb$_3$Sn samples.

Acknowledgements
We would like to thank our colleagues P. Bezotosny and A. Tsvetkov from P.N. Lebedev Physical Institute of the Russian Academy of Sciences, and colleagues N. Degtyarenko from NRNU MEPhI and N. Balashov from Joint institute for high temperature of the Russian Academy of Sciences for profitable discussions, and management of NRC "Kurchatov institute" for support. The magnetic measurements were done at LPI Shared Facility Centre for Studies of HTS and other Strongly Correlated Materials in Lebedev Institute. The TEM measurements were performed on equipment of Resort Center for electronic microscopy nanozond in NRC “Kurchatov Institute”.

References
[1] Ischenko G, Mayer H, Voit H, Besslein B and Haindl E 1972 Z. Physik 256 176-184
[2] Baumgartner T, Eisterer M, Weber H W, Flükiger R, Sheuerlein C, Bottura L 2014 Supercond. Sci. Technol. 27 #1 015005
[3] Spina T July 2015 PhD thesis Nr. 2015-086 University of Geneva
[4] Voronova I V, Mihailov N N, Sotnikov G V and Zaikin V J, 1978 J. Nucl. Mater. 72(1/2) 129–141
[5] Bode H J and Wohlleben K 1967 Phys. Lett. A, 24(1) 25–27
[6] Spina T, Scheuerlein C, Richter D, Bordini B, Bottura L, Ballarino A and Flukiger R, 2015 IEEE Trans. Appl. Supercond. 25 6000505
[7] Spina T, Scheuerlein C, Richter D, Ballarino A, Cerutti F, Esposito L S, Lechner A, Bottura L, Flükiger R, 2016 IEEE Trans. Appl. Supercond. 26(3) 6001405
[8] Degtyarenko P N, Ballarino A, Bottura L, Flukiger R L, Gavrilkin S, Latushkin S, Primenko A E, Ryazanov A, Scheuerlein C, Shavkin S, Shikov A, Spina T, Unezhev V 2014 In Abstract book of ASC-2014 Charlotte North Carolina
[9] Dew Hughes D 1975 Cryogenics 15(8) 435-454