Network Pharmacology-based Study of Simiao Yongan Decoction for Treatment of Herpes Zoster Infection

Liu Hongtao
Jinan University

Chen Guanyan
Guangzhou University of Traditional Chinese Medicine: Guangzhou University of Chinese Medicine

Wu Zhenhai
Liuzhou Traditional Chinese Medical Hospital

Tang Qiuqin (✉️ 285399191@qq.com)
Jinan University

Research

Keywords: Herpesvirus, Simiao Yongan Decoction, pharmacological network, molecular docking

DOI: https://doi.org/10.21203/rs.3.rs-124221/v1

License: ☕️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Herpes zoster (HZ) is a virus that causes infectious diseases that impact the quality of life of patients. Herein, we applied network pharmacological methods to predict the target of bioactive components in Simiao Yongan Decoction (SYD) that could treat HZ.

Methods: We developed a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMP) and GenneCards databases for screening of bioactive components of SYD, their targets, and HZ related targets. A bioactive component-target network of SYD was constructed using Cytoscape. We also constructed a protein-protein interaction (PPI) network using the Search Tool for the Retrieval of Interacting Genes Database (STRING) to identify potential SYD targets for the treatment of HZ. "ClusterProfiler" in R-project was used for Gene Ontology (GO) and KEGG pathway enrichment analyses. We screened SYD hub genes based on component-target network topological parameters and confirmed the findings by molecular docking. We selected 126 bioactive components and 235 targets.

Results: By assessing the topological parameters of the degree network, we identified that CDK2, CASP3, JUN, AKT1, and MAPK1 were hub genes related to SYD-based therapy against HZ. The findings showed that treatment of HZ with SYD mainly involved toll-like receptor, C-type lectin receptor, MAPK, PI3K-Akt, and other signaling pathways. The molecular docking results revealed good binding energy between the SYD bioactive compounds and hub targets.

Conclusion: We showed that SYD could effectively treat HZ via multiple targets and pathways. Our results provide theoretical support for treatment of HZ with SYD and a new direction for such treatment using traditional Chinese medicine.

Background

Herpes zoster (HZ) causes a localized infection of the dorsal root ganglia of the spinal/cranial nerves that spreads like a rash over the corresponding dermatome. It is usually caused specifically by the varicella-zoster virus [1], which seriously impacts the quality of life of patients. The incidence of HZ is increasing; for example, in the United States, the incidence of HZ infection is 3.2–4.2 per 1 000 person-years [2]. Oral antiviral drugs are the most important basis for treatment of HZ. The oral-based antiviral medications that are approved for HZ treatment include famciclovir, acyclovir, and its derivative, valacyclovir. Meta-analyses have revealed that oral acyclovir substantially decreases HZ-associated symptoms, including intensity, duration, and frequency of zoster-mediated pain. However, this drug does not affect postherpetic neuralgia (PNH) [3], and acyclovir may produce neurological side effects [4]. An ideal agent for treatment of HZ has not been identified thus far.

Simiao Yongan Decoction (SYD) is a classic traditional Chinese medicine (TCM) prescription listed in the “Yan Fang Xin Pian”. It includes the Chinese herbs, Jinyinhua, Xuanshen, Gancao, and Danggui. Clinical studies in China have suggested that SYD can treat HZ without causing significant side-effects [5]. Others have shown that SYD is effective for treatment of PNH [6]. However, Chinese herbs contain many active
ingredients with various pharmacological effects; hence, mechanisms of action should be elucidated for appropriate clarification.

Network pharmacology involves the construction and analysis of biological networks to study disease pathogenesis [7]. Network pharmacology has been widely utilized to explore the pharmacological mechanisms of Chinese herbs. In the present study, we applied network pharmacology and molecular docking to reveal the core target and main active agents, and possible relationships among them, to provide theoretical support for (PAP) HZ treatment by SYD.

Methods

2.1 Screening and identification of SYD compounds

The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) (http://tcmspw.com/tcmsp.php) is a platform based on systems pharmacology that exclusively focuses on Chinese herbal medicine. It shows interactions between drugs, targets, and diseases [8]. We therefore used the TCMSP to identify the main active components of SYD herbs. The screening parameters were OB (oral bioavailability) and DL (drug-like). These parameters are popular approaches for screening of the chemical composition of TCM. The OB is defined as the relative amount of a drug that enters the bloodstream after extravascular administration, and DL indicates the extent of similarity of a compound with a known drug and the likelihood of the compound to be used as a pharmaceutical agent [9]. Herein, we analyzed compounds with OB \(\geq 30\% \) and DL \(\geq 0.18 \).

2.2 Target prediction

The targets of effective components of SYD collected using the TCMSP were verified using the Uniprot protein sequence resource (http://www.Uniprot.org). We excluded the bioactive compounds that lacked potential target information. Herpes zoster was used as a keyword to collect disease targets in the GenneCards database (https://www.genecards.org/) [10]. Finally, we matched these targets of SYD and HZ, and selected 31 overlapping targets of SYD for treatment of HZ by illustrating a Venn diagram using R-project version 3.6.3 with the VennDiagram package.

2.3 Protein-protein interaction (PPI) network construction and Hub gene analysis

Data on the possible related targets of SYD for treatment of HZ were used as input for STRING (http://stringdb.org) [11] for PPI analysis, with the selected species, Homo sapiens, and a network map of PPI was constructed. We then downloaded PPI data from STRING for further investigation. We also imported data from STRING into the Cytoscape software V3.72 [12] to analyze topological attributes. Degrees (DC) calculated using CytoNCA indicate numbers of connections between nodes. Finally, we considered genes with the top three DC values as Hub genes.

2.4 GO and KEGG analyses
The GO (Gene Ontology) project provides crucial information regarding gene functions [13]. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database provides information that facilitates understanding of the functions and roles of biological systems, namely cells, organisms, and ecosystems. It contains large-scale molecular datasets obtained via genome sequencing or highly automated technologies [14]. Here, we used the clusterProfiler, DOSE, org.Hs.eg.db, and enrichplot packages for GO and KEGG analysis. We set PvalueCutoff = 0.05 and qvalueCutoff = 0.05 in R-project. A Bubble Chart was plotted using the ggplot2 package.

2.5 Molecular docking

We performed molecular docking using the open-source software, AutoDock Vina [15]. We selected compounds and targets with the top three degree values in the compounds-targets network for dock stimulation. All compound structures were downloaded from TCMSP and the 3D structures of the targets were retrieved from PBD (http://www.rcsb.org/).

Results

3.1 Bioactive compounds in SYD

We obtained information on 126 bioactive compounds of SYD from TCMSP; data on the following species were obtained: Danggui (n = 2), Gancao (n = 92), Jinyinhua (n = 23), and Xuanshen (n = 9). Table 1 lists the bioactive compounds of SYD.
MOL ID	Molecule Name	OB(%)	DL	Herb
MOL000358	beta-sitosterol	36.91	0.75	Danggui
MOL000449	Stigmasterol	43.83	0.76	Danggui
MOL001484	Inermine	75.18	0.54	Gancao
MOL001792	DFV	32.76	0.18	Gancao
MOL000211	Mairin	55.38	0.78	Gancao
MOL002311	Glycyrol	90.78	0.67	Gancao
MOL000239	Jaranol	50.83	0.29	Gancao
MOL002565	Medicarpin	49.22	0.34	Gancao
MOL000354	isorhamnetin	49.6	0.31	Gancao
MOL000359	sitosterol	36.91	0.75	Gancao
MOL003656	Lupiwighteone	51.64	0.37	Gancao
MOL003896	7-Methoxy-2-methyl isoflavone	42.56	0.2	Gancao
MOL000392	formononetin	69.67	0.21	Gancao
MOL000417	Calycosin	47.75	0.24	Gancao
MOL000422	kaempferol	41.88	0.24	Gancao
MOL004328	naringenin	59.29	0.21	Gancao
MOL004805	(2S)-2-[4-hydroxy-3-(3-methylbut-2-enyl)phenyl]-8,8-dimethyl-2,3-dihydropyrano[2,3-f]chromen-4-one	31.79	0.72	Gancao
MOL004806	euchrenone	30.29	0.57	Gancao
MOL004808	glyasperin B	65.22	0.44	Gancao
MOL004810	glyasperin F	75.84	0.54	Gancao
MOL004811	Glyasperin C	45.56	0.4	Gancao
MOL004814	Isotrifoliol	31.94	0.42	Gancao
MOL004815	(E)-1-(2,4-dihydroxyphenyl)-3-(2,2-dimethylchromen-6-yl)prop-2-en-1-one	39.62	0.35	Gancao
MOL004820	kanzonols W	50.48	0.52	Gancao
MOL004824	(2S)-6-(2,4-dihydroxyphenyl)-2-(2-hydroxypropan-2-yl)-4-methoxy-2,3-dihydrofuro[3,2-g]chromen-7-one	60.25	0.63	Gancao
MOL ID	Molecule Name	OB(%)	DL	Herb
-----------	---	-------	-----	--------
MOL004827	Semilicoisoflavone B	48.78	0.55	Gancao
MOL004828	Glepidotin A	44.72	0.35	Gancao
MOL004829	Glepidotin B	64.46	0.34	Gancao
MOL004833	Phaseolinisoflanan	32.01	0.45	Gancao
MOL004835	Glypallichalcone	61.6	0.19	Gancao
MOL004838	8-(6-hydroxy-2-benzofuranyl)-2,2-dimethyl-5-chromenol	58.44	0.38	Gancao
MOL004841	Licochalcone B	76.76	0.19	Gancao
MOL004848	licochalcone G	49.25	0.32	Gancao
MOL004849	3-(2,4-dihydroxyphenyl)-8-(1,1-dimethylprop-2-enyl)-7-hydroxy-5-methoxy-coumarin	59.62	0.43	Gancao
MOL004855	Licoricone	63.58	0.47	Gancao
MOL004856	Gancaonin A	51.08	0.4	Gancao
MOL004857	Gancaonin B	48.79	0.45	Gancao
MOL004860	licorice glycoside E	32.89	0.27	Gancao
MOL004863	3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-(3-methylbut-2-enyl)chromone	66.37	0.41	Gancao
MOL004864	5,7-dihydroxy-3-(4-methoxyphenyl)-8-(3-methylbut-2-enyl)chromone	30.49	0.41	Gancao
MOL004866	2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl)chromone	44.15	0.41	Gancao
MOL004879	Glycyrin	52.61	0.47	Gancao
MOL004882	Licocoumarone	33.21	0.36	Gancao
MOL004883	Licoisoflavone	41.61	0.42	Gancao
MOL004884	Licoisoflavone B	38.93	0.55	Gancao
MOL004885	licoisoflanavone	52.47	0.54	Gancao
MOL004891	shinpterocarpin	80.3	0.73	Gancao
MOL004898	(E)-3-[3,4-dihydroxy-5-(3-methylbut-2-enyl)phenyl]-1-(2,4-dihydroxyphenyl)prop-2-en-1-one	46.27	0.31	Gancao
MOL004903	liquiritin	65.69	0.74	Gancao
MOL004904	licopyranocoumarin	80.36	0.65	Gancao
MOL ID	Molecule Name	OB(%)	DL	Herb
------------	---	-------	------	-------
MOL004905	3,22-Dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid	34.32	0.55	Gancao
MOL004907	Glyzaglabrin	61.07	0.35	Gancao
MOL004908	Glabridin	53.25	0.47	Gancao
MOL004910	Glabranin	52.9	0.31	Gancao
MOL004911	Glabrene	46.27	0.44	Gancao
MOL004912	Glabrone	52.51	0.5	Gancao
MOL004913	1,3-dihydroxy-9-methoxy-6-benzofurano[3,2-c]chromenone	48.14	0.43	Gancao
MOL004914	1,3-dihydroxy-8,9-dimethoxy-6-benzofurano[3,2-c]chromenone	62.9	0.53	Gancao
MOL004915	Eurycarpin A	43.28	0.37	Gancao
MOL004917	glycyroside	37.25	0.79	Gancao
MOL004924	(-)-Medicocarpin	40.99	0.95	Gancao
MOL004935	Sigmoidin-B	34.88	0.41	Gancao
MOL004941	(2R)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one	71.12	0.18	Gancao
MOL004945	(2S)-7-hydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-enyl)chroman-4-one	36.57	0.32	Gancao
MOL004948	Isoglycyrol	44.7	0.84	Gancao
MOL004949	Isolicoavonol	45.17	0.42	Gancao
MOL004957	HMO	38.37	0.21	Gancao
MOL004959	1-Methoxyphaseollidin	69.98	0.64	Gancao
MOL004961	Quercetin der.	46.45	0.33	Gancao
MOL004966	3'-Hydroxy-4'O-Methylglabridin	43.71	0.57	Gancao
MOL004974	3'-Methoxyglabridin	46.16	0.57	Gancao
MOL004978	2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyran0[6,5-f]chromen-3-yl]-5-methoxyphenol	36.21	0.52	Gancao
MOL004980	Inacoumarin A	39.71	0.33	Gancao
MOL004985	icos-5-enolic acid	30.7	0.2	Gancao
MOL ID	Molecule Name	OB(%)	DL	Herb
------------	---	-------	------	----------
MOL004988	Kanzonol F	32.47	0.89	Gancao
MOL004989	6-prenylated eriodictyol	39.22	0.41	Gancao
MOL004990	7,2',4'-trihydroxy-5-methoxy-3-arylcoumarin	83.71	0.27	Gancao
MOL004991	7-Acetoxy-2-methylisoflavone	38.92	0.26	Gancao
MOL004993	8-prenylated eriodictyol	53.79	0.4	Gancao
MOL004996	gadelaidic acid	30.7	0.2	Gancao
MOL005000	Vestitol	74.66	0.21	Gancao
MOL005000	Gancaonin G	60.44	0.39	Gancao
MOL005001	Gancaonin H	50.1	0.78	Gancao
MOL005003	Licoagrocarpin	58.81	0.58	Gancao
MOL005007	Glyasperins M	72.67	0.59	Gancao
MOL005008	Glycyrrhiza flavonol A	41.28	0.6	Gancao
MOL005012	Licoagroisoflavone	57.28	0.49	Gancao
MOL005013	18α-hydroxyglycyrrhetic acid	41.16	0.71	Gancao
MOL005016	Odoratin	49.95	0.3	Gancao
MOL005017	Phaseol	78.77	0.58	Gancao
MOL005018	Xambioona	54.85	0.87	Gancao
MOL005020	dehydroglyasperins C	53.82	0.37	Gancao
MOL000098	quercetin	46.43	0.28	Gancao
MOL003117	Ioniceracetalides B_qt	61.19	0.19	Jinyinhua
MOL001494	Mandenol	42	0.19	Jinyinhua
MOL001495	Ethyl linolenate	46.1	0.2	Jinyinhua
MOL003006	(-)-(3R,8S,9R,9aS,10aS)-9-ethenyl-8-(beta-D-glucopyranosyloxy)-2,3,9a,10,10a-hexahydro-5-oxo-5H,8H-pyrano[4,3-d]oxazolo[3,2-a]pyridine-3-carboxylic acid_qt	87.47	0.23	Jinyinhua
MOL000422	kaempferol	41.88	0.24	Jinyinhua
MOL002914	Eriodyctiol (flavanone)	41.35	0.24	Jinyinhua
MOL000006	luteolin	36.16	0.25	Jinyinhua
MOL ID	Molecule Name	OB(%)	DL	Herb
------------	---	-------	-----	------------
MOL003044	Chryseriol	35.85	0.27	Jinyinhua
MOL000098	quercetin	46.43	0.28	Jinyinhua
MOL003014	secologanic dibutylacetal_qt	53.65	0.29	Jinyinhua
MOL003095	5-hydroxy-7-methoxy-2-(3,4,5-trimethoxyphenyl)chromone	51.96	0.41	Jinyinhua
MOL003128	dinethylsecologanoside	48.46	0.48	Jinyinhua
MOL002707	phytofluene	43.18	0.5	Jinyinhua
MOL003111	Centaurosine_qt	55.79	0.5	Jinyinhua
MOL003062	4,5'-Retro-.beta.,.beta.-Carotene-3,3'-dione, 4',5'-didehydro-	31.22	0.55	Jinyinhua
MOL003059	kryptoxanthin	47.25	0.57	Jinyinhua
MOL003101	7-epi-Vogeloside	46.13	0.58	Jinyinhua
MOL002773	beta-carotene	37.18	0.58	Jinyinhua
MOL003124	XYLOSTOSIDINE	43.17	0.64	Jinyinhua
MOL003108	Caeruloside C	55.64	0.73	Jinyinhua
MOL000358	beta-sitosterol	36.91	0.75	Jinyinhua
MOL003036	ZINC03978781	43.83	0.76	Jinyinhua
MOL000449	Stigmasterol	43.83	0.76	Jinyinhua
MOL002222	sugiol	36.11	0.28	Xuanshen
MOL007662	harpagoside_qt	122.87	0.32	Xuanshen
MOL001925	paeoniflorin_qt	68.18	0.4	Xuanshen
MOL007659	scropolioside D	36.62	0.4	Xuanshen
MOL007658	14-deoxy-12(R)-sulfoandrographolide	62.57	0.42	Xuanshen
MOL000359	sitosterol	36.91	0.75	Xuanshen
MOL000358	beta-sitosterol	36.91	0.75	Xuanshen
MOL007657	scropolioside A_qt	38.63	0.77	Xuanshen
MOL007660	scropolioside D_qt	33.17	0.82	Xuanshen

3.2 Identification of HZ-related targets in SYD
After removing duplicate targets, we screened 2,056 targets related to the bioactive compounds of SYD from TCMSP. Among these 55, 1,543, 402, and 56 targets were related to Danggui, Gancao, Jinyinhua, and Xuanshen, respectively. We also screened 328 targets corresponding to HZ. Finally, 235 targets were identified that interacted with 126 bioactive compounds of SYD, and 31 targets that were associated with HZ (Fig. 1).

3.3 Compound-target network

The compound-target network established by Cytoscape had 98 nodes and 122 edges (Fig. 2). The degree value indicates links between the targets and bioactive compounds. Table 2 shows the following degree values of potential targets and bioactive compounds: MOL000098 (quercetin, degree = 21), MOL000006 (luteolin, degree = 13), and MOL000422 (Kaempferol, degree = 11)
Target name	Degree	Compound	Degree
CDK2	57	MOL000098	21
CASP3	58	MOL000006	13
JUN	59	MOL000422	11
PGR	60	MOL002773	4
AKT1	5	MOL000497	4
MAPK1	4	MOL004328	4
ICAM1	3	MOL000392	3
CD40LG	2	MOL000358	3
IL2	2	MOL007662	1
ERBB2	2	MOL003044	1
IL6	2	MOL003036	1
EGFR	2	MOL005020	1
CDK4	2	MOL005017	1
VCAM1	2	MOL005016	1
SELE	2	MOL005012	1
CDK1	2	MOL005008	1
STAT1	2	MOL005007	1
IL4	2	MOL005003	1
APP	1	MOL000500	1
ALB	1	MOL004991	1
IRF1	1	MOL004990	1
CHUK	1	MOL004978	1
CXCL10	1	MOL004974	1
CRP	1	MOL004966	1
CCL2	1	MOL004961	1
IL1B	1	MOL004959	1
Target name	Degree	Compound	Degree
-------------	--------	----------------	--------
FOS	1	MOL004957	1
STAT3	1	MOL004949	1
		MOL004915	1
		MOL004914	1
		MOL004913	1
		MOL004912	1
		MOL004911	1
		MOL004908	1
		MOL004907	1
		MOL004904	1
		MOL004898	1
		MOL004891	1
		MOL004885	1
		MOL004884	1
		MOL004883	1
		MOL004882	1
		MOL004866	1
		MOL004864	1
		MOL004863	1
		MOL004849	1
		MOL004848	1
		MOL004841	1
		MOL004835	1
		MOL004833	1
		MOL004828	1
		MOL004827	1
		MOL004824	1
		MOL004820	1
3.4 Protein-protein interaction

We obtained 31 nodes and 318 interactions from the PPI network analysis (medium confidence ≥ 0.4; Fig. 3). The average node degree of the PPI network was 20.5 and the local clustering coefficient was 0.848. Based on these findings, the three nodes with the highest degree were considered as Hub genes, and included CDK2, CASP3, and JUN. These target proteins might be significant in the SYD-based treatment of HZ.

3.5 GO and KEGG pathway enrichment analyses

We applied R-project for GO_BP enrichment analysis. The bubble chart shown in Fig. 4A shows the top 20 ranked entries. The PPI network targets were mostly involved in response to lipopolysaccharides, molecules of bacterial origin, and reactive oxygen species, as well as leukocyte cell-cell adhesion, modulation of DNA-binding transcription factor activity, T cell activation, and other molecular functions.

We also applied R-project for KEGG pathway enrichment analysis. The bubble chart shown in Fig. 4B shows the top 20 ranked entries. The findings indicated targets that were mostly associated with the Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, Endocrine resistance, Osteoclast differentiation, and the FoxO, and MAPK signaling pathways. The Toll-like receptor signaling pathway was more significant, and thus we mapped the pathway (Fig. 5). Both GO functional and KEGG pathway enrichment analyses suggested that multiple targets of SYD could act on multiple biological processes for treatment of HZ.

3.6 Molecular docking

We selected compounds and targets with the top three degrees in the compound-target network to dock stimulation (Table 3). Lower energy of binding of a ligand-receptor indicates better binding activity between them. Figure 6 shows partial molecular docking processes.
Table 3
Molecular docking results

Target name	PDB ID	Compound	Energy (kcal/mol)
CKD2	2cch	MOL000098	-8.6
CKD2	2cch	MOL00006	-8.5
CKD2	2cch	MOL000422	-8.1
PGR	2c7a	MOL000098	-7.2
PGR	2c7a	MOL00006	-7.4
PGR	2c7a	MOL000422	-7.5
JUN	1s9k	MOL000098	-7.7
JUN	1s9k	MOL00006	-7.8
JUN	1s9k	MOL000422	-7.6

Discussion

The virus Herpes zoster (HZ) causes infections like chicken pox and shingles, and it is classified under “Snake sore” and “girdling fire cinnabar” in traditional Chinese medicine (TCM). Simiao Yongan Decoction is a famous TCM prescription. Several clinical trials have shown that SYD is effective in patients with HZ infection and PNH\(^5\)\(^6\). Therefore, we applied TCM network pharmacological approaches to elucidate these mechanisms.

The present findings showed that the major bioactive compounds of SYD were quercetin, luteolin, and kaempferol. Quercetin is a bioflavonoid with potent antioxidant and anti-inflammatory activities that is found in various vegetables and fruits [16, 17]. Quercetin can relieve inflammatory-induced pain in animal models [18] and it exerts neuroprotective effects [19]. Luteolin protects the nervous system [20] and exerts anti-inflammatory [21], and antioxidant [22] effects. Kaempferol is a flavonoid with many health benefits, particularly against inflammatory diseases [23]. Kaempferol attenuates inflammatory pathways by modulating NF-κB [24]. The PPI network analysis showed that CDK2, CASP3, JUN, AKT1, and MAPK1 had the highest degree values; CDK2 participates in cell cycle regulation (RefSeq, Aug 2020); CASP3 participates in apoptosis, inflammation, and necrosis-related signaling pathways (RefSeq, Aug 2017); AKT1 plays a vital role in the regulation of cell survival, angiogenesis, tumor formation, and insulin signaling; JUN functions in growth and differentiation [25], and MAPK1 plays essential roles in neuropathic pain and inflammatory reactions [26, 27]. All these suggest that the bioactive compounds of SYD and the targets of these compounds play crucial roles in the treatment of HZ and PNH.

Toll-like receptor, C-type lectin receptor, MAPK, PI3K-Akt signaling pathway, and other KEGG signaling pathways were enriched. Toll-like receptors perceive conserved microbial structures, such as bacterial
lipopolysaccharide or viral double-stranded RNA. Upon perception, they induce various signaling pathways related to immune responses against microbial infections [28]. C-type lectin receptors are expressed mainly on myeloid cells and are involved in antifungal immunity. The MAPK signaling pathway is vital in the mediation of multiple cellular processes, which include proliferation, stress response, differentiation, motility, survival, growth, and death [29]. The PI3K-Akt signaling pathway plays a vital role in mediating survival signals in different types of neuronal cells. The PI3K-Akt signaling pathway may suppress cell death by regulating cytoplasmic cell death machinery, as well as the expression of genes that facilitate cell death and survival [30]. Therefore, we postulate that SYD clears HZ through the Toll-like receptor signaling pathway, amplifies immunity through the C-type lectin receptor signaling pathway, and regulates cell apoptosis via the MAPK and PI3K-Akt signaling pathways. The molecular docking results showed good binding energy between SYD bioactive compounds and hub targets, suggesting that our findings demonstrated high reference value.

Conclusion

We found that SYD was effective against HZ via multiple targets and pathways. Our results provide theoretical support for the treatment of HZ and a new direction for such treatment by TCM. However, experimental validation is warranted before SYD can be realized as a viable pharmaceutical treatment for HZ infection.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

Please contact author for data requests.

Funding

This study did not receive any funding.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions
Guanyan Chen and Zhenhai Wu provided Chinese medicines. Yixian Li is a consultant dermatologist. Hongtao Liu and Qiuqin Tang analyzed the results and prepared the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements

Not applicable

References

[1] Bajwa ZH, Ho CC. Herpetic neuralgia. Use of combination therapy for pain relief in acute and chronic herpes zoster. Geriatrics. 2001;56(12):18-24.

[2] Donahue JG, Choo PW, Manson JE, et al. The incidence of herpes zoster[J]. Arch Intern Med, 1995, 155:1605-1609

[3] Nikkels, A.F. and G.E. Piérard, Oral Antivirals Revisited in the Treatment of Herpes Zoster. 2002. 3(9): p. 591-598.

[4] ACYCLOVIR MIGHT PRODUCE NEUROLOGICAL SIDE EFFECTS. In pharma Pharma Weekly. 395, 5 (1983).

[5] Shi qiaoyin. Modified Simiao Yongan Decoction for 127 Cases of Herpes Zoster[J]. Guangming Journal of Chinese Medicine, 2006(09):84-85.

[6] Guoqin Chen, et al. Clinical Observation of 36 Cases of Postherpetic Neuralgia Treated with Modified Simiao Yongan Decoction[J]. Chinese Journal of Dermatovenereology of Integrated Traditional and Western Medicine, 2010, 9(03):176-177.

[7] Hopkins AL (2007) Network pharmacology. Nat Biotechnol 25(10):1110

[8] Jinlong Ru; Peng Li; Jinan Wang; Wei Zhou; Bohui Li; Chao Huang; Pidong Li; Zihu Guo; Weiyang Tao; Yinfeng Yang; Xue Xu; Yan Li; Yonghua Wang; Ling Yang. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminformatics. 2014 Apr 16;6(1):13.

[9] Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, Duan J, Ling Y (2012) A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 13(6):6964–6982.

[10] Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Iny Stein T, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan - Golan Y, Kohn A, Rappaport N, Safran M, and Lancet D. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analysis , Current Protocols in Bioinformatics(2016), 54:1.30.1 - 1.30.33.
[11] Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 Jan; 47:D607-613.

[12] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Research 2003 Nov; 13(11):2498-504.

[13] Ashburner et al. Gene ontology: tool for the unification of biology. Nat Genet. May 2000;25(1):25-9.

[14] Kanehisa, M.; "Post-genome Informatics", Oxford University Press (2000).

[15] O. Trott, A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry 31 (2010) 455-461.

[16] K. Kawabata, R. Mukai, A. Ishisaka Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability Food Funct, 6 (2015), pp. 1399-1417.

[17] H. Yang, T. Yang, C. Heng, Y. Zhou, Z. Jiang, X. Qian, L. Du, S. Mao, X. Yin, Q. Lu Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice Phytother Res., 33 (2019), pp. 3140-3152.

[18] D.A. Valerio, S.R. Georgetti, D.A. Magro, R. Casagrande, T.M. Cunha, F.T. Vicentini, S.M. Vieira, M.J. Fonseca, S.H. Ferreira, F.Q. Cunha, W.A. Verri Jr. Quercetin reduces inflammatory pain: inhibition of oxidative stress and cytokine production J. Nat. Prod., 72 (2009), pp. 1975-1979.

[19] Y.W. Liu, X.L. Liu, L. Kong, M.Y. Zhang, Y.J. Chen, X. Zhu, Y.C. Hao Neuroprotection of quercetin on central neurons against chronic high glucose through enhancement of Nrf2/ARE/glyoxalase-1 pathway mediated by phosphorylation regulation Biomed. Pharmacother., 109 (2019), pp. 2145-2154.

[20] Z.H. Yao, X.L. Yao, Y. Zhang, S.F. Zhang, J.C. Hu Luteolin could improve cognitive dysfunction by inhibiting neuroinflammation Neurochem Res, 43 (2018), pp. 806-820.

[21] C. Nunes, L. Almeida, R.M. Barbosa, J. Laranjinha Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation Food Funct, 8 (2017), pp. 387-396.

[22] P. Lin, X.H. Tian, Y.S. Yi, W.S. Jiang, Y.J. Zhou, W.J. Cheng Luteolin-induced protection of H(2)O(2)-induced apoptosis in PC12 cells and the associated pathway Mol Med Rep, 12 (2015), pp. 7699-7704.

[23] A. Mobasher A. Intersection of inflammation and herbal medicine in the treatment of osteoarthritis Cur Rheumatol Rep, 14 (2012), pp. 604-616.
[24] H.-H. Park, S. Lee, H.-Y. Son, S.-B. Park, M.-S. Kim, E.-J. Choi, et al. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells Arch Pharm Res, 31 (2008), p. 1303

[25] Hess J., Angel P., Schorpp-Kistner M. AP-1 subunits: Quarrel and harmony among siblings. J. Cell Sci. 2004;117:5965–5973. doi: 10.1242/jcs.01589.

[26] Eltzschig Holger K, Eckle Tobias. Ischemia and reperfusion–from mechanism to translation.[J]. Nature Medicine, 2011, 17(11):1391-401.

[27] Anne Sandrine L, Govek Eve-Ellen, Ayrault Olivier, et al. WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation.[J]. PLoS ONE, 2013, 8(11):e81769.

[28] Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Science 300: 1524–1525. doi: 10.1126/science.1085536.

[29] Che, Guanglu et al. ?Knockdown of Heparanase Suppresses Invasion of Human Trophoblasts by Activating p38 MAPK Signaling Pathway.??Disease markers?vol. 2018 7413027. 17 Apr. 2018, doi:10.1155/2018/7413027.

[30] Brunet A , Datta S R , Greenberg M E . Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway[J]. Current Opinion in Neurobiology, 2001, 11(3):297-305.