Research Article

Numerical Algorithms of the Discrete Coupled Algebraic Riccati Equation Arising in Optimal Control Systems

Li Wang

School of Mathematics and Computational Science, Hunan University of Science and Technology, Hunan 411201, China

Correspondence should be addressed to Li Wang; wanglileigh@163.com

Received 12 June 2020; Accepted 11 August 2020; Published 31 August 2020

Guest Editor: Hou-Sheng Su

Copyright © 2020 Li Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The discrete coupled algebraic Riccati equation (DCARE) has wide applications in robust control, optimal control, and so on. In this paper, we present two iterative algorithms for solving the DCARE. The two iterative algorithms contain both the iterative solution in the last iterative step and the iterative solution in the current iterative step. And, for different initial value, the iterative sequences are increasing and bounded in one algorithm and decreasing and bounded in another. They are all monotonous and convergent. Numerical examples demonstrate the convergence effect of the presented algorithms.

1. Introduction and Preliminaries

The discrete coupled Riccati equation is usually encountered in optimal control and filter design problems in control theory [1–9], particularly in the jump-linear quadratic optimal control problem [10]. Consider the following jump-linear system:

\[
\begin{align*}
 x_{k+1} &= A(r_k)x_k + B(r_k)u_k, \quad 0 \leq k \leq N^*, \\
 y_k &= C(r_k)x_k,
\end{align*}
\]

with initial state \(x(0) = x_0 \), \(r(0) = r_0 \), where \(x_k \in \mathbb{R}^n \) is the plant state, \(u_k \in \mathbb{R}^m \) is the control vector, and \(y_k \in \mathbb{R}^q \) is the process output. Here, \(k \) is the time index, \(r_k \) is the form process taking values in the finite set \(S = \{1, 2, \ldots, s\} \), and \(r_k \) is a finite-state discrete-time Markov chain with transition probabilities.

\[
\Pr\{r_{k+1} = j \mid r_k = i\} = \tilde{e}_{ij}, \quad 1 \leq i, j \leq s, \quad \tilde{e}_{ii} > 0. \tag{2}
\]

Minimizing the cost criterion of system (1) reduces to solving coupled algebraic Riccati-like equations. After some transformation, the coupled algebraic Riccati-like equations turn the following discrete coupled algebraic Riccati equation (DCARE)

\[
P_i = A_i^T F_i A_i - A_i^T F_i B_i \left(I + B_i^T F_i B_i \right)^{-1} B_i^T F_i A_i + Q_i, \tag{3}
\]

where \(A_i \in \mathbb{R}^{m \times m} \) is a constant matrix, \(B_i \in \mathbb{R}^{m \times m} \), \(Q_i \in \mathbb{R}^{m \times m} \) is a symmetric positive definite matrix, \(i \in S \), \(F_i = P_i + \sum_{j \in S} \tilde{e}_{ij} P_j \) is the coupled term, \(\tilde{e}_{ij} \) are real non-negative constants defined as \(\tilde{e}_{ij} = (\tilde{e}_{ij}/\tilde{e}_{ii}) \) with the properties \(\tilde{e}_{ij} \in [0, 1] \), \(\tilde{e}_{ii} > 0 \), and \(\sum_{j \in S} \tilde{e}_{ij} = 1 \), and \(P_i \in \mathbb{R}^{m \times m} \) denotes the symmetric positive definite solution of the DCARE. Applying Woodbury matrix equality

\[
\left(A - BD^{-1}C \right)^{-1} = A^{-1} + A^{-1}B\left(D - CA^{-1}B \right)^{-1}CA^{-1}, \tag{4}
\]

DCARE (3) turns to

\[
P_i = A_i^T \left(F_i^{-1} + B_i B_i^T \right)^{-1} A_i + Q_i. \tag{5}
\]

Because of the importance of Riccati equations in control theory and control engineering, a lot of research studies about Riccati equations have been devoted to this field, such
as solution bounds [11–15], trace and eigenvalue bounds [16–23], and the existence and uniqueness [24–26]. Besides these results, numerical solutions of Riccati equations are very important and have been studied by many scholars [27–34] because the numerical solutions of the Riccati equations are necessary in some practical engineering, such as finding the optimal state feedback controller in the optimal control system. Especially, for the DCARE, fixed point iterative algorithms are given in [24–26]. Stein iterations are presented in [35] which are based on the properties of a Stein equation. Among these results, we find less work has been done to discuss the numerical solution of the DCARE. Considering the importance and necessity of the numerical solutions of the DCARE, we propose two algorithms to discuss the numerical solution of the DCARE.

In this paper, we first propose an iterative algorithm with a parameter for solving the DCARE and prove its monotonically convergence. Second, we give an upper solution bound of the DCARE, by which another iterative algorithm has been proposed, but there are many restrictions in these algorithms. In this part, we first present an iterative algorithm for DCARE (5) which do not have any restrictions.

2. Main Results

In [25, 26], the authors have derived several solution bounds by which iterative algorithms have been proposed, but there are many restrictions in these algorithms. In this part, we first present an iterative algorithm for DCARE (5) which do not have any restrictions.

Algorithm 1

Step 1: set $P_i(0) = Q_i$, $F_i(0) = Q_i, \sum_{j \neq i} e_{ij}Q_j$, $0 \leq \omega$, $i = 1, 2, \ldots, s$.

Step 2: compute

$$
\begin{align*}
& P_i(k) = A_i^T \left[F_i^{-1}(k) + B_iB_i^T \right]^{-1} A_i + Q_i,
& F_i(k) = P_i(k) + \sum_{j \neq i} e_{ij} \left[\omega P_j(k) + (1 - \omega) P_j(k) \right] + \sum_{j \neq i} e_{ij} P_j(k), \quad k = 0, 1, 2, \ldots.
\end{align*}
$$

From Algorithm 1, we get an increasing and bounded iterative sequence, which is convergent to the positive definite solution of DCARE (5).

Theorem 1. Let $P_i(\ast)$ be the positive definite solution of DCARE (5) and $Q_i > 0$. The iterative sequences $\{P_i(k)\}$ and $\{F_i(k)\}$ are generated by the iterative (8) with $0 \leq \omega \leq 1$, and then

$$
\begin{align*}
& P_i(0) \leq P_i(1) \leq P_i(2) \leq \cdots, \quad \lim_{k \to \infty} P_i(k) = P_i(\ast),
& F_i(0) \leq F_i(1) \leq F_i(2) \leq \cdots, \quad F_i(k) \leq P_i(\ast) + \sum_{j \neq i} e_{ij} P_j(\ast).
\end{align*}
$$

Proof. Since $P_i(\ast)$ is positive definite solution of DCARE (5), then

$$
\begin{align*}
& A \geq B, \quad \text{if and only if} \quad B^{-1} \geq A^{-1}.
& A^T(X^{-1} + R)^{-1} A > (\geq) A^T(Y^{-1} + R)^{-1} A,
\end{align*}
$$

Lemma 1 (see [36]). If $A, B \in R^{m \times n}$ are symmetric positive definite matrices, then

$$
\begin{align*}
& A \geq B, \quad \text{if and only if} \quad B^{-1} \geq A^{-1}.
\end{align*}
$$

Lemma 2 (see [22]). Let matrices $A, X, R, Y \in R^{m \times n}$ with $X, Y > 0, R \geq 0$, and $X > (\geq) Y$. Then,

$$
\begin{align*}
& A^T(X^{-1} + R)^{-1} A > (\geq) A^T(Y^{-1} + R)^{-1} A,
\end{align*}
$$

with strict inequality if A is nonsingular, and $X > Y$.

2. Main Results

In [25, 26], the authors have derived several solution bounds by which iterative algorithms have been proposed, but there are many restrictions in these algorithms. In this part, we first present an iterative algorithm for DCARE (5) which do not have any restrictions.
From (15), (17), (18), we get

\[
F_i(0) = Q_i + \sum_{j \neq i} e_{ij} Q_j = P_i(0) + \sum_{j=1}^{i-1} e_{ij} \left[\omega P_j(0) + (1 - \omega) P_j(0) \right] + \sum_{j=i+1}^{i} e_{ij} P_j(0)
\]

\[
\leq P_i(1) + \sum_{j=1}^{i-1} e_{ij} \left[\omega P_j(1) + (1 - \omega) P_j(0) \right] + \sum_{j=i+1}^{i} e_{ij} P_j(1) = F_i(1)
\]

\[
= P_i(1) + \sum_{j=1}^{i-1} e_{ij} \left[P_j(1) + (\omega - 1) (P_j(1) - P_j(0)) \right] + \sum_{j=i+1}^{i} e_{ij} P_j(1)
\]

\[
\leq P_i(1) + \sum_{j=1}^{i-1} e_{ij} P_j(1) + \sum_{j=i+1}^{i} e_{ij} P_j(1) \leq P_i(*) + \sum_{j \neq i} e_{ij} P_j(*),
\]

that is,
\[
F_i(0) \leq F_i(1) \leq P_i(*) + \sum_{j \neq i} e_{ij} P_j(*). \tag{14}
\]

Suppose that
\[
\quad
\]

According to (16) and Lemma 2, we get
\[
P_i(m + 1) = A_i^T \left[F_i^{-1}(k) + B_i B_i^T \right]^{-1} A_i + Q_i \geq A_i^T \left[F_i^{-1}(k - 1) + B_i B_i^T \right]^{-1} A_i + Q_i = P_i(k). \tag{17}
\]

\[
P_i(k + 1) = A_i^T \left[F_i^{-1}(k) + B_i B_i^T \right]^{-1} A_i + Q_i \leq A_i^T \left[P_i(*) + \sum_{j \neq i} e_{ij} P_j(*) \right]^{-1} + B_i B_i^T \right]^{-1} A_i + Q_i = P_i(*). \tag{18}
\]

From (15), (17), (18), we get

\[
F_i(k) = P_i(k) + \sum_{j=1}^{i-1} e_{ij} \left[\omega P_j(k) + (1 - \omega) P_j(k - 1) \right] + \sum_{j=1}^{i} e_{ij} P_j(k) \leq P_i(k + 1) + \sum_{j=1}^{i-1} e_{ij} \left[\omega P_j(k + 1) + (1 - \omega) P_j(k) \right]
\]

\[
+ \sum_{j=i+1}^{i} e_{ij} P_j(k + 1) = F_i(k + 1)
\]

\[
= P_i(k + 1) + \sum_{j=1}^{i-1} e_{ij} \left[P_j(k + 1) + (\omega - 1) (P_j(k + 1) - P_j(k)) \right] + \sum_{j=i+1}^{i} e_{ij} P_j(k + 1) \leq P_i(k + 1) + \sum_{j=1}^{i-1} e_{ij} P_j(k + 1)
\]

\[
+ \sum_{j=i+1}^{i} e_{ij} P_j(k + 1) \leq P_i(*) + \sum_{j \neq i} e_{ij} P_j(*). \tag{19}
\]
Thus, the proof of induction is completed. Because $P_i(k)$ and $F_i(k)$ are monotonically increasing and they are bounded, then $\lim_{k \to \infty} P_i(k)$ and $\lim_{k \to \infty} F_i(k)$ exist. As $k \to \infty$, Algorithm 1 gives

$$P_i(\infty) = A_i^T \left[F_i^{-1}(\infty) + B_i B_i^T \right]^{-1} A_i + Q_i,$$

$$= A_i^T \left\{ \left[P_i(\infty) + \sum_{j=1}^{i-1} e_{ij} \left[\omega P_j(\infty) + (1 - \omega) P_j(\infty) \right] + \sum_{j=i+1}^{s} e_{ij} P_j(\infty) \right]^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i,$$

$$= A_i^T \left\{ P_i(\infty) + \sum_{j \neq i} e_{ij} P_j(\infty) \right\}^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i.$$

Thus, $\lim_{k \to \infty} P_i(k) = P_i(*)$. \hfill \Box

Theorem 2. Let P_i be the positive definite solution of DCARE (5), then

$$P_i \leq A_i^T \left(B_i B_i^T \right)^{-1} A_i + Q_i.$$ \hspace{1cm} (21)

Proof. If $G > P_i + \sum_{j \neq i} e_{ij} P_j$, then by Lemma 1, we get

$$P_i = A_i^T \left\{ P_i + \sum_{j \neq i} e_{ij} P_j \right\}^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i,$$

$$\leq A_i^T \left\{ G^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i.$$ \hspace{1cm} (22)

From Algorithm 2, we get a decreasing and bounded iterative sequences, which is convergent to the positive definite solution of DCARE (5).

Theorem 3. Let $P_i(*)$ be the positive definite solution of DCARE (5) and $Q_i > 0$. The iterative sequences $\{P_i(k)\}$ and $\{F_i(k)\}$ are generated by iterative (23) with $0 \leq \omega \leq 1$, and then

$$P_i(1) = A_i^T \left[F_i^{-1}(0) + B_i B_i^T \right]^{-1} A_i + Q_i = A_i^T \left\{ A_i^T \left(B_i B_i^T \right)^{-1} A_i + Q_i + \sum_{j \neq i} e_{ij} \left(A_j^T \left(B_j B_j^T \right)^{-1} A_j + Q_j \right) \right\}^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i,$$

$$\geq A_i^T \left\{ P_i(*) + \sum_{j \neq i} e_{ij} P_j(*) \right\}^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i = P_i(*) .$$ \hspace{1cm} (23)

$$P_i(1) = A_i^T \left[F_i^{-1}(0) + B_i B_i^T \right]^{-1} A_i + Q_i \leq A_i^T \left(B_i B_i^T \right)^{-1} A_i + Q_i = P_i(0).$$ \hspace{1cm} (24)

Proof. According to (21) and (23), we have

$$P_i(1) = A_i^T \left[F_i^{-1}(0) + B_i B_i^T \right]^{-1} A_i + Q_i = A_i^T \left\{ A_i^T \left(B_i B_i^T \right)^{-1} A_i + Q_i + \sum_{j \neq i} e_{ij} \left(A_j^T \left(B_j B_j^T \right)^{-1} A_j + Q_j \right) \right\}^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i,$$

$$\geq A_i^T \left\{ P_i(*) + \sum_{j \neq i} e_{ij} P_j(*) \right\}^{-1} + B_i B_i^T \right\}^{-1} A_i + Q_i = P_i(*) .$$ \hspace{1cm} (25)

$$P_i(1) = A_i^T \left[F_i^{-1}(0) + B_i B_i^T \right]^{-1} A_i + Q_i \leq A_i^T \left(B_i B_i^T \right)^{-1} A_i + Q_i = P_i(0).$$ \hspace{1cm} (26)
Since \(\omega - 1 \leq 0 \), with (25) and (26) we get
\[
F_i(0) = Q_i + \sum_{j \neq i} e_{ij}Q_j = P_i(0) + \sum_{j \neq i} e_{ij}[\omega P_j(0) + (1 - \omega)P_j(0)]
\]
\[
+ \sum_{j \neq i} e_{ij}P_j(0) \geq P_i(1) + \sum_{j \neq i} e_{ij}[\omega P_j(1) + (1 - \omega)P_j(1)]
+ \sum_{j \neq i} e_{ij}P_j(1)
= P_i(1) + \sum_{j \neq i} e_{ij}[P_i(1) + (1 - \omega)(P_j(0) - P_j(1))]
+ \sum_{j \neq i} e_{ij}P_j(1) \geq P_i(\ast) + \sum_{j \neq i} e_{ij}P_j(\ast),
\]
that is,
\[
F_i(0) \geq F_i(1) \geq P_i(\ast) + \sum_{j \neq i} e_{ij}P_j(\ast).
\]
Suppose that
\[
F_i(k) = P_i(k) + \sum_{j \neq i} e_{ij}[\omega P_j(k) + (1 - \omega)P_j(k - 1)] + \sum_{j \neq i} e_{ij}P_j(k) \geq P_i(k + 1) + \sum_{j \neq i} e_{ij}[\omega P_j(k + 1) + (1 - \omega)P_j(k)]
+ \sum_{j \neq i} e_{ij}P_j(k + 1) = F_i(k + 1)
+ \sum_{j \neq i} e_{ij}P_j(k + 1) \geq P_i(\ast) + \sum_{j \neq i} e_{ij}P_j(\ast).
\]
Thus, the proof of induction is completed. Because \(P_i(k) \) and \(F_i(k) \) are monotonically decreasing and they are bounded, then \(\lim_{k \to \infty} P_i(k) \) and \(\lim_{k \to \infty} F_i(k) \) exist. In a similar way as the proof of (20), as \(k \to \infty \), Algorithm 2 gives \(\lim_{k \to \infty} P_i(k) = P_i(\ast) \).

Remark 1. In Algorithm 2, if \(B_iB_i^T \) is singular, we can choose a suitable \(G \) so that \((G^{-1} + B_iB_i^T)^{-1} \) is nonsingular, as in Theorem 2.

Remark 2. In Algorithm 1, the sequence \(P_i(k) \) in (8) with the initial value \(P_i(0) = Q_i \) converges monotonically to a positive definite solution of DCARE (5), and so does the sequence \(P_i(k) \) in (23) with the initial value \(P_i(0) = A_i^T(B_iB_i^T)^{-1}A_i + Q_i \). But the two positive definite solutions may be different. Whether the positive definite solution of DCARE (5) is unique or not, a problem needs to be discussed further.

Remark 3. When \(e_{ij} = 0 \) (\(j \neq i \)), DCARE (5) changes to the discrete algebraic Riccati equation. And iterative sequences (8) and (23), respectively, in Algorithm 1 and Algorithm 2, become the iterative (17) and iterative (28) in [22], which means that the algorithms of the DCARE in this paper are generalizations of the discrete algebraic Riccati equation. Moreover, when \(\omega = 1 \), the iterative (8) and (23) are extensions on the discrete coupled algebraic Riccati equation of the work of [22].

Remark 4. In this paper, we only prove Algorithms 1 and 2 are convergent under the condition \(0 \leq \omega \leq 1 \), but we can run the two algorithms with \(\omega > 1 \) in practical computation. And, we have faster convergence speed if appropriate parameters are selected. We will illustrate it in the following examples.

3. Numerical Examples

In this section, the following numerical examples are presented to show the effectiveness of our results.
Example 1 (see [26]). Consider DCARE (5) with

\[
A_1 = \begin{pmatrix} 0.25 & 0.15 \\ 0.25 & -0.1 \end{pmatrix},
A_2 = \begin{pmatrix} -0.1 & 0.2 \\ 0.1 & -0.2 \end{pmatrix},
B_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix},
B_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix},
\]

\[
Q_1 = \begin{pmatrix} 50 & -30 \\ -30 & 40 \end{pmatrix},
Q_2 = \begin{pmatrix} 60 & -20 \\ -20 & 70 \end{pmatrix},
\]

\[
\left(\bar{e}_{ij}\right)_{i,j \in S} = \begin{pmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{pmatrix},
S = \{1, 2\}.
\]

(34)

Since there are two equations in the DCARE, the superiority of the \(\omega\) in Algorithm 1 is not obvious. So, we choose \(\omega = 1\) here. After 9 steps of iteration of (8), we obtain the solution \(P_i\) of DCARE (5).

\[
P_1(9) = \begin{pmatrix} 54.782858819173867 & -27.163728424128180 \\ -27.163728424128180 & 41.743512895466367 \end{pmatrix},
P_2(9) = \begin{pmatrix} 60.745519196489681 & -21.49103839297359 \\ -21.49103839297359 & 72.982076785958711 \end{pmatrix},
\]

(35)

and the residual \(\|A_1^T\left[P_i(9) + \sum_{i,j} e_{ij} P_i(9)\right]^{-1} + B_i B_i^T\|_2^{-1} A_i + Q_i - P_i(9)\) is 8.246736626915663e – 009.

However, it needs 47 steps of iteration for the algorithm in [26] to get the iteration solution of DCARE (5).

Example 2. Consider DCARE (5) with

\[
A_1 = \begin{pmatrix} 0.8 & 0.07 \\ -0.13 & 2.1 \end{pmatrix},
A_2 = \begin{pmatrix} 1.63 & 0.12 \\ -0.18 & 1.06 \end{pmatrix},
A_3 = \begin{pmatrix} 0.65 & 0.13 \\ 0.14 & -1.08 \end{pmatrix},
Q_1 = \begin{pmatrix} 40 & -2.5 \\ -2.5 & 1.1 \end{pmatrix},
Q_2 = \begin{pmatrix} 6 & -1.5 \\ -1.5 & 0.4 \end{pmatrix},
Q_3 = \begin{pmatrix} 0.48 & -1.4 \\ -1.4 & 48 \end{pmatrix},
\]

\[
B_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix},
B_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix},
B_3 = \begin{pmatrix} 0 \\ 3 \end{pmatrix},
\]

(36)

\[
\left(\bar{e}_{ij}\right)_{i,j \in S} = \begin{pmatrix} 0.67 & 0.17 & 0.16 \\ 0.3 & 0.47 & 0.23 \\ 0.26 & 0.1 & 0.64 \end{pmatrix},
S = \{1, 2, 3\}.
\]

Because the restrictions of the algorithms in [25, 26] are not met for this case, the algorithms in [25, 26] cannot work.

For Algorithm 1, the steps of iteration and the residual are presented in Table 1 with different parameter \(\omega\). Although we only prove the convergence of Algorithm 1 with \(0 \leq \omega \leq 1\), from Table 1, we find the convergence rapid is the fastest when \(\omega = 1.8\). After 31 steps of iteration of (8) with \(\omega = 1.8\), we obtain the solution \(P_i\) of DCARE (5).

\[
P_1(31) = \begin{pmatrix} 1103.165003916018 & 101.279835324595 \\ 101.279835324595 & 15.487684241437 \end{pmatrix},
P_2(31) = \begin{pmatrix} 9664.052810636161 & 713.129010075344 \\ 713.129010075344 & 53.563508057380 \end{pmatrix},
P_3(31) = \begin{pmatrix} 7325.056498352728 & 1445.922335403706 \\ 1445.922335403706 & 773.201080130236 \end{pmatrix},
\]

(37)

and the residual \(\|A_1^T\left[P_i(31) + \sum_{i,j} e_{ij} P_i(31)\right]^{-1} + B_i B_i^T\|_2^{-1} A_i + Q_i - P_i(31)\) is 8.307893040182535e – 009.

Example 3 (see [26]). Consider the DCARE (5) with

\[
A_1 = \begin{pmatrix} 0.07 & 0.8 \\ -1.3 & 0.1 \end{pmatrix},
A_2 = \begin{pmatrix} 0.12 & 1.63 \\ 0.18 & 1.06 \end{pmatrix},
A_3 = \begin{pmatrix} 0.13 & 0.65 \\ -1.08 & 0.14 \end{pmatrix},
Q_1 = \begin{pmatrix} -2.5 & 40 \\ 1.1 & -25 \end{pmatrix},
Q_2 = \begin{pmatrix} -1.5 & 6 \\ 0.4 & -1.5 \end{pmatrix},
Q_3 = \begin{pmatrix} -1.4 & 0.48 \\ 48 & -1.4 \end{pmatrix},
\]

\[
B_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix},
B_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix},
B_3 = \begin{pmatrix} 0 \\ 3 \end{pmatrix},
\]

(38)

\[
\left(\bar{e}_{ij}\right)_{i,j \in S} = \begin{pmatrix} 0.05 & 0.13 \\ 0.14 & 0.13 \end{pmatrix},
S = \{1, 2, 3\}.
\]

Q_1, Q_2, Q_3, B_1, B_2, B_3, \left(\bar{e}_{ij}\right)_{i,j \in S} and S are the same as Example 2.

For Algorithm 2, since \(B_i B_i^T\) is singular, by choosing \(G = I\), then Algorithm 2 can work now. After 4 steps of iteration of (23) with \(\omega = 1\), we obtain the solution \(P_i\) of DCARE (5):

\[
\begin{pmatrix} 0 \\ 1 \end{pmatrix},
\begin{pmatrix} 0 \\ 2 \end{pmatrix},
\begin{pmatrix} 0 \\ 3 \end{pmatrix}.
\]

The remaining solutions are the same as Example 2.
Mathematical Problems in Engineering 7

Table 1: Numerical results.

ω	Iterations	Residual	ω	Iterations	Residual
0	46	9.0841e-009	1.8	31	8.3079e-009
0.4	44	8.3616e-009	2	32	8.0616e-009
0.8	42	6.2660e-009	4	41	5.6463e-009
1	41	4.7366e-009	6	49	3.9612e-009
1.4	37	8.0066e-009	8	58	6.7581e-009

and the residual $\|A^T_1[\{P_1,4\}+\sum_{\mu\epsilon i,j}P_1(4)]^{-1}+B_iB_j^{-1}\|A_i+Q_i-P_1(4)\|$ is 9.070366799608115.

However, it needs 18 steps of iteration for the algorithm in [26] to get the iteration solution of DCARE (5).

Data Availability

All data generated or analyzed during this study are included in this article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work was supported in part by the National Natural Science Foundation for Youths of China (11801164), National Natural Science Foundation of China (11971413), the Key Project of National Natural Science Foundation of China (91430213), the General Project of Hunan Provincial Natural Science Foundation of China (2015JJ2134), and the General Project of Hunan Provincial Education Department of China (15C1320).

References

[1] H. Abou-Kandil, G. Freiling, and G. Jank, “On the solution of discrete-time markovian jump linear quadratic control problems,” Automatica, vol. 31, no. 5, pp. 765–768, 1995.
[2] C. Xu, Y. Zhao, B. Qin, and H. Zhang, “Adaptive synchronization of coupled harmonic oscillators under switching topology,” Journal of the Franklin Institute, vol. 356, no. 2, pp. 1067–1087, 2019.
[3] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, Hoboken, NJ, USA, 1972.
[4] H. Su, H. Wu, X. Chen et al., “Positive edge consensus of complex networks,” IEEE Transactions on Systems Man & Cybernetics Systems, vol. 48, no. 12, pp. 1–9, 2017.
[5] C. Xu, H. Xu, H. Su, and C. Liu, “Disturbance-observer based consensus of linear multi-agent systems with exogenous disturbance under intermittent communication,” Neurocomputing, vol. 404, pp. 26–33, 2020.
[6] H. Su, J. Zhang, and X. Chen, “A stochastic sampling mechanism for time-varying formation of multiagent systems with multiple leaders and communication delays,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3699–3707, 2019.
[7] Q. Liu, X. Li, and Y. yan, “Large time behavior of solutions for a class of time-dependent hamilton- jacobi equations,” Science China Mathematics, vol. 59, no. 5, pp. 875–890, 2016.
[8] Q. Liu, X. Li, and D. Qian, “An abstract theorem on the existence of periodic motions of non-autonomous lagrange systems,” Journal of Differential Equations, vol. 261, no. 10, pp. 5784–5802, 2016.
[9] M. A. Rami and L. E. Ghaoui, “LMI optimization for non-standard riccati equations arising in stochastic control,” IEEE Transactions on Automatic Control, vol. 41, no. 11, pp. 1666–1671, 1996.
[10] H. Abou-Kandil, G. Freiling, and G. Jank, “Solution and asymptotic behavior of coupled riccati equations in jump linear systems,” IEEE Transactions on Automatic Control, vol. 39, no. 8, pp. 1631–1636, 1994.
[11] R. Davies, P. Shi, and R. Wiltshire, “New upper solution bounds of the discrete algebraic riccati matrix equation,” Journal of Computational and Applied Mathematics, vol. 213, no. 2, pp. 307–315, 2008a.
[12] R. Davies, P. Shi, and R. Wiltshire, “Upper solution bounds of the continuous and discrete coupled algebraic riccati equations,” Automatica, vol. 44, no. 4, pp. 1088–1096, 2008.
[13] C.-H. Lee, “Matrix bounds of the solutions of the continuous and discrete riccati equations—a unified approach,” International Journal of Control, vol. 76, no. 6, pp. 635–642, 2003.
[14] Q. Liu, C. Wang, and Z. Wang, “On littlewood’s boundedness problem for relativistic oscillators with anharmonic potentials,” Journal of Differential Equations, vol. 257, no. 12, pp. 4542–4571, 2014.
[15] H. H. Choi, “Upper matrix bounds for the discrete algebraic riccati matrix equation,” IEEE Transactions on Automatic Control, vol. 46, no. 3, pp. 504–508, 2001.
[16] J. Liu, J. Zhang, and Y. Liu, “Trace inequalities for matrix products and trace bounds for the solution of the algebraic riccati equations,” Journal of Inequalities & Applications, vol. 2009, no. 1, pp. 171–174, 2009.
[17] R. Huang and D. Chu, “Relative perturbation analysis for eigenvalues and singular values of totally nonpositive matrices,” Siam Journal on Matrix Analysis & Applications, vol. 36, no. 2, pp. 476–495, 2015.
[18] J. Liu and J. Zhang, “New upper and lower eigenvalue bounds for the solution of the continuous algebraic riccati equation,” Asian Journal of Control, vol. 16, no. 1, pp. 284–291, 2014.
[19] R. Huang, “A Periodic qd-Type Reduction for Computing Eigenvalues of Structured Matrix Products to High Relative Accuracy,” Journal of Scientific Computing, vol. 75, no. 3, pp. 1229–1261, 2018.
[20] J. Zhang, J. Liu, and Y. Zha, “The improved eigenvalue bounds for the solution of the discrete algebraic riccati equation,” IMA Journal of Mathematical Control and Information, vol. 34, no. 3, pp. 851–870, 2016.
[21] H. Dai and Z. Z. Bai, “On eigenvalue bounds and iteration methods for discrete algebraic riccati equations,” Journal of Computational Mathematics, vol. 29, no. 3, pp. 341–366, 2011.
[22] N. Komarov, “Iterative matrix bounds and computational solutions to the discrete algebraic riccati equation,” IEEE
Transactions on Automatic Control, vol. 39, no. 8, pp. 1676–1678, 1994.

[23] J. Liu and L. Wang, “New solution bounds of the continuous algebraic riccati equation and their applications in redundant control input systems,” Science China Information Sciences, vol. 62, no. 10, pp. 69–85, 2019.

[24] J. Liu and J. Zhang, “The existence uniqueness and the fixed iterative algorithm of the solution for the discrete coupled algebraic riccati equation,” International Journal of Control, vol. 84, no. 8, pp. 1430–1441, 2011.

[25] J. Liu, L. Wang, and J. Zhang, “The solution bounds and fixed point iterative algorithm for the discrete coupled algebraic riccati equation applied to automatic control,” IMA Journal of Mathematical Control and Information, vol. 34, no. 4, pp. 1135–1156, 2016.

[26] J. Liu, L. Wang, and J. Zhang, “New matrix bounds and iterative algorithms for the discrete coupled algebraic riccati equation,” International Journal of Control, vol. 90, no. 11, pp. 2326–2337, 2017.

[27] A. Wu, Y. Zhang, and T. Jiang, “Iterative algorithms for discrete periodic riccati matrix equations,” International Journal of Systems Science, vol. 1, 2019.

[28] R. Huang, “A qd-type algorithm for computing the generalized singular values of BF matrices with sign regularity to high relative accuracy,” Mathematics of Computation, vol. 89, pp. 229–252, 2020.

[29] J. Guan, “Modified alternately linearized implicit iteration method for m-matrix algebraic riccati equations,” Applied Mathematics and Computation, vol. 347, pp. 442–448, 2019.

[30] R. Huang and D. Chu, “Computing singular value decompositions of parameterized matrices with total nonpositivity to high relative accuracy,” Journal of Scientific Computing, vol. 71, no. 2, pp. 682–711, 2017.

[31] R. Huang, J. Liu, and L. Zhu, “Accurate solutions of diagonally dominant tridiagonal linear systems,” BIT Numerical Mathematics, vol. 54, no. 3, pp. 711–727, 2014.

[32] R. Huang, “Factoring symmetric totally nonpositive matrices and inverses with a diagonal pivoting method,” BIT Numerical Mathematics, vol. 53, pp. 433–458, 2013.

[33] W.-W. Lin and S.-F. Xu, “Convergence analysis of structure-preserving doubling algorithms for riccati-type matrix equations,” SIAM Journal on Matrix Analysis and Applications, vol. 28, no. 1, pp. 26–39, 2006.

[34] T.-M. Hwang, E. K.-W. Chu, and W.-W. Lin, “A generalized structure-preserving doubling algorithm for generalized discrete-time algebraic riccati equations,” International Journal of Control, vol. 78, no. 14, pp. 1063–1075, 2005.

[35] I. G. Ivanov, “A method to solve the discrete-time coupled algebraic riccati equations,” Applied Mathematics and Computation, vol. 206, no. 1, pp. 34–41, 2008.

[36] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 2012.