Structure of lexicographic Gröbner bases in three variables of ideals of dimension zero

X. Dahan*

Dep* of Mathematics, Kyūshū university, Japan
dahan@math.kyushu-u.ac.jp

Abstract

We generalize the structural theorem of Lazard in 1985, from 2 variables to 3 variables. We use the Gianni-Kalkbrener result to do this, which implies some restrictions inside which lies the case of a radical ideal.

1 Introduction

Let \(I \) be a zero-dimensional ideal of a polynomial ring \(R[x, y, z] \) over a Noetherian domain \(R \). The lexicographic order \(\prec \) on \(\mathbb{C}^3 \), for which \(x \prec y \prec z \), is put on the monomials of \(k[x, y, z] \) ordered by \(\prec \). Given a polynomial \(p \in k[x, y, z] \), the leading monomial of \(p \), denoted \(\text{lm}(p) \), is the largest monomial for \(\prec \) occurring in \(p \). The coefficient in \(R \) in front of \(\text{lm}(p) \) is called the leading coefficient of \(p \), denoted \(\text{lc}(p) \). It might also be convenient to define the leading term of \(p \) denoted \(\text{lt}(p) \) equal to \(\text{lc}(p)\text{lm}(p) \).

The ideal of leading terms of \(I \) is the ideal of \(R[x, y, z] \) generated by the leading terms of elements of \(I \); it is equal to \(\langle \text{lt}(I) \rangle \). Since \(R \) is Noetherian, there is a finite set of generators of this ideal. A Gröbner basis of \(I \) is a finite set of elements in \(I, g_1, \ldots, g_s \) such that \(\langle \text{lt}(g_1), \ldots, \text{lt}(g_s) \rangle = \langle \text{lt}(I) \rangle \).

In our case, we will take \(R = k \) a field. Note that then \(\langle \text{lt}(I) \rangle \) is equal to \(\langle \text{lm}(I) \rangle \). This last ideal being a monomial ideal, it admits a minimal basis of monomials \(m_1, \ldots, m_s \); then a Gröbner basis \(g_1, \ldots, g_s \) is minimal if \(\text{lm}(g_i) = m_i \) for all \(i \). It is monic if \(\text{lc}(g_i) = 1 \) for all \(i \).

From now on, the monomial order will always be assumed to be \(\text{lex}(x, y, z) \) and the symbol \(\prec \) will be omitted in \(\text{lm}, \text{lc} \) and \(\text{lt} \).

Notation 1 Consider the rings \(R_1 := k[x] \) and \(R_2 := k[x] \). Given \(p \in k[x, y, z] = R_1[y, z] = R_2[z] \), let \(\text{lc}_1(p) \in R_1 \) be the leading coefficient of \(p \) for the lexicographic order \(\prec_{\text{lex}(y, z)} \) on \(R_1[y, z] \) and let \(\text{lc}_2(p) \in R_2 \) be the leading coefficient of \(p \) in \(R_2[z] \).

Furthermore, let \(\text{lm}_1(p) \) and \(\text{lm}_2(p) \) be the monomials such that \(\text{lt}(p) = \text{lc}_1(p)\text{lm}_1(p) = \text{lc}_2(p)\text{lm}_2(p) \).

Moreover, we make the following assumption:

Assumption: The ideal \(I \) will be supposed zero-dimensional, or, equivalently the \(k \)-algebra \(\mathbb{C}^3/I \) is supposed finite. We are given a minimal and monic Gröbner basis \(G := \{ g_1, \ldots, g_s \} \) of \(I \), indexed in a way that \(\text{lm}(g_1) \prec \text{lm}(g_2) \prec \cdots \prec \text{lm}(g_s) \).

We recall some basic facts about the Gröbner basis \(G \):

*Supported by the GCOE program “Math-for-Industry” of Kyūshū University
Theorem 1 (D. Lazard) Let \(J \subset k[x, y] \) be a zero-dimensional ideal, and \(f_1, \ldots, f_s \), a minimal lexicographic Gröbner basis of \(I \) for \(x \prec_{lex(x,y)} y \). Then:

\[
\text{lct}(f_i) \in k[x_1] \text{ divides } \text{lct}(f_j) \text{ for all } i \geq j, \text{ and } \text{lct}(f_i) \text{ divides } f_i \text{ as well.}
\]

It follows easily a factorization property of the polynomials in such a Gröbner basis [5, Theorem 1 (i)]. However, the formulation above is more compact and handy, and is equivalent. The main result of this paper is the following analogue in the case of 3 variables:

Theorem 2 Let \(I, \mathcal{G} := \{g_1, \ldots, g_s\} \) and \(\ell(2) \) be defined as above. Then, for all \(1 \leq j \leq i \leq s \) such that the variable \(z \) appears in the monomials \(\text{lct}(g_i) \) and \(\text{lct}(g_j) \) with the same exponent, holds:

\[
\text{lct}(g_i) \text{ divides } \text{lct}(g_j), \text{ and if } I \text{ is radical: } \text{lct}(g_i) \text{ divides } g_i \text{ as well.}
\]

Furthermore, in the later case, for all \(i > \ell(2) \), \(g_i \in (\text{lct}(g_i), g_1) \).

The proof will occupy the next section. There is one corollary to this theorem in the context of “stability of Gröbner bases under specialization”, which generalizes the theorem of Gianni-Kalkbrener [2, 3], and improves the theorem of Becker [1] (but holds only with 3 variables).

Corollary 1 Let us assume \(I \) radical. Let \(\alpha \) be a root of \(g_1 \), \(\phi : \overline{k}[x,y,z] \to \overline{k}[y,z], x \mapsto \alpha \), and \(g \neq g_1 \) a polynomial among the Gröbner basis. Then, either \(\phi(g) = g(\alpha,x,z) = 0 \), or \(\phi(\text{lct}(g)) \neq 0 \). This implies that: \(\text{lt}(\phi(g)) = \phi(\text{lt}(g)) \), and in particular, that \(\phi(\mathcal{G}) \) is a Gröbner basis.

Proof: By Theorem 2, we can write \(g = \text{lct}(g)A \) with \(A = \frac{g}{\text{lct}(g)} \in k[x,y,z] \). Hence, if \(\phi(\text{lct}(g)) = 0 \), then \(\phi(g) = 0 \). Else, since \(\text{lt}(A) = y^*z^* \), we get \(\phi(\text{lt}(A)) = \phi(\text{lt}(A)) \). But \(\phi(g) = \text{lct}(g)\phi(A) \), from which follows \(\phi(\text{lt}(g)) = \phi(\text{lct}(g))\phi(\text{lt}(A)) \). On the other hand, \(\phi(g) = \phi(\text{lct}(g))\phi(A) = \phi(\text{lct}(g))\phi(\text{lt}(A)) \).

Gianni-Kalkbrener’s result [2, 3] concerns the easier case where all the variables but the largest one for \(\prec \) are specialized.

Gianni-Kalkbrener. The map \(\phi \) is therein \(\phi : \overline{k}[x,y,z] \to \overline{k}[z], x,y \mapsto \alpha,\beta \) for \((\alpha, \beta) \) a solution of the system \(g_1, \ldots, g_{\ell(2)} \subset k[x,y] \). For any \(g \) in the Gröbner basis \(\mathcal{G} \) such that \(g \in k[x,y,z] \setminus k[x,y] \), they show that either \(\phi(g) = 0 \) or \(\deg_z(\phi(\text{lt}(g))) = \deg_z(\phi(\text{lt}(g))) \), which implies \(\phi(\text{lt}(g)) = \phi(\text{lt}(g)) \).

Becker [1] has generalized partly this result to the case of a map \(\phi \) that specializes the \(t \) lowest variables for \(\prec \). Taking \(t = 1 \), this covers the case of Corollary 1, but is weaker: it does also say that \(\phi(\mathcal{G}) \) remains a Gröbner basis, while assuming that for \(g \in \mathcal{G} \), \(\phi(\text{lt}(g)) \) may be a term with a monomial strictly smaller for \(\prec \) than the monomial in the term \(\text{lt}(\phi(g)) \) (see the definition of the integer \(r' \) during the proof of Prop. 1 page 4 of [1]. With the notations on the same page of [1] we see \(r' < r \); Corollary 1 above implies \(r = r' \). It can not be said that: \(\phi(\text{lt}(\mathcal{G})) = \text{lt}(\phi(\mathcal{G})) \).

Concerning previous works, let us mention that Kalkbrener [4] has expanded Becker’s result to the more general elimination monomial orders. Still, staying in the purely lexicographic case, it does not enhance the theorem of Becker.
2 Proof of Theorem 2

The main ingredient of the proof consists in generalizing two lemmas of Lazard. These refers to Lemma 2, and Lemma 3 of [5]. We shall explain that a weaker form holds with a larger number of variables. The version of interest here concerns the case of 3 variables. It is nonetheless easy to produce a version with an arbitrary number of variables. Let us first introduce some notations for exponents:

Notation 2 Let \(f \in k[x, y, z] \) non zero, with leading monomial \(\text{lm}(f) = x^\alpha y^\beta z^\gamma \). The 3 notations \(\alpha_x(f), \alpha_y(f) \) and \(\alpha_z(f) \) will denote \(a, b \) and \(c \) respectively.

If \(g_i \) is among the Gröbner basis \(\mathcal{G} = \{g_1, \ldots, g_s\} \), the shortcuts \(\alpha_x(i), \alpha_y(i), \alpha_z(i) \) will be used instead of \(\alpha_x(g_i), \alpha_y(g_i), \alpha_z(g_i) \)

Proposition 1 Let \(1 \leq j < i \leq s \) be such that \(\alpha_y(j) \leq \alpha_y(i) \) and \(\alpha_z(j) \leq \alpha_z(i) \). Then \(\text{lc}_1(g_i) \) divides \(\text{lc}_1(g_j) \).

Proof: Let \(a := g_j y^{\alpha_y(i)-\alpha_y(j)} z^{\alpha_z(i)-\alpha_z(j)} \). The multivariate division algorithm with respect to \(\prec \) of \(a \) by \([g_i] \) gives:

\[
\frac{a}{g_i} = qg_i + r, \quad \text{with } q \neq 0 \Rightarrow \text{lm}(a) \nmid \text{lm}(qg_i),
\]

and \(\text{lm}(g_i) \) does not divide any monomial occurring in \(r \).

By definition of \(a \), \(\text{lm}(g_i) \mid \text{lm}(a) \) so that \(q \neq 0 \), hence \(\text{lm}(qg_i) \nmid \text{lm}(a) \) holds:

\[
\text{lm}(qg_i) = \text{lm}(q) x^{\alpha_x(i)} y^{\alpha_y(i)} z^{\alpha_z(i)} \nmid x^{\alpha_x(j)} y^{\alpha_y(i)} z^{\alpha_z(i)} = \text{lm}(a) \quad \Rightarrow \text{lm}(q) x^{\alpha_x(i)} \nmid x^{\alpha_x(j)}.
\]

By an elementary property of the lexicographic order \(\prec_{\text{lex}(x,y,z)} \), this implies \(\text{lm}(q) \in k[x] \) and therefore \(q \in k[x] \). Next, the equality \(r = a - qg_i \) gives:

\[
\text{lm}(r) = \text{lm}(a - qg_i) \nmid \max\{\text{lm}(a); \text{lm}(qg_i)\} = x^{\max\{\alpha_x(qg_i), \alpha_y(a)\}} y^{\alpha_y(i)} z^{\alpha_z(i)}.
\]

Again, property of lexicographic order implies \(\alpha_z(r) \leq \alpha_z(i) \) and if \(\alpha_z(r) = \alpha_z(i) \) then \(\alpha_y(r) \leq \alpha_y(i) \). We distinguish three cases; in the first two ones the conclusion of the theorem holds, and the third case never happens.

Case 1: \(\alpha_z(r) < \alpha_z(i) \). Then \(\text{lc}_1(a) = q \text{lc}_1(g_i) \), and \(\text{lc}_1(a) = \text{lc}_1(g_j) \), this concludes the proof.

Case 2: Else \(\alpha_z(r) = \alpha_z(i) \), and \(\alpha_y(r) < \alpha_z(i) \). Similarly, this shows that \(\text{lc}_1(a) = q \text{lc}_1(g_i) \), concluding the proof.

Case 3: Else \(\alpha_z(r) = \alpha_z(i) \) and \(\alpha_y(r) = \alpha_y(i) \). Since \(\text{lm}(g_i) \nmid \text{lm}(r) \), necessarily \(\alpha_x(i) > \alpha_x(r) \). On the other hand, \(r \in (g_j, g_i) \subset I \) implies that there exists \(1 \leq k \leq s \) such that \(\text{lm}(g_k) \mid \text{lm}(r) \). Therefore, \(\alpha_x(k) \leq \alpha_x(r) < \alpha_x(i) \), and in this case \(\alpha_y(k) \leq \alpha_y(r) = \alpha_y(i) \), \(\alpha_z(k) \leq \alpha_z(r) = \alpha_z(i) \). This means \(\text{lm}(g_k) \mid \text{lm}(g_i) \), and \(i \neq k \), which is impossible since the Gröbner basis is minimal. \(\square \)

Proposition 2 For any \(i > 1 \), the polynomial \(g_i \) of the the Gröbner basis \(\mathcal{G} \) verifies: \(\text{lc}_1(g_i) \) divides \(\text{lc}_2(g_i) \).

Proof: Define,

\[
e_i := \max\{\alpha_y(\ell) \text{ s.t } \alpha_y(\ell) < \alpha_y(i), \alpha_z(\ell) \leq \alpha_z(i)\} \quad \text{and} \quad j := \max\{\ell < i \text{ s.t } \alpha_y(\ell) = e_i\}
\]
Note that e_i is well-defined because $i > 1$ and $\alpha_y(1) = \alpha_y(g_1) = 0$. This also shows that j is well-defined. By Proposition 1, $lc_1(g_i)$ divides $lc_1(g_j)$. Let

$$a := \frac{lc_1(g_j)}{lc_1(g_i)}, \quad \text{and} \quad b := a - g_jy^{\alpha_y(i)-\alpha_y(j)}z^{\alpha_z(i)-\alpha_z(j)}.$$

By construction, $lm(b) < y^{\alpha_y(i)}z^{\alpha_z(i)}$. Furthermore, $b \in \langle g_i, g_j \rangle \subset I$ so its normal form modulo the Gröbner basis of I is 0. The multivariate division equality with respect to \prec of b by $[g_1, \ldots, g_\ell]$ is written: $b = \sum_{1 \leq \ell \leq s} b_\ell g_\ell$. If $b_\ell \neq 0$, then $lm(b_\ell g_\ell) \prec lm(b) < y^{\alpha_y(i)}z^{\alpha_z(i)}$. The inequality $lm(b_\ell) \prec y^{\alpha_y(i)}z^{\alpha_z(i)}$ follows, which is possible only if $\ell \leq i - 1$. Otherly said, $b = \sum_{1 \leq \ell \leq i - 1} b_\ell g_\ell$.

It follows that $a = \sum_{\ell \neq j} b_\ell g_\ell + g_j(b_j + y^{\alpha_y(i)-\alpha_y(j)}z^{\alpha_z(i)-\alpha_z(j)})$, and that:

$$lc_2(a) = \sum_{\alpha_z(b_jb_j') = \alpha_z(i)} lc_2(b_\ell)lc_1(g_\ell) + lc_2(g_j)(clc_2(b_j) + 1),$$

with $\epsilon = 1$ if $\alpha_z(j) + \alpha_z(b_j) = \alpha_z(i)$ and $\epsilon = 0$ if $\alpha_z(j) + \alpha_z(b_j) < \alpha_z(i)$. However $lm(b_\ell g_\ell) \prec y^{\alpha_y(i)}z^{\alpha_z(i)}$ and $\alpha_z(b_\ell g_\ell) = \alpha_z(i)$ imply that $\alpha_y(b_\ell) + \alpha_y(\ell) < \alpha_y(i)$. In particular $\alpha_y(\ell) < \alpha_y(i)$ and consequently $\alpha_y(\ell) \leq e_i$. By definition of j, this gives: $\ell \leq j$. Proposition 1 then yields: $lc_1(g_j) \mid lc_1(g_\ell)$.

To conclude, note that Lazard’s Lemma 4 in [5] proves that Prop. 2 is true for $1 \leq i \leq \ell(2)$. So we can proceed by induction on i and assume that $lc_1(g_\ell) \mid lc_2(g_\ell)$ for $2 \leq \ell < i$. Applied in Equation (1):

$$lc_2(a) = \sum_{\alpha_z(b_jb_j') = \alpha_z(i)} lc_2(b_\ell)lc_1(g_\ell)lc_1(g_j) + \frac{lc_2(g_j)}{lc_1(g_j)}lc_1(g_j)(clc_2(b_j) + 1) \in k[x,y]$$

Finally, $\frac{lc_2(a)}{lc_2(g_j)} = \frac{lc_2(g_j)}{lc_1(g_j)} \in k[x,y]$. \(\square\)

This proves the first part of Theorem 2. The second part is based upon the previous proposition and the theorem of Gianni-Kalkbrener. The use of the later requires a restriction:

Proposition 3 Suppose there is an $1 \leq i < s$ such that: $lc_1(g_i) \neq 1$, there is a root α of $lc_1(g_i)$ which is not a root of $lc_1(g_{i+1})$. Then, $g(\alpha, y, z) = 0$ and $g_{i+1} \in \langle x - \alpha, lc_1(g_{i+1}) \rangle$.

Proof: Since $lc_1(g_i)(\alpha) = 0$, by Proposition 2, $lc_2(g_i)(\alpha, y) = 0$ as well. By Gianni-Kalkbrener, this implies $g_1(\alpha, y, z) = 0$. Furthermore, $lc_1(g_{i+1})(\alpha) \neq 0$, implying $p_\alpha(y) := lc_2(g_{i+1})(\alpha, y) \in \overline{k}[y]$ is not zero. Let $\beta \in \overline{k}$ be a root of this polynomial. By Gianni-Kalkbrener, $g_{i+1}(\alpha, \beta, z) = 0$, showing that $g_{i+1} \in \langle x - \alpha, p_\alpha \rangle$. \(\square\)

Note that if I is radical, all elements g_i for which $lc_1(g_i) \neq 1$ verify the assumption on the root α of Proposition 3. By an elementary use of the Chinese remaindering theorem, we get the more general, $g_{i+1} \in \langle g_1, lc_2(g_{i+1}) \rangle$. This proves the last part of Theorem 2.

Conclusion

It is likely that Theorem 2 holds without the assumption I radical. This assumption was set to allow the use of Gianni-Kalkbrener’s result. A proof circumventing it must be found. Also, some experiments shown that the results presented here are certainly true in the case of more than 3 variables.
References

[1] T. Becker. Gröbner bases versus D-Gröbner bases, and Gröbner bases under specialization. Applicable Algebra in Engineering, Communications and Computing, 5:1–8, 1994.

[2] P. Gianni. Properties of Gröbner bases under specialization. In J.H. Davenport, editor, In Proc. of EUROCAL’87, Lecture Notes in Computer Science (378), pages 293–297. Springer, Berlin, 1987.

[3] M. Kalkbrener. Solving systems of algebraic equations using Gröbner bases. In J.H. Davenport, editor, In Proc. of EUROCAL’87, Lecture Notes in Computer Science (378), pages 282–292. Springer, Berlin, 1987.

[4] M. Kalkbrener. On the stability of Gröbner bases under specialization. J. Symbolic Comput., 24(2):51–58, 1997.

[5] D. Lazard. Ideal bases and primary decomposition: case of two variables. J. Symbolic Comput., 1(3):261–270, 1985.