Certain investigation on feature extraction in dorsal hand vein image

K S Vairavel1,a, R Nevetha1,b, S Mekala1,c
Department of Electronics and Instrumentation Engineering, Bannari Amman Institute of Technology, Sathyamangalam.
Email: aeievairam@gmail.com, bneve.rajagopal@gmail.com, cmekala62665@gmail.com

Abstract. Biometrics refers to people being known by their fingerprints or attributes. This research takes into account veins on the back of the hand called the dorsal vein. The primary target of this work is to build up an individual acknowledgment framework dependent available dorsal vein design with high acknowledgment rate. Attributes such as LBP (Local Binary Pattern), HOG (Histogram of Oriented Gradients) and WLD (Weber Local Descriptor) are extracted and the technique of Chi-square, Cityblock, Euclidean and Minikowski is used for recognition speeds. The quality assessment is conducted in terms of accuracy of category. Hand vein biometrics offer higher security, simple to get the hand vein picture and extremely difficult to fashion the information contrasted with progressively settled biometric check techniques.

1. Introduction
1.1 Image
An image is a square pixel (picture components) cluster or lattice masterminded in segments and columns [1]. A picture can be portrayed as a two-dimensional flag that contains force and shading data sorted out along a x and y spatial hub [2].

1.2 Digital image processing
Computerized picture preparing incorporates forms whose data sources and yields are picturesand envelops forms that remove characteristics from pictures and furthermore incorporates the acknowledgment of individual items [3].

1.3 Biometrics
There many methods to authenticate an individual as shown in the Figure 1.1. The simplest form of authentication is to enter a password or PIN (knowledge) [4].

1.3.1 Types of biometrics
Biometrics is the investigation of consequently perceiving people by methods for inalienably one of a kind physical or social attributes. Biometrics has been used mostly in the computer and physical security industry, where robust authentication methods used to control access to physical locations or computer systems were needed [5]. Biometrics to be used as feature for authentication is shown in the Figure 1.
As an issue of first significance, it ought to be across the board, with each individual having the given trademark. Next, there ought to be certain immutability intrinsic to the component, i.e., the purposeful segments should remain commonly steady over a period of time [6].

1.4 Dorsal hand vein
Dorsal hand vein pattern recognition system is a very hygienic contactless device and removes any apprehension between people about coming into contact with something that has already been touched by other people as shown in Figure 2. As near-infrared light is used to acquire the image it is non-harmful to the humans [7].

2. Proposed system
Bio metric plays a vital role in authentication. The system merges with the idea that for authentication purposes the dorsal vein image is used. Here are the algorithms as shown in Figure 3.
2.1 Roi extraction

The highlights of vein designs extricated from a similar district in various dorsal hand vein pictures are thought about for acknowledgment step [8]. The removed locale is known as the area of intrigue (ROI). The procured picture is first changed over to a gray scale picture and after that its ROI separated utilizing default editing capacity from MATLAB [9].

2.2 Local binary pattern

The basic idea for working up the LBP manager was to represent twodimensional surfaces by two proportional measures: adjacent spatial models and separate diminishing scale [10]. LBP provides a strong surface descriptor with an invariant turn, and Figure 4 shows a diagram of the basic LBP head. For each pixel in an image, it differentiates its view and all the adjacent pixel values [12].

![Figure 4. Example of Operator Basic LBP](image)

The LBP administrator can be stretched out to neighborhoods of various sizes. The pixel esteems can be interjected for round communities to allow any sweep and number of pixels in the areas [13].

2.3 Weber local descriptor

Find out that the chief figuring the power contrasts of the current pixel is really Laplacian head for the critical differential excitation element against its neighbours. Since the chairman of Laplacian is prone to uproar, in this procedure substitute with LoG (Laplacian of Gaussian). As a prominent descriptor of the area, LBP was essentially highly equivalent, computationally efficient and invariant to changes in monotonic dim measurement.

2.4 Histogram of oriented gradients

HOG are highlight descriptors used in PC vision and image processing for the end goal of object recognition. The approaches include restricted parts of an image's angle introduction events [14].

![Figure 3. Proposed System of Dorsal Vein Biometric](image)
technique is like edge implementation histograms, scale-invariant feature shift descriptors, and shape settings, but it differs in that it is processed in a thick network of continuously divided neighborhood cells and is used for more precise discernment of neighborhood standardization. HOG descriptors rely on neighborhood objects appearance and shape within a picture that can be represented by the dispersion of inclinations of force or edge directions. The descriptor of the HOG retains a few primary focuses over other methodologies of descriptors.

3. RESULTS AND DISCUSSION

3.1 Histogram of oriented gradients

The dorsal vein identification method using Oriented Gradient Histogram is performed for verification purposes with the K-NN classifier. The obtained result is from MATLAB simulation. Figure 5 shows the characteristic extraction of the Histogram from the dorsal vein illustration. Table 1 displays the chi-square, city block, euclidean and minikowski simulated values.

Table 1. Tabulation of HOG Left

K fold cross validation	Distance Measure	Chi-square	City Block	Euclidean	Minkowski	
K = 1	Testing Images	204	95.5882353	90.19607843	85.29411765	83.33333333
K = 2	204	98.0392157	97.05882353	93.62745098	91.66666667	
K = 3	204	97.0588235	96.07843137	94.11764706	92.15686275	
K = 4	204	98.0392157	98.03921569	97.05882353	95.58823529	
K = 5	204	98.0392157	96.56862745	92.15686275	91.66666667	
Average Recognition Rate		97.35294118	95.58823529	92.45098039	90.88235294	

Figure 5. Graphs of HOG Left

The HOG identification rate left for chi-square is 97%, city block is 95%, Euclidean 92% and minikowski 90%. The chi-square includes in the Oriented Gradient Histogram with high recognition values.

With the K-NN classifier, the validation goal is accomplished using the Oriented Gradient Histogram. The rate of identification of chi-square, city block, euclidean and minikowski as shown in Table 2. The graph is drawn for recognition rate as shown in the Figure 6.
Table 2. Tabulation of HOG Right

K fold cross validation	Testing Images	Chi-square	City Block	Euclidean	Minkowski
K = 1	204	95.0980392	92.15686275	88.23529412	87.25490196
K = 2	204	99.0196078	97.54901961	97.05882353	94.11764706
K = 3	204	99.5098039	99.50980392	97.54901961	96.56862745
K = 4	204	98.5294118	98.52941176	96.07843137	95.58823529
K = 5	204	99.5098039	98.03921569	94.11764706	94.11764706
Average Recognition Rate		98.3333333	97.15686275	94.60784314	93.52941176

Figure 6. Graph of HOG Right

The recognition rate in HOG right for chi-square is 98%, cityblock is 97%, Euclidean is 94% and minikowski is 93%. The chi-square consists of high recognition rate in Histogram of Oriented Gradient.

3.2 Local binary pattern

The validation objective is achieved with the K-NN classifier using Local Binary Template. Table 3 shows the recognition frequency of local binary pattern chi-square, cityblock, euclidean, and minikowski. The graph is drawn for recognition rate as shown in the Figure 7.

Table 3. Tabulation of LBP Right

K fold cross validation	Testing Images	Chi-square	City Block	Euclidean	Minkowski
K = 1	204	87.254902	83.82352941	75.98039216	68.62745098
K = 2	204	92.1568627	91.66666667	86.2745098	82.35294118
K = 3	204	95.5882353	93.62745098	88.7254902	86.76470588
K = 4	204	93.1372549	94.11764706	89.21568627	84.80392157
K = 5	204	93.1372549	91.17647059	83.3333333	75.98039216
Average Recognition Rate		92.25490196	90.88235294	84.70588235	79.70588235
The recognition rate in LBP right for chi-square is 92%, cityblock is 90%, Euclidean is 84%, and minikowski is 79%. The chi-square consist of high recognition rate in Local Binary Pattern.

The validation purpose is performed with the K-NN classifier using the Local Binary Pattern. Table 4 reports the recognition frequency of local binary pattern chi-square, cityblock, euclidean, and minikowski. The graph is drawn for recognition rate as shown in the Figure 8.

Figure 7. Graph of LBP Right

Table 4. Tabulation of LBP Left

K fold cross validation	Chi-square	City Block	Euclidean	Minkowski	
K = 1	204	81.8627451	77.45098039	65.19607843	55.88235294
K = 2	204	92.1568627	90.19607843	85.29411765	79.90196078
K = 3	204	92.6470588	91.17647059	84.80392157	80.39215686
K = 4	204	96.0784314	92.64705882	87.25490196	83.33333333
K = 5	204	90.6862745	85.29411765	79.41176471	74.50980392
Average Recognition Rate	90.6862745	87.35294118	80.39215686	74.80392157	
The recognition rate in LBP left for chi-square is 90%, cityblock is 87%, Euclidean is 80% and minikowski is 74%. The chi-square consists of Local Binary Pattern's high recognition frequency.

3.3 Weber local descriptor

The validation purpose is performed with the K-NN classifier using Weber Local Descriptor. The chi-square, city-block, euclidean, and weber local descriptor minikowski recognition level as shown in Table 5. The graph is drawn for recognition rate as shown in the Figure 9.

Table 5. Tabulation of WLD Left

Distance Measure	K fold cross validation	Chi-square	City Block	Euclidean	Minkowski
K = 1	204	54.4117647	55.39215668	47.54901961	41.66666667
K = 2	204	65.6862745	68.62745098	59.3137254	52.45098039
K = 3	204	70.0980392	73.52941176	63.7254902	56.8627451
K = 4	204	61.2745098	68.1372549	56.37254902	51.96078431
K = 5	204	63.7254902	70.09803922	56.37254902	51.47058824
Average Recognition Rate	204	63.03921569	67.15686275	56.66666666	50.88235294

Figure 8. Graph of LBP Left
The recognition rate in WLD left for chi-square is 63%, cityblock is 67%, Euclidean is 56% and minikowski is 50%. The Cityblock consist of high recognition rate in Weber Local Descriptor.

The validation objective with the K-NN classifier is achieved using Weber Local Descriptor. The recognition level of the local weber descriptor chi-square, city-block, euclidean and minikowski as shown in Table 6. The graph is drawn for recognition rate as shown in the Figure 10.

Table 6. Tabulation of WLD Right

Distance Measure	Chi-square	City Block	Euclidean	Minkowski	
K fold cross validation	Testing Images	Recognition Rate(%)			
K = 1	204	60.2941176	64.21568627	55.88235294	47.54901961
K = 2	204	67.1568627	68.62745098	59.80392157	52.94117647
K = 3	204	69.1176471	70.09803922	62.25490196	57.84313725
K = 4	204	68.1372549	71.56862745	62.74509804	55.39215686
K = 5	204	58.8235294	63.23529412	51.96078431	46.07843137
Average Recognition Rate	64.70588235	67.54901961	58.52941176	51.96078431	

Figure 9. Graph of WLD Left

Figure 10. Graph of WLD Right
The recognition rate in WLD right for chi-square is 64%, cityblock is 67%, Euclidean is 58% and minikowksi is 51%. The Cityblock consists of Weber Local Descriptor's high recognition level.

4. Conclusion
Dorsal vein is eliminated using local binary pattern (LBP), local weber descriptor(WLD) and K-NN classifier. The MATLAB simulation evaluated the function level fusion for each of its recognition. While the WLD, LBP and HOG are contrasted, in cityblock technique The WLD has a low recognition rate, the LBP has a high recognition level in chi-square technology and the chi-square technology has high recognition rate. The LBP is successful n comparing WLD and HOG and has a high recognition level. The proposed system increases the biometric system's trustworthiness and also enhances the system's overall performance.

5. Future work
The future work will concentrate with the filters on the endowment of the process. The reliability is improved by applying the filters to the proposed work and can make sure and contribute to the output.

References
[1] T Tanaka and N Kubo 2004 Biometric authentication by hand vein patterns Proc. SICE Annu. Conf., Yokohama, Japan, pp. 249–253.
[2] Gopal A, Smriti Srivastavaa, Saurabh Bhardwaj B, Sandeep Bhargavaa, 2016 Fusion of palm-phalanges print with palmprint and dorsal hand vein vol 47 pp.12–209.
[3] Sanchit Ramalho M, Correia P L, Soares, L.D, 2011 Biometric identification through palm and dorsal hand vein patterns International Conference on Computer as a Tool (EUROCON) IEEE
[4] Khan M, Khan N M 2011 Dorsal hand vein biometric using Independent Component Analysis (ICA) International Conference on Internet Technology and Secure Transactions (ICITST) IEEE
[5] C L Lin and K C Fan 2004 Biometric verification using thermal images of palm-dorsa vein patterns IEEE Trans Circuits & Sys For Video Technology vol 14 pp199 – 213
[6] Bogdan Belean, Mihaela Streza, Septimiu Crisian, Simian Emerich 2017 Dorsal hand vein pattern analysis and neural networks for biometric authentication vol 26 pp-305-314
[7] Z Honarpisheh & K Faez Biometric 2013 Identification by Clustering the Dorsal Hand Vein Patterns using the Firefly Algorithm International Journal of Electrical and Computer Engineering (IJECE) vol 3 pp 30-41
[8] Ajay Kumar, David Zhang 2006 Personal Recognition Using Hand Shape and Texture Vol 15
[9] M Rajalakshmi, V Ganapathy, R Rengaraj 2017 Palm-dorsal vein pattern authentication using convoluted neural network (cnn) Vol 116 pp 525-532.
[10]Fransiscas J Pantah, Jayanti yusmah sari, Amil A Ilham and Ingrid nutanio 2018 Multispectral dorsal hand vein recognition based on local line binary pattern Vol 11
[11]M Heikkil, M Pietikinen, and C Schmid 2006 Description of interest regions with center-symmetric local binary pattern Proceedings of 5th Indian Conference of Computer Vision Graphics and Image Processing vol 4338 pp 58–69
[12]R Nathiya, B Shanmugapriya, G Sivaseema, J Priyadharshini 2015 Dorsal fingerprint patterns using lbp and gabor for identifying human identities Vol 3 Issue 3, pp 236-243
[13]A Petpon & S Srisuk 2009 Face recognition with local line binary pattern In Image and Graphics ICIG'09 5th International Conference pp 533-539
[14]Mostafa A Ahmad, Ahmed H Ismail, Nadir Omer 2018 An Accurate Multi-Biometric Personal Identification Model using Histogram of Oriented Gradients (HOG) Vol 9